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Preface

Preface
This book is a companion to my An Introduction to Relational Database Theory (reference [7]) and is 
intended to be read in parallel with that text, hereinafter referred to as “the theory book”. As I noted in 
the preface of that book, a university course on relational databases is typically divided into a theory 
component and an “industrial” component requiring the student to learn the basics of SQL. In that 
preface I also mention that in my own teaching I encourage students to “compare and contrast SQL 
with what they have learned in the theory part”. This book is my own attempt to compare and contrast 
it, piece by piece, with what I have taught in the theory book.

The structure of the book closely parallels the first six chapters of the theory book, and the structure of 
each chapter is such that each section, example, and figure corresponds by number to its counterpart 
in the theory book. There are some gaps in the numbering. These arise when there is something in the 
theory book for which there is nothing relevant to discuss in the context of SQL. Conversely, I sometimes 
need several SQL examples in connection with a single example in the theory book, in which case I 
suffix the example numbers with a, b, c, and so on.

I do not include counterparts of the last two chapters of the theory book. That’s because they deal 
with relational database design issues and the treatment, insofar as it goes, is equally applicable to SQL 
databases.

Although existing knowledge of SQL is not a prerequisite, this book is not intended to be used as an SQL 
primer. Rather, its aim is to investigate the extent to which SQL supports and adheres to the theory, how 
it does so, and where and how it departs from the theory. Inevitably, the book also provides opportunities 
for comment on SQL’s degree of adherence to commonly accepted principles of computer language design.

Much of the study involves comparing expressions in Tutorial D with equivalent or near-equivalent 
expressions in SQL. Being one of the two inventors of Tutorial D (the other is Chris Date), I am obviously 
exposing myself to possible accusations of deliberately choosing examples that show my own language 
in a favourable light. Let me just say, in advance of any such accusations, that I had no idea of writing 
this book when I chose the examples for the theory book, and I have tried hard to avoid over-elaborate 
or otherwise perverse SQL formulations. I am open to suggestions and willing to make revisions if 
simplifications of any of my examples come to light.
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Preface

I stick to standard SQL (ISO/IEC 9075—see reference [15]) in all my examples. As a member of the 
relevant committee (currently ISO/IEC JTC 1/SC 32/WG 3) from 1989 to 2004 I was deeply involved in 
the drafting of the various documents constituting that standard. I have taken advantage of that experience 
by sprinkling my text with subsections headed Historical Notes, these being clearly demarcated in 
brown to help you skip them if they don’t interest you. SQL, whose first commercial implementation 
appeared in 1979, has grown out of all proportion to its original self over the years and the main aim of 
these historical notes is to tell you when and why the various features that I use in my examples arose 
in the language. I was not involved in IBM’s original development of SQL, so there is a certain amount 
of conjecture—albeit reasonably well-informed conjecture—where I write about the early history of 
the language. Various SQL guides based on the standard are mentioned in Appendix A (references [2], 
[10], and [16]). These were all published in the 1990s and thus do not cover material that was added in 
SQL:1999 and subsequent editions.

I am well known in some quarters as a severe critic of SQL. I have tried hard not to burden readers with 
my personal opinions but, rather, just to present the facts and let readers form their own opinions. In 
spite of my efforts I have possibly not been 100% successful in that endeavour. It was difficult.

Acknowledgments

My initial draft was reviewed by Jamie Collins, Chris Date, and Erwin Smout, all of whom made some 
useful comments. Needless to say, all the remaining errors—and there are sure to be some—are my own.

Karin Hamilton Jakobsen, my contact at Ventus Publishing, has been very helpful in many respects in 
connection with all my books published by that company.

In spite of my declared distaste for the language, SQL, I cannot speak too highly of my fellow members 
of the aforementioned standards committee, especially Jim Melton, the editor-in-chief since 1987, 
successive convenors Len Gallagher, Stephen Cannan and Keith Hare, and my former colleagues in 
the UK delegation, Ed Dee, Mike Sykes and Phil Brown. Of course there are many others, from many 
national bodies and far too numerous to be named here, who have also showed great dedication and 
professionalism in the monumental task of producing this standard. My appreciation is expressed in 
my dedication for this book.
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Introduction

1 Introduction
1.1 Introduction

Chapter 1 of the theory book gives a very broad overview of 

•	 what a database is
•	 what a relational database is, in particular
•	 what a database management system (DBMS) is
•	 what a DBMS does
•	 how a relational DBMS does what a DBMS does

It introduces you to the terminology and notation used in the remainder of the book and gives a brief 
introduction to each topic that is covered in more detail in subsequent sections. The first, third and fourth 
bullet points clearly apply equally well in the SQL world and I have nothing to add on those topics here. 
However, the second and last bullet points need to be replaced, respectively, by 

•	 what an SQL database is, in particular

and

•	 how an SQL DBMS does what a DBMS does

Sections 1.2 to 1.5 of the theory book deal with the first bullet point, what a database is, so our comparative 
study of SQL starts with Section 1.6. (Note, by the way, that I wrote “an SQL”, not “a SQL”. Some people 
pronounce the name as “sequel” but the official pronunciation is “ess cue ell”.)

Historical Note

The origins of SQL can be traced to an IBM research paper published in 1974, titled SEQUEL: A Structured 
English Query Language, by Donald D. Chamberlin and Raymond F. Boyce. Raymond Boyce, who sadly 
died in the same year, 1974, was the person whose name is enshrined in Boyce-Codd Normal Form 
(BCNF), described in Chapter 7 of the theory book. This paper actually said nothing about database 
management but it assumed the existence of relation-like things called tables and defined a notation for 
expressing queries on tables in the declarative manner that is expected for relational databases.

http://bookboon.com/


Download free eBooks at bookboon.com

SQL: A Comparative Survey

12 

Introduction

A prototype implementation of SEQUEL, named SEQUEL-XRM, was produced in 1974–75. Experience 
with this prototype led in 1976–77 to a revised version of the language, SEQUEL/2, subsequently renamed 
SQL for legal reasons. Work then began on System R, another, more ambitious prototype, implementing 
a subset of that revised version. A significant aim of System R was to gainsay those pundits who were 
sceptical about the possibility of providing a relational DBMS with performance comparable to that 
obtainable with conventional database technology at the time, and it was widely lauded as having 
succeeded in that aim. System R became operational in 1977 and was installed at a number of internal 
sites in IBM and at a few selected customer sites. Experiences with System R resulted in further changes 
to SQL and soon expectations were high that IBM would eventually develop commercial SQL products—
so high that one vendor organization, now named Oracle Corporation, beat IBM to it in 1979 with the 
first release of ORACLE. IBM’s own first SQL product, SQL/DS for the VSE environment, appeared in 
1981 and implementations on other platforms followed during the 1980s. One of these was DB2 for OS/
MVS in 1983, and much later DB2 became the generic name for all of IBM’s implementations. A host of 
other vendors joined the game over the next two decades, including, to name but a few, Microsoft (with 
SQL Server, naughtily pronounced “sequel server”!), Sybase, Ingres, and Digital Equipment Corp. (with 
RDB, now owned by Oracle). Those last two, Ingres and RDB, originally used their own languages, both 
inspired by Codd’s relational calculus, but later acquired an SQL interface.

The first edition of the international (ISO) standard for SQL appeared in 1987 as a ratification of one 
produced a year earlier by the Database Committee X3H2 of the American National Standards Institute 
(ANSI). Further development of the standard has taken place since then in ISO—or rather, under the 
auspices of a “joint technical committee”, JTC 1, of ISO and IEC, responsible for all international IT 
standards. The editions are referred to as SQL:yyyy, where yyyy is the year of publication. 

The so-called “referential integrity” feature, supporting primary keys and foreign keys, appeared in 
SQL:1989. SQL:1992 contained so many additional features that its language had been referred to at the 
time as SQL/2. In 1996 additional features known as SQL/PSM (a programming language for stored 
procedures and functions) and SQL/CLI (a “call level interface”) were added. At the same time, the 
committee was working on further extensions to the language, resulting in the appearance of “SQL/3” as 
SQL:1999, whose most significant addition was the so-called “object-relational” feature supporting user-
defined types. Further revisions appeared in 2003, 2007, and 2011. That last one, SQL:2011 (reference 
[15]), is notable for its modicum of support for “temporal database” management.

Many of the additional features appearing in post-1989 editions are specified as optional, meaning that 
they aren’t required for an implementation to qualify as standard-conforming.

Historical notes appearing later in this book, concerning specific features of SQL, refer mostly to the 
pre-2000 editions of the ISO SQL standard: 1987, 1989, 1992, 1996, 1999, though in connection with 
the notation for queries I can sometimes take you right back to the 1974 SEQUEL paper.
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Now, Sections 1.2 to 1.4 in the theory book describe some concepts that apply to databases in general 
and therefore equally well to relational databases and SQL databases. For that reason counterparts of 
those sections are omitted here and the next section is numbered 1.5 to maintain the parallels. Also, for 
a similar reason, the first two Figures in this chapter are number 1.2 and 1.4.

1.5 “Collection of Variables”

Figure 1.2 in the theory book puts a variable name on a table that is later confirmed as depicting a relation. 
The same figure serves here to put the same variable name on a picture in tabular form representing 
an SQL table. To speak of a table being depicted in tabular form isn’t as silly as it may seem. There are 
other ways of visually representing the abstract concept of an SQL table, just as there are other ways of 
representing relations visually. In fact, it was the suitability of such pictures that led to the terms table, 
row, and column being advanced as alternatives for relation, tuple, and attribute back in the 1970s.

ENROLMENT

StudentId Name CourseId

S1 Anne C1

S1 Anne C2

S2 Boris C1

S3 Cindy C3

S4 Devinder C1

Figure 1.2: An SQL table variable, showing its current value.
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Introduction

1.6 What Is an SQL Database?

So, an SQL database is one whose symbols are organized into a collection of tables.

Now, Figure 1.2 shows an SQL table as the current value of an SQL variable, ENROLMENT, but in that 
connection there are two important points to be made right away. First, the term table variable isn’t 
used in SQL for its counterpart of relation variables. Instead, base relvars are normally referred to as 
base tables, virtual relvars as views (or viewed tables) and those terms are used in the international 
standard. Secondly, not every SQL table can be the value of a base table or view. As we shall soon see, 
table variables and the tables assigned to them are subject to several deviations from relational theory; 
tables that cannot be assigned to a variable are subject to even more deviations. These deviations, and 
their consequences, give rise to much of the subject matter in this book.

The theory book’s study of relational theory includes

•	 the “anatomy” of a relation
•	 relational algebra: a set of mathematical operators that operate on relations and yield 

relations as results
•	 relation variables: their creation and destruction, and operators for updating them
•	 relational comparison operators, allowing consistency rules to be expressed as constraints 

(commonly called integrity constraints) on the variables constituting the database

and the book shows “how these, and other constructs, can form the basis of a database language 
(specifically, a relational database language)”. To parallel the above structure, our study of SQL includes

•	 the “anatomy” of a table—showing similar components to those of relations but using 
different terminology

•	 SQL’s operators that operate on tables and yield tables as results
•	 base tables: their creation and destruction, and operators for updating them
•	 various special constructs allowing consistency rules to be expressed as constraints on the 

base tables constituting the database

Historical Note

As already mentioned, during the 1970s the term “table” became widespread as a more intuitive replacement 
for the mathematical term “relation”. For example, it was used in ISBL, whose developers are my dedicatees 
in the theory book, and also in Business System 12, the relational DBMS produced in 1982 for users of IBM’s 
time-sharing services. Nowadays, however, as those earlier relational DBMSs have left the scene, the term 
tends to refer specifically to SQL tables and as these differ significantly from relations in several important 
respects it is perhaps better to revert to E.F. Codd’s terminology for relations, as I do in the theory book.
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1.7 “Table” Not Equal to “Relation”

The corresponding section in the theory book is titled “Relation” Not Equal to “Table”, where the word 
table was not intended to refer to the SQL construct in particular. Here it does refer to that construct.

The table shown in Figure 1.4 is a copy of its counterpart in the theory book, where it illustrates the point 
that two tables that differ only in the order of rows or the order of columns represent the same relation.

Name StudentId CourseId

Devinder S4 C1

Cindy S3 C3

Anne S1 C1

Boris S2 C1

Anne S1 C2

Figure 1.4: Not the same SQL table as Figure 1.2.

In standard SQL, the order of rows still carries no significance but the order of columns does carry 
significance, so Figures 1.2 and 1.4 do not in fact depict exactly the same SQL table. In the course of our 
study we will discover how the order of columns affects the SQL operators for operating on tables and 
those for operating on base tables. (Some SQL implementations support a somewhat unsound operator 
that delivers the table consisting of the first n rows of a given table. The user can specify an ordering 
for the rows but is not required to do so. The unsoundness arises even in the case where the user does 
specify an ordering, when there is a tie for any of the first n places. The order of the rows involved in 
the tie is then indeterminate and results are unpredictable.)

Also in the theory book, Figure 1.5 shows a table, copied here, that does not depict any relation. However, 
it does depict a valid SQL table.

A B A

1 2 3

4 5

6 7 8

9 9 ?

1 2 3

Figure 1.5: A possible SQL table.
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The single exercise for Chapter 1 of the theory book invited you to list the features seen in this table 
that mean it cannot possibly represent a relation. One of these—the appearance of two identical column 
headings—means that this SQL table cannot be the value of a base table, as we shall soon see. We shall 
also discover how it can happen that the same row appears more than once in an SQL table, like the first 
and last rows in Figure 1.5, and how something other than a value, or even nothing at all, might appear 
in a place where a value is expected, as depicted in the second and fourth rows.

1.8 Anatomy of a Table

Figure 1.6 shows the terminology used in SQL to refer to parts of the structure of a table.

 
Figure 1.6: Anatomy of an SQL table.

As you can see, SQL has no official terms for its counterparts of the heading and body of a relation, 
but for convenience I do use those terms occasionally in the present book as applying to tables. SQL’s 
counterpart of relational attribute is column. The figure shows the term field being used for SQL’s 
counterpart of attribute value but please note that the international standard uses this term not only for 
a component of a row, as shown, but also for the corresponding component of the relevant row type.

1.9 What Is a DBMS?

The answer to this question is of course given in Section 1.9 of the theory book.

This book is concerned with SQL DBMSs and SQL databases in particular. Soon we will be looking at 
some of the features we might expect to find in an SQL DBMS—“might” because not all the standard 
features we describe are found in all SQL implementations.
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1.10 SQL Is a Database Language

Section 1.10 in the theory book begins

[The] commands given to a DBMS by an application are written in the database language of 
the DBMS. The term data sublanguage is sometimes used instead of database language. The 
sub- prefix refers to the fact that application programs are sometimes written in some more 
general-purpose programming language (the “host” language), in which the database language 
commands are embedded in some prescribed style. Sometimes the embedding style is such that 
the embedded statements are unrecognized by the host language compiler or interpreter, and 
some special preprocessor is used to replace the embedded statements by, for example, CALL 
statements in the host language.

Those remarks apply to SQL, as does the remainder of that section. Moreover, Part 10 of the international 
standard for SQL defines classes for use in object-oriented languages, in particular, Java, thus allowing 
method invocations to be used in place of old-fashioned CALL statements.
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1.11 What Does an SQL DBMS Do?

In response to requests from application programs, an SQL DBMS can, for example,

•	 create and destroy base tables
•	 take note of integrity rules expressed as constraints
•	 take note of authorisations (who is allowed to do what, to what)
•	 update variables (honouring constraints and authorisations)
•	 provide results of queries

—in other words, all of the things mentioned in the corresponding list of bullet points in Section 1.11 
of the theory book.

In the remaining sections of this chapter you will see examples of how an SQL DBMS does these things 
(via commands—usually called statements—written in SQL, of course).

1.12 Creating and Destroying Base Tables

Example 1.1 shows an SQL command to create the base table counterpart of the ENROLMENT variable 
shown in Figure 1.2.

Example 1.1: Creating a base table.

CREATE TABLE ENROLMENT 

( StudentId SID ,

 Name  VARCHAR(30),

 CourseId CID ,

 PRIMARY KEY ( StudentId, CourseId ) 

) ;

(Example 1.1 and the other examples in this chapter all end in semicolons. Actually, a semicolon is 
required in SQL only in scripts consisting of more than one statement. A script consisting of a single 
statement must not end in a semicolon.)

Explanation 1.1:

CREATE TABLE is SQL’s counterpart of the key words VAR, BASE, and RELATION as 
used in Tutorial D.

ENROLMENT is the table name for the base table.

http://bookboon.com/
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The text from the opening parenthesis to the end of the fourth line specifies the declared type of 
the table, meaning that every table ever assigned to ENROLMENT must be a table of that type.

The declared type of ENROLMENT is a table type, indicated by the key word TABLE and a 
comma-separated list (commalist, for short) of column definitions. A column definition consists 
of a column name followed by a type specification. Thus, each column of the table also has a 
declared type. Two or more columns can have the same type but not the same name. The type 
names SID and CID (for student ids and course ids) refer either to user-defined types or to 
user-defined domains. User-defined types and domains have to be defined by some user of the 
DBMS before they can be referred to. The type name VARCHAR(30) (character strings of 
length 30 or less), by contrast, is a predefined type: it is provided by the DBMS itself, is available 
to all users, and cannot be destroyed.

Chapter 2, “Values, Types, Variables, Operators”, deals with types in more detail, and shows 
you how to define types and domains.

PRIMARY KEY indicates that the table is subject to a key constraint, in this case declaring 
that no two rows in the table assigned to ENROLMENT can ever have the same combination 
of StudentId and CourseId fields (i.e., we cannot enrol the same student on the same 
course more than once, so to speak). We will learn more about SQL constraints in general and 
SQL’s key constraints in particular in Chapter 6.

Destruction of ENROLMENT is the simple matter shown in Example 1.2,

Example 1.2: Destroying a base table.

DROP TABLE ENROLMENT ;

After execution of this command the base table no longer exists and any attempt to reference it is in error.

Historical Note

The first SQL products, and indeed, the first edition (1987) of the international standard, had no support 
for key constraints. The PRIMARY KEY construct, along with the other features of the so-called 
“referential integrity” enhancements, appeared in SQL:1989. Because key constraints could not previously 
be expressed at all, by the time the feature was added there were plenty of existing base table definitions 
that lacked them and in such base tables it was even permitted for the same row to appear more than 
once (with what significance? you may well ask—good question!). As a consequence, the declaration of 
a key constraint had to be made optional in the interests of backwards compatibility. This is just one of 
many dubious features of SQL that arise from misjudgments made in the original language that have 
been impossible to correct for that reason.
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1.13 Taking Note of Integrity Rules

For example, suppose the university has a rule to the effect that there can never be more than 20,000 
enrolments altogether. Example 1.3 shows how to declare the corresponding constraint in standard SQL, 
but please note that not many SQL implementations actually support this optional feature at the time 
of writing (2012).

Example 1.3: Declaring an integrity constraint.

CREATE ASSERTION MAX_ENROLMENTS

CHECK ( ( SELECT COUNT(*) FROM ENROLMENT ) <= 20000 ) ;

Explanation 1.3:

•	ASSERTION is the key word indicating that a constraint is being declared.
•	MAX_ENROLMENTS is the name of the constraint.
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•	 ( SELECT COUNT(*) FROM ENROLMENT ) is an SQL expression yielding the 
cardinality of (number of rows in) the current value of ENROLMENT. Note that the 
enclosing parentheses are actually required: without them, the expression would denote 
a certain table rather than a numerical value. See Chapter 5, Section 5.3, Aggregate 
Operators, for more details on this construct.

•	 ( SELECT COUNT(*) FROM ENROLMENT ) <= 20000 is a truth-valued 
expression—a condition, yielding true if the cardinality is less than or equal to 20000, 
otherwise yielding false. As we shall see later, not all conditions are such that they always 
yield either true or false—most of them aren’t—but this is a special case that does happen to 
adhere to the usual rule of logic.

•	 Enclosing the condition in parentheses preceded by the key word CHECK is necessitated 
because there are other things that can be optionally specified in connection with a 
constraint.

The declaration tells the DBMS that the database is inconsistent if the condition of MAX_ENROLMENTS 
is ever false, and that the DBMS is therefore to reject any attempt to update the database that, if accepted, 
would bring about that situation.

Example 1.4 shows how to retract a constraint that ceases to be applicable.

Example 1.4: Retracting an integrity constraint.

DROP ASSERTION MAX_ENROLMENTS ;

Historical Note

CREATE ASSERTION first appeared in SQL:1992 but it remains (in SQL:2011) an optional conformance 
feature and its uptake by SQL vendors has been negligible. With it, SQL’s support for database integrity would 
be almost complete in the sense described in the theory book (“almost”, because it still has no counterparts of 
those relations of degree zero, TABLE_DEE and TABLE_DUM); without it that cannot be so, as explained 
in Chapter 6.

1.14 Taking Note of Authorisations

As relational theory is silent on the issue of authorisation, it offers nothing with which SQL’s vast edifice 
in support of what it calls privileges can be compared. Example 1.5 is a very simple case showing how 
the corresponding example in the theory book could be done in SQL.

Example 1.5: Granting privileges

GRANT SELECT, INSERT, DELETE, UPDATE ON ENROLMENT TO User9 ;
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Explanation 1.5:

•	GRANT is the key word indicating that privileges are being granted.
•	SELECT, INSERT, DELETE, UPDATE identify operators that can be applied to a 

base table. The first, SELECT, is used here to indicate that permission to access the current 
value is being granted. The others are all update operators with very much the same effects 
as their counterparts in Tutorial D. If DELETE were omitted, for example, then User9 
would not be allowed to use DELETE commands on ENROLMENT.

•	ON ENROLMENT identifies the base table on which those privileges are being granted.
•	 TO is the key word required to precede the commalist of user names, officially termed 

authorization identifiers, denoting the users on whom the specified privileges are to be 
conferred.

So, our example actually grants four distinct privileges, all on the same base table. Example 1.6 shows 
how, for example, just two of these can be withdrawn (revoked is the official term):

Example 1.6: Revoking privileges

REVOKE DELETE, UPDATE ON ENROLMENT FROM User9 ;

Note that SQL does not use names for privileges, as suggested in the theory book’s Example 1.5. If it did, 
then the syntax for revoking privileges might be simpler, but then we would need to provide a name for 
each of the four distinct privileges being granted in Example 1.5 and use two of those names in Example 
1.6. The syntax for assigning names would surely be rather cumbersome—and consider that in real life 
the list of user names following TO might be very large.

These two simple examples hardly scratch the surface of the “vast edifice” I referred to. Furthermore, it 
is doubtful whether any university course in SQL would cover the whole of that edifice as defined in the 
international standard. Mercifully, we shall have nothing more to say about it in this book.

1.15 Updating Variables

For assignment, SQL uses the key word SET, as in SET X = X + 1 (read as “set X equal to X+1”) 
rather than X := X + 1 as found in many computer languages.

When the target is a base table, direct assignment is not available in SQL. Only differential update operators 
such as the usual INSERT, DELETE, and UPDATE are available. Example 1.8 illustrates SQL’s DELETE.

Example 1.8: Updating by deletion

DELETE FROM ENROLMENT WHERE StudentId = SID ( 'S4' ) ;
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As you can see, this differs from Example 1.8 in the theory book only by the addition of the noise 
word FROM. The expression SID ( 'S4' ) assumes the existence of a user-defined operator whose 
invocation here yields the value of user-defined type SID that represents the student id S4.

Next, in Example 1.9, we look at UPDATE.

Example 1.9: Updating by replacement

UPDATE ENROLMENT SET Name = 'Ann' 

WHERE StudentId = SID ( 'S1' ) ;

Note the use of SET, as already noted in connection with direct assignment to variables other than base 
tables. Otherwise the syntax is very similar to that used in Tutorial D, as are the semantics.

Finally, Example 1.10 illustrates the use of INSERT.

Example 1.10: Updating by insertion

INSERT INTO ENROLMENT 

VALUES ( SID ( 'S4' ) ,

'Devinder' ,

CID ( 'C1' ) ) ;

Here we see our first consequence of the difference between relations and SQL tables. The key word 
VALUES is SQL’s counterpart of RELATION as used in relation selector invocations in Tutorial D (see 
Example 1.10 in the theory book). Most importantly, note that the expression denoting the operand of 
VALUES specifies fields (column values) without giving their column names, raising the question, how 
does SQL know which value goes into which column? The answer, as I’m sure you’ve guessed, is that 
the first value, SID ( 'S4' ), goes in the first column of ENROLMENT, the second in the second, 
and so on. That in turn raises the question, how do we know which is the first column of ENROLMENT, 
which the second, and so on, considering that in relational theory there is no ordering to the attributes 
of a relation? The answer, as I’m sure you’ve guessed again, lies in the order in which the column 
definitions are listed in the invocation of CREATE TABLE that brought ENROLMENT into existence 
(Example 1.1). However, SQL does make provision in case you remember the column names but forget 
the order: you could write the names in parentheses, ( StudentId, Name, CourseId ), the 
order corresponding to that of the VALUES entries, after the table name ENROLMENT.

A few words are needed to say what happens when rows to be deleted or updated do not exist and rows 
to be inserted already exist.

Example 1.8 has no effect on the database in the case where the current value of ENROLMENT has no 
rows for student S4, but the DBMS might give a warning message.
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Example 1.9 has no effect on the database in the case where the current value of ENROLMENT has no 
rows for student S1, but again the DBMS might give a warning message.

Regarding Example 1.10, in the case where the current value of ENROLMENT already contains the row ( 
SID ( 'S4' ) , 'Devinder' , CID ( 'C1' ) ), the effect is to add another copy of that 
row anyway, unless to do so would cause some explicitly declared constraint (perhaps a key constraint) 
to be violated. By the way, the outer parentheses enclosing the three expressions denoting that row are 
required only when the row contains more than one field. Somewhat counterintuitively, the expression 
VALUES 1, 2 denotes a table having two rows and just one column, as does VALUES (1), (2), 
whereas VALUES (1, 2) denotes a table with one row and two columns. 

Historical Notes

INSERT, DELETE, and UPDATE, including the use of SET name = expression for specifying 
column assignments, all appeared in the first SQL products. Support for local variables arrived in 
SQL:1996 with SQL’s computationally complete programming language, SQL/PSM. It was natural, then, 
to use the same syntax for assignment to variables. Had the need for a programming language been 
realized at the outset, then perhaps a more usual syntax for assignment might have been adopted and 
copied in column assignments in UPDATE commands. That said, it can be noted that Basic uses similar 
syntax to SQL, replacing SET by LET.
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The curious syntax for VALUES expressions is explained by the fact that they were originally restricted 
to just one row and could appear only as the source operand for INSERT. For imagined convenience, 
the parentheses surrounding the list of field expressions could be omitted when the row consisted of 
a single field. In SQL:1992 the syntax was extended to allow more than one row to be specified, using 
commas to separate the individual, possibly parenthesized, row expressions. However, that extension 
was specified as an optional conformance feature and it remains optional in SQL:2011. Use of a VALUES 
expression other than as an operand of INSERT is also an optional conformance feature.
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1.16 Providing Results of Queries

Expressing queries in SQL is the (big) subject of Chapters 4 and 5. Here I present just a simple example 
to give you the flavour of things to come in those chapters. Example 1.11, as in the theory book, is a 
query expressing the question, who is enrolled on course C1?

Example 1.11: A query in SQL

SELECT DISTINCT StudentId, Name 

FROM ENROLMENT 

WHERE CourseId = CID ( 'C1' ) 

Note carefully that Example 1.11 is not a command (hence the absence of a semicolon). It is just an 
expression, denoting a valuein this case, a table. In SQL the result of a query is always another table. 
Figure 1.7 shows the result of Example 1.11 in the usual tabular form.

StudentId Name

S1 Anne

S2 Boris

S4 Devinder

Figure 1.7: Result of query in Example 1.11.

Explanation 1.11:

•	SELECT DISTINCT StudentId, Name specifies that the result of the WHERE 
invocation is to be projected over StudentId and Name.

•	FROM ENROLMENT specifies the table operand for the invocation of WHERE.
•	WHERE CourseId = CID ( 'C1' ) specifies that just the rows for course C1 are 

required.

Historical Note

The syntax illustrated here is very similar to that defined for SEQUEL back in 1974. A table expression 
is required to begin with a SELECT invocation. That invocation or, to give its official term, clause, is 
followed by a sequence of clauses, each denoting a table that is the single table operand of the clause that 
follows it. The table denoted by the last clause is the table operand of the SELECT clause. The second 
clause must always appear and must always be a FROM clause. If a WHERE clause appears at all, it must 
be the third one. We shall meet other clauses, and the rules governing their possible appearance, later. 
These rules define the structure that inspired the name of the language when SEQUEL morphed into 
SQL, though in the title of the SEQUEL paper it referred to the ability to nest such expressions inside 
other such expressions. Officially the name is just SQL, not standing for anything—neither “structured 
query language” nor, as some would have it, “standard query language”).
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2  Values, Types, Variables, Operators
2.1 Introduction

This chapter in the theory book looks at the four fundamental concepts on which most computer 
languages are based and establishes the related terminology that is used in the book. Here we examine, 
at a general level, SQL’s treatment of those four concepts, but unfortunately SQL doesn’t stick with just 
those four and in fact has two more. One of these is so pervasive in its effects on the other four that we 
had better start to examine it right away…

SQL’s Fifth Concept, NULL

Unfortunately, SQL embraces a fifth concept, called NULL, an apparently simple little thing but one that 
has pervasive effects on our usual understanding of the other four. NULL denotes a kind of nothingness. 
It is somewhat akin to a value in that it can be the result of evaluating an expression, but it has no type, 
cannot appear everywhere a value can appear, and lacks certain other properties that values have, as 
we shall see.

 

  

 

                . 
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Although SQL is not the only computer language to include a special construct representing non-
existence, its own variety, NULL is accompanied by a departure from classical logic that is not found in 
any other well-known languages and gives rise to some deviations from relational database theory that 
students and users have to be well aware of. The departure in question is the introduction of a third truth 
value, denoted by the key word UNKNOWN. For example, a comparison of the form x = y in SQL evaluates 
to UNKNOWN if either x or y evaluates to NULL, even when they both do! (The comparison operator IS 
NOT DISTINCT FROM is available in place of =, such that x IS NOT DISTINCT FROM y evaluates 
to FALSE if just one of x and y is NULL, TRUE if they both are, and is otherwise equivalent to x = y.)

I shall reveal as we go along the effects of NULL and UNKNOWN that cause SQL to deviate from normally 
expected behaviour.

Historical Note

SQL’s NULL and UNKNOWN are generally considered to have their origins in a 1979 paper by E.F. Codd 
(reference [6]), who was an employee of IBM at that time and thus readily available for consultation 
by the early SQL DBMS developers in that company. It is perhaps rather unfortunate, then, that these 
constructs, which have been subject to so much criticism and controversy, thus received a cachet of 
approval from such an eminent authority. In his famous 1970 paper (reference [3]) Codd was quite clear 
in requiring every attribute of a tuple contained in a relation to be assigned a value in the “domain” (i.e., 
declared type) of that attribute. It seems likely (to me, at least) that in 1979 Codd was reacting to critics 
of his Relational Model of Data who complained that it appeared to offer no good, practical method of 
dealing with the so-called “problem of missing information”, though an earlier paper by him (reference 
[4]) does contain a couple of oblique mentions of something called “null”. That criticism might still be 
to some extent valid. For example, several genuinely relational approaches to the problem that have been 
advanced are described in reference [11], yet none of these is likely to appeal to those who are beguiled 
by the superficial attraction of just “leaving it blank”, so to speak.

It is interesting that Codd later rejected his 1979 proposal as being inadequate (rather than as being flawed, 
as some would have it) and replaced it in 1990 (reference [5]) by a proposal involving two different kinds 
of null and a fourth truth value. The point was that his original proposal was for a special marker to 
appear, in place of an attribute value, to denote “a value exists but which particular value really belongs 
here is not known”. SQL’s NULL is indeed used for that purpose but, as we shall see, it is used for other 
purposes too. One of those other purposes is to signify “no value belongs here”, and that is the additional 
purpose Codd was addressing in 1990.

As we shall see as we go along, the beguiling simplicity of “just leaving it blank” (i.e., assigning NULL) 
is more than compensated for—its detractors such as myself would argue—by the complications and 
difficulties that arise, for example, in defining constraints and expressing queries.
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Now, although I have claimed that NULL is a “fifth concept”, the current (2011) SQL standard’s definition 
of NULL appears to directly contradict that claim, and also to take a different view on my claim that 
NULL has no type:

Every data type includes a special value, called the null value, sometimes denoted by the keyword NULL. This value 
differs from other values in the following respects:

•	 Since the null value is in every data type, the data type of the null value implied by the keyword NULL cannot be 

inferred; hence NULL can be used to denote the null value only in certain contexts, rather than everywhere that a 

literal is permitted.

•	 Although the null value is neither equal to any other value nor not equal to any other value — it is unknown 

whether or not it is equal to any given value — in some contexts, multiple null values are treated together; for 

example, the <group by clause> treats all null values together.

Note the term the null value, and that although NULL is called that, it “differs from all other values”. 
In particular it compares neither equal to itself nor unequal to everything bar itself, except in certain 
contexts as vaguely noted in the second bullet. IS NOT DISTINCT FROM is one of these exceptions. 
It, and its converse IS DISTINCT FROM, were added to SQL in 1999 and they remain an optional 
conformance feature. Note also the notion that there is only one NULL, causing us to wonder how it 
can be that the NULL that is a member of type INTEGER is the very same thing as the NULL that is a 
member of type DATE, for example. I stick by my “fifth concept” claim.

I have also mentioned UNKNOWN as the key word denoting SQL’s third truth value. In the light of the 
text I have just cited, to the effect that NULL is a value of every type in SQL, the question should arise in 
your mind: what is the difference between UNKNOWN and the NULL that is a member of type BOOLEAN? 
Here is the official answer (again, as of 2011):

The data type boolean comprises the distinct truth values True and False.… [T]he boolean data type also supports the 
truth value Unknown as the null value. This specification does not make a distinction between the null value of the 
boolean data type and the truth value Unknown…they may be used interchangeably to mean exactly the same thing. 

Notice in passing “the null value of the boolean data type”, strongly suggesting that this is not, after all, 
the very same thing as the null v alue of the integer data type. Clearly, NULL is a very strange and difficult 
thing to speak or write about, especially for the painstaking members of the international committee 
responsible for drafting the SQL standard (and I can attest to that difficulty, having been one of them 
for 15 years!).
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2.2 Anatomy of A Command

Figure 2.1, showing a simple SQL command, is almost identical to its counterpart in the theory book. 
The only difference arises from the fact that SQL uses a different notation for assignment to a local 
variable. (The SQL international standard doesn’t actually use the terms update operator and read-only 
operator, but SQL does embrace those distinct concepts and for convenience I shall continue to use 
those terms in this book.)

 
Figure 2.1: Some terminology.
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The remaining text of Section 2.2 in the theory book holds good here, subject to the two small syntactic 
differences, the initial key word SET as the operator name for assignment and the use of = in place of :=.

Effects of NULL

The numeric variable X, perhaps of type INTEGER, might be assigned NULL. In that case the result of 
evaluating X + 1 is NULL, and so SET Y = X + 1 assigns NULL to Y. A curious consequence of 
this is that immediately following this assignment the comparison Y = X + 1 does not evaluate to 
TRUE. For that matter, neither does the comparison Y = Y. In fact they both evaluate to UNKNOWN.

2.3 Important Distinctions

Again the theory book text for this section holds good here too. The list of important distinctions is 
repeated here. You might wish to check your own understanding of them before re-reading the text in 
the theory book.

•	 Syntax versus semantics
•	 Value versus variable
•	 Variable versus variable reference
•	 Update operator versus read-only operator
•	 Operator versus invocation
•	 Parameter versus argument
•	 Parameter subject to update versus parameter not subject to update

2.4 A Closer Look at a Read-Only Operator (+)

In the theory book I equate the term read-only operator to the mathematical term function. Here I just 
need to add that the SQL standard reserves the term function for read-only operators that are invoked 
using prefix notation: an operator name followed by a commalist of argument expressions enclosed in 
parentheses, as in for example SQRT(2), denoting the positive square root of 2, or SUBSTRING(X 
FROM 1 FOR 2) denoting the first two characters of the character string denoted by X. The term 
operator is used for those invoked using infix notation, like + for example.

2.5 Read-only Operators in SQL

Like Tutorial D and many other computer languages, SQL distinguishes between system-defined (or 
built-in) operators and user-defined operators.

I do not give a list of SQL’s system-defined operators. For one thing it would be too overwhelming for 
present purposes. For another, it would inevitably be incomplete sooner or later, as the SQL standard is 
revised every few years and implementers are naturally inclined to add new ones on demand. We will 
meet some of them when we need them for illustrative purposes.
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Section 2.5 of the theory book gives Example 2.1, defining in Tutorial D an operator named HIGHER_OF 
to give the value of whichever is the higher of two given integers. Here I simply translate that definition 
into SQL.

Example 2.1: A User-Defined Operator in SQL

CREATE FUNCTION HIGHER_OF ( A INTEGER, B INTEGER ) 

RETURNS INTEGER

IF A > B THEN RETURN A ; 

ELSE RETURN B ; 

END IF ; 

Points to note: 

•	 the key word FUNCTION in place of Tutorial D’s OPERATOR; 
•	 some minor differences concerning semicolons; 
•	 the lack of a counterpart to Tutorial D’s END OPERATOR (which some observers have 

criticised as being redundant); 
•	 above all, the initial key word, CREATE—SQL uses this for all sorts of database objects that 

users can create.  For example, CREATE TABLE is SQL’s counterpart of Tutorial D’s 
VAR … BASE RELATION for creating a database relvar, and CREATE PROCEDURE is 
for creating a user-defined update operator.

Example 2.1 doesn’t illustrate all of the features in SQL connected with user-defined operator definitions. 
For example, the code that implements the operator can be written separately, in a language other than 
SQL. Also, the key word FUNCTION can be replaced by some special syntax to denote a special kind of 
function referred to as a method (as used in several object-oriented programming languages), but that 
and certain other optional ingredients are beyond the scope of this book.

Effects of NULL

As a general rule—but not a universal one—if NULL is an argument to an invocation of a system-defined 
read-only operator, then NULL is the result of that invocation. As you can see, the code for HIGHER_OF 
includes A > B, an invocation of the system-defined read-only operator “>”, which does follow the 
general rule. Hence, if NULL is substituted for either or both of the parameters A and B, then NULL—
which in this case we can also call UNKNOWN because “>” is a Boolean operator—is the result of the 
invocation. You are perhaps now wondering how SQL handles the IF statement when the specified 
condition yields UNKNOWN: is the THEN clause evaluated, or is it the ELSE clause? 
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As you know, other programming languages are normally based on classical logic. In keeping with the 
existence of just two truth values, TRUE and FALSE, the syntax for IF statements (and IF expressions) 
in such languages has just the two forks, THEN for when the condition is TRUE, ELSE for when it is not 
(i.e., is FALSE). You might therefore reasonably expect a language that embraces n truth values to support 
a variety of IF that has n forks—under a language design principle that Fred Brooks in reference [1] 
referred to as conceptual integrity, which means adhering rigorously to the language’s adopted concepts. 
Instead, SQL retains just the two forks, keeping the normal treatment of THEN as being the one for when 
the condition is TRUE and arbitrarily lumping UNKNOWN in with FALSE for the ELSE fork.

You should now be able to see that the general rule (“NULL in, NULL out”) for system-defined operators 
cannot be said to apply to user-defined ones. If A > B evaluates to UNKNOWN, then the result of the 
HIGHER_OF invocation is the argument substituted for B, which might or might not be NULL.

If we wanted to make HIGHER_OF adhere to “NULL in, NULL out”—let’s call it the NiNo rule—we 
would have to write something like what is shown in Example 2.1a.

Example 2.1a: NiNo version of HIGHER_OF

CREATE FUNCTION HIGHER_OF ( A INTEGER, B INTEGER )

RETURNS INTEGER

CASE

WHEN A IS NULL OR B IS NULL

THEN RETURN CAST ( NULL AS INTEGER ) ;

WHEN A > B 

THEN RETURN A ;

ELSE RETURN B ; 

END CASE ;

Explanation 2.1a:

 - IS NULL is a monadic Boolean operator that evaluates to TRUE when its argument is “the 
null value”, otherwise FALSE. Note, therefore, that it is our first exception to the NiNo rule, 
which would require it to evaluate to NULL (UNKNOWN) when its argument is “the null 
value”.

 - CAST ( NULL AS INTEGER ) denotes “the null value” of type INTEGER. As in 
Tutorial D,  
the operand of RETURN must be an expression that has a declared type and NULL, on its 
own, does not have a declared type. The CAST operator takes an expression and a type 
name, separated by the “noise” word AS, and normally expresses a “type conversion”—a 
function that maps elements of one type to those of another that are considered to be in 
some defined sense equivalent. In the special case of NULL it is used to confer a type, so to 
speak, on something that doesn’t otherwise have one.
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 - AS, appearing where you might have expected just a comma, is explained by a matter of 
policy in SQL whereby invocations of user-defined functions, which always use commas 
between arguments, can be syntactically distinguished from invocations of system-defined 
functions.

 - OR is SQL’s counterpart of the usual logical operator of that name. In A IS NULL OR B 
IS NULL its operands are clearly restricted to just TRUE and FALSE and that expression 
therefore results in TRUE if either of those operands does, otherwise FALSE. I deal with 
the treatment of UNKNOWN in SQL’s counterparts of the logical operators in Chapter 3, 
“Predicates and Propositions”.

 - 
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Indeterminacy in SQL

Some SQL expressions are actually not function invocations at all in the mathematical sense, being 
indeterminate—invocations operating on identical input do not always yield the same value. The 
indeterminate expressions are among those that the standard defines as possibly non-deterministic, 
but—caveat lector—not all expressions defined as possibly non-deterministic are actually indeterminate 
from a mathematical viewpoint. For example, the key word USER denotes the userid (officially, the 
authorization identifier) of the session in which an expression containing that key word is evaluated. 
Such an expression is defined as possibly non-deterministic by virtue of the appearance of USER, even 
though invocations in different sessions, in which USER stands for different userids, are clearly different 
invocations. For a more general example, a user-defined function can be explicitly declared as either 
DETERMINISTIC or NOT DETERMINISTIC. In the latter case the “function” is flagged such that 
all invocations of it are treated as possibly non-deterministic.

Regardless of the appropriateness of the term non-deterministic, there is a good reason for categorizing 
references to the current user (or, for another example, the current time) along with genuine cases of 
indeterminacy. It concerns constraint declarations. We clearly want to outlaw a constraint condition 
whose result, when evaluated, depends on the properties of the session in which, or on the time at 
which, the evaluation takes place. Of course we must also outlaw genuinely indeterminate conditions—a 
database might satisfy such a condition but later fail to satisfy it even though the database has not been 
updated in the meantime! The question then arises as to how it is possible for indeterminacy to arise: 
surely a computer program always gives the same result when invoked with the same input?

One root cause of indeterminacy in SQL lies in its implementation of comparison for equality. For certain 
system-defined types it is possible for distinct values to compare equal (note the contradiction). One such 
type is CHARACTER, described later in Section 2.6. Like COBOL, SQL ignores trailing “pad characters” 
when comparing character strings. The pad character is normally the space obtained by depressing the 
space bar on a keyboard. Thus, for example, the comparison 'SQL' = 'SQL ' evaluates to TRUE, 
even though CHAR_LENGTH('SQL') = CHAR_LENGTH('SQL '), comparing the lengths of 
those two strings, 3 and 6, evaluates to FALSE. Now consider the relational projection of ENROLMENT 
over just its Name attribute: ENROLMENT{Name} in Tutorial D. As we shall see in Chapter 4, SQL 
has a counterpart of projection, but suppose the two rows for student S1 in the ENROLMENT table had 
'Anne' and 'Anne ' for S1’s name. If both of those values were to appear in the result, that would be 
inconsistent with the fact that they compare equal in SQL. If just one of them appears, then which one? 
The SQL standard declares such an expression to be possibly non-deterministic and permits a conforming 
implementation to give any value that compares equal to 'Anne'—possibly one that doesn’t even appear 
in the table—and does not require it to give the same value every time the expression is evaluated. As a 
consequence, there are several SQL operators whose use on character strings is not permitted to appear 
in constraint declarations.

http://bookboon.com/


Download free eBooks at bookboon.com

SQL: A Comparative Survey

36 

Values, Types, Variables, Operators

The SQL standard lists a multitude of conditions that cause an expression to be defined as possibly 
non-deterministic. Perhaps the most alarming is the assumption that equals comparison of values of 
user-defined types is assumed to suffer from the same problem as I have described for character strings: 
it is assumed that distinct values can compare equal, even if the type definition is such that this cannot 
possibly be the case.

Historical Note

Support for user-defined operators, along with a programming language for their code, didn’t arrive in 
the SQL standard until 1996, 17 years after the appearance of the first commercial SQL product. Before 
that time some products had provided such support as proprietary (i.e., nonstandard) extensions. Even 
though those products may have later adopted the standard syntax, they will not have abandoned their 
nonstandard syntax and so these products may suffer from undesirable complications and redundancy 
as a result.

It is interesting to note that the designers of Business System 12 (reference [8]) recognised the need 
for user-defined operators, and a programming language to write them in, in 1978, before the first 
SQL product hit the scene. It’s perhaps a pity that their colleagues in the System R team didn’t take a 
closer look at Business System 12, considering that there was some contact between those two teams 
in the 1970s. In fact, the same requirement had been recognized even earlier by the designers of PRTV 
(reference [17]) at IBM UK’s Scientific Centre in Peterlee, who were consulted by the Business System 
12 team and also in contact with the System R team.

PRTV stands for “Peterlee Relational Test Vehicle”, a notably unglamorous and unassuming title.  In fact 
it was based on an earlier prototype—possibly the very first implementation of Codd’s ideas—developed 
at the same centre back in 1971 with the much more impressive name, IS/1. The switch to the more 
modest name was dictated by IBM, as they did not wish to appear at all committed to the relational 
model at that time.

2.6 What Is a Type?

SQL’s concept does not differ significantly from that defined in the theory book, apart from that business 
concerning NULL. However, the theory book equates type with the term domain used in much of the 
relational database literature. SQL is at odds with this equation because it uses domain for a defined subset 
of a given type that is not itself a type. For example, the domain WEEKDAY might be defined to consist of 
the values 'Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 
and 'Saturday', but the declared type of a column defined on that domain is that on which the 
domain itself is defined, perhaps VARCHAR(9). Also, whereas a domain is defined by specifying a 
constraint (on some underlying type), a constraint cannot be used to specify a user-defined type.

The system-defined types of SQL at the time of writing are:

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

37 

Values, Types, Variables, Operators

•	 CHARACTER or, synonymously, CHAR, for character strings. When this type is to be the 
declared type of something (e.g., a column), the permissible values are further constrained 
by a maximum length specification given in parentheses and optionally by the key word 
VARYING, indicating that values shorter than the maximum, including the empty string '' 
, are also permissible. Examples: CHAR(5) for strings of five characters only, CHARACTER 
VARYING (100), which can be abbreviated to VARCHAR(100), for strings of up to 
one hundred characters. The last two are alternative spellings for the same declared type. 
The type CHARACTER LARGE OBJECT, or CLOB, allows for inclusion of strings that 
are longer than the longest supported by the other CHARACTER types. Note that in the 
terminology of the theory book CHARACTER is a kind of type generator. The key word 
does not of itself denote a type, but only does so when qualified by a length specification. A 
similar remark applies to some of the other type names used in SQL.

•	 DECIMAL, NUMERIC, REAL, FLOAT and various other terms for various sets of 
rational numbers. When these key words are specified for the declared type of something, 
they are usually accompanied by precision and scale specifications. DECIMAL and 
NUMERIC are synonymous and are used for types with uniform scales, where the difference 
between any number and its immediate successor or predecessor is constant. For example, 
DECIMAL(5,2) consists of rational numbers with a precision of 5 (i.e., having at most 5 
decimal digits) and a scale of one hundredth (i.e., 2 places of decimals), such as 372.57 and 
-1.00. (Note that SQL always uses the period “.” as the decimal separator.)
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•	 INTEGER or, synonymously, INT, for integers within a certain range. SQL additionally 
has types SMALLINT and BIGINT for certain ranges of integers. The exact sets of values 
denoted by these type names are not specified in the SQL standard, which states merely that 
“[t]he precision of SMALLINT shall be less than or equal to the precision of INTEGER, and 
the precision of BIGINT shall be greater than or equal to the precision of INTEGER”.

•	 TIMESTAMP for values representing points in time on a specified uniform scale.  DATE 
is used for timestamps on a scale of one day, such as DATE '2012-09-25' (a literal 
denoting September 25th, 2012). TIME is used for values denoting time of day only, such as 
TIME '16:30:00' (a literal denoting half-past four in the afternoon).

•	 INTERVAL for values denoting, not intervals (!) but durations in time, such as 5 years, 3 
days, 2 minutes, and so on.

•	 BOOLEAN, consisting of the values TRUE and FALSE, with UNKNOWN being an alternative 
name to NULL for “the null value” of this particular type.

•	 BINARY LARGE OBJECT for arbitrarily large bit strings.
•	 XML for XML documents and fragments.
•	 ARRAY types for arrays.
•	 ROW types and MULTISET types as described later in this Chapter.

At this point, having previously introduced NULL as SQL’s “fifth concept”, I need to mention SQL’s 
sixth: pointers. Like NULL, pointers are expressly excluded from relational database theory and in fact 
the difficulty they give rise to was one of Codd’s stated motivations for his Relational Model. A pointer 
is a value that somehow identifies a repository, such as a variable for example, where some other value 
is stored. The object identifiers (oids) used in object-oriented programming languages are pointers of a 
kind. SQL’s so-called REF values are another and so are its so-called datalinks. A REF value points to a 
row in a base table and is otherwise rather like an oid in the operations that can be performed on it. A 
datalink is a url, allowing SQL database management to be synchronized with management of related 
objects that are strictly outside of the database. To complete the list of SQL’s system-defined types I 
therefore need to add:

•	 REFERENCE types for REF values. A REFERENCE type comes into existence 
automatically when a certain kind of user-defined type is defined, as I describe in Section 
2.10, Types and Representations.

•	 DATALINK for datalinks. I say no more about datalinks in this book.
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Historical Note

The CHARACTER and numeric types have been in SQL since the appearance of the first commercial 
products. The same is true of truth-valued expressions but BOOLEAN did not become a “first-class” type 
in the SQL standard until 1999 and it remains an optional conformance feature. (In common parlance, 
a type is “first-class” only if it has a name and can thus be used for any of the purposes described in 
Section 2.7, What Is a Type Used For?, in the theory book.) TIMESTAMP types and INTERVAL types 
arrived in standard SQL in 1992. LARGE OBJECT types, DATALINK, ARRAY types, user-defined types, 
and REF types first appeared in the 1999 edition. Type XML and MULTISET types were introduced in 
the 2003 edition.

Rows and tables obviously appeared in the original SQL products but ROW types as first-class types didn’t 
appear until 1999. Table types became almost first-class with the introduction in SQL:2003 of MULTISET 
types, as described in Section 2.8, The Type of a Table, but SQL:2011 still does not support TABLE types 
per se. ROW types and MULTISET types are both optional conformance features.

2.7 What Is a Type Used For?

In SQL, as in most computer languages, a type can be used for constraining the values that are permitted 
to be used for some purpose. In particular, it can be used for constraining:

•	 the values that can be assigned to a variable
•	 the values that can be substituted for a parameter
•	 the values that an operator can yield when invoked
•	 the values that can appear in a given column of a table

In each of the above cases, the type used for the purpose in question is the declared type of the variable, 
parameter, operator, or column, respectively. As a consequence, every expression denoting a value has 
a declared type too, whether that expression be a literal, a reference to a variable, parameter, or column, 
or an invocation of an operator. Thus SQL is able to detect errors at “compile time”by mere inspection 
of a given scriptthat would otherwise arise, and cause much more inconvenience, at run time (when 
the script is executed).
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Unfortunately that’s not the end of the type story in SQL. SQL adds a fifth use for types, though this one 
is not available with all types but only for one of its two kinds of user-defined types, namely, the so-called 
structured types. A structured type is defined using something similar to Tutorial D’s “possrep” construct. 
Thus, type POINT might be defined in SQL in terms of a representation consisting of components X and Y, 
each of type REAL. Such a type can be used for any of the four purposes already listed but it can also be used 
as a basis for defining a base table (or view), consisting of columns corresponding to the components of its 
structure, plus one further column whose declared type is a REFERENCE type (REFERENCE(POINT) if 
POINT is the name of the structured type). The REFERENCE column is a relational key for the table thus 
defined, which is variously called a referenceable table and a typed table (the two terms are synonymous). 
The REF values can be used in the way object identifiers are used in object-oriented languages.

Effects of NULL

Although an SQL type does have those constraining purposes, it must be remembered that in each case 
NULL might appear in place of a true value of the type in question, except where explicit measures are 
taken to avoid such appearances. Appearance of NULL in a column of a base table can easily be avoided 
by specifying NOT NULL in the column definition, but no such declaration is available in connection 
with local variables, parameters, or results of operator invocations.
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Historical Notes

Support for local variables didn’t arrive in SQL until 1996, when support for user-defined operators 
first appeared. Until that time “the values that can be assigned to a variable” applied only to base tables 
(SQL’s counterparts of base relvars), “the values that can be substituted for a parameter” applied only 
to parameters of system-defined operators, and “the values that an operator can yield” similarly applied 
only to system-defined operators.

Support for user-defined types, including the structured types mentioned in this section, was added in 
1999, as part of the so-called “object-relational” support that was billed as the main theme of SQL:1999.

2.8 The Type of a Table

This section in the theory book is headed The Type of a Relation and it uses its running example, 
repeated again here as Figure 2.3 as a basis for its discussion.

StudentId Name CourseId

S1 Anne C1

S1 Anne C2

S2 Boris C1

S3 Cindy C3

S4 Devinder C1

Figure 2.3: Enrolments again

As a relation in Tutorial D the type name for the value shown in Figure 2.3 can be written as

RELATION { StudentId SID, Name NAME, CourseId CID }

or, equivalently (for recall that there is no ordering to the elements of a set),

RELATION { Name NAME, StudentId SID, CourseId CID }

(and so on). 

Of course Figure 2.3 could also be illustrating some SQL table, but SQL has no names for table types, 
so no counterparts of relation type names. It does, however, have names for row types and in fact the 
standard uses term row type as a property of a table—it is of course the type of each of the rows in the 
table, though it is defined even when the table is empty. 
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A row type name is the key word ROW followed by a commalist of field name/type name pairs in similar 
style to the attribute name/type name pairs in Tutorial D except that the commalist is enclosed in 
parentheses rather than braces (SQL uses the term field for the components of a row). It would be nice, 
then, if we could say that the row type of our enrolments table was

ROW ( StudentId SID, Name NAME, CourseId CID )

or, equivalently,

ROW ( Name NAME, StudentId SID, CourseId CID )

but there are two important reasons why we can’t. First, those two type names would in fact define different 
types in SQL, because the order of the elements is significant. It follows that the order of columns in an 
SQL table is significant, contrary to one of the important precepts you have learned in relational theory, 
and we will discover various complications that arise from this significance as we go along. Secondly, 
even if type names SID, NAME, and CID are defined, the types so named cannot be equivalent to their 
Tutorial D counterparts, for reasons given in Section 2.10, Types and Representations. The row type 
of our enrolments table is therefore more likely to be something like:

ROW ( Name VARCHAR(50), StudentId VARCHAR(5), 

CourseId VARCHAR(5) )

SQL’s row types exhibit one further deviation from relational theory: there is no such type as ROW ( ). 
It follows that every table in SQL has at least one column. TABLE_DEE and TABLE_DUM, defined in 
Chapter 4 of the theory book, do not exist in SQL.

MULTISET types

An SQL multiset is what in mathematics is also known as a bag—something like a set except that the same 
element can appear more than once. The body of an SQL table is in general a bag of rows, rather than a 
set of rows, because SQL does indeed permit the same row to appear more than once in the same table. 
Although SQL has no names for table types, it does support multisets in general and it does have names 
for multiset types. A multiset type name consists of a type name followed by the key word MULTISET. 
For example, INTEGER MULTISET is the name of the type each of whose values is either (a) a bag, 
consisting of zero or more appearances of each value of type INTEGER and zero or more appearances 
of the null value of type INTEGER, or (b) the null value of type INTEGER MULTISET.

It would seem at first glance, then, that we perhaps do have a type name for a table type after all. For 
example, our enrolments table could perhaps be of type
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ROW ( Name VARCHAR(50), StudentId VARCHAR(5), 

CourseId VARCHAR(5) ) MULTISET

In fact one could declare a local variable to be of this type and its value could indeed consist of the 
rows shown in Figure 2.3. However, such a type cannot be the declared type of a base table, in spite of 
the fact that the elements of a base table are indeed rows of the same type. Moreover, as I have already 
mentioned, there is such a thing as the null value of that multiset type, whereas NULL can never appear 
in place of a table—no table expression in SQL can ever evaluate to NULL—nor can NULL appear in 
place of a row in a table. So the set of values of a multiset type whose element type is a row type includes 
bags that are not tables as well as bags that are.

2.9 Table Literals

One might expect SQL to support table literals in the manner illustrated in Example 2.2, but in fact that 
is not a legal SQL expression.

Example 2.2: Not a Table Literal

TABLE (

ROW ( StudentId 'S1', CourseId 'C1', Name 'Anne'  ), 

ROW ( StudentId 'S1', CourseId 'C2', Name 'Anne'  ), 
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ROW ( StudentId 'S2', CourseId 'C1', Name 'Boris' ), 

ROW ( StudentId 'S3', CourseId 'C3', Name 'Cindy' ), 

ROW ( StudentId 'S4', CourseId 'C1', Name 'Devinder')  

)

It is illegal because row literals in SQL do not use column names. Instead, the column values must be 
written in the appropriate order, reflecting the order of the columns of the table, as in

ROW ( 'S1', 'C1', 'Anne' )

Moreover, the word VALUES is used in place of TABLE, parentheses are not used around the list of 
row literals, and the key word ROW is in fact optional, so that the most common form is that shown in 
Example 2.3.

Example 2.3: A Table Literal (correct version)

VALUES 

( 'S1', 'C1', 'Anne'    ), 

( 'S1', 'C2', 'Anne'    ), 

( 'S2', 'C1', 'Boris'    ), 

( 'S3', 'C3', 'Cindy'    ), 

( 'S4', 'C1', 'Devinder' )

Now, the question arises, what is the (table) type of the table shown in Example 2.3? For that matter, 
what is the (row) type of ( 'S1', 'C1', 'Anne' )? In particular, what are the field names of 
those three fields, which would become column names for the containing table? The short answer is 
that they are determined by the context in which the expression appears. Because the components are 
distinguished anyway by ordinal position, the field names sometimes serve little or no purpose. In fact 
several fields are permitted to acquire the same name. Also, sometimes the context does not provide any 
names at all, in which case, according to the standard, each field is assigned a unique but unpredictable 
name. Examples arising as we go along will make this issue a little clearer. I shall use the term anonymous 
column to refer to a column whose name is unpredictable and therefore effectively undefined.

Note carefully that if the word ROW is omitted and the row consists of a single field, then the parentheses 
can also be omitted. Thus, VALUES 'S1' denotes a table consisting of a single column and a single 
row, the SQL counterpart of RELATION { TUPLE { StudentId 'S1' } } (though the SQL 
counterpart has nothing corresponding to the attribute name). Furthermore, recall from Chapter 1, 
Section 1.15 Updating Variables that VALUES 'S1', 'S2' denotes a table consisting of a single 
column and two rows—not a single row and two columns! 
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The declared type of a VALUES expression is determined by that of its contained row expressions and 
cannot be explicitly stated. As a consequence, SQL has no literals for empty tables—no counterparts of 
Tutorial D’s expressions such as RELATION { StudentId SID, Name CHAR, CourseId 
CID } { }, where heading and body are both specified explicitly.

Effects of NULL

When a VALUES expression appears as the source value for an SQL INSERT statement, the key word 
NULL can appear as a field value, such that for example INSERT INTO ENROLMENT VALUES 

( 'S1', NULL, 'C1' ) is permitted as short for INSERT INTO ENROLMENT( StudentId, 
Name, CourseId ) VALUES ( 'S1', CAST ( NULL AS VARCHAR(50) ), 'C1' ). 
(I omitted the column name list in the short form just to remind you of the significance of column 
order in SQL.)

Historical Note

The history surrounding VALUES expressions is described in the historical notes for Section 1.15, 
Updating Variables, in Chapter 1.

2.10 Types and Representations

This section in the theory book introduces the concept possible representation, abbreviated possrep, and 
explains how these can be used in conjunction with constraints to define types. Example 2.4 from that 
book is copied here, along with its explanation.

Example 2.4: A Type Definition

TYPE SID POSSREP SID { C CHAR 

CONSTRAINT LENGTH(C) <= 5 

AND

STARTS_WITH(C, 'S')

AND

IS_DIGITS(SUBSTRING(C,1)))

} ;
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Explanation 2.4:

•	TYPE SID announces that a type named SID is being defined to the system.
•	POSSREP SID announces that what follows, in braces, specifies a possible representation 

for values of the type. It means that the operators defined for type SID behave as if values of 
type SID were represented that way, regardless of how they are physically represented “under 
the covers”. That is why we use the word “possible”the values might possibly be represented 
internally that way (but they don’t have to be and we don’t even know if they are). In this case 
the name of that possrep is the same as the type name, SID (as it would be if we omitted 
the name). (Tutorial D allows more than one possrep to be given for the same type, but this 
feature is beyond the scope of this book. I do not deal with types in any depth. It is sufficient 
for present purposes just to understand how they exist, what they are for, and how to use 
them.)

•	C CHAR defines the first and only component of the possrep, naming it C and specifying 
CHAR as its declared type. This definition causes an operator, THE_C, to come into 
existence. THE_C takes a value, s, of type SID and returns the value of the C component of 
s under the possible representation SID.
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•	CONSTRAINT announces that the expression following it (up to but excluding the closing 
brace) is a condition that must be satisfied by all possrep values that do indeed represent 
values of type SID. Note that the expression itself uses the logical connective AND, with 
its usual meaning, to connect three expressions, two of which are comparisons and each 
of which is a truth-valued expressionone that, when evaluated, yields either TRUE or 
FALSE.

The operators LENGTH, STARTS_WITH, SUBSTRING, and IS_DIGITS, invoked in 
the constraint expression, are not defined as built-in operators in Tutorial D. I am assuming 
their existence as user-defined operators. Happily, their definitions are contained in the file 
OperatorsChar.d included in the download package for Rel.

•	LENGTH(C) <= 5 expresses a rule to the effect that the total length of a value for the C 
possrep component must never exceed 5.

•	STARTS_WITH(C, 'S') returns TRUE if and only if the string given as the first operand 
starts with the string given as the second operandin this case the string consisting of just 
the capital letter S.

•	SUBSTRING(C,1) denotes the string consisting of the whole of the value of the C possrep 
component apart from the first character. This is given as the argument to an invocation of 
IS_DIGITS, which takes a string and yields TRUE if every character in the given string is 
a numeric digit, otherwise FALSE.

Although SQL has more than one way of defining user-defined types, it has no true counterpart of 
Tutorial D’s TYPE statement. We will examine three attempts to emulate Example 2.4 in SQL, showing 
in each case where the attempt falls short. To avoid falling out of synch with the theory book’s example 
numbers, these three are labelled 2.4a, 2.4b, and 2.4c.

Example 2.4a: First attempt at defining type SID in SQL

CREATE TYPE SID AS ( C VARCHAR(5) ) ;

Explanation 2.4a:

•	TYPE SID announces that a type named SID is being defined to the system.
•	AS ( C VARCHAR(5) ) defines SID as a structured type, whose values are 

represented as a structure consisting in this case of just a single attribute, named C, of 
type VARCHAR(5). (The term attribute here is not be confused with its use in relational 
theory.) The attribute definition C VARCHAR(5) causes an operator to come into 
existence that takes a value, s, of type SID and returns the value of the C component of 
s. The operator, SQL’s counterpart of THE_C, is invoked using dot notation: s.C and is 
termed the observer function for the component C. 
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SQL does not have an immediate counterpart of Tutorial D’s selector. Instead, a so-called 
constructor function, in this case a niladic operator named SID, is generated by the structure 
definition, such that SID() denotes the value of type SID whose only component is the 
“default value” for the attribute C, probably NULL. To emulate Tutorial D’s SID selector we 
need to use the so-called mutator function for the attribute C, which is also invoked using 
dot notation: SID().C('S1'). The mutator function takes a value of type SID as its left 
operand and a value of the declared type of C as its right operand (in parentheses). In general, 
if s is a value of type SID, then s.C('S1') denotes the SID value that is obtained from s 
by replacing its C component by the string 'S1'. If s had any other components (it doesn’t, 
of course), they would be retained in s.C('S1'). By the way, don’t be misled by the term 
“mutator”: an SQL mutator function is a read-only operator.

Note that although we can restrict the length of the character strings as in Example 2.4, we cannot apply 
those further constraints concerning the string value. That explains how defining a structured type for 
student identifiers falls short of emulating Example 2.4.

It is probably unusual in SQL for the structure of a structured type to consist of a single attribute. One 
would more likely decide to define a distinct type, as shown in Example 2.4b.

Example 2.4b: Second attempt at defining type SID in SQL

CREATE TYPE SID AS VARCHAR(5) ;

Explanation 2.4b:

•	TYPE SID announces that a type named SID is being defined to the system.
•	AS VARCHAR(5) defines SID as a distinct type, whose values are represented by values 

of type VARCHAR(5). In this form of type definition the given representation must be a 
system-defined type.

Under this definition, SID('S1') is exactly equivalent to the same expression in Tutorial D, and 
the SQL expression CAST(s AS VARCHAR(5)), where s is a value of type SID, is equivalent to 
Tutorial D’s THE_C(s). However, as in Example 2.4a, we have no way of further constraining the 
string values representing student identifiers; so SID('34x.1'), for example, also denotes a value of 
type SID, as does SID('').

Finally, we could try defining a domain, as in Example 2.4c.
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Example 2.4c: Third attempt at defining type SID in SQL

CREATE DOMAIN SID AS VARCHAR(5) 

CHECK ( VALUE IS NOT NULL AND

SUBSTRING(VALUE FROM 1 FOR 1) = 'S' AND

CAST('+'||SUBSTRING(VALUE FROM 2) AS INTEGER) >= 0 );

Explanation 2.4c:

•	DOMAIN SID announces that a domain named SID is being defined to the system.
•	AS VARCHAR(5) specifies that values in domain SID are certain values of type 

VARCHAR(5).

•	CHECK ( … ) specifies a constraint defining exactly which values of type VARCHAR(5) 
are in the domain SID. Note that the key word VALUE, which is available only in domain 
constraints, refers (in this particular example) to an arbitrary value of type VARCHAR(5).

•	VALUE IS NOT NULL specifies that the null value of type VARCHAR(5) is not a value 
in the domain. This is needed because the other conjuncts evaluate to UNKNOWN if VALUE 
is the null value and a domain constraint is deemed to be violated only when it evaluates to 
FALSE.

•	SUBSTRING(VALUE FROM 1 FOR 1) = 'S' specifies that every value in the 
domain must begin with S. Note SQL’s deliberate use of “noise” words in the invocation of 
SUBSTRING, the justification for which is to distinguish invocations of system-defined 
operators from those of user-defined ones.

•	CAST('+'||SUBSTRING(VALUE FROM 2) AS INTEGER) >= 0 is an attempt 
to emulate an invocation of IS_DIGITS, perhaps showing how a user-defined operator 
of that name might be implemented in SQL. The character “+” is concatenated to the 
putatively numeric portion of the string in order to exclude values such as 'S+123' from 
the domain (the string '+123' can be cast as an integer but '++123' cannot).

So the domain SID gives us the required values, but they are values of the system-defined type 
VARCHAR(5), not a user-defined type. Thus, the operators defined for these values are exactly those 
defined for character strings in SQL. Moreover, as SQL does not allow domain names to be given as 
declared types of parameters or operators, we cannot define any special operators for student identifiers. 
So defining SID as a domain also falls short of emulating Example 2.4.
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The syntax for CREATE TYPE includes a plethora of optional extras that are not illustrated in Examples 
2.4a and 2.4b. Most of them are beyond the scope of this book but it is worth mentioning the UNDER 
clause, whereby a structured type can be specified as a subtype of another structured type. Note first that 
subtyping is available only with structured types, so in SQL we cannot define, for example, type POSINT 
(positive integers) as a subtype of INTEGER. Note also that SQL’s model of subtyping is quite different 
from Tutorial D’s and is more akin to that found in object-oriented languages, whereby a subtype actually 
“extends” its supertype by adding extra values (so to speak), rather than being a proper subset of it as 
specified by a declared constraint. The theory book doesn’t have much to say about models of subtyping 
because relational database theory is generally considered to be independent of type theory, in the sense 
that it is silent with regard to which types are permitted as declared types of attributes of relations.

Effect of NULL

One effect has already been seen in Example 2.4c, where the declared constraint has to explicitly rule 
out NULL from the domain. In Example 2.4a SID() denotes the SID value whose C component is “the 
null value of type VARCHAR(5)”, but note carefully that SID() IS NULL evaluates to FALSE—it 
does not denote “the null value of type SID”! And yet that null value does exist in SQL, being denoted 
by CAST(NULL AS SID). By contrast, in Example 2.4b, where SID is a distinct type as opposed to 
being a structured type, SID(CAST(NULL AS VARCHAR(5)) is indeed “the null value of type SID”.
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An Example of Type versus Representation Confusion in SQL

The theory book describes how a value might have two or more distinct representations. For example, 
user-defined type POINT might have a declared possrep based on Cartesian coordinates and another 
based on polar coordinates. SQL has a system-defined type, TIMESTAMP, for values representing points 
in time, a timestamp being represented by a date, a time of day, and—optionally—a time zone, expressed 
as a displacement from UTC. Clearly any timestamp can be expressed in several different ways, using 
different time zones. Three o’clock in the afternoon of December 31st, 2011 in UK, for example, is the 
same time as two o’clock in the morning of January 1st, 2012 in New Zealand. 

SQL treats those two representations as distinct values that compare equal, in like fashion to its treatment 
of character strings with trailing blanks mentioned in Section 2.5 under the heading Indeterminacy in 
SQL, with similar consequences. If instead it had treated them as distinct representations of the same 
value, then the issue of indeterminacy would not have arisen.

Historical Note

CREATE DOMAIN was added to the SQL standard in 1992 but it is still an optional conformance feature 
and it has not been taken up by many SQL products. Support for user-defined operators arrived in 1996, 
but nobody in any national body represented on the committee was willing and able to complete the 
work that had been started on specifications for supporting domain names in the new places where data 
types are needed, such as parameter definitions, RETURNS clauses of operator definitions, and local 
variable declarations. That’s because most substantive change proposals are drafted by experts employed 
by leading SQL vendors and none of these vendors’ products supported domains at the time.

CREATE TYPE was added in 1999. Apart from the simple form shown in Example 2.4b it is an optional 
conformance feature. For the reasons already given, a domain name cannot be used to specify the declared 
type of an attribute or the representation type of a distinct type. 

2.11 What Is a Variable?

SQL’s support for variables is very similar to Tutorial D’s, except that the syntax for creating persistent 
variables—base tables—is quite different from that used to declare local variables. Example 2.5 is SQL’s 
counterpart of that example in the theory book but, as you know, CREATE TABLE is used for base tables.

Example 2.5: A Variable Declaration

DECLARE SN SID DEFAULT SID ( 'S1' ) ;

http://bookboon.com/


Download free eBooks at bookboon.com

SQL: A Comparative Survey

52 

Values, Types, Variables, Operators

This differs from Example 2.5 in the theory book only in the two key words, DECLARE in place of 
VAR and DEFAULT in place of INIT. The effect is exactly the same apart from the fact that, as already 
noted, SQL’s type SID (here assumed to be a distinct type) cannot be the same as Tutorial D’s. The key 
word DEFAULT is perhaps a strange choice as that word normally suggests action to be taken by the 
system when no specific action is explicitly demanded by the user. Here it is used to state explicitly an 
immediate assignment to the variable being declared.

Example 2.6 in the theory book illustrates the use of a VAR statement in Tutorial D to create a persistent 
relation variable and declare a (key) constraint to be satisfied by every relation ever assigned to it. That 
example is actually a repetition of Example 1.1. For completeness, Example 1.1 of the present book 
is repeated here as Example 2.6, but slightly revised to make it a truer counterpart of the Tutorial D 
example. The revision is marked in bold.

Example 2.6: Creating a base table.

CREATE TABLE ENROLMENT 

( StudentId SID ,

Name  VARCHAR(30) NOT NULL,

CourseId CID ,

PRIMARY KEY ( StudentId, CourseId )

) ;

Explanation 2.6:

•	CREATE TABLE ENROLMENT announces that what follows defines a variable in the 
database, named ENROLMENT. A variable in an SQL database is necessarily a table variable, 
just as in a relational database every variable is a relation variable. SQL does not use the 
term variable, instead referring to the variable as a base table (its value being called a table, 
of course).

•	 StudentId SID defines the first column of ENROLMENT, giving its name and either its 
declared type (a user-defined type) or its domain—we cannot tell which. If SID is a domain, 
then the definition of that domain specifies the declared type of the column StudentId. 
Similarly, Name VARCHAR(30) and CourseId CID define the second and third columns 
of ENROLMENT, respectively. A system-defined type is explicitly given for the column Name 
but the remarks on the declared type of StudentId apply in similar fashion to CourseId. 
Note carefully that in SQL it is correct, in ordinary prose, to identify columns by their ordinal 
position. By contrast there is no such thing as “the first attribute” of a relation or a relation 
variable.
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•	 NOT NULL, appended to the definition of Name, specifies a constraint to the effect that 
the table assigned to ENROLMENT cannot contain a row in which “the null value of type 
VARCHAR(30)” appears for that column. The constraint is needed for accurate emulation 
of Example 2.6 in the theory book because relational theory does not admit any counterpart 
of SQL’s NULL (so nor does Tutorial D). See the next bullet for an explanation of why NOT 
NULL is not appended to the other two column definitions.

•	 PRIMARY KEY ( StudentId, CourseId ) specifies that at no time can 
two distinct rows appear in the current value of ENROLMENT having the same value 
for StudentId and also the same value for CourseId. In enterprise terms, no two 
enrolments can involve the same student and the same course. In addition, it implies that 
the NOT NULL constraint applies to each those two columns, which explains why those 
constraints are not explicitly declared in Example 2.6 (though there would be no harm in 
doing so). Unlike Tutorial D, SQL again attaches significance to the order in which the 
columns of a key are specified. There is more to be said about key constraints in SQL but 
we defer that to Chapter 6, “Constraints and Updating”. Also unlike Tutorial D, an SQL 
base table whose definition includes no key constraints can exhibit the “duplicate row” 
phenomenon, allowing its current value to include more than one appearance of the same 
row.
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No initial value for ENROLMENT is specified in Example 2.6. SQL does allow one to be specified but does 
not use the DEFAULT syntax of local variable declarations for that purpose. Rather, it allows an initial 
value to be specified in place of the list of column definitions as shown in Example 2.6a—a counterpart 
of Tutorial D’s VAR declaration in which the declared type is omitted, being implied by the INIT 
specification. When no initial value is specified, the initial value is the empty table of the specified type.

Effect of Anonymous Columns

Now, recall that a VALUES expression denotes a table with undefined column names. If an initial value 
is to be specified when a base table is created, column definitions have to be implied by that initial value, 
so the question arises, how can a VALUES expression provide the initial value for a base table? The 
answer is that you have to learn an extra syntactic construct for that purpose, shown in Example 2.6a.

Example 2.6a: Specifying an initial value for a base table.

CREATE TABLE ENROLMENT ( StudentId, Name, CourseId ) 

AS ( VALUES ( SID('S1'), 'Anne', CID('C1') ),

( SID('S2'), 'Boris', CID('C1') ) )

WITH DATA ;

Explanation 2.6a:

•	( StudentId, Name, CourseId ) provides the names, positionally corresponding 
to the anonymous columns of the AS table.

•	WITH DATA specifies that the given table is indeed to be the initial value. Curiously, this is 
required, unless WITHOUT DATA is written instead, in which case the AS table serves only 
to determine the declared types of the columns of the base table, thus providing something 
of a counterpart to Tutorial D’s SAME_TYPE_AS construct (though no such facility is 
available in local variable declarations).

•	 SQL does not allow constraints to be declared if AS is used in place of explicit column 
definitions. Example 2.6b shows how the ones given in Example 2.6 could be added 
subsequently.

Example 2.6b: Adding table constraints later

ALTER TABLE ENROLMENT ADD CONSTRAINT NameNotNull 

CHECK ( Name IS NOT NULL ) ;

ALTER TABLE ENROLMENT ADD CONSTRAINT PK_StudentId_CourseId 

PRIMARY KEY ( StudentId, CourseId ) ;
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Explanation 2.6b:

•	 ALTER TABLE ENROLMENT specifies that the definition of base table ENROLMENT is 
to be modified in some way, such as adding or dropping a column, adding or dropping a 
constraint (among other things).

•	 ADD CONSTRAINT NameNotNull specifies that in fact a constraint is being added to 
the definition of ENROLMENT, and the name by which that constraint can subsequently be 
referred to is NameNotNull. For example, the name would be needed if the constraint 
were later to be dropped, or perhaps it could appear in an error message when an 
attempted update is rejected for violating that constraint. Similar comments apply to ADD 
CONSTRAINT PK_StudentId_CourseId.

•	 CHECK ( Name IS NOT NULL ) specifies a truth-valued expression, Name 
IS NOT NULL, that must be satisfied by each row of every table that is assigned to 
ENROLMENT. If the current value of ENROLMENT fails to satisfy this constraint, then the 
ALTER TABLE statement fails.

•	 PRIMARY KEY ( StudentId, CourseId ) has the same meaning as in Example 
2.6. Again, the ALTER TABLE statement fails if the constraint is not satisfied by the 
current value of ENROLMENT.

Note that it is not possible to specify more than one alteration in a single ALTER TABLE statement.

Effects of NULL

If LV is a local variable and TLV is its declared type, then “the null value of type TLV” can appear as the 
value of LV, and is indeed its initial value by default.

As already noted in Section 2.8 The Type of a Table, there is no null value of any table type, so it is not 
possible for NULL to appear as the value of a base table. Also, NULL cannot appear in place of a row in 
any table. However, if MRT is a multiset type whose element type is a row type RT, then “the null value of 
type MRT” exists and can appear as the value of a local variable of that type, as the argument substituted 
for a parameter of that type, as the result of an invocation of an operator of that type, as the value of 
an attribute of that type in a value of some structured type, and as the value of a field of that type in a 
row. Moreover, “the null value of type RT” can appear as one or more elements of a value of type MRT.
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Historical Notes

The SQL syntax in Examples 2.6 and 2.6b was defined in SQL:1992, apart from the use of user-defined 
types. Support for local variables was added in 1996, being included in the definition of the SQL standard’s 
programming language, SQL/PSM. PSM stands for Persistent Stored Modules—user-defined functions 
and procedures akin to Tutorial D’s user-defined read-only operators and update operators, respectively, 
though actually it defines just the additional language features that are needed to write the implementation 
code for such modules. There are historical reasons for the inappropriate name for this programming 
language—the first edition of Part 4, in 1996, included, along with the programming language constructs, 
the specifications for CREATE FUNCTION and CREATE PROCEDURE statements, functions and 
procedures being referred to collectively as “server modules”. When these were later moved to Part 2, 
SQL/Foundation, the name for Part 4 was not changed.

The AS option in Example 2.6a was added in 2003 and is an optional conformance feature. In connection 
with that, it should be noted that SQL:1992 saw the first appearance of syntax in CREATE TABLE 
whereby some or all of the required column definitions could be copied from an existing base table (or 
view). For example, LIKE T2 appearing in place of the i-th column definition for base table T1 specifies 
that the definitions of the columns of T2 are to appear, in order, as the i-th, i+1-th, … columns of T1. 
Thus, in 2003 the following two statements became equivalent:

www.sylvania.com

We do not reinvent  
the wheel we reinvent 
light.
Fascinating lighting offers an infinite spectrum of 
possibilities: Innovative technologies and new  
markets provide both opportunities and challenges. 
An environment in which your expertise is in high 
demand. Enjoy the supportive working atmosphere 
within our global group and benefit from international 
career paths. Implement sustainable ideas in close 
cooperation with other specialists and contribute to 
influencing our future. Come and join us in reinventing 
light every day.

Light is OSRAM
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CREATE TABLE T1 ( LIKE T2 ) ;

CREATE TABLE T1 AS ( SELECT * FROM T2 ) WITHOUT DATA;

The LIKE option, added in 1992 and still an optional conformance feature, might have had its origins 
(though I somehow doubt it) in a similar feature of Business System 12, devised in 1978, but BS12’s 
LIKE took a table expression of arbitrary complexity rather than being restricted to the name of some 
existing variable. SQL:1992’s LIKE was criticised by some (including myself, a member of the standards 
committee at that time) for being so restrictive, but as we have already seen in the case of VALUES 
expressions, not every table expression in SQL denotes a table whose type meets the special requirements 
of a base table—in particular, no column of a base table can be anonymous and no two columns can have 
the same name. This fact would have slightly complicated matters if the restriction on LIKE had been 
removed in 1992, but we have already seen how the problem was addressed when AS was added in 2003.

2.12 Updating a Variable

Like Tutorial D, SQL supports an explicit assignment operator, illustrated in Example 2.7, but this 
requires the target to be a local variable, not a base table (or updatable view).

Example 2.7: A Simple Assignment

SET SN = SID ( 'S2' ) ;

This can obviously be read as “set the variable SN to be equal in value to SID ( 'S2' )”. For 
completeness we show also SQL’s counterpart of the theory book’s Example 2.8.

Example 2.8: Assignment Source Not a Literal

SET SN = SID ( SUBSTRING ( SN.C FROM 1 FOR 1 ) || '5' ) ;

Example 2.9 is an exact copy of its counterpart in the theory book.

Example 2.9: Invocation of a user-defined update operator

CALL SET_DIGITS ( SN , 23 ) ;

Example 2.10 in the theory book illustrates assignment to a “pseudovariable” (that term being taken from 
the old IBM language PL/I). SQL doesn’t use that term but does have a counterpart of that particular 
example.
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Example 2.10: Assignment of an attribute value in a variable of a structured type

SET SN.C = 'S2' ;

As in Example 2.10 in the theory book, the entire statement is equivalent to a regular assignment, in 
this case

SET SN = SID().C('S2') ; 

and the remarks in the theory book apply equally well here.

2.13 Conclusion

In the theory book I concluded Chapter 2 by reminding you of the important distinctions I drew to 
your attention again here in Section 2.3. They are still important, of course, so I repeat them here, with 
the illustrative examples translated into SQL:

•	 syntax and semantics (expressions and their meaning)
An expression (syntax) denotes either a value or a variable.

•	 values and variables
A value such as the integer 3, the character string 'London', or the table VALUES ( 3, 
'London' ) is something that exists independently of time or space and is not subject to 
change. A variable is subject to change (in value only), by invocation of update operators. A 
variable reference, such as the expression X, denotes either the variable of that name or its 
current value, depending on the context in which it appears.

•	 values and representations of values
The character string value denoted by 'S1' is the representation of the student identifier S1, a 
value of type SID, denoted by SID('S1') if SID is a distinct type, or by SID().C('S1') 
if it is a structured type. (Note: “the representation”, not just “a possible representation” as the 
theory book has it. SQL doesn’t cater for multiple possible representations.)

•	 types and representations
For example, if SID is a structured type, then( C VARCHAR(5) ) defines the representation 
for all values of type SID. (Note “the” again.) 
In connection with type TIMESTAMP, SQL’s support for time zone displacements appears 
to suffer from a failure to distinguish a type from its possible representations, giving rise to 
needless indeterminacy.

•	 read-only operators and update operators
“+” is a read-only operator because, when it is invoked, it returns a value. “SET” is an update 
operator because, when it is invoked, it has the effect of replacing the current value of a variable 
(i.e., updating the variable by changing its value)and does not return a value.
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•	 operators and invocations
SID is an operator, as it happens, an operator of the same name as the type whose definition 
brings this operator into existence. Assuming the type SID to be a distinct type now, the 
signature of the operator SID is SID(C VARCHAR(5)). SID('S1') denotes an invocation 
of SID. Similarly, “+” is an operator, with signature "+"(A REAL, B REAL), and x+y 
denotes an invocation of “+”. (As in Tutorial D, “+” has other signatures, defining it for other 
numeric types such as INTEGER.) 

•	 parameters and arguments
C is a parameter (and in fact the only parameter) of the operator SID. VARCHAR(5) is the 
declared type of C. Similarly, x and y denote the arguments substituted for the parameters A 
and B, respectively, in the invocation x+y.
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3 Predicates and Propositions
3.1 Introduction

In Chapter 1 of the theory book I defined a database to be “…an organised, machine-readable collection 
of symbols, to be interpreted as a true account of some enterprise.” I also gave this example (extracted 
from Figure 1.1): 

StudentId Name CourseId

S1 Anne C1

I suggested that those green symbols, organised as they are with respect to the blue ones, might be 
understood to mean:

“Student S1, named Anne, is enrolled on course C1.”

That is how Chapter 3 of the theory book started. It continued with the following paragraph:
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In this chapter I explain exactly how such an interpretation can be justified. In fact, I describe 
the general method under which data organized in the form of relations is to be interpreted—
to yield information, as some people say. This method of interpretation is firmly based in the 
science of logic. Relational database theory is based very directly on logic. Predicates and 
propositions are the fundamental concepts that logic deals with.

The remainder of the chapter could be said to apply equally well to the interpretation of SQL databases 
were it not for SQL’s use of a logic based on three truth values instead of the usual two, this arising from 
its special construct referred to as NULL. Many of the effects of this intrusion have already been examined 
in Chapter 2. Here I make further observations that arise in connection with the corresponding sections 
of this chapter in the theory book.

3.2 What Is a Predicate?

Consider the declarative sentence—a proposition—that is used to introduce this topic in the theory book:

“Student S1, named Anne, is enrolled on course C1.”

Recall that the terms S1, Anne, and C1 are designators, each referring unambiguously to a particular 
thing. The chapter later explains how a tuple can provide values—attribute values—to be interpreted as 
designators to be substituted for the corresponding parameters of a predicate. Thus, this sentence might 
be represented by the tuple denoted in Tutorial D by TUPLE{StudentId SID('S1'), Name 
NAME('Anne'), CourseId CID('C1') }. As SQL allows NULL to appear wherever a value 
can appear, we have to entertain the notion that the row denoted in SQL by ( SID('C1'), NULL, 
CID('C1') ) might represent some sentence. (Aside: SQL does not use attribute names to connect 
values to their corresponding parameters. Instead, the correspondence is determined by position and 
I have assumed that the parameters are to be considered in the order StudentId, Name, CourseId. End 
of aside.) Now, could that sentence be “Student S1, named NULL, is enrolled on course C1”? Well, no, 
because NULL is not a name and really doesn’t designate anything. The row might instead represent the 
sentence “Student S1, whose name is not known, is enrolled on course C1”. But that sentence contains 
nothing that can be regarded as a designator substituted for the parameter Name.

If we now recast this into two simpler sentences, as in the theory book, we will get something like, 
“Student S1’s name is not known” and “Student S1 is enrolled on course C1”. Let’s now try replacing S1 
by NULL in the second of those:

Example 3.1:

“Student NULL is enrolled on course C1.”
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Again that doesn’t make sense. If NULL is always to be interpreted as meaning “some value should appear 
here but we don’t know which”, then perhaps the sentence should be “Some student, whose student 
identifier is not known, is enrolled on course C1.” But again, that sentence contains nothing that can be 
regarded as a designator substituted for the parameter StudentId.

Similarly, NULL, might appear in place of C1:

Example 3.2:

“Student S1 is enrolled on course NULL.”

and again we have to reject that and write instead, perhaps, “Student S1 is enrolled on some course, 
whose course identifier is not known”, or perhaps, “Student S1 is enrolled on some course but we don’t 
know which one”. The row (SID('S1'), NULL) could indeed mean either of those and either 
would be consistent with the notion of “some value appears here but we don’t know which”. However, in 
certain operations, such as the “outer joins” that we shall meet in Chapter4, SQL uses that very row to 
mean “Student S1 is not enrolled on any courses”, which, although perhaps a more likely interpretation 
in practice, is not consistent with the meaning “some value appears here but we don’t know which” (nor 
with the fact that SQL would not regard two such students as being enrolled on the same set of courses).
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3.3 Substitution and Instantiation

Section 3.2 shows how NULL might appear in substitution for a parameter of a predicate and how it might 
thus participate in instantiation of that predicate to yield a proposition. Now consider instantiations of 
the dyadic predicate a < b. As well as instantiations such as 5 < 10 (a true one) and 9 < 6 (a false one), we 
now have to entertain the possibility of instantiations such as 5 < NULL, NULL < 6, and NULL < NULL. 
In SQL these comparisons evaluate to that intrusive truth value, unknown. Now, Section 3.2 in the 
theory book goes on to explain that the extension of a predicate consists exactly of those instantiations 
of it that evaluate to true, from which we can conclude, of every instantiation that does not appear in 
the extension, that it is false, in which case it must appear instead in the extension of the negation of 
that predicate. In SQL, then, the instantiation 5 < NULL, for example, cannot be considered to appear 
in either the extension of a < b or NOT (a < b ). Or so it would appear.

3.4 How a Table Represents an Extension…

…or does it? The theory book here describes how each tuple in a relation represents a true instantiation 
of some predicate and each true instantiation is represented by some tuple in that relation. Thus, a 
relation represents an extension, its body containing exactly one tuple corresponding to each element 
of the extension.

It is true that some SQL tables can be interpreted in this way but it is also true that some SQL tables 
cannot. In fact there are at least two distinct ways in which an SQL table cannot be thus interpreted:

a) In SQL it is possible for the same row to appear more than once in a table. Moreover, if 
tables t1 and t2 differ only in the number of appearances of some row, then that difference is 
significant—they are not the same table.

b) Although I have noted that in SQL the instantiation 5 < NULL cannot be considered to appear 
in either the extension of a < b or NOT (a < b ), the row (5, NULL) can appear in a table. What 
could be the corresponding predicate? It would have to be some dyadic predicate, P(a, b) say, 
such that P(5, NULL) is true. But if NULL stands for “some value but we don’t know which”, 
how could that row appear in the same table as, say, (6, 12)? If (6, 12) means “6 is related to 12” 
then (5, NULL), in relational theory, would have to mean that 5 is related to NULL in that same 
way. But it can’t, because NULL doesn’t designate anything. If instead it means “5 is related to 
something whose identity is unknown”, then we have a sentence in which nothing appears in 
substitution for the parameter b.
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3.5 Deriving Predicates from Predicates

The corresponding section in the theory book describes how predicates can be derived from predicates 
using (a) the logical connectives of the propositional calculus, such as AND, OR, and NOT, and (b) 
quantifiers, such as “there exists” (∃) and “for all” (∀). Here I examine how SQL’s truth value, unknown, 
intrudes on those connectives and quantifiers.

Logical Connectives

For these I give SQL’s extended truth tables in which the symbol , for unknown, appears along with 
the usual T and F.

Negation (NOT, ¬)

p ¬p

T F

U U

F T

Figure 3.1: The SQL Truth Table for Negation

We now have three rows instead of just two. As you can see, ¬p is defined as in two-valued logic (2VL) 
when p is either true or false, but ¬(unknown) is unknown.

Other monadics

In 2VL there are just 4 (22) monadic operators, of which negation is really the only “useful” one. When 
a third truth value is introduced we have 27 (33) monadics and SQL gives names to several of these in 
addition to NOT for its version of negation. Some of these are shown in Figure 3.1a.

p  p IS TRUE  p IS UNKNOWN p IS FALSE  p = TRUE p = UNKNOWN  p = FALSE

T T F F T U F

U F T F U U U

F F F T F U T

Figure 3.1a: Truth Tables for Some Other SQL Monadics

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

65 

Predicates and Propositions

Note that under none of the “IS” operators shown in Figure 3.1a does a truth value in the first column 
map to unknown—contrast this with the treatment of “=”. In addition to those three SQL also has p IS 
NOT TRUE, p IS NOT UNKNOWN, and p IS NOT FALSE, equivalent to NOT(p IS TRUE), 
NOT(p IS UNKNOWN), and NOT(p IS FALSE), respectively. The test x = x IS UNKNOWN 
can be useful in cases where it evaluates to TRUE when x IS NULL does not—for examples, see the 
Effects of NULL in Chapter 2, Section 2.10, Types and Representations.

We turn now to the dyadic operators, noting that with three truth values there are now 19,683 (3 to the 
power 32) all told, compared with just 16 (2 to the power 22) in 2VL. SQL directly supports (i.e., has 
names for) just eight of these, including counterparts of conjunction, disjunction, and—surprisingly—
implication (which, as we shall see, appears to have been included in the language by accident).
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Conjunction (AND, ∧)

p q p ∧ q

T T T

T U U

T F F

U T U

U U U

U F F

F T F

F U F

F F F

Figure 3.2: The SQL Truth Table for AND

Now we have nine rows (32) instead of just four (22). Again, when unknown is not involved, the rows 
are as for 2VL. Also, when anything is paired with false, the result is false, as in 2VL. Our intuition, that 
“p and q” is true exactly when both operands are true, is preserved.

Disjunction (OR, ∨)

p q p ∨ q

T T T

T U T

T F T

U T T

U U U

U F U

F T T

F U U

F F F

Figure 3.3: The SQL Truth Table for Disjunction

Again we have nine rows instead of just four and again, when unknown is not involved, the rows are as 
for 2VL. Also, when anything is paired with true, the result is true, as in 2VL. Our intuition, that “p or 
q” is true exactly when at least one operand is true, is preserved.
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Now, in the theory book it is noted that disjunction could equally well be defined in terms of conjunction 
and negation, as

p ∨ q ≡ ¬(¬p ∧ ¬q)

and the truth table in Figure 3.4 of that book is given as proof of that equivalence. The question arises, 
does the same equivalence hold in SQL? To answer that we need to look at the revised Figure 3.4.

p q ¬p ¬q ¬p ∧ ¬q ¬(¬p ∧ ¬q)

T T F F F T

T U F U F T

T F F T F T

U T U F F T

U U U U U U

U F U T U U

F T T F F T

F U T U U U

F F T T T F

Figure 3.4: SQL Disjunction in Terms of SQL Negation and SQL Conjunction

As you can see, the final column is the same as in Figure 3.3, so that equivalence does also hold in SQL.

Conditionals

At first sight SQL does not appear to have a single operator for expressing logical implication. In this 
respect it would be in common with most programming languages, including Tutorial D. However, 
standard SQL defines a partial ordering for its three truth values, under which false is deemed to 
precede true. Thus, the comparisons p < q, p > q, p <= q, and p >= q are all supported in standard SQL 
(in addition to p = q, of course).

Now, in Section 3.5 of the theory book it is noted that in 2VL p → q is equivalent to ¬p ∨ q. Study of 
Figure 3.5 reveals that ¬p ∨ q does indeed equate to p → q when neither operand is unknown, and the 
same is true of p <= q! (It is the pronunciation, “is less than or equal to”, rather than “implies”, that led 
to my observation that SQL appears to include direct support for a 3VL form of implication by accident.)
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p q ¬p ¬p ∨ q p <= q

T T F T T

T U F U U

T F F F F

U T U T U

U U U U U

U F U U U

F T T T T

U U U U U

F F T T T

Figure 3.5: The SQL Truth Tables for ¬p∨ q and p <= q

Note, however, that p <= q is not equivalent to ¬p ∨ q. Intuitively, we understand that “p implies q” is 
true whenever q is true. This holds for ¬p ∨ q but not for p <= q, as the row for p = U and q = T shows. 
The U in the last column for that row arises from SQL’s general rule that whenever an operand of a 
comparison is NULL, the result is unknown—and NULL, when it is the result of evaluating a Boolean 
expression, is considered synonymous with unknown. In fact, Figure 3.5 gives a demonstration of the 
fact that SQL is not always faithful to its own concept, that NULL represents “a value exists here but we 
don’t know which value”. What U really means when it appears in the column for p <= q is that <= is 
undefined for that particular pair of truth values.

The biconditional p ↔ q can be expressed in Tutorial D by p = q and the same is true of SQL. The 
question then arises as to whether, in SQL, p = q is equivalent to (¬p ∨ q) ∧ (¬q ∨ p). This matter is 
investigated in the truth table of Figure 3.6.

p q ¬p ∨ q ¬q ∨ p (¬p ∨ q) ∧ (¬q ∨ p) p = q

T T T T T T

T U U T U U

T F F T F F

U T T U U U

U U U U U U

U F U T U U

F T T F F F

F U T U U U

F F T T T T

Figure 3.6: SQL p = q ≡ (¬p ∨ q) ∧ (¬q ∨ p)
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As you can see, the equivalence does hold in SQL, but only because SQL treats unknown as not equal 
to—i.e., not the same truth value as—itself! This treatment of p = q is consistent with the general rule 
that applies when NULL is an operand of a comparison in SQL.

Figure 3.6a similarly investigates whether p = q is equivalent to (p <= q) ∧ (q <= p), and as you can see, 
the equivalence again holds in SQL.

p q p <= q q <= p (p <= q) ∧ (q <= p) p = q

T T T T T T

T U U U U U

T F F T F F

U T U U U U

U U U U U U

U F U U U U

F T T F F F

F U U U U U

F F T T T T

Figure 3.6a: SQL p = q ≡ (p <= q) ∧ (q <= p)
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Quantification

To quantify something, as the theory book has it, is to state its quantity, to say how many of it there 
are. For example, in Tutorial D the expression COUNT(r) denotes the number of tuples in the relation 
r, to be interpreted as the number of objects represented by those tuples that satisfy a predicate that r 
is considered to represent. Universal quantification—stating that something is true of all objects under 
consideration—is involved in expressions such as 

•	AND(r,c), meaning that all objects that satisfy a predicate for r also satisfy the condition 
(another predicate) c, and

•	IS_EMPTY(r), meaning that no object satisfies a predicate for r—in other words, every 
object satisfies the negation of that predicate.

Existential quantification—stating that something is true of at least one object under consideration—can 
be expressed by OR(r,c), meaning that at least one object that satisfies a predicate for r also satisfies 
c, and IS_NOT_EMPTY(r).

The names for the aggregate operators AND and OR reflect the facts that when we confine our attention to 
finite sets, universal and existential quantification are equivalent to repeated invocations of dyadic AND and 
dyadic OR, respectively. Note that AND(r,c) is equivalent to COUNT(r) = COUNT(r WHERE c), and 
OR(r,c) is equivalent to COUNT(r WHERE c) > 0 and also to IS_NOT_EMPTY(r WHERE c).

Quantification also appears in various guises in SQL, but its meaning is muddied by those same two 
violations of relational theory that we have already seen muddying the waters: duplicate rows and 
NULL. For example, SQL’s (SELECT COUNT(*) FROM r), a so-called scalar subquery (because 
it is an expression denoting a table with one row and one column, enclosed in parentheses), denotes 
the number of rows in the table r, but can we really say that this represents the number of objects that 
satisfy a predicate for r, if the same row can be counted more than once, or if NULL appears in place of 
a column value in some row of r? In fact, what might it mean to say that a row does or does not satisfy 
a predicate? In 2VL we say that object a satisfies predicate P(x) exactly when P(a) is true. Does this still 
hold in 3VL, or might SQL deem a to satisfy P(x) also when P(a) is unknown? Well, it turns out that 
SQL uses both interpretations, depending on the context, as we shall discover.
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SQL counterparts of Tutorial D quantifications

Consider Tutorial D’s AND(r,c), where r is a relation and c is a condition that is applicable to tuples 
of r. This variety of AND is an aggregate operator in Tutorial D. The expression evaluates to true when 
every tuple in r satisfies c, otherwise false. Looking for an SQL counterpart of this expression, we are 
faced with a plethora of possibilities. It is a salutary exercise to examine the apparent choices to see 
which, if any, is the best fit. For aggregation SQL provides what it calls “aggregate functions”. These are 
counterparts, not to Tutorial D’s aggregate operators but rather to its constructs such as SUM(x) that 
can appear in invocations of SUMMARIZE. Aggregate functions are used in several of the candidates we 
shall examine. It is important to bear in mind two general rules that apply to aggregation in SQL. The 
first is that appearances of NULL are always excluded, such that, for example SUM(x) evaluates to 3 
when summing 1, 2 and NULL, even though 1+2+CAST(NULL AS INTEGER) evaluates to NULL. 
The second is that, except in the case of COUNT, aggregation over the empty set always yields NULL, 
even though the sum of no integers, for example, really should be zero and the AND of no truth values 
should be TRUE. With that in mind, let us now look at some of the possibilities for determining whether 
condition c is satisfied by every row of table r.

1. (SELECT EVERY(c) FROM r)
The result is false if c evaluates to false for at least one row of r, unknown if c evaluates to 
unknown for each row of r (including the case where r is empty), otherwise true. Note that 
the treatment thus differs from AND(r,c) when r is empty, the result being unknown instead 
of true. Note also that the result can be true even when c does not evaluate to true for every 
row of r, namely, when c is true for at least one row and unknown for each of the others. Here, 
then, we can observe that a row appears to satisfy c if c evaluates to either true or unknown.

2. (SELECT MIN(c) FROM r)
This is available as a result of the partial ordering of truth values previously mentioned. It is 
equivalent to (SELECT EVERY(c) FROM r).

3. (SELECT EVERY(c IS TRUE) FROM r)
Here we are explicitly stating that we deem r to satisfy c only when c is true for r. But it is still 
the case that the expression yields unknown when r is empty.
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4. TRUE =ALL (SELECT c FROM r)
Here we are using the unusual construct SQL calls a “quantified comparison predicate”. For 
example, the comparison X =ALL (SELECT Y FROM T) results in true if X = Y is true 
for every row of r (including the case where r is empty), false if X = Y is false for at least one 
row of r, otherwise unknown. (Note that the word ALL is attached to the comparison operator, 
not the table expression that follows it. ALL (SELECT Y FROM T) is not a legal expression 
in SQL.) So TRUE =ALL (SELECT c FROM r) yields the same result as AND(r,c) 
exactly when c is true for every row of table r, but otherwise it can yield either unknown or false.

5. TRUE =ALL (SELECT c IS TRUE FROM r)
At last we have an expression that yields the same result as AND(r,c) when c is true for every 
row of table r and otherwise yields false.

We can conduct a similar investigation in connection with Tutorial D’s OR(r,c):

1. (SELECT SOME(c) FROM r)
The result is true if c evaluates to true for at least one row of r, unknown if c evaluates to unknown 
for each row of r (including the case where r is empty), otherwise false. The treatment differs 
from OR(r,c) in the case where r is empty and the result is unknown—you might find that 
a bit strange when you consider that if r contains no rows, then obviously there doesn’t exist 
a row in r that satisfies c.
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2. (SELECT MAX(c) FROM r) and (SELECT ANY(c) FROM r)
These are both equivalent to (SELECT SOME(c) FROM r). ANY is just an alternative 
spelling for SOME.

3. (SELECT SOME(c IS TRUE) FROM r)
This is also equivalent to (SELECT SOME(c) FROM r). The addition of IS TRUE has 
no effect this time.

4. TRUE =SOME (SELECT c FROM r)
This differs from (SELECT SOME(c) FROM r) because it yields false instead of unknown 
when r is empty and also because it yields unknown when c evaluates to false for at least one 
row of r and unknown for all the others.

5. TRUE =SOME (SELECT c IS TRUE FROM r)
Similar to our fifth candidate for AND(r,c), we finally have an expression that yields the 
same result as OR(r,c) when c is true for some row of table r and otherwise yields false.

For Tutorial D’s IS_EMPTY(r) SQL has NOT EXISTS(r), which yields true whenever r is 
empty, otherwise false. Note, then, that NOT EXISTS(r WHERE FALSE) is not equivalent to 
(SELECT EVERY(FALSE) FROM r), because of the difference in treatment of the empty table.

Similarly, for IS_NOT_EMPTY(r) SQL has EXISTS(r), which yields False whenever r 
is empty, otherwise True. Note, then, that EXISTS(r WHERE TRUE) is not equivalent to 
(SELECT SOME(TRUE) FROM r). Note also that EXISTS(r WHERE c) evaluates to false in 
the case where r is not empty, c evaluates to unknown for at least one row of r, and c evaluates to false 
for every other row. Thus, although SQL uses the name EXISTS for this operator, it is not the 3VL 
existential quantifier. Similarly, NOT EXISTS(r WHERE NOT (c)) does not in general express 
universal quantification in 3VL.

Historical Notes

It is commonly believed that the term Structured Query Language, sometimes taken to be the full 
name for  SQL, is inspired by the SELECT-FROM-WHERE structure.  This may be the case, but it is 
not clear whether that was the intention of the authors of SEQUEL. The Abstract for that paper gives a 
clue: “Moreover, the SEQUEL user is able to compose these basic templates [SELECT-FROM-WHERE 
templates] in a structured manner to form more complex queries.”  That “structured manner” might 
have referred to SEQUEL’s support for nesting one SELECT-FROM-WHERE structure within another.
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The syntax SELECT * FROM was not included in SEQUEL because the SELECT clause itself was 
optional, as was the key word FROM. Thus, SQL expressions such as SELECT * FROM T1 and SELECT 
* FROM T1, T2 could be written as just T1 and T1, T2 in SEQUEL. The shorthand TABLE t was 
added to the SQL standard in 1992 but remains an optional conformance feature.

The monadic operators IS TRUE, IS FALSE, IS UNKOWN and their negated counterparts 
IS NOT TRUE, IS NOT FALSE, IS NOT UNKNOWN were added to the language in SQL:1992. 
They remain optional conformance features.

Support for comparison operators on values of type BOOLEAN, along with the aggregate functions 
EVERY, SOME, ANY, and MAX and MIN on Booleans, arrived in SQL in the 1999 edition of the 
international standard, as already noted in Chapter 2. The partial ordering of truth values was perhaps 
partly a consequence of SQL’s treatment of NULL when the rows of a table are to be placed in some 
specified order (typically by use of an ORDER BY clause). For example, suppose that rows of ENROLMENT 
are to be placed in alphabetical order of NAME, for which NULL appears in some row. Does this row 
appear before the rows for Anne or after the rows for Zack? When the first edition of the SQL standard 
(1986) was being drafted it was discovered that existing implementations were divided fairly evenly 
between those that placed NULL first in the ordering and those that placed it last. Rather than toss a 
coin to decide which implementations would be deemed in conformance, the committee decided not 
to legislate on this matter. When BOOLEAN was added in 1999, the treatment of comparisons on values 
of this type was at least consistent with that decision. It was also consistent with the existing treatment 
of comparisons on values of all other types.

As an aside, it is interesting to observe that SQL:2003 included some new material in connection with 
ORDER BY, allowing the user to specify the treatment of NULL, by writing either NULLS FIRST or 
NULLS LAST. However, no similar addition appears in connection with comparisons.
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4  Relational Algebra— 
The Foundation

4.1 Introduction

The theory book’s Chapter 4 describes some operators, as manifested in Tutorial D, that together 
constitute an algebra that is not only relationally complete but also irreducibly so (very nearly—
apart from RENAME, which can be expressed in terms of extension and projection, none of those 
operators can be discarded without sacrificing completeness). We can use these operators as a basis for  
testing SQL for relational completeness. If we can show that for every invocation of one of these  
Tutorial D operators there is an equivalent SQL expression, then we will have shown that SQL is 
relationally complete. By “equivalent” we mean an expression whose table operands are counterparts of 
the Tutorial D relation operands (ignoring the ordering that SQL imposes on the columns) and whose 
result is a table counterpart of Tutorial D’s result, where a table is a counterpart of a relation if and only 
if it satisfies all of the following conditions:
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•	 every column has a name
•	 no two distinct columns have the same name
•	 no row appears more than once
•	 NULL doesn’t appear in place of a value anywhere in the table
•	 every row consists entirely of its column values and doesn’t somehow contain any additional 

data

Strictly speaking, SQL cannot be regarded as relationally complete until it recognizes the existence of 
relations of degree zero: TABLE_DEE and TABLE_DUM in Tutorial D. Charitably overlooking that 
omission, we will discover that SQL is otherwise relationally complete, though it wasn’t so prior to 1992. 
However, the table counterparts we will find in SQL will give opportunities for further comment on the 
language design. We will also discover some of the consequences that arise when SQL’s operators are 
used on tables that do not satisfy all of these conditions.

Figure 4.1, repeated from the theory book, shows the current values of relvars named IS_CALLED and 
IS_ENROLLED_ON, which we will now take to be SQL tables (as the current values of SQL base tables).

Please note very carefully that all examples and accompanying explanations assume, unless 
otherwise stated to the contrary, that the tables involved satisfy the above conditions. Otherwise, as 
they say, “all bets are off”.

IS_CALLED IS_ENROLLED_ON

StudentId Name StudentId CourseId

S1 Anne S1 C1

S2 Boris S1 C2

S3 Cindy S2 C1

S4 Devinder S3 C3

S5 Boris S4 C1

Figure 4.1: IS_CALLED and IS_ENROLLED_ON

This will be our running example here too.

In the theory book Example 4.1 is the first example of an invocation of a relational operator, using JOIN 
to derive the ENROLMENT relation from IS_CALLED and IS_ENROLLED_ON. Here it shows an SQL 
equivalent to IS_CALLED JOIN IS_ENROLLED_ON.
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Example 4.1: Joining IS_CALLED and IS_ENROLLED_ON in SQL

SELECT * FROM IS_CALLED NATURAL JOIN IS_ENROLLED_ON

This is an example of an SQL table expression. I have been assuming you are already familiar with the 
SELECT-FROM-WHERE structure for certain table expressions. Here I give an explanation in a different 
style from that found in the SQL text books, appealing to the concept of operator invocation that is used 
in the theory book.

Explanation 4.1

•	 Example 4.1 is an invocation of the SQL operator SELECT and for that reason I shall refer 
to such table expressions as SELECT expressions.

•	 Here the SELECT operator operates on the table denoted by the table expression FROM 
IS_CALLED NATURAL JOIN IS_ENROLLED_ON, an invocation of the operator 
FROM. I shall call such table expressions FROM expressions.

•	 The FROM operator here is operating on the table denoted by the table expression 
IS_CALLED NATURAL JOIN IS_ENROLLED_ON, an invocation of the operator 
NATURAL JOIN.

•	 NATURAL JOIN here is operating on the tables denoted by the table expressions IS_
CALLED and IS_ENROLLED_ON, each in turn denoting the table that is the current value 
of the variable (base table) of that name.

•	 NATURAL JOIN is almost equivalent to Tutorial D’s JOIN. It differs only in being 
noncommutative because of the ordering to the columns of an SQL table. The common 
columns appear first in the result, in the order in which they appear in the left operand. 
Then come the remaining columns of the left operand, followed by the remaining columns 
of the right operand. As in Tutorial D, common columns must be of the same type in both 
operands.

•	 FROM is an operator that takes a commalist of one or more table expressions. In this 
example the list has just one element, IS_CALLED NATURAL JOIN IS_ENROLLED_
ON, and the result is that table. An invocation of FROM is usually referred to as a FROM 
clause. A FROM clause is not permitted to exist in isolation—it must appear in some 
containing SELECT expression. Similarly, some table expressions are permitted only when 
they appear as elements of a FROM clause. Simple table names and invocations of NATURAL 
JOIN are a case in point. The result of a FROM clause must always be operated on by some 
other clause. In Example 4.1 it is operated on by a SELECT clause. It can also be operated 
on by any clause that immediately follows it syntactically, such as a WHERE clause, for 
example. As we shall see, SQL dictates a strict order in which the clauses of a SELECT 
expression must appear. Evaluation always starts at the FROM clause, then proceeds forwards 
from clause to clause, then finally back to the SELECT clause.
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•	 SELECT is an operator that takes an explicit or, as in Example 4.1, implicit commalist of 
column specifications followed by an invocation of FROM. The text from the word SELECT 
up to, but not including, the word FROM is usually referred to as a SELECT clause. The 
clauses following the SELECT clause define a table on which the SELECT clause operates. 
The shorthand SELECT * is equivalent to a commalist specifying each column in turn 
of the input table defined by the following clauses. Thus, SELECT * FROM t is very 
similar to Tutorial D’s identity projection, t{ALL BUT}—it yields the table t. (When t is 
just a single table name, the shorthand TABLE t is available as equivalent to the SELECT 
expression SELECT * FROM t.)

Historical Note: 

It is commonly believed that the term Structured Query Language, sometimes taken to be the 
full name for  SQL, is inspired by the SELECT-FROM-WHERE structure. This may be the case, 
but it is not clear whether that was the intention of the authors of SEQUEL. The Abstract for 
that paper gives a clue: “Moreover, the SEQUEL user is able to compose these basic templates 
[SELECT-FROM-WHERE templates] in a structured manner to form more complex queries.”  
That “structured manner” might have referred to SEQUEL’s support for nesting one SELECT-
FROM-WHERE structure within another.

The syntax SELECT * FROM was not included in SEQUEL because the SELECT clause itself 
was optional, as was the key word FROM. Thus, SQL expressions such as SELECT * FROM 
T1 and SELECT * FROM T1, T2 could be written as just T1 and T1, T2 in SEQUEL. 
The shorthand TABLE t was added to the SQL standard in 1992 but remains an optional 
conformance feature.

Figure 4.2 shows the result of evaluating Example 4.1. You can see that it depicts exactly the same table 
as the current value of ENROLMENT shown in Figure 1.2. Note in particular that the left-to-right order 
of the columns is as shown in Figure 1.2. When the table operands are reversed the result is the different 
SQL table depicted in Figure 4.2a.
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StudentId Name CourseId

S1 Anne C1

S1 Anne C2

S2 Boris C1

S3 Cindy C3

S4 Devinder C1

Figure 4.2: The result of IS_CALLED NATURAL JOIN IS_ENROLLED_ON

StudentId CourseId Name

S1 C1 Anne

S1 C2 Anne

S2 C1 Boris

S3 C3 Cindy

S4 C1 Devinder

Figure 4.2a: The result of IS_ENROLLED_ON NATURAL JOIN IS_CALLED

Effect of NULL

Let c be a common column in t1 NATURAL JOIN t2. Then there can be no row in the result for 
which c IS NULL evaluates to TRUE, even if both operands contain such a row. In fact, for each 
common column c, c=c IS UNKNOWN must evaluate to FALSE for every row of the result. (Recall 
that c=c IS UNKNOWN can evaluate to TRUE even when c IS NULL does not.)

Historical Notes

It is commonly believed that the term Structured Query Language, sometimes taken to be the full 
name for  SQL, is inspired by the SELECT-FROM-WHERE structure.  This may be the case, but it is 
not clear whether that was the intention of the authors of SEQUEL.  The Abstract for that paper gives a 
clue: “Moreover, the SEQUEL user is able to compose these basic templates [SELECT-FROM-WHERE 
templates] in a structured manner to form more complex queries.”  That “structured manner” might 
have referred to SEQUEL’s support for nesting one SELECT-FROM-WHERE structure within another.

The syntax SELECT * FROM was not included in SEQUEL because the SELECT clause itself was 
optional, as was the key word FROM.  Thus, SQL expressions such as SELECT * FROM T1 and 
SELECT * FROM T1, T2 could be written as just T1 and T1, T2 in SEQUEL. The shorthand 
TABLE t was added to the SQL standard in 1992 but remains an optional conformance feature.
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What if NATURAL JOIN is missing?

In the absence of NATURAL JOIN Example 4.1 has to be replaced by something rather more longwinded, 
as shown in Example 4.1a.

Example 4.1a: Joining IS_CALLED and IS_ENROLLED_ON in original SQL

SELECT IC.StudentId, Name, CourseId

FROM IS_CALLED AS IC, IS_ENROLLED_ON AS IE

WHERE IC.StudentId = IE.StudentId

Explanation 4.1a

•	 The FROM clause now has two elements. When there are two elements, t1 and t2, the result 
is equivalent to t1 CROSS JOIN t2, which is SQL’s counterpart of t1 TIMES t2 
in Tutorial D. However, TIMES requires its operands to have disjoint headings, whereas 
CROSS JOIN is defined for all pairs of SQL tables. When t1 and t2 each have a column 
named c, the result has two columns named c. In general, when t1 has m columns named c 
and t2 has n, t1 CROSS JOIN t2 has m+n columns named c.

•	 Following the FROM clause is a WHERE clause, denoting an invocation of the operator 
WHERE. The operands are the table resulting from the FROM clause and the condition 
following the word WHERE. SQL’s WHERE operator is equivalent to Tutorial D’s operator 
of the same name when its table operand represents a relation.

•	 The result of the FROM clause has two columns of the same name, StudentId. The 
condition specified in the WHERE clause uses range variables, IC and IE, to distinguish 
between these two columns. The distinction is possible here, thanks to the fact that the same 
column name isn’t used more than once in either of the two operand tables (as we shall see 
later, that is a condition that does not always apply, even though the same column name 
cannot be used more than once in a base table). 

•	 The range variables are defined in the FROM clause alongside the table expressions to which 
they apply. The key word AS separating the table expression from the range variable name 
is optional. If the table expression consists of just a table name, unaccompanied by a range 
variable, then that table name serves also as a range variable name.

•	 A range variable is so-called because it is considered to “range over” each element in turn of 
a collection, the collection in the example at hand being the rows of a table. Note carefully 
that although the expression IE.StudentId is a column reference, it is not a column 
name. It references a particular column named StudentId. The prefix “IE.” is required 
because without it the column reference would be ambiguous.
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Historical Notes

You may have learned a different term for range variable, which was used by Codd in his early papers 
but not adopted by the SQL standard until 2003. In some SQL texts it is called alias but this is not at all 
appropriate, really, because that would imply that it is a table name and therefore denotes a table rather 
than a row. The SQL standard uses the equally inappropriate term correlation name (it doesn’t denote 
a correlation, whatever that might be), but only for the case where the name is explicitly given (via AS 
in the example) and not for the case where a simple table name doubles as a range variable name. In 
SQL:2003 range variable was adopted as a convenient single term to cover the more general case.

In his seminal 1970 paper [3] E.F. Codd defined the relational algebra, subsequently adopted in various 
guises by ISBL, Business System 12, and much later, Tutorial D. Such an algebra was clearly suited to 
the conventional style of most computer languages, but also in that paper Codd proposed an alternative 
approach based more closely on the predicate calculus. He called this notation relational calculus and in 
a later paper [4] proposed a concrete syntax which he called “Data Sublanguage ALPHA”.

It seems that the authors of SEQUEL took inspiration from both relational algebra and Codd’s ALPHA, 
as well as the style of the typical scripting languages of that time that were used for generating reports 
from files. (The SEQUEL paper explicitly mentions as a source of inspiration such a scripting language, 
the IBM product GIS—Generalized Information System.)
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The idea to use range variables in SEQUEL, thence in SQL, came from ALPHA. Now, when the planners 
of Business System 12 (of which I was one) were studying Codd’s papers, we realized very early on that 
we needed to choose a style for our language. The algebra appealed because of its conventionality as a 
set of operators closed over something—relations, of course—and happily the prototype implementation 
ISBL, which used the algebra defined in reference [14], provided answers to various questions that 
Codd’s proposal had raised, in particular, questions concerning the headings of relations resulting from 
invocations of these operators.

ALPHA also had appeal, but a similar question concerning headings arose and this time we could not 
find a satisfactory answer. Were these “dot qualified” names arising from the use of range variables to 
be the actual attribute names in the result’s heading? If so, what if that relation were input to another 
ALPHA expression? Did the result of that expression have doubly qualified attribute names? And so 
on, yielding longer and longer names with more and more dots in them? If so, well, we didn’t think 
that would be acceptable and in any case in those days computer memory was at a premium and for 
performance reasons we needed reasonably small, fixed-length storage slots to accommodate attribute 
names. On the other hand, if these qualifiers did not appear in the result headings, how were attributes 
of the same name to be distinguished? We decided against support for notation based on Codd’s calculus, 
because no implementation had been made to provide answers to these questions. Moreover, if and when 
satisfactory answers appeared, then we would have the option to provide such support as a mapping to 
the algebra-based language—an alternative interface for users who might prefer that style.

The authors of SEQUEL decided differently. In fact they decided to be different from both the algebra 
and the calculus. They decided that in a base table each column would have a unique name but that 
requirement would not carry through in general to results of table expressions. The presence of two or 
more columns with the same name didn’t matter much in SEQUEL, or in SQL prior to 1992, because 
table expressions other than simple table names were not permitted to appear as operands of FROM—
the language was thought by some, erroneously as it turned out, to be relationally complete even with 
that restriction. A similar remark applies in connection with columns that have no name at all, as in 
SELECT SUM(X) FROM T, for example. If tables with such columns can arise only as results of 
SELECT expressions, and SELECT expressions aren’t permitted in FROM clauses, then there’s never any 
possibility to reference such columns by name, and if the language is complete, then there isn’t any need 
to either. The reason why relational completeness in SQL requires support for SELECT expressions in 
the FROM clause is given in Chapter 5, Section 5.6, Summarization in SQL.

Another point motivating the decisions taken in ISBL and BS12 was that it was felt that every expression 
denoting a relation should be assignable to a relation variable of the same type. SEQUEL was silent on 
the subject of variables but in SQL not every table expression can be the value of a base table, because 
a base table is required to have a unique name for every column.
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As for the strange restrictions that govern the syntax of SELECT expressions, requiring a query to be 
expressed as a fixed sequence of invocations of specific operators, that would have been presumably 
inspired by GIS. The typical style of report generation languages in those days was based around something 
like this, assuming for simplicity that a single input file contains all the data needed for the report:

1. Specify the input file, whose physical layout in terms of fields in records would be described 
in something called the Data Dictionary, which gave names to those fields. So this became 
SEQUEL’s FROM clause.

2. Specify a condition to select the desired records from that file. So that became the WHERE 
clause.

3. Specify the values, derived from the selected records, that were to appear in the output 
report. So that became the SELECT clause, placed first in spite of it being actually the last 
step, to align the complete expression with the normal style of English sentences.

The foregoing account is largely conjecture but it seems quite reasonable from the evidence available. 
Recalling that the “S” in SEQUEL and SQL originally stood for “structured” (though this latter never 
became official), we can add the observation that “structured” was something of a buzz word in the 
1970s, when the discipline of structured programming rightly became fashionable. However, there 
is of course no connection at all between the structure of SQL table expressions and the discipline of 
structured programming.

4.2 Relations and Predicates

Sections 4.2 in the theory book states the importance of the closed world assumption and applies just 
as well to SQL, insofar as it can be deemed applicable in the presence of that intrusive truth value, 
UNKNOWN, discussed in Chapter 3.

4.3 Relational Operators and Logical Operators

Section 4.3 in the theory book prepares the ground for subsequent sections in which each specific 
relational operator is paired with its logical counterpart, such that, for example, r1 JOIN r2 denotes 
the relation representing the extension of the predicate p1 AND p2, the conjunction of the predicates 
for the operand relations. It follows that where we can find SQL counterparts of those relational operators, 
invocations of those counterparts will in turn represent extensions of the predicates given in the theory book.

The definitions that appear in the following sections use the following conventions:

•	 Symbols beginning with t denote tables and those beginning with r denote rows. In the 
theory book, of course, it’s the other way around, so to speak, because r stands for relation, t 
for tuple.
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•	 Because the columns of a table, and therefore the components of a row, are ordered in SQL, 
the term concatenation is used in its usual sense to refer to connecting two or more things 
(headings or rows), one after the other in the order specified.

4.4 JOIN and AND

In the theory book Section 4.4 is all about one operator, JOIN. SQL’s closest counterpart, NATURAL 
JOIN, has already been covered. Here we look at several other “join” operators defined in SQL. We 
don’t really need to, as NATURAL JOIN, if considered as primitive, renders all the others redundant as 
shorthands. But as has already been mentioned, you won’t find NATURAL JOIN in every SQL product. 
CROSS JOIN has already been mentioned as the operator implicitly used in joining the tables specified 
in a FROM clause’s commalist. We start by giving its full definition.

Definition of CROSS JOIN

Let s = t1 CROSS JOIN t2, where t1 and t2 are table expressions optionally accompanied by range 
variables. Then:

•	 The heading Hs of s is the concatenation of the headings of t1 and t2, in that order.

•	 If r1 is a row appearing n1 times in t1 and r2 is a row appearing n2 times in t2, then the row 

formed by concatenation of r1 and r2 in that order appears n1*n2 times in the body of s.

 

  

 

                . 
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It follows that the degree of the result is the sum of the degrees of the operands and its cardinality is the 
product of their cardinalities, as with r1 TIMES r2 in Tutorial D.

Interesting properties of CROSS JOIN

Compare these with the “interesting properties of JOIN” given in the theory book.

CROSS JOIN is associative but not commutative, for the reason given in Section 4.1.

Unlike JOIN and NATURAL JOIN, CROSS JOIN is not idempotent. Let t be any table and let n be 
its cardinality. Then t CROSS JOIN t has twice as many columns as t and n2 rows.

Also unlike JOIN, CROSS JOIN has no identity value. If t is a table, there is no table t0 such that 
t CROSS JOIN t0 = t. That’s because t0 would be required to have no columns and exactly one row, 
but SQL doesn’t recognize the existence of tables with no columns.

We can now define FROM in terms of CROSS JOIN.

Definition of FROM

Recall that the operand of FROM is denoted by a commalist, each element of that commalist being a 
table expression optionally accompanied by a range variable name. Then we can write:

FROM fe1, fe2, … fen (n  0) is equivalent to FROM fe1 CROSS JOIN fe2 CROSS JOIN … CROSS 
JOIN fen.

Recall that the operands of CROSS JOIN can also include range variables. Note also that an invocation 
of CROSS JOIN is itself a table expression and can thus appear in an element of a FROM clause. In the 
light of that observation, consider Example 4.1b

Example 4.1b: FROM giving indistinguishable columns of same name

FROM (IS_CALLED AS IC CROSS JOIN IS_ENROLLED_ON AS IE) AS CJ 

WHERE ??.StudentId = ??.StudentId

/* The StudentId columns can no longer be distinguished */

The only qualifier available for the columns of the result of that FROM clause is CJ. The range variables 
IC and IE are rendered out of scope by the definition of CJ.
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Historical Notes

A restricted version of FROM was defined in SEQUEL and thence in the first implementations of SQL. 
The restriction was that each operand had to be a simple table name, referencing either a base table or 
a “view” (SQL’s counterpart of Tutorial D’s virtual relvars) rather than a table expression of arbitrary 
complexity. This restriction, along with others concerning the table expressions on which views were 
defined, is one of those that rendered SEQUEL and early SQL relationally incomplete. See Chapter 5, 
Section 5.6, Summarization in SQL.

CROSS JOIN was added to the international standard in 1992, along with the other explicit JOIN 
operators. It is completely redundant and can hardly be regarded as a shorthand, but perhaps its use makes 
certain expressions clearer than they would otherwise be. It remains an optional conformance feature.

Another variety of JOIN is illustrated in Example 4.1c—the “named columns join”. Here the common 
columns to be used for matching rows are specified explicitly in a parenthesized commalist following 
the word USING. As with NATURAL JOIN, each column used for matching appears just once in the 
result, so Example 4.1c is in fact equivalent to Examples 4.1 and 4.1a. 

Example 4.1c: Obtaining a natural join by specifying the common columns

SELECT * FROM IS_CALLED JOIN IS_ENROLLED_ON USING ( StudentId )

However, a named columns join doesn’t always have an equivalent formulation using NATURAL JOIN. 
That’s because although each USING column must be a common column, it is not necessary to specify 
all the common columns. A common column whose name does not appear in the USING list gives rise 
to two columns of that name in the result, which therefore does not represent a relation.

To cater for cases where the columns used for matching purposes are not common columns, and/or the 
matching operator is not “=”, the required joining condition can be spelled out as shown in Example 
4.1d, in parentheses following the key word ON.

Example 4.1d: Explicitly specifying the join condition

SELECT * 

FROM IS_CALLED JOIN IS_ENROLLED_ON 

ON ( IS_CALLED.StudentId = IS_ENROLLED_ON.StudentId )

Note carefully that Example 4.1d is not equivalent to Example 4.1. That’s because the result now contains two 
StudentId columns, as would of course be required if they didn’t have the same name. In fact, Example 
4.1c is equivalent to the table expression obtained by replacing JOIN by a comma and ON by WHERE.
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Now, the key word JOIN in all of the foregoing examples can be harmlessly preceded by the word 
INNER. SQL also supports what are called “outer joins”. The outer join of t1 and t2 contains all the 
rows of the inner join and possibly some more if either operand has rows which fail to participate in 
the inner join. Such a row might participate in the outer join, accompanied by NULL for each column 
of the other operand. The key words LEFT, RIGHT, and FULL, each optionally followed by OUTER, 
are used to specify whether unmatched rows of the first (left) operand, the second (right) operand, or 
both operands, respectively, are to appear in the result. Example 4.1e shows an SQL outer join. As well 
as the rows shown in Figure 4.2, a single row for student S5 appears in the result, with NULL in place 
of a value for CourseId.

Example 4.1e: An SQL outer join

SELECT * 

FROM IS_CALLED NATURAL LEFT JOIN IS_ENROLLED_ON

Note that adding LEFT to an invocation of CROSS JOIN has no effect unless the right-hand operand 
table is empty. As outer joins in general denote tables that are not counterparts of relations, they merit 
no further discussion here.
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Historical Notes

Apart from NATURAL, CROSS, and FULL, all the JOIN options described in this section became 
mandatory conformance features in SQL:1999.

When outer joins were added to SQL in 1992, the use of NULL for the noncommon columns in unmatched 
rows was a fairly obvious choice. The designers of Business System 12 also recognized the requirement 
for outer joins but could not use NULL for the same purpose because the decision had already been taken 
not to include any such construct in that language. Instead, they defined an operator, MERGE, similar to 
SQL’s LEFT JOIN but differing from LEFT JOIN in two respects. First, the values to be used for the 
noncommon attributes of unmatched tuples had to be explicitly specified in the invocation (and they 
had to be values, of course—there was no such thing as NULL). Secondly, the common attributes were 
required to constitute a superkey of the second operand, thus guaranteeing that the join was many-to-
one or one-to-one (i.e., each tuple of the first operand would be joined with at most one tuple of the 
second). In Example 4.1e the join is one-to-many, which makes the appearance of just one row for student 
S5 seem somewhat arbitrary. The superkey requirement did not further restrict the second operand in 
any way because BS12 required a key to be specified for every base relvar and, furthermore, from these 
declared keys, and the semantics of each relational operator, BS12 was able to infer keys for the results 
of invocations of relational operators.

4.5 Renaming Columns

SQL has no direct counterpart of RENAME. To derive the table on the right in Figure 4.4 from the table 
on the left, Tutorial D has IS_CALLED RENAME ( StudentId AS Sid ).

StudentId Name Sid Name

S1 Anne S1 Anne

S2 Boris S2 Boris

S3 Cindy S3 Cindy

S4 Devinder S4 Devinder

S5 Boris S5 Boris

Figure 4.4: Tables differing only in a column name

Example 4.2 shows how the same effect can be achieved in SQL. Note that the SELECT clause has to 
include all the columns that are not subject to renaming, as well as those that are.

Example 4.2: Renaming a column

SELECT StudentId AS Sid, Name

FROM IS_CALLED
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Explanation 4.2

•	 Each element of a SELECT clause is an expression of arbitrary complexity that can reference 
one or more columns of the SELECT clause’s input table. Note that the expression is not 
required to reference any columns: it might be just a literal, for example.

•	 If the expression consists of just a column reference, then the name of the referenced 
column is the name of the corresponding column in the result. 

•	 If the expression is followed by the key word AS, then the resulting column has the column 
name given after that key word.

SQL allows the result to have two or more columns of the same name. For example, if we replace Sid 
by Name in Example 4.2, we still have a valid SQL SELECT expression.

Historical Notes

Column renaming with AS wasn’t in SEQUEL or the early implementations of SQL. It was added to 
the international standard in 1992, along with the liberation of FROM to allow table expressions in 
general as operands. Without AS, some columns in the result of FROM would have to be anonymous 
or have nonunique names. Such columns cannot be referenced in subsequent clauses such as WHERE 
and SELECT.

The fact that, in standard SQL (though not in all implementations), AS can assign the same name to 
more than one column in the same SELECT clause may surprise you. The rationale for this is that 
prior to 1992 an SQL table expression could already result in a table with two or more columns of the 
same name (SELECT C, C FROM T, for example, or SELECT T1.C, T2.C FROM T1, T2). 
A prohibition on the use of AS for this purpose would be futile unless duplicate column names were 
outlawed altogether, which was out of the question for the paramount reason of backwards compatibility.

Using RENAME in combination with JOIN

Example 4.3 in the theory book gives pairs of ids of students having the same name, by joining two 
renamings of IS_CALLED. Example 4.3a gives an equivalent expression in SQL.

Example 4.3a: Renaming and joining

Student Sid1 is called Name and so is student Sid2

SELECT *

FROM   (SELECT StudentId AS Sid1, Name FROM IS_CALLED)

    NATURAL JOIN

    (SELECT StudentId AS Sid2, Name FROM IS_CALLED)
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As before, the result sagely tells us that student S1 (Anne) has the same name as herself and also shows 
two pairings of S1 with S5 (both named Boris). The pairing of a student id with itself can be avoided by 
adding WHERE Sid1 <> Sid2 to the WHERE clause. The duplicate pairings can further be avoided 
by using < instead of <> in this addition, but that trick assumes that an ordering is defined for type 
SID, which is not necessarily the case. If NATURAL JOIN is not available, an expression such as the 
one shown in Example 4.3b could be used instead.

Example 4.3b: Renaming and joining without NATURAL JOIN

Student Sid1 is called Name and so is student Sid2

SELECT T1.StudentId AS Sid1, T1.Name, T2.StudentID AS Sid2

FROM IS_CALLED T1, IS_CALLED T2

WHERE T1.Name = T2.Name

  AND T1.StudentId < T2.StudentId

4.6 Projection and Existential Quantification

Intuitively it might seem that projection in SQL is simply a matter of specifying the required columns 
in the SELECT clause, as in Example 4.4a.
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Example 4.4a: Projection (incorrect)

Student StudentId is enrolled on some course.

SELECT StudentId FROM IS_ENROLLED_ON

Unfortunately, though, if some student is currently enrolled on more than one course (as indeed student 
S1, Anne, is in our example database), then the row giving that student’s id appears twice in the result, 
which because of that duplicate appearance does not represent a relation. To avoid multiple appearances 
of the same row SQL requires you to write the word DISTINCT, as in Example 4.4b. (The key word ALL 
can be given instead of DISTINCT, clarifying that duplicate rows are not to be eliminated. As ALL is 
the default option, it is rarely seen in examples and I do not use it in this book.)

Example 4.4b: Projection (correct version)

Student StudentId is enrolled on some course.

SELECT DISTINCT StudentId FROM IS_ENROLLED_ON

In more complicated examples it is sometimes quite difficult to tell whether omission of DISTINCT 
would give rise to duplicate rows. It might therefore seem good advice to always write DISTINCT. Indeed, 
I would certainly advocate such practice to students having to write SQL expressions in solutions to 
questions in exam papers, for example, but if it were followed blindly in commercial systems, then many 
queries would run very much slower than need be because typical SQL implementations have little or 
nothing in the way of built-in intelligence to recognize cases where duplicate rows cannot possibly arise. 
Although such intelligence is quite feasible within acceptable limits (and was used in Business System 
12, for example), the inclusion of DISTINCT allows SQL implementations to place the responsibility 
for duplicate elimination on the user.

Recall that Tutorial D allows projection to be expressed either by listing the attributes to be included or 
by listing the ones to be excluded, using ALL BUT. SQL has no counterpart of the ALL BUT variety.

Effect of NULL

Rows r1 and r2 are considered as duplicates in SQL when r1 IS NOT DISTINCT FROM r2 evaluates 
to TRUE. Recall that r1 = r2 can evaluate to UNKNOWN in such cases. So SELECT DISTINCT is one of 
those exceptional cases where, in the words of the SQL standard, “multiple null values are treated together”.
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Historical Notes

The requirement for the user to specify whether duplicate rows are to be eliminated was in original 
SQL. In fact it was also in SEQUEL but with an interesting difference: elimination of duplicates was the 
default option in SEQUEL. 

It might seem a simple matter to add support for column exclusion to SQL by syntax such as SELECT 
* EXCEPT <column name list>, but a proposal to that effect for the SQL standard was rejected 
in 2004 as a result of objections raised by the USA delegation. They argued that the use of SELECT * 
is frowned upon by most SQL experts and should be discouraged. To that end, they would accept no 
enhancements to SELECT *.

Of course, the reason why SELECT * FROM T is so deprecated is that its meaning changes whenever 
the definition of T is changed—for example by use of ALTER TABLE. Applications that always spell 
out exactly which columns are required in the SELECT clause can be to a greater extent immune to 
such schema changes. (A similar comment would apply to the use of Tutorial D expressions such as 
IS_ENROLLED_ON and IS_ENROLLED_ON{ALL BUT CourseId}, but the problem is addressed 
in Tutorial D by allowing an application to define its own perception of the database using a special form 
of local relvar, not mentioned in the theory book.) However, in SQL the columns of a table expression 
might be explicitly spelled out in the FROM clause, as in Example 4.3a, in which case the use of SELECT 
* is both convenient and harmless.

How ENROLMENT was split

Example 4.5 in the theory book shows how relvars IS_CALLED and IS_ENROLLED_ON can be derived 
from the original ENROLMENT relvar, using projection in the initial assignment to those relvars. Here 
is how the same effect can be achieved in SQL:

Example 4.5: Splitting ENROLMENT

CREATE TABLE IS_CALLED 

AS (SELECT DISTINCT StudentId, Name FROM ENROLMENT)

WITH DATA ;

ALTER TABLE IS_CALLED ADD CONSTRAINT PRIMARY KEY ( StudentId ) ;

CREATE TABLE IS_ENROLLED_ON

AS (SELECT DISTINCT StudentId, CourseId FROM ENROLMENT) 

WITH DATA ;

ALTER TABLE ADD CONSTRAINT PRIMARY KEY ( StudentId, CourseId ) ;

DROP TABLE ENROLMENT ;
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Explanation 4.5:

•	CREATE TABLE IS_CALLED announces that what follows defines a base table named 
IS_CALLED.

•	AS (SELECT DISTINCT StudentId, Name FROM ENROLMENT) specifies that 
the columns of ENROLMENT and their declared types are as in the specified expression.

•	WITH DATA additionally specifies that the table resulting from the specified expression is 
to be the initial value of IS_CALLED.

•	ALTER TABLE IS_CALLED ADD PRIMARY KEY ( StudentId ) specifies a 
constraint to the effect that no two distinct rows having the same StudentId value can 
ever appear simultaneously in IS_CALLED. Note that this constraint has to be given as 
a separate statement from the one that creates the base table. If the key word DISTINCT 
had been omitted, the CREATE TABLE statement would have succeeded but the ALTER 
TABLE statement would have failed because the required constraint would have been 
violated by the two appearances of the row for student S1, Anne.

•	 Similar comments apply to the CREATE and ALTER TABLE statements for IS_
ENROLLED_ON, but in the equivalent example in the theory book I noted that the 
specification KEY {StudentId, CourseId}, required by Tutorial D, is theoretically 
redundant because the entire heading is always a superkey. Here, the corresponding ALTER 
TABLE statement is not redundant because in the absence of any key constraints SQL allows 
the same row to appear several times simultaneously in the same base table.

•	DROP TABLE ENROLMENT destroys the variable we have no further use for.

Two special cases of projection

In the theory book this section describes the identity projection, r { ALL BUT }, and the projection 
on no attributes, r { }, which yields TABLE_DUM when r is empty, otherwise TABLE_DEE. As we have 
already seen, the identity projection is represented in SQL by SELECT * FROM t, but SQL does not 
recognize the existence of columnless tables and so SELECT FROM t is not supported.

Historical Notes

The history surrounding CREATE TABLE … AS … is given in Chapter 2, in the Historical Notes for 
Section 2.11.
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Various attempts have been made to develop “natural language query” products, at least in prototype 
form, whereby queries expressed in a human language are translated into SQL. In the 1980s I became 
peripherally involved in one such product. Its developers told me that they could handle questions such 
as “Did any student score more than 90 in the relational database theory exam?” but the translation to 
SQL was awkward because they had to make a special case for the generation of the SELECT clause, 
which would otherwise include no columns! The Tutorial D expression for such a query would end 
with a projection on no attributes, yielding either TABLE_DEE (meaning “yes”) or TABLE_DUM (“no”).

4.7 Restriction and AND

Restriction in Tutorial D is available via the WHERE operator, and so it is in SQL—we have already seen 
it several times in this chapter, such as Example 4.3b. However, the subject is introduced in the theory 
book by Example 4.6, showing how a certain simple restriction can be expressed using JOIN and a 
relation literal. It is useful to show SQL’s counterpart of that example, giving the student ids of students 
named Boris.

Example 4.6: joining with a table literal

SELECT DISTINCT StudentId

FROM IS_CALLED NATURAL JOIN ( VALUES ( 'Boris' ) ) AS T(Name)
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As noted in Chapter 2, the columns of a table literal in SQL are anonymous. When a table literal is an 
operand in a table expression the only way of assigning names to its columns is by giving them in the 
definition of a range variable—AS T(Name) in the example. Example 4.7 shows the equivalent, more 
intuitive formulation using WHERE.

Example 4.7: Restriction in SQL

SELECT DISTINCT StudentId

FROM IS_CALLED 

WHERE Name = 'Boris'

The WHERE clause operates on the result of the FROM clause in analogous fashion to the way it operates 
on an arbitrary relation expression in Tutorial D. Name = NAME ( 'Boris' ) is an open 
expression, as defined in the theory book. The key word DISTINCT here is redundant, as it happens, 
because StudentId is a declared key for IS_CALLED.

Example 4.8 in the theory book finds students whose names start with B. Example 4.8 here shows the 
SQL counterpart, this being one that cannot feasibly be expressed by joining with a table literal.

Example 4.8: A more useful restriction

SELECT *

FROM IS_CALLED 

WHERE SUBSTRING(Name FROM 1 FOR 1) = 'B'

Note in passing the unconventional syntax used to invoke the built-in SUBSTRING operator. An 
alternative way of expression the WHERE condition, and one that has been in SQL for longer than 
SUBSTRING, which first appeared in SQL:1992, is Name LIKE 'B%', in which the % character is 
used as a “wild card” signifying “anything can appear here, even nothing at all”—nowadays, in search 
engines and the like, * is more commonly used for such purposes.

Effects of NULL

A note of caution needs to made here. Recall that in general a conditional expression in SQL can evaluate 
to UNKNOWN as well as TRUE or FALSE. A row satisfies the WHERE condition c if and only if c is TRUE. 
This is inconsistent with SQL’s treatment of database constraints, which are deemed to be satisfied 
whenever they evaluate to either TRUE or UNKNOWN. Consider, for example, a constraint declared with 
condition NOT EXISTS ( SELECT * FROM T WHERE X <= Y ), requiring every row in T 
to satisfy the condition X > Y. Then it can happen that SELECT * FROM T WHERE X > Y is 
empty—for example, if T is not empty but X IS NULL is true for every row—even though SELECT 
* FROM T is not empty!
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Historical Note

The SUBSTRING operator was added to SQL in 1992 and became a mandatory conformance feature 
in SQL:1999. The motivation behind the unconventional syntax for invoking SUBSTRING and other 
built-in operators lay in a desire to distinguish invocations of built-in operators syntactically from those 
of user-defined operators.

4.8 Extension and AND

The theory book gives the following simple example of relational extension in Tutorial D:

EXTEND IS_CALLED ADD ( FirstLetter ( Name ) AS Initial )

Assuming the user-defined operator FirstLetter is available to the SQL user, this can be expressed easily 
in SQL but there is a strange quirk in the grammar at play here:

SELECT IC.*, FirstLetter ( Name ) AS Initial

FROM IS_CALLED AS IC

Note very carefully that we have to qualify the * using the range variable, IC, which in this case ranges 
over the rows of the current value of IS_CALLED. When we use a SELECT clause to “add columns” to 
the table on which it operates, it seems obvious to write * to specify that every column of that operand 
table is required and to follow it with a commalist of expressions denoting the additional columns. For 
some reason the official SQL grammar does not allow additional columns to accompany an unadorned 
*. When the FROM clause contains several entries, pure extension becomes more difficult to express in 
SQL. For example, if the FROM clause defines range variables T1, T2, and T3, we could write SELECT 
T1.*, T2.*, T3.* …, but that would defeat the purpose. To be able to write just a single * to 
denote all the columns of the FROM table, we would have to resort to something like

SELECT T.*, …

FROM ( SELECT * FROM T1, T2, T3 WHERE … ) AS T

Quirks like this in the SQL grammar serve only to further exacerbate the difficulties for teachers and 
students caused by the language’s major departures from the theory that I have already described.
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Effects of NULL

In general, if some argument to a read-only operator invocation is NULL, then so is the result of that 
invocation. For example, X + Y evaluates to NULL if either X IS NULL or Y IS NULL evaluates 
to TRUE. There are some exceptions, IS NULL being an obvious one. User-defined operators, of course, 
can make their own arrangements—my putative FirstLetter operator, for example, might be defined 
to return the empty string, '', when its argument is NULL.

Historical Notes

Codd did not include an extension operator in his algebra. The reason he gave for this omission did not 
stand up to scrutiny. He regarded the ability to compute such “additional values” as the responsibility of 
the application program, using facilities of the host language rather than his proposed “data sublanguage”. 
Database practitioners knew, of course, that this approach was hopelessly flawed and the designers of 
ISBL and SEQUEL both came up with fairly obvious solutions to rectify matters. ISBL being based firmly 
on explicit relational operators, it was a simple matter to invent extension. It was no doubt equally easy 
for SEQUEL to allow “additional columns” to be specified in the SELECT clause, but their decision not 
to require or even allow the user to provide names for those columns should surely have been brought 
into question by the designers of SQL.
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As for the quirk concerning the use of *, a proposal to allow an unadorned * to be accompanied by 
additional entries in the SELECT clause was submitted in 2004 (along with the previously mentioned 
proposal to support * EXCEPT) but was rejected in the face of the same objection (use of * is deprecated 
and should not be encouraged by the introduction of further enhancements).

4.9 UNION and OR

SQL supports UNION explicitly but differently from the way it supports JOIN explicitly. As we have 
seen, JOIN is used exclusively within the FROM clause, such that IS_CALLED NATURAL JOIN 

IS_ENROLLED_ON, for example, can be an element of that clause but cannot stand alone as a table 
expression. Instead, UNION always connects table expressions that can stand alone, these being:

•	 SELECT expressions
•	 TABLE tn, which is equivalent to SELECT * FROM tn, where tn is a table name
•	 VALUES expressions
•	 Invocations of UNION, INTERSECT (see Chapter 5, Section 5.2, Semijoin and 

Composition) and EXCEPT (see section 4.10, Semidifference and NOT)

Actually, just as SQL has several varieties of JOIN, it also has several varieties of UNION, none of which 
is equivalent to the relational operator of that name. The closest approximation to relational union is 
illustrated in Example 4.9a, a translation to SQL of the theory book’s Example 4.9.

Example 4.9a: SQL’s closest approximation to relational union

SELECT StudentId

FROM IS_CALLED 

WHERE Name = 'Devinder'

UNION DISTINCT CORRESPONDING

SELECT StudentId

FROM IS_ENROLLED_ON 

WHERE CourseId = 'C1'

The key word DISTINCT is optional and implied by default (somewhat curiously so, considering that 
its opposite, ALL, is the default option in the SELECT clause). It specifies that no row is to appear more 
than once in the result. Thus, there is never a need to include DISTINCT in either of the SELECT 
clauses, and this would be the case even if the WHERE clause were omitted from the specification of the 
second operand in Example 4.9a, allowing the same StudentId value to appear more than once in 
that operand.
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The key word CORRESPONDING specifies that operand columns are to be paired by name, just as in 
relational union. Thus, the slightly revised version shown in Example 4.9b is also legal and is in fact 
equivalent to Example 4.9a. Curiously, the corresponding columns do not have to be of the same type!  
However, each value appearing in a corresponding column of the second operand must be “castable” to 
a value in the type of its counterpart in the first operand.  For example, the character string “+123” is 
castable to the value 123 of type INTEGER but the character string “123.5” is not. 

Example 4.9b: Union applied to disparate operands

SELECT *FROM IS_CALLED 

WHERE Name = 'Devinder'

UNION DISTINCT CORRESPONDING

SELECT *

FROM IS_ENROLLED_ON 

WHERE CourseId = 'C1'

This is legal and equivalent because CORRESPONDING specifies that only the common columns of each 
operand are to appear in the result. In this case StudentId is the only common column, of course. As 
usual, the common columns of one operand must be of the same type as their counterparts in the other 
operand. And as you might expect by now, there has to be at least one common column (SQL doesn’t 
recognize the existence of columnless tables).

A further variation, also equivalent to Example 4.9a, is shown in Example 4.9c.

Example 4.9c: Specifying the columns required

SELECT *

FROM IS_CALLED 

WHERE Name = 'Devinder'

UNION DISTINCT CORRESPONDING BY (StudentId)

SELECT *

FROM IS_ENROLLED_ON 

WHERE CourseId = 'C1'

The required columns can be specified explicitly in a parenthesized commalist following the key word 
BY. Columns thus specified must be common to both operands but the list is not required to specify 
all the common columns.
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I turn now to the use of UNION without CORRESPONDING. Example 4.9d is derived from 4.9a merely 
by omitting CORRESPONDING and is in fact equivalent to 4.9a, but only because the operands have 
identical SELECT clauses.

Example 4.9d: UNION without CORRESPONDING

SELECT StudentId

FROM IS_CALLED 

WHERE Name = 'Devinder'

UNION DISTINCT

SELECT StudentId

FROM IS_ENROLLED_ON 

WHERE CourseId = 'C1'
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When CORRESPONDING is omitted, names are not used at all in the pairing of columns. Instead, SQL’s 
definition, in yet another departure from relational database theory, depends on an ordering of the 
columns: the first column of the first operand is paired with the first column of the second operand, the 
second with the second, and so on. As with CORRESPONDING, columns thus paired do not have to be 
of the same type. Furthermore, the two operand tables must have the same number of columns, so that 
there is no unpaired column in either operand, also as in relational union.

Although the operand columns in 4.9d still have the same name, StudentId, that is not a requirement 
in this variety of UNION. For example, SELECT StudentId AS X could be the SELECT clause of the 
second operand. However, if corresponding columns do not have the same name, then the corresponding 
column in the result is effectively anonymous (the standard defines it to have an unpredictable system-
generated name). Actually, some implementations use the column names of the first operand here, thus 
destroying the normal commutativity of UNION. The user of an implementation that strictly follows the 
standard would perhaps be well advised always to make sure the corresponding columns have the same 
name anyway, to avoid the unpredictability of system-generated names and to improve portability from 
one implementation to another.

Further varieties of UNION arise when we replace the key word DISTINCT by ALL in any of the foregoing 
examples, as in Example 4.9e. ALL specifies that if row r appears n times in one operand and m times 
in the other, then it appears n+m times in the result—i.e., no elimination of duplicate rows takes place.

Example 4.9e: UNION ALL

SELECT StudentId

FROM IS_CALLED 

WHERE Name = 'Devinder'

UNION ALL

SELECT StudentId

FROM IS_ENROLLED_ON 

WHERE CourseId = 'C1'

Clearly, UNION ALL represents another departure from relational theory. However, it is commonly used 
when the operands can be guaranteed to be disjoint because in such cases omission of ALL would incur 
the possibly significant overhead of the duplicate elimination process with no effect on the final result.

Some authorities have argued that there really ought to be yet another variety of UNION, such that if 
row r appears n times in one operand and m times in the other, with mn, then it appears m times in 
the result. Relational devotees might smile at this observation but refrain from comment.
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Effect of NULL

In the case of t1 UNION DISTINCT t2, row r appears in the result, just once, if and only if either t1 
or t2 contains at least one appearance of row s such that r IS NOT DISTINCT FROM s evaluates 
to TRUE. In other words, NULL is treated as equal to itself for the purposes of duplicate elimination.

Historical Notes

The grammar given in the SEQUEL paper uses the mathematical symbol ∪ for union and defines just 
this single version. The body of the paper gives only a brief mention of this operator, apparently implying 
that its usual mathematical definition is intended.

Original SQL included just UNION and UNION ALL. CORRESPONDING was added in 1992 but remains 
an optional feature. Support for using the key word DISTINCT instead of just omitting ALL was added 
in SQL:1999 but remains an optional feature.

4.10 Semidifference and NOT

In this section in the theory book I first describe the relational difference operator, named MINUS in 
Tutorial D. Example 4.10 here shows SQL’s closest counterpart of that operator.

Example 4.10: Difference in SQL

SELECT StudentId

FROM IS_CALLED 

WHERE Name = 'Devinder'

EXCEPT DISTINCT CORRESPONDING

SELECT StudentId

FROM IS_ENROLLED_ON 

WHERE CourseId = 'C1'
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The syntax for EXCEPT exactly parallels that for UNION. The key words DISTINCT, ALL, and 
CORRESPONDING have exactly the same significance as in UNION, and DISTINCT remains the default 
option. When CORRESPONDING is not given, columns are paired by ordinal position, as in UNION.

t1 EXCEPT DISTINCT t2 returns the table consisting of a single appearance of each row that appears 
in t1 but not in t2. t1 EXCEPT ALL t2 returns the table consisting of n−m appearances of each row 
that appears n times in t1 and m times in t2, with n>m0.

Thanks to the implicit exclusion of noncommon attributes, EXCEPT CORRESPONDING can also 
sometimes be used to obtain a semidifference (r1 NOT MATCHING r2 in Tutorial D), but only when 
every column of the first operand is a common column. That is not the case in the theory book’s Example 
4.11, IS_CALLED NOT MATCHING IS_ENROLLED_ON. In general, therefore, semidifference needs 
to be expressed in a more elaborate longhand in SQL. Example 4.11a does it by joining the result of 
Example 4.10 with IS_CALLED. Example 4.11b does it by using SQL’s comparison operator NOT IN, 
meaning “is not a member of ”, in a WHERE condition. Example 4.11c 
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Example 4.11a: Semidifference via EXCEPT and JOIN

SELECT * 

FROM (SELECT StudentId

 FROM IS_CALLED 

 WHERE Name = 'Devinder'

 EXCEPT DISTINCT CORRESPONDING
 SELECT StudentId

 FROM IS_ENROLLED_ON 

 WHERE CourseId = 'C1') AS T1

 NATURAL JOIN IS_CALLED

Example 4.11b: Semidifference via NOT IN and a subquery

SELECT StudentId

FROM IS_CALLED 

WHERE Name = 'Devinder'

AND StudentId NOT IN (SELECT StudentId
 FROM IS_ENROLLED_ON 

 WHERE CourseId = 'C1')

Example 4.11c: Semidifference via “quantified comparison” and a subquery

SELECT StudentId

FROM IS_CALLED 

WHERE Name = 'Devinder'

AND StudentId <> ALL (SELECT StudentId

 FROM IS_ENROLLED_ON 

 WHERE CourseId = 'C1')

The NOT IN expression in Example 4.11b appears to be testing for the appearance of a character string 
in a table, but in fact the first operand in this context is short for ROW(StudentId)—and recall from 
Chapter 2 that the key word ROW is optional, even when the row to be specified has more than one 
column value. Thus the expression tests for the nonappearance of a given row in a given table. (You won’t 
be surprised to hear that if the word NOT is omitted, then the expression becomes a test for appearance 
rather than nonappearance.)

In Example 4.11c <> ALL replaces NOT IN and in the absence of NULL has the same effect. It reads, 
somewhat ambiguously, as “not equal to all”. In fact the expression yields TRUE if and only if the condition 
comparing StudentId values is TRUE for every row in the result of the subquery.
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Effects of NULL

The treatment of NULL in invocations of EXCEPT is as for UNION. This is different from its treatment 
in those of NOT IN and quantified comparisons. In the case of t1 EXCEPT t2, row r of t1 appears 
in the result if and only if there does not exist a row s in t2 such that r IS NOT DISTINCT FROM s 
evaluates to TRUE. Note that x NOT IN ( t ) evaluates to UNKNOWN whenever x = x does, including 
in particular the case where x IS NULL evaluates to TRUE because every field of the row x is the null 
value. Recall that when the condition given in a WHERE clause evaluates to UNKNOWN for row r, then r 
does not appear in the result.

Now, suppose that IS_ENROLLED_ON contains the rows ('S4', 'C1'), (NULL, 'C1'), and no 
other rows for course C1. Then 'S4' NOT IN (SELECT StudentId FROM IS_ENROLLED_ON 
WHERE CourseId = 'C1') evaluates to FALSE, but 'S4' <> ALL (SELECT StudentId 
FROM IS_ENROLLED_ON WHERE CourseId = 'C1') evaluates to UNKNOWN. So examples 
4.11b and 4.11c are not equivalent in the presence of NULL. Nevertheless, Examples 4.11b and 4.11c are 
equivalent because WHERE treats FALSE and UNKNOWN alike—a WHERE condition applied to a row has 
to yield TRUE for the row to appear in the result.

Historical Notes

The grammar given in the appendix to the SEQUEL paper uses the mathematical symbol “-” as an 
alternative to ∪ for union, strongly suggesting that it stands for set difference. There is no mention of this 
operator in the body of the paper. However, EXCEPT was missing from original SQL and didn’t appear 
in the standard until 1992. Curiously, EXCEPT without ALL is now a mandatory conformance feature 
while EXCEPT ALL and both varieties of INTERSECT (ALL and DISTINCT) remain optional ones. 
(INTERSECT is mentioned in the discussion on semijoin in Chapter 5, Section 5.2.) The membership 
tests using IN and NOT IN were in original SQL but not in SEQUEL. SEQUEL did, however, support 
quantified comparisons, those these were limited to rows and tables of degree one.
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4.11 Concluding Remarks

I have described how the following relational operators are supported, directly or indirectly, in SQL, 
noting various quirks in the language on the way.

•	JOIN (via NATURAL JOIN)
•	RENAME (via possibly laborious longhand)
•	 projection (via SELECT DISTINCT)
•	 restriction (WHERE)
•	EXTEND (via possibly laborious longhand)
•	UNION (via UNION DISTINCT CORRESPONDNG)
•	 semidifference (NOT MATCHING in Tutorial D—via EXCEPT for special cases, otherwise 

via possibly laborious longhand)

The fact that SQL does support all of these operators, one way or another, makes SQL relationally 
complete, apart from its failure to support TABLE_DEE and TABLE_DUM, but I have noted several 
present-day features that were not in the early versions of the language, claiming that as a consequence 
those early versions were, unintentionally, not relationally complete. I have not yet fully explained that 
claim. That’s because my explanation involves some of the material of the next chapter, where I look 
for SQL counterparts of those extra relational operators we include as “shorthands” in Tutorial D. See 
Section 5.6, Summarization in SQL.
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4.12 EXERCISES

1. Figure 4.13 shows the supplier-and-parts database from Chris Date’s Introduction to 
Database Systems (8th edition), as shown on the inside back cover of that book (except that 
the attribute names there are in upper case). The exercises assume you have access to an 
SQL implementation. 

 

Figure 4.13: The suppliers-and-parts database

Execute an SQL CREATE TABLE statement for each of S, P and SP. Use INTEGER as 
the declared type for STATUS and QTY, DECIMAL(5,2) for WEIGHT, and appropriate 
VARCHAR or CHAR types for all the other columns. Feel free to use lower case or mixed case 
to suit your own taste for column and table names, but do not otherwise change any of the 
given names.

Include primary key constraints as indicated by the underlining of column names in Figure 4.13.

“Populate” (as they say) each table with the values shown in Date’s tables, using SQL INSERT 
statements.

2. Attempt to insert a row into SP with supplier number S1, part number P1 and quantity 100. 
Explain the result of your attempt.

3. For each of the following Tutorial D expressions (taken from Exercise 5 in the theory book’s 
exercises headed Working with a Database in Rel), give an SQL expression that’s as nearly 
equivalent as possible.
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a) SP WHERE P# = 'P2'
b) S { ALL BUT Status }
c) SP { S#, Qty }
d) P NOT MATCHING ( SP WHERE S# = 'S2' )
e) S MATCHING ( SP WHERE P# = 'P2' )
f) S { City } UNION P { City }
g) S { City } MINUS P { City }
h) ( ( S RENAME ( City AS SC ) ) { SC } ) JOIN

( ( P RENAME ( City AS PC ) ) { PC } )

4. Write SQL expressions for the following queries. Compare your solutions with its 
counterpart in your solutions to Exercise 6 in the theory book’s exercises headed Working 
with a Database in Rel. 
a) Get all shipments.
b) Get supplier numbers for suppliers who supply part P1.
c) Get suppliers with status in the range 15 to 25 inclusive.
d) Get part numbers for parts supplied by a supplier in Paris.
e) Get part numbers for parts not supplied by any supplier in Paris.
f) Get city names for cities in which at least two suppliers are located.
g) Get all pairs of part numbers such that some supplier supplies both of the indicated 

parts.
h) Get supplier numbers for suppliers with a status lower than that of supplier S1.
i) Get supplier-number/part-number pairs such that the indicated supplier does not supply 

the indicated part.
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5 Building on The Foundation
5.1 Introduction

Having described, in Chapter 4, operators that are both necessary and sufficient for relational completeness, 
the theory book builds on that foundation in Chapter 5 by describing some additional operators that have 
been found useful and are included in Tutorial D. These include some additional relational operators 
that are presented as shorthands—operators that can be defined in terms of ones already defined. For 
example, in Section 5.1, composition and semijoin are both defined in terms of the primitive operators, 
join and projection.

Here I show SQL counterparts for the Tutorial D expressions in Chapter 5, sometimes using longhands 
perforce. As we shall see, quite a few of the SQL examples use operators that didn’t exist in SQL until 1999 
or later. Moreover, these late additions are not shorthands—before they arrived, some of the examples 
in Chapter 5 of the theory book could not be expressed at all in SQL.

In the theory book at this point we needed a couple of additional relvars in our example database, 
COURSE and EXAM_MARK, along with the existing IS_CALLED and IS_ENROLLED_ON. They are 
shown again here, now as SQL tables, in Figure 5.1.
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COURSE EXAM_MARK

CourseId Title StudentId CourseId Mark

C1 Database S1 C1 85

C2 HCI S1 C2 49

C3 Op systems S1 C3 85

C4 Programming S2 C1 49

S3 C3 66

S4 C1 93

Figure 5.1: Current values of base tables COURSE and EXAM_MARK

The predicate for COURSE is “Course CourseId is entitled Title.” The predicate for EXAM_MARK is 
“Student StudentId sat the exam for course CourseId and scored Mark marks for that exam.” The SQL 
definitions for these tables are

CREATE TABLE COURSE ( CourseId CID, 

Title VARCHAR(100) NOT NULL, 

PRIMARY KEY ( CourseId )

) ;

CREATE TABLE EXAM_MARK ( StudentId SID, 

CourseId CID, 

Mark INTEGER NOT NULL,

PRIMARY KEY ( StudentId, CourseId )

) ;

(SID and CID are now assumed to be SQL domain names, defined on type VARCHAR(5). As not 
many SQL implementations support domains, in practice you would be more likely to see some CHAR 
type being used here. Also, the table definitions might include some additional constraint definitions, 
but those are dealt with in Chapter 6.)

5.2 Semijoin and Composition

For semijoin Tutorial D has the dyadic relational operator MATCHING, defined thus:

r1 MATCHING r2, where r1 and r2 are relations such that r1 JOIN r2 is defined, is equivalent to
( r1 JOIN r2 ) { r1-attrs }

where r1-attrs is a commalist containing all and only the attribute names of r1.

and the example 

COURSE MATCHING EXAM_MARK
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is given as a relational expression for the predicate, “There exist a student StudentId and a mark Mark 
such that StudentId sat the exam and scored Mark marks for course CourseId and CourseId is entitled 
Title” (which could be abbreviated to “At least one student sat the exam for Course CourseId, entitled 
Title”). The resulting relation consists of just those tuples in COURSE that have at least one matching 
tuple in EXAM_MARK.

In SQL semijoins usually have to be done in longhand and there are several ways of doing them. The 
simplest way is to use the comparison operator IN, SQL’s counterpart of Tutorial D’s ∈ (which Rel 
implements as IN):

SELECT * FROM COURSE 

WHERE CourseId IN ( SELECT CourseId From EXAM_MARK )

or, equivalently, the quantified comparison operator, =ANY:

SELECT * FROM COURSE 

WHERE CourseId =ANY ( SELECT CourseId From EXAM_MARK )

The result in either case is the table shown in Figure 5.2. Note in passing that the table operand of IN 
or = ANY here contains three appearances of the row for course C1, and thus does not represent a 
relation. That could be fixed by specifying DISTINCT, of course, but here the redundant duplicates 
are obviously not a problem. Note the need to write the column name CourseId twice. Perhaps this 
burden is compensated for to some extent by the improved clarity.

CourseId Title

C1 Database

C2 HCI

C3 Op systems

Figure 5.2: Semijoin of COURSE with EXAM_MARK

Translating the SQL longhand back into Tutorial D, we get

COURSE WHERE TUPLE{CourseId CourseId} ∈ EXAM_MARK {CourseId}

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

112 

Building on The Foundation

In spite of appearances, TUPLE{CourseId CourseId} is a reasonable translation of SQL’s plain 
CourseId because in standard SQL the first operand of IN is in fact a row. A row is denoted in general 
by a commalist of expressions enclosed in parentheses, optionally preceded by the key word ROW, but the 
parentheses can be omitted when the row consists of just one field, as explained in Chapter 2, Section 
2.9 Table Literals. However, many SQL implementations fail to support rows with more than one field 
as the first operand of IN, in which case a longer longhand is needed. For example, to obtain enrolments 
for which an exam mark is available (IS_ENROLLED_ON MATCHING EXAM_MARK in Tutorial D), 
we might expect to be able to write

SELECT * FROM IS_ENROLLED_ON 

WHERE (CourseId, StudentId) IN 

( SELECT CourseId, StudentId From EXAM_MARK )

but instead we are forced to write, in such an implementation,

SELECT * FROM IS_ENROLLED_ON A

WHERE EXISTS ( SELECT * FROM EXAM_MARK B

WHERE A.CourseId = B.CourseId

AND A.StudentId = B.StudentId )
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Also, in the formulation using IN, note carefully the need to pay attention to order in which column 
names are written—the correspondence between the fields of the row and the columns of the table is by 
position, not name, and in any case the fields of the row do not necessarily inherit the names CourseId 
and StudentId, as we shall see in many more examples in this chapter.

Alternatively, by translating the definition given for semijoin into SQL, we could write

SELECT DISTINCT A.*

FROM IS_ENROLLED_ON AS A NATURAL JOIN EXAM_MARK AS B

and now the need to mention column names has gone away.

Finally, in the special case where all the columns of the first operand are common columns, then we 
can use SQL’s INTERSECT operator. As this is indeed the case with the example at hand, we can write

SELECT * FROM IS_ENROLLED_ON 

INTERSECT CORRESPONDING

SELECT StudentId, CourseId FROM EXAM_MARK

The syntax for INTERSECT exactly parallels that for UNION and EXCEPT. The key words DISTINCT, 
ALL, and CORRESPONDING have exactly the same significance as in those operators, and DISTINCT 
remains the default option. When CORRESPONDING is not given, columns are paired by ordinal 
position, as in UNION.

t1 INTERSECT DISTINCT t2 returns the table consisting of a single appearance of each row that 
appears in both t1 and t2. t1 INTERSECT ALL t2 returns the table consisting of m appearances 
of each row r that appears in both t1 and t2, where m is the smaller of its number of appearances in 
t1 and its number of appearances in t2.

Historical Notes

The SEQUEL paper uses the mathematical symbol “∩” in place of SQL’s INTERSECT. However, like 
EXCEPT, INTERSECT was missing from original SQL and didn’t appear in the standard until 1992. It 
remains an optional conformance feature. The IN operator was in original SQL but had no counterpart 
in SEQUEL. Standard SQL allows (CourseId, StudentId) =ANY in place of (CourseId, 
StudentId) IN and defines the two formulations to be equivalent. SEQUEL’s support for such 
“quantified comparisons” was limited to rows and tables of degree one. Also, SEQUEL did not use a key 
word such as ANY (standard SQL admits ANY or SOME, synonymously) but rather assumed existential 
quantification when the second operand of a comparison operator was a table and ALL was not specified.
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Turning now to the operator known as composition, the theory book gives the example

COURSE COMPOSE EXAM_MARK

as representing the predicate “Student StudentId scored Mark marks in the exam for a course entitled 
Title.” The corresponding relation must have attributes StudentId, Mark, and Title. The first two 
would clearly be derived from EXAM_MARK, the third from COURSE.

The result is shown in Figure 5.3. As you can see, it is equivalent to the join of COURSE and EXAM_MARK, 
projected over all but the common attribute, CourseId.

Title StudentId Mark

Database S1 85

HCI S1 49

Op systems S1 85

Database S2 49

Op Systems S3 66

Database S4 93

Figure 5.3: Composition of COURSE and EXAM_MARK

In SQL, as the result contains data from both operand tables, this time we really do have to specify both 
tables in the FROM clause—neither of the operators IN and EXISTS is of any use here.

SELECT DISTINCT Title, StudentId, Mark

FROM IS_ENROLLED_ON NATURAL JOIN EXAM_MARK

Now, it is worth repeating here the theory book’s justification for including COMPOSE in Tutorial D.

In case you are wondering if COMPOSE really is useful enough to be worth including in a computer language, and 
therefore to be worthy of inclusion in textbooks like this one, an important part of the motivation for its inclusion in 
Tutorial D was a desire to illustrate the extensibility of a well-designed language. Adding new operators increases a 
language’s complexity, to be sure, but that added complexity can be compensated for if the new operators are not 
only useful but can be easily defined and taught in terms of what the user already knows.

We can note in passing that it would be easy to extend SQL to support semijoin and composition 
explicitly—just allow words such as MATCHING and COMPOSE to appear where NATURAL JOIN is 
currently permitted!
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Effects of NULL

Observations similar to those given in connection with UNION and EXCEPT in Chapter 4, Sections 4.9 
and 4.10, apply here too. For example, consider the following two expressions:

SELECT x FROM T1 

INTERSECT 

SELECT x FROM T2

SELECT x FROM T1 

WHERE x IN 

( SELECT x FROM T2 )

If row r appears in both T1 and T2 and satisfies the condition x IS NULL, then r appears in the result 
in the first case, using INTERSECT, but not in the second, because the condition in the WHERE clause 
evaluates to UNKNOWN for that row.
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5.3 Aggregate Operators

SQL supports all of the aggregate operators mentioned in the theory book and many more besides. The 
syntax, however, involves an unusual trick that SQL calls a scalar subquery. A scalar subquery is a table 
expression that satisfies all of the following conditions:

•	 It is enclosed in parentheses.
•	 It appears where a scalar expression is expected.
•	 The result of the enclosed table expression has exactly one column and at most one row.

The result of a scalar subquery is then either the single column value appearing in that single row or, 
when there is no row, NULL. Examples 5.1 to 5.4 are the SQL counterparts of those examples in the 
theory book. In each case the required aggregation is specified in the SELECT clause of a scalar subquery 
and the table operand is specified in the clause(s) following that SELECT clause.

Example 5.1: Counting the rows in EXAM_MARK

( SELECT COUNT(*) FROM EXAM_MARK )

The table expression inside the parentheses in Example 5.1 is analogous to an invocation of SUMMARIZE 
in Tutorial D that specifies BY { }, as in

SUMMARIZE EXAM_MARK BY { } ADD ( COUNT( ) AS X )

and in fact standard SQL allows GROUP BY ( ) to be added immediately before the closing parenthesis: 

( SELECT COUNT(*) FROM EXAM_MARK GROUP BY ( ) )

I could have added AS X to the SELECT clause, to make the analogy exact, but that would have been 
pointless because of course the column name disappears in the process of converting the table to a 
number. Similar comments apply to Examples 5.2, 5.3, and 5.4. (SQL’s GROUP BY construct is described 
in Section 5.6.)

Remember that the SQL Example 5.1 denotes a number, as opposed to a table, only when the context is 
appropriate—for example, when it appears on the right-hand side of an assignment to an integer variable, 
or as an operand in a comparison of two integers. When it appears as an element of a FROM clause, for 
example, or as an operand of UNION, then the enclosing parentheses do not affect the semantics and it 
denotes a table with one unnamed column.
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COUNT(*) denotes the cardinality of the operand table. If the * is replaced by some expression x, then 
COUNT(x) denotes the number of rows that satisfy the condition x IS NOT NULL. For obvious 
reasons, that particular aspect of aggregation in SQL has no counterpart in Tutorial D.

Example 5.2: Counting the students who have scored more than 50 in some exam

( SELECT COUNT(*) FROM 

 ( SELECT DISTINCT StudentId 

FROM EXAM_MARK 

WHERE Mark > 50 ) AS T )

Example 5.2 is a direct translation of the corresponding example in the theory book but it can be 
abbreviated—and is much more likely to be written—as

( SELECT COUNT ( DISTINCT StudentId )

FROM EXAM_MARK 

WHERE Mark > 50 )
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Historical Notes

The abbreviated formulation for Example 5.2 has been in SQL from the start. The longer form became 
available in SQL:1992, when support for “derived tables in the FROM clause” was introduced. Note that 
the longer form is needed when SELECT DISTINCT specifies more than one expression.

The use of parentheses in the GROUP BY clause, and support for GROUP BY ( ) in particular, were 
introduced in SQL:1999. Previously, a GROUP BY clause had been required to specify at least one column.

Example 5.3 illustrates the use of SUM in SQL

Example 5.3: Adding up all the marks obtained by student S1

( SELECT SUM(Mark) FROM EXAM_MARK WHERE StudentId = 'S1' )

Effect of NULL

As with COUNT, the evaluation of SUM(x) ignores rows that satisfy the condition x IS NULL, this 
being a general rule applying to all aggregations in SQL. However, this doesn’t mean that SUM(x) is 
guaranteed never to result in NULL, for NULL is the result whenever the operand table is empty or x IS 
NULL is true for every row. Thus, Example 5.3 results in NULL whenever student S1 has taken no exams.
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Note that SUM(x) + SUM(y) is not in general equivalent to SUM(x + y), because x + y evaluates to 
NULL when either x evaluates to NULL or y does. Thus, some values that are included in the summing 
of x and the summing of y might be omitted in the summing of x + y.

Example 5.4: MAX and MIN

( SELECT MAX(Mark) FROM EXAM_MARK WHERE StudentId = 'S1' )

( SELECT MIN(Mark) FROM EXAM_MARK WHERE StudentId = 'S1' )

Example 5.4 needs no further explanation. SQL also has AVG for averages. Its counterparts of Tutorial D’s 
aggregate AND and OR are spelled, respectively, EVERY and either SOME or ANY, but all of these must be 
used with care because of the consequences of the aforementioned general rule concerning the treatment 
of NULL. For example, if the condition c evaluates to UNKNOWN for every row of table t, or t is empty, 
then ( SELECT EVERY(c) FROM t ) evaluates to UNKNOWN, whereas when t is empty it really 
ought to evaluate to TRUE. (I hesitate to hazard a guess as to what it should “really” evaluate to when 
t is nonempty but c evaluates to UNKNOWN in every row.)

At this point the theory book gives Example 5.5 (not repeated here) as an unpleasant way of computing 
the number of students who sat each exam and shows Figure 5.4, repeated here, as a preferred way of 
presenting the result of such a computation. 

CourseId n

C1 3

C2 1

C3 1

C4 0

Figure 5.4: How many sat each exam

The example is used as motivation for Tutorial D’s SUMMARIZE operator but the demonstration that 
SUMMARIZE is indeed a shorthand is rather elaborate, occupying the next three sections of the theory 
book. The first of those three, Section 5.4, Relations within a Relation, describes attributes whose values 
are relations and shows how such attributes can be obtained using relational extension. Section 5.5, Using 
Aggregate Operators with Nested Relations, then shows how results such as that shown in Figure 5.4 
can be obtained using relational operators described in Chapter 4, and then SUMMARIZE is introduced 
in Section 5.6 as a shorthand for obtaining those same results.
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As we shall eventually see, SQL has a fairly direct counterpart of SUMMARIZE BY, using aggregation in 
combination with a GROUP BY clause. SQL textbooks do not normally teach aggregation and GROUP 
BY along the theory book’s lines for teaching SUMMARIZE, but I do so here to maintain the parallel 
structure and also to show how the intermediate results of sections 5.4 and 5.5 can be obtained in modern 
SQL. The names of these sections are SQL paraphrases of their counterparts in the theory book.

5.4 Tables within a Table

Figure 5.5 here is an exact copy of the one in the theory book and as before it is just an alternative way 
of representing some of the information conveyed by the tables in Figure 5.1 (but not a recommended 
database design for that information).

 
Figure 5.5: Tables within a table

For each course, it shows the exam mark obtained by each student who took the exam for that course. 
Example 5.6 shows how to obtain this table—let’s call it C_ER again—in SQL.
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Example 5.6: Obtaining C_ER from COURSE and EXAM_MARK

SELECT CourseId,

CAST ( 

TABLE ( SELECT DISTINCT StudentId, Mark

FROM EXAM_MARK AS EM

WHERE EM.CourseId = C.CourseId ) 

AS ROW ( StudentId SID, Mark INTEGER ) MULTISET )

AS ExamResult 

FROM COURSE AS C

Explanation 5.6

•	 The SELECT clause operates on each row of the result of the FROM clause—i.e., on each 
row of the COURSE table, deriving two columns, CourseId and ExamResult.

•	CourseId is self-explanatory, merely carrying forward the column values from the column 
of that name in COURSE.

•	TABLE ( SELECT DISTINCT StudentId, Mark FROM EXAM_MARK AS EM 

WHERE EM.CourseId = C.CourseId ) denotes a multiset whose elements are 
rows, obtained by taking the StudentId and Mark values from those rows of EXAM_
MARK that match the current row of COURSE on CourseId. Note very carefully, however, 
that this multiset does not necessarily inherit the column names, StudentId and Mark, 
from the table that is the operand to the invocation of TABLE. The SQL standard allows 
the column names to be “implementation-dependent” (i.e., undefined) so long as no two 
columns have the same name. An implementation that nevertheless carried forward the 
unique names StudentId and Mark would be both sensible and conforming, and would 
obviate the need for the CAST invocation explained in the next bullet.

The same multiset would result if the word DISTINCT had been omitted, thanks to the WHERE 
condition, but I include it because the example in the theory book uses COMPOSE, which is 
defined as a projection of a join, and SQL’s counterpart of projection uses SELECT DISTINCT.

•	CAST ( t AS ROW ( StudentId SID, Mark INTEGER ) MULTISET ), 
where t is the above TABLE expression, addresses the aforementioned possible problem 
by assigning the required column names. Note that we need to know and write down the 
declared types of those columns as well as their names. The “type conversion” operator 
CAST is described in Chapter 2, Explanation 2.1a. Here it is being used to convert a value of 
some incompletely defined multiset type to one whose multiset type is explicitly defined.

•	AS ExamResult then gives the resulting column the name ExamResult. Note that 
here the name comes after AS and the expression defining it comes before, in the same style 
as the use of AS to define the range variables C and EM in the example.
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The values for columns such as ExamResult in this example have sometimes been referred to informally 
as nested tables, being “tables within a table”, so to speak. Unfortunately, however, they are not actually 
tables, but rather multisets of rows. Because of that fact, a column such as ExamResult cannot appear as 
an element in a FROM clause, so we cannot use it in the way it is used in Example 5.7 in the theory book.

Historical Notes

The TABLE operator didn’t appear in SQL until SQL:2003 and it remains an optional conformance 
feature. See Chapter 2, Section 2.6 What Is a Type? and Section 2.8, The Type of a Table.

It is not surprising that support for nested tables was absent from the early SQL implementations. Codd’s 
first normal form (1NF) had been widely understood to be a required property of all relations, not just 
database relvars, and relation-valued attributes were proscribed under that normal form. The proscription 
came into question during the 1980s, when the term “not first normal form” was coined, abbreviated to 
NFNF and thence, somewhat jocularly, to NF2.

CAST first appeared in SQL:1992.
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5.5 Using Aggregation on Nested Tables

Example 5.7 is the most direct translation of its counterpart in the theory book that can be obtained in 
SQL but it is so over-elaborate that no SQL practitioner would consider using it. It uses the aggregate 
operator COUNT on the table values for column ExamResult to obtain the number of students who 
sat each exam. Unfortunately, as already noted, we cannot operate directly on ExamResult as a FROM 
clause element. Instead, we need to use an artifice that is specially devised for the sake of this example.

Example 5.7: How many students sat each exam (not a recommended solution!)

WITH C_ER AS (

 SELECT CourseId, 

 CAST ( 

 TABLE ( SELECT DISTINCT StudentId, Mark

 FROM EXAM_MARK AS EM

 WHERE EM.CourseId = C.CourseId ) 

 AS ROW ( StudentId SID, Mark INTEGER ) MULTISET )

 AS ExamResult 

 FROM COURSE AS C )

SELECT CourseId, (SELECT COUNT(*) 

 FROM TABLE(ER(ExamResult)) AS t) AS n

FROM C_ER

Explanation 5.7

•	 The WITH clause, occupying the first nine lines of the example, illustrates SQL’s counterpart 
of Tutorial D’s construct of the same name. It assigns the name, C_ER, to the result of 
Example 5.6. That name, C_ER, is then used in the FROM clause of the expression that 
follows the WITH clause. Note that here the name comes before AS and the expression 
defining it comes after. This is consistent with the analogous use of AS in CREATE VIEW 
statements, SQL’s counterparts of Tutorial D’s virtual relvar definitions.

•	TABLE(ER(ExamResult)) seems to be the only way of having a multiset valued 
column operated on as an element of a FROM clause—a simple column name is not allowed 
to appear here. TABLE(ExamResult) can’t be used either, because when an invocation 
of TABLE appears as a FROM clause element, its operand is required to be, specifically, an 
invocation of a user-defined function. Here I am assuming that ER is defined as follows:
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CREATE FUNCTION ER 

( SM ROW ( StudentId SID, Mark INTEGER ) MULTISET ) 

RETURNS TABLE (

StudentId SID, Mark INTEGER ) 

RETURN SM ;

The type name TABLE ( StudentId SID, Mark INTEGER ) is actually just a 
synonym for ROW ( StudentId SID, Mark INTEGER ) MULTISET ). The 
misleading synonym is available only in a RETURNS clause and not as a parameter type, for 
example. So ER is actually a no-op, returning its input.

•	(SELECT COUNT(*) FROM TABLE(ER(ExamResult)) AS t) is a scalar 
subquery, yielding the cardinality of the multiset of rows that is the value of the column 
ExamResult in the current row of C_ER. Because we are using the expression to denote a 
scalar value rather than a table, naming the column would be pointless (apart, perhaps, from 
injecting a somewhat sarcastic element of purism). As COUNT(*) doesn’t use a column 
name, Example 5.7 is valid even if we omit the invocation of CAST to assign column 
names..

•	 AS n then gives the resulting column the name n. Note that here the name comes after AS 
and the expression defining it comes before, in the same style as the use of AS to define the 
range variables C and EM in the example.

So long as CAST is used as shown, we could obtain the total marks for each exam in similar fashion, 
using SUM(Mark) AS TotalMarks. However, this gives NULL, instead of zero, for the courses 
whose exams nobody sat. That problem can be addressed by using COALESCE, as shown in Example 5.7a.

Example 5.7a: Give the total of marks for each exam (still not a recommended solution)

WITH C_ER AS (

SELECT CourseId, 

CAST ( 

TABLE ( SELECT DISTINCT StudentId, Mark

FROM EXAM_MARK AS EM

WHERE EM.CourseId = C.CourseId ) 

 AS ROW ( StudentId SID, Mark INTEGER ) MULTISET )

 AS ExamResult 

 FROM COURSE AS C )

SELECT CourseId, (SELECT SUM(Mark) 

FROM TABLE(ER(ExamResult)) AS t) AS n

FROM C_ER
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Explanation 5.7a

•	COALESCE((SELECT SUM(Mark) FROM TABLE(ER(ExamResult)) AS 

t),0) yields the value of the scalar subquery whenever ExamResult is nonempty, 
otherwise zero. SQL’s COALESCE is an n-adic operator that takes a commalist of expressions 
of the same declared type and yields the result of the first of those expressions, in the order 
in which they are written, that does not evaluate to NULL. When there is no such operand, 
it yields NULL anyway, of course.

Notice that SQL does not follow the rule given in the theory book whereby aggregation over the empty 
relation yields the identity value for the basis operator (when such a value exists), in this case addition, 
whose identity value is zero.

Now, as I remarked already, examples 5.7 and 5.7a are not recommended ways to obtain the required 
result. Example 5.7b shows how 5.7a can be condensed into a much more concise solution.

Example 5.7b: Give the total of marks for each exam (simplified solution)

SELECT CourseId, 

COALESCE ( ( SELECT SUM(Mark)

FROM EXAM_MARK AS EM

WHERE EM.CourseId = C.CourseId ), 

 0 ) AS TotalMark 

FROM COURSE AS C

Explanation 5.7b

•	 The first operand to the invocation of COALESCE is a scalar subquery similar to those 
shown in Section 5.3, Aggregate Operators. Recall the need to enclose the SELECT 
expression in parentheses, without which it would denote a table rather than a number.

Historical Notes

The SQL standard’s WITH clause first appeared in SQL:1999. It remains an optional conformance feature. 
Moreover, even if an implementation does support it, it is further optional as to whether it is permitted 
to appear in a subquery.
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Scalar subqueries have been in SQL from the beginning but were originally allowed to appear only as 
the second operand of a comparison, and thus could not appear in the SELECT clause. Moreover, they 
were subject to various arbitrary restrictions, such as not being allowed to contain UNION, GROUP BY, 
or HAVING. The restrictions were lifted in SQL:1992 but implementations that retained them were still 
able to claim the minimum level of conformance until the appearance of SQL:1999.

The COALESCE operator was added to the language in SQL:1992. It ceased to be optional in SQL:1999.

If we need the average mark for each exam we will have to avoid zero-divides by excluding those which 
no students sat. As in the theory book we can do that by homing in on just those CourseId values that 
appear in EXAM_MARK, as shown in Example 5.8, the differences from Example 5.7b being shown in bold.

Example 5.8: Average mark per exam

SELECT CourseId,  

( SELECT AVG(Mark)

FROM EXAM_MARK AS EM

WHERE EM.CourseId = C.CourseId ) AS AvgMark

FROM EXAM_MARK AS C

Now, the theory book goes on from here to describe two varieties of the relational summarization 
operator—SUMMARIZE PER and SUMMARIZE BY in Tutorial D—providing useful shorthands for 
expressions like Example 5.7. SQL has no such operators but it does provide a useful shorthand for cases 
that in Tutorial D can be formulated using SUMMARIZE BY, as we shall see in the next section. As 
with SUMMARIZE, this shorthand also allows multiple aggregations to be specified on the same table 
without repeating the expression denoting that table. Example 5.8a shows how this repetition problem 
arises if we followed the style of Example 5.8 to obtain both the average mark and the total, this time 
ignoring exams that nobody sat.

Example 5.8a: Average and total mark per exam (not a recommended solution!)

SELECT CourseId, 

( SELECT AVG(Mark)

FROM EXAM_MARK AS EM

WHERE EM.CourseId = C.CourseId ) AS AvgMark, 

( SELECT SUM(Mark)

FROM EXAM_MARK AS EM

WHERE EM.CourseId = C.CourseId ) AS TotalMark 

FROM EXAM_MARK AS C
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5.6 Summarization in SQL

Example 5.9 in the theory book uses Tutorial D’s SUMMARIZE PER to give the same result as Example 
5.7. Because SQL has no direct counterpart of SUMMARIZE PER, here I need to go straight to Example 
5.11 to show how SUMMARIZE BY invocations can be simulated in SQL. Then I can show how Example 
5.9 could be translated in SQL. Example 5.11 introduces us to SQL’s GROUP BY clause, this being its 
direct counterpart of Tutorial D’s BY specification in SUMMARIZE BY.

Example 5.11: Average mark for each exam, using GROUP BY (recommended solution)

SELECT CourseId, AVG(mark) AS AvgMark

FROM EXAM_MARK 

GROUP BY CourseId

The GROUP BY clause is not to be confused with Tutorial D’s GROUP operator. Actually, GROUP BY 
CourseId can be considered to have the same effect as GROUP{ALL BUT CourseId} in Tutorial D, 
in which case AVG(Mark) then operates on the nested tables produced by the GROUP BY clause. However, 
the SQL standard and most SQL textbooks do not define GROUP BY in such terms. Rather, they introduce 
the notion of partitioning the body of a table into groups and refer to such a partitioned table as a grouped 
table. When a SELECT expression includes a GROUP BY clause, each SELECT clause element must 
specify a column that is functionally dependent on the GROUP BY columns, thus reducing each group to 
a single row. (Functional dependence is taught in Chapter 7 of the theory book. It should be clear to you 
that the FD {CourseId} → { CourseId, AvgMark } always holds in the result of Example 5.11.)

We can return to the theory book’s Example 5.9 now because we can use GROUP BY to obtain part of 
the required result and an outer join (see Chapter 4, Example 4.1e) in conjunction with COALESCE to 
complete it. The example as given could be addressed in similar fashion to Example 5.7 but the method 
shown in Example 5.9 is likely to be preferred when more than one aggregation is to be specified on 
the same table. 

Example 5.9: How many students sat each exam, 

using GROUP BY, NATURAL LEFT JOIN, and COALESCE

SELECT CourseId, COALESCE(n, 0) AS n

FROM COURSE NATURAL LEFT JOIN

( SELECT CourseId, COUNT(*) AS n

FROM EXAM_MARK 

GROUP BY CourseId ) AS T 
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Explanation 5.9

•	NATURAL JOIN is described in Chapter 4, Section 4.1. Note, however, that the use of 
LEFT makes this an outer join, whereas Codd’s term natural join referred to the “inner” 
variety only.

•	LEFT specifies that each unmatched row in the first join operand, COURSE, is to be 
extended with NULL for the column n.

•	COALESCE (n, 0) AS n effectively replaces those appearances of NULL by the correct 
value, 0.

(I give no counterpart for Example 5.10 in the theory book because it merely shows how Tutorial D’s 
SUMMARIZE BY is just a shorthand for certain special cases of SUMMARIZE PER.)

Historical Notes

In the final section of Chapter 4, Concluding Remarks, I mentioned a claim that “early versions” of 
SQL were not relationally complete, for reasons beyond the “small” matter of failing to recognize the 
existence of relations of degree zero (or tables with no columns). I can now give the rationale for that 
claim. Example 5.9 uses a SELECT expression in its FROM clause, which was not supported by the 
international standard until SQL:1992 appeared. Without such support it is not always possible for the 
table resulting from such an expression to be joined with another table. In particular, it is not possible 
when a join is required of two tables that are both obtained by use of SELECT … FROM … GROUP BY.

5.7 Grouping and Ungrouping in SQL

Example 5.6a is derived from Example 5.6 by specifying EXAM_MARK in place of COURSE in the main 
FROM clause.

Example 5.6a: Obtaining C_ER2 from EXAM_MARK

SELECT CourseId, 

CAST ( 

TABLE ( SELECT DISTINCT StudentId, Mark

FROM EXAM_MARK AS EM2

WHERE EM1.CourseId = EM2.CourseId ) 

AS ROW ( StudentId SID, Mark INTEGER ) MULTISET )

AS ExamResult 

FROM EXAM_MARK AS EM
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Figure 5.4 shows the result, named C_ER2 for convenience. It differs from the C_ER of Figure 5.3 only 
in the absence of a row for course C4, whose exam nobody sat.

 

Figure 5.4: Intermediate result C_ER2 from Example 5.6a
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The theory book gives Example 5.12 to illustrate use of the operator GROUP as a shorthand for obtaining 
such results. SQL has no direct counterpart of GROUP but Example 5.12 shows how to use GROUP BY 
to obtain an alternative formulation to produce C_ER2 that is more concise than Example 5.8a.

Example 5.12: Using GROUP BY and COLLECT to obtain C_ER2

SELECT CourseId, 

CAST ( 

COLLECT(ROW(StudentId, Mark)) 

AS ROW ( StudentId SID, Mark INTEGER ) MULTISET )

AS ExamResult 

FROM EXAM_MARK

GROUP BY CourseId

Explanation 5.12

•	 ROW(StudentId, Mark) forms the row consisting of the StudentId and Mark values of 
the current row of EXAM_MARK, in that order. The two fields of this row are unnamed.

•	 COLLECT(ROW(StudentId, Mark)) collects together as a multiset all of those 
rows that are derived EXAM_MARK rows having the same CourseId value. In fact it is 
shorthand for FUSION(ROW(StudentId, Mark) MULTISET), where FUSION is 
SQL’s nearest counterpart of Tutorial D’s aggregate UNION. For each value of its operand, 
COLLECT derives the multiset containing just that value, and returns the FUSION (see next 
bullet) of all the multisets thus formed.

•	 FUSION is aggregate multiset union (UNION ALL), not UNION per se. In general the same 
value (in our example, a row) might appear more than once in the result of a COLLECT 
invocation. Fortunately, that won’t happen here because the same StudentId, Mark 
combination cannot appear along with the same CourseId in more than one row of 
EXAM_MARK, so DISTINCT could be omitted.

Tutorial D’s aggregate operator UNION is not mentioned in the theory book. It is used for 
taking the union of the relations appearing as values of a specified attribute in the relation 
operand of that aggregate operator.
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•	CAST ( m AS ROW (StudentId SID, Mark INTEGER) MULTISET ), 
where m is the above COLLECT expression, names the columns of the nested table, 
ExamResult. Note the need to spell out the entire declared type of ExamResult, 
even though it differs from that of the COLLECT expression only in the names of the two 
columns.

By the way, the following table expression: 

SELECT * 

FROM ( FUSION ( TABLE ( VALUES ( StudentId, Mark ) ) ) )

 AS T(StudentId, Mark)

denotes the same value as the given CAST expression but unfortunately it cannot be used as an 
alternative for the very reason that it is a table expression—table expressions are not permitted 
as SELECT clause elements. We could enclose it in parentheses following the word TABLE, 
but then, as I have already explained, we have no guarantee that the column names would be 
propagated to the result and so we might have to use CAST again after all! 

That table expression is rather convoluted. You might prefer not to be given an explanation 
for it but here it is anyway:

( StudentId, Mark ) denotes the row consisting of the StudentId value followed by 
the Mark value. Putting VALUES in front of it makes it into table expression denoting the table 
containing just that row. Putting TABLE in front of that makes it into a multiset expression, 
as required by FUSION. Although table expressions are not permitted as SELECT clause 
elements, multiset expressions are permitted as FROM clause elements, allowing us to enclose 
the FUSION invocation in SELECT * FROM ( … ) AS T(StudentId, Mark) to 
make sure we have the required column names.

In Tutorial D, the inverse operator of GROUP is UNGROUP. SQL has an operator, UNNEST, that can be 
used for similar purposes, but its method of invocation is somewhat peculiar, as Example 5.13 shows, 
and it can be used only to specify a FROM clause element. 

Example 5.13: Inverse of Example 5.12, using UNNEST

SELECT DISTINCT * FROM C_ER2, UNNEST ( ExamResult ) AS M
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The name C_ER2 could be defined using a WITH clause, as in Example 5.7a. Notice how the second 
element of the FROM clause has to be reevaluated for each row of C_ER2, whereas each FROM clause 
element is normally evaluated just once because its value does not vary from row to row of previous 
elements. The column reference ExamResult is a reference to the column of that name in C_ER2 
and is permitted only because C_ER2 is specified before UNNEST ( ExamResult ) in the FROM 
clause—a switching of these two FROM clause elements would result in a syntax error.

Effect of NULL

In Example 5.13, ExamResult is a column of type ROW ( StudentId SID, Mark INTEGER ) 
MULTISET ). In C_ER2 NULL cannot appear in place of a value for that column, but in general NULL 
can appear in place of a value for a column of some multiset type. So we need to know what happens 
when NULL is given as the argument to an invocation of UNNEST. At the time of writing (in 2012), the 
SQL standard appears to be silent on that issue. One would expect it to give rise to an exception condition.

Note also that NULL might in general appear as an element of a multiset whose element type is a ROW 
type, though again this cannot arise in C_ER2, assuming that C_ER2 is derived as shown in Example 5.12.
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Historical Note

UNNEST first appeared in SQL:1999, though in that edition it was used only with arrays, not with multisets. 
COLLECT and FUSION first appeared in SQL:2003, along with INTERSECTION, for computing an 
aggregate intersection of multisets (and not to be confused with the table operator INTERSECT). They 
are all optional conformance features.

Now, the theory book at this point observes that the cardinality of the result of Example 5.13 is equal to 
the sum of the cardinalities of the ExamResult values in C_ER2. It then poses the following question 
as an exercise for the reader: Is it always the case that the cardinality of an ungrouping is equal to the 
sum of the cardinalities of the relations the operand relation is being ungrouped on? Although I didn’t 
need to include DISTINCT in this example, the fact that I decided to do so anyway gives you a broad 
hint as to the correct answer to that question. Can you think of an example where DISTINCT would 
be required to avoid duplicates?

5.8 Wrapping and unwrapping in SQL

The theory book describes operators WRAP and UNWRAP in connection with attributes whose declared 
types are tuple types. Example 5.14 in that book shows how extension and projection can be used to 
replace a given set of attribute values in each tuple of a given relation by a single tuple consisting of 
those values; the next example then illustrates the use of WRAP as a convenient shorthand for the same 
purpose (on the admittedly rare occasions on which it is likely to arise in practice).

The effect of Example 5.14 can be obtained in SQL but note that one needs to write down not only the names 
of the columns being wrapped but also the names and declared types of the columns not being wrapped. 

Example 5.14: Collecting column values together

SELECT Name, Phone, Email,

CAST ( ROW ( House, Street, City, Zip ) AS

ROW ( House VARCHAR(100), Street VARCHAR(100),

City VARCHAR(100), Zip VARCHAR(10) ) )

AS Address

FROM CONTACT_INFO 

As before, we need to use CAST because the result of an invocation of ROW has unnamed fields. The 
example assumes, therefore, a definition such as the following for the base table CONTACT_INFO: 

CREATE TABLE CONTACT_INFO ( Name VARCHAR(100) PRIMARY KEY, 

Phone VARCHAR(15) NOT NULL, 

Email VARCHAR(50) NOT NULL, 
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House VARCHAR(100) NOT NULL, 

Street VARCHAR(100) NOT NULL, 

City VARCHAR(100) NOT NULL, 

Zip VARCHAR(10) NOT NULL, 

) ;

SQL has no shorthand similar to WRAP, nor for UNWRAP. Example 5.15 here shows how unwrapping 
can be done in longhand in SQL. 

Example 5.15: Unwrapping in SQL (inverse of Example 5.14)

Letting CONTACT_INFO_WRAPPED denote the result of Example 5.14:
SELECT Name, 

Address.House as House,

Address.Street as Street,

Address.City as City,

Address.Zip as Zip

FROM CONTACT_INFO_WRAPPED

Address.House in this example is equivalent to Tutorial D’s House FROM Address. The use 
of a dot here is consistent with its use with range variables—recall that a range variable also denotes a 
row, “ranging” over the rows of a table.

5.9 Table Comparison

The theory book includes the following definitions for relation comparisons in Tutorial D:

Let r1 and r2 be relations having the same heading. Then:
r1 ⊆ r2 is true if every tuple of r1 is also a tuple of r2, otherwise false.
r1 ⊇ r2 is equivalent to r2 ⊆ r1
r1 = r2 is equivalent to r1 ⊆ r2 AND r2 ⊆ r1

The question arises as to whether SQL tables can be similarly compared. SQL does not have direct 
counterparts of ⊆ and ⊇. It does of course have =, but table expressions cannot be used as comparands. 
However, as we have seen in Examples 5.6 et seq., the operator TABLE has been available since SQL:2003 
to derive from a given table expression a value of a multiset type whose element type is a row type. In 
other words, ( SELECT * FROM t1 ) = ( SELECT * FROM t2 ) is illegal but we can 
obtain the required effect by writing TABLE ( SELECT * FROM t1 ) = TABLE ( SELECT 
* FROM t2 ). So, to compare two tables, we have to use an operator named TABLE to “convert” 
them from tables into multisets of rows!
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To test for every row of t1 being also a row of t2 we could write, for example, NOT EXISTS 

( SELECT * FROM t1 EXCEPT SELECT * FROM t2 ). In fact, SQL’s NOT EXISTS is 
an exact counterpart of Tutorial D’s IS_EMPTY operator. However, note carefully that the case where 
every row in t1 appears in t2 and every row of t2 appears in t1 does not guarantee that t1 and t2 
are the same table. Row r might appear twice in t1 but only once in t2, for example.

You should now be able to write SQL counterparts for the theory book’s Examples 5.16 and 5.17, so I 
leave those as exercises for the reader.

5.10 Other Operators on Tables and Rows

Section 5.10 in the theory book covers some of Tutorial D’s additional operators involving relations and 
tuples. If only for the sake of completeness, we need to look for SQL counterparts of these.

Row Membership Test: We have already seen, in Section 5.2, SQL’s IN operator, for Tutorial D’s ∈ 

(spelled as IN in Rel).

Row Extraction

For Tutorial D’s TUPLE FROM r, SQL has row subqueries. These are just like scalar subqueries (see 
Section 5.3) except that they may specify more than one column. For example, when appearing in a 
suitable context, the expression
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( SELECT * FROM COURSE WHERE CourseId = CID('C1') )

yields the row denoted by

CAST ( ROW ( 'C1', 'Database' ) AS 

 ROW ( CourseId CID, Title VARCHAR(100) ) )

A row subquery whose table operand is empty yields a row in which every field is NULL.

Field Extraction: For extracting a field from a row, using dot qualification, see Example 5.15 in Section 5.8.

Row Counterparts of Table Operators

SQL does not have counterparts of Tutorial D’s tuple rename, tuple projection, tuple extension, tuple 
join and tuple compose. To obtain the same effects as these operators on row r, one has first to derive 
the table t consisting of just r, then apply the SQL counterpart of the corresponding relational operator 
on t, putting parentheses around the table expression so that, so long as the context is appropriate, it 
becomes a row subquery.

For example, if r has fields named a, b, and c, we can simulate a tuple renaming of a tuple projection 
to obtain the row consisting of just a and b, with b renamed to x, by ( SELECT a, x FROM 
VALUES (r) AS t(a, x, c) ). The snag here is that the columns of a VALUES expression 
have implementation-dependent names, so we cannot rely on the field names of r being propagated to 
the table. We therefore have to specify the names in parentheses after the range variable name, t. At 
least that gives us the slight short cut of renaming b as x on the fly, so to speak.

5.11 EXERCISES

1. Does SQL have a counterpart of r1 COMPOSE r2 when r1 and r2 have identical headings? If 
so, what is it, in general? If not, why not?

2. Write an SQL expression that is equivalent to Example 5.9, repeated below, but does not use 
a SELECT expression in a FROM clause.

SELECT CourseId, COALESCE(n, 0) AS n

FROM COURSE LEFT NATURAL JOIN

( SELECT CourseId, COUNT(*) AS n

FROM EXAM_MARK 

GROUP BY CourseId ) AS T 
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3. Write an SQL expression that is equivalent to the example below but does not use a 
SELECT expression in a FROM clause.

SELECT CourseId, Title, AvgMark 

FROM COURSE NATURAL JOIN

( SELECT CourseId, AVG(Mark) AS AvgMark

FROM EXAM_MARK 

GROUP BY Cours0eId ) AS T 

4. In connection with Example 5.13, can you give an example where the same row might 
appear more than once in the result if DISTINCT is omitted? If so, give it; otherwise 
explain.

5. Using the suppliers-and-parts database shown in Figure 4.13, write SQL expressions for the 
following queries: 

a) Get the total number of parts supplied by supplier S1.
b) Get supplier numbers for suppliers whose city is first in the alphabetic list of such cities.
c) Get part numbers for parts supplied by all suppliers in London.
d) Get supplier numbers and names for suppliers who supply all the purple parts.
e) Get all pairs of supplier numbers, Sx and Sy say, such that Sx and Sy supply exactly the 

same set of parts each.
f) Write a truth-valued expression to determine whether all supplier names are unique in S.
g) Write a truth-valued expression to determine whether all part numbers appearing in SP 

also appear in P.

6. Give SQL counterparts of the theory book’s Examples 5.16 and 5.17.

7. Tutorial D’s TUPLE operator takes a commalist of expressions, each one paired with an 
attribute name. By contrast, SQL’s ROW operator takes a commalist of expressions without 
accompanying field names. What are the advantages and disadvantages of SQL’s approach?

8. Distinguish between SQL’s table types and its multiset types whose element types are row 
types.
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6 Constraints and Updating
6.1 Introduction

As in the theory book, this chapter deals with database constraints, not to be confused with type 
constraints (not supported in SQL) and SQL’s so-called domain constraints discussed in Chapter 2.

In Chapter 1, Example 1.3, you saw a simple example of a database constraint declaration expressed in SQL, 
repeated here as Example 6.1 (though now referencing IS_ENROLLED_ON rather than ENROLMENT).

Example 6.1: Declaring an integrity constraint.

CREATE ASSERTION MAX_ENROLMENTS

CHECK ( ( SELECT COUNT(*) FROM IS_ENROLLED_ON ) <= 20000 ) ;

CREATE ASSERTION is SQL’s counterpart of Tutorial  D’s CONSTRAINT, but it is an optional 
conformance feature that first appeared in SQL:1992 and very few SQL implementations (at the time of 
writing in 2012) support it.
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Without CREATE ASSERTION, one might attempt to implement the required constraint along the 
lines of Example 6.1a.

Example 6.1a: Alternative formulation for MAX_ENROLMENTS

ALTER TABLE IS_ENROLLED_ON 

ADD CONSTRAINT MAX_ENROLMENTS

CHECK ( ( SELECT COUNT(*) FROM IS_ENROLLED_ON ) <= 20000 ) ;

Explanation 6.1a

•	ALTER TABLE IS_ENROLLED_ON announces that an alteration to the definition of 
base table IS_ENROLLED_ON is being specified.

•	ADD CONSTRAINT MAX_ENROLMENTS states that the alteration in question is the 
addition of something SQL calls a table constraint, and its name is MAX_ENROLMENTS. A 
table constraint is a condition that is required to be satisfied by every row appearing in the 
base table for which that constraint is defined. Thus, in general, it is an open expression of 
the kind that can appear as the condition of a WHERE clause. In this example the condition 
is in fact a closed expression—it contains no reference to a column of IS_ENROLLED_
ON—and thus if it is satisfied by one row of that table, then it is satisfied by all of them.

•	 The last line is exactly as written in Example 6.1, but there’s a subtle difference in meaning. 
Because a table constraint is one that must be satisfied by every row of the applicable 
table, it is always satisfied when the applicable table is empty—there is no row for which 
the constraint fails. In the case at hand, this is not a problem, because obviously, when 
IS_ENROLLED_ON is empty, then its cardinality—zero—does not exceed 20,000. However, 
suppose a constraint was required to the effect that IS_ENROLLED_ON must never be 
empty. That could be achieved by changing <= 20000 to > 0 in Example 6.1, but the 
same change to Example 6.1a would be ineffectual: when IS_ENROLLED_ON is empty, 
it contains no row that fails to satisfy the constraint. That is why SQL is incomplete with 
respect to database integrity when support for CREATE ASSERTION is absent.

http://bookboon.com/


Download free eBooks at bookboon.com

SQL: A Comparative Survey

140 

Constraints and Updating

Now, I wrote, “one might attempt to implement the required constraint” this way, suggesting that it might 
not be such a good idea after all. Even though it does have the desired effect in the example at hand, the 
fact that a table constraint is one that is required to be satisfied by each row in the relevant table means 
that the DBMS is very likely to evaluate it for each row that is added to or updated in the table, whereas 
of course it needs to be evaluated just once per update operation that affects IS_ENROLLED_ON. 
This is why Tutorial D has no counterpart of SQL’s table constraints. They provide a useful shorthand 
for certain special cases (like the NOT NULL constraint on a column, or a check for a column having 
nonnegative values only, for example) but they give rise to traps when used inappropriately. A favourite 
example is CHECK ( EXISTS ( SELECT * FROM t ) ), as a table constraint on table t. It 
is satisfied even when t is empty!

Unfortunately (or fortunately?), Example 6.1a is in any case somewhat hypothetical, because the condition 
contains a table expression—a subquery. The appearance of a subquery in a table constraint remains an 
optional conformance feature and to this day many implementations fail to support it—and of those 
that do support it, at least one that does so fails to enforce such constraints at all times.

One of my reviewers (Erwin Smout) showed me a possible workaround for use when the “no subqueries 
in table constraints” restriction is in force. Example 6.1b applies this “hack” to Example 6.1a.

Example 6.1b: Workaround for when subqueries not permitted in CHECK constraints

CREATE FUNCTION NO_MORE_THAN_20000_ENROLMENTS( ) 

RETURNS BOOLEAN ;

RETURN ( SELECT COUNT(*) FROM IS_ENROLLED_ON ) <= 20000 ;

ALTER TABLE IS_ENROLLED_ON 

ADD CONSTRAINT MAX_ENROLMENTS

CHECK ( NO_MORE_THAN_20000_ENROLMENTS( ) ) ;

Caveat lector: You are strongly advised to complete Exercise 2 in this chapter’s Exercises section before 
you commit to using this workaround in earnest.
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“Not Enforced” Table Constraints

A constraint that is not enforced is not really a constraint within the meaning of the act, but SQL does 
have such a concept and it needs to be mentioned here. With the exception of UNIQUE and PRIMARY 
KEY specifications (see Section 6.4, the subsection headed Keys), a table constraint can be declared as 
either ENFORCED (the default option) or NOT ENFORCED. The “enforcement characteristic” of such a 
constraint can be changed by means of an ALTER TABLE statement. For example, the table constraint 
MAX_ENROLMENTS becomes not enforced by execution of the statement ALTER TABLE ALTER 
CONSTRAINT MAX_ENROLMENTS NOT ENFORCED. The immediate effect is the same (ignoring 
effects on the catalog) as if ALTER TABLE DROP CONSTRAINT MAX_ENROLMENTS had been 
given. However, it’s easier to reinstate the constraint using ALTER TABLE ALTER CONSTRAINT 
MAX_ENROLMENTS ENFORCED than to repeat the whole of Example 6.1a.

NOT ENFORCED cannot be specified for domain constraints or assertions, so use of CREATE 
ASSERTION should really be the preferred method of declaring a constraint, but unfortunately that 
option is not widely available.
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Historical Note and Comments

[ NOT ] ENFORCED first arrived in SQL:2007. It remains an optional conformance feature. At first 
sight it seems to be rather a strange feature, but, assuming there is a genuine requirement for it, one could 
observe that the effect of switching a table constraint between ENFORCED and NOT ENFORCED can 
be obtained less conveniently by using ALTER TABLE/DROP CONSTRAINT and ALTER TABLE/
ADD CONSTRAINT.

One possible motivation for this feature lies in performance considerations. The feasibility of addressing 
some integrity requirements decreases with database size and frequency of updates. Rather than leave 
the database exposed permanently to the possibility of becoming inconsistent, one could declare a “not 
enforced” constraint and switch it to being enforced at a convenient time. Of course, if the constraint 
is then found to be violated, then some ad hoc intervention will be needed to address the problem. 
This approach to maintaining integrity is clearly far from perfect but is perhaps better than nothing in 
circumstances that offer no practical alternative.

All of that having been said, why the feature is not available with key constraints and constraints declared 
by CREATE ASSERTION is a mystery to this writer.

It might seem that feature is restricted to constraints that have been explicitly named. However, the SQL 
standard specifies that an implementation-dependent constraint name is given by default. In that case, the 
unique name assigned by the system will show up in the catalog and could then be used in an ALTER 
TABLE/ALTER CONSTRAINT or ALTER TABLE/DROP CONSTRAINT statement.

6.2 A Closer Look at Constraints and Consistency

Effects of NULL

Section 6.2 in the theory book starts with

A constraint is defined by a truth-valued expression, such as a comparison. A database constraint is defined by a 
truth-valued expression that references the database. To be precise, the expression defines a condition that must be 
satisfied by the database at all times.

and goes on to justify the use of the term satisfied. Unfortunately, SQL has two definitions of this term. 
A row satisfies a condition in a WHERE clause only when the condition evaluates to TRUE, but it satisfies 
a table constraint when the condition evaluates to either TRUE or UNKNOWN. Thus, SELECT * FROM 
T WHERE c might yield an empty table even when c is the condition specified in some table constraint 
for T and T itself is far from empty.
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When Are Constraints Checked?

Under the model described in the theory book, constraints are conceptually checked at all statement 
boundaries (and only at statement boundaries). By default the same is true of SQL. However, SQL does 
not support the “multiple assignment” concept, described in the theory book, for database updates. For 
that reason it has to include an alternative method of addressing the problems that multiple assignment 
addresses. SQL does so by allowing the checking of specified constraints to be temporarily deferred and 
reinstated later—but never across a transaction boundary. As a result, it is possible for the database to 
appear to be inconsistent, but only to the user whose as yet uncommitted transaction has given rise to 
that state of affairs.

As a consequence of deferred constraint checking, SQL code that depends on consistency with declared 
constraints is obviously exposed to that assumption of consistency being false when the code is executed 
while checking is deferred. For example, the table expression SELECT Name FROM IS_CALLED 
WHERE StudentId = 'S1' might be expected never to result in a table containing more than one 
row, thanks to the key constraint applying to IS_CALLED; thus it might be used in a scalar subquery. 
However, if the checking of that key constraint is temporarily deferred and two or more rows with 
StudentId equal to 'S1' temporarily appear in that table, then the scalar subquery will give rise to 
a run-time exception. Fortunately, SQL does allow a constraint to be declared as NOT DEFERRABLE, 
and that is the default option.

Historical Note

Deferred constraint checking first arrived in SQL:1992. It remains an optional conformance feature.

6.3 Expressing Constraint Conditions

Use of Table Expressions

With the exception of key constraints, the examples in the theory book all explicitly reference at least 
one relvar and thus involve invocations of relational operators or aggregate operators. Assuming support 
for CREATE ASSERTION, we can always derive SQL counterparts of these examples using table 
expressions and truth-valued operators, but when that assumption does not hold we need to look for 
alternative solutions using table constraints. In most cases these will entail the use of subqueries and 
even that technique is prohibited by many implementations. In some cases special syntactic constructs 
are available, as we shall see, but there are several for which no SQL solution is available unless the 
implementation supports CREATE ASSERTION or subqueries in table constraints.
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Now, the reason usually given for lack of support for subqueries in constraints is that in general such 
expressions can require the DBMS to examine the entire content of possibly very large tables. If database 
updates are expected to occur frequently—and are perhaps required to occur very frequently indeed—
then declaration of such constraints would give rise to an intolerable slowing down of the updating 
process. Of course this is an extremely valid concern and we have to admit that integrity might occasionally 
have to be compromised for performance reasons, but consider the user with a small database that is 
subject to comparatively infrequent updating but nevertheless has strong integrity requirements. Might 
not such a user feel unfairly treated by a system that prohibits the declaration of required constraints? 
Defenders of the status quo respond to this argument by holding that language constructs that can give 
rise to disappointment for performance reasons, to such an extent as to militate against their use in 
common practical situations, should be banned. But sometimes users resort to implementing constraints, 
as best they can, in application code when they wish to enforce a constraint that is not supported by 
the DBMS but nevertheless does not adversely impair performance. The DBMS could almost certainly 
enforce such constraints much more efficiently and much more reliably. We can also point to various other 
SQL constructs that might be subject to similar concerns but are supported nonetheless. For example, 
if tables T1, T2, and T3 each contain 100,000 rows, then SELECT * FROM T1, T2, T3, when 
evaluated, delivers a table containing a quadrillion rows. 
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Procedural Constraint Enforcement (Triggers)

SQL has an alternative method of addressing database integrity, involving event-driven procedural code. 
The special procedures that can be used for this purpose are called triggers and the events that activate 
them are specified update operations. For example, suppose it is required for every row in IS_CALLED 
to have a matching row on StudentId in IS_ENROLLED_ON, enforcing a business rule to the effect 
that every registered student must be enrolled on at least one course. Then a triggered procedure might 
be activated every time INSERT is used to add a row to IS_CALLED, checking to see if a matching row 
exists in IS_ENROLLED_ON and raising an exception if there isn’t one. But that wouldn’t be sufficient 
to address the requirement. Further triggers would be needed, activated by UPDATE statements on 
IS_CALLED and IS_ENROLLED_ON that cause changes to StudentId values in either of those 
tables, and by DELETE statements on IS_ENROLLED_ON. As this simple example demonstrates, use of 
triggered procedures for constraint enforcement can be complicated and error-prone. As one practitioner 
told me, “It quickly gets so complicated that it’s almost impossible for a human not to make errors…, 
and even when you’re not facing a ‘complicated’ case, the work to be done is tedious and boring”. The 
subject is beyond the scope of this book but is dealt with at length and in meticulous detail by the 
authors of reference [13].

Use of COUNT and NOT EXISTS

The theory book describes and discusses various general methods of expressing constraints, eventually 
noting that support for “=” with relation operands is sufficient for completeness. It also notes that every 
constraint can be expressed as an invocation of IS_EMPTY, where IS_EMPTY(r) is equivalent to r{ } 
= TABLE_DUM. First, though, it gives Example 6.2, showing how to use COUNT to test a relation for 
emptiness. Example 6.2 here is a direct translation of that one into SQL.

Example 6.2: Testing for absence of counterexamples.

CREATE ASSERTION Must_be_enrolled_to_take_exam

CHECK ( ( SELECT COUNT(*)

FROM EXAM_MARK

WHERE ( Student_Id, CourseId ) NOT IN 

( SELECT Student_Id, CourseId 

FROM IS_ENROLLED_ON ) )

= 0 ) ;
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Of course, counting all the rows is rather excessive when it is sufficient just to see if the table contains 
anything at all. Examples 6.3 and 6.3a illustrate the use of NOT EXISTS, SQL’s counterpart of Tutorial D’s 
IS_EMPTY operator. Example 6.3a shows how to express the constraint as a table constraint in case 
CREATE ASSERTION is not available but the system does support subqueries in table constraints. 
Notice how a table constraint avoids the need for the double negation that usually arises with tests for 
emptiness—instead of checking for the non-existence of a row that fails to satisfy a given condition, 
we give the inverse condition that every row must satisfy. For the sake of variety, Example 6.3 uses an 
invocation of EXCEPT in place of Example 6.2’s use of NOT IN.

Example 6.3: Use of NOT EXISTS

CREATE ASSERTION Must_be_enrolled_to_take_exam_alternative1

CHECK ( 

NOT EXISTS ( SELECT StudentId, CourseId

FROM EXAM_MARK 

EXCEPT 

SELECT StudentId, CourseId 

FROM IS_ENROLLED_ON ) ) ;

Example 6.3a: Alternative formulation as a table constraint

ALTER TABLE EXAM_MARK

ADD CONSTRAINT Must_be_enrolled_to_take_exam_alternative2

CHECK ( EXISTS ( SELECT StudentId, CourseId 

FROM IS_ENROLLED_ON 

WHERE StudentId = EXAM_MARK.StudentId 

AND CourseId = EXAM_MARK.CourseId ) 

) ;

In Example 6.3a, note the use of the table name, EXAM_MARK, as a range variable to qualify references 
to columns of that table. As always, the condition given as the operand of CHECK is one that would be 
legal as a WHERE condition following a FROM clause specifying just the table to which the constraint 
applies (viz., FROM EXAM_MARK in the case at hand).

Now, if the SQL implementation doesn’t allow subqueries to appear in table constraints and doesn’t 
support CREATE ASSERTION, then none of the formulations in Examples 6.2, 6.3, and 6.3a will be 
available. Happily, this particular constraint can be expressed as a foreign key constraint, as we shall see 
later in Section 6.4, the subsection headed Foreign Keys.
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Example 6.4 is a translation into SQL of the corresponding example in the theory book, which is included 
there merely to show that for any scalar comparison there is an alternative formulation using IS_EMPTY.

Example 6.4: MAX_ENROLMENTS expressed using an invocation of NOT EXISTS

CREATE ASSERTION MAX_ENROLMENTS_alternative1

CHECK (NOT EXISTS (SELECT * 

FROM (VALUES (SELECT COUNT(*)

FROM IS_ENROLLED_ON)) AS 

V(N)

WHERE V.N > 20000 ) ) ;
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Explanation 6.4

•	VALUES ( SELECT COUNT(*) FROM IS_ENROLLED_ON ) denotes a table with 
just one column, unnamed, in whose single row the value of that column is the number of 
rows in the current value of IS_ENROLLED_ON. The SELECT expression is parenthesized 
to make it into a scalar subquery and given as the argument to an invocation of VALUES, 
which makes the number denoted by that scalar subquery into a one-row, one-column 
table. (Actually, it might be safer to place an extra pair of parentheses around the SELECT 
expression here. Although VALUES 1 and VALUES ( 1 ) are equivalent, it might not 
be clear as to which role the single parentheses are taking: do they denote a scalar subquery, 
as I have assumed, or are they the optional ones surrounding a single table expression? If 
the latter, we would expect a syntax error.) 

•	 AS V(N) defines the range variable V to refer to what in this case is just the single row of 
that table, and also assigns the name N to its only column.

•	 WHERE V.N > 20000 operates on that one-row, one-column table to yield a table of 
heading ( N INTEGER ) that is empty if and only if the single row in that one-row, 
one-column table fails to satisfy the condition N > 20000. Thus, the result is empty only 
when the number of enrolments is in fact no greater than the maximum allowed.

Use of Table Comparisons

Table comparisons are described in Chapter 5, Section 5.9, where it is noted that although table expressions 
cannot be compared, we have TABLE ( t ) to convert a table expression t into a value expression of 
type ROW ( r ) MULTISET, where r is the row type of t. However, the only operator in SQL for 
comparing two multisets is “=”, so SQL has no direct counterparts of the theory book’s Examples 6.5, 6.6, 
and 6.7, which use “⊆”, and nor does this chapter. Those examples are shown merely to demonstrate that 
every constraint that can be expressed as an invocation of IS_EMPTY can be formulated alternatively 
as an invocation of “⊆”. If SQL were to have a counterpart of that operator, it would presumably have to 
be an “is submultiset of ” operator, where m1 is a submultiset of m2 if and only if each element of m1 
appears at least as many times in m2 as it does in m1. But SQL doesn’t have such an operator.

Effects of NULL

Here’s an important distinction between expressions denoting tables and expressions denoting multisets 
of rows: a table expression cannot evaluate to NULL, whereas a multiset expression can. Moreover, 
although a row expression can evaluate to NULL—for instance, CAST ( NULL AS ROW ( X 
INTEGER, Y INTEGER ) ) is a legal expression—NULL cannot appear as an element of the body 
of a table. Every element of the body of a table is indeed a row. However, if a table has a column whose 
declared type is a row type, then NULL might appear in place of a value for that column in some row 
of that table.
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It follows from the foregoing discussion that although a multiset expression in general can evaluate to 
NULL, an invocation of TABLE will never do so (recall that, counterintuitively, TABLE operates on a 
table and returns a multiset of rows). Nor can NULL ever appear as an element of a multiset resulting 
from an invocation of TABLE. However, the comparison TABLE ( t1 ) = TABLE ( t2 ), 
where t1 and t2 are equal in cardinality, evaluates to UNKNOWN whenever NULL appears at any level 
of nesting within either of t1 or t2.

Use of Truth-Valued Aggregate Operators

Example 6.8 in the theory book is an awkward one using double negation, offered as motivation for 
the neater way of expressing such constraints subsequently shown in Example 6.9. Example 6.8 reads 
as demanding that no exam mark shall not be in the required range, whereas Example 6.9 reads, more 
naturally, as requiring that every mark shall be in that range. Here, the SQL translations illustrate SQL’s 
BETWEEN and NOT BETWEEN shorthands for in-range tests.

Example 6.8: Restricting exam marks to between 0 and 100

CREATE ASSERTION Marks_between_0_and_100 

CHECK ( NOT EXISTS ( SELECT * 

FROM EXAM_MARK 

WHERE Mark NOT BETWEEN 0 AND 100 ) ) ;

As mentioned in Chapter 5, SQL has EVERY as its counterpart of Tutorial D’s aggregate operator AND.

Example 6.9: Restricting exam marks to between 0 and 100 using EVERY

CREATE ASSERTION Marks_between_0_and_100_using_EVERY

CHECK ( ( SELECT EVERY ( Mark BETWEEN 0 AND 100 )

FROM EXAM_MARK ) ) ;

x BETWEEN y AND z is equivalent to x >= y AND x <= z.

It follows from Example 6.9 that if the SQL standard’s CREATE ASSERTION and type BOOLEAN are 
both supported, then use of EVERY provides an alternative method of testing a table for being empty. If 
tx is a table expression, then we have the scalar subquery (SELECT EVERY(FALSE) FROM (tx) 
AS T). When the result of tx contains a row, that row clearly fails to satisfy the condition FALSE and 
so the result of the scalar subquery is FALSE; otherwise the table is empty and the result is UNKNOWN, 
in which case the constraint is deemed to be satisfied, as previously explained. The reason why the result 
is UNKNOWN instead of what it should correctly be, viz. TRUE, is explained in Effects of NULL.
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Effects of NULL

Let aggop(x) be an invocation of some aggregate operator aggop in SQL, where x is an expression (usually 
an open expression) to be evaluated against each row of the table t determined by the context in which the 
invocation appears. Then aggop considers only those rows that satisfy the condition x IS NOT NULL. 
It follows that if aggop is EVERY or SOME and x evaluates to TRUE or FALSE for at least one row of t, 
then the result is either TRUE or FALSE, never UNKNOWN. However, if x evaluates to UNKNOWN for every 
row of t (which is true in the particular case when t is empty), then SQL’s other general rule kicks in, 
requiring the result to be NULL, which is equivalent to UNKNOWN when it appears in the place of a BOOLEAN 
value. That anomaly is to some extent compensated for, when EVERY is used in constraint declarations, by 
SQL’s rule that a constraint is deemed to be satisfied when it evaluates to UNKNOWN. However, (SELECT 
SOME(TRUE) FROM (tx) AS T) is not reliable as an existence test because it evaluates to UNKNOWN 
if the result of tx is empty, when a constraint based on that condition would be deemed satisfied. That 
problem could be addressed by writing COALESCE((SELECT SOME(TRUE) FROM (tx) AS T), 
FALSE) or, equivalently, (SELECT SOME(TRUE) FROM (tx) AS T) IS TRUE (see Chapter 3, 
Section 3.5 Deriving Predicates from Predicates, Figure 3.1a in the subsection headed Other monadics).
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6.4 Useful Shorthands for Expressing Some Constraints

Section 6.4 in the theory book describes three special classes of constraint and shorthands that have 
been proposed for them, not all of which have been adopted in Tutorial D. The three special classes 
are tuple constraints, key constraints, and foreign key constraints. SQL has counterparts of all three, as 
different kinds of table constraints.

CHECK Constraints

A CHECK constraint is a table constraint defined using the key word CHECK, as already illustrated in 
several examples in this chapter. In particular, a CHECK constraint can be used to express a constraint 
such as the one shown in Example 6.10, referred to in the theory book as a tuple constraint (so one might 
call it a row constraint in SQL). This is clearly the way most SQL users would prefer to express such a 
constraint—in fact, it is the only way when Examples 6.8 and 6.9 are unavailable for want of support 
for subqueries in constraints.

Example 6.10: Shorthand for a row constraint

ALTER TABLE EXAM_MARK

ADD CONSTRAINT Mark_in_range

CHECK ( Mark BETWEEN 0 AND 100 ) ;

Actually, it’s not quite the only way. The constraint can be included in the column definition for Mark 
in the CREATE TABLE statement for EXAM_MARK, as shown in Example 6.10a. A constraint declared 
as part of a column definition is called a column constraint.

Example 6.10a: Column constraints included in a column definition

Mark INTEGER NOT NULL CHECK ( Mark BETWEEN 0 AND 100 ),

Example 6.10a has two separately declared column constraints in the same column definition. Both 
are unnamed but could be named if desired. Constraints that are declared without names acquire 
implementation-dependent names that show up in the database catalog. As in Tutorial D, naming a 
constraint allows it to be dropped when no longer needed (SQL uses the same key word, DROP). 
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The first column constraint, NOT NULL, is short for CHECK ( Mark IS NOT NULL ). One might 
conclude that BETWEEN 0 AND 100 would be allowed as short for CHECK ( Mark BETWEEN 
0 AND 100 ), but that would be a wrong conclusion. One might also wonder if CHECK ( Mark 
BETWEEN 0 AND 100 ) could be included (perversely) in the definition of some column other than 
Mark. In fact it can. Moreover, a column constraint can reference other columns in the same table, in 
which case the choice as to which column definition to include it in becomes arbitrary and one might 
prefer to write it as a regular table constraint (at the expense of an extra key word and a comma).

Effect of NULL

Until SQL:1999, if a column was subject to a NOT NULL constraint, then every value v appearing in 
that column could be guaranteed to compare equal with itself and not equal to every value of its type 
other than itself. That guarantee does not hold with all the additional types that were added to SQL 
in SQL:1999. For example, if a column is defined on type ROW ( x INTEGER, y INTEGER ), 
then a NOT NULL constraint will not prevent the value ROW ( CAST ( NULL AS INTEGER), 
42 ) appearing in that column. A similar comment applies to user-defined structured types, where 
the value of a component of the structure being NULL does not confer “nullness”, so to speak, on the 
whole value (see Chapter 2, Section 2.10, Types and Representations, the subsection Effect of NULL).

Keys

We have already seen one way of declaring a key in SQL, in CREATE TABLE statements. For example, 
the one for EXAM_MARK in the introduction to Chapter 5 includes the table constraint PRIMARY KEY 
( StudentId, CourseId ). This is almost equivalent to Tutorial D’s KEY { StudentId, 
CourseId }, the exceptions being: (a) there is some significance to the order in which the column 
names are written, as explained in the following section on foreign keys, and (b), as the key words 
PRIMARY KEY suggest, no more than one primary key can be specified for the same base table.

A PRIMARY KEY specification carries an implicit NOT NULL constraint on each column of the specified 
key. When more than one key constraint is required, the key word UNIQUE must be used in place of 
PRIMARY KEY for all or all but one of them. A UNIQUE specification does not carry an implicit NOT 
NULL constraint on each column of the specified key (says the SQL standard, though I am aware of at 
least one SQL implementation where it does).

Whether declared using PRIMARY KEY or UNIQUE, at least one column must be specified. SQL has 
no direct counterpart of Tutorial D’s KEY { }.

When a key consists of just one column it may be expressed in shorthand as a column constraint. For 
example, in the CREATE TABLE statement for COURSE, the primary key could be specified by adding 
PRIMARY KEY to the column definition for CourseId.
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SQL differs from Tutorial D in its support for keys in the following respects:

•	 SQL does not require at least one key for every base table. In Tutorial D, if no key is 
explicitly declared, then KEY { ALL BUT } is implicit.

•	 When no key is specified there is no prohibition on multiple appearances of the same row.
•	 SQL does not recognize the empty set as a key. 
•	 SQL allows a key to be a proper superset of another key for the same base table. (This 

“feature” is sometimes used as a workaround for the fact that the columns of the foreign key 
are required to correspond to those of a declared key of the referenced table.)

Effects of NULL

When a UNIQUE specification u for base table t includes a column c that is not subject to a NOT NULL 
constraint, the appearance of several rows having NULL in place of a value for c and equal values for 
the other columns specified in u is permitted. It is only when each column of the specified “key” has 
a value that those column values may not appear in the same combination in more than one row of t.
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WHEN/THEN Key Constraints

Temporal databases are beyond the scope of the theory book, but the problems that arise with them 
and proposed solutions to those problems are described in detail in reference [12], which presents its 
proposals as notional extensions to Tutorial D. One of these extensions is a special shorthand called a 
WHEN/THEN constraint, and SQL has a somewhat similar solution to the particular problem addressed 
by such constraints (though it falls far short of addressing all of the problems described in reference [12]).

Suppose a table has two columns representing a period of time throughout which the information 
conveyed by the other columns is recorded as having been the case. A salary history table for employees, 
with columns From and To for dates defining the applicable time periods, would be a good example. A 
constraint is needed to avoid the possibility of an employee being shown as having two different salaries 
on the same day, which could happen if two rows for the same employee have overlapping periods 
indicated by their From and To dates. The term “WHEN/THEN constraint” appeals to the notion of 
“unpacking” the table so that each row is replaced by one or more rows, one for each date contained 
in its from-to period: when the relation is unpacked, then the given key constraint (e.g., on employee 
number and date) is to hold. 

Here’s a concrete example showing how SQL supports WHEN/THEN constraints.

CREATE TABLE SAL_HISTORY ( EmpNo CHAR(6), 

Salary INTEGER NOT NULL, 

From DATE

To DATE

PERIOD FOR During ( From, To ),

PRIMARY KEY ( EmpNo, During WITHOUT OVERLAPS )

) ;

The PERIOD FOR specification states that the From and To values in each row denote a time interval 
(called a period because SQL uses the term “interval” for something else). The From values are treated 
as closed bounds, the To values as open bounds, so a given row in SAL_HISTORY indicates that an 
employee was paid a certain salary from the given From date up to but not including the given To date. 
The specification implies the column constraint NOT NULL NOT DEFERRABLE ENFORCED for 
each of columns From and To.

During WITHOUT OVERLAPS, which, if required, must appear as the last element of the key, specifies 
that if the same EmpNo value appears in two distinct rows of SAL_HISTORY, then the From and To 
values in those rows must denote During periods that do not overlap (have no date in common).
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Historical Notes and Comments

Support for keys (and foreign keys) arrived in 1989, as part of an addendum to SQL:1987, the first 
international edition of the SQL standard.

PERIOD FOR and WITHOUT OVERLAPS arrived as an optional conformance feature in SQL:2011. Note 
that although the WITHOUT OVERLAPS specification in SAL_HISTORY prevents an employee from 
being recorded as having two or more different salaries on the same day, it does not enforce the “packed 
form” defined in reference [12]. In the given example, packed form would prevent the appearance of two 
or more rows with consecutive From-To periods showing the same salary for the same employee—a 
case of what reference [12] calls circumlocution. Clearly, two such rows can be replaced by a single row 
having the From value of the earlier period and the To value of the later one.

A question arises as to what happens if one of those implied NOT NULL constraints is dropped or altered 
to be NOT ENFORCED (the historical note in Section 6.1 shows how this might be done in accordance 
with the SQL standard). SQL:2011 is silent on that possibility.

Foreign Keys

(See the corresponding section in the theory book for the meaning of this term.)

Examples 6.2, 6.3, and 6.3a are alternative ways of formulating a constraint that enforces a business 
rule to the effect that every student who takes an exam must be enrolled on the applicable course. As 
it happens, that constraint can also be formulated as a foreign key, expressed as a table constraint for 
base table EXAM_MARK.

Example 6.3b: Alternative formulation for 6.3 as a foreign key constraint

ALTER TABLE EXAM_MARK 

ADD CONSTRAINT Must_be_enrolled_to_take_exam_alternative3

FOREIGN KEY ( StudentId, CourseId ) 

REFERENCES IS_ENROLLED_ON ;
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The formulation in Example 6.3b is available only because the following conditions hold:

1. There is a one-to-one correspondence from the specified columns, in the specified order, 
to those of the primary key of IS_ENROLLED_ON. Corresponding columns do not have 
to have the same name but they must be of the same declared type. The table name for the 
referenced table (IS_ENROLLED_ON in the example) can be followed by a commalist of 
column names in parentheses, in which case that commalist—the referenced columns—must 
correspond exactly, in the correct order, to some key specified for the referenced table. The 
referenced columns must be explicitly specified when the applicable key is declared using 
UNIQUE rather than PRIMARY KEY, or when it is declared using WITHOUT OVERLAPS.

2. The referenced table and the referencing table (EXAM_MARK in the example) are both base 
tables.
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A foreign key declaration in SQL can include a specification of a compensatory action, which defines 
an additional update to take place automatically when the constraint would otherwise be violated. 
For example, the specification ON DELETE CASCADE, when added to the foreign key declaration 
in Example 6.3b, states that when a row is deleted from the referenced table, IS_ENROLLED_ON, all 
matching rows in EXAM_MARK are to be deleted too. Similarly, ON UPDATE CASCADE specifies that 
when the StudentId or CourseId value of some row in IS_ENROLLED_ON is updated, the new 
value is propagated to all of the matching rows in EXAM_MARK. For another example, ON DELETE 
SET DEFAULT specifies that when a row in IS_ENROLLED_ON is deleted, the values for columns 
StudentId and CourseId in the matching rows of EXAM_MARK are replaced by the default values 
for those columns—in which case those default values must be sure to be matched by some row in the 
referenced table, of course.

A compensatory action, being a further update of some kind, might in turn result in violation of a 
foreign key constraint that might in turn have a compensatory action defined for it. The interactions 
between compensatory actions and triggered procedures are fully specified in the SQL standard but can 
be bewilderingly complicated.

When no compensatory action is required, SQL has two ways of dealing with foreign key constraint 
violations and allows the user to choose between the two. The two options are NO ACTION and 
RESTRICT. ON DELETE NO ACTION and ON UPDATE NO ACTION are self-explanatory: a 
constraint violation is to cause the delete or update to be rejected. But RESTRICT, rather than NO 
ACTION is the default option. ON DELETE RESTRICT and ON UPDATE RESTRICT can cause 
a delete or update to be rejected even before the overall effect of the statement has been evaluated and 
even when the overall effect would be accepted under NO ACTION. For example, suppose the table T 
is subject to the constraint 

FOREIGN KEY (FK) REFERENCES T(K) ON UPDATE RESTRICT

and the following statement is executed:

UPDATE T SET K = K + 1 ;

If T has a row with 3 for column K and one or more rows with 3 for FK, the update is rejected even if T 
also has a row with 2 for K that will satisfy the foreign key constraint when 3 replaces 2. ON UPDATE 
NO ACTION had been specified instead, the updated would be accepted because the overall effect would 
not cause a constraint violation—the constraint is properly checked at the statement boundary instead 
of being checked against some intermediate state that arises mid-execution.
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If the applicable key of the referenced table is defined using a period name and WITHOUT OVERLAPS, 
then the definition of the referencing table must include a period name pn defined on columns compatible 
with the corresponding ones of the referenced table, and the foreign key declaration must include PERIOD 
pn. The foreign key constraint is then considered to apply to the unpacked forms of the referencing and 
referenced tables, and the ON DELETE/ON UPDATE options are not supported—RESTRICT is implicit.

6.5 Updating Tables

Section 6.5 in the theory book is headed Updating Relvars. I could perhaps have used the heading 
Updating Table Variables here but such terminology is not used in SQL. Nevertheless, of course it is table 
variables—base tables or updatable views—that are updated, not tables per se. As the theory book does 
not cover the difficult and somewhat controversial topic of updating virtual relvars (as views are called in 
that book), this book likewise considers only base tables as targets. Also omitted, as in the theory book, 
is any discussion of SQL’s comprehensive provisions for security and authorization, giving control over 
(among many other things) which users are authorized to do what kinds of updating to which tables.

The theory book introduces the topic of updating by describing the assignment operator, “:=” in 
Tutorial D. SQL uses a different syntax for assignment, using the key word SET and “=”. Thus, to add 
1, so to speak, to the integer variable x, SQL has SET x = x + 1. However, the operator is not 
supported at all for tables, so SQL has no direct counterpart of the theory book’s Example 6.11. It does, 
however, have counterparts of Tutorial D’s INSERT, UPDATE, and DELETE operators, which we can 
deal with here quite briefly by giving translations to SQL of the theory book’s examples 6.12, 6.13, 6.14, 
and 6.16. (Example 6.15 is missing because that one uses “:=”.)

INSERT

Loosely speaking, INSERT takes the rows of a given source table and adds them to the specified target 
table, retaining all the existing rows in the target. Example 6.12 shows how INSERT can be used to add 
a single row to IS_ENROLLED_ON.

Example 6.12: Enrolling a student on a course using INSERT

INSERT INTO IS_ENROLLED_ON VALUES ('S3', 'C2') ;

Recall that VALUES ('S3', 'C2') denotes the table consisting of just the row ('S3', 'C2'). 
If that row already exists in the target table, then the update has the effect of increasing the number 
of appearances of that row by one, unless some key is specified for that table (as is the case with IS_
ENROLLED_ON), in which case the update fails.
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Recall also that the columns of the result of a VALUES expression are effectively unnamed, so the 
column ordering has to be used to determine the correspondence between source and target columns. 
In Example 6.12, 'S3' becomes the StudentId value in the inserted row and 'C2' becomes the 
CourseId value, and that’s because StudentId is defined to be the first column of IS_ENROLLED_
ON, CourseId the second. However, the defined ordering can be explicitly overridden, as shown in 
Example 6.12a.

Example 6.12a: Overriding the defined column ordering

INSERT INTO IS_ENROLLED_ON (CourseId, StudentId) 

 VALUES ('C2', 'S3') ;

A VALUES expression is not restricted to tables of just one row. For example, the source table VALUES 
('S3', 'C2'), ('S4', 'C1') would simultaneously enroll student S3 on course C2 and S4 
on C1. In general, any table expression can be used as the source table for an INSERT invocation, just 
as any relational expression can be used for the same purpose in Tutorial D.
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Example 6.13, like its counterpart in the theory book, illustrates the convenience of allowing any table 
expression to be the source for an INSERT. It assumes that all the exam scripts submitted by students 
have been marked and it has been decided to record marks of zero for students who failed to turn up 
for an exam they should have sat. (Remember that SQL’s EXCEPT requires its operands to be of the 
same degree, unlike Tutorial D’s NOT MATCHING—hence the third element, 0, of the second operand 
in the example.)

Example 6.13: Awarding zero marks to students who failed to take the exam

INSERT INTO EXAM_MARK 

SELECT StudentId, CourseId, 0

FROM IS_ENROLLED_ON 

EXCEPT

SELECT StudentId, CourseId, 0

FROM EXAM_MARK ;

UPDATE

Loosely speaking, UPDATE changes some of the column values of some existing rows of its target table. 
Thus, although some rows disappear from the target and others arrive in it, so to speak, the cardinality 
of the table does not change. Suppose the exam board for course C2 decides that the exam has been 
marked too harshly and everybody’s mark is to be increased by 5. Example 6.14 shows how.

Example 6.14: Adding 5 to all the marks for course C2

UPDATE EXAM_MARK SET Mark = Mark + 5

WHERE CourseId = 'C2' ;

The syntax is self-explanatory. The WHERE specification is optional and defaults to WHERE TRUE, 
meaning that the specified changes are to be applied to all existing rows in the target table. The expression 
Mark = Mark + 5 is a column assignment. When several column assignments are needed they are 
separated by commas and the semantics of multiple assignment as described in the theory book apply: 
the right-hand sides are all evaluated before any column assignments are performed. The same column 
cannot be the target or more than one assignment.

SQL’s UPDATE differs from Tutorial D’s in the following interesting respect. Let relvar rv be assigned 
the relation RELATION { TUPLE { X 1, Y 2}, TUPLE (X 2, Y 2 } }. Then UPDATE 
rv WHERE X = 1 ( X := 2 ) causes rv to consist of just a single tuple, TUPLE { X 2, Y 
2}. The SQL counterpart, assuming no constraint violation would arise, causes the target table to contain 
two appearances of the row ROW ( 2, 2 ).
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If the target table has a period name defined on two of its columns, then an UPDATE statement for 
that table can include a FOR PORTION OF clause, specifying a FROM and a TO value. In this case 
the cardinality of the target table can change. For example, if the SAL_HISTORY table contains the 
following rows:

('123456', 55000, DATE('2011-09-01'), DATE('2012-08-01')),

('123456', 60000, DATE('2012-08-01'), DATE('9999-12-31'))

and it is discovered that employee 123456’s salary was in fact increased to 60000 on July 1st, 2012, then 
Example 6.14a can be used to make the necessary correction. As a result, those two rows will be replaced 
by the following three:

('123456', 55000, DATE('2011-09-01'), DATE('2012-07-01')),

('123456', 60000, DATE('2012-07-01'), DATE('2012-08-01')),

('123456', 60000, DATE('2012-08-01'), DATE('9999-12-31'))

Note that the second and third exhibit circumlocution: using more than one row to state what could 
equivalently be stated by a single row showing that employee 123456’s salary is 60000 from July 1st, 
2012 until SQL’s rather pessimistic estimate of the end of time (this being what is sometimes used to 
indicate “indefinitely”).

Example 6.14a: Updating a “portion” of the salary history table

UPDATE SAL_HISTORY 

FOR PORTION OF During 

FROM DATE('2012-07-01') TO DATE('2012-08-01')

SET ( Salary = 60000 )

WHERE EmpNo = '123456' ;

DELETE

Loosely speaking, DELETE removes some existing rows from its target table. Suppose the university 
decides that course C3 is to be withdrawn. Example 6.16 shows how.

Example 6.16: Withdrawing course C3, using DELETE

DELETE FROM COURSE WHERE CourseId = 'C3' ;

Every row that satisfies the given WHERE condition is deleted; rows that do not satisfy it remain in place.
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As with UPDATE, a FOR PORTION OF clause can be specified if the target table has a defined period 
name, as illustrated in Example 6.16a.

Example 6.16a: Deleting a “portion” of the salary history table

DELETE SAL_HISTORY 

FOR PORTION OF During 

FROM DATE('2012-01-01') TO DATE('2012-02-01')

WHERE EmpNo = '123456' ;

As a result, the row 

('123456', 55000, DATE('2011-09-01'), DATE('2012-08-01'))

is replaced by the two rows 

('123456', 55000, DATE('2011-09-01'), DATE('2012-01-01')),

('123456', 55000, DATE('2012-02-01'), DATE('2012-08-01'))

and the DELETE statement will have effected an increase in cardinality instead of the usual decrease.
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MERGE and TRUNCATE

SQL has two more table update operators, MERGE and TRUNCATE.

MERGE, like INSERT, takes a source table s and uses it to update a target table t. Briefly, a MERGE statement 
specifies a matching condition to determine which rows of s have at least one matching row in t (under that 
specified matching condition). It then specifies an open-ended series of conditions to be applied to each 
row of s paired with actions to be applied on t. WHEN MATCHED AND c1 THEN x1 specifies that 
action x1, necessarily an UPDATE or DELETE, is to be applied on t for each matching row in s that satisfies 
the condition c1. WHEN NOT MATCHED AND c2 THEN x2 specifies that action x2, necessarily an 
INSERT, is to be applied on t for each non-matching row in s that satisfies the condition c2.

The curiously named TRUNCATE statement deletes all the rows from its specified target, bypassing any 
triggered actions, including compensatory actions, specified for that target. The target must be a base table.

Multiple Assignment

SQL supports multiple assignment to local variables and also applies multiple assignment semantics in 
SET clauses of UPDATE statements, but does not support multiple assignment in connection with updates 
on table targets. Thus, SQL has no counterpart to the theory book’s Example 6.17, simultaneously deleting 
from both COURSE and IS_ENROLLED_ON. If we assume that there must be at least one enrolment 
for each course, and that students can enroll only on existing courses, deferred constraint checking has 
to be used, as shown in Example 6.17 here.

Example 6.17: Withdrawing course C3 and deleting any enrolments on C3

Assume the definition of IS_ENROLLED_ON includes 
CONSTRAINT Course_must_exist_for_enrolment 
FOREIGN KEY ( CourseId ) REFERENCES COURSE ON DELETE NO ACTION

and the definition of COURSE includes 
CONSTRAINT Enrolment_must_exist_for_course 
CHECK ( CourseId IN ( SELECT CourseId FROM IS_ENROLLED_ON )

Then the desired effect can be achieved by this:
SET CONSTRAINTS Course_must_exist_for_enrolment DEFERRED ;

DELETE FROM COURSE WHERE CourseId = 'C3' ;

DELETE FROM IS_ENROLLED_ON WHERE CourseId = 'C3' ;

SET CONSTRAINTS Course_must_exist_for_enrolment IMMEDIATE ;
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ON DELETE NO ACTION states that no compensatory action is to be used for enforcement of the 
foreign key constraint. Deferring the checking of that constraint allows the first DELETE statement to 
succeed in spite of the consequent existence of “orphan” rows in IS_ENROLLED_ON. Cancelling the 
deferment immediately after the second delete then causes the constraint to be checked. If the DELETE 
statements were the other way around, then we would have to defer Enrolment_must_exist_
for_course instead.

In Example 6.18, a straight translation of its counterpart in the theory book, the second statement, 
assigning to both X and Y, illustrates multiple assignment to local variables in SQL.

Example 6.18: A consequence of simultaneity

SET X = 1;

SET ( X, Y ) = ROW ( X + 1, X + 1 );

As in Tutorial D, the value 2 is assigned to both X and Y. The simultaneous assignment to X and Y can 
also be expressed using a SELECT … INTO statement, as shown in Example 6.18a. An INTO clause can 
be used only in the first SELECT clause of such a statement and only when the resulting table contains 
no more than one row. (When a SELECT expression contains further SELECT expressions, the first 
SELECT clause is the one belonging to the outermost SELECT expression. The outermost SELECT 
expression cannot be combined with another by UNION, EXCEPT, or INTERSECT.)

Example 6.18a: Multiple assignment using SELECT … INTO

SELECT * INTO X, Y 

FROM VALUES ( X + 1, X + 1 ) AS T;

The key word ROW in Example 6.18 is optional. That being the case, you might ponder the distinctions 
among the statements listed in Example 6.18b. Which ones assign 1 to X and which assign ROW ( 1 )? 
Is (b) legal if the declared type of X is ROW ( F1 INTEGER ). Is (e) legal if the declared type of X 
is INTEGER?

Example 6.18b: Some puzzling syntactic variations

a) SET ( X ) = ( 1 );
b) SET X = 1;
c) SET ( X ) = 1
d) SET ( X ) = ( ( 1 ) ); 
e) SET X = ( 1 );
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Effects of NULL

If the row expression given as the source for a multiple assignment evaluates to NULL, then NULL is 
assigned to each target.

If a SELECT … INTO statement results in an empty table, then the target variables are not updated and 
a completion condition is given to indicate that. This is not exactly an “effect of NULL”, of course, but I 
mention it here because of the contrast with a row subquery, which delivers a single row with NULL for 
each field when its table expression evaluates to an empty table. This observation might influence the 
choice between SET and SELECT … INTO.

Historical Notes

INSERT, UPDATE, and DELETE have been in SQL from the beginning. MERGE was added in SQL:2003, 
TRUNCATE in SQL:2007.

Support for local variables and various programming language constructs is defined in Part 4 of the SQL 
standard, referred to as SQL/PSM. Part 4 first appeared in 1996, as an addendum to SQL:1992.
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Support for multiple assignment to local variables was added in SQL:2003. SELECT … INTO has 
been in SQL from the beginning, though until 1996 it was available only with “host” variables as targets, 
a host variable being one declared using some language other than SQL in a program written in that 
language. References to host variables are distinguished from references to SQL variables by prefixing 
them with colons (e.g., :X).

Transactions

For Tutorial D’s BEGIN TRANSACTION, COMMIT, and ROLLBACK, SQL has the same syntax except 
for START in place of BEGIN. However, START TRANSACTION is used only for outermost transactions 
and cannot be given when a transaction has been started and not completed. Inner transactions are started 
using a SAVEPOINT statement, giving a name—a savepoint name—that identifies the database state at 
the time of execution. If SAVEPOINT SN1 has been given, for example, then RELEASE SAVEPOINT 
SN1 has the same effect as a Tutorial D COMMIT for all updates performed since savepoint SN1 was 
established—it merely relinquishes the possibility of cancelling just those updates and does not make 
their effects visible to other users. To cancel those updates ROLLBACK TO SAVEPOINT SN1 is given, 
but then the savepoint name SN1 remains in existence. In both cases, any further existing savepoints, 
established after SN1, are destroyed.

If an attempt is made to update the database when no transaction has been explicitly started, then 
a transaction is implicitly started. When no transaction has been started, a SET TRANSACTION 
statement can be given to specify various options to override the defaults that otherwise apply to the 
next transaction. The options can alternatively be specified in a START TRANSACTION statement. 
The options in effect will apply when a transaction is implicitly started or when it is started by a START 
TRANSACTION statement that does not override them.

One of the options for SET/START TRANSACTION is the so-called isolation level, which applies to 
the whole of the outermost transaction. The default isolation level is SERIALIZABLE, this being the 
only one that enforces all of the normally defined properties of transactions. The weakest level, READ 
UNCOMMITTED allows other concurrent users to see the effects of updates that have not yet been 
committed (and might never be, of course). Intermediate levels, READ COMMITTED and REPEATABLE 
READ, as well as UNCOMMITTED, allow a transaction to perceive changes to the database that have been 
effected by other, committed transactions (for example, by evaluating the same table expression more 
than once, without updating the database betweentimes, and getting different results).

Historical Notes

SET TRANSACTION appeared in SQL:1992. START TRANSACTION and SAVEPOINT were added 
in SQL:1999.
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6.6 EXERCISES

1. SQL does not allow the empty set to be specified using PRIMARY KEY or UNIQUE. Write 
a table constraint that could be included in the definition of table T to simulate Tutorial D’s 
KEY { }. Mention any optional conformance features of SQL that your solution uses.

2. Using some SQL implementation that is available to you, try out Example 6.1b on it, using 
a low number, say 1, in place of 20000. Is it accepted? If so, does it have the intended effect? 
If not, is it accepted when you place BEGIN and END around the RETURN statement? If it’s 
still not accepted, try RETURNS INTEGER instead of RETURNS BOOLEAN, and move the 
comparison from the function body to the constraint. Now is it accepted? And if so, does it 
have the desired effect? Finally, try specifying a different base table, say IS_CALLED, in the 
ALTER TABLE statement (and drop the constraint from IS_ENROLLED_ON). When IS_
CALLED is nonempty and IS_ENROLLED_ON is at its maximum cardinality, is INSERT 
INTO IS_ENROLLED_ON … accepted? Or does the DBMS check the constraint only on 
updates to IS_CALLED?

3. Suppose the table definition for COURSE is extended to include a column MaxExamMark, 
whose value in each row is the maximum mark obtainable for that course’s exam. 
{StudentId, CourseId} is a foreign key in EXAM_MARK, referencing IS_
ENROLLED_ON. A constraint is needed to ensure that no student is awarded a mark greater 
than the relevant maximum.

a) Write an SQL ALTER TABLE statement to address this requirement.
b) Complete the following statement to make it equivalent to your solution for part (a):

CREATE ASSERTION … 

CHECK ( SELECT EVERY( … ) FROM EXAM_MARK ) ;

4. Now suppose that instead of there being a recorded maximum mark of each exam the 
maximum score for each question in each exam is recorded in the following relvar:

CREATE TABLE EXAM_QUESTION 

( CourseId CID, 

Question# INTEGER, 

MaxMark INTEGER,

PRIMARY KEY ( CourseId, Question# ) ;

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

SQL: A Comparative Survey

168 

Constraints and Updating

For each course, the exam questions are supposed to be numbered sequentially, starting at 1.

a) Write an SQL CREATE ASSERTION statement to address this requirement.
b) Suppose the questions are subdivided into parts, a, b, c and so on, up to a maximum 

of six parts, and maximum marks are given for each part rather than for each 
question. Again, the parts for each question must be “numbered” sequentially, starting 
at a. Write an SQL CREATE ASSERTION statement to address this requirement.

c) Devise shorthands, in the style of SQL, for expressing constraints of the kinds found 
in your solutions to a. and b.

5. Using the suppliers-and-parts database shown in Figure 4.13, define SQL integrity 
constraints to express the following requirements:

a) Every shipment row must have a supplier number matching that of some supplier 
row.

b) Every shipment row must have a part number matching that of some part row.
c) All London suppliers must have status 20.
d) No two suppliers can be located in the same city.
e) At most one supplier can be located in Athens at any one time.
f) There must exist at least one London supplier.
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g) The average supplier status must be at least 10.
h) Every London supplier must be capable of supplying part P2.

6. For each example in Exercise 5, list the different kinds of update operation that, if permitted, 
would cause the constraint to be violated.

7. A database contains base tables T1 and T2. At all times at least one of these must be 
empty. The SQL implementation does not support CREATE ASSERTION but does allow 
subqueries to appear in table constraints. How can the stated requirement be implemented?

8. (Repeated from the body of the chapter.) Ponder the distinctions among the following 
examples.

a) SET ( X ) = ( 1 );
b) SET X = 1 ;
c) SET ( X ) = 1
d) SET ( X ) = ( ( 1 ) ); 
e) SET X = ( 1 );

Which ones assign 1 to X and which assign ROW ( 1 )? Is (b) legal if the declared type of 
X is ROW ( F1 INTEGER ). Is (e) legal if the declared type of X is INTEGER? You might 
like to try these out in some SQL implementation.

9. SQL has two ways of starting a transaction, START TRANSACTION for an outermost 
transaction and SAVEPOINT for inner ones. Describe any advantages and disadvantages 
you can think of for this scheme over one that uses the same method for all transactions.

10. SQL’s UNION, EXCEPT, and INTERSECT operators are the only ones that have a 
CORRESPONDING option to specify that columns of two tables are to be paired by their 
names rather than their ordinal positions. List as many other operators and syntactic 
constructs in SQL that you can think of to which a CORRESPONDING option might 
usefully be added.

11. Consider the SQL implementation you are most familiar with. To what extent does it 
correctly support the standard features mentioned in this book? Is it relationally complete?
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