bookboon.com

Exercises on Relational Database Theory

Hugh Darwen

Download free books at

Hugh Darwen

Exercise Book for An Introduction to Relational Database Theory

Exercise Book for An Introduction to Relational Database Theory © 2011 Hugh Darwen \& bookboon.com ISBN 978-87-7681-757-2

Contents

1 Exercises 5
1.1 Exercise for Chapter 1, Introduction 5
1.2 Exercises for Chapter 2, Values, Types, Variables, Operators 5
1.3 Exercises for Chapter 3, Predicates and Propositions 13
1.4 Exercises for Chapter 4, Relational Algebra - The Foundation 15
1.5 Exercises for Chapter 5, Building on The Foundation 19
1.6 Exercises for Chapter 6, Constraints and Updating 21
1.7 Exercises for Chapter 7, Database Design I: Projection-Join Normalization 22
1.8 Additional Exercises Using Rel 29
2 Solutions (shown in blue) 31
2.1 Exercise for Chapter 1, Introduction 31
2.2 Exercises for Chapter 2, Values, Types, Variables, Operators 32
2.3 Exercises for Chapter 3, Predicates and Propositions 38
2.4 Exercises for Chapter 4, Relational Algebra - The Foundation 40
2.5 Exercises for Chapter 5, Building on The Foundation 53
2.6 Exercises for Chapter 6, Constraints and Updating 57
2.7 Exercises for Chapter 7, Database Design I: Projection-Join Normalization 64
2.8 Additional Exercises Using Rel 82

Fascinating lighting offers an infinite spectrum of possibilities: Innovative technologies and new markets provide both opportunities and challenges. An environment in which your expertise is in high demand. Enjoy the supportive working atmosphere within our global group and benefit from international career paths. Implement sustainable ideas in close cooperation with other specialists and contribute to influencing our future. Come and join us in reinventing light every day.

1 Exercises

This is the exercise book to accompany the present author's An Introduction to Relational Database Theory. With two exceptions, these exercises are copies of those given at the ends of Chapters 1-7 of that book. The exercises using Rel given with some of those chapters are also included. The first exception is Exercise 7 for Chapter 7, which I have replaced by a precise, detailed specification for a comprehensive database design. The second is a set of additional exercises using Rel, exploring virtual relvars and user-defined type definitions.

Important note concerning Rel: In February 2013, Version 1.0.10 of Rel was released, in which the syntax of some Tutorial D operators was revised to be in accordance with Version 2 of that language. The examples and solutions given here are currently based on Tutorial D Version 1. The differences between the two versions are listed in Appendix A of An Introduction to Relational Database Theory.

1.1 Exercise for Chapter 1, Introduction

Consider the following table (from Figure 1.5 of the book)

A	B	A
1	2	3
4		5
6	7	8
9	9	$?$
1	2	3

Give three reasons why it cannot possibly represent a relation.

1.2 Exercises for Chapter 2, Values, Types, Variables, Operators

Complete sentences 1-10 below, choosing your fillings from the following:
$=,:=,::=$, argument, arguments, body, bodies, BOOLEAN, cardinality, CHAR, CID, degree, denoted, expressions, false, heading, headings, INTEGER, list, lists, literal, literals, operator, operators, parameter, parameters, read-only, set, sets, SID, true, type, types, update, variable, variables.

In 1-5, consider the expression $\mathrm{X}=1 \mathrm{OR} \mathrm{Y}=2$.

1. In the given expression, $=$ and $O R$ are \qquad whereas X and Y are \qquad references.
2. X and 1 denote \qquad to an invocation of \qquad .
3. The value \qquad by the given expression is of \qquad BOOLEAN.
4. 1 and 2 are both \qquad of \qquad INTEGER.
5. The operators used in the given expression are \qquad operators.

In 6-10, consider the expression RELATION \{ X SID, Y CID \} \{ \}.
6. It denotes a relation whose \qquad is zero and whose \qquad is two.
7. It is a relation \qquad .
8. The declared type of Y is \qquad .
9. In general, the heading of a relation is a possibly empty \qquad of attributes and its body is a possibly empty
\qquad of tuples.
10. It is \qquad that the assignment RV \qquad RELATION \{ X SID, Y CID \} \{ \} is legal if the \qquad of $R V$ is \{ Y CID, X SID \}, \qquad that it is legal if the \qquad of $R V$ is $\{A S I D, B C I D\}$, \qquad that it is legal if the \qquad of $R V$ is $\{X$ CID, Y SID \}, and \qquad that it is legal if the \qquad of $R V$ is \{X CHAR, Y CHAR \}.

Getting Started with Rel

After you have downloaded and installed Rel from http://dbappbuilder.sourceforge.net/Rel.html, work through the following exercises. From number 7 onwards they involve constructs introduced in Chapter 4. You might prefer to wait until you have studied that chapter but on the other hand a little hands-on experience might help you to understand that chapter when you come to it.

1. Start up Rel's DBrowser. DBrowser is the general-purpose client application provided by Rel for evaluating Tutorial D expressions and executing Tutorial D statements entered by the user.
2. Familiarise yourself with the way of working and the things you can do in Rel. You should be looking at a window something like this (which was obtained in Windows Vista):

- Note the layout of the window: a lower pane into which you can type statements to be executed, an upper pane in which results are displayed, and the movable horizontal bar between the panes.
- Note the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ at the left-hand end of the horizontal bar, allowing you to let one or the other pane occupy the whole window for a while.
- See what is available on the Tools menu and perhaps choose your preferred font.
- Note the < and > to the left of the menu on the input (lower) pane. These are greyed out initially but after you have executed a couple of statements you will be able to use them to recall previously executed statements to the input pane.
- Note the toolbars on both panes. As you do the exercises, decide which options suit you best. Note that you can save the contents of either pane into a local file, and that you can load the contents of a local file into the input area.
- Note the check boxes on the right of the toolbars. They are fairly self-explanatory, apart from "Enhanced", which we will examine later.
- The box at the top of the upper pane, labelled "Location:", identifies the directory containing the database you are working with. You can switch to another directory by clicking on the little button to the right of the box, labelled with three dots (...).

3. Type the following into the lower pane:
```
output 2+2 ;
```

Execute what you have typed, either by clicking on Evaluate (F5) shown at the bottom of the window or by pressing F5.

Now delete the semicolon and try executing what remains. (If necessary, use the < button on the lower pane to recall the statement.) You will see how Rel handles errors.

Now strike out the word output and do not put back the semicolon. What happens when you execute that? (i.e., just $2+2$).

You have now learned:

- that in Rel (as in Tutorial D) every executable command (or statement) is terminated by a semicolon;
- that Rel allows you to obtain the result of evaluating an expression by using an output statement;
- that Rel treats an attempt to 'execute' an expression x as shorthand for the statement output x ; the absence of the semicolon signals to Rel that you are using this convenient shorthand.

4. This exercise is merely to alert you to a certain awkwardness in Rel that has no real importance but might cause you to waste a lot of time if you are not warned about it. It's the same as Step 3 except that instead of $2+2$ you type $2+2.0$. Look closely at what happens. It doesn't work!

Rel, like some other languages, treats INTEGER and RATIONAL as distinct types. If you want to do arithmetic on rational numbers, both operands must be rational numbers. Literals denoting rational numbers are distinguished from those denoting integers by the presence of a decimal point, and Rel follows the convention in the English-speaking community of using a full stop for this purpose (as opposed to the comma that is used throughout most of Europe, for example).

Now try this: $1 / 2$ (i.e., the integer 1 divided by the integer 2). And then this: $1.0 / 2.0$.

You have now learned that (a) the operands of dyadic arithmetic operators in Rel must be of the same type, and (b) the type of the result of an invocation of such an operator is always of the same type as the operands. Tutorial D is silent on such issues, because they are orthogonal to what Tutorial D is really intended for (teaching relational theory). But every implementation of Tutorial \mathbf{D} has to address them somehow.

Fortunately, arithmetic is orthogonal to relational theory and there is no need for us to be bothered by Rel's behaviour here. You have possibly already learned that the same problems do not arise in SQL, where 1/2, 1/2.0 and $1.0 / 2.0$ are all equivalent, in spite of the fact that INTEGER and REAL (SQL's counterpart of Tutorial D's RATIONAL) are also distinct types in SQL.
5. Now try the following compound statement:

```
begin ;
VAR x integer init(0) ;
x := x + 1 ;
output x ;
end ;
```

Why do we have to write output x ; in full here, instead of just x ?
Now write the fourth line in uppercase: OUTPUT X ; What happens?
Try OUTPUT x ; instead. What have you learned about Rel's rules concerning case sensitivity?
6. Now you can start investigating Rel's support for relations (though not relational databases yet). First, see how Rel displays a relation (i.e., the result of evaluating a relation expression) in its upper pane. Rel supports two styles of presentation, depending on whether the "Enhanced" option is checked.

With "Enhanced" unchecked (it is usually checked to start with), get Rel to evaluate the following relation expression (a literal which we shall call enrolment):

```
RELATION {
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },
TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },
TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },
TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },
TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' }
}
```

See Section 2.9. Look closely at the output. Is it identical to the input?
Next, without altering the contents of the lower pane, turn "Enhanced" back on. Note the effect on the display in the output pane.

Now delete all the tuple expressions, leaving just RELATION \{ \}. What happens when Rel tries to evaluate that? Now use < to recall the original RELATION expression to the input pane and re-evaluate it with "Enhanced" off. Use copy-and-paste to copy the result to the input pane, then delete all the TUPLE expressions, to leave this:

```
RELATION {StudentId CHARACTER, CourseId CHARACTER,
    Name CHARACTER} { }
```

Study the result of that in the output pane, first with "Enhanced" off, then with it on.

What conclusions do you draw from all this, about Rel and Tutorial D?
From now on you can run with "Enhanced" either on or off, according to your own preference.

Next, enter the following literal, perhaps by using the < button to recall enrolment and editing it:

```
RELATION {
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' }
}
```


AIRBUS

Before you press Evaluate (F5), think about what you expect to happen. Does the result meet your expectation? How do you explain it?

Use < again to recall the enrolment literal. Insert the word WITH at the beginning, add AS enrolment : enrolment at the end, to give:

```
WITH RELATION {
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },
TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },
TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },
TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },
TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' }
}
AS enrolment : enrolment
```

and evaluate that.

How do you understand what you have just done? (WITH isn't described in the book. In case you aren't clear, try this in Rel:WITH $2+2$ as four, four+four as eight : eight + four. Note carefully that the introduced names, four and eight, are local only.)

By inspection of enrolment only, write down all the cases you can find of two students such that there is at least one course they are both enrolled on.
7. For this exercise you will need to continue using < to recall your previous command (now including the definition of the introduced name enrolment) and overtype as necessary. Use enrolment to investigate the relational operator known as projection (see Chapter 4, Section 4.6). The projection of a given relation over a specified subset of its attributes yields another relation. In Tutorial \mathbf{D} a projection is specified by writing a list of attribute names, enclosed in braces \{\} and separated by commas, after the operand relation. The key words ALL BUT can optionally precede the list of attribute names, inside the braces.

How many distinct projections can be obtained from enrolment? Obtain as many of these as you wish, trying both the 'inclusion' method and the 'exclusion' method using ALL BUT.
8. Still using enrolment, investigate the relational operator known as rename (see Chapter 4, Section 4.5). The renaming of a given relation returns that relation with one or more of its attributes renamed. In Tutorial D a renaming is specified by writing RENAME (old AS new, . . .) after the operand relation.

At the moment you should have this in your input pane:

```
WITH RELATION {
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },
TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },
TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },
TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },
TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' }
}
AS enrolment : enrolment
```

Replace the single word (enrolment) that follows the colon by a renaming of enrolment such that the result has attribute name SID1 instead of StudentId, N1 instead of Name, and is otherwise the same as enrolment itself. Replace the : that ends the WITH specification by a comma and add AS E1 : E1 at the end. The result should look like this:

```
WITH RELATION {
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },
TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },
TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },
TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },
TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' }
}
AS enrolment ,
<your renaming of enrolment, as specified> AS E1 : E1
```

Evaluate that to check that you wrote the renaming correctly.

Again replace the : by a comma and this time add a similar renaming of enrolment, using SID2 and N2 instead of SID1 and N1 for the new attribute names, and add AS E2 : E1 JOIN E2 at the end. You are investigating the operator called JOIN (see Chapter 4, Section 4.4).

How do you interpret the result? How many tuples does it contain? Replace the key word JOIN by COMPOSE (see Chapter 5, Section 5.2). How do you interpret this result? How many tuples are there now? How do you account for the difference?
10. Add WHERE NOT (SID1 = SID2) to end of the expression you evaluated in Step 9 (see Chapter 4, Section 4.7). Examine the result closely. Now place parentheses around E1 COMPOSE E2 and evaluate again. Confirm that you get the same result.

Repeat the experiment, replacing WHERE NOT (SID1 = SID2) by \{ SID1 \}. Do you get the same results this time? If not, why not?

What does all this tell you about operator precedence rules in Tutorial D?

Why was it probably a good idea to add that WHERE invocation? Did it completely solve the problem? If not, can you think of a better solution?

What connection, if any, do you see between this exercise and Exercise 6?
11. Load the file OperatorsChar. d, provided in the Scripts subdirectory of the Rel program directory, and execute it. Now you have the operators used in Example 2.4, among others. Give appropriate type definitions for types NAME and CID. Notice that the operator TO_UPPER_CASE is available for converting a given string to its upper-case counterpart. You might like to try using this operator to define a constraint for type NAME to ensure that all names begin with a capital letter.
12. Close Rel by clicking on File/Exit.

1.3 Exercises for Chapter 3, Predicates and Propositions

Consider again the relation shown as the current value of ENROLMENT in Figure 1.2:

StudentId	Name	CourseId
S1	Anne	C1
S1	Anne	C2
S2	Boris	C1
S3	Cindy	C3
S4	Devinder	C1

For each of the following propositions, state whether it is true or false, basing your conclusions on this relation:

1. There exists a course CourseId such that some student named Anne is enrolled on CourseId.
2. Every student with StudentId S1 who is enrolled on some course is named Anne.
3. Every student who is enrolled on course C4 is named Anne.
4. Some student who is enrolled on course C4 is named Anne.
5. There are exactly 5 students who are enrolled on some course.
6. It is not the case that there is no course on which no student who is enrolled on some course but is not named Boris is not enrolled.
7. There are exactly 10 pairs of StudentIds (SID1, SID2) such that there is some course on which student SID1 is enrolled and student SID2 is enrolled.
8. There are exactly 3 pairs of StudentIds (SID1, SID2) such that there is some course on which student SID1 is enrolled and student SID2 is enrolled.
9. If a student named Eve is enrolled on course C 1 , then student S 1 is named Adam.
10. If student S 1 is named Anne, then S 1 is enrolled on course C2.

1.4 Exercises for Chapter 4, Relational Algebra - The Foundation

1. Recall that $r 1$ TIMES $r 2$ requires $r 1$ and $r 2$ to have no common attributes, in which case it is equivalent to $r 1$ JOIN r 2. Why would it be a bad idea to require TIMES to be used in place of JOIN in such cases?
2. Given the following relvars:
```
VAR Cust BASE RELATION {C# CHAR, Discount RATIONAL} KEY {C#};
VAR Order BASE RELATION {O# CHAR, C# CHAR, Date DATE} KEY {O#};
VAR OrderItem BASE RELATION {O# CHAR, P# CHAR, Qty INTEGER }
        KEY {O#, P#};
VAR Product BASE RELATION {P# CHAR, Unit_price RATIONAL}
    KEY {P#};
```

The price of an order item can be calculated by the formula:

```
Qty*Unit_price*(1-(Discount/100))
```

Write down a relation expression to yield a relation with attributes O\#, P\#, and PRICE, giving the price of each order item.
3. Given:

VAR Exam_Marks BASE RELATION \{ StudentId SID, CourseId CID, Mark INTEGER\}
KEY \{ StudentId, CourseId \};

Write down a relational expression to give, for each pair of students sitting the same exam, the absolute value of the difference between their marks. Assume you can write $\operatorname{ABS}(x)$ to obtain the absolute value of x.
4. State the value of
(a) r NOT MATCHING TABLE_DEE
(b) $\quad r$ NOT MATCHING TABLE_DUM
(c) r NOT MATCHING r
(d) $(r$ NOT MATCHING $r)$ NOT MATCHING r
(e) r NOT MATCHING (r NOT MATCHING r)

Is NOT MATCHING associative? Is it commutative?
5. (Repeated from the body of the chapter) Which operator, in the list given in Section 4.11, Concluding Remarks, can be dispensed with without sacrificing relational completeness? How can it be defined in terms of the other operators?
6. (Repeated from the body of the chapter) Investigate the completeness of an algebra that includes MINUS in place of NOT MATCHING by attempting to define NOT MATCHING in terms of MINUS and the other operators.
7. The chapter briefly mentions the operator MATCHING but defers its detailed description to Chapter 5 . Before you read that chapter, define $r 1$ MATCHING r2 in terms of the operators described in Chapter 4.

Working with a Database in Rel

1. Start up Rel.
2. Figure 4.13 shows the supplier-and-parts database from Chris Date's Introduction to Database Systems (8th edition), as shown on the inside back cover of that book (except that the attribute names there are in upper case).

S	S\#	Sname	Status	City	SP	S\#	P\#	Qty
	S1	Smith	20	London		S1	P1	300
	S2	Jones	10	Paris		S1	P2	200
	S3	Blake	30	Paris		S1	P3	400
	S4	Clark	20	London		S1	P4	200
	S5	Adams	30	Athens		S1	P5	100
						S1	P6	100
						S2	P1	300
						S2	P2	400
P	P\#	Pname	Color	Weight	City	53	P2	200
						54	P2	200
	P1	Nut	Red	12.0	London	S4	P4	300
	P2	Bolt	Green	17.0	Paris	S4	P5	400
	P3	Screw	Blue	17.0	Oslo			
	P4	Screw	Red	14.0	London			
	P5	Cam	Blue	12.0	Paris			
	P6	Cog	Red	19.0	London			

Figure 4.13: The suppliers-and-parts database

Execute a Tutorial D VAR statement for each of S, P and SP. Use INTEGER as the declared type for STATUS and QTY, RATIONAL for WEIGHT, and CHAR for all the other attributes. Feel free to use lower case or mixed case to suit your own taste for attribute and relvar names, but do not otherwise change any of the given names.

Tutorial D requires at least one key constraint to be specified for each relvar. One key for each for S, P and SP is shown by underlining the relevant attribute names in the table. No other key constraints are needed.
"Populate" (as they say) each relvar with the values shown in Date's tables. There are several ways of achieving this. Choose whichever you prefer from the following:
a) Include an INIT (. .) specification in the VAR statement, after the heading and before the KEY specification. Inside the parens, write a RELATION \{ . . . \} expression, using a TUPLE expression for each required tuple, as in the enrolment literal used in the Rel exercises for Chapter 2.
b) Execute the VAR statement without an INIT (. . .) specification. The implied initial value is the empty relation of the appropriate type. You can see this by asking Rel for the current value of the relvar. For example, to get the current value of S, just type S into the lower pane and click Run (F5).
Now use an assignment statement of the form
varname $:=$ relation-expression
to populate the relvar. Check that Rel has indeed assigned the correct value to it.

c) Use Rel INSERT statements to populate the relvar piecemeal, perhaps one tuple at a time. Having typed in the first INSERT statement. Here is the general form of an INSERT statement to insert a single tuple:

```
INSERT varname RELATION { TUPLE { ... } } ;
```

Note that the source operand is still a relation, not just a tuple, hence the need to enclose the TUPLE expression inside RELATION \{ \}.
3. Informally, we refer to S as suppliers, P as parts and $S P$ as shipments. Predicates for these relvars are:

S: Supplier S\# is named Sname, has status Status and is located in city City.

P: Part P\# is named Pname, is coloured Color, weighs Weight and is located in city City.

SP: Supplier S\# ships part P\# in quantities of Qty.

What, then, is the predicate for the expression S JOIN $S P$ JOIN P ?

What do you expect to be the result of that expression?

What is its degree?

Does Rel give the result you expected? Explain what you see.
4. Attempt to insert a tuple into SP with supplier number S1, part number P1 and quantity 100 . Explain the result of your attempt.
5. Get Rel to evaluate each of the following expressions. For each one, write down the corresponding predicate and also give an informal interpretation of the query in the style of those given in Exercise 6 below.
a. SP WHERE P\# = 'P2'
b. S \{ ALL BUT Status \}
c. $S P$ \{ S\#, Qty \}
d. P NOT MATCHING (SP WHERE S\# = 'S2')
e. S MATCHING (SP WHERE P\# = 'P2')
f. S City \} UNION P \{ City \}
g. S City \} MINUS P \{ City \}
h. ((S RENAME (City AS SC)) \{ SC \}) JOIN
((P RENAME (City AS PC)) \{ PC \})
6. Write Tutorial D expressions for the following queries and get Rel to evaluate them:
a. Get all shipments.
b. Get supplier numbers for suppliers who supply part P1.
c. Get suppliers with status in the range 15 to 25 inclusive.
d. Get part numbers for parts supplied by a supplier in Paris.
e. Get part numbers for parts not supplied by any supplier in Paris.
f. Get city names for cities in which at least two suppliers are located.
g. Get all pairs of part numbers such that some supplier supplies both of the indicated parts.
h. Get supplier numbers for suppliers with a status lower than that of supplier S1.
i. Get supplier-number/part-number pairs such that the indicated supplier does not supply the indicated part.

1.5 Exercises for Chapter 5, Building on The Foundation

1. (Repeated from the body of the chapter) What can you say about the result of $r 1$ COMPOSE $r 2$ when $r 1$ and $r 2$ have identical headings? For example, what is the result of IS_CALLED COMPOSE IS_CALLED?
2. (Repeated from the body of the chapter) Is COMPOSE associative? In other words, is ($r 1$ COMPOSE $r 2$) COMPOSE $r 3$ equivalent to $r 1$ COMPOSE ($r 2$ COMPOSE $r 3$)? If so, prove it; if not, show why.
3. What can you say about the result of $r 1$ MATCHING ($r 2$ MATCHING $r 1$)?
4. (Repeated from the body of the chapter) Does the aggregate operator AVG have a basis operator? If so, define it.
5. Suppose an aggregate operator PRODUCT is defined, with arithmetic multiplication as its basis operator. What is the result of $\operatorname{PRODUCT}(r, x)$ if r is empty?
6. (Repeated from the body of the chapter) Is it always the case that the cardinality of an ungrouping is equal to the sum of the cardinalities of the relations being ungrouped on?
7. Write Tutorial D expressions for the following queries and get Rel to evaluate them:
a. Get the total number of parts supplied by supplier S 1.
b. Get supplier numbers for suppliers whose city is first in the alphabetic list of such cities.
c. Get part numbers for parts supplied by all suppliers in London.
d. Get supplier numbers and names for suppliers who supply all the purple parts.
e. Get all pairs of supplier numbers, $S x$ and $S y$ say, such that $S x$ and $S y$ supply exactly the same set of parts each.
f. Write a truth-valued expression to determine whether all supplier names are unique in S.
g. Write a truth-valued expression to determine whether all part numbers appearing in SP also appear in P .

1.6 Exercises for Chapter 6, Constraints and Updating

1. (Repeated from the body of the chapter).
a. An implication of KEY \{ ALL BUT \} is that no other key can possibly exist for the relvar it applies to. Why is this so?
b. An implication of KEY \{ \} is that no other key can possibly exist for the relvar it applies to. Why is this so?
2. Suppose the relvar definition for COURSE is extended to include an attribute MaxExamMark, whose value in each tuple is the maximum mark obtainable for that course's exam. \{StudentId, CourseId\} is a foreign key in EXAM_MARK, referencing COURSE. A constraint is needed to ensure that no student is awarded a mark greater than the relevant maximum.
a. Write a Tutorial D CONSTRAINT statement to address this requirement, where the constraint condition is an invocation of IS_EMPTY.
b. Complete the following statement to make it equivalent to the one you wrote for part (a):
CONSTRAINT ... AND (EXAM_MARK, ...) ;
3. Now suppose that instead of there being a recorded maximum mark of each exam the maximum score for each question in each exam is recorded in the following relvar:
```
VAR EXAM_QUESTION BASE RELATION { CourseId CID,
    Question# INTEGER, MaxMark INTEGER }
    KEY { CourseId, Question# } ;
```

For each course, the exam questions are supposed to be numbered sequentially, starting at 1 .
a. Write a Tutorial D CONSTRAINT statement to address this requirement.
b. Suppose the questions are subdivided into parts, a, b, c and so on, up to a maximum of six parts, and maximum marks are given for each part rather than for each question. Again, the parts for each question must be "numbered" sequentially, starting at a. Write a Tutorial D CONSTRAINT statement to address this requirement.
c. Devise shorthands, in the style of Tutorial D, for expressing constraints of the kinds found in your solutions to a. and b.
4. Using Rel, with the suppliers-and-parts database set up for the Rel exercises given at the end of Chapter 4, write Tutorial D integrity constraints to express the following requirements:
a. Every shipment tuple must have a supplier number matching that of some supplier tuple.
b. Every shipment tuple must have a part number matching that of some part tuple.
c. All London suppliers must have status 20.
d. No two suppliers can be located in the same city.
e. At most one supplier can be located in Athens at any one time.
f. There must exist at least one London supplier.
g. The average supplier status must be at least 10 .
h. Every London supplier must be capable of supplying part P2.

1.7 Exercises for Chapter 7, Database Design I: Projection-Join Normalization

1. (Repeated from the body of the chapter). The predicate for WIFE_OF_HENRY_VIII is "The first name of the Wife\#-th wife of Henry VIII is FirstName and her last name is LastName and Fate is what happened to her." Write an appropriate predicate for the following expression:
```
WIFE_OF_HENRY_VIII { Wife#, FirstName }
JOIN
WIFE_OF_HENRY_VIII { LastName, Fate }
```

2. Consider the following declarations:
```
VAR C1_EXAM_MARK BASE
    INIT ( EXAM_MARK WHERE CourseId = CID('C1') )
        KEY { StudentId } ;
CONSTRAINT C1_only
    AND ( C1_EXAM_MARK, CourseId = CID('C1') ) ;
```

(Recall that AND is the aggregate operator mentioned in Chapter 5, evaluating to TRUE if and only if the given condition evaluates to TRUE for every tuple of the given relation.)
a. Explain why C 1 EXAM_MARK is not in BCNF.
b. Assume that similar relvars are defined for every course, except that this time there are no CourseId attributes. Describe how a query could be expressed to give the course identifier and mark for every exam taken by student S 1 .
3. In Section 7.5 of the chapter, under the heading Functional Dependencies, the following eight theorems are given concerning FDs.

1. Reflexivity: If B is a subset of A, then $A \rightarrow B$
2. Augmentation: If $A \rightarrow B$, then $A \cup C \rightarrow B \cup C$
3. Transitivity: If $A \rightarrow B$ and $B \rightarrow C$, then $A \rightarrow C$
4. Self-determination: $A \rightarrow A$
5. Decomposition: If $A \rightarrow B$ and C is a subset of B, then $A \rightarrow C$ and $A \rightarrow B-C$
6. Union: If $A \rightarrow B$ and $A \rightarrow C$, then $A \rightarrow B \cup C$

"I studied English for 16 years but... ...I finally learned to speak it in just six lessons"

Jane, Chinese architect

Click to hear me talking before and after my unique course download
7. Composition: If $A \rightarrow B$ and $C \rightarrow D$, then $A \cup C \rightarrow B \cup D$
8. Unification: If $A \rightarrow B$ and $C \rightarrow D$, then $A \cup(C-B) \rightarrow B \cup D$

Taking the first three as axioms, prove theorems 4 to 8 .
4. (Repeated from the body of the chapter). Consider relvar SCDF with attributes S (for student), C (for course), D (for department), and F (for faculty). Assuming that the set $\{\{C\} \rightarrow\{D\},\{D\} \rightarrow\{F\}\}$ is a minimal cover for the FDs in SCDF, prove that $\{S, C\}$ is a key of SCDF.
5. (Repeated from the body of the chapter). Assume that $\{\{\mathrm{W}, \mathrm{X}\} \rightarrow\{\mathrm{Y}, \mathrm{Z}\},\{\mathrm{Y}\} \rightarrow\{\mathrm{X}\}\}$ is a minimal FD cover for the FDs in relvar $W X Y Z$. Prove that $\{W, X\}$ and $\{W, Y\}$ are both keys of $W X Y Z$.
6. The heading of relvar R1 consists of attributes named a, b, c, d, e, f, g, and h. The following set of FDs is a cover for those that hold in R1:
FD1: $\quad\{a, b\} \rightarrow\{c\}$
FD2: $\quad\{a, b\} \rightarrow\{d\}$
FD3: $\{\mathrm{b}\} \rightarrow\{\mathrm{e}\}$
FD4: $\{c\} \rightarrow\{f\}$
FD5:
$\{g\} \rightarrow\{\mathrm{h}\}$
FD6:
$\{d\} \rightarrow\{b, e\}$
a. Describe the single change required to derive an irreducible cover from the given set.
b. Describe the single change required to derive a minimal cover from your answer to a.
c. Explain why R1 is not in Boyce-Codd normal form (BCNF).
d. Decompose R1 into an equivalent set of BCNF relvars. Name your relvars R2, R3, and so on and for each one list its attribute names and state its key(s). For example: $\operatorname{R3}\{c, d, e\} \operatorname{KEY}\{d\} \operatorname{KEY}\{c, e\}$ if you think this relvar with those two keys is part of the solution.

This replaces the Exercise 7 given in Chapter 7, giving you a more precise and detailed specification to work from. It's best done after a study of Chapter 8, in particular Section 8.4, Representing "Entity Subtypes".

This exercise is based heavily on what I see when I use internet banking with a bank at which I have several accounts. You are to develop a Tutorial D database definition, using VAR and CONSTRAINT statements, to implement the specification given below. Assume that types DATE and TIME are available for dates and times of day, and that the usual comparison operators are defined for these types. Otherwise, use type RATIONAL for currency amounts and CHAR for everything else (we are not concerned, here, with constraints defining formats for customer numbers, phone numbers, e-mail addresses, and so on).

Scenario, Requirements, and Business Rules

The bank has customers. Each new customer is assigned a unique customer number. Each customer's name and address must be recorded.

BR1 Every customer is uniquely identified by a customer number and has exactly one name and exactly one address.

Optionally, one e-mail address for a customer can be recorded, as well as up to three phone numbers-but no more than one phone number of each type (home, business, mobile).

BR2 A customer can additionally have at most one e-mail address.

BR3 A phone number is of exactly one type, home, business, or mobile.

BR4 A customer can additionally have at most one home phone number, at most one business phone number, and at most one mobile phone number.

To become a customer of the bank, one most open at least one account. Of course it is possible for the same customer to have several accounts (for example, current, savings, mortgage, and so on). Each account is uniquely identified by an account number. For each account, the account holder's customer number must be recorded and also the account type, and the date on which the account was opened. The same customer is permitted to hold several accounts of the same type.

BR5 Every account is uniquely identified by an account number and has exactly one customer number, exactly one type, and exactly one date on which it was opened.

BR6 The customer number of an account is that of an existing customer.

The recording of details of payments into and out of an account is complicated by the various different methods of payment. Each transaction against a particular account is automatically assigned a transaction number upon reception by the bank's computer. Transaction numbers are unique within an account.

BR7 A transaction is uniquely identified by the combination of its account number (identifying an existing account) and transaction number.

Every transaction is for an amount of money.

BR8 Every transaction has exactly one amount.

Every transaction is somehow dated and the relevant date of no transaction can precede the date on which the relevant account was opened.

In addition to the amount, the information associated with each transaction number varies according to the kind of transaction, as follows.

Payments in:

For a payment into an account, the account number, date, time, and source.

BR9 Every payment in has exactly one account number, exactly one date, exactly one time of day, and exactly one source.

Payment by cheque

A cheque on a particular account is uniquely identified within that account by its cheque number. For a payment by cheque, the account number, cheque number, date written (as shown on the cheque), date processed (by the bank), payee, and amount are recorded.

BR10 Every payment by cheque has exactly one account number, exactly one cheque number, exactly one date written (as shown on the cheque), exactly one date processed (by the bank), and exactly one payee.

It is possible for more than one payment to be made by cheque to the same payee with the same date written and date processed. It is assumed that cheque books are not issued to a customer until the relevant account has been opened. A cheque cannot be processed before the date written as shown on the cheque.

BR11 The date processed of a cheque cannot precede its date written.

Payment by direct debit:

For a payment by direct debit, the account number, date, time, payee, and amount are recorded. Note that is theoretically possible for more than one payment to be made by direct debit to the same payee at exactly the same time on the same day.

BR12 Every payment by direct debit has exactly one account number, exactly one date, exactly one time, and exactly one payee.

Payment by debit card:

This includes cash withdrawals from ATMs. A customer can be issued with any number of debit cards. Each debit card is for a particular account and several debit cards can be issued for the same account, perhaps for use by various family members. Each debit card is identified by a card number. For every debit card, the relevant account number, cardholder's name, and expiry date are recorded. For a payment by debit card, the card number, date, time, payee (which might refer to an ATM), and amount are recorded. It is not possible for the same debit card to be used more than once at exactly the same time on the same day. It is not possible to use a debit card for any payment on a date after the expiry date.

BR13 Every debit card is uniquely identified by a card number and has exactly one account number (identifying an existing account), exactly one cardholder's name, exactly one expiry date, and exactly one payee.

BR14 Every payment by debit card is uniquely identified by the combination of its transaction number and card number of an existing card, also by the combination of its card number, date, and time, and has exactly one payee.

BR15 The date of a payment by debit card cannot be later than the expiry date of the relevant card.

BR16 Every transaction is either a payment in, or a payment by cheque, or a payment by direct debit, or a payment by debit card.

BR17 No transaction is of more than one of the types mentioned in BR16.

BR18 A transaction other than a payment by cheque cannot be dated earlier than the date on which the relevant account was opened.
7. Based on your experiences with Exercise 7, suggest enhancements to Tutorial D to make it easier to express any constraints you declared that struck you as being of a common enough kind to warrant an additional shorthand.
8. (For students familiar with SQL). Consider the following SQL definitions:

```
CREATE TABLE SF ( StudentId CHAR(4),
    Faculty VARCHAR(50),
        PRIMARY KEY ( StudentId )
        UNIQUE ( StudentId, Faculty ) ;
CREATE TABLE CF ( CourseId CHAR(4),
    Faculty VARCHAR(50),
        PRIMARY KEY ( CourseId )
        UNIQUE ( CourseId, Faculty );
CREATE TABLE SCF ( StudentId CHAR(4),
                        CourseId CHAR(4),
                        Faculty VARCHAR(50),
        PRIMARY KEY ( StudentId, CourseId ),
        FOREIGN KEY ( StudentId, Faculty )
    REFERENCES SF ( StudentId, Faculty ),
        FOREIGN KEY ( CourseId, Faculty )
    REFERENCES CF ( CourseId, Faculty ) ;
```

a. What problem was the designer solving here?
b. What possible problem remains in this solution?
c. Describe and comment on the particular features of SQL that make this solution possible.

1.8 Additional Exercises Using Rel

1. Explore Rel's catalogue. It consists of a relvar named sys. Catalog. Use the following trick to see sys.Catalog's heading only:
```
sys.Catalog WHERE FALSE
```

From their names, you might be able to guess which attributes are of most interest (possibly Name, Owner, and isVirtual?).

Create a virtual relvar named myvars giving the Name, Owner, and isVirtual of every relvar not owned by 'Rel'. Virtual relvars are created like this:

```
VAR name VIRTUAL relation-expression ;
```

Test your virtual relvar definition by entering the queries

```
myvars
myvars WHERE isVirtual
(myvars WHERE NOT isVirtual) {ALL BUT isVirtual}
```

2. If you haven't already done so, load the file OperatorsChar. d, provided in the Scripts subdirectory of the Rel program directory, and execute it. One of the relvars mentioned in sys.Catalog is named sys. Operators. Display the contents of that relvar. How many attributes does it have? What is the declared type of the attribute named Implementations?
3. Evaluate the expression
```
(sys.Operators ungroup (Implementations)
where Language = 'JavaF')
{ ALL BUT Language, CreatedByType, Owner, CreationSequence}
```

What are the "ReturnsTypes" of LENGTH, IS_DIGITS, and SUBSTRING?
4. Note that if s is a value of type CHAR, then LENGTH (s) gives the number of characters in s, IS_ $\operatorname{DIGITS}(s)$ gives TRUE if and only if every character of s is a decimal digit. $\operatorname{SUBSTRING}(s, 0,1)$ gives the string consisting of the first I characters of s (note that strings are considered to start at position 0 , not 1). SUBSTRING (s, f) gives the string consisting of all the characters of s from position f to the end.

What is the result of IS_DIGITS (' ') ? Is it what you expected? Is it consistent with the definition given above?
5. Using operators defined by OperatorsChar.d, define types for supplier numbers and part numbers, following Example 2.4 from Chapter 2.

Define relvars Srev, Prev, and SPrev as replacements for S, P and SP, using the types you have just defined as the declared types of attributes $S \#$ and $P \#$.

Write relvar assignments to copy the contents of S, P and SP to Srev, Prev, and SPrev, respectively. Note that if SNO is the type name for supplier numbers in S and Srev, then SNO (S\#) "converts" an S\# value in S to one for use in Srev.
6. Using the relvars defined in Exercise 5, repeat Exercise 6 from the set headed "Working with A Database in Rel" given with the exercises for Chapter 4. Which of your solutions need revisions beyond the obvious changes in relvar names?

2 Solutions (shown in blue)

2.1 Exercise for Chapter 1, Introduction

Consider the following table (from Figure 1.5 of the book)

A	B	A
1	2	3
4		5
6	7	8
9	9	$?$
1	2	3

Give three reasons why it cannot possibly represent a relation.

1. Two of the columns have the same name, A. The attributes of a relation have unique names for identification purposes.
2. The first and last of the rows shown in green are identical. The same tuple cannot appear more than once in the body of a relation.

3. The second row shown in green appears to have no entry for column B. Every tuple in the body of a relation has exactly one value for each attribute of that relation's heading.

Some students might think there is a fourth error, concerning the question mark in the last column of the penultimate row. Each attribute of a relation has a defined type, and each tuple in that relation must have for that attribute a value of its type. If the values shown in the third column are all of the same type, then it is a type that contains a value that can be denoted by the symbol "?" as well as several values denoted by numbers. That is perhaps an improbable type but relational theory places no restrictions as to which types are permissible as attribute types.

2.2 Exercises for Chapter 2, Values, Types, Variables, Operators

Complete sentences 1-10 below, choosing your fillings from the following:
$=,:=,::=$, argument, arguments, body, bodies, BOOLEAN, cardinality, CHAR, CID, degree, denoted, expressions, false, heading, headings, INTEGER, list, lists, literal, literals, operator, operators, parameter, parameters, read-only, set, sets, SID, true, type, types, update, variable, variables.

In 1-5, consider the expression $\mathrm{X}=1 \mathrm{OR} \mathrm{Y}=2$.

1. In the given expression, $=$ and OR are \qquad whereas X and Y are \qquad references. operators, variable
2. X and 1 denote \qquad to an invocation of \qquad .
arguments, $=$
3. The value \qquad by the given expression is of \qquad BOOLEAN.
denoted, type
4. 1 and 2 are both \qquad of \qquad INTEGER.
literals, type
5. The operators used in the given expression are \qquad operators.
read-only

In 6-10, consider the expression RELATION \{ X SID, Y CID \} \{ \}.
6. It denotes a relation whose \qquad is zero and whose \qquad is two.
cardinality, degree Explanation: the cardinality is the number of tuples in the body and the degree is the number of attributes in the heading.
7. It is a relation \qquad .
literal
8. The declared type of Y is \qquad .

CID
9. In general, the heading of a relation is a possibly empty \qquad of attributes and its body is a possibly empty
\qquad of tuples.
set, set
10. It is \qquad that the assignment RV \qquad RELATION \{ X SID, Y CID \} \{ \} is legal if the \qquad of RV is \{ Y CID, X SID \} \qquad that it is legal if the \qquad of $R V$ is $\{A$ SID, $B C I D\}$,
\qquad that it is legal if the \qquad of $R V$ is $\{X$ CID, YSID \}, and \qquad that it is legal if the \qquad of

```
RV is
{ X CHAR, Y CHAR }.
true, :=, heading, false, heading, false, heading, false, heading
```


Solutions to questions posed in exercises in Getting Started with Rel

5. Why do we have to write output x; in full when it is part of a compound statement, instead of just x ? Because otherwise Rel might be looking at x end ; and that is not a valid statement of any kind. The presence of a line break carries no significance.

What have you learned about Rel's rules concerning case sensitivity?

Identifiers are case-sensitive, key words are not.
6. When "Enhanced" is off, is the output of evaluating the given relation literal identical to the input?

No. The output includes \{CourseId CHAR, Name CHAR, StudentId CHAR\} in between the key word RELATION and the first opening brace. Also, the character string literals are enclosed in double-quotes instead of single-quotes.

Now delete all the tuple expressions, leaving just RELATION \{ \}. What happens when Rel tries to evaluate that?

You get an error message saying that " $\{$ " is expected in place of $<$ EOF $>$. In other words, it expects another list enclosed in braces to follow the empty one.

Now use < to recall the original RELATION expression to the input pane and re-evaluate it with "Enhanced" off. Use copy-and-paste to copy the result to the input pane, then delete all the TUPLE expressions, to leave this:

RELATION \{StudentId CHARACTER, CourseId CHARACTER, Name CHARACTER\} \{ \}

Study the result of that in the output pane, first with "Enhanced" off, then with it on.

What conclusions do you draw from all this, about Rel and Tutorial D?

The text inserted after the key word RELATION can be recognized as a specification of the heading of the relation: a list of the attribute names and their declared types (in this example, CHARACTER for each attribute). Tutorial \mathbf{D} allows the heading to be specified, in which case each tuple specified in the body must be of that heading. Tutorial D also allows the heading to be omitted, provided that the body is not empty. Each tuple must of course be of the same heading, and that determines the heading of the relation.

Rel allows CHAR literals to be enclosed in either single-quotes or double-quotes. The closing quote must match the opening one.

Next, enter the following literal, perhaps by using the < button to recall enrolment and editing it:

```
RELATION {
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' }
```


Before you press Evaluate (F5), think about what you expect to happen. Does the result meet your expectation? How do you explain it?

The body of a relation is a set of tuples. A set by definition contains exactly one appearance of each of its elements. Rel would perhaps be justified in treating this expression as an error, but it is equally justified in just ignoring any duplicate tuples. In conventional mathematical notation, $\{1,2,3,1\}$, for example, is considered to denote the set consisting of the elements 1,2 , and 3 . The redundancy can sometimes be convenient when variables are involved-the set $\{x, y\}$, for example, has cardinality 1 in the case where $x=y$.

Use < again to recall the enrolment literal. Insert the word WITH at the beginning, add AS enrolment : enrolment at the end, and execute. How do you understand what you have just done?

The WITH expression equates the name enrolment with the RELATION expression preceding the key word AS. It is the expression following the colon (:) that Rel evaluates. So in this simple case, WITH defines the name enrolment, and enrolment is then the expression we ask Rel to evaluate when we click on Run (F5).

By inspection of enrolment only, write down all the cases you can find of two students such that there is at least one course they are both enrolled on.

Anne and Boris
Boris and Devinder
Anne and Devinder

If you included all the cases where the two students are in fact the same student, such as "Anne and Anne", well, that's a good point-the question didn't say "distinct students".
7. How many distinct projections can be obtained from enrolment?

Eight. If you found less than eight, did you forget the empty projection, enrolment \{\}? If you found more than eight, were you perhaps thinking that, for example, enrolment \{StudentId, Name\} and enrolment $\{$ Name, StudentId\} are distinct projections? Recall that attribute order carries no significance.
8. Your renaming should look like this:

```
WITH RELATION {
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },
TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },
TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },
TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },
TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' }
} AS enrolment,
enrolment RENAME (StudentId as SID1, Name as N1 ) AS E1:
E1
```

9. Here is the expression you should have evaluated:
```
WITH RELATION {
TUPLE { StudentId 'S1', CourseId 'C1', Name 'Anne' },
TUPLE { StudentId 'S1', CourseId 'C2', Name 'Anne' },
TUPLE { StudentId 'S2', CourseId 'C1', Name 'Boris' },
TUPLE { StudentId 'S3', CourseId 'C3', Name 'Cindy' },
TUPLE { StudentId 'S4', CourseId 'C1', Name 'Devinder' }
} AS enrolment,
enrolment RENAME (StudentId as SID1, Name as N1 ) AS E1,
enrolment RENAME (StudentId as SID2, Name as N2 ) AS E2:
E1 JOIN E2
```

How do you interpret the result? How many tuples does it contain? Replace the key word JOIN by COMPOSE. How do you interpret this result? How many tuples are there now? How do you account for the difference?

The result of the join gives pairs of students, shown by their names and ids, enrolled on the same course, along with the course id of that course. There are 11 tuples, including several in which the two students are in fact the same person!

The result of the compose gives pairs of students such that there is at least one course they are both enrolled on. This time there are only 10 tuples, because Anne is enrolled on two courses and therefore appears twice, paired with herself, in the join but only once in the composition. (The composition is equivalent to the join followed by \{ ALL BUT CourseId \}).
10. Add WHERE NOT (SID1 = SID2) to end of the expression you evaluated in Step 9. Examine the result closely. Now place parentheses around E1 COMPOSE E2 and evaluate again. Confirm that you get the same result.

Repeat the experiment, replacing WHERE NOT (SID1 = SID2) by \{ SID1 \}. Do you get the same results this time? If not, why not?

What does all this tell you about operator precedence rules in Rel?

Because presence of parentheses around e1 COMPOSE e2 makes no difference when that is followed by an invocation of WHERE, it appears that COMPOSE takes precedence over restriction. And so does JOIN. However, when we replace the restriction by a projection that specifies an attribute of E1, we find that it fails unless the COMPOSE invocation is enclosed in parentheses. We conclude that projection takes precedence over COMPOSE (and JOIN). On the whole you are left to discover Rel's operator precedence rules for yourself. Of course you can always use parentheses to override them, as in most computer languages.

Why was it probably a good idea to add that WHERE invocation? Does it completely solve the problem? If not, can you think of a better solution?

It eliminates the cases of the two students paired together being the very same student. However, we are still left with Anne being paired with Boris in one tuple, and Boris being paired with Anne in another tuple. Obviously if Anne and Boris are both enrolled on some course, we don't really want to be told so twice. It seems that the relation for the predicate ' x is enrolled on the same course as y ' is reflexive (true whenever $x=y$) and symmetric (if it is true when $x=a$ and $y=b$, then it is true when $x=b$ and $y=a$). We can eliminate the redundant cases by using the WHERE condition SID1 < SID2, sneakily taking advantage of the fact that character strings are ordered (in Rel, as in most programming languages, of course).

What connection, if any, do you see between this exercise and Exercise 6?

See the last paragraph of Exercise 6.

2.3 Exercises for Chapter 3, Predicates and Propositions

Consider again the relation shown as the current value of ENROLMENT in Figure 1.2:

StudentId	Name	CourseId
S1	Anne	C1
S1	Anne	C2
S2	Boris	C1
S3	Cindy	C3
S4	Devinder	C1

For each of the following propositions, state whether it is true or false, basing your conclusions on this relation:

1. There exists a course CourseId such that some student named Anne is enrolled on CourseId.

True-C1 is such a course.
2. Every student with StudentId S1 who is enrolled on some course is named Anne.

True-we might guess that the students named Anne who are enrolled on both C 1 and C 2 are in fact the same student, but we are not actually told that. Even if for some strange reason they are different people, they are both named Anne and no other enrolment is for somebody with StudentId S1.
3. Every student who is enrolled on course C4 is named Anne.

True-there does not exist a student who is enrolled on C 4 and is not named Anne. Recall that "for all $x, P(x)$ " is logically equivalent to "there does not exist x such that NOT $(P(x))$ ".
4) Some student who is enrolled on course C 4 is named Anne.

False-as nobody at all is enrolled on C4 it cannot be possible for anybody named Anne to be enrolled on it.
5. There are exactly 5 students who are enrolled on some course.

False-there are 4. However, this relies on the assumption that no two students have the same StudentId, in which case those two Sl's are indeed the same student; so the answer "can't tell" is perhaps even more acceptable.
6. It is not the case that there is no course on which no student who is enrolled on some course but is not named Boris is not enrolled.

False-Cindy is not enrolled on C1; Cindy and Devinder are not enrolled on C2; Anne and Devinder are not enrolled on C3. If course C4 exists, then nobody is enrolled on it, so Anne, Cindy and Devinder are each not enrolled on it. So for each course there is at least one student who is not enrolled on it but is enrolled on some course and is not named Boris. So it is the case there is no course having no such student.

7. There are exactly 10 pairs of StudentIds (SID1, SID2) such that there is some course on which student SID1 is enrolled and student SID2 is enrolled.

True-the pairs in question are (Anne, Boris), (Anne, Devinder), (Boris, Devinder), (Devinder, Boris), (Devinder, Anne), (Boris, Anne), (Anne, Anne), (Boris, Boris), (Devinder, Devinder), and (Cindy, Cindy).
8. There are exactly 3 pairs of StudentIds (SID1, SID2) such that there is some course on which student SID1 is enrolled and student SID2 is enrolled.

False-we have already shown that there are 10 .
9. If a student named Eve is enrolled on course C1, then student S 1 is named Adam.

True-because "a student named Eve is enrolled on course C1" is false. Recall that a proposition of the form "If p, then q " is defined to be False only when p is True and q is False. So, whenever p is False, "If p, then q " is True.
10. If student S 1 is named Anne, then S 1 is enrolled on course C 2 .

True-because "S1 is named Anne" and "S1 is enrolled on course C1" are both true.

2.4 Exercises for Chapter 4, Relational Algebra - The Foundation

1. Recall that $r 1$ TIMES $r 2$ requires $r 1$ and $r 2$ to have no common attributes, in which case it is equivalent to $r 1$ JOIN r 2. Why would it be a bad idea to require TIMES to be used in place of JOIN in such cases?

Consider relations R1 \{ A, B \}, R2 \{ B, C \}, and R3 \{ C, D \}. We have seen that, thanks to the commutativity and associativity of JOIN, we can join these three together in any order. For example: (R1 JOIN R3) JOIN R2. But if we are required to use TIMES instead of JOIN for the join of R1 and R3, that particular expression is illegal.
2. Given the following relvars:

```
VAR Cust BASE RELATION {C# CHAR, Discount RATIONAL} KEY {C#};
VAR Order BASE RELATION {O# CHAR, C# CHAR, Date DATE} KEY {O#};
VAR OrderItem BASE RELATION {O# CHAR, P# CHAR, Qty INTEGER }
    KEY {O#, P#};
VAR Product BASE RELATION {P# CHAR, Unit_price RATIONAL}
    KEY {P#};
```

The price of an order item can be calculated by the formula:

```
Qty*Unit_price*(1-(Discount/100))
```

Write down a relation expression to yield a relation with attributes O\#, P\#, and PRICE, giving the price of each order item.

```
WITH CUST JOIN ORDER JOIN ORDER ITEM AS COI:
EXTEND COI ADD (QTY*UNIT_PRICE*(1-(DISCOUNT/100)) AS PRICE )
    { O#, P#, PRICE }
```

3. Given:
```
VAR Exam_Marks BASE RELATION { StudentId SID,
                CourseId CID,
                Mark INTEGER}
KEY { StudentId, CourseId };
```

Write down a relational expression to give, for each pair of students sitting the same exam, the absolute value of the difference between their marks. Assume you can write $\operatorname{ABS}(x)$ to obtain the absolute value of x.

```
WITH EXAM_MARK RENAME ( StudentId AS S1, Mark as M1 ) AS EM1 ,
    EXAM_MARK RENAME ( StudentId AS S2, Mark as M2 ) AS EM2 ,
    EM1 JOIN EM2 AS EM1_2 ,
    EM1_2 WHERE S1 <> S2 AS Sat_same_exam,
EXTEND Sat_same_exam ADD ( ABS ( M1 - M2 ) AS Diff )
{ S1, S2, Diff }
```

4. State the value of
(a) $\quad r$ NOT MATCHING TABLE_DEE

The empty relation with the heading of r (every tuple matches the 0 -tuple)
(b) $\quad r$ NOT MATCHING TABLE_DUM
r (DUM has no tuples for the tuples of r to match with)
(c) $\quad r$ NOT MATCHING r

The empty relation with the heading of r (every tuple in r matches some tuple in r, namely, itself)
(d) $\quad(r$ NOT MATCHING $r)$ NOT MATCHING r

The empty relation with the heading of r (if the first operand of NOT MATCHING is empty, then so is the result)
(e) $\quad r$ NOT MATCHING (r NOT MATCHING r)
r (if the second operand of NOT MATCHING is empty, then the result is the first operand)

Is NOT MATCHING associative? Is it commutative?

Examples (d) and (e) above show that it is not associative. It is not commutative because the heading of the result is that of the first operand.
5. (Repeated from the body of the chapter) Which operator, in the list given in Section 4.11, Concluding

Remarks, can be dispensed with without sacrificing relational completeness? How can it be defined in terms of the other operators?

RENAME is redundant. r RENAME (a AS b) is equivalent to
(EXTEND r ADD ($a \operatorname{AS} b$)) \{ ALL BUT $a\}$

Download free eBooks at bookboon.com
6. (Repeated from the body of the chapter) Investigate the completeness of an algebra that includes MINUS in place of NOT MATCHING by attempting to define NOT MATCHING in terms of MINUS and the other operators.
$r 1$ NOT MATCHING $r 2$ is equivalent to r1 JOIN (r1 \{ c \} MINUS r2 $\{c\}$)
where c is a commalist of the names of the attributes common to $r 1$ and $r 2$. Therefore an algebra that contains the listed operators but with MINUS in place of NOT MATCHING is indeed relationally complete. Note that no harm is done to the given expression is c happens to be empty.
7. The chapter briefly mentions the operator MATCHING but defers its detailed description to Chapter 5. Before you read that chapter, define $r 1$ MATCHING $r 2$ in terms of the operators described in Chapter 4.
$r 1$ MATCHING $r 2$, which yields the relation consisting of those tuples of $r 1$ that match some tuple in $r 2$, is equivalent to

```
r1 JOIN ( r1 { c } JOIN r2 { c } )
```

where c is a commalist of the names of the attributes common to $r 1$ and $r 2$. It is also equivalent to

```
( r1 JOIN r2 ) { hr1 }
```

where $h r 1$ is a commalist of the names of the attributes of $r 1$.

Working with a Database in Rel

1. Start up Rel.

2. Figure 4.13 shows the supplier-and-parts database from Chris Date's Introduction to Database Systems (8th edition), as shown on the inside back cover of that book (except that the attribute names there are in upper case).

S	S\#	Sname	Status	City	SP	S\#	P\#	Qty
	S1	Smith	20	London		S1	P1	300
	S2	Jones	10	Paris		S1	P2	200
	S3	Blake	30	Paris		S1	P3	400
	S4	Clark	20	London		S1	P4	200
	S5	Adams	30	Athens		S1	P5	100
P						S1	P6	100
						S2	P1	300
						S2	P2	400
	P\#	Pname	Color	Weight	City	S3	P2	200
						S4	P2	200
	P1	Nut	Red	12.0	London	S4	P4	300
	P2	Bolt	Green	17.0	Paris	S4	P5	400
	P3	Screw	Blue	17.0	Oslo			
	P4	Screw	Red	14.0	London			
	P5	Cam	Blue	12.0	Paris			
	P6	Cog	Red	19.0	London			

Figure 4.13: The suppliers-and-parts database

Execute a Tutorial D VAR statement for each of S, P and SP. Use INTEGER as the declared type for STATUS and QTY, RATIONAL for WEIGHT, and CHAR for all the other attributes. Feel free to use lower case or mixed case to suit your own taste for attribute and relvar names, but do not otherwise change any of the given names.

Tutorial D requires at least one key constraint to be specified for each relvar. One key for each for S, P and SP is shown by underlining the relevant attribute names in the table. No other key constraints are needed.

```
VAR S BASE RELATION { S# CHAR, Sname CHAR,
    Status INTEGER, City CHAR}
    KEY { S# } ;
VAR P BASE RELATION { P# CHAR, Pname CHAR,
    Colour CHAR, Weight RATIONAL,
    City CHAR}
    KEY { P# } ;
VAR SP BASE RELATION {S# CHAR, P# CHAR, Qty INTEGER}
    KEY { S#, P# } ;
```

"Populate" (as they say) each relvar with the values shown in Date's tables. There are several ways of achieving this. Choose whichever you prefer from the following:
a.

Include an INIT (. .) specification in the VAR statement, after the heading and before the KEY specification. Inside the parens, write a RELATION \{ . . . \} expression, using a TUPLE expression for each required tuple, as in the enrolment literal used in the Rel exercises for Chapter 2.

```
VAR S BASE RELATION { S# CHAR, Sname CHAR,
    Status INTEGER, City CHAR}
KEY { S# }
INIT ( RELATION {
    TUPLE { S# 'S1', Sname 'Smith',
                                    City 'London',
                                    Status 20 },
    TUPLE { S# 'S2', etc. } }
) ;
```

b. Execute the VAR statement without an INIT (. .) specification. The implied initial value is the empty relation of the appropriate type. You can see this by asking Rel for the current value of the relvar. For example, to get the current value of S, just type S into the lower pane and click Run (F5).

Now use an assignment statement of the form

```
varname := relation-expression
```

to populate the relvar. Check that Rel has indeed assigned the correct value to it.

Empowering People. Improving Business.

BI Norwegian Business School is one of Europe's largest business schools welcoming more than 20,000 students. Our programmes provide a stimulating and multi-cultural learning environment with an international outlook ultimately providing students with professional skills to meet the increasing needs of businesses.

BI offers four different two-year, full-time Master of Science (MSC) programmes that are taught entirely in English and have been designed to provide professional skills to meet the increasing need of businesses. The MSc programmes provide a stimulating and multicultural learning environment to give you the best platform to launch into your career.

- MSc in Business
- MSC in Financial Economics
- MSC in Strategic Marketing Management
- MSC in Leadership and Organisational Psychology
www.bi.edu/master

```
S := RELATION {
    TUPLE { S# 'S1', Sname 'Smith',
                City 'London', Status 20 },
    TUPLE { S# 'S2', etc. } } ;
```

c. Use Rel INSERT statements to populate the relvar piecemeal, perhaps one tuple at a time. Having typed in the first INSERT statement. Here is the general form of an INSERT statement to insert a single tuple:

```
INSERT varname RELATION { TUPLE { ... } } ;
```

Note that the source operand is still a relation, not just a tuple, hence the need to enclose the TUPLE expression inside RELATION \{ \}.

INSERT S RELATION \{

```
TUPLE { S# 'S1', Sname 'Smith',
    City 'London', Status 20 } } ;
```

and repeat for each tuple to be inserted.
3. Informally, we refer to S as suppliers, P as parts and $S P$ as shipments. Predicates for these relvars are:

S: Supplier S\# is named Sname, has status Status and is located in city City.

P: Part P\# is named Pname, is coloured Color, weighs Weight and is located in city City.

SP: Supplier S\# ships part P\# in quantities of Qty.

What, then, is the predicate for the expression S JOIN $S P$ JOIN P ?

Supplier S\# is named Sname, has status Status and is located in city City and part $P \#$ is named Pname, is coloured Colour, weighs Weight and is located in city City and Supplier $S \#$ ships part $P \#$ in quantities of Qty.

What do you expect to be the result of that expression?

Rel gives this (with Enhanced not checked):

```
RELATION {S# CHAR, Sname CHAR, Status INTEGER, City CHAR, P# CHAR,
Qty INTEGER, Pname CHAR, Colour CHAR, Weight RATIONAL}
{ TUPLE {S# "S1", Sname "Smith", Status 20, City "London",
P# "P1", Qty 300, Pname "Nut", Colour "Red", Weight 12.0},
TUPLE {S# "S1", Sname "Smith", Status 20, City "London",
P# "P4", Qty 200, Pname "Screw", Colour "Red", Weight 14.0},
TUPLE {S# "S4", Sname "Clark", Status 20, City "London",
P# "P4", Qty 300, Pname "Screw", Colour "Red", Weight 14.0},
TUPLE {S# "S1", Sname "Smith", Status 20, City "London",
P# "P6", Qty 100, Pname "Cog", Colour "Red", Weight 19.0},
TUPLE {S# "S3", Sname "Blake", Status 30, City "Paris",
P# "P2", Qty 200, Pname "Bolt", Colour "Green", Weight 17.0},
TUPLE {S# "S2", Sname "Jones", Status 10, City "Paris",
P# "P2", Qty 400, Pname "Bolt", Colour "Green", Weight 17.0}
}
```

In tabular form (i.e., with Enhanced checked):

S\#	Sname	Status	City	P\#	Pname	Colour	Weight	Qty
S1	Smith	20	London	P1	Nut	Red	12.0	300
S1	Smith	20	London	P4	Screw	Red	14.0	200
S2	Jones	10	Paris	P2	Bolt	Green	17.0	400
S3	Blake	30	Paris	P2	Bolt	Green	17.0	200
S4	Clark	20	London	P4	Screw	Red	14.0	300
S1	Smith	20	London	P6	Cog	Red	19.0	100

What is its degree? 9 (the number of attributes)

Does Rel give the result you expected? Explain what you see.
S and P both have an attribute named City, so this is a common attribute for matching purposes, as well as S\# and P\#. Note the two appearances of City in the predicate for the join. They must both stand for the same city.
4. Attempt to insert a tuple into SP with supplier number S1, part number P1 and quantity 100. Explain the result of your attempt.

Rel gives this:

```
INSERT SP RELATION { TUPLE { S# 'S1', P# 'P1',Qty 200 } } ;
ERROR: Inserting tuple would violate uniqueness
constraint of KEY {S#, P#}
Line 1, column 62 near '100'
```

The declaration of relvar SP includes the specification KEY \{S\#, P\# \}, which means the same as, for example:

```
CONSTRAINT SPkey COUNT(SP{S#,P#})=COUNT(SP);
```

In other words, the cardinality of SP must always be the same as that of its projection over S\# and P\#. In other words, for any given combination of $\mathrm{S} \#$ and $\mathrm{P} \#$ values, there must be at most one tuple in SP . Successful insertion of TUPLE \{ S\# 'S1', P\# 'P1', Qty 200 \} would have resulted in SP containing two tuples with $\mathrm{S} \#=\mathrm{S}^{\mathrm{S}}$ ' and $\mathrm{P} \#=$ 'P1', thus violating the constraint.

Need help with your dissertation?

Get in-depth feedback \& advice from experts in your topic area. Find out what you can do to improve the quality of your dissertation!

Get Help Now

5. Get Rel to evaluate each of the following expressions. For each one, write down the corresponding predicate and also give an informal interpretation of the query in the style of those given in Exercise 6 below.
a. SP WHERE P\# = 'P2'

Supplier $S \#$ ships part $P \#$ in quantities of $Q t y$ and $P \#$ is P 2 .

Note that although we have fixed the value for P\#, we haven't actually substituted P2 for $P \#$ in the predicate!

Get shipments of part P2.
b. S \{ ALL BUT Status \}

There exists a status Status such that supplier S\# is named Sname, has status Status and is located in city City.

Get all information about suppliers, apart from their status.
c. $S P$ \{ S\#, Qty \}

There exists a part number $P \#$ such that Supplier $S \#$ ships part $P \#$ in quantities of Qty.

For each supplier, get the various quantities used for shipments.
d. P NOT MATCHING (SP WHERE $\mathrm{S} \#=\mathrm{S}=\mathrm{S} \mathrm{I}^{\prime}$)

Supplier S\# is named Sname, has status Status and is located in city City and there exists a quantity Qty such that $S \#$ ships part P 2 in quantities of Qty.

In these predicates the parameters (free variables) are shown in bold to distinguish them from the bound variable Qty. Qty is bound by use of the quantifier, "there exists". You can use the more formal mathematical notation for existential quantification if you prefer:
$\exists Q t y$ (Supplier $S \#$ is named Sname, has status Status and is located in city City and $S \#$ ships part P2 in quantities of $Q t y$)

Get suppliers who supply part P2.
e. S MATCHING (SP WHERE P\# = 'P2')

Part P\# is named Pname, is coloured Colour, weighs Weight and is located in city City and there does not exist a quantity Qty such that supplier S 2 ships $P \#$ in quantities of $Q t y$.

Get parts that supplier S2 cannot supply.
f. S City \} UNION P \{ City \}

There exist a supplier number $S \#$, a name Sname, and a status Status such that Supplier $S \#$ is named Sname, has status Status and is located in city City, or there exist a part number P\#, a name Pname, a colour Colour, and a weight Weight such that part P\# is named Pname, is coloured Colour, weighs Weight and is located in city City.
or, if you prefer,
$\exists S \# \exists$ Sname \exists Status (supplier S\# is named Sname, has status Status and is located in city City) $\vee \exists P \#$ \exists Pname \exists Colour \exists Weight (part P\# is named Pname, is coloured Colour, weighs Weight and is located in city City)

Note the use of \vee to signify disjunction ("or").

Get cities where either a supplier or a part is located.
g. S \{ City \} MINUS P \{ City \}

There exist a supplier number S\#, a name Sname, and a status Status such that Supplier S\# is named Sname, has status Status and is located in city City, and there do not exist a part number P\#, a name Pname, a colour Colour, and a weight Weight such that part P\# is named Pname, is coloured Colour, weighs Weight and is located in city City.

Get cities where a supplier is located but no part is located.
h. ((S RENAME (City AS SC)) \{ SC \}) JOIN
((P RENAME (City AS PC)) \{ PC \})

There exist a city City, a name Sname, a status Status, a name Pname, a colour Colour, and a weight Weight such that Supplier S\# is named Sname, has status Status and is located in city City, and part $P \#$ is named Pname, is coloured Colour, weighs Weight and is located in city City.

Sometimes it seems impossible to write an informal interpretation without having recourse to the kind of variable symbols we use in predicates. Hence:

Get $<S \#, P \#>$ pairs such that supplier $S \#$ and part $P \#$ are located in the same city.
6. Write Tutorial D expressions for the following queries and get Rel to evaluate them:
a. Get all shipments.

SP
b. Get supplier numbers for suppliers who supply part P1.

```
S MATCHING ( SP WHERE P# = 'P1' ) { S# }
```

c. Get suppliers with status in the range 15 to 25 inclusive.

```
S WHERE Status > 14 AND Status < 26
```

d. Get part numbers for parts supplied by a supplier in Paris.
(SP JOIN (S WHERE City = 'Paris')) \{ P\# \}

e. Get part numbers for parts not supplied by any supplier in Paris.

```
P { P# } NOT MATCHING
    ( SP JOIN ( S WHERE City = 'Paris' ) )
```

f. Get city names for cities in which at least two suppliers are located.

```
( ( S {S#, City} RENAME(S# AS S#1)
    JOIN
    S {S#, City} RENAME(S# AS S#2) )
    WHERE S#1 < S#2 ) {City}
```

or you can use SUMMARIZE:

```
( ( SUMMARIZE S PER ( S { City } )
    ADD ( COUNT() AS No_of_Supps ) )
WHERE No_of_Supps > 1 ) { City }
```

g. Get all pairs of part numbers such that some supplier supplies both of the indicated parts.

```
( ( SP { S#, P# } RENAME ( P# AS Px ) )
    JOIN
    ( SP { S#, P# } RENAME ( P# AS Py ) )
) { Px, Py } WHERE Px < Py
```

The final restriction is optional. It assumes that only pairs of distinct part numbers are required, and that we do not want the result to include both TUPLE \{ PX px, PY py \} and TUPLE \{ PX py, PY $p x$ \} for any ($p x, p y$).
h. Get supplier numbers for suppliers with a status lower than that of supplier S1.

```
( S JOIN ( ( ( S WHERE S# = 'S1' ) { Status }
    RENAME ( Status AS S1_Status )
    )
        )
    WHERE Status < S1_Status
) { S# }
```

i. Get supplier-number/part-number pairs such that the indicated supplier does not supply the indicated part.
(S \{ $\mathrm{S} \#$ \} JOIN P \{ $\mathrm{P} \# \mathrm{\}}$) NOT MATCHING SP

2.5 Exercises for Chapter 5, Building on The Foundation

1. (Repeated from the body of the chapter) What can you say about the result of $r 1$ COMPOSE $r 2$ when $r 1$ and $r 2$ have identical headings? For example, what is the result of IS_CALLED COMPOSE IS_CALLED?

The result is a relation of degree zero: TABLE_DEE if some tuple in $r 1$ matches some tuple in $r 2$, otherwise TABLE_DUM. All attributes are common and common attributes do not appear in the result. When $r 1=r 2$, the result is TABLE_DUM if and only if $r l$ is empty.
2. (Repeated from the body of the chapter) Is COMPOSE associative? In other words, is ($r 1$ COMPOSE $r 2$) COMPOSE $r 3$ equivalent to $r 1$ COMPOSE ($r 2$ COMPOSE $r 3$)? If so, prove it; if not, show why.

It is not associative. For let $r 1, r 2$, and $r 3$ be defined as follows:

```
r1 = RELATION {TUPLE { X 2 } }
r2 = RELATION {TUPLE { X 1 } }
r3 = r2
```

Then $r 1$ COMPOSE $r 2$ yields TABLE_DUM and TABLE_DUM COMPOSE $r 3$ yields the empty relation with heading the heading of $r 3$. However, $r 2$ COMPOSE $r 3$ yields TABLE_DEE and $r 1$ COMPOSE TABLE_DEE clearly yields $r 1$, which is not empty.
3. What can you say about the result of $r 1$ MATCHING ($r 2$ MATCHING $r 1$)?

The expression is equivalent to $r 1$ MATCHING $r 2$. The result of ($r 2$ MATCHING $r 1$) contains exactly those tuples of $r 2$ that match some tuple in $r 1$. The loss of the unmatched tuples of $r 2$ has no effect on the final result.
4. (Repeated from the body of the chapter) Does the aggregate operator AVG have a basis operator? If so, define it.

No. However, the average of a list of values $x_{1}, \ldots, x_{n}(n \geqslant 1)$, can be computed iteratively, as opposed to computing their sum and dividing by the number of elements, by letting T be the tuple TUPLE\{X $0, N 0\}$ and then, for $i=1: n$, replacing T by the tuple TUPLE $\left\{\mathrm{X}\left(\begin{array}{l}\mathrm{X} \\ \mathrm{FROM} \\ \mathrm{T}\end{array}\right)+x_{i}\right) / \mathrm{N}$ FROM $\left.\left.T\right), \mathrm{N} i\right\}$. Then the final result is given by X FROM T.

In other words, AVG per se does not have a basis operator, but an aggregate operator that yields a 2 -tuple giving the required average along with the number of elements contributing to that average, does have a basis operator, as defined.
5. Suppose an aggregate operator PRODUCT is defined, with arithmetic multiplication as its basis operator. What is the result of $\operatorname{PRODUCT}(r, x)$ if r is empty?

1 , because 1 is the identity value under multiplication $\left(\forall x, x=x^{*} 1\right)$.
6. (Repeated from the body of the chapter) Is it always the case that the cardinality of an ungrouping is equal to the sum of the cardinalities of the relations being ungrouped on?

No. For let $r l$ be

```
RELATION { TUPLE { X RELATION { TUPLE { Y 1 },
    TUPLE { Y 2 } } },
    TUPLE { X RELATION { TUPLE { Y 1 } } } }
```

Then the sum of the cardinalities of the X values in $r 1$ is $2+1=3$, whereas the result of $r 1$ UNGROUP (X) is

```
RELATION { TUPLE { Y 1 },
    TUPLE { Y 2 } }
```

whose cardinality is just 2. The tuple TUPLE \{ Y 1 \} appears in both X values but only once (of course!) in the result of the ungrouping.
7. Write Tutorial \mathbf{D} expressions for the following queries and get Rel to evaluate them:
a. Get the total number of parts supplied by supplier S1.

COUNT (SP WHERE S\# = 'S1')

But that expression yields a scalar value. To obtain the result in the form of a relation, one could write, for example,

RELATION \{ TUPLE \{ Parts_from_S1 COUNT (SP WHERE S\# =
'S1') \} \}
or

```
SUMMARIZE ( SP WHERE S# = 'SI' )
    PER ( TABLE_DEE )
    ADD ( COUNT() AS Parts_from_S1 )
```

b. Get supplier numbers for suppliers whose city is first in the alphabetic list of such cities.

```
( S WHERE City = MIN ( S, City ) ) { S# }
```

c. Get part numbers for parts supplied by all suppliers in London.

```
WITH ( S WHERE City = 'London' ) AS LS ,
    ( SP RENAME ( P# AS X ) ) AS T :
( P WHERE (
    ( T WHERE X = P# ) {S# } ) >= (LS {S# } )
{ P# }
```

Note the use of relation comparison ($>=$ is Rel's notation for Tutorial D's \supseteq, "is a superset of"). Use of WITH is optional, of course. You might come up with a different solution, but does it address the possibility of there being no suppliers at all in London?

Alternatively, just using the operators of the algebra:

```
WITH ( S WHERE City = 'London' ) AS LonSupp,
    ( LonSupp{S#} JOIN P ) AS LonSuppWithAllParts,
    ( LonSuppWithAllParts NOT MATCHING SP ) AS
                                    PartNotSuppliedByLonSupp :
P{P#} NOT MATCHING PartNotSuppliedByLonSupp
```

The second line pairs every London supplier's supplier number with every part number. The next two lines find (S\#,P\#) pairs such that London supplier S\# doesn't supply part P\#. The last line find part numbers that that aren't part numbers of parts not supplied by some London supplier. Unravelling the double negative makes that mean part numbers of parts supplied by every London supplier. Note how the use of relation comparison in the first solution avoids this double negative.
d. Get supplier numbers and names for suppliers who supply all the purple parts.

```
WITH
    EXTEND S ADD
    ( (SP JOIN RELATION { TUPLE { S# S#} } ){P#}
                AS Parts_Supplied ) AS t1,
    t1 WHERE Parts_Supplied >=
        ( ( P WHERE Colour = 'Purple' ) {P#} ) AS t2 :
t2 { S#, Sname }
```

An alternative solution in the style of the alternative given for 7 c . is available here too.
e. Get all pairs of supplier numbers, $S x$ and $S y$ say, such that $S x$ and $S y$ supply exactly the same set of parts each.

The following solution, using relation comparison, appeals directly to the exercise's "the same set":

```
WITH
    ( S RENAME ( S# AS SX ) ) AS RX ,
    ( S RENAME ( S# AS SY ) ) AS RY :
( ( RX JOIN RY ) WHERE
    ( ( SP WHERE S# = SX ) { P# } )
    =( ( SP WHERE S# = SY ) { P# } )
) { SX, SY } WHERE SX < SY
```

Note the importance of referencing S and not $S P$ in the definitions of $R X$ and $R Y$. If we reference $S P$ we might miss suppliers who supply no parts at all.

The final restriction is optional-see Exercise 6, part g, in the solutions to the exercise for Chapter 4.
f. Write a truth-valued expression to determine whether all supplier names are unique in S .

```
COUNT(S) = COUNT(S{Sname})
```

g. Write a truth-valued expression to determine whether all part numbers appearing in SP also appear in P .

```
P{P#} \supseteq SP{P#}
```

In Rel, of course, you write $>=$ instead of \supseteq.

2.6 Exercises for Chapter 6, Constraints and Updating

1. (Repeated from the body of the chapter).
a) An implication of KEY \{ ALL BUT \} is that no other key can possibly exist for the relvar it applies to. Why is this so?

The specification $\{$ ALL BUT \} denotes all the attributes-the entire heading-of the relevant relvar. Thus, any additional key must be a proper subset of that heading. But by definition no proper subset of a key is a key (the so-called irreducibility property).
b. An implication of KEY \{ \} is that no other key can possibly exist for the relvar it applies to. Why is this so?

The specified key is the empty set. Any additional key must be nonempty (there is only one empty set) and therefore a proper superset of the specified key. But a proper superset of a key is by definition not a key (though it is a superkey).
2. Suppose the relvar definition for COURSE is extended to include an attribute MaxExamMark, whose value in each tuple is the maximum mark obtainable for that course's exam. \{StudentId, CourseId\} is a foreign key in EXAM_MARK, referencing COURSE. A constraint is needed to ensure that no student is awarded a mark greater than the relevant maximum.
a. Write a Tutorial D CONSTRAINT statement to address this requirement, where the constraint condition is an invocation of IS_EMPTY.

```
CONSTRAINT MarkAcceptable
    IS_EMPTY ( ( EXAM_MARK JOIN COURSE )
    WHERE Mark > MaxExamMark ) ;
```

b. Complete the following statement to make it equivalent to the one you wrote for part (a):

CONSTRAINT ... AND (EXAM_MARK, ...) ;

```
CONSTRAINT MarkAcceptable AND(EXAM_MARK,
Mark <= ( MaxExamMark FROM TUPLE FROM
COURSE_EXAM RENAME (CourseId AS C )
WHERE C = CourseId ) );
```

but the question is a little unfair because of course one would prefer to write

```
CONSTRAINT MarkAcceptable AND(EXAM_MARK JOIN COURSE,
    Mark <= MaxExamMark ) ;
```

3. Now suppose that instead of there being a recorded maximum mark of each exam the maximum score for each question in each exam is recorded in the following relvar:
```
VAR EXAM_QUESTION BASE RELATION { CourseId CID,
    Question# INTEGER, MaxMark INTEGER }
    KEY { CourseId, Question# } ;
```

For each course, the exam questions are supposed to be numbered sequentially, starting at 1 .
a. Write a Tutorial D CONSTRAINT statement to address this requirement.

The constraint is satisfied so long as each question number is between 1 and the number of tuples in EXAM_QUESTION for the relevant course:

```
CONSTRAINT QuestionNumbersAcceptable
AND ( EXAM QUESTION, Question# >= 1 AND Question# <=
    COUNT ( EXAM_QUESTION RENAME ( CourseId AS C )
        WHERE CourseId = C ) )
```

b. Suppose the questions are subdivided into parts, $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and so on, up to a maximum of six parts, and maximum marks are given for each part rather than for each question. Again, the parts for each question must be "numbered" sequentially, starting at a. Write a Tutorial D CONSTRAINT statement to address this requirement.

Assuming the new attribute is named Part, I use a join with a relation literal to map the letters $\mathrm{a}, \mathrm{b}, \mathrm{c}$, d, e, f to $1,2,3,4,5,6$, respectively:

CONSTRAINT PartNumbersAcceptable

```
WITH RELATION { TUPLE { Part 'a', PN 1 },
```

 TUPLE \{ Part 'b', PN 2 \},
 TUPLE \{ Part 'c', PN 3 \},
 TUPLE \{ Part 'd', PN 4 \},
 TUPLE \{ Part 'e', PN 5 \},
 TUPLE \{ Part 'f', PN 6 \} \} AS AN :
 AND (EXAM_QUESTION JOIN AN, PN >= 1 AND PN <=
COUNT (EXAM_QUESTION RENAME (CourseId AS C,
Question \# AS Q)
WHERE CourseId = C AND Question\# = Q)) ;

"I studied

 English for 16 years but... ...I finally learned to speak it in justJane, Chinese architect
c. Devise shorthands, in the style of Tutorial D, for expressing constraints of the kinds found in your solutions to a . and b .

The requirement for monotonically increasing serial "numbers" arises quite commonly. Usually, the attribute(s) in question are members of some key of the relevant relvar, and the numbering is "within" other elements of the same key. For example, in part b. of the present exercise question parts are numbered within question number and course id, by which we mean that in the set of tuples having the same CourseId and Question\# values, Part values range from 'a' to the letter corresponding to the cardinality of that set (e.g., 'e' if there are five such tuples). Similarly, questions are numbered within course id and part, meaning that in the set of tuples having the same CourseId and Part values, Question\# values range from 1 to the cardinality of that set.

In general, we probably want our shorthand to allow the starting value and increment each to be something other than 1, if desired. The key words WITHIN, FROM and BY suggest themselves for such specifications, and perhaps the operator name SERIAL can be used to identify the kind of shorthand we are after. Typically the constraint applies to just a single relvar but we will allow it to be applied to a relational expression, if only to support mappings such as the one used in the solution to part b.

So, here is a suggested syntax for a truth-valued operator named SERIAL, in the style of Tutorial D:

```
IN ( <relation exp> )
        SERIAL <attribute ref>
    [ WITHIN { <attribute ref commalist> } ]
    [ FROM <integer exp> ]
    [ BY <integer exp> ]
```

The WITHIN specification defaults to WITHIN $\}$ and the two <integer exp>s both default to 1 . So constraints required for question numbers and part numbers would be expressed as follows:

```
CONSTRAINT QuestionNumbersAcceptable
IN ( EXAM_QUESTION )
    SERIAL Question# WITHIN { CourseId, Part } ;
```

```
CONSTRAINT PartNumbersAcceptable
WITH RELATION { TUPLE { Part 'a', PN 1 },
    TUPLE { Part 'b', PN 2 },
    TUPLE { Part 'c', PN 3 },
    TUPLE { Part 'd', PN 4 },
    TUPLE { Part 'e', PN 5 },
    TUPLE { Part 'f', PN 6 } } AS AN :
IN ( EXAM_QUESTION JOIN AN )
    SERIAL PN WITHIN { CourseId, Question# } ;
```

Note that the suggested IN syntax might be used for other kinds of constraint shorthands too, for there is always going to be <relation exp>t to which the desired constraint is to be applied. Moreover, when the constraint applies to a simple relvar, as in QuestionNumbersAcceptable, the constraint could perhaps be specified, minus the IN specification, within the declaration of that relvar, as with KEY constraints in Tutorial D.
4. Using Rel, with the suppliers-and-parts database set up for the Rel exercises given at the end of Chapter 4, write Tutorial D integrity constraints to express the following requirements:
a.

Every shipment tuple must have a supplier number matching that of some supplier tuple.

CONSTRAINT Ca IS_EMPTY (SP NOT MATCHING S) ;

Relation comparison could alternatively be used:

```
CONSTRAINT Ca ( SP { S# } ) <= ( S { S# } ) ;
```

but note the need to state the matching attribute name explicitly-this might be thought to be an advantage or a disadvantage. The first solution is neat and immune to changes in attribute names, but exposed to the possibility of inappropriately chosen attribute names. The second solution is exposed to the possible change in name of the $\mathrm{S} \#$ attributes but is immune to all other attribute name changes. A compromise could be:

```
CONSTRAINT Ca IS_EMPTY ( SP { S# } NOT MATCHING S ) ;
```

b. Every shipment tuple must have a part number matching that of some part tuple.

```
CONSTRAINT Cb IS_EMPTY ( SP NOT MATCHING P ) ;
```

c. All London suppliers must have status 20 .

```
CONSTRAINT Cc IS_EMPTY
    ( S WHERE City = 'London' AND Status <> 20 ) ;
```

d. No two suppliers can be located in the same city.

Add the following to the declaration of the relvar S :

```
KEY { CITY }
or
CONSTRAINT Cd
    COUNT ( S { City } ) = COUNT ( S ) ;
```

e. At most one supplier can be located in Athens at any one time.

```
CONSTRAINT Ce
    COUNT ( S WHERE City = 'Athens' ) <= 1 ;
```


f. There must exist at least one London supplier.

```
CONSTRAINT Cf
    COUNT ( S WHERE City = 'London' ) > 0 ;
```

g. The average supplier status must be at least 10 .

One is tempted to write something like

```
CONSTRAINT Cg
    AVG ( S, Status ) >= 10.0 ;
```

but AVG is undefined on the empty set. If it is permissible for S to be empty, we could write

```
CONSTRAINT Cg
    AVG ( S { S#, Status }
        UNION
        RELATION { TUPLE { S# 'S1', Status 10 } } ,
        Status ) >= 10.0 ;
```

but not

CONSTRAINT Cg
IS_EMPTY (S) OR AVG (S, Status) >= 10.0 ;
because Tutorial D assumes that (a) operands of OR can be evaluated in either order and (b) the system is permitted to evaluate both operands even when it has discovered one of them to be TRUE.
h. Every London supplier must be capable of supplying part P2.

```
CONSTRAINT Ch IS_EMPTY (
    ( S WHERE City = 'London' ) NOT MATCHING
    ( SP WHERE P# = 'P2' ) )
```


2.7 Exercises for Chapter 7, Database Design I: Projection-Join Normalization

1. (Repeated from the body of the chapter). The predicate for WIFE_OF_HENRY_VIII is "The first name of the Wife\#-th wife of Henry VIII is FirstName and her last name is LastName and Fate is what happened to her." Write an appropriate predicate for the following expression:
```
WIFE_OF_HENRY_VIII { Wife#, FirstName }
JOIN
WIFE_OF_HENRY_VIII { LastName, Fate }
```

Note that the join is a Cartesian product-there are no common attributes. So the LastName and Fate values in a given tuple do not necessarily represent the last name and fate of the wife identified by the Wife\# value. Bearing that in mind, the predicate must be something like this:

FirstName is the first name of wife number Wife\# and LastName and Fate are the last name and fate, respectively, of some wife.

But "some wife" is not very precise. To clarify, we need to write

FirstName is the first name of wife number Wife \# and there exists a wife number W \# such that LastName and Fate are the last name and fate, respectively, of wife W\#.
2. Consider the following declarations:

```
VAR C1_EXAM_MARK BASE
    INIT ( EXAM_MARK WHERE CourseId = CID('C1') )
        KEY { StudentId } ;
CONSTRAINT C1_only
    AND ( C1_EXAM_MARK, CourseId = CID('C1') ) ;
```

(Recall that AND is the aggregate operator mentioned in Chapter 5, evaluating to TRUE if and only if the given condition evaluates to TRUE for every tuple of the given relation.)
a. Explain why C1_EXAM_MARK is not in BCNF.

Because CourseId necessarily has the same value in every tuple of C1_EXAM_MARK, the nontrivial FD $\} \rightarrow\{$ CourseId $\}$ holds. The determinant of this FD, being the empty set, is a proper subset of the declared key, $\{$ StudentId $\}$ and is therefore not a superkey. BCNF requires the determinant of every nontrivial FD to be a superkey.
b. Assume that similar relvars are defined for every course, except that this time there are no CourseId attributes. Describe how a query could be expressed to give the course identifier and mark for every exam taken by student S 1 .

```
EXTEND C1_EXAM_MARK WHERE StudentId = 'S1'
                                    ADD ( 'C1' AS CourseId )
UNION
EXTEND C2_EXAM_MARK WHERE StudentId = 'S'
    ADD ( 'C2' AS CourseId )
UNION
EXTEND C3_EXAM_MARK WHERE StudentId = 'S1'
    ADD ( 'C3' AS CourseId )
... (and so on, for each course)
{ CourseId, Mark }
```

3. In Section 7.5 of the chapter, under the heading Functional Dependencies, the following eight theorems are given concerning FDs.
4. Reflexivity: If B is a subset of A, then $A \rightarrow B$
5. Augmentation: If $A \rightarrow B$, then $A \cup C \rightarrow B \cup C$
6. Transitivity: If $A \rightarrow B$ and $B \rightarrow C$, then $A \rightarrow C$
7. Self-determination: $A \rightarrow A$
8. Decomposition: If $A \rightarrow B$ and C is a subset of B, then $A \rightarrow C$ and $A \rightarrow B-C$
9. Union: If $A \rightarrow B$ and $A \rightarrow C$, then $A \rightarrow B \cup C$
10. Composition: If $A \rightarrow B$ and $C \rightarrow D$, then $A \cup C \rightarrow B \cup D$
11. Unification: If $A \rightarrow B$ and $C \rightarrow D$, then $A \cup(C-B) \rightarrow B \cup D$

Taking the first three as axioms, prove theorems 4 to 8 .
4. Self-determination: $A \rightarrow A$

This follows immediately from Theorem 1, Reflexivity, as every set is a subset of itself.
5. Decomposition: If $A \rightarrow B$ and C is a subset of B, then $A \rightarrow C$ and $A \rightarrow B-C$

1. C is a subset of $B \quad$ (given)
2. $\quad B \rightarrow C \quad$ (1, reflexivity)
3. $A \rightarrow B \quad$ (given)
4. $\quad A \rightarrow C \quad(3,2$, transitivity $)$.
5. $A \rightarrow B-C \quad$ (3, reflexivity)
6. Union: If $A \rightarrow B$ and $A \rightarrow C$, then $A \rightarrow B 4 C$
7. $A \rightarrow B$
(given)
8. $A \cup A \rightarrow A \cup B \quad$ (1, augmentation)
9. $A \rightarrow A \cup B$
$(2, A \cup A=A)$
10. $\quad A \rightarrow C$
(given)

11. $A \cup B \rightarrow B \cup C \quad$ (4, augmentation)
12. $\quad A \rightarrow B 4 C \quad(3,5$, transitivity $)$
13. Composition: If $A \rightarrow B$ and $C \rightarrow D$, then $A \cup C \rightarrow B \cup D$
14. $A \rightarrow B$
(given)
15. $A \cup C \rightarrow B \cup C \quad$ (1, augmentation)
16. $\quad B \rightarrow D$
(given)
17. $\quad B \cup C \rightarrow C \cup D \quad$ (3, augmentation)
18. $B \cup C \rightarrow D \quad$ (4, decomposition)
19. $B \cup B \cup C \rightarrow B \cup D$ (5, augmentation)
20. $B \cup C \rightarrow B \cup D \quad$ (6, simplification)
21. $\quad A \cup C \rightarrow B \cup D \quad(2,7$, transitivity)
22. Unification: If $A \rightarrow B$ and $C \rightarrow D$, then $A \cup(C-B) \rightarrow B \cup D$
23. $A \rightarrow B$
(given)
24. $C \rightarrow D$
(given)
25. $A \rightarrow B \cap C \quad$ (1, decomposition)
26. $C-B \rightarrow C-B \quad$ (self-determination)
27. $A \cup(C-B) \rightarrow(B \cap C) \cup(C-B)$ (3, augmentation)
28. $A \cup(C-B) \rightarrow C \quad(5$, simplification $)$
29. $A \cup(C-B) \rightarrow D \quad(6,2$, transitivity $)$
30. $\quad A \cup(C-B) \rightarrow B \cup D(6,7$, union $)$
31. (Repeated from the body of the chapter). Consider relvar SCDF with attributes S (for student), C (for course), D (for department), and F (for faculty). Assuming that the set $\{\{C\} \rightarrow\{D\},\{D\} \rightarrow\{F\}\}$ is a minimal cover for the FDs in SCDF, prove that $\{S, C\}$ is a key of SCDF .

1.	$\{C\} \rightarrow\{D\}$	(given)
2.	$\{S, C\} \rightarrow\{S, D\}$	(1, augmentation)
3.	$\{D\} \rightarrow\{F\}$	(given)
4.	$\{C\} \rightarrow\{F\}$	$(1,3$, transitivity)
5. $\quad\{S, C\} \rightarrow\{S, F\}$	(4, augmentation)	
6. $\quad\{S, C\} \rightarrow\{S, D, F\}$	$(2,6$, union)	
7. $\quad\{S, C\} \rightarrow\{S, C, D, F\}$	$(6$, augmentation)	
So $\{S, C\}$ is a superkey (7).		

To prove that $\{S, C\}$ is a key it remains to show that neither $\{S\}$ nor $\{C\}$ is a key.
8. In the given cover $\{\{C\} \rightarrow\{D\},\{D\} \rightarrow\{F\}\}, S$ is not a member of any determinant, so we cannot conclude, for example, that $\{S\} \rightarrow\{F\}$. Therefore $\{S\}$ is not a superkey.
9. In the given cover $\{\{C\} \rightarrow\{D\},\{D\} \rightarrow\{F\}\}, S$ is not a member of any dependant, so we cannot conclude, for example, that $\{C\} \rightarrow\{S\}$. Therefore $\{C\}$ is not a superkey.

So $\{S, C\}$ is a key $(8,9)$.
5. (Repeated from the body of the chapter). Assume that $\{\{\mathrm{W}, \mathrm{X}\} \rightarrow\{\mathrm{Y}, \mathrm{Z}\},\{\mathrm{Y}\} \rightarrow\{\mathrm{X}\}\}$ is a minimal cover for the FDs in relvar $W X Y Z$. Prove that $\{W, X\}$ and $\{W, Y\}$ are both keys of $W X Y Z$.
$\begin{array}{lll}\text { 1. } & \{W, X\} \rightarrow\{\mathrm{Y}, \mathrm{Z}\} & \text { (given) } \\ \text { 2. } & \{\mathrm{W}, \mathrm{X}\} \rightarrow\{\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}\} & \text { (1, augmentation, simplification) }\end{array}$

So $\{W, X\}$ is a superkey (2).
3. $\{Y\} \rightarrow\{X\} \quad$ (given)
4. $\quad\{W, Y\} \rightarrow\{X, Y, Z\} \quad(3,1$, unification $)$

$$
\text { 5. } \quad\{W, Y\} \rightarrow\{W, X, Y, Z\} \quad \text { (4, augmentation, simplification) }
$$

So $\{W, Y\}$ is a superkey (5).
6. From the given FDs we cannot conclude $\{W\} \rightarrow\{X\}$, or $\{X\} \rightarrow\{Z\}$, or $\{Y\} \rightarrow\{W\}$, for example, from which it follows that none of $\{\mathrm{W}\},\{\mathrm{X}\}$, and $\{\mathrm{Y}\}$ is a superkey, from which it follows in turn that each of the superkeys $\{\mathrm{W}, \mathrm{X}\}$ and $\{\mathrm{W}, \mathrm{Y}\}$ is indeed a key.
6. The heading of relvar R1 consists of attributes named a, b, c, d, e, f, g, and h. The following set of FDs is a cover for those that hold in R1:

FD1: $\quad\{a, b\} \rightarrow\{c\}$

FD2: $\quad\{a, b\} \rightarrow\{d\}$

FD3: $\{b\} \rightarrow\{e\}$

FD4: $\{\mathrm{c}\} \rightarrow\{\mathrm{f}\}$

FD5: $\quad\{g\} \rightarrow\{h\}$

a. Describe the single change required to derive an irreducible cover from the given set.

We can delete the attribute e from the dependant of FD6. This is because from FD6 we have $\{d\} \rightarrow$ $\{b\}$, from FD3 $\{b\} \rightarrow\{e\}$, from which $\{d\} \rightarrow\{e\}$ follows by transitivity.
b. Describe the single change required to derive a minimal cover from your answer to a.

FD1 and FD2 Applying Theorem 6, Union to FD1 and FD2 we obtain the single FD $\{a, b\} \rightarrow$ $\{c, d\}$, from which both FD1 and FD2 can be derived by Theorem 5, Decomposition.
c. Explain why R1 is not in Boyce-Codd normal form (BCNF).

BCNF requires the determinant of every nontrivial FD to be a superkey. From the given nontrivial FDs that hold in R1 we can see several whose determinants are not superkeys. For example, consider FD5 $\{g\} \rightarrow\{h\}$, As neither g nor h appears in any other given FDs, we cannot conclude that $\{g\}$ is a determinant for any attribute apart from itself and h, so $\{g\}$ is not a superkey.
d. Decompose R1 into an equivalent set of BCNF relvars. Name your relvars R2, R3, and so on and for each one list its attribute names and state its $\operatorname{key}(s)$. For example: $\operatorname{R3}\{c, d, e\} \operatorname{KEY}\{d\}$ $\operatorname{KEY}\{c, e\}$ if you think this relvar with those two keys is part of the solution.

```
R2{g,h} KEY {g}
R3{d,b} KEY {d}
R4{b,e} KEY {b}
R5{c,f} KEY {c}
R6{a,b,g} KEY{a,b,g}
R7{a,c,d} KEY{a,d}
```

Note that the decomposition loses FD2 $\{a, b\} \rightarrow\{d\}$, so we would need an additional constraint to the effect that $\{a, b\}$ is a key for R7 JOIN R3.
7. Exercise not repeated here.

In the solutions below the VAR and CONSTRAINT statements are shown below relevant business rule(s). Sometimes the same business rule appears more than once, meaning that the statement(s) shown below it only partially address it.

First, using Option 1 as described in Section 8.4:

BR1:

```
VAR customer BASE RELATION { Customer# CHAR,
                                    Name CHAR,
                                    Address CHAR }
KEY { Customer# } ;
```

BR2:

VAR cust email BASE RELATION \{ Customer\# CHAR, EmailAddr CHAR \}

KEY \{ Customer\# \} ;

```
CONSTRAINT FK_for_cust_email
    IS_EMPTY ( cust_email NOT MATCHING customer ) ;
```

BR3:

VAR phone type BASE RELATION \{ Phone\# CHAR, PhoneType CHAR \} KEY \{ Phone\# \} ;

CONSTRAINT HorBorM AND (phone type,
PhoneType = 'home' OR
PhoneType = 'business' OR
PhoneType = 'mobile') ;

BR4:

VAR cust phone BASE RELATION \{ Customer\# CHAR, Phone\# CHAR \}

KEY \{ ALL BUT \} ;

Note that inclusion of a type attribute in cust_phone would violate BCNF because of the FD $\{$ Phone\# $\} \rightarrow\{$ PhoneType $\}$

```
CONSTRAINT at_most_one_phone_per_type
    WITH cust_phone JOIN phone_type AS CPT :
        COUNT ( CPT ) =
        COUNT ( CPT { Customer#, PhoneType } ) ;
```


BR5:

VAR account BASE RELATION \{ Account\# CHAR,

> Customer\# CHAR,

AccountType CHAR, DateOpened DATE \}

KEY \{ Account\# \} ;

BR6:

CONSTRAINT FK_for_account
IS_EMPTY (account NOT MATCHING customer) ;

BR13:

VAR debit_card BASE RELATION \{ Card\# CHAR,
Account\# CHAR, Holder CHAR, Expires DATE \} KEY \{ Card\# \} ;

```
CONSTRAINT FK_for_debit_card
IS_EMPTY ( debit_card NOT MATCHING account ) ;
```


CHALLENGING.PERSPECTIVES

Internship opportunities

EADS unites a leading aircraft manufacturer, the world's largest helicopter supplier, a global leader in space programmes and a worldwide leader in global security solutions and systems to form Europe's largest defence and aerospace group. More than 140,000 people work at Airbus, Astrium, Cassidian and Eurocopter, in 90 locations globally, to deliver some of the industry's most exciting projects.

An EADS internship offers the chance to use your theoretical knowledge and apply it first-hand to real situations and assignments during your studies. Given a high level of responsibility, plenty of
learning and development opportunities, and all the support you need, you will tackle interesting challenges on state-of-the-art products.

We welcome more than 5,000 interns every year across disciplines ranging from engineering, IT, procurement and finance, to strategy, customer support, marketing and sales. Positions are available in France, Germany, Spain and the UK.

To find out more and apply, visit www.jobs.eads.com. You can also find out more on our EADS Careers Facebook page.

BR7, BR8, BR9, BR16:

```
VAR payment_in BASE RELATION { Trans# CHAR
                                    Account# CHAR,
                                    Tdate DATE,
                                    Ttime TIME,
                                    Source CHAR,
                                    Amount RATIONAL }
                                    KEY { Trans#, Account# } ;
```

```
CONSTRAINT FK_for_payment_in
```

CONSTRAINT FK_for_payment_in
IS_EMPTY (payment_in NOT MATCHING account) ;

```
    IS_EMPTY ( payment_in NOT MATCHING account ) ;
```

BR7, BR8, BR10, BR16:
VAR by cheque BASE RELATION \{ Trans\# CHAR,
Account\# CHAR,
Cheque\# CHAR,
Wdate DATE,
Pdate DATE,
Payee CHAR
Amount RATIONAL \}
KEY \{ Trans\#, Account\# \} ;
CONSTRAINT FK_for_by_cheque
IS_EMPTY (by_cheque NOT MATCHING account) ;
BR11:
CONSTRAINT written_before_processed
IS_EMPTY (by_cheque WHERE Wdate > Pdate) ;

BR7, BR8, BR12, BR16:

VAR by DD BASE RELATION \{ Trans\# CHAR, Account\# CHAR, Tdate DATE, Ttime TIME, Payee CHAR, Amount RATIONAL \} KEY \{ Trans\#, Account\# \} ;

```
CONSTRAINT FK_for_by_DD
    IS_EMPTY ( by_DD NOT MATCHING account ) ;
```


BR14, BR16:

VAR by_card BASE RELATION \{ Trans\# CHAR, Card\# CHAR,

Tdate DATE,
Ttime TIME,
Payee CHAR,
Amount RATIONAL \}
KEY \{ Card\#, Trans\# \}
KEY \{ Tdate, Ttime, Card\# \} ;

Note that inclusion of an account\# attribute in by card would violate BCNF because of the FD \{Card\#\} \rightarrow Account\# $\}$

```
CONSTRAINT FK_for_by_card
    IS_EMPTY ( by_card NOT MATCHING debit_card ) ;
```


BR7:

```
CONSTRAINT trans#_unique_within_account#
    WITH by_card JOIN debit_card AS BC_DC :
        COUNT ( BC_DC ) =
        COUNT ( BC_DC { Trans#, Account# } ) ;
```


BR15:

```
CONSTRAINT card_extant
    IS_EMPTY ( ( by_card JOIN debit_card )
    WHERE Tdate > Expires ) ;
```

BR17:

```
CONSTRAINT transaction_is_of_only_one_type
    WITH by_card JOIN debit_card AS BC_DC :
    IS_EMPTY ( payment_in MATCHING
                            ( by_cheque { Trans#, Account# } UNION
                            by_DD { Trans#, Account# } UNION
                            BC_DC { Trans#, Account# } ) ) AND
    IS_EMPTY ( by_cheque MATCHING
    ( by_DD { Trans#, Account# } UNION
                BC_DC { Trans#, Account# } ) ) AND
    IS_EMPTY ( by_DD MATCHING BC_DC ) ;
```


BR18:

```
CONSTRAINT no_transaction_before_account_open
    WITH by_card JOIN debit_card AS BC_DC :
    AND ( payment_in JOIN account, DateOpened > Tdate )
    AND
    AND ( by_DD JOIN account, DateOpened > Tdate )
    AND
    AND ( BC_DC JOIN account, DateOpened > Tdate ) ;
```


Now, using Option 2 instead:

Relvars customer, cust_email, phone_type, cust_phone, account, and debit_card and their associated constraints are all as before.

BR7, BR8:

VAR transact BASE RELATION \{ Trans\# CHAR, Account\# CHAR, Amount RATIONAL \}

KEY \{ Trans\#, Account\# \} ;

CONSTRAINT FK_for_transact
IS_EMPTY (transact NOT MATCHING account) ;

BR10, BR16:

VAR by cheque BASE RELATION \{ Trans\# CHAR,
Account\# CHAR,
Cheque\# CHAR,
Wdate DATE,
Pdate DATE,
Payee CHAR \}
KEY \{ Trans\#, Account\# \} ;

```
CONSTRAINT FK_for_by_cheque
    IS EMPTY ( by cheque NOT MATCHING transact ) ;
```


BR11:

```
CONSTRAINT written_before_processed
    IS_EMPTY ( by_cheque WHERE Wdate > Pdate ) ;
```


BR9, BR12

```
VAR not by_cheque BASE RELATION { Trans# CHAR,
                                    Account# CHAR,
                                    Tdate DATE,
                                    Ttime TIME }
                            KEY { Trans#, Account# } ;
CONSTRAINT FK_for_not_by_cheque
    IS_EMPTY ( not_by_cheque NOT MATCHING transact ) ;
```

BR9:
VAR payment_in BASE RELATION \{ Trans\# CHAR,
Account\# CHAR,
Source CHAR \}
KEY \{ Trans\#, Account\# \} ;
CONSTRAINT FK_for_payment_in
IS EMPTY (payment in NOT MATCHING not by_cheque) ;
BR12:
VAR by_DD BASE RELATION \{ Trans\# CHAR,
Account\# CHAR,
Payee CHAR \}
KEY \{ Trans\#, Account\# \} ;
CONSTRAINT EK_for_by_DD
IS_EMPTY (by_DD NOT MATCHING not_by_cheque) ;

BR7, BR14:

VAR by_card BASE RELATION \{ Trans\# CHAR,
Card\# CHAR,

Payee CHAR \}
KEY \{ Trans\#, Card\# \} ;

```
CONSTRAINT FK_for_by_card
    IS_EMPTY ( by_card NOT MATCHING debit_card ) ;
```


BR16:

```
CONSTRAINT relevant_transaction_exists
    IS_EMPTY ( ( by_card JOIN debit_card )
        NOT MATCHING not_by_cheque ) ;
```


BR15:

CONSTRAINT card_extant

> IS_EMPTY ((by_card JOIN not_by_cheque JOIN debit_card) WHERE Tdate > Expires) ;

BR16:

```
CONSTRAINT every_transaction_of_some_type
    IS_EMPTY ( (transact NOT MATCHING not_by_cheque )
        NOT MATCHING by_cheque ) ;
```

BR17:

```
CONSTRAINT transaction_is_of_only_one_type
    WITH by_card JOIN debit_card AS BC_DC :
    IS_EMPTY ( by_cheque MATCHING not_by_cheque ) AND
    IS_EMPTY ( payment_in MATCHING
            ( by_DD { Trans#, Account# } UNION
                                BC_DC { Trans#, Account# } ) ) AND
    IS_EMPTY ( by_DD MATCHING BC_DC ) ;
```


BR18:

```
CONSTRAINT no_transaction_before_account_open
    ALL ( not_by_cheque JOIN account,
        DateOpened > Tdate ) ;
```

8. Based on your experiences with Exercise 7, suggest enhancements to Tutorial \mathbf{D} to make it easier to express any constraints you declared that struck you as being of a common enough kind to warrant an additional shorthand.

The constraint at_most_one_phone_per_type could be expressed as a key constraint if we allowed keys to be specified on relational expressions in general rather than just on base relvars in particular. Here we would like to specify KEY \{ Customer\#, PhoneType \} on cust_phone JOIN phone_type. The same shorthand could be used for the constraint trans\#_unique_within_account\#, where we would specify KEY \{ Trans\#, Account\# \} on by_card JOIN debit_card.

In the Option 1 solution, the constraint transaction_is_of_only_one_type could be expressed more succinctly if we could just specify that the projections of each of the transaction type relvars on \{ Trans\#, Account\# \} must be disjoint (have no tuples in common)-in other words, that the same combination of Trans\# and Account\# values cannot appear in more than one of those relvars. Thus, \{ Trans\#, Account\# \} would become a kind of key whose uniqueness scope covers more than one relvar.

Note that these shorthands, by raising the level of abstraction in each case, would make the constraints easier to understand as well as perhaps easier to write. Furthermore, they give the DBMS the opportunity to enforce those constraints much more efficiently than is very likely the case if the longhands shown in the given solutions are used.
9. (For students familiar with SQL). Consider the following SQL definitions:

```
CREATE TABLE SF ( StudentId CHAR(4),
                                    Faculty VARCHAR(50),
        PRIMARY KEY ( StudentId )
        UNIQUE ( StudentId, Faculty ) ;
CREATE TABLE CF ( CourseId CHAR(4),
                        Faculty VARCHAR(50),
        PRIMARY KEY ( CourseId )
        UNIQUE ( CourseId, Faculty );
CREATE TABLE SCF ( StudentId CHAR(4),
        CourseId CHAR(4),
        Faculty VARCHAR(50),
        PRIMARY KEY ( StudentId, CourseId ),
        FOREIGN KEY ( StudentId, Faculty )
        REFERENCES SF ( StudentId, Faculty ),
    FOREIGN KEY ( CourseId, Faculty )
        REFERENCES CF ( CourseId, Faculty ) ;
```

a. What problem was the designer solving here?

A constraint was needed to ensure that a combination of StudentId and Faculty values appearing in SCF also appears in SF. A similar constraint was needed to ensure that a combination of CourseId and Faculty values appearing in SCF also appears in CF. The real world situation might, for example, be that each student at the university belongs to exactly on of its faculties, each course is offered by exactly one of its faculties, and a student enrolled on a course must belong to the faculty offering that course.
b. What possible problem remains in this solution?

SCF is not in 5 NF and therefore is subject to redundancy. It is not in 5NF because it is not in BCNF, and it is not in BCNF because of the FDs $\{$ StudentId $\} \rightarrow\{$ Faculty $\}$ and $\{$ CourseId $\} \rightarrow\{$ Faculty $\}$, each of whose determinants is a proper subset of the primary key of SCF.

To normalize SCF all we need to do is drop the Faculty column from the table definition and from each of the foreign keys. But then we would need a constraint to ensure that the Faculty values in the SF and CF rows referenced by a row in SCF are equal. Again, such constraints can be expressed in standard SQL but most SQL implementations do not support any of the standard's features that would make this possible.
c. Describe and comment on the particular features of SQL that make this solution possible.

In standard SQL the required constraints could be expressed like this:

```
CREATE ASSERTION right_faculty_for_course
    CHECK NOT EXISTS ( SELECT StudentId, Faculty
        FROM SCF
        EXCEPT
    SELECT StudentId, Faculty
    FROM SCF )
```

and similarly for the other foreign key. However, most SQL implementations do not support CREATE ASSERTION and in any case such a constraint is unlikely to be enforced efficiently, as foreign key constraints are.

So, in practice the required constraints can only be expressed using the FOREIGN KEY construct, probably taking advantage of special indexes created on the relevant columns. But the FOREIGN KEY construct requires the referenced columns to constitute a key of the referenced table, specified using either PRIMARY KEY or UNIQUE. Here our referenced columns constitute a proper superkey in each case. Although the same indexes could be used for efficiency purposes, standard SQL does not allow references to proper superkeys, and nor do any SQL implementations we are aware of.

The well-known "hack" to get around this problem is illustrated in the example. We take advantage of another quirk in SQL, whereby one is permitted to specify a redundant UNIQUE constraint. The columns of that redundant UNIQUE constraint can then be used in a FOREIGN KEY declaration! One might ask, why does the system need to be told that (student id, faculty) combinations are unique, when it already knows that student ids are unique by themselves?

2.8 Additional Exercises Using Rel

1. Create a virtual relvar named myvars giving the Name, Owner, and isVirtual of every relvar not owned by 'Rel'.
```
VAR myvars VIRTUAL ( sys.Catalog WHERE Owner <> 'Rel' )
    { Name, Owner, isVirtual } ;
```

2. If you haven't already done so, load the file OperatorsChar. d , provided in the Scripts subdirectory of the Rel program directory, and execute it. One of the relvars mentioned in sys.Catalog is named sys.Operators. Display the contents of that relvar. How many attributes does it have? What is the declared type of the attribute named Implementations?

Two attributes: Name and Implementations

The declared type of Implementations is:

```
RELATION {Signature CHARACTER, ReturnsType CHARACTER,
Definition CHARACTER, Language CHARACTER, CreatedByType
CHARACTER, Owner CHARACTER, CreationSequence INTEGER}
```

Relation types aren't normally recommended for attributes of database relvars, but all updates to the system catalog are performed "under the covers" by the system itself, which should be capable of handling all the difficulties caused by relation-valued attributes. That said, queries against such relvars can be difficult to express, unless you begin them by ungrouping, as suggested in the next exercise.
3. Evaluate the expression

```
(sys.Operators ungroup (Implementations)
where Language = 'JavaF')
{ ALL BUT Language, CreatedByType, Owner, CreationSequence}
```

What are the "ReturnsTypes" of LENGTH, IS_DIGITS, and SUBSTRING?

INTEGER, BOOLEAN, and CHARACTER, respectively.
4. Note that if s is a value of type CHAR, then LENGTH (s) gives the number of characters in s, IS_ $\operatorname{DIGITS}(s)$ gives TRUE if and only if every character of s is a decimal digit. $\operatorname{SUBSTRING}(s, 0,1)$ gives the string consisting of the first l characters of s (note that strings are considered to start at position 0 , not 1). SUBSTRING (s, f) gives the string consisting of all the characters of s from position f to the end.

What is the result of IS_DIGITS (' ') ? Is it what you expected? Is it consistent with the definition given above?

TRUE. This is to be expected on the understanding that "everything is true of all elements of the empty set". The string ' ' contains no characters and therefore does not contain a character that isn't a digit. ($\forall x) P(x)$ is logically equivalent to $\neg(\exists x) \neg P(x)$.
5. Using operators defined by OperatorsChar.d, define types for supplier numbers and part numbers, following Example 2.4 from Chapter 2.

```
TYPE SNO POSSREP { c CHAR CONSTRAINT
    SUBSTRING(c,0,1) = 'S' AND
    IS_DIGITS(SUBSTRING(c,1)) } ;
TYPE PNO POSSREP { c CHAR CONSTRAINT
    SUBSTRING(c,0,1) = 'P' AND
    IS_DIGITS(SUBSTRING(c,1)) } ;
```

Define relvars Srev, Prev, and SPrev as replacements for S, P and SP, using the types you have just defined as the declared types of attributes $S \#$ and $P \#$.

```
VAR Srev BASE RELATION {S# SNO, Sname CHAR,
    Status INTEGER, City CHAR}
    KEY { S# } ;
VAR Prev BASE RELATION {P# PNO, Pname CHAR, Colour CHAR,
    Weight RATIONAL, City CHAR}
    KEY { P# } ;
VAR SPrev BASE RELATION {S# SNO, P# PNO, Qty INTEGER}
    KEY {S#, P# } ;
```

Write relvar assignments to copy the contents of S, P and SP to Srev, Prev, and SPrev, respectively. Note that if SNO is the type name for supplier numbers in S and Srev, then SNO (S\#) "converts" an S\# value in S to one for use in Srev.

We need to use EXTEND to add an attribute to contain the "converted" S\# and/or P\# values. The new attributes can't be named S\# and P \#, of course, but we do need them to have those names, so we "project away" the old attributes and then rename the new ones:

```
Srev := ( EXTEND S ADD ( XS# AS SNO(S#) ) )
        { ALL BUT S# } )
        RENAME ( XS# AS S# ) ;
Prev := ( ( EXTEND P ADD ( XP# AS PNO(P#) ) )
        { ALL BUT P# } )
        RENAME ( XP# AS P# ) ;
SPrev := ( EXTEND SP ADD ( XS# AS SNO(S#),
                                    XP# AS PNO(P#) ) )
        { ALL BUT S#, P# } )
        RENAME ( XS# AS S#, XP# AS P# ) ;
```

6. Using the relvars defined in Exercise 5, repeat Exercise 6 from the set headed "Working with A Database in Rel" given with the exercises for Chapter 4. Which of your solutions need revisions beyond the obvious changes in relvar names?
b. Get supplier numbers for suppliers who supply part P1.
```
S MATCHING ( SP WHERE P# = PNO('P1') ) { S# }
```

h. Get supplier numbers for suppliers with a status lower than that of supplier S1.

```
( S JOIN ( ( ( S WHERE S# = SNO('S1') ) { Status }
    RENAME ( Status AS S1_Status )
    )
    )
    WHERE Status < S1_Status
) { S# }
```

Note that my solution to Exercise f . in this set uses "<" to compare supplier numbers. The fact that this solution still works when supplier numbers are of type SNO instead of CHAR tells us that Rel treats SNO as an ordered type, the ordering being based on that of the declared type, CHAR, of its only possrep component.

"I studied English for 16 years but... ...I finally learned to speak it in just six lessons"

Jane, Chinese architect

Click to hear me talking before and after my unique course download

