bookboon.com

o

Download free books at

bookboon.com

Paul P. Debono

PaulOS

An 8051 Real-Time Operating System
Part Il

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS: An 8051 Real-Time Operating System
Part Il

1t edition

© 2013 Paul P. Debono & bookboon.com
ISBN 978-87-403-0450-3

Download free eBooks at bookboon.com

http://bookboon.com
http://bookboon.com/

Contents

Preface Part 1
Acknowledgements Part I
Dedications Part I
List of Figures Part I
List of Tables Part I
1 8051 Basics Part I
1.1 Introduction Part I
1.2 Memory Types Part 1
1.3 Code Memory Part I
1.4 External RAM Part I
1.5 Register Banks Part I

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

Download free eBooks at bookboon.com :\\\«\\

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

PaulOS An 8051 Real-Time Operating System

Part i

1.6
1.7
1.8

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

Bit Memory
Special Function Register (SFR) Memory
SFR Descriptions

Basic Registers

The Accumulator, Address EOH, Bit-addressable

The R registers

The B Register, address FOH, Bit-addressable

The Data Pointer (DPTR)

The Program Counter (PC)

The Stack Pointer (SP), address 81H
Addressing Modes

Program Flow

Low-Level Information

Timers

Serial Port Operation

Interrupts

EADS unites a leading aircraft manufacturer, the world’s largest
helicopter supplier, a global leader in space programmes and a
worldwide leader in global security solutions and systems to form
Europe’s largest defence and aerospace group. More than
140,000 people work at Airbus, Astrium, Cassidian and Eurocopter,
in 90 locations globally, to deliver some of the industry’s most
exciting projects.

An EADS internship offers the chance to use your theoretical
knowledge and apply it first-hand to real situations and assignments
during your studies. Given a high level of responsibility, plenty of

Internship opportunities

Contents

Part I
Part I
Part I

Part I
Part I
Part I
Part I
Part I
Part I
Part I
Part I
Part I
Part I
Part I
Part I
Part I

learning and development opportunities, and all the support you need,
you will tackle interesting challenges on state-of-the-art products.

We welcome more than 5,000 interns every year across
disciplines ranging from engineering, IT, procurement and
finance, to strategy, customer support, marketing and sales.
Positions are available in France, Germany, Spain and the UK.

To find out more and apply, visit www.jobs.eads.com. You can also
find out more on our EADS Careers Facebook page.

@ AIRBUS L) ASTRIUM (& CASSIDIAN ﬁEUEPﬁ@'TEI‘

Download free eBooks at bookboon.com

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/85f92380-2160-4386-98b4-a2540089b583

PaulOS An 8051 Real-Time Operating System

Part Il Contents
3 A51 Examples Part I
3.1 Template.a51 Part I
3.2 Serial Port Example Program Part I
3.3 Traffic Lights A51 Program Part I
4 8032 Differences Part I
4.1 8032 Extras Part I
4.2 256 Bytes of Internal RAM Part I
4.3 Additional Timer 2 Part I
5 Evaluation Boards Part I
5.1 FLITE-32 Development Board Part I
5.2 Typical Settings for KEIL uV2 Part I
5.3 The NMIY-0031 Board Part I
54 C8051F020TB Part I
6 Programming in C with KEIL pV2 IDE Part I
6.1 Byte Ordering - BIG ENDIAN and LITTLE ENDIAN Part 1
6.2 Explicitly Declared Memory Types Part I

360°
thinking

Deloitte

Discover the truth at WWW.dClOittC,Ca/C&I‘CCI‘S © Deloitte & Touche LLP and affiliated entities.

Download free eBooks at bookboon.com &\S«\

6 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

PaulOS An 8051 Real-Time Operating System

Partll Contents
6.3 Data types: Part I
6.4 Interrupt routines Part I
7 Real-Time Operating System Part I
7.1 What is a Real-Time Operating System Part I
7.2 Types of RTOSs Part]
8 SanctOS - a Round-Robin RTOS Part I
8.1 SanctOS System Commands Part I
8.2 Variations from the A51 version Part I
83 SanctOS example program Part I
9 PaulOS - a Co-operative RTOS Part I
9.1 Description of the RTOS Operation Part I
9.2 PaulOS.C System Commands Part I
9.3 Descriptions of the commands Part I
9.4 PaulOS parameters header file Part I
9.5 Example using PaulOS RTOS Part 1

SIMPLY CLEVER

We will turn your CV into
an opportunity of a lifetime

'. '% ';'; 2y ! 5
(Tl W ’
I

-

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Download free eBooks at bookboon.com

7 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

PaulOS An 8051 Real-Time Operating System

Partll Contents
10 MagnOS - a Pre-Emptive RTOS Part I
10.1 MagnOS System Commands Part I
10.2 Detailed description of commands Part I
11 Interfacing Part 1
11.1 Interfacing add-ons to the 8051 Part I
11.2 LEDs Part I
11.3 Input Switches Part I
11.4 Keypad Part 1
10.5 LCD Display Part I
11.6 LCD Command Set Part I
11.7 DC Motor Part I
11.8 DC motor using H-Bridge Part I
11.9 Model Servo Control Part I
Ijoined MITAS because e e

I wanted real responsibility www.discovermitas.com

I was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen
% solve problems

MAERSK

Download free eBooks at bookboon.com

8 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

12 Programming Tips and Pitfalls
12.1 RAM size

12.2 SP setting

12.3 SFRs

12.4 Port usage

12.5 DPTR

12.6 Serial port (UART)
12.7 Interrupts

12.8 RTOSs pitfalls

12.8 C Tips

Appendix A ParrOS.a51

Appendix B PaulOS A51 version

Appendix C SanctOS.C

Appendix D PaulOS.C

Appendix E MagnOS.C

Appendix F Further Examples

Appendix G 8086 PaulOS RTOS

Appendix H 8051 Instruction Set

Bibliography

Index for Part I

Index for Part I1

End Notes

Download free eBooks at bookboon.com

11

11

11

12

12

12

13

14

16

17

18

37

123

143

177

246

263

279

281

283

286

287

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

To see Part I download PaulOS Part I

Download free eBooks at bookboon.com

10

http://bookboon.com/

12 Programming Tips and Pitfalls

In this final chapter we discuss some programming tips and common pitfalls which should be avoided

when programming such micro-controllers.

12.1 RAM size

The 8051 may only address 64KB of RAM. To expand RAM beyond this limit requires programming
and hardware tricks. We may have to do this “by hand” since many compilers and assemblers, while
providing support for programs in excess of 64KB, do not support more than 64KB of RAM. This is
rather strange since program code can usually fit in 64KB but it is often that data RAM that is lacking.
Thus if we need more than 64KB of RAM, we need to check if our compiler supports it, but if it does
not, we must be prepared to do it by hand.

Some assemblers and compilers offer ways to get around this limit when used with specially wired
hardware. However, without such special compilers and hardware, program code is normally limited to
64KB for the standard 8051 micro-controller. Newer derivatives of the 8051, such as the Silicon Labs
C8051F120 chip, do have 128KB of in-system programmable flash memory, with special SFRs to handle
the extra RAM size. The latest software development tools, such as the KEIL IDE do provide methods
for making use of this additional RAM, basically by switching in and out 64KB pages.

12.2 SP setting

If we only use the first register bank (i.e. bank 0), we may use Internal RAM locations 08h through 1Fh,
for our own data use. However if we plan to use register banks 1, 2, or 3 we must be very careful about
using addresses below 20h for our variables as we may end up overwriting or corrupting the values
stored in our registers. In particular, the SP (used to point to the stack area) by default is loaded with 07
so that the stack starts from location 08. For example, if we are using Bank 1 together with Bank 0, we
have to make sure to load SP with a higher value, such as 0Fh which is the address of R7 bank 1 (the

highest register in use).

Similarly, if our program does not use any bit variables, then we may use Internal RAM locations 20h
through 2Fh (Bit-addressable area) for our own use as normal data byte memory locations. On the other
hand, if we intend to use some bit variables, we must be very careful as to which address we do initialize
SP as once again we may end up overwriting the stored value of our bits whenever we push something
on stack. As the stack grows upwards, it starts to over-write locations, starting from 08h. If there are a
lot of pushes or calls, it might end up over-writing the bit variable area. Hence once again, the SP might

need to be initially set to 2Fh if we need to preserve all the bit-addressable area.

Download free eBooks at bookboon.com

http://bookboon.com/

12.3 SFRs

SERs are used to control the way the 8051 peripherals functions. Not all the addresses above 80h are
assigned to SFRs. However, this area may not be used as additional RAM memory even if a given
address has not been assigned to an SFR. Free locations are reserved for future versions of the micro-
controller and if we use that area, then our program would not be compatible with future versions of the
microcontroller, since those same locations might be used for special additional SFRs in the upgraded
version. Moreover, certain unused locations may actually be non-existent, in the sense that the actual
cells for that memory would not form part of the memory mask when being manufactured, and hence

even if we do write the code to use these locations, no actual data would be stored!

It is therefore recommended that we do not read from or write to any SFR addresses that have not been
actually assigned to an SFR. Doing so may provoke undefined behaviour and may cause our program
to be incompatible with other 8051 derivatives that use those free addresses to store the additional SFRs

for some new timer or peripheral included in the new derivative.

If we write a program that utilizes the new SFRs that are specific to a given derivative chip (and which
therefore were not included in the standard basic 8051 SFR list), our program will not run properly on
a standard 8051 where those SFRs simply did not exist. Thus, it is best to use non-standard SFRs only
if we are sure that our program will only have to run on that specific micro-controller. If we happen
to write code that uses non-standard SFRs and subsequently share it with a third-party, we must make
sure to let that party know that our code is using non-standard SFRs and can only be used with that

particular device. Good remarks, notes and warnings within the program source listing would help.

124 Portusage

While the 8051 has four I/O ports (PO, P1, P2, and P3), if our hardware uses external RAM or external
code memory (i.e. if our program is stored in an external ROM or EPROM chip or if we are using
external RAM chips) we cannot use PO or P2. This is because the 8051 uses ports PO and P2 to address
the external memory. Thus if we are using external RAM or code memory we may only use ports P1
(and perhaps P3 with some bit restrictions depending on the application program, since the P3 bits are
also used as RD, WR, T1, T0, INT1, TXD and RXD) for our own use.

125 DPTR

DPTR is really a combination of two 8-bit registers DPH and DPL, taken together as a 16-bit value. In
reality, we almost always have to deal with DPTR one byte at a time. For example, to push DPTR onto
the stack we must first push DPL and then push DPH. We cannot simply push DPTR onto the stack as

a 16-bit value in one step.

Download free eBooks at bookboon.com

http://bookboon.com/

Additionally, there is an instruction to increment DPTR (which is INC DPTR). When this instruction
is executed, the two bytes are operated upon as a 16-bit value. However, there is no assembly language
instruction which decrements DPTR. If we wish to decrement the value of DPTR, we must write our

own code to do so, such as:

CLRC

MOV A,DPL

SUBB A,#1

MOV DPL,A

MOV A,DPH

SUBB A,#0; subtract the carry flag from the first subtraction, if necessary
MOV DPH,A

12.6 Serial port (UART)

To use the 8051’s on-board serial port, it is generally necessary to initialise at least the following four
SERs: SCON, PCON, TCON, and TMOD. This is because SCON on its own does not fully control the
serial port. However, in most cases the program will need to use one of the timers to establish the serial
port baud rate. In this case, it would be necessary to configure Timer 1 by setting TCON and TMOD.
PCON.7 (known also as SMOD bit, but we should note that PCON is not a bit-addressable register), can
be set to double the baud rate. In this case therefore, we would also need to program bit 7 of a fourth
register PCON.

Moreover, if the serial handling routine is to run under interrupt control, then the appropriate interrupt
enable bits (ES and EA in the IE SFR) and sometimes even the interrupt priority bit (PS in the IP SFR)
have also to be set. This would bring to six the number of SFRs which we may need to set in order to

use the UART in interrupt mode.

TI flag is normally initialized to 0 if using serial interrupt routines to transmit characters stored in some
software buffer. Once SBUF is loaded directly with the first character to be transmitted, the transmission
would start, with the start bit, bit 0 to bit 7 of the data, any parity bit, followed by the stop bit. TI would
then be set to 1 automatically when this first character transmission is done and the ISR routine is then
triggered which would continue to send any remaining characters in the software bufter (TI would need

to be reset to 0 every time in the ISR code).

If however we are not using serial interrupt routines to transmit data, TI would be intialised to 1 in the

first place, since it is usual practice to start the putchar() routine with:

Download free eBooks at bookboon.com

http://bookboon.com/

while (TI==0); // wait for the transmitter to be ready (TI=1)
SBUF = ¢; /1 store character in SBUF and start transmitting character

/I ' TT would be automatically set to 1 once transmission is done

Examples are given in the serial routines in the Appendix.

12.7 Interrupts

Forgetting to protect the PSW register: If we write an interrupt handler routine, it is a very good idea to
always save the PSW SER on the stack and restore it when our interrupt service routine (ISR) is complete.
Many 8051 instructions modify the bits within PSW. If our ISR does not guarantee that PSW contains
the same data upon exit as it had upon entry, then our program is bound to behave rather erratically
and unpredictably. Moreover it will be tricky to debug since the behaviour will tend to vary depending

on when and where in the execution of the program, the interrupt happened.

Forgetting to protect a Register: We must protect all our registers as explained above. If we forget to
protect a register that we will use in the ISR and which might have been used in some other part of our
program, very strange results may occur. If we are having problems with registers changing their value
unexpectedly or having some arithmetic operations producing wrong answers, it is very likely that we

have forgotten to protect some registers.

Forgetting to restore protected values: Another common error is to push registers onto the stack to protect
them, and then we forget to pop them off the stack (or we pop them in the wrong order) before exiting
the interrupt. For example, we may push ACC, B, and PSW onto the stack in order to protect them
and subsequently pop only PSW and ACC off the stack before exiting. In this case, since the value of
register B was not restored (popped), an extra value remains on the stack. When the RETT instruction
is then executed at the end of the ISR, the 8051 will use that value as part of the return address instead
of the correct value. In this case, the program will almost certainly crash. We must always ensure that

the same number of registers are popped off the stack and in the right order:

PUSH PSW
PUSH ACC
PUSH B

POPB
POP ACC
POP PSW
RETI

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Programming Tips and Pitfalls

Using the wrong register bank: Another common error occurs when calling another function or routine
from within an ISR. Very often the called routine would have been written with a particular register bank
in mind, and if the ISR is using another bank, there might be problems when referring to the registers
in the called routine. If we are writing our own routine, then in the ISR we could save the PSW register,
change the register bank and then restore the PSW register before exiting from the called routine.
However, particularly if we are using the C compiler, we might be using functions and procedures pre-
written in the compiler and which we do not have any control on, and therefore can result in program

not functioning as intended.

This problem is particularly serious when using pre-emptive RTOSs (such as SanctOS or MagnOS), where
a forced change of task might occur, switching from task A (which was using for example using register
bank 1) on to task B which uses bank 2. For the case of co-operative RTOSs (such as PaulOS), we would

be in control where the task changes occur and we would be able to take the necessary precautions.

Forgetting to re-start a timer: We might turn off a timer to re-load the timer register values or to read

the counter in an interrupt service routine (ISR) and then forget to turn it on again before exiting from

the ISR. In this case, the ISR would only execute once.

I studied
English for 16 .
years but... .
...I finally
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

Download free eBooks at bookboon.com

15 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Forgetting to clear the Timer 2 interrupt flag: When using Timer 2 interrupts, the Timer 2 overflow flag
TF2 is not cleared automatically when the ISR is serviced. We have to clear it in the ISR software (using
CLR TF2). The same problem occurs if we forget to clear the RI or the TI flags when using the Serial
Interrupt. In this case, the ISR keeps on being called repeatedly.

Using RET instead of RETI: Remember that interrupts are always terminated with the RETT instruction.
It is easy to inadvertently use the RET instruction instead. However the RET instruction will not end
our interrupt smoothly. Usually, using RET instead of RETT will cause the illusion of the main program
running normally, but the interrupt will only be executed once. If it appears that the interrupt mysteriously

stops executing, we must verify that RETI is being used.

Certain assemblers contain special features which will issue a warning if the programmer fails to protect

registers or commit some other common interrupt-related errors.

12.8 RTOSs pitfalls

The PaulOS co-operative RTOS is the most robust and secure of the RTOSs which we have introduced
in this text book. This is mainly due to the fact that being a co-operative RTOS, the task changes occur
when we want them since there cannot be any forced pre-emptive task changes. However there can still
be hidden problems. We should take special care when handling global variables which are accessible
to all the tasks. We have to make sure that these variables are allowed to be manipulated only when we
want them to. Otherwise it might happen that a task starts with one value of a global variable, then it
goes on to a wait state, and when it later on resumes to run, it might end up using the wrong value of

the same variable.

This is a very big problem with the SanctOS and MagnOS pre-emptive RTOSs. The safest way would be
to have global variables protected as a resource, allowing them to be changed only when it is safe to do
so. These pre-emptive RTOSs (SanctOS and MagnOS) are only written here as a proof of concept and

not as a fully functional robust operating system. This has to be always kept in mind.

The same problem exists in these RTOSs with register banks and tasks which use the same functions

which are non re-entrant.

Download free eBooks at bookboon.com

http://bookboon.com/

12.8 CTips

« We should always try to keep functions (or tasks) as simple as possible.

o Use the correct required types for the variables; do not use int type if we really need byte or
bit type.

o Use signed or unsigned types correctly.

« Use specified locations for storing pointers. That is use declarations such as

char data * xdata str; /* pointer stored in xdata, pointing to char stored in data */
int xdata * data numtab; /* pointer stored in data, pointing to int stored in to xdata */
long code * idata powtab; /* pointer stored in idata, pointing to long stored in code */

o In order to improve the performance during code execution or to reduce the memory size
requirement for our code, we should analyse the generated list files and assembly code so as
to determine which routines can be improved in speed or reduced in size.

« We should always try to minimize the variable usage by scoping.

DUKE

THE FUQUA
SCHOOL
OF BUSINESS

www.fuqua.duke.edu/whileyouweresleeping

Download free eBooks at bookboon.com ,\\\(«\

http://bookboon.com/
http://bookboon.com/count/advert/faa87ccb-c5b2-4bf9-a8ab-a30a00d27dfd

Appendix A ParrOS.a51

Round-Robin RTOS

This is the round-robin real-time operating system version called ParrOS (an acronym for PAul’s Round-

Robin Operating System) and is perhaps the simplest operating system which can be written.
The operation can be explained as follows:

A timer interrupt is generated at regular intervals. This interrupt is used to run periodically a crucial
Interrupt Service Routine (ISR). This ISR uses counters to determine accurately whether the specified
slot time has passed, at which point a function is called which tackles the task-swapping problem.
Mainly this function stores all the stack area for the current task and replaces it with the stack for the
next task scheduled to run. At this point the jump is made to the new task and the program continues
seamlessly with the new task until its slot time has elapsed. The process repeats indefinitely, looping
round through all the tasks.

We first start by explaining how the variables are stacked in the internal memory area of the 8051.
Table A-1 shows the way the variables used in this RTOS program have been set up. Most of the variables
reside in the internal 256 RAM of the 8032 micro-processor. The external RAM (from address 8100H to
9FFFH for the Flight 32 board) is used to store the stacks of all the tasks and of the main idle program.
These stacks are then swapped in turn with the area reserved for the stack in the internal RAM whenever

a task swap is necessary.

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Part I Appendix A
Label Hex Byte Remarks Notes
Addr. Hex bit address
Indirect
FF General
Purpose
To RAM (80 - FF)
80 which can
be used as a
Stack Area
TF)
Direct and
MATIN STACK to Indirect RAM
00 - 7F
76 ()
75
e Time slot
SP (initially)
to (NOOFTSKS+1) bytes Reload values
T SLOT RELOAD
— — For each task
6l
60)
Time slot
T SLOT to (NOOFTSKS+1) bytes Counter
For each task
4C
4B
Storage area
SPTS to (NOOFTSKS+1) bytes For the SPs
Of each task
37
35
Queue for
READYQ to (NOOFTSKS+1) bytes Tasks ready
To run
22
21 OF | OE | OD | OC | OB | OA | 09 | 08 | Spare bits
20 071106 |05|04|03)|02]|01]| 00 |MYBITS
1F
Storage for any
to Applications
variables
17
TMPSTOREOQ 16 See FETCH STACK
GOPARAM 15 See RTOSGOXXX
DELAYHI 14 See RTOSGOXXX
DELAYLO 13 See RTOSGOXXX
TICKCOUNT 12 See RTOSGOXXX
RUNNING 11 Currently running task Task number
READYQTOP 10 Points to last task in READYQ Pointer
OF , Register bank
Register Bank 1
to Used by the
(RO - R7)
08 RTOS
07 Register bank
Register Bank 0 g
to used by
(RO - R7)
00 ALL tasks

Table A-1 PARROS.A51 Variables setup, with 20 tasks. (NOOFTSKS=20)

Download free eBooks at bookboon.com

19

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix A

The source listing for the ParrOS A51 program consists of:

o The header file ParrOS.h
o The startup file ParrOS_Startup.a51
o The main RTOS file ParrOS.a51

Excellent Economics and Business programmes at:

Z ——\
7

university of -y AACSB

groningen ACCREDITED

| 4
| |
“The perfect start

of a successful,
international career’

I

-, . 4 CLICKHERE
® F to discover why both socially
and academically the University

of Groningen is one of the best

i laces for a student to be
www.rug.nl/feb/education P

Download free eBooks at bookboon.com

20 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

ParrOS.h
/* ParrOS.h */
/* for use with Parros.a51 Round-Robin RTOS program */

/* written by Paul P. Debono - November 2002 */

#define uchar unsigned char

#define uint unsigned int

// The following receive parameters, hence are declared

// with an underscore prefix in the a5l file

void INIT_RTOS (uchar tslot);
void RTOSGOMSEC (uchar msec) ;
void RTOSGOSEC (uchar sec);
void RTOSGOMIN (uchar min) ;

void CREATE (uchar task,uchar tslot,uint *taskadd) ;

ParrOS_StartUp.a51
$NOMODS51

; This file is part of the C51 Compiler package

; Copyright (c) 1988-2005 Keil Elektronik GmbH and Keil Software, Inc.
; Version 8.01

; *** << Use Configuration Wizard in Context Menu >>> ***

; STARTUP.A51: This code is executed after processor reset.

; To translate this file use A51 with the following invocation:

; A51 STARTUP.AS51

; To link the modified STARTUP.OBJ file to your application use the following

; Lx51 invocation:

; Lx51 your object file 1list, STARTUP.OBJ controls

; User-defined Power-On Initialization of Memory

; With the following EQU statements the initialization of memory

; at processor reset can be defined:

; IDATALEN: IDATA memory size <0x0-0x100>

; Note: The absolute start-address of IDATA memory is always O

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix A

; The IDATA space overlaps physically the DATA and BIT areas.

IDATALEN EQU 100H

; XDATASTART: XDATA memory start address <0x0-0xFFFF>
; The absolute start address of XDATA memory

XDATASTART EQU 0

; XDATALEN: XDATA memory size <0x0-0xFFEFE>
; The length of XDATA memory in bytes.

XDATALEN EQU 0

; PDATASTART: PDATA memory start address <0x0-0xFFFEF>
; The absolute start address of PDATA memory

PDATASTART EQU 0H

; PDATALEN: PDATA memory size <0x0-0xFF>
; The length of PDATA memory in bytes.

PDATALEN EQU 0H

; Reentrant Stack Initialization

; The following EQU statements define the stack pointer for reentrant

; functions and initialized it:

; Stack Space for reentrant functions in the SMALL model.

; IBPSTACK: Enable SMALL model reentrant stack

; Stack space for reentrant functions in the SMALL model.
IBPSTACK EQU 0 ; set to 1 if small reentrant is used.
; IBPSTACKTOP: End address of SMALL model stack <0x0-0xFF>

; Set the top of the stack to the highest location.

IBPSTACKTOP EQU OxFF +1 ; default OFFH+1

; Stack Space for reentrant functions in the LARGE model.

; XBPSTACK: Enable LARGE model reentrant stack

; Stack space for reentrant functions in the LARGE model.
XBPSTACK EQU 0 ; set to 1 if large reentrant is used.
; XBPSTACKTOP: End address of LARGE model stack <0x0-0xFFFF>

; Set the top of the stack to the highest location.

XBPSTACKTOP EQU OxXFFFFE +1 ; default OFFFFH+1

; Stack Space for reentrant functions in the COMPACT model.

Download free eBooks at bookboon.com

22

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix A

; PBPSTACK: Enable COMPACT model reentrant stack
; Stack space for reentrant functions in the COMPACT model.

PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.

; PBPSTACKTOP: End address of COMPACT model stack <0x0-0xFFFE>
; Set the top of the stack to the highest location.

PBPSTACKTOP EQU OxFF +1 ; default OFFH+1

; Memory Page for Using the Compact Model with 64 KByte xdata RAM

; Compact Model Page Definition

; Define the XDATA page used for PDATA variables.

; PPAGE must conform with the PPAGE set in the linker invocation.

; Enable pdata memory page initalization

PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.

; PPAGE number <0x0-0xFF>
; uppermost 256-byte address of the page used for PDATA variables.

PPAGE EQU 0

sssssssssssssvsssssssssssssssssssssssssssssssssnnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

"'

o

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

Download free eBooks at bookboon.com &\S«\

23 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

PaulOS An 8051 Real-Time Operating System
Partli Appendix A

; SFR address which supplies uppermost address byte <0x0-0xFE>
; most 8051 variants use P2 as uppermost address byte

PPAGE_SFR DATA 0AOH

; Standard SFR Symbols

ACC DATA 0EOH
B DATA 0F0H
SP DATA 81H
DPL DATA 82H
DPH DATA 83H

NAME ?C_STARTUP
?C_C51STARTUP SEGMENT CODE
?STACK SEGMENT IDATA

RSEG ?STACK

MAIN STACK: DS 1
EXTRN CODE (?C_START)
PUBLIC ?C_STARTUP
PUBLIC MAIN_STACK
CSEG AT 0
?C_STARTUP: LJMP STARTUPL

RSEG ?C_C51STARTUP

STARTUPL:

IF IDATALEN <> 0

MOV RO, #IDATALEN - 1
CLR A
IDATALOOP: MOV @RO,A

DJNZ RO, IDATALOOP

ENDIF

IF XDATALEN <> 0
MOV DPTR, #XDATASTART
MOV R7, #LOW (XDATALEN)

IF (LOW (XDATALEN)) <> O

MOV R6, # (HIGH (XDATALEN)) +1
ELSE
MOV R6, #HIGH (XDATALEN)
ENDIF
CLR A
XDATALOOP: MOVX @DPTR, A
INC DPTR

DJINZ R7,XDATALOOP

DJINZ R6, XDATALOOP

Download free eBooks at bookboon.com

24

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli Appendix A
ENDIF
IF PPAGEENABLE <> 0
MOV PPAGEisFR,#PPAGE
ENDIF
IF PDATALEN <> 0
MOV RO, #LOW (PDATASTART)
MOV R7, #LOW (PDATALEN)
CLR A
PDATALOOP: MOVX @RO, A
INC RO
DJINZ R7, PDATALOOP
ENDIF
IF IBPSTACK <> 0
EXTRN DATA (?C_IBP)
MOV ?C_IBP,#LOW IBPSTACKTOP
ENDIF
IF XBPSTACK <> 0
EXTRN DATA (?C_XBP)
MOV ?CiXBP,#HIGH XBPSTACKTOP
MOV ?C7XBP+1,#LOW XBPSTACKTOP
ENDIF
IF PBPSTACK <> 0
EXTRN DATA (?C_PBP)
MOV ?C_PBP,#LOW PBPSTACKTOP
ENDIF
MOV SP, #?STACK-1
; This code is required if you use L51 BANK.A51 with Banking Mode 4
; Code Banking
; Select Bank 0 for L51 BANK.A51 Mode 4
#if O
; <i> Initialize bank mechanism to code bank 0 when using L51 BANK.AS51 with

Banking Mode 4.

EXTRN CODE (?B_SWITCHO)

CALL ?B_SWITCHO ; init bank mechanism to code bank 0
#endif
; LJMP ?C_START

END
Parr0Os.a51

; Parr0S.ab51l

; STORES ALL TASK REGISTERS

’

Download free eBooks at bookboon.com

25

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix A

; EACH TASK CAN BE MADE TO USE ANY NUMBER OF TIME SLOTS (1 TO 255)
;SO THAT NOT ALL TASKS RUN FIOR THE SAME AMOUNT OF TIME.

; NOMINALLY THEY RUN FOR JUST ONE TIME SLOT

; INCLUDES RTOSGOSEC FOR 1 SECOND TICKS

; LATEST - HANDLES 20 TASKS OR MORE, DEPENDING ON
; EXTERNAL MEMORY AND INTERNAL STACK SPACE

; CAN BE USED WITH ASSEMBLY LANGUAGE MAIN PROGRAM

; Written by Paul P. Debono - NOVEMBER 2002

; University of Malta

; Department of Communications and Computer Engineering
; MSIDA MSD 2080; MALTA.

; Adapted and modified from the RTKS RTOS FOR THE 8032 BOARD

; Accomodates 20 OR MORE tasks, (take care of the stack size!)
; STACK MOVING VERSION - MOVES WORKING STACK IN AND OUT OF
; EXTERNAL MEMORY

; SLOWS DOWN RTOS, BUT DOES NOT RESTRICT TASK CALLS

; Uses timer 2, in 16-bit auto-reload mode as the time scheduler (time-ticker)
; All tasks run in bank 0, RTOS kernel runs in bank 1

; All tasks must be written as an endless loop.

; IDLE TASK (ENDLESS MAIN PROGRAM HAS A TASK NUMBER = NOOFTASKS)

; COMMANDS AVAILABLE FOR THE C APPLICATION PROGRAM ARE:

; (valid parameter values are shown in parenthesis)

; INIT_RTOS (TSLOT) Initialise variables with default Tslot (for Main) (1-255)
; CREATE (TSK#, TSLOT, TSKADDR) Create a new task.

; TSK# passed in R7 BANK 0

; TSLOT passed in R5 BANK 0
; TSKADDR in R1 (low byte) and R2 (high byte) BANK 0
; RTOSGOMSEC (TICKTIME) Start RTOS going, interrupt every TICKTIME msecs (1-255).

; THIS IS STILL A SMALL TEST VERSION RTOS. IT IS JUST USED FOR
; SHOWING WHAT IS NEEDED TO MAKE A SIMPLE RTOS.

; IT MIGHT STILL NEED SOME MORE FINE TUNING.

; IT HAS NOT BEEN NOT THOROUGHLY TESTED !!!!

; WORKS FINE SO FAR.

; NO RESPONSABILITY IS TAKEN.

Download free eBooks at bookboon.com

26

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix A

$NOMOD51
#include "reg52.h" ; check your own correct path
USING 1
; ASSEMBLER MACROS
SetBank MACRO BankNumber
IF BankNumber = 0
CLR RSO
CLR RS1
ENDIF
IF BankNumber = 1
SETB RSO
CLR RS1
ENDIF

ENDM

Ext2Int MACRO ; MOVES RO DATA FROM EXT DPTR POINTER TO INTERNAL R1 POINTER
MOV R1, #MAIN STACK
MOV RO, #STACKSIZE
NEXT11:
MOVX A, @DPTR
MOV @R1,A
INC DPTR
INC R1
DJNZ RO,NEXT11

ENDM

Int2Ext MACRO ; MOVES RO DATA FROM INTERNAL R1 POINTER TO EXT DPTR POINTER
; USES RO, R1, ACC AND DPTR
MOV R1, #MAIN STACK
MOV RO, #STACKSIZE
NEXT12:
MOV A, @R1
MOVX Q@DPTR,A
INC DPTR
INC R1
DJNZ RO,NEXT12

ENDM

Push BankO_ Reg MACRO
PUSH ACC
PUSH B
PUSH PSW
PUSH DPL
PUSH DPH
PUSH 00

PUSH 01

Download free eBooks at bookboon.com

27

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll Appendix A

PUSH 02
PUSH 03
PUSH 04
PUSH 05
PUSH 06
PUSH 07

ENDM

Pop_Bank0_Reg MACRO
POP 07
POP 06
POP 05
POP 04
POP 03
POP 02
POP 01
POP 00
POP DPH
POP DPL
POP PSW
POP B
POP ACC

ENDM

/

Leadiny
% Maastricht University o Learnin:

Join the best at
P i N - 33" place Financial Times worldwide ranking: MSc
the Maastricht University International Business

+ 1% place: MSc International Business
1 + 1% place: MSc Financial Economics
SChOOI Of Bus' ness a nd .« 2" place: MSc Management of Learning
. - 2" place: MSc Economics
Econom |CS! - 2" place: MSc Econometrics and Operations Research
- 2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

Download free eBooks at bookboon.com &\5«\

28 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

PaulOS An 8051 Real-Time Operating System

Partll

Appendix A

; NOTE: Functions which receive parameters when
; called from within C must have their name

; start with an underscore in the A51 source file.

PUBLIC _RTOSGOMSEC, _RTOSGOSEC, _RTOSGOMIN
PUBLIC _CREATE, _INIT RTOS

CLOCK EQU 460 ; COUNT FOR HALF A MILLISECOND
; timer clock (11059/12 = 922) counts for 1 msec assuming 11.0592 MHz crystal
; hence 921.6/2 = 460 for half a milli second

BASIC TICK EQU 65535 - CLOCK + 1

ONEMSEC EQU 2 ; 2 HALF MSECS EQUAL 1 MSEC

ONESEC EQU 2000 ; 2000 1/2 MSEC TICKS = 1 SECOND

HALFMIN EQU 60000 ; 60000 1/2 MSEC TICKS = 1/2 MINUTE
XTRAMTOP EQU OFFFFH ; FLT32 EXTERNAL RAM TOP

RAMTOP EQU OFFH ; MAXIMUM VALUE FOR 8032 WOULD BE OFFH
NOOFTSKS EQU 16 ; CAN HAVE MORE TASKS (numbered 0 to N-1)

AR RS S S S S S S SRS EEEEEEEEEEEEEEEEEEEEREEEREEEEE RS

; IMPORTANT

; THIS IS REQUIRED SO THAT THE LOCATION OF THE STACK IS KNOWN

; THIS IS TAKEN FROM THE VALUE WORKED OUR IN PARROS_STARTUP.A51
EXTRN IDATA (MAIN_ STACK)

RR R E dh kI S h S Sk b b h h b b b b h b b b b dh b b h h E kb b b b b b dh b b b h b b b b b h b b h E b b b b h b b b b h b b b b b b b b Sk 3

; ; LIMITED ONLY BY STACK/MEMORY SPACE
STACKSIZE EQU 30H ; 15H MINIMUM
NOOFPUSHES EQU 13 ; NUMBER OF PUSHES AT BEGINNING OF RTOS INT ROUTINE

; WITH LESS TASKS, YOU CAN INCREASE STACKSIZE
; SIZE OF STACK IS CRITICAL AND SYSTEM CAN CRASH
; IF YOU USE A LARGE OR EVEN A SMALLER VALUE. TRY IT OUT
NOT_TIMING EQU OFFH
IDLE_TASK EQU NOOFTSKS ; main endless loop in C application given

; a task number equal to NOOFTSKS

MYBITS SEGMENT BIT

RSEG MYBITS

MSECFLAG: DBIT 1 ; MARKER TO INDICATE TICKS EVERY X MILLISECONDS
SECFLAG: DBIT 1 ; MARKER TO INDICATE TICKS EVERY X SECONDS
MINFLAG: DBIT 1 ; MARKER TO INDICATE TICKS EVERY X MINUTES

VARl SEGMENT DATA
RSEG VARL ; VARIABLE DATA AREA VARI,

Download free eBooks at bookboon.com

29

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix A

; range 0x10-0xFF, since we are using Banks 0,1

;DSEG AT 10H

READYQTOP: DS 1 ; ADDRESS OF LAST READY TASK
RUNNING: DS 1 ; NUMBER OF CURRENT TASK
TICKCOUNT: DS 1 ; USED FOR RTOSGO.....
DELAYLO: DS 1 ; USED FOR RTOSGO.....
DELAYHI: DS 1 ; USED FOR RTOSGO.....
GOPARAM: DS 1 ; USED FOR RTOSGO.....
TMPSTOREOQ : DS 1 ; USED IN FETCHSTACK

DSEG AT 22H

READYQ: DS (NOOFTSKS + 1) ; QUEUE STACK FOR TASKS READY TO RUN

SPTS: DS (NOOFTSKS + 1) ; SP FOR EACH TASK AND 1 FOR THE IDLE TASK
T SLOT: DS (NOOFTSKS + 1) ; TIME SLOTS USAGE PER TASK AND MAINS

T SLOT RELOAD: DS (NOOFTSKS + 1) ; RELOAD VALUE FOR TIME SLOTS ABOVE

; MAIN_STACK AREA STARTS HERE, NEXT LOCATION AFTER TSKFLAGS.

; SPARE_STACK SEGMENT XDATA ; VARIABLE EXTERNAL DATA

;RSEG SPARE STACK

XSEG AT 1 + XTRAMTOP - (NOOFTSKS + 1) * STACKSIZE

EXT_STK_AREA: DS (NOOFTSKS + 1) * STACKSIZE ; THIS IS THE ACTUAL SIZE OF STACK AREA
;CSEG AT 8028H ; INTERRUPT VECTOR ADDRESS FOR TIMER 2 ON FLIGHT
32 BOARD
CSEG AT 0028H ; INTERRUPT VECTOR ADDRESS FOR TIMER 2 ON GENERIC
CONTROLLER

CLR EA ;

CLR TF2 ; Clear Timer 2 interrupt flag (not done
automatically)

LJMP RTOS TIMER INT

MyRTOS CODE SEGMENT CODE ; STARTS AT 8100H FOR THE FLIGHT32 BOARD

RSEG MyRTOS CODE

; START OF RTOS SYSTEM

; PREFIX NAME FOR FUNC WITH REG-PASSED PARAMS MUST START WITH AN UNDERSCORE

_INIT RTOS: ; SYS CALL TO SET UP VARIABLES

; R7 HOLDS THE DEFAULT TSLOT (FOR MAIN)
; IN THE C ENVIRONMENT, THE KEIL SOFTWARE CLEARS THE INTERNAL RAM FROM 0 TO 7FH
; WHEN THE STARTUP SEQUENCE IS CALLED.
; EVEN THOUGH THE 8032 WITH O-FFH INTERNAL RAM WAS CHOSEN IN THE TARGET OPTION.
; HENCE CERTAIN VARIABLES STORED FROM 80H TO FFH (SUCH AS TSKFLAGS) MUST BE

; INITIALISED TO ZERO IN THIS INITALISATION ROUTINE.

; IN ASM OR A51 (NOT IN C), ALL THE INTERNAL RAM (0-FFH) IS

; CLEARED BY MEANS OF THE CLR 8051 RAM MACRO.

Download free eBooks at bookboon.com

30

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Part Il Appendix A

MOV DPTR, #EXT STK AREA ; NEXT CLEAR ALL EXTERNAL RAM STACKS

MOV RO, # (NOOFTSKS + 1)
CLR A
NEXT STACK:
MOV R1, #STACKSIZE
CLR STACK:
MOVX @DPTR, A
INC DPTR
DJNZ R1,CLR STACK

DJNZ RO,NEXT STACK
MOV R5,07 ; STORE DEFAULT TSLOT IN R5

MOV IE, #20H ; ENSURE EA = 0 AND ET2 = 1

MOV RUNNING, #IDLE TASK ; IDLE TASK RUNNING (Main program endless loop)

MOV R7, # (NOOFTSKS + 1) ; FILL ONE ADDITIONAL LOCATION, FOR MAIN IDLE
TASK

MOV R1, #READYQ

LOAD_VARS:
MOV @R1,#IDLE TASK ; IDLE TASK IN ALL OF READYQ (Main program end-

less loop)
INC R1
DJNZ R7,LOAD7VARS ; SET UP ALL TASKS

MOV READYQTOP, #READYQ

> Apply now

REDEFINE YOUR FUTURE

AXA GLOBAL GRADUATE
PROGRAM 2014

redefining / standards

Q
o
)
%]
[=
(=}
f=
=}
<]
o
2
a
©
g
54
2

Download free eBooks at bookboon.com &\S«\

31 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5

PaulOS An 8051 Real-Time Operating System
Partli Appendix A

; INITIALISE ALL STACK POINTERS
MOV R7, #NOOFTSKS ; COUNTER
MOV RO, #SPTS ; MAIN IDLE TASK TAKEN CARE OF BY 1ST INTERRUPT
MOV A, # (MAIN STACK - 1)
ADD A, # (NOOFPUSHES + 2)

SET UP:

MOV @RO,A ; ALL SPs POINT TO MAIN STACK + PUSHES, IN
PREPARATION

INC RO ; FOR THE EVENTUAL RETI INSTRUCTION

DJNZ R7,SET UP ; USED TO CHANGE TASKS AFTER AN RTOS INTERRUPT.

; INITIALISE TIME SLOTS, INITIALLY ALL SET TO THE GIVEN DEFAULT VALUE
MOV R7, # (NOOFTSKS +1)
MOV RO, #T_ SLOT
MOV R1,#T SLOT RELOAD
LOAD_SLOTS:
MOV @RO, 05
MOV @R1,05
INC RO
INC R1
DJNZ R7,LOAD_SLOTS

RET

_CREATE:
; SYS CALL ENTRY TO CREATE A TASK
; TASK NUMBER (0 to 7) PASSED IN BANKO R7
; TIME SLOT (1 - 255) PASSED IN BANKO R5
; TASK START ADDR PASSED IN BANKO R1,R2,R3
; LSB in R1, MSB in R2, R3 contains type
INC READYQTOP
MOV RO, READYQTOP
MOV @RO, 07 ; PLACE TASK IN READYQ
MOV A,#T_SLOT
ADD A,R7
MOV RO, A
MOV @RO, 05 ; PUT GIVEN TIME SLOT (IN R5) INTO MEM LOCATION
MOV A, #T_ SLOT_ RELOAD

ADD A,R7

MOV RO, A

MOV @RO, 05 ; PUT GIVEN TIME SLOT (IN R5) INTO RELOAD
; MEM LOCATION (T SLOT RELOAD)

MOV A, R7

CALL FetchStack
MOV A,R1
MOVX @DPTR,A ; copy low byte R1 into LOW STACK AREA

INC DPTR

Download free eBooks at bookboon.com

32

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli Appendix A
MOV A, R2
MOVX @DPTR,A ; NOW SAVE THE HIGH ORDER BYTE (R2)
RET
_RTOSGOMSEC: ; SYS CALL TO START RTOS FOR R7 MILLISECOND TICKS
SETB MSECFLAG ; SET MARKER

CLR SECFLAG
CLR MINFLAG
MOV DELAYLO, #LOW (ONEMSEC)
MOV DELAYHI, #HIGH (ONEMSEC)

SJMP LOAD REGS

_RTOSGOSEC: ; SYS CALL TO START RTOS FOR R7 SECOND TICKS
SETB SECFLAG ; SET MARKER
CLR MINFLAG
CLR MSECFLAG
MOV DELAYLO, #LOW (ONESEC) ; EQUAL ONE SECOND
MOV DELAYHI, #HIGH (ONESEC)

SJMP LOAD REGS

_RTOSGOMIN:
SETB MINFLAG
CLR MSECFLAG
CLR SECFLAG
MOV DELAYLO, #LOW (HALFMIN) ; 60000 HALF MILLISECONDS EQUAL HALF MINUTE

MOV DELAYHI, #HIGH (HALFMIN)

LOAD REGS:
MOV RCAP2H, #HIGH (BASIC TICK) ; LOAD RCAPS WITH 1 MILLISECOND COUNT
MOV RCAP2L, #LOW (BASIC TICK) ; SAVE THEM IN THE AUTO RE-LOAD REGISTERS
; OF TIMER 2 (for Flight 32)
MOV GOPARAM, 07 ; LOAD TICKS PARAMETER, PASSED IN R7 BANK 0

MOV TICKCOUNT, 07

MOV T2CON, #04H ; START TIMER 2 IN 16-BIT AUTO RELOAD MODE.
SETB EA ; ENABLE GLOBAL INTERRUPT SIGNAL
SETB TF2 ; SIMULATE TIMER 2 INTERRUPT
RET ; EFFECTIVELY STARTING THE RTOS.
EXIT1: LJMP EXIT ; STEPPING STONE
RTOS TIMER INT: ; INTERRUPT ENTRY ONLY FROM TIMER2 OVERFLOW
INTERRUPT

; USES ACC,PSW, (RO,R1 AND R2 FROM BANK 1)
Push_BankO_Reg
SetBank 1 ; SET TO REGISTERBANK 1
CLR C

MOV A, DELAYLO

Download free eBooks at bookboon.com

33

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll

Download free eBooks at bookboon.com

SUBB A, #1
MOV DELAYLO, A
MOV A,DELAYHI
SUBB A, #0
MOV DELAYHI,A

ORL A,DELAYLO
PASSED

JNZ EXIT

MOV DELAYLO, #LOW (ONEMSEC)
MOV DELAYHI, #HIGH (ONEMSEC)
JB MSECFLAG,CHK_GO_PARAM
MOV DELAYLO, #LOW (ONESEC)
MOV DELAYHI, #HIGH (ONESEC)
JB SECFLAG, CHK_GO_PARAM
MOV DELAYLO, #LOW (HALFMIN)
MOV DELAYHI, #HIGH (HALFMIN)

CPL MINFLAG

JNB MINFLAG, EXIT1

CHK_GO PARAM:

DJNZ TICKCOUNT,

EXIT1

MOV TICKCOUNT, GOPARAM

MOV A, #T SLOT
ADD A, RUNNING
MOV RO, A

MOV A, @RO

DEC A

MOV @RO,A

JNZ EXITI1

MOV A, #T SLOT RELOAD

ADD A, RUNNING
MOV RI1,A
MOV A, @R1

MOV @RO,A

MOV A, #SPTS
ADD A, RUNNING
MOV RO, A

MOV @RO, SP
MOV A, RUNNING
MOV R5, A

CALL FetchStack

’

’

7

’

7

’

’

’

7

’

’

’

’

’

’

7

’

’

’

CHECK IF DELAY

; IF NOT,

(1 MSEC,

EXIT

DELAY OF 1 MSECS

WAIT FOR ONE MINUTE

Appendix A

1 SEC OR 1/2 MIN)

(TWICE HALF MIN)

; CHECK IF REQUIRED TIME SLOTS HAVE PASSED

QROTATE

SAVE PRESENT RUNNING TASK STACK PTR

ROTATE READYQ BY ONE

GET NEW RUNNING TASK FROM READYQ

HAS

FIRST CHECK IF REQUIRED TIME SLOT HAS PASSED

RO POINTS TO T SLOT OF RUNNING TASK

SAVE DECREMENTED TIME SLOT

TIME SLOT NOT FINISHED, HENCE EXIT WITHOUT

CHANGING TASKS

TIME SLOT PASSED, THEREFORE RELOAD WITH

ORIGINAL VALUE AND CHANGE TASKS

R1 POINTS TO T_SLOT RELOAD OF RUNNING TASK

RESET ORIGINAL TIME SLOT VALUE

save SP

store present stack pointer of task.

SAVE CURRENT TASK IN R5 BANK 1

34

(ADDRESS 0DH)

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix A

Int2Ext ; SAVE STACK IN EXTERNAL, READY FOR SWAP

MOV R1, # (READYQ + 1) ; Now SHIFT Q DOWN 1

MOV RO, READYQTOP

DEC RO ; RO NOW POINTS TO ONE BYTE BELOW TOP OF QUEUE
SHIFT_DOWN:

MOV A, @R1

DEC R1

MOV @R1,A

MOV A,R1

INC R1

INC R1

CJINE A,08,SHIFT DOWN ; THEY ALL MOVED DOWN SO

INC RO ; RO NOW POINTS AGAIN TO READYQTOP

MOV @RO, ODH ; PLACE CURRENT TASK ON TOP OF QUEUE
RUN_NEW_TASK: ; run new task

MOV A, READYQ

MOV RUNNING, A ; SET NEW TASK AS RUNNING

CALL FetchStack

Ext2Int ; GET NEW STACK IMAGE

MOV A, #SPTS

ADD A,RUNNING

MOV RO, A

MOV SP, QRO ; SET SP TO NEW TASK STACK AREA

/& Empowering People.
W sthatedic Meke i Improving Business.

¥ Management _

Bl Norwegian Business School is one of Europe’s
largest business schools welcoming more than 20,000
students. Our programmes provide a stimulating

- and multi-cultural learning environment with an
=rnationa i international outlook ultimately providing students

o napclal ousines S with professional skills to meet the increasing needs
FRUDMIGS of businesses.

/ ! Bl offers four different two-year, full-time Master of
Leadership & Science (MSc) programmes that are taught entirely in
‘ Organisationgiias English and have been designed to provide professional
Shipping Psycialed skills to meet the increasing need of businesses. The
2 ﬂge ept 1% _ MSc programmes provide a stimulating and multi-
- cultural leaming environment to give you the best
platform to launch into your career.

* MSc in Business
* MSc in Financial Economics

* MSc in Strategic Marketing Management

NORWEGIAN /(_ - * M5Sc in Leadership and Organisational Psychology
BUSINESS SCHOOL EQUIS www.bi.edu/master

Download free eBooks at bookboon.com &\5«\

35 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

PaulOS An 8051 Real-Time Operating System
Part Il Appendix A

EXIT:
Pop Bank0O Reg
SetBank 0
SETB EA
RETI

; SUB ROUTINES

FetchStack:
; ENTRY A = TASK NUMBER, USES ACC, DPTR, AND RO
; EXIT DPTR POINT TO START OF STACK AREA FOR TASK
PUSH 00
PUSH 08
MOV TMPSTOREOQ, A
MOV DPTR,#EXTisTKiAREA
MOV RO, #0
LOOP1:
MOV A,RO
CJINE A, TMPSTOREO, CONT1
POP 08
POP 00
RET
CONT1:
MOV A, #STACKSIZE
ADD A,DPL
MOV DPL,A
MOV A, DPH
ADDC A, #0
MOV DPH,A
INC RO
SJMP LOOP1

END

Download free eBooks at bookboon.com

36

http://bookboon.com/

Appendix B PaulOS A51 version

The PaulOS RTOS

This is the A51 assembly language version of the PaulOS (PAULSs Operating System) RTOS. It has been
superseded by its C language version but we have included it here for the benefit of those who are keen
to use the assembly language even in ‘large’ projects. Most of the explanations have already been included
in Chapter 9 but are being retained here so as to make it a self-contained appendix. The idea behind the

PaulOS RTOS is that any task (part of program) can be in any ONE of three states:

RUNNING

It can be RUNNING, (obviously in the single 8051 environment, there can only be one task which is

running.)

WAITING

It can be in the WAITING or SLEEPING queue. Here a task could be waiting for any one of the following:

« aspecified amount of time, selected by the user with WAITT command.

« a specified amount of time, selected by the user with PERIODIC command.

« a specified interrupt to occur within a specified time, selected by the user with the WAITI
command.

« asignal from some other task within a specified timeout.

« asignal from some other task indefinitely.

« finally, a task could be waiting here for ever, effectively behaving as if the task did not exist.
This is specified by the KILL command.

READY

It can also be in the READY QUEUE, waiting for its turn to execute.
This can be visualised in Figure 7-1 which shows how the task can move from one state to the other.
The RTOS itself always resides in the background, and comes into play:

o At every RTOS TIMER interrupt (usually Timer 2 or Timer 0, every one millisecond).

« At any other interrupt from other timers or external inputs.

o Whenever an RTOS system command is issued by the main program or tasks.

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll Appendix B

The RTOS which is effectively supervising all the other tasks, then has to make a decision whether it has
to change tasks. There could be various reasons for changing tasks, as explained further on, but in order
to do this task swap smoothly, the RTOS has to save all the environment of the presently running task
and substitute it with the environment of the next task which is about to run. This is accomplished by
saving all the BANK 0 registers, the ACC, B, PSW, and DPTR registers. The STACK too has to be saved
since the task might have pushed some data on the stack (apart from the address in the task program,

where it has to return to after the interrupt).

System Commands

Here is a detailed explanation of all the PaulOS RTOS system commands. They are listed in the sequence
in which they appear in the PaulOS.A51 source program. Note that certain system commands initiate

a task change whilst others do not.

The following calls listed in Table B-2 do not receive parameters, hence are not declared with an underscore

prefix in the a51 file.

Need help with your
dissertation?

Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

Get Help Now

Go to www.helpmyassignment.co.uk for more info E/Helpmyassignment

Download free eBooks at bookboon.com X\(‘ :\

38 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

void SET_IDLE_MODE(void) - Normally used in Main idle task

void SET_POWER_DOWN(void) - Normally used in Main idle task
void DEFER(void) - This commands causes a task change
void KILL(void) - This commands causes a task change
uchar SCHEK (void)

uchar RUNNING_TASK_ID(void)
void WAITV (void) - This commands causes a task change

Table B-2 System Calls without any parameters

The following calls listed in Table B-3 do require parameters, hence are declared with an underscore
prefix in the a51 file.

void INIT_RTOS(uchar IEMASK) - Normally used in Main idle task
void RTOSGOMSEC(uchar msecs,uchar prior) - Normally used in Main idle task
void SIGNAL(uchar task)

void WAITI(uchar intnum) - This commands causes a task change
void WAITT (uint ticks) - This commands causes a task change
void WAITS(uint ticks) - This commands causes a task change if signal is not yet present

void CREATE(uchar task,uint *taskadd) - Normally used in Main idle task
void PERIODIC(uint ticks)
void RESUME (uchar task) - This commands causes a task change

Table B-3 System calls needing some parameters

INIT_RTOS(IEMASK)

This system command must be the FIRST command to be issued in the main program in order to
initialise the RTOS variables. It is called from the main program and takes the interrupt enable mask

(IEMASK) as a parameter. An example of the syntax used for this command is:

INIT_RTOS(0x30);

which would imply that some task is intended to use the Timer 2 interrupt (IEMASK=20H) for the
RTOS as well as the Serial Interrupt (IEMASK=10H). (See Table B-4). The default mask is 20H which

enables just the Timer 2 interrupt. This 20H is always added (or ORed) by the RTOS automatically to

any other mask. Other masks which are valid are:

Download free eBooks at bookboon.com

http://bookboon.com/

Interrupt IE MASK Notes

No: Name Binary Hex

0 External Int O 00000001 01

1 Timer Counter 0 00000010 02 Default RTOS for 8051
2 External Int 1 00000100 04

3 Timer Counter 1 00001000 08

4 Serial Port 00010000 10

5 Timer 2 (8032 only) 00100000 20 Default RTOS for 8032

Table B-4 IEMASK parameter
This system command performs the following:

o Clears the external memory area which is going to be used to store the stack of each task.

o Sets up the IE register (location A8H in the SFR area)}.

o Selects edge triggering on the external interrupts. (can be amended if different triggering
required).

» Loads the Ready Queue with the main idle task number, so that initially, only the main task
will execute.

o [Initialises all task as being not waiting for a timeout.

o Sets up the SP of each task to point the correct location in the stack area of the particular
task. The stack pointer, initially, is made to point to an offset of 14 above the base of the stack
[(MAIN_STACK - 1) + NOOFPUSHES + 2] since NOOFPUSHES in this case is 13. This is
done so as to ensure that when the first RET instruction is executed after transferring the stack
from external RAM on to the 8032 RAM, the SP would be pointing correctly to the address of
the task to be started. This is seen in the QSHFT routine, where before the last RET instruction,
there is the Pop_Bank0_Reg macro which effectively pops 13 registers. The RET instruction

would then read the correct address to jump to from the next 2 locations.

CREATE(Task No:, Task Name)

This system command is used in the main program for each task to be created. It takes two parameters,
namely the task number (1st task is numbered as 0), and the task address, which in the C environment,
would simply be the name of the procedure. An example of the syntax used for this command is:
CREATE(0,MotorOn);

This would create a task, number 0. This task would in fact be the MotorOn procedure.

This system command performs the following:

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

o Places the task number in the next available location in Ready Queue, meaning that this task
is ready to execute. The location pointer in Ready Queue is referred to as READYQTOP in
the program, and is incremented every time this command is issued.

« Loads the address of the start of the task in the bottom of the stack area in external ram
allocated to this task. The SP for this task would have been already saved, by the INIT_
RTOS command, pointing to an offset 13 bytes above this.

RTOSGOMSEC(Msec, Priority)

This system command is used only ONCE in the main program, when the RTOS would be required to

start supervising the processes. It takes two parameters, namely:

The number of milliseconds, which would be the base reference for other time dependent commands,
such as PERIODIC, WAITT and WAITS.

The Priority (0 or 1), which if set to 1, implies that tasks placed in the Ready Queue, ready to execute,
would be sorted in descending order before the RTOS selects the next task to run. A task number of 0

is assigned to the HIGHEST priority task, and would obviously be given preference during the sorting.

[]
B By 2020, wind could provide one-tenth of our planet's
ra I n p O W e r electricity needs. Already today, SKF's innovative know-
how is crucial to running a large proportion of the
world's wind turbines.
Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
jcation. We help make it more economical to create

Therefore we'need the best employees who can

eet this challenge!

Tﬂf Power of Knowledge Engineering

i

)

Plug into The Power of Knowl@ ngineering.
Visit us at www.skf.com/knowledgy.

Download free eBooks at bookboon.com

41 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

An example of the syntax used for this command is:

RTOSGOMSEC(10,1)

This would start the RTOS ticking, at a reference time signal of 10 milliseconds. This 10 milliseconds

would then become the basic reference unit for other system commands which use any timeout parameter.

The RTOS would also be required to execute task sorting prior to any task change. It should be pointed
out here, that the RTOS timer would still be generating interrupts every half a millisecond (if the
HALFMSEC variable is set to 1 in the file) , so as to respond to external interrupts relatively quickly.

This system command performs the following:

» Loads the variable DELAY (LO and HI bytes), with the number of BASIC_TICKS required
to obtain a one millisecond interval. Since BASIC_TICKS correspond to a half second
interval in Timer 2, then to get a one millisecond interval, DELAY is simply loaded with 2.

o Set the PRIORITY bit according to the priority parameter supplied.

o Load RCAP2H and RCAP2L, the timer 2 registers, with the required count in order to
obtain half a millisecond interval between timer 2 overflow interrupts. The value used
depends on the crystal frequency used on the board. The clock registers count up at one
twelfth the clock frequency, and using a clock frequency of 11.0592 MHz, each count would
involve a time delay of 12/11.0592 psec. (1.085 usec).

o Therefore to get a delay of half a millisecond (500 psecs), 500/1.085 or 460.8 counts would
be needed. Since there are a lot of overheads in the Pushes and Pops involved during every
interrupt, a count of 450 was used. Moreover, since the timers generate an interrupt when
there is an overflow in the registers, then the registers are actually loaded with 65086 or
(65536 — 450).

« Store the reference time signal parameter in GOPARAM and TICKCOUNT.

o Start timer 2 in 16-bit auto-reload mode.

« Enable interrupts.

o Set TF2, which is the timer 2 overflow interrupt flag, thus causing the 1st interrupt.

RUNNING_TASK_ID()

This system command is used by a task to get the number of the task itself. It returns a value (in R7

bank 0). The same task continues to run after executing this system command.

An example of the syntax used for this command is:

X = RUNNING_TASK_ID(); /* where X would be an unsigned integer */

Download free eBooks at bookboon.com

http://bookboon.com/

SCHEK()

This system command is used by a task to test whether there was any signal sent to it by some other

task. It returns a value (in R7 bank 0):

1 - Signal is not present

0 - Signal is present

If the signal was present, it is also cleared before returning to the calling task. The same task continues

to run, irrespective of the returned value.

An example of the syntax used for this command is:

X = SCHEK(); /* where X would be an unsigned integer */

or you may use it in the following example to test the presence of the signal bit:

if (SCHEK() == 0)

{

/* do these instructions if a signal was present */

}

SIGNAL(Task No:)

This system command is used by a task to send a signal to another task. If the other task was already
waiting for a signal, then the other task is placed in the Ready Queue and its waiting for signal flag is
cleared. The task issuing the SIGNAL command continues to run, irrespective of whether the called
task was waiting or not waiting for the signal. If you need to halt the task after the SIGNAL command
to give way to other tasks, you must use the DEFER() system command after the SIGNAL command.

This system command performs the following:

It first checks whether the called task was already waiting for a signal.

o If the called task was not waiting, it set its waiting for signal (SIGW) flag and exits to continue
the same task.

o If it was already waiting, it places the called task in the Ready Queue and it clears both the
waiting for signal (SIGW) and the signal present (SIGS) flags.

o Italso sets a flag (TINQFLAG) to indicate that a new task has been placed in the Ready Queue.
This flag is used by the RTOS_TIMER_INT routine (every half a millisecond) in order to be
able to decide whether there has to be a task change. It then exits the routine to continue the

same task.
Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

An example of the syntax used for this command is:
SIGNAL(1); // send a signal to task number 1
The following commands perform a change of task:

WAITI(Interrupt No:)

This system command is called by a task to ‘sleep’ and wait for an interrupt to occur. Another task, next
in line in Ready Queue would then take over. If the interrupt never occurs, then the task will effectively

sleep for ever.

If required, this command can be modified to allow another timeout parameter to be passed, so that
if the interrupt does not arrive within the specified timeout, the task would resume. A timeout of 0
would leave the task still waiting the interrupt forever. This would be similar to the WAITS command
explained further down.

This system command performs the following:

o It sets the bit which correspond to the interrupt number passed on as a parameter.

o It then calls the QSHFT routine in order to start the task next in line.

“I studied
English for 16 p
years but... -
...I finally
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

e—)

Download free eBooks at bookboon.com

44 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

An example of the syntax used for this command is:

WAITI(0); // wait for an interrupt from external int 0

The task would then go into the sleep or waiting mode and a new task would take over.

WAITS(Timeout)

This system command is called by a task to sleep and wait for a signal to arrive from some other task. If
the signal is already present (previously set by some other task), then the signal is simply cleared and the
task continues on. If the signal does not arrive within the specified timeout period, the task resumes just
the same. However, a timeout number of 0 would imply that the task has to keep on waiting for a signal

indefinitely. If the signal does not arrive, then the task never resumes to work and effectively kills the task.
This system command performs the following:

o It first checks whether the signal is already present.

o [Ifitis it clears the signal flag, exits and continues running

« If signal is not present, then:

o It sets its own waiting for signal (SIGW) flag.

o It also sets the waiting for timeout variable according to the supplied parameter.

o It then jumps to the QSHFT routine in order to start the task next in line.

An example of the syntax used for this command is:

WAITS(50);
// wait for a signal for 50 units, the value of the unit depends on // the RTOSGOMSEC parameter used.

If for example, the command RTOSGOMSEC(10,1) was used, the reference unit would be 10 milliseconds,
and WAITS(50) would then imply waiting for a signal to arrive within 500 milliseconds.

Or you can use:

WAITS(0); // this would wait for a signal for ever

In both examples, the task would then go into the sleep or waiting mode and a new task would take over.

Download free eBooks at bookboon.com

http://bookboon.com/

WAITT (Timeout)

This system command is called by a task to sleep and wait for a specified timeout period. The timeout
period is in units whose value depends on the RTOSGOMSEC parameter used. Valid values for the
timeout period are in the range 1 to 655635. A value of 0 is reserved for the KILL command, meaning
permanent sleep, and therefore is not allowed for this command. The WAITT system command therefore

performs the required check on the parameter before accepting the value. A value of 0 is changed to a 1.

This system command performs the following:

o If the parameter is 0, then set it to 1, to avoid permanent sleep.
« Saves the correct parameter in its correct place in the TTS table.

o Jumps to the QSHFT routine in order to start the task next in line.

An example of the syntax used for this command is:

WAITT(60);
// wait for a signal for 60 units, the value of the unit depends on // the RTOSGOMSEC parameter used.

If for example, the command RTOSGOMSEC(10,1) was used, the reference unit would be 60 milliseconds,
and WAITT(60) would then imply waiting or sleeping for 600 milliseconds.

If on the other hand, the command RTOSGOMSEC(250,1) was used, the reference unit would be a
quarter of a second, and WAITT(240) would then imply waiting or sleeping for 60 seconds or 1 minute.

In both examples, the task would then go into the sleep or waiting mode and a new task would take over.

KILL()

This system command is used by a task in order to stop or terminate the task. As explained earlier in
WAITT, this is simply the command WAITT with an allowed timeout of 0. The task is then placed

permanently waiting and never resumes execution.

This system command performs the following:

o It first clears any waiting for signal or interrupt flags, so that that task would definitely never
restart.

« It then sets its timeout period in the TTS table to 0, which is the magic number the RTOS
uses to define any non-timing task.

o It then sets the INTVLRLD and INTVLCNT to 0, again implying not a periodic task.

o Jumps to the QSHFT routine in order to start the task next in line.

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll Appendix B

An example of the syntax used for this command is:

KILL();

/* the task simply stops to execute and a new task would take over.*/

RESUME (Task Number)

This system command is used in a task to resume another task which had already KILLed itself. The
parameter passed is the task number of the task which has to be restarted. After executing this command,
the calling task itself is DEFERred to give up its CPU time to any other task (presumably the resurrected
task!)

An example of the syntax used for this command is:
RESUME(X); /* where X would be a task number */
The task issuing this command, would then be placed in the waiting queue, for one tick time.

DEFER()

This system command is used by a task in order to hand over processor time to another task. The task is

simply placed in the Waiting Queue, actually waiting or just 1 tick, while a new task resumes execution.

Vowo Toucxs | Resanr Tooces | Macs Tovers | Vowo Buses | Vowo Cowsteucrion Esumsent | Wowo Pesm | Vowo Aero | Vowo IT
Vowo Fikskcer Sepnces | Vowo 3P | Vowo Powerream | Vowo Pasts | Vowo Tecewowoey | Vowo Lossncs | Busieess Anss Asik

Download free eBooks at bookboon.com

47

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

This system command performs the following:

o It sets its timeout period in the TTS table to 1. The task will therefore be ready to execute
after the next tick.

o It then flows on to the QSHFT routine in order to start the task next in line.

An example of the syntax used for this command is:

DEFER();
/* the task simply stops execution and is placed in the Waiting Queue.*/

/* A new task would then take over. */

Variables Memory Map

Table B-5 shows the way the variables used in this RTOS program have been set up. Most of the variables
reside in the internal 256 RAM of the 8032 micro-processor. The external RAM (from address 8100H
and higher for the Flight 32 board) is used to store the stacks of all the tasks and main idle program.
These stacks are then swapped in turn with the area reserved for the stack in the internal RAM whenever

a task swap is necessary.

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Part Il Appendix B
Label Hex Byte Remarks Notes
Address Hex bit address
FF Indirect
General
Purpose
To RAM (80 - FF)
which can
Be used as a
80 Stack Area
TF
Direct and
MAIN_STACK to Indirect RAM
(00 - 7F)
76
75
SP (initially) Time slot
to (NOOFTSKS+1) bytes Reload values
T SLOT_ RELOAD For each task
6l
60
Time slot
T SLOT to (NOOFTSKS+1) bytes Counter
For each task
4C
4B
Storage area
SPTS to (NOOFTSKS+1) bytes For the SPs
Of each task
37
35
Queue for
READYQ to (NOOFTSKS+1) bytes Tasks ready
To run
22
21 OF | OE | OD | OC | OB |OA | 09| 08 |Spare bits
20 07|06 |05]04|03|02|01]|00|MYBITS
1F
Storage for any
to Applications
variables
17
TMPSTOREOQ 16 See FETCH_STACK
GOPARAM 15 RTOSGOMSEC
DELAYHI 14 RTOSGOMSEC
DELAYLO 13 RTOSGOMSEC
TICKCOUNT 12 RTOSGOMSEC
RUNNING 11 Currently running task Task number
READYQTOP 10 Points to last task in READYQ | Pointer
OF
Register Bank 1 Register bank
to Used by the
(RO - R7) RTOS
08

Download free eBooks at bookboon.com

49

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli Appendix B
Label Hex Byte Remarks Notes
Address Hex bit address

07
Register Bank 0 Register bank

to used by
(RO — R7) ALL tasks

00

Table B-5 PaulOS.A51 Variables setup, with 18 (12H) tasks. (NOOFTSKS=12H)

The program listing for the assembly code version of PaulOS RTOS now follows. It consists of:

o The header file PaulOS.h
o The startup file Startup.a51

o The main source file PaulOS.a51

PaulOS.h

/* PaulosV5C.h */

/* for use with PaulosV5C.a51 RTOS program */

/* written by Paul P.

#define uchar unsigned char

#define uint unsigned int

#define ulong unsigned long

// The following calls do not receive parameters,

Debono - FEBRUARY 2005 */

// declared with an underscore prefix in the a51 file

void SET IDLE_MODE (void) ;
void SET POWER DOWN (void) ;

void DEFER (void) ;
void KILL (void);
uchar SCHEK (void) ;

uchar RUNNING TASK ID(void);

void WAITV (void);

// The following calls do receive parameters,

// with an underscore prefix in the a5l file

void
void
void
void
void
void
void
void

void

INIT RTOS (uchar IEMASK);

RTOSGOMSEC (uchar msecs,uchar prior);
SIGNAL (uchar task);
WAITI (uchar intnum);
WAITT (uint ticks);
WAITS (uint ticks);
CREATE (uchar task,uint *taskadd);
PERIODIC (uint ticks);
RESUME (uchar task);

hence are declared

/*

/* ADD-ON MACROS */

/*

Download free eBooks at bookboon.com

50

hence are not

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Part Il Appendix B
/* Macro 'WAITM' Used to wait for a max of 1 MINUTE */
/* Use with an RTOSGOMSEC(1,0) - 1 milli seconds tick time */

#define WAITM (s, ms) WAITT ((uint) (##s*1000 +##ms))

/* Macro 'WAITH' Used to wait for a max of 18h 12m */
/* 66535 * 4 * 250 MILLISECONDS */
/* Use with an RTOSGOMSEC (250,0) - 250 milli seconds tick time */
#define WAITH(H, M, S) {WAITT((uint) (3600*##H + 60*##M + ##S)); \
WAITT ((uint) (3600*##H + 60*##M + ##S)); \
WAITT ((uint) (3600*##H + 60*##M + ##S)); \
WAITT ((uint) (3600*##H + 60*##M + ##S)); \
}
/* Macro 'WAITD' Used to wait for a max of 7D 14h 2m */
/* 66535 * 40 * 250 MILLISECONDS */
/* Use with an RTOSGOMSEC (250,0) - 250 milli seconds tick time */
#define WAITD(D, H, M) {WAITT((uint) (8640*##D + 360*##H + 6*##M)); \
WAITT ((uint) (8640*##D + 360*##H + 6*##M)); \
WAITT ((uint) (8640*##D + 360*##H + 6*##M)); \
WAITT ((uint) (8640*##D + 360*##H + 6*##M)); \
WAITT ((uint) (8640*##D + 360*##H + 6*##M)); \
WAITT ((uint) (8640*##D + 360*##H + 6*##M)); \
WAITT ((uint) (8640*##D + 360*##H + 6*##M)); \
WAITT ((uint) (8640*##D + 360*##H + 6*##M)); \
WAITT ((uint) (8640*##D + 360*##H + 6*##M)); \
WAITT ((uint) (8640*##D + 360*##H + 6*##M)); \
WAITT ((uint) (8640*##D + 360*##H + 6*##M)); \
WAITT ((uint) (8640*##D + 360*##H + 6*##M)); \
WAITT ((uint) (8640*##D + 360*##H + 6*##M)); \

s @book 1s probucen with iText®

Download free eBooks at bookboon.com &\S«\

51 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

PaulOS An 8051 Real-Time Operating System

Partll

WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
WAITT ((uint)
}

(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D
(8640*##D

360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H
360*##H

/* Macro 'PERIODICA' Used to wait for a max of 4h 33m
/* Use with an RTOSGOMSEC (250,0) - 250 milli seconds tick time
#define PERIODICA (H, M, S) PERIODIC((uint) (14000*##H + 240*##M + 4*##S))

+ o+ + + + + o+ o+ o+ + o+ o+ A+ A+ A+ A+ o+

/* Macro 'PERIODICM' Used to wait for a max of 1 MINUTE
/* Use with an RTOSGOMSEC(1,0) - 1 milli seconds tick time

#define PERIODICM (s, ms) PERIODIC ((uint) (##s*1000 +##ms))

6*#4M)) ;
6*##M)) ;
6*#4M)) ;
6*#4M)) ;
6*#4M)) ;
6*#4M)) ;
6*##M)) ;
6*#4M)) ;
6*#4M)) ;
6*#4M)) ;
6*#4M)) ;
6*##M)) ;
6*#4M)) ;
6*#4M)) ;
6*#4M)) ;
6*#4M)) ;
6*#4#M)) ;
6*#4M)) ;
6*#4M)) ;
6*#4M)) ;
6*#4M)) ;
6*##M)) ;
6*#4M)) ;
6*#4M)) ;
6*#4M)) ;
6*#4M)) ;
6*#4#M)) ;

/*

TaskStk.a51

; TASKSTKV5C.ab1

$NOMOD51

#include "..\Headers\reg52.h"
; check your own correct path

USING 1 ; SET ASIDE BANK 1

’

B R R Y

; IMPORTANT
; INTERRUPT VECTOR TABLE BASE ADDRESS

INT_VECTOR BASE EQU 7FFDH
TICK TIMER EQU 2

USING INT EQU 0

PERIODIC CMD EQU 0

HALFMSEC EQU 1

; SELECT WHICH TIMER TO USE FOR RTOS TICKS
; SET TO 1 IF USING INTERRUPTS
; IF NOT USING PERIODIC COMMAND SET TO ZERO

; TO CLEAR UP SOME INTERNAL IDATA MEMORY

; SET TO 1 TO CHECK INTERRUPTS EVERY 1/2 MSEC

Download free eBooks at bookboon.com

52

P G R g R g g D g g

*/
*/

*/
*/

*/

(WAITI)

Appendix B

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

; ELSE RTOS WOULD CHECK EVERY 1 MSEC

NOOFTSKS EQU 7 ; CAN BE MORE, SAY 20 TASKS (numbered 0 to 19)
MAIN STACK EQU OBFH ; CONFIRM LOCATION WITH KEIL FILE *.M51

; see variable ?STACK in IDATA
STACKSIZE EQU 25H ; 20H MINIMUM
; NOTE dAhhkkhhkkhkhhhhdhhdhhhhhhhhhhhhhhrdhhh bk bk hhhhhk bk bk bk hkhhkh bk hkhk bk hkhkhkhhhhkhkhkhrkhhkhkhkhkhkrhrkhhhhxk
; MODIFY ABOVE TO REFLECT YOUR APPLICATION PROGRAM AND HARDWARE

AR RS ES S S SRS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS

; THESE ARE THE FOUR MAIN PARAMETERS WHICH YOU MIGHT NEED TO ADJUST,
; DEPENDING ON YOUR APPLICATION.

; A STACK SIZE OF 20H SHOULD BE ADEQUATE FOR MOST APPLICATIONS.

R dh Ak kb bk bk kb b b b b b b b b b b b b b b b bk kb i

#include "..\PaulosRTOS\RTMACROSV5C.a51"
#include "..\PaulosRTOS\PaulosV5C.a51"

AR RS S S EEE S S S SRS EEEEEEEEEEEEEEEEEEEEEREEEEEEEREEEEE RS

RTMacros.a51

; RTMACROSV5C.A51

; RTOS EQUATES
; FOR USE WITH PAULOSV5C.A51 RTOS.

EXTO_INT VECTOR EQU (INT VECTOR BASE + 03H)
TIMO INT VECTOR EQU (INT VECTOR BASE + OBH)
EXT1 INT VECTOR EQU (INT VECTOR BASE + 13H)
TIM1 INT VECTOR EQU (INT VECTOR BASE + 1BH)
SERO_INT VECTOR EQU (INT VECTOR BASE + 23H)
TIM2 INT VECTOR EQU (INT VECTOR BASE + 2BH)
IF (HALFMSEC = 1)
RTCLOCK EQU 461 ; timer clock (11059/12 = 922) counts for 1 msec
ELSE ; assuming 11.0592 MHz crystal
RTCLOCK EQU 922
ENDIF
BASIC_TICK EQU (65535 - RTCLOCK + 1)
NOOFPUSHES EQU 13 ; Number of pushes at beginning of Task change

; i.e. pushes in PushBankO.
IDLE TASK EQU NOOFTSKS ; main endless loop in C application given
; a task number equal to NOOFTSKS
NOT_TIMING EQU OH

; TASK FLAG MASKS
SIGS EQU 10000000B ; 128
SIGW EQU 01000000B ; 64

Download free eBooks at bookboon.com

53

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Part I Appendix B
SIGV EQU 00100000B ;32
SEROW EQU 00010000B ;16
EXT1W EQU 00000100B ;4
EXTOW EQU 00000001B Pl
IF (TICK TIMER = 2)

TIMOW EQU 00000010B ;2

TIMIW EQU 000010008 ;8
ELSEIF (TICK TIMER = 1)

TIMOW EQU 00000010B P2

TIM2W EQU 00001000B ;8
ELSEIF (TICK_TIMER = 0)

TIMIW EQU 000000108 P2

TIM2W EQU 00001000B ;8

ENDIF

; RTOS MACROS

SetBank MACRO BankNumber

IF BankNumber = 0
CLR RSO
CLR RS1

ELSEIF BankNumber
SETB RSO
CLR RS1

ELSEIF BankNumber = 2
SETB RS1
CLR RSO

ELSEIF BankNumber
SETB RS1
SETB RSO

ENDIF

ENDM

I
=

Il
w

Ext2Int MACRO ; MOVES RO DATA FROM EXT DPTR POINTER TO INTERNAL R1 POINTER
MOV R1, #MAIN STACK
MOV RO, #STACKSIZE
NEXT11:
MOVX A, @DPTR
MOV @R1,A
INC DPTR
INC R1
DJNZ RO,NEXT11
ENDM

Int2Ext MACRO ; MOVES RO DATA FROM INTERNAL R1 POINTER TO EXT DPTR PONTER
; USES RO, R1, ACC AND DPTR
MOV R1, #MATN STACK
MOV RO, #STACKSIZE
NEXT12:
MOV A, @R1

Download free eBooks at bookboon.com

54

http://bookboon.com/

MOVX Q@DPTR,A

INC DPTR

INC R1

DJNZ RO, NEXT12
ENDM

Push BankO_ Reg MACRO ; 13 PUSHES
PUSH ACC
PUSH B
PUSH PSW
PUSH DPL
PUSH DPH
PUSH 00
PUSH 01
PUSH 02
PUSH 03
PUSH 04
PUSH 05
PUSH 06
PUSH 07

ENDM

Pop Bank0 Reg MACRO
POP 07
POP 06
POP 05
POP 04
POP 03

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

Download free eBooks at bookboon.com :\\\«\\

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

PaulOS An 8051 Real-Time Operating System

Partll

POP
POP
POP
POP
POP
POP
POP
POP
ENDM

02
01
00
DPH
DPL
PSW

ACC

Push HalfBO_ Reg MACRO

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
ENDM

ACC
B
PsSw
DPL
DPH
00
01
02
03

Pop HalfBO Reg MACRO

POP
POP
POP
POP
POP
POP
POP
POP
POP
ENDM

DEC2REGS MACRO LowReg,
LOCAL HIGHOK

03
02
01
00
DPH
DPL
PSW
B
ACC

CLR
MOV
SUBB
MOV
JNC
MOV
SUBB
MOV

HIGHOK:

ENDM

LOADREGSXDATA MACRO LowReg,

ENDM

C

A, LowReg
A, #1
LowReg, A
HIGHOK
A,HighReg
A, #0
HighReg, A

MOVX A, @DPTR
MOV LowReg, A
INC DPTR

MOVX A, @DPTR
MOV HighReg, A

HighReg

Appendix B

; R7 NOT PUSHED, USED FOR PASSING PARAMETER
; BACK TO MAIN CALLING PROGRAM

; R7 NOT POPPED, USED FOR PASSING PARAMETER
; BACK TO MAIN CALLING PROGRAM

; Clear For SUBB

; Move Low Of DPTR To A
; Subtract 1

; Store Back

; Get High Of DPTR
; Subtract CY If Set

; Move Back

HighReg

Download free eBooks at bookboon.com

56

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

LOADXDATAREGS MACRO LowReg, HighReg
MOV A, LowReg
MOVX Q@DPTR,A
INC DPTR
MOV A,HighReg
MOVX @DPTR,A
ENDM

DPTRPLUSA MACRO

ADD A,DPL ; Add 'A' To DPL

MOV DPL,A ; Move Result To DPL

MOV A,DPH ; Get DPH

ADDC A, #0 ; If Carry Set, This Will Increment
MOV DPH, A ; Move Back To DPH

ENDM

ER R RS EE R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE R R

PaulOS.A51

KA KK KA KA KA AR AR A AR A A KK KK

; PaulOSV5C.A51 FOR C USE

; Version 5C

R Rk kb S b Sk b b h b h b b b b b b b b b b b b b h h h b S b b b b h b b b b b b b b b b b i

; STORES ALL BANK 0 TASK REGISTERS

; NOTE THAT MAIN_STACK WOULD HAVE TO BE VERIFIED
; WITH FILE *.M51

; HANDLES MANY TASKS, DEPENDING ON
; EXTERNAL MEMORY AND INTERNAL STACK SPACE
; CAN BE USED WITH ASSEMBLY LANGUAGE MAIN PROGRAM

; Written by Paul P. Debono - FEBRUARY 2005

; University of Malta

; Department of Communications and Computer Engineering

; MSIDA MSD 06; MALTA.
’-/**/
i/

i/ NOTE

i/ USE the following settings in Options for Target 1

;// Memory Model: LARGE: VARIABLES IN XDATA

;// Code Model: LARGE: 64K Program

i/ START SIZE (32K RAM)
;// CODE: 0X8100 0X5D00

;// RAM: 0XDEOO 0x2000

i1/ or say

;// CODE: 0X8100 0X4000

;// RAM: 0XC100 0X3D00

i/

;// CODE: 0X8100 0X1B0O (8K RAM)
;// RAM: 0X9C00 0X400

Download free eBooks at bookboon.com

57

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Part I Appendix B
i/

;// Code Model: LARGE: 64K Program

i/ START SIZE (32K EPROM)

;// CODE: 0X0000 0X8000

;// RAM: 0X8000 0X7E00

i/

;/**/

; STACK MOVING VERSION - MOVES WORKING STACK IN AND OUT OF
; EXTERNAL MEMORY
; SLOWS DOWN RTOS, BUT DOES NOT RESTRICT TASK CALLS

; Uses timer 2, in 16-bit auto-reload mode as the time scheduler (time-ticker)
; FOR 8051, TIMER 0 CAN BE USED.
; All tasks run in bank 0, RTOS kernel runs in bank 1

; All tasks must be written as an endless loop.

; Waiting time range for WAITT system calls is 1-65535.
; A zero waiting time parameter is set to 1 by the RTOS itself,
; since a ZERO effectively kills the task,

; actually putting it in permanent sleep in the waiting queue!!

; Waiting time range for WAITS system call is 0-65535. 0 means wait for the signal

; forever

; IDLE TASK (ENDLESS MAIN PROGRAM - TASK NUMBER = NOOFTASKS)

Internship opportunities

EADS unites a leading aircraft manufacturer, the world’s largest learning and development opportunities, and all the support you need,

helicopter supplier, a global leader in space programmes and a you will tackle interesting challenges on state-of-the-art products.
worldwide leader in global security solutions and systems to form
Europe’s largest defence and aerospace group. More than We welcome more than 5,000 interns every year across

140,000 people work at Airbus, Astrium, Cassidian and Eurocopter,
in 90 locations globally, to deliver some of the industry’s most
exciting projects.

disciplines ranging from engineering, IT, procurement and
finance, to strategy, customer support, marketing and sales.
Positions are available in France, Germany, Spain and the UK.
An EADS internship offers the chance to use your theoretical

knowledge and apply it first-hand to real situations and assignments To find out more and apply, visit www.jobs.eads.com. You can also
during your studies. Given a high level of responsibility, plenty of find out more on our EADS Careers Facebook page.

@ AIRBUS L) ASTRIUM (& CASSIDIAN QEur_{nc—@Tm‘

Download free eBooks at bookboon.com

58 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/85f92380-2160-4386-98b4-a2540089b583

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

COMMANDS AVAILABLE FOR THE C APPLICATION PROGRAM ARE:

~.

~.

(valid parameter values are shown in parenthesis, assuming 20 tasks maximum)
; THE TOP FIVE COMMANDS ARE USED ONLY IN THE MAIN (IDLE TASK) PROGRAM.
THE OTHERS ARE ONLY USED IN THE TASKS.

; THE FOLLOWING COMMANDS, DO NOT CAUSE A CHANGE OF TASK:
; INIT RTOS (IEMASK) Initialise variables, SPs and enable required interrupts.
H FHkKxkk THIS MUST BE THE FIRST RTOS COMMAND TO BE EXECUTED **xxx*

VALID INTERRUPT NUMBERS USING OLD MONITOR ARE 0, 2, 3 AND 4

VALID INTERRUPT NUMBERS USING NEW MONITOR OR USER EEPROM ARE 0, 1, 2, 3 AND 4
; NOTE THAT IF TIMER 1 IS BEING USED TO GENERATE BAUD RATE,

THEN YOU CANNOT USE 3 AND 4 SIMULTANEOUSLY

~.

~.

;0 EXTERNAL INT 0 (IEMASK = 00000001 = 01H)
;01 TIMER COUNTER O (IEMASK = 00000100 = 02H)
H EXTERNAL INT 1 (IEMASK = 00000100 = 04H)
;3 TIMER COUNTER 1 (IEMASK = 00001000 = 08H)
; 4 SERIAL PORT (IEMASK = 00010000 = 10H)
;5 TIMER COUNTER 2 (IEMASK = 00100000 = 20H)

; CREATE (TSK#, TSKADDR) Create a new task (0-[n-1]),placing it in the Ready Queue,

; and set up correct task address on its stack.

; RTOSGOMSEC (TICKTIME, PRIORITY)

; Start RTOS going, interrupt every TICKTIME (1-255) msecs.

; PRIORITY = 1 implies Q Priority sorting is required.

; PRIORITY = 0 implies FIFO queue function.

; SET_IDLE_MODE () Puts micro-controller in Idle mode (IDL, bit 0 in PCON)
; SET_ POWER DOWN () Puts micro-controller in Power Down mode (PD, bit 1 in PCON)
; PERIODIC (TIME) Repeat task every TIME msecs.

; SCHEK () Check if current task has its signal set (Returns 1 or 0).

; Signal is cleared if it was found to be set.
SIGNAL (TASKNUMBER) Set signal bit of specified task (0-[n-17).
RUNNING TASK ID() Returns the number of the currently executing task

~.

~.

; THE FOLLOWING COMMANDS WILL CAUSE A CHANGE IN TASK ONLY
; WHEN THE SIGNAL IS NOT ALREADY PRESENT.

; WAITS (TIMEOUT) Wait for signal within TIMEOUT ticks (TIMEOUT = 1 - 65535).

; Or wait for signal indefinitely (TIMEOUT = O0).

; If signal already present, proceed with current task.
; WAITV () Wait for interval to pass.

; If interval already passed, proceed with current task.
; THE FOLLOWING COMMANDS, ALWAYS CAUSE A CHANGE IN TASK:

; WAITT (TIMEOUT) Wait for timeout ticks (1 - 65535).

; WAITTI (INTNUM) Wait for the given interrupt to occur.

; DEFER() Stop current task and let it wait for 1 tick.

; KILL () Kill current task by marking it permanently waiting,

Download free eBooks at bookboon.com

59

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

; (TIMEOUT = 0). Clears any waiting signals.
; RESUME (TASKNUMBER) Resumes the requested task which had previously been KILLed

; THIS IS STILL A SMALL TEST VERSION RTOS. IT IS JUST USED FOR
; SHOWING WHAT IS NEEDED TO MAKE A SIMPLE RTOS.

; IT MIGHT STILL NEED SOME MORE FINE TUNING.

; IT HAS NOT BEEN THOROUGHLY TESTED YET !!!!

; BUT WORKS FINE SO FAR.

; NO RESPONSABILITY IS TAKEN.

; CHECK YOUR OWN CORRECT FILE NAME INCLUDING CORRECT PATH IF NECESSARY.

; NOTE: Functions which receive parameters when
; called from within C must have their name

; start with an underscore in the A51 source file.

; These two parameters (set in TaskStkV5C.A51) are used to save
; code and data memory space and increase rtos performance if these
; functions are not being used.
IF (USING INT = 1)
PUBLIC _WAITI
ENDIF

IF (PERIODIC CMD = 1)
PUBLIC WAITV, _PERIODIC

ENDIF

PUBLIC DEFER, KILL, SCHEK ; no parameters
PUBLIC SET_IDLE MODE, SET_ POWER DOWN ; no parameters
PUBLIC RUNNING_TASK ID ; no parameters

PUBLIC _INIT RTOS, _CREATE
PUBLIC _WAITT, _WAITS
PUBLIC RTOSGOMSEC, SIGNAL, RESUME

; CHECK YOUR OWN CORRECT FILE NAME INCLUDING CORRECT PATH IF NECESSARY.

RTOSVAR1 SEGMENT DATA
RSEG RTOSVARI1 ; VARIABLE DATA AREA VARI,

; range 0x10-0xFF, since we are using Banks 0,1

READYQTOP: DS 1 ; ADDRESS OF LAST READY TASK

RUNNING: DS 1 ; NUMBER OF CURRENT TASK

TMPSTOREO: DS 1 ; USED IN FETCHSTACK

XINTMASK: DS 1 ; MASK SET BY EXTERNAL INTERRUPT TO INDICATE TYPE
TICKCOUNT: DS 1 ; USED FOR RTOSGO.....

GOPARAM: DS 1 ; USED FOR RTOSGO.....

MYRTOSBITS SEGMENT BIT
RSEG MYRTOSBITS
IF (HALFMSEC = 1)

MSECFLAG: DBIT 1 ; FLAG INDICATING 1 MSEC PASSED
ENDIF
INTFLAG: DBIT 1 ; MARKER INDICATING FOUND TASK WAITING FOR
; SOMEINTERUPT
TINQFLAG: DBIT 1 ; TASK TIMED OUT MARKER

Download free eBooks at bookboon.com

60

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll Appendix B

PRIORITY: DBIT 1 ; PRIORITY BIT SET BY RTOSGO....

RSEG RTOSVAR1 ; DIRECTLY ADDRESSABLE AREA
READYQ: DS (NOOFTSKS + 2) ; QUEUE STACK FOR TASKS READY TO RUN

; THE FOLLOWING VARIABLES CAN BE IN THE INDIRECTLY ADDRESSABLE RAM (EVEN > 80H)
RTOSVAR2 SEGMENT IDATA
RSEG RTOSVARZ2

SPTS: DS (NOOFTSKS + 1) ; SP FOR EACH TASK AND 1 FOR THE IDLE (MAIN) TASK

TTS: DS 2*NOOFTSKS ; REMAINING TIMEOUT TIME FOR TASKS, 2 BYTES PER TASK
; 0 = NOT TIMING

TSKFLAGS: DS (NOOFTSKS + 1) ; BYTES STORING FLAGS FOR EACH TASK (AND MAIN)

; MAIN_STACK AREA STARTS HERE, NEXT LOCATION AFTER TSKFLAGS.
; CHECK STACK LOCATION IN THE .M51 FILE AFTER COMPILING
; TO CONFIRM THE VALUE OF "MAIN_STACK"

;XSEG AT (XTRAMTOP - (STACKSIZE * (NOOFTSKS + 1)) - (4*NOOFTSKS) + 1)
EXTERNDATA SEGMENT XDATA

RSEG EXTERNDATA

IF (PERIODIC CMD = 1)

INTVALCNT: DS 2*NOOFTSKS ; 0 = NOT TIMING
INTVALRLD: DS 2*NOOFTSKS ; 0 = NOT TIMING
ENDIF
EXT STK_AREA: DS (NOOFTSKS + 1) * STACKSIZE ; THIS IS THE ACTUAL SIZE OF STACK AREA
360°
hinki
thin mg.
IEJ’ I -Il:it
eloltte.
Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiiated entities.
Download free eBooks at bookboon.com &\5«\
)3

61 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

PaulOS An 8051 Real-Time Operating System
Partli

CSEG AT EXTO_INT VECTOR ; INTERRUPT VECTOR ADDRESS FOR
CLR EA
MOV XINTMASK, #EXTOW

LJMP XTRA INT

; EXTERNAL 0

IF (TICK TIMER = 0)
CSEG AT TIMO_ INT VECTOR ; INTERRUPT VECTOR ADDRESS FOR
CLR EA ; TIMER O
LJMP RTOS_TIMER_ INT ; USED FOR THE RTOS SCHEDULER
ELSE
CSEG AT TIMO INT VECTOR
CLR EA
MOV XINTMASK, #TIMOW
LJIJMP XTRA_INT
ENDIF

CSEG AT EXT1 INT VECTOR
CLR EA
MOV XINTMASK, #EXT1W ;
LJMP XTRA INT

; INTERRUPT VECTOR ADDRESS FOR

EXTERNAL 1

IF (TICK TIMER = 1)
CSEG AT TIM1 INT VECTOR ; INTERRUPT VECTOR ADDRESS FOR
CLR EA ; TIMER 1
LJIJMP RTOS TIMER INT ; USED FOR THE RTOS SCHEDULER
ELSE
CSEG AT TIM1 INT VECTOR
CLR EA
MOV XINTMASK, #TIM1W
LJIJMP XTRA INT
ENDIF

CSEG AT SERO_INT VECTOR ; INTERRUPT VECTOR ADDRESS FOR
CLR EA
MOV XINTMASK, #SEROW ;

LJMP XTRA INT

SERIAL

IF (TICK TIMER = 2)

CSEG AT TIM2 INT VECTOR ; INTERRUPT VECTOR ADDRESS FOR
CLR EA ; TIMER 2
CLR TF2 ; Clear Timer 2 interrupt flag
LJIJMP RTOS TIMER INT

ELSE

CSEG AT TIM2 INT VECTOR
CLR EA
MOV XINTMASK, #TIM2W
LJMP XTRA INT

ENDIF

Download free eBooks at bookboon.com

62

Appendix B

(not done automatically)

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

MyRTOS CODE SEGMENT CODE ; STARTS AT 8100H FOR THE FLIGHT32 BOARD
RSEG MyRTOS CODE

; START OF RTOS SYSTEM
; PREFIX NAME FOR FUNC WITH REG-PASSED PARAMS MUST START WITH AN UNDERSCORE _

SET IDLE MODE: ; SETS THE MICRO-CONTROLLER IN IDLE MODE
ORL PCON, #0x01 ; SETS BIT 0 OF PCON SFR
RET
SET_POWER_DOWN: ; SETS THE MICRO-CONTROLLER IN POWER DOWN MODE
ORL PCON, #0x02 ; SETS BIT 1 OF PCON SFR
RET
_INIT_RTOS: ; SYS CALL TO SET UP VARIABLES
; R7 HOLDS THE IE MASK
MOV A, R7
ANL A,#01111111B ; ENSURE EA = 0 (ENABLED LATER FROM RTOSGO...)
IF (TICK TIMER = 0)
ORL A, #00000010B ; AND ETO = 1 (USED FOR RTOS TICK TIME)
MOV IP,#02H ; Timer O High Priority, PTO=1, OTHERS ALL LOW
ELSEIF (TICK TIMER = 1)
ORL A, #00001000B ; AND ET1 = 1 (USED FOR RTOS TICK TIME)
MOV IP,#08H ; Timer 1 High Priority, PT1=1, OTHERS ALL LOW
ELSEIF (TICK TIMER = 2)
ORL A, #00100000B ; AND ET2 = 1 (USED FOR RTOS TICK TIME)
MOV IP, #20H ; Timer 2 High Priority, PT2=1, OTHERS ALL LOW
ENDIF
MOV IE,A

; IN THE C ENVIRONMENT, THE KEIL SOFTWARE CLEARS THE INTERNAL RAM FROM 0 TO FFH
; PROVIDED THAT THE C51\LIB FILE STARTUP.A51 IS INCLUDED WITH THE SOURCE GROUP,
; AND WITH THE CORRECT IDATALEN VARIABLE SETTING TO REFLECT 8051 FAMILY TYPE.

; IN ASM OR A51 (NOT IN C), ALL THE INTERNAL RAM (0O-FFH) IS
; CLEARED BY MEANS OF THE CLR_8051_RAM MACRO.
; IN C it is cleared when using STARTUP.AS51

; CLEAR PERIODIC INTERVAL TABLE IF BEING USED
IF (PERIODIC CMD = 1)

MOV DPTR, #INTVALCNT

MOV A, #NOOFTSKS

RL A ; DOUBLE THE NUMBER
MOV RO, A ; RO CONTAINS NUMBER OF BYTES TO CLEAR
CLR A

DPTR AO: ; POINT DPTR TO CORRECT LOCATION
MOVX Q@DPTR, A
INC DPTR
DJNZ RO,DPTR_AO

ENDIF

MOV DPTR, #EXT STK AREA ; CLEAR ALL EXTERNAL RAM STACKS
MOV RO, # (NOOFTSKS + 1)
CLR A

Download free eBooks at bookboon.com

63

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

NEXT STACK:
MOV R1, #STACKSIZE
CLR_STACK:
MOVX @DPTR,A
INC DPTR
DJNZ R1,CLR STACK
DJNZ RO, NEXT STACK
MOV RUNNING, #IDLE TASK ; IDLE TASK RUNNING (Main program endless loop)
MOV R7, #NOOFTSKS
MOV RO, #TTS
MOV R1, #READYQ

LOAD VARS:
MOV @RO,#LOW(NOT_TIMING) ; NO TIMER ACTION
INC RO
MOV @QRO, #HIGH (NOT_TIMING)
MOV @Rl,#IDLEiTASK ; IDLE TASK IN ALL OF READYQ (Main program endless loop)
INC RO
INC R1
DJNZ R7,LOAD VARS ; SET UP ALL TASKS
MOV @R1,#IDLE TASK ; FILL TWO ADDITIONAL LOCATIONS, USED
INC R1 ; DURING THE Q SHIFTING ROUTINE, WITH IDLE TASK.
MOV @Rl,#IDLEiTASK ; THIS ENSURES IDLE TASK WILL ALWAYS BE IN Q IF
MOV READYQTOP, #READYQ ; THERE ARE NO OTHER TAKS READY TO EXECUTE.
; SET UP SP
MOV R7, # (NOOFTSKS + 1) ; COUNTER
MOV RO, #SPTS ; INITIALIZE ALL STACK POINTERS
MOV A, #(MAINisTACK - 1)
ADD A, # (NOOFPUSHES + 2) ; SIMULATE Push BankO Reg PLUS
; SAVING OF RETURN ADDRESS BY INTERRUPT
SET_UP:
MOV @RO,A
INC RO
DJNZ R7,SET_UP
RET
_CREATE:
; SYS CALL ENTRY TO CREATE A TASK
; TASK NUMBER (0 to 19) PASSED IN BANKO R7
; TASK START ADDR PASSED IN BANKO R1,R2,R3
; LSB in R1, MSB in R2, R3 contains type
INC READYQTOP ; POINT TO TOP OF READY READYQ
MOV RO,READYQTOP
MOV @RO, 07H ; PUT TASK# (R7 bank 0 = 07H) IN READY QUEUE
MOV A,R7
CALL FETCH_STACK
MOV A,R1
MOVX @DPTR,A ; COPY LOW BYTE R1 INTO LOW STACK AREA
INC DPTR
MOV A,R2
MOVX @DPTR, A ; NOW SAVE THE HIGH ORDER BYTE (R2)
SETB TINQFLAG ; SIGNAL NEW TASK IN Q, USED TO START QSHIFT
RET
_RTOSGOMSEC: ; SYS CALL TO START RTOS FOR R7 MILLISECOND TICKS

Download free eBooks at bookboon.com

64

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll Appendix B

CLR PRIORITY
CJINE R5,#1, PRIORITY OK ; IF SECOND PARAMETER = 1, THEN
SETB PRIORITY ; SET PRIORITY SORTING IS REQUIRED
PRIORITY OK:
IF (TICK _TIMER = 0)

MOV THO, #HIGH (BASIC TICK) ; LOAD THO AND TLO WITH BASIC TICK COUNT

MOV TLO, #LOW (BASIC TICK) ; SAVE THEM IN THE AUTO RE-LOAD REGISTERS
ELSEIF (TICK TIMER = 1)

MOV TH1, #HIGH (BASIC_TICK) ; LOAD THO AND TLO WITH BASIC TICK COUNT

MOV TL1, #LOW (BASIC TICK) ; SAVE THEM IN THE AUTO RE-LOAD REGISTERS
ELSE

MOV RCAP2H, #HIGH (BASIC TICK) ; LOAD RCAPS WITH 1 MILLISECOND COUNT

MOV RCAP2L, #LOW (BASIC TICK) ; SAVE THEM IN THE AUTO RE-LOAD REGISTERS

ENDIF ; OF TIMER 2 (FOR FLT-32)

MOV GOPARAM, 07 ; LOAD TICKS PARAMETER, PASSED IN R7 BANK 0
MOV TICKCOUNT, 07
IF (TICK TIMER = 0)
ANL TMOD, #0F0OH
ORL TMOD, #01H ; START TIMER O IN 16-BIT MODE 1.
SETB TFO ; SIMULATE TIMER O INTERRUPT.
ELSEIF (TICK TIMER = 1)
ANL TMOD, #0FH

ORL TMOD, #10H ; START TIMER 1 IN 16-BIT MODE 1.
SETB TF1 ; SIMULATE TIMER 1 INTERRUPT.
ELSEIF (TICK TIMER = 2)
MOV T2CON, #04H ; START TIMER 2 IN 16-BIT AUTO RE-LOAD MODE.

SIMPLY CLEVER

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Download free eBooks at bookboon.com

65 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

PaulOS An 8051 Real-Time Operating System

Partll

SETB TF2
ENDIF

SETB EA

RET

SCHEK:

CLR EA
Push_HalfBO_Reg
MOV A, RUNNING
MOV B, #SIGS
CALL CHK_CLR _FLAG
MOV R7, #1
JC SIGNAL SET
DEC R7
SIGNAL_SET:
Pop_HalfBO Reg
SETB EA
RET

_SIGNAL:
CLR EA
Push_BankO_Reg
MOV A,R7
MOV B, #SIGW
CALL CHK_CLR FLAG
JNC NOT_WAITING
MOV A,R7
MOV B, #SIGS
CALL CLR_FLAG
MOV A, #TTS
ADD A,R7
ADD A,R7

MOV RO, A

MOV QRO, #LOW (NOT_ TIMING)

INC RO

MOV QRO, #HIGH (NOT TIMING)

INC READYQTOP

MOV RO, READYQTOP

MOV @RO, 07

SETB TINQFLAG
DONT GIVE UP:

Pop_BankO_Reg

SETB EA

RET
NOT_WAITING:

MOV A,R7

MOV B, #SIGS

CALL SET FLAG

Pop_Bank0O_Reg

SETB EA

Downlodéfree eBooks at bookboon.com

TIMER 1 CAN BE USED FOR SERIAL BAUD RATE
SIMULATE TIMER 2 INTERRUPT IMMEDIATELY

ENABLE GLOBAL INTERRUPT SIGNAL
EFFECTIVELY STARTING THE RTOS.

SYS CALL ENTRY CHECK SIGNAL BIT FOR TASK

RETURN O IF BIT CLEAR OR 1 IF BIT SET IN R7.

SIG. BIT IS CLEARED IF FOUND TO BE SET
NO NEED FOR BANK SWITCHING
IMMEDIATE RETURN - NO CONTEXT SWITCHING

SIG IS CLEARED IF IT WAS FOUND TO BE SET

SIG SET, HENCE RETURN WITH R7=1
SIG NOT YET SET, HENCE RETURN WITH R7=0

Appendix B

SYS CALL ENTRY-SET SIGNAL BIT FOR SPECIFIED TASK
NO NEED FOR BANK SWITCHING - NO CONTEXT SWITCHING

TASK NUMBER PASSED IN R7 bank 0

IF TASK NOT ALREADY WAITING, SET SIGNAL BIT

OTHERWISE PLACE IT ON READY Q
ENSURE CLEARED SIGNAL BIT

AND MARK TASK AS NOT TIMING

ADD OFFSET TWICE SINCE 2 TIME-OUT BYTES
PER TASK

PLACE SIGNALLED TASK ON READY Q
INDICATE, NEW TASK IN Q, BUT

DON'T GIVE UP RUNNING CURRENT TASK.
(MUST DEFER IF REQUIRED TO DO SO)

SET SIGNAL BIT OF SIGNALLED TASK

AND CONTINUE RUNNING CURRENT TASK

66

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll

IF (USING_ INT = 1)

_WAITI:

; VALID INTERRUPT NUMBERS USING MONITOR ARE 0, 2,
; VALID INTERRUPT NUMBERS USING USER EEPROM ARE 0, 1, 2,
; NOTE THAT IF TIMER 1 IS BEING USED TO GENERATE

Appendix B

SYS CALL ENTRY POINT - WAIT FOR INTERRUPT

3 AND 4

; THEN YOU CANNOT USE 3 AND 4 SIMULTANEOUSLY
; INT 5 IS COMPULSORY

~.
g w N PO

EXTERNAL INT O
TIMER COUNTER O
EXTERNAL INT 1
TIMER COUNTER 1
SERIAL PORT

TIMER COUNTER 2

CLR EA
Push_BankO_Reg
INC R7
CLR A
SETB C

SHIFT LEFT:

ENDIF

RLC A
DJNZ R7,
MOV B, A
MOV A, RUNNING
CALL SET_ FLAG
LJMP QSHFT

IF (PERIODIC CMD = 1)

WAITV:

CLR EA
Push_BankO_Reg
MOV A, RUNNING
MOV B, #SIGV

CALL CHK_CLR _FLAG
JNC NO_ INTVAL

LJMP DONT_GIVE_ UP

NO_INTVAL:

ENDIF

_WAITS:

MOV A, RUNNING
MOV B, #SIGV
CALL SET FLAG
LJMP QSHFT

CLR EA
Push_Bank0_Reg
MOV A, RUNNING
MOV B, #SIGS

CALL CHK CLR_FLAG
JNC NO_SIGNAL

SHIFT LEFT

(IEMASK
(IEMASK
(IEMASK
(IEMASK
(IEMASK
(IEMASK
(IEMASK

; INTERRUPT NUMBER

Download free eBooks at bookboon.com

00100000 = 20H)

00000001 = O1H)
00000010 = 02H)
00000100 = 04H)
00001000 = 08H)
00010000 = 10H)

00100000 = 20H)

(0 TO 4)

CONVERT TO INTERRUPT MASK

3 AND 4
BAUD RATE,

PARAMETER PASSED IN R7 bank 0

(1,2,4,8,16) BY ROTATING LEFT

B NOW CONTAINS CORRECT INTERRUPT MASK

STOP CURRENT TASK AND RUN NEXT TASK IN READY Q

UNTIL TIMEOUT PASSED IN R7(LOW),R6 (HIGH)

TEST IF SIGNAL ALREADY THERE

NO SIGNAL YET,
ELSE,

SO TASK MUST WAIT
SIGNAL WAS PRESENT,

(NOW CLEARED)

OR RETURN TO SAME TASK

RELOAD TASK NUMBER

SET SIG WAITING BIT, AND
RUN NEXT TASK IN READY Q

SYSTEM CALL - WAIT

SIGNAL ARRIVAL

UNTIL TIMEOUT PASSED IN R7(LOW),R6 (HIGH)

TEST IF SIGNAL ALREADY THERE

NO SIGNAL YET,
ELSE,

67

SIGNAL WAS PRESENT,

SO TASK MUST WAIT

(NOW CLEARED)

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli Appendix B
LJMP DONT GIVE UP ; OR RETURN TO SAME TASK
NO SIGNAL:
MOV A, RUNNING ; RELOAD TASK NUMBER
MOV B, #SIGW
CALL SET FLAG ; SET SIG WAITING BIT, AND CONTINUE WITH WAITT

; TO WAIT FOR TIMEOUT

CJINE R7,#LOW (NOT TIMING),SET TIMEOUT ; ACCEPT A WAIT TIME OF 0

CJINE R6, #HIGH (NOT_ TIMING) , SET TIMEOUT ; ACCEPT ZERO WAIT TIME IN ORDER TO BE ABLE
; TO WAIT FOR SIGNAL INDEFINITELY

SJMP SET TIMEOUT 0

_WAITT: ; SYS CALL ENTRY POINT - WAIT FOR TIME OUT
CLR EA
Push_BankO_Reg

CJINE R7, #LOW (NOT_TIMING), SET TIMEOUT ; TIME OUT PARAMETER PASSED IN R6 (HIGH)
CJINE R6, #HIGH (NOT_ TIMING),SET TIMEOUT ; AND R7 (LOW) BANK 0

MOV R7, #1 ; RANGE 1-65535 (0 = PERMANENT SLEEP)

MOV R6, #0 ; IF BOTH ARE ZERO, REPLACE WITH A ONE
SET_TIMEOUT:

CLR C ; PERFORM 65536 - TIME OUT VALUE

CLR A ; SO THAT IN RTOS TIMER INT WE CAN

SUBB A,R7 ; USE 'INC DPTR' EASILY TO UPDATE TIMEOUT

MOV R7,A

CLR A

SUBB A,R6

MOV R6,A
SET_TIMEOUT 0:

MOV A, #TTS

ADD A, RUNNING ; ADD OFFSET TWICE SINCE TIMEOUTS ARE

ADD A, RUNNING ; TWO BYTES PER TASK

MOV RO, A

MOV @RO, 07 ; BANK 0 R7,R6 - TIMEOUT PUT IN TABLE (WAITING Q)

INC RO

MOV @RO, 06

LJMP QSHFT ; STOP CURRENT TASK AND RUN NEXT TASK IN READY Q
KILL: ; SYS CALL ENTRY (NO PARAMETERS)

; CLEARS ALL WAITING SIGNALS FLAGS
CLR EA
Push BankO Reg
MOV A, RUNNING
MOV RO, #TSKFLAGS

ADD A, RO

MOV RO, A

CLR A

MOV @RO,A ; TO CLEAR AND STORE

MOV R7, #LOW (NOT_TIMING) ; KILL PRESENT TASK (PUT IN PERMANENT WAIT)

MOV R6, #HIGH (NOT TIMING)

IF (PERIODIC CMD = 1)
MOV DPTR, # INTVALCNT ; clear INTERVAL COUNT if task was PERIODIC
MOV A, RUNNING
RL A ; DOUBLE THE NUMBER

Download free eBooks at bookboon.com

68

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll Appendix B
DPTRPLUSA
MOV A, #0 ; SAVE O in LOW BYTE
MOVX @DPTR, A
INC DPTR
MOVX @DPTR, A ; SAVE 0 in HIGH BYTE

MOV DPTR, #INTVALRLD
MOV A, RUNNING

RL A ; DOUBLE THE NUMBER
DPTRPLUSA
MOV A, #0 ; SAVE 0 in LOW BYTE
MOVX @DPTR,A
INC DPTR
MOVX @DPTR,A ; SAVE O in HIGH BYTE
ENDIF
SJMP SET TIMEOUT 0
_RESUME: ; SYS CALL ENTRY (ONE TASK PARAMETER IN R7)

CLR EA
Push_BankO_Reg
IF (PERIODIC CMD == 1)
; FIRST CHECK IF THE TASK TO BE RESUMED HAPPENS TO BE A PERIODIC ONE

MOV DPTR, #INTVALRLD ; clear INTERVAL COUNT if task was PERIODIC
MOV A, 07
RL A ; DOUBLE THE NUMBER
DPTRPLUSA
MOVX A, @DPTR ; GET LOW BYTE
I joined MITAS because fon Enginaors and Caceciantints

I wanted real responsibility www.discovermitas.com

I was a construction

SUPErvisor in

the North Sea
advising and

e Lelping foremen

& solve problems

MAERSK

Download free eBooks at bookboon.com

69 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

PaulOS An 8051 Real-Time Operating System

Partll

JNZ NOW_CAN RESUME

; NOW_ CHECK HIGH BYTE

INC DPTR
MOVX A, @DPTR
JZz NOT_A PERIODIC

’

GET HIGH BYTE

; TO RESUME TASK, LOAD INTVALCNT WITH 1 TICK TIME

; SINCE THIS TASK HAD BEEN KILLED, THE INTVALCNT MUST BE ZERO
; AT THIS POINT
NOW_CAN RESUME:

ENDIF

MOV DPTR, #INTVALCNT
MOV A, 07

RL A

DPTRPLUSA

INC DPTR

MOV A, #1

MOVX @DPTR, A

LJMP QSHFT

NOT A PERIODIC:

DEFER:

MOV A, #TTS
ADD A, RUNNING
ADD A, RUNNING
MOV RO, A

MOV @RO, #1

INC RO

MOV @RO, #0
LJMP QSHFT

CLR EA
Push_BankO_Reg
MOV A, #TTS
ADD A, RUNNING
ADD A, RUNNING
MOV RO, A

MOV @RO, #1

INC RO

MOV @QRO, #0

QSHFT:
CLR TINQFLAG

SetBank 1

MOV A, #SPTS

ADD A, RUNNING

MOV RO, A

MOV QRO, SP

MOV A, RUNNING

CALL FETCH STACK
Int2Ext

MOV R1, # (READYQ + 1)

SHIFT_ DOWN:

MOV A, @R1
DEC R1

’

’

’

; clear INTERVAL COUNT if task was PERIODIC

DOUBLE THE NUMBER

; GET HIGH BYTE

; SET WAITING TIME OF 1 TICK FOR DEFERRED TASK

; AND THEN SHIFT Q BELOW

; SYS CALL ENTRY (NO PARAMETERS)

SET WAITING TIME OF 1 TICK FOR DEFERRED TASK

; AND THEN SHIFT Q BELOW

SAVE PRESENT RUNNING TASK STACK PTR
; CLR TINQFLAG AND SHIFT READYQ BY ONE,
; GET NEW RUNNING TASK FROM READYQ
; USE BANK 1 - MAY HAVE ENTERED FROM INTERRUPT
; SAVE SP

; STORE PRESENT STACK POINTER OF TASK

; SAVE STACK IN EXTERNAL, READY FOR SWAP
; NOW SHIFT Q DOWN 1

Download free eBooks at bookboon.com

70

Appendix B

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

MOV @QR1,A

MOV A,R1

INC R1

INC R1

CJINE A,READYQTOP, SHIFT DOWN

DEC READYQTOP ; THEY ALL MOVED DOWN BY 1, HENCE DECREMENT RQTOP

CJNE A, #READYQ,RUN NEW TASK ; BUT READYQTOP SHOULD NEVER GO BELOW READYQ

INC READYQTOP ; SO READYQTOP = READYQ AGAIN, IF IT WAS BELOW
RUN_NEW_ TASK: ; RUN NEW TASK

JNB PRIORITY, DONT SORT ; DO NOT SORT Q IF PRIORITY OPTION IS OFF

LCALL TASK_SORT
DONT_SORT:

MOV A, READYQ

MOV RUNNING, A ; SET NEW TASK AS RUNNING

CALL FETCH STACK

Ext2Int ; GET NEW STACK IMAGE

MOV A, #SPTS

ADD A, RUNNING

MOV RO, A

MOV sP, @RO ; SET SP TO NEW TASK STACK AREA
Pop_BankO_Reg

SetBank 0

SETB EA ; MAY HAVE ENTERED FROM TIMER INTERRUPT
RETTI ; OTHERWISE NO HARM ANYWAY

IF (PERIODIC CMD = 1)
_PERIODIC: ; SYSTEM CALL
CLR EA
Push_BankO_Reg
MOV DPTR, #INTVALCNT
MOV A, RUNNING
RL A ; DOUBLE THE NUMBER
DPTRPLUSA
MOV A, 07 ; SAVE LOW BYTE, HELD IN R7
MOVX @DPTR,A
MOV A, 06
INC DPTR
MOVX @DPTR,A ; SAVE HIGH BYTE, HELD IN R6
MOV DPTR, # INTVALRLD
MOV A, RUNNING
RL A ; DOUBLE THE NUMBER

DPTRPLUSA

MOV A, 07 ; SAVE LOW BYTE, HELD IN R7
MOVX @DPTR, A

MOV A, 06 ; SAVE HIGH BYTE, HELD IN R6
INC DPTR

MOVX @DPTR,A

Pop Bank0O Reg

SETB EA
RET
ENDIF
TSKRDY CHK2: ; JUST A STEPPING STONE

LJIJMP TSKRDY_ CHK

Download free eBooks at bookboon.com

71

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix B

RTOS TIMER INT: ; INTERRUPT ENTRY ONLY FROM TIMER2 OVERFLOW INTERRUPT
; USES ACC,PSW, (RO,R1 AND R2 FROM BANK 1)
Push Bank0_Reg

SetBank 1 ; SET TO REGISTERBANK 1
IF (TICK _TIMER = 0)
CLR TRO ; STOP, RELOAD

MOV THO, #HIGH (BASIC_ TICK)
MOV TLO, #LOW (BASIC TICK)

SETB TRO ; AND RESTART TIMER O
ELSEIF (TICK TIMER = 1)
CLR TR1 ; STOP, RELOAD

MOV TH1, #HIGH (BASIC_ TICK)
MOV TL1, #LOW (BASIC TICK)

SETB TR1 ; AND RESTART TIMER 1
ENDIF
IF (HALFMSEC = 1)
JBC MSECFLAG, TSKRDY CHK2 ; ONLY HALF A MILLISECOND PASSED, HENCE CHK FOR
; EXTERNAL INTERRUPT TASKS ONLY
SETB MSECFLAG ; USED TO DOUBLE 1/2 MSEC TICKCOUNT DELAY
ENDIF

DJNZ TICKCOUNT, TSKRDY CHK2 ; CHECK IF REQUIRED TICK TIME HAS PASSED
MOV TICKCOUNT, GOPARAM

IF (PERIODIC CMD = 1)
; FIRST CHECK THE PERIODIC INTERVALS, IF USED
CHK_PERIODICS:
MOV RO, #0 ; DO ALL TASKS, STARTING WITH TASK 0, HELD IN RO, BANK 1

“I studied
English for 16 P
years but...
...I finally

learned to

speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

—tl

Download free eBooks at bookboon.com

72 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

PaulOS An 8051 Real-Time Operating System

Partli Appendix B
MOV DPTR, # INTVALCNT ; DPTR POINTS TO FIRST TASK INTERVAL IN TABLE
CHECK_VALS:
PUSH DPL ; SAVE PTR
PUSH DPH
LOADREGSXDATA R2,R3 ; R2 = LOW, R3 = HIGH VALUE OF INTVALCNT
MOV A, R2
ORL A,R3
JZ CHECK_NEXTV ; 0=TASK NOT USING PERIODIC INTERVAL, HENCE SKIP,

; DO NOT UPDATE INTERVAL COUNT.
COUNT_DOWNV :

DEC2REGS R2,R3 ; DECREMENT INTERVAL COUNT

POP DPH ; GET POINTER

POP DPL

PUSH DPL ; AND SAVE POINTER AGAIN

PUSH DPH

LOADXDATAREGS R2,R3 ; AND STORE NEW DECREMENTED VALUE

MOV A,R2

ORL A,R3

JNZ CHECK NEXTV ; TASK NOT TIMED OUT YET, CHECK NEXT TASK
VAL OUT: ; NEW TASK INTERVAL TIMED OUT, HENCE RELOAD INTERVAL

; RELOAD VALUE IS NOOFTSKS*2 - 1 AWAY FROM
; PRESENT DPTR VALUE

MOV A, #NOOFTSKS

RL A

DEC A

DPTRPLUSA

LOADREGSXDATA R4,R5

POP DPH

POP DPL

PUSH DPL ; SAVE PTR
PUSH DPH

LOADXDATAREGS R4,R5

; TEST INTERVAL FLAG

MOV A, RO

MOV B, #SIGV ; TEST IF SIGNAL ALREADY THERE
CALL CHK_CLR_FLAG

JNC SET_VFLAG ; NO SIGNAL YET, SO JUST SET FLAG

; IF TASK ALREADY IN Q, DO NOT DUPLICATE

; THIS COULD HAPPEN IN CASE OF BAD TASK PROGRAMMING, WHERE

; THE TASK DURATION IS LONGER THAN THE PERIODIC TIME

; IF TASK PROGRAMMING IS OK, THEN THIS CHECK CAN BE ELIMINATED TO REDUCE OVERHEADS.

MOV R1, #READYQ
CHK_NXT IN Q:
MOV A, @R1
XRL A, R0
JZ CHECK NEXTV
MOV A,R1
INC R1
CJINE A,READYQTOP,CHK NXT IN Q

Download free eBooks at bookboon.com

73

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

INC READYQTOP
MOV R1, READYQTOP

POINT TO TOP OF READY READYQ

~.

MOV @R1,08 ; PUT TASK# (RO bank 1 = 08H) IN READYQ

SETB TINQFLAG ; MARK FLAG INDICATING THAT A TASK FINISHED WAITING
IN; TERVAL

SJMP CHECK NEXTV ; AND PLACED IN READYQ
SET VFLAG:

MOV A, RO

MOV B, #SIGV
CALL SET FLAG
CHECK NEXTV:

SET INTERVAL READY BIT

~.

POP DPH

POP DPL

INC DPTR ; MOVE UP 1 TASK IN PERIODIC INTERVAL TABLE
INC DPTR

INC RO ; INCREMENT TASK NUMBER COUNTER

CJINE RO, #NOOFTSKS, CHECK VALS ; END OF ALL TASKS YET?
ENDIF

SJMP CHK_FOR TOUTS
TSKRDY CHK1:
SJMP TSKRDY CHK

NOW CHECK FOR TIME OUTS
JUST A STEPPING STONE

~.

~.

; NOW CHECK FOR TIME OUTS
CHK FOR TOUTS:

MOV RO, #TTS RO POINTS TO FIRST TASK TIMEOUT IN TTS TABLE

~.

MOV R2, #0 ; CHECK ALL TASKS, STARTING WITH TASK 0
CHECK_TIMEOUTS:

MOV A, @RO ; GET TIME FOR TASK

MOV DPL,A

MOV R1,08 ; SAVE POINTER TO LOW BYTE IN R1

INC RO ; SAVE POINTER TO HIGH BYTE IN RO

MOV A, @RO

MOV DPH,A

ORL A,DPL

JZ CHECK_NEXT ; 0=TASK NOT TIMING, HENCE SKIP, DO NOT DECREMENT TIMEOUT
COUNT_UP: ; DPTR NOW CONTAINS TIMEOUT VALUE

INC DPTR ; NOW WE CAN INCREMENT IT

SAVE NEW TIME OUT VALUE, EVEN IF ZERO

~.

MOV @RO, DPH
MOV @R1, DPL

MOV A,DPH ; AND CHECK IF TIMED UP (ROLL OVER TO ZERO)

ORL A,DPL ; ACCUMULATOR EQUALS ZERO IF TIMED OUT

JNZ CHECK_ NEXT ; TASK NOT TIMED OUT YET, CHECK NEXT TASK
TIMED OUT: ; NEW TASK TIMED OUT, HENCE PLACE IN READYQ

INC READYQTOP

MOV R1,READYQTOP

MOV @R1, 0AH

SETB TINQFLAG

MOV A,R2

MOV B, #SIGW

CALL CLR FLAG
CHECK_NEXT:

POINT TO TOP OF READY READYQ

~.

PUT TASK# (R2 bank 1 = OAH) IN READYQ
MARK FLAG INDICATING THAT A TASK FINISHED WAITING

~.

~.

CLEAR SIGNAL WAITING BIT (IF SET)

~.

Download free eBooks at bookboon.com

74

http://bookboon.com/

INC RO ; MOVE UP 1 IN TTS TABLE

INC R2 ; INCREMENT TASK NUMBER COUNTER

CJINE R2, #NOOFTSKS, CHECK TIMEOUTS ; END OF ALL TASKS YET?
TSKRDY_ CHK:

JNB TINQFLAG, EXIT ; NO TASK ADDED, HENCE EXIT

; NOTE THAT TINQFLAG CAN BE SET BY 4 ROUTINES,

; CREATE, SIGNAL, RTOS TIMER INT AND XTRA INT

; IF CLR (FLAG = 0) => NO NEW TASK PUT IN READYQ

; IF SET (FLAG = 1) => A NEW TASK HAS BEEN PLACED IN

READYQ.
CAN_CHANGE:
MOV A, RUNNING ; CHECK CURRENT TASK
CJINE A, #IDLE_ TASK, EXIT ; NOT IN IDLE STATE, SO DO NOT INTERRUPT YET
; BUT LEAVE TINQFLAG SET FOR THE NEXT RTOS INT. CHECK
; WHEN THE IDLE TASK MIGHT BE RUNNING.
LJIJMP QSHFT ; IDLE AND NEW TASK TIMED OUT, HENCE CHANGE TASK
EXIT:
Pop_BankO_Reg
SetBank 0
SETB EA
RETI
XTRA_INT:

IF (USING_INT = 1)
; EXTRA INTERRUPT SERVICE ROUTINE
; USED DURING EXTERNAL, TIMER AND SERIAL INTERRUPTS
; CHECKS BITS SET BY WAITI CALL AND PUTS TASK

DUKE

THE FUQUA
SCHOOL

www.fuqua.duke.edu/whileyouweresleeping OF BUSINESS

Download free eBooks at bookboon.com ,\\\(«\

http://bookboon.com/
http://bookboon.com/count/advert/faa87ccb-c5b2-4bf9-a8ab-a30a00d27dfd

PaulOS An 8051 Real-Time Operating System

Partll

Push_BankO_Reg

SetBank 1
MOV B, XINTMASK
CLR A
CLR INTFLAG
TRY NXT:
MOV R2,A
CALL CHK_CLR FLAG
JNC NOT YET
SETB INTFLAG
MOV A, #TTS
ADD A,R2
ADD A,R2
MOV RO, A
MOV @RO,#LOW(NOTiTIMING)
INC RO
MOV QRO, #HIGH (NOT_ TIMING)
INC READYQTOP
MOV RO, READYQTOP
MOV @RO, OAH
NOT YET:
MOV A,R2
INC A
CJINE A,#NOOFTSKS,TRYiNXT
JNB INTFLAG, EXIT INT
EXIT INT SHFT:
SETB TINQFLAG ; INDICATE THAT
MOV A, RUNNING
CJINE A,#IDLEiTASK,EXITilNT

OK2SHFT:
LJMP QSHFT

EXIT INT:
Pop_BankO_Reg
SetBank 0
SETB EA

ENDIF

RETI
; SUB ROUTINES USED IN THE RTOS

WAITING FOR ONE RTOS INTERRUPT IF IT

WAS WAITING FOR THIS EXTERNAL INTERRUPT
USES ACC, B, PSW, (RO, R2 AND R3 BANK 1

GET EXTERNAL INTERRUPT MASK

NOW CHECK IF ANY TASKS WERE WAITING

FOR THIS INTERRUPT, STARTING WITH TASK O

STORE TASK NUMBER IN R2 BANK 1

SET MARKER SHOWING THAT AT LEAST ONE
TASK WAS WAITING FOR THIS INTERRUPT

HENCE
MARK TASK AS NOT WAITING

MARK TASK AS NOT WAITING
AND
PUT FOUND TASK ON READYQ

QSHFT WILL DO THE REST LATER.

CHECK NEXT TASK

NO TASK FOUND WAITING INT,

HENCE EXIT

NEW TASK HAS BEEN PUT IN READY Q

CHECK CURRENT TASK

NOT IN IDLE STATE, SO DO NOT SHIFT TASKS

)

Appendix B

BUT TINQFLAG WILL STILL REMAIN SET SO THAT THE

RTOS_TIMER INT ROUTINE CAN HANDLE IT LATER.

R R R R R R R R R R I R

SET_FLAG:
; ENTRY A = TASK NUMBER
; B = BIT MASK

; EXIT REQUIRED BIT IN TASK FLAG BYTE SET

PUSH 00

PUSH 08

MOV RO, #TSKFLAGS
ADD A, RO

MOV RO, A

Download free eBooks at bookboon.com

76

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix B

MOV A, @RO

ORL A,B ; SET REQUIRED BIT TO 1
MOV @RO,A

POP 08

POP 00

RET

Rk bk b b Sk b i

CHK_FLAG:
; ENTRY A = TASK NUMBER
; B = BIT MASK
; EXIT CARRY SET IF FLAG WAS FOUND TO BE SET
PUSH 00
PUSH 08
MOV RO, #TSKFLAGS
ADD A, RO
MOV RO, A
MOV A, @RO
CIR C
ANL A,B
JZ EXIT1 ; BIT WAS CLEARED, CARRY = 0
SETB C ; BIT WAS SET, CARRY =1
EXIT1:
POP 08
POP 00
RET

KKK KA KA A A A A KA AR A AR A AR A KKK K

CLR FLAG:
CHK CLR FLAG:
; BOTH NAMES CORRESPOND TO THE SAME ROUTINE
; ENTRY A = TASK NUMBER
; B = BIT MASK
; EXIT CARRY SET IF FLAG WAS FOUND TO BE SET
; AND THEN CLEARS FLAG BEFORE EXITING ROUTINE
; CARRY BIT = 0 IF BIT WAS ZERO
PUSH 00
PUSH 08
MOV RO, #TSKFLAGS
ADD A,RO
MOV RO, A
MOV A, @RO
CIR C
ANL A,B
JZ EXIT2 ; BIT WAS CLEAR, HENCE EXIT, CARRY = 0
MOV A, @RO
XRL A,B ; SINCE IT WAS SET, THEN SIMPLY XOR WITH MASK
MOV @RO,A ; TO CLEAR AND STORE
SETB C ; CARRY = 1 SINCE BIT WAS INITIALLY SET
EXIT2:
POP 08
POP 00
RET

Download free eBooks at bookboon.com

77

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

Rk ik kb kb b b b b b kb b b b b b Rk R b b b b

FETCH STACK:
; ENTRY A = TASK NUMBER, USES ACC, DPTR, AND RO
; EXIT DPTR POINTS TO START OF STACK AREA FOR TASK
MOV TMPSTOREOQ, A
MOV DPTR,#EXTisTKiAREA
MOV RO, #0
LOOP1:
MOV A,RO
CJNE A, TMPSTOREQO,CONT1
RET
CONT1:
MOV A, #STACKSIZE
ADD A, DPL
MOV DPL, A
MOV A, DPH
ADDC A, #0
MOV DPH, A
INC RO
SJMP LOOP1

R R R I R I I I I I E I E S I I I h E I I

; SORT THE READY Q, LOW TASK NUMBER IS THE HIGHEST
; PRIORITY, AND THEREFORE AFTER ONE Q SORT PASS,
; THE LOWEST NUMBERED TASK ENDS UP AT BOTTOM OF Q,
; NEXT IN LINE TO EXECUTE.
; IT IS CALLED FROM QSHFT, WHEN REGISTER BANK 1 IS BEING USED.
TASK SORT:

PUSH ACC

PUSH 08

PUSH B

MOV RO, READYQTOP ; RO POINTS IN READY Q AREA

MOV A,RO

CJINE A, #READYQ, NEXT PAIR

SJMP EXIT QSORT ; ONLY ONE TASK, HENCE EXIT
NEXT PAIR:

MOV A, QRO

MOV B, @RO

DEC RO

CLR C

SUBB A, @RO

JNC NO_SWAP ; ENSURE LOWEST TASK NUMBER (HIGHEST PRIORITY)

; TRICKLES DOWN TO READYQ BOTTOM, READY TO RUN

SWAP_ NOW:

MOV A, QRO

MOV @RO,B

INC RO

MOV @RO, A

DEC RO
NO SWAP:

CJINE RO, #READYQ,NEXT PAIR ; ONE PASS DONE, HENCE EXIT
EXIT_QSORT:

POP B

Download free eBooks at bookboon.com

78

Appendix B

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

POP 08
POP ACC
RET

; RAR AR R R I S I I S I I S E I h E S b E h E h b h E I E I S h E E I 3 Sk b b 3

END

Excellent Economics and Business programmes at:

Z ——\
7

university of e AACSB

groningen b ACCREDITED

| 4

| |

“The perfect start

of a successful,
international career’

I

-, . 4 CLICKHERE
® F to discover why both socially
and academically the University
of Groningen is one of the best

i laces for a student to be
www.rug.nl/feb/education P

Download free eBooks at bookboon.com

79

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

Other Packages

SerIntPrPkg.c

/* SerIntPrPkg.c - see remarks below for program dedtails */

/* Has a 200 byte Receive and a 200-byte Transmit buffer in XDATA */
/* Routines to use with C program when using the on-board UART */
/* Running under interrupt control, using a stand-alone ISR, not under RTOS */

/* auto baud rate detection used by using a timer to count the bit time */
/* If Baudrate supplied is 0, then Auto Baud Detection is performed */

#include <reg52.h> /* special function registers 8052 */
#include <absacc.h>

#include <stdio.h>
// RXD is bit 0xBO; /* Rx Data on internal UART is Port 3 bit 0 */

#define RX BUFFER LENGTH 200
#define TX BUFFER LENGTH 200

unsigned char xdata Rx buffer [RX BUFFER LENGTH]; /* software Receive buffer */
unsigned char xdata Tx buffer[TX BUFFER LENGTH]; /* software Transmit buffer */
unsigned char data In_ read index;

/* points to data in software buffer that has been read */

unsigned char data In_waiting index;

/* points to data in software buffer not yet read */

unsigned char data Out written index;

/* points to data in software buffer that has been sent */

unsigned char data Out_waiting index;

/* points to data in software buffer not yet sent */

void Init P3_Int (unsigned int baudrate);
unsigned int autobaud (void) ;
void uart P3 isr (void);
/* This should be created as a function, waiting for serial interrupt */
char putchar (char c);
char getkey (void); /* This preferably should not be a Wait for Key routine */
/* It must have some TimeOut facility not to hold other jobs */
/* */
void Init P3 Int (unsigned int baudrate) {

unsigned int autobaud(void);

ET1 = 0; /* Disable Timer 1 interrupt just in case */
ES = 0; /* Disable Serial Interrupt initially just in case. */

/* It will then be enabled by the main program */
if (baudrate==0) baudrate = autobaud() ;

SCON = 0x50; /* Setup serial port control register */
/* Mode 1: 8-bit uart var. baud rate */

/* REN: enable receiver, TI=0 */

PCON &= 0x7F; /* Clear SMOD bit in power ctrl reg (no double baudrate) */

TMOD &= O0xO0F; /* Setup timer/counter mode register */
/* Clear M1 and MO for timer 1 */

Download free eBooks at bookboon.com

80

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli Appendix B
TMOD |= 0x20; /* Set M1 for 8-bit auto-reload timer mode 2 */

RCLK = 0; /* USE TIMER 1 FOR RECEIVE BAUD RATE (8032 only) */

TCLK = 0; /* USE TIMER 1 FOR TRANSMIT BAUD RATE (8032 only) */

switch (baudrate) {
case 300:
TH1 = TL1 = 0xAO0;
break;
case 600:
TH1 = TL1 = 0xDO;

break;
case 1200:
TH1 = TL1 = OxES8;
break;
case 2400:
TH1 = TL1 = 0xF4;
break;
case 4800:
TH1 = TL1 = OxFA;
break;
case 9600:
TH1 = TL1 = OxFD;
break;
case 19200:
TH1 = TL1 = 0xFD;
PCON |= 0x80; /* double baudrate, SMOD = 1 */
break;
case 57600:
TH1 = TL1 = OxFF; /* Not quite standard */
PCON |= 0x80; /* double baudrate, SMOD = 1 */
break;
}
In read index = In waiting index = 0; /* Reset Receive buffer pointers */
Out_written index = Out_waiting index = 0; /* Reset Transmit buffer pointers */
TRl = 1; /* Start timer 1 for baud rate generation */
ES = 1; /* Enable serial interrupt */
TI = RI = 0; /* Clear TI and RI */
EA = 1; /* Enable global interrupts */

}

/* Autobaud Calculation */

/* Calculates the time for 2 bits (the Start bit and the least significant bit, */
/* which should be a 1 */

/* Assuming you press the ENTER key (13 decimal = 00001101 binary) */

/* */
/* 0101100001 */
/* (. [*/
/* start bit--->+ +<--1sb msb-->+ +<---stop bit */

unsigned int autobaud(void) {
unsigned char data 1i;
unsigned int data counter;

Download free eBooks at bookboon.com

81

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli Appendix B
unsigned int code count table[] = {16,64,144,288,576,1152,2304,4608,9216,65535};
unsigned int code baud table[] = {0,57600,19200,9600,4800,2400,1200,600,300,0};

// Counter running at a rate of 1 count every 12/11.0592 micro seconds
// Count reached after a time of 2 bits (bitrate =br) is (2*11059200)/ (12*br)
// = 1843200/br

// Upper Limit = 65535 (invalid baudrate)
// 300 Upper boundary = 9216 <=======
// 1f 300 baud, count reached after 2 bits would be 6144
// 600 boundary = 4608 <=======
// if 600 baud, count reached after 2 bits would be 3072
// 1200 Upper boundary = 2304 <K=======
// if 1200 baud, count reached after 2 bits would be 1536
// 2400 boundary = 1152 <=======
// if 2400 baud, count reached after 2 bits would be 768
// 4800 boundary = 576 <=======
// if 4800 baud, count reached after 2 bits would be 384
// 9600 boundary = 288 <=======
// 1f 9600 baud, count reached after 2 bits would be 192
// 19200 boundary = 144 <=======
// if 19200 baud, count reached after 2 bits would be 96
// 57600 boundary = 64 <=======
// if 57600 baud, count reached after 2 bits would be 32
// Lower boundary = 16 (invalid baudrate)
do {
TMOD &= 0xO0F; /* Setup timer/counter mode register */
/* Clear M1 and MO for timer 1 */
TMOD |= 0x10; /* Set MO for 16-bit timer mode 1 */

sssssssssssssvsssssssssssssssssssssssssssssssssnnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

'q’

o

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

Download free eBooks at bookboon.com &\S«\

82 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

PaulOS An 8051 Real-Time Operating System

Partli Appendix B
TH1 = TL1 = O; /* Load counter registers with zero */
while (RXD) {}; /* wait for start bit (loop until RXD = 0) */
TR1 = 1; /* Start timing */
while (!RXD) {};: /* wait for start bit to finish */
while (RXD) {}; /* wait for 1lst one bit (RXD = 1) */
TR1 = 0; /* Stop count => has value of 2 bits */
counter = TH1*256 + TL1; /* Calculate the count value */
i=0;
while (counter > count table[i]) {
i++; // Find entry in table to correspond with this count
} // Valid i1 values are 1 to 8 only.
} while (i==0 || 1==9); // Upper and Lower values of table are not valid

// hence loop until found valid baud rate
return (baud _table[i]);
}

/* The following is the UART Interrupt Service Routine */
/* It should be run as a function under serial interrupt */

/‘k************************/

/* 'UART P3 ISR': */
/**/
void uart isr (void) interrupt 4 using 1
{ /* Runs as a Serial Interrupt Routine */
/* Wait for Serial Interrupt number 4 */
/* Check if interrupt from TI or RI */
/* TI set by 8032 UART whenever a character has Jjust been transmitted */
/* RI is set by the 8032 whenever a complete character has been received in SBUF */

/* BOTH RI and TI should be reset by the software */

if (TI)
{ /* Check if interrupt from TI */
/* Transmitter section */
TI=0; /* Transmitter is ready, hence */
/* prepare for next transmission */
/* Check if there is anything else to transmit */
if (Out_written index < Out waiting index)
SBUF = Tx buffer[Out written index++];
/* put data in hardware buffer for Tx */

else
{ /* No new data to send, just reset Tx buffer index */
Out_waiting index = 0;
Out_written_ index = 0;
}

}
if (RI)
{ /* Check if interrupt from RI */
/* Receiver Section = Flag set when full character has been received */
RI=0;

/* If all old data in software buffer has been read, */

/* we can start reading again into index 0 and reset RX buffer index */

Download free eBooks at bookboon.com

83

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli Appendix B
if (In_waiting index == In_read_index)
{
In waiting index = 0;
In read index = 0;

}
/* Read the data from the UART hardware buffer (SBUF) into the software buffer */

Rx_buffer[In waiting index] = SBUF;
if (In_waiting index < RX BUFFER LENGTH)

In waiting index++;

char putchar (char c)
{
// Writes to software buffer ONLY if there is space.
// I1If no space, keep on trying for a short TimeOut period
// No error reporting in this simple library
unsigned int data TimeOut = 20000;
while ((Out_waiting index >= TX BUFFER LENGTH) && (TimeOut-- > 0));
// wait for buffer space only for a TimeOut period
if (Out_waiting index < TX BUFFER LENGTH)
{
Tx_buffer[Out waiting index++] = c;
TI = 1; /* Generate interrupt - Activate TI to start transmission */
}

return (c);

char getkey ()
{

// No permanent waiting for key press - just waits for a time-out period
// Retrieves a character from the software buffer, if available.
// The character from the buffer is returned, or if no character

// is available, a 0 is returned.
unsigned char data c = 0; // Zero is returned if no key is pressed

unsigned int data TimeOut = 20000;

while ((In_read index >= In waiting index) && (TimeOut-- > 0));
// 1if no new character available, wait for a short TimeOut period

if (In_read_index < In waiting index)

{

¢ = Rx buffer[In read index];

if (In_read index < RX BUFFER LENGTH)

In read index++;
}

return (c); // Returns NULL if no new character received

}

/**/

Download free eBooks at bookboon.com

84

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix B

SerP2Pkg.c

/‘k*‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k*‘k‘k‘k‘k‘k‘k*‘k‘k*‘k‘k*‘k‘k‘k‘k‘k‘k**‘k/
/* SerP2Pkg.c */

/* Routines to use with C program when using the additional SCC2691 UART (P2) */
/* on the FLT-32 board. */

/* If baud rate parameter given is zero, auto-baudrate detection is performed */

#include <reg52.h> /* special function registers 8052 */
#include <absacc.h>

#include <stdio.h>

void P2 SetUp(void);
unsigned int Auto P2 BaudRate (void);
void Set P2 BaudRate (unsigned int baud);

char putchar (char c);

char getkey (void);

#define RX XBYTE [0xFFE8] // READ RX DATA AT START-UP (RxD Pin on P2)
// (READ BIT 0 OF THIS ADDRESS)
// USED FOR AUTO-BAUD DETECTION ONLY
// UART BASE ADDRESS on Flite-32 is FFF8H
#define UART MR1 XBYTE [OXFFF8] // MRl - Mode Register 1
#define UART MR2 XBYTE [0OXFFF8] // MR2 - Mode Register 2
#define UART SR XBYTE [0OXFFF9] // READ SR - Channel Status Register
#define UART CSR XBYTE [OXFFF9] // WRITE CSR - Clock Select Register
#define UART CR XBYTE [OXFFFA] // WRITE CR - Command Register

/

Leadiny
% Maastricht University o Learnin:

Join the best at

33 place Financial Times worldwide ranking: MSc

the MaastriCht U niverSity International Business

1%t place: MSc International Business

School of Business and ; 1st place: MSc Financial Economics

2" place: MSc Management of Learning

. nd place: MSc Economics
I 2P
Econom 1CS. 2" place: MSc Econometrics and Operations Research
2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

Download free eBooks at bookboon.com

85 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

PaulOS An 8051 Real-Time Operating System

Partll

#define
#define
#define
#define
#define
#define
#define

UART RHR
UART THR
UART ACR
UART ISR
UART_IMR
UART CTU
UART CTL

XBYTE
XBYTE
XBYTE
XBYTE
XBYTE
XBYTE
XBYTE

[OXFFFB]
[OXFFFB]
[OXFFFC]
[OXFFFD]
[OXFFFD]
[OXFFFE]
[OXFFFF]

// READ RHR - Receive Holding Register
// WRITE THR - Transmit Holding Register
// WRITE ACR - Auxiliary Control Register
// READ ISR - Interrupt Status Register
// WRITE IMR - Interrupt Mask Register

Appendix B

// READ/WRITE CTU - Counter Timer Upper Register
// READ/WRITE CTL - Counter Timer Lower Register

/‘k************************/

void P2 SetUp() {

unsigned char c;

do {
UART_CR = 0x2A; // reset Rx. Rx and Tx disabled
UART_CR = 0x3A; // reset Tx. Rx and Tx disabled
UART CR = Ox4A; // reset Error Status. Rx and Tx disabled
UART CR = 0x1A; // reset MR pointer. Rx and Tx disabled
UART MR1 = 0x13; // 8 bit, no parity
UART MR2 = 0x07; // 1 stop bit
UART ACR = 0x38; // BRG=0. Set 1 of baud rate table.
// Counter i/p xtal/1l6
UART CSR = 0xCC; // 38400 baud
UART IMR = 0x00; // No interrupts
UART_CR = 0x16; // reset MR pointer. Rx and Tx enabled
} while (((c=UART SR) & 0x04) == 0); // Repeat setup if TX not yet ready
UART CR = 0x2A; // reset Rx. Rx and Tx disabled
UART CR = 0x3A; // reset Tx. Rx and Tx disabled
UART_CR = 0x4A; // reset Error Status. Rx and Tx disabled
}
unsigned int Auto P2 BaudRate(void){ // detect and return baud rate
unsigned char c,d,i;
unsigned int counter;
unsigned int code count table[] = {9,18,36,72,144,288,576,1152,2304,3630,5200,65535};
unsigned int code baud table[] = {0,38400,19200,9600,4800,2400,1200,

600,300,150,110,0};

// Counter running at a rate of 1 count every 16/3.6864 micro seconds

// Count reached after a time of 2 bits

//
//
/) if
//
// if
//
// if
//
// if
//
// if
//
// if
//
// if
//

110 baud,

150 baud,

300 baud,

600 baud,

1200 baud,

2400 baud,

4800 baud,

(bitrate=br) i

s (2*3686400)/ (16*br)

Invalid Maximum limit = 65535 <=========
110 boundary = 5200 <=========
count reached after 1 bit would be 4189
150 boundary = 3630 <=========
count reached after 1 bit would be 3072
300 boundary = 2304 <=========
count reached after 1 bit would be 1536
600 boundary = 1152 <=========
count reached after 1 bit would be 768
1200 boundary = 576 <=========
count reached after 1 bit would be 384
2400 boundary = 288 <=========
count reached after 1 bit would be 192
4800 boundary = 144 <=========
count reached after 1 bit would be 96
9600 boundary = 72 <=========

Download free eBooks at bookboon.com

86

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

// if 9600 baud, count reached after 1 bit would be 48

// 19200 boundary = 36 <=========
// 1f 19200 baud, count reached after 1 bit would be 24
// 38400 boundary = 18 <=========
// if 38400 baud, count reached after 1 bit would be 12
// Invalid lower boundary = 9 <=========
do {
P2 _SetUp();
UART CTU = OxFF; // Reset counter to 65535
UART CTL = OxFF;
while (((c=RX) & 0x01) != 0){}; // wait for start bit
UART CR = 0x8A; // start counter

// counting duration of 2 bits - the start buit and another 'l' bit

while (((c=RX) & 0x01) == 0){}; // wait for start bit to pass

while (((c=RX) & 0x01) == 1){}; // wait for 'l' bit to pass

UART CR = 0x9A; // stop counter (now holding count for 2
bits)

c = ~(c = UART _CTU); // Since counter counts down, we have to

d = ~(d = UART CTL); // complement the readings.

counter = 256*c + d; // Get counter value

i=0;

while (counter > count table[i]) {

i++; // Find entry in table to correspond with this count

} // Valid i values are between 1 and 10 ONLY.

} while (i==0 | i==11); // upper and lower values of table are not valid

return (baud table[i]);

void Set P2 BaudRate (unsigned int baud) {

unsigned char c;

if (baud==0) baud = Auto P2 BaudRate();

UART CR = 0x2A; // reset Rx. Rx and Tx disabled

UART CR = 0x3A; // reset Tx. Rx and Tx disabled

UART CR = Ox4A; // reset Error Status. Rx and Tx disabled
UART CR = 0x1A; // reset MR pointer. Rx and Tx disabled
UART MR1 = 0x13; // 8 bit, no parity

UART MR2 = 0x07; // 1 stop bit

UART ACR = 0xB8; // BRG=1l. Set 2 of baud rate table.

switch (baud) {

case 110:
UART_CSR 0x11;
break;
case 150:

UART CSR = 0x33;
break;
case 300:
UART_CSR = 0x44;

break;

Download free eBooks at bookboon.com

87

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

case 600:
UART CSR = 0x55;
break;
case 1200:
UART _CSR = 0x66;
break;
case 2400:
UART CSR = 0x88;
break;
case 4800:
UART CSR = 0x99;
break;
case 9600: default:
UART CSR = 0xBB;
break;
case 19200:
UART CSR = 0xCC;
break;
case 38400:
UART_ACR = 0x38;
UART CSR = 0xCC;
break;
}
UART CR = 0x9A; //
UART CTU = OxFF; //
UART CTL = OxFF;
UART CR = 0x1A; //
UART_MR1 = 0x13; //
UART_MR2 = 0x07; //
UART CR = 0x05; //
UART CR = 0x85; //
while (((c=UART_ISR) & 0x10) == 0){};
// Wait for counter to reach zero
UART CR = 0x95; //
while (((c=UART_SR) & 0x01) == 1){
c=UART RHR; //
}
UART CR = 0x45; //
}
char putchar (char c) {
unsigned char d;
while (((d=UART_SR) & 0x04) == 0){};
UART THR = c;
return (c);

}

#if 1
char getkey (void){ // wait for key for ever
char c;

while (((c=UART_SR) & 0x01) == 0){};

return (c=UART RHR) ;

Download free eBooks at bookboon.com

Appendix B

Stop Counter

Reload counter with 65535
reset MR pointer. Rx and Tx disabled
8 bit,
1 stop bit
Enable Tx and Rx

no parity

Start Counter

(just a delay)
Stop Counter

clear receive FIFO buffer

Reset Error Status. Rx and Tx enabled

88

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Part Il Appendix B
#endif
#1if 0
char getkey (void) { // wait for key with TIMEOUT
char c;
unsigned long TimeOutLoop = 12000; // just as a test
while ((((c=UART_SR) & 0x01) == 0) && (++TimeOutLoop !=0)){};
// wait for character or TimeOut
if (((c=UART_SR) & 0x01) == 1)
return (c=UART_RHR) ;
else
return (0);
}
#endif
#if 0
char getkey (void){ // no waiting
char c;
if (((c=UART_SR) & 0x01) == 1)
return (c=UART_RHR) ;
else
return (0);
}
#endif
/* */

Download free eBooks at bookboon.com

89

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

SerP3Pkg.c

/* */
/* SerP3Pkg.c - see remarks below for program details */
/* Routines to use with C program when using the 8032 on-board UART (P3)*/

/* NOT under interrupt control */
/* Uses Timer 1 for Baud rate Generation */

/* Serial and Timer 1 interrupts are disabled. */

/* If Baudrate supplied is 0, then Auto Baud Detection is performed */

#include <reg52.h> /* special function registers 8052 */
#include <absacc.h>
#include <stdio.h>

// RXD is bit 0xBO; /* Rx Data on internal UART is Port 3 bit 0 */

void Set P3 BaudRate (unsigned int baudrate);
unsigned int P3autobaud(void);
char putchar (char c);

char getkey (void);

/* */
void Set_ P3_BaudRate (unsigned int baudrate) {

/* NOT under interrupt control */

if (baudrate==0) baudrate = P3autobaud() ;

SCON = 0x50; /* Setup serial port control register */
/* Mode 1: 8-bit uart var. baud rate */

/* REN: enable receiver */

PCON &= 0x7F; /* Clear SMOD bit in power ctrl reg */
TMOD &= O0xOF; /* Setup timer/counter mode register */
/* Clear M1 and MO for timer 1 */

TMOD |= 0x20; /* Set M1 for 8-bit auto-reload timer 1 */
RCLK = 0; /* USE TIMER 1 FOR RECEIVE BAUD RATE */
TCLK = 0; /* USE TIMER 1 FOR TRANSMIT BAUD RATE */
switch (baudrate) {
case 300:
TH1 = TL1 = OxAO0;
break;
case 600:

TH1 = TL1 = 0xDO;
break;

case 1200:
TH1 = TL1 = 0xE8;
break;

case 2400:
TH1 = TL1 = OxF4;
break;

case 4800:
TH1 = TL1 = OxFA;

break;

Download free eBooks at bookboon.com

20

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

case 9600:
TH1 = TL1 = OxFD;
break;
case 19200:
TH1 = TL1 = 0OxFD;
PCON |= 0x80; /* double baudrate, SMOD = 1 */
break;
case 57600:
TH1 = TL1 = OxFF; /* Not quite standard */
PCON |= 0x80; /* double baudrate, SMOD = 1 */
break;
}
ET1 = 0; /* Disable timer 1 interrupts just in case */
ES = 0; /* Disable serial interrupts just in case */
TR1 = 1; /* Start timer 1 */
TI = 1; /* Set TI to indicate ready to xmit */

/* Autobaud Calculation */
/* Calculates the time for 1 bit
/* Assuming you press the ENTER key

/%
*/

/* 0101100001

/* [

/* start bit--->+ +<--1sb msb-->+ +<---stop bit
/* For the baud rate to be detected properly,
/* should have its LSB = 1

unsigned int P3autobaud (void) {
unsigned char i;

unsigned int counter;

unsigned int code count table[] = {10,32,72,144,288,

(Start bit only) */
(13 decimal = 00001101 binary) */

*/
*/
*/

the key pressed */
(ALL ODD ASCII characters such as A, a) */

576,1152,2304,3200,65535};

unsigned int code baud table[] = {0,57600,19200,9600,4800,2400,1200,600,300,0};

// Counter running at a rate of 1 count every 12/11.

0592 micro seconds

// Count reached after a time of 1 bit (bitrate=br) is (1*11059200)/ (12*br)
// = 921600/br

// Invalid Maximum limit =

// 300 boundary =

// if 300 baud, count reached after 1 bit would be 3072

// 600 boundary = 2304 <=========
// 1f 600 baud, count reached after 1 bit would be 1536

// 1200 boundary = 1152 <=========
// if 1200 baud, count reached after 1 bit would be 768

// 2400 boundary = 576 <=========
// 1if 2400 baud, count reached after 1 bit would be 384

// 4800 boundary = 288 <=========
// if 4800 baud, count reached after 1 bit would be 192

// 9600 boundary = 144 <=========
// if 9600 baud, count reached after 1 bit would be 96

// 19200 Dboundary = 72 <=========

Download free eBooks at bookboon.com

91

Appendix B

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli Appendix B
// if 19200 baud, count reached after 1 bit would be 48
// 57600 boundary = 32 <=========
// 1f 57600 baud, count reached after 1 bit would be 16
// Invalid lower boundary = 10 <=========
do {

TMOD &= O0xO0F; /* Setup timer/counter mode register */

/* Clear M1 and MO for timer 1 */

TMOD |= 0x10; /* Set MO for 16-bit timer mode 1 */

TH1 = TL1 = O; /* Load counter registers with zero */

ET1 = 0; /* Disable timer 1 interrupts just in case */

ES = 0; /* Disable serial interrupts just in case */
while (RXD) {}; /* wait for start bit (loop until RXD = 0) */

TR1 = 1; /* Start timing */

while (!RXD) {}; /* wait for start bit to finish */

TR1 = 0; /* Stop count => has value of 1 bit */

counter = TH1*256 + TLl; /* Calculate the count value */

i=0;

while (counter > count table[i]) {

i++; // Find entry in table to correspond with this count
} // Valid i values are 1 to 8 only.

} while (i==0 || 1==9); // upper and lower values of table are not valid

// hence loop until found valid baud rate

return (baud_table[i]);

}

/*

* putchar (mini version): outputs charcter only

*/
char putchar
while (!TI);
TI = 0;
return (SBUF
}

#if 0
char getkey

char c=0;

(char c) {

0

if (RI)

{
c = SBUF;
RI = 0;
}
return (c);
}
#endif

#if 0
char getkey

char c=0;

0

// If TI=0, previous transmission not yet ready, hence wait

c)i

{

{

// no interrupt, no waiting for key press

// no interrupt, wait for key press for a time out period

unsigned long TimeOutLoop = 12000; // just as a test

while ((!RI)

&&

(++TimeOutLoop !=0)){}; // wait for character or TimeOut

Download free eBooks at bookboon.com

92

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Part Il Appendix B
if (RI)
{
c = SBUF;
RI = 0;

}

return (c);
}
#endif

#if 1
char getkey () { // no interrupt, wait for key press for ever

char c;

while (!RI); // wait here until character received
c = SBUF;

RI = 0;

return (c);

}

#endif

/***/

Download free eBooks at bookboon.com

93

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll

Fl1t32Pkg.c

/*

Appendix B

/* Flt32Pkg.c */

/* Routines to use with C programs */

/* Used to initialise 8255,

/* when using the add-on Applications Board */
/* with the FLT-32 board. */

#include <reg52.h>

#include <absacc.h>

*/

read and write from ports */

/* special function registers 8052 */

void Init_ 8255 (unsigned char c);

void WritePort (unsigned char c,

unsigned char ReadPort (unsigned char c);

#define
#define
#define
#define

PortA
PortB
PortC

Control

XBYTE
XBYTE
XBYTE
XBYTE

[
[
[
[

0XFF40
0XFF41
0XFF42

1
]
]
0XFF43]

unsigned char d);

// 8255
// 8255
// 8255
// 8255

Port A register
Port B register
Port C register

Control register

/‘k************************/

void Init_8255 (unsigned char c){
Control = c; // set-up 8255 PIO chip

}

/‘k************************/

void WritePort (unsigned char c, unsigned char d)

{

switch (c)
{
case 'A': case 'a':

PortA = d;

break;

case 'B': case 'b': default:
PortB = d;

break;

case 'C': case 'c':

PortC = d;

break;

}

/***/

unsigned char ReadPort (unsigned char c)
{
unsigned char d;
switch (c)
{

case 'A': case 'a': default:

Download free eBooks at bookboon.com

94

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix B

d = PortA;
break;
case 'B': case 'b':
d = PortB;
break;
case 'C': case 'c':
d = PortC;
break;
}
return (d);
}

/* */

> Apply now

REDEFINE YOUR FUTURE

AXA GLOBAL GRADUATE
PROGRAM 2014

redefining / standards M

Download free eBooks at bookboon.com &\S«\

Q
o
)
|72}
=
(=}
o
=}
g
o
£
a
©
o
5]
8
2
5
%

95 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5

RTOS Example Programs

Using the PaulOS RTOS under the Keil environment is similar to using it to write a normal C program.
The files required are shown in the screen shot below in figure B-1. Note that RTMACROSV5C.A51 and
PaulosV5C.A51 are declared as text files (right click on them and check the options). This is because
they are ‘included’ in TaskStkV5C.A51 file. Note also that the NOFTSKS has to agree with the number
of tasks in the application and MAIN_STACK has to agree with the ?STACK value given in the AAA.
mb51 list file generated by the compiler.

Figure B-1 Keil Screen shot using PaulOS RTOS

The following are some example programs using Paulos rtos so that you can have an idea of its capabilities

and syntax.

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

Light Controller Example Program

/**/

/* RTOS */

/* Paul 19.c: MULTI-TASK Light Controller using the C-51 COMPILER */
/* USE LARGE MODEL, WITH EXTERNAL DATA */
/* Application Program using Paulos.a51 */
/* RTOS program */
/* Make sure to include the Paulos.a5l program */
/* with the source group */
/* together with the Paulos.h header file */
/* (defining the system calls) */
/* All tasks run in bank 0, RTOS kernel runs in bank 1 */
/* All tasks must be written as an endless loop. */
/* VALID INTERRUPT NUMBERS ARE AS FOLLOWS: */
/* 0 EXTERNAL INT O (IEMASK = 00100001 = 21H) */
/* 1 TIMER COUNTER 0 (IEMASK = 00100010 = 22H) */
/* 2 EXTERNAL INT 1 (IEMASK = 00100100 = 24H) */
/* 3 TIMER COUNTER 1 (IEMASK = 00101000 = 28H) */
/* 4 SERIAL PORT (IEMASK = 00110000 = 30H) */
/* 5 TIMER COUNTER 2 (IEMASK = 00100000 = 20H) */
/* TIMER 2 IS USED BY THE RTOS, AND ET2 (20H) SHOULD BE ALWAYS SET */
/* HENCE THE OTHER IEMASKS ARE ALWAYS ORED WITH 20H */
/* o/
/**/
//

// NOTE

// USE the following settings in Options for Target 1

// Memory Model: LARGE: EXTERNAL XDATA

// Code Model: LARGE: 64K Program

// START SIZE

// CODE: 0x8100 0X0A00

// RAM: 0X8B00 0X1500

#include <reg52.h> /* special function registers 8052 */
#include "Paulos.h" /* Paul RTOS system calls definitions */
#include <absacc.h>

#define porta XBYTE [0xFF40] /* 8255 port mappings on FLT-32 */

#define portb XBYTE [0xFF41]

#define portc XBYTE [0xFF42]

#define control XBYTE [0xFF43]

#define LEDS portb

unsigned char data display=0;

/* place display variable in internal

'data'

/**/

/*

Task 0 'lightsO':

*/

/‘k***********************/

void lightsO

(void) {

while (1) {
display=display

WAITT (1) ;
SIGNAL (1) ;

WAITS (255) ;

}

/* LED operation */

~ 0x01;

/* SIGNAL TO TASK 1 */
/* WAIT FOR A SIGNAL INDEFINITELY

}
Download free eBooks at bookboon.com

97

*/

Appendix B

RAM */

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

/‘k************************/

/‘k***********************/

/* Task 1 'lightsl': */
/**/
void lightsl (void) { /* LED operation */

while (1) {

WAITS (255) ;
display=display *~ 0x02;
WAITT (1) ;
SIGNAL(2) ;
}
}

/**/

/**/

/* Task 2 'lights2': */
/‘k************************/
void lights2 (void) { /* LED operation */

while (1) {

WAITS (255);
display=display *~ 0x04;
WAITT (1) ;
SIGNAL(3);
}
}

/**/

/‘k************************/

/* Task 3 'lights3': */
/**/
void lights3 (void) { /* LED operation */

while (1) {

WAITS (255) ;
display=display *~ 0x08;
WAITT (1) ;
SIGNAL (4) ;
}
}

/‘k***********************/

/**/

/* Task 4 'lightsd': */
/**/
void lights4 (void) { /* LED operation */

while (1) {

WAITS (255);
display=display *~ 0x10;
WAITT (1) ;
SIGNAL (5) ;
}
}

/**/

/**/

/* Task 5 'lights5': */

/‘k***********************/

void lights5 (void) { /* LED operation */

Download free eBooks at bookboon.com

28

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Part Il Appendix B

while (1) {
WAITS (255);
display = display ~ 0x20;
WAITT (1) ;
SIGNAL(6) ;
}
}

/**/
/**/
/* Task 6 'lightsé6': */
/*‘k‘k‘k‘k*‘k‘k‘k**‘k‘k***‘k‘k***‘k‘k*‘k*‘k‘k**‘k‘k‘k**‘k‘k‘k‘k*‘k‘k‘k**‘k‘k***‘k‘k**************************/
void lights6 (void) {
while (1) {
WAITS (255) ;
display = display *~ 0x40;
WAITT (1) ;
SIGNAL(7) ;
}

/* LED operation */

}

/**/
/‘k************************/

/* Task 7 'lights7': */

/**/

void lights7 (void) {
while (1) {
WAITS (255);
display=display ~ 0x80;

s
-

) stfatedic Marketili
¥ Management _

- inancial
conomics

7/

Shipping ‘

Busineg

TT——

Leadership &
QOrganlsationg
Ps l.'\ s

= ageet|

NORWEGIAN ,(_ EFMD
BUSINESS SCHOOL EQUES,
Download free eBooks at bookboon.com
929

/* LED operation

=rnatlona =i

*/

Empowering People.
Improving Business.

Bl Norwegian Business School is one of Europe’s
largest business schools welcoming more than 20,000
students. Our programmes provide a stimulating
and multi-cultural learning environment with an
international outlook ultimately providing students
with professional skills to meet the increasing needs
of businesses.

Bl offers four different two-year, full-time Master of
Science (MSc) programmes that are taught entirely in
English and have been designed to provide professional
skills to meet the increasing need of businesses. The
MSc programmes provide a stimulating and multi-
cultural leaming environment to give you the best
platform to launch into your career.

* MSc in Business

* MSc in Financial Economics

* MSc in Strategic Marketing Management

* M5Sc in Leadership and Organisational Psychology

www.bi.edu/master

N

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

PaulOS An 8051 Real-Time Operating System
Partli

WAITT (1) ;
SIGNAL (0) ;
}
}

/**/

/‘k************************/

/* Task 8 'lights8': */
/**/
void lights8 (void) { /* LED operation */
while (1) {
WAITI(O); /* wait for INTERRUPT EXTO */
display=0;

}
}

/**/

/‘k************************/

/* Task 9 'lights9': */
/**/
void lights9 (void) { /* LED operation */
while (1) {
WAITI(2); /* wait for INTERRUPT EXT1 */

display=0XFF;
}
}

/**/

/**/

/* Main: Initialise and display */
/**/
void main (void) { /* program execution starts here */
INIT 8255 (0x91); /* initialise 8255 port */
INIT RTOS (0x25); /* initialise RTOS variables and stack */
/* using timer2 and ext0 & extl interrupts */

CREATE (0, 1ights0) ; /* start lights task */
CREATE (1, lightsl) ; /* start lights task */
CREATE (2, 1ights2) ; /* start lights task */
CREATE (3, 1ights3); /* start lights task */
CREATE (4, lightsd4) ; /* start lights task */
CREATE (5,1ights5) ; /* start lights task */
CREATE (6, 1ights6) ; /* start lights task */
CREATE (7, 1ights7) ; /* start lights task */
CREATE (8, 1ights8) ; /* start lights task */
CREATE (9, 1ights9) ; /* start lights task */

display = 0;
RTOSGOMSEC (25,0) ; /* start RTOS system */

while (1){
LEDS=display;
}

}

/**/

Download free eBooks at bookboon.com

100

Appendix B

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

Random Example Program

/*
khkkhkhkhkkhhkhhkhkhhhhhkhhhhhhhhhhhhh b kb bk hhh bk bbbk h bk bbbk hh bbbk hk bbbk bk hh kb bk hhhhkhkhhrkhkhkhkhkr kb rkhkrhkhkkhkrkkx
* PAULOS

* The Real-Time Kernel

*

*

* EXAMPLE random06.c

R R

*/
#include <reg52.h> /* special function registers 8052 */
#include "..\Headers\PaulosV5B.h" /* PaulOS C version system calls definitions */

#include <absacc.h>
#include <stdio.h>
#include <stdlib.h>

#include "..\Headers\SerP2Pkg.h"
#include "..\Headers\F1t32Pkg.h"
#include "..\Headers\HYPER PC.H"
/*

B I I R S R I e

* TASKS

RR R R h E I S E SE E h b b b b b b b b b b b h E E h E b E h b b b b b b b b b b E b b b b E b h b b E h b b b b b h E h h b

*/

void CommonTask (void)

{
uchar x,vy,z,s[3];
z = 1 + RUNNING TASK ID();
PERIODICA(0,0,z); /* Run every (1 + Task ID) seconds */
while (1)
{
x = rand () %80; /* Get X position (0-79) where task number will appear */
y = 5 + rand()%16; /* Get Y position (5-20) where task number will appear */
z = RUNNING TASK ID();
PC DispChar(y,x,z+'A"); /* Display the task number on the screen */
WritePort ('B',z);
sprintf (s, "%02bu", z);
PC _DispStr(22,40,s);
WAITV () ;
}
}
/*

Rk ik b bk b b b b b b b b b b bk kb b b b b b b bk b b b b bk b b b b b b b b b b bk b i

*/

/*
RS S S S S S S S S SR SR SRR R SR SRR RS SR SRS RS SRS RS EEEEEEEEEEEEESEEEEEEDEEEEEEEEDEEEEDEDEEEEEE S S
*/

void ClearArea (void)

{

uchar i,s[3];
PERIODICA(0,0,25); /* Repeat every 25 seconds */

Download free eBooks at bookboon.com

101

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli Appendix B

while (1)
{

i = RUNNING_TASK ID();
sprintf (s, "%02bu",1i);
PC_DispStr(22,40,s); /* Display the task number on the screen */
WritePort ('B', 1i);
for (i=5;i<=20;i++) PC_DispClr2EndOfRow (i, 0);
PC_DispStr(22,40,s); /* Display the task number on the screen */
WAITV () ;

/*
dAhhkhhkkhkhhkhhhhhhhhhAhhhhhhhhhhhhk bk bk h bk h bk hk bk bk bk hkh bk h bk hkhhkhkhh bk hkhkhkhhkhhkhk bk hkhkhkhhhkhhkhkhkhkhrhkrhkhkhkhkhhkhhhkx*x
*/
void RandomSeed (void)

uint x;

uchar z,s[3];

PERIODICA(0,0,4); /* Run every 4 seconds */
while (1)

{
z = RUNNING TASK ID();
sprintf (s, "%02bu", z);
PC_DispStr(22,40,s); /* Display the task number on the screen */
WritePort ('B',z);
x = (x+1)%0xFFFF;

srand (x) ;

WAITV () ;

/*

Kk hkhkhkhkhkhkdkhkhkhkhkhhkhkhk bk hk bk h ko Ak hkhkhhkhhk bk hhkhk kb hkhkk bk hhkkkhkhkhkhhkhkhhkhkhkhkhhkhkdkhkhhkhkkhkhhkhkdkhkhkhkhkdkhkhkhkkhkhkkkkk
*/

/*

IR EE RS S E S S S S S EEE SRS S SRS SRS EE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
*/

/*$PAGE*/

/*
khkhkhkhkhkkhhkhhkhkhhhhhkhhhhhhhhh kb b hh kb bk hhhhrh bk kbbb bk hh bbbk kb bk hhkhkhhhhkhhhhkhkhkhrkhkhkrkhrhkhkrkhrhkhkrhkrhkkx
*/

/*

Kk hkhkhkhkhkhkdkhkhkhkhkhkhkhkhk Ak hhkh ko Ak hk ok h ko bk hk ok hk ko hkhk ok h ko hkk ok h ko hkhkhkh ko hhkhkhkhkhkhkhkhhkhkdkhkhhkhkkhkhhkhkdkhkhkhkhkdkhkhkhkkhkkkkkkk

* MAIN

R SRS S SRS E S S S E S EEEEEEEEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEE RS

*/

/* Using ANSI.SYS Escape control sequence */
/* Clear Screen Esc[2J */
/* Position Cursor Esc[row;colH */
/* Clear to end of line Esc[K */

void main (void)

{

Download free eBooks at bookboon.com

102

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll Appendix B
uchar i;
INIT RTOS (0x20) ; /* initialise RTOS variables and stack */
Init 8255(0x91); /* Initialise the 8255 */

Set P2 BaudRate (38400);

PC_DispClrScr(); /* Clear the screen */
PC DispStrCntr (1,"PaulOS, The Real-Time 8051 Co-Operative Kernel");

PC DispStrCntr (2,"by Paul P. Debono - EXAMPLE Random 06 with 35 tasks");
PC DispStrCntr (3,"Version 5B");

PC DispStr(22,31,"Task No:");

for (i=0;1<=32;1i++)
{

CREATE (i, CommonTask) ; /* CREATE common tasks */
}

CREATE (33,ClearArea) ; /* CREATE task */

CREATE (34, RandomSeed) ; /* CREATE task */

RTOSGOMSEC (250, 0) ; /* Start multitasking */

while (1)

{
SET IDLE MODE();/* Go to idle mode if doing nothing, to conserve energy */

}

/*
Rk kb kS b b b b b bk

Rk kb b kb kb b b b b b b b kb bk b b b b Rk bk b b R b b b b R b b kb b b b R b b

Need help with your
dissertation?

Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation! é‘}d}g\“

Get Help Now Ov°°$

Go to www.helpmyassignment.co.uk for more info E/Helpmyassignment

Download free eBooks at bookboon.com \(‘ t\

103 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

Multi-Processor Example Program

This program is a Master-Slaves example, running under interrupts (not under RTOS). See remarks on

the program header for the program details.

/*
/*

/*

/*
/*
/*
/‘k

!/
//
//
//
//
1/
//
//

//

Multi-Processor Test program number one */

Master.c */
Use in conjunction with Slave.c */

Please include the following with Source Group */

STARTUP.A51 */
SerP2Pkg.c */
F1t32Pkg.c */

Main routine simply waits for keyboard
input to send messages to slaves
Sends any message to any slave or a General Message to all slaves
Receives a message from the slave in communication
Internal Serial port handles communications (not under interrupt control)
to master microcontroller (socket P3 - up to 345600 baud).
Main program prints messages sent/received on the terminal

screen via socket P2, 38400 baud.

Timer 2 interrupt service routine toggles the upper 4 leds

#include <reg52.h>

#include <absacc.h>

#include <stdio.h>

#include <string.h>

#define EOT '~' // END OF MESSAGE
#define EOS '\O' // END OF STRING
// External Functions in SerP2Pkg.c

void P2 SetUp (void);
void Auto P2 BaudRate (void);

void Set P2 BaudRate (unsigned int baud);

char putchar (char c);

char getkey (void);

//

External Functions if using F1t32Pkg.c

void Init 8255 (unsigned char c);

void WritePort (unsigned char ¢, unsigned char d) large reentrant;

unsigned char ReadPort (unsigned char c) large reentrant;

//

//

Functions in this module

void Init TIMER2 (unsigned char msecs);

void XchgInfo (unsigned char SlaveNum, char s[], char r[]);

void Init P3UART (unsigned char mode, unsigned long baudrate);

//

Variables

unsigned char data intdisplay;

unsigned char data i=1;

void Init TIMER2 (unsigned char msecs) // Timer 2 initialisation

//causes interrupt every msecs

{ Download free eBooks at bookboon.com

104

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll

unsigned char data THIGH, TLOW;

unsigned int data clock;

clock = msecs*922; //
THIGH = (65536-clock)/256;
TLOW = (65536-clock)%256;
RCAP2H = THIGH; //
RCAP2L = TLOW;
TH2 = THIGH; //
TL2 = TLOW;
T2CON = 0x0; //
ET2 = 1;
TR2 = 1; //

922 = 11059/12;

Re-load values

set up timer 2

timer

START TIMER

(for

Flight 32)

2 16-bit auto-reload mode

void T2ISR (void) interrupt 5 using 1 // Timer 2 ISR, toggles LEDs
{
TF2 = 0;
if (i++ == 10) // every 10 interrupts
{
i=1;
intdisplay = intdisplay *~ 0xFO; // toggle upper 4 bits (~ => XOR)
WritePort ('B',intdisplay); /* output to leds */
}
}
void Init P3UART (unsigned char mode, unsigned long baudrate)
{ /* Initialise 8051 UART for multi-processor comms */
ES = 0; /* Disable Serial Interrupt */
SCON = mode; /* Setup serial port control register */

PCON &= 0x7F;

switch (baudrate) {
case 1200:
TH1 = TL1 = OxES8;
break;
case 2400:
TH1 = TL1 = OxF4;
break;
case 4800:
TH1 = TL1 = OxFA;
break;
case 9600:
TH1 = TL1 = OxFD;
break;
case 19200:
TH1 = TL1 = OxFD;
PCON 0x80;

|= /*
break;

case 57600:
TH1 = TL1 = OxFF;
PCON |= 0x80;

break;

Download free eBooks at bookboon.com

double baudrate,

SMOD

/* Not quite standard */
/* double baudrate,

SMOD

105

/* Clear SMOD bit in power ctrl reg PCON, (no double brate)

*/

*/

*/

Appendix B

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Part I Appendix B
case 172800: /* not strictly speaking standard */
break; /* crystal/64, SMOD = 0 */
case 345600: /* not strictly speaking standard */
PCON |= 0x80; /* crystal/32, SMOD = 1 */
break;

if (baudrate <= 57600)
{

TR1 = 1; /* Start timer 1 (baud rate) */
ET1 = 0; /* Disable Timer 1 Interrupts just in case */
TMOD &= O0xO0F; /* Setup timer/counter mode register */
/* Clear M1 and MO for timer 1 */
TMOD |= 0x20; /* Set M1 for 8-bit auto-reload timer 1 */
RCLK = 0; /* USE TIMER 1 FOR RECEIVE BAUD RATE (8032 only) */
TCLK = 0; /* USE TIMER 1 FOR TRANSMIT BAUD RATE (8032 only) */
TI = 1; /* Set TI to indicate initially ready to transmit */

}

void XchgInfo (unsigned char SlaveNum, char s[], char r[])
{ // Sends address/data to a particular slave
// Receives data from addressed slave
unsigned int data inptr,outptr;

unsigned char data c, x;

while (!TI) {} // wait for any previous transmission to finish

// TI = 1, means ready to load new character in

[]
B By 2020, wind could provide one-tenth of our planet's
ra I n p O W e r electricity needs. Already today, SKF's innovative know-
how is crucial to running a large proportion of the
world's wind turbines.
Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
jcation. We help make it more economical to create

Therefore we'need the best employees who can

eet this challenge!

Tﬁf Power of Knowledge Engineering

i

o

Plug into The Power of Knowle‘ngineering.
Visit us at www.skf.com/knowled"g%

Download free eBooks at bookboon.com

106 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

SBUF for Tx

TB8 = 1; // set bit 8, for address transmission

TI = 0; // clr TI since we are going to transmit again
SBUF = SlaveNum; // send slave address

while (!TI) {} // wait for address to be transmitted

/* This might cause problems, since program might wait here indefinitely if */

/* there is any problem in the network - needs timeout capability */

TB8 = outptr = 0; // address sent, now set for data transmission
for (x=0;x<100;x++) {} // short delay to give time to affected slaves to switch

// over from address to data reception mode

while (s[outptr]!='\0")
{
TI = 0; // clr TI since we are going to transmit again
SBUF = s[outptr++];
while (!TI) {} // wait for byte to be transmitted
for (x=0;x<100; x++) {} // short delay depending on receiving device
// may be unnecessary
}
inptr = 0;
do // Received string expected to end with '~' character
{
while (!RI) {} // wait for character to be received from slave
// RI = 1, means data received
RI = 0; // clear RI to wait for next character
c = SBUF; // read data character sent from slave
r[inptr++] = c; // and store it
}
while (c != '"~"); /* loop again until end of data marker '~' */
r[--inptr] = '\0'; // overwrite received '~' with '\O'
// In C a string finishes with a '\0'
}
void Send2All (char s[]) /* Send a message to ALL slaves - no response expected back */

{
unsigned int data outptr;

unsigned char data x;

while (!TI) {} // wait for any previous transmission to finish

// TI = 1, means ready to load new character in SBUF

TB8 = 1; // set bit 8, for address transmission

TI = 0; // clear TI flag since we are goling to transmit again
SBUF = 255; // send General broadcast slave address (255)
while (!TI) {} // wait for address to be transmitted

/* This might cause problems, since program might wait here indefinitely if */

/* there is any problem in the network - needs timeout capability */

TB8 = outptr = 0; // address sent, now set for data transmission
for (x=0;x<200;x++) {} // short delay to give time for slaves to check address
// and switch over from address to data reception mode
while (s[outptr]!='\0")
{

Download free eBooks at bookboon.com

107

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

SBUF = s[outptr++];
while (!TI) {} // wait for byte to be transmitted
for (x=0;x<100;x++) {}
/* just a delay for receiving device,

since we are not using any handshaking */

void main (void)

{
unsigned int Msg[256],1; // 256 slaves maximum
unsigned char data SlaveNum;
unsigned char Outgoing[350], Incoming[350];

// 350 characters per message maximum

// Initialise all arrays
for (1=0;1<256;1i++)

Msg[i] = 1; // All start wih message 1

for (1=0;1i<350;1i++)
{

Outgoing[i] = 0;
Incoming[i] = O;
}
Set P2 BaudRate (38400); // initialise 2SC6911 (P2 socket) for screen and keyboard

// Init P3UART (0xDA,57600);// initialise UART(P3 socket) for multi-processor comms
/* Setup serial port control register SCON = 0xDA, not under interrupt control */
/* Mode 3: 9-bit uart, 57600 baud rate */

/* SM0=1, SMl=1, SM2 = 0, REN = 1 */

/* TB8 =1, RB8 = 0, TI =1, RI = 0 */

Init P3UART (0x9A,345600);// initialise UART(P3 socket) for multi-processor comms
/* Setup serial port control register SCON = 0x9A, not under interrupt control */
/* Mode 2: 9-bit uart, FIXED 345600 baud rate */

/* SMO=1, SM1=0, SM2 = 0, REN = 1 */

/* TB8 = 1, RB8 = 0, TI =1, RI = 0 */

Init 8255(0x91); // initialise 8255 input/output port
intdisplay = 0;
Init TIMER2(50); /* timer 2 interrupt running every 50 milliseconds */
EA=1; /* enable global interrupts */
printf ("\n\rThis is the MASTER controller\n\r");
printf ("\n\rMake sure you use the getkey (wait for key) function in SerP2Pkg\n\r");
printf ("\n\rLEDs flashing under Timer 2 interrupt.\n\r");
while (1)
{ /* loop forever */
printf ("\rvalid Slave numbers are:\n\r");
printf (" 0 - 254 for Individual commands\n\r");
printf (" 255 for General Broadcast\n\r");
printf ("Enter Slave no: ");
scanf ("$bu", &SlaveNum) ;

getchar();// eliminate carriage return used for entering slave number

if (SlaveNum != 255) // talking to just one slave
{

Download free eBooks at bookboon.com

108

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix B

printf ("\n\rEnter message %u for slave number %bu :\n\r",
Msg[SlaveNum] ++, SlaveNum) ;

gets (Outgoing, sizeof (Outgoing));

strcat (Outgoing, "~");

printf ("\n\r Sending the following data\n\r(%s)\n\r to slave number: %$bul\n\
r",Outgoing, SlaveNum) ;

XchgInfo (SlaveNum, Outgoing, Incoming) ;
// new data read from slave saved in Incoming
printf ("\n\rSlave number %bu replied :\n\r %$s\n\n\n\r",SlaveNum, Incoming) ;

}

else if (SlaveNum == 255) // General Broadcast Message

{
printf ("\n\rEnter General Broadcast Message %u for All slaves:-
\n\r",Msg[SlaveNum]++) ;

gets (Outgoing, sizeof (Outgoing));

strcat (Outgoing, "~"); /* attach end of data marker */
printf ("\n\rSending data to ALL slaves\n\r");
printf (" (%s)\n\n\r",Outgoing) ;
Send2All (Outgoing) ; // send data to all slaves
}

}
/* Multi-Processor Slave Test program - NO RTOS */

/* Slave.c */

/* Use in conjunction with Master.c */

“I studied
English for 16 P
L]

years but... »
...I finally
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

—— p— ‘-lIImI- l&l " '

Download free eBooks at bookboon.com

109 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

/* Please include the following with Source Group */

/* STARTUP.A51 */
/* SerP2Pkg.c */
/* F1t32Pkg.c */

// Timer 2 interrupt toggles the upper 4 bits every 25 msecs.

// Internal Serial port interrupt handles communications

// to master microcontroller (socket P3 - up to 345600 baud).
// Main program prints messages sent/received on the terminal

// screen via socket P2, 38400 baud.

#include <reg52.h>
#include <absacc.h>
#include <stdio.h>

#include <string.h>

#define EOT '~' // END OF MESSAGE CHARACTER
#define EOS '\O' // END OF STRING CHARACTER

// External Functions in SerP2Pkg.c
void P2 SetUp(void);

void Auto_ P2 BaudRate (void);

vold Set P2 BaudRate (unsigned int baud);
char putchar (char c);

char getkey (void);

// External Functions if using F1t32Pkg.c

void Init 8255 (unsigned char c);

void WritePort (unsigned char c, unsigned char d) large reentrant;
unsigned char ReadPort (unsigned char c¢) large reentrant;

//

// Functions in this module
void Init TIMER2 (unsigned char msecs);
void Init P3UART_ int (unsigned char mode, unsigned long baudrate);

void Byte2Bin (unsigned char CH, char s[]);

// Variables

bit MasterCalled, Its4Me, Its4All;

unsigned char data i;

unsigned int data inptr,outptr;

unsigned char data intdisplay, ItIsMe, Broadcast;
unsigned char RxString[250], TxString[250];

void Init P3UART int (unsigned char mode, unsigned long baudrate)
// Set up internal UART (P3) under interrupt control
{

SCON = mode; /* Setup serial port control register */
PCON &= 0x7F; /* Clear SMOD bit in power ctrl reg */
switch (baudrate) { // set up timer 1 initial count according to baud rate required
case 1200:
TH1 = TL1 = OxES8;
break;
case 2400:

TH1 = TL1 = OxF4;

break;

Download free eBooks at bookboon.com

110

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

case 4800:

TH1 = TL1 = OxFA;
break;
case 9600:
TH1 = TL1 = OxFD;
break;
case 19200:
TH1 = TL1 = OxFD;
PCON |= 0x80; /*
break;
case 57600:
TH1 = TL1 = OxFF; /*

PCON |= 0x80; /*

double baudrate, SMOD = 1 */

Not quite standard */

double baudrate, SMOD = 1 */
break;

case 172800: /*
break; /*

case 345600: /*
PCON |= 0x80; /*

break;

not strictly speaking standard */
crystal/64, SMOD = 0 */
not strictly speaking standard */
crystal/32, SMOD = 1 */

if (baudrate <= 56700)

ET1L = 0;
TMOD &= O0xO0F; /* Setup timer/counter mode register */
/* Clear M1 and MO for timer 1 */
TMOD |= 0x20; /* Set M1 for 8-bit autoreload timer 1 */
RCLK = O; /* USE TIMER 1 FOR RECEIVE BAUD RATE (8032 only) */
TCLK = 0; /* USE TIMER 1 FOR TRANSMIT BAUD RATE (8032 only) */
TR1 = 1; /* Start timer 1 (baud rate) */
TI = 0; /* Clear TI to indicate not ready to xmit yet */
ES = 1; /* Enable Serial Interrupt */

void Init TIMER2 // Timer 2 initialisation
{

unsigned char data THIGH, TLOW;

(unsigned char msecs)

unsigned int data clock;

msecs*922;

11059/12 =
(65536-clock) /256;

(65536-clock) %$256;

clock =
// 922 =
THIGH =
TLOW =

counts required for 1 msec TF2 interrupt delays;

RCAP2H = THIGH;
RCAP2L = TLOW;
TH2 RCAP2H;
TL2 RCAP2L;
T2CON = 0x0;
ET2 =
TR2 =

// set up timer 2 (for Flight 32)

// timer 2 16-bit auto-reload mode

1
1; // START TIMER 2

Download free eBooks at bookboon.com

Appendix B

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll Appendix B

void P3uart isr (void) interrupt 4 using 1 /* Runs as a Serial Interrupt Routine */

/* sends TxString and receives RxString */
{

unsigned char data c;

unsigned int x;

// interrupt may be caused either from a TI or an RI flag

// RECEIVER SECTION

if (RI) // 1f a character is received
{
RI = 0; // reset flag
c = SBUF; // get character
if (RB8==1 && c==ItIsMe) // if received correct address,
{
SM2 = 0; // prepare to read data
RB8 = 0;

Its4All = 0;
Its4Me = 1;
inptr = 0;

else if (RB8==1 && c==Broadcast) // if received general broadcast address,
{
SM2 =
RB8 = 0;
Its4All = 1;
Its4Me = 0;

inptr = 0;

0; // prepare to read data

‘want to do”?

185 countries all
‘graduates great

Vouwo Toucxs | Rewanr Toocks | Mack Toweks | Vowo Buses | Vowo Cowsteucrion Esumsent | Wowo Pesm | Vowo Aeno | Vowo IT

Vowo Fimswce Sepices | Vowo 3P | Vowo Powemream | Vowo Pasrs | Vowo Techwowoer | Vowo Loasncs | Busimess Anes Asi

Download free eBooks at bookboon.com

112

Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

PaulOS An 8051 Real-Time Operating System

Partli Appendix B
else if ((SM2==0) && (c != '~")) // store any received data

RxString[inptr++] = c;
else 1if ((SM2==0) && (c == '~"))

{
MasterCalled = 1;
RxString[inptr] = '\0'; // end received string with NULL character

SM2 = 1; // reset serial port for address reception mode

// TRANSMITTER SECTION
1f(TI && (TxStringloutptr] != '\0')) // just sends a message from TxString

{
TI = 0; // clr TI in order to transmit

for (x=1;x<500;x++){};
/* just a delay for receiving no handshaking */
SBUF = TxString[outptr++];
}

else 1if(TI && (TxString[outptr] == '\0')) // No more data to send
TI = outptr = 0;

void T2ISR (void) interrupt 5 using 2 // Timer 2 interrupt service routine
{
TF2 = 0;
if (i++ == 5) // every 5 interrupts
{
i=1;

intdisplay = intdisplay ~ 0xFO; // toggle upper 4 bits (XOR)
WritePort ('B',intdisplay); /* output to leds */
}

void Byte2Bin (unsigned char CH, char s[])
{

unsigned char data i, c=CH;

unsigned char data Mask = 1<<7;

for (i=1;i<=8;i++)
{
s[i-1] = (¢ & Mask 2 '"1' : '0");

c <<= 1;

void main (void)

{
unsigned int data MsgNo = 1; // start with first message
unsigned char data SwitchSettings, s[8];
unsigned char SwitchString[80];

Init 8255(0x91); // Initilaise 8255 PIO
Set P2 BaudRate (38400); // initialise external UART (P2) for keyboard/screen

Download free eBooks at bookboon.com

113

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

//Init P3UART_int (0xF0,57600);

// initialise internal UART (P3 socket) for multi-processor comms (interrupt)
/* Setup serial port control register SCON = 0xF0 */

/* Mode 3: 9-bit uart var. baud rate */

/* SMO = SM1 = SM2 = REN = 1 */

/* TB8 = RB8 = TI = RI = 0 */

/* under interrupt control */

Init P3UART int (0xB0,345600);

// initialise internal UART (P3 socket) for multi-processor comms (interrupt)
/* Setup serial port control register SCON = 0xB0 */

/* Mode 2: 9-bit uart FIXED baud rate */

/* SMO = 1, SM1 = 0, SM2 = REN = 1 */

/* TB8 = RB8 = TI = RI = 0 */

/* under interrupt control */

intdisplay = 0; // clear display

Init TIMER2 (50); /* timer 2 interrupt running every 50 milliseconds */
EA=1; /* enable global interrupts */

Broadcast = 255; /* General Broadcast address - all slaves receive this */

printf ("\n\rHello, please enter a Unique number for this Slave (0-254) : ");
scanf ("$bu", &ItIsMe) ;

printf ("\n\rEntering main loop (leds flashing under interrupt Timer 2),\n\rwhich will be
interrupted\n\n\r");

printf ("EITHER\n\r") ;

printf (" (i) by a message dedicated only to this slave number: %$bul\n\r",ItIsMe);
printf ("OR\n\r") ;

printf (" (ii) by a Global Broadcast Message.\n\n\n\r");

inptr = outptr = 0; // variables used to scan TxString and RxString
while (1)

{ /* loop forever */

if (MasterCalled && Its4Me) // message is just for me

{

MasterCalled = Its4Me = 0O;

/* Start Timer 2 interrupts */

/* They may have been switch off by a Global Message */

ET2 = 1;

TR2 = 1;

/* Get lower four-bit switch settings */

SwitchSettings = ReadPort ('A') & OxO0F;

Byte2Bin (SwitchSettings, s);

sprintf (TxString,

"Hello, this is Slave no: %bu, acknowledging your message no: %$bu.%u\n\r",

ItIsMe, ItIsMe,MsgNo) ;

sprintf (SwitchString," Lower 4-bit switch settings are: $#bx HEXADECIMAL or %s

BINARY.\n\n\n\zr",

SwitchSettings, s);

strcat (TxString, SwitchString) ;

// Message must end with the '~' character

strcat (TxString,"~");

Download free eBooks at bookboon.com

114

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix B

printf ("Received from Master, message no: %u.\n\r%s\n\r",MsgNo++,RxString);

printf ("Now sending to Master this acknowledgement:\n\r (%s)\n\n\n\
r",TxString) ;

TI = 1; // send TxString message (via interrupt routine, UART P3)

else if (MasterCalled && Its4All)
{
MasterCalled = Its4All = 0;

printf ("Received from Master, Global Broadcast message no: %u.\n\r%s\n\
r",MsgNo++,RxString) ;

printf (" Switching off LED flashing routine.\n\r");

ET2=0;
TR2=0;
WritePort ('B',0);
printf (" This message is not acknowledged back to the Master\n\r");
printf (" since all the slaves would be doing it at the same time\n\r");
printf (" and the data would therefore be corrupted.\n\n\n\r");

}
/* Multi-Processor Slave Test program */

/* SlaveRtosDemo4d.c */
/* Compatible with PaulOS RTOS */

/* 7 TASKS */

s @book 1s probucen with iText®

Download free eBooks at bookboon.com &\S«\

115 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

/* Disable PERIODIC and enable HALFMSEC in TaskStkV5B.A51 */
/* Use in conjunction with MasterRtosDemo4d.c */

/* Please include the following with Source Group */

/* STARTUP.A51 x/
/* PaulOS.A51 */
/* SerP2Pkg.c */
/* F1t32Pkg.c */

// One task toggles the lower 4 bits every 25 msecs.
// Other tasks control the motor speed which is set by the master controller
// Serial port interrupt handles coms to master microcontroller

// Main program prints messages sent/received on the terminal screen

#include <reg52.h>
#include <absacc.h>
#include <stdio.h>

#include <string.h>

#include "..\Headers\PaulosV5B.h" /* PaulOS RTOS system calls definitions */
// EOM '~ // END OF MESSAGE
// EOS '\O' // END OF STRING

// External Functions in SerP2Pkg.c
void P2 SetUp (void);

void Auto P2 BaudRate (void);

void Set P2 BaudRate (unsigned int baud);
char putchar (char c);

char getkey (void);

// External Functions if using F1t32Pkg.c

void Init 8255 (unsigned char c);

void WritePort (unsigned char ¢, unsigned char d) large reentrant;
unsigned char ReadPort (unsigned char c) large reentrant;

//

// Functions in this module
void init TIMER2 (unsigned char msecs);

void init P3UART int (unsigned char mode, unsigned int baudrate);

// Variables

bit MasterCalled, Its4Me, Its4All, MotorOK;

unsigned int data inptr, outptr;

unsigned char data ItIsMe, setting, speed, Broadcast;
unsigned char RxString[250], TxString[250], TempString[50];
unsigned int data MsgNo; // start with first message
unsigned char bdata display;

sbit MOTOR = display”7;

void Byte2Binary (unsigned char x, char b[])
// Convert a byte to its binary value as an ASCII string of 1's and 0's stored in b[]
{
unsigned char i;
unsigned char Mask = 1 << 7;
for (i=0; 1 <= 7; i++)
{
b[i] = (x & Mask 2 '1' : '0'");

Download free eBooks at bookboon.com

116

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

x <<= 1;
}
b[8] = '\0';

void init P3UART int (unsigned char mode, unsigned int baudrate)
// Set up internal UART (P3) under interrupt control
{

SCON = mode; /* Setup serial port control register */
PCON &= O0x7F; /* Clear SMOD bit in power ctrl reg - No double baud rate yet */
TMOD &= O0xO0F; /* Setup timer/counter mode register */
/* Clear M1 and MO for timer 1 */
TMOD |= 0x20; /* Set M1l for 8-bit autoreload timer 1 */
RCLK = 0; /* USE TIMER 1 FOR RECEIVE BAUD RATE (8032 only) */
TCLK = 0; /* USE TIMER 1 FOR TRANSMIT BAUD RATE (8032 only) */
/* TH1 = 256 - (28800/BR) */
switch (baudrate) { // set up timer 1 initial count according to baud rate required
case 300:
TH1 = TL1 = OxAO0;
break;
case 600:
TH1 = TL1 = 0xDO;
break;
case 1200:
TH1 = TL1 = OxES8;
break;
case 2400:
TH1 = TL1 = OxF4;
break;
case 4800:
TH1 = TL1 = OxFA;
break;
case 9600:
TH1 = TL1 = OxFD;
break;
case 19200:
TH1 = TL1 = OxFD;
PCON |= 0x80; /* double baudrate (SMOD = 1) */
break;
case 57600:
TH1 = TL1 = OxFF;
PCON |= 0x80; /* double baudrate (SMOD = 1) */
break;
}
ET1 = 0; /* Disable timer 1 interrupts just in case */
TR1 = 1; /* Start timer 1 (baud rate) */
TI = 0; /* Clear TI to indicate not ready to xmit */
/* Serial Interrupt enabled by the RTOS */
}
// TASK 0

/* Sends TxString to Master and receives RxString from Master */

void P3uart_isr(void)

{

Download free eBooks at bookboon.com

117

http://bookboon.com/

unsigned char data c,x;

while (1)

{

WAITI (4); // wait for a serial interrupt

// interrupt may be caused either from a TI or an RI flag

// RECEIVER SECTION

1f (RI) // 1f a character is received
{
RI = 0; // reset flag
c = SBUF; // get character
if (RB8==1 && c==ItIsMe) // if received correct address,
{
SM2 = 0; // prepare to read data
RB8 = 0;
Its4All = 0;
Its4Me = 1;
inptr = 0;

}
else if (RB8==1 && c==Broadcast) // if received general broadcast address,
{
SM2 = 0; // prepare to read data
RB8 = 0;
Its4All = 1;
Its4Me = 0;
inptr = 0;

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

Download free eBooks at bookboon.com :\\\«\

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

PaulOS An 8051 Real-Time Operating System

Partli Appendix B
else if ((SM2==0) && (c != '~')) // store any received data

RxString[inptr++] = c;
else if ((SM2==0) && (c == '~')) // end of received message with ~ character

{

RxString[inptr] = '\0'; // add to end of received message a NULL character

SM2 = 1; // reset for address reception mode
MasterCalled = 1; // Set flag to indicate message received
if (Its4Me==1 && MasterCalled==1)

SIGNAL(2); // Activate Task 2 - Private Message Reception
else if (Its4All==1 && MasterCalled==1)

SIGNAL(3); // Activate Task 3 - Global Message Reception

}

// TRANSMITTER SECTION
if(TI && (TxString[outptr] != "\0"))
{
TLI = 0;
SBUF = TxString[outptr++];
for (x=0;x<10;x++){}
}

// just sends a message from TxString

// clr TI in order to transmit
// TI will be set to 1, once transmission is ready

// just a delay for receiving equipment

else if(TI && (TxString[outptr] == '\0')) // No more data to send
TI = outptr = 0;

// TASK 1

void Blinker (void) // Blinks Leds
{
while (1)
{
display "= 0xO0F;
WritePort ('B',display); /* output to leds toggle lower 4 bits (XOR)*/
WAITT (500) ;
}

/***/

// TASK 2
// Private Message Data Reception and Acknowledgement
/***/

void PrivateDataRx (void)
{
while (1)

{
WAITS (0) ; // Wait for signal indefinitely

MasterCalled = 0;
printf ("Rx Msg: %u <== %$s\n\r",MsgNo++,RxString) ;

if (strncmp ("Speed", RxString, 5)==0)
{

sscanf (RxString, "%$*s %bu", &setting); // read received message: 'Speed n'
// ignoring 'Speed' and making setting = n
sprintf (TxString, "OK. Speed set to %bu", setting);
MotorOK = 1;
}

Download free eBooks at bookboon.com

119

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll

else if

else if

0123456789") ;

else if
else if
else

Appendix B

(strncmp ("What Speed?", RxString, 11)==0)

sprintf (TxString, "Current Speed setting %bu", setting);

(strncmp ("LineChk", RxString, 7)==0)

sprintf (TxString, "THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

(strncmp ("Stop", RxString, 4)==0)

{
sprintf (TxString, "OK. Motor stopped");

MotorOK = 0;
}

(strncmp ("Switches", RxString, 8)==0)

{

sprintf (TxString, "Switches reading: ");
Byte2Binary (ReadPort ('A'), TempString) ;
strcat (TxString, TempString) ;

}

sprintf (TxString, "Command NOT listed. No action taken.");

strcat (TxString, "~");

DEFER() ;
printf ("Tx Msg: ==> %s \n\n\r",TxString);
TI = 1; // if master called, THEN send TxString message

// (via task 0, which is waiting for a serial interrupt routine,

// activated with TI=1)

/***/

// TASK 3

// Global Message Reception
/***/

void GlobalRx (void)

{

while

(1)
{

WAITS (0) ;
MasterCalled = O;
printf ("Rx Global Broadcast Msg: %u.\n\r (%s)\n\r",MsgNo++,RxString);

if

printf ("
printf ("
printf ("

(strncmp

setting =

else if

{

// Wait for signal indefinitely

This message is not acknowledged back to the Master\n\r");
since all the slaves would be replying it at the same time\n\r");

and the data would therefore be corrupted\n\n\n\r");

("Start", RxString, 5)==0)

{

3;

MotorOK = 1;
printf ("Starting motor at a speed setting of 3\n\n\n\r");

}

(strncmp ("Resume", RxString, 6)==0)

printf ("Restarting motor at a speed setting of %bul\n\n\n\r",setting);

Download free eBooks at bookboon.com

120

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli Appendix B
MotorOK = 1;
}
else if (strncmp ("Emergency", RxString, 9)==0)
{
printf ("EMERGENCY - Stopping motor\n\n\n\r");
MotorOK = 0;
}
else if (strncmp ("Stop", RxString, 4)==0)
{
printf ("STOP - Stopping motor\n\n\n\r");
MotorOK = 0;
}
}
}
/**/
/* Task 4 'Main PWM': */
/**‘k***‘k**‘k‘k**‘k‘k********‘k***‘k**‘k‘k**‘k‘k****‘k***‘k**‘k‘k**‘k‘k*************************/
void MainPWM (void) { /* PWM task */
while (1) {
// setting ranges from 1 to 10, value received from master controller
// PWM period is going to be 101, hence maximum ON time is being limited to 100
speed = 10*setting;
SIGNAL (5) ; /* send signal to task 5 - Motor ON */
WAITT (101) ; /* wait for timeout (main pwm period) */
}
}
/*~k***********************/
/* Task 5 '"MOTOR ON': */
/**‘k***‘k**‘k‘k**‘k‘k********‘k***‘k**‘k‘k**‘k‘k****‘k***‘k**‘k‘k**‘k‘k*************************/
void MotorON (void) { /* switch on motor task */
while (1) {
WAITS (0) ; /* wait for signal indefinitely */
if (MotorOK)
{
MOTOR = 1;
WritePort ('B',display); /* switch on motor */
WAITT (speed) ; /* wait for specified timeout */
}
SIGNAL (6) ; /* send signal to task 6 - Motor OFF */

}

/**/

/* Task 6 'MOTOR OFF': */
/**/
void MotorOFF (void) { /* switch off MOTOR task */
while (1) {
WAITS (0) ; /* wait for signal indefinitely */
MOTOR = O;

WritePort ('B',display); /* switch off motor */
}

/***/

void main (void)

{
Download free eBooks at bookboon.com

121

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix B

unsigned int brate,i;

Init 8255(0x91); // Initilaise 8255 PIO

Set P2 BaudRate (38400); // initialise external UART (P2) for keyboard/screen
display = 0; // clear leds

setting = 5;

Broadcast = 255; // Address used to send message to ALL slaves

MsgNo = 1;

MasterCalled = 0;
for (1i=0;1i<250;1i++)
{
TxString[i] = 0;
RxString[i] = 0;
}
for (1i=0;1<50;1i++)
TempString[i] = 0;

printf ("\n\n\rWelcome to the Master-SLAVE PaulOS RTOS Demo Program 4\n\r");

printf ("Input the LINK baud rate required: ");

scanf ("%u", &brate);

printf ("\n\r 8051 Microcontroller link running at %$u baud\n\n\n\r",brate);
printf (" Written by Paul P. Debono - November 2003.\n\n\n\r");

init P3UART_ int (0xF0,brate);
// initialise UART (P3 socket) for multi-processor comms
/* Setup serial port control register SCON = 0xF0 */
/* Mode 3: 9-bit uart var. at specified baud rate */
/* SM2, REN set to 1, TB8 = RB8 = 0 */
INIT RTOS(0x10); /* initialise RTOS,variables, stack with T2 + Serial int. */
/* this must be the first RTOS command to be executed */

CREATE (0, P3uart_isr); /* Tx - Rx UART task */

CREATE (1,Blinker) ; /* Flash LEDs task */

CREATE (2, PrivateDataRx) ; /* Decode received private message task */
CREATE (3, GlobalRx) ; /* Decode received global message task */
CREATE (4,MainPWM) ; /* MAIN PWM TASK */

CREATE (5,MotorON) ; /* MOTOR ON task */

CREATE (6,MotorOFF) ; /* MOTOR OFF task */

printf ("\n\r Please enter a Unique number for this slave (0-254) : ");
scanf ("$bu", &ItIsMe) ;
printf ("\n\r Leds flashing independently under Task 1\n\n\r");
printf ("\n\rEntering main loop, which will be interrupted\n\zr");
printf (" (apart from the RTOS tick time interrupt),\n\n\r");
printf ("EITHER\n\r") ;

printf (" (i) by a message dedicated only to this slave number: %bu\ (Tasks 0 and 2)\n\n\
r",ItIsMe);
printf ("OR\n\r") ;
printf (" (ii) by a Global Broadcast Message (Tasks 0 and 3)\n\n\n\zr");
inptr = outptr = 0; // variables used to scan TxString and RxString
; RTOSGOMSEC (1,1) ; // Start RTOS ticking at 1 msec, with priorities enabled
RTOSGOMSEC (1,0);// Start RTOS ticking at 1 msec, with priorities disabled
while (1)
{
SET_IDLE MODE () ; /* loop forever here, going to idle every time */

/* Awake only for any interrupt */

Download free eBooks at bookboon.com

122

http://bookboon.com/

Appendix C SanctOS.C

This is the source listing for the SanctOS (Small ANd CompacT Operating System) round-robin operating
system written in C. It is practically the C-version of ParrOS.A51 found in Appendix A.

It consists of

o The header file Parameters.h

o The assembly language include file SanctOS_A01.a51
o The header file SanctOS_V01.h

o The main RTOS program SanctOS.c

Parameters.h

/*

AR RS S S S S S EEEE S S S S SR EEREEE RS
* PARAMETERS.H -—= RTOS KERNEL HEADER FILE

*

* For use with SanctOs v01.C -

* Round-robin RTOS written in C by Ing. Paul P. Debono

* for use with the 8051 family of microcontrollers

* File : Parameters VOl1.H

* Revision : 8

* Date : February 2006

* By : Paul P. Debono

*

* B. Eng. (Hons.) Elec. Course
* University Of Malta

*

AR RS RS S E S S S SRS E SRR R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS

*/

/*

KKK KA AR AR AR AR AR AR KK

* RTOS USER DEFINITIONS

AR RS RS E S EEEEEEE S EEE RS

*/

#define STACKSIZE 0x10 // Max stack size for task - no need to change

#define CPU 8032 // set to 8051 or 8032

#define TICK TIMER 2 // Set to 0, 1 or 2 to select which timer to
// use as the RTOS tick timer

#define TICKTIME 50 // Length of RTOS basic tick in msec

#define NOOFTASKS 6 // Number of tasks used in the application
// program

/*

Ak hkhhkhkhhhhdhhhhhhhhhhhhhhhhAh bk hhhkhhdhhhk bk hkhkhkh bk h bk hkhk bk hkhkhhkhkhkhkhhdhhkhhkhkhkhkhkrdhkhkhkhhhxkhx*k
RS R R R S S B R SRS SR SRS SRR SRS EEEEEEEEEEEEE SRS EEEEEEDEEEEEESEEEEEEDEDE DT DT RIS S
KAk Ak hkhk Ak kA A Ak hk kA Ak Ak Ak hk kA Ak Ak hkhhk Ak A Ak Ak hk Ak Ak kA hhkhkhk Ak A hhkhkhhkhkhkhhkhk kA Ak rhkhkhkhkhxkhx %k
*/

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll Appendix C

SanctOS_A01.A51

; SanctOS_A01.A51
; SanctOS RTOS PLUS MAIN PROGRAM

; STORES ALL TASK REGISTERS

; Written by Paul P. Debono - JUNE 2006

; University of Malta

; Department of Communications and Computer Engineering
; MSIDA MSD 06; MALTA.

; Accomodates up to 255 tasks

; STACK MOVING VERSION - MOVES WORKING STACK IN AND OUT OF
; EXTERNAL MEMORY

; SLOWS DOWN RTOS, BUT DOES NOT RESTRICT TASK CALLS

; IDLE TASK (ENDLESS MAIN PROGRAM - TASK NUMBER = NOOFTASKS)

; THIS IS STILL A SMALL TEST VERSION RTOS. IT IS JUST USED FOR
; SHOWING WHAT IS NEEDED TO MAKE A SIMPLE RTOS.

; IT MIGHT STILL NEED SOME MORE FINE TUNING.

; IT HAS NOT BEEN NOT THOROUGHLY TESTED !!!!

; WORKS FINE SO FAR.

; NO RESPONSABILITY IS TAKEN.

SNOMOD51
#include "reg52.h"

#include "Parameters.h"

Internship opportunities

EADS unites a leading aircraft manufacturer, the world’s largest learning and development opportunities, and all the support you need,

helicopter supplier, a global leader in space programmes and a you will tackle interesting challenges on state-of-the-art products.
worldwide leader in global security solutions and systems to form
Europe’s largest defence and aerospace group. More than We welcome more than 5,000 interns every year across

140,000 people work at Airbus, Astrium, Cassidian and Eurocopter, disciplines ranging from engineering, IT, procurement and
in 90 locations globally, to deliver some of the industry’s most finance, to strategy, customer support, marketing and sales.
Exetinglpiojeatss Positions are available in France, Germany, Spain and the UK.

An EADS internship offers the chance to use your theoretical
knowledge and apply it first-hand to real situations and assignments To find out more and apply, visit www.jobs.eads.com. You can also
during your studies. Given a high level of responsibility, plenty of find out more on our EADS Careers Facebook page.

@ AIRBUS L) ASTRIUM (& CASSIDIAN QEur_{nc—@Tm‘

Download free eBooks at bookboon.com

124 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/85f92380-2160-4386-98b4-a2540089b583

PaulOS An 8051 Real-Time Operating System
Partli Appendix C

/* The MAINSTACK variable points to the start pointer in hardware stack */
/* and is defined in STARTUP.AS51 */
extrn idata (MAINSTACK)

PUBLIC _SaveBank0, RecallBank0
PUBLIC POPSI

; RTOS ASSEMBLY CODE MACROS

SANCTOS_ASM SEGMENT CODE
RSEG SANCTOS_ ASM

POP5I:
DEC SP ; BLANK TO POP UNUSED RETURN ADDRESS
DEC SP
POP PSW
POP DPL
POP DPH
POP B
POP ACC
SETB EA ; re-enable interrupts
RETI ; JUMPS TO PREVIOUSLY PRE-EMPTIED TASK HERE

_SaveBankO: ; Address high byte in R6, low byte in R7 bank 1
MOV DPH, OEH
MOV DPL, OFH
MOV A, 0
MOVX @DPTR, A
INC DPTR
MOV A,1
MOVX @DPTR,A
INC DPTR
MOV A,2 MOVX @DPTR,A
INC DPTR MOV A, 3
MOVX Q@DPTR,A
INC DPTR
MOV 2,4
MOVX @DPTR,A
INC DPTR
MOV A,5
MOVX @DPTR,A
INC DPTR
MOV A, 6
MOVX Q@DPTR,A
INC DPTR
MOV 2,7
MOVX @DPTR, A
RET

_RecallBankO: ; Address high byte in R6, low byte in R7 bank 1
MOV DPH, OEH
MOV DPL, OFH
MOVX A, @DPTR
MOV 0,A
INC DPTR
MOVX A, @DPTR

Download free eBooks at bookboon.com

125

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

MOV 1,A
INC DPTR
MOVX A, @DPTR

MOV 2,A

INC DPTR
MOVX A, @DPTR
MOV 3,A

INC DPTR
MOVX A, @DPTR
MOV 4,A

INC DPTR
MOVX A, @DPTR
MOV 5,A

INC DPTR
MOVX A, @DPTR
MOV 6,A

INC DPTR
MOVX A, @DPTR
MOV 7,A

RET

END

SanctOS_VO01.H
/ *

R R R R I I S S I I S I I S E E I E E SE E E h SE E S E h b b b b h E h E E E h h E E A E h E h 3 I b h I I

* RTOS KERNEL HEADER FILE

*

* For use with SanctOs v01.C

* Co-Operative RTOS written in C

* by Ing. Paul P. Debono

* Use with the 8051 family of microcontrollers
*

* File : SanctOS VO01.H

* Revision 1

* Date : February 2006

* By : Paul P. Debono

*

* B. Eng. (Hons.) Elec. Course
* University Of Malta

*

Ak hkhkhkhhhkhhkdhhhhhkhhhhkdhhhkhhkhkhkdhhkhhhkhkhkhkrdhhkhkhkhkhkhkhkrhkhhkhkhkhkrhhkhkhhhxk
*/

#include "Parameters.H"

/*

KKK KA KA AR AR AR AR AKX K

* DATA TYPE DEFINITIONS

RER R R R R R S I R I R R R R S I S E E E I S I E R E I h bk E Ik b E 3 3 3

*/

typedef unsigned char uchar;
typedef unsigned int uint;

typedef unsigned long ulong;

Download free eBooks at bookboon.com

126

Appendix C

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

/*
KA KK KA A KA AR A AR AR AR A KKK

* STRUCTURE AND UNION DEFINITIONS

R R R R R R S b S S I R R R I I E I S E E E h I b E R E h E b b E b b E 3 3 b 3

*/

struct task param { /* 6 bytes + 8 registers + stack */
uchar statusl; /* status flags, see details below */
uint slot time; /* slot time allocated for this task */
uint slot reload; /* slot time reload value */
uchar stackptr; /* stack pointer SP storage location */

/* registers storage area, */
/* ready for context switching */

uchar reg0;

uchar regl;

uchar reg2;

uchar reg3;

uchar regé;

uchar regb;

uchar reg6;

uchar reg7;

char stack[STACKSIZE]; /* stack storage area */

bi

/*
RO dh kb b S h b b b b E h b b b b E b b b h b b b b b b kb b b b b b b b b b b h b b b b b b b b b b b b b b h h b b b b b b b b b b b b

* DATA TYPE DEFINITIONS

KKK AR A AR AR KKK

*/

/*

AR R S S S S S S S S S E S EE S EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEREEE RS
*/

/* The MAINSTACK pointer variable points to the stack pointer in hardware
/* stack and should be defined in STARTUP.A51 */

extern idata unsigned char MAINSTACK[STACKSIZE];

extern data unsigned char Running;

/* Functions written in assembly language, found in SanctOS_AQ01.A51 */
extern void SaveBankO (uchar xdata * Pointer);

extern void RecallBankO (uchar xdata * Pointer);

extern void POP5I (void);

/*
KA KK KA KA A KA AR A A AR A AR KKK

* FUNCTION PROTOTYPES

R R R R R R S S R I I S E S E S R S h R R S E E I S R E I b E I IE E I R I b b b E R S b I E S E b b b h 3k b
*

*

* The following RTOS system calls do not receive any parameters

void OS _RTOS GO (void); // Starts the RTOS running with

Download free eBooks at bookboon.com

127

Appendix C

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

/* The following commands are simply defined as MACROS below
0S_CPU_IDLE () Set the microprocessor into a sleep mode

(awake every interrupt)

OS_CPU_DOWN () Switch off microprocessor, activate only by
hardware reset
OS PAUSE RTOS () Disable RTOS
0S RESUME_ RTOS () Re-enable RTOS
*/
/*

* The following RTOS system calls do receive parameters

void OS INIT RTOS (uchar iemask); // Initialises all RTOS variables

void OS CREATE TASK (uchar tasknum, uint taskadd, uint slot);
// Creates a task

/*

R R R SRR EE SRR R R RS RS

*/

/*
Rk kb bk kb kb b b b b b b b b b b b b bk R b b b b R R b bk b b b

* RTOS TIMING DEFINITIONS

AR RS S S S S EEE S S S S S SRS EEE RS

*/

#define MSEC10 9216UL // In theory 921.6 counts represent
// 1 ms assuming an 11.0592 MHz crystal.

#define TICKS_PER_SEC (1000 / TICKTIME)

// Ensure that TICKTIME's value is

// chosen such that this

// quotient and hence all the

// following quotients result

// in an integer. In theory, maximum

// value of TICKTIME

// is given by the value corresponding

// to CLOCK = 65535

#define TICKS PER MIN (60000 / TICKTIME)

#define CLOCK ((TICKTIME * MSEC10)/10UL)

#define BASIC TICK (65535 - CLOCK + 1)

// i.e. approx. 70-72 - However

// respecting the condition

// above, max. acceptable

// TICKTIME = 50 msecs. Hence all

// suitable values are:

// 1, 2, 4, 5, 8, 10, 20, 25, 40, 50

#define IDLE_TASK NOOFTASKS
// Main endless loop in application given a task
// number equal to NOOFTASKS

Download free eBooks at bookboon.com

128

A51 Examples

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli A51 Examples

/* OTHER #defines */

#define MINUS_ONE OxFF
#define ZERO 0
#define TEN 0x0A /* slot time in ticks */

#define HiByte (intval) (##intval)/256;
#define LoByte (intval) (##intval)$256;

/*

Rk bk kb b bk b b b b b b b b b b b b b b b Rk Rk b Rk b b b b R bk R R R b b b b b

*/

/*
AR RS S S S S S S S S S S S SRR EEEEEEEEEEEEEEEEEEEEEEEEEREEE RS

* RTOS MACROS

R R R S E S S I S I b E h b S E E E b b E E b E h b E b h b b h E E b b b b b E b b b E h b b h E b b b E h S b b h b b b b b b b b

*/

#define OS_CPU_IDLE () PCON |= 0x01 // Sets the microprocessor in
// idle mode
#define OS CPU_DOWN () PCON |= 0x02 // Sets the microprocessor in

// power-down mode

#if (TICK _TIMER == 0)
#define OS PAUSE RTOS() EA = ETO = TRO = 0
#define OS_RESUME_RTOS() TRO = ETO = EA = 1

#elif (TICK TIMER == 1)
#define OS_PAUSE_RTOS() EA = ET1 = TR1 = 0
#define OS_RESUME_RTOS() TRl = ET1 = EA = 1

#elif (TICK TIMER == 2)
#define OS_PAUSE_RTOS () EA = ET2 = TR2 = 0
#define OS_RESUME_RTOS() TR2 = ET2 = EA = 1

#endif

/*

R R R R SRR EE SRS
*/
/*
R IR S I S R S I S I I S R E I I b h E E E E E E b E E b E I b b h E I S b E E h b E Ik SE E b E I E h b b E E 3 b h E b b b b b b 3k b

* COMPILE-TIME ERROR TRAPPING

Rk kb kb kb kb bk b b b b b b b b b b R bk R b b b R b b R b b b b b b R

*/

#if (CPU != 8032) && (CPU != 8051)
#error Invalid CPU Setting
#endif

#if (NOOFTASKS > 255)
#error Number of tasks is too big. MAX 255 (from 0 to 254) tasks
#endif

#if ((TICKTIME * 110592 / 120) > 65535)

#error Tick time value exceeds valid range for timer counter setting

Download free eBooks at bookboon.com

129

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll
#endif
#if ((TICKTIME * 110592 / 120) < 65535) && ((1000 % TICKTIME) != 0)

#error Undesirable TICKTIME setting (1, 2, 4, 8, 10, 20, 25, 40, 50 ms)
#endif

#if (CLOCK > 65535)
#error Timer counter setting exceeded valid range. Check TICKTIME and MSEC
#endif

/*

AR RS S S E S E S S S S S S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEE RS

*/

/%
* Other functions used internally by the RTOS

void PE TaskChange (void); // Task swapping function
void RTOS Timer Int (void); // RTOS Scheduler ISR

/*
khhkkhkhhkhkhkhkhkhhkkhhhkhkhkhkhkhhhkhhkhk bk h bk kb hkhkhkhk bk hkhkhkhk bk hkrhhkhkhhkhxkx*k
Ak hkhhhkhhkhkhkhhhhhhhhkhhhhkhhkhhh bk hk bk hkhkhkh bk hkhkhkhkhkhhkhkhkhkhkhkhkhkhhkhkhkhkhkhkdhkhkhhkhkhkhkhkrhhkkhkhhhhxkx*k
IR RS S S S S S S S S S S S S S SSSESESEEEE SRS SR SR SR SRR R R SRS EEEEEEEEEEEEEEEEEEEESEEEESES
khhkhhkkhkhhkhkhkhhhkhhhhhhhhhkhhh b h b bk Ak bk bbb bk bbbk bbb hk bk h bk kb kb kA kA bk bk bk Ak bk Ak bk Ak Ak hkkhhk

AR RS S S EEEE S SRS EEE RS

*/

STARTUP.A51

SNOMOD51

; This file is part of the C51 Compiler package
; Copyright (c) 1988-2002 Keil Elektronik GmbH and Keil Software, Inc.

; STARTUP.A51: This code is executed after processor reset.
; To translate this file use A51 with the following invocation:

; A51 STARTUP.AS51

; To link the modified STARTUP.OBJ file to your application use the

; following BL51 invocation:

; BL51 <your object file 1list>, STARTUP.OBJ <controls>

; User-defined Power-On Initialization of Memory

; With the following EQU statements the initialization of memory

; at processor reset can be defined:

; ; the absolute start-address of IDATA memory is always O

Download free eBooks at bookboon.com

130

A51 Examples

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli A51 Examples
; IDATALEN EQU 80H ; the length of IDATA memory in bytes.
IDATALEN EQU 100H ; the length of IDATA memory in bytes for

the 8032 (256 bytes).

’

XDATASTART EQU 0H ; the absolute start-address of XDATA memory
XDATALEN EQU OH ; the length of XDATA memory in bytes.
PDATASTART EQU OH ; the absolute start-address of PDATA memory
PDATALEN EQU 0H ; the length of PDATA memory in bytes.

; Notes: The IDATA space overlaps physically the DATA and BIT areas of
; the 8051 CPU. At minimum the memory space occupied from the C51

; run-time routines must be set to zero.

; Reentrant Stack Initilization

; The following EQU statements define the stack pointer for reentrant
; functions and initialise it:
7

; Stack Space for reentrant functions in the SMALL model.

IBPSTACK EQU 1 ; set to 1 if small reentrant is used.
IBPSTACKTOP EQU OFFH+1 ; set top of stack to highest location+l.
; IBPSTACKTOP EQU 07FH+1 ; set top of stack to highest location+l.

; Stack Space for reentrant functions in the LARGE model.

XBPSTACK EQU 0 ; set to 1 if large reentrant is used.
XBPSTACKTOP EQU OFFFFH+1 ; set top of stack to highest location+l.
; Stack Space for reentrant functions in the COMPACT model.

PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.
PBPSTACKTOP EQU OFFFFH+1 ; set top of stack to highest location+l.

; Page Definition for Using the Compact Model with 64 KByte xdata RAM

; The following EQU statements define the xdata page used for pdata
; variables. The EQU PPAGE must conform with the PPAGE control used
; in the linker invocation.

’

PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.

PPAGE EQU 0 ; define PPAGE number.

PPAGE_SFR DATA 0AQH ; SFR that supplies uppermost address byte
; (most 8051 variants use P2 as uppermost address byte)

Download free eBooks at bookboon.com

131

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il A51 Examples

; Standard SFR Symbols

ACC DATA OEOH
B DATA 0FOH
SP DATA 81H
DPL DATA 82H
DPH DATA 83H
NAME ?C_STARTUP

?C_C51STARTUP SEGMENT CODE
?STACK SEGMENT IDATA

#include <parameters.h>
RSEG ?STACK
MAINSTACK: DS STACKSIZE

EXTRN CODE (?C_START)
PUBLIC ?C_STARTUP
PUBLIC MAINSTACK

; MON51 or FLT32 should be defined in the A51 Tab in KEIL
SIF (MON51)

CSEG AT 8000H ; FOR DEV BOARD MON-51 MONITOR PROG
SELSEIF (FLT32)

CSEG AT 8100H ; FOR FLT-32 DEV BOARD MONITOR PROG

SELSE
CSEG AT 0 ; FOR EEPROM
SENDIF
?C_STARTUP: LJIMP STARTUP1
RSEG ?C_C51STARTUP
STARTUP1:
IF IDATALEN <> 0
MOV RO, #IDATALEN - 1
CLR A
IDATALOOP: MOV @RO, A
DJNZ RO, IDATALOOP
ENDIF

IF XDATALEN <> 0

MOV DPTR, #XDATASTART
MOV R7, #LOW (XDATALEN)
IF (LOW (XDATALEN)) <> O
MOV R6, # (HIGH (XDATALEN)) +1
ELSE
MOV R6, #HIGH (XDATALEN)
ENDIF
CLR A
XDATALOOP: MOVX @DPTR, A
INC DPTR
DJINZ R7, XDATALOOP
DJINZ R6, XDATALOOP
ENDIF

Download free eBooks at bookboon.com

132

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il A51 Examples

IF PPAGEENABLE <> 0
MOV PPAGE_SFR, #PPAGE
ENDIF

IF PDATALEN <> 0

MOV RO, #LOW (PDATASTART)
MOV R7, #LOW (PDATALEN)
CLR A

PDATALOOP: MOVX @RO,A
INC RO

DJINZ R7, PDATALOOP
ENDIF

IF IBPSTACK <> 0
EXTRN DATA (?C_IBP)

MOV ?C_IBP, #LOW IBPSTACKTOP
ENDIF

IF XBPSTACK <> 0
EXTRN DATA (?C_XBP)
MOV ?C_XBP, #HIGH XBPSTACKTOP
MOV ?C_XBP+1, #LOW XBPSTACKTOP
ENDIF

IF PBPSTACK <> 0
EXTRN DATA (?C_PBP)

MOV ?C_PBP, #LOW PBPSTACKTOP
ENDIF

MOV SP, #?STACK-1
; This code is required if you use L51 BANK.A51 with Banking Mode 4
; EXTRN CODE (?B_SWITCHO)

; CALL ?B_SWITCHO ; init bank mechanism to code bank 0
LJMP ?C_START
END

Download free eBooks at bookboon.com

133

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll A51 Examples

SanctOS_V01.C
/ *

AR RS S EEEEEEEE S S SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEE RS

* SanctOS_V01.C RTOS KERNEL SOURCE CODE

*

* Round Robin RTOS written in C by Ing. Paul P. Debono

* For use with the 8051 family of microcontrollers
* Notes:

* Use NOOVERLAY in the linker BL51 Misc (Misc controls) options tab
* Use NOAREGS in the compiler C51 (Misc controls) options tab

* Timer to use for the RTOS ticks is user selectable, Timer 0, 1 or 2
* Naturally, Timer 2 can only be used with an 8032 CPU type.
* Timer 1 can only be used if it is not required for

* Baudrate generation

* Assign the correct values to

* 'STACKSIZE', 'TICK TIMER', 'TICKTIME', 'CPU' and 'NOOFTASKS'

* in parameters.h

* Most of the time you need only to change 'NOOFTASKS' to reflect

* application

360°
thinking.

Deloitte.

Discover the truth at WWW.dClOittC.Ca/CaI‘CCI‘S © Deloitte & Touche LLP and affiliated entities.

Download free eBooks at bookboon.com X\(‘ :\

134 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

PaulOS An 8051 Real-Time Operating System
Partli A51 Examples

* If it is noticed that timing parameters are not being met,the system's
* TICKTIME can be modified by changing the value 'TICKTIME' in
* Parameters.H

* Please adhere to the conditions mentioned in Parameters.H

* File : SanctOS Vv01.C

* Revision : 8

* Date : February 2006

* By : Paul P. Debono

*

* B. Eng. (Hons.) Elec. Course
* University Of Malta

*

R R R I R R S E S E E E R S h R R R S b E I I S b E E I I E E A E E A E I I b b E R S 3 S E h b S b h b 3k S

*/

/*
R h Ak kb S b b b b b kb h h b b b b S b b b h b b b bk kb b bk b h b b b b b b b b b b bk b

* INCLUDES

KKK KA AR A AR A AR KK

*/

#include <reg52.h> /* 8052 Special Function Registers 8052 */
#include <SanctOS VOl.H> /* RTOS system calls definitions */

/* (IN PROJECT DIRECTORY) */
/*
Fhkhkhkhkhkhkhkhkhkhkhkhdkhkhhkhkdh bk hhkhdh bk hhkhhk bk hhk bk hkhkhhk bk hk bk hhkhkhkhkhhkhkhkhkhhkhkhkhkhhkhkdkhkhkhkhkhkhkhhkhhkkhkhkxx

* FUNCTION DEFINITIONS

KAk kA hk kA kA A Ak hkhhk kA Ak khhhk kA Ak Ak hkhhk kA Ak ko hhk Ak khk kA hkhkhhkhkhhkhhkhhkhkhkhkhkhkhhkhkhkhkrhkrhkhkhxkhx %k
*/

void PE TaskChange (void); /* used internally by the RTOS */

/*

KAk Ak Ak kA A Ak Ak Ak kA A Ak Ak hk kA Ak Ak kA kA Ak A Ak Ak kA A Ak Ak hk Ak hk Ak A Ak hkhhk Ak A hhkhkhkhk Ak A Ak hkhhkhhkhxkx %k

* STATUS FLAG DEFINITIONS

/* if more flags are needed, use spare bits from statusl variable

R bk b bk b b b b b b b b b b bk b bk b S e

*/

/* statusl - free bits for future expansion */
#define FLAGO_F 0x01 /* bit 0 - */
#define FLAGL_F 0x02 /* bit 1 - */
#define FLAG2 F 0x04 /* bit 2 - */
#define FLAG3 F 0x08 /* bit 3 - */
#define FLAG4 F 0x10 /* bit 4 - */
#define FLAGS_F 0x20 /* bit 5 - */
#define FLAG6_F 0x40 /* bit 6 - */
#define FLAGT_F 0x80 /* bit T - */

struct task param xdata task[NOOFTASKS];

/*

AR RS S S S S E S S S SRR R R R R R EEEEEEEEEEEEEEEEREEE R R R R R EEE RS

* GLOBAL VARIABLES

Ak hkkhkhkhkhhkhkhkhhkdhhhkhhhkhhhhkhhkhhh bk kb hkhkhhk bk hk bk hkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkrhhkhkhkhkhkrhhrkhkhhkhxkx*k
*/
Download free eBooks at bookboon.com

135

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli A51 Examples

uchar data Running; // Current task number

uchar data tsknum;

/*

Ak hkkhkhkhkhkhkhkhkhhkhhhkhkhhkhkhhhkhhkhkhh kb hk bk bk hk bk hkhkhkhkhkhk bk hkhkhkhkhkhkhkhkhkhkhkhkhkhkhkrhhkhkhkhkhkhhhkhkhhkhxkx*k

*/

/*
hokkkhkkkhhkhkhhhhkhkkhkhkkhkkkhkkhkhkkhkkkkhkkkhkkhhkkhkkkkhkkkkkkkkkk ok kkk ok k kK k k& kK
* RTOS FUNCTION DEFINITIONS

R I R

*/

/*
Rk kb b bk b kb b b b b b b b b b b b b b b R bk kb b b b b b b b R R R b b b b b b

*

* Function name : OS INIT RTOS

* Function type : Initialisation System call

*

* Description : This system call initialises the RTOS variables,

* task SPs and enables any required interrupts

*

* Arguments : iemask Represents the interrupt enable mask which is

* used to set up the IE special function register.
* Its value determines which interrupts will be enabled
* during the execution of the user's application.

*

* Returns : None

*

AR RS S S S S EEEE S S S S S S SRS EEEEEEEEEEEEEEEEEEEEEEEEREEE RS

*/

void OS_INIT_RTOS (uchar iemask)
{

uchar data i,7;

#if (TICK_TIMER == 2)
IE = (iemask & O0x7f) | 0x20;
/* Set up 8051 IE register, using timer 2 */
IP = 0x20; /* Assign scheduler interrupt high priority */
#elif (TICK TIMER == 1)
IE = (iemask & Ox7f) | 0x08;
/* Set up 8051 IE register, using timer 1 */
IP = 0x08; /* Assign scheduler interrupt high priority */
#elif (TICK TIMER == 0)
IE = (iemask & 0x7f) | 0x02;
/* Set up 8051 IE register, using timer 0 */

IP = 0x02; /* Assign scheduler interrupt high priority */
#endif
Running = IDLE TASK; /* Set idle task, the running task, initially */

tsknum = MINUS_ ONE;

Download free eBooks at bookboon.com

136

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

/*

for (i=0; i < NOOFTASKS; i++)

{

task([i] .statusl = ZERO; /* status flags (not used) */
task[i].slot time = TEN; /* slot time counter value */
task[i].slot reload = TEN; /* slot time reload value */

task[i].stackptr = MAINSTACK + 6; /* SP storage */

/* clear bank 0 registers storage area */

task[i] .reg0 = ZERO;
task[i].regl = ZERO;
task[i].reg2 = ZERO;
task[i].reg3 = ZERO;
task([i].regd4 = ZERO;
task[i].reg5 = ZERO;
task[i].reg6 = ZERO;
task[i].reg7 = ZERO;
*

and clear the stack area */
for (j=0;J<STACKSIZE;j++) task[i].stack[]j]=ZERO;

Rk kb bk kb kb b b b b b b b b b b b b b bk b b b b R b b S

*/

/*

KKK AR AR A AR KK

*

*

*

*

Function name : OS CREATE TASK

Function type : Initialisation System call

Description : This system call is used in the main program for each

task to be created for use in the application.

Arguments : task _num Represents the task number

Returns

(1st task is numbered as 0).

task _add Represents the task's start address, which in

A51 Examples

the C environment, would simply be the name * * of the procedure

slot_time Represents the number of ticks that this task

will run before handing over to the next task

None

R bk b Sk kb b b b b b b b b b b b b b bk b e

*/

void OS_CREATE TASK (uchar task num, uint task _add, uint slot)

{

task[task num].statusl = ZERO; /* task flags not used */
task[task num].slot time = slot; /* slot time value */
task[task num].slot reload = slot;
task[task num].stack[0] = LoByte (task_add) ; /* Little Endian */
task[task num].stack[1l] = HiByte (task add); /* Low byte first */

Download free eBooks at bookboon.com

137

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll

/*

RO Rk kb kb ik bk ke b b b b b b e b bk bk ek b b e b b b b b b b b b b bk kR bk b e bk ki

*/

/*

AR RS RS S S E S S S SRS EEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEE RS

*

* Function name

*

* Function type

* Description

0S_RTOS GO

Initialisation System call

This system calls is used to start the RTOS going such

* that it supervises the application processes.
*

* Arguments : None

*

* Returns : None

*

‘k************************/

void OS_RTOS_GO (void)
{

#if (TICK_TIMER == 2)
RCAP2H = HiByte (BASIC TICK); /* Configures Timer 2 in 16-bit */
RCAP2L = LoByte (BASIC TICK); /* auto-reload mode for the 8032 */
T2CON = 0x84; /* TR2 = TF2 = 1, causes immediate interrupt */
#elif (TICK TIMER == 0)
THO = HiByte (BASIC TICK) ; /* Configure Timer 0 in 16-bit */
TLO = LoByte (BASIC TICK); /* timer mode for the 8051 */

TMOD &= O0xFO; /* Clear TO mode control, leaving T1 untouched */
TMOD |= 0x01; /* Set TO mode control */
TRO = 1; /* Start timer 0 */
TFO = 1; /* Cause first interrupt immediately */
#elif (TICK TIMER == 1)
TH1 = HiByte (BASIC TICK); /* Configure Timer 1 in 16-bit */
TL1 = LoByte (BASIC TICK); /* timer mode for the 8051 */

TMOD &= 0xO0F;
TMOD |= 0x10; /* Set Tl mode control */

/* Clear Tl mode control, leaving TO untouched */

TR1 = 1; /* Start timer 1 */

TF1l = 1; /* Cause first interrupt immediately */
#endif

EA = 1;

/* Interrupts are enabled, starting the RTOS at this point. */
}

/*

**/

/*

‘k************************/

Download free eBooks at bookboon.com

138

A51 Examples

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll A51 Examples

/*

KA KA A A A A A A AR A A A A A A A A A A A A A I A A A A A A A A I A A A I A A A A A I AR I A AAFAAA A A I AA I I AR F A A A F A XA K F A K

* Function name : PE TaskChange

*

* Function type : Context Switch (Internal function)

* Description : This function is used to perform a forced or pre-emptive
* context switch or task swap

*

* Arguments : none

*

*

* Notes : This procedure is called from the timer tick interrupt,
* there would be 5 registers pushed on the stack, saved
* while the current task was running.

* Push A, B, DPH, DPL and PSW

*

* Comes here ONLY from an Interrupt Service Routine

*

* Returns : None

*

**/

void PE TaskChange (void) using 1
{
uchar data i, temp;

uchar idata * idata internal;

SIMPLY CLEVER SKODA

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Download free eBooks at bookboon.com

139 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

PaulOS An 8051 Real-Time Operating System
Partli

/* The current task is PRE-EMPTIED, and a */

/* new task is set to run */

/* NOW WORK WITH THE NEW TASK */

internal = MAINSTACK; /* MAINSTACK is the address of the start */
/* of main stack defined in STARTUP.A51 */
tsknum++; /* valid range 0 to (NOOFTASKS-1)

if (tsknum == NOOFTASKS) tsknum = ZERO;

Running = tsknum;

/* The new running task's USED stack area is copied to internal RAM */

/* and the stack pointer adjusted accordingly */

temp = task[Running].stackptr;
i=0;
do {

*(internal++) = task[Running].stack[i++];

} while (internal<=temp);

SP = temp; /* The new running task's SP is restored */

/* Get the new tasks bank 0 registers which were stored externally */

RecallBankO (&task[Running] .reg0) ;

/* then pop the SFRs back again and start other task here */

POP5I();

/* it never gets down to here */

}

/*

‘k***********************/

/*

AR RS S S S S S S S SRS EEEEEEEEEEEEEEEEEEEEEREEEEE RS

* Function name : RTOS Timer Int

*

* Function type : Scheduler Interrupt Service Routine
*

* Description : This is the RTOS scheduler ISR.

* It generates system ticks

* and calculates any remaining

* running time for each task.

*

* Arguments : None

*

* Returns : None

*

‘k************************/

#if (TICK_TIMER == 0)

/* If Timer 0 is used for the scheduler */

void RTOS Timer Int (void) interrupt 1 using 1

{
uchar idata * idata internal;

uchar data k;

Download free eBooks at bookboon.com

140

*/

/* set the new task as running */

8032 Differences

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il 8032 Differences

/* After an interrupt, the SP is incremented by 5 by the */
/* compiler to PUSH ACC,B,DPH,DPL and PSW */

/* These are popped back before returning from the interrupt */

THO = HiByte (BASIC_TICK) ; /* Timer registers reloaded */
TLO LoByte (BASIC TICK);

#elif (TICK TIMER == 1) /* If Timer 1 is used for the scheduler */
void RTOS Timer Int (void) interrupt 3 using 1
{

uchar idata * idata internal;

uchar data k;

/* After an interrupt, the SP is incremented by 5 by the */

/* compiler to PUSH ACC, B, DPH, DPL and PSW */

/* These are popped back before returning from the interrupt */

/* PSW is also pushed because of the 'using 1' command */
TH1 = HiByte (BASIC TICK); /* Timer registers reloaded */
TL1 = LoByte (BASIC TICK);

#elif (TICK TIMER == 2) /* If Timer 2 is used for the scheduler */
void RTOS Timer Int (void) interrupt 5 using 1
{

uchar idata * idata internal;

uchar data i, k;

/* After an interrupt, the address of the next instruction of the */
/* current task is push on stack (low then high byte). Then SP */

/* is further incremented by 5 by the */

/* compiler to PUSH ACC,B,DPH,DPL and PSW */

/* Internal stack map at this stage */

/* High stack RAM */

/* PSW <-- SP points to here */
/* DPL */
/* DPH */
/* B */
/* ACC */
/* High byte return address */
/* Low byte return address */
/* Low stack RAM */

/* These are normally popped back BEFORE returning from the */
/* interrupt IF the TaskChange function is not called. */

TF2 = 0; /* Timer 2 interrupt flag is cleared */
#endif
EA = 0;
if (Running != IDLE_ TASK)

{

/* store current task bank 0 registers just in case there is */
/* a need for a pre-emptive task swap */

/* A,B,DPH,DPL and PSW are pushed on stack by the compiler after */

Download free eBooks at bookboon.com

141

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il 8032 Differences

/* the interrupt */

/* and are saved as part of the task stack */
SaveBankO (&task[Running] .reg0); /* store RO - R7 bank 0 */
/* check if the currently running task slot time has elapsed */

task[Running].slot time--;

if (task[Running].slot time == ZERO)

{
/* Current task SP is saved pointing to PSW which is the last one */
/* pushed on stack after the interrupt */

task[Running].stackptr = k = SP;
internal = MAINSTACK;
/* MAINSTACK is declared in STARTUP.A51 */

do { /* Current task's USED stack area is saved */
task[Running].stack[i++] = * (internal++);

} while (internal<=k);

task[Running] .slot time = task[Running].slot reload;
PE_TaskChange () ;

/* Force a pre-emptive task change if required */

/* Note that the pushed registers would still be on the saved stack at */
/* this point and would be popped back when task is put into */

/* action again in PE_TaskChange () */

}

/* else if running IDLE (after INIT RTOS), start a task immediately */
/* without any need to save the stack, since the IDLE TASK will never */

/* run again in this round robin rtos. */
else if (Running == IDLE_TASK) PE TaskChange () ;

/* exits here if slot time for current task not yet over */

EA = 1;

/*

Rk kb b b ik b kb b b b b b b b bk bk b bk b bk b b b b b b R R b R R R b b b b b

*/

/*

R R R S R R R R S I R R I S E S E E R S b R R S E E I S E E I h E I E E b E I I b b E E I 3 S E h b I b h b 3k S
R bk kb b b b b bk b b b b b b b b b b b b b b b b b bk kb kb b b b b bk b
Rk kb bk kb kb b b b b b b b b b b b b b R bk R b b b b b b b b b b
ROk kb kb ik b e b b bk b b b b b bk bk ek b b e b b b b b b b b b b b e b b Rk Rk kb bk ki

AR RS S S S S E S S E S S EEEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS

*/

Download free eBooks at bookboon.com

142

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll Appendix D

Appendix D PaulOS.C

This is the program source listing for the C version of PaulOS RTOS. It consists of:

o The header file PaulOS_V14_Parameters.h
o The header file PaulOS_V14.h
o The startup file PaulOS_Startup.A51

« The main source program PaulOS.C

PaulOS V14 Parameters.h

/*

ek K ok ok ok ok kK Kk ok ok ok ok Kk ok ok ok ok ok Kk ok ok ok ok ok Kk ok ok ok ok ok Kk ok ok ok ok ok Kk ok ok ok ok ok Kk ok ok ok ok ok Kk ok ok ok ok Kk ok ok ok ok kK
* PaulOS v14 Params.H -- RTOS USER DEFINITIONS

Kok Rk kk ok ok k Ak kkk ok kkkkkk ok kA kkkk ok kkhkkk ok kkkkkk ok ok kkkk ok ok ko kkk ok ok ok ok kkk ok ok ok ok ok ok kk ok ok ok
*/

#ifndef _ paulos_vl14 params_h

#define _ paulos_v14 params_h

/**/

Ijoined MITAS because o L
I wanted real responsibility www.discovermitas.com

I was a construction

SUPErvisor in

the North Sea
advising and

e Lelping foremen

& solve problems

MAERSK

Download free eBooks at bookboon.com

143 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

PaulOS An 8051 Real-Time Operating System
Partli

// Number of bytes to allocate for the stack
#define STACKSIZE 0x0F

// set to 8051 or 8032
#define CPU 8032

// Set to 0, 1 or 2 to select which timer to use as the RTOS tick timer
#define TICK TIMER 2

// Length of RTOS basic tick in msec - Refer to RTOS timing definitions
// Suitable values: 1, 2, 4, 5, 8, 10, 20, 25, 40, 50
#define TICKTIME 1

// Number of tasks used in application
#define NOOFTASKS 2

// Interrupts - set to 1 to use interrupt as stand alone ISR

#define STAND ALONE ISR 00 0 // EXTO

#define STAND ALONE ISR 01 1 // TIMO
#define STAND ALONE ISR 02 0 // EXT1
#define STAND ALONE ISR 03 0 // TIMl
#define STAND ALONE_ ISR 04 0 // SERO
#define STAND ALONE ISR 05 0 // TIM2

/**/

#endif // _ paulos v14 params h

PaulOS_V14.h
/*
LR R R R R R R R I R R e R I R i e R e I R I R I I I R e S R I R I I R S g
*
* PaulOS V14.H
* RTOS KERNEL HEADER FILE

* For use with PaulOs V14.C,
* A Co-Operative RTOS written in C by Ing. Paul P. Debono

* For use with the 8051 family of microcontrollers

* File : PaulOS V14.C

* Revision v

* Date : April 2009

* By : Paul P. Debono

* B. Eng. (Hons.) Elec. Course
* University Of Malta

*
*

KA KA AR AR A AR AR A AR KK

*/

/*

Download free eBooks at bookboon.com

144

Appendix D

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll
MAKE SURE THAT YOU ARE USING THE CORRECT STARTUP.A51 FILE, WHICH
SHOULD INCLUDE THE FOLLOWING MAINSTACK DEFINITION.
ENSURE ALSO THAT YOU HAVE THE CORRECT CSEG SETTING

*/

/*

RSEG ?STACK
MAINSTACK: DS STACKSIZE ; defined in parameters.h
EXTRN CODE (?C_START)
PUBLIC ?C_STARTUP
PUBLIC MAINSTACK
*/
#ifndef PAULOS V14 H
#define _ PAULOS V14 H

/*

Rk kb ik b kb ik b b b b b b b ik b h b b b b b kb kb bk kb b Rk b R R b b b e

* DATA TYPE DEFINITIONS

ER R R RS S S S S S SRS EEE RS

*/

typedef unsigned char uchar;

typedef unsigned int uint;

typedef unsigned long ulong;

#include "PaulOS V14 Params.h" /* in project directory */
/*

Rk kb b Sk kb bk b b b b kb g

* FUNCTION PROTOTYPES

KA KA KA A KA AR AR AR AR AR KK

*/

/*
* The following RTOS system calls do not receive any parameters

*/
// Stops current task and passes control to the next task in queue
void OS_DEFER(void);
// Kills the currently running task
void OS KILL IT(void);
// Checks if running task's signal bit is set
bit OS_SCHECK (void);
// Waits for end of task's periodic interval
void OS WAITP (void);
// Returns the number of the currently executing (running) task
uchar OS RUNNING TASK ID(void);
/* The following commands are simply defined as MACROS below
OS_CPU_IDLE () Set the microprocessor into a sleep
mode (awake every interrupt)
0S_CPU_DOWN () Switch off microprocessor, activate

only by hardware reset

0S_PAUSE_RTOS () Disable RTOS, for stand alone ISR
OS_RESUME_RTOS () Re-enable RTOS, for stand alone ISR

*/

/%

Download free eBooks at bookboon.com

145

Appendix D

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix D

* The following RTOS system calls do receive parameters

*/
// Initialises all RTOS variables
void OS_INIT RTOS (uchar iemask);
// Starts the RTOS running with priorities if required
void OS RTOS GO (bit prior);
// Signals a task
void OS_SIGNAL TASK (uchar tasknum);
// Waits for an event (interrupt) to occur
void OS WAITI (uchar intnum);
// Waits for a timeout period given by a defined number of ticks
void OS WAITT (uint ticks);
// Waits for a signal to arrive within a given number of ticks
void OS_WAITS (uint ticks);
// Sets task to run periodically every given number of ticks
void OS PERIODIC (uint ticks);
// Creates a task
void OS_CREATE TASK (uchar tasknum, uint taskadd);
// Resumes a task which was previously KILLed
void OS RESUME TASK (uchar tasknum);
/* The following commands are simply defined as MACROS below

0S_WAITT A(M,S,ms) Absolute WAITT for minutes, seconds, msecs
0S_WAITS A(M,S,ms) Absolute WAITS for minutes, seconds, msecs
OS_PERIODIC A(M,S,ms) Absolute PERIODIC for minutes, seconds, msecs
*/

/‘k***********************/

“I studied
English for 16 P
years but...
...I finally

learned to

speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

—tl

Download free eBooks at bookboon.com

146 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

PaulOS An 8051 Real-Time Operating System
Partli

/* The stack variable points to the start pointer in hardware stack and */
/* should be defined in PaulOS_STARTUP.AS51 */

extern idata unsigned char MAINSTACK[STACKSIZE];

/*

Rk kb b b b bk b b b b b b b b b b b b b b b b b b bk b kb i

* RTOS TIMING DEFINITIONS
hokkkhkkkhhhhkhkkkhkhkkhhkhkhkkhkhkkhhkkhkkhkhkkhhkhkhkkhkhkkhkkkkhkkhkhkkkk k& kk k& Kk k k%
*/

// In theory 921.6 counts represent 1 ms using an 11.0592 MHz crystal.

// Hence 9216 counts represent 10 ms.

#define MSEC10 9216UL

/*

Note on TICKTIME:

Ensure that TICKTIME's value is chosen such that this quotient

and hence all the following quotients result in an integer.
In theory, maximum value of TICKTIME is given by the value corresponding
to CLOCK = 65535, i.e. approx. 70-72.

However respecting the condition above, max acceptable TICKTIME is 50 ms.
Hence all suitable values are: 1, 2, 4, 5, 8, 10, 20, 25, 40, 50

For reliable time-dependent results a value of 10 or above is recommended
depending upon the application

*/

#define TICKS PER SEC (1000 / TICKTIME)

#define TICKS PER MIN (60000 / TICKTIME)

#define CLOCK ((TICKTIME * MSEC10)/10UL)

#define BASIC TICK (65536 - CLOCK)

//An indefinite period of waiting time in the RTOS is given by a value 0
#define NOT_TIMING 0

// Indicates task not waiting for an interrupt

#define NO_INTERRUPT OxFF

/*

KA KA KA KA AR A AR AR KK

* RTOS MACROS
R R R R R S R R I I I SR I E I S R I R R I I I I I I R E E h E E I S E h E h b E S E E E I 3 b b h b b
*/

// Retrieve High / Low byte
#define HiByte (Num) (uchar) ((uint) (##Num)>>8) ;
#define LoByte (Num) (uchar) ((uint) (##Num) & OxO0OFF) ;
// Sets the MCU in idle mode
#define OS_CPU_IDLE () PCON |= 0x01
// Sets the MCU in power-down mode
#define OS_CPU_DOWN () PCON |= 0x02
// Pause / Resume RTOS functions
#if (TICK TIMER == 0)
#define OS_PAUSE_RTOS () EA = ETO = TRO = 0
#define 0S RESUME RTOS() TRO = ETO = EA = 1
#elif (TICK TIMER == 1)
#define OS_PAUSE_RTOS() EA = ET1 = TR1 = 0
#define OS_RESUME RTOS() TRl = ET1 = EA = 1
#elif (TICK_TIMER == 2)
#define OS_PAUSE RTOS() EA = ET2 = TR2 = 0
#define 0S RESUME RTOS () TR2 = ET2 = EA = 1

Download free eBooks at bookboon.com

147

Appendix D

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

#endif

/‘k

R R RS S S S S S S S SRR EEE RS
* COMPILE-TIME ERROR TRAPPING
Rk kb b b b bk b b b b b b b b b b b b b b b b b b bk b kb i
*/

#if (CPU != 8032) && (CPU != 8051)

#error Invalid CPU Setting
#endif
#if (NOOFTASKS > 254)

#error Number of tasks is greater than 254 tasks

#endif
#if 0
#if (CPU == 8032)
#if ((MAINSTACK + STACKSIZE) > 0x100)
#error Out of RAM Space. Please shift variables to XDATA
#endif
#elif (CPU == 8051)
#if ((MAINSTACK + STACKSIZE) > 0x80)
#error Out of RAM Space. Please shift variables to XDATA
#endif
#endif
#endif

#1if ((TICKTIME * 110592 / 120) > 65535)

#error Tick time value > valid range of the timer counter setting
#endif
#if ((TICKTIME * 110592 / 120) < 65535) && ((1000 % TICKTIME) != 0)
#error Undesirable TICKTIME. Valid values 1,2,4,8,10,20,25,40 or 50 ms
#endif
#1f (CLOCK > 65535)

#error Timer > valid range. Please check TICKTIME and MSEC.

#endif

/*
R E S S S SRS E RS SRS RS RS EEE
* TASK-RELATED DEFINITIONS
KAk hkhkhkhhkhkhkhkhkhkhh bk bk bk bk bk bk hhkhhkhhhkhhkhh bk bk bk h bk bk bk hkhkhhkhkhhkhhkhhhkhkhkhkhhkhkkhkhhkhkhkhkhkx
*/

#define FLAG_SIG_RCVD 0x80 // Signal-received flag mask 1000 0000

#define FLAG SIG WAIT 0x40 // Waiting-for-signal flag mask 0100 0000
#define FLAG_PERIODIC 0x20 // Periodic Interval flag mask 0010 0000
/*

Interrupt Number used for tasks waiting for an interrupt event

*/

#define EXTO_INT 0x00 // External 0 Interrupt number O
#define TIMO_INT 0x01 // Timer O Interrupt number 1
#define EXT1 INT 0x02 // External 1 Interrupt number 2
#define TIM1 INT 0x03 // Timer 1 Interrupt number 3
#define SERO_INT 0x04 // URRT 0 Interrupt number 4
#define TIM2_ INT 0x05 // Timer 2 Interrupt number 5

// Main endless loop in application given a task number equal to NOOFTASKS
#define IDLE TASK NOOFTASKS

/* -

R R RS S S S S EEEEE S SRS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR EE RS

* ENHANCED EVENT-WAITING ADD-ON MACROS

Rk kb b Sk bk b b b b b gk b i

Download free eBooks at bookboon.com

148

Appendix D

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

* These macros perform the same functions of WAITT, WAITS and PERIODIC
* calls but rather than ticks they accept absolute time values as

* parameters in terms of days, hours, minutes, seconds and millisecs.
* This difference is denoted by the A suffix - eg. WAITT A() is the

* absolute-time version of WAITT ()
* Range of values accepted, (maximum 65535 TICKTIMES) :

* Using a minimum TICKTIME of 1 msec

* from 1 msecs to 1 min, 5 secs, 535 msecs

* Using a recommended TICKTIME of 10 msec

* from 10 msecs to 10 mins, 55 secs, 350 msecs

* Using a maximum TICKTIME of 50 msec

* from 50 msecs to 54 mins, 36 secs, 750 msecs

* If the conversion from absolute time to ticks results in 0 (all

* parameters being 0 or overflow) this result is only accepted by

* WAITS () by virtue of how the WAITT (), WAITS() and PERIODIC() calls were
* written. In the case of the WAITT () and PERIODIC() calls the tick count
* would automatically be changed to 1 meaning an interval of

* eg. 50 msecs in case the TICKTIME is defined to be 50 msecs

* Liberal use of parentheses is made in the following macros in case the

* arguments might be expressions

*
Kok kk KKK KR KKK KKK KKK KKK KA KA KA AR A KA KA XK AT A KK XK A KA XA KA KA XK AT A KK XK A KKK
*/

#define TPM (M) (TICKS PER MIN* (##M))

#define TPS(S) (TICKS PER SEC* (##S))

#define TPMS (ms) ((##ms)/TICKTIME)

#define 0OS WAITT A(M,S,ms) OS WAITT ((uint) (TPM(M) + TPS(S) + TPMS (ms)))

#define 0OS WAITS A(M,S,ms) OS WAITS ((uint) (TPM(M) + TPS(S) + TPMS (ms)))

#define OS_PERIODIC A (M,S,ms) OS_PERIODIC((uint) (TPM(M)+TPS(S)+TPMS (ms)))

/*

ER R RS S S S EEE S S S S S SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR EE RS

* Other functions used internally by the RTOS
Rk b b Sk b kb b b b b bk b b b b b b b b b b b b b bk b kb b bk b i
*/

// Task swapping function

void QShift (void);

// RTOS Scheduler ISR

void RTOS Timer Int (void);

// Function used by ISRs other than the RTOS Scheduler
void Xtra Int (uchar task intflag);

// External Interrupt 0 ISR

#if (!STAND ALONE ISR 00)

void Xtra Int 0(void);

#endif
// Timer 0 ISR
#if ((TICK TIMER != 0) && (!STAND ALONE ISR 01))

Download free eBooks at bookboon.com

149

Appendix D

http://bookboon.com/

void Xtra Int 1(void);
#endif

// External Interrupt 1 ISR
#if (!STAND ALONE ISR 02)
void Xtra Int 2(void);
#endif

// Timer 1 ISR

#if ((TICK TIMER != 1) && (!STAND ALONE ISR 03))
void Xtra Int 3 (void);
#endif

// Serial Port ISR

#if (!STAND ALONE ISR 04)
void Xtra Int 4(void);

#endif

// Interrupt 5 (Timer 2) - NOT AVAILABLE ON THE 8051
#if ((TICK TIMER != 2) && (!STAND ALONE ISR 05))
void Xtra_ Int_ 5 (void);

#endif

/**/

#endif // _ PAULOS V14 H

DUKE

THE FUQUA
SCHOOL

www.fuqua.duke.edu/whileyouweresleeping OF BUSINESS

Download free eBooks at bookboon.com ,\\\(«\

http://bookboon.com/
http://bookboon.com/count/advert/faa87ccb-c5b2-4bf9-a8ab-a30a00d27dfd

PaulOS An 8051 Real-Time Operating System
Partli Appendix D

PaulOS_STARTUP.A51

$NOMOD51
; This file is part of the C51 Compiler package
; Copyright (c) 1988-2002 Keil Elektronik GmbH and Keil Software, Inc.

; PaulOS_STARTUP.A51: This code is executed after processor reset.
; To translate this file use A51 with the following invocation:
; A51 PaulOS STARTUP.A51

; To link the modified PaulOS_ STARTUP.OBJ file to your application use
; the following

; BL51 invocation:

; BL51 <your object file list>, PaulOS STARTUP.OBJ <controls>

; User-defined Power-On Initialization of Memory

; With the following EQU statements the initialization of memory

; at processor reset can be defined:

; the absolute start-address of IDATA memory is always O

IDATALEN EQU 100H ; the length of IDATA memory in bytes for the 8032 (256 bytes).
XDATASTART EQU OH ; the absolute start-address of XDATA memory

XDATALEN EQU OH ; the length of XDATA memory in bytes.

PDATASTART EQU OH ; the absolute start-address of PDATA memory

PDATALEN EQU OH ; the length of PDATA memory in bytes.

;Notes: The IDATA space overlaps physically the DATA and BIT areas of the

; 8051 CPU. At minimum the memory space occupied from the C51

; run-time routines must be set to zero.

; Reentrant Stack Initilization

; The following EQU statements define the stack pointer for reentrant
; functions and initialise it:

; Stack Space for reentrant functions in the SMALL model.

IBPSTACK EQU 0 ; set to 1 if small reentrant is used.

IBPSTACKTOP EQU OFFH+1 ; set top of stack to highest location+1l.

; IBPSTACKTOP EQU 07FH+1 ; set top of stack to highest location+l.

; Stack Space for reentrant functions in the LARGE model.

XBPSTACK EQU O ; set to 1 if large reentrant is used.

XBPSTACKTOP EQU OFFFFH+1; set top of stack to highest location+l.

’

Download free eBooks at bookboon.com

151

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

; Stack Space for reentrant functions in the COMPACT model.
PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.
PBPSTACKTOP EQU OFFFFH+1; set top of stack to highest location+l.

; Page Definition for Using the Compact Model with 64 KByte xdata RAM

; The following EQU statements define the xdata page used for pdata
; variables. The EQU PPAGE must conform with the PPAGE control used
; in the linker invocation.

PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.

PPAGE EQU 0 ; define PPAGE number.

PPAGE SFR DATA 0AOH ; SFR that supplies uppermost address byte

; (most 8051 variants use P2 as uppermost address byte)

; Standard SFR Symbols
ACC DATA 0OEOH

B DATA 0FO0H

SP DATA 81H

DPL DATA 82H

DPH DATA 83H

NAME ?C STARTUP

?C_C51STARTUP SEGMENT CODE
?STACK SEGMENT IDATA

#include "PaulOS V14 Params.h"
RSEG ?STACK
MAINSTACK: DS STACKSIZE

EXTRN CODE (?C_START)

PUBLIC ?C_ STARTUP

PUBLIC MAINSTACK

; FLT32 or MON51 should be define in A51 TAB in Target Options
SIF (MON51)

CSEG AT 8000H ; FOR DEV BOARD MON-51 MONITOR PROG
SELSEIF (FLT32)

CSEG AT 8100H ; FOR FLT-32 DEV BOARD MONITOR PROG
SELSE

CSEG AT 0 ; FOR EEPROM

SENDIF

?C_STARTUP: LJMP STARTUP1

RSEG ?C_C51STARTUP

STARTUP1:

IF IDATALEN <> 0

MOV RO, #IDATALEN - 1

CLR A

IDATALOOP: MOV QRO,A

DJNZ RO, IDATALOOP

ENDIF

IF XDATALEN <> 0

MOV DPTR, #XDATASTART

Download free eBooks at bookboon.com

152

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

MOV R7, #LOW (XDATALEN)
IF (LOW (XDATALEN)) <> O
MOV R6, # (HIGH (XDATALEN)) +1
ELSE

MOV R6, #HIGH (XDATALEN)
ENDIF

CLR A
XDATALOOP: MOVX @DPTR,A
INC DPTR

DJNZ R7,XDATALOOP

DJNZ R6, XDATALOOP
ENDIF

IF PPAGEENABLE <> 0

MOV PPAGE_SFR, #PPAGE
ENDIF

IF PDATALEN <> 0

MOV RO, #LOW (PDATASTART)
MOV R7, #LOW (PDATALEN)

CLR A

PDATALOOP: MOVX @RO,A
INC RO

DJNZ R7, PDATALOOP
ENDIF

IF IBPSTACK <> 0

EXTRN DATA (?C_IBP)

MOV ?C_IBP, #LOW IBPSTACKTOP
ENDIF

Excellent Economics and Business programmes at:

A\
' 2T
university of E AACSB
groningen i ACCREDITED

| 4

| |
“The perfect start

of a successful,
international career.”

j' CLICK HERE

to discover why both socially
and academically the University
of Groningen is one of the best

i laces for a student to be
www.rug.nl/feb/education P

Download free eBooks at bookboon.com

153 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

PaulOS An 8051 Real-Time Operating System
Partli

IF XBPSTACK <> 0

EXTRN DATA (?C_XBP)

MOV ?C_XBP, #HIGH XBPSTACKTOP
MOV ?C_XBP+1, #LOW XBPSTACKTOP
ENDIF

IF PBPSTACK <> 0

EXTRN DATA (?C_PBP)

MOV ?C_PBP, #LOW PBPSTACKTOP
ENDIF

MOV SP, #?STACK-1

; This code is required if you use L51 BANK.A51 with Banking Mode 4

’

EXTRN CODE (?B_SWITCHO)

; CALL ?B_SWITCHO ; init bank mechanism to code bank 0
LJIJMP ?C_START
END

PaulOS V14.c

/*

R R RS S SR EEE SRR R R RS

*

*

*

*

PaulOS_V14.C
RTOS KERNEL SOURCE CODE

Co-Operative RTOS written in C by Ing. Paul P. Debono

For use with the 8051 family of microcontrollers

Notes:

Timer to use for the RTOS ticks is user selectable, Timer 0, 1 or 2

Naturally, Timer 2 can only be used with an 8032 CPU type.

Assign the correct values to 'TICK TIMER', 'CPU', 'MAINSTACK'
and 'NOOFTASKS' in PaulOS V14 parameters.h

If it is noticed that timing parameters are not being met,
the system's TICKTIME can be modified by changing the value 'TICKTIME'

in PaulOS V14 parameters.H - please adhere to the conditions mentioned.

File : PaulOS V14.C
Revision Y
Date : April 2009
By : Paul P. Debono
B. Eng. (Hons.) Elec. Course

University Of Malta

R Rk h S S R S I b b h h E h b b SE A E h b 3E b b b b E h b h b b b b b b b b b h b b b E E b E b b b b h b b b h E h h b b b b b b ki

*/

/*

Download free eBooks at bookboon.com

154

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

Rk ik kb kb kb ik b kb b b b b ik b b b b b b bk bk R Rk b b b b R R b R b b b

* INCLUDES
R R RS S S S S S S S SRR EEE RS
*/

// 8052 Special Function Registers 8032
#include "reg52.h"
// RTOS system calls definitions (in project directory)
#include "PaulOS_V14.h"
/*
Rk kb b bk b b Sk b b b b b b b b b b b b b b b b b b bk b kb b bk b kb b b b b b

* STRUCTURE DEFINITIONS

KA KA KA A A KA AR A A AR A A AR KK

*/

// Task Parameters

struct task param {

uchar stackptr; // Stack pointer

uchar flags; // Flags

uchar intnum; // Interrupt number task is waiting for
uint timeout; // Timeout task is waiting for

uint interval count; // Interval counter value
uint interval reload; // Interval reload value
char stack[STACKSIZE]; // Stack contents

}i

// Create instance for each user task (and IDLE task)

struct task param xdata task[NOOFTASKS + 1];

/*

Rk kb ik b ik bk kb b b b b b b b b b b b b bk bk b b R b b b b Rk b b R b b b e

* GLOBAL VARIABLES
Kk k ok k ko ok ok ok ok k ok ok ok ko k ko ok k ok ok ko ok ok ok ok ok ko ok ko ok ok ko ok ko ok ok ko ok ok ok ok ok ko k ok ko k ok ok k ok k ok ok ok kK
*/

// Flag - task waiting for interrupt was found
bit bdata IntFlag;

// Flag - task timed out and ready to be placed in Ready Queue
bit bdata TinQFlag;

// Flag - priority is enabled/disabled

bit bdata Priority;

// Address of last ready task (pointer)

uchar data * data ReadyQTop;

// Number of the current running task

uchar data Running;

// Queue stack for tasks ready to run

uchar data ReadyQ[NOOFTASKS + 2];

/*

ER Rk b bk b Sk bk b b i b b b b b b b R b b Rk R

* FUNCTION DEFINITIONS

Kk K ok ok k ok k ok ok ok k ko ok ko k k ok ok k ok ok ko ok k ko ok ko ok ko ok ok ko ok ko ok ko ok ok ok ok ko ok ok ko ok kK ok ok k kK ok K ok
*/

/*

ER Rk kb ik b kS ki b b b b b b b b b R b Rk R

*

* Function name : OS INIT RTOS

*

* Function type : Initialisation System call

*

Download free eBooks at bookboon.com

155

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

* Description : This system call initialises the RTOS variables,

* task SPs and enables any required interrupts

*

* Arguments : iemask Represents the interrupt enable mask which

is used to set up the IE special function
register. Its value determines which

* interrupts will be enabled during the

execution of the user's application.

* Returns : None

*
Kok Kk ok kK ok Kk K K ok K ok K ok K ok ok K ok ok ok ok Kk ok ko K ok ok K ok ok ko ok K ko ko kK ok K ok ok K ok ok Kk ok kK K
*/

void OS_INIT RTOS (uchar iemask) {

uchar i, j;
#if (TICK_TIMER == 0)
IE = (iemask & 0x7f) | 0x02; // Set up 8051 IE register, timer 0
IP = 0x02; // Give scheduler high priority
#message "Using Timer 0 for the PaulOS rtos tick timer"
#elif (TICK_TIMER == 1)
IE = (iemask & O0x7f) | 0x08; // Set up 8051 IE register, timer 1
IP = 0x08; // Give scheduler high priority
#message "Using Timer 1 for the PaulOS rtos tick timer"
#elif (TICK TIMER == 2)
IE = (iemask & O0x7f) | 0x20; // Set up 8051 IE register, timer 2
IP = 0x20; // Give scheduler high priority

#message "Using Timer 2 for the PaulOS rtos tick timer"

sssssssssssssvsssssssssssssssssssssssssssssssssnnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

'q’

o

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

Download free eBooks at bookboon.com &\S«\

156 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

PaulOS An 8051 Real-Time Operating System

Partll

#endif

// Set idle task as running task
Running = IDLE TASK;

// Initialize each task

for (i = 0; i < NOOFTASKS; i++) {

// Clear timing, interrupt, interval & reload variables
task[i].timeout = NOT TIMING;
task[1]
i].interval count = NOT_ TIMING;

]

.interval reload = NOT_TIMING;

.intnum = NO_INTERRUPT;
task
task

[
[
[
[i
// Fill READY queue with the idle task
ReadyQ[i] = IDLE TASK;
}
// Fill READY queue with the idle task
ReadyQ [NOOFTASKS] = IDLE TASK;
ReadyQ[NOOFTASKS + 1] = IDLE TASK;
// Pointer to last task made to point to base of the queue
ReadyQTop = ReadyQ;
// For each task
for (1 = 0; i < NOOFTASKS + 1; i++) {
/*
Initialise task SP values
SP initially set to point to MAINSTACK - 1
2 locations used to push return address and another push to

store PSW (done automatically by KEIL) in Qshift since

we have

/*

the USING 1 keyword.

Hence stackptr made to point to SP + 3 = MAINSTACK + 2
*/

task([i].stackptr = MAINSTACK + 2;

// Initialise task status bytes

task[i] .flags = O;

// Clear stack contents
for (j = 0; j < STACKSIZE; j++) {
task[i].stack[]j] = 0;

KA KA KA AR A A AR AR AR A KKK

*

* Function name : OS_CREATE TASK

* Function type : Initialisation System call

* Description : This system call is used in the main program for each

task to be created for use in the application.

* Arguments : tasknum Represents the task number

(1st task is numbered as

taskadd Represents the task's start address, which in

Download free eBooks at bookboon.com

157

0) .

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli Appendix E
* the C environment, would simply be the name

* of the procedure

*

* Returns : None

*

Rk kb kb ik bk ik b b b b bk b b b b b bk Rk b bk kb b b R R R b R b b b

*/

void OS CREATE TASK (uchar tasknum, uint taskadd) {

// Add task to next available position in the READY queue
ReadyQTop++;
*ReadyQTop = tasknum;
// Store task address (Little ENDIAN) on stack, ready for RET inst.
task[tasknum] .stack[0] = LoByte (taskadd);
task[tasknum] .stack[1l] = HiByte (taskadd);

/*

Rk ik b bk b kb Sk ek kb b b bk kb b b h bk b b bk kb bk b bk kb b b b kb b b b b e b b b e bk kb ik e ki

*

* Function name : OS_RTOS GO

* Function type : Initialisation System call

* Description : This system calls is used to start the RTOS going such

* that it supervises the application processes.

* Arguments : prior Determines whether tasks ready to be executed

* are sorted prior to processing or not.
*

* If prior = 0 a FIFO queue function is implied.
* If prior = 1 the queue is sorted by task

* number in ascending order, as a higher

* priority is associated with smaller task

* number (task 0 would have the highest

* priority), such that the first task in the

* queue, which would eventually run, would be

* the one with the smallest task number having
* the highest priority.

*

* Returns : None

*
Kok Kk Kk Kk K K K K kK kK ok ok Kk kK kK K ok K ok K ok ok K ok ok ko ok ko kK ok K ok K ok kK ok ok ok Kk kK K Kk
*/

void OS RTOS GO (bit prior) {

// Checks if tasks priorities are to be enabled
Priority = prior;
#if (TICK TIMER == 2)
// Configures Timer 2 in 16-bit auto-reload mode for the 8032
RCAP2H = HiByte(BASIC_TICK);
RCAP2L = LoByte (BASIC TICK);
T2CON = 0x84; // TR2 = TF2 =1
#elif (TICK TIMER == 0)
// Configure Timer 0 in 16-bit timer mode for the 8051
THO = HiByte(BASIC_TICK);

Download free eBooks at bookboon.com

158

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix E

TLO = LoByte(BASICiTICK);
TMOD &= OxF0; // Clear TO mode control, leaving T1 untouched

TMOD |= 0x01; // Set TO mode control

TRO = 1; // Start timer 0

TFO = 1; // Cause first interrupt immediately
#elif (TICK TIMER == 1)

// Configure Timer 1 in 16-bit timer mode for the 8051

TH1 = HiByte(BASIC_TICK);

TL1 = LoByte (BASIC TICK);

TMOD &= O0xO0F; // Clear Tl mode control, leaving TO untouched

TMOD |= 0x10; // Set Tl mode control
TR1 = 1; // Start timer 1
TF1l = 1; // Cause first interrupt immediately

#endif
// Signals scheduler that tasks have been added to the queue
TinQFlag = 1;

// Interrupts are enabled, starting the RTOS
EA = 1;

/*
AR A A AR A A A AR A A A A A A A A A A A A A I A A A A A A A A A A A A FAAAA A A A A KA AR I A A A A KA A A I I AR I A A AKX KKK
*

* Function name : OS_RUNNING TASK ID

*

* Function type : Inter-task Communication System call

/

Leadiny
% Maastricht University o Learnin:

Join the best at

33 place Financial Times worldwide ranking: MSc

the MaastriCht U niverSity International Business

1%t place: MSc International Business

School of Business and ; 1st place: MSc Financial Economics

2" place: MSc Management of Learning

. nd place: MSc Economics
I 2P
Econom 1CS. 2" place: MSc Econometrics and Operations Research
2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

Download free eBooks at bookboon.com

159 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

PaulOS An 8051 Real-Time Operating System
Partli

* Description : This system call is used to check to get the number of

* the current task.

*

* Arguments : None

*

* Returns : Number of currently running task from which it must be
* called

*
R R R R S R R R R Ik I I I S E E E S R I R R I E I E I b b R h E I I I S E h E I b E I IE E R 3 3 b b h b I
*/

uchar OS RUNNING TASK ID(void) {

return (Running);

/*
Rk b ki b S R
*

* Function name : OS_SCHECK

*

* Function type : Inter-task Communication System call

*

* Description : This system call is used to check if the current task

* has its signal set. It tests whether there was any
* signal sent to it by some other task.

*

* Arguments : None

*

* Returns : bit 1 if its signal bit is set, 0 if not set

*
R R R S S R R R Ik R S S E I E E S R I I R R S h I R E E I I E I S E E h I E I IE I E I 3 b b h
*/
bit OS SCHECK (void) {
// Disable interrupts
EA = 0;
// If a signal is present, clear it and return 1
if (task[Running].flags & FLAG_SIG RCVD) ({
task[Running] .flags &= ~FLAG_SIG_RCVD;
EA = 1;
return 1;
}
// If a signal is not present, return 0
else {
EA = 1;

return 0;

/*
KA KK KA AR A AR A AR KK

*

* Function name : OS_SIGNAL TASK

* Function type : Inter-task Communication System call

* Description : This system call is used to send a signal to another

* task.

Download free eBooks at bookboon.com

160

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Part Il Appendix E
* Arguments : tasknum Represents the task to which a signal is
* required to be sent.
*
* Returns : None

*

Rk kb kb ik bk ik b b b b bk b b b b b bk Rk b bk kb b b R R R b R b b b
*/
void OS_SIGNAL TASK (uchar tasknum) {
// Disable interrupts
EA = 0;
// If the task has been waiting for a signal
if (task[tasknum].flags & FLAG SIG WAIT) {

// Clear its signal sent/wait flags
task[tasknum] .flags &= ~FLAG_SIG_RCVD;
task[tasknum] .flags &= ~FLAG SIG WAIT;
task[tasknum] .timeout = NOT TIMING;
ReadyQTop++;
*ReadyQTop = tasknum;
TinQFlag = 1;

}

// If it was not waiting, then set its signal sent flag

else {
task[tasknum] .flags |= FLAG_SIG_RCVD;

> Apply now

REDEFINE YOUR FUTURE

AXA GLOBAL GRADUATE
PROGRAM 2014

redefining / standards

Q
o
)
%]
[=
(=}
f=
=}
<]
o
2
a
©
2
g
54
2

Download free eBooks at bookboon.com &\S«\

161 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5

PaulOS An 8051 Real-Time Operating System
Partli

/*

// Re-enable interrupts

EA = 1;

R ik b i kb S

*

*

*

* Arguments

*

*

Function name

0S_WAITI

Function type : Event-Waiting System call

Description : This system call causes task to wait for a given event

Returns : None

(interrupt). It identifies which interrupt the task
has to wait for. Once identified - the task's
appropriate flag is set and the task is put in the
waiting state by causing a task swap - the task
would wait indefinitely for the interrupt if its
timeout variable would be set to 0 (NOT TIMING).

intnum Represents the interrupt number associated

with the given interrupt for which the

calling task intends to wait

R ik i kb S

*/

void OS WAITI (uchar intnum) {

#if

#en
#if

#en
#if

// Disable interrupts

EA = 0;
switch (intnum) {
(!STAND ALONE ISR 00)
// Interrupt number 0
case 0:
// Task made to wait for external interrupt 0
task[Running].intnum = EXTO_INT;
QShift ()
break;
dif
((TICK_TIMER != 0) && (!STAND ALONE ISR 01))
// Interrupt number 1
case 1:
// Task made to wait for timer 0 interrupt
task[Running].intnum = TIMO_ INT;
QShift () ;
break;
dif
(!STAND ALONE ISR 02)

// Interrupt number 2

case 2:

// Task made to wait for external interrupt 1
task[Running] .intnum = EXT1 INT;
QShift () ;

break;

Download free eBooks at bookboon.com

162

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

#endif
#if ((TICK TIMER != 1) && (!STAND ALONE ISR 03))
// Interrupt number 3
case 3:
// Task made to wait for timer 1 interrupt
task[Running] .intnum = TIM1 INT;
QOshift ();
break;
#endif
#if (!STAND ALONE ISR 04)
// Interrupt number 4

case 4:
// Task made to wait for serial port interrupt
task[Running].intnum = SERO_INT;
QShift();
break;
#endif
#if ((TICK_TIMER != 2) && (!STAND ALONE ISR 05))
// Interrupt number 5
case 5:
// Task made to wait for timer 2 interrupt
task[Running] .intnum = TIM2 INT;
QShift () ;
break;
#endif
// Default action, do nothing
default:
EA = 1;
break;
}
/*

R RS S S S S EEEEEEEEEEEEE SRR EEEEEEEEREEEEEEEEEEEEEEEEEEEEEEREEE RS

*

* Function name : OS_WAITT

*

* Function type : Event-Waiting System call

* Description : This system call causes a task to go in the waiting

* state for a timeout period given by a defined

* number of RTOS ticks.

*

* Arguments : ticks Represents the number of ticks for which the

* task will wait. Valid range for this

* parameter is 1 to 65535.

* A zero waiting time parameter is set to 1 by
* the RTOS itself, since a zero would

* effectively kill the task, making it wait
* forever.

*

* Returns : None

*

R R RS S S S S EEEEE S SRS SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR EE RS

*/

Download free eBooks at bookboon.com

163

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix E

void OS_WAITT (uint ticks) {

EA = 0;
// Just a precaution
if (ticks == 0) ticks = 1;

// Task's timeout variable is updated and the task then enters the
// waiting state.

task[Running] .timeout = ticks;

QShift () ;

/*

Rk ik kb ik b ik bk b b b b b b bk b b b b b b bk kb b b R kb b b b R b R b b b e

*

* Function name : OS WAITS

* Function type : Event-Waiting System call

* Description : This system call causes a task to wait for a signal to

* arrive within a given number of RTOS ticks.

* If the signal is already present, the task continues

* to execute.

*

* Arguments : ticks Represents the number of ticks for which the

* task will wait for a signal to arrive.

* Valid range for this argument is 0 to 65535.
* A value of 0 means waiting forever for a

* signal to arrive.

/& Empowering People.
W sthatedic Meke i Improving Business.

¥ Management _

Bl Norwegian Business School is one of Europe’s
largest business schools welcoming more than 20,000
students. Our programmes provide a stimulating

- and multi-cultural learning environment with an
=rnationa i international outlook ultimately providing students

o napclal ousines S with professional skills to meet the increasing needs
FRUDMIGS of businesses.

/ ! Bl offers four different two-year, full-time Master of
Leadership & Science (MSc) programmes that are taught entirely in
‘ Organisationgiias English and have been designed to provide professional
Shipping Psycialed skills to meet the increasing need of businesses. The
2 ﬂge ept 1% _ MSc programmes provide a stimulating and multi-
- cultural leaming environment to give you the best
platform to launch into your career.

* MSc in Business
* MSc in Financial Economics

* MSc in Strategic Marketing Management

NORWEGIAN /(_ - * M5Sc in Leadership and Organisational Psychology
BUSINESS SCHOOL EQUIS www.bi.edu/master

Download free eBooks at bookboon.com &\5«\

164 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

PaulOS An 8051 Real-Time Operating System
Partli

* Returns : None

*

RS RS S S S EE S S S SRR EE R

*/
void OS _WAITS (uint ticks) {
// Disable interrupts
EA = 0;

// If signal already sent, clear the signal and continue to run task

if (task[Running].flags & FLAG_SIG RCVD) {
task[Running] .flags &= ~FLAG SIG_RCVD;
EA = 1;
}
// If signal is not present send task to waiting state
// by causing a task switch
else {
task[Running] .flags |= FLAG SIG WAIT;
task[Running] .timeout = ticks;
QShift();

/*

KA KA KA AR AR AR AR AR KK

*/
/*

R ik i kb S

*

* Function name : OS_WAITP

*

* Function type : Event-Waiting System call

*

* Description : This system call is used by a task to wait for the

* end of its periodic interval. If the interval has
* already passed, the task continues to execute.

*

* Arguments : None

*

* Returns : None

*

R R R R R R R I I I I I SR E E E S R S I R R S I I I R E E E E E I S E E h I E I E I E I 3 b b b I

*/
void OS WAITP (void) {
// Disable interrupts
EA = 0;
// If the periodic interval time has elapsed, clear flag and

// the task continues to execute

if ((task[Running] .flags & FLAG PERIODIC) == FLAG PERIODIC) {
task[Running] .flags &= ~FLAG PERIODIC;
EA = 1;

}

// Else put task into waiting state

else {
task[Running] .flags |= FLAG PERIODIC;
QShift ()

Download free eBooks at bookboon.com

165

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll

/*

Rk kb b kb kb ki kb e kb b bk b kb b bk ek kb kb b bk b b b b b b b b b b b b b b b b b bk i

*

*

*

*

Function name : OS_PERIODIC

Function type : Event-Waiting System call

Description : This system call causes a task to repeat its function

every given number of RTOS ticks.

Arguments : ticks Represents the length of the periodic

interval in terms of RTOS ticks, after which
the task repeats itself. Valid range for this

parameter is from 1 to 65535.

Returns : None

ER R R RS S S S S S SRS EEE RS

*/

void OS_PERIODIC (uint ticks) {

/*

// Disable interrupts

EA = 0;

// Just a precaution

if (ticks == 0) ticks = 1;

// Initialise task's periodic interval count and reload vars
task[Running] .interval count = ticks;

task[Running] .interval reload = ticks;

// Re-enable interrupts
EA = 1;

R RS S S S S EEEEEEEEEEEEE SRR EEEEEEEEREEEEEEEEEEEEEEEEEEEEEEREEE RS

*

*

*

*

*

*

Function name : OS_DEFER

Function type : Task Suspension System call

Description : This system call is used to stop the current task in

order for the next task in the queue to execute.
In the meantime the current task is placed in the

waiting queue, just waiting for 2 ticks.

Arguments : None

Returns : None

R RS S S S S SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR EEE R

*/

void OS DEFER(void) {

// Disable interrupts
EA = 0;

Download free eBooks at bookboon.com

166

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll Appendix E

// Make task wait for 2 ticks, thus giving up its time for other tasks
task[Running] .timeout = 2;
QShift () ;

/*

Rk kb kb ik bk ik b b b b bk b b b b b bk Rk b bk kb b b R R R b R b b b

*

* Function name : OS KILL IT
* Function type : Task Suspension System call

* Description : This system call kills the current task, by putting it

* permanently waiting, such that it never executes again.
* It also clears any set waiting signals which the task
* might have.

*

* Arguments : None

*

* Returns : None

*
Rk kb ik b kb ik b kb b b b ik b b b b b b b bk kb R b R kb b b Rk b R b b b e
*/
void OS KILL IT(void) {
// Disable interrupts
EA = 0;
// Clear task's flags
task[Running] .flags = 0;

Need help with your
dissertation?

Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

Get Help Now

Go to www.helpmyassignment.co.uk for more info E/Helpmyassignment

Download free eBooks at bookboon.com \(‘ t\

167 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

PaulOS An 8051 Real-Time Operating System

Partll

/*

Appendix E

// Set it to wait forever
task[Running] .timeout = NOT_TIMING;

// Set periodic interval count to zero (note reload is left intact!)

task[Running].interval count = 0;

// No longer wait for any interrupt event
task[Running].intnum = NO INTERRUPT;

// Cause a task switch
QShift();

R R R R S S R S kS E I E E S R I R I h I E I R E E E E b h E I S E h E I b E I E I E I 3 b b E S I

*

* Function name : OS_RESUME_ TASK

* Function type : Inter-task Communication System call

* Description : This system call is used to resume another KILLed task.

* Arguments : tasknum Represents the task which is to be restarted.

* Returns : None

*

Rk kb kb ki kb b b R ik b i kb b b b bk kb b b bk b b b Rk b R R b b b e

*/

void OS RESUME TASK (uchar tasknum) {

/*

// Disable interrupts
EA = 0;
// If task was periodic, resume periodic task
if (task[tasknum].interval reload != 0) {
task[tasknum] .interval count = 1;
}
// Otherwise resume a normal waiting task after 1 tick
else {
task[tasknum].timeout = 1;
}
// Make RUNNING task wait for 2 ticks,
// thus giving up its time for other tasks
task[Running].timeout = 2;
QOshift ();

Rk bk kS S

*

* Function name : QShift

*

* Function type : Context Switcher (Internal function)

*

* Description : This function is used to perform a context switch

*

*

i.e. voluntarily swaps task

Download free eBooks at bookboon.com

168

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli Appendix E
* Arguments : None
*
* Returns : None

*
R ik b i kb S
*/
void QShift (void) using 1 {
// Variables used below
uchar data i, temp;
uchar data * idata internal;
uchar data * idata gtask;
uchar data * idata gptr;
// Clear task in queue flag
TinQFlag = 0;
// Save SP of current task
task[Running] .stackptr = SP;
temp = SP;
// Save USED stack area of current task
internal = MAINSTACK;
i =0;
do {
task[Running].stack[i++] = * (internal++);
} while (internal <= temp);
// Shift READY queue down by one position
gtask = ReadyQ;
gptr = ReadyQ + 1;
while (gtask <= ReadyQTop) {
*gqtask++ = *gptr++;
}
ReadyQTop--; // Decrement pointer to last task in queue
// Ensure that this pointer is never below the start of the READY queue
if (ReadyQTop < ReadyQ)
ReadyQTop = ReadyQ;
/*
If task priorities are enabled, the queue is sorted such that the
highest priority task becomes the running task, i.e. the one having
the smallest task number.
*/
if (Priority == 1) {
// Scan just once through the list
gptr = ReadyQTop;
while (gptr > ReadyQ) {
aptr--;
if (*gptr > *(gptr + 1)) {
temp = *gptr;
*gptr = *(gptr + 1);
*(gptr + 1) = temp;

// The first task in the READY queue becomes the new running task

Running = ReadyQ[0];

Download free eBooks at bookboon.com

169

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

// The new running task's USED stack area is copied to internal RAM

temp = task[Running].stackptr;
internal = MAINSTACK;

i=0;

do {

*(internal++) = task[Running].stack[i++];

} while (internal <= temp);

// Restore new running task's SP such that the new task will execute.

SP = temp;

// Re-enable interrupts
EA = 1;

/*

Rk b ki b S R

*

* Function name : RTOS_Timer Int

*

* Function type : Scheduler Interrupt Service Routine (Tick Timer)

*

* Description : This is the RTOS scheduler ISR. It generates system

* ticks and calculates any remaining waiting
* and periodic interval time for each task.
*

* Arguments : None

*

* Returns : None

*

R R R S S R R R Ik R S S E I E E S R I I R R S h I R E E I I E I S E E h I E I IE I E I 3 b b h

*/
#if (TICK TIMER == 0)

void RTOS Timer Int(void) interrupt 1 using 1 {

uchar data k;

uchar data * idata g7

bit data On_Q;

// Reload timer registers

THO = HiByte (BASIC TICK);

TLO = LoByte (BASIC TICK);
#elif (TICK TIMER == 1)

void RTOS Timer Int(void) interrupt 3 using 1 {

uchar data k;

uchar data * idata qg;

bit data On_0Q;

// Reload timer registers

TH1 = HiByte (BASIC TICK) ;

TL1 = LoByte (BASIC TICK);
#elif (TICK TIMER == 2)

void RTOS Timer Int(void) interrupt 5 using 1 {

uchar data k;
uchar data * idata g7
bit data On Q;

Download free eBooks at bookboon.com

170

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix E

// Clear timer 2 interrupt flag
TF2 = 0;

#endif
// Loop over each task

for (k = 0; k < NOOFTASKS; k++) {

// Update the task's periodic intervals (if applicable)
if (task[k].interval count != NOT TIMING) {

task[k].interval count--;

// Has the periodic interval elapsed?
if (task[k].interval count == NOT TIMING) {

task[k].interval count = task[k].interval reload;

// If the task has been waiting for the period to elapse,
// place it in the READY queue (if not there already)
if ((task[k].flags & FLAG PERIODIC) == FLAG PERIODIC) ({
task[k] .flags &= ~FLAG_PERIODIC;
g = ReadyQ;

On_Q = 0;
while (g <= ReadyQTop) {
if (k == *q) {
On 0 = 1;
break;
}
g++;
}
if (On_Q == 0) {
ReadyQTop++;

*ReadyQTop = k;
TinQFlag = 1;

// If the task was not waiting for this event,
// do not place in the ready queue.
else {

task[k].flags |= FLAG PERIODIC;

}

// Update the task's timeout variables (if applicable)

if (task[k].timeout != NOT TIMING) {
task[k].timeout--;

// If timeout elapses,
// place task in READY queue
if (task[k].timeout == NOT TIMING) {
ReadyQTop++;
*ReadyQTop = k;
TinQFlag = 1;
task([k] .flags &= ~FLAG SIG WAIT;

}
Download free eBooks at bookboon.com

171

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

// If the idle task is running, and tasks are known to reside in the
// queue, a task switch is purposely induced so these tasks can run.
if ((TinQFlag == 1) && (Running == IDLE TASK))

QShift();

/*
KA KA KA A A KA AR AR AR A KKK

*

* Function name : Xtra Int 0

*

* Function type : Interrupt Service Routine

*

* Description : This is the external 0 interrupt ISR whose associated

* interrupt number is 0.
*

* Arguments : None

*

* Returns : None

*
Rk b b bk b b Sk b b b b b b b b b b b b b b b b b b bk bk b
*/
#if (!STAND ALONE ISR 00)
void Xtra Int O(void) interrupt 0 using 1 {
EA = 0;
Xtra Int (EXTO_INT); // Pass EXTO INT for ident purposes
}
#endif

[]
B By 2020, wind could provide one-tenth of our planet's

ra I n p O W e r electricity needs. Already today, SKF's innovative know-

how is crucial to running a large proportion of the

world's wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
jcation. We help make it more economical to create

Therefore we'need the best employees who can

eet this challenge!

Tﬁf Power of Knowledge Engineering

i

o

Plug into The Power of Knowle‘ngineering.
Visit us at www.skf.com/knowled"g%

Download free eBooks at bookboon.com

172 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

PaulOS An 8051 Real-Time Operating System
Partli

/*
Rk kb b kb kb ki kb e kb b bk b kb b bk ek kb kb b bk b b b b b b b b b b b b b b b b b bk i

*

* Function name : Xtra Int 1

*

* Function type : Interrupt Service Routine

*

* Description : This is the Timer 0 ISR whose associated interrupt

* number is 1. It is only enabled if the 8051 Timer 0
* is not already being used as the RTOS scheduler.
*

* Timer 0 interrupt is usually used for RTOS on the
* basic 8051.

*

* For the FLT-32 8032 it can only be used with the modified
* version 2 monitor EPROM, or you are intending to write

* it on an EEPROM, since it is used for the single step

* in the old version monitor EPROM.

*

*

* Arguments : None

*

* Returns : None

*
R ik i kb S
*/
#if ((TICK TIMER != 0) && (!STAND ALONE ISR 01))
void Xtra Int 1(void) interrupt 1 using 1 {
EA = 0;
Xtra_ Int (TIMO_INT); // Pass TIMO_INT for ident purposes
}
#endif
/*
R R R R R S R R I I I SR I E I S R I R R I I I I I I R E E h E E I S E h E h b E S E E E I 3 b b h b b

*

* Function name : Xtra Int 2

* Function type : Interrupt Service Routine

* Description : This is the external 1 interrupt ISR whose associated

* interrupt number is 2.
*

* Arguments : None

*

* Returns : None

*
LR e i i
*/
#if (!STAND ALONE ISR 02)
void Xtra Int 2(void) interrupt 2 using 1 {
EA = 0;
Xtra Int (EXT1 INT); // Pass EXT1 INT for ident purposes

Download free eBooks at bookboon.com

173

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

#endif
/*
Ak Kk hkhkhkhkhkhkhkhkhkhk bk bk hkh bk hkhk ok Ak Ak hkhkhhkhhhkk ko hkhkhkhk Ak khkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkrhhkhkhkhxkx*k

*

* Function name : Xtra Int 3

*

* Function type : Interrupt Service Routine

* Description : This is the Timer 1 ISR whose associated interrupt

* number is 3.
*

* Arguments : None

*

* Returns : None

*
Rk kb ik b kb ik b b b b b b b ik b h b b b b b kb kb bk kb b Rk b R R b b b e
*/
#if ((TICK TIMER != 1) && (!STAND ALONE ISR 03))
void Xtra Int 3(void) interrupt 3 using 1 {
EA = 0;
Xtra Int(TIM1 INT); // Pass TIMl1 INT for ident purposes
}
#endif
/*
R ik i kb S
*

* Function name : Xtra Int 4

*

* Function type : Interrupt Service Routine

* Description : This is the serial port ISR whose associated interrupt

* number is 4.
*

* Arguments : None

*

* Returns : None

*
LRSS S S S S SRS E S S SRR SRR SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
*/
#if (!STAND_ALONE_ISR 04)
void Xtra Int 4(void) interrupt 4 using 1 {
EA = 0;
Xtra_Int (SERO_INT); // Pass SERO_INT for ident purposes
}
#endif
/*
LR e i i
*

* Function name : Xtra Int 5

*

* Function type : Interrupt Service Routine

*

* Description : This is the Timer 2 ISR whose associated interrupt

Download free eBooks at bookboon.com

174

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Part Il

* number is 5.
*

* Arguments : None

*

* Returns : None

*

KA KA KA AR AR AR AR AR KK

*/
#if ((CPU == 8032) && (TICK TIMER != 2) && (!STAND ALONE ISR 05))
void Xtra Int 5(void) interrupt 5 using 1 {
EA = 0;
TF2 = 0;
Xtra_Int(TIM2_INT); // Pass TIM2_ INT for ident purposes
}
#endif
/*

Rk ik b bk b kb Sk ek kb b b bk kb b b h bk b b bk kb bk b bk kb b b b kb b b b b e b b b e bk kb ik e ki

*

* Function name : Xtra Int

*

* Function type : Interrupt Handling (Internal function)
*
* Description : This function performs the operations required by the

* previous ISRs.

*

* Arguments : int num Represents the flag mask for a given

* interrupt against which the byte

* storing the flags of each task will
* be compared in order to determine
* whether any task has been waiting
* for the interrupt in question.

*

* Returns : None

*
Rk ik ik Sk
*/
void Xtra Int(uchar int num) using 1 {
uchar data k;
// To show 1f tasks have been affected by this interrupt
IntFlag = 0;
// For each task
for (k = 0; k < NOOFTASKS; k++) {

// If task has been waiting for the given interrupt
if (task[k].intnum == int num) {

// Clear the interrupt wait

task[k].intnum = NO INTERRUPT;

IntFlag = 1;

task[k].timeout = NOT TIMING;

ReadyQTop++;

*ReadyQTop = k;

Download free eBooks at bookboon.com

175

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix E

// If the IDLE task is running, and tasks are known to reside in the

// READY queue, task switch is purposely induced so tasks can run.

if ((IntFlag == 1) && (Running == IDLE TASK)) {
TinQFlag = 1;
QShift();

}
// Otherwise if not IDLE task, the ISR exits after interrupts are
// re-enabled, since RTOS cannot pre-empt task
else if ((IntFlag == 1) && (Running != IDLE TASK)) {
TinQFlag = 1;
EA = 1;
}
// Otherwise exit normally
else EA = 1;
}
/‘k
KA KA KA AR AR AR AR A A KK
ER R RS S S S S S S S S SRS EEE RS

R R R R S R Rk I R S I E E S E E R E I b h I E I R E E I I h E E S E E h h b E I E E E 3 3 b b h b b

Rk ki

*/

“I studied
English for 16 P
L]

years but... »
...I finally
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

by

——l

Download free eBooks at bookboon.com

176 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Appendix E MagnOS.C

This is the source listing of the RTOS program MagnOS (MAGNus Operating System, the latin word

‘magnus’ means great). It consists of:

o The assembly language ‘include’ file MagnOS_A01.A51
o+ The main program MagnOS.c

o The header file MagnOS.h

o The header file Parameters.h

MagnOS_A01.A51

; MagnOS AO01.A51
; MagnOS RTOS PLUS MAIN PROGRAM

; STORES ALL TASK REGISTERS

; Written by Paul P. Debono - JUNE 2006

; University of Malta

; Department of Communications and Computer Engineering

; MSIDA MSD 06; MALTA.

; Adapted and modified from the RTKB RTOS

; published in the book (CHAPTER 15)

; "C and the 8051 - 3rd Edition"

; by Thomas W. Schultz; Prentice Hall; ISBN 1-58961-237-X

; Accomodates many tasks, (take care of the stack size!)

; STACK MOVING VERSION - MOVES WORKING STACK IN AND OUT OF

; EXTERNAL MEMORY

; SLOWS DOWN RTOS, BUT DOES NOT RESTRICT TASK CALLS

; IDLE TASK (ENDLESS MAIN PROGRAM - TASK NUMBER = NOOFTASKS)

; THIS IS STILL A SMALL TEST VERSION RTOS. IT IS JUST USED FOR
; SHOWING WHAT IS NEEDED TO MAKE A SIMPLE RTOS.

; IT MIGHT STILL NEED SOME MORE FINE TUNING.

; IT HAS NOT BEEN THOROUGHLY TESTED !!!!

; WORKS FINE SO FAR.

; NO RESPONSABILITY IS TAKEN.

$NOMOD51
#include "reg52.h"™ ; check your own correct path

#include "Parameters.h"

/* The MAINSTACK variable points to the start pointer in hardware stack and */
/* is defined in STARTUP.A51 */
extrn idata (MAINSTACK)

PUBLIC _SaveBank0, RecallBank0
PUBLIC _SaveSFRs, RecallSFRs
PUBLIC POP5, POPO

P[bBé\}v%lggg ?rIe'e E%%%ﬁ(s at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

; RTOS ASSEMBLY CODE MACROS
MAGNOS DATA SEGMENT DATA
RSEG MAGNOS_DATA

TEMP1: DS 1

TEMP2: DS 1
TEMP3: DS 1
TEMP4: DS 1
TEMP5: DS 1

MAGNOS ASM SEGMENT CODE
RSEG MAGNOS_ASM

POP5:

DEC SP ; BLANK TO POP UNUSED RETURN ADDRESS
DEC SP

POP PSW

POP DPL

POP DPH

POP B

POP ACC

SETB EA

RET ; JUMPS TO PREVIOUSLY PRE-EMPTIED TASK HERE

POPO:

DEC SP ; BLANK TO POP UNUSED RETURN ADDRESS
DEC SP

SETB EA

RET ; JUMPS TO PREVIOUSLY PRE-EMPTIED TASK HERE

POP5SI:

DEC SP ; BLANK TO POP UNUSED RETURN ADDRESS
DEC SP

POP PSW

POP DPL

POP DPH

POP B

POP ACC

SETB EA

RETI ; JUMPS TO PREVIOUSLY PRE-EMPTIED TASK HERE

POPOI:

DEC SP ; BLANK TO POP UNUSED RETURN ADDRESS
DEC SP

SETB EA

RETI ; JUMPS TO PREVIOUSLY PRE-EMPTIED TASK HERE

_SaveSFRs:
MOV TEMP1,ACC ; STORE A IN TEMP1
MOV TEMP2,B ; STORE B IN TEMP2
MOV TEMP3,DPH ; STORE DPH IN TEMP3
MOV TEMP4,DPL ; STORE DPL IN TEMP4
MOV ACC, PSW

ANL A, #0E7H ; ensure stored PSW refers to bank 0

MOV TEMP5,A ; STORE PSW in TEMP5
MOV DPH,OEH ; R6 bank 1

Download free eBooks at bookboon.com

178

--> RS0=RS1=0 BANK 0

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll Appendix E

MOV DPL,OFH ; R7 bank 1
MOV A, TEMP1

MOVX @DPTR,A ; SAVE ACC
INC DPTR

MOV A, TEMP2

MOVX @DPTR,A ; SAVE B
INC DPTR

MOV A, TEMP3

MOVX @DPTR,A ; SAVE DPH
INC DPTR

MOV A, TEMP4

MOVX @DPTR,A ; SAVE DPL
INC DPTR

MOV A, TEMP5

MOVX @DPTR,A ; SAVE PSW
RET

_RecallSFRs:

MOV DPH, OEh ; get task store address, R6 bank 1
MOV DPL, OFh

MOVX A, @DPTR ; GET ACC

MOV TEMP1,A ; STORE A IN TEMP1
INC DPTR

MOVX A,@DPTR ; GET B

MOV TEMP2,A ; STORE B IN TEMP2
INC DPTR

MOVX A, @DPTR ; GET DPH

MOV TEMP3,A ; STORE DPH IN TEMP3

eotleagues in
over the world.

Vouwo Toucxs | Rewanr Toocks | Mack Toweks | Vowo Buses | Vowo Cowsteucrion Esumsent | Wowo Pesm | Vowo Aeno | Vowo IT
Vowo Fimswce Sepices | Vowo 3P | Vowo Powemream | Vowo Pasrs | Vowo Techwowoer | Vowo Loasncs | Busimess Anes Asi

Download free eBooks at bookboon.com

179 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

PaulOS An 8051 Real-Time Operating System

Partll

INC DPTR
MOVX A, @DPTR ;

MOV TEMP4,A ; STORE DPL

INC DPTR
MOVX A, @DPTR ;

MOV TEMP5,A ; STORE PSW

MOV ACC,TEMPL ;

MOV B,TEMP2 ; RESTORE B

MOV DPH, TEMP3 ;
MOV DPL,TEMP4 ;
MOV PSW, TEMPS ;
RET

_SaveBank0:
MOV DPH, OEH
MOV DPL, OFH
MOV A, 0
MOVX Q@DPTR,A
INC DPTR
MOV A, 1
MOVX @DPTR, A
INC DPTR
MOV A, 2
MOVX @DPTR, A
INC DPTR
MOV A, 3
MOVX @DPTR,A
INC DPTR
MOV A, 4
MOVX Q@DPTR, A
INC DPTR
MOV A, 5
MOVX Q@DPTR,A
INC DPTR
MOV A, 6
MOVX @DPTR, A
INC DPTR
MOV A, 7
MOVX @DPTR, A
RET

_RecallBank0:
MOV DPH, OEH
MOV DPL, OFH
MOVX A, @DPTR
MOV 0,A
INC DPTR
MOVX A, @DPTR
MOV 1,A
INC DPTR
MOVX A, @DPTR
MOV 2, A
INC DPTR
MOVX A, @DPTR

IN TEMP4

IN TEMP 5
A

DPH
DPL
PSW

Address high byte in R6,

low byte in R7 bank 1

; Address high byte in R6, low byte in R7 bank 1

Download free eBooks at bookboon.com

180

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix E

MOV 3,A

INC DPTR
MOVX A, @DPTR
MOV 4,A

INC DPTR
MOVX A, @DPTR
MOV 5,A

INC DPTR
MOVX A, @DPTR
MOV 6,A

INC DPTR
MOVX A, @DPTR
MOV 7,A

RET

END

s @book 1s probucen with iText®

Download free eBooks at bookboon.com &\5«\

181 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

PaulOS An 8051 Real-Time Operating System
Partli

MagnOS_V01.C
/*
B R I o e b I b b b b o e e 2 I I I b b b b 3

* MagnOS_VO01.C RTOS KERNEL SOURCE CODE

*

* Pre-Emptive RTOS written in C by Ing. Paul P. Debono

* For use with the 8051 family of microcontrollers
* Notes:

* Use NOOVERLAY in the linker BL51 Misc (Misc controls) options tab
* Use NOAREGS in the compiler C51 (Misc controls) options tab

* Timer to use for the RTOS ticks is user selectable, Timer 0, 1 or 2
* Naturally, Timer 2 can only be used with an 8032 CPU type.
* Timer 1 can only be used if it is not required for

* Baudrate generation

* Assign the correct values to

* 'STACKSIZE', 'TICK TIMER', 'TICKTIME', 'CPU' and 'NOOFTASKS'

* in parameters.h

* Most of the time you need only to change 'NOOFTASKS' to reflect the

* application
* If it is noticed that timing parameters are not being met,the system's
* TICKTIME can be modified by changing the value 'TICKTIME' in Parameters.H

* Please adhere to the conditions mentioned in Parameters.H

* File : MagnOS V01.C

* Revision : 8

* Date : February 2006

* By : Paul P. Debono

*

* B. Eng. (Hons.) Elec. Course
* University Of Malta

*

R R E h b h S h E I b h b E b b b b E E b h E b b bk b b b b b b b b h b b h b b E b b b b b b b b b b h b b b E b h b b h b b b b b b b b

*/

/*

Rk kb b bk b b b b b b b b bk kb b e
* INCLUDES

hhkhk Ak hkhkhkhkhhhhhkhkhhrhkhhkhhhhhkhkhkhhkdr kbbb bk kA hAhk kbbb bk hk kA dkdk kb hkhhkhkhkhkrdk kb hkhkhkhkhkhdrxxx
*/

#include <reg52.h> /* 8052 Special Function Registers 8052 */
#include <MagnOS_VO1.H> /* RTOS system calls definitions */

/* (IN PROJECT DIRECTORY) */

/*

Download free eBooks at bookboon.com

182

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

Rk kb bk kb b b b b b b b b b b b b b b b b b kR b b b b b R R b b R b S b

* FUNCTION DEFINITIONS

R dh Ak h h S Sk b S b b h b b b b E h b b E b b b h b bk b E b b b b b b b b b b b b b

*/

void V_TaskChange (void); /* used internally by the RTOS */
void PE TaskChange (void); /* used internally by the RTOS */

/*
R R E A h E S E I b S b b E E b b b h E h b b E b b bk E b b b b b b b h b b b b b E b b b b b b b b b b h b b b E b b b b b b b b b b b b b
* STATUS FLAG DEFINITIONS

/* if more flags are needed, use spare bits from statusl or status2

* variable

ROk kb kb b bk kb b b kb b b kb bk bk e bk b b b e b b b b b b bk b b b b e b b b b b e b b b b b b b b bk b i
*/

/* statusl - has some free bits for future expansion */

#define WAIT4I F 0x01 /* bit 00 - task waiting for an interrupt */
#define WAIT4V F 0x02 /* bit 01 - task waiting periodic interval */
#define WAIT4S F 0x04 /* bit 02 - task waiting for a semaphore */
#define WAIT4M F 0x08 /* bit 03 - task waiting for a message */

/* status2 - has some free bits for future expansion */

#define PREEMP F 0x01 /* bit 00 - task was pre-emptied */

#define FIRST TIME F 0x02 /* bit 01 - task running the first time */
#define TASK KILLED F 0x04 /* bit 02 - task killed */
#define NO MBOX FREE F 0x08 /* bit 03 - no mailbox space */

struct task param xdata task[NOOFTASKS + 1];

struct letter xdata mbox [MBXSIZE];
/* MBXSIZE messages: destination, source, length */

/* plus 16 data characters per message */

/*
Rk kb bk bk b b b b b b R b b R b b b b

* GLOBAL VARIABLES

AR RS RS S S S S S S S SRS EE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS

*/

bit bdata TinQFlag;
/* Flag indicating new higher priority task timed out and */

/* put in ReadyQ */

uchar data Resource[8]; // 8 resources available

uchar data * data ReadyQTop; // Address of last ready task (point)
uchar data Running; // Current task number

uchar data ReadyQ[NOOFTASKS + 3]; // Queue stack for tasks ready to run
/*

Rk kb bk b bk kb b b b b bk b b b b b b b b bk b b b b b b b b b bk b b b bk b e b b b b kb b b b b b b bk b i

*/

/*

B R T

* RTOS FUNCTION DEFINITIONS

R R R Sh I S E R S I S S R S E E E E E R E b S E b E h h E b E E h I h b E E E b E Ik 3E E h E E E b b b E E S b b h h b b b b b b 3

*/

Download free eBooks at bookboon.com

183

Appendix E

http://bookboon.com/

/*
B R R

*

* Function name : OS_INIT RTOS

* Function type : Initialisation System call

*

* Description : This system call initialises the RTOS variables, task
* SPs and enables any required interrupts

*

* Arguments : iemask Represents the interrupt enable mask which is
* used to set up the IE special function register.
* Its value determines which interrupts will be

* enabled during the execution of the user's

* application.

*

* Returns : None

*

R R R S I I R I I S E S E E R S R R R S b E S S I R R I I E I E E I E I I I b E R R I b b h h b S b b 3 3k b

*/

void OS_INIT RTOS (uchar iemask)
{

uchar data i,3;

#if (TICK_TIMER == 2)
IE = (iemask & 0x7f) | 0x20;
/* Set up 8051 IE register, using timer 2 */

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

Download free eBooks at bookboon.com :\\\«\

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

IP = 0x20; /* Assign scheduler interrupt high priority */
#elif (TICK TIMER == 1)
IE = (iemask & 0x7f) | 0x08;
/* Set up 8051 IE register, using timer 1 */
IP = 0x08; /* Assign scheduler interrupt high priority */
#elif (TICK TIMER == 0)
IE = (iemask & 0x7f) | 0x02;
/* Set up 8051 IE register, using timer 0 */
IP = 0x02; /* Assign scheduler interrupt high priority */
#endif

Running = IDLE TASK; /* Set idle task as the running task */

for (i=0; i <= NOOFTASKS; i++)
{
task[i].catalog = 1i; /* task id */
task[i].statusl = ZERO;
/* status flags, see below for details */
task[i].status2 = ZERO;

/* status flags, see below for details */
task[i] .priority = LOWEST; /* priority flag */
task[i].semaphore = ZERO;
/* counting semaphore for each task */
task[i].resource = FREE;

/* resources requested for each task */
task[i].stackptr = MAINSTACK + 1; /* SP storage */
task[i].intnum = NO INTERRUPT;

/* task not waiting for any interrupt */

task[i].timeout = NOT TIMING;

/* task not waiting for any timeout */
task[i].interval count = ZERO; /* task not periodic */
task[i].interval reload = ZERO;

/* periodic interval reload value */

/* clear registers storage area */

task[i].rega = ZERO;
task[i].regb = ZERO;
task[i].rdph = ZERO;
task[i].rdpl = ZERO;

task[i].rpsw = ZERO;
task[i].reg0 = ZERO;
task([i].regl = ZERO;
task[i].reg2 = ZERO;

[1]
[1]
[1]
[1]
task[i].reg3 = ZERO;
[1]
[1]
[1]
[1]

task[i].regd4 = ZERO;
task[i].regb = ZERO;
task([i].reg6 = ZERO;
task[i].reg7 = ZERO;

/* clear stack storage area */

for (j=0;J<STACKSIZE;j++) task[i].stack[]J]=ZERO;

ReadyQ[i] = IDLE TASK; /* Fill the READY queue */
} /* with the idle task */

Download free eBooks at bookboon.com

185

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli Appendix E
ReadyQ [NOOFTASKS + 1] = IDLE TASK;
ReadyQ[NOOFTASKS + 2] = IDLE TASK;
ReadyQTop = ReadyQ; /* Pointer to last task made to point to */

/* base of the queue. */

/* Now clear mailboxes */

for (i=0;i<MBXSIZE;i++)
{

mbox[i].dest = FREE;

mbox[i].src = FREE;

mbox[i].len = ZERO;
for (j=0; J<DATASIZE; j++)
mbox[i].dat.string.s[j] = ZERO;

}

/* Now clear resources */

for (i=0;i<NOOFRESOURCES; i++)
{

Resource[i] = FREE;

}

/*

Rk kb bk b b b b b b b b S kb S
*/
/*
Rk kb bk kb b b b b b b b b b kb b b b R b bk R b b b b R b b R b

*

* Function name : OS CREATE TASK

*

* Function type : Initialisation System call

* Description : This system call is used in the main program for each

* task to be

* created for use in the application.

*

* Arguments : task num Represents the task number

* (1st task is numbered as 0).

*

* task_add Represents the task's start address,

* which in the C

* environment, would simply be the name of the
* procedure

* task priority Represents the priority of the task

* 0 is low priority, 255 is the highest (top) priority

* Returns : None

*

LRSS E S S EEEEEEE SRS SRS SRR SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

*/
void OS_CREATE TASK (uchar task num, uint task add, uchar task priority)
{

Download free eBooks at bookboon.com

186

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

ReadyQTop++; /* Increment queue pointer. Task is added to next */

ReadyQTop = task num;/ available position in the READY queue.*/

task[task num].stack[0] = LoByte(task add); /* Little Endian */

task([task num].stack[l] = HiByte(task add); /* Low byte first */
.priority = task priority;

1
]
]
]

task[task num].catalog = task num;

[

[
task[task num

[
task[task num].status2 |= FIRST TIME F;

/* task running for 1st time */

/*

R R h b E S E S b b b h b b b SE E h b b b b b b b h b b b b b b b b b b h b b b b b b b b b b b b b b E E b b b b b b b b b b b

*/

/*
Rk kb kb bk bk i kb b S b b b b b b b
*

* Function name : 0OS_RTOS GO

*

* Function type : Initialisation System call

*

* Description : This system calls is used to start the RTOS going such
* that it

* supervises the application processes.

*

* Arguments : None

*

* Returns : None

*

R R R b I I I E S S I S b E I b E E h h E E b b b E E Sk b b b h h h b h b h h b b b E b h b h b b b b E E h h b h b b b b b b b

*/

void OS_RTOS_GO(void)
{

#if (TICK TIMER == 2)
RCAP2H = HiByte (BASIC TICK); /* Configures Timer 2 in 16-bit */
RCAP2L = LoByte (BASIC TICK); /* auto-reload mode for the 8032 */

T2CON = 0x84; /* TR2 = TF2 =1 */

#elif (TICK TIMER == 0)

THO = HiByte (BASIC_TICK) ; /* Configure Timer 0 in 16-bit */
TLO = LoByte (BASIC TICK); /* timer mode for the 8051 */
TMOD &= OxFO; /* Clear TO mode control, leaving Tl untouched */
TMOD |= 0x01; /* Set TO mode control */
TRO = 1; /* Start timer 0 */
TFO = 1; /* Cause first interrupt immediately */
#elif (TICK_TIMER == 1)
TH1 = HiByte (BASIC TICK); /* Configure Timer 1 in 16-bit */
TL1 = LoByte (BASIC TICK); /* timer mode for the 8051 */
TMOD &= O0xO0F; /* Clear Tl mode control, leaving TO untouched */
TMOD |= 0x10; /* Set Tl mode control */
TR1 = 1; /* Start timer 1 */

Download free eBooks at bookboon.com

187

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll Appendix E
TFl = 1; /* Cause first interrupt immediately */
fendif
TinQFlag = 1; /* Signals scheduler that tasks have been */

/* added to the READY queue, so that they may start to run. */
EA = 1;
/* Interrupts are enabled, starting the RTOS at this point. */
}

/*
KA AR A A A A AR A A A A A A A A A A A I A A I I A A I A A A A A I A A I I AA I A A A A A A A A I I AR I A A A I A A A A I I AR K I XA KK
*/
/*
R R RS SRS EEE

* Function name : OS_CHECK_TASK PRIORITY

*

* Function type : Inter-task Communication System call

* Description : This system call is used to get the priority of the

* requested task.

* Arguments : None

* Returns : Relevant task priority

*

Rk bk b bk kb b Sk b b b b bk

*/

Internship opportunities

EADS unites a leading aircraft manufacturer, the world’s largest learning and development opportunities, and all the support you need,

helicopter supplier, a global leader in space programmes and a you will tackle interesting challenges on state-of-the-art products.
worldwide leader in global security solutions and systems to form
Europe’s largest defence and aerospace group. More than We welcome more than 5,000 interns every year across

140,000 people work at Airbus, Astrium, Cassidian and Eurocopter, disciplines ranging from engineering, IT, procurement and
in 90 locations globally, to deliver some of the industry’s most finance, to strategy, customer support, marketing and sales.
Exetinglpiojeatss Positions are available in France, Germany, Spain and the UK.

An EADS internship offers the chance to use your theoretical
knowledge and apply it first-hand to real situations and assignments To find out more and apply, visit www.jobs.eads.com. You can also
during your studies. Given a high level of responsibility, plenty of find out more on our EADS Careers Facebook page.

@ AIRBUS L) ASTRIUM (& CASSIDIAN EaEur_{pc'#TEF‘

Download free eBooks at bookboon.com

188 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/85f92380-2160-4386-98b4-a2540089b583

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

uchar OS CHECK TASK PRIORITY (uchar task num)
{
return task[task num].priority;
}
/*
LRSS S S S S S S S S SE S S S S EESESESEESE S S SR SRS SRS RS EEEEEEEE SRR SRR RS RS EEEEEEEEES

*/

/*
KA KA AR AR A A A AKX KK

*

* Function name : OS_CHANGE_TASK_PRIORITY

*

* Function type : Inter-task Communication System call

*

* Description : This system call is used to change the priority of the
* requested task.

*

* Arguments : None

*

* Returns : None

*
RR Rk h h h b b b b b b b b h b b b b b b b b b b b b b b b bk bk kb bk ki
*/
void OS_CHANGE_TASK_ PRIORITY (uchar task_num, uchar new_prio)
{
EA=0;
task[task num].priority = new_prio;
EA=1;
}
/*
R R R R R R R R R R I S R R I R R I I R I R I I S R E R I I b

*/

/*
R Rk kb Sh S h h b b S b b h b b b h h b b b b b b b E b h b b b b b b b b b b b
*

* Function name : OS_RUNNING_ TASK_ID

*

* Function type : Inter-task Communication System call

*

* Description : This system call is used to check to get the number of
* the current task.

*

* Arguments : None

*

* Returns : Number of currently running task from which it must

* be called

*

Kk k ok ok k ok ok ok ok k kK ok ok ko ok ok ko ok k ko ok ko ok ok ok ok ok k ok ok ok ok k ok ok ko ok ko ok k ok ok k ko ok ko k ok ok k k ok ok k ok ok Kk
*/
uchar OS RUNNING TASK ID(void)

return (Running);

Download free eBooks at bookboon.com

189

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

/*

KA KA KA A A A A A A A AR A AR AR AR A KK KK

*/

/*
LRSS E S E S S EEEEEEE SRS SRR RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
*

* Function name : OS_CHECK_TASK SEMA4

*

* Function type : Inter-task Communication System call

* Description : This system call is used to get the semaphore of the
* requested task.

*

* Arguments : None

*

* Returns : Relevant task semaphore

*
Rk kb b kb kb kb b b bk b b S b b b b b b b bk b b b b bk R b R b S
*/
uchar OS CHECK TASK SEMA4 (uchar task num)
{
return task[task num].semaphore;
}
/%
AR RS S S S EE S S E S SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

*/

/*
R R

*

* Function name : OS_SEMA4 PLUS

* Function type : Add Units to a Semaphore System call

* Description : This system adds units to a semaphore of a particular
* task

* No task change is involved

*

* Arguments : task num Represents the task number

* units Number of units to add to semaphore

*

* Returns : None

*

**/

void OS_SEMA4PLUS (uchar task num, uchar units)
{
EA = 0;
if (units > (255-task[task _num].semaphore))
task[task num].semaphore = MAXSEM;
else task[task num].semaphore += units;
EA = 1;

Download free eBooks at bookboon.com

190

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll Appendix E

/*

KA R A A A A A A A AR A A A A A A A A A A A A A I A AR I A A A A A A A A A A AA I A XA A A I AR I I AR I A A A I A A AA X I AR F AR KKK

*/

/*

LRSS E S E S S EEEEEEE SRS SRR RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Function name : OS_SEMA4 MINUS
Function type : Subtracts Units to a Semaphore System call
Description : This system subtracts units from semaphore of particular

task

If semaphore reaches ZERO, a voluntary task switch is

invoked
Arguments : task num Represents the task number
units Number of units to add to semaphore

Returns : None

R R R R R R R R R R I R R I I R R I R R R R I R R R I R R R R R R I R Ik

*/

void OS_SEMA4MINUS (uchar task num, uchar units)

{

uchar data i, temp;

uchar idata * idata internal;

360°
thinking.

Deloitte.

Discover the truth at WWW.dClOittC.Ca/CaI‘CCI‘S © Deloitte & Touche LLP and affiliated entities.

Download free eBooks at bookboon.com X\(‘ :\

191 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

EA = 0;

/* store current task registers just in case task change is required */
RSO = 1; /* USE BANK 1 */
SaveSFRs (&task[Running] .rega) ;
SaveBank0 (&task[Running] .reg0) ;
RSO = 0; /* RETURN TO BANK 0 */

task[Running] .stackptr = temp = SP; /* Current task's SP is saved */
internal = MAINSTACK; /* MAINSTACK is declared in STARTUP.A51 */

/* Current task's USED stack area is saved */

task[Running] .stack[i++] = *(internal++);

} while (internal<=temp);

if (units > task[task num].semaphore) task[task num].semaphore = ZERO;

else task[task num].semaphore -= units;

if ((task[task num].semaphore==ZERO) && (task[task num].statusl&WAIT4S F))
{
task[task num].statusl &= ~WAIT4S F; /* clear flag */
task[Running].status2 &= ~PREEMP F;
/* mark task as NOT pre-emptied */

task[Running] .timeout = 5;

/* Either use */

task[task num].timeout = 1;

/* or use */

// task[task num].timeout = NOT TIMING; /* clear flag */
// ReadyQTop++;
// *ReadyQTop = task_num;

/* place the task which had been waiting for */
/* the semaphore in the ReadyQ */

V_ TaskChange () ;
EA = 1;
/*
Ak hkhkhkhhhkhkhkhhkhhhkhhkhhhhhkhhkhkhhhkhkhkhkhkhkhk bk ko bk hkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhhhrkhkdkhkxkx

*/

/*
Rk kb bk bk bk b b b b b b b b b b b kR b b b bk b b

*

* Function name : 0S WAIT4SEM

*

* Function type : Event-Waiting System call

*

* Description : This system call causes a task to wait for a semaphore to
* reach zero (within a given timeout), calling a voluntary
* task change.

* 0 timeout implies wait forever. If the semaphore is

* already zero, the task continues to execute.

Download free eBooks at bookboon.com

192

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli Appendix E
*

* Arguments : ticks Represents the number of ticks for which the

* task will wait for the semaphore. Valid range for this

* argument is 0 to 65535. A value of 0 means waiting

* forever for the semaphore.

*

* Returns : None

*

ER R R R R I R R I I S I I S b E S R b R S S E E I b E I E E I E h A E E E h E I h Ik b E E I 3 3 h b b S S b 3 3k

*/

void OS WAIT4SEM (uint ticks)
{
uchar data i, temp;

uchar idata * idata internal;
EA = 0;

/* store current task registers just in case task change is required */
RSO = 1; /* use bank 1 */

/* store current task A,B,DPH,DPL SFRs and bank 0 registers just in case */
/* there is a need for a voluntary task swap */

SaveSFRs (&task[Running] .rega) ;

SaveBankO (&task[Running] .reg0) ;

RSO = 0; /* use bank 0 */

task[Running] .stackptr = temp = SP;
/* Current task's SP is saved */

internal = MAINSTACK; /* MAINSTACK is declared in STARTUP.A51 */

i=20;
do { /* Current task's USED stack area is saved */
task[Running].stack[i++] = *(internal++);
} while (internal<=temp);
if (!task[Running].semaphore) /* If semaphore already */
{ /* zero it clears the */
task[Running].statusl &= ~WAIT4S F; /* flag and the task */
EA = 1; /* continues to run. */
}
else
{ /* If semaphore is not present */
task[Running].statusl |= WAIT4S F; /* task is sent in the */
task[Running].timeout = ticks; /* waiting state, setting */
task[Running].status2 &= ~PREEMP F; /* mark task NOT pre-emptied */
V_TaskChange () ; /* a task switch. */
}
}
/‘k

Rk ki kb kb ik bk kb bk kb b b b b bk bk kb b b b b b b kb b b b b b e b b b b b b b b b bk ik

*/

/*
AR R RS S S SE S S E S S E S S S SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEREEE

*

Download free eBooks at bookboon.com

193

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

* Function name : OS_RELEASE RES

* Function type : Releases a resource System call

* Description : This system releases a resource for other tasks to use

* If there are other tasks waiting, the task with the

* highest priority is made ready to execute and a voluntary
* task switch is invoked

*

* Arguments : res_num Represents the resource number

* Returns : None

*

ER R R R R I R S R S I R S E E I R h E I R E S S S b E I E E E I E E h E E I h E I E b E b E E 3 3 b b S S b 3 S

*/

void OS RELEASE RES (uchar Res_ Num)
{
uchar data i, temp, tp;
uchar idata * idata internal;
bit found;

EA = 0;

/* store current task registers just in case task change is required */
RSO = 1; /* USE BANK 1 */
SaveSFRs (&task[Running] .rega) ;
SaveBank0 (&task[Running] .reg0) ;
RSO = 0; /* RETURN TO BANK 0 */

task[Running] .stackptr = temp = SP; /* Current task's SP is saved */
internal = MAINSTACK; /* MAINSTACK is declared in STARTUP.A51 */

/* Current task's USED stack area is saved */

i=0;

do {
task[Running].stack[i++] = *(internal++);
} while (internal<=temp);

tp=0;

found=0;

/* first find highest priority task that was waiting for this resource */
/* or variable to be free */
for (i=0; i<NOOFTASKS; i++)

{

if ((task[i].resource==Res Num) && task[i].priority>tp)

{ temp=i;
tp= task[i].priority;
found=1;
}
}
if (found) /* temp now contains task number of the highest priority */

/* task that was waiting for the resource */

{

Resource[Res Num] = temp;/* mark resource as being used by new task */
// task[temp].statusl &= ~WAIT4R F; /* clear flag */
task[temp] .resource = FREE;

Download free eBooks at bookboon.com

194

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

/* mark task no longer waiting for resource */
task[Running].timeout = 3; /* put running task as waiting timeout */
task[Running].status2 &= ~PREEMP F; /* mark task as NOT pre-emptied */

/* Either use */

// task[temp] .timeout = 1;
/* or use */
task[temp].timeout = NOT_TIMING; /* clear flag */
ReadyQTop++;
ReadyQTop = temp; / place the task which had been waiting for */

/* the semaphore in the ReadyQ */

V_TaskChange () ;

else

Resource[Res_Num] = FREE;
EA = 1;

/*
Kk Ak Ak k ko k

*/

/*
R R R I E S I S b E I b E E h h h E b b b E E Sk b b b E h h b h b E h h b h b E b h b h b b b b E E b E b b b b b b b 3k b
*

* Function name : OS_WAIT4RES

*

* Function type : Event-Waiting System call

* Description : This system call causes a task to wait for a resource to

* become zero (within a given timeout),

* calling a voluntary task

* change. 0 timeout implies wait forever.

* If the resource is

* already available, the task continues to execute.

*

* Arguments : ticks Represents the number of ticks for which the
* task will wait for the semaphore. Valid range for
* this argument is 0 to 65535. A value of 0 means
* waiting forever for the semaphore.

*

* Returns : None

*

R R R E S E S h I S b E h b b E E E b h E b b b E E S b b b b b h h h b h b b b b h b E b b b b h b b b dE h h b b b b b b b b b

*/

void OS WAIT4RES (uchar Res Num,uint ticks)
{

uchar data i, temp;

uchar idata * idata internal;

EA = 0;

Download free eBooks at bookboon.com

195

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

/* store current task registers just in case task change is required */

RSO = 1; /* use bank 1 */
/* store current task A,B,DPH,DPL SFRs and bank 0 registers just in case */
/* there is a need for a voluntary task swap */

SaveSFRs (&task[Running] .rega) ;

SaveBankO (&task[Running] .reg0) ;

RSO = 0; /* use bank 0 */

task[Running] .stackptr = temp = SP;
/* Current task's SP is saved */

internal = MAINSTACK; /* MAINSTACK is declared in STARTUP.A51 */

i=0;
do { /* Current task's USED stack area is saved */
task[Running].stack[i++] = * (internal++);
} while (internal<=temp);
if (Resource[Res Num]==FREE) /* If resource already */
{ /* available it takes the */
Resource [Res Num]=Running; /* resource and the task */
task[Running] .resource=FREE;
EA = 1; /* continues to run. */
}
else
{ /* If resource is being used */
// task[Running].statusl |= WAIT4R F;

/* the task is sent in the */

task[Running] .resource = Res_Num;
/* waiting state, task change */

task[Running] .timeout = ticks;
task[Running] .status2 &= ~PREEMP F;
/* mark task as NOT pre-emptied */

V_TaskChange () ; /* a task switch. */

}
}
/*
hhkhkhkhkhkkhhkhhkhkhhhhhhhhhkhhhhhhhhhhhkhkrh bbbk hh bbbk rh b kb rh b kb rkh bk dkrhrhkhkrhkrhkhkrkhrkkx
*/
/*

R R R R RS EEE SRS R SRR R R RS

*

* Function name : OS_SEND_MSG

* Function type : task suspension system call

* Description : this system call sends a message to another task

* If other task was already waiting, a voluntary task
* change is invoked.

*

* Arguments : message, with the following structure

* struct letter{uchar dest,src;union dataformat dat;}
* Returns : none

*

~k***~k~k~k~k~k~k~k~k~k***~k***~k***~k***~k~k***~k***~k***~k***~k***~k*************************/

Download free eBooks at bookboon.com

196

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll Appendix E

void OS_SEND_MSG(struct letter xdata *msg)
{

uchar 1i,j,temp,dest task,msg _len;

uchar idata * idata internal;

bit waiting,mboxfree;

RSO = 1; /* use bank 1 */
/* store current task A,B,DPH,DPL SFRs and bank 0 registers just in case */
/* there isa need for a voluntary task swap */

SaveSFRs (&task[Running] .rega) ;

SaveBankO (&task[Running] .reg0) ;

RSO = 0; /* use bank 0 */

task[Running] .stackptr = temp = SP; /* Current task's SP is saved */
internal = MAINSTACK; /* MAINSTACK is declared in STARTUP.A51 */

i = 0;

do { /* Current task's USED stack area is saved */
task[Running].stack[i++] = *(internal++);
} while (internal<=temp);

i=0;

waiting=0;
dest task = msg[0].dest;

msg_len = msg[0].len;

do {
if ((mbox[i].dest==dest task) && (mbox[i].src==FREE) && (mbox[i].len==ZERO) &&

SIMPLY CLEVER

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Download free eBooks at bookboon.com

197 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

(task[dest task].statusl & WAIT4M F))
/* there is already task waiting for message */
/* Hence transfer message, clear mailbox and make a
voluntary task change */
{

waiting=1;

mbox[i].src = msg[0].src;

mbox[i].len = msg len;

for (j=0;j<msg_len;j++)

mbox[i].dat.string.s[j] = msg[0].dat.string.s[j];
/* Place the task that was waiting for message, in Ready Q */
/* Leave the WAIT4M F still set, since it will be used */
/* and cleared later on */

/* by the GET MSG routine */

/* Either use */

task[dest task].timeout = NOT TIMING;
/* mark task as NOT waiting for timeout */
ReadyQTop++;
*ReadyQTop = dest task;

/* or use */
// task[dest task].timeout = 1;

/* mark task as waiting for 1 timeout */

/* and then the task change is made here */

/* where the running task enters a waiting state */

/* The mailbox has to be cleared by issuing the 'clear message command' */
/* immediately after using the 'wait message' command */

/* This is done automatically when you use the 'waitdmsg' command */

task[Running].timeout = 2;
task[Running].status2 &= ~PREEMP F;
/* mark task as NOT pre-emptied */
V_TaskChange () ; /* a task switch. */
}
i++;
} while ((i<MBXSIZE) && !waiting);
/* Else, find free mailbox location
/* and leave message */
if (!'waiting)
{
i=0;
mboxfree=0;
do
{
/* there is a free mailbox location */
if ((mbox[1i] .dest==FREE) && (mbox[i].src==FREE) && (mbox[i].len==ZERO))
{
mboxfree=1;
mbox[i].dest = dest task;
mbox[i].src = msg[0].src;
mbox[i].len = msg[0].len;

for (j=0;j<msg len;j++)

Download free eBooks at bookboon.com

198

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix E

mbox[i].dat.string.s[j] = msg[0].dat.string.s[j];
}

it++;

} while ((i<MBXSIZE) && !mboxfree);

EA=1;
/*
ER R R R R I R R S I b I R S h E I R b R E S S S E E I b I E I I I A E E I h I I E b b E E I 3 b b S S I

*/

/*
R Rk Ak Sk b b kb b b kb b b bk b b b b b b b b b b b b b bk bk kb kb b b b b b b b bk
*

* Function name : 0S CLEAR MSG

*

* Function type : Task suspension system call

*

* Description : This system call clears a message from mailbox for a task
* number

*

* Arguments : task number

*

* Returns : none

*

AR RS S S S EE S S E S SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

*/

void OS_CLEAR _MSG(uchar task_num)
{

uchar i;

EA=0;
for (i=0; i<MBXSIZE;i++) {
if ((mbox[1i].dest==task num) && (mbox[i].src!=FREE) && (mbox[i].len!=ZERO))

/* find relevant mailbox */

mbox[i].dest = FREE;
mbox[i].src = FREE;
ZERO;

mbox[i].len

EA=1;
/*
LR R RS S EE

*/

/*
R R R I S I S S I S b I E I b E E E b h E b h b E E S h e E S I E S b h h SE E I E E b E h b h I E kb E E E E 3 b b b b b I 3k

*

* Function name : 0OS CHECK MSG

*

* Function type : Check message presence system call

Download free eBooks at bookboon.com

199

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll Appendix E
* Description : System call checks if there is a message for task in

* mailbox

*

* Arguments : message, with the following structure

* struct letter{uchar dest,src,len;union dataformat dat;}

*

* Returns : bit 1 if messge present

* bit 0 if message not present

*
R Rk bk bk kb b b R R
*/
bit OS CHECK MSG (uchar task num)
{
if ((mbox[task num].dest==Running) && mbox[task num].len>ZERO)

return (1);

else
return (0);
/*
Ak hkhhkhkhhkhkhkhhhhhkhhkdh bk hhhkhhkhhkh bk hkhkhkhkhkdhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkdkhkhhkhkrhhhhhkhdxhxk*x
*/
/*

Rk kb b bk b kb b b b b b b b b b b b b b b b R b bk bk b b b b b b R R b b b b R

* Function name : OS GET MSG

*

* Function type : Get message from mailbox system call

Ijoined MITAS because o L
I wanted real responsibility www.discovermitas.com
11 o .
L

I was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen

& solve problems

MAERSK

Download free eBooks at bookboon.com

200 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

* Description : System call checks if there is a message for task in

* mailbox

* Arguments : message, with the following structure

* struct letter{uchar dest,src,len;union dataformat dat;}
*

* Returns : bit 1 if messge present

* bit 0 if message not present

*

LR RS S S S E RS EEESS S SRS SRR SRS EEEEEEEEEEEE SRR EEEEEEEE SRS S
*/

void OS GET MSG(struct letter xdata *msg)

{

uchar 1i,temp,Jj;

bit present;

EA = 0;
i=present=0;
do

{
if ((mbox[i].dest==Running) && mbox[i].len>ZERO && (task[Running].statusl & WAIT4M F))

/* If message was waiting for message, and then the message was placed*/

*/ later by a send message command */

present = 1;

/* get message, clear mailbox and return to same task */

msg[0] .dest = mbox[i].dest; /* task number of destination */
msg[0].src = mbox[1i].src; /* task number of source */
msg[0].len = temp = mbox[i].len;

for (j=0;j<temp;j++)
msg[0].dat.string.s[j] = mbox[i].dat.string.s[j];

mpbox[1].dest = FREE; /* clear space in mailbox */
mbox[i].src = FREE;
mbox[1i].len = ZERO;

task[Running].statusl = ZERO;
task[Running] .status2 = ZERO;
}
i++;
} while ((i<MBXSIZE) && !present);
EA = 1;
}
/*
Ak hkkhkhkhkhhkhkhkhkhhkhkhkhhkh bk hhhkhhkhk bk hkhk kb hkhkhkh bk hk bk hk bk hkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhhrkhkhhkhxkx
*/
/*
R i i I I S I I I i I I I I S I I b I b b I b I b S I I S I b I b b b Ik b b b b b b b b b b b S 3
*

* Function name : OS WAIT MESSAGE

*

* Function type : task waiting for message system call

*

Download free eBooks at bookboon.com

201

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli Appendix E
* Description : this system call waits for a message

*

* Arguments : message, with the following structure

* struct letter{uchar dest,src,len;union dataformat dat;}

* Returns : none

*

R i S I i S I I I I S S I I i S I I b I b b I b I S S I I S i b b b I b Ik b b b I b I b b b b b S 3
*/

void OS WAIT MESSAGE (struct letter xdata *msg, uint ticks)

{

uchar i, j, temp;

uchar idata * idata internal;

bit present,mboxfree;
EA=0;

RSO = 1; /* use bank 1 */
/* store current task A,B,DPH,DPL SFRs and bank 0 registers just in case*/
/* there is a need for a voluntary task swap */
SaveSFRs (&task[Running] .rega) ;
SaveBank0 (&task[Running] .reg0) ;
RSO = 0; /* use bank 0 */

task[Running].stackptr = temp = SP; /* Current task's SP is saved */
internal = MAINSTACK; /* MAINSTACK is declared in STARTUP.A51 */

do { /* Current task's USED stack area is saved */
task[Running].stack[i++] = * (internal++);
} while (internal<=temp);
i=present=0;
do
{
if ((mbox[1i].dest==Running) && mbox[i].len>ZERO)

/* 1f message already present */

present = 1;

/* get message, clear mailbox and return to same task */

msg[0].dest = mbox[i].dest; /* task number of destination */
msg[0].src = mbox[i].src; /* task number of source */
msg[0].len = temp = mbox[i].len;

for (j=0;j<temp;j++)
msg[0].dat.string.s[j] = mbox[i].dat.string.s[j];

mbox[1] .dest = FREE; /* clear space in mailbox */
mbox[i].src = FREE;
ZERO;

mbox[1].len

task[Running].statusl = ZERO;
task[Running] .status2 = ZERO;
}
i++;

} while ((i<MBXSIZE) && !present);

Download free eBooks at bookboon.com

202

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix E

/* it executes this code if no message was present, */
/* hence it has to wait */
if (!present)
{
i=mboxfree=0;
do
{
if ((mbox[1] .dest==FREE) && (mbox[i].src==FREE) && (mbox[i].len==ZERO))
/* If mailbox available */
{
mboxfree=1;
mbox[i].dest = Running; /* book mailbox by setting destination */
mbox[i].src = FREE;
mbox[i].len = ZERO;

/* task change made here */

/* and the task then enters the waiting state */

task[Running] .statusl |= WAIT4M F; /* mark task as waiting for message */
/* flag used also by OS _GET MSG */

task[Running].timeout = ticks;

task[Running].status2 &= ~PREEMP F; /* mark task as NOT pre-emptied */

V_TaskChange () ; /* a task switch. */
}

i++;

} while ((i<MBXSIZE) && !mboxfree);

}

/* 1f no spare mailboxes, signal flag and return */

“I studied
English for 16 P
L]

years but... »
...I finally
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

— . ‘I JJ ¥ '

Download free eBooks at bookboon.com

203 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

PaulOS An 8051 Real-Time Operating System

Partli Appendix E
if (!present && !mboxfree)
task[Running].status2 |= NO MBOX FREE F; /* mark space for mailbox */
EA = 1;
}
/*

R R h b h S E S i S S b h b b b E E h b b h b b b E h bk b b b b b h b b b b b b b b b b b b b b b b b b b E E b h b b b b b b b b b

*/

/*
Rk kb bk kb b ik b b b b b b b b i
*

* Function name : OS_WAITT

*

* Function type : Event-Waiting System call

* Description : This system call causes a task to go in the waiting state

* for a timeout period given by a defined number of

* RTOS ticks.

*

* Arguments : ticks Represents the number of ticks for which the

* task will wait. Valid range for this parameter

* is 1 to 65535.

* A zero waiting time parameter is set to 1 by the
* RTOS itself, since a zero effectively kills the
* task, making it wait forever.

* Returns : None

*

R R R b I I I E S S I S b E I b E E h h E E b b b E E Sk b b b h h h b h b h h b b b E b h b h b b b b E E h h b h b b b b b b b

*/

void OS_WAITT (uint ticks)
{
uchar data i, temp;
uchar idata * idata internal;
EA = 0;

RSO = 1; /* use bank 1 */
/* store current task A,B,DPH,DPL SFRs and bank 0 registers just in case */
* there is a need for a voluntary task swap */
SaveSFRs (&task[Running] .rega) ;
SaveBankO (&task[Running] .reg0) ;
RSO = 0; /* use bank 0 */

task[Running] .stackptr = temp = SP; /* Current task's SP is saved */
internal = MAINSTACK; /* MAINSTACK is declared in STARTUP.A51 */

i=0;
do { /* Current task's USED stack area is saved */
task[Running] .stack[i++] = *(internal++);
} while (internal<=temp);
if (ticks == 0)

ticks = 1; /* Task's timeout variable is updated */

task[Running] .timeout = ticks;
Download free eBooks at bookboon.com

204

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

/* and the task then enters the waiting state */
task[Running].status2 &= ~PREEMP F; /* mark task as NOT pre-emptied */

V_TaskChange () ; /* Make a voluntary task change */

}

/*

KA KA KA KA AR AR AR AKX KK
*/

/*

AR RS S E S E S S E S SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

*

* Function name : OS_WAITP

* Function type : Event-Waiting System call

* Description : This system call is used by a task to wait for the end of
* its periodic interval.

* If the interval has already passed, task continues to

* execute.

*

* Arguments : None

*

* Returns : None

*

AR RS S S S EE S S E S SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

*/

void OS WAITP (void)
{
unsigned char i, temp;

uchar idata * idata internal;
EA = 0;

/* store current task bank 0 registers just in case there is */
/* a need for a voluntary task swap */

RSO = 1; /* USE BANK 1 */

SaveSFRs (&task[Running] .rega) ;

SaveBankO (&task[Running] .reg0) ;

RSO = 0; /* RETURN TO BANK 0 */

task[Running] .stackptr = temp = SP; /* Current task's SP is saved */
internal = MAINSTACK; /* MAINSTACK is declared in STARTUP.A51 */

/* Current task's USED stack area is saved */

i=0;

do {
task[Running].stack[i++] = * (internal++);
} while (internal<=temp);

if (! (task[Running].status2 & WAIT4V_F))

/* if periodic interval has not yet passed, as is generally the case */
{
task[Running].statusl |= WAIT4V F; /* set task to wait */
task[Running].status2 &= ~PREEMP F;
/* mark task as NOT pre-emptied */

V_TaskChange () ; /* make a voluntary context switch */

Download free eBooks at bookboon.com

205

http://bookboon.com/

}

else /* if periodic time already elapsed, */
{

task[Running] .status2 &= ~WAIT4V F; /* clear waiting flag and */

EA = 1; /* do nothing else and continue running */

}

/*
ERE R
*/
/*
R R R R R I R R R I R I b I R I E E E R E R E S b S S E I I I E E E I E Ik E E h h h I h kb E E I 3 b b b h S b Ik Ik

*

* Function name : OS PERIODIC

* Function type : Event-Waiting System call

* Description : This system call causes a task to repeat its function

* every given

* number of RTOS ticks.

*

* Arguments : ticks Represents the length of the periodic
* interval in terms

* of RTOS ticks, after which the task repeats

* itself.

* Valid range for this parameter is 1 to 65535.

DUKE

THE FUQUA
SCHOOL
OF BUSINESS

www.fuqua.duke.edu/whileyouweresleeping

Download free eBooks at bookboon.com ,\\\(«\

http://bookboon.com/
http://bookboon.com/count/advert/faa87ccb-c5b2-4bf9-a8ab-a30a00d27dfd

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

* Returns : None

*

LRSS S E S S S S S S S SRR EEREEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

*/

void OS PERIODIC (uint ticks)

{
EA = 0;
if (!ticks) ticks = 1; /* just a pre-caution */
task[Running] .interval count = ticks;

/* Task's periodic interval count */
task[Running].interval reload = ticks;

/* and reload variables are initialised. */

EA = 1;

/*

KA KA AR A AR A AR KK

*/

/*
AR R RS S S S S S S S S S S S E RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEREEE
*

* Function name : OS WAITI

*

* Function type : Event-Waiting System call

* Description : This system call causes a task to wait for a given event

* (interrupt). It identifies

* for which interrupt the task has to wait. Once identified

* - the task's appropriate

* flag is set and the task is set in the waiting state by causing
* a task swap - the task

* would wait indefinitely for the interrupt as its timeout variable
* would be set to 0

* (NOT TIMING) either during initialisation of the RTOS or after
* expiry of its timeout period due to other

* prior invocations of wait-inducing system calls.

*

* Arguments : intnum Represents the interrupt number associated with

* the given

* interrupt for which the calling task intends to

* wait

*

* Returns : None

*

ER R RS S S SE S S E S S S S SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEREEE

*/

void OS_WAITI (uchar int_num)
{
unsigned char i,temp;
uchar idata * idata internal;

EA = 0;

Download free eBooks at bookboon.com

207

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

switch (int num)
{
#if (!STAND_ALONE_ISR 00)
case 0: /* Interrupt number 0 */
task[Running].statusl |= WAIT4I F; /* mark task as waiting int */
task[Running] .intnum = EXTO INT; /* Task made to wait for */
/* external interrupt 0 */
RSO = 1; /* use bank 1 */
/* store current task A,B,DPH,DPL SFRs and bank 0 registers just in case */
/* there is a need for a voluntary task swap */
SaveSFRs (&task[Running] .rega) ;
SaveBankO (&task[Running] .reg0) ;
RSO = 0; /* use bank 0 */

task[Running] .stackptr = temp = SP;
/* Current task's SP is saved */

internal = MAINSTACK;
/* MAINSTACK is declared in STARTUP.A51 */

do { /* Current task's USED stack area is saved */
task[Running].stack[i++] = * (internal++);

} while (internal<=temp);

task[Running].status2 &= ~PREEMP F;
/* mark task as NOT pre-emptied */

V_TaskChange () ; /* Make a voluntary task change */
break;

#endif

#if ((TICK TIMER != 0) && (!STAND ALONE ISR 01))

case 1: /* Interrupt number 1 */
task[Running].statusl |= WAIT4I F; /* mark task as waiting int */
task[Running].intnum = TIMO INT; /* Task made to wait for */
/* timer O interrupt */
RSO = 1; /* use bank 1 */
/* store current task A,B,DPH,DPL SFRs and bank 0 registers just in case */
/* there is a need for a voluntary task swap */
SaveSFRs (&task[Running] .rega) ;
SaveBankO (&task[Running] .reg0) ;
RSO = 0; /* use bank 0 */

task[Running] .stackptr = temp = SP;
/* Current task's SP is saved */

internal = MAINSTACK;
/* MAINSTACK is declared in STARTUP.A51 */

do { /* Current task's USED stack area is saved */
task[Running].stack[i++] = *(internal++);

} while (internal<=temp);

task[Running] .status2 &= ~PREEMP F;
/* mark task as NOT pre-emptied */

Download free eBooks at bookboon.com

208

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli Appendix E
V_TaskChange () ; /* Make a voluntary task change */
break;
#endif
#if (!STAND ALONE ISR 02)
case 2: /* Interrupt number 2 */
task[Running].statusl |= WAIT4I F; /* mark task as waiting int */
task[Running] .intnum = EXT1 INT; /* Task made to wait for */

/* external interrupt 1 */
RSO = 1; /* use bank 1 */
/* store current task A,B,DPH,DPL SFRs and bank 0 registers just in case */
/* there is a need for a voluntary task swap */
SaveSFRs (&task[Running] .rega) ;
SaveBank0 (&task[Running] .reg0) ;
RSO = 0; /* use bank 0 */

task[Running].stackptr = temp = SP;
/* Current task's SP is saved */
internal = MAINSTACK;
/* MAINSTACK is declared in STARTUP.A51 */
i=0;
do { /* Current task's USED stack area is saved */
task[Running].stack[i++] = *(internal++);

} while (internal<=temp);

task[Running] .status2 &= ~PREEMP F;
/* mark task as NOT pre-emptied */

V_TaskChange () ; /* Make a voluntary task change */
break;
#endif

#1f ((TICK TIMER != 1) && (!STAND ALONE ISR 03))
case 3: /* Interrupt number 3 */

task[Running] .statusl |= WAIT4I F; /* mark task as waiting int */
task[Running].intnum = TIM1 INT; /* Task made to wait for */

/* timer 1 interrupt */

RSO = 1; /* use bank 1 */
/* store current task A,B,DPH,DPL SFRs and bank 0 registers just in case */
/* there is a need for a voluntary task swap */

SaveSFRs (&task[Running] .rega) ;

SaveBankO (&task[Running] .reg0) ;

RSO = 0; /* use bank 0 */

task[Running] .stackptr = temp = SP;
/* Current task's SP is saved */

internal = MAINSTACK;
/* MAINSTACK is declared in STARTUP.A51 */

do { /* Current task's USED stack area is saved */
task[Running].stack[i++] = *(internal++);

} while (internal<=temp);
task[Running] .status2 &= ~PREEMP F;
/* mark task as NOT pre-emptied */
Download free eBooks at bookboon.com

209

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

V_TaskChange () ; /* Make a voluntary task change */
break;
#endif

#if (!STAND ALONE ISR 04)

case 4: /* Interrupt number 4 */\
task[Running].statusl |= WAIT4I F; /* mark task as waiting int */
task[Running] .intnum = SERO_INT; /* Task made to wait for */

/* serial port interrupt */
RSO = 1; /* use bank 1 */
/* store current task A,B,DPH,DPL SFRs and bank 0 registers just in case */
/* there is a need for a voluntary task swap */
SaveSFRs (&task[Running] .rega) ;
SaveBankO (&task[Running] .reg0) ;
RSO = 0; /* use bank 0 */

task[Running] .stackptr = temp = SP;
/* Current task's SP is saved */
internal = MAINSTACK;
/* MAINSTACK is declared in STARTUP.A51 */
i=0;
do { /* Current task's USED stack area is saved */
task[Running].stack[i++] = *(internal++);
} while (internal<=temp);
task[Running].status2 &= ~PREEMP F;
/* mark task as NOT pre-emptied */

Excellent Economics and Business programmes at: =\
[

university of e AACSB
groningen b ACCREDITED

| 4

| |
“The perfect start

of a successful,
international career’

I

-

j' CLICK HERE

to discover why both socially
and academically the University
of Groningen is one of the best

i laces for a student to be
www.rug.nl/feb/education P

Download free eBooks at bookboon.com

210 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

PaulOS An 8051 Real-Time Operating System

Part Il
V_TaskChange () ; /* Make a voluntary task change */
break;
#endif
#if ((TICK _TIMER != 2) && (!STAND ALONE ISR 05))
case 5: /* Interrupt number 5 */
task[Running].statusl |= WAIT4I F; /* mark task as waiting int */
task[Running].intnum = TIM2 INT; /* Task made to wait for */
/* timer 2 interrupt */
RSO = 1; /* use bank 1 */
/* store current task A,B,DPH,DPL SFRs and bank 0 registers just in case */
/* there is a need for a voluntary task swap */
SaveSFRs (&task[Running] .rega) ;
SaveBank0 (&task[Running] .reg0) ;
RSO = 0; /* use bank 0 */
task[Running].stackptr = temp = SP;
/* Current task's SP is saved */
internal = MAINSTACK;
/* MAINSTACK is declared in STARTUP.A51 */
i=0;
do { /* Current task's USED stack area is saved */

/*

}
/*

task[Running].stack[i++] = *(
} while (internal<=temp);
task[Running].status2 &= ~PREEMP F;
mark task as NOT pre-emptied */

V_TaskChange () ;
break;
#endif
default:
EA = 1;

break;

internal++) ;

/* Make a voluntary task change */

ER R R R R I R S I b I R h E R R E R I S I h h E E E h E E E E I E E E E E h b I I kb b E I 3 h b b h b b E Sk

*/

/*

Rk kb Sh b b kb ik b b b b h b b b b b b b b b b b b b b b bk bk b

*

*

*

Function name : OS_KILL_TASK

Function type : Task Suspension System call

Description : This system call kills the current task, by putting it

permanently waiting, such that

it never executes again. It also clears any set

waiting signals

which the task might have.

Arguments : Task number to be killed

Download free eBooks at bookboon.com

211

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

* Returns : None

*

***/

void OS_KILL_TASK (uchar task_num)
{

unsigned char temp,i;

uchar data * idata gptr;

bit found;

EA = 0;

if (task([task num].status2 & TASK KILLED F)

(i}
else
{
task[task _num].status2 |= TASK_KILLED F;

/* check if task waiting for some message */

for (i=0; i<MBXSIZE;i++)
{
if (mbox[i].dest == task num)
{
mbox[i].dest = FREE;
mbox[i].src = FREE;
ZERO;

mbox[i].len
}
}

if (task _num == Running)

/* if task happens to be the present running one */

{

task[Running].statusl = ZERO;
/* Killed by clearing its flags */

task[Running].status2 = ZERO;
/* Killed by clearing its flags */

task[Running].timeout = NOT_ TIMING;

/* setting it to wait forever */

task[Running] .interval count = ZERO;

/* Periodic interval count 0*/

task[Running].interval reload = ZERO;

/* Periodic interval count 0 */

task[Running] .priority = LOWEST;

/* lowest priority setting */

task[Running] .status2 |= TASK KILLED_F;
V_TaskChange(); /* and then cause a task switch. */

}

/* Otherwise, search the ready queue, and if it is there,

number to that of the idle task */
found = 0;
gptr = ReadyQ;
while (gptr <= ReadyQTop)
{
if (*gptr == task num)

{ *gptr = IDLE TASK; found = 1;}

gptr++;
}

Download free eBooks at bookboon.com

212

simply change its

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

/* The Ready Queue is ALWAYS sorted before ATTEMPTING any task change */
if ((ReadyQTop != ReadyQ) && found)

{ /* the queue is sorted such */
gptr = ReadyQ; /* that the idle task */
while (gptr < (ReadyQTop-1)) /* ends at ReadyQTop */
{

if (*gptr == IDLE_TASK)

{
temp = *gptr;
*gptr = *(gptr + 1);
*(gptr + 1) = temp;

gptr++;

ReadyQTop--; /* to eliminate double IDLE TASKS */
}

if (!found) /* if task is waiting for some event or timeout */
{
task[task num].statusl = ZERO;

/* Killed by clearing its flags */
task[task num].status2 = ZERO;

/* Killed by clearing its flags */
task[task num].catalog = IDLE TASK;

/* changing id to IDLE TASK */
task[task num].timeout = NOT TIMING;

/* setting it to wait forever */

task[task num].interval count = ZERO;

sssssssssssssvsssssssssssssssssssssssssssssssssnnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

'Qa;

One gerrmer:;trion’s transform;tioﬁ is the next's status quo.
In the near future, people may soon think it's strange that

devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

Download free eBooks at bookboon.com &\S«\

213 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

PaulOS An 8051 Real-Time Operating System
Partli

/* Periodic interval count 0 */
task[task num].interval reload = ZERO;
/* Periodic interval count 0 */

task[task num].priority = LOWEST; /* Periodic interval count 0 */

task[task num].status2 |= TASK KILLED F;
}

}

EA = 1;

}
/%
Ak Kk Ak hkhkh kA hkhkhkhkh ok Ak bk hk bk h bk hk bk hk Ak khhkhk bk hk kA hkk ko h ko bk hk Ak hhkh ko hkhkhkhkhkhkhkhkhkhkhkhkrhkhkhkhhkhkhkhkrhkhkhkxkx
*/
/*

R R R R R R R R R R I S I R R R R I I I R I R R R S I I R I h bk

*

* Function name : V_TaskChange

* Function type : Context Switch (Internal function)

* Description : This function is used to perform a voluntary context
* switch i.e. task swapping

*

* Arguments : none

*

* Notes

*

* Returns : None

*

R R R R R R R R R R I S R R I R R I I R I R I I S R E R I I b

*/

void V_TaskChange (void)

{
uchar data i, temp;
uchar idata * idata internal;
uchar data * idata gtask;
uchar data * idata gptr;

TinQFlag = 0;

internal = MAINSTACK;
/* MAINSTACK is the address of the start of */
/* the main internal stack defined in */
/* STARTUP.A51 */
/* The Ready Queue is ALWAYS sorted before ATTEMPTING any task change */
if (ReadyQTop != ReadyQ)
{ /* the queue is sorted such that */
gptr = ReadyQTop; /* the highest priority task */
while (gptr > ReadyQ) /* becomes the first in ready queue */
{
if (task[*gptr].priority > task[*(gptr - 1)].priority)
{

Download free eBooks at bookboon.com

214

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

temp = *gptr;
*gptr = *(gptr - 1);
*(gptr - 1) = temp;

aptr--;

}

Running = ReadyQ[0]; /* set the new task as running */

/* READY queue is shifted down by one position only after a task change */

gtask = ReadyQ;
gptr = gtask + 1;
while (gtask <= ReadyQTop)
{
*gtask++ = *qgptr++;
}

ReadyQTop--; /* Pointer to last task in queue is decremented */

if (ReadyQTop < ReadyQ) /* Ensure that this pointer is never */
ReadyQTop = ReadyQ;/* below the start of the READY queue */

/* The new running task's USED stack area is copied to internal RAM */
temp = task[Running].stackptr;

internal = MAINSTACK;
i=0;
do {

*(internal++) = task[Running].stack[i++];
} while (internal<=temp);
SP = temp; /* The new running task's SP is restored */

if (task[Running].statusl & WAIT4I F)

/* 1f new task was waiting for interrupt, */
{
task[Running] .statusl &= ~WAIT4I F;

/* then clear interrupt flag */
/* Get the new tasks registers which were stored externally */
RSO = 1; /* USE BANK 1 */
RecallBankO (&task[Running] .reg0) ;
RSO = 0; /* RETURN USING BANK 0 */
POP5(); /* starts other task here */
}

else if (task[Running].status2 & PREEMP F)

/* 1f new task was pre-emptied before, */
{
task[Running].status2 &= ~PREEMP F;

/* then clear pre-emptied flag */
/* Get the new tasks registers which were stored externally */
RSO = 1; /* USE BANK 1 */
RecallBankO (&task[Running] .reg0) ;
RSO = 0; /* RETURN USING BANK 0 */
POP5(); /* starts other task here */
}

else if (task[Running].status2 & FIRST TIME F)
{ /* if new task running for the 1lst time, */

task[Running] .status2 &= ~FIRST_TIME F;
Download free eBooks at bookboon.com

215

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix E

/* then clear the flag */
SP = temp; /* The new running task's SP is restored */

}

else
{
RSO = 1; /* USE BANK 1 */
RecallBankO (&task[Running] .reg0) ;
RecallSFRs (&task[Running] .rega);
RSO = 0; /* RETURN USING BANK 0 */
}
EA = 1;

}

/*

Ak hkhhkhkhhkhkhkhhhhhkhhhkhhhhhhkhhkhhkhkhhkhkhk kb hk bk hkhkhkhhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhhkhhhkhdkhxkx

*/

/*

Rk kb bk kb b b Sk b S b b b b b b b b
*

* Function name : PE TaskChange

*

* Function type : Context Switch (Internal function)
*
* Description : This function is used to perform a forced or pre-emtive

* i.e. context switch or task swapping

*

/

Leadiny
% Maastricht University o Learnin:

Join the best at
P i N 33" place Financial Times worldwide ranking: MSc
the Maastricht University International Business

1%t place: MSc International Business
1 1%t place: MSc Financial Economics
SChOOI Of Bus' ness a nd .« 2" place: MSc Management of Learning
. 2" place: MSc Economics
Econom |CS! 2" place: MSc Econometrics and Operations Research
2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.ma penday.nl

Download free eBooks at bookboon.com &\5«\

216 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

PaulOS An 8051 Real-Time Operating System

Partli Appendix E
* Arguments : none

*

*

* Notes : This procedure is called from the timer tick interrupt,
* there would be 5 registers pushed on the stack, saved
* while the current task was running.

* Push A, B, DPH, DPL and PSW

*

* Comes here ONLY from an Interrupt

* (Tick Timer or other)

* Returns : None

*

LRSS S EEE S E S S EEEEEREEE

*/

void PE TaskChange (void) using 1

{
uchar data i, temp;
uchar idata * idata internal;
uchar data * idata gtask;

uchar data * idata gptr;
TinQFlag = 0;

/* The Ready Queue is ALWAYS sorted before ATTEMPTING any task change */

if (ReadyQTop != ReadyQ)
{ /* the queue is sorted such that */
gptr = ReadyQTop; /* the highest priority task */
while (gptr > ReadyQ) /* becomes the first in ready queue */
{
if (task[*gptr].priority > task[* (gptr - 1)].priority)
{
temp = *gptr;
*gptr = *(gptr - 1);
*(gptr - 1) = temp;

aptr--;

}
/* The first task in the READY queue has a higher priority than the current */
/* one, therefore the current task is PRE-EMPTIED, Queue shifted down */
/* the current task is placed at the top of the Ready Queue again */
/* so that */
/* it can continue to run when its priority allows it to and a */

/* new task is set to run */

task[Running].status2 |= PREEMP _F; /* mark old task as pre-emptied */

temp = Running;

/* NOW WORK WITH THE NEW TASK */
internal = MAINSTACK; /* MAINSTACK is the address of the start */
/* of main stack defined in STARTUP.AS51 */

Running = ReadyQ[0]; /* set the new task as running */

Download free eBooks at bookboon.com

217

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

/* READY queue is shifted down by one position only after a task change */

gtask = ReadyQ;
gptr = gtask + 1;

while (gtask <= ReadyQTop)

{
*gtask++ = *gptr++;

}

ReadyQTop--; /* Pointer to last task in queue is decremented */

if (ReadyQTop < ReadyQ) /* Ensure that this pointer is never */
ReadyQTop = ReadyQ; /* below the start of the READY queue */

ReadyQTop++;
ReadyQTop = temp; / the old task is placed in the ready queue. */

/* The new running task's USED stack area is copied to internal RAM */
/* and the stack pointer adjusted accordingly */
temp = task[Running].stackptr;

internal = MAINSTACK;
i=0;
do {

*(internal++) = task[Running].stack[i++];
} while (internal<=temp);

SP = temp; /* The new running task's SP is restored */

if (task[Running].statusl & WAIT4I F)
/* 1f new task was waiting for interrupt, */
{
task[Running] .statusl &= ~WAIT4I F;
/* then clear interrupt flag */
/* Get the new tasks registers which were stored externally */
RecallBankO (&task[Running] .reg0) ;
POP5I(); /* starts other task here */
}

else if (task[Running].status2 & PREEMP_F)
/* if new task was pre-emptied before, */
{
task[Running].status2 &= ~PREEMP F;
/* then clear pre-emptied flag */
/* Get the new tasks registers which were stored externally */
RecallBankO (&task[Running] .reg0) ;
POP5I(); /* starts other task here */
}

else
{
if (task[Running].status2 & FIRST TIME F)
{ /* if new task running for the 1lst time, */
task[Running] .status2 &= ~FIRST TIME F;
/* then clear the flag */
POPOI(); /* starts other task here */

else
{ /* 1f new task had voluntarily given up before, do nothing */

/* Get the new tasks registers */

Download free eBooks at bookboon.com

218

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix E

RecallBankO (&task[Running] .reg0) ;
RecallSFRs (&task[Running].rega) ;
POPOI(); /* starts the other task here */

/*

KA KA AR AR A A A AKX KK

*/

/*
AR RS S S S S S S S S SRR ERE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEE

*

* Function name : Xtra Int 0

* Function type : Interrupt Service Routine

* Description : This is the external 0 interrupt ISR whose associated
* interrupt number is 0.

*

* Arguments : None

*

* Returns : None

*

Rk kb ik b kb ik kb b b b ik b i b b b b b b b kb b b b b R b b R b b e

*/

> Apply now

REDEFINE YOUR FUTURE

AXA GLOBAL GRADUATE
PROGRAM 2014

redefining / standards

Q
o
)
|72}
=
(=}
o
=}
g
o
£
a
©
o
5]
8
2
5
%

Download free eBooks at bookboon.com &\S«\

219 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/8deaf1ec-df70-474a-b2cd-a29d00a7bfa5

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

#if (!STAND ALONE ISR 00)
void Xtra Int 0 (void) interrupt O using 1
{

uchar idata * idata internal;

uchar data i, k;
EA = 0;

/* store current task bank 0 registers just in case there is */

/* a need for a pre-emptive task swap */

/* A,B,DPH,DPL and PSW are pushed on stack by the compiler after the interrupt */
/* and are saved as part of the task stack */

SaveBankO0 (&task [Running] .reg0); /* store RO - R7 bank 0 */

task[Running].stackptr = k = SP;
/* Current task SP is saved pointing to PSW which is the last one */
/* push on stack after the interrupt */

internal = MAINSTACK; /* MAINSTACK is declared in STARTUP.A51 */

do { /* Current task's USED stack area is saved */
task[Running].stack[i++] = *(internal++);

} while (internal<=k);

Xtra Int (EXTO_INT);
/* Passes EXTO_ INT for identification purposes */
}
#endif

/*
KA KK AR AR AR A KK KK

*

* Function name : RTOS Timer Int

* Function type : Scheduler Interrupt Service Routine

* Description : This is the RTOS scheduler ISR. It generates system ticks
* and calculates any remaining

* waiting and periodic interval time for each task.

*

* Arguments : None

*

* Returns : None

*

Rk kb kb kb ik b b b b bk b b b b b b b b b b b b R R b b b b R b R b b b b S

*/

#if (TICK _TIMER == 0)
/* If Timer 0 is used for the scheduler */
void RTOS Timer Int (void) interrupt 1 using 1
{
uchar idata * idata internal;
uchar data k; /* For the 8051, Timer 0 is often */
uchar data * idata gq; /* used for scheduling. */
bit bdata On_Q;
/* After an interrupt, the SP is incremented by 5 by the */

Download free eBooks at bookboon.com

220

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

/* compiler to PUSH ACC,B,DPH,DPL and PSW */

/* These are popped back before returning from the interrupt */

THO = HiByte (BASIC_TICK) ; /* Timer registers reloaded */
TLO = LoByte (BASIC TICK);

#elif (TICK TIMER == 1) /* If Timer 1 is used for the scheduler */
void RTOS Timer Int (void) interrupt 3 using 1
{
uchar idata * idata internal;
uchar data k; /* For the 8051, Timer 1 can be used */
uchar data * idata q; /* for scheduling, provided it is not */

bit bdata On_Q; /* needed as UART baud rate generator */

/* After an interrupt, the SP is incremented by 5 by the */

/* compiler to PUSH ACC,B,DPH,DPL and PSW */

/* These are popped back before returning from the interrupt */

/* PSW is also pushed bexause of the using 1 command */
TH1 = HiByte (BASIC TICK) ; /* Timer registers reloaded */
TL1 = LoByte (BASIC TICK);

#elif (TICK TIMER == 2) /* If Timer 2 is used for the scheduler */
void RTOS Timer Int (void) interrupt 5 using 1
{

uchar idata * idata internal;

uchar data i,k; /* For the 8032, Timer 2 is used */

uchar data * idata g7 /* for scheduling.
bit bdata On Q;

/* After an interrupt, the address of the next instruction of the */
/* current task is push on stack (low then high byte). Then SP */
/* is further incremented by 5 by the */

/* compiler to PUSH ACC,B,DPH,DPL and PSW */

/* Internal stack map at this stage */

/* High stack RAM */

/* PSW <-- SP points to here */

/* DPL */

/* DPH */

/* B */

/* ACC */

/* High byte return address */

/* Low byte return address */

/* Low stack RAM */

/* These are normally popped back BEFORE returning from the */
/* interrupt IF the TaskChange function is not called. */

TF2 = 0; /* Timer 2 interrupt flag is cleared */

#endif

/* store current task bank 0 registers just in case there is */

/* a need for a pre-emptive task swap */

/* A,B,DPH,DPL and PSW are pushed on stack by the compiler */

Download free eBooks at bookboon.com

221

*/

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll

/* after the interrupt */

/* and are saved as part o

f the task stack */

SaveBankO0 (&task[Running] .reg0); /* store RO - R7 bank 0 */

task[Running] .stackptr = k = SP;

/* Current task SP

is saved pointing to PSW which is the last one */

/* push on stack after the interrupt */

internal =

do { /*

task [Runnin

MAINSTACK; /* MAINSTACK is declared in STARTUP.A51 */

Current task's USED stack area is saved */

gl .stack[i++] = *(internal++);

} while (internal<=k);
for (k = 0; k < NOOFTASKS; k++)

{

/* check those tasks that
if (task[k]
{

are PERIODIC */
.interval count != ZERO) /* Updates the tasks */

/* periodic intervals. */

task[k].interval count--;

if
{
task[k].int

/* If periodic interval

/* has elapsed and the

/* task has been waiting
/* for this to occur, the
/* task is placed in the
/* READY queue, if it is
/* verified that the task
/* does not already reside
/* in the queue, as now

/* the task no longer

/* requires to wait.

/* This can happen due to
/* with a task taking much

/* to execute than the per

/* put in ready queue */

(task[k].interval count == ZERO)

erval count = task[k].interval reload;
if (task[k].statusl & WAIT4V_F)

*/

*/ task[k].statusl &= ~WAIT4V F;
*/ q = ReadyQ;

*/ On 0 = 0;

*/ while (g <= ReadyQTop)
*/

*/ if (k == *q)
*/ {

*/ On 0 = 1;

*/ break;

*/ }

BAD programming, */
longer */
iodic interval requested */

q++;

if (!On_0Q)
{
ReadyQTop++;
*ReadyQTop = k;

if (task[k].priority > task[Running].priority)
TinQFlag = 1;
/* mark new higher priority task in Q */
/* setting flag to start pre-emption */
}

Download free eBooks at bookboon.com

222

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix E

/* If however the task was not waiting for this event */
/* the task is not placed in the ready queue, but a flag is */

/* set to indicate that the periodic time has already passed */

else
task[k].statusl |= WAIT4V F;

/* Now, check for any tasks waiting for a timeout */

if (task[k].timeout != NOT_TIMING)
{ /* Updates the tasks' */
task[k].timeout--; /* timeout variables. */
if (task[k].timeout == ZERO)

ReadyQTop++; /* If a waiting task's */
ReadyQTop = k; / timeout elapses */
/* Clear flags just in case it had been */
task[k].statusl &= ~WAIT4M F;
/* waiting message + timeout */
/* need to take care of message case, (timeouts before message arrives) */
task[k].statusl &= ~WAIT4S F;

/* waiting semaphore + timeout*/

/* the task is placed in the ready queue. */
if (task[k].priority > task[Running].priority) TinQFlag = 1;

/* set flag to start pre-emption */

-

Empowering People.
Il o p -~ n .
W sthatedic mare P Improving Business.

Management /

Bl Norwegian Business School is one of Europe’s
largest business schools welcoming more than 20,000
students. Our programmes provide a stimulating

- and multi-cultural learning environment with an
=rnationa i international outlook ultimately providing students

- Inancial Susinegs with professional skills to meet the increasing needs
= CONOMICS of businesses.

/) Bl offers four different two-year, full-time Master of
! Leadership & Science (MSc) programmes that are taught entirely in
‘ Organisationgis English and have been designed to provide professional
Shipping PsycRalag skills to meet the increasing need of businesses. The
2 ﬂge ept 1% MSc programmes provide a stimulating and multi-
A cultural leaming environment to give you the best
platform to launch into your career.

* MSc in Business
* MSc in Financial Economics
* MSc in Strategic Marketing Management

NORWEGIAN /L - * M5Sc in Leadership and Organisational Psychology
BUSINESS SCHOOL EQUIS www.bi.edu/master

Download free eBooks at bookboon.com &\5«\

223 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

PaulOS An 8051 Real-Time Operating System
Partli

/* If any new task higher priority task was placed in */
/* in the ready queue, then we need to do a */

/* pre-emptive task switch by calling TaskChange, Option 0 */

}

if (TinQFlag)
{
PE_TaskChange () ;
/* Force a pre-emptive task change if required */
/* Note that the pushed task registers would still be on the saved */
/* stack at */
/* this point and would be popped back when task is put into action again */

}

/* else return to original running task, popping the pushed registers */
/* automatically by the KEIL compiler. */
EA = 1;

/*

Rk Rk ik kb kb ik b b b b b ik b b kb bk kR Rk R b Rk b b b R R R R Rk

*/

/*

AR S S S S S S S S S SRS E S S S EEEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEREEE

*/

/*
hkkkkkhkkhkkhkkhkkhkkkkhkkkkkkhkk k% k%

*

* Function name : Xtra Int 1

* Function type : Interrupt Service Routine

* Description : This is the Timer 0 ISR whose associated interrupt number
* is 1.

* It is only enabled in

* case an 8032 microcontroller is being used in combination
* with an EEPROM. The reason

* being is that without an EEPROM Timer 0O is not available
* on the 8032 and in case of

* the 8051 Timer 0 is already being used as the RTOS

* scheduler.

* It is also available if using the version 2 monitor ROM.
*

* Arguments : None

*

* Returns : None

*

R R R I S I S S I S b I I b E E E E E E b b h A E E S b b S h E E E h E E E E S E E h E h h h h h E b b b E h h 3h 3 b b b b b 3 3k

*/

#if ((TICK TIMER != 0) && (!STAND ALONE ISR 01))

/* Timer O interrupt is usually used for RTOS on the basic 8051 */

/* For the FLT-32 8032, it can only be used with the modified monitor */
Download free eBooks at bookboon.com

224

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

/* or user eprom */

/* it is used for the single step in the old version monitor eprom */

void Xtra Int 1 (void) interrupt 1 using 1
{
uchar idata * idata internal;

uchar data i, k;
EA = 0;

/* store current task bank 0 registers just in case there is */
/* a need for a pre-emptive task swap */

/* A,B,DPH,DPL and PSW are pushed on stack by the compiler */
/* after the interrupt */

/* and are saved as part of the task stack */

SaveBankO (&task[Running] .reg0); /* store RO - R7 bank 0 */

task[Running].stackptr = k = SP;
/* Current task SP is saved pointing to PSW which is the last one */
/* push on stack after the interrupt */
internal = MAINSTACK;
/* MAINSTACK is declared in STARTUP.A51 */

do { /* Current task's USED stack area is saved */
task[Running].stack[i++] = * (internal++);

} while (internal<=k);

Xtra_Int (TIMO_INT);
/* Passes TIMO INT for identification purposes */

}
#endif

/*

Rk bk b b b b ik b b b b b b b b b b b b b b b kb b b b R R b b

*/

/*
RR Ak kb kb ki kb b b bk kS bk b b b b b b kb e b b b b b b b b b b b b b b b b b b kb kb b b bk b i

*

* Function name : Xtra Int 2

* Function type : Interrupt Service Routine

*

* Description : This is the external 1 interrupt ISR whose associated
* interrupt number is 2.

*

* Arguments : None

*

* Returns : None

*

R RS S S S E RS SRS SRS SR SRR SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S
*/

#if (!STAND ALONE ISR 02)

void Xtra Int 2 (void) interrupt 2 using 1

{

Download free eBooks at bookboon.com

225

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll Appendix E

uchar idata * idata internal;

uchar data i, k;
EA = 0;

/* store current task bank 0 registers just in case there is */
/* a need for a pre-emptive task swap */
/* A,B,DPH,DPL and PSW are pushed on stack by the compiler */
/* after the interrupt */
/* and are saved as part of the task stack */
SaveBankO (&task[Running] .reg0); /* store RO - R7 bank 0 */
task[Running].stackptr = k = SP;
/* Current task SP is saved pointing to PSW which is the last one */
/* push on stack after the interrupt */
internal = MAINSTACK;
/* MAINSTACK is declared in STARTUP.A51 */

do { /* Current task's USED stack area is saved */
task[Running].stack[i++] = * (internal++);
} while (internal<=k);
Xtra Int (EXT1 INT);
/* Passes EXT1 INT for identification purposes */

}

#endif
/*
*/

Need help with your

d]] ?

issertation:

Get in-depth feedback & advice from experts in your

topic area. Find out what you can do to improve

the quality of your dissertation!

Get Help Now
Go to www.helpmyassignment.co.uk for more info E/Helpmyassignment
Download free eBooks at bookboon.com &\\«\

226 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

/*
KA KA KA A A A A A A A AR A AR AR AR A KK KK
*

* Function name : Xtra Int 3

*

* Function type : Interrupt Service Routine

*

* Description : This is the Timer 1 ISR whose associated interrupt number
* is 3.

*

* Arguments : None

*

* Returns : None

*

R Rk bk S b i b S b b R
*/

#if ((TICK TIMER != 1) && (!STAND ALONE ISR 03))

void Xtra Int 3 (void) interrupt 3 using 1
{
uchar idata * idata internal;
uchar data i, k;
EA = 0;

/* store current task bank 0 registers just in case there is */
/* a need for a pre-emptive task swap */

/* A,B,DPH,DPL and PSW are pushed on stack by the compiler */
/* after the interrupt */

/* and are saved as part of the task stack */

SaveBankO (&task[Running] .reg0); /* store RO - R7 bank 0 */

task[Running] .stackptr = k = SP;
/* Current task SP is saved pointing to PSW which is the last one */
/* push on stack after the interrupt */

internal = MAINSTACK; /* MAINSTACK is declared in STARTUP.A51 */
i = 0;
do { /* Current task's USED stack area is saved */
task[Running].stack[i++] = *(internal++);

} while (internal<=k);

Xtra_ Int (TIM1_INT);
/* Passes TIM1 INT for identification purposes */

}

#endif
/*
Ak Ak A hkhkhkhkhhhhhkhkhAhrhkhkhhhhhhkhkhAhdrd kbbb bk kA Ak hk bk bk bk hk kA Ak hk bk bk hkhkhk kA drrkdhkhkhkhhkkhkhkhdrxxx

*/

/*
AR RS S E S EE S S EEEEEESEEEEEE RS EEE

*

* Function name : Xtra Int 4

*

* Function type : Interrupt Service Routine

Download free eBooks at bookboon.com

227

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partli Appendix E
* Description : This is the serial port ISR whose associated interrupt

* number is 4.

*

* Arguments : None

*

* Returns : None

*
LRSS S EE S S E S S S S EEEE SRR SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
*/
#if (!STAND ALONE ISR 04)
void Xtra Int 4 (void) interrupt 4 using 1
{
uchar idata * idata internal;

uchar data i, k;

EA = 0;
/* store current task bank 0 registers just in case there is */
/* a need for a pre-emptive task swap */
/* A,B,DPH,DPL and PSW are pushed on stack by the compiler */
/* after the interrupt */
/* and are saved as part of the task stack */
SaveBankO0 (&task[Running] .reg0); /* store RO - R7 bank 0 */
task[Running].stackptr = k = SP;
/* Current task SP is saved pointing to PSW which is the last one */
/* push on stack after the interrupt */
internal = MAINSTACK; /* MAINSTACK is declared in STARTUP.A51 */

do { /* Current task's USED stack area is saved */
task[Running].stack[i++] = * (internal++);

} while (internal<=k);

Xtra Int (SERO_INT);
/* Passes SERO_INT for identification purposes */
}
#endif
/*
KA KA AR A A A AR A AR A AR KK

*/

/*
AR R S E S S EE S S S EEEES S S E S SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEE
*

* Function name : Xtra Int 5

*

* Function type : Interrupt Service Routine

*

* Description : This is the Timer 2 ISR whose associated interrupt
* number is 5.

*

* Arguments : None

*

* Returns : None

*

Download free eBooks at bookboon.com

228

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

Rk kb b kb b b b b b b b b b b h b b b b b b b bk bk b b b R R R b b b b b S
*/
#if ((CPU == 8032) && (TICK TIMER != 2) && (!STAND ALONE ISR 05))

void Xtra Int 5 (void) interrupt 5 using 1
{
uchar idata * idata internal;

uchar data i, k;

TF2 = 0;

/* store current task bank 0 registers just in case there is */
/* a need for a pre-emptive task swap */
/* A,B,DPH,DPL and PSW are pushed on stack by the compiler */
/* after the interrupt */
/* and are saved as part of the task stack */
SaveBankO0 (&task[Running] .reg0); /* store RO - R7 bank 0 */

task[Running] .stackptr = k = SP;
/* Current task SP is saved pointing to PSW which is the last one */
/* push on stack after the interrupt */
internal = MAINSTACK; /* MAINSTACK is declared in STARTUP.A51 */

do { /* Current task's USED stack area is saved */
task[Running].stack[i++] = * (internal++);
} while (internal<=k);
Xtra Int(TIM2_ INT);
/* Passes TIM2 INT for identification purposes */
}

#endif
/*
LRSS S S S S S S S SE S S S SR SE S S SRS S SR SRS SRR RS EEEEEEEE SRR SRR SRS EEEEEEEEE S

*/

/*
KA KA A A AR AR A AR A AR A A KKK
*

* Function name : Xtra Int

*

* Function type : Interrupt Handling (Internal function)

*

* Description : This function performs the operations required by the

* previous ISRs.

*

* Arguments : task intflag Represents the flag mask for a given

* interrupt against which the

* byte storing the flags of each task
* will be compared in order to

* determine whether any task has been
* waiting for the interrupt in

* question.

Download free eBooks at bookboon.com

229

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

* Returns : None

*
RS S S S S SRS S S SRR R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S
*/
void Xtra Int (uchar current intnum) using 1
{
uchar data k;

for (k = 0; k < NOOFTASKS; k ++)
{
if (task[k].intnum == current intnum)
{
task[k].intnum = NO INTERRUPT;
task[k].statusl &= ~WAIT4I F;
/* mark task as not waiting int */
// task([k].timeout = ONE; /* If it found that a task */
if (task[k].priority > task[Running].priority) TinQFlag = 1;

task[k].timeout = NOT TIMING;
/* If it found that a task */

ReadyQTop++; /* has been waiting for the */
ReadyQTop = k; / given interrupt, it no */
} /* longer requires to wait */

} /* and is therefore placed */

/* on the READY queue. */
/* It will be handled at the next tick */

By 2020, wind could provide one-tenth of our planet's
electricity needs. Already today, SKF's innovative know-
how is crucial to running a large proportion of the
world's wind turbines.
Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
stems for on-line condition monitoring and automatic
jcation. We help make it more economical to create

Therefore we'need the best employees who can

eet this challenge!

Tﬁf Power of Knowledge Engineering

i

o

Plug into The Power of Knowle‘ngineering.
Visit us at www.skf.com/knowled"g%

Download free eBooks at bookboon.com

230 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

PaulOS An 8051 Real-Time Operating System
Part Il Appendix E

/*

KA KA KA A A A A A A A AR A AR AR AR A KK KK
LRSS S E S S E S E SRR EEREE
R R R R R I R R R S I I b S R E b E I R R I S I S E E S I b I I E I E I E E I h E I I kb E E I 3 h b b b S b 3k 3

R Rk bk S b i b S b R

Rk bk bk kb ik b b b b b b b b b b b b b b b kb b b b b ik b b b R R R R R b b b b S

*/

“I studied
English for 16 -
L}

years but... »~
...I finally
learned to
speak it in just
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

Download free eBooks at bookboon.com &\S«\
231 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

PaulOS An 8051 Real-Time Operating System
Partli

MagnOS.h

Rk ik kb kb ik b b b b i kb h b b b b b bk b b b b b b b b b b bk b kb b b b b b b b b b b b b b b b b bk ki

* RTOS KERNEL HEADER FILE

*

* For use with MagnOS VO01.C - Co-Operative RTOS written in C

* by Ing. Paul P. Debono

* Use with the 8051 family of microcontrollers
*

* File : MagnOS_VO01.H

* Revision HE

* Date : February 2006

* By : Paul P. Debono

*

* B. Eng. (Hons.) Elec. Course

* University Of Malta

*
Rk kb kb kb bk ik kb b b b b b b b ke b b b b bk b b bk bk ik
*/

#include "Parameters.H"

/*
hkkkkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkkkkkkkkkkkkkkkkkkkk k% k% k%

* DATA TYPE DEFINITIONS

Rk kb bk bk kb Sk b b b b b R

*/

typedef unsigned char uchar;
typedef unsigned int uint;

typedef unsigned long ulong;

/*

Kok Kk k ok kK kK K Kk ko ok ok ok ok ok R Rk ok ko ok ok ok ok ok kR ko o ok ok ok ok ok R Rk ko K ok ok ok
* STRUCTURE AND UNION DEFINITIONS

ok Kk ok kK K K K K K K K ko ok ok ok kR K K K K K K ko ok ok ok ok ok ok kK K K K K K ok ok ok ok ok ok ok kK K K K K K ok ok ok ok ok ok
*/

#define DATASIZE 16

union dataformat{struct{ulong HI1,LO1l,HIO0,LO0; }dblwords;
struct{uint Hi3,Lo3,Hi2,Lo2,Hil,Lol,Hi0,Lo0; }words;
struct{uchar hi7,107,hi6,1l06,hi5, 105,hid, 104,
hi3,103,hi2,102,hil,101,hi0,100; }bytes;
struct{char s[DATASIZE];}string;};

struct letter{uchar dest,src,len;union dataformat dat;};

struct task param { /* 13 bytes + 13 registers + stack per task */

uchar catalog; /* task id */

uchar statusl; /* status flags, see below for details */
uchar status2; /* status flags, see below for details */
uchar priority; /* priority number, low = high priority */
uchar semaphore; /* counting semaphore for each task */
uchar resource; /* resource number required */

uchar stackptr; /* stack pointer SP storage location */

uchar intnum; /* task waiting for this interrupt number */
uint timeout; /* task waiting for this timeout in ticks, */

/* 0 = not waiting */
Download free eBooks at bookboon.com

232

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll

/*

uint

uint

uchar

uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar
uchar

uchar

Appendix E

interval count; /* time left to wait for this periodic */
/* interval task in ticks */
interval reload;/* periodic tick interval reload value */
rega; /* registers storage area, ready for context */
/* switching use */

regb;

rdph;

rdpl;

rpsw;

reg0;

regl;

reg2;

reg3;

reg4;

reg5;

regb6;

reg’;

char stack[STACKSIZE]; /* stack storage area */

}i

Rk kb bk ik b b b b b b b b b

*/

/*

R R R R R R R R R I S R R S E I R R R R I R R S I E I I I E b

*/

/* The MAINSTACK pointer variable points to the start pointer in */
/* hardware stack and should be defined in STARTUP.A51 */
extern idata unsigned char MAINSTACK[STACKSIZE];

/* Functions written in assembly language, found in MAGNOS AQ01.A51 */

extern
extern
extern
extern
extern

extern

/*

void SaveBankO (uchar xdata * Pointer);

void RecallBankO (uchar xdata * Pointer);

void SaveSFRs (uchar xdata * Pointer);

void RecallSFRs (uchar xdata * Pointer);
void POP5 (void), POPO (void);
void POP5I (void), POPOI (void) ;

ER R RS S EEEEE SR SRR EEE RS

*

FUNCTION PROTOTYPES

Rk kb kb bk ik b b b b b

*

*

* The following RTOS system calls do not receive any parameters

void 0S RTOS GO (void); // Starts the RTOS running with prioities if

void OS WAITP

// required

(void) ; // Waits for end of task's periodic interval

uchar OS_RUNNING TASK ID(void); // Returns the number of the currently

// executing (running) task

/* The following commands are simply defined as MACROS below

0S_CPU_IDLE () Set the microprocessor into a sleep mode

(awake every interrupt)

OS_CPU_DOWN () Switch off microprocessor, activate only by
Download free eBooks at bookboon.com

233

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

hardware reset

0S PAUSE RTOS () Disable RTOS, used in a stand alone ISR
0S_RESUME_RTOS () Re-enable RTOS, used in a stand alone ISR
*/

/*

* The following RTOS system calls do receive parameters

*/

void OS_INIT RTOS (uchar iemask); // Initialises all RTOS variables
void OS_WAITI (uchar intnum); // Waits for an event (interrupt)
void OS WAITT (uint ticks); // Waits for a timeout period given

// by a defined number of ticks
uchar OS_CHECK TASK PRIORITY (uchar task num);

// Gets the requested task priority
void OS CHANGE TASK PRIORITY (uchar task num, uchar new prio);

// Sets the requested task priority
void OS RELEASE RES (uchar Res Num);
void OS WAIT4RES (uchar Res Num,uint ticks);

void OS SEND MSG(struct letter xdata *msg);

void OS_CLEAR MSG(uchar task num);

bit OS_CHECK MSG(uchar task num);

volid OS GET MSG(struct letter xdata *msg);

vold OS WAIT MESSAGE (struct letter xdata *msg, uint ticks);

uchar OS CHECK TASK SEMA4 (uchar task num);
// Gets the requestes task semaphore
void OS SEMA4MINUS (uchar task num, uchar units);

// Subtracts units from a semaphore

// Causes task change if semapphore=0

void OS SEMA4PLUS (uchar task num, uchar units);
// Adds units to a semaphore
void OS WAIT4SEM (uint ticks); // Waits for a signal to arrive
// within a given number of ticks
void OS_PERIODIC (uint ticks); // Sets task to behave periodically
// every given number of ticks
void OS CREATE TASK (uchar tasknum, uint taskadd, uchar priority);
// Creates a task
void OS_KILL TASK (uchar tasknum);// Kills the selected task

/* The following commands are simply defined as MACROS below
0S_WAITT A(M,S,ms) Absolute WAITT for minutes, seconds, msecs
0S_WAITS A(M,S,ms) Absolute WAITS for minutes, seconds, msecs

0S PERIODIC A(M,S,ms) Absolute PERIODIC for minutes, seconds, msecs

0S_WATIT4MSG (m, t) Waits for message and gets message,
clearing mailbox
*/
/%
LRSS S E S S E S S SRS EEEEEEEREEE

*/
#define STAND ALONE_ISR 00 O // EXTO0 - set to 1 if using this interrupt
// as a stand alone ISR
Download free eBooks at bookboon.com

234

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

#define STAND ALONE ISR 01 0 // TIMO - set to 1 if using this interrupt
// as a stand alone ISR

#define STAND ALONE_ ISR 02 0 // EXT1 - set to 1 if using this interrupt
// as a stand alone ISR

#define STAND ALONE_ISR 03 0 // TIM1 - set to 1 if using this interrupt
// as a stand alone ISR

#define STAND ALONE_ ISR 04 0 // SERO - set to 1 if using this interrupt
// as a stand alone ISR

#define STAND ALONE_ISR 05 0 // TIM2 - set to 1 if using this interrupt
// as a stand alone ISR

/‘k

LR R

*/

/*
ER R RS SEEE S S E S S SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

* RTOS TIMING DEFINITIONS

R Rk kb h b b bk b kb b b b b b b b b b b b b b b b bk b b kb b

*/

#define MSEC10 9216UL // In theory 921.6 counts represent
// 1 msec assuming an
// 11.0592 MHz crystal.
#define TICKS PER SEC (1000 / TICKTIME)
// Ensure that TICKTIME's value is
// chosen such that this
#define TICKS_PER MIN (60000 / TICKTIME) // quotient and hence all the
// following quotients result
// in an integer. In theory,
// the maximum
// value of TICKTIME
// is given by the value
// corresponding to CLOCK = 65535
#define CLOCK ((TICKTIME * MSEC10)/10) // i.e. approx. 70-72 - However
// respecting the condition
#define BASIC TICK (65535 - CLOCK + 1) // above, max. acceptable
// TICKTIME = 50 msecs.
// Hence all suitable values are:
// 1, 2, 4, 5, 8, 10, 20, 25, 40, 50
// For reliable time-dependent
// results a value of 10 or
// above is recommended depending

// upon the application

/* OTHER #defines */

#define MBXSIZE 20
#define FREE OxFF /* mailbox location is available */
#define EMPTY OxFF /* mailbox location is available */

#define NOOFRESOURCES 8

#define ZERO 0
#define ONE 1
#define NOT_TIMING 0 // An indefinite period of waiting time in the RTOS

// is given by a value of 0
#define NO_INTERRUPT OxFF

Download free eBooks at bookboon.com

235

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll Appendix E

// signifies task is not waiting for any interrupt event

#define LOWEST 0x00 /* lowest priority number */
#define HIGHEST OxFF /* highest priority number */
#define MAXSEM 0xFF /* maximum number of units in a semaphore */

#define HiByte (intval) (##intval)/256;

#define LoByte (intval) (##intval)%256;

/* or you may use */

// #define HiByte (intval) (unsigned char) (((##intval)s& O0xFF00)>>8)
// #define LoByte (intval) (unsigned char) ((##intval) & OxOOFF)

/*
hhkkhkhkhkhhkhkhkhkhkrhhkhhrhhkhdrhhhhrhhkhhrhhhkhrhhkhkhrhhkhhrhhkrhrhkhkrhrhkhkrkhrhkhkrhrhkxkhxk
*/

/*
khkkhkhkhkkhhkhhkhkhhhkhkhkhhhhkhhhhhhhhhhkhhhhhhhrhhkhh bbbk hh bk bk hhrhhkrhrhkhkrhrhkhkrkhkrhkxkxk
* RTOS MACROS

R R R S R R R R
*/

#define OS_CPU IDLE () PCON |= 0x01

// Sets the microprocessor in idle mode

#define OS CPU_DOWN () PCON |= 0x02

// Sets the microprocessor in power-down mode

#if (TICK _TIMER == 0)
#define OS_PAUSE_RTOS () EA = ETO = TRO = 0
#define OS_RESUME_RTOS() TRO = ET0 = EA = 1

Vouwo Toucxs | Rewanr Toocks | Mack Toweks | Vowo Buses | Vowo Cowsteucrion Esumsent | Wowo Pesm | Vowo Aeno | Vowo IT
Vowo Fimswce Sepices | Vowo 3P | Vowo Powemream | Vowo Pasrs | Vowo Techwowoer | Vowo Loasncs | Busimess Anes Asi

Download free eBooks at bookboon.com

236 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

PaulOS An 8051 Real-Time Operating System
Partli Appendix E

#elif (TICK TIMER == 1)
#define OS_PAUSE RTOS() EA = ET1 = TR1 = 0
#define OS_RESUME _RTOS() TR1 = ET1 = EA

I
—

#elif (TICK TIMER == 2)
#define OS_PAUSE_RTOS() EA = ET2 = TR2 = 0
#define OS_RESUME_RTOS() TR2 = ET2 = EA = 1

#endif

/*

***/

/*
AR RS S S S S S S S S S E S S S E S SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEREEE

* COMPILE-TIME ERROR TRAPPING

RR R R R E S E E S I S b E h b b E E E E h E b b b E E Sk b h b h b b b h E S h h b E h b h b b b b E E 3 b 3 h b b b b b b Sk

*/

#if (CPU != 8032) && (CPU != 8051)
#error Invalid CPU Setting
#endif

#if (NOOFTASKS > 254)
#error Number of tasks is too big. The ReadyQ can store up to 254 tasks
#endif

#if ((TICKTIME * 110592 / 120) > 65535)

#error Tick time value exceeds valid range for timer counter setting

#endif

#if ((TICKTIME * 110592 / 120) < 65535) && ((1000 % TICKTIME) != 0)
#error Undesirable TICKTIME setting (1, 2, 4, 8, 10, 20, 25, 40, 50 ms)
#endif

#1f (CLOCK > 65535)
#error Timer counter setting exceeded valid range. Check TICKTIME and MSEC
#endif

/*

RR R R R S I E S S I S h I h I b E E E E h E b b b E E S kb b b h b E b h h S h h b b b b b b b b b E E h h b b b b b b b b b

*/

/*

Rk kb bk kb b i b b b b i

* TASK-RELATED DEFINITIONS

B R

*/

/* Interrupt numbers, used for tasks waiting for some interrupt event */

#define EXTO_INT 0x00 // External 0 Interrupt number O
#define TIMO_INT 0x01 // Timer 0 Interrupt number 1
#define EXT1_INT 0x02 // External 1 Interrupt number 2
#define TIM1 INT 0x03 // Timer 1 Interrupt number 3
#define SERO INT 0x04 // Serial Interrupt number 4
#define TIM2 INT 0x05 // Timer 2 Interrupt number 5

Download free eBooks at bookboon.com

237

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

#define IDLE TASK NOOFTASKS
// Main endless loop in application given a task
// number equal to NOOFTASKS

/*

LRSS E S E S S EEEEEEE SRS SRR RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

*/

/*

Kk k ok ok kK ok ok ok ok k k ko ok ko ok ok ok ok ok k ok ok ko ok k ko ok k ok ok ko ok k ko ok ko ok ko ok ko ok k ko ok ok ok ok ok k k k ok ok k ok ok Kk
* ENHANCED EVENT-WAITING ADD-ON MACROS

Kk kK ok kK ok ok kK ok kK ok kK ok ok kK ok kK ok kK ok ok ko ok ok ok kK ok ok ko ok ok ok k ok ok ok k ko ok ok k kK ok k kK ok ok kK ok kK Kk

*

* These macros perform the same functions of the WAITT, WAITS and

* PERIODIC calls

* but rather than ticks they accept absolute time values as parameters in
* terms of days, hours, minutes, seconds and millisecs

* This difference is denoted by the A suffix - eg. WAITT A() is the

* absolute-time version of WAITT ()
* Range of values accepted, (maximum 65535 TICKTIMES) :

* Using a TICKTIME of 1 msec : 1 msecs - 1 min, 5 secs, 535 msecs
* Using a TICKTIME of 10 msec : 10 msecs - 10 mins, 55 secs, 350 msecs

* Using a TICKTIME of 50 msec : 50 msecs - 54 mins, 36 secs, 750 msecs

* If the conversion from absolute time to ticks results in O

* (all parameters

* being 0 or overflow) this result is only accepted by WAITS ()

* by virtue of how

* the WAITT (), WAITS() and PERIODIC() calls were written.

* In the case of the

* WAITT () and PERIODIC() calls the tick count would automatically be

* changed to 1

* meaning an interval of eg. 50 msecs in case the TICKTIME is defined to

* be 50 msecs

* Liberal use of parentheses is made in the following macros in case the

* arguments might be expressions

*

***/

#define TPM (M) (TICKS PER MIN* (##M))
#define TPS(S) (TICKS PER SEC* (##S3))
#define TPMS (ms) ((##ms)/TICKTIME)

#define OS_WAITT A(M,S,ms) OS WAITT((uint) (TPM(M) + TPS(S) + TPMS (ms)))
#define OS_WAITS A(M,S,ms) OS WAITS ((uint) (TPM(M) + TPS(S) + TPMS(ms)))
#define OS_PERIODIC A (M,S,ms) OS_PERIODIC ((uint) (TPM(M)+TPS (S)+TPMS (ms)))
#define OS WAIT4MSG (m,t) OS WAIT MESSAGE (##m, ##t); OS GET MSG (##m)
/*
KA Ak kA Ak hk Ak kA A Ak Ak kA A Ak Ak hk Ak hk Ak A Ak Ak kA A Ak Ak hkhhk Ak A hhhkhhk kA hk kA hhkhhk Ak rhhkhkhkhkhkhkhkrhkhkhkhkkx
*/

Download free eBooks at bookboon.com

238

Appendix E

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix E

/*
* Other functions used internally by the RTOS

*/

void V_TaskChange (void); // Task swapping function
void PE TaskChange (void); // Task swapping function
void RTOS Timer Int (void); // RTOS Scheduler ISR

voild Xtra Int (uchar task intflag);
// Function used by ISRs other than the RTOS Scheduler

#if (!STAND ALONE ISR 00)

void Xtra Int 0 (void); // External Interrupt 0 ISR
#endif
#1if ((TICK TIMER != 0) && (!STAND ALONE ISR 01))

void Xtra Int 1 (void); // Timer 0 ISR
#endif

#if (!STAND ALONE ISR 02)

void Xtra Int 2 (void); // External Interrupt 1 ISR
#endif
#1f ((TICK TIMER != 1) && (!STAND ALONE ISR 03))

void Xtra Int 3 (void); // Timer 1 ISR
#endif

#if (!STAND ALONE ISR 04)
void Xtra Int 4 (void); // Serial Port ISR
#endif

s @book 1s probucen with iText®

Download free eBooks at bookboon.com &\S«\

239 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

PaulOS An 8051 Real-Time Operating System
Part Il Appendix E

#if ((TICK TIMER != 2) && (!STAND ALONE ISR 05))
void Xtra Int 5 (void); // Interrupt 5 (Timer 2) is not available
// on the 8051
#endif
/*
Kk hkhkhkhkhkhkhkhkhkhkhhhkhhkhhhkhhkhh bk bk bk h bk bk bk h bk bk bk hhkhhkhkhhkhhkhkhhkh kb hhkhhkhkhhkhkhhkhkhkhkhkhkxk
LR R R R R R R R R R R R R ok R R R R Ik
LRSS S S S S S SRS SRS S SRR R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRS

ER R R R R I R R S I b I R S h E I R b R E S S S E E I b I E I I I A E E I h I I E b b E E I 3 b b S S I

*/

Download free eBooks at bookboon.com

240

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

Parameters.h

/*

AR RS S E S EE S S S E S S S SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEE
* PARAMETERS.H --- RTOS KERNEL HEADER FILE

*

* For use with MagnOS V01.C

* Co-Operative RTOS written in C by Ing. Paul P. Debono

* for use with the 8051 family of microcontrollers
*

* File : Parameters VO1.H

* Revision : 8

* Date : February 2006

* By : Paul P. Debono

*

* B. Eng. (Hons.) Elec. Course

* University Of Malta

*

AR S S S S S S S EEEES SRS SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
*/
/*
R R R R SRR EEE RS

* RTOS USER DEFINITIONS

Rk kb bk bk kb Sk b b b b b R

*/

#define STACKSIZE 0x10

// Max size of stack for each task - no need to change

#define CPU 8032 // set to 8051 or 8032

#define TICK TIMER 2 // Set to 0, 1 or 2 to select which timer to
// use as the RTOS tick timer

#define TICKTIME 50 // Length of RTOS basic tick in msec

// - refer to the RTOS

// timing definitions

#define NOOFTASKS 6 // Number of tasks used in the application program

/*
RR Rk kb kb bk bk b b b b bk b b b b b b bk b bk bk b b b b R b b S
KA KA KA A A A A A A AR AR AR AR A AR KK

LRSS S E S S EEE S EEEEER RS R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

*/

Download free eBooks at bookboon.com

241

Appendix E

http://bookboon.com/

Startup.a51

SNOMOD51

; This file is part of the C51 Compiler package
; Copyright (c) 1988-2002 Keil Elektronik GmbH and Keil Software, Inc.

; STARTUP.A51: This code is executed after processor reset.
; To translate this file use A51 with the following invocation:

; A51 STARTUP.AS51

; To link the modified STARTUP.OBJ file to your application use the following
; BL51 invocation:

; BL51 <your object file list>, STARTUP.OBJ <controls>
; User-defined Power-On Initialization of Memory

; With the following EQU statements the initialization of memory

; at processor reset can be defined:

’

; ; the absolute start-address of IDATA memory is always 0
; IDATALEN EQU 80H ; the length of IDATA memory in bytes.
IDATALEN EQU 100H ; the length of IDATA memory in bytes for

; the 8032 (256 bytes).

’

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

Download free eBooks at bookboon.com :\\\«\

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

PaulOS An 8051 Real-Time Operating System

Partli Appendix E
XDATASTART EQU OH ; the absolute start-address of XDATA

; memory

XDATALEN EQU 0H ; the length of XDATA memory in bytes.
PDATASTART EQU 0H ; the absolute start-address of PDATA

7 memory

PDATALEN EQU OH ; the length of PDATA memory in bytes.

; Notes: The IDATA space overlaps physically the DATA and BIT

; areas of the

; 8051 CPU. At minimum the memory space occupied from the C51
; run-time routines must be set to zero.

; Reentrant Stack Initilization
; The following EQU statements define the stack pointer for reentrant
; functions and initialise it:

; Stack Space for reentrant functions in the SMALL model.

IBPSTACK EQU 1 ; set to 1 if small reentrant is used.
IBPSTACKTOP EQU OFFH+1 ; set top of stack to highest location+1l.
; IBPSTACKTOP EQU 07FH+1 ; set top of stack to highest location+l.

; Stack Space for reentrant functions in the LARGE model.

XBPSTACK EQU 0 ; set to 1 if large reentrant is used.
XBPSTACKTOP EQU OFFFFH+1 ; set top of stack to highest location+l.
; Stack Space for reentrant functions in the COMPACT model.

PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.
PBPSTACKTOP EQU OFFFFH+1 ; set top of stack to highest location+1l.

; Page Definition for Using the Compact Model with 64 KByte xdata RAM

; The following EQU statements define the xdata page used for pdata
; variables. The EQU PPAGE must conform with the PPAGE control used
; in the linker invocation.

’

PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.

PPAGE EQU 0 ; define PPAGE number.

PPAGE_SFR DATA 0AOH ; SFR that supplies uppermost address byte
; (most 8051 variants use P2 as uppermost address byte)

; Standard SFR Symbols

ACC DATA OEOH
B DATA 0F0H
SP DATA 81H
DPL DATA 82H
DPH DATA 83H

Download free eBooks at bookboon.com

243

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Part Il Appendix E
NAME 2C_STARTUP

?C_C51STARTUP SEGMENT CODE

?STACK S EGMENT IDATA
RSEG ?STACK

#include <parameters.h>

MAINSTACK: DS STACKSIZE ; defined in parameters.h

EXTRN CODE (?C_START)
PUBLIC ?C_STARTUP
PUBLIC MAINSTACK

; FLT32 or MON51 should be define in A51 TAB in Target Options

SIF (FLT32)

CSEG AT 8100H ; for FLT-32
SELSEIF (MONS51)

CSEG AT 8000H ; for MON-51
SELSE

CSEG AT 0 ; for simulator etc
SENDIF
?C_STARTUP: LJMP STARTUP1

RSEG ?C_C51STARTUP
STARTUP1:

IF IDATALEN <> 0

MOV RO, #IDATALEN - 1
CLR A
IDATALOOP: MOV @RO,A

DJNZ RO, IDATALOOP
ENDIF

IF XDATALEN <> 0

MOV DPTR, #XDATASTART
MOV R7, #LOW (XDATALEN)
IF (LOW (XDATALEN)) <> O
MOV R6, # (HIGH (XDATALEN)) +1
ELSE
MOV R6, #HIGH (XDATALEN)
ENDIF
CLR A
XDATALOOP: MOVX @DPTR, A
INC DPTR
DJINZ R7,XDATALOOP
DJINZ R6, XDATALOOP
ENDIF

IF PPAGEENABLE <> 0
MOV PPAGE_SFR, #PPAGE
ENDIF

IF PDATALEN <> 0

MOV RO, #LOW (PDATASTART)
MOV R7, #LOW (PDATALEN)
CLR A

Download free eBooks at bookboon.com

244

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll Appendix E

PDATALOOP: MOVX @RO,A

INC RO

DJINZ R7, PDATALOOP
ENDIF

IF IBPSTACK <> 0
EXTRN DATA (?C_IBP)

MOV ?C_IBP,#LOW IBPSTACKTOP
ENDIF

IF XBPSTACK <> 0
EXTRN DATA (?C_XBP)
MOV ?C_XBP, #HIGH XBPSTACKTOP
MOV ?C_XBP+1, #LOW XBPSTACKTOP
ENDIF

IF PBPSTACK <> 0
EXTRN DATA (?C_PBP)

MOV ?C_PBP, #LOW PBPSTACKTOP
ENDIF

MOV SP, #?STACK-1
; This code is required if you use L51 BANK.A51 with Banking Mode 4
; EXTRN CODE (?B_SWITCHO)
; CALL ?B_SWITCHO ; init bank mechanism to code bank 0
LJIJMP ?C_START

END

CHALLENGING PERSPECTIVES

R

Internship opportunities

EADS unites a leading aircraft manufacturer, the world’s largest learning and development opportunities, and all the support you need,

helicopter supplier, a global leader in space programmes and a you will tackle interesting challenges on state-of-the-art products.
worldwide leader in global security solutions and systems to form
Europe’s largest defence and aerospace group. More than We welcome more than 5,000 interns every year across

140,000 people work at Airbus, Astrium, Cassidian and Eurocopter, disciplines ranging from engineering, IT, procurement and
in 90 locations globally, to deliver some of the industry’s most finance, to strategy, customer support, marketing and sales.
Exetinglpiojeatss Positions are available in France, Germany, Spain and the UK.

An EADS internship offers the chance to use your theoretical
knowledge and apply it first-hand to real situations and assignments To find out more and apply, visit www.jobs.eads.com. You can also
during your studies. Given a high level of responsibility, plenty of find out more on our EADS Careers Facebook page.

@ AIRBUS £)ASTRIUM (€ CASSIDIAN @Eur{pc‘ﬁr“

Download free eBooks at bookboon.com

245 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/85f92380-2160-4386-98b4-a2540089b583

Appendix F Further Examples

We list here some interesting examples for the 8032 microprocessor. Some of them do not use any RTOS

at all, but rely solely on interrupts.

Timer 0 in Mode 3 (split timer) and Timer 1 as a baudrate generator

The first example is a program showing how we can use Timer 0 in the split mode. This is not often
found detailed in books, probably because nowadays, most of the advanced versions of the 8051 have 4
or more timers available. However, if still using the original 8051, this mode 3 would effectively increase

the number of timers available.

In this example, the two timers from Timer 0 (here labeled as Timer 00 and Timer 000) both run as an
8-bit timer, generating interrupts. The main program checks if the required number of interrupts have

been generated, and prints a statement accordingly.

Timer 1 is used as a baudrate generator and since Timer 0 is running in mode 3, the only way to
switch on and off the timer is by changing its mode. If timer 1 is set to mode 3, it is stopped. Thus as
an example, we are starting the timer only before printing and switching it off once we are done with

the printing command.

/* TimersMode3.c */

/*
Timer 0 runs in mode 3 mode, thus splitting it into two timers, Timer00 and Timer000:
Timer 00 generates interrupts every 156.25us, counting 144

hence 6400 interrupts would be equivalent to 1 second

Timer 000 generates interrupts every 78.125us, counting 72

hence 38400 interrupts would be equivalent to 3 seconds.

Timer 1 is used as the baud-rate generator, switching it on and off

by swsitching it out of and into its own mode 3.

*/
#include <reg51.h>

#include <stdio.h>

void SetUp Timer0O M3 (void);
void SetUp Timerl M3 (void);

char putchar (char c);

/* Global variables */
bit TOO_FLAG, TO00_FLAG; // flags to indicate timer timeouts

/* __ */

/*

* putchar : outputs character, used by the printf command
*/

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix F

char putchar (char c) {

while (!TI); /* wait for transmitter to be ready */
Tl = 0;

return (SBUF = c);

}

/* set up Timer 0 mode 3, GATE = C/T = 0 */
/* splitting into two timers, Timer00 and Timer000 */

/* Assuming 11.0592 MHz clock */

/* 156.25 microsecond overflow for TFO (normal Timer 00) */
/* 78.125 microsecond overflow for TF1l (extra Timer 000) */
void SetUp Timer0O_ M3 (void)

{

TMOD &= O0xF0; // clear Timer 0 control bits only

TMOD |= 0x03; // mode 3 (two split timers), GATE = C/T = 0

TLO = 112; // 256 - 144 ==> 156.25us for normal Timer 00

THO = 184; // 256 - 72 ==> 78.125us for extra Timer 000

TRO = 1; // Timer 00 ON

TR1 = 1; // Timer 000 ON

ETO = 1; // Enable TF0 interrupt, from Timer 00 overflow
ET1 = 1; // Enable TF1l interrupt, from Timer 000 overflow

/* Set up timer 1 in mode 2, 8-auto re-load, GATE = C/T = 0 */
/* for 57600 baudrate generator */
/* Assuming 11.0592 MHz clock */

/* Since Timer 0 is in mode 3, then Timer 1 will be switched on and off

by setting it to mode 2 (on) or mode 3 (off) in the application program */

/* Set also the UART */
void SetUp Timerl M3 (void)
{

TMOD &= OxO0F; // clear timer 1 control bits only (momentarily set Tl to mode 0)
TMOD |= 0x30; // set initially to mode 3, i.e. timer off

TH1 = TL1 = OxFF; // set for 28800 or 57600 baudrate (reload value in THI1)

PCON |= 0X80; // SMOD = 1 so as to double the baudrate

SCON = 0X52; // 8-bit UART, variable baudrate, receiver disabled ,

// transmitter ready TI = 1

void TFO0 ISR (void) interrupt 1 using 1
{

static data unsigned int TFO_OVF; // counts TF0 overflows
TFO_OVF++;

TLO = 112;

if (TFO_OVF == 6400)

{

Download free eBooks at bookboon.com

247

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll Appendix F

TFO_OVF = 0;
TOO FLAG = 1;

void TF1 ISR (void) interrupt 3 using 2
{
static data unsigned int TF1 OVF; // counts TFl overflows
TF1_OVF++;
THO = 184;
if (TF1_OVF == 38400)
{
TF1 _OVF = 0;
TO00 FLAG = 1;

/* Main program */
void main (void)
{
SetUp Timer0 M3 (); // Timer 0 mode 3 - split timer
SetUp Timerl M3 (); // Timer 1 (off) mode 3,
// 8-bit auto reload value as a baudrate generator

// initially set in mode 3, not running.

360°
thinking.

Deloitte.

DiSCOVCI‘ the truth at WWW.dClOittC.Ca/CaI‘CCI‘S © Deloitte & Touche LLP and affiliated entities.

Download free eBooks at bookboon.com X\(‘ :\

248 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

PaulOS An 8051 Real-Time Operating System

Partli Appendix F
EA = 1;
while (1)
{
// Timer 1 is switched on and off just to show that we can still control it.
// It is switched only for use as the baud rate generator before the printf command
if (T00_FLAG == 1)
{
TOO FLAG = 0;
TMOD = 0x23; // set Timer 1 to mode 2, start it as the baudrate generator
// leaving Timer 0 set to mode 3
// This method is used instead of:
//
// TMOD &= O0xOF; // clear timer 1 control bits only
// (momentarily set Tl to mode 0)
// TMOD |= 0x20; // set to mode 2, i.e. Timer 1 on
// TH1 = OxFF; // set reload value
//

// which would have placed Timer 1 momentarily in mode O

// and thus modifying the reload value held in TH1
// (hence the baudrate) before setting it to mode 2

// Hence the need to set the reload value in TH1 every time.

// Thus TMOD = 0x23 is much quicker and neater this time!

printf ("Timer 00 timeout every 1 second\n");

TMOD = 0x33; // set Timer 1 to mode 3 to stop the baudrate generator

// leaving Timer 0 set to mode 3
}
if (T000 FLAG == 1)
{
TO00 FLAG = 0;

TMOD = 0x23; // set Timer 1 to mode 2, start it as the baudrate generator

// leaving Timer 0 set to mode 3

printf ("Timer 000 timeout every 3 seconds\n");

TMOD = 0x33; // set Timer 1 to mode 3 to stop the baudrate generator

// leaving timer 0 set to mode 3

Download free eBooks at bookboon.com

249

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll

Appendix F

UART using Timer 2 as the baud rate generator

/* SerialTimer2.c */

/*
Timer O

Timer O

Timer 1

Timer 1

Timer 2

*/

#include

#include

runs in mode 2 mode (8-bit auto reload)
generates interrupts every 156.25us, counting 144

hence 6400 interrupts would be equivalent to 1 second

runs in mode 2 mode (8-bit auto reload)
generates interrupts every 78.125us, counting 72

hence 38400 interrupts would be equivalent to 3 seconds.

is used as the baud-rate generator, switching it on and off

just when printing is needed (just for demo).

<reg52.h> // use 8052/8032 SFR registers
<stdio.h>

void SetUp Timer0 M2 (void);
void SetUp Timerl M2 (void);

void SetUp Timer2 Serial (void);

char putchar (char c);

/* Global variables */
bit TO FLAG, Tl FLAG; // flags to indicate timeout

/*

* putchar : outputs character, used by the printf command

*/

char putchar (char c) {

while (!

TI = 0;

TI); /* wait for transmitter to be ready */

return (SBUF = c);

}

/* Set up Timer 0 mode 2, 8-bit timer auto reload, GATE = C/T = 0 */
/* Assuming 11.0592 MHz clock */

/* 156.25 microsecond overflow for TFO */

void SetUp Timer0 M2 (void)

{

TMOD &= 0xF0; // clear timer 0 control bits only

TMOD |= 0x02; // mode 2 (8-bit reload), GATE = C/T = 0

TLO = 112; // 256 - 144 = 112 ==> 156.25us for Timer O

THO = 112; // reload value in THO

TFO = 0; // Clear overflow flag

TRO = 1; // Timer 0 ON

ETO = 1; // Enable TFO0 interrupt, from Timer 0 overflows
}

/* __ */

Download free eBooks at bookboon.com

250

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix F

/* Set up Timer 1 in mode 2, 8-bit auto reload, GATE = C/T = 0 */
/* Assuming 11.0592 MHz clock */

/* 78.125 microsecond overflow for TF1 */

void SetUp Timerl M2 (void)
{

TMOD &= O0xO0F; // clear Timer 1 control bits only (momentarily set Tl to mode 0)
TMOD |= 0x20; // set to mode 2

TH1 = TL1 = 184; // 256 - 72 = 184 ==> 78.125us for Timer 1 (reload value in THI1)
TF1l = 0; // Clear overflow flag

TR1 = 1; // Timer 1 ON

ET1 = 1; // Enable TF1 interrupt, from Timer 1 overflows

}

/* __ */

/* Set up Timer 2 in mode 2, 16-bit auto reload, GATE = C/T = 0 */
/* for 345600 baudrate generator */
/* Assuming 11.0592 MHz clock */

/* Serial Port is also set to use Timer 2 as the baud rate generator for Tx and Rx */

void SetUp Timer2 Serial (void)

{

C T2 = 0; // Timer 2 in timer mode

TH2 = TL2 = OxFF; // set for 345600 baudrate (reload value in THI1)

RCAP2H = RCAP2L = OxFF; // reload values

RCLK = TCLK = 1; // use Timer 2 as the baud rate generator for Rx and Tx
SCON = 0X52; // 8-bit UART, variable baudrate, receiver disabled ,

transmitter ready TI =1

}

2 — */
/* __ */
void TFO ISR (void) interrupt 1 using 1
{
static data unsigned int TFO0_ OVF; // counts TF0 overflows
TFO_OVF++;
if (TFO_OVF == 6400)
{
TFO OVF = 0;
TO FLAG = 1;
}
}
/* __ */
void TF1 ISR (void) interrupt 3 using 2
{
static data unsigned int TF1 OVF; // counts TF1 overflows
TF1_OVF++;
if (TF1 OVF == 38400)
{
TF1 OVF = 0;

Tl FLAG = 1;
}
Download free eBooks at bookboon.com

251

http://bookboon.com/

/* Main program */
void main (void)

{

SetUp Timer0 M2 (); // Timer 0 mode 2
SetUp Timerl M2 (); // Timer 1 mode 2
SetUp Timer2 Serial (); // Timer 2 and serial port set up.

// Timer 2 as the 345600 baud rate generator.
EA = 1; // enable the 8051 to accept interrupts

while (1)
{
// Timer 2 is switched on and off just to show that we can still control it.
// It is switched on only for use as the baud rate generator before the printf command
// It is usually left running throught the whole program

// (unless you want to reduce battery consumption!)

if (TO FLAG == 1)
{
TO FLAG = 0;

TR2 = 1; // start Timer 2 as the baudrate generator
printf ("Timer 0 timeout every 1 second\n");
TR2 = 0; // stop the baudrate generator

}

if (T1_FLAG == 1)

{
T1 FLAG = 0;

TR2 = 1; // start Timer 2 as the baudrate generator
printf ("Timer 1 timeout every 3 seconds\n");
TR2 = 0; // stop the baudrate generator

Serial routine with full XON/XOFF capability

The next example program here is a serial routine with full XON/XOFF handshaking capability. This
was adapted from a program by Sasha Jevtic (sjevtic@ece.northwestern.edu).

It uses two circular buffers, one to hold the received bytes and another separate one for the bytes to
transmitted. The principle behind this XON/XOFF protocol is explained below, and uses two special
characters to control the transmission flow of data.

CTRL-S which is 17 decimal or 11 hexadecimal, used to stop the transmission.

CTRL-Q which is 19 decimal or 13 hexadecimal, used to continue (resume) the transmission.

Download free eBooks at bookboon.com

http://bookboon.com/

For the RECEIVER side, a character reception from some external source, causes an RI interrupt. The
RI ISR routine therefore handles any characters which are received. If there is space in the RX buffer,
it simply stores it there but if the buffer approached the limit, it will store that character and causes the
TX to send an XOFF character to the external source (which should also be running under an XON/
XOFF protocol) so that the external source pauses its transmission. Data from the RX buffer would be
handled by the main program which should ensure that the buffers are emptied regularly of any data.
Once the RX buffer is emptied, an XON character would be sent to the external source so that it can

resume with its transmission.

If an XOFF character is received, this would cause the TX to be disabled immediately (since this would

imply that the external source RX buffer is full). It would be re-enabled once an XON character is received.

For the TRANSMITTER side, data from the main program would be written to the buffer. As soon as
there is some data in the TX buffer, the TI ISR would be triggered to start the transmission. Since the TI
is itself set once a character has been transmitted, this would ensure that the TX buffer is always emptied
once the transmission is started (unless it is stopped by an XOFF character from the external device).
Therefore the TT ISR handles the transmission from the buffer on to some external device. The main
program ‘printing’ routine would place characters directly in the TX buffer for transmission, if there is
space. If the TX buffer is full, it would simply wait for room in the buffer, since the transmission would

be taking place under interrupt control.

Since this protocol uses XON/XOFF as special characters, it is generally used for text data (which does
not have the XON/XOFF characters) and it cannot be used as it is with any random data since they
might have these XON/XOFF characters as part of the data itself.

Further details can be found in the remarks within the program listings.

/*
** XONXOFF.H
*/

#ifndef SERIAL H
#define SERIAL H

#include <reg52.h>

// Some commonly used non-printing ASCII codes.

#define CTRL_C 0x03

#define CTRL Q 'q' // for testing
//#define CTRL Q 0x11

#define CTRL_S 's' // for testing
//#define CTRL Q 0x13

#define DEL 0x7F

#define BACKSPACE 0x08

#define CR 0x0D

#define LF 0x0A

#define BELL 0x07

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli

#ifdef SMALLBUFFER

#define TXLEN 128

#define RXLEN 16

#define RXThreshHold 8 /* Rx Threshhold for sending XOFF */
#else

#define TXLEN 1024

#define RXLEN 1024

#define RXThreshHold 512 /* Rx Threshhold for sending XOFF */
#endif

void putbuf (char c);
char putchar (char c¢);
char getkey(void);

void init serial (unsigned int br);

#endif // SERIAL_H

** XonXoff.c

* %

** Modified by Paul Debono (2007) from

** RTMS 2.0 I/0: serial.c v1.0.0 (16/03/05)

** By Sasha Jevtic (sjevticlece.northwestern.edu)

* x

** Implements an interrupt controlled serial port interface

* %

** TRANSMITS,RECEIVES AND REACTS TO XON/XOFF characters for flow control

* x

*/
#include "XonXoff.h"
typedef enum {NORMAL, FULL, DRAINING, EMPTY} RECV_STATE T;

/*The way the pointers work is as follows:
Pointers are always incremented by 1, modulus LEN

That is if LEN = 32, pointers range form 0 to 31

Tx Buffer:

Data for transmission is placed in the buffer in the location pointed to by 't in'.

Data is passed on to SBUF for transmission via UART using pointer 't out'.
In each case, the pointer is moved AFTER reading or writing from/to buffer,
Thus t out points to the next character to be sent to SBUF.

t in points to the location where the next character will be placed

in Tx buffer for future transmission

If AFTER incrementing 't out',
't in' and 't_out' point to the same location,

then the buffer is empty.

If AFTER incrementing 't _in',
't in' = 't out' point to the same location,
then the buffer is full

Rx Buffer:
Data is received in the buffer in the location pointed to by 'r in'
Data is read from the buffer using pointer 'r_out'

In each case, the pointer is moved AFTER reading or writing from/to buffer

Download free eBooks at bookboon.com

254

Appendix F

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll Appendix F

Thus r out points to the next character to be read.
r_in points to the location where the next character will be placed

when it is received.

If AFTER incrementing 'r out',
'r in' and 'r out' point to the same location,

then the buffer is empty.

If AFTER incrementing 'r_in',
'r in' = 'r out' point to the same location,
then the buffer is full

SERIAL INTERRUPTS ARE DISABLED WHEN HANDLING BUFFERS

Meanings of receiver states (and related policies) are as follows:
- NORMAL: Receive buffer is empty or filling, but is not full.

Reception should proceed normally.

- FULL: Receive buffer has been marked full. We need to send an
XOFF character so that the sender allows us to relieve our
buffer.
- EMPTYING: Receive buffer is full or emptying, but is not empty.
An XOFF character has already been sent, so reception should
be suspended until the buffer is empty. If we permitted
reception prior to completely emptying the buffer, we would
put ourselves in a situation where it is very likely that the
buffer would soon fill up again. This would be inefficient,
as we wish to keep the XON/XOFF : data byte ratio very low.
This hysteresis helps to achieve that goal.

SIMPLY CLEVER

We will turn your CV into
an opportunity of a lifetime

I.-,.. ¥ J

7. L

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Download free eBooks at bookboon.com

255 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857

PaulOS An 8051 Real-Time Operating System
Partli

- EMPTY: Receive buffer has been marked empty. We need to send an XON

character so that the sender begins sending us data again.

It is worth noting that for Windows communication, a significant receive
buffer is required. Furthermore, the threshhold level at which XOFF is sent
must be significantly below the buffer's capacity. This is required for a
couple of reasons.

First, there might already be an incoming byte working its way through the
UART at the time that XOFF is sent. Even assuming an instantaneous response
from the DTE to our XOFF, if space does not become available in the buffer

prior to the firing of the receive interrupt for this byte, it will be lost.

Secondly, and moreover, Windows seems to be very slow in responding to our
XOFF; that is, it continues to send data for a significant period before
honoring our stop request. So, we need space to buffer that incoming data.

Received data integrity is a priority.

*/

#ifdef SMALLBUFFER // use IDATA, character size pointers

unsigned char data t out; /* transmission buffer start index */
unsigned char data t in; /* transmission buffer end index */
char idata TxBuffer [TXLEN]; /* storage for transmission buffer */

// It seems we need 128 bytes of buffer to run at 57600 or 115200 kbps.

// when receiving characters from a PC (Windows)

// These values depend on sender reaction time (to XOFF) and on the baudrate

unsigned char data r_out; /* receiving buffer start index */
unsigned char data r in; /* receiving buffer end index */
char idata RxBuffer[RXLEN]; /* storage for receiving buffer */

#else // LARGEBUFFER - use XDATA, integer size pointers

unsigned int data t out; /* transmission buffer start index */
unsigned int data t_in; /* transmission buffer end index */
char xdata TxBuffer [TXLEN]; /* storage for transmission buffer */

// It seems we need 128 bytes of buffer to run at 57600 or 115200 kbps.

// when receiving characters from a PC (Windows)

// These values depend on sender reaction time (to XOFF) and on the baudrate

unsigned int data r out; /* receiving buffer start index */
unsigned int data r_in; /* receiving buffer end index */
char xdata RxBuffer [RXLEN]; /* storage for receiving buffer */

#endif // buffer size

bit TxBfull; /* flag: marks transmit buffer full */
bit TxActive; /* flag: marks transmitter active */
bit TxStop; /* flag: marks XOFF character */
bit TxBusy; /* flag: marks transmitter busy */
bit TxBempty; /* flag: marks transmit buffer empty */
bit RxBempty; /* flag: marks receive buffer empty */
bit RxBfull; /* flag: marks receive buffer full */
RECV_STATE T recvstate; /* receiver state, for flow control */

enum {FALSE, TRUE} CONDITION T;

Download free eBooks at bookboon.com

256

Appendix F

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix F

#ifdef SMALLBUFFER
unsigned char RxBufUsed()
{

unsigned char size;

if(r_in >= r out)

size = (r_in - r out);
else
size = (RXLEN-(r out - r in));

return (size);

bit RxBufOverTHLD ()

{

return (RxBufUsed () >RXThreshHold ? TRUE : FALSE);
}

#else
unsigned int RxBufUsed()
{
unsigned int size;
if(r_in >= r out)
size = (r_in - r_out);
else
size = (RXLEN-(r out - r in));
return (size);

}

bit RxBufOverTHLD ()

{
return (RxBufUsed () >RXThreshHold ? TRUE : FALSE);

}
#endif

/***/

/* putbuf: write a character to SBUF or transmission buffer */

/‘k************************/

void putbuf (char c)

{

if (!TxBfull) { /* transmit only if buffer not full */
/*

Note that if buffer is full, waiting is handled by putchar routine

which calls putbuf.

*/
ES = 0; /* disable serial interrupt */
if (!TxActive && !TxStop) { /* 1f transmitter not active: */
TxActive = 1; /* transfer the first character direct */
SBUF = c; /* to SBUF to start transmission */

}

else { /* otherwise: */
TxBuffer[t in] = c; /* transfer char to transmit buffer */
t in = ++t in & (TXLEN-1); /* at the same time incrementing */
TxBempty = 0; /* the pointer in circular fashion */
if (t_in == t out) {

Download free eBooks at bookboon.com

257

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partll Appendix F

TxBfull = 1; /* set flag if buffer is full *x/

ES

Il
=
~

/* enable serial interrupt */

/***/

/* putchar: */
/* Places character in Tx buffer if there is space */
/* otherwise wait (space created by serial ISR) */

/***/

char putchar (char c)

{

if (¢ == "\n') { /* expand new line character: */
/* can omit if not needed */
while (TxBfull) {;} /* wait for transmission buffer space */

/* which is cleared by the serail ISR */
putbuf (0x0D); /* send CR before LF for <new line> */
}

while (TxBfull) {;} /* wait for transmission buffer space */
putbuf (c); /* send character */

return(c); /* return character: ANSI requirement */

/***/

Ijoined MITAS because o L
I wanted real responsibility www.discovermitas.com

I was a construction

SUPErvisor in
the North Sea
advising and
helping foremen
solve problems

MAERSK

Download free eBooks at bookboon.com

258 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

PaulOS An 8051 Real-Time Operating System

Partll

/* _getkey:

/* Read data from Rx buffer (using scanf say)

/* Waits if no character, until one is received via serial ISR

/***/

char getkey(void)
{

unsigned char data c;

while (RxBempty) {;}
/*

wait for a character in Rx buffer,

in the mean time, any RI interrupt will fill buffer,

and therefore RX buffer will no longer remain empty

*/
ES = 0;
c = (RxBuffer[r out]);

r out = ++r out & (RXLEN-1);
if (r_out==r_in) RxBempty = 1;
if ((recvstate == DRAINING) &&
(RxBempty)) {

recvstate = EMPTY;

TI = 1;

}

ES = 1;

return(c);

/***/

/* take next char from buffer

/* 1f RX was full and now emptying...

/* ...and RX actually has emptied
/* prepare to send XON
/* force TI so as to send XON

/* serial: serial receiver / transmitter interrupt */

/***/

serial () interrupt 4 using 1
{
unsigned char c;

bit start trans = 0;

if (RI) {
c = SBUF;
RI = 0;

switch (c) {

case CTRL_S:
TxStop = 1;

break;

case CTRL Q:
start_trans = TxStop;
TxStop = 0;

break;

default:

if (!RxBfull) {

RxBuffer([r in] = c;

Download free eBooks at bookboon.com

/* use registerbank 1 for interrupt

/* 1f receiver interrupt
/* read character

/* clear interrupt request flag
/* process character

/* XOFF

/* 1f Control+S stop transmission

/* XON */

/* if Control+Q start transmission

/* put all other characters into RxBuffer */

259

*/
*/
*/

*/

*/
*/
*/
*/

*/

*/
*/
*/
*/

*/
*/

*/

Appendix F

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix F

r in = ++r_in & (RXLEN-1); /* check if over thresh hold is done*/
RxBempty = 0; /* below instead of just checking if full */

/* check if RX above XOFF threshhold */
if (RxBufOverTHLD())
{
if (recvstate == NORMAL) { /* prevent "oscillations" */
recvstate = FULL; /* prepare to send XOFF */
RxBfull = 1;

break;

}

if (TxBusy) return; /* do not send anything until transmitter free */

/* It will return to the ISR when TI=1 after tx */

} // end of RI

if (TI || /* if transmitter interrupt */
start trans || /* or we received an XON and must start */
(recvstate == FULL) || /* or we need to send an XOFF */
(recvstate == EMPTY)) {/* or we need to send an XON */

if (TI) {
TxBusy = 0; /* TX interrupt means not busy anymore */
TI = 0; /* clear interrupt request flag */
}

if (recvstate == FULL) { /* we need to send an XOFF */
TxBusy = 1;
SBUF = CTRL_S; /* send XOFF command to other sender */
recvstate = DRAINING; /* slowly wait for RX buffer to drain */

}

else if (recvstate == EMPTY) { /* we need to send an XON */
TxBusy = 1;
SBUF = CTRL Q; /* send XON to sender */
recvstate = NORMAL; /* we are back in business, receiving */

}

else if (!TxBempty) { /* if more characters in buffer and *x/

if ((!TxStop) && /* if not received Control+S (XOFF) */
(recvstate == NORMAL)) { /* and receive buffer isn't overwhelmed */

TxBusy = 1;
SBUF = TxBuffer([t out]; /* transmit character */
t out = ++t_out & (TXLEN-1);
if (t_out==t in) TxBempty =1;
TxBfull = 0; /* clear 'TxBfull' flag */
}

}
else TxActive = 0; /* if all transmitted sender not active */

}

Download free eBooks at bookboon.com

260

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix F

void init_serial (unsigned int baudrate)

SCON = 0x50; /* Setup serial port control register */
/* Mode 1: 8-bit uart var. baud rate */

/* REN: enable receiver, TI=0 */

PCON &= 0x7F; /* Clear SMOD bit in power ctrl reg (no double baudrate) */
TMOD &= O0xO0F; /* Setup timer/counter mode register */
/* Clear M1 and MO for timer 1 */
TMOD |= 0x20; /* Set M1 for 8-bit auto-reload timer 1 */
RCLK = 0; /* USE TIMER 1 FOR RECEIVE BAUD RATE (8032 only) */
TCLK = 0; /* USE TIMER 1 FOR TRANSMIT BAUD RATE (8032 only) */

switch (baudrate) {
case 600:
TH1 = TL1 = 0xDO;
break;
case 1200:
TH1 = TL1 = OxES8;

break;
case 2400:
TH1 = TL1 = 0xF4;
break;
case 4800:
TH1 = TL1 = OxFA;

break;

“I studied
English for 16 P
L]

years but... »
...I finally
learned to
speak it in jus
Six lessons”

Jane, Chinese architect

OUT THERE

Click to hear me talking

before and after my

unique course download

— . ‘I JJ ¥ '

Download free eBooks at bookboon.com

261 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

PaulOS An 8051 Real-Time Operating System

Partli
case 9600:
TH1 = TL1 = OxFD;
break;
case 19200:
TH1 = TL1 = OxFD;
PCON |= 0x80; /* double baudrate */
break;
case 57600:
TH1 = TL1 = OxFF;
PCON |= 0x80; /* double baudrate */
break;

// Make sure we start in a clean state.

TxBempty = 1;
TxBfull = 0;
TxActive = 0;

TxStop =

0;
TxBusy = 0;
RxBempty = 1;
RxBfull = 0;

recvstate = NORMAL;

t_out = 0;
t in = 0;
r out = 0;
r in = 0;

TI = RI = 0O;

serial interrupts */

global interrupts */

TR1 = 1; /* Start timer 1 for baud rate generation */

ES = 1; /* enable

EA = 1; /* enable

}

/* __

Download free eBooks at bookboon.com

262

Appendix F

http://bookboon.com/

Appendix G 8086 PaulOS RTOS

8086 PaulOS RTOS Demo Program

Sometimes, we had encountered instances where students wanted to use some 8086-based development
board as their embedded system. An 8086 version of the basic PaulOS RTOS was therefore developed and
is being given here just for the benefit of those who are keen on the 8086 processor. This is in fact just a
demonstration version of the PaulOS RTOS program, written for the Intel 8086/8088 micro-processor.
It can be compiled on the latest PCs using any good 8086 assembler (such as MASM) to produce the
.COM file which can then be executed directly.

It is composed of four modules:

o The main module CLOCK1.ASM, which basically contains the application program and
‘includes’ the other .INC files

o The RTOS ‘include’ file OSTICKHD.INC - header

o The RTOS ‘include’ file OSTICKMD.INC - middle

o The RTOS ‘include’ file OSTICKFT.INC - footer

The .INC files are the actual PaulOS RTOS program, written in assembly language for the 8086.

DUKE

THE FUQUA
SCHOOL
OF BUSINESS

www.fuqua.duke.edu/whileyouweresleeping

Download free eBooks at bookboon.com ,\«\

http://bookboon.com/
http://bookboon.com/count/advert/faa87ccb-c5b2-4bf9-a8ab-a30a00d27dfd

The main program is a simple clock, displaying time in HH:MM:SS format. It uses three tasks, one task
for the hour, another task for the minute and the last task for the second. The MINUTE and HOUR tasks
are always waiting for a signal while the SECOND task is simply waiting for a time delay of 1 second.
Once 60 seconds have passed, it sends a signal to the MINUTE task. Similarly once 60 minutes have
passed, the MINUTE task would send a signal to the HOUR task.

; CLOCK1.ASM
; Using BIOS INT to get time ticks since midnight

; Used to generate rtos ticks

; Written by Paul P. Debono (JAN 2012)

; EQUATES

; APPLICATION SETTINGS
NUM OF TASKS EQU 3
IDLE TASK EQU NUM OF TASKS

include ostickhd.inc

CODESEG SEGMENT
ASSUME CS:CODESEG, DS:CODESEG, SS:CODESEG ; advices MASM

; which segments to use

ORG 100H ; start at offset 100H FOR COM FILE

START: MOV AX, CS
MOV DS, AX
MOV SS,AX
MOV SP, OFFSET TOP OF STACK
MOV WORD PTR [MY CODE SEG], CS ; STORAGE FOR CS, WHENEVER NEEDED
JMP MAIN

include ostickmd.inc

; START OF MAIN TEST (APPLICATION) PROGRAM

Download free eBooks at bookboon.com

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll

MAIN:

; PARAMETERS FOR OS CREATE ARE THE TASK NUMBER AND THE TASK ROUTINE NAME

TOP:

HALT:

0S_CREATE TASK 0, SEC
0S_CREATE TASK 1, MIN
0S_CREATE TASK 2, HR

MOV AH,
MOV DX,
INT 21H

0S_RTOS

MOV AH,
INT 16H
JZ TOP
CMP AL,
JE HALT
CMP AL,
JE HALT
JMP TOP

MOV AH,
INT 21H

9 ; PRINT DOLLAR TERMINATED STRING

OFFSET MESSAGEO1

 CHECK_TICK

01H ; CHECK FOR ANY KEY PRESS TO HALT PROGRAM
; BUT DO NOT WAIT FOR THE KEYPRESS

D'el

Tx!

; PROGRAM LOOPS HERE

4CH ; EXIT TO OS

ALL TASKS MUST BE ENDLESS LOOPS

SEC PROC NEAR

SEC_TASK:

SKIP2S:

SKIP1S:

SEC ENDP

TASKS

OS_PERIODIC 1000/TICKTIME MS ; PERIOD SET FOR ls

OS WAIT PERIOD
CMP WORD PTR [SECONDS],
JE SKIPLS

3935H ;59 ASCII INVERTED

CMP BYTE PTR [SECONDS + 11, '9'

JE SKIP2S

INC BYTE PTR [SECONDS + 1]

CALL DISPLAY CLOCK
JMP SEC_TASK

MOV BYTE PTR [SECONDS + 1], '0'

INC BYTE PTR [SECONDS]
CALL DISPLAY CLOCK
JMP SEC_ TASK

MOV WORD PTR [SECONDS],
OS_SIGNAL TASK 1
JMP SEC TASK

Download free eBooks at bookboon.com

3030H

265

Appendix G

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix G

MIN PROC NEAR
MIN TASK:
0S_WAITS ; WAIT FOR 'END OF MINUTE' SIGNAL
CMP WORD PTR [MINUTES], 3935H
JE SKIP1M
CMP BYTE PTR [MINUTES + 1], 'O
JE SKIP2M
INC BYTE PTR [MINUTES + 1]
CALL DISPLAY CLOCK
JMP MIN TASK
SKIP2M: MOV BYTE PTR [MINUTES + 1], 'O’
INC BYTE PTR [MINUTES]
CALL DISPLAY CLOCK
JMP MIN TASK

SKIP1M:
MOV WORD PTR [MINUTES], 3030H
0S_SIGNAL TASK 2
JMP MIN TASK

MIN ENDP

HR PROC NEAR
HR TASK:

0S WAITS ; WAIT FOR 'END OF HOUR' SIGNAL

CMP WORD PTR [HOURS], 3332H ; 23 ASCII INVERTED

JE SKIPL1H

CMP BYTE PTR [HOURS + 1], 'O’

JE SKIP2H

INC BYTE PTR [HOURS + 1]

Excellent Economics and Business programmes at:

N\
7

university of e AACSB
groningen b ACCREDITED

| 4
| |
“The perfect start

of a successful,
international career’

I

-

’ ".
i K HERE
iy, A CLIC

to discover why both socially
and academically the University
ofGromngenisoneoFthebest

i laces for a student to be
www.rug.nl/feb/education P

Download free eBooks at bookboon.com

266 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

PaulOS An 8051 Real-Time Operating System
Part Il Appendix G

CALL DISPLAY CLOCK
JMP HR TASK

SKIP2H: MOV BYTE PTR [HOURS + 1], '0'
INC BYTE PTR [HOURS]
CALL DISPLAY CLOCK
JMP HR TASK

SKIPI1H:
MOV WORD PTR [HOURS], 3030H
CALL DISPLAY CLOCK
JMP HR TASK

HR ENDP

’-*******************************

; THIS ROUTINE DISPLAYS THE CLOCK

7

DISPLAY CLOCK:

PUSH DX

MOV AH, 9 ; PRINT DOLLAR TERMINATED STRING
MOV DX, OFFSET FRONT SPACE

INT 21H

POP DX

RET

e R KA Ak k Kk ok
’

;start of our data area (if neeeded)

; APPLICATION DATA AREA

; variable to store original

; value of SI register.

FRONT SPACE DB " "

HOURS DB "23"

COLON1 DB ':'

MINUTES DB "58"

COLON2 DB ':'

SECONDS DB "40",13,'$!’

MESSAGEQ1 DB 13,10,10," RTOS CLOCK DEMO PROGRAMME", 13,10
DB " (PRESS X OR x TO EXIT)", 13,10,10,'S"

’
’

include ostickft.inc

TOP OF STACK DB 0

;end of our data area

CODESEG ENDS
END START

’

; OSTICKHD.INC
; Written by Paul P. Debono (JAN 2012)

’

" Download free eBooks at bookboon.com

267

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix G

; EQUATES

; RTOS SETTINGS

TICKTIME MS EQU 55 ; APPROXIMATELY 55ms TICKTIME

STACK SIZE EQU 40

PARAM SIZE EQU 50 ; 10 + STACK SIZE

PARAM_ SIZE REDUCED EQU 10 ; USED IF A LARGE NUMBER OF TAKS ARE BEING USED

; SEE END OF FILE, WHEN DECLARING TASK PARAM

; RTOS PARAMETERS OFFSETS, FOR EACH TASK

SIGNAL_FLAG EQU 0 ; DB 0
INT_ NUM EQU 1 ; DB 0
SP_STORE EQU 2 ; DW 0
TIME OUT EQU 4 ; DW O
PERIOD CURRENT EQU 6 ; DW 0
PERIOD RELOAD EQU 8 ; DW 0
STACK_AREA EQU 49 ; PARAM SIZE - 1

; points to top of stack

; EQUATES

; MACROS USED BY THE RTOS
REG_PUSHES EQU 7 ; NUMBER OF PUSHED REGISTERS IN PUSH INT REGS

PUSH_ALL_REGS MACRO
PUSHF
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH BP
PUSH DI
PUSH SI

ENDM

POP_ALL_REGS MACRO
POP SI
POP DI
POP BP
POP DX
POP CX
POP BX
POP AX
POPF

ENDM

PUSH_INT REGS MACRO
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH BP
PUSH DI
PUSH SI

DownloddPifee eBooks at bookboon.com

268

http://bookboon.com/

PaulOS An 8051
Partll

Real-Time Operating System

POP_INT REGS MACRO

ENDM

0S_CREATE TASK

ENDM

POP SI
POP DI
POP BP
POP DX
POP CX
POP BX
POP AX

MACRO TASKNUM, TASKNAME
MOV DX, OFFSET TASKNAME
MOV AL, TASKNUM

CALL CREATE TASK

; COMMANDS WHICH CAUSE A TAK CHANGE NEED TO HAVE TWO ADDITIONAL
; REGISTER PUSHES, SINCE A TAKS CHANGE MAY ALSO BE CALLED BY THE
; TICK TIME ISR.

; HENCE WE NEED TO SIMULATE AN INTERRUPT CALL WHERE NEEDED

’
’

OS WAITT MACRO

ENDM

TIMETICKS

MOV DX, TIMETICKS

PUSHF ; USED TO SIMULATE AN INTERRUPT CALL
PUSH CsS ; USED TO CALL RTOS ROUTINES WHICH
CALL WAITT ; CAUSE A TASK CHANGE

OS_PERIODIC MACRO TIMETICKS

ENDM

OS WAIT PERIOD

ENDM

OS_WAITS MACRO

ENDM

0S_SIGNAL TASK

ENDM

MOV DX, TIMETICKS
CALL PERIODIC

MACRO

PUSHF ; USED TO SIMULATE AN INTERRUPT CALL
PUSH CS ; USED TO CALL RTOS ROUTINES WHICH
CALL WAIT_PERIOD ; CAUSE A TASK CHANGE

PUSHF ; USED TO SIMULATE AN INTERRUPT CALL
PUSH CS ; USED TO CALL RTOS ROUTINES WHICH
CALL WAITS ; CAUSE A TASK CHANGE

MACRO TASKNUM
MOV AL, TASKNUM
CALL SIGNAL_TASK

OS_RTOS_CHECK_TICK MACRO

; GET the new number of ticks since midnight.

; if there was

a new tick, then the RTOS Tick TImer ISR

Download free eBooks at bookboon.com

269

Appendix G

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll

; routine must be called.

MOV
INT
CMP

AH, O
1AH
CS:WORD PTR [0OldTick], DX

JE NOCHANGE

7

compare with old

MOV CS:WORD PTR [01dTick], DX ; and save it

PUSHF

PUSH CS

CALL OS TICK TIMER ; call ticktimer ISR,

; simulating an interrupt call
NOCHANGE: NOP
ENDM

; OSTICKMD.INC
; Written by Paul P. Debono (JAN 2012)

; RTOS TICK TIMER INTERRUPT SERVICE ROUTINE

(ISR)

; THIS IS THE MAIN RTOS ISR ROUTINE WHICH COMES INTO PLAY
; AT EVERY TICK TIME, AND SCHEDULES ANY TASK CHANGES REQUIRED.

; A NORMAL TICK TIME INTERVAL WOULD BE EVERY 1 MILLISECOND.

; IT DECREMENTS WAITING TICK TIMES FOR EACH TASK, IF WAITING
; AND FORCES A TASK CHANGE IF REQUIRED
; BY CHANGING THE STACK CONTENTS.
0S_TICK TIMER PROC NEAR
PUSH INT REGS
; FIRST CHECK THE PERIODIC INTERVAL TASKS
MOV CX,NUM OF TASKS
MOV BX,OFFSET TASK PARAM
MOV DL, PARAM SIZE
CHECKO: MOV AL, CL ; TASK NUMBERS RANGE = (0 TO NUM OF TASKS - 1)
DEC AL ; AL NOW CONTAINS THE HIGHEST TASK NUMBER
MUL DL
MOV SI,AX ; SI CONTAINS OFFSET IN TASK RECORD
CMP WORD PTR [BX + SI + PERIOD RELOAD],0

JZ NEXT CHECKO ;

SKIP IF TASK IS NOT WAITING PERIODICALLY

DEC WORD PTR [BX + SI + PERIOD_CURRENT] ; DECREMENT TIME

JINZ

; IF PERIODIC TIME

NEXT CHECKO

OUT HAS FINISHED,

; FIRST RELOAD PERIODIC CURRENT COUNTER
MOV AX,WORD PTR [BX + SI + PERIOD RELOAD]
MOV WORD PTR [BX + SI + PERIOD CURRENT],AX

Download free eBooks at bookboon.com

270

Appendix G

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll

; THEN PLACE THAT TASK IN THE READY QUEUE

PUT IN QO: INC
MOV
MOV
DEC
MOV
MOV

NEXT CHECKO:

WORD PTR [TOP OF Q]

SI, WORD PTR [TOP_OF Q]
AL, CL

AL ; AL NOW CONTAINS THE

BYTE PTR [SI],AL ; PLACE TASK ON READY QUEUE AND

BYTE PTR [NEW TASK IN Q]

LOOP CHECKO ; REPEAT FOR THE

TASK NUMBER

Appendix G

,1 ; INDICATE THAT A NEW TASK WAS PLACED IN Q

NEXT TASK

; NOW CHECK TASKS AGAIN FOR ANY NORMAL TIME OUTS

MOV
MOV
MOV
CHECKL1: MOV
DEC
MUL
MOV
CMP

JZ NEXT CHECKI1 ;

JINZ

CX,NUM OF TASKS

BX, OFFSET TASK PARAM

DL, PARAM SIZE

AL, CL

AL ; AL NOW CONTAINS THE
DL

SI,AX ; SI CONTAINS OFFS
WORD PTR [BX + SI + TIME

NEXT CHECK1

TASK NUMBER

ET IN TASK RECORD
_0ouTl, 0

SKIP IF TASK IS NOT WAITING FOR ANY TIMEOUT
DEC WORD PTR [BX + SI + TIME OUT] ; DECREMENT TIMEOUT

; IF TIME OUT FINISHED, THEN PLACE THAT TASK IN THE READY QUEUE

PUT_IN_Q: INC WORD
MOV
MOV
DEC
MOV
MOV

NEXT CHECKL:

PTR [TOP_OF Q]

SI, WORD PTR [TOP_OF Q]
AL,CL

AL ; AL NOW CONTAINS THE

BYTE PTR [SI],AL ; PLACE TASK ON READY QUEUE AND

BYTE PTR [NEW TASK IN Q]

LOOP CHECK1 ; CHECK THE NEXT

;CHECK IF THERE IS
CMP
JNE
CMP
JNE

; A TASK CHANGE IS
MOV

A NEED FOR A TASK CHANGE
BYTE PTR [NEW TASK IN Q]
CARRY ON

BYTE PTR [RUNNING], IDLE

CARRY ON ; RTOS CAN ONLY INTERRUPT THE IDLE TASK

REQUIRED

BYTE PTR [NEW_TASK IN Q],0 ; CLEAR NEW TASK IN Q FLAG

; NOW SAVE STACK POINTER FOR CURRENT TASK

MOV
MOV
MOV
MUL
MOV
MOV

BX,OFFSET TASK PARAM
AL,BYTE PTR [RUNNING] ;
DL, PARAM SIZE

DL ; AX = AL * DL

SI,AX ; SI CONTAINS OFFS
WORD PTR [BX + SI + SP_S

; NOW INITIATE A TASK CHANGE
; GET THE NEXT TASK NUMBER WHICH IS READY TO RUN
CALL SHIFT READYQ

Download free eBooks at bookboon.com

TASK NUMBER

,1 ; INDICATE THAT A NEW TASK WAS PLACED IN Q

TASK

;1

TASK

GET CURRENT TASK NUMBER

ET IN TASK RECORD

TORE],SP ; SAVE SP FOR THIS TASK

271

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System

Partll

; NOW RESTORE STACK POINTER FOR THE NEW TASK

MOV BX,OFFSET TASK_PARAM

MOV AL,BYTE PTR [RUNNING] ; AL NOW CONTAINS NEW TASK NUMBER

MOV DL, PARAM SIZE

MUL DL ; AX = AL * DL

MOV SI,AX ; SI CONTAINS OFFSET IN TASK RECORD

MOV SP,WORD PTR [BX + SI + SP_STORE] ; GET SP FOR THIS TASK
CARRY ON:

POP INT REGS
IRET ; CONTINUES WITH A NEW TASK IF TASK CHANGED

OS TICK TIMER ENDP

’

’

; SHIFT READY QUEUE DOWN ONE PLACE
SHIFT READYQ PROC NEAR

MOV ES,AX

CLD ; MOVSB WILL INCREMENT SI AND DI AUTOMATICALLY
SHIFT: MOVSB ; MOVE BYTE FROM LOCATION DS:SI INTO LOCATION ES:DI

; INC SI and INC DI done automatically in above instruction

CMP SI,DX

JNE SHIFT

MOV SI, WORD PTR [TOP_OF Q]

MOV DI, OFFSET RUNNING

CMP DI, SI

JE LIMIT ; TOP_OF Q CAN NEVER GO BELOW 'RUNNING'

DEC WORD PTR [TOP_OF Q]
LIMIT: POP AX

POP ES

POP DX

POP SI

POP DI

RET

PUSH DI

PUSH SI

PUSH DX

PUSH ES

PUSH AX

MOV DI, OFFSET RUNNING

MOV SI,OFFSET RUNNING + 1

MOV DX,WORD PTR [TOP OF Q] ; GET POINTER TO TOP OF Q
ADD DX,2 ; AND POINT 2 BYTES UP

MOV AX,WORD PTR [MY CODE_SEG]

SHIFT READYQ ENDP

; CREATE A TASK
; ON ENTRY:

DX POINTS TO START OF TASK
AL CONTAINS THE TASK NUMBER

; SET UP THE TASK ADDRESS ON STACK AND

Download free eBooks at bookboon.com

272

Appendix G

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix G

; PLACE IT IN READY QUEUE

CREATE TASK PROC NEAR
PUSH ALL REGS
; PUT TASK NUMBER IN READY QUEUE
INC WORD PTR [TOP_OF Q] ; TOP_OF Q IS A POINTER
MOV SI, WORD PTR [TOP OF Q]
MOV BYTE PTR [SI],AL
MOV BYTE PTR [NEW TASK IN Q],1

; FIND THE STACK FOR THE TASK NUMBER HELD IN AL
MOV BX,OFFSET TASK_PARAM
MOV CL, PARAM SIZE
MUL CL ; AX = AL*CL
MOV SI,AX

; TASK ADDRESS HAS NOW TO BE SAVED ON THE TASK STACK
; SINCE ALL THE PROGRAM RESIDES ON ONE SEGMENT, ALL CALLS ARE NORMALLY NEAR
; HERE WE SIMULATE PUSHF, PUSH CS, PUSH IP CARRIED OUT BY THE INTERRUPT

MOV WORD PTR [BX + SI + STACK AREA - 11,0
; STORE FLAGS OF TASK, INITIALLY ALL ZERO (LOW BYTE FIRST)
MOV WORD PTR [BX + SI + STACK AREA - 3],CS
; STORE CS OF TASK (LOW BYTE FIRST)
MOV WORD PTR [BX + SI + STACK AREA - 5],DX
; STORE IP OF TASK (LOW BYTE FIRST)
MOV CX,BX
ADD CX,SI
ADD CX, (STACK AREA - 2*REG_PUSHES - 5) ; CX NOW CONTAINS CORRECT SP OFFSET
; READY FOR POP_ALL REGS AND IRET IN TIMER ROUTINE
MOV WORD PTR [BX + SI + SP_STORE],CX ; SAVE SP FOR THIS TASK

POP_ALL REGS
RET
CREATE TASK ENDP

’

’

; SET TASK TO EXECUTE PERIODICALLY, EVERY CERTAIN NUMBER OF TICKS
; ON ENTRY:

; DX CONTAINS THE NUMBER OF TICKS TO WAIT FOR

; NO TASK CHANGE

PERIODIC PROC NEAR
PUSH ALL REGS
MOV BX,OFFSET TASK PARAM
MOV AL,BYTE PTR [RUNNING] ; AL NOW CONTAINS CURRENT TASK NUMBER
MOV CL, PARAM SIZE
MUL CL ; AX=AL*CL
MOV SI,AX
MOV WORD PTR [BX + SI + PERIOD CURRENT], DX

MOV WORD PTR [BX + SI + PERIOD RELOAD],DX

; TIMEOUT DATA NOW SAVED ON TASK PARAMETER STORAGE
POP ALL REGS

RET

Download free eBooks at bookboon.com

273

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix G

PERIODIC ENDP

; PLACE A TASK IN A WAIT STATE, JUST WAITING FOR THE
; PREVIOUSLY ASSIGNED PERIODIC INTERVAL TO PASS

WAIT_PERIOD PROC NEAR
PUSH_INT REGS
; SAVE STACK POINTER FOR CURRENT TASK
MOV BX,OFFSET TASK_PARAM
MOV AL,BYTE PTR [RUNNING] ; AL NOW CONTAINS NEW TASK NUMBER
MOV CL, PARAM_SIZE
MUL CL
MOV SI,AX
MOV WORD PTR [BX + SI + SP_STORE],SP ; SAVE SP FOR THIS TASK

; NOW INITIATE A TASK CHANGE

; SHIFT DOWN READY QUEUE BY ONE, AND

; GET NEXT TASK NUMBER WHICH IS READY TO RUN
CALL SHIFT READYQ

; NOW RESTORE STACK POINTER FOR THE NEW TASK

MOV BX,OFFSET TASK_PARAM

MOV AL,BYTE PTR [RUNNING] ; AL NOW CONTAINS NEW TASK NUMBER
MOV CL, PARAM SIZE

MUL CL

MOV SI,AX

sssssssssssssvsssssssssssssssssssssssssssssssssnnsssssssssssssssssssssssfilcgte]-Lucent @
www.alcatel-lucent.com/careers

"'

o

One generation’s transformation is the next’s status quo.

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

Download free eBooks at bookboon.com &\S«\

274 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

PaulOS An 8051 Real-Time Operating System
Partli Appendix G

MOV SP,WORD PTR [BX + SI + SP_STORE] ; GET SP FOR THIS TASK
POP_INT REGS
IRET ; START NEW TASK WITH THIS IRET INSTRUCTION

WAIT PERIOD ENDP

; PLACE A TASK IN A WAIT STATE, JUST WAITING FOR A CERTAIN NUMBER OF TICKS
; ON ENTRY:

; DX CONTAINS THE NUMBER OF TICKS TO WAIT FOR

; CS:IP ALREADY PUSHED ON STACK BY THE 'CALL OS_WAITT'

WAITT PROC NEAR
PUSH_INT REGS
MOV BX,OFFSET TASK PARAM

MOV AL,BYTE PTR [RUNNING] ; AL NOW CONTAINS CURRENT TASK NUMBER
MOV CL, PARAM SIZE

MUL CL ; AX=AL*CL

MOV STI,AX

MOV WORD PTR [BX + SI + TIME OUT],DX
; TIMEOUT DATA NOW SAVED ON TASK PARAMETER STORAGE

; NOW SAVE STACK POINTER FOR CURRENT TASK
MOV WORD PTR [BX + SI + SP_STORE],SP ; SAVE SP FOR THIS TASK

; NOW INITIATE A TASK CHANGE

; SHIFT DOWN READY QUEUE BY ONE, AND

; GET NEXT TASK NUMBER WHICH IS READY TO RUN
CALL SHIFT READYQ

; NOW RESTORE STACK POINTER FOR THE NEW TASK

MOV BX,OFFSET TASK_PARAM

MOV AL,BYTE PTR [RUNNING] ; AL NOW CONTAINS NEW TASK NUMBER
MOV CL, PARAM SIZE

MUL CL ; AX=AL*CL
MOV SI,AX
MOV SP,WORD PTR [BX + SI + SP_STORE] ; GET SP FOR THIS TASK

POP INT REGS
IRET ; START NEW TASK WITH THIS IRET INSTRUCTION
WAITT ENDP

’

WAITI PROC NEAR
RET
WAITI ENDP

; PLACE A TASK IN A WAIT STATE, JUST WAITING FOR A SIGNAL
; IF SIGNAL ALREADY PRESENT, CLEAR SIGNAL AND CONTINUE
; OTHER WIASE MAKE A TASK CHANGE

; ON ENTRY:
; DX CONTAINS THE NUMBER OF TICKS TO WAIT FOR
; CS:IP ALREADY PUSHED ON STACK BY THE 'CALL OS_WAITT'

Download free eBooks at bookboon.com

275

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Partli Appendix G

WAITS PROC NEAR ; STAY WAITING FOR A SIGNAL - TASK CHANGE
PUSH INT REGS
MOV BX,OFFSET TASK PARAM
MOV AL,BYTE PTR [RUNNING] ; AL NOW CONTAINS CURRENT TASK NUMBER
MOV CL, PARAM SIZE
MUL CL ; AX=AL*CL
MOV SI,AX
CMP BYTE PTR [BX + SI + SIGNAL FLAG],1
JE CONT1 ; SIGNAL ALREADY PRESENT, HENCE CONTINUE

; IF NOT, THEN SET FLAG AND MAKE A TASK CHANGE

MOV BYTE PTR [BX + SI + SIGNAL FLAG],1

; NOW SAVE STACK POINTER FOR CURRENT TASK

MOV WORD PTR [BX + SI + SP STORE],SP ; SAVE SP FOR THIS TASK

; NOW INITIATE A TASK CHANGE

; SHIFT DOWN READY QUEUE BY ONE, AND

; GET NEXT TASK NUMBER WHICH IS READY TO RUN
CALL SHIFT READYQ

; NOW RESTORE STACK POINTER FOR THE NEW TASK

MOV BX,OFFSET TASK PARAM

MOV AL,BYTE PTR [RUNNING] ; AL NOW CONTAINS NEW TASK NUMBER
MOV CL, PARAM SIZE

MUL CL ; AX=AL*CL

MOV SI,AX
MOV SP,WORD PTR [BX + SI + SP_STORE] ; GET SP FOR THIS TASK
JMP EXIT1

CONT1: MOV BYTE PTR [BX + SI + SIGNAL FLAG],O0

EXIT1: POP_INT REGS

IRET ; START NEW TASK WITH THIS IRET INSTRUCTION, IF REQUIRED
WAITS ENDP

; SEND A SIGNAL TO TASK.

; IF TASK WAS ALREADY WAITING FOR THE SIGNAL, THEN THAT TASK
; IS PLACED IN THE READY QUEUE.

; ON ENTRY:

; AL CONTAINS THE TASK NUMBER TO BE SIGNALLED

SIGNAL TASK PROC NEAR ; SEND A SIGNAL TO A TASK SO THAT IT CAN RESUME
; NO TASK CHANGE IS MADE
PUSH ALL REGS
PUSH AX ; SAVE TASK NUMBER
MOV BX,OFFSET TASK PARAM
MOV CL, PARAM SIZE
MUL CL ; AX=AL*CL
MOV SI,AX
CMP BYTE PTR [BX + ST + SIGNAL_ FLAG], 0
POP AX ; GET TASK NUMBER AGAIN
JE TASK2WAIT ; TASK WAS NOT WAITING, HENCE JUST SET FLAG

; TASK WAS ALREADY WAITING, HENCE PUT IT IN READY QUEUE

Download free eBooks at bookboon.com

276

http://bookboon.com/

PaulOS An 8051 Real-Time Operating System
Part Il Appendix G

MOV BYTE PTR [BX + SI + SIGNAL FLAG],O0

INC WORD PTR [TOP_OF Q] ; TOP_OF Q IS A POINTER
MOV SI, WORD PTR [TOP OF Q]

MOV BYTE PTR [SI],AL

MOV BYTE PTR [NEW TASK IN Q],1

JMP EXIT2
TASK2WAIT: MOV BYTE PTR [BX + SI + SIGNAL FLAG],1
EXIT2: POP_ALL REGS
RET

SIGNAL TASK ENDP

; OSTICKFET.INC

; Written by Paul P. Debono (JAN 2012)

; RTOS DATA AREA

’

MY CODE_SEG DW O ; STORAGE FOR THE CODE SEGMENT REGISTER

/

Leadiny
% Maastricht University o Learnin:

Join the best at

- 33" place Financial Times worldwide ranking: MSc

the MaastriCht U niverSity International Business

+ 1% place: MSc International Business

School of Business and 1st place: MSc Financial Economics

2" place: MSc Management of Learning

. - 2" place: MSc Economics
I 2P
Econom 1CS. - 2" place: MSc Econometrics and Operations Research
- 2" place:MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

Download free eBooks at bookboon.com &\5«\

277 Click on the ad to read more

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

PaulOS An 8051 Real-Time Operating System
Part Il Appendix G

; The 01dTick variable holds the old value of the low word
; (DX) returned by INT 1AH to get the system time in ticks
; since midnight in CX:DX

01dTick DW 0

NEW TASK IN Q DB 0

TOP _OF Q DW OFFSET RUNNING ; pointer to the top of the ready queue
RUNNING DB IDLE TASK ; contains the task number of the currently running task
READY Q DB (NUM_OF TASKS + 2) DUP (IDLE_ TASK)

; STRUCTURE DEFINITIONS, UNFORTUNATELY NOT SUPPORTED BY EMU8086
; 50 BYTES (PARAM SIZE) PER TASK

; TASK_PARAM STRUC

; SIGNAL FLAG DB 0

; INT NUM DB 0

; SP_STORE DW 0

; TIME OUT DW 0

; PERIOD CURRENT DW 0

; PERIOD RELOAD DW 0

: STACK AREA DB 40 DUP (0)

; TASK_PARAM ENDS

TASK_PARAM DB PARAM SIZE * (NUM OF TASKS + 1) DUP (0)

’

Download free eBooks at bookboon.com

278

http://bookboon.com/

Appendix H 8051 Instruction Set

8051 Alphabetical List of the Instruction Set

o ACALL Absolute Call

« ADD, ADDC Add Accumulator (With Carry)
o AJMP Absolute Jump

« ANL Bitwise AND

« CJNE Compare and Jump if Not Equal
« CLR Clear Register or Bit

« CPL Complement Register or Bit

« DA Decimal Adjust

« DEC Decrement Register

« DIV Divide Accumulator by B

« DINZ Decrement Register and Jump if Not Zero
o INC Increment Register

- JB Jump if Bit Set

« JBC Jump if Bit Set and Clear Bit

« JC Jump if Carry Set

« JMP Jump to Address

« JNB Jump if Bit Not Set

e JNC Jump if Carry Not Set

« JNZ Jump if Accumulator Not Zero
. JZ Jump if Accumulator Zero

o LCALL Long Call

« LJMP Long Jump

« MOV Move Memory

« MOVC Move Code Memory

« MOVX Move Extended Memory

« MUL Multiply Accumulator by B

« NOP No Operation

« ORL Bitwise OR

« POP Pop Value From Stack

« PUSH Push Value Onto Stack

« RET Return From Subroutine

o RETI Return From Interrupt

« RL Rotate Accumulator Left

« RLC Rotate Accumulator Left Through Carry
« RR Rotate Accumulator Right

Download free eBooks at bookboon.com

http://bookboon.com/

¢« RRC

« SETB

« SJMP

« SUBB
« SWAP
« XCH

« XCHD
« XRL

Rotate Accumulator Right Through Carry
Set Bit

Short Jump

Subtract From Accumulator With Borrow
Swap Accumulator Nibbles

Exchange Bytes

Exchange Digits

Bitwise Exclusive OR

Download free eBooks at bookboon.com

http://bookboon.com/

Bibliography

10.

11.

12.

13.
14.

15.

16.

17.

18.

AYALA, K.J., 1999. 8051 Microcontroller: Architecture, Programming, and Applications. 2nd edn.
Delmar Thomson Learning.

BARNETT, R.H., 1994. The 8051 Family of Microcontrollers. 1st edn. Upper Saddle River, NJ, USA:
Prentice Hall PTR.

CALCUTT,D.M., COWAN, EJ.and PARCHIZADEH, G.H., 1998. 8051 Microcontrollers Hardware,
Software and Applications. London, UK: Arnold.

CHEW, M.T. and GUPTA, G.S., 2005. Embedded Programming with Field-Programmable Mixed-
Signal Microcontrollers. Silicon Laboratories.

HUANG, H., 2009. Embedded System Design with the C8051. Stanford, CT, USA: Cengage Learning.
LABROSSE, J.J., 2002. Embedded Systems Building Blocks. 2nd edn. San Francisco, CA, USA: CMP
Books.

LABROSSE, J.J., 2002. MicroC/OS-II, The Real-Time Kernel. 2nd edn. San Francisco, CA, USA:
CMP Books.

MACKENZIE, LS., 1998. The 8051 Microcontroller. 3rd edn. Upper Saddle River, NJ, USA: Prentice
Hall PTR.

MAZIDI, M.A. and MAZIDI, J.G., 1999. The 8051 Microcontroller and Embedded Systems with
Disk. 1st edn. Upper Saddle River, NJ, USA: Prentice Hall PTR.

PONT, M.J., 2002. Embedded C. 1st edn. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc.

PONT, M.]., 2001. Patterns for time-triggered embedded systems: building reliable applications with
the 8051 family of microcontrollers. New York, NY, USA: ACM Press/Addison-Wesley Publishing
Co.

PREDKO, M., 1999. Programming and Customizing the 8051 Microcontroller. New York, NY, USA:
McGraw-Hill, Inc.

SCHULTZ, T.W,, 2004. C And The 8051. Pagefree Publishing.

SCHULTZ, T.W,, 1999. C and the 8051 (volume II): building efficient applications. Upper Saddle
River, NJ, USA: Prentice Hall PTR.

SCHULTZ, T.W., 1997. C and the 8051: Hardware, Modular Programming and Multitasking with
Cdrom. 2nd edn. Upper Saddle River, NJ, USA: Prentice Hall PTR.

STEWART, J.W.,, 1999. The 8051 microcontroller (2nd ed.): hardware, software and interfacing. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc.

THORNE, M., 1986. Programming the 8086/8088 for the IBM PC and compatibles. Redwood City,
CA, USA: Benjamin-Cummings Publishing Co., Inc.

VARIOUS, 1993. MCS51 Microcontroller Family User’s Manual. Santa Clara, CA, USA: Intel

Corporation.

Download free eBooks at bookboon.com

http://bookboon.com/

19. C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-programming in a Hard Real-Time
Environment,’]. ACM, vol. 20, no. 1, pp. 40-61, 1973.
20. J. Blaut, 2004, “8051 RTOS”, B.Sc. Eng. Thesis, University of Malta.

Download free eBooks at bookboon.com

http://bookboon.com/

Index for Part |

Symbols

8032 141
extras 141
T2CON 146
timer 2 144

B

baud rate
A51 example 132
setup 103
timer 2 148

big endian 169

C

CALL
ACALL 68
LCALL 68

conditional branching 65

Control Bit Symbol
AC 53
C/T 50,77
CY 53
EA 52,117
ES 52,117
ETO 52,117
ET1 52,117
ET2 52
EX0 52,117
EX1 52,117
FO 53
GATE 50, 77
GF1 49
GF2 49
IDL 49
IEO 49
IE1 49
INTO 47
INT1 47
ITO 49
IT1 49
MO 50, 77
M1 50,77
OV 53
P 53
PD 49
PS 53,120
PTO 53,120
PT1 53,120
PT2 53

Download free eBooks at bookboon.com

PX0 53,120
PX1 53,120
RB8 51, 101
RD 47
REN 51, 101
RI 51,101, 123
RSO 53

RS1 53
RXD 47
SMO 51, 101
SM1 51, 101
SM2 51,101
SMOD 49
TO 47

T1 47

TB8 51,101
TFO 49, 82
TF1 49, 82
THO 74
THI1 74

TI 51,101, 123
TLO 74

TL1 74
TRO 49, 82
TR1 49, 82
TXD 47
WR 47

D

Development Boards
C8051F020TB 166
Flite-32 153
Flite-32 IVT setup 179
NMIY-0031 161

direct jumps 67

E

endian
big 169
little 169

Examples

Big Endian and Little Endian - C 170

PaulOS RTOS - C 220
Traffic Lights A51 136
UART baud rate A51 132

I

Interfacing
4-bit mode 271

http://bookboon.com/

7-Segment LEDs 250
DC Motor 275
H-bridge 277
Keypad 261
LCD 264
LEDs 247
Servo Motor 283
Stepper Motor 285
Switches 258
Interrupts 69, 112, 115
common problems 128
considerations 125
IVT 152
polling sequence 118
priorities 119
sequence of events 120
serial 123
settingup 117
timer 2 151
Interrupt Vector Table 116, 152
ISR
stand-alone - PaulOS 218

J

jumps
conditional 65
direct 67

K
KEIL setup 173
L
little endian 169
M

MagnOS$
description 225

OS_CHANGE_TASK_PRIORITY() 226, 232

OS_CHECK_MSG() 226,236
OS_CHECK_TASk_PRIORITY() 232
OS_CHECK_TASK_PRIORITY() 226
OS_CHECK_TASK_SEMA4() 226,237
OS_CLEAR_MSG() 226,235
OS_CREATE_TASK() 226, 240
OS_GET_MSG() 226,236
OS_INIT_RTOS() 226,230
OS_KILL_IT() 239
OS_KILL_TASK() 226
OS_RELEASE_RES() 226,233
OS_RTOS_GO() 226,228
OS_RUNNING_TASK_ID() 226, 230
OS_SEMA4MINUS() 226, 238
OS_SEMA4_PLUS() 226,238
OS_SEND_MSG() 226,234

Download free eBooks at bookboon.com

OS_WAIT4RES 233
OS_WAIT4RES() 226
OS_WAIT4SEM() 226, 239
OS_WAITI() 226,231
OS_WAIT_MESSAGE() 226, 236
OS_WAITP() 212,226,229
OS_WAITT() 226,231
Master-Slave 108
memory
bit-addressable 30
code area 26
external 26
internal data 27
on-chip 27
organisation 23

P

PaulOS
OS_CPU_DOWN() 218
OS_CREATE_TASK() 206, 209
OS_DEFER() 205, 206, 216
OS_INIT_RTOS() 206, 207
OS_KILL_IT() 205, 206,216
OS_PAUSE_RTOS() 218
OS_PERIODIC() 206
OS_PERIODIC_A() 218
OS_RESUME_RTOS() 218
OS_RESUME_TASK() 206
OS_RTOS_GO() 206, 207, 209
OS_RUNNING_TASK_ID() 205,210
OS_SCHECK() 205,207,210
OS_SIGNAL_TASK() 206,207, 211
OS_WAITI() 206,213
OS_WAITP() 205, 206
OS_WAITS() 206,214
OS_WAITS_A() 218
OS_WAITT() 206,215
OS_WAITT_A() 218
ready 205
running 203
stand-alone ISR 218
waiting 204

ports
PO 35
P1 40
P2 47
P3 47

R

register banks 29
RETT 123
round-robin rtos

SanctOS 191
RTOS

http://bookboon.com/

co-operative 189 R 57

MagnOS 225 SBUF 51
pre-emptive 190, 225 SCON 51
ready state 187 SP 49,59
round-robin 188, 191 T2CON 146
running state 187 TCON 49, 81
SanctOS 191 THO 51
states 187 THI 51
types 188 timer 2 145
waiting state 187 timer mode control bits 77
timer-related 74

S TLO 51

SanctOS TLL 51
OS_CREATE_TASK() 191 TMOD 50,76
OS_INIT_RTOS() 191 Switch bounce 258
OS_INIT_RTOS(uchar iemask) 192 T

Serial Buffer 123

SFR 32 Timer
ACC 54,56 detecting overflow 85
B 54,58 initialisation 83
DPH 49 mode 0 77
DPL 49 mode 1 78
DPTR 49, 58 mode 2 79
IE 52,117 mode 3 81
IP 53 pulse duration 89
PO 35 reading registers 84
P1 40 timing events 87
P2 47 Timer 2 144
P3 47 auto relaod 149
PC 58 capture mode 150
PCON 49 Timers 71
PSW 53

Download free eBooks at bookboon.com

http://bookboon.com/

Index for Part I

Examples

Buffered serial interrupt routines 80
SCC2691 UART 86

UART not under interrupt control 91
Light control using RTOS 98
Random display using RTOS 102
Master-Slave communication 105
Timer 0 Mode 3 247

Timer 1 as a baud-rate generator 247
Timer 2 as a baud-rate generator 251
XON/XOFF serial routine 253

P

programming
pitfalls 12
tips 12

S

SFR
DPTR 13

T

tips

Ctips 18
DPTR 13
interrupts 15,17
port usage 13
programming 12
ram size 12
serial 14

SFRs 13

SP setting 12
UART 14

Download free eBooks at bookboon.com

http://bookboon.com/

End Notes

1. The original idea for this RTOS came from the book “C and the 8051 - Building Efficient
Applications — Volume II” by Thomas W. Schultz and published by Prectice Hall (0-13-521121-
2). In this book, Prof. Schultz discusses the development of two real-time kernels. The first one
is the RTKS which I corrected and developed into PaulOS co-operative RTOS. The second one is
the RTKB which I also corrected, modified and developed into MagnOS pre-emptive RTOS. Both
operating systems, RTKS and RTKB as written in the book are not fully functional, contain some
errors and lack some essential components. I did correspond with Prof. Schultz and sent him my
modifications and final versions of the programs which he later acknowledged in the 3rd edition of
the book “C and the 80517, again published by Prentice-Hall (0-58961-237-X). So I am particularly
grateful to Prof. Schultz for being the catalyst of my increased interest in RTOSs.

2. The development of a pre-emptive RTOS, named RTKB is described in the book “C and the 8051 -
Building Efficient Applications — Volume II” published by Prentice-Hall (0-13-521121-2. A third
edition was later published having the ISBN 1-58961-237-X where the author acknowledged my

contribution to the development of a working version of his original RTOS.

	12	Programming Tips and Pitfalls
	12.1	RAM size
	12.2	SP setting
	12.3	SFRs
	12.4	Port usage
	12.5	DPTR
	12.6	Serial port (UART)
	12.7	Interrupts
	12.8	RTOSs pitfalls
	12.8	C Tips

	Appendix A	ParrOS.a51
	Appendix B	PaulOS A51 version
	Appendix C	SanctOS.C
	Appendix D	PaulOS.C
	Appendix E 	MagnOS.C
	Appendix F 	Further Examples
	Appendix G	8086 PaulOS RTOS
	Appendix H	8051 Instruction Set
	Bibliography
	Index
	End Notes

