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Preface

Since the discovery of the light bulb, electricity has made a tremendous impact on the develop-
ment of our society. Today, it is hard to imagine a life without it. To provide every factory and
household with a sufficient supply of electric energy, electric companies were set up. They used
to serve dedicated geographical areas from which consumers had to buy their electricity. Tra-
ditionally, centralized regulation of the electricity supply industry was considered necessary to
ensure security of supply and efficient production. Efficiency was achieved through economics
of scale. The power sector was characterized by a highly vertically integrated market structure
with little competition. However, during the last two decades dramatic changes to the structure
of the electricity business have taken place around the world.

The original monopolistic situation has been replaced by deregulated, competitive markets,
where consumers, in principle, are free to choose their provider. To facilitate trading in these
new markets, exchanges and pools for electric power have been organized. Everything from
real-time and spot contracts to derivatives – such as (standardized, but not marked to market)
forward, futures and option contracts – are traded. A power exchange, though, is not a necessity
for a deregulated power market. In fact, in most countries the majority of deals – especially
medium and long term – are made on a bilateral basis on the so-called over-the-counter
(OTC) market. Nevertheless, it has been argued that the establishment of power exchanges has
promoted competition and contributed to the high trading activity seen, for instance, in the
Nordic market. Furthermore, the exchange serves as a source for updated, independent and
good-quality market information.

In a competitive power market electricity can be bought and sold at market prices like any
other commodity. As a consequence, the amount of risk borne by electric utilities, power
producers and marketers has increased substantially. Successfully managing a company in
today’s markets takes a fair amount of statistical analysis and educated guesswork. These in
turn involve developing dedicated statistical techniques and managing huge amounts of data
for modeling, forecasting and pricing purposes.

Unlike the analyses of random samples of observations that are discussed in the context of
most other statistics, the analysis of time series is based on the assumption that successive values
in the data file represent consecutive measurements taken at equally spaced time intervals.
While this assumption is violated for a vast majority of financial data sets, it is fulfilled for
power market data. Electricity spot prices, loads, production figures, etc., are sampled 24 hours
a day, 365 days a year. This gives us a unique opportunity to apply statistical methods in the
way they were meant to be used.

ix
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When electricity sectors were regulated, utility monopolies used short-term load forecasts
to ensure the reliability of supply and long-term demand forecasts as the basis for planning and
investing in new capacity. That is no longer the case where competition has been or is being
introduced. The costs of over- or under-contracting and then selling or buying power on the
balancing market have increased so much that they can lead to financial distress of the utility.
Minimization of volumetric risk has never been of such importance as it is today. As a result,
load forecasting has gradually become the central and integral process in the planning and
operation of electric utilities, energy suppliers, system operators and other market participants.
Its position as one of the major fields of research in electrical engineering is not threatened
as well since the financial penalties for forecast errors are so high that research is aimed at
reducing them even by a fraction of a percent.

On the other hand, extreme price volatility, which can be even two orders of magnitude
higher than for other commodities or financial instruments, has forced producers and wholesale
consumers to hedge not only against volume risk but also against price movements. Price
forecasts have become a fundamental input to an energy company’s decision making and
strategic development. As a result of the supply stack structure, load fluctuations translate into
variations in electricity prices. However, an inverse relationship has been also observed. In
some cases the issue of whether load drives power prices, or vice versa, is not easily answered.
Clearly, as they become partially co-determined, load and price forecasting could be treated
as one complex task.

It is exactly the aim of this book to present a common framework for modeling and forecasting
these two crucial processes for every energy company. The statistical approach is chosen for
this purpose as it allows for direct input of relevant statistical properties into the models.
Furthermore, it is attractive because physical interpretation may be attached to the components
of the models, allowing engineers and system operators to better understand the power market’s
behavior.

GUIDE TO THE CHAPTERS

The book is divided into four chapters. The first one introduces the structure of deregulated,
competitive electricity markets with the power pools and power exchanges as the basic mar-
ketplaces for price discovery. Electricity contracts and the spot price setting mechanism are
thoroughly described. The chapter ends with an up-to-date survey of market solutions im-
plemented in different parts of the world, with a particular emphasis on European and North
American structures.

Chapter 2 reviews the so-called stylized facts of selected power markets. In particular,
the spiky nature of electricity prices, the different levels of seasonality inherent in load and
price time series, the anti-persistent behavior of prices and the heavy-tailed distributions of
returns. Well-known and novel methods, like the Average Wavelet Coefficient and the rolling-
volatility technique, are utilized. The findings are illustrated mostly on data from two, not only
geographically distinct regions: Scandinavia and California. The first region is well known for
the world’s oldest, successfully operating power exchange, Nord Pool, and for vast amounts
of good-quality data. California, on the other hand, is ‘famous’ for the market crash of 2000,
which led to the blackouts in the San Francisco area in January 2001 and the first bankruptcy
of a power exchange in history.

Load forecasting has become increasingly important since the rise of competitive energy
markets. Short-term load forecasting can help to estimate load flows and to make decisions that
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can prevent overloading and reduce occurrences of equipment failures. Short- and medium-
term load forecasting, on the other hand, is important for modeling prices and valuation of spot
and derivative contracts for delivery of electricity. Consequently, hourly and daily forecasts up
to a few days ahead are of primary interest in everyday market operations. Chapter 3 reviews the
relevant techniques, with particular emphasis on statistical methods. Various models with and
without exogenous variables are illustrated and compared in two comprehensive case studies.

Finally, Chapter 4 discusses price modeling and forecasting. Six different approaches are
surveyed and two – statistical and quantitative – are further studied. This choice is backed by the
methods’ adequacy to model and forecast electricity prices in two pertinent contexts (and time
horizons): short-term forecasting and medium-term or monthly modeling. The former context
refers to the situation of bidding for spot electricity in an auction-type market, where players
who are able to forecast spot prices can adjust their own production schedules accordingly
and hence maximize their profits. The latter is relevant for balance sheet calculations, risk
management and derivatives pricing. As in the previous chapter, the theoretical considerations
and techniques are illustrated and evaluated using real-world data.

In fact, there are 16 case studies in the whole book, making it a self-contained tutorial to
electricity load and price modeling and forecasting. The text is comprehensible for graduate
students in electrical engineering, econometrics and finance wanting to get a grip on advanced
statistical tools applied in this hot area. Market players looking for new solutions and practical
advice will surely find the book attractive as well. All readers will benefit from the Matlab
toolbox on the accompanying CD, which not only demonstrates the presented topics but also
allows the user to play around with the techniques. The toolbox and its manual will be kept
up-to-date on the website (http://www.im.pwr.wroc.pl/∼rweron/MFE.html) and readers are
welcome to download updates from there. Needless to say, all readers are very welcome to
contact me with any feedback.

Rafal⁄ Weron
Wrocl⁄aw, September 2006
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1

Complex Electricity Markets

1.1 LIBERALIZATION

Over the past two decades a number of countries have decided to take the path of market
liberalization. Despite slight differences, the motivation for liberalization of the power sectors
world wide has shared common ideological and political reasons. In particular, a strong belief
that the success of liberalization in other industries can be duplicated in the power sector and a
‘need’ for splitting (or unbundling) the vertically integrated monopoly structures that tradition-
ally have managed generation, transport and distribution. The introduction of competition has
been justified by the perceived benefits of introducing market forces in an industry previously
viewed as a natural monopoly with substantial vertical economies. The breach of the natural
monopoly character has been possible, in turn, due to changes in generation technologies and
improvements in transmission. Therefore the motivation behind electricity liberalization is,
in the long run, to promote efficiency gains, to stimulate technical innovation and to lead to
efficient investment.

Power market liberalization was pioneered by Chile. The reform, which began in 1982, was
based on the idea of separate generation and distribution companies where power was paid
for according to a formula based on the cost, a dispatch system with marginal cost pricing
and a system of trading power between generators to meet customer contracts. Large-scale
privatization began in 1986 and led to the (partial) vertical disintegration of the sector and the
formation of a wholesale power trading mechanism.1

The Chilean reform was followed by the reorganization of the British electricity sector in
1990. The wholesale market only included England and Wales until 2005, thereafter Scotland
as well. The Nordic market opened in 1992, initially in Norway, later in Sweden, Finland
and Denmark. In Australia, markets in Victoria and New South Wales began operating in
1994; followed by opening of the Australian National Electricity Market (NEM) in 1998. New
Zealand reformed the power sector in the same period, officially launching the market in 1996.
In North America, a number of northeastern markets (New England, New York, Pennsylvania–
New Jersey–Maryland – PJM) began operating in the late 1990s. California followed in 1998,
and Texas and Alberta (Canada) three years later. The number of liberalized electricity markets
is steadily growing world wide, but the trend is most visible in Europe.

Some of the pioneers in electricity market reform have been successfully operating for over a
decade. Others have undergone substantial changes in design to improve the performance. Yet
a few reforms have failed miserably. The California market crash of 2000/2001, the spectacular
bankruptcy of Enron that followed, and the widespread blackouts in North America and Europe
in 2003 are sometimes used to argue that electricity market liberalization is a flawed concept.

1 It should be noted that the Chilean reform conformed with the economic doctrine of the military dictatorship. In the case of the
power market, though, it had the long-lasting positive effect of stability. The 2004 revision of the law has not changed the status quo.
See Jamasb et al. (2005) for a comprehensive review of the electricity sector reforms in Latin America; Pollitt (2005) concentrates
solely on the Chilean market.

1
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These failures, however, cannot be attributed solely to market liberalization. The California
crisis was due to a coincidence of several factors, one of which was a flawed market design (see
Section 1.4.2). Likewise, power market liberalization paved the way for the Enron bankruptcy
and the 2003 blackouts, but was not the root cause of these events.

On the other hand, liberalization is praised by others for the positive impact it has had on
the economy. The mentioned benefits include a clear trend of falling electricity prices and a
more efficient use of assets in the electricity sector. Both ‘benefits’ are, however, questionable.
Net electricity prices have generally decreased, but the new taxes imposed on the prices have
in many cases reversed the effect. In particular, the trend of falling prices is not that apparent,
if it exists at all, for small or medium size industrial customers and especially for household
consumers.2 We have to remember, though, that prices paid by some consumer groups do
not necessarily reflect the costs of producing and transporting electricity. In regulated power
markets industrial customers often subsidize retail consumers.

The vertically integrated utilities, that traditionally operated in the power sector, have had
the tendency to create substantial overcapacity. Market liberalization has generally reduced
this overcapacity. In addition it has also been shown to provide gains from higher efficiency in
the operation of generation, transmission and distribution services. But since liberalization is
expected to bring economic benefits in the long run, in the short term certain groups (like the
previously subsidized household consumers) may not realize immediate benefits or may even
experience losses.

Another controversial issue is the ability of liberalized power markets to provide sufficient
incentives for investment in new generation (or transmission) capacity. In the new environ-
ment, investment decisions are no longer centrally planned but are the outcome of competitive
forces. Consequently, capital-intensive technologies with long construction times are generally
avoided, even if their marginal costs are low. Instead generation plants that can be built in short
time horizons (like the gas-fueled plants) are preferred. But even then, the expectation of lower
prices can cause private investors to postpone expenditures on new generation capacity or the
expansion of transmission network. This puts policy makers under pressure to intervene. Con-
sequently, there is an ongoing debate whether to establish capacity payments (as in a number of
Latin American countries and Spain), organize capacity markets (as in the northeastern United
States) or to have ‘energy only’ markets (as in Australia and New Zealand).

The basic idea of capacity payments (originally introduced in Chile in 1982) is to award
to each generator a daily payment which is a measure of the contribution of the generator
to the reliability of the power system, i.e. its availability. International evidence suggests,
however, that capacity payments create poor incentives to alleviate the capacity problem and
may even worsen it. For instance, generators may try to increase capacity payments by making
fewer capacity resources available thereby increasing, rather than decreasing, the probability
of shortage.

Quantity-based capacity payment systems (as opposed to the price-based capacity payments
discussed above) generally have taken the form of installed capacity (ICAP) markets. The main
purpose underlying the introduction of these markets has been to ensure that adequate capacity
is committed on a daily or seasonal basis to meet system load and reserve requirements. The
distributors that sell electricity to end-user consumers must satisfy their capacity obligations,
which equal their expected peak monthly loads plus a reserve margin. They can accomplish this,

2 See http://www.iea.org, http://www.eurelectric.org and http://www.europa.eu.int/comm/eurostat/ for rel-
evant statistical data and comparisons.
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either by internal or bilateral transactions, or through the capacity market in which generators
sell a recall right that empowers the system operator to recall them in the event of shortages.
As the markets matured, market coordinators realized a need to encourage generator reliability
and remove a potential source of market power. Consequently, unforced capacity (UCAP)
credits were developed, which are calculated by taking the ICAP and adjusting it on the basis
of the reliability of the generator.

In the ‘energy only’ markets3 the wholesale electricity price provides compensation for both
variable and fixed costs. The ‘price’ we have to pay for this are the price spikes, i.e. abrupt
and generally unanticipated large changes in the spot price that in extreme cases can lead to
bankruptcies of energy companies not prepared to take such risks (see Case Study 2.2.1). Price
spikes should send signals to investors that new generation capacity is needed. However, if the
spikes are rare and not very extreme they may not provide sufficient motivation. In such a case
regulatory incentives (e.g. capacity payments) to prompt timely and adequate investment may
be necessary. A related social issue is whether consumers are willing to accept price spikes at
all. If not, protective price caps are necessary, which again require regulatory incentives for
investment in new capacity.

Clearly electricity market liberalization is a challenging and ongoing process. It requires
not only strong and sustained political commitment, but continuous development as well. Only
then will it bring the expected benefits to the economy and the society. What complicates the
situation is the fact that there is not one single best market model. In every case specific decisions
have to be made that take into account the economic and technical characteristics of a given
power system. However, no matter what are the actual regulations regarding unbundling, third-
party access (TPA)4 or cost-reflective pricing, there is one common feature of all successful
markets: a formal price quotation mechanism. We will look more closely at this mechanism
in the following sections.

1.2 THE MARKETPLACE

1.2.1 Power Pools and Power Exchanges

Liberalization of the power sector has created a need for organized markets at the wholesale
level. Two main kinds of market for electricity have emerged: power pools and power ex-
changes. The differences between them can be explained by using two criteria: initiative and
participation. Power pools and power exchanges share many characteristics and distinguishing
between them is not always trivial. In particular, the oldest and one of the most mature power
exchanges in the world is called Nord Pool.

Two types of power pools can be identified: technical and economic. Technical pools or
generation pools have always existed. Vertically integrated utilities used a pool system to
optimize generation with respect to cost minimization and optimal technical dispatch. In such
a system the power plants were ranked on merit order, based on costs of production. Hence,
generation costs and network constraints were the determining factor for dispatch. Trading
activities were limited to transactions between utilities from different areas. International trade
activity was limited, due to a low level of interconnection capacity.

3 Also called ‘one price only’ markets (IEA 2005a).
4 TPA regulations define and govern the access to the transmission and distribution network. In the European Union the vast

majority of countries have opted for regulated TPA, under which prices for access are published by the system operator and are not
subject to negotiation.
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Figure 1.1 Power pool vs. power exchange price formation mechanism. Left panel: In a power pool the
market clearing price (MCP) is established through a one-sided auction as the intersection of the supply
curve (constructed from aggregated supply bids) and the estimated demand (which automatically defines
the market clearing volume, MCV). Right panel: In a power exchange the MCP is established through a
two-sided auction as the intersection of the supply curve (constructed from aggregated supply bids) and
the demand curve (constructed from aggregated demand bids)

Economic pools or simply power pools have been established to facilitate competition be-
tween generators. They have mainly been created as a public initiative by governments willing
to introduce competition in generation. This system has been used world wide, for instance,
in England and Wales (before the introduction of the New Electricity Trading Arrangements –
NETA, see Section 1.3.1), Spain, Alberta and PJM (Pennsylvania–New Jersey–Maryland).

Participation in an economic pool is mandatory, i.e. no trade is allowed outside the pool.
Moreover, since trading has to account for numerous technical limitations, like plant availability
and unit commitment, the participants can only be generators. They bid based on the prices
at which they are willing to run their power plants. The market clearing price (MCP) is
established through a one-sided auction as the intersection of the supply curve (constructed
from aggregated supply bids) and the estimated demand (which automatically defines the
market clearing volume, MCV), see the left panel in Figure 1.1. Because of the technical
aspects involved, these bids can be very complex. Hence, the price determination mechanism
involves a computationally demanding constrained optimization leading to a low level of
transparency.

On the other hand, a power exchange (PX) is commonly launched on a private initiative,
for instance, by a combination of generators, distributors and traders. Most of the recently
developed European markets (including the Netherlands, Germany, Poland, France, Austria)
are based on this model; see Table 1.1 with the timeline of organized day-ahead electricity
markets. Participants include generators, distribution companies, traders and large consumers.
Participation in the exchange is voluntary. However, there are some exceptions. For instance,
the California Power Exchange (CalPX) was mandatory during the first years of operation in
order for it to develop liquidity. Nord Pool, is a voluntary exchange at the national level but is
mandatory for cross-border trade. The Amsterdam Power Exchange (APX) is mandatory for
players who obtain interconnector capacity on the daily auction.

The genuine role of a power exchange is to match the supply and demand of electricity
to determine a publicly announced market clearing price (MCP). Generally, the MCP is not
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Table 1.1 Timeline of organized day-ahead electricity markets

Country Year Name

UK 1990 England & Wales Electricity Poola

Norway 1992 Nord Poolb

Sweden 1996 Nord Pool
Spain 1998 Operadora del Mercado Español de Electricidad (OMEL)c

Finland 1998 Nord Pool
USA 1998 California Power Exchange (CalPX)d

Netherlands 1999 Amsterdam Power Exchange (APX)
USA 1999 New York ISO (NYISO)
Germany 2000 Leipzig Power Exchange (LPX)e

Germany 2000 European Energy Exchange (EEX)
Denmark 2000 Nord Pool
Poland 2000 Towarowa Gielda Energii (Polish Power Exchange, PolPX)
USA 2000 Pennsylvania–New Jersey–Maryland (PJM) Interconnection
UK 2001 UK Power Exchange (UKPX) f

UK 2001 Automated Power Exchange (APX UK)g

Slovenia 2001 Borzen
France 2002 Powernext
Austria 2002 Energy Exchange Austria (EXAA)
USA 2003 ISO New England
Italy 2004 Italian Power Exchange (IPEX)
Czech Rep. 2004 Operátor Trhu s Elektřinou (OTE)
USA 2005 Midwest ISO (MISO)
Belgium 2006 Belgian Power Exchange (Belpex)

a In March 2001, the Pool was abolished and replaced by NETA.
b Despite the name, Nord Pool is a power exchange.
c Although officially called a power exchange, OMEL is more like a power pool.
d CalPX ceased operations in January 2001 and subsequently went bankrupt.
e LPX merged with EEX in 2002.
f Since 2004, UKPX is part of the APX Group (formerly APX).
g APX acquired APX UK in February 2003.

established on a continuous basis, but rather in the form of a conducted once per day two-sided5

auction. It is given by the intersection of the supply curve (constructed from aggregated supply
bids) and the demand curve (constructed from aggregated demand bids), see the right panel in
Figure 1.1. Buyers and suppliers submit bids and offers for each hour of the next day and each
hourly MCP is set such that it balances supply and demand. In a uniform-price (or marginal)
auction market buyers with bids above (or equal to) the clearing price pay that price, and
suppliers with offers below (or equal to) the clearing price are paid that same price. Hence, a
supplier would be paid 100 EUR/MWh for the quantity sold in the spot market (whenever the
clearing price happened to be 100 EUR/MWh) regardless of his actual bid (and his marginal
costs).6 In contrast, in a pay-as-bid (or discriminatory) auction a supplier would be paid exactly
the price he bid for the quantity transacted; in effect he would be paid an amount that more
closely corresponds to his marginal costs. This, however, leads to the problem of ‘extra money’

5 As opposed to the one-sided auction of a power pool, where only one side – the suppliers – send in their bids.
6 Consequently, the uniform-price auction has been criticized for having the consumers systematically pay too much for electricity.

Cramton and Stoft (2006) argue that this is not the case.
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paid by buyers, but not paid to suppliers. On the other hand, in a uniform-price auction the
money paid by buyers is exactly equal to the money received by suppliers. The list of pros and
cons of the two approaches is much longer and the choice between them is not obvious. In
practice, however, most market designs have adopted the uniform-price auction, the UK under
NETA (see Section 1.3.1) is one of the few exceptions.

1.2.2 Nodal and Zonal Pricing

When there is no transmission congestion, MCP is the only price for the entire system. How-
ever, when there is congestion, the locational marginal price (LMP) or the zonal market
clearing price (ZMCP) could be employed. The former is the sum of generation marginal cost,
transmission congestion cost and cost of marginal losses (although the cost of losses is usually
ignored), and can be different for different buses (or nodes), even within a local area. Nodal
prices are the ideal reference because the electricity value is based on where it is generated and
delivered. However, they generally lead to higher transaction costs and greater complexity of
the pricing mechanism. On the other hand, the zonal price may be different for various zones
or areas, but is the same within a zone, i.e. a portion of the grid within which congestion is
expected to occur infrequently or has relatively low congestion-management costs. Interest-
ingly, these prices can take negative values, as in Figure 1.2, which makes them diametrically
different from other financial or commodity prices.

Nodal (locational) pricing developed in highly meshed North American networks where
transmission lines are criss-crossing the electricity system. In Australia, where the network
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Figure 1.2 California Power Exchange market clearing prices (MCP) for each hour of December 3,
1999. After congestion management is performed, the final day-ahead schedules are issued and zonal
market clearing prices (ZMCP) are calculated. The hourly ZMCP for three selected zones within the
California network – Palo Verde, San Francisco and Sylmar – are also depicted. At times the zonal prices
deviate significantly from the unconstrained MCP. Here the Palo Verde clearing price is even negative
for one hour, a behavior generally not observed in other financial or commodity markets
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structure is simpler, zonal pricing was successfully implemented. Although the European net-
work is rather complex it is evolving into a zonal market, often with countries constituting entire
zones. This may have the negative impact of obscuring price signals and limiting efficiency.

1.2.3 Market Structure

The market clearing price is commonly known as the spot price. The spot electricity market
is actually a day-ahead market, as trading typically terminates the day before delivery. Recall
that for financial assets and most commodities the term ‘spot’ defines a market for immediate
delivery and financial settlement up to two business days later. Such a classical spot market
would not be possible for electricity, since the (transmission) system operator (TSO, SO) needs
advanced notice to verify that the schedule is feasible and lies within transmission constraints.

For very short time horizons before delivery the TSO operates the so-called balancing (or
real-time) market. This technical market is used to price deviations in supply and demand
from spot or long-term contracts. The TSO needs to be able to call in extra production at very
short notice, since the deviations must be corrected in a matter of minutes or even seconds to
ensure physical delivery and to keep the system in balance. Spot and balancing markets serve
different purposes and are complementary. Their functioning is quite different, however, and
they should not be confused. Note, that in the USA the spot and balancing markets are often
referred to as ‘forward’ and ‘spot’, respectively.7 We prefer to use a different, say European,
convention and reserve the term ‘forward market’ for transactions with delivery exceeding
that of the day-ahead market. With this convention the spot market is the nearest to delivery
non-technical market. Unless otherwise stated, in this monograph we will focus our attention
on spot (i.e. day-ahead) markets.

Just for the record, the balancing market is not the only technical market. To minimize
reaction time in case of deviations in supply and demand the system operator runs the ancil-
lary services market which typically includes the down regulation service, the spinning and
non-spinning reserve services and the responsive reserve service. In some markets the TSO
operates also the generating capacity market and/or the transmission capacity market. The
generating capacity market can address the problem of incentives for investment in new gen-
erating capacity. Trading in such a market can take the form of imposing on wholesale traders
and large loads connected directly to the transmission system the obligation to purchase some
amount of generating capacity (e.g. relative to their maximum demand), see also Section 1.1.

1.2.4 Traded Products

The commodization of electricity has led to the development of novel types of contracts for
electricity trading. These contracts can either be sold in bilateral (over-the-counter, OTC) trans-
actions or on organized markets. They can also be physical contracts (for delivery) or financial
contracts (for hedging or speculation). All contracts share four well-defined characteristics:
delivery period, delivery location, size and price. Other characteristics can vary widely.

The physical contracts can be classified as long term (futures, forwards and bilateral agree-
ments with maturities measured even in years) and spot, i.e. short term. Since electricity cannot
be economically stored, this range of contracts is necessary to keep supply and demand in bal-
ance. Market participants need daily, and even hourly, contracts to fulfill the variable – and

7 See, for example, Longstaff and Wang (2004) and Popova (2004).
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Table 1.2 Annual trading volumes of the two largest European power exchanges
(source: http://www.nordpool.no, http://www.eex.de). For comparison
the total demand figures for years 2002-2004 in the respective areas are provided
(source: http://www.eurelectric.org). All values are in TWh

Nord Pool 2002 2003 2004 2005

Demand (DK, FI, NO, SE) 387 379 389 n.a.
Day-ahead market 124 119 167 176
Futures market 1019 545 590 786
OTC clearing 2089 1219 1207 1316

EEX 2002 2003 2004 2005

Demand (Germany) 539 550 554 n.a.
Day-ahead market 33 49 60 86
Futures market 117 151 156 262
OTC clearing – 191 182 255

predictable only to a certain extent – consumption. The short-term spot contracts are usually
traded through an organized exchange, but the market share varies from country to country.

To cover their future consumption, utilities buy electricity in advance using monthly or annual
contracts. Many power exchanges provide a market for long-term electricity derivatives, like
futures and options (see Section 4.4.6). Nevertheless, long-term contracts are typically negoti-
ated on a bilateral basis. The reason for this is the relatively low liquidity of the exchange-traded
derivatives markets. Currently only at Nord Pool the volume of exchange-traded derivatives
surpasses the market demand (i.e. of Denmark, Finland, Norway and Sweden), see Section 1.3.2
and Table 1.2. However, when the exchange clearing of OTC derivatives is also taken into ac-
count, other markets (for instance, the European Energy Exchange) come close to this liquidity
threshold. In fact the clearing of the OTC transactions has been a highly successful enterprise,
especially at Nord Pool.

A special type of long-term contracts are the so-called Power Purchasing Agreements (PPA).
In some countries (e.g. Hungary, Poland, Portugal) they still constitute a considerable part of
the market. For instance, in Poland the PPA (known as ‘kontrakty dl�ugoterminowe’, KDT)
were entered into between power producers and the Polish Power Grid Company (PSE SA) in
the mid-1990s and currently still cover about 40% of the total production. They were aimed at
the modernization of the generation industry, with the objective of pollution reduction. More
than 4 billion dollars have been invested using bank loans guaranteed by these contracts.

Since many of the PPA were entered into before the start of the liberalization process,
they might comprise a market hindrance. In general, they are not in line with the principles
governing a competitive market. If the PPA are terminated, stranded costs8 will have to be paid
to compensate for the phasing out of these contracts. Other solutions to this problem are also
possible, including transformation into vesting contracts9 or introduction of a levy system.

8 Stranded costs, also known as stranded investments or stranded assets, occur in competitive markets when customers change
the supplier, thereby leaving the original supplier with debts for plants and equipment it may no longer need and without the revenue
from the ratepayers the plants were built to serve.

9 Vesting contracts are a transitional mechanism supporting the development of a competitive electricity market. They are agree-
ments between generators and utilities, with the system operator as an intermediary, for delivery of electricity at prespecified prices
(varying between seasons and days/hours of the week). Their volumes are set to cover the average (predicted) demand of the utilities’
franchised customers. Vesting contracts have been popular in Australia (Kee 2001, Mielczarski and Michalik 1998); currently (since
April 2006) they are in use in the province of Western Australia.
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Another interesting type of long-term contracts present in electricity markets are the CO2

emissions allowances. Through the ‘non-environment friendly’ generation process they influ-
ence electricity prices. A generator producing more electricity and hence polluting more is
obliged to buy extra allowances for a given year. Conversely, a generator producing less elec-
tricity (or from ‘cleaner’ sources) during a given year can sell the excess allowances for extra
profit. In the European Union the first phase of the emissions trading scheme (ETS) covers the
period 2005–2007. It is the world’s largest market for CO2 emissions allowances covering the
25 Member States of the EU and approximately 12 700 installations. Since the beginning of
2005 Nord Pool and the European Energy Exchange offer spot and forward contracts on CO2

allowances, but the majority of trading takes place on the OTC bilateral market. The players
are currently acting under imperfect (scarce) information and the prices are very volatile. It
is expected that in the second phase (2008–2012) the market will be more transparent and
predictable.

1.3 EUROPE

In the sections to follow we will briefly report on the changes that have taken place and review
the main characteristics of various competitive power markets. By no means will the selection
be complete or even representative. Some of the descriptions will become outdated in a few
years as the power markets are at an early stage of development characterized by rapid and
often drastic changes. Despite its limitations, the review will give us a better understanding
of the problems, solutions and the variety of today’s electricity markets. Taking the Nordic
power exchange as an example we will also describe the bidding practices and the spot price
setting procedure. We will start, though, chronologically with the oldest European market and
the world’s first day-ahead organized marketplace for electricity.

1.3.1 The England and Wales Electricity Market

The creation of organized electricity markets started in Europe in 1989 as a result of the
UK Electricity Act. The two main aspects of the reform consisted of dismissing the Central
Electricity Generating Board (CEGB), previously a vertically integrated monopoly for both
production and transport, and the foundation of the pool. Three companies were created,
but only two-, National Power (50% share) and Powergen (30% share) – were dominant in
price–setting. Those two held all of the fossil-fuel plants, with the third company (Nuclear
Electric) providing baseload nuclear power and essentially being a price taker. The England
and Wales Electricity Pool began operating in 1990 and was the world’s first organized market
for wholesale electricity. The pool was a compulsory day-ahead last price auction with non-firm
bidding, capacity payments for plant declared available and firm access rights to transmission.
Electricity was bought and sold on a half-hourly basis. The pool was a one-sided market
because at that time it was considered to be impossible to include sellers.

The system operator estimated the demand for each half-hour. Each bidder submitted a
whole schedule of prices and quantities. The unconstrained system marginal price (SMP)
was defined by the intersection of the half-hourly forecast demand of the system operator
with the aggregate supply function provided by generators, see Figure 1.1. The price paid to
generators, the pool purchase price (PPP), was the SMP plus a capacity payment (executed in
case of congestion). The price paid by the supplier, the pool selling price (PSP), was calculated
by taking into account the actual production of generators together with additional cost for
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ancillary services and system constraints. In addition to the pool, generators and suppliers
usually signed bilateral financial contracts to hedge against the risk of pool price volatility.
These agreements, called contracts for differences (CfD), specified a strike price and volume
and were settled with reference to the pool price. If the pool price was higher than the agreed
price on the CfD, the producer paid the difference to the consumer; if it was lower, the consumer
paid the difference to the producer.

The pool faced many criticisms: lack of transparency in the price determination process
(price setting was extremely complex), inadequacy of the capacity and availability payments
(which rewarded generators for making plants available, not for operating them) and admission
to keep market prices well above marginal production costs. In fact, the latter criticism was
more due to the duopoly of National Power and Powergen than to the flawed design of the
Pool. Since the inception of the market, the two companies steadily increased the prices so
that, by 1994, wholesale spot prices were nearly twice the marginal cost.10 The prospect of
large generating profits brought, in turn, new entrants to the market. This process picked up
speed in 1999 with unbundling of retail supply. In a surge to become vertically integrated
entities, National Power and Powergen started selling their generating assets. With the excess
capacity and reduced market concentration the wholesale prices started falling after year 2000.
The household prices remained high, though, benefiting vertically integrated companies and
eventually leading to bankruptcies of some of the generation-only companies a few years later.

In March 2001 the New Electricity Trading Arrangements (NETA) were introduced, replac-
ing the pool with a system of voluntary bilateral markets and power exchanges.11 Soon after
introduction of NETA, over-the-counter (OTC) power trading increased significantly. The OM
London Exchange established the UK Power Exchange (UKPX) and launched an electricity
futures market. Nine months later, as the Electricity Pool ceased operations, the UKPX added
a spot market in which spot contracts for half-hour periods were traded, see Table 1.1. At
the same time, two other independent power exchanges began operations: the UK Automated
Power Exchange (APX UK) opened a spot market and the International Petroleum Exchange
(IPE; currently IntercontinentalExchange, ICE) launched a futures market. In 2003 APX UK
was acquired by the Dutch APX and in 2004 they merged with UKPX into the APX Group,
currently the largest electricity spot market in Britain.

As with continental European markets, liquidity in the England and Wales market suffered
as a result of the withdrawal of the US-based traders in 2002–2003 (a fall in volume of around
30% has been reported). Moreover, with the vertically integrated power companies dominating
by that time, the wholesale market lost its importance as a revenue source for the major players.
A decline in wholesale prices became simply an internal transfer of profits from the generation
to the retail branch of the company. As a byproduct, the market became less attractive to new
entrants. The consolidated vertical business model12 that emerged is remarkably different from
its origins with unbundled generation, and ironically similar to the pre-liberalization model.
Despite all this, the England and Wales market is still a liquid trading market. However, the
spot exchange-traded volumes amount to a very small share of the wholesale market – around
1.5% of total demand in 2004.13 As the market is dispersed via bilateral and broker-based

10 See Bower (2004) and Bunn (2006) for relevant data.
11 Note, that the NETA trading system pays generators not in a uniformly but in a discriminatory (pay-as-bid) fashion.
12 Bunn (2006) suggests that such a model is convenient for regulators, in terms of dealing directly with the main players and

implementing energy policy (including new investments) by persuasion or treat, something that would not be possible with independent
generators.

13 See Cocker and Lundberg (2005).
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trading, it does not have a single index, but rather several competing price indices. Broker-
quoted prices are available up to 36–42 months ahead. The UKPX offers limited OTC clearing,
but no centralized clearing is currently available.

1.3.2 The Nordic Market

The Nordic commodity market for electricity is known as Nord Pool. It was established in
1992 as a consequence of the Norwegian energy act of 1991 that formally paved the way for
the deregulation of the electricity sector of Norway. At this time it was a Norwegian market,
but in the years to follow Sweden (1996), Finland (1998) and Denmark (2000) joined in. Only
at this point in time was it fair to talk about a power exchange for the Nordic region.

Nord Pool was the world’s first international power exchange. In this market, players from
outside the Nordic region are allowed to participate on equal terms with ‘local’ exchange
members. To participate in the spot (physical) market, called Elspot, a grid connection enabling
power to be delivered to or taken from the main grid is required. About 40% of the total power
consumption in the Nordic region is traded in this market (see Table 1.2) and the fraction
has steadily been increasing since the inception of the exchange in the 1990s. Additionally,
a continuous hour-ahead Elbas market is also operational in Finland, Sweden and eastern
Denmark.

In the financial Eltermin market power derivatives, like forwards (up to three years ahead),
futures, options and contracts for differences (CfD; for price area differentials, using the system
day-ahead price as the reference price) are being traded. In 2004 the derivatives traded at Nord
Pool accounted for 590 TWh, which is over 150% of the total power consumption in the Nordic
region (389 TWh), see Table 1.2. In addition to its own contracts, Nord Pool offers a clearing
service for OTC financial contracts, allowing traders to avoid counterparty credit risks. This is
a highly successful business, with the volume of OTC contracts cleared through the exchange
surpassing the total power consumption three times in 2004! In 2005 the volumes increased
further. In addition, on February 11, 2005 Nord Pool became the first exchange in the world to
start trading in European Union allowances for carbon dioxide emissions. From that date until
December 31, 28 million tons of CO2 were traded and cleared over Nord Pool, making it the
second largest exchange in this segment.

There are today over 300 market participants from over 10 countries active on Nord Pool.
These include generators, suppliers/retailers, traders, large customers and financial institutions.
The success of Nord Pool can be explained by several factors. First, the industry structure is
very fragmented with over 350 generation companies. The largest player (Vattenfall) has a
market share of only 20% (Cocker and Lundberg 2005). Such a structure obviously facilitates
competition. Second, large amount of hydropower allows storage and flexibility in produc-
tion. Third, the structure of the network is relatively simple, compared to continental Europe,
which facilitates congestion management. Finally, the level of collaboration between system
operators, governments and regulators is very high in contrast to the many conflicts of interest
between continental European countries.

1.3.3 Price Setting at Nord Pool

At Nord Pool the spot price is a result of a two-sided uniform-price auction for hourly time
intervals (see Figure 1.1). It is determined from the various bids presented to the market
administrator up to the time when the auction is closed. Before proceeding, we should stress
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that the bidding procedures are specific to every exchange, and therefore are not general.
However, the system used by Nord Pool shares many common features with other power
exchanges.

The market for trading power for physical delivery is called Elspot. Strictly speaking, Elspot
is a day-ahead market. What is traded are one-hour-long physical power contracts, and the
minimum contract size is 0.1 MWh. At noon (12 p.m.) each day, the market participants
submit to the market administrator (Nord Pool) their (bid and ask) offers for the next 24 hours
starting at 1 a.m. the next day. This information is provided electronically via the Internet
(Elweb) with a resolution of one hour, i.e. one for each hour of the next day. Such information
should contain both price and volume of the bids.

To be formally correct, there are in fact three possible ways of bidding at Elspot. Hourly
bidding consisting of pairs of price and volume for each hour. In block bidding, the bidding
price and volume are fixed for a number of consecutive hours. Flexible hourly bidding is a
fixed price and volume sales bid where the hour of the sale is flexible and determined by the
highest (next day) spot price that is above the price indicated by the bid.

The market participants are free (for hourly bidding) to provide a whole sell and/or buy
stack for each hour. For instance, a power generator could be more interested in selling larger
quantities of electricity if the price is high than if it is low. This is illustrated by Figure 1.3,
which depicts a bid/ask stack for a given hour for a fictitious power generator. The generator
is interested in selling electric power if the price is 150 NOK/MWh (or above). Furthermore,
if the price is at least 180 NOK/MWh the power generator wants to sell even larger quantities
for that particular hour. Notice also that this market participant, in addition, is willing to buy
electricity if the price is low, at most 120 NOK/MWh.
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Figure 1.3 The (bid and ask) orders for a given hour of a fictitious power generator. At Elspot buy
orders are positive numbers, while those of sell orders are negative. In this particular example there is
one purchase order of 70 MWh at a maximum price of 120 NOK/MWh, a sell order for −20 MWh with
a minimum price of 150 NOK/MWh and a second sell order for another −60 MWh set to at least 180
NOK/MWh
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The fact that power generators also are willing to buy power is not uncommon. They have
typically committed themselves, at a mutually agreed upon price, to long-term contracts with
large consumers. These contracts have to be honored at any time during the contract period. A
power generator is, of course, interested in optimizing his profit. This can also be achieved by
buying electricity during low price periods, and thereby saving own production potential for
periods when the price is higher. Such strategy can be profitable especially in the Nord Pool
area, where a large fraction of the production comes from hydro power that is easily adjustable
(future production is directly related to the filling fraction of the water reservoir).

By 12 p.m. Nord Pool closes the bidding for the next day and for each hour proceeds to make
cumulative supply and demand curves (see the right panel in Figure 1.1). Since there must
be a balance between production and consumption, the system spot price for that particular
hour is determined as the price where the supply and demand curves cross. Hence the name
market cross or equilibrium point. Trading based on this method is called equilibrium trading,
auction trading or simultaneous price setting. If the data does not define an equilibrium point,
no transactions will take place for that hour.14

After having determined the system price for a given hour of the next day’s 24-hour period,
Nord Pool continues by analyzing for potential bottlenecks (grid congestions) in the power
transmission grid that might result from this system price. If no bottlenecks are found, the
system price will represent the spot price for the whole Nord Pool area. However, if potential
grid congestions may result from the bidding, so-called area spot prices (zonal prices), that are
different from the system price, will have to be computed. The idea behind the introduction of
area (zonal) prices is to adjust electricity prices within a geographical area in order to favor local
trading to such a degree that the limited capacity of the transmission grid is not exceeded. How
the area prices are determined within Nord Pool differs between, say, Sweden and Norway,
and we will not discuss it further here.

We should keep in mind that the system price is the price determined by the equilibrium
point independent of potential grid congestions. The area (zonal) prices will only differ from
this price for those hours when transmission capacity in the central grid is limited. The system
price is therefore typically less volatile than the area prices. In this monograph we focus on
system prices, unless stated otherwise.

1.3.4 Continental Europe

The liberalization process started in the European Union in 1997 with the Directive 96/92/EC.15

This directive defined common rules for the gradual liberalization of the electricity industry
with the objective of establishing one common European market. It imposed the separation of
monopoly elements from potentially competitive segments, so that controllers of the monopoly
part (mainly the network) should not be able to abuse their position in the market, i.e. execute
the so-called market power.

The market opening prescribed rules upon member countries according to a timetable that
allowed each country to define its own pace of market liberalization, somewhere between

14 Note that in auction markets the supply and demand curves are stepwise functions. In some cases there may be more than one
intersection point. Specific regulations regarding interpolation of volumes between submitted price steps must be defined. See, e.g.,
Meeus et al. (2004).

15 Directive on Common Rules for the Internal Market in Electricity 96/92/EC, published in the Official Journal L 27/20 on
January 30, 1997. See also the Second Report to the Council and the European Parliament on Harmonization Requirements,
http://europa.eu.int.
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the European Commission minimum requirements and full immediate opening. Introducing
competition into the EU markets was expected to result in increased energy efficiency and
lower prices for consumers.

Despite recent reforms,16 cross-border transactions still are a major bottleneck in the de-
velopment of the common EU electricity market. Nevertheless, considerable commercial ex-
changes of electricity do take place between different markets. One indication for the ongoing
regional and European integration is the convergence of wholesale prices between adjacent
areas.

Spain and the Iberian Market

With strong national political support, Spain was the first continental country to create an
organized market for electricity. In 1997, the Electric Sector Act and Royal Decree 2019/97,
created Compania Operadora del Mercado Español de Electricidad (OMEL) to manage and
run the organized electricity market. OMEL is officially called a power exchange; however, it
is a hybrid solution as the employed capacity payments are characteristic for a power pool.

The Spanish electricity market began operation in January 1998, with day-ahead trading. It
is a voluntary market, but in practice bilateral trade is discouraged because capacity payments
are employed exclusively at OMEL. Moreover, distributors have the obligation to buy all their
energy needs at the ‘exchange’. Hence, the market liquidity, measured as the percentage of
energy traded relative to total demand, is very high and amounts to approximately 80% (OMEL
data for 2002–2004).

The Spanish market is widely isolated from the rest of Europe due to limited international
transmission capacity, however preparations are under way to establish an integrated Spanish
and Portuguese market for electricity (MIBEL). Market opening is planned for mid-2006.
OMEL has already changed its name to Operador del Mercado Ibérico de Energia – Polo
Español (OMIE, Operator of the Iberian Market – Spanish Branch) and will be in charge of
managing the MIBEL day-ahead market. The common pool will be a voluntary day-ahead
market, and a forward market (for physical contracts initially and later for financial ones) will
also be created. Bilateral contracts will be allowed either within each country or across the
interconnectors.

Despite initial optimism, the Spanish power sector liberalization is currently conceived as a
failure. Two primary reasons brought up are the oligopolistic industrial structure and multiple
regulatory flaws. Interestingly, the structure changed in a series of mergers just prior to market
opening. By 1998, the two major companies, Endesa and Iberdrola, generated 82% of the total
Spanish production and supplied 80% of the demand. Two other vertically integrated companies
basically completed the generation stack. Recently some changes in the structure and ownership
have taken place (including new entrants) and the situation is gradually improving.

However, the regulatory flaws have accumulated over the years, culminating in 2003, when
the increasing electricity wholesale prices resulted in a tariff deficit and yielded negative (!)
stranded costs. One of the major regulatory shortcomings is the current mechanism of capacity
payments. First, it does not provide generators with an incentive to be available and to produce
electricity when there is higher demand. If a generator is unavailable in a day when there is not

16 Including the Cross-Border Regulation No. 1228/2003, published in the Official Journal L 176/1 on July 15, 2003, and the second
EU Internal Electricity Market Directive 2003/54/EC, published in the Official Journal L 176/37 on July 15, 2003.
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enough supply in the system to cover the demand, it just loses the capacity payment for that
day. Annually, a single day does not make much of a difference. Second, it does not guarantee
that there will be enough installed capacity to meet demand at all times. A recent White
Paper by Pérez-Arriaga et al. (2005) addresses these and other deficiencies of the Spanish
power system. It also proposes a regulatory reform, including running an auction market for
additional capacity in case the capacity payments themselves fail to attract enough investment.

Germany

The German market is the largest (excluding Russia) European market, representing more
than 22% of the consumption in continental Europe (UCTE 2005). Unlike most Member
States, Germany had no independent regulator, leaving the federal Cartel Office to act as a
de facto regulator. The German regulatory framework was established by the Energy Sector
Law of April 1998. Full market opening, in the sense that all end-users could choose their
retailer, became a reality in late 1999. The German liberalization process, however, had two
controversial points.

First, it did not restrict vertical integration. Only the minimal EU requirements on unbundling
were initially implemented but, even worse, these requirements were not respected in practice.
When the German electricity market was liberalized, there were eight major electricity com-
panies. By 2001, mergers and acquisitions reduced this number to four: RWE, E.On, Vattenfall
Europe and EnBW. The capacity share of these four companies increased to 90% of total
German generation. As in Britain (but more rapidly), the sector evolved into a consolidated
vertical business model. While this structure may be convenient for regulators, it of course
does not foster competition.

Second, in contrast to the rest of Europe, negotiated third-party access (nTPA) to the network
was implemented. It relied on a negotiated arrangement of network access within the sector,
while ex post control of possible abuse was left to the Cartel Office. This approach failed in
practice. Most importantly, the nTPA led to a margin squeeze, i.e. to low profit margins in
generation and retail. Consequently, several initially successful retailers went bankrupt and by
2004 only Yello (a subsidiary of EnBW) survived. The government was not eager to admit the
failure, but in late 2004 generally approved the shift to regulated TPA.

Until mid-2000, electricity was traded only on a bilateral basis. As in most other electricity
wholesale markets, the majority of deals in Germany are still done on an OTC basis. However,
volumes of the exchange traded products have been increasing constantly over the last years
(see Table 1.2). In June 2000, the Leipzig Power Exchange (LPX) was launched and backed
by Nord Pool. In August 2000, the European Energy Exchange (EEX), based in Frankfurt/aM,
was launched as an initiative of the German futures exchange EUREX. In 2002, the LPX and
EEX merged and created a single European Energy Exchange (EEX), located in Leipzig.

EEX operates a day-ahead auction market with hourly (for each hour of the next day) and
block (daily base load, daily peak load, weekend base load) products. The market clearing
price (MCP) describes the equilibrium price determined in the hourly uniform-price auction
of the electricity spot market. Prices of block contracts are also established during continuous
trading. Electricity can be delivered into any of the five TSO zones. In the case of no congestion,
only one market price prevails.

In parallel to the spot market, the exchange operates a futures market where contracts can
be traded for delivery up to six years in advance. The contracts include cash-settled Phelix
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Base/Peak index futures and options and physically settled German, French and Dutch futures.
The daily Phelix Base index (Physical Electricity Index) is the daily mean system price for
electricity traded on the spot market, computed as the arithmetic average of the 24-hourly MCP.
The Phelix Peak index is the arithmetic average of the hourly MCP for peak hours (8 a.m. –
8 p.m., i.e. hours17 #9 till #20). Both indices are calculated for all 365 days of the year. EEX
also offers OTC clearing services and in 2005 introduced spot and futures contracts for EU
ETS CO2 emissions allowances. The latter enterprise has been highly successful and EEX is
currently the largest organized market for carbon dioxide allowances.

The quoted prices benefit from high credibility backed by the large number of market
participants (currently over 140; more than half of those are from outside Germany) and the
transparency of the price formation process. The EEX prices are the benchmark for the entire
market including OTC wholesale and retail business. Trading volumes on the EEX have been
continually rising and in 2005 reached a total (day-ahead, derivatives and OTC clearing) volume
of 603 TWh (see Table 1.2). In 2004 the day-ahead volume amounted to approximately 11%
of German electricity consumption.

Poland

The electricity markets in eastern Europe are still under development. Although the liberal-
ization of these markets is not as advanced as in most of the EU-15 countries, considerable
progress has been made and a lot of efforts have been put into the development of competitive
markets. However, interconnector capacity and regulatory barriers still exist.

With an annual consumption of about 130 TWh, Poland is by far the largest power market
in Eastern Europe. About 40% of the traded volumes are covered by the long-term Power
Purchasing Agreements (see Section 1.2.4). They were entered into before the start of the
liberalization process and currently comprise an obstacle for faster market development. An-
other 45% of electricity is purchased through bilateral agreements and the rest amounts for the
balancing market, the Polish Power Exchange (PolPX) and the electronic trading platforms.

In the past, Poland was a member of the Council for Mutual Economic Aid (CMEA) where
it played the role of a coal supplier for other countries of that organization. Costs of coal mining
were subsidized by the state in order to ensure low prices on the domestic market. Therefore,
production costs in the electricity and heat generating industry were lower than costs of coal
extraction. The Polish electricity sector is still heavily reliant on coal-fired capacity, with hard
and brown coal accounting for more than 95% of its generation.

The liberalization in Poland began in 1997 with the passing of the Energy Law Act to
meet the requirements for EU membership. This law defined principles for shaping the energy
policy, including providing customers with a non-discriminatory access to the grid. The Polish
Power Exchange (PolPX; Towarowa Giel�da Energii SA) was established in December 1999
as an initiative of the Ministry of Treasury by a group of power-producing and energy-trading
companies.

The day-ahead market began operation in July 2000. In the beginning, hourly energy trade
in PolPX was not consistent with the monthly balancing market operated by the TSO. This
resulted in a number of disputes about how to settle the power exchange’s hourly transactions

17 Hour #9 does not mean 9 a.m. but the interval 8 a.m. to 9 a.m.; i.e. hour #1 is the interval 12 p.m. to 1 a.m.
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Figure 1.4 Monthly statistics for the Polish Power Exchange (July 2000 – October 2005). Top panel:
Monthly total volumes for day-ahead transactions. Clearly the exchange has had its ups and downs. The
most dramatic changes were caused by the launch of the balancing market (September 2001), introduction
of the electricity tax (March 2002), debut of the two-price (buyer’s and seller’s) system on the balancing
market (July 2002) and the supply deficit during the second half of 2002. Bottom panel: Respective mean
monthly values of the IRDN (day-ahead) index

in the balancing market’s monthly settlement. When the TSO launched the hourly balanc-
ing market in September 2001, the power exchange’s trade volumes dramatically dropped
(see Figure 1.4). A few months later, the exchange-traded volumes suffered another blow
when the electricity tax was introduced. With the debut of the two-price (buyer’s and seller’s)
system on the balancing market, PolPX trading picked up again. It reached an all-time high in
December 2002.

In late 2003 the volumes decreased due to the consolidation process among the state-owned
distributors and generators and the resulting reduction in the number of participants. They have
stayed at this relatively low level since then. The reasons for such a small turnover at PolPX
are not clear. Experts indicate several sources, including inappropriate structure, potential for
conflict of interest and high charges. Despite the relatively low liquidity, the IRDN index of
the day-ahead market is considered as an indicator for the Polish spot electricity market. It is
a volume-weighted daily average price for the 24 hourly delivery periods.

Apart from the Polish Power Exchange, a number of electronic trading platforms have
appeared. The most successful of these is POEE (Platforma Obrotu Energia̧ Elektryczna̧),
which is a subsidiary of the Bel�chatów power plant. POEE started day-ahead trading in late
2002. Since then the platform has developed and currently has an annual turnover just below
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1 TWh, which is roughly half the volume traded at PolPX. Both, PolPX and POEE offer
long-term contracts (physical and financial futures) but the trading is very scarce.

1.4 NORTH AMERICA

The 1978 Public Utilities Regulatory Policies Act (PURPA) and Energy Policy Act (EPAct)
enacted in 1992 initiated US deregulation from a collection of regulated, regional monopolies
to a competitive market of independent power producers and distributors. The US power sector
is composed of electric utilities (known also as wired companies) whose rate schedules are
regulated, as well as non-utilities that offer market-based rates. The majority of non-utilities,
independent power producers (IPP) and combined heat and power plants (CHP), maintain the
capability to generate electricity but are not generally aligned with distribution facilities. There
are approximately 2800 IPP and CHP and over 3100 electric utilities in the USA (EIA 2004a).
Most utilities are exclusively distribution utilities that are owned by municipals.

The US power system has evolved into three major networks, or power grids: Eastern Inter-
connected System (roughly covering the Eastern and Central time zones), Western Intercon-
nected System (Mountain and Pacific time zones) and the Texas Interconnected System. These
three systems account for virtually all the electricity supplied in the United States, Canada,
and a portion of Baja California Norte, Mexico. Utilities within each power grid coordinate
operations and buy and sell power among themselves. Reliability planning and coordination
is conducted by the North American Electric Reliability Council (NERC) and its eight re-
gional councils (six of which comprise the Eastern Interconnection). Electricity flows over all
available paths of the transmission system to reach customers. The major trading hubs in the
USA are California North-Path 15 (NP15), California–Oregon Border (COB), Cinergy (Ohio,
Indiana), Entergy (Arkansas), Four Corners (Utah, Colorado, New Mexico, Arizona), Mead
(Nevada), Mid Columbia (Washington), Palo Verde (Arizona) and PJM (Pennsylvania, New
Jersey, Maryland), see Figure 1.5.

For the majority of hubs, an independent system operator (ISO) and a competitive market,
have failed to develop; rather, a combination of traditional tariff-based utility pricing, wholesale
price matching, bilateral purchases and sales contracts is used. Only in New England, New
York, Midwest, the PJM Interconnection and California, a tiered trading structure consisting
of a day-ahead and/or hour-ahead market and a real-time balancing market, was designed to
ensure that market performance would match the grid’s reliability requirements. Moreover, in
the face of the turmoil, started with the price run-ups in California beginning in mid-2000,
and continued with Enron’s collapse in late 2001 and the most extensive blackout in North
American history in August 2003, most states have decided to either postpone their deregulation
efforts or have stopped considering adopting it at all. Although the volume of the wholesale
electricity trading in the existing markets has been growing rapidly in the USA, the majority
of the volume is traded via bilateral contracts with and without brokerage.

In Canada, power industry structures and policies vary considerably across provinces. Each
province has a separate regulator. Only two provincial governments, Alberta and Ontario, have
established markets characterized by wholesale and retail unbundling with an independent
system operator (ISO), that sets and administers policies for grid interconnection, transmission
planning and real-time market operation (see Section 1.4.3). The remaining provinces are
largely characterized by vertically integrated, provincially owned utilities, which offer bundled
services at regulated rates to consumers.
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Figure 1.5 Three major networks of the North American power system. The main trading hubs are
indicated by circles. Shades of gray denote NERC’s regional councils (eight as of June 2006)

1.4.1 PJM Interconnection

The PJM (Pennsylvania–New Jersey–Maryland) Interconnection is the world’s largest compet-
itive wholesale electricity market. Similar to Nord Pool, PJM provides an interesting example
of market design where organized markets and transmission pricing are integrated. PJM is a
regional transmission organization (RTO) that coordinates the movement of wholesale elec-
tricity in all or parts of 13 states and the District of Columbia. As of today it serves over
50 million people and has more than 350 market participants.

PJM combines the role of a power exchange, a clearing house and a system operator. It op-
erates several markets, although different in detail: two generating capacity markets (daily and
longterm), two energy markets (day-ahead and realtime), a financial transmission entitlements
market and an ancillary services market.

PJM started operations in 1997. At that time the market provided a single price for the
entire PJM region. The single price system proved quickly to be problematic as it was unable
to reflect adequately locational value of energy throughout the market related to transmission
constraints. For this reason, in April 1998, PJM switched from a single price system to a nodal18

18 PJM provides prices for approximately 2000 locations (see http://www.pjm.com).



JWBK120-01 JWBK120-Weron September 28, 2006 21:28 Char Count= 0

20 Modeling and Forecasting Electricity Loads and Prices

price system with market clearing prices and a year later to nodal, market clearing prices based
on competitive offers (locational marginal pricing, LMP), which reflects the underlying cost
of the energy and the marginal cost of transmission congestion. PJM started the day-ahead
market in June 2000.

In order to allow financial hedging against price differences between locations, since 1999 the
LMP system has been accompanied by a system of transmission rights called fixed transmission
rights (FTR). FTR entitle the holder to receive compensation for transmission congestion
charges that arise from locational differences in the hourly locational market prices (LMP)
resulting from the dispatch of generators out of merit in order to relieve congestion. FTR
do not represent a right to the physical delivery of power, but they do ensure that access is
financially firm, i.e. they represent a financial hedge against the ex-post calculated locational
prices.

1.4.2 California and the Electricity Crisis

California was the first US state to restructure its electricity market, which started at the begin-
ning of 1998.19 The process of designing the details of California’s wholesale and retail market
institutions was extremely contentious. In the end, the ultimate structure represented a series
of compromises made by design committees, including interest group representatives. The
design required creation of an independent system operator (CAISO) and a power exchange.

The California Power Exchange (CalPX) started operations in April 1998. It conducted
daily auctions to allow trading of electricity in the day-ahead and hour-ahead markets. CalPX
accepted demand and generation simple bids (price-quantity) from its participants, determined
the market clearing price (MCP) at which energy was bought and sold and submitted balanced
demand and supply schedules for successful bidders to the system operator. It also submitted
bids for ancillary services, real-time balancing and congestion management. It was an energy
only market with no capacity payments.

CalPX was a voluntary market, however, the major Californian utilities were committed to
sell and buy only through CalPX for the first four years of operation, until mid-2002. This
rule was a fundamental flaw in the market design. It exposed the utilities to enormous risk.
On one hand, their retail revenues were fixed at the regulated rates; the utilities did not receive
any additional compensation in the event wholesale prices exceeded the regulated rates. On
the other, they were barred from hedging by purchasing power in advance of the day-ahead
market. This restriction made the market vulnerable to manipulation. For disaster to strike, all
that was needed was a period of tight supply.

In mid-May 2000 wholesale electricity prices began to rise above historical peak levels (see
Figure 1.6). The prices prevailing between June and September 2000 where much higher than
the fixed retail price that the utilities were permitted to charge for retail service. Two utilities20

(Southern California Edison, SCE, and Pacific Gas & Electric, PG&E) began to lose a lot of
money: the losses accumulated fast when the utilities were buying at 120 and selling at 60–65
USD/MWh!

Why did wholesale prices rise so quickly and dramatically above projected levels? There are
five primary interdependent factors (Joskow 2001): (i) rising natural gas prices, (ii) an increase

19 PJM, which is the world’s oldest centralized dispatched network, started its restructuring at the beginning of 1999.
20 The retail prices of the third large utility – San Diego Gas and Electric (SDG&E) – had been deregulated at the beginning of

2000.
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Figure 1.6 Hourly system spot price at the California Power Exchange (CalPX) from the opening
of the exchange (April 1, 1998) until the collapse of the market (January 31, 2001). The escalation of
prices since mid-2000 and the imposed price caps (successively set at 750, 500, 250, etc. USD/MWh) are
clearly visible. The electricity demand in California (represented in the inset by the daily system-wide
load) exhibited only a moderate increase in this period and by itself would not lead to the crisis

in electricity demand in California (see Figure 1.6), (iii) reduced imports from other states,
(iv) rising prices for NOx emissions credits and (v) market power problems.

None of the factors alone would lead to the crisis, however, a coincidence of all five factors
had a tremendous impact on the market. Prices in California increased by 500% between the
second half of 1999 and the second half of 2000. For the first four weeks of 2001, wholesale
spot prices averaged over 300 USD/MWh, 10 times what they were in 1998 and 1999. Some
customers were required involuntarily to curtail electricity consumption in response to supply
shortages. Electricity supply emergencies were in effect for most of the winter and spring of
2001, and there were several days of rolling blackouts.

California’s two largest utilities, PG&E and SCE, became insolvent in January 2001 and
stopped paying their bills for power and certain other financial obligations. PG&E declared
bankruptcy in April 2001. The California Power Exchange stopped operating at the end of
January 2001 and subsequently went bankrupt, eliminating a large organized and transparent
day-ahead market for electricity. It was the first bankruptcy of a power exchange in history.

In post-crisis California the ISO operates a small fraction (less than 10%) of the total
wholesale electricity marketplace. It runs the ancillary services market to maintain operating
reserves, the transmission market to efficiently allocate transmission space and the real-time
imbalance market to match supply with demand.

1.4.3 Alberta and Ontario

Alberta deregulated its electric power industry in the mid-1990s, establishing open transmission
access and a competitive market. Since January 1, 1996, all electricity has been sold into the
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Power Pool of Alberta. Retail competition was introduced in January 2001, with consumers
free to purchase their electricity from any licenced retailer. To facilitate hedging, the Alberta
Watt Exchange (Watt-Ex) was established and in January of 2001 commenced trading forward
electricity contracts deliverable into the Power Pool of Alberta.21 The new Electric Utilities Act
of 2003 established the Alberta Electric System Operator (AESO) to carry out the functions
of the former Power Pool of Alberta. The AESO’s web-based Energy Trading System (ETS)
enables real-time trading in the form of a two-sided auction. The market price is calculated as
the time-weighted average of the 60 one-minute system marginal prices (SMP).

For almost a century, the vast bulk of Ontario’s electricity was produced by Ontario Hydro
and sold to consumers through local municipal utilities. As a first step toward a competitive
market, the Ontario Electricity Act of 1998 re-organized Ontario Hydro into a number of
successor companies including the Independent Electricity System Operator (IESO; formerly
Independent Electricity Market Operator, IMO). IESO is responsible for the safe and reliable
operation of Ontario’s electrical system and, since May 2002, operates the real-time wholesale
market. The market clearing price (MCP) is set for each five-minute interval, based on bids and
offers into the market. In addition, each hour a calculation is performed to determine the hourly
Ontario energy price (HOEP) by using the average of the five-minute prices. HOEP is used as
the wholesale price for electricity for non-dispatchable generators and non-dispatchable loads.

Ontario introduced privatization legislation in 1998 and deregulation began there in 2002.
However, the process slowed down during California’s energy crisis. To reduce the impact
of summer 2002 price spikes on consumers, the Ontario government capped retail prices at a
price well below the cost of power. Consequently, the government had to pay the difference
between the wholesale cost of electricity and the frozen retail price. This resulted in a need
for substantial government subsidies and a reluctance of investors to move into the Ontario
market.

1.5 AUSTRALIA AND NEW ZEALAND

Prior to 1997, electricity supply in Australia was provided by vertically integrated publicly
owned state utilities with little interstate grid connections or trade. The Australian National
Electricity Market (NEM) began operating as a wholesale market for the supply of electricity
to retailers and end-users in Queensland, New South Wales, the Australian Capital Territory,
Victoria and South Australia in December 1998. In 2005 Tasmania joined the NEM as a sixth
region.

Exchange between electricity producers and electricity consumers is facilitated through a
pool where the output from all generators is aggregated and scheduled to meet forecasted
demand. The NEM Management Company (NEMMCO) manages the pool according to the
provisions of National Electricity Law and in conjunction with market participants and regu-
latory agencies.

Wholesale trading is conducted as a real-time market where supply and demand are instan-
taneously matched through a centrally coordinated dispatch process. Generators submit offers
every five minutes of every day. From all offers submitted, NEMMCO’s systems determine the
generators required to produce electricity based on the principle of meeting prevailing demand
in the most cost-efficient way. NEMMCO then dispatches these generators into production.
A dispatch price is determined every five minutes, and six dispatch prices are averaged every
half-hour to determine the spot price for each trading interval for each of the regions. NEMMCO

21 In 2005 Watt-Ex introduced forward electricity swaps (see http://www.watt-ex.com).



JWBK120-01 JWBK120-Weron September 28, 2006 21:28 Char Count= 0

Complex Electricity Markets 23

uses the spot price as the basis for the settlement of financial transactions for all energy traded
in the NEM.

The New Zealand Electricity Market (NZEM) was established on October 1, 1996; however,
it did not become a truly competitive market until April 1999. Since the market’s inception, the
bulk of electricity generated in New Zealand is sold through the NZEM. The wholesale real-
time market for electricity is administered by M-co on behalf of the New Zealand Electricity
Commission. The main participants are the seven generator/retailers who trade at 244 nodes
across the transmission grid. Prices and quantities are determined half-hourly at each node.
The price is set in a uniform price auction according to the cost of providing the electricity,
which incorporates locational variations and the cost of providing reserve. These locational
variations can happen because of transmission system outages, transmission losses and capacity
constraints.

Australia and New Zealand are particularly interesting in that they operate ‘energy only’
markets. In such markets the wholesale electricity price provides compensation for both vari-
able and fixed costs. Australian experience indicates that the price spikes can be a good enough
motivation for new investments. This can be best illustrated by the recent changes in South
Australia.

The peak demand in South Australia has been steadily rising in the last years, mostly due
to the increasing popularity of air-conditioning. This created a tight supply–demand balance,
already at the inception of the electricity market. The NEM spot prices for South Australia
several times reached the 5000 AUD/MWh price cap during peak hours in the summers of
1999–2000. This raised a lot of political concerns and public debates but the South Australian
government decided not to intervene directly. Instead it decided to raise the price cap to 10 000
AUD/MWh, giving investors a clear signal of stability and confidence in the market. Indeed the
investor response effectively overcame the tightness of supply and demand. Installed capacity
increased by nearly 50% in the period 1998–2003, almost half of it being open cycle gas
turbines (OCGT) for peaking purposes.

1.6 SUMMARY

The complexity of today’s electricity markets is enormous. The economic and technical char-
acteristics of the power systems, as well as the awareness and commitment of the regulatory
and political bodies add to the complexity and jointly constitute a platform from which a market
design is drawn. Whether it will be a successful design is not known up-front. Clearly there is
not one single best market model. There are examples of prosperous power pools and power
exchanges, of ‘energy only’ markets and markets with capacity payment systems. However, no
matter what are the actual regulations there is one common feature of all successful markets:
a formal price quotation mechanism. It adds transparency to the market and is the source of
vital information for the generators, utilities, traders and investors alike.

1.7 FURTHER READING� Market design and power market economics are reviewed in Boisseleau (2004), Bower and
Bunn (2000), Chao and Huntington (1999), Cramton (2003), EIA (2004b), Hunt (2002),
IEA (2001), IEA (2005a), Kirschen and Strbac (2004), Mielczarski (2006), Mielczarski and
Michalik (1998), Rothwell and Gómez (2003), Sioshansi and Pfaffenberger (2006), Stoft
(2002) and Zhou (2003).
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24 Modeling and Forecasting Electricity Loads and Prices� Cramton and Stoft (2005), Gallagher (2005), Hogan (2005) and Meeusen and Potter (2005)
discuss the pros and cons of capacity payments, capacity markets and ‘energy only’ markets.� Blackouts and transmission system security in competitive electricity markets are discussed
in Bialek (2004) and IEA (2005b).� Borenstein et al. (1999) and Bunn and Martoccia (2005) discuss the problem of market
power in the power markets.� A good starting point for CO2 emissions allowances data and information is
http://www.pointcarbon.com.� Bunn (2006) reviews the British experience of electricity liberalization.� See http://www.nordpool.no for price and volume data, market statistics and Nord
Pool’s annual reports. Simonsen (2005), Simonsen et al. (2004) and Vogstad (2004) provide
additional information and analyses.� Pérez-Arriaga (2006) argues that the liberalization of the Spanish power sector was
a failure. The original White Paper, Pérez-Arriaga et al. (2005), is available from
http://www6.mityc.es/energia/archivos/LibroBlanco.pdf.� See Brunekreeft and Twelemann (2005) for a recent review of the German market. The
whole issue (volume 26) of the Energy Journal is devoted to the liberalization of European
electricity markets.� Marecki et al. (2001) discuss the Polish energy policy in the period of emerging energy mar-
kets. Malko (2005) gives a more recent account. Mielczarski (2002) reviews the development
of the Polish electricity market.� See Makholm et al. (2006) and Rose and Meeusen (2005) for a recent performance review
of the US electricity markets.� Cramton (2003) and Joskow (2001) discuss California’s electricity crisis.� Canada’s energy policy is summarized in IEA (2004).� See http://www.nemmco.com.au and NEMMCO (2005) for details on history, system
conditions, market structure, ownership, concentration and types of bidding systems in
Australia.
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2
Stylized Facts of Electricity

Loads and Prices

2.1 INTRODUCTION

In this chapter we will review the so-called stylized facts of electricity loads and prices. We
will illustrate our findings mostly on data from two distinct, not only geographically, regions:
Scandinavia and California. The first one is well known for the oldest and one of the most
mature power exchanges in the world – Nord Pool. It also offers vast amounts of good-quality
data, not only from the Elspot market, but also from the derivatives Eltermin market. On the
other hand, California is ‘famous’ for the market crash that led to the blackouts in San Francisco
area in January 2001 and the first bankruptcy of a power exchange in history.

Many of the presented characteristics are universal, in the sense that they are shared by
most electricity spot markets in the world. Yet, a few are very specific to Scandinavia or
California. Moreover, as will be seen below, some of the features are dramatically different
from those found in the financial or other commodity markets. This chapter will enable us
to pinpoint the essential properties of power markets in general (and spot prices in particu-
lar) and thus give us sufficient grounds for proposing adequate models of price dynamics in
Chapter 4.

As the stylized facts can be observed and measured only by specific statistical tools, we will
also review techniques that are useful for analyzing time series, that is, sequences of (random)
numbers. Unlike the analyzes of random samples of observations that are discussed in the
context of most other statistics, the analysis of time series is based on the assumption that
successive values in the data file represent consecutive measurements taken at equally spaced
time intervals. While this assumption is violated for a vast majority of financial data sets, it
is fulfilled for power market data. Electricity spot prices, loads, production figures, etc., are
sampled 24 hours a day, 365 days a year. This gives us a unique opportunity to apply statistical
methods in the way they were meant to be used.

2.2 PRICE SPIKES

One of the most pronounced features of electricity markets are the abrupt and generally unan-
ticipated extreme changes in the spot prices known as jumps or spikes. Within a very short
period of time, the system price can increase substantially and then drop back to the previous
level – see Figure 2.1 where the Nord Pool system spot prices are depicted at an hourly time
resolution.

These temporary price escalations account for a large part of the total variation of changes
in spot prices and firms that are not prepared to manage the risk arising from price spikes can
see their earnings for the whole year evaporate in a few hours. And we have to stress that
the price of electricity is far more volatile than that of other commodities normally noted
for extreme volatility. Applying the classical notion of volatility – the standard deviation of

25
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Figure 2.1 Hourly system price for the spot market (Elspot) at the Nordic power exchange Nord Pool
from May 4, 1992 until December 31, 2004 (over 12 years of data and 111 000 observations in total).
In a matter of hours the price can increase 10-fold leading to a price spike like that of February 5, 2001
when the price reached the all-time-high of 1951.76 NOK/MWh (see the inset)

returns – we obtain that measured on the daily scale (i.e. for daily prices):� treasury bills and notes have a volatility of less than 0.5%� stock indices have a moderate volatility of about 1–1.5%� commodities like crude oil or natural gas have volatilities of 1.5–4%� very volatile stocks have volatilities not exceeding 4%� electricity exhibits extreme volatility – up to 50.%!

Recall, that a return (or log-return) is typically defined as the logarithmic price change: rt =
log pt+1 − log pt . Alternatively, a return can be defined as the relative change in price: rt =
(pt+1 − pt )/pt . For small price changes (up to a few percent) these definitions are more or
less equivalent; however, for large price changes – as in the case of electricity – the differences
can be substantial.

The spike intensity is also non-homogeneous in time. The spikes are especially notorious
during on-peak hours, i.e. around 09:00 and 18:00 on business days (see Figure 2.2), and
during high-consumption periods: winter in Scandinavia, summer in mid-western USA, etc.
As the time horizon increases and the data are aggregated the spikes are less and less apparent.
For weekly or monthly averages, the effects of price spikes are usually neutralized in the data.

It is not uncommon that prices from one day to the next or even within just a few hours
can increase 10-fold. The ‘spiky’ nature1 of spot prices is the effect of non-storability of
electricity. Electricity to be delivered at a specific hour cannot be substituted for electricity
available shortly after or before. As currently there is no efficient technology for storing vast

1 Although such rapid price changes are called interchangeably spikes or jumps, the latter term is, in fact, incorrect as the prices
do not stay at the new level, but rather tend to rapidly return to the normal regime.
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Figure 2.2 Four years (1997–2000) of Nord Pool market hourly system spot prices. The spikes are
typically observed in winter time either during the morning peak (around 09:00) or the evening peak
(around 18:00)

amounts of power, it has to be consumed at the same time as it is produced. Hence, extreme
load fluctuations – caused by severe weather conditions often in combination with generation
outages or transmission failures – can lead to price spikes.

The spikes are normally quite short-lived, and as soon as the weather phenomenon or
outage is over, prices fall back to a normal level. For instance, on Monday, February 5, 2001,
the spot price for delivery of electricity for hour #6 (i.e. between 05:00 and 06:00) was 190.33
NOK/MWh (see the inset in Figure 2.1). Three hours later, it reached the all-time high of
1951.76 NOK/MWh, an increase of more than a factor of 10. At the end of the day, electricity
was again priced moderately below 200 NOK/MWh. It may seem surprising but Nord Pool is
known for having less pronounced spikes than many other markets.

There are, however, markets where practically no spikes are present. For instance, in Poland,
since the inception of the day-ahead competitive wholesale electricity market in July 2000, no
price spikes have been observed! The prices typically range between 80 and 140 PLN/MWh.
Even the annual seasonality is not that apparent in the data – see Figure 2.3 where the spot
prices from the two largest Polish organized electricity exchanges (PolPX and POEE, see
Section 1.3.4) are depicted. The probable reason for this is the low volume traded on these
exchanges (about 1.5% and 0.8% of the market share in 2004–2005, respectively) and in the
spot market in general. In Poland still some 40% of the traded volumes are covered by long-
term Power Purchasing Agreements and much of the bilaterally traded volume (∼45%) is in
monthly or annual contracts.

Despite their rarity, price spikes are the very motive for designing insurance protection
against electricity price movements. This is one of the most serious reasons for including
discontinuous components in realistic models of electricity price dynamics. Failing to do so,
will greatly underestimate, say, the option premium, and thus increase the risk for the writer of
the option. For instance, in the USA, where the size of the spikes can be much more severe, there
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Figure 2.3 Hourly spot prices from the two largest Polish organized electricity exchanges (PolPX and
POEE) from the period January 2003–May 2005. No price spikes have been observed to date

are examples of power companies having to file for bankruptcy after having underestimated
the risks related to price spikes. A textbook example is the bankruptcy of the Power Company
of America (PCA), a well-established power-trading company.

2.2.1 Case Study: The June 1998 Cinergy Price Spike

In June of 1998, a combination of factors – including a prolonged hot spell and both planned and
unplanned power outages – caused the over-the-counter (OTC) price of power in the Cinergy
region (mid-western USA) to skyrocket from its typical level of 30 USD/MWh to the astounding
level of 7500 USD/MWh in real-time trading and a 1883.33 USD/MWh daily average price, see
Figure 2.4. A company called Federal Energy Sales defaulted on its obligations to supply power
at an earlier agreed on price to several other energy companies, including Power Company
of America (PCA). As a result of neglecting credit risk concerns and underestimating price
volatility, PCA also defaulted on some of its power supply contracts and was ultimately forced
to declare bankruptcy, after 236 million dollars in claims were filed against it (Weron and
Weron 2000).

Although PCA also defaulted on contracts in the California–Oregon Border (COB) region,
the bilateral prices in northern California remained unaffected (see the inset in Figure 2.4).
This observation confirms yet another stylized fact – electricity markets are regional. Whatever
happens in one power market has little or no impact on other, even geographically close markets.
This is in sharp contrast to the financial or even most commodity markets.
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Figure 2.4 Mean daily OTC price for delivery of firm electricity in the Cinergy region (mid-western
USA) during the first nine months of 1998. The June price escalation, which led to the bankruptcy of
Power Company of America (PCA) is clearly visible. Although PCA also defaulted on contracts in the
California–Oregon Border (COB) region, the OTC prices in northern California remained unaffected,
see the inset

2.2.2 When Supply Meets Demand

The presence of spikes in the spot price process is probably the most characteristic stylized
fact of a deregulated power market. The ‘spiky’ character of electricity prices calls for spot
price modeling, which is not continuous (see Chapter 4). But the pertinent question is why do
load fluctuations lead to price spikes only in some cases? The answer lies in the way electricity
prices are determined, i.e. as the intersection between demand and supply for a given time
interval. To better understand this phenomenon we have to recall the technical constraints
underlying the market. First, let us look at the supply side.

The supply stack is the ranking of all generation units of a given utility or of a set of
utilities in a given region. This ranking is based on many factors, such as the marginal cost of
production and the response time. The utility will typically first dispatch nuclear and hydro
units, if available, followed by coal units. These types of plants are generally used to cover
the so-called base load, whereas oil-, gas-fired and hydro-storage plants are used to meet peak
demand. Plants with low or moderate marginal costs often exhibit low flexibility, implying that
the response time is long (up to a few hours) or that some constant amount of electricity has
to be produced all the time.

Demand, on the other hand, exhibits seasonal fluctuations, which are essentially due to cli-
mate conditions. In Central and Northern Europe, Canada the demand peak normally occurs
in the winter due to excessive heating. In other geographical regions, like mid-western USA,
demand peaks in the summer, since humidity and heat initiate extensive use of air-conditioning.
Electricity demand is also not uniform throughout the week. It peaks during weekdays’ work-
ing hours and is low during nights and weekends (due to low industrial activity). Moreover,
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Figure 2.5 A schematic supply stack with two hypothetical demand curves superimposed on it. The
spot price, given as the intersection between demand and supply, is not very sensitive to demand shifts
when the demand is low, since the supply stack is typically flat in the low-demand region. However, when
demand is high and a larger fraction of power comes from expensive sources, even a small increase in
consumption can force the prices to rise dramatically

unexpected weather conditions can cause sudden and dramatic shocks with demand typically
falling back to its normal level as soon as the underlying weather phenomenon is over.

Recall from Section 1.2 that the spot price is given by the intersection of demand and
supply. It is not very sensitive to demand shifts when the demand is low, since the supply
stack typically is flat in the low-demand region (see Figure 2.5). However, when demand is
high and a larger fraction of power comes from expensive sources, even a small increase in
consumption can force the prices to rise substantially. Then, when the demand drops, the price
can rapidly decrease to the normal level, since the more costly production facilities are no longer
needed. Likewise, if the consumption stays almost constant, price spikes can still appear when
considerable amount of ‘cheap’ production capabilities are withdrawn from the market. And
there can be numerous reasons for this as many factors influence the supply stack, in particular,
fluctuations of fuel prices, outages of power plants (due to regular maintenance operations or
unforeseen breakdowns), transmission constraints and execution of market power.

However, the supply–demand equilibrium does not explain why the price spikes are so
severe. It is not simply a matter of more expensive generating units being used. After all,
the price differences between electricity produced from different fuels are not that extreme.
Electricity production costs are a function of the costs for fuel (see Figure 2.6), operations and
maintenance, and capital. Fuel costs make up most of the operating costs for fossil-fired units.
For example, for a new coal-fired plant built today fuel costs would represent roughly 50%
of total operating costs, whereas the share for a new natural-gas-fired plant would be almost
90%. For nuclear, wind and hydro units fuel costs typically are a much smaller portion of
total production costs, but non-fuel operations and maintenance costs even out the odds (see
Figure 2.7).
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Figure 2.6 Average fuel prices to electricity generators in the USA – historical prices until 2003,
projections afterwards – given in dollars per million British thermal units (USD/MMBtu). Data source:
EIA (2005)
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Figure 2.7 Levelized electricity costs for new plants (2003 millions USD/kWh) depending on fuel:
coal, gas combined cycle, wind and nuclear. Data source: EIA (2005)
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2.2.3 What is Causing the Spikes?

So what is really causing the extreme spikes? The answer is surprising: it is the bidding
strategies used by the players. Since electricity is an essential commodity for many market
participants, some are willing to pay almost any price to secure a sufficient and continuous
supply of power. As a result, some agents place, on a regular basis, bids at the maximum allowed
level (price cap, e.g. 10 000 NOK/MWh at Nord Pool, 10 000 AUD/MWh at NEM) for the
amount of electric power they anticipate to need for that hour. Recall that in uniform-price
auction markets the spot price is what a buyer has to pay for each unit of power independent of
what he or she did bid initially as long as the bid was above (or equal to) the spot price. Hence,
with this type of strategy, the worst case scenario is that a buyer has to stick with the high prices
for a maximum of 24 hours. After this period, he or she is free to try to get power cheaper from
alternative sources. With this type of bidding strategies, there will always be some buyers that
are willing to pay a considerable amount in order to cover their need of electricity. And since
the suppliers are aware of these strategies they place their bids accordingly, to maximize their
profits.

2.2.4 The Definition

Surprisingly, we have come to the end of the section without actually defining a price spike.
We have done it on purpose as the definition of a price spike has been a subjective matter.
Price spikes are defined as prices that surpass a specified threshold for a brief period of time,
but it is difficult to gain any consensus on what that threshold or time interval should be.
Some authors used fixed price thresholds (e.g. 250 EUR/MWh, which was more than four
standard deviations from the mean day-ahead hourly price during the evaluation period –
Lapuerta and Moselle (2001)), fixed log-price change thresholds (e.g. log-price increments
or returns exceeding 30% – Bierbrauer et al. (2004)) or variable log-price change thresholds
(e.g. log-price increments or returns exceeding three standard deviations of all price changes –
Cartea and Figueroa (2005), Clewlow and Strickland (2000), Weron et al. (2004b)). Others
used wavelet decomposition to filter out the spikes (Stevenson 2001). Finally, some authors
did not bother to define the price spike as the model specification and calibration algorithm did
not require such a definition – as in regime switching models (Bierbrauer et al. 2004, Huisman
and Mahieu 2003) or time series approaches (Weron and Misiorek 2005, Nogales et al. 2002).
In our empirical analysis we will follow the ‘industry standard’ and use a definition that best
suits a particular model. See also the discussion in Section 4.4.2.

2.3 SEASONALITY

It is well known that electricity demand exhibits seasonal fluctuations. They mostly arise due
to changing climate conditions, like temperature and the number of daylight hours. In some
countries also the supply side shows seasonal variations in output. Hydro units, for example,
are heavily dependent on precipitation and snow melting, which varies from season to season.
These seasonal fluctuations in demand and supply translate into seasonal behavior of electricity
prices, and spot prices in particular. For the Nordic countries, a typical behavior of the spot
price process is presented in Figure 2.8. Superimposed on the daily average system price from
the Nord Pool market is a sinusoid with a linear trend. The sinusoid nearly duplicates the
long-term annual fluctuations – high prices in winter time and low prices during the summer.
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Figure 2.8 Nord Pool market daily average system spot price since December 30, 1996 until March
26, 2000 (1183 daily observations, 169 full weeks). Superimposed on the plot is an approximation of the
annual seasonality by a sinusoid with a linear trend

Based on such observations, Pilipovic (1998) advocated the use of the ‘sinusoidal’ approach
for electricity price modeling.2

Nordic electricity forward prices (constructed from the exchange-traded futures and forward
contracts) also exhibit annual sinusoidal periodicity (see Figures 2.9–2.11). The forward curve
dynamics is, however, more complex than in most other markets. Principal Component Analysis
(PCA) performed for Nord Pool forward curves reveals that two factors are able to explain
only 75–85% of the price variablity, compared to roughly 95% in most other markets. The
exact figures depend on the year and season analyzed. For instance, for the period ranging
from January 1999 to May 2002 the first two components explain 82.62%, while the first five
explain 98.54% of the dynamics of the two-year forward curves. However, when individual
seasons are analyzed the numbers increase, e.g. for the V1 season (January–April) the figures
are 94.95% and 99.12%, respectively.

Depending on the time resolution studied, modeling of the weekly or even the daily period-
icity may be required. The four years of Nord Pool price data plotted in Figure 2.2 clearly show
that, apart from the annual ‘sinusoidal’ behavior, there is a substantial intra-day variability.
Higher than average prices are observed during the morning and evening peaks, while mid-
day and night prices tend to be lower than average. The intra-week variability, related to the
business day–weekend structure, is also non-negligible (see Figure 2.12 where the variation
over two arbitrarily chosen weeks is presented). Both, in the winter (January 3–9, 2000) and
summer (July 3–9, 2000) weeks the weekday prices are higher than those during the week-
ends, when major businesses are closed. The data also exhibit a ‘double peak structure’; one

2 In some markets, however, no clear annual seasonality is present and the spot prices behave similarly throughout the year with
spikes occurring in all seasons. In such cases other methods have to be utilized (see Section 2.4).
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Figure 2.9 Nord Pool futures and forward prices on January 7, 1999. For that day there were seven
weekly futures contracts, 11 block (four weeks) futures contracts and six seasonal forward contracts
listed on the Eltermin market. The thick, horizontal lines indicate the delivery periods. Note the different
lengths of the forward contracts: two shorter winter seasons (January–April and October–December) and
one longer summer season (May–September)
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Figure 2.10 Nord Pool market two-year forward curve on January 7, 1999, constructed from the futures
and forward prices depicted in Figure 2.9
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Figure 2.11 The 250 two-year forward curves illustrate the dynamics of the Nord Pool market forward
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Figure 2.12 Nord Pool system spot prices for two arbitrarily chosen weeks: a typical winter week
(January 3–9; 1st week of 2000) and a typical summer week (July 3–9; 27th week of 2000). The daily
and weekly seasonal variations in prices are clearly visible
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in the morning and one late in the afternoon. This corresponds to the time of day when people
normally get up in the morning and go to work (07:00–09:00), and when they get home from
work in the afternoon (17:00–19:00) and start making dinner, watching TV, etc. There are,
however, differences between the price curves for the two seasons. In the summer the prices
are lower as electricity is not used so much for lighting and heating. Because of longer daytime
the ‘double peak structure’ also seems to be less pronounced.

The modeling of intra-week and intra-day seasonalities may be approached analogously
to modeling annual fluctuations, i.e. by simply taking a sine function of a one-week period,
or better, a sum of sine functions with distinct periods to recover the non-sinusoidal weekly
structure. We may also apply the moving average technique, which reduces to calculating the
average weekly price profile (see Section 2.4.3), or just extract the mean or median week (see
Section 2.4.2).

No matter which modeling approach we choose, we have to test whether the sample exhibits
seasonal behavior in the first place. Generally, this can be done in two ways, either by measuring
the serial correlation in the time domain or by a Fourier decomposition in the spectral domain.
The spectrum contains no new information beyond that in the autocovariance function (ACVF),
and in fact the spectrum can be computed mathematically by transformation of the ACVF. But
the spectrum and ACVF present the information on the variance of the time series from
complementary viewpoints. Which is most useful depends on the data and the objective of
analysis.

2.3.1 Measuring Serial Correlation

In the first approach, the dependencies in the observations {x1, . . . , xn} are ascertained by
computing correlations for data values at varying time lags. This is usually done by plotting
the sample autocorrelation function (ACF):

ACF(h) = ρ̂(h) = γ̂ (h)

γ̂ (0)
, (2.1)

against the time lags h = 0, 1, . . . , n − 1. The sample autocovariance function (ACVF) ap-
pearing in the above formula is given by:

ACVF(h) = γ̂ (h) = 1

n

n−h∑
t=1

(xt+h − x̄)(xt − x̄), (2.2)

and x̄ = (1/n)
∑n

t=1 xt is the sample mean. Note that γ̂ (h) is approximately equal to the sample
covariance of the n − h pairs of observations (x1, x1+h), . . . , (xn−h, xn). The difference is due to
the use of the divisor n instead of n − h and the subtraction of the mean of the whole sample, x̄ ,
from each factor of the summands. The reason for using (2.2) is that the estimator of the autoco-
variance function is biased for both divisors; however, only the former ensures the analytically
useful property that the sample covariance matrix �̂ = [γ̂ (i − j)]n

i, j=1 is positive definite.
If the time series is an outcome of a ‘completely’ random phenomenon, the autocorrelations

(2.1) should be near zero for all time-lag separations. Otherwise, one or more of the autocorre-
lations will be significantly non-zero. But how ‘near’ zero do the autocorrelations have to be? It
can be shown that for white noise,3 the sample autocorrelations ρ̂(h), h > 0, are asymptotically

3 That is for a series of uncorrelated and identically distributed random variables with zero mean and finite variance. We de-
note white noise by WN(0, σ 2). Note, that sometimes no distinction is made between white noise and independent and identically
distributed (i.i.d.) noise with zero mean and finite variance. According to the definition we use, white noise does not necessarily
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Figure 2.13 Sample ACF for CalPX daily average spot prices from May 1, 1998, until April 27, 2000
(104 weeks or two full years of data). Solid horizontal lines represent the 95% confidence interval for
white noise. The hourly prices are plotted in Figure 1.6

independent and N (0, 1/n) distributed. Hence, 95% of the sample autocorrelations should fall
between the bounds ±1.96/

√
n, since 1.96 is approximately the 0.975 quantile of the standard

normal distribution.
While examining correlograms, i.e. plots of ACF vs lags, one should keep in mind that

autocorrelations for consecutive lags are formally dependent. If the first element is closely
related to the second, and the second to the third, then the first element must also be somewhat
related to the third, etc. In particular, data with a trend (e.g. Brownian motion, commodity
prices, see Figure 2.13) will yield a positive and very slowly decreasing sample ACF. This
implies that the pattern of serial dependencies can change considerably after removing the
first-order autocorrelation, i.e. after differencing the series with a lag of 1 (see Section 2.4.1)
or equivalently after taking the returns.

For electricity spot price returns there is a strong, persistent 7-day dependence, see Fig-
ure 2.14 where the autocorrelation function for CalPX daily average spot price returns is
plotted (in view of the facts mentioned earlier this dependence structure is not that surprising).
This is in contrast to most financial data sets for which the autocorrelation of returns dies out
(or more precisely: falls into the confidence interval for white noise) after 10–20 days and
long-term autocorrelations are found only for squared returns or absolute value of returns.

Another useful method to examine serial dependencies is to examine the partial autocor-
relation function (PACF) – an extension of autocorrelation, where the dependence on the
intermediate elements (those within the lag) is removed. The partial autocorrelation is similar
to autocorrelation, except that when calculating it, the (auto) correlations with all the elements
within the lag are eliminated. Naturally, if a lag of 1 is specified (i.e. there are no intermediate

have to be independent – it is only assumed to be uncorrelated. For Gaussian noise, i.e. Gaussian distributed noise, both definitions
coincide.
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Figure 2.14 Sample ACF for CalPX daily average spot price returns from May 1, 1998, until April 27,
2000, i.e. the same period as in Figure 2.13. Solid horizontal lines represent the 95% confidence interval
for white noise

elements within the lag), then the partial autocorrelation is equivalent to the autocorrelation.
In a sense, the partial autocorrelation provides a ‘cleaner’ picture of serial dependencies for
individual lags, one that is not confounded by other serial dependencies. In particular, the
PACF of an autoregression AR(p) process is zero for lags greater than p (see Section 3.4.4).

Formally, for a set of observations {x1, . . . , xn} with xi �= x j for some i and j , the sample
partial autocorrelation function is defined as:

PACF(h) =
{

1, for h = 0,

φ̂hh, for h ≥ 1,
(2.3)

where φ̂hh is the last component of �̂h = �̂−1
h [γ̂ (1), . . . , γ̂ (h)]′ and the ‘partial’ sample co-

variance matrix is given by �̂h = [γ̂ (i − j)]h
i, j=1. In other words, the partial autocorrelation

coefficient at lag h measures the linear association between xt+h and xt adjusted for the effects
of the intermediate values xt+1, . . . , xt+h−1. Therefore, it is just the coefficient φhh in the linear
regression model:

xt+h = φh0 + φh1xt+h−1 + φh2xt+h−2 + . . . + φhh xt + εt . (2.4)

The properties of the PACF are equivalent to those of the ACF. In particular, for white noise,
the sample partial autocorrelations at lags h > 0 are asymptotically i.i.d. N (0, 1/n). As a
consequence, approximately 95% of the sample partial autocorrelations should fall between
the bounds ±1.96/

√
n. A deviation from this value suggests serial dependence in the data.
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2.3.2 Spectral Analysis and the Periodogram

Spectral (or harmonic) analysis is concerned with the exploration of cyclical patterns of data.
The purpose of the analysis is to decompose a time series with cyclical components into a few
underlying sinusoidal (sine and cosine) functions of particular wavelengths. The wavelength
is typically expressed in terms of the frequency, i.e. the number of cycles per unit time, often
denoted by ω. Recall, that the period T of a (sine or cosine) function is defined as the length
of time required for one full cycle. Thus, it is the reciprocal of the frequency: T = 1/ω. For
example, the weekly cycle, expressed in daily terms, would be equal to 1/0.1428 = 7 days,
while expressed in annual terms would be equal to 1/52.14 = 0.0192 years.

The spectrum is of interest because many natural phenomena have variability that is fre-
quency dependent, and understanding the frequency dependence may yield information about
the underlying physical mechanisms. Spectral analysis and its basic tool – the periodogram –
can help in this objective.

For a vector of observations {x1, . . . , xn} the periodogram (or the sample analogue of the
spectral density) is defined as:

In(ωk) = 1

n

∣∣∣∣∣ n∑
t=1

xt exp−i(t−1)ωk

∣∣∣∣∣
2

, (2.5)

where ωk = 2π (k/n) are the Fourier (or standard) frequencies expressed in terms of radians
per unit time, k = 1, . . . , [n/2], and [x] denotes the largest integer less than or equal to x .4

The periodogram ordinate at Fourier frequency ωk is proportional to the variance accounted
for by that frequency component. Hence, relatively large values of In(ωk) indicate a cycle of
period 1/ωk .

From a numerical viewpoint note that In is the squared absolute value of the Fourier trans-
form. In order to use fast algorithms for the discrete Fourier transform we can restrict ourselves
to vectors of even length, i.e. n = 2m, or even better to vectors such that n does not have large
prime factors. Optimally, the length is a power of 2, i.e. n = 2m , as then the fast Fourier
transform (FFT) can be utilized.

Spectral analysis can be also viewed as a linear multiple regression problem, where the
dependent variable is the observed time series, and the independent variables are the sine
functions of all possible (discrete) frequencies. Such a linear multiple regression model may
be written as:

xt = a0 +
[n/2]∑
k=1

{ak cos(ωk t) + bk sin(ωk t)}, (2.6)

where the ωk’s are the Fourier frequencies defined above. Hence, the computational problem
of fitting sine and cosine functions of different lengths to the data can be considered in terms
of multiple linear regression. Note that the cosine parameters ak and sine parameters bk are
regression coefficients that tell us the degree to which the respective functions are correlated
with the data. There are as many different sinusoidal waves as there are data points, and we
are able to completely reproduce the series from the underlying functions.

4 To be formally correct k = −[n/2] + 1, . . . , −1, 0, 1, . . . , [n/2] as the periodogram is derived from the discrete Fourier trans-
form. Due to the symmetry only non-negative k’s are used. Furthermore, in practice k = 0 is usually omitted since In (ω0) is just the
squared sum of the observations.
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2.3.3 Case Study: Seasonal Behavior of Electricity Prices and Loads

First, let us explore the seasonal structure of electricity prices. In Figure 2.15 we plotted the
periodogram for the Nord Pool daily average system spot price since December 30, 1996 until
March 26, 2000 (1170 daily observations or 169 full weeks; displayed in Figure 2.8). It shows
a well-defined peak at frequency ωk = 0.1428 corresponding to a 1/ωk = 7-day period. The
smaller peaks at ωk = 0.2857 and 0.4292 indicate periods of 7/2 = 3.5 and 7/3 = 2.33 days,
respectively. Both peaks are the so-called harmonics (multiples of the 7-day period frequency)
and indicate that the data exhibits a 7-day period which is not sinusoidal. Had we used hourly
data instead of daily, then we would observe peaks corresponding to 24 and 168 hours and their
respective harmonics. However, the picture would be blurred because of the many interfering
periods.

In the inset of Figure 2.15, large values of the periodogram can be observed for very low
frequencies, with a maximum close to ωk = 0.0026. They suggest an irregular annual cycle. We
have to note, though, that the periodogram is very sensitive to the length of the analyzed sample;
more precisely – to whether the long cycles repeat themselves a whole number of times. This is
not the case here. The data is about 3.2 years long, hence the peak is not exactly at ωk = 1/365.

Now, let us explore the seasonal structure of electricity loads. In Figure 2.16 we plotted
the periodogram for the hourly values of the system-wide load in California during the period
May 1, 1998 to April 27, 2000 (17 472 hourly observations or 104 full weeks; see also the
inset in Figure 1.6). It shows well-defined peaks at frequencies ωk = 0.0417 and ωk = 0.00595
corresponding to 24-hour (daily) and 168-hour (weekly) periods, respectively. The harmonics
are clearly visible, both for the daily and weekly frequencies. They are even better depicted in
the inset where the whole periodogram on a semilogarithmic scale is plotted.
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Figure 2.15 Estimate of the spectral density of the Nord Pool daily average system spot price (plotted
in Figure 2.8) reveals spikes at frequencies 1/7, 2/7, and 3/7 corresponding to cycles of 7, 3.5, and 2.33
days, respectively. The inset shows the whole periodogram on a semilogarithmic scale
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Figure 2.16 Estimate of the spectral density of the hourly system-wide load in California during a
two-year period (May 1, 1998–April 27, 2000) reveals spikes at frequencies 1/24 and 1/168 together
with the corresponding harmonics. The inset shows the whole periodogram on a semilogarithmic scale

Obviously the time series of daily system-wide loads exhibits only the weekly period, very
much like the periodogram of average daily spot prices in Figure 2.15. The weekly periodicity
of total daily loads can be also observed in ACF plots. In Figure 2.17 we plotted the sample ACF
for daily system-wide load in California from May 1, 1998 until April 27, 2000. Clearly, the
correlation is much higher than for CalPX spot prices from the same time period (Figure 2.13).

2.4 SEASONAL DECOMPOSITION

Once we have identified the seasonalities in the data we have to decide on the way of modeling
(or removing) them. The classical technique designed to accomplish the seasonal decomposi-
tion, that is, the decomposition of the series into the trend (or trend-cycle) component Tt , the
seasonal component St and remaining variability, error, or stochastic component Yt , is known
as the Census I method. The difference between a cyclical and a seasonal component is that
the latter occurs at regular (seasonal) intervals, while cyclical factors have usually a longer
duration that varies from cycle to cycle. In fact, the cyclical component may not repeat itself
within the time range captured by the data. In the Census I method, the trend and cyclical
components are customarily combined into a single trend-cycle component.

The functional relationship between these components can assume different forms. Two
straightforward possibilities are that they combine in an additive:

xt = Tt + St + Yt , (2.7)

or a multiplicative fashion:

xt = Tt · St · Yt . (2.8)
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Figure 2.17 Sample ACF for daily system-wide load in California from May 1, 1998, until April 27,
2000. Solid horizontal lines represent the 95% confidence interval for white noise. The correlation is
much higher than for CalPX spot prices from the same time period (see Figure 2.13)

We will see them utilized in the approaches described in the following chapters. Now, let us
concentrate on the methods of decomposing the signal, so that only the stochastic component
Yt is left for further modeling.

2.4.1 Differencing

Differencing is a technique that can be used to remove seasonal components and trends. There
are two major reasons for differencing a series. First, one can identify the hidden nature of
seasonal dependencies in the series. Removing some of the autocorrelations will change other
autocorrelations as they are interdependent for consecutive lags. Differencing may eliminate
them or make some other seasonalities more apparent. The other reason for removing seasonal
dependencies is to make the series stationary, which is necessary for time series modeling, see
Sections 3.4.4 and 3.4.8.

The idea behind differencing is simply to consider the differences between successive pairs
of observations with appropriate lags. For example, a linear trend can be eliminated by dif-
ferencing at lag 1, while an mth-order polynomial trend by differencing m times at lag 1.
Likewise, to remove a weekly seasonal component from daily data {x1, . . . , xn}, we generate
the transformed series

yt = xt − xt−7 = (1 − B7)xt ,

where B is the backward shift operator, i.e. Bh xt ≡ xt−h . To shorten the notation the lag-h
differencing operator ∇h xt ≡ xt − xt−h is often used; then yt = ∇7xt . Apparently all seasonal
components of period 7 are eliminated by this transformation (see Figure 2.18) except for the
mean-reverting relationship at lag 7. However, it yet has to be tested whether this is evidence for
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Figure 2.18 Sample ACF for CalPX daily average spot price returns from May 1, 1998, until April 27,
2000 after differencing by 7 days. A negative autocorrelation – which may indicate mean-reversion –
is revealed at lag 7. Compare with sample ACF for the original returns in Figure 2.14. Solid horizontal
lines represent the 95% confidence interval for white noise. We have to be cautious when interpreting the
correlograms for differenced data as some of the observed dependencies may be spurious. For example,
a white noise sequence differenced at lag 7 exhibits a very similar ACF (see the inset)

anti-persistence or simply an artifact of differencing. We have to be cautious when interpreting
the correlograms for differenced data as some of the observed dependencies may be spurious.
For instance, a white noise sequence differenced at lag 7 exhibits an ACF very much like the
one observed for the differenced daily spot prices (see the inset in Figure 2.18).

When dealing with hourly data we have to take into account two seasonalities: weekly and
daily. The simplest thing to do is to apply a lag 168 differencing operator ∇168, as the daily
period is already embraced by the weekly seasonality. However, a more popular approach
among practitioners is to use differencing at various lags (typically 1, 24 and 168 hours), often
in combination with moving average-type smoothing. For instance, the stochastic component
could be extracted from hourly data as:

Yt = xt −
(

1

N

N∑
i=1

xt−i ·168 + 1

7

7∑
j=1

xt− j ·24 − 1

7N

N∑
i=1

7∑
j=1

xt−i ·168− j ·24

)
, (2.9)

where N + 1 = 5 or 6 is the number of weeks used for calibration. For daily data the above
differencing–smoothing formula simplifies to:

Yt = xt −
(

1

N

N∑
i=1

xt−i ·7 + 1

7

7∑
j=1

xt− j − 1

7N

N∑
i=1

7∑
j=1

xt−i ·7− j

)
. (2.10)

Note, that both constructions resemble the differencing structure of seasonal ARIMA models
(to be discussed in Section 3.4.8).
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2.4.2 Mean or Median Week

A very simple method which, in many cases, produces good results consists of finding the
‘average’ week (or any other detected period of length T ). The ‘average’ may be taken to be
the arithmetic mean or the median, i.e. the 0.5 quantile. In the latter case single large spikes do
not influence the ‘average’ very much as the median is more robust to outliers than the arithmetic
mean.

The idea is to rearrange the time series into a matrix with rows of length T (e.g. 168 element
rows for a weekly period detected in hourly data) and take the arithmetic mean or the median
of the data in each column. The resulting row vector of length T is the estimate of the seasonal
component and can be subtracted from the original data to yield the stochastic component Yt .

2.4.3 Moving Average Technique

Another method for removing the weekly (or any other that repeats itself many times in the
analyzed series) seasonality is the moving average technique. For the vector of daily values
(loads, prices, etc.) {x1, . . . , xn} we first estimate the trend by applying a moving average filter
specially chosen to eliminate the weekly component and to dampen the noise:

m̂t = 1

7
(xt−3 + . . . + xt+3),

where t = 4, . . . , n − 3. If the sampling frequency of the data is higher, say hourly, a pertinent
moving average filter has to be chosen, e.g. of length 24 (to eliminate the daily component) or
168 (to eliminate the weekly component). If the period is even, say 24, then we use:

m̂t = 1

24
(0.5xt−12 + xt−11 + . . . + xt+11 + 0.5xt+12).

Next, we estimate the seasonal component. For each k = 1, . . . , 7 the average wk of the
deviations {(xk+7 j − m̂k+7 j ), 3 < k + 7 j ≤ n − 3} is computed. Since these average devia-
tions do not necessarily sum to zero, we estimate the seasonal component sk as:

ŝk = wk − 1

7

7∑
i=1

wi ,

where k = 1, . . . , 7 and ŝk = ŝk−7 for k > 7. The deseasonalized (with respect to the 7-day
period) data is then defined as yt = xt − ŝt for t = 1, . . . , n.

2.4.4 Annual Seasonality and Spectral Decomposition

After removing the weekly (and daily) seasonality from the data we are often left with the
annual cycle. The regularity of the cycle depends on the market under study, however, in
some cases it may be advantageous to eliminate it before further analysis. A straightforward
approach, which has its roots in the spectral (or Fourier) decomposition of a signal, has already
been briefly mentioned in Section 2.3 and presented in Figure 2.8. It consists of fitting a
sinusoid of a one-year period

St = A sin

(
2π

365
(t + B)

)
+ Ct, (2.11)

to the price data. The number 365 in the denominator stands for the number of observations
in the period, here: days in a year. If an hourly sampled data set was used instead, then the
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denominator would have to be changed to 365 × 24 = 8760. Estimates of the parameters A, B
and C can be obtained through a least squares fit. They may be further fine-tuned. For instance,
Weron (2006) treated the least squares estimate of the time shift parameter B as a starting
point for an optimization procedure, which maximized the p-value of the Bera–Jarque test for
normality applied to the deseasonalized and spikeless log-prices (see Section 4.4.3).

Although in many cases the sinusoidal function is a good first approximation of the annual
cycle, there exist markets where it could hardly be used. For example, in the German market
no clear annual seasonality is present and the spot prices behave similarly throughout the
year, with peaks occurring sometimes in the winter (December 2001 and December–January
2002) and sometimes in the summer (July 2002 and July–August 2003). In such a case a
possible solution would be to increase the number of sine functions, at the cost of reducing
the tractability of the model. For instance, Cartea and Figueroa (2005) used a Fourier series of
order 5 to fit the annual seasonality pattern of the England and Wales power market. In general,
by suppressing the high-frequency components5 of a Fourier decomposition of the signal one
can achieve a denoising or filtering effect and recover the seasonal component. Alternatively,
wavelet decomposition could be utilized, which offers yet greater flexibility (see Section 2.4.7).

A different line of reasoning leads to a method of modeling seasonality by a piecewise
constant function of a one-year period, where for each month one tries to determine an average
value out of the whole analyzed time series.6 Although flexible, this method lacks smoothness,
which may have a negative impact on the statistical inference of the deseasonalized price
process. This could be circumvented by using dummies for the middle of the month coupled
with smooth interpolation between them. Yet, another approach consists of fitting a function
of a one-year period, which is determined by taking the average (over the years in the sample)
of the smoothed rolling volatility. The method yields a smooth estimate of the annual seasonal
component, in the sense that the component is constant only during a one-day (or one-hour;
depending on the sampling frequency) period.

2.4.5 Rolling Volatility Technique

The rolling volatility technique was proposed by Weron et al. (2001) to cope with the fact that
because of the short length of most data sets – covering only a few years – neither differencing,
mean/median week nor the moving average technique can be applied to the annual cycle. For
a vector {r1, . . . , rn} of returns, i.e. log-price changes, of length n = m · T being a multiple of
the annual period T = 365 days (or 8760 hours for high-frequency data) the method consists
of the following:

(1) calculate a 25-day rolling volatility:

vt =
√√√√ 1

24

24∑
i=0

(Rt+i − R̄t )2, where R̄t = 1

25

24∑
i=0

Rt+i , (2.12)

for t = 1, . . . , n and a vector of returns {Rt } such that R1 = R2 = . . . = R12 = r1, R12+t =
rt for t = 1, . . . , n, and Rn+13 = Rn+14 = . . . = Rn+24 = rn;

5 This technique is known as lowpass filtering.
6 See Bhanot (2000) and Lucia and Schwartz (2002) for sample applications of this method.
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(2) calculate the average volatility for one year:

v̄t = v
1st year
t + v

2nd year
t + . . . + v

mth year
t

m
; (2.13)

(3) smooth the volatility by taking a 25-day moving average of v̄t ;
(4) rescale the returns by dividing them by the smoothed annual volatility.

Note that there is nothing special about the number 25. Neither the rolling volatility vector nor
the moving average has to be of length 25. The only restrictions that apply are that the number
cannot be ‘too small’ or ‘too large’. In the former case the vi

t ’s will mimic the i th year’s returns,
while in the latter they will lose too many details. Out of the few tested numbers, 25 gives
reasonable results for daily data. Certainly for hourly data this number has to be increased,
roughly 24 times.

2.4.6 Case Study: Rolling Volatility in Practice

A sample application of the rolling volatility technique is illustrated in Figure 2.19. The ana-
lyzed dataset is the two-year (January 1, 1999–December 31, 2000) time series of California
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Figure 2.19 California power market system-wide daily load returns since January 1, 1999, until
December 31, 2000, after removal of the weekly periodicity using the moving average technique (see
Section 2.4.3). The 25-day rolling volatility is superimposed on the plot (top panel). Load returns after
removal of the weekly and annual cycles (bottom panel) show no apparent trend or seasonality
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power market system-wide daily loads (see the inset in Figure 1.6). First, the weekly
(7-day) seasonality is removed from the log-returns of the load data using the moving av-
erage technique (see Section 2.4.3). The resulting time series is plotted in the top panel of
Figure 2.19 together with the 25-day rolling volatility curve superimposed on it. Next, the
annual seasonality is removed by dividing the data by the rolling volatility. The resulting time
series, i.e. the stochastic component Yt , is plotted in the bottom panel. Spectral analysis con-
firms that Yt shows no apparent trend or seasonality (see Figure 3.6 and the discussion in Case
Study 3.4.7). Therefore, it can be treated as a realization of a stationary process and further
modeled, for example, with time series models.

2.4.7 Wavelet Decomposition

The wavelet transform is of interest for the analysis (and decomposition) of non-stationary time
series data, as it provides an alternative to the well-known Fourier transform. Both procedures
involve the projection of a signal onto an orthonormal set of components, trigonometric in the
case of Fourier series representations, and wavelets in the case of wavelet analysis. Qualita-
tively, the difference between the usual sinosoidal wave and a wavelet may be described by
the localization property.7 Unlike sines and cosines, individual wavelet functions are quite lo-
calized in time or (more generally) in space; simultaneously, like sines and cosines, individual
wavelet functions are quite localized in frequency or (more precisely) characteristic scale.

Like the fast Fourier transform (FFT) paved the way for the widespread use of Fourier
analysis, the wavelet analysis would not have been so popular (and accessible) without the
discrete wavelet transform (DWT). Like the FFT, the DWT is a fast, linear operation that runs
on a data vector whose length is an integer power of 2, transforming it into a numerically
different vector of the same length. Also like the FFT, the wavelet transform is invertible and
in fact orthogonal – the inverse transform, when viewed as a big matrix, is simply the transpose
of the transform.

Recall that a single disturbance in time to a signal affects the Fourier analysis at all frequen-
cies and is interpreted as an event of period T , where T is the length of the observed series.
In other words, Fourier analysis assumes that the signal is homogeneous over time, i.e. that
over any subinterval of the observed time series the precise same frequencies hold at the same
amplitudes (see Section 2.4.4). In contrast, the functions that are represented by wavelets do
not have to be homogeneous over time. Consequently, the basis functions – wavelets – must
rapidly converge to zero as the argument approaches ±∞. However, this implies that func-
tions that are not localized in time have to be approximated by a sequence of time-localized
wavelets. This is the reason for defining wavelets with respect to specific locations, and then
considering a sequence of such basis functions. In fact, instead of a single sequence of wavelets,
we consider a double sequence of functions ws,k(t) centered at k with a scale of s. That is,
the energy (support) of ws,k(t) is concentrated in a neighborhood of k, the size of which
is proportional to s. As the scale is increased, the mass of ws,k(t) is spread over a larger
interval.

Wavelets belong to families, like the Daubechies wavelet family used in Figure 2.20, and it
is these families that provide the building blocks for wavelet analysis. Roughly, the different
families of wavelets make different trade-offs between how compactly they are localized in
time and how smooth they are. A wavelet family comes in pairs of a father (ϕ) and mother (ψ)

7 By ‘localized’ we mean that the mass of oscillations is concentrated on a small interval.
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Figure 2.20 Wavelet lowpass filtering (smoothing) of Nord Pool market hourly system prices (1997–
2000) using the Daubechies wavelet of order 24. The original time series (top left) together with S4 (top
right), S8 (bottom left) and S12 approximations (bottom right). Clearly, the wavelet decomposition unveils
the seasonal (or rather the trend cycle) components

wavelet. The former represents the ‘lowest frequency’ smooth components – those requiring
wavelets with the widest support, whereas the latter captures the ‘higher frequency’ detail
components. Said differently, father wavelets are used for the trend or cycle components and
mother wavelets are used for all the deviations from trend.

Any function or signal f (t) to be represented by a wavelet analysis can be built up as a
sequence of projections onto father and mother wavelets indexed by both k = 0, 1, 2, . . . and
by s = 2 j , j = 0, 1, 2, . . . , J , where 2J is the maximum scale sustainable by the number of
data points.8 More precisely, the wavelet decomposition of a signal uses a sequence of mother
wavelets and only one father wavelet:

f (t) = SJ + DJ + DJ−1 + . . . + D1, (2.14)

where

SJ =
∑

k

sJ,kϕJ,k(t) and D j =
∑

k

d j,kψ j,k(t). (2.15)

8 In actual data analysis, because of discretely sampled data, it is convenient to use a dyadic expansion as in the DWT.
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The coefficients sJ,k, dJ,k, dJ−1,k, . . . , d1,k are the wavelet transform coefficients that measure
the contribution of the corresponding wavelet function to the approximating sum, while

ϕ j,k(t) = 2− j/2ϕ

(
t − 2 j k

2 j

)
and ψ j,k(t) = 2− j/2ψ

(
t − 2 j k

2 j

)
are the approximating father and mother wavelet functions, respectively.

Once the signal is decomposed using Equation (2.14), the procedure can be inverted to
yield an approximation of the original signal. At the coarsest scale f (t) can be estimated by
SJ . At a higher level of refinement the signal can be approximated by SJ−1 = SJ + DJ . At
each step, by adding a mother wavelet D j of a lower scale j = J − 1, J − 2, . . . we obtain a
better estimate of the original signal. The reconstruction process can be stopped at any time, in
particular, when the desired accuracy or scale is achieved. The obtained signal can be treated
as de-noised (or filtered or smoothed) time series. This procedure, also known as lowpass
filtering, yields a traditional linear smoother, which is linear with respect to the coefficients of
the series expansion.

2.4.8 Case Study: Wavelet Filtering of Nord Pool Hourly System Prices

A sample application of the lowpass wavelet filter to four years (1997–2000) of Nord Pool
market hourly system prices can be seen in Figure 2.20. Clearly the fewer mother wavelets
are used the less noisy is the reconstructed series. In particular, the S4 approximation re-
sembles the time series of average daily prices, while the S12 approximation nicely unveils
the annual seasonal (or rather the trend cycle) component. Compare with the more regular
sinusoidal approximation of the annual cycle in Figure 2.8. The standard lowpass filter, as
well as, more elaborate wavelet-filtering techniques have seen limited application in mod-
eling and forecasting electricity loads (Li and Fang 2003a, Zheng et al. 2000) and prices
(Conejo et al. 2005, Stevenson 2001).

Using wavelets to de-noise a signal requires identifying which component or components
contain the noise and then reconstructing the signal without those components. The lowpass
filter discards all the high-frequency information, leading to a loss of many of the original
signal’s sharpest features. An alternative approach, known as thresholding, discards only the
portion of the details that exceeds a certain threshold. Namely, it sets to zero the wavelet
coefficients d j,k whose absolute values are higher than the specified threshold T . The signal
is reconstructed using these modified coefficients. As a result, only the extreme values of the
signal are smoothed. This method, however, is not very well suited for preprocessing electricity
prices. Although it removes the price spikes, it adds spurious negative spikes in the vicinity of
the original ones.

2.5 MEAN REVERSION

Energy spot prices are in general regarded to be mean reverting or anti-persistent. The speed of
mean reversion, however, depends on several factors, including the commodity being analyzed
and the delivery provisions associated with the commodity. In electricity markets, it is common
to observe sudden price spikes with very fast mean reversion to the previous price levels. In
natural gas markets, the mean reversion rate is considerably slower, but the volatilities for
longer-dated contracts are usually lower than the volatilities for the shorter-dated ones. In oil
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markets, the mean reversion rate is thought to be longer term, and it can take months, or even
years, for prices to revert to their mean.

In economics and finance, long-range dependence has a long history and still is a hot
topic of active research.9 Historical records of economic and financial data typically exhibit
non-periodic cyclical patterns that are indicative of the presence of significant long memory.
However, the statistical investigations that have been performed to test long-range dependence
have often become a source of major controversies, especially in the case of stock returns.
The reason for this is two-fold. Firstly, the presence of long memory contradicts many of the
paradigms used in modern financial economics. Secondly, the lack of a standard tool causes
the different long-range dependence measurements to be incomparable.

The former argument does not bother us much since power markets violate many of the
paradigms anyway. However, to cope with the latter we will first review four estimators of
long-range dependence that have gained considerable attention in various scientific communi-
ties, namely the rescaled range analysis, Detrended Fluctuation Analysis, periodogram regres-
sion and Average Wavelet Coefficient. Afterwards, we will measure the actual level of mean
reversion in various electricity price time series using all four techniques.

2.5.1 R/S Analysis

We begin our investigation with one of the oldest and best-known methods, the so-called
rescaled range or R/S analysis. This method, proposed by Mandelbrot and Wallis (1969) and
based on previous hydrological analysis of Hurst (1951), allows for the calculation of the
self-similarity parameter H , which measures the intensity of long-range dependence in a time
series.

The analysis begins with dividing a time series (of returns) of length L into d subseries of
length n. Next for each subseries m = 1, . . . , d:

(1) find the mean (Em) and standard deviation (Sm);
(2) normalize the data (Zi,m) by subtracting the sample mean Xi,m = Zi,m − Em for i =

1, . . . , n;
(3) create a cumulative time series Yi,m = ∑i

j=1 X j,m for i = 1, . . . , n;
(4) find the range Rm = max{Y1,m, . . . , Yn,m} − min{Y1,m, . . . , Yn,m};
(5) rescale the range Rm/Sm .

Finally, calculate the mean value (R/S)n of the rescaled range for all subseries of length n.
It can be shown that the R/S statistic asymptotically follows the relation (R/S)n ∼ cnH .

Thus the value of H can be obtained by running a simple linear regression over a sample of
increasing time horizons

log(R/S)n = log c + H log n. (2.16)

Equivalently, we can plot the (R/S)n statistic against n on a double-logarithmic paper (see
Figure 2.21). If the returns process is white noise then the plot is roughly a straight line with
slope 0.5. If the process is persistent then the slope is greater than 0.5; if it is anti-persistent
(or mean reverting) then the slope is less than 0.5.

However, it should be noted that for small n there is a significant deviation from the 0.5
slope. For this reason the theoretical (i.e. for white noise) values of the R/S statistic are usually

9 See, for instance, Cont (2005), Doukhan et al. (2003), Granger and Hyung (2004), Teyssiere and Kirman (2006) and Weron et
al. (2005).
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Figure 2.21 Estimation of the Hurst exponent for a white noise (H = 0.5) sequence of 214 = 16 384
observations via Hurst R/S analysis (top left), Detrended Fluctuation Analysis (top right), periodogram
Geweke and Porter–Hudak method (bottom left) and Average Wavelet Coefficient method (bottom right)
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(2.17)

where � is the Euler gamma function. This formula is a slight modification of the formula
given by Anis and Lloyd (1976); the (n − 1

2 )/n term was added to improve the performance
for very small n. We use formula (2.17) as a benchmark in all empirical studies, i.e. the Hurst
exponent H is calculated as 0.5 plus the slope of (R/S)n − E(R/S)n . The resulting statistic is
denoted by R/S–AL.

A major drawback of the R/S analysis is the fact that no asymptotic distribution theory has
been derived for the Hurst parameter H . The only known results are for the rescaled (but not
by standard deviation) range Rm itself (Lo 1991). However, recently Weron (2002a) obtained
empirical confidence intervals for the R/S statistic via a Monte Carlo study allowing to test the
null hypothesis of no long-range dependence (see Table 2.1).
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Table 2.1 Empirical confidence intervals for the R/S–AL and DFA statistics for subsamples of size
n > 50. L = 2N is the sample (series) size. Adapted from: Weron (2002a)

Confidence intervals for R/S–AL

Level Lower bound Upper bound

90% 0.5 − exp(−7.35 · log(log N ) + 4.06) exp(−7.07 · log(log N ) + 3.75) + 0.5
95% 0.5 − exp(−7.33 · log(log N ) + 4.21) exp(−7.20 · log(log N ) + 4.04) + 0.5
99% 0.5 − exp(−7.19 · log(log N ) + 4.34) exp(−7.51 · log(log N ) + 4.58) + 0.5

Confidence intervals for DFA

Level Lower bound Upper bound

90% 0.5 − exp(−2.99 · log N + 4.45) exp(−3.09 · log N + 4.57) + 0.5
95% 0.5 − exp(−2.93 · log N + 4.45) exp(−3.10 · log N + 4.77) + 0.5
99% 0.5 − exp(−2.67 · log N + 4.06) exp(−3.19 · log N + 5.28) + 0.5

2.5.2 Detrended Fluctuation Analysis

Another method used to measure long-range dependence is the Detrended Fluctuation Analysis
(DFA) of Peng et al. (1994). The advantage of DFA over R/S analysis is that it avoids spurious
detection of apparent long-range correlation that is an artifact of non-stationarity. The method
can be summarized as follows. Divide a time series (of returns) of length L into d subseries of
length n. Next for each subseries: m = 1, . . . , d:

(1) create a cumulative time series Yi,m = ∑i
j=1 X j,m for i = 1, . . . , n;

(2) fit a least squares line Ỹm(x) = am x + bm to {Y1,m, . . . , Yn,m};
(3) calculate the root mean square fluctuation (i.e. standard deviation) of the integrated and

detrended time series

F(m) =
√√√√1

n

n∑
i=1

(Yi,m − ami − bm)2. (2.18)

Finally, calculate the mean value of the root mean square fluctuation for all subseries of length n:

F̄(n) = 1

d

d∑
m=1

F(m). (2.19)

As in the case of R/S analysis, a linear relationship on a double-logarithmic paper of F̄(n)
against the interval size n indicates the presence of a power law scaling of the form cnH (see
Figure 2.21). If the returns process is white noise then the slope is roughly 0.5. If the process is
persistent then the slope is greater than 0.5; if it is anti-persistent then the slope is less than 0.5.

No asymptotic distribution theory has been derived for the DFA statistic so far. However,
as for the R/S analysis, empirical confidence intervals for the DFA statistic are available (see
Table 2.1).



JWBK120-02 JWBK120-Weron September 29, 2006 16:21 Char Count= 0

Stylized Facts of Electricity Loads and Prices 53

2.5.3 Periodogram Regression

The third method is a semi-parametric procedure to obtain an estimate of the fractional dif-
ferencing parameter d. This technique, proposed by Geweke and Porter-Hudak (1983) and
denoted GPH in the text, is based on observations of the slope of the spectral density func-
tion of a fractionally integrated series around the angular frequency ω = 0. Since the spectral
density function of a general fractionally integrated model (e.g. FARIMA) with differencing
parameter d is identical to that of a fractional Gaussian noise with Hurst exponent H = d + 0.5,
the GPH method can be used to estimate H .

The estimation procedure begins with calculating the periodogram (2.5). The next and final
step is to run a simple linear regression

log{IL (ωk)} = a − d log
{
4 sin2(ωk/2)

} + εk, (2.20)

at low Fourier frequencies ωk , k = 1, . . . , K ≤ [L/2]. The least squares estimate of the slope
yields the differencing parameter d , hence the Hurst exponent H = d̂ + 0.5, (see Figure 2.21).
A major issue on the application of this method is the choice of K . Geweke and Porter-
Hudak (1983), as well as a number of other authors, recommend choosing K such that
K = [L0.5]; however, other values (e.g. K = [L0.45], [L0.2] ≤ K ≤ [L0.5]) have also been
suggested.

Periodogram regression is the only of the presented methods, which has known asymptotic
properties. Inference is based on the asymptotic distribution of the estimate

d̂ ∼ N

(
d,

π2

6
∑K

k=1(xt − x̄)2

)
, (2.21)

where xt = log{4 sin2(ωk/2)} is the regressor in Equation (2.20).

2.5.4 Average Wavelet Coefficient

The Average Wavelet Coefficient (AWC) method of Simonsen et al. (1998) utilizes the wavelet
transform in order to measure the Hurst exponent H . This is done by transforming the time
series (e.g. of spot electricity prices) pt into the wavelet domain, W [p](s, k), where s denotes
the scale parameter, and k is the location. The AWC method consists of finding a representative
(wavelet) ‘energy’ or amplitude for a given scale s. This is done by taking the arithmetic average
of |W [p](s, k)| over all location parameters k corresponding to one and the same scale s. We
can therefore construct, from the wavelet transform of pt , the AWC spectrum W [p](s) that
only depends on the scale. If pt is a self-affine process characterized by the Hurst exponent
H , this spectrum satisfies:

W [p](s) = 〈|W [p](s, k)|〉k ∼ s H+1/2, (2.22)

where 〈·〉k denotes the arithmetic average over k. Thus, if the signal is self-affine and we
plot W [p](s) against s the points should constitute a line with slope H + 1/2 on a double-
logarithmic paper (see Figure 2.21).
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Table 2.2 Estimates of the Hurst exponent H for power market and financial data. The symbols ∗, ∗∗

and ∗∗∗ denote significance at the (two-sided) 90%, 95% and 99% level, respectively

Method

Data R/S-AL DFA GPH

Electricity prices (returns)
Nord Pool (1993–2004) 0.4000∗∗ 0.3778∗∗∗ 0.1973∗∗∗

EEX (2001–2003) 0.2981∗∗∗ 0.0620∗∗∗ 0.0352∗∗∗

CalPX (1998–2000) 0.3473∗ 0.2633∗∗∗ 0.0667∗∗∗

Entergy (1998–2000) 0.2995∗∗ 0.3651∗∗ 0.0218∗∗∗

Electricity prices (deseasonalized returns)
Nord Pool (1993–2004) 0.4200∗ 0.3956∗∗∗ 0.2037∗∗∗

EEX (2001–2003) 0.3775∗ 0.1037∗∗∗ 0.0190∗∗∗

CalPX (1998–2000) 0.4260 0.2873∗∗∗ 0.1290∗∗

Stock indices (returns)
DJIA (1990–1999) 0.4585 0.4195∗∗ 0.3560
WIG20 (1995–2001) 0.5030 0.4981 0.4604

Stock indices (absolute value of returns)
DJIA (1990–1999) 0.7838∗∗∗ 0.9080∗∗∗ 0.8357∗∗∗

WIG20 (1995–2001) 0.9103∗∗∗ 0.9494∗∗∗ 0.8262∗∗∗

2.5.5 Case Study: Anti-persistence of Electricity Prices

Let us now test electricity price processes for long-range dependence. Since the methods pre-
sented above require an input of returns series we first apply the logarithmic transformation,
then take the first differences of the log-prices. Furthermore, because R/S–AL and DFA statis-
tics require that length L of the data vector has as many divisors as possible, we have to reduce
the number of observations in some of the original datasets. Consequently, we analyze the
following time series:� Nord Pool average daily (spot) system prices from the period January 1, 1993–December

30, 2004 (4380 daily returns).� European Energy Exchange (EEX) average daily (spot base-load) system prices from the
period January 1, 2001–December 29, 2003 (1092 daily returns).� California Power Exchange (CalPX) average daily (spot) system prices from the period
April 1, 1998–March 29, 2000 (728 daily returns from the pre-crisis period).� Firm on-peak power prices in the Entergy region (Louisiana, Arkansas, Mississippi and
East Texas) from the period January 2, 1998–September 25, 2000 (690 daily returns). The
data was recorded on the OTC (bilateral) spot market and the price quotations are only for
business days (i.e. excluding weekends and holidays). Consequently, the weekly periodicity
is not preserved.

The results of the Anis–Lloyd corrected R/S analysis, the Detrended Fluctuation Analysis
and the periodogram Geweke–Porter-Hudak method (for K = [L0.5]) for these time series are
summarized in Table 2.2.10 For R/S–AL and DFA methods the significance of the results is

10 The wavelet AWC statistic was not used in this analysis because neither asymptotic nor empirical confidence intervals are known
for this method.
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based on empirical confidence intervals provided in Table 2.1. For instance, the 95% and 99%
confidence intervals of the R/S–AL statistic for Nord Pool returns (N = log2 4380 = 12.0967)
are given by:

lower bound: 0.5 − exp{−7.33 · log(log N ) + 4.21} = 0.4167,

upper bound: exp{−7.20 · log(log N ) + 4.04} + 0.5 = 0.5791,

and
lower bound: 0.5 − exp{−7.19 · log(log N ) + 4.34} = 0.3922,

upper bound: exp{−7.51 · log(log N ) + 4.58} + 0.5 = 0.6023,

respectively. Consequently, since Ĥ = 0.4000 is outside the 95% bounds but inside the 99%
confidence interval the result of anti-persistence is significant at the 95% level, but not at the
99% level. For the periodogram regression GPH technique the asymptotic theoretical relation
(2.21) is utilized.11

Apparently all tested electricity price series exhibit mean reversion. The estimated Hurst
exponent is significantly smaller than 0.5; in most cases even at the 99% level. To test if these
results are an artifact of seasonality we apply the moving average technique (see Section 2.4.3)
to remove the weekly periodicity from the price data.12 Afterwards we repeat the analysis for
the de-seasonalized prices. The results are reported in Table 2.2. In all cases the Hurst exponent
is found to be lower than 0.5. However, on average the values are slightly higher; and even
the CalPX R/S–AL estimate is no longer significant. Nevertheless, seasonal dependence of the
spot price does not seem to disrupt the mean reversion in any significant way.

To see that this is not the case with typical financial data we also analyze two stock indices,
one from a mature and one from a developing financial market:� Dow Jones Industrial Average (DJIA) index from the period January 2, 1990–December 30,

1999 (2526 daily returns).� WIG20 Warsaw Stock Exchange index, based on 20 blue chip stocks from the Polish capital
market, from the period January 2, 1995–March 30, 2001 (1560 daily returns).

As expected we find (almost) no evidence for long-range dependence in the stock indices returns
and strong – i.e. significant at the two-sided 99% level for all three methods – dependence
in the stock indices volatility (more precisely: in absolute value of stock indices returns), see
Table 2.2.

Finally, let us look at a finer time scale. To be able to clearly see the behavior at different time
scales, it is of utmost importance to use analyzing techniques that decouple scales. The Average
Wavelet Coefficient method suits this purpose rather well. The drawback is that the length of
the signal has to be a power of 2 (AWC is based on the discrete wavelet transform). Otherwise
padding techniques13 have to be utilized and they can distort the estimate of the Hurst exponent.
We apply the AWC method to Nord Pool spot prices from the period January 2, 1993–June 24,
2000. For time intervals ranging from a day to almost four years the Hurst exponent H ≈ 0.4.
This result is consistent with our earlier findings for daily data. However, as originally observed
by Simonsen (2003), a drastic change takes place for time scales below one day. This is seen
in Figure 2.22 as a well-pronounced cross-over. For intra-day time intervals the exponent H is

11 The differences between the empirical and theoretical confidence intervals are small and the significance of the results is the
same for both sets of values (Weron 2002a).

12 Note that this process cannot be completed for Entergy data since, due to the exclusion of weekends and holidays, the weekly
periodicity is not preserved.

13 See, e.g., Härdle et al. (1998).
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Figure 2.22 The AWC statistic, W [p](s) vs scale s on a log–log paper, of the hourly Nord Pool
electricity spot price since January 2, 1993 until June 24, 2000 (216 = 65 536 hourly observations). The
scaling region s > 24 hours corresponds to a Hurst exponent H ≈ 0.4, while for intra-day time intervals
the electricity price exhibits persistence

significantly above 0.5 and indicates persistence. But this is not that surprising if we recall the
daily price profiles (Figure 2.12), which are quite smooth on the hourly scale and generally do
not differ that much from day to day.

2.6 DISTRIBUTIONS OF ELECTRICITY PRICES

It has been long known that financial asset returns are not normally distributed. Rather, the
empirical observations exhibit excess kurtosis. This heavy-tailed14 or leptokurtic character
of the distribution of price changes has been repeatedly observed in various financial and
commodity markets. The pertinent question is whether electricity prices are also heavy tailed,
and if yes, what probability distributions best describe the data.

Although the answer to the first part of the question is quite straightforward, the second
part requires further analysis. In this section we will model electricity prices with distributions
from two popular heavy-tailed families15 (α-stable and generalized hyperbolic) and assess
their goodness-of-fit.

2.6.1 Stable Distributions

It is often argued that financial asset returns are the cumulative outcome of a vast number of
pieces of information and individual decisions arriving almost continuously in time. As such,

14 Also called long tailed or fat tailed.
15 Other families can be also used. For instance, Bottazzi et al. (2005) reported a good fit of the distributions from the Subbotin

family to Nord Pool returns.
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since the pioneering work of Louis Bachelier in 1900, they have been modeled by the Gaussian
distribution. The strongest statistical argument for it is based on the Central Limit Theorem,
which states that the sum of a large number of independent, identically distributed variables
from a finite variance distribution will tend to be normally distributed. However, financial asset
returns usually have heavier tails.

In response to the empirical evidence Mandelbrot (1963) and Fama (1965) proposed the
stable distribution as an alternative model to the Gaussian law. There are at least two good
reasons for modeling financial variables using stable distributions. Firstly, they are supported by
the generalized Central Limit Theorem, which states that stable laws are the only possible limit
distributions for properly normalized and centered sums of independent, identically distributed
random variables. Secondly, stable distributions are leptokurtic. Since they can accommodate
the fat tails and asymmetry, they fit empirical distributions much better.

Stable laws – also called α-stable, stable Paretian or Lévy stable – were introduced by Paul
Lévy during his investigations of the behavior of sums of independent random variables in
the early twentieth century. The α-stable distribution requires four parameters for complete
description. The tail exponent α ∈ (0, 2] determines the rate at which the tails of the distribution
taper off. When α = 2, the Gaussian distribution results. When α < 2, the variance is infinite
and the tails are asymptotically equivalent to a Pareto law, i.e. they exhibit a power law decay
of order x−α . In contrast, for α = 2 the decay is exponential. When the skewness parameter
β ∈ [−1, 1] is positive (negative), the distribution is skewed to the right (left), i.e. the right
(left) tail is thicker. The last two parameters, σ > 0 and μ ∈ R, are the usual scale and location
parameters, i.e. σ determines the width and μ the shift of the mode (the peak) of the distribution.

From a practitioner’s point of view the crucial drawback of the stable distribution is that,
with the exception of three special cases (α = 2, 1, 0.5), its probability density function (PDF)
and cumulative distribution function (CDF) do not have closed form expressions. Hence, the
α-stable distribution can be most conveniently described by its characteristic function φ(t) –
the inverse Fourier transform of the PDF. However, there are multiple parameterizations for
α-stable laws and much confusion has been caused by these different representations. For
numerical purposes it is useful to use Nolan’s (1997) S0

α(σ, β, μ) parameterization:

log φ(t) =

⎧⎪⎨⎪⎩
−σα|t |α{1 + iβ sign(t) tan

πα

2
[(σ |t |)1−α − 1]} + iμt, α �= 1,

−σ |t |{1 + iβ sign(t)
2

π
log(σ |t |)} + iμt, α = 1.

(2.23)

in which the characteristic function and hence the density and the distribution function are
jointly continuous in all four parameters. Note, that the traditional scale parameter σ of the
Gaussian distribution is not the same as σ in the above representation, i.e. σGaussian = √

2σ .
The estimation of stable law parameters is in general severely hampered by the lack of

known closed form density functions for all but a few members of the stable family. Numerical
approximation or direct numerical integration are nontrivial and burdensome from a compu-
tational point of view. As a consequence, the maximum likelihood (ML) estimation algorithm
based on such approximations is difficult to implement and time consuming for samples en-
countered in practice. Yet, the ML estimates are almost always the most accurate, followed
by regression-type estimates and quantile methods. Simulation of stable variates is relatively
easy and involves trigonometric transformations of two independent uniform variates. Other
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methods that utilize series representations have also been proposed but are not very universal
and, in general, are more computationally demanding.16

2.6.2 Hyperbolic Distributions

In response to remarkable regularities discovered by geomorphologists in the 1940s, Barndorff-
Nielsen (1977) introduced the hyperbolic law for modeling the grain size distribution of wind-
blown sand. Excellent fits were also obtained for the log-size distribution of diamonds from
South West Africa. Almost 20 years later the hyperbolic law was found to provide a very good
model for the distributions of daily stock returns from a number of leading German enterprises,
giving way to its present use in stock price modeling and market risk measurement. The name
of the distribution is derived from the fact that its log-density forms a hyperbola. Recall that the
log-density of the normal distribution is a parabola. Hence the hyperbolic distribution provides
the possibility of modeling heavier tails.

The hyperbolic distribution is defined as a normal variance–mean mixture where the mixing
distribution is the generalized inverse Gaussian (GIG) law with parameter λ = 1, i.e. it is
conditionally Gaussian. More precisely, a random variable Z has the hyperbolic distribution if:

(Z |Y ) ∼ N (μ + βY, Y ) , (2.24)

where Y is a generalized inverse Gaussian random variable with λ = 1 and N (m, s2) denotes
the Gaussian distribution with mean m and variance s2. The probability density function of
the hyperbolic H(α, β, δ, μ) law can be written as:

fH(x) =
√

α2 − β2

2αδK1(δ
√

α2 − β2)
e−α

√
δ2+(x−μ)2+β(x−μ), (2.25)

where δ > 0 is the scale parameter, μ ∈ R is the location parameter and 0 ≤ |β| < α. The
latter two parameters – α and β – determine the shape, with α being responsible for the
steepness and β for the skewness. The normalizing constant Kλ(t) is the modified Bessel
function of the third kind with index λ (here λ = 1), also known as the MacDonald function.17

The calculation of the PDF is straightforward, however, the CDF has to be numerically
integrated from Equation (2.25).

The hyperbolic law is a member of a more general class of generalized hyperbolic distribu-
tions, which also includes the normal inverse Gaussian (NIG) and variance gamma distributions
as special cases. The generalized hyperbolic law can be represented as a normal variance–mean
mixture where the mixing distribution is the generalized inverse Gaussian (GIG) law with any
λ ∈ R.

The normal inverse Gaussian (NIG) distributions were introduced by Barndorff-Nielsen
(1995) as a subclass of the generalized hyperbolic laws obtained for λ = − 1

2 . The density of
the NIG distribution is given by:

fNIG(x) = αδ

π
eδ

√
α2−β2+β(x−μ) K1(α

√
δ2 + (x − μ)2)√

δ2 + (x − μ)2
. (2.26)

16 For a recent account of the computational issues involved see Weron (2004).
17 In the context of hyperbolic distributions, the Bessel functions are thoroughly discussed in Barndorff-Nielsen and Blaesild (1981).



JWBK120-02 JWBK120-Weron September 29, 2006 16:21 Char Count= 0

Stylized Facts of Electricity Loads and Prices 59

As for the hyperbolic distribution, the calculation of the PDF is straightforward, but the CDF
has to be numerically integrated from Equation (2.26).

At the ‘expense’ of four parameters, the NIG distribution is able to model symmetric and
asymmetric distributions with possibly long tails in both directions. Its tail behavior is often
classified as ‘semi-heavy’, i.e. the tails are lighter than those of non-Gaussian stable laws,
but much heavier than Gaussian. Interestingly, if we let α tend to zero the NIG distribution
converges to the Cauchy distribution (with location parameter μ and scale parameter δ), which
exhibits extremely heavy tails as it is a stable distribution with α = 1. The tail behavior of the
NIG density is characterized by the following asymptotic relation:

fNIG(x) ≈ |x |−3/2e(∓α+β)x for x → ±∞. (2.27)

In fact, this is a special case of a more general relation with the exponent of |x | being equal
to λ − 1 (instead of −3/2), which is valid for all generalized hyperbolic laws. Obviously, the
NIG distribution may not be adequate to deal with cases of extremely heavy tails such as those
of Pareto or non-Gaussian stable laws. However, empirical experience suggests an excellent fit
of the NIG law to financial data. Moreover, the class of normal inverse Gaussian distributions
possesses an appealing feature that the class of hyperbolic laws does not have. Namely, it is
closed under convolution, i.e. a sum of two independent NIG random variables is again NIG.

The parameter estimation of generalized hyperbolic distributions can be performed by the
maximum likelihood method, since there exist closed-form formulas (although, involving spe-
cial functions) for the densities of these laws. The computational burden is not as heavy as for
α-stable laws, but it still is considerable. The main factor for the speed of the estimation is the
number of modified Bessel functions to compute. For a data set with n independent observa-
tions we need to evaluate n and n + 1 Bessel functions for NIG and generalized hyperbolic
distributions, respectively, whereas only one for the hyperbolic. This leads to a considerable
reduction in the time necessary to calculate the likelihood function in the hyperbolic case.
We also have to say that the optimization is challenging. Some of the parameters are hard to
separate since a flat-tailed generalized hyperbolic distribution with a large-scale parameter is
hard to distinguish from a fat-tailed distribution with a small-scale parameter. The likelihood
function with respect to these parameters then becomes very flat, and may have local mimima.

The most natural way of simulating generalized hyperbolic variables stems from the fact that
they can be represented as normal variance–mean mixtures. The algorithm, based on relation
(2.24), is fast and efficient if we have a handy way of simulating generalized inverse Gaussian
variates. This is true for λ = − 1

2 . Other members of the generalized hyperbolic family are
computationally more demanding.18

2.6.3 Case Study: Distribution of EEX Spot Prices

Let us now look at mean daily spot prices (Phelix Base index) from the German power exchange
EEX since January 1, 2002 until December 31, 2004. The prices, their first differences and
the returns (i.e. first differences of the log-prices) are depicted in Figure 2.23. Neither the
Gaussian, nor the heavy-tailed alternatives yield a reasonable fit. The reason for this is the
spurious skewness due to weekly seasonality.

If the data is filtered (deseasonalized with respect to the weekly period; the annual seasonality
is not that apparent in German electricity prices) then the distribution of first differences or

18 For a review see Weron (2004).
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Figure 2.23 Mean daily EEX spot electricity prices from the period January 1, 2001–December 31,
2003 (top left panel), their first differences (top right panel) and their returns (bottom left panel). Bottom
right panel: The empirical and a Gaussian CDF (thick line) fitted to the price differences. Neither the
Gaussian, nor the heavy-tailed alternatives yield a reasonable fit. The reason for this is the spurious
skewness due to weekly seasonality

returns is more prone to modeling. In this sample the periodicity was removed by applying the
moving average technique (see Section 2.4.3). The deseasonalized price series and their first
differences are plotted in Figure 2.24. The heavy-tailed nature of the phenomenon is apparent.
The fits of Gaussian, hyperbolic, NIG and α-stable distributions to price changes are presented
in the bottom panels of Figure 2.24. The parameter estimates and goodness-of-fit statistics are
summarized in Table 2.3.

Goodness-of-fit statistics measuring the difference between the empirical distribution func-
tion (EDF), Fn(x), and the fitted, F(x), distribution function are based on the vertical difference
between the distributions. The most well-known supremum norm goodness-of-fit statistic:

D = sup
x

|Fn(x) − F(x)| , (2.28)

is known as the Kolmogorov or Kolmogorov–Smirnov statistic. Another popular class of mea-
sures of discrepancy is given by the Cramer–von Mises family

Q = n

∞∫
−∞

{Fn(x) − F(x)}2 ψ(x) dF(x), (2.29)
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Figure 2.24 Deseasonalized (with respect to the weekly period) mean daily EEX spot electricity prices
from the period January 1, 2002–December 31, 2004 (top left panel) and their first differences (top
right panel). Bottom left panel: The empirical and fitted CDFs to the price differences: Gaussian (thick
line), hyperbolic (dashed line), NIG (dot-dashed line), and α-stable (solid line). Bottom right panel: The
heavy-tailed nature of the phenomenon is apparent from the double logarithmic plot of the left tail of the
price distribution

Table 2.3 Parameter estimates and goodness-of-fit statistics for Gaussian, hyperbolic, NIG and
α-stable distributions fitted to the first differences of the deseasonalized (with respect to the weekly
period) mean daily EEX spot electricity prices from the period January 1, 2002–December 31, 2004.
The symbol ‘+INF’ denotes a very large number (infinity in computer arithmetic)

Parameters α σ, δ β μ

Gaussian fit 8.3741 0.0054
Hyperbolic fit 0.2418 0.3520 0.0010 0.0397
NIG fit 0.0763 3.3443 0.0004 0.0229
α-stable fit 1.5612 2.7695 −0.1606 −0.2624

Test values Anderson–Darling Kolmogorov

Gaussian fit +INF 5.2734
Hyperbolic fit +INF 1.1355
NIG fit 0.8729 0.6935
α-stable fit 0.3687 0.4807
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where ψ(x) is a suitable function which gives weights to the squared difference
{Fn(x) − F(x)}2. When ψ(x) = [F(x) {1 − F(x)}]−1 formula (2.29) yields the A2 statistic,19

which may be treated as a weighted Kolmogorov statistic that puts more weight to the differ-
ences in the tails of the distributions. Note that, as a side product, the EDF goodness-of-fit tests
supply us with a natural technique of estimating the distribution’s parameters. We can simply
find such parameters that minimize a selected EDF statistic. The A2 statistic suits this purpose
rather well as it is very powerful when the fitted distribution departs from the true distribution
in the tails.

Although no asymptotic results are known for α-stable or generalized hyperbolic laws,
approximate critical values for these goodness-of-fit tests can be obtained via the bootstrap
technique.20 In this Case Study, however, we do not perform hypothesis testing and just com-
pare the test values. Naturally, the lower the values the better the fit. Apparently, the stable
distribution yields the best fit, not only visually (where it recovers the power-law tail) but
also in terms of the goodness-of-fit statistics. Both the Gaussian and hyperbolic laws largely
underestimate the tails of the distribution.

Very often in practical applications not the electricity prices themselves but rather their
logarithms are modeled. To discover the price distributions of log-prices we repeat the anal-
ysis for the first differences of log-prices, i.e. for price returns. This time after removing
seasonality we apply the log transformation before taking the differences. The deseasonalized
log-price series and their first differences are plotted in Figure 2.25. The fits of Gaussian,
hyperbolic, NIG and α-stable distributions to price returns are presented in the bottom panels
of Figure 2.25, while the parameter estimates and goodness-of-fit statistics are summarized
in Table 2.4. Again, the stable distribution yields the best fit in terms of the goodness-of-
fit statistics. The second in line NIG distribution also gives relatively low goodness-of-fit
statistics. As before, the Gaussian and hyperbolic laws largely underestimate the tails of the
distribution.

2.6.4 Further Empirical Evidence and Possible Applications

Rachev et al. (2004) fitted Gaussian, hyperbolic, NIG and stable laws to first differences of
the deseasonalized EEX (2001–2003) daily prices and concluded that the stable distribution
yielded the best fit, closely followed by the NIG law. Weron (2005) analyzed the distributional
properties of EEX (2001–2003) and Nord Pool (1997–2000) deseasonalized daily returns
and found the stable law to perform better than NIG, hyperbolic and Gaussian distributions,
especially for the Nordic market data. Mugele et al. (2005) fitted stable and Gaussian laws
to Nord Pool (1997–2002), EEX (2000–2002) and PolPX (five months of 2002) raw and
deseasonalized daily spot price first differences (called returns in the paper). They found the
stable law to yield a better fit in terms of the goodness-of-fit statistics in all cases except raw
PolPX differences (which might be due to the small size of the dataset).

Eberlein and Stahl (2003) fitted Gaussian and generalized hyperbolic laws to (log-)returns
of Nord Pool (1996–2000) mean daily prices and prices of individual hours. Based on visual
inspection of PDF and quantile–quantile plots, they concluded that the generalized hyperbolic
law provides a much better fit. This is not very surprising if we recall that the generalized
hyperbolic distribution provides a much greater flexibility by virtue of allowing manipulation

19 Also known as the Anderson–Darling statistic.
20 See Burnecki et al. (2005) for implementation details.
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Figure 2.25 Logarithm of the deseasonalized (with respect to the weekly period) mean daily EEX spot
electricity prices from the period January 1, 2002–December 31, 2004 (top left panel) and their first
differences, i.e. price returns (top right panel). Bottom left panel: The empirical and fitted CDFs to the
price returns: Gaussian (thick line), hyperbolic (dashed line), NIG (dot-dashed line), and α-stable (solid
line). Bottom right panel: The heavy-tailed nature of the phenomenon is apparent, but the tails are lighter
than Paretian (power-law)

Table 2.4 Parameter estimates and goodness-of-fit statistics for Gaussian, hyperbolic, NIG and
α-stable distributions fitted to the returns of the deseasonalized (with respect to the weekly period)
mean daily EEX spot electricity prices from the period January 1, 2002–December 31, 2004. The
symbol ‘+INF’ denotes a very large number (infinity in computer arithmetic)

Parameters α σ, δ β μ

Gaussian fit 22.4648 0.0310
Hyperbolic fit 0.0744 1.1303 0.0002 0.0944
NIG fit 0.0240 10.9433 0.0001 0.0040
α-stable fit 1.4825 8.8991 −0.0083 −0.0890

Test values Anderson–Darling Kolmogorov

Gaussian fit +INF 4.3252
Hyperbolic fit 2.7926 1.3296
NIG fit 0.7077 0.6727
α-stable fit 0.2591 0.5984
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with five parameters (and not two as in the Gaussian case). Eberlein and Stahl also argued that
the generalized hyperbolic distribution provides a good model for electricity price returns in
Value-at-Risk type calculations.

The very good fitting performance of heavy-tailed distributions, and the α-stable law in
particular, could be the motive for applying Lévy motion21 with stable or NIG-distributed noise
to modeling electricity prices. We have to remember, however, that extreme price changes or
returns are generally coupled in ‘up-jump’–‘down-jump’ pairs constituting the price spikes
(at least at the daily time scale). Consequently, although (α-stable) Lévy motion can recover
the distributional properties of returns very well, it is not a good candidate for the model
of electricity prices just by itself. Besides missing the ‘up-jump’–‘down-jump’ correlation it
does not allow for control of the intensity of the jumps – a property that might be crucial in
some power markets. However, a model with a well-specified seasonal structure amended with
heavy-tailed innovations could lead to improved performance. Examples of such approaches
will be reviewed in later chapters.

2.7 SUMMARY

Electricity is a very specific commodity. The prevailing price spikes lead to heavy-tailed
distributions of returns and extreme price volatility, which can be even two orders of magnitude
higher than for other commodities or financial assets. The seasonality, in turn, manifests itself
in the mean-reverting character of spot prices (and loads) at the daily, weekly and annual time
scales, but not at the hourly. The analysis and understanding of these characteristics is crucial
for designing good models of electricity loads and prices. We have reviewed the statistical
tools that could prove useful in detecting, quantifying and modeling the specific features of
electricity. We will see them applied to real-world data in the following chapters.

2.8 FURTHER READING� See the classical textbooks on time series analysis and signal processing, Brockwell and
Davis (1996), Hamilton (1994) and Pollock (1999), for more details on serial correlation,
seasonal decomposition and spectral methods. For a more recent account, see Rodriguez-
Poo (2003) and Woyczynski (2006). Worth mentioning is also the electronic statis-
tics textbook StatSoft (2005), available from http://www.statsoft.com/textbook/
stathome.html.� Spectral (Fourier) analysis of time series is covered in Bloomfield (2000). Saichev and
Woyczynski (1996) and Vidakovic (2004) review transforms in statistics (including Fourier
and wavelet). Newton (1988) and Press et al. (2002) develop on computational aspects and
provide practical advice.� Härdle et al. (1998) and Percival and Walden (2000) provide comprehensive coverage of
wavelets. Ramsey (2002) reviews their applications in economics and finance.� Volatility and seasonality of electricity prices are discussed in Borovkova and Permana
(2004), Ethier and Mount (1998), Goto and Karolyi (2004), Kaminski (1999), Karakatsani
and Bunn (2004), Simonsen (2005) and Weron (2000). Seasonality in the context of econo-
metric models is the focus of Franses and Paap (2004) and Ghysels and Osborn (2001).

21 Lévy motion is a generalization of Brownian motion with the increments being independent and identically distributed, but not
necessarily Gaussian (Cont and Tankov 2003, Janicki and Weron 1994).
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Koekebakker and Ollmar (2005) and Ocharski (2005) perform the Principal Components
Analysis (PCA) of Nord Pool forward curves.� Pindyck (1999) develops on mean reversion of energy commodity prices. Weron and Przyby-
lowicz (2000) is one of the first papers where anti-persistence of electricity prices is actually
measured. Simonsen (2003) and Weron(2002b) provide further evidence.� See Rachev et al. (2005) for a recent and comprehensive review of heavy-tailed distributions
in finance.� Janicki and Weron (1994), Rachev and Mittnik (2000), Samorodnitsky and Taqqu (1994)
and Zolotarev (1986) are the standard references for stable distributions. For details on
ML estimation see Mittnik et al. (1999) and Nolan (2001). Regression-type and quantile
estimates are described in Kogon and Williams (1998), Koutrouvelis (1980) and McCulloch
(1986). Finally, the classical reference for simulation of stable variates is Chambers et al.
(1976), but a more recent account is given in Weron (1996).� See Eberlein and Keller (1995) and Küchler et al. (1999) for some of the first accounts of the
good fit of the hyperbolic distribution to stock returns. Barndorff-Nielsen and Prause (2001)
and Rydberg (1997) provide empirical evidence in favor of the normal inverse Gaussian
(NIG) law.� For a comprehensive review of hyperbolic distributions see Barndorff-Nielsen and Blaesild
(1981). Weron (2004) provides a more recent survey, with focus on financial applications.
Estimation issues are also tackled by Karlis (2002), Karlis and Lillestöl (2004), Prause (1999)
and Venter and de Jongh (2002). Dagpunar (1989) gives an elegant and efficient algorithm for
simulating generalized inverse Gaussian variates and, hence, generalized hyperbolic random
variables.� See Burnecki et al. (2005) for a brief, application oriented summary of goodness-of-fit
statistics based on the EDF. The accompanying XploRe code for estimation and goodness-
of-fit testing of various loss distributions is available from http://www.xplore-stat.de.
A more comprehensive exposition of goodness-of-fit statistics can be found in D’Agostino
and Stephens (1986).
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3
Modeling and Forecasting

Electricity Loads

3.1 INTRODUCTION

In a competitive power market electricity can be bought and sold at market prices like any
other commodity. As a consequence, the amount of risk borne by electric utilities, power
producers and marketers has increased substantially. Successfully managing a company in
today’s deregulated electricity markets takes a fair amount of statistical analysis and educated
guesswork. Yet, not only price variability leads to risk exposure. Even players that signed a
long-term contract cannot be certain that the future delivery of power at the specified price will
earn them a profit. Demand may differ from expectations at the time the contract was signed
and the actual volume traded may not be enough to cover the costs incurred.

Deregulation has not improved the situation at all; in fact, it made forecasting a necessity
for all active market players. When electricity sectors were regulated, utility monopolies used
short-term load forecasts to ensure the reliability of supply and long-term demand forecasts
as the basis for planning and investing in new capacity. That is no longer the case where
competition has been or is being introduced. The costs of over- or under-contracting and then
selling or buying power on the balancing market have increased so much that they can lead
to financial distress of the utility. Minimization of volumetric risk has never been of such
importance as it is today. As a result, load forecasting has gradually become the central and
integral process in the planning and operation of electric utilities, energy suppliers, system
operators and other market participants. Its position as one of the major fields of research in
electrical engineering is not threatened as well. The financial penalties for forecast errors are
so high that research is aimed at reducing them even by a fraction of a percent.

Load forecasting involves the accurate prediction of both the magnitudes and geographical
locations over the different periods of the planning horizon. The basic quantity of interest is
typically the hourly total system load. However, load forecasting is also concerned with the
prediction of hourly, daily, weekly and monthly values of the system load and peak system
load. The forecasts for different time horizons are important for different operations within a
company. The natures of these forecasts are also different. For example, it is possible to predict
the next day load with a few percent error, but it is impossible to predict the next winter peak
load with a similar accuracy. Instead it is feasible to forecast the weather-normalized winter
peak load, which would take place for average peak day weather conditions in winter for a
given area.

Typically load forecasting is classified in terms of the planning horizon’s duration, as short-
term (STLF), medium-term (MTLF) and long-term load forecasting (LTLF). However, the
thresholds used differ from publication to publication. Short-term load forecasting has become
increasingly important since the rise of competitive energy markets. With supply and demand
fluctuating and electricity prices spiking by a factor of 10 or more in a matter of hours,
load forecasting is vitally important for all market participants. Yet, electric utilities are the
most vulnerable as they cannot pass costs directly to the retail consumers. STLF can help to

67
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estimate load flows and to make decisions that can prevent overloading and reduce occurrences
of equipment failures. As we will see in Chapter 4, short- and medium-term load forecasting is
also important for modeling prices and valuation of spot and derivative contracts for delivery
of electricity. Consequently, hourly and daily forecasts up to a few days ahead, which can be
classified as STLF and ‘short’ MTLF, are of primary interest in everyday market operations.
They are also the topic of this chapter.

Despite the long history of active research load forecasting is still a difficult task. Firstly,
because the load time series exhibit seasonality – at the daily, weekly and annual time scales
(as documented in Section 2.3.3). Secondly, because there are many exogenous variables –
like weather conditions and social events – that should be considered (see Section 3.2). A large
variety of methods and ideas have been tried for load forecasting, with varying degrees of
success. They may be classified into two broad categories:� statistical approaches, including similar-day (or naive), exponential smoothing, regression

and time series methods, and� artificial intelligence-based (or non-parametric) techniques, like neural networks, fuzzy
logic, expert systems and support vector machines.

The statistical methods forecast the current load value by using a mathematical combination
of the previous loads and/or previous or current values of exogenous factors, typically weather
and social variables. These models are attractive because some physical interpretation may
be attached to their components, allowing engineers and system operators to understand their
behavior. However, they are often criticized for their limited ability to model the (usually) non-
linear behavior of load and related fundamental variables. In practical applications, however,
they perform comparably well as their non-linear alternatives.1 The statistical models will be
thoroughly studied in Section 3.4.

On the other hand, artificial intelligence-based (AI-based) methods tend to be flexible and
can handle complexity and non-linearity. With the advent of computer power in the early 1990s,
they have become a widely studied and applied electric load-forecasting technique. Among
these algorithms, artificial neural networks (ANN) have probably received the most attention.
To a considerable degree their popularity stems from the fact that no prior modeling experience
is required to obtain reasonable load forecasts. The employed algorithms automatically classify
the input data and associate it with the respective output values; no human supervision is needed.
This simplicity is at the same time their limitation. AI-based techniques are generally ‘black
box’-type tools: incorporation of specific relations (like those uncovered by the statistical
methods of Chapter 2) into the models is problematic or even impossible. Moreover, the
reports on the performance of ANN, and other AI-based methods, have not been entirely
convincing.2

Nevertheless, the empirical evidence provided by the utilities that have been using ANN
and other non-parametric techniques suggests that these models perform acceptably well in
everyday use. Hence, and for the sake of completeness, in Section 3.3 we will briefly re-
view the most interesting and promising AI-related models, without actually evaluating their
performance.

1 There are also statistical models which, by construction, can handle non-linearity. They will be introduced in Section 4.3.9
for modeling the ‘spiky’ and ‘regime-switching’ nature of electricity spot prices. But even for such extremely non-linear processes,
classical statistical models compete on equal terms and in many cases yield more accurate forecasts.

2 See, e.g., Darbellay and Slama (2000), Hippert et al. (2001) and Taylor et al. (2006). Also reviews on forecasting in general have
questioned neural network models’ efficiency (Adya and Collopy 1998, Makridakis et al. 1998, Zhang et al. 1998).
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Finally, we would like to remark that so far there is no single model or algorithm that is
superior for all markets and market participants. The reason is that service areas vary in differing
mixtures of industrial, commercial and residential customers. They also vary in geographic,
climatologic, economic and social characteristics. The most suitable method for a particular
company can only be chosen by testing various techniques on real data. As in some cases
there are no unanimous winners, many companies use several load forecasting methods in
parallel or, often in cooperation with academics, devise hybrid solutions that incorporate the
best features of different models.

3.2 FACTORS AFFECTING LOAD PATTERNS

Before we actually start reviewing the modeling approaches we would like to mention two
important issues related to electricity load forecasting. Namely, we have to be aware that
the forecasting accuracy depends not only on the numerical efficiency of the employed algo-
rithms, but also on the quality of the analyzed data and the ability to incorporate important
exogenous factors into the models. For STLF several variables should be considered, such as
time factors, weather data, electricity prices, social events and possible customers’ classes. We
will discuss them in Sections 3.2.2–3.2.5. Now, let us briefly review the problem of missing
values and outliers.

3.2.1 Case Study: Dealing with Missing Values and Outliers

If the inputs to our forecasting model are poor, it will be difficult or impossible to come up
with a good forecast no matter how good the model is. The load data recorded on a minute-
by-minute basis is often irregular and full of missing values and outliers. A related problem is
the handling of observed but anomalous load conditions. If the load behavior is abnormal on a
certain day, this deviation from the normal conditions will be reflected in the forecasts into the
future. A possible solution to the problem is to treat the abnormal load values as outliers and
use corrective filters to preprocess the data and produce quality observations that can serve as
input to the forecasting models. Unfortunately, automated corrective algorithms sometimes do
not perform satisfactorily and human experts have to supervise the process.

The first preprocessing step consists of detecting outliers in original data. For an illustrative
purpose, consider the 14-day sequence of load data depicted in the top panel of Figure 3.1.
These are hourly averages over 5-minute measurements conducted by an electric utility com-
pany in southwestern Poland. Clearly, there is a single outlying observation – a spike on
Monday, November 19. How can we detect it without relying on visual inspection? A simple
yet powerful method consists of:

(1) computing a 5-hour running median Lmed
t of the original load series Lt ;

(2) constructing filter bands Bt = Lmed
t ± 3 · SD(Lt − Lmed

t ), where SD(·) is the standard de-
viation;

(3) identifying all observations outside the filter bands as outliers.

The running median is employed here as it is more robust to outliers than the commonly
used moving average. The resulting filter bands are depicted in Figure 3.1. However, this
procedure does not work properly when there are many adjacent outliers. An example of
such a particularly ‘nasty’ sequence of observations, comprising both a series of abnormal
observations and missing values, concerns the second half of May 2000. The 5-hour median
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Figure 3.1 Four weeks of system load measured by an electric utility company in southwestern Poland.
Presented data are hourly averages over 5-minute measurements. The data for the last two weeks of
November 2001 exhibit only a single spike (top panel) and can be treated with a standard averaging
correction technique. The data for the second half of May 2000 include a large number of outliers and
missing values (bottom panel) and require a similar-day type correction. The 5- and 49-hour median filter
bands used for outliers detection are also depicted

filter does not classify all of the 14 extremely low observations on Tuesday and Wednesday
(May 16 and 17) as outliers. The length of the running median has to be increased. Indeed,
using a 49-hour running median lets the algorithm classify these values as outliers (see the
bottom panel of Figure 3.1). In practice, it is advisable to use both short- and long-term running
medians, as the former have problems with adjacent outliers and the latter can detect only very
large deviations from the standard range of the signal. At this stage a human expert should
analyze the results to see if some of the identified outliers cannot be explained by a change
in the consumption rate of large consumers. If this is not the case then the outliers can be
identified as missing data and we can proceed to the second preprocessing step.

A straightforward technique to cope with missing values is to substitute them with an
average of the neighboring observations. This method can be applied to the one-hour spike in
the November 2001 data series. However, in the May 2000 time series there are just too many
missing values to do this. The alternative is to perform a forecast and treat the predicted values
as original data points. Since advanced forecasting models typically cannot be calibrated to data
with missing values, what is left at our disposal is the similar-day method (see Section 3.4.1). It
amounts to substituting the missing values with a sequence exhibiting similar characteristics,
e.g. load figures from the previous week. In contrast to actual forecasting, however, in this
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context future similar-day values may also be used. The missing data may then be substituted
with an average of the preceding and following weeks’ data, smoothed at the edges to nicely
line up with the remaining points.

3.2.2 Time Factors

The time factors influencing the system load include the time of the year, the day of the week
and the hour of the day. As discussed in Section 2.3.3, there are differences in load profiles
between the seasons and between weekdays and weekends. The load on different weekdays
also can behave differently: Mondays and Fridays may have structurally different loads than
the days in between. Last but not least, the load profiles during holidays and adjacent days
deviate from the typical behavior (see Figure 3.2). The holiday load patterns are also more
difficult to forecast because of their relatively infrequent occurrence.

3.2.3 Weather Conditions

Apart from time factors, weather conditions are the most influential exogenous variables,
especially for STLF. Various weather variables could be considered, but temperature and
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Figure 3.2 Two weeks of system load for an electric utility company in southwestern Poland. The
load pattern during Corpus Christi Day (bold line in the plots) – a national holiday in Poland, always
on a Thursday in late May or June – significantly deviates from the typical late spring Thursday load
profile, both in 2000 (top panel) and 2002 (bottom panel). It rather resembles the ‘double peak’ Sunday
structure. Also the next day’s profile is influenced, as many people take a day–off on Friday following
Corpus Christi Day
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humidity are the most commonly used load predictors. An electric load prediction survey
(Hippert et al. 2001) indicated that of the 22 research publications considered from the period
1991–1999, 13 made use of temperature only, three made use of temperature and humidity,
three utilized additional weather parameters, and three used only load parameters. In some
geographic regions other factors are also influential. For instance, in Poland the load can
deviate from the normal load profile by as much as 10% on cloudy afternoons.

Among the weather variables considered, two composite weather variable functions, the
THI (temperature–humidity index) and WCI (wind chill index), are broadly used by utility
companies in the USA. THI is a measure of summer heat discomfort and can be computed
using one of the formulas3:

THI = DB − 0.55 · (1 − HUM) · (DB − 58),

THI = 0.4 · (DB + WB) + 15,

where DB is the dry bulb temperature (in ◦F), HUM is the relative humidity and WB is the
wet bulb temperature (in ◦F). Similarly WCI is cold stress in winter and can be calculated as:

WCI = DB − 0.5 · (WIND − 10),

where WIND is the wind speed (in miles per hour).
The usual approach to STLF uses the forecasted weather scenario as an input. However, one

of recent developments in weather forecasting is the so-called ensemble approach. It consists
of computing multiple forecasts with assigned probability weights. Rather than using point
forecasts, it makes use of multiple scenarios for the future value of a weather variable. In turn,
these inputs generate multiple load forecasts, which naturally carry much more information
than just the expected load. Taylor and Buizza (2002, 2003), found that weather ensembles
improve the accuracy of neural network load forecasting. Apart from more accurate hourly
predictions, the probabilistic description of the future load can be also used as an input to
decision support systems. Unfortunately, most weather services do not provide probabilistic
descriptions of the weather variables, but only single point forecasts.

3.2.4 Case Study: California Weather vs Load

Let us see which weather variables are the most influential in California. To this end, consider
a dataset comprising daily California system-wide loads as provided by CAISO4 and various
weather measurements from the Pomona automatic weather station located in the Los Angeles
county.5 The dataset covers a period of four years: from January 1, 1999 until December 31,
2002. The weather variables include: precipitation (daily total; measured in millimeters), max-
imum and minimum air temperature (measured at 1.5 meters; given in degrees Celsius), max-
imum and minimum soil temperature (measured at a 15-centimeter depth; given in degrees
Celsius), solar radiation (daily global measured at 2 meters; given in watts per square meter),
and maximum and minimum relative humidity (measured at 1.5 meters; given in percent).

3 The following definitions are taken from PJM (2005). These are only simplistic relations. The formulas for THI and WCI are
constantly being improved by the US National Oceanic & Atmospheric Administration and can be downloaded from NOAA’s web
page: http://www.noaa.gov.

4 See http://oasis.caiso.com.
5 Data for other stations are also available. We have decided to use Pomona because of its location in a densely populated region

of California. A mix of measurements from different stations could also be used. Pomona weather station data are downloadable from
the University of California IPM web site, http://www.ipm.ucdavis.edu.
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Table 3.1 Values of the (linear) correlation coefficient ρ between the daily system-wide load in
California and selected weather variables. There were too many missing observations of relative
humidity in the first two years to compute the correlation

Air temp. Soil temp. Rel. humidity

Time period Precipitation Max Min Max Min Solar radiat. Max Min

Full −0.0743 0.5796 0.5510 0.5206 0.5649 0.4650 — —
1999 −0.0681 0.5837 0.5427 0.6083 0.6141 0.4075 — —
2000 −0.0962 0.5948 0.6520 0.4228 0.6218 0.4249 — —
2001 −0.0667 0.5701 0.4630 0.5439 0.5295 0.5170 0.0564 −0.2367
2002 −0.0869 0.6044 0.5309 0.5865 0.5662 0.5396 0.0886 −0.1224

The values of the (linear) correlation coefficient ρ between the system-wide load and selected
weather variables are provided in Table 3.1. The most correlated with the load is the daily
maximum air temperature. The same conclusion was drawn by Misiorek and Weron (2005)
who studied 1999–2001 data from California. This is not surprising as the climate in California
is warm and electricity is used for air-conditioning rather than heating; compare the load,
temperature and solar radiation values for different seasons of the year depicted in Figure 3.3.
However, apart from the annual seasonality, the load time series also exhibits a clear weekly
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Figure 3.3 California daily system-wide load (top panel), maximum air temperature (middle panel) and
solar radiation (bottom panel) for the years 1999–2002. Clearly, there is a positive correlation between
load and these two weather variables
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Table 3.2 Values of the (linear) correlation coefficient ρ between the daily system-wide load in
California deseasonalized with respect to the weekly period and selected weather variables. There were
too many missing observations of relative humidity in the first two years to compute the correlation

Air temp. Soil temp. Rel. humidity

Time period Precipitation Max Min Max Min Solar radiat. Max Min

Full −0.0939 0.6885 0.6513 0.6147 0.6692 0.5500 — —
1999 −0.1277 0.7166 0.6637 0.7454 0.7478 0.5068 — —
2000 −0.1129 0.7138 0.7319 0.4783 0.7179 0.5186 — —
2001 −0.0922 0.6761 0.5888 0.6625 0.6483 0.5853 0.0864 −0.2421
2002 −0.0876 0.7106 0.6279 0.6992 0.6751 0.6344 0.1211 −0.1284

period, see also Section 2.3. If the dependence on the weekday–weekend activities is removed,
e.g. with the moving average technique (see Section 2.4.3), then the correlation values are even
higher, see Table 3.2.

There is yet more to say. The correlation coefficient ρ measures the linear dependence
between the variables under study. However, if the dependence is significant but non-linear
the value of ρ can be misleading.6 A simple way to see if this is the case is to plot the load
against a given weather variable, say the maximum air temperature, as in Figure 3.4. In this
case the dependence is clearly non-linear; it rather forms a ‘hockey stick’ structure with the
loads being insensitive to temperatures below 26◦C and approximately linearly dependent
above this threshold. This observation suggests using either non-linear (a quadratic function
gives a reasonable fit) or piecewise-linear regression to describe the dependence structure.
Alternatively, non-linear tools, like neural networks or regime-switching time series models
(see Section 4.3.9), could be utilized. In any case, we can expect the load forecasts to improve
mainly in the peak load region, which is of particular interest to market participants.

3.2.5 Other Factors

Components or factors related to electricity prices can also be included in load forecasting
models. For non-residential and cost-sensitive industrial or institutional consumers the financial
incentives to adjust loads can be significant. At low prices, load elasticity is negligible, but
at times of extreme conditions, price-induced rationing is a likely scenario. For example,
Chen et al. (2001) reported that the inclusion of PJM spot price data allowed to obtain more
accurate estimates of the Ontario Hydro load.

In the case of residential load, the factors determining the load are more difficult to define
as human psychology is involved in almost every consumption decision. Many social and
behavioral factors can come into play and the accuracy of short-term forecasts can be at times
severely curtailed. Major social events like TV programs (World Cup or Super Bowl final
telecast) or special events (death of a charismatic leader, severe terrorist attack) can have a
dominating influence on consumption over very short-term intervals. Some of these factors are
known in advance and can be taken into account, but some are not.

Nevertheless, residential loads are easier to forecast than industrial loads because of the large
number of residential customers. If one customer does something strange, the impact of his

6 A textbook example is the dependence between x and x2, for x = . . . , −1, 0, 1, . . . , which yields ρ = 0, while obviously x and
x2 are dependent.
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Figure 3.4 California daily system-wide load vs. maximum daily air temperature (left panel). After
deseasonalizing the load with respect to the weekly period the picture is less noisy (right panel). The
dependence is clearly non-linear; it rather forms a ‘hockey stick’ structure (bold line) with the loads being
insensitive to temperatures below 26◦C and approximately linearly dependent above this threshold

actions on the whole system is negligible. On the other hand, a large industrial customer may
behave unpredictably enough to deceive forecasts by, for example, adding an extra work shift
or shutting down a production line. Since most electric utilities serve customers of different
types they often distinguish load behavior on a class-by-class basis. The electric usage pattern
is different for customers that belong to different classes but is somewhat alike for customers
within each class. An alternative approach that electric utilities can take is to transfer the
volumetric risk to the industrial consumer. At the cost of reducing the margin for delivery of
electricity the financial consequences of the fluctuations in consumption are passed on directly
to the consumer.

3.3 OVERVIEW OF ARTIFICIAL INTELLIGENCE-BASED
METHODS

As explained in the Introduction to this chapter, we will now briefly review the most interest-
ing and promising AI-based models, without actually evaluating their performance. Among
these algorithms, artificial neural networks (ANN) have probably received the most attention
because of their straightforward implementation and relatively good performance. Other non-
parametric techniques, like fuzzy logic, expert systems and support vector machines have been
also applied, however, typically in conjunction with ANN or statistical models.

Artificial Neural Networks

Every artificial neural network (ANN or simply NN) model can be classified by its architecture,
processing, and training. The architecture describes the neural connections. Typically, network
elements are arranged in a relatively small number of connected layers of elements between
network inputs and outputs. The outputs are linear or non-linear functions of its inputs. The
inputs may be the outputs of other network elements as well as actual network inputs.

Processing describes how networks produce output for every input and weight and the
training algorithm describes how ANN adapts its weight for every training vector. The most
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popular architecture for STLF is back propagation, which uses continuously valued functions
and supervised learning. The actual weights assigned to element inputs are determined by
matching historical time and weather data to historical electric loads in a pre-operational
training period.

Most of the proposed ANN models might be classified into two groups. In the first group are
those that have only one output node, used to forecast next hour’s load, next day’s peak load or
next day’s total load. In the second group are those that have several output nodes to forecast
a sequence of hourly loads, typically 24 nodes to forecast next day’s whole load profile.

Probably the best-known STLF neural network system is ANNSTLF, see Khotanzad
et al. (1997). It is based on multiple ANN strategies that capture various trends in the data.
The architecture is that of a multilayer perceptron trained with the error back propagation
algorithm. ANNSTLF can consider the effect of temperature and relative humidity on the load.
It also contains forecasters that can generate the hourly temperature and relative humidity
predictions needed by the system. An improved, third generation of ANNSTLF includes two
ANN forecasters – one predicts the base load and the other forecasts the change in load. The
final forecast is computed by an adaptive combination of these forecasts. It is argued that the
second ANN allows the system to adapt more quickly to abrupt changes in temperature. As
reported by Khotanzad et al. (1998), in 1997 ANNSTLF was being used by 35 utilities across
the USA and Canada.

Hippert et al. (2005) addressed the pertinent issue of ‘overfitting’7 by constructing some
very large ANN and evaluating their performance in electricity load forecasting. The analyzed
data consisted of a series of hourly load measurements provided by a local utility from Rio
de Janeiro, Brazil. Data for April through December 1996 was used for calibration, while
for the following year was used for out-of-sample forecasting. Hippert et al. concluded that
large neural networks seem to perform at least as well as more conventional methods, such as
exponential smoothing or regression, and that in practice overfitting is not a problem. The ANN
model that had the best performance in their study (50 inputs, 15 hidden neurons, 24 outputs –
one for each hour of the day) had 1149 weights and biases, which were estimated from 280 × 24
data points. There were more than four parameters to be estimated from each daily load profile!
Yet, this apparently over-parameterized model yielded the best out-of-sample forecasts.

Surprisingly, completely opposite conclusions were drawn in an independent study by Taylor
et al. (2006). They demonstrated the supremacy of the double seasonal exponential smoothing
method (see Section 3.4.2) over five alternative methods, including a neural network. One of
the datasets used was the hourly demand time series from Rio de Janeiro, Brazil, from the
period May–November 1996 (!) with the first 20 weeks being used for calibration and the
remaining part of the data for out-of-sample forecasting. Also Darbellay and Slama (2000)
reported that linear models actually performed better at forecasting hourly loads than the
proposed feed-forward and recurrent ANN.

Expert Systems

An expert system is a computer program that has the ability to reason, explain and expand
its knowledge base as new information becomes available. Expert systems incorporate rules
and procedures used by human experts into software. Naturally, an expert’s knowledge must
be appropriate for codification into software rules. In particular, the expert must be able to

7 For a discussion see Hippert et al. (2001).
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explain his/her decision process to programmers. This knowledge is later codified as facts and
IF–THEN statements, and constitutes a set of relationships between the changes in the system
load and changes in exogenous factors that effect the load. Some of the rules do not change
over time, while others may have to be regularly updated.

Ho et al. (1990) proposed a knowledge-based expert system for STLF. Operator’s knowl-
edge was employed to establish 11 day types. Weather parameters were also considered. The
developed algorithm performed better for Taiwan system loads than a classical ARIMA model.
Rahman and Hazim (1996) developed a site-independent technique. Knowledge about the load
and the factors affecting it are extracted and represented in a parameterized rule base, which is
complemented by a parameter database that varies from site to site. However, the load model
and the rules were designed using no specific knowledge about any particular site. This system
was tested using data from several sites around the USA and, as reported, the errors were
negligible.

Expert systems are often used in conjunction with other load forecasting approaches. Kim
et al. (1995) used a two-step approach in forecasting the load for the Korea Electric Power
Corporation. First, an ANN model forecasts the base load, then a fuzzy expert system model
modifies the base load by considering temperature changes and the load variation of the same
special day in the previous year. However, this system had difficulties forecasting the load over
long weekends and consecutive holidays. In a related study Srinivasan et al. (1999) combined
fuzzy logic, neural networks and expert systems in a highly automated hybrid STLF approach
with Kohonen’s self-organizing feature map and unsupervised learning.

Fuzzy Logic

Fuzzy logic is a generalization of the usual Boolean logic in that, instead of an input taking on
a value of 0 or 1, it has associated with it certain qualitative ranges. For example, a temperature
may be low, medium or high. Fuzzy logic allows outputs to be deduced from fuzzy or noisy
inputs and, importantly, there is no need to specify a precise mapping of inputs to outputs.
After the logical processing of fuzzy inputs, a defuzzification process can be used to produce
precise outputs (e.g. load figures for particular hours).

In a comparative study, Liu et al. (1996) observed that a fuzzy logic system has capabilities
of finding similarities in huge amounts of data. The similarities in input data can be identified
by first- and second-order differences. The fuzzy logic-based forecaster works in two stages:
training and on-line forecasting. If a matching pattern with the highest probability is found,
then an output pattern will be generated using a defuzzification process. Mori and Kobayashi
(1996) used fuzzy inference methods to develop a non-linear optimization model of STLF,
whose objective is to minimize model errors. The search for the optimum solution is performed
by simulated annealing and the steepest descent method. Mori et al. (1999) presented a fuzzy
inference model that uses tabu search with supervised learning to optimize the inference
structure. Wu and Lu (1999) proposed an alternative to the traditional trial and error method
for determining of fuzzy membership functions. An automatic model identification is used,
that utilizes analysis of variance, cluster estimation and recursive least squares.

Several hybrid models have been developed. Ling et al. (2003) proposed a neural fuzzy
network STLF model fine tuned by a modified genetic algorithm (GA). The optimal network
structure, in terms of the number of rules and the membership functions, can be found by the
modified GA when switches in some of the links of the network are introduced. Senjyu et al.
(2005) proposed a hybrid model in which a fuzzy logic, based on similar days, corrected the
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neural network output to obtain the next day forecasted load of the Okinawa Electric Power
Company in the period 1995–1997. The inclusion of the fuzzy logic correction reduced ANN’s
forecast error over the test period by 23%. Song et al. (2006) advocated yet another hybrid
algorithm, which combined fuzzy linear regression (for weekend lower load-profiles) with
exponential smoothing (for the weekdays).

Support Vector Machines

The support vector machine (SVM) is a classification and regression tool that has its roots in
Vapnik’s (1995) statistical learning theory. In contrast to ANN, which try to define complex
functions of the input space, SVM perform a non-linear mapping of the data into a high
dimensional space. Then they use simple linear functions to create linear decision boundaries
in the new space. An attractive feature of SVM is that they give a single solution characterized
by the global minimum of the optimized functional and not multiple solutions associated with
the local minima (as do ANN). Furthermore, they do not rely so heavily on heuristics – i.e. an
arbitrary choice of the model – and have a more flexible structure.

Support vector machines have been successfully applied to optical character recognition,
early medical diagnostics, text classification and corporate bankruptcy analysis. One applica-
tion where SVM outperformed a large number of other methods is medium-term electric load
forecasting. Chen et al. (2004) proposed a SVM to predict daily load in eastern Slovakia for the
31 days of January 1999. Their program was the winning entry of the competition organized by
the EUNITE network. SVM have been also applied to STLF. In an extensive study Mohandes
(2002) found them to be superior to autoregressive methods. Li and Fang (2003b) introduced
a fuzzy SVM, where a fuzzy membership was applied to each input point so that different
input points could make different contributions to the learning of the decision surface. They
concluded that fuzzy SVM effectively improved the accuracy of STLF. The same authors also
experimented with SVM coupled with wavelets (Li and Fang 2003a).

3.4 STATISTICAL METHODS

Statistical approaches usually require a mathematical model that represents load as a function of
different factors. The two important categories are: additive models and multiplicative models.
They differ in whether the forecasted load is the sum (additive) of a number of components or
the product (multiplicative) of a number of factors; just like the additive (2.7) and multiplicative
(2.8) seasonal decomposition schemes. The additive models are by far more popular.

An additive model for predicting the total load Lt may take the form:

Lt = Lb
t + Lw

t + Ls
t + εt , (3.1)

where Lb
t is the base (or normal or weather-normalized) part of the load, which is a set of

standardized load shapes for each type of day that has been identified as occurring throughout
the year, Lw

t represents the weather sensitive part of the load, Ls
t is a special event component

that creates a substantial deviation from the usual load pattern for holidays and other special
days, and εt is the noise. The base load may be further decomposed into the trend (or trend-cycle)
component Tt , the seasonal component St and the stochastic component Yt . Note that many of
the techniques described in the following sections only model the stochastic component after
it has been extracted from the original series with one of the methods described in Section 2.4.
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3.4.1 Similar-Day Method

This approach is based on searching historical data for days with similar characteristics to the
forecasted day. Similar characteristics may include day of the week, day of the year or even
weather. The similar-day method may be also used for modeling the special event (e.g. holiday)
component Ls

t ; then the search is conducted on historical data within one, two or three years.
The load of a similar day is considered as a forecast. Instead of a single similar-day load, the
forecast can be a linear combination or a regression procedure that can include several similar
days.

A simple, yet in some cases surprisingly powerful implementation of the similar-day or
naive method can be as follows: a Monday is similar to the Monday of the previous week
and the same rule applies for Saturdays and Sundays; analogously, a Tuesday is similar to the
previous Monday, and the same rule applies for Wednesdays, Thursdays and Fridays. This
method can be used as a benchmark for more sophisticated models. Not carefully calibrated
forecasting procedures surprisingly do not pass this ‘test’.

3.4.2 Exponential Smoothing

Exponential smoothing is a pragmatic approach to forecasting, whereby the prediction is
constructed from an exponentially weighted average of past observations. The robustness and
accuracy of exponential smoothing has led to its widespread use in a variety of applications.

Probably the simplest stochastic model for a generic time series would be to consider each
observation as consisting of a constant representing the systematic or predictable part of the
series and an error component: lt = l + εt . Unfortunately, this model is not very useful as it
does not allow for variations of the systematic part. A practical generalization would be to let the
level l vary slowly over time. Then one way to estimate the true value of l would be to compute
a kind of moving average, where the current and immediately preceding observations are
assigned greater weight than the respective older observations. Simple exponential smoothing
accomplishes exactly such weighting, where exponentially smaller weights are assigned to
older observations:

lt = αlt + (1 − α)lt−1. (3.2)

When applied recursively to each successive observation in the series, each new smoothed
value (forecast) is computed as the weighted average of the current observation and the previous
smoothed observation. In effect, each smoothed value is the weighted average of the previous
observations, where the weights decrease exponentially depending on the value of parameter
α ∈ (0, 1).

In addition to simple exponential smoothing, more complex models have been developed
to accommodate time series with seasonal and trend components. The general idea here is that
forecasts are not only computed from consecutive previous observations, but an independent
(smoothed) trend Tt and seasonal component St can be added. Different forms of seasonality
(additive, multiplicative) and trend (linear, exponential, damped) have been proposed. As
far as electricity load forecasting is concerned the following specification, sometimes called
the modified Holt’s method or Holt–Winter’s method,8 is of particular interest (Misiorek and

8 The original Holt’s method does not include a seasonal component, while another well-known exponential smoothing specifica-
tion – Winter’s method – utilizes a multiplicative rather than an additive seasonal component.
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Weron 2005):

lt = α(lt − St−s) + (1 − α)(Lt−1 + Tt−1), (3.3)

Tt = β(lt − lt−1) + (1 − β)Tt−1, (3.4)

St = γ (lt − lt ) + (1 − γ )St−s, (3.5)

Ft+m = lt + Tt m + St−s+m, (3.6)

where Ft+m is the m-step ahead forecast and s is the period of the seasonal component (e.g.
s = 7 for daily load series). The parameters α, β and γ can be estimated by minimizing the
sum of absolute errors

AE =
n∑

t=s+1

|lt − Ft |, (3.7)

or any adequate score function.
Application of exponential smoothing to hourly data requires further generalization to ac-

commodate the two seasonalities (daily and weekly) in the electricity demand series. This
involves the introduction of an additional seasonal index and an extra smoothing equation
for the new seasonal index. Taylor (2003) compared this method to the traditional, single-
seasonality exponential smoothing specification and a well-specified multiplicative double
seasonal ARIMA model on half-hourly observations for demand in England and Wales. He
concluded that the forecasts produced by the new double seasonal exponential smoothing
method outperform those of the other two models. In a related study Taylor et al. (2006)
demonstrated the supremacy of the double seasonal exponential smoothing method over five
alternative methods (double seasonal ARIMA, neural network, regression with Principal Com-
ponent Analysis and two random walk naive benchmarks) on hourly demand time series from
Brazil and half-hourly series from England and Wales.

In an earlier load forecasting study Moghram and Rahman (1989) compared the performance
of a generalized exponential smoothing method to that of multiple linear regression, seasonal
ARIMA, transfer function, state space method with Kalman filter and knowledge-based expert
system. The dataset comprised hourly load observations from a typical southeastern utility in
the USA. The generalized exponential smoothing method performed reasonably well but was
not the best one. It has to be noted, however, that the results are purely illustrative as the errors
were measured for two days only.

Results of the analysis by Barakat et al. (1990) showed that the unique pattern of energy
and demand pertaining to fast-growing areas was difficult to analyze and predict by direct
application of Winter’s method. El-Keib et al. (1995) presented a hybrid approach in which
exponential smoothing was augmented with power spectrum analysis and adaptive autoregres-
sive modeling. In a related study Misiorek and Weron (2005) used the Holt–Winter method for
removing the trend-seasonal component and modeled the obtained residuals with an adaptive
ARMA process. The model performed favorably to an adaptive ARMA process coupled with
rolling volatility and moving average trend removal techniques (see Case Study 3.4.7). How-
ever, when temperature was included in both models as an exogenous variable, the exponential
smoothing approach failed to outperform the competitor. Infield and Hill (1998) proposed a new
trend removal technique based on optimal smoothing which, contrary to simpler exponential
smoothing, does not exhibit a time delay effect. Yet the results were somewhat disappointing;
their technique performed comparably to conventional similar-day methods.
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3.4.3 Regression Methods

Regression is one of the most widely used statistical techniques. The general purpose of
multiple regression is to learn more about the relationship between several independent or
predictor variables and a dependent or criterion variable. Multiple regression is based on least
squares: the model is fit such that the sum-of-squares of differences of observed and predicted
values is minimized.

For electric load forecasting regression methods are usually used to model the relationship
of load and other factors such as weather, day type and customer class. The model expresses
the load as a linear function of one or more explanatory variables and an error term:

Lt = a0 + a1L (1)
t + . . . + ak L (k)

t + εt , (3.8)

where Lt is the load, L (1)
t , . . . , L (k)

t are explanatory variables correlated with the load, a1, . . . , ak

are the regression coefficients and εt is the noise. The explanatory variables can be simple,
like maximum daily temperature, or complex functions of simple variables, such as squared
difference between maximum and minimum daily temperatures.

In its classical form, multiple regression assumes that the relationship between variables is
linear. Fortunately, multiple regression procedures are not greatly affected by minor deviations
from this assumption. However, it is good practice to always look at a scatterplot of the variables
of interest. If curvature in the relationships is evident, one may consider either transforming
the variables, or explicitly allowing for non-linear components.

Despite the large number of alternatives the linear regression models are still among the
most popular load-forecasting approaches. A selection of interesting applications is discussed
in the following paragraphs.

Ružic et al. (2003) presented a regression-based adaptive weather sensitive STLF algorithm,
which was developed and implemented in the Electric Power Utility of Serbia. The proposed
methodology consists of two main steps. The total daily energy is independently forecasted
in the first step while hourly loads are predicted in the second step. All model parameters are
automatically calculated and updated using realized data in the identification period.

Haida and Muto (1994) presented a regression-based daily peak load forecasting method with
a transformation technique. Their method uses a regression model to predict the nominal load
and a learning method to predict the residual load. Haida et al. (1998) expanded this model by
introducing two trend-processing techniques designed to reduce errors in transitional seasons.
Trend cancellation removes annual growth by subtraction or division, while trend estimation
evaluates growth by the variable transformation technique.

Hyde and Hodnett (1997) presented a weather–load model to predict load demand for the
Irish electricity supply system. To include the effect of weather, the model was developed
using regression analysis of historical load and weather data. Hyde and Hodnett (1997) later
developed an adaptable regression model for day-ahead forecasts, which identifies weather-
insensitive and sensitive load components. Linear regression of past data is used to estimate
the parameters of the two components.

The non-parametric regression model of Charytoniuk et al. (1998) constructs a probability
density function of the load and load-affecting factors. The model produces the forecast as a
conditional expectation of the load given the time, weather and other explanatory variables,
such as the average of past actual loads and the size of the neighborhood.

Smith (2000) employed Bayesian semiparametric regression methodology to STLF in the
New South Wales wholesale electricity market. Temperature-sensitive and periodic (daily and
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weekly) components are identified and each component is decomposed as a linear combination
of basis functions. The entire model is estimated using a Bayesian Markov chain Monte Carlo
approach, and forecasts are obtained using a Monte Carlo sample from the joint predictive
distribution of future system load.

3.4.4 Autoregressive Model

Time series models are based on the assumption that the data have an internal structure, such
as autocorrelation, trend or seasonal variation. The forecasting methods detect and explore
such a structure. If the load Lt is assumed to be a linear combination of previous loads,
then the AutoRegressive (AR) model can be used to forecast future load values. A pth-order
autoregressive, AR(p), model is defined as:

Lt −
p∑

i=1

φi Lt−1 = εt , (3.9)

where εt is a random load disturbance (or prediction error), and φ1, . . . , φp are the unknown
AR coefficients. The order of the model tells how many lagged past values are included. The
simplest AR model is the first-order AR(1). The εt ’s are assumed to be Gaussian with zero
mean and finite variance σ 2. It is also possible to include an extra parameter φ0 to ‘soak up’
the mean value of the time series. Alternatively, we can first subtract the mean from the data
and then apply the zero-mean AR model (3.9). We also need to subtract the trend from the raw
load data as the AR model assumes stationarity.

Intuitively, a process lt is stationary if its statistical properties do not change over time.
More precisely, the probability distributions of the process are time-invariant. In practice, a
much weaker definition of stationarity, called second-order, weak or covariance stationarity,
is employed. It assumes that the mean, variance and autocorrelation structures do not change
over time. Strictly speaking, the mean and variance are constant and the autocovariance is a
function of (t − s) only. An AR(p) process is covariance stationary if and only if all roots of
its characteristic polynomial:

1 − φ1z − . . . − φpz p = 0, (3.10)

lie outside the unit circle. If z = 1 is a solution of the characteristic polynomial (3.10) then we
say that the process has a unit root. The presence of a unit root causes the autocovariances to
vary over time. In such a case the data have to be differenced at lag 1 (see Section 2.4.1) before
modeling with AR or other stationary processes. The autoregression model can be also viewed
as a special case of the multiple regression model (3.8), where the independent or predictor
variables are the past values of the process itself. Hence the name of the model.

Autoregressive models have been used for decades in such fields as economics, digital signal
processing, as well as electric load forecasting. Often AR models are used as benchmarks for
more sophisticated approaches. In other papers modifications of the original specification are
proposed. For example, the algorithm presented by El-Keib et al. (1995) includes an adap-
tive autoregressive modeling technique enhanced with partial autocorrelation analysis. Huang
(1997) proposed an autoregressive model with an optimum threshold stratification algorithm.
The algorithm determines the minimum number of parameters required to represent the ran-
dom component, removing subjective judgment, and improving forecast accuracy. Soares and
Medeiros (2005) introduced the Two-Level Seasonal Autoregressive (TLSAR) model, which
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consisted of 24 separate AR models (one for each hour of the day), a sinusoidal annual com-
ponent and dummy variables for each day of the week. They calibrated the TLSAR model to
1990–1998 hourly loads from Rio de Janeiro, Brazil, and evaluated its out-of-sample 24- to
168-hour-ahead forecasting accuracy in the period 1999–2000. The model performed favorably
to a single SARIMA specification for all hours of the day.

3.4.5 Autoregressive Moving Average Model

The moving average (MA) is a model in which the time series is regarded as a moving average
(unevenly weighted) of a random shock series εt . The moving average model of order q, or
MA(q), is given by:

Lt = εt +
q∑

i=1

θiεt−i . (3.11)

There is a ‘duality’ between the moving average process and the autoregressive process, that
is, the moving average model (3.11) can be rewritten (inverted) into an autoregressive form (of
infinite order). However, this can only be done if the moving average parameters follow certain
conditions, that is, if the model is invertible. Otherwise, the series will not be stationary.

Apart from their filtering properties, MA models are not useful in load forecasting applica-
tions. However, if combined with AR models they form a very powerful tool – the autoregressive
moving average (ARMA) model. In the ARMA model the current value of the time series Lt

is expressed linearly in terms of its past values and in terms of previous values of the noise.
The autoregressive moving average model of order (p, q), or ARMA(p, q), is written as:

Lt −
p∑

i=1

φi Lt−1 = εt +
q∑

i=1

θiεt−i , (3.12)

where the coefficients are the same as in (3.9) and (3.11). ARMA model estimation is addressed
in Section 3.4.6.

Autoregressive moving average models have been extensively applied to load forecasting.
Fan and McDonald (1994) presented a practical real-time implementation of weather adaptive
STLF. Implementation was performed by means of an ARMA model, whose parameters were
estimated and updated on-line, using the weighted recursive least squares algorithm. Chen
et al. (1995) used an adaptive ARMA model for load forecasting, in which the available
forecast errors are used to update the model using minimum mean square error to derive error
learning coefficients. As reported, the adaptive scheme outperformed conventional ARMA
models. Paarmann and Najar’s (1995) adaptive on-line load forecasting approach automatically
adjusts model parameters according to changing conditions based on time series analysis. This
approach has two unique features: autocorrelation optimization is used for handling cyclic
patterns and, in addition to updating model parameters, the structure and order of the time
series are adaptable to new conditions.

Nowicka-Zagrajek and Weron (2002) applied the rolling volatility technique (see Section
2.4.5) and modeled the deseasonalized loads from the California market using standard and
adaptive ARMA processes with hyperbolic noise. They were able to outperform the CAISO
day-ahead forecasts (see also Section 3.4.7). In a related study, Huang and Shih (2003) proposed
an iterative scheme for calibrating ARMA processes to load data. The data is differenced (as
in ARIMA models, see Section 3.4.8) and autoregression or moving average dependencies
are removed from it as long as the residuals are not stationary and Gaussian distributed. As
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reported by Huang and Shih, the obtained one-day-ahead and one-week-ahead load forecasts
for Taiwan were substantially better than those from classical (Gaussian) ARMA models or
neural networks.

3.4.6 ARMA Model Identification

Time series modeling of ARMA and related models proceeds by a series of well-defined steps.
The first step is to identify the model. Identification consists of specifying the appropriate
structure (AR, MA or ARMA) and order of model. Usually the fitting process is guided by the
principle of parsimony, by which the best model is the simplest possible one, i.e. the model
with the fewest parameters, that adequately describes the data.

Identification can be performed by looking at ACF and PACF plots (see Section 2.3.1) or an
automated iterative procedure consisting of fitting many different possible model structures
and using a goodness-of-fit statistic or information criterion to select the best model. In
general, by increasing the complexity of model structure (i.e. increasing the number of
parameters) we get an ‘artificial’ improvement in fit. Information criteria compensate for this
effect by introducing a penalty for oversized models.

Akaike’s Final Prediction Error (FPE), bias-corrected Akaike’s Information Criterion
(AICC) and Bayesian Information Criterion (BIC; also known as Schwarz Information Crite-
rion, SIC) are three of the most popular goodness-of-fit statistics:

FPE = V
n + d

n − d
, (3.13)

AICC = −2 logL + 2dn

n − d − 1
, (3.14)

BIC = −2 logL + d log n, (3.15)

where V = 1
n

∑
ε̂2

t is the variance of model residuals ε̂t = Lt − L̂ t , n is the sample size, d is
the model size and log L is the log-likelihood function (see below). The best-fit model is the
one with the minimum value of the information criterion. Note that under the assumption of
Gaussian errors the term −2 logL in (3.14) and (3.15) is equivalent to n log V .

The second step is to estimate the coefficients of the model. While parameters of AR
models can be estimated by least-squares regression, estimation of MA and ARMA coeffi-
cients usually requires a more complicated procedure. Although a recursive least squares9

scheme can be used for this purpose it does not produce as good estimates as maximum
likelihood.

When the orders p and q are known, good estimators of the model parameters can be found
by assuming that the data L = (L1, . . . , Ln)′ are observations of a stationary Gaussian time
series and maximizing the log-likelihood log L with respect to the d = p + q + 1 parameters:
φ1, . . . , φp, θ1, . . . , φq and the noise variance σ 2. The Gaussian log-likelihood is given by:

logL = −n

2
log(2πσ 2) − 1

2
log � − 1

2σ 2
L ′�−1L , (3.16)

where � is the (auto-)covariance matrix of L and L ′ denotes a transpose of the vector L . The
obtained estimators are known as maximum likelihood (ML) estimators. The maximization is
carried out by searching numerically for the maximum. No matter which type of optimization

9 See, e.g., Haykin (1996) and Pollock (1999).
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algorithm (gradient descent, simplex search, etc.) is chosen initial parameter values have to be
supplied.

For AR models preliminary estimation can be performed using the Yule–Walker algorithm
or the slightly better in terms of likelihood Burg algorithm. For models with a moving av-
erage part the choice is between the innovations algorithm and the Hannan–Rissanen algo-
rithm. For pure MA models the former performs slightly better, while for ARMA models
the Hannan–Rissanen algorithm is usually more successful in finding so-called causal mod-
els, which are required for initialization of the ML estimation (see Section 3.6 for pertinent
references).

The third and final step is to perform a diagnostic check of the model. In particular, to ensure
that the residuals of the model are random. There are many tests that can be utilized. Good
practice is to run a number of tests and see if the residuals pass all or at least most of them.
Here we briefly review the most popular tests.� The sample ACF/PACF test. A simple test for whiteness of a time series is to plot the

sample autocorrelation and partial autocorrelation functions. If the model is appropriate
most of the coefficients of the sample ACF and PACF should be close to zero. In practice,
we require that about the 95% of these coefficients should fall within the non-significance
bounds ±1.96/

√
n, where n is the sample size.� The minimum AICC AR model test. A related simple test consists of fitting autoregressive

models of orders p = 0, 1, . . . , pmax, for some large pmax. If the value of p for which the
AICC value attains the minimum is zero, then the observations can be regarded as random.� The portmanteau test. Instead of checking to see if each sample autocorrelation ρ̂( j) falls
inside the non-significance bounds, it is possible to consider a single statistic introduced by
Ljung and Box (1978):

Q = n(n + 2)
h∑

j=1

ρ̂2( j)

n − j
,

whose distribution can be approximated by the χ2 distribution with h degrees of freedom.
A large value of Q suggests that the sample autocorrelations of the observations are too
large for the data to be a sample from a white noise sequence. Therefore we reject the white
noise hypothesis at level α if Q > χ2

1−α(h), where χ2
1−α is the (1 − α) quantile of the χ2

distribution with h degrees of freedom.� The turning point test. If y1, . . . , yn is a sequence of observations, we say that there is a
turning point at time i (1 < i < n) if yi−1 < yi and yi > yi+1 or if yi−1 > yi and yi < yi+1.
In order to carry out a test of the white noise hypothesis (for large n) we denote the number
of turning points by T (T is approximately N (μT , σ 2

T ) distributed, where μT = 2(n − 2)/3
and σ 2

T = (16n − 29)/90) and we reject this hypothesis at level α if |T − μT |/σT > 1−α/2,
where 1−α/2 is the (1 − α/2) quantile of the standard normal distribution. The large value
of T − μT indicates that the series is fluctuating more rapidly than expected for a white
noise sequence; a value of T − μT much smaller than zero indicates a positive correlation
between neighboring observations.� The difference-sign test. For this test we count the number S of values i such that yi > yi−1,
i = 2, . . . , n. For a white noise sequence and for large n, S is approximately N (μS, σ

2
S ),

where μS = (n − 1)/2 and σ 2
S = (n + 1)/12. A large positive (or negative) value of S − μS
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indicates the presence of an increasing (or decreasing) trend in the data. We therefore reject
the assumption of no trend in the data if |S − μS|/σS > 1−α/2.� The rank test. The rank test is particularly useful for detecting a linear trend in the data.
We define P as the number of pairs (i, j) such that y j > yi and j > i , i = 1, . . . , n − 1.
For a white noise sequence and for large n, P is approximately N (μP , σ 2

P ) distributed,
where μP = n(n − 1)/4 and σ 2

P = n(n − 1)(2n + 5)/72. A large positive (negative) value
of P − μP indicates the presence of an increasing (decreasing) trend in data. The white
noise hypothesis is therefore rejected at level α if |P − μP |/σP > 1−α/2.

3.4.7 Case Study: Modeling Daily Loads in California

Let us now apply some of the presented techniques to STLF. The analyzed time series comprises
daily California system-wide loads as provided by CAISO.10 The models are calibrated to data
from the period January 1, 1999–December 31, 2000, i.e. two full years. The two following
years are used for out-of-sample testing of the models, see the top panel in Figure 3.3 where
the whole four-year period was depicted. Recall, that in early 2001 California experienced
soaring prices and rolling blackouts. Such a ‘rough’ out-of-sample period is selected because
we want to stress test the proposed models.

As already discussed in Case Studies 2.3.3 and 3.2.4, the time series of daily system-
wide loads displays weekly and annual seasonalities. These periodic components have to be
removed, i.e. the signal has to be decomposed, before ARMA (or more generally: stationary
time series) models can be fitted to the stochastic part. In line with the standard additive
seasonal decomposition approach (see Section 2.4), we model the electricity load Lt as a
sum of two components: seasonal or trend seasonal St and stochastic Yt , i.e. Lt = St + Yt .
There are various ways of extracting Yt . Here we apply two conceptually different seasonality
reduction techniques: differencing–smoothing (Model A) and moving average method coupled
with rolling volatility technique (Model B).

Model A: Differencing–Smoothing

In Model A we utilize the differencing–smoothing scheme (2.10). Using a combination of
differencing operators and moving average-type smoothers, this procedure decomposes the
original signal into the seasonal and stochastic components (see Figure 3.5). The disadvantage
of the differencing-smoothing technique is its sensitivity to load values noted in the preceding
days or weeks. Even single outlying observations can distort the seasonal component for weeks
to follow.

Model B: Moving Average with Rolling Volatility

In Model B we deseasonalize the signal in two steps. First, we take care of the weekly periodicity
by applying the moving average technique (see Section 2.4.3). Next, we deal with annual
seasonality. The moving average technique cannot be used in this case as the data spans only
a few years (i.e. only a few full periods). It is also highly non-sinusoidal – more-or-less flat

10 See http://oasis.caiso.com.
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Figure 3.5 Daily system-wide load in California since January 1, 1999 until December 31, 2000 (top
panel). Its decomposition via the differencing–smoothing scheme (2.10) yields the seasonal (middle
panel) and stochastic (bottom panel) components

throughout the year with a substantial hump in late summer and autumn (see the top panel in
Figure 3.5) – and hence not prone to spectral decomposition. Among suitable alternatives the
rolling volatility technique (see Section 2.4.5) seems to be the most promising. We apply it in
Model B (for details consult Case Study 2.4.6).

Diagnostic Checking

As discussed in Case Study 2.3.3, the seasonal structure of a time series can be very well
observed in the frequency domain by plotting the periodogram. The periodogram of the daily
system-wide load in California since January 1, 1999 until December 31, 2000 is displayed
in the top panel of Figure 3.6. It shows well-defined peaks at frequencies ωk = 0.1428 and
2.7397 · 10−3 corresponding to weekly and annual periodicities, respectively. Recall, that the
smaller peaks (harmonics) at ωk = 0.2857 and 0.4292 indicate that the data exhibits a 7-day
period which is not sinusoidal. Now, let us see how the models cope with this.

The Model A stochastic component shows no apparent trend or weekly seasonality. How-
ever, some long-term relationships seem to remain, see the bottom panel in Figure 3.5.
This observation is reinforced by the low frequency spikes of the periodogram (middle
panel of Figure 3.6) and the slowly11 decreasing autocorrelation function (top-left panel of

11 Note, however, that the decline is rapid compared to that of raw load data (see Figure 2.17).
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Figure 3.6 Periodogram of the daily system-wide load in California since January 1, 1999 until
December 31, 2000 (top panel). The annual (ωk = 2.7397 · 10−3) and weekly (ωk = 0.1428) frequencies
are clearly visible. Periodogram of the stochastic component in Model A displays a range of dominating
frequencies corresponding to long time intervals (middle panel). Periodogram of the stochastic compo-
nent in Model B exhibits no dominating frequency (bottom panel) and the spectrum resembles that of a
white noise

Figure 3.7). Nevertheless, the component can be treated as a stationary sequence; the KPSS
test of Kwiatkowski et al. (1992) does not reject the null hypothesis of stationarity (with the
unit root hypothesis as the alternative, see Section 3.4.4) at the 5% level. This gives us statistical
grounds for modeling the stochastic component Yt by an ARMA-type process.

The stochastic component obtained from Model B was plotted in the bottom panel of Figure
2.19 (see Case Study 2.4.6). It seems to be ‘more stationary’ than the one obtained from
Model A. This subjective observation is confirmed by the periodogram in the bottom panel of
Figure 3.6. Moreover, the dependence structure exhibits only short-range correlations. Both,
the autocorrelation function (ACF) and the partial autocorrelation function (PACF) rapidly
tend to zero (see the bottom panels in Figure 3.7), which suggests that the deseasonalized load
returns can be modeled by an ARMA-type process.

Modeling with ARMA Processes

The mean-corrected (i.e. after removing the sample mean) stochastic components are modeled
by ARMA processes (3.12). The ML estimators used here are based on the assumption of
Gaussian noise, see (3.16). However, this does not exclude models with non-Gaussian noise
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Figure 3.7 The ACF (left panels) and PACF (right panels) plots for the stochastic components obtained
from Model A (top panels) and Model B (bottom panels). Solid horizontal lines represent the 95%
confidence intervals of white noise. No long-range correlations are present in the stochastic component
obtained from Model B. Clearly, the differencing scheme of Model A does not do such a good job

since the large sample distribution of the estimators is the same for i.i.d(0, σ 2) noise, regardless
of whether or not it is Gaussian.12

The model selection procedure consists of two steps. First, ARMA(p, q) processes with p
and q ranging from 0 to 10 are calibrated to the stochastic components. Next, the goodness-
of-fit is measured by the AICC and BIC criteria. The results are summarized in Table 3.3. For
Model A the AICC criterion suggests an ARMA(10, 7) process, while the BIC statistic favors
an ARMA(3, 1) model. Apparently the differencing-smoothing decomposition has not done
a good job. For further analysis we choose the latter model as it offers a more parsimonious
specification. For the stochastic component of Model B both measures agree and select an
ARMA(2, 1) process.

After calibrating ARMA processes we have to test their residuals. If the fitted model is
appropriate, then the residuals should behave in a manner that is consistent with the model.
In our case this means that the properties of the residuals should reflect those of a white noise
sequence with zero mean and variance σ 2. To this end, we perform the portmanteau, turning
point, difference-sign and rank tests for randomness (see Section 3.4.6). As it turns out, for
both models there is not sufficient evidence to reject the white noise hypothesis of the residuals
at the common 5% level. However, the distribution of the residuals has heavier than Gaussian

12 See Brockwell and Davis (1991), Section 10.8.
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Table 3.3 ARMA(p, q) models (p, q = 0, 1, . . . , 10) yielding the best in-sample fit to the stochastic
components of Models A and B. Top three specifications selected by the AICC and BIC criteria for
each of the stochastic components are provided

Model AICC value Model BIC value

ARMA(10, 7) 11920.08 ARMA(3, 1) 11977.79
Model A ARMA(9, 8) 11920.10 ARMA(3, 2) 11981.78

ARMA(9, 9) 11921.70 ARMA(4, 1) 11982.24

ARMA(2, 1) 1955.00 ARMA(2, 1) 1973.32
Model B ARMA(1, 3) 1956.28 ARMA(1, 2) 1974.69

ARMA(1, 2) 1956.37 ARMA(1, 3) 1979.16

tails. As reported by Nowicka-Zagrajek and Weron (2002), the hyperbolic law (see Section
2.6.2) yields a very good fit to Model B residuals.

Forecasting Results

In the previous section we fitted ARMA processes to the stochastic components of the system-
wide load from the period January 1, 1999 to December 31, 2000. Now, we test our models’
out-of-sample forecasting performance using data from the following two years (January 1,
2001–December 31, 2002). For every day in the test period we run a day-ahead prediction. We
apply an adaptive scheme, i.e. instead of using a single parameter set for the whole sample, for
every day in the test period we calibrate specified order ARMA processes to the previous 730
values of the stochastic components and obtain load forecasts for that day. Initially the orders
chosen were those based on the in-sample fit and the BIC criterion, i.e. (3, 1) and (2, 1) for Model
A and Model B, respectively. However, Model A yields better out-of-sample forecasts when
larger specifications are used – ARMA(3, 2) turns out to be a reasonable compromise between
goodness-of-fit and model parsimony. For Model B, ARMA(2, 1) gives the best out-of sample
fit, but when an additional exogenous variable is used (see Case Study 3.4.10), ARMA(1, 3)
outperforms all of its competitors. Consequently, we calibrate ARMA(3, 2) and ARMA
(1, 3) processes to stochastic components of Model A and Model B, respectively. The results
are then ‘inverted’ (the trend seasonal component St is added) and compared with the actual
system-wide loads and the CAISO official day-ahead forecasts (see Figures 3.8 and 3.10).
The measure of fit used is the Absolute Percentage Error (APE). For day d it is computed as:

APEd =
∣∣Ld − L̂d

∣∣
Ld

, (3.17)

where Ld is the actual load and L̂d is the predicted load for that day. The errors for January,
February, November and December 2001 are depicted in Figures 3.9 and 3.11.

The performance of the models is summarized in Table 3.4. The annual Mean Absolute
Percentage Errors

MAPEannual = 1

365

365∑
d=1

APEd , (3.18)

indicate that the CAISO forecast (MAPE of 1.84% in 2001 and 1.37% in 2002) outperforms
both Model A (2.26% and 2.05%, respectively) and Model B (2.08% and 1.93%, respectively)
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Figure 3.8 Daily system-wide loads in California (January–February 2001) compared with Model A,
Model B and CAISO day-ahead forecasts
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Figure 3.9 Absolute Percentage Errors (APE) of the day-ahead Model A, Model B and CAISO forecasts
(January–February 2001)
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Figure 3.10 Daily system-wide loads in California (November–December 2001) compared with Model
A, Model B and CAISO day-ahead forecasts
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JWBK120-03 JWBK120-Weron October 4, 2006 17:52 Char Count= 0

Modeling and Forecasting Electricity Loads 93

Table 3.4 Annual Mean Absolute Percentage Errors (MAPE) of the day-ahead CAISO, Model A and
Model B load forecasts for years 2001 and 2002, i.e. the whole out-of-sample test period. Best results
for each year are emphasized in bold

CAISO Model A Model B

January–December 2001
With holidays 1.84% 2.26% 2.08%
Without holidays 1.83% 1.94% 1.71%

January–December 2002
With holidays 1.37% 2.05% 1.93%
Without holidays 1.32% 1.80% 1.66%

predictions. We have to note, however, that the extreme differences between the actual load
and our models’ forecasts correspond to the US national holidays: New Year’s Day (lag 1 in
Figures 3.8–3.9), Washington’s Birthday (lag 50 in Figures 3.8–3.9), Thanksgiving Day (lag
22 in Figures 3.10–3.11), etc. Obviously, our models cannot capture the holiday structure. 13

When we compare the forecasting results for the same period but with US national holidays
excluded, our models perform much better. The results improve even more if we eliminate
some of the days directly preceding or following the holidays. In the ‘without holidays’ rows
of Table 3.4 and in Figure 3.12 we leave out the following US national holidays:� New Year’s Day (January 1, 2001 and 2002), Washington’s Birthday (February 19, 2001 and

February 18, 2002), Memorial Day (May 28, 2001 and May 27, 2002), Independence Day
(July 4, 2001 and 2002), Labor Day (September 3, 2001 and September 2, 2002), Thanks-
giving Day (November 22, 2001 and November 28, 2002) and Christmas Day (December
25, 2001 and 2002),14

and additionally omit the following neighboring days with abnormal load patterns:� January 2, May 29, July 5, September 4, December 24 and 31, 2001;� January 2, May 28, July 5, September 1 and 3, December 24, 26 and 31, 2002.

With these exclusions in 2001 Model A performs significantly better (but still worse than
the CAISO forecast), however, Model B outperforms both competitors. In fact, as reported by
Nowicka-Zagrajek and Weron (2002), the performance of Model B during the first two months
of year 2001 is extremely good (MAPE of only 1.23% compared to 1.71% for the CAISO
forecast).

It is also quite surprising that both our models produce relatively small errors during the
blackout days in San Francisco area (lags 17–19 in Figures 3.8–3.9), while the CAISO forecast
is at least twice worse around this time. In these figures we can also see the disadvantage of
the differencing technique utilized in Model A. It is very sensitive to the load observed in
the preceding days or weeks: the forecasting error of January 1 (lag 1) negatively influences

13 The holiday structure can be accounted for in the models by subtracting a certain amount of GW for these holidays, based on
previous years’ experience.

14 Birthday of M.L. King, Jr (Jan. 15, 2001 and Jan. 21, 2002), Columbus Day (Oct. 8, 2001 and Oct. 14, 2002) and Veterans
Day (Nov. 12, 2001 and Nov. 11, 2002) are not excluded from the computations since the load figures for these days do not deviate
substantially from normal load patterns.
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Figure 3.12 31-day rolling MAPE of the day-ahead Model A, Model B and CAISO forecasts for the
whole out-of-sample test period (2001–2002), excluding US national holidays and special days. Note the
improved performance of CAISO forecasts starting in the fourth quarter of 2001

the forecasts for January 8 (lag 8) and January 15 (lag 15), i.e. one week and two weeks
later.

In the year 2002 all three models perform better, both when holidays and special days are
accounted for and when they are excluded from error measurements. However, CAISO fore-
casts improve by roughly half a percent, while our models yield only slightly better predictions
(see Table 3.4). This gives the CAISO method superiority during the second year of the out-
of-sample test period. In fact, this improvement in accuracy can be observed earlier – in the
fourth quarter of 2001 (see Figure 3.12 where the 31-day rolling MAPE’s of the day-ahead
forecasts are plotted). Model B is significantly better in the 1st and 3rd quarter of 2001, while
in the remaining part of the test period CAISO model yields smaller errors. This initial poor
quality of CAISO forecasts may be due to the atypical and extreme situations (including black-
outs and the bankruptcy of the California Power Exchange) that took place in 2001 and could
not be accounted for in the model. After a period of destabilization, the forecasts improved
dramatically.

There may be yet another explanation of this phenomenon. Namely, CAISO forecast errors
were roughly the same for years 1998–2001, i.e. when CalPX was operational (see Table 3.5).
Only after the bankruptcy of the exchange and renewed regulation of the California power
market did CAISO forecasts gain accuracy. It seems that the improvement in performance
is due to a structural change in the character of the phenomenon. In support of this, mean
absolute percentage changes in actual load have substantially declined in 2002 compared to
the previous years (see the right column in Table 3.5). In other words, load volatility has
decreased. Obviously models calibrated only to load data from 1999 to 2001 will not perform
satisfactorily in 2002 as lower volatility gives more weight to exogenous variables (like weather
and system conditions) which are not taken into account in our models.
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Table 3.5 Annual MAPE of the day-ahead CAISO forecasts and mean absolute percentage changes
of the actual daily load for years 1998–2002

CAISO forecasts Actual load

1998a 2.02% 5.26%
1999 1.79% 5.22%
2000 1.96% 4.99%
2001 1.84% 4.91%
2002 1.37% 4.42%

aData available only since April 1, 1998.

3.4.8 Autoregressive Integrated Moving Average Model

The ARMA modeling approach assumes that the time series under study is (weakly) stationary.
If it is not, then a transformation of the series to the stationary form has to be done first. A
number of methods that can be used for this purpose were reviewed in Section 2.4. In particular,
this transformation can be performed by differencing.

In the 1970s Box and Jenkins (1976) introduced a general model that contains autoregressive
as well as moving average parts, and explicitly includes differencing in the formulation. Specif-
ically, the autoregressive integrated moving average (ARIMA) or Box–Jenkins model has three
types of parameters: the autoregressive parameters (φ1, . . . , φp), the number of differencing
passes at lag 1 (d) and the moving average parameters (θ1, . . . , θq ). In the notation introduced
by Box and Jenkins a series that needs to be differenced d times at lag 1 and afterwards has
orders p and q of the AR and MA components, respectively, is denoted by ARIMA(p, d, q)
and can be conveniently written as:

φ(B)∇d Lt = θ (B)εt , (3.19)

where ∇xt ≡ (1 − B)xt is the lag 1 differencing operator,15 B is the backward shift operator,
i.e. Bh xt ≡ xt−h , φ(B) is a shorthand notation for

φ(B) = 1 − φ1 B − . . . − φp B p,

and θ (B) is a shorthand notation for

θ (B) = 1 + θ1 B + . . . + θq Bq .

Note, that some authors and computer software (e.g. SAS) use a different definition of the
second polynomial: θ (B) = 1 − θ1 B − . . . − θq Bq . Note also, that ARIMA(p, 0, q) is simply
an ARMA(p, q) process.

Sometimes simple differencing at lag 1, even repeated many times, is not enough to make the
series stationary. In particular, seasonal signals of period greater than 1, like electricity loads,
require differencing at larger lags. The generalizations of ARIMA models to such processes
are known as seasonal ARIMA (SARIMA) models.

The general notation for the order of a seasonal ARIMA model with both seasonal and
non-seasonal factors is ARIMA(p, d, q)×(P, D, Q)s . The term (p, d, q) gives the order of
the non-seasonal part of the ARIMA model; the term (P, D, Q)s represents the seasonal part.
The value of s is the number of observations in the seasonal pattern: seven for daily series with

15 This is a special case of the more general lag-h differencing operator: ∇h xt ≡ (1 − Bh )xt ≡ xt − xt−h (see Section 2.4.1).
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weekly periodicity, 24 for hourly series with daily periodicity, etc. The SARIMA model can
be compactly written as:

φ(B)(Bs)∇d∇D
s Lt = θ (B)�(Bs)εt . (3.20)

For example, the notation ARIMA(2, 1, 0)×(0, 1, 1)7 describes a seasonal ARIMA model for
daily data with a 7-day pattern and the following mathematical form:

(1 − φ1 B − φ2 B2)(1 − B)(1 − B7)Lt = (1 + �1 B7)εt . (3.21)

Note, that every SARIMA model can be transformed into an ordinary, though, long ARMA
model in the variable L̃ t ≡ ∇d∇D

s Lt . As a consequence, estimation of ARIMA and SARIMA
model parameters is analogous to that for ARMA processes.

Like ARMA models, ARIMA processes have been widely applied to STLF. In some cases it
is difficult to distinguish between these two approaches as differencing is very often applied to
in the preprocessing stage. Moghram and Rahman (1989) calibrated seasonal ARIMA models
to hourly data and compared their forecasting performance to that of exponential smooth-
ing, multiple linear regression, transfer function, state space method with Kalman filter and
knowledge-based expert system. For a typical summer day the results were very good, only
slightly inferior to those of the best method – the transfer function model (TF; also known as
ARMAX, see Section 3.4.9). However, for a winter day with an atypical temperature profile the
relative accuracy fell, but not as much as for TF. In a related study Cho et al. (1995) compared
the performance of ARIMA, TF and regression load forecasting techniques for four customer
groups in Taiwan: residential, commercial, office and industrial. The proposed TF model,
which made use of temperature data, achieved better accuracy than the other two approaches.
Taylor et al. (2006) studied a doubly seasonal ARIMA(p, d, q) × (P1, D1, Q1)s1

× (P2,

D2, Q2)s2
model, where s1 (=24 or 48) identified the daily period and s2 (=168 or 336) the

weekly seasonality. The model was applied to hourly Brazilian data and half-hourly England
and Wales load figures. It performed better than a neural network but slightly worse than
double seasonal exponential smoothing. Soares and Medeiros (2005) compared SARIMA and
TLSAR models on hourly loads from Rio de Janeiro, Brazil. The latter model, consisting of
24 separate AR models for each hour of the day, yielded more accurate 24- to 168-hour-ahead
forecasts in a two-year out-of-sample period.

Amjady (2001) proposed a ‘modified ARIMA’ model for forecasting hourly and daily peak
loads in Iran. The ‘model’ is in fact a set of eight ARX models (see Section 3.4.9) with
two exogenous variables each: temperature and system operator’s load estimate. Additionally,
the coefficients are different for each of the eight models and depend on whether the day is
considered a hot or a cold day and whether it is a Thursday, Friday, Saturday or other weekday.16

Testing results indicated that the proposed ‘modified ARIMA’ model performed favorably for
1999 data compared to classical ARIMA, neural networks and system operator’s load estimates
themselves. Juberias et al. (1999) developed a real time load forecasting ARIMA model for
the Spanish market that included a meteorological factor as an explanatory variable. The daily
electrical load forecast was used as a simple, easily available and efficient approximation of
the meteorological influence on hourly electrical load.

16 Note that in Islamic countries Friday is a holiday, while Sunday is a regular working day.
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3.4.9 Time Series Models with Exogenous Variables

Autoregressive (integrated) moving-average models relate the signal under study to its own
past and do not explicitly use the information contained in other pertinent time series. In many
cases, however, a signal is not only related to its own past, but may also be influenced by
the present and past values of other time series. As discussed in Section 3.2, this is exactly
the case with electricity loads. In addition to seasonal variations, the load profile is gener-
ally governed by various exogenous factors, most notably the ambient weather conditions. To
accurately capture the relationship between load and weather variables, time series models
with eXogenous or input variables can be used. These models do not constitute a new class,
rather they can be viewed as generalizations of the existing ones. For example, generalized
counterparts of AR, ARMA, ARIMA and SARIMA are ARX, ARMAX, ARIMAX and SARI-
MAX, respectively. Models with input variables are also known as transfer function, dynamic
regression, Box–Tiao, intervention or interrupted time series models. Some authors distin-
guish among them, others use the names interchangeably causing a lot of confusion in the
literature.

The mechanism of including exogenous variables is analogous for all ARIMA-type mod-
els studied in Sections 3.4.4–3.4.8. Without loss of generality we will describe the ARMAX
model. In this model the current value of the time series Lt is expressed linearly in terms of its
past values, in terms of previous values of the noise and, additionally, in terms of present and
past values of the exogenous variable(s). The autoregressive moving average model with ex-
ogenous variables v1, . . . , vk , or ARMAX(p, q, r1, . . . , rk), can be compactly written as:

φ(B)Lt = θ (B)εt +
k∑

i=1

ψ i (B)vi
t , (3.22)

where the ri ’s are the orders of the exogenous factors and ψ i (B) is a shorthand notation
for ψ i (B) = ψ i

0 + ψ i
1 B + . . . + ψ i

ri
Bri with the ψ i

j ’s being the corresponding coefficients.
The remaining notation and parameters are the same as in the ARIMA specification (3.19).
Alternatively, the ARMAX model is often defined in a ‘transfer function’ form:

Lt = θ (B)

φ(B)
εt +

k∑
i=1

ψ̃ i (B)vi
t , (3.23)

where the ψ̃ i ’s are the appropriate coefficient polynomials.
ARX and ARMAX model estimation is analogous to that of AR and ARMA models dis-

cussed in Section 3.4.6. For the ARX model:

φ(B)Lt = εt +
k∑

i=1

ψ i (B)vi
t , (3.24)

typically either least squares or instrumental variables techniques are used. The former min-
imizes the sum of squares of the right-hand side minus the left-hand side of formula (3.24),
with respect to φ and ψ i . The latter determines φ and ψ i so that the error between the right-
and left-hand sides becomes uncorrelated with certain linear combinations of the inputs.

For calibration of ARMAX coefficients, maximum likelihood is usually preferred. Another
commonly used technique (implemented, e.g., in Matlab) is the prediction error method, where
the parameters of the model are chosen so that the difference between the model’s (predicted)
output and the measured output is minimized. For Gaussian disturbances it coincides with
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MLE. Like maximum likelihood, the prediction error method typically involves an iterative,
numerical search for the best fit.17

Other calibration techniques have also been proposed and used. Fan and McDonald (1994)
presented a practical real-time implementation of weather adaptive STLF. Implementation was
performed by means of an ARMAX model, whose parameters were estimated and updated
on-line, using the weighted recursive least squares algorithm. Yang et al. (1996) used an
evolutionary programming (EP) approach to identify the ARMAX model parameters for one-
day to one-week-ahead hourly load forecasts. By simulating natural evolutionary processes,
the EP offers the capability of converging towards the global extremum of a complex error
surface. However, the convergence may be very slow. Yang and Huang (1998) proposed a
fuzzy ARMAX model for one-day-ahead hourly load forecasts. The model is formulated
as a combinatorial optimization problem, then solved by a combination of heuristics and
evolutionary programming. Huang et al. (2005) proposed a new particle swarm optimization
(PSO) approach to identifying ARMAX models for one-day to one-week-ahead hourly load
forecasts. By simulating a simplified social system, like EP, the PSO algorithm offers the
capability of converging toward the global minimum point of a complex error surface. The
proposed PSO was tested on Taiwan load data and compared with EP and the prediction error
method. Testing results indicated that the proposed PSO had high-quality solution, superior
convergence characteristics, and shorter computation time.

3.4.10 Case Study: Modeling Daily Loads in California with Exogenous Variables

We have concluded Case Study 3.4.7 by saying that the analyzed models, calibrated only to
load data, cannot perform satisfactorily when there is a structural change in the character of
the phenomenon. However, the inclusion of exogenous variables, like weather and system
conditions, should increase the predicting power of the models. In this case study we test
whether adding a dominant weather factor will improve the forecasts. To this end we modify
Model B in such a way that the stochastic component is not modeled by an ARMA process but
rather by an ARMAX time series. The exogenous variable used is the difference between the
maximum air temperature of the target day and the preceding day. Recall that the maximum
daily air temperature has been shown to be the most influential weather factor for California
load data (see Case Study 3.2.4). The resulting model is called Model BT.

As in Case Study 3.4.7, we compute day-ahead predictions using an adaptive scheme.
For every day in the test period (January 1, 2001–December 31, 2002) we calibrate an AR-
MAX(1,3,1) process to the previous 730 values of the stochastic component and obtain load
forecasts for that day. The results are then ‘inverted’ (the trend-seasonal component St is added)
and compared with the actual system-wide loads and the CAISO official day-ahead forecasts.

The performance of Model BT is presented in Figure 3.13 and summarized in Table 3.6.
Again CAISO forecasts are better for both test sample years, but when holidays and special
days are excluded Model BT outperforms both competitors in 2001. It is also generally better
than Model B. Unfortunately it is still not good enough to beat CAISO forecasts in 2002.
A closer inspection of the results reveals that it generally fails in winter and early spring
(see Figure 3.13). This is not that surprising if we recall the ‘hockey stick’ structure of the
temperature–load relationship (depicted in Figure 3.4), with the loads being insensitive to
temperatures below 26◦C (and approximately linearly dependent above this threshold).

17 See, e.g., Ljung (1999) for details on the instrumental variables technique and the prediction error method.
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Figure 3.13 31-day rolling MAPE of the day-ahead Model BT, Model B and CAISO forecasts for the
whole out-of-sample test period (2001–2002) with excluded US national holidays and special days

The standard ARMAX architecture only allows for a linear dependence between load and
temperature. An alternative approach would be to utilize non-linear time series models (see
Section 4.3.9) or combinations of autoregressive processes with (non-linear) neural networks.
However, despite their generally better in-sample fit, non-linear models often do not exhibit a
significantly better forecasting performance. Consequently, their application to this problem
might not bring any improvement.

Perhaps we should pursue yet another path and include exogenous factors related to system
conditions. After the 2000/2001 crisis and renewed regulation of the California power market,
the load process has become more predictable and less random. Obviously, the technical issues
have gained importance; their inclusion would probably lead to more accurate forecasts. The
downside of this approach is that it would require access to proprietary information, which
generally is not available to all market participants.

Table 3.6 Annual Mean Absolute Percentage Errors (MAPE) of the day-ahead CAISO, Model BT
and Model B load forecasts for years 2001 and 2002, i.e. the whole out-of-sample test period. Best
results for each year are emphasized in bold

CAISO Model BT Model B

January–December 2001
With holidays 1.84% 1.97% 2.08%
Without holidays 1.83% 1.61% 1.71%

January–December 2002
With holidays 1.37% 1.80% 1.93%
Without holidays 1.32% 1.52% 1.66%



JWBK120-03 JWBK120-Weron October 4, 2006 17:52 Char Count= 0

100 Modeling and Forecasting Electricity Loads and Prices

3.5 SUMMARY

Load forecasting has become increasingly important since the rise of competitive electricity
markets. The costs of over- or under-contracting and then selling or buying power on the
real-time balancing market have increased so much that they can lead to huge financial losses.
Minimization of volumetric risk, especially in the short term, has never been of such importance
to energy companies as it is today.

The statistical methods reviewed in this chapter constitute a rich set of tools that can be
applied to STLF. They differ in complexity and forecasting performance, but they all serve the
same purpose. Unfortunately, there is no one single best model. Every load process has to be
tackled individually and the optimal approach can be selected only after a comparative study of
the models’ behavior. We are not blind, however. The statistical tools developed in Chapter 2
can be of much assistance in model preselection and initial identification of the parameters.
We don’t have a fully free choice either. Input data availability and quality can limit not only
the range of models considered but the forecasting performance as well.

3.6 FURTHER READING� For surveys of load forecasting techniques see Alfares and Nazeeruddin (2002), Bunn (2000),
Bunn and Farmer (1985), Dobrzańska (2002), Feinberg and Genethliou (2005), Liu et al.
(1996), Lotufo and Minussi (1999), Malko (1995), Metaxiotis et al. (2003) and Moghram
and Rahman (1989).� Neural networks are comprehensively covered in Bishop (1997) and Haykin (1999).
Shahidehpour et al. (2002) focus on their applicability to STLF.� Many published studies use neural networks in conjunction with other techniques, like re-
gression trees (Mori and Kosemura 2001), time series (Chow and Leung 1996), wavelets
(Reis and da Silva 2005, Zhang and Dong 2001), weather ensemble predictions (Taylor
and Buizza 2002), deterministic annealing (Mori and Yuihara 2001), similar-day meth-
ods (Mandal et al. 2006), expert systems (Chiu et al. 1997) or fuzzy expert systems
(Dash et al. 1996, Kim et al. 1995).� For a survey of fuzzy logic applications in power systems see Mielczarski (1998). Metaxiotis
et al. (2003) review STLF with artificial intelligence methods.� Härdle et al. (2005) provide a concise treatment of support vector machines and their appli-
cations. For additional examples of STLF with support vector machines see Fan and Chen
(2006) and Pai and Hong (2005).� Further accounts of electric load forecasting with multiple regression can be found in Engle
et al. (1992), Papalexopulos and Hesterberg (1990) and Ramanathan et al. (1997).� Time series analysis is comprehensively discussed in Box and Jenkins (1976), Brockwell
and Davis (1991), Hamilton (1994), Pandit and Wu (1983) and Rodriguez-Poo (2003). A
very good introductory text is Brockwell and Davis (1996). Ljung (1999) and Pankratz
(1991) concentrate on time series models with exogenous (input) variables. Franses and van
Dijk (2000) develop on non-linear time series models. Makridakis et al. (1998) focus on
forecasting and include a review of exponential smoothing.� Burnham and Anderson (2002) and Choi (1992) review information criteria and model
selection methods. See Burnham and Anderson (2004) for an intriguing discussion of the
similarities and differences between AIC (AICC) and BIC criteria.
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4
Modeling and Forecasting

Electricity Prices

4.1 INTRODUCTION

In the last decades, with deregulation and introduction of competition, a new challenge has
emerged for power market participants. Extreme price volatility, which can be even two orders
of magnitude higher than for other assets, has forced producers and wholesale consumers to
hedge not only against volume risk but also against price movements. Price forecasts have be-
come a fundamental input to an energy company’s decision making and strategy development.
This in turn has propelled research in electricity price modeling and forecasting.

The proposed solutions can be classified both in terms of the planning horizon’s duration and
in terms of the applied methodology. It is customary to talk about short-term (STPF), medium-
term (MTPF) and long-term price forecasting (LTPF), but as in the case of load forecasting,
there is no consensus as to what the thresholds should actually be. The main objective of
LTPF is investment profitability analysis and planning, such as determining the future sites
or fuel sources of power plants. Lead times are typically measured in years. Medium-term or
monthly time horizons are generally preferred for balance sheet calculations, risk management
and derivatives pricing. In many cases not the actual point forecasts but the distributions of
future prices over certain time periods are evaluated. As this type of modeling has a long-dated
tradition in finance, inflow of ‘finance solutions’ is readily observed.

However, not only monthly or annual time horizons are interesting for generators, utilities
and power marketers. When bidding for spot electricity in an auction-type market, players are
requested to express their bids in terms of prices and quantities. Buy (sell) orders are accepted
in order of increasing (decreasing) prices until total demand (supply) is met. A power plant that
is able to forecast spot prices can adjust its own production schedule accordingly and hence
maximize its profits. Since the day-ahead spot market typically consists of 24 hourly (or 48
half-hourly) auctions that take place simultaneously one day in advance, STPF with lead times
from a few hours to a few days is of prime importance in day-to-day market operations.

As far as the applied modeling and forecasting techniques are concerned, generally they can
be traced back to models that originate either in electrical engineering or in finance. For some
time power engineers have been familiar with both scheduling and dispatching units in the
system and load forecasting. With the restructuring of the electric power industry, it has been
very natural for the engineers to adapt these models to price forecasting under the new economic
conditions. Production cost models (see Section 4.2) were directly transferred or amended with
strategic bidding considerations, while load-forecasting techniques were additionally supplied
with past price data to yield price forecasts.

On the other hand, price modeling and forecasting has long been at the center of intense
studies in other commodity and financial markets. Depending on the objectives of the anal-
ysis, a number of methods for modeling price dynamics have been proposed, ranging from
parsimonious stochastic models to fundamental and game theoretic approaches. It was only a
question of time before these methods were put into use in the power markets.
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But how do we choose among this plenitude of techniques? Which are best suited for day-
to-day market operations? In the next section we will briefly review the pros and cons of the
these methods and select the most viable ones.

4.2 OVERVIEW OF MODELING APPROACHES

The various approaches that have been developed to analyze and predict the behavior of power
markets and the resulting electricity prices may be broadly divided into six classes:� Production cost (or cost-based) models, which simulate the operation of generating units

aiming to satisfy demand at minimum cost.� Equilibrium (or game theoretic) approaches, which build the price processes based on equi-
librium models for the electricity market.� Fundamental (or structural) methods, which describe price dynamics by modeling the impact
of important physical and economic factors on the price of electricity.� Quantitative (or stochastic, econometric, reduced form) models, which characterize the
statistical properties of electricity prices over time, with the ultimate objective of derivatives
evaluation and risk management.� Statistical (or technical analysis) approaches, which are either direct applications of the
statistical techniques of load forecasting or power market implementations of econometric
models.� Artificial intelligence-based (or non-parametric) techniques, which model price processes
via neural networks, fuzzy logic, etc.

Production Cost Models

Forecasting wholesale electricity prices used to be a straightforward, though laborious, task.
It generally concerned medium- and long-term time horizons and involved matching demand
estimates to supply, obtained by stacking up existing and planned generation units in order of
their operating costs. These cost-based or production cost models (PCM) have the capability to
forecast prices on an hour-by-hour, bus-by-bus level. However, they ignore the strategic bidding
practices, including execution of market power. They were appropriate for the regulated markets
with little price uncertainty, stable structure and no gaming, but not for the newly established
competitive markets.

To cope with these limitations, the strategic production cost model (SPCM) has been pro-
posed recently by Batlle and Barquı́n (2005). It takes into account agents’ bidding strategies
based on conjectural variation. Each agent tries to maximize its profits, taking into account
its cost structures and the expected behavior of its competitors, modeled through a strategic
parameter, which represents the slope of the residual demand function for each production
level of the generator. Compared with the equilibrium models (see below), the main advan-
tage of the SPCM is its computational speed, which makes it suitable for real-time analysis.
Nevertheless, it shares other drawbacks of these models and, hence, will not undergo further
analysis in this chapter.

Equilibrium Models

Like SPCM, equilibrium or game theoretic approaches may be viewed as generalizations of
cost-based models amended with strategic bidding considerations. These models are especially
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useful in predicting expected price levels in markets with no price history, but known supply
costs and market concentration.

In general, two types of approaches have been used to model strategic behavior.1 The first
utilizes the Cournot–Nash framework in which electricity is treated as a homogeneous good
and market equilibrium is being determined through the capacity-setting decisions of the
suppliers. These models, however, tend to provide higher prices than those observed in reality.
Researchers have addressed this problem by introducing the concept of conjectural variations,
which aims to represent the fact that rivals do react to high prices by producing more.

The second game theoretic approach models the price as the equilibrium of companies
bidding with supply (and possibly demand) curves into the wholesale market. Calculating the
supply function equilibrium requires solving a set of differential equations, instead of the typical
set of algebraic equations that arises in the Cournot–Nash framework. These models have
thus considerable limitations concerning their numerical tractability. Furthermore, as Bolle
(2001) emphasized, supply curve bidding will only lead to results different from Cournot–
Nash equilibria, if demand uncertainty (or another source of uncertainty) leads to an ex-
ante undetermined equilibrium. Otherwise, the supply bidding collapses to one point, which
corresponds to the Cournot–Nash equilibrium.

Besides the concerns raised above, equilibrium models have other drawbacks. Most of them
are focused on qualitative issues rather than quantitative results. They may give good insight
into whether prices will be above marginal costs and how this might influence the players’
outcomes, but they pose problems if more quantitative conclusions have to be drawn. Since
the equilibrium calculations are performed through a complex optimization procedure they are
time consuming and not suitable for real-time implementations. To speed up computations,
the demand is often aggregated into blocks. This in turn leaves out the extreme values from the
analysis – something we are not prepared to accept when focusing on STPF or risk management.

Furthermore, a number of components have to be defined: the players, their potential strate-
gies, the ways they interact and the set of payoffs. Obviously, a substantial modeling risk is
present. While in classical power pools the sellers are generators and their characteristics are
directly identifiable through their assets, in power exchanges every type of market participant
can be a seller. For instance, a distribution company that has over-contracted on the bilateral
market can be a seller on the power exchange’s spot market. On the other hand, since power
exchanges are voluntary markets, a generator may not participate in a power exchange, while
another producer can find it more economic to buy electricity on the spot market rather than
use its own units. Consequently, the problem of identifying the relevant market players and
their strategies becomes highly non-trivial. For these reasons equilibrium models are not well
suited for day-to-day market operations and we will not analyze them further in this chapter.

Fundamental Models

The next class of models, known as fundamental or structural, tries to capture the basic physical
and economic relationships present in the production and trading of electricity. The functional
associations between fundamental drivers (loads, weather conditions, system parameters, etc.)
are postulated and the fundamental inputs are independently modeled and predicted, often via
statistical, econometric or non-parametric techniques.

Many fundamental models have been developed as proprietary in-house products and,
therefore, their details have not been disclosed. Most of the published results concern

1 For a recent review see Ventosa et al. (2005).
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hydro-dominant power markets. Johnsen (2001) presented a supply–demand model for the
Norwegian power market from a time before the common Nordic market had started. He
used hydro inflow, snow and temperature conditions to explain spot price formation. Based on
stochastic climate factors (temperature and precipitation), Vahviläinen and Pyykkönen (2005)
modeled hydrological inflow and snow-pack development that affect hydro power generation,
the major source of electricity in Scandinavia. Their model was able to capture the observed
fundamentally motivated market price movements.

For the practical implementation of fundamental models, two major challenges arise. The
first one is data availability. Depending on the market and the position of the player, more or
less information on plant capacities and costs, demand patterns and transmission capacities
may be available to construct such a model. Because of the nature of fundamental data (which
is typically collected over longer time intervals), pure fundamental models are better suited
for medium-term rather than short-term predictions. The second challenge is the incorporation
of stochastic fluctuations of the fundamental drivers. In building the model we make specific
assumptions about physical and economic relationships in the marketplace. The price projec-
tions generated by the models are therefore very sensitive to violations of these assumptions.
Moreover, the more detailed the model is, the more effort is needed to adjust the parameters and
the greater simplifications have to be made. Consequently, there exists a significant modeling
risk in the application of the fundamental approach.

For the above reasons we will not study fundamental models in this chapter. Many of the
STPF approaches considered in the literature are, however, hybrid solutions. In particular,
time series, regression and non-parametric models often incorporate one or two fundamental
factors, like loads or fuel prices. We will come back to this issue in Sections 4.3.5 and 4.4.4.

Quantitative Models

A common feature of the finance-inspired quantitative (or stochastic or econometric or reduced
form) models of price dynamics is their main intention to replicate the statistical properties
of electricity prices with the ultimate objective of derivatives evaluation. With these models
standard financial reasoning has been brought into electricity price modeling. In particular, the
notion of the risk premium and the distinction between the spot price forecast and the forward
price has become recognized.

The risk premium is the reward for holding a risky investment rather than a ‘risk free’ one.
In other words, it is the minimum difference between the expected value of an investment
that a player is willing to make and the certain or ‘risk free’ value that he/she is indifferent to.
For instance, the difference between the expected (predicted) spot price for delivery of electric-
ity in May next year and the price of a forward or futures contract for delivery of spot electricity
in that period. While the spot price forecast is the best estimate of the going rate of electricity
at some specific time in the future, the forward price is the actual price a trader is prepared
to pay today for delivery of electricity in the future, i.e. it is the spot price forecast minus the
risk premium.2 However, due to the breakdown of the classical spot-forward relationship, the

2 Risk premia can be negative. In fact, in a simplistic analysis that does not account for fundamentals, Botterud et al. (2002) reported
a negative risk premium for the Scandinavian futures markets. This peculiarity was attributed to the difference in flexibility between
demand and generation side, which created a higher incentive to the former to hedge their positions. In a related study, Longstaff and
Wang (2004) found significant risk premia in PJM electricity forward prices, which vary systematically throughout the day and can
be both positive and negative. Note, however, that they present the results in terms of the forward premium defined as the difference
between the forward price and the expected spot price, i.e. the negative of the risk premium.
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link between electricity spot and forward prices is more complicated than in most financial
and commodity markets and calls for extra care during modeling.

Quantitative models are not required to accurately forecast hourly prices but to recover
the main characteristics of electricity prices, typically at the daily time scale. The tools and
approaches used are generally adapted from methods developed for modeling interest rates
or other commodities. Based on the type of market in focus, the stochastic techniques can be
divided into two main classes: spot and forward price models.

The former provide a proper representation of the dynamics of spot prices which, in the
wake of deregulation of power markets, becomes a necessary tool for trading purposes. Their
main drawback is the difficulty encountered when pricing derivatives, i.e. the identification
of the risk premium linking spot and forward prices (or those of other derivatives). On the
other hand, forward price models allow for pricing of derivatives in a straightforward manner.3

However, they too have their limitations; most importantly, the lack of data that can be used for
calibration and the inability to derive the properties of spot prices from the analysis of forward
curves. We will return to these issues in Section 4.4, where the quantitative models will be
reviewed.

Statistical Models

Although in the context of derivatives valuation the models’ simplicity and analytical tractabil-
ity are an advantage, in forecasting spot electricity prices the former feature is a serious limi-
tation, while the latter is an excessive luxury. Consequently, techniques derived directly from
the statistical techniques of load forecasting (discussed in Section 3.4) are generally preferred.

In fact, all statistical techniques of load forecasting are potential candidates for models of
electricity spot price dynamics. To some extent all of them have been utilized in the literature
and in everyday practice. In Section 4.3 we will review both the ‘load forecasting inspired’
statistical models and the viable econometric techniques. In particular, we will elaborate on
time series models and their extensions with time-varying variance that nowadays are the
backbone for many financial time series models.4 We will also introduce non-linear time series
models (i.e. regime-switching models), which by construction allow for spikes in the electricity
price process.

Some authors classify statistical models as technical analysis tools. In a way they do resemble
these very popular among financial market practitioners techniques. Technical analysis is a
method of evaluating securities or commodities by analyzing statistics generated by market
activity, past prices and volume. Technical analysts do not attempt to measure an asset’s
intrinsic or fundamental value; instead they look at price charts for patterns and indicators that
will determine an asset’s future performance. While the efficiency and usefulness of technical
analysis in financial markets is often questioned, in power markets these methods do stand a
better chance. The reason for this is the seasonality prevailing in electricity price processes
during normal, non-spiky periods. It makes the electricity prices more predictable than those
of ‘very randomly’ fluctuating financial assets.

3 But only those written on the forward price of electricity.
4 The importance of these heteroskedastic models in today’s financial analysis has been recognized not only by practitioners

but also by the Nobel Prize committee. In 2003 Robert Engle was awarded the Nobel Prize in Economics for developing ‘methods
of analyzing economic time series with time-varying volatility’. The second half of the prize went to Clive Granger for developing
‘methods of analyzing economic time series with common trends’ (i.e. cointegration). Interestingly, both laureates have published over
a dozen papers on modeling and forecasting electricity loads and sales.
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Artificial Intelligence-Based Models

Artificial intelligence-based models tend to be flexible and can handle complexity and non-
linearity. This makes them promising for short-term predictions and a number of authors
have reported their excellent performance in STPF. Like in load forecasting, artificial neural
networks (ANN) have probably received the most attention.5 Other non-parametric techniques
have been also applied, however, typically in hybrid constructions.

Some authors addressed the shortcomings of standard artificial intelligence-based models.
Gareta et al. (2006) and Guo and Luh (2004) used a ‘committee machine’ composed of multiple
networks to alleviate the problem of the input–output data misrepresentation by a single neural
network. González et al. (2005) proposed an Input–Output Hidden Markov Model (IOHMM),
which is a regime-switching (see Section 4.3.9) generalization of a neural network. In this
model a conditional probability transition matrix governs the probabilities of remaining in the
same state, or switching to another.

Generally in the literature artificial intelligence-based models for STPF are compared only
among themselves or to very simple statistical methods. For instance, Lora et al. (2002b)
compared a recurrent multilayer perceptron and a k Nearest Neighbor (kNN) method with the
weights estimated by a Genetic Algorithm (GA) and concluded that the latter method performed
much better on the tested Spanish power market dataset. However, a much more interesting
question is whether they are better or worse than, say, the statistical techniques. The results
of two recent studies shed some light on this intriguing issue. Conejo et al. (2005a) compared
different methods of STPF: three time series specifications (transfer function, dynamic regres-
sion and ARIMA), a wavelet multivariate regression technique and a multilayer perceptron
with one hidden layer. Interestingly, for a dataset comprising PJM prices from year 2002, the
ANN technique was the worst out of the five tested models! On the other hand, Amjady (2006)
showed that while a multilayer perception performed worse for Spanish market data than a
selection of statistical techniques (including transfer function and dynamic regression), a fuzzy
neural network with an inter-layer and feed-forward architecture performed comparably to its
statistical competitors, even though it did not use load data. Perhaps, sophisticated, fine-tuned
representatives of both groups can compete on equal terms. They just need to be compared in
a comprehensive and thorough study. This challenge, though, is left for future research. In this
chapter we will concentrate on statistical and quantitative models only.

4.3 STATISTICAL METHODS AND PRICE FORECASTING

Before we actually start reviewing the statistical techniques we would like to mention three im-
portant issues related to price forecasting. Namely, the impact of fundamental variables on elec-
tricity prices (and the importance of including exogenous factors in forecasting models), the in-
fluence of past price spikes on the calibration process and the measures of forecasting accuracy.

4.3.1 Exogenous Factors

Like in the case of load forecasting, the accuracy of price forecasting depends not only on
the numerical efficiency of the employed algorithms, but also on the quality of the analyzed

5 For reviews of STPF with neural networks, see Shahidehpour et al. (2002) and Szkuta et al. (1999).
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data and the ability to incorporate important exogenous factors into the models. Especially for
STPF, several variables should be considered. These include:� Historical and forecasted loads. As a result of the supply stack structure, load fluctuations

translate into variations in electricity prices (see Section 2.2.2). However, as discussed in
Section 3.2.5, an inverse relationship has been also observed. In some cases the issue of
whether load drives power prices, or vice versa, is not easily answered. Clearly, as they
become partially co-determined, load and price forecasting could be treated as one common,
complex forecasting task.� Time factors. The time of the year, the day of the week and the hour of the day influence price
patterns. Also prices for holidays and adjacent days deviate from the typical behavior. The
relations are not as pronounced as for loads; compare the ACF plots for California loads and
prices in Figures 2.17 and 2.13, respectively. Nevertheless, good price-forecasting models
should take the time factors into account.� Fuel prices. In the short-term horizon, the variable cost of power generation is essentially
just the cost of the fuel. Even though the spread between the market prices for fuel and
power, the so-called tolling margin, is larger than would be implied by the fuel prices alone,
the fuel price is an influential exogenous factor.

Other factors like power plant availability, grid traffic (for zonal and modal pricing) or weather
data (although these are generally included already in load forecasts) could also be considered.
We have to remember, though, that no matter how good our forecasting model is, if the inputs
to the model are poor, it will be difficult or impossible to come up with good predictions.
The price data is often irregular and sometimes contains missing values or outliers. What may
initially seem as an abnormal deviation may in fact be the true price corresponding to very
peculiar market conditions. In this respect preprocessing price data is much more difficult than
cleaning load data. Human experts have to supervise the process very carefully.

4.3.2 Spike Preprocessing

A related problem is the handling of observed but anomalous prices (generally, the spikes).
Even if a price spike is validated, leaving it in the data will cause the future forecasts to reflect
this anomalous condition. Possible solutions involve excluding or limiting price spikes. In
the first case we treat the abnormal prices as outliers and substitute them with the average
of the neighboring observations or with ‘similar-day’ prices (see Case Study 3.2.1 where this
technique was applied to outliers in load data). However, price spikes are inherent in electricity
prices, so we do not want to delete them completely from the training process. Instead of
excluding them, we can limit their severity or damp all observations above a certain threshold.
All kinds of smoothing techniques, including wavelet filtering (see Case Study 2.4.8), could
also be utilized. We will look more closely at spike preprocessing and its effectiveness in Case
Study 4.3.8.

4.3.3 How to Assess the Quality of Price Forecasts

The most widely used measures of forecasting accuracy are those based on absolute errors,
i.e. absolute values of differences between the actual, Ph , and predicted, P̂h , prices for a given
hour, h. The sum of absolute errors defined in Equation (3.7) is a typical example. Another
popular measure is the Mean Absolute Error (MAE); for hourly prices Ph the daily MAE is
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given by:

MAEdaily = 1

24

24∑
h=1

∣∣Ph − P̂h

∣∣. (4.1)

Sometimes not the absolute, but the relative or percentage difference is more informative. For
instance, when comparing results for two distinct data sets. In such cases the Mean Absolute
Percentage Error (MAPE) is preferred. For hourly prices Ph the daily MAPE takes the form:

MAPEdaily = 1

24

24∑
h=1

∣∣Ph − P̂h

∣∣
Ph

. (4.2)

The MAPE measure works well in load forecasting, since actual load values are rather large,
see Case Study 3.4.7 and formula (3.17). However, when applied to electricity prices, MAPE
values could be misleading. In particular, when electricity prices drop to zero, MAPE values
become very large regardless of the actual absolute differences |Ph − P̂h |. The reason for this
is the normalization by the current (close to zero, and hence very small) price Ph .

Alternative normalizations have been proposed in the literature.6 For instance, the absolute
error |Ph − P̂h | can be normalized by the average price attained during the day. The resulting
measure, also known as the Mean Daily Error (MDE), is given by:

MDE = 1

24

24∑
h=1

∣∣Ph − P̂h

∣∣
P̄24

= 1

P̄24

MAEdaily, (4.3)

where P̄24 = 1
24

∑24
h=1 Ph . In general, MDE compared to MAPE puts more weight to errors in

the high-price range. Analogously to MDE, the Mean Weekly Error (MWE) can be computed
as:

MWE = 1

168

168∑
h=1

∣∣Ph − P̂h

∣∣
P̄168

= 1

P̄168

MAEweekly, (4.4)

where P̄168 is the mean price for a given week.
Instead of the mean, the median price could be used for normalization. As the median is

more robust to outliers (or spikes), the resulting measures – Median Daily Error (MeDE) and
Median Weekly Error (MeWE) – exhibit yet better performance across a wide range of prices.
They are defined as:

MeDE = 1

24

24∑
h=1

∣∣Ph − P̂h

∣∣
P̃24

= 1

P̃24

MAEdaily, (4.5)

MeWE = 1

168

168∑
h=1

∣∣Ph − P̂h

∣∣
P̃168

= 1

P̃168

MAEweekly, (4.6)

where P̃24 and P̃168 are the median prices observed during the day and the week, respectively.
Apart from l1-type norms, square or l2-type norms are also often used, even exclusively.

Perhaps the most popular are the Daily Root Mean Square Error (DRMSE) and the Weekly
Root Mean Square Error (WRMSE), calculated as the square root of the average of 24 and

6 See, e.g., Misiorek et al. (2006), Nogales and Conejo (2005) and Shahidehpour et al. (2002).



JWBK120-04 JWBK120-Weron October 6, 2006 17:23 Char Count= 0

Modeling and Forecasting Electricity Prices 109

168, respectively, square differences between the predicted and the actual prices:

DRMSE =
√

1

24

∑24

h=1

(
Ph − P̂h

)2
, (4.7)

WRMSE =
√

1

168

∑168

h=1

(
Ph − P̂h

)2
. (4.8)

As in the absolute error-based measures, the square differences (Ph − P̂h)2 in the above two
formulas can be normalized by (the square of) the current actual price, the mean daily (weekly)
price or the median daily (weekly) price.

Finally, we have to note that there is no ‘industry standard’ and the error benchmarks used in
the literature vary a lot. What is worse, they cause a lot of confusion as the names are not used
consistently either. As a result, the forecasts are not comparable from paper to paper even if the
same data sets are used. For instance, Nogales et al. (2002), Contreras et al. (2003) and Garcia
et al. (2005a) defined the ‘Mean Weekly Error’ as the weekly MAPE (literally as the average of
the seven daily ‘average prediction errors’, i.e. daily MAPE values) while Conejo et al. (2005a)
used formula (4.4). Likewise, in the latter two papers the WRMSE, denoted by

√
F M SE , was

computed using formula (4.8), while in the former two articles the normalization by
√

1/168
was missing.

4.3.4 ARMA-type Models

As we have seen in Chapter 3, the standard engineering model that takes into account the
random nature and time correlations of the phenomenon under study is the AutoRegressive
Moving Average (ARMA) model. In the ARMA(p, q) model the current value of the price
Pt is expressed linearly in terms of its p past values (autoregressive part) and in terms of q
previous values of the noise (moving average part):

φ(B)Pt = θ (B)εt . (4.9)

As in Equation (3.19), B is the backward shift operator, i.e. Bh Pt ≡ Pt−h , φ(B) is a shorthand
notation for φ(B) = 1 − φ1 B − · · · − φp B p and θ (B) is a shorthand notation7 for θ (B) =
1 + θ1 B + · · · + θq Bq .

Furthermore, φ1, . . . , φp and θ1, . . . , θq are the coefficients of autoregressive and moving
average polynomials, respectively, and εt is white noise. For q = 0 we obtain the well-known
autoregressive AR(p) model. Consult also Sections 3.4.5 and 3.4.8.

The ARMA modeling approach assumes that the time series under study is (weakly) sta-
tionary. If it is not, then a transformation of the series to the stationary form has to be done
first. As discussed in Section 3.4.8, this transformation can be performed by differencing. The
resulting ARIMA model contains autoregressive as well as moving average parts, and explic-
itly includes differencing in the formulation. If differencing is performed at a larger lag than 1
then the obtained model is known as seasonal ARIMA or SARIMA.

Cuaresma et al. (2004) applied variants of AR(1) and general ARMA processes (including
ARMA with jumps) to STPF in the German market. They concluded that specifications where
each hour of the day was modeled separately present uniformly better forecasting properties

7 Note, that some authors and computer software (e.g. SAS) use a different definition of the second polynomial: θ (B) =
1 − θ1 B − · · · − θq Bq .
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than specifications for the whole time series, and that the inclusion of simple probabilistic
processes for the arrival of extreme price events (jumps) could lead to improvements in the
forecasting abilities of univariate models for electricity spot prices.

In a related study, Weron and Misiorek (2005) used various autoregression schemes for
modeling and forecasting prices in California. They observed that an AR model, where each
hour of the day was modeled separately, performed better than a single for all hours, but large
(S)ARIMA specification proposed by Contreras et al. (2003). The reduction in MWE reached
even 30% for a normal, non-spiky out-of-sample test period (first week of April 2000).

Conejo et al. (2005a) compared different methods of STPF: three time series specifications
(including ARIMA), a wavelet multivariate regression technique and a multilayer perceptron
ANN with one hidden layer. For a dataset comprising PJM prices from year 2002, the ARIMA
model was worse than the time series models with exogenous variables (see Section 4.3.5) but
better than the ANN.

Carnero et al. (2003) considered general seasonal periodic regression models with ARIMA
and ARFIMA8 disturbances for the analysis of daily spot prices of electricity. They concluded
that for the Nord Pool market (but not for other European markets) a long memory model with
periodic coefficients was required to model daily spot prices effectively. However, the models’
forecasting performance was not evaluated.

Haldrup and Nielsen (2006) also studied the Nordic market. Based on results from the
Phillips–Perron and KPSS tests they concluded that there seemed to be a strong support for
long memory and fractional integration in Nord Pool area prices from the period 2000–2003.
One possible explanation of this is the fact that a significant amount of electricity supply in
Nord Pool is from hydropower plants and it is a classical empirical finding that river flows
and water reservoir levels exhibit long memory, see Hurst (1951). Consequently, Haldrup and
Nielsen calibrated seasonal ARFIMA models to Nord Pool area prices and used them for STPF.

Conejo et al. (2005b) proposed a wavelet-ARIMA technique. It consists of a level three
decomposition of the price series using a discrete wavelet transform (see Section 2.4.7), mod-
eling the resulting detail and approximation series with ARIMA processes to obtain 24 hourly
predicted values and applying the inverse wavelet transform to yield the forecasted prices for
the next 24 hours. The performance of the wavelet-ARIMA technique is generally better than
that of a standard ARIMA process. In all four weekly test samples (Spanish market, year 2002)
the MWEs were reduced; for the winter week the error dropped even by 25%.

Kim et al. (2002) also utilized wavelet decomposition, but coupled it with multiple regres-
sion. Namely, the regression coefficients were calculated using the detail series and forecasted
demand. The day-ahead price forecast was then given by the previous day’s low-frequency
and the predicted high-frequency components. A similar forecasting technique was applied
by Conejo et al. (2005a) to hourly PJM data. Yet another example of wavelet preprocessing
is the paper by Stevenson (2001), who calibrated AR and Threshold AR (TAR) processes to
wavelet-filtered data from the New South Wales (Australia) market.

Further examples of ARIMA-type modeling include Lora et al. (2002a), who compared a k
Nearest Neighbor (kNN) method with ‘dynamic regression’ (in fact, a seasonal AR process),
and Zhou et al. (2004), who proposed an iterative scheme in which the residuals of an ARIMA
model (actually a seasonal ARIMA, i.e. SARIMA, model) estimated at each stage were further
fitted with an ARIMA process in the next stage, until a prespecified convergence criterion was

8 AutoRegressive Fractionally Integrated Moving Average (ARFIMA; also known as Fractional ARIMA or FARIMA) processes
are generalizations of ARIMA models which admit the degree of differencing to take fractional values. ARFIMA series exhibit very
slowly (hyperbolic) decaying autocorrelations and thus have the potential to model long memory. See also Section 2.5.
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satisfied. The latter algorithm was further developed by Zhou et al. (2006) to include a step
checking whether the range of (Gaussian or uniform) confidence intervals reached the desired
accuracy.

4.3.5 Time Series Models with Exogenous Variables

ARIMA-type models relate the signal under study to its own past and do not explicitly use
the information contained in other pertinent time series. As we have discussed in Section
4.3.1, electricity prices are not only related to their own past, but may also be influenced by
the present and past values of various exogenous factors, most notably the load profiles and
ambient weather conditions. To accurately capture the relationship between prices and loads
or weather variables, time series models with exogenous or input variables can be used. These
hybrid models do not constitute a new class, rather they can be viewed as generalizations of
the existing ones.

The autoregressive moving average model with exogenous variables v1, . . . , vk , or
ARMAX(p, q, r1, . . . , rk), can be compactly written as:

φ(B)Pt = θ (B)εt +
k∑

i=1

ψ i (B)vi
t , (4.10)

where the ri ’s are the orders of the exogenous factors (e.g. system load, temperature, power
plant availability) and ψ i (B) is a shorthand notation for ψ i (B) = ψ i

0 + ψ i
1 B + · · · + ψ i

ri
Bri

with the ψ i
j ’s being the corresponding coefficients. Alternatively, the ARMAX model is often

defined in a ‘transfer function’ form:

Pt = θ (B)

φ(B)
εt +

k∑
i=1

ψ̃ i (B)vi
t , (4.11)

where the ψ̃ i ’s are the appropriate coefficient polynomials. Additionally, the differencing trans-
formation can be imposed to leading to ARIMAX and seasonal ARIMAX models. Models
with input variables are also known as transfer function, dynamic regression, Box–Tiao, inter-
vention or interrupted time series models. Some authors distinguish among them, others use
the names interchangeably causing a lot of confusion in the literature.

Time series models with exogenous variables have been extensively applied to STPF.
Nogales et al. (2002) utilized ARMAX and ARX models (which they called ‘transfer function’
and ‘dynamic regression’, respectively) for predicting hourly prices in California and Spain.
Both models performed comparably, with the weekly MAPE (note that Nogales et al. called
it the ‘Mean Weekly Error’, see Section 4.3.3) just below 3% for the first week of April 2000
in California and around 5% for the third weeks of August and November 2000 in Spain. The
results were significantly better than for the ARIMA and ARIMA-E (ARIMA with load as an
explanatory variable) models proposed by Contreras et al. (2003). It is somewhat surprising
that the ‘transfer function’ and ‘dynamic regression’ models – which also utilized one com-
mon multi-parameter specification for all hours – outperformed by over 40% the ARIMA-E
model. After all, ‘transfer function’ and ARIMA-E are more or less equivalent in terms of
variables used. Possibly this is related to the way the load data is included in both methods.
In ARIMA-E it is just an explanatory variable, but in the ‘transfer function’ specification it
is bundled with the autoregressive part of the model. What is even more surprising, ARIMA
performed comparably to ARIMA-E, even though the latter additionally used an important
exogenous variable.
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Nogales and Conejo (2005) repeated the analysis for 2003 PJM market data. Again the
‘transfer function’ model performed superior to a standard ARIMA process, however, this
time only an 18% reduction in MAPE value for the whole test period (July–August 2003)
was observed. In another recent study Conejo et al. (2005a) compared different methods of
STPF: three time series specifications (‘transfer function’, ‘dynamic regression’ and ARIMA),
a wavelet multivariate regression technique and a multilayer perceptron ANN with one hidden
layer. For a dataset comprising PJM prices from year 2002, the time series models with
exogenous variables yielded the best performance; for the last week of July 2002 better by
over 75% (!) than the ARIMA predictions.

Weron and Misiorek (2005) and Misiorek et al. (2006) took a different line of approach.
They used a set of 24 relatively small ARX models, one for each hour of the day, with the
CAISO day-ahead load forecast as the exogenous variable and three dummies for recovering
the weekly seasonality; see Case Study 4.3.7 where this approach is reviewed. They concluded
that these models performed much better than a single for all hours, but large (S)ARIMA
specification proposed by Contreras et al. (2003) and slightly worse than the ‘transfer function’
and ‘dynamic regression’ models of Nogales et al. (2002). However, only the results for the
first week of April 2000 in the California power market could be compared as this was the only
common test sample used in all four papers. Consequently, the question whether the common
for all hours, multi-parameter specification is also superior for other periods (and other data
sets) remains open. The results of Case Study 4.3.8 may shed some light on this issue. The
‘transfer function’ and ‘dynamic regression’ models were calibrated to spike preprocessed data
(the procedure was not disclosed, though) while the ARX models to raw data. When spike
preprocessing is used also in the latter approach the results improve (and are now comparable
with the large models), however, only for the first weeks of the test period. Later, when the
prices become more volatile, spike preprocessing turns out to be suboptimal. This may imply
that the spike preprocessed ‘transfer function’ and ‘dynamic regression’ models are particularly
good for the calm, first week of April 2000, but not in general.

Guirguis and Felder (2004) calibrated four simple statistical models to day-ahead wholesale
electricity prices for 2 p.m. in New York City and for Central New York State from the
period 2001–2002. Since fuel costs are the major component of a fossil fuel unit’s variable
costs they tested the dependence between electricity prices and six oil and natural gas indices.
However, none of the oil prices, and only one natural gas price (Transcontinental Gas Pipe Line
Corporation daily prices), was found to be statistically significant. The ‘dynamic regression’
(an ARX process of order 1 with yesterday’s natural gas price as the explanatory variable) and
‘transfer function’ (in fact, according to the description on page 161 in Guirguis and Felder
(2004), again the same ARX process; the slightly different results of these two ARX models
were probably due to different calibration algorithms used) models performed superior to the
exponential smoothing method (see Section 3.4.2). However, significantly better predictions
were obtained when the noise εt was modeled by a GARCH(1, 1) process (see Section 4.3.6).

Knittel and Roberts (2005) considered various econometric models for modeling and STPF
in the California market, including mean-reverting diffusions and jump diffusions, a seasonal
ARMA process (called ‘ARMAX’), an AR-EGARCH specification9 and a seasonal ARMA
model with temperature, squared temperature and cubed temperature as explanatory variables.

9 The Exponential GARCH (EGARCH) process was postulated by Nelson (1991) to model asymmetry in heteroskedasticity (for
a review of heteroskedastic models see Section 4.3.6). In particular, the so-called leverage effect, which states that negative shocks
to asset prices amplify the conditional variance of the process more so than positive shocks. Knittel and Roberts (2005) found the
asymmetry parameter to be positive and significant, suggesting the presence of an ‘inverse leverage effect’. Thus, positive shocks to
electricity prices amplify the conditional variance of the process more so than negative shocks.
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They found all temperature variables to be highly statistically significant during the pre-crisis
period (April 1, 1998 to April 30, 2000). The WRMSE was also the lowest of all models
examined, though the difference from the seasonal ARMA process was small. Not surpris-
ingly,10 they also reported that during the crisis period (May 1, 2000 to August 31, 2000), the
price–temperature association broke down.

Further modeling examples with exogenous variables include Schmutz and Elkuch (2004),
who utilized multiple regression with gas price, nuclear available capacity, temperature and rain
as regressors and a mean-reverting stochastic process for the residuals, Koreneff et al. (1998),
who combined regression on temperature with a similar-day method, Swider and Weber (2006),
who used EEX spot electricity prices as exogenous inputs for modeling the price evolution
in the RWE reserve market in Germany, and Tipping et al. (2004), who replaced the annual
seasonal component (monthly dummies) of the AR-‘jump-GARCH’ model of Escribano et al.
(2002) with a function of the level of the Waitaki hydro-storage system (New Zealand) and
found the resulting model to yield a significantly better fit to daily average spot prices from
the New Zealand market.

4.3.6 Autoregressive GARCH Models

The linear ARMA-type models assume homoskedasticity, i.e. a constant variance and covari-
ance function. From an empirical point of view, financial time series – and electricity spot
prices in particular – present various forms of non-linear dynamics, the crucial one being the
strong dependence of the variability of the series on its own past. Some non-linearities of these
series are a non-constant conditional variance and, generally, they are characterized by the
clustering of large shocks or heteroskedastity.

The AutoRegressive Conditional Heteroskedastic (ARCH) model of Engle (1982) was the
first formal model which successfully addressed the problem of heteroskedastity.11 In this
model the conditional variance of the time series is represented by an autoregressive process,
namely a weighted sum of squared preceding observations:

ht = εtσt , with σ 2
t = α0 +

q∑
i=1

αi h
2
t−i , (4.12)

where εt is white noise (typically it is assumed that εt ∼ N (0, 1)). In practical applications it
turns out that the order q of the calibrated model is rather large. Somewhat surprisingly, if we
let the conditional variance depend not only on the past values of the time series but also on
a moving average of past conditional variances the resulting model allows for a more parsi-
monious representation of the data. This model, the Generalized AutoRegressive Conditional
Heteroskedastic GARCH(p, q) model put forward by Bollerslev (1986), is defined as:

ht = εtσt , with σ 2
t = α0 +

q∑
i=1

αi h
2
t−i +

p∑
j=1

β jσ
2
t− j , (4.13)

where εt is as before and the coefficients have to satisfy αi , β j ≥ 0, α0 > 0 to ensure that the
conditional variance is strictly positive. Identification and estimation of GARCH models is
performed analogously to that of (S)AR(I)MA models; maximum likelihood is the preferred
algorithm.

The GARCH model by itself is not attractive for STPF, however, coupled with autoregression
(or a more general (S)AR(I)MA model) presents an interesting alternative – the AR-GARCH

10 See Case Study 4.3.7.
11 See footnote 4 on page 105.
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model, where the residuals of the regression part are further modeled with a GARCH process.
Nevertheless, the general experience with GARCH-type components in statistical or economet-
ric STPF models is mixed. There are cases when modeling heteroskedasticity is advantageous,
but there are at least as many examples of poor performance of such models.

Karakatsani and Bunn (2004) tested four approaches (including regression-GARCH) to
explain the stochastic dynamics of spot volatility and understand agent reactions to shocks.
Limitations of GARCH models due to extreme values were resolved when a regression model
with the assumptions of an implicit jump component for prices and a leptokurtic distribution
for innovations was used.

An alternative approach was taken Byström (2005) who postulated extreme value distribu-
tions (EVT) for the residuals of an AR-GARCH model fitted to 1996–2000 Nord Pool price
returns. In an independent study Mugele et al. (2005) proposed ARMA-GARCH time series
with α-stable innovations (see Case Study 2.6.3) for modeling the asymmetric and heavy-tailed
nature of electricity spot price returns from the Nordic and German power markets. Swider and
Weber (2006) compared the explanatory in-sample power of ARMAX and ‘extended’ ARMAX
models of price evolution in the spot (EEX) and two reserve (E.ON, RWE) markets in Germany.
They concluded that ARMAX-GARCH models improved the representation of the identified
fat tails in the price distributions, however, including Gaussian mixtures or regime-switching
components in the ARMAX specification yielded yet better (in-sample) results.

Knittel and Roberts (2005) evaluated an AR-EGARCH specification and found it superior to
five other models (see Section 4.3.5) during the crisis period (May 1, 2000 to August 31, 2000)
in California. However, the AR-EGARCH process yielded the worst forecasts of all models
examined during the pre-crisis period (April 1, 1998 to April 30, 2000). A similar result was
obtained by Garcia et al. (2005a) who studied ARIMA models with GARCH residuals and
concluded that ARIMA-GARCH outperforms a generic ARIMA model, but only when high
volatility and price spikes are present.

Uddin and Spagnolo (2005) compared an AR-‘jump-GARCH’ model (analogous to that
of Escribano et al. (2002)) with a two state regime-switching model (see Section 4.3.9) and
found no clear significant outperformance of a specific model in forecasting spot electricity
prices. However, much more optimistic results – as far as heteroskedastic components are
concerned – were obtained by Guirguis and Felder (2004). They found that if the residuals of
an ARX process of order 1 with yesterday’s natural gas price as the explanatory variable were
additionally modeled by a GARCH(1, 1) process, the quality of the forecasts for New York
City and for Central New York State improved by about 50%. We will look more closely into
the efficiency of GARCH-type modeling in Case Study 4.3.7.

4.3.7 Case Study: Forecasting Hourly CalPX Spot Prices with Linear Models

In this study we forecast hourly CalPX market clearing prices from the period preceding and
including the California market crash. This lets us evaluate the performance of the models
during normal (calm) weeks, as well as during highly volatile periods. Moreover, the out-of-
sample interval spans over half a year and allows for a more thorough analysis of the forecasting
results than typically used in the literature single week test samples.

The time series of hourly system prices, system-wide loads, and day-ahead load forecasts
was constructed using data obtained from the UCEI institute and CAISO.12 The missing and
‘doubled’ data values corresponding to the changes to and from the daylight saving time

12 See http://www.ucei.berkeley.edu and http://oasis.caiso.com, respectively.
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Figure 4.1 Hourly system prices (top panel) and log-prices (middle panel) in California for the period
July 5, 1999–December 3, 2000. The changing price cap (750 → 500 → 250 USD/MWh) is clearly
visible. Hourly system loads in California for the same period (bottom panel). The day-ahead load
forecasts (i.e. the official forecasts of the system operator CAISO) are indistinguishable from the actual
loads at this resolution

(summer time) were treated in the usual way. The former were substituted by the arithmetic
average of the two neighboring values, while the latter by the arithmetic average of the two
values for the ‘doubled’ hour. Likewise, missing values (i.e. four prices and four loads) and two
outliers (i.e. an extremely low price surrounded by 4–5 times higher prices and a twice lower
load figure than normal) were substituted by the arithmetic average of the two neighboring
values, while four negative loads (including loads for two consecutive hours) were substituted
with load forecasts for those hours. The obtained time series are depicted in Figure 4.1.13

We used the data from the period July 5, 1999–April 2, 2000 solely for the purpose of
calibration. Such a relatively long period of data was needed to achieve high accuracy. For
example, limiting the calibration period to data coming only from the year 2000, as in Contreras
et al. (2003) and Nogales et al. (2002), led to a decrease in forecasting performance by up to
70% for the first week of the test period.

Consequently, the period April 3–December 3, 2000 was used for out-of-sample testing.
Since in practice the market-clearing price forecasts for a given day are required on the day
before, we used the following testing scheme. To compute price forecasts for hour 1 to 24 of
a given day, data available to all procedures included price and demand historical data up to

13 The preprocessed, spreadsheet-ready ASCII format data is available fromhttp://www.im.pwr.wroc.pl/ ˜rweron/MFE.html.
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hour 24 of the previous day plus day-ahead load predictions for the 24 hours of that day. Note,
that at each estimation step the calibration sample was enlarged by one day. We have also tried
using a sliding window, i.e. at each estimation step the calibration sample was moved forward
by one day, but this procedure resulted in generally inferior forecasts for all studied models.

The models considered in this study comprised simple time series specifications with and
without exogenous variables, namely ARMAX and ARMA processes, and more elaborate
autoregression models with GARCH residuals. ARMA(X) models were calibrated in Matlab
(using the prediction error estimate), while AR(X)-GARCH processes in SAS (using the max-
imum likelihood and conditional least squares estimates). Although Matlab’s GARCH toolbox
allows for joint estimation of AR(X)-GARCH type models the results are much worse than
those obtained in SAS (for details see the accompanying CD). The logarithmic transformation
was applied to price, pt = log(Pt ), and load, lt = log(Lt ), data to attain a more stable variance
(see Figure 4.1).

Modeling with Autoregressive Processes

For ARMA and ARMAX time series modeling, the mean price and the median load were
removed to center the data around zero. Removing the mean load resulted in worse forecasts,
perhaps, due to the very distinct and regular asymmetric weekly structure with the majority of
values lying in the high-load region.

Furthermore, since each hour displays a rather distinct price profile reflecting the daily vari-
ation of demand, costs and operational constraints the modeling was implemented separately
across the hours, leading to 24 sets of parameters. This approach was also inspired by the
extensive research on demand forecasting, which has generally favored the multi-model speci-
fication for short-term predictions; for details see Chapter 3. An alternative, but rarely utilized,
approach would be to use periodic time series, like Periodic Autoregressive Moving Average
(PARMA) models. Although electricity prices have been shown to exhibit periodic correlation,
see Broszkiewicz-Suwaj et al. (2004), the applicability of PARMA models is questionable due
to the computational burden involved.

Short-term seasonal market conditions were captured by the autoregressive structure of the
models: the log-price pt was made dependent on the log-prices for the same hour on the
previous days, and the previous weeks, as well as a certain function (maximum, minimum,
mean or median) of all prices on the previous day. The latter created the desired link between
bidding and price signals from the entire day.

Since the system load partly explains the price behavior (see Figure 4.2), it was used as the
fundamental variable. In the calm period (till mid-May 2000) the dependence between the log-
price and the log-system load is almost linear with a slight downward bend for small values of
the load. This justifies the choice of the linear model. However, later that year – during the crisis
period – the prices tend to jump during high-load hours, leading to an S-shaped curvilinear
dependence. This observation suggests using non-linear regression in future work, but solely
for the spiky periods.

In our ARMAX models we used only one exogenous variable: the hourly values of the
system-wide load. At lag 0 the CAISO day-ahead load forecast for a given hour was used,
while for larger lags the actual system load was used. Interestingly, the best models turned out
to be the ones with only lag 0 dependence. Using the actual load at lag 0, in general, did not
improve the forecasts either. This phenomenon can be explained by the fact that the prices are
an outcome of the bids, which in turn are placed with the knowledge of load forecasts but not
actual future loads.
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Figure 4.2 Hourly system prices in California for the period January 1–July 2, 2000 (top left). The
dependence between the hourly log-prices and hourly log system loads in California is approximately
linear for the period January 1–April 2, 2000 (top right). In April and May very low prices were recorded
for some off-peak hours, leading to a downward bend for low loads (bottom left). In the initial crisis
period (May 22–July 2, 2000) the prices have spiked, yielding an upward bend for high loads (bottom
right)

Furthermore, a large moving average part θ (B)εt typically decreased the performance,
despite the fact that in many cases it was suggested by Akaike’s Final Prediction-Error (FPE)
criterion (3.13). The best results were obtained for pure ARX models, i.e. with θ (B)εt = εt .
Likewise, a large autoregression part generally led to overfitting and worse out-of-sample
forecasts. The optimal AR structure, i.e. yielding the smallest forecast errors for the first week
of the test period (April 3–9, 2000), was found to be of the form:

φ(B)pt = pt − φ1 pt−24 − φ2 pt−48 − φ3 pt−168 − φ4mpt , (4.14)

where mpt was the minimum of the previous day’s 24 hourly prices. Note, that we have
simplified the notation: the coefficients are now numbered consecutively and their indices are
not directly related to the indices of the corresponding variables as in (4.9).

This very simple structure was unable to cope with the weekly seasonality, the results for
Mondays, Saturdays, and Sundays were significantly worse than for the other days. Separate
modeling of each hour of the week (leading to 168 ARX models) was not satisfactory, probably
due to a much smaller calibration set. Incorporation of seven dummy variables (one for each
day of the week) did not improve the results significantly. However, inclusion of three dummy
variables (for Monday, Saturday and Sunday) helped a lot. The best model structure, in terms
of forecasting performance for the first week of the test period, turned out to be (denoted later
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in the text as ARX):

φ(B)pt = ψ1lt + d1 DMon + d2 DSat + d3 DSun + εt , (4.15)

where φ(B)pt is given by (4.14), ψ1 is the coefficient of the load forecast lt and d1, d2 and d3

denote the coefficients of the dummies dMon, dSat and dSun, respectively. Its simplified version
without the exogenous variable (AR):

φ(B)pt = d1 DMon + d2 DSat + d3 DSun + εt , (4.16)

also performed relatively well.
The residuals obtained from the fitted ARX and AR models seemed to exhibit a non-

constant variance. Indeed, when tested with the Lagrange multiplier ‘ARCH’ test statistics (see
Engle 1982), the heteroskedastic effects were significant at the 5% level. This motivated us to
calibrate ARX-G and AR-G models to the data (‘G’ stands for GARCH(1, 1)). They differ
from ARX and AR models in that the noise terms in Equations (4.15) and (4.16), respectively,
are not just WN(0, σ 2) but are given by:

εt = εtσt , with σ 2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1, (4.17)

where εt is white noise.
Finally, note that all models were estimated using an adaptive scheme, i.e. instead of using a

single model for the whole sample, for every day (and hour) in the test period we calibrated the
model (given its structure) to the previous values of prices and loads and obtained a forecasted
value for that day (and hour). Originally, at each time step also the model structure was
optimized by minimizing the FPE criterion for a given set of model structures. However, this
procedure, apart from being time consuming, did not produce satisfactory results. The models
were apparently overfitted. Hence, we decided to use only one model structure for all hours
and all days.

Forecasting Results

The forecast accuracy was checked afterwards, once the true market prices were available. For
all weeks under study, five types of average prediction errors were computed: two corresponding
to the 24 hours of each day (MDE and MeDE) and three to the 168 hours of each week (MWE,
MeWE and WRMSE). The naive test (see Section 3.4.1) was used as a benchmark for all
forecasting procedures. The naive test is passed if errors for the model are smaller than for the
prices of the similar day. It turned out that in some atypical weeks all models had problems
with passing this test.

Mean Daily Errors (MDE) and Median Daily Errors (MeDE) for the first week of the
test period (April 3–9, 2000) are given in Table 4.1, see also Figures 4.3 and 4.4. ARX and
AR-GARCH performed best in terms of the MDE and MeDE criteria: ARX yielded the best
predictions for Tuesday, Thursday and Saturday while AR-GARCH (i.e. AR with GARCH
noise but without exogenous variables) for Monday, Wednesday and Friday. However, on the
weekly scale all three criteria (MWE, MeDE and WRMSE, see Tables 4.2–4.4) favored the
ARX model; AR-GARCH failed to predict Saturday’s prices.

Nogales et al. (2002) and Contreras et al. (2003) fitted and evaluated transfer function (TF),
dynamic regression (DR) and ARIMA (also with explanatory variables) models on exactly
the same out-of-sample test period. Interestingly, they used single models (though very large)
for all 24 hours of a day. Their conclusion was that TF (equivalent to ARMAX with system
load as the exogenous variable) was the best for the first week of April, followed closely by
DR (equivalent to ARX, again with system load as the exogenous variable). The Weekly Root
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Table 4.1 Mean Daily Errors (MDE) and Median Daily Errors (MeDE) in percent for the first week
of the test period (April 3–9, 2000). Best results are emphasized in bold. Results not passing the naive
test are underlined

Day AR ARX AR-G ARX-G Naive

MDE

Mo 3.73 3.91 3.32 3.86 5.68
Tu 3.01 2.33 2.35 2.79 3.77
We 2.30 2.06 2.05 2.53 2.19
Th 1.96 1.58 2.10 2.05 2.97
Fr 3.63 2.92 2.54 3.48 2.89
Sa 5.43 3.96 7.60 6.86 8.72
Su 3.94 4.85 4.17 4.20 10.11

MeDE

Mo 3.51 3.67 3.12 3.63 5.34
Tu 2.77 2.15 2.16 2.57 3.47
We 2.15 1.93 1.92 2.37 2.05
Th 1.80 1.45 1.93 1.88 2.73
Fr 3.31 2.66 2.31 3.17 2.64
Sa 4.96 3.62 6.95 6.27 7.98
Su 3.45 4.25 3.65 3.68 8.86
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Figure 4.3 Prediction results for the first week of the test period (April 3–9, 2000) for the AR and ARX
models
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Figure 4.4 Prediction results for the first week of the test period (April 3–9, 2000) for the naive,
AR-GARCH and ARX-GARCH models

Mean Square Errors for these two models were 1.04 and 1.05, respectively, which is better than
that of our ARX specification (1.17; see Table 4.4). Unfortunately, we were not able to obtain as
good results with the ARMAX models we tried. Perhaps, different software implementations
of the calibration schemes (Matlab and SAS vs SCA) prevented us from converging to the
same model. Since only the results for the first week of April were reported by Nogales et al.
(2002), the question whether this common for all hours, multi-parameter TF specification is
also superior for other periods (and other data sets) remains open.14

Mean Weekly Errors (MWE), Median Weekly Errors (MeWE) and Weekly Root Mean
Square Errors (WRMSE) for all 35 weeks of the test period are given in Tables 4.2–4.4. See
also Figures 4.5 and 4.6. To distinguish the rather calm first 10 weeks of the test period from
the more volatile weeks 11–35, the summary statistics in the bottom rows of the tables are
displayed separately for the two periods. The overall winner was the relatively simple ARX
model – it yielded the best forecasts for seven (or nine in terms of the WRMSE criterion) weeks
of the calm period and nine (eight) weeks of the spiky period. It was only six times worse
than the naive approach, and only during the spiky weeks. Compared to the other models, its
performance deteriorated during highly volatile, yet not very spiky periods toward the end of
the year. However, during spiky weeks and even spiky price-capped periods it was the best or
next to the best model.

Further, the ARX model gave the lowest mean deviation from the best model for a given
week in both out-of-sample test periods.15 In other words, of all approaches it was the closest
to the ‘optimal model’ composed of the best performing model in each week.

14 The results of Case Study 4.3.8 may shed some light on this issue. See also Section 4.3.5.
15 The mean deviation from the best model is calculated as

∑
i (ErrorBest model − Errori ), where i ranges over all evaluated models,

i.e. i = 5 in Tables 4.2–4.4.
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Table 4.2 Mean Weekly Errors (MWE) in percent for all weeks of the test period. Best results are
emphasized in bold. Results not passing the naive test are underlined. These measures of fit together
with the mean deviation from the best model for a given week are summarized in the last three rows.
The first number (before the slash) indicates performance during the first 10 weeks and the second –
during the latter 25 weeks

Week AR ARX AR-G ARX-G Naive

1 3.37 3.03 3.34 3.60 5.00
2 5.29 4.71 4.84 5.46 8.62
3 8.41 8.37 8.67 8.92 9.74
4 13.99 13.51 14.10 13.48 17.14
5 18.26 17.82 19.12 18.22 19.31
6 8.40 8.04 8.24 8.26 14.70
7 10.32 9.43 9.32 10.72 12.56
8 50.35 48.15 51.40 45.55 62.97
9 13.44 13.11 14.93 15.19 33.22

10 7.81 7.39 9.23 8.10 16.23

11 46.82 46.23 50.04 53.64 35.59
12 19.77 19.23 19.78 19.18 19.41
13 43.88 44.19 47.90 56.00 23.31
14 29.53 28.01 34.45 28.22 49.47
15 12.61 11.11 12.53 16.99 22.37
16 27.07 25.46 29.22 33.45 32.35
17 19.34 19.24 22.61 32.49 27.74
18 13.58 11.71 16.29 26.47 15.00
19 14.10 14.46 15.15 14.02 18.20
20 10.43 9.18 11.25 15.19 8.60
21 14.13 13.90 13.60 18.51 18.22
22 20.71 20.28 24.26 22.40 50.33
23 25.21 23.28 24.88 24.64 44.17
24 14.80 14.30 15.77 17.83 22.86
25 19.03 17.27 22.60 22.92 27.90
26 14.50 13.98 13.94 13.30 22.99
27 11.57 10.65 10.34 11.13 16.98
28 8.09 7.95 8.76 7.57 13.96
29 6.97 7.34 7.22 8.41 7.11
30 9.24 10.21 8.48 8.73 8.66
31 13.12 13.35 12.19 11.94 11.12
32 10.38 11.41 10.13 11.29 12.62
33 10.65 11.07 11.33 12.92 18.57
34 9.80 12.39 9.22 10.30 15.15
35 3.87 5.06 4.00 4.74 6.09

# best 0/3 7/9 1/5 2/4 0/4
# better than naive 10/19 10/19 10/18 10/15 –
mean dev. from best 0.88/2.10 0.27/1.79 1.24/3.17 0.67/5.03 6.87/6.89

Note also that MDE/MWE and MeDE/MeWE do not yield qualitatively different results
for a single day/week. The Mean Absolute Errors (MAE) are merely rescaled by different
values, see formulas (4.3)–(4.6). However, for different days (or weeks) the errors can give
qualitatively different results. This can be observed by comparing the last rows in Tables 4.2
and 4.3. The mean MWE deviation from the best model indicates that the ARX-G model beats
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Table 4.3 Median Weekly Errors (MeWE) in percent for all weeks of the test period. Best results are
emphasized in bold. Results not passing the naive test are underlined. These measures of fit together
with the mean deviation from the best model for a given week are summarized in the last three rows.
The first number (before the slash) indicates performance during the first 10 weeks and the second –
during the latter 25 weeks

Week AR ARX AR-G ARX-G Naive

1 3.14 2.83 3.11 3.36 4.67
2 4.75 4.23 4.34 4.90 7.74
3 7.47 7.43 7.70 7.92 8.65
4 12.72 12.28 12.82 12.26 15.58
5 18.82 18.37 19.71 18.79 19.90
6 8.04 7.71 7.90 7.91 14.08
7 9.93 9.07 8.96 10.31 12.08
8 86.80 83.00 88.61 78.53 108.56
9 13.09 12.77 14.54 14.80 32.35

10 7.98 7.55 9.43 8.27 16.58

11 98.75 97.51 105.55 113.16 75.07
12 23.82 23.18 23.85 23.12 23.39
13 101.31 102.01 110.59 129.29 53.81
14 32.15 30.49 37.51 30.72 53.85
15 12.47 10.99 12.40 16.81 22.13
16 40.86 38.43 44.11 50.48 48.82
17 31.11 30.95 36.38 52.28 44.63
18 21.19 18.28 25.42 41.32 23.42
19 17.60 18.04 18.90 17.50 22.71
20 12.67 11.15 13.67 18.45 10.45
21 13.65 13.43 13.13 17.88 17.60
22 28.08 27.50 32.90 30.38 68.26
23 26.95 24.89 26.61 26.35 47.23
24 16.01 15.46 17.05 19.28 24.72
25 23.44 21.28 27.84 28.23 34.36
26 15.08 14.54 14.49 13.83 23.90
27 11.62 10.69 10.38 11.17 17.04
28 8.50 8.35 9.21 7.95 14.67
29 6.84 7.20 7.09 8.25 6.98
30 9.27 10.24 8.51 8.76 8.69
31 13.28 13.52 12.34 12.09 11.26
32 10.49 11.54 10.24 11.42 12.75
33 10.95 11.39 11.65 13.29 19.10
34 9.82 12.41 9.23 10.32 15.16
35 3.63 4.75 3.75 4.45 5.71

# best 0/3 7/9 1/5 2/4 0/4
# better than naive 10/19 10/19 10/18 10/15 –
mean dev. from best 1.21/3.81 0.46/3.36 1.65/5.55 0.64/8.50 7.96/8.06

the naive approach in the volatile period, while the mean MeWE deviation from the best model
suggests completely the opposite. This is because MeWE (MeDE as well) relatively penalizes
more the forecast errors in the presence of spikes, as then the errors are normalized by the
median which is generally lower than the mean. In this respect, MeWE behaves more like the
quadratic norm WRMSE.
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Table 4.4 Weekly Root Mean Square Errors (WRMSE) for all weeks of the test period. Best results
are emphasized in bold. Results not passing the naive test are underlined. These measures of fit together
with the mean deviation from the best model for a given week are summarized in the last three rows.
The first number (before the slash) indicates performance during the first 10 weeks and the second –
during the latter 25 weeks

Week AR ARX AR-G ARX-G Naive

1 1.29 1.17 1.32 1.37 2.06
2 1.76 1.60 1.64 1.78 2.93
3 2.56 2.51 2.57 2.65 3.20
4 4.70 4.51 4.77 4.46 5.59
5 7.46 7.35 7.78 7.54 8.55
6 3.48 3.37 3.50 3.46 6.15
7 4.85 4.60 4.68 5.06 6.41
8 87.89 85.53 88.30 88.72 97.98
9 10.04 9.78 10.67 11.27 30.35

10 5.35 5.14 6.33 5.57 12.95

11 126.97 125.59 133.52 148.33 99.88
12 28.11 26.55 26.13 30.60 27.66
13 154.07 151.05 162.93 196.80 93.17
14 23.42 21.05 26.69 20.84 37.34
15 9.42 8.58 9.81 12.77 18.58
16 68.40 64.60 74.87 82.65 69.83
17 70.53 68.30 79.78 103.16 96.73
18 48.31 42.45 55.67 98.19 61.97
19 27.29 27.03 29.67 26.98 33.73
20 21.96 19.85 22.53 30.32 16.70
21 32.53 32.71 30.52 41.70 45.10
22 34.38 33.39 38.38 34.73 77.40
23 31.83 29.80 32.19 33.04 60.34
24 30.11 27.96 31.46 35.30 41.54
25 34.80 33.92 38.17 37.62 50.21
26 19.88 19.97 19.70 19.88 34.64
27 15.97 14.41 14.30 15.88 25.39
28 9.45 9.28 10.47 9.16 20.11
29 8.76 9.28 9.12 10.66 9.12
30 11.25 12.54 10.79 11.31 11.01
31 16.03 15.90 14.51 14.43 13.41
32 16.14 17.56 16.24 18.24 19.66
33 25.58 26.87 27.37 31.01 42.13
34 27.09 34.27 25.00 27.56 41.09
35 14.82 16.67 14.81 15.99 26.24

# best 0/3 9/8 0/7 1/3 0/4
# better than naive 10/19 10/19 10/20 10/15 –
mean dev. from best 0.39/5.05 0.01/4.35 0.60/6.95 0.64/13.05 5.07/11.68

Surprisingly, inclusion of the system load as a fundamental variable was not always opti-
mal.16 While for the first 28 weeks of the test period ARX was better than or roughly the same
as AR, the situation changed in favor of the latter in late 2000 when the minimum daily price

16 A similar observation was made by Contreras et al. (2003) who calibrated (seasonal) ARIMA models to California and Spanish
data.
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Figure 4.5 Hourly system prices (top panel) and Mean Weekly Errors (MWE) for all forecasting
methods (bottom panel; note the semi-log scale) during the whole test period: April 3–December 3,
2000

increased above 70 USD/MWh – see the bottom panels in Figure 4.6. For the relatively calm
periods an almost 10% decrease in MWE was observed, however, during the spiky weeks the
improvement was negligible. It is not that surprising if we recall that at that time the situation
in California was far from being normal, with the load–price relationship being substantially
violated (see Figure 4.2).

For the autoregressive models with GARCH noise this effect was even more striking. There
was no clear winner among the two considered models. ARX-G was slightly better in the
calm weeks, but the mean WRMSE deviation from the best model favored the AR-G model.
However, in the volatile period ARX-G performed well below acceptable levels: the mean
MeWE and WRMSE deviations from the best model indicated that it was inferior even to the
naive approach. See also the middle panels in Figure 4.6.

Despite the heteroskedastic nature of the residuals in the autoregressive models, in gen-
eral addition of a GARCH component in the specification did not improve the forecasts.
ARX-G performed considerably worse than ARX while AR-G was comparable but worse
than AR, the simplest of all autoregressive models. These results somewhat contradict the
reports of Garcia et al. (2005a) who concluded that (seasonal) ARIMA-GARCH mod-
els outperformed simpler (seasonal) ARIMA models fitted to California (!) and Spanish
data.
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Figure 4.6 Prediction results for the 8th, 21st and 34th weeks of the test period for the naive, AR, ARX,
AR-G and ARX-G models. The unanticipated price spike in the 8th week took all models by surprise (top
panels). The models with the exogenous variable performed slightly better as their response to the spike
was of lesser magnitude. The price-capped 21st week was rough on the ARX-G model (middle panels).
Finally, the 34th high-price week was more gracious to the AR and AR-G models as the price-load
relationship was largely violated (bottom panels)

4.3.8 Case Study: Is Spike Preprocessing Advantageous?

In this case study we continue the analysis of hourly CalPX market clearing prices from the
period preceding and including the California market crash. This time we want to test whether
preprocessing the data, by excluding or limiting price spikes, helps in forecasting. To this end,
we take the best technique so far – the ARX model (4.15) introduced in Case Study 4.3.7 –
and calibrate it to the logarithms of the preprocessed prices.
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Table 4.5 Mean Daily Errors (MDE) in percent for the first week of the test
period (April 3–9, 2000). Best results for each day are emphasized in bold

Day ARX Similar-day Limit Damped

Mo 3.91 3.45 3.79 3.87
Tu 2.33 2.17 2.25 2.27
We 2.06 1.89 1.92 1.92
Th 1.58 1.51 1.54 1.55
Fr 2.92 2.72 2.83 2.86
Sa 3.96 4.49 4.21 4.04
Su 4.85 4.31 4.63 4.72

We use three preprocessing schemes. In the first we treat the spikes, i.e. prices exceeding a
certain threshold T , as outliers and substitute them with ‘similar-day’ prices (see Case Study
3.2.1 where this technique was applied to outliers in load data). The resulting model is denoted
by Similar-day. Note that we cannot substitute them with the average of the neighboring ob-
servations since very often consecutive hourly prices exceed the specified threshold. However,
price spikes are inherent in electricity prices and removing them completely from the training
process may not be such a good idea after all. In the second scheme (Limit) we set an upper limit
on price. In other words, in preprocessing, if the price is higher than the specified threshold
T , it will be set to T . In the third scheme (Damped) we damp the spikes. As before, we set an
upper limit, T , and if the price Pt is higher than T , it will be set to T + T log10(Pt/T ). This
scheme allows to differentiate between ‘regular’ and ‘extreme’ spikes.

The results for the first week of the test period (April 3–9, 2000) are presented in Table 4.5.
For all methods the threshold T is set equal to the mean plus three standard deviations of
the price in the calibration period. Initially the Similar-day scheme performs the best, see
Table 4.6. Next, when volatility increases and the first price spikes appear, it trails behind its
competitors. Then again, at the very end of the test sample period (weeks 26–35) the Similar-
day scheme leads to the most accurate predictions. Not surprisingly, the Limit and Damped
preprocessing schemes perform alike, with the latter yielding significantly better results only
during the spiky period (weeks 11–25), see Figure 4.7. Nonetheless, this is not enough to beat
the models calibrated to raw data.

Table 4.6 Mean Weekly Errors (MWE) in percent for the first 10 weeks of
the test period (April 3–June 11, 2000). Best results for each week are
emphasized in bold

Week ARX Similar-day Limit Damped

1 3.03 2.87 2.96 2.98
2 4.71 4.68 4.67 4.66
3 8.37 8.42 8.34 8.31
4 13.51 13.65 13.56 13.52
5 17.82 18.18 17.83 17.81
6 8.04 7.96 8.03 8.07
7 9.43 9.32 9.31 9.31
8 48.15 51.55 47.62 44.78
9 13.11 13.09 12.39 12.41

10 7.39 8.04 7.94 7.74



JWBK120-04 JWBK120-Weron October 6, 2006 17:23 Char Count= 0

Modeling and Forecasting Electricity Prices 127

1 5 10 15 20 25 30 35
0

250

500

750
P

ric
e 

[U
S

D
/M

W
h]

1 5 10 15 20 25 30 35
2

10

100

M
W

E
 [%

]

Weeks (Apr 03−Dec 03, 2000)

ARX
Similarday
Limit
Damped

Figure 4.7 Hourly system prices (top panel) and Mean Weekly Errors (MWE) for the ARX model
with and without preprocessing (bottom panel; note the semi-log scale) during the whole test period:
April 3–December 3, 2000. All preprocessing schemes lead to significantly larger forecasting errors
during volatile periods. The small improvement over the original model during calm periods is not
visible at this scale

This case study shows that data preprocessing schemes perform satisfactorily only during
calm periods. When volatility increases, the elimination or limitation of price spikes is not
optimal. This point is not emphasized in the literature. For instance, Shahidehpour et al.
(2002) reported a substantial reduction in MAPE values for all three preprocessing schemes.
However, their conclusions are based only on one seven-day test period that is not very different
from the calibration sample.

4.3.9 Regime-Switching Models

The ‘spiky’ character of spot electricity prices suggests that there exists a non-linear mechanism
switching between normal and high-price states or regimes. As such these processes should
be prone to modeling with the so-called regime-switching models. The available specifications
of regime-switching models differ in the way the regime evolves over time.

Roughly speaking, two main classes can be distinguished: those where the regime can be
determined by an observable variable (and, consequently, the regimes that have occurred in
the past and present are known with certainty) and those where the regime is determined by an
unobservable, latent variable. In the latter case we can never be certain that a particular regime
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has occurred at a particular point in time, but can only assign or estimate probabilities of their
occurrences.

The variety of regime-switching models is due to the possibility of choosing both the number
of regimes (2, 3, etc.) and the different stochastic process for the price in each regime. Especially
for the spike regime it may be interesting to choose alternative distributions. Since spikes
happen very rarely but usually are of great magnitude the use of heavy-tailed distributions17

could be considered. Also the process that switches between the states could be chosen in
accordance with the typical behavior of spot electricity prices.

Threshold Autoregressive Models

The most prominent member of the first class is the Threshold AutoRegressive (TAR) model
originally proposed in Tong (1978) and Tong and Lim (1980). It assumes that the regime is
specified by the value of an observable variable vt relative to a threshold value T :{

φ1(B)Pt = εt , vt ≥ T,

φ2(B)Pt = εt , vt < T,
(4.18)

where φi (B) is a shorthand notation for φi (B) = 1 − φi,1 B − · · · − φi,p B p, i = 1, 2, and B is
the backward shift operator. Formula (4.18) can be written in a more compact form as:

φ1(B)PtI(vt ≥T ) + φ2(B)PtI(vt <T ) = εt , (4.19)

where I(·) denotes the indicator function.18 To simplify the exposition, we have specified a
two-regime model only, however, generalization to multi-regime models is straightforward.
The inclusion of exogenous (fundamental) variables is also possible: AR processes are simply
replaced by ARX processes in the above formulas leading to the TARX model.

The Self-Exciting TAR (SETAR) model arises when the threshold variable is taken as the
lagged value of the price series itself, i.e. vt = Pt−d . It can be further modified by allowing for
a gradual transition between the regimes, leading to the Smooth Transition AR (STAR) model.
A popular choice for the transition function is the logistic function

G(Pt−d ; γ, T ) = 1

1 + exp{−γ (Pt−d − T )} , (4.20)

where d is the lag and γ determines the smoothness of the transition. The resulting model is
known as the Logistic STAR (LSTAR) model.

There are a few documented applications of regime-switching TAR-type models to electricity
prices. Robinson (2000) fitted an LSTAR model to prices in the English and Welsh wholesale
electricity Pool and showed that it performed superior to a linear autoregressive alternative.
Stevenson (2001) calibrated AR and TAR processes to wavelet filtered half-hourly data from the
New South Wales (Australia) market. He concluded that the TAR specification (with vt being
the change in demand and T = 0) outperformed the AR alternative in forecasting performance.

Recently Rambharat et al. (2005) introduced a SETAR-type model with an exogenous
variable (temperature recorded at the same time as the maximum price of the day) and a gamma
distributed jump component. A common threshold level was used both for determining the

17 Like Pareto, Burr, skewed stable, skewed generalized hyperbolic, etc. The latter two classes were discussed in Section 2.6. For
a review of loss distributions see Burnecki et al. (2005).

18 The indicator function I(A) equals 1 when condition A is satisfied and zero otherwise. For instance, I(vt ≥T ) = 1 for vt ≥ T and
zero for vt < T .
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autoregression coefficients and the jump intensities. Rambharat et al. estimated the model by
using a Markov chain Monte Carlo approach with three years of daily data from Allegheny
County, Pennsylvania, and found it superior (both in-sample and out-of-sample) to a jump-
diffusion19 model.

Weron and Misiorek (2006) calibrated various time series specifications, including TAR
and TARX (with the system-wide load as the exogenous variable) models, and evaluated
their predictive capabilities in the California power market. The TAR/TARX models used the
price for hour 24 on the previous day as the threshold variable vt and the threshold level was
estimated for every hour in a multi-step optimization procedure with 10 equally spaced starting
points spanning the entire parameter space. During the calm, pre-crisis period the out-of-sample
forecasting results were well below acceptable levels. The models failed to outperform even the
naive approach of using the previous day’s hourly prices as forecasts. Later in the test sample,
when the regime switches were more common and the price stayed in the spiky regime for
longer periods of time, the models (TARX in particular) yielded much better forecasts. But
still their performance was disappointing.

In a related study, Misiorek et al. (2006) expanded the range of tested threshold variables
and found that vt equal to the difference in mean prices for yesterday and eight days ago
led to a much better forecasting performance. The resulting threshold autoregression models
outperformed their respective linear specifications in point forecasting accuracy. See Case
Study 4.3.11 for a detailed analysis.

Markov Regime-Switching Models

These examples show that non-linear regime-switching time series models might provide us
with good models of electricity price dynamics. However, it is questionable whether the regime-
switching mechanism is simply governed by a fundamental variable or the price process itself.
The spot electricity price is the outcome of a vast number of variables including fundamentals
(like loads and network constraints) but also the unquantifiable psycho- and sociological factors
that can cause an unexpected and irrational buyout of certain commodities or contracts leading
to pronounced price spikes.

In this context the Markov regime-switching20 (MRS) models, where the regime is deter-
mined by an unobservable, latent variable, seem interesting. The underlying idea behind the
(Markov) regime-switching scheme is to model the observed stochastic behavior of a specific
time series by two (or more) separate phases or regimes with different underlying processes. In
other words the parameters of the underlying process may change for a certain period of time
and then fall back to their original structure. Thus, regime-switching models divide the time
series into different phases that are called regimes. For each regime one can define separate
and independent different underlying price processes. The switching mechanism between the
states is assumed to be governed by an unobserved random variable.

For example, the spot price can be assumed to display either low or very high volatility
at each point in time, depending on the regime Rt = 1 or Rt = 2. Consequently, we have a
probability law that governs the transition from one state to another. The price processes being
linked to each of the two regimes are assumed to be independent from each other. The transition
matrix Q contains the probabilities qi j of switching from regime i at time t to regime j at time

19 See Section 4.4.1.
20 Also called Markov-switching or simply regime-switching models.
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t + 1, for i, j = {1, 2}:

Q = (qi j ) =
(

q11 q12

q21 q22

)
=

(
q11 1 − q11

1 − q22 q22

)
. (4.21)

Because of the Markov property the current state Rt at time t of a Markov chain depends on
the past only through the most recent value Rt−1:

P(Rt = j |Rt−1 = i, Rt−2 = k, . . .) = P(Rt = j |Rt−1 = i). (4.22)

Consequently the probability of being in state j at time t + m starting from state i at time t is
given by

P(Rt+m = j | Rt = i) = (Q′)m · ei ,

where Q′ denotes the transpose of Q and ei denotes the i th column of the 2 × 2 identity matrix.
To the best of our knowledge Ethier and Mount (1998) were the first to apply (Markov)

regime-switching models to electricity prices. They proposed a two state specification in which
both regimes were governed by AR(1) price processes with common or different variances.
Based on empirical analysis of on-peak prices from SERC, ECAR and PJM East hubs in the
United States and the Victoria market in Australia, they concluded that there was strong support
for the existence of different means and variances in the two regimes.

Huisman and Mahieu (2003) proposed a regime-switching model with three possible
regimes. The idea behind their specification differs significantly from the two-state models
discussed above. They identify:� the base regime Rt = 1 modeling the ‘normal’ electricity price dynamics,� the initial jump regime Rt = 2 for a sudden increase (or decrease) in price,� the jump reversal regime Rt = 3 that describes how prices move back to the normal regime

after the initial jump has occurred.

This specification implies that the initial jump regime is immediately followed by the reversing
regime and then moves back to the base regime. Thus we get a 3 × 3 transition matrix with
only four non-zero values:

Q = (qi j ) =
⎛⎝q11 q12 q13

q21 q22 q23

q31 q32 q33

⎞⎠ =
⎛⎝q11 1 − q11 0

0 0 1
1 0 0

⎞⎠ . (4.23)

Consequently, the three-regime model does not allow for consecutive high prices21 (i.e. re-
maining at the spike level for two or more periods after a jump), which are commonly observed
in electricity prices at the hourly time resolution. This restriction was efficiently relaxed by
Huisman and de Jong (2003) who proposed a model with only two regimes22 – a stable,
mean-reverting AR(1) regime and a spike regime – for the deseasonalized log-prices. They as-
sumed that the dynamics of the spike regime can be modeled with a simple normal distribution
whose mean and variance are higher than those of the mean-reverting base regime process.
To cope with the heavy-tailed nature of spike severities, Weron et al. (2004a) and Bierbrauer
et al. (2004) extended the model by allowing log-normal and Pareto distributed spike regimes

21 Hence, it does not offer any obvious advantage over the jump-diffusion models studied in Section 4.4.1.
22 The third regime is not needed to pull prices back to stable levels, because the prices are assumed to be independent from each

other in the two regimes.
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(see Case Study 4.4.5.) while De Jong (2006) considered autoregressive, Poisson driven spike
regime dynamics. Mount et al. (2006) further modified the two-regime model by making key
parameters of the mean reverting processes functions of time varying fundamental variables
(reserve margin and load).

Karakatsani and Bunn (2004) tested four approaches to explain the stochastic dynamics of
electricity spot price volatility in the UKPX power exchange, including a regression Markov
regime-switching model. In this model the price is given by Pt = E ′

tβRt + εt , where Et is a
vector of exogenous explanatory variables (spot price for the same load period on the previous
day and the previous week, as well as daily average price on the previous day, functionals
of day-ahead demand forecast, maximum output of all registered generation units, etc.), βRt

is a vector of regression coefficients, εt ∼ N(0, σRt ) and σRt is the error variance in regime
Rt . Allowing for two regimes was generally sufficient to capture non-modeled shifts in the
market environment. Occasionally, however, a particularly small set of extremely high prices
was classified into the spike regime causing unreliable estimation. The specification of three
regimes resolved this issue. The relative frequency of these two spiky regimes could be viewed
as a proxy for ‘partially explainable’ versus ‘unanticipated’ spikes within the model boundary.

The usefulness of Markov regime-switching models for power market applications, in par-
ticular their capability of modeling several consecutive price jumps or spikes as opposed to
jump-diffusion models, has been already recognized and a number of models for spot electric-
ity prices have been proposed. However, their adequacy for forecasting has been only vaguely
tested. Only recently has this issue been tackled in the literature.

Haldrup and Nielsen (2006) calibrated seasonal ARFIMA and Markov regime-switching
seasonal ARFIMA models to Nord Pool area (zonal) prices. They reported that both specifica-
tions seemed to perform similarly in terms of out-of-sample predictions for the individual series
(area prices), but the non-linear specification outperformed the linear model in the forecasting
of relative prices of neighboring regions within the Nordic area. Moreover, the advantages
improved the more persistent the regime states appeared to be.

Kosater and Mosler (2006) compared Markov regime-switching specifications (with regimes
driven by two AR(1) processes) to an AR(1) model using average daily prices from the German
EEX market. For long run point forecasts (30–80 days ahead) the regime-switching models
were slightly more accurate, but for STPF both model classes performed alike. Similar results
were obtained by Uddin and Spagnolo (2005), who evaluated a two-state MRS model and
an AR-‘jump-GARCH’ process. They found no clear significant outperformance of a specific
model in forecasting Nord Pool spot electricity prices.

Even more disappointing results were reported by Misiorek et al. (2006) who compared a
Markov regime-switching model with various time series specifications and evaluated their
predictive capabilities in the California power market. The MRS model had two latent states
governed by mean-reverting AR(1) price processes coupled with a seasonality component
composed of dummy variables for daily effects and a sinusoidal function with linear trend to
capture long-term seasonal effects. During the calm, pre-crisis period the regime-switching
approach provided bad results and failed to outperform even the naive approach of using the
previous day’s hourly prices as forecasts. During spiky periods the non-linear MRS model
gave significantly better results and was able to outperform the linear models for certain
weeks. This was due to the fact that most hours were assigned to the spike regime, which by
construction gave higher estimates for spot prices and volatility. However, overall the linear
and threshold non-linear models provided better forecasting results than the Markov regime-
switching approach.
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These results confirm earlier reports by Bessec and Bouabdallah (2005) and Dacco and
Satchell (1999), who questioned the adequacy of MRS models for forecasting in general. In
spite of their generally superior in-sample fit the (Markov) regime-switching models have
problems with out-of-sample forecasting.

4.3.10 Calibration of Regime-Switching Models

Once the threshold variable and level are fixed, parameter estimation of threshold regime-
switching models is relatively straightforward. Least squares is a natural candidate for the
TAR model, since equation (4.19) is a regression equation, though non-linear in parameters.
Under the additional assumption that εt is i.i.d. N (0, σ 2), least squares is equivalent to the
maximum likelihood estimation.

However, we are not limited to least squares. The regimes that have occurred in the past
and present are known with certainty. Hence, all observations can be identified as belonging
either to the normal or spike regime and divided into two disjoint sets. Then any appropriate
estimation algorithms can be applied to the two sets separately.23 For instance, the coefficients
of a TARX model can be identified using the prediction error method, where the parameters
of the model are chosen so that the difference between the model’s (predicted) output and the
measured output is minimized (see Section 3.4.9).

A separate issue is the identification of the threshold variable and level. The latter can be
chosen such that it minimizes the residual variance of the fitted model. The former, however,
has to be selected either by trial and error or based on researcher’s expertise. It also should
minimize some specified loss (score) function, like the prediction error.

Calibration of the Markov regime-switching models is not that straightforward since the
regime is only latent and hence not directly observable. Hamilton (1990) introduced an appli-
cation of the Expectation–Maximization (EM) algorithm of Dempster et al. (1977) where the
whole set of parameters θ is estimated by an iterative two-step procedure. See Kim (1994) for
a numerically efficient implementation of the algorithm.

In the first step the conditional probabilities P(Rt = j |P1, . . . , PT ; θ ) for the process being
in regime j at time t are calculated based on starting values θ̂ (0) for the parameter vector θ of
the underlying stochastic processes. These probabilities are referred to as smoothed inferences.
Then in the second step new and more exact maximum likelihood estimates θ̂ for all model
parameters are calculated by using the smoothed inferences from step 1. With each new vector
θ̂ (n) the next cycle of the algorithm is started in order to reevaluate the smoothed inferences.

Every iteration of the EM algorithm generates new estimates θ̂ (n+1) as well as new estimates
for the smoothed inferences. Each iteration cycle increases the log-likelihood function and the
limit of this sequence of estimates reaches a (local) maximum of the log-likelihood function.

4.3.11 Case Study: Forecasting Hourly CalPX Spot Prices
with Regime-Switching Models

In this case study we continue the analysis of hourly CalPX market clearing prices from the
period preceding and including the California market crash. In addition to the linear time series
models put forward in Case Study 4.3.7, here we propose regime-switching specifications and
compare their performance with that of the autoregressive and heteroskedastic models. We

23 In general, the regimes need not be driven by the same type of a process. The normal regime can be, say, a mean-reverting
autoregressive process, while the spike regime can be driven by a Pareto random variable.
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exclude Markov regime-switching models from the analysis as they have been repeatedly
found to yield poor out-of-sample predictions – see Section 4.3.9 for details and pertinent
references.

Modeling with Threshold Autoregressive Processes

Like for the linear models, for each hour of the day a separate threshold regime-switching
model was estimated, resulting in 24 different models. The TARX and TAR specifications are
natural generalizations of the ARX and AR models defined by (4.15) and (4.16), respectively.
Namely, the TARX-type model is given by{

φ1(B)pt = ψ1,1zt + d1,1 DMon + d1,2 DSat + d1,3 DSun + εt , vt ≥ T,

φ2(B)pt = ψ2,1zt + d2,1 DMon + d2,2 DSat + d2,3 DSun + εt , vt < T,
(4.24)

where vt is threshold variable and T is the threshold level. The TAR-type model is obtained
for ψ1,1 = ψ2,1 = 0, i.e. when no exogenous variables are used.

We have tried different threshold variables and threshold levels. The former included com-
binations of past prices and loads: daily maximum, minimum and mean, value 24 hours ago,
latest available value (i.e. value for hour 24 on the previous day), differences between lagged
hourly values (for lags of 24 and 168 hours) and differences between lagged daily means (for 1
day and 1 week lags). The threshold levels were either constant or variable (estimated for every
hour in a multi-step optimization procedure with 10 equally spaced starting points spanning the
entire parameter space). The best results – in terms of forecast errors during the first week of
the test period – were obtained for vt equal to the price for hour 24 on the previous day and T
estimated for every hour in a multi-step optimization procedure. However, the predictions
for later weeks were very disappointing, see Weron and Misiorek (2006) for the numerical
results.

Much better results for the whole test period were obtained for vt equal to the difference in
mean prices for yesterday and eight days ago. Since the original optimization process was very
slow and did not yield better predictions than a simpler setup where T was set arbitrarily to
zero, we have chosen the simpler setup and used it to define the TARX-P model. The TAR-P
model was obtained for ψ1,1 = ψ2,1 = 0, i.e. when no exogenous variables were used, and the
same threshold variable and threshold level. These models could be also classified as SETARX
and SETAR, respectively, since vt was a function of lagged prices only.

In the computational exercise we have also included another pair of TAR-type models. As
it turned out, they yielded slightly worse forecasts in the calm period, but returned far superior
predictions in the volatile weeks. The TARX-L model had the same structure (4.24) and the
same threshold level, but used a different threshold variable. Namely, vt was set equal to the
difference in mean loads (not prices as in the TAR-P and TARX-P models) for yesterday and
eight days ago. The TAR-L model was obtained for ψ1,1 = ψ2,1 = 0, i.e. when no exogenous
variables were used. Note, however, that in this model no explicit exogenous variables were
used, but the threshold variable was exogenous in itself. Consequently, the TAR-L model
cannot be classified as a pure price model.

As in Case Study 4.3.7, all TAR-type models were estimated using an adaptive scheme.
Instead of using a single model for the whole sample, for every day (and hour) in the test
period we calibrated the model (given its structure) to the previous values of prices and loads
and obtained a forecasted value for that day (and hour).
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Forecasting Results

The forecast accuracy was checked afterwards, once the true market prices were available. For
all weeks under study, three types of average prediction errors corresponding to the 168 hours
of each week were computed: MWE, MeWE and WRMSE. The naive test and the AR and
ARX models were used as benchmarks for all forecasting procedures.

Mean Weekly Errors (MWE) for all 35 weeks of the test period are provided in Table 4.7
and Figure 4.8. To distinguish the rather calm first 10 weeks of the test period from the more

Table 4.7 Mean Weekly Errors (MWE) in percent for all weeks of the test period. Best results are
emphasized in bold. Results not passing the naive test are underlined. These measures of fit are
summarized in the last two rows. The first number (before the slash) indicates performance during the
first 10 weeks and the second – during the latter 25 weeks

Week AR ARX TAR-P TARX-P TAR-L TARX-L Naive

1 3.37 3.03 3.21 3.09 3.21 3.39 5.00
2 5.29 4.71 5.37 5.04 4.99 4.73 8.62
3 8.41 8.37 8.79 8.52 8.14 7.69 9.74
4 13.99 13.51 13.90 13.56 14.02 13.77 17.14
5 18.26 17.82 18.09 18.45 18.36 18.47 19.31
6 8.40 8.04 9.24 8.69 8.15 7.82 14.70
7 10.32 9.43 11.23 10.07 9.72 9.08 12.56
8 50.35 48.15 47.95 44.77 52.51 48.46 62.97
9 13.44 13.11 13.87 13.12 13.29 12.04 33.22

10 7.81 7.39 8.27 7.77 7.82 8.16 16.23

11 46.82 46.23 50.83 48.34 46.06 46.06 35.59
12 19.77 19.23 19.69 20.63 20.40 22.30 19.41
13 43.88 44.19 42.78 39.82 38.42 36.89 23.31
14 29.53 28.01 25.84 24.80 26.63 26.14 49.47
15 12.61 11.11 13.36 12.37 11.75 11.06 22.37
16 27.07 25.46 26.68 24.90 26.85 24.72 32.35
17 19.34 19.24 18.96 17.59 19.18 17.38 27.74
18 13.58 11.71 10.21 9.46 11.78 11.96 15.00
19 14.10 14.46 14.11 14.45 13.91 13.74 18.20
20 10.43 9.18 11.24 10.59 9.27 8.73 8.60
21 14.13 13.90 13.40 13.45 16.83 16.18 18.22
22 20.70 20.28 23.55 22.87 22.30 21.93 50.33
23 25.21 23.28 24.94 22.67 24.14 22.33 44.17
24 14.80 14.30 13.60 12.48 14.26 13.60 22.86
25 19.03 17.27 19.24 17.72 17.00 15.83 27.90
26 14.50 13.98 12.85 12.90 12.54 12.68 22.99
27 11.57 10.65 12.45 10.95 11.97 10.24 16.98
28 8.09 7.95 8.17 8.01 7.87 7.99 13.96
29 6.97 7.34 7.19 8.49 7.62 7.76 7.11
30 9.24 10.21 8.31 9.20 9.52 10.15 8.66
31 13.12 13.35 13.32 13.09 14.16 13.15 11.12
32 10.38 11.41 10.44 12.55 9.54 11.57 12.62
33 10.65 11.07 10.38 13.47 10.47 11.90 18.57
34 9.80 12.39 10.92 13.00 10.77 11.90 15.15
35 3.87 5.06 4.13 4.94 3.10 4.03 6.09

# best 0/2 5/2 0/3 1/3 0/4 4/7 0/4
# better than naive 10/19 10/19 10/19 10/18 10/18 10/18 –
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Figure 4.8 Hourly system prices (top panel) and Mean Weekly Errors (MWE) for all forecasting
methods (bottom panel; note the semi-log scale) during the whole test period: April 3–December 3, 2000

volatile weeks 11–35, the summary statistics in the bottom of the table are displayed separately
for the two periods. The overall winner was the non-linear TARX-L model. It yielded the best
predictions for 11 (or 10 in terms of the WRMSE criterion) weeks and was worse than the
naive approach only seven times. However, during the first 10 weeks of the sample period it
was slightly worse than TARX-P and even ARX, see Table 4.8 with the mean MWE, MeWE
and WRMSE deviations from the best model.

Table 4.8 Mean MWE, MeWE and WRMSE deviations from the best model for a given week. Best
results are emphasized in bold. The first number (before the slash) indicates performance during the
first 10 weeks and the second – during the latter 25 weeks

Weeks AR ARX TAR-P TARX-P TAR-L TARX-L Naive

MWE
1–10 1.18/ 0.57/ 1.21/ 0.52/ 1.24/ 0.58/ 7.16/

11–35 /2.68 /2.37 /2.58 /2.27 /2.17 /1.93 /7.47

MeWE
1–10 1.55/ 0.80/ 1.40/ 0.50/ 1.78/ 0.84/ 8.30/

11–35 /4.54 /4.09 /4.49 /3.80 /3.64 /3.21 /8.79

WRMSE
1–10 0.53/ 0.15/ 0.63/ 0.29/ 0.61/ 0.15/ 5.21/

11–35 /6.11 /5.42 /5.99 /5.10 /5.33 /4.43 /12.75
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Generally, in the calm weeks two groups of models could be observed: those with and those
without the exogenous variable. In the first group, TARX-P was best according to the linear
norms (MWE and MeWE), while ARX and TARX-L were better in terms of the quadratic
norm. In the second group, the differences were even smaller. In the volatile weeks TARX-L
was a clear leader. TAR-L followed closely and was definitely the best model in the second
group. We should remember, though, that this is not a pure price model as the threshold variable
is a function of the load.

This case study has shown that threshold autoregressive models have the potential to ac-
curately forecast electricity prices. During normal, calm weeks they perform comparably or
slightly better that their linear counterparts. But during highly volatile, atypical periods they
provide an edge over the linear models.

4.3.12 Interval Forecasts

A pertinent question that remains open is whether the time series models studied in the above
case studies also provide reasonable interval forecasts. Such forecasts may be especially rel-
evant for risk management purposes where one is more interested in predicting intervals for
future price movements than simply point estimates. However, while there is a variety of em-
pirical studies on evaluating point forecasts in electricity markets, density or interval forecasts
have not been investigated until very recently.

To the best of our knowledge, Misiorek et al. (2006) provide the first account on interval
forecasting of electricity prices. For each time series model studied, they compute the intervals
by taking the quantiles of a standard normal random variable rescaled by the standard deviation
of the residuals in the calibration period. Afterwards, the quality of the interval forecasts is
evaluated by comparing the nominal coverage of the models to the true coverage. Thus, for each
of the models a confidence interval (CI) is calculated and the actual percentage of exceedances
of the 50%, 90% and 99% two-sided day-ahead CI of the models by the actual market clearing
price is determined. If the model implied interval forecasts were accurate, then the percentage of
exceedances should be approximately 50%, 10% and 1%, respectively. Misiorek et al. conclude
that threshold autoregressive models generally yield better point and interval forecasts than
linear autoregressive (including AR-GARCH) and Markov regime-switching models.

An alternative, ‘empirical’, approach to computing interval forecasts could also be utilized
(both approaches are implemented in the Matlab toolbox on the accompanying CD). It consists
of computing the quantiles of the empirical distribution of the one-step ahead prediction errors.
The drawback of this approach is that it needs more data for initialization. If the intervals are
needed starting from, say, April then the prices have to be predicted also for March, February
and January, so that the empirical distribution is smooth enough to compute the quantiles.
Interestingly, this approach can be used not only in combination with time series models, but
also with any forecasting techniques (including AI-based methods).

4.4 QUANTITATIVE MODELS AND DERIVATIVES VALUATION

Price process models lie at the heart of derivatives pricing and risk management systems. If the
price process chosen is inappropriate to capture the main characteristics of electricity prices,
the results from the model are likely to be unreliable. On the other hand, if the model is too
complex the computational burden will prevent its on-line use in trading departments. In a
way, the jump-diffusion models that are reviewed in the next section, as well as the (Markov)
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regime-switching models already discussed in Section 4.3.9, offer the best of the two worlds;
they are a trade-off between model parsimony and adequacy to capture the unique character-
istics of power prices.

4.4.1 Jump-Diffusion Models

As it is very natural to approach a problem by adopting already known solutions, it was only
a question of time before standard stochastic models of modern finance found their way to
the power market. However, the most prominent of all models – geometric Brownian motion
(GBM) – could not be applied directly to electricity prices as it does not allow for price spikes
and mean-reversion.

Early modeling approaches involved modifications of GBM that would allow for exactly
these two electricity price characteristics. Kaminski (1997) utilized the jump-diffusion model
of Merton (1976):

dPt

Pt
= μdt + σdWt + dq(t), (4.25)

where μ is the drift, σ is the volatility, Wt is the Brownian motion process24 and q(t) is a
homogeneous Poisson process (HPP) with given intensity and log-normal distribution of jump
sizes, i.e. a compound Poisson process. The jump-diffusion model is essentially constructed
by adding a Poisson (or jump) component, dq(t), to a standard GBM.25 Its main drawback
is that it ignores another fundamental feature of electricity prices: the mean-reversion to the
‘normal’ price regime. If a price spike occurred, GBM would ‘assume’ that the new price level
is a normal event. It would proceed randomly via a continuous diffusion process, dWt , with
no consideration of prior price levels, and a small chance of returning to the pre-spike level.
Yet, practically every market practitioner would agree that it is highly probable that prices will
eventually return to their ‘normal’ level once the weather phenomenon or outage is over.

In a comparative study Johnson and Barz (1999) evaluated the effectiveness of various
diffusion-type models in describing the evolution of spot electricity prices in several markets.
Apart from arithmetic26 and geometric Brownian motion processes, they tested mean-reverting
diffusions (also known as arithmetic Ornstein–Uhlenbeck processes):

dPt = (α − β Pt )dt + σdWt , (4.26)

originally proposed by Vasiček (1977) for modeling interest rate dynamics, and geometric
mean-reverting diffusions:

dPt

Pt
= (α − β Pt )dt + σdWt , (4.27)

with and without jumps in the form of a compound Poisson process q(t). Johnson and Barz
concluded that the geometric mean-reverting jump-diffusion model gave the best performance
and that all models without jumps were inappropriate for modeling electricity prices.

24 The notation Wt is derived from the synonym name – the Wiener process – often used in the stochastic processes literature. The
most pertinent feature of Brownian motion is that the increments dWt are Gaussian i.i.d. variables.

25 Discontinuous asset price models (including Merton’s) were originally proposed as alternatives to GBM that could account for
the volatility smile, and hence correct the famous Black–Scholes option pricing formula; for a review of option pricing models, see
Čižek et al. (2005) and Wilmott (1998).

26 Which differs from GBM in that the right-hand side of (4.25), naturally without the jump component dq(t), defines the absolute
increment of the process, dPt , and not the relative or percentage increment, dPt /Pt .
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In the mean-reverting models the drift term

μ(Pt , t) = α − β Pt = β

(
α

β
− Pt

)
, (4.28)

is governed by the distance between the current price, Pt , and the mean-reversion level, α/β,
as well as by the mean-reversion rate, β. If the spot price is below the mean-reversion level,
the drift will be positive, resulting in an upward influence on the spot price. Alternatively,
if the spot price is above the mean-reversion level, the drift will be negative, thus exerting a
downward influence on the spot price. Over time, this results in a price path that drifts toward
the mean-reversion level, at a speed determined by the mean-reversion rate.

A general specification of jump-diffusion models, that comprises all previously mentioned
processes, involves a stochastic differential equation (SDE) that governs the dynamics of the
price process:

dPt = μ(Pt , t)dt + σ (Pt , t)dWt + dq(Pt , t). (4.29)

The Brownian motion process Wt is responsible for small fluctuations (around the long-term
mean for mean-reverting processes) and the pure jump process q(Pt , t) produces infrequent,
but large (upward) jumps. The latter is a compound Poisson process with given intensity and
severity of jumps, typically independent of Wt . The drift term μ(Pt , t) is usually such that it
forces mean reversion to a stochastic or deterministic long-term mean at a constant rate. For
simplicity, the volatility term σ (Pt , t) is often set to a constant, despite the fact that empirical
evidence suggests that electricity prices exhibit heteroskedasticity (see Section 4.3.7).

A serious flaw of both the arithmetic (4.26) and geometric (4.27) mean-reverting jump-
diffusion models is the slow speed of mean reversion after a jump. When electricity prices
spike, they tend to return to their mean reversion levels much faster than when they suffer
smaller shocks. However, a high rate of mean reversion β, required to force the price back
to its normal level after a jump, would lead to a highly overestimated β for prices outside
the ‘spike regime’. To circumvent this, Escribano et al. (2002) allowed signed jumps. But if
these randomly follow each other, the spike shape has obviously a very low probability of
being generated. Geman and Roncoroni (2006) suggested using mean reversion coupled with
upward and downward jumps, with the direction of a jump being dependent on the current
price level. Weron et al. (2004b) postulated that a positive jump should always be followed
by a negative jump of (approximately) the same size to capture the rapid decline of electricity
prices after a spike. On the daily level, i.e. when analyzing average daily prices, this approach
seems to be a good approximation since spikes typically do not last more than a day. Borovkova
and Permana (2004) proposed the drift to be given by a potential function, which forces the
price to return to its seasonal level after an upward jump. Interestingly, it allows the rate of
mean reversion to be a continuous function of the distance from this level.

Another limitation of the mean-reverting jump-diffusion model is that it assumes the (mean-
reverting) diffusion process to be independent of the Poisson component. This is not the case in
electricity. In particular, prices are highly unlikely to spike overnight when demand and prices
are very low. To cope with this observation Eydeland and Geman (1999) proposed a model
where the jump size is proportional to the current spot price. As a result the spikes tend to be
more severe during high-price periods.

Furthermore, empirical data suggests that the homogeneous Poisson process may not be the
best choice for the jump component. Price spikes are seasonal; they typically show up in high-
price seasons, like winter in Scandinavia and summer in central USA. For this reason Weron
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(2006) considered using a non-homogeneous Poisson process (NHPP) with a (deterministic)
periodic intensity function, instead of a HPP with a constant jump intensity rate. However, the
scarcity of jumps identified by the filtering procedure (only nine in over three years of Nord Pool
data; see Case Study 4.4.3) made identification of any adequate periodic function problematic.
This paucity of spikes did not refrain Geman and Roncoroni (2006) from fitting NHPP to spike
occurrences in three major US power markets (COB, PJM and ECAR), despite using even
shorter time series consisting of only 750 daily27 average prices from the period 1997–1999. A
highly convex, two-parameter periodic intensity function was chosen to ensure that the price
jump occurrence clusters around the peak dates and rapidly fades away; this effect indeed
can be observed for PJM and ECAR prices, but not for COB. The parameters were identified
using 6, 16 and 27 (for COB, PJM and ECAR, respectively) spike occurrences, which makes
the calibration results highly questionable, especially for the COB market. Hopefully, when
larger homogeneous datasets become available (or perhaps when hourly data is considered)
the application of NHPP will be statistically justified.

4.4.2 Calibration of Jump-Diffusion Models

The problem of calibrating jump-diffusion models is related to a more general one of estimat-
ing the parameters of continuous-time jump processes from discretely sampled data. A whole
range of methods have been developed for this purpose. Particularly interesting are the esti-
mation procedures that involve the characteristic function: the maximum likelihood (ML) and
partial maximum likelihood (PML) estimation based on Fourier inversion of the conditional
characteristic function (CCF), and the quasi-maximum likelihood (QML) estimation based on
conditional moments computed from the derivatives of the CCF evaluated at zero. Since there
is a one-to-one relationship between the distribution function and the characteristic function,
the estimation of the model parameters can be performed using the characteristic function of
the process instead of its density function without any loss of information. This is a convenient
feature, considering that analytical solutions for characteristic functions of processes are avail-
able for a wider set of models then there are solutions that yield an expression for the density
functions.

Many techniques discretize the SDE governing the price dynamics before actually per-
forming the computations. For instance, a mean-reverting diffusion (4.26) can be discretized
as an autoregressive time series of order 1, i.e. AR(1), see Section 3.4.4. Similarly, a mean-
reverting jump-diffusion is equivalent to a set of two AR(1) processes with different noise
terms. The second, ‘jump’ AR(1) process is chosen with probability equal to the intensity of
the Poisson component. However, even after discretization, the discontinuities inherent in the
jump-diffusion processes cause problems. The likelihood function includes an infinite sum
over all possible numbers of jump occurrences in a given time interval. It has to be either ap-
proximated (e.g. by a mixture of normal distributions as in Ball and Torous (1983)) or truncated
(as in Huisman and Mahieu (2001)) to allow for numerical computation of ML estimates.

A potentially undesirable empirical property of ML-type methods of calibrating jump-
diffusion processes is that they tend to converge on the smallest and most frequent jump
component of the actual data. Yet we would rather want to capture the lower frequency, large
jump component. ML-type estimation may therefore not have the properties we are looking
for in a jump-diffusion setting. Moreover, as most empirical studies are concerned with daily

27 Apparently the datasets comprised only business day prices.
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average prices, we face the problem of calibrating a relatively large number of parameters
from datasets typically not exceeding a few hundred observations. The obtained estimates
(especially of the jump component) tend to be unstable, unreasonable or even out-of-range.

Instead of following the statistically sound ‘maximum likelihood’ route, many practitioners
use a hybrid or stepwise approach. First, the jumps are disentangled from the mean-reverting
diffusion through a jump-filtering procedure. Once the jump events have been identified, their
frequency (intensity) can be extracted by simple counting, and the distributional parameters
describing the severity of the jumps can be obtained by standard identification techniques.
Next, the mean-reverting ‘jump-free’ diffusion is calibrated from the filtered series, e.g. using
ML, moment or linear regression estimators.

In order to filter out the jumps from the original price data we first need to decide what
we mean by normal, non-jumping price behavior. To do so we specify a threshold and use
it to extract the jumps (recall the discussion in Section 2.2.4). For instance, we might decide
that price returns beyond three standard deviations should be considered as jump events. This
procedure might be repeated iteratively until no returns exceeding three standard deviations
remain at that specific iteration. In some cases it might be worth while to inspect visually the
filtered signal for any remaining spikes since automated procedures do not always perform
satisfactorily. For example, Weron (2006) decided to lower the threshold to 2.5 so that all
‘obvious’ peaks were captured. Borovkova and Permana (2004) considered as jumps those
price moves that were outside 90% prediction intervals, implied by the normal distribution with
the mean and variance given by the 60-days moving average and 60-days moving variance of
the price moves. Yet another approach was used by Geman and Roncoroni (2006) who filtered
raw price data using different thresholds and selected the one leading to the best calibrated
model in view of its ability to match the kurtosis of observed daily price variations. Last but
not least, all kinds of smoothing techniques could be utilized, including wavelet filtering (see
Case Study 2.4.8).

4.4.3 Case Study: A Mean-Reverting Jump-Diffusion Model for
Nord Pool Spot Prices

Let us now calibrate a mean-reverting jump-diffusion model to Nord Pool market daily average
system prices, Pt , from December 30, 1996 until March 26, 2000. The choice of this particular
time period is not incidental, see Case Study 4.4.8. As discussed in Section 2.3 and depicted
in Figure 2.8, the annual cycle can be quite well approximated by a sinusoid of the form:

St = A sin

(
2π

365
(t + B)

)
+ Ct. (4.30)

Following Weron (2006) we propose to estimate the parameters through a two-step procedure.
First, a least squares fit is used to obtain initial estimates of all three parameters (A, B and
C). Then the time shift parameter B is chosen such as to maximize the p-value of the Bera–
Jarque test for normality28 applied to deseasonalized and spikeless log-prices (see below). This
procedure yields: Â = 45.19, B̂ = 94.8 and Ĉ = −0.0295.

Like demand, spot electricity prices are not uniform throughout the week. The intra-week
and intra-day variations of demand caused by different levels of working activities translate

28 See, e.g., Spanos (1993) for test definition and implementation details.
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Figure 4.9 Top panel: Logarithm of the deseasonalized, with respect to the annual and weekly cycles,
Nord Pool market daily average system price since December 30, 1996 until March 26, 2000 (1183 daily
observations, 169 full weeks). The original prices were plotted in Figure 2.8. Circles denote spikes; for
spike definition see text. Bottom left panel: The normal probability plot of the stochastic part Xt of the
deseasonalized log-price dt in Equation (4.33). The crosses form a straight line indicating a Gaussian
distribution. Bottom right panel: The tail of the spike size distribution. Clearly, the normal and log-normal
laws underestimate the severity of extreme spikes; spikes rather follow a power-law of order x−1.4

into periodical fluctuations in electricity prices. However, in the present analysis we do not
address the issue of intra-day variations and analyze only daily average prices. We deal with
the intra-week variations by preprocessing the data using the moving average technique, which
reduces to calculating the weekly profile st and subtracting it from the spot prices (see Section
2.4.3). In what follows we model the logarithm of the deseasonalized prices (with respect to
the weekly and annual cycles; in short: deseasonalized log-prices):

dt = log(Pt − st − St ). (4.31)

The time series dt is plotted in the top panel of Figure 4.9.
Despite their rarity, price spikes are the very motive for designing insurance protection

against electricity price movements. This is one of the most serious reasons for including
jump components in realistic models of electricity price dynamics. Reflecting the fact that
on the daily scale spikes typically do not last more than one time point (i.e. one day), as in



JWBK120-04 JWBK120-Weron October 6, 2006 17:23 Char Count= 0

142 Modeling and Forecasting Electricity Loads and Prices

Weron et al. (2004b), we let a positive jump be always followed by a negative jump of about the
same magnitude. This is achieved by letting dt be the sum of a mean reverting stochastic part Xt

and an independent jump component. Following the standard approach put forward in Section
4.4.1, the jump component is modeled by a compound Poisson process of the form Jt dqt ,
where Jt is a random variable responsible for the spike severity and qt is a (homogeneous)
Poisson process with intensity κ .

The choice of Jt and κ depends on the definition of the spike. We adopt the following: a
spike is an increase in the log-price (formally: an increase in dt ) exceeding H = 2.5 standard
deviations of all price changes (i.e. dt − dt−1) followed by a decrease in the price. The threshold
level is set arbitrarily. The usual threshold H = 3 results in only six spikes in the whole series,
while H = 2.5 yields nine spikes and captures all ‘obvious’ peaks seen in the plot of dt (see
Figure 4.9). The extraction of the spikes from the original series is performed iteratively – the
algorithm filters the series and removes all price changes greater than H standard deviations
of all price changes at that specific iteration. The algorithm is repeated until no further spikes
can be filtered. After the spikes are extracted, the price dt at these time points is replaced by the
arithmetic average of the two neighboring prices yielding the deseasonalized and ‘spikeless’
log-prices Xt .

The extracted nine spikes do not allow for a sound statistical analysis of the spike severity
or intensity. For the sake of simplicity we let Jt be a log-normal random variable log Jt ∼
N (μ, ρ2), although the empirical spike size distribution seems to have heavier, power-law tails
(see the bottom right panel in Figure 4.9).29 Since Jt represents the size of the logarithm of the
spike magnitude it is truncated at the maximum price attainable in the market (10 000 NOK) to
ensure a finite mean of the price process Pt . Moreover, we let qt be a HPP with intensity κ . Again
the sample suggests that this may not be the best choice – six spikes were observed in winter
and only one in each of the other seasons. However, rigorous estimation of a periodic intensity
function (of a NHPP) using only nine time points is not possible. Consequently, the maximum
likelihood estimates of the jump component parameters are μ̂ = −1.2774, ρ̂ = 0.65124 and
κ̂ = 0.0076207.

Putting all the facts together, the jump-diffusion model has the following form:

dt = Jt dqt + Xt , (4.32)

or

Pt = st + St + eJt dqt +Xt , (4.33)

where Xt is the stochastic component. The exponent in the last term of Equation (4.33) reflects
the fact that the marginal distribution of Xt is approximately Gaussian, whereas the deseason-
alized, with respect to the weekly and annual cycles, and ‘spikeless’ spot prices can be very
well described by a log-normal distribution, i.e. their logarithms are approximately Gaussian.
The fit is surprisingly good, the Bera–Jarque test for normality yields a p-value of 0.97 (see
also Figure 4.9). For comparison, the p-value for the ‘spiky’ deseasonalized log-prices dt is
less than 0.0001, allowing us to reject normality at any reasonable level.

Since the the marginal distribution of Xt is approximately Gaussian we are tempted to pro-
pose the simplest mean-reverting model with Gaussian marginals: the mean-reverting diffusion
(4.26) also known as the Vasiček model. This is a one-factor model that reverts to the mean

29 The Pareto law should, hence, constitute a good model. Unfortunately, both moment and maximum likelihood estimates yield
unreasonable values for the parameters, either out of range or a few orders of magnitude higher than the slope of the power-law fit.
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α/β with β being the magnitude of the speed of adjustment. The conditional distribution of X
at time t is normal with mean and variance:

E[Xt ] = α

β
+

(
X0 − α

β

)
e−βt , (4.34)

Var[Xt ] = σ 2

2β

(
1 − e−2βt

)
, (4.35)

respectively. These relations imply that E[Xt ] → α/β as t → ∞. Starting at different points
the trajectories tend to reverse to the long run mean and stabilize in the corridor defined by the
standard deviation of the process.

The mean-reverting diffusion can be calibrated in various ways, using maximum likelihood,
moment or linear regression estimates. Here we utilize the Generalized Method of Moments
(GMM). The basic idea of GMM is to choose the parameters so as to match the moments of the
model. The moment conditions and the weighting matrix have to be chosen by the analyst based
on the problem at hand. The moment conditions m(θ ) set means of functions of the data and
parameters to zero. They are commonly based on the error terms from the model. The weighting
matrix W determines the relative importance of matching each moment. GMM chooses the
parameters that minimize m(θ )′Wm(θ ). A sample application of the GMM technique to data
up to December 10, 1999, yields: α̂ = 0.2760, β̂ = 0.0560 and σ̂ = 0.0459. We will return to
these results in Case Study 4.4.8.

4.4.4 Hybrid Models

One of the criticisms raised against reduced-form models is that they are not capable of
incorporating non-price information. The solution to this problem might be the introduction of
fundamental variables into (4.29), the jump-diffusion price dynamics equation. Since spikes
generally occur only when the system is significantly constrained we can, for instance, introduce
the jump parameters (intensity and/or severity) as functions of load, generation capacity or
reserve margin. Under heavy weather conditions (heat waves in central USA, cold temperatures
in Scandinavia, etc.), when the majority of generation is dispatched, transmission congestion
or outages generally lead to price spikes.30 This suggests that temperature could be used as
a fundamental factor as well. Compared to power system variables, it has the advantage of
possessing a well-documented history and of being freely available to all market players.

Obviously incorporating fundamental variables into price dynamics is not just the domain
of quantitative models. In fact, in Sections 4.3.5 and 4.3.9 we have already discussed this issue
in the context of, respectively, linear and non-linear time series models. It is only a matter of
terminology whether we talk about models with exogenous variables or hybrid models. The
former term is more common in the engineering literature, while the latter in the financial.
Moreover, since there are no well-specified thresholds as to the number of structural drivers
used, it is almost impossible to distinguish between fundamental models with some factors
represented by time series or stochastic equations and hybrid statistical or quantitative models
with exogenous variables. Consequently, most of the models reviewed in Section 4.2 could be
classified as hybrid solutions. Likewise, many of the hybrid models discussed below could be
called fundamental.

30 For a textbook example see Case Study 2.2.1.
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Barlow (2002) used a relatively simple hybrid scheme: a mean-reverting process for the
demand and a fixed supply function. Because of the non-linear nature of the supply function,
the resulting mean-reverting and ‘jump-free’ (i.e. without the Poisson component) diffusion
process for the spot price could produce spikes in the simulated trajectories. Barlow calibrated
the model to Alberta and California spot prices and concluded that it provided a better in-sample
fit than the classical mean-reverting diffusion (4.26).

A more elaborate hybrid structure was postulated by Burger et al. (2004). Their model for
the spot price incorporates a SARIMA forecast of the system load, a deterministic function
which specifies the expected relative availability of power plants, an estimate of the price-load
curve, a SARIMA time series representing the residual short-term spot market fluctuations
and an arithmetic Brownian motion modeling the dynamics of forward prices. Burger et al.
calibrated the model to EEX prices and priced swing options via Monte Carlo simulations.

Davison et al. (2002) proposed a hybrid model for spot electricity prices in which the
price switches randomly between two levels, governed by Gaussian random variables with
different parameters. The regime-switching mechanism is driven by the ratio between aver-
age power demand and generation capacity. Anderson (2004) extended the model and pro-
posed a four-module specification: a model for forced outages, a model of maintenance out-
ages, an electrical load model and a price module which combines the results of the previ-
ous three modules. The model was calibrated to and successfully tested with data from the
PJM electricity market. It was shown to perform very well in simulating PJM market prices
and had a primary advantage over other models in its ability to adapt to changing system
conditions.

Eydeland and Wolyniec (2003) advocated a similar solution. Their ‘fundamental hybrid’
model consists of six modules: a fuel price model calibrated to forward fuel prices, a model for
forced and planned outages, a generation stack building module, a model for daily temperatures,
a demand function module which uses temperature forecasts and finally a spot price module
that performs the bid stack transformation of the demand, with the bid stack defined as a certain
perturbation of the generation stack. Eydeland and Wolyniec calibrated the model to various
power markets in the USA and concluded that it preserves the major stylized facts of electricity
prices.

These examples clearly show that in an attempt to make the models realistic, more and more
fundamental factors are being incorporated. Although appealing at first sight, this procedure
has a major drawback. It eventually leads to highly complex fundamental models, which
require lots of quality data and are subject to a significant modeling risk. These deficiencies,
in turn, limit the models’ usefulness in day-to-day market operations. As we have said, a
delicate balance between model parsimony and adequacy to capture the unique characteristics
of power prices must be maintained. Since the data availability constraint is a serious limitation
for many players, in the sections to follow we will illustrate derivatives pricing using reduced
form models only. Naturally, the methodology can be extended to cover hybrid models as
well.

4.4.5 Case Study: Regime-Switching Models for Nord Pool Spot Prices

Up to this point we have only considered jump-diffusions. Before we turn to derivatives pricing,
let us thus see whether other processes also fulfill the modeling requirements of parsimony
and statistical adequacy. Of all the techniques discussed so far, the (Markov) regime-switching
models introduced in Section 4.3.9 seem the most feasible.
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Table 4.9 Estimation results for the two-regime models fitted to the deseasonalized log-price dt for
the period January 3, 1997–April 27, 2000. E(Yt,i ) is the level of mean reversion for the base regime
(i = 1) and the expected value of the spike regime (i = 2), qii is the probability of remaining in the
same regime in the next time step and P(R = i) is the unconditional probability of being in regime i

Parameter estimates Statistics

Regime β ci σ 2
i E(Yt,i ) Var(Yt,i ) qii P(R = i)

Two-regime model with Gaussian spikes

Base 0.0427 0.2086 0.0018 4.8801 0.0221 0.9802 0.9488
Spike — 4.9704 0.0610 4.9704 0.0610 0.6337 0.0512

Two-regime model with log-normal spikes

Base 0.0425 0.2077 0.0018 4.8807 0.0221 0.9800 0.9484
Spike — 1.6018 0.0024 4.9678 0.0600 0.6325 0.0516

Two-regime model with Pareto spikes

Base 0.0459 0.2242 0.0020 4.8822 0.0226 0.9861 0.9700
Spike — 6.5782 4.2382 4.9980 0.8294 0.5497 0.0300

In this case study we fit three regime-switching models to the logarithm of the deseasonalized
average daily spot prices from the Nord Pool power exchange since January 3, 1997 until
April 27, 2000. For details on obtaining dt from raw data see Case Study 4.4.3. We consider a
two-regime specification with the base regime dynamics given by

dYt,1 = (c1 − βYt,1)dt + σ1dWt , (4.36)

where Wt is the Brownian motion process, i.e. its increment dWt is a Gaussian i.i.d. random
variable. Note that (4.36) can be discretized as an autoregressive time series of order one, i.e.
AR(1). The dynamics in the spike regime follow one of three different distributions (the Matlab
toolbox on the accompanying CD additionally allows for calibration of a 2-regime model with
both regimes driven by mean-reverting processes of the form (4.36)):� Gaussian Yt,2 ∼ N (c2, σ

2
2 ),� log-normal log(Yt,2) ∼ N (c2, σ

2
2 ),� Pareto Yt,2 ∼ FPareto(c2, σ

2
2 ) = 1 − ( c2

x

)σ 2
2 .

The estimation results are summarized in Table 4.9. As expected, in all models the probability
of remaining in the base regime is very high: q11 ≈ 0.98 for the Gaussian and log-normal
model specifications and q11 = 0.9861 for the Pareto specification. However, the probability
of remaining in the spike regime is also relatively high: q22 = 0.6337 for the Gaussian, q22 =
0.6325 for the log-normal and q22 = 0.5497 for the Pareto model. The data points with a high
probability of being in the jump regime, P(Rt = 2) > 0.5, tend to be grouped in blocks, see
Figure 4.10. Unlike jump-diffusions, regime-switching models allow for consecutive spikes in
a very natural way.

Considering the unconditional probabilities we find that there is a 5.12%, 5.16% and 3.00%
probability of being in the spike regime for the Gaussian, log-normal and Pareto models,
respectively. Surprisingly, the Gaussian and log-normal distributions produce almost identical
results. A closer inspection of the parameter estimates uncovers the mystery – with such a
choice of parameter values the log-normal distribution very much resembles the Gaussian law.
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Figure 4.10 The deseasonalized spot Nord Pool log-price dt since November 4, 1998 until February 12,
1999 (top panel). The probability of being in the spike regime for the two-regime model with log-normal
spikes (bottom panel)

However, using a heavy-tailed distribution, like the Pareto law, gives lower probabilities for
being and remaining in the spike regime and a clearly higher variance.

Simulated price trajectories were used to check for similarity with real prices and stability
of results. Re-estimating the models with simulated data led to only slightly biased estimates
for the parameters. We also checked the simulation results considering spikes as the most
distinguished feature of electricity spot prices, see Table 4.10. Defining a spike as a change
in the log-prices that is greater than 30% – either in a positive or negative direction – we find

Table 4.10 Performance of the estimated regime-switching models is assessed by
comparing the number of spikes, the return distributions’ upper quantiles (v0.99 and
v0.995) and the extreme events. Mean values over 1000 simulated trajectories are
provided for each of the three models

# spikes v0.99 v0.995 max min

Data (dt ) 9.00 0.1628 0.2238 1.1167 −0.7469
2-regime (normal) 31.79 0.3574 0.4808 0.7962 −0.8024
2-regime (log-normal) 31.04 0.3511 0.4762 0.7912 −0.7943
2-regime (Pareto) 35.56 0.4944 0.8515 3.3433 −3.3369
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that the regime-switching models produce significantly more spikes than could be observed in
real data. While the number of extreme events are overestimated in all models (see the values
of the upper quantiles v0.99 and v0.995 in Table 4.10), the magnitude of the largest spike in
either direction is underestimated in the Gaussian and log-normal models and overestimated
by the Pareto distribution. Perhaps alternative heavy-tailed distributions, like truncated Pareto
or truncated α-stable laws, would be more appropriate for the spike regime.

This case study shows that parsimonious regime-switching models do not have any ad-
vantages over jump-diffusions, at least as far as the statistical properties of the simulated
trajectories are concerned. Hence, we will not study them further in this chapter. The concept
of derivatives pricing will be illustrated using the jump-diffusion model.

4.4.6 Hedging and the Use of Derivatives

Price volatility alone does not create serious risk, but when a volatile input price is coupled
with a fixed output price or vice versa, a company can face financial distress. The first situation
concerns, for instance, utilities that purchase power in the spot market and deliver it to customers
at capped (by the regulator) prices. If the spot price spikes in a given delivery period, the utility
could lose several years’ worth of profits. This is an unacceptable risk, and the utility would
be interested in hedging it. Also a marketer that buys power from generators in a spot market
and sells it through fixed price contracts faces similar risks.

On the other hand, generators can be placed in the opposite setup if they sell in a market
that is competitive and dominated by generation from another fuel. If their fuel costs increase
more than the fuel costs of other types of generation, then it is likely that spot power prices
will not completely cover their increased fuel prices and their profits will suffer.

These few examples clearly show that power market participants are generally highly sus-
ceptible to market risk – or more specifically, price risk.31 To stay in business they have to
hedge this risk, i.e. eliminate or limit it, usually at the expense of potential reward. Of all the
techniques developed for this purpose, derivatives are perhaps the most useful. Derivatives al-
low market players to transfer risk to others who could profit from taking the risk, and they have
become an increasingly popular way for investors to isolate cash earnings from fluctuations in
prices or other risk factors.

Derivatives are contracts, financial instruments, which derive their value from that of an
underlying asset (e.g. spot electricity price, an electricity price index). The four basic build-
ing blocks are forward contracts, futures, swaps and options. The former three constrain the
counterparties to exchange future cash flows (or commodities) at today’s specified prices;
they differ in the frequency of payments and the level of credit risk. The latter give the buyer
the right, but not the obligation, to exercise the contract. The seller, though, is compelled to
perform on the contract at the buyer’s discretion. All four building blocks can be arranged
in different combinations allowing for structuring of the company’s risk profile. Specifi-
cally, option contracts exhibit abundant flexibility which makes them very attractive hedging
instruments.

31 However, market or price risk (resulting from unexpected changes in asset or commodity prices) is not the only type of risk
faced by businesses. Others include credit/default risk, operational risk (equipment failure, fraud), liquidity risk (inability to buy or
sell commodities at quoted prices) and political risk (new regulations, expropriation).
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4.4.7 Derivatives Pricing and the Market Price of Risk

In this context derivatives pricing plays a central role. We need to know the fair value of a
hedge we want to implement, otherwise choosing among possible solutions will be difficult
and inefficient. The standard approach to pricing a derivative security is to construct a portfolio
that will perfectly replicate the payout of the contract. This generally involves storing a certain
amount of the underlying instrument for the duration of the contract. Then the argument of
the absence of arbitrage32 forces the price of this derivative to be equal to the price of the
replicating portfolio.

If it is possible to build a (dynamically adapted) portfolio that will perfectly replicate any
payout, then the market is said to be complete. In a complete market there exists a unique
risk-neutral probability measure Pλ (equivalent to the original ‘risky’ probability measure
P) under which the price of any contingent claim is equal to the expectation of its payout
discounted at the risk-free rate.

In the case of electricity, however, the no-arbitrage approach fails. Electricity itself cannot
be stored efficiently. Storage possibilities of energy sources (water, gas, oil, coal) are also very
limited, financially demanding and generally available only to the generators. This prevents us
from using no-arbitrage arguments for pricing derivatives written on the spot electricity price
because one cannot create a replicating trading strategy involving the spot price.

As we have discussed in Chapter 1, most electricity markets also have a more or less
developed financial market with futures and forward contracts traded. Though the spot price
is not an asset that can be used in a replicating portfolio, futures and forward contracts, on the
other hand, are regular financial contracts that can be traded and used in a replicating strategy.
Consequently, derivatives written on these contracts could be priced with the no-arbitrage
principle. The question is whether information contained in the prices of these derivatives and
the forward prices themselves could be used when evaluating derivatives on the spot price.
Note, that the term forward price denotes the price that has to be paid at a specified future date
for delivery of the underlying instrument (asset, commodity, etc.) on that day. As such it is
related not only to forward contracts, but also to futures and swaps.

In the classical financial setup, the relationship between spot and forward prices (and be-
tween prices of futures or forward contracts with different maturities) is implied by the absence
of arbitrage. For commodities, this is the well-known cost-of-carry relationship, which states
that the forward price must exceed the spot price by the cost of carrying the physical com-
modity until the expiry date of the contract. This cost is determined by the physical storage
costs and the interest lost by investing into the commodity. In practice this relationship rarely
holds, in particular, due to the limited ability to store a commodity. The notion of the conve-
nience yield circumvents this problem. The convenience yield is defined as the premium to a
holder of a physical commodity as opposed to a futures or forward contract written on it. The
relationship between the spot price St and the forward price Ft,T for delivery at time T is then
given by

Ft,T = St e
(rt −yt )(T −t), (4.37)

where rt is the riskless interest rate and yt is the convenience yield prevailing at time t . The
convenience yield concept can be further generalized by allowing yt to be a non-constant

32 In the financial context, arbitrage denotes a situation when a profit can be made without taking risk. A colloquial name for
arbitrage is ‘free lunch’. Consequently, the terms ‘no-arbitrage’ and ‘absence of arbitrage’ are often paraphrased as ‘no free lunch’.
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deterministic function, a seasonal function dependent on both t and T , a deterministic function
of the spot price or even a stochastic process.

The important question is whether the notion of the convenience yield does make sense in
the context of electricity. If the commodity is non-storable, can we quantify the benefit from
holding the commodity, not to mention the storage cost? As there is no consensus on this
issue, we propose to turn to a related, but more general notion of the risk premium. Recall
from Section 4.2 that the risk premium is the reward for holding a risky investment rather
than a risk-free one. More precisely, the risk premium is the difference between the spot price
forecast, which is the best estimate of the going rate of electricity at some specific time in the
future, and the forward price, i.e. the actual price a trader is prepared to pay today for delivery
of electricity in the future:

In the financial mathematics literature it is more common to talk of the market price of risk,
rather than the risk premium. The market price of risk (often denoted by λ) is the difference
between the drift in the original ‘risky’ probability measure P and the drift in the risk-neutral
measurePλ in the stochastic differential equation governing the price dynamics. The spot price
forecast is the expected value of the spot price at some future date with respect to P , while the
forward price is the expected value of the spot price with respect to Pλ. If λ is positive then
the risk premium

RP = EP (St ) − EPλ

(St ) = EP (St ) − Ft , (4.38)

is also positive, and vice versa.
Despite differences, most electricity spot price models share a common feature that makes

derivatives pricing problematic. Namely, when calibrating these models we are using real
world data and not the ‘riskless world’ prices. In order to price derivatives we need to take into
account the risk premium observable in the market. Due to the non-storability of electricity,
we are left with two alternatives:� model the forward price dynamics instead of the spot prices, or� calibrate the spot models not only to spot prices but also to forward (or in general: derivative)

prices and in this way infer the risk premium (or the market price of risk).

The benefit from modeling the forward curve directly is that, unlike with the spot models,
there is no problem fitting the model to the current forward curve or pricing derivatives writ-
ten on this curve, as the risk premia are inherent in forward prices. However, the applica-
tion of this approach to pricing derivatives written on the spot electricity price is question-
able (see the left panel in Figure 4.11) since the classical spot-forward price relationship is
violated due to the non-storability of electricity. Another problem is the fact that forward
(futures) prices do not reveal information about price behavior on an hourly or even daily
timescale.

This is a serious drawback as we are particularly interested in the modeling of spot electricity
prices. First, because a proper representation of the spot price dynamics is a necessary tool for
trading purposes and optimal design of supply contracts. Second, because derivatives written
on the spot price constitute a considerable part of the market. Consequently, in Case Study
4.4.8 we will follow the second line of reasoning – see the right panel in Figure 4.11 – and
calibrate the spot models not only to spot prices but also to derivative prices. This procedure
will let us infer the market price of risk necessary for derivatives valuation.
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Figure 4.11 Two alternative approaches to pricing electricity derivatives

4.4.8 Case Study: Asian-Style Electricity Options

A particularly interesting example of an electricity derivative instrument is the Asian-style
option that was traded at Nord Pool. It is interesting because, to the best of our knowledge, it
is the only Asian-style exchange-traded contract. Options trading at Nord Pool commenced on
October 29, 1999. Two types of contracts were offered: European-style options (EEO) written
on the exchange-traded standardized forward contracts and Asian-style options (AEO). By
definition, an Asian-style option is exercised and settled automatically, in retrospect, against
the price of the underlying instrument during a given period. AEO options are settled against
the arithmetic average of the spot system price in the settlement period that starts after the
option expires. This is in contrast to typical financial Asian options which are settled against
the average price during the trading period. However, such a ‘financial’ specification would
not make sense in electricity markets due to the seasonality patterns.

AEO had settlement periods that corresponded to the delivery period for the ‘underlying’
futures block contract (a four-week period). There were three AEO series listed for trading
and clearing with the three nearest block contracts as ‘underlying’ futures market (Eltermin)
contracts. A new series was listed on the first trading day after a block contract had gone
to delivery. A call (put) AEO option was in-the-money if the difference between the average
system price during the settlement period and the strike price was positive (negative). Settlement
took place the day after the last trading day in the settlement period. There was no payment if
the option was at-the-money or out-of-the-money.

In Case Study 4.4.3 we have calibrated a seasonal, mean-reverting jump-diffusion model
(4.33) to Nord Pool market daily average system prices from December 30, 1996 until March
26, 2000. The choice of this particular time period is not incidental – 1996 was a dry year with
exceptionally high electricity prices and the first part of 2000 is used for testing the model.
March 26, 2000 is the last day of the four-week settlement period for the AEO–GB0300 options
(i.e. AEO options for which the ‘underlying’ futures block contract was GB0300 with delivery
between February 28 and March 26). We could not use data beyond March 26, 2000 because
later that year trading was very scarce with the last transaction involving AEO options taking
place on February 2, 2001. Due to the very low frequency of the spikes, in Case Study 4.4.3
we used the whole time period for calibration of the jump components and, as a result of the
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estimation scheme, of the seasonal components. The stochastic part Xt was calibrated using
data only up to December 10, 1999. The remaining period will be used for out-of-sample
pricing of AEO options.

Since we calibrate the stochastic part, and hence the whole model, using real world
data we need to include the risk premium before we start pricing options or other deriva-
tives. For simplicity, we assume that the market price of risk λ is a deterministic constant
and, hence, a predictable process. By virtue of the Girsanov theorem, there exists a prob-
ability measure Pλ, equivalent to the original ‘risky’ probability measure P , such that the
process

W λ
t ≡ Wt +

∫ t

0

λ(s)ds = Wt + λt, (4.39)

is a Brownian motion process under Pλ.33 Using Itô calculus we can write:

dXt = β

(
α

β
− Xt

)
dt + σdWt = β

(
α

β
− Xt

)
dt + σd(W λ

t − λt)

= β

(
α − λσ

β
− Xt

)
dt + σdW λ

t . (4.40)

Under the new measure Xt follows the same Vasiček-type of SDE with the same speed of
mean reversion β and the same volatility σ , but a different long-term mean (α − λσ )/β.

The measure Pλ can be treated as risk-adjusted or risk-neutral. This means that if we esti-
mated the market price of risk then we would know the dynamics of the stochastic component
Xt in the riskless world and, hence, we could price any derivatives on the spot electricity price.
We have to mention, though, that no analytical formulas are known for the Nord Pool variant
of the Asian option. In what follows we will thus use Monte Carlo simulations. The pricing of
a particular option for a given day will be based on the average payout from 5000 simulated
price trajectories of the price process Pt . The seasonal and spike components’ parameters are
estimated from the whole time period and the stochastic component’s parameters are estimated
from a time series ending on the previous day.

One way of finding the market price of risk is to imply it from option prices. This tech-
nique resembles recovery of the implied volatility in the Black–Scholes model. The procedure
consists of finding λ∗ such that it minimizes the mean square error between the market and
model option prices. The market prices are in fact averages of the bid and ask offers. We
could not use transaction data since on some days no transactions took place. We start with
λ = 0 and then run a simplex minimization routine (Matlab implementation). This procedure
is time consuming since at every minimization time step the option price has to be evaluated
using Monte Carlo simulations. The results for AEO call options are shown in the top panel
of Figure 4.12. Evidently the implied market price of risk is not constant but can be very well
approximated with a linear function λ(t). In related studies Cartea and Figueroa (2005) and
Lucia and Schwartz (2002) calibrated and used for pricing derivatives a constant λ. Our results
show that using the simplified constant form of the market price of risk is too restrictive and
may lead to large pricing errors.

33 See Musiela and Rutkowski (1997) for details.
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Figure 4.12 Top panel: The market price of risk λ implied from AEO call option prices and a linear
fit to the first 31 values (black dots), i.e. until December 10, 1999. The linear fit is remarkably similar to
the one for the whole time period (not shown here). Bottom panel: Spot electricity and GB0300 futures
prices during the period October 29, 1999–February 15, 2000. Compare with the top panel and note the
similarity between the market price of risk and the futures price. Circles denote the four days for which
the pricing results are presented in Figure 4.13

The fit to the implied market price of risk for the first 31 trading days (i.e. until December 10,
1999), y1 = −0.0075x + 8.15, is remarkably similar to the one for the whole time period
shown in Figure 4.12: y2 = −0.0074x + 7.98. Hence, it can be used to forecast future (after
December 10, 1999) values of λ. These values, in turn, let us price options using the risk-
adjusted probabilities. Sample results of such a procedure are shown in Figure 4.13. The earliest
day in this sample (November 2, 1999) is an in-sample verification, but the remaining three
days are out-of-sample (at least as far as the market price of risk is concerned) confirmations
of the usefulness of the approach.

Interestingly, the plot of the market price of risk closely resembles the ‘underlying’ futures
price (compare the panels in Figure 4.12). In fact, linear regression of λ on the futures price
yields a very good fit with R2 = 0.9764. This is probably due to the fact that λ changes the
long-term mean of the stochastic component and the GB0300 futures price is a forecast of
the spot electricity price during delivery, which coincides with the settlement period of the
option. When the fundamental factors move the futures prices, the option prices have to adjust
accordingly.
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Figure 4.13 Market and model prices of AEO call options. The fit is remarkably good, even for the
out-of-sample dates, i.e. after December 10, 1999

4.5 SUMMARY

Price forecasts have become a fundamental input to an energy company’s decision-making and
strategy development. The proposed solutions can be classified both in terms of the planning
horizon’s duration and in terms of the applied methodology. In this chapter we have reviewed
two groups of techniques: statistical and quantitative.

While the efficiency and usefulness of purely statistical models (also called technical analysis
tools) in financial markets is often questioned, in power markets these methods do stand a better
chance. The reason for this is the seasonality prevailing in electricity price processes during
normal, non-spiky periods. It makes the electricity prices more predictable than those of ‘very
randomly’ fluctuating financial assets. We have shown that indeed some of the statistical
techniques provide accurate descriptions of electricity price dynamics. In particular, the non-
linear, regime-switching threshold autoregressive time series models proved to be valuable
forecasting tools.

Quantitative models, on the other hand, are not required to accurately forecast hourly prices
but to recover the main characteristics of electricity prices, typically at the daily time scale. If
the price process chosen is too simple, the results from the model are likely to be unreliable. On
the other hand, if the model is too complex the computational burden will prevent its on-line
use in trading departments. The jump-diffusion and Markov regime-switching models offer the
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best of the two worlds; they are a trade-off between model parsimony and adequacy to capture
the unique characteristics of electricity prices. Utilizing the concept of the risk premium, these
models also allow for pricing derivatives written on spot electricity.

4.6 FURTHER READING� For surveys of electricity price modeling and forecasting see Amjady and Hemmati (2006),
Angelus (2001), Bunn (2000), Bunn (2004), Bunn and Karakatsani (2003), Conejo et al.
(2005a), Eydeland and Wolyniec (2003), Kaminski (1999), Lewis (2003), Pilipovic (1998),
Shahidehpour et al. (2002) and Weron and Misiorek (2006).� See Wood and Wollenberg (1996) for a comprehensive discussion of production-cost models.
The notion of conjectural variation is explained in Vives (1999). See Batlle’s (2002) doctoral
dissertation for an original account of the strategic production-cost model (SPCM).� Day et al. (2002), Smeers (1997) and Ventosa et al. (2005) review the approaches to modeling
strategic bidding behavior in power markets. For sample applications of the Cournot–Nash
framework see Borenstein et al. (1999), Cabero et al. (1998) and Wylomańska and Borgosz-
Koczwara (2005). Gilbert et al. (2002), Green and Newbery (1992), Hinz (2003), Hobbs
et al. (2000) and Wylomańska and Borgosz-Koczwara (2004) utilize the alternative supply
function equilibrium approach.� Further examples of fundamental modeling of electricity prices include Dueholm and Ravn
(2004), Kian and Keyhani (2001) and Skantze and Ilic (2001). In a recent paper, Kanamura
and Ōhashi (2006) proposed an interesting structural model that can generate price spikes
and fits PJM price data better than a jump-diffusion approach and the hybrid model of
Barlow (2002). They further applied the model to obtain the optimal operation policy for a
pumped-storage hydropower generator and showed that it can provide more realistic optimal
policies than the jump-diffusion model.� Murphy (1999) is widely considered the bible of technical analysis.� Many STPF studies use neural networks in combination with other techniques, like similar-
day methods (Mandal et al. 2006), fuzzy logic (Amjady 2006, Iyer et al. 2003. Rodriguez and
Anders 2004), wavelets (Yao et al. 2000), extended Kalman filter as an integrated adaptive
learning and confidence interval estimation method (Zhang and Luh 2005) or dynamic
clustering (Li and Guo 2002).� For a review of loss distributions (extreme value distributions, EVT) see Burnecki et al.
(2005). Risk processes, including compound Poisson processes, are reviewed in Burnecki
et al. (2004) and Čižek et al. (2005).� Periodic time series models are the topic of Franses and Paap (2004). Broszkiewicz-Suwaj
et al. (2004) review the statistical tools for detecting periodic correlation.� See Clements et al. (2004), Franses and van Dijk (2000), Granger and Teräsvirta (1993)
and Tong (1990) for surveys of non-linear time series modeling. Chan and Tong (1986),
Hamilton (1990) and Hansen (1997) provide further details on model identification
procedures.� A concise treatment of interval forecasting can be found in Chatfield (1993) and Granger
et al. (1989). See also Christoffersen and Diebold (2000) for methods of evaluating interval
forecasts. To the best of our knowledge, Misiorek et al. (2006) provide the first account on
interval forecasting of electricity prices. Another pertinent reference is Zhou et al. (2006),
who computed (Gaussian and uniform) confidence intervals for SARIMA models fitted to
California power market prices. However, they used the confidence intervals only as a trigger
to stop an iterative calibration scheme and have not evaluated nor analyzed interval forecasts.
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Modeling and Forecasting Electricity Prices 155� See Blanco and Soronow (2001a), Blanco and Soronow (2001b), Clewlow and Strickland
(2000) and Pilipovic (1998) for early surveys of diffusion-type electricity price models.
Deng (1999) and Escribano et al. (2002) provide interesting modifications (including time-
varying parameters, regime-switching and stochastic volatility) of the basic mean-reverting
jump-diffusion model.� The problem of calibrating jump-diffusion models, or more generally, of estimating the pa-
rameters of continuous-time jump processes from discretely sampled data is discussed in
Cont and Tankov (2003), Gourieroux and Jasiak (2001) and Hamilton (1994). Particularly
interesting are the estimation procedures that involve the characteristic function, see Single-
ton (2001).� See Hansen (1982) for properties of the Generalized Method of Moments (GMM). For
technical details on GMM and its Matlab implementation see Cliff (2003).� For a review of risk management techniques see Dowd (2002) and McNeil et al. (2005).
Consult also Clewlow and Strickland (2000), Dahlgren et al. (2003), Eydeland and Wolyniec
(2003), Kaminski (1999), Lemming (2003), Unger (2002) and Weron and Weron (2000),
which focus on power market applications.� Hull (2000) is an excellent textbook on derivatives. Musiela and Rutkowski (1997) provide
a more thorough mathematical treatment of derivatives pricing, while Wilmott (1998) con-
centrates on practical details. Čižek et al. (2005) present some of the recent achievements in
derivatives pricing, including implied volatility modeling. See Bessembinder and Lemmon
(2002), Eydeland and Wolyniec (2003), Gourieroux and Jasiak (2001) and Longstaff and
Wang (2004) for discussions on risk premia. See also Amin et al. (1999), Borovkova and
Geman (2004) and Schwartz (1997) for reviews of the convenience yield concept.
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Čižek, P., Härdle, W. and Weron, R. (eds) (2005) Statistical Tools for Finance and Insurance. Springer,
Berlin.

Clements M., Franses P. and Swanson, N. (2004) Forecasting economic and financial time-series with
non-linear models, International Journal of Forecasting 20, 169–183.



JWBK120-Bib JWBK120-Weron October 4, 2006 17:56 Char Count= 0

160 Bibliography

Clewlow, L. and Strickland, C. (2000) Energy Derivatives – Pricing and Risk Management Lacima
Publications, London.

Cliff, M. (2003) GMM and MINZ Program Libraries for Matlab. User Manual. http://mcliff.cob.vt.edu.
Cocker, T. and Lundberg G. (eds) (2005) Integrating Electricity Markets through Wholesale Markets:

EURELECTRIC Road Map to a Pan-European Market. EURELECTRIC, Brussels.
Conejo, A.J., Contreras, J., Espinola, R. and Plazas, M.A. (2005a) Forecasting electricity prices for

a day-ahead pool-based electric energy market, International Journal of Forecasting 21(3), 435–
462.

Conejo, A.J., Contreras, J., Espinola, R. and Plazas, M.A. (2005b) Day-ahead electricity price forecasting
using the wavelet transform and ARIMA models, IEEE Transactions on Power Systems 20(2), 1035–
1042.

Cont, R. (2005) Long range dependence in financial markets. In: Fractals in Engineering, J. Lévy-Véhel
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pp. 67–75.
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(PARMA) model, 116

periodic correlation, 116, 154
periodogram, 39–41, 53

sensitivity, 40
periodogram regression (GPH), see under
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price forecasting
regime, 129
regime-switching model, 127–132, 144
regional transmission organization (RTO), 19
rescaled range analysis, see under statistic
residual, 84, 85, 89, 90, 114, 118
return, 26, 32, 37, 45, 60
risk, 147
risk premium, 104, 149, 151
risk-adjusted measure, 151
risk-neutral measure, 151
rolling volatility, 45, 47
rolling volatility technique, see under seasonal

decomposition

San Diego Gas and Electric (SDG&E), 20
SARIMA, 83
seasonal ARIMA (SARIMA), see under

ARIMA
seasonal component, see under seasonal

decomposition
seasonal decomposition, 41

additive, 41, 78
backward shift operator, 42, 95, 109
Census I method, 41
differencing, 37, 42, 45, 95, 109
differencing-smoothing, 86
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