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Preface

Motivation

Mobile radio communications are evolving from pure telephony systems to multimedia
platforms offering a variety of services ranging from simple file transfers and audio and
video streaming, to interactive applications and positioning tasks. Naturally, these services
have different constraints concerning data rate, delay, and reliability (quality-of-service
(QoS)). Hence, future mobile radio systems have to provide a large flexibility and scal-
ability to match these heterogeneous requirements. Additionally, bandwidth has become
an extremely valuable resource emphasizing the need for transmission schemes with high
spectral efficiency. To cope with these challenges, three key areas have been the focus of
research in the last decade and are addressed in this book: Code division multiple access
(CDMA), multiple antenna systems, and strong error control coding.

CDMA was chosen as a multiple access scheme in third generation mobile radio sys-
tems such as the universal mobile telecommunication system (UMTS) and CDMA 2000.
The main ingredient of CDMA systems is the inherent spectral spreading that allows a
certain coexistence with narrow band systems. Owing to the large bandwidth, it generally
provides a higher diversity degree and thus a better link reliability. Compared to second
generation mobile radio systems, the third generation offers increased flexibility like differ-
ent and much higher data rates as required for the large variety of services. The frequency
reuse factor in such cellular networks allows neighboring cells to operate at the same fre-
quency, leading to a more efficient use of the resource frequency. Moreover, this allows
simpler soft handover compared to the ‘break before make’ strategy in global system for
mobile communication (GSM) when mobile subscribers change the serving cell. The main
drawback of CDMA systems is the multiuser interference requiring appropriate detection
algorithms at the receiver.

Multiple antenna systems represent the second major research area. Owing to their high
potential in improving the system efficiency they have already found their way into several
standards. On one hand, multiple antennas at the receiver and transmitter allow the trans-
mission of several spatially separated data streams. For point-to-point communications, this
is termed space division multiplexing (SDM), and in multiuser scenarios, it is called space
division multiple access (SDMA). In both the scenarios, the system’s spectral efficiency
can be remarkably increased compared to the single antenna case. On the other hand, the
link reliability can be improved by beamforming and diverse techniques.

As a third research area, powerful channel coding like concatenated codes or low-density
parity check codes allows efficient communications in the vicinity of Shannon’s channel
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capacity. This leads to a power-efficient transmission that is of particular interest concerning
the battery lifetime in mobile equipment and the discussion about the electromagnetic
exposition. Certainly, all mentioned areas have to be jointly considered and should be
incorporated into third generation mobile radio systems and beyond.

Owing to the influence of the mobile radio channel, a power- and bandwidth-efficient
transmission can be obtained only with appropriate signal processing either at the trans-
mitter or the receiver. Assuming channel knowledge at the transmitter, a preequalization
of the channel-like Tomlinson-Harashima Precoding allows very simple receiver structures.
Derivatives are also applicable in multiuser downlink scenarios where a common base sta-
tion can coordinate all transmissions and avoid interference prior to transmission. Even
without channel knowledge at the transmitter, space–time coding schemes allow the full
exploitation of diversity for multiple transmit antennas and flat fading channels with a
simple matched filter at the receiver. All these techniques require joint preprocessing at a
common transmitter, that is, a coordinated transmission has to be implemented and provide
the advantage of a very simple receiver structure.

On the contrary, the generally asynchronous multiuser uplink consists of spatially sep-
arated noncooperating transmitters and a common powerful base station. In this scenario, a
joint preprocessing is not possible and the receiver has to take over the part of jointly pro-
cessing the signals. The same situation occurs when multiple antennas are used for spatial
multiplexing without channel knowledge at the transmitter. At first sight, such a multiple
antenna system seems to be quite different from the CDMA uplink. However, the math-
ematical description using vector notation illustrates their similarity. Hence, the common
task of receivers in both cases is to separate and recover the interfering signals so that the
same detection algorithms can be used.

The aim of this book is to explain the principles and main advances of the three research
areas mentioned above. Moreover, the similarity between the SDM and the CDMA uplink is
illustrated. Therefore, a unified description using vector notations and comprising multiple
antenna as well as CDMA systems is presented. This model can be generalized to arbitrary
vector channels, that is, channels with multiple inputs and outputs. It is used to derive
efficient detection algorithms whose error rate performances are compared.

Structure of Book

Chapter 1: Introduction to Digital Communications

The book starts with an introduction to digital communication systems. Since the mobile
radio channel dominates the design of these systems, its statistical properties are analyzed
and appropriate models for frequency selective channels with single as well as multiple
inputs and outputs are presented. Afterwards, the basic principles of signal detection and
some general expressions for the error rate performance are derived. These results are
used in the next section to determine the performance of linear modulation schemes for
different channel models. Finally, the principle of diversity is generally discussed and the
effects are illustrated with numerical results. They are used in subsequent chapters in which
frequency diversity in CDMA systems and space diversity in multiple antenna systems are
explained.
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Chapter 2: Information Theory

Chapter 2 deals with the information theoretical analysis of mobile radio systems. Start-
ing with some basic definitions, capacities of the additive white Gaussian noise (AWGN)
channel and fading channels are derived. In particular, the difference between ergodic
and outage capacity is discussed. The next section derives the capacity of multiple-input
multiple-output (MIMO) systems in a general way without delivering specific results. They
are presented for CDMA and SDMA systems in Chapters 4 and 6. The chapter closes with
a short summary on theoretic survey of multiuser communications.

Chapter 3: Forward Error Correction Coding

The third chapter gives a short survey of selected channel coding topics that become relevant
in subsequent chapters. Starting with a basic description of linear block and convolutional
codes, soft-output decoding algorithms representing an essential ingredient in concatenated
coding schemes are derived. Next, low-density parity check codes are briefly explained and
the general performance of codes is evaluated. On one hand, the error rate performance is
analyzed by the union bound technique, exploiting the distance properties of codes. On the
other hand, the information processing characteristic is based on information theory and
allows a comparison with ideal coding schemes. Finally, concatenated codes are considered,
including turbo decoding whose analysis is based on EXtrinsic information transfer (EXIT)
charts.

Chapter 4: Code Division Multiple Access

The multiple access scheme CDMA is described in Chapter 4. Besides single-carrier CDMA
with the Rake receiver, multicarrier CDMA with different despreading or equalization
techniques is also considered. Moreover, the basic differences between uplink and downlink
are explained and some examples for spreading sequences are presented. Next, the high
performance of low rate coding, exploiting the inherent spreading in CDMA systems is
demonstrated. The chapter ends with an information theoretical analysis of the CDMA
uplink with random spreading by picking up the general results from Chapter 2.

Chapter 5: Multiuser Detection in CDMA Systems

While the fourth chapter is mainly restricted to single-user matched filters, Chapter 5 con-
siders multiuser detection strategies for the CDMA uplink. After sketching the optimum
detectors, low-cost linear detectors as well as nonlinear multistage detectors including turbo
processing with channel decoding are derived. The chapter closes with a discussion on the
combination of linear preprocessing and nonlinear interference cancellation based on the
QL decomposition of the mixing matrix.

Chapter 6: Multiple Antenna Systems

Chapter 6 covers several topics related to point-to-point communications with multiple
antennas. It starts with diversity concepts such as receive diversity and space-time coding.
Next, the principle of spatial multiplexing is explained. Besides the detection algorithms
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already described in Chapter 5, a new approach based on the lattice reduction is presented
showing a performance that is close to the optimum maximum likelihood detector. A uni-
fied description is provided by the linear dispersion codes addressed in Section 6.4. Finally,
a brief information theoretical analysis of multiple antenna systems is presented.

Appendices

In Appendix A, some basic derivations concerning the equivalent baseband representation
and the moment generating function of Rice fading are presented. Furthermore, it contains
tables with frequently used channel models. Appendix B proves the chain rules for entropy
and information, as well as the data processing theorem. Finally, Appendix C presents some
basics of linear algebra, Householder reflection, and Givens rotation, as well as the Lenstra,
Lenstra and Lovász (LLL) algorithm for the lattice reduction used in Chapter 6.

Notational Remarks

In order to avoid confusion, some notational remarks should be made. Real and imaginary
parts of a signal x(t) are denoted by x ′(t) and x ′′(t), respectively. To distinguish time-
continuous signals and their sampled time-discrete versions, square brackets are used in
the time-discrete case leading to x[k] = x(kTs) with Ts as sampling interval. Moreover, X
represents a stochastic process while x[k] represents a corresponding sampling function.
Hence, probability mass functions of continuous processes are denoted by pX(x). The con-
ditional probability mass function pX|d(x) considers the process X , given a fixed hypothesis
d so that it is a function of only a single variable x.

Multivariate processes comprising several random variables X1 · · · Xn are denoted by
X . Column vectors, row vectors, and matrices are distinguished by x, x, and X, respectively.
A set X contains all the possible values a signal x[k] can take, that is, x[k] ∈ X holds. It can
be either an infinite set like Z, R, or C, representing the sets of all integers, real numbers,
or complex numbers, respectively, or a finite set like X consisting generally of N symbols
{X0, . . . , XN−1}. Finally, log denotes the natural logarithm while other bases are explicitly
mentioned.
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1

Introduction to Digital
Communications

This first chapter introduces some of the basics of digital communications that are needed
in subsequent chapters. Section 1.1 starts with a brief introduction of fundamental multiple
access techniques and the general structure of communication systems. Some of the most
important parts of the systems are discussed in more detail later in the chapter. Section 1.2
addresses the mobile radio channel with its statistical properties and the way of modeling
it. Some analysis concerning signal detection and the theoretical performance of linear
schemes for different transmission channels are presented in Sections 1.3 and 1.4. Finally,
Section 1.5 explains the principle of diversity and delivers basic results for outage and
ergodic error probabilities.

1.1 Basic System Model

1.1.1 Introduction

Vector channels, or multiple-input multiple-output (MIMO) channels, represent a very gen-
eral description for a wide range of applications. They incorporate SISO (Single-Input
Single-Output), MISO (Multiple-Input Single-Output) and SIMO (Single-Input Multiple-
Output) channels as special cases. Often, MIMO channels are only associated with multiple
antenna systems. However, they are not restricted to this case but can be used in a much
broader context, for example, for any kind of multiuser communication. Therefore, the aim
of this work is to study MIMO systems for two specific examples, namely Code Division
Multiple Access (CDMA) and multiple antenna systems. Besides a unified description using
vector notations, detection algorithms are derived that make the similarity of both systems
obvious.

Figure 1.1 illustrates the considered scenario in a very abstract form. Generally, a com-
mon channel that may represent a single cell in a cellular network is accessed by NI inputs
and NO outputs. In this context, the term channel is not limited to the physical transmission
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 2006 John Wiley & Sons, Ltd
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2
2

1
1

channel

NI
NO

Figure 1.1 Principle of multiple access to a common channel

medium, that is, the radio channel, but has a more general meaning and also incorporates
parts of a digital communication system. The boundary between the transmitter and the
receiver on the one side, and the channel on the other side is not strict and depends on
the considered scenario. Detailed information about specific descriptions can be found in
subsequent chapters.

Principally, single-user and multiuser communications are distinguished. In the single-
user case, the multiple inputs and outputs of a vector channel may correspond to different
transmit and receive antennas, carrier frequencies, or time slots. Due to the fact that the
data stems from a single user, intelligent signaling at the transmitter can be performed,
for example, for efficient receiver implementations. In Chapter 6, multiple antenna systems
will be used in several ways, depending on the channel characteristics and the system
requirements. Multiple antennas can be employed for increasing the system’s diversity
degree (Alamouti 1998; Naguib et al. 1998; Seshadri and Winters 1994; Tarokh et al. 1999a)
and, therefore, enhance the link performance. The link reliability can also be improved by
beamforming, which enlarges the signal to noise ratio (SNR). Alternatively, several data
streams can be multiplexed over spatially separated channels in order to multiply the data
rate without increasing bandwidth (Foschini 1996; Foschini and Gans 1998; Golden et al.
1998).

On the contrary, the NI inputs and NO outputs may correspond to Nu independent
user signals in the multiuser case.1 With reference to conventional mobile radio commu-
nications, a central base station coordinates the transmissions of uplink and downlink,
that is, from mobile subscribers to the base station and vice versa, respectively. In the
downlink, a synchronous transmission can be easily established because all the signals
originate from the same transmitter. Moreover, knowledge about interactions between dif-
ferent users and their propagation conditions can be exploited at the base station. This
allows sophisticated signaling in order to avoid mutual interference and to distribute the
total transmit power onto different users efficiently. In many cases, intelligent signal-
ing at the base station coincides with low complexity receivers, being very important
for mobile terminals with limited battery power. However, optimal signaling strategies

1In multiuser MIMO scenarios, transmitters and receivers are equipped with multiple antennas. These systems
are a part of current research and possess an extremely high degree of freedom. They will be briefly introduced
in Chapter 6.
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for the downlink is only known for a few special cases and is still subject to intensive
research.

Establishing synchronous transmissions in the uplink requires high efforts because
mobile subscribers transmit more or less independently. They only communicate with the
base station and not among themselves. In most practical cases, they have no information
about their influence on other users so that mutual interference cannot be avoided prior
to transmission. Hence, sophisticated detection algorithms have to be deployed at the base
station to compensate for this drawback.

1.1.2 Multiple Access Techniques

Looking at the transmission of multiple data streams sharing a common medium, their
separation is managed by multiplexing techniques in single-user scenarios or multiple
access techniques in multiuser communications. In order to ensure reliable communica-
tion, many systems try to avoid interference by choosing orthogonal access schemes so
that no multiple access interference (MAI) disturbs the transmission. However, in most
cases, orthogonality cannot be maintained due to the influence of the mobile radio chan-
nel. The next subsections introduce the most important multiplexing and multiple access
strategies.

Time Division Multiplexing (TDM) and Multiple Access (TDMA)

This relatively common multiple access technique divides the time axis into different time
slots, each of length Tslot according to Figure 1.2. Each data packet or burst is assigned
to a certain slot, whereby a user can also occupy several slots. A defined number Nslot

of slots build a frame that is periodically repeated. Hence, each user has periodical access
to the shared medium. Due to the influence of the transmission channel (cf. Section 1.2)
and the restrictions of practical filter design, guard intervals of length �T have to be
inserted between successive slots in order to avoid interference between them. Within these
intervals, no information is transmitted so that they represent redundancy and reduce the
spectral efficiency of the communication system.

Frequency Division Multiplexing (FDM) and Multiple Access (FDMA)

Alternatively, the frequency axis can be divided into Nf subbands each of width B as illus-
trated in Figure 1.3. The data streams are now distributed on different frequency bands,

2 31 1Nslot

f

t�T Tslot

Figure 1.2 Principle of time division multiple access
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Figure 1.3 Principle of frequency division multiple access

rather than on different time slots. However, in mobile environments, the signals’ band-
widths are spread by the Doppler effect, so that neighboring subbands interfere. Thus, gaps
of an appropriate width �f combating this effect at the expense of a reduced spectral
efficiency are required for Frequency division multiple access (FDMA).

Code Division Multiplexing (CDM) and Multiple Access (CDMA)

In contrast to both the preceding schemes, CDMA allows simultaneous access on the chan-
nel in the same frequency range. The basic principle is to spectrally spread the data streams
with specific sequences called spreading codes (Spread Spectrum technique). The signals
can be distinguished by assigning them individual spreading codes. This opens a third
dimension, as can be seen in Figure 1.4. One intuitive choice would lead to orthogonal
codes, ensuring a parallel transmission of different user signals. However, the transmission
channel generally destroys the orthogonality and multiuser interference (MUI) becomes a
limiting factor concerning spectral efficiency (cf. Chapters 4 and 5).

Space Division Multiplexing (SDM) and Multiple Access (SDMA)

The fourth access scheme exploits the resource space (Figure 1.4 and Figure 1.5). Spatially
separated data streams can simultaneously access the channel in the same frequency band,

Figure 1.4 Principle of code and space division multiple access
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2
3

4

Nu

Figure 1.5 Principle of space division multiple access

provided that the locations of transmit and receive antennas are appropriately chosen. In
mobile environments, this requirement is sometimes difficult to fulfill, because users are
changing their position during the connection. Therefore, quasi-static scenarios or combina-
tions with the aforementioned access techniques are often considered. Mutual interference
is also likely to occur in Space division multiple access (SDMA) systems because the trans-
mitter and the receiver have no perfect channel knowledge of what would be necessary to
totally avoid interference.

As expected, all the mentioned access schemes can be combined. The well-known
Global System for Mobile (GSM) Communications and Digital Cellular System (DCS)-
1800 standards both combine Time division multiple access (TDMA) and FDMA. In UMTS
(Universal Mobile Telecommunications System) or IMT-2000 (International Mobile Com-
munications) systems, CDMA is used in connection with TDMA and FDMA (Dahlman
et al. 1998; Ojanperä and Prasad 1998b; Toskala et al. 1998). While TDMA, FDMA, and
CDMA have already been used for a fairly long time, SDMA is rather recent in compari-
son. This development is a result of the demand to use licenses that are assigned to certain
frequency bands as efficiently as possible. Hence, all the resources have to be exploited for
reaching this goal.

1.1.3 Principle Structure of SISO Systems

Since the behavior and the properties of a MIMO system vastly depend on the characteristics
of the underlying SISO systems between each pair of transmit and receive antennas, this
subsection describes their principle structure. Figure 1.6 shows a simplified time-discrete
block diagram of a SISO communication link. The time-discreteness is expressed by square
brackets and the time indices i, �, and k indicate different symbol rates of the corresponding
signals. Neglecting a lot of the fundamental components of practical systems like source
coding, analog-to-digital conversion and so on, the transmitter consists of three blocks
that are of special interest here: a forward error correction (FEC) encoder, an interleaver
� and a signal mapper. Due to our focus on digital communications, the inputs and the
outputs of an FEC encoder and an interleaver are binary, while the output of the signal
mapper depends on the type of modulation and can take on symbols out of an M-ary
alphabet X. Conventionally, M = 2m is a power of two. The receiver is comprised of
the corresponding counterparts of the above-mentioned blocks in reverse order. The first
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Figure 1.6 Principle structure of digital communication systems

block performs some kind of signal processing (SP) – depending on the channel – and the
demapping. It is followed by a de-interleaver �−1 and an FEC decoder delivering estimates
d̂[i] of the transmitted information bits.

All the blocks mentioned thus far will be subsequently described in more detail. How-
ever, some remarks on the time-discrete channel depicted in Figure 1.6 are necessary at
this point. In order to simplify the description and to concentrate on the main focus of this
work, all time-continuous components of the modulator and the demodulator are declared
as parts of a time-discrete channel model generally described in the equivalent baseband (cf.
Section 1.2). Therefore, the only parts of the modulator and the demodulator that appear sep-
arately in Figure 1.6 are the signal mapper and the demapper. These assumptions coincide
with a citation of Massey (1984):

‘the purpose of the modulation system is to create a good discrete channel from
the modulator input to the demodulator output, and the purpose of the coding
system is to transmit the information bits reliably through this discrete channel
at the highest practicable rate.’

However, it is not always easy to strictly separate both devices (e.g. for coded modulation
(Biglieri et al. 1991; Ungerboeck 1982)).

Interleaving

Interleaving plays an important role in many digital communication systems for manifold
reasons. In the context of mobile radio communications, fading channels often lead to
bursty errors, that is, several successive symbols may be corrupted by deep fades. This
has a crucial impact on the decoding performance, for example, of convolutional codes
because of its sensitivity to bursty errors (compare the decoding of convolutional codes in
Chapter 3). In order to overcome this difficulty, interleaving is applied. At the transmitter,
an interleaver simply permutes the data stream b[�] in a specified manner, so that the sym-
bols are transmitted in a different order. Consequently, a de-interleaver has to be employed
at the receiver, in order to reorder the symbols back into the original succession. More-
over, we will see in Section 3 that interleaving is also employed in concatenated coding
schemes.
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Figure 1.7 Structure of block interleaver of length Lπ = 12

Block interleaver
There are several types of interleaving. The simplest one is termed block interleaver, which
divides a sequence into blocks of length Lπ . The symbols b[�] within each block are then
permuted by writing them column-wise into an array consisting of Lrow rows and Lcol

columns, and reading them row by row. An example with Lrow = 3 and Lcol = 4 is shown
in Figure 1.7. The input sequence b[0], b[1], . . . b[11] develops into the following due to
interleaving

b[0], b[3], b[6], b[9], b[1], b[4], b[7] b[10], b[2], b[5], b[8], b[11].

It is recognized that there is a spacing between the originally successive symbols of LI = 4.
This gap is called interleaving depth. The optimum number of rows and columns and, there-
fore, the interleaving depth depends on several factors that are discussed in subsequent
chapters.

Convolutional interleaving
For the sake of completeness, convolutional interleaving should be mentioned here. It
provides the same interleaving depth as block interleaving, but with lower delays and
lesser memory. However, since this interleaver is not addressed later in the chapter, further
details are not discussed and instead the reader is referred to (Viterbi and Omura 1979).

Random interleaving
The application of block interleaving in concatenated coding schemes generally leads to
a weak performance. Due to the regular structure of the interleaver it may ensue that the
temporal distance between pairs of symbols does not change by interleaving, resulting in
poor distance properties of the entire code (cf. Section 3.6). Therefore, random or pseudo-
random interleavers are often applied in this context. Pseudo-random interleavers can be
generated by calculating row and column indices with modulo arithmetic. For concatenated
coding schemes, interleavers are optimized with respect to the constituent codes.

Interleaving delay
A tight restriction to the total size of interleavers may occur for delay sensitive applications
such as full duplex speech transmission. Here, delays of only around 10 ms are tolerable.
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8 INTRODUCTION TO DIGITAL COMMUNICATIONS

Since the interleaver has to first be completely written before it can be read out, its size
Lπ directly determines the delay �t = Lπ · Ts.

1.2 Characteristics of Mobile Radio Channels

1.2.1 Equivalent Baseband Representation

Wireless channels for mobile radio communications are challenging media that require care-
ful system design for reliable transmission. As SISO channels, they represent an important
building block of vector channels. Therefore, this section describes their time-discrete,
equivalent baseband representation in more detail. Using a representation in the equiva-
lent baseband is beneficial for simulation purposes, because the carrier whose frequency
is generally much higher than the signal bandwidth need not to be explicitly considered.
Figure 1.8 depicts the entire channel model that comprises all time-continuous analog com-
ponents, including those from the transmitter and the receiver. The whole structure describes
a time-discrete model, whose input x[k] is a sequence of generally complex-valued symbols
of duration Ts according to some finite symbol alphabet X. The output sequence typically
y[k] has the same rate 1/Ts and its symbols are distributed within the complex plane C.

The input x[k] is first transformed by the transmit filter gT(t) of bandwidth B into a
time-continuous, band limited signal

x(t) = Ts ·
∑

k

x[k] · gT(t − kTs) (1.1)

called complex envelope. Denoting the symbols of the alphabet X by Xµ and assuming that
the energy of the transmit filter impulse response is defined to

∫∞
−∞ |gT(t)|2dt = T −1

s , a

x[k]
gT(t)

x(t)

√
2ejω0t

Re {·}
xBP(t)

hBP(t, τ )

nBP(t)

yBP(t)

jH {·}

y+BP(t)

1√
2
e−jω0t

y(t)

gR(t)gW [k]
y[k]

analog part of
transmitter

analog part
of receiver

Figure 1.8 Structure of the time-discrete, equivalent baseband representation of a mobile
radio channel
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Figure 1.9 Power spectral densities for a) complex envelope, b) bandpass signal and
c) transmission channel for a rectangular shape of GT(jω)

single symbol Ts · x[k] · gT(t − kTs) has the average energy

Es = T 2
s · E{|Xµ|2} ·

∫ ∞

−∞
|gT(t)|2 dt = Ts · E{|Xµ|2} (1.2)

resulting in an average power of σ 2
X = Es/Ts = E{|Xµ|2}.2 For zero-mean and indepen-

dent identically distributed (i.i.d.) symbols x[k], the average spectral density of x(t) is
(Kammeyer 2004; Kammeyer and Kühn 2001; Proakis 2001)

�XX(jω) = Ts · |GT(jω)|2 · E{|Xµ|2} = Es · |GT(jω)|2. (1.3)

Obviously, it largely depends on the spectral shape of the transmit filter gT(t), and not on
the kind of modulation scheme. Proceeding toward transmission, the real-valued bandpass
signal

xBP(t) =
√

2 · Re
{
x(t) · ejω0t

} = √2 · [x ′(t) cos(ω0t)− x ′′(t) sin(ω0t)
]

(1.4)

is obtained by shifting x(t) into the bandpass region with the carrier frequency ω0 = 2πf0

and taking the real part. The factor
√

2 in (1.4) keeps the signal power and the symbol
energy constant during modulation. The average spectral density of xBP(t) has the form

�XBPXBP(jω) = Es

2
· (|GT(jω − jω0)|2 + |GT(jω + jω0)|2

)
. (1.5)

Besides the shift to ±ω0, it differs from �XX(jω) by the factor 1/2 due to the total
transmit power constraint. Figure 1.9 sketches the spectral densities for a rectangular shape
of GT(jω) with B = 1/(2Ts).

Now, xBP(t) is transmitted over the mobile radio channel, which is generally represented
by its time-variant impulse response hBP(t, τ ) and an additive noise term nBP(t) with
spectral density N0/2

yBP(t) = hBP(t, τ ) ∗ xBP(t)+ nBP(t). (1.6)

The convolution in (1.6) is defined by

hBP(t, τ ) ∗ xBP(t) =
∫ ∞

0
hBP(t, τ )xBP(t − τ ) dτ. (1.7)

2The impulse response gT(t) itself has the dimension s−1 because its spectrum GT(jω) = F {gT(t)} has no
dimension.
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Figure 1.10 Power spectral densities for a) received bandpass signal, b) analytical signal
and c) received complex envelope

In order to express yBP in the equivalent baseband, negative frequencies are eliminated with
the Hilbert transformation (Kammeyer 2004; Proakis 2001)

H {a(t)} =
∫ ∞

−∞

a(τ)

t − τ
dτ � � F {H {a(t)}} = −j sgn(ω)A(jω). (1.8)

Therefore, adding jH {yBP(t)} to the received signal yBP(t) yields the complex analytical
signal

y+BP(t) = yBP(t)+ jH {yBP(t)} � �Y+BP(jω) =
{

2YBP(jω) for ω > 0

0 else
(1.9)

whose spectrum vanishes for negative frequencies. However, for positive frequencies, the
spectrum is doubled or, equivalently, the spectral power density is quadrupled (Figure 1.10).
According to Figure 1.8, y+BP(t) is shifted back into the baseband and weighted by a factor
1/
√

2 in order to keep the average power constant. With reference to the background noise,
this leads to a spectral density of N0.

As is shown in the Appendix A.1, the output of the receive filter gR(t) in Figure 1.8
has the form

y(t) = gR(t) ∗ h(t, τ ) ∗ x(t)+ n(t) =
∑

k

x[k] · h̃(t, kTs)+ n(t) (1.10)

where h(t, τ ) = 1/2 · h+BP(t, τ )e−jω0t denotes the equivalent baseband representations of
channel impulse response and n(t) = gR(t) ∗ (n+(t)e−jω0t /

√
2) the filtered background

noise. The filter h̃(t, kTs) is comprised of a transmit and receive filter as well as the
channel impulse response, and represents the response of a time-discrete channel on an
impulse transmitted at time instant kTs.3

The optimum receive filter gR(t) that maximizes the SNR at its sampled output has
to be matched to the concatenation of channel impulse response and the transmit filter
(Forney 1972; Kammeyer 2004), that is, gR(t) = f ∗(−t) with f (t) = gT(t) ∗ h(t, τ ) holds.
In order to avoid interference between successive symbols, the transmit and receive filters
are generally chosen such that their convolution fulfills the first Nyquist criterion (Nyquist
1928; Proakis 2001). This criterion also ensures that the filtered and sampled noise remains

3Note that the second parameter of h̃(t, kTs) does not represent delay τ , but the transmission time kTs.
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white, and a symbol-wise detection is still optimum. However, even if gT(t) ∗ gR(t) fulfills
the first Nyquist criterion, the channel impulse response h(t, τ ) between them destroys
this property and the background noise n(t) is colored. Therefore, a prewhitening filter
gW [k] working at the sampling rate 1/Ts and decorrelating the noise samples n(t)|t=kTs is
required.4 Finally, the time-discrete equivalent baseband channel delivers a complex-valued
signal y[k] = gW [k] ∗ y(t)|t=kTs by sampling y(t) at rate 1/Ts and filtering it with gW [k].

Throughout this work, gT(t) is assumed to be a perfect lowpass filter of bandwidth
B = 1/(2Ts). With gR(t) matched to h(t, τ ) ∗ gT(t) and a perfect prewhitening filter, the
received signal y[k] has the form

y[k] =
Lt∑

κ=0

h[k, κ] · x[k − κ]+ n[k] (1.11)

where Lt denotes the total filter length of the time-discrete channel model h[k, κ] working
at rate 1/Ts and n[k] is termed Additive White Gaussian Noise (AWGN). It is described
in more detail in the next subsection, followed by a description of the frequency-selective
fading channel.

1.2.2 Additive White Gaussian Noise

Every data transmission is disturbed by noise stemming from thermal noise, noise of elec-
tronic devices, and other sources. Due to the superposition of many different statistically
independent processes at the receive antenna, the noise nBP(t) is generally modeled as
white and Gaussian distributed. The attribute white describes the flat spectral density that
corresponds with uncorrelated successive samples in the time domain. For Gaussian dis-
tributed samples, this is equivalent with statistical independence. A model reflecting this
behavior is the AWGN channel. As mentioned in the last section, its two-sided spectral
power density N0/2 results in infinite power due to the infinite bandwidth. Therefore, this
model only gains practical relevance with a bandwidth limitation, for example, by filtering
with gR(t).

In this subsection, the channel is assumed to be frequency-nonselective and time invari-
ant so that h(t, τ ) = δ(τ ) holds and the transmit and receive filters are perfect lowpass filters
(cf. Figure 1.9 and 1.11b). They fulfill the first Nyquist condition (Nyquist 1928), that is,
their spectra are symmetric with respect to the Nyquist frequency fN = 1/(2Ts).5 Therefore,
the sampled equivalent baseband noise n[k] = n(t)|t=kTs remains white (cf. Figure 1.11)
(Kammeyer 2004) and has a spectral density of N0 (cf. (1.9) and Figure 1.10). N0 is equally
distributed onto the real part n′[k] and the imaginary part n′′[k], each with a density of
N0/2. They are independent of each other resulting in the joint density

pN(n) = pN ′(n′) · pN ′′(n′′)

= 1√
2πσ 2

N ′
e
− n′2

2σ2
N ′ · 1√

2πσ 2
N ′′

e
− n′′2

2σ2
N ′′ = 1

πσ 2
N

e
− |n|2

σ2
N (1.12)

4In practice, the receive filter gR(t) is only matched to gT(t) due to lower implementation costs and imperfect
knowledge of the channel impulse response.

5For perfect lowpass filters, B = fN = 1/(2Ts) holds, that is, 2BTs symbols can be transmitted per channel
usage.
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a) b) �NN(f )

f

x[k]

n[k]

y[k]

B

−f0 +f0

N0

Figure 1.11 a) Model and b) spectral density of AWGN channel in the equivalent baseband
representation

of the complex baseband noise. The power of n(t) and, therefore, n[k] is

σ 2
N = 2B ·N0 = N0

Ts
= σ 2

N ′ + σ 2
N ′′ . (1.13)

The perfect lowpass filter gR(t) = g∗T (−t) with bandwidth B is matched to gT(t)

(Kammeyer 2004; Proakis 2001) and maximizes the SNR at its output. With the signal
power σ 2

X = Es/Ts we obtain the signal to noise ratio

SNR = σ 2
XBP

σ 2
NBP

= σ 2
X

σ 2
N
= Es/Ts

N0/Ts
= Es

N0
. (1.14)

as a characteristic measure of the AWGN channel in the baseband, as well as in the bandpass
regime.

1.2.3 Frequency-Selective Time-Variant Fading

For mobile radio systems, the propagation of radio waves is disturbed by scattering,
reflections, and shadowing. Generally, many replicas of the same signal arrive at the
receive antenna with different delays, attenuations, and phases. Moreover, the channel is
time-variant due to the movements of the transmitter or the receiver. A channel with N

propagation paths can be described by its equivalent baseband impulse response

h(t, τ ) =
N−1∑
ν=0

h(t, ν) · δ(τ − τν), (1.15)

where t denotes the observation time and h(t, ν) the complex-valued weighting coefficient
corresponding to the ν-th path with delay τν .

Statistical Characterization

Due to the stochastic nature of mobile radio channels, they are generally classified by their
statistical properties. The autocorrelation function

φHH(�t, τ ) = E{h∗(t, τ )h(t +�t, τ)} (1.16)

of h(t, τ ) with respect to t is an appropriate measure for this classification. The faster the
channel changes, the faster φHH(�t, τ ) vanishes in the direction of �t . This relationship
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can also be expressed in the frequency domain. The Fourier transformation of φHH(�t, τ )

with respect to �t yields the scattering function

�HH(fd, τ ) = F {φHH(�t, τ )} . (1.17)

The Doppler frequency fd originates from the relative motions between the transmitter and
the receiver. Integrating over τ leads to the Doppler power spectrum

�HH(fd) =
∞∫

0

�HH(fd, τ ) dτ, (1.18)

describing the power distribution with respect to fd. The range over which �HH(fd) is
almost nonzero is called Doppler bandwidth Bd. It represents a measure for the time variance
of the channel and its reciprocal

tc = 1

Bd
(1.19)

denotes the coherence time. For tc � Ts, the channel is slowly fading, for tc � Ts, it changes
remarkably during the symbol duration Ts. In the latter case, it is called time-selective and
time diversity (cf. Section 1.4) can be gained when channel coding is applied.

Integrating �HH(fd, τ ) versus fd instead of τ delivers the power delay profile

�HH(τ ) =
fd max∫

−fd max

�HH(fd, τ ) dfd (1.20)

that describes the power distribution with respect to τ . The coherence bandwidth defined by

Bc = 1

τmax
(1.21)

represents the bandwidth over which the channel is nearly constant. For frequency-selective
channels, B � Bc holds, that is, the signal bandwidth B is much larger than the coherence
bandwidth and the channel behaves differently in different parts of the signal’s spectrum.
In this case, the maximum delay τmax is larger than Ts so that successive symbols overlap,
resulting in linear channel distortions called intersymbol interference (ISI). If the coefficients
h[k, κ] in the time domain are statistically independent, frequency diversity is obtained (cf.
Section 1.4). For B � Bc, the channel is frequency-nonselective, that is, its spectral density
is constant within the considered bandwidth (flat fading). Examples for different power delay
profiles can be found in Appendix A.2.

Modeling Mobile Radio Channels

Typically, frequency-selective channels are modeled with time-discrete finite impulse
response (FIR) filters following the wide sense stationary uncorrelated scattering (WSSUS)
approach (Höher 1992; Schulze 1989). According to (1.11), the signal is passed through
a tapped-delay-line and weighted at each tap with complex channel coefficients h[k, κ] as
shown in Figure 1.12.
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+

x[k]

h[k, 0] h[k, 1] h[k, 2] h[k, Lt − 1]

y[k]

n[k]

TsTsTs

Figure 1.12 Tapped-delay-line model of frequency-selective channel with Lt taps

Although the coefficients are comprised of transmit and receive filters, as well as
the channel impulse response h(t, τ ) and the prewhitening filter gW [k], (as stated in
Section 1.2.1), they are assumed to be statistically independent (uncorrelated scattering).
The length Lt = 	τmax/Ts
 of the filter depends on the ratio of maximum channel delay
τmax and symbol duration Ts. Thus, the delay axis is divided into equidistant intervals and
for example, the nκ propagation paths falling into the κ-th interval compose the coefficient

h[k, κ] =
nκ−1∑
i=0

ej2πfd,i kTs+jϕi (1.22)

with ϕi as the initial phase of the i-th component. The power distribution among the taps
according to the power delay profiles described in Appendix A.2 (Tables A.1 and A.3) can
be modeled with the distribution of the delays κ . The more delays that fall into a certain
interval, the higher the power associated with this interval. Alternatively, a constant number
of n propagation paths for each tap can be assumed. In this case,

h[k, κ] = ρκ ·
n−1∑
i=0

ej2πfd,i kTs+jϕi (1.23)

holds and the power distribution is taken into account by adjusting the parameters ρκ . The
Doppler frequencies fd,i in (1.22) and (1.23) depend on the relative velocity v between the
transmitter and the receiver, the speed of light c0 and the carrier frequency f0

fd = v

c0
· f0 · cos α. (1.24)

In (1.24), α represents the angle between the direction of arrival of the examined propagation
path and the receiver’s movement. Therefore, its distribution also determines that of fd

leading to Table A.2. Maximum and minimum Doppler frequencies occur for α = 0 and
α = 180, respectively, and determine the Doppler bandwidth Bd = 2fd max. The classical
Jakes distribution depicted in Figure 1.13

�HH(fd) =
{

A√
1−(fd/fd max)

2
|fd| ≤ fd max

0 else,
(1.25)
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Figure 1.13 Distribution of Doppler frequencies for isotropic radiations (Jakes spectrum)

is obtained for isotropic radiations without line-of-sight (LoS) connection. For referred
directions of arrival, Gaussian distributions with appropriate means and variances are often
assumed (cf. Table A.2 for τ > 0.5 µs). Unless otherwise stated, nondissipative channels
assume meaning, so that EH{

∑
κ |h[k, κ]|2} = 1 holds.

In the following part, the focus is on the statistics of a single channel coefficient and,
therefore, drop the indices k and κ . For a large number of propagation paths per tap, real
and imaginary parts of H are statistically independent and Gaussian distributed stochastic
processes and the whole magnitude |H| = √H′2 +H′′2 is Rayleigh distributed

p|H|(ξ) =
{

2ξ/σ 2
H · exp(−ξ 2/σ 2

H) ξ ≥ 0
0 else

(1.26)

with mean EH{|h|} =
√

πσ 2
H/2. In (1.26), σ 2

H denotes the average power of H. The instan-
taneous power which is chi-squared distributed with two degrees of freedom

p|H|2(ξ) =
{

1/σ 2
H · exp(−ξ/σ 2

H) ξ ≥ 0
0 else

(1.27)

while the phase is uniformly distributed in [−π, π ].
If a LoS connection exists between the transmitter and the receiver, the total power

P of the channel coefficient h is shared among a constant LoS and a Rayleigh fading
component with a variance of σ 2

H. The power ratio between both parts is called Rice factor
K = σ 2

LoS/σ
2
H. Hence, the LoS component has a power of σ 2

LoS = Kσ 2
H and the channel

coefficient becomes

h =
√

σ 2
H ·K + α (1.28)

with total power P = (1+K)σ 2
H. The fading process α consists of real and imaginary parts

that are statistically independent zero-mean Gaussian processes each with variance σ 2
H/2.

www.4electron.com



16 INTRODUCTION TO DIGITAL COMMUNICATIONS

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

0 1 2 3
0

0.5

1

1.5

2

ξ →ξ →
p
|H
|(ξ

)
→

p
|H
|(ξ

)
→

K = 0K = 0
K = 1K = 1

K = 3
K = 5

K = 6
K = 11

a) σ 2
H = 1 b) P = 1

Figure 1.14 Rice distributions for different Rice factors K

As shown in (Proakis 2001), the magnitude of H is Ricean distributed

p|H|(ξ) =
{

2ξ/σ 2
H · exp

(− ξ 2/σ 2
H −K

) · I0
(
2ξ

√
K/σ 2

H
)

ξ ≥ 0

0 else .
(1.29)

In (1.29), I0(·) denotes the zeroth-order modified Bessel function of first kind (Benedetto
and Biglieri 1999). With reference to the squared magnitude, we obtain the density

p|H|2(ξ) =
{

1/σ 2
H · exp

(− ξ/σ 2
H −K

) · I0
(
2
√

ξK/σ 2
H
)

ξ ≥ 0

0 else .
(1.30)

The phase is no longer uniformly distributed.
Figure 1.14a shows some Rice distributions for a constant fading variance σ 2

H = 1 and
varying Rice factor. For K = 0, the direct component vanishes and pure Rayleigh fading is
obtained. In Figure 1.14b, the total average power is fixed to P = 1 and σ 2

H = P/(K + 1)

is adjusted with respect to K . For a growing Rice factor, the probability density function
becomes more narrow and reduces to a Dirac impulse for K →∞. This extreme case
corresponds to the AWGN channel without any fading.

The reason for especially discussing the above channels is that they somehow repre-
sent extreme propagation conditions. The AWGN channel represents the best case because
noise contributions can never be avoided perfectly. The frequency-nonselective Rayleigh
fading channel describes the worst-case scenario. Finally, Rice fading can be interpreted
as a combination of both, where the Rice factor K adjusts the ratio between AWGN and
fading parts.

1.2.4 Systems with Multiple Inputs and Outputs

So far, this section has only described systems with a single input and a single output.
Now, the scenario is extended to MIMO systems that have already been introduced in
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Figure 1.15 General structure of frequency-selective MIMO channel

Subsection 1.1.1. However, at this point we are restricted to a general description. Specific
communication systems are treated in Chapters 4 to 6.

According to Figure 1.1, the MIMO system consists of NI inputs and NO outputs. Based
on (1.11), the output of a frequency-selective SISO channel can be described by

y[k] =
Lt−1∑
κ=0

h[k, κ] · x[k − κ]+ n[k].

This relationship now has to be extended for MIMO systems. As a consequence, NI

signals xµ[k], 1 ≤ µ ≤ NI, form the input of our system at each time instant k and we
obtain NO output signals yν[k], 1 ≤ ν ≤ NO. Each pair (µ, ν) of inputs and outputs is
connected by a channel impulse response hν,µ[k, κ] as depicted in Figure 1.15. Therefore,
the ν-th output at time instant k can be expressed as

yν[k] =
NI∑

µ=1

Lt−1∑
κ=0

hν,µ[k, κ] · xµ[k − κ]+ nν[k] (1.31)

where Lt denotes the largest number of taps among all the contributing channels. Exploiting
vector notations by comprising all the output signals yν[k] into a column vector y[k] and
all the input signals xµ[k] into a column vector x[k], (1.31) becomes

y[k] =
Lt−1∑
κ=0

H[k, κ] · x[k − κ]+ n[k]. (1.32)

In (1.32), the channel matrix has the form

H[k, κ] =

 h1,1[k, κ] · · · h1,NI [k, κ]
...

. . .
...

hNO,1[k, κ] · · · hNO,NI [k, κ]

 . (1.33)

Finally, we can combine the Lt channel matrices H[k, κ] to obtain a single matrix H[k] =
[H[k, 0] · · ·H[k, Lt − 1]]. With the new input vector xLt [k] = [x[k]T · · · x[k − Lt − 1]T ]T

we obtain
y[k] = H[k] · xLt [k]+ n[k]. (1.34)
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1.3 Signal Detection

1.3.1 Optimal Decision Criteria

This section briefly introduces some basic principles of signal detection. Specific algorithms
for special systems are described in the corresponding chapters. Assuming a frame-wise
transmission, that is, a sequence x consisting of Lx discrete, independent, identically dis-
tributed (i.i.d.) symbols x[k] is transmitted over a SISO channel as discussed in the last
section. Moreover, we are restricted to an uncoded transmission, while the detection of
coded sequences is subject to Chapter 3. The received sequence is denoted by y and com-
prises Ly symbols y[k].

Sequence Detection

For frequency-selective channels, y suffers from ISI and has to be equalized at the receiver.
The optimum decision rule for general channels with respect to the frame error probability
Pf looks for the sequence x̃ that maximizes the a posteriori probability Pr{X = x̃ | y}, that
is, the probability that x̃ was transmitted under the constraint that y was received. Applying
Bayes’ rule

Pr{X = x̃ | Y = y} = pY|x̃(y) · Pr{X = x̃}
pY(y)

, (1.35)

we obtain the maximum a posteriori (MAP) sequence detector

x̂ = argmax
x̃∈XLx

Pr{x̃ | y} = argmax
x̃∈XLx

[
pY|x̃(y) · Pr{x̃}] (1.36)

where X
Lx denotes the set of sequences with length Lx and symbols x[k] ∈ X.6

It illustrates that the sequence MAP detector takes into account the channel influence by
pY|x̃(y) as well as a priori probabilities Pr{x̃} of possible sequences. It has to be emphasized
that pY|x̃(y) is a probability density function since y is distributed continuously. On the
contrary, Pr{x̃ | y} represents a probability because x̃ serves as a hypothesis taken from a
finite alphabet X

Lx and y represents a fixed constraint.
If either Pr{x̃} is not known, a priori to the receiver or all sequences are uniformly

distributed resulting in a constant Pr{x̃}, we obtain the maximum likelihood (ML) sequence
detector

x̂ = argmax
x̃∈XLx

pY|x̃(y). (1.37)

Under these assumptions, it represents the optimal detector minimizing Pf. Since the sym-
bols x[k] in x̃ are elements of a discrete set X (cf. Section 1.4), the detectors in (1.36)
and (1.37) solve a combinatorial problem that cannot be fixed by gradient methods. An
exhaustive search within the set of all possible sequences x̃ ∈ XLx requires a computational
effort that grows exponentially with |X| and Lx and is prohibitive for most practical cases.
An efficient algorithm for an equivalent problem – the decoding of convolutional codes
(cf. Section 3.4) – was found by Viterbi in 1967 (Viterbi 1967). Forney showed in (Forney
1972) that the Viterbi algorithm is optimal for detecting sequences in the presence of ISI.

6For notational simplicity, pY|X=x̃(y) is simplified to pY|x̃(y) and equivalently Pr{X = x̃} to Pr{x̃}. The term
pY(y) can be neglected because it does not depend on x̃.
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Orthogonal Frequency Division Multiplexing (OFDM) and CDMA systems offer different
solutions for sequence detection in ISI environments. They are described in Chapter 4.

Symbol-by-Symbol Detection

While the Viterbi algorithm minimizes the error probability when detecting sequences, the
optimal symbol-by-symbol MAP detector

x̂[k] = argmax
Xµ∈X

Pr{X [k] = Xµ | y} = argmax
Xµ∈X

∑
x̃∈X

Lx
x̃[k]=Xµ

Pr{X = x̃ | y}

= argmax
Xµ∈X

∑
x̃∈X

Lx
x̃[k]=Xµ

pY|x̃(y) · Pr{x̃} (1.38)

minimizes the symbol error probability Ps. Obviously, the difference compared to (1.36) is
the fact that all sequences x̃ with x̃[k] = Xµ contribute to the decision, and not only to the
most probable one. Both approaches need not deliver the same decisions as the following
example demonstrates. Consider a sequence x = [x[0], x[1]] of length Lx = 2 with binary
symbols x[k] ∈ {X0, X1}. The conditional probabilities Pr{x̃ | y} = Pr{x̃[0], x̃[1] | y} are
exemplarily summarized in Table 1.1.

While the MAP sequence detector delivers the sequence x̂ = [X0, X1] with the highest
a posteriori probability Pr{x̃ | y} = 0.27, the symbol-by-symbol detector decides in favor to

Pr{X [0] = Xµ | y} =
∑
Xν∈X

Pr{X [0] = Xµ,X [1] = Xν | y}

(and an equivalent expression for x[1]) resulting in the decisions x̂[0] = x̂[1] = X0. How-
ever, the difference between both approaches is only visible at low SNRs and vanishes at
low error rates.

Again, for unknown a priori probability or uniformly distributed sequences, the corre-
sponding symbol-by-symbol ML detector is obtained by

x̂[k] = argmax
Xµ∈X

pY|X [k]=Xµ(y) = argmax
Xµ∈X

∑
x̃∈X

Lx
x̃[k]=Xµ

pY|x̃(y). (1.39)

Table 1.1 Illustration of sequence and symbol-by-symbol
MAP detection

Pr{x̃[0], x̃[1] | y} x̃[1] = X0 x̃[1] = X1 Pr{x̃[0] | y}
x̃[0] = X0 0.26 0.27 0.53
x̃[0] = X1 0.25 0.22 0.47
Pr{x̃[1] | y} 0.51 0.49
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Memoryless channels
For memoryless channels like AWGN and flat fading channels and i.i.d. symbols x[k],
the a posteriori probability Pr{x̃ | y} can be factorized into

∏
k Pr{x̃[k] | y[k]}. Hence, the

detector no longer needs to consider the whole sequence, but can instead decide symbol by
symbol. In this case, the time index k can be dropped and (1.38) becomes

x̂ = argmax
Xµ∈X

Pr{X = Xµ | y}. (1.40)

Equivalently, the ML detector in (1.39) reduces to

x̂ = argmax
Xµ∈X

pY|Xµ(y). (1.41)

1.3.2 Error Probability for AWGN Channel

This section shall describe the general way by which to determine the probabilities of
decision errors. The derivations are restricted to memoryless channels but can be extended
to channels with memory or trellis-coded systems. In these cases, vectors instead of symbols
have to be considered. For a simple AWGN channel, y = x + n holds and the probability
density function pY|Xµ(y) in (1.41) has the form

pY|Xµ(y) = 1

πσ 2
N
· e−|y−Xµ|2/σ 2

N (1.42)

(cf. (1.12)). With (1.42), a geometrical interpretation of the ML detector in (1.41) shows
that the symbol Xµ out of X that minimizes the squared Euclidean distance |y −Xµ|2 is
determined. Let us now define the decision region

Dµ =
{
y | |y −Xµ|2 < |y −Xν |2 ∀ Xν �= Xµ

}
(1.43)

for symbol Xµ comprising all symbols y ∈ C whose Euclidean distance to Xµ is smaller
than to any other symbol Xν �= Xµ. The complementary set is denoted by Dµ. Assuming
that Xµ was transmitted, a detection error occurs for y /∈ Dµ or equivalently y ∈ Dµ. The
complementary set can be expressed by the union Dµ =

⋃
ν �=µ Dµ,ν of the sets

Dµ,ν =
{
y | |y −Xµ|2 > |y −Xν |2

}
(1.44)

containing all symbols y whose Euclidean distance to a specific Xν is smaller than to
Xµ. This does not mean that Xν has the smallest distance of all symbols to y ∈ Dµ,ν .
The symbol error probability can now be approximated by the well-known union bound
(Proakis 2001)

Ps(Xµ) = Pr
{
y ∈ Dµ

} = Pr

y ∈
⋃
ν �=µ

Dµ,ν


≤

∑
ν �=µ

Pr
{
y ∈ Dµ,ν

}
. (1.45)
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The equality in (1.45) holds if and only if the sets Dµ,ν are disjointed. The upper (union)
bound simplifies the calculation remarkably because in many cases it is much easier to deter-
mine the pairwise sets Dµ,ν than to exactly describe the decision region Dµ. Substituting
y = Xµ + n in (1.44) yields

Pr{Y ∈ Dµ,ν} = Pr
{|Y −Xµ|2 > |Y −Xν |2

} = Pr
{|N |2 > |Xµ −Xν +N |2}

= Pr
{

Re
{
(Xµ −Xν) ·N ∗}︸ ︷︷ ︸

η

< − 1
2 |Xµ −Xν |2︸ ︷︷ ︸

ξ

}
(1.46)

In (1.46), η is new a zero-mean Gaussian distributed real random variable with variance
σ 2

η = |Xµ −Xν |2σ 2
N/2 and ξ a negative constant. This leads to the integral

Pr{Y ∈ Dµ,ν} = 1√
π |Xµ −Xν |2σ 2

N

∫ −|Xµ−Xν |2/2

−∞
e
− η2

|Xµ−Xν |2σ2
N dη (1.47)

that is not solvable in closed form. With the complementary error function (Benedetto and
Biglieri 1999; Bronstein et al. 2000)

erfc(x) = 2√
π

∫ ∞

x

e−ξ2
dξ = 1− 2√

π

∫ x

0
e−ξ2

dξ = 1− erf(x). (1.48)

and the substitution ξ = η/(|Xµ −Xν |σN) we obtain the pairwise error probability between
symbols Xµ and Xν

Pr{Y ∈ Dµ,ν} = 1

2
· erfc

(√
|Xµ −Xν |2

4σ 2
N

)
. (1.49)

Next, we normalize the squared Euclidean distance |Xµ −Xν |2 by the average symbol
power σ 2

X

�2
µ,ν =

|Xµ −Xν |2
σ 2
X

= |Xµ −Xν |2
Es/Ts

(1.50)

so that the average error probability can be calculated with (1.14) to

Ps = E
{
Ps(Xµ)

} =∑
Xµ

Ps(Xµ) · Pr{Xµ}

≤ 1

2

∑
Xµ

Pr{Xµ} ·
∑

Xν �=Xµ

erfc

√(
�µ,ν

2

)2

· Es

N0

 . (1.51)

Equation (1.51) shows that the symbol error rate solely depends on the squared Euclidean
distance between competing symbols and the SNR Es/N0. Examples are presented for
various linear modulation schemes in Section 1.4.
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1.3.3 Error and Outage Probability for Flat Fading Channels

Ergodic Error Probability

For nondispersive channels, the transmitted symbol x is weighted with a complex-valued
channel coefficient h and y = hx + n holds. Assuming perfect channel state information
(CSI) at the receiver, that is, h is perfectly known, we obtain

Pr{Y ∈ Dµ,ν | h} = Pr
{|Y − hXµ|2 > |Y − hXν �=µ|2

}
= 1

2
· erfc

√(
�µ,ν

2

)2

· |h|2 Es

N0

 . (1.52)

Therefore, the symbol error probability is itself a random variable depending on the instan-
taneous channel energy |h|2. The ergodic symbol error rate can be obtained by calculating
the expectation of (1.52) with respect to |h|2. A convenient way exploits the relationship

1

2
· erfc(x) = 1

π
·
∫ π/2

0
exp

[
− x2

sin2 θ

]
dθ for x > 0 (1.53)

which can be derived by changing from Cartesian to polar coordinates (Simon and Alouini
2000). Inserting (1.53) into (1.52), reversing the order of integration and performing the
substitution s(θ) = −(�µ,ν/2)2Es/N0/ sin2(θ) we obtain

EH
{

Pr{Y ∈ Dµ,ν | h}
}
=

∫ ∞

0

1

π

∫ π/2

0
p|H|2(ξ)

× exp

[
−ξ

(�µ,ν/2)2Es/N0

sin2(θ)

]
dξ dθ

= 1

π

∫ π/2

0

∫ ∞

0
exp(ξs(θ)) · p|H|2(ξ) dξ dθ. (1.54)

The inner integral in (1.54) describes the moment generating function (MGF)

M|H|2(s) =
∞∫

0

p|H|2(ξ) · esξ dξ (1.55)

of the random process |H|2 (Papoulis 1965; Simon and Alouini 2000). Using the MGF is
a very general concept that will be used again in Section 1.5 when dealing with diversity.
For the Rayleigh fading channel, the squared magnitude is chi-squared distributed with two
degrees of freedom so that M|H|2(s) has the form

M|H|2(s) =
∞∫

0

1

σ 2
H

e−ξ/σ 2
H · esξ dξ = 1

1− sσ 2
H

. (1.56)
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Replacing s(θ) by −(�µ,ν/2)2Es/N0/ sin2(θ) again, the subsequent integration with respect
to θ can be solved in closed-form. It yields for a nondissipative channel with σ 2

H = 1

EH
{

Pr{Y ∈ Dµ,ν | h}
}
= 1

π

∫ π/2

0

sin2(θ)

sin2(θ)+ (�µ,ν/2)2Es/N0
dθ

= 1

2

(
1−

√
(�µ,ν/2)2Es/N0

1+ (�µ,ν/2)2Es/N0

)
. (1.57)

Contrary to (1.51), the error probability does not decrease exponentially but much slower.
In Appendix A.3 it is shown that the MGF of H for a Ricean distribution with P = 1 has
the form

M|H|2(s) =
1+K

1+K − s
· exp

[
sK

1+K − s

]
. (1.58)

Here, no closed-form expression is available for

EH
{

Pr{Y ∈ Dµ,ν | h}
}
= 1

π

∫ π/2

0
M|H|2

(
− (�µ,ν/2)2Es/N0

sin2(θ)

)
dθ. (1.59)

However, (1.59) can be easily computed numerically with arbitrary precision due to the
finite limits of the integral. Equivalent to the procedure for the AWGN channel, the
union bound in (1.45) can be applied to obtain an upper bound of the average error
probability.

A comparison of (1.49) with (1.57) shows that the exponential decay of the error rate
for the AWGN channel is replaced by a much lower slope. This can also be observed
in Figure 1.16 illustrating the error rate probabilities for a binary antipodal modulation
scheme (binary phase shift keying, BPSK) with equiprobable symbols. For small K , the
Ricean fading channel behaves similarly to the pure Rayleigh fading channel without an
LoS component. With growing K , the LoS component becomes more and more dominating
leading finally for K →∞ to the AWGN case. Principally, fading channels require much
higher SNRs than the AWGN channel in order to achieve the same error rates for uncoded
systems.

Outage Probability

For many applications, the ergodic error probability is not the most important parameter.
Instead, a certain transmission quality represented by, for example, a target error rate Pt, has
to be guaranteed to a predefined percentage. Therefore, the outage probability Pout, that is,
the probability that a certain error rate cannot be achieved, is important. For the frequency-
nonselective Rayleigh fading channel, Pout describes the probability that the instantaneous
signal to noise ratio γ = |h|2 · Es/N0 falls below a predefined threshold γt

Pout = Pr{|H|2 · Es/N0 < γt} =

γt
Es/N0∫
0

p|H|2(ξ) dξ = 1− exp

[
− γt

Es/N0

]
. (1.60)
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Figure 1.16 Symbol error probability for BPSK and transmission over AWGN, Rayleigh
and Rice fading channels with different Rice factors K
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Figure 1.17 Outage probability for BPSK, a frequency-nonselective Rayleigh fading chan-
nel and different target error rates Pt

Hence, the outage probability can be calculated by defining a target error rate Pt, determining
the required SNR γt and insert it into (1.60). For a binary antipodal modulation scheme
with equiprobable symbols, Figure 1.17 illustrates the outage probability for different target
error rates. It can be observed that the higher the quality constraints (low Pt), the higher
the outage probability. For 10 log10(Es/N0) = 20 dB, an error rate of Pt = 10−5 can only
be achieved to 91%, that is, Pout ≈ 0.09, while Pt = 10−1 can be ensured to nearly 99.8%
(Pout ≈ 8 · 10−3). For an outage probability of Pout = 10−2, a gap of nearly 10 dB exists
between Pt = 0.1 and Pt = 10−5.
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1.3.4 Time-Discrete Matched Filter

In Section 1.2.1 on page 10, the matched filter was already mentioned as a time-continuous
filter that maximizes the SNR of its sampled output. After deriving a time-discrete channel
model in the last section and discussing optimum detection strategies, we now consider
the time-discrete matched filter. It provides a sufficient statistics, that is, its output contains
the same mutual information as the input and no information is lost (cf. also Chapter 2)
(Benedetto and Biglieri 1999). Hence, the optimum detection can still be applied after
matched filtering.

In order to derive the matched filter in vector notations, we have a look at the general
system described in (1.34). It comprises as special cases the transmission over a frequency-
selective SISO channel (NI = NO = 1) as well as a MIMO system with flat fading channels
(Lt = 1). We are now interested in a receive filter w maximizing the SNR for an isolated
symbol, for example, x[k] transmitted at time instant k over a frequency-selective channel.7

Note that this filter does not take into account intersymbol or multilayer interference, but
just the ratio of desired signal power and noise power. Therefore, we comprise the Lt

coefficients belonging to the channel impulse response into a column vector hk and obtain
the Lt × 1 vector

yk = hk · x[k]+ nk. (1.61)

The filter output
r[k] = wH · yk = wH · hk · x[k]+ wH nk (1.62)

can be split into the information bearing part wH hkx[k] and a noise part wH nk so that the
SNR amounts to

SNR = EX
{∣∣wH hkx[k]

∣∣2}
EN

{∣∣wH nk

∣∣2} = wH hk EX
{|x[k]|2}hH

k w

wH EN
{
nknH

k

}
w

. (1.63)

Assuming i.i.d. noise samples with covariance matrix EN
{
nknH

k

} = σ 2
N · ILt and an average

signal power of E
{|x[k]|2} = σ 2

X, (1.63) becomes

SNR = σ 2
X

σ 2
N
· wH hkhH

k w
wH w

. (1.64)

Without loss of generality, we can force the filter w to have unit energy, that is, wH w = 1
holds. With this constraint, we obtain the optimization problem

w = argmax
w̃

w̃H hkhH
k w̃ s.t. w̃H w̃ = 1 (1.65)

which can be transformed into an unconstrained problem by using the Lagrange multiplier.
In this case, the cost function

L(w, λ) = wH hkhH
k w− λ(wH w− 1) (1.66)

7Equivalently, we can consider symbol xk transmitted over the kth transmit antenna in a MIMO system. For
this case, it is shown in Section 1.5 that the matched filter delivers optimum estimates.
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has to be maximized. Setting the partial derivative with respect to wH to zero (∂w/∂wH = 0)
yields the eigenvalue problem

∂L(w, λ)

∂wH
= hkhH

k w− λw = (
hkhH

k − λI
) · w = 0. (1.67)

Since hkhH
k is a matrix with rank one, only one nonzero eigenvalue λ = ‖hk‖2 exists and

the corresponding eigenvector is

w = hk

‖hk‖ . (1.68)

Obviously, the matched filter is simply the Hermitian of the vector hk normalized to unit
energy. The resulting signal becomes

r[k] = hH
k

‖hk‖ · yk = ‖h‖ · x[k]+ ñ[k] (1.69)

and its SNR amounts to

SNR = σ 2
X

σ 2
N
· hH

k hkhH
k hk

hH
k hk

= ‖hk‖2 · Es

N0
. (1.70)

For a SISO flat fading channel with a single coefficient hk , the matched filter reduces to a
scalar weighting with h∗k/|hk|. Moreover, if real-valued modulation schemes are employed
(see next section), the imaginary part of r[k] does not contain any information and r[k] =
Re

{
wH yk

}
represents a sufficient statistic.

Sometimes, it is desirable to obtain an unbiased estimate of the information bearing
symbol, that is, r[k] = x[k]+ ñ[k] (cf. Subsection 1.5.1). Hence, the normalization of w
with ‖hk‖ has to be replaced by ‖hk‖2. On the contrary, no normalization may be needed
in other scenarios as described in Section 3.1 leading to w = hk . These differences do not
affect the structure of the matched filter or the resulting SNR.

In a real-world scenario, a sequence of symbols is transmitted over the frequency-
selective channel and ISI occurs. The received vector can be described with

y = X · h+ n, (1.71)

where y and n are column vectors whose size depends on the length of the transmitted
sequence x and X is a convolution matrix set up from x. Extracting that part in X which
contains the kth symbol results in

yk = Xk · h+ nk (1.72)

with

Xk =


x[k] x[k − 1] · · · x[k − Lt + 1]

x[k + 1] x[k] · · · x[k − Lt + 2]
...

...
. . .

...

x[k + Lt − 1] x[k + Lt − 2] · · · x[k]

 (1.73)
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The matched filter delivers the estimate

r[k] = hH · yk = hH · Xk · h+ hH nk

=
L∑

i=1

h∗i ·
 L∑

j=1

hj · x[k − i + j ]+ n[k + i − 1]


=

L∑
i=1

|hi |2 · x[k]+
L∑

i=1

L∑
j=1
j �=i

h∗i hj · x[k − i + j ]+ ñ[k]. (1.74)

While the SNR ignores the middle term and is still described by (1.70), the signal to
interference plus noise ratio (SINR) equals

SINR =
σ 2
X ·

(∑L
i=1 |hi |2

)2

σ 2
N ·

∑L
i=1 |hi |2 + σ 2

X ·
∑Lt−1

i=−Lt+1
i �=0

∣∣∣∑Lt−|i|
j=1 hjh

∗
j+|i|

∣∣∣2 (1.75)

and is not the optimum one. Higher SINRs can be achieved by employing appropriate
equalizers (Kammeyer 2004; Proakis 2001). However, optimum detection after matched
filtering is still possible, because the matched filter output represents a sufficient statistic.

1.4 Digital Linear Modulation

1.4.1 Introduction

The analysis and investigations presented in this book are based on linear digital modulation
schemes, that is, the modulator has no memory. Their performances are analyzed in this
section for different channels. As before, we always assume perfect lowpass filters gT(t)

and gR(t) at the transmitter and the receiver. Therefore, the description focuses on the
time-discrete equivalent baseband signal x[k] at the channel input (cf. Figures 1.6 and 1.8).

The modulator just performs a simple mapping and extracts m successive bits out of
b(�) and maps the m-tuple b̃[k] = [b[mk] · · · b[m(k + 1)− 1]], k = �l/m�, onto one of
M = 2m possible symbols Xµ. They form the signal alphabet X = {X0, . . . , XM−1} that
depends on the type of modulation. Assuming that all the symbols are equally likely, the
agreement in (1.2) delivers the average symbol energy

Es = Ts E{|Xµ|2} = Ts

M−1∑
µ=0

Pr{Xµ} · |Xµ|2 = Ts

M

M−1∑
µ=0

|Xµ|2. (1.76)

Attention has to be paid when modulation schemes with different alphabet sizes are com-
pared. In order to draw a fair comparison, the different numbers of bits per symbol have
to be considered. This is done by calculating the performance with respect to the average
energy per bit Eb = Es/m. In this case, the SNR is expressed by the measure Eb/N0 rather
than Es/N0.
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In many of today’s communication systems, the modulation type and size are not fixed
parameters but are chosen according to instantaneous channel conditions and data rate
demands of the users. These adaptive modulation schemes require some kind of channel
knowledge at the transmitter. As an example, the SNR can be used to determine the high-
est possible modulation size under the constraint of a desired error probability. Adaptive
modulation schemes are already applied in wireless local area networks (WLAN) using the
IEEE 802.11 g standard (Hanzo et al. 2003a) or in the High Speed Downlink Packet Access
(HSDPA) transmission (Blogh and Hanzo 2002; Holma and Toskala 2004) of UMTS.

Mapping Strategies

While the symbol error rate (following subsections) only depends on the geometrical
arrangement of the symbols as well as the SNR, the bit error rate is also affected by
the specific mapping of the m-tuples b̃[k] onto the symbols Xµ. In many cases, Gray map-
ping is applied, ensuring that neighboring symbols differ only in one bit. This results in
a minimum bit error probability if error events are dominated by mixing up neighboring
symbols at the receiver (what is true in most cases). Hence, we obtain a tight approximation

Pb ≈ 1

m
Ps. (1.77)

Alternatively, natural mapping just enumerates the symbols (e.g. counterclockwise for
Phase Shift Keying (PSK), starting with the smallest phase) and assigns them the binary
representations of their numbers. For both the mapping strategies, the exact solution of
the bit error rate requires the consideration of the specific error probabilities Pr{y ∈ Dµ,ν}
between two competing symbols Xµ and Xν and the corresponding number wµ,ν of differing
bits concerning their binary presentations. The exact bit error probability has the form

Pb =
∑
Xµ

Pr{Xµ} ·
∑

Xν �=Xµ

wµ,ν · Pr{Y ∈ Dµ,ν}. (1.78)

1.4.2 Amplitude Shift Keying (ASK)
If the amplitude of real-valued symbols bears the information, the modulation is called
Amplitude Shift Keying (ASK). Alternatively, it is also termed Pulse Amplitude Modulation
(PAM). In order to have equal distances between neighboring symbols (Figure 1.18), the
amplitudes are chosen to

Xµ = (2µ+ 1−M) · e for 0 ≤ µ < M.

The parameter e has to be determined such that the energy constraint in (1.76) is fulfilled
leading to

Ts

M

M−1∑
µ=0

[
(2µ+ 1−M)e

]2 != Es ⇒ e =
√

3

M2 − 1
· Es

Ts
(1.79)

for equally likely symbols. The minimum normalized squared Euclidean distance amounts to

�2
0 =

(2e)2

Es/Ts
= 12

M2 − 1
. (1.80)
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Figure 1.18 Symbol alphabets of linear amplitude modulation (e = √Es/Ts/5 for 4-ASK,
e = √Es/Ts/10 for 16-QAM and e = √Es/Ts/20 for 32-QAM)

Performance for AWGN Channel

The symbol error probability, that is, the probability that a wrong symbol is detected at
the receiver, can be easily calculated without the union bound. An error occurs if the
real part of the noise n′[k] exceeds half of the distance 2e between neighboring symbols.
Therefore, the inner sum in (1.51) only has to be evaluated for two adjacent symbols,
that is, for the smallest Euclidean distance. While the outermost symbols have only one
neighbor that they can be mixed up with, the inner symbols have two competing neighbors.
For equiprobable symbols, this fact can be considered by weighting the symbol specific
error rates with the number of competing neighbors resulting in a total average weight
(2(M − 2)+ 2)/M = 2(M − 1)/M . Therefore, (1.80) and the derivation in Section 1.3
yield the average error probability

P M-ASK
s = M − 1

M
· erfc

(√
3

(M2 − 1)
· Es

N0

)
(1.81a)

= M − 1

M
· erfc

(√
3m

(M2 − 1)
· Eb

N0

)
. (1.81b)

The bit error probabilities can be determined by applying (1.77) or (1.78).

Performance for Flat Rayleigh Fading Channel

According to the second part of Section 1.3 and the argumentation above, the symbol error
probability for a frequency-nonselective Rayleigh fading channel is obtained by applying
(1.54) for �µ,ν = �0 and appropriate weighting

P M-ASK
s = M − 1

M
·
(

1−
√

3Es/N0

M2 − 1+ 3Es/N0

)
. (1.82)

Figure 1.19 shows the results for M-ASK and transmission over an AWGN and a
frequency-nonselective Rayleigh fading channel. Obviously, the performance degrades with
increasing M due to decreasing Euclidean distances between the symbols for constant
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Figure 1.19 Symbol error rates for M-ASK and transmission over an AWGN channel (—)
and a frequency-nonselective Rayleigh fading channel (- - -)

average signal energy Es. While the error rate shows an exponential decay for the AWGN
channel, the slope is nearly linear for the flat Rayleigh fading channel. Therefore, in order
to achieve the same average performance for fading channels, the transmit power has to be
remarkably higher than that for the AWGN channel. For 2-ASK and Ps = 10−4, this gap is
larger than 25 dB and grows for lower error rates. An appropriate way to bridge this divide
is the application of error correcting codes as explained in Chapter 3.

1.4.3 Quadrature Amplitude Modulation (QAM)
For quadrature amplitude modulation (QAM), deployed, for example, in WLAN systems
(ETSI 2001; Hanzo et al. 2000) and the HSDPA in UMTS (Holma and Toskala 2004),
real and imaginary parts of a symbol can be chosen independently from each other. Hence,
m′ = m/2 bits are mapped onto both real and imaginary symbol parts, according to a
real-valued M ′-ASK with M ′ = 2m′ . The combination of both parts results in a square
arrangement, for example, a 16-QAM with m′ = 2 (see Figure 1.18). Adapting the condition
in (1.76) to QAM yields

e2

M ′

M ′−1∑
µ=0

M ′−1∑
ν=0

(2µ+ 1−M ′)2 + (2ν + 1−M ′)2 = 2e2
M ′−1∑
µ=0

(2µ+ 1−M ′)2 != Es

Ts
.

Due to M = M ′2, the parameter e for M-QAM can be calculated to

e =
√

3

2(M − 1)
· Es

Ts
(1.83)

and the minimum squared Euclidean distance is

�2
0 =

(2e)2

Es/Ts
= 6

M − 1
. (1.84)
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Without going into further details, it has to be mentioned that the combinations of ASK and
Phase Shift Keying (PSK) are possible. As an example, Figure 1.18 shows the 32-QAM
modulation scheme.

Performance for AWGN Channel

The symbol error rate for M-QAM can be immediately derived because real and imaginary
parts represent

√
M-ASK schemes and can be detected independently. Hence, a correct

decision is made if and only if both the components are correctly detected. Since the signal
energy Es is equally distributed between real and imaginary parts, we can use (1.81a) with
Es|√M-ASK = Es|M-QAM/2 to obtain the error probabilities for both parts. The total error
probability for M-QAM becomes

P M-QAM
s = 1−

[
1− P

√
M-ASK

s

(
Es/2

N0

)]2

= 2P
√

M-ASK
s

(
Es/2

N0

)
−

[
P
√

M-ASK
s

(
Es/2

N0

)]2

. (1.85)

The squared error probability in (1.85) can be neglected for high signal to noise ratios
resulting with m′ = m/2 in an upper bound

P M-QAM
s < 2

√
M − 1√

M
erfc

(√
3

2(M − 1)

Es

N0

)
(1.86a)

= 2

√
M − 1√

M
erfc

(√
3m

2(M − 1)

Eb

N0

)
. (1.86b)

Figure 1.20 illustrates the results for various QAM schemes. Solid lines depict the solu-
tions for the AWGN channel while dashed and dashed dotted lines show the results of
the Rayleigh fading channel. With reference to the Rayleigh fading channel, only a small
difference between the exact solution and approximation can be observed. For the AWGN
channel, this difference is even smaller so that it is not shown in the figure. Due to the sepa-
rability of real and imaginary parts the bit error probability is identical to that of

√
M-ASK,

taking into account that both parts have only half of the average symbol energy Es.

Performance for Flat Rayleigh Fading Channel

According to the procedure described in the last section, the ergodic symbol error probability
for a frequency-nonselective Rayleigh fading channel must be determined by solving

P M-QAM
s = EH

{
P M-QAM

s (h)
}

= EH
{

2P
√

M-ASK
s (h)− [

P
√

M-ASK
s (h)

]2
}
. (1.87)

The expectation of the linear term is already known from M-ASK. Properly replacing M

by
√

M and Es by Es/2 in (1.82) delivers

2 EH
{
P
√

M-ASK
s (h)

}
= 2

√
M − 1√

M
· (1− α) with α =

√
3Es/N0

2(M − 1)+ 3Es/N0
.
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Figure 1.20 Symbol error probabilities for M-QAM and transmission over an AWGN
channel (—) and a frequency-nonselective Rayleigh fading channel (exact solution - - -,
approximations - . -)

Calculating the expectation of the squared term requires the relationship[1

2
erfc(x)

]2 = 1

π

∫ π/4

0
exp

[
− x2

sin2 �

]
d� (1.88)

given in (Simon and Alouini 2000). Exploiting (1.88) provides the closed-form solution(√
M − 1√

M

)2

·
[

1− 4

π
α tan−1

(
1

α

)]
.

The combination of both parts finally leads to the solution

P QAM
s = 2

√
M − 1√

M
· (1− α)−

(√
M − 1√

M

)2

·
[

1− 4

π
α · tan−1

( 1

α

)]
. (1.89)

Again, an upper bound is obtained by dropping the second part of (1.89)

P QAM
s < 2

√
M − 1√

M
·
(

1−
√

3Es/N0

2(M − 1)+ 3Es/N0

)
. (1.90)

As illustrated in Figure 1.20, a small gap between the exact solution and its approximation
remains over the whole SNR range. Again, a higher spectral efficiency is obtained with
growing M at the expense of a larger error rate.

Outage Probability

The outage probability can be numerically evaluated by exploiting (1.86a) in order to
determine the relation between γt and Pt. The obtained thresholds γt can be inserted into
(1.60) leading to the results depicted in Figure 1.21. Pout increases as expected with growing
M . For an outage probability of 1%, SNRs of 24.3 dB, 25.5 dB and 28.4 dB are required
for 4-QAM, 16-QAM and 64-QAM, respectively.
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Figure 1.21 Outage probability for M-QAM and transmission over a frequency-
nonselective Rayleigh fading channel, Pt = 10−3

1.4.4 Phase Shift Keying (PSK)
For M-ary PSK, M symbols are arranged on a circle with radius

√
Es/Ts resulting in a

constant symbol energy. The bits within the m-tuples b̃[k] determine the symbols’ phases
that are generally multiples of 2π/M . Alternatively, an offset of π/M can be chosen as
shown in Figure 1.22 for Quaternary Phase Shift Keying (QPSK) and 8-PSK. Binary Phase
Shift Keying (BPSK) for M = 2 and QPSK for M = 4 represent special cases, because they
can be assigned to the class of amplitude modulation schemes, too (2-ASK and 4-QAM,
respectively). For M > 4, real and imaginary parts are not independent from each other
and have to be detected simultaneously. If the symbols are numbered counterclockwise, the
normalized squared Euclidean distance between two symbols Xµ and Xν is

�2
µ,ν =

|Xµ −Xν |2
Es/Ts

= 4 sin2
(
(µ− ν)

π

M

)
. (1.91)

2-ASK, 2-PSK (BPSK) 4-QAM, 4-PSK (QPSK) 8-PSK

√
Es/Ts

√
Es/Ts

√
Es/Ts

ReReRe

ImImIm

Figure 1.22 Symbol alphabets of digital phase modulation
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The exact symbol error probability can generally not be expressed in closed form. Except
for some special cases, it has to be calculated by numerical integration or approximated by
the union bound, cf. (1.45). In the following part, the focus is again on a coherent reception
for the AWGN and the flat Rayleigh fading channel.

Within the GSM extension EDGE (Enhanced Data Rates for GSM Evolution) (Olofsson
and Furuskär 1998; Schramm et al. 1998) 8-PSK is used in contrast to Gaussian Minimum
Shift Keying (GMSK) as in standard GSM systems. This enlarges the data rate significantly,
since three bits are transmitted per symbol compared to only a single bit for GMSK.

Performance for AWGN Channel

Since BPSK with M = 2 is a special case of ASK, the error probability can be calculated
with (1.81a) leading to

P BPSK
s = 1

2
· erfc

(√
Es

N0

)
. (1.92)

QPSK can be interpreted as two parallel BPSK schemes with the same Eb/N0 (compare
ASK and QAM). Therefore, the bit error probabilities are identical

P
QPSK
b = 1

2
· erfc

(√
Eb

N0

)
= 1

2
· erfc

(√
Es

2N0

)
(1.93)

while the symbol error probability for QPSK (following the same argumentation as for
QAM) is upper bounded by

P QPSK
s = erfc

(√
Eb

N0

)
−

[
1

2
· erfc

(√
Eb

N0

)]2

< erfc

(√
Eb

N0

)
. (1.94)

In relation to M > 4, closed-form expressions are not available and the union bound
can be applied. Substituting (1.91) into (1.51) yields the upper bound

P PSK
s <

1

2

M−1∑
µ=1

erfc

(
sin(µπ/M) ·

√
Es

N0

)
. (1.95)

A simple approximation stems from the fact that the error probability is dominated by those
decisions that mix up neighboring symbols with a Euclidean distance 2 sin(π/M)

√
Es/Ts.

Inserting (1.91) for |µ− ν| = 1 into (1.49), and taking into account that each symbol
has two competing neighbors with equal error probability, we obtain with (1.92) a tight
approximation (Kammeyer 2004; Proakis 2001)

P PSK
s ≈ erfc

(
sin(π/M) ·

√
Es

N0

)
= erfc

(
sin(π/M) ·

√
m

Eb

N0

)
. (1.96)

The exact solution with arbitrary accuracy can be obtained by numerically solving the
integral (Craig 1991)

P PSK
s = 1

π
·

(M−1)/Mπ∫
0

exp

[
− sin2(π/M)

sin2(θ)
·mEb

N0

]
dθ. (1.97)
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Performance for Flat Rayleigh Fading Channel

For Rayleigh fading channels, the closed-form expression

P M-PSK
s = M − 1

M
− γ

[
1

2
+ 1

π
tan−1 (γ cot(π/M)

)]
(1.98)

with

γ =
√

sin2(π/M)Es/N0

1+ sin2(π/M)Es/N0

can be found in (Simon and Alouini 2000). For BPSK with M = 2, (1.98) reduces to the
well-known form

P BPSK
s = 1

2
·
[

1−
√

Es/N0

1+ Es/N0

]
, (1.99)

and for QPSK (M = 4)

P QPSK
s = 3

4
− 1

π

√
Es/N0

2+ Es/N0
· cot−1

(
−
√

Es/N0

2+ Es/N0

)
(1.100)

is obtained (Proakis 2001). As before, a simple approximation can be found by considering
only the smallest Euclidean distance leading to

P PSK
s ≈ 1−

√
sin2(π/M)Es/N0

1+ sin2(π/M)Es/N0
. (1.101)

The corresponding results are illustrated in Figure 1.23. Since the error probabilities
obtained by (1.96) and (1.97) are nearly identical for M > 4 and differ only at very low
SNRs below 0 dB, only those obtained by numerical integration are shown. The same holds
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Figure 1.23 Symbol error probabilities for M-PSK and transmission over an AWGN chan-
nel (—) and a frequency-nonselective Rayleigh fading channel (- - -)
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Figure 1.24 Outage probability Pout for M-PSK, a frequency-nonselective Rayleigh fading
channel and a target symbol error rate Pt = 10−3

for (1.98) and (1.101) for the Rayleigh fading channel. Therefore, the simple approximation
looking only at the nearest neighbors should be preferred.

Outage Probability

In the same way as described for M-QAM, (1.97) can be used to determine γt for a specified
target error rate Pt. Figure 1.24 shows the corresponding results obtained by inserting γt

into (1.60). As expected, Pout increases with growing M .

1.5 Diversity

1.5.1 General Concept

The previous section illustrated the influence of flat fading channels on the error rate
performance. The instantaneous SNR γ [k] = |h[k]|2 · Es/N0 at the receiver’s input is a
random variable, according to the statistics of the current channel coefficient h[k]. Low
SNRs caused by deep fades cannot be compensated by good channel states, resulting in a
significantly increased error rate.

In order to overcome or at least lower the fading’s influence, the probability of deep
fades has to be reduced. This can be accomplished by diversity concepts where several repli-
cas of a signal x[k] are transmitted over different (frequency-nonselective) channels h�[k]
with individual powers σ 2

H,�, 1 ≤ � ≤ D. In order to perform fair comparisons between
systems with different diversity degrees, the total transmitted energy is fixed and equally
distributed onto the channels. According to Figure 1.25, the received signal can be expressed
with

y�[k] = h�[k] · x[k]√
D
+ n�[k] ⇔ y[k] = x[k]√

D
· h[k]+ n[k] (1.102)
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Figure 1.25 Illustration of D-fold diversity reception

where y[k], h[k] and n[k] are vectors comprising D received symbols y�[k], D chan-
nel coefficients h�[k], and D statistically independent noise samples n�[k], respectively.
The described scenario may be obtained by using D receive antennas and one transmit
antenna.

For mutually independent channels, the probability that all |h�[k]|2 are simultane-
ously very small is much lower than the probability for a single channel. Therefore,
a communication system should be designed in a way to exploit as much diversity as
possible. If the transmission channel itself provides diversity, this can be used by appro-
priate receiver structures. However, for nondiversity channels, it is possible to artificially
introduce diversity into the system. There are several sources that diversity can originate
from.

• Frequency Diversity:
If the channel behaves frequency-selective (cf. Section 1.2), its transfer function influ-
ences different parts of the signal’s spectrum diversely. Hence, diversity is obtained
in the frequency domain that can be exploited by appropriate receiver structures.
For CDMA systems, the Rake receiver (cf. Subsection 4.1.1 on page 178) exploits
frequency diversity by combining different propagation paths being separable in time
(Proakis 2001). In coded OFDM systems, the decoding process averages over carriers
associated with different channel coefficients (Dekorsy et al. 1999a). Even conven-
tional equalizers like the Viterbi equalizer or a linear FIR filter exploit frequency
diversity (not the decision feedback equalizer). Finally, frequency diversity can be
artificially introduced by operating with different carriers separated by at least the
coherence bandwidth of the channel.

• Time Diversity:
If the channel varies in time, the application of FEC (Forward Error Correction in
Chapter 3) coding yields diversity, provided that a code word or a coded sequence
is longer than the coherence time of the channel. In this case, decoding performs a
kind of averaging over good and bad channel states.

• Space Diversity:
Recently, systems using multiple antennas at transmitter or receiver gained much
interest. For antenna separations larger than several wavelengths, the channels can
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be assumed to be independent, so that diversity is obtained even for frequency-
nonselective and quasi-static channels. Hence, the space is used to artificially enhance
the diversity degree (see Chapter 6) (Fischer et al. 2001b).

• Polarization Diversity:
If antennas support different polarizations, this can be used for polarization diversity.
However, we will restrict ourselves to the first three cases in this context will be
considered.

The diversity degree highly depends on the correlation among the contributing channels and
their power distribution. The highest degree will be obtained by statistically independent
channels with equal average power. Further analysis will be presented later in the chapter.

Combining Methods

Receiving several replicas of the same signal requires some kind of combining in order to
obtain a single representation of the desired symbol. There are different combining methods
depending on the level of channel knowledge at the receiver.

• Maximum Ratio Combining (MRC):
Maximum ratio combining achieves the maximum signal to noise ratio at the
receiver’s output by weighting each received replica yj [k] by the correspond-
ing complex conjugate channel coefficient h∗j [k] and successive summation versus
j . Therefore, this method requires the knowledge of amplitudes and phases of
all involved channels, and requires a scanning and tracking for all components.
Due to this knowledge, MRC is not restricted to PSK but is also applicable for
multiamplitude signals like QAM. However, it is sensitive to channel estimation
errors.

• Equal Gain Combining (EGC):
With equal gain combining, only the phase rotations for each yj [k] are compen-
sated, the magnitudes remain unchanged. This method only requires the phases of
all channel coefficients, not the magnitudes. However, due to missing knowledge of
the channels’ magnitudes, this technique is not suited for ASK and QAM modulation
and it performs worse than MRC.

• Square Law Combining:
If the channel is highly time varying and its phase cannot be estimated accurately,
square law combining of orthogonally modulated signals is an appropriate method
to exploit diversity. Here, the squared magnitudes of the received signals are simply
added, resulting in a noncoherent receiver. This technique can only be applied for
orthogonal signaling schemes (Kammeyer 2004; Proakis 2001).

• Selection Combining:
Selection combining represents the simplest combining method because it only selects
a subset of all replicas for further processing and neglects all the remaining signals.
This reduces the computational costs and may even lead to a better performance
than MRC, because channels with very low SNR cannot be accurately estimated and
contribute much noise.
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The focus in the following part is on maximum ratio combining as the optimum strategy
with respect to the error rate performance for perfect channel knowledge.

Maximum Ratio Combining

The optimum solution for a detection problem concerning a system as described in (1.102)
is obtained by applying an ML detector

x̂[k] = argmax
x̃

log pY|x̃ (y[k]) = argmin
x̃

∥∥∥∥y[k]− x̃√
D

h[k]

∥∥∥∥2

. (1.103)

Setting the partial derivation of (1.103) with respect to x̃∗ to zero and applying the Wirtinger
calculus ∂x/∂x∗ = 0 leads to the optimum receiver structure

w =
√

D

‖h[k]‖2
· h[k]. (1.104)

A comparison of (1.104) with the results of Section 1.3.4 illustrates that the matched fil-
ter has been essentially obtained, except for a slight difference concerning the scaling.8

Applying (1.104) to (1.102) yields the output of the filter

x̃[k] = wH · y[k] =
√

D

‖h[k]‖2
·

D∑
�=1

h∗�[k] ·
(

h�[k]
x[k]√

D
+ n�[k]

)

= x[k]+
√

D

‖h[k]‖2
·

D∑
�=1

h∗�[k] · n�[k]. (1.105)

As described above, the received replicas are weighted with the complex conjugate channel
coefficients and summed. This technique is called Maximum Ratio Combining (MRC). The
resulting SNR can be determined by calculating the signal power as well as the noise
power at the filter output. Assuming that the noise samples are mutually independent, that
is, EN{ni[k]n∗j �=i [k]} = 0 holds, the contributing noise power becomes

D

‖h[k]‖4
· EN


D∑

�=1

h∗�[k]n�[k] ·
D∑

j=1

hj [k]n∗j [k]


= D

‖h[k]‖4
·

D∑
�=1

D∑
j=1

h∗�[k]hj [k] · EN
{
n�[k]n∗j [k]

}

= D

‖h[k]‖4
·

D∑
�=1

|h�[k]|2 · σ 2
N =

D

‖h[k]‖2
· σ 2

N. (1.106)

With EX{|x|2} = σ 2
X the SNR can be expressed by

γ [k] = σ 2
X

σ 2
N
· 1

D
· ‖h[k]‖2 = Es

N0
· 1

D
·

D∑
�=1

|h�[k]|2 =
D∑

�=1

γ�[k]. (1.107)

8The optimum scaling derived here is necessary for multiamplitude modulation in order to apply the correct
decision thresholds. For BPSK, the scalar weighting with

√
D/‖h[k]‖2 can be neglected.
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Hence, the ‘global’ SNR γ [k] is obtained by simply summing the ‘local’ ratios γ�[k] each
with a mean γ � = σ 2

H�
Es/N0/D.

1.5.2 MRC for Independent Diversity Branches

If the channel coefficients in all branches are mutually independent and identically dis-
tributed (i.i.d.), γ [k] is chi-squared distributed with 2D degrees of freedom (Bronstein et
al. 2000; Simon and Alouini 2000)

pγ (ξ) = ξD−1

(D − 1)! · γ D
�

· e−ξ/γ � = DDξD−1

(D − 1)!(Es/N0)D
· e−

ξD
Es/N0 (1.108)

instead of two degrees of freedom for the ‘local’ ratios γ�[k] (cf. Section 1.2). The second
equality in (1.108) holds for nondissipative channels with σ 2

H = 1. Numerical results are
shown in Figure 1.26. With growing diversity degree D, the instantaneous SNR increasingly
concentrates to Es/N0 and the SNR variations (influence of the fading) become smaller.
For D →∞, the AWGN channel without any fading is obtained.

Outage Probability

In order to analyze the outage probability for MRC i.i.d. diversity paths, the distribution
given in (1.108) has to be integrated according to (1.60)

Pout =
γt∫

0

pγ (ξ) dξ. (1.109)

However, γ is now chi-squared distributed with 2D degrees of freedom. Hence, an analyt-
ical solution is hard to obtain and the easiest way is to perform the integration in (1.109)
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Figure 1.26 Probability density functions of normalized γ [k] for different diversity degrees
D and i.i.d. diversity channels
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Figure 1.27 Outage probabilities for BPSK and i.i.d. Rayleigh fading channels a) a target
error rate of Pt = 10−3 and b) 10 log10(Eb/N0) = 12 dB

numerically. For BPSK, Figure 1.27 shows the corresponding results. The left diagram
shows Pout versus Eb/N0 for a fixed target error rate of Pt = 10−3. Obviously, Pout decreases
with growing SNR as well as with increasing diversity degree D. At very small values
Es/N0, we observe the astonishing effect that high diversity degrees provide a worse per-
formance. This can be explained by the fact that the variations of γ [k] become very small
for large D. As a consequence, instantaneous SNRs lying above the average Es/N0 occur
less frequently than for low D resulting in the described effect. Figure 1.27b shows the
results for a fixed 10 log10(Eb/N0) = 12 dB. Obviously, diversity can remarkably reduce
the outage probability.

Ergodic Error Probability for MRC

Equivalent to the derivations in Section 1.4, the expectation of the instantaneous error
probability with respect to γ [k] has to be determined. An exact solution for BPSK and
i.i.d. diversity branches can be found in (Proakis 2001)

Ps =
(

1− µ

2

)D

·
D−1∑
�=0

(
D − 1+ �

�

)
·
(

1+ µ

2

)�

with µ =
√

γ

1+ γ
. (1.110)

The parameter γ denotes the average SNR in each branch. In order to get a better illustration
of (1.110), we derive a simple approximation for large SNR, that is, γ � 1. In this case, the
application of a Taylor series expansion shows that (1+ µ)/2 ≈ 1 and (1− µ)/2 ≈ 1/(4γ )

hold. Therefore, with the relation (Proakis 2001)

D−1∑
�=0

(
D − 1+ �

�

)
=

(
2D − 1

D

)
(1.111)
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the symbol error rate can be approximated for large SNRs by

Ps ≈
(

1

4γ

)D

·
(

2D − 1

D

)
=

(
D

4Es/N0

)D

·
(

2D − 1

D

)
. (1.112)

Obviously, Ps is proportional to the D-th power of the reciprocal of the signal to noise
ratio. Since error rate curves are scaled logarithmically, their slope will be dominated by
the diversity degree D at high SNRs. This will be demonstrated later in this section.

The expression given in (1.110) becomes computationally expensive and numerically
difficult for high diversity degrees. A more convenient approach, especially for unequal
power distributions, can be obtained by exploiting the alternative representation of the
complementary error function already introduced in (1.53). This method can easily be
applied to arbitrary modulation schemes and unequal power distributions. Moreover, it can
be modified in order to also cope with the case of correlated diversity branches.

We start with the statistically independent diversity branches. As a consequence, the
joint density pγ1···γD

(ξ1 · · · ξD) can be factorized into marginal densities pγ�
(ξ�). This results

in

Ps = Eγ {Ps(γ )} = Eγ1···γD
{Ps (γ1 + · · · + γD)}

=
∞∫

0

· · ·
∞∫

0

Ps (γ1 + · · · + γD) · pγ1(ξ1) · · ·pγD
(ξD) dξ1 · · · dξD (1.113)

where the integrals in (1.113) can be solved separately. Resuming the last section and
exploiting the alternative representation of the complementary error function in (1.53), it
turns out that the following unique, parameterized expression for all linear modulation
schemes can be found.9

Ps(γ ) = a ·
b∫

0

exp

[
− c · γ

sin2(θ)

]
dθ (1.114)

The parameters a, b and c are defined as

M-ASK :


a = 2

π
· M−1

M

b = π
2

c = 3
M2−1

(1.115a)

M-QAM :


a = 4

π
·
√

M−1√
M

b = π
2

c = 3
2(M−1)

(1.115b)

M-PSK :


a = 1

π

b = π · M−1
M

c = sin2(π/M).

(1.115c)

9For M-QAM, (1.114) represents only an approximation because the quadratic term is neglected.
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Inserting (1.114) into (1.113) and reversing the order of integration leads to

Ps =
∞∫

0

· · ·
∞∫

0

a

b∫
0

exp

[
−c · (ξ1 + · · · ξD)

sin2(θ)

]
dθ · pγ1(ξ1) · · ·pγD

(ξD) dξ1 · · · dξD

= a

b∫
0

D∏
�=1

∞∫
0

exp

[
− c · ξ�

sin2(θ)

]
· pγ�

(ξ�) dξ� dθ. (1.116)

From the derivations in Section 1.3 it is already known that the substitution s = −c/ sin2(θ)

in the inner integrals of (1.116) leads to the MGFs

Mγ�
(s) =

∞∫
0

pγ�
(ξ�) · esξ�dξ� (1.117)

of the random processes γ� (Papoulis 1965; Simon and Alouini 2000). Therefore, as an
important intermediate result, the ergodic error probability can be calculated by numerically
solving

Ps = a

b∫
0

D∏
�=1

Mγ�

( −c

sin2(θ)

)
dθ =

i.i.d.
a

b∫
0

[
Mγ

( −c

sin2(θ)

)]D

dθ (1.118)

where the second equality in (1.118) holds for identically distributed branches.

Ergodic Error Probability for Rayleigh Fading Channel

Inserting the MGF in (1.56) for Rayleigh fading channels with chi-squared distributed
γ� results in the following expression for D-fold diversity and statistically independent
channels

Ps = a

b∫
0

D∏
�=1

sin2(θ)

sin2(θ)+ cγ �

dθ =
i.i.d.

a

b∫
0

(
D sin2(θ)

D sin2(θ)+ cEs/N0

)D

dθ. (1.119)

Due to the agreement that the transmit power is uniformly distributed onto all diversity
paths, the average SNR per path for identically distributed branches is γ � = Es/N0/D

leading to the second equality in (1.119). For Ricean fading, the MGF of (1.58) has to be
inserted.

Figure 1.28 shows the results for BPSK and equally distributed branches. As already
explained, with increasing diversity degree D, the error rates decrease due to smaller vari-
ations of the global SNR. In the limit for D →∞, the performance of an AWGN channel
is obtained. This asymptotic case is normally not of practical interest because channel
estimation becomes a critical task due to local SNRs that tend to zero when D goes to
infinity.

The largest gains are obtained at high SNRs where the slopes of the curves are deter-
mined by D. For illustration, the dashed lines represent the results obtained with (1.112).
It can be seen that this approximation is quite tight for high SNR and low diversity
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Figure 1.28 Symbol error probabilities for the transmission of BPSK over i.i.d. Rayleigh
fading channels with different diversity degrees D, dashed lines for asymptotic approxima-
tion with (1.112)
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Figure 1.29 Symbol error probabilities versus diversity degree D for different modulation
schemes at 10 log10(Eb/N0) = 12 dB for i.i.d. Rayleigh fading channels

degrees. However, for low SNR and especially for high D it becomes quite loose. For
D > 10, the bound is only tight for error rates that are beyond the scope of practical
systems.

Figure 1.29 illustrates the symbol error rates for a fixed 10 log10(Eb/N0) = 12 dB for
different modulation schemes. For D = 100, the AWGN performance is nearly approached.
However, the largest gain is already obtained for D < 100, especially when the error rate
for an AWGN channel is quite high.
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Ergodic Error Probability for Ricean Fading Channel

Scenarios in which the transmit and receive antennas have a direct LoS connection suffer
less from fading. However, even in these cases, diversity improves the system performance.
The improvement naturally depends on the Rice factors of the contributing transmission
paths. In Appendix A.3 the MGF for Ricean fading is derived

M|H|2(s) =
K + 1

K + 1− sP
· exp

[
sKP

(K + 1)− sP

]
. (1.120)

Inserting (1.120) into (1.118) and applying the substitution s = −c/ sin2(θ) allows a numer-
ical computation of the ergodic error probability.

Figure 1.30 shows the error rate performance of a system with D i.i.d. Rice fading
channels for different Rice factors K . The average power was fixed to P = 1 leading to
different variances σ 2

H for different Rice factors K . From the left diagram it can be seen
that – as expected – the Rice fading channel outperforms the Rayleigh fading channel for
all D and a strong LoS part with K = 10. For D = 10 the AWGN curve can be approached
for Ricean fading while the Rayleigh fading channel loses more than 5 dB.

From Figure 1.30b it becomes obvious that the diversity gain decreases with growing
K . For small K , that is, weak LoS components, the diversity gains known from Rayleigh
fading are possible. For K →∞, the performance of the AWGN channel is reached even
without diversity. Hence, diversity concepts are only an appropriate mean in severe fading
environments.

Unequal Power Distributions

If the power is not equally distributed among the different transmission paths, the first
expression in (1.119) with different γ �, has to be used. Without loss of generality, it can be
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Figure 1.31 Symbol error probabilities versus diversity degree D for BPSK and different
power profiles at 10 log10(Eb/N0) = 12 dB

assumed that the paths are arranged in ascending order with respect to their average power
σ 2
H�

and that the average total power is restricted to
∑

� |h�|2 = D resulting in an overall
average SNR

γ̄ =
D∑

�=1

γ̄� = Es

DN0
·

D∑
�=1

σ 2
H�
= Es

N0
(1.121)

after MRC.10 For a linear increase of σ 2
H�

, we obtain σ 2
H�
= δ · � with the slope δ = 2/

(D + 1). The average SNRs of the contributing channels become

γ � =
Es

DN0
· σ 2

H�
= Es/N0

D
· 2�

D + 1
with 1 ≤ � ≤ D. (1.122)

For an exponential growth, the SNRs are determined by

γ � = C · Es

DN0
· exp(�δ/D) with 1 ≤ � ≤ D (1.123)

with δ > 0 and C as a normalization factor. Figure 1.31 shows the results for BPSK. The
best performance is obtained for i.i.d. channels. A linear decay leads to a slight degradation,
while the exponential decays with δ ≥ 5 lose considerably. The reason is that, with growing
δ, the power is concentrated on a single fading channel and, thus, thwarting the diversity
effect. konterkariert At an error rate of Ps = 10−4, the exponential profile with δ = 10 needs
D = 20 paths for obtaining an equivalent diversity degree as in the case of i.i.d. branches
with D = 5. For δ = 100, approximately 200 paths are required.

10This assumption coincides with the i.i.d. case where σ 2
H�
≡ 1 holds.
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1.5.3 MRC for Correlated Diversity Branches

If the different diversity branches are mutually dependent, the factorization of the probability
density in (1.113) cannot be performed anymore and solving the integral becomes a difficult
task. Generally, the correlations between different channels can be expressed by a correlation
matrix

�HH =


σ 2
H1

σH1σH2ρ1,2 · · · σH1σHD
ρ1,D

σH1σH2ρ2,1 σ 2
H2

· · · σH2σHD
ρ2,D

...
...

. . .
...

σH1σHD
ρD,1 σH2σHD

ρD,2 · · · σ 2
HD

 (1.124)

whose elements are �µ,ν = EH{hµh∗ν} = σHµσHν ρµ,ν . The coefficient ρµ,ν describes the
correlation between the channel coefficients hµ and hν normalized on σHµσHν . Due to
ρµ,µ = 1, the main diagonal consists of the powers σ 2

Hµ
of the different channels.

A solution of the integral in (1.113) can be derived by the well-known Karhunen-Loève
transformation (Kammeyer 2004; Mertins 1999). It linearly transforms the vector h with
correlated elements hµ into a vector w with uncorrelated elements wµ. Since the channel
coefficients are assumed to be complex Gaussian distributed, they are also statistically inde-
pendent. The matrix U = [u1 · · · uD] describing this linear transformation simply consists
of the eigenvectors uµ of �HH. Therefore, we only have to solve the eigenvalue problem

�HHuµ = λµuµ ⇒ det(�HH − λµID) = 0 (1.125)

delivering the eigenvalue decomposition �HH = U�UH . The diagonal matrix � contains
the eigenvalues λµ of �HH. Since U is a unitary matrix, the transformation is performed
by

h = U · w ⇒ w = U−1 · h = UH · h (1.126)

resulting in E{wwH } = EH{UH hhH U} = UH U�UH U = �. Hence, we obtain D indepen-
dent equivalent channels with coefficients wµ and average powers λµ. For these equivalent
channels, (1.118) can be directly applied again by inserting the corresponding MGFs. For
Rayleigh fading channels, we obtain the expression

Ps = a

b∫
0

D∏
�=1

sin2(θ)

sin2(θ)+ c · γ�

dθ with γ� = λ� · Es

DN0
. (1.127)

Obviously, only nonzero eigenvalues contribute to the product in (1.127) and the effective
diversity degree becomes smaller for correlated channels.

Constant Correlations between Equal Power Paths

In the following part, the influence of correlations between different paths will be illustrated
for a specific example. Assuming that all channels have the same average power, that is,
σ 2
H = σ 2

H1
= · · · = σ 2

HD
= 1, and that the correlation between the pairs of diversity branches

is constant for all pairs, that is, ρµ,ν = ρ for all µ �= ν. Hence, the correlation matrix
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becomes

�HH = σ 2
H ·


1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1

 (1.128)

and the argument of the determinant in (1.125) has the form
a b b · · · b

b a b · · · b
...

...

b b · · · b a


whose determinant is (a − b)D−1[a + b(D − 1)] (Simon and Alouini 2000). Substituting
a = σ 2

H − λ and b = σ 2
Hρ yields the expression

(σ 2
H − λ− σ 2

Hρ)D−1[σ 2
H − λ+ σ 2

Hρ(D − 1)] = 0.

The solutions are the (D − 1)-fold zero λ1 = σ 2
H(1− ρ) and the single zero λ2 = σ 2

H(1+
ρ(D − 1)). Inserting these eigenvalues into (1.127) delivers for σ 2

H = 1 the ergodic error
probability

Ps = a

b∫
0

1(
1+ cEs/N0(1−ρ)

D sin2(θ)

)D−1

1

1+ cEs/N0(1+ρ(D−1))

D sin2(θ)

dθ. (1.129)

A check on plausibility shows the well-known result of i.i.d. diversity branches for ρ =
0, and the nondiversity case (D = 1) for ρ = 1 (total correlation). Figure 1.32 illustrates
the corresponding results. Similar to unequal power distributions among the contributing
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Figure 1.32 Symbol error probabilities versus diversity degree D for BPSK, identically
distributed channels and varying correlation coefficient ρ at 10 log10(Eb/N0) = 12 dB
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paths, correlation decreases the benefits of diversity. For ρ = 0.4, the error rate hardly
falls below 10−6 even for D = 1000. This error rate is already achieved with D = 19 for
i.i.d. channels, that is, the effective diversity degree is only 19. For ρ = 1, that is, totally
correlated channels, no diversity gain can be exploited.

1.6 Summary

This chapter introduced the basics of digital communications over wireless channels. After
presenting the general system model, the main characteristics of mobile radio channels were
explained. Since they can be described by stochastic processes, their statistical properties
like delay spread and coherence bandwidth, as well as Doppler bandwidth and coherence
time have been derived from the power delay profile and the Doppler power spectrum,
respectively. The relation of these quantities to the parameters bandwidth and symbol dura-
tion of the transmitted signal determine whether a channel behaves time or frequency
selective. The description of a channel model in the equivalent baseband and the extension
to MIMO channels with multiple inputs and outputs closes this section.

The next two sections present detection principles and the most important linear modula-
tion schemes, including a performance analysis. With increasing alphabet size, both spectral
efficiency and error probabilities increase so that a trade-off has to be found. Finally, the
concept of diversity was discussed and the significant benefits have been illustrated. Sev-
eral combining techniques have been mentioned, whereas the main focus was on maximum
ratio combining. Essentially, diversity reduces the variations of the SNR at the output of
the combiner, leading to a smaller variance of the instantaneous error probability.
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2

Information Theory

This section briefly introduces Shannon’s information theory, which was founded in 1948
and represents the basis for all communication systems. Although this theory is used only
with respect to communication systems, it can be applied in a much broader context, for
example, for the analysis of stock markets (Sloane and Wyner 1993). Furthermore, emphasis
is on the channel coding theorem and source coding and cryptography are not addressed.

The channel coding theorem delivers ultimate bounds on the efficiency of communi-
cation systems. Hence, we can evaluate the performance of practical systems as well as
encoding and decoding algorithms. However, the theorem is not constructive in the sense
that it shows us how to design good codes. Nevertheless, practical codes have already been
found that approach the limits predicted by Shannon (ten Brink 2000b).

This chapter, starts with some definitions concerning information, entropy, and redun-
dancy for scalars as well as vectors. On the basis of these definitions, Shannon’s channel
coding theorem with channel capacity, Gallager exponent, and cutoff rate will be pre-
sented. The meaning of these quantities is illustrated for the Additive White Gaussian Noise
(AWGN) and flat fading channels. Next, the general method to calculate capacity will be
extended to vector channels with multiple inputs and outputs. Finally, some information on
the theoretical aspects of multiuser systems are explained.

2.1 Basic Definitions

2.1.1 Information, Redundancy, and Entropy

In order to obtain a tool for evaluating communication systems, the term information must
be mathematically defined and quantified. A random process X that can take on val-
ues out of a finite alphabet X consisting of elements Xµ with probabilities Pr{Xµ} is
assumed. By intuition, the information I (Xµ) of a symbol Xµ should fulfill the following
conditions.

1. The information of an event is always nonnegative, that is, I (Xµ) ≥ 0.

Wireless Communications over MIMO Channels Volker Kühn
 2006 John Wiley & Sons, Ltd
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2. The information of an event Xµ depends on its probability, that is, I (Xµ) =
f (Pr{Xµ}). Additionally, the information of a rare event should be larger than that
of a frequently occurring event.

3. For statistically independent events Xµ and Xν with Pr{Xµ, Xν} = Pr{Xµ}Pr{Xν},
the common information of both events should be the sum of the individual contents,
that is, I (Xµ, Xν) = I (Xµ)+ I (Xν).

Combining conditions two and three leads to the relation

f (Pr{Xµ} · Pr{Xν}) = f (Pr{Xµ})+ f (Pr{Xν}).

The only function that fulfills this condition is the logarithm. Taking care of I (Xµ) ≥ 0,
the information of an event or a symbol Xµ is defined by (Shannon 1948)

I (Xµ) = log2
1

Pr{Xµ} = − log2 Pr{Xµ}. (2.1)

Since digital communication systems are based on the binary representation of symbols,
the logarithm to base 2 is generally used and I (Xµ) is measured in bits. However, different
definitions exist using for example, the natural logarithm (nat) or the logarithm to base 10
(Hartley).

The average information of the process X is called entropy and is defined by

Ī (X ) = EX{I (Xµ)} = −
∑
µ

Pr{Xµ} · log2 Pr{Xµ}. (2.2)

It can be shown that the entropy becomes maximum for equally probable symbols Xµ. In
this case, the entropy of an alphabet consisting of 2k elements equals

Īmax(X ) =
∑
µ

2−k · log2 2k = log2 |X| = k bit. (2.3)

Generally, 0 ≤ Ī (X ) ≤ log2 |X| holds. For an alphabet consisting of only two elements with
probabilities Pr{X1} = Pe and Pr{X2} = 1− Pe, we obtain the binary entropy function

Ī2(Pe) = −Pe · log2(Pe)− (1− Pe) · log2(1− Pe). (2.4)

This is depicted in Figure 2.1. Obviously, the entropy reaches its maximum Īmax = 1 bit for
the highest uncertainty at Pr{X1} = Pr{X2} = Pe = 0.5. It is zero for Pe = 0 and Pe = 1
because the symbols are already a priori known and do not contain any information. More-
over, entropy is a concave function with respect to Pe. This is a very important property
that also holds for more than two variables.

A practical interpretation of the entropy can be obtained from the rate distortion theory
(Cover and Thomas 1991). It states that the minimum average number of bits required for
representing the events x of a process X without losing information is exactly its entropy
Ī (X ). Encoding schemes that use less bits cause distortions. Finding powerful schemes
that need as few bits as possible to represent a random variable is generally nontrivial and
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Figure 2.1 Binary entropy function

subject to source or entropy coding. The difference between the average number m̄ of bits
a particular entropy encoder needs and the entropy is called redundancy

R = m̄− Ī (X ); r = m̄− Ī (X )

Ī (X )
. (2.5)

In (2.5), R and r denote the absolute and the relative redundancy, respectively. Well-known
examples are the Huffmann and Fanø codes, run-length codes and Lempel-Ziv codes (Bell
et al. 1990; Viterbi and Omura 1979; Ziv and Lempel 1977).

2.1.2 Conditional, Joint and Mutual Information

Since the scope of this work is the communication between two or more subscribers, at
least two processes X and Y with symbols Xµ ∈ X and Yν ∈ Y, respectively have to be
considered. The first process represents the transmitted data, the second the corresponding
received symbols. For the moment, the channel is supposed to have discrete input and output
symbols and it can be statistically described by the joint probabilities Pr{Xµ and Yν} or,
equivalently, by the conditional probabilities Pr{Yν | Xµ} and Pr{Xµ | Yν} and the a priori
probabilities Pr{Xµ} and Pr{Yν}. Following the definitions given in the previous section,
the joint information of two events Xµ ∈ X and Yν ∈ Y is

I (Xµ, Yν) = log2
1

Pr{Xµ, Yν} = − log2 Pr{Xµ, Yν}. (2.6)

Consequently, the joint entropy of both processes is given by

Ī (X ,Y) = EX,Y{I (Xµ, Yν)} = −
∑
µ

∑
ν

Pr{Xµ, Yν} · log2 Pr{Xµ, Yν}. (2.7)

Figure 2.2 illustrates the relationships between different kinds of entropies. Besides the
terms Ī (X ), Ī (Y), and Ī (X ,Y) already defined, three additional important entropies exist.
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Ī (X )

Ī (Y)

Ī (X | Y) Ī (Y | X )Ī (X ;Y)

Ī (X ,Y)

Figure 2.2 Illustration of entropies for two processes

At the receiver, y is totally known and the term Ī (X | Y) represents the information of X
that is not part of Y . Therefore, the equivocation Ī (X | Y) represents the information that
was lost during transmission

Ī (X | Y) = Ī (X ,Y)− Ī (Y) = EX,Y
{− log2 Pr{Xµ | Yν}

}
= −

∑
µ

∑
ν

Pr{Xµ, Yν} · log2 Pr{Xµ | Yν}. (2.8)

From Figure 2.2, we recognize that Ī (X | Y) equals the difference between the joint entropy
Ī (X ,Y) and the sinks entropy Ī (Y). Equivalently, we can write Ī (X ,Y) = Ī (X | Y)+
Ī (Y), leading to the general chain rule for entropies.

Chain Rule for Entropies

In Appendix B.1, it has been shown that the entropy’s chain rule (Cover and Thomas 1991)

Ī (X1,X2, . . . , Xn) =
n∑

i=1

Ī (Xi | Xi−1 · · · X1) (2.9)

holds for a set of random variables X1, X2, up to Xn, belonging to a joint probability
Pr{X1,X2, . . . ,Xn}.

On the contrary, Ī (Y|X ) represents information of Y that is not contained in X . There-
fore, it cannot stem from the source X and is termed irrelevance.

Ī (Y | X ) = Ī (X ,Y)− Ī (X ) = EY,X
{− log2 Pr{Yν | Xµ}

}
= −

∑
µ

∑
ν

Pr{Xµ, Yν} · log2 Pr{Yν | Yµ} (2.10)
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Naturally, the average information of a process X cannot be increased by some knowledge
about Y so that

Ī (X | Y) ≤ Ī (X ) (2.11)

holds. Equality in (2.11) is obtained for statistically independent processes.
The most important entropy Ī (X ;Y) is called mutual information and describes the

average information common to X and Y . According to Figure 2.2, it can be determined by

Ī (X ;Y) = Ī (X )− Ī (X | Y) = Ī (Y)− Ī (Y | X ) = Ī (X )+ Ī (Y)− Ī (X ,Y). (2.12)

Mutual information is the term that has to be maximized in order to design a communication
system with the highest possible spectral efficiency. The maximum mutual information that
can be obtained is called channel capacity and will be derived for special cases in subsequent
sections. Inserting (2.2) and (2.7) into (2.12) yields

Ī (X ;Y) =
∑
µ

∑
ν

Pr{Xµ, Yν} · log2
Pr{Xµ, Yν}

Pr{Xµ} · Pr{Yν}

=
∑
µ

Pr{Xµ}
∑

ν

Pr{Yν | Xµ} log2
Pr{Yν | Xµ}∑

l Pr{Yν | Xl}Pr{Xl} . (2.13)

As can be seen, mutual information depends on the conditional probabilities Pr{Yν | Xµ}
determined by the channel and the a priori probabilities Pr{Xµ}. Hence, the only parameter
that can be optimized for a given channel in order to maximize the mutual information is
the statistics of the input alphabet.

Chain Rule for Information

If the mutual information depends on a signal or parameter z, (2.12) changes to Ī (X ;Y |
Z) = Ī (X | Z)− Ī (X | Y,Z). This leads directly to the general chain rule for information
(Cover and Thomas 1991) (cf. Appendix B.2)

Ī (X1, . . . ,Xn;Z) =
n∑

i=1

Ī (Xi;Z | Ī (Xi−1, . . . ,X1). (2.14)

For only two random variables X and Y , (2.14) becomes

Ī (X ,Y;Z) = Ī (X ;Z)+ Ī (Y;Z | X ) = Ī (Y;Z)+ Ī (X ;Z | Y) . (2.15)

From (2.15), we learn that first detecting x from z and subsequently y – now for known
x – leads to the same mutual information as starting with y and proceeding with the detec-
tion of x. As a consequence, the detection order of x and y has no influence from the
information theoretic point of view. However, this presupposes an error-free detection of the
first signal that usually cannot be ensured in practical systems, resulting in error propagation.

Data Processing Theorem

With (2.14), the data processing theorem can now be derived. Imagine a Markovian chain
X → Y → Z of three random processes X , Y , and Z , that is, Y depends on X and Z
depends on Y but X and Z are mutually independent for known y. Hence, the entire
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information about X contained in Z is delivered by Y and Ī (X ;Z | y) = 0 holds. With
this assumption, the data processing theorem

Ī (X ;Z) ≤ Ī (X ;Y) and Ī (X ;Z) ≤ Ī (Y;Z) (2.16)

is derived in Appendix B.3. If Z is a function of Y , (2.16) states that information about
X obtained from Y cannot be increased by some processing of Y leading to Z . Equality
holds if Z is a sufficient statistics of Y which means that Z contains exactly the same
information about X as Y , that is, Ī (X ;Y | Z) = Ī (X ;Y | Y) = 0 holds.

2.1.3 Extension for Continuous Signals

If the random process X consists of continuously distributed variables, the probabilities
Pr{Xµ} defined earlier have to be replaced by probability densities pX(x). Consequently,
all sums become integrals and the differential entropy is defined by

Īdiff(X ) = −
∫ ∞

−∞
pX(x) · log2 pX(x)dx = E{− log2 pX(x)}. (2.17)

Contrary to the earlier definition, the differential entropy is not restricted to be nonnegative.
Hence, the aforementioned interpretation is not valid anymore. Nevertheless, Īdiff(X ) can
still be used for the calculation of mutual information and channel capacity, which will be
demonstrated in Section 2.2.

For a real random process X with a constant probability density pX(x) = 1/(2a) in the
range |x| ≤ a, a being a positive real constant, the differential entropy has the value

Īdiff(X ) =
∫ a

−a

1

2a
· log2(2a)dx = log2(2a). (2.18)

With reference to a real Gaussian distributed process with mean µX and variance σ 2
X, we

obtain

pX(x) = 1√
2πσ 2

X
· exp

(
− (x − µX)2

2σ 2
X

)
and

Īdiff(X ) = 1

2
· log2(2πeσ 2

X). (2.19a)

If the random process is circularly symmetric complex, that is, real and imaginary parts
are independent with powers σ 2

X ′ = σ 2
X ′′ = σ 2

X/2, the Gaussian probability density function
(PDF) has the form

pX(x) = pX ′(x ′) · pX ′′(x ′′) = 1

πσ 2
X
· exp

(
−|x − µX|2

σ 2
X

)
.

In this case, the entropy is
Īdiff(X ) = log2(πeσ 2

X). (2.19b)

Comparing (2.19a) and (2.19b), we observe that the differential entropy of a complex Gaus-
sian random variable equals the joint entropy of two independent real Gaussian variables
with halved variance.
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2.1.4 Extension for Vectors and Matrices

When dealing with vector channels that have multiple inputs and outputs, we use vector
notations as described in Section 1.2.4. Therefore, we stack n random variables x1, . . . , xn

of the process X into the vector x. With the definition of the joint entropy in (2.7), we
obtain

Ī (X ) = −
∑
x∈Xn

Pr{x} · log2 Pr{x} (2.20)

= −
|X|∑

ν1=1

· · ·
|X|∑

νn=1

Pr{Xν1 , · · · , Xνn} · log2 Pr{Xν1 , · · · , Xνn}.

Applying the chain rule recursively for entropies in (2.9) leads to an upper bound

Ī (X ) =
n∑

µ=1

Ī (Xµ | x1, · · · , xµ−1) ≤
n∑

µ=1

Ī (Xµ) (2.21)

where equality holds exactly for statistically independent processes Xµ. Following the
previous subsection, the differential entropy for real random vectors becomes

Īdiff(X ) = −
∫

Rn

pX(x) · log2 pX(x) dx = E{− log2 pX(x)} (2.22)

Under the restriction ‖x‖ ≤ a, a being a positive real constant, the entropy is maximized
for a uniform distribution. Analogous to Section 2.1.1, we obtain

pX(x) =
{

1/Vn(a) for ‖x‖ ≤ a

0 else
with Vn(a) = 2πn/2an

n�(n/2)
, (2.23)

that is, the PDF describes the surface of a ball in the n-dimensional space. The gamma
function in (2.23) is defined by �(x) = ∫∞

0 tx−1e−t dt (Gradshteyn 2000). It becomes
�(n) = (n− 1)! and �(n− 1

2 ) = (2n)!
√

π/(n! · 22n) for n = 1, 2, 3, . . . . The expectation
in (2.22) now delivers

Īdiff(X ) = log2

(
2πn/2an

n�(n/2)

)
. (2.24)

On the contrary, for a given covariance matrix �XX = EX{xxT } of a real-valued process
X , the maximum entropy is achieved by a multivariate Gaussian density

pX(x) = 1√
det(2π�XX)

· exp

(
−

xT �−1
XXx

2

)
(2.25)

and amounts to

Īdiff(X ) = 1

2
· log2 det(2πe�XX). (2.26)

For complex elements of x with the same variance σ 2
X, the Gaussian density becomes

pX(x) = 1√
det(π�XX)

· exp
(
−xH�−1

XXx
)

(2.27)
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channel
FEC

encoder
FEC

decoder

d x y d̂

Rc = k/n

Ī (X )

Ī (X | Y)

Ī (Y | X )

Ī (X ;Y) Ī (Y)

Figure 2.3 Simple model of a communication system

with �XX = EX{xxH } and the corresponding entropy has the form

Īdiff(X ) = log2 det(πe�XX) , (2.28)

if the real and imaginary parts are statistically independent.

2.2 Channel Coding Theorem for SISO Channels

2.2.1 Channel Capacity

This section describes the channel capacity and the channel coding theorem defined by
Shannon. Figure 2.3 depicts the simple system model. An Forward Error Correction (FEC)
encoder, which is explained in more detail in Chapter 3, maps k data symbols represented
by the vector d onto a vector x of length n > k. The ratio Rc = k/n is termed code rate and
determines the portion of information in the whole message x. The vector x is transmitted
over the channel, resulting in the output vector y of the same length n. Finally, the FEC
decoder tries to recover d on the basis of the observation y and the knowledge of the code’s
structure.

As already mentioned in Section 2.1.2, mutual information Ī (X ;Y) is the crucial param-
eter that has to be maximized. According to (2.12), it only depends on the conditional
probabilities Pr{Yν | Xµ} and the a priori probabilities Pr{Xµ}. Since Pr{Yν | Xµ} are given
by the channel characteristics and can hardly be influenced, mutual information can only
be maximized by properly adjusting Pr{Xµ}. Therefore, the channel capacity C describes
the maximum mutual information

C = sup
Pr{X }

∑
µ

∑
ν

Pr{Yν | Xµ} · Pr{Xµ} · log2
Pr{Yν | Xµ}∑

l Pr{Yν | Xl} · Pr{Xl} (2.29)
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obtained for optimally choosing the source statistics Pr{X }.1 It can be shown that mutual
information is a concave function with respect to Pr{X }. Hence, only one maximum exists,
which can be determined by the sufficient conditions

∂C

∂ Pr{Xµ} = 0 ∀ Xµ ∈ X. (2.30)

Owing to the use of the logarithm to base 2, C is measured in (bits/channel use) or
(bits/s/Hz). In many practical systems, the statistics of the input alphabet is fixed or the
effort for optimizing it is prohibitively high. Therefore, uniformly distributed input symbols
are assumed and the expression

Ī (X ;Y) = log2 |X | +
1

|X | ·
∑
µ

∑
ν

Pr{Yν | Xµ} · log2
Pr{Yν | Xµ}∑
l Pr{Yν | Xl} . (2.31)

is called channel capacity although the maximization with respect to Pr{X } is missing. The
first term in (2.31) represents Ī (X ) and the second, the negative equivocation Ī (X | Y).

Channel Coding Theorem

The famous channel coding theorem of Shannon states that at least one code of rate Rc ≤ C

exists for which an error-free transmission can be ensured. The theorem assumes perfect
Maximum A Posteriori (MAP) or maximum likelihood decoding (cf. Section 1.3) and the
code’s length may be arbitrarily long. However, the theorem does not show a way to find
this code. For Rc > C, it can be shown that an error-free transmission is impossible even
with tremendous effort (Cover and Thomas 1991).

For continuously distributed signals, the probabilities (2.29) have to be replaced by
corresponding densities and the sums by integrals. In the case of a discrete signal alphabet
and a continuous channel output, we obtain the expression

C = sup
Pr{X}

∫
Y

∑
µ

pY|Xµ(y) · Pr{Xµ} · log2

pY|Xµ(y)∑
l pY|Xl

(y) · Pr{Xl} dy. (2.32)

Examples of capacities for different channels and input alphabets are presented later in this
chapter.

2.2.2 Cutoff Rate

Up to this point, no expression addressing the error rate attainable for a certain code
rate Rc and codeword length n was achieved. This drawback can be overcome with the
cutoff rate and the corresponding Bhattacharyya bound. Valid codewords by x and the code
representing the set of all codewords as is denoted �. Furthermore, assuming that x ∈ � of
length n was transmitted its decision region D(x) is defined such that the decoder decides
correctly for all received vectors y ∈ D(x). For a discrete output alphabet of the channel,
the word error probability Pw(x) of x can be expressed by

Pw(x) = Pr
{Y /∈ D(x) | x

} = ∑
y/∈D(x)

Pr{y | x}. (2.33)

1If the maximum capacity is really reached by a certain distribution, the supremum can be replaced by the
maximum operator.
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Since the decision regions D(x) for different x are disjoint, we can alternatively sum
the probabilities Pr{Y ∈ D(x ′) | x} of all competing codewords x′ �= x and (2.33) can be
rewritten as

Pw(x) =
∑

x′∈�\{x′}
Pr

{Y ∈ D(x ′) | x
} = ∑

x′∈�\{x′}

∑
y∈D(x′)

Pr{y | x}. (2.34)

The right-hand side of (2.34) replaces y /∈ D(x) by the sum over all competing decision
regions D(x′ �= x). Since Pr{y | x′} is larger than Pr{y | x} for all y ∈ D(x′),

Pr{y | x′} ≥ Pr{y | x} ⇒
√

Pr{y | x′}
Pr{y | x} ≥ 1 (2.35)

holds. The multiplication of (2.34) with (2.35) and the extension of the inner sum in (2.34)
to all possible received words y ∈ Y

n leads to an upper bound

Pw(x) ≤
∑

x′∈�\{x′}

∑
y∈D(x′)

Pr{y | x} ·
√

Pr{y | x′}
Pr{y | x}

=
∑

x′∈�\{x′}

∑
y∈Yn

√
Pr{y | x} · Pr{y | x′}. (2.36)

The computational costs for calculating (2.36) are very high for practical systems because
the number of codewords and especially the number of possible received words is very
large. Moreover, we do not know a good code yet and we are not interested in the error
probabilities of single codewords x. A solution would be to calculate the average error
probability over all possible codes �, that is, we determine the expectation EX{Pw(x)} with
respect to Pr{X }. Since all possible codes are considered with equal probability, all words
x ∈ Xn are possible. In order to reach this goal, it is assumed that x and x′ are identically
distributed and are independent so that Pr{x, x′} = Pr{x} · Pr{x′} holds.2 The expectation of
the square root in (2.36) becomes

E
{√

Pr{y | x}Pr{y | x′}
}
=

∑
x∈Xn

∑
x′∈Xn

√
Pr{y | x}Pr{y | x′}Pr{x}Pr{x′}

=
∑
x∈Xn

√
Pr{y | x}Pr{x}

∑
x′∈Xn

√
Pr{y | x′}Pr{x′}

=
(∑

x∈Xn

√
Pr{y | x} · Pr{x}

)2

. (2.37)

Since (2.37) does not depend on x′ any longer, the outer sum in (2.36) becomes a constant
factor 2k − 1 that can be approximated by 2nRc with Rc = k/n. We obtain (Cover and
Thomas 1991)

2This assumption also includes codes that map different information words onto the same codeword, leading
to x = x′. Since the probability of these codes is very low, their contribution to the ergodic error rate is rather
small.
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Pw = EX{Pw(x)} < 2nRc ·
∑
y∈Yn

(∑
x∈Xn

√
Pr{y | x} · Pr{x}

)2

(2.38a)

= 2nRc+log2
∑

y∈Yn(
∑

x∈Xn
√

Pr{y|x}·Pr{x})2
(2.38b)

that is still a function of the input statistics Pr{X }. In order to minimize the average error
probability, the second part of the exponent in (2.38b) has to be minimized. Defining the
cutoff rate to

R0 = max
Pr{X }

−1

n
· log2

∑
y∈Yn

(∑
x∈Xn

√
Pr{y | x} · Pr{x}

)2
 , (2.39)

that depends only on the conditional probabilities Pr{y | x} of the channel, we obtain an
upper bound for the minimum average error rate

min
Pr{X }

E{Pw} < 2−n(R0−Rc) = 2−n·EB(Rc). (2.40)

In (2.40), EB(Rc) = R0 − Rc denotes the Bhattacharyya error exponent. This result demon-
strates that arbitrarily low error probabilities can be achieved for R0 > Rc. If the code rate
Rc approaches R0, the length n of the code has to be infinitely increased for an error-free
transmission. Furthermore, (2.40) now allows an approximation of error probabilities for
finite codeword lengths.

For memoryless channels, the vector probabilities can be factorized into symbol prob-
abilities, simplifying the calculation of (2.39) tremendously. Applying the distributive law,
we finally obtain

R0 = max
Pr{X }

− log2

∑
y∈Y

(∑
x∈X

√
Pr{y | x} · Pr{x}

)2
 . (2.41)

Owing to the applied approximations, R0 is always smaller than the channel capacity
C. For code rates with R0 < Rc < C, the bound in (2.40) cannot be applied. Moreover,
owing to the introduction of the factor in (2.35), the bound becomes very loose for large
number of codewords.

Continuously Distributed Output

In Benedetto and Biglieri (1999, page 633), an approximation of R0 is derived for the
AWGN channel with a discrete input X and a continuously distributed output. The derivation
starts with the calculation of the average error probability and finally the result is obtained
in (2.40). Using our notation, we obtain

R0 = log2(|X|)− log2

(
1+ 1

|X| r(X, N0)

)
(2.42)

with

r(X, N0) = min
Pr{X}

|X|2 ·
|X|∑

µ=1

|X|∑
ν=1

Pr{Xµ}Pr{Xν} exp

[
−|Xµ −Xν |2

4N0

]
. (2.43)
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However, performing the maximization is a difficult task and hence a uniform distribution
of X is often assumed. In this case, the factor in front of the double sum and the a priori
probabilities eliminate each other.

2.2.3 Gallager Exponent

As already mentioned, the error exponent of Bhattacharyya becomes very loose for large
codeword sets. In order to tighten the bound in (2.38a), Gallager introduced an optimization
parameter ρ ∈ [0, 1], leading to the expression (Cover and Thomas 1991)

Pw(ρ) = EX{Pw(ρ, x)} < 2ρnRc ·
∑
y∈Yn

(∑
x∈Xn

Pr{y | x} 1
1+ρ · Pr{x}

)1+ρ

= 2
ρnRc+log2

∑
y∈Yn

(∑
x∈Xn Pr{y|x}

1
1+ρ ·Pr{x}

)1+ρ

. (2.44)

Similar to the definition of the cutoff rate in (2.39), we can now define the Gallager function

E0(ρ, Pr{X }) = −1

n
· log2

∑
y∈Yn

(∑
x∈Xn

Pr{y | x} 1
1+ρ · Pr{x}

)1+ρ
 . (2.45)

Comparing (2.37) with (2.45), it becomes obvious that the bounds of Gallager and Bhat-
tacharyya are identical for ρ = 1, and R0 = maxPr{X} E0(1, Pr{X }) holds. The average
symbol error probability in (2.40) becomes

Pw(ρ) < 2−n(E0(ρ,Pr{X})−ρ·Rc). (2.46)

For memoryless channels, the Gallager function can be simplified to

E0(ρ, Pr{X }) = − log2

∑
y∈Y

(∑
x∈X

Pr{y | x} 1
1+ρ · Pr{x}

)1+ρ
 . (2.47)

With the Gallager exponent

EG(Rc) = max
Pr{X}

max
ρ∈[0,1]

(E0(ρ, Pr{X }) − ρ · Rc) , (2.48)

we finally obtain the minimum error probability

Pw = min
Pr{X},ρ

Pw(ρ) < 2−n·EG(Rc). (2.49)

A curve sketching of EG(Rc) is now discussed. By partial derivation of E0(ρ, Pr{X })
with respect to ρ, it can be shown that the Gallager function increases monotonically with
ρ ∈ [0, 1] from 0 to its maximum R0. Furthermore, fixing ρ in (2.48), EG(Rc) describes
a straight line with slope −ρ and offset E0(ρ, Pr{X }). As a consequence, we have a set
of straight lines – one for each ρ – whose initial values at Rc = 0 grow with increasing ρ.
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Figure 2.4 Curve sketching of Gallager exponent EG(Rc)

Each of these lines is determined by searching the optimum statistics Pr{X }. The Gal-
lager exponent is finally obtained by finding the maximum among all lines for each code
rate Rc.

This procedure is illustrated in Figure 2.4. The critical rate

Rcrit = ∂

∂ρ
E0(ρ, Pr{X })

∣∣∣∣
ρ=1

(2.50)

represents the maximum code rate for which ρ = 1 is the optimal choice. It is important
to mention that Pr{X } in (2.50) already represents the optimal choice for a maximal rate.
In the range 0 < Rc ≤ Rcrit, the parametrization by Gallager does not affect the result and
EG(Rc) equals the Bhattacharyya exponent EB(Rc) given in (2.40). Hence, the cutoff rate
can be used for approximating the error probability. For Rc > Rcrit, the Bhattacharyya
bound cannot be applied anymore and the tighter Gallager bound with ρ < 1 will have to
be used.

According to (2.49), we can achieve arbitrarily low error probabilities by appropriately
choosing n as long as EG(Rc) > 0 holds. The maximum rate for which an error-free trans-
mission can be ensured is reached at the point where EG(Rc) approaches zero. It can be
shown that this point is obtained for ρ → 0 resulting in

Rmax = lim
ρ→0

E0(ρ, Pr{X })
ρ

= max
Pr{X}

Ī (X ;Y) = C. (2.51)

Therefore, the maximum rate for which an error-free transmission can be ensured is exactly
the channel capacity C (which was already stated in the channel coding theorem). Transmit-
ting at Rc = C requires an infinite codeword length n→∞. For the sake of completeness,
it has to be mentioned that an expurgated exponent Ex(ρ, Pr{X }) with ρ ≥ 1 exists, lead-
ing to tighter results than the Gallager exponent for rates below Rex = ∂

∂ρ
Ex(ρ, Pr{X })|ρ=1

(Cover and Thomas 1991).
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2.2.4 Capacity of the AWGN Channel

AWGN Channel with Gaussian Distributed Input

In this and the next section, the recent results for some practical channels are discussed.
Starting with the equivalent baseband representation of the AWGN channel depicted in
Figure 1.11. If the generally complex input and output signals are continuously distributed,
differential entropies have to be used. Since the information in Y for known X can only
stem from the noise N , mutual information illustrated in Figure 2.3 has the form

Ī (X ;Y) = Īdiff(Y)− Īdiff(Y | X ) = Īdiff(Y)− Īdiff(N ). (2.52)

The maximization of (2.52) with respect to pX(x) only affects the term Īdiff(Y) because the
background noise cannot be influenced. For statistically independent processes X and N , the
corresponding powers can simply be added σ 2

Y = σ 2
X + σ 2

N and, hence, fixing the transmit
power directly fixes σ 2

Y. According to Section 2.1.3, the maximum mutual information for
a fixed power is obtained for a Gaussian distributed process Y . However, this can only be
achieved for a Gaussian distribution of X . Hence, we have to substitute (2.19b) into (2.52).
Inserting the results of Section 1.2.2 (σ 2

X = 2BEs and σ 2
N = 2BN0), we obtain the channel

capacity

C2−dim = log2(πeσ 2
Y)− log2(πeσ 2

N)

= log2

(
σ 2
X + σ 2

N
σ 2
N

)
= log2

(
1+ Es

N0

)
. (2.53)

Obviously, the capacity grows logarithmically with the transmit power or, equivalently, with
Es/N0. If only the real part of X is used for data transmission – such as for real-valued
binary phase shift keying (BPSK) or amplitude shift keying (ASK) – the bits transmitted
per channel usage is halved. However, we have to take into account that only the real
part of the noise disturbs the transmission so that the effective noise power is also halved
(σ 2

N ′ = 1
2σ 2

N = BN0). If the transmit power remains unchanged (σ 2
X′ = σ 2

X = 2BEs), (2.53)
becomes

C1−dim = 1

2
· log2(πeσ 2

Y ′)−
1

2
· log2(πeσ 2

N ′) = 1

2
· log2

(
1+ 2

Es

N0

)
. (2.54)

In many cases, the evaluation of systems in terms of a required Es/N0 does not lead to a
fair comparison. This is especially the case when the number of channel symbols transmitted
per information bit varies. Therefore, a better comparison is obtained by evaluating systems
with respect to the required energy Eb per information bit. For binary modulation schemes
with m = 1, it is related to Es by

k · Eb = n · Es =⇒ Es = k

n
· Eb = Rc · Eb (2.55)

because the FEC encoder should not change the energy. Substituting Es in (2.53) and (2.54)
delivers

C2−dim = log2

(
1+ Rc

Eb

N0

)
, C1−dim = 1

2
· log2

(
1+ 2Rc

Eb

N0

)
.
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Figure 2.5 Channel capacities for AWGN channel with Gaussian distributed input

Since the highest spectral efficiency in maintaining an error-free transmission is obtained
for Rc = C, these equations only implicitly determine C. We can resolve them with respect
to Eb/N0 and obtain the common result

Eb

N0
= 22C − 1

2C
(2.56)

for real-as well as complex-valued signal alphabets. For C → 0, the required Eb/N0 does
not tend to zero but to a finite value

lim
C→0

Eb

N0
= lim

C→0

22C · log 2 · 2
2

= log 2 =̂ − 1.59 dB. (2.57)

Hence, no error-free transmission is possible below this ultimate bound. Figure 2.5 illus-
trates the channel capacity for the AWGN channel with Gaussian input. Obviously, real
and complex-valued transmissions have the same capacity for Es/N0 → 0 or, equivalently,
Eb/N0 → log(2). For larger signal-to-noise ratios (SNRs), the complex system has a higher
capacity because it can transmit twice as many bits per channel use compared to the
real-valued system. This advantage affects the capacity linearly, whereas the drawback
of a halved SNR compared to the real-valued system has only a logarithmic influence.
Asymptotically, doubling the SNR (3 dB step) increases the capacity by 1 bit/s/Hz for the
complex case.

AWGN Channel with Discrete Input

Unfortunately, no closed-form expressions exist for discrete input alphabets and (2.32) has
to be evaluated numerically. Owing to the reasons discussed on page 59 we assume a
uniform distribution of X

C = log2(|X |)+
1

|X | ·
∫
Y

∑
µ

pY|Xµ(y) · log2

pY|Xµ(y)∑
l pY|Xl

(y)
dy. (2.58)
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Figure 2.6 Capacity of AWGN channel for different PSK constellations

An approximation of the cutoff rate was already presented in (2.42).
Figure 2.6 shows the capacities for the AWGN channel and different PSK schemes.

Obviously, for very low SNRs Es/N0 → 0, no difference between discrete input alphabets
and a continuously Gaussian distributed input can be observed. However, for higher SNR,
the Gaussian input represents an upper bound that cannot be reached by discrete modulation
schemes. Their maximum capacity is limited to the number of bits transmitted per symbol
(log2 |X |). Since BPSK consists of real symbols ±√Es/Ts, its capacity is upper bounded
by that of a continuously Gaussian distributed real input, and the highest spectral efficiency
that can be obtained is 1 bit/s/Hz. The other schemes have to be compared to a complex
Gaussian input. For very high SNRs, the uniform distribution is optimum again since the
maximum capacity reaches exactly the number of bits per symbol.

Regarding ASK and quadrature amplitude modulation QAM schemes, approximating a
Gaussian distribution of the alphabet by signal shaping can improve the mutual information
although it need not to be the optimum choice. The maximum gain is determined by the
power ratio of uniform and Gaussian distributions if both have the same differential entropy.
With (2.18) and (2.19a) for real-valued transmissions, we obtain

log2(2a) = 1

2
log2(2πeσ 2

X) ⇒ σ 2
X =

2a2

πe
. (2.59)

Since the average power for the uniformly distributed signal is∫ ∞

−∞
pX(x)x2 dx =

∫ a

−a

x2

2a
dx = x3

6a

∣∣∣∣a
−a

= a2

3
,

the power ratio between uniform and Gaussian distributions for identical entropies becomes
(with (2.59))

a2/3

σ 2
X
= a2/3

2a2/(πe)
= πe

6
→ 1.53 dB. (2.60)
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Figure 2.7 Capacity of AWGN channel for different QAM constellations (solid lines:
uniform distribution, dashed lines: Gaussian distribution)

Theoretically, we can save 1.53 dB transmit power when changing from a uniform to a
Gaussian continuous distribution without loss of entropy. The distribution of the discrete
signal alphabet has the form (Fischer et al. 1998)

Pr{Xµ} = K(λ) · e−λ|Xµ|2 (2.61)

where K(λ) must be chosen appropriately to fulfill the condition
∑

µ Pr{Xµ} = 1. The
parameter λ ≥ 0 has to be optimized for each SNR. For λ = 0, the uniform distribution
with K(0) = |X|−1 is obtained. Figure 2.7 depicts the corresponding results. We observe
that signal shaping can close the gap between the capacities for a continuous Gaussian input
and a discrete uniform input over a wide range of Es/N0. However, the absolute gains are
rather low for these small alphabet sizes and amount to 1 dB for 64-QAM. As mentioned
before, for high SNRs, λ tends to zero, resulting in a uniform distribution achieving the
highest possible mutual information.

The last aspect in this subsection addresses the influence of quantization on the capacity.
Quantizing the output of an AWGN channel leads to a model with discrete inputs and outputs
that can be fully described by the conditional probabilities Pr{Yν | Xµ}. They depend on
the SNR of the channel and also on the quantization thresholds. We will concentrate in
the following part on BPSK modulation. A hard decision at the output delivers the binary
symmetric channel (BSC). Its capacity can be calculated by

C = 1+ Ps log2(Ps)+ (1− Ps) log2(1− Ps) = 1− Ī2(Ps) (2.62)

where Ps = 1
2 erfc(

√
Es/N0) denotes the symbol error probability. Generally, we obtain 2q

output symbols Yν for a q-bit quantization. The quantization thresholds have to be chosen
such that the probabilities Pr{Yν | Xµ} with 1 ≤ µ ≤ |X| and 1 ≤ ν ≤ 2q maximize the
mutual information. Figure 2.8 shows the corresponding results. On the one hand, the loss
due to a hard decision prior to decoding can be up to 2 dB, that is, the minimum Eb/N0
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Figure 2.8 Capacity of AWGN channel for BPSK and different quantization levels

for which an error-free transmission is principally possible is approximately 0.4 dB. On the
other hand, a 3-bit quantization loses only slightly compared to the continuous case. For
high SNRs, the influence of quantization is rather small.

2.2.5 Capacity of Fading Channel

In Section 1.3.3, the error probability for frequency-nonselective fading channels was dis-
cussed and it was recognized that the error rate itself is a random variable that depends on
the instantaneous fading coefficient h. For the derivation of channel capacities, we encounter
the same situation. Again, we can distinguish between ergodic and outage capacity. The
ergodic capacity C̄ represents the average capacity among all channel states and is mainly
chosen for fast fading channels when coding is performed over many channel states. On
the contrary, the outage capacity Cout denotes the capacity that cannot be reached with an
outage probability Pout. It is particularly used for slowly fading channels where the coher-
ence time of the channel is much larger than a coding block which is therefore affected
by a single channel realization. For the sake of simplicity, we restrict the derivation on
complex Gaussian distributed inputs because there exist no closed-form expressions for
discrete signal alphabets. Starting with the result of the previous section, we obtain the
instantaneous capacity

C(γ ) = log2

(
1+ |h|2 · Es

N0

)
= log2 (1+ γ ) (2.63)

that depends on the squared magnitude of the instantaneous channel coefficient h and, thus,
on the current SNR γ = |h|2Es/N0. Averaging (2.63) with respect to γ delivers the ergodic
channel capacity

C̄ = E{C(γ )} =
∞∫

0

log2(1+ ξ) · pγ (ξ) dξ. (2.64)
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In order to compare the capacities of fading channels with that of the AWGN channel,
we have to apply Jensen’s inequality (Cover and Thomas 1991). Since C(γ ) is a concave
function, it states that

EX {f (x)} ≤ f (EX{x}) . (2.65)

For convex functions, ‘≤’ has to be replaced by ‘≥’. Moving the expectation in (2.64) into
the logarithm leads to

C̄ = E
{

log2(1+ γ )
} ≤ log2

(
1+ E{γ }). (2.66)

From (2.66), we immediately see that the capacity of a fading channel with average SNR
E{γ } = Es/N0 for σ 2

H = 1 is always smaller than that of an AWGN channel with the same
average SNR.

Ergodic Capacity

We now want to calculate the ergodic capacity for particular fading processes. If |H| is
Rayleigh distributed, we know from Section 1.5 that |H|2 and γ are chi-squared distributed
with two degrees of freedom. According to Section 1.3.3, we have to insert pγ (ξ) = 1/γ̄ ·
exp(−ξ/γ̄ ) with γ̄ = σ 2

H · Es/N0 into (2.64). Applying the partial integration technique,
we obtain

C̄ =
∞∫

0

log2(1+ ξ) · 1

γ̄
· e−ξ/γ̄ dξ

= log2(e) · exp

(
1

σ 2
HEs/N0

)
· expint

(
1

σ 2
HEs/N0

)
(2.67)

where the exponential integral function is defined as expint(x) = ∫∞
x

e−t /t dt (Gradshteyn
2000). Figure 2.9 shows a comparison between the capacities of AWGN and flat Rayleigh
fading channels (bold lines). For sufficiently large SNR, the curves are parallel and we can
observe a loss of roughly 2.5 dB due to fading. Compared with the bit error rate (BER) loss
of approximately 17 dB in the uncoded case, this loss is rather small. It can be explained
by the fact that the channel coding theorem presupposes infinite long codewords, allowing
the decoder to exploit a high diversity gain. This leads to a relatively small loss in capacity
compared to the AWGN channel. Astonishingly, the ultimate limit of −1.59 dB is the same
for AWGN and Rayleigh fading channel.

Outage Probability and Outage Capacity

With the same argumentation as in Section 1.3 we now define the outage capacity Cout with
the corresponding outage probability Pout. The latter one describes the probability of the
instantaneous capacity C(γ ) falling below a threshold Cout.

Pout = Pr
{
C(γ ) < Cout

} = Pr
{

log2(1+ γ ) < Cout
}

(2.68)

Inserting the density pγ (ξ) with γ̄ = Es/N0 into (2.68) leads to

Pout = Pr
{
γ < 2Cout − 1

} = 1− exp

(
1− 2Cout

Es/N0

)
. (2.69)
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Figure 2.9 Ergodic and outage capacity of flat Rayleigh fading channels for Gaussian input
versus Eb/N0 (Cp denotes the outage capacity for Pout = p)

Resolving the last equation with respect to Cout yields

Cout = log2

(
1− Es/N0 · log(1− Pout)

)
. (2.70)

Conventionally, Cout is written as Cp where p = Pout determines the corresponding out-
age probability. Figure 2.9 shows the outage capacities for different values of Pout. For
Pout = 0.5, C50, which can be ensured with a probability of only 50%, is close to the
ergodic capacity C̄. The outage capacity Cout decreases dramatically for smaller Pout. At
a spectral efficiency of 6 bit/s/Hz, the loss in terms of Eb/N0 amounts to nearly 8 dB for
Pout = 0.1 and roughly 18 dB for Pout = 0.01 compared to the AWGN channel.

Figure 2.10 depicts the outage probability versus the outage capacity for different values
of Es/N0. As expected for high SNRs, large capacities can be achieved with very low outage
probability. However, Pout grows rapidly with decreasing Es/N0. The asterisks denote the
outage probability of the ergodic capacity C. As already observed in Figure 2.9, it is close
to 0.5.

2.2.6 Channel Capacity and Diversity

As explained in the previous subsection, the instantaneous channel capacity is a random
variable that depends on the squared magnitude of the actual channel coefficient h. Since
|h|2 and, thus, also γ vary over a wide range, the capacity also has a large variance.
Besides the ergodic capacity C̄, the outage capacity Cout is an appropriate measure for the
channel quality. From Section 1.5, we know that diversity reduces the SNR’s variance and,
therefore, also reduces the outage probability of the channel. Assuming that a signal x is
transmitted over D statistically independent channels with coefficients h�, 1 ≤ � ≤ D, the
instantaneous capacity after maximum ratio combining becomes

C(γ ) = log2

(
1+

D∑
�=1

|h�|2 Es

DN0

)
= log2 (1+ γ ) . (2.71)
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Figure 2.10 Outage probability of flat Rayleigh fading channels for Gaussian input

The only difference compared to (2.63) is that the new random variable γ =∑D
�=1 |h�|2 Es

DN0
is chi-squared distributed with 2D degrees of freedom (instead of two). The probability
density pγ (ξ) of γ was already presented in (1.108) on page 40. The ergodic capacity is
obtained by averaging C(γ ) in (2.71) with respect to pγ (ξ). Solving the integral

C̄ =
∫ ∞

0
log2(1+ ξ) · DDξD−1

(D − 1)!(Es/N0)D
· e−

ξD
Es/N0 dξ (2.72)

numerically leads to the results in Figure 2.11. We have assumed independent Rayleigh
fading channels with uniform average power distribution. As expected, the ergodic capacity
grows with increasing D. While the largest gains are obtained for the transition from D = 1
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Figure 2.11 Ergodic capacity for Rayleigh fading channels with different diversity degree
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Figure 2.12 Outage probability of flat Rayleigh fading channels for Gaussian input

to D = 2, a higher diversity degree only leads to minor improvements. Asymptotically, the
capacity of the AWGN channel is reached for D →∞. Nearly, no differences can be
observed for D = 50.

With regard to the outage probability, (2.68) has to be calculated for γ =∑D
�=1 |h�|2

Es/N0. Resolving (2.68) with respect to γ and inserting the chi-squared distribution with
2D degrees of freedom from (1.108) yields

Pout = Pr
{
γ < 2Cout − 1

} = 1

(D − 1)!
·
∫ 2Cout−1

Es/N0/D

0
ξD−1 · e−ξ dξ. (2.73)

The integral in (2.73) is often referred to as incomplete Gamma function because the upper
limit is finite. The obtained outage probabilities are illustrated in Figure 2.12 versus the
corresponding outage capacities. For low outage probabilities, for example, Pout = 0.1,
diversity increases the outage capacity, that is, larger capacities can be guaranteed with a
certain probability. The gains become bigger for high SNRs (compare Es/N0 = 10 dB and
Es/N0 = 20 dB). However, for Pout > 0.7, the relations are reversed and large diversity
degrees lead to higher outage probabilities. This behavior is not surprising because diversity
reduces the variations of the SNR, that is, very low SNRs as well as very high SNRs occur
less frequently. Therefore, very high capacities much above the ergodic capacity C̄ do not
occur very often for large D, resulting in high outage probabilities. Nevertheless, these
cases are pathological because outage probabilities above 0.7 are generally not desired in
practical systems.

Finally, Figure 2.13 depicts Cout versus Es/N0 for different diversity degrees D and
outage probabilities Pout. We see that diversity can dramatically increase the outage capacity
especially for large Es/N0. Moreover, the largest gains are obtained for transitions between
small D and for low outage probabilities.
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Figure 2.13 Outage probability of flat Rayleigh fading channels for Gaussian input

2.3 Channel Capacity of MIMO Systems

As explained earlier, MIMO systems can be found in a wide range of applications. The
specific scenario very much affects the structure and the statistical properties of the system
matrix given in (1.32) on page 17. Therefore, general statements concerning the ergodic
or the outage capacity of arbitrary MIMO systems will not be derived here. The reader is
referred to Chapters 4 and 6 where specific examples like code division multiple access
(CDMA) or multiple antenna systems are discussed in more detail. In fact, this section
only derives the basic principle of how to calculate the instantaneous capacity of a general
system described by a matrix S that is not further specified. This approach is later adapted
to specific transmission scenarios like CDMA, space division multiple access (SDMA), or
space time coding. The MIMO system comprises point-to-point MIMO communications
between a single transmitter receiver pair each equipped with multiple antennas as well as
multiuser communications. Since the latter case covers some additional aspects, it will be
explicitly discussed in Section 2.4.

In the following part, we will restrict ourselves to frequency-nonselective fading chan-
nels. Since we focus on the instantaneous capacity C(S), we can neglect the time index k.
The general system model with NI inputs and NO outputs was already described in (1.32) as

y = S · x+ n. (2.74)

The channel matrix H is replaced by the NO ×NI system matrix S because it represents
not only the channel but may also comprise other parts of the transmission system such
as spreading in CDMA systems. The coefficients Sν,µ of S describe the transmission
between the µth input and the νth output. For the sake of simplicity, Gaussian dis-
tributed input signals and perfect channel state information at the receiver are assumed.
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The assumption of a Gaussian input leads to an upper bound of the capacity for discrete
input alphabets.

The only difference compared to Single-Input Single-Output (SISO) systems is that we
have to deal with vectors instead of scalars. Adapting (2.52) to the MIMO case described
in (2.74), we obtain

Ī (X ;Y | S) = Īdiff(Y | S)− Īdiff(N ). (2.75)

Using vector notations and the definitions given in Sections 2.1.3 and 2.1.4, the instanta-
neous mutual information becomes

Ī (X ;Y | S) = log2 det(πe�YY)− log2 det(πe�NN). (2.76)

Next, we have to address the covariance matrices for the channel output y and the noise pro-
cess N . Taking (2.74) into account and assuming mutually independent noise contributions
at the NO outputs of the system, we obtain

�YY = EX,N{(Sx+ n) · (Sx+ n)H } = S�XXSH +�NN (2.77a)

and
�NN = σ 2

N · INO . (2.77b)

The insertion of (2.77a) and (2.77b) into (2.76) yields

Ī (X ;Y | S) = log2

(
det �YY
det �NN

)
= log2 det

(
INO +

1

σ 2
N

S�XXSH

)
. (2.78)

In order to reduce the vector notation to a set of independent scalar equations, we now
apply the singular value decomposition (SVD) (see Appendix C.3 and (Golub and van Loan
1996)) to the system matrix

S = US ·�S · VH
S . (2.79)

In (2.79), US and VS are square unitary matrices (see Appendix C.3), that is, the relations
USUH

S = UH
S US = INO and VSVH

S = VH
S VS = INI hold. The NO ×NI matrix �S contains

on its diagonal the singular values σi of S. For NI < NO, it has the form

�S =


σ1 0

. . .

0 σNI

0 · · · 0

 , (2.80a)

while

�S =

 σ1 0 0
. . . 0

0 σNO 0

 (2.80b)

holds for NI > NO. The rank r of S is limited to the minimum of NI and NO, that is,
r ≤ min(NI, NO). The application of the SVD to (2.78) results in

Ī (X ;Y | S) = log2 det

(
INO +

1

σ 2
N

US�SVH
S �XXVS�H

S UH
S

)
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= log2 det

(
US(INO +

1

σ 2
N

�SVH
S �XXVS�H

S )UH
S

)

= log2 det

(
INO +

1

σ 2
N

�SVH
S �XXVS�

H
S

)
. (2.81)

The second equality holds because the determinant of a matrix does not change if it is
multiplied by a unitary matrix. We now have to distinguish two special cases concerning
the kind of channel knowledge at the transmitters.

No Cooperation between MIMO Inputs

First, we assume that the different inputs of the MIMO system do not or cannot cooperate
with each other. This might be the case in the uplink of a CDMA system where mobile
subscribers can only communicate with a common base station and not among themselves.
Moreover, if no channel knowledge is available, it is impossible to adapt the signal vector
x onto the channel properties. In these cases, an optimization of �XX with respect to S
cannot be performed and the best strategy is to transmit NI independent data streams with
equal power Es/Ts. Hence, the covariance matrix of x becomes �XX = Es/Ts · INI and the
mutual information in (2.81) represents the channel capacity (σ 2

N = N0/Ts)

C(S) = log2 det

(
INO +

Es

N0
�S�H

S

)

= log2

[
r∏

ν=1

(
1+ σ 2

ν

Es

N0

)]
=

r∑
ν=1

log2

(
1+ σ 2

ν

Es

N0

)
. (2.82)

The coefficients σ 2
ν in (2.82) denote the squared nonzero singular values of S or, equiv-

alently, the eigenvalues of SH S. The interpretation of (2.82) shows that we sum up the
capacities of r independent subchannels with different powers σ 2

ν . These subchannels rep-
resent the eigenmodes of the channel described by S. The ergodic capacity is obtained by
calculating the expectation of (2.82) with respect to σ 2

ν .

Cooperation among MIMO Inputs

If the transmitters are allowed to cooperate and if they have the knowledge about the
instantaneous system matrix S, we can do better than simply transmitting independent data
streams with equal power over the NI inputs. According to (2.82), the eigenmodes of S rep-
resent independent subsystems that do not interact. Applying the eigenvalue decomposition
to the covariance matrix of x that still has to be determined yields

�XX = EX{xxH } = VX�VH
X (2.83)

where � = diag(λν) denotes a diagonal matrix with powers λν on the main diagonal. The
maximum mutual information is obtained by choosing VX = VS . Inserting (2.83) into (2.81)
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then leads to

Ī (X ;Y | S) = log2 det

(
INO +

1

σ 2
N

�SVH
S VS�VH

S VS�H
S

)

= log2 det

(
INO +

1

σ 2
N

�S��H
S

)
=

r∑
ν=1

log2

(
1+ λν

σ 2
ν

σ 2
N

)
. (2.84)

Hence, we fully exploit the eigenmodes of the system S with a transmit vector x = VS x̃
where X̃ is isotropic, that is, it has no preferred direction. The multiplication with the unitary
matrix VS does not change its statistical properties but rotates the coordinate system. It is
particularly important that the total power of X does not change so that σ 2

X = σ 2
X̃ holds.

However, in order to maximize Ī (X ;Y | S), we still have to find the optimal power
levels λν for the data streams xν . Since only r nonzero singular values of S exist, we would
waste power by choosing λν > 0 for r < ν ≤ NI. Therefore, power is spent only on those
subchannels with σ 2

ν > 0. For these r channels, we have to solve the following convex
optimization problem

max
λ1···λr

r∑
ν=1

log2

(
1+ λν

σ 2
ν

σ 2
N

)
with λν ≥ 0 and

r∑
ν=1

λν = NI · Es

Ts
. (2.85)

The first expression in (2.85) has to be maximized, while the second and third ones represent
necessary conditions. By using the Lagrange function

L(�, µ, ξ) = −
r∑

ν=1

[
log2

(
1+ λν

σ 2
ν

σ 2
N

)
+ µνλν − ξ · λν

]
, (2.86)

with definitions � = [λ1, . . . , λr ]T and µ = [µ1, . . . , µr ]T , we obtain the necessary and
sufficient Karush-Kuhn-Tucker conditions (Cover and Thomas 1991)

a)
∂L

∂λν

= 0, b) µν ≥ 0, c) µν · λν = 0 for 1 ≤ ν ≤ r. (2.87)

First, the partial derivation of L with respect to λν yields

∂L

∂λν

= − log2(e)σ
2
ν /σ 2

N
1+ λνσ 2

ν /σ 2
N
− µν + ξ = 0. (2.88)

Resolving this with respect to µν and exploiting condition b) in (2.87), we obtain

µν = ξ − log2(e)σ
2
ν /σ 2

N
1+ λνσ 2

ν /σ 2
N
≥ 0 ⇐⇒ λν ≥ log2(e)

ξ
− σ 2

N
σ 2

ν

. (2.89)

Next, we have to apply the third Karush-Kuhn-Tucker condition often termed complemen-
tary slackness. It states that µν has to be zero as long as the power λν > 0 holds and that
µν can become arbitrarily large for λν = 0. Hence, inserting the left-hand side of (2.89)
into condition c) of (2.87), results in

λν ·
(

ξ − log2(e)σ
2
ν /σ 2

N
1+ λνσ 2

ν /σ 2
N

)
= 0 ⇔ λν = 0 ∨ λν = log2(e)

ξ
− σ 2

N
σ 2

ν

(2.90)
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We have to distinguish the two cases

log2(e)

ξ
>

σ 2
N

σ 2
ν

=⇒ λν = log2(e)

ξ
− σ 2

N
σ 2

ν

> 0

log2(e)

ξ
≤ σ 2

N
σ 2

ν

=⇒ λν = 0.

Finally, the unknown variable ξ is chosen such that the total power constraint is fulfilled
and

r∑
ν=1

λν =
r∑

ν=1

(
log2(e)

ξ
− σ 2

N
σ 2

ν

)
= NI · Es

Ts
(2.91)

must hold. The procedure is typically known as waterfilling and is illustrated in Figure 2.14.
It can be interpreted as pouring water into a vessel with a bumpy ground. Naturally, the
water surface is flat. Therefore, at those positions with a high ground level, the water column
is rather small, whereas it is high for deep ground levels. Moreover, it may happen for low
water levels that the ground is not totally covered, leading to a zero height water column.
The heights of the water columns represent the different power levels and the heights of
the vessel ground represent the inverse SNRs of the equivalent channels. Hence, the higher
the normalized noise level σ 2

N/σ 2
ν , the less the power spent on channel ν. In other words,

more power is assigned to good channels and only low power to bad channels. If a channel
is too bad, it is not used at all (λν = 0). The higher the total power Es/Ts, the lower the
probability of unused channels.

These conclusions hold only for Gaussian distributed input signals. For discrete input
alphabets, different strategies have to be pursued with regard to the power distribution. The
reason is that only m bits can be transmitted per symbol for 2m-ary modulation schemes.
Once an error-free uncoded transmission is reached on a certain layer, more transmit power
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does not increase the layer’s spectral efficiency unless a different modulation scheme is
chosen. The increase in spectral efficiency is quantized, leading to different distributions as
for the continuous Gaussian case.

In conclusion, we can say that without channel knowledge at the transmitter, the best
strategy is to transmit NI independent data streams with equal power. However, if the
transmitters have perfect channel state information CSI and are allowed to cooperate, the
covariance matrix �XX has to be chosen such that the eigenmodes of the channel are
exploited and the power levels of the resulting r independent channels have to be adjusted
according to the waterfilling principle.

Assuming identical singular values of the matrix S, (2.82) shows us that the capacity
C(S) grows linearly with the rank r of S. Hence, the capacity of full-rank MIMO systems
can be linearly increased with r = min{NI, NO}, for example, by using more antennas at the
transmitter and receiver. Since C(S) grows only logarithmically with the SNR, the potential
of MIMO systems is much larger. Similar to scalar Rayleigh fading channels, ergodic and
outage capacities can be determined for vector channels. Since concrete MIMO systems
have not been considered, examples will be presented in Chapters 4 and 6 dealing with
CDMA and multiple antenna systems.

2.4 Channel Capacity for Multiuser Communications

In the previous section, the principal method to determine the capacity of a general MIMO
system with NI inputs and NO outputs has been derived without considering specific system
properties. Although this approach also covers multiuser scenarios, there is a major differ-
ence between point-to-point MIMO and multiuser communications. While the optimization
of the former scheme generally targets to maximize the system capacity also denoted as
sum rate, each subscriber in a multiuser environment has its own quality-of-service (QoS)
constraints such as target data and error rates. Here, we are interested not only in the max-
imum cell throughput or sum rate but also in the set of achievable individual data rates
for all users called capacity region. This point of view allows us to include the aspect of
fairness among users. The capacity region contains constellations yielding the maximum
sum rate.

A simple multiuser AWGN channel where the base station and each user only have
a single antenna is now discussed. Extending the scenario to fading channels and finally
addressing the multiuser MIMO case. Since the capacity of an AWGN channel is achieved
for Gaussian distributed inputs, we assume that the users transmit independent complex
Gaussian distributed signals with power levels Pu = Es,u/Ts. Moreover, this choice greatly
simplifies the results, allowing us to concentrate on the main aspects of multiuser scenarios.
We do not consider detailed derivations and restrict ourselves to the discussion of general
results.

2.4.1 Single Antenna AWGN Channel

Uplink Transmission

Observing the uplink with Nu mobile users and a common base station with a single
receive antenna, the optimum strategy is to transmit all user signals simultaneously using
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the entire bandwidth (Tse and Viswanath 2005). This is similar to CDMA systems except
that capacity-achieving channel coding is applied instead of direct-sequence spreading as
will be discussed in Chapter 4. As mentioned above, we consider independent complex
Gaussian distributed signals with power levels Pu = Es,u/Ts. The received symbol at time
instant k consists of the transmitted signals xu[k] and the noise n[k] according to

y[k] =
Nu∑
u=1

xu[k]+ n[k]. (2.92)

The question to be solved now is what individual rates can be supported for the users.
Obviously, the achievable rate Ru of an arbitrary user u is limited even in the absence of
all other users by the background noise n[k] and is expressed by the individual capacity
Cu derived in Section 2.2.

Ru ≤ Cu = log2(1+ SNRu) = log2

(
1+ Es,u

N0

)
. (2.93)

Merely summing up the rates in (2.93) for 1 ≤ u ≤ Nu would result in a very optimistic
sum rate because the mutual interference is not considered. Instead, we can imagine the
ideal situation where a single user would transmit with the power of all Nu users, leading
to the maximum capacity or sum rate

Nu∑
u=1

Ru ≤ Cmax = log2

(
1+

∑Nu
u=1 Es,u

N0

)
. (2.94)

In order to determine the set of individual rates Ru that can be simultaneously supported,
we look at the receiver for the two-user case. It can be easily shown that (2.94) can be
rewritten as

log2

(
1+ Es,1 + Es,2

N0

)
= log2

(
1+ Es,1

N0

)
+ log2

(
1+ Es,2

Es,1 +N0

)
(2.95a)

= log2

(
1+ Es,2

N0

)
+ log2

(
1+ Es,1

Es,2 +N0

)
. (2.95b)

From (2.95a) and (2.95b), the following conclusion can be drawn. The optimum receiver
performs successive decoding with interference cancellation as will be discussed for CDMA
systems in Chapter 5. It achieves exactly the maximum sum capacity defined in (2.94). The
first user to be detected suffers from the background noise as well as multiuser interference
(MUI) induced by the other user. Since both contributions are independent of each other,
their corresponding powers can be added, leading to the signal to interference plus noise
ratio (SINR) Es,u/(Es,v �=u +N0). If the detection starts with user two, the second term on
the right-hand side of (2.95a) denotes the maximum rate of user two. Therefore, if its rate
fulfills

R2 ≤ CMUI
2 = log2

(
1+ Es,2

Es,1 +N0

)
, (2.96a)

it can be detected without errors and, hence, perfectly cancelled from the received signal
y[k]. The remaining signal of user one is now only disturbed by the thermal noise, leading
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Figure 2.15 Capacity region for AWGN uplink transmission and Nu = 2 (bold dashed line
for orthogonal schemes)

to its maximum rate

R1 = C1 = log2

(
1+ Es,1

N0

)
= Ī

(
x1[k]; y[k] | x2[k]

)
. (2.96b)

This is exactly the maximum mutual information between x1[k] and y[k] if the signal x2[k]
is totally known to the receiver. Equivalently, we can start with user one, with the resulting
rates

R1 ≤ CMUI
1 = log2

(
1+ Es,1

Es,2 + N0

)
(2.97a)

and

R2 = C2 = log2

(
1+ Es,2

N0

)
= Ī

(
x2[k]; y[k] | x1[k]

)
. (2.97b)

Hence, we have already obtained two rate pairs (CMUI
1 , C2) and (C1, CMUI

2 ) of the capacity
region in Figure 2.15. These two points represent the maximum sum rate achievable with
successive decoding. The whole capacity region comprising all supported pairs (R1, R2) is
the area inside the pentagon and can be mathematically expressed as

{(R1, R2) | Ru ≤ Cu, u = 1, 2 ∧ R1 + R2 ≤ Cmax} . (2.98)

Without the constraint in (2.94), we would have obtained a rectangle instead of a pentagon,
which is obviously too optimistic. The points on the line between the maximum sum
rates (CMUI

1 , C2) and (C1, CMUI
2 ) in Figure 2.15 can be reached by appropriately switching

between the two corresponding transmission strategies.
Surprisingly, the maximum sum rate is larger than the maximum of the capacities

(C1, C2). Therefore, we can conclude that the orthogonal multiple access schemes such as
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time division multiple access (TDMA) or frequency division multiple access (FDMA) that
share the resources – time or frequency – among the users show an inferior performance.
In the following discussion, we still consider the two-user case and fix the received symbol
energies to Es,1 and Es,2. The first user shall obtain a portion α of the resource to be shared
and the rest (1− α) is spent on the second user. For TDMA, the received powers can be
expressed as P1 = Es,1/(αTs) and P2 = Es,2/[(1− α)Ts]. The received noise power is not
affected by α and amounts to N = N0B = N0/Ts. On the contrary, FDMA partitions the
bandwidth according to B1 = αB and B2 = (1− α)B, leading to the noise powers N1 =
αBN0 for the first user and N2 = (1− α)BN0 for the second user. Hence, the resulting
SNRs of both the users are divided for TDMA as well as FDMA by factors α and (1− α),
respectively, and the corresponding capacities are

C1 = α · log2

(
1+ Es,1

αN0

)
C2 = (1− α) · log2

(
1+ Es,2

(1− α)N0

)
.

This leads to the sum rate

Corth
max = α · log2

(
1+ Es,1

αN0

)
+ (1− α) · log2

(
1+ Es,2

(1− α)N0

)
(2.99)

with 0 ≤ α ≤ 1. For this scenario, we see from Figure 2.15 that the sum rate of orthogonal
multiple access schemes reaches the maximal sum capacity only for distinct points and is
inferior elsewhere (Tse and Viswanath 2005).

The generalization of the optimum strategy with successive decoding for Nu users is
straightforward. For each of the Nu! possible detection orders, a set of Nu individual rate
constraints is obtained. As an example, the rates

Ru ≤ CMUI
u = log2

(
1+ Es,u∑Nu

v=u+1 Es,v +N0

)
(2.100a)

are valid if the signals are detected in ascending order. The maximum sum rate amounts to

Cmax = log2

(
1+

∑Nu
u=1 Es,u

N0

)
. (2.100b)

The complete capacity region requires the consideration of all sets K ⊂ {1 , . . . , Nu} con-
taining different subsets of users and the corresponding sum rates. Hence, it describes an
Nu-dimensional polymatroid according to

⋂
K⊂{1, ..., Nu}

{
{Ru}u∈K |

Nu∑
u∈K

Ru ≤ log2

(
1+

∑Nu
u∈K

Es,u

N0

)}
. (2.101)

Downlink Transmission

In the downlink, a common base station transmits to different mobile units. Each mobile
unit receives all transmitted signals and has to extract the desired one. Observing the uth
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receiver, we obtain the signal

yu[k] =
Nu∑
v=1

xv[k]+ nu[k]. (2.102)

A major difference compared to the uplink is that we have to share the total transmit power
among the users while each user had its own power constraint in the uplink scenario.
Nevertheless, the individual rate constraints in (2.93) and (2.100a) still hold. The constraint
in (2.93) covers the case when all the transmit power is spent on only a single user so that
there is no interference.

In order to arrive at the optimum transmission strategy, we look again at the two-user
case and assume without loss of generality that Es,1 > Es,2 with Es,1 + Es,2 = Es holds.
If the code rate of user two is adjusted appropriately so that it can detect its signal even
under interference of user one without errors, then user one can also detect the signal of
user two without errors. After detecting user two’s signal, user one can proceed with the
processing of its own signal. Hence, we again have the strategy of successive detection as
in the uplink. The maximum rate of the user to be detected first is

R2 ≤ CMUI
2 = log2

(
1+ Es,2

N0 + Es,1

)
. (2.103)

Since the other user can detect and subtract x2 first, it can transmit at the rate

R1 ≤ C1 = log2

(
1+ Es,1

N0

)
. (2.104)

Adapting the rates appropriately, the detection order can also be reversed. For the general
case of Nu users and an ascending order of detection, the uth user can transmit at the rate

Ru ≤ CMUI
u = log2

(
1+ Es,u

N0 +
∑Nu

v=u+1 Es,v

)
. (2.105)

2.4.2 Single Antenna Flat Fading Channel
Uplink Transmission

The major difference compared to the AWGN uplink channel is that fading coefficients
hu[k] affect the SNR at the transmitter. The coefficients are assumed to be independent but
identically distributed. The received signal has the form

y[k] =
Nu∑
u=1

hu[k] · xu[k]+ n[k]. (2.106)

In the following part, we distinguish slowly and fast fading channels.

Slowly fading channels
For slowly fading channel, the coefficients are constant during one coding block, resulting
in hu[k] = hu. Hence, we have a scenario similar to the AWGN uplink in each coding block
except that the received signal powers are different owing to the fading. As a consequence,
the instantaneous capacity region for a single channel snapshot is obtained from the single
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antenna AWGN results by replacing the user-specific SNR Es,u/N0 with |hu|2Es,u/N0.
Certainly, simultaneous transmission with successive decoding still achieves capacity.

The major difference between AWGN and slowly fading channels is that this capacity
region is itself a random variable as explained in Section 2.2.5. Assuming identical transmit
powers Es/Ts for all users, the outage probability that a certain sum rate R cannot be
supported becomes

Pout = Pr

{
log2

(
1+ Es

N0
·

Nu∑
u=1

|hu|2
)

< R

}
. (2.107)

Fast fading channels without CSI at transmitter
Fast fading channels differ from slowly fading ones in that (many) different channel snap-
shots fall into one coding block. As we already know from Section 2.2.5, the ergodic
capacity is an appropriate means for the characterization of such channels. Without channel
state information (CSI) at the transmitter, the best strategy is that all users transmit with
the same average signal power Es/Ts and the ergodic maximum sum rate becomes

C̄max = E

{
log2

(
1+ Es

N0
·

Nu∑
u=1

|Hu|2
)}

. (2.108)

For Rayleigh fading channels, the sum of the channel coefficients’ squared magnitudes is
chi-squared distributed with 2Nu degrees of freedom. An upper bound is obtained with
Jensen’s inequality from (2.65)

E

{
log2

(
1+ Es

N0
·

Nu∑
u=1

|Hu|2
)}

≤ log2

(
1+ Es

N0
· E

{
Nu∑
u=1

|Hu|2
})

= log2

(
1+ Nu

Es

N0

)
(2.109)

where we have assumed that E{|Hu|2} = 1 holds for 1 ≤ u ≤ Nu. Comparing (2.109) with
(2.94), it becomes obvious that the last term describes the maximal sum rate for the AWGN
uplink with

∑Nu
u=1 Es,u = NuEs. Hence, fast fading without channel knowledge at the trans-

mitter always decreases the capacity. Simultaneous transmission with successive decoding
still achieves capacity.

Downlink Transmission

For the downlink, we distinguish the situations with and without channel knowledge at
the transmitter. Without CSI at the transmitter, the same argumentation as for the AWGN
case holds: Superposition coding with successive decoding is capacity achieving. On the
contrary, CSI at the transmitter allows powerful scheduling, which will be explained for
fast fading channels.

Fast fading channels with CSI at transmitter
If the common base station has instantaneous channel knowledge of all channels, orthogonal
multiple access with appropriate scheduling of the users is possible and improves the
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maximal throughput remarkably. This effect is called multiuser diversity and is illustrated
subsequently. The key idea is that only the user with the best instantaneous propagation
conditions, that is, the largest channel gain |hu[k]|2, transmits. If we know all channel states
within one coding block, the power of each user is distributed onto its active time instances
according to the waterfilling principle derived in Section 2.3. If the channel statistics are
identical for all users, they have asymptotically the same number of slots that they can
transmit. Moreover, all users achieve the same asymptotic rate and fulfill their power
constraints.

Multiuser Diversity

Multiuser diversity describes an effect that occurs for channel-dependent scheduling. We
consider the downlink for a common base station that has to serve Nu users and has
knowledge of the instantaneous channel quality. As mentioned earlier, the best strategy
to achieve maximum throughput is to pick up the user with the strongest channel. If the
channels are independent and identically distributed, every user can transit the same average
data rate.

In order to illustrate the effect of always choosing the strongest channel, we have a look
at a simple system consisting of Nu users with independent flat Rayleigh fading channels.
The corresponding SNRs γi = |hi |2Es/N0 are chi-squared distributed with two degrees of
freedom according to (1.27) on page 15. We are now interested in finding the PDF pγmax(ξ)

for
γmax = max

{
γ1, . . . , γi, . . . , γNu

}
. (2.110)

The probability that γmax is smaller than a constant γ depends on the cumulative density
function (CDF) Pγmax(γ )

Pr{γmax < γ } = Pγmax(γ ) = Pr{γ1 < γ, γ2 < γ, · · · , γNu < γ }. (2.111)

For independent processes γi , the joint probability in (2.111) can be factorized into the
marginal probabilities Pr{γi < γ }, resulting in

Pγmax(γ ) =
Nu∏
i=1

Pγi
(γ ). (2.112)

The PDF is obtained by the derivative of (2.112). With dPγi
(γ )/dγ = pγi

(γ ), the applica-
tion of the product rule yields

pγmax(γ ) = dPγmax(γ )

dγ
=

Nu∑
i=1

pγi
(γ ) ·

Nu∏
j=1,j �=i

Pγi
(γ ). (2.113)

For chi-squared distributed processes with Pγi
(γ ) = 1− e−γ /γ̄i , (2.113) results in

pγmax(γ ) =
Nu∑
i=1

1

γ̄i

· e−γ /γ̄i ·
Nu∏

j=1,j �=i

[
1− e−γ /γ̄i

]
. (2.114)
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If the processes are identically distributed further with γ̄i = γ̄ , (2.114) becomes

Pγmax(γ ) = Nu

γ̄
· e−γ /γ̄ · [1− e−γ /γ̄

]Nu−1
. (2.115)

Figure 2.16 illustrates the probability density of the largest out of the Nu i.i.d. processes.
Obviously, the probability that the largest process takes a very small value becomes much
smaller with increasing Nu. Consequently, the probability of large values increases, which
is also indicated by the mean values. Therefore, the average SNR of those channels used by
the base station grows significantly compared to the average SNR of the entire ensemble.

Figure 2.17 shows the corresponding ergodic capacities C̄ versus Es/N0 and the outage
probabilities versus the sum rate R. Obviously, C̄ increases remarkably for growing number
of users. At low SNR, the capacity can be doubled compared to the single user case
because the probability that one out of Nu users has a good channel is much larger than the
probability of a single user. Although the effect of multiuser diversity seems to look similar
to that of conventional diversity, both techniques are totally different. While conventional
diversity techniques average over many good and bad channels in order to reduce the overall
variance, multiuser diversity concepts use only the good channels and increase the mean
SNR. Thus, we skip at least the worst channels and try to ride on the peaks.

2.4.3 Multiple Antennas at Transmitter and Receiver

Uplink with Single Transmit and Multiple Receive Antennas

We start the multiuser MIMO discussion with the simple case of a single transmit antenna
and multiple receive antennas for the uplink. Except for the power constraints, this scenario
is equivalent to a point-to-point MIMO system discussed in Section 2.3 and represents the
classical SDMA system where Nu users equipped with single antennas transmit independent
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data streams to a common base station with multiple receive antennas. It is shown in (Tse
and Viswanath 2005) that the optimal receiver performs linear minimum mean squared error
(MMSE) filtering with successive interference cancellation (cf. also Subsection 5.2.2).

For the two-user case, the instantaneous capacity region is described again by a pentagon
as depicted in Figure 2.15. The intersections with the axes represent the cases where only
a single user is active and beamforming is applied at the receiver. These scenarios yield
the instantaneous capacities

Ru[k] ≤ log2

(
1+ ‖hu[k]‖2Es,u

N0

)
, (2.116)

where the scalar channel coefficient hu[k] known from Subsection 2.4.2 has been replaced
by the corresponding vector hu[k] owing to multiple receive antennas at the base station.
The maximum sum rate is obtained assuming a situation where a single user transmits two
independent data streams with powers P1 and P2 over two transmit antennas. Inserting the
corresponding covariance matrix �XX = diag[P1, P2] into the general result of (2.78) from
the last section leads to

R1[k]+ R2[k] ≤ log2 det

(
INR +

1

σ 2
N
·H[k]

[
P1 0
0 P2

]
HH [k]

)

= log2 det

(
INR +

Es,1

N0
· h1[k]hH

1 [k]+ Es,2

N0
· h2[k]hH

2 [k]

)
. (2.117)

The extension to Nu users is straightforward and yields

Nu∑
u=1

Ru[k] ≤ log2 det

(
INR +

Nu∑
u=1

Es,u

N0
hu[k]hH

u [k]

)
. (2.118)
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The achievable rate of user two that experiences user one’s signal as interference becomes

R2[k] ≤ log2 det
[
1+ Es,2hH

2 [k]
(
N0INR + Es,1h1[k]hH

1 [k]
)−1

h2[k]
]
. (2.119)

An equivalent expression holds for user one.
For base stations with a single receive antenna, successive decoding and interfer-

ence cancellation was already found to be the best receiver concept. In that case, inter-
ference is treated as temporally white Gaussian noise. On the contrary, we recognize
from the term h1[k]hH

1 [k] in (2.119) that interference is treated as spatially colored
noise when multiple receive antennas are used. We will see in Subsection 5.2.2 that the
term hH

2 [k](N0INR + Es,1h1[k]hH
1 [k])−1 in (2.119) represents an MMSE filter that directly

addresses the noise color and represents the optimum linear filter for Gaussian inputs. Nat-
urally, outage probabilities for slowly fading channels and ergodic capacities for fast fading
channels can be derived from these instantaneous results.

Uplink with Multiple Antennas at Transmitter and Receiver

Now, we extend the previous scenario by allowing multiple antennas at each mobile. This
leads to a system with Nu users that have NTu antennas and transmit as many independent
data streams with power levels Pu,i with 1 ≤ u ≤ Nu and 1 ≤ i ≤ NTu subject to the
constraint

∑NTu

i=1 Pu,i = Pu. In the absence of multiple access interference, for example, in
a single-user environment, we can directly apply the results in (2.78) from the last section
and obtain the individual rate constraints

Ru ≤ Cu = log2 det

(
INR +

1

σ 2
N

Hu�XuXu
HH

u

)
. (2.120)

The transmit covariance matrix �XuXu
= Uu�uUH

u of user u can be decomposed into the
unitary matrix Uu and the diagonal matrix �u. The latter determines the transmit powers
of the data streams generated by user u. In multiuser scenarios, the maximum sum rate of
the entire system is limited to

Cmax = log2 det

(
INR +

1

σ 2
N

Nu∑
u=1

Hu�XuXu
HH

u

)
. (2.121a)

The capacity region is obtained by considering all possible subsets K ⊂ {1, . . . , Nu} as in
Subsection 2.4.1. It amounts to

⋂
K⊂{1, ..., Nu}

{
{Ru}u∈K |

∑
u∈K

Ru ≤ log2 det

(
INR +

1

σ 2
N

∑
u∈K

Hu�XuXu
HH

u

)}
. (2.121b)

The common base station deploys
∑Nu

u=1 NTu MMSE filters, one for each data stream. The
detection is performed by successive MMSE filtering and interference cancellation.

For each power allocation scheme and each set of steering matrices Uu, the achievable
rates can be described for the two-user case by a pentagon such as the one depicted in
Figure 2.15. The whole capacity region is a convex hull comprising all pentagons obtained
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for different �u and power allocations. Since mobile users generally have only knowledge
of their own channel, an overall optimization is hardly possible. Without any channel
knowledge at the transmitters and independent Rayleigh fading components of the MIMO
channels, identical power levels Pu,i = Pu/NTu should be used, leading to a diagonal
covariance matrix �u = Pu,i · INTu

.

Downlink with Multiple Transmit and Single Receive Antennas

The major difference between the previously discussed uplink and the downlink is that
transmit antennas at a common base station can cooperate with each other. We start with a
single receive antenna for each user. Hence, interference cannot be spatially suppressed at
the mobile but it can be avoided by appropriate signaling at the transmitter.

Assuming that the channel to user u is described by the row vector hu, the use of a
linear prefilter w = hH

u maximizes the SNR because it is matched to the spatial channel. In
fact, beamforming is applied and the beam pattern points directly in the optimal direction.
However, MUI is not considered here and this prefilter will probably disturb all other
users.

The MIMO channel matrix is obtained by arranging all row vectors hu into the Nu ×NT

channel matrix

H =

 h1
...

hNu

 .

Interference from user u to all other users is avoided by using a prefilter that is orthogonal
to all but the uth rows in H. In the context of a CDMA uplink, we will see in Section 5.2
that the decorrelator represents such a filter. There, it is deployed as a receive filter that
perfectly suppresses all interference at the expense of severe background noise amplification.
Since the base station knows the transmission channels of all users, we can implement the
decorrelator (zero forcing, ZF) at the transmitter and can avoid the MUI. We obtain

WZF = H† = HH
(
HHH

)−1
. (2.122)

The uth column wZF,u of WZF represents the prefilter of user u. At its receiver, we obtain
the signal

yu = hu · AWZF · x+ nu = hu · AHH
(
HHH

)−1 · x+ nu. (2.123)

Geometrically, the steering vector wZF,u for each symbol xu in x does not necessarily point
directly in the direction of the desired user. Instead, it points in a direction perpendicular
to all other users so that they will be not disturbed. Hence, we can imagine that only a
small portion of the transmit power arrives at the desired receiver. In order to satisfy the
QoS constraints of the associated user, a potentially unlimited transmit power would have
to be spent on this user, violating the overall power constraint. This effect is equivalent to
the amplification of the background noise that occurs for the decorrelator. Therefore, the
scaling factor A has to adjust the total transmit power according to some defined constraints,
which may lead to poor SNRs at certain receivers.

Hence, the question arises as to how the optimum linear prefilter looks. Since all user
signals influence each other, the optimum choice of filters and transmit powers has to be
determined for all channels hu simultaneously. A separate optimization would fail. As a
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measure of performance, the SINR at the mobile receivers can be used. It has been shown
in (Tse and Viswanath 2005) that a duality exists between uplink and downlink. Therefore,
the MMSE filter, which is known to maximize the SINR at the receiver, would be the
optimum linear prefilter at the transmitter, too.

There also exists an equivalent transmitter structure for successive interference cancella-
tion at the receiver. Here, nonlinear precoding techniques such as the Tomlinson-Harashima
precoding have to be applied (Fischer 2002).

Downlink with Single Transmit and Multiple Receive Antennas

In environments with a single transmit antenna at the base station and multiple receive
antennas at each mobile, superposition coding and receive beamforming with interference
cancellation is the optimal strategy and maximizes the SINRs at the receive filter outputs.
Considering the two-user case, both transmit signals xu[k] are assumed to have identical
powers Es/Ts. The receive filters are matched to the spatial channel vectors hu and deliver
the outputs

ru[k] = hH
u

‖hu‖ · hux[k]+ hH
u

‖hu‖n[k] = ‖hu‖x[k]+ ñ[k]. (2.124)

At each mobile, superposition decoding has to be applied. Without loss of generality, we
can assume that ‖h1‖2 > ‖h2‖2 holds so that the rates each user can support are

R1 ≤ C1 = log2

(
1+ ‖h1‖2 Es,1

N0

)
R2 ≤ CMUI

2 = log2

(
1+ ‖h2‖2Es,2

‖h2‖2Es,1 +N0

)
.

Hence, user two decodes only its own signal disturbed by thermal noise and the signal of
user one. On the contrary, user one first detects the signal of user two, subtracts it from the
received signal and decodes its own signal afterwards.

Downlink with Multiple Transmit and Receive Antennas

Finally, we briefly consider the multiuser MIMO downlink where transmitters and receivers
are both equipped with multiple antennas. Here, the same strategies as in the multiuser
MIMO uplink have to be applied. For each user, the base station transmits parallel data
streams over its antennas. With full CSI at the transmitter, linear prefiltering in the zero-
forcing or MMSE sense or nonlinear precoding can be applied. At the receivers, MMSE
filtering with successive interference cancellation represents the optimum strategy.

2.5 Summary

This chapter has addressed some fundamentals of information theory. After the definitions
of information and entropy, mutual information and the channel capacity have been derived.
With these quantities, the channel coding theorem of Shannon was explained. It states that
an error-free transmission can be principally achieved for an optimal coding scheme if
the code rate is smaller than the capacity. The channel capacity has been illustrated for
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the AWGN channel and fading channels. The basic difference between them is that the
instantaneous capacity of fading channels is a random variable. In this context, ergodic and
outage capacities as well as the outage probability have been defined. They were illustrated
by several examples including some surprising results for diversity.

The principle method of an information theoretic analysis of MIMO systems is explained
in Section 2.3. Basically, the SVD of the MIMO system matrix delivers a set of parallel
SISO subsystems whose capacities are already known from the results of previous sections.
Particular examples will be presented in Chapters 4 and 6.

Finally, multiuser scenarios are briefly discussed. As a main result, we saw that orthog-
onal multiple access schemes do not always represent the best choice. Instead, systems
with inherent MUI but appropriate code and receiver design often achieve a higher sum
capacity. If the channel is known to the transmitter, channel-dependent scheduling exploits
the multiuser diversity and increases the maximum throughput remarkably.
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Forward Error Correction
Coding

Principally, three fundamental coding principles are distinguished: source coding, channel
or forward error correction (FEC) coding and cryptography. The task of source coding is to
compress the sampled and quantized signal such that a minimum number of bits is needed
for representing the originally analog signal in digital form. On the contrary, codes for
cryptography try to cipher a signal so that it can only be interpreted by the desired user
and not by third parties.

In this chapter, channel coding techniques that pursue a totally different intention are
considered. They should protect the information against transmission errors in the sense
that an appropriate decoder at the receiver is able to detect or even correct errors that have
been introduced during transmission. This task is accomplished by adding redundancy to
the information, that is, the data rate to be transmitted is increased. In this manner, channel
coding works contrary to source coding which aims to represent a message with as few
bits as possible. Since channel coding is only one topic among several others in this book,
it is not the aim to treat this topic comprehensively. Further information can be found in
Blahut (1983), Bossert (1999), Clark and Cain (1981), Johannesson and Zigangirov (1998),
Lin and Costello (2004).

This chapter starts with a brief introduction reviewing the system model and intro-
ducing some fundamental basics. Section 3.2 explains the concept of linear block codes,
their description by generator and parity check matrices as well as syndrome decoding.
Next, convolutional codes which represent one of the most important error-correcting
codes in digital communications are introduced. Besides the definition of their encoder
structure, their graphical representation, and the explanation of puncturing, the Viterbi
decoding algorithm is derived, whose invention launches the breakthrough for these kinds
of codes in practical systems. Section 3.4 derives special decoding algorithms that provide
reliability information at their outputs. They are of fundamental importance for concate-
nated coding schemes addressed in Section 3.6. Section 3.5 discusses the performance of
codes by different means. The distance properties of codes are examined and used for
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the derivation of an upper bound on the error probability. Moreover, an information theo-
retical measure termed information processing characteristic (IPC) is used for evaluation.
Finally, Section 3.6 treats concatenated coding schemes and illustrates the turbo decoding
principle.

3.1 Introduction

FEC coding plays an important role in many digital systems, especially in today’s mobile
communication systems which are not, realizably, without coding. Indeed, FEC codes are
applied in standards like GSM (Global System for Mobile Communications) (Mouly and
Pautet 1992), UMTS (Universal Mobile Telecommunication System) (Holma and Toskala
2004; Laiho et al. 2002; Ojanperä and Prasad 1998b; Steele and Hanzo 1999) and Hiper-
lan/2 (ETSI 2000, 2001) or IEEE802.11 (Hanzo et al. 2003a). Thus, channel coding is
not restricted to communications but can also be found in storage applications. In this
area, compact disks, digital versatile disks, digital audiotape (DAT) tapes and hard disks in
personal computers use FEC strategies.

Since the majority of digital communication systems transmit binary data with symbols
taken from the finite Galois field GF(2) = {0, 1} (Blahut 1983; Lin and Costello 2004;
Peterson and Weldon 1972), we only consider binary codes throughout this book. Moreover,
we restrict the derivations in this chapter to a blockwise BPSK transmission over frequency-
nonselective channels with perfect channel state information (CSI) at the receiver. On the
basis of these assumptions and the principle system structure illustrated in Figure 1.6, we
obtain the model in Figure 3.1. First, the encoder collects k information bits out of the data
stream d[i] and builds a vector d. Second, it maps this vector onto a new vector b of length
n > k. The resulting data stream b[�] is interleaved, BPSK modulated, and transmitted over
the channel. The frequency-nonselective channel consists of a single coefficient h[�] per
time instant and the additive white Gaussian noise (AWGN) component n[�].

According to Section 1.3.1, the optimum ML sequence detector determines that code
sequence b̃ with the largest conditional probability density pY|b̃(y). Equivalently, we can
also estimate the sequence x because BPSK simply maps a bit in b onto a binary symbol

BPSK

channel

matched filter

FEC
encoder

FEC
decoder

CSI

Re

k n

d[i] b[�]

d b

d̂ r

x[�]
�

h[�]

n[�]

h[�]∗/|h[�]|
y[�]

�−1

r[�]d̂[i]

Figure 3.1 Structure of coded communication system with BPSK
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in x.1 Since the logarithm is a strictly monotone function, we obtain

x̂ = argmax
x̃

{
pY|x̃(y)

}
= argmax

x̃

{
log pY|x̃(y)

}
. (3.1)

For flat fading channels with y[�] = h[�] · x[�]+ n[�], the conditional densities pY|x̃(y) can
be factorized

pY|x̃(y) =
∏
�

pY|x̃[�](y[�]) with pY|x̃[�](y[�]) = 1

πσ 2
N
· exp

(
−

∣∣y[�]− h[�]x̃[�]
∣∣2

σ 2
N

)

where σ 2
N denotes the power of the complex noise. Inserting the conditional probability

density into (3.1) leads to

x̂ = argmin
x̃

∑
�

∣∣y[�]− h[�] · x̃[�]
∣∣2 = argmax

x̃

∑
�

x̃[�] · Re
{
h∗[�] · y[�]

}
= argmax

x̃

∑
�

x̃[�] · |h[�]| · r[�] with r[�] = 1

|h[�]| · Re
{
h∗[�] · y[�]

}
. (3.2)

Therefore, the optimum receiver for coded BPSK can be split into two parts, a matched filter
and the FEC decoder as illustrated in Figure 3.1. First, the matched filter (cf. Section 1.3.4
on page 26) weights the received symbols y[�] with h∗[�]/|h[�]| and – for BPSK – extracts
the real parts. This multiplication corrects the phase shifts induced by the channel. In the
decoder, r[�] is first attenuated with the CSI |h[�]|, which is fed through the de-interleaver
to its input.2 Owing to this scaling, unreliable received symbols attenuated by channel
coefficients with small magnitudes contribute only little to the decoding decision, whereas
large coefficients have a great influence.

Finally, the ML decoder determines the codeword x̂ with the maximum correlation to
the sequence {· · · |h[�]|r[�] · · · }. Owing to the weighting with the CSI, each information
symbol x[�] is multiplied in total with |h[�]|2. Hence, the decoder exploits diversity such
as the maximum ratio combiner for diversity reception discussed in Section 1.5.1, that is,
decoding exploits time diversity in time-selective environments. While the computational
complexity of the brute force approach that directly correlates this sequence with all possible
hypotheses x̃ ∈ � grows exponentially with the sequence length and is prohibitively high for
most practical implementations, less complex algorithms will be introduced in subsequent
sections.

As mentioned above, the encoding process simply maps a vector of k binary symbols
onto another vector consisting of n symbols. Owing to this assignment, which must be
bijective, only 2k vectors out of 2n possible vectors are used as codewords. In other words,
the encoder selects a k-dimensional subspace out of an n-dimensional vector space. A
proper choice allows the detection and even the correction of transmission errors. The ratio

Rc = k

n
, (3.3)

1In the following derivation, the influence of the interleaver is neglected.
2Both the steps can be combined so that a simple scaling of y[�] with h∗[�] is sufficient. In this case, the

product h[�]∗y[�] already bears the CSI and it has not to be explicitly sent to the decoder.
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is called code rate and describes the relative amount of information in a codeword. Conse-
quently, the absolute redundancy is n− k, the relative redundancy (n− k)/n = 1− Rc.

We strictly distinguish between the code � representing the set of codewords (subspace
with k dimensions) and the encoder (Bossert 1999). The latter just performs the mapping
between d and b. Systematic encoding means that the information bits in d are explicitly
contained in b, for example, the encoder appends some additional bits to d. If information
bits and redundant bits cannot be distinguished in b, the encoding is called nonsystematic.
Note that the position of systematic bits in a codeword can be arbitrary.

Optimizing a code means arranging a set of codewords in the n-dimensional space
such that certain properties are optimal. There exist different criteria for improving the
performance of the entire coding scheme. As will be shown in Subsection 3.5.1, the
pairwise Hamming distances between codewords are maximized and the corresponding
number of pairs with small distances is minimized (Bossert 1999; Friedrichs 1996; Johan-
nesson and Zigangirov 1998; Lin and Costello 2004). A different approach proposed in
Hüttinger et al. (2002) and addressed in Subsection 3.5.3 focuses on the mutual information
between encoder input and decoder output being the basis of information theory. Especially
for concatenated codes, this approach seems to be well suited for predicting the perfor-
mance of codes accurately (Hüttinger et al. 2002; ten Brink 2000a,b, 2001c). However, the
optimization of codes is highly nontrivial and still an unsolved problem in the general case.

Similar to Section 1.3.2 where the squared Euclidean distance between symbols deter-
mined the error rate performance, an equivalent measure exists for codes. The Hamming
distance dH(a, b) denotes the number of differing symbols between the codewords a and b.
For binary codes, the Hamming distance and Euclidean distance are equivalent measures.
The minimum distance dmin of a code, that is, the minimum Hamming distance that can
occur between any pair of codewords, determines the number of correctable and detectable
errors. An (n, k, dmin) code can certainly correct

t =
⌊

dmin − 1

2

⌋
(3.4a)

and detect
t ′ = dmin − 1 (3.4b)

errors.3 In (3.4a), �x� denotes the largest integer smaller than x. Sometimes a code may
correct or detect even more errors, but this cannot be ensured for all error patterns. With
reference to convolutional codes, the minimum Hamming distance is called free distance
df. In Subsection 3.5.1, the distance properties of codes are discussed in more detail.

3.2 Linear Block Codes

3.2.1 Description by Matrices

Linear block codes represent a huge family of practically important codes. This section
describes some basic properties of block codes and considers selected examples. As already
mentioned, we restrict to binary codes, whose symbols are elements of GF(2). Consequently,

3This is a commonly used notation for a code of length n with k information bits and a minimum Hamming
distance dmin.
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the rules of finite algebra have to be applied. With regard to the definitions of finite groups,
fields, and vector spaces, we refer to Bossert (1999). All additions and multiplications have
to be performed modulo 2 according to the rules in GF(2), which are denoted by ⊕ and ⊗,
respectively. In contrast to hard decision decoding that often exploits the algebraic structure
of a code in order to find efficient algorithms, soft-in soft-out decoders that are of special
interest in concatenated schemes exist and will be derived in Section 4.3.

Generator Matrix

An (n, k) linear block code can be completely described by a generator matrix G consist-
ing of n rows and k columns. Each information word is represented by a column vector
d = [d1, . . . , dk]T of length k and assigned to a codeword b = [b1, . . . , bn]T of length n

by4

b = G⊗ d with G =

 G1,1 . . . G1,k

...

Gn,1 . . . Gn,k

 . (3.5)

The code � represents the set of all 2k codewords and is defined as

� = {
G⊗ d | d ∈ GF(2)k

}
(3.6)

where GF(2)k denotes the k-dimensional vector space where each dimension can take
values out of GF(2). The codeword b can be interpreted as linear combination of the
columns of G where the symbols in d are the coefficients of this combination. Owing to
the assumed linearity and the completeness of the code space, all columns of G represent
valid codewords. Therefore, they span the code space, that is, they form its basis.

Elementary matrix operations
Re-sorting the rows of G leads to a different succession of the symbols in a codeword.
Codes that emanate from each other by re-sorting their symbols are called equivalent codes.
Although the mapping d → b is different for equivalent codes, their distance properties (see
also Section 3.5.3) are still the same. However, the capability of detecting or correcting
bursty errors may be destroyed.

With reference to the columns of G, the following operations are allowed without
changing the code.

1. Re-sorting of columns

2. Multiplication of a column with a scalar according to the rules of finite algebra

3. Linear combination of columns.

By applying the operations listed above, each generator matrix can be put into the
Gaussian normal form

G =
[

Ik

P

]
. (3.7)

4In many text books, row vectors are used to describe information and codewords. Since we generally define
vectors as column vectors, the notation is adapted appropriately.
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In (3.7), Ik represents the k × k identity matrix and P a parity matrix with n− k rows
and k columns. Generator matrices of this form describe systematic encoders because the
multiplication of d with the upper part of G results in d again. The rest of the codeword
represents redundancy and is generated by the linear combining subsets of bits in d.

Parity Check Matrix

Equivalent to the generator matrix, the n× (n− k) parity check matrix H can be used to
define a code. Assuming a structure of G as given in (3.7), it has the form

H =
[−PT

In−k

]
. (3.8)

The minus sign in (3.8) can be neglected for binary codes. Obviously, the relation

HT ⊗G = [−P I(n−k)

]⊗ [
Ik

P

]
= [−P⊕ P

] = 0(n−k)×k. (3.9)

always holds regardless of whether G and H have the Gaussian normal form or not. Since
the columns of G form the basis of the code space,

HT ⊗ b = 0(n−k)×1 (3.10)

is valid for all b ∈ �, that is, the columns in H are orthogonal to all codewords in �. Hence,
the code � represents the null space concerning H and can be expressed by

� = {
b ∈ GF(2)n | HT ⊗ b = 0(n−k)×1

}
. (3.11)

Syndrome decoding
The parity check matrix can be used to detect and correct transmission errors. We assume
that the symbols of the received codeword r = b⊕ e have already been hard decided, and
e denote the error pattern with nonzero elements at erroneous positions. The syndrome is
defined by

s = HT ⊗ r = HT ⊗ (b⊕ e) = HT ⊗ b⊕HT ⊗ e = HT ⊗ e (3.12)

and represents a vector consisting of n− k elements. We see from (3.12) that it is indepen-
dent of the transmitted codeword x and depends only on the error pattern e. For s = 0(n−k)×1,
the transmission was error free or the error pattern was a valid codeword (e ∈ �). In the
latter case, the error is not detectable and the decoder fails.

If a binary (n, k, dmin) code must be able to correct t errors, each possible error pattern
has to be uniquely assigned to a syndrome. Hence, as many syndromes as error patterns
are needed and the following Hamming bound or sphere packing bound is obtained:

2n−k ≥
t∑

r=0

(
n

r

)
. (3.13)

Equality holds for perfect codes that provide exactly as many syndromes (left-hand side of
(3.13)) as necessary for uniquely labeling all error patterns with wH (e) ≤ t . This corresponds
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to the densest possible packing of codewords in the n-dimensional space. Only very few
perfect codes are known today. One example are the Hamming codes that will be described
subsequently.

Since the code consists of 2k out of 2n possible elements of the n-dimensional vector
space, there exist much more error patterns (2n − 2k) than syndromes. Therefore, decoding
principles such as standard array decoding or syndrome decoding (Bossert 1999; Lin and
Costello 2004) group error vectors e leading to the same syndrome sµ into a coset

Mµ =
{
e ∈ GF(2)n | HT ⊗ e = sµ

}
. (3.14)

For each coset Mµ with µ = 0, . . . , 2n−k − 1, a coset leader eµ is determined, which
generally has the minimum Hamming weight among all elements of Mµ. Syndromes and
coset leaders are stored in a lookup table. After the syndrome s has been calculated, the table
is scanned for the corresponding coset leader. Finally, the error correction is performed by
subtracting the coset leader from the received codeword

b̂ = r⊕ eµ. (3.15)

This decoding scheme represents the optimum maximum likelihood hard decision decod-
ing. Unlike the direct approach of (3.2), which compares all possible codewords with the
received vector, the exponential dependency between decoding complexity and the cardi-
nality of the code is broken by exploiting the algebraic code structure. More sophisticated
decoding principles such as soft-in soft-out decoding are presented in Section 3.4.

Dual code
On the basis of the above properties, the usage H instead of G for encoding leads to a code
�⊥ whose elements are orthogonal to �. It is called dual code and is defined by

�⊥ =
{

b̃ ∈ GF(2)n | b̃T ⊗ b = 0 ∀ b ∈ �
}

. (3.16)

The codewords of �⊥ are obtained by b̃ = H⊗ d̃ with d̃ ∈ GF(2)n−k . Owing to the dimen-
sion of H, the dual code has the same length as � but consists of only 2n−k elements. This
fact can be exploited for low complexity decoding. If n− k � k holds, it may be advan-
tageous to perform the decoding via the dual code and not with the original one (Offer
1996).

3.2.2 Simple Parity Check and Repetition Codes

The simplest form of encoding is to repeat each information bit n− 1 times. Hence, an
(n, 1, n) repetition code (RP) with code rate Rc = 1/n is obtained, which consists of only
2 codewords, the all-zero and the all-one word.

� = {[0 · · · 0︸ ︷︷ ︸
n

]T , [1 · · · 1︸ ︷︷ ︸
n

]T }

www.4electron.com



98 FORWARD ERROR CORRECTION CODING

Since the two codewords differ in all n bits, the minimum distance amounts to dmin = n.
The generator and parity check matrices have the form

G =


1
1
...

1

 H =


1 · · · 1
1

. . .

1

 . (3.17)

As the information bit d is simply repeated, the multiplication of b with HT results in the
modulo-2-addition of d with each of its replicas, which yields the all-zero vector.

The corresponding dual code is the (n, n− 1, 2) single parity check (SPC) code. The
generator matrix equals H in (3.17) except that the order of the identity and the parity
part has to be reversed. We recognize that the encoding is systematic. The row consisting
only of ones delivers the sum over all n− 1 information bits. Hence, the encoder appends
a single parity bit so that all codewords have an even Hamming weight. Obviously, the
minimum distance is dmin = 2 and the code rate Rc = (n− 1)/n.

3.2.3 Hamming and Simplex Codes

Hamming codes are probably the most famous codes that can correct single errors (t = 1)
and detect double errors (t ′ = 2). They always have a minimum distance of dmin = 3
whereby the code rate tends to unity for n →∞.

Definition 3.2.1 A binary (n, k, 3) Hamming code of order r has the block length n = 2r − 1
and encodes k = n− r = 2r − r − 1 information bits. The rows of H represent all decimal
numbers between 1 and 2r − 1 in binary form.

Hamming codes are perfect codes, that is, the number of syndromes equals exactly the
number of correctable error patterns. For r = 2, 3, 4, 5, 6, 7, . . ., the binary (n, k) Ham-
ming codes (3,1), (7,4), (15,11), (31,26), (63,57), and (127,120) exist. As an example,
generator and parity check matrices of the (7,4) Hamming code are given in systematic
form.

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1


; H =



0 1 1
1 0 1
1 1 0
1 1 1
1 0 0
0 1 0
0 0 1


(3.18)

The dual code obtained by using H as the generator matrix is called the simplex code. It
consists of 2n−k = 2r codewords and has the property that all columns of H and, therefore,
all codewords have the constant weight wH(b) = 2r−1 (except the all-zero word). The name
simplex stems from the geometrical property that all codewords have the same mutual
Hamming distance dH(b, b′) = 2r−1.
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3.2.4 Hadamard Codes

Hadamard codes can be constructed from simplex codes by extending all codewords with a
preceding zero (Bossert 1999). This results in a generator matrix whose structure is identical
to that of the corresponding simplex code except an additional first row containing only
zeros. Hence, the rows of G consist of all possible decimal numbers between 0 and 2k − 1.
Hadamard codes have the parameters n = 2r and k = r so that M = 2r codewords of length
n = M exist. The code rate amounts to Rc = r/2r = log2(M)/M . For k = 3 and M = 8,
we obtain the generator matrix

G =
0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

T

. (3.19)

Since the rows of G contain all possible vectors with weight 1, G represents a systematic
encoder although it does not have the Gaussian normal form. Therefore, the information bits
are distributed within the codeword at positions µ = 2−(l+1)M with 0 ≤ l < k. Moreover,
the property of simplex codes that all pairs of codewords have identical Hamming distances
is retained. This distance amounts to d = 2r−1.

The so-called Hadamard matrix BH comprises all codewords. It can be recursively
constructed with

BH,m =
[

BH,m−1 BH,m−1

BH,m−1 BH,m−1

]
(3.20)

where BH and BH are complementary matrices, that is, zeros and ones are exchanged.
Using BH,0 = 1 for initialization, we obtain Hadamard codes whose block lengths n = 2r

are a power of two. With a different initialization, codes whose block length are multiples
of 12 or 20 can also be constructed.

The application of BPSK maps the logical bits onto antipodal symbols xν = ±
√

Es/Ts.
This leads to orthogonal Walsh sequences that are used in CDMA systems for spectral
spreading (see Chapter 4). They can also be employed as orthogonal modulation schemes
allowing simple noncoherent detection techniques (Benthin 1996; Proakis 2001; Salmasi
and Gilhousen 1991).

An important advantage of Hadamard codes is the fact that they can be very efficiently
soft-input ML decoded. The direct approach in (3.2) correlates the received word with all
possible codewords and subsequently determines the maximum. The correlation can be
efficiently implemented by the Fast Hadamard transformation. This linear transformation
is similar to the well-known Fourier transformation and exploits symmetries of a butterfly
structure. Moreover, the received symbols are only multiplied with ±1, allowing very
efficient implementations.

3.2.5 Trellis Representation of Linear Block Codes

Similar to convolutional codes that will be introduced in the next section, linear block
codes can be graphically described by trellis diagrams (Offer 1996; Wolf 1978). This
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Figure 3.2 Trellis representation for (7,4,3)-Hamming code from Section 3.2.4

representation is based on the parity check matrix H = [hT
1 · · · hT

n ]T . The number of states
depends on the length of the row vectors hν and equals 2n−k . A state is described by a
vector s = [s1, . . . , sn−k] with the binary elements sν ∈ GF(2). At the beginning (ν = 0),
we start with s′ = 01×(n−k). If s′ denotes the preceding state at time instant ν − 1 and s the
successive state at time instant ν, we obtain the following description for a state transition

s = s′ ⊕ bν · hν, 1 ≤ ν ≤ n. (3.21)

Hence, the state remains unchanged for bν = 0 and changes for bν = 1. From (3.10), we
can directly see that the linear combination of the rows hν taking the coefficients from a
codeword b ∈ � results in the all-zero vector 01×(n−k). Therefore, the corresponding trellis
is terminated, that is, it starts and ends in the all-zero state.

Figure 3.2 shows the trellis for a (7,4,3) Hamming code with a parity check matrix,
discussed in the previous section, in systematic form. Obviously, two branches leave each
state during the first four transitions, representing the information part of the codewords.
The parity bits are totally determined by the information word and, therefore, only one
branch leaves each state during the last three transitions, leading finally back to the all-
zero state. The trellis representation of block codes can be used for soft-input soft-output
decoding, for example, with the algorithm by Bahl, Cocke, Jelinek, and Raviv (BCJR)
presented in Section 3.4.

3.3 Convolutional Codes
Convolutional codes are employed in many modern communication systems and belong
to the class of linear codes. Contrary to the large number of block codes, only a few
convolutional codes are relevant in practice. Moreover, they have very simple structures and
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can be graphically described by the finite state and trellis diagrams. Their breakthrough came
with the invention of the Viterbi algorithm (Viterbi 1967). Besides its ability of processing
soft inputs instead of hard decision inputs, its major advantage is the decoding complexity
reduction. While the complexity of the brute force maximum likelihood approach described
in Subsection 1.3.1 on page 18 grows exponentially with the sequence length, only a linear
dependency exists for the Viterbi algorithm.

There exists a duality between block and convolutional codes. On the one hand, con-
volutional codes have memory such that successive codewords are not independent from
each other and sequences instead of single codewords have to be processed at the decoder.
Therefore, block codes can be interpreted as special convolutional codes without memory.
On the other hand, we always consider finite sequences in practice. Hence, we can imagine
a whole sequence as a single codeword so that convolutional codes are a special implemen-
tation of block codes. Generally, it depends on the kind of application which interpretation
is better suited. The minimum Hamming distance of convolutional codes is termed free
distance and is denoted by df.

3.3.1 Structure of Encoder

Convolutional codes exist for a variety of code rates Rc = k/n. However, codes with k = 1
are employed in most systems because this reduces the decoding effort and higher rates
can be easily obtained by appropriate puncturing (cf. Section 3.3.3). As a consequence,
we restrict the description to rate 1/n codes. Therefore, the input vector of the encoder
reduces to a scalar d[i] and successive codewords b[i] consisting of n bits are correlated.
Owing to Rc = 1/n, the bit rate is multiplied with n as indicated by the time index � in
Figure 3.1. Here, we combine n code bits belonging to an information bit d[i] to a codeword
b[i] = [b1[i], . . . , bn[i]]T that obviously has the same rate and time index as d[i].

The encoder can be implemented by a linear shift register as depicted in Figure 3.3.
Besides the code rate, the constraint length Lc is another important parameter describing
the number of clock pulses an information bit affects the output. The larger the Lc and,
thus, the register memory, the better the performance of a code. However, we will see that
this coincides with an exponential increase in decoding complexity.

D D D D

a) b)

d[i]d[i]

b1[i]b1[i]

b2[i]b2[i]

a[i]
g1,0=1

g2,0=1g2,0=1

g1,1=1g1,1=1

g2,1=0g2,1=0

g1,2=1g1,2=1

g2,2=1g2,2=1

Figure 3.3 Structure of convolutional encoders with Rc = 1/2 and Lc = 3. a) Nonrecursive
encoder with g1(D) = 1+D +D2 and g2(D) = 1+D2. b) Recursive encoder with
g1(D) = 1 and g2(D) = (1+D2)/(1+D +D2)
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The simple example in Figure 3.3 for explaining the principle encoding process is now
referred to. At each clock pulse, one information bit d[i] is fed into the register whose
elements are linearly combined by modulo-2-adders. They deliver n = 2 outputs bν[i],
ν = 1, 2, at each clock pulse building the codeword b[i]. Hence, the encoder has a code
rate Rc = 1/2 and a memory of 2 so that Lc = 2+ 1 = 3 holds. The optimal encoder struc-
ture, that is, the connections between register elements and adders cannot be obtained with
algebraic tools but has to be determined by a computer-aided code search. Possible perfor-
mance criteria are the distance spectrum or the input–output weight enumerating function
(IOWEF) that is described in Section 3.5. Tables of optimum codes for various code rates
and constraint lengths can be found in Johannesson and Zigangirov (1998), Proakis (2001),
Wicker (1995).

Nonrecursive Nonsystematic Encoders

Principally, we distinguish between recursive and nonrecursive structures resembling infinite
impulse response (IIR) and finite impulse response (FIR) filters, respectively. Obviously,
the nonrecursive encoder in Figure 3.3a is nonsystematic since none of the coded output
bits permanently equals d[i]. For a long time, only nonsystematic nonrecursive convo-
lutional nonsystematic nonrecursive convolutional (NSC) encoders have been employed
because no good systematic encoders without feedback exist. This is different from linear
block codes that show the same error rate performance for systematic and nonsystematic
encoders.

The linear combinations of the register contents are described by n generators that are
assigned to the n encoder outputs. Each generator gν comprises Lc scalars gν,µ ∈ GF(2)

with µ = 0, . . . , Lc − 1. A nonzero scalar gν,µ = 1 indicates a connection between register
element µ and the νth modulo-2-adder, while the connection is missing for gν,µ = 0. Using
the polynomial presentation

gν(D) =
Lc−1∑
µ=0

gν,µ ·Dµ, (3.22)

the example in Figure 3.3a becomes

g1(D) = g1,0 + g1,1D + g1,2D
2 = 1+D +D2

g2(D) = g2,0 + g2,1D + g2,2D
2 = 1+D2.

Vector notations as well as octal or decimal representations can be used alternatively. For
a generator polynomial g(D) = 1+D +D3, we obtain

g = [
g0 g1 g2 g3

] = [1 1 0 1] =̂ 1110 =̂ 158.

With respect to the decimal notation, the coefficient g0 always denotes the least significant
bit (LSB), gLc−1 denotes the most significant bit (MSB) leading to 1+ 2+ 8 = 11. For octal
notation, 3-bit tupels are formed starting from the right-hand side, resulting in [1 0 1] = 58.
If less than three bits remain, zeros are added to the left.

The νth output stream of a convolutional encoder has the form

bν[i] =
Lc−1∑
µ=0

d[i − µ] · gν,µ mod 2 ⇒ bν(D) = d(D)⊗ gν(D). (3.23)
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We recognize that the coded sequence bν[i] is generated by convolving the input sequence
d[i] with the νth generator which is equivalent to the multiplication of the corresponding
polynomials d(D) and gν(D). This explains the naming of convolutional codes.

Recursive Systematic Encoders

With the first presentation of ‘Turbo Codes’ in 1993 (Berrou et al. 1993), recursive system-
atic convolutional (RSC) encoders have found great attention. Although they were known
much earlier, their importance for concatenated codes have become obvious only since
then. Recursive encoders have an IIR structure and are mainly used as systematic encoders,
although this is not mandatory. The structure of RSC encoders can be derived from their
nonrecursive counterparts by choosing one of the polynomials as denominator. For codes
with n = 2, we can choose g1(D) as well as g2(D) for the feedback. In Figure 3.3b, we
used the g1(D) and obtained the modified generator polynomials

g̃1(D) = 1 (3.24a)

g̃2(D) = g2(D)

g1(D)
= 1+D2

1+D +D2
(3.24b)

and the output bits

b̃1(D) = g̃1(D)⊗ d(D) = d(D) (3.25a)

b̃2(D) = g̃2(D)⊗ d(D) = g2(D)⊗ a(D). (3.25b)

The polynomial a(D) = d(D)/g1(D) in (3.25b) represents the input of the shift register
depicted in Figure 3.3b. Since D is a delay operator, we obtain the following temporal
relationship

a(D)⊗ [
1+D +D2] = d(D) ⇔ a[i] = d[i]⊕ a[i − 1]⊕ a[i − 2].

From this, the recursive encoder structure becomes obvious. The assumption g1,0 = 1 does
not restrict the generality and leads to

a[i] = d[i]⊕
Lc−1∑
µ=1

g1,µ · a[i − µ] mod 2. (3.26)

For notational simplicity, we neglect the tilde in the following part and denote recursive
polynomials also by gν(D). It has to be mentioned that nonrecursive nonsystematic codes
and their recursive systematic counterparts have the same distance spectra A(D). However,
the mapping between input and output sequences and, thus, the IOWEF A(W, D) (see
Subsection 3.5.1) are different. Recursive codes have an IIR due to their IIR structure, that
is, they require a minimum input weight of w = 2 to obtain a finite output weight. This
is one important property that predestines them for the application in concatenated coding
schemes (cf. Section 3.6).

Termination of Convolutional Codes

In practical systems, we always have sequences of finite lengths, for example, they consist
of N codewords b[i]. Owing to the memory of the encoder, the decoder cannot decide
on the basis of single codewords but has to consider the entire sequence or at least larger
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parts of it. Hence, a decoding delay occurs because a certain part of the received sequence
has to be processed until a reliable decision of the first bits can be made (see Viterbi
decoding). Another consequence of a sequencewise detection is the unreliable estimation
of the last bits of a sequence if the decoder does not know the final state of the encoder
(truncated codes). In order to overcome this difficulty, Lc − 1 tail bits are appended to the
information sequences forcing the encoder to end in a predefined state, conventionally the
all-zero state. With this knowledge, the decoder is enabled to estimate the last bits very
reliably.

Since tail bits do not bear any information but represent redundancy, they reduce the
code rate Rc. For a sequence consisting of N codewords, we obtain

Rtail
c = N

n · (N + Lc − 1)
= Rc · N

N + Lc − 1
. (3.27)

For N � Lc, the reduction of Rc can be neglected.
A different approach to allow reliable detection of all bits without reducing the code

rate are tailbiting codes. They initialize the encoder with its final state. The decoder only
knows that the initial and final states are identical but it does not know the state itself. A
detailed description can be found in Calderbank et al. (1999).

3.3.2 Graphical Description of Convolutional Codes

Since the encoder can be implemented by a shift register, it represents a finite state machine.
This means that its output only depends on the input and the current state but not on
preceding states. The number of possible states is determined by the length of the register
(memory) and amounts to 2Lc−1 in the binary case. Figure 3.4 shows the state diagrams
of the nonrecursive and the recursive examples of Figure 3.3. Owing to Lc = 3, both
encoders have four states. The transitions between them are labeled with the associated
information bit d[i] and the generated code bits b1[i], . . . , bn[i]. Hence, the state diagram
totally describes the encoder.

0 0 0 0

1 0 1 0

1 1 1 1

0 1 0 1

1/11

a) b)

1/11

0/00 0/00

1/10 1/10

0/01 0/01

0/10 1/10

1/00 0/00

0/11 1/11

1/01 0/01

Figure 3.4 Finite state diagrams of convolutional codes with a) g1(D) = 1+D +D2 and
g2(D) = 1+D2 b) g1(D) = 1 and g2(D) = (1+D2)/(1+D +D2)
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00

10

01

11

0/00 0/00

0/01 0/01

1/00

0/11 0/11

1/10

0/10

1/01

0/10

1/11

i=0 i=1 i=2 i=3 i=4 i=N i=N+1 i=N+2

Figure 3.5 Trellis diagram for nonrecursive convolutional code with g1(D) = 1+D +D2

and g2(D) = 1+D2

Although the state diagram fully describes a convolutional encoder, it does not contain
a temporal component that is necessary for decoding. This missing part is delivered by the
trellis diagram shown in Figure 3.5. It stems from the state diagram by arranging the states
vertically as nodes and repeating them horizontally to illustrate the time axis. The state
transitions are represented by branches labeled with the corresponding input and output
bits. Generally, the encoder is initialized with zeros so that we start in the all-zero state.
After Lc steps, the trellis is fully developed, that is, two branches leave each state and two
branches reach every state. If the trellis is terminated as shown in Figure 3.5, the last state
is the all-zero state again.

3.3.3 Puncturing Convolutional Codes
In modern communication systems, adaptivity is an important feature. In the context of link
adaptation, the code rate as well as the modulation scheme are adjusted with respect to the
channel quality. During good transmission conditions, weak codes with large Rc are suffi-
cient so that high data rates can be transmitted with little redundancy. In bad channel states,
strong FEC codes are required and Rc is decreased. Moreover, the code rate is adjusted
with respect to the importance of different information parts for unequal error protection
(UEP) (Hagenauer 1989). Finally, the concept of incremental redundancy in automatic
repeat request (ARQ) schemes implicitly decreases the code rate when transmission errors
have been detected (Hagenauer 1988).

A popular method for adapting the code rate is by puncturing. Although puncturing can
be applied to any code, we restrict to the description for convolutional codes. The basic
principle is that after encoding, only a subset of the code bits is transmitted, while the others
are suppressed. This decreases the number of transmitted bits and, therefore, increases the
code rate. Besides its flexibility, a major advantage of puncturing is that it does not affect
the decoder so that a number of code rates can be achieved with only a single hardware
implementation of the decoder.

Principally, the optimum subset of bits to be transmitted has to be adapted to the specific
mother code and can only be found by a computer-aided code search. In practice, puncturing
is performed periodically where one period comprises Lp codewords. A pattern in the form
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of a matrix P determines the transmitted and suppressed bits during one period. This matrix
consists of n rows and Lp columns with binary elements pµ,ν ∈ GF(2)

P =


p1,1 p1,2 · · · p1,Lp

p2,1 p2,2 · · · p2,Lp
...

...
...

pn,1 pn,2 · · · pn,Lp

 = (
p1 p2 · · · pLp

)
. (3.28)

The columns pν are periodically assigned to successive codewords b[i] = [b1[i], . . . , bn[i]]T

such that ν = (i mod Lp)+ 1 holds. Each column contains the puncturing patterns for a
whole codeword. A zero at the µth position indicates that the µth bit bµ[i] is suppressed,
while a one indicates that it is transmitted. Generally, P contains l + Lp ones with 1 ≤ l ≤
(n− 1) · Lp, that is, only l + Lp bits are transmitted instead of n · Lp without puncturing.
Hence, the code rate amounts to

R′c =
Lp

Lp + l
(3.29)

and can vary in the interval

Lp

Lp · n =
1

n
≤ R′c ≤

Lp

Lp + 1
. (3.30)

Certainly the largest achievable code rate increases with growing puncturing period Lp.
Moreover, puncturing reduces the performance of the mother code because the Hamming
distances between codewords are decreased. However, it can be shown that punctured codes
are as good as nonpunctured codes of the same rate.

Catastrophic Convolutional Codes

Puncturing has to be applied carefully because it can generate catastrophic codes. They are
not suited for error protection because they can generate a theoretically infinite number
of decoding errors for only a finite number of transmission errors, leading to a per-
formance degradation due to coding. There exist sufficient criteria for NSC encoders,
allowing the recognition of catastrophic codes. Systematic encoders are principally not
catastrophic.

• All generator polynomials have a common factor.

• The finite state diagram contains a closed loop with zero weight (except the loop in
the all-zero state).

• All modulo-2-adders have an even number of connections. This leads to a loop in
the all-one state with zero weight.

3.3.4 ML Decoding with Viterbi Algorithm
A major advantage of convolutional codes is the possibility to perform an efficient soft-
input maximum likelihood decoding (MLD), while this is often too complex for block
codes.5 The focus in this section is on the classical Viterbi algorithm delivering hard

5Syndrome decoding for linear block codes performs MLD with hard decision input.
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decision estimates of the information bits. Section 3.4 addresses algorithms that provide
reliability information for each decision and are therefore suited for decoding concatenated
codes.

In the following part, we assume that no apriori information of the information bits
d[i] is available and that all information sequences are equally likely. In this case, MLD
is the optimum decoding approach. Since a convolutional encoder delivers a sequence of
codewords b[i], we have to rewrite the ML decision rule in (3.2) slightly. If a sequence x
consists of N codewords x[i] each comprising n code bits xν[i], we obtain

x̂ = argmax
x̃

N−1∑
i=0

n∑
ν=1

x̃ν[i] · |hν [i]| · rν[i]. (3.31)

According to (3.31), we have to sum the incremental metrics
∑n

ν=1 x̃ν[i] · |hν[i]| · rν[i] for
all sequences and decide in favor of that one with the largest (cumulative) path metric. This
is obviously impractical because the number of possible sequences grows exponentially with
their lengths. Since convolutional encoders are finite state machines, their output at a certain
time instant only depends on the input and the current state. Hence, they can be interpreted
as a Markov process of first order, that is, the history of previous states is meaningless
if we know the last state. Exploiting this property leads to the famous Viterbi decoding
algorithm, whose complexity depends only linearly on the sequence length N (Kammeyer
2004; Kammeyer and Kühn 2001; Proakis 2001).

In order to explain the Viterbi algorithm, we now have a look at the trellis segment
depicted in Figure 3.6. We assume that the encoder and decoder both start in the all-zero
state. The preceding states are denoted by s′ and successive states by s. They represent the
register content, for example, s = [1 0]. To simplify the notation, the set S = GF(2)Lc−1

containing all possible states s is defined. For our example with four states, we obtain
S = {[0 0], [0 1], [1 0], [1 1]}. Moreover, the set S→s comprises all states s′ for which a
transition to state s exists.

Viterbi Algorithm
① Start in the all-zero state of the trellis at time instant i = 0 and initialize the cumulative

path metrics Ms′ [i = 0] = 0 of all states s′ ∈ S.

i − 1 i i + 1

s′ = u1

Mu1
[i − 1]

s′ = u2

Mu2
[i − 1]

z(u1→v), γ (u1→v)[i]

z(u2→v), γ (u2→v)[i]

s = v
Mv[i]

Figure 3.6 Segment of trellis diagram for the illustration of Viterbi algorithm
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② At time instant i, calculate incremental metrics (branch metrics)

γ (s′→s)[i] =
n∑

ν=1

rν[i] · |hν [i]| · z(s′→s)
ν , (3.32)

for all s′ ∈ S→s and s ∈ S where z
(s′→s)
ν = ±√Es/Ts denotes the νth code symbol of

transition s′ → s.

③ Add incremental metrics of ② to cumulative metrics of corresponding states at time
instant i − 1: Ms′[i − 1]+ γ (s′→s)[i] with s′ ∈ S→s and s ∈ S.

④ At each state s, choose the path with the largest cumulative metric and discard the
competing path:

Ms[i] = max
s′∈S→s

{
Ms′ [i − 1]+ γ (s′→s)[i]

}
Owing to the Markov property, we have to consider just one preceding time instant.
Once we have chosen the best path among those arriving at a state s, all other
paths cannot outperform the best path in the future and are discarded. Therefore, the
computational complexity grows only linearly with the sequence length N .

⑤ Repeat procedure from ② until all N received codewords r[i] have been processed.

⑥ Determine the survivor at end of trellis diagram:

• Terminated trellis: Continue the procedure for Lc − 1 tail bits and determine the
path with the best metric M0[N + Lc − 1] in the all-zero state.

• Truncated trellis: Determine the path with the best global cumulative metric
Ms[N ] among all s ∈ S.

⑦ Estimates of the information bits are delivered by tracing back the survivor determined
in ⑥ to the all-zero state at i = 0.

According to the above procedure, a whole sequence has to be processed until estimates
of the information bits are available. However, for a continuous transmission or very long
blocks, this leads to long delays that may not be acceptable for certain applications. More-
over, limited memory in the decoder may require processing shorter parts of the block. It
has been shown that a reliable decision of a bit d[i] is obtained when a subsequence from
r[i] to r[i +K] with sufficiently large K has been processed. A rule of thumb states that
the decision depth K has to be approximately five times the constraint length Lc (Heller
and Jacobs 1971). After processing K steps, early parts of competing paths have merged
with high probability and the decision is reliable.

Punctured Codes

Prior to decoding, positions of punctured bits have to be filled with dummy bits. Assuming
an antipodal transmission, zeros can be inserted. Looking at (3.31), we recognize that
rν[i] = 0 does not affect the incremental metric. However, puncturing reduces the Hamming
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distances between code sequences. Therefore, the decision depth K has to be increased
(Hagenauer 1988) in order to keep the decision reliable.

3.4 Soft-Output Decoding of Binary Codes

In the last decade, tremendous effort has been spent to design and analyze concatenated
codes. As shown in Sections 3.6.2 and 3.6.3, the analytical performance analysis often
presupposes an optimum MLD of the entire scheme, which is infeasible in most practical
systems. Instead, a concatenation of distinct decoders mutually exchanging information was
found to be a suboptimum but practical solution. In order to avoid a loss of information by
hard decision decoding, algorithms that process and provide soft information for each bit
are required.

The optimum soft-in soft-out decoder would deliver a list of a posteriori probabili-
ties Pr{x̃ | y}, one for each possible codeword x̃ ∈ �. Since the number of codewords for
practical codes can easily even exceed the number of atoms in space, this is an infeasible
approach. Instead, the generally trellis-based decoders work on a symbol-by-symbol basis
and deliver soft information for each bit separately.

In this section, an appropriate measure of reliability is first defined proceeding to
the derivation of the soft-output decoding algorithms for block codes and convolutional
codes. For the sake of simplicity, we always assume BPSK-modulated signals according to
Section 1.4 and a memoryless channel.

3.4.1 Log-Likelihood Ratios – A Measure of Reliability

Since the information is represented by a random process B, a suitable soft information
is of course the probability. BPSK maps the coded bits b onto antipodal signals x =
(1− 2b)

√
Es/Ts, that is, b = 0 corresponds to x = +√Es/Ts and b = 1 to x = −√Es/Ts.

Owing to the restriction on the binary case, Pr{B = 0} + Pr{B = 1} = 1 holds, that is, we
have only one independent parameter and the entire information is determined by either
Pr{B = 0} or Pr{B = 1}. Hence, we can also use the logarithmic ratio of the probabilities
leading to the log-likelihood ratio (LLR)

L(b) = L(x) = log
Pr{B = 0}
Pr{B = 1} = log

Pr{X = +√Es/Ts}
Pr{X = −√Es/Ts}

(3.33)

as an appropriate measure of reliability for B = b (Hagenauer 1996b). The sign of L(b)

determines the hard decision, while the magnitude denotes the reliability. The larger the
difference between Pr{B = 0} and Pr{B = 1}, the larger the magnitude of their ratio. If
B = 1 and B = 0 are equally likely, a decision is totally random (unreliable) and L(b) = 0
holds. Since the logarithm is a strictly monotone function, we can also calculate proba-
bilities from the LLRs. Resolving (3.33) with respect to Pr{B = 0 | r} and Pr{B = 1 | r}
results in

Pr{B = v} = e−v·L(b)

1+ e−L(b)
with v ∈ {0, 1} (3.34a)

www.4electron.com



110 FORWARD ERROR CORRECTION CODING

for the logical variable b and in

Pr{X = X} = 1

1+ e− sgn(X)·L(x)
with X ∈

{
+
√

Es/Ts, −
√

Es/Ts

}
(3.34b)

for antipodal signals. The probability for a correct decision b̂ = b is determined in the
following way. For b = 0, we obtain the true data if L(b̂) is positive, that is,

Pr{B̂ = b | b = 0} = 1

1+ e−L(b̂)
= e|L(b̂)|

1+ e|L(b̂)| for L(b̂) > 0.

Equivalently, L(b̂) has to be negative for b = 1.

Pr{B̂ = b | b = 1} = 1

1+ eL(b̂)
= 1

1+ e−|L(b̂)| =
e|L(b̂)|

1+ e|L(b̂)| for L(b̂) < 0

Combining both expressions finally yields

Pr{B̂ = b} = e|L(b̂)|

1+ e|L(b̂)| . (3.35)

Moreover, the expectation of the antipodal signal x becomes, with (3.34b),

E{X } =
∑

X=±
√

Es
Ts

X · Pr{X = X} =
√

Es

Ts
·
(

eL(x)

1+ eL(x)
− 1

1+ eL(x)

)

=
√

Es

Ts
· tanh

(
L(x)/2

)
. (3.36)

For uniformity the logical values ‘0’ and ‘1’ is discussed in the following derivation.
However, equivalent expressions can be obtained with antipodal signals ±√Es/Ts. Looking
at the transmission of information, a decision is based on the matched filter output

r = 1

|h|Re
{
h∗y

} = |h| · x + 1

|h| · Re
{
h∗n

}
. (3.37)

According to the MAP criterion in Section 1.3, we have to choose that b̂ that maximizes
the a posteriori probability

b̂ = argmax
v∈{0, 1}

Pr{B = v | r}.

Replacing the probabilities in (3.33) by a posteriori probabilities and applying Bayes’ rule,
we obtain

L(b̂) = L(b | r) = log
Pr{B = 0 | r}
Pr{B = 1 | r} = log

pR|b=0(r)

pR|b=1(r)︸ ︷︷ ︸
L(r | b)

+ log
Pr{B = 0}
Pr{B = 1}︸ ︷︷ ︸
La(b)

. (3.38)
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Hence, the LLR in (3.38) consists for an uncoded transmission of two components. The
term L(r|b) depends on the channel statistics pR|b(r) and, therefore, only on the matched
filter output r . On the contrary, La(b) is independent of r and represents a priori knowledge
about the bit b.

The LLR L(r|b) can be very easily calculated for memoryless channels such as the
AWGN and flat fading channels depicted in Figure 3.1. Inserting the conditional probability
densities6

pR|b(r) = 1√
πσ 2

N
· exp

(
−

(
r − |h|(1 − 2b)

√
Es/Ts

)2

σ 2
N

)
(3.39)

into (3.38) results in

L(r | b) = 4|h|
√

Es/Ts

σ 2
N

r = 4|h|2 Es

N0︸ ︷︷ ︸
Lch

r̃ with r̃ = r

|h|√Es/Ts
. (3.40)

In (3.40), r̃ is a normalized version of the matched filter output r with an information-bearing
part of unit energy. Hence, the LLR is directly obtained from r̃ by some appropriate scaling
with the channel reliability Lch that depends on Es/N0 as well as the channel gain |h|2. As
a consequence, it is natural to use LLRs in subsequent decoding algorithms. For this goal,
we need an appropriate algebra called L-Algebra (Hagenauer 1996b).

As already known from block and convolutional codes, the parity check bits are gen-
erated by modulo-2-sums of certain information bits di . In order to calculate the LLR of
a parity bit, we look at a simple SPC code with two statistically independent information
bits b1 = d1, b2 = d2 and the parity bit b3 = d1 ⊕ d2. The LLR L(b3) is given by

L(b3) = L(d1 ⊕ d2) = log
Pr{B3 = 0}
Pr{B3 = 1}

= log
Pr{D1 = 0} · Pr{D2 = 0} + Pr{D1 = 1} · Pr{D2 = 1}
Pr{D1 = 0} · Pr{D2 = 1} + Pr{D1 = 1} · Pr{D2 = 0} .

Rearranging the probabilities such that we obtain likelihood ratios Pr{D = 0}/ Pr{D = 1}
and applying the relationships tanh(x/2) = (ex − 1)/(ex + 1) as well as log[(1+ x)/(1−
x)] = 2 artanh(x) yields

L(d3) = 2 artanh
(
λ1 · λ2

)
with λµ = tanh(L(dµ)/2). (3.41)

By complete induction techniques, it can be shown that (3.41) can be generalized for N

independent variables

L(d1 ⊕ · · · ⊕ dN) = 2 artanh

 N∏
µ=1

tanh(L(dµ)/2)

 (3.42)

With (3.42), we now have a rule for calculating the LLR of a sum of statistically independent
random variables.

6Be aware that only half of the noise power affects the transmission owing to the extraction of the real part.
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An approximation with lower computational complexity can be derived by exploiting
the behavior of the tanh function. It saturates at ±1 for arguments with large magnitude and
has a nearly linear shape with a slope of 1 around the origin. Therefore, large magnitudes at
the input result in a multiplication with ±1 while the smallest magnitude mainly determines
the magnitude of the output. Hence, we obtain the approximation

L(d1 ⊕ · · · ⊕ dN) ≈ min
µ

(|L(dµ)|) ·
N∏

µ=1

sgn
(
L(dµ)

)
. (3.43)

3.4.2 General Approach for Soft-Output Decoding

In the first step, we derive a direct approach for calculating the LLRs for each information
bit in a symbol-by-symbol manner. Therefore, we consider an encoder that maps the infor-
mation vector d = [d1, . . . , dk]T onto the codeword b = [b1, . . . , bn]T consisting of n bits.
After BPSK modulation, the vector x is transmitted. On the basis of the matched filter out-
put r = [r1, . . . , rn]T , we now have to determine L(dµ | r). In the context of concatenated
codes, we will see that it is necessary to calculate LLRs L(bν | r) of coded bits as well.
This can be accomplished by simply replacing the targeted dµ with the desired code bit bν

in the following derivation.
According to the symbol-by-symbol MAP criterion of Section 1.3, the a posteriori

probability Pr{X = x | r} represents an appropriate soft information containing all available
information. Since we consider a binary transmission, the random variable X can take only
two different values and the LLR of the corresponding probabilities also comprises the
entire information.

L(d̂µ) = log
Pr{Dµ = 0 | r}
Pr{Dµ = 1 | r} = log

pDµ,R(dµ = 0, r)

pDµ,R(dµ = 1, r)
. (3.44)

The probability densities in the numerator and denominator can be extended by exploiting
the relation Pr{Bµ = v} =∑

b,bµ=v Pr{B}. In order to obtain the separation into dµ = 0 and

dµ = 1, we divide the code space � into two sets of equal size, namely, �(0)
µ comprising

all codewords whose µth information bit is zero and �(1)
µ with all remaining codewords

corresponding to dµ = 1. This results in7

L(d̂µ) = log

∑
b∈�

(0)
µ

pB,R(b, r)∑
b∈�

(1)
µ

pB,R(b, r)
= log

∑
b∈�

(0)
µ

pR|b(r) · Pr{b}∑
b∈�

(1)
µ

pR|b(r) · Pr{b} . (3.45)

For memoryless channels, the conditional probability densities can be factorized into n

terms

pR|b(r) =
n∏

ν=1

pRν |bν (rν).

Moreover, a codeword b is totally determined by the corresponding information word d.
Since the information bits are assumed to be statistically independent, Pr{b} = Pr{d} =

7For notational simplicity, we use the simpler expression Pr{b} instead of Pr{B = b}.
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µ=1 Pr{dµ} holds and we obtain

L(d̂µ) = log

∑
b∈�

(0)
µ

∏n
ν=1 pRν |bν (rν) ·

∏k
ν=1 Pr{dν}∑

b∈�
(1)
µ

∏n
ν=1 pRν |bν (rν) ·

∏k
ν=1 Pr{dν}

. (3.46)

If we consider systematic encoders with dµ = bµ for 1 ≤ µ ≤ k, the terms corresponding
to ν = µ in the products of the numerator and denominator are constant. Hence, pRµ|bµ(rµ)

as well as Pr{dµ} can be extracted from the sums, yielding

L(d̂µ) = L(rµ | dµ)+ La(dµ)+ log

∑
b∈�

(0)
µ

n∏
ν=1
ν �=µ

pRν |bν (rν) ·
k∏

ν=1
ν �=µ

Pr{dν}

∑
b∈�

(1)
µ

n∏
ν=1
ν �=µ

pRν |bν (rν) ·
k∏

ν=1
ν �=µ

Pr{dν}
︸ ︷︷ ︸

Le(d̂µ)

. (3.47)

Equation (3.47) shows that L(d̂µ) consists of three parts for systematic encoding: The
intrinsic information

L(rµ | dµ) = log
pRµ|dµ=0(rµ)

pRµ|dµ=1(rµ)
= 4|hµ|2 Es

N0
r̃µ (3.48a)

obtained from the weighted matched filter output of the symbol dµ itself, the a priori
information

La(dµ) = log
Pr{Dµ = 0}
Pr{Dµ = 1} (3.48b)

that is already known from the uncoded case and as a third part, Le(d̂µ). The last component
does not depend on the µth bit itself but on all other bits of a codeword. Therefore, it is
called extrinsic information. For memoryless channels, all three parts are independent of
each other so that the LLRs can simply be summed. The extrinsic information is responsible
for the coding gain since it exploits the structure of the code. In the case of nonsystematic
encoding, extrinsic and intrinsic components cannot be separated. However, soft-output
decoding is still possible.

Since the log-likelihood values L(rµ | bµ) are scaled versions of the matched filter
output, it would be desirable to express (3.47) by these LLRs instead of probability densities.
The a priori probabilities can be substituted by (3.34a) and for the conditional probability
densities

pRν |bν (rν) = Pr{bν | rν} · pRν (rν)

Pr{bν}

= exp
[− bνL(bν | rν)

]
1+ exp

[− L(bν | rν)
] · 1+ exp

[− La(bν)
]

exp
[− bνLa(bν)

] · pRν (rν)

= exp
[− bνL(rν | bν)

]
1+ exp

[− L(bν | rν)
] · [1+ exp[−La(bν)]

] · pRν (rν) (3.49)
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holds. It has to be emphasized that the LLRs La(bν) and L(rν | bν) do not depend on
the particular bν but only on the ratio of probabilities corresponding to the two possible
values of bν . Hence, inserting (3.49) into (3.47) and cancelling all terms independent of bν

results in

Le(d̂µ) = log

∑
b∈�

(0)
µ

n∏
ν=1
ν �=µ

exp
[− bνL(rν | bν)

] · k∏
ν=1
ν �=µ

exp
[− bνLa(bν)

]
∑

b∈�
(1)
µ

n∏
ν=1
ν �=µ

exp
[− bνL(rν | bν)

] · k∏
ν=1
ν �=µ

exp
[− bνLa(bν)

] . (3.50)

With the definition

L(bν; rν) =
{

L(rν | bν)+ La(bν) for 1 ≤ ν ≤ k

L(rν | bν) for k < ν ≤ n
(3.51)

(3.47) finally becomes

L(d̂µ) = L(rµ|dµ)+ La(dµ)+ log

∑
b∈�

(0)
µ

n∏
ν=1
ν �=µ

exp
[− bνL(bν; rν)

]
∑

b∈�
(1)
µ

n∏
ν=1
ν �=µ

exp
[− bνL(bν; rν)

] (3.52a)

= L(rµ|dµ)+ La(dµ)+ log

∑
x∈�

(+1)
µ

n∏
ν=1
ν �=µ

exp
[
xνL(bν; rν)/2

]
∑

x∈�
(−1)
µ

n∏
ν=1
ν �=µ

exp
[
xνL(bν; rν)/2

] . (3.52b)

Equation (3.52a) demonstrates that we only need the scaled matched filter outputs and
the a priori LLRs for each bit in order to determine the extrinsic information. An equiv-
alent expression is obtained by using antipodal symbols xν = ±1 instead of logical bits
bν ∈ {0, 1}. The relationship bν = (1− xν)/2 leads to (3.52b). However, a direct imple-
mentation of (3.52a) or (3.52b) requires a prohibitive computational effort because the
number of codewords b ∈ �(0,1)

µ over which we have to sum the terms in the numera-
tor and denominator becomes excessively high for codes with reasonable cardinality. For
example, the (255,247,3)-Hamming code consists of 2247 = 2.3 · 1074 codewords. Walsh
codes represent an exception for which the described soft-output decoding is applicable
and are described in the next subsection.

3.4.3 Soft-Output Decoding for Walsh Codes

Symbol-by-symbol soft-output decoding of Walsh codes can be efficiently implemented
by the Fast Hadamard Transform (FHT). Unifying the three terms in (3.52a) into a single
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expression and exchanging the order of the product and the exponential function yields

L(d̂µ) = log

∑
b∈�

(0)
µ

exp

[
−

n∑
ν=1

bν · L(bν; rν)

]
∑

b∈�
(1)
µ

exp

[
−

n∑
ν=1

bν · L(bν; rν)

] (3.53a)

= log

∑
b∈�

(0)
µ

exp [−FHT{L(b; r)}]
∑

b∈�
(1)
µ

exp [−FHT{L(b; r)}] . (3.53b)

From (3.53a), we see that each possible codeword b ∈ � has to be correlated with the
LLRs L(bν; rν) (inner sums in the numerator and denominator). While this requires, in
general, a computational effort that grows proportional to M2, an efficient implementation
exists for Walsh codes. The FHT delivers the correlation directly to all possible codewords
at reduced costs that are proportional to M log2(M). It works similar to the fast Fourier
transform (FFT) algorithm whereby only multiplications with zeros and ones are required
which can be efficiently implemented by summing over subsets of LLRs. In summary,
soft-output decoding of Walsh codes is performed by dividing the FHT outputs for each
bit into appropriate subsets �(0)

µ and �(1)
µ and inserting them into (3.53b).

For codes with large cardinality, it is possible to perform the decoding with the dual
code (see page 97). This leads to lower computational costs if the dual code has much fewer
codewords than the original code (Offer 1996). A different possibility is the representation
of the code by its trellis diagram. In the following subsections, we present trellis-based
symbol-by-symbol decoding algorithms for linear block codes and convolutional codes as
well as simplified versions operating in the logarithmic domain.

3.4.4 BCJR Algorithm for Binary Block Codes

Basically, the algorithm to be presented now is not restricted to decoding purposes but can
be generally applied for estimating a posteriori LLRs in systems represented by a trellis
diagram. Hence, it can be used for decoding convolutional and linear block codes as well as
for the equalization of dispersive channels (Bahl et al. 1974; Douillard et al. 1995; Jordan
2000; Li et al. 1995). The so-called BCJR algorithm was presented for the first time in
1972 by Bahl, Cocke, Jelinek and Raviv (Bahl et al. 1972). The savings in computational
complexity compared to a direct implementation of (3.52a) are based on the fact that the
encoder can be interpreted as a Markov process of the first order (compare the Viterbi
decoder on page 106).

We start the derivation for binary linear block codes by going back to (3.44) and focus
on soft-output decoding the information bit dµ, that is, estimating L(d̂µ). Looking at the
trellis representation of linear block codes (rf. Section 3.2.5), dµ initiates a transition from
a state s′ at time instant µ− 1 to a state s at time µ. The set of all possible transitions
{s′, s} can be separated into two subsets, those corresponding to dµ = 0 and those associated
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with dµ = 1. Moreover, r can be divided into three parts: The vector rk<µ comprising all
received symbols before time instant µ, the symbol rµ, and the vector rk>µ containing all
symbols received after time instant µ. With this, (3.44) becomes

L(d̂µ) = log

∑
{s′,s}
dµ=0

p
(
s′, s, r

)
∑
{s′,s}
dµ=1

p
(
s′, s, r

) = log

∑
{s′,s}
dµ=0

p
(
s′, s, rk<µ, rµ, rk>µ

)
∑
{s′,s}
dµ=1

p
(
s′, s, rk<µ, rµ, rk>µ

) . (3.54)

If LLRs of coded bits bν are to be calculated, dµ has to be replaced in (3.54) by bν .
The probability density functions in the numerator and denominator can be factorized by
the chain rule

p
(
s′, s, rk<µ, rµ, rk>µ

) = p
(
rk>µ

∣∣ s′, s, rk<µ, rµ

)
·p(s, rµ

∣∣ s′, rk<µ

) · p(s′, rk<µ

)
. (3.55)

Since the encoder can be modeled as a Markov process of the first order, the first term in
(3.55) can be rewritten as

βµ(s) := p
(
rk>µ

∣∣ s′, s, rk<µ, rµ

) = p
(
rk>µ

∣∣ s
)

(3.56)

because the history described by s′, rk<µ and rµ is irrelevant once s is known. Illustratively,
βµ(s) represents the probability that the sequence rk>µ will be received if we start at time
instant µ from state s. The second factor in (3.55) can be simplified in the same way. Once
the state s′ at time µ− 1 is known, the sequence rk<µ is obsolete. The probability density
has the form

γµ(s′, s) := p
(
s, rµ | s′

) = p
(
rµ | s′, s

) · Pr{s | s′}. (3.57)

Hence, it comprises the conditional probability density of the matched filter output for a
flat fading channel (cf. (3.39))

p
(
rµ | s′, s

) = 1√
πσ 2

N

· exp

(
−

(
rµ − |hµ|z(s′→s)√Es/Ts

)2

σ 2
N

)
. (3.58)

and the a priori probability Pr{dµ} = Pr{s | s′} of a bit dµ associated with a transition
from s′ to s. According to Section 3.3.4, z(s′→s) = ±1 in (3.58) denotes the code symbol
corresponding to the transition from s′ to s. If a priori knowledge is available in the form
of La(dµ), we obtain

Pr{s | s′} =


(
1+ exp[−La(dµ)]

)−1
for dµ = 0(

1+ exp[La(dµ)]
)−1

for dµ = 1

0 transition does not exist.

(3.59)

Finally, we define the joint probability density

αµ−1(s′) := p(s′, rk<µ). (3.60)
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Inserting (3.56), (3.58), and (3.60) into (3.54) leads to

L
(
d̂µ

) = log

∑
(s′,s)
dµ=0

αµ−1(s′) · γµ(s′, s) · βµ(s)

∑
(s′,s)
dµ=1

αµ−1(s′) · γµ(s′, s) · βµ(s)
. (3.61)

Hence, the terms in the sums of (3.61) can be split into three parts: αµ−1(s′) covers the
past k < µ, γµ(s′, s) represents the presence, and βµ(s) the future k > µ. The probability
densities αµ−1(s′) and βµ(s) can be calculated recursively.

αµ(s) = p
(
s, rk<µ+1

) =∑
s′

p
(
s′, s, rk<µ, rµ

)
=

∑
s′

γµ(s′, s) · αµ−1(s′) (3.62a)

βµ−1(s′) = p
(
rk>µ−1 | s′

) = 1

Pr{s′}
∑

s

p
(
s′, s, rµ, rk>µ

)
=

∑
s

γµ(s′, s) · βµ(s). (3.62b)

From (3.62a), we see that αµ(s) can be calculated by a forward recursion because αµ(s)
at time instant µ depends on the preceding values αµ−1(s′) at time instant µ− 1. Equiva-
lently, βµ−1(s′) is determined by a backward recursion. The calculations are illustrated in
Figure 3.7 showing a trellis segment with forward and backward recursions.

αµ−1(s′)
γµ(s′, s)

βµ(s)

αµ(v) =
αµ−1(u1) · γµ(u1, v)

+αµ−1(u2) · γµ(u2, v)

βµ−1(u) =
βµ(v1) · γµ(u, v1)

+βµ(v2) · γµ(u, v2)

u1

u2

v1

v2

µ− 1 µ

Figure 3.7 Section of trellis diagram for explanation of BCJR algorithm
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Initialization

A recursive calculation always requires an initialization at the beginning of the procedure.
Computing γµ(s′, s) and αµ(s) in the forward recursion is similar to the conventional Viterbi
algorithm except that no paths are discarded. At time instance µ = 0, the trellis starts in
the all-zero state with the initialization

α0(s′) =
{

1 for s′ = 01×(n−k)

0 for s′ �= 01×(n−k).
(3.63)

Since block codes are represented by a terminated trellis, we end again in the all-zero state.
This leads to the initialization

βn(s) =
{

1 for s = 01×(n−k)

0 for s �= 01×(n−k).
(3.64)

Extended Battail Algorithm

The decoding algorithm can be simplified for linear block codes. Using the bits bµ of a
codeword b ∈ � as coefficients for linear combining the rows hµ of the parity check matrix
H always leads to the all-zero vector. Since the trellis representation of linear block codes
is also based on the linear combination of hµ, each codeword corresponds to a certain paths
through the trellis starting and ending in the all-zero state. Resolving (3.10) with respect to
the µth component, we obtain

n∑
ν=1

bν · hν mod 2 = 01×(n−k) ⇒ bµ · hµ =
n∑

ν=1
ν �=µ

bν · hν mod 2. (3.65)

Hence, skipping the µ-th row in H leads to a trellis with two possible final states. For
bµ = 0, the trellis ends in the all-zero state, for bµ = 1 it is the state s = hµ. Figure 3.8
illustrates the modified trellis of the Hamming code when the second row h2 = [1 0 1] of
H is skipped (cf. Figure 3.2).

The extended Battail algorithm exploits this relationship and avoids a backward recur-
sion. The extrinsic information can be calculated by (Offer 1996)

Le

(
d̂µ

) = log αn(0)− log αn(hµ). (3.66)

Therefore, only a forward recursion similar to the Viterbi algorithm has to be performed
for each bit to be estimated.

3.4.5 BCJR Algorithm for Binary Convolutional Codes

This subsection describes a symbol-by-symbol soft-output decoding algorithm for binary
convolutional codes. Since most parts of the algorithm are identical to that in the previous
section, only the differences are mentioned. Contrary to linear block codes, successive
codewords are not independent anymore. Hence, an information sequence d is mapped by
the encoder onto a sequence b = [

b[0]T · · · b[N − 1]T
]T

consisting of codewords b[i] =
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0 3 4 5 6 71

0 0 0

1 0 0

0 0 1

1 0 1

0 1 0

1 1 0

0 1 1

1 1 1

α7(0)

α7(h2)

bµ = 0bµ = 1

Figure 3.8 Modified trellis diagram of (7,4) Hamming code, second column h2 = [1 0 1]
of H skipped

[
b1[i] · · · bn[i]

]T
. Consequently, the decoder processes the whole sequence r = [

r[0]T · · ·
r[N − 1]T

]T
at the matched filter output instead of single codewords r[i].

The main difference concerns the calculation of the incremental metrics in (3.58), that
is, the conditional probability density of the channel. Since each segment of the trellis now
corresponds to an n-bit codeword, the incremental metric becomes

p
(
r[i] | s′, s

) = n∏
µ=1

1√
πσ 2

N

· exp

(
−

(
rµ[i]− |hµ[i]|z(s′→s)

µ

√
Es/Ts

)2

σ 2
N

)
. (3.67)

According to Section 3.3.4, z(s′→s) denotes the codeword corresponding to the state transi-
tion (s′, s). The variables αi−1(s′), γi(s′, s) and βi(s) are calculated in the same way as for
linear block codes.

Initialization

For a terminated trellis, the same initialization as that introduced in the previous section
can be applied. If the trellis is truncated and the last state of the encoder not known to the
receiver, two different initializations of the backward recursion are possible. On the one
hand, we can use the results of the forward recursion resulting in

βN(s) = αN(s). (3.68)

On the other hand, βN(s) can be set to a constant value for all 1 ≤ s ≤ 2Lc−1

βN(s) = 21−Lc . (3.69)
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3.4.6 Implementation in Logarithmic Domain

Regarding the implementation of the BCJR algorithm on a specific hardware, it is beneficial
to perform all calculations in the logarithmic domain. This circumvents problems with the
numerical representation of very large or very small numbers. Moreover, multiplications are
transformed into additions, reducing the computational costs remarkably. Since we generally
assume Gaussian distributed background noise, the natural logarithm is predestinated.

Without loss of generality, we restrict to binary codes so that only two branches leave
each state s′ and arrive at each state s. Looking at the derivations in the previous sections,
we recognize that the arguments of the logarithm are always sums. The following transfor-
mation allows us to simplify the logarithm of sums.

log
(
ex1 + ex2

) = max [x1, x2]+ log
(
1+ e−|x1−x2|) . (3.70)

Obviously, the expression on the left-hand side is mainly transformed into a maximum
search. The correction term log (1+ exp(−|x1 − x2|)) only depends on the absolute differ-
ence between x1 and x2 and can be easily quantized. This enables the use of simple lookup
tables, avoiding the computation of exponential and logarithmic functions. Equation (3.70)
can also be recursively applied to more than two terms, that is, we start with the first two
terms, then apply (3.70) to the intermediate result and the third term, and so on (Robertson
et al. 1995).

Using the notation for convolutional codes, the transformation of the incremental metric
in (3.67) into the logarithmic domain delivers

γ̄i (s′, s) = log
[
γi(s′, s)

]
= C −

n∑
µ=1

(
rµ[i]− |hµ[i]|z(s′→s)

µ

√
Es/Ts

)2

σ 2
N

+ log
(

Pr{s | s′}) (3.71)

where C is independent of particular state transitions and can therefore be neglected. Fur-
thermore, calculating the square in the numerator of (3.71), we recognize that the squared

terms rµ[i]2 and
(|hµ[i]|z(s′→s)

µ

√
Es/Ts

)2
do not differ for different state transitions and

can also be cancelled. Consequently, we obtain

γ̄i (s′, s) =
n∑

µ=1

2 · |hµ[i]| · rµ[i]

√
Es/Ts

σ 2
N

· z(s′→s)
µ + log

(
Pr{s | s′})

=
n∑

µ=1

1

2
· L(rµ[i] | bµ) · z(s′→s)

µ + log
(

Pr{s | s′}). (3.72)

Hence, only a sum of LLRs has to be calculated rather than probability densities. The a
priori probabilities in (3.72) can be substituted by applying (3.34b) and (3.70)

log
(

Pr{s | s′}) = − log
(
1+ e±La(d[i]))

= −max
[
0,±La(d[i])

]+ log
(
1+ e−|La(d[i])|) . (3.73)

In (3.73), the plus sign holds for the transition (s′ → s) corresponding to an information
bit d[i] = 0, and, consequently, the minus sign for d[i] = 1. For the variables ᾱi(s) =
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log[αi(s)] and β̄i−1(s′) = log[βi−1(s′)], we obtain the expressions

ᾱi (s) = log
∑

s′
exp

[
log

(
γi(s′, s) · αi−1(s′)

)]
= max

s′

[
γ̄i (s′, s)+ ᾱi−1(s′)

]+ log
(
1+ e−|�[i]|) (3.74)

and

β̄i−1(s′) = log
∑

s

exp
[

log
(
γi(s′, s) · βi(s)

)]
= max

s

[
γ̄i (s′, s)+ β̄i(s)

]+ log
(
1+ e−|�[i]|) . (3.75)

In (3.74) and (3.75), �[i] denotes the difference between those terms from which the
maximum is taken. Looking at the previous equations and assuming that the correction
term is obtained by a lookup table, it becomes obvious that no exponential or logarithmic
functions have to be calculated. All multiplications are transformed into additions and all
additions into maximizations. Therefore, the computational costs are reduced remarkably
without loss in performance. This version of the BCJR algorithm is often called log-MAP
(Robertson et al. 1997).

An approximation of the BCJR algorithm which reduces the computational complexity
additionally is obtained if the correction terms are neglected. This results in the so-called
Max-Log-MAP algorithm. It can be shown that the hard decisions of its output values equal
those of the Viterbi decoder (Robertson et al. 1995). The whole output can be described by

L(d̂[i]) = max
(s′,s)

d[i]=0

[
ᾱi−1(s′)+ γ̄i (s′, s)+ β̄i(s)

]
− max

(s′,s)
d[i]=1

[
ᾱi−1(s′)+ γ̄i (s′, s)+ β̄i(s)

]
. (3.76)

With regard to the initialization,

α0(s′) =
{

0 for s′ = 01×(n−k)

−∞ for s′ �= 01×(n−k)

(3.77)

and

βN(s) =
{

0 for s = 01×(n−k)

−∞ for s �= 01×(n−k)

(3.78)

holds for a terminated trellis. In case of a truncated trellis, βN(s) ≡ 01×(n−k) can be used.
There also exists an extension of the Viterbi algorithm that delivers soft outputs. The
so-called Soft-Output Viterbi Algorithm is described in Hagenauer and Höher (1989).

3.5 Performance Evaluation of Linear Codes

3.5.1 Distance Properties of Codes

The performance of a code is only asymptotically determined by its minimum Hamming
distance dmin, that is, for high signal-to-noise ratios (SNRs). For low and medium SNRs, the
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whole distance spectrum, that is, all distances that can occur between pairs of codewords,
has to be considered. Determining the distance spectrum of a code may become very
demanding, especially for extremely long codes. A simplification occurs for linear codes
allowing us to restrict to the comparison of each codeword b ∈ � \ {0} with the all-zero
word instead of calculating its Hamming distances to all other words in �. The distance to
the all-zero word is obtained by simply counting the nonzero symbols in b, and, therefore,
determining its Hamming weight wH(b). The whole spectrum of a code can be expressed
by the polynomial

A(D) =
∑
b∈�

DwH(b) =
n∑

d=0

Ad ·Dd = 1+
n∑

d=dmin

Ad ·Dd. (3.79)

The coefficients Ad represent the number of codewords b with weight wH(b) = d. There-
fore, the relation

∑n
d=0 Ad = 2k = |�| holds, that is, the sum of all coefficients Ad equals

the number of codewords. For convolutional codes, Ad describes the number of code
sequences with weight d. The minimum weight and distance spectrum solely depend on
the code and not on the encoder.

If concatenated codes are considered or the bit error rate (BER) has to be determined,
the so-called IOWEF (Benedetto and Montorsi 1996a,b; Benedetto et al. 1996) is important.
It reflects not only the weight d of the coded bits but also the weight w of the corresponding
information bits. Therefore, it describes the input and output relationship of the encoder.
The IOWEF is obtained by simply counting the number of nonzero symbols for each pair
of input and output vectors of the encoder, leading to a two-dimensional polynomial

A(W, D) =
k∑

w=0

n∑
d=0

Aw,d ·WwDd = 1+
k∑

w=1

n∑
d=dmin

Aw,d ·WwDd. (3.80)

In (3.80), Aw,d denotes the number of codewords with weight d and weight w of the asso-
ciated information vector d. Certainly,

∑
w Aw,d = Ad holds. Especially for concatenated

codes, we need conditional IOWEFs that are restricted to only a single input weight w

A(w, D) =
n∑

d=0

Aw,d ·Dd (3.81)

or a single output weight d

A(W, d) =
k∑

w=0

Aw,d ·Ww. (3.82)

Finally, calculating the bit error probability requires the coefficients

Cd = 1

k
· ∂

∂W
A(W, d)

∣∣∣∣
W=1

=
k∑

w=1

w

k
· Aw,d (3.83)

because they represent the average number of nonzero information bits considering all code
sequences with output weight d.
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IOWEF for some Linear Block Codes

As already mentioned, it is a demanding task to determine the IOWEF A(W, D) or even
A(D) for arbitrary codes. Only for distinct or very simple codes, closed form expressions
are known. Here, distance spectra and IOWEF for some linear block codes considered in
this book are illustrated. Starting with the (n, 1, n)-repetition code from page 97, it can
be recalled that it consists only of two codewords, the all-zero word and the all-one word
with weight n. Hence, the distance spectrum has the form A(D) = 1+Dn and the IOWEF
becomes A(W, D) = 1+WDn.

Looking at the (n, n− 1, 2)-single parity check code of Subsection 3.2.2, we know that
only even weights occur. Since

(
n−1
w

)
denotes the number of possibilities to arrange w ones

in the information part of length k = n− 1, we obtain the IOWEF

A(W, D) =
n−1∑
w=0

(
n− 1

w

)
·Ww ·D

⌊
w+1

2

⌋
·2

(3.84)

where �x� denotes the largest integer smaller than x. The distance spectrum becomes

A(D) =
� n−1

2 �∑
d=0

(
n

2d

)
·D2d +

{
0 for n is odd

Dn for n is even.
(3.85)

Next, we look at the Simplex code with n = 2r − 1 and k = r . All its codewords have a
Hamming weight of wH(b) = 2r−1 (except the all-zero word). Hence, the distance spectrum
has the form

A(D) = 1+ (2r − 1) ·D2r−1
(3.86)

and the IOWEF becomes

A(W, D) = 1+
k=r∑
w=1

(
r

w

)
·WwD2r−1

. (3.87)

Since the Hadamard code of Subsection 3.2.4 has been obtained by extending each code-
word of the Simplex code by a preceding zero, their distance spectra and IOWEFs are
identical.

Finally, we consider the Hamming code of order r that is the dual code of the Simplex
code. Distance spectrum of dual codes are related to each other by the MacWilliam’s
identity (Blahut 1983; Friedrichs 1996; Peterson and Weldon 1972)

A⊥(D) = 2−k · (1+D)n · A
(

1−D

1+D

)
(3.88)

where n and k are given by the original (n, k)-code �. In our case, the Simplex code serves
as original code with n = 2r − 1 and k = r . Applying (3.88) to (3.86) yields

A(D) = (1− 2−r ) · (1−D)(1−D2)2r−1−1 + 2−r · (1+D)2r−1 (3.89a)

= n

n+ 1
· (1−D)

(
1−D2) n−1

2 + 1

n+ 1
· (1+D)n (3.89b)

for the Hamming code.
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Figure 3.9 Modified trellis diagram for determining IOWEF of convolutional code from
Figure 3.4a

IOWEF for Convolutional Codes

We now take a look at the IOWEF of convolutional codes. We start the derivation with
the modification of the finite state diagram from Figure 3.4a by cutting the self-loop in the
all-zero state. Defining the all-zero state as the starting and ending points results in the
structure depicted in Figure 3.9. Each branch is labeled with a polynomial denoting the
input weight w and the output weight d of the corresponding state transition. The weight
of a sequence of successive transitions is calculated by multiplying their polynomial terms.
The whole IOWEF is obtained by summing the polynomials of all possible paths starting
and ending in the all-zero state.

First, we consider a continuous data transmission with only a single divergence from
and a single reunion with the all-zero sequence. The above-mentioned procedure can be
mathematically described by a series of the form

A(W, D) =
∞∑
i=0

a\{0} ·�i
\{0} · b\{0}, (3.90)

where the matrix

�\{0} =
 0 W 0

D 0 WD

D 0 WD

 (3.91)

comprises the labels of all possible state transitions excluding the all-zero state. An element
�νµ represents the label of the transition from state ν into state µ where the indices are
the decimal representations of the state vectors s′ and s consisting of binary elements. For
example, the second row describes the branches leaving state s′ = [1 0], that is, �21 = D

belongs to the transition to state s = [0 1] with zero input weight and an output weight of one
and �23 = WD to the transition to state s = [1 1]. Since a self-loop does not exist in state
s′ = [1 0], �22 = 0 holds. According to Figure 3.9, we start from the all-zero state always
with a transition into state s = [1 0] with label WD2. This is ensured by the row vector
a\{0} = [0 WD2 0]. Equivalently, we reach the all-zero state only from state s′ = [0 1] with
label D2 described by vector b\{0} = [D2 0 0]T . For a practical implementation, the series
is truncated after a certain number of transitions.
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Figure 3.10 Coefficients Ad and Cd for different convolutional codes a) g1 = 178 and
g2 = 158, b) g1 = 5618 and g2 = 7538

For concatenated codes, we have to regard a blockwise transmission and especially
multiple divergences from the all-zero sequence. This can be accomplished by extending
the matrix in (3.91). By including all transitions from and into the all-zero state, we obtain

� =


1 0 WD2 0

D2

0 �\{0}
0

 =


1 0 WD2 0
D2 0 W 0
0 D 0 WD

0 D 0 WD

 (3.92)

and the modified vectors a = [1 0 0 0] and b = [1 0 0 0]T .
Figure 3.10 shows the coefficients Ad and Cd for two convolutional codes with con-

straint lengths Lc = 4 and Lc = 9 and a common code rate Rc = 1/2. Obviously, Ad and
Cd increase exponentially with the distance d. The free distance of a code corresponds to
the first nonzero coefficient Ad (excluding the all-zero word) and amounts to df = 6 for the
Lc = 4 code and df = 12 for Lc = 9. Hence, df becomes larger for increasing constraint
length Lc.

3.5.2 Error Rate Performance of Codes

The analytical evaluation of the error rate performance of codes is based on the maxi-
mum likelihood detection already described in Section 3.1. Since a codeword consists of
n symbols, the detection cannot be performed symbolwise but the entire codeword has to
be considered. For convolutional codes, n has to be replaced by the total number nN of
symbols in a sequence. Since we restrict to BPSK, the vectors b and x are linearly related
to each other and can be used equivalently. The derivation will be divided into two parts:
We start with the AWGN channel and succeed with flat fading channels.
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Error Rate Performance for AWGN Channel

Without loss of generality, we assume that we transmit the all-zero word b = 0n×1, that is,
x(0) = [√

Es/Ts · · ·
√

Es/Ts
]T

holds. The matched filter output has the form

r = Re {y} = x(0) + n′ (3.93)

where n′ = Re {n} contains real Gaussian distributed noise samples with zero mean and
the variance σ 2

N ′ = N0/(2Ts). According to Section 3.1, the optimum detector in (3.2)
determines the word x̂ with the largest conditional density pR|x̂(r). The set

M0,i =
{

r | pR|x(i) (r) > pR|x(0) (r)
}
= {

r | rT x(i) > rT x(0)
}

(3.94)

comprises all received vectors r = [r1 · · · rn]T that have a larger conditional probability
with respect to x(i) than to the true x(0). Therefore, these vectors would lead to a wrong
decision. Rewriting the inner product in (3.94) and inserting (3.93) delivers the pairwise
error probability8

Pr{x(0) → x(i)} = Pr{r ∈ M0,i | x(0)}

= Pr

{
n∑

ν=1

rνx
(0)
ν <

n∑
ν=1

rνx
(i)
ν

}

= Pr

{
n∑

ν=1

(x(0)
ν − x(i)

ν )n′ν < −
n∑

ν=1

(x(0)
ν − x(i)

ν )x(0)
ν

}
. (3.95)

Owing to the assumption x(0)
ν ≡ √Es/Ts the differences between x(0)

ν and x(i)
ν take

only the values 0 and 2
√

Es/Ts. Since x(0) and x(i) differ in exactly dH
(
x(0), x(i)

)
positions,

the left-hand side of the inequality in (3.95) describes a zero mean Gaussian distributed
random variable η with variance σ 2

η = 4dH
(
x(0), x(i)

)
σ 2
N ′Es/Ts. The right-hand side has

the constant value −2dH
(
x(0), x(i)

)
Es/Ts. Equivalent to (1.49), we obtain with the pairwise

error probability

Pd = Pr{x(0) → x(i)} = 1

2
· erfc

(√
dH

(
x(0), x(i)

) · Es/N0

)
. (3.96)

for two codewords x(0) and x(i) with Hamming distance dH
(
x(0), x(i)

)
. An average error

probability for x(0) can be obtained by calculating (3.96) for the union over all sets M0,i

for i �= 0. However, it may become very difficult to exactly determine ∪iM0,i . A good
approximation is obtained by the well-known union bound (Bossert 1999; Proakis 2001)

Pe

(
x(0)

) = Pr

r ∈
2k−1⋃
i=1

M0,i

∣∣∣ x(0)

 ≤
2k−1∑
i=1

Pr
{
r ∈ M0,i | x(0)

}

≤ 1

2

2k−1∑
i=1

erfc

(√
dH

(
x(0), x(i)

) Es

N0

)
(3.97)

8We apply the same simplifications as in footnote 6 on page 18.
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Figure 3.11 Bit error probabilities for convolutional code with g1 = 158 and g2 = 178 and
different maximum distances considered (union bound for AWGN)

where the equality holds if and only if all sets M0,i are disjoint. Owing to the linearity of the
considered codes, (3.97) is not only valid for a specific x(0) but also represents the general
probability of a decoding failure. The argument of the complementary error function only
depends on the Hamming distances and the SNR. Therefore, instead of running over all
competing codewords or sequences, we can simply use the distance spectrum defined in
(3.79) to rewrite (3.97)

Pe ≤ 1

2

n∑
d=dmin

Ad · erfc

(√
d

Es

N0

)
=

n∑
d=dmin

Ad · Pd. (3.98)

With regard to bit error probabilities, we have to consider the specific mapping of
information vectors d onto code vectors b or, equivalently, x. This can be accomplished
by replacing the coefficients Ad in (3.98) by Cd defined in (3.83). We obtain

Pb ≤ 1

2

n∑
d=dmin

Cd · erfc

(√
d

Es

N0

)
= 1

2

n∑
d=dmin

Cd · erfc

(√
dRc

Eb

N0

)
. (3.99)

The union bound approximation of the BER for an NSC code with generators g1 = 158

and g2 = 178 is illustrated in Figure 3.11. The results have been obtained from (3.99) by
replacing n as upper limit of the summation by the parameter dmax. For high SNRs, the
asymptotic performance is dominated by the minimum Hamming distance df as can be
seen from dmax = dmin = df. For medium SNRs, higher Hamming distances also have to
be included. However, for small SNRs, the union bound diverges for large dmax as the
comparison with the simulation results show.

Figure 3.12 shows the BERs for convolutional codes with different constraint length Lc.
Obviously, the performance increases with growing memory. However, the decoding costs
also grow exponentially with the constraint length. Hence, a trade-off between performance
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Figure 3.12 Bit error probabilities for convolutional codes of different constraint lengths
(Proakis 2001) (union bound for AWGN, bold dashed line: capacity bound)

and complexity has to be found. Since the additional gains become smaller for growing Lc, it
is questionable whether Shannon’s channel capacity can be reached by simply enlarging the
memory of convolutional codes. With reference to this goal, concatenated codes presented
in Section 3.6 are more promising.

Error Rate Performance for Flat Fading Channels

For flat fading channels, only the pairwise error probability has to be recalculated. Each
symbol xν is weighted with a complex channel coefficient hν of unit average power. Assum-
ing that the coefficients are perfectly known to the receiver, the output of the matched filter
including subsequent weighting with the CSI has the form

rν = h∗ν · yν = |hν |2x(0)
ν + Re

{
h∗νnν

} = |hν |2x(0)
ν + ñν (3.100)

and the probability in (3.95) becomes

Pr{r ∈ M0,i | x(0), h}

= Pr

{
n∑

ν=1

(x(0)
ν − x(i)

ν )ñν < −
n∑

ν=1

(x(0)
ν − x(i)

ν )|hν |2x(0)
ν

}
. (3.101)

Again, the differences between x(0)
ν and x(i)

ν take only the values 0 and 2
√

Es/Ts. The set
L of those indices ν for which x(0)

ν and x(i)
ν differ is now defined. Obviously, L consists

of dH(x(0), x(i)) elements. The right-hand side of the inequality in (3.101) has the constant
value −2Es/Ts

∑
ν∈L
|hν |2. Since the noise is circularly symmetric, the left-hand side is a

zero mean Gaussian distributed random variable η with variance

σ 2
η = 4

Es

Ts
· σ 2

N
2
·
∑
ν∈L

|hν |2 = 2
EsN0

T 2
s
·
∑
ν∈L

|hν |2. (3.102)
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We obtain the pairwise error probability

Pr{x(0) → x(i) | h} = 1

2
· erfc

√∑
ν∈L

|hν |2 · Es/N0

 . (3.103)

Determining its expectation requires averaging over all contributing channel coefficients hν

with ν ∈ L. We distinguish two cases.

Block fading channel
For a block fading channel where all n symbols of a codeword are affected by the same
channel coefficient hν = h, the sum in (3.103) becomes dH

(
x(0), x(i)

) · |h|2. In this case,
we have to average over a single coefficient and can exploit the results of Section 1.3. For
a Rayleigh fading channel with σ 2

H = 1, we obtain

Pd = Pr{x(0) → x(i)} = 1

2

[
1−

√
dH

(
x(0), x(i)

)
Es/N0

1+ dH
(
x(0), x(i)

)
Es/N0

]
. (3.104)

Inserting (3.104) into the right-hand side of (3.98) provides the ergodic error probability
Pe ≤

∑n
d=dmin

Ad · Pd . However, the union bound technique applied on convolutional codes
and block fading channels converges only for extremely high SNRs. Even for SNRs in the
range of 20–30 dB, the results are not meaningful at all.

Perfectly interleaved channel
If the channel is perfectly interleaved, the coefficients hν are statistically independent from
each other and identically distributed. In this case, we use the equivalent expression for the
complementary error function already known from Section 1.3 and (3.103) becomes

Pr{x(0) → x(i) | h} = 1

π
·
∫ π/2

0
exp

[∑
ν∈L
|hν |2 · Es/N0

sin2(θ)

]
dθ. (3.105)

The ergodic error probability has to be calculated by averaging (3.105) with respect to the
set of channel coefficients hν for ν ∈ L. This procedure was already applied for diversity
reception in Section 1.3. Hence, it becomes obvious that coding over time-selective chan-
nels can exploit diversity. The achievable diversity degree depends on the coherence time of
the channel and the data rate. We denote the process comprising dH

(
x(0), x(i)

)
channel coef-

ficients by H. The moment-generating function M|H|2(s) of the squared magnitudes |hν |2,
ν ∈ L, requires a multivariate integration which can be separated into single integrations
for i.i.d. coefficients hν . With

M|H|2(s) =
∫ ∞

0
esξ · p|H|2(ξ) dξ =

[∫ ∞

0
esξ · p|H|2(ξ) dξ

]dH

(
x(0),x(i)

)
(3.106)

and the substitution s = − Es/N0
sin2(θ)

we finally obtain

Pr{x(0) → x(i)} = 1

π
·
∫ π/2

0

[
M|H|2

(
−Es/N0

sin2(θ)

)]dH

(
x(0),x(i)

)
dθ. (3.107)
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Inserting the results already known for Rayleigh fading with σ 2
H = 1 (cf. (1.56)) and Rice

fading with P = 1 (cf. (1.58)) finally leads to the union bound approximations

P Rayleigh
e ≤ 1

π

n∑
d=dmin

Ad ·
∫ π/2

0

(
sin2(θ)

sin2(θ)+ σ 2
HEs/N0

)d

dθ (3.108)

P Rice
e ≤ 1

π

n∑
d=dmin

Ad ·
∫ π/2

0

(
(1+K) sin2(θ)

(1+K) sin2(θ)+ Es/N0

)d

· exp

[
− dKEs/N0

(1+K) sin2(θ)+ Es/N0

]
dθ, (3.109)

respectively. Again, bit error probabilities are obtained by replacing the coefficients Ad in
(3.109) by Cd defined in (3.83).

The corresponding error probability curves are depicted in Figure 3.13a for a Rayleigh
fading channel and convolutional codes of different constraint lengths. Since the free dis-
tance df of a code determines the diversity degree for perfect interleaved fading channels,
the slopes of the curves become steeper with increasing Lc and, thus, growing df. In order
to evaluate the diversity degree of each code, the dashed lines represent the theoretical
steepness for the associated diversity order df. Obviously, the solid lines are parallel to the
dashed lines, indicating the same slope.

In Figure 3.13b, the results for a half-rate code with Lc = 4 and a Rice fading channel
with unit power P are depicted. As expected, the AWGN performance is approached for
increasing Rice factor K . Figure 3.14 demonstrates the tightness of the union bound for
medium and high SNRs. At low SNRs, it diverges and different bounding techniques should
be preferred.
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Figure 3.13 Bit error probabilities for convolutional codes (union bound, bold dashed lines:
capacity bounds) a) Different constraint lengths and Rayleigh fading channel b) g1 = 158

and g2 = 178 and Rice fading channels
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Figure 3.14 Comparison of union bound and simulation for convolutional code with g1 =
158 and g2 = 178 and different channels

3.5.3 Information Processing Characteristic

Applying the union bound to evaluate the error rate performance of codes always assumes
optimal MLD. However, especially for concatenated codes introduced in Section 3.6, opti-
mum decoding is not feasible and nonoptimum techniques like turbo decoding have to be
applied. In order to verify the performance of encoder and (suboptimum) decoder pairs the
mutual information can be used (Hüttinger et al. 2002; ten Brink 2001c).

Simplifying the system given in Figure 3.1 leads directly to the model in Figure 3.15.
For the sake of simplicity, we restrict our analysis to the AWGN channel. Without loss
of generality, we choose a sequence d consisting of Nd information bits. This sequence
is encoded with a code rate Rc = Nd/Nx and BPSK modulated, that is, we transmit a
sequence x of Nx BPSK symbols over the channel. At the receiver, the matched filtered
sequence r is decoded, delivering d̃. For the moment, the interleaver/de-interleaver pair is
neglected. The sequences d, x, r, and d̃ are samples of the corresponding processes D, X ,
R, and D̃.

The optimality of a code and a corresponding encoder–decoder pair can be evaluated
by comparing the mutual information Ī (D; D̃) between the encoder input and the decoder
output with the mutual information Ī (X ;R) between the channel input and matched filter
output. The larger this difference, the larger the suboptimality of the encoder–decoder pair.

FEC
encoder

� ���FEC
decoder

d x

n

r d̃

Figure 3.15 Simplified model of communication system
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From the data-processing theorem (cf. Section 2.1), we already know that signal pro-
cessing cannot increase the capacity and that Ī (D; D̃) ≤ Ī (X ;R) is always true. Since the
mutual information depends on the length of the transmitted sequence, it is preferable to
define the information processing characteristic (IPC) (Hüttinger et al. 2002)

IPC(C) = 1

Nd

· Ī (D; D̃) (3.110)

as an appropriate measure. It describes the average information common to the data D and
its estimate D̃, which is normalized to the length of d. Hence, it can take values between
zero and one. As the noise is white and stationary and since we transmit Nx BPSK symbols,
Ī (X ;R) = Nx · C equals Nx times the channel capacity C and we obtain the relationship

IPC(C) = 1

Nd

· Ī (D; D̃) ≤ 1

Nd

· Ī (X ;R) = Nx

Nd

· C = C

Rc
. (3.111)

Equation (3.111) illustrates that the IPC is upper bounded by the ratio of channel capacity
and code rate. This inequality holds for code rates Rc > C for which an error-free trans-
mission is impossible owing to the channel coding theorem. On the other hand, IPC(C)

cannot exceed 1 because we can transmit at most 1 bit/symbol for BPSK even for code
rates below the capacity (C/Rc > 1). Consequently,

IPC(C) ≤ min[1, C/Rc] (3.112)

holds. A perfect coding scheme with an optimum decoder can achieve at most equality in
(3.112). IPC(C = Rc) = 1 is only obtained for codes that reach Shannon’s channel capacity.
Furthermore, it is shown in (Hüttinger et al. 2002) that a perfect coding scheme does not
benefit from soft-output decoding, that is, Ī (D; D̃) = Ī (D; D̂) with D̂ = sgn(D̃).

For practical codes, Ī (D; D̃) and, thus, IPC(C) are hard to determine owing to the
generally nonlinear behavior of the decoder. An optimum decoding algorithm providing
a posteriori probabilities Pr{x(i) | r} for each possible code sequence x(i) would not lose
any information. Although a direct implementation requires prohibitively high computa-
tional costs, we can determine the corresponding IPC by applying the entropy’s chain rule
(cf. (2.9))

Ī (D;R) = Ī (D1;R)+ Ī (D2;R | D1)

+ · · · + Ī (DNd
;R | D1 · · ·DNd−1). (3.113)

It is shown in Hüttinger et al. (2002) that Ī (Di;R | D1 · · ·Di−1) = Ī (D1;R) holds, leading
to Ī (D;R) = Nd · Ī (D1;R1). Therefore, we obtain the mutual information for optimum
soft-output sequence decoding by applying symbol-by-symbol decoding and restricting the
IPC analysis only on the first information bit d1 of a sequence.

IPC(C) = Ī (D1;R) = Ī (D1; D̃1)

= 1+ 1

2
·
∞∫

−∞

1∑
µ=0

pD̃1|D1=µ(ξ) · log2

pD̃1|D1=µ(ξ)∑1
ν=0 pD̃1|D1=ν(ξ)

dξ (3.114)
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Figure 3.16 IPC charts for different nonsystematic nonrecursive convolutional encoders
with Rc = 1/2 (bold line represents ideal coding scheme) a) optimum sequence soft-output
decoding b) optimum symbol-by-symbol soft-output decoding with BCJR

Hence, we simply have to carry out a simulation with the BCJR algorithm performing
an optimum symbol-by-symbol soft-output decoding, estimating pD̃1|D1=i (ξ ) for i ∈ {0, 1}
by determining the corresponding histograms for the first bit d1 at the decoder output
and inserting the obtained parameters into (3.114). As the decoder knows the initial state
of the trellis, it can estimate the first bit much more reliably than all other bits di>1.
Therefore, sequencewise soft-output decoding will result in a higher IPC than symbol-by-
symbol decoding.

The results obtained for nonsystematic nonrecursive convolutional codes are shown in
Figure 3.16a. The curve for the ideal coding scheme is obtained from equality in (3.112)
showing that the IPC depends linearly on C until C reaches Rc. For C < Rc, soft-output
sequence decoding of convolutional codes nearly achieves the performance of an ideal
coding scheme (bold line). Although an error-free transmission is impossible in this region,
the observed behavior is of special interest in the context of concatenated codes because the
constituent codes with code rates Rc,i > C are operating above capacity. Only the overall
rate of the concatenated code is below the channel capacity. In the region 0.4Rc ≤ C ≤
0.7Rc, a small gap to the ideal coding scheme occurs while for C ≥ 0.7Rc, the optimum
performance is reached again.

For symbol-by-symbol soft-output decoding, we have to assume perfect interleaving
before encoding and after decoding that destroys the memory in the end-to-end system (see
gray colored interleavers in Figure 3.15). Since the D̃i are now mutually independent, the
entropy’s chain rule in (3.113) becomes

Nd∑
i=1

Ī (Di; D̃i ) = Nd · Ī (D; D̃) ≤ Ī (D; D̃) (3.115)

where the inequality holds because memory increases the capacity. Consequently, the IPC
for symbol-by-symbol decoding is obtained by extending (3.114) to all information bits di ,
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Figure 3.17 IPC charts for different systematic recursive convolutional encoders with Rc =
1/2 (bold line represents ideal coding scheme) a) optimum symbol-by-symbol soft-output
decoding with BCJR b) symbol-by-symbol soft-output decoding with Max-Log-MAP

1 ≤ i ≤ Nd resulting in

Ī (D; D̃) = 1+ 1

2
·
∞∫

−∞

1∑
µ=0

pD̃|D=µ(ξ) · log2
pD|D=µ(ξ)∑1
ν=0 pD|D=ν(ξ)

dξ. (3.116)

The results are shown in Figure 3.16b. A comparison with Figure 3.16a illuminates the high
loss due to symbol-by-symbol decoding. The performance of the optimum coding scheme
is not reached over a large range of capacities C < 0.7. If the capacity C is smaller than the
code rate Rc, the performance becomes even worse than in the uncoded case. Furthermore,
we can observe a point of intersection for codes with different constraint lengths roughly at
0.55 C. Hence, weaker codes perform better for low C. Only for larger capacities, strong
codes can benefit from their better error-correcting capabilities.

Figure 3.17a illustrates the results for recursive systematic encoding and symbol-by-
symbol MAP decoding. Since no soft-output sequence decoding is carried out, a high
degradation compared to the optimum coding scheme can be observed. However, we per-
form always better than for an uncoded transmission. This is a major difference compared
to nonsystematic nonrecursive encoding. It has to be mentioned that the curves for all RSC
codes intersect exactly at C = Rc = 0.5. A reason for this behavior has not yet been found.

Finally, suboptimum symbol-by-symbol Max-Log-MAP decoding loses a little com-
pared to the optimum BCJR algorithm, mainly at low capacities as depicted in Figure 3.17b.
In this area, the performance is slightly worse than in uncoded case.

In summary, we can state that memory increases the performance of convolutional codes
in the high SNR regime because the free distance dominates the error probability. On the
contrary, for low SNR and, hence, small channel capacity C, the results of this subsection
show that low-memory (weak) codes are superior. This behavior will be of importance in
the next section because the constituent codes of a concatenated scheme often operate in
the area C < Rc.
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3.6 Concatenated Codes

3.6.1 Introduction

Reviewing the results of the previous section, especially Figures 3.12 and 3.13a, it seems
to be questionable if Shannon’s channel capacity can be reached by simply increasing the
constraint length of convolutional codes. Moreover, the computational decoding complexity
increases exponentially with the encoder’s memory, leading quickly to impractical com-
putational costs. Also, the linear block codes described so far are not suited to reach the
ultimate limit. Exceptions are the low-density parity check (LDPC) codes (Gallager 1963)
that perform close to the capacity limit; these are introduced in Section 3.7.

A different approach for reaching the channel capacity was found by Forney (1966). He
concatenated several simple codes with the aim to increase the overall performance while
maintaining moderate decoding costs. In 1993, concatenated codes gained great attention
with the presentation of the so-called turbo codes (Berrou et al. 1993). These originally half-
rate codes represent a parallel concatenation of two convolutional codes that are decoded
iteratively and approach Shannon’s capacity up to a small gap of 0.5 dB. At that time, this
was a phenomenal performance that pushed worldwide research activities in the area of
concatenated codes.

Meanwhile, a lot of research has been done in this field (Benedetto et al. 1998; Benedetto
and Montorsi 1996a,b; Hagenauer 1996b; Kühn 1998a,b; Robertson et al. 1997; ten Brink
2001b,c) and the basic understanding becomes better. Woven codes (Freudenberger et al.
2001; Jordan et al. 2004; Lucas et al. 1998) have also shown exceptional performance. More
generally, the concatenation with the corresponding decoding principle is not restricted to
FEC codes but can be applied to a variety of concatenated systems like modulation and
coding (Höher and Lodge 1999), coding and equalization (Bauch and Franz 1998; Hanzo et
al. 2002a), or coding and multiuser (multilayer) detection (Hochwald and ten Brink 2003;
Kühn 2003; Sezgin et al. 2003a).

Principally, we distinguish between parallel and serial code concatenations. A serial
concatenation of N codes with rates Rc,i = ki/ni is depicted in Figure 3.18. Each encoder
processes the entire data stream of the preceding encoder where successive encoders Ci and
Ci+1 are separated by an individual interleaver �i . As we will see in the next subsection,
the interleaver plays a crucial role in concatenating codes. The entire code rate is simply
the product of the rates of all contributing codes

Rc =
N∏

i=1

Rc,i . (3.117)

The corresponding decoders are arranged in reverse order and linked by de-interleavers.
However, as will be shown later, the signal flow is not one directional but decoders may
also feed information back to the preceding instances.

encoder 1 encoder Nencoder 2�1 �N−1

Figure 3.18 Serial code concatenation
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Figure 3.19 Parallel code concatenation

On the contrary, each encoder processes the same information bits in the case of a
parallel concatenation (Figure 3.19). However, the orders of the encoder’s input bits are
different owing to the interleaving. This results in substreams at the encoder outputs that
are not only permuted but also nearly independent. They are finally multiplexed, resulting
in a total code rate of

Rc = k

n1 + · · · + nN

= 1
1

Rc,1
+ · · · + 1

Rc,N

. (3.118)

With reference to the decoding process, is referred at the moment in the following sections.
For the sake of simplicity, the reference to the two concatenated codes is restricted

to the following part. Therefore, only one interleaver is employed and its index can be
omitted. In the case of a serial concatenation, encoder one is denoted as the outer encoder,
and, consequently, encoder two as the inner encoder.

Since concatenated codes comprise several components, a number of parameters have
to be optimized. Questions such as the distribution of the code rates among the encoders or
the order of strong and weak codes for a serial concatenation have to be answered. Besides
the constituent codes, the interleaver represents a key component. Investigations in the past
years have shown that random or pseudorandom interleaving is superior to simple block
interleaving in many cases (Barbulescu and Pietrobon 1995; Hübner et al. 2003, 2004;
Jordan et al. 2001).

In order to analyze the BER performance of concatenated codes analytically, we can
apply the union bound given in (3.99)

Pb ≤ 1

2
·

n∑
d=dmin

Cd · erfc

(√
dRc

Eb

N0

)
.

Determining the coefficients Cd requires knowledge of the IOWEF (3.80)

A(W, D) =
k∑

w=0

n∑
d=0

Aw,d ·WwDd
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Figure 3.20 Illustration of uniform interleaver of length Lπ = 4 and an input sequence
with weight w = 2

of the whole concatenated code. An exact calculation of the IOWEF is a demanding task
or even impossible because the number of states of the underlying supertrellis becomes
extremely high and because concatenated codes are time variant owing to the inherent inter-
leaving. A simplified analysis was derived in Benedetto and Montorsi (1996a,b), Benedetto
et al. (1998) on the basis of the concept of a uniform interleaver.

The uniform interleaver is a theoretical device that covers all possible permutations of
a sequence with a certain length Lπ . All permutations are equally likely so that they are

weighted with
(
Lπ

w

)−1
where w denotes the weight of the permuted sequence. Therefore, the

uniform interleaver represents an average interleaver and, consequently, an average IOWEF
of the concatenated code will be obtained. As a consequence, the IOWEF does not solely
consist of integer numbers but can also contain real numbers. Figure 3.20 illustrates an
example of a uniform interleaver of length Lπ = 4 for a sequence with weight w = 2.

The next two sections analyze the error rate performance of concatenated codes using
the IOWEF and the union bound technique. In the previous sections, we saw that the union
bound diverges at low SNRs, that is, exactly in that region where concatenated codes are
intended to operate. Hence, it seems to be questionable whether the results obtained with
the union bound technique are meaningful. Furthermore, the application of the union bound
presupposes an optimal MLD of the concatenated code. As we will see in Section 3.6.4,
this solution is generally not feasible and suboptimum iterative approaches are applied.

However, comparisons between analytical and simulation results have shown a good
consistency for not too low SNRs, that is, code rates above the cutoff rate of the channel
(Benedetto et al. 1998). Therefore, at least the asymptotic behavior can be predicted with
the union bound. Approaching the channel capacity at very low SNRs, so-called EXtrin-
sic Information Transfer (EXIT) charts presented in Section 3.6.5 allow more accurate
predictions taking into account the iterative decoding approach.

3.6.2 Performance Analysis for Serial Concatenation
As mentioned above, the focus is only on the concatenation of two constituent codes
depicted in Figure 3.21. The introduction of the uniform interleaver decouples both com-
ponent codes so that all possible sequences with a certain weight l at the output of the outer
encoder are mapped onto all possible input sequences with weight l of the inner encoder.
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encoder 1 encoder 2�
d b1 b2

Figure 3.21 Serial concatenation of two codes

Therefore, the IOWEF of the entire code is obtained by multiplying the conditioned IOWEFs
of the constituent codes according to Benedetto et al. (1998)

Aser(W, D) =
∑

l

A1(W, l) · A2(l, D)(
Lπ

l

) =
∑
w

∑
d

Aser
w,d ·WwDd. (3.119)

From (3.119), we see that the output weight of the outer encoder equals the input weight
of the inner encoder. Averaging over all possible permutations requires the division by(
Lπ

l

)
, that is, the number of possibilities to arrange l ones in a block of length Lπ . The

coefficients Cd are obtained by

Cd =
∑
w

w

Lπ · Rc,1
· Aser

w,d . (3.120)

In relation to the concatenation of block codes, we have to consider the particularity
that the interleaver length Lπ may cover several codewords of the inner and outer codes.
Hence, the IOWEFs inserted in (3.119) have to be extended to describe a set of statistically
independent (parallel) codewords. Assuming that Lπ is m1 times as large as the codeword
length n1 of the outer code, the resulting IOWEF is simply the m1th power of A1(W, D)

A
m1
1 (W, D) = [A1(W, D)]m1 . (3.121)

If the interleaver additionally comprises m2 information words of the inner encoder C2, the
overall IOWEF becomes

Aser(W, D) =
∑

l

A
m1
1 (W, l) · Am2

2 (l, D)(
Lπ

l

) =
∑
w

∑
d

Aser
w,d ·WwDd. (3.122)

For convolutional codes, this case is generally irrelevant because the sequence length
matches the interleaver size.

Code Design

Without further derivations, some guidelines are now presented, relating to the design of a
serial code concatenation on the basis of results obtained from (3.119) and the union bound
in (1.45). Detailed derivations can be found in Benedetto et al. (1998, 1996), Kammeyer
and Kühn (2001).

1. The inner code should always be a recursive convolutional code. Only in this case a
gain is obtained by increasing the interleaver size especially at low SNRs.

2. The effective distance deff of the inner code should be as large as possible. It is defined
as the minimum Hamming weight among all codewords whose input weight amounts
to wH(d) = 2. This constraint can be fulfilled by choosing a recursive convolutional
code whose feedback polynomial is prime.
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3. Another criterion that partly contradicts the last one states that sequences with an
input weight 3 of the inner encoder have a large influence on the error rate perfor-
mance. Hence, for an odd minimum Hamming distance of the outer code, a feedback
polynomial of the inner code containing the factor 1+D is often advantageous.

4. The free distance of the outer code should be as large as possible because it represents
the input weight of the inner encoder. This ensures a large interleaving gain.

5. The number of sequences with wH(b1) = df and their input weights should be mini-
mized for the outer code. This generally leads to the choice of nonrecursive convo-
lutional codes as outer codes.

All these guidelines are valid for code rates below the cutoff rate (Benedetto et al.
1998). For codes working above the cutoff rate, that is, at extremely low SNRs, different
guidelines may be valid. These are discussed in Section 3.6.5.

Example: Serial Concatenation of Convolutional Codes

An example for the performance of two serially concatenated convolutional codes is now
illustrated. As constituent codes, half-rate codes with constraint length Lc = 4 have been
chosen. They are punctured appropriately in order to obtain an overall code rate of Rc =
1/2. Figure 3.22a shows the structure of the nonrecursive nonsystematic encoder with the
generator polynomials g1(D) = 1+D +D3 and g2(D) = 1+D +D2 +D3. It is used
as the outer encoder. Figure 3.22b depicts one of the two possible recursive systematic
encoders with g2(D) = (1+D +D2 +D3)/(1+D +D3). Alternatively, the encoder with
g2(D) = (1+D +D3)/(1+D +D2 +D3) (not depicted) is used as the inner encoder.
Moreover, random interleavers of different lengths are employed.

The concatenation is compared to a conventional half-rate NSC code with constraint
length Lc = 9. This specific choice allows for similar decoding complexities. As a measure
of the decoding complexity, the number of states in the trellis is used. In Subsection 3.6.4, it
will be explained that decoding is performed iteratively. Assuming that the Max-Log-MAP
algorithm requires twice as many operations as the Viterbi algorithm owing to the forward
and backward processing of the trellis, and taking into account that two constituent codes
have to be decoded, we can carry out 8 decoding iterations for a trellis with 8 states (Lc = 4)
to have the same complexity as for a single Lc = 9 code (256 states/(2 · 2 · 8 states) = 8
iterations). The code parameters of the considered serial concatenations are summarized in
Table 3.1 where R′c denotes the code rate after puncturing.

D DD D D D

a) b)

Figure 3.22 a) NSC encoder with g1(D) = 1+D +D3, g2(D) = 1+D +D2 +D3

b) RSC encoder with g2(D) = (1+D +D2 +D3)/(1+D +D3)
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Table 3.1 Parameters of serial code concatenations

name outer NSC code C1 inner RSC code C2 puncturing

Lc = 4, R′c = 2/3 Lc = 4, R′c = 3/4
SC1 g1(D) = 1+D +D2 +D3 g1(D) = 1 P1 =

[
1 0
1 1

]
g2(D) = 1+D +D3 g2(D) = 1+D+D3

1+D+D2+D3 P2 =
[

1 1 0
1 0 1

]
Lc = 4, R′c = 2/3 Lc = 4, R′c = 3/4

SC2 g1(D) = 1+D +D2 +D3 g1(D) = 1 P1 =
[

1 0
1 1

]
g2(D) = 1+D +D3 g2(D) = 1+D+D2+D3

1+D+D3 P2 =
[

1 1 0
1 0 1

]
Lc = 4, R′c = 3/4 Lc = 4, R′c = 2/3

SC3 g1(D) = 1+D +D2 +D3 g1(D) = 1 P1 =
[

1 1 0
1 0 1

]
g2(D) = 1+D +D3 g2(D) = 1+D+D3

1+D+D2+D3 P2 =
[

1 0
1 1

]
NSC Lc = 9, Rc = 1/2, g1 = 5618, g2 = 7538
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Figure 3.23 Coefficients Cd for NSC code (g1 = 5618, g2 = 7538) and serial concatenation
SC1 for different interleaver sizes

Figure 3.23 illustrates the coefficients Cd obtained from (3.120). The outer NSC code
was punctured to Rc,1 = 2/3 and the inner code to Rc,2 = 3/4. Obviously, the concatenated
codes have a much smaller minimum Hamming distance than the Lc = 9 code. As a result
of the puncturing, the free distances of the constituent codes have been largely reduced,
resulting in an overall minimum Hamming distance of only four.9 On the contrary, the
NSC code with Lc = 9 has a free distance of df = 12 and, therefore, a better asymptotic
performance. However, with increased interleaver size, the average number of sequences
with a low Hamming weight becomes very small, that is, only few interleavers will cause

9Be aware that this is only an average minimum distance due to the uniform interleaving. A lot of permutations
exist that lead to larger minimum distances. This is expressed by coefficients Cd being much smaller than one.
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Figure 3.24 Error rate performance of NSC code and serial concatenations SC1 and SC2
for different interleaver lengths

sequences with low weight. Hence, it should be possible to find at least one interleaver
with high minimum distance.

Moreover, at low SNRs, the coefficients Cd have even more impact on the error rate
performance than the distance d itself. This is confirmed in Figure 3.24 showing the bit error
probabilities of the considered codes. Increasing the interleaver size results in a remarkable
gain even at low SNRs. However, the minimum distance is not increased by larger inter-
leavers, only the average number of sequences with small Hamming weight is lowered.
Asymptotically, the convolutional code with Lc = 9 outperforms the serial concatenation
owing to its larger free distance. A quantitative comparison for very low SNRs is not
possible because of the inaccuracy of the union bound in this area.

Additionally, we see that the code SC1 whose feedback polynomial contains the term
1+D performs slightly better at medium and high SNRs than the code SC2 with a prime
feedback polynomial. This was already stated in requirement 3 of the code design.

Finally, Figure 3.25 demonstrates the effect when the code rates of inner and outer
codes are exchanged. This is accomplished by simply switching the puncturing pattern
between both codes. It has to be mentioned that the exchange of code rates also affects the
interleaver size because the overall codeword length was assumed to be constant. It can be
seen that the puncturing scheme for SC1 (outer rate Rc,1 = 2/3 and inner rate Rc,2 = 3/4)
shows a better performance at low and medium SNRs. Hence, the union bound tells us that
it is better to have a strong outer code with a high minimum distance than a strong inner
code. Please note that MLD is assumed.

3.6.3 Performance Analysis for Parallel Concatenation

The parallel code concatenation set in motion the development of general code concatena-
tion very much. The most famous representations are the turbo codes presented for the first
time in 1993 by Berrou and Glavieux (1993), Berrou et al. (1993). They approached Shan-
non’s capacity within 0.5 dB for a half-rate code, initiating a worldwide boom. Besides the
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Figure 3.25 Error rate performance of NSC code and serial concatenations SC1 and SC3
for different interleaver lengths
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Figure 3.26 Parallel concatenation of two codes for systematic encoding

choice of important encoder ingredients such as the RSC codes and the specific interleaver
structure, the iterative decoding strategy is responsible for the big success of turbo codes.
Meanwhile, a lot of research in the area of concatenated codes has been done in the last
decade and the gap for Shannon’s channel capacity was closed up to 0.1 dB (ten Brink
2000b) and even below.

The focus in the following part is on the description of turbo codes, that is, the con-
catenation of systematic constituent encoders.10 The corresponding structure for a parallel
concatenation of two codes is shown in Figure 3.26. Since each information bit should be
transmitted at most once, d can be directly fed to the puncturing device. Hence each encoder
only generates additional parity bits b1 and b2. In order to adjust the entire code rate, appro-
priate puncturing of d, b1, and b2 may be performed. Finally, the resulting sequences are
multiplexed to a vector b.

In contrast to the serial concatenation, all parallelly arranged encoders obtain the same
information bits but in different orders. Hence, the weight of their input sequences is always

10Generally, the parallel concatenation of nonsystematic encoders is also possible (Costello et al. 2000).
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the same. Moreover, the encoder outputs contain only parity bits. Their weights are denoted
by p and the conditional IOWEF is obtained by

A(w, P ) =
∑
p

Aw,p · P p, (3.123)

where Aw,p denotes the number of sequences with an input weight w and a parity weight
p. The entire Hamming weight of a sequence amounts to d = w + p. Using the uniform
interleaver, the conditional IOWEF of the parallel concatenation becomes (Benedetto and
Montorsi 1996a; Kühn 1999)

Apar(w, P ) = A1(w, P ) · A2(w, P )(
Lπ

w

) =
∑
p

Apar
w,p · P p. (3.124)

By multiplying the conditional IOWEFs A1(w, P ) and A2(w, P ), we ensure that all output
sequences with the same input weight w are combined. Uniform interleaving is now only
applied to the information bits, leading to the normalization with

(
Lπ

w

)
resulting in

Cd =
∑

w+p=d

w

Lπ

· Apar
w,p, (3.125)

where the sum runs over all pairs (w, p) whose sum equals the entire Hamming weight
d = w + p. Note that information as well as parity bits may be punctured; this has to be
considered in (3.125).

Code Design

As in the case of the serial concatenation, some guidelines exist for the code construction.
Since the target of concatenating codes was the construction of powerful codes on the
basis of simple constituent encoders, convolutional codes with small constraint lengths are
mainly employed. Although codes with large memory may also show a good performance
(Costello et al. 2000), they contradict the requirement of a feasible decoding effort. It can
be shown that the bit error rate behaves asymptotically like

Pb ∼ L1−wmin
π =⇒ Pb ∼ L−1

π for wmin = 2 (3.126)

where wmin represents the minimum input weight of an encoder to obtain an output sequence
with finite weight. Obviously, wmin = 2 holds for RSC codes (cf. page 101) so that the error
rate decreases when the interleaver is enlarged. This is not true for nonrecursive codes with
wmin = 1. Hence, RSC codes are used as constituent codes in a parallel concatenation.
Moreover, codes with rate 1/n are preferred because higher rates can be easily achieved
by appropriate puncturing.

Finally, the effective distance deff (see page 138) has to be maximized rather than
the free distance df. From this it can be shown that the feedback polynomial should be
prime.

Besides the constituent codes, the interleaver also has a deep impact on the performance.
First of all, it has to avoid the simultaneous generation of two code sequences with low
weight. In that case, the minimum Hamming distance of the entire code would be small.
Hence, if the first encoder outputs a low-weight sequence, the information bits should be
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Table 3.2 Parameters of parallel code concatenations

name constituent code puncturing

PC1 Lc = 4, R′c = 2/3, g1(D) = 1, g2(D) = 1+D+D2+D3

1+D+D3
P =

[
1 0
1 1
0 1

]
PC2 Lc = 4, R′c = 2/3, g1(D) = 1, g2(D) = 1+D+D3

1+D+D2+D3
P =

[
1 0
1 1
0 1

]
PC3 Lc = 4, R′c = 2/3, g1(D) = 1, g2(D) = 1+D+D2+D3

1+D+D3
P =

[
1 1
1 0
0 1

]
NSC Lc = 9, Rc = 1/2, g1 = 5618, g2 = 7538

permuted in such a way that the output of the second encoder has a large weight. Therefore,
the interleaver directly influences the distance spectrum of the concatenated code.11

Example: Turbo Codes

The performance of the parallel code concatenation for the example of a turbo code is now
illustrated. As constituent codes, the same convolutional codes as in Subsection 3.6.2 have
been chosen. They are both punctured to the rate Rc,1 = Rc,2 = 2/3, yielding an entire code
rate of Rc = 1/2.12 The turbo codes are compared to a conventional half-rate NSC code
with constraint length Lc = 9 because of a similar decoding complexity. All configurations
are listed in Table 3.2.

Figure 3.27 illustrates the coefficients Cd . As in the case of the serial concatenation,
the coefficients become smaller with increasing interleaver size. Hence, sequences with low
weight occur less frequently and the performance at low SNRs is expected to be better for
turbo codes. The minimum distance of the turbo code amounts to 10, while that of the
convolutional code is 12 so that the Lc = 9 convolutional code will outperform the turbo
code asymptotically.

On the basis of the coefficients shown in Figure 3.27, Figure 3.28 depicts the bit error
rate performance of the turbo code. As expected, the performance enhances for larger inter-
leavers. The NSC code is outperformed over the whole range of depicted SNRs. The slope
of its BER curve becomes higher for large SNRs, leading to a better asymptotic performance
outside the scope of Figure 3.27. Furthermore, we observe a slight difference between the
codes PC1 and PC2. PC1 outperforms PC2 owing to its prime feedback polynomial.13 This
verifies the influence of requirement 2 of the code design.

Figure 3.29 compares different puncturing schemes for the turbo code. Obviously, PC3
puncturing of only the parity bits leads to a worse performance. The scheme PC1 also
punctures some systematic information bits and, thus, keeps more of the redundancy of the

11This cannot be observed for the uniform interleaver that comprises all possible permutations.
12Both the component codes have the same code rate of 2/3 only if the information bits are assigned to both

encoder outputs although they are transmitted only once. If they are assigned to only one constituent code, this
code has the rate 2/3, while the remaining code transmits only 1 parity bit per two information bits (Rc,2 = 2).

13The feedback polynomial of PC2 can be factorized to 1+D +D2 +D3 = (1+D)(1+D2).

www.4electron.com



FORWARD ERROR CORRECTION CODING 145

0 10 20 30 40
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

10
15

d →

C
d
→

NSC
Lπ = 60
Lπ = 600
Lπ = 6000

Figure 3.27 Coefficients Cd for NSC code and turbo code PC1 for different interleaver
lengths
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Figure 3.28 Error rate performance of NSC code and of half-rate turbo codes PC1 and
PC2

code. Although the minimum Hamming distance is 10 for both schemes, the coefficients
Cd are much smaller for PC1 so that it has fewer sequences with low weight, leading to a
better overall performance.

Comparison of Serial and Parallel Concatenations

Figure 3.30 illustrates the comparison of serial and parallel code concatenations for the
examples discussed in the previous subsections. All codes have the overall rate Rc = 1/2
and the interleaver lengths were chosen such that the codeword lengths are identical for
serial and parallel concatenations. It can be clearly seen that the parallel concatenation
shows the best performance for all codeword lengths. For large interleavers, the difference
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Figure 3.29 Error rate performance of NSC code and half-rate turbo codes PC1 and PC3
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Figure 3.30 Comparison of best serial concatenation (SC1) and best parallel concatenation
(PC1) for half-rate codes and different codeword lengths

seems to become smaller at low SNRs. Asymptotically, the parallel concatenation shows a
lower asymptotical error rate owing to its larger minimum Hamming distance.

3.6.4 Turbo Decoding of Concatenated Codes
As already mentioned, the specific decoding of concatenated codes plays a major role in their
success. Since the optimal MLD of the entire code is infeasible, an approach to this solution
iteratively by decoding all contributing codes separately is necessary. The key idea behind
this approach is that the interleaver decouples the concatenated codes so that the extrinsic
information obtained by the two decoders can be assumed to be mutually independent.
Hence, exchanging extrinsic information between the involved decoders may improve the
overall performance, leading, hopefully, to a near maximum likelihood estimate.
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Figure 3.31 Iterative decoding for a serial concatenation of two codes

Iterative Decoding for Serial Concatenations

The serial concatenation according to Figure 3.18 is now described here. The corresponding
decoder structure employs soft-in soft-out symbol-by-symbol decoders such as the BCJR
algorithm for each constituent code and is depicted in Figure 3.31. The first iteration of the
process starts with the inner decoder 2 delivering the LLR L

(1)
2 (b̂1) whose de-interleaved

version represents the input L
(1)
a,1(b̂1) of the outer decoder 1. This decoder now provides

estimates L
(1)
1 (d̂) of the information bits as well as LLRs of the coded bits

L
(1)
1 (b̂1) = L

(1)
a,1(b1)+ L

(1)
e,1(b̂1). (3.127)

From (3.127), we see that the LLRs consist of the input signal itself and the extrinsic
part L

(1)
e,1(b̂1), which is extracted by subtracting L

(1)
a,1(b̂1) from L

(1)
1 (b̂1). The interleaved

extrinsic LLRs are fed back as a priori information L
(2)
a,2(b̂1) to decoder 2 for the second

iteration.14

Now the second iteration starts with an improved decoder 2 that can also exploit the a
priori information L

(2)
a,2(b̂1) according to (3.59) and (3.73). As shown in (3.47) for systematic

encoding, its output generally consists of three parts

L
(ν)
2 (b̂1) = Lch · rs + L

(ν)
a,2(b1)+ L

(ν)
e,2(b̂1) (3.128)

where rs only contains the received systematic symbols. Since L
(ν)
a,2(b1) was generated by

L
(ν−1)
e,1 (b̂1) of decoder 1, it must not be delivered back to the outer decoder but has to be

subtracted prior to the de-interleaving, resulting in

L
(ν)
a,1(b1) = L

(ν)
2 (b̂1)− L

(ν)
a,2(b1). (3.129)

Repeating the described procedure multiple times results in an iterative decoding scheme
from which the name turbo codes can be explained because it resembles the principle of a
turbo engine.

Some simulation results for the same constituent codes listed in Table 3.1 and a simple
AWGN channel are now presented. Unless otherwise stated, decoding with the Max-Log-
MAP algorithm is performed. First, Figure 3.32 shows the BERs for different decoding
iterations and an interleaver size of Lπ = 80 bits. Obviously, the error rate decreases con-
tinuously with each additional iteration. However, the incremental gain becomes smaller
and smaller because the correlation among the extrinsic LLRs gets larger with each iter-
ation step. These correlations can be reduced by increasing the length of the interleaver.
For Eb/N0 > 4 dB, the union bound is very tight and can be approached by the iterative
decoding scheme.

14Remember that the coded bits of the outer code are the information bits of the inner code in a serial
concatenation.
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Figure 3.32 Illustration of performance improvements by iterative decoding of serial con-
catenation SC3 and a random interleaver of length Lπ = 80
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Figure 3.33 Comparison of different interleaver lengths for serial concatenation SC3

Figure 3.33 illustrates the influence of the interleaver size Lπ . As can be seen, the gains
by additional decoding iterations become larger with increasing Lπ because the above-
mentioned correlations are reduced. For Lπ = 8000, a BER of 10−5 is obtained at an SNR
of 2 dB. Decreasing the interleaver length to Lπ = 800 roughly requires Eb/N0 = 3 dB for
achieving the same performance. For Lπ = 80, the error rate is reached for Eb/N0 = 5 dB.

Figure 3.34 compares different puncturing schemes to achieve a total code rate of 1/2.
Contrary to Figure 3.25, keeping the inner code stronger with a rate 2/3 and puncturing the
outer code to a rate 3/4 (scheme SC3) leads to better results than with scheme SC1. Finally,
Figure 3.35 shows the comparison of Log-MAP and Max-Log-MAP decoding algorithms.
It can be seen that the difference in the first iteration is negligible, while it becomes larger
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Figure 3.34 Comparison of puncturing schemes SC1 and SC3 for different interleaver
lengths
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Figure 3.35 Comparison of Max-Log-MAP and Log-MAP for serial concatenation SC3
with Lπ = 8000

and larger in subsequent iterations. In the sixth iteration, the loss due to the Max-Log-MAP
algorithm is 0.5 dB.

Iterative Decoding for Parallel Concatenations

With reference to the parallel concatenation, both constituent encoders process the same
information bits but in different orders. Consequently, the corresponding decoders estimate
the same bits. However, their estimation is based on different parity bits that are decoupled
because of the interleaver. As in the case of the serial concatenation, the extrinsic informa-
tion at the decoder output is extracted and exchanged between the decoders. Figure 3.36
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Figure 3.36 Iterative decoding for a parallel concatenation of two codes

shows the decoder structure. First, the received symbols are distributed to the corresponding
decoders (MUX) and dummy bits are inserted at the positions of the punctured bits (P−1).
The iterative process then starts with decoder 1 providing LLRs of the information bits

L
(1)
1 (d̂) = L(r1 | d)+ L

(1)
e,1(d̂).

The systematic part as well as the extrinsic information are fed to decoder 2, which
additionally receives LLRs L(r2 | d) of the parity bits generated by encoder 2.15 Its extrinsic
information is extracted, de-interleaved, and fed back as a priori knowledge L

(2)
a,1(d̂) =

L
(1)
e,2(d̂) to decoder 1. Now, the second iteration starts with an improved decoder output

L
(2)
1 (d̂) = L(r1 | d)+ L

(2)
a,1(d)+ L

(2)
e,1(d̂). (3.130)

exploiting the a priori information. As in the case of a serial concatenation, the extrinsic
information is extracted in each iteration and supplied as a priori knowledge to the opposite
decoder. The a priori LLR La,1(d̂) stems from decoder 2 and has to be eliminated before
passing the signal again to decoder 2. Performing these steps several times leads to the
well-known turbo decoding.

Some simulation results for different turbo coding schemes listed in Table 3.2 are
now discussed. The interleaver is chosen randomly, following the concept of uniform
interleaving. Unless otherwise mentioned, decoding is performed with the Max-Log-MAP
algorithm.

Figure 3.37 shows the BERs for a turbo code with Lπ = 60. Puncturing is performed
in such a way that the parity bits of both encoders are transmitted alternately, that is, the
information bits are always transmitted. Obviously, the gains after the third iteration become
very small for this little interleaver. The union bound is reached for Eb/N0 = 2.5 dB. Note
that this does not mean that the performance of an overall maximum likelihood decoder is
achieved because the union bound represents only an upper bound that can be underrun as
depicted in Figure 3.37.

Figure 3.38 illustrates the turbo code’s performance for different interleaver lengths.
While the interleaver size has nearly no impact in the first iteration, large differences can
be observed for subsequent decoding iterations. The longer the interleavers, the higher the
additional gains for successive iterations. This behavior can be explained by the fact that
large interleavers ensure a better decoupling of the a priori information, that is, the assump-
tion of uncorrelated successive symbols La(di) is better fulfilled for large interleavers.

15Since the systematic information bits are an explicit part of the decoder’s output, they can be provided to
decoder 2 via decoder 1.
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Figure 3.37 Illustration of performance improvements by iterative decoding for turbo code
PC3, interleaver size Lπ = 60
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Figure 3.38 Comparison of turbo code PC3 performance for different interleaver lengths

Hence, a gain of 1.5 dB between the third and the tenth iteration is obtained for Lπ = 6000
and only 1 dB for Lπ = 600.

Since the systematic information bits are transmitted only once for classical turbo codes,
the question arises whether puncturing should be applied only to the parity bits or also to the
information bits. The analysis with the union bound in Section 3.6.3 delivered the result
that puncturing information bits is superior because the code’s structure is maintained.
Figure 3.39 shows the corresponding results obtained by Monte Carlo simulations. We
see that the union bound results cannot be confirmed. Obviously, puncturing only the
parity bits leads to a better first iteration and a faster convergence of the iterative process.
Asymptotically, it seems that the gap can be decreased. The systematic information bits help
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Figure 3.39 Comparison of different puncturing schemes PC1 and PC2 for turbo codes,
Lπ = 6000
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Figure 3.40 Comparison of serial and parallel concatenations of convolutional codes for
different interleaver lengths and 10 decoding iterations

the decoder especially at low SNRs. This was also observed in ten Brink (2000b) where
code doping is applied for ensuring a convergence of the iterative process. Moreover,
puncturing an information bit affects both codes simultaneously, while puncturing a parity
bit has impact only on the generating constituent code.

Finally, serial and parallel concatenations should be compared. From Figure 3.40, we
can conclude that the parallel concatenation of the considered convolutional code outper-
forms the serial one for all three interleaver lengths. Especially at very low SNRs, the turbo
code starts with lower error rates and, thus, reaches the waterfall region, where the BER
decreases rapidly, earlier. However, this result cannot be generalized to all possible serial
and parallel concatenations.
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3.6.5 EXIT Charts Analysis of Turbo Decoding
The analysis presented in Subsection 3.6.3 focused on the distance properties of concate-
nated codes and approximated the BER performance with the union bound. However, the
union bound diverges at very low SNR, that is, exactly in the region of interest when
approaching channel capacity. Moreover, this technique assumes an optimum maximum
likelihood decoding that is not feasible in practice, and suboptimum iterative turbo decod-
ing is applied instead. Turbo decoding was the subject of the previous subsection that
delivered some examples concerning the error rate performance of turbo codes without
deriving guidelines for their construction.

Realizing that the basic principle of turbo decoding is the exchange of extrinsic infor-
mation, ten Brink developed a new analysis tool based on the so-called EXIT charts (ten
Brink 2000a,b, 2001a,b,c). With this approach, the iterative nature of the decoding process
is taken into consideration and the performance of concatenated codes can be tightly pre-
dicted. This holds not only for concatenated codes but also for many types of concatenated
systems (Kühn 2004; Sezgin et al. 2003a,b). Alternative solutions like density evolution
(Divsalar et al. 2001), and so on, are less accurate. However, the use of mutual information
presupposes infinite long sequences (interleavers) that are impossible in practice. Neverthe-
less, results will demonstrate that this technique accurately predicts the true performance
and allows the optimization of the constituent codes.

The basic idea behind this semianalytical approach is to determine the decoder’s input–
output relationship with respect to the mutual a priori information Īa and the mutual extrinsic
information Īe. At this point, we have to distinguish serial and parallel concatenations. We
start with the serial code concatenation that is depicted once again in Figure 3.41. The
inner decoder D2 processes the channel output r as well as the a priori LLRs La,2(b)(ν)

(cf. Figure 3.31) provided by the outer decoder D1 in the previous iteration (ν − 1). The
information part contained in L

(ν)
a,2(b) that is common to the true code bits b is the mutual

a priori information (see also the definition of mutual information in Section 2.1.2)

Ī
(ν)
a,2 = Ī

(
b;L(ν)

a,2(b)
) = Ī

(ν−1)
e,1 . (3.131)

The second equality holds because the amount of information does not change by permu-
tations. The mutual extrinsic information at the output of D2

Ī
(ν)
e,2 = Ī

(
b;L(ν)

e,2(b̂)
) = f

(
Es/N0, Ī

(ν)
a,2

) = f
(
C, Ī

(ν)
a,2

)
(3.132)

depends on both inputs and can be expressed as a function of the channel capacity C

or equivalently Es/N0 and Ī
(ν)
a,2 . With the above argumentation that interleaving does not

change the mutual information, the a priori mutual information of the outer decoder D1

C1 C2 D1D2�

�

�−1
d b x

n

r

Īa,2

Īe,2 Īa,1

Īe,1

Figure 3.41 Simplified system model for serial code concatenation
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Figure 3.42 Simplified system model for parallel code concatenation

becomes
Ī

(ν)
a,1 = Ī

(ν)
e,2 . (3.133)

This outer decoder only processes the output of the inner decoder and has no direct access
to the channel. Therefore, its output is independent of the SNR and the mutual information
of its extrinsic output Le,1(b̂)(ν)

Ī
(ν)
e,1 = Ī

(
b;L(ν)

e,1(b̂)
) = f

(
Ī

(ν)
a,1

)
(3.134)

is only a function of Ī
(ν)
a,1 .

Looking at the parallel code concatenation depicted in Figure 3.42, we have similar
relationships. However, a slight difference appears in that both decoders have access to the
channel output so that their outputs are both functions of the SNR as well as the a priori
information. Moreover, the mutual information is always related to the information bits d
instead of the code bits b because the decoders exchange information with respect to d.
We obtain

Ī
(ν)
e,1 = Ī

(
d;L(ν)

e,1(d̂)
) = f

(
Es/N0, Ī

(ν)
a,1

) = f
(
C, Ī

(ν−1)
e,2

)
(3.135)

Ī
(ν)
e,2 = Ī

(
d;L(ν)

e,2(d̂)
) = f

(
Es/N0, Ī

(ν)
a,2

) = f
(
C, Ī

(ν)
e,1

)
. (3.136)

Next, we have to answer the question on how to determine the mutual information Īe

and Īa . We follow the semianalytical approach of ten Brink (2001c) where Īa is obtained by
modeling the a priori LLRs La(dµ) at the decoder inputs as Gaussian distributed random
variables whose means depend on the transmitted data symbols. The motivation comes
from the assumption that the extrinsic information at the output of a decoder is Gaussian
distributed. Although this is only approximately true after some iterations, the tight results
justify the assumption. According to (3.40) on page 111, the LLR of a signal y = x + n

with the binary transmit symbol x = ±1 has the form

L(y) = Lch · y = Lch · (x + n) = 2

σ 2
N ′
· x + 2

σ 2
N ′
· n (3.137)

where n denotes real white Gaussian noise with variance σ 2
N ′ = N0/2/Ts. Owing to x = ±1,

σ 2
X = Es/Ts = 1 holds and Lch = 2/σ 2

N ′ is obtained. Obviously, the mean of this LLR for
fixed x is 2/σ 2

N ′ while its variance amounts to

σ 2
Na
= E


(

2

σ 2
N ′

)2

· n2

 =
(

2

σ 2
N ′

)2

· σ 2
N ′ = 4

σ 2
N ′

. (3.138)
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Comparing (3.138) with the mean, we recognize that the latter is half of the variance (ten
Brink 2001c). Since x is antipodal but the information bit dµ and the code bit bµ are
unipolar, we define the new variable aµ = 1− 2dµ or aµ = 1− 2bµ, depending on the
considered concatenation. Hence, we can model the Gaussian distributed LLR by

La(a) =
σ 2
Na

2
· a+ na. (3.139)

From (3.139), we see that the artificially generated a priori LLR is created by taking the
true data a – based on either the information bits or the code bits – weighting them with
σ 2
Na

/2, and adding white Gaussian noise na with zero mean and variance σ 2
Na

.
According to (2.58) on page 65, the average mutual information between equiprobable

binary symbols aµ and the a priori LLRs is defined as

Īa = 1+ 1

2
·
∑

α=±1

∞∫
−∞

pNa
(ξ − αA) log2

(
pNa

(ξ − αA)

pNa
(ξ − A)+ pNa

(ξ + A)

)
dξ (3.140)

with A = σ 2
Na

/2. Inserting the Gaussian distribution into (3.140) and exploiting the inte-
grand’s symmetry yields

Īa = 1−
∞∫

−∞

1√
2πσ 2

Na

· exp

[
−

(ξ − σ 2
Na

/2)2

2σ 2
Na

]
log2

(
1+ e−ξ

)
dξ. (3.141)

Equation (3.141) shows that Īa = f (σ 2
Na

) is only a function of the a priori variance σ 2
Na

.
Since this function is monotonically increasing as depicted in Figure 3.43, the variance
of Na can be determined by σ 2

Na
= f −1(Īa). Hence, the a priori information is modeled

according to (3.139) where the noise variance σ 2
Na

is chosen according to the given Īa .
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Figure 3.43 Relationship between σ 2
Na

and the mutual a priori information Īa
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Figure 3.44 Mutual extrinsic versus mutual a priori information for RSC code with g1(D) =
1, g2(D) = (1+D +D3)/(1+D +D2 +D3) and AWGN, MAP algorithm: solid line,
Max-Log-MAP algorithm: dashed line

Owing to the nonlinear behavior of soft-in soft-out decoding algorithms, the mutual
extrinsic information cannot be calculated analytically. Hence, simulations have to be car-
ried out for measuring the conditional histograms p̂Z|a=±1(z) of the extrinsic information
zµ = Le(aµ) at the decoder output. The average extrinsic information is obtained by solving

Īe = 1+ 1

2
·
∑

α=±1

∞∫
−∞

p̂Z|a=α(z) log2

(
p̂Z|a=α(z)

p̂Z|a=+1(z)+ p̂Z|a=−1(z)

)
dz (3.142)

numerically.16

Figure 3.44 shows the relationship Īe = f (Es/N0, Īe) for a systematic recursive con-
volutional code and an AWGN channel with different SNRs. The decoder processes both,
the output of the AWGN channel as well as a priori LLRs with specified Īa . Obviously,
the mutual extrinsic information increases with growing SNR and Īa . If the a priori infor-
mation is certain, that is, Īa = 1, the extrinsic information at the decoder output is reliable
too, regardless of the channel quality. On the contrary, for high SNR, nearly no a priori
information is needed for good decoding results. Moreover, the Max-Log-MAP algorithm
seems to lose only at very low SNRs and for small mutual a priori information. These small
losses will be important at the end of this section.

Figure 3.45a compares the results for different RSC codes if only a priori information
is provided to the decoder as in the case of the outer decoder in a serial concatenation.
Astonishingly, all curves intersect at the point (0.5, 0.5). Up to now, no explanation was
found for this behavior. On the left-hand side of this intersection point, stronger codes with
large constraint length Lc perform worse than codes those with small Lc. Moreover, the

16For decoding algorithms delivering true LLRs, the mutual information can be calculated without using his-
tograms. Since we also look at the Max-Log-MAP decoder providing only approximations of the true LLRs, we
restrict to the histogram-based way.
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Figure 3.45 Mutual a) extrinsic and b) total information versus mutual a priori information
for RSC codes with different Lc, AWGN channel and MAP decoding

mutual extrinsic information is smaller than the mutual a priori information at the decoder’s
input. On the right-hand side, the relations change and strong codes perform better. Here,
Īe exceeds Īa .

Figure 3.45b depicts the total mutual information Īt = Ī (b;L(b̂)) at the decoder’s out-
put on the basis of L(b̂) = La(b)+ Le(b̂). There is still the intersection at Īa = 0.5.
Additionally, it becomes obvious that the decoder always provides an improvement (pos-
sibly very small) compared to the uncoded case. Comparing a and b of Figure 3.45, we
observe that the sum of La(b) and Le(b̂) does not result in a sum of the correspond-
ing mutual information Īa and Īe. Instead, L(b̂) has to be directly used to determine
Īt or an approximation called information combining (Land et al. 2004, 2003) can be
applied.

Serial Concatenation

The basic idea behind EXIT charts is that extrinsic information provided by one constituent
decoder is used in the turbo decoding process as a priori information for the other decoder.
A graphical illustration of this process is obtained by drawing the curves of the inner and
outer codes into one diagram and exchanging the abscissa and ordinate for the outer code.
This leads to an EXIT chart like the one depicted in Figure 3.46. It shows the curves of
an outer NSC code punctured to Rc,1 = 3/4 and an inner RSC code with rate Rc,2 = 2/3
resulting in an overall code rate of Rc = 1/2. Be aware that the SNR Es/N0 = RcEb/N0

at the input of the inner decoder is adjusted according to the overall code rate Rc and not
to the individual rate Rc,2.

The bold solid curve of the outer code does not depend on the SNR, whereas the
dashed curves of the inner code strongly depend on the SNR. It can be seen that the curves
touch for Eb/N0 = 1 dB (!). For larger Eb/N0, for example, solid line with pentagon for
Eb/N0 = 1.2 dB, the dashed curves lie above the solid one and a gap opens through which
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Figure 3.46 EXIT chart for serial concatenation of outer NSC code (Lc,1 = 4, Rc,1 = 3/4)
and inner RSC code (Lc,2 = 4, Rc,2 = 2/3) as used in Figure 3.35, AWGN channel, and
Log-MAP decoding
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Figure 3.47 EXIT chart for serial concatenation of outer NSC and inner RSC codes as
used in Figure 3.35, AWGN channel with Eb/N0 = 1.2 dB, and MAP decoding

the decoding process can converge. Only in this case the a priori information leads to an
increased extrinsic information so that reliability is improved in each iteration.

Figure 3.47 illustrates the convergence of the turbo decoding process for an SNR of
1.2 dB. The squares indicate the mutual extrinsic information Īe,2 = Īa,1 at the output
of the inner decoder and the pentagons, the mutual extrinsic information Īe,1 = Īa,2 at
the output of the outer decoder. Obviously, the inner decoder starts without any a priori
information (Ī (1)

a,2 = 0) and delivers Ī
(1)
e,2 ≈ 0.58. This extrinsic information is exactly the a

priori information Ī
(1)
a,1 of the outer decoder that provides Ī

(1)
e,1 = 0.07. This becomes the a
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priori information of the inner decoder in the second iteration that delivers Ī
(2)
e,2 ≈ 0.61, and

so on.
Owing to the tunnel between the boundary lines, the mutual extrinsic information always

increases from iteration to iteration and finally approaches Īe,1 = Īe,2 = 1. If the bound-
aries intersect before the point (Īa, Īe) = (1, 1), the trajectory cannot proceed, the iterative
decoding process gets stuck, and the convergence is lost. The larger the gap, the less itera-
tions needed until convergence, but the larger also the gap to Shannon’s channel capacity.
Hence, for large interleavers, EXIT charts represent a suitable means of predicting the con-
vergence behavior for iterative decoding of concatenated codes. Moreover, it is possible to
design codes whose decoding trajectories match each other so that a very narrow tunnel
leads to the point (Īa, Īe) = (1, 1). In ten Brink (2000b), a serially concatenated code is
presented that approaches Shannon’s channel capacity within a gap of 0.1 dB.

Figure 3.48 shows the results obtained with the Max-Log-MAP decoder. Astonishingly,
the boundary lines do not tightly predict the true behavior of the turbo decoder for Eb/N0 =
1.8 dB. Although the decoder slowly converges to (Īa, Īe) = (1, 1), the boundaries predict a
faster convergence. For smaller Eb/N0, convergence cannot be achieved anymore, although
predicted. The reason for this discrepancy is the assumption that each decoder is assumed
to obtain true LLRs. In fact, they are only provided with approximations of LLRs delivered
by suboptimum Max-Log-MAP decoders.

At higher SNRs Eb/N0, for example, 2 dB, the true decoding behavior matches again
the boundaries’ prediction. Hence, EXIT charts based on the Max-Log-MAP algorithm
are not suited for the determination of the minimum required Eb/N0 in order to ensure
convergence.

Parallel Concatenation

The analysis of parallel code concatenations is depicted in Figure 3.49. The left diagram
shows the results for symbol-by-symbol MAP decoding. Obviously, the prediction tightly
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Figure 3.48 EXIT chart for serial concatenation of outer NSC and inner RSC codes as
used in Figure 3.35, AWGN channel, and Max-Log-MAP decoding
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Figure 3.49 EXIT chart for parallel concatenation of two RSC codes as used in Figure 3.39
(P1), AWGN channel with Eb/N0 = 1 dB

matches the true turbo decoding behavior. In Figure 3.49b, it can be seen that the turbo
decoder gets stuck when the Max-Log-MAP algorithm is applied although the boundaries
predict convergence. As already explained for the serial concatenation, the reason for this
failure is that the assumptions made for the EXIT charts analysis are not fulfilled when
employing the Max-Log-MAP decoder.

One assumption was that LLRs represent the extrinsic information that is exchanged
between the decoders. The Max-Log-MAP does not deliver exact LLRs but only approx-
imations (see page 121) and the predicted convergence cannot be achieved. In order to
verify this explanation, Figure 3.50a shows the results for Max-Log-MAP decoding if the
a priori information is provided by an additionally introduced MAP decoder. We recognize
that convergence is obtained. On the contrary, Figure 3.50b shows the results for MAP
decoding when the a priori information is provided by a Max-Log-MAP decoder. In this
case, the iterative decoding scheme does not converge. From this, we can conclude that
for low SNRs when the boundaries come close to each other, optimum MAP decoding is
crucial because the extrinsic information delivered by the Max-Log-MAP decoder leads to
a significant loss, avoiding convergence.

3.7 Low-Density Parity Check (LDPC) Codes

3.7.1 Basic Definitions and Encoding

We saw from the previous section that concatenated codes exhibit an amazing performance
close to the capacity limit stated by Shannon. Another class of capacity-achieving codes are
LDPC codes. Although they are not considered anymore in subsequent chapters, they will be
briefly introduced here because of their practical importance. A comprehensive overview
can be found in Chung et al. (2001), Forney (2001), Gallager (1963), Lin and Costello
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Figure 3.50 EXIT chart for parallel concatenation of two RSC codes as used in Figure 3.39,
AWGN channel and with Eb/N0 = 1 dB, a) Max-Log-MAP decoding with a priori infor-
mation by MAP decoder, b) MAP decoding with a priori information by Max-Log-MAP
decoder

(2004), MacKay (1999), Richardson et al. (2001), Shokrollahi (2002), Tanner (1981) and
references therein.

LDPC codes were first discovered in 1963 by Gallager (1963). However, they have
been forgotten for quite a long time, probably because encoding and decoding were too
complex for practical implementations at that time. Their latest rediscovery took place after
the invention of turbo codes in 1993, making the turbo decoding principle very popular. As
LDPC codes show a performance close to the capacity limit, it is natural to compare them
with concatenated codes. First, their block error rate performance is generally better than
that of concatenated codes. Second, the flattening of the BER curve that can be observed
for turbo codes appears at much lower error rates for LDPC codes. Finally, their decoding
is not based on a trellis diagram which would cause infeasible computational costs for good
LDPC codes.

LDPC codes belong to the general class of linear block codes and can be described by
parity check and generator matrices. Their definition is based on the parity check matrix H
already defined in Section 3.2. Principally, regular and irregular codes are distinguished.
The parity check matrices of regular LDPC codes, which have been defined by Gallager
(1963), have an identical number of u ones in each row and v ones in each column. On
the contrary, u and v can vary from row to row or from column to column for irregular
codes (Luby et al. 2001; Richardson et al. 2001). When appropriately designed, irregular
codes are superior to regular codes, especially at high code rates. For example, Chung et al.
(2001) constructed irregular LDPC codes operating at only 0.0045 dB from the Shannon
limit.

Next we give the definition of regular LDPC codes introduced by Gallager (1963) as
well as some comments on random and irregular LDPC codes. Afterwards, a technique for
the low-complexity encoding of LDPC codes is presented.
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Regular LDPC Codes by Gallager

Definition 3.7.1 (LDPC codes) A regular LDPC code is defined by its parity check matrix
H generally consisting of n rows and J columns. It has the following properties:

1. Each row has the same number of u ones.

2. Each column has the same number of v ones.

3. At most a single one is allowed to be at a common position between two arbitrary
columns.

4. The parameters u and v should be small compared to the code length n.

The density of an LDPC code is defined as the ratio of the number of ones and the
total number of elements in H and amounts to

ρ = v

J
= u

n
(3.143)

for regular codes. Note that the number of columns J may be different from n− k as
defined in Section 3.2. The number of independent columns in H represents the dimension
of the null space �⊥ and, therefore, also the dimension of the code �.

A variety of ways exist to construct a parity check matrix for LDPC codes. Many of
them are based on Euclidean and finite geometries (Lin and Costello 2004). We will shortly
review the procedure proposed by Gallager in his original work.17 The matrix H consisting
of n rows and J columns is set up of u submatrices Hi each of size n× J/u.

H = [
H1 H2 · · · Hu

]
. (3.144)

The first matrix H1 consists of v consecutive ones in each column that are located at
nonoverlapping positions (�− 1)v + 1 · · · �v in column � with 1 ≤ � ≤ J/u. Hence, there
exists only a single one in each row as can be seen in (3.145).

H1 =



1
...

1
1
...

1
. . .


(3.145)

The remaining submatrices are obtained by permuting the elements in each column. These
permutations have to be carried out such that the properties in Definition 3.7.1 are fulfilled.

17Be aware that the parity check matrix H is defined differently as in many text books. The number of rows
equals n instead of the number of columns.
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Random Code Construction

A different method is to select a parity check matrix quasi-randomly. In this case, H
is constructed column by column. At each step, a new column that has not been used
or rejected before is selected randomly. The following enumeration briefly describes the
procedure.

1. Randomly select a new column that has not been accepted or rejected before.

2. If the new column has more than a single ‘1’ in common with the old columns, it is
rejected.

3. Construct a new intermediate matrix H′ by appending the new column to the old
columns. If weight constraints of Definition 3.7.1 are violated, reject column, other-
wise accept it.

4. Continue procedure until J columns have been found.

Randomly constructed codes have a couple of disadvantages. The encoding process
suffers from a lack of structure and can become computationally expensive. Moreover, it
has been shown that decoding these codes may require a lot of iterations and they are
generally not suited for majority logic decoding (see next subsection). However, very long
randomly selected codes perform very close to Shannon’s limit as demonstrated in Chung
et al. (2001). Regarding the effort to be spent for the code construction, both approaches,
Gallager’s permutations as well as the random construction require extensive computer-
based search routines.

Irregular LDPC Codes

As mentioned above, irregular codes have a parity check matrix with a varying number of
ones in rows and columns. The number of ones in a row or column is called the degree
(see also Subsection 3.7.2). Their performance highly depends on the degree distribution
for rows and columns. For example, many degree-2-nodes will cause a small minimum
Hamming distance, leading to a poor asymptotic error rate performance at high SNRs.
Irregular LDPC codes can outperform their regular counterparts, especially at low SNRs.

LDPC Encoding

Looking at the encoding process, we can try to find the generator matrix G corresponding
to H. Since the linearly independent columns of H span the space of the dual code �⊥ (see
page 97), determining G is equivalent to finding the null space of H. The dimensionality of
the null space determines the dimension of the code and, thus, the number of information
bits per codeword k. If J = n− k holds, H can be transformed by Gaussian elimination
into a systematic form Hs =

[−P In−k

]T
. This allows the construction of Gs according

to (3.7) and (3.8) on page 96. Once the systematic generator matrix has been determined,
all transformations applied to force H into a systematic shape have to be applied to Gs in
reverse order to obtain the final generator matrix G.

While H itself is a sparse matrix with only a few nonzero elements, this is not necessarily
true for G. Unfortunately, a high density of G implies many modulo-2-sums in the encoding
process, leading generally to a complexity of O(n2). Moreover, G may become quite
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Figure 3.51 Parity check matrix for efficient systematic encoding of LDPC codes (light
gray area: sparse matrix part, dark gray area: nonsparse part)

large for long powerful LDPC codes so that encoding becomes demanding in terms of
memory and computational costs. Efficient encoding techniques that are mainly based on
the transformation of H into a triangular form are derived by Richardson and Urbanke
(2005) and will be briefly explained now.

The basic idea for low-complexity encoding is based on the fact that systematic encoders
generating codewords of the form bT = [

dT pT
]

only have to determine the n− k parity
check bits in p instead of all n code bits. Assuming linear independent columns in H, that
is, J = n− k, we know from Section 3.2 that the corresponding parity check matrix is
composed of a parity part P and an identity matrix In−k. Relaxing this constraint may lead
to a structure as depicted in Figure 3.51a. Obviously, H does not have a purely systematic
form. However, if the elements in the lower left triangular are zero, the parity bits pj ,
1 ≤ j ≤ n− k, can be recursively calculated. For the left most column, the element k + 1
has to be nonzero because it is associated with the first parity bit

p1 =
k∑

i=1

Hi,1 · di (3.146a)

depending only on the information bits di with 1 ≤ i ≤ k. For the remaining parity bits
associated with all subsequent columns on the right,

pj =
k∑

i=1

Hi,j · di ⊕
k+j−1∑
i=k+1

Hi,j · pi−k (3.146b)

with j > 1 holds. Hence, each parity bit depends on the information word and the parity
bits determined earlier. Unfortunately, the parity check matrix is no longer sparse when
transformed in this form. Richardson and Urbanke (2005) presented a solution that approx-
imates the triangular structure of H as depicted in Figure 3.51b. A nonsparse dark gray
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area whose width g has to be minimized is allowed, while the rest of the matrix is sparse.
With this approach, a codeword is split into three parts, the information part d and two
parity parts denoted by q and p, that is, bT = [

dT qT pT
]

holds. The encoding process now
consists of two steps. First, the coefficients of q are determined by

q1 =
k∑

i=1

Hi,n−k−g+1 · di (3.147a)

and

qj =
k∑

i=1

Hi,n−k−g+j · di ⊕
k+j−1∑
i=k+1

Hi,n−k−g+j · qi−k (3.147b)

with 2 ≤ j ≤ g. Their calculation is based on the nonsparse part of H. Next, the bits of p
can be determined according to

p1 =
k∑

i=1

Hi,1 · di ⊕
k+g∑

i=k+1

Hi,1 · qi−k (3.148a)

and

pj =
k∑

i=1

Hi,j · di ⊕
k+g∑

i=k+1

Hi,j · qi−k ⊕
j+k+g−1∑
i=k+g+1

Hi,j · pi−k−g (3.148b)

with 2 ≤ j ≤ n− k − g. Richardson and Urbanke (2001) showed that the modification of
the parity check matrix leads to a low-complexity encoding process and shows nearly no
performance loss.

3.7.2 Graphical Description

Graphs are a very illustrative way of describing LDPC codes. We will see later that the
graphical representation allows an easy explanation of the decoding process for LDPC
codes. Generally, graphs consist of vertices (nodes) and edges connecting the vertices (Lin
and Costello 2004; Tanner 1981). The number of connections of a node is called its degree.
Principally, cyclic and acyclic graphs can be distinguished when the latter type does not
possess any cycles or loops. The girth of a graph denotes the length of its shortest cycle.
Generally, loops cannot be totally avoided. However, at least short cycles of length four
should be avoided because they lead to poor distance properties and, thus, asymptotically
weak codes. Finally, a bipartite graph consists of two disjoint subsets of vertices where
edges only connect vertices of different subsets but no vertices of the same subset. These
bipartite graphs will now be used to illustrate LDPC codes graphically.

Actually, graphs are graphical illustrations of parity check matrices. Remember that the
J columns of H represent parity check equations according to s = HT ⊗ r in (3.12), that is,
J check sums between certain sets of code bits are calculated. We now define two sets of
vertices. The first set V comprises n variable nodes each of them representing exactly one
received code bit rν . These nodes are connected via edges with the elements of the second
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Figure 3.52 Bipartite Tanner graph illustrating the structure of a regular code of length
n = 6

set P containing J check nodes representing the parity check equations. A connection
between variable node i and check node j exists if Hi,j = 1 holds. On the contrary, no
connection exists for Hi,j = 0. The parity check matrix of regular LDPC codes has u ones
in each row, that is, each variable node is of degree u and connected by exactly u edges.
Since each column contains v ones, each check node has degree v, that is, it is linked to
exactly v variable nodes.

Following the above partitioning, we obtain a bipartite graph also termed Tanner or
factor graph as illustrated in Figure 3.52. Certainly, the code in our example does not
fulfill the third and the fourth criteria of Definition 3.7.1. Moreover, its graph contains
several cycles from which the shortest one is emphasized by bold edges. Its length and,
therefore, the girth of this graph amounts to four. If all the four conditions of the definition
by Gallager were fulfilled, no cycles of length four would occur. Nevertheless, the graph
represents a regular code of length n = 6 because all variable nodes are of degree two
and all check nodes have the degree four. The density of the corresponding parity check
matrix

H =


1 1 0
1 0 1
0 1 1
1 0 1
1 1 0
0 1 1


amounts to ρ = 4/6 = 2/3. We can see from Figure 3.51 and the above parity check matrix
that the fifth code bit is checked by the first two sums and that the third check sum com-
prises the code bits b2, b3, b4, and b6. These positions form the set P3 = {2, 3, 4, 6}. Since
they correspond to the nonzero elements in the third column of H, the set is also termed
support of column three. Similarly, the set V2 = {1, 3} belongs to variable node two and
contains all check nodes it is connected with. Equivalently, it can be called support of row
two. Such sets are defined for all nodes of the graph and used in the next subsection for
explaining the decoding principle.
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3.7.3 Decoding of LDPC Codes

One-Step Majority Logic Decoding

Decoding LDPC codes by looking at a rather old-fashioned algorithm, namely, one-step
majority logic decoding is discussed. The reason is that this algorithm can be used as a
final stage if the message passing decoding algorithm, that will be introduced subsequently,
fails to deliver a valid codeword. One-step majority logic decoding belongs to the class of
hard decision decoding algorithms, that is, hard decided channel outputs are processed. The
basic idea behind this decoding algorithm is that we have a set of parity check equations
and that each code bit is probably protected by more than one of these check sums. Taking
our example of the last subsection, we get

x̂1 ⊕ x̂2 ⊕ x̂4 ⊕ x̂5 = 0

x̂1 ⊕ x̂3 ⊕ x̂5 ⊕ x̂6 = 0

x̂2 ⊕ x̂3 ⊕ x̂4 ⊕ x̂6 = 0.

Throughout this chapter, it is assumed that the coded bits bν , 1 ≤ ν ≤ n, are modulated onto
antipodal symbols xν using BPSK. At the matched filter output, the received symbols rν

are hard decided delivering x̂ν = sign(rν). The vector x̂ comprising all these estimates can
be multiplied from the left-hand side with HT , yielding the syndrome s. Each element in s
belongs to a certain column of H and represents the output of the corresponding check sum.
Looking at a certain code bit bν , it is obvious that all parity check equations incorporating
x̂ν may contribute to its decision. Resolving the above equations with respect to x̂ν=2, we
obtain for the first and the third equations

x̂2 = x̂1 ⊕ x̂4 ⊕ x̂5

x̂2 = x̂3 ⊕ x̂4 ⊕ x̂6.

Both equations deliver a partial decision on the corresponding code bit c2. Unfortunately,
x̂4 contributes to both equations so that these intermediate results will not be mutually
independent. Therefore, a simple combination of both partial decisions will not deliver
the optimum solution whose determination will be generally quite complicated. For this
reason, one looks for sets of parity check equations that are orthogonal with respect to the
considered bit bν . Orthogonality means that all columns of H selected for the detection
of the bit bν have a one at the νth position, but no further one is located at the same
position in more than one column. This requirement implies that each check sum uses
disjoint sets of symbols to obtain an estimate b̂ν . Using such an orthogonal set, the resulting
partial decisions are independent of each other and the final result is obtained by simply
deciding in favor of the majority of partial results. This explains the name majority logic
decoding.

Message Passing Decoding Algorithms

Instead of hard decision decoding, the performance can be significantly enhanced by using
the soft values at the matched filter output. We now derive the sum-product algorithm also
known as message passing decoding algorithm or believe propagation algorithm (Forney
2001; Kschischang et al. 2001). It represents a very efficient iterative soft-decision decoding
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L(r̃1 | b1) L(r̃2 | b2) L(r̃4 | b4)

L
(µ−1)
e,j (b̂1)

L
(µ−1)
e,j (b̂2)

L
(µ−1)
e,j (b̂4)

L(µ)(b̂1)− L
(µ−1)
e,j (b̂1)

L(µ)(b̂2)− L
(µ−1)
e,j (b̂2)

L(µ)(b̂4)− L
(µ−1)
e,j (b̂4)

sj

Figure 3.53 Illustration of message passing algorithm

algorithm approaching the maximum likelihood solution at least for acyclic graphs. Message
passing algorithms can be described using conditional probabilities as in the case of the
BCJR algorithm. Since we consider only binary LDPC codes, log-likelihood values will be
used, resulting in a more compact derivation.

Decoding based on a factor graph as illustrated in Figure 3.53 starts with an initialization
of the variable nodes. Their starting values are the matched filter outputs appropriately
weighted to obtain the LLRs

L(0)(b̂i ) = L(r̃i | bi) = Lch · r̃i (3.149)

(see Section 3.4). These initial values indicated by the iteration superscript (0) are passed
to the check nodes via the edges. An arbitrary check node sj corresponds to a modulo-
2-sum of connected code bits bi ∈ Pj . Resolving this sum with respect to a certain bit
bi =

∑
ν∈Pj \{i} bν delivers extrinsic information Le(b̂i). Exploiting the L-Algebra results

of Section 3.4, the extrinsic log-likelihood ratio for the j th check node and code bit bi

becomes

L
(0)
e,j (b̂i ) = log

1+∏
ν∈Pj \{i} tanh(L(0)(b̂ν)/2)

1−∏
ν∈Pj \{i} tanh(L(0)(b̂ν)/2)

. (3.150)

The extrinsic LLRs are passed via the edges back to the variable nodes. The exchange of
information between variable and check nodes explains the name message passing decoding.
Moreover, since each message can be interpreted as a ‘belief’ in a certain bit, the algorithm
is often termed belief propagation decoding algorithm. If condition three in Definition 3.7.1
is fulfilled, the extrinsic LLRs arriving at a certain variable node are independent of each
other and can be simply summed. If condition three is violated, the extrinsic LLRs are not
independent anymore and summing them is only an approximate solution. We obtain a new
estimate of our bit

L(µ)(b̂i) = Lch · r̃i +
∑
j∈Vi

L
(µ−1)
e,j (b̂i) (3.151)

where µ = 1 denotes the current iteration. Now, the procedure is continued, resulting in an
iterative decoding algorithm. The improved information at the variable nodes is passed again
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to the check nodes. Attention has to be paid that extrinsic information L
(µ)
e,j (b̂i) delivered

by check node j will not return to its originating node. For µ ≥ 1, we obtain

L
(µ)
e,j (b̂i) = log

1+∏
ν∈Pj \{i} tanh

([
L(µ)(b̂ν)− L

(µ−1)
e,j (b̂ν)

]
/2

)
1−∏

ν∈Pj \{i} tanh
([

L(µ)(b̂ν)− L
(µ−1)
e,j (b̂ν)

]
/2

) . (3.152)

After each full iteration, the syndrome can be checked (hard decision). If it equals 0, the
algorithm stops, otherwise it continues until an appropriate stopping criterion such as the
maximum number of iterations applies. If the sum-product algorithm does not deliver a
valid codeword after the final iteration, the one-step majority logic decoder can be applied
to those bits which are still pending.

The convergence of the iterative algorithm highly depends on the girth of the graph,
that is, the minimum length of cycles. On the one hand, the girth must not be too small for
efficient decoding; on the other hand, a large girth may cause small minimum Hamming
distances, leading to a worse asymptotic performance. Moreover, the convergence is also
influenced by the row and column weights of H. To be more precise, the degree distribution
of variable and check nodes affects the message passing algorithm very much. Further
information can be found in Forney (2001), Kschischang et al. (2001), Lin and Costello
(2004), Richardson et al. (2001).

Complexity

In this short analysis concerning the complexity, we assume a regular LDPC code with u

ones in each row and v ones in each column of the parity check matrix. At each variable
node, 2u · I additions of extrinsic LLRs have to be carried out per iteration. This includes
the subtractions in the tanh argument of (3.152). At the check nodes, v − 1 calculations of
the tanh function and two logarithms are required per iteration assuming that the logarithm is
applied separately to the numerator and denominator with subsequent subtraction. Moreover,
2v − 3 multiplications and 3 additions have to be performed. This leads to Table 3.3.

3.7.4 Performance of LDPC Codes
Finally, some simulation results concerning the error rate performance of LDPC codes
are presented. Figure 3.54 shows the BER evolution with increasing number of decoding
iterations. Significant gains can be observed up to 15 iterations, while further iterations
only lead to marginal additional improvements. The BER of 10−5 is reached at an SNR of
1.4 dB. This is 2 dB apart from Shannon’s channel capacity lying at −0.6 dB for a code
rate of Rc = 0.32.

Table 3.3 Computational costs for
message passing decoding algorithm

type number per iteration

additions 2u · n+ 3 · J
log and tanh (v + 1) · J
multiplications (2v − 3) · J

www.4electron.com



170 FORWARD ERROR CORRECTION CODING

0 1 2 3 4 5 6

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 in dB →

B
E

R
→

#1

#5

#10

#15

Figure 3.54 BER performance of irregular LDPC code of length n = 29507 with k = 9507
for different iterations and AWGN channel (bold line: uncoded system)
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Figure 3.55 BER performance of irregular LDPC code of length n = 20000 as well as
serially and parallel concatenated codes, both of length n = 12000 from Tables 3.1 and 3.2
for AWGN channel (bold line: uncoded system)

Next, Figure 3.55 compares LDPC codes with serially and parallel concatenated con-
volutional codes known from Section 3.6. Obviously, The LDPC code performs slightly
worse than the turbo code PC3 and much better than the serial concatenation SC3. This
comparison is only drawn to illustrate the similar behavior of LDPC and concatenated con-
volutional codes. Since the lengths of the codes are different and no analysis was made
with respect to the decoding complexity, these results cannot be generalized.

The frame error rates for the half-rate LDPC code of length n = 20000 are depicted in
Figure 3.56. The slopes of the curves are extremely steep indicating that there may be a
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Figure 3.56 Frame error rate performance of irregular LDPC code of length n = 20000
with rate Rc = 0.5 for different iterations and AWGN channel

cliff above which the transmission becomes rapidly error free. Substantial gains in terms
of Eb/N0 can be observed for the first 15 iterations.

3.8 Summary
This third chapter gave a survey of error control coding schemes. Starting with basic defi-
nitions, linear block codes such as repetition, single parity check, Hamming, and Simplex
codes have been introduced. They exhibit a rather limited performance being far away from
Shannon’s capacity limits. Next, convolutional codes that are widely used in digital commu-
nication systems have been explained. A special focus was put on their graphical illustration
by the trellis diagram, the code rate adaptation by puncturing, and the decoding with the
Viterbi algorithm. Moreover, recursive convolutional codes were introduced because they
represent an important ingredient for code concatenation. Principally, the performance of
convolutional codes is enhanced with decreasing code rate and growing constraint length.
Unfortunately, large constraint lengths correspond to high decoding complexity, leading to
practical limitations.

In Section 3.4, soft-output decoding algorithms were derived because they are required
for decoding concatenated codes. After introducing the L-Algebra with the definition of
LLRs as an appropriate measure of reliability, a general soft-output decoding approach
as well as the trellis-based BCJR algorithm have been derived. Without these algorithms,
most of today’s concatenated coding schemes would not work. For practical purposes, the
suboptimal but less complex Max-Log-MAP algorithm was explained.

Section 3.5 evaluated the performance of error-correcting codes. Since the minimum
Hamming distance only determines the asymptotic behavior of a code at large SNRs, the
complete distance properties of codes were analyzed with the IOWEF. This function was
used to calculate the union upper bound that assumes optimal MLD. The union bound tightly
predicts the error rate performance for medium and high SNRs, while it diverges at low
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SNR. Finally, IPCs have been introduced. This technique exploits information theoretical
measures such as the mutual information and considers specific decoding algorithms that
do not necessarily fulfill the maximum likelihood criterion.

In the last two sections, capacity approaching codes were presented. First, serially and
parallel concatenated codes also known as turbo codes were derived. We started looking
at their Hamming distance properties. Basically, concatenated codes do not necessarily
have large minimum Hamming distances. However, codewords with low weight occur
very rarely, especially for large interleaver lengths. The application of the union bound
illuminated some design guidelines concerning the choice of the constituent codes and the
importance of the interleaver. Principally, the deployment of recursive convolutional codes
ensures that the codes’ error rate performance increases with growing interleaver length.
Since the ML decoding of the entire concatenated code is infeasible, an iterative decoding
concept also termed turbo decoding was explained. The convergence of the iterative scheme
was analyzed with the EXIT charts technique. Last but not least, LDPC codes have been
introduced. They show a performance similar to that of concatenated convolutional codes.

www.4electron.com



4

Code Division Multiple Access

In Section 1.1.2 different multiple access techniques were introduced. Contrary to time
and (FDMA) frequency division multiple access schemes, each user occupies the whole
time-frequency domain in (CDMA) code division multiple access systems. The signals are
separated with spreading codes that are used for artificially increasing the signal bandwidth
beyond the necessary value. Despreading can only be performed with knowledge of the
employed spreading code.

For a long time, CDMA or spread spectrum techniques were restricted to military appli-
cations. Meanwhile, they found their way into mobile radio communications and have been
established in several standards. The IS95 standard (Gilhousen et al. 1991; Salmasi and
Gilhousen 1991) as a representative of the second generation mobile radio system in the
United States employs CDMA as well as the third generation Universal Mobile Telecom-
munication System (UMTS) (Holma and Toskala 2004; Toskala et al. 1998) and IMT2000
(Dahlman et al. 1998; Ojanperä and Prasad 1998a,b) standards. Many reasons exist for using
CDMA, for example, spread spectrum signals show a high robustness against multipath
propagation. Further advantages are more related to the cellular aspects of communication
systems.

In this chapter, the general concept of CDMA systems is described. Section 4.1 explains
the way of spreading, discusses the correlation properties of spreading codes, and demon-
strates the limited performance of a single-user matched filter (MF). Moreover, the differ-
ences between principles of uplink and downlink transmissions are described. In Section 4.2,
the combination of OFDM (Orthogonal Frequency Division Multiplexing) and CDMA as an
example of multicarrier (MC) CDMA is compared to the classical single-carrier CDMA.
A limiting factor in CDMA systems is multiuser interference (MUI). Treated as addi-
tional white Gaussian noise, interference is mitigated by strong error correction codes in
Section 4.3 (Dekorsy 2000; Kühn et al. 2000b). On the contrary, multiuser detection strate-
gies that will be discussed in Chapter 5 cancel or suppress the interference (Alexander et al.
1999; Honig and Tsatsanis 2000; Klein 1996; Moshavi 1996; Schramm and Müller 1999;
Tse and Hanly 1999; Verdu 1998; Verdu and Shamai 1999). Finally, Section 4.4 presents
some information on the theoretical results of CDMA systems.

Wireless Communications over MIMO Channels Volker Kühn
 2006 John Wiley & Sons, Ltd
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4.1 Fundamentals

4.1.1 Direct-Sequence Spread Spectrum

The spectral spreading inherent in all CDMA systems can be performed in several ways,
for example, frequency hopping and chirp techniques. The focus here is on the widely used
direct-sequence (DS) spreading where the information bearing signal is directly multiplied
with the spreading code. Further information can be found in Cooper and McGillem (1988),
Glisic and Vucetic (1997), Pickholtz et al. (1982), Pickholtz et al. (1991), Proakis (2001),
Steele and Hanzo (1999), Viterbi (1995), Ziemer and Peterson (1985).

For notational simplicity, the explanation is restricted to a chip-level–based system
model as illustrated in Figure 4.1. The whole system works at the discrete chip rate 1/Tc and
the channel model from Figure 1.12 includes the impulse-shaping filters at the transmitter
and the receiver. Certainly, this implies a perfect synchronization at the receiver. For the
moment, though restricted to an uncoded system the description can be easily extended to
coded systems as is done in Section 4.2.

The generally complex-valued symbols a[�] at the output of the signal mapper are
multiplied with a spreading code c[�, k]. The resulting signal

x[k] =
∑

�

a[�] · c[�, k] with c[�, k] =
{
± 1√

Ns
for �Ns ≤ k < (�+ 1)Ns

0 else
(4.1)

has a chip index k that runs Ns times faster than the symbol index �. Since c[�, k] is
nonzero only in the interval [�Ns, (�+ 1)Ns], spreading codes of consecutive symbols do
not overlap. The spreading factor Ns is often termed processing gain Gp and denotes
the number of chips c[�, k] multiplied with a single symbol a[�]. In coded systems, Gp

also includes the code rate Rc and, hence, describes the ratio between the durations of an
information bit (Tb) and a chip (Tc)

Gp = Tb

Tc
= Ts

Rc · Tc
= Ns

Rc
. (4.2)

This definition is of special interest in systems with varying code rates and spreading
factors, as discussed in Section 4.3. The processing gain describes the ability to suppress
interfering signals. The larger the Gp, the higher is the suppression.

matched
filtera[�]

�

k

k

c[�, k]

x[k]
h[k, κ]

n[k]

y[k] r[�]

Figure 4.1 Structure of direct-sequence spread spectrum system
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Owing to their importance in practical systems, the following description to binary
spreading sequences is restricted, that is, the chips take the values ±1/

√
Ns. Hence, the

signal-to-noise ratio (SNR) per chip is Ns times smaller than for a symbol a[�] and Es/N0 =
Ns · Ec/N0 holds. Since the local generation of spreading codes at the transmitter and the
receiver has to be easily established, feedback shift registers providing periodical sequences
are often used (see Section 4.1.4). Short codes and long codes are distinguished. The period
of short codes equals exactly the spreading factor Ns, that is, each symbol a[�] is multiplied
with the same code. On the contrary, the period of long codes exceeds the duration of
one symbol a[�] so that different symbols are multiplied with different segments of a long
sequence. For notational simplicity, short codes are referred to only unless otherwise stated.
In Figure 4.1, spreading with short codes for Ns = 7 is illustrated by showing the signals
a[�], c[�, k], and x[k].

Figure 4.2 shows the power spectral densities of a[�] and x[k] for a spreading factor
Ns = 4, an oversampling factor of w = 8, and rectangular pulses of the chips. Obviously,
the densities have a (sin(x)/x)2 shape and the main lobe of x[k] is four times broader than
that of a[�]. However, the total power of both signals is still the same, that is spreading
does not affect the signal’s power. Hence, the power spectrum density around the origin is
larger for a[�].

As we know from Section 1.2, the output of a generally frequency-selective channel
is obtained by the convolution of the transmitted signal x[k] with the channel impulse
response h[k, κ] and an additional noise term

y[k] = x[k] ∗ h[k, κ]+ n[k] =
Lt−1∑
κ=0

h[k, κ] · x[k − κ]+ n[k]. (4.3)

Generally, it can be assumed that the channel remains constant during one symbol duration.
In this case, the channel impulse response h[k, κ] can be denoted by h[�, κ] which will be
used in the following derivation. Inserting the structure of the spread spectrum signal given
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�
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)
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Figure 4.2 Power spectral densities of original and spread signal for Ns = 4
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in (4.1) and exchanging the order of the two sums delivers

y[k] =
Lt−1∑
κ=0

h[�, κ] ·
∑

�

a[�] · c[�, k − κ]+ n[k]

=
∑

�

a[�] ·
Lt−1∑
κ=0

h[�, κ] · c[�, k − κ]+ n[k]

=
∑

�

a[�] · s[�, k]+ n[k] with s[�, k] = c[�, k] ∗ h[�, k]. (4.4)

The convolution between the spreading code c[�, k] and the channel impulse response is
termed signature s[�, k] and describes the effective channel including the spreading. Hence,
the receive filter maximizing the SNR at its output has to be matched to the signature
s[�, k] also and not only to the physical channel impulse response. It inherently performs
the despreading also. Next, the specific structures of the MF for frequency-selective and
nonselective channels are explained in more detail.

Matched Filter for Frequency-Nonselective Fading

For the sake of simplicity, the discussion starts with the MF for frequency-nonselective
channels represented by a signal coefficient h[�]. Therefore, the signature reduces to
s[�, k] = h[�] · c[�, k] and the received signal becomes

y[k] =
∑

�

a[�] · h[�]c[�, k]+ n[k] =
∑

�

a[�] · s[�, k]+ n[k]. (4.5)

The MF that maximizes the SNR has the form gMF[�, k] = s∗[�, (�+ 1)Ns − k].1 The
convolution of y[k] with gMF[k] now yields

rTc[k] =
(�+1)Ns−1∑

k′=�Ns

y[k − k′] · gMF[�, k′]

=
(�+1)Ns−1∑

k′=�Ns

(∑
�

a[�] · s[�, k − k′]+ n[k − k′]

)
· s∗[�, (�+ 1)Ns − k′].

Exchanging the order of the two sums and locating all terms independent of k′ in front of
this sum leads to the chip rate filter output

rTc[k] =
∑

�

a[�] ·
(�+1)Ns−1∑

k′=�Ns

s[�, k − k′] · s∗[�, (�+ 1)Ns − k′]+ nTc[k]

=
∑

�

a[�] · φSS[(�+ 1)Ns − k]+ nTc [k]. (4.6)

1For simplicity, the normalization of gMF[�, k] to unit energy has been dropped.
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In (4.6), nTc [k] denotes the noise contribution at the MF output and φSS[k] denotes the
autocorrelation of the signature s[�, k] which is defined by

φSS[k] =
(�+1)Ns−1∑

k′=�Ns

s[�, k + k′] · s∗[�, k′]

= |h[�]|2 ·
(�+1)Ns−1∑

k′=�Ns

c[�, k + k′] · c[�, k′]

= |h[�]|2 · φCC[k]. (4.7)

For frequency-nonselective channels, φSS[k] simply consists of the product of the channel
coefficient’s squared magnitude and the spreading code’s autocorrelation function φCC[k].
Hence, the output of the MF is simply the correlation between y[k] and s[�, k]. Naturally,
the autocorrelation function has its maximum at the origin implying that the optimum
sampling time with the maximum SNR for rTc[k] is k = (�+ 1)Ns. According to (4.1),
φCC[0] = 1 holds. Furthermore, the spreading code is restricted to one symbol duration Ts

resulting in φCC[k] = 0 for |k| ≥ Ns. Hence, only one term of the outer sum contributes to
the results and we obtain

r[�] = rTc[k]
∣∣
k=(�+1)Ns

=
(�+1)Ns−1∑

k′=�Ns

y[k′] · s∗[�, k′] = |h[�]|2 · a[�]+ ñ[�]. (4.8)

The MF delivers the original symbol a[�] weighted with the squared magnitude |h[�]|2 of
the channel coefficient and disturbed by white Gaussian noise with zero mean and variance
σ 2
Ñ = |h[�]|2σ 2

N. Since the signal-to-noise ratio

SNR = σ 2
A

σ 2
Ñ
= |h[�]|2 · Es

N0

is the same as that for narrow-band transmission, spread spectrum gives no advantage in
single-user systems with flat fading channels.

Matched Filter for Frequency-Selective Fading

The broadened spectrum leads in many cases to a frequency-selective behavior of the mobile
radio channel. For appropriately chosen spreading codes, no equalization is necessary and
the MF is still a suited mean. The signature cannot be simplified as for flat fading chan-
nels so that the length of the signature now exceeds Ns samples, and successive symbols
interfere. Correlating the received signal y[k] with the signature s[�, k] yields after some
manipulations

r[�] =
(�+1)Ns+Lt−1∑

k=�Ns

s[�, k]∗ · y[k]

=
Lt−1∑
κ=0

h[�, Lt − 1− κ]∗ ·
(�+1)Ns+Lt−2∑
k=�Ns+Lt−1

y[k − κ] · c[�, k − Lt + 1]. (4.9)
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y[k]
TcTcTc

c[�, k − Lt + 1]c[�, k − Lt + 1]c[�, k − Lt + 1]

(�+1)Ns+Lt−2∑
k=�Ns+Lt−1

(�+1)Ns+Lt−2∑
k=�Ns+Lt−1

(�+1)Ns+Lt−2∑
k=�Ns+Lt−1

h∗[�, 0]h∗[�, Lt − 2]h∗[�, Lt − 1]

Lt−1∑
κ=0

r[�]

Figure 4.3 Structure of Rake receiver as parallel concatenation of several correlators

Implementing (4.9) directly leads to the well-known Rake receiver that was originally
introduced by Price and Greene (1958). It represents the matched receiver for spread spec-
trum communications over frequency-selective channels. From Figure 4.3 we recognize
that the Rake receiver basically consists of a parallel concatenation of several correlators
also called fingers, each synchronized to a dedicated propagation path. The received signal
y[k] is first delayed in each finger by 0 ≤ κ < Lt, then weighted with the spreading code
(with a constant delay Lt − 1), and integrated over a spreading period. Notice that integra-
tion starts after Lt − 1 samples have been received, that is, even the most delayed replica
h[�, Lt − 1] · x[k − Lt + 1] is going to be sampled. Next, the branch signals are weighted
with the complex conjugated channel coefficients and summed up. Therefore, the Rake
receiver maximum ratio combines the propagation paths and fully exploits the diversity
(see Section 1.5) provided by the frequency-selective channel.

All components of the Rake receiver perform linear operations and their succession can
be changed. This may reduce the computational costs of an implementation that depends on
the specific hardware and the system parameters such as spreading factor, maximum delay,
and number of Rake fingers. A possible structure is shown in Figure 4.4. The tapped delay
line represents a filter matched only to the channel impulse response and not to the whole
signature. We need only a single correlator at the filter output to perform the despreading.

Next, we have to consider the output signal r[k] in more detail. Inserting

y[k] =
∑

�

a[�] · s[�, k]+ n[k]

into (4.9) yields

r[�] =
Lt−1∑
κ=0

h[�, Lt − 1− κ]∗ ·
∑

k

(∑
�′

a[�′] · s[�′, k − κ]+ n[k − κ]

)
· c[�, k − Lt + 1].
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y[k]
TcTcTc

c[�, k − Lt + 1]
(�+1)Ns+Lt−2∑
k=�Ns+Lt−1

h∗[�, 0]h∗[�, Lt − 2]h∗[�, Lt − 1]

Lt−1∑
κ=0

r[�]

Figure 4.4 Structure of Rake receiver as serial concatenation of channel matched filter and
correlator

Since the signatures s[�, k] exceed the duration of one symbol, symbols at �′ = �± 1
overlap with a[�] and cause intersymbol interference (ISI). These signal parts are comprised
in a term nISI[�] so that in the following derivation we can focus on �′ = �. Moreover,
the noise contribution at the Rake output is denoted by ñ[�]. We obtain with s[�, k] =∑

κ h[�, κ] · c[�, k − κ]

r[�] = nISI[�]+ ñ[�]+ a[�] ·
Lt−1∑
κ=0

Lt−1∑
κ ′=0

h[�, Lt − 1− κ]∗ · h[�, κ ′] (4.10)

·
(�+1)Ns+Lt−2∑
k=�Ns+Lt−1

c[�, k − κ − κ ′] · c[�, k − Lt + 1].

The last sum in 4.10 represents again the autocorrelation φCC[�, κ + κ ′ − (Lt − 1)] of the
spreading code c[�, k]. The substitution κ → Lt − 1− κ finally results in

r[�] = a[�] ·
Lt−1∑
κ=0

Lt−1∑
κ ′=0

h[�, κ]∗ · h[�, κ ′] · φCC[�, κ ′ − κ]+ nISI[�]+ ñ[�] (4.11a)

= ra[�]+ rPCT + nISI[�]+ ñ[�]. (4.11b)

We see from (4.11a) that the autocorrelation function of spreading codes influences the
output of the Rake receiver. If it is impulse-like, that is, φCC[�, κ] ≈ 0 for κ �= 0, each
branch of the Rake receiver extracts exactly one propagation path and suppresses the other
interfering signal components. More precisely, the first (left) finger extracts the path with
the largest delay (h[�, Lt − 1]) because we start integrating at k = �Ns + Lt − 1 while the
last (right) finger detects the path with the smallest delay corresponding to h[�, 0]. Owing
to this temporal reversion, all signal components are summed synchronously and the output
of the Rake receiver consists of four parts as stated in (4.11b). The first term

ra[�] =
Lt−1∑
κ=0

|h[�, κ]|2 · a[�] (4.12)

obtained for κ ′ = κ combines the desired signal parts transmitted over different propagation
paths according to the maximum ratio combining (MRC) principle.2 This maximizes the

2Compared to (1.104), the normalization with
∑Lt−1

κ=0 |h[�, κ]|2 was neglected.
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SNR and delivers an Lt-fold diversity gain. The second term

rPCT[�] =
Lt−1∑
κ=0

a[�] ·
Lt−1∑
κ ′=0
κ ′ �=κ

h∗[�, κ]h[�, κ ′] · φCC[�, κ − κ ′] (4.13)

represents path crosstalk between different Rake fingers caused by imperfect autocorrela-
tion properties of the spreading code.3 For random spreading codes and rectangular chip
impulses, φCC[�, κ] ≈ √1/Ns holds for κ > 0 and a large spreading factor Ns. Hence, the
power of asynchronous signal components is attenuated by the factor 1/Ns. Path crosstalk
can be best suppressed for spreading codes with impulse-like autocorrelation functions.

It has to be mentioned that the Rake fingers need not be separated by fixed time delays
as depicted in Figure 4.3. Since they have to be synchronized onto the channel taps – which
are not likely to be spaced equidistantly – the Rake fingers are individually delayed. This
requires appropriate synchronization and tracking units at the receiver. Nevertheless, the
Rake receiver collects the whole signal energy of all multipath components and maximizes
the SNR.

Figure 4.5 shows the bit error rates (BERs) versus Eb/N0 for an uncoded single-user DS
spread spectrum system with random spreading codes of length N = 16. The mobile radio
channel was assumed to be perfectly interleaved, that is, successive channel coefficients are
independent of each other. The number of channel taps varies between Lt = 1 and Lt = 8
and their average power is uniformly distributed. Obviously, the performance becomes
better with increasing diversity degree D = Lt. However, for growing Lt, the difference
between the theoretical diversity curves from (1.118) and the true BER curves increases as
well. This effect is caused by the growing path crosstalk between the Rake fingers due to
imperfect autocorrelation properties of the employed spreading codes.

0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 in dB →

B
E

R
→

Lt = 1
Lt = 2
Lt = 4
Lt = 8
theory
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Figure 4.5 Illustration of path crosstalk and diversity gain of Rake receiver

3The exact expression should consider the case that the data symbol may change during the correlation due
to the relative delay κ − κ ′. In this case, the even autocorrelation function (ACF) has to be replaced by the odd
ACF defined in (4.37) on page 191.
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s[0]

s[1]

s[2]

Ns

Lt − 1

Figure 4.6 Structure of system matrix S for frequency-selective fading

Channel and Rake receiver outputs can also be expressed in vector notations. We com-
bine all received samples y[k] into a single vector y and all transmitted symbols a[�] into
a vector a. Furthermore, s[�] contains all Ns + Lt − 1 samples of the signature s[�, k] for
k = �Ns, . . . , (�+ 1)Ns + Lt − 2. Then, we obtain

y = S · a+ n, (4.14)

where the system matrix S contains the signatures s[�] as depicted in Figure 4.6. Each
signature is positioned in an individual column but shifted by Ns samples. Therefore, Lt − 1
samples overlap leading to interfering consecutive symbols. For Ns � Lt, this interference
can be neglected. With vector notations and neglecting the normalization to unit energy,
the Rake’s output signal in (4.9) becomes

r = SH · y = SH S· a+ SH n. (4.15)

4.1.2 Direct-Sequence CDMA

In CDMA schemes, spread spectrum is used for separating the signals of different sub-
scribers. This is accomplished by assigning each user u a unique spreading code cu[�, k]
with 1 ≤ u ≤ Nu. The ratio between the number of active users Nu and the spreading factor
Ns is denoted as the load

β = Nu

Ns
(4.16)

of the system. For β = 1, the system is said to be fully loaded. Assuming an error-free
transmission, the spectral efficiency η of a system is defined as the average number of
information bits transmitted per chip

η = mNu

Gp
= mRc · Nu

Ns
= mRc · β (4.17)

and is averaged over all active users. In (4.17), m = log2(M) denotes the number of bits
per symbol a[�] for M-ary modulation schemes. Obviously, spectral efficiency and system
load are identical for systems with mRc = 1.

Mathematically, the received signal can be conveniently described by using vector
notations. Therefore, the system matrix S in (4.14) has to be extended so that it contains
the signatures of all users as illustrated in Figure 4.7. Each block of the matrix corresponds
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a) b)

� = 0
� = 0

� = 1
� = 1

� = 2� = 2

uu

Figure 4.7 Structure of system matrix S for direct-sequence CDMA a) synchronous down-
link, b) asynchronous uplink

to a certain time index � and contains the signatures su[�] of all users. Owing to this
arrangement, the vector

a = [a1[0] a2[0] · · · aNu [0] a1[1] a2[1] · · · ]T (4.18)

consists of all the data symbols of all users in temporal order.

Downlink Transmission

At this point, we have to distinguish between uplink and downlink transmissions. In the
downlink depicted in Figure 4.8, a central base station or access point transmits the user
signals xu[k] synchronously to the mobile units. Hence, looking at the link between the
base station and one specific mobile unit u, all signals are affected by the same chan-
nel hu[�, κ]. Consequently, the signatures of different users v vary only in the spread-
ing code, that is, sv[�, κ] = cv[�, κ] ∗ hu[�, κ] holds, and the received signal for user u

becomes

yu = S · a+ nu = Thu[�,κ]C · a+ nu. (4.19)

a1[�]

aNu [�]

c1[�, k]

cNu [�, k]

x1[k]

xNu [k]

√
P1

√
PNu

hu[�, κ]

nu[k]

yu[k]

Figure 4.8 Structure of downlink for direct-sequence CDMA system
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In (4.19), Thu[�,κ] denotes the convolutional matrix of the time varying channel impulse
response hu[�, κ] and C is a block diagonal matrix

C =


C[0]

C[1]
C[2]

. . .

 (4.20)

containing in its blocks C[�] = [
c1[�] · · · cNu [�]

]
the spreading codes

cu[�] = [
cu[�, �Ns] · · · cu[�, (�+ 1)Ns − 1]

]T
of all users. This structure simplifies the mitigation of MUI because the equalization of
the channel can restore the desired correlation properties of the spreading codes as we will
see later.

However, channels from the common base station to different mobile stations are differ-
ent, especially the path loss may vary. To ensure the demanded Quality of Service (QoS),
for example, a certain signal to interference plus noise ratio (SINR) at the receiver input,
power control strategies are applied. The aim is to transmit only as much power as necessary
to obtain the required SINR at the mobile receiver. Enhancing the transmit power of one
user directly increases the interference of all other subscribers so that a multidimensional
problem arises.

In the considered downlink, the base station chooses the transmit power according to
the requirements of each user and the entire network. Since each user receives the whole
bundle of signals, it is likely to happen that the desired signal is disturbed by high-power
signals whose associated receivers experience poor channel conditions. This imbalance of
power levels termed near–far effect represents a penalty for weak users because they suffer
more under the strong interference. Therefore, the dynamics of downlink power control are
limited. In wideband CDMA systems like UMTS (Holma and Toskala 2004), the dynamics
are restricted to 20 dB, to keep the average interference level low. Mathematically, power
control can be described by introducing a diagonal matrix P into (4.14) containing the
user-specific power amplification Pu (see Figure 4.8).

y = SP1/2 · a+ n (4.21)

Uplink Transmission

Generally, the uplink signals are transmitted asynchronously, which is indicated by different
starting positions of the signatures su[�] within each block as depicted in Figure 4.7b.
Moreover, the signals are transmitted over individual channels as shown in Figure 4.9.
Hence, the spreading codes have to be convolved individually with their associated channel
impulse responses and the resulting signatures su[�] from (4.4) are arranged in a matrix S
according to Figure 4.7b.

The main difference compared to the downlink is that the signals interfering at the
base station experienced different path losses because they were transmitted over differ-
ent channels. Again, a power control adjusts the power levels Pu of each user such that
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Figure 4.9 Structure of uplink for direct-sequence CDMA system

its required SINR is obtained at the receiving base station. Contrary to the downlink, the
dynamics are much larger and can amount to 70 dB in wideband CDMA systems (Holma
and Toskala 2004). However, practical impairments like fast fading channels and an imper-
fect power control lead to SINR imbalances also in the uplink. Additionally, identical power
levels are not likely in environments supporting multiple services with different QoS con-
straints. Hence, near–far effects also influence the uplink performance in a CDMA system.
Receivers that care about different power levels are called near-far resistant. In the context
of multiuser detectors, a near–far-resistant receiver will be introduced.

Multirate CDMA Systems

As mentioned in the previous paragraphs, modern communication systems like UMTS or
CDMA 2000 are designed to provide a couple of different services, like speech and data
transmission, as well as multimedia applications. These services require different data rates
that can be supported by different means. One possibility is to adapt the spreading factor
Ns. Since the chip duration Tc is a constant system parameter, decreasing Ns enhances the
data rate while keeping the overall bandwidth constant (Tc = Ts/Ns → B = Ns/Ts).

However, a large spreading factor corresponds to a good interference suppression and
subscribers with large Ns are more robust against MUI and path crosstalk. On the contrary,
users with low Ns become quite sensitive to interference as can be seen from (4.27) and
(4.31). These correspondences are similar to near–far effects – a small spreading factor is
equivalent to a low transmit power and vice versa. Hence, low spreading users need either
a higher power level than the interferers, a cell with only a few interferers, or sophisticated
detection techniques at the receiver that are insensitive to these effects.

The multicode technique offers another possibility to support multiple data rates. Instead
of decreasing the spreading factor, several spreading codes are assigned to a subscriber
demanding high data rates. Of course, this approach consumes resources in terms of spread-
ing codes that can no longer be offered to other users. However, it does not suffer from an
increased sensitivity to interference.

A third approach proposed in the UMTS standard and limited to ‘hot-spot’ scenar-
ios with low mobility is the HSDPA (high speed downlink packet access) channel. It
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employs adaptive coding and modulation schemes as well as multiple antenna techniques
(cf. Chapter 6). Moreover, the connection is not circuit switched but packet oriented, that
is, there exist no permanent connection between mobile and base station but data pack-
ets are transmitted according to certain scheduling schemes. Owing to the variable coding
and modulation schemes, an adaption to actual channel conditions is possible but requires
slowly fading channels. Contrary to standard UMTS links, the spreading factor is fixed to
Ns = 16 and no power control is applied (3GPP 2005b).

4.1.3 Single-User Matched Filter (SUMF)

The optimum single-user matched filter (SUMF) does not care about other users and treats
their interference as additional white Gaussian distributed noise. In frequency-selective
environments, the SUMF is simply a Rake receiver. As described earlier, its structure can
be mathematically described by correlating y with the signature of the desired user. Using
vector notations, the output for user u is given by

ru = SH
u · y = SH

u Su · au + SH
u S\u · a\u + SH

u · n (4.22)

where Su contains exactly those columns of S that correspond to user u (cf. Figure 4.6).
Consequently, S\u consists of the remaining columns not associated with u. The same
notation holds for au and a\u. The noise ñ = SH

u n is now colored with the covariance
matrix �ÑÑ = E{ññH } = σ 2

NSH
u Su.

If the signatures in Su are mutually orthogonal to those in S\u, then SH
u S\u is always

zero and ru does not contain any MUI. In that case, the MF describes the optimum detector
and the performance of a CDMA system would be that of a single-user system with Lt-fold
diversity. However, although the spreading codes may be appropriately designed, the mobile
radio channel generally destroys any orthogonality. Hence, we obtain MUI, that is, symbols
of different users interfere. This MUI limits the system performance dramatically. The
output of the Rake receiver for user u can be split into four parts

ru[�] = ra
u[�]+ rMUI

u [�]+ r ISI
u [�]+ ñu[�] (4.23)

Comparing (4.23) with (4.11) shows that path crosstalk, ISI, and noise are still present, but
a fourth term denoting the multiple access interference stemming from other active users
now additionally disturbs the transmission. This term can be quantified by

rMUI
u [�] =

Lt−1∑
κ=0

Nu∑
v=1
v �=u

√
Pv ·

Lt−1∑
κ ′=0

h∗u[�, κ]hv[�, κ ′] · φCuCv [�, κ − κ ′] · au[�]av[�] (4.24)

where the factor Pv adjusts the power of user v. From (4.24), we see that the crosscorrelation
function φCuCv [�, κ − κ ′] of the spreading codes determines the influence of MUI. For
orthogonal sequences, rMUI[�] vanishes and the MF is optimum. Moreover, the SUMF
is not near–far resistant because high-power levels Pv of interfering users increase the
interfering power and, therefore, the error rate.

Assuming a high number of active users, the interference is often modeled as additional
Gaussian distributed noise due to the central limit theorem. In this case, the SNR defined
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in (1.14) has to be replaced by a (SINR).

SNR = σ 2
X

σ 2
N

−→ SINR = σ 2
X

σ 2
N + σ 2

I
(4.25)

The term σ 2
I denotes the interference power, that is, the denominator in (4.25) represents

the sum of interference and noise power. Generally, these powers vary in time because
they depend on the instantaneous channel conditions. For simplicity, the following analysis
on the additive white Gaussian noise (AWGN) channel is restricted. Assuming random
spreading codes, the power of each interfering user is suppressed in the average by a factor
Ns and

σ 2
I =

Es

Ts

·
∑
v �=u

Pv · φ2
u,v[0] = 1

Ns
· Es

Ts

·
∑
v �=u

Pv (4.26)

holds. Next, the difference between uplink and downlink is illuminated, especially for real-
valued modulation schemes. For the sake of simplicity, only binary phase shift keying
(BPSK) and quaternary phase shift keying (QPSK) are considered.

Downlink Transmission for AWGN Channel

Three cases are distinguished:

1. No power control and real symbols.
If the modulation alphabet contains only real symbols, we consider only the real
part of the matched filtered signal and only half of the noise power disturbs the
transmission. Hence, σ 2

N′ = N0/2/Ts has to be inserted into (4.25) (cf. page 12).
Without power control, all users experience the same channel in the downlink so
that their received power levels Pv = 1 are identical. The resulting average SINR for
BPSK can be approximated by

SINR ≈ Es

N0/2+ (Nu − 1)Es/Ns
= Eb

N0/2+ (Nu − 1)Eb/Ns
. (4.27)

Obviously, enlarging the spreading factor Ns results in a better suppression of inter-
fering signals for fixed Nu. Figure 4.10 shows the SINR versus the number of active
users and SINR versus the 2Eb/N0.4 We recognize that the SINR decreases dramat-
ically for growing number of users. For very high loads, the SINR is dominated by
the interference and the noise plays only a minor role. This directly affects the bit
error probability so that the performance will degrade dramatically.

According to the general result in (1.49) on page 21, the error probability amounts
to

Pb = 1

2
· erfc

(√
σ 2
X

σ 2
N

)
= 1

2
· erfc

(√
σ 2
X

2σ 2
N ′

)
for BPSK transmission over an AWGN channel. The argument of the complementary
error function is half of the effective SNR σ 2

X/σ 2
N′ after extracting the real part. Using

4For BPSK, Eb = Es holds. Furthermore, we use the effective SNR 2Eb/N0 after extracting the real part since
this determines the error rate in the single-user case.
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Figure 4.10 SINR for downlink of DS-CDMA system with BPSK, random spreading
(Ns = 16) and AWGN channel, 1 ≤ Nu ≤ 20

this result and substituting the SNR by the SINR, we obtain for the considered CDMA
system

Pb ≈ 1

2
· erfc

(√
SINR

2

)
= 1

2
· erfc

(√
Eb

N0 + 2(Nu − 1)Eb/Ns

)
. (4.28)

Figure 4.11 shows the corresponding results. As predicted, the bit error probability
increases dramatically with growing system load β. For large β, it is totally dominated
by the interference.
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Figure 4.11 Bit error probability for downlink of DS-CDMA system with BPSK, random
spreading (Ns = 16) and an AWGN channel, 1 ≤ Nu ≤ 20
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Figure 4.12 Bit error probability for downlink of DS-CDMA system with power control,
BPSK, random spreading (Ns = 16) and an AWGN channel, Nu = 3 users

2. No power control and complex symbols.
If we use a complex QPSK symbol alphabet, the total noise power σ 2

N instead of σ 2
N′

affects the decision and (4.27) becomes with Es = 2Eb

SINR ≈ Es

N0 + (Nu − 1)Es/Ns
= Eb

N0/2+ (Nu − 1)Eb/Ns
. (4.29)

This is the same expression in terms of Eb as in (4.27). Therefore, the bit error rates
of inphase and quadrature components equal exactly those of BPSK in (4.28) when
Eb is used. This result coincides with those presented in Section 1.4.

3. Power control and real symbols.
As a last scenario, we look at a BPSK system with power control where the received
power of a single-user v is much higher than that of the other users (Pv � Pu �=v).
The SINR results in

SINRu ≈ Eb

N0/2+ Eb/Ns
∑

v �=u Pv

. (4.30)

Figure 4.12 shows the results obtained for Nu = 3 users from which one of the inter-
ferers varies its power level while the others keep their levels constant. Obviously, the
performance degrades dramatically with growing power amplification Pv of user v.
For Pv →∞, the SNR has no influence anymore and the performance is dominated
by the interferer. Hence, the SUMF is not near–far resistant.

Uplink Transmission

The main difference between uplink and downlink transmissions is the fact that in the
first case each user is affected by its individual channel, whereas the signals arriving at
a certain mobile are passed through the same channel in the downlink. We now assume
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Figure 4.13 SINR for uplink of DS-CDMA system with BPSK, random spreading (Ns =
16) and AWGN channels with random phases, 1 ≤ Nu ≤ 20

a perfect power control that ensures the same power level for all users at the receiver.
Note that this differs from the downlink where all users are influenced by the same chan-
nel and a power control would result in different power levels. Again, we restrict to the
AWGN channel but allow random phase shifts by ϕu on each channel. We distinguish two
cases:

1. Real symbols and AWGN channel with random phases.
After coherent reception by multiplying with e−jϕu , real-valued modulation schemes
like BPSK benefit from the fact that the interference is distributed in the complex
plane due to ej (ϕv−ϕu) with ϕv − ϕu �= 0 while the desired signal is contained only in
the real part. Hence, only half of the interfering power affects the real part and the
average SINR becomes

SINR ≈ Es

N0/2+ 1/2 · (Nu − 1)Es/Ns
=

BPSK

2Eb

N0 + (Nu − 1)Eb/Ns
. (4.31)

Figure 4.13 shows the corresponding results for AWGN channels. A comparison with
Figure 4.10 shows that the SINRs are much larger, especially for high loads, and that
a gain of 3 dB is asymptotically achieved. With regard to the performance,

Pb ≈ 1

2
· erfc

(√
SINR

2

)
= 1

2
· erfc

(√
Es

N0 + (Nu − 1)Es/Ns

)
(4.32)

delivers the results depicted in Figure 4.14. A comparison with the downlink in
Figure 4.11 illustrates the benefits of real-valued modulation schemes in the uplink,
too. However, it has to be emphasized that complex modulation alphabets have a
higher spectral efficiency, that is, more bits per symbol can be transmitted.

www.4electron.com



190 CODE DIVISION MULTIPLE ACCESS

0 5 10 15 20
10

−6

10
−4

10
−2

10
0

Eb/N0 in dB →

B
E

R
→

Nu, β

Figure 4.14 Bit error probability for uplink of DS-CDMA system with BPSK, random
spreading codes (Ns = 16) and an AWGN channel with random phases, 1 ≤ Nu ≤ 20

2. Complex symbols and AWGN channel with random phases.
It is straightforward to recognize that the distribution of the interference in the com-
plex plane provides no advantage for complex-valued modulation schemes like QPSK.
Therefore, the entire interfering power σ 2

I disturbs the transmission and the SINR
becomes

SINR ≈ Es

N0 + (Nu − 1)Es/Ns
= Eb

N0/2+ (Nu − 1)Eb/Ns
. (4.33)

Comparing (4.31) with (4.33) in terms of Eb, we see that BPSK and QPSK behave
differently in the uplink.

It has to be mentioned that orthogonal spreading codes could be employed for syn-
chronous frequency-nonselective channels. In this case, no MUI would disturb the
transmission and the above discussion would be superficial. Nevertheless, the assump-
tions simplified the above analysis and the principle differences between uplink and
downlink still hold for frequency-selective channels. With reference to a synchronous
downlink transmission, even the use of scrambled orthogonal sequences (see page
192) makes sense because synchronous signal components are perfectly suppressed
and only asynchronous parts interfere. Furthermore, the equalization of the single
channel could restore orthogonality. For totally asynchronous transmissions, orthog-
onal codes generally do not lead to any advantage.

We saw that the auto and crosscorrelation properties of spreading codes play a crucial
role in CDMA systems. Therefore, the next section briefly introduces some important
code families. Afterwards, the performance of a single-user MF is discussed in the
context of OFDM-CDMA and in coded environments.
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4.1.4 Spreading Codes

Requirements for Spreading Codes

As illustrated above, the correlation properties of spreading codes have deep impact on the
performance of spread spectrum and CDMA systems. To simplify the notation, we consider
the spreading codes cu[�, k] only within one symbol period. Hence, the time variable � is
a constant and can be neglected in this section. The even or periodic correlation function
for real signals is defined by

φeven
CuCv

[κ] =
Ns−1∑
k=0

cu[k]cv[k + κ]. (4.34)

For u = v, it represents the even (periodic) autocorrelations function, and for u �= v, the
even crosscorrelation function. Regarding short codes, φCuCv [κ] is itself periodic with a
period that equals the spreading factor Ns.

On the one hand, different propagation paths must be separated by the Rake receiver to
exploit the diversity provided by a frequency-selective channel and to avoid path crosstalk.
This requires an impulse-like shape of the autocorrelation function, that is, φCuCu [κ] ≈ 0
for κ �= 0 is desirable. This property is also important for synchronization purposes. On
the other hand, interfering users must be suppressed sufficiently by low crosscorrelations
φCuCv �=u

[κ] ≈ 0 for arbitrary κ . Unfortunately, both conditions cannot be fulfilled simultane-
ously as shown in Sarvate and Pursley (1980). Hence, a trade-off between autocorrelation
and crosscorrelation properties is required. Moreover, a lot of spreading sequences should
exist to provide many users access to the system.

Regarding the uplink of a CDMA system, the transmission is generally asynchronous.
Therefore, changes of the data symbols au[�] occur during correlation and the definition
given in (4.34) cannot be applied anymore. In fact, we need the nonperiodic correlation
function

φnon
CuCv

[κ] =


Ns−1−κ∑

k=0
cu[k] · cv[k + κ] 0 ≤ κ < Ns

Ns−1+κ∑
k=0

cu[k − κ] · cv[k] −Ns < κ ≤ 0.

(4.35)

With (4.35), the even correlation function in (4.34) becomes

φeven
CuCv

[κ] = φnon
CuCv

[κ]+ φnon
CuCv

[Ns − κ]. (4.36)

Equivalently, the odd correlation function

φodd
CuCv

[κ] = φnon
CuCv

[κ]− φnon
CuCv

[Ns − κ] (4.37)

describes the correlation between two BPSK modulated signals u[k] and v[k] if they have
a mutual delay κ and one of the information symbols au[�] or av[�] changes its sign during
correlation.
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Orthogonal Spreading Codes

With respect to MUI, orthogonal spreading codes would be optimum because they suppress
interfering signals perfectly. An example of orthogonal codes are Hadamard codes or Walsh
sequences (Harmuth 1964, 1971; Walsh 1923) that were already introduced as forward error
correction (FEC) codes in Section 3.2.4. For a synchronous transmission over frequency-
nonselective channels, signals can be perfectly separated because

φCw
u Cw

v
[κ = 0] =

{
1 u = v

0 else
(4.38)

holds. Walsh sequences exist for those lengths Ns for which Ns, Ns/12 or Ns/20 are powers
of 2. The number of Walsh sequences of a given length Ns equals exactly Ns.

Since autocorrelation and crosscorrelation properties cannot be perfect at the same
time, we can conclude that the autocorrelation properties of Walsh sequences are rather
bad. Moreover, even the crosscorrelation can take quite large values for κ �= 0. Hence, for
asynchronous transmissions or frequency-selective mobile radio channels, the orthogonality
is destroyed and severe interference makes a reliable transmission nearly impossible.

A solution to this problem is to combine Walsh sequences cw
u [k] with an outer scrambling

code cs[k]. This second code does not perform an additional spreading because the duration
of its chips is the same as for cw

u [k]. In cellular networks, cs[k] is usually identical for all
users within the same cell (Dahlman et al. 1998; Gilhousen et al. 1991) and allows for cell
identification. Therefore, the new code

cu[k] = cw
u [k] · cs[k] (4.39)

maintains orthogonality for synchronous signal components and suppresses asynchronous
parts, like a random code.

Maximum Length Sequences (m-sequences)

To have an efficient implementation, spreading codes are often generated by feedback shift
registers. Figure 4.15 shows an example with a register length of m = 9. The register can
be initialized arbitrarily with ±1 and generates a periodic sequence. If the polynomial
g(D) = g0 + g1D + · · · gmDm describing the feedback structure of the register is prime,
the period of the sequence is maximized to 2m − 1 and the register passes through all
2m − 1 states except the all-one-state within one period. Therefore, these sequences are
termed m-sequences or maximum length sequences.

One important property of m-sequences is that they have a near-optimum autocorrelation
function

φ
m−seq
CuCu

[κ] =
{

1 for κ = 0

−1/Ns else.
(4.40)

Hence, they are called quasi-orthogonal since they tightly approach an impulse-like
shape. The power of asynchronous replicas of the desired signal can be suppressed by
a factor N−2

s . With respect to the crosscorrelation, m-sequences perform much worse.
Moreover, given a certain spreading factor Ns, there exist only a few m-sequences. This
dramatically limits the applicability in CDMA systems because only few users can be
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1 8 92 3 4 5 6 7

g0=1 g9=1g4=1

g =g1 2 =0=g3 g =g g5 6 8= =0=g7 c[k]

√
1/Ns

Figure 4.15 Feedback shift register of length m = 9 for generating an m-sequence with
period = 29 − 1 = 511

supported. As an example, there exist only six m-sequences of length Ns = 31 whose
feedback polynomials are

g1(D) = 1+D2 +D5 g2(D) = 1+D3 +D5

g3(D) = 1+D +D2 +D3 +D5 g4(D) = 1+D +D2 +D4 +D5

g5(D) = 1+D +D3 +D4 +D5 g6(D) = 1+D2 +D3 +D4 +D5.

(4.41)

Gold Codes

Gold discovered in 1967 that the crosscorrelation between certain pairs of m-sequences take
only three different values. Moreover, such preferred pairs can be used to construct a whole
family of codes that have the same period as well as the same correlation property (Gold
1967). This is accomplished by multiplying the outputs of the corresponding shift registers
as shown in Figure 4.16. Different codes are generated by inserting different delays between
both registers. The delay n can be adjusted between n = 0 and n = 2m − 1. Hence, a set
of 2m + 1 Gold codes can be constructed on the basis of a preferred pair of m-sequences
including the two generating m-sequences itself.

1 92 3 4 5 6 7 8

1 92 3 4 5 6 7 8

c[k]

√
1/Ns

z−n

Figure 4.16 Pair of feedback shift register of length m = 9 for generating a Gold code of
length 29 − 1 = 511
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Table 4.1 Preferred pairs of m-sequences for generation of
Gold code with length 31

g1(D) g2(D) g3(D) g4(D) g5(D) g6(D)

g1(D) – x x x x
g2(D) – x x x x
g3(D) x x – x x
g4(D) x x x – x
g5(D) x x x – x
g6(D) x x x x –

Table 4.1 shows preferred pairs of m-sequences for the feedback polynomials listed in
(4.41). The sequence length is Ns = 31 (register length m = 5).

Gold codes can also be generated by a single shift register whose length is twice as large
as m (Pickholtz et al. 1982). Consequently, Gold codes are no maximum length sequences.
Furthermore, they exist only for shift registers whose lengths are not multiples of four. The
even crosscorrelation function of Gold codes takes the values

φGold
CuCv

[κ] = 1

Ns
·


−1

−2�(m+2)/2� − 1

2�(m+2)/2� − 1 ,

(4.42)

where �x� denotes the integer part of x (Sarvate and Pursley 1980).
A large number of sequences like Kasami sequences or complex-valued spreading codes

exist, which are not addressed in this book. Since the code optimization is not the focus,
random codes without any designed correlation properties are often used.

4.2 OFDM-CDMA

4.2.1 Multicarrier Transmission
The above sections showed that spreading with sequences having appropriate correlation
properties is a suited mean to overcome the frequency selectivity of the transmission
channel. Moreover, diversity is gained by separating different propagation paths during
despreading and combining them according to the MRC principle (see Rake receiver on
page 178). A different way to treat frequency selectivity is to use narrow-band signals
whose bandwidth B is much smaller than the coherence bandwidth of the channel. In this
case, ISI can be neglected and equalization is carried out by multiplying the received signal
with the complex conjugate channel coefficient.

However, a small bandwidth corresponds to large symbol durations and low data rates.
To overcome this penalty, multiple narrow-band data streams can be transmitted in parallel
directions on different subcarriers. Figure 4.17 shows the structure of a MC transmitter.
As in a conventional single-carrier system, the bits d[i] are fed to a linear M = 2m-ary
mapper. Afterwards, the symbols ã[�] of duration Ts are mapped onto Nc parallel streams
a[l, µ] = ã[lNc + µ] with 0 ≤ µ < Nc where they are lowpass filtered with gT (t) (refer
to Section 1.2). Next, the signals are multiplied with their associated carriers. Note that the
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�S/P
d[i] ã[�]

a[l, 0]

a[l, 1]

a[l, Nc − 1]

mapper

gT (t)

gT (t)

gT (t)

ej2πf0t

ej2πf1t

ej2πfNc−1t

x(t)

Figure 4.17 Structure of multicarrier transmitter

frequencies fµ do not describe the transmission band but still the equivalent baseband, that
is, −fmax ≤ fµ ≤ +fmax holds. The complex baseband signal has the form

xMC(t) =
∞∑

l=−∞

Nc−1∑
µ=0

a[l, µ] · gT (t − lTMC) · ej2πfµt . (4.43)

The symbol rate of one MC symbol amounts to

1

TMC
= 1

Nc ·m · Tb
= 1

Nc · Ts

(4.44)

and the bandwidth of each sub-stream is Nc times smaller than for a single-carrier trans-
mission.

However, MC systems also come along with some drawbacks. First, the superposition
of Nc independent signals results in a complex envelope |x(t)| that varies over a wide range.
This is essentially a problem for power amplifiers. They are designed to work efficiently
at a defined working point, that is, a certain magnitude of the signal. If this working
point is exceeded, the amplifier loses its linearity and efficiency. Therefore, signals whose
magnitudes have a large peak-to-average ratio are often nonlinearly distorted. This leads
to a higher error rate performance as well as to an out-of-band radiation that is essentially
bad in FDMA systems. Additionally, the narrow bandwidth leads to flat fading conditions
on each subcarrier. Therefore, no frequency diversity can be exploited.

4.2.2 Orthogonal Frequency Division Multiplexing
OFDM represents a special kind of MC technique. The first ideas for a MC transmission
can be traced back to (Saltzberg 1967; Weinstein 1971) and have been reinvented several
times (Bingham 1990; Kammeyer et al. 1992; Kolb 1981). A practical breakthrough hap-
pens with the definition of the European terrestrial digital audio broadcasting (DAB (Hoeg
and Lauterbach 2001; Schulze and Lüders 2005). DAB employed OFDM for the first time
in a mobile radio application. Shortly after DAB, the terrestrial digital video broadcast-
ing (DVB-T), also employing OFDM, was defined (Reimers 1995; Schulze 1998). Today,
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OFDM is used in wireless local area networks (WLAN) according to the hiperlan/2 or
the IEEE 802.11a standards (ETSI 2000, 2001; Hiperlan2 1999). OFDM is also applied in
wired transmission systems like digital subscriber line (DSL) technologies. In this context,
the MC technique is termed discrete multitone (DMT).

Transmitter Design

Starting with the above-described MC transmitter, we obtain an OFDM transmitter by using
the following specifications. The lowpass filter gT (t) has a rectangular shape

gT (t) =
{

1 for 0 ≤ t < TMC

0 else .
(4.45)

Since the rectangular impulse in (4.45) corresponds to the sinc-function in the frequency
domain ∣∣GT (j2πf )

∣∣ = ∣∣∣∣ sin(2πf TMC/2)

2πfTMC/2

∣∣∣∣ = ∣∣sinc(πf TMC)
∣∣, (4.46)

the spectrum has equidistant zeros at multiples of �f = 1/TMC. Adjusting the carrier
spacing according to fµ − fµ−1 = �f = 1/TMC, the sinc-functions overlap such that a
maximum of one subcarrier coincides with zeros of all other sinc-impulses. Therefore,
the first Nyquist condition is fulfilled in the frequency domain and parallel signals are
mutually orthogonal so that no interference disturbs the transmission. This explains the
naming ‘orthogonal’ in OFDM and is illustrated in Figure 4.18.

In Chapter 1, we derived a time-discrete channel model that is used for subsequent
investigations. Therefore, we do not proceed with the time-continuous signal xMC(t) but a
sampled version of it. Inserting (4.45) into (4.43), we obtain with fµ = µ/TMC = µ/(NcTs)

the time-discrete signal

x[�] := x(�Ts) =
Nc−1∑
µ=0

a[l, µ] · ej2πµ/(NcTs)�Ts

=
Nc−1∑
µ=0

a[l, µ] · ej2πµ�/Nc = Nc · IDFT(µ){a[l, µ]} (4.47)

of rate 1/Ts = Nc/TMC. The samples in the interval lNc ≤ � < (l + 1)Nc represent the
l-th OFDM symbol of length Nc. Moreover, we recognize from (4.47) that the OFDM
transmitter can be efficiently implemented with the inverse fast Fourier transform (IFFT).
Figure 4.19 shows the whole OFDM transmitter.

. . .

f

. . .

B N T= /c MC

. . .. . . . . .

f0 f1 f2 fNc−1

Figure 4.18 Spectrum of OFDM transmit signal
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IFFT

OFDM transmitter

guard
interval

time-discrete
channel

Figure 4.19 Structure of OFDM transmitter

The Guard Interval

The most important property of OFDM is the orthogonality in time as well as in frequency
domain. In the time domain, this is ensured by using nonoverlapping rectangular impulses
gT (t); in the frequency domain, the specific spacing of the subcarriers avoids intercarrier
interference (ICI). However, this orthogonality is destroyed by frequency-selective channels
as depicted in Figure 4.20. Without loss of generality, we regard the OFDM symbol at time
instant 0 and its direct neighbors. If Lt is the length of channel impulse response, Lt − 1
samples of consecutive OFDM symbols overlap due to the post-transient phase. This effect
is termed ISI and destroys orthogonality in time. Moreover, the pre-transient phase leads
to ICI.

Orthogonality can be maintained by inserting a cyclic prefix called guard interval in
front of each OFDM symbol. As demonstrated in Figure 4.21, each OFDM symbol will be
preceded by its own tail in the interval. If the length of the guard interval Ng is at least as
long as the length of the channel impulse response Lt, the post-transient phase of symbol
−1 and the pre-transient phase of symbol 0 are restricted to the guard interval and do not
affect the core OFDM symbols.

The insertion of the cyclic prefix results in a cyclic convolution of channel impulse
response and OFDM symbol. According to the properties of the discrete Fourier transfor-
mation, a cyclic convolution of two signals corresponds to the product of the associated
discrete Fourier transform (DFT) spectra. Hence, for κmax < Ng, we obtain

x̃[�] = x[�] � h[l, �− lNc]

◦
|
•

(4.48)

X̃[l, µ] = DFT(�){x[�]}︸ ︷︷ ︸
a[l, µ]

·DFT(�){h[l, �]}︸ ︷︷ ︸
H [l, µ]

= a[l, µ] ·H [l, µ]

where � denotes the cyclic convolution with respect to �. We can conclude from (4.48)
that the symbols a[l, µ] on each subchannel are multiplied by a scalar complex channel
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Figure 4.20 Influence of frequency-selective channel on OFDM transmission
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Figure 4.21 Effect of guard interval
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coefficient H [l, µ]. Therefore, we have flat fading conditions on each subcarrier and no
diversity can be gained for uncoded OFDM transmissions.

Receiver Design

The above mentioned properties simplify the receiver structure remarkably as depicted in
Figure 4.22. First, the guard interval is removed and only the core OFDM symbol in the
time interval lNc ≤ � < (l + 1)Nc is processed. Since this also removes pre-transient and
post-transient phases, we have a steady state within each core symbol and can process
successive OFDM symbols independently. Furthermore, orthogonality between subcarriers
is maintained. After transforming the core symbol back into the frequency domain, we
obtain the received vector at time instant l

ỹ[�] = x[�] � h[l, �− lNc]+ ñ[�]

◦
|
•

y[l, µ] = H [l, µ] · a[l, µ]+ n[l, µ]. (4.49)

Owing to the cyclic prefix, we have transformed the frequency-selective channel into a flat
fading channel on each subcarrier and the received vector can be described in the frequency
domain by

y[l] = H[l] · a[l]+ n[l] (4.50)

where H[l] = diag
[
H [l, 0] · · · H [l, Nc − 1]

]
represents a matrix with the transfer function

on the main diagonal. The vectors a[l] and n[l] contain the information symbols a[l, µ]
and the noise samples n[l, µ] for 0 ≤ µ < Nc, respectively. The noise statistics are not
affected by the Fourier transformation because it is orthogonal, that is, n[l, µ] is still
Gaussian distributed with zero mean and variance σ 2

N = N0/Ts. According to Figure 4.22,
equalization is now performed by weighting the symbols y[l, µ] with scalar equalizer
coefficients.

â[l, µ] = E[l, µ] · y[l, µ] ⇔ â[l] = E[l] · y[l] (4.51)

S/Ptime-discrete
channel

remove
guard

interval
FFT

OFDM receiver

ỹ[k]

y[l, 0]

y[l, 1]

y[l, Nc − 1]

E[l, 0]

E[l, 1]

E[l, Nc − 1]

â[l, 0]

â[l, 1]

â[l, Nc − 1]

Figure 4.22 Structure of OFDM receiver
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In (4.51), E[l] is a diagonal matrix containing the equalizer coefficients E[l, µ] of each
subcarrier. For the single-user case, E[�, µ] = H [�, µ]−1 is an appropriate choice, that is,
the channel is perfectly equalized according to the zero-forcing (ZF) criterion. Estimates on
very weak subchannels are very unreliable, leading to high error rates in uncoded systems.
If channel coding is applied, reliability information has to be passed to the decoder for each
bit. For BPSK and QPSK, this is equivalent to using E[�, µ] = H [�, µ]∗. For modulation
schemes with M > 4, appropriate soft-output demodulation has to be performed. Further
information on equalization techniques in the context of multiusers is presented in the next
subsection.

The main benefit of OFDM is the extremely simple equalization. This advantage is
obtained at the expense of a reduced spectral efficiency due to the insertion of the cyclic
prefix. Removing the prefix at the receiver results in a violation of the MF principle and
consequently in an SNR loss

δ2 = 1− Ng

Nc +Ng

= Nc

Nc +Ng

= 1

1+Ng/Nc
. (4.52)

Obviously, the SNR loss and, equivalently, the efficiency of OFDM depend on the ratio
Ng/Nc, that is, the fraction of the guard interval compared to the core OFDM symbol. The
larger the ratio, the larger the loss (small δ2). A practical value is Ng/Nc = 0.25 resulting
in a loss of approximately 1 dB. Since the minimum length of the guard interval is fixed by
the channel length Lt, the efficiency can be improved by increasing the number of carriers
Nc. However, this also enlarges total symbol duration Nc + Ng which may become critical
for time varying channels.5 Therefore, we always have to find a compromise between
frequency selectivity, time selectivity, and spectral efficiency in OFDM systems. It is often
stated that OFDM has a lower spectral efficiency compared to single-carrier systems due
to the guard interval. However, a fair comparison can only be drawn if real transmit filters
gT (t) – for example, root raised cosine filters with realistic roll-off factor – having similar
sharp edges in the power density spectrum are taken into consideration.

4.2.3 Combining OFDM and CDMA

It is quite obvious that spread spectrum and OFDM represent two opposite techniques to
treat frequency-selective channels. Spread spectrum systems use large bandwidths to have
the capability for separating the propagation paths with the Rake receiver. Since this sep-
aration is not perfect, the receiver suffers from path crosstalk. On the contrary, OFDM
divides the signal into parallel narrow-band components from which each experiences only
a flat channel. This allows very simple receivers at the expense of an SNR loss due to the
guard interval. A promising candidate for future mobile radio systems is the combination
of both approaches (Hanzo et al. 2003a,b). There exist several possibilities to combine
MC techniques and CDMA (DaSilva and Sousa 1993; Dekorsy 2000; Fazel and Papke
1993; Kaiser 1998; Vandendorpe 1995; Yee et al. 1993). We restrict to the combination of
OFDM and CDMA called OFDM-CDMA with spectral spreading in the frequency domain
(Dekorsy 2000; Kühn et al. 2000b).

5It was always assumed that the channel remains constant during one OFDM symbol. Otherwise, the orthog-
onality between subcarriers is lost.
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Figure 4.23 Structure of OFDM-CDMA system
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Figure 4.24 Alternative description of OFDM-CDMA system

Figure 4.23 shows the principal structure of an OFDM-CDMA system. It simply consists
of a serial concatenation of the classical DS spreading part and the block-oriented operating
OFDM part. In contrast to a single-carrier CDMA, spreading is now performed in the
frequency domain. This is demonstrated in more detail in Figure 4.24. Generally, the serial
to parallel converter extracts Nb symbols out of ãu[�] that contribute to one OFDM symbol
of user u. Each of these symbols is spread by a factor Ns resulting in Nc = Nb ·Ns chips
modulating the different subcarriers. Since these chips represent the input of the IFFT block,
spreading takes place in the frequency domain.

Exploiting the OFDM properties derived in the last section, we obtain Nc parallel data
streams that are weighted with the coefficients Hu[l, µ] of the channel transfer function (flat
fading) and disturbed by independent noise samples n[l, µ] as well as potential multiuser
interference. Hence, path crosstalk known from the Rake receiver is avoided at the expense
of a reduced spectral efficiency due to the cyclic prefix.

Assuming a quasi-synchronous transmission, exactly this prefix enables us to perform
simple block-oriented signal processing at the receiver because interblock interference is
mitigated.6 On the contrary, single-carrier CDMA requires that a sequence of consecutive

6Quasi-synchronous means that the sum of maximal mutual delay among all users and maximal channel delay
is limited to the length of the guard interval. In this case, the core OFDM symbols of all users can be processed
in a single step and intersymbol interference is mitigated.
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symbols, which mutually interfere, be considered. The l-th received OFDM symbol y[l] =[
y0[l] · · · yNc−1[l]

]T
has the well-known form

y[l] = S[l] · a[l]+ n[l], (4.53)

where a[l] comprises the symbols of all users contributing to this symbol

a[l] = [
a1[l, 0] · · · a1[l, Nb − 1] · · · aNu [l, Nb − 1]

]T
. (4.54)

Synchronous Downlink Transmission

As explained before on page 186, the downlink toward a specific user is characterized by the
fact that all signals experience the same channel. Looking at the u-th mobile receiver, the
signature matrix S[l] becomes

Su[l] = Hu[l] · C[l] (4.55)

with Hu[l] = diag
[
Hu[l, 0] · · · Hu[l, Nc − 1]

]
containing the channel transfer function of

user u on its diagonal. The spreading matrix C[l] = [
C1[l] · · · CNu [l]

]
concatenates the

user-specific matrices

Cu[l] =

cu[l, 0]
. . .

cu[l, Nb − 1]

 (4.56)

which consist of vectors cu[l, µ] = [
cu,0[l, µ] · · · cu,Ns−1[l, µ]

]T
representing the spreading

code of user u for symbol au[l, µ]. If only a single symbol is mapped onto one OFDM
symbol, the matrices Cu[l] reduce to column vectors.

In multirate CDMA systems with various symbol rates and spreading factors, the number
Nb of symbols associated with one OFDM symbol and, hence, the length of different
spreading code parts cu[l, µ] vary among users. This leads to different structures of the
matrices Cu[l].

At the receiver, we now have to perform the despreading. The specific form of the
signature matrix in (4.55) allows different, very efficient ways for despreading (Fazel and
Kaiser 2003; Hanzo et al. 2003a).

Maximum ratio combining (MRC)
According to the classical MF, we have to multiply y[l] with the Hermitian form of Su[l] =
Hu[l] · Cu[l] leading to

ru[l] = EMRC
u [l] · y[l] = SH

u [l] · y[l] = CT
u [l] ·HH

u [l] · y[l]. (4.57)

Multiplication with HH
u [l] weights each chip with the corresponding conjugate complex

channel coefficient, ensuring a coherent reception. The subsequent despreading with SH
u [l]

performs an MRC. Inserting the structure of y[l] into (4.57), the Nb output symbols for
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user u are obtained by

ru[l] = CT
u [l] ·HH

u [l] ·Hu[l] · Cu[l] · a[l]+ ñ[l]. (4.58)

Although this approach maximizes the SNR and perfectly exploits diversity, it does not
consider MUI, which dramatically limits the system performance (Dekorsy 2000; Kaiser
1998). The diagonal matrix HH

u [l] ·Hu[l] between CT
u [l] and Cu[l] in (4.58) destroys the

orthogonality of the spreading codes because the chips of the spreading codes are weighted
with different magnitudes. The performance degradation is the same as in single-carrier
CDMA systems.

Orthogonal restoring combining (ORC)
The influence of MUI can be easily overcome in OFDM-CDMA systems. Restoring the
orthogonality is possible by perfectly equalizing the channel also known as ZF solu-
tion (Fazel and Kaiser 2003). In OFDM-based systems, this is easily implemented by
dividing each symbol in y[l] with the corresponding channel coefficient. With H−1

u [l] =
diag

[
H−1

u [l, 0] · · · H−1
u [l, Nc − 1]

]
, we obtain

ru[l] = EORC
u [l] · y[l] = CT

u [l] ·H−1
u [l] ·

(
Hu[l] · C[l] · a[l]+ n[l]

)
= CT

u [l] · C[l] · a[l]+ CT
u [l] ·H−1

u [l] · n[l]. (4.59)

If the partial spreading codes cu[l, µ] of different users are mutually orthogonal, CT
u [l] ·

C[l] = [0Nb×(u−1)Nb
INb

0Nb×(Nu−u)Nb
] holds. Hence, the multiplication with CT

u [l] sup-
presses all users except user u and (4.59) becomes

ru[l] = au[l]+ CT
u [l] ·H−1

u [l] · n[l]. (4.60)

We see that the desired symbols au[l] have been perfectly extracted, and only the modi-
fied background noise disturbs a decision. However, this same background noise is often
significantly amplified by dividing through small channel coefficients leading to high error
probabilities, especially at low SNRs. This effect is well-known from ZF equalization
(Kammeyer 2004) and linear multiuser detection (Moshavi 1996).

A comparison with the linear ZF detector in Subsection 5.2.1 on page 234 shows the
following equivalence. For a fully loaded system with Ns = Nu, C[l] is an orthogonal
Nu ×Nu matrix. Neglecting time indices, the ZF criterion (4.59) delivers with S = HC

E = (
SH S

)−1SH = C−1H−1H−H C−H CH HH = CT H−1. (4.61)

Obviously, (4.61) coincides with EORC
u [l] in (4.59). For the downlink, OFDM-CDMA allows

a very efficient implementation of the ZF multiuser detector.

Equal gain combining (EGC)
Two approaches exist that try to find a compromise between interference suppression and
noise amplification. In the first, instead of dividing through a channel coefficient, we could
just correct the phase shift and keep the amplitude constant. Hence, all chips experience
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the same ‘gain’ resulting in

ru[l] = EEGC
u [l] · y[l]

= CT
u [l] ·


H ∗

u [l,0]
|Hu[l,0]|

. . .
H ∗

u [l,Nc−1]
|Hu[l,Nc−1]|

 (Hu[l] · C[l] · a[l]+ n[l])

= CT
u [l] ·


|Hu[l,0]|2
|Hu[l,0]|

. . .

|Hu[l,Nc−1]|2
|Hu[l,Nc−1]|

 · C[l] · a[l]+ ñ[l]. (4.62)

From (4.62) we see that the equalizer coefficients have unit magnitudes so that the noise is
not amplified. The second impact is that amplitude variations of the channel transfer function
are not emphasized by the equalizer so that the originally perfect correlation properties of
the spreading codes become not so bad after equalization as for MRC.

Minimum mean squared error (MMSE)
A second possibility to avoid an amplification of the background noise is to use the MMSE
solution. Starting with the MMSE criterion

Eu = argmin
W

E
{∥∥Wy[l]− au[l]

∥∥2
}

= argmin
W

E
{∥∥W

(
Hu[l]C[l]a[l] + n[l]

)− au[l]
∥∥2

}
, (4.63)

for user u, a solution is obtained by setting the derivation with respect to EH
u to zero and

solving the equation system. This yields

EMMSE
u [l] = CT

u [l] ·HH
u [l] ·

(
Hu[l] ·HH

u [l]+ σ 2
N

σ 2
A
· INc

)−1

. (4.64)

Since Hu[l] is a diagonal matrix, the application of (4.64) results in

ru[l] = EMMSE
u [l] · y[l]

= CT
u [l]


|Hu[l,0]|2

|Hu[l,0]|2+σ 2
N/σ 2

A
. . .

|Hu[l,Nc−1]|2
|Hu[l,Nc−1]|2+σ 2

N/σ 2
A

C[l]a[l]+ ñ[l]. (4.65)

Obviously, we have to add the ratio between noise power σ 2
N and signal power σ 2

A to
the squared magnitudes in the denominators. This avoids the noise amplification at the
subcarriers with deep fades. For infinite high SNR, σ 2

N/σ 2
A → 0 holds and the MMSE

equalization equals the ORC scheme.
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Similar to the ORC solution, we can compare (4.64) with the linear MMSE multiuser
detector on page 238. For a fully loaded system with Ns = Nu and orthogonal spreading
codes, C[l] is an orthogonal Nu ×Nu matrix and C[�]T C[�] = INu holds. The MMSE
criterion in (5.37) delivers with S = HC

E =
(

SH S+ σ 2
N

σ 2
A

INu

)−1

SH =
(

CT HH HC+ σ 2
N

σ 2
A

INu

)−1

CT HH

= C−1

(
HH H+ σ 2

N
σ 2
A

INu

)−1

C−T CT HH

= CT

(
HH H+ σ 2

N
σ 2
A

INu

)−1

HH . (4.66)

Since the channel matrices are diagonal, (4.66) and (4.64) are identical. Hence, OFDM-
CDMA allows a very efficient implementation of the MMSE multiuser detector for the
downlink without matrix inversion.

To evaluate the performances of the described equalization techniques, we consider the
synchronous downlink of an OFDM-CDMA system with BPSK modulation. Scrambled
Walsh codes with a spreading factor Ns = 16 are employed. The choice of Nc = 16 sub-
carriers results in a mapping of one information bit onto one OFDM symbol. Moreover,
a 4-path Rayleigh fading channel is used requiring a guard interval of length Lt − 1 = 3
samples. The Eb/N0 loss due to the insertion of the cyclic prefix has not been considered
because it is identical for all equalization schemes.

As explained earlier, the frequency selectivity of the channel destroys the Walsh codes’
orthogonality and MUI disturbs the transmission. For a load of β = 1/2, we see from
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Figure 4.25 Error rate performance of OFDM-CDMA system with Gp = 16 and different
equalization techniques for a 4-path Rayleigh fading channel a) Nu = 8 active users, b)
Nu = 16 active users
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Figure 4.26 Error rate performance of OFDM-CDMA system with Gp = 16 and different
equalization techniques for a 4-path Rayleigh fading channel a) Eb/N0 = 8 dB, b) Eb/N0 =
12 dB

Figure 4.25a that the MMSE approach performs best over the whole range of SNRs.
EGC comes very close to the MMSE solution at low and medium SNRs, but loses up
to 3 dB for high SNRs. MRC performs much worse except in the low SNR regime where
the background noise dominates the system reliability. In this area, ORC represents the
worst approach; it can outperform MRC only for SNRs larger than 14 dB due to the noise
amplification. None of the equalizing schemes can reach the single-user bound (SUB) that
represents the achievable error rate in the absence of interference.

Figure 4.25b depicts the results for Nu = 16, that is, a fully loaded system with β = 1.
The advantage of the MMSE solution becomes larger. Especially, EGC loses a lot and is
even outperformed by ORC at high SNRs. The higher the load, the better is the performance
of ORC compared to EGC and MRC because interference becomes the dominating penalty.
As will be shown in Section 5.2, linear multiuser detection schemes are not able to reach
the SUB for high load.

The discussed effects are confirmed in Figure 4.26 where the bit error rate is depicted
versus the number of users. First, we recognize that ORC is independent of the load β

since the whole interference is suppressed. Different SNRs just lead to a vertical shift of
the curve (cf. Figs 4.26a and b). Moreover, ORC outperforms MRC and EGC for high loads
and SNRs. MMSE equalization shows the best performance except for very low loads. In
that region, EGC and, especially, MRC show a better performance because the interference
power is low and optimizing the SNR ensures the best performance.

Figure 4.27 points out another interesting aspect that holds for single-carrier CDMA
systems also. Since the frequency selectivity destroys the orthogonality of spreading codes,
there exists a rivalry between diversity and MUI. The trade-off depends on the kind of
equalization that is applied. For the MMSE equalizer, the diversity gain dominates and the
error rate performance is improved for growing Lt. On the contrary, the MUI conceals the
diversity effect for EGC and performance degrades for increasing Lt.
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Figure 4.27 Error rate performance of OFDM-CDMA system with Gp = 16 and Nu = 16
for EGC and MMSE equalization and Lt-path Rayleigh fading channels

Quasi-Synchronous Uplink Transmission

With respect to the uplink, an equalization is not as easy because each user is affected by
an individual channel. For simplicity, we assume a coarse synchronization ensuring that
the maximum delay �κ between two users is limited to the length Ng of the guard interval
minus the maximum channel delay κmax.

�κ ≤ Ng − κmax (4.67)

In this case, a block-oriented processing is possible and a single FFT block can transform
the OFDM symbols of all users simultaneously into the frequency domain. Hence, the
signature matrix S[l] becomes

S[l] = [
s1[l] · · · sNu [l]

]
(4.68)

with su[l] = diag
[
Hu[l, 0] · · · Hu[l, Nc − 1]

] · cu[l]. The signature of a user is obtained by
multiplying the coefficients of the channel transfer function element-wise with the chips of
the spreading code. The data vector a[l] is defined as described in (4.54).

The simple MF provides the sufficient statistics, that is, we do not lose any information
and an optimum overall processing is still possible. Hence, despreading with MRC has to
be applied, resulting in

r[l] = EMRC[l] · y[l] = SH [l] · y[l] = SH [l] · S[l] · a[l]+ SH [l] · n[l]. (4.69)

Owing to the nondiagonal structure of SH [l] · S[l], MUI degrades the system performance.
This is confirmed by the results shown in Figure 4.28. With growing β, error floors occur
so that a reliable uncoded transmission is not possible for loads larger than 0.5. The larger
β, the smaller is the influence of the background noise as depicted in Figure 4.28.

Concluding, we can state that OFDM represents a pretty good technique for synchronous
downlink transmissions while the discussed benefits cannot be exploited in the uplink. Here,
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each signal experiences its own channel so that a common equalization is not possible.
Moreover, different carrier frequency offsets between transmitter and receiver pairs destroy
even the orthogonality between subcarriers of the same user and cause ICI. Therefore, more
sophisticated detection algorithms as presented in Chapter 5 are required.

4.3 Low-Rate Channel Coding in CDMA Systems
The previous sections illustrated that MUI dramatically degrades the system performance.
Using OFDM-CDMA in a downlink transmission allows an appropriate equalization that
suppresses the interference efficiently. However, this is not possible in an asynchronous
uplink transmission. One possibility is the application of multiuser detection techniques that
exploit the interference’s structure and are discussed in Chapter 5. Alternatively, we can
interpret the interference as additional AWGN. This assumption is approximately fulfilled
for a large number of users according to the central limit theorem.

It is well-known that noise can be combated best by strong error-correcting codes. One
important feature of CDMA systems is the inherent spectral spreading, already depicted in
Figures 4.1 and 4.2. As shown in Figure 4.29, this spreading can also be described from
Figure 4.24 as simply repeating each symbol a[�] Ns times and subsequent scrambling with
a user-specific sequence c[�, k] (Dekorsy 2000; Dekorsy et al. 2003; Frenger et al. 1998a;
Kühn et al. 2000a,b; Viterbi 1990). Scrambling means that the repeated data stream is
symbol-wise multiplied with the user-specific sequence without spectral spreading. There-
fore, an ‘uncoded’ CDMA system with DS spreading can also be interpreted as a system
with a scrambled repetition code of low rate 1/Ns.

The block matched filter in Figure 4.29 may describe the OFDM equalizers discussed
in Subsection 4.2.2 (Figure 4.24) or a Rake receiver as depicted in Figure 4.4 excluding
the summation over Ns chips after the multiplication with c[�, k]. The summation itself
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Figure 4.29 Illustration of direct-sequence spreading as repetition coding and scrambling

is common to OFDM-CDMA and single-carrier CDMA systems and is carried out by
the repetition decoder. If the repetition is counted among the channel-coding parts of a
communication system, only scrambling remains a CDMA-specific task and the system
part between channel encoder and decoder depicted in Figure 4.29 can be regarded as a
user-specific time-discrete super channel.

However, repetition codes are known to have very poor error-correcting capabilities
regarding their very low code rate. Hence, the task is to replace them with more powerful
low-rate FEC codes that perform well at very low SNRs. This book does not claim to
present the best code suited to this problem. In fact, some important aspects concerning
the code design are illuminated and the performances of four different coding schemes are
compared. Specifically, we look at traditional convolutionally encoded systems in which
the rates of convolutional and repetition code are exchanged, a code-spread system, and
serial as well as parallel code concatenations.

The performance evaluation was carried out for an OFDM-CDMA uplink with Nc = 64
subcarriers and a 4-path Rayleigh fading channel with uniform power delay profile.7 Suc-
cessive channel impulse responses are statistically independent, that is, perfect interleaving
in the time domain is assumed. For notational simplicity, we restrict the analysis on
BPSK although a generalization to multilevel modulation schemes is straightforward. In
the next four subsections, the error rate performance of each coding scheme is analyzed
for the single-user case. In Subsection 4.3.5, all schemes are finally compared in multiuser
scenarios.

4.3.1 Conventional Coding Scheme (CCS)
The first approach abbreviated as CCS does not change the classical DS spreading and can
be interpreted as a concatenation of convolutional code and repetition code. It is illustrated
in Figure 4.30. The convolutional code is described by its constraint length Lc and the code
rate Rcc

c = 1/n. Subsequent repetition encoding with rate Rrc
c = 1/Ns = n/Gp ensures a

constant processing gain Gp = R−1
c = (Rcc

c · Rrc
c )−1. The influence of different convolu-

tional codes is illuminated by choosing different combinations of Rcc
c and Rrc

c while their
product remains constant. The employed convolutional codes are summarized in Table 4.2.
They have been found by a nested code search (Frenger et al. 1998b) and represent codes
with maximum free distance and minimum number of sequences with weight df

7Similar results can be obtained for single-carrier CDMA systems. The differences concern only the path
crosstalk of the Rake receiver and the Eb/N0-loss due to the cyclic prefix for OFDM-CDMA.
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Figure 4.30 Conventional coding scheme (CCS) consisting of outer convolutional code,
interleaver, and inner repetition code

Table 4.2 Parameters of coding schemes for OFDM-
CDMA system with processing gain Gp = R−1

c = 64

Lc Rcc
c generators Rrc

c df

CCS 2 7 1/2 1338, 1718 1/32 10

CCS 4 7 1/4 1178, 1278, 1558, 1718 1/16 20

CCS 8 7 1/8 1178, 1278, 1558, 1718 1/8 40

1358, 1738, 1358, 1458

CSS 7 1/64 (Frenger et al. 1998b) 1 320

We see from Figure 4.31 that the performance can be improved by decreasing the code
rate. The largest gains are obtained by changing from Rcc

c = 1/2 to Rcc
c = 1/4 while a fur-

ther reduction of Rcc
c leads only to minor improvements. The reason is that convolutional

codes of very low rate incorporate a repetition of parity bits as well. The contribution of
repeated bits becomes larger for decreasing constraint lengths and code rates. Therefore, no
large gains can be expected for extremely low-rate convolutional codes. This is confirmed by
the free distances summarized in Table 4.2, which grow in the same way as Rc is reduced.

4.3.2 Code-Spread Scheme (CSS)

Reducing Rcc
c to the minimum value of Rc = 1/Gp results in a single very low-rate con-

volutional code and the repetition code is discarded. The corresponding structure of the
transmitter is depicted in Figure 4.32. The convolutional encoder already performs the
entire spreading so that the coded sequence is directly scrambled with the user-specific
sequence. Many ideas of the so-called code-spreading are encapsulated in Viterbi (1990).
In (Frenger et al. 1998b) an enormous number of low-rate convolutional codes found by
computer search are listed. These codes have a maximum free distance df and a minimum
number of sequences with weight df.

However, the obtained codes also include a kind of unequal repetition code, that is,
different bits of a code word are repeated unequally (Frenger et al. 1998b). Therefore, the
performance of CSS is comparable to that of CCSs, as the results in Figure 4.31 show.
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Figure 4.31 Performance of single-user OFDM-CDMA system with Nc = 64 subcarriers,
4-path Rayleigh fading and different convolutional codes from Table 4.2
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Figure 4.32 CSS consisting of single low-rate convolutional code

4.3.3 Serially Concatenated Coding Scheme (SCCS)
Instead of reducing the code rate of the convolutional code, we know from Section 3.6
that parallel and serial concatenations of very simple component codes lead to extremely
powerful codes. Hence, the inner repetition code should be at least partly replaced by a
stronger code. With regard to the serial concatenation, we know from Section 3.6 that the
inner code should be a recursive convolutional code in order to exploit the benefits of large
interleavers (Benedetto et al. 1996).

In the following part, two different concatenated coding schemes are considered: a serial
concatenation of two convolutional codes serial concatenated convolutional code (SCCC)
and a serial concatenation of an outer convolutional code, and an inner Walsh code (SCCW)
(Dekorsy et al. 1999a,b). The latter scheme is used in the uplink of IS95 (Gilhousen et al.
1991; Salmasi and Gilhousen 1991) where Walsh codes are employed as an orthogonal
modulation scheme allowing a simple noncoherent demodulation. Although Walsh codes
are not recursive convolutional codes, they offer the advantage of a small code rate (large
spreading) and low computational decoding costs even for soft-output decoding (see Fast
Hadamard Transform in Subsection 3.4.5).
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�

�−1
L(b̂2[l′])

Le(b̂1[l])

La(b̂1[l])

d̂[i]rep.
dec.dec.
inner convolutional

decoder

Figure 4.34 Decoder structure of serially concatenated coding scheme (SCCS)

Figure 4.33 shows the structure of the SCCS. The outer convolutional encoder is fol-
lowed by an interleaver and an inner code that can be chosen as described above. The final
repetition code may be necessary to ensure a constant processing gain. Since we are not
interested in interleaver design for concatenated codes, we simply use random interleavers
as described in Chapter 3 and vary only the length Lπ .

The corresponding decoder structure is shown in Figure 4.34. First, the received sig-
nal is equalized in the frequency domain according to the MRC principle including the
descrambling.8 Next, an integrate-and-dump filter decodes the repetition code and delivers
the log-likelihood ratios (LLRs) L(b̂2[l′]). Now, the iterative decoding process starts with
the inner soft-in soft-out decoder. The extrinsic part Le(b̂1[l]) of its output is deinterleaved
and fed to the outer soft-output convolutional decoder. Again, extrinsic information is
extracted and fed back as a priori information La(b̂1[l]) to the inner decoder. This iterative
turbo processing is carried out several times until convergence is obtained (cf. Section 3.6).

Owing to the high number of parameters, we fix the code rate of the outer convolutional
code to Rcc

c = 1/2. Hence, introducing the inner code affects only the repetition code whose
code rate Rrc

c increases in the same way as Rinner
c decreases (see. Table 4.3). Although

theoretical analysis tells us that the minimum distance of the outer code should be as
large as possible (see page 138), the iterative decoding process benefits from a stronger
inner code. This is confirmed by simulation results showing that lower rates of the outer
convolutional code, for example, Rcc

c = 1/6, coming along with higher rates of the inner
codes, for example, Rrc

c = 1, lead to a significant performance loss. The interleaver �

between the outer convolutional and the inner encoder is a randomly chosen interleaver of
length N = 600 or N = 6000.9

8In single-carrier CDMA, this corresponds to the Rake receiver of Figure 4.4 excluding the summation over
Ns chips after the multiplication with c[�, k].

9The shorter interleaver may be suited for full duplex speech transmission, while the longer one is restricted
to data transmission with weaker delay constraints.
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Table 4.3 Main parameters of serially concatenated coding schemes (feedback
polynomial of recursive convolutional encoders indicated by superscript r)

outer NSC code, Rcc
c = 1/2 inner code rep. code

SCCW 1 g1 = 78, g2 = 58 Walsh, Rwh
c = 4/16 Rrc

c = 1/8

SCCW 2 g1 = 78, g2 = 58 Walsh, Rwh
c = 6/64 Rrc

c = 1/3

SCCW 3 g1 = 78, g2 = 58 Walsh, Rwh
c = 8/256 -

SCCW 4 g1 = 238, g2 = 558 Walsh, Rwh
c = 6/64 Rrc

c = 1/3

SCCW 5 g1 = 1338, g2 = 1718 Walsh, Rwh
c = 6/64 Rrc

c = 1/3

SCCC 1 g1 = 78, g2 = 58 g1 = 78, gr
2 = 58 Rrc

c = 1/16

SCCC 2 g1 = 78, g2 = 58
g1 = 238, g2 = 278

gr
3 = 358, g4 = 378

Rrc
c = 1/8

Figure 4.35 shows the error rate performance of the concatenation of an outer half-rate
convolutional code with Lc = 3 and different inner Walsh codes (SCCW) and interleaver
lengths Lπ . We observe that the weakest (shortest) Walsh codes (SCCW 1) perform better
for low SNR, that is, the iterative process converges earlier. For medium SNR, the SCCW 2
system with M = 64 represents the best choice and for high SNR, the code with M = 256
(SCCW 3) shows the best asymptotical performance. Moreover, increasing the interleaver
length from Lπ = 600 to Lπ = 6000 leads to improvements of 0.5 dB for SCCW 1, 0.7 dB
for SCCW 2, and 1 dB for SCCW 3. Compared to a single convolutional code with Lc = 7,
the SCCWs perform better for medium and high SNR, but not for extremely low SNR.
However, the low SNR regime is exactly the working point for high MUI. This region will
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Figure 4.35 Performance of SCCW systems with Lc = 3 convolutional code for different
Walsh codes and interleaver lengths, 10 decoding iterations
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Figure 4.36 Performance of SCCW system with M = 64 Walsh code for different convo-
lutional codes and interleaver lengths, 10 decoding iterations

be of special interest in Chapter 5 where we consider multiuser detection techniques that
include channel coding.

We now choose the M = 64 Walsh code as the inner code and vary the constraint length
of the outer convolutional code. Obviously, the SCCW 2 system with Lc = 3 performs best
over a wide range of BERs as can be seen from Figure 4.36a. Only asymptotically, SCCW 4
and SCCW 5 can benefit from their stronger outer convolutional codes. A comparison of
Figs 4.36a and 4.36b illustrates that the larger the interleaver, the steeper is the slope of
the curves in the waterfall region and the clearer becomes the asymptotic advantage. Since
the decoding complexity is much lower for SCCW 2, this scheme is our favorite among
the tested concatenations.

Next, we compare the SCCW 2 scheme with two serially concatenated convolutional
codes also listed in Table 4.3. The inner code is now a recursive systematic convolutional
code. From Figure 4.37a we recognize that SCCW 2 performs better, down to error rates
of 10−6. A stronger inner convolutional code in SCCC 2 cannot increase the performance
of the iterative decoding process. Naturally, the code rate of SCCW 2 is much lower
than for the SCCC approaches, but since we anyway spread the signals by a fixed pro-
cessing gain, this is no disadvantage. Hence, low-rate coding in CDMA systems can be
efficiently accomplished by serially concatenating an outer convolutional code with an inner
Walsh code. For very low SNR, the single convolutional code CCS 8 still shows the best
performance.

4.3.4 Parallel Concatenated Coding Scheme (PCCS)
Extremely low-rate codes for spread spectrum applications were introduced in (Viterbi 1995).
The key idea behind these super-orthogonal codes is to incorporate low-rate Walsh codes into
the structure of a convolutional encoder. Figure 4.29 shows an example using a recursive
systematic convolutional (RSC) code with constraint length Lc = 5. The inner Lc − 2 = 3
register elements are fed to the Walsh encoder of rate Rwh

c = (Lc − 2)/2Lc−2 = 3/8. The
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Figure 4.37 Performance of SCCC system with different convolutional codes and inter-
leaver lengths, 10 decoding iterations

bits a[i] and a[i − Lc − 1] are added element-wise to the Walsh coded bits bwh[l]. This
ensures that not only the original Walsh codewords but their binary complements are also
valid code words, and branches in the trellis leaving the same state are assigned to antipodal
code words. The entire code rate depends on the constraint length of the convolutional code
and amounts to

Rso
c =

1

2Lc−2
= 1

8
(4.70)

because each information bit at the encoder input corresponds to n = 2Lc−2 output bits.
Naturally, super-orthogonal codes can also be used as constituent codes in a concatenated
coding scheme (van Wyk and Linde 1998). In fact, we are looking at a PCCS according to
Figure 3.19 using two super-orthogonal codes as depicted in Figure 4.38. For each infor-
mation bit, two code words each of length n = 8 are generated, yielding a total code rate
of the concatenated scheme of R

pccs
c = 1/16. Hence, a repetition code with rate Rrc

c = 1/4
is necessary to obtain a desired processing gain of Gp = 64.

At the receiver, appropriate turbo decoding has to be performed. The well-known Bahl-
Cocke-Jelinek-Raviv (BCJR) algorithm described in Section 3.4.4 has to be extended for
super-orthogonal codes. Essentially, we need an incremental metric for each branch in
the trellis comparing the hypothesis with the received codeword y[i]. This metric can
be obtained by performing a fast Hadamard transform of y[i] delivering after appropriate
scaling a LLR for each possible Walsh codeword. These LLRs are now used as incremental
metrics in the BCJR algorithm.

The results obtained for the above-described super-orthogonal code and the different
interleaver sizes are shown in Figure 4.39 for a perfectly interleaved 4-path Rayleigh fading
channel, a processing gain of Gp = 64, and BPSK modulation. Note that frame lengths of
600 bits and 6000 bits for interleaver sizes Lπ = 300 and Lπ = 3000, respectively, are the
same as for the SCCS systems because only information bits are permuted in a parallel
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D D DD

Walsh encoder

d[i] a[i]
g1,1 = 0 g1,2 = 0 g1,3 = 1 g1,4 = 1

g2,0 = 1 g2,1 = 1 g2,2 = 1 g2,3 = 1 g2,4 = 1

bwh[l]

b[l]

Figure 4.38 Encoder structure of super-orthogonal convolutional codes with Lc = 5 (Viterbi
1995)
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Figure 4.39 Performance of parallel concatenated super-orthogonal codes for Nu =
1, Gp = 64 and different interleaver lengths, 10 decoding iterations

concatenation. Obviously, PCCS outperforms the conventional convolutional code with rate
Rcc

c = 1/8. At a BER of 10−3, the gains amount to 1.5 dB and 2.2 dB while they increase
up to 3.5 B and more than 5 dB for 10−6. Compared to the serial code concatenations
depicted in Figure 4.37, the performance can be improved by approximately 1 dB for the
smaller interleaver and by more than 1.5 dB for the larger interleaver at 10−6.

4.3.5 Influence of MUI on Coding Schemes
Finally, we have to analyze the behavior of the coding schemes under the influence of severe
MUI. Regardless of the specific coding scheme, it has to be recalled that the processing
gain Gp defined in (4.2) comprises the spreading factor Ns as well as the code rate Rc, that
is, Gp = Ns/Rc describes the entire spreading including the FEC code. Since we exchange
the contribution of channel coding and spreading while keeping Gp constant, the system
load β = Nu/Ns defined in (4.16) varies although Nu and the entire bandwidth are kept
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Figure 4.40 Performance of OFDM-CDMA system with Nc = 64 subcarriers, 4-path
Rayleigh fading and different convolutional codes from Table 4.2

constant. For some of the mentioned coding schemes, even spreading and coding cannot
be distinguished anymore. Therefore, we will base a comparison on the spectral efficiency
defined in (4.17) instead of the system load.

Figure 4.40a compares the same coding schemes as Figure 4.31, but now for a spectral
efficiency of η = Nu/Gp = 32/64 = 1/2 instead of the single-user case. Note that half-rate
coded TDMA or FDMA systems as employed in Global System for Mobile telecommunica-
tions (GSM) (Mouly and Pautet 1992) can reach at most η = 1/2 if all time and frequency
slots are occupied. Since they represent narrow-band systems without spectral spreading,
low-rate coding cannot be applied. The ranking of the coding schemes is qualitatively the
same as in the single-user case. We recognize that a BER of 10−3 can only be achieved
for the low-rate convolutional codes with Rcc

c ≤ 1/4. The half-rate code cannot reach this
error rate. Lower error probabilities as required for data services cannot be supported for
η = 1/2.

Figure 4.40b illustrates the performances for 10 log10(Eb/N0) = 4 dB versus the num-
ber of active users. For this SNR and error rates below 10−3, the convolutional code of rate
Rcc

c = 1/2 can only support four users, while the codes with lower rates support up to 11
users. This corresponds to spectral efficiencies of η = 6.25 · 10−2 and η = 0.172, respec-
tively. For higher efficiencies, larger SNRs are required to meet this error rate constraint.

Convolutional codes with higher constraint length as used in UMTS (Holma and Toskala
2004) can slightly improve the performance. In the UMTS uplink, a code with Lc = 9 and
rate Rcc

c = 1/3 is employed. Its performance is also depicted in Figure 4.40 with the label
‘UMTS’. Obviously, it performs better for low efficiencies, or equivalently at high SNRs.
For Nu > 10, it performs worse than CCS 8 and CSS, and for Nu > 24, even CCS 4 is
better. Concluding, none of the coding schemes described so far is able to reach a target
error rate of 10−3 for low SINRs.

Next, we look at the introduced concatenated coding schemes. A comparison with
CCS 8 in Figure 4.41a shows that all depicted schemes can reach a BER of 10−3 while
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Figure 4.41 Performance of concatenated coding schemes for different interleaver lengths,
Nu = 32 active users, Gp = 64 and 10 decoding iterations

much lower error rates can be ensured only by concatenated schemes. SCCC 1 shows
the same performance as the conventional convolutional code, the Walsh coded system
SCCW 2 gains about 3 dB compared to them. Parallel concatenated super-orthogonal codes
gain additionally 2 dB. At 10−5, the differences become even larger, that is, SCCW 2
outperforms SCCC1 by 5 dB and PCCS gains 4 dB compared to SCCW 2. All schemes
show an error floor starting roughly at 10−6.

For the larger interleaver, Figure 4.41b illustrates that all concatenated schemes perform
better, especially their error floors move out of the visible area. The parallel concatenated
super-orthogonal codes still show the best performance and gain approximately 4 dB com-
pared to the SCCS. For SNRs larger than 8 dB, SCCC 1 performs better than SCCW 2
while the latter is superior between 4 and 8 dB. Below 2 dB, the conventional convolutional
code represents the best choice.

A different visualization in Figure 4.42 depicts the error rate performance versus the
number of active users Nu for a SNR of 3 dB. The dramatic performance degradation due to
MUI becomes obvious. For this Eb/N0 value, Lπ = 600 and a target bit error rate of 10−3,
the conventional convolutional code and the SCCC 1 scheme can support only up to six
users, while SCCW 2 and PCCS support up to 12 and 20 users, respectively. For the larger
interleaver, the Walsh coded system reaches 20 users, SCCC 1 only 13, and PCCS 30 users.
For higher SNRs not depicted here, the relations change and SCCC 1 outperforms SCCW 2.

Owing to the waterfall region of concatenated coding schemes, the performance degrades
very rapidly with increasing system load while the degradation is rather smooth for the
convolutional code. Hence, there exists an area of very low SNR or very high load where
conventional convolutional codes outperform concatenated schemes. Although these areas
correspond to high error rates that will generally not satisfy certain QoS constraints, they
represent the starting point of iterative interference cancellation approaches discussed in
Chapter 5. Therefore, we may expect that iterative interference cancellation incorporating
FEC decoders converge earlier for convolutional codes than for concatenated codes.
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Figure 4.42 Performance of concatenated coding schemes for different interleaver lengths,
Eb/N0 = 3 dB, Gp = 64 and 10 decoding iterations

4.4 Uplink Capacity of CDMA Systems
The last section showed that strong error control coding can provide good performance even
for highly loaded systems. However, it is not yet known if the sole employment of good
codes is the best choice for communications in interference-limited environments. Hence,
we compare the capacity of CDMA systems deploying optimal detectors and delivering the
maximal spectral efficiency with that of systems using only linear receivers. For the sake
of simplicity, we consider the uplink of a synchronous OFDM-CDMA system with real
Gaussian inputs and binary spreading codes. Results are presented for an AWGN channel
and a 4-path Rayleigh fading channel with uniform power distribution.

Looking at a single cell environment, the l-th received symbol consists of Ns chips and
can be described by

y[l] = S[l] · a[l]+ n[l]

with S[l] = [
s1[l] · · · sNu [l]

]
containing the signatures su[l], 1 ≤ u ≤ Nu, of all users

in its columns. The capacity C(S) depends on the system matrix S and the user-specific
SNRs. It represents the total number of information bits that can be reliably transmitted
per Ns chips and has to be shared among the active users in this cell. The ergodic capacity
is obtained by calculating the expectation C̄ = E{C(S)} with respect to the multivariate
process S . Assuming an asymptotically symmetric situation where all users have identical
conditions, the average capacity per user is obtained by

Cu =
E
{
C(S)

}
Nu

= C̄

Nu
. (4.71)

The division of C̄ by the spreading factor Ns delivers the spectral efficiency

η = C̄

Ns
= β · Cu (4.72)
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already defined in (4.17). It describes the average number of information bits transmitted per
chip and is measured in bits/chip. While (4.72) assumes a perfect coding scheme ensuring
an error-free transmission, (4.17) considers a practical code and is always related to a
certain target error rate. The definitions can be transferred into each other by replacing Cu

with the code rate Rc or, equivalently, C̄ with RcNu. For small β, only few users are active
and the spectral efficiency η of the system will be low because the large bandwidth is not
efficiently used. On the contrary, many users will decrease Cu because the cell capacity C̄

is fixed and has to be shared.

4.4.1 Orthogonal Spreading Codes
We start our analysis with orthogonal spreading codes that can be employed for synchronous
transmission in frequency-nonselective environments. Therefore, no MUI disturbs the trans-
mission, resulting in Nu independently transmitted parallel data streams. For real Gaussian
distributed inputs, each of these streams experiences an AWGN channel with a user-specific
capacity that equals exactly the expression given in (2.54)

Corth.
u = 1

2
· log2

(
1+ 2

Es

N0

)
.

The capacity depends only on the SNR. The spectral efficiency

ηorth. = β · Corth.
u = β

2
· log2

(
1+ 2

Es

N0

)
for 0 ≤ β ≤ 1 (4.73)

grows linearly up to β = 1 for fixed SNR. At this load, all orthogonal binary spreading
codes are occupied. For β > 1, so-called Welch-bounded sequences have to be employed
(Rupf and Massey 1994) with which η stays at a constant level depending on the actual
SNR (Verdu and Shamai 1999). It has to be mentioned that the SUMF is the optimum
receiver for orthogonal spreading with β ≤ 1 while random codes require much higher
computational costs for optimum detection.

4.4.2 Random Spreading Codes and Optimum Receiver
For random spreading codes, the optimum receiver performs a joint maximum likelihood
decoding (see Chapter 5). Considering the uplink, the mobile units transmit independently
from each other, that is, there is no cooperation among them. Hence, we have to apply
(2.82) which becomes for a real-valued transmission

C(S) = 1

2
·

r∑
ν=1

log2

(
1+ 2λν · Es

N0

)
= 1

2
·

r∑
ν=1

log2

(
1+ 2λν · C(S) · Eb

N0

)
.

The eigenvalues λν belong to the matrix S[l] · SH [l]. Similar to Chapter 2, we can calculate
ergodic and outage capacities. Analytical expressions for the eigenvalue distribution can
only be obtained with a large system analysis where Ns and Nu tend to infinity while
their ratio β = Nu/Ns is constant. Instead, we calculate the ergodic capacities by choosing
an appropriate number of system matrices S, perform an eigenvalue analysis, calculate the
instantaneous capacities according to (2.82), and average them. User-specific capacities and
spectral efficiencies are obtained by applying (4.71) and (4.72).
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Figure 4.43 Ergodic capacity/spectral efficiency of DS-CDMA system with Ns =
64 and AWGN channel (bold lines: orthogonal spreading, normal lines: random
spreading)

The results in Figure 4.43a illustrate the user-specific capacities Cu for an AWGN chan-
nel and a spreading factor Ns = 64. Normal lines correspond to random binary spreading
codes while bold lines represent the optimum capacity for orthogonal spreading. In the
latter case, no interference disturbs the transmission and Corth.

u does not depend on the
load for β ≤ 1. This leads to an upper bound as can be seen from the curve with cir-
cles in Figure 4.43a. For β > 1, Corth.

u also degrades because the overall spectral efficiency
η shared among all users remains constant leading to Corth.

u = η/β. With regard to ran-
dom spreading, Cu is largest for few users because the multiple access interference is
low. With growing Nu, the interference becomes stronger and the capacity for each user
degrades.

Figure 4.43b illustrates the overall spectral efficiency versus Eb/N0. We recognize that
η generally increases with growing β because more users are sharing the same medium.
This is illustrated by the fact that Cu is approximately halved from 2.5 bits/s/Hz for β = 3/4
down to 1.3 bits/s/Hz for β = 2 at 10 log10(Eb/N0) = 10 dB. Hence, the load grows by
a factor 2.67 > 2 and the entire system efficiency increases by a factor 1.4. While these
gains are rather large for small β, they reduce for high loads, for example, as β approaches
two. The efficiencies ηorth. for orthogonal codes always represent upper bounds for the
random spreading case. As can be seen from Figure 4.43b, ηorth. does not grow anymore
for β > 1.

The above-described behavior is again depicted in Figure 4.44 showing Cu and η versus
the load β for different SNRs. While Cu decreases with growing load, the spectral efficiency
increases. The curves intersect always for β = 1 because all users are assumed to have the
same SNR so that Cu = η · β = η holds at this point. Comparing Figure 4.44a with 4.44b,
we recognize that there is nearly no difference between the AWGN channel and OFDM-
CDMA with a 4-path Rayleigh fading channel and uniform power delay profile if the loss
due to the guard interval is neglected.

www.4electron.com



222 CODE DIVISION MULTIPLE ACCESS

0 0.5 1 1.5 2
0

1

2

3

4

5

0 0.5 1 1.5 2
0

1

2

3

4

5
a) AWGN channel b) OFDM-CDMA, 4-path Rayleigh

Cu for Eb/N0 = 5 dBCu for Eb/N0 = 5 dB
Cu for Eb/N0 = 10 dBCu for Eb/N0 = 10 dB
η for Eb/N0 = 5 dBη for Eb/N0 = 5 dB
η for Eb/N0 = 10 dBη for Eb/N0 = 10 dB

β →β →
Figure 4.44 Ergodic capacity/spectral efficiency of DS-CDMA system with random
spreading, Ns = 64 and AWGN channel

4.4.3 Random Spreading Codes and Linear Receivers
The results described above hold for optimum signal processing at the receiver. However, it
has been already explained that optimal solutions like joint maximum likelihood decoding of
all user signals are infeasible in practice. Moreover, the orthogonality is generally destroyed
by the influence of the mobile radio channel so that the MF performs far from optimum.
Hence, in the next chapter, suboptimum strategies that perform some kind of preprocessing
for separating the users and individual FEC decoding will be discussed. In this context,
we can distinguish linear and nonlinear techniques. We consider first the potential of linear
preprocessors in terms of spectral efficiency η versus the load β. Specifically, the MF
as well as ZF and MMSE filters with subsequent optimum user-specific FEC decoding
are analyzed. The following results are extracted from Verdu and Shamai (1999) where a
detailed description of the derivation can be found.

Single-User Matched Filter (SUMF)

We consider again a simple AWGN channel, real-valued Gaussian distributed input signals,
and random spreading codes for all users. In contrast to orthogonal spreading, the single-
user matched filter is not optimum anymore for random spreading codes. In Verdu and
Shamai (1999), it is shown that the user-specific capacity can be expressed by

CMF,u = 1

2
· log2

(
1+ 2Es/N0

1+ 2βEs/N0

)
. (4.74)

This result has been obtained by applying a large system analysis where Nu and Ns grow
infinitely while their ratio β remains constant. To compare different code rates or spreading
factors, we have to find an expression depending on Eb/N0 rather than Es/N0. If each user
encodes with a rate Rc = Cu, Es/N0 = CuEb/N0 holds and (4.74) becomes an implicit
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equation

CMF,u = 1

2
· log2

(
1+ 2CuEb/N0

1+ 2βCuEb/N0

)
= 1

2
· log2(1+ x). (4.75)

Resolving

x = 2CuEb/N0

1+ 2βCuEb/N0
(4.76)

with respect to N0/Eb and substituting Cu = 1
2 · log2(1+ x) yields

N0

Eb
= log2(1+ x) ·

(
1

x
− β

)
(4.77)

that has to be numerically solved. The value x can be inserted into (4.75) to obtain the
CMF,u or the spectral efficiency ηMF = β · CMF,u.

Zero-Forcing Receiver (Decorrelator, ZF)

Although ZF receiver and MMSE filter will be introduced in Sections 5.2.1 and 5.2.2, their
principle performance should be analyzed here. From the large scale analysis (Nu →∞,
Ns →∞, β constant) in Verdu and Shamai (1999) we obtain

CZF,u = 1

2
· log2

(
1+ 2(1− β)

Es

N0

)
(4.78)

and consequently

ηZF = β

2
· log2

(
1+ 2(1− β)

Es

N0

)
. (4.79)

Comparing (4.78) with the spectral efficiency for orthogonal codes given in (4.73) we
observe that the only difference is an SNR loss depending on the load β. Hence, the
decorrelator totally removes the interference at the expense of an amplification of the
background noise (see Section 5.2.1). This penalty is expressed by the factor (1− β) in
front of Es/N0.

Minimum Mean Squared Error (MMSE) Filter

With reference to the linear MMSE filter, Verdu and Shamai (1999) provides the solution

CMMSE,u = 1

2
· log2

[
1+ 2

Es

N0
− 1

4
F

(
2

Es

N0
, β

)]
(4.80)

with

F(a, b) =
(√

a(1+
√

b)2 + 1−
√

a(1−
√

b)2 + 1

)2

. (4.81)

Again, we can apply the substitutions C = 1/2 · log2(1+ x) and Es/N0 = CMMSE,uEb/N0

resulting in the implicit equation

x = 2CMMSE,u

Eb

N0
− 1

4
F

(
2CMMSE,u

Eb

N0
, β

)
= log2(1+ x)

Eb

N0
− 1

4
F

(
log2(1+ x)

Eb

N0
, β

)
(4.82)
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Figure 4.45 Ergodic spectral efficiency of DS-CDMA system versus load for Eb/N0 =
10 dB and AWGN channel

which has to be solved numerically. The user-specific capacity is finally obtained by

CMMSE,u = 1

2
log2(1+ x) ⇐⇒ ηMMSE = β

2
log2(1+ x) (4.83)

The results for the above analyzed receiver concepts are depicted in Figure 4.45. We
recognize that the highest efficiency is always obtained for orthogonal spreading codes
because no MUI disturbs the transmission and each user experiences a simple AWGN
channel. Therefore, the user-specific capacity grows linearly up to a load of β = 1 for fixed
Eb/N0. For β > 1, it stays at a constant level depending on the actual SNR.

For random spreading codes, the spectral efficiency of the optimum receiver performing
a joint maximum likelihood decoding of all users was determined as described in Subsec-
tion 4.4.2. As expected, it shows the best performance of all multiuser detection techniques.
Among the linear receivers, the MF shows only a good performance for very low loads
where the background noise dominates the transmission. However, its spectral efficiency
increases monotonically with growing β. The decorrelator (ZF) shows near-optimum perfor-
mance up to a load of approximately η = 0.25. The load with the highest spectral efficiency
depends on the SNR because the decorrelator suffers severely from the background noise
(cf. Figs 4.45a and b). For loads above this optimum, its performance degrades dramati-
cally and reaches ηZF = 0 below β = 1. The MMSE receiver overcomes the drawback of
amplifying the noise and shows the best performance of all linear schemes. However, even
the MMSE filter shows a maximum spectral efficiency for finite load and degrades beyond
this optimum.

A large gap remains between linear and nonlinear techniques, especially for the MF
even with optimum channel coding. Therefore, the next chapter focuses not only on linear
but also on nonlinear multiuser detection strategies that jointly process all user signals.
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4.5 Summary
This chapter has introduced CDMA systems. They incorporate spread spectrum techniques
like DS spreading that multiply the signal’s bandwidth. Owing to spectral spreading, a
certain robustness against the frequency selectivity of mobile radio channels is achieved.
With appropriately designed spreading codes, the MF called Rake receiver represents an
efficient and powerful structure. For multiuser scenarios, the detrimental effect of MUI
that degrades the system performance remarkably when using a simple Rake receiver has
been demonstrated. Moreover, the difference between principles of uplink and downlink
transmissions was explained. Furthermore, some families of appropriate spreading codes
such as Walsh-Hadamard codes, m-sequences, and Gold codes, as well as their correlation
properties have been discussed.

In Section 4.2, the combination of orthogonal FDMA (OFDM) and CDMA was derived.
Explaining first the principles of OFDM, OFDM-CDMA systems have been analyzed in
more detail. Especially, the advantage of a simple channel equalization for the downlink
that partially restores the orthogonality of spreading codes illustrated the attractiveness
of OFDM-CDMA. Next, low-rate coding in CDMA systems was investigated. Owing to
the inherent spreading in CDMA systems, which is mainly done by repetition coding and
scrambling, there is a lot of space for powerful low-rate codes that partially replace the
repetition code. It was shown that the error rate performance can be significantly improved
by choosing appropriate codes even under severe MUI. Especially, the parallel concatenated
super-orthogonal codes exhibit an amazing performance. However, the final examination
of the capacities clearly illustrated that a single MF even with a capacity achieving error
correction code leads to a poor overall system capacity so that powerful multiuser detection
strategies will be discussed in the next chapter.
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5

Multiuser Detection in CDMA
Systems

In this chapter, the uplink of a coded DS-CDMA system in which a common base station
has to detect all incoming signals is considered. This is a major difference compared
to the downlink where the mobile generally knows only its own spreading code and is
interested only in its own signal. This requires the application of blind or semiblind multiuser
detection (MUD) techniques (Honig and Tsatsanis 2000) that is not the focus of this work.
A comparison with the detection algorithms for multilayer space-time transmission (Böhnke
et al. 2003; Foschini et al. 1999; Golden et al. 1998; Wübben et al. 2001) presented in
Chapter 6 demonstrates the strong equivalence of CDMA systems and multiple antenna
systems when used for multilayer transmission.

The next section starts with optimum MUD strategies. Since they are generally infeasible
for practical implementations, linear joint detection techniques are derived in Section 5.2.
Efficient approximations are obtained with multistage detectors such as iterative parallel and
successive interference cancellation (SIC) schemes. A further performance improvement is
derived in Section 5.3 by exploiting the discrete nature of the signal alphabet leading to
nonlinear iterative MUD algorithms. Finally, the combination of linear joint detection and
nonlinear interference cancellation is discussed in Section 5.4. The chapter closes with a
summary of the main results.

5.1 Optimum Detection

With regard to the uplink, each user maps a word du consisting of k information bits by
appropriate forward error correction (FEC) encoding onto a code word bu =

[
bu[0] · · · bu

[n− 1]
]
. After subsequent linear phase shift keying (PSK) or quadrature amplitude modu-

lation (QAM) modulation delivering the sequence au, each symbol au[�] is spread with a
spreading code cu[�]. Since we look at the generally asynchronous uplink, random spread-
ing codes are assumed. In short code CDMA systems, cu[�] is independent of the time index
� while it varies from symbol to symbol in long code systems. The obtained sequence xu

Wireless Communications over MIMO Channels Volker Kühn
 2006 John Wiley & Sons, Ltd
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is transmitted over the individual channel with impulse response hu[�]. At the receiver,
that is, a common base station, all transmitted signals are superimposed and additive white
Gaussian noise (AWGN) n is added resulting in

y = H · x+ n = S · a+ n. (5.1)

In (5.1), H = [
Th1, . . . , ThNu

]
represents a concatenation of several user-specific convolu-

tion matrices Thu (Kammeyer 2004) that cover all time instants of the considered sequence.
The vector x = [

xT
1 , . . . , xT

Nu

]T
comprises the spread sequences of all users. According to

(4.4) on page 176, the convolution of spreading code cu[�] and channel impulse response
hu[�] can be expressed by the signature su[�]. This leads to the second part of (5.1) where
S comprises the signatures of all users and a the modulated symbols (cf. Section 4.1.2).

5.1.1 Optimum Joint Sequence Detection

In this section, we assume perfect knowledge of the channel impulse responses and the
spreading codes. As already mentioned in Section 1.3, the optimum detector performs a
joint maximum a posteriori detection including FEC decoding for all users based on the
received sequence y. Mathematically, this can be expressed by

d̂map = argmax
d̃

Pr{d̃ | S, y} = argmax
d̃

pY|d̃,S(y) · Pr{d̃}, (5.2)

where the second equality is obtained by applying the Bayes rule and exploiting the fact
that pY|S(y) is independent of the hypothesis d̃ and, therefore, does not affect the decision.

As already explained in Section 1.3, the hypotheses d̃ are generally uniformly distributed
or the probabilities Pr{d̃} are not known a priori at the receiver. In these cases, Pr{d̃} is not
available and the joint maximum likelihood detector has to be applied

d̂mld = argmax
d̃

pY|d̃,S(y). (5.3)

The conditional probability density function in (5.3) has the form

pY|d̃,S(y) = 1

det(π�NN)
· exp

(
−[

y− S · a(d̃)
]H

�−1
NN

[
y− S · a(d̃)

])
(5.4)

where a(d̃) denotes the modulated sequence associated with the hypothesis d̃. Inserting
(5.4) into (5.3), neglecting all terms independent of the hypothesis d̃, and applying the
natural logarithm, we obtain with �NN = σ 2

NI

d̂mld = argmax
d̃

log exp

(
−

[
y− Sa(d̃)

]H [
y− Sa(d̃)

]
σ 2
N

)

= argmin
d̃

∥∥y− S · a(d̃)
∥∥2

. (5.5)

From (5.5), we recognize that the joint maximum likelihood detector searches for that
hypothesis d̃ which minimizes the squared Euclidian distance between the received sequence
y and S · a(d̃). Since d consists of discrete values, gradient-based methods cannot be
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applied and an exhaustive search is necessary. Obviously, even for medium-sized sys-
tems the required computational complexity is far too high for practical implementations
because it grows exponentially with the number of users as well as the lengths of the
sequences.

Contrary to the joint detection, each user can also be individually detected (Verdu 1998).
Individual MAP detection of a certain user u can be expressed by

d̂map
u = argmax

d̃u

Pr{d̃u | S, y} = argmax
d̃u

pY|d̃u,S(y) · Pr{d̃u}. (5.6)

Equivalently to (5.3), the individual ML detector is obtained by

d̂mld
u = argmax

d̃u

pY|d̃u,S(y). (5.7)

Individual and joint detections do not always lead to the same result as described in (5.2),
which has already been illustrated by the simple example on page 19.

5.1.2 Joint Preprocessing and Subsequent Separate Decoding

The first step toward a reduced complexity receiver is to separate FEC decoding and
MUD. To exploit as much information as possible, a hard decision multiuser detector must
be avoided. Instead, the joint preprocessor should deliver log-likelihood ratios L(b̂u[�] |
y) of the coded bits bu[�] for each user u that can be directly processed by the FEC
decoders.

For the sake of notational simplicity, we restrict to synchronous single carrier CDMA
systems in frequency-nonselective environments and OFDM-CDMA systems for frequency-
selective channels assuming a coarse synchronization (Kühn 2003) (cf. Section 4.2). In
these scenarios, the system matrix S is block diagonal and can be split into several Ns ×
Nu matrices S[�]. Hence, symbol-wise preprocessing is optimal and we omit the time
variable �. However, the derivation can generally be extended to the asynchronous case.
Furthermore, we consider only binary phase shift keying (BPSK) modulation so that no
soft-output demodulation is required.1 In this case, bu ∈ {0, 1} and au ∈ {+1, −1} can be
used equivalently.

The resulting structure is shown in Figure 5.1. Each transmitter consists of an FEC
encoder including the BPSK mapping and a user-specific interleaver �u (Bruck et al.
2000). Spreading with the codes cu[�] and the transmission over the channels hu[�] are
embraced in the blocks denoted by the signatures su[�]. Finally, the received signal y[�] is
obtained by summing up all transmit signals and the background noise n[�].

At the receiver, the processing for y = y[�] at time instant � starts with the calculation
of the log-likelihood ratios

L(âu | y) = log
Pr{au = +1 | y}
Pr{au = −1 | y} = log

pY|au=+1(y) · Pr{au = +1}
pY|au=−1(y) · Pr{au = −1} (5.8)

= L(y | âu)+ La(au).

1In the case of QPSK, a soft-output demodulator demultiplexes inphase and quadrature components into a
single data stream. For M-ary modulation schemes with M > 4, appropriate soft-output demodulation algorithms
have to be employed.
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Figure 5.1 CDMA system with joint preprocessing and individual FEC decoding

Extending au in the numerator and denominator of L(y | âu) to a and summing up all
possible combinations of aν �=u yields with �NN = σ 2

N · INs

L(âu | y) = log

∑
a,au=+1 pY|a(y) · Pr{a}∑
a,au=−1 pY|a(y) · Pr{a}

= log

∑
a,au=+1 exp

[− ‖y− S · a‖2/σ 2
N
] · Pr{a}∑

a,au=−1 exp
[− ‖y− S · a‖2/σ 2

N
] · Pr{a} . (5.9)

The probabilities Pr{a} in (5.9) are generally not known a priori so that they are not con-
sidered for the moment. However, we will come back to them when talking about iterative
schemes. Performing some manipulations on the squared magnitudes in the numerator and
denominator and dropping all terms that do not depend on a results in

−‖y− S · a‖2 ⇒ 2 · Re
{
aH · SH · y}− aH · SH · S · a

= 2 · Re
{
aH · r}− aH · R · a. (5.10)

We recognize that the matched filtered signal r = SH · y is correlated with the hypothesis
a. In the case of BPSK, a and r′ = Re

{
SH · y} are real-valued and (5.10) simplifies to

−‖y− S · a‖2 ⇒ 2aT r′ − aT R′a (5.11)

with R′ = Re {R}. The output of the matched filter represents a sufficient statistics, that is,
it contains the same mutual information as the channel output y, and subsequent processing
stages can still provide optimal log-likelihood ratios. We obtain

L(r′ | âu) = log

∑
a,au=+1 exp

([
2aT r′ − aT R′a

]
/(2σ 2

N ′)
)∑

a,au=−1 exp
([

2aT r′ − aT R′a
]
/(2σ 2

N ′)
) . (5.12)

Obviously, the computational complexity still depends exponentially on the number of users
(and the alphabet size). A modest complexity reduction can be achieved by applying the
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already known approximation of (3.70) resulting in

L(r′ | âu) ≈ 1

2σ 2
N ′
· max

a,au=+1

[
2aT r′ − aT R′a

]
(5.13)

− 1

2σ 2
N ′
· max

a,au=−1

[
2aT r′ − aT R′a

]
.

5.1.3 Turbo Detection with Joint Preprocessing and Separate
Decoding

In the next step, individual de-interleaving and FEC decoding is performed. According to
the turbo-principle, it is possible to give feedback information to the preprocessor so that
an iterative process arises (Hagenauer 1996a; Lampe and Huber 2002; Reed et al. 1998). If
soft-output decoding algorithms like the (BCJR) algorithm explained in Section 3.4.3 are
employed in delivering the LLRs L(âu) = La(au), these LLRs can be used to calculate a
priori probabilities

Pr{au} = eLa(au)/2

1+ eLa(au)
· eauLa(au)/2 (5.14)

that can be inserted into (5.9). Because of individual interleavers, the LLRs La(au) are
assumed to be statistically independent so that

Pr{a} =
Nu∏
u=1

eLa(au)/2

1+ eLa(au)
· eauLa(au)/2 (5.15)

holds. Using the results for BPSK from (5.11) and inserting (5.15) into (5.9) results in

L(âu | r) = log

∑
a,au=+1 e

[
2aT r′−aT R′a

]
/(2σ 2

N ′ ) ·∏Nu
µ=1

eLa(aµ)/2

1+eLa(aµ) e
aµLa(aµ)/2

∑
a,au=−1 e

[
2aT r′−aT R′a

]
/(2σ 2

N ′ ) ·∏Nu
µ=1

eLa(aµ)/2

1+eLa(aµ) e
aµLa(aµ)/2

= log

∑
a,au=+1 e

[
2aT r′−aT R′a

]
/(2σ 2

N ′ )+
∑Nu

µ=1 aµLa(aµ)/2∑
a,au=−1 e

[
2aT r′−aT R′a

]
/(2σ 2

N ′ )+
∑Nu

µ=1 aµLa(aµ)/2
. (5.16)

The terms eLa(aµ)/2/(1+ eLa(aµ)) are independent of the hypotheses a within the summa-
tions and, therefore, are identical in the numerator and denominator so that they can be
cancelled. Furthermore, the u-th contribution in the inner sums of numerator and denom-
inator in (5.16) is constant due to the restrictions of the outer summations over a with
au = +1 or au = −1. Hence, we can extract the common factor exp[La(au)] from the ratio
and obtain

L(âu | r) = La(au)+ Le(âu) (5.17a)

with

Le(âu) = log

∑
a,au=+1 e

[
2aT r′−aT R′a

]
/(2σ 2

N ′ )+
∑Nu

µ=1
µ�=u

aµLa(aµ)/2

∑
a,au=−1 e

[
2aT r′−aT R′a

]
/(2σ 2

N ′ )+
∑Nu

µ=1
µ�=u

aµLa(aµ)/2
. (5.17b)
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The approximation already known from (5.13) becomes

L(âu | r) ≈ La(au)+ max
a,au=+1

2aT r′ − aT R′a
2σ 2

N ′
+ 1

2

Nu∑
µ=1
µ �=u

aµLa(aµ)



− max
a,au=−1

2aT r′ − aT R′a
2σ 2

N ′
+ 1

2

Nu∑
µ=1
µ �=u

aµLa(aµ)

 . (5.18)

The receiver structure depicted in Figure 5.2 illustrates how to calculate the solutions pre-
sented in (5.16) and (5.18). In the first iteration, no a priori information is available and
only the terms given in (5.11) have to be calculated. They remain constant during subse-
quent iteration steps and are to be determined only once. After having performed the FEC
decoding for the first time, the LLRs La(bu) can be used as a priori information according
to (5.15) to improve the estimates L(âu | r).

As already mentioned, the complexity of the joint preprocessor still grows exponen-
tially with the number of users while the decoding part depends linearly on Nu. For a
small OFDM-CDMA system with a spreading factor Ns = 4, some results are shown
in Figure 5.3. They have been obtained for a 4-path Rayleigh fading channel with uni-
form power delay profile and random spreading codes. A half-rate convolutional code with
Lc = 3 and generators g1 = 58, g2 = 78 was employed. At the receiver, perfect LLRs from
(5.16) as well as for the approximation of (5.18) have been used.

Obviously, the error rate can be significantly reduced with the second iteration. Subse-
quent iterations not shown here do not lead to substantial additional improvements because
we are already close to the single-user bound (SUB). This lower bound is reached at a
signal-to-noise ratio (SNR) of 7 dB for β = 1 as well as β = 2. Only for small SNRs, the
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Figure 5.2 Turbo receiver for joint preprocessing and individual FEC decoding
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loss compared with the SUB amounts to 0.2 dB for β = 1 and 0.5 dB for β = 2. Moreover,
the approximate solution (× and +) performs nearly as well as the optimum solution.

5.2 Linear Multiuser Detection
A further reduction of the computational complexity can be achieved by applying only linear
joint preprocessing. A common property of all linear techniques is that they do not exploit
the knowledge of the finite signal alphabet but assume continuously distributed transmit
signals. Therefore, we have only a polynomial complexity with respect to the number of
active users instead of an exponential relationship. The following approaches are related to
simple linear algebra, that is, the linear equation system y = Sa+ n has to be solved with
respect to a, that is, we look for a matrix W with â = W · y. For simplicity, we first restrict
to the uncoded case and the system matrix S consists of Nu columns and Ns rows.

5.2.1 Decorrelator (Zero-Forcing, ZF)

First, we consider the decorrelator being equivalent to the zero-forcing (ZF) equalizer
(Honig and Tsatsanis 2000; Moshavi 1996). It searches for the unconstrained vector ãZF ∈
CNu that minimizes the squared Euclidean distance to the received vector y according to

ãZF = argmin
ã∈CNu

∥∥y− Sã
∥∥2

. (5.19)

The multiplication of ãZF with S leads to the best reconstruction of y. Although (5.19)
looks very similar to the maximum likelihood solution, the search space is not restricted to
a finite alphabet (unconstrained) but comprises the entire Nu-dimensional space of complex
numbers. Therefore, the final detection requires a scalar hard decision âZF = Q(ãZF) of the
soft values in ãZF. Nevertheless, the decorrelator represents the joint maximum likelihood
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detector for continuously distributed signal alphabets. Without the exploitation of the finite
signal space there is no combinatorial problem and the optimization is solved by setting
the derivative of the squared Euclidean distance in (5.19) with respect to ãH , to zero. With
the relation ∂ ã/∂ ãH = 0 (Fischer 2002), we obtain the Wirtinger derivative

∂

∂ ãH

(
y− Sã

)H · (y− Sã
) = ∂

∂ ãH

(
yH y− yH Sã− ãH SH y+ ãH SH Sã

)
= −SH y+ SH Sã != 0 (5.20)

whose solution is obviously (Verdu 1998)

ãZF = WH
ZF · y =

(
SH S

)−1 · SH · y = R−1 · r (5.21)

with WZF = S · (SH S
)−1

. We recognize that the decorrelator starts again with a bank of
matched filters (multiplying y with SH ). Afterwards, the intermediate results in r are decor-
related with R−1, that is, the correlations between the matched filter outputs are removed.
If S consists of linear independent columns which are generally fulfilled for Nu ≤ Ns, the
correlation matrix R = SH S has full rank and its inverse exists. Inserting the structure of
y into (5.21) leads to

ãZF = R−1SH · (Sa+ n
) = a+ R−1SH · n = a+WH

ZF · n. (5.22)

The output of the decorrelator consists of the desired symbol vector a and a modified
noise term. Therefore, as already mentioned in Section 4.4.3, the interference can be totally
suppressed. However, the background noise is multiplied with the inverse of the correlation
matrix R leading, especially for high loads β, to a strong noise amplification and, hence,
to low SNRs. This drawback is also indicated by the error covariance matrix

�ZF = E
{(

ãZF − a
)(

ãZF − a
)H}

= E
{(

a+WH
ZFn− a

)(
a+WH

ZFn− a
)H}

= WH
ZF E

{
nnH

}
WZF

= σ 2
NWH

ZFWZF = σ 2
NR−1SH SR−1 = σ 2

NR−1. (5.23)

It contains on its diagonal, the mean squared error (MSE) for each user and equals the
inverse of the correlation matrix R multiplied with the noise power σ 2

N.

Real-Valued Modulation Schemes

For real-valued modulation schemes such as BPSK or M-ary amplitude shift keying (ASK),
significant improvements can be achieved by the following modification. Since we know
that real symbols have been transmitted, only the real part of the matched filter outputs
r′ = Re

{
SH y

}
is of interest. Consequently, the inverse has to be determined only from

R′ = Re
{
SH S

}
and we obtain

ãZF = Re
{
SH S

}−1 · Re
{
SH · y} = R′−1 · r′. (5.24)

The advantage of (5.24) becomes obvious when the received signal is described only by
real matrices. Splitting up real and imaginary parts doubles the sizes of all vectors and
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matrices leading to

yr =
[

y′
y′′

]
=

[
S′ −S′′
S′′ S′

]
·
[

a′
a′′

]
+

[
n′
n′′

]
=

[
S′
S′′

]
· a′ +

[
n′
n′′

]
= S̃ra′ + nr. (5.25)

Since a′′ = 0 holds for real-valued modulation schemes, only the first Nu columns of the
real-valued system matrix influence the channel output. This halves the effective interference
so that S̃r is better conditioned than S and the background noise is less amplified.

Moore-Penrose Pseudo Inverse

Next, we have to discuss the case when R is singular and its inverse does not exist. Since we
assume binary spreading codes, this situation occurs for Nu > Ns and requires the pseudo
inverse or Moore-Penrose inverse. It is obtained from the singular-value decomposition of
S (Golub and van Loan 1996) (see also Appendix C)

S = U�VH = U
[
�0 0
0 0

]
VH ⇒ R = U

[
�2

0 0
0 0

]
UH = U�UH , (5.26)

where U ∈ CNs×Ns and V ∈ CNu×Nu are unitary matrices. The diagonal matrix �0 contains
all nonzero singular values of S. With this definition, we obtain the pseudo inverses that
also include the nonsingular case

S† = V�†UH = V
[
�−1

0 0
0 0

]
UH =

{(
SH S

)−1SH rank(S) = Nu

SH
(
SSH

)−1
rank(S) = Ns

(5.27a)

and

R† = [
SH S

]† = V
[
�−2

0 0
0 0

]
VH =

{(
SH S

)−1
rank(S) = Nu

SH
(
SSH

)−2S rank(S) = Ns.
(5.27b)

Using (5.27a) and (5.27b), we obtain the general result WH
ZF = S†.

Near-Far Scenarios

In scenarios with near-far effects (cf. page 183), the received signal can be expressed as

y = SP1/2a+ n.

The corresponding decorrelating filter is

WH
ZF = P−1/2S†, (5.28)

that is, it consists of the already known decorrelator S† with successive scalar weighting
of the filter outputs. Since the decorrelator totally removes the interference, weak users do
not suffer from strong users and the decorrelator is called near-far resistant.

Figure 5.4a shows the bit error rate (BER) performance of the decorrelator for BPSK.
Although the multiple access interference can be totally suppressed, the performance
degrades with increased load. Only for very low β the SUB can be reached. The rea-
son for this behavior is the amplification of the background noise that becomes larger with
growing load. For β = 2, a reliable transmission is not possible. However, except for low
SNR and extremely high loads, the decorrelator performs better than the simple matched
filter represented by dashed lines.
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This can also be observed in Figure 5.4b showing the error rate performance versus β

for different SNRs Es/N0. While the error rate degrades dramatically for the matched filter
even for moderate loads, the BER increases more slowly for the decorrelator. Nevertheless,
the noise amplification leads to a weak performance at high SNRs, the error rate approaches
0.5 when β tends to 2. It has to be emphasized that the example assumes independent fading
channels for all users (see uplink transmission in Section 4.2) so that the interference
is distributed in the complex plane. Since we use real-valued BPSK, only half of the
interference power affects the transmission. Otherwise, the error rate of 0.5 would have
already been reached for β = 1.

Figure 5.5 compares the performance of the decorrelator with that of a simple matched
filter. It depicts the gain

γZF−MF = 10 log10
Eb/N0|MF

Eb/N0|ZF
(5.29)

of the decorrelator for different target error rates Pt, that is, the logarithmic ratio of required
SNRs to achieve the bit error rate Pt. Obviously, γZF−MF grows with β and the slope
becomes higher for low target error rates. Note that the matched filter cannot reach certain
target error rates if the load is too high, resulting in infinite large gains. For small SNRs
and if β approaches 2, the decorrelator performs worse than the matched filter as can be
seen from Figure 5.4.

5.2.2 Minimum Mean Squared Error Receiver (MMSE)
So far, we considered two extreme linear detectors: The matched filter in Chapter 4 that
addresses only the background noise and, therefore, suffers severely from multiuser interfer-
ence and the decorrelator of the preceding section that concentrates only on the interference
neglecting the influence of the noise. A compromise between both is obtained with the
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minimum mean squared error (MMSE) detector WMMSE minimizing the average squared
Euclidean distance between the estimate ãMMSE = WH

MMSE · y and the true data vector a.

âMMSE = WH
MMSE · y with WMMSE = argmin

W̃∈CNu×Ns

E
{∥∥W̃H y− a

∥∥2
}

. (5.30)

Again, a solution of the problem defined in (5.30) is found by setting the partial derivative of
the squared Euclidean distance with respect to W̃, to zero. With the relation ∂W̃H /∂W̃ = 0
(Fischer 2002), we obtain

∂

∂W̃
E
{
tr
[
(W̃H y− a)(W̃H y− a)H

]}
= ∂

∂W̃
tr
[
W̃H �YYW̃− W̃H �YA −�AYW̃+�AA

]
= W̃H�YY −�AY

!= 0 (5.31)

leading to the well-known Wiener solution

WH
MMSE = �AY ·�−1

YY. (5.32)

To determine the covariance matrices in (5.32), some general assumptions are made that
are fulfilled in most practical communication systems. First, the AWGN channel adds white
noise, that is, successive noise samples are uncorrelated. Second, the data symbols au of
different users are statistically independent. Furthermore, the data symbols are independent
from the noise samples leading to the following set of equations.

�NN = E{nnH } = σ 2
N · INs (5.33a)

�AA = E{aaH } = σ 2
A · INu (5.33b)

�AN = E{anH } = 0. (5.33c)
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These results deliver the covariance matrix of the received samples

�YY = E{yyH } = S�AASH +�NN = σ 2
A · SSH + σ 2

N · INs (5.34)

and the crosscovariance matrix

�AY = E{ayH } = �AASH +�AN = σ 2
A · SH . (5.35)

Inserting (5.34) and (5.35) into (5.32), we obtain the MMSE filter

WH
MMSE = σ 2

ASH
(
σ 2
ASSH + σ 2

NINs

)−1 = SH
(
SSH + σ 2

N
σ 2
A

INs

)−1
(5.36)

which can be shown to be equivalent to2

WH
MMSE =

(
SH S+ σ 2

N
σ 2
A

INu

)−1

· SH =
(

R+ N0

Es
INu

)−1

· SH . (5.37)

Analyzing the result in (5.37), we see that the MMSE detector starts like the decorrelator
with a matched filter bank. Moreover, WMMSE represents a compromise between matched
filter and decorrelator. For σ 2

N → 0, that is, infinitely large SNR, the identity matrix in the
inverse is cancelled and we obtain the decorrelator in (5.21) suppressing the interference
perfectly. On the contrary, the identity matrix dominates the inverse for σ 2

N →∞ so that
R can be neglected. In this case, we simply obtain the matched filter that addresses only
the noise (Müller 1998).

The MMSE detector does not suppress the multiuser interference perfectly and some
residual interference still disturbs the transmission. Moreover, the estimate is biased. The
error covariance matrix with (5.1) and (5.37) now becomes

�MMSE = E
{(

ãMMSE − a
)(

ãMMSE − a
)H}

= σ 2
A

INu −
(

R+ σ 2
N

σ 2
A

INu

)−1

R

 = σ 2
N

(
R+ σ 2

N
σ 2
A

INu

)−1

. (5.38)

The normalized MSE per user can be easily calculated and amounts to

1

σ 2
ANu

tr [�MMSE] = 1

Nu
tr

σ 2
N

σ 2
A

(
U�UH + σ 2

N
σ 2
A

INu

)−1


= 1

Nu

rank(S)∑
µ=1

N0/Es

λµ + N0/Es
, (5.39)

where λµ denotes the µ-th nonzero eigenvalue of the correlation matrix R. Hence, the
average error depends on the singular-value distribution of S. For large SNR Es/N0 →∞,
the error diminishes; for Es/N0 → 0, it becomes 1.

2A simple way to derive (5.37) is to start with a matched filter bank and minimizing ‖WH SH y− a‖2 =
‖WH r− a‖2.
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Real-Valued Modulation Schemes

Looking again at a BPSK transmission, the performance can be improved by concentrating
on the important real parts. Similar to the derivation for the decorrelator we obtain

ãMMSE =
(

R′ + N0

2Es
INu

)−1

· r′. (5.40)

Note that the noise power in (5.40) is halved compared to the complex-valued case!

Near-Far Scenarios

In near-far scenarios, the MMSE filter has to be adapted to the different power levels among
the users (Feuersänger and Kühn 2001). Substituting S with SP1/2, it becomes

WMMSE = P1/2SH
(
SPSH + σ 2

NINs

)−1
(5.41a)

= P1/2(SH SP+ σ 2
NINu

)−1SH . (5.41b)

From (5.41a) and (5.41b), we observe that the power levels affect the behavior of the
MMSE filter. If the SNR grows without bound, the influence of the background noise
vanishes and the MMSE filter concentrates on the interference suppression. Hence, the
MMSE detector approaches the decorrelator, and is asymptotically near-far resistant (Verdu
1998). However, for finite SNR weak users suffer more from strong users than in the case
of the decorrelator, that is, near-far resistance is not generally given.

Figure 5.6a shows the BER performance of the MMSE detector for an OFDM-CDMA
system and a 4-path Rayleigh fading channel. Similar to the decorrelator, performance
degrades for increased system load β. However, the comparison with the decorrelator in
Figure 5.6b illustrates that the degradation is much smaller than for the ZF solution. The
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Figure 5.6 Error rate performance of MMSE filter for different loads and OFDM-CDMA
system with 4-path Rayleigh fading channel (dashed line: decorrelator)
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Figure 5.7 Gain of MMSE filter compared to decorrelator for different loads and an uncoded
OFDM-CDMA system with BPSK and 4-path Rayleigh fading channel

MMSE filter outperforms the decorrelator for all loads β and all SNRs and the gain grows
with the system load. This is also confirmed by Figure 5.7.

Concluding, we can state that linear MUD techniques reduce multiple access interference
efficiently. Especially, the MMSE filter outperforms the simple matched filter for all SNRs.
Although the computational complexity of the described linear detectors is much lower
than that of the optimum multiuser detector, it still grows cubically with the system size.
Hence, calculating the pseudo inverse of S becomes a demanding task for large systems.
The next subsections describe some iterative schemes approximating the ZF and MMSE
solutions with lower computational costs.

5.2.3 Linear Parallel Interference Cancellation (PIC)

By calculating the pseudo inverse of the system matrix S, we basically solve a linear
equation system. From linear algebra (Golub and van Loan 1996) we know that the solution
can be obtained iteratively. Starting with a matched filter bank, we have to process the
signal

r = Ra+ SH n ⇒ ã = WH · r ⇔ M · ã = r. (5.42)

Instead of looking in (5.42) for a matrix W that leads to a good estimate ã, we can
describe the problem as solving the linear equation system M · ã = r. The matrix M will
be determined later. A single row of this linear equation system can be presented in the
form

ru = Mu,uãu +
u−1∑
v=1

Mu,vãv +
Nu∑

v=u+1

Mu,vãv, (5.43)

that is, the received value ru consists of the superposition of the scaled desired symbol ãu

and the weighted interfering symbols ãv �=u. An iterative solution of the equation system is
obtained by using the weighted matched filter outputs of the interfering symbols as initial
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Figure 5.8 Structure of multistage detector for iterative parallel interference cancellation

soft estimates â
(0)
v �=u = rv �=u/Mv,v. Subtracting them from ru leads to an improved estimate

ã
(1)
u after the first iteration. The interference cancellation is simultaneously applied to all

users and repeated with updated estimates ã
(µ)
u in subsequent iterations. In the µ-th iteration,

the u-th symbol becomes

ã(µ)
u = M−1

u,u ·
[
ru −

u−1∑
v=1

Mu,vã
(µ−1)
v −

Nu∑
v=u+1

Mu,vã
(µ−1)
v

]
. (5.44)

The simultaneous application of (5.44) for all symbols au, 1 ≤ u ≤ Nu, is also called Jacobi
algorithm and known as linear parallel interference cancellation (PIC). An implementation
leads directly to a multistage detector depicted in Figure 5.8 (Honig and Tsatsanis 2000;
Moshavi 1996). Several identical modules highlighted by the gray shaded areas are serially
concatenated. Each module represents one iteration step so that we need m stages for m

iterations.
The choice of the matrix M determines the kind of detector that is approximated.

For M = R, we approximate the decorrelator, and the coefficients Mu,v = Ru,v used in
(5.44) equal the elements of the correlation matrix. The MMSE filter is approximated
for M = R+ σ 2

N/σ 2
A · INu . Hence, the diagonal elements of M have to be replaced with

Mu,u = Ru,u +N0/Es.

Convergence Behavior of Decorrelator Approximation

The convergence properties of this iterative algorithm depend on the eigenvalue distribution
of M. Therefore, (5.44) is described using vector notations. The matrix A = diag(diag(R))

is diagonal and contains the diagonal elements of the correlation matrix R. The PIC approx-
imating the decorrelator delivers

ã(0)
ZF = A−1 · r

ã(1)
ZF = A−1

[
r− (

R− A
)
ã(0)

ZF

]
= A−1/2 [INu − A−1/2(R− A

)
A−1/2]A−1/2r
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ã(2)
ZF = A−1

[
r− (

R− A
)
ã(1)

ZF

]
= A−1/2

[
INu − A−1/2(R− A

)
A−1/2 +

(
A−1/2(R− A

)
A−1/2

)2
]

A−1/2r

...

ã(m)
ZF = A−1/2

m∑
µ=0

[
A−1/2(A− R

)
A−1/2]µ A−1/2r. (5.45)

The output after the m-th iteration in (5.45) represents the m-th order Taylor series approx-
imation of R−1 (Müller and Verdu 2001). Rewriting it with the normalized correlation
matrix R̄ = A−1/2RA−1/2 yields

ã(m)
ZF = A−1/2

m∑
µ=0

(
INu − R̄

)µA−1/2r. (5.46)

This series only converges to the true inverse of R if the magnitudes of all eigenvalues of
INu − R̄ are smaller than 1. This condition is equivalent to λmax(R̄) < 2. Since λmax tends
asymptotically to (1+√β)2 (Müller 1998), we obtain an approximation of the maximum
load below which the Jacobi algorithm will converge.

βmax = NU,max

Ns
< (
√

2− 1)2 ≈ 0.17. (5.47)

Obviously, the Jacobi algorithm or, equivalently, the linear PIC converges toward the true
decorrelator only for very low loads. Hence, this technique is not suited for highly loaded
systems.

Convergence Behavior of MMSE Approximation

According to the last section, we have to replace the diagonal matrix A with the matrix
D = A+ σ 2

N/σ 2
AINu to approximate the MMSE detector. With this substitution, we obtain

the following estimates after different iterations.

ã(0)
MMSE = D−1 · r

ã(1)
MMSE = D−1

[
r− (

R− A
)
ã(0)

MMSE

]
= D−1/2 [INu − D−1/2(R− A

)
D−1/2]D−1/2r

ã(2)
MMSE = D−1

[
r− (

R− A
)
ã(1)

MMSE

]
= D−1/2

[
INu − D−1/2(R− A

)
D−1/2 +

(
D−1/2(R− A

)
D−1/2

)2
]

D−1/2r

...

ã(m)
MMSE = D−1/2

m∑
µ=0

[
D−1/2(A− R

)
D−1/2]µ D−1/2r. (5.48)
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To determine the convergence properties concerning the MMSE filter, (5.48) can be trans-
formed into the form of (5.46)

ã(m)
MMSE = D−1/2

m∑
µ=0

[
INu − D−1/2

(
R+ σ 2

N
σ 2
A

INu

)
D−1/2

]µ

D−1/2r. (5.49)

Now, the same argumentation as for the decorrelator can be applied and the condition for
convergence becomes (Grant and Schlegel 2001)

max
u=1...Nu

A2
u,uλu + σ 2

N/σ 2
A

A2
u,u + σ 2

N/σ 2
A

< 2 ⇒ β < min
u=1...Nu


√√√√2+ σ 2

N
A2

u,uσ
2
A
− 1

2

.

The first difference compared to the decorrelator is that the maximum load β depends on
the SNR σ 2

N/σ 2
A = N0/Es. This term increases the convergence area a little bit. However,

for high SNR σ 2
N/σ 2

A becomes small and both decorrelator and MMSE filter are approached
only for low loads.

This behavior is illustrated in Figure 5.9a showing the results for the first five iterations
and a load β = 0.5. Only for very low SNR (large σ 2

N/σ 2
A) the iterative approximation

reaches the true MMSE filter. For higher SNRs, β = 0.5 is beyond the convergence region
and the PIC performs even worse than the matched filter. Figure 5.9b shows the results for
Eb/N0 = 10 dB versus β. Again, it is confirmed that convergence can be ensured only for
low load.

5.2.4 Linear Successive Interference Cancellation (SIC)

The poor convergence properties of the linear PIC can be substantially improved. Imagine
that the interference cancellation described in (5.44) is carried out successively for different
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Figure 5.9 Performance of linear PIC approximating the MMSE filter (upper dashed line:
matched filter; lower dashed line: true MMSE filter)
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users starting with u = 1 and ending with u = Nu. Considering the µ-th iteration for user u,
only estimates ã

(µ−1)
v �=u of the previous iteration µ− 1 are used. However, updated estimates

ã
(µ)
v<u of the µ-th iteration are already available for users 1 ≤ v < u. Replacing all old

estimates ã
(µ−1)
v<u in (5.44) with their updated versions ã

(µ)
v<u of the current iteration results

in the Gauss-Seidel algorithm

ã(µ)
u = M−1

u,u ·
[
ru −

u−1∑
v=1

Mu,vã
(µ)
v −

Nu∑
v=u+1

Mu,vã
(µ−1)
v

]
. (5.50)

Besides improved convergence properties another advantage is the in-place implementation,
that is, updated estimates can directly overwrite old values because they are not used any
longer, thereby saving valuable memory.

The analysis of the convergence behavior is not as easy as for the PIC. In Golub and
van Loan (1996) it is shown that the algorithm always converges for Hermitian positive
definite matrices M. Fortunately, in the context of our CDMA system M represents the
correlation matrix R or R+ σ 2

N/σ 2
AINu . Hence, M can be assumed to be Hermitian and

positive definite so that the Gauss-Seidel algorithm always converges.
Figure 5.10a confirms the promised convergence properties. Considering a half-loaded

system, five iterations suffice to approach the true MMSE filter. At low SNRs, the perfor-
mance of the MMSE filter is reached with even less iterations. Figure 5.10b shows that with
increasing load more iterations are needed. For loads above β = 1, the first iteration can
perform even worse than the matched filter. However, successive iterations substantially
improve the performance.

Comparing the computational costs of a direct matrix inversion with the iterative approx-
imations in terms of number of multiplications, we see from (5.50) that Nu multiplications
per iteration and user are needed. For m iterations, this leads to mN2

u multiplications
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Figure 5.10 Performance of linear SIC approximating the MMSE filter (upper dashed line:
matched filter, lower dashed line: true MMSE filter)
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compared to a complexity of O(N3
u ) for the direct matrix inversion. Hence, as long as

the number of iterations is smaller than Nu, we save computational costs.
Besides parallel and SIC strategies, there exist further iterative approaches like the

conjugate gradient method and a general polynomial series expansion of the inverse (Müller
1998). These approaches are not pursued here.

All linear techniques described so far do not reach the SUB, that is, interference remains
in the system after filtering. The information theoretic analysis in Section 4.3 showed that
the optimum detector performs much better than linear techniques. Therefore, we have to
look for nonlinear approaches that come closer to the optimum solution. These techniques
exploit the finite signal alphabet to improve the MUD.

5.3 Nonlinear Iterative Multiuser Detection

A major drawback of the previously introduced linear detectors is not exploiting the discrete
nature of the transmit signals. This shortcoming can be easily overcome by introducing
nonlinear devices into the multistage structure to exploit the discrete alphabets. This means
that the signals ã

(µ)
v �=u in (5.44) or (5.50) are passed through a suited nonlinear device before

they are used for interference cancellation. For simplicity, we restrict the analysis to a
normalized BPSK, that is, we transmit x = ±1. An extension to quaternary phase shift
keying (QPSK) that treats real and imaginary parts separately is straightforward while
schemes with more levels need more sophisticated methods.

5.3.1 Nonlinear Devices

The simplest nonlinearity is naturally a hard decision, that is, determining the sign of a
signal

QHD(y) = sgn(y). (5.51)

If the tentative decision is correct, the interference can be cancelled perfectly. However, if
the decision is wrong, which may be very likely in the early stages of the detection process,
especially for large β, interference is not reduced but in fact increased and the situation
becomes worse. Therefore, more sophisticated functions taking into account the reliability
of the signals should be preferred. A selection analysed by Kühn et al. (2002) is depicted
in Figure 5.11.

To keep the influence of wrong decisions as small as possible, it is advantageous not
to decide on unreliable small samples but to keep them small. Obviously, interference is
generally not perfectly cancelled by these approaches, but the error made by wrong decision
is remarkably reduced. The simplest form that follows this strategy is the clipper or limiter.
It has a linear shape for |y| ≤ 1 and outputs ±1 for larger inputs |y| > 1

Qclip(y) =


−1 for y < −1

y for |y| ≤ 1

+1 for y > +1.

(5.52)

Hence, the clipper exploits the fact that the transmitted signals cannot be larger than 1.3

Interference is totally cancelled if the signal has the correct sign and a magnitude larger
3For notational simplicity, we assume the normalization to Es/Ts = 1.

www.4electron.com



246 MULTIUSER DETECTION IN CDMA SYSTEMS

1 1

1 1

1

1

1 1

1

-1 -1

-1 -1

-1

-1

-1 -1

-1

NL 1 NL 2

α

αα

α

HD clipper tanh

Figure 5.11 Examples for nonlinear devices

than 1. For small values, the reliability is low and the interference can only be partly
reduced. In case of a wrong sign, the degradation is not as large as for the hard decision.

A smooth version of the clipper is obtained with the tanh-function avoiding sharp edges.
We know from Section 3.4 on page 110 that the expectation of a bit is obtained from its
log-likelihood ratio L by tanh(L/2). However, the LLR can be determined only if the
signal to interference plus noise ratio (SINR) is perfectly known. This represents a big
difficulty because we do not know the exact interference level in each iteration. Therefore,
we introduce a parameter α according to

Qtanh(y) = tanh(αy) (5.53)

that depends on the SNR as well as the effective interference and has to be optimized with
respect to a minimum error rate. Figure 5.12 compares the tanh-function for different α

with the hard decision and the clipper. For small α, the tanh is very smooth and its output
is pretended to be unreliable even for large inputs. On the contrary, α = 1 comes close to
the clipper in the nearly linear area around the origin and large α > 1 approach the hard
decision.

Next, two further nonlinear functions are proposed. The first one (NL 1) has a linear
shape around the origin and hops to ±1 for values larger than a certain threshold α

QNL1(y) =


−1 for y < −α

y for |y| ≤ α

+1 for y > α.

(5.54)

The difference compared to the clipper is that this nonlinearity starts to totally remove the
interference for values smaller than 1. The parameter α has to be optimized according to
the load and the SNR. The second function (NL 2) avoids any cancellation for unreliable
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values and allows interference reduction only above a threshold α

QNL2(y) =



−1 for y < −1

y for − 1 ≤ y ≤ −α

0 for |y| < α

y for α ≤ y ≤ +1

+1 for y > +1.

(5.55)

Obviously, it reduces to a simple clipper for α = 0.
Finally, we will look at coded CDMA systems. If the computational costs do not

represent a restriction, the channel decoder can be used as a nonlinear device (Hagenauer
1996a). Since it exploits the redundancy of the code, it can increase the reliability of the
estimates remarkably. Again, we have to distinguish between hard-output and soft-output
decoding. For convolutional codes presented in Chapter 3, hard-output decoding can be
performed by the Viterbi algorithm while soft-output decoding can be carried out by the
BCJR or Max-Log-MAP algorithms.

5.3.2 Uncoded Nonlinear Interference Cancellation

Uncoded Parallel Interference Cancellation

First, we have to optimize the parameter α for the nonlinear functions NL 1, NL 2, and
tanh. We start our analysis with the PIC whose structure for the linear case in Figure 5.8
has to be extended. Figure 5.13 shows the µ-th stage of the resulting multistage receiver.
Prior to the interference cancellation, the interference reduced signals r̃

(µ−1)
v of the previous

iteration are scaled with coefficients M−1
v,v . The application of the nonlinear function now

yields estimates for all signals

ã(µ−1)
v = Q (

M−1
v,v · r̃ (µ−1)

v

)
. (5.56)
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Figure 5.13 µ-th stage of a multistage detector for nonlinear parallel interference cancel-
lation

For user u, all estimates ã
(µ−1)
v �=u are first weighted with the correlation coefficients Mu,v �=u,

then summed up and finally subtracted from the matched filter output ru

r̃(µ)
u = ru −

∑
v �=u

Mu,v · ã(µ−1)
v . (5.57)

After this cancellation step is performed for all users, the procedure is repeated. If the
iterative scheme converges and the global optimum is reached, the interference is can-
celled more and more until the single-user performance is obtained. However, the iterative
algorithm may get stuck in a local optimum.

Figure 5.14 shows the performance of the nonlinearities NL 1 and NL 2 versus the
design parameter α. Looking at NL 2, we observe that αNL 2

opt = 0 is always the best choice
regardless of the number of iterations. Hence, NL 2 reduces to a simple clipper. With
regard to NL 1, the optimum α depends on the iteration. In the first stage, the minimum
BER is also delivered by a clipper obtained with αNL 1

opt = 1. For the fifth stage, 0.3 ≤
αNL 1

opt ≤ 0.4 is the best choice. Moreover, the comparison of NL 2 with NL 1 shows that
NL 1 is at least as good as NL 2 and generally outperforms NL 2 (Zha and Blostein
2003).

The same analysis has been performed for the tanh-function. From Figure 5.15 we
recognize that 1 ≤ α ≤ 2 is an appropriate choice for a large variety of loads. With growing
β, the optimum α becomes smaller and approaches 1 for β = 1.25. This indicates that the
SINR is small for large β. However, the differences are rather small in this interval. Only
very low values of α result in a severe degradation because no interference is cancelled
for α = 0 leading to the matched filter performance. If α is chosen too large, the tanh
function saturates for most inputs and the error rate performance equals that of a hard
decision.

Figure 5.16a now compares all proposed nonlinearities for a fully loaded OFDM-CDMA
system with β = 1 and five iterations. The tanh-function with optimized α shows the best
performance among all schemes. NL 1 and clipper come closest to the tanh. The hard
decision already loses 2 dB compared to the tanh. Although the nonlinearities consider the
finite nature of the signal alphabet and all nonlinearities clearly outperform the matched
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Figure 5.14 PIC optimization for NL 1 and NL 2 in an uncoded OFDM-CDMA system
with a 4-path Rayleigh fading channel and Eb/N0 = 8 dB (solid lines: NL 1, dashed lines:
NL 2)
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Figure 5.15 PIC optimization for tanh in an uncoded OFDM-CDMA system with a 4-path
Rayleigh fading channel and Eb/N0 = 8 dB

filter, we observe an error floor that the SUB cannot be reached. Figure 5.16b illustrates
this loss versus β. At a load of β = 1, the error rate is increased by one decade compared to
the single-user case; for β = 1.5, only the tanh can achieve a slight improvement compared
to a simple matched filter. Therefore, we can conclude that nonlinear devices taking into
account the finite nature of the signal alphabet improve the convergence behavior of PIC.
The SUB is approximately reached up to loads of β = 0.5. For higher loads, performance
degrades dramatically until no benefit to the matched filter can be observed.
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Figure 5.16 PIC performance comparison of different nonlinearities with optimized α in
an uncoded OFDM-CDMA system with 4-path Rayleigh fading channel

Uncoded Successive Interference Cancellation

From linear interference cancellation techniques, we already know that SIC according to
the Gauss-Seidel algorithm converges much better than the PIC. Consequently, we now
analyze on the nonlinear SIC. Figure 5.17 illustrates the influence of the parameter α for
NL 1 and NL 2 on the SIC performance. As already observed for PIC, αNL 2

opt = 0 is the
best choice regardless of the load and the considered iteration, and reduces nonlinearity
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Figure 5.17 SIC optimization for NL 1 and NL 2 in an uncoded OFDM-CDMA system
with a 4-path Rayleigh fading channel and Eb/N0 = 8 dB (solid lines: NL 1, dashed lines:
NL 2)

www.4electron.com



MULTIUSER DETECTION IN CDMA SYSTEMS 251

0 0.4 0.8 1.2 1.6 2
10

−3

10
−2

10
−1

10
0

0 0.4 0.8 1.2 1.6 2
10

−3

10
−2

10
−1

10
0

B
E

R
→

B
E

R
→

α →α →

β = 0.5β = 0.5
β = 0.75β = 0.75
β = 1β = 1
β = 1.25β = 1.25

a) first iteration b) fifth iteration

SUBSUB

Figure 5.18 SIC optimization for tanh in an uncoded OFDM-CDMA system with a 4-path
Rayleigh fading channel and Eb/N0 = 8 dB

NL 2 to a simple clipper. However, the influence of α on the error rate performance is
much larger than for PIC. For αNL 2 → 1 which leads to a large interval of magnitudes
where no interference is cancelled, the error rate tends to 0.5 for all iterations while the
loss was quite moderate for the PIC.

With regard to NL 1, α has nearly no influence at the first iteration. In subsequent
stages, for example, the fifth iteration, the influence increases with growing load β and the
lowest error rate is obtained for αNL 1

opt = 0.4. Again, NL 1 with optimum α shows a better
performance than NL 2.

Figure 5.18 depicts the optimization for the tanh-function. Astonishingly, the results in
the first iteration differ from those of the PIC. The lowest error probability is obtained for
αtanh

opt = 2 regardless of the load β. Also, in the subsequent stages this choice of α represents
a very good solution and it coincides with the results of the PIC.

As can be seen from Figure 5.19, NL 1 outperforms all other schemes and represents
the best nonlinearity under consideration. For β = 1, the SUB is reached within a gap of
0.5 dB for all SNRs. The clipper (NL 2 with α = 0) and the tanh come closest to NL 1
while hard decisions lose remarkably. From Figure 5.19b we see that, compared to the
SUB, NL 1 and the tanh are able to keep the loss quite low up to a load of β = 1.5. Even
for this high load, the gain over the matched filter is significant. Hence, we can conclude
that the considered nonlinearities with optimum design parameters improve the performance
for both PIC and SIC. However, SIC still shows a better convergence behavior and comes
close to the SUB even for high loads.

Performance of Nonlinear SIC for QPSK Modulation

If we change from BPSK to QPSK, the effective interference is doubled (cf. Chapter 4).
Only slight changes are necessary to adapt the presented algorithms to QPSK. All nonlin-
earities have to be applied separately to the real and imaginary parts of the signals. Because
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Figure 5.19 Performance comparison of different nonlinearities with optimized α for
SIC in an uncoded OFDM-CDMA system with 4-path Rayleigh fading channel (five
iterations)
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Figure 5.20 SIC optimization for NL 1 and NL 2 in an uncoded OFDM-CDMA system
with β = 1, QPSK, and a 4-path Rayleigh fading channel (solid lines: NL 1, dashed lines:
NL 2)

of the doubled interference, the results we obtain for β = 0.75 and QPSK are nearly the
same as for β = 1.5 and BPSK.

Figure 5.20 analyzes the influence of the parameter α of the nonlinearities for an
OFDM-CDMA system with β = 1 and a 4-path Rayleigh fading channel. For medium
SNRs like Eb/N0 = 8 dB, the results coincide with those already obtained for BPSK.
Nearly no influence can be observed in the first stage. For further iterations and larger
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Figure 5.21 SIC performance for nonlinearities with optimized α in an uncoded OFDM-
CDMA system with QPSK and 4-path Rayleigh fading channel (β = 1)

SNR, for example, 20 dB, NL 1 requires a larger α to perform optimally. Because of the
high interference, the estimates are less reliable and the step toward ±1 occurs at higher
amplitudes. With reference to the tanh, αtanh

opt = 2 still represents a very good choice.
Figure 5.21 shows the BER performance for 5 and 10 iterations and optimized α for

NL 1 and tanh. While the hard decision does not gain from additional iterations, the non-
linear function NL 1, the tanh-function, and the clipper enhance the error rate remarkably.
The tanh with optimized α is still the best choice. However, for this high load there
remains a large gap to the SUB (bold line) that roughly amounts to 4 dB at an error rate
of 2 · 10−3.

5.3.3 Nonlinear Coded Interference Cancellation

Resuming the way from linear multistage receivers to nonlinear interference cancellation
schemes, it is straightforward to incorporate the channel decoder into the iterative structures
for coded CDMA systems. Again, we restrict to BPSK and QPSK schemes for notational
simplicity. The structure of the transmitter is already known from Figure 5.1. The cor-
responding receiver for PIC is depicted in Figure 5.22. After the matched filter bank, the
obtained signals ru, 1 ≤ u ≤ Nu, are de-interleaved and FEC decoded. The decoders deliver
either soft-outputs L(b̂u) of the code bits like log-likelihood ratios or hard estimates b̂u. Soft-
outputs can be generated by the BCJR or the Max-Log-MAP decoder while hard-outputs
are obtained by the Viterbi algorithm.

Next, the outputs are interleaved and processed by a nonlinear function. This is necessary
for soft-outputs because log-likelihoods are generally not limited in magnitude while the
true code bits are either +1 or −1. From Chapter 3, we know that the expectation of a bit
can be calculated with its log-likelihood ratio by tanh(L/2) (see (3.36) on page 110). This
is exactly the reason for using the tanh. Finally, the interfering signals are weighted with

www.4electron.com



254 MULTIUSER DETECTION IN CDMA SYSTEMS

tanh

tanh

PIC/SIC stage

FEC
dec.

FEC
dec.

cc
â
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Figure 5.22 Single stage of a nonlinear PIC receiver in coded CDMA systems

the correlation coefficients Mu,v , summed up, and subtracted from the matched filter output
ru. The obtained estimate represents the input of the next stage.

For the following simulation results, an OFDM-CDMA system with a half-rate convo-
lutional code of constraint length Lc = 7 is considered. As in a mobile radio channel, a
4-path Rayleigh fading channel with uniform power delay profile is employed. Moreover,
BPSK and QPSK are alternatively chosen and on an average each user has the same SNR.

Figure 5.23a shows the performance of the coded PIC. After four PIC iterations, the
SUB is obtained even for β = 1.5, which is equivalent to a spectral efficiency of η =
Rc · β = 0.75. We see that decoding helps improve the convergence of iterative interference
cancellation schemes. The reliability of the estimated interference is enhanced, leading to
a better cancellation step. At low SNR, a gap to the SUB occurs that grows for increasing
load. For β = 2, the PIC scheme does not converge anymore.

Figure 5.23b compares hard- and soft-decision outputs at the decoder. The upper bold
solid line denotes the matched filter performance and the lower bold solid curve represents
the SUB. Naturally, the performances for hard- and soft-outputs after the first decoding
(single-user matched filter (SUMF), upper solid line) are the same. For subsequent iterations,
the soft-output always outperforms the hard-decision output. However, the differences are
rather small and amount at the most to 0.5 dB. For this example, both hard- and soft-output
decoding reach the SUB at error rates below 10−4. Nevertheless, for extremely high loads,
convergence may be maintained with soft-output decoding while hard-decision decoding
will fail.

Next, parallel and SIC are compared in Figure 5.24a. The upper bold solid line repre-
sents the matched filter performance without interference cancellation, and the lower bold
solid curve represents the SUB. After three PIC iterations, both SIC and PIC reach the SUB.
However, SIC converges faster and in this example needs one iteration less than the PIC
scheme. Hence, the benefits of SIC are preserved when coding is applied. In Figure 5.24b,
the load is increased to β = 2, that is, the spectral efficiency η = 1 bit/s/Hz of such a sys-
tem is twice as high as for half-rate coded TDMA or FDMA systems (Kühn 2001a,c). We
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Figure 5.24 Performance of PIC (×) and SIC (�) for coded OFDM-CDMA system with
4-path Rayleigh fading channel (bold line: single-user bound) a) comparing convergence
of PIC and SIC b) comparing PIC and SIC for various loads

see that the SIC scheme performs as much for β = 2 as the PIC approach performs for
β = 1.5. For a doubly loaded system, the PIC scheme does not converge anymore.

Sorted Nonlinear Successive Interference Cancellation

There exists a major difference between parallel and SIC. Owing to the problem of error
propagation, the order of detection is crucial for SIC. This dependency is illustrated in
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Figure 5.25 comparing sorted and unsorted SIC. Sorting is implemented by calculating
the average magnitude of the decoder output and starting with the strongest user. This is
probably not the best strategy, but it can be easily implemented. Obviously, sorting leads
to a faster convergence. Especially, at low SNR the gap to the SUB can be decreased.
Therefore, sorting is always applied for SIC in subsequent parts.

Figure 5.26 now compares the performance of SIC for BPSK and QPSK modulations.
We know from Section 4.1 that the use of QPSK in the uplink doubles the effective inter-
ference. The spectral efficiency is also doubled because we transmit twice as many bits

0 2 4 6 8
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 in dB →

B
E

R
→

BPSK, β = 1
BPSK, β = 2
QPSK, β = 1
QPSK, β = 2

Figure 5.26 SIC performance for OFDM-CDMA system with a half-rate convolutional
code (Lc = 7) and 4-path Rayleigh fading channel (bold line: single-user bound)
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per symbol as for BPSK, ηQPSK = 2ηBPSK holds. After four PIC iterations, we observe that
the SUB has been reached for QPSK and β = 1. This is equivalent to β = 2 for BPSK.
No convergence is obtained for β = 2 and QPSK because the initial SINR is too low for
achieving reliable estimates from the decoders.

Influence of Convolutional Codes

Finally, the influence of different convolutional codes is analyzed. Figure 5.27 compares
two half-rate convolutional codes: the already used Lc = 7 code and a weaker Lc = 3 code.
Looking at Figure 5.27a, we see that three or four iterations suffice to reach the SUB for
BPSK. With regard to QPSK, even 10 iterations cannot close the gap of approximately
4 dB. On the contrary, convergence starts earlier with the weak Lc = 3 code as shown
in Figure 5.27b. Although the Lc = 3 code has a worse SUB, it performs better than the
strong convolutional code and reaches its SUB even for β = 2 and QPSK. Although the
difference between the two SUBs amounts to 2 dB in favor of the stronger convolutional
code, the Lc = 3 code now gains 2 dB compared to the Lc = 7 code.

The explanation for this behavior can be found by observing the SUB curves for both
codes in Figure 5.27. We see that the Lc = 3 code has a slightly better performance at
low SNR. For larger SNR, the curves intersect and the Lc = 7 code becomes superior.
However, the first interference cancellation stage suffers from noise as well as from severe
interference that was not yet cancelled. For increasing loads, the SINR at the decoder
inputs becomes smaller and smaller until it reaches the intersection of both curves. For
higher loads, the weak code now performs better. In our example, parameters were cho-
sen such that the strong code cannot achieve convergence while the Lc = 3 code still
reaches its SUB. Therefore, we can conclude that strong error control codes are not
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Figure 5.27 Sorted SIC performance for half-rate coded OFDM-CDMA system with β = 2,
a 4-path Rayleigh fading channel and different convolutional codes (bold line: single-user
bound)
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always the best choice and that the coding scheme has to be carefully adapted to the
detector.4

5.4 Combining Linear MUD and Nonlinear SIC

5.4.1 BLAST-like Detection

As we saw in the previous results, the first detection stage suffers severely from mul-
tiuser interference. Hence, its error rate will dominate the performance of subsequent
detection steps because of error propagation. The overall performance and the conver-
gence speed can be improved by a linear suppression of the interference prior to the first
detection stage. The Bell Labs Layered Space-Time (BLAST) detection of the Bell Labs
(Foschini 1996; Foschini and Gans 1998; Golden et al. 1998; Wolniansky et al. 1998)
pursues this approach for multiple antenna systems. It can be directly applied to CDMA
systems since both systems have similar structures and the same mathematical description
y = Sa+ n.

In a first step, a linear filter w1 is applied suppressing the interference for user 1. The
filter can be designed according to the ZF or MMSE criterion, both discussed in Section 5.2,
that is, w1 denotes the first column of W1 = WZF or W1 = WMMSE according to Section 5.2
yielding

ã1 = wH
1 · y. (5.58)

Next, the symbol â1 = Q(ã1) can be decided with improved reliability because less interfer-
ence disturbs this decision. Instead of performing a hard decision, other nonlinear functions
as analyzed in Section 5.3 can be used. After detecting â1, its influence onto the remaining
signals can be removed by subtracting its contribution s1â1 from the received vector y
(interference cancellation)

ỹ2 = y− s1â1, (5.59)

where the vector s1 represents the first column of the system matrix S (see Figure 4.7 or
(4.68)). The residual signal ỹ2 is then processed by a second filter w2. It is obtained by
removing s1 from S and calculating the ZF or MMSE filter W2 for the reduced system
matrix S̃2 =

[
s2 · · · sNu

]
. The first column of W2 denotes the filter w2 that is used for

suppressing the interference of the second user by ã2 = wH
2 · ỹ2. This procedure is repeated

until all users have been detected.
To determine the linear filters in the different detection steps, the system matrices

describing the reduced systems have to be inverted. This causes high implementation costs.
However, a much more convenient way exists that avoids multiple matrix inversions. This
approach leads to identical results and is presented in the next section.

5.4.2 QL Decomposition for Zero-Forcing Solution

In this subsection, an alternative implementation of the BLAST detector is introduced. It
saves computational complexity compared to the original detector introduced in the last

4It has to be mentioned that this conclusion holds for uniform power distribution among the users. If different
power levels occur (near-far effects), strong codes can have a better performance than weak codes (Caire et al.
2004).
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section. As for the linear multiuser detectors, we can distinguish the ZF and the MMSE
solution. We start with the derivation of the QL decomposition for the linear ZF solution.5

Going back to the model y = Sa+ n, the system matrix S can be decomposed into
an Ns × Nu matrix Q with orthogonal columns qu of unit lengths and an Nu ×Nu lower
triangular matrix L (Golub and van Loan 1996)

y = QLa+ n. (5.60)

Because QH Q = INu , the multiplication of y with QH yields

ỹ = QH · y = La+QH n =


L1,1 0
L2,1 L2,2 0

...
...

. . .

LNu,1 LNu,2 · · · LNu,Nu

 · a+ ñ (5.61)

with ñ still representing white Gaussian noise because Q is unitary. To clarify the effect
of multiplying with QH , we consider the matched filter outputs r = SH y = Ra+ SH n.
Performing a Cholesky decomposition (Golub and van Loan 1996) of R = LH L with the
lower triangular matrix L, results in

r = LH La+ SH n ⇒ r̃ = La+ L−H SH n. (5.62)

The comparison of (5.61) with (5.62) illustrates that the multiplication of y with QH can
be split into two steps. First, a matched filter is applied, providing the colored noise vector
SH n with the covariance matrix � = σ 2

NR = σ 2
NLH L. Therefore, the second step represents

a multiplication with �−1/2 = L−H which can be interpreted as whitening.
Because of the triangular structure of L in (5.61), the received vector ỹ has been partly

freed of interference, for example, ỹ1 depends only on a1 disturbed by the noise term
ñ1. Hence, it can be directly estimated by appropriate scaling and the application of a
nonlinearity Q(·)

â1 = Q
(
L−1

1,1 · ỹ1

)
. (5.63)

The obtained estimate can be inserted in the second row to subtract interference from ỹ2

and so on. We obtain the u-th estimate by

âu = Q
(

1

Lu,u

·
[
ỹu −

u−1∑
v=1

Lu,v · âv

])
. (5.64)

This procedure abbreviated by QL-SIC has to be continued until the last symbol aNu has
been estimated so that a SIC as depicted in Figure 5.28 is carried out. With this recursive
procedure, the matrix inversions of the original BLAST detection can be circumvented and
only a single QL decomposition has to be carried out. Furthermore, we can exploit the
finite nature of the signal alphabet by introducing Q(·).

The linear filtering with Q has to cope partly with the same problems as the decorrelator.
For the first user, all Nu − 1 interfering signals have to be linearly suppressed. Since all

5Throughout the subsequent derivation, the QL decomposition will be used. Equivalently, the QR decomposi-
tion of S can often be found in publications.
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Figure 5.28 Illustration of interference cancellation after decomposing S into Q and L and
filtering y with QH

columns of Q have unit length, the noise is not amplified but the desired signal may
be very weak. This results in a small diagonal element in L and, hence, a low SNR. In
successive steps, more interference is already cancelled and the columns of Q tend more and
more toward a matched filter. In multiple antenna systems, this also affects the achievable
diversity gain as shown in Section 6.4.

From the above explanation, we can also conclude that the proposed scheme cannot be
directly applied to systems with a load β > 1. For Nu > Ns, the system matrix S has more
columns than rows. Since only Ns orthogonal columns exist that span the Ns dimensional
space, Q is an Ns ×Ns matrix. Consequently, L would not be a lower triangular matrix
but will have the form

L =


L1,1 L1,Ns+1 . . . L1,Nu

L2,1 L2,2 L2,Ns+1 . . . L2,Nu
...

...
. . .

...
...

LNu,1 LNu,2 . . . LNu,Ns LNu,Ns+1 . . . LNu,Nu

 .

We recognize that all layers – even the first – now suffer from interference. Further infor-
mation about overloaded systems in the context of multiple antenna systems can be found
in Damen et al. (2003). With reference to the MMSE solution, a direct implementation is
possible even for β > 1 (see Section 5.4.3).

Improvement of Real Modulation Schemes

From linear detectors such as the decorrelator and MMSE filter, we already know that
remarkable improvements can be achieved by taking into account that the imaginary part of
the transmitted symbols does not contain information for real-valued modulation schemes.
To exploit this knowledge for the QL decomposition also, we have to separate the real and
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imaginary parts for all terms of the equation y = Sa+ n. With y′, S′, a′ and n′ denoting
real parts and y′′, S′′, a′′, and n′′ representing the imaginary parts, we obtain[

y′
y′′

]
=

[
S′ −S′′
S′′ S′

]
·
[

a′
a′′

]
+

[
n′
n′′

]
. (5.65)

Since a′′ = 0 for real modulation schemes, a′ = a holds and (5.65) reduces to[
y′
y′′

]
=

[
S′
S′′

]
· a′ +

[
n′
n′′

]
= Sr · a+ nr. (5.66)

From (5.66), we see that the real system matrix has twice as many rows as S. This generally
leads to a better condition and, therefore, a lower noise amplification in the ZF case.
Representing the received symbols by separated real and imaginary parts, we simply have
to decompose Sr. The obtained real matrices Qr and Lr are then used for the subsequent
detection procedure, as described above. The results will be presented at the end of this
subsection.

Modified Gram-Schmidt Algorithm

QL decompositions can be implemented with different algorithms using Householder reflec-
tions or Givens rotations (see Appendix C). In this book, we will refer to the modified
Gram-Schmidt algorithm (Golub and van Loan 1996) leading to

S = [
s1 · · · sNu−1 sNu

] = QL

= [
q1 · · · qNu−1 qNu

] ·


L1,1
...

. . .

LNu−1,1 LNu−1,2 LNu−1,Nu−1

LNu,1 LNu,2 LNu,Nu−1 LNu,Nu

 . (5.67)

The orthonormal columns qu are determined successively one after the other. Neglecting
for the moment an appropriate sorting, we start with the last column qNu = sNu/‖sNu‖, that
is, qNu points to the same direction as the last signature sNu and has unit norm. Because
sNu = LNu,Nu · qNu , LNu,Nu = ‖sNu‖ equals the length of the last signature. The next column
vector qNu−1 must be orthogonal to qNu . Hence, we first subtract the projection of sNu−1

onto qNu

LNu,Nu−1 = qH
Nu

sNu−1 ⇒ q̃Nu−1 = sNu−1 − LNu,Nu−1 · qNu (5.68a)

and normalize the difference with LNu−1,Nu−1 to length 1.

LNu−1,Nu−1 = ‖q̃Nu−1‖ ⇒ qNu−1 = q̃Nu−1/LNu−1,Nu−1 (5.68b)

The third column qNu−2 has to be perpendicular to the plane spanned by qNu and qNu−1.
Hence, the above procedure has to be repeated and we obtain the general construction of
the u-th column qu.

Lv,u = qH
v · su for u ≤ v < Nu ⇒ q̃u = su −

Nu∑
v=u+1

Lv,u · qv (5.69a)

Lu,u = ‖q̃u‖ ⇒ qu = q̃u/Lu,u (5.69b)
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Table 5.1 Pseudo code for modified Gram-
Schmidt algorithm

step task

(1) Initialize with L = 0, Q = S
(2) for u = Nu, . . . , 1
(3) determine diagonal element Lu,u = ‖qu‖
(4) normalize qu = qu/Lu,u to unit length
(5) for v = 1, . . . , u− 1
(6) calculate projections Lu,v = qH

u · qv

(7) qv = qv − Lu,v · qu

(8) end
(9) end

This procedure develops Q and L from right to left and has to be continued until all Nu

columns in Q and the corresponding elements in L have been determined. Subtracting
the projections of the unprocessed columns sv<u from the new orthonormal column qu

immediately after fixing qu, we obtain the algorithm summarized in Table 5.1.

Optimum Post-Sorting Algorithm

Obviously, successive processing always leads to the problem of error propagation. Hence,
we have to find the optimum order of detection that minimizes the risk of error propagation
(Wübben et al. 2001). Therefore, we should certainly start with the user u that has the
smallest probability of error, that is, its estimate âu has the smallest MSE to the true
symbol au. This user corresponds to the smallest diagonal element of the error covariance
matrix �ZF derived in (5.23). Inserting the QL decomposition into (5.23) yields

�ZF = σ 2
N ·WH

ZFWZF = σ 2
N · L−1L−H . (5.70)

Hence, the smallest diagonal element of �ZF corresponds to the smallest row norm of
L−1. The order of detection can be optimized after the QL decomposition by an algorithm
proposed in Hassibi (2000) and termed Post-Sorting Algorithm (PSA). Starting with the
unsorted QL decomposition according to the modified Gram-Schmidt algorithm, we have
to permute the rows of L−1 according to a certain sorting criterion. However, permutations
destroy the triangular structure of L−1. The structure can be restored by applying House-
holder reflections (Golub and van Loan 1996), that is, we multiply with a unitary matrix �

that forces certain elements of a row or a column to zero without changing its norm (see
also Appendix C).

Figure 5.29 illustrates the principle of the PSA. In the first step, we have to find the
row with the smallest norm (dark gray). It is exchanged with the first row of L−1, which
is performed by a permutation matrix P1. In our example,

P1 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1
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L−1

P1L−1

P1L−1�1

P1L−1�1

P2P1L−1�1

P2P1L−1�1�2

P2P1L−1�1�2

P3P2P1L−1�1�2

P3P2P1L−1�1�2�3

Figure 5.29 Illustration of post-sorting algorithm (white squares indicate zeros, light gray
squares indicate nonzero elements, dark gray squares indicate row with minimum norm,
crossed squares are neglected subsequent steps)

holds. Next, we apply the Householder reflection matrix �1 to force the last three elements
in the new first row to zero to match this row to the triangular structure. Note that House-
holder reflections do not affect the row norm so that the norm of the considered row is
concentrated in a single nonzero element.

Now, we have generated a tentative triangular matrix P1L−1�1 whose first row has
only a single nonzero element, that is, no interference disturbs the corresponding symbol.
Assuming that this symbol is decided correctly (it has the lowest error probability of all
symbols), its interference on the remaining symbols can be perfectly cancelled. Hence, it
has no influence on subsequent cancellation steps so that the first row and the first column
of P1L−1�1 can be removed. The whole procedure is now repeated for the reduced matrix
until the optimum order is obtained. We have to carry out at the most Nu permutations and
Householder reflections so that we finally obtain

L−1
opt = PNu · · ·P1L−1�1 · · ·�Nu ⇔ Lopt = �H

Nu
· · ·�H

1 LPH
1 · · ·PH

Nu
(5.71)

and
S = QL = QoptLopt ⇔ Qopt = Q�1 · · ·�Nu . (5.72)
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Using this QL decomposition provides the best order of detection in the SIC stage and
delivers estimates in a permuted vector âopt = PNu · · ·P1â. Its symbols have to be re-sorted
into the original succession by

â = PH
1 · · ·PH

Nu
· âopt. (5.73)

Obviously, the sorting does not change the system properties because the received signal
can be expressed as

y = Sopt · aopt + n = Qopt · Lopt · aopt + n

= Q �1 · · ·�Nu ·�H
Nu
· · ·�H

1︸ ︷︷ ︸
INu

L PH
1 · · ·PH

Nu
· PNu · · ·P1︸ ︷︷ ︸

INu

a+ n = QLa+ n.

Besides the QL decomposition of S, the optimum sorting requires the inversion of L and
several permutations and Householder reflections. To reduce the computational costs, the
next subsection introduces a sub-optimum algorithm whose performance is very close to
the optimum solution.

Sorted QL Decomposition

A sub-optimum but very efficient solution for the sorting problem is presented in Wübben
et al. (2001), which directly affects the QL decomposition. The main problem to be solved
is that the Gram-Schmidt algorithm used for the QL decomposition starts with LNu,Nu in the
lower right corner and proceeds up to L1,1, while we would like to fix the largest possible
L1,1 first and continue down to the shortest row at the bottom. In other words, the order of
detection is reverse to the order of decomposition.

We saw from the PSA that the order of detection can be adapted by permuting the
columns qu of Q as well as the rows of L. This coincides with a different sorting of
the column vectors su and the data symbols au in a. A sub-optimum permutation can
be carried out during the QL decomposition itself. The algorithm proposed in Wübben
et al. (2001) is based on a QR decomposition but can be directly adapted to the QL
decomposition considered here. The basic idea behind the algorithm is that the determinant
of a triangular matrix equals the product of the diagonal elements and is invariant with
respect to permutations of rows or columns. The Sorted QL Decomposition (SQLD) now
assumes that starting with the smallest possible LNu,Nu will finally lead to large values in
the upper left part of L, since the product is constant. The algorithm is summarized as a
pseudo code in Table 5.2.

After the initialization Q = S, the column qku with the smallest norm is determined and
exchanged with the right-most unprocessed vector. Since the projections of the remaining
columns onto a new vector are immediately subtracted in each step, no Householder reflec-
tions are explicitly necessary. At the end of the procedure, we obtain a orthonormal matrix
Q, a triangular matrix L, as well as a set of permutation matrices Pu with 1 ≤ u ≤ Nu.

It has to be mentioned that the proposed SQLD does not always lead to the optimum
detection order. Problems occur especially in situations where two column vectors have
large lengths but point in similar directions. In this case, these large vectors are among the
latest columns to be orthogonalized but since the projection of one vector onto the other
vector is very large, the orthogonal component becomes very small. Hence, we obtain a
very small diagonal element in the upper left corner of L.
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Table 5.2 Pseudo code for sorted QL decomposition

step task

(1) Initialize with L = 0, Q = S
(2) for u = Nu, . . . , 1
(3) search for minimum norm among remaining columns in Q

ku = argmin
v=1,...,u

‖qv‖2

(4) exchange columns u and ku in Q, and determine Pu

(5) determine diagonal element Lu,u = ‖qu‖
(6) normalize qu = qu/Lu,u to unit length
(7) for v = 1, . . . , u− 1
(8) calculate projections Lu,v = qH

u · qv

(9) qv = qv − Lu,v · qu

(10) end
(11) end

However, events leading to sub-optimum sorting are very rare and the SQLD represents
an appropriate pre-sorting algorithm. For the aforementioned situations, the presented PSA
can be applied for further improvements. It then requires only a few additional permutations
(low complexity) because of the pre-sorting and can still achieve the optimum order of
detection. The whole receiver structure is depicted in Figure 5.30. First, the system matrix
S – either ideally known or estimated – is decomposed according to the SQLD algorithm
and potentially post processed by the PSA. The latter delivers the matrices Q for linear
pre-filtering of the received vector y, resulting in ỹ, L for the SIC providing âopt and P for
the inverse permutation, leading to the final estimate â.

Simulation Results

Figure 5.31a analyzes the influence of α for NL 1 on the error rate performance. Obviously,
there is only a slight dependency for QPSK and small values of α should be preferred.
Although the average BER across all users is considered, similar results are obtained for

y

S [Q, L, P]

Q L P

QH
ỹ âopt â

P−1

SQLD PSA

SIC

Figure 5.30 Block diagram of SQLD-SIC detector with post-sorting algorithm (PSA)
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Figure 5.31 Performance of ZF-SQLD-SIC for uncoded OFDM-CDMA system, 4-path
Rayleigh fading channel, and β = 1; a) Eb/N0 = 8 dB b) optimized α

user-specific error probabilities. Figure 5.31a compares different nonlinearities. Their per-
formances are nearly identical because the average error rate is dominated by the first layer
where no interference cancellation was applied. Because of the higher effective interference,
the SQLD-SIC performs worse for QPSK. For BPSK, the SUB is reached asymptotically.

Figure 5.32a illustrates the performance improvement obtained by linear preprocessing
with QH . Comparing the error rate performance of the SQLD-SIC approach with that
of a sole SIC after the first detection stage, we observe that linear pre-filtering enhances
the performance significantly. While it approaches the SUB, the pure SIC saturates at
Pb = 10−2. Only at very low SNR, the performances are comparable. Additionally, the
dashed line with circles emphasizes the loss that occurs for SQLD-SIC when the real
nature of BPSK is not considered in the QL decomposition. At an error rate of 10−2, the
loss amounts to 7 dB.

Figure 5.32b depicts the results for QPSK. The gain of SQLD-SIC compared to SIC
becomes larger for growing interference as shown by the difference between BPSK and
QPSK. However, for both detection schemes a large loss compared to the SUB can be
observed. Moreover, it is demonstrated that even sub-optimum sorting for the SQLD-SIC
improves the performance compared to unsorted QLD-SIC. Applying the optimum PSA,
yields an additional gain of more than 3 dB over the SQLD-SIC.

We now have a look at the variations of user-specific error rates. From Subsection 5.2.1,
we know that the decorrelator totally suppresses multiuser interference at the expense of
a noise amplification. Moreover, it has already been mentioned that the first row of QH

also suppresses the interference perfectly but may suffer from small SNRs, while the last
row represents a matched filter dealing perfectly with the background noise.6 Hence, the

6The noise power is not influenced but the signal power may be very small.
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Figure 5.32 Performance of different detection schemes with NL 1 for uncoded OFDM-
CDMA system, 4-path Rayleigh fading channel, and β = 1
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Figure 5.33 Error rates for weakest, strongest, and average user after ZF-SQLD-SIC for
uncoded OFDM-CDMA system with BPSK, 4-path Rayleigh fading channel, and β = 1

SNRs of the remaining rows are somewhere in between. This is illustrated in Figure 5.33
showing the minimum and the maximum user-specific error rates, as well as the average
error rates.

To improve the weak users, especially, two possibilities exist that can also be combined.
First, we can replace the ZF approach with an MMSE solution as presented in the next
subsection. Second, iterative turbo processing with an initial QL detection stage as explained
in Subsection 5.4.4 can significantly improve the performance of a CDMA system.
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5.4.3 QL Decomposition for MMSE Solution

From Subsection 5.2.2 we already know the linear MMSE detector

WH
MMSE =

(
SH S+ N0

Es
INu

)−1

· SH

that looks for a compromise between interference suppression and amplification of thermal
noise. Hence, some residual interference remains in all outputs. To find the QL decompo-
sition according to the MMSE criterion and an appropriate order of detection, the MMSE
solution is now described as the ZF solution of a modified system (Böhnke et al. 2003;
Wübben et al. 2003a). This modification is obtained by extending the received vector y and
the system matrix S according to Hassibi (2000)

y =
[

y
0Nu×1

]
, S =

[
S

σN
σA · INu

]
. (5.74)

Applying now the decorrelator with WH
ZF =

(
SH S

)−1SH to the modified system yields

âMMSE =
(
SH S

)−1SH · y (5.75a)

=
([

SH σN
σA · INu

]
·
[

S
σN
σA · INu

])−1 [
S σN

σA · INu

]
·
[

y
0Nu×1

]

=
(

SH S+ σ 2
N

σ 2
A
· INu

)−1

· SH y. (5.75b)

We recognize from (5.75b) that the ZF approach of the modified system leads directly to the
MMSE solution for the original system. Hence, we can apply the same QL decomposition
techniques derived in the previous section to S instead of S. We obtain

S =
[

S
σN
σA · INu

]
= Q · L =

[
Q1

Q2

]
· L =

[
Q1 · L
Q2 · L

]
(5.76)

where Q is now a unitary (Ns + Nu)×Nu matrix while L is again a lower triangular
Nu ×Nu matrix. Obviously, they are different from Q and L of the ZF solution. The
matrices Q1 and Q2 divide the matrix Q into the upper Ns and the lower Nu rows. Although
Q has orthogonal columns of unit length, this certainly does not hold for Q1 and Q2.

An important difference compared to the ZF solution has to be mentioned. Since the
extended system matrix S consists of Ns + Nu rows and Nu columns, it can always be QL
decomposed regardless of the load β. Hence, the MMSE approach is also applicable for
overloaded systems.

Looking at the filtered received vector

ỹ = QH y = QH
1 y+QH

2 0 = QH
1 y = QH

1 Sa+QH
1 n, (5.77)

we observe that only the first part Q1 of Q contributes to ỹ because y was extended by
zeros. Multiplying only with Q1 slightly reduces the computational costs. Inserting S = QL
into (5.77) results in

ỹ = QH
1 QLa+QH

1 n. (5.78)
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Since the columns in Q1 and Q are not orthogonal, QH
1 ·Q does not equal the identity

matrix and the interference between two neighboring rows is not totally suppressed. This
illustrates the known trade-off between interference suppression and noise amplification.
With

QH S = QH
1 S+ σN

σA
·QH

2
!= L ⇒ QH

1 S = L− σN
σA
·QH

2 , (5.79)

we can replace the term QH
1 · S in (5.77) and obtain

ỹ = L · a− σN
σA
·QH

2 a+QH
1 n (5.80)

for the filtered received signal. The second term on the right-hand-side of (5.80) represents
the residual interference after filtering with QH

1 . The smaller the noise power σ 2
N, the

less interference remains in the system. For σ 2
N → 0, the MMSE solution tends to the ZF

solution as already shown in Section 5.2.

Sorting for the MMSE QL Decomposition

As in the case of the ZF-QL decomposition, the order of detection has to be determined
with respect to the error covariance matrix �MMSE. Using the extended system model with
S, the ZF criterion delivers with the results of Subsection 5.2.1

�MMSE = �ZF = σ 2
N ·

(
SH S

)−1 = σ 2
N · L−1L−H . (5.81)

Hence, the row norms of L−1 determine the optimum sorting. In the MMSE case, the
inverse of L need not be calculated explicitly because it is already contained in (5.76).

σN
σA
· INu = Q2 · L ⇒ L−1 = σA

σN
·Q2 (5.82)

Therefore, the inverse of L is obtained as a by-product of the initial QL decomposition.
Sorting by the SQLD or the optimum PSA simply has to exploit the row norms of Q2 in the
lower part of Q. This compensates for the higher computational costs for QL decomposing
of the extended matrix S.

Simulation Results

Figure 5.34a depicts the results obtained for ZF- and MMSE-SQLD-SIC for a BPSK mod-
ulated system with β = 1. Both approaches show nearly identical performances and reach
the SUB above 10 dB, while the curve for noniterative SIC without precoding saturates
at an error rate of 10−2. The real-valued nature of BPSK has been exploited so that the
background noise amplification of the ZF solution does not have such a severe influ-
ence. However, five iterations of the nonlinear SIC without linear preprocessing (shown in
Figure 5.19) achieve the same performance with lower computational complexity. Hence,
filtering with QH is not necessary for moderate SINR.

For QPSK leading to a twice-as-high effective interference, the results are depicted
in Figure 5.34b. We see that the simple nonlinear SIC without precoding (bold dashed
line) cannot ensure a reliable transmission. Among the schemes with linear preprocessing,
the ZF-SQLD-SIC with optimum post sorting loses approximately 3 dB compared to the
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Figure 5.34 Performance of QLD based SIC for ZF and MMSE with and without optimum
PSA for uncoded OFDM-CDMA system, a 4-path Rayleigh fading channel, and β = 1

unsorted MMSE-QLD-SIC at an error rate of 10−3. Further improvements can be achieved
by appropriate sorting. The MMSE-SQLD-SIC leads to an additional gain of 4 dB, while
optimum post sorting provides a gain of 6.5 dB and comes close to the SUB. The turbo
SIC without precoding (see Figure 5.21) with 10 detection stages saturates at an error rate
of 10−3 for large SNR. On the contrary, all QL-based schemes do not show an error floor
in the depicted range.

5.4.4 Turbo Processing

To improve the performance of the SQLD-SIC schemes, iterative turbo detection can be
applied. Once all the signals have been detected, the filter QH has to be substituted with
a bank of matched filters and SIC as described in Section 5.3 is carried out. Hence, the
linear filter is just used as a catalyst improving the performance of the first stage and then
dropped.

The reason for this approach is twofold: First, the interference has already been partly
cancelled after filtering with QH . Because of the triangular structure of L, the signal ỹ1 in
the first row does not suffer from interference of a2 · · · aNu and, hence, its decision cannot
be improved by the knowledge of the other signals.

Second, suppressing the interference by ZF leads to a strong noise amplification; the
MMSE solution represents a trade-off between interference suppression and noise amplifi-
cation. The optimum receiver in the absence of interference, for example, after a perfect
cancellation, would be the matched filter performing just the maximum ratio combining.
Hence, after the QL decomposition and a first SIC stage delivering â(1), we use the output
of the matched filter bank to apply the already introduced SIC.

Figure 5.35a shows the results obtained for a load β = 1 and the ZF criterion. Both,
SQLD-SIC with and without PSA gain significantly by subsequent detection stages and
outperform the pure SIC (bold dashed line) at high SNRs. Only at very low SNR, the
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Figure 5.35 Performance of iterative SQLD-SIC with and without PSA for uncoded OFDM-
CDMA system, QPSK and a 4-path Rayleigh fading channel, and β = 1 (dashed lines: initial
stage, dotted lines: three subsequent stages, solid lines: 10 subsequent stages)
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Figure 5.36 Performance of iterative MMSE-SQLD-SIC for uncoded OFDM-CDMA sys-
tem, QPSK and, a 4-path Rayleigh fading channel, and β = 1.5

performance of SIC is the same. Optimum post sorting of the initial SQLD improves the
performance even after several iterations, whereby the gain becomes smaller with each
stage.

Figure 5.35b compares the same detection schemes for the MMSE criterion. Contrary
to the ZF case, the PSA provides a performance close to the SUB, even in the initial
detection stage. Hence, subsequent iterations are not necessary, saving valuable computa-
tional resources. Even without PSA, the MMSE approach performs much better than ZF
and the gains due to additional iterations are smaller. At an error rate of 10−2, the MMSE
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Figure 5.37 Performance of iterative MMSE-SQLD-SIC and SIC for coded OFDM-CDMA
system, QPSK, and a 4-path Rayleigh fading channel, and β = 2

solution gains about 1 dB compared to the ZF approach, at 10−3, the gain has increased to
2 dB.

From Figure 5.36 we see that for higher loads, for example, β = 1.5, there is still a small
improvement achievable by iterations. However, a convergence toward the SUB cannot be
obtained anymore. Nevertheless, optimum sorting still provides a remarkable gain over the
sub-optimum sorting of the SQLD.

If channel coding is applied, we can obviously incorporate the decoder into the interfer-
ence cancellation steps as described in Subsection 5.3.3. However, long codes for spreading
or variations of the channels during one coded frame would lead to various system matri-
ces S[k] that have to be QL decomposed. In high probability, the sorted version of the QL
decomposition would deliver different detection orders. Therefore, the interference can-
cellation would start with a different user for each block. This causes problems for the
channel decoding because decoding can start only if a complete frame of a certain user is
processed.

Since the SIC in Subsection 5.3.3 was evaluated for a coded OFDM-CDMA system with
seven fading blocks per frame, we now use the unsorted version of the QL decomposition,
allowing the same permutation for all blocks. Hence, after filtering with QH , the coded
frame of user 1 is totally freed from interference, can be decoded, and the estimated
coded bits are used to cancel interference from subsequent signals. Then, the procedure is
continued for user 2 and so on.

Figure 5.37a shows the results for a half-rate convolutional code with constraint length
Lc = 3, QPSK, and a load of β = 2. The dashed lines indicate the error rate performance for
the SQLD-SIC scheme after different iterations, where the final 10th iteration corresponds
to the bold dashed line. With the iterative scheme, it is possible to approach the SUB within
a gap of 1 dB for SNRs above 6 dB. Comparing the results with those of Figure 5.27 (solid
line with circles), it becomes obvious that the linear prefilter improves the performance at
low SNR while both schemes have approximately the same performance for higher SNR.
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Results for a convolutional code with Lc = 7 are shown in Figure 5.37b. The solid lines
with circles and squares represent the SIC performance after 4 and 10 iterations, respectively
(cf. Figure 5.27). Obviously, the SQLD-SIC scheme provides a much faster convergence.
After 4 iterations, the simple SIC with 10 iterations is outperformed. Nevertheless, there
remains a large gap of 4 dB to the SUB that cannot be closed. The comparison with the
Lc = 3 code shows that the performance is slightly worse although the computational costs
are much higher. Four iterations for the Lc = 7 code require a complexity that is more than
six times higher than the complexity for 10 iterations of the Lc = 3 code.

5.5 Summary
Contrary to Chapter 4 that treated multiple access interference as additional noise, this
chapter addressed MUD strategies that exploit the interference’s specific structure. We
started with linear MUD approaches that do not consider the discrete nature of the signal
alphabets but assume continuously distributed inputs. The decorrelator fulfilling the ZF
criterion totally suppresses the interference at the expense of a severe amplification of
the background noise. The MMSE filter represents a compromise between interference
suppression and noise amplification and showed the best performance among all linear
techniques. It was shown that both approaches can be approximated by iterative algorithms
saving valuable computational costs, especially for large systems. While the linear PIC
converges only for low loads, the successive counterpart showed a very robust behavior.
Generally, we can state that the MMSE solution leads to substantial gains compared to the
simple matched filter, although it is still far away from reaching capacity.

A major shortcoming of all the linear techniques is the assumption of continuously
distributed inputs. This drawback was overcome by introducing nonlinear devices into the
iterative interference cancellation structures. Simple hard decisions as well as more sophis-
ticated soft-output devices including FEC decoders have been examined. All nonlinearities
lead to substantial gains over the linear approaches. The best performance was achieved
with the incorporation of the FEC decoder, approaching the SUB up to a maximum load of
β = 2 even for complex QPSK modulation. The price to pay for this amazing performance
is a high computational complexity because the decoding has to be carried out several times
for each user.

Finally, the combination of linear and nonlinear MUD strategies have been analyzed. On
the basis of a QL decomposition of the system matrix, a linear prefilter partly suppresses
the interference, leading to a better convergence of the subsequent nonlinear SIC stage.
Appropriate sorting was shown to be an important feature because it minimizes the risk
of error propagation. Besides the optimum sorting algorithm, a sub-optimum low cost
alternative was presented, termed sorted QL decomposition (SQLD). Moreover, the QL
decomposition based on the MMSE criterion was also derived. Compared to pure SIC
without pre-filtering, an improved convergence, especially, for extremely high loads was
observed.
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Multiple Antenna Systems

Multiple antenna systems became popular roughly a decade ago as a result of the funda-
mental work of Alamouti (1998), Foschini (1996), Foschini and Gans (1998), Kühn and
Kammeyer (2004), Seshadri and Winters (1994), Seshadri et al. (1997), Tarokh et al. (1998),
Telatar (1995), Wittneben (1991), Wolniansky et al. (1998), and many others. The reason
for the great interest is that multiple antennas offer an efficient way to increase the spec-
tral efficiency of mobile radio systems by exploiting the resource space. After their large
potential has been widely recognized, they found their way into several standards. As an
example, very simple structures can be found in Release 99 of UMTS systems (Holma
and Toskala 2004). More sophisticated methods are under discussion for further evolutions
(3GPP 2005a; Hanzo et al. 2002b).

This chapter gives a brief overview of different multiple-input multiple-output (MIMO)
strategies for point-to-point communications without claiming to be comprehensive. Mul-
tiuser scenarios are briefly discussed in Section 2.4. After the introduction, Section 6.2
addresses spatial diversity concepts. Starting with simple receive diversity, different possi-
bilities to obtain a diversity gain with multiple transmit antennas are discussed. While these
techniques improve the link reliability, multilayer transmission presented in Section 6.3
multiply the data rate without increasing the signal bandwidth. Linear dispersion (LD)
codes introduced in Section 6.4 represent a comprehensive description of space–time cod-
ing (STC) and multilayer transmission and allow optimal trade-offs between diversity and
multiplexing gains. Finally, the high potential of multiple antenna systems is illustrated by
looking at the channel capacity in Section 6.5.

6.1 Introduction

There exist a multitude of reasons for using multiple antenna systems. This section gives a
brief overview of different strategies without claiming to be comprehensive. Principally, two
different categories can be distinguished. The first objective is to improve the link reliability,
that is, the ergodic error probability or the outage probability are reduced. This can be
accomplished by enhancing the instantaneous signal-to-noise ratio (SNR) (beamforming)

Wireless Communications over MIMO Channels Volker Kühn
 2006 John Wiley & Sons, Ltd
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or by decreasing the variations of the SNR (diversity). If multiple access or cochannel
interference in cellular networks disturbs the transmission, interferers that are separable
in space can be suppressed with multiple antennas, resulting in an improved signal to
interference plus noise ratio (SINR). Section 6.3 is restricted to diversity techniques for
reducing SNR variations.

The second objective discussed in Section 6.3 is to multiply the data rate by transmitting
several data streams simultaneously over different antennas. This approach is denoted as
space division multiple access (SDMA) and can certainly be combined with other multiple
access schemes. Since bandwidth became a very valuable and expensive resource, using
the space for increasing data rates without expanding the bandwidth is very attractive.
Moreover, we will see in Section 6.5 dealing with channel capacity aspects that the potential
capacity gain of multiple antenna systems is much larger than the gain obtained by simply
increasing the transmit power. A technique termed multi-stratum codes offers a combination
of diversity and multiplexing gains (Böhnke et al. 2004a,b,c; Wachsmann 2001).

The manner in which multiple antennas should be used depends on the properties of
the channel, especially on the rank r of H or its covariance matrix �HH. As an example,
we know from Section 1.5 that correlation among the subchannels reduces the diversity
gain. In the case of a strong line-of-sight component (Rice fading), diversity is also not an
appropriate means because fading is not a severe problem. If we can exploit other sources
of diversity, for example, frequency diversity with the Rake receiver or time diversity due
to coding over time-varying channels, we are probably already close to the additive white
Gaussian Noise (AWGN) performance and little can be gained by a further increase of the
diversity degree. In each of these cases, multiple antennas should be used in a different way.

If we look for spatial multiplexing, we know from Section 2.3 that we need a channel
whose rank is larger than one. Otherwise, we cannot reliably transmit parallel data streams.
Hence, for highly correlated channels with a rank r = 1, beamforming that exploits only
the strongest eigenmode of a channel would be an appropriate choice instead of multilayer
transmission. Therefore, the manner in which multiple antennas are used has to be properly
adapted to the general propagation conditions.

In order to simplify notation, this chapter is restricted to frequency-nonselective chan-
nels. Hence, the impulse response hν,µ[�, κ] between transmit antenna µ and receive antenna
ν reduces to scalar coefficients hν,µ[�] and the channel matrix in (1.33) of Section 1.2.4
becomes H[�] = H[�, 0]. Figure 6.1 illustrates the resulting structure of the communication
system. The received signal can be described by

y[�] = H[�] · x[�]+ n[�]. (6.1)

x1[�]

x2[�]

xNT [�]

y1[�]

y2[�]

yNR[�]

h1,1[�]

h2,1[�]

h2,NT [�]

hNR,NT [�]

n1[�]

n2[�]

nNR [�]

Figure 6.1 Structure of MIMO channel
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Some extensions for frequency-selective environments are discussed in Al-Dhahir (2001),
Al-Dhahir and Sayed (2000), Wübben (2006), Wübben and Kammeyer (2003), Wübben et
al. (2003b).

6.2 Spatial Diversity Concepts

This section addresses the application of multiple antennas at the receiver and/or the trans-
mitter for the purpose of increasing the diversity degree. As already mentioned, only
frequency-nonselective channels are considered for notational as well as conceptual simplic-
ity. Another reason is that spatial diversity concepts achieve the highest gains for channels
that do not provide diversity in other dimensions such as frequency or time. Moreover, only
Rayleigh fading channels without a line-of-sight component are considered. Since we know
that correlations among the contributing channels reduce the diversity gain (see Section 1.5)
we further assume that the channels are totally uncorrelated. For Rice and correlated fading
channels, refer to the theoretical results presented in Section 1.5.

Uncorrelated channels can be achieved by an appropriate antenna spacing depending on
the spatial channel characteristics, for example, the angle spread. Assuming a uniform linear
array with equidistantly arranged antennas and an isotropic scattering environment where
signals impinge from all directions with the same probability, a small distance d = λ/2
between neighboring elements may be sufficient. The parameter λ denotes the wavelength
and is related to the carrier frequency f0 by λ = c/f0 where c describes the speed of light.
On the contrary, d � λ/2 must hold in scenarios with small angle spread and d can take
values up to 10λ. This obviously requires a device large enough to host several antennas
with appropriate distances.

This section is divided into three parts: First, receive diversity is shortly explained.
Next, orthogonal space–time block codes (STBCs) are addressed. Nonorthogonal block
codes are not considered here and the interested reader is referred to Bossert et al. (2000,
2002), Gabidulin et al. (2000), Lusina et al. (2001, 2003, 2002). In the last subsection,
space–time trellis codes providing an additional coding gain are introduced. An overview
of space–time coding can also be found in Liew and Hanzo (2002).

6.2.1 Receive Diversity

The simplest method to achieve spatial diversity is to use multiple antennas at the receiver.
The structure of the system is depicted in Figure 6.2. It can be mathematically described
with

y[�] = h[�] · x[�]+ n[�] (6.2)

where h[�] = h1[�], . . . , hNR [�] T comprises all contributing channel coefficients. Since
there is no interference, a simple matched filter performing maximum ratio combining
represents the optimum receiver and we obtain

r[�] = h[�]H

‖h[�]‖2
· y[�] = x[�]+ ñ[�] (6.3)

where ñ[�] = h[�]H · n[�]/‖h[�]‖2 denotes the noise at the matched filter output.
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x[�]

y1[�]

y2[�]

yNR[�]

h1[�]

h2[�]

hNR [�]

n1[�]

n2[�]

nNR [�]

Figure 6.2 Structure of receive diversity system

Comparing (6.3) with the theoretical result from Section 1.5, we recognize that the full
diversity degree D = NR is achieved as long as the channel coefficients remain uncorre-
lated. The single-input multiple-output (SIMO) channel is transformed by matched filtering
into an equivalent single-input single-output system (SISO) channel with smaller variations
of the SNR. The only difference between (6.3) and (1.104) affects the total received power
that has not been normalized to Es/Ts (missing factor

√
D = √NR). The reason for this is

that the application of multiple receive antennas yields not only a diversity gain but also an
array gain because the NR-fold power is collected, leading to a gain of 10 log10(NR) dB.
This gain is independent of diversity considerations and is also available for totally cor-
related channels. Since Section 1.5 illustrates only the diversity effect, this array gain was
suppressed by normalizing the received power. Hence, we always have to look carefully at
the definition of the SNR when multiple antennas are applied.

Figure 6.3 illustrates this difference by showing the results known from Section 1.5.
In Figure a, the total transmitted energy per information bit is fixed at Eb. Hence, it is
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Figure 6.3 Performance of receive diversity for BPSK and uncorrelated Rayleigh fading
channels; bold dashed line denotes AWGN channel (‘◦’: NR = 1, ‘×’: NR = 2, ‘�’: NR =
4, ‘∇’: NR = 8, ‘!’: NR = 16)
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independent of NR and is equally distributed onto the diversity paths so that only the NRth
part of Eb can be exploited at each receive antenna. In this scenario, the gain obtained
solely by diversity can be observed. On the contrary, Figure b depicts the error rate versus
the average Es/N0 at each receive antenna. Therefore, the total transmit power increases
linearly with NR and the entire SNR after maximum ratio combining becomes NR times
larger, indicating the additional array gain. Comparing the difference between adjacent
curves in both the plots, we recognize a difference of 3 dB that exactly represents the gain
obtained by doubling the number of receive antennas.

We can conclude that receive diversity is an efficient and simple possibility to increase
the link reliability. However, its applicability becomes immediately limited if the size of
the receiving terminal is very small. Cell phones for mobile radio communications have
become smaller and smaller in recent years so that it is a difficult task to place several
antennas on such small devices. Even if we succeed, it is questionable whether the spacing
would be large enough to guarantee uncorrelated channels. Although different polarizations
represent a further dimension to obtain diversity, the decoupling is generally imperfect,
leading to cross talk. In this situation, the question arises whether diversity can also be
exploited with multiple antennas at the transmitter.

6.2.2 Performance Analysis of Space–Time Codes

In this subsection, the general concept of space–time transmit diversity is addressed, that
is, using multiple antennas at the transmitter. A straightforward implementation where a
signal x[�] is transmitted simultaneously over several antennas will not provide the desired
diversity gain. Looking at the received signal

y[�] = 1√
NT

· x[�] ·
NT∑
ν=1

hν + n[�] (6.4)

we see that an incoherent superposition is obtained, resulting in a new Rayleigh-distributed
channel.1 Hence, the equivalent SISO channel still has SNR variations as large as the orig-
inal single-input single-output system and no diversity has been gained. To overcome this
dilemma, appropriate coding is required at the transmitter. This coding is performed in the
dimensions space and time leading to the name space–time codes. First, this subsection dis-
cusses the potential of STCs and derives some guidelines concerning the code construction.
In the next two subsections, specific codes, namely, orthogonal space–time block codes
(oSTBCs) and space–time trellis codess (STTCs) are introduced.

The general structure of the considered system is depicted in Figure 6.4. The data bits
d[i] are fed into the space–time encoder that outputs L vectors x[k] = [

x1[k] · · · xNT[k]
]T

of length NT. They are transmitted over a MIMO channel according to (6.1). The channel
coefficients hµ,ν[k] = hµ,ν are assumed to be constant during one encoded frame so that
the received signal becomes

y[k] = H · x[k]+ n[k]. (6.5)

1Note that the total transmit power has been normalized according to the agreement on page 289 so that it is
independent of the number of antennas.
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Figure 6.4 Structure of transmit diversity system with NR receive antennas

Combining all L vectors x[k], y[k], and n[k] within one coded frame as column vectors
into the matrices X, Y, and N, respectively, results in

Y = H · X+ N, (6.6)

where the NT × L matrix

X = [
x[0] x[1] · · · x[L− 1]

] =


x1[0] x1[1] · · · x1[L− 1]
x2[0] x2[1] · · · x2[L− 1]

...
. . .

...

xNT [0] xNT [1] · · · xNT [L− 1]

 (6.7)

denotes the entire data frame encoded in space and time. The code comprising all possible
code matrices is termed X. The matrices N and Y have the dimensions NR × L.

Next, we derive some general results concerning the achievable diversity and coding
gains that can be used for the code design. An optimum maximum likelihood decision
and a perfectly known channel matrix H are assumed at the receiver. We start with the
pairwise error probability between two competing codewords X and X̃ already known from
Section 1.3. Contrary to Section 1.3, we now receive a mixture of all transmit signals at each
receive antenna. Therefore, we have to look at the squared Frobenius (see Appendix C on
page 336) norm of the noiseless received signals ‖HX−HX̃‖2

F of both codewords instead
of ‖X− X̃‖2

F . The conditional pairwise error probability of (1.49) then becomes

Pr
{

X → X̃ | H
}
= 1

2
· erfc


√√√√∥∥HX−HX̃

∥∥2
F

4σ 2
N

 . (6.8)

We now normalize the space–time codewords to B = X/
√

Es/Ts and B̃ = X̃/
√

Es/Ts in
the same way as was done in Section 1.3. This changes the squared Euclidean distance to∥∥H · (X− X̃)

∥∥2
F
= ∥∥H · (B− B̃)

∥∥2
F
· Es

Ts
(6.9)

and (6.8) becomes with σ 2
N = N0/Ts for complex-valued signals

Pr
{

X → X̃ | H
}
= 1

2
· erfc

(√∥∥H(B− B̃)
∥∥2

F
· Es

4N0

)
. (6.10)
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The complementary error function can be upper bounded by erfc(
√

x) < e−x . Denoting the
µth row of H with hµ leads to an upper bound

Pr
{

B → B̃ | H
}
≤ 1

2
· exp

[
−∥∥H(B− B̃)

∥∥2
F
· Es

4N0

]

≤ 1

2
· exp

− NR∑
µ=1

∥∥hµ(B− B̃)
∥∥2 · Es

4N0


≤ 1

2
·

NR∏
µ=1

exp

[
−(

hµ(B− B̃)(B− B̃)H hH
µ

) · Es

4N0

]
. (6.11)

Obviously, the matrix A = (B− B̃)(B− B̃)H is Hermitian and its rank r equals that of
B− B̃. Moreover, it is positive semidefinite and its r nonzero eigenvalues λν obtained
by an eigenvalue decomposition A = U�UH are real and positive. The pairwise error
probability can now be expressed as

Pr
{

B → B̃ | H
}
≤ 1

2
·

NR∏
µ=1

exp

[
−(

hµU�UH hH
µ

) · Es

4N0

]

≤ 1

2
·

NR∏
µ=1

exp

[
−β

µ
�βH

µ
· Es

4N0

]
. (6.12)

The new row vectors β
µ
= hµU = [βµ,1 · · · βµ,NT] still consist of complex rotationally

invariant Gaussian distributed random variables βµ,ν because U is unitary (Naguib et al.
1997). Hence, the squared magnitudes of their elements are chi-squared distributed with
two degrees of freedom. In order to obtain a pairwise error probability that is independent
of the instantaneous channel matrix H, we have to calculate the expectation of (6.12) with
respect to H. This results in

Pr
{
B → B̃

} = EH
{

Pr
{
B → B̃ | H

}}
≤ 1

2
·

NR∏
µ=1

r∏
ν=1

Eβ

{
exp

[
−λν · |βµ,ν |2 · Es

4N0

]}

≤ 1

2
·

NR∏
µ=1

r∏
ν=1

∫ ∞

0
e−ξ · exp

[
−ξ · λν

Es

4N0

]
dξ

≤ 1

2
·
[

r∏
ν=1

1

1+ λν · Es
4N0

]NR

(6.13)

where r denotes the rank of A, that is, the number of nonzero eigenvalues. A further upper
bound that is tight for large SNRs is obtained by dropping the +1 in the denominator.
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Rewriting (6.13) finally leads to the expression

Pr
{
B → B̃

}
<

1

2
·
 Es

4N0
·
(

r∏
ν=1

λν

)1/r
−rNR

. (6.14)

From (6.14), the following conclusions can be drawn. Owing to the similarity with (1.112)
where the reciprocal of the SNR is taken to the power of D, the exponent rNR is called
the diversity gain . Hence, in order to achieve the maximum possible diversity degree, the
minimum rank r among all pairwise differences B− B̃ should be maximized, leading to
the diversity gain

gd = NR · min
(B,B̃)

rank
(
B− B̃

)
. (6.15)

On the other hand, the coding gain leading to a horizontal shift of the error rate curves can
be described by

gc = min
(B,B̃)

(
r∏

ν=1

λν

)1/r

. (6.16)

If the code design ensures full-rank differences with r = rank{A} = NT, the product of the
eigenvalues equals the determinant det(A)

gc = min
(B,B̃)

(
NT∏
ν=1

λν

)1/NT

= min
(B,B̃)

(
det(B− B̃)

)1/NT
. (6.17)

We obtain the code design criteria according to (Tarokh et al. 1998):

• rank criterion: In order to obtain the maximum diversity gain, the first design goal is
to maximize the minimum rank r of all matrices X− X̃. The diversity degree equals
rNR; its maximum is NTNR.

• determinant criterion: For a diversity gain of rNR, the coding gain is maximized if
the minimum of (

∏r
ν=1 λν)

1/r is maximized over all codeword pairs.

A code optimization according to these criteria cannot be performed analytically but
has to be carried out as a computer-based code search. The next two subsections introduce
examples for space–time coding schemes. First, orthogonal STBCs are presented. Since
their codewords are obtained by orthogonal matrix design, the determinant is constant and
no coding gain is obtained. However, full diversity gains are achievable and the receiver
structures are very simple. Second, space–time trellis codes are briefly described, providing
additional coding gains at the expense of much higher decoding complexity.

6.2.3 Orthogonal Space–Time Block Codes

Figure 6.5 shows the principle structure of a space–time block coding system for NR = 1
receive antenna. The subsequent derivation includes more generally the application of an
arbitrary number of receive antennas. As a variation from the general concept of space–time
coding depicted in Figure 6.4, the signal mapper and space–time encoder are separated.
First, the data bits are mapped onto symbols a[�] that are elements of a finite signal
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Figure 6.5 System structure for space–time block codes with NR = 1 receive antenna

constellation according to the linear modulation schemes presented in Section 1.4. Next,
the space–time block encoder collects a block of K successive symbols a[�] and maps them
onto a sequence of L consecutive vectors x[k] = [

x1[k] · · · xNT [k]
]T

, 0 ≤ k < L. Hence,
the generated symbols a[�] are encoded in two dimensions, namely, in space and time
explaining the name space–time coding. The code rate amounts to

Rc = K

L
. (6.18)

The system can certainly be improved by an outer forward error correction (FEC) coding
scheme. In the following part, we make the widely used assumption that the channel remains
constant during one coding block. Therefore, we can drop the time indices of the channel
coefficients (hµ[k] → hµ) in subsequent derivations.

Alamouti’s Scheme

In order to illustrate how oSTBCs work, a simple example introduced by Alamouti (1998)
is used. Originally, it employs NT = 2 transmit antennas and NR = 1 receive antenna.
However, it can be easily extended to more receive antennas. To be precise, we have
to consider blocks of K = 2 consecutive symbols, say a1 = a[2�] and a2 = a[2�+ 1].
These two symbols are now encoded in the following way. At time instant 2k = 2�, sym-
bol x1[2k] = a1/

√
2 is transmitted at the first antenna and x2[2k] = a2/

√
2 at the second

antenna. At the next time instant 2k + 1, the symbols are flipped and x1[2k + 1] = −a∗2/
√

2
as well as x2[2k + 1] = a∗1/

√
2 hold. The whole codeword arranged in space and time can

be described using vector notations

X2 =
[
x[2k] x[2k + 1]

] = 1√
2
·
[
a1 −a∗2
a2 a∗1

]
(6.19)

where the factor 1/
√

2 ensures that the total average transmit power per symbol equals
Es/Ts. The entire set of codewords is denoted by X2. The columns comprise the sym-
bols transmitted at a certain time instant, while the rows represent the symbols transmitted
over a certain antenna. Since K = 2 symbols a1 and a2 are transmitted during L = 2
time instants, the rate of this code is Rc = K/L = 1. It is important to mention that
the columns in X2 are orthogonal and so Alamouti’s scheme does not provide a cod-
ing gain.
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A different implementation was chosen in the UMTS standard (3GPP 1999) without
changing the achievable diversity gain. Here, the code matrix has the form

X2 =
[
x[2k] x[2k + 1]

] = 1√
2
·
[

a1 a2

−a∗2 a∗1

]
. (6.20)

The advantage of this implementation is that the original symbols a1 and a2 are transmitted
over the same antenna. Therefore, the first antenna is used in the same way as without
space–time coding. Switching from NT = 1 to NT = 2 just requires the activation of the
second antenna without influencing the data stream x1[�]. Nevertheless, we will restrict our
analysis on the first notation of (6.19).

The corresponding two received symbols can be expressed by

y[2k] = 1√
2
· (h1a1 + h2a2)+ n[2k] (6.21a)

y[2k + 1] = 1√
2
· (h1(−a∗2)+ h2a

∗
1)+ n[2k + 1]. (6.21b)

Using vector notations, we can combine the two received symbols and the two noise samples
into vectors y = [

y[2k] y[2k + 1]
]T

and n = [
n[2k] n[2k + 1]

]T
, respectively. This yields

the compact description

y =
[
y1

y2

]
= 1√

2
·
[

a1 a2

−a∗2 a∗1

]
·
[
h1

h2

]
+

[
n1

n2

]
= X2 · h+ n. (6.22)

Rewriting (6.22) by taking the conjugate complex of the second line, we obtain

ỹ =
[
y1

y∗2

]
= 1√

2
·
[
h1 h2

h∗2 −h∗1

]
·
[
a1

a2

]
+

[
n1

n∗2

]
= 1√

2
·H[X2] · a+ ñ. (6.23)

With this slight modification, we have transformed the multiple-input single-output (MISO)
channel h into an equivalent MIMO channel H[X2]. The matrix describing this equiva-
lent channel has orthogonal columns. In this case, we already know from Chapter 4 that
the matched filter represents the optimum detector according to the maximum likelihood
principle. The matched filter output becomes

r̃ = HH [X2] · ỹ = 1√
2
·
[|h1|2 + |h2|2 0

0 |h1|2 + |h2|2
]
· a+HH [X2] · ñ. (6.24)

Looking at the diagonal elements that equal the squared norm of the contributing channel
coefficients, we observe that the Alamouti scheme provides the full diversity degree D =
NT = 2 that can be achieved with two transmit antennas. Moreover, no interference between
a1 and a2 disturbs the transmission because HH [X2]H[X2] is a diagonal matrix. Owing to
this reason and the fact that the noise remains white when multiplied by a matrix consisting
of orthogonal columns, the ML decision with respect to the vector a can be split into
element-wise decisions

âµ = argmin
ã

∣∣r̃µ − (|h1|2 + |h2|2)ã
∣∣2. (6.25)
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Although (6.24) looks similar to the result of simple receive diversity, there exists a
major difference. Indeed, the diversity gain is exactly the same for receive and transmit
diversity concepts. However, the factor 1/

√
2 in (6.24) leads to an SNR loss of 3 dB.

The reason is that the receiver was assumed to have perfect channel knowledge so that
beamforming with an antenna gain of 10 log10(NR) ≈ 3 dB is possible. On the contrary,
we have no channel knowledge at the transmitter so that space–time transmit diversity
techniques do not achieve any antenna gain.

As all space–time coding schemes, the Alamouti scheme can be easily combined with
multiple receive antennas. According to (6.23), we obtain a vector

ỹµ = Hµ[X2]a+ ñµ (6.26)

containing two successive symbols at each receive antenna 1 ≤ µ ≤ NR. They are now
included in the vector

ỹ = [
ỹT

1 · · · ỹT
NR

]T
.

Consequently, the equivalent channel matrix H[X2] also has to be extended. Following the
notation in (6.23) it becomes

H[X2] =

 H1[X2]
...

HNR [X2]

 =


h1,1 h1,2

h∗1,2 −h∗1,1
...

...

hNR,1 hNR,2

h∗NR,2 −h∗NR,1

 . (6.27)

The receiver now consists of a bank of matched filters, one for each receive antenna. Their
outputs are simply summed, yielding

r̃ = HH [X2] · ỹ = 1√
2

NR∑
µ=1

(|hµ,1|2 + |hµ,2|2
) · a+HH [X2] · ñ. (6.28)

As long as all channels remain uncorrelated, a maximum diversity degree of D = 2NR can
be achieved.

Extension to More than Two Transmit Antennas

Using some basic results from matrix theory, one can show that Alamouti’s scheme is the
only orthogonal space–time code with rate 1. For more than two transmit antennas, several
orthogonal codes have been found with lower rates, so that spectral efficiency is lost. The
code matrix XNT generally consists of NT rows and L columns and contains the symbols
a1, . . . , aK as well as the conjugate complex counterparts a∗1 , . . . , a∗K . The construction
of XNT has to be performed such that XNT has orthogonal rows, that is,

XNT XH
NT
= P · INT (6.29)

holds, where P is a constant depending on the symbol powers that will be discussed on
page 289. In the following part, all codeword matrices are presented without normalization.
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In Tarokh et al. (1999a), it is shown that there exist half-rate codes for an arbitrary
number of transmit antennas. The code matrices for NT = 3 and NT = 4 are presented as
examples. For NT = 3, we obtain

X3 =
a1 −a2 −a3 −a4 a∗1 −a∗2 −a∗3 −a∗4

a2 a1 a4 −a3 a∗2 a∗1 a∗4 −a∗3
a3 −a4 a1 a2 a∗3 −a∗4 a∗1 a∗2

 (6.30)

providing a diversity degree of D = NT = 3. Obviously, X3 consists of L = 8 columns and
K = 4 different symbols a1, . . . , a4 are encoded, leading to the rate Rc = K/L = 1/2.
Each symbol aµ occurs six times with full energy in X. From (6.30), we can write the
received vector as

y =



h1 h2 h3 0 0 0 0 0
h2 −h1 0 −h3 0 0 0 0
h3 0 −h1 h2 0 0 0 0
0 h3 −h2 −h1 0 0 0 0
0 0 0 0 h1 h2 h3 0
0 0 0 0 h2 −h1 0 −h3

0 0 0 0 h3 0 −h1 h2

0 0 0 0 0 h3 −h2 −h1





a1

a2

a3

a4

a∗1
a∗2
a∗3
a∗4


+ n. (6.31)

We observe in (6.31) that the last four symbols in y only depend on the conjugate com-
plex transmit symbols. Hence, conjugating the last four rows similar to the procedure for
Alamouti’s scheme in (6.23) results in

ỹ = H[X3]a+ ñ ⇒



y1

y2

y3

y4

y∗5
y∗6
y∗7
y∗8


=



h1 h2 h3 0
h2 −h1 0 −h3

h3 0 −h1 h2

0 h3 −h2 −h1

h∗1 h∗2 h∗3 0
h∗2 −h∗1 0 −h∗3
h∗3 0 −h∗1 h∗2
0 h∗3 −h∗2 −h∗1




a1

a2

a3

a4

+



n1

n2

n3

n4

n∗5
n∗6
n∗7
n∗8


. (6.32)

Obviously, (6.32) uses only the original symbols a = [a1 · · · a4]T and not their conjugate
complex versions. Moreover, the columns in H[X3] are orthogonal so that

HH [X3] ·H[X3] = 2 ·
NT∑
µ=1

|hµ|2 · I4 = 2 · (|h1|2 + |h2|2 + |h3|2
) · I4 (6.33)

holds. Therefore, the optimum receiver is again a matched filter that multiplies the modified
received vector ỹ with HH [X3]. In the case of multiamplitude modulation, an appropriate
scaling prior to the hard decision is necessary.

For NT = 4, a diversity gain of D = NT = 4 is achieved with the code matrix

X4 =


a1 −a2 −a3 −a4 a∗1 −a∗2 −a∗3 −a∗4
a2 a1 a4 −a3 a∗2 a∗1 a∗4 −a∗3
a3 −a4 a1 a2 a∗3 −a∗4 a∗1 a∗2
a4 a3 −a2 a1 a∗4 a∗3 −a∗2 a∗1

 . (6.34)
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Equivalent to the case of NT = 3, we obtain a received vector y according to

y =



h1 h2 h3 h4 0 0 0 0
h2 −h1 h4 −h3 0 0 0 0
h3 −h4 −h1 h2 0 0 0 0
h4 h3 −h2 −h1 0 0 0 0
0 0 0 0 h1 h2 h3 h4

0 0 0 0 h2 −h1 h4 −h3

0 0 0 0 h3 −h4 −h1 h2

0 0 0 0 h4 h3 −h2 −h1





a1

a2

a3

a4

a∗1
a∗2
a∗3
a∗4


+ n. (6.35)

Complex conjugation of the last four elements in y leads to ỹ = H[X4] · a+ ñ with

H[X4] =



h1 h2 h3 h4

h2 −h1 h4 −h3

h3 −h4 −h1 h2

h4 h3 −h2 −h1

h∗1 h∗2 h∗3 h∗4
h∗2 −h∗1 h∗4 −h∗3
h∗3 −h∗4 −h∗1 h∗2
h∗4 h∗3 −h∗2 −h∗1


. (6.36)

Again, the columns of H[X4] are mutually orthogonal and estimates â are obtained by
multiplying ỹ with HH [X4] and appropriate scaling.

Looking at higher spectral efficiencies, only two codes with NT = 3 and NT = 4 have
been found for Rc > 1/2 (Tarokh et al. 1999a,b). In order to distinguish them from the codes
presented so far, we use the notations T3 and T4. For NT = 3, the orthogonal space–time
codeword is

T3 =
 2a1 −2a∗2

√
2a∗3

√
2a∗3

2a2 2a∗1
√

2a∗3 −√2a∗3√
2a3

√
2a3 −a1 − a∗1 + a2 − a∗2 a1 − a∗1 + a2 + a∗2

 . (6.37)

Since it comprises four time instants for transmitting three symbols, the code rate amounts
to Rc = 3/4. Using (6.37), the received vector can be written as

y = 2


h1 h2

h3√
2

0 0 0

0 0 h3√
2

h2 −h1 0

− h3√
2

h3√
2

0 − h3√
2
− h3√

2
h1+h2√

2
h3√

2
h3√

2
0 − h3√

2
h3√

2
h1−h2√

2




a1

a2

a3

a∗1
a∗2
a∗3

+ n. (6.38)

Unfortunately, the channel matrix in (6.38) does not have the block diagonal structure
so that a separation into rows associated only with the original symbols a1, . . . , a3 and
those associated with their complex conjugate versions is not possible. Hence, a direct
construction of an equivalent matrix H[T3] containing the complex channel coefficients is
not possible. However, we can separate real and imaginary parts of all components and
stack them into vectors and matrices similar to the approach applied to linear multiuser
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detectors for real-valued modulation schemes discussed in Sections 5.2.1, 5.2.2, and 5.4.2.
Denoting the real part of a complex symbol y with y ′ and the imaginary part with y ′′, we
define the real-valued vectors

yr = [
y ′1 · · · y ′L y ′′1 · · · y ′′L

]T
(6.39a)

nr = [
n′1 · · · n′L n′′1 · · · n′′L

]T
(6.39b)

ar = [
a′1 · · · a′K a′′1 · · · a′′K

]T
. (6.39c)

The received vector can now be expressed by yr = Hr[T3]ar + nr with

Hr[T3] =



h′1 h′2
h′3√

2
−h′′1 −h′′2 − h′′3√

2

h′2 −h′1
h′3√

2
h′′2 −h′′1 − h′′3√

2

−h′3 0
h′1+h′2√

2
0 −h′′3

h′′1+h′′2√
2

0 h′3
h′1−h′2√

2
−h′′3 0

h′′1−h′′2√
2

h′′1 h′′2
h′′3√

2
h′1 h′2

h′3√
2

h′′2 −h′′1
h′′3√

2
−h′2 h′1

h′3√
2

−h′′3 0
h′′1+h′′2√

2
0 h′3 − h′1+h′2√

2

0 h′′3
h′′1−h′′2√

2
h′3 0 − h′1−h′2√

2



. (6.40)

Owing to the separation of real and imaginary parts, we have again obtained a matrix with
orthogonal columns

(
Hr[T3]

)T ·H[T3] = 2
NT∑
µ=1

|hµ|2 · I3 = 2 · (|h1|2 + |h2|2 + |h3|2
) · I3.

After multiplying yr with
(
Hr[T3]

)T
, real and imaginary parts of each symbol experience

a diversity gain of NT. For multiamplitude modulation, they have to be normalized and
combined into a complex symbol again to allow the demodulation.

Finally, a space–time coding scheme with NT = 4 transmit antennas shall be presented.
The space–time codeword is

T4 =


2a1 −2a∗2

√
2a∗3

√
2a∗3

2a2 2a∗1
√

2a∗3 −√2a∗3√
2a3

√
2a3 −a1 − a∗1 + a2 − a∗2 a1 − a∗1 + a2 + a∗2√

2a3 −√2a3 −a1 − a∗1 − a2 − a∗2 −(a1 + a∗1 + a2 + a∗2)

 . (6.41)

Again, three symbols are transmitted within a block covering four time instants, leading to
Rc = 3/4. The received vector can be described using (6.41) yielding

y = 2


h1 h2

h3+h4√
2

0 0 0

0 0 h3−h4√
2

h2 −h1 0
−h3+h4

2
h3−h2

2 0 − h3+h4
2 − h3+h4

2
h1+h2√

2
h3−h4

2
h3−h4

2 0 − h3+h4
2

h3+h4
2

h1−h2√
2




a1

a2

a3

a∗1
a∗2
a∗3

+ n. (6.42)
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The channel matrix for the real-valued received vector can now be expressed as

Hr[T4] =



h′1 h′2
h′3+h4√

2
−h′′1 −h′′2 − h′′3+h′′4√

2

h′2 −h′1
h′3−h′4√

2
h′′2 −h′′1

−h′′3+h′′4√
2

−h′3 −h′4
h′1+h′2√

2
−h′′4 −h′′3

h′′1+h′′2√
2

−h′4 h′3
h′1−h′2√

2
−h′′3 h′′4

h′′1−h′′2√
2

h′′1 h′′2
h′′3+h′′4√

2
h′1 h′2

h′3+h′4√
2

h′′2 −h′′1
h′′3−h′′4√

2
−h′2 h′1

h′3−h′4√
2

−h′′3 −h′′4
h′′1+h′′2√

2
h′4 h′3 − h′1+h′2√

2

−h′′4 h′′3
h′′1−h′′2√

2
h′3 −h′4 − h′1−h′2√

2



. (6.43)

Owing to the separation of real and imaginary parts, we have again obtained a matrix with
orthogonal columns.

Certainly, the real-valued description can also be applied to Alamouti’s scheme and to
the codes X3 and X4. Therefore, it is more general and can exploit more degrees of freedom
because it is not restricted to use complex symbols and their conjugate versions. Linear
STBCs constructed with real-valued notations are called linear dispersion codes (Hassibi
and Hochwald 2002) and are addressed in Section 6.5.

As already explained for Alamouti’s scheme, each of the discussed STBCs can be
combined with several receive antennas. In this case, we obtain several equivalent channel
matrices which are stacked into a large matrix according to (6.27). The receiver consists
of a bank of NR matched filters and simply sums their outputs. This leads to an overall
diversity degree of D = NT ·NR.

Although oSTBCs do not provide a coding gain, they have the great advantage that
decoding simply requires some linear combinations of the received symbols. Moreover,
they provide the full diversity degree achievable with a certain number of transmit and
receive antennas.

Normalizing the Transmit Power

We now have to consider the transmit power of the presented STBCs in more detail.
Certainly, there exist several possibilities for normalizing the transmit power. From the
channel coding perspective, we know to distinguish Es and Eb. In the context of space–time
coding, we have the possibility of fixing the average SNR per channel use, that is, per
time instant. In this case, the constant P in (6.29) grows linearly with the length L of a
space–time codeword and we obtain

tr
{
XNT XH

NT

} = L · Es

Ts
. (6.44)

Since the trace in (6.44) also depends on the number of transmit antennas, all codeword
matrices have to be multiplied with the factor 1/

√
NT.
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In order to draw a fair comparison among the discussed STC approaches, we can also
fix the average power spent per data symbol to Es/Ts, leading to

tr
{
XNTXH

NT

} = K · Es

Ts
. (6.45)

Starting with Alamouti’s scheme, each of the two symbols a1 and a2 (including their
complex conjugate versions) is transmitted twice during one block. This leads to a scaling
factor of 1/

√
K = 1/

√
2 as already used on page 283. For the codes X3 and X4, each

symbol is transmitted six and eight times, respectively. Hence, we obtain the factors 1/
√

6
and 1/

√
8. In relation to T3 and T4, the scaling factors before the codeword matrices

amount to 1/2. With this normalization, the error rate is depicted against Es/N0.
Finally, a comparison of schemes with different spectral efficiencies is generally drawn

with respect to Eb/N0 instead of Es/N0. Normalizing to the number of receive antennas so
that no array gain is measured, we obtain the following relationship between the average
energy Eb per information bit and the symbol energy Es

Es = m · Rc

NR
· Eb = m ·K

L · NR
· Eb, (6.46)

where m denotes the number of bits per symbol. Alternatively, the SNR at each receive
antenna can also be used so that the array gain of the receiver becomes obvious. However,
this must be explicitly mentioned.

Simulation Results

We now look at the error rate performance of the space–time block coding schemes
explained so far. First, Figure 6.6a depicts the error rates of Alamouti’s scheme with
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Figure 6.6 Bit error rate of Alamouti’s scheme for different modulation types and number
of receive antennas, (solid bold line: AWGN channel, solid dashed line: Rayleigh fading
channel without diversity)
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Figure 6.7 Bit error rate for different orthogonal STBCs, BPSK, and NR = 1 receive
antenna

different number of receive antennas. Since X2 provides a diversity degree of D = 2,
additional receive antennas multiply this degree, leading to D = 4, D = 6 and D = 8 for
NR = 2, NR = 3, and NR = 4, respectively. A comparison between theoretical results from
Section 1.5 (lines) and simulation results (symbols) illustrates that both coincide perfectly.
Hence, as long as the channel is ideally known to the receiver, optimum diversity per-
formance is achieved. Figure 6.6b shows the performance of X2 for different modulation
schemes. Both quaternary phase shift keying (QPSK) and 8-PSK profit by an increased
diversity degree.

Next, we compare space–time coding schemes for binary phase shift keying (BPSK)
and a single receive antenna. From Figure 6.7a, it becomes obvious that X3 and T3 have
identical diversity degrees in addition to X4 and T4. The results are identical with those
obtained from Section 1.5. However, the codes have different rates Rc, leading to different
spectral efficiencies. Therefore, we have to depict the error rates against Eb/N0 instead of
Es/N0. Figure 6.7b shows the corresponding relations. The slopes of all curves are still
the same as shown in Figure 6.7a but those of X3, X4, T3, and T4 are shifted horizontally
by 10 log10(Rc). The half-rate codes X3 and X4 perform worse especially at small SNRs
compared to T3 and T4. Despite its higher diversity degree, X3 outperforms Alamouti’s
scheme only for SNRs above 15 dB. Similar intersections exist for X4 and T3.

A fair comparison between different space–time coding schemes can be guaranteed
if it is drawn for identical spectral efficiencies. This can be achieved by choosing an
appropriate modulation scheme for each STC. Table 6.1 summarizes some constellations
considered here. For η = 2 bits/s/Hz, Alamouti’s scheme employs a QPSK while X3 and
X4 have to use a 16-QAM or 16-PSK because of their lower code rate of Rc = 1/2. For
η = 3 bits/s/Hz, we use the 8-PSK for X2 and 16-QAM for T3 and T4.

The results for η = 1 bit/s/Hz are depicted in Figure 6.8a. Since BPSK and QPSK
show the same bit error rate (BER) performance against Eb/N0, X3 and X4 do not suf-
fer from a higher sensitivity of the modulation scheme and can fully exploit the larger
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Table 6.1 Combinations of space–time codes and modulation
schemes for different overall spectral efficiencies

η X2 X3 X4 T3 T4

1 bit/s/Hz BPSK QPSK QPSK – –
2 bits/s/Hz QPSK 16-QAM 16-QAM – –
3 bits/s/Hz 8-PSK – – 16-QAM 16-QAM
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a) η = 1 bit/s/Hz b) η = 2 bits/s/Hz

Figure 6.8 Bit error rate for different orthogonal STCs, NR = 1 receive antenna and dif-
ferent spectral efficiencies (solid bold line: AWGN, bold dashed line: flat Rayleigh fading;
in Figure b) both for 16-QAM)

diversity degree. In Figure 6.8b, we observe different results for η = 2 bit/s/Hz. QPSK is
much more robust than 16-QAM against the influence of noise. Hence, the higher diversity
degree becomes obvious only for high SNRs. At low SNRs, Alamouti’s scheme with QPSK
still performs best.

Finally, Figure 6.9 illustrates the results obtained for a spectral efficiency of η =
3 bit/s/Hz. Because of the relative high code rate of Rc = 0.75, we have to just switch
between 8-PSK and 16-QAM. However, 16-QAM performs nearly as good as 8-PSK
because it exploits the signal space more efficiently (cf. Section 1.4). Therefore, the loss
obtained by changing from 8-PSK to 16-QAM is rather low and the diversity gain dominates
the bit error rate for T3 and T4.

The following conclusion can be drawn in relation to the trade-off between diversity
degree and modulation type for a fixed spectral efficiency η. In the high SNR regime,
diversity is most important and overcompensates the larger sensitivity of high-order modu-
lation schemes. At low SNRs, robust modulation schemes such as QPSK should be preferred
because the diversity gain is smaller than the loss associated with a change of the modulation
scheme.
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Figure 6.9 Bit error rate for different orthogonal STCs and NR = 1 receive antenna, spectral
efficiency η = 3 bit/s/Hz

6.2.4 Space–Time Trellis Codes
Contrary to the previously presented oSTBCs, STTCs can also provide a coding gain. First,
optimization criteria and some handmade codes have been presented in Seshadri et al.
(1997), Tarokh et al. (1997, 1998). Results of a systematic computer-based code search can
be found in Bäro et al. (2000a,b) and some implementation aspects in Naguib et al. (1997,
1998).

Figure 6.10 shows the general structure of an encoder with NT = 2 transmit antennas.
Obviously, STTCs are related to convolutional codes explained in Section 3.3. At each time
instant �, a vector d[�] = [

d1[�] · · · dK [�]
]T

is fed into the linear shift register consisting
of Lc blocks each comprising K bits. The old content is shifted by K positions to the right.
Hence, the total length of the register is LcK bits and Lc represents the constraint length
as for convolutional codes. The variable Q = Lc − 1 denotes the memory of the register.

The major difference compared to binary convolutional codes is the way in which the
register content

q[�] =

 d[�]
...

d[�−Q]

 = [
q1[�] · · · qK [�]︸ ︷︷ ︸

input vector d[�]

qK+1[�] · · · qLcK [�]︸ ︷︷ ︸
state

]T
(6.47)

is combined to form the outputs b1[�] and b2[�]. Assuming an M-ary linear modulation
scheme according to Section 1.4, the generator coefficients gi,j are generally nonbinary
with gi,j ∈ {0, 1, · · · M − 1}. They can be included in the generator matrix

G =


g1,1 g1,2 · · · g1,LcK

g2,1 g2,2 · · · g2,LcK

· · · ...
. . .

...

gNT,1 gNT,2 · · · gNT,LcK

 (6.48)
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+

+

M

M

d[�]

g1,1 g1,K g1,QK+1 g1,LcK

g2,1 g2,K g2,QK+1 g2,LcK

q1[�] qK [�] qQK+1[�] qLcK [�]

b1[�]

b2[�]

x1[�]

x2[�]

Figure 6.10 General structure of space–time trellis encoder for NT = 2 transmit antennas
(Q = Lc − 1)

with which the output vector b[�] = [
b1[�] · · · bNT [�]

]
can be described by

b[�] = (
G · q[�]

)
mod M. (6.49)

The NT integers bµ[�] ∈ {0, · · · M − 1} are then mapped onto M-ary phase shift keying (PSK)
or quadrature amplitude modulation (QAM) symbols by NT independent signal mappers.

In Tarokh et al. (1998), it is shown that the maximum K is restricted by the modulation
scheme if maximum diversity degree of NTNR should be achieved. Hence, K = log2(M)

holds for M-ary modulation schemes. The number of states naturally depends on the mem-
ory of the register. However, it may happen that the left-most and the right-most bit tuples
d[�] and d[�−Q] are not fully connected to the generators. Assuming that the last τ ele-
ments of a[�] are not connected to the generators, only QK − τ memory elements are used
and the number of states reduces to 2QK−τ . In this case, the generator matrix is not fully
loaded (Blum 2000).

Similar to convolutional codes, STTCs can also be graphically described with a trel-
lis diagram. An example with four states and NT = 2 transmit antennas is depicted in
Figure 6.11 where K = 2 and Lc = 2 hold, resulting in 22 = 4 states. At each time instant,
two input bits d1[�] and d2[�] are encoded in a register with memory Q = 1, resulting in
four branches leaving each state. On the left-hand side, the binary representation of each
state, that is, the register content [q3[�]q4[�]], is depicted. On the right-hand side, the output
symbols x1[�] and x2[�] belonging to different branches are listed, wherein the first symbol
pair belongs to the uppermost branch leaving a state and the last belongs to the lowest
branch. Generally, natural mapping (see Section 1.4) is applied as can be seen from the
signal space of QPSK.

Decoding Space–Time Trellis Codes

Owing to the equivalence between convolutional codes and STTCs, we can use the Viterbi
algorithm for decoding. However, there exists a major difference. In the case of binary
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00, 02, 22, 20

01, 03, 23, 21

10, 12, 32, 30

31, 33, 13, 11

00
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2 3

(x1[�] x2[�])(q3[�] q4[�])

Figure 6.11 Trellis diagrams for space–time code with 2QK = 2K = 4 states, QPSK, and
NT = 2 transmit antennas

convolutional codes, the n bits b1[i], . . . , bn[i] belonging to one codeword b[i] are received
successively. On the contrary, the NT symbols x1[�] up to xNT [�] at the output of the STC
encoder interfere incoherently at the receive antenna and are not obtained separately. For
the general case of NR receive antennas,

y[�] = H · x[�]+ n[�] (6.50)

with the µth received signal

yµ[�] = hµ · x[�]+ nµ[�] =
NT∑
ν=1

hµ,ν · xν[�]+ nµ[�] (6.51)

holds. This modification has to be considered when calculating the incremental metrics
γ (s′→s)[�] given in (3.32). All interfering symbols at time instant � originate from the same
state s ′. The incremental metric between the states s ′ and s becomes

γ (s′→s)[�] =
∥∥∥y[�]−H · z(s′→s)

∥∥∥2 =
NR∑
µ=1

NT∑
ν=1

∣∣∣yµ[�]− hµ,ν · z(s′→s)
ν

∣∣∣2 (6.52)

where z(s′→s)
ν denotes the hypothesis of the symbol transmitted over antenna ν for the

transition between states s ′ and s. Consequently, z(s′→s) comprises all NT hypotheses. The
remaining parts of the Viterbi algorithm are identical to that of convolutional codes.

Examples for Space–Time Trellis Codes

In the following part some codes, derived by Wittneben, Tarokh, Yan, and Bro (Tarokh
et al. 1998; Wittneben 1991, 1993; Yan and Blum 2000), are presented. This list does
not claim to be comprehensive. In order to distinguish the codes, the following notation
is used. The codes from Wittneben, Tarokh, Yan, and Bro are denoted by W(M, Z, NT),
T(M, Z, NT), Y(M, Z, NT), and B(M, Z, NT), respectively. The three parameters describe
the constellation size M of the linear modulation, the number of states Z in the trellis, and
the number of transmit antennas NT. All codes achieve the maximum diversity gain NTNR

so that only the coding gain has to be considered.
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Delay diversity by Wittneben
The delay diversity scheme proposed by Wittneben (1991, 1993) represents an exception
because it provides no coding gain. However, it can be interpreted as the simplest STTC
and is illustrated in Figure 6.12. For the general case of M-ary modulation schemes, K =
log2(M) bits are fed into the shift register at each time instant. In the example, QPSK,
resulting in K = 2 is used. The number of transmit antennas equals the constraint length
Lc = NT because each K bit block is connected to a mapper of only one antenna. This
leads to the general structure of the generator matrix

G =


1 2 · · · 2K−1 0 · · · 0 · · · 0 · · · 0

0 · · · 0 1 2 · · · 2K−1 · · · 0 · · · 0
. . .

...

1 2 · · · 2K−1

 (6.53)

and the number of states grows exponentially with the number of transmit antennas.
Obviously, the transmit antennas emit delayed versions of the same piece of information.

As a consequence, the signal at receive antenna µ becomes

yµ[�] =
NT∑
ν=1

hµ,ν · xν[�]+ nµ[�] =
NT∑
ν=1

hµ,ν · x1[�− ν + 1]+ nµ[�]. (6.54)

We recognize that (6.54) describes the convolution of a sequence x1[�] with a frequency-
selective channel hµ = [hµ,1 · · · hµ,NT]. Therefore, the flat MISO channel is transformed
by the delay diversity scheme into a frequency-selective single-input single-output channel
providing the full diversity degree of D = NT = Lc. Decoding is identical to the equal-
ization of intersymbol interference channels and can be performed by a Viterbi equalizer
(Kammeyer 2004; Proakis 2001).

For the example W(4, 4, 2) of NT = 2 transmit antennas, QPSK, and four states, we
obtain the trellis segment depicted in Figure 6.13. While the first antenna always transmits

1
1

1

2
2

2

M

M

M

d[�]
q1[�] q2[�] q3[�] q4[�] q2Q+1[�] q2Lc [�]

b1[�]

b2[�]

bNT [�]

x1[�]

x2[�]

xNT [�]

Figure 6.12 Structure of delay diversity scheme by Wittneben with QPSK
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2 3

(x1[�] x2[�])(q3[�] q4[�])

Figure 6.13 Structure of delay diversity scheme by Wittneben with memory Q = 1, NT =
2, and QPSK

symbol ν in the νth state, the second antenna transmits a symbol µ identifying the successive
state s = µ. The generator matrix has the form

W(4, 4, 2) =
[

1 2 0 0
0 0 1 2

]
. (6.55)

Owing to the simplicity of this scheme, it can be easily extended to an arbitrary number of
transmit antennas and, therefore, to a very high diversity gain. However, the decoding or
detection complexity grows exponentially with NT and limits the potential due to practical
restrictions.

Space–time trellis codes with NT = 2 transmit antennas
Next, we focus on schemes providing a coding gain gc with only two transmit anten-
nas. Table 6.2 lists the codes T(4, Z, 2) and Y(4, Z, 2) by Tarokh et al. (1998), Yan and
Blum (2000) for Z states and QPSK, Table 6.3 the codes B(4, Z, 2) by Bro (Bäro et al.

Table 6.2 List of space–time trellis codes taken from Tarokh et al. (1998),
Yan and Blum (2000) for NT = 2, QPSK, η = 2 bits/s/Hz and diversity
degree D = 2

Z T(4, Z, 2) gc Y(4, Z, 2) gc

4

[
1 2 0 0
0 0 1 2

]
2

[
2 0 1 2
2 2 2 1

] √
8

8

[
0 0 1 2 2
1 2 0 0 2

] √
12

[
0 2 1 0 2
2 1 0 2 2

]
4

16

[
0 0 1 2 2 0
1 2 2 0 0 2

] √
12

[
0 2 1 1 2 0
2 2 1 2 0 2

] √
32

32

[
0 0 1 2 2 3 2
1 2 1 2 0 3 2

] √
12

[
0 2 3 1 2 0 2
2 0 1 2 1 2 2

] √
40
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Table 6.3 List of space–time trel-
lis codes taken from Bäro et al.
(2000a,b) for NT = 2, QPSK, η =
2 bits/s/Hz and diversity degree
D = 2

Z B(4, Z, 2) gc

4

[
0 2 3 1
2 2 1 0

] √
8

8

[
0 2 1 2 2
1 2 0 0 2

] √
12

16

[
2 1 0 2 2 0
0 2 2 1 0 2

] √
20

1

1

2

2 2

2

M

M

d[�]
q1[�] q2[�] q3[�] q4[�] q5[�]

b1[�]

b2[�]

x1[�]

x2[�]

Figure 6.14 Structure of encoder for T(4, 8, 2) for NT = 2 and QPSK

2000a,b). As an example, the encoder structure of T(4, 8, 2) is shown in Figure 6.14. The
corresponding generator matrix is not fully loaded because of τ = 1 leading to 2KQ−1 = 8
states.

The coding gains gc listed in the tables have been obtained by analyzing the pairwise
differences X− X̃ as described in Subsection 6.2.2. The codes by Yan achieve the highest
coding gains, while those of Tarokh show no improvement for more than eight states. These
theoretical results are now evaluated by simulations.

First, we analyze the achievable coding gains of the codes Y(4, Z, 2) for different
number of states Z. The frame error rates (FERs) have been determined by transmitting
code frames of length 130 symbols over time-invariant channels so that diversity is only
gained by the resource space. The obtained frame and BERs for NR = 1 receive antenna
are depicted in Figure 6.15. It can be observed that the FER decreases with growing Z.
Since all codes provide the full diversity gain of D = NT = 2, the slopes of all curves are
identical and only the coding gain is observed. For a FER of 10−2, the code with 32 states
gains a little less than 3 dB compared to Y(4, 4, 2). According to Table 6.2, we should
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Figure 6.15 Error rate performance of code Y(4, Z, 2) by Yan for QPSK and NR = 1
receive antenna (bold line: theoretical error rate for diversity D = 2)

have achieved a gain of

10 · log10
gc(Y(4, 32, 2))

gc(Y(4, 4, 2))
= 10 · log10

√
40√
8
= 3.5 dB. (6.56)

On the contrary, the BER depicted in Figure 6.15b) shows only minor differences. At very
low SNRs, the weak codes with low memory perform slightly better; a result that we know
already from Chapter 3. At high SNRs, the codes with higher memory close the gap but
cannot significantly outperform the weak codes. Moreover, the theoretical BER curve for
NT = 2-fold diversity is not reached and a gap of 2 dB remains. This observation can
be explained by the fact that some frames cannot be correctly decoded and the decoding
process itself artificially generates additional errors, increasing the BER. This specifically
happens for bad instantaneous channels. With reference to the FER, the number of errors
within one frame is not important and hence it is not affected. Therefore, the focus is on
the FER in the following part. It has to be mentioned that things will change if the channel
varies during one frame. In this case, the decoder exploits time diversity and the BER
especially can be improved remarkably.

A higher diversity degree is also obtained if the number of receive antennas is increased.
Figure 6.16 shows the corresponding results for NR = 2. Comparing the FERs with those
of Figure 6.15, we see that all codes profit from the increased diversity degree and gain
between 5 and 6 dB at an FER of 10−2. However, the differences between them become
smaller and the gain of Y(4, 32, 2) compared to Y(4, 4, 2) reduces to only 2 dB. The
BER is also improved by approximately 3 dB but all codes still perform very similar
so that no coding gain can be observed. The gap to the theoretical diversity curve is
closed.
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Figure 6.16 Error rate performance of code Y(4, Z, 2) by Yan for QPSK and NR = 2
receive antennas (bold line: theoretical error rate for diversity D = 4)
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Figure 6.17 Frame error rate performance of different codes for QPSK

Figure 6.17a compares the performances of the codes W(4, 4, 2), T(4, Z, 2), Y(4, Z, 2),
and B(4, Z, 2) for NR = 1 receive antenna and 4 or 16 states. The theoretical differences
indicated in Tables 6.2 and 6.3 cannot be confirmed. For example, a gain of

10 · log10
gc(Y(4, 16, 2))

gc(T(4, 16, 2))
= 10 · log10

√
32√
12
= 2.13 dB (6.57)

should occur between T(4, 16, 2) and Y(4, 16, 2). However, all codes with 4 states show
a performance similar to all codes with 16 states. For W(4, 4, 2) and T(4, 4, 2), this is
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not surprising because Tarokh’s four-state code is identical to the delay diversity scheme
with two transmit antennas. The code proposed by Yan shows no significant performance
improvement. The only observable difference is the improvement of 2 dB obtained by
increasing the number of states to 16.

For NR = 2 receive antennas, larger differences between the curves can be observed,
although the promised gains are not achieved. The codes from Yan perform best closely
followed by those of Bäro. However, the differences remain small. The reason for this
behavior is the fact that the coding gain was calculated only with respect to the mini-
mum determinant of the difference matrices described in Subsection 6.2.2. This criterion
is comparable to the minimum Hamming distance of a code that dominates the error rate
only asymptotically for large SNRs. In low or medium SNR regions, sequence pairs with
larger distance also influence the performance, which is not considered in the theoretical
derivation.

So far, only QPSK modulation has been used. For 8-PSK, 3 bits can be transmitted per
time instant, resulting in a higher spectral efficiency η = 3 bits/s/Hz. Tarokh et al. (1998)
presented some space–time trellis codes for 8-PSK. The generator matrices are given in
Table 6.4. Owing to the high computational costs, no theoretical results on the coding gains
exist. Figure 6.18 shows the corresponding simulation results. Only very small gains can
be obtained by increasing the number of states, and, therefore, the decoding complexity.

Table 6.4 List of space–time trellis codes taken from Tarokh et al. (1998) for NT = 2,
8-PSK, η = 3 bits/s/Hz and diversity degree D = 2

T(8, 8, 2) T(8, 16, 2) T(8, 32, 2)[
0 0 0 5 2 4
1 2 4 0 0 0

] [
0 0 0 5 2 4 1
1 2 4 1 2 4 5

] [
0 0 0 5 2 4 3 2
1 2 4 1 2 4 7 2

]
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Figure 6.18 Frame error rate performance for codes by Tarokh for 8-PSK and different
number of states
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Table 6.5 List of space–time trellis codes taken from (Yan and
Blum 2000) for NT = 3 and NT = 4, BPSK, η = 1 bit/s/Hz

Z Y(2, Z, 3) gc Y(2, Z, 4) gc

2

[
0 1
1 1

]
4

4

[
0 1 1
1 0 1

] √
48

0 1 1
1 0 1
1 1 1

 4

8

[
1 0 1 1
1 1 0 1

] √
80

1 0 0 1
1 0 1 0
1 1 1 1

 2561/3

16

[
0 1 0 1 1
1 0 1 0 1

] √
128

1 0 0 1 1
1 1 0 1 0
1 1 1 0 1

 8

Moreover, the relations between the curves hardly changes for different number of receive
antennas.

Space–time codes for more than two transmit antennas
For more than NT = 2 transmit antennas and BPSK modulation, Yan presented in Yan
and Blum (2000) some codes for NT = 3 and NT = 4 transmit antennas. They are listed
in Table 6.5. Again, coding gains between 2 and 2.4 dB are promised by the determinant
criterion of Subsection 6.2.2 between two and four states for NT = 3 and between four and
eight states for NT = 4.

The corresponding simulation results are shown in Figure 6.19 for one receive antenna.
Owing to the higher diversity degree of D = NT = 3 or D = NT = 4, an increase in the
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a) NT = 3 b) NT = 4

Figure 6.19 Frame error rate performance for codes by Yan for BPSK, different number
of transmit antennas, and NR = 1 receive antenna
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Figure 6.20 Frame error rate performance for codes by Yan for BPSK, different number
of transmit antennas, and NR = 2 receive antennas (bold dashed line: theoretical frame
error rate)

number of states really leads to a measurable coding gain. The theoretical gains can be
approximately confirmed. The same holds for the case of NR = 2 receive antennas depicted
in Figure 6.20. These diagrams additionally show the theoretical FERs (bold dashed curves)
for D-fold diversity.

The theoretical gains can be calculated by first looking at the instantaneous frame error
probability Pf(H) as a function of the symbol error probability Ps(H). For a frame of length
L, we assume that the channel H remains constant. A frame error occurs if at least one
symbol is wrong. In other words, the whole sequence is only correct if all L symbols are
correct. Since the noise is white, the error probabilities Ps(H) of successive symbols are
identical and independent and the probability that a frame is received correctly amounts to(
1− Ps(H)

)L
. Hence, the frame error probability is

Pf(H) = 1− (
1− Ps(H)

)L
. (6.58)

The ergodic probability is now obtained by calculating the expectation of (6.58)

Pf = E {Pf(H)} = E
{

1− (
1− Ps(H)

)L}
(6.59)

which is not easy because expectations over powers of Ps(H) have to be calculated. A tight
approximation applies a series expansion to the Lth power and considers only the linear
terms. This yields

Pf ≈ E
{
1− (

1− L · Ps(H)
)} ≈ L · Ps. (6.60)

We recognize from Figure 6.20 that this theoretical result coincides with the error rates for
delay diversity which, therefore, fully exploits the diversity degree of D = NR ·NT, while
the codes by Yan additionally profit from the coding gain.

Generally, we can conclude that the coding gains of STTCs promised by the determinant
criterion can hardly be achieved in practice. Only for high diversity degrees that require
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Figure 6.21 Multilayer transmission with perfect channel knowledge at the transmitter and
receiver

either time-selective channels or many antennas at the transmitter or receiver do coding
gains become visible. Naturally, STBCs as well as STTCs can be combined with classical
error correction coding schemes (Bauch 1999; Bauch et al. 2000). This leads to concatenated
schemes that can be processed iteratively according to the turbo principle introduced in
Section 3.6.

6.3 Multilayer Transmission

6.3.1 Channel Knowledge at the Transmitter and Receiver

The diversity techniques discussed so far improve the link reliability, mainly by using
multiple antennas at the transmitter and one or more receive antennas. On the contrary,
we now try to enhance the data rate by transmitting parallel data streams termed layers
over the antennas and, thus, perform spatial multiplexing. Hence, we remember the general
MIMO concept illustrated in Figure 6.1 with the channel output y = Hx+ n given in (6.1).
First, we focus on the case where the transmitter and receiver both have perfect channel
knowledge. In this case, we know from Chapter 2 that we have to exploit the eigenmodes
of the channel. Hence, a singular value decomposition (SVD)

H = U ·� · VH (6.61)

of the channel matrix H has to be performed at the transmitter and receiver. Remember that
U and V are unitary matrices of size NR ×NR and NT × NT, respectively. The NR ×NT

matrix � has the form

� =
[
�0 0
0 0

]
(6.62)

where the r × r matrix �0 contains on its diagonal all r nonzero singular values of H. The
parameter r ≤ min(NT, NR) denotes the rank of the channel and represents the maximum
number of independent data streams that can be transmitted. The actual number of streams
may be even smaller than r if the chosen power distribution excludes some layers and
spends power only on the strongest modes (compare with the waterfilling principle in
Section 2.3).
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In the following part, it is assumed that r independent data streams aν are transmitted
as shown in Figure 6.21. We first adjust their power levels according to an appropriate
criterion by multiplying a = [a1, . . . , ar ]T with the square root of the diagonal matrix
� = diag[λ1 · · · λr ]. Next, each layer is coupled into a certain eigenmode of the channel
by using a distinct eigenvector in V. If VX comprises those columns of V that correspond
to the used eigenmodes (nonzero singular values), the transmit vector has the form

x = VX ·�1/2
X · a. (6.63)

Generally, a consists of La i.i.d. symbols aµ and we obtain with �AA = E{aaH } = Es/Ts ·
ILa the covariance matrix of the transmit vector

�XX = E
{
xxH

} = VX�
1/2
X �AA�

1/2
X VH

X =
Es

Ts
· VX�XVH

X . (6.64)

The receiver multiplies y = Hx+ n from the left-hand side with an La ×NR matrix UH
X

that comprises those La columns of U corresponding to the used eigenmodes. Assuming
that the columns in U and V are sorted according to the magnitude of their associated
singular values, we obtain

VH · VX =
[

ILa

0NT−La×La

]
and UH

X · U =
[
ILa 0La×NT−La

]
(6.65)

and the output signal ã can be described by

ã = UH
X ·

(
Hx+ n

) = UH
X U ·� · VH VX ·�1/2

X · a+ UH · n
= �0 ·�1/2

X · a+ ñ. (6.66)

Since the matrices �0 and �X are diagonal, (6.66) describes a set of decoupled scalar
equations, and no interference disturbs the transmission. The νth symbol can be detected
from

ãν = σν ·
√

λν · aν + ñν . (6.67)

The SNR of this eigenmode amounts to

γν = σ 2
ν · λν · Es/Ts

σ 2
N

= σ 2
ν · λν · ES

N0
(6.68)

and depends on the singular value σν of the channel as well as the chosen transmit power
level λν . From information theory, we know that the optimum power distribution for
Gaussian input signals is obtained by applying the waterfilling principle. If discrete lin-
ear modulation schemes such as PSK or QAM are employed in combination with codes
that are not capacity achieving, waterfilling does not represent the optimum choice and
finding the optimum power distribution is still an unsolved problem. In uncoded systems,
appropriate bit and power-loading strategies have been proposed by Hughes-Hartogs (1989),
Fischer and Huber (1996), Krongold et al. (1999, 2000), and Mutti and Dahlhaus (2004).
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Beamforming

Classical beamforming exploits only a single eigenmode of the channel and is beneficial if
the channel matrix is rank deficient and has only one dominating nonzero singular value.
In this case, the transmit power is concentrated on this strong eigenmode and only a single
data stream is transmitted. Denoting by σmax the strongest singular value of H and by umax

and vmax the associated columns of the unitary matrices U and V, we obtain the transmitted
signal x = vmax · a. Filtering the received vector y with uH

max results in

uH
max · y = uH

maxU ·� · VH vmax · a + ñ = σmax · a + ñ. (6.69)

Since the columns in U as well as in V are mutually orthogonal, the products uH
maxU and

VH vmax deliver vectors that have only a single one exactly at that position belonging to
the maximum singular value σmax in �.

Certainly, beamforming can also be applied when multiple antennas are only present
either at the transmitter or at the receiver. For those scenarios, the channel matrix H reduces
to a vector h, and we obtain v = hH /‖h‖ or uH = h/‖h‖, respectively. Hence, beamforming
either at the transmitter or at the receiver ensures maximum ratio combining for perfect
channel knowledge.

In practical systems, the channel matrix H has to be estimated. Besides unavoidable
estimation errors, there arises also the problem that the channel has to be known at the
transmitter and receiver. The direct approach would estimate the channel on the basis of
appropriate training sequences at the receiver and feeds the estimates back to the transmitter
using a return channel. For large systems, this would require high bandwidth on the feedback
channel, which is generally not available and would reduce the overall spectral efficiency
remarkably.

Alternatively, the channel can be estimated at the transmitter as well as at the receiver
requiring pilot signals in uplink and downlink. Unfortunately, uplink and downlink channels
need not be identical. For frequency division duplex (FDD) systems, uplink and downlink
are assigned to different frequency bands so that the short-term behavior is different. How-
ever, long-term statistics such as directions of arrival or departure can be assumed to be
identical. Hence, an eigenvalue analysis can be performed on the basis of the long-term
statistics, that is, the covariance matrices measured at the transmitter and receiver. The
exploitation of long-term statistics is called eigenbeamforming Brunner et al. (2001). In
time division duplex (TDD) systems, the frequency range of uplink and downlink is the
same as they are separated by different time slots. If the channel varies slowly in time and
reciprocity is given, estimates at the transmitter and receiver describe the same channel and
instantaneous channel knowledge (short-term statistics) can be used.

6.3.2 Channel Knowledge only at the Receiver

If the transmitter has no channel knowledge, we can still exploit the high potential of
multiple antenna systems with only a moderate loss in capacity (see Section 6.5). The
missing channel knowledge has to be compensated by more sophisticated signal processing
at the receiver. This leads to the well-known Bell Labs Layered Space–Time (BLAST)
architecture (Foschini 1996; Foschini and Gans 1998; Foschini et al. 1999) depicted in
Figure 6.22. We see that the parallel data streams are transmitted with identical power
levels over different antennas without further preprocessing. Neglecting the interleaver,
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Figure 6.22 Multilayer transmission with perfect channel knowledge only at receiver
(BLAST)
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Figure 6.23 Data streams of V-BLAST and D-BLAST for NT = 4 transmit antennas

each data stream is transmitted over a single antenna, leading to a vertical arrangement of
the layers (see V-BLAST in Figure 6.23). Owing to NR receive antennas, the maximum
diversity degree amounts to D = NR.2

An alternative implementation that increases the diversity degree for each layer is the
diagonal BLAST (D-BLAST) architecture. It employs an interleaver in front of the transmit
antennas and a corresponding de-interleaver at the receiver. According to Figure 6.23,
interleaving is performed such that the antenna index ν = (� mod NT)+ 1 is increased
modulo NT with time index � so that NT consecutive symbols of a certain layer are switched
successively onto all transmit antennas, resulting in a diagonal space–time arrangement.
Therefore, each data stream is spread over all transmit antennas increasing the achievable
diversity degree from NR to NT ·NR.2In both systems, a superposition of all layers is
obtained at each receive antenna requiring sophisticated space–time signal processing. For
notational simplicity, we restrict our discussion to the simpler V-BLAST later in the chapter.

2It depends on the kind of detection algorithm whether the full diversity degree can be exploited. For maximum
likelihood decoding (MLD) full diversity is obtained for all layers, while the QL-based successive interference
cancellation (SIC) provides different diversity degrees for the layers (cf. Figure 6.27).
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Similarity of CDMA and Multilayer Architectures

Next, the similarity of the considered multilayer architectures and the uplink of CDMA
systems is briefly discussed. Therefore, we have a look at Figure 6.22 and the received
vector y = Hx+ n = Ha+ n. A comparison with the results from Chapters 4 and 5, espe-
cially (5.1) on page 228, demonstrates the equivalence of multiple antenna systems and
the uplink of a CDMA system whose output vector can be described by y = Sa+ n. Since
a contain symbols of a discrete modulation alphabet in both systems, differences between
both scenarios are restricted to the properties of the system matrix S and the channel matrix
H. If the data layers are assigned to different users, the structural equivalence of BLAST
and the uplink of an ordinary SDMA scheme becomes obvious.

In OFDM-CDMA systems or single-carrier CDMA systems with flat fading channels, S
has the dimensions Ns ×Nu and its columns represent the signatures of all users. Remember
that the signature was obtained by convolving the spreading code with the channel impulse
response. In relation to multiple antenna schemes, H is an NR ×NT matrix purely containing
the channel coefficients hµ,ν . Hence, the spreading factor Ns is similar to the number of
receive antennas, while the number of users Nu is equivalent to the number of layers NT.
Consequently, the load of a CDMA system β = Nu/Ns becomes NT/NR in multilayer
architectures. The larger the difference between NT and NR with NR > NT, the easier the
detection at the receiver. Despite these similarities, both systems differ in that the diversity
degree increases with the number of receive antennas, while it does not for growing Ns

and constant bandwidth.
Owing to these analogies, the multiuser detection algorithms described in Chapter 5 can

also be applied to BLAST-like architectures. Strategies such as parallel or successive inter-
ference cancellation described in Section 5.3 as well as linear filters such as decorrelators
and MMSE filters derived in Section 5.2 can be used. The next subsection compares their
error rate performances under the specific conditions of multiple antenna systems and flat
Rayleigh fading channels.

6.3.3 Performance of Multilayer Detection Schemes

In this section, the focus is on the combination of linear and nonlinear techniques as
analyzed in Section 5.4. Since we look only at the first detection stage (no turbo detection),
simple hard decisions are used as nonlinearities. The QLD-SIC strategies are compared with
optimum maximum likelihood detection for different combinations of NT and NR as well as
different modulation schemes.3 Moreover, the influences of sorting and error propagation
are illuminated.

Figure 6.24 shows the results obtained for an uncoded QPSK system with NT = 4
transmit antennas, NR = 6 receive antennas, and i.i.d. Rayleigh fading channels between
them. Diagram a) depicts the results for the zero-forcing criterion, while diagram b) those for
the MMSE criterion. First, we see that the linear approaches lose about 1 dB compared to the
unsorted interference cancellation schemes (QLD) because they do not consider the discrete
nature of the signal alphabet. Applying the SQLD with suboptimum sorting, a gain of 3.3 dB
is obtained for the zero-forcing as well as the MMSE solution at an error rate of 10−3.

3Besides the brute force approach that calculates x̂ = argminx̃

∥∥y−Hx̃
∥∥2

for each hypothesis x̃, MLD can also
be accomplished by means of sphere detection (Agrell et al. 2002; Fincke and Pohst 1985; Schnoor and Euchner
1994) with lower computational costs.
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Figure 6.24 Bit error rate performance of a) ZF and b) MMSE detectors for QPSK system
with NT = 4 and NR = 6 antennas (bold line: maximum likelihood detection)

The loss compared to the algorithm with optimum post sorting (SQLD+PSA) known as
V-BLAST detection (Foschini et al. 1999) and described in Section 5.4.2 is neglectable. This
performance is obtained with only a fraction of the computational costs of the V-BLAST.
The MMSE criterion outperforms the ZF approach by 0.6–0.7 dB at an error rate of 10−3

so that the SQLD+PSA algorithm approaches the ML detector up to a gap of 1 dB.
Next, we increase the load of the system by choosing only NR = 4 receive antennas.

Figure 6.25 illustrates the QPSK signal spaces after each detection step of the SQLD-SIC
algorithm. After filtering with QH , we have to start the successive detection from top to
bottom. The first layer does not suffer from interference and its symbols can be directly
detected. For this scenario, an SNR of 16.9 dB was achieved. In the second layer, we
can clearly recognize the superposition of two QPSK constellations prior to the interfer-
ence cancellation step. The QPSK constellation with an SNR of 13.7 dB is obtained only
after subtracting the contribution of the first layer. In all subsequent layers, the signal
constellations become more obvious after each cancellation step.

Owing to the higher load, it can be expected that both the error rates and the gap to
the maximum likelihood detector will increase. The results in Figure 6.26 confirm these
predictions. The relations between the curves in diagrams a) and b) are similar to the case
of six receive antennas. However, the algorithms based on the zero- forcing criterion do
not work satisfactorily since the gap to the MLD amounts to more than 10 dB even with
optimum post sorting. The MMSE variants perform much better because they avoid the
noise amplification. The loss of the SQLD with PSA compared to the MLD grows up to
2.8 dB. Moreover, the difference between the SQLD with and without post sorting becomes
larger at high SNRs.

Additionally, an illustration of the curves for a theoretical device called genie-aided
detector indicated by the bold dashed lines has been provided. It allows a perfect interference
cancellation and, therefore, avoids error propagation. Nevertheless, detection errors occur
in each layer. The additional gain obtained by the genie detector emphasizes that even with
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and NT = NR = 4 (bold solid line: maximum likelihood detection, bold dashed line: genie
aided detector)

optimum post sorting, error propagation is a severe problem. At an error rate of 2 · 10−3,
the loss amounts to 4 dB for the ZF solution and approximately 2 dB at 10−3 in the MMSE
case.

This effect shall be further examined in Figure 6.27 showing layer-specific error rates
for ZF-SQLD-SIC with and without a genie aided detector. With the genie aided detector,
substantial improvements are achieved with each cancellation step. Layer 4 does not suffer
from interference at all and comes very close to the MLD performance. As we know from
Section 1.5, the different slopes of the curves indicate that each layer experiences a different
diversity degree. In the first layer, the main purpose of QH is to suppress interference so
that only a diversity degree of NR −NT + 1 = 1 is achievable (Wübben et al. 2002). With
each SIC step, we gain a degree of freedom because less layers have to be suppressed so
that the linear filter tends toward a matched filter and collects more and more diversity.
Hence, the diversity degree grows up to NR = 4 for the last layer. Without the genie, the
performance of all layers is dominated by the first one because of error propagation.

In order to achieve higher spectral efficiencies, we can employ modulation schemes
with more bits per symbol. Figure 6.28 illustrates the results for 16-QAM. Since it is more
sensitive to noise and interference than QPSK, larger SNRs are required to obtain similar
error rates. Moreover, the SQLD-SIC even with optimum post sorting loses a lot compared
to the MLD bound.

For approximately the same number of receive antennas as transmit antennas, the matrix
describing the MIMO channel is generally poorly conditioned. In this case, the noise ampli-
fication of the zero-forcing approach is very high and also the MMSE filter performs weakly.
A significant improvement coming close to the MLD performance even under these severe
conditions is described in the next subsection. It was not already presented in the context
of MUD techniques in Chapter 5 because the considered algorithm works best for small
matrices and the system matrix S of a CDMA system is generally much larger than H.
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Figure 6.28 Performance of a) ZF-SQLD-SIC and b) MMSE-SQLD-SIC detectors and
system with NT = 4 and NR = 4, 16-QAM

6.3.4 Lattice Reduction-Aided Detection

The aforementioned techniques have severe problems if the channel matrix H is badly
conditioned. The condition number of a matrix H is defined as

κ
(
H
) = σmax

σmin
≥ 1, (6.70)

that is, it equals the ratio of the largest and smallest singular value (Strang 1988). With
‖H‖2 as the spectral norm of H (see definition in Appendix C on page 336), the condition
number becomes

κ
(
H
) = ∥∥H

∥∥
2 ·

∥∥H−1
∥∥

2. (6.71)

For orthogonal real matrices with H−1 = HT , the condition number is 1 and no noise ampli-
fication occurs for linear detectors. Hence, a matched filter and decorrelator are identical and
optimum receivers. On the contrary, ill-conditioned matrices with large κ(H) lead to high
noise enhancements and, therefore, to severe detection problems especially for the decor-
relator. In conclusion, we can state that it would be desirable to have a roughly orthogonal
matrix with a condition number close to 1.4

This goal can be accomplished with the lattice reduction (LR) technique (Windpassinger
and Fischer 2003a,b; Wübben et al. 2004b,c). For the derivation, we use the real-valued
description of a communication link as described in (5.65) on page 261

yr = Hrxr + nr ⇔
[

y′
y′′

]
=

[
H′ −H′′
H′′ H′

]
·
[

x′
x′′

]
+

[
n′
n′′

]
.

Restricting ourselves to multiamplitude signaling such as M-ASK or M-QAM, the data
symbols x ′ν, x ′′ν ∈ X can be expressed as integers with appropriate scaling. From Section 1.4,

4It is sufficient that the columns in H are orthogonal but have different norms. In this case, κ(H) �= 1 holds
and HH H would result in a diagonal but not the identity matrix.
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we know that the set X can be chosen according to

XASK =
{± e, ±3e · · · ± (M − 1)e

}
with e =

√
3

(M2 − 1)Es/Ts
(6.72a)

XQAM =
{± e, ±3e · · · ± (

√
M − 1)e

}
with e =

√
3

2(M − 1)Es/Ts
. (6.72b)

Hence, X contains all odd multiples of e in a certain interval whose size depends on M . PSK
modulation is explicitly excluded from this derivation. Instead of using only odd numbers,
the transformation

x = (2b − 1) · e (6.73)

with consecutive integers b ∈ B = {−M/2+ 1 . . . M/2} delivers the same set XASK. An
equivalent expression is obtained for QAM by exchanging M with

√
M .

The product Hr · b describes the linear combination of the columns in Hr using as coef-
ficients the integer elements in b. Considering all possible vectors b ∈ B2NT , the columns
span a lattice in which each linear combination determines a single point. With the gen-
eralization that all integers b ∈ Z are considered, the lattice becomes infinite. An example
for the case of NT = 1 is depicted in Figure 6.29. All points in this lattice can be reached
by linear integer combinations of the vectors hr

1 and hr
2.

In our example, the vectors hr
1 = [2 1]T and hr

2 = [2 2]T are obviously not orthog-
onal to each other but highly correlated. This is also indicated by the condition number
κ(Hr) = 6.3 so that a multiplication with the Moore–Penrose inverse of Hr would lead to
an amplification of the background noise. The basic principle behind the LR technique is
to find vectors h̃r

1 and h̃r
2 that generate the same lattice and are roughly orthogonal. For our

example, we can find

h̃r
1 = 2hr

1 − hr
2 =

[
2
0

]
(6.74a)

h̃r
2 = hr

1 − hr
2 =

[
0
−1

]
(6.74b)

hr
1

hr
2

h̃r
2 = hr

1 − hr
2

h̃r
1 = 2hr

1 − hr
2

Figure 6.29 Illustration of the principle of lattice reduction for NT = 1 with hr
1 = [2 1]T

and hr
2 = [2 2]T
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which are exactly orthogonal. The new matrix

Hred =
[
h̃r

1 h̃r
2

] = [
2 0
0 −1

]
(6.75)

has been obtained by subtracting integer multiples of one column from the other. It has
a condition number κ(Hred) = 2 that is much smaller than κ(Hr) = 6.3 for the original
matrix. Generally, any matrix H̃r generated from Hr by exchanging columns, multiplying
columns with −1, and adding integer multiples of one column to another spans the same
lattice. These linear operations can be expressed by an 2NT × 2NT unimodular matrix T,
that is, T consists of only integers and its determinant takes only the values ±1 (Schnoor
and Euchner 1994). Therefore, the inverse of T always exists, contains only integers, and
allows the operation T · T−1 = I2NT . The reduced channel matrix is obtained by

Hred = Hr · T. (6.76)

For the above example, T = [
2 1
−1 −1

]
holds. This result is explained in Appendix C.3 in

more detail.
The goal is now to find a transformation matrix T such that the condition number of Hred

is as small as possible, especially κ(Hred) < κ(Hr) should hold. Finding a nearly orthogonal
basis is equivalent to the problem of finding vectors of minimum length. This can be easily
seen from Figure 6.29. Only if none of the two vectors has a significant projection onto
the other do both have a small length and are nearly perpendicular. A first step toward this
goal is the QL decomposition of Hr since it already determines a set of orthogonal vectors
qν with ν = 1, . . . , 2NT. However, their linear combination is given by L whose elements
are generally real numbers and no integers. Nevertheless, this decomposition allows an
efficient lattice reduction especially if appropriate sorting is applied. The exact definition
of a reduced lattice and a detailed description of the LLL algorithm as an example for a
lattice reduction can be found in Appendix C.3.

Once we find a transformation matrix T and, thus, the reduced matrix Hred, we can
rewrite the received signal as

yr = Hrxr + nr = HrT · T−1xr + nr = Hred · T−1xr + nr. (6.77)

Applying the transformation in (6.73) to the whole vector b = [b1, . . . , b2NT ]T , the product
T−1xr can be expressed by

T−1xr = T−1(2b− 12Nt×1
)
e = (

2z− T−112Nt×1
)
e, (6.78)

where the new variable z = T−1b contains only integer numbers according to the properties
of T. The received signal

yr = 2eHredz− eHredT−112NT×1 + nr (6.79)

consists of three parts: the first term depends on the desired information z, the second is
a constant and the third term describes the noise contribution. Since the modified chan-
nel matrix Hred is generally better conditioned, we can apply linear detectors as well as
SQLD-SIC-based approaches known from Chapter 5 without suffering much from the noise
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amplification. The main difference compared to the conventional detection is that the deci-
sion is made with respect to the integer variable z instead of xr. Assuming the decorrelating
detector for simplicity, we obtain with H†

red ·Hred = I2NT

1

2e
·H†

redyr = z− 1

2
· T−112NT×1 + 1

2e
·H†

rednr. (6.80)

Moving the constant offset to the left-hand side of (6.80) and performing an element-wise
integer decision Q(·) delivers the estimate

ẑ = Q
(

1

2e
·H†

redyr + 1

2
· T−112NT×1

)
. (6.81)

Owing to this decision, the LR-aided detection is a nonlinear technique although the decor-
relator itself is linear. Finally, the estimate ẑ has to be transformed back into the original
domain by b̂ = Tẑ, leading, with (6.73), to

x̂r = (
2b̂− 12Nt×1

)
e. (6.82)

Certainly, the MMSE detector or the SQLD-SIC scheme can also be applied instead
of the decorrelator. The complete receiver structure is depicted in Figure 6.30. Starting
with the QL decomposition of Hr already known from Section 5.4, the matrices Q, L and
P are obtained. They are fed into the block termed lattice reduction that provides a QL
representation of a reduced matrix Hred consisting of a unitary matrix Qred, a lower triangular
matrix Lred, and a transformation matrix T. They are subsequently used for the detection
process, for example, linear filtering or SQLD-SIC, as well as for the transformation back
into the original signal space.

Contrary to the lattice theory, we have only finite signal spaces X and B in the original
domain, and, therefore, also in the transformed domain. Moreover, it is very important to
realize that the signal space of the new variable z is not identical to the original space B

2NT

as is illustrated in Figure 6.31. The dimensions are no longer linearly independent so that
an optimum decision would require a vector quantization providing an estimate of the entire
vector ẑ. In order to keep the computational costs as low as possible, we apply instead a
scalar quantization that separately delivers estimates ẑµ ∈ Z, that is, we look for the integer

yr

Hr [Q, L, P]

Qred Lred T

QH
red

ỹ ẑ x̂
T

SQLD
lattice

reduction

SIC

Figure 6.30 Structure of lattice reduction-aided QLD-SIC detector
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T−1
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2 TB2

Figure 6.31 Original and transformed signal spaces for NT = 1

closest to our decision variable. Hence, it may happen that ẑ lies outside the transformed
alphabet so that the backward transformation b̂ = Tẑ also delivers a result apart from B2NT .
In this case, we have to apply a second quantization so that valid symbols are obtained.
Although this procedure is not optimum, we will see that a performance close to that of
the optimum maximum likelihood detector can be achieved.

With reference to the application of the LR-based detection in coded systems, it has to
be mentioned that the hard decision in the transformed domain makes the calculation of
LLRs for the original domain difficult. This is of special interest because hard decisions
prior to decoding lead to a loss in performance. Extensions of the LR-aided detection
providing soft information are still a current research topic.

Extension to MMSE Solution

So far, only the zero-forcing implementation of the LR has been described. A better per-
formance can be obtained with the MMSE criterion. Remembering Section 5.4 on page
268, the QL decomposition for the MMSE solution was obtained by extending the system
matrix S according to

S =
[

S
σN
σA INu

]
.

A direct application of this approach on the reduced channel matrix Hred results in[
Hred

σN
σX · INT

]
= Q

red
· Lred · Pred (6.83)

and a subsequent QL decomposition would deliver Qred, Lred, and Pred. However, this does
not yield the best performance because the MMSE solution inverts the matrix [(Hr)H Hr +
σ 2
N/σ 2

XI2NT ] so that we need a roughly orthogonal basis of H and not of H. Instead, the
channel matrix H should be directly extended to

H =
[

H
σN
σX · INT

]
(6.84)

and the QL decomposition as well as the LR are applied to H. This results in Hred = HT
(Wübben et al. 2004b).
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Figure 6.32 Performance of lattice reduction aided detection for QPSK system with NT =
NR = 4 (solid bold line: MLD performance, bold dashed line: linear detectors)

Simulation Results

Now, we want to compare the performance of the introduced LR approach to the detection
techniques already described in Chapter 5. We consider multiple antenna systems with an
identical number of receive and transmit antennas. Moreover, uncorrelated flat Rayleigh
fading channels between different pairs of transmit and receive antennas are assumed.
Note that no iterations according to the turbo principle are carried out so that we regard a
one-stage detector. If the loss compared to the maximum likelihood detector is large, the
performance can be improved by iterative schemes as shown in Chapter 5.

Figure 6.32 compares the BER performance of an uncoded 4-QAM system with NT =
NR = 4 antennas at the transmitter and receiver. Figure 6.32a summarizes the zero-forcing
results. The simple decorrelator (bold dashed curve) based on the original channel matrix H
shows the worst performance. It severely amplifies the background noise and cannot exploit
diversity and so the slope of the curve corresponds to a diversity degree of D = NR −NT +
1 = 1. The ZF-SQLD-SIC detection gains about 7 dB at 10−2 compared to the decorrelator
but is still far away from the maximum likelihood performance. It can only partly exploit
the diversity as will be shown in Figure 6.33. The decorrelator based on the reduced channel
matrix Hred labeled LR performs slightly worse than the ZF-SQLD-SIC at low SNRs and
much better at high SNRs.5 At an error rate of 2 · 10−3, the gain already amounts to 4 dB.
On the one hand, the LR-aided decorrelator does not enhance the background noise very
much owing to the nearly orthogonal structure. On the other hand, it fully exploits the
diversity in all layers as indicated by the higher slope of the error rate curve.

Since the reduced channel matrix Hred is not perfectly orthogonal, multilayer inter-
ference still disturbs the decision. Hence, a subsequent nonlinear successive interference

5As already mentioned, the system representation by a reduced channel matrix requires a decision in the
transformed domain and a subsequent inverse transformation. Therefore, the whole detector is nonlinear although
a linear device was employed in the transformed domain.
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cancellation applying hard decisions (ZF-SQLD-SIC) can improve the performance by 1 dB.
The gain is not as high as for the conventional SQLD-SIC owing to the good condition
of Hred.

Looking at the MMSE solutions in Figure 6.32b, we recognize that all curves move
closer to the MLD performance. The linear MMSE filter based on H performs worst, the
LR-based counterpart outperforms the MMSE-SQLD-SIC at high SNR. The LR-SQLD-
SIC improves the performance such that the MLD curve is reached. Thus, we can conclude
that the LR technique improves the performance significantly and that it is well suited for
enhancing the signal detection in environments with severe multiple access interference.
For the considered scenario, near-maximum likelihood performance is achieved with much
lower computational costs.

Next, we analyze how the different detectors exploit diversity. From Figure 6.27, we
know already that each layer experiences a different diversity degree for QLD-SIC-based
approaches. This is again illustrated in Figure 6.33 for the ZF and MMSE criteria. The
curves have been obtained by employing a genie-aided detector that perfectly avoids error
propagation. Hence, the error rates truly represent the different diversity degrees and do
not suffer from errors made in the previous detection steps.

The results for the LR-based detection are depicted with only one curve because the
error rates of all the layers are nearly identical. Hence, all layers experience the same
diversity degree of D = 4 (compare slope with SQLD-4) so that even the first layer can be
detected with high reliability. Since this layer dominates the average error rate especially
in the absence of a genie, this represents a major benefit compared to QLD-SIC schemes.

Wih reference to the MMSE solution, the differences are not as large but still observable.
At very low SNRs, the genie-aided MMSE-SQLD-SIC even outperforms the maximum
likelihood detector because no layer suffers from interference and decisions are made layer
by layer while the MLD has to cope with all layers simultaneously.
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Figure 6.33 Illustration of diversity degree per layer for SQLD and lattice reduction aided
detection for QPSK system with NT = NR = 4 (solid bold line: MLD performance)
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Figure 6.34 Performance of lattice reduction aided detection for 16-QAM system with
NT = NR = 4 (solid bold line: MLD performance, bold dashed line: linear detector)

Figure 6.34 shows the performance of the same system for 16-QAM. First, it has
to be mentioned that the computational complexity of LR itself is totally independent
of the size of the modulation alphabet. This is a major advantage compared to the ML
detector because its complexity grows exponentially with the alphabet size. Compared to
QPSK, larger SNRs are needed to achieve the same error rates. However, the relations
between the curves are qualitatively still the same. The LR-based SQLD-SIC gains 1 dB
compared to the LR-based decorrelator of 2 dB for the MMSE solution. The SQLD-SIC
approach based on the original channel matrix is clearly outperformed but the MLD perfor-
mance is not obtained anymore and a gap of approximately 1 dB remains for the MMSE
approach.

Finally, a larger system with NT = NR = 6 and 16-QAM is considered. Figure 6.35
shows that the LR-based SQLD-SIC still outperforms the detector based on H but the
gap to the maximum likelihood detector becomes larger. The reason is the efficient but
suboptimum LLL algorithm (see Appendix C.3) used for the LR. It loses in performance
for large matrices because the inherent sorting gets worse. This is also the reason why
the LR-aided detector was not introduced in the context of multiuser detection in CDMA
systems in Chapter 5. The considered CDMA systems have much more inputs and outputs
(larger system matrices S) than the multiple antenna systems analyzed here so that no
advantage could have been observed when compared with the conventional SQLD-SIC.

6.4 Linear Dispersion Codes

A unified description for space–time coding and spatial multilayer transmission can be
obtained by LD codes that were first introduced by Hassibi and Hochwald (2000, 2001,
2002). Moreover, this approach offers the possibility of finding a trade-off between diversity
and multiplexing gain (Heath and Paulraj 2002). Generally, the matrix X describing the
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Figure 6.35 Performance of lattice reduction aided detection for 16-QAM system with
NT = NR = 6 (solid bold line: MLD performance)

space–time codeword or the BLAST transmit matrix is set up of K symbols aµ. As we
know from STTCs, a linear description requires the symbols aµ and their conjugate complex
counterparts or, alternatively, the real-valued representation by a′µ and a′′µ with aµ = a′µ +
ja′′µ. The codeword can be constructed by

X =
K∑

µ=1

Bc
1,µ · aµ + Bc

2,µ · a∗µ =
K∑

µ=1

Br
1,µ · a′µ + Br

2,µ · a′′µ =
2K∑
µ=1

Br
µ · ar

µ. (6.85)

The dispersion matrices Bc
i,µ with i = 1, 2 are used for the complex description, where the

index i = 1 is associated with the original symbols and i = 2 with their complex conjugate
versions. The real-valued alternative in (6.85) also uses 2K matrices Br

i,µ and distinguishes
between real and imaginary parts by using indices i = 1, 2, respectively. A generalization
is obtained with the right-hand side in (6.85) assuming a set of 2K real-valued symbols
ar

µ with 1 ≤ µ ≤ 2K . The first K elements may represent the real parts a′µ and the second
K elements the imaginary parts a′′µ. It depends on the choice of the matrices whether a
space–time code, a multilayer transmission, or a combination of both is implemented. In
the following part, a few examples, in order to illustrate the manner in which LD codes
work, are presented.

6.4.1 LD Description of Alamouti’s Scheme

First, we look at the Alamouti’s STBC. As we know, the codeword X2 comprises K = 2
symbols that are arranged over two antennas and two time slots. The matrix has the form

X2 =
[
a1 −a∗2
a2 a∗1

]
=

[
a′1 0
0 a′1

]
+

[
0 −a′2
a′2 0

]
+

[
ja′′1 0

0 −ja′′1

]
+

[
0 ja′′2

ja′′2 0

]
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For the complex-valued description, we obtain the matrices

Bc
1,1 =

[
1 0
0 0

]
, Bc

1,2 =
[

0 0
1 0

]
, Bc

2,1 =
[

0 −1
0 0

]
, Bc

2,2 =
[

0 0
0 1

]
.

Consequently, the real-valued case uses the matrices

Br
1 =

[
1 0
0 1

]
, Br

2 =
[

0 −1
1 0

]
, Br

3 =
[
j 0
0 −j

]
, Br

4 =
[

0 j

j 0

]
where Br

1 is associated with a′1, Br
2 with a′2, Br

3 with a′′1 , and Br
4 with a′′2 . In the same

way, dispersion matrices can be developed for any linear STBC. However, codes without
orthogonal designs may require high computational decoding costs because simple matched
filtering is not optimum anymore.

6.4.2 LD Description of Multilayer Transmissions

Next, we take a look at the multilayer transmission, for example, the BLAST architecture.
Following the description of the previous section, NT independent symbols are simulta-
neously transmitted at each time instant. Hence, each codeword matrix has exactly L = 1
columns so that the dispersion matrices reduce to column vectors. For the complex-valued
variant, the vector Bc

1,µ consists only of zeros with a single one at the µth position while
Bc

2,µ = 0NT×1 holds. For the special case of NT = 2, we obtain

Bc
1,1 =

[
1
0

]
, Bc

1,2 =
[

0
1

]
, Bc

2,1 =
[

0
0

]
, Bc

2,2 =
[

0
0

]
.

On the contrary,

Br
1 =

[
1
0

]
, Br

2 =
[

0
1

]
, Br

3 =
[
j

0

]
, Br

4 =
[

0
j

]
holds for the real-valued case.

6.4.3 LD Description of Beamforming

Even beamforming in multiple-input multiple-output (MINO) systems can be described
by linear dispersion codes. While the matrices Bc,r

µ used so far have been independent of
the instantaneous channel matrix, the transmitter certainly requires channel state informa-
tion (CSI) when beamforming shall be applied. Considering a MISO system, the channel
matrix reduces to a row vector h that directly represents the singular vector to be used for
beamforming (see page 306). Using the complex notation, the LD description becomes

x = Bc
1 · a1 ⇒ y = h · Bc

1 · a1 + n

where the matrix Bc
1 = hH reduces to a column vector. Since a1 = a′1 + ja′′1 holds, the

real-valued notation has the form

x =
2∑

µ=1

Br
µ · ar

µ = Br
1 · a′1 + Br

2 · a′′1

with Br
1 = hH and Br

2 = jhH . For MIMO systems with more than one receive antenna, the
right singular vector corresponding to the largest singular vector has to be chosen.
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6.4.4 Optimizing Linear Dispersion Codes

Using the real-valued description, the received data block can generally be expressed with

Y = H · X+ N = H ·
2K∑
µ=1

Br
µ · ar

µ + N. (6.86)

It consists of NR rows according to the number of receive antennas and L columns denoting
the duration of a space–time codeword. Stacking the columns of the matrices Br

µ in (6.86)
into long vectors with the operator

vec{X} = vec
{[

x1 · · · xn

]} =
x1

...

xn


delivers

2K∑
µ=1

vec
{
Br

µ

} · ar
µ = Br · ar (6.87)

where the vector ar comprises all data symbols ar
µ and the matrix Br contains in column

µ the vector vec{Br
µ}. Since the time instants are not arranged in columns anymore but

stacked one below the other, the channel matrix H has to be enlarged by repeating it L

times. This can be accomplished by the Kronecker product that is generally defined as

A⊗ B =

A1,1 · B · · · A1,N · B
...

...

AM,1 · B · · · AM,N · B

 .

Applying the vec-operator to the matrices Y and N leads to the expression

y = vec {Y} = (IL ⊗H) · Br · ar + vec {N} = H̃ · Br · ar + vec {N} . (6.88)

The optimization of LD codes can be performed with respect to different measures. Looking
at the ergodic capacity already known from Section 2.3 on page 73, we have to choose the
matrix Br according to

Br = argmax
B

log2 det

(
I + σ 2

N
σ 2
A
· H̃BBH H̃H

)
(6.89a)

subject to a power constraint, for example,

tr


2K∑
µ=1

Br
µ(Br

µ)H

 = K. (6.89b)

Results for this optimization can be found in Hassibi and Hochwald (2000, 2001, 2002).
A different approach considering the error rate performance as well is presented in Heath
and Paulraj (2002). Generally, the obtained LD codes do not solely pursue diversity or
multiplexing gains but can achieve a trade-off between both aspects.
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6.4.5 Detection of Linear Dispersion Codes

For the special case when LD codes are used to implement orthogonal STBCs, simple
matched filters as explained in Section 6.2 represent the optimal choice. For multilayer
transmissions as well as the general case, we can combine all matrices before the data
vector ar in (6.88) into an LD channel matrix HLD and obtain

y = Hld · s+ n. (6.90)

With (6.90), we can directly apply multilayer detection techniques from Sections 5.4 and
6.3.

6.5 Information Theoretic Analysis

In this section, the theoretical results of Section 2.3 for multiple antenna systems are
illustrated. We consider uncorrelated as well as correlated frequency-nonselective MIMO
channels and determine the channel capacities for Gaussian distributed input signals for
different levels of channel knowledge at the transmitter. Perfect channel knowledge at the
receiver is always assumed.

6.5.1 Uncorrelated MIMO Channels

First, the uncorrelated SIMO channel is addressed, that is, we obtain the simple receive
diversity. The capacity can be directly obtained from (2.78) in Section 2.3. An easier
way is to consider the optimal receive filter derived in Section 1.5 performing maximum
ratio combining of all NR signals. This results in an equivalent SISO fading channel whose
instantaneous SNR depends on the squared norm ‖h[k]‖2. Hence, the instantaneous channel
capacity has the form

C[k] = log2

(
1+ ‖h[k]‖2 Es

N0

)
. (6.91)

Ergodic capacities and outage probabilities can be determined from (6.91) by using the
statistics of ‖h[k]‖2. For independent Rayleigh fading channels, the random variable is
chi-squared distributed with 2NR degrees of freedom.

Figure 6.36a shows the ergodic capacity for an uncorrelated SIMO channel with up to
four outputs versus the SNR per receive antenna. We observe that the capacity increases
with growing number of receive antennas owing to the higher diversity degree and the
array gain. The latter one shifts the curves by 10 log10(NR) to the left, that is, doubling
the number of receive antennas leads to an array gain of 3 dB. Concentrating only on the
diversity gain, we have to depict the curves versus the SNR after maximum ratio combining
as shown in Figure 6.36b. We recognize that the capacity gains due to diversity are rather
small and the slope of the curves is independent of NR. Hence, the capacity enhancement
depends mainly logarithmically on the SNR because the channel vector h obviously has
rank r = 1 owing to NT = 1, that is, only one nonzero eigenvalue exists so that only one
data stream can be transmitted at a time. In this scenario, multiple receive antennas can only
increase the link reliability, leading to moderate capacity enhancements. Nevertheless, the
outage probability can be significantly decreased by diversity techniques (cf. Section 1.5).
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Figure 6.36 Channel capacity versus SNR for i.i.d. Rayleigh fading channels, NT = 1
transmit antenna, and NR receive antennas

On the contrary, Figure 6.37a shows the capacity for a system with NT = 4 transmit
antennas and different number of receive antennas with i.i.d. channels where the total
transmit power is fixed at Es/Ts. First, we take a look at the case of a single receive and
NT = 4 transmit antennas. The instantaneous capacity of this scheme is

C[k] = log2

(
1+ ‖h[k]‖2

NT
· Es

N0

)
(6.92)

because the transmit power is fixed independent of NT. The comparison with Figure 6.36b
that normalizes the SNR to the number of receive antennas shows that the combinations
NR = 4, NT = 1 and NR = 1, NT = 4 provide identical results, that is, the system is
symmetric. However, Figure 6.36a illustrates differences of 10 log10(NR) dB between the
curves. This discrepancy can be explained by the fact that perfect channel knowledge at the
receiver was assumed, allowing receive beamforming and delivering an array gain while
no CSI was assumed at the transmitter. Obviously, transmit diversity schemes provide no
array gain.

The capacity of the general case with multiple receive and transmit antennas can be
directly calculated with (2.78) on page 74. From Figure 6.37, we observe that the slope
of the curve grows with increasing NT according to the parameter m = min[NR, NT]. This
indicates that m parallel virtual channels exist over which parallel data streams can be
transmitted. Hence, the data rate is multiplied by m so that multiple antenna systems may
increase the capacity linearly with m, while the SNR may increase it only logarithmically.
This emphasizes the high potential of multiple antennas at the transmitter and receiver.

Figure 6.37b demonstrates the influence of perfect channel knowledge at the transmitter,
allowing the application of the waterfilling principle introduced in Section 2.3. A compar-
ison with Figure 6.37a shows that the capacity is improved only for NT > NR and high
SNR. If we have more receive than transmit antennas, the best strategy for high SNRs is
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Figure 6.37 Channel capacity versus SNR for i.i.d. Rayleigh fading channels, NT = 4
transmit antennas, and NR receive antennas (SNR per receive antenna)

to distribute the power equally over all antennas. Since this is automatically done in the
absence of channel knowledge, waterfilling provides no additional gain for NR = NT = 4.

Similar to Section 1.5, we can analyze the outage probability of multiple antenna sys-
tems, that is, the probability Pout that a certain rate R is not achieved. From Chapter 2,
we know that diversity decreases the outage probability because the SNR variations are
reduced. This behavior can also be observed from Figure 6.38. Especially figure 6.38a
emphasizes that diversity reduces the outage probability and the rapid growth of the curves
starts later at higher rates R. However, they also become steeper, that is, a link becomes
quickly unreliable if a certain rate is exceeded. Generally, increasing max[NT, NR] while
keeping the minimum constant does not lead to an additional eigenmode and diversity
increases the link reliability. On the contrary, increasing min[NT, NR] shifts the curves to
the right because the number of virtual channels and, therefore, the data rate is increased.

A strange behavior can be observed in Figure 6.39 for high rates R above the ergodic
capacity C. Here, increasing the number of transmit antennas, and, thus the diversity degree,
does not lead to a reduction of Pout. Comparing the curves for NR = 1 and NT = 1, 2, 3, 4
(MISO channels) directly, we recognize that Pout even increases with NT. The reason is that
the variations of the SNR are reduced so that very low and also very high instantaneous
values occur more rarely. Therefore, very high rates are obtained less frequently than for
low diversity degrees.

6.5.2 Correlated MIMO Channels

Correlated MIMO systems are now considered. This scenario occurs if the antenna elements
are arranged very close to each other and the impinging waves arrive from a few dominant
directions. Hence, we do not have a diffuse electromagnetic field with a uniform distribution
of the angles of arrival, but preferred directions θµ with a certain angle spread �θµ.
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Figure 6.38 Outage probability versus rate R in bits/s/Hz for i.i.d. Rayleigh fading channels
and a signal-to-noise ratio of 10 dB

Figure 6.40 compares the ergodic capacity of i.i.d. and correlated 4× 4 MIMO channels
for different levels of channel knowledge at the transmitter. First, it can be seen that perfect
channel knowledge (CSI) at the transmitter does not increase the capacity of uncorrelated
channels except for very low SNRs. Hence, the best strategy over a wide range of SNRs
is to transmit four independent data streams.

With reference to the correlated MIMO channel, we can state that channel knowledge
at the transmitter increases the capacity. Hence, it is necessary to have CSI at the trans-
mitter for correlated channels. Moreover, the ergodic capacity is greatly reduced because
of correlations. Only for extremely low SNRs, correlations can slightly improve the capac-
ity because in this specific scenario, increasing the SNR by beamforming is better than
transmitting parallel data streams.

Finally, we analyze the performance when only long-term channel knowledge is avail-
able at the transmitter. This means that we do not know the instantaneous channel matrix
H[k] but its covariance matrix �HH = E{HH H}. This approach is motivated by the fact
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Figure 6.40 Channel capacity versus SNR for i.i.d. and correlated Rayleigh fading channels,
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that long-term statistics such as angle of arrivals remain constant for a relatively large
duration and can therefore be accurately estimated. Moreover, it is often assumed that these
long-term properties are identical for uplink and downlink allowing the application of �̂HH
measured in the downlink for the uplink transmission.

From Figure 6.40, we see that the knowledge of the covariance matrix (lt CSI) leads to
the same performance as optimal CSI for correlated channels. In the absence of correlations,
only instantaneous channel information can improve the capacity and long-term statistics
do not help at all.
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6.6 Summary

In this chapter, we analyzed the potential of multiple antenna techniques for point-to-point
communications. Starting with diversity concepts, we saw that spatial diversity is obtained
with multiple antennas at the receiver as well as the transmitter. Space–time transmit
diversity schemes do not require channel knowledge at the transmitter but provide the
full diversity degree. We distinguished orthogonal STBCs and STTCs. The latter yield an
additional coding gain at the expense of a much higher decoding complexity.

While diversity increases the link reliability, the great potential of MIMO systems can be
exploited by multilayer transmissions discussed in Section 6.3. Here, parallel data streams
termed layers are transmitted over different antennas. Without channel knowledge at the
transmitter, the detection problem represents the major challenge. Besides multilayer (or
multiuser) detection techniques already introduced in Chapter 5, a new algorithm based on
the LR has been derived. It shows superior performance at moderate complexity.

In Section 6.4, we demonstrated that LD codes provide a unified description of
space–time coding and multilayer concepts. With this concept, the trade-off between diver-
sity and multilayer gains can be optimized. Finally, the channel capacity of MIMO systems
has been illustrated by numerical examples. It turned out that the rank of the channel
matrix determines the major capacity improvement compared to SISO systems and that
pure diversity concepts only lead to a minor capacity growth.
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Appendix A

Channel Models

A.1 Equivalent Baseband Representation

The output of the receive filter gR(t) can be expressed by

y(t) = gR(t) ∗
(

y+BP(t)
1√
2
e−jω0t

)
(A.1)

= gR(t) ∗
([

yBP(t)+ jH {yBP(t)}
] 1√

2
e−jω0t

)
= gR(t) ∗

([
hBP(t, τ ) ∗ xBP(t)+ nBP(t)

+jH {hBP(t, τ ) ∗ xBP(t)+ nBP(t)}
] 1√

2
e−jω0t

)
. (A.2)

The convolution in (A.2) is defined in (1.7)

h(t, τ ) ∗ x(t) =
∫ ∞

0
h(t, τ )x(t − τ )dτ.

Exploiting the linearity of the Hilbert transform and the property H {a(t) ∗ b(t)} = a(t) ∗
H {b(t)} yields

y(t) = gR(t) ∗
([

hBP(t, τ ) ∗ xBP(t)+ jhBP(t, τ ) ∗H {xBP(t)}

+n+(t)
] 1√

2
e−jω0t

)
= gR(t) ∗ (hBP(t, τ )e−jω0t

) ∗ x(t)+ n(t) (A.3)

with x(t) = x+(t) 1√
2
e−jω0t equivalent to (1.1) and

n(t) = gR(t) ∗
(

n+(t)
1√
2
· e−jω0t

)
. (A.4)
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Owing to GR(jω) = 0 for |ω| > B, B � f0 and property (1.9) of the analytical signal,

gR(t) ∗ (hBP(t, τ )e−jω0t
) = F−1 {GR(jω) ·HBP(t, jω − jω0)}

= F−1
{
GR(jω) · 1

2
H+

BP(t, jω − jω0)

}
= gR(t) ∗

(
1

2
h+BP(t, τ )e−jω0t

)
= gR(t) ∗ h(t, τ ) (A.5)

holds. Thus, we get

y(t) = gR(t) ∗ h(t, τ ) ∗ x(t)+ n(t) (A.6)

= Ts ·
∑

k

x[k] · (gR(t) ∗ h(t, τ ) ∗ gT(t − kTs)
)+ n(t). (A.7)

The twofold convolution can be interpreted as a single filter

h̃(t, kTs) = gR(t) ∗ h(t, τ ) ∗ gT(t − kTs) (A.8)

and (A.7) becomes
y(t) = Ts ·

∑
k

x[k] · h̃(t, kTs)+ n(t). (A.9)

A.2 Typical Propagation Profiles for Outdoor Mobile
Radio Channels

In order to receive realistic parameters of mobile radio channels, extensive measurements
have been carried out by COST 207 (European Cooperation in the Fields of Scientific and
Technical Research) (COST 1989) for the global system for mobile communications GSM.
The obtained power delay profiles are listed in Table A.1 and represent typical propagation
scenarios.

Table A.1 Power delay profile of COST 207 (COST 1989)
(delays τ in µs)

profile power delay profile �h, h(τ )

Rural Area (RA)
9.21 · exp(−9.2τ ) 0 ≤ τ < 0.7

0 else

Typical Urban (TU)
exp(−τ ) 0 ≤ τ < 7

0 else

Bad Urban (BU)
0.67 · exp(−τ ) 0 ≤ τ < 5

0.335 · exp(5− τ ) 5 ≤ τ < 10
0 else

Hilly Terrain (HT)
3.08 · exp(−3.5τ ) 0 ≤ τ < 2

0.1232 · exp(15− τ ) 15 ≤ τ < 20
0 else
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Table A.2 Doppler power spectrum of COST 207 (COST 1989)

delay Doppler power spectrum �hh(fd)

0 < τ < 0.5 µs
A√

1−(fd/fd max)
2
|fd| ≤ fd max

0 else,

0.5 < τ < 2 µs A · exp
(
− (fd+0.8fd max)2

2(0.05fd max)2

)
+ A

10 · exp
(
− (fd−0.4fd max)2

2(0.1fd max)2

)
τ > 2 µs B · exp

(
− (fd−0.7fd max)2

2(0.1fd max)2

)
+ B

31.6 · exp
(
− (fd+0.4fd max)2

2(0.15fd max)2

)
Rural Area (τ = 0) 0.41

2πfd max

√
1−(fd/fd max)

2
+ 0.91 · δ(fd − 0.7fd max)

Table A.3 Propagation conditions for UMTS in multipath fading environments
(3GPP 2005b), delays τ in ns and rel. powers |h|2 in dB, fd classically distributed

v = 3 km/h v = 3 km/h v = 120 km/h v = 3 km/h v = 250 km/h

τ |h|2 τ |h|2 τ |h|2 τ |h|2 τ |h|2
0 0 0 0 0 0 0 0 0 0

976 −10 976 0 260 −3 976 0 260 −3
20000 0 521 −6 521 −6

781 −9 781 −9

Equivalent results were obtained for the Doppler power spectra listed in Table A.2.
Principally, the statistical characteristics of the Doppler power spectra are affected by the
delay τ . For delays smaller than 0.5 µs, �hh(fd) has a distribution according to the Jakes
spectrum, while for larger τ Gaussian distributions with different means and variances
occur. The rural area (RA) scenario represents a special case because it is characterized by
a line-of-sight link (Rice fading).

According to the requirements of the universal mobile telecommunication sys-
tem (UMTS) standard, different propagation scenarios were defined. They are summarized
in Table A.3. Five cases are distinguished that differ with respect to velocity and the number
of taps.

A.3 Moment-Generating Function for Ricean Fading

The channel coefficient h of a frequency-nonselective Ricean fading channel with average
power P and Rice factor K has the form given in (1.28)

h =
√

P

K + 1
·
(√

K + α
)

.

It consists of two parts, a constant line-of-sight component and a fading component
represented by the factor α whose real and imaginary parts are statistically independent
zero-mean Gaussian processes each with variance 1/2. Hence, the real part H′ of H is
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Gaussian distributed

pH′(ξ) = 1√
2πσ 2

H′
· exp

−
(
ξ −

√
PK
K+1

)2

2σH′ 2


=

√
K + 1

πP
· exp

−(
ξ

√
K + 1

P
−
√

K

)2
 (A.10a)

with mean
√

PK/(1+K) and variance σ 2
H′ = P/[2(K + 1)], while the imaginary part H′′

is Gaussian distributed with the same variance but zero mean.

pH′′(ξ) = 1√
2πσ 2

H′′
· exp

[
− ξ 2

2σ 2
H′′

]
=

√
K + 1

πP
· exp

[
− (K + 1)ξ 2

P

]
(A.10b)

In order to calculate the density of |H|2, we have to deal with the densities of (H′)2 and
(H′′)2. In Papoulis (1965), the general condition

pX 2(ξ) = 1

2
√

ξ
·
[
pX

(√
ξ
)
+ pX

(
−
√

ξ
)]

(A.11)

between the pdf of a process X and the pdf of X 2 is given. With (A.11), we obtain for the
squared real part a noncentral chi-square distribution with one degree of freedom

pH′ 2(ξ) =
√

K + 1

πPξ
· exp

[
−ξ(K + 1)

P
−K

]
· cosh

[
2

√
ξK(K + 1)

P

]
(A.12a)

and for the squared imaginary part a central chi-square distribution with one degree of
freedom

pH′′ 2(ξ) =
√

K + 1

πPξ
· exp

[
−ξ(K + 1)

P

]
. (A.12b)

Since the squared magnitude of H is obtained by adding the squared magnitudes of
the real and imaginary parts, their probability densities have to be convolved. This is
equivalent to multiplying the corresponding moment-generating functions. They have the
form (Proakis 2001)

MH′ 2(s) =
√

K + 1

K + 1− sP
· exp

[
sKP

(K + 1)− sP

]
(A.13a)

and

MH′′ 2(s) =
√

K + 1

K + 1− sP
. (A.13b)

Consequently, we obtain the overall moment-generating function

M|H|2(s) =
K + 1

K + 1− sP
· exp

[
sKP

(K + 1)− sP

]
. (A.14)
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Appendix B

Derivations for Information
Theory

B.1 Chain Rule for Entropies
Let X 1, X2, up to Xn be random variables belonging to a joint probability Pr{X1, . . . ,Xn},
the chain rule for entropy has the form:

Ī (X1,X2, . . . , Xn) =
n∑

i=1

Ī (Xi | Xi−1 · · · X1). (B.1)

Proof: We simply repeat the application of the chain rule for two random variables.

Ī (X1,X2) = Ī (X1)+ Ī (X2 | X1)

Ī (X1,X2,X3) = Ī (X1)+ Ī (X2,X3 | X1)

= Ī (X1)+ Ī (X2 | X1)+ Ī (X3 | X1,X2)

...

Ī (X1,X2, . . . , Xn) = Ī (X1)+ Ī (X2, . . . ,Xn | X1)

= Ī (X1)+ Ī (X2 | X1)+ Ī (X3, . . . ,Xn | X1,X2)

=
n∑

i=1

Ī (Xi | Xi−1 · · · X1).

B.2 Chain Rule for Information

The general chain rule for information is as follows (Cover and Thomas 1991):

Ī (X1, . . . ,Xn;Z) =
n∑

i=1

Ī (Xi;Z | Ī (Xi−1, . . . ,X1). (B.2)

Wireless Communications over MIMO Channels Volker Kühn
 2006 John Wiley & Sons, Ltd
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Proof: We apply the chain rule for entropies

Ī (X1, . . . ,Xn;Z) = Ī (X1, . . . ,Xn)− Ī (X1, . . . ,Xn | Z)

=
n∑

i=1

Ī (Xi | Xi−1 · · · X1)−
n∑

i=1

Ī (Xi | Xi−1 · · · X1,Z)

=
n∑

i=1

Ī (Xi | Xi−1 · · · X1)− Ī (Xi | Xi−1 · · · X1,Z)

=
n∑

i=1

Ī (Xi;Z | Xi−1 · · · X1).

B.3 Data-Processing Theorem

Data-processing theorem: We consider a Markovian chain X → Y → Z where X and Z
are independent given Y , that is, Ī (X ;Z | Y) = 0. The data-processing theorem states the
following:

Ī (X ;Y) ≥ Ī (X ;Z). (B.3)

Proof:
The mutual information Ī (X ;Y,Z) can be extended with the chain rule in two differ-

ent ways:

Ī (X ;Y,Z) = Ī (X ;Z)+ Ī (X ;Y | Z) = Ī (X ;Y)+ Ī (X ;Z | Y). (B.4)

Owing to the condition Ī (X ;Z | Y) = 0, we see from (B.4)

Ī (X ;Y) = Ī (X | Z)+ Ī (X ;Y | Z)︸ ︷︷ ︸
≥0

. (B.5)

Since entropies are always nonnegative, Ī (X ;Y | Z) ≥ 0 holds and we obtain the inequality

Ī (X ;Y) ≥ Ī (X | Z). (B.6)
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Appendix C

Linear Algebra

C.1 Selected Basics
This appendix summarizes some basic results of linear algebra. It is not comprehensive and
focuses only on topics needed in this book. Unless otherwise stated, we consider complex
vectors and matrices. An N ×N identity matrix is denoted by IN , 0N×M is an N ×M

matrix containing only zeros and 1N×M a matrix of the same size consisting only of ones.

Definition C.1.1 (Determinant) A determinant uniquely assigns a real or complex-valued
number det(A) to an N ×N matrix A. The determinant is zero if a row (column) only consists
of zeros or if it can be represented as a linear combination of other rows (columns). The
determinant of a product of square matrices is identical to the product of the corresponding
determinants

det(AB) = det(A) · det(B). (C.1)

According to Telatar (1995), we can rewrite (C.1) as

det(I+ AB) = det(I+ BA). (C.2)

Definition C.1.2 (Hermitian Operation) The Hermitian of a matrix (vector) is defined as
the transposed matrix (vector) with complex conjugate elements

AH = (
A∗

)T
and xH = (

x∗
)T

(C.3)

The following rules exist:

• (µA+ νB)H = µ∗AH + ν∗BH

• (AB)H = BH AH

• (
AH

)H = A

• (
A−1

)H = (
AH

)−1

• In relation to real-valued matrices, the Hermitian form equals the transposed form:
AH = AT .

Wireless Communications over MIMO Channels Volker Kühn
 2006 John Wiley & Sons, Ltd
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Definition C.1.3 (Inner Product) The inner product or dot product (Golub and van Loan
1996) of two complex N × 1 vectors x = [

x1, x2, . . . , xN

]T
and y = [

y1, y2, . . . , yN

]T
is

defined by

xH y =
N∑

i=1

x∗i yi (C.4)

where x∗i denotes the complex conjugate value of xi .

The definition of the inner product allows the calculation of the length of a vector
consisting of complex elements:

‖x‖ =
√

xH x =
√
|x1|2 + |x2|2 + · · · + |xN |2. (C.5)

Two vectors x and y are called unitary, if their inner product is zero (xH y = 0). This is a
complex generalization of the orthogonality of real-valued vectors (xT y = 0) and sometimes
called conjugated orthogonality (Zurmühl and Falk 1992). For real vectors, the unitary and
orthogonal properties are identical.

Definition C.1.4 (Spectral norm) The spectral norm or �2 norm of an arbitrary N ×M

matrix A is defined as (Golub and van Loan 1996)

‖A‖2 = sup
x�=0

‖AX‖
‖x‖ . (C.6)

It describes the maximal amplification of a vector x that experiences a linear transformation
by A. The spectral norm has the following basic properties.

• The spectral norm of a matrix equals its largest singular value σmax

‖A‖2 = max
i

(σi) = σmax. (C.7)

• The spectral norm of the inverse A−1 is identical to the reciprocal of the smallest
singular value σmin of A

‖A−1‖2 = 1

mini (σi)
= 1

σmin
. (C.8)

Definition C.1.5 (Frobenius norm) The Frobenius norm of an arbitrary N ×M matrix A
is defined as (Golub and van Loan 1996)

‖A‖F =
√√√√ N∑

i=1

M∑
j=1

|Ai,j |2 =
√

tr{AAH }. (C.9)

Obviously, the squared Frobenius norm is ‖A‖2
F = tr{AAH }.

Definition C.1.6 (Rank) For an arbitrary matrix A, the largest number r of linearly in-
dependent columns always equals the largest number of linearly independent rows. This
number r is called the rank of a matrix and is denoted by r = rank(A).
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From this definition, it follows directly that the rank of an N ×M matrix is always less
than or equal to the minimum of N and M:

r = rank(A) ≤ min(N, M). (C.10)

We can derive the following properties with the definition of rank(A):

• An N ×N matrix A is called regular if its determinant is nonzero and, therefore,
r = rank(A) = N holds. For regular matrices, the inverse A−1 with A−1A = IN×N

exists.

• If the determinant is zero, r = rank(A) < N holds and the matrix is called singular.
The inverse does not exist for singular matrices.

• For each N ×N matrix A of rank r , there exist at least one r × r submatrix whose
determinant is nonzero. The determinants of all (r + 1)× (r + 1) submatrices of A
are zero.

• The rank of the product AAH is

rank(AAH ) = rank(A). (C.11)

Definition C.1.7 (Eigenvalue Problem) The calculation of the eigenvalues λi and the ei-
genvectors xi of a square N ×N matrix A is called eigenvalue problem. The goal is to find
a vector x that is proportional to Ax and, therefore, fulfills the eigenvalue equation

A · x = λ · x. (C.12)

This equation can be rewritten as (A− λ IN) x = 0. Since we are looking for the nontrivial
solution x �= 0, the columns of (A− λ IN) have to be linearly dependent, resulting in the
equation det (A− λ IN) = 0 that holds. Hence, the eigenvalues λi represent the zeros of
the characteristic polynomial pN(λ) = det(A− λIN) of rank N . Each N ×N matrix has
exactly N eigenvalues that need not be different.

For each eigenvalue λi , the equation
(
A− λi IN

)
xi = 0 has to be solved with respect to

the eigenvector xi . There always exist solutions xi �= 0. Besides xi , c · xi is also an eigen-
vector corresponding to λi . Hence, we can normalize the eigenvectors to unit length.

The eigenvectors x1, . . . , xk belonging to different eigenvalues λ1, . . . , λk are linearly inde-
pendent of each other (Horn and Johnson 1985; Strang 1988).

There exist the following relationships between the matrix A and its eigenvalues:

• The sum of all eigenvalues is identical to the sum of all N diagonal elements called
trace of a square matrix A

tr(A) =
r=N∑
i=1

Ai,i =
r=N∑
i=1

λi. (C.13)
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• If a square matrix A has full rank r = N , the product of its eigenvalues equals the
determinant of A:

r=N∏
i=1

λi = det(A) (C.14)

If the matrix is rank deficient with r < N , the product of the nonzero eigenvalues
equals the determinant of the r × r submatrix of rank r .

• An eigenvalue λi = 0 exists if and only if the matrix is singular, that is, det(A) = 0
holds.

Definition C.1.8 (Orthogonality) A real-valued matrix is called orthogonal, if its columns
are mutually orthogonal. Therefore, the inner product between different columns becomes
qT

i qj = 0. If all the columns of an orthogonal matrix have unit length,

qT
i qj = δ(i, j) (C.15)

holds and the matrix is called orthonormal. Orthonormal matrices are generally denoted by
Q and have the properties

QT Q = IN ⇔ QT = Q−1. (C.16)

Definition C.1.9 (Unitary Matrix) A complex N ×N matrix with orthonormal columns is
called a unitary matrix U with the properties

UH U = UUH = IN ⇔ UH = U−1 (C.17)

The columns of U span an N -dimensional orthonormal vector space.

From the definition of a unitary matrix U, it follows that:

• all eigenvalues of U have unit length (|λi | = 1);

• unitary matrices are normal because UUH = UH U = IN holds;

• eigenvectors belonging to different eigenvalues are orthogonal to each other;

• the inner product xH y between two vectors remains unchanged if each vector is
multiplied with a unitary matrix U because (Ux)H (Uy) = xH UH Uy = xH y holds;

• the length of a vector does not change when multiplied with U: ‖Ux‖ = ‖x‖;
• a random matrix B has the same statistical properties as the matrices BU and UB;

• the determinant of a unitary matrix amounts to det(U) = 1 (Blum 2000).

Definition C.1.10 (Hermitian Matrix) A square matrix A is called Hermitian if it equals
its complex conjugate transposed version.

A = AH (C.18)
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The real part of an Hermitian matrix is symmetric and the imaginary part is antisymmetric:

Re {A} = Re {A}T and Im {A} = −Im
{
AT

}
. (C.19)

Obviously, the symmetric and Hermitian properties are identical for real matrices.

Hermitian matrices have the following properties (Strang 1988):

• all diagonal elements Ai,i are real;

• for each element, Ai,j = A∗j,i holds;

• for all complex vectors x, the number xH Ax is real;

• AAH = AH A holds because the matrix A is normal;

• the determinant det(A) is real;

• all eigenvalues λi of an Hermitian matrix are real;

• the eigenvectors xi of a real symmetric matrix or an Hermitian matrix are orthogonal
to each other, if they belong to different eigenvalues λi .

Definition C.1.11 (Eigenvalue Decomposition) An N ×N matrix A with N linear inde-
pendent eigenvectors xi can be transformed into a diagonal matrix (Horn and Johnson
1985). This can be accomplished by generating the matrix U whose columns comprise all
eigenvectors of A. It follows that

U−1AU = � =


λ1

λ2
. . .

λN

 (C.20)

with U = (x1, x2, . . . , xN). The eigenvalue matrix � is diagonal and contains the eigenval-
ues of A on its diagonal.

From definition C.1.11, it follows directly that each matrix A can be expressed as A =
U�U−1 = U�UH (eigenvalue decomposition).

Definition C.1.12 (c) A generalization of definition (C.1.11) for arbitrary N ×M matrices
A is called singular value decomposition (SVD). A matrix A with rank r can be expressed
as

A = U�VH (C.21)

with the unitary N ×N matrix U and the unitary M ×M matrix V. The columns of U
contain the eigenvectors of AAH and the columns of V contain the eigenvectors of AH A.
The matrix � is an N ×M diagonal matrix with nonnegative, real-valued elements σk on its
diagonal. Denoting the eigenvalues of AAH and, therefore, also of AH A with λk , 1 ≤ k ≤ r ,
the diagonal elements σk are the positive square roots of λk

σk =
√

λk 1 ≤ k ≤ r. (C.22)

www.4electron.com



340 LINEAR ALGEBRA

They are called singular values of A. For the matrix containing the singular values, we
obtain

� =



σ1 0 . . . 0 0 . . . 0
0 σ2 0 0 0
...

. . .
...

...
...

0 0 . . . σr 0 . . . 0
0 0 . . . 0 0 . . . 0
...

. . .
...

...
...

0 0 . . . 0 0 . . . 0



 r rows

 M-r rows

(C.23)

︸ ︷︷ ︸
r columns

︸ ︷︷ ︸
N-r columns

Definition C.1.13 (Spectral Theorem) A real symmetric matrix can be transformed into a
diagonal matrix by multiplying with an orthogonal matrix

A = Q�Q−1 = Q�QT (C.24)

and every Hermitian matrix can be transformed into a diagonal matrix by multiplying with
a unitary matrix:

A = U�U−1 = U�UH . (C.25)

Owing to definitions C.1.1 and C.1.9, the determinant of A becomes

det(A) = det(U) det(�) det(U−1) = det(�). (C.26)

Definition C.1.14 (Square Root of a Matrix) An N ×M matrix B is called square root
of an N × N matrix A, if

BBH = A (C.27)

holds. From
AH = (

BBH
)H = (

BH
)H

BH = A (C.28)

we see that A is always Hermitian and from definition C.1.6, it follows that the rank of A is

rank(A) = rank(BBH ) = rank(B). (C.29)

Definition C.1.15 (Positive Semidefinite Matrix) A Hermitian N ×N matrix A is called
positive semidefinite, PSD if

xH Ax ≥ 0 (C.30)

holds for each vector x ∈ CN .

The following rules are valid:

• A matrix A is positive semidefinite, if its square root B according to definition C.1.14
exists, so that it is always Hermitian.

• A Hermitian matrix is positive semidefinite if and only if all eigenvalues are real and
nonnegative, so that λi ≥ 0 for 1 ≤ i ≤ N holds.

www.4electron.com



LINEAR ALGEBRA 341

u

x

y = �x

−2uuH x

Figure C.1 Illustration of Householder reflection

C.2 Householder Reflections and Givens Rotation

Householder Reflections

Householder reflections are used to reflect a vector x at a plain surface or line onto a vector
y of the same length by multiplying with a unitary matrix �. If x and y are column vectors
with ‖x‖ = ‖y‖, we obtain y = � · x with the unitary matrix

� = IN − (1+w) · uuH (C.31)

and

u = x− y
‖x− y‖ and w = xH u

uH x
. (C.32)

In the real-valued case, w = 1 holds and (C.31) becomes

� = IN − 2 · uuH . (C.33)

The reflection is graphically illustrated in Figure C.1 for real-valued vectors. The vector
uuH x is a projection of x onto the vector u. Subtracting this projection twice from the vector
x results in a reflection at the line perpendicular to u.

As a special example, the Householder reflection can be used to force certain elements
of a matrix to zero. This is applied in the post-sorting algorithm (PSA) in Section 5.4. In
this case, the target vector becomes y = [‖0 x‖]T , that is, the last element equals the norm
of x, while the remaining part of y is zero. In the same way, Householder reflections can
be used to QL decompose an M ×N matrix A with M ≥ N as is shown with the pseudo
code in Table C.1.

If a row vector x has to be reflected instead of a column vector, w and � become

� = IN − (1+w) · uH u and w = u xH

x uH
. (C.34)

The reflection is performed by y = x ·�.

www.4electron.com



342 LINEAR ALGEBRA

Table C.1 Pseudo code for QL decomposition via Householder
reflections

step task

(1) Initialize with L = A and Q = IM

(2) for k = N, . . . , 1
(3) x = L[1 : M − N + k, k]

(4) y = [
0 ‖x‖]T

(5) calculate u, w and �

(6) L[1 : M −N + k, 1 : k] = � · L[1 : M −N + k, 1 : k]
(7) Q[:, 1 : M −N + k] = Q[:, 1 : M −N + k] ·�H

(8) end

Givens Rotation

Let G(i, k, θ) be an N ×N identity matrix except for the elements G∗
i,i = Gk,k = cos θ = α

and −G∗
i,k = Gk,i = sin θ = β. Hence, G(i, k, θ) has the form

G(i, k, θ) =



1
. . .

α · · · −β
...

. . .
...

β∗ · · · α∗
. . .

1


(C.35)

it is unitary and describes a rotation by θ in the N -dimensional vector space. If the angle θ

is chosen appropriately, G(i, k, θ) can be used to force the ith element of a vector to zero.
Considering an arbitrary column vector x = [x1, . . . , xN ]T , we choose

α = cos θ = xk√
|xi |2 + |xk|2

and β = sin θ = xi√
|xi |2 + |xk|2

, (C.36)

and obtain the new vector y = G(i, k, θ)x.

1
. . .

xk√
|xi |2+|xk |2

· · · −xi√
|xi |2+|xk |2

...
. . .

...
x∗
i√

|xi |2+|xk |2
· · · x∗

k√
|xi |2+|xk |2

. . .

1


·



x1
...

xi

...

xk

...

xN


=



x1
...

0
...√

|xi |2 + |xk|2
...

xN


.
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Obviously, x and y are identical except for two elements: yi = 0 and yk =
√
|xi |2 + |xk|2.

The Givens rotation can also be used to perform QL decompositions similar to the appli-
cation of Householder reflections.

C.3 LLL Lattice Reduction

This appendix describes the LLL algorithm proposed by Lenstra, Lenstra and Lovász
(Lenstra et al. 1982) for the reduction of a lattice basis. The LLL algorithm does not
deliver the optimum solution, that is, the minimum basis, but performs pretty well for
the considered multiple antenna systems and has a moderate computational complexity.
Remember that all vectors and matrices have been defined with real elements. This doubles
their sizes so that the channel matrix has m = 2NT columns and n = 2NR rows. First, we
have to define a reduced lattice.

Definition C.3.1 (Reduced Lattice by Lenstra-Lenstra-Lovász) A basis Hred with a QL
decomposition Hred = Qred · Lred is called LLL reduced with parameter δ, 1/4 < δ ≤ 1, if∣∣L�,k

∣∣ ≤ 1

2
· ∣∣L�,�

∣∣ for 1 ≤ k < � ≤ m (C.37)

and
δL2

k+1,k+1 ≤ L2
k,k + L2

k+1,k for 1 ≤ k ≤ m− 1 (C.38)

hold.

Only if (C.37) is fulfilled, that is, the diagonal elements of the lower triangular matrix
Lred are at least twice as large as the off-diagonal elements of the same row, the basis
is called size reduced. This condition guarantees that no column in Q has a significant
projection onto another column. Therefore, (C.37) coincides with the basic explanation
given in Section 6.3. If it is violated for a pair (�, k), we subtract an integer multiple of
the �th column from the kth one such that (C.37) is fulfilled.

However, (C.37) alone does not guarantee a minimum basis of the lattice. This effect
will be illustrated by a small example at the end of this section. Additionally, the columns
have to be sorted according to their lengths, that is, we have to start from right to left with
the shortest column and end with the largest column. This condition coincides with the
sorted QL decomposition that also starts from the right-hand side with the shortest column.
Since column exchanges represent the main effort of the lattice-reduction algorithm, a
pre-sorted QL decomposition can greatly reduce the computational costs (Wübben et al.
2004a,b).

Condition (C.38) of the LLL algorithm just approximates the correct sorting because the
lengths of columns are only compared on the basis of a small 2× 2 submatrix as depicted in
Figure C.2. The square of the diagonal element Lk+1,k+1 weighted with δ must be smaller
than the sum of L2

k,k and L2
k+1,k. The parameter δ affects the quality of the reduced basis

and is generally chosen as δ = 3/4 (Lenstra et al. 1982). If condition (C.38) is not fulfilled,
columns have to be exchanged. The consideration of only small submatrices reduces the
computational costs at the expense of a degraded performance especially for large matrices.
Therefore, the LLL algorithm shows a limited performance in code division multiple access
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Figure C.2 LLL algorithm for lattice reduction

(CDMA) systems although the general concept of using a reduced basis of a lattice may
lead to encouraging results.

In conclusion, we have to first perform a QL decomposition of the channel matrix H or
the extended version H. Using the sorted QL decomposition reduces the computational costs
of the subsequent lattice reduction remarkably (Wübben et al. 2004a,b) because the number
of required column exchanges is decreased. Afterwards, the LLL algorithm determines a
new reduced basis Hred of the lattice. The whole algorithm is described via a pseudo code in
Table C.2 (Fincke and Pohst 1985; Lenstra et al. 1982). Within the algorithm, A[a : b, c : d]
denotes the submatrix of A with elements from rows a, . . . , b and columns c, . . . , d. With
	x� we denote the integer closest to x.

The algorithm processes the matrices columnwise. In steps (3–10), the size is reduced
by subtracting the integer multiples of already processed columns to the right (column index
�) from the column k under consideration. Steps (11–16) perform the sorting. If condition
(C.38) is violated, two columns are exchanged and the triangular structure of L is restored
by the application of a Givens rotation.

Example for Lattice Reduction

In order to illustrate the lattice reduction, we look at the example of Section 6.3.4 and
consider the 2× 2 channel matrix H = [

2 2
1 2

]
. Obviously, its columns are not orthogonal

and we can probably find a reduced basis. A QL decomposition leads to H = QL with

Q = 1√
2
·
[

1 1
−1 1

]
and L = 1√

2
·
[

1 0
3 4

]
.

The transformation matrix T is initialized as identity matrix T = I2. Now, we start with
the size reduction and look at the elements L2,2 and L2,1 of L. Since µ = ⌈

3/4
⌋ = 1, we

have to subtract the second columns of L and T from the corresponding first columns and
obtain

Lred = 1√
2
·
[

1 0
−1 4

]
and T =

[
1 0
−1 1

]
.

After steps (3–10) in Table C.2, we obtain the intermediate result

Hred = HT = QLred =
[

0 2
−1 2

]
.

Obviously, a size reduction does not lead to the minimum basis already given in Section
6.3.4 because the second column contains integer multiples of the first column. Therefore,
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Table C.2 LLL Lattice-Reduction Algorithm (Lenstra et al. 1982)

step task

(1) Initialization: Qred := Q, Lred := L, T := P
(2) k = m− 1
(3) while k ≥ 1
(4) for � = k + 1, . . . , m

(5) µ = ⌈
Lred[�, k]/Lred[�, �]

⌋
(6) if µ �= 0
(7) Lred[� : m, k] = Lred[� : m, k]− µ Lred[� : m, �]

(8) T[:, k] = T[:, k]− µ T[:, �]
(9) end

(10)
(11) if δ Lred[k + 1, k + 1]2 > Lred[k, k]2 + Lred[k + 1, k]2

(12) Exchange columns k and k + 1 in Lred and T
(13) Calculate Givens rotation matrix � such that

element Lred[k, k + 1] becomes zero:

� =
[
α −β

β α

]
with

α = Lred[k+1,k+1]‖Lred[k : k + 1, k + 1]‖

β = Lred[k,k+1]‖Lred[k : k + 1, k + 1]‖
(14) Lred[k : k + 1, 1 : k + 1] = � · Lred[k : k + 1, 1 : k + 1]
(15) Qred[:, k : k + 1] = Qred[:, k : k + 1] ·�T

(16) k = min{k + 1, m− 1}
(17) else
(18) k := k − 1
(19) end
(20) end

INPUT: Q, L, P (default: P = Im), OUTPUT: Qred, Lred, T

it is essential to proceed with the sorting part of the algorithm. Condition (C.38) is violated
on account of

3

4
·
(

4√
2

)2

= 6
!
>

(
1√
2

)2

+
(

3√
2

)2

= 5

and so the columns in Lred have to be exchanged. This yields

Lred = 1√
2
·
[

0 1
4 −1

]
and T =

[
0 1
1 −1

]
.

Next, the triangular structure of Lred has to be restored by applying the Givens rotation.
With

� = 1√
2
·
[−1 −1

1 −1

]
,

we obtain

Lred = � · Lred =
[−2 0
−2 1

]
and Qred = Q ·�T =

[−1 0
0 −1

]
.
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The next intermediate result is

Hred = HredT = QredLred =
[

2 0
2 1

]
which still does not represent the minimum basis. We use Lred for a new length reduction.
With µ = ⌈− 2/1

⌋ = −2, this leads to

Lred =
[−2 0

0 1

]
and T =

[
2 1
−1 −1

]
.

We finally obtain the reduced basis

Hred = HT = QredLred =
[

2 0
0 −1

]
.
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zellulare Mobilfunksysteme. PhD thesis, Universität Hamburg-Harburg.

Berrou C and Glavieux A 1993 Turbo-Codes: General Principles Applications. Proceedings of the
6th Tirrenia International Workshop on Digital Communications, pp. 215–226, Tirrenia, Italy.

Berrou C, Glavieux A and Thitimajshima P 1993 Near Shannon Limit Error-Correcting Coding and
Decoding: Turbo-Codes (1). IEEE Proceedings of International Conference on Communications,
pp. 1064–1070, Geneva, Switzerland.

Biglieri E, Divsalar D, McLane P and Simon M 1991 Introduction to Trellis-Coded Modulation with
Applications. Macmillan Publishing Company, New York.

Bingham J 1990 Multicarrier Modulation for Data Transmission: An Idea whose time has Come.
IEEE Communications Magazine, 28(5), 5–14.

Blahut R 1983 Theory and Practice of Error Control Codes. Addison-Wesley, Reading, MA.
Blogh J and Hanzo L 2002 Third-Generation Systems and Intelligent Wireless Networking: Smart

Antennas and Adaptive Modulation. IEEE-Press, John Wiley.
Blum R 2000 Analytical Tools for the Design of Space-Time Convolutional Codes. Conference on

Information Sciences and Systems, Princeton University, Princeton, NJ.
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Kühn V 2001c Parallel Interference Cancellation in Coded DS-CDMA Systems. COST 262 Work-
shop on Multiuser Detection in Spread Spectrum Communications, pp. 31–38, Schloss Reisensburg,
Germany.
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Kühn V 2004 Analysis of Iterative Multi-User Detection Schemes with EXIT Charts. International
Symposium on Spread Spectrum Techniques and Applications (ISSSTA’04), Sydney, Australia.
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Braunschweig, Germany.
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Wübben D, Böhnke R, Kühn V and Kammeyer KD 2004a MMSE-Based Lattice-Reduction for
Near-ML Detection of MIMO Systems. ITG Workshop on Smart Antennas, Munich, Germany.
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A priori information, 113, 120, 147,
153, 232

Adaptive modulation, 28
Additive white Gaussian noise, see

AWGN
Alamouti, 283
Amplitude shift keying, see ASK
Analytical signal, 10
ASK, 28
Autocorrelation function, 191
Automatic repeat request, 105
AWGN, 11, 29, 31, 44, 126

channel capacity, 64

Bayes rule, 18
BCJR algorithm

for binary block codes, 115
for convolutional codes, 118
in logarithmic domain, 120
initialization, 118

Beamforming, 306
Belief propagation, 167
Bhattacharyya

bound, 60
error exponent, 61

Binary entropy function, 52
Binary symmetric channel, see BSC
Bipartite graph, 165
Bit error probability, 34
BLAST, 307
BLAST detection, 258
BSC, 67

Capacity region, 78
Carrier frequency, 9
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CDMA, 4, 19, 173
Chain rule

for entropy, 54, 333
for information, 55, 333
of information, 132

Channel capacity, 55, 58, 219, 323
for CDMA uplink, 219
for diversity reception, 70
for multiple antenna systems, 323
of AWGN channel, 64
of MIMO systems, 73
of Rayleigh fading channel, 68

Channel coding, 92
Channel coding theorem, 59, 63
Channel state information, see CSI
Check node, 166
Chi-squared distribution, 15
Cholesky decomposition, 259
Code division multiple access, see

CDMA
Code rate, 58, 93
Code-spread system, 210
Coding gain for STC, 282
Coherence bandwidth, 13
Coherence time, 13
Complementary error function, 21, 22
Complex envelope, 8
Concatenated codes, 135

parallel concatenation, 136, 141, 145,
149, 159

serial concatenation, 135, 137, 139,
145, 147, 157

Convolutional code, 100, 211
catastrophic code, 106
constraint length, 101
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Convolutional code (continued )
finite state diagram, 104
NSC encoder, 102
puncturing, 105
RSC encoder, 103
tailbiting code, 104
terminated code, 104
trellis diagram, 105
truncated code, 104

Correlated channels, 325
Correlation function, 191
COST 207, 330, 331
Crosscorrelation function, 191
CSI, 22, 93
Cutoff rate, 61
Cyclic convolution, 197

D-BLAST, 307
Data-processing theorem, 55, 334
Decision region, 20
Decorrelator, 223, 234, 241
Delay diversity, 296, 297
Determinant, 335
Determinant criterion, 282
Differential entropy, 56
Digital Audio Broadcasting (DAB),

195
Digital Video Broadcasting (DVB), 195
Direct-sequence spread spectrum, 174
Discrete multitone, 196
Distance spectrum of codes, 122
Diversity, 36

frequency diversity, 13, 37
gain for STC, 282
polarization diversity, 38
receive diversity, 277
space diversity, 37, 277
space–time transmit diversity, 279
time diversity, 13, 37, 93

Doppler
bandwidth, 13, 14
frequency, 13, 14
power spectrum, 13, 331

Downlink, 2, 81, 182, 202
Downlink transmission, 186
Dual code, 97

Effective distance, 138
Eigenvalue decomposition, 339
Entropy, 52
Equal gain combining, 38, 203
Equalizer, 18
Equivalent baseband representation, 8
Equivalent code, 95
Equivocation, 54
Error covariance matrix, 234, 238
Error function, 21
Even correlation function, 191
Extended Battail algorithm, 118
Extrinsic information, 113

Fast Hadamard Transform, 99, 211
FDMA, 3
FEC, 92
Finite field, 92
Finite impulse response filter, 13
Flat fading, 13, 82, 128
Forward error correction, see FEC
Frame error probability, 18
Free distance, 101
Frequency division duplex, 306
Frequency division multiple access, see

FDMA
Frequency-selective fading channels, 12
Frobenius norm, 280, 336
Fully loaded system, 181

Gallager
bound, 62
exponent, 62
function, 62

Gauss-Seidel algorithm, 244
Gaussian distribution, 11
Gaussian normal form, 95
Generator matrix, 95
Givens rotation, 342
Global System for Mobile

Communications (GSM), 5
Gold codes, 193
Graph

acyclic, 165
cyclic, 165
degree of a node, 165
factor graph, 166
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girth, 165
node, 165
Tanner graph, 166
vertex, 165

Gray mapping, 28
Guard interval, 3, 197

Hadamard code, 99, 192
Hadamard matrix, 99
Hamming

bound, 96
code, 98
distance, 94
weight, 122

Hermitian, 335
Hilbert transformation, 10
Householder reflection, 341

ICI, 197
IDFT, 196
IFFT, 196
Information, 94
Information content, 52
Information processing characteristic,

see IPC
Input–output weight enumerating

function, see IOWEF
Intercarrier interference, see ICI
Interference cancellation, 218
Interleaving, 6

block interleaver, 7
convolutional interleaver, 7
interleaving depth, 7
random interleaver, 7
uniform interleaver, 137

Intersymbol interference, see ISI
Intrinsic information, 113
Inverse Discrete Fourier Transform, see

IDFT
Inverse Fast Fourier Transform, see

IFFT
IOWEF, 122

of serial code concatenation, 138
IPC, 131
Irrelevance, 54
ISI, 12, 180, 197

Jacobi algorithm, 241
Jakes spectrum, 14
Joint entropy, 53

Karhunen-Loève transformation, 47

L-Algebra, 111
Lattice reduction, 312, 343
LDPC codes, 160

irregular codes, 163
random code construction, 163
regular codes, 161

Line of sight, 331
Linear block codes, 94
Linear dispersion codes, 319
Linear multiuser detection, 233
Linear successive interference

cancellation, 244
LLL algorithm, 343
LLR, 109
Log-likelihood ratio, see LLR
Log-MAP, see BCJR algorithm
Long spreading codes, 175
Low-density parity check codes, see

LDPC codes

M-sequences, 192
MAP

criterion, 110
probability, 18
sequence detection, 18
symbol-by-symbol detection, 19
symbol-wise detection, 20

Matched filter, 10, 12, 25, 93, 177, 178,
259

Max-Log-MAP algorithm, 121
Maximum a posteriori, see MAP
Maximum length sequences, 192
Maximum likelihood

sequence detection, 18
symbol-by-symbol detection, 19
symbol-wise detection, 20

Maximum ratio combining, 38, 178, 202
MC-CDMA, 200
Message passing decoding, 167
MIMO, 1, 17
MISO, 1, 17
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ML, see maximum likelihood
MMSE detector, 204, 223, 242
Modified Gram-Schmidt algorithm, 261
Moore-Penrose inverse, 235
MUD, 227
Multicarrier, 195, 200
Multilayer transmission, 227, 304
Multiple access, 3

orthogonal, 81
Multiple access interference, 3
Multiple antennas, 304
Multiple-input multiple-output system,

see MIMO
Multiple-input single-output system, see

MISO
Multirate CDMA systems, 184
Multistage detector, 241
Multiuser communications, 1, 78
Multiuser detection, see MUD
Mutual information, 55, 80

Natural mapping, 28, 294
Near-far effect, 183, 184
Near-far resistance, 184, 235
Nonperiodic correlations function, 191
Nonsystematic encoder, 94
Nyquist, first criterion, 11

Odd correlation function, 191
OFDM, 19, 196
OFDM-CDMA, 200
Orthogonal

Frequency Division Multiplexing, see
OFDM

matrix, 338
restoring combining, 203
space–time block codes, 282
spreading codes, 192, 220

Outage capacity, 70
Outage probability, 23, 32, 36, 69

PAM, 28
Parallel concatenated coding scheme,

215
Parallel interference cancellation, see

PIC
Parity check codes, 98

Parity check matrix, 96
Path crosstalk, 180
Perfect codes, 98
Periodic correlation function, 191
Phase shift keying, see PSK
PIC, 241
Positive semidefinite, 340
Post-sorting algorithm, 263
Power control, 183
Power delay profile, 13, 330
Preferred pairs, 193
Processing gain, 174
PSK, 33
Pulse amplitude modulation, see PAM
Punctured codes, 108

QAM, 30
QL decomposition, 258, 268
Quadrature amplitude modulation, see

QAM

Rake receiver, 178
Random spreading, 220
Rank criterion, 282
Rank of a matrix, 336
Rayleigh

distribution, 15
fading, 29, 31, 43

Rayleigh fading, 68
Redundancy, 53, 94
Repetition code, 97
Rice

distribution, 16
factor, 15
fading, 45, 331

Scattering function, 13
Scrambling code, 192, 208
SDMA, 4, 276
Selection combining, 38
Serially concatenated coding scheme,

211
Short spreading codes, 175
Signal shaping, 66
Signal to interference plus noise ratio,

see SINR
Signal to noise ratio, 12
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SIMO, 1
Simplex code, 98
Single-input multiple-output system, see

SIMO
Single-input single-output system, see

SISO
Single-user matched filter, see SUMF
Singular value decomposition, see SVD,

339
SINR, 186
SISO, 1, 17
SISO channel, 8
Soft-in soft-out decoding, 109
Soft-output decoding, 112

of block codes, 118
of convolutional codes, 118
of Walsh codes, 114

Sorted QL decomposition, see SQLD
Source coding, 53
Space division multiple access, see

SDMA
Space–time codes, 279
Spatial multiplexing, 304
Spectral efficiency, 3, 219
Spectral norm, 336
Sphere packing bound, 96
SQLD, 264
Square law combining, 38
Standard array decoding, 97
Successive decoding, 79
Sufficient statistics, 25, 56, 230
Sum rate, 78
SUMF, 185
Super-orthogonal codes, 215
SVD, 74, 235, 304
Symbol error probability

ASK and AWGN, 29
ASK and flat Rayleigh fading, 29
BPSK and AWGN, 34
QAM and AWGN, 31
QAM and flat Rayleigh fading,

32
QPSK and AWGN, 34

Symbol-by-symbol MAP decoder, 115
Syndrome, 96
Syndrome decoding, 97
System load, 181
Systematic encoder, 94

TDMA, 3
Time diversity, 129
Time division duplex, 306
Time division multiple access, see

TDMA
Time-selective channel, 13
Trellis diagram

for block codes, 99
for convolutional codes, 105

Turbo codes, 144
Turbo decoding, 146, 147, 150
Turbo detection, 231

UMTS, 5, 331
Union bound, 20, 126, 136
Unitary matrix, 338
Universal Mobile Telecommunications

System, see UMTS
Uplink, 3, 82, 183, 188, 207

V-BLAST, 307
Variable node, 166
Vector channel, 1
Viterbi algorithm, 106

decision depth, 108
incremental metric, 108
survivor, 108

Walsh codes, 211
Walsh sequence, 99, 192
Waterfilling, 77, 84
Whitening, 259
Wide sense stationary uncorrelated

scattering, see WSSUS
Wiener solution, 237
WSSUS, 13

Zero-forcing, 223, 234, 241
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