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Preface

The idea of this book was conceived in September 2003, in San Diego, CA, when I presented
a tutorial on topology control at the ACM Mobicom conference. After the tutorial, Birgit
Gruber approached me and enthusiastically suggested to me the idea of writing a book on
topology control. She needed little effort to convince me indeed, since I found the idea very
appealing.

The material and organization of this book have been adapted from the tutorial I pre-
sented at ACM Mobicom 2003, and later on at ACM MobiHoc 2004. In turn, the tutorial
finds its origin in a survey paper on topology control that I wrote at the beginning of 2003,
which is still in technical report form (the processing time of some journals is actually
longer than the time needed to write a book. . .).

The aim of this book is to provide a unique reference resource on topology control in
wireless ad hoc and sensor networks, a topic that has been a subject of intensive research
in recent years. Indeed, this research field is far from being settled, and several new results
and proposals are being published. This explains why writing a book on topology control
has been very challenging for me. I have done my best to include in the book the most
significant results and findings in the field, while at the same time describing in detail the
many problems that are still to be solved. While I have tried to be as exhaustive as I could
in presenting the topology control approaches introduced in the literature, the reader should
bear in mind that what is reported in this book is a picture of this research field taken at
the beginning of year 2005.

Audience

This book is intended for graduate students, researchers, and practitioners who are interested
in acquiring a global view of the set of techniques and protocols that have been referred to
as ‘topology control’ in the literature. More in general, the book can serve as a reference
resource for researchers, engineers, and developers working in the field of wireless ad hoc
and sensor networking.

While I have tried to make the book as self-contained as possible, some rudimen-
tary knowledge of concepts of networking protocols, distributed systems, computational
complexity, graph theory, and probability theory is required.

Book Overview

The material contained in this book is organized as follows.
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The first part of the book (Introduction) presents introductory material that is preparatory
for what is described in the rest of the book.

Chapter 1 gives a short introduction to wireless ad hoc and sensor networks, describing
some of the possible applications that these technologies will make available in a near
future. The chapter also discusses the many technical challenges that are still to be solved
before a large-scale deployment of wireless multihop networks can actually take place.

Chapter 2 introduces the wireless network model that will be used in the rest of the
book. To model a complex system like a wireless multihop network, we need several
submodels: a model for a single wireless channel (Section 2.1), a model for describing all
the wireless channels in the network (Section 2.2), a model for the node energy consumption
(Section 2.3), and a model for node mobility (Section 2.4).

Chapter 3 tries to explain what motivated researchers to study topology control tech-
niques. In particular, it presents simple examples showing the potential of topology control
in reducing node energy consumption (Section 3.1.1) and in increasing the network traffic–
carrying capacity (Section 3.1.2). The chapter also provides a first informal definition of
topology control (TC), clarifying my personal interpretation (and the one that will be used
in this book) of what is topology control, and what is not topology control (e.g. power con-
trol and clustering techniques) (Section 3.2). After having discussed a possible taxonomy of
the many approaches to the TC problem proposed in the literature (Section 3.3), the chapter
ends with a discussion on how TC mechanisms can be integrated into the network protocol
stack (Section 3.4). Chapter 3 concludes the first part of the book, Introduction.

The second part of the book, The Critical Transmitting Range, treats the simplest possible
form of topology control: all the nodes are assumed to have same transmitting range r , and
the problem is how to choose r in such a way that certain network properties are satisfied.

Chapter 4 considers the case in which the network nodes are stationary, and the target
network property is connectivity. After having formally characterized which is the criti-
cal value of r in this setting, we consider networks with dense (Section 4.1) and sparse
(Section 4.2) node deployment. Then, we consider the case of nonrectangular shapes of the
deployment region and/or of nonuniform node distribution (Section 4.3). The chapter ends
with a discussion on what changes in the picture if the radio coverage area is not a perfect
circle (Section 4.4).

Chapter 5 considers the case of mobile networks, and it discusses the implications of
node mobility on the characterization of the critical range for connectivity.

Finally, Chapter 6, which ends Part II of this book, considers the different target net-
work properties for which the critical range value is investigated, such as k-connectivity
(Section 6.1), connectivity with Bernoulli nodes (Section 6.2), and sensing coverage
(Section 6.3).

The third part of the book, Topology Optimization Problems, addresses several topol-
ogy optimization problems. In these problems, it is typically assumed that node positions
are known to a centralized observer. Given this information, the observer has the goal of
identifying a certain ‘optimal’ topology, where the definition of ‘optimal’ depends on the
target property considered.

The first problem considered is the so-called Range Assignment (RA) problem
(Chapter 7): nodes can choose different transmitting ranges; the goal is to choose the ranges
in such a way that the network is connected, and the energy-cost of the topology is mini-
mized. This problem is studied first in one-dimensional networks (Section 7.2) and then in
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the more complex case of two- and three-dimensional networks (Section 7.3). Then, two
symmetric variants of the Range Assignment problem are considered (Section 7.4). The
chapter ends with a discussion of the energy efficiency of the optimal topologies for the
various versions of the RA problem (Section 7.5).

Chapter 8, which concludes Part III of this book, addresses the problem of designing
energy-optimal topologies for a certain communication pattern. The communication patterns
considered are point-to-point communication, a.k.a. unicast, (Section 8.1) and one-to-all
communication, a.k.a. broadcast (Section 8.2).

In the fourth part of the book, Distributed Topology Control, we consider distributed
approaches to the topology control problem: the goal here is to devise fully distributed
protocols that build and maintain a ‘reasonably good’ network topology.

Chapter 9 discusses the ideal features of a distributed TC protocol (Section 9.1), high-
lighting the trade-off between the quality of information available to the nodes and the
quality of the topology produced by the protocol (Section 9.2). Then, it discusses the impor-
tant distinction between logical and physical degree of a node in the network topology
(Section 9.3).

The following chapters present some of the most relevant distributed topology control
protocols introduced in the literature, grouping them on the basis of the type of information
that is available to the network nodes.

Chapter 10 presents two protocols based on the assumption that nodes know their exact
location and the location of the neighbors. The protocols presented are the R&M protocol
(Section 10.1) and the LMST protocol (Section 10.2).

Chapter 11 presents protocols based on directional information. In particular, it intro-
duces the CBTC protocol (Section 11.1) and the DistRNG protocol (Section 11.2).

Chapter 12 is concerned with approaches in which nodes are assumed to know only
the ID of their neighbors, and are able to order them according to some criteria (e.g. dis-
tance, or link quality). After having discussed this TC problem from a theoretical viewpoint
(Section 12.1), the chapter introduces two neighbor-based topology control protocols: the
KNeigh protocol (Section 12.2) and the XTC protocol (Section 12.3).

The last chapter of Part IV of this book, Chapter 13, discusses the effect of mobility
on distributed topology control protocols, revisiting the ideal features of a distributed TC
protocol (Section 13.1), and providing an example showing how different TC solutions
adapt to the case of mobile networks (Section 13.2). Then, it discusses the effect of node
mobility on the critical number of neighbors needed to maintain the network connected
(Section 13.3). The chapter ends describing how some of the existing topology control
protocols deal with node mobility (Section 13.4).

Part V of the book, Toward an Implementation of Topology Control, deals with more
practical issues, describing the existing TC approaches that are closer to on-the-field imple-
mentation and the several problems that are still open in the field of topology control.

Chapter 14 describes distributed TC protocols that explicitly use a typical feature of
current wireless transceivers, that is, the availability of only a limited number of possible
transmit power levels. The protocols presented in the chapter are the COMPOW protocol
(Section 14.2), the CLUSTERPOW protocol (Section 14.3), and the KNeighLev protocol
(Section 14.4).

Chapter 15, which ends Part V of the book, discusses the main open research and
technological problems in the field of topology control. In particular, it outlines the
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need for a topology control design focused on reducing radio interference between nodes
(Section 15.1), and for more realistic network models (Section 15.2). Also, much research
is still to be done to address the topology control problem in mobile networks (Section 15.3)
and to account for the effects of multihop data traffic (Section 15.4). The chapter ends with
a discussion of practical issues that must be dealt with when implementing TC mechanisms
(Section 15.5).

The final part of the book, Case Study and Appendices, provides a detailed description
of a case study and two Appendices.

Chapter 16 considers the problem of implementing a routing protocol in a competi-
tive environment, in which voluntary, unselfish participation of the network nodes to the
packet forwarding task cannot be taken for granted. After having described the problem
(Section 16.1) and a reference application scenario (Section 16.2), the chapter presents solu-
tions to the cooperative routing problem that do not integrate TC mechanisms (Section 16.5),
and that integrate TC and routing (Section 16.6).

Finally, Appendix A introduces basic concepts and definitions of graph theory, and
Appendix B introduces basic probability notions. Appendix B also provides a short overview
of three applied probability theories that have been used in the analysis of the various
topology control problems presented in the book: the geometric random graph theory
(Section B.2), the occupancy theory (Section B.3), and the theory of continuum percolation
(Section B.4).

How to Use This Book

The book is organized into six parts. Informally speaking, the first part of the book provides
basic concepts and definitions related to topology control that will be used in the rest of
the book. While a reader who is familiar with the field of wireless ad hoc and sensor
networks can probably skip Chapter 1, he (or she) should probably not miss Chapter 2,
which introduces the network model used in the book.

After the introductory material, the topology control problem is approached firstly from
a theoretical viewpoint (Part II and Part III), and then from a more practical viewpoint
(Part IV and V).

The last part of the book contains an interesting case study and two appendices. The
appendices are intended to provide a unique reference point for the concepts of graph theory
(Appendix A) and elementary and applied probability (Appendix B) used in the book: if
the reader is not sure about a certain graph theory or probability theory notion mentioned
somewhere in the text, he (or she) can refer to the appropriate appendix and get it clarified.
With a similar purpose, I have included an exhaustive list of the many acronyms and
abbreviations used in the book.

Although, in general, topology control techniques can be used both in ad hoc and in sen-
sor networks, some of them are more useful for application in sensor networks (Chapters 4,
6, 7, 8, 10), and others for application in ad hoc networks (Chapters 5, 11, 12, 13, 14, 16).

A reader with a background in computer science will probably be more comfortable with
Part II, Part III, and Part IV of this book, while a reader with a background in engineering
will probably be more comfortable with Part IV and Part V of the book. A reader with a
background in applied mathematics will probably be interested in Part II and Part III of this
book and Section 12.1.
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1

Ad Hoc and Sensor Networks

1.1 The Future of Wireless Communication

Recent emergence of affordable, portable wireless communication and computation devices
and concomitant advances in the communication infrastructure have resulted in the rapid
growth of mobile wireless networks. On one hand, this has led to the exponential growth
of the cellular network, which is based on the combination of wired and wireless technolo-
gies. Nowadays, the number of cellular network users is approaching two billion worldwide
(expected at end 2005). Although the research and development efforts devoted to tradi-
tional wireless networks are still considerable, the interest of the scientific and industrial
community in the realm of telecommunications has recently shifted to more challenging
scenarios in which a group of mobile units equipped with radio transceivers communicate
without any fixed infrastructure.

1.1.1 Ad hoc networks

Ad hoc networks are the ultimate frontier in wireless communication. This technology allows
network nodes to communicate directly to each other using wireless transceivers (possibly
along multihop paths) without the need for a fixed infrastructure. This is a very distinguishing
feature of ad hoc networks with respect to more traditional wireless networks, such as
cellular networks and wireless LAN, in which nodes (for instance, mobile telephone users)
communicate with each other through base stations (wired radio antennae).

Ad hoc networks are expected to revolutionize wireless communications in the next few
years: by complementing more traditional network paradigms (Internet, cellular networks,
satellite communications), they can be considered as the technological counterpart of the
concept of ubiquitous computing. By exploiting ad hoc wireless technology, various portable
devices (cellular phones, PDAs, laptops, pagers, and so on) and fixed equipment (base
stations, wireless Internet access points, etc.) can be connected together, forming a sort of
‘global’, or ‘ubiquitous’, network.

Application scenarios in which the adoption of ad hoc networking technologies might
prove useful abound. For instance, consider the following situation. A terrible earthquake has
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devastated the city of Futuria destroying, among other things, most of the communication
infrastructure (wired phone lines, base stations for cellular networks, and so on). Several
rescue teams (firefighters, police, medical teams, volunteers, and so on) are working on the
disaster scene to save people from wreckage and to assist the injured. To provide a better
assistance to the population, the efforts of the rescue teams should be coordinated. Clearly, a
coordinate action can be achieved only if rescuers are able to communicate, both within their
team (e.g. a policeman with other policemen) and with members of the other teams (e.g. a
firefighter calling a doctor for assistance). With currently available technology, coordinating
rescuers’ efforts when the fixed communication infrastructure is severely damaged is very
difficult: even if team members are equipped with walkie-talkies or similar devices, when no
access to the fixed infrastructure is available, only communication between nearby rescuers
is possible. Thus, one of the priorities in present-day disaster management is to reinstall the
communication infrastructure as quickly as possible, which is typically done by repairing
the damaged structures and by deploying temporary communication equipment (e.g. vans
equipped with a radio antenna).

The situation would be considerably different if technologies based on ad hoc network-
ing were available: by using fully decentralized, multihop wireless communication, even
relatively distant rescuers would be able to communicate, provided there exist other team
members in between them acting as communication relay. Since a disaster area is typically
quite densely populated with rescuers, citywide (or even metropolitanwide) communication
would be possible, allowing a successful coordination of the rescue efforts without the need
for reestablishing the fixed communication infrastructure.

The above-described example outlines the features of a typical ad hoc network applica-
tion scenario:

– Heterogeneous network : A typical ad hoc network is composed of heterogeneous
devices. For instance, in the scenario described above, in general the various teams
working on the disaster area are equipped with different types of devices: cell phones,
PDAs, walkie-talkies, laptops, and so on. For a successful setup of the communication
network, it is fundamental that these diverse types of devices be able to communicate
with each other.

– Mobility : In a typical ad hoc network, most of the nodes are mobile. This is the case,
for instance, of the rescuers working in a disaster scenario as described above.

– Relatively dispersed network : The adoption of the ad hoc networking paradigm is
justified when the nodes composing the network are geographically dispersed. In fact,
if network nodes are very close to each other, 1-hop wireless communication is usually
possible and no multihop communication between nodes is necessary.

Potential application of wireless ad hoc networks are numerous. Among them, we cite
the following:

– Fast traffic info delivery on highways and urban areas: Highways and urban areas
can be equipped with fixed radio transmitters, which broadcast traffic information to
cars equipped with GPS receivers passing close to a transmitter. In turn, the cars
themselves act as relay of information so that the traffic updates can quickly reach
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faraway drivers. As compared to traditional radio traffic info delivery, this technology
will provide a much more accurate (localized) and faster service.

– Ubiquitous Internet access : In a very near future (in part, this is already a reality),
public areas such as airports, stations, shopping malls, and so on, will be equipped
with wireless Internet access points. By using the portable devices of other users as
wireless bridges, Internet access can be extended to virtually the entire urban area.

– Delivery of location-aware information: By using fixed radio transmitters (for instance,
the same transmitters used to broadcast traffic updates), location-aware informa-
tion can be delivered to the interested users. Examples of location-aware informa-
tion are tourist information, shows and events in the surrounding, information on
shops/restaurants in the area, and so on.

1.1.2 Wireless sensor networks

Wireless sensor networks (WSNs for short) are a particular type of ad hoc network, in
which the nodes are ‘smart sensors’, that is, small devices (approximately the size of a
coin) equipped with advanced sensing functionalities (thermal, pressure, acoustic, and so
on, are examples of such sensing abilities), a small processor, and a short-range wireless
transceiver. In this type of network, the sensors exchange information on the environment
in order to build a global view of the monitored region, which is made accessible to the
external user through one or more gateway node(s).

Sensor networks are expected to bring a breakthrough in the way natural phenomena are
observed: the accuracy of the observation will be considerably improved, leading to a better
understanding and forecasting of such phenomena. The expected benefits to the community
will be considerable.

As in the case of ad hoc networks, to give a better idea of the potential of WSN
technology, we describe in detail a sample application scenario. Consider a situation in which
a WSN is used to monitor a vast and remote geographical region, in such a way abnormal
events (e.g. a forest fire) can be quickly detected. In this scenario, smart sensors, each
equipped with a battery, and significant processing and wireless communication capabilities,
are placed in strategic positions, for example, on the top of a hill or in locations with wide
view. Each sensor covers a few hectares area and can communicate with sensors in the
surrounding. The sensor node gathers atmospheric data (temperature, pressure, humidity,
wind velocity and direction) and analyzes atmosphere makeup to detect particular particles
(e.g. ash). Furthermore, each sensor node is equipped with an infrared camera, which is
able to detect thermal variations. Every sensor knows its geographic position, expressed in
terms of degree of latitude and longitude. This can be accomplished either by equipping
every node with a GPS receiver, or, since in this scenario sensor position is fixed, by setting
the position in a sensor register at the time of deployment. Periodically, sensors exchange
data with neighboring nodes in order to detect unusual situations that could be caused,
for instance, by a starting fire (e.g. temperature at a sensor much higher than those of the
neighbors). These ‘routine’ data are aggregated and propagated throughout the network and
can be gathered by the external operator to collect atmospheric data (e.g. to check the air
quality). When a potentially dangerous situation is detected (for instance, the infrared camera
detects a rapid thermal increase in a certain zone), an emergency procedure is started: the
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sensor node that has detected the abnormal condition communicates with its neighbors in
order to verify whether the same condition has been detected by other sensors; then, it
tries to accurately determine the geographic position of the hazard (if the same abnormal
situation has been detected by other sensors, this can be accomplished using triangulation
techniques; furthermore, the information on the wind velocity and direction can be useful
both in the localization of the fire and in forecasting the direction of its propagation);
once the position of the fire has been determined, an alarm message containing the fire’s
geographic coordinates and (possibly) its propagation direction is disseminated with the
maximum priority. This way, the external operator (for instance, a park ranger equipped
with a portable device) is promptly alerted of the presence of fire, of its position, and of
the forecasted propagation direction of the fire, and can intervene quickly.

The fire-detection application scenario is summarized in Figure 1.1. We remark that this
scenario has several interesting features, such as reduced impact on the environment (since
sensor nodes have wireless transceivers, no wiring is needed), accuracy of coverage, and
prompt alerting of the human operator.

The above-described example outlines the features of a typical WSN application
scenario:

– Homogeneous network : Differing from the case of ad hoc networks, a WSN is typ-
ically composed of nodes with the same features, especially for what concerns the
communication apparatus. A partial exception to this rule is when different types of
smart sensor nodes are used in the same network: for instance, a few ‘super nodes’
(with more memory and/or with a longer transmitting range) could be used in combina-
tion with standard sensor nodes to increase the network monitoring ability. However,
also in this case the number of different device classes used in the network is very
limited (2–3 at most).

Figure 1.1 Sensor network used for prompt fire detection. When a fire is detected, an alarm
message (arrow) is generated by the sensor node(s) that detected the fire. The message is
then propagated in the network until it reaches a park ranger.
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Table 1.1 Comparison of typical features of
wireless ad hoc and sensor networks

Ad hoc Networks WSNs

Heterogeneous devices Homogeneous devices
Mobile nodes Stationary nodes
Dispersed network Dispersed network

Large network size

– Stationary or quasistationary network : Differing from the case of ad hoc networks,
nodes composing a WSN are typically stationary, or at most slowly moving. Given
the very wide range of WSN applications, exceptions to this rule are possible. This
is the case, for instance, of a sensor network used to track animal movements.

– Relatively dispersed network : this feature is in common with ad hoc networks: a
wireless sensor network is typically formed by nodes that are dispersed in a relatively
large geographical region, so that 1-hop communication between nodes is, in general,
not possible.

– Large network size: Typically, the number of nodes composing a WSN is quite large,
ranging from few tens to thousands of nodes.

The differences/similarities between ad hoc and sensor networks are summarized in
Table 1.1.

Among the many possible WSN application scenarios, we cite the following:

– Ocean temperature monitoring for improved weather forecast : It is known that the
evolution of weather conditions is strongly influenced by the temperature of large
water masses such as the oceans. However, nowadays our ability to perform a large-
scale monitoring of the ocean temperature is scarce. Sensor networks can be used
for this purpose. By dropping a large number of tiny sensors into the sea, water
temperature and ocean currents can be accurately monitored, helping the scientists in
the task of providing more accurate weather forecast.

– Intrusion detection: Camera-equipped sensors can be used to form a network that
monitors an area with restricted access. If the network is properly deployed, intruders
can be detected and an alarm message quickly propagated to the external observer.

– Avalanche prediction: Sensors equipped with location devices (such as GPS) can be
used to monitor the movements of large snow masses, thus allowing a more accurate
avalanche prediction.

1.2 Challenges

Although the technology for ad hoc and sensor networks is relatively mature, the applications
are almost completely lacking. This is in part due to the fact that some of the problems
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related to ad hoc/sensor networking are still unsolved. In this section, we describe the state
of progress of the current ad hoc and sensor network technology, and the main challenges
that face the ad hoc/sensor network designer.

1.2.1 Ad hoc networks

Wireless ad hoc networks have attracted the attention of researchers in academia and industry
in the last few years. As a result of this considerable research activity, the basic mechanisms
that enable wireless ad hoc communication have been designed and standardized. Just to
cite the most popular examples, IEEE 802.11 (IEEE 1999) and Bluetooth (Bluetooth 1999)
are communication standards that are implemented in a variety of commercial wireless
equipment, and that allows infrastructure-less wireless communication between mutually
compliant devices. Thus, wireless, multihop communication between different types of
devices such as cell phones, laptops, PDAs, smart appliances, and so on, is possible with
currently available technology.

Despite the fact that the technology for ad hoc network exists, applications based on the
ad hoc networking paradigm are almost completely lacking. This is because many of the
challenges to be faced for a practical implementation of ad hoc network services are still to
be solved. The main such challenges are the following:

– Energy conservation: Since units in ad hoc networks are typically battery equipped,
one of the primary design goals is to use this limited amount of energy as efficiently
as possible.

– Unstructured and/or time-varying network topology : Since the network nodes can,
in principle, be arbitrarily placed in a certain region and are typically mobile, the
topology of the graph that represents the wireless communication links between the
nodes is usually unstructured. Furthermore, the network topology may vary with
time, because of node mobility and/or failure. In these conditions, optimizing the
performance of ad hoc network protocols is a very difficult task.

– Low-quality communications: Communication on a wireless channel is, in general,
much less reliable than in a wired channel. Furthermore, the quality of communica-
tion is influenced by environmental factors (weather conditions, presence of obstacles,
interference with other radio networks, etc.), which are time varying. Thus, applica-
tions for ad hoc networks should be resilient to dramatically varying link conditions,
tolerating also nonnegligible off-service time intervals of the wireless link.

– Resource-constrained computation: Ad hoc networks are characterized by scarce
resource availability; in particular, energy and network bandwidth are available in
very limited amounts as compared to more traditional network paradigms. Protocols
for ad hoc networks must strive to provide the desired performance level in spite of
the few available resources.

– Scalability : In some ad hoc network scenarios, the network can be composed of
hundreds or thousands of nodes. This means that protocols for ad hoc networking
must be able to operate efficiently in the presence of a very large number of nodes
also.
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In case of ad hoc networks used for ‘ubiquitous’ networking, the following issues must
also be addressed:

– Interoperability : In the ‘ubiquitous’ networking scenario described in Section 1.1.1,
data should travel through the most diverse type of networks: ad hoc, cellular, satellite,
wireless LAN, PSTN, Internet, and so on. Ideally, the user should smoothly switch
from one network to the other without interrupting her applications. Implementing
this sort of ‘network handoff’ is a very challenging task.

– Definition of a feasible business model : Currently, accounting in wireless networks
(cellular, and commercial wireless Internet access) is done at the base station, that
is, using a centralized infrastructure. Furthermore, roaming is allowed only within
networks of the same type (e.g. cell phone roaming when the user is in a foreign
country). In the ‘ubiquitous’ scenario, it is still not clear which infrastructure should
perform billing and which rules should be used to regulate roaming between different
types of networks.

– Stimulate cooperation between nodes : When designing a certain network protocol,
it is usually assumed that all the nodes in the network voluntarily participate in the
protocol execution. In some ad hoc network application scenarios, network nodes
are owned by different authorities (private users, professionals, profit and/or nonprofit
organizations, and so on), and voluntary participation in the protocol execution cannot
be taken for granted. Thus, network nodes must be somehow stimulated to behave
according to the protocol specifications. The issue of stimulating cooperation between
nodes is treated in some detail in Chapter 16.

1.2.2 Wireless sensor networks

In a manner similar to ad hoc networks, WSNs also have attracted the attention of both
the academic and the industrial research community in the last few years. Firstly, a number
of smart sensor prototypes have been designed and implemented by the academic research
community. The most famous of such prototypes are probably the Berkeley Motes (Polastre
et al. 2004) and Smart Dust (Pister 2001). Later on, many academic interdisciplinary projects
have been funded (and are currently being funded) to actually deploy and utilize sensor
networks. One such example is the Great Duck Island project, in which a WSN has been
deployed to monitor the habitat of the nesting petrels without any human interference with
animals (Mainwaring et al. 2002).

Smart sensor nodes are also being produced and commercialized by some electronic
manufacturer. We cite Crossbow, a company that produces on a large scale the Motes
sensor nodes developed at UC Berkeley. Other major silicon companies such as Intel,
Philips, Siemens, STMicrolectronics, and so on, are interested in the WSN technology, and
are developing their own smart sensor node platform.

There is also a considerable standardization activity in the field of WSNs. The most
notable effort in this direction is the IEEE 802.15.4 standard currently under development,
which defines the physical and MAC layer protocols for remote monitoring and control,
as well as sensor network applications. ZigBee (ZigBeeAlliance 2004) is an industry con-
sortium (currently involving more than 100 members, representing 22 countries on four
continents) with the goal of promoting the IEEE 802.15.4 standard.
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Currently, we are in a phase in which the technology for implementing wireless sen-
sor networks is relatively mature but applications based on sensor networks have not been
completely defined. In particular, industries strive to find significant markets for WSN appli-
cations. The most promising ones seem to be home control, building automation, industrial
automation, and automotive applications (ZigBeeAlliance 2004). Nevertheless, the market
for wireless sensor hardware is expected to grow at the rate of 20% per year in the next few
years, which is three times the growth rate of the wired sensor market (Frost and Sullivan
2003).

In case of sensor networks also, many challenges are still to be faced before they can
be deployed on a large scale. The main challenges related to WSN implementation are the
following:

– Energy conservation: If reducing node energy consumption is important in ad hoc
networks, it becomes vital in WSNs. In fact, because of the reduced sized of the
sensor nodes, the battery has low capacity, and the available energy is very limited.
Despite this scarcity of energy, the network is expected to operate for a relatively long
time. Given that replacing/refilling batteries is usually impossible, one of the primary
design goals is to use this limited amount of energy as efficiently as possible.

– Low-quality communications: Sensor networks are often deployed in harsh envi-
ronments, and sometimes they operate under extreme weather conditions. In these
situations, the quality of the radio communication might be extremely poor, and
performing the requested collective sensing task might become very difficult.

– Operation in hostile environments : In many scenarios, sensor networks are expected
to operate under critical environmental conditions. Thus, it is essential that in these
cases the physical sensor nodes are carefully designed. Furthermore, the protocols
for network operation should be resilient to sensor faults, which can be considered a
relatively likely event.

– Resource-constrained computation: If the resources in ad hoc networks are scarce,
the situation is even worse in WSNs. Protocols for sensor networks must strive to
provide the desired QoS in spite of the few available resources.

– Data processing : Given the energy constraints and the relatively poor communica-
tion quality, the data collected by the sensor node must be locally compressed, and
aggregated with similar data generated by neighboring nodes. This way, relatively few
resources are used to communicate the data to the external observer. Since the observer
is often interested in getting data with different levels of accuracy depending, for
instance, on the events currently going on in the monitored region, the data aggrega-
tion mechanism should be able to provide different levels of compression/aggregation,
addressing the data accuracy/resource consumption trade-off.

– Scalability : WSNs are typically composed of hundreds or even several thousands of
nodes. Thus, the scalability of protocols for WSNs must be explicitly considered at
the design stage.

– Lack of easy-to-commercialize applications : Nowadays, several chip makers and elec-
tronic companies have started the commercial production of sensor nodes. However,
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it is much more difficult for these companies to commercialize applications based
on sensor networks. Selling applications, instead of relatively cheap sensors, would
be much more profitable for industry. Unfortunately, most sensor network application
scenarios are very specific, and a company would have little or no profit in devel-
oping an application for a very specific scenario since the potential buyers would be
very few.





2

Modeling Ad Hoc Networks

In this chapter, we introduce a simple but widely accepted model of ad hoc network. Since
sensor networks are a subclass of ad hoc networks, this model applies to this type of
networks also.

2.1 The Wireless Channel

Nodes in ad hoc and sensor networks communicate through wireless transceivers. For this
reason, an important building block of any model for ad hoc networks is the wireless channel
model. The model presented in this section is based on the material contained in (Rappaport
2002).

A radio channel between a transmitter unit u and a receiver unit v is established if and
only if the power of the radio signal received by node v is above a certain threshold, called
the sensitivity threshold . Formally, there exists a direct wireless link between u and v if
Pr ≥ β, where Pr is the power of the signal received by v, and β denotes the sensitivity
threshold. The exact value of β depends on the features of the wireless transceiver and on
the communication data rate: for a given radio, the higher the data rate, the higher the value
of β, implying a stronger requirement on the received power. In order to simplify notation,
in the following we assume that β has the conventional value of 1.

The received power Pr depends on the power Pt used by u to transmit the radio signal,
and on the path loss , which models the radio signal degradation with distance. Denoting
with PL(u, v) the path loss between units u and v, we can write

Pr = Pt

PL(u, v)
.

Thus, the occurrence of a radio channel between any two network nodes can be predicted
if the path loss model is known.

Modeling path loss has historically been one of the most difficult tasks of the wireless
system designer. The mechanisms that regulate radio signal propagation in the environment
can be grouped into three categories: reflection, diffraction and scattering. Reflection occurs

Topology Control in Wireless Ad Hoc and Sensor Networks P. Santi
 2005 John Wiley & Sons, Ltd
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when the electromagnetic wave hits the surface of an object that has very large dimensions
when compared to the wavelength of the propagating signal. For instance, the radio signal
is reflected by the surface of the earth and by large buildings and walls. Diffraction is
caused by objects with very sharp edges that lie on the radio path between the transmitter
and the receiver. Scattering occurs when several small objects (as compared to the signal
wavelength) are in between the transmitter and the receiver of the radio signal. Typical
sources of scattering are foliage, street signs, and so on. Given these mechanisms, it is
clear that radio wave propagation is an extremely complex phenomenon, which is heavily
influenced by environmental factors. In the following, we shortly describe the most common
path loss models introduced in the literature. For a detailed treatment of this subject, the
reader is referred to (Rappaport 2002).

2.1.1 The free space propagation model

This model is used to predict radio signal propagation when the path between the transmitter
and the receiver is clear and unobstructed (line-of-sight, or LOS, path). Denoting with Pr(d)

the power of the radio signal received by a node located at distance d from the transmitter,
we have

Pr(d) = PtGtGrλ
2

(4π)2d2L
, (2.1)

where Gt is the transmitter antenna gain, Gr is the receiver antenna gain, L is the system
loss factor not related to propagation, and λ is the wavelength in meters. Since we are not
interested in the specific characteristics of the transceiver, we can simplify equation (2.1)
as follows:

Pr(d) = Cf · Pt

d2
, (2.2)

where Cf (f stands for free space) is a constant that depends on the characteristics of the
transceivers.

Equation (2.2) shows that the received power falloff is proportional to the square of the
distance d that separates the transmitter and the receiver. Combining equation (2.2) with the
sensitivity threshold, we can state that the transmitted message can be correctly received if
and only if

d ≤
√

CfPt.

In other words, the radio coverage area of a node transmitting at power Pt is a disk of
radius

√
CfPt centered at the node.

The free space equation is valid only for values of d that are relatively far from the
transmitting antenna. For values of d within the so-called close-in distance d0, the path loss
can be assumed to be constant.

2.1.2 The two-ray ground model

It is seldom the case that the single direct path between the transmitter and the receiver
is the only physical means of propagation of the radio signal. For this reason, the free
space propagation model is often inaccurate. To improve accuracy, the two-ray ground
model considers two propagation paths: the directed path and a ground reflected propagation
between the transmitter and the receiver (see Figure 2.1).
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Figure 2.1 The two-ray propagation model: the radio signal sent by node u reaches node
v through the direct path, and through a ground reflected path.

In the two-ray ground propagation model, the received power at distance d is given by
the following formula:

Pr(d) = PtGtGr
h2

t h
2
r

d4
, (2.3)

where ht is the transmitter antenna height and hr is the receiver antenna height. If the
distance between the sender and the receiver is relatively large (d � √

hthr), and abstracting
the features of the radio transceivers, we can write the following simplified formula:

Pr(d) = Ct · Pt

d4
, (2.4)

where Ct (t stands for two-ray ground) is a constant that depends on the characteristics of
the radio transceivers. So, the major difference with the free space model is that the radio
signal falloff in this case is proportional to the distance raised to the fourth power, instead
of to the square of the distance.

Combining equation (2.4) with the sensitivity threshold, we have that the radio coverage
region in the two-ray ground model is a disk of radius 4

√
CtPt centered at the transmitter.

2.1.3 The log-distance path model

The log-distance model has been derived combining analytical and empirical methods.
Empirical methods are based on field measurements and reverse curve fitting on the exper-
imental data.

This model, which can be seen as a generalization of both the free space and the two-
ray ground model, indicates that the average long-distance path loss is proportional to the
separation distance d raised to a certain exponent α, which is called the path loss exponent ,
or distance-power gradient . Formally,

Pr(d) ∝ Pt

dα
. (2.5)

The radio coverage region in this model is a disk of radius proportional to α
√

Pt centered
at the transmitter.

The value of α depends on the environmental conditions, and it has been experimentally
evaluated in many scenarios. Table 2.1 summarizes some of these values.
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Table 2.1 Values of the
distance-power gradient in
different environments

Environment α

Free space 2
Urban area 2.7–3.5
Indoor LOS 1.6–1.8
Indoor no LOS 4–6

2.1.4 Large-scale and small-scale variations

The log-distance propagation model predicts the average received power at a certain dis-
tance. However, the intensity of the received signal can vary a lot from the average value.
For this reason, probabilistic models have been used to account for the variability of the
wireless channel. In a probabilistic propagation model, the radio coverage region is no
longer a disk, since the occurrence of a wireless channel between two nodes is a random
event.

Probabilistic propagation models can be divided into two classes:

– Large-scale models : These models predict variations of the signal intensity over large
distances.

– Small-scale models : These models predict variations of the signal intensity over very
short distance. They are also called multipath fading (or simply fading) models.

The most important large-scale model is the log-normal shadowing model, in which the
path loss at distance d is modeled as a random variable with log-normal distribution (see
Appendix B for a definition of log-normal distribution) centered about the mean value, which
is stated in equation (2.5). The most important fading model is the Rayleigh model, which
models small-scale variations of the radio signal intensity according to a random variable
with Rayleigh distribution. A detailed description of probabilistic radio propagation models
can be found in (Rappaport 2002).

2.2 The Communication Graph

The communication graph defines the network topology, that is, the set of wireless links
that the nodes can use to communicate with each other. Given the discussion of the previous
section, it is clear that the presence of a link between two units u and v in the network
depends on (i) the relative distance between u and v, (ii) the transmit power used to send
the data, and (iii) the surrounding environment. Since accounting for large- and small-
scale variations of the radio signal is quite complicated, and renders the link model tightly
coupled with a specific application scenario, in this section and in the rest of this book we
will model the wireless channel using the log-distance path model, which abstracts many
characteristics of the environment. This assumption is standard in research on topology
control in ad hoc/sensor networks.



MODELING AD HOC NETWORKS 17

Let N be a set of wireless nodes, with |N | = n. These nodes are located in a certain
bounded region R. For simplicity, we assume that R is a d-dimensional cube of side l.
Formally, R = [0, l]d for some l > 0, where d = 1, 2, 3. For any u ∈ N , the location of
u in R, denoted L(u), is the position of u in R, expressed as d-dimensional coordinates.
Thus, function L : N �→ R maps every node of the network to its physical location within
R. If nodes are mobile, the physical node location is time dependent. If nodes move within
R – we can assume this without loss of generality – mobility can be represented by adding a
further argument to L, the time instant t . Summarizing, function L : N × T �→ R assigns to
every element of N and to any time t ∈ T a set of d-dimensional coordinates, representing
the physical node’s location at time t . A d-dimensional mobile ad hoc network is then
represented by the pair Md = (N, L), where N and L are defined as above.

Given a network Md = (N, L), a range assignment for Md is a function RA that assigns
to every element u of N a value RA(u) ∈ (0, rmax], representing its transmitting range.
Parameter rmax is called the maximum transmitting range, and depends on the features of
the radio transceivers equipping the nodes. It is usually assumed that network nodes are
equipped with transceivers having similar features, that is, rmax is the same for all the nodes
in the network. In case the network is composed of units equipped with transceivers of
different type, rmax is intended as the maximum over the transmitting ranges of the different
radios, and the definition of transmitting range is still sound.

The transmitting range of a node u denotes the range within which the data transmitted
by u can be correctly received. Given the range r , the definition of the subregion of R

within which correct data reception is possible depends on the network dimension: in case
of one-dimensional networks, it is the segment of length 2r centered at u; in case of
two-dimensional networks, it is the circle of radius r centered at u; in three-dimensional
networks, it is the sphere of radius r centered at u (see Figure 2.2).

Note that, under the assumption that the radio signal propagates according to the log-
distance path model, any transmitting range r ∈ (0, rmax] is uniquely associated with a
transmit power Pr ∈ (0, Pmax], where Pmax is the maximum transmit power level of the
nodes. Thus, the notions of node’s transmitting range and node’s transmit power are equiv-
alent, and they will be interchangeably used in the rest of this book.

Given a network Md = (N, L) and a range assignment RA, the communication graph
induced by RA on Md at time t is defined as the directed graph Gt = (N, E(t)),
where the directed edge [u, v] exists if and only if RA(u) ≥ δ(L(u, t), L(v, t)), where
δ(L(u, t), L(v, t)) is the Euclidean distance between u and v at time t . In other words,
the directed wireless link (u, v) exists if and only if nodes u and v are at distance of at most

u

r r

u

(a) (b) (c)

r
u

r

Figure 2.2 Radio coverage in one-dimensional (a), two-dimensional (b), and three-
dimensional (c) networks. The covered region has radius r , and it is centered at the unit.
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RA(u) at time t . In this case, v is said to be a 1-hop neighbor, or neighbor for short, of
node u. A wireless link is said to be bidirectional, or symmetric, at time t if (u, v) ∈ E(t)

and (v, u) ∈ E(t). In this case, nodes u and v are said to be symmetric neighbors .
The maxpower range assignment is such that RA(u) = rmax for every node u, that is,

every node in the networks transmits at maximum power. The resulting communication
graph is called the maxpower graph , and represents the set of all possible communication
links between the network nodes.

A range assignment RA is said to be connecting at time t, or simply connecting, if the
resulting communication graph at time t is strongly connected, that is, if for any pair of
nodes u and v, there exists at least one directed path from u to v. A range assignment
in which all the nodes have the same transmitting range r , for some 0 < r ≤ rmax, is
called r-homogeneous . When the exact value of r is not relevant, the r-homogeneous range
assignment is simply called homogeneous. Observe that the communication graph generated
by a homogeneous range assignment can be considered as undirected, since (u, v) ∈ E(t) ⇔
(v, u) ∈ E(t).

If the network is mobile, the range assignment may vary with time in order to preserve
a certain property of the communication graph, such as connectivity. In general, we can
then define a sequence of range assignments RAt1, RAt2 , . . . during the network lifetime,
where RAti is the range assignment at time ti , and the transition between range assignments
is determined by an appropriate protocol.

If the network is stationary (i.e. the position of every node does not change during the
entire network operational lifetime), the model described above can be simplified by making
L a function of N only. Nevertheless, different range assignments can, in principle, be used
during the network lifetime. The range assignment can be varied, for instance, to support
different kinds of traffic (for example, in a sensor network, the type of information delivered
to the external observer changes depending on the detected events), or to achieve a balanced
energy consumption among network nodes. Thus, in general, the communication graph is
time dependent even if the network is stationary.

The model described in this section is essentially the point graph model introduced in
(Sen and Huson 1996). An example of two-dimensional point graph is reported in Figure 2.3.
Similar graph models have been used in applied probability theories, such as continuum per-
colation and geometric random graphs. In the former theory, a unit disk graph is a graph
in which every two nodes are connected with an edge if and only if they are at distance
at most 1. Up to a normalization, unit disk graphs correspond to the model described in
this section with homogeneous range assignment. In the theory of GRG, a set of points is
distributed according to some probability distribution in a certain region. Points are then con-
nected according to some rule (e.g. connect to all the points within distance r , or connect to
the k closest nodes, etc.), generating a geometric random graph. Also, this model is a special
case of ours, in which it is assumed that nodes are randomly distributed and that the range
assignment is defined by a specific rule. The interested reader can find additional information
on the theories of continuum percolation and of geometric random graphs in Appendix B.

The main weakness of the point graph model is the assumption of perfectly regular
radio coverage: the covered region is a d-dimensional disk of a certain radius centered at
the transmitter. As discussed in the previous section, this assumption is quite realistic in
open air, flat environments. Unfortunately, ad hoc and sensor networks are likely to be used
in very different situations, such as indoor or urban scenarios (ad hoc networks), or under
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Figure 2.3 Example of two-dimensional point graph. Note that two of the links in the graph
are unidirectional.

harsh conditions (sensor networks). In other words, in real-life situations, it is quite likely
that the radio coverage region is highly irregular, because of the influence of walls, buildings,
interference with preexisting infrastructure, and so on. However, including all these details in
the network model would make it extremely complex and scenario dependent, hampering the
derivation of meaningful and sufficiently general analytical results. For this reason, despite its
limitations, the point graph model is widely used in the study of ad hoc network properties.

Before ending this section, we want to emphasize that the results obtained using the point
graph model are useful, at least to some extent, also in situations in which the radio coverage
region is known to be irregular. For instance, suppose we want to formally characterize the
minimum value of r such that the r-homogeneous range assignment is connecting. If the
network is two-dimensional, the value of r thus obtained can be thought of as the radius
of the largest circular subarea of the actual radio coverage area. Thus, there could exist
nodes that are 1-hop neighbors in reality, but that are not directly connected in the point
graph model. It follows that the actual network connectivity is higher than that formally
characterized using the point graph model. Clearly, the analytical characterization of r

becomes less and less significant from a practical point of view as the actual radio coverage
area is more and more irregular.

2.3 Modeling Energy Consumption

One of the primary concerns of the ad hoc/sensor networks designer is the efficient use of
energy. Thus, it is fundamental to model the node energy consumption accurately. Since
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the features of typical nodes in ad hoc and sensor networks are quite different, we discuss
energy models for the two classes of networks separately.

2.3.1 Ad hoc networks

Depending on the scenario, ad hoc networks can be composed of nodes of the most diverse
type: laptops, cellular phones, PDAs, smart appliances, and so on. Furthermore, for many
application scenarios (e.g. the ‘ubiquitous network’), the network can be composed of het-
erogeneous devices. Given this node diversity, a typical approach in the literature is to
focus attention on the energy consumption of the wireless transceiver only. This is also our
choice, which is further motivated by the fact that topology control is primarily concerned
with reducing the energy consumed to communicate.

Depending on the type of device, the amount of energy consumed by the transceiver
varies from about 15 to about 35% of the total energy dissipated by the node. The former
value refers to a laptop equipped with a IEEE 802.11 wireless card, while the latter is typical
of a PDA device. Since the energy consumed by the wireless card is a significant portion
of the total power dissipation in the node, optimizing the energy used to communicate is an
important issue.

Several authors have measured the energy consumption of commercial 802.11 wireless
cards. Typically, an IEEE 802.11 wireless card has four operational modes:

– Idle: The radio is turned on, but it is not used.

– Transmit : The radio is transmitting a data packet.

– Receive: The radio is receiving a data packet.

– Sleep: The radio is powered down.

Table 2.2 shows the power consumption of a CISCO Aironet IEEE 802.11 a/b/g card, as
reported in the data sheets (Cisco 2004). Power consumption in sleep mode is not reported
in the data sheets. The table also reports the nominal transmitting ranges when the card
transmits at full power. As seen from the table, the nominal range depends on environmental
factors (indoor or outdoor conditions) and on the data rate used to send the message.

We remark that the data reported in Table 2.2 are nominal, and can be considerably
different from the actual power consumption of the wireless card. For instance, if we consider
the specifics of the CISCO Aironet 350 card as reported in the data sheets, the sleep : idle :
rx : tx power ratios are 0.07:1:1.33:2.22 (Cisco 2004). These values must be compared with
the ratios computed with the measured power consumption, which are 0.04:1:1.20:1.73 (see
(Shih et al. 2002)). Measurements performed on other models of IEEE 802.11 wireless
cards can be found in (Ebert et al. 2002; Feeney and Nilsson 2001). All the measurements
reported in the literature have outlined an important point, that is, that any radio state
transition comes at a significant energy cost (and time latency). This is especially true when
the radio transits from the sleep (power down) to the idle (power up) state.

In this book, we model node energy consumption by using the sleep : idle : rx : tx power
ratios. In other words, we are not interested in the absolute values of the power consumption,
but on the relative values. In our simplified model, we assume that the radio is consuming
conventional power 1 when the radio is idle, power 1.x when the radio is receiving a
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Table 2.2 Nominal power consumption and transmit range of the CISCO IEEE
802.11 a/b/g wireless card. Power consumption is measured by the drain current,
expressed in mA. In the table, the minimum value of the nominal range refers to
the maximum data rate (54 Mbps), and the maximum value to the 6 Mbps data
rate

Power Idle (mA) Power Tx (mA) Power Rx (mA)

802.11 a 203 554 318
802.11 b 203 539 327
802.11 g 203 530 282

Tx Range Indoor (m) Tx Range Outdoor (m)

802.11 a 13–50 30–300
802.11 b/g 27–91 76–396

message, power 1.y when the radio is transmitting a message at full power, and power
0.z when the radio is in sleep mode (the actual values of x, y, and z depending on the
specific card).

Before ending this section, we want to remark that the ratio 1.y used in our model refers
to the relative power consumption of the radio when it transmits at maximum power. On
the other hand, we shall see that topology control protocols are based on the ability of the
wireless node to dynamically adjust its transmitting range. This feature is actually available
on some commercial IEEE 802.11 cards, such as those produced by CISCO. For instance,
the CISCO Aironet IEEE 802.11 a/b/g card can use transmit powers ranging from 1 mW to
100 mW. However, this value refers to the power consumption of the RF amplifier, which
is only a part of the total power consumed by the wireless card. In fact, the card consumes
significant energy also to power up the other analog and digital circuitry.

How to model power consumption when the radio is not transmitting at maximum
power is not clear. Most of the approaches presented in the literature are concerned with
the transmit power only, which is typically modeled using one of the formulas reported in
Section 2.1. Unless otherwise specified, this book will also follow this simplistic energy
model. In particular, we will use the following definition of energy cost:

Definition 2.3.1 (Energy cost) Given a range assignment RA for a certain network Md =
(N, L), the energy cost of RA is defined as

c(RA) =
∑
u∈N

RA(u)α,

where α is the distance-power gradient.

Note that the above definition of energy cost is coherent with our working assumption
that the radio signal propagates according to the log-distance path model.

2.3.2 Sensor networks

In case of sensor networks, the task of providing a simple yet realistic energy model is
relatively simpler, as compared to the case of ad hoc networks. In fact, sensor networks are
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Table 2.3 Measured power consumption of a Rockwell’s WINS sensor node

MCU Mode Sensor Mode Radio Mode Total Power (mW)

On On Tx (power 36.3 mW) 1080.5
On On Tx (power 0.12 mW) 771.1
On On Rx 751.6
On On Idle 727.5
On On Sleep 416.3
On On Removed 383.3
Sleep On Removed 64.0

typically composed of homogeneous devices, which are usually very simple. Furthermore,
since many sensor nodes have been designed in the research community, their features are
very well known. As a result, several sets of energy consumption measurements of wireless
sensor nodes have been reported in the literature (Raghunathan et al. 2002).

Table 2.3 reports the power dissipation of a Rockwell’s WINS sensor node (Rock-
wellScienceCenter 2004). The node is composed of three main components: the microcon-
troller unit (MCU), the sensing apparatus (sensor), and the wireless radio. If we consider the
power consumption of the wireless radio only, we have the following sleep : idle : rx : tx
ratios: 0.09:1:1.07:2.02. Note that these ratios are quite similar to the case of 802.11 wireless
cards, except for a somewhat higher power consumption when the radio is transmitting at
maximum power. When the transmit power is minimum (0.12 mW), the idle : tx ratio in the
WINS sensor is 1.12. So, there is an almost twofold power consumption increase when vary-
ing the transmit power from the minimum to the maximum value. This means that varying
the transmit power level has a considerable effect on the node’s energy consumption.

2.4 Mobility Models

Node mobility is a prominent feature of ad hoc networks and, in some cases, also of WSNs.
As a consequence, studying the performance of ad hoc/sensor networking protocols in the
presence of mobility is a fundamental stage of the design process. Since real implementations
of ad hoc/sensor networks are scarce, real-life movement patterns are very difficult to obtain,
and the common approach is to use synthetic mobility models and simulation.

Mobility models for ad hoc/sensor networks should

– resemble real-life movements : Given the wide range of ad hoc and sensor network
applications, the movement patterns to consider are numerous: they range from cam-
puswide movement of students to vehicular motion in highways, from movement of
groups of tourists in a urban scenario to rescue squads motion in disaster areas, and
from sensors carried around by ocean flows to animal movement in animal tracking
WSN applications. Providing a unique mobility model that resembles all these types of
mobility is virtually impossible. However, a mobility model should be representative
of at least one application scenario.

– be simple enough for simulation/analysis : Since mobility models are used in the sim-
ulation of ad hoc networks, the model should be simple enough to be integrated in the
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simulator and to keep the simulation running time reasonable. Furthermore, using rel-
atively simple mobility models eases the task of deriving meaningful analytical results
concerning fundamental network parameters in presence of mobility. In turn, these
results can be used to optimize the performance of ad hoc/sensor networking protocols.

Clearly, the two goals above are conflicting: the more realistic the model is, the more
the details that must be included in it, and the model complexity increases. Thus, a synthetic
mobility model should be a good compromise between representativeness and simplicity, that
is, it should consider the salient features of a certain movement pattern, while disregarding
secondary details.

In this section, we briefly describe the most important mobility models used in the
simulation of ad hoc/sensor networks. For a more detailed description of mobility models
for ad hoc networks, see (Bettstetter 2001a; Camp et al. 2002).

Random waypoint model. This is by far the most commonly used mobility model for
ad hoc networks. One of the reasons for its popularity is the fact that it is implemented in
network simulations tools such as Ns2 (Ns2 2002) and GloMoSim (Zeng et al. 1998). The
Random Waypoint (RWP) model has been introduced in (Johnson and Maltz 1996) to study
the performance of the DSR routing protocol. In this model, each node chooses uniformly
at random a destination point (the ‘waypoint’) within the deployment region R, and moves
toward it along a straight line. Node velocity is chosen uniformly at random in the interval
[vmin, vmax], where vmin and vmax are the minimum and maximum node velocities. When
the node arrives at destination, it remains stationary for a predefined pause time, and then
starts moving again according to the same pattern.

The RWP model is representative of an individual movement, obstacle-free scenario:
each node moves independent of each other (individual movement), and it can potentially
move in any subregion of R (obstacle-free). For instance, a similar type of mobility could
arise when users move in a large room, or in a open air, flat environment.

Given its popularity, RWP mobility has been deeply studied in the literature. In particular,
it has been recently discovered that the long-term node spatial distribution of RWP mobile
networks is concentrated in the center of the deployment region (border effect) (Bettstetter
and Krause 2001; Bettstetter et al. 2003; Blough et al. 2004), and that the average nodal
speed, defined as the average of the node velocities at a given instant of time, decreases over
time (Yoon et al. 2003). These observations have brought to the attention of the community
the fact that RWP mobile networks must be carefully simulated. In particular, network
performance should be evaluated only after a certain ‘warm-up’ period, which must be
long enough for the network to reach the node spatial and average velocity ‘steady-state’
distribution.

The RWP model has also been generalized to slightly more realistic, though still simple,
models. For instance, in (Bettstetter et al. 2003) the RWP model is extended by allow-
ing nodes to choose pause times from an arbitrary probability distribution. Furthermore, a
random fraction of the network nodes remains stationary for the entire simulation time.

Random direction model. Similar to the RWP model, the random direction model resem-
bles individual, obstacle-free movement. This model was created to maintain a uniform node
spatial distribution during the simulation time, thus avoiding the border effect typical of RWP
mobility.
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In this model (Royer et al. 2001), any node chooses a direction uniformly at random in
the interval [0, 2π ], and a random velocity in the interval [vmin, vmax]. Then, it starts moving
in the selected direction with the chosen velocity. When the node reaches the boundary of
R, it chooses a new direction and velocity, and so on.

Variants of this model have also been presented. In a first variant (Haas and Pearlman
1998; Pearlman et al. 2000b), a node is ‘bounced back’ when it reaches the boundary
of the deployment region. In another (Bettstetter 2001b), the node moves for a random
(exponentially distributed) time, and then it changes direction and velocity of movement.

Brownian-like motion. Contrary to the case of RWP and random direction mobility,
which resemble intentional movement, the class of Brownian-like mobility models resembles
nonintentional motion. For this reason, these models are sometimes called drunkardlike
models.

In Brownian-like motion, the position of a node at a given time step depends (in a
certain, probabilistic, way) on the node position at the previous step. In particular, no
explicit modeling of movement direction and velocity is used in this model.

An example of Brownian-like motion is the model used in (Santi and Blough 2003).
Mobility is modeled using three parameters: pstat, pmove and m. The first parameter represents
the probability that a node remains stationary for the entire simulation time. Parameter pmove

is the probability that a node moves at a given time step. Parameter m models, to some
extent, velocity: if a node is moving at step i, its position at step i + 1 is chosen uniformly
at random in the square or side 2m centered at the current node position.

Map-based mobility. In all the models introduced so far, nodes are free to move within
any subregion of the deployment region R. However, in many realistic scenarios, nodes are
constrained to move within specified paths. This is the case, for instance, of cars moving on
a freeway, or people moving on sidewalks, and so on. Map-based models have been used
to model these situations.

The first step in the definition of map-based models is the map setup, that is, the
definition of the paths within which nodes are allowed to move. Then, a certain number of
nodes are randomly located on the paths, and they start moving according to scenario-specific
rules.

An instance of map-based mobility is the Freeway mobility model (Bai et al. 2003),
used to mimic the movement of cars on freeways. In this model, several freeways are
located in the deployment region. Each freeway is composed of a varying number of lanes
in both directions. Nodes are randomly located on a freeway, and they move with a random
velocity, which is temporally dependent on its previous velocity. If two nodes on the same
lane are within a certain minimum distance (safety distance), the velocity of the following
node cannot exceed the velocity of the preceding one.

Another instance of map-based mobility is the Manhattan mobility model (Bai et al.
2003), which is used to emulate urban movement scenarios. First, a Manhattan-like map,
composed of horizontal and vertical streets, is generated. Nodes can move along the streets
in both directions. When a node arrives at an intersection, it randomly chooses whether to
continue moving along the same direction, or to take a left or a right turn. Similar to the
Freeway model, the velocity of a node at a certain instant of time depends on the node
velocity at the previous time step.
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(a) (b)

Figure 2.4 Examples of RWP (a) and random direction mobility (b). In case of RWP
mobility, nodes tend to cross the center of the deployment region (border effect).

A third instance of map-based mobility is the Obstacle mobility model introduced in
(Jardosh et al. 2003). In this model, a map is first generated by adding obstacles (buildings)
to the environment. The obstacle-generation phase can be either random or based on real
maps. Once the buildings are deployed, a number of pathways connecting different buildings
are generated, and nodes are assumed to move along these pathways. An interesting feature
of this model is that obstacles are accounted for also when simulating the radio signal
propagation in the environment: in other words, it is assumed that the wireless signal is
obstructed by the obstacles.

Group-based mobility. All the models described so far resemble individual mobility.
However, in many situations, nodes are expected to move in groups (for instance, groups
of tourists moving in a city). Group-based mobility has been introduced to model these
situations.

In group-based models, a small subset of the network nodes is defined as the set of group
leaders. The remaining nodes are randomly assigned to one of the leaders, thus forming
groups. Initially, the leaders are randomly distributed in the deployment region R, and the
members of each group are randomly located in the neighborhood of the leader. Then,
the group leader moves according to one of the previous mobility models, such as RWP
or random direction. The other group members ‘follow’ the leader, having a speed and
direction that are a random perturbation of those of the leader. When two groups cross, any
group member can leave its group and join the other with a certain probability. Group-based
mobility models have been used in (Hong et al. 1999; Wang and Li 2002).

Examples of RWP and random direction mobility are shown in Figure 2.4, while
Figure 2.5 reports examples of map-based mobility.

2.5 Asymptotic Notation

Before concluding this chapter, we recall the standard notation regarding the asymptotic
behavior of functions.
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(a) (b)

Figure 2.5 Examples of map-based mobility: the freeway model (a) and the Manhattan
mobility model (b).

Let f and g be functions of a certain parameter x. We are interested in characterizing
the asymptotic behavior of f and g as x → ∞.

Definition 2.5.1 We say that f (x) has order at most g(x), denoted as f (x) ∈ O(g(x)),
if there exist constants c and x0 such that, for any x ≥ x0, f (x) ≤ c · g(x). We say that
f (x) has order at least g(x), denoted as f (x) ∈ �(g(x)), if g(x) ∈ O(f (x)). We say that
f (x) and g(x) have the same order, denoted as f (x) ∈ �(g(x)), if f (x) ∈ O(g(x)) and
f (x) ∈ �(g(x)). We will sometimes use the notation f (x) ≈ g(x) also to indicate that f (x)

and g(x) have the same order.

Definition 2.5.2 We say that f (x) is asymptotically smaller that g(x), denoted as f (x) 
g(x), if limx→∞ f (x)

g(x)
= 0. We say that f (x) is asymptotically larger than g(x), denoted as

f (x) � g(x), if g(x)  f (x).
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Topology Control

3.1 Motivations for Topology Control

In Chapter 1, we have briefly described the many challenges that the ad hoc and sensor
network designer must face. In this chapter, we start focusing on two of these challenges,
which have motivated researchers to study the realm of topology control techniques.

3.1.1 Topology control and energy conservation

As outlined in Chapter 1, the efficient use of the scarce energy resources available to ad
hoc and sensor network nodes is one of the fundamental tasks of the network designer.
Since nodes consume a considerable amount of energy to transmit/receive messages (this
is especially true in case of sensor networks), reducing the energy consumed for radio
communications is an important issue.

Suppose node u must send a packet to node v, which is at distance d (see Figure 3.1).
Node v is within u’s transmitting range at maximum power, so direct communication
between u and v is possible. However, there exists also a node w in the region C cir-
cumscribed by the circle of diameter d that intersects both u and v (see Figure 3.1). Since
δ(u, w) = d1 < d and δ(v, w) = d2 < d, sending the packet using w as a relay is also pos-
sible. Which of the two alternatives is more convenient from the energy-consumption point
of view?

To answer this question, we must refer to specific wireless channel and energy-
consumption models. For simplicity, assume the radio signal propagates according to the
free space model and that we are interested in minimizing the transmit power only. With
these assumptions, the power needed to send the message directly from u to v is proportional
to d2; in case the packet is relayed by node w, the total power consumption is proportional
to d2

1 + d2
2 .

Consider the triangle ûwv, and let γ be the angle opposite to side uv. By elementary
geometry, we have

d2 = d2
1 + d2

2 − 2d1d2 cos γ.

Topology Control in Wireless Ad Hoc and Sensor Networks P. Santi
 2005 John Wiley & Sons, Ltd
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Figure 3.1 The case for multihop communication: node u must send a packet to v, which
is at distance d; using the intermediate node w to relay u’s packet is preferable from the
energy consumption’s point of view.

Since w ∈ C implies that cos γ ≤ 0, we have that d2 ≥ d2
1 + d2

2 . It follows that, from
the energy-consumption point of view, it is better to communicate using short, multihop paths
between the sender and the receiver.

The observation above gives the first argument in favor of topology control: instead
of using a long, energy-inefficient edge, communication can take place along a multihop
path composed of short edges that connects the two endpoints of the long edge. The goal
of topology control is to identify and ‘remove’ these energy-inefficient edges from the
communication graph.

3.1.2 Topology control and network capacity

Contrary to the case of wired point-to-point channels, wireless communications use a shared
medium, the radio channel. The use of a shared communication medium implies that par-
ticular care must be paid to avoid that concurrent wireless transmissions corrupt each other.

A typical conflicting scenario is depicted in Figure 3.2: node u is transmitting a packet
to node v using a certain transmit power P ; at the same time, node w is sending a packet
to node z using the same power P . Since δ(v, w) = d2 < δ(v, u) = d1, the power of the
interfering signal received by v is higher than that of the intended transmission from u,1

and the reception of the packet sent by u is corrupted.
Note that the amount of interference between concurrent transmissions is strictly related

to the power used to transmit the messages. We clarify this important point with an example.
Assume that node u must send a message to node v, which is experiencing a certain
interference level I from other concurrent radio communications. For simplicity, we treat I

as a received power level, and we assume that a packet sent to v can be correctly received
only if the intensity of the received signal is at least (1 + η)I , for some positive η. If the
current transmit power P used by u is such that the received power at v is below (1 + η)I ,

1This is true independently of the deterministic path loss model considered. In case of probabilistic path loss
models, this statement holds on the average.
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Figure 3.2 Conflicting wireless transmissions. The circles represent the radio coverage area
with transmit power P .

we can ensure correct message reception by increasing the transmit power to a certain
value P ′ > P such that the received power at v is above (1 + η)I . This seems to indicate
that increasing transmit power is a good choice to avoid packet drops due to interference.
On the other hand, increasing the transmit power at u increases the level of interference
experienced by the other nodes in u’s surrounding. So, there is a trade-off between the ‘local
view’ (u sending a packet to v) and the ‘network view’ (reduce the interference level in the
whole network): in the former case, a high transmit power is desirable, while in the latter
case, the transmit power should be as low as possible. The following question then arises:
how should the transmit power be set, if the designer’s goal is to maximize the network
traffic carrying capacity?

In order to answer this question, we need an appropriate interference model. Maybe the
simplest such model is the Protocol Model used in (Gupta and Kumar 2000) to derive upper
and lower bounds on the capacity of ad hoc networks. In this model, the packet transmitted
by a certain node u to node v is correctly received if

δ(v, w) ≥ (1 + η)δ(u, v)

for any other node w that is transmitting simultaneously, where η > 0 is a constant that
depends on the features of the wireless transceiver. Thus, when a certain node is receiving
a packet, all the nodes in its interference region must remain silent in order for the packet
to be correctly received. The interference region is a circle of radius (1 + η)δ(u, v) (the
interference range) centered at the receiver. In a sense, the area of the interference region
measures the amount of wireless medium consumed by a certain communication; since
concurrent nonconflicting communications occur only outside each other interference region,
this is also a measure of the overall network capacity.

Suppose node u must transmit a packet to node v, which is at distance d. Furthermore,
assume there are intermediate nodes w1, . . . , wk between u and v and that δ(u, w1) =
δ(w1, w2) = · · · = δ(wk, v) = d

k+1 (see Figure 3.3). From the network capacity point of
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Figure 3.3 The case for multihop communication: node u must send a packet to v; using
intermediate nodes w1, . . . , w3 = wk is preferable from the network capacity point of view.

view, is it preferable to send the packet directly from u to v or to use the multihop path
w1, w2, . . . , v? This question can be easily answered by considering the interference range(s)
in the two scenarios. In case of direct transmission, the interference range of node v is
(1 + η)d, corresponding to an interference region of area πd2(1 + η)2. In case of multihop
transmission, we have to sum the area of the interference regions of each short, single-hop
transmission. The interference region for any such transmission is π

(
d

k+1

)2
(1 + η)2, and

there are k + 1 regions to consider overall. Since, by Holder’s inequality, we have

k+1∑
i=1

(
d

k + 1

)2

= (k + 1)

(
d

k + 1

)2

<

(
k+1∑
i=1

d

k + 1

)2

= d2,

we can conclude that, from the network capacity point of view, it is better to communicate
using short, multihop paths between the sender and the destination.

The observation above is the other motivating reason for a careful design of the network
topology: instead of using long edges in the communication graph, we can use a multihop
path composed of shorter edges that connects the endpoints of the long edge. Thus, the
maxpower communication graph, that is, the graph obtained when the nodes transmit at
maximum power, can be properly pruned in order to maintain only ‘capacity-efficient’
edges. The goal of topology control techniques is to identify and prune such edges.

3.2 A Definition of Topology Control

In the previous section, we have presented at least two arguments in favor of a careful control
of the network topology: reducing energy consumption and increasing network capacity.
Although we have sometimes used the term ‘topology control’, a clear definition of it has
not been introduced yet.

Quite informally, topology control is the art of coordinating nodes’ decisions regarding
their transmitting ranges, in order to generate a network with the desired properties (e.g.
connectivity) while reducing node energy consumption and/or increasing network capacity.

While this definition is quite general, we believe that it captures the very distinguishing
feature of topology control with respect to other techniques used to save energy and/or
increase network capacity: the networkwide perspective. In other words, nodes make local
choices (setting the transmit power level) with the goal of achieving a certain global, net-
workwide property. Thus, an energy-efficient design of the wireless transceiver cannot be
classified as topology control because it has a nodewide perspective. The same applies to
power-control techniques, whose goal is to optimize the choice of the transmit power level
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for a single wireless transmission, possibly along several hops; in this case, we have a
channelwide perspective.

Note that our definition of topology control does not impose any constraint on the nature
of the mechanism used to curb the network topology. So, both centralized and distributed
techniques can be classified as topology control according to our definition.

Several authors consider as topology control techniques also mechanisms used to super-
impose a network structure on an otherwise flat network organization. This is the case, for
instance, of clustering algorithms, which organize the network into a set of clusters, which
are used to ease the task of routing messages between nodes and/or to better balance the
energy consumption in the network. Clustering techniques are more often used in the context
of wireless sensor networks since these networks are composed of a very large number of
nodes and a hierarchical organization of the network units might prove extremely useful.

In a typically clustering protocol, a distributed leader election algorithm is executed in
each cluster, and cluster nodes elect one of them as the clusterhead. The election is based
on criteria such as available energy, communication quality, and so on, or combination of
them. Message routing is then performed on the basis of a two-level hierarchy: the message
originating at a cluster node is destined to the clusterhead, which decides whether to forward
the message to another clusterhead (intercluster communication) or to deliver the message
directly to the destination (intracluster communication). The clusterhead might also perform
other tasks such as coordinating sensor node sleeping times, aggregating the sensed data
provided by the cluster nodes, and so on.

Although clustering protocols can be seen as a means of controlling the topology of
the network by organizing its nodes into a multilevel hierarchy, a clustering algorithm does
not fulfill our informal definition of topology control since typically the transmit power
of the nodes is not modified. In other words, a clustering algorithm is concerned with
hierarchically organizing the network units assuming the nodes’ transmitting range is fixed,
while a topology control protocol is concerned with how to modify the nodes’ transmitting
ranges in such a way that a communication graph with certain properties is generated.

3.3 A Taxonomy of Topology Control

As the informal definition of topology control introduced in the previous section outlines,
many different techniques can be classified as topology control mechanisms. In this section,
we try to organize these diverse approaches to the topology control problem in a coherent
taxonomy. Our taxonomy of topology control techniques is depicted in Figure 3.4.

First, we distinguish between homogeneous CTR and nonhomogeneous topology control.
In the former case, all the network nodes must use the same transmitting range r , and the
topology control problem reduces to the simpler problem of determining the minimum value
of r such that a certain networkwide property is satisfied. This value of r is known as the
critical transmitting range (CTR), since using a range smaller than r would compromise
the desired networkwide goal. In nonhomogeneous topology control, nodes are allowed to
choose different transmitting ranges (subject to the condition that the chosen range does not
exceed the maximum range).

The homogeneous case is by far the simplest formulation of the topology control prob-
lem. Nevertheless, it has attracted the interest of many researchers in the field, probably
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Figure 3.4 A taxonomy of topology control techniques.

because, owing to its simplicity, deriving clean theoretical results in this context is a chal-
lenging but feasible task. Chapters 4, 5, and 6 will be devoted to homogeneous topology
control.

Nonhomogeneous topology control is classified into three categories, depending on the
type of information that is used to compute the topology.

In location-based approaches, it is assumed that the most accurate information about
node positions (the exact node location) is known. This information is either used by a
centralized authority to compute a set of transmitting range assignments that optimizes a
certain measure (this is the case of the Range Assignment problem and its variants), or it
is exchanged between nodes and used to compute an ‘almost optimal’ topology in a fully
distributed manner (this is the case of protocols for building energy-efficient topologies
for unicast or broadcast communication). Typically, location-based approaches assume that
network nodes, or at least a significant fraction of them, are equipped with GPS receivers.
Location-based topology control techniques are described in Chapters 7 and 8 (centralized
approach) and in Chapter 10 (distributed approach).

In direction-based approaches, it is assumed that nodes do not know their position but
they can estimate the relative direction of their neighbors. This approach to topology control
is discussed in Chapter 11.

In neighbor-based techniques, nodes are assumed to have access to a minimal amount
of information regarding their neighbors, such as their ID, and to be able to order them
according to some criterion (e.g., distance, or link quality). Neighbor-based techniques are
probably the most suitable for application in mobile ad hoc networks, and are discussed in
details in Chapter 12.

A final distinction is between per-packet and periodical topology control. In the former
approach, every node maintains a list of efficient2 neighbors and, for each such neighbor v,
the transmit power to be used when sending packets to v. Thus, the choice of the transmit

2With efficient, we mean here either energy efficient, or capacity efficient, or both.
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power to use is done on a per-packet basis: when the packet is destined to a certain neighbor
v, the appropriate power P (v) is set, and the packet is transmitted.

Per-packet topology control usually relies on quite accurate information on node loca-
tions, and it is typically applied in combination with location-based or direction-based
topology control. A shortcoming of this technique is that it is rather demanding from a
technological point of view, since it requires that the transmit power is changed very fre-
quently (for an in-depth discussion of this issue, see Chapter 14). For this reason, simpler
periodical techniques have been proposed. In this approach to topology control, every node
maintains a list of efficient neighbors; however, differing from per-packet techniques, a node
uses a single transmit power (the so-called broadcast power) to communicate with all the
neighbors. This power can be intended as the higher of the transmit powers needed to reach
the neighbors in the list. Periodically, the broadcast power level setting used by the node is
updated, in response to node mobility and/or neighbor failures. As discussed in Chapter 13,
periodical topology control is very suitable for application in mobile ad hoc networks.

3.4 Topology Control in the Protocol Stack

A final question is left: where should topology control mechanisms be placed in the ad hoc
network protocol stack? Since there is no clear answer in the literature about this point,
in what follows we describe our view, which is only one of the many possible solutions.
In fact, the integration of topology control techniques in the protocol stack is one of the
main open research areas in this field (see Chapter 15), and the best possible solution to
this problem has not been identified yet.

In our view, topology control is an additional protocol layer positioned between the
routing and MAC layer (see Figure 3.5).

3.4.1 Topology control and routing

The routing layer is responsible for finding and maintaining the routes between source/
destination pairs in the network: when node u has to send a message to node v, it invokes
the routing protocol, which checks whether a (possibly multihop) route to v is known; if

MAC layer

Routing layer

Topology control layer

Figure 3.5 Topology control in the protocol stack.
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Figure 3.6 Interactions between topology control and routing.

not, it starts a route discovery phase, whose purpose is to identify a route to v; if no route to
v is found, the communication is delayed or aborted.3 The routing layer is also responsible
for forwarding packets toward the destination at the intermediate nodes on the route.

The two-way interaction between the routing protocol and topology control is depicted
in Figure 3.6. The topology control protocol, which creates and maintains the list of the
immediate neighbors of a node, can trigger a route update phase in case it detects that
the neighbor list is considerably changed. In fact, the many leave/join in the neighbor list
are likely to indicate that many routes to faraway nodes are also changed. So, instead of
passively waiting for the routing protocol to update each route separately, a route update
phase can be triggered, leading to a faster response time to topology changes and to a
reduced packet-loss rate. On the other hand, the routing layer can trigger the reexecution of
the topology control protocol in case it detects many route breakages in the network, since
this fact is probably indicative that the actual network topology has changed a lot since the
last execution of topology control.

3.4.2 Topology control and MAC

The MAC (Medium Access Control) layer is responsible for regulating the access to
the wireless, shared channel. Medium access control is of fundamental importance in ad
hoc/sensor networks in order to reduce conflicts as much as possible, thus maintaining the
network capacity to a reasonable level. To better describe the interaction between the MAC
layer and topology control, we sketch the MAC protocol used in the IEEE 802.11 standard
(IEEE 1999).

In 802.11, the access to the wireless channel is regulated through RTS/CTS message
exchange. When node u wants to send a packet to node v, it first sends a Request To Send
control message (RTS), containing its ID, the ID of node v, and the size of the data packet.
If v is within u’s range and no contention occurs, it receives the RTS message, and, in case
communication is possible, it replies with a Clear To Send (CTS) message. Upon correctly
receiving the CTS message, node u starts the transmission of the DATA packet, and waits
for the ACK message sent by v to acknowledge the correct reception of the data.

In order to limit collisions, every 802.11 node maintains a Network Allocation Vector
(NAV), which keeps trace of the ongoing transmissions. The NAV is updated each time

3We are considering here a reactive routing protocol, since there is wide agreement in the community that
reactive routing performs better than proactive routing in ad hoc networks.
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Figure 3.7 The importance of appropriately setting the transmit power levels.

a RTS, CTS, or ACK message is received by the node. Note that any node within u’s
and/or v’s transmitting range overhears at least part of the RTS/CTS/DATA/ACK message
exchange, thus obtaining at least partial information on the ongoing transmission.

As outlined, for instance, in (Jung and Vaidya 2002), using different transmit power
levels can introduce additional opportunities for interference between nodes. On the other
hand, using reduced transmit powers can also avoid interference. To clarify this point,
consider the situation depicted in Figure 3.7. There are four nodes u, v, w, and z, with
δ(u, v) = d1 < d2 = δ(v, w) and δ(w, z) = d3 < d2. Node u wants to send a packet to v,
and node w wants to send a packet to z.

Assume all the nodes have the same transmit power, corresponding to transmitting range
r , with r > d2 + max{d1, d3}. Then, the first between nodes v and z that sends the CTS
message inhibits the other pair’s transmission. In fact, nodes v and z are in each other’s
radio range, and overhearing a CTS from v (respectively, z) inhibits node z (respectively, v)
from sending its own CTS. Thus, with this setting of the transmitting ranges, no collision
occurs, but the two transmissions cannot be scheduled simultaneously.

Assume now that nodes u and v have radio range equal to r1, with r1 = d1 + ε < d2

and that nodes w and z have range r2, with r2 > d2. In this situation, w and z cannot hear
the RTS/CTS exchange between nodes u and v and they do not delay their data session.
However, when node w transmits its packets, it causes interference at node v, which is
within w’s range. Thus, in this case, using different transmit powers creates an opportunity
for interference.

Finally, assume nodes u and v have radio range r1, and nodes w and z have range equal
to r3, with r3 = d3 + ε < d2. With these settings of the radio ranges, the two transmissions
can occur simultaneously, since node v is outside w’s radio range and node z is outside
u’s radio range. Contrary to the example above, in this case, using different power levels
reduces the opportunities for interference, leading to an increased network capacity.

MAC layer

Topology control layer

Trigger TC executionSet the power level

Figure 3.8 Interactions between topology control and MAC layer.
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The example of Figure 3.7 has outlined the importance of correctly setting the transmit
power levels at the MAC layer. We believe this important task should be performed by
the topology control layer, which, having a networkwide perspective, can take the correct
decisions about the node’s transmitting range. On the other hand, the MAC layer can trigger
reexecution of the topology control protocol in case it discovers new neighbor nodes. The
MAC level can detect new neighbors by overhearing the network traffic and analyzing
the message headers; this is by far the fastest way to discover new neighbors, and a proper
interaction between MAC and topology control (which, we recall, is in charge of maintaining
the list of efficient neighbors) ensures a quick response to changes in the network topology.
The two-way interaction between topology control and the MAC layer is summarized in
Figure 3.8.



Part II

The Critical Transmitting Range





4

The CTR for Connectivity:
Stationary Networks

The simplest form of topology control considered in the literature is the characterization
of the so-called critical transmitting range (CTR). In this version of topology control, all
the network nodes are assumed to have the same transmitting range r , and the problem
is to identify the minimum value of r (the critical range) such that certain networkwide
properties are satisfied. The interest in finding the minimum value of r that guarantees
certain properties is motivated by energy consumption and network capacity concerns (see
Sections 3.1.1 and 3.1.2).

The most-studied version of the CTR problem in ad hoc and sensor networks is the
characterization of the CTR for connectivity, that is, identifying the minimum value of r

such that the resulting communication graph is connected.1 The interest in characterizing the
minimal conditions for connectivity lies in the fact that this is the most important network
topological property. More formally, the problem can be stated as follows:

Definition 4.0.1 (CTR for connectivity) Suppose n nodes are placed in a certain region
R = [0, l]d , with d = 1, 2, or 3. Which is the minimum value of r such that the r-homogeneous
range assignment is connecting?

In the definition above, the deployment region is the d-dimensional cube with side l. This
is only because most of the results presented in this and in the following chapters have been
obtained for this shape of the deployment region. The definition of CTR for connectivity
can be extended in a straightforward manner to deployment regions with arbitrary shape
and size.

The assumption that all the nodes use the same transmitting range reflects all those
situations in which transceivers use the same technology and no transmit power control.
This is the case, for instance, for most of the 802.11 wireless cards currently on the market.
In this scenario, using the same transmitting range for all the nodes is a reasonable choice,

1We recall that an undirected graph G is connected if and only if there exists at least one path connecting any
two nodes in the graph.

Topology Control in Wireless Ad Hoc and Sensor Networks P. Santi
 2005 John Wiley & Sons, Ltd
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and the only way to reduce energy consumption and increase capacity is to reduce r as
much as possible (Narayanaswamy et al. 2002).

The following theorem shows that the CTR for connectivity equals the length of the
longest edge of the Euclidean Minimum Spanning Tree (EMST) built on the network nodes
(see Appendix A for the definition of EMST).

Theorem 4.0.2 Let N be a set of n nodes placed in R = [0, l]d , with d = 1, 2, or 3. The
CTR for connectivity rC of the network composed of nodes in N equals the length of the
longest edge of the EMST T built on the same set of nodes.

Proof. Let e denote the longest edge in T , and let l(e) denote its length. We first show
that rC cannot be larger than l(e). This follows by observing that the l(e)-homogeneous
range assignment produces a graph that contains T as a subgraph and that T is connected;
by definition of CTR, we must have rC ≤ l(e). Let us now prove that it cannot be that
rC < l(e). Consider the sets of nodes corresponding to the two connected components T1

and T2 obtained from T by removing edge e (see Figure 4.1). By definition of EMST, edge
e is the shortest edge connecting any pair (u, v) of nodes such that u ∈ T1 and v ∈ T2. Thus,
any node in T1 is at distance at least l(e) from any node in T2. This implies that setting
the transmitting range to a value smaller than l(e) would leave the communication graph
disconnected, and the theorem is proved.

According to Theorem 4.0.2, computing the CTR2 is equivalent to computing the EMST
on the network nodes, and finding the longest edge in the EMST. Unfortunately, this way

e

T1

T2

Figure 4.1 Connected components resulting from removing the longest edge e from the
EMST.

2From now on, with CTR we mean CTR for connectivity (unless otherwise stated).
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of calculating the CTR is not apt to distributed implementation, since building the EMST
requires global knowledge (the exact positions of all the nodes in the network), which can
be acquired in a distributed setting only by exchanging a considerable amount of messages.
Furthermore, the requirement of knowing exact node positions is very strong: in fact, in
many situations, node locations cannot be determined a priori (for instance, when sensors
are dispersed on the field using a moving vehicle), and obtaining exact location information
when nodes are already deployed is, in general, quite expensive (for instance, because many
network nodes should be equipped with GPS receivers).

For the reasons described above, considerable attention has been devoted to charac-
terizing the CTR in the presence of some form of uncertainty about node positions. If
nodes’ positions are not known, the minimum value of r ensuring connectivity in all pos-
sible cases is r ≈ l

√
d, since nodes could be concentrated at the opposite corners of R.

However, this scenario is overly pessimistic in many real-life situations. For this rea-
son, a typical approach is to assume that nodes are distributed in R according to some
probability density function F , and to study the conditions for asymptotically almost sure
connectivity.

Definition 4.0.3 (a.a.s. event) Let Ek be a random event that depends on a certain param-
eter k. We say that Ek holds asymptotically almost surely (a.a.s.) or with high probability
(w.h.p) if limk→∞ P (Ek) = 1.

The probabilistic characterization of the CTR can be of great help in answering fun-
damental questions that arise at the network planning stage, such as: given a number n of
nodes to be deployed in a certain region R, and given distribution F , which resembles real-
world node distribution, which is the minimum value rC(n,F ) of the transmitting range
that ensures connectivity with high probability? Conversely, given a transmitter technology
(i.e. the value of r) and distribution F , which is the minimal number nC(r,F ) of nodes to
be deployed in order to obtain a connected network with high probability?

The answer to the questions above depends on the shape of R and on the distribution
F used to distribute nodes in R. In particular, we consider two probabilistic formulations
of the CTR problem:

– Fixed deployment region: In this version of the problem, the side l of the deploy-
ment region R is fixed (e.g. R is the unit square), and the asymptotic value of
the CTR as n → ∞ is investigated. In principle, results obtained for this version
of the problem can be applied only to dense networks. In fact, the value of the
CTR is characterized as the node density n

ld
grows to infinity, since l is an arbitrary

constant.

– Deployment region of increasing side: In this version of the problem, the side l of the
deployment region is a further model parameter, and the asymptotic value of the CTR
as l → ∞ is investigated. In this model, l can be seen as the independent variable,
and both r and n are expressed as a function of l (and of the distribution F). Since in
this version of the problem the node density n(l,F)

ld
can either converge to a constant

c ≥ 0 or diverge as l → ∞, the theoretical results obtained using this model can be
applied to networks with arbitrary density.
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4.1 The CTR in Dense Networks

The CTR in dense networks can be characterized using results taken from a recent applied
probability theory, the theory of Geometric Random Graphs (GRGs) (see Appendix B).
Since the CTR equals the longest EMST edge, probabilistic solutions to the CTR problem
in dense networks can be derived using results concerning the asymptotic distribution of
the longest EMST edge.

The following theorem is proven in (Penrose 1997).

Theorem 4.1.1 (Penrose 1997) Assume n points are distributed uniformly at random in the
unit square [0, 1]2, and let Mn be the random variable denoting the length of the longest
MST edge built on the n nodes. Then,

lim
n→∞ P [nπ(Mn)

2 − log n ≤ β] = 1

exp(e−β)
,

for any β ∈ R.

Corollary 4.1.2 If R is the unit square and n nodes are distributed uniformly at random in
R, then the CTR for connectivity is

rC =
√

log n + f (n)

nπ
,

where f (n) is an arbitrary function such that limn→∞ f (n) = +∞.

Proof. Let Gr denote the communication graph obtained when the transmitting range
is set to r . Given the characterization of the CTR for connectivity of Theorem 4.0.2 and
Theorem 4.1.1, Gr is a.a.s. connected if and only if

lim
n→∞ P

[
r ≤

√
log n + β

nπ

]
= 1. (4.1)

It is immediate to see that Equality (4.1) is satisfied if and only if β = f (n), for any function
f (n) such that limn→∞ f (n) = +∞.

The CTR in case of three-dimensional networks can be derived by combining
Theorem 1.4 of (Dette and Henze 1989) and Theorem 1.1 of (Penrose 1999a).

Theorem 4.1.3 If R is the unit cube [0, 1]3 and n nodes are distributed uniformly at random
in R, then the CTR for connectivity is

rC = 3

√
log n − log log n

nπ
+ 3

2
· 1.41 + g(n)

πn
,

where g(n) is an arbitrary function such that limn→∞ g(n) = +∞.

Note that, with respect to the case of two-dimensional networks and disregarding con-
stants, the expression of the CTR in three-dimensional networks contains an additional
log log n term. It is observed in (Dette and Henze 1989) that this term is due to the
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boundary effect (i.e. the presence of the border), which is asymptotically negligible in
the two-dimensional case, while it is not negligible for three-dimensional networks.

In case of one-dimensional networks (nodes along a line), the CTR can be characterized
by combining Theorem 1 of (Holst 1980), Theorem 2 of (Penrose 1997), and Theorem 2
of (Penrose 1999b).

Theorem 4.1.4 If R is the segment of unit length [0, 1] and n nodes are distributed uniformly
at random in R, then the CTR for connectivity is

rC = log n

n
.

We remark that the analysis of one-dimensional networks does have practical relevance,
especially when modeling vehicular ad hoc networks (e.g. cars moving on a freeway).

Since the characterizations of the CTR stated in Corollary 4.1.2, Theorem 4.1.3, and
Theorem 4.1.4 are asymptotic, an interesting question is: how fast is the convergence of the
actual CTR to the asymptotic value? In other words, for which values of n are the values of
the CTR predicted by our theorems accurate? This question can be answered by performing
simulations and comparing the experimental results with those predicted by the asymptotic
formulas.

Figure 4.2 depicts the rate of convergence of the actual CTR to the asymptotic value in
case of two-dimensional networks, where the asymptotic value of the CTR is obtained by
setting f (n) = log log n in the formula given in Corollary 4.1.2 (this definition of f (n) is
sufficient in practice to achieve a value very close to 1 in the right-hand side of the formula
of Theorem 4.1.1). The experimental value of the CTR is computed as follows: n nodes
are distributed uniformly at random in [0, 1]2, and the length of the longest EMST edge is
recorded over a large set of experiments; the recorded values constitute the experimental

Theoretical vs Experimental CTR
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Figure 4.2 CTR for connectivity calculated according to Corollary 4.1.2 with f (n) =
log log n (Th CTR), and experimental value of the CTR (Exp CTR) for different values
of n.
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Table 4.1 Values of the transmitting range yielding 99% of
connected communication graphs for increasing network size.
The table also reports the theoretical value of the CTR, calcu-
lated in accordance with Corollary 4.1.2

n CTR–Th CTR–99% n CTR–Th CTR–99%

10 0.3160 0.6587 250 0.0959 0.1518
25 0.2364 0.4425 500 0.0716 0.1093
50 0.1833 0.3276 750 0.0601 0.0884
75 0.1566 0.2680 1000 0.0530 0.0773

100 0.1397 0.2349 2500 0.03547 0.0498

distribution of the longest EMST edge, which is used to derive the actual value of the CTR.
The latter is defined as the .99 quantile of the experimental longest EMST edge distribution.3

In other words, when the transmitting range is set to the critical value as defined above,
the probability of generating a connected graph equals 0.99. The values of the CTR for
connectivity obtained by simulation are reported in Table 4.1, which is based on the results
presented in (Santi and Blough 2003).

As seen from Figure 4.2, the rate of convergence of the theoretical CTR value to the
experimental one is low: with n = 2500, the relative difference between the theoretical and
actual CTR is still in the order of 28%.

The giant component phenomenon. An important phenomenon occurring in two- and
three-dimensional GRGs is the so-called giant component phenomenon, which we now
describe.

Consider a process in which all the network nodes have initially range r = 0, and then
increase their transmitting range simultaneously. As the ranges are increased, new edges
are added to the communication graph. We are interested in two particular instants of this
process: the first instant at which the last isolated node disappears from the communication
graph (i.e. the minimum node degree is at least one), and the first instant at which the
communication graph becomes connected. Let us denote the ranges at these instants with
rI and rC , respectively. It is clear that rI ≤ rC . The following theorem, which is proven in
(Penrose 1999a), states that for large values of n, rI = rC a.a.s.

Theorem 4.1.5 (Penrose 1999a) Assume n points are distributed in R = [0, 1]d according
to the uniform distribution, with d = 2, 3. Let rI and rC be defined as above. Then,

lim
n→∞ P [rI = rC] = 1.

An important consequence of Theorem 4.1.5 is the following: consider an instant of time
corresponding to a range ri that is close enough to rC , with ri < rC ; the communication
graph at that time instant with high probability is formed by a large connected component
(the giant component) plus few isolated nodes. Putting it another way, a relatively large
connected component is formed quite soon in the increasing range process; as the range

3We recall that the q quantile of a series of data gives the point such that 100q percent of the data lie before.
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The giant component

0
0.05 0.1 0.15 0.2 0.25

10

20

30

40

50

60

70

80

90

100

r

%

% Conn
% LC

Figure 4.3 Percentage of nodes in the largest connected component (% LC) and percentage
of fully connected graphs (% Conn) for different values of the transmitting range in two-
dimensional networks with n = 100 network nodes.

increases further, additional nodes are added to this component, till the network becomes
connected.

We remark that Theorem 4.1.5 has important practical implications. To better explain
these implications, consider Figure 4.3, obtained through extensive simulation of two-
dimensional networks with n = 100 nodes. The figure shows two curves: the higher curve
refers to the average percentage of nodes belonging to the largest connected component
of the communication graph; the lower curve refers to the percentage of fully connected
communication graphs. Both plots are for increasing values of the transmitting range r .

The comparison of the two plots discloses the following important observation, which
has its theoretical foundation in Theorem 4.1.5. If the network designer’s goal is to produce
a fully connected network with high probability, the transmitting range must be set to a
relatively large value (approximately 0.23 when n = 100). However, if few isolated nodes
can be tolerated, the required transmitting range can be considerably reduced: for instance,
with r = 0.14, an average of 90% of the network nodes belong to the largest connected
component, but the probability of generating a fully connected graph is only 0.1. This is
because a giant component is formed quite soon in the increasing range process. Thus,
tolerating few isolated nodes can have beneficial effect on energy consumption and network
capacity.

In case of one-dimensional networks, the situation is quite different: as Figure 4.4 shows,
the giant component phenomenon does not occur: the curves referring to the average largest
connected component size and to the percentage of connected graphs are quite close to each
other. This means that on the average, contrary to the case of two- and three-dimensional
networks, connectivity occurs by joining several components of relatively large size. For
instance, with r = 0.07 and n = 100, the percentage of connected networks is 94.7%, but
the average size of the largest component in case of disconnected network is only 0.726n.

The intuitive explanation of this different behavior, which is theoretically supported
by the fact that Theorem 4.1.5 holds only for two- and three-dimensional networks, is the
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One-dimensional networks
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Figure 4.4 Percentage of nodes in the largest connected component (% LC) and percentage
of fully connected graphs (% Conn) for different values of the transmitting range in one-
dimensional networks with n = 100 network nodes.

following. In case of linear deployment region, an empty region of length at least r is
sufficient to render the communication graph with range r disconnected (provided there is
at least one node lying at both sides of the empty region). On the other hand, in case of
two- and three-dimensional networks, a r-hole in one dimension is not sufficient to cause
disconnection, because there could exist paths that ‘go around the hole’. Then, network
disconnection is caused by at least two- or three-dimensional holes, which occur with much
smaller probability as compared to one-dimensional holes.

Before ending this section, we want to outline the similarities between the GRG model
and the more traditional random graph model (Bollobás 1985), in which edges between
arbitrary pair of nodes are randomly selected. In both the models, the graph with high
probability becomes connected when the nodes have average degree in the order of log n.
Furthermore, the giant component phenomenon occurs in random graphs also, thus outlining
another important similarity with two- and three-dimensional GRGs.

4.2 The CTR in Sparse Networks

A common assumption of the GRG model is that the node deployment region R is fixed
(typically, it is a d-dimensional cube), and the asymptotic investigation is for increasing
number of deployed nodes (i.e. for increasing density). Combining this observation with
the fact that the rate of convergence of the actual CTR to the theoretical value of the CTR
is quite low (see Figure 4.2), we can conclude that the results presented in the previous
section in principle can be applied only to networks with very high node density. On the
other hand, simple arguments based on interference considerations indicate that, in practice,
node density cannot be too high.

To circumvent this problem, some authors suggested adding a further parameter to the
model, the side l of the deployment region. In this model, l is the independent variable, and
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the asymptotic values of r and n (which can be seen as functions of l) yielding connectivity
w.h.p. are investigated for l → ∞. Differing from the GRG model, node density n

ld
can

either converge to 0, or to a constant c > 0, or diverge as l → ∞, depending on the relative
magnitude of n and l. Thus, theoretical results obtained in this model can be applied to both
dense as well as sparse ad hoc networks.

Let us first consider one-dimensional networks. The following result, as well as the other
results presented in this section, has been proven in (Santi and Blough 2003) by making
use of the occupancy theory (see Appendix B), which is another applied probability theory
used in the analysis of ad hoc network properties.

Theorem 4.2.1 (Santi and Blough 2003) Assume n nodes, each with transmitting range r ,
are placed uniformly at random in [0, l], and assume that rn = kl log l, for some constant
k > 0. Further, assume that r = r(l)  l and n = n(l) � 1. If k > 2, or k = 2 and r =
r(l) � 1, then the resulting communication graph is a.a.s. connected. If k ≤ (1 − ε) and
r = r(l) ∈ �(lε) for some 0 < ε < 1, then the communication graph is a.a.s. disconnected.
If r = r(l) is not of the form �(lε) but rn  l log l, then the communication graph is a.a.s.
disconnected.

Corollary 4.2.2 If R = [0, l] and n nodes are distributed uniformly at random in R, the
CTR for connectivity is

rC = k
l log l

n
,

where k is a constant with 1 ≤ k ≤ 2.

As compared to Theorem 4.1.4, the statement of Theorem 4.2.1 is more involved, and
contains several technical conditions. In particular, there are assumptions on the relative
magnitudes of r and n when expressed as functions of the independent variable l, namely,
r = r(l)  l and n = n(l) � 1. Given the more general nature of this model as compared
to the GRG model, these assumptions are necessary to investigate the asymptotic behavior
of the CTR in a nontrivial setting. In fact, suppose r ≈ l. In this case, each node has a direct
connection to most of the other network nodes, and connectivity is ensured independent of n.
On the other hand, if n would remain constant as l increases, the only way of obtaining a
connected network would be to have r ≈ l, which is also a trivial case.

It is interesting to compare Corollary 4.2.2 with the analogous theorem for dense net-
works. First of all, we observe that the characterization of the CTR in case of sparse networks
is only partial since the exact value of the constant k is not known. By means of simula-
tions, the authors of (Santi and Blough 2003) argue that k is probably 1, indicating a clear
similarity with Theorem 4.1.4. Assuming k = 1, the only difference between the formulas
presented in the two theorems is the ‘geometric factor’: while in case of fixed deployment
region R the product rCn is proportional to log n, in case of deployment region of side l,
the product is proportional to l log l. The l term can be interpreted as the scaling factor,
while the log l term indicates the dependence of the CTR on a geometric parameter.

Figure 4.5 shows the rate of convergence of the actual CTR in one-dimensional networks
to the asymptotic value as predicted by Corollary 4.2.2, where k is set to 1. As in the case
of dense networks, the experimental value of the CTR is defined as the .99 quantile of the
experimental longest MST edge distribution. In the experiments, the number n of nodes
to distribute for a given value of l is set to �√l�. As seen from the figure, in this case,
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Theoretical vs Experimental CTR
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Figure 4.5 CTR for connectivity in one-dimensional networks calculated according to
Corollary 4.2.2 with k = 1 (Th CTR), and experimental value of the CTR (Exp CTR)
for increasing values of l. Parameter n is set to �√l�. The CTR reported on the y-axis is
normalized with respect to l.

the asymptotic CTR formula of Corollary 4.2.2 is a very good approximation of the actual
CTR for moderate to high values of l (l = 1000 and above). Note that these values of l

correspond to values of n in the range 32–75. Thus, contrary to the case of dense networks,
the formula of Corollary 4.2.2 is very accurate even for networks composed of few nodes.

In case of two- and three-dimensional networks, the characterization of the CTR proven
in (Santi and Blough 2003) is weaker.

Theorem 4.2.3 (Santi and Blough 2003) Assume n nodes, each with transmitting range r ,
are placed uniformly at random in [0, l]d , with d = 2, 3 and assume that rdn = kld log l,
for some constant k > 0. Further, assume that r = r(l)  l and n = n(l) � 1. If k > dkd ,
or k = dkd and r = r(l) � 1, then the resulting communication graph is a.a.s. connected,
where kd = 2ddd/2.

Theorem 4.2.4 (Santi and Blough 2003) Assume n nodes, each with transmitting range
r , are placed uniformly at random in [0, l]d , with d = 2, 3, and assume that r = r(l)  l

and n = n(l) � 1. If rdn ∈ O(ld), then the resulting communication graph is not a.a.s.
connected.

Note the asymptotic gap between the necessary and sufficient condition for a.a.s. connec-
tivity: it is known that rdn ∈ �(ld log l) is sufficient for a.a.s. connectivity (Theorem 4.2.3)
and that rdn � ld is necessary for a.a.s. connectivity (Theorem 4.2.4). Thus, the CTR for
connectivity rC might be any function of the following type:

ldf (l)

n
,

where f (l) is a function such that f (l) ∈ O(log l) and f (l) � 1.
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By means of extensive simulation, the authors of (Santi and Blough 2003) argue that
f (l) = log l is also a necessary condition for a.a.s. connectivity. We then claim the following
result, which is only partially proven.

Proposition 4.2.5 If R = [0, l]d , with d = 2, 3, and n nodes are distributed uniformly at
random in R, the CTR for connectivity is

rC = k
ld log l

n
,

where k is a constant with 0 ≤ k ≤ 2ddd/2+1.

Let us finally comment about the giant component phenomenon in sparse ad hoc net-
works. Through simulations, it is observed in (Santi and Blough 2003) that the giant
component phenomenon occurs in two- and three-dimensional networks, while it does not
occur when nodes are located on a line. Although there is no formal proof of this fact,
we can then conclude that sparse and dense ad hoc networks display the same behavior
regarding the occurrence of the giant component.

4.3 The CTR with Different Deployment Region
and Node Distribution

Characterizations of the CTR similar to those stated in the previous sections have been
derived for different shapes of the deployment region R, and for different node distributions.
In particular, Gupta and Kumar proved the same exact result as Corollary 4.1.2 when R is
the disk of unit area (Gupta and Kumar 1998). The proof of Gupta and Kumar’s result is
based on the theory of continuum percolation (see Appendix B), which is another important
applied probability theory used in the analysis of ad hoc network properties.

Other authors considered the case in which nodes are distributed according to a Poisson
process of a given intensity λ. The CTR for Poisson distributed points on a line of length
l is derived in (Piret 1991). A similar derivation of the CTR is obtained in (Dousse et al.
2002) when nodes are Poisson distributed on an unbounded one-dimensional region.

One observation regarding Poisson distribution is in order. With this type of distribution,
the total number of deployed nodes is a random variable itself. In other words, with Poisson
distribution, one is allowed to choose only the expected number of deployed nodes. For
instance, if a Poisson process of intensity λ is used to distribute nodes on a line of length
l, an average of lλ nodes will be deployed. So, setting λ = n

l
generates a network with

n nodes on the average. Given this observation, Poisson distribution is used whenever the
exact number of network nodes is not known, but some information on the expected node
density is available to the network designer.

Another distribution that has been considered in the literature is the Normal distribution.
This distribution models those situations in which nodes are somewhat concentrated around
a certain point. For instance, if an ad hoc network is used to provide wireless Internet
access, it is reasonable to assume that nodes are concentrated around the access point.
Another example in which assuming Normally distributed nodes is reasonable is when
wireless sensors are deployed in groups using a vehicle (e.g. a helicopter): in this situation,
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node concentration around the release point is expected. The characterization of the CTR
for connectivity in two- and three-dimensional networks with Normally distributed points
is derived in (Penrose 1998).

Finally, we want to mention a recent result due to Penrose (Penrose 1999c), which
characterizes the CTR for connectivity in case of arbitrary node distribution (provided
certain technical conditions are satisfied). This important result, which is used in Chapter 5
to study the CTR in mobile ad hoc networks, essentially states that what determines the
asymptotic behavior of the CTR is the minimal value of the probability density function F
used to distribute nodes in the deployment region R.

4.4 Irregular Radio Coverage Area

As discussed in Section 2.2, the main limitation of the point graph model used to derive the
results presented in this chapter is the assumption of regular radio coverage: for instance,
in case of two-dimensional networks, the radio coverage region is assumed to be a disk of
a certain radius centered at the transmitter. Given this weakness in the model, one might
argue that the characterizations of the CTR introduced in the literature have scarce practical
relevance. For this reason, some authors have recently investigated the conditions for a.a.s.
connectivity in the presence of irregular radio coverage area. In this section, we discuss
some interesting results presented in (Booth et al. 2003) and (Bettstetter 2004), which refer
to two-dimensional ad hoc networks.

Consider a set of nodes located in the plane, and assume that nodes u and v are directly
connected with a certain probability g(δ(u, v)), where δ(u, v) is the distance between the
two nodes. Typically, g is a decreasing function of the distance. However, this is not imposed
in the model, which allows g to be an arbitrary function of the distance.

Since the radio connectivity is defined in probabilistic terms, the model above allows
irregular radio coverage area. For instance, there could exist nodes u, v, w such that
δ(u, v) < δ(u, w), but only link (u, w) exists in the communication graph (see Figure 4.6).
However, since the probability of having a link depends only on the distance between the
nodes, the model can only represent situations in which the radio coverage area is rotary
symmetric. For this reason, we call this model the rotary symmetric connection model .

The traditional point graph model can be expressed in the rotary symmetric connection
model by defining

gr(x) =
{

1 if x ≤ r

0 if x > r
, (4.2)

where r is the nodes’ transmitting range. In this case, the (deterministic) radio coverage
area is given by πr2. In case of probabilistic wireless connections between nodes, the radio
coverage area must be expressed in probabilistic terms. The natural way of doing this is by
integrating the connectivity function g() on R. Formally, the radio coverage area A(g) of
the connectivity function g is defined as

A(g) =
∫

x∈R
g(x) dx.

Note that the radio coverage area determines the expected number of neighbors. For
instance, assuming that n nodes are distributed uniformly at random in the unit square, the
expected number of neighbors of a certain node is given by (n − 1)A(g).
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u

v

w

Figure 4.6 Example of radio coverage area (shaded region) in the rotary symmetric con-
nection model. Node u is directly connected to node w, and it is not connected to the closer
node v.

The authors of (Booth et al. 2003) investigate the connectivity properties of large ad hoc
networks in the rotary symmetric connection model, considering different ‘shapes’ of the
coverage region, with the constraint that the radio coverage area (and, hence, the expected
number of neighbors) is the same. In particular, they consider Poisson distributed nodes,
and characterize the minimal intensity of the Poisson process that enables the formation of
an infinite connected component in the communication graph obtained by connecting nodes
according to a certain function g, with 0 < A(g) < ∞ (this condition is required to avoid
trivial cases). Using the terminology of the continuum percolation theory, they analyze the
critical percolation density λC , which is strictly related to the CTR for connectivity in the
GRG model (see Appendix B).

Let g be any connectivity function such that 0 < A(g) < ∞. Given parameter p with
0 < p < 1, the squashing transformation g

sq
p of g is defined as follows:

gsq
p (x) = p · g(

√
px).

The connectivity function gr defined in equation (4.2), and its squashing transforma-
tion gr,1/2 of parameter p = 1/2 is reported in Figure 4.7. It is immediate to see that the
squashing transformation preserves the radio coverage area, and, consequently, the expected
number of neighbors of a node.

Intuitively, the squashing transformation of a certain connectivity function allows more
faraway connections and reduces accordingly the probability of being connected to close
nodes. In order words, direct connection to faraway nodes is traded off with reliable com-
munication to close neighbors.

The following result, which was first stated in (Booth et al. 2003) and more formally
proven in (Franceschetti et al. 2005), shows that long distance, unreliable links are at least
as good as short distance, reliable links as far as network connectivity is concerned.

Theorem 4.4.1 Let g be any connectivity function such that 0 < A(g) < ∞ and let λC(g) be
the critical percolation density when nodes are connected according to g. For any 0 < p < 1,
we have

λC(g) ≥ λC(gsq
p ).
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Figure 4.7 The connectivity function gr , and its squashing transformation gr,1/2 of parameter
p = 1/2.

On the basis of theoretical argumentation and experimental results, the authors of (Booth
et al. 2003) claim that a result similar to that of Theorem 4.4.1 holds also for a different type
of transformation of g that preserves the radio coverage area: the shifting and squeezing
transformation (see (Booth et al. 2003) and (Franceschetti et al. 2005) for details). They also
claim that the circle of radius r is the shape that provides the highest critical percolation
density, as compared to other shapes of the same area such as triangle, hexagon, and so on.

Summing up, we can conclude with the following fundamental statement:

Proposition 4.4.2 Let λC(r) denote the critical percolation density in the idealized point
graph model, where the radio coverage area is a disk of radius r . Let λc(g) denote the same
density in the rotary symmetric connection model, where g is any connectivity function such
that A(g) = πr2. Then,

λc(r) ≥ λc(g).

We remark that the proposition above has not been formally proven yet, but it is sup-
ported by many theoretical and experimental evidences.

A similar conclusion to that stated in Proposition 4.4.2 is drawn in (Bettstetter 2004),
in case the occurrence of wireless links obeys the log-normal shadowing model. We recall
that in this model the path loss at distance d is modeled as a random variable with log-
normal distribution centered around the mean value, which is derived using the classical
log-distance path model (see Section 2.1). By using theoretical argumentation and extensive
simulation, Bettstetter shows that the critical density for connectivity with deterministic
radio coverage area (disk of a certain radius r) is at least as large as the same density
considering shadowing effects.

The collection of the results presented in this section indicates that the characterization of
the CTR based on the quite idealized point graph model can be considered as the worst-case
scenario among all situations where the radio coverage area is the same. In other words, if
the conditions for connectivity are met in the point graph model, then the same conditions
are satisfied also in more realistic models that account for irregular coverage area, provided
the wireless transmission footprint (and, hence, the expected number of neighbors) is the
same. We can then conclude that the characterizations of the CTR for connectivity presented
in Sections 4.1 and 4.2 do have practical significance.



5

The CTR for Connectivity:
Mobile Networks

In the previous chapter, we have presented several characterizations of the CTR for con-
nectivity in case of stationary networks. In this chapter, we analyze the effect of mobility
on this important network parameter.

First, we have to agree on the definition of CTR in presence of mobility. Differing from
the stationary case, the network topology changes with time because of node mobility. This
implies that the CTR for connectivity also changes with time. Denoting with t1, t2, . . . , ti , . . .

a sequence of time instants, we then have a sequence of values of the CTR for connectivity
r1, r2, . . . , ri, . . ., where ri equals the length of the longest edge of the MST built on the n

nodes at time ti . Note that, in general, the values in the ri sequence are neither increasing
nor decreasing, that is, there could exist time instants i1, i2 with i1 < i2 such that ri1 < ri2 ,
and time instants i3, i4 with i3 < i4 such that ri3 > ri4 .

Several definitions of CTR for connectivity in mobile networks are possible. For instance,
we could define the CTR as the maximum value of the ris in the sequence of time instants
corresponding to the network operational time. This is a very conservative definition of
CTR, since it ensures that by setting the transmitting range to the critical value the resulting
communication graph is connected during the entire network operational lifetime. However,
this definition of mobile CTR in many situations might be too strong, because an occasional,
extremely high value of one of the ris would render the CTR very high as well. For this
reason, in the literature, a definition of CTR for connectivity in presence of mobility that is
based on a stochastic property of the mobile system has been introduced.

Definition 5.0.1 (Asymptotic node spatial distribution) Assume n nodes are initially
deployed in a certain region R according to some probability density function F . After initial
deployment, nodes start moving according to a certain mobility model M. The asymptotic
node spatial distribution generated by M-like mobility with initial deployment F is the
probability density function FM defined as

FM = lim
i→∞

Fi , (5.1)

Topology Control in Wireless Ad Hoc and Sensor Networks P. Santi
 2005 John Wiley & Sons, Ltd
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where Fi is the probability density function modeling node spatial distribution at time ti . If
the limit on the right-hand side of (5.1) does not exist, we say that mobility model M with
initial deployment F does not stabilize.

Note the stochastic nature of this definition: it is assumed that initial node positions,
as well as node positions at any time instant ti , can be modeled by a certain probability
density function that evolves with time. As discussed in Section 2.4, because of the lack of
real movement patterns, a common approach in the evaluation of mobile ad hoc network
properties is to use synthetic, stochastic mobility models. Thus, our definition of asymptotic
node spatial distribution is coherent with the stochastic nature of mobility models for ad
hoc networks.

We are now ready to define the CTR in presence of mobility.

Definition 5.0.2 (Mobile CTR) Assume n nodes are initially deployed in a certain region
R according to some probability density function F . After initial deployment, nodes start
moving according to a certain mobility model M. The CTR for connectivity in M-mobile
networks with initial deployment F is defined as the minimum value of the transmitting range
that ensures a.a.s connectivity under the assumption that n nodes are distributed in R with
density FM, where FM is the asymptotic node spatial distribution generated by M-like
mobility with initial deployment F .

Implicit in the definition above is the fact that the mobility model stabilizes. This is
actually the case of most of the models considered in the literature (for instance, all the
models described in Section 2.4). In case of unstable mobility patterns, a different definition
of CTR (such as the maximum of the ris sequence) should be used.

By defining the CTR in presence of mobility as above, we can prove an ergodic prop-
erty of certain mobile networks. We recall that a stochastic process composed of a sequence
of random variables r1, r2, . . . , ri, . . . (in our case, the sequence of the longest MST edge
lengths) is ergodic if sampling from the sequence of random variables is statistically equiv-
alent to repeatedly sampling from a certain, fixed random variable (in our case, the length
of the longest MST edge computed when nodes are distributed according to FM).

Theorem 5.0.3 Let M be a stable and c-independent mobility model, that is, a model such
that node positions at time ti+c are independent of node positions at time ti , for some con-
stant c > 0. Then, a network with M-like mobility is ergodic with respect to the CTR for
connectivity.

Proof. Consider an M-mobile network. Let r1, r2, . . . , ri, . . . denote the sequence of
random variables corresponding to the critical range for connectivity computed at time
t1, t2, . . . , ti , . . .. By hypothesis, M is stable, that is, there exists a probability density
function FM such that, for i sufficiently large, ri has the same distribution as that of
random variable r̄, where r̄ denotes the length of the longest MST edge when nodes are
distributed according to FM.
Let us consider two consecutive random variables ri and ri+1 in the sequence. In gen-
eral, ri+1 is not independent of ri , since node positions at time ti+1 might depend on node
positions at the previous step (for instance, because nodes are moving along a certain trajec-
tory). However, by hypothesis, there exists a constant c > 0 such that, for any i sufficiently
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large, the node positions at time ti+c are independent of node positions at time ti . Thus,
variables ri and ri+c are independent, and sampling from ri and subsequently from ri+c is
statistically equivalent to sampling twice from r̄ (this is true because also random variable
ri+c has the same distribution as r̄). Given this observation, we can subdivide the origi-
nal sequence of random variables S = {ri, ri+1, . . . , ri+c, ri+1+c, . . .} into c subsequences
S0 = {ri , ri+c, ri+2c, . . .}, S1 = {ri+1, ri+1+c, ri+1+2c, . . .}, . . .. For any such subsequence
Sj , successively sampling from Sj is statistically equivalent to repeatedly sampling from r̄

(this is because the random variables in Sj are independent). Since any random variable in
the original sequence S belongs to one and only one of the Sj s, it follows that successively
sampling from S is statistically equivalent to repeatedly sampling from r̄ , and the theorem
is proven.

Intuitively, ergodicity adds a temporal dimension to our definition of CTR in presence
of mobility. To better understand this point, assume that the transmitting range is set to
a value r such that the probability of generating a connected graph when nodes are dis-
tributed according to FM is 0.99, and assume M satisfies the hypotheses of Theorem 5.0.3.
By ergodicity, we can state that, on the average, 99% of the values observed in the sequence
S of the longest MST edge lengths is below r . This means that if we observe the mobile
network for a sufficiently long period of time then the fraction of time in which the net-
work is connected approaches 0.99. So, by observing the network behavior when nodes
are distributed according to the asymptotic node spatial distribution generated by M-like
mobility, we can obtain information on the dynamic behavior of the network when nodes
move.

The discussion above has outlined that, assuming M is a stable mobility model, the
problem of characterizing the CTR in presence of M-like mobility can be reduced to
studying the CTR under the assumption that nodes are distributed according to a certain
distribution FM.

The first observation is that if a certain mobility model M generates a uniform asymp-
totic node spatial distribution (i.e. FM is the uniform distribution) then the results on the
CTR presented in the previous chapter can be directly applied to M-mobile networks. An
example of such mobility model is Brownian-like mobility (see Section 2.4 for the definition
of Brownian-like motion): in (Blough et al. 2003b), it is shown through simulation that this
mobility model generates a uniform long-term node spatial distribution.

In the next section, we consider the case of RWP mobility, which is the only mobility
model for which the asymptotic node spatial distribution has been derived.

5.1 The CTR in RWP Mobile Networks

In this section, we characterize the CTR for connectivity in case of RWP mobility, which
is by far the most popular mobility model used in the simulation of ad hoc networks.

It is known that the asymptotic node spatial distribution generated by RWP mobility is
not uniform but is somewhat concentrated in the center of the deployment region (Bettstetter
and Krause 2001; Blough et al. 2004). This phenomenon, which is called the border effect,
is due to the fact that the waypoints (i.e. the destinations of a movement) in the RWP
model are selected uniformly at random in a bounded deployment region R. To better
understand this point, consider a RWP mobile node u, and assume that node u is currently
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u

A2

A1

Figure 5.1 The border effect in RWP mobile networks: when a node is resting close to
the border, it is likely that the trajectory to the next waypoint crosses the center of the
deployment region (dark shaded area). In the figure, the probability that the trajectory of
node u to the next waypoint intersects A1 equals the sum of the areas of A1 and A2 (we
are assuming R = [0, 1]2).

resting at a waypoint that is close to the border of R (see Figure 5.1). Since the next
waypoint is chosen uniformly at random in R, it is very likely that the trajectory connecting
node u with its next waypoint will cross the center of R. So, the probability of finding
a mobile node close to the center of R is higher than the probability of finding the node
on the boundary. This means that mobile nodes contribute a nonuniform component to the
asymptotic node spatial distribution generated by RWP mobility, which we denote by Fm

(m stands for ‘mobile’). On the other hand, a node resting at a waypoint contributes a
uniform component Fu to the asymptotic RWP distribution, since the waypoints are chosen
uniformly at random in R. Then, the asymptotic node spatial distribution generated by
RWP mobility, denoted by FRWP, is given by FRWP = Fm + Fu, which is nonuniform. The
amount of this nonuniformity (and, hence, the intensity of the border effect) depends on
the relative strength of the two components of FRWP. It is easy to see that a longer pause
time strengthens Fu, since the nodes remain stationary for a longer time. Conversely, Fm

is maximal when the pause time is 0 because, in this case, nodes are constantly moving.
The informal argument above is theoretically supported by the following theorem proven

in (Bettstetter et al. 2003), which derives a very good approximation of FRWP when nodes
move in R = [0, 1]2.

Theorem 5.1.1 (Bettstetter et al. 2003) The asymptotic spatial density function of a node
moving in R = [0, 1]2 according to the RWP model with pause time tp and velocity v is
closely approximated by

FRWP(x, y) =
{

Ppause + (1 − Ppause)Fm(x, y) if(x, y) ∈ [0, 1]2

0 otherwise
,
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where Ppause = tp

tp+ 0.521405
v

and

Fm(x, y) =
{

0 if(x = 0) or (y = 0)

FR(x, y) otherwise
.

The expression of FR(x, y) is the following:

FR(x, y) =

6y + 3

4
(1 − 2x + 2x2)

(
y

y − 1
+ y2

(x − 1)x

)
+

3

2

(
(2x − 1)y(1 + y) log

(
1 − x

x

)
+ y(1 − 2x + 2x2 + y) log

(
1 − y

y

))
.

We remark that the expression of Fm(x, y) above is valid only for (x, y) ∈ R = {(x, y) ∈
[0, 1]2 | (x ≥ y) ∧ (x ≤ 1/2)}. The expression of Fm(x, y) on the remainder of [0, 1]2 can
be easily obtained observing that by symmetry we have Fm(x, y) = Fm(y, x) = Fm(1 −
x, y) = Fm(x, 1 − y).

The 3D plot of FRWP for different values of the pause time is reported in Figure 5.2:
as predicted by Theorem 5.1.1, longer pause times generate a flatter probability density
function.

The CTR in presence of RWP mobility can be characterized by using the following
result of the GRG theory, which is due to Penrose (Penrose 1999c).

Theorem 5.1.2 (Penrose 1999c) Assume n nodes are distributed independently at random
in R2 according to a common probability density function F , having connected and compact
support � with smooth boundary ∂�. Further, assume that F is continuous on ∂�. Let Mn

denote the length of the longest MST edge built on the n points. Then,

lim
n→∞

nπ (Mn)
2

log n
= 1

min� F , (5.2)

almost surely.

tp = 0

(a) (b) (c)

tp = 75 tp = 150

Figure 5.2 3D plot of FRWP for three different values of tp: tp = 0 (a), tp = 75 time steps
(b), and tp = 150 time steps (c). Velocity v is set to 0.01 units per time step.
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We recall that the support � of a probability density function is the set of points in
which it has nonzero value, and that the boundary ∂� is smooth if and only if it is twice
differentiable.

Informally speaking, Theorem 5.1.2 states that the asymptotic behavior of the CTR
for connectivity with arbitrary density F depends only on the minimum value of F in its
support. In case min� F = 0, the limit in equation (5.2) must be intended as +∞.

In order to apply Theorem 5.1.2 to FRWP, we have to check that all the conditions of
the theorem are satisfied. It is immediate to see that R = [0, 1]2, the support of FRWP, is
connected and compact. However, the boundary ∂R of R is not smooth because of the
presence of the corners. This problem can be circumvented by using the ‘corner-rounding’
technique described in (Santi 2005). Thus, we are in the hypotheses of Theorem 5.1.2, and
the only thing left to do to characterize the CTR is to determine the minimum value of
FRWP in R. This can be easily done, given the expression of FRWP introduced in Theorem
5.1.1.

Corollary 5.1.3 Let F tp
RWP denote the asymptotic node spatial density generated by RWP

mobile networks with pause time tp and velocity v. The minimum value of F tp
RWP is achieved

on ∂R, and it equals Ppause = tp

tp+ 0.521405
v

. When tp → ∞, F tp
RWP becomes the uniform distri-

bution on [0, 1]2, and minR F∞
RWP = 1.

We are now ready to characterize the CTR in presence of RWP mobility.

Theorem 5.1.4 (Santi (2005)) If R = [0, 1]2 and n nodes move in R according to the RWP
mobility model with pause time tp and velocity v, then the CTR for connectivity is

r
tp
RWP = 1

Ppause

√
log n

πn
= tp + 0.521405

v

tp

√
log n

πn

if tp > 0. When tp = 0, we have

r0
RWP �

√
log n

n
a.a.s.

Note that the CTR in presence of RWP mobility is always larger than the CTR in
case of uniform node distribution since 1/Ppause is larger than 1 for any value of tp. For
instance, with tp = 75 and v = 0.01, we have 1/Ppause = 1.69485. Clearly, a longer pause
time results in a more uniform node distribution and, consequently, in a smaller value of
the CTR. For instance, with tp = 150, we have 1/Ppause = 1.34743.

Note also the asymptotic gap of the CTR in the most extreme case of RWP mobility,
that is, when tp = 0: in this case, for any constant c > 0, setting the transmitting range to

c

√
log n

n
is not sufficient for achieving a.a.s. connectivity. The exact value of the CTR with

RWP mobility when tp = 0 is not known to date. In (Santi 2005), it is conjectured that

r0
RWP ≈ 1

4
log n

√
log n

πn
.

This formula is supported by experimental evidence.
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Figure 5.3 CTR for connectivity in case of RWP mobility with tp = 75 and v = 0.01, for
increasing values of n. The lower plot (ThCTR) refers to the asymptotic value, calculated in
accordance with Theorem 5.1.4. The upper plot (ExpCTR) is obtained from the experimental
CTR distribution generated by the simulations.

Figure 5.3 shows the rate of convergence of the actual CTR for connectivity to the
asymptotic value stated in Theorem 5.1.4 in case of RWP mobility with tp = 75. The actual
CTR value is computed as follows. Initially, n nodes are distributed uniformly at random in
R = [0, 1]2. Then, they start moving according to the RWP mobility model. After a large
number of mobility steps (1000 in our experiments), nodes’ positions are recorded, and
utilized to generate the experimental distribution of the longest MST edge length in case of
mobility. As in the case of stationary networks, the experimental CTR value is defined as
the 0.99 quantile of this distribution.

From the Figure, it is seen that the formula of Theorem 5.1.4 is quite accurate only
for large values of n (n = 1000 and above). The experimental value of the CTR for RWP
mobile networks with different values of the pause time is reported in Table 5.1.

Before concluding this section, we prove that the RWP mobility model satisfies the
conditions for ergodicity.

Theorem 5.1.5 A network with RWP mobility is ergodic with respect to the CTR for con-
nectivity.

Proof. In order to prove the theorem, we have to show that the RWP mobility model
is stable and c-independent, for some constant c > 0. The first property is an immediate
consequence of Theorem 5.1.1. As for the second, consider an arbitrary time instant i. We
have to determine a certain value c > 0 such that the positions of all the nodes at time
i + c are independent of node positions at time i. Let us define a movement epoch as the
time needed for a node just arrived at a waypoint to reach the next waypoint. In other
words, a movement epoch is composed of the pause time plus the travel time between two
consecutive waypoints. Since the length of the trajectory and node velocity are in general
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Table 5.1 Values of the transmitting range
yielding 99% of connected communication
graphs in RWP mobile networks, for different
values of the pause time tp

n tp = 0 tp = 75 tp = 150

10 0.56423 0.61625 0.64226
25 0.41203 0.44705 0.46285
50 0.33644 0.33892 0.34404
75 0.29454 0.28179 0.28054

100 0.26526 0.25736 0.2395
250 0.19761 0.17163 0.17117
500 0.15955 0.12728 0.1134
750 0.13963 0.10507 0.10086

1000 0.12708 0.08931 0.08416
2500 0.09482 0.05963 0.05473

random variables, the duration of a movement epoch is also a random variable. Indeed, we
have a sequence of random variables representing the duration of the various epochs that
constitute the movement trace of a node. We denote these variables with Eu,j , where u

is the node to which the variable is referred and j denotes the j th epoch of node u. By
definition of RWP mobility, node u’s position at time i + c is independent of its position
at time i if and only if c is larger than Eu,j + Eu,j+1, where j is the index of the epoch
occurring at time i. In words, the node must conclude the current and the next epoch before
its position is independent of the position at time i. Note that it is not enough for the
node to terminate the current epoch, since a node which is traveling at time i is on its
trajectory to a certain waypoint Wu,j , which is also the starting point of the next trajectory.
However, after the node has reached the next waypoint, the conditions for independence are
satisfied. So, proving the theorem reduces to proving that there exists constant c > 0 such
that Eu,j + Eu,j+1 ≤ c, for any j ≥ 0 and for any node u. This is accomplished by setting

c = 2
√

2
vmin

. In fact, the maximum length of a linear trajectory in R = [0, 1]2 is
√

2, and node

velocity in the RWP model is at least vmin > 0. Note that, by setting c = 2
√

2
vmin

, we ensure
that the positions of all the nodes at time i + c are independent of their positions at time i.
This follows from the fact that inequality Eu,j + Eu,j+1 ≤ c is satisfied for any epoch and
for any node.

Given the ergodicity property of Theorem 5.1.5, the CTR values reported in Table 5.1
can be interpreted as the values of the transmitting range such that the RWP mobile network
is connected for 99% of its operational time.

5.2 The CTR with Bounded, Obstacle-free Mobility

In this Section, we show that Penrose’s characterization of the longest MST edge length
with arbitrary node distribution (Theorem 5.1.2) can be used to partially characterize the
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CTR of other types of mobile networks. In particular, we consider bounded, obstacle-free
mobility models, which are defined as follows.

Definition 5.2.1 (Bounded, obstacle-free mobility) Let M be an arbitrary mobility model
and let FM be its asymptotic node spatial distribution (under the assumption that nodes are
initially deployed according to a certain probability density function F). M is bounded if
and only if there exists a bounded region R such that the support of FM is contained in R.
Furthermore, M is obstacle free if the support of FM contains R − ∂R.

In words, a mobility model is bounded if there exists a bounded region R such that
nodes are allowed to move only within R, while it is obstacle free if the probability of
finding a mobile node in any subregion of R (excluding the border) is greater than 0.

Note that most of the mobility models used in the simulation of ad hoc and sensor
networks are bounded and obstacle free; this is the case, for instance, of the random direction
model, of Brownian-like mobility models, and of most group-based mobility models.

Theorem 5.2.2 (Santi 2005) Let M be an arbitrary mobility model that is bounded within
R = [0, 1]2 and obstacle free. Furthermore, assume that FM is continuous on ∂R, and
minR FM > 0. The CTR for connectivity of an ad hoc network with M-like mobility is

rM = c

√
log n

πn
,

for some constant c ≥ 1.

Since in case of uniform node distribution the constant c in the expression of the CTR
above equals 1, Theorem 5.2.2 can be interpreted as follows: every bounded and obstacle-free
type of node mobility is detrimental for network connectivity, since the CTR for connectivity
can only increase with respect to the case of uniformly distributed nodes. However, we
remark that this result is asymptotic, that is, it holds for networks composed of a large
number of nodes. If the network is composed of a relatively small number of nodes (say, in
the order of 100) the situation might even be reversed (see (Santi 2005) for some simulation
results that support this observation).

The final comment is regarding the occurrence of the giant component phenomenon in
case of mobile networks. By combining Theorem 1.1 of (Penrose 1999b) and Theorem 1.1
of (Penrose 1999c), it can be formally proven that the giant component phenomenon occurs
in any (two- or three-dimensional) bounded, obstacle-free mobile network. This fact is also
supported by the simulation results presented in (Santi and Blough 2002), which refer to the
case of RWP and Brownian-like mobile networks. Thus, connectivity can be traded off with
energy saving and/or capacity increase also in presence of certain types of node mobility.





6

Other Characterizations
of the CTR

In the previous chapter, we have presented several characterizations of the critical value of
the transmitting range needed for guaranteeing the most important network property, that is,
connectivity. In this chapter, we consider characterizations of the critical value of the range
for other important network properties, such as k-connectivity, connectivity with Bernoulli
nodes, and network coverage.

6.1 The CTR for k-connectivity

The k-connectivity graph property is an immediate extension of the concept of graph con-
nectivity. Formally, k-connectivity is defined as follows (see also Appendix A):

Definition 6.1.1 (Connectivity) A graph G is said to be k-connected, where 1 ≤ k < n, if
for any pair of nodes u, v there exist at least k node disjoint paths connecting them. The
connectivity of G, denoted as κ(G), is the maximum value of k such that G is k-connected.
A 1-connected graph is also called simply connected.

A similar definition of connectivity can be given by considering edge, instead of node,
disjoint paths between nodes. Denoting with ξ(G) the edge-connectivity of G, it is seen
immediately that κ(G) ≤ ξ(G). Figure 6.1 illustrates the concepts of k-connectivity and
k-edge connectivity.

The interest in studying the CTR for k-connectivity is motivated by the fact that, when
a network is k-connected, at most k − 1 node or link faults can be tolerated without dis-
connecting the network. So, a k-connected network is more resilient to faults than a simply
connected network, where a single node or link failure might partition the network.

A network satisfying k-connectivity in general achieves also a better load balancing
with respect to a simply connected network: in fact, messages between any two nodes u

and v can be routed along at least k different paths, instead of along at least one single
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w

v v

w w

v

Figure 6.1 Simple and 2-connectivity. The graph on the left is simply connected (removing
node w, or edge (w, v), is sufficient to disconnect the network). The graph in the center is
2-edge-connected, but not 2-(node)connected. In fact, removing any edge does not discon-
nect the graph, but removing node w does disconnect the graph. The graph on the right is
2-connected: removing any node or edge does not disconnect the graph.

path. In turn, better load balancing means a more evenly distributed energy consumption in
the network, which potentially results in a longer network lifetime.

On the other hand, a connectivity value that is too high is detrimental for network
capacity since any transmission would interfere with a large number of nodes. For instance,
if κ(G) = n

2 , it is seen immediately that any node in the communication graph has at least
n
2 neighbors. In turn, this implies that when any node transmits, it interferes with at least
n
2 nodes, and the network traffic carrying capacity is compromised. Thus, from a practical
point of view, only networks with relatively low connectivity (say, below 5) are of some
interest.

The first study of k-connectivity that can be applied to ad hoc networks is due to
Penrose. In (Penrose 1999a), Penrose shows that the giant component phenomenon occurs
in case of k-connectivity also, for any constant 1 ≤ k < n. More formally, Penrose proved
the following theorem.

Theorem 6.1.2 (Penrose 1999a) Assume n nodes are distributed uniformly at random in
R = [0, 1]d , with d = 2, 3. Let ρn (respectively, σn) denote the minimum value of the trans-
mitting range at which the communication graph becomes k-connected (respectively, has
minimum degree k), where 1 ≤ k < n is an arbitrary constant. Then,

lim
n→∞ P [ρn = σn] = 1.

In words, Theorem 6.1.2 states that, with high probability, the network becomes
k-connected when the minimum node degree in the communication graph becomes k.
Besides the important practical implications already discussed in Section 4.1, Theorem 6.1.2
proved useful in the characterization of the CTR for k-connectivity, which can be derived
by analyzing the probability of the relatively simpler event that every node in the network
has degree at least k. The value of the CTR for k-connectivity, which was partially char-
acterized in (Penrose 1999a), has been recently derived in (Wan and Yi 2004) in case of
two-dimensional networks.

Theorem 6.1.3 (Wan and Yi 2004) Assume n nodes are distributed uniformly at random in
the unit square R = [0, 1]2. The CTR for k-connectivity, for any constant k, with 1 < k < n, is

rk =
√

log n + (2k − 3) log log n + f (n)

πn
,

where f (n) is a function such that limn→∞ f (n) = +∞.
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Wan and Yi proved that a similar expression holds when nodes are uniformly distributed
in the disk of unit area.

Comparing the expression of the CTR for k-connectivity with that of the CTR for simple
connectivity (Corollary 4.1.2), we see that the difference between the two values is only in
the second-order term (2k − 3) log log n (we recall that k is a constant). This means that,
asymptotically, k-connectivity with k > 1 is achieved by slightly increasing the transmitting
range with respect to the critical value for simple connectivity.

The CTR for k-connectivity has also been studied under the assumption that n nodes are
distributed in a two-dimensional region A with very large area (Bettstetter 2002). With this
assumption, the number of nodes per units of area is ρ = n

a
with high probability, where a

is the area of A. The following result has been proven in (Bettstetter 2002).

Theorem 6.1.4 (Bettstetter 2002) Assume n nodes, each with transmitting range r0, are
distributed uniformly at random in A, where A has a very large area. The probability that
the minimum node degree in the communication graph is at least k, for some 1 ≤ k < n, is
closely approximated by

P (degmin ≥ k) ≈
(

1 −
k−1∑
i=0

(ρπr2
0 )i

i!
· e−ρπr2

0

)n

,

a.a.s., where ρ = n
a

.

Given Theorem 6.1.2, the expression reported in Theorem 6.1.4 is also a close approx-
imation of the probability of having a k-connected network.

Besides deriving the approximation of the probability of k-connectivity, the paper
(Bettstetter 2002) also reports simulation results, which can be used to better understand
the relative increase in the transmitting range needed to achieve k-connectivity, instead of
simple connectivity. For instance, assuming that 500 nodes are uniformly distributed in a
square of side 1000 m, setting the transmitting range to 90 m, corresponds to a probability
of generating a simply connected graph equal to 0.9. In order to have the same probability of
generating a 2-connected graph, the transmitting range must be set to approximately 107 m;
for 3-connectivity, the transmitting range must be approximately 120 m. Thus, an approxi-
mately 19% increase with respect to the critical range for simple connectivity is sufficient to
provide 2-connectivity, while an approximately 33% increase is sufficient for 3-connectivity.
So, as predicted by Theorem 6.1.3, a relatively small increase of the transmitting range with
respect to the critical value for connectivity is enough to achieve k-connectivity (for small
values of k > 1).

6.2 The CTR for Connectivity with Bernoulli Nodes

The point graph model with Bernoulli nodes is an extension of the traditional point graph
model. In this model, it is assumed that at any instant of time any node in the network
is active with a certain constant probability p > 0. Since node activations are independent
events, the node’s active/inactive status can be modeled by a Bernoulli random variable of
parameter p (this explains the name of the model).

Assume n nodes are distributed in a certain region R, each with transmitting range r and
probability of being active equal to p > 0. We denote by G(n, r) the communication graph
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(a) (b) (c)

Figure 6.2 Example of G(n, r) graph (a) and of its A(n, r, p) (b) and I (n, r, p) (c) sub-
graphs. Active nodes are light gray, and inactive nodes are black.

generated as in the traditional point graph model, that is, the graph obtained by connecting
any two nodes that are at distance of, at most, r , independent of their active/inactive status.
We denote the subgraph of G(n, r) induced by the set of active nodes as A(n, r, p). We
denote as I (n, r, p) the subgraph of G(n, r) obtained from G(n, r) by removing all links
whose both endpoints are inactive nodes. An example of graph G(n, r), and of its subgraphs
A(n, r, p) and I (n, r, p), is reported in Figure 6.2.

Recent papers have investigated asymptotic conditions under which A(n, r, p) and
I (n, r, p) are connected with high probability. The motivation for analyzing the connectiv-
ity of these graphs stems from the fact that A(n, r, p) and I (n, r, p) can be used to model
several network design problems, such as the following:

– Randomized virtual backbone construction: In many applications of WSNs, nodes
alternately shut down their transceivers in order to reduce power consumption. (We
recall that the power consumption of a sensor node can be considerably reduced by
turning the radio off–see Section 2.3). However, a certain number of nodes must keep
the radio on, in order to preserve network connectivity. Thus, active nodes must form
a connected backbone. We refer to this property as ‘active connectivity’. Another
desirable property is that any inactive node has at least one active node within its
transmitting range. In fact, inactive nodes still sense the environment (it is only the
radio apparatus that is turned off), and, in case an inactive node detects an anomalous
event, we want that the information regarding this event propagates quickly through
the network, eventually reaching the operator. This can be accomplished only if every
inactive node is able to directly communicate with at least one active node (and if the
set of active nodes forms a connected backbone). Since if this property holds the set
of active nodes is a dominating set, we refer to this property as ‘active domination’.
Examples of virtual backbones are reported in Figure 6.3.

A simple randomized strategy to build a virtual backbone of active nodes is as follows:
any node in the network remains active for a fraction 0 < p ≤ 1 of its operational
time, where the activation periods are randomly chosen. Assume that n nodes are
distributed in a certain region R, and each node has the same transmitting range r . It
is seen immediately that the virtual backbone resulting from the randomized strategy
above satisfies active connectivity if and only if graph A(n, r, p) is connected, and
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u u

(a) (b)

Figure 6.3 Active connectivity and active domination of the virtual backbone. Active nodes
are light gray, and inactive nodes are black. The backbone of active nodes in (a) satisfies
active connectivity, but not active domination (node u has no direct connection to any active
node). The backbone in (b) satisfies both active connectivity and active domination.

that it satisfies both active connectivity and active domination if and only if graph
I (n, r, p) is connected.

– Randomized broadcast : Assume a certain network node u wants to broadcast a mes-
sage m. Performing broadcast in ad hoc networks is a nontrivial task, because of the
problem of spatial reuse: if many nodes try to relay m simultaneously, it is likely
that they corrupt each other’s transmission, leading to an increase in the broadcast-
ing latency and/or energy consumption. This problem is known in the literature as
the broadcast storm problem (see Chapter 8 for a more detailed description of this
phenomenon). An easy strategy to prevent the broadcast storm problem is to use
randomization: when a node receives message m, it relays m with a certain proba-
bility 0 < p ≤ 1, independent of every other node. It is easy to see that under the
assumption that n nodes with transmitting range r are distributed in a certain region
message m eventually reaches all the network nodes if and only if graph I (n, r, p) is
connected.

The connectivity of graphs A(n, r, p) and I (n, r, p) can be characterized by combining
Theorem 9 of (Yi et al. 2003) and Theorem 9 of (Yi and Wan 2005).

Theorem 6.2.1 Assume n nodes are distributed uniformly at random in the disk of unit

area. Let rn(ξ) =
√

log n+ξ

πpn
, for some constant ξ , and let ρA (respectively, ρI ) be the minimum

transmitting range such that graph A(n, ρA, p) (respectively, I (n, ρI , p)) is connected. Then,

lim
n→∞ P (ρA ≤ rn(ξ)) = exp(−pe(−ξ)),

lim
n→∞ P (ρI ≤ rn(ξ)) = exp(−e(−ξ)).

Corollary 6.2.2 Assume n nodes are distributed uniformly at random in the disk of unit area,
and assume that nodes are active with constant, independent probability p, with 0 < p ≤ 1.
The CTR for connectivity of A(n, rn, p) and of I (n, rn, p) is the same and equals

rBN =
√

log n + f (n)

πpn
,

where f (n) is an arbitrary function such that limn→∞ f (n) = +∞.
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Comparing the expressions of the CTR without and with Bernoulli nodes (corollar-
ies 4.1.2 – which holds also when nodes are distributed in the disk of unit area – and 6.2.2),
the only difference is in the additional multiplicative term p at the denominator of rBN. In
other words, the expression of the CTR for connectivity with Bernoulli nodes is the same
as in the traditional model, with n replaced by pn (expected number of active nodes).

To conclude this section, we give a numeric example. Suppose 1000 nodes are uniformly
distributed in the unit disk. Assume we want to create a connected network with probability
0.99. Let us first consider the traditional point graph model. The value of the constant β in
Theorem 4.1.1 such that exp(−e−β) = 0.99 is approximately 4.6. With this value of β, we
get a value of the transmitting range equal to 0.060523. Assume now that nodes are active
with probability p = 0.5. In order to have probability 0.99 that A(1000, r, 0.5) is connected,
we must set r to 0.0829867, which is an approximately 37% increase with respect to the
case of always active nodes. In order to have the same probability that I (1000, r, 0.5) is
connected, we must set r to 0.0855924, which is an approximately 41% increase with respect
to the case of always active nodes.

6.3 The Critical Coverage Range

The Critical Coverage Range (CCR) problem is defined as follows:

Definition 6.3.1 (Critical coverage range) Assume n nodes are deployed into a certain
region R. A point x in region R is said to be covered if it is at a distance of, at most, r

from at least one of the network nodes, where r is the nodes’ covering range. We say that
region R is covered if all of its points are covered. The CCR problem is to find, given a node
deployment, the minimum value of r such that R is covered.

Similar to the CTR problem, the CCR problem can be easily solved if nodes’ positions
are known. Furthermore, it can be formulated also in the reverse way, that is: assume a
certain region R must be covered using nodes with sensing range r; which is the minimum
number n of nodes to be deployed in order to cover R?

The study of the CCR problems stated above finds its motivation in the context of
wireless sensor networks used for monitoring applications, such as surveillance or habitat
monitoring. In the design of this type of networks, it is often assumed that every node
(sensor) can ‘sense’ an event within a certain maximum range (the coverage range), and
the typical requirement is that the monitored region is covered. Since sensor nodes in this
context are typically randomly deployed (for instance, using a moving vehicle such as
airplane), the CCR is studied under the assumption of random node deployment.

The reader would have noticed the strong similarities between the CTR and the CCR
problem. Indeed, it is easy to prove that a node deployment that covers R under the assump-
tion that nodes have coverage range rc also generates a connected communication graph
under the assumption that nodes have transmitting range rt ≥ 2rc (see Figure 6.4). This is
formally stated in the theorem below, which has been proven in (Wang et al. 2003).

Theorem 6.3.2 (Wang et al. 2003) Assume that a set S of n nodes with coverage range rc

and transmitting range rt ≥ 2rt are deployed in a certain region R and that the nodes in S

cover R. Then, the communication graph generated by nodes in S is connected.
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rc

rt

Figure 6.4 Relation between the coverage range (rc) and the transmitting range (rt ): setting
rt = 2rc, the covering ranges of two nodes overlap if and only if they are in each other
transmitting range.

Note that the reverse of the theorem above does not hold. This is depicted in Figure 6.5:
the communication graph formed by the nodes in S is connected, but the region R is
not covered. This example shows that coverage is, in general, a stronger requirement than
connectivity, even when rt ≥ 2rc: a set of nodes that is concentrated in a subregion of R

can be connected, but it does not satisfy coverage (Figure 6.5).
The critical coverage range has been investigated in (Philips et al. 1989) for the case of

nodes distributed in a square with side of length l according to a Poisson process of fixed
density λ.

Theorem 6.3.3 (Philips et al. 1989) Assume nodes are distributed in R = [0, l]2 according
to a two-dimensional Poisson process of density λ > 0. Let rc denote the coverage range of
the nodes. If

rc =
√

2(1 − ε) log l

πλ
,

for some 0 < ε < 1, then R is a.a.s. not covered (i.e. liml→∞ P [R is covered] = 0). If

rc =
√

2(1 + ε) log l

πλ
,

for some 0 < ε < 1, then R is a.a.s. covered (i.e. liml→∞ P [R is covered] = 1).

Note that, with respect to the characterization of the CTR for uniformly distributed nodes
(Corollary 4.1.2), the result stated in Theorem 6.3.3 is somewhat weaker: instead of an
additive term (function f (n) in the statement of Corollary 4.1.2), we have a multiplicative
constant c. If c < 2, then R is not covered a.a.s., while if c > 2 a.a.s. coverage holds.
However, whether R is covered when c = 2 is an open question.

A more direct relation between the CTR and the CCR for Poisson distributed points has
been derived for one-dimensional networks. The theorem below is due to Piret (Piret 1991).
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rc

rt

R

Figure 6.5 Example of node deployment which generates a connected network (bold edges),
but does not satisfy coverage: only the shaded subregion of R is covered by at least one
node.

Theorem 6.3.4 (Piret 1991) Assume nodes are distributed in R = [0, l] according to a one-
dimensional Poisson process of density λ > 0. Let rc (respectively, rt ) denote the coverage
range (respectively, the transmitting range) of the nodes. If

rc = (1 − ε) log lλ

2λ
,

for some 0 < ε < 1, then R is a.a.s. not covered. If

rc = (1 + ε) log lλ

2λ
,

for some 0 < ε < 1, then R is a.a.s. covered. If

rt = (2 − ε) log lλ

2λ
,

for some 0 < ε < 1, then the resulting communication graph is a.a.s. disconnected. If

rc = (2 + ε) log lλ

2λ
,

for some 0 < ε < 1, then the resulting communication graph is a.a.s. covered.

Theorem 6.3.4 is very important, since it states that, at least in the case of Poisson
distributed points on a line, the CCR is equivalent to the CTR problem with rt replaced by
2rc. In other words, under these assumptions the probability that a subregion of R remains
uncovered when the network is a.a.s. connected is asymptotically negligible. Whether the
same holds for two-dimensional networks, or with different node distributions, is an open
problem.
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The Range Assignment Problem

In Chapters 4, 5, and 6, we have investigated various network design problems under the
assumption that all the nodes have the same transmitting range, which reflects all those
situations in which nodes cannot change the transmit power level (and use transceivers with
the same technology). However, in many scenarios, nodes can change the transmit power
level. So, the problem of choosing the nodes’ transmit power levels in such a way that the
network topology satisfies certain properties becomes relevant. In this chapter, we consider
the problem of determining a set of power level assignments that generates a connected
communication graph while at the same time minimizing the energy consumption. This
problem is known in the literature as the Range Assignment problem.

7.1 Problem Definition

We recall that, given the set N of network nodes, a range assignment for N is a function RA
that assigns to every u ∈ N a transmitting range RA(u), with 0 < RA(u) ≤ rmax, where rmax

is the maximum transmitting range. Note that, under the assumption that the path loss model
is the same for all the network nodes, and that shadowing/fading effects are not considered,
transmitting range, and transmit power level are equivalent concepts. Since traditionally the
function RA is defined in terms of range, instead of power, we keep this convention.

The Range Assignment problem, which was first studied in (Kirousis et al. 2000), is
defined as follows:

Definition 7.1.1 (RA problem) Let N be a set of nodes in the d-dimensional space, with
d = 1, 2, 3. Determine a range assignment function RA such that the corresponding com-
munication graph is strongly connected, and c(RA) = ∑

u∈N(RA(u))α is minimum over all
connecting range assignment functions, where α is the distance-power gradient.

The cost measure c(RA) used in the definition of the RA problem is the sum of the
transmit power levels used by all the nodes in the network. Thus, RA can be informally
stated as the problem of finding a ‘minimal’ nodes’ range assignment that generates a
connected communication graph, where ‘minimal’ is intended as ‘least energy cost’. Besides
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reducing energy consumption, a connecting range assignment with minimum energy cost
is likely to increase network capacity also, for the reasons discussed in Chapter 3. These
observations motivate the interest in studying the RA problem.

In a certain sense, the RA problem can be seen as a generalization of the problem
of determining the CTR for connectivity, where the constraint that all the nodes have the
same transmitting range is dropped. As we shall see, dropping this constraint considerably
increases the complexity of finding the optimal solution.

7.2 The RA Problem in One-dimensional Networks

The optimal solution to the RA problem can be found in polynomial time in case of one-
dimensional networks. In this Section, we present the algorithm for finding the optimal
solution introduced in (Kirousis et al. 2000).

Before presenting the algorithm, we need some preliminary definitions.
Let N = {u1, . . . , un} be a set of colinear points (nodes). Without loss of generality,

assume that nodes are increasingly ordered according to their spatial coordinate, that is,
u1 is the leftmost node and un is the rightmost node. Given a set of nodes and a range
assignment RA, we say that edge (ui, uj ) in the resulting communication graph is backward
if i > j , that is, if the edge goes from right to left. For any i, j with 1 ≤ i < j ≤ n,
we define set Ei,j as the set of all the backward edges that have both their endpoints in
{ui, . . . , uj }. Formally, Ei,j = {(us, ur) : i ≤ r < s ≤ j}. An example of backward edge set
is reported in Figure 7.1.

The algorithm for finding the optimal solution is based on a recursive construction:
given the optimal connecting range assignment for nodes {u1, . . . , uk}, for some 1 ≤ k < n,
a strategy is given to build the optimal assignment for the set of nodes {u1, . . . , uk+1}.

The intuition behind the recursive strategy is the following: when the optimal solution
RAk at step k is given and the solution for the next step is to be determined, the cost of RAk

can be considered as zero (by hypothesis, at least cost c(RAk) is necessary to connect the
k leftmost nodes), and the ‘minimal increase’ to the range assignment that connects node
uk+1 also must be identified. This leads to the following definition of incremental cost of a
range assignment:

Definition 7.2.1 (RA incremental cost) Let N = {u1, . . . , un} be a set of nodes, and E a
set of directed edges between nodes in N . The range assignment induced by set E, denoted
by RAE , is the minimal assignment such that RAE(ui) ≥ δ(ui, uj ), for any directed edge
(ui, uj ) ∈ E. The incremental cost of range assignment RA with respect to E, denoted by
cE(RA) is defined as cE(RA) = ∑

i:RAE(ui) �=RA(ui )
(RA(ui))

α. We say that edges in E are free
of cost with respect to range assignment RA.

u1 u2 u3 u4 u5 u6 u7

Figure 7.1 Backward edges in the set E2,5 (bold edges).
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The strategy is based on the following recursive assumption: for any j ≤ k and any
l ≥ k, there exists a range assignment RAk with minimum cost among those that generate a
communication graph with the following properties:

1. There is a path between any pair of nodes in {u1, . . . , uk}.
2. There exists directed edge (ui, ul), for some 1 ≤ i ≤ k.

3. Any (backward) edge in Ej,k is free of cost with respect to RAk .

Let (N ′, E) be a directed graph, where N ′ ⊂ N , and let v be an additional node in N ,
which we call the receiver node. A range assignment RA is said to be total for ((N ′, E), v)

if and only if

1. the graph on node set N ′ obtained by adding to E the edges induced by range
assignment RA (i.e. edges (ui, uj ) such that RA(ui) ≥ δ(ui, uj )) is strongly connected;

2. there exists directed edge (ui, v), for some ui ∈ N ′; that is, RA(ui) ≥ δ(ui, v) for
some ui ∈ N ′.

The cost of a total range assignment for ((N ′, E), v) is the incremental cost with respect
to RAE , that is, cE(RA). Intuitively, a total range assignment has zero cost for the edges
in E, and establishes communication paths between any pair of nodes in N ′, and also
between a node in N ′ and the receiver, in this direction only. A total range assignment
for ((N ′, E), v) of minimum cost is said to be optimal. In the following, Feas((N ′, E), v)

denotes the set of total range assignments for ((N ′, E), v), and Opt((N ′, E), v) denotes the
set of optimal range assignments for ((N ′, E), v). Finally, given u ∈ N ′ and a positive real
r , we denote with Opt((N ′, E), v, (u, r)) the set of range assignments of minimum cost
among the assignments RA ∈ Feas((N ′, E), v) such that RA(u) = r .

The Optimal1dRA algorithm for finding the optimal solution to the RA problem in
one-dimensional networks is reported in Figure 7.2. The algorithm first identifies a set of
optimal range assignments for connecting node u1 to any other single node (step 1.2).
Then, we have the recursive step, in which a set of optimal range assignments for con-
necting nodes in {u1, . . . , uk} with a receiver node ul , with k ≤ l ≤ n, is calculated. For
details on how optimal range assignments are calculated (step 2.4), the reader is referred
to Lemma 2.6 of (Kirousis et al. 2000). After n recursive steps, any range assignment in
Opt(({u1, . . . , un}, ∅), un) is optimal for N .

The correctness of Optimal1dRA has been proven in (Kirousis et al. 2000). The authors
also proved that the computational complexity of the algorithm is O(n4).

Comparing the computational complexity of Optimal1dRA to that of an algorithm for
finding the critical range for connectivity, we can observe the increase in complexity caused
by dropping the assumption that all the nodes have the same transmitting range. In case of
colinear points, the CTR can be found in O(n log n) time,1 which should be compared to
the O(n4) running time of Optimal1dRA. The gap in terms of computational complexity
is considerable: when n = 100, the running time of the optimal algorithm increases from
about 1000 time units in case of the CTR problem to about 108 time units in case of the
one-dimensional RA problem.

1An algorithm for finding the CTR in O(n log n) time in one-dimensional networks is the following. First, order
all the nodes according to their spatial coordinate. The CTR for connectivity is the largest among the distances
between consecutive nodes in the order.
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Algorithm Optimal1dRA:

1. Initialization
1.1 Let RAi be the range assignment such that RAi (u1) = δ(u1, ui),

and RAi (uj ) = 0 otherwise
1.2 for i = 2, . . . , n do Opt(({u1}, ∅), ui) = RAi

2. Step k:
2.1 Assume we know Opt(({u1, . . . , uk}, Ei,k), ul), for any 1 ≤ i ≤ k and k ≤ l ≤ n

2.2 for any j , m such that 1 ≤ j ≤ k + 1 ≤ m ≤ n

2.3 consider all possible values of RA(uk+1) (there are k + 2 such values)
2.4 for each such value r , find an assignment RA in

Opt(({u1, . . . , uk}, Ej,k+1), uk+1, (uk+1, r))

2.5 if RA has cost lower than that of the current range assignment for j , m,
store RA (new current minimum)

2.6 at the end of step k, we know a range assignment in
Opt(({u1, . . . , uk+1}, Ei,k+1), ul), for any 1 ≤ i ≤ k + 1 ≤ l ≤ n

3. after step n, an optimal assignment is one in Opt(({u1, . . . , un}, ∅), un)

Figure 7.2 Algorithm for finding the optimal range assignment in one-dimensional networks.

7.3 The RA Problem in Two- and Three-dimensional
Networks

In the previous section, we have analyzed the RA problem for one-dimensional networks,
outlining the considerable increase in computational complexity with respect to the case of
solving the simpler CTR problem. The increase in computational complexity becomes even
larger in case of two- and three-dimensional networks, as stated by the following theorem.

Theorem 7.3.1 Solving the RA problem in two- and three-dimensional networks is NP-hard.

The NP-hardness of finding the optimal solution to RA in three-dimensional networks
has been proved in (Kirousis et al. 2000). Later on, Clementi et al. proved that the problem
remains NP-hard in case of two-dimensional networks also (Clementi et al. 1999).

Although solving RA in two- and three-dimensional networks is hard, an approximation
of the optimal solution can be easily computed by constructing an MST on the nodes. The
construction of the range assignment is as follows:

Let N = {u1, . . . , un} be a set of points (nodes) in the two- or three-dimensional space.

1. Construct an undirected weighted complete graph G = (N, E), where the weight of
edge (ui, uj ) ∈ E is δ(ui, uj )

α .

2. Find a minimum weight spanning tree T of G.

3. Define range assignment RAT , with RAT (ui) = maxj |(ui ,uj )∈T δ(ui, uj ).
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Figure 7.3 Minimum spanning tree T on the set of nodes, and corresponding range assign-
ment RAT .

An example of minimum spanning tree T , and the corresponding range assignment RAT ,
are depicted in Figure 7.3.

The algorithm for constructing RAT has O(n2) running time (the time complexity
of building the MST on the n nodes), and produces a 2-approximation of the optimal
solution.

Theorem 7.3.2 (Kirousis et al. 2000) Let N be a set of points (nodes) in the two- or three-
dimensional space, and let RAT be the range assignment defined as above. Let RA be an
optimal range assignment for the RA problem. Then

c(RAT ) < 2c(RA).

Proof. The proof is composed of two steps. First, we prove that c(RA) is greater than
the cost c(T ) of the minimum spanning tree T . Then, we prove that c(RAT ) < 2c(T ).

1. c(RA) > c(T )

Starting from any optimal assignment RA for N , we can build a spanning tree for the
complete undirected graph G by choosing any node u ∈ N , and constructing a shortest path
destination tree rooted at u, with all edges directed toward the root, representing minimum
weight paths from any node to the root node. Given the shortest path destination tree, the
corresponding spanning tree T ′ is obtained by changing the directed edges in the shortest
path tree to the corresponding undirected edges in G. Since each of the n − 1 nodes other
than the root must be assigned a range that is at least sufficient to establish the edges in the
shortest path destination tree, we have c(RA) > c(T ′). The strict inequality follows from
the fact that RA assigns a strictly positive range to the root node u (this is necessary for
strong connectivity), which is not accounted for in c(T ′). In turn, c(T ′) is at least as large
as the cost c(T ) of the minimum spanning tree.
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2. c(RAT ) < 2c(T )

The inequality follows by observing that, during the construction of RAT , each edge of
T can be chosen as the ‘longest’ edge (i.e. as the transmitting range) at most by two nodes
(the endpoints of the edge).

7.4 The Symmetric Versions of the Problem

In the RA problem we are interested in establishing a strongly connected communication
graph. Since nodes in general have different transmitting ranges, unidirectional links might
occur, and they can even be essential for ensuring strong connectivity.

Although implementing of unidirectional wireless links is technically feasible (see (Bao
and Garcia-Luna-Aceves 2001; Kim et al. 2001; Pearlman et al. 2000a; Prakash 2001; Rama-
subramanian et al. 2002) for unidirectional link support at different layers), the advantage
of using unidirectional links is questionable. For instance, Marina and Das have recently
observed that, in case of routing protocols, the high overhead needed to handle unidirec-
tional links outweights the benefits that they can provide, and better performance can be
achieved by simply avoiding them (Marina and Das 2002).

Indeed, most routing protocols for ad hoc networks (for instance, DSR (Johnson et al.
2002) and AODV (Perkins et al. 2002)) are based on the implicit assumption that wireless
links can be ‘reversed’, that is, must be bidirectional. The same observation applies to the
current implementation of the MAC layer in the IEEE 802.11 standard, which is based on a
RequestToSend/ClearToSend message exchange: when node u wishes to send a message to
a node v within its transmitting range, it sends a RTS to v and waits for the CTS message
from v. If the CTS is not received within a certain period of time, the message transmission
is aborted and it is tried again after a backoff interval. If the wireless link between nodes
u and v is unidirectional, either one of the RTS or CTS message is not received, and
communication is not possible. Supporting unidirectional links at the MAC layer would
imply that intermediate nodes should relay the RTS/CTS messages on behalf of node u

or v. Alternatively, a different channel access mechanism (for instance, based on collision
detection instead of collision avoidance) should be used. Anyway, supporting unidirectional
links would imply a considerable modification of the current implementation of the IEEE
802.11 MAC protocol.

The reasons above have motivated researchers to investigate restricted versions of the
RA problem, where certain symmetry constraints are imposed on the communication graph.
In particular, the following two problems have been defined and investigated (Blough et al.
2002; Calinescu et al. 2002):

Definition 7.4.1 (WSRA problem) Let N be a set of nodes in the d-dimensional space, with
d = 1, 2, 3. Let RA be a range assignment for N and let G be the corresponding (directed)
communication graph. The symmetric subgraph of G, denoted by GS , is the undirected graph
obtained from G by removing unidirectional links. The WSRA problem is to determine a range
assignment function RA such that GS is connected, and c(RA) = ∑

u∈N(RA(u))α is minimum,
where α is the distance-power gradient.

Definition 7.4.2 (SRA problem) Let N be a set of nodes in the d-dimensional space,
with d = 1, 2, 3. A range assignment RA for N is said to be symmetric if it generates a
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Figure 7.4 The different symmetry requirements in the WSRA and in the SRA problem. In
WSRA, unidirectional links (dashed edges) are allowed, but they are not essential for con-
nectivity. In SRA, all the links in the communication graph must be bidirectional: nodes u,
v, and w must increase their transmitting range to meet this stronger symmetry requirement.

communication graph that contains only bidirectional links, that is, RA(ui) ≥ δ(ui, uj ) ⇔
RA(uj ) ≥ δ(ui, uj ). The Symmetric Range Assignment (SRA) problem is to determine a
SRA function RA such that the corresponding communication graph is connected, and
c(RA) = ∑

u∈N(RA(u))α is minimum, where α is the distance-power gradient.

Note the different symmetry requirements in the two versions of the problem: in the
WSRA (Weakly Symmetric Range Assignment) problem, the communication graph may
contain unidirectional links which, however, are not essential for connectivity. On the other
hand, in the SRA problem, the communication graph must contain only bidirectional links.
This is a much stronger requirement on the communication graph, as the example reported
in Figure 7.4 shows. The motivation for studying WSRA stems from the observation that
what is really important in the design of ad hoc and sensor networks is the existence of a
connected backbone of symmetric edges. In other words, there could exist links for which
symmetry is not guaranteed, but these links can be ignored without compromising network
connectivity.

7.4.1 The SRA problem in one-dimensional networks

In case of colinear nodes, the optimal SRA for a set of nodes can be constructed as follows:

1. Order the nodes according to their spatial coordinate; let {u1, . . . , un} be the resulting
node ordering.

2. Assign to node u1 transmitting range δ(u1, u2), to node un transmitting range
δ(un−1, un), and to every other node ui transmitting range equal to max{δ(ui−1, ui),

δ(ui, ui+1)}.
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3. Augment the transmitting range of some of the nodes in order to preserve symmetry:
for any unidirectional edge (ui, uj ) in the communication graph generated at the
previous step, increase the transmitting range of node uj in such a way that it can
reach node ui . This process is repeated until all the edges in the graph are bidirectional.

It is seen immediately that the range assignment RA constructed according to the strategy
described above generates a connected communication graph in which all the links are
bidirectional. To prove that RA is optimal, it is sufficient to observe that, in order to achieve
connectivity, every node must be connected at least to its left and right closest neighbor;
furthermore, the augmentation procedure at step 3 increases a node’s transmitting range of
the minimal amount necessary to achieve the symmetry of the range assignment.

The computational complexity of the above described algorithm for solving SRA in
one-dimensional networks is O(n log n) (the time needed to order the n node coordinates),
which should be compared to the considerably higher O(n4) complexity of the algorithm
for solving the unrestricted version of the problem. Thus, we can conclude that in one-
dimensional networks imposing symmetry on the range assignment eases the task of finding
the optimal solution.

7.4.2 The SRA problem in two- and three-dimensional networks

In this section, we show that, contrary to the case of one-dimensional networks, in two-,
and three-dimensional networks imposing the symmetry condition on the range assignment
does not change the computational complexity of the problem. As the reader will notice, the
proof (presented in (Blough et al. 2002)) is quite lengthy and complicated. The difficulty
of the proof stems from the fact that, when studying the complexity of ad hoc network
problems, geometry cannot be ignored. In other words, when considering reductions from
known NP-hard problems (the MinWeightedVertexCover problem in the example below)
to the problem at hand, we have to prove that nodes can actually be placed in the two-
or three-dimensional space in such a way that any instance of the problem to be reduced
can be transformed into a corresponding instance of the problem at hand. This is usually
accomplished by making use of a geometric construction, or gadget.

For ease of presentation, assume α = 2. In order to prove the NP-hardness of SRA, we
will show a polynomial-time reduction from MinWeightedVertexCover for planar cubic
graphs, which is known to be NP-hard (Garey and Johnson 1977). The proof is based on a
modification of the construction used in (Clementi et al. 1999) to prove that solving RA in
two-dimensional networks is NP-hard. The construction can be summarized as follows:

– Given a planar cubic graph2 G, construct a planar orthogonal drawing of G.

– Add two new vertices for each bend of the drawing so to obtain a straight-line
drawing D(G).

– Replace each straight-line (edge) in D(G) with a suitable set of nodes (gadget). The
set of points in the two-dimensional space resulting from this replacement is denoted
by S(G).

2A graph is cubic if every node in it has degree three. A graph is planar if it can be drawn in the plane in such
a way that no two edges cross each other.
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The following properties characterize gadgets (Clementi et al. 1999):
Let D(G) = (V, E) be a straight-line planar orthogonal drawing of a planar cubic graph

G. Let λ, λ′, ε ≥ 0 be such that λ + ε > λ′, and let γ > 1. For any (a, b) ∈ E, the corre-
sponding gadget gab is formed by the disjoint sets of points Vab = {a, b}, Yab = {yab , yba},
Xab = {x1, . . . , xl1}, and Zab = {z1, . . . , zl2}, where l1 and l2 depend on the length of (a, b)

in the drawing. These sets of points are drawn in R2 so that the following properties hold:

(a) δ(a, yab) = δ(b, yba) = λ + ε.

(b) Xab is a chain of points drawn so that δ(a, x1) = δ(x1, x2) = · · · = δ(xl1 , b) = λ and,
for any i �= j + 1, j − 1, δ(xi, xj ) ≥ λ.

(c) Zab is a chain of points drawn so that δ(yab , z1) = δ(z1, z2) = · · · = δ(zl2 , yba) = λ′
and, for any i �= j + 1, j − 1, δ(zi, zj ) ≥ λ′.

(d) For any xi ∈ Xab , zj ∈ Zab , δ(xi, zj ) > λ + ε. Furthermore, for any i = 1, . . . , l1,
δ(xi, yab) ≥ λ + ε and δ(xi, yba) ≥ λ + ε.

(e) Given any two different gadgets gab and gcd , for any v ∈ gab\gcd and w ∈ gcd \gab ,
we have that δ(v, w) ≥ λ. Furthermore, if v /∈ Vab ∪ Xab or w /∈ Vcd ∪ Xcd then
δ(v, w) ≥ γ λ.

In (Clementi et al. 1999) it is shown that, for a suitable choice of constants λ, λ′, ε and
γ , gadgets whose points have properties (a) . . . (e) can be drawn in R2 for any straight-line
planar orthogonal drawing D(G). It can be seen that the same choice of λ, λ′, ε and γ ,
achieves points in the gadgets to have the following additional properties:

(b′) δ(a, xj ) > λ + ε for any j �= 1, and δ(xi, b) > λ + ε for any i �= l1.

(c′) δ(yab, zj ) > λ + ε for any j �= 1, and δ(zi, yba) > λ + ε for any i �= l2.

(d ′) For any xi ∈ Xab , zj ∈ Zab , δ(xi, yab) > λ + ε, δ(xi, yba) > λ + ε, δ(zj , a) > λ + ε,
and δ(zj , b) > λ + ε.

Given properties (a) . . . (e) and (b′) . . . (d ′), it turns out that every gadget consists of two
components whose relative distance is λ + ε: the VX -component, consisting of the chain of
points in Vab ∪ Xab , and the YZ -component, consisting of the chain of points in Yab ∪ Zab .
Furthermore, given any pair of nodes (v, w) such that v is in the VX-component and w is
in the YZ-component, we have that δ(v, w) = λ + ε if and only if v = a and w = yab or
v = b and w = yba . The gadget for edge (a, b) is depicted in Figure 7.5.

Observe that in a connecting range assignment any node must have a transmitting range
at least equal to the distance to its closest neighbor. Let RAmin be the range assignment for
S(G) such that every node have a transmitting range equal to the distance to its closest
neighbor. Given the properties of gadgets, RAmin is such that nodes in the VX-components
have transmitting range λ, and nodes in the YZ-components have transmitting range λ′.
Because of the symmetry of points in the plane, RAmin is symmetric. The communication
graph induced by RAmin is composed of m + 1 connected components, where m = |E|:
the YZ-components of the m gadgets and the union VX of all the VX-components of the
gadgets. Hence, in order to have a connected and symmetric communication graph, we need
to define some bridge points between VX and every YZ-component.



82 THE RANGE ASSIGNMENT PROBLEM

a bx1 x2

x3

x4 x5
λ λ

λ λ

λ λ

    

 λ′

 λ′  λ′
 λ′  λ′

 λ′  λ′

 λ′

λ + e

>λ + e

>λ + e

>λ + e
λ + e

    
yab

yba

z1
z2

z3

z4

z5

z6 z7

VX-component

YZ-component

        
  

Figure 7.5 The gadget for edge (a, b).

Let Y = ⋃
a,b∈E

Yab , X = ⋃
a,b∈E

Xab , Z = ⋃
a,b∈E

Zab , and V = ⋃
a,b∈E

Vab . The following

lemma characterizes the properties of the optimal symmetric range assignment for S(G).

Definition 7.4.3 (Canonical RA) A symmetric connecting range assignment RAc for S(G)

is said to be canonical if

– RAc(v) = λ for any v ∈ X;
– RAc(v) = λ′ for any v ∈ Z;
– RAc(v) = λ or RAc(v) = λ + ε for any v ∈ V ;

– RAc(v) = λ′ or RAc(v) = λ + ε for any v ∈ Y.

Lemma 7.4.4 (Blough et al. 2002) Let S(G) be a set of points placed in R2 according to
the above described construction, where γ , λ, and ε are positive constants such that

(γ λ)2 >
m − 1

m

(
(λ + ε)2 − λ2) + (λ + ε)2 . (7.1)

Then, for any symmetric connecting range assignment RA for S(G), there exists a canonical
range assignment RAc such that c(RAc) ≤ c(RA).

Proof. We prove that any symmetric connecting noncanonical range assignment RA
can be transformed into a feasible canonical range assignment RAc through a sequence of
iterative steps, where each step does not increase the cost of the range assignment. Every
step considers a node u whose transmitting range is not canonical, and derives a symmetric
connecting range assignment such that the transmitting range for u is canonical. Since the
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number of noncanonical points in S(G) decreases at each step, the iterative process ends in
finite time.

We describe the generic step of this process. Let v be a noncanonical point and let RA(v)

be its transmitting range. We have the following cases:

1. RA(v) < γλ. In this case, the transmitting range of v is not sufficiently large to reach
points in the YZ-components of other gadgets. Note that if RA(v) < λ + ε then v

cannot be a bridge between the YZ-component and the VX-component. Hence, its
transmitting range can be decreased to λ or λ′ (depending on whether v ∈ V ∪ X or
v ∈ Y ∪ Z) without disconnecting the graph and preserving symmetry. Assume now
RA(v) ≥ λ + ε. Assume without loss of generality that v ∈ gab , for some (a, b) ∈ E.
If v ∈ Vab ∪ Yab , then its transmitting range can be reduced to λ + ε without discon-
necting the graph and preserving symmetry. Otherwise, consider the range assignment
RAab such that

– RAab(w) = RA(w) for any w ∈ S(G) − gab ;

– RAab(a) = RAab(yab) = λ + ε;

– RAab(b) = λ and RAab(yab) = λ′;

– RAab(x) = λ for any x ∈ Xab ;

– RAab(z) = λ′ for any z ∈ Zab .

Given the properties of points in a gadget, it follows that RAab is symmetric. Fur-
thermore, the communication graph resulting from RAab is connected, and RAab is
canonical in gab , and hence, in v. Let c(S(G)\gab) = ∑

v∈S(G)\gab
RA(v)2. Given the

requirement for symmetry, we have

c(RA) ≥ c(S(G)\gab) + 2 · RA(v)2 + (l1 + 1) · λ2 + (l2 + 1) · λ′2,

where l1 = |Xab | and l2 = |Zab |.
On the other hand, we have

c(RAab) = c(S(G)\gab) + 2 · (λ + ε)2 + (l1 + 1) · λ2 + (l2 + 1) · λ′2.

Since RA(v) ≥ λ + ε, we can conclude that c(RA) − c(RAab) ≥ RA(v)2 − (λ + ε)2

≥ 0.

2. RA(v) ≥ γ λ. In this case v could be a bridge point between many YZ-components
and VX. Assume without loss of generality that v ∈ gab , for some (a, b) ∈ E. We first
transform the range assignment as described above, obtaining the range assignment
RAab , with c(RA) − c(RAab) ≥ γ 2λ2 − (λ + ε)2. However, RAab in general is not
symmetric and could leave some YZ-components isolated. For this reason, we consider
the isolated components YZ1, . . . , YZk in the graph generated by RAab , and for each
of this component we apply the same construction as for the gadget gab . The resulting
range assignment ¯RAab is symmetric and connecting. In order to prove the lemma,
we have to show that c( ¯RAab) ≤ c(RA). Note that the cost associated with any YZ-
component YZi could increase in the new range assignment ¯RAab . However, observing
that because of symmetry at least one node in YZi must have transmitting range of at
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least γ λ, the increase for every YZ-component is bounded by 2(λ + ε)2 − (γ λ)2 − λ2.
Considering that k ≤ m − 1, we have

c(RA) − c( ¯RAab) ≥ γ 2λ2 − (λ + ε)2 − (m − 1)(2(λ + ε)2 − (γ λ)2 − λ2) ≥ 0

by inequality (7.1). This ends the proof of the lemma.

Consider a planar cubic graph G and a planar orthogonal drawing D(G) of G, and let
2h be the number of nodes added in the second step of the construction. Assign to every
node in G and in D(G) a weight equal to its degree. The following lemma relates the cost
of a vertex cover for G with that of a vertex cover for D(G).

Lemma 7.4.5 Let G be a planar cubic graph, D(G) a planar orthogonal drawing of G,
and let 2h be the number of nodes added in the construction. Assign to every node in G and
in D(G) a weight equal to its degree. Then, G has a vertex cover of cost ≤ k if and only if
D(G) has a vertex cover of cost ≤ k + 2h.

Proof. The proof follows easily from Lemma 3.1 of (Kirousis et al. 2000) and by
observing that every node added in the construction of D(G) has degree 2.

We are now ready to prove that SRA in two-dimensional networks is NP-hard.

Theorem 7.4.6 Solving the SRA problem in two- and three-dimensional networks is
NP-hard.

Proof. We show a polynomial time reduction from MinWeightedVertexCover for
planar cubic graphs.

Let G be any planar cubic graph and let D(G) = (V, E) be a straight-line planar orthogo-
nal drawing of G. By Lemma 7.4.5, the problems of determining a vertex cover of minimum
weight on D(G) and on G are equivalent, and hence MinWeightedVertexCover on D(G)

is NP-hard.
Consider now the set of two-dimensional points S(G) obtained by constructing gadgets

on every edge of D(G) as described above. In Clementi et al. (1999), it is proved that for
any D(G) it is possible to derive S(G) in polynomial time, and that points in the gadgets
satisfy condition (a) . . . (e), for positive constants γ , λ, λ′, ε such that λ + ε > λ′ and

(γ λ)2 > (m − 1)
(
(λ + ε)2 − λ2) + (λ + ε)2

>
m − 1

m

(
(λ + ε)2 − λ2) + (λ + ε)2.

It can be seen that the same choice of γ , λ, λ′, and ε enables points in the gadgets to have
the additional properties (b′) . . . (d ′).

Let Y = ⋃
a,b∈E

Yab , X = ⋃
a,b∈E

Xab , Z = ⋃
a,b∈E

Zab , and V = ⋃
a,b∈E

Vab . We now prove that

D(G) has a vertex cover C of cost k if and only if S(G) has a feasible range assignment
of cost (|X| + |V | − |C|) λ2 + (|Y | + |Z| − k))λ′2 + (|C| + k) (λ + ε)2.
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Assume D(G) has a vertex cover C of cost k. Consider the canonical range assignment
RAc on S(G) where

– RAc(v) = λ + ε for any v ∈ C,

– RAc(v) = λ for any v ∈ V \C,

and transmitting ranges of points in Y are assigned in such a way that symmetry is guaran-
teed. Since C is a cover of D(G), RAc is connecting, and has cost (|X| + |V | − |C|) λ2 +
(|Y | + |Z| − k))λ′2 + (|C| + k) (λ + ε)2.

Consider now any symmetric connecting range assignment RA for S(G). By
Lemma 7.4.4, there exists a canonical range assignment RAc such that c(RAc) ≤ c(RA).
Hence, we can restrict our attention to the canonical range assignment RAc. Let k be
the number of points in Y whose transmitting range is λ + ε, and let C be the set of
points in V whose transmitting range is λ + ε. The cost of RAc is (|X| + |V | − |C|) λ2 +
(|Y | + |Z| − k))λ′2 + (|C| + k) (λ + ε)2. Since RAc is canonical, it follows that C is a ver-
tex cover of D(G) and that, because of symmetry, the cost of C is k. This ends the proof
of the theorem.

7.4.3 Approximation algorithms for WSRA

Since solving WSRA in two- and three-dimensional networks is NP-hard (this follows from
the fact that a restricted version of WSRA, SRA, is NP-hard), some authors have studied
approximation algorithms for WSRA.

First, we observe that the range assignment RAT used in Theorem 7.3.2 to approximate
RA within a factor of 2 generates a communication graph whose symmetric subgraph is
connected. So, RAT is a 2-approximate solution of WSRA also. Better polynomial time
approximation algorithms for WSRA have been introduced in (Althaus et al. 2003): the
first algorithm has an approximation ratio of 5

3 + ε, for any positive constant ε > 0, while
the second, which is more computationally efficient, has an approximation ratio of 11

6 .
Further, the authors of (Althaus et al. 2003) present an exact branch and cut algorithm for
solving WSRA based on an integer linear program formulation of the problem. Experimental
results show that the branch and cut algorithm solves instances with up to 35–40 nodes
(with randomly generated positions) in 1 hour. Most importantly, the experimental results
show that the average improvement of the exact solution over RAT , which can be easily
calculated, is in the range 4–6%. This means that the average case approximation factor of
RAT is much smaller than its worst-case factor of 2.

7.5 The Energy Cost of the Optimal Range Assignment

In the previous section, we have considered two restricted versions of the RA problem,
and we have seen that, in case of two- and three-dimensional networks, the computational
complexity of the restricted problems does not change with respect to the general case. It
is also interesting to evaluate which is the impact of the stronger connectivity requirements
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Figure 7.6 Problem instance for which cS

cRA
∈ �(n).

on the cost of the optimal range assignment. In other words, denoting with cRA, cWS and
cS the energy cost of the optimal solutions of RA, WSRA, and SRA for a certain problem
instance, which is the relation between these costs?

Clearly, we have cRA ≤ cWS ≤ cS , since WSRA and SRA are increasingly constrained
versions of RA. By observing that the range assignment RAT used in Theorem 7.3.2 to
approximate RA within a factor of 2 generates a communication graph whose symmetric
subgraph is connected, it follows that cWS

cRA
∈ O(1) (Blough et al. 2002). As for cS and cRA,

the following construction shows that cS

cRA
∈ �(n) already in one-dimensional networks.

The construction is as follows (Blough et al. 2002). We have n colinear nodes
v1, . . . , vn (nodes are ordered from left to right). Nodes vi , vi+1 are at distance d > 0, for
i = 1, . . . , n − 2; the rightmost node vn is at distance nd from node vn−1 (see Figure 7.6).
By connecting each node to its closest left and right neighbor, we obtain a range assignment
RA that is connected and has cost equal to c(RA) = (n − 2)dα + 2(nd)α. So, the optimal
solution to RA has at most cost equal to c(RA). If the range assignment must satisfy (strong)
symmetry, the fact that RA(vn−1) ≥ nd (this is necessary to connect node vn−1 and node
vn) implies that node vn−1 has a unidirectional link to every node vi , with i = 1, . . . , n − 2.
Given strong symmetry, this implies that RA(vi) ≥ nd for any node vi , that is, cS ≥ n(nd)α .
Then, we have cS

cRA
∈ �(n).

In other words, the results above prove that the requirement for weak symmetry has only
a marginal effect on the energy cost of the range assignment, while it eases significantly the
integration of topology control mechanisms with existing protocols (e.g. routing and MAC).
On the other hand, imposing the stronger requirement of symmetry results in a considerable
additional energy cost. Overall, we can conclude that weak symmetry is a desirable property
of the range assignment.



8

Energy-efficient Communication
Topologies

In the previous chapter, we have considered the problem of computing a set of transmitting
range assignments of minimum energy cost that generates a strongly connected communica-
tion graph. Considerable research has been devoted also to the problem of identifying good
topologies for energy-efficient communication among the network nodes. In other words,
we are given the communication graph G obtained when all the nodes transmit at maximum
power, and the goal is to identify a sparse subgraph G′ of G such that only energy-efficient
links are retained in G′. The criterion used to determine whether a certain link in G is
energy efficient depends on the communication pattern considered. Typically, the focus is
on either end-to-end communication between arbitrary nodes (unicast) or on one-to-all com-
munications (broadcast). In this chapter, we first analyze this topology optimization problem
for unicast communications, and then we consider the same problem in case of broadcast.
Note that all the results presented in this chapter are for two-dimensional networks.

8.1 Energy-efficient Unicast

Let G = (N, E) denote maxpower graph, that is, the communication graph that is generated
when all the nodes transmit at maximum power. In what follows, we assume that G is
connected.

Let Puv be any directed path connecting nodes u and v in G. The power cost of
Puv = {u = w0, w1, . . . , wh, wh+1 = v} is defined as the sum of the power costs of the
single edges, that is,

pc(Puv) =
h∑

i=0

δ(wi, wi+1)
α,

where α is the distance-power gradient. The path in G connecting u and v and consuming
the minimum power is denoted P min,G

uv , and is called the minimum-power path between u
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and v in G. If the minimum-power path between u and v is not unique, we refer to any of
these paths as the minimum-power path.

Definition 8.1.1 (Power stretch factor) Let G′ be an arbitrary subgraph of the maxpower
graph G = (N, E). The power stretch factor of G′ with respect to G, denoted as ρG′ , is the
maximum over all possible node pairs of the ratio between the power cost of the minimum-
power path in G′ and in G. Formally,

ρG′ = max
u,v∈N

pc(P min,G′
uv )

pc(P min,G
uv )

.

By convention, we define ρG′ = ∞ if there exist nodes u, v that are connected in G, but are
disconnected in G′.

The power stretch factor is a generalization of the concept of distance stretch factor,
which is well known in computational geometry (Goodman and O’Rourke 1997). Another
similar concept is the hop stretch factor, which measures the ratio of the hop counts rather
than that of power or distance. An example of maxpower graph G, of a subgraph G′ of G,
and the correspondent power, distance, and hop stretch factors are reported in Figure 8.1.

Definition 8.1.2 (Power spanner) Let G = (N, E) be the maxpower graph, with |N | = n.
A subgraph G′ of G is said to be a power spanner of G if ρG′ ∈ O(1).

Similar definitions can be given for distance and hop spanners.
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Figure 8.1 The graph (a) is the maxpower graph G, where the edges are labeled with
their length. The subgraph G′ of the maxpower graph obtained by removing edge (u, v) is
reported in (b). The power stretch factor of G′ is 1 (we assume α = 4), since edge (u, v)

is energy inefficient, and the alternative path {u, w, v} is used also in the maxpower graph.
The distance stretch factor of G′ is 20.7

14.2 = 1.46. The hop stretch factor is 2, because the
minimum-hop path connecting nodes u and v in G′ is the two-hops path {u, w, v}.
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In general, we would like to identify a subgraph G′ (also called routing graph in the
following) of the maxpower graph G that has a low power stretch factor (possibly, a power
spanner of G), and which is significantly sparser than the original graph. This routing graph
can be seen as the input to the routing protocol, which computes the routes between nodes
considering only the links in G′. Given the power spanning property, we have the guarantee
that the power needed to communicate along these routes is ‘almost minimal’. The advantage
of using G′ instead of G is that the routing overhead (which is mainly due to the limited
flooding of control messages in the route discovery phase1) is reduced if G′ is considerably
sparser than G.

Note that in this approach to the topology control problem it is implicitly assumed that
a node changes the transmit power on a per-packet basis: when node u has to send a packet
to node v, it sets the transmit power level to the minimum value needed to reach the next
node in the route to v. Thus, according to the taxonomy introduced in Chapter 3, we can
classify the results presented in this section as per-packet topology control.

Besides being a sparse2 power spanner, other desirable features of the routing graph have
been identified. In particular, the node degree in the constructed topology should be upper
bounded by a constant. Note that the fact that G′ is sparse guarantees that the average,
and not the maximum, node degree in the graph is constant. Having an upper bound on
the maximum node degree is desirable to avoid bottlenecks in the communication graph.
If the routing graph is used in conjunction with a geographic routing protocol (such as
the protocols presented in (Bose et al. 2001; Karp and Kung 2000; Khun et al. 2003)),
then planarity is a fundamental property to guarantee message delivery. Finally, and most
importantly, the routing graph should be constructed in a localized and fully distributed
fashion. In other words, any node u in the network should be able to compute its local view
of G′ (i.e. the edges of G′ incident in it) on the basis of only the information regarding
nodes that are immediate (or, at most, two-hops) neighbors of u in the maxpower graph.

Summarizing, the routing graph G′ should

– be a power spanner of the maxpower graph;

– be sparse;

– have bounded node degree;

– be planar;

– be easily computable in a fully distributed and localized fashion.

Several routing graphs that satisfy some or all of the requirements above have been
proposed in the literature. Most of them are based on subgraphs of G that are known to
be good distance spanners. In fact, it can be easily seen that if a certain routing graph
G′ is a distance spanner of graph G, then it is also a power spanner of G (note that the
reverse implication in general is not true). Thus, the considerable body of research devoted
to distance spanners in computational geometry can be used to design good routing graphs
(Goodman and O’Rourke 1997).

1This is true for reactive routing protocols, which are known to perform very well in ad hoc/sensor networks.
2We recall that, in graph theoretic terms, a graph on n nodes is sparse if the number of edges in it is O(n) (see

Appendix A).
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Table 8.1 Distance stretch factor, power stretch factor, aver-
age and maximum node degree of different proximity graphs

Distance Power Avg. Degree Max. Degree

RNG n − 1 n − 1 O(1) n − 1

GG 4π
√

2n−4
3 1 O(1) n − 1

RDT 1+√
5

2 π
(

1+√
5

2 π
)α

O(1) �(n)

YGc
1

1−2 sin π
c

1
1−(2 sin π

c )
α O(1) n − 1

In particular, the following graphs (for a definition of these graphs see Appendix A)
borrowed from computational geometry have been used to build good routing graphs for
ad hoc networks: the Relative Neighborhood Graph (RNG), the Gabriel Graph (GG), the
Delaunay Triangulation (DT), and the Yao Graph of parameter c (YGc). These graphs are
called proximity graphs, since the set of links incident in any node u of the computed graph
can be calculated on the basis of the position of the neighbor nodes in the maxpower graph.
Thus, proximity graphs can be constructed in a fully distributed and localized way.

The following relationships between proximity graphs have been proven (Goodman
and O’Rourke 1997; Li et al. 2002): for any set of points N , RNG(N) ⊆ GG(N), and
RNG(N) ⊆ YGc(N), for any c ≥ 6. Furthermore, MST(N) is contained in RNG(N), GG(N),
DT(N), and YGc(N), for any c ≥ 6. The distance and power spanning ratios of these graphs
are summarized in Table 8.1, along with the average and maximum node degree. In the
table, RDT is the restricted Delaunay Triangulation, where the edges exceeding the nodes’
maximum transmitting range are removed (see (Gao et al. 2001)).

As seen from Table 8.1, the GG has optimal power stretch factor. The algorithm reported
in Figure 8.2, which was presented in (Song et al. 2004), can be used to compute the GG
in a fully distributed and localized way. The algorithm relies on the assumption that every
node in the network knows its position on the plane. This can be accomplished by equipping
nodes with low-power GPS receivers, or by using other location estimation techniques.

We recall that an edge (u, v) ∈ G is included in the Gabriel Graph if and only if the
disk with the same edge as diameter contains no node of G (see Figure 8.3). It is immediate
to see that the algorithm reported in Figure 8.2 constructs the GG. Considering that the
maximum node degree in the maxpower graph can be as high as n − 1, it can be easily
seen that the algorithm has O(n2) time complexity. The message complexity is O(n), since
every node in the graph transmits a single message.

Although the GG has optimal power stretch factor, its maximum node degree can be
as high as n − 1. The same holds for the other graphs listed in Table 8.1. For this reason,
several variants of the above proximity graphs have been proposed, with the purpose of
having a constant bound on the maximum node degree. Unfortunately, it has been shown
that no geometric graph with constant node degree contains the minimum-power path for
any pair of nodes (Wang et al. 2002). Thus, no power-optimal spanner with a constant
bounded maximum node degree exists. To date, the routing graph with constant maximum
node degree that has the best power stretch factor is the OrdYaoGG graph of (Song et al.
2004), which is obtained by building the YGc graph, with c > 6, on the top of the GG. The
OrdYaoGG graph has power stretch factor of ρ = 1

1−(2 sin π
c )α

, and maximum node degree
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Algorithm GabrielGraph:
(Algorithm for node u)

IDu is the identifier of node u, and (xu, yu) is its location
EG(u) and EGG(u) are the set of links of the maxpower graph and of the GG node u

is aware of
disk(u, v) is the disk with edge (u, v) as diameter

1. Initialization
Locally broadcast message (IDu,(xu, yu)) at maximum power
EG(u) = EGG(u) = ∅

2. Processing of incoming messages
upon receiving message (IDv ,(xv, yv)) from node v

add (u, v) to EG(u)

check whether exists edge (u, w) ∈ EG(u) such that w ∈ disk(u, v)

if no, then add (u, v) to EGG(u)

for each (u, w) ∈ EGG(u)

check whether v ∈ disk(u, w)

if yes, then remove (u, w) from EGG(u)

3. Termination
after processing all incoming messages, EGG(u) contains all the edges of GG
incident in u

Figure 8.2 Algorithm for constructing the Gabriel Graph.

u v

Figure 8.3 Edge (u, v) is included in the GG if and only if the disk with the same edge as
diameter (shaded area) contains no node.
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of c + 5, where c > 6 is the parameter of the Yao graph. For example, setting c = 9 and
α = 2, we have a power stretch factor of 1.88 with a bound on the maximum node degree of
14. Although OrdYaoGG can be constructed in a fully distributed and localized fashion, its
computation requires the exchange of a considerable number of messages (24 n messages
in the worst case). For this reason, the authors of (Song et al. 2004) proposed the SYaoGG
graph, which is a simplified version of OrdYaoGG that can be constructed exchanging at
most 3 n messages. The power stretch factor of this graph is ρ =

√
2
α

1−(2
√

2 sin π
c )α

, and the

maximum node degree is c, where c > 8 is the parameter of the Yao graph. Setting c = 9
and α = 2 as above, we have a power stretch factor of 31.16 and a maximum node degree
equal to 9.

8.2 Energy-efficient Broadcast

Another problem that has been considered in the literature is the determination of topologies
for energy-efficient broadcast: we are given the maxpower graph G, and the goal is to
determine a sparse subgraph G′ of G (the broadcast graph) such that broadcasting in G′
is almost as energy efficient as broadcasting in the maxpower graph. Here, the advantage
of using a graph that is sparser than the maxpower graph as the broadcasting topology
is that the well-known broadcast storm phenomenon (Ni et al. 1999) can be reduced. This
phenomenon occurs when many nodes in a neighborhood try to relay the broadcast message
at the same time, resulting in serious redundancy, bandwidth contention, and collision.

Before presenting the results, we introduce the concept of broadcast stretch factor. Let
us consider the maxpower communication graph G. Any broadcast generated by node u can
be seen as a directed spanning tree T of G rooted at u, which we call a broadcast tree. The
power cost of the broadcast tree T is defined as follows. Denoting with pcT (v) the power
consumed by node v to broadcast the message along T , we have that pcT (v) = 0 if v is
a leaf node of T , and pcT (v) = max(v,w)∈T δ(v, w)α otherwise. The total power needed to
broadcast the message along the broadcast tree T is then pc(T ) = ∑

v∈N pcT (v). We call
this cost the power cost of T . The tree in G rooted at u with minimum power cost is called
the minimum-power broadcast tree of u, and it is denoted T min,G

u .

Definition 8.2.1 (Broadcast stretch factor) Let G′ be an arbitrary subgraph of the max-
power graph G = (N, E). The broadcast stretch factor of G′ with respect to G, denoted as
βG′ , is the maximum over all nodes of the ratio between the minimum-power broadcast tree
in G′ and in G. Formally,

βG′ = max
u∈N

pc(T min,G′
u )

pc(T min,G
u )

.

Definition 8.2.2 (Broadcast spanner) Let G = (N, E) be the maxpower graph, with
|N | = n. A subgraph G′ of G is said to be a broadcast spanner of G if βG′ ∈ O(1).

Similar to the case of unicast, the goal is to find sparse broadcast spanners of G that
can be computed in a fully distributed and localized fashion. Unfortunately, this task turns
out to be more difficult than in the case of unicast communication.

The main difficulty arises from the fact that the computing of the minimum-power
broadcast tree rooted at a certain node is a NP-hard problem (Cagali et al. 2002; Liang 2002),
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under the hypothesis that the nodes can use a set of discrete power levels {P1, . . . , Pk}. So,
directly computing the broadcast stretch factor of a certain subgraph G′ of G is virtually
impossible, since this would require solving a NP-hard problem.

Given this hardness result, several authors have presented heuristic solutions that approx-
imate the optimal (but hard to compute) solution of the minimum-power broadcast tree
problem. One popular such heuristic, which we present in the following, is the Broadcast
Incremental Power (BIP) algorithm introduced in (Wieselthier et al. 2000).

The BIP algorithm, which is reported in Figure 8.4, is a variation of the well-known
Prim’s algorithm for finding the MST. The algorithm starts by finding the node that the
source node u can reach with minimum power cost. This node is added in the set C of
covered nodes, that is, the nodes that have received the broadcast message. At the generic
step i, BIP considers all the uncovered nodes and, for any such node v, calculates the
incremental cost of adding v to the current spanning tree. The node v with minimum
incremental cost is added to the set of covered nodes, and is now part of the spanning tree.
This process is repeated until all the nodes in the network are covered.

In (Wan et al. 2002), Wan et al. showed that the approximation ratio of BIP is between 13
3

and 12. Then, a broadcast spanner of G can be constructed as follows: for any node u in G,
apply the BIP algorithm to construct the broadcast tree Tu rooted at u. Let GBIP = ⋃

u∈N Tu,
that is, link (u, v) is in GBIP if and only if it is contained in one of the broadcast trees
computed by BIP. Given that BIP approximates the optimal solution (which is built on the
maxpower graph) by a factor at most 12, it follows that, for any u ∈ N , GBIP contains a

Algorithm BroadcastIncrementalPower:

u is the source node
C is the set of currently covered nodes
T is the current spanning tree
N is the set of network nodes

1. Initialization
C = {u}
T = {u}

2. Repeat until C = N

for each node v ∈ N − C, compute the incremental cost ic(v) of adding v to T

let v be the node in N − C with minimal incremental cost
C = C

⋃ {v}
add v in the current spanning tree T

3. Termination
when C = N , T is a broadcast spanning tree rooted at u

Figure 8.4 BIP algorithm for constructing the broadcast tree.
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broadcast tree rooted at u of cost at most O(1) times the cost of the optimal tree; that
is, GBIP is a broadcast spanner of G. Unfortunately, graph GBIP in general is not sparse.
Furthermore, BIP is a centralized algorithm that requires global knowledge (it requires
knowing at least the set N of network nodes).

Another graph that can be used to construct broadcast spanners is the MST, which
approximates the minimum-power broadcast tree by a factor between 6 and 12 (Wan et al.
2002). Unfortunately, the computation of the MST also requires global knowledge. In order
to circumvent this problem, Li et al. (Li et al. 2004) have recently proposed a localized,
fully distributed algorithm that constructs a local approximation of the MST. The algorithm,
called LMSTk , requires exchanging O(n) messages (although the hidden constant is larger
than 225), and builds a O(nα−1) approximation of the energy-optimal broadcast tree. Thus,
LMSTk cannot be used to compute a broadcast spanner of G.

Summarizing, the problem of designing a distributed and localized algorithm that can
be used to build a broadcast spanner of G is still open.

Before ending this section, we want to outline the similarities between the range assign-
ment problem discussed in Chapter 7 and the problem of energy-efficient broadcast. Suppose
G is the maxpower graph on the set of points N . In the. RA problem, the goal is to find the
energy-optimal range assignment that generates a connected communication graph. Suppose
an arbitrary node u ∈ N wants to broadcast a message m, and let RA be the optimal range
assignment. A very simple broadcast scheme is flooding: node u transmits m at distance
RA(u), and every other node v, upon receiving m for the first time, retransmits it at distance
RA(v). It is immediately seen that after all nodes in N have transmitted the message once m

has been broadcast throughout the network. Thus, the energy cost of RA is an upper bound
to the power cost of any broadcast tree in G. We recall that the energy cost of the optimal
range assignment (and of the optimal weakly symmetric range assignment) differs from the
cost of the MST at most for a factor 2. Since the MST is a broadcast spanner of G, this
implies that the communication graph generated by the optimal (weakly symmetric) range
assignment is a broadcast spanner of G. Unfortunately, this does not help very much, since
computing this graph in two and three-dimensional networks is NP-hard.
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Distributed Topology Control:
Design Guidelines

In Part III of this book, we have considered several topology optimization problems in which
we are given the node locations, and the goal is to identify ‘optimal’ network topologies
with respect to a certain metric (e.g. energy cost, energy-efficient unicast/broadcast, and
so on). In this approach to topology control, the emphasis is on the properties of the
generated topology, rather than on the process needed to build such topology. Typically, it
is assumed that all the information regarding node positions is available to a central entity,
which uses this information to compute the ‘optimal’ topology. In this and in the next
chapters, we consider more practical approaches to the topology control problem, in which
the challenge is to design lightweight, fully distributed protocols that generate a ‘reasonably
good’ topology. Here, the focus is then on the topology generation process, rather that on
the ‘quality’ of the resulting topology.

We start by discussing the guidelines that should be used in the design of topology
control protocols. We then consider three approaches to distributed topology control, which
are ordered by the amount of information available to the network nodes: first, we consider
location-based protocols, in which every node knows its own location (Chapter 10); then, we
proceed to direction-based protocols, in which nodes do not know their position, but they can
estimate the direction of neighbor nodes (Chapter 11); finally, we present neighbor-based
topology control, in which nodes only know the number and identity of their neighbors
(Chapter 12). The last chapter of Part IV of this book deals with node mobility, discussing
how mobility affects the implementation and the performance of topology control protocols.

9.1 Ideal Features of a Topology Control Protocol

Which are the features that a topology control protocol should ideally have?
Given that the lack of a centralized authority (such as the base station in a cellu-

lar network) is one of the peculiar features of ad hoc and sensor networks, centralized
approaches are doomed to perform poorly in realistic application scenarios. For this reason,
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only solutions that can be implemented in a fully distributed and asynchronous fashion have
some practical relevance.

Another important feature of a protocol for topology control is locality, which refers to
the nodes’ ability to build their view of the network topology by using local information
only, that is, information regarding up to h-neighbors in the maxpower graph, where h is a
small constant (2–3 at most). Localized solutions have several advantages with respect to
approaches that require networkwide information exchange: since network nodes can build
their local view of the topology by exchanging few messages with neighbor nodes only,
localized protocols can be classified as lightweight solutions, which can be implemented
in very large networks also; furthermore, locality implies that the network topology can be
easily reconfigured when nodes leave/join the network, or in presence of node mobility.

As mentioned above, the goal of a distributed topology control protocol is to build a
‘reasonably good’ topology. But what do we mean by ‘reasonably good’? What are the
essential features that the generated topology should have? For the reasons discussed in
Section 7.4, the topology generated by the topology control protocol should rely on bidi-
rectional links only. Furthermore, it is desirable that the topology control protocol preserves
connectivity. In other words, if the network is connected when all the nodes communicate
with maximum transmit power (i.e. if the maxpower graph is connected), then it should pre-
serve this property also after every node in the network has executed the topology control
protocol. So, only redundant links should be removed from the network topology.

In the following, we will see that there is a considerable difference between requiring
connectivity preservation in the worst case (i.e. for any node placement, if the maxpower
communication graph is connected, then the network remains connected after the execution
of the topology control protocol) and requiring connectivity with high probability . As we
shall see, the former property can be achieved only if the physical node degree in the
network is unbounded (the notion of physical node degree is introduced in Section 9.3),
while the latter can also be achieved when the number of physical neighbors of a node are
upper bounded. As discussed in Section 9.3, building a network topology in which nodes
have small physical degree is highly desirable, since this parameter is a measure of the
interference generated by a transmitting node: if the physical degree of node u is small,
the number of nodes impacted by u’s transmission is relatively small, and spatial reuse is
increased. So, we can state that at least two of the desired topological properties discussed
above are conflicting: ensuring worst-case connectivity and generating a topology with small
physical node degree.

A final aspect to consider in the design of a topology control mechanism is the quality of
information required by the protocol: since obtaining very accurate information such as node
locations is, in general, quite expensive (in terms of additional hardware required on the
nodes, or message overhead, or both), it is desirable that the protocol relies on ‘low-quality’
information. This issue is carefully discussed in Section 9.2.

Summarizing, a topology control protocol should

1. be fully distributed and asynchronous;

2. be localized;

3. generate a topology that preserves the original network connectivity and relies on
bidirectional links only;
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4. generate a topology with small physical node degree;

5. rely on ‘low-quality’ information.

9.2 The Quality of Information

An important aspect to be considered in the design of topology control protocols is the type
of information used by the nodes to build the local view of the topology: nodes can use
high-quality information (e.g. neighbor node locations), medium-quality information (e.g.
directional information, or distance to neighbors), or low-quality information (number and
identity of neighbor nodes). In general, there is a direct relationship between information
quality and energy efficiency of the computed topology: the more accurate the information
available to the nodes, the more energy savings can be achieved. However, information qual-
ity (and, thus, energy savings) must be carefully traded off with the cost incurred for making
the information available to the nodes. The cost is due to either some additional hardware
required on the nodes (e.g. low-power GPS receivers in case of location information) or the
message overhead needed to produce/update high-quality information, or both.

We clarify this point with an example. Suppose protocol P1 is based on location infor-
mation and protocol P2 is based on distance estimation. Clearly, the cost of implementing
P2 in a real network is significantly lower than that required by P1, since estimating distance
between nodes requires cheaper hardware and/or less message exchange than does estimat-
ing node positions. So, if the energy savings provided by protocol P1 are not considerably
higher than those achieved by P2, a solution based on protocol P2 may be preferable in
practice.

Another argument in favor of designing protocols based on low-quality information is
that they can be used in a wider range of application scenarios. For instance, it is well
known that location estimation techniques perform poorly in indoor environments because
of the hardly predictable propagation of the radio signal. So, location-based topology control
protocols such as those presented in Chapter 10 cannot be used in this case.

9.3 Logical and Physical Node Degrees

As discussed in Chapter 3, one of the motivations for topology control is its potential to
reduce interference between concurrent transmissions. A typical measure used to quantify the
expected interference is the node degree of the communication graph: if the transmitting node
u has small degree, relatively few nodes will experience interference during u’s transmission.
For this reason, it is desirable to generate topologies with small average node degree.
However, a clarification about the term ‘node degree’ is in order.

Most of the current literature on topology control defines node degree as follows:

Definition 9.3.1 (Logical node degree) Let GP = (N, EP ) be the communication graph
generated by a certain topology control protocol P . For a given u ∈ N , the (logical) node
degree of u in GP is defined as

L Deg(u) = |{v ∈ N : (u, v) ∈ EP }|.
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The definition above is the traditional definition of node degree used in graph theory (see
Appendix A). Since in the distributed setting typical of ad hoc and sensor networks every
node independently builds its local view of the communication graph, we can equivalently
define the logical degree of a certain node u as the number of nodes in its neighbor list
after the protocol execution.

Note that what is defined above is a logical node degree, since some of the nodes that
are within u’s transmitting range might not appear in u’s neighbor list (typically, because
their link to node u is not energy efficient). As a consequence, the logical node degree is
not very effective in measuring the expected interference experienced by nodes: if a certain
node v is within u’s transmitting range but is not listed in u’s neighbor list (i.e. edge (u, v)

is not in EP ), it will not contribute to u’s logical degree, but it is definitely affected by
node u’s transmission.

To circumvent this problem, the authors of (Blough et al. 2003b) have introduced the
notion of physical node degree, which is defined as follows:

Definition 9.3.2 (Physical node degree) Let GP = (N, EP ) be the communication graph
generated by a certain topology control protocol P . For a given u ∈ N , the (physical) node
degree of u in GP is the number of nodes within u’s range when it transmits with the minimum
power needed to reach its farthest neighbor in GP , that is, when u transmits at the broadcast
power. Formally,

P Deg(u) = |{v ∈ N : δ(u, v) ≤ max
(u,w)∈EP

δ(u, w)}|.

It is easy to see that the logical degree is a lower bound to the physical degree.
To clarify the difference between logical and physical node degrees, let us consider the

example shown in Figure 9.1. The figure reports a sample topology built by the CBTC proto-
col introduced in (Wattenhofer et al. 2001), which will be presented in detail in Chapter 11.
After CBTC’s execution, node u has nodes v, w, x, y, z in its neighbor list, that is, it has
logical degree 5. However, when u transmits a message to its furthest neighbor, node w,
more than 5 nodes are within its radio range. Consider for instance node t ; this node does
not have a direct link to u in the constructed topology, because communicating along the
two-hops path {t, v, u} is more energy efficient than the direct communication from t to u.
Nevertheless, t is affected by u’s transmission to node w, and it contributes to its physical
degree. Note that the physical degree can be substantially higher than the logical degree: in
the example of Figure 9.1, the logical degree of node u is 5, while its physical degree is 10.

The following theorem proves a fundamental trade-off between worst-case connectivity
and physical node degree:

Theorem 9.3.3 Let G = (N, E) be the maxpower communication graph on node set N , and
assume G is connected. Let P be any topology control protocol that preserves worst-case
connectivity and let GP = (N, EP ) be the topology generated by P . Then, there exists a node
placement such that the maximum physical node degree in GP is n − 1, where n = |N |.

Proof. Consider the node placement represented in Figure 9.2: there is one faraway
node (node v) and all the other nodes are very close to each other. Among these nodes,
node u is the closest to node v. Since the maxpower graph G is connected, node u is within
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Figure 9.1 Difference between logical and physical node degrees: node u has logical degree
equal to 5 and physical degree equal to 10.

u

v

δ( )u,v

n − 1 nodes

Figure 9.2 Example of node placement generating a topology in which at least one node
has physical node degree equal to n − 1.

v’s maximum transmitting range and, given the standard assumptions of symmetric wireless
medium and that all the nodes have the same maximum transmit power, node v also is within
u’s maximum range. Since the nodes in the cluster are much closer to u than node v, and
v is a neighbor of u in G, it follows that the physical degree of node u in the maxpower
graph is n − 1. Let us now consider the topology GP = (N, EP ) generated by a worst-case
connectivity preserving topology control protocol P . Can we do any better than having at
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least one node with physical degree equal to n − 1? The answer is clearly no: since GP

must be strongly connected, at least one of the nodes in the cluster must have v within
its transmitting range. Node u is the cluster node that is closer to node v: if node u has
a connection to node v, its physical degree is n − 1 for the reasons described above. If
another cluster node w �= u has a connection to v, w’s range is larger than δ(u, v), since
u is the closest node to v, and every network node is within w’s range. It follows that, in
order to preserve connectivity, at least one of the network nodes must have physical degree
equal to n − 1, and the theorem is proven.

In other words, Theorem 9.3.3 states that if we want to ensure connectivity in the worst
case, we must admit the possibility of having a ‘high interference node’, that is, a node
whose communications affect all the remaining nodes in the network.

Another implication of Theorem 9.3.3 is that the gap between logical and physical
node degrees can be very high in the worst case. In fact, as we will see in the following
chapters, there exist topology control protocols that preserve worst-case connectivity and
generate topologies with logical node degree bounded by a small constant (typically, 6).
By Theorem 9.3.3, the physical node degree in these topologies can be as high as n − 1,
implying that the gap between logical and physical node degrees in a communication graph
can be as high as O(n).
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Location-based Topology Control

In this chapter, we present two location-based distributed topology control protocols, the
R&M protocol introduced in (Rodoplu and Meng 1999) and the LMST protocol presented
in (Li et al. 2003).

As discussed in the previous chapter, this type of protocols relies on very accurate
information (node locations), which is assumed to be somehow available to the nodes. The
easiest way to satisfy this assumption is to equip every node in the network with low-power
GPS receivers, which enable very accurate position estimation and loose synchronization
with no message exchange between network nodes. This solution has a high cost in terms of
hardware required on the nodes, but it entails no message overhead. An alternative solution
is to use one of the many location estimation techniques introduced in the literature (see,
for instance, (Niculescu and Nath 2003; Priyantha et al. 2000; Savvides et al. 2001)). These
techniques usually assume that a subset of the network nodes (called the anchor nodes)
is equipped with GPS receivers, and that nonanchor nodes can estimate their position by
exchanging messages with the surrounding anchor nodes. In location estimation techniques,
the reduced hardware cost due to the fact that only a subset of the nodes is GPS-equipped
is traded off with the message overhead incurred to estimate node positions.

Before presenting the protocols, we remark that location-based topology control can be
used in outdoor applications, while its applicability in indoor environments is limited by the
poor accuracy provided by location estimation techniques in this setting.

10.1 The R&M Protocol

The R&M protocol (Rodoplu and Meng 1999) builds a topology that is optimized for the
all-to-one communication pattern, where one of the network nodes is designated as the
master node, and all the other nodes send messages to the master. This traffic pattern is
typical of WSNs, where the deployed sensors must send the collected data to one (or more)
base station(s). Given the focus on the all-to-one traffic pattern, and the fact that WSNs
are typically deployed outdoor, the R&M protocol is well suited to build and maintain the
topology in sensor networks.

Topology Control in Wireless Ad Hoc and Sensor Networks P. Santi
 2005 John Wiley & Sons, Ltd
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Before presenting the protocol, we formally define the minimum-energy all-to-one com-
munication problem.

Definition 10.1.1 (MinEnergyAllToOne problem) Let G = (N, E) be the maxpower
graph (i.e. the communication graph obtained when all the nodes transmit at maximum
power) and let u ∈ N be the master node. For any given reverse spanning tree T of G

rooted at u, the energy cost of T is defined as follows:

ec(T ) =
∑

v∈N,v �=u

c(v, pT (v)),

where c(v, pT (v)) is the energy cost of the link connecting node v to its parent pT (v) in T .
The MinEnergyAllToOne problem is the problem of finding the reverse spanning tree of
minimum energy cost rooted at the master node.

The R&M protocol is based on the notions of relay region and enclosure graph. Before
introducing these notions, we need to define the power consumption model used to derive
the link cost.

10.1.1 The power consumption model

As briefly discussed in Section 2.1, the propagation of the radio signal in the air can be
modeled by the following components:

– the path loss, which models the average signal power received at a certain distance
from the transmitter;

– large-scale variations, which model the randomness of the received signal strength
over large distances;

– small-scale variations, which model the randomness of the received signal strength
over small distances.

Since small-scale variations of the radio signal can be handled by diversity techniques
and combiners at the physical layer, the power consumption model used in (Rodoplu and
Meng 1999) accounts only for path loss and large-scale variations. Indeed, in order to
simplify the presentation of the protocol, we consider only path loss. In fact, Rodoplu and
Meng show that a minimum-energy design that addresses the increase in transmit power to
handle large-scale variations is fundamentally the same as a design that accounts only for
path loss.

Consider three nodes u, v, w positioned as in Figure 10.1. The main observation on
which the R&M protocol is based is the classical ‘triangle inequality’ argument. Suppose
node u wants to send a message to node v. In case of direct transmission, the minimum
power needed to send the message is

Pu→v = δ(u, v)α,

where α is the path loss exponent. If node w is used as a relay, the total power dissipation
equals

Pu→w→v = δ(u, w)α + δ(w, v)α + cr,
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Figure 10.1 Depending on the relative distances between nodes u, v, and w, communicating
using node w as a relay might be more energy efficient than direct communication from
u to v.

where cr is a constant term that accounts for the receiver power consumed at the relay
node w. Since α ≥ 2 in outdoor environments, the using of the relay node might be more
energy efficient for certain values of δ(u, v), δ(u, w), δ(w, v), and cr . The goal of the R&M
protocol is to identify such values, and to shape the network topology accordingly.

10.1.2 Relay region and enclosure graph

The relay region of a certain transmitter–relay node pair (u, w) identifies the set of points in
the plane (node locations) for which communicating through the relay node is more energy
efficient than direct communication. Formally,

Definition 10.1.2 (Relay region) The relay region of a certain transmitter–relay node pair
(u, w) is defined as

RRu→w = {(x, y) ∈ R
2 : Pu→w→(x,y) < Pu→(x,y)}.

The shape of the relay region depends on the radio signal propagation model, and more
in particular on the value of the distance-power gradient. The shape of the relay region for
the cases α = 2 and α = 4 is reported in Figure 10.2.

The notion of relay region is used to define the enclosure of a node u, which represents
the region of the plane beyond which it is not energy efficient for node u to search for one-
hop neighbors. The formal definition of enclosure is quite complicated, but the intuition
behind it is well illustrated in Figure 10.3.

Definition 10.1.3 (Enclosure and neighbor set) Suppose the network nodes are deployed
in a certain bounded two-dimensional region R. The enclosure of node u is defined as the
set of points defined by the nonempty solution (εu, N(u)) to equations

εu =
⋂

v∈N(u)

(
RRc

u→v ∩ R
)

and
N(u) = {v ∈ N |(xv, yv) ∈ εu, v �= u},

where RRc
u→v is the complement of set RRu→v and (xv, yv) are the coordinates of node v.

N(u) is called the neighbor set of node u, and every element in N(u) is said to be a neighbor
of u.
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Figure 10.2 Relay region of the (u, w) node pair when the distance-power gradient is α = 2
(left) and α = 4 (right).

w
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tv

Figure 10.3 Enclosure of node u. Nodes t , v, w, z are the neighbors of u in the enclosure
graph.

In (Rodoplu and Meng 1999) it is shown that the pair (εu, N(u)) always exists and is
unique, that is, that the definition of enclosure is mathematically sound.

Definition 10.1.4 (Enclosure graph) Let N be a set of nodes deployed in a certain bounded
two-dimensional region R. The enclosure graph of N is the directed graph Gε = (N, Eε),
where the directed edge (u, v) ∈ Eε if and only if v ∈ N(u).
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The enclosure graph enjoys several nice properties (see (Rodoplu and Meng 1999)):

– it preserves connectivity in the worst case: if the maxpower graph on node set N is
strongly connected, then the enclosure graph Gε = (N, Eε) is strongly connected as
well;

– it is sparse;

– it contains the minimum-energy reverse spanning tree rooted at any master node
u ∈ N ;

– it can be computed in a fully distributed and localized fashion.

10.1.3 Protocol description

The R&M protocol for finding the optimal solution to the MinEnergyAllToOne problem
is composed of two phases: first, every node in the network computes its enclosure and
neighbor set, that is, its local view of the enclosure graph Gε; then, a global cost distribution
phase is initiated to determine the minimum-energy reverse spanning tree rooted at the master
node, which is a subgraph of Gε.

Phase 1: Compute the enclosure graph. We present the algorithm for a generic node
u. Initially, node u broadcasts a beacon message containing its ID and position at max-
imum transmit power. As beacon messages of other nodes are received, u calculates the
corresponding relay region, and keeps track of whether the newly found node is in the
relay region of some previously found node. To accomplish this task, potential neighbors
are marked dead or alive: a node is said to be dead if it lays in the relay region of some
other neighbor of u, and it is said to be alive otherwise. After all the beacon messages from
surrounding nodes are received, the set of alive nodes defines the neighbor set of node u,
that is, u’s local view of the enclosure graph.

The Phase 1 of the protocol uses an auxiliary function called FlipAllStatesDownChain
to update the alive/dead state of the currently discovered nodes. This function is needed to
handle the following situation: assume node v is marked dead, because it is in the relay
region of node w (we say that node w blocks node v). Later on, node u receives the beacon
sent by a third node z, which blocks node w but not node v. In this case, node w is marked
dead, and node v should be ‘revived’ since it is no longer blocked by any node. Indeed,
there may be a chain of nodes in which one node blocks the next one in the chain; when
a newly found node blocks the first alive node in such a chain, the states of all the nodes
down in the chain need to be flipped.

The protocol for computing the enclosure graph is reported in Figure 10.4, and the
auxiliary function FlipAllStatesDownChain is reported in Figure 10.5.

Phase 2: Cost distribution. In the second phase of the protocol, the classical distributed
Bellman–Ford shortest path algorithm (Lynch 1996) is used on the enclosure graph to
compute the minimum-energy reverse spanning tree rooted at the master node. The cost
metric used to compute the shortest path between any node and the master is the energy
cost of the link, as predicted by the path loss model. Each node calculates the minimum
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Algorithm EnclosureGraph:
(algorithm for node u)

AliveNodes is the current set of alive nodes
DeadNodes is the current set of dead nodes
N(u) is the neighbor set of node u

εu is the enclosure of node u

1. Initialization
1.1 AliveNodes = ∅
1.2 DeadNodes = ∅
1.3 N(u) = ∅
1.4 send beacon message (u, (xu, yu))

2. Upon receiving beacon message (v, (xv, yv))

2.1 compute relay region RRu→v

2.2 MarkDead(v)

2.3 FlipAllStatesDownChain(v)

3. Termination (after receiving all beacon messages)
3.1 N(u) = AliveNodes
3.2 εu = ⋂

v∈AliveNodes

(
RRc

u→v ∩ R
)

Figure 10.4 Algorithm for constructing the enclosure graph.

Function FlipAllStatesDownChain(v):
(algorithm for node u)

1. If v ∈ AliveNodes then
MarkDead(v)

for each w ∈ RRu→v do FlipAllStatesDownChain(w)

else
if (v /∈ RRu→w) ∀w ∈ AliveNodes then

MarkAlive(v)

for each w ∈ RRu→v do FlipAllStatesDownChain(w)

Figure 10.5 Auxiliary function FlipAllStatesDownChain.
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cost to reach the master node given the cost of its neighbors: when node u receives the
information Cost(v) from node v ∈ N(u), it computes the cost of the path to the master
node passing from v as follows:

Cu,v = Cost(v) + δ(u, v)α + cr .

Then, node u computes the minimum energy cost of sending a message to the master node as

Cost(u) = min
v∈N(u)

Cu,v,

and broadcasts the message Cost(u) at maximum power. The calculation of Cost(u) is
repeated each time a new cost message is received, and a new cost message is broadcast by
u each time Cost(u) is updated. After a finite number of iterations, the algorithm stabilizes
(see (Lynch 1996)). The neighbor of u that is the next hop in the minimum-energy path to
the master node is the parent of u in the energy-optimal reverse spanning tree Topt. After all
the nodes in the network have computed their cost and thus determined their minimum cost
neighbor link, the construction of the optimal topology Topt is complete. Note that Topt is
built in a top-down fashion: the first links that stabilize are those connecting the master node
with its immediate neighbors; then, stabilization propagates downward in the reverse tree.

10.1.4 Discussion

The R&M protocol presented in this section has the nice feature of building a topology that
optimizes a certain energy-efficient topology problem, namely, MinEnergyAllToOne.
However, the computation of the optimal topology requires global information exchange
(Phase 2 of the protocol), causing a certain message overhead.

Given its features (building an energy-efficient topology for communicating with a mas-
ter node, but with rather high message overhead), the R&M protocol can be successfully
used in many WSN application scenarios, where mostly stationary network nodes must
send their data to a gateway node. In this case, the network topology is typically built at
the beginning of the network lifetime, and constructing an energy-efficient topology (even
if this comes at the expense of a relatively high message overhead) is a primary design
concern.

It is interesting to note that the reverse version of MinEnergyAllToOne, that is, the
energy-efficient broadcast problem, is NP-hard. The reason for this gap in computational
complexity is due to the fact that, in the energy-efficient broadcast problem, the nodes
use the so-called wireless advantage, that is, the fact that the message sent by a node
can be received by all the nodes within its range, and computing the best way of using the
‘wireless advantage’ is NP-hard. On the other hand, in the MinEnergyAllToOne problem,
the goal is to find the most efficient way of communicating with the master node, that is,
the ‘wireless advantage’ is not useful in this case. Then, to solve the problem, it is sufficient
to find the most energy-efficient path from any node to the master node, which can be done
in polynomial time.

A final observation concerns one of the potential disadvantages of the R&M protocol,
that is, the fact that it relies on an explicit radio signal propagation model that is used
to compute the enclosure graph and Topt. A consequence of this fact is that the topology
generated by R&M might be different from the optimal one if the actual channel conditions
are different from those predicted by the channel model used to compute Topt.
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10.2 The LMST Protocol

In Chapters 7 and 8, we have seen that the MST enjoys several nice features: it pre-
serves connectivity, it is extremely sparse, and it is a h-approximation (for some con-
stant h > 0) of the optimal solution to the RA, to the WSRA, and to the energy-efficient
broadcast problem. The drawback of this topology is that its computation requires the
exchange of global information. To circumvent this problem, Li et al. introduced the
LMST (Local MST) protocol (Li et al. 2003), which computes a local approximation of
the MST.

10.2.1 Protocol description

The LMST protocol is composed of three phases: information exchange, topology construc-
tion, and determination of transmit power, and an optional optimization phase: construction
of topology with bidirectional links.

In the protocol specification, it is assumed that all the nodes have the same maximum
transmit power and that the wireless medium is symmetric.1 We also adopt the conventional
definition of maxpower graph, that is, the graph G = (N, E) obtained when all the nodes
transmit at maximum power.

Definition 10.2.1 (Visible neighbors) The visible neighbors of node u ∈ N are all the one-
hop neighbors of u in the maxpower graph G = (N, E). Formally,

VNu = {v ∈ N |(u, v) ∈ E} ∪ {u}.

Information exchange. In the first phase of the protocol, each node sends its ID and
location to all nodes in the visible neighborhood. This can be accomplished by sending a
beacon message at maximum transmit power.

Topology construction. Once all the beacon messages of the visible neighbors have been
received, each node constructs its local MST by applying the classical Prim’s algorithm
(Prim 1957). The link weight used to build the MST is its length (Euclidean distance).
This choice is compatible with any path loss model, as the power cost of link (u, v) is
proportional to δ(u, v)α, with α ≥ 1. So, the MST that results using any path loss model as
the weight function is the same one that is built using the Euclidean distance.

Note that the MST produced by Prim’s algorithm might not be unique. Since uniqueness
of the MST is needed to prove that LMST preserves connectivity (see next subsection), the
authors of (Li et al. 2003) define a link-weight function that also accounts for the lexical
order of the node Ids of the link endpoints.

After Prim’s algorithm execution, every node u in the network knows the (unique) MST
Tu = (VNu, Eu) connecting u to all its visible neighbors. The next step is to define the set
of neighbors of u in the final topology, that is, u’s local view of the LMST topology. This
is accomplished by defining the neighbor relation as follows:

1The wireless medium is symmetric if the fact that node u can reach node v using a certain power P implies
that node v also can reach node u using power P .
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Definition 10.2.2 (Neighbor relation) Node v is a neighbor of node u, denoted as u → v,
if and only if v is a one-hop neighbor of u in its minimum spanning tree Tu = (VNu, Eu).
Formally,

u → v ⇔ (u, v) ∈ Eu.

The neighbor set of node u, denoted as N(u), is defined as

N(u) = {v ∈ VNu|u → v}.

The topology produced by LMST is obtained by connecting each node to its neighbors:

Definition 10.2.3 (LMST topology) The final topology generated by the LMST protocol is
the directed graph GLMST = (N, ELMST), where directed edge (u, v) ∈ ELMST if and only if
u → v.

Note that GLMST is not a simple superposition of all the local MSTs, since only immediate
neighbors in the local MSTs are included in GLMST.

Determination of transmit power. The final step of the protocol is the determination of
the transmit power needed to send a message to any neighbor node. This can be accomplished
by measuring the received power of the beacon messages: when node u receives the beacon
from a certain visible neighbor v, it can estimate the minimum power level needed to
reach v by comparing the received power of the beacon with the maximum transmit power
(we recall that all beacons are sent at maximum power). This approach can be applied in
combination with any propagation model.

The nodes also compute the broadcast power , that is, the minimum power needed to
reach the farthest node in N(u).

Construction of topology with bidirectional links (optional). As shown in Figure 10.6,
the topology built by LMST might contain unidirectional links. Since this type of links
should be avoided in the final topology (see Section 7.4 and Chapter 9 for a discussion

Edges in Tu

u

v

Edges in Tv

Figure 10.6 Example showing that the GLMST topology may contain unidirectional links.
Solid circles represent u’s and v’s maximum transmitting range.
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of this issue), the authors of (Li et al. 2003) propose two techniques for avoiding this
inconvenience: (i) enforcing all unidirectional links in GLMST to become bidirectional; or
(ii) deleting all the unidirectional links in GLMST. If technique (i) is used, the obtained
graph is the symmetric supergraph of the original topology, which is denoted as G+

LMST; if
technique (ii) is used, we obtain the symmetric subgraph of the original topology, which
we call G−

LMST.
Note that which one of the G+

LMST and the G−
LMST topology is to be preferred depends

on the application scenario: the former topology is relatively dense, and it thus keeps more
routing redundancy, which is useful to balance the traffic load and to improve fault tolerance;
the latter topology is very sparse, and it should be used when the expected network traffic
is quite low.

To convert GLMST into either G+
LMST or G−

LMST, each node u after Phase 3 of the
algorithm probes all the nodes in N(u) to find out whether the corresponding link is uni-
directional. In case it is, the link is either removed (technique (ii)), or the neighbor node
is notified to add the reverse edge (technique (i)). Note that in case the probed link (u, v)

is unidirectional node u is not in N(v), so node v does not know which transmit power to
use to the send the reply message to u. This problem can be easily solved by piggybacking
the transmit power mpv used by u to send the probe message in the message itself. Given
the assumption of symmetric wireless medium, using power mpv is sufficient for node v to
reach node u.

Protocol LMST is summarized in Figure 10.7.

10.2.2 Protocol analysis

In (Li et al. 2003) it is proven that the topology produced by LMST has the following
properties:

1. it preserves connectivity in the worst case;

2. it has maximal logical node degree equal to 6;

3. it can be computed in a fully distributed and localized fashion; in particular, computing
GLMST requires sending only n messages overall (n is the number of network nodes).

Properties (1) and (2) are satisfied also by the symmetric variants of GLMST, G+
LMST

and G−
LMST. As for the message complexity, computing both G+

LMST and G−
LMST requires

exchanging O(n2) messages overall (at most n − 1 probe messages are sent by a node in
Phase 4 of the protocol).

Note that the upper bound stated in (2) is on the number of logical neighbors; it is easy
to find worst-case scenarios in which the physical degree of a node in GLMST is arbitrarily
high (this is implied by Theorem 9.3.3).

The authors of (Li et al. 2003) have also evaluated the average-case performance of
LMST on random node deployments through simulation, and they have verified that LMST
produces topologies with a smaller average logical node degree and average transmission
radius with respect to those generated by R&M and CBTC.
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Algorithm LMST:
(algorithm for node u)

VNu is the visible neighborhood of node u

N(u) is the neighbor set of node u

bpu is the broadcast power of node u

(xu, yu) are the coordinates of node u

1. Information exchange
send beacon (u, (xu, yu)) at maximum power
upon receiving beacon (v, (xv, yv)), store the received power of this message in rpv

2. Topology construction (after all beacons have been received)
build the local MST on nodes in VNu using Prim’s algorithm
let Tu = (VNu, Eu) be this local MST
N(u) = {v ∈ VNu|(u, v) ∈ Eu}

3. Determination of transmit power
for each v ∈ N(u)

compute the minimum power mpv needed to reach v based on rpv

bpu = maxv∈N(u) mpv

4. (Optional) Topology with bidirectional links
for each v ∈ N(u)

send probe message (u, mpv) to v using power mpv

upon receiving reply message (v, state) from v

if state = uni then
notify v sending message (u, add) (technique 1)) using power mpv

or
delete v from N(u) (technique (2))

upon receiving probe message (v, mpu)

if v ∈ N(u) then
send reply message (u, bi) using power mpu

otherwise
send reply message (u, uni) using power mpu

upon receiving notify message (v, add)

add node v to N(u), with associated power mpv

if necessary, update the broadcast power bpu

Figure 10.7 The LMST protocol.
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10.2.3 The FLSSk protocol

Some of the authors of (Li et al. 2003) have presented a variation of the LMST algorithm
aimed at improving the fault tolerance of the constructed topology. In particular, the design
goal is to build an energy-efficient topology that preserves k-connectivity (provided the
maxpower communication graph is k-connected), where k is a small constant (typically,
2–3). The resulting protocol, presented in (Li and Hou 2004), is called FLSSk (Fault-tolerant
Local Spanning Subgraph).

Similarly to LMST, FLSSk is composed of three phases: information exchange, topology
construction, and determination of transmit power. The information exchange phase is iden-
tical to that of LMST: every node broadcasts its ID and position at maximum power, and
collects the location information sent by its visible neighbors. The main difference between
LMST and FLSSk is in the topology construction phase: instead of building a local MST
on the set of its visible neighbors, a node u builds a spanning subgraph G′

u that preserves
k-connectivity on the same set of nodes (see (Li and Hou 2004) for details). Then, node
u selects its immediate neighbors in the G′

u graph as logical neighbors that are retained in
the final topology. The last phase of the protocol (determination of transmit power) is the
same as in LMST.

Similar to LMST, the topology built by FLSSk might contain unidirectional links, and
symmetry can be enforced by either removing all the unidirectional links or by making them
bidirectional.

Li and Hou prove that FLSSk (and its symmetric variants) preserves k-connectivity, and
that it minimizes the maximum transmitting range of nodes in the network over all localized
algorithms. Furthermore, Li and Hou investigate the average-case performance of FLSSk

through simulation, whose results show that FLSSk is more energy efficient than other
existing localized fault-tolerant topology control protocols, such as the k-UPVCS algorithm
introduced in (Hajiaghayi et al. 2003) and the k-connected variation of CBTC introduced
in (Bahramgiri et al. 2002).
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Direction-based Topology Control

In this chapter, we consider topology control protocols that rely on the ability of the nodes to
estimate the relative direction of their neighbors. This is relatively less accurate information
than knowing exact node locations, as the former type of information can be determined if
the latter is known, but not vice versa.

Several techniques for estimating the direction from which a certain node is transmitting
have been proposed and discussed in the IEEE Antenna and Propagation community (IEEE
2004). This problem is known as the Angle-of-Arrival (AoA) problem, and it is typically
solved by equipping nodes with more than one directional antenna (Krizman et al. 1997). So,
in the case of directional information also, some extra hardware on the nodes (with respect
to the standard assumption of nodes equipped with a single, omnidirectional antenna) is
needed in order to provide the requested information. An advantage of using AoA-based
techniques instead of location-based techniques is that the AoA can be accurately estimated
in indoor environments also.

Despite the relatively less accurate information used, direction-based topology control
protocols can produce almost as good topologies as in the case of location-based topol-
ogy control. In particular, fully distributed, localized protocols that preserve worst-case
connectivity can be designed in this setting also.

In the remainder of this chapter, we present two location-based topology control pro-
tocols: the CBTC protocol introduced in (Wattenhofer et al. 2001) and further analyzed in
(Li et al. 2001) and the DistRNG protocol presented in (Borbash and Jennings 2002).

11.1 The CBTC Protocol

The CBTC (Cone-based Topology Control) protocol (Li et al. 2001; Wattenhofer et al. 2001)
is based on the following idea: set the transmit power level of node u to the minimum value
pu,ρ such that u can reach at least one node in every cone of width ρ centered at u (see
Figure 11.1). In other words, a node must retain connections to at least one neighbor in
‘every direction’, where parameter ρ determines the granularity of what is meant by ‘every
direction’.

Topology Control in Wireless Ad Hoc and Sensor Networks P. Santi
 2005 John Wiley & Sons, Ltd
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u
v

w

z

r

Figure 11.1 Intuition behind the CBTC protocol: node u sets its power level to the minimum
value pu,ρ such that it can reach at least one node in every cone of width ρ centered at
itself. In the example above, ρ = π

2 , and node u must use a transmit power level at least
sufficient to reach node v. If a lower power is used, the angular gap between u’s neighbors
would be >π

2 (see nodes w and z), and the condition that every cone of width π
2 centered

at u contains at least one neighbor would be violated.

Note that the idea behind CBTC is very similar to that used in the definition of the Yao
Graph (see Appendix A). We recall that the Yao Graph of parameter c (for some integer
c ≥ 6), denoted YGc, is defined as follows: at each node u, divide the plane into c equally
separated cones centered at u; then, connect u to its closest neighbor within each cone. The
difference between YGc and the topology generated by CBTC is depicted in Figure 11.2.
In order to make the two graphs as much similar as possible, we set c = 6 and ρ = π

3 . In
YG6, the cones are predefined, and it is sufficient to reach one neighbor in each such cone.
On the contrary, in CBTC, it is required that the angular gap between any two neighbors
of u is at most ρ; in other words, when a cone of width ρ centered at u sweeps the plane,
it must always contain at least one neighbor. This is a stronger requirement than in case of
YG6, as shown in Figure 11.2.

We now present the distributed implementation of CBTC, and then we discuss its prop-
erties. Finally, we describe some of the variations of CBTC that have appeared in the
literature.

11.1.1 The basic CBTC protocol

The CBTC protocol is composed of two phases: in the first phase (basic protocol), every
node u determines the minimum power pu,ρ needed to reach a neighbor in ‘every direction’
as described above; then, network nodes exchange additional information to identify energy-
inefficient edges, which are removed from the final topology.
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u

v
w

z

Figure 11.2 Difference between YG6 and the topology generated by CBTC with parameter
ρ = π

3 . The dotted lines define the six cones used in the definition of YG6; node u must
use sufficient transmit power to reach the closest neighbor in each cone, which corresponds
to the power needed to reach node w (dotted circle). However, using this transmit power
is not sufficient to fulfill CBTC’s condition: there exists a cone of width π

3 that contains
no node (see the angular gap between nodes w and z). To fill this gap, u’s transmit power
level must be increased to reach node v also (solid circle).

CBTC uses two types of messages: beacon messages, which are sent at a certain power
p ≤ Pmax (Pmax denotes the maximum nodes’ transmit power, which is assumed to be the
same for all the nodes) and received by all the nodes that are within u’s range with power
p; and acknowledgment messages (Ack for short), which are sent in response to beacons
and are received only by the node that originated the beacon.

The beacon message contains the node ID and the power p used to send the message;
the Ack message contains the ID of the sender, the ID of the intended receiver (the node
that originated the beacon), and the power used to transmit the message. Inclusion of the
transmit power in the messages is needed to identify energy-inefficient links in Phase 2 of
the protocol.

The first phase of CBTC is as follows. Initially, node u sends the beacon at power p0

and collects the Ack messages sent by the nodes that received the beacon. When receiving
an Ack message, node u stores the identity of the new neighbor and determines its relative
direction. As discussed at the beginning of this chapter, this is made possible by the use of
AoA estimation techniques, such as using multiple directional antennas. The Ack messages
are sent using the same power level used to send the originating beacon message. This way,
under the common assumption of symmetric wireless medium, we can ensure that node
u eventually receives the acknowledgments from all the nodes that received its beacon.
After all the Acks for power level p0 have been collected, node u invokes the CheckGap
procedure, which verifies whether the condition on the angular gap between neighbors is
met. If the condition is not satisfied, node u invokes the procedure IncPower, which increases
the transmit power level to the next level p1. Then, it sends a new beacon message, waits
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Algorithm basicCBTC:
(algorithm for node u)

ρ is the required angular gap between neighbors (input parameter)
p(u) is the current transmit power level of node u

N(u) is the neighbor set of node u

D(u) is the set of u’s neighbor directions
CheckGap(ρ, D(u)) is the procedure that checks whether the CBTC condition with

parameter ρ is satisfied. It returns True if it is satisfied, False
otherwise

IncPower(p) is the procedure that, given the current transmit power p, returns the next
transmit power level

1. Initialization
N(u) = ∅
D(u) = ∅
p(u) = 0

2a. Computing power pu,ρ

repeat until CheckGap(ρ, D(u)) = True or (p(u) = Pmax)

p(u) = IncPower(p(u))

send beacon (u, p(u)) at power p(u)

repeat until all Acks have been received
receive Ack (v, u, p(v)) from node v

N(u) = N(u) ∪ {v}
update direction set D(u) including v’s direction

2b. Sending Ack message
upon receiving beacon (v, p(v)) from v

check if this is the first beacon received from v

if yes send Ack (u, v, p(v)) at power p(v), otherwise ignore the beacon

3. Finalization
pu,ρ = p(u)

Figure 11.3 The basicCBTC protocol.

for the Acks, and so on. This algorithm is repeated until either the condition on the angular
gap between neighbors is satisfied or pi = Pmax. Phase 1 of CBTC (also called basicCBTC)
is summarized in Figure 11.3.

Note that the following optimization, called the shrink back operation, can be easily
implemented. At the end of basicCBTC’s execution, a node sets its transmit power at the
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maximum level if the condition on cone coverage cannot be satisfied. We call such nodes
boundary nodes. The shrink back operation is executed at boundary nodes only, with the
purpose of reducing the broadcast power pu,ρ without reducing the cone coverage. More
specifically, basicCBTC is modified in such a way that, at each iteration, a node in N(u)

is tagged with the power used the first time it was discovered. Suppose the power levels
used during the neighbor discovery phase are p0, p1, . . . , pk = Pmax, and let CCi be the
cone coverage provided by the neighbors at level i. If CCk < 2π , the broadcast power level
pu,ρ is reduced to the minimum level pi such that CCi = CCk . Note that tagging each
neighbor with the minimum power needed to reach it is useful for implementing another
optimization also: if u must send a packet to a certain neighbor v that can be reached with
power pi < pu,ρ , it can send the packet using power pi instead of the broadcast power.

11.1.2 Dealing with asymmetric links

Let us denote with G
ρ

CBTC the graph obtained after basicCBTC’s execution with parameter
ρ, that is, the graph that contains the directed link (u, v) if and only if v ∈ N(u) at the
end of the protocol. The example reported in Figure 11.4 shows that the neighbor relation
induced by basicCBTC is not symmetric, that is, G

ρ

CBTC can contain unidirectional links.
Suppose ρ is set to 2

3π . At the end of basicCBTC’s execution, node u sets its transmit
power to the minimum level p

u, 2
3 π

needed to reach the three neighbors at distance d. Since
the distance between u and v is greater than d, there is no direct link between u and v.
On the other hand, node v has u in its neighbor list at the end of the protocol. In fact, if
v would use a lower power than the minimum power p

v, 2
3 π

needed to reach u, the angular

gap between its neighbors would be greater than 2
3π (see the gap between nodes w and z).

So, the directed link (v, u) is part of the final topology, while the reverse link is not.
Since, as discussed in several parts of this book, having a topology with symmetric links

is desirable, the authors of (Li et al. 2001; Wattenhofer et al. 2001) propose two techniques
to address unidirectional connections: (i) augmentation and (ii) asymmetric edge removal.

u

v

w

z
d

Figure 11.4 Example of asymmetric link with basicCBTC. The parameter ρ is set to 2
3π .
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In (i), every asymmetric link (u, v) is made symmetric by adding the reverse edge
(v, u) in the graph.1 To implement this strategy, it is sufficient that every node u at the end
of basicCBTC advertises its neighbor set at the broadcast power pu,ρ . Upon receiving the
neighbor set from v, node u verifies whether v ∈ N(u); if yes, no action is taken; otherwise,
v is included in N(u), and u’s broadcast power is increased consequently (if necessary). In
the following, we will call this version of CBTC as AugmCBTC, and we will denote the
corresponding topology with G

ρ,+
CBTC .

In (ii), asymmetric links are removed from the final topology as follows.2 After finishing
basicCBTC, a node u sends a message to each node v /∈ N(u) to which it sent an Ack,
telling v to remove u from N(v). As a consequence of this action, the broadcast power
pv,ρ of node v might be reduced. In the following, we will call this version of CBTC as
RemCBTC, and we will denote the corresponding topology with G

ρ,−
CBTC.

11.1.3 Protocol analysis

The following theorems have been proven in (Li et al. 2001).

Theorem 11.1.1 (Li et al. 2001) Let G be the maxpower communication graph, and assume
G is connected. Let G

ρ,+
CBTC be the topology generated by AUGMCBTC. Then G

ρ,+
CBTC is (worst-

case) connected if and only if ρ ≤ 5
6π .

In words, Theorem 11.1.1 states that, if ρ ≤ 5
6π and the maxpower graph G is connected,

then the topology remains connected after AugmCBTC’s execution. On the other hand, if
ρ > 5

6π , there exists a node placement such that G is connected, but G
ρ,+
CBTC is not connected.

An example of such node placement is reported in (Li et al. 2001).

Theorem 11.1.2 (Li et al. 2001) Let G be the maxpower communication graph, and assume
G is connected. Let G

ρ,−
CBTC be the topology generated by REMCBTC. If ρ ≤ 2

3π , then G
ρ,−
CBTC

is (worst-case) connected.

In words, Theorem 11.1.2 states that, as long as ρ ≤ 2
3π , removing asymmetric links

does not compromise network connectivity.
Note that there is a trade-off between using AugmCBTC with ρ = 5

6π and using Rem-
CBTC with ρ = 2

3π . After the execution of the basic protocol, the broadcast power level
of node u with ρ = 5

6π is lower than or equal to the power level with ρ = 2
3π (because

of the less stringent requirement on cone coverage). However, with augmentation, the final
level used by node u might be increased with respect to the value calculated by the basic
algorithm (this happens if u must reach node v such that u ∈ N(v) but v /∈ N(u)). On the
other hand, with asymmetric link removal, the final level used by u might be decreased
with respect to the value calculated by the basic algorithm (this is because some of the links
incident into u might have been removed). So, which one of the two symmetric versions
of CBTC performs better is not clear. The experimental results reported in (Li et al. 2001)
show that RemCBTC performs slightly better than AugmCBTC in case of random node
deployment.

1This corresponds to computing the symmetric supergraph of G
ρ

CBTC.
2This corresponds to computing the symmetric subgraph of G

ρ

CBTC.
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11.1.4 Removing energy-inefficient links

A final optimization phase can be applied to both the symmetric versions of CBTC, with the
purpose of further reducing the transmission power of each node. This optimization requires
that nodes have the ability to perform some sort of distance estimation. In particular, for any
pair v, w of u’s neighbors, node u must be able to determine which one of them is closer.
This can be accomplished by comparing the transmit powers included in the incoming
messages received from v and w (we recall that this information is included in both beacon
and Ack messages) with the reception powers of the messages.

The goal of this optimization stage is to identify energy-inefficient links, which can be
removed without impairing network connectivity. These are called redundant edges , and
are defined as follows:

Definition 11.1.3 (Redundant edge) Let v, w be neighbors of u in the final topology, and
assume that δ(v, w) < max{δ(u, v), δ(u, w)}. Then, the longer of the edges (u, v) and (u, w)

is redundant.

In (Li et al. 2001), it is shown that redundant edges can be removed from the final
topology without impairing network connectivity. However, removing too many edges from
the final topology might be a disadvantage because, for instance, the paths between nodes
would become too long. Since CBTC’s goal is to reduce the average transmit power of
the nodes, the choice is then to remove only redundant edges with length greater than the
longest nonredundant edge.

11.1.5 Discussion

The CBTC protocol enjoys several nice features: it is fully distributed, localized, preserves
network connectivity, and requires only directional information. This explains the popularity
of CBTC, which is probably the most famous topology control protocol. However, CBTC
has a weak point, namely, the relatively high number of messages that must be exchanged
to compute the network topology.

The reasons for this relatively high message overhead are three: (i) the beacon-Ack mes-
sage exchange needed to estimate neighbor directions; (ii) the mechanism used to discover
new neighbors, based on sending beacons with increasing transmit power; and (iii) the fur-
ther message exchange needed to render the final topology symmetric. In particular, the
choice of the power increase strategy in basicCBTC (the IncPower procedure) is quite
critical: on the one hand, starting with a very low transmit power p0 and increasing the
power level at each step by a small quantity ε might cause the sending of an excessive
number of beacon messages; on the other hand, if the power levels used for beaconing are
very few, then the number of new neighbors discovered at each step is high, resulting in
computing of a very rough estimate of the broadcast power pu,ρ . The choice of the better
power increase strategy is scenario dependent: if the expected node density is very high,
performing a very accurate neighbor discovery (i.e. using many different power levels for
beaconing) is probably the right choice; on the contrary, if the expected density is low,
using relatively few power levels for beaconing is preferable.



122 DIRECTION-BASED TOPOLOGY CONTROL

11.1.6 CBTC variants

Several variants of the CBTC protocol have been proposed recently. In particular, in
(Bahramgiri et al. 2002), Bahramgiri et al. discuss the conditions under which CBTC ensures
k-connectivity. They prove the following theorem:

Theorem 11.1.4 (Bahramgiri et al. 2002) Let G be the maxpower communication graph,
and assume G is k-connected, for some constant k > 0. Let G

ρ,−
CBTC be the topology generated

by REMCBTC. If ρ ≤ 2π
3k

, then G
ρ,−
CBTC is (worst-case) k-connected.

Furthermore, they discuss necessary conditions for achieving k-connectivity with Rem-
CBTC. Finally, they introduce a three-dimensional version of CBTC, in which the notion
of coverage is extended to three-dimensional cones.

Another variation of CBTC has been presented in (Huang et al. 2002), where Huang
et al. introduce an implementation of CBTC based on the use of directional antennas. In fact,
it must be noted that although CBTC requires the use of directional antennas to estimate
AoA these antennas are not used to exchange messages: all the communications in the
original CBTC protocol are performed using omnidirectional antennas. On the contrary, the
protocol introduced in (Huang et al. 2002) makes explicit use of directional antennas: the
plane is divided into sectors (corresponding to the possible orientations of the antenna), and
the minimum powers needed to reach at least one neighbor in each sector are computed.
Note that this is indeed a distributed computation of the Yao Graph (for a discussion of
CBTC and Yao Graph see above).

11.2 The DistRNG Protocol

The DistRNG introduced in (Borbash and Jennings 2002) is a distributed implementation
of the computation of the Relative Neighborhood Graph (RNG), which is defined as follows
(see also Appendix A):

Definition 11.2.1 (Relative neighborhood graph) Let N be a set of points in the Euclidean
two-dimensional space. The Relative Neighborhood Graph of N , denoted by RNG(N), has an
edge between two nodes u and v if there is no node w ∈ N such that max{δ(u, w), δ(v, w)} ≤
δ(u, v).

Let Lune(u, v) denote the intersection of the circles of radius δ(u, v) centered at u and
v, respectively. Intuitively, edge (u, v) belongs to RNG(N) if and only if no other node
in N lays in Lune(u, v) (see Figure 11.5). Note that, contrary to the case of CBTC, the
neighbor relation in RNG is symmetric.

The RNG topology has several interesting features, as evidenced by the simulation-based
investigation on random node deployments reported in (Borbash and Jennings 2002). The
authors considers several aspects of the generated topology

– average logical node degree;

– hop diameter;

– maximum and average node transmitting range;
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vu

Figure 11.5 Definition of RNG(N): edge (u, v) is in RNG(N) if and only if Lune(u, v)

(shaded area) contains no other node in N .

– connectivity;

– size of the largest biconnected component.

Intuitively, a good topology is one in which nodes have low degree, the hop-diameter is
close to the one of the maxpower communication graph, the nodes have small transmitting
range, and connectivity (possibly, also biconnectivity) is ensured. Clearly, identifying a
topology that satisfies all these goals at the same time is virtually impossible, as many of
them are conflicting with each other. The objective is then to build a topology that is a good
compromise between the above goals. To identify such topology, Borbash and Jennings
performed extensive simulation on random node deployments, measuring the above listed
parameters for the following topologies: the MST, the RNG, and the minR graph, which
is obtained by finding the smallest common transmitting range such that connectivity is
achieved (i.e. the CTR), and connecting the nodes consequently.

The simulation-based investigation has shown the following:

– Logical node degree: Both MST and RNG have small average node degree indepen-
dently of the number n of network nodes, while the node degree in minR increases
with n.

– Hop diameter : minR has the smallest hop-diameter and MST the largest, while RNG
is in between the two.

– Transmitting range: MST has the smallest average transmitting range, while minR has
the largest such range. The average transmitting range with RNG is very close to that
with MST.

– Biconnectivity:3 the minR graph is biconnected in all the simulated scenarios; the RNG
topology has more than 85% of the nodes in the largest biconnected component; MST
is a tree, so it cannot ensure biconnectivity.

3Note that connectivity is not an issue since, assuming the maximum transmit power is high enough, all the
three topologies considered preserve connectivity in the worst case.
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Overall, the results of the simulation-based analysis show that RNG is a good com-
promise between the goals listed above: it has relatively low logical node degree, its hop
diameter is not too larger than that of the maxpower communication graph, the average node
transmitting range is quite low, and a good percentage of network nodes are biconnected.
Motivated by this observation, Borbash and Jennings present a protocol, called DistRNG,
for computing the RNG in a fully distributed and localized fashion.

Before introducing the protocol, we need the following notion of neighbor coverage:

Definition 11.2.2 (Neighbor coverage) Consider a network node u, and one of its neigh-
bors v. The neighbor coverage of node v, denoted by Covu(v), is defined as the cone centered
at u that spans Lune(u, v), that is, the cone of width âub, where a and b are the intersection
points of the circumferences of radius δ(u, v) centered at u and v, respectively. The covered
region of node u is the union set of the coverage of all its neighbors.

The concepts of neighbor coverage and covered region are illustrated in Figure 11.6.
The DistRNG protocol is reported in Figure 11.7. The protocol is composed of a

sequence of neighbor discovery phases: initially, node u grows its transmit power level
until a new neighbor v is discovered; then it adds v to its neighbor set, updates the covered
region, and checks whether the entire 2π span is covered. If not, it increases the transmit
power until a new neighbor in the not-yet-covered region is identified, and repeats the oper-
ations above. This procedure is repeated until the condition on coverage is satisfied or the
maximum transmit power is reached.

vu

a

b

w

Figure 11.6 The neighbor coverage of node v is defined as the cone of width âub centered
at u. The covered region of node u (shaded area) is the union set of the neighbor coverages
of nodes v and w.
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Algorithm DistRNG:
(algorithm for node u)

p(u) is the current transmit power level of node u

Pmax is the maximum nodes transmit power
N(u) is the neighbor set of node u

CR(u) is the covered region of node u

NYCR(u) is the not-yet-covered region of node u

1. Initialization
N(u) = ∅
CR(u) = ∅
NYCR(u) = 2π

p(u) = 0

2. Computing RNG
repeat until (CR(u) = 2π) or (p(u) = Pmax)

increase p(u) until a new neighbor v in NYCR(u) is discovered
N(u) = N(u) ∪ {v}
CR(u) = CR(u) ∪ Covu(v)

NYCR(u) = NYCR(u) − Covu(v)

3. Finalization
N(u) is the neighbor set of node u in the final topology

Figure 11.7 The DistRNG protocol.

In (Borbash and Jennings 2002), it is proven that the protocol reported in Figure 11.7
correctly computes the RNG. As in the case of CBTC, the message complexity of the
protocol has not been formally analyzed nor discussed. In particular, in DistRNG also the
strategy used to increase the transmit power in the various neighbor discovery phases has a
critical impact on the number of messages exchanged during DistRNG’s execution.
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Neighbor-based Topology Control

In this chapter, we consider topology control protocols that rely on the nodes’ ability to
determine the number and identity of neighbors within the maximum transmitting range and
to build an order on this neighbor set (based, for instance, on distance or on link quality).
In a certain sense, this is the minimum amount of information needed by the nodes to build
the network topology: if a node is not able to identify its neighbors, it has no clue on how
to set its transmit power level. The only possible way of setting the transmit power level
in this no-deterministic-knowledge scenario would be to set it at random. In this case, the
amount of knowledge available to the node is represented by the probability distribution
used to set the transmit power level.

In the first part of this chapter, we approach the neighbor-based topology control problem
from a theoretical viewpoint, assuming that every node in the network is connected to its
k closest neighbors. More particularly, we study necessary and sufficient conditions on k

for generating a topology that is connected with high probability (w.h.p.). Then, we present
the KNeigh protocol introduced in (Blough et al. 2003b), which is an implementation of
the above-described topology control technique based on distance estimation. Finally, we
present the XTC protocol introduced in (Wattenhofer and Zollinger 2004), which is based
on a more general notion of neighbor ordering, that is, link quality.

12.1 The Number of Neighbors for Connectivity

In this section, we investigate the following theoretical problem, which has been first studied
in (Xue and Kumar 2004). Before introducing the problem, we need some preliminary
definitions.

Definition 12.1.1 (K-neighbors graph) Let N be a set of nodes deployed in a certain region
R, with |N | = n. Given any k, with 0 < k ≤ n − 1, the k-neighbors graph built on N , denoted
by Gk = (N, Ek), is the directed graph obtained connecting each node to its k closest neigh-
bors. Formally, the directed edge (u, v) ∈ Ek if and only if δ(u, v) ≤ dk(u), where dk(u) is
the distance between node u and its k-closest neighbor.

Topology Control in Wireless Ad Hoc and Sensor Networks P. Santi
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Figure 12.1 Example of node placement generating asymmetric links (bold edges) in the
k-neighbors graph. Parameter k is set to 3.

Note that the neighbor relation induced by Gk is asymmetric, that is, there might exist
nodes u, v such that v is a neighbor of u in Gk but u is not a neighbor of v. An example
of node placement generating asymmetric links in Gk is reported in Figure 12.1.

Graph Gk can be made symmetric in two ways:

Definition 12.1.2 (Symmetric k-neighbors supergraph) The symmetric k-neighbors
supergraph on node set N is defined as the undirected graph G+

k = (N, E+
k ), where the

undirected edge (u, v) ∈ E+
k if and only if (u, v) ∈ Ek or (v, u) ∈ Ek .

Definition 12.1.3 (Symmetric k-neighbors subgraph) The symmetric k-neighbors sub-
graph on node set N is defined as the undirected graph G−

k = (N, E−
k ), where the undirected

edge (u, v) ∈ E−
k if and only if (u, v) ∈ Ek and (v, u) ∈ Ek.

In other words, the symmetric supergraph of Gk is obtained by adding the reverse edge
to all the unidirectional links in Gk, while the symmetric subgraph of Gk is obtained by
removing all the unidirectional links in Gk . The symmetric super- and subgraph of the
k-neighbors graph reported in Figure 12.1 are shown in Figure 12.2.

Definition 12.1.4 (KNeighConn) The k-neighbors connectivity problem, denoted as
KNEIGHCONN, is as follows: given a set N of nodes, which is the minimum value of k such that
the k-neighbors graph Gk built on N is strongly connected? We also consider two symmetric
versions of KNEIGHCONN in which the connectivity requirement is either on the symmetric
supergraph or on the symmetric subgraph of Gk .

The interest in investigating the KNeighConn problem is evident: by acting on a local
parameter (the number k of neighbors to which every node is connected), we can ‘control’
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(a) (b)

Figure 12.2 Symmetric supergraph (a) and subgraph (b) of the k-neighbors graph of
Figure 12.1.

a global property, that is, network connectivity: the higher the k, the better the network
connectivity. On the other hand, a low value of k is desirable for spatial reuse: the lower
the k, the lesser is the number of neighbors impacted by a node’s transmission, which
implies increased spatial reuse. So, the optimal choice for k is to determine the minimum
value such that the corresponding Gk graph is connected, that is, the KNeighConn problem.

The KNeighConn problem can be easily solved if some feedback mechanism can be
implemented: intuitively, nodes start connecting to the closest neighbor, check for network
connectivity (this is the feedback mechanism), increase the number of neighbors, and so on,
until network connectivity is achieved. Unfortunately, implementing this solution in realistic
scenarios is very difficult because of the fact that checking for network connectivity requires
global knowledge. In general, any feedback returned to the nodes about network connectivity
can be achieved only through networkwide message exchange, which, as we have thoroughly
discussed in Chapter 9, should be avoided in practical scenarios.

Since having a feedback about connectivity is impractical, the only choice is to give k

as an input parameter to the TC protocol, where k is chosen in such a way that connectivity
is somehow guaranteed. Indeed, the connectivity requirement that we want to fulfill has
a strong impact on the value of k: if we want to generate a connected graph for every
possible node placement (worst-case connectivity), the only choice is to set k = n − 1. This
is proven in the following theorem.

Theorem 12.1.5 The minimum value of k that guarantees worst-case connectivity of the
k-neighbors graph Gk (i.e. the minimum value of k such that the Gk graph is connected
whenever the maxpower graph is connected) is n − 1.

Proof. To prove the theorem, it is sufficient to show a node placement such that the
maxpower graph is connected, and Gk is connected if and only if k = n − 1. This is the
case, for instance, of the node placement reported in Figure 12.3: all the network nodes,
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u

v

n − 1 nodes

Figure 12.3 Node placement used in the proof of Theorem 12.1.5.

except for node v, are clustered together, and the nodes’ maximum transmitting range is
such that the maxpower graph is connected. In order to preserve connectivity, at least the
node in the cluster that is closest to v, that is, node u, must have a direct link to v. Since
v is the n − 1-closest neighbor of node u, it follows that we must set k = n − 1 in order to
obtain a connected network.

In other words, Theorem 12.1.5 states that ensuring worst-case connectivity with closest-
neighbor-based topology control is possible only by directly connecting each node to every
other node in the network (i.e. the network is single hop). In real word scenarios, setting
k = n − 1 as requested by Theorem 12.1.5 is virtually impossible: on the one hand, nodes
must use relatively high transmit powers since they must be able to reach the farthest node
in the network; on the other hand, network capacity is compromised: when one node in the
network transmits, all the other nodes must remain silent in order not to compromise the
transmission.

Given that the deterministic solution to KNeighConn is not satisfactory, researchers
have studied this problem in a probabilistic setting: we assume a certain node spatial distri-
bution (e.g. the network nodes are distributed uniformly at random in a certain area), and
we evaluate the value of k such that Gk is connected w.h.p.1 In analogy with the CTR, we
call the minimum such value of k as the critical neighbor number (CNN).

Definition 12.1.6 (Critical neighbor number) Let N be the set of network nodes that are
deployed according to some probability distribution F in a certain region R. The critical
neighbor number (CNN) is the minimum value of k such that

lim
n→∞ P (Gk is connected) = 1,

where n is the number of network nodes.

A similar definition can be given with respect to the symmetric super- and subgraph
of Gk .

Observe that in the study of the CNN the connectivity requirement on Gk is weakened
with respect to the case of worst-case connectivity: by setting k to the CNN, we can

1We recall that a random event Ec dependent on a certain parameter c holds w.h.p., or asymptotically almost
surely, if and only if limc→∞ P (Ec) = 1.
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generate disconnected Gk graphs, but this occurs occasionally: the probability that Gk is
disconnected converges to 0 as the size of the network increases. As we shall see, weakening
the connectivity requirement on Gk has a positive effect on k, which can be considerably
reduced with respect to the value of n − 1 needed to ensure worst-case connectivity.

Determining the CNN is a very difficult problem, which has been partially solved only
recently. The difficulty with respect to the CTR problem arises from the fact that, contrary
to what happens with the CTR, nodes in general have different transmitting ranges, and
asymmetric links might occur. To partially mitigate the difficulty of the problem (and also
motivated by the fact that unidirectional links are undesirable), Xue and Kumar considered
the symmetric supergraph of Gk , and proved the following theorem:

Theorem 12.1.7 (Xue and Kumar 2004) Assume that n nodes are placed uniformly at ran-
dom in [0, 1]2, and let G+

k be the symmetric supergraph of the k-neighbors graph built on
these nodes. There exist two constants c1, c2, with 0 < c1 < c2, such that

lim
n→∞ P (G+

c1 log n is disconnected) = 1,

and
lim

n→∞ P (G+
c2 log n is connected) = 1.

The authors also provide explicit values for c1 and c2, which are c1 = 0.074 and c2 =
5.1774 + ε, where ε is an arbitrarily small positive constant.

Theorem 12.1.7 gives upper and lower bounds to the CNN in case of uniformly dis-
tributed nodes, as stated by the following corollary:

Corollary 12.1.8 Assume that n nodes are placed uniformly at random in [0, 1]2, and let
G+

k be the symmetric supergraph of the k-neighbors graph built on these nodes. The CNN
for connectivity is

kC = c log n,

for some constant c, with c1 < c ≤ c2.

Although the difference in the values for the number of neighbors that are necessary and
sufficient for connectivity is quite large, Theorem 12.1.7 is very important since it states that
�(log n) neighbors are necessary and sufficient for connectivity w.h.p. Comparing the values
of k determined in Theorem 12.1.5 and in Corollary 12.1.8, we can see the dramatic effect
of the connectivity requirement on the value of k: in order to ensure worst-case connectivity,
we must set k to n − 1; however, if we allow occasional network disconnections, the value
of k can be reduced to �(log n), that is, of an exponential amount.

To some extent, Xue and Kumar’s Theorem contradicts the results presented in a series
of papers that considered the problem of how many neighbors are desirable in a wireless
multihop network (Hou and Li 1986; Kleinrock and Silvester 1978; Takagi and Kleinrock
1984). In these papers, the wireless network is modeled as a set of nodes located on the
plane according to a Poisson point process, and the problem is that of maximizing the
one-hop progress of a packet in the desired direction under different transmission protocols.
The optimal number of neighbors was identified as six in (Kleinrock and Silvester 1978)
for a slotted ALOHA protocol where all the nodes use the same transmit power. Later
on, this ‘magic number’ was revised to eight (Takagi and Kleinrock 1984). Hou and Lu
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(Hou and Li 1986) considered the same problem with variable transmit powers, and obtained
the ‘magic numbers’ of six and eight. Other authors have considered different network mod-
els and/or different optimization objectives, deriving other ‘magic numbers’: three (Hajek
1983), five and seven (Takagi and Kleinrock 1984). However, the papers cited above did not
consider the issue of network connectivity. Xue and Kumar’s Theorem states that as long
as connectivity is considered, no magic number exists: the minimum number of neighbors
needed for connectivity grows with the number n of network nodes as �(log n).

The proof of the positive part of Theorem 12.1.7, that is, that c2 log n neighbors are
sufficient for connectivity, is based on the fact (proven in (Xue and Kumar 2004)) that
every node in G+

c2 log n is connected w.h.p. to every node within distance (1 − ε)rn, where

rn =
√

η log n

πn
, ε is an arbitrary constant in (0, 1), and η is a constant that depends on ε. In

other words, this means that the communication graph G(1−ε)rn generated by the (1 − ε)rn-
homogeneous range assignment is a subgraph of G+

c2 log n (asymptotically, for n → ∞).
Hence, results concerning the CTR for connectivity can be applied, proving that G+

c2 log n

is also connected w.h.p. Blough et al. observed in (Blough et al. 2003b) that, since the
distance relation is obviously symmetric, the exactly same proof can be applied to show
that the G(1−ε)rn is a subgraph of G−

c2 log n too. In other words, c2 log n neighbors are sufficient
to have the G−

k graph connected w.h.p. Finally, we observe that G−
k is a subgraph of G+

k for
any k, which implies that k > c1 log n is a necessary condition for the connectivity w.h.p.
of G−

k . Thus, we can state the following corollary, which partially characterizes the CNN
for the symmetric subgraph of Gk .

Corollary 12.1.9 Assume that n nodes are placed uniformly at random in [0, 1]2, and let
G−

k be the symmetric subgraph of the k-neighbors graph built on these nodes. The CNN for
connectivity is

kC = c log n,

for some constant c with c1 < c ≤ c2.

The upper bound on the CNN of G−
k (and, hence, the same bound for G+

k ) has been
recently improved by Wan and Yi in (Wan and Yi 2004) to βe log n, where e ≈ 2.718 is
the natural base and β is an arbitrary constant greater than 1. Indeed, the authors proved
an even stronger result, showing that the same condition on the number of neighbors is
sufficient for ensuring h-connectivity w.h.p., where h is an arbitrary constant with h ≥ 1.

Another extension to Xue and Kumar’s Theorem has been presented in (Blough et
al. 2003a), generalizing the result to square deployment regions of arbitrary side. In fact,
Theorem 12.1.7 holds under the assumption that the deployment region is fixed (it is the
unit square), and the number of nodes grows to infinity. In other words, it can be applied
only to dense ad hoc networks, where the number of nodes per unit area is quite large.
Blough et al. showed that the same result holds for sparse networks also, and for arbitrary
network densities in general. This generalization is important since it formally proves that
it is only the number n of nodes in the network, and not the area on which the network is
deployed, that determines the CNN.

The minimum number of neighbors needed for connectivity has been investigated in
a more practical setting also. In particular, Blough et al. in (Blough et al. 2003b) and in
(Blough et al. 2003a) evaluated the CNN by means of extensive simulation. In the simulation
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Table 12.1 Critical neighbor number for
different values of n. kasym is the CNN
for the Gk graph and ksym is the same
number for the symmetric subgraph of Gk .
Here, the CNN is defined as the minimum
value of k that guarantees that the gener-
ated topology is connected with probability
at least 0.95

n kasym ksym n kasym ksym

10 6 6 100 9 9
20 8 8 250 9 9
25 8 8 500 9 9
50 8 9 750 9 10
75 9 9 1000 10 10

setting, the CNN is defined as the minimum value of k that guarantees that the generated
topology is connected with probability at least 0.95. Blough et al. considered both the Gk

graph and its symmetric subgraph G−
k . Note that the CNN in case of G−

k might be higher
than that of Gk because the asymmetric link removal might disconnect the graph (see
Figures 12.1 and 12.2). The asymmetric CNN, kasym, and the symmetric CNN, ksym, for
different values of n are reported in Table 12.1.

As seen from the table, setting k = 9 provides connectivity w.h.p. for a wide range
of network sizes (from 50 to 500 nodes). Another important observation concerns the fact
that kasym and ksym have the same value, except for a few cases in which ksym = kasym + 1.
This fact confirms that, as predicted by Corollaries 12.1.8 and 12.1.9, removing all the
asymmetric links has asymptotically negligible influence on network connectivity.

To gain more insights on neighbor-based connectivity, Blough et al. have also performed
a set of simulations in which the connectivity requirement on G−

k is weakened. In particular,
it is requested that at least 95% of the network nodes are in the same connected component
w.h.p. (here, w.h.p. means with probability at least 0.95). We call the minimum value of k

satisfying the above connectivity requirement wCNN, where w stands for weak.
The results of this experimental evaluation, which are reported in Table 12.2, are inter-

esting: contrary to the case of CNN, wCNN shows a converging behavior as n increases;
in particular, wCNN converges to 6 as n → ∞.

It is interesting to compare the different values of the minimum number of neighbors
for connectivity that we have characterized in this section: depending on the connectivity
requirement on Gk, this value can be equal to n − 1 (worst-case connectivity), or to O(log n)

(connectivity w.h.p.), or to 6 (most of the nodes in the largest connected component w.h.p.).
Note that in this latter case we do have a magic number of neighbors, which is 6.

Before ending this section, we give one more comment about the values of wCNN
and CNN reported in Table 12.2. These values indicate quite clearly (although there is
no theoretical support to this claim) that the giant component phenomenon, which we have
discussed in Section 4.1 in case of the CTR for connectivity, occurs in the k-neighbors graph
also. In the context of neighbor-based topology control, the giant component phenomenon
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Table 12.2 WeakCNN and CNN for different
values of n. Here, wCNN is defined as the min-
imum value of k such that at least 95% of the
network nodes are in the same connected com-
ponent with probability at least 0.95

n wCNN CNN n wCNN CNN

10 6 6 100 7 9
20 7 8 250 7 9
25 7 8 500 6 9
50 7 9 750 6 10
75 7 9 1000 6 10

can be explained as follows. Assume every node in the network establishes a connection
to its closest neighbor, then to the second closest neighbor, and so on, until connectivity
is achieved. The experimental results reported in Table 12.2 indicate that a large connected
component in Gk is formed quite soon in this closest-neighbor-connection process: w.h.p.,
most of the network nodes are in the same connected component after only six steps (i.e.
when k = 6), independent of n; on the other hand, if the goal is connecting all the nodes
in the network, then the connection process is very likely to stop after �(log n) steps.

12.2 The KNeigh Protocol

The KNeigh protocol introduced in (Blough et al. 2003b) is a distributed implementation
of the computation of G−

k based on distance estimation. In other words, it is assumed that
when a node u receives a message from node v, u is able to estimate (possibly with a certain
error) the distance to node v. This can be accomplished by using one of the many distance
estimation techniques proposed in the literature. Among them, we cite the following:

– Radio signal strength indicator : Distance is estimated by comparing the transmitted
power at the sender (which is piggybacked in the message) with the received power at
the receiver of the message. This technique can be implemented without any additional
hardware on the nodes (RSSI registers are a standard feature in many wireless network
cards (Savvides et al. 2001)), but its accuracy is bonded to the accuracy of the radio
channel model used to predict path loss. Since path loss is very difficult to predict
in many environments (especially in presence of buildings, obstacles, and so on), it
turns out that RSSI-based distance estimation provides reasonable accuracy only in a
quite idealized setting (e.g. football field with all the nodes positioned at the ground
level) (Savvides et al. 2001);

– Time of arrival : Distance is estimated by comparing the time of arrival of different
types of signals. Typically, the radio signal is used in combination with acoustic, ultra-
sound, or infrared signals. Because of the use of different types of signals, ToA-based
techniques provide a much better accuracy than RSSI-based mechanisms, and can be
implemented at a reasonable hardware cost. For example, the technique proposed in
(Girod and Estrin 2001) uses a standard PC sound card to generate an acoustic signal,
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which is received by a cheap microphone. The authors show that this technique pro-
vides good accuracy (below 3%) in realistic conditions. However, accuracy drops to
only 23% when the line of sight between the nodes is obstructed by heavy obstacles.

12.2.1 Protocol description

The KNeigh protocol, which is summarized in Figure 12.4, is very simple. Initially, every
node broadcasts its ID at maximum power (as usual, we assume that all the nodes have the
same maximum transmit power Pmax, and that the wireless medium is symmetric). Upon
receiving broadcast messages from other nodes, every node keeps track of its neighbors,
storing for each of them the estimated distance (this can be done by using one of the
techniques described above). After all the initial messages have been sent, every node in
the network knows its neighbor set and the distance-based ordering of the neighbors. Given
this information, every node computes its k-closest neighbors list KN, and broadcasts this
information at maximum power. By exchanging neighbor lists, nodes are able to determine
the set of symmetric neighbors2 and to exclude the asymmetric neighbors from KN. At the
end of the protocol execution, KN(u) contains the list of neighbors of node u in the final
topology G−

k , and the (broadcast) transmit power of node u is set to the minimum value
needed to reach the farthest node in KN(u). Note that this value can be computed given the
received signal strength of the messages sent by the farthest node in KN(u).

Blough et al. proved the following properties of KNeigh (Blough et al. 2003b):

– Correctness : If all the nodes use the same maximum transmit power Pmax and the
wireless medium is symmetric, then algorithm KNeigh correctly computes the G−

k

graph. To be precise, KNeigh computes a subgraph of G−
k , where every node is

connected to its k closest neighbors, or to the maximum possible number of neighbors
within the maximum transmitting range.

– Connectivity : Under the assumption that nodes are distributed uniformly at random in
a square of arbitrary side, and that Pmax is chosen in such a way that the maxpower
communication graph is connected w.h.p., and setting k to the CNN as indicated in
Corollary 12.1.9, the topology generated at the end of KNeigh execution is connected
w.h.p. For practical purposes, given the number n of network nodes, k can be set to
ksym as indicated in Table 12.1.

– Bounded physical node degree: The physical node degree of any network node at the
end of KNeigh’s execution is upper bounded by k.

– Termination: Under the assumption that the time interval between the instants at
which the first and the last node in the network broadcast the ID is at most �, for
some � > 0, and assuming a randomized scheduling to send messages, the protocol
terminates correctly after a certain finite time T , which depends on n and �.

– Message complexity : Since every node in the network sends exactly two messages,
the total number of messages exchanged by KNeigh is 2n.

2Two nodes are symmetric neighbors if and only if they appear in each other’s KN list.
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Algorithm KNeigh:
(algorithm for node u)

k is the target number of neighbors (input parameter)
Pmax is the maximum node transmit power
N(u) is the neighbor set of node u

KN(u) is the k-closest neighbor set of node u

p(u) is the final (broadcast) transmit power of node u

1. Initialization
N(u) = ∅
KN(u) = ∅

2a. ID broadcast
send message (u, Pmax) at transmit power Pmax

2b. Neighbors detection
upon receiving message (v, Pmax) from node v

N(u) = N(u) ∪ {v}
estimate distance to v and store this information

3. Wait for stabilization time

4. Compute the k-closest neighbors list
order the nodes in N(u) according to the estimated distance
KN(u) = first k nodes in N(u) – (all the nodes if |N(u)| ≤ k)

5a. Neighbor list broadcast
send message (u, KN(u)) at transmit power Pmax

5b. Neighbor lists reception
upon receiving message (v, KN(v)) from node v

store this information

6. Wait for stabilization time

7. Symmetric neighbor list computation
for each v ∈ KN(u) do

if u /∈ KN(v) then KN(u) = KN(u) − {v}

8. Transmit power computation
p(u) = minimum power level needed to reach the farthest node in KN(u)

Figure 12.4 The KNeigh protocol.
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Algorithm KNeigh – Optimization Stage:
(algorithm for node u)

KN(u) is the symmetric k-closest neighbor set of node u

for each v ∈ KN(u), P (u, v) is the minimum transmit power needed to reach v

P (u, v), for each v ∈ KN(u), is included in the message sent at step 5a. of KNeigh
p(u) is the final (broadcast) transmit power of node u

1. Initialization
Sort nodes in KN(u) for increasing value of P (u, v)

let v1, . . . , vh, with h ≤ k, be the resulting ordering

2. Energy-inefficient edge removal
for i = 1 to h do

check whether ∃vj , with j < i, such that P (u, vj ) + P (vj , vi) ≤ P (u, vi)

(note that P (vj , vi) has been received by u together with the list KN(vj )

sent by node vj )
if yes, remove vi from KN(u), and set P (u, vi) to P (u, vj ) + P (vj , vi)

3. Transmit power computation
p(u) = minimum power level needed to reach the farthest node in KN(u)

Figure 12.5 The optimization stage of the KNeigh protocol.

Blough et al. also presented an optimization stage that can be applied at the end of
KNeigh. The philosophy of this optimization is the same as in CBTC, that is, to remove
energy-inefficient links from the final topology. The optimization stage, which is reported
in Figure 12.5, can be executed locally at each node with no further message exchange. The
idea is very simple: edge (u, vi) is removed from the final topology if and only if there exists
a third node vj that is a symmetric neighbor of both u and vi , such that sending a message
along the two-hop path {u, vj , vi} is more energy efficient than the direct communication
from u to vi . Note that only edges that are part of a ‘triangle’ are removed, that is, this
optimization does not reduce network connectivity. Furthermore, given that nodes u, vj and
vi are symmetric neighbors, and all of them execute the same optimization protocol, node
u removes node vi from KN(u) if and only if node vi removes node u from KN(vi), that
is, the optimization stage preserves symmetry.

The authors of (Blough et al. 2003b) evaluated the average-case performance of KNeigh
through simulation, comparing it with the case of no topology control (i.e. the network topol-
ogy is the maxpower communication graph) and with CBTC. In case of KNeigh and CBTC,
Blough et al. compared the protocols both with and without the final optimization phase
implemented. The metrics considered to evaluate the performance of the protocols were
(i) the average (broadcast) transmit power level of the nodes in the final topology, which
is a measure of the energy efficiency of the protocols; and (ii) the average physical node
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degree, which is a measure of the expected interference. The simulation results show that
KNeigh after optimization is about 20% more energy efficient than CBTC after optimiza-
tion. If optimizations are not implemented, the gap in favor of KNeigh is even larger. As for
the average physical node degree, KNeigh without optimization performs much better than
CBTC without optimization, while the two protocols have essentially the same performance
if optimizations are implemented.

A final simulation-based investigation reported in (Blough et al. 2003b) concerns the
effect of errors in distance estimation on KNeigh’s performance. The authors considered
realistic error models for both RSSI- and ToA-based techniques, and evaluated the impact
of errors on the connectivity of the final topology. The simulation results show that errors in
distance estimation have a very limited impact on the network topology, especially in case
the relatively accurate ToA-based distance estimation technique is used. In other words, by
setting k as in Table 12.1, the topology generated by KNeigh is connected w.h.p. even if
the distance estimation is relatively imprecise.

12.2.2 Discussion

The KNeigh protocol enjoys several nice features: it is very simple, it is based on relatively
‘low-quality’ information (distance between nodes), it is lightweight (only 2n messages are
exchanged in the network), and it generates a topology with a nontrivial upper bound on
the physical node degree, which, as we have seen, is fundamental to maintain a relatively
low level of interference in the network. However, contrary to all the topology control
protocols presented so far, KNeigh does not preserve network connectivity in the worst
case. Unfortunately, as we have discussed in Section 9.3, there is no way of guaranteeing
connectivity in the worst case and limited physical node degree at the same time. So, if
the emphasis is on limiting the physical node degree as it is in KNeigh, guaranteeing
connectivity w.h.p. is, in a sense, the best one can hope for.

As compared to CBTC, KNeigh displays about 20% better performance in terms of
energy cost, and slightly better performance in terms of average physical node degree. The
reason for this performance gap in favor of KNeigh stems from the fact that some nodes
in CBTC (especially nodes lying on the boundary of the deployment region) use relatively
high transmit power to reach at least one neighbor ‘in every direction’: on one hand, this
feature of CBTC ensures that the generated topology preserves worst-case connectivity; on
the other hand, it produces a relatively less energy- and interference-efficient topology as
compared to KNeigh.

12.3 The XTC Protocol

The XTC protocol presented in (Wattenhofer and Zollinger 2004) is a neighbor-based topol-
ogy control algorithm that, contrary to KNeigh, preserves worst-case connectivity. This
better performance in terms of connectivity with respect to KNeigh is counterbalanced by
a worse performance in terms of physical node degree, which can be as high as n − 1 (see
Theorem 9.3.3). We recall that KNeigh generates graphs with physical node degree upper
bounded by k, where k ∈ O(log n).

In a certain sense, XTC can be considered as a generalization of KNeigh: similar
to KNeigh, nodes first establish an order on their neighbor nodes; then, they exchange
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information about the neighbor orders; finally, they compute their local view of the final
network topology. The main differences between XTC and KNeigh are the following:

1. The neighbor order is based on the concept of ‘link quality’, rather than distance as
it was the case in KNeigh.

2. When exchanging neighbor lists and computing the final topology, nodes consider
the entire neighbor set, and not the first k elements in the order as was the case in
KNeigh.

Let us comment more on issues (1) and (2). The use of distance in KNeigh was motivated
by the need of upper bounding the physical node degree, which is defined as the number
of nodes within a node’s transmitting range: by setting the transmit power to the minimum
level needed to reach k neighbors, we ensure that the physical degree of a node is k. Is
it necessary that these neighbors are the closest ones, in term of Euclidean distance? The
answer is no if we consider the correctness of KNeigh, but it is yes if we want to have a
probabilistic guarantee on the connectivity of the generated topology: the most natural way
to prove that the topology computed by KNeigh is connected w.h.p. is by using the theory of
k-neighbors graph, which is based on the concept of Euclidean distance. In case of XTC, the
focus is on ensuring worst-case connectivity, which, as we know, implies that the physical
node degree cannot be bounded. As a consequence of this, the number of neighbors within
a node’s transmitting range is not an issue, and the notion of Euclidean distance is no longer
necessary since connectivity is guaranteed in the worst case. Thus, nodes can use a more
general and practical notion such as link quality to order their neighbors. We remark that,
under particular circumstances (e.g. flat and unobstructed environment), the order induced
on neighbors by link quality might coincide with the order induced by distance. Finally,
note that nodes in XTC must exchange their entire neighbor set (issue (2)) since otherwise
worst-case connectivity cannot be ensured.

12.3.1 Protocol description

Before presenting the protocol, we need some notation. Let us consider a certain node u, and
let N(u) be its neighbor set (i.e. the set of nodes within u’s transmitting range at maximum
power). In the following, we denote the order relation on N(u) by ≺u; in particular, w ≺u v

means that node w precedes node v in the ordering of node u. In terms of link quality,
w ≺u v indicates that link (u, w) has relatively higher quality than link (u, v). As usual,
we assume that all the nodes in the network have the same maximum transmit power Pmax

and that the wireless medium is symmetric.
As anticipated above, the XTC protocol (which is summarized in Figure 12.6) is very

simple: initially, every node in the network establishes an order ≺ on the neighbor set. The
way this can be accomplished depends on the criterion used to establish link quality: it can
be defined in terms of the received signal strength, or in terms of packet delivery ratio,
and so on. To simplify the presentation of XTC, in the protocol specification reported in
Figure 12.6, it is assumed that link quality is determined by the strength of the received
signal. With this assumption, establishing the neighbors order is very simple: each node
sends a beacon at maximum power; when a neighbor receives the beacon, it measures the
received signal strength (this can be easily done since wireless cards are typically equipped
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Algorithm XTC:
(algorithm for node u)

Pmax is the maximum node transmit power
N(u) is the neighbor set of node u

DN(u) is the set of discarded neighbors
FN(u) is the neighbor set of node u in the final topology
p(u) is the final (broadcast) transmit power of node u

1. Initialization
N(u) = ∅
DN(u) = ∅
FN(u) = ∅

2a. ID broadcast
send message (u, Pmax) at maximum transmit power Pmax

2b. Neighbors detection
upon receiving message (v, Pmax) from node v

N(u) = N(u) ∪ {v}
determine the received signal strength and store this information

3. Exchange ordered neighbors list
after all the messages from neighbors have been received

order nodes in N(u) according to the received signal strength

3a. send message (u, N(u)) at maximum transmit power Pmax

3b. upon receiving ordered neighbors list (v, N(v)) from node v, store this
information

4. Determine final neighbor set
after the ordered neighbor lists from all the nodes in N(u) have been received

for each v ∈ N(u), in decreasing order of link quality
if (∃w ∈ DN(u) ∪ FN(u) such that w ≺v u)

then DN(u) = DN(u) ∪ {v}
otherwise FN(u) = FN(u) ∪ {v}

5. Transmit power computation
p(u) = minimum power level needed to reach the farthest node in FN(u)

Figure 12.6 The XTC protocol.
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with a RSSI register) and orders its neighbor set accordingly. So, exchanging n messages
overall (every node sends one message at maximum power) is sufficient to compute the
neighbors order.

Once the neighbor set has been computed and ordered, every node broadcasts the ordered
neighbor list at maximum power (this also requires sending n messages overall).

The final step of XTC, that is, the computation of the final topology, can be done locally
at each node, with no further message exchange. To compute the network topology, node
u considers its neighbors in decreasing order of link quality: when considering a certain
neighbor v, it checks whether there exists a node w with w ≺u v (i.e. with better link
quality) such that w ≺v u. Note that this check can be done locally at node u, which knows
v’s neighbor order (because v is a neighbor of u). If the above condition is satisfied, edge
(u, v) is discarded; otherwise it is included in the set FN(u), which contains the neighbors
of u in the constructed network topology. After all the nodes in N(u) have been processed,
set FN(u) is the u’s local view of the network topology produced by XTC, which we
call GXTC.

12.3.2 Protocol analysis

In (Wattenhofer and Zollinger 2004), Wattenhofer and Zollinger investigate the properties
of the GXTC graph in two different settings. First, they consider the more general setting in
which ≺ is an arbitrary link quality–based order; then, they consider a quite idealized setting
in which the link quality–based order coincides with the distance-based order (as discussed
above, this might happen if, for instance, the environment is flat and unobstructed), and
proves additional properties of the GXTC graph.

Let us start with the more general setting in which the measure used to determine link
quality is arbitrary. The first property considered by Wattenhofer and Zollinger is symmetry:
in particular, they show that the neighbor relation induced by GXTC is symmetric:

Theorem 12.3.1 (Wattenhofer and Zollinger 2004) Let G = (N, E) be the maxpower
communication graph, and let GXTC = (N, EXTC) be the topology computed by the XTC
protocol, that is, edge (u, v) ∈ EXTC if and only if v ∈ FN(u) at the end of XTC’s execu-
tion. The GXTC graph is symmetric, that is, edge (u, v) ∈ GXTC if and only if (v, u) ∈ GXTC.
Equivalently, at the end of XTC’s execution v ∈ FN(u) if and only if u ∈ FN(v).

Proof. Assume for the sake of contradiction that v ∈ FN(u), but u ∈ DN(v). Since u ∈
DN(v), there exists node w ∈ N(v), with w ≺v u, such that w ≺u v. Let us now consider
the time at which node u processes neighbor v; since w ≺u v, this implies that w has already
been processed by u, that is, w ∈ DN(u) ∪ FN(u) when u processes v. In turn, this implies
that when the condition on node v is checked, v must be inserted in DN(u); in fact, node w

is such that w ∈ DN(u) ∪ FN(u), and w ≺v u. This contradicts the initial assumption that
v ∈ FN(u), and the theorem is proven.

Note that, contrary to the case of CBTC in which the symmetry of the final topology
is enforced by adding the reverse edge in the unidirectional links (or by removing all the
unidirectional links), in XTC it is the neighbor relation itself that is symmetric, so adding
or removing unidirectional links is not needed.

The following theorem proves that XTC preserves connectivity in the worst case.
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Theorem 12.3.2 (Wattenhofer and Zollinger 2004) Let G = (N, E) be the maxpower
communication graph, and let GXTC = (N, EXTC) be the topology computed by the XTC
protocol. GXTC is connected if and only if G is connected.

Proof. Proving the ‘only if’ part is immediate since GXTC is a subgraph of G.
To prove the reverse implication, assume for the sake of contradiction that G is con-

nected, but GXTC is not connected. This implies that there exists at least one node pair that
is connected in G but is not connected in GXTC. Among all such pairs, consider the pair u,
v of minimum cost, where the cost of pair u, v is given by the cost (in terms of link quality)
of the minimum path between u and v in G. To break possible ties, we consider the lexico-
graphical order of the node IDs. Since u, v is the ‘disconnected’ pair in GXTC of minimum
cost, it follows that u and v are one-hop neighbors in G. Otherwise, there exist nodes w, z

in the minimum path connecting u and v in G such that nodes w and z are disconnected
in GXTC, and the cost of w, z is strictly less than the cost of u, v – contradiction. Since
(u, v) ∈ G, it follows that v ∈ N(u), and that v is included in DN(u) when it is processed
by node u (in fact, edge (u, v) is not in GXTC). In turn, this implies that there exists node
w, with w ∈ N(u), such that w ≺v u, that is, node w is also a neighbor of node v. It is
immediate to see that we must have w ∈ FN(u) (and w ∈ FN(v)), since otherwise u, v

would not be the pair of minimum cost that is connected in G and disconnected in GXTC.
This leads to a contradiction since (u, w) ∈ EXTC and (w, v) ∈ EXTC implies that u and v

are connected in GXTC, contrary to our initial assumption.

Concerning message complexity, XTC can be classified as a lightweight protocol, since
its computation requires exchanging 2n messages (under the assumption that link quality is
measured using received signal strength).

In case the link quality–based order coincides with the neighbor order based on
Euclidean distance, GXTC satisfies some additional property. In particular, in (Wattenhofer
and Zollinger 2004), it is proved that GXTC has logical node degree at most 6, it is pla-
nar, and that it is a subgraph of the RNG. More particularly, it is shown that if the node
placement is such that no node has two or more neighbors at the same distance (as it is
likely the case in presence of random node distribution), GXTC is exactly the RNG. Thus,
the algorithm reported in Figure 12.6 can be considered a distributed implementation of the
computation of the RNG, as it is the DistRNG protocol of Figure 11.7. Note that a notable
feature of XTC as compared to DistRNG is that it does not require directional information,
which is typically provided using expensive directional antennas.

Summarizing, the XTC protocol

– computes a topology that contains only bidirectional links;

– preserves worst-case connectivity;

– is lightweight;

– in case the link quality–based order coincides with the distance-based order, the XTC
protocol

– produces a planar topology with logical node degree at most 6;

– produces a subgraph of the RNG.
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Dealing with Node Mobility

In the previous chapters, we have presented several distributed topology control (TC) pro-
tocols, based on different approaches (location-based, direction-based, and neighbor-based
TC). When describing the protocols and analyzing their properties, we implicitly assumed
that the network nodes were stationary. Indeed, node mobility is a prominent feature of ad
hoc networks: in most application scenarios, the wireless devices that form the network, or
at least a significant percentage of them, are mobile. This is the case, for instance, of ad hoc
networks used to deliver traffic information (here, vehicles can be seen as network nodes),
or to provide ubiquitous Internet access (here, portable devices carried by humans can be
used to increase service coverage), or in the delivery of location-aware information (as in
the previous example, humans carrying a wireless device can be seen as network nodes).
In some cases, node mobility is present in wireless sensor networks also: for instance, if
sensors are deployed on the surface of the ocean to monitor, say, the water temperature, we
can expect that they are carried around by ocean flows.

So, it seems that current literature on TC has ignored one of the most important features
of ad hoc and sensor networks, that is, node mobility. Is this fact true? As we shall see, the
answer to this question is ‘in part, yes’: although some TC techniques explicitly designed
for mobile networks have been introduced, many fundamental issues related to applying TC
in mobile networks have not been addressed yet.

Leaving the discussion of open research issues related to the application of TC in mobile
networks to Chapter 15, in this chapter we review the current state of the art on this topic.
We start by revisiting the design guidelines discussed in Chapter 9 in the context of mobile
networks. Then, we discuss the effect of node mobility on the value of the CNN, which,
as we have seen in the previous chapter, is a fundamental network parameter in neighbor-
based TC. In the last section, we present some of the TC protocols (or reconfiguration
procedures of known protocols) that have been proposed in the literature to deal with node
mobility.

Topology Control in Wireless Ad Hoc and Sensor Networks P. Santi
 2005 John Wiley & Sons, Ltd
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13.1 TC Design Guidelines with Mobility

As we have discussed in Chapter 9, a TC protocol should be designed according to several
guidelines, which we summarize below:

1. fully distributed and asynchronous implementation;

2. construct the topology using only local information;

3. build a topology that preserves the original network connectivity (at least w.h.p.) using
only bidirectional links;

4. construct a topology with small physical node degree;

5. use relatively ‘low-quality’ information to build the topology.

Let us consider these design guidelines in the context of mobile networks. A first com-
ment is about what we mean by mobile network. It is clear that different types of node
mobility may occur in ad hoc networks, ranging from highly mobile networks (e.g. vehic-
ular ad hoc networks, where node velocity can be above 100 km/h), to networks in which
node mobility is extremely low (say, if a sensor network is used to monitor the movement
of turtles). Since the latter type of mobility is well approximated by stationary networks,
in this chapter we are concerned with networks in which node mobility is at least moder-
ate. In other words, we want to discuss what changes in the picture that we have drawn in
Chapters 9–12 when the assumption that node positions do not change during the execution
of the TC protocol and for a certain period of time after its execution is dropped.

Guidelines (1) and (2), which were important in case of stationary networks, become
vital in the context of mobile networks: centralized approaches and/or solutions that require
the exchange of global information are impractical when node mobility is moderate to high,
unless the network is extremely small (say, up to 10–15 nodes that are at most 1–2 hops
away from each other). In fact, the propagation of networkwide information requires a lot
of time, and the consequence of using global information to construct the communication
topology is building a topology based on stale information. If the information used to
compute the topology is outdated, nodes are likely to experience frequent link errors when
communicating with other nodes, which in turn causes the execution of route recovery
procedures and/or reexecution of the TC protocol. Thus, a considerable portion of the
(scarce) network bandwidth is used by control packets, which are exchanged to continuously
update the network topology and the routing information. In the most pessimistic scenario,
we are in a situation in which the network topology never stabilizes, and almost the entire
bandwidth is wasted for exchanging of control packets.

In order to avoid the problems described above, the protocol used to build the network
topology must be fast, so that it can catch up with the changes that are going on in the
network. How much fast the TC protocol must be depends on the rate of node mobility: the
higher the mobility rate, the faster the TC protocol has to be. To be fast, a protocol should
exchange relatively few messages with neighbor nodes (exchanging messages with faraway
nodes is time consuming), and should execute a simple algorithm to compute the neighbor
set based on the information contained in the exchanged messages.

Given this strong design constraint (exchange few messages with neighbor nodes, and
execute a simple algorithm to compute the topology), it is clear that having ambitious
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optimization goals such as building a topology that preserves worst-case connectivity is
almost impossible. Furthermore, we should consider that even if the TC protocol is very
smart and efficient and builds a topology that is connected at time t a relatively small node
movement at time t + ε could disconnect the network anyway. Since the TC protocol cannot
be executed too frequently in order to limit control message overhead (this point will be
carefully discussed in the following, and in Chapter 15), it is clear that the optimization
requirements (3) and (4) above must be weakened in the context of mobile networks, and
intended more as guidelines in the design of a good TC heuristic. For instance, requirement
(3) can be interpreted as follows: the designed protocol should keep the network, or at
least a vast majority of the network nodes, connected for most of its operational time. The
same applies for the physical node degree: the physical node degree should be kept as
small as possible (as long as this does not impair network connectivity) for most of the
node lifetime. As for the second requirement of issue (3) (symmetry), we observe that it
is relatively easier to build a topology based only on bidirectional links since this can be
accomplished by exchanging few localized messages and executing a simple algorithm (see,
for instance, the protocols presented in Chapter 12).

Let us now comment on the quality of the information used to build the topology
(issue (5)). In case of mobile networks, the TC protocol should use information that is, in
a sense, ‘resilient’ to node mobility. We illustrate this point with an example. Consider the
three types of information used in Chapters 10–12, that is, location information, directional
information, and neighbor information. Let us consider two network nodes u, w, which
are moving with certain velocities vu, vw > 0. Since the nodes are moving, their absolute
positions change, that is, the location information of nodes u, w changes, and it changes
continuously over time. However, if the nodes are moving in the same direction, their
relative direction (which is the information used in direction-based TC) does not change.
Consider now the case in which nodes are moving in such a way that their relative distance
does not change too much; with this type of mobility, it is possible that the neighbor ordering
used to build the topology in neighbor-based TC approaches does not change as well. This
example clearly indicates that using relatively inaccurate information such as directional and
neighbor-based information is preferable in mobile networks, as this type of information is
likely to be less influenced by node mobility.

A final comment concerns per-packet versus periodical TC in mobile networks. We recall
that in the per-packet approach a node u maintains, for each node v in its neighbor list, the
transmit power to be used when sending packets to v, which is typically the minimum power
needed to reach it. This way, a node can send each packet with the minimum possible energy
consumption, and also spatial reuse is increased. Besides individual transmit power levels
for each neighbor, every node in the network also sets a broadcast power level, which is
used to send a message to all its one-hop neighbors simultaneously. Typically, the broadcast
power is set to the minimum level needed to reach the farthest node in the neighbor list.
In the periodical approach to TC, the management of the power levels is simplified: a node
maintains only the neighbor list and the broadcast power level. Each packet is sent using
the same power level, independent of the actual neighbor to which it is destined. By setting
this common power level to the broadcast power, we are ensured that the messages are
correctly received by the interested neighbor. The computation of the neighbor list and of
the broadcast power is repeated periodically to account for changes in the network topology,
from which the name periodical topology control derives.
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While per-packet TC is in general more efficient in stationary networks (if certain
technological problems can be solved – see Chapter 14) – and actually it is implicitly used
in many TC protocols described so far, periodical TC is probably the only feasible choice
in mobile networks. In fact, as we have already discussed, in the presence of node mobility
the information about a neighbor position/direction that we have at time t might become
stale at time t + ε, and TC must be intended as a heuristic to maintain a sufficiently good
communication graph, rather than as an algorithm aimed at solving a certain topology
optimization problem. Hence, the goal of determining for each neighbor the minimal power
that is needed to communicate with it is probably too ambitious in this context because
this parameter changes often as nodes move around. The considerably simpler power level
management used in periodical TC is more appropriate for the mobile network scenario,
and it is more in line with the philosophy of ‘maintaining a reasonably good topology’,
which inspires distributed TC in presence of mobility.

The following example clarifies the argument that periodical TC is the right choice
in mobile ad hoc networks. Assume node u can use four different power levels, which
we denote as p0, . . . , p3, and which translates into four different transmitting ranges (see
Figure 13.1). Assume node u executes a certain TC protocol P , which terminates its exe-
cution at time t , and returns the neighbor list of node u, which is N(u) = {q, s, v, w, z}.
Let us consider two scenarios: P uses per-packet TC (scenario (a)) and P uses periodical
TC (scenario (b)). In scenario (a), node u sets a specific power level for each neighbor and
the broadcast power level. The settings are as follows (see Figure 13.1):

node v −→ power level p0

node w −→ power level p1

node z −→ power level p1

node q −→ power level p2

node s −→ power level p2

broadcast power −→ power level p2

In scenario (b), node u only maintains the neighbor list N(u) and the broadcast power
level p2, which is used to send the packets independent of which is the actual destina-
tion node.

After a certain time ε, during which P is not reexecuted, node positions are changed, as
depicted in Figure 13.1(b). In scenario (a), node u experiences link failures when sending
messages to nodes v, z, and s, and uses a nonminimal transmit power when sending packets
to node w. This relatively high number of link failures is likely to cause relatively many
route breakages, which, in turn, result in the execution of route recovery procedures and/or
reexecution of the topology control P . In scenario (b), node u experiences link failures
only when sending packets to node s, which migrated out of u’s transmitting range at
the broadcast power p2. As a consequence, relatively less route breakages occur, and the
control message overhead is reduced. Note that, in scenario (b), the only other change in
u’s local view of the network topology is that node r is now within u’s transmitting range,
establishing a new (possibly unidirectional) link. This new link will be discovered at the
next execution of the TC protocol, but its presence in general does not cause a surge in
control message overhead.
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Figure 13.1 Per-packet versus periodical topology control in mobile networks. The trans-
mitting ranges of node u at different transmit power levels are represented by the dashed
circles. The topology control protocol is executed at time t , and nodes q, s, v, w and z (gray
nodes) are identified as u’s neighbors. At a later time t + ε, node positions are changed,
and the power levels computed by the TC protocol are outdated.

Summarizing, a TC protocol for mobile networks should

1. Be fully distributed and asynchronous.

2. Be fast, especially if node mobility is high; in turn, this implies that the protocol
should exchange few messages with neighbors, and decide its neighbor set according
to a simple algorithm.

3. Generate a ‘reasonably good’ network topology composed of bidirectional links, that
is, a topology in which most of the nodes are connected for most of the network
operational time, and have a relatively small physical degree.

4. Rely on information that is relatively ‘resilient’ to node mobility, such as directional
information or neighbor ordering.

5. Be based on the periodical approach to topology control.

13.2 TC in Mobile Networks: an Example

In this section, we present an example that summarizes the discussion on distributed TC in
mobile networks of Section 13.1.

Suppose we have two TC protocols, P1 and P2. P1 is based on location information, and
computes a topology that preserves worst-case connectivity and has good energy spanning
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properties. In order to exploit this good spanning properties, the per-packet approach is used
when transmitting messages. For the sake of illustration, we assume P1 is the LMST protocol
of (Li et al. 2003). Contrary to P1, protocol P2 builds the network topology on the basis of
some notion of neighbor ordering. The topology constructed by P2 has good properties on
the average (e.g. it is connected w.h.p., and it has limited physical node degree), but it does
not preserve worst-case connectivity. Protocol P2 uses periodical transmit power adjustments
when sending packets. For the sake of illustration, we assume P2 is the KNeigh protocol
of (Blough et al. 2003b), without the optimization stage.

Figure 13.2 represents the local view of the network topology at node u as computed by
LMST (a) and by KNeigh with k = 4 (b). The figure depicts the node placement at a certain
instant of time t at which the protocols are executed. As in the example of Figure 13.1,
we assume that node u can use four different transmit power levels, denoted as p0, . . . , p3.
The corresponding transmitting ranges are represented by dashed circles.

In case of LMST, node u computes the MST on its visible neighbors, which, we recall,
are all the nodes within its maximum transmitting range, that is, nodes o, q, r , s, v,
w and z. The MST built on the visible neighbor set is depicted in Figure 13.2(a). Once
the MST is built, node u can determine its neighbor set NLMST(u) in the final topology,
which is composed of all the immediate neighbors of u in the local MST. In our example,
NLMST(u) = {o, v, z}. We recall that in LMST the constructed topology, which in general
can contain unidirectional links, is made symmetric by probing each node in NLMST(u),
and by removing the link (or adding the reverse link) in case it is unidirectional. In our
example, we assume that the generated topology is made symmetric by removing unidirec-
tional links. In order to compute its local view of G−

LMST (which is the topology generated
by LMST), node u must send four messages: one to broadcast its ID and position and three
messages to probe the links with nodes o, v, and z. The power level settings of node u are
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Figure 13.2 Local view at node u of the topology computed by LMST (a) and KNeigh
(b) at time t . The parameter k in KNeigh is set to 4. The links connecting node u to its
neighbors (gray nodes) are in bold.



DEALING WITH NODE MOBILITY 149

as follows:

node v −→ power level p0

node z −→ power level p1

node o −→ power level p2

broadcast power −→ power level p2

Let us now consider the KNeigh protocol (Figure 13.2 (b)). Node u establishes a link
with its k closest neighbors. Since k = 4, we have that NKN(u) = {o, v, w, z}. Note that all
the links to nodes in NKN(u) are bidirectional (see the figure), so all the nodes in NKN(u)

are retained in the final topology. In order to compute its local view of G−
k (which is the

topology generated by KNeigh), node u must send two messages: one to broadcast its ID
and a second message to broadcast its neighbor list (we recall that sending this message is
necessary to identify symmetric neighbors). Since we are assuming periodical TC, node u

uses the broadcast power level, which is p2 in the example, to send packets to all the nodes
in NKN(u).

Figure 13.3 depicts the node placement at time t + ε as a result of node mobility.
During this short time interval, the TC protocol is not reexecuted, which implies that node u

manages the power levels as if the node placement was not changed since time t . What
happens to the links used by node u?

In case of LMST, two of the three links used by u to communicate with its neighbors
are broken (see Figure 13.3(a)): the link to v is broken since node u uses power level p0

to communicate with v, and this transmit power is no longer sufficient to reach v; the
link to o is broken since o migrated out of u’s transmitting range at power level p2. So,
unless LMST is reexecuted, node u at time t + ε can only communicate with node z, and
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Figure 13.3 Node placement at time t + ε. In case of LMST (a), two of the three links of
node u are broken (dashed edges). In case of KNeigh, only one of the four links of node
u is broken (dashed edge). The neighbors of u at time t are the gray nodes.
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it communicates with this node using a nonminimal power level (it uses power level p1

instead of p0). Because of the erroneous management of the power levels at node u, many
route breakages occur: in principle, most of the data flows originating, destined, or passing
through node u experience packet dropping, which, in turn, causes the execution of the
route recovery mechanism. As part of the route recovery mechanism, a new execution of
the TC protocol might be invoked. In any case, the result is a surge of control message
overhead to fix the changes in the network topology.

In case of KNeigh, the situation is less dramatic: only one of the four links used by
u (the link to node o) is broken (see Figure 13.3(b)). Thus, at time t + ε, node u can
still communicate with nodes v, w and z. As a consequence of this, relatively less route
breakages occur in the network, and the increase in control message overhead is limited.

Let us now suppose that the TC protocol is executed again at time t + ε. The changes
in u’s local view of the network topology are reported in Figure 13.4. The neighbors of u

with LMST are NLMST(u) = {o, w, z}, and the power settings are as follows:

node w −→ power level p0

node z −→ power level p0

node o −→ power level p3

broadcast power −→ power level p3

As in the previous case, node u sends four messages to compute its neighbor set: one to
broadcast its ID and position and three messages to probe the links with nodes o, w and z.

The neighbors of u with KNeigh are NKN(u) = {q, v, w, z} (note that all these nodes
are symmetric neighbors of u), and the broadcast power level is set to p2. In order to
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Figure 13.4 Local view at node u of the topology computed by LMST (a) and KNeigh
(b) at time t + ε. The parameter k in KNeigh is set to 4. The links connecting node u to
its neighbors (gray nodes) are in bold.
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Table 13.1 Comparison of u’s local view of the net-
work topology at time t and t + ε with the LMST and
KNeigh topology control protocols. In the entry for
power levels, bc stands for broadcast power

LMST t t + ε

NLMST(u) {o, v, z} {o, w, z}
Power levels v −→ p0 w −→ p0

z −→ p1 z −→ p0

o −→ p2 o −→ p3

bc −→ p2 bc −→ p3

KNeigh t t + ε

NKN(u) {o, v, w, z} {q, v, w, z}
Power level bc −→ p2 bc −→ p2

compute its neighbor set, node u sends two messages: one to broadcast its ID and one to
broadcast its neighbor list.

Table 13.1 summarizes u’s local view of the network topology at time t and t + ε with
the two protocols. The neighbor set changes only slightly with both protocols: one out of
three neighbors is changed with LMST and one out of four neighbors is changed with
KNeigh. The situation is considerably different if we consider the power level settings:
with LMST, all the power settings are changed, including the broadcast power level; with
KNeigh, the broadcast power (which is the only power setting used by the protocol) is
unchanged at level p2.

Summing up, we can conclude the following. The topology computed by LMST is
quite sparse (one of the design objectives in LMST is to reduce the node logical degree),
and it is computed using location information. This implies that the generated topology,
although it has good properties (e.g. it preserves worst-case connectivity), is not very resilient
to node mobility: a relatively modest change in node positions is sufficient to cause a
reexecution of the protocol (otherwise, many route breakages are experienced at the routing
layer – see above). This problem is exacerbated by the use of per-packet transmit power
adjustment. In order to prevent a surge of routing message overhead, the only possible
solution is to recompute the network topology quite frequently, which also causes a certain
message overhead (in the example above, node u sends four messages to compute its local
view of the network topology). On the other hand, KNeigh produces a relatively denser
topology (with k = 4, almost all the network nodes have logical and physical degree equal
to four), which has good properties in the average case (e.g. connectivity w.h.p.). The
topology is built on the basis of the concept of distance ordering of the neighbors, a notion
that provides more resilience to node mobility than that of local MST: relatively modest
changes in the node positions are unlikely to cause a dramatic change in the neighbor order.
Combined with the use of a unique power level (the broadcast power) to send packets,
this implies that the network topology can be recomputed less frequently as compared
to LMST, with a positive effect on the number of control messages circulating in the
network. Furthermore, computing the topology with KNeigh requires exchanging fewer
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messages than those needed to compute G−
LMST: in the example above, node u sends two

messages instead of four; if we consider the overall number of exchanged messages, KNeigh
exchanges 2n messages, while LMST exchanges O(n2) messages. This fact again plays in
favor of KNeigh, further reducing the control overhead generated by KNeigh with respect
to that generated by LMST.

Although examples of mobile networks in which the relative advantage of using KNeigh
instead of LMST is less evident can be easily built, it is virtually impossible to find an
example in which using LMST in mobile networks is better than using KNeigh. The reason
for this is simple: contrary to LMST, KNeigh combined with the use of periodical transmit
power adjustments complies to most of the guidelines discussed in the previous section:
KNeigh is fast, it generates a ‘reasonably good’ topology composed of bidirectional links,
it is based on mobility-resilient information (distance-based neighbor ordering), and it uses
periodical power adjustment.

13.3 The Effect of Mobility on the CNN

In the previous sections, we have discussed in detail the guidelines that should inspire
the design of TC protocols for mobile ad hoc networks, and we have argued in favor
of a neighbor-based approach to TC. One protocol exploiting this type of information
is the KNeigh protocol, which we have discussed in the context of mobile networks in
Section 13.2. However, we have not yet answered a fundamental question concerning the
utilization of KNeigh in mobile networks, that is: which is the appropriate setting for the
desired number of neighbors k when the network is mobile? Should we use the value com-
puted for stationary networks, or a higher (or a lower) one? Putting it more formally, which
is the effect of node mobility on the CNN?

The answer to this question depends on the type of node mobility occurring in the
network. In particular, the relevant parameter is the long-term node spatial distribution FM
generated by a certain mobility pattern M. Similar to the case of the CTR for connectivity
(see Chapter 5), if FM is the uniform distribution (this is the case, for instance, of Brownian-
like motion), we can use the value of k derived for stationary, uniformly distributed networks.
If FM is not uniform, as it is the case of most of the mobility models used in the simulation
of ad hoc networks, the characterization of the CNN presented in the previous chapter
cannot be used.

So far, no theoretical investigation of the effect of nonuniform node mobility on the
CNN has been presented in the literature. The only study in this sense is the simulation-
based analysis of the CNN in presence of RWP mobility presented in (Blough et al. 2003a).
The authors simulated a RWP mobile network with pause time set to 0 since this setting
of the pause time corresponds to the spatial distribution that most concentrates nodes in the
center of the deployment region (see (Bettstetter et al. 2003) and Section 5.1). To estimate
the CNN, Blough et al. consider two connectivity requirements on the network topology:
a strong connectivity requirement (the generated topology is connected with probability at
least 0.95) and a weak connectivity requirement (at least 95% of the network nodes belong to
the same connected component with probability of at least 0.95). We call the correspondent
critical neighbor numbers as CNNRWP and wCNNRWP, respectively. The simulation-based
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Table 13.2 WeakCNN and CNN for different values
of the network size n, in case of stationary and RWP
mobile networks

n wCNN wCNNRWP CNN CNNRWP

10 6 6 6 7
20 7 7 8 9
25 7 7 8 10
50 7 8 9 12
75 7 8 9 12

100 7 7 9 12
250 7 7 9 13
500 6 6 9 13
750 6 6 10 14

1000 6 6 10 14

estimation of CNNRWP and wCNNRWP for increasing network size is reported in Table 13.2.
For the sake of comparison, the table also reports the value of the CNN and of the wCNN
in case of stationary, uniformly distributed network nodes.

From the table it is seen that the connectivity requirement has a considerable impact
on the CNN in RWP mobile networks: in case of strong connectivity requirement, the
minimum number of neighbors needed for connectivity increases significantly with n, at a
higher rate than in case of stationary, uniformly distributed networks. For instance, when
n = 500, 13 neighbors are needed to satisfy the connectivity requirement in case of mobile
networks, while 9 neighbors are sufficient in stationary networks. This seems to indicate that
connecting to O(log n) closest neighbors is not sufficient to generate a connected network
(w.h.p.) in presence of RWP mobility. The situation is completely different if we consider
the weak connectivity requirement: in this case, connecting to 6–8 neighbors is sufficient
to satisfy the requirement both in stationary and in RWP mobile networks, independent of
the network size. Thus, having a number of neighbors in the range 6–8 can be considered
as the magical value to generate a reasonably connected communication graph in presence
of RWP mobility also.

From a practical point of view, also considering the fact that we have discussed in
Section 13.1, achieving full connectivity in mobile networks is a very challenging goal, and
we believe that setting the value of k in the range 6–8 is the best choice.

13.4 Distributed TC in Mobile Networks:
Existing Solutions

In this section, we present the few TC approaches presented in the literature that explicitly
deals with node mobility.
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13.4.1 The LINT protocol

The LINT protocol (Local Information No Topology) introduced in (Ramanathan and
Rosales-Hain 2000) is probably the first TC protocol explicitly designed for mobile net-
works. The idea, which is in accordance with the guidelines of Section 13.1, is to provide
a fast, simple heuristics to keep the network connected in the presence of node mobility.

LINT is a neighbor-based protocol: every node in the network tries to keep the number of
its neighbors within low and high thresholds, which are centered around a certain parameter
called the desired number of neighbors. The number of neighbors is checked at regular
intervals: if it is below the low threshold, the node’s transmit power is increased; if it is
above the high threshold, the transmit power is decreased; otherwise, it is left unchanged.
The LINT protocol is summarized in Figure 13.5.

In (Ramanathan and Rosales-Hain 2000), the authors describe a technique to adjust the
transmit power, as a function of the current power level and of the actual and desired number
of neighbors. An important aspect that is not considered in (Ramanathan and Rosales-Hain
2000) is how to set the value of the desired number of neighbors; however, this parameter
can be configured using the characterizations of the CNN presented in Chapter 12 and in
the previous section.

An important feature of LINT is the mechanism used to estimate the number of neighbors
within a node’s transmitting range. In LINT, a node uses locally available information
provided by the routing protocol to estimate the neighbor number. In fact, routing protocols
usually have a neighbor discovery mechanism, which is used to monitor the status of the
links to neighbor nodes. In LINT description, it is assumed that the routing protocol returns
information on bidirectional links only.

Algorithm LINT:
(algorithm for node u)

kd is the desired number of neighbors
kmin and kmax are the low and high thresholds, centered around kd

1. Initialization
set the transmit power level to the initial value

2. Setting the power level
repeat until termination

estimate the number of neighbors, nu

if nu < kmin then
IncrTxPower()
otherwise if nu > kmax then DecrTxPower()

set timer TCFreq()

wait until the timer is expired

Figure 13.5 The LINT protocol.
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Estimating the number of messages using information provided by the routing protocol
has the advantage of requiring no additional message overhead for TC. However, using this
technique has a major drawback, that is, binding the estimation of the number of neighbors
to the network traffic: if the traffic is low, or if it occurs in bursts, the routing protocol might
provide little or stale information about neighbors to LINT, resulting in possibly incorrect
power settings. As a consequence, this technique is indicated only for ad hoc networks in
which nodes regularly exchange messages between them.

In (Ramanathan and Rosales-Hain 2000), Ramanathan and Rosales-Hain introduce
another TC heuristic for mobile networks, called LILT (Local Information Link-state Topol-
ogy). LILT is similar to LINT, with the only difference being that it is assumed that the
routing protocol, besides providing information about the number of neighbors, returns to
the nodes some type of global information also, such as ‘the network is connected’ or ‘dis-
connected’. This type of information is available, for instance, in some link-state routing
protocols, such as those presented in (Garcia-Luna-Aceves and Behrens 1995; Ramanathan
and Steenstrup 1998).

LILT is composed of two procedures: the Neighbor Reduction Protocol (NRP), which is
essentially LINT, and the Neighbor Addition Protocol (NAP), which is triggered whenever
a link-state update indicates that the network topology has undesirable connectivity. The
purpose of NAP is to override the high threshold bound on the desired number of neighbors,
setting the transmit power to the maximum possible level. Indeed, the increase in transmit
power levels is somehow coordinated with neighbor nodes in order to prevent an excessive
reaction to the topology change (see (Ramanathan and Rosales-Hain 2000) for details).

Ramanathan and Rosales-Hain evaluate the performance of their protocols in mobile ad
hoc networks through simulation, considering several performance metrics such as (i) packet
delivery ratio; (ii) packet delay; and (iii) average and maximum node transmit power. They
consider networks of different sizes, whose nodes move according to the random direction
mobility model. The results of their experiments are interesting. Most importantly, they
noticed that repeated changes in transmit power levels might increase the routing overhead
because adjusting the transmit power may cause link ups/downs. If the frequency of power
updates is too high, the increased routing message overhead might actually decrease the
effective throughput with respect to the case of no TC, contrary to what it is expected.
However, if the frequency of topology checks is correctly set, both LINT and LILT can
actually increase the throughput with respect to the case of no TC. Ramanathan and Rosales-
Hain also noticed that LINT is more effective than LILT in increasing the throughput,
especially with high node densities: this is because the link-state database used by LILT
to obtain information about network connectivity is often outdated, causing false alarms
and unnecessary power increases. This confirms that using global information to set up the
topology in mobile networks is not only impractical, but even detrimental.

13.4.2 The mobile version of CBTC

In (Li et al. 2001), Li et al. discuss how the CBTC protocol described in Section 11.1
can be modified to deal with node mobility. In particular, they propose a reconfiguration
procedure, which is based on the Neighbor Discovery Protocol (NDP). NDP is a simple
beaconing protocol used by every node in the network to tell the other nodes that it is still
alive. The beacon includes the sender’s ID and transmit power.
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Neighbor information is updated as follows: if beacons from a certain neighbor v are
not received for a certain time interval τ , then node v is considered failed (or migrated out
of the transmitting range); on the other hand, a new neighbor w is detected whenever a
beacon sent by w is received and no beacon was received by w for at least time τ .

The NDP protocol is used to generate events, which are dealt with by the CBTC recon-
figuration protocol. Three types of events can be generated:

– join(v), indicating that a new neighbor v has been detected;

– leave(v), indicating that neighbor v is no longer in the node’s transmitting range;

– aChange(v), indicating that v’s relative angle with respect to the node is changed
since last beacon.

The reconfiguration protocol, which is summarized in Figure 13.6, is very simple. When
a join(v) or leave(v) event is detected, the node determines whether v’s removal or insertion
in the neighbor set modifies the cone coverage. In case of join(v), similar to the shrink back

Algorithm ReconfigureCBTC:
(algorithm for node u)

NDP is the Neighbor Discovery Protocol, that generates
join(), leave() and aChange() events

1. Initialization
execute basicCBTC

2. Reconfiguring the power level
repeat until termination

execute NDP
case of detectedEvent

join(v): insert v in the neighbor list
compute the cone coverage
while cone coverage is guaranteed

try to remove neighbors, starting from the farthest
leave(v): remove v from neighbor list

check condition on cone coverage
if the condition is violated, execute basicCBTC

aChange(v): modify the cone coverage information
if the condition on coverage is violated, execute basicCBTC

noEvent: skip
set timer TCFreq()

wait until timer is expired

Figure 13.6 The CBTC reconfiguration protocol.
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operation (see Section 11.1), the power needed to reach node v is recorded, and neighbor
nodes are removed (starting from the farthest) as long as the required condition on cone
coverage is satisfied. In case of leave(v), it is verified whether the condition on cone coverage
is impaired by v’s failure; if yes, then the basic CBTC protocol is reexecuted. In case an
aChange(v) event happens, the node updates the information about the cone coverage, and
if the cone coverage requirement is not satisfied, it reexecutes basicCBTC.

In (Li et al. 2001), Li et al. show that if the network topology ever stabilizes, then
the reconfiguration algorithm eventually builds a graph that preserves the connectivity of
the final network, as long as periodic beaconing is guaranteed. The authors also discuss
the important topic of which transmit power to use for beaconing. They show that if the
beacon is sent using the minimum power needed to reach all the nodes in the neighbor list
(i.e. it is sent at the broadcast power), then the reconfiguration protocol works correctly
in combination with the basicCBTC protocol even in case the asymmetric edge removal
optimization is implemented.





Part V

Toward an Implementation of
Topology Control
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Level-based Topology Control

In Chapters 10–12, we have presented several solutions to the problem of designing proto-
cols for distributed topology control TC in ad hoc networks. The proposed solutions have
been analyzed mainly from a theoretical viewpoint: what are the properties of the generated
topology, what is the message complexity of the protocol, and so on. While this type of
analysis is important (it is, in a certain sense, an investigation of the best possible results
you can obtain with distributed topology control), the probably more important issue of
how the proposed techniques can be used in a practical setting has been almost completely
ignored in the protocols presented in Chapters 10–12.

When you think of applying distributed TC in practical settings, you have to face several
problems, mainly because of the fact that some (or many) of the assumptions on which the
protocol design is based may not hold. One such striking example is the assumption that
all the nodes have the same maximum transmit power level, which is fundamental for the
correctness of all the protocols presented in Chapters 10–12: combined with the working
hypothesis of symmetric wireless medium, this assumption ensures the correct determination
of a node’s neighbor set in the maxpower communication graph. Does this assumption hold
in practice? The answer to this question depends on the application scenario. Suppose you
are in an ad hoc network used, say, for ubiquitous Internet access. In this application, the
network is composed of different types of devices (wireless access points, laptops, PDAs, cell
phones, and so on) that are used to extend the coverage area of the various wireless access
points by exploiting multihop communication. It is clear that in this scenario to assume that
all the devices have the same maximum transmit power is unrealistic: wireless access points
are likely to have a much higher maximum transmit range than, say, the maximum range
of a PDA. Let us now consider a more favorable application scenario: a sensor network
application that uses sensor nodes equipped with the same type of wireless transceiver.
Even in this situation, although the nominal maximum transmit power is the same for
all the nodes, it is likely that the actual maximum transmitting range varies considerably
between different nodes. In fact, the actual transmitting range is influenced by environmental
conditions (temperature, humidity, wind, and so on), as well as by the battery level, and so
on. In other words, contrary to what is assumed in most of the TC approaches proposed so
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 2005 John Wiley & Sons, Ltd
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far, in a practical setting it is unlikely that all the nodes in the network will have the same
maximum transmitting range.

Of course, dealing with all the issues related to the implementation of TC in a real ad
hoc network is a very challenging task. Actually, most of the open research issues on TC
are related to its implementation in real world scenarios (see Chapter 15).

In this chapter, we focus our attention on one such practical issue: how can the transmit
power level be set in currently available wireless network cards? First, do network cards in
general allow the choice of the transmit power level? If so, can we set the power level to
an arbitrary value (provided it does not exceed the maximum power), or are we allowed to
use only a limited number of possible transmit power levels? As we shall see, similar to the
example of the equal maximum transmitting range assumption reported above, in this case
also the difference between what it is typically assumed in the current TC literature and the
real world is considerable.

14.1 Level-based TC: Motivations

Most of the TC solutions that approach the TC problem from a theoretical viewpoint implic-
itly assume that the transmit power level of a node can be set to an arbitrary level, provided
it does not exceed the maximum possible power level. This is the case, for instance, of the
approaches aimed at reducing the power spanning ratio of the generated network topology
described in Chapter 8.

Is this assumption realistic? The answer to this question is no, at least with the currently
available wireless cards. Indeed, most of the IEEE 802.11 wireless cards on the market
do not even allow to change the transmit power level: only the maximum transmit power
level can be used to communicate. Clearly, with this type of hardware, most of the TC
theory is useless. Fortunately, some types of commercially available IEEE 802.11 cards,
such as the CISCO Aironet cards (Cisco 2004), do allow to change the transmit power
level. This is also the case of most of the wireless transceivers used in ‘smart sensor’ nodes,
such as the Rockwell WINS (RockwellScienceCenter 2004) and the CrossBow MOTES
(CrossBowTechnologies 2004). However, even if setting the transmit power level is some-
times possible, this can only be set to a limited number (typically, below 10) of predefined
power levels. For instance, the CISCO Aironet 350 card can use six different power levels,
corresponding to a nominal transmit power of 1, 5, 20, 30, 50, and 100 mW, respectively.

Motivated by this observation, a set of recently proposed protocols approach the TC
problem by explicitly taking into account this feature of current wireless transceivers, that
is, the availability of only few different transmit power levels. In the rest of this chapter,
we present these solutions, which we call level-based topology control protocols.

14.2 The COMPOW Protocol

The COMPOW (COMmon POWer) protocol (Narayanaswamy et al. 2002) is the first pro-
posal that appeared in the literature that explicitly deals with different node transmit power
levels. Narayanaswamy et al. consider a relatively simple setting in which all the network
nodes are forced to use the same transmit power level. In other words, they are considering
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an instance of homogeneous TC (see Section 3.3), which, as we have thoroughly discussed
in Part II of this book, is the simplest possible type of TC.

The use of a common power level for all the nodes in the network is motivated by a series
of practical considerations. First, using a common power level is the easiest possible way of
ensuring that the generated topology is composed of bidirectional links only,1 a feature that
is very important to ease the integration of TC with upper and lower layer protocols (see
Section 7.4). In particular, problems at the MAC layer arising from the use of asymmetric
transmit power levels (see Section 3.4.2 and Section 15.5 for a detailed discussion of this
topic) can be avoided. Finally, from a theoretical point of view, it is relatively easy to
characterize the optimal common power level to be used by the network nodes.

14.2.1 The optimal common power level

Narayanaswamy et al. (2002) provide quantitative arguments to show that setting the com-
mon power to the minimum level that achieves full network connectivity is the optimal
choice for increasing network capacity, reducing energy consumption, and minimizing con-
tention at the MAC layer.

Network capacity. Let us consider network capacity. A first interesting observation con-
cerns the amount of potential traffic carrying capacity that is sacrificed by imposing the con-
straint that all the nodes must use the same transmit power level. In (Gupta and Kumar 2000)
it is shown that by modeling node interference by the Protocol Model (see Section 3.1.2),
the per node throughput available for a randomly chosen destination is at most O

(
1/

√
n
)
,

where n is the number of network nodes. This upper bound on network capacity holds even
if nodes are allowed to use different transmit power levels. On the other hand, a per node

throughput of O
(

1/
√

n log n
)

can be achieved even in a network with randomly located
nodes that use a common transmit power level. It follows that imposing the use of a common
power level does not have a dramatic impact on the potential network capacity : it is reduced

by at most a O
(

1/
√

log n
)

factor, which is asymptotically negligible as n grows to infinity.
Let us now argue in favor of using the minimum power level necessary for network

connectivity. Suppose n nodes are distributed into a certain square deployment region R of
area A square meters. Assume that each node in the network can transmit at W bps, and the
transmitting range of each node is r meters. We model interference by the Protocol Model,
which we briefly recall. In this model, a certain node v successfully receives a message from
node u at distance δ(u, v) if and only if there is no other simultaneous transmitter within
distance (1 + �)δ(u, v) from v (see Figure 14.1). Parameter � > 0 models the amount of
interference that node v can tolerate: the smaller the �, the more the interference that can
be tolerated. Since δ(u, v) ≤ r (otherwise, v would be out of u’s transmitting range), we
can use a slightly stronger assumption, that is, that every node within distance (1 + �)r

from v remains silent.
Suppose each node in the network wants to transmit data to a randomly chosen desti-

nation at a certain rate of λ bps. The question is, which setting of the transmitting range r

maximizes the per node throughput λ?

1This is true under the common assumption of symmetric wireless medium.
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v u

δ( )u, v

(1 + ∆) δ(u, v)

Figure 14.1 The Protocol Model for interference: in order for node v to correctly receive
the packet sent by u, all the nodes within distance (1 + �)δ(u, v) from v (shaded area)
must remain silent.

We answer this question through a quantitative analysis. Assume that the average dis-
tance between source/destination nodes is L. Since each node has a transmitting range of
r , the number of hops traversed by each packet flowing from the source to the destination
is at least L/r (on the average). If we consider all the n nodes in the network, the overall
number of traversed hops is at least nL/r . Since we want to obtain a per flow data rate of
λ bps, at least nLλ/r bps needs to be transmitted by all the source nodes (on the average).
However, achieving this per node throughput in the network might not be possible because
of interference.

Consider two simultaneous transmissions between nodes u, v and w, z; what should be
the minimum distance between nodes so that the two communications do not interfere with
each other? Assume u sends packets to v and w sends packets to z (see Figure 14.2). Since
v must be within u’s transmitting range, we have δ(u, v) ≤ r . On the other hand, u must
be at least at distance (1 + �)r from z in order not to corrupt the transmission of node w.
By the triangular inequality, we have that

δ(v, z) + δ(u, v) ≥ δ(u, z).

Combining this with the above inequalities, we obtain

δ(v, z) ≥ δ(u, z) − δ(u, v) ≥ (1 + �)r − r = �r.

In other words, two transmissions can occur simultaneously only if the distance between
the receivers is at least �r . Putting it another way, we can say that, assuming r is the
transmitting range, a transmission has a ‘wireless footprint’ wf(r) of area

wf(r) = π

(
�r

2

)2

= π�2r2

4
.
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u

v
w

z

≤r

≥(1 + ∆)r

   ≥∆r

Figure 14.2 Concurrent transmissions can occur only if the distance between the receivers
(nodes v and z) is at least �r .

Since the total available area is A m2, and each communication consumes at least area
wf(r)/4 (this corresponds to the situation in which the node is located on the corner of R),
it follows that at most

4A

wf(r)

transmissions can occur simultaneously. Since each node can transmit at most W bps, the
total amount of bits that can be transmitted in the network per second is at most

4AW

wf(r)
= 16AW

π�2r2
.

What is the maximum possible per node data rate that can be achieved with this network
traffic carrying capacity constraint? By simple algebra, we have

nLλ

r
≤ 16AW

π�2r2

from which

λ ≤ 16AW

π�2nL
· 1

r
.

So, the other parameters being fixed, the only possible way of increasing the upper
bound on the per node throughput is by decreasing the transmitting range r . However,
r cannot be decreased too much since otherwise network connectivity is compromised: in
fact, if the network is partitioned, many nodes experience a 0 bps per node throughput
(this happens whenever the source and the destination belong to different components), and
the average per node throughput drops considerably. Thus, we can conclude that setting
the common power level to the minimum value that achieves full network connectivity is the
optimal choice for increasing network capacity.

Energy consumption. Let us now consider node energy consumption. We recall that the
transmit power needed to send a message at distance r is proportional to rα , where α is the
path loss exponent (which is typically ≥2). Suppose node u has to send a packet to node
v that is at distance L. Since every node has transmitting range equal to r , it follows that
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at least L/r hops must be traversed to send the packet. This implies that the total transmit
power needed to send a message from u to v is at least

L

r
· rα = Lrα−1.

Thus, by reducing the transmitting range r , we can reduce the total transmit power
needed to send packets between source/destination pairs. However, r cannot be decreased
too much since otherwise network connectivity is compromised. Thus, we can conclude that
setting the common power level to the minimum value that achieves full network connectivity
is the optimal choice for reducing node energy consumption.

Contention at the MAC layer. Let us finally consider the expected contention at the
MAC layer. We can measure the expected contention at the MAC layer by the expected
number of neighbors within a node’s transmitting range:2 the higher this number, the more
the neighbors that contend with the node to access the wireless channel, and the higher
the expected MAC layer contention. Assuming a random, uniform node distribution, the
expected number of neighbors of a node is

πr2(n − 1)

A
.

So, reducing r has the positive effect of reducing the expected number of neighbors con-
tending for accessing the channel. However, with a lower r , the average hop length of the
routes is larger, increasing the relaying burden on the nodes. Thus, the question of what is
the overall effect of reducing r on the expected MAC layer contention remains open.

To answer this question, consider arbitrary source/destination nodes u, v that are L

meters far away from each other. Since the transmitting range is r , at least L/r hops
must be traversed to deliver the packets. What is the overall average MAC layer con-
tention experienced to send a packet from u to v? There are L/r transmissions, each
of which impact πr2n/A nodes on the average. Thus, the expected overall MAC layer
contention is

L

r
· πr2n

A
= πLrn

A
,

which is decreased by reducing r . Hence, we can conclude that setting the common power
level to the minimum value that achieves full network connectivity is the optimal choice for
reducing contention at the MAC layer.

14.2.2 Protocol description

In the previous subsection, we have argued in favor of setting the common power level
to the minimum value that achieves full network connectivity. The COMPOW proto-
col is a distributed implementation of the computation and maintenance of this optimum
power level.

Narayanaswamy et al. integrate COMPOW into the routing protocol, motivating this
choice with the fact that connectivity is a property that can be checked only at the network

2Note that the number of neighbors within a node’s transmitting range corresponds to our definition of physical
node degree.
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layer. COMPOW can be integrated with any routing protocol that proactively maintains
routing tables at the nodes, such as the DSDV routing protocol (Perkins and Bhagwat
1994).

COMPOW is based on a very simple idea. Each node proactively maintains multiple
routing tables, one for each of the power levels available on the wireless card. Routing
table RTi , corresponding to the ith power level, is built and maintained by exchanging hello
messages at power level Pi . Thus, the number of entries in RTi of node u corresponds
to the number of nodes reachable from u using power level Pi . Clearly, the number of
entries in RTmax (the routing table that corresponds to the maximum power level) gives the
total number of network nodes. The optimal power level is then defined as the minimum
level i such that the number of entries in RTi equals the number of entries in RTmax.
Once the optimal power level i is chosen, table RTi is set as the master routing table,
which is used to route packets between nodes. The COMPOW protocol is summarized in
Figure 14.3. Narayanaswamy et al. have implemented COMPOW in laptops equipped with
CISCO Aironet 350 cards running Linux (see (Narayanaswamy et al. 2002) for details).

14.2.3 Discussion

The COMPOW protocol has the great merit of being the first proposal that approaches the
TC problem from a practical viewpoint. However, it has a major drawback, which we briefly
discuss.

Algorithm COMPOW:
(algorithm for node u)

Pi is the i-th transmit power level
RTi is the routing table corresponding to the i-th power level
RTmax is the routing table at maximum transmit power
NN(u) is a variable containing the number of nodes in the network

1. Initialization
start a routing daemon for each power level
(the i-th routing daemon builds and maintains routing table RTi)

2. Setting the power level
repeat until termination

NN(u) = number of entries in RTmax

find the minimum i such that number of entries in RTi = NN(u)

set the transmit power level to Pi

set RTi as the master routing table
set timer TCFreq()

wait until timer is expired

Figure 14.3 The COMPOW protocol.
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COMPOW is based on the idea of using a common power level for the nodes, which is
the minimum power such that the resulting network is fully connected. Although this idea
is neat from a theoretical point of view, and it leads to the design of a relatively simple
protocol for joint TC and routing, it has the disadvantage of setting the nodes’ transmit
power on the basis of a global property of the communication graph, that is, connectivity. As
thoroughly discussed in Chapter 9, relying on global network properties should be avoided
in distributed TC in order to reduce the message overhead needed to build and maintain
the communication graph and to design a protocol that can quickly react to changes in the
network topology.

The case of COMPOW well illustrates this point. As for the message overhead caused
by COMPOW, we observe that proactively maintaining one routing table for each power
level requires a considerable message exchange: the overhead increase with respect to the
case of no TC (only one routing table is maintained) is h-fold, where h is the number
of power levels used by the wireless card equipping the nodes (in practical situations, h

can be as high as 10). Although the authors of (Narayanaswamy et al. 2002) argue that
the message overhead due to the need of maintaining multiple routing tables is a marginal
fraction of the available IEEE 802.11b bandwidth, we believe that, in practice, dealing with
this considerable message overhead might be problematic.

The problem of slow reaction to topology changes in COMPOW is more dramatic.
Consider the situation depicted in Figure 14.4: at a certain instant of time t , the nodes in
the network use the common power level P2, which is the minimum level necessary to

v
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Figure 14.4 Problems caused by the slow propagation of new neighbors information in
COMPOW: at time t , network nodes use the common power level P2 (only the power
level of node v and of its immediate neighbors–nodes within dashed circle–are indicated).
At a later time t + ε, a new node (node u) joins the network, and starts exchanging hello
messages with surrounding nodes at different power levels; node u and the closest network
node, node v, can communicate only using at least power level P3. At time t + 2ε, nodes
u and v have updated their power level to P3 and the master routing to RT3, but this
information has not been propagated to the other nodes yet. Consequently, node v might
experience problems when communicating with its old neighbors, which still use power
level P2.
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keep them connected. At a later time t1 = t + ε, a new node u joins the network, and starts
sending hello messages at the various power levels to be included in the other nodes’ routing
tables. In the meanwhile, u builds its own routing tables by hearing the hello messages sent
by the other nodes. Since u is quite far from the closest node in the network (node v), it
must use at least power level P3 to be connected to the rest of the network. Thus, power
level P3 is the new common power level to be used by all the network nodes. Unfortunately,
the propagation of this information is slow (it is propagated through routing table updates,
which is a relatively slow process), and the consequence is that for a certain interval of
time, which can be quite long if the network is composed of many nodes, nodes do not
use the same power level to communicate. For instance, at a certain time instant t2 = t1 + ε,
node v is aware of the new neighbor u, and, consequently, installs RT3 as the master routing
table and sets the power level to P3. This is also the case of node u, which receives the
hello messages sent by v only for power level P3 or higher, and consequently sets its own
power level to P3, and uses RT3 as the master routing table. However, all the other nodes
in the network are still unaware of node u, and they continue to use the same power level
and master routing table. As a consequence of this, node v might experience considerable
problems when communicating with its old neighbors because of the use of asymmetric
power levels.

Narayanaswamy et al. outline another potential problem of using COMPOW for joint
TC and routing: the constraint of using a common power level may force most of the
network nodes to use unnecessarily high transmit power. For instance, in the node config-
uration reported in Figure 14.4, all the network nodes will eventually use power level P3

to communicate, but all of the nodes except u can communicate using the lower power
level P2. So, with COMPOW, a single, faraway node can cause a generalized power level
increase. Interestingly, the giant component phenomenon described in Section 4.1 indicates
that the unfortunate situation described above actually is very likely to occur (under the
assumption of uniformly distributed nodes): we recall that the simulation results reported in
(Santi and Blough 2003) show that by halving the common transmitting range with respect
to the value necessary for full network connectivity we obtain a network topology in which
90% of the nodes are still connected.

Summing up, we can conclude that COMPOW can be successfully used for joint TC
and routing in stationary ad hoc networks composed of relatively few nonclustered nodes.
In all the other scenarios, the use of a common power level in combination with proactive
routing is likely to render COMPOW impractical.

14.3 The CLUSTERPOW Protocol

The CLUSTERPOW protocol has been presented in (Kawadia and Kumar 2003) to circum-
vent the problem with nonhomogeneous node distribution occurring with COMPOW. We
recall that with COMPOW, since all the nodes are forced to use the same power level, a sin-
gle, faraway node can cause a generalized power level increase (see Figure 14.4). To solve
this problem, Kawadia and Kumar release the assumption of using a common power level,
and define a protocol for joint TC and routing that induces an implicit power-level-based
clustering on the nodes.
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14.3.1 Protocol description and properties

The CLUSTERPOW protocol displays many similarities with the simpler COMPOW pro-
tocol. As in COMPOW, every node in the network maintains separate routing tables, one
for each power level. Routing table RTi , referring to power level Pi , is maintained by
exchanging hello messages at power level Pi . When node u has to send a message to node
v, it calculates the minimum power level needed to reach node v: it is the minimum level
Pi such that RTi contains an entry for node v. Then, the packet is sent using this mini-
mum power level. This process of calculating the minimum power level needed to reach
the destination is repeated at each intermediate node in the route from the source to the
destination.

The basic CLUSTERPOW mechanism described above is depicted in Figure 14.5. There
are three power levels, corresponding to transmit powers of 1, 10 and 100 mW. Node u

wants to send a message to node v that can be reached from u only using the maximum
transmit power. As the packet gets closer to the destination (at node w2), a lower transmit
power level can be used to forward the packet. In the last hop of the path (at node w3), the
minimum power level of 1 mW can be used to forward the packet to the destination.

The example reported in Figure 14.5 outlines the following:

– CLUSTERPOW induces a hierarchical clustering on the network nodes: nodes that
can reach other at power level Pi , but not at power level Pi−1, are in the same i

level cluster. Thus, there are at most h cluster levels in the network, where h is the
number of power levels. Note that CLUSTERPOW provides implicit node clustering,
since there are no clusterheads nor gateway nodes. The cluster hierarchy induced by
CLUSTERPOW is used for the purpose of routing only.

1 mW cluster

10 mW cluster

100 mW cluster

u

v

100 mW
100 mW

10 mW 1 mW

w1

w2 w3

z1

z2

z3

z4

z5

z6

z7

z8
z9

z10
z11

z12
z13

Figure 14.5 The CLUSTERPOW topology control/routing mechanism: when u wants to
send a packet to node v, it uses the minimum power level Pi such that v is included in
routing table RTi . In this example, u must use power level 100 mW to send the packet, since
u and v are in the same 100 mW cluster, but in different 10 mW clusters. This strategy for
setting the transmit power is repeated at the intermediate nodes on the route from u to v.
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– The packets flowing along the routes discovered by CLUSTERPOW are sent using
nonincreasing transmit power levels. This is a consequence of the CLUSTERPOW
forwarding policy: packets are sent through the cluster hierarchy in a top-down fash-
ion: first, the packet is sent to other nodes in the same ith level cluster, where Pi

is the minimum power level such that the sender can reach the destination. While
the packet travels in the ith cluster level, it is sent using power level Pi . Once the
packet reaches a node that is in the same (i − 1)th level cluster of the destination, the
transmit power level is scaled down to Pi−1. This process is repeated until the packet
is delivered to the destination.

– Differing from COMPOW, nodes do not set one of the RTis as the master routing
table. Instead, the table used to route packets is composed of entries coming from
various RTis. In particular, the entry relative to node v in the master routing table of
node u is taken from table 2RTi , where Pi is the minimum power level such that u

can reach v.

The routing tables of node u, given the node configuration of Figure 14.5, are reported
in Figure 14.6. Each entry in routing table RTi is composed of three fields: the destination
node ID, the ID of the node that is the next hop in the path to the destination, and the
metric (hop count) of the path to the destination. In routing table RTi , there is one entry
for each (destination) node that node u can reach using transmit power at most Pi . In
Figure 14.6, in routing table RTi , we have reported only the entries relative to the nodes
that are reachable with power level Pi but are not reachable with power level Pi−1. The

Dest node Next hop Metric

z4

z5

z4

z5 1

1

1 mW routing table

Routing tables of node u

10 mW routing table

Dest node Next hop Metric

z1 z1 1

z2 z1 2

z3 z3 1

z6 z5 2

z7 z7 1

w1 z7 2

100 mW routing table

Dest node Next hop Metric

z8 w1 2

z9 w1 2

z10 w1 2

z11 w1 3

z12 w1 2

z13 w1 3

w3 w1 3

v w1 4

Master routing table (sample entries)

Dest node Next hop Metric Power lev

z4 z4 1 1 mW

z2 z1 2 10 mW

v w1 4 100 mW

Figure 14.6 Routing tables of node u at different power levels, and master routing table,
given the node configuration reported in Figure 14.5.
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master routing table is formed by joining entries from different RTi routing tables, and by
adding one additional field to each entry, namely, the power level to be used when sending
packets to the destination node. For instance, the master routing table entry for destination
node v is obtained by copying v’s entry from routing table RT100 (because 100 mW is the
minimum power level that allows communication between nodes u and v), and by adding
the additional field ‘Power level’ with value 100 mW.

The CLUSTERPOW protocol for joint TC, clustering, and routing is summarized in
Figure 14.7.

Note that COMPOW can be seen as a special case of the CLUSTERPOW protocol,
corresponding to the situation in which network nodes are homogeneously dispersed in the
environment.

Kawadia and Kumar (2003) describe how the CLUSTERPOW protocol can be used
in combination with reactive routing protocols, such as AODV (Perkins et al. 2002) and
DSR (Johnson and Maltz 1996). In fact, it is known that reactive routing protocols tend
to perform better than proactive protocols in ad hoc networks, especially in presence of
node mobility. We recall that in a reactive routing protocol source–destination paths are
established on demand by a controlled flooding of route request messages; as route requests
are flooded, the IDs of the traversed nodes are added to the request header; this way, when
one of the route request messages reach the intended destination, a route reply message can

Algorithm CLUSTERPOW:
(algorithm for node u)

Pi is the i-th transmit power level
RTi is the routing table corresponding to the i-th power level
RTmax is the routing table at maximum transmit power

1. Initialization
start a routing daemon for each power level
(the i-th routing daemon builds and maintains routing table RTi)

2. Building the master routing table
repeat until termination

for each node v in RTmax

find the minimum i such that v is in RTi

set the master routing table entry for v:
copy the DestNode, NextHop and Metric field from RTi

set the PowerLev field to Pi

set timer TCFreq()

wait until timer is expired

Figure 14.7 The CLUSTERPOW protocol.
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be sent back to the source node by using the reverse path. The route reply message contains
the source–destination path, which will be used by the source to send the packets.

CLUSTERPOW can be used in combination with reactive routing as follows. Route
request messages are sent out and forwarded at all the power levels available. When a route
request message at a certain power level Pi reaches the destination, a route reply message is
sent back to the source node using power level Pi (unless a route reply has already been sent
using a lower power level). Once the route discovery phase is over, the source node sends
the packets to the destination using the minimum power level that resulted in a successful
route discovery.

Finally, we observe that CLUSTERPOW in principle might send packets into infinite
loops: in fact, the master routing table is composed of entries taken from routing tables at
different power levels, and, in principle, it is possible that the interaction between the routing
protocols at the different power levels leads to packets getting into infinite loops. However,
Kawadia and Kumar prove that, given the property that packets are forwarded to the des-
tination with nonincreasing transmit power levels, this is not possible and CLUSTERPOW
is actually loop free.

14.3.2 Implementing CLUSTERPOW

Kawadia and Kumar (2003) report their experience in implementing CLUSTERPOW on
off-the-shelf components, that is, laptops equipped with CISCO Aironet 350 wireless cards.

Similar to the case of COMPOW, they implemented the protocol in the Linux environ-
ment.3 However, Kawadia and Kumar experienced several problems in CLUSTERPOW’s
implementation, which de facto impeded a real testing. The major problem is that CLUS-
TERPOW is designed under the assumption that the wireless card is capable of changing
the transmit power level on a per-packet basis (per-packet TC). Unfortunately, the CISCO
Aironet 350 card only partially fulfills this requirement: there is a large latency when chang-
ing the transmit power level (Kawadia and Kumar have measured a latency in the order of
100 ms). Even worse, Kawadia and Kumar observed that frequent changes of the transmit
power levels are very likely to crash the wireless card, rendering impossible CLUSTER-
POW’s experimentation with a significant amount of traffic.

This problem with the CISCO cards seems to be due to the fact that the firmware is
written in such a way that changing the transmit power level implies resetting the card.
There is no apparent technological reason for doing this. In principle, per-packet power
level change should be feasible with current technology: for instance, the power is adjusted
800 times per second in cellular CDMA-based networks. So, approaches based on per-packet
power level changes should be feasible in the near future, when the technical problems with
the CISCO cards are fixed, and when more cards capable of dynamic transmit power change
are available on the market.

Despite the problems with CLUSTERPOW’s experimentation described above, Kawadia
and Kumar were able to verify the correctness of their implementation. In one of the tests,
they colocated five laptops running CLUSTERPOW on the same desktop, setting 100 mW
as the initial transmit power level. After running CLUSTERPOW for an adequate time, the
entries in the master routing tables of all the nodes had 1 mW in the Power Level field, as
it was expected. At a later time, one of the five nodes was moved away from the others, so

3The source code is available online at http://www.uiuc.edu/∼kawadia/txpower.html.
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that it could be reached from the clustered nodes only by using transmit power 100 mW.
As a reaction to this movement, the routing tables of the nodes were changed: the Power
Level field of the entry relative to the outlying node in the clustered node routing tables
was set to 100 mW, while the entries relative to the other nodes were left unchanged. The
routing table of the outlying node had 100 mW in the Power level field, for all the entries.
Thus, clustered nodes correctly used power level 1 mW for intracluster communication and
power level 100 mW to communicate with the outlying node.

14.3.3 The tunneled version of CLUSTERPOW

The example of CLUSTERPOW’s execution reported in Figure 14.5 shows that the protocol
leaves room for further optimizations. In particular, the first 100 mW hop in the route
between u and v might be replaced by a two-hop path, which consumes considerably less
energy and increases spatial reuse (see Figure 14.8).

The first method to solve this CLUSTERPOW’s inefficiency is to use recursive table
lookup at each intermediate node in the route to the destination. For instance, in Figure 14.8,
node w1 (the next hop in u’s route to node v) is recursively looked up in u’s routing table,
to find that w1 is reachable from u using power level 10 mW through node z4; in turn, z4 is
directly reachable from u using power level 1 mW. So, ultimately, the packet is sent from
node u to z4 using power level 1 mW. This recursive node lookup process is repeated at
each intermediate node on the route to the destination node.

Unfortunately, the recursive lookup scheme sketched above suffers from one major
problem, that is, it might lead to packets getting into infinite loops. This unfortunate situation,
described in (Kawadia and Kumar 2003), is depicted in Figure 14.9. Node u wants to send
a packet to node v that can be reached only by using transmit power 10 mW. The next hop
in the route to v is node w1, which is recursively looked up in u’s routing tables. Node
w1 can be reached from u using transmit power 1 mW, and the next hop in the path to

1 mW cluster

10 mW cluster

100 mW cluster

u

v

100 mW
100 mW

10 mW 1 mW

w1

w2 w3

z1

z2

z3

z4

z5

z6

z7

z8
z9

z10
z11

z12z13

1 mW 10 mW

Figure 14.8 Example of CLUSTERPOW’s inefficiency: the high-power hop between nodes
u and w1 might be replaced by a low-power, low-interference two-hop path.
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u v
w1

w2

10 mW link

1 mW link

Figure 14.9 Implementing recursive lookup might lead to packets getting into infinite loops.

w1 is node w2. Hence, node u sends the packet to w2, indicating that the final packet’s
destination is node v. The recursive lookup scheme is repeated at node w2, which finds that
the destination can be reached using transmit power 10 mW, and the next hop is node u;
in turn, node u can be reached using transmit power 1 mW. So, the packet is sent back to
node u, and gets into an infinite loop.

Kawadia and Kumar (2003) introduce a technique to implement a recursive lookup
scheme that is free of infinite loops. The idea is tunneling the packet to its next hop using
lower power levels, instead of sending the packet directly. This can be done, for instance,
by using IP in IP encapsulation: while doing a recursive lookup for the next hop, the
packet is recursively encapsulated with the IP address of the node that is currently looked
up. When the packet reaches the next hop in the original path to the destination, it is
recursively decapsulated. This version of CLUSTERPOW is called TunneledCLUSTER-
POW.

Figure 14.10 shows an example of TunneledCLUSTERPOW’s execution in the same
node configuration as in Figure 14.9. The next hop in the original path from node u to node
v is w1; in turn, w1 can be reached from u through a 1 mW path, and the next hop in this
path is node w2. Before sending the packet to w2, w1’s ID is encapsulated in the original
message. When the packet arrives at w2, it is sent to the next hop in the path from node w2

to node w1, that is, node w3. When the packet arrives at w1, which is the next hop in the
original path from u to v, the packet is decapsulated, removing w1’s ID from the packet
header.

u v
w1

w2 10 mW

1 mW

w1 v Data v Data

w3

Figure 14.10 Example of TunneledCLUSTERPOW’s execution: the intermediate desti-
nations of the packet in the route to the final destination are recursively encapsulated in and
decapsulated from the original message.
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The software architecture for the TunneledCLUSTERPOW protocol is similar to that
of CLUSTERPOW (using multiple routing daemons, and so on). Unfortunately, implement-
ing the recursive encapsulation and decapsulation of packets is a very challenging task,
which would require the design of a dynamic per-packet tunneling mechanism. This mech-
anism is not available in the standard Linux distribution, and it is quite complicated to
implement.

There is also another problem with TunneledCLUSTERPOW, that is, the size of the
message header, which is considerably increased with respect to the case of CLUSTERPOW.
Recursive encapsulation of intermediate node addresses in the packets might entail a notable
overhead, especially if the source–destination paths tend to be relatively long.

Because of the issues described above, Kawadia and Kumar decided not to implement
TunneledCLUSTERPOW.

14.4 The KNeighLev Protocol

The KNeighLev protocol is a level-based implementation of neighbor-based TC introduced
in (Blough et al. 2003c) by the authors of the KNeigh protocol.

The idea is similar to the one exploited in KNeigh: connect each node to its k closest
neighbors, with the constraint of using only bidirectional wireless links.4 By setting k

properly (and under the assumption of random, uniform node spatial distribution), we have
the guarantee that the generated communication graph is connected w.h.p. Also, similar to
KNeigh, nodes change the transmit power level periodically, to maintain a topology with
certain features in presence of dynamic network conditions (periodical TC).

However, KNeighLev displays a major difference compared with KNeigh: its imple-
mentation does not require that nodes be capable of estimating their relative distance. Instead,
nearest neighbors discovery is done by exchanging control messages at different power lev-
els (see the next subsection). Thus, KNeighLev is based only on the standard working
assumption of wireless symmetric medium, and on the assumption that only discrete power
level settings P1, P2, . . . , Pmax are available at each network node.

14.4.1 Protocol description and properties

In KNeighLev specification, nodes can use different transmit power levels P1, P2, . . . , Pmax,
which are the same for all the nodes. As a consequence, the communication graph
G = (N, E) representing the network topology after each node has set its transmit power
level is in general directed, that is, there might exist nodes u, v such that (u, v) ∈ E (because
v is within u’s transmitting range), but (v, u) /∈ E (because u is out of v’s transmitting
range). Thus, Blough et al. define three different concepts of node neighborhood, which we
report:

Definition 14.4.1 (Node neighborhoods) Let G = (N, E) be the communication graph,
and let u be an arbitrary node in N .

– The incoming neighbor set of node u, denoted as Ni(u), is defined as

Ni(u) = {v ∈ N : (v, u) ∈ E}.
4The reasons for requiring symmetric wireless links are thoroughly discussed in Section 7.4.
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– The outgoing neighbor set of node u, denoted as No(u), is defined as

No(u) = {v ∈ N : (u, v) ∈ E}.
– The symmetric neighbor set of node u, denoted as Ns(u), is defined as

Ns(u) = Ni(u) ∩ No(u) = {v ∈ N : (v, u) ∈ E and (u, v) ∈ E}.

Note that the neighbor sets of node u are modified not only when u changes its own
power level but also when nodes in u’s neighborhood change their power levels. In partic-
ular, node u can modify the size of its No set by changing its own transmit power level,
while other nodes’ power level changes influence the size of u’s incoming neighbor set.
Thus, the size of the symmetric neighbor set Ns , which must be at least k according to
KNeighLev specification, can be modified only by acting on the power levels of both node
u and the nodes in its vicinity.

This observation discloses a flaw in some early neighbor-based TC protocols, such as
MobileGrid (Liu and Li 2002) and LINT/LILT (Ramanathan and Rosales-Hain 2000). These
protocols are based on the idea of maintaining the number of neighbors of each node within
a low and a high threshold: if the number of neighbors of a certain node u is too low,
u’s transmit power is increased; on the contrary, if the number of neighbors is too high,
u’s transmit power level is decreased. Note that the number of neighbors of a node is
estimated by overhearing control and data traffic; that is, what it is estimated is the size of
the incoming neighbor set Ni . On the contrary, by acting on its transmit power level, node
u can only modify the size of the outgoing neighbor set No. So, the controlled parameter
(incoming neighbor set size) is not influenced at all by the actions (changing u’s transmit
power level) taken in response to its incorrect setting.

To circumvent this problem, Blough et al. propose a protocol based on explicit control
message exchange between nodes in a neighborhood. Two types of control messages are
used: beacon and help messages. The content of beacon and help messages is the same,
that is, ID and current power level of the sender. However, the purpose of beacon and
help messages is different. Beacons are used to inform current (outgoing) neighbors of the
power level of the sender so that they can compute the size of their symmetric neighbor
set. Help messages are used to trigger some nodes in the vicinity to increase their transmit
power level so that the number of symmetric neighbors of the help message sender can be
increased.

Initially, all nodes set their transmit power to level P0 and send a beacon message. After
sending this initial message and waiting for a stabilization time, node u checks whether it
has at least k symmetric neighbors. If so, it becomes inactive, and from this point on it
participates in the protocol by simply responding (if necessary) to the help messages sent
by other nodes. Otherwise, it remains active, and it enters the Increase Symmetric Neighbors
(ISN) phase. During the ISN phase, node u sends help messages at increasing power levels,
until the symmetric neighbor set grows to the desired size or the maximum transmit power
level is reached.

When node u receives a beacon message (v, Pi(v)) from node v (here, Pi(v) denotes
the current transmit power level of node v), it first checks whether v ∈ Ni(u). If so, u

has already received a control message from v, and the current beacon is simply ignored.
Otherwise, u stores in a local variable lv(u) the level Pi(v), which represents the minimum
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power level needed for u to reach node v.5 Furthermore, node u includes v in its list of
incoming neighbors and, in case u’s transmit power level is at least Pi(v), also in the
symmetric neighbor set.

When node u receives a help message (v, Pi(v)) from node v, it checks whether this
is the first control message received by v. If so, it sets the lv(u) variable and the set of
incoming and symmetric neighbors as described above. To respond to the help message,
node u compares its own power level P (u) with Pi(v) and, in case it is less than Pi(v),
it increases its power level to Pi(v). This way, v’s symmetric neighbor set will eventually
be increased in size by at least one. Furthermore, node u includes v in its symmetric
neighbor set.

If the help message (v, Pi(v)) is not the first control message received from v, then it
must be v ∈ Ni(u), and node u knows the minimum power level needed to reach v (which
is stored in the local variable lv(u)). Thus, node u simply checks whether v ∈ Ns(u); if so,
u is already a symmetric neighbor of v, and the help request from v is ignored. Otherwise, it
must be P (u) < Pi(v), and the power level of u is increased to lv(u) (which is the minimum
level needed to make u and v symmetric neighbors).

Note that particular attention must be paid when increasing the power level of node u

from its current value to Pi(v) (or to lv(u)). In fact, we must guarantee the property that
when the variable lu(y) is set at node y, it actually stores the minimum power required
for y to reach node u. So, when increasing its power level, node u sends a sequence
of beacons, one at each power level from its current power level to the target power
level.

The KNeighLev protocol is summarized in Figure 14.11. In order to improve readabil-
ity, we drop the ‘argument’ u (which is clearly redundant at node u) from the variables
lx(u), Ns(u), and Ni(u).

In (Blough et al. 2003c), Blough et al. show the following:

– Message complexity : KNeighLev exchanges at most O(nh) overall (h is the number
of power levels) to compute the final topology.

– Symmetry : KNeighLev preserves symmetry, that is, at the end of its execution, u ∈
Ns(v) if and only if v ∈ Ns(u).

– Connectivity : The topology built by KNeighLev is connected w.h.p., under the
assumption that k is appropriately chosen (see Section 14.4.4) and that the nodes
are distributed uniformly at random in the unit square.

– Minimal power increase: Node u sends the help message at power level Pi if and
only if the number of nodes in u’s transmitting range at power level Pi−1 is smaller
than k;

– Symmetric neighbor count : At the end of KNeighLev’s execution, a node has at least
k symmetric neighbors, or it transmits at maximum power.

5Here, the assumptions of symmetric wireless medium and of all the nodes using the same power levels are
essential for KNeighLev’s correctness.
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Algorithm KNeighLev:
(algorithm for node u)

Pi is the i-th transmit power level
Ni , No and Ns are the incoming, outgoing, and symmetric neighbor sets of node u

P (u) is the current transmit power level of node u

k is the target number of symmetric neighbors (input parameter)

1. Initialization
P (u) = P0

Ni = No = Ns = ∅
send beacon (u, P (u))

wait for stabilization time

2. Checking the symmetric neighbors count
repeat until (|Ns | ≥ k) or (P (u) = Pmax))

set P (u) to the next higher power level
for any z ∈ Ni such that P (u) = lz do Ns = Ns ∪ {z}
send help (u, P (u))

wait for stabilization time
P (u) is the final transmit power level of node u

3. Message handling
3a. Upon receiving a beacon message (v, Pi(v))

if v /∈ Ni

lv = Pi(v)

Ni = Ni ∪ {v}
if P (u) ≥ Pi(v) then Ns = Ns ∪ {v}

3b. Upon receiving a help message (v, Pi(v))

if v ∈ Ni and v /∈ Ns then StepwiseIncrease(P (u) + 1, lv)

if v /∈ Ni then
lv = Pi(v)

Ni = Ni ∪ {v}
if P (u) < lv then StepwiseIncrease(P (u) + 1, lv)

else Ns = Ns ∪ {v}

4. Procedure StepwiseIncrease(Ph, Pj )

for t = h, . . . , j do
set P (u) = Pt

send beacon (u, P (u))

for any z ∈ Ni such that P (u) = lz do Ns = Ns ∪ {z}

Figure 14.11 The KNeighLev protocol.



180 LEVEL-BASED TOPOLOGY CONTROL

14.4.2 Optimizations: the KNeighLevU protocol

As the examples reported in this section show, the KNeighLev protocol leaves space for
some optimizations.

A first simple optimization is along the guidelines of the shrink-back optimization pro-
posed for the CBTC protocol (see Section 11.1): suppose there exists a node u having less
than k symmetric neighbors when transmitting at maximum power; this node can reduce
its transmit power to lower levels as long as this does not reduce its symmetric neighbors
count.

A second, more serious opportunity for optimization is motivated by the example
reported in Figure 14.12: node u’s current power level is P2, resulting in covering all the
nodes in area A2. Thus, this transmit power is sufficient to have at least k − 1 symmetric
neighbors. According to KNeighLev’s specification, u then sends a help message at power
level P3, forcing all the nodes in area A3 − A2 to increase their power to level at least
P3. This mechanism induces unnecessary power increases, because all the four nodes in
A3 − A2 must increase their power level, while the power increase of a single node would
be sufficient to meet the requirement on the symmetric neighbors count at node u.

A more subtle situation in which KNeighLev displays inefficient behavior is depicted
in Figure 14.13. The target number of symmetric neighbors is k = 4. At the current power
level P1, node u has at most three symmetric neighbors. To increase the symmetric neighbors
count, node u sends a help message at power level P2, forcing node v, which currently has
power level P0, to increase its power to level P2. Then, the overall power increase for node
u to have the target number of symmetric neighbors is P2 − P1 for node u, and P2 − P0

for node v. Note that there exists a third node in this scenario, node w, whose power level

u

A0

A1

A2

A3

Figure 14.12 Example of inefficient KNeighLev’s behavior. The target number of neigh-
bors is k = 5. Area Ai denotes the radio coverage of node u at power level Pi . At power
level P2, node u has at most 4 = k − 1 symmetric neighbors. Thus, it sends the help mes-
sage at power level P3, forcing all the nodes in A3 − A2 to increase their power to level at
least P3.
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Figure 14.13 A second, more subtle example of inefficient KNeighLev’s behavior. The
target number of neighbors is k = 4. The power level of node v is P0, and the power level of
node w is P3. At power level P1, node u has at most 3 = k − 1 symmetric neighbors. Instead
of sending the help message at power level P2, node u might autonomously increase its
power level to P3, thus fulfilling the symmetric neighbor count requirement without forcing
node v to increase its power level.

is set to P3, and thus it is in u’s incoming neighbor set. Node u is aware of node w and of
its current power level. So, instead of sending the help message at power level P2, it could
decide to autonomously increase its power level to P3. With this power level setting, node
u would satisfy the symmetric neighbor count requirement. Note that this second option is
nonoptimal from node u’s point of view (it increases u’s power level of two steps, instead
of a single step as in the standard KNeighLev specification); however, this solution might
be optimal from a local neighborhood point of view: if

(P2 − P1) + (P2 − P0) > (P3 − P1),

it is locally optimal to increase u’s transmit power of two steps. For instance, if P0 = 1 mW,
P1 = 5 mW, P2 = 20 mW and P3 = 30 mW, the ‘unselfish’ behavior of node u (the second
option described above) is locally optimal from the energy consumption point of view.
Conversely, if P0 = 5 mW, P1 = 20 mW, P2 = 30 mW and P3 = 50 mW, the situation is
reversed.

The examples shown in Figures 14.12 and 14.13 motivated the authors of (Blough et
al. 2003c) to design an optimized version of KNeighLev, which is called KNeighLevU
(U stands for ‘unselfish’).

Three additional types of control messages are used in KNeighLevU: enquiry, reply,
and selective help messages. Enquiry and reply messages contain the same information as
beacon and help messages (sender ID and transmit power level), while the selective help
message contains the ID of the sender and the ID(s) of the node(s) that must increase its
(their) transmit power levels.
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Suppose node u, which currently has less than k symmetric neighbors, is transmitting
at power level Pi :

1. Instead of sending a help message at power level Pi+1, node u sends an enquiry
message at power level Pi+1.

2. When a node (say, node v) in u’s transmitting range whose current power level is
below Pi receives the enquiry message, it does not immediately step up the power
level; instead, it sends to u a reply message at temporary power level Pi . The purpose
of this message is to inform u that v is a potential helper, which is currently using a
certain power level.

3. Once node u has gathered the information from all its potential helpers, it is able
to compute the locally optimal solution, accounting also for the nodes in Ni(u) that
might become symmetric neighbors by simply increasing u’s power level. Then, node
u schedules one of several possible actions, depending on the locally optimal solution
that has been identified. In particular, u can

(a) increase its own power level, so as to reach more nodes in Ni(u);

(b) send a selective help message, asking some of the nodes in the neighborhood to
increase their power levels;

(c) send a generalized (i.e. old style) help message.

Observe that KNeighLevU might require some nodes to perform temporary power level
increases (when sending reply messages), thus partially impairing KNeighLev’s philosophy
of periodical TC. However, contrary to the case of per-packet TC, these temporary power
level changes occur only during the network setup phase, and on an occasional basis.

We remark that the local optimization performed by KNeighLevU is only a heuristic
used to maintain the power consumption as low as possible: in fact, the composition of
locally optimal configuration might result in a globally nonoptimal solution. Furthermore,
a solution that is locally optimal at a certain time might become suboptimal later on (e.g.
because a certain node in u’s neighborhood would have stepped up its power level anyway
to increase the symmetric neighbors count of another node).

14.4.3 KNeighLev versus KNeighLevU

It interesting to compare the relative performance of KNeighLev and KNeighLevU. In
general, KNeighLevU allows a finer tuning of the symmetric neighbors count, which should
result in better energy efficiency. On the other hand, KNeighLevU tends to exchange
more control messages than KNeighLev does because of the up to three phase interaction
(enquiry–reply–help) between neighbor nodes. So, it is not clear which one of the two
protocols has the best overall performance.

To investigate this point, Blough et al. have performed a set of simulation experiments
in which the protocols’ performance is evaluated according to the following metrics:

– energy cost, which is defined as the sum of the power levels of all the network nodes
at the end of the protocol execution;
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– average logical and physical node degrees, which are defined as in Section 9.3;

– message overhead, defined as the average number of messages sent per node during
the protocol execution.

The simulation results reported in (Blough et al. 2003c) are obtained considering a
square simulation area in which a certain number of nodes is distributed uniformly at
random. Nodes can use six different power levels, which are taken from the specifics of the
CISCO Aironet 350 wireless card: 1, 5, 20, 30, 50, and 100 mW. The simulation results
have shown the following:

– KNeighLevU performs better than KNeighLev with respect to both energy cost and
average node degree (both logical and physical). The relative advantage of KNeigh-
LevU with respect to KNeighLev in terms of energy cost is considerable (it can be
as high as 50% for networks of large size –n = 500), while the relative advantage in
terms of average node degree is more limited (in the order of 15%).

– In terms of message overhead, KNeighLev exchanges relatively less messages than
KNeighLevU when the size of the network is small to medium (n = 300 and below),
while the situation is reversed for large networks (n above 300). However, in all the
network sizes considered, the relative difference between the number of messages
exchanged by the two protocols is quite small (in the order of 20%). In absolute
terms, a node sends an average of 6 (when n = 50) to 3 (when n = 500) messages
with KNeighLev, and an average of 9 (when n = 50) to 2.8 (when n = 500) messages
with KNeighLevU.

Blough et al. have also compared the performance of their protocols to that of a level-
based implementation of CBTC (see Section 11.1 for a description of the CBTC protocol).
In the level-based implementation of CBTC, the final transmit power of a node as computed
by CBTC is rounded up to the next higher power level available. The simulation results
have shown that KNeighLev and KNeighLevU performs slightly better than level-based
CBTC with respect to both energy cost and average node degree. However, it must be
observed that CBTC preserves network connectivity in the worst case, while KNeighLev
and KNeighLevU give only a probabilistic guarantee on network connectivity.

The authors of (Blough et al. 2003c) consider also the issue of optimizing the choice
of the transmit power levels: instead of using the predefined levels of the CISCO Aironet
350 card, one might think of selecting the power levels according to some criterion. Blough
et al. consider a scenario in which nodes are distributed uniformly at random in a square
region, and set the power levels in such a way that the expected number of neighbors at
every power level is evenly distributed (which does not occur with the power levels set
as in the specifics of the CISCO wireless card). With this optimization implemented, the
energy cost of the topology generated by KNeighLevU is reduced further (in the order of
10%). Although the achieved energy saving is quite limited, it is interesting to note that by
simply acting on the choice of the power levels, one might reduce energy consumption.

14.4.4 Setting the value of k

Similar to the case of KNeigh, the performance of the KNeighLev and KNeighLevU
protocols heavily depends on the choice of the target number k of symmetric neighbors:
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choosing a value of k that is too small leads to the formation of a disconnected network
topology, while setting k to a value that is too large is detrimental for energy efficiency and
spatial reuse. So, the problem is that of identifying the minimal value of k that achieves
network connectivity, that is, the critical neighbor number (CNN).

Observe that the problem of determining the CNN has been thoroughly discussed in
12.1. However, in that case, the value k upper bounded the number of outgoing neigh-
bors of a node, some of which might be nonsymmetric. On the contrary, KNeighLev and
KNeighLevU try to maintain the number of symmetric neighbors of a node equal to (or
above) k. Furthermore, KNeighLev and KNeighLevU are level-based protocols,6 so in
many cases it might be infeasible to obtain exactly k symmetric neighbors.

Despite the differences outlined above, Theorem 12.1.7 presented in Section 12.1 can
be used to prove the following result (see (Blough et al. 2003c)):

Theorem 14.4.2 (Blough et al. 2003c) Let n nodes be placed uniformly at random in
R = [0, 1]2, and assume that each node in the network has at least k other nodes in its
transmitting range when transmitting at maximum power. Let Gk

KNL be the network topology
that is built when KNEIGHLEV is executed with parameter k. If k ∈ �(log n), then Gk

KNL is
connected a.a.s.

Blough et al. prove that a similar result also holds for the communication graph generated
by KNeighLevU.

Note that the result stated in Theorem 14.4.2 is weaker than the analogous theorem that
holds for KNeigh, since it only proves that k ∈ �(log n) neighbors are sufficient (but they
might not be necessary) for connectivity.

Blough et al. give also a more practical, simulation-based evaluation of the desired
number of symmetric neighbors. They first consider the KNeighLev protocol, and show
that a value of k equal to 4 is sufficient to generate well connected topologies (at least
98% of the generated graphs are fully connected) for networks of size 150 and above.
For smaller networks, slightly larger values of k are needed to achieve the same degree
of network connectivity (we have k = 6 when n = 50). Then, Blough et al. analyzed the
topology generated by KNeighLevU, and they verified that if the same value of k as in
KNeighLev is used, KNeighLevU generates relatively less connected topologies: on the
average, 90% of the generated graphs are fully connected and, in case the generated graph
is disconnected, at least 95% of the network nodes are in the same connected component.

14.5 Comparing CLUSTERPOW and KNeighLev

Since CLUSTERPOW and KNeighLev are the only existing level-based approaches to
TC that use heterogeneous power assignments, it is interesting to perform a qualitative
comparison of their main features.

A first major difference between CLUSTERPOW and KNeighLev is from an architec-
tural point of view (see Figure 14.14). CLUSTERPOW is a protocol for jointly performing
(implicit) node clustering, routing, and transmit power control. So, CLUSTERPOW can be
seen as a network layer protocol, which interacts both with the transport and the MAC

6We recall that in the CNN analysis of Section 12.1 it is implicitly assumed that each node in the network can
set its transmit power to a level such that it reaches exactly k other nodes.
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Figure 14.14 The CLUSTERPOW (a) and KNeighLev (b) protocols in the protocol stack.

layer. Although not explicitly stated in (Blough et al. 2003c), KNeighLev is based on a
different architectural view: this protocol is a separate module that is executed periodically,
and sets the power levels that nodes will use for route discovery and maintenance. Thus,
KNeighLev can be seen as a network layer module, which, however, is separated from the
routing module.

This different view on where the TC functionality should be located in the protocol
stack has led to different design choices in the two approaches: nodes in CLUSTERPOW
change the power level on a per-packet basis (this is due to the fact that CLUSTERPOW
performs routing and transmit power control at the same time), while KNeighLev is based
on periodical power level changes. As discussed in Chapter 13, periodical power level
settings are in general preferable in mobile or highly dynamic networks. On the other
hand, per-packet TC has the potential of achieving better benefits in terms of reduced
energy consumption and increased spatial reuse with respect to periodical TC (provided the
technological problems described in Section 14.3.2 can be solved).

Another consequence of CLUSTERPOW designers’ choice of integrating routing and
power control in the same module is the fact that CLUSTERPOW is based on global
knowledge: when node u has to send a packet to a faraway node v, it must know the
minimum power level needed to reach v, an information that can be obtained only by
circulating a certain number of control messages in the network. As discussed in detail in
Chapter 9, networkwide information exchange should be avoided in TC protocols, as this,
in general, induces a high control message overhead for generating the desired topology.
This is actually the case with CLUSTERPOW, which causes a considerable increase in the
routing overhead with respect to traditional routing (with no integrated TC functionality):
if nodes can set the transmit power level at h different levels, the routing overhead with
CLUSTERPOW is increased by a factor h with respect to the case of no TC.

Contrary to CLUSTERPOW, KNeighLev is a localized protocol: a node exchanges
messages only with its immediate neighbors in the maxpower communication graph. In
turn, this implies a low control message overhead as compared to CLUSTERPOW: when
the KNeighLev is invoked (we recall that in this approach the TC protocol is reexecuted
periodically), each node sends only few messages to immediate neighbors (typically, less
than six) before setting the transmit power to the appropriate level.
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However, we must outline that CLUSTERPOW’s choice of relying on global knowl-
edge has a major advantage also: the protocol ensures full network connectivity, that is, if
nodes u and v are able to communicate in the maxpower communication graph using tradi-
tional routing, then they can also communicate when CLUSTERPOW is implemented. This
property is not satisfied by KNeighLev, which provides only a probabilistic guarantee on
network connectivity: if nodes u and v are able to communicate in the maxpower commu-
nication graph using traditional routing, then w.h.p. they can also communicate in the graph
obtained at the end of KNeighLev’ execution. Another positive feature of CLUSTERPOW
is that it does not require any specific parameter setting to work properly, while KNeigh-
Lev’s performance is heavily influenced by the choice of the target number of symmetric
neighbors k.

A comparison of the CLUSTERPOW’s and KNeighLev’s performance in terms of
energy efficiency and increased spatial reuse is not immediately evident: as a rule of thumb,
we can say that when sending a packet to a faraway node CLUSTERPOW is more efficient
than KNeighLev in the downlink, while the situation is reversed in the uplink.

This point is explained in Figure 14.15. Suppose node u wants to send a packet to node
v. There are three levels (1, 10, and 100 mW), which, in CLUSTERPOW, defines a cluster
hierarchy with three levels. Since nodes u and v are in the same 100 mW cluster, but in
different 10 mW clusters, the packet is initially sent at 100 mW, and it is relayed to the
destination using increasingly lower power as it gets closer to the destination. The total
power consumption for delivering the packet with CLUSTERPOW is 211 mW. Let us now
consider the case of KNeighLev. Assume that the power level of nodes u, z4, w1 and w2 at
the end of the protocol execution are set as follows: 1, 10, 100, and 100 mW, respectively.
So, sending the packet from u to v consumes 211 mW overall in the case of KNeighLev
also. However, we note that KNeighLev is more efficient than CLUSTERPOW in the

CLUSTERPOW path

u

v

100 mW
100 mW

10 mW

w1

w2 w3

z1

z2

z3

z4

z5

z6

z7

z8
z9

z10
z11

z12z13

1mW

KNEIGHLEV path

Figure 14.15 Example showing the relative energy and interference performance of the
CLUSTERPOW and KNeighLev protocols.
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Table 14.1 A qualitative comparison of the CLUSTERPOW and
KNeighLev protocols

CLUSTERPOW KNeighLev

Joint clustering/routing/TC TC is a separate net layer module
Per-packet TC Periodical TC
Global knowledge required Localized
High control overhead Low control overhead
Guarantees full connectivity Guarantees connectivity w.h.p.
No parameter setting Setting k is required
Efficient in the downlink Efficient in the uplink

uplink (from node u to the intermediate node w1), while the situation is reversed in the
downlink (from node w1 to node v).

We remark that the situation depicted in Figure 14.15 is only an example and, depending
on the node configuration and on the traffic pattern, situations can be easily identified in
which CLUSTERPOW is more efficient than KNeighLev, or the reverse holds.

The qualitative comparison of CLUSTERPOW and KNeighLev discussed in this section
is summarized in Table 14.1.





15

Open Issues

In this book, we have presented several approaches to the topology control problems that
have appeared in the literature. Although the body of research devoted to this topic is
considerable, many aspects related to the application of TC techniques in ad hoc and sensor
networks have not been carefully investigated yet. In this chapter, we discuss the most
important such aspects, indicating several avenues for further research in the field.

15.1 TC for Interference

In Chapter 3, we have discussed the potential advantages of using TC techniques in wireless
ad hoc and sensor networks: reducing node energy consumption and reducing radio inter-
ference between nodes. Despite the acknowledged motivations for using TC being twofold,
the vast majority of research on TC focused only on one of them, that is, on reducing node
energy consumption. Thus, natural questions such as What network topologies turn out to be
good from the radio interference point of view? Are these topologies the same, similar, or
very different from the ‘energy-efficient’ topologies studied so far? remain to be answered.

Answering these questions is relatively simple if all the nodes are assumed to use
the same transmit power level (homogeneous TC). In fact, it can be seen that setting the
transmitting range to the critical value for connectivity is the best solution for reducing radio
interference (this is formally proven in (Narayanaswamy et al. 2002) – see Section 14.2).
Thus, setting the common transmitting range to the critical value for connectivity turns out
to be optimal for reducing both node energy consumption and radio interference.

The situation is more complicated if nodes are allowed to use different transmit power
levels. The issues of determining interference-optimal topologies and investigating the dif-
ferences/similarities between energy-optimal and interference-optimal topologies have not
been addressed in the current literature. Only very recently, a few papers have tackled the
above issues.

Burkhart et al. (2004) introduce the notion of edge coverage to model radio interference
in ad hoc/sensor networks. Edge coverage is formally defined as follows:

Topology Control in Wireless Ad Hoc and Sensor Networks P. Santi
 2005 John Wiley & Sons, Ltd
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Definition 15.1.1 (Edge coverage) Let e = (u, v) be any edge of the maxpower graph
G = (N, E), indicating that nodes u, v ∈ N are within each other’s maximum transmitting
range. The coverage of edge e is defined as

Cov(e) = |{w ∈ N : w is inside D(u, δ(u, v))} ∪
{w ∈ N : w is inside D(v, δ(u, v))}|,

where D(x, y) denotes the disk of radius y centered at node x and δ(x, y) is the distance
between nodes x and y.

An example clarifying the notion of edge coverage is reported in Figure 15.1.
The notion of edge coverage can be used to estimate the expected interference experi-

enced when communicating along a certain link, at least when the MAC layer is based on
CSMA-CA (as it is the case of IEEE 802.11, and of the vast majority of MAC protocols
for sensor networks). In fact, with this implementation of the MAC layer, nodes u and
v exchange RTS/CTS messages before performing the communication, and all the nodes
receiving either one of the RTS/CTS messages (i.e. at least all the nodes in D(u, δ(u, v)) ∪
D(v, δ(u, v))) refrain from their communications to avoid interference with the transmission
along link (u, v). So, the number of nodes in D(u, δ(u, v)) ∪ D(v, δ(u, v)) is a measure of
the amount of wireless medium ‘consumed’ by the transmission, that is, of the interference
generated by the communication along link (u, v).

Note that edge coverage in general tends to underestimate the generated interference
because of two reasons: (i) the possible use of nonminimal transmit power levels and
(ii) carrier sensing range being larger than the transmitting range.

As for (i), we observe that the definition of edge coverage relies on the assumption that
the minimum possible power level is used by both node u and node v when communicating
along link (u, v). Because of technological (e.g. only a limited number of different transmit
power levels available) and/or design (e.g. use of periodical TC techniques) constraints,
using this minimum power level might not always be possible.

Regarding issue (ii), we observe that in many MAC protocol implementations (e.g.
IEEE 802.11) a carrier sensing mechanism is used in combination with RTS/CTS message

u v
Cov e( ) = 13

Figure 15.1 Coverage of edge (u, v).
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exchange to regulate the access to the channel: if the sender node detects a carrier on the
channel, it does not even send the RTS message, and it refrains from packet transmission
until no carrier is detected. In general, the carrier sensing range of a certain transmission is
larger than the transmitting range. For instance, in the IEEE 802.11 standard, it is typically
assumed that the carrier sensing range is about twice as long as the transmitting range. A con-
sequence of this observation is that not only do the nodes in D(u, δ(u, v)) ∪ D(v, δ(u, v))

refrain from their communications when nodes u and v are communicating but also the
nodes in the carrier sensing range of u and v are likely to detect a carrier and refrain from
sending packets.

Despite issues (i) and (ii), edge coverage is still a reasonable measure of the expected
node interference, and it has been used by Burkhart et al. in (Burkhart et al. 2004) to define
the notion of interference of a communication graph, which is defined as follows:

Definition 15.1.2 (Graph interference) Let G = (N, E) be any communication graph. The
interference of graph G is the maximum coverage over all possible edges in E. Formally,

I (G) = max
e∈E

Cov(e).

The authors of (Burkhart et al. 2004) consider the problem of finding a connected sub-
graph of the maxpower graph with minimum interference and provide a simple centralized
algorithm that computes the optimal solution to this problem. It is easy to see that the
interference-optimal topology in this context is essentially the MST built on the maxpower
graph, where edges are weighted with their coverage. Furthermore, Burkhart et al. show that
a topology in which every node establishes a symmetric connection to at least its closest
neighbor (as it is the case of all the topologies built by the TC protocols for reducing energy
consumption presented in this book) can be �(n) times away from the interference-optimal
topology. In other words, they show that, at least in a worst-case scenario, reducing node
energy consumption and reducing radio interference are conflicting goals. This observation
is coherent with a theoretical result presented in (MeyerAufDerHeide et al. 2002), which,
although based on a more complicated notion of interference, states that finding a topol-
ogy that reduces node energy consumption and finding an interference-optimal topology are
conflicting goals.

Burkhart et al. also consider the problem of finding an interference-optimal topology
with the additional requirement of building a distance t-spanner of the maxpower graph and
present centralized and localized algorithms to solve this problem.

The problem of building low-interference topologies has been addressed in (Moaveni-
Nejad and Li 2005) also. In particular, Moaveni and Li consider different measures of
interference of a graph and provide an algorithm for computing the interference-optimal,
connectivity-preserving topologies according to the defined metrics. For instance, one of
the interference metrics considered is the average of the edge coverage in a graph, and
Moaveni and Li show that the interference-based MST (i.e. the same topology defined in
(Burkhart et al. 2004)) is optimal with respect to this metric also.

Although some initial steps toward the design of interference-efficient topologies have
been recently done, we believe a lot of research on this topic is still to be performed. In
particular, we cite two shortcomings of the above cited approaches to interference-optimal
TC: (i) reliance on a specific radio channel model and (ii) disregarding the effect of multihop
communications.
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With respect to (i), we observe that all the interference metrics proposed so far are
based on the notion of edge coverage introduced in (Burkhart et al. 2004). Unfortunately,
edge coverage is based on a purely geometric notion (number of nodes in the intersection
of two disks), and it implicitly relies on the assumption that the radio coverage area is a
perfect circle. As we have discussed in Chapter 2, this assumption is widely accepted in the
wireless ad hoc network research community, but it is unlikely to hold in most practical
situations. Thus, the definition of an interference measure that can be used in combination
with more general radio channel models (such as the log-normal shadowing model) is an
urgent need.

Shortcoming (ii) can be even more serious, as the example reported in Figure 15.2
illustrates. In the figure, edges are labeled with their coverage, which is used to build
the MST, which is represented by the bold edges (this is the topology computed by the
interference-optimal algorithm presented in (Burkhart et al. 2004)). Although the MST
minimizes the maximum possible interference level on a single link, it turns out to be a
very bad topology from the multihop interference point of view: the path connecting nodes u

and v in the MST with minimum interference cost (calculated by summing up the coverage
of the edges in the path) has cost equal to 24; however, the two nodes can be connected
through a single link (dashed edge) in the maxpower graph at a cost of 6, which is four times
lower than the cost of the optimal (u, v) path in the ‘supposed to be’ interference-optimal
topology. A similar observation applies to all the graph interference measures introduced
in the literature so far. Thus, what is still needed is the definition of a different notion of
graph interference that accounts for interference in multihop communications (we remark
that this is the very distinguishing feature of ad hoc and sensor networks!). On the basis
of this notion, topologies that perform well with respect to multihop interference must be
investigated.

u

v

Figure 15.2 Example showing that the interference-based MST is not a good topology when
you account for multihop interference.
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15.2 More-realistic Models

In Chapter 2, we have described the models used in the wireless ad hoc network community
to model the radio link and node energy consumption. As discussed therein, the issue
in the definition of the network model is to find a good balance between simplicity and
representativeness of the model: on one hand, it must be kept simple enough to allow the
derivation of meaningful theoretical results; on the other hand, it must be accurate enough
to ensure that the findings obtained by using the model are useful in practical situations.

We believe that finding such a good balance in the realm of wireless ad hoc networks will
be a very difficult task and that models achieving this good balance have not been identified
yet. In fact, both the radio channel and the energy model so far used in the analysis of
ad hoc network properties are probably too simplistic and inaccurate. In the following, we
discuss in detail the issues of radio channel and energy modeling.

15.2.1 More-realistic radio channel models

The radio channel model that is typically used in the analysis of wireless ad hoc network
properties is based on the assumption of homogeneous decay with distance of the radio signal
(i.e. circular radio coverage area). This corresponds to using the log-distance path model
for the radio channel (see Section 2.1), and the communication graph built according to this
model is essentially a point graph (a.k.a. unit disk graph or a geometric random graph).

Thanks to the fact that unit disk graphs and geometric random graphs have been ana-
lyzed in depth in the applied probability community (see Appendix B), the assumption of
homogeneous radio signal decay has allowed the derivation of a considerable body of theo-
retical results concerning fundamental properties of ad hoc networks. However, it is widely
known that the above mentioned assumption of circular radio coverage area is a sufficiently
accurate model of the actual radio signal propagation only in very specific cases, such as
networks deployed in open air, flat environments. Unfortunately, in real-world applications,
it is likely that ad hoc and sensor networks are used in different environments: typically, ad
hoc networks are deployed in urban scenarios, where the presence of buildings, obstacles,
and so on renders the propagation of the radio signal in the air highly irregular; the same
happens in typical applications of WSNs, which are either indoor (e.g. intrusion detection
in a building) or in harsh environments.

On the basis of the above discussion, there is the strong feeling that the many character-
izations of ad hoc network properties so far derived in the literature turn out to be scarcely
useful in practice and that a radio model that accounts for shadowing/fading effects should
be used instead of the simplistic log-distance path model.

In Section 4.4, we have presented a set of theoretical and experimental results that can
be regarded as initial steps in this direction. We also want to mention the Random Vertex
model recently proposed by Faragó (Faragó 2002), in which the link between nodes u and
v occurs with probability pl(u, v), where pl(u, v) is an arbitrary function (with values in
[0, 1]) with the property that δ(u, v) ≤ δ(u, w) implies pl(u, v) ≥ pl(u, w). Furthermore,
Faragó introduces the concept of node availability, that is, node u is available with a given
probability pa(u) (this is similar to the model of Bernoulli nodes – see Section 6.2). Faragò
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shows that the study of monotone properties1 (e.g. connectivity) of certain Random Vertex
graphs can be reduced to the study of the same properties of a properly defined random
graph. This result is potentially interesting, given the overwhelming literature on traditional
random graphs (Bollobás 1985; Palmer 1985). Whether the Random Vertex model could
be used to derive analytical characterizations of fundamental network properties (e.g. the
critical transmitting range for connectivity, k-connectivity, and so on) in a more realistic
setting is an open question.

Another possibility to make the radio channel model more realistic is to take into account
interference between nodes. For example, in (Dousse et al. 2003), Dousse et al. propose a
model in which a bidirectional link between nodes u and v exists if the SINR at the receiver
is larger than some threshold, where the noise is the sum of the contribution of interferences
from all other nodes and a background noise. The authors analyze the impact of such wireless
link model on network connectivity.

Although some research on the characterization of fundamental network properties with a
more-realistic radio link model has been recently done, further investigation in this direction
is needed.

15.2.2 More-realistic energy models

We have observed in Section 15.1 that most of the literature on TC focused on the problem
of defining energy-efficient network topologies. However, the energy model commonly used
in the literature accounts only for one component of the energy that is actually consumed
in a wireless network card. In fact, as discussed in Section 2.3, the power consumption of a
radio interface is determined by at least two main components: the power needed to amplify
the transmitted signal (also called the radiated power , or transmit power), and the power
consumed by the other circuitry of the radio interface (RF/IF converter, IF modem, and so
on), which does not depend on the intensity of the radiated signal.

Current TC literature considers only the first component of the power consumption in a
real wireless card, the radiated power. Since the radiated power needed to transmit at dis-
tance d is proportional to 1

d
raised to a certain power (the path loss exponent), researchers

have argued that from the energy consumption point of view several short hops are bet-
ter than one long hop (see Section 3.1.1). Unfortunately, this conclusion might be false if
a more-realistic energy model, which accounts also for the power consumed in the other
components of the radio interface, is used. In fact, as several measurements performed
on off-the-shelf wireless cards have shown, the power consumed by the other circuitry
of the radio interface is at least as high as, if not higher than, the power consumed by
the RF amplifier. Thus, the constant power consumption involved in any transmission per-
formed by a network node cannot be disregarded, as it is commonly done in current TC
literature.

Furthermore, we should consider that in a radio communication a nonnegligible amount
of energy is consumed at the receiver node also to receive and decode the transmitted
signal. This contribution to the overall energy consumption is also disregarded in current TC
literature.

1A property P of a graph is monotone whenever P (G) ⇒ P (G′), where G′ is a supergraph of graph G and
P (G) (respectively, P (G′)) denotes that graph G (respectively, G′) satisfies P .
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Figure 15.3 Example showing that using a more realistic energy model might lead to
radically different conclusions about what an energy-efficient network topology is.

We believe that the definition of a more-realistic energy model may be fundamental in
the design of TC protocols as radically different conclusions about ‘what an energy-efficient
topology’ is might be drawn if the constant terms in the node power consumption are taken
into account. The following example supports our feeling.

Consider the typical situation depicted in Figure 15.3, which is essentially the same as
Figure 3.1: node u wants to send a packet to node v, and we must decide whether it is
more energy efficient to send the packet directly to v or to use the intermediate node w

to relay the packet. If we disregard the energy consumed by circuitry other than the RF
amplifier at the sender end, and the energy consumed at the receiver end, we can conclude
that relaying through w is more energy efficient than the direct transmission whenever w

lays in the shaded area (see Section 3.1.1).
Let us now include the energy consumed by circuitry other than the RF amplifier at node

u in this analysis, and let us consider the power measurements performed on a real wireless
card, such as those referring to a CISCO Aironet PC4800 card reported in (Ebert et al.
2002). With this energy model, a node consumes 1.9 W when transmitting at maximum
power (corresponding to a nominal transmit power of 50 mW), and 1.48 W when transmit-
ting at minimum power (nominal transmit power 1 mW). So, under the assumption that v

is within u’s maximum transmitting range (otherwise the direct communication between u

and v would be impossible), we have that sending the packet directly has a power cost of
at most 1.9 W. On the other hand, relaying the packet through w would require two trans-
missions, each consuming at least 1.48 W. Since 1.9 < 2 · 1.48 = 2.96, we can conclude
that with this more-realistic energy model sending the packet directly to node v is always
the best solution! Note that in this analysis we have not considered the power consumed at
the receiver end of the communication, which would also play in favor of the single-hop
transmission.

The example above has clearly shown that the energy model has a strong influence on
the choice of the energy-efficient links and that accounting for only the radiated power is
likely to lead to incorrect conclusions about what an energy-efficient topology is. Thus,
further research along this line is urgently needed.
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15.3 Mobility and Topology Control

In Chapter 13, we have discussed the effects of node mobility on the design and imple-
mentation of TC protocols and on the setting of important parameters such as the critical
neighbor number in neighbor-based TC. However, fundamental questions concerning the
application of TC techniques in mobile networks still have to be answered. In particular,
we cite the following:

1. Is mobility beneficial or detrimental? On one hand, we have seen that mobility
results in an increased message overhead for maintaining the desired topology (see
Chapter 13). This has a negative effect on both network capacity (because a portion of
the available bandwidth is used for control messages) and node energy consumption
(because nodes send/receive more control messages). On the other hand, mobility has
also positive effects on both capacity and energy consumption. In fact, it is known
that node mobility can be seen as a means to increase network capacity, provided the
delay in packet delivery is not a primary concern (Grossglauser and Tse 2001). As for
energy, mobility has the positive effect of balancing the node power consumption: in
stationary networks, if a node u uses twice the transmit power of another node v, it is
likely to deplete its battery much faster than node v. In presence of mobility, nodes
change the transmit power dynamically, and a more balanced energy consumption
(with positive effects on network lifetime) is likely to occur. Given this picture, it
is still not clear what the overall effect of node mobility is on the network capacity
increase and lifetime extension potentially achieved by TC mechanisms.

2. Determination of the optimal frequency for reconfiguration : As discussed in
Section 13.2, in presence of node mobility, there is a clear trade-off between the
message overhead generated by the repeated execution of a TC protocol and the qual-
ity of the constructed topology: the more frequently the protocol is reexecuted (i.e.
the higher the message overhead), the higher the quality of the constructed topology
(e.g. a topology that preserves connectivity). A careful investigation of this trade-off,
which would help in answering the issue (1), is still lacking in the literature.

15.4 Considering MultiHop Data Traffic

As witnessed by the considerable body of research reported in this book, a great deal
of attention has been devoted to the identification of efficient network topologies, with a
particular emphasis on energy efficiency. However, a common approach in the literature is
to consider the TC problem as a stand-alone problem, which is analyzed and solved under a
graph-theoretic perspective. This type of approach has resulted in the message conveyed by
current TC literature: the sparser the network topology, the better (provided certain spanning
properties of the graph are satisfied).

Indeed, we believe that the problem of determining the ‘optimal’ network topology
cannot be solved by assigning a weight to the links and building a spanner graph, as it
is commonly done in current TC literature: in fact, what is an optimal topology depends
on several factors, such as the expected network traffic, the desired level of QoS that the
network should provide, and so on, which are disregarded by the current approaches to the
TC problem. In the following, we clarify this point with some examples.
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Figure 15.4 Example showing that a topology with optimal power spanning factor might
not be optimal for extending network lifetime.

Consider the node placement reported in Figure 15.4, and assume we want to find an
energy-efficient topology for this node placement. If we assume that the radiated power
is the dominating factor in the node power consumption (this in general is not true – see
Section 15.2.2 – but it is assumed that it holds here, for the sake of presentation), the power
optimal topology is the Gabriel Graph (GG) (represented by solid edges in Figure 15.4),
which has power spanning factor equal to 1. We recall that this property means that the
energy-optimal path between any two nodes in the maxpower communication graph is
always included in the GG, that is, no energy penalty is paid if communications take place
only along the few links of the GG. Thus, from a graph-theoretic perspective, the GG is the
energy-optimal topology.

Let us now consider the problem of identifying an energy-efficient topology under a
more general perspective, that is, one of extending network lifetime (this is the ultimate
goal of reducing node energy consumption). Is the GG still the best possible topology if we
aim at extending network lifetime as much as possible? The answer to this question depends
on the application scenario, which, in turn, determines which is the notion of lifetime we
are interested in (e.g. time for the first node to die, or time to network disconnection, and
so on), and also the expected traffic pattern in the network.

For instance, assume the network depicted in Figure 15.4 is a wireless sensor network
used for environmental monitoring. In this scenario, sensor nodes periodically send data to
one or more gateway nodes, which provide the interface to the user. Assume the gateway
node is the one at the bottom left (see figure); then, the expected traffic pattern is one in
which nodes periodically send data to this node, and a natural definition of network lifetime
is ‘time until no more meaningful data can be gathered from the network’.
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Suppose nodes use only the links in the GG to send the data to the gateway node. As
mentioned above, using the GG as the network topology allows nodes to send their data
to the gateway along the most energy efficient path. Nevertheless, we claim that the GG is
not the optimal network topology if the goal is extending network lifetime. In fact, if all the
nodes send the data along the most energy efficient path, node v turns out to be a bottleneck
since it relays all the data packets generated by all the upper nodes in the network. As a
consequence of this, node v is expected to deplete its battery and die much faster than the
other nodes in the network. When node v dies, most of the network nodes cannot send their
data to the gateway node, and the network itself can be declared dead, as it is no longer
able to provide the functionality it was designed for.

Let us now consider a relatively denser network topology, obtained by adding the dashed
edges to the links in the GG (see Figure 15.4), and assume the routing protocol is energy
aware, that is, it alternates the path selection in order to provide a balanced energy con-
sumption among the network nodes. By combining a denser network topology with an
energy-aware routing protocol, we can ensure that nodes u and w are also used to relay
the data packets generated by the upper nodes in the network. This way, node v is no
longer a bottleneck, and its lifetime is considerably increased with respect to the previous
scenario. Since the traffic load generated by upper nodes is now shared among three nodes,
the gateway node can gather data from the entire network for a longer time, and network
lifetime is increased with respect to the previous case. Thus, a topology that is relatively
denser than the GG is preferable if the designer goal is extending network lifetime as much
as possible.

Consider now an example in which QoS is the main concern. For instance, assume a
WSN scenario in which the fast notification of an abnormal detected event to the external
user is vital. Examples of such scenarios are WSN used for intrusion detection, or to monitor
nuclear plants. In this context, the network must fulfill a stringent QoS requirement, which
can be expressed as a guarantee on the delivery time of the alarm message to the gateway
node. What is the optimal network topology and/or routing strategy in this context?

Again, the answer to this question depends on features such as expected node density,
expected traffic pattern, and so on. Let us consider two scenarios: in scenario (a), the
network is very dense (many nodes per unit area) and the network traffic is moderate (for
instance, because nodes exchange many packets to monitor the proper functioning of the
plant); in scenario (b), the network is relatively sparse (few nodes per unit area) and the
traffic is very low, except for occasional bursty periods (this is typically the case of a WSN
used for intrusion detection). We claim that the optimal network topology/routing strategy
is radically different in the two scenarios.

Let us first consider scenario (a). In this case, the best solution is probably to use an
interference-optimal network topology, coupled with an interference-aware routing proto-
col.2 In fact, assume a certain node u has detected an event that must be promptly notified
to the gateway node v (see Figure 15.5). Node u can decide to either send the packet at
maximum power, reaching node v through node w (two-hop path), or to send the packet
at a lower power through the relatively longer path {s, t}, which turns out to be interfer-
ence optimal. In principle, we might expect that sending the packets along the shortest
path experiences the lowest delay (two hops instead of three hops are used to deliver the

2Interference-aware routing protocols send packets along low-interference paths in the network (Couto et al.
2003; Jain et al. 2003).
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Figure 15.5 Example showing that finding the optimal network topology/routing strategy
for minimizing packet delivery time depends on node density and expected network traffic.

packet); however, this does not account for interference with other nodes, which might
cause transmission failures and repeated packet transmission. Since network traffic in this
scenario is expected to be moderate, and node w resides in a densely populated region of
the network, it is likely that node w experiences much higher interference than nodes s

and t . So, sending the packet through the low-interference path {s, t} is likely to ensure a
shorter packet delivery time with respect to sending it through node w, despite the higher
hop count of this path.

In scenario (b), the situation is opposite: although node w resides in a densely populated
region of the network, the expected network traffic is very low, and, consequently, the
interference at node w is likely to be very low (say, comparable to the expected interference
at nodes s and t). In this situation, sending the packet through the shortest path is then the
choice that most likely minimizes the packet delivery time.

The examples reported in this section have shown that the problem of identifying energy-
optimal and/or interference-optimal network topologies is a very difficult one and that this
problem can be properly tackled only by using a general approach that optimizes the network
topology and the routing strategy as a function of certain target properties (e.g. extending
network lifetime, or minimizing packet delivery time). We believe much work along this
line of research is still to be done.

15.5 Implementation of TC

Despite the considerable body of research performed on topology control, and the many the-
oretical and simulation-based evidences of its potential of reducing node energy consumption
and radio interference, to date there is no experimental evidence that TC techniques can be
actually used to these purposes. The lack of experimental demonstrations of the usefulness
of TC mechanisms is probably the most important open issue in this research field.
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We want to outline that in order to implement TC techniques in a test bed, one must
address the fundamental issue of how to integrate the TC functionality in the protocol stack.
We have discussed this topic in Section 3.4, outlining that there is no clear proposal in this
sense in the current literature, except for the integrated routing/power-control protocol intro-
duced in (Kawadia and Kumar 2003). In particular, the issue of efficiently integrating TC
with the MAC protocol must be addressed, as some authors have noticed that using asym-
metric power levels may cause serious problems if the MAC layer is not properly designed
(Jung and Vaidya 2002). If the interaction between TC and MAC is not carefully designed,
the potential energy savings/capacity increases achieved by TC might be overweighed by
undesired behaviors at the MAC layer, thus impairing the usefulness of TC mechanisms.

Another issue we want to mention is that experimenting with TC techniques on a test bed
requires facing apparently silly problems, such as setting up a network topology composed
of an adequate number of nodes (say, at least few tenths) that communicate along multihop
paths. In fact, TC techniques are expected to manifest their usefulness in medium- to large-
scale networks, and setting up a wireless network with these features might be very difficult
in practice because of cost as well as logistic reasons.
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Case Study: TC and Cooperative
Routing in Ad Hoc Networks

As outlined in Chapter 1, many problems are still to be solved before ad hoc and sensor
networks can actually be used on a large scale. In this book, we have focused our attention
on TC techniques, which can help the network designer to address two major difficulties:
efficient use of the scarce energy resources and reduction of the radio interference level. In
this chapter of this book, we consider another fundamental issue that arises in the context
of ad hoc networks: how to stimulate cooperation between nodes in a competitive scenario.
After briefly describing the issue of cooperation in ad hoc networks and introducing basic
concepts from game theory, which will be used in the remainder of this chapter, we will show
how the integration of the TC functionality with routing can lead to the design of simpler
and more-efficient protocols (with respect to state-of-the-art solutions) to route messages in
a competitive network.

16.1 Cooperation in Ad Hoc Networks

In a typical ad hoc network application scenario, network nodes are owned and managed
by different authorities: private users, professionals, profit and no-profit organizations, and
so on. This is the case, for instance, of ad hoc networks used for providing fast traffic
information delivery in highways and metropolitan areas, or for providing ubiquitous Internet
access (see Chapter 1 for a short description of these application scenarios).

When network nodes are owned by different authorities, a voluntary and ‘unselfish’
participation of the nodes in the execution of a certain networkwide task cannot be taken
for granted. In fact, it is well known from economy that when humans are immersed in
a competitive environment they tend to act selfishly in order to preserve their individual
utility.

Selfish node behavior can have a dramatic impact on the performance of ad hoc network
protocols, unless adequate countermeasures are taken at the design stage. We clarify this

Topology Control in Wireless Ad Hoc and Sensor Networks P. Santi
 2005 John Wiley & Sons, Ltd
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Figure 16.1 Example showing the disruptive effect of selfish node behavior on packet
forwarding. Node u wants to send a packet to node v: since v is out of u’s maximum
transmitting range, only multihop communication through either node w or z is possible.
However, in a competitive, selfish environment, w and z have no interest in forwarding u’s
packet, and the communication between u and v is not possible.

point with an example, which refers to the most basic service a multihop ad hoc network
must provide, that is, routing of data packets.

Consider the situation depicted in Figure 16.1: the network is composed of a few nodes,
and the only way for node u to send a packet to node v is to use either node w or node
z as relay. If we consider a competitive environment and assume that node u is owned by
authority A1, node v is owned by authority A2, and nodes w and z are owned by authority
A3, the communication between nodes u and v will never take place. In fact, nodes w and
z have no interest in forwarding u’s packet because, in general, only the sender and/or the
receiver of a packet will get some utility from the communication. Indeed, nodes w and z

have interest in not forwarding the packet since this action has only the effect of reducing
their own resources (energy, and available bandwidth). Thus, either one of nodes w and z

will simply drop any packet received from u, and the communication between u and v is
not possible.

As the example above has shown, if some of the nodes in the network act selfishly, few
multihop communications can take place, and the network functionality is compromised.
Similar observations apply to other network services, such as information broadcast, P2P
file sharing, multihop Internet access, and so on. In order to mitigate the disruptive effects
of selfish node behavior, several authors have proposed techniques to stimulate cooperation
between competing nodes in performing a certain networkwide task.

In the remainder of this chapter, we will focus our attention on the task of performing
multihop message forwarding, which, given its vital role in the implementation of any ad
hoc network service, is the most widely studied case in the literature. Recently, researchers
have also considered the issue of cooperation in other networkwide tasks, such as multicast
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routing (Wang and Li 2004), wireless hot spots bandwidth sharing (Efstathiou and Polyzos
2005), and so on.

The most natural way of stimulating cooperation between selfish nodes in packet for-
warding (and, indeed, in any other network service) is to use incentives, which can take the
form of either reputation systems or monetary transfer.

In the former case, network nodes monitor each other’s behavior; if some nodes are
detected as not behaving according to the protocol specifications, they are marked as ‘bad
guys’ and their identity is advertised to the other nodes so that they can be isolated from
the rest of the network. In this approach, the incentive to behave according to the protocol
specification (i.e., in a sense, to act unselfishly) is given by the fact that a deviation from the
intended behavior (e.g. dropping someone else’s packets), although possibly leading to a
short-term utility increase, is likely to be detected by the other nodes, which exclude the bad-
behaving node from the network. If this happens, the bad-behaving node’s utility drops dra-
matically (for instance, because it can no longer send its own packets). So, a ‘rational’ node
prefers to act unselfishly in order to avoid the high risk of being excluded from the network.
Examples of reputation systems designed to stimulate cooperation in packet forwarding are
(Buchegger and LeBoudec 2002a,b; Marti et al. 2000; Michiardi and Molva 2002).

In approaches based on monetary transfer, a node wishing to send a packet must pay a
certain amount of money to the relay nodes to motivate them to forward its message. The
sender of a packet accepts to pay some money for the service received (packet forwarding
and delivery to the destination) since it expects to get some utility from the communication.
In turn, the relay nodes are motivated to forward the packet since the money they receive
as a compensation for their service can be used to pay the delivery of their own packets.
Examples of routing protocols based on monetary transfer are (Anderegg and Eidenbenz
2003; BenSalem et al. 2003; Buttyan and Hubaux 2001, 2003; Eidenbenz et al. 2005; Zhong
et al. 2003).

16.2 Reference Application Scenario

Although in principle the approach discussed in this case study can be used for establish-
ing a generic connection between arbitrary source/destination node pairs in a competitive
environment, in the following, we will specialize our techniques for a reference application
scenario, which we describe briefly.

Assume a wireless network is used to access a certain service, such as a connection to
the Internet through a wireless base station. A typical example is a network used to provide
wireless Internet connection in coffee bars, airports, shopping centers, and so on.

In principle, multihop wireless communication (i.e. ad hoc networking) can be used
to extend the area covered by the service, as depicted in Figure 16.2: instead of requiring
each customer (also called user, or node, in the remainder of this chapter) to have direct
connection with the base station, users can be allowed to reach the base station through
multihop paths, using the wireless devices (laptops, PDAs, cell phones, and so on) of other
customers as relay.

In order for this scenario to be successfully implemented, the nodes that are already
accessing the service must be motivated to act unselfishly, cooperating to successfully realize
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Figure 16.2 Multihop communication can be used to extend the coverage area of a certain
wireless service (e.g. Internet access).

the task of connecting a new customer to the service. In fact, in this context, the connected
nodes in principle have interest only in not allowing new nodes to join the service, as new-
comers would subtract network resources (energy and available bandwidth) to the currently
connected nodes.

To address this problem, a new node willing to access the service is requested to pay
a certain amount of money to the nodes that will relay its packets. Clearly, the newcomer
wants to pay the minimum amount of money needed to establish a successful connection
to the access point, and, to this purpose, it launches a reverse auction1 in which all the
currently connected nodes participate. We will clarify this mechanism in the reminder of
this chapter.

Note that in the scenario at hand both route discovery and packet forwarding must be
implemented in order to connect a newcomer to the service provider. Thus, we need to
device a mechanism that stimulates node cooperation in performing both these tasks.

For the sake of presentation, in the following, we conventionally call the customer
who wants to establish a connection to the service the sender, the intermediate wireless
nodes the relays (or intermediate nodes), and the service provider the destination of the
communication, independent of the actual data flow between the sender and the destination.
For instance, in case the accessed service is Internet connection, most of the traffic is likely
to be downlink (i.e. from the base station to the customer). Nevertheless, the data session is
initiated by the newcomer with a route (or service) discovery phase, and the newcomer will
pay for both the incoming and outgoing traffic. For this reason, we adopt the terminology
introduced above.

1The auction is reverse because the newcomer wants to buy, and not to sell, a service.
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16.3 Modeling Routing as a Game

Most of the approaches proposed in the literature to stimulate cooperation between nodes,
and the approach considered in this case study, have been designed and analyzed by borrow-
ing techniques and concepts from a theory that is very well known in Computer Science and
Economics, namely, game theory (see (Osborne and Rubinstein 1994) for an introduction
to this subject).

Game theory is aimed at modeling and helping in understanding the phenomena that
occur when several decision-makers (called players , or agents , in game theory terminology)
interact. The assumptions at the basis of this theory are that players pursue well-defined
objectives (they are rational ), and take into account their knowledge or expectations of other
players’ behavior when performing their own decisions (they act strategically). Although
these assumptions (especially the assumption that agents are rational) are sometimes criti-
cized by economists, they allow a sound mathematical treatment of the subject, which would
otherwise be very difficult to analyze.

In the remainder of this chapter, we model the process of establishing a route and for-
warding data packets between a source and a destination node in a competitive environment
as a game.

The players are the network nodes, which, with respect to a given data session, have one
of the following roles: source, relay (or intermediate) node, and destination. In the reference
scenario considered in this chapter, we assume that the source and the destination node are
unique (unicast communication); hence, in a network composed of n nodes, the remaining
n − 2 nodes play as (potential) relay nodes. As mentioned previously, the case of multiple
destinations (multicast communication) has been recently considered in the literature (Wang
and Li 2004).

The sender S has a private information (its type), which models its willingness to pay for
establishing a connection to the service provider. By assuming that the sender can quantify
this willingness to pay in monetary terms (this is a standard assumption in game theory),
the sender’s type corresponds to a maximum per-packet price m, which S will accept to
pay. The utility uS of the sender can then be modeled as

uS = m − cS(D),

where cS(D) is the actual per-packet amount of money that S will pay to establish a
communication with D. In case the connection cannot be established (because of lack of
wireless connection to the base station, or because of excessive cost for establishing the
connection), the sender will get 0 utility.

Let us now consider an arbitrary relay node v. In this case, the private type of the player
is its cost (which is also expressed in monetary terms) for forwarding S’s packet. In general,
the cost cv incurred by node v for forwarding the packet depends on several factors, such
as battery level, transmit power level (which, in turn, depends on the neighbor to which the
packet is destined), bandwidth currently used by the node for its own connections, and so
on. However, the only thing that is relevant here is that v’s willingness to relay S’s packet
can be expressed as an amount of money cv, independent of how cv is computed. The utility
of the generic relay node v can then be modeled as

uv = Pay(v) − cv,
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where Pay(v) is the per-packet payment that node v receives for relaying S’s packet. In
case node v does not take part in the data session, it receives no payment and incurs no
cost, that is, it gets 0 utility.

Let us finally consider the third type of player in the game, the destination D. In the
reference scenario described in Section 16.2, it is reasonable to assume that the service
provider is a trustworthy third party, which has no interest in cheating as this would com-
promise the level of customers’ confidence on the service. So, in our model, the destination
node is not actually part of the game, but it is rather a ‘neutral referee’ whose goal is to
correctly compute the cost-optimal (S, D) path, the payment for S, and the premiums for
the relay nodes.

The assumption that one of the agents in the game is actually a trustworthy third party is
quite common in the literature on stimulating cooperation in ad hoc networks, and it is also
commonly used in the game theory literature. For instance, when analyzing the properties
of an auction protocol (which is usually done by using game theoretic approaches), it is
assumed that the auctioneer acts honestly when determining the winners of the auction and
the price they must pay (Mas-Colell et al. 1995).

Given the assumption of rational behavior, the goal of each player (excluding the des-
tination) is to maximize its own utility function. To this end, each player chooses to play
a certain strategy that, in the reference scenario of Section 16.2, might include declaring
a false type, dropping/modifying messages, and so on. One of these possible strategies
is to follow the protocol specifications that, as we will see shortly, prescribe that players
declare their true types, and to send/relay control and data messages. Using game theory
terminology, we call this strategy truth telling.2

On the other hand, the goal of the protocol designer is to devise a mechanism such
that a globally desirable goal is achieved (called the social choice function in game theory),
and the individual utility of each node is maximized. Indeed, this is a sort of reverse
engineering problem, which is known as mechanism design in the game theory literature
(see Chapter 23 in (Mas-Colell et al. 1995) for an introduction to economic mechanism
design, and the seminal paper (Nisan and Ronen 2001) on algorithmic mechanism design).

In a typical mechanism design problem, the goal is to define the game rules (including
the payments) in such a way that the global outcome of the game played by the independent,
utility maximizing agents corresponds to the desired social choice function. This is typically
achieved by defining the game rules in such a way that truth telling becomes the dominant
strategy for each player. A dominant strategy is one that maximizes the utility of the player
no matter what strategies the other agents play. A mechanism such that truth telling is the
dominant strategy for each player is called truthful , or incentive compatible, or strategy
proof .

We remark that truthfulness is a very strong property, since it ensures that even if a
player P has complete knowledge of other players’ types and strategies truth telling is still
the strategy that optimizes P ’s utility function. So, player P (and any other player in the
game) has no incentive in deviating from the protocol specifications since deviating from
the specifications would not lead to any utility increase. In the next section, we will give a
practical interpretation of truthfulness in the reference scenario of Section 16.2.

2The reason for this name is the following. In standard, nondistributed game theory, a player’s strategy often
simply consists in declaring her type. Then, the strategy in which the player behaves honestly is called truth telling.
By analogy, we call truth telling as the honest player behavior in the context of distributed game theory also.
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Another important property the protocol must satisfy is individual rationality , which can
be informally described as follows: a node is always better off participating in the game
(i.e. in the protocol execution). Speaking in terms of utility function, individual rationality is
satisfied if a node that executes the protocol never gets a negative utility. Since a player who
does not take part in the game gets 0 utility, individual rationality ensures that participating
nodes are not exposed to the risk of decreasing their utility. As a consequence, a rational
player is motivated to join the game.

The only thing left to define in our routing game is the social choice function. The most
natural option is to define the social optimum as ‘establish the communication between
S and D along the most efficient path’, that is, along the path of minimum cost. In fact,
communicating along the most efficient path on one hand optimizes network resources and,
on the other hand, maximizes the likelihood of actually establishing a connection between
the newcomer and the access point. With respect to this last point, we observe that, in order
for a connection to be established, the sender has to pay an amount of money that is at
least sufficient to cover the costs incurred by the forwarding nodes (this is necessary to
motivate the relay nodes to forward the packet). Thus, the lower the overall path cost, the
lesser the sender is expected to pay, the most likely it is that the sender actually accepts to
establish the connection (we recall that the sender wants to spend at most m for sending
a packet).

Summarizing, our goal is to design a truthful and individually rational protocol for route
discovery and packet forwarding in ad hoc networks, such that the source and destina-
tion communicate using the path of minimum cost. Another desirable goal, which is not
related to the game theoretic setting, is to reduce the protocol message overhead as much
as possible.

To conclude this section, we want to mention that in our model we do not consider
collusion between nodes and malicious node behavior . With collusion, we mean that a
group of nodes (called a coalition in game theory terminology) can coordinate their cheating
behavior, if this results in an increase of the overall coalition utility. The surplus obtained
with this coordinate action can be shared among the nodes in the coalition, which then
have an incentive to deviate from the truthful behavior. In case of malicious nodes, agents
are allowed to play any strategy (also an irrational one), as long as this is detrimental to
the system. Typically, the techniques used to avoid collusion between nodes and to prevent
malicious node behavior are very different from the ones used to address noncollusive selfish
node behavior. For this reason, in the following, we will focus our attention on noncollusive
selfish nodes only.

16.4 A Practical Interpretation of Truthfulness

Before proceeding to describe the routing protocol, we want to explain why designing a
truthful mechanism is so important in this context. To this purpose, we briefly discuss how
truthfulness can be interpreted in a practical sense in the application scenario of Section 16.2.

When a new customer subscribes to the service, the provider will give her a hw/sw
‘access kit’, which implements at least the routing protocol used for establishing the con-
nection. As part of the subscription, the new customer will also receive some information on
how the service works: there is a fixed (monthly and/or per connection) fee, plus a variable
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per-connection cost. However, a customer can also be paid when other customers use her
device for their connections.

With this type of service, a selfish user might be tempted to manipulate the ‘access kit’
in order to increase the payments she receives. However, if the mechanism is truthful, the
user will never increase her utility by manipulating the ‘access kit’, since this kit is, in fact,
an agent that is acting in the best possible selfish way on the customer’s behalf. So, the
user is not motivated to try to fool the system.

Another observation is that if the ‘access kit’ is truthful, it is in the interest of the service
provider to give the customers very detailed information on the payment scheme: the amount
of money a customer spends for establishing a connection and the premium received when
a customer’s device acts as a relay. Advertising this information is fundamental to convince
even the expert user that cheating is not attractive.

16.5 Truthful Routing without TC

Before presenting a solution to the design problem described in Section 16.3, which inte-
grates routing and topology control, in this section, we present the AdHoc-VCG routing
protocol introduced in (Anderegg and Eidenbenz 2003), which is the only protocol intro-
duced in the literature so far with the following features:

– it performs route discovery;

– it sends packets along the minimum-cost path;

– it is formally proven to be truthful and individually rational.

In fact, the other solutions to the problem of routing in selfish environments presented
in the literature are concerned only with packet forwarding: in other words, it is assumed
that the source/destination routes are somehow known to the nodes, and the problem is one
of motivating nodes to forward packets. Furthermore, for some of these proposed protocols,
no formal proof of resilience to strategic node behavior is presented. Since in our reference
scenario performing both route discovery and packet forwarding is needed in order to
establish a new connection, AdHoc-VCG is basically the only solution we can use.

AdHoc-VCG is based on the following idea: when a node (the sender S) wants to send a
packet (to establish a connection with the access point in our reference scenario), it initiates
a route discovery phase, declaring the destination of its packets (the access point in our
case). At the end of the route discovery phase, the sender receives a message indicating
the path P to the destination and the per-packet cost of sending (or receiving) a packet
along P . The price p paid by the sender to send a packet is divided among the nodes in
P , according to well-defined rules. Note that p must be at least sufficient to cover the cost
of path P ; otherwise, at least one node in the path would have no incentive for forwarding
the packet. In the source payment model presented in (Anderegg and Eidenbenz 2003), S

pays the premiums also (i.e. the amount of money exceeding the actual forwarding cost) to
the relay nodes.3

3In the other payment model considered in (Anderegg and Eidenbenz 2003), the central-bank model, all the
premiums due to network nodes are accumulated by a central authority, which divides them equally among all the
nodes.
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Although AdHoc-VCG has the nice features described above, it has also major short-
comings.

The first shortcoming is the high message overhead generated by the protocol execution,
which is in the order of O(n3), where n is the number of network nodes. The high AdHoc-
VCG overhead is due to the fact that this protocol is based on a link-weighted graph model.
In other words, it is assumed that each link in the maxpower communication graph is
weighted with the cost of performing the communication along it, and the minimum-cost
path is calculated on the link-weighted graph. Since AdHoc-VCG is a fully distributed
protocol, the cost of a link is calculated by probing each link individually, which incurs a
considerable message overhead.

The second and more serious shortcoming is that AdHoc-VCG is proven to be truthful
and individually rational under the assumption that both the destination and the sender act
honestly. Differing from the model described in Section 16.3, it is then assumed that also
the sender does not take part in the game: it behaves well by assumption, and it is not
then required to satisfy individual rationality. We believe the assumption of honest sender’s
behavior is quite unrealistic in our reference scenario, as in this scenario many nodes are
expected to act as both sender (when sending/receiving their own packets) and relay node
(when forwarding other customers’ packets) at the same time. Thus, the assumption of
honest sender behavior implies that a node would behave strategically when forwarding
someone else’s packets, but it would become a ‘good guy’ (no strategic behavior) when it
sends its own packets.

Note that the fact that the sender is not part of the game implies that S has no utility
function to maximize. In fact, in AdHoc-VCG, it is implicitly assumed that once the sender
has initiated the route discovery phase, it always pays the requested amount of money, that
is, it cannot withdraw the communication request. Considering our reference scenario, the
above assumption would imply that a customer, once issued the connection request, would
be forced to pay an amount of money that she does not know in advance (and that could
render its utility function negative). So, executing AdHoc-VCG is not individually rational
for the sender: nobody would use a service whose cost is not known in advance!

16.6 Truthful Routing with TC

In this section, we present the COMMIT protocol for the truthful and cost-efficient routing
introduced in (Eidenbenz et al. 2005). The novelty of this protocol with respect to AdHoc-
VCG is that it is assumed that COMMIT is executed in combination with a TC protocol
that assigns a specific power level to every node in the network.4 Since a node v uses
the same power level independent of the actual neighbor to which the packet is sent, we
can assume that cv does not depend on the packets next hop in the path. In other words,
COMMIT uses a node-weighted graph model to compute the minimum-cost path, instead
of a link-weighted graph model as used in AdHoc-VCG.

The use of a node-weighted instead of a link-weighted graph model is the cause of the
better performance of COMMIT compared to AdHoc-VCG in terms of message overhead:
in fact, COMMIT exchanges at most O(n2�) messages to compute the optimal (S, D)

4Although in (Eidenbenz et al. 2005) it is not specified which TC protocols can or cannot used in combination
with COMMIT, it turns out that any periodical, level-based TC protocol can be used for this purpose.
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path, where � is the maximum node degree in the communication graph computed by the
TC protocol. Considering that most TC protocols build communication graphs with small
degree (� = O(log n), or even � = O(1) in some cases), this is a notable improvement
over the O(n3) messages exchanged by AdHoc-VCG.

COMMIT also solves the second shortcoming of AdHoc-VCG, since it is shown to be
resilient to strategic sender behavior also. In other words, COMMIT is proven to be truthful
in the scenario in which the sender is also part of the game, that is, it is a player whose
goal is to maximize her own utility function. Furthermore, executing COMMIT is proven
to be individually rational for the sender also. These two properties are achieved by using
a different pricing scheme with respect to that used in AdHoc-VCG.

16.6.1 The COMMIT routing protocol

The COMMIT routing protocol is based on the following simple idea, which we explain in
the context of our reference scenario. When a new customer wants to establish a connection
to the service provider, she issues a ‘connection request’, stating the maximum amount of
money she is willing to pay for it. The customer is committed (this explains the name of
the protocol) to the connection request: if a connection to the access point with a cost less
than (or equal to) the declared price can actually be established, the newcomer cannot with-
draw the request, and she must pay the requested amount of money. However, if the price
requested for the connection does exceed the declared price, the newcomer can withdraw
the service request, incurring no cost. This way, the potential new customer has always full
control of the maximum amount of money she will pay for the requested service, as it is
reasonable to assume in a realistic scenario.

The implementation of the route discovery phase in COMMIT is very similar to the one
performed in AdHoc-VCG, except for the fact that we do not need to compute weights on
each link: when the sender wants to establish a connection to the destination, it sends a route
discovery message, which contains the sender ID, the destination ID,5 and the maximum
amount m of money the sender is willing to pay for sending a packet to D. When an
intermediate node v receives a route discovery message generated by S, it includes in the
message its own ID and its cost cv for forwarding the packet (we recall that in COMMIT it
is assumed that the cost is associated with nodes, and not with links), and it propagates the
route discovery message with the new information included. Note that both the sender and
the intermediate nodes use the transmit power level set by the TC protocol to send packets,
independent of the actual neighbors to which the packet is destined. If the communication
topology is connected, one or more of the route discovery messages generated by the sender
will eventually reach the destination node, which will compute the minimum-cost path MP,
the payment for the sender, and the premiums for the nodes in MP. This information is
sent back to the sender through the reverse MP path. After the route discovery phase is
completed, the sender, provided the requested price does not exceed m, sends the packets
along MP, including the payments for nodes in MP. For a detailed description of COMMIT
implementation, the reader is referred to (Eidenbenz et al. 2005).

5In the reference application scenario at hand, including the destination ID in the message is not necessary as
the destination is always the access point. However, in case the destination of a packet is arbitrary, including the
destination ID in the route discovery message is necessary.
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16.6.2 The COMMIT pricing scheme

Let us now describe the core of the COMMIT protocol, that is, the pricing scheme. We
recall that we must devise a pricing scheme such that the following hold:

– Truthfulness : Cheating (e.g. declaring a false type) is not attractive for both the relay
nodes and the sender.

– Individual rationality : Both the sender and the relay nodes participating in the protocol
execution never get a negative utility.

– Cost efficiency : If feasible, the communication takes place along the path of minimum
cost.

From game theory, it is known that any pricing scheme that satisfies the three properties
above must be based on the VCG mechanism (Feigenbaum et al. 2002). The VCG mech-
anism, named after Vickrey (Vickrey 1961), Clarke (Clarke 1971), and Groves (Groves
1973), is also used in the AdHoc-VCG protocol, and defines the payments to the nodes as
follows.

Definition 16.6.1 (VCG payments) Let c(P ) denote the cost of an arbitrary (S, D) path
P , where c(P ) = ∑

v∈P,v �=S,D cv , and let MP denote the path of minimum cost connecting
S and D in the communication graph. For any v �= S, D in MP, let c(P −v) denote the cost
of the optimal (S, D) path P −v , which does not include node v. Path P −v is called the
replacement path for node v. The payment for node v is defined as

Pay(v) = c(P −v) − c(MP) + cv,

where cv is the declared forwarding cost of node v. The payments for the nodes that are not
on the minimum-cost path are set to 0.

Note that the above definition of VCG payments assumes a node-weighted graph model.
By redefining the cost of a path as the sum of the link costs, we can extend the notion of
VCG payments to the case of link-weighted graphs (this is the model used in the AdHoc-
VCG protocol).

The intuition behind the VCG pricing scheme is the following: the payment a relay
node v receives exceeds its forwarding cost by a positive quantity c(P −v) − c(MP), which
measures the ‘added value’ provided by node v to the network: was node v not part of
the network, the minimum cost for connecting S to D would be c(P −v) ≥ c(MP). Thus,
c(P −v) − c(MP) represents the added value provided by node v to the network, and the
node is given exactly this amount of money in excess of its forwarding cost.

Note that the cost cv used in the definition of the VCG payments is the cost declared by
node v, which could be different from the actual forwarding cost c′

v of node v. However, the
following informal argument shows that declaring a false type does not increase a node’s
utility with VCG payments (for a formal proof of this, see (Anderegg and Eidenbenz 2003)).

Suppose node v declares a forwarding cost cv = c′
v + ε, and that v remains in the

minimum-cost path MP also with this false declaration. Since the increase in the declared
cost causes an equivalent increase in the cost of MP (this is true under the assumption that
the other nodes in the path do not change their declarations), and c(P −v) does not change
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(because the cost declared by node v has no influence on the cost of the optimal path not
including v), the payment that node v will receive remains unchanged. In fact,

Pay(v) = c(P −v) − (c(MP) + ε) + (c′
v + ε) = c(P −v) − c(MP) + c′

v,

which is the payment that node v would have received by declaring its true type c′
v . A

similar argument applies to the case in which node v underdeclares its true forwarding
cost. Since by under- or overdeclaring its packet forwarding cost node v cannot increase
its utility, but these actions only expose the node to the risk of being excluded from the
minimum-cost path, it follows that v has no incentive in declaring a false type. In other
words, VCG payments can be used to design a truthful routing protocol.

As for individual rationality, we observe that a node v that is part of the minimum-cost
path will always receive an amount of money that is at least equal to its forwarding cost,
that is, it has a positive utility. In case node v is not in the minimum-cost path, it gets
no payment and incurs no cost, that is, it has 0 utility. Thus, participating in the game is
individually rational for node v, since this action can only increase (or leave unchanged)
node v’s utility.

As the example reported in Figure 16.3 shows, with VCG payments, the sum of the
premiums paid to the intermediate nodes, in general, exceeds the true cost of sending a
packet from S to D. In the node configuration reported in Figure 16.3, the minimum-cost
path connecting S and D is MP = {S, u, v, z, D}, which has cost equal to 46. The VCG
payments for the nodes in MP − {S, D} are as follows:

Pay(u) = c(P −u) − c(MP) + cu = 53 − 46 + 15 = 22,

Pay(v) = c(P −v) − c(MP) + cv = 48 − 46 + 19 = 21,

Pay(z) = c(P −z) − c(MP) + cz = 48 − 46 + 12 = 14,

which sums up to 57 > 46.
The problem described above, which is known as budget imbalance in game theory,

is intrinsic in the VCG mechanism and, under reasonable assumptions, in any mechanism
that achieves truthfulness, individual rationality, and cost efficiency at the same time (Mas-
Colell et al. 1995). The reason for this economic inefficiency is that, in order to motivate
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Figure 16.3 Example showing the budget imbalance problem with VCG payments. The
minimum-cost path connecting S and D is MP = {S, u, v, z, D} (bold edges), with cost
equal to 46. The sum of the VCG payments to the nodes in MP − {S, D} is 57 > 46.
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relay nodes to cooperate, they must be given premiums exceeding their forwarding cost.
The difference between the overall amount of these premiums and the cost of the optimal
(S, D) path has been called the cost of cooperation in the literature (Eidenbenz et al. 2005).
Thus, the cost of cooperation in the example of Figure 16.3 is 11.

Differing from AdHoc-VCG, in COMMIT, we must also define the payment rule for
the sender, in such a way that truthfulness and individual rationality are satisfied. The price
cS(D) that S should pay for the communication defines the decision rule, which determines
whether the communication takes place (cS(D) ≤ m) or not (cS(D) > m).

A trivial choice would be to set cS(D) = ∑
v∈MP,v �=S,D Pay(v), that is, to let the sender

pay the overall amount of the premiums due to the nodes in MP − {S, D}. However, the
following example shows that this definition of cS(D) leaves space for a strategic behavior
of the nodes in the minimum-cost path.

Consider again the node configuration depicted in Figure 16.3, and assume the sender has
a reserve price m = 56. If all the nodes in the network behave truthfully, the communication
between S and D cannot be established, since the cost that S must pay is cS(D) = 57,
which exceeds the reserve price. Assume now that node z falsely declares a forwarding
cost of 13, instead of 12. With this false declaration, the minimum-cost path is still MP =
{S, u, v, z, D}, but the premiums paid to the nodes are changed as follows:

Pay(u) = c(P −u) − c(MP) + cu = 53 − 47 + 15 = 21,

Pay(v) = c(P −v) − c(MP) + cv = 48 − 47 + 19 = 20,

Pay(z) = c(P −z) − c(MP) + cz = 48 − 47 + 13 = 14,

which sums up to 55 < 56, and the communication takes place. Thus, by falsely reporting
its type, node z would be able to increase its utility from 0 (because the communication
would not take place if z would report its true cost) to 2, which implies that the payment
scheme obtained by setting cS(D) = ∑

v∈MP,v �=S,D Pay(v) is not truthful.
To solve this problem, the authors of (Eidenbenz et al. 2005) suggest defining cS(D) as

follows.

Definition 16.6.2 (Global replacement path and sender payment) Given the minimum-
cost path MP, the global replacement path P −MP is the path of minimum cost that connects
S and D in the communication graph and does not include any node in MP − {S, D}. Denot-
ing by c(P −MP) the cost of the global replacement path, the payment for the sender is set as
cS(D) = c(P −MP).

The defining of the sender payment as the cost of the global replacement path prevents
the subtle strategic node behavior described above. In fact, with this definition of cS(D),
the price paid by the sender (which determines whether the communication will actually
take place) is no longer influenced by the declarations of the nodes in the minimum-cost
path, and the forwarding nodes have no way of driving cS(D) below m, as in the example
reported above. Referring back to the node configuration of Figure 16.3, the sender payment
is cS(D) = c(P −MP) = 53 < 56, and the connection between S and D can be established.

While ensuring truthfulness and individual rationality for both the sender and the for-
warding nodes, the sender payment rule as defined in Definition 16.6.2 introduces an
additional budget balancing problem. In fact, when the connection is established, the sender
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Figure 16.4 Examples showing that the cost of the global replacement path can be either
lower (a) or higher (b) than the sum of the premiums due to the forwarding nodes. The
minimum-cost path is represented by bold edges.

pays an amount of money that, in general, differs from the overall amount of the premiums
due to the forwarding nodes.

As the examples reported in Figure 16.4 show, the cost of the global replacement path
might be lower or higher than the sum of the premiums due to the forwarding nodes. In the
node configuration at the top of the figure, the minimum-cost path is MP = {S, u, v, z, D},
and the payments to the forwarding nodes are Pay(u) = 20, Pay(v) = 23, and Pay(z) =
25, summing up to 68. However, the sender must pay only 58, which corresponds to the
cost of the global replacement path. In the node configuration at the bottom of the figure,
the minimum-cost path is again MP = {S, u, v, z, D}. In this case, the payments to the
forwarding nodes are Pay(u) = 15, Pay(v) = 17, and Pay(z) = 27, which sum up to 59.
The cost of the global replacement path is c(P −MP) = 60, which, contrary to the previous
case, exceeds the sum of the premiums due to the forwarding nodes.

To address this budget balancing problem, the authors of (Eidenbenz et al. 2005) suggest
that the destination of the communication (the service provider in our reference scenario)
should balance the budget, providing the additional money needed to pay the relay nodes
in case the price paid by the sender is not sufficient to cover the forwarding expenses, or
getting some money from the sender in case the price paid by S exceeds the forwarding
expenses.

The payment model proposed in (Eidenbenz et al. 2005) seems quite reasonable in
the reference scenario described in Section 16.2, since the service provider is likely to be
involved in many communication sessions, and it is possible that its overall balance is
close to 0. Even if this is not the case (e.g. because c(P −MP) <

∑
v∈MP,v �=S,D Pay(v) on
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the average), the provider can act on the fixed price requested to subscribe to the service in
order to preserve its revenue.

In application scenarios in which the destination is an arbitrary network node, the argu-
ment in favor of using the destination node to balance the budget is quite weak, since
a node might not be willing to accept data from the sender if this requires paying some
money. So, in these scenarios, we could use a different payment model, such as the central-
bank model used in (Anderegg and Eidenbenz 2003), where a central authority balances
the budget, equally dividing the cost (or the profit) of balancing the budget among the
network nodes.

16.6.3 Protocol analysis

The following properties of the COMMIT protocol have been proven in (Eidenbenz et al.
2005):

– Cost efficiency : If all nodes act truthfully, COMMIT computes the minimum-cost
route from S to D in the communication graph.

– Message complexity : The total number of messages exchanged by nodes executing
COMMIT to establish a S, D route is O(n2�), where � is the maximum node degree
in the communication graph.

– Truthfulness : Behaving truthfully is a dominant strategy for both the sender and the
relay nodes.

– Individual rationality : Executing COMMIT is individually rational for both the sender
and the relay nodes.

While a formal proof that the truthfulness property holds for the relay nodes is quite
complicated (the interested reader is referred to (Eidenbenz et al. 2005)), the proof that
behaving honestly is a dominant strategy for the sender is quite straightforward, and it is
reported in the following.

We recall that, according to COMMIT specifications, the sender must: (i) declare its
reserve price m; (ii) send a route discovery message that includes m; and (iii) in case the
communication can be established at a price that does not exceed m, send the data along
the computed path, and pay the requested connection price.

The sender might cheat in several different ways, such as,

1. declare a false reserve price mf;

2. not sending the route discovery message;

3. not sending the data on the computed route;

4. pay less money than the requested price;

5. any combination of behaviors (1), (2), (3) and (4) above.

Let us first consider cheating option (1). Let mf and m denote the false (the one included
in the route discovery message) and the true type of node S, and assume mf < m. The
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following cases can occur:

– c(P −MP) < mf < m: In this situation, the communication takes place with both decla-
rations, and the utility of node S with the false declaration remains unchanged. This is
because S’s utility depends on c(P −MP) (which is not influenced by S’s declaration)
and on the true type m.

– mf ≤ c(P −MP) ≤ m: In this case, if the sender would declare mf instead of m, it
would get 0 utility because the connection to the destination is not established. On
the other hand, by reporting its true type, the sender would establish a connection
to the destination, getting a positive utility of m − c(P −MP). Then, declaring a false
type decreases the utility of the sender.

– mf < m < c(P −MP): In this situation, the sender’s utility is 0 with both declarations.

The above case-by-case analysis proves that underdeclaring the type is not attractive for the
sender. By applying similar arguments, it can be easily shown that overdeclaring the type
is also not attractive for the sender, which implies that cheating option (1) cannot increase
the sender’s utility.

Consider now cheating option (2). If the sender does not send the routing discovery
message, it definitely cannot establish a connection with the destination, which results in 0
utility for the sender. Since by sending the route discovery message node S will get positive
utility (we recall that the payment scheme ensures that S will never pay an amount of money
that exceeds m), it follows that cheating option (2) is also not attractive for the sender.

As for cheating option (3), we observe that the sender can: (i) send the packet along a
route different from the computed one, or (ii) not send the data at all. Situation (i) cannot
occur, since the sender is aware of only one route to the destination, the one computed by
COMMIT (which is the cost-optimal route). As for case (ii), we observe that the sender is
expected to get some positive utility only if the data is actually delivered to the destination.
So, not sending the data results in 0 utility for the sender, and also, this action cannot
increase S’s utility with respect to the case of honest node behavior.

In principle, cheating option (4) might increase node S’s utility: by paying less money
than the requested price cS(D), the sender apparently increases its utility. However, we
remark again that the sender gets some positive utility only if the data is actually delivered
to the destination. In the following, we prove that if the sender pays less than the requested
amount of money, its packets will not reach the destination, implying that node S gets 0
utility from cheating option (4).

We have to consider the following cases:

– The requested price cS(D) is less than or equal to the sum of the payments due to
the forwarding nodes : In this case, the destination node provides some money m′ to
balance the budget and pay all the forwarding nodes. However, if S provides less
money than requested (say m′′ < cS(D)), we have that m′ + m′′ is less than the sum
of the payments due to the intermediate nodes. So, one of these nodes will not receive
the expected amount of money,6 and, as a consequence, will drop S’s packets. Thus,
node S’s utility in this situation is 0.

6Each node in the minimum-cost path is informed of the amount of its due payment when the computed route
is sent back from the destination to the sender.
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– The requested price cS(D) exceeds the sum of the payments due to the forwarding
nodes : In this case, the lesser money m′′ provided by the sender might be sufficient
to cover the forwarding costs, so its packets can reach the destination. However, the
destination node knows the amount of money in excess of the forwarding costs that
it must get from the sender and, on receiving a lesser amount of money, it can decide
to refuse S’s packets. Thus, in this situation also, node S gets 0 utility.

Finally, by a straightforward case-by-case analysis, we can prove that any combination
of cheating options (1), (2), (3) and (4) cannot increase S’s utility. This proves that acting
truthfully is a dominant strategy for the sender.

16.6.4 Interplay between TC and COMMIT routing

In this section, we discuss the interplay between TC and cooperative routing in ad hoc
networks. As we shall see, on one hand implementing a truthful, individually rational, and
cost-efficient routing protocol imposes some constraints on the underlying network topology.
On the other hand, by carefully choosing the network topology, the designer can mitigate the
budget imbalance problems induced by the requirement of implementing a truthful routing
mechanism.

As we have observed in Section 16.6.2, it is known from game theory that any pricing
scheme that satisfies truthfulness, individual rationality, and cost efficiency must be based
on VCG-like payments. To determine the VCG payment of a node v on the minimum-
cost path, we must compute the cost of the replacement path for v, that is, of the path
of minimum cost connecting S and D in the communication graph that does not include
node v. Of course, a prerequisite for computing this cost is that the replacement path
actually exists. In other words, in order for the VCG payments to be correctly computed,
the communication graph must satisfy the following property: for any node v in the graph,
and for any source/destination pair (S, D), removing v from the graph does not disconnect
nodes S and D. Using graph-theory terminology, this is equivalent to requiring that the
communication graph is biconnected.

Indeed, the sender payment rule used in COMMIT, which is also based on the VCG
mechanism, poses a stronger constraint on the communication graph. In fact, the definition
of the sender payment requires computing the cost of the global replacement path which, we
recall, is the path of minimum cost connecting S and D in the communication graph that does
not include any of the nodes in MP − {S, D}, where MP is the minimum-cost path between
S and D. Thus, in order to correctly compute the sender payment, the communication
graph must satisfy the following property, which we call minimum-cost biconnectivity : for
any source/destination pair (S, D), there always exists a path connecting S and D in the
communication graph that does not include any of the nodes in MP − {S, D}, where MP is
the minimum-cost (S, D)-path. Note that this graph property is stronger than biconnectivity.
In fact, minimum-cost biconnectivity requires that one of the at least two node-disjoint paths
that always exist between S and D (because of biconnectivity) is the minimum-cost path.

The difference between biconnectivity and minimum-cost biconnectivity is shown in
Figure 16.5. The graph reported at the top of the figure satisfies biconnectivity (from the
viewpoint of nodes S and D), but it is not minimum-cost biconnected: in fact, S and D

become disconnected when all the nodes in MP − {S, D} are removed from the commu-
nication graph. On the contrary, the graph reported at the bottom of Figure 16.5 satisfies
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Figure 16.5 Examples showing the difference between biconnectivity and minimum-cost
biconnectivity. The graph at the top is biconnected (from the view point of nodes S and D),
but it is not minimum-cost biconnected: removing the nodes in the minimum-cost path (bold
edges) disconnects S and D. The graph at the bottom satisfies minimum-cost biconnectivity:
the minimum-cost path is MP = {S, u, v, z, D} (bold edges), and removing nodes u, v and
z leaves S and D connected.

minimum-cost biconnectivity, since removing all the nodes in MP − {S, D} does not dis-
connect nodes S and D.

The above discussion indicates that the topology generated by a TC protocol to be used
in combination with COMMIT routing must fulfill stringent requirements, that is, satisfying
minimum-cost biconnectivity. Although the problem of building a k-connected topology
(for some constant k > 1) has been recently studied in the literature (see (Bettstetter 2002;
Li and Hou 2004; Penrose 1999a; Wan and Yi 2004)), the problem of designing a protocol
that builds a minimum-cost biconnected topology has not been adequately addressed yet.
The simulation results presented in (Eidenbenz et al. 2005) show that popular TC protocols
such as CBTC (see Section 11.1) and KNeigh (see Section 12.2) produce topologies that,
with high probability, satisfy minimum-cost biconnectivity. The same result holds for the
topology resulting when all the nodes have the same transmitting range, which equals the
critical value for connectivity. However, these are average-case results based on simula-
tions, and the problem of designing a TC protocol that builds a provably minimum-cost
biconnected topology remains open.

Let us now consider the second issue we want to discuss, that is, mitigating the budget
imbalance problem. As observed in Section 16.6.2, the COMMIT payment scheme induces
two budget imbalance problems: one, which is known in the literature as the cost of coop-
eration, is due to the fact that the sum of the premiums paid to the intermediate nodes
exceeds the actual packet forwarding cost; the second problem, which is induced by the
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sender payment rule, consists of the fact that the price paid by the sender in general is
different from the sum of the premiums due to the forwarding nodes.

In general, the interest of the network designer is to reduce the budget imbalances
described above as much as possible, as an imbalanced budget always results is some form
of economic inefficiency. We explain this point with two examples.

Consider the reference application scenario of Section 16.2, and assume the service
provider wants to design a truthful, individually rational, and cost-efficient routing protocol
for accessing its service. The provider knows that, in order to motivate relay nodes to
cooperate, they must be given a premium that exceeds their actual packet forwarding cost.
However, it is in the interest of the service provider to reduce the extra money given to the
intermediate nodes as much as possible. In fact, this extra money will be paid by either the
sender or by the service provider itself (according to the payment model used in COMMIT).
If it is paid by the sender, a lesser amount of extra money due to the relay nodes increases
the likelihood of actually establishing a connection with the new customer (who, we recall,
has a reserve price m for accessing the service); if the extra money is paid by the provider,
its interests in reducing the cost of cooperation as much as possible is even more evident.
One might observe that the service provider can balance the costs caused by a relatively
high cost of cooperation by acting on the fixed fee requested of the nodes to access the
service; however, increasing the fixed fee would generate no additional profit for the service
provider (because increasing the fee is only a form of compensation for the high cooperation
cost), while it potentially reduces the number of customers willing to access the service. On
the other hand, relay nodes are happy when receiving even a very small amount of extra
money, as this extra money anyway increases their utility with respect to not forwarding
the packet. So, a reduced cost of cooperation does not compromise the routing mechanism,
and improves the economic efficiency of the system.

Let us now consider the second budget imbalance problem, caused by the fact that the
sender pays the cost of the global replacement path, which is, in general, different from the
sum of the payments due to the forwarding nodes. As discussed in Section 16.6.2, in the
COMMIT payment model, the service provider is assumed to balance the budget, either
by receiving some money from the sender or by giving some money to the intermediate
nodes. We claim that it is in the interest of the service provider that the price requested of
(and possibly paid by) the sender is as close as possible to the actual packet forwarding
cost (including the extra money to the relay nodes). In fact, if the price requested to the
sender is excessively high, the service provider potentially receives a lot of money from the
connected customers. However, it is most likely that many potential customers will refuse
the connection because of the high cost, which results in a loss of money for the service
provider. On the other hand, if the price requested to the sender is excessively low, the
service provider incurs a considerable cost to balance the budget. As observed above, this
cost can be somehow be compensated by increasing the fixed fee requested to the customers,
but the fixed fee increase is likely to reduce the number of customers accessing the service,
while leaving the provider’s profit unchanged.

When the design of a cooperative routing protocol is addressed as a stand-alone task,
there is little the designer can do to mitigate the budget imbalance problems described above.
In fact, these problems are caused by VCG-like payment schemes, which, unfortunately, are
basically the only possible option to achieve truthfulness, individual rationality, and cost
efficiency at the same time. However, if the problem of designing a cooperative routing
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Figure 16.6 Examples showing how the careful choice of the network topology can consid-
erably mitigate the budget imbalance problems. All the nodes have the same weight equal
to 1, which is not reported in the graphs. The minimum-cost path is represented by the bold
edges.

protocol is tackled using a wider perspective, which comprises both routing and TC, the
network designer does have a handle to reduce budget imbalances: the careful design of the
network topology on which the source/destination routes are computed.

We illustrate this point with an example. Consider the node configuration reported in
Figure 16.6(a). For simplicity, assume all the nodes have the same forwarding cost equal
to 1. In this situation, the minimum-cost path is the path of minimum hop count connecting
S with D, that is, the path MP = {S, u, v, w, z, D} with cost equal to 4. The payments to
the nodes in MP − {S, D} are as follows:

Pay(u) = Pay(v) = Pay(w) = Pay(z) = 6 − 4 + 1 = 3.

Thus, the total of the premiums paid to the forwarding nodes is 12, and the cost of
cooperation is 12 − 4 = 8. As for the second type of budget imbalance, we observe that
the cost of the global replacement path is 6, which implies that the destination node must
provide the remaining 6 units of money to balance the budget.

Let us now consider the node configuration reported in Figure 16.6(b). The network
topology is now relatively denser as four new links are added to the communication graph.
Intuitively, adding links to the communication graph should reduce both the cost of cooper-
ation (because the ‘added value’ of a node in the minimum-cost path is expected to decrease
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when new links are added) and the amount of money provided/received by the destination
node (because the difference between the cost of the global replacement path and the over-
all forwarding cost should be relatively smaller for relatively denser graphs). However, this
happens only if the additional links are carefully chosen: in the node configuration reported
in Figure 16.6(b), the minimum-cost path, the payments to the nodes, and the cost of the
global replacement path remain unchanged, which implies that the cost of cooperation is
still 8, and the destination node still has to provide 6 units of money to balance the budget.

Finally, consider the node configuration of Figure 16.6(c). Similar to the topology of
Figure 16.6(b), this topology has four more links than the one reported in Figure 16.6(a).
However, these four links turn out to be very useful to mitigate both types of budget
imbalance, which are halved with respect to the case of Figure 16.6(a). In fact, the cost of
the optimal path remains unchanged, but the payments due to the nodes in MP − {S, D}
change as follows:

Pay(u) = Pay(v) = Pay(w) = Pay(z) = 5 − 4 + 1 = 2.

As a consequence, the cost of cooperation is halved to 8 − 4 = 4. Furthermore, the cost
of the global replacement path with this node configuration is 5, which implies that the
destination node must provide only 8 − 5 = 3 units of money to balance the budget.

16.7 Conclusion

In this chapter, we have studied the problem of stimulating node cooperation in the fun-
damental task of message routing, and we have demonstrated the advantage of using a
cross-layer approach to solving this problem: by exploiting the interplay between routing
and TC, we have been able to design a cooperative routing protocol that generates less
message overhead with respect to state-of-the-art approaches and successfully deals with
strategic sender behavior. On the other hand, the investigation of the cooperative rout-
ing problem has disclosed new research directions in the field of TC: designing protocols
that build a provably minimum-cost biconnected topology (possibly in a fully distributed
and localized way), and characterizing ‘good topologies’ for the purpose of mitigating the
inevitable budget imbalance problems caused by the use of a cooperative routing mechanism.

With respect to this last point, we observe that intuitively a ‘good topology’ for the
purpose of cooperative routing should contain several paths of approximately the same cost
between the source/destination pairs. In fact, if this happens, the expected ‘added value’ of
the nodes in the minimum-cost path is relatively low, as is the expected difference between
the cost of the global replacement path and the sum of the premiums due to the relay
nodes. In order to have several paths of approximately the same cost, the network topology
should be relatively dense, as the examples reported in Figure 16.6 show. This intuition is
confirmed also by the simulation results reported in (Eidenbenz et al. 2005), which show that
a relatively dense topology such as the one obtained when all the nodes have a transmitting
range equal to the critical value for connectivity can reduce the magnitude of the budget
imbalance problems by about 15% with respect to the case of relatively sparser topologies
such as the ones generated by CBTC and KNeigh. So, the goal of building a ‘good topology’
for the purpose of cooperative routing appears to be at least partially conflicting with the
goals of reducing node energy consumption and radio interference. Further investigation
along this research direction is needed.
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Finally, we observe that in this chapter we have implicitly assumed that the nodes
execute the TC protocol truthfully. This assumption is in general quite unrealistic, since a
selfish node is expected to manipulate the TC protocol also, if this results in an increase
of its utility. Thus, designing truthful TC protocols is also a very interesting open research
topic, which has been only partially addressed by a recent paper (Eidenbenz et al. 2003).



A

Elements of Graph Theory

In this Appendix, we report basic definitions and concepts from graph theory that have
been used in this book. Most of the material presented in this Appendix is based on (Bol-
lobás 1998) (Section A.1) and on (Goodman and O’Rourke 1997) and (deBerg et al. 1997)
(Section A.2).

A.1 Basic Definitions

Definition A.1.1 (Graph) A graph G is an ordered pair of disjoint sets (N, E), where E ⊆
N × N . Set N is called the vertex, or node, set, while set E is the edge set of graph G.
Typically, it is assumed that self-loops (i.e. edges of the form (u, u), for some u ∈ N ) are not
contained in a graph.

Definition A.1.2 (Directed and undirected graph) A graph G = (N, E) is directed if the
edge set is composed of ordered node pairs. A graph is undirected if the edge set is composed
of unordered node pairs.

Examples of directed and undirected graphs are reported in Figure A.1. Unless otherwise
stated, in the following by graph we mean undirected graph.

Definition A.1.3 (Neighbor nodes) Given a graph G = (N, E), two nodes u, v ∈ N are
said to be neighbors, or adjacent nodes, if (u, v) ∈ E. If G is directed, we distinguish between
incoming neighbors of u (those nodes v ∈ N such that (v, u) ∈ E) and outgoing neighbors
of u (those nodes v ∈ N such that (u, v) ∈ E).

Definition A.1.4 (Node degree) Given a graph G = (N, E), the degree of a node u ∈ N is
the number of its neighbors in the graph. Formally,

deg(u) = |{v ∈ N : (u, v) ∈ E}|.
If G is directed, we distinguish between in-degree (number of incoming neighbors) and
out-degree (number of outgoing neighbors) of a node.

Topology Control in Wireless Ad Hoc and Sensor Networks P. Santi
 2005 John Wiley & Sons, Ltd
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(a) (b)

Figure A.1 Examples of directed graph (a) and undirected graph (b).

Definition A.1.5 (Path) Given a graph G = (N, E), and given any two nodes u, v ∈ N , a
path connecting u and v in G is a sequence of nodes {u = u0, u1, . . . , uk−1, uk = v} such
that for any i = 0, . . . , k − 1, (ui, ui+1) ∈ E. The length of the path is the number of edges
in the path.

Definition A.1.6 (Cycle) A cycle is a path C = {u0, . . . , uk} such that k ≥ 3, u0 = uk , and
the other nodes in C are distinct from each other and from u0.

Definition A.1.7 (Node distance) Given a graph G = (N, E) and any two nodes u, v ∈ N ,
their distance dist(u, v) is the minimal length of a path connecting them. If there is no path
connecting u and v in G, then dist (u, v) = ∞.

Definition A.1.8 (Graph diameter) The diameter of graph G = (N, E) is the maximum
possible distance between any two nodes in G. Formally,

diam(G) = max
u,v∈N

dist(u, v).

Definition A.1.9 (Subgraph) Given a graph G = (N, E), a subgraph of G is any graph
G′ = (N ′, E′) such that N ′ ⊆ N and E′ ⊆ E. Given any subset N ′ of the nodes in G, the
subgraph of G induced by N ′ is defined as GN ′ = (N ′, E(N ′)), where E(N ′) = {(u, v) ∈
E : u, v ∈ N ′}, that is, GN ′ contains all the edges of G such that both endpoints of the edge
are in N ′.

Definition A.1.10 (Symmetric sub- and supergraph) Let G = (N, E) be a directed
graph. The symmetric subgraph of G, denoted G−, is the graph obtained from G by removing
all edges such that (u, v) ∈ E and (v, u) /∈ E. Formally, G− = (N, E−), where (u, v) ∈ E−
if and only if (u, v) ∈ E and (v, u) ∈ E. The symmetric supergraph of G, denoted as G+,
is the graph obtained from G by adding the reverse edge to all unidirectional edges in G.
Formally, G+ = (N, E+), where (u, v) ∈ E+ if and only if (u, v) ∈ E or (v, u) ∈ E.

Definition A.1.11 (Order of a graph) The order of graph G = (N, E) is the number of
nodes in G, that is, the cardinality of set N .

Definition A.1.12 (Complete graph) The complete graph Kn = (N, E) of order n is such
that |N | = n, and (u, v) ∈ E for any two distinct nodes u, v ∈ N .

Definition A.1.13 (Sparse graph) A graph G = (N, E) of order n is sparse if |E| = O(n),
that is, if the number of edges in G is linear in n. If a graph is sparse, the average node
degree is O(1).
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Figure A.2 Notion of graph planarity. The drawing of the graph G = ({a, b, c, d,

e, f }, {(a, b), (b, c), (a, d), (d, e), (d, f ), (e, f )}) in (a) is not planar; yet, graph G is planar,
as shown by the drawing in (b).

Definition A.1.14 (Planar graph) A graph G = (N, E) is planar if it can be drawn in the
plane in such a way that no two edges in E intersect.

Note that a graph G can be drawn in several different ways; a graph is planar if there
exists at least one way of drawing it in the plane in such a way that no two edges cross
each other (see Figure A.2).

Definition A.1.15 (Cubic graph) A graph G = (N, E) is cubic if all its nodes have
degree 3.

Definition A.1.16 (Connected and strongly connected graph) A graph G = (N, E) is
connected if for any two nodes u, v ∈ E there exists a path from u to v in G. If G is
directed, we say that G is strongly connected if for any two nodes u, v ∈ E there exist a path
from u to v, and a path from v to u in G.

Definition A.1.17 (k-connected and k-edge-connected graph) A graph G = (N, E) is
k-(node-)connected, for some k ≥ 2, if removing any k − 1 nodes from the graph does not
disconnect it. Similarly, G is k-edge-connected, for some k ≥ 2, if removing any k − 1 edges
from the graph does not disconnect it.

It can be easily proven that a graph is k-connected if and only if there exist at least k

node-disjoint paths between any pair of distinct nodes in G. Similarly, a graph is k-edge-
connected if and only if there exist at least k edge-disjoint paths between any pair of distinct
nodes in G.

Definition A.1.18 (Graph connectivity and edge connectivity) The (node) connectivity of
a graph G = (N, E), denoted as κ(G), is the maximum value of k such that G is k-connected.
Similarly, the edge connectivity of G, denoted as λ(G), is the maximum value of k such that
G is k-edge-connected.

Theorem A.1.19 Given a graph G = (N, E), and denoting by degmin(G) the minimal degree
of the nodes in N , we have:

κ(G) ≤ λ(G) ≤ degmin(G).
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Definition A.1.20 (Weighted graph) A weighted graph is a graph in which edges, or nodes,
or both, are labeled with a weight.

Definition A.1.21 (Minimum-cost biconnectivity) A weighted graph G = (N, E) is
minimum-cost biconnected if and only if for any node pair u, v ∈ N there exists a path con-
necting u and v in the subgraph G′ of G obtained by removing all the nodes in MP − {u, v},
where MP is the path of minimum cost connecting u and v in G.

Definition A.1.22 (Monotone graph property) A certain property P of a graph is said to
be monotone if the fact that P is satisfied in G implies that P is satisfied in any supergraph
G′ of G obtained by adding some edges to G.

An example of monotone graph property is connectivity: if a certain graph G is con-
nected, then any graph G′ obtained from G by adding some edges is also connected.

Definition A.1.23 (Dominating set) Given a graph G = (N, E), a dominating set for G is
a set D of nodes such that for any u ∈ N − D there exists v ∈ D such that (u, v) ∈ E, that
is, any node in the graph is either in D or adjacent to at least one node in D.

Definition A.1.24 (Connected dominating set) Given a graph G = (N, E) and a domi-
nating set D for G, D is said to be a connected dominating set if GD is connected, that is,
if the subgraph of G induced by node set D is connected.

The examples reported in Figure A.3 clarify the notion of dominating set and connected
dominating set.

Definition A.1.25 (Tree) A tree T = (N, E) is a connected graph with n nodes and n − 1
edges, that is, a tree is a minimally connected graph.

Definition A.1.26 (Rooted tree) A rooted tree T = (N, E) is a tree in which one of the
nodes is selected as the tree root. Once the root node r is chosen, the other nodes in the tree
can be classified as either internal node or leaf node. An internal node u is such that there
exists v ∈ N such that (u, v) ∈ E and dist(u, r) < dist(v, r). A leaf node l is such that, for
any v ∈ N such that (l, v) ∈ E, we have dist(l, r) > dist(v, r).

Definition A.1.27 (Spanning tree) Given a connected graph G = (N, E), a spanning tree
of G is a tree T = (N, ET ) that contains all the nodes in G and is such that ET ⊆ E.

(a) (b)

Figure A.3 Examples of dominating set (a) and connected dominating set (b). The nodes
in the dominating set are represented in light gray.
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(a) (b) (c)

Figure A.4 Examples of tree (a), rooted tree (b), and spanning tree (c). In the rooted tree,
internal nodes are gray and leaf nodes are white. The spanning tree on the right is formed
by the bold edges.

Figure A.4 reports examples of a tree, a rooted tree, and a spanning tree.

Definition A.1.28 (Cost of a spanning tree) Given an edge-weighted graph G = (N, E),
the cost of a spanning tree T of G is the sum of the weights on its edges.

Definition A.1.29 (Minimum spanning tree) Given an edge-weighted graph G = (N, E),
a Minimum Spanning Tree (MST) for G is a spanning tree of G of minimum cost.

Definition A.1.30 (Euclidean MST) Given a set N of nodes placed in the d-dimensional
space (with d = 1, 2, 3), and a set of edges E between these nodes, a Euclidean MST (EMST)
is a MST of the edge-weighted graph G = (N, E), where each edge has a weight equal to
the Euclidean distance between its endpoints.

Definition A.1.31 (Communication graph) Given a set N of nodes (representing units of
an ad hoc or sensor network), the communication graph is the directed graph G = (N, E)

such that edge (u, v) ∈ E only if v is within u’s transmitting range at the current transmit
power level.

Definition A.1.32 (Maxpower graph) Given a set N of nodes (representing units of an ad
hoc or sensor network), the maxpower graph is the communication graph G = (N, E) such
that (u, v) ∈ E if and only if v is within u’s transmitting range at maximum power, that is,
the maxpower graph contains all possible wireless links between the nodes in the network.

A.2 Proximity Graphs

Proximity graphs are a class of graphs introduced in the theory of Computational Geometry
that are based on proximity relationships between nodes.

Definition A.2.1 (K-neighbors graph) Given a set N of points in the d-dimensional space,
with d = 1, 2, 3, and an integer k ≥ 1, the k-neighbors graph is the directed graph Gk =
(N, Ek), where (u, v) ∈ Ek if and only if v is one of the k closest neighbors of node u.

Definition A.2.2 (Maximal planar subdivision) Given a set N of points in the plane, a
maximal planar subdivision of N is a planar graph G = (N, E) such that no edge connecting
two nodes in N can be added to E without compromising graph planarity.
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(a) (b) (c)

Figure A.5 Examples clarifying the notion of triangulation. In (a) we have a node set N .
The graph (b) is a planar subdivision of N , but it is not maximal: in fact, more edges can be
added to the graph without compromising planarity. The graph (c) is a triangulation of N .

(a) (b)

Figure A.6 K-neighbors graph of parameter k = 2 (a), and Delaunay triangulation (b). In
the Delaunay triangulation, the circumcircle of every triangle (dashed circle) contains no
nodes in its interior.

Definition A.2.3 (Triangulation) Given a set N of points in the plane, a triangulation of N

is a maximal planar subdivision whose node set is N .

Figure A.5 clarifies the notion of triangulation of a set of points.

Definition A.2.4 (Delaunay triangulation) Given a set N of points in the plane, the Delau-
nay triangulation of N is the unique triangulation DT of N such that the circumcircle of every
triangle contains no points of N in its interior.

The k-neighbors graph and Delaunay triangulation of a set of points in the plane are
reported in Figure A.6.

Definition A.2.5 (Relative neighborhood graph) Given a set N of points in the plane, the
Relative Neighborhood Graph (RNG) of N is the graph RNG = (N, E) such that (u, v) ∈ E

if and only if lune(u, v) does not contain any other point of N in its interior, where lune(u, v)

denotes the moon-shaped region formed as the intersection of the two circles of radius δ(u, v)

centered at u and at v.

Definition A.2.6 (Gabriel graph) Given a set N of points in the plane, the Gabriel Graph
(GG) of N is the graph GG = (N, E) such that (u, v) ∈ E if and only if the circle that has
segment uv as diameter does not contain any other point of N in its interior.
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Figure A.7 Relative Neighborhood Graph (a) and Gabriel Graph (b). In the RNG, edge
(u, v) exists if and only if lune(u, v) (shaded region) is empty. In the GG, edge (u, v) exists
if and only if the circle that has segment uv as diameter (shaded region) is empty.

u

v

(a) (b)

Figure A.8 Yao Graph (a) and Undirected Yao Graph (b). In YG6, directed edge (u, v)

exists if and only if node v is the closest neighbor in one of the cones centered at u. Edges
in YG6 might be unidirectional (bold edges).

The RNG and GG of a set of points in the plane are reported in Figure A.7.

Theorem A.2.7 Given a set N of points in the plane, we have

EMST ⊆ RNG ⊆ GG ⊆ DT.

Definition A.2.8 (Yao graph) Given a set N of points in the plane, and an integer k ≥ 6,
the Yao Graph of parameter k is the directed graph YGk = (N, Ek) defined as follows. At
each node u ∈ N , divide the plane into k equally sized cones originating at u. Denoting by
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C1
u, . . . , Ck

u the cones for node u, we have that (u, v) ∈ Ek if and only if there exists cone
Ci

u such that v is the closest neighbor of u in Ci
u.

Definition A.2.9 (Undirected Yao graph) Given a set N of points in the plane, and an
integer k ≥ 6, the Undirected Yao Graph of parameter k is the graph UYGk = (N, Ek),
where (u, v) ∈ Ek if and only if either edge (u, v) or edge (v, u) is in YGk .

The YG and UYG of a set of points in the plane are reported in Figure A.8.
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Elements of Applied Probability

In this Appendix, we report basic notions of probability theory and briefly describe the main
results of some applied probability theories that have been used in the analysis of topology
control problems for ad hoc networks. The material of this Appendix is based on (Feller
1957) (Section B.1), on the various papers cited in Section B.2, on (Kolchin et al. 1978)
(Section B.3), and on (Meester and Roy 1996) (Section B.4).

B.1 Basic Notions of Probability Theory

Definition B.1.1 (Sample space) A sample space is the set representing all possible out-
comes of a certain random experiment. A sample space is discrete if it is composed of a finite
number of elements (e.g. outcomes of a coin toss experiment), or of infinitely many elements
that can be arranged into a simple sequence e1, e2, . . . .

Definition B.1.2 (Random variable) A random variable X is a function defined on a sam-
ple space. If the sample space on which X is defined is discrete, X is said to be a discrete
random variable.

Examples of random variables are the number of heads in a sequence of k coin tosses
(discrete random variable), the position of a certain particle in a physical system, the position
of a sensor thrown from a moving vehicle, and so on.

Definition B.1.3 (Probability distribution) Let X be a discrete random variable, and let
x1, x2, . . . , xj , . . . be the possible values of X. The function

P (X = xi) = f (xi) (i = 1, 2, . . . )

is called the probability distribution of the random variable X, where ∀i f (xi) ≥ 0 and∑
i f (xi) = 1.

Topology Control in Wireless Ad Hoc and Sensor Networks P. Santi
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Definition B.1.4 (Probability density function) A probability density function (pdf) on R

is a function such that

∀x f (x) ≥ 0 and
∫ +∞

−∞
f (x) dx = 1.

Similarly, given a fixed integer d > 1, a pdf on R
d is a function such that

∀x1, . . . , xd f (x1, . . . , xd) ≥ 0 and
∫ +∞

−∞
f (x1, . . . , xd) dx1 . . . dxd = 1.

Definition B.1.5 (Continuous random variable) A random variable X taking values in R

is continuous if there exists a pdf f on R such that

P (a < X ≤ b) =
∫ b

a

f (x) dx,

for any a < b. Function f is called the density of the random variable X. A similar definition
applies to random variables taking values in R

d , for some integer d > 1.

Definition B.1.6 (Distribution function) Let X = (X1, . . . , Xd) be a continuous random
variable taking values in R

d , for some integer d ≥ 1. The function

F(x1, . . . , xd) = P (X1 ≤ x1, . . . , Xd ≤ xd) =
∫ x1

−∞
. . .

∫ xd

−∞
f (y1, . . . , yd) dy1 . . . dyd,

where f (y1, . . . , yd) is the density of X, is called the distribution function of the random
variable X. Function f is called the density of the random variable X.

Definition B.1.7 (Support of a pdf ) The support of a pdf f on R
d , for some integer d ≥ 1,

is the set of points in R
d on which f has positive value. Formally,

supp(f ) = {(x1, . . . , xd) ∈ R
d : f (x1, . . . , xd) > 0}.

Clearly, ∫
supp(f )

f (x1, . . . , xd) dx1 . . . dxd = 1.

Definition B.1.8 (Asymptotic distribution) A sequence X1, X2, . . . , Xn, . . . of continuous
random variables, with distribution functions F1, F2, . . . , Fn, . . . , is said to converge in
distribution to a certain random variable X with distribution F if and only if

lim
n→∞ Fn(x) = F(x)

at every continuity point x of F(x). If sequence {Xn} converges in distribution to a certain
random variable X with distribution F , we say that F is the asymptotic distribution of {Xn}.
Definition B.1.9 (a.a.s. event) Let En be a random variable representing a random event
that depends on a certain parameter n. We say that the event represented by En holds asymp-
totically almost surely (a.a.s.), or with high probability (w.h.p.) if

lim
n→∞ P (En) = 1.
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Definition B.1.10 (Bernoulli distribution) A Bernoulli random variable Xp of parameter
p, with 0 ≤ p ≤ 1, is a discrete random variable that has value S (success) with probability
p and value F (failure) with probability 1 − p. The corresponding probability distribution
is called Bernoulli distribution of parameter p.

Definition B.1.11 (Poisson process and distribution) Let us consider a discrete random
variable X(t), counting the number of events (e.g. arrival of telephone calls) occurring in
the time interval [0, t]. If the following properties hold,

1. the probability of occurrence of the observed events does not change with time; and

2. the probability of occurrence of the observed events does not depend on the number
of events occurred so far,

then the correspondent random process is called Poisson process. In a Poisson process, the
number of events counted after time t follows the probability function

P (X(t) = x) = e−λt (λt)x

x!
for x = 0, 1, 2, . . . ,

for some constant λ > 0. Parameter λ is called the intensity of the Poisson process. The
above probability function is called Poisson distribution of parameter λ. A random variable
with Poisson distribution is called Poisson random variable.

Definition B.1.12 (Uniform distribution) Given an interval [a, b], with a < b, the uniform
distribution on [a, b] is defined by the following probability density function:

f (x) =


0 for x < a

1
b−a

for a ≤ x ≤ b

0 for x > b

.

The uniform distribution on arbitrary d-dimensional rectangles is defined similarly. A random
variable with uniform distribution on a certain (d-dimensional) interval is called uniform
random variable.

Definition B.1.13 (Normal distribution) The Normal distribution on R of mean µ and vari-
ance σ 2 is defined by the following probability density function N (µ, σ ):

N (µ, σ )(x) = 1

σ
√

2π
e−(x−µ)2/(2σ 2).

The Normal distribution on R
d , for some integer d > 1, is defined similarly. A random

variable with Normal distribution is called Normal random variable.

Definition B.1.14 (Log-normal distribution) The Log-normal distribution on R of param-
eters µ and σ is defined by the following probability density function:

f (x) = 1

σ
√

2πx
e−(ln x−µ)2/(2σ 2).

The Log-normal distribution on R
d , for some integer d > 1, is defined similarly. A random

variable with Log-normal distribution is called log-normal random variable.
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B.2 Geometric Random Graphs

A well-established theory that at first glance seems useful in the analysis of ad hoc/sensor
network properties is the theory of random graphs (Bollobás 1985; Palmer 1985). In this
theory, a graph is formed by inserting a certain number of edges between random nodes
in the graph, and several properties of this graph are studied (for instance, connectivity,
upper/lower bounds on node degree, and so on).

Unfortunately, random graph theory cannot be directly applied in the investigation of
ad hoc/sensor network properties since a fundamental assumption in this model is that the
probabilities of edge occurrence in the graph are independent, which is not the case in the
context of wireless ad hoc networks. In fact, consider a situation in which three nodes u,
v, w are located in such a way that δ(u, v) < δ(u, w). With common wireless technologies
that use omnidirectional antennas, and disregarding the effect of shadowing and fading on
radio signal propagation, if u has a link to w, then it has also a link to the closer node
v, implying that the occurrence of edge (u, v) is positively correlated to the occurrence of
edge (u, w). Even if we consider more-sophisticated radio channel models that account for
shadowing and fading of the radio signal, the fact that node u is able to communicate with
node w still has an influence on the likelihood of u having a link to the closer node v.

While traditional random graph theory is not very useful in the theoretical analysis
of fundamental ad hoc/sensor network properties, a more recent and still-in-development
applied probability theory turns out to be very useful to this purpose: the theory of Geometric
Random Graphs (GRG).

As the name suggests, the theory of GRG can be seen as an extension to the traditional
random graph theory in which the graph is not considered as an abstract entity (set of
nodes connected by a number of edges), but as a geometric entity (set of points in the
d-dimensional space, connected on the basis of a proximity relation).

In a typical GRG model, a set of n points is distributed according to some pdf in
a d-dimensional region R, and asymptotic properties of the resulting node placement for
n → ∞ are investigated. Among the properties studied in this theory, we cite the following:

– The minimum and maximum node degree, in a model in which two nodes are connected
in the graph if and only if they are at distance of at most r(n) from each other (note
that the connection distance is a function of the number of deployed nodes). See
(Appel and Russo 1997a,b; Penrose 1999a).

– The longest nearest neighbor link, that is, the value of the longest distance between
a node and its closest neighbor. See (Dette and Henze 1989; Penrose 1999b; Steele
and Tierney 1986).

– The length of the shortest path connecting all the deployed nodes. See (Steele 1981).

– The total edge length, the number of connected components, and the critical neighbor
number of the k-neighbors graph, which is obtained by connecting each node to its k

closest neighbors. See (Avram and Bertsimas 1993; Penrose and Yukich 2001; Wan
and Yi 2004; Xue and Kumar 2004).

– The total edge length of the Delaunay triangulation built on the deployed nodes. See
(Avram and Bertsimas 1993).
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– The length of the longest edge of the MST built on the deployed nodes. See (Penrose
1997, 1998, 1999b).

– The total edge length of the MST built on the deployed nodes. See (Aldous and Steele
1992; Avram and Bertsimas 1992; Steele 1988; Yukich 2000).

The theory of GRG has been used in several recent papers to study fundamental
ad hoc/sensor network properties, such as the critical transmitting range for connectivity
and k-connectivity (Bettstetter 2002; Panchapakesan and Manjunath 2001; Santi 2005; Wan
and Yi 2004; Yi and Wan 2005; Yi et al. 2003), the critical neighbor number (Wan and Yi
2004; Xue and Kumar 2004), and the cost of the optimal solution to the RA and WSRA
problem (Blough et al. 2002).

Before concluding this section, we want to outline two important similarities between
the theory of GRG and the traditional random graph theory.

A first similarity is the occurrence of the giant component phenomenon (see Section 4.1
for a description of this phenomenon), which has firstly been observed in traditional random
graphs, and recently been proven to also occur in geometric random graphs (provided the
nodes are deployed in R

d , with d ≥ 2).
A second similarity is the expected node degree (i.e. number of neighbors) observed

in a.a.s. connected graphs, which is known to be �(log n) in traditional random graphs.
A similar result holds also for GRG, in two different models: (i) the homogeneous model,
in which every node is connected to every other node within distance r(n); and (ii) the
k-neighbors model, in which every node is connected to its k closest neighbors. In model
(i), in case of two-dimensional networks, it has been proven that the minimum value of r(n)

that guarantees connectivity w.h.p. is such that the expected number of nodes in πr(n)2 (i.e.
the expected number of neighbors of a node) is �(log n). A similar result also holds for
one- and three-dimensional networks. In model (ii), it has been proven that k = �(log n) is
a necessary and sufficient condition to ensure connectivity w.h.p. of the k-neighbors graph.

For an exhaustive treatment of the theory of GRG, the reader is referred to (Penrose
2003).

B.3 Occupancy Theory

Another applied probability theory that has been successfully used in the analysis of fun-
damental ad hoc/sensor network properties is the occupancy theory (Kolchin et al. 1978).

In the occupancy theory, it is typically assumed that n balls are thrown independently at
random into C urns (or cells), where a ball has the same probability of landing in any cell
(equiprobable allocation). Variables C and n are interdependent: commonly, it is assumed
that the number C of cells is the independent variable, and n is expressed as a function
of C.

Given this setting, the asymptotic distribution of several random variables of interest for
C, n(C) → ∞ has been characterized. Among the studied random variables, we cite

– the number of empty cells after all balls have been thrown;

– the number of trials before at least k urns are filled with at least one ball;



238 ELEMENTS OF APPLIED PROBABILITY

– the number of balls in the minimally and in the maximally occupied cell after all balls
have been thrown.

Several results have also been extended to the case of nonequiprobable allocation of
balls into cells.

The occupancy theory has been used in the context of wireless ad hoc/sensor networks to
characterize the critical transmitting range for connectivity (Santi and Blough 2002, 2003),
to derive bounds to the network lifetime (Blough and Santi 2002), and to study clustering
algorithm properties (Younis and Fahmy 2004; Younis et al. 2004).

Since the usefulness of occupancy theory in the characterization of ad hoc network
properties is not self-evident, we briefly explain how the asymptotic characterization of the
number of empty cells has been used to provide sufficient conditions for a.a.s. connectivity
of the communication graph.

Assume n nodes are deployed in a certain two-dimensional region R. Suppose R is
subdivided into C equal-sized cells, and assume nodes have the same transmitting range r .
If we further assume that nodes are distributed uniformly at random in R, the problem of
determining the minimum number of nodes to be deployed in order to generate a connected
communication graph w.h.p. can be stated as an occupancy problem, provided the cell size
is appropriately chosen.

Consider the cell lattice reported in Figure B.1. It is simple to see that, with this definition
of the cell side, having at least one node in every cell is a sufficient condition for generating
a connected communication graph. Hence, a sufficient condition for connectivity can be

r

r/√(5)

Figure B.1 Cell lattice used to derive a sufficient condition for asymptotic connectivity.
The nodes have transmitting range r , and the cell side is set to r/

√
5. With this definition of

the cell side, having at least one node in each cell is a sufficient condition for connectivity
of the communication graph.
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derived by using results from the occupancy theory that determine the asymptotic distribution
of number of empty cells. In particular, we have to study the conditions under which this
number equals 0, a.a.s. This technique has been used in (Santi and Blough 2002, 2003).

B.4 Continuum Percolation

A third applied probability that proved useful in the analysis of ad hoc/sensor network
properties is the theory of continuum percolation (Meester and Roy 1996).

In the theory of continuum percolation, nodes are distributed in the plane according to
a Poisson process of intensity λ > 0. In other words, it is assumed that, given any region
A of R

2 of area a, the probability of having k nodes in A equals

P (A contains k nodes) = e−λa (λa)k

k!
for k = 0, 1, 2, . . . .

Once the nodes are deployed, a disk of a certain radius R is centered at each node, and a
graph is formed by connecting any two nodes whose disks intersect (see Figure B.2). In the
most general model, the radius Ru of the disk centered at node u is a random variable with
a certain distribution f (e.g. uniform distribution in [0, rmax]), and the random variables Rx

modeling the disk radii at the different nodes are assumed to be independent with the same
distribution f . In a simpler version of the model, all the disks have the same radius equal
to r > 0.

Given this setting, researchers have studied the connectivity of the generated graph.
In particular, it has been proven that for each λ > 0 there exists at most one infinite-
order connected component in the graph (a.a.s.). However, the existence of an infinite-
order component alone is not sufficient to ensure the connectivity of the generated graph.

x

y

x

y

(a) (b)

Figure B.2 Model used in the continuum percolation theory: nodes are deployed according
to a two-dimensional Poisson process of intensity λ > 0, and a disk is drawn for each node
(a); then, a graph is generated by connecting two nodes if and only if their disks intersect (b).
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In fact, there could exist (infinitely many) nodes that do not belong to the unbounded
component, implying that a significant portion of the nodes are disconnected from the rest
of the graph. Hence, the quality of connectivity is related to another parameter, the fraction θ

of nodes belonging to the unbounded component, which, in turn, depends on the percolation
probability. The percolation probability is the probability that an arbitrary node belongs to
the connected component of infinite order.

The main result of the theory of continuum percolation is that there exists a finite,
positive value λc of λ, called the critical density, under which the percolation probability
is zero, and above which it is nonzero. However, no explicit expression of the percolation
probability is known to date, and only bounds to λc that hold in some special cases have
been derived.

The theory of continuum percolation has been used in the context of wireless ad hoc/
sensor networks to characterize the critical transmitting range for connectivity (Dousse et al.
2003; Dousse et al. 2002; Gupta and Kumar 1998) and to study the message delivery latency
of a certain class of sensor networks (Dousse et al. 2004).

The theory of continuum percolation displays not only many similarities with the theory
of GRG but also a major difference, that is, the random process used to distribute the nodes:
in GRG, a fixed number n of nodes is distributed in a certain subregion R of R

d , for some
d ≥ 1, and R is typically bounded (e.g. the unit d-dimensional cube); on the contrary, in the
theory of continuum percolation, a random number of nodes is distributed in an unbounded
region, which typically is R

2.
In general, deciding which one between the GRG and the continuum percolation models

is most suitable to study a certain wireless ad hoc/sensor network property depends on the
characteristics of the problem at hand: if we expect to have quite precise information on
the number of network nodes and on the size/shape of the deployment region, using the
GRG model is preferable; on the contrary, if we have only a vague idea of the number of
network nodes and/or of the size/shape of the deployment region, but the expected node
density per unit area is approximately known, using the continuum percolation model is the
most appropriate choice.
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Sparse network, 132
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Critical transmitting range, 31, 163, 189
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for connectivity, 39

Dense network, 42
Sparse network, 46

Mobile network, 53
with Bernoulli nodes, 65
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Direction estimation, 115
Distance estimation, 134
Distance-power gradient, see Path loss

exponent
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Dominant strategy, 208
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Fault tolerance, see Topology control for
k-connectivity

FLSSk protocol, 114

Gabriel graph, 90, 197, 230
Game theory, 207
Gateway node, 5
Geometric random graph, 42, 193, 236,

240
Giant component, 44, 49, 61, 133,

169, 237
Global replacement path, 215
Graph, 225

Complete, 226
Connectivity, 63, 227
Cubic, 80, 227
Diameter, 122, 226
Directed, 225
Distance spanner, 191
Dominating set, 66
k-connectivity, 227
Minimum-cost biconnectivity, 219,

228
Monotone property, 194, 228
Planar, 80, 142, 227
Sparse, 226
Subgraph, 226
Symmetric subgraph, 112, 128, 226
Symmetric supergraph, 112, 128,
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Weighted, 228

Incentive compatible, see Truthful
mechanism

Increase symmetric neighbor procedure,
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Individual rationality, 209
Interference, 29, 35, 163, 189, 194, 199

Interference range, 29

k-neighbors graph, 127, 229, 236
Giant component, 133

KNeigh protocol, 134, 148, 220, 223

KNeighLev protocol, 176, 184
Unselfish version, 180

LILT protocol, 155, 177
Link quality, 139
LINT protocol, 154, 177
LMST protocol, 110, 148
Location estimation, 103
Log-normal distribution, 16, 235

MAC layer, 34, 78, 163, 190, 200
Contention, 166

Magic number, see Neighbor, Magic
number

Malicious node behavior, 209
Maxpower graph, 18, 229
Mechanism design, 208
Minimum spanning tree, 110, 123, 229,

237
Euclidean, 40, 229

MinR graph, 123
MobileGrid protocol, 177
Mobility model

Bounded, obstacle free, 60
Brownian-like, 24, 152
Freeway, 24
Group-based, 25
Long-term node spatial distribution,

see Asymptotic node
distribution

Manhattan, 24
Map-based, 24
Obstacle, 25
Random direction, 23, 155
Random waypoint, 23, 55, 152

Multihop traffic, 196

Neighbor
Coverage, 124
Incoming, 176, 225
Magic number, 131, 133, 153
Outgoing, 177, 225
Symmetric, 18, 135, 177
Visible, 110

Network capacity, 28, 163
Node degree

In-degree, 225
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Out-degree, 225
Physical, 100, 135, 138

Node distance, 226
Normal distribution, 235

Occupancy theory, 47, 237

Path, 226
Path loss, 13
Path loss exponent, 15, 104, 165
Payment, 208
Percolation probability, 240
Player, 207
Point graph, 18, 52, 193

with Bernoulli nodes, 65
Poisson process, 235
Power spanner, 88
Power stretch factor, 88
Probability density function, 234

Support, 58, 234
Probability distribution, 233
Propagation model, 13, 104

Fading, 16
Free space, 14
Large- and small-scale variations,

16
Log-distance, 15, 16
Log-normal shadowing, 16
Rotary symmetric, 50
Two-ray ground, 14

Protocol model, 29, 163

QoS, 198

R&M protocol, 103
Radiated power, 194, 197
Radio channel, see Wireless channel
Random graph, 194, 236
Random variable, 233

Continuous, 234
Discrete, 233

Random vertex model, 193
Range assignment, 17

Connecting, 18
Energy cost, 21, 85

Homogeneous, 18
Maxpower range assignment, 18

Range assignment problem, 73, 110, 237
Symmetric, 78
Weakly symmetric, 78, 237

Relative neighborhood graph, 90, 122,
142, 230

Relay region, 105
Replacement path, 213
Reputation system, 205
Reserve price, 215
RF amplifier, 21, 195
Routing, 33

AODV, 78, 172
Cooperative, see Cooperative

packet forwarding
DSDV, 167
DSR, 78, 172
Energy aware, 198
Interference aware, 198
Proactive, 166
Reactive, 172
Routing graph, 89
Table, 167, 170
Truthful, see Cooperative packet

forwarding

Sample space, 233
Sensitivity threshold, 13
Sensor network, 5, 9

Energy consumption, 21
Shrink back operation, 118, 180
Smart sensor, 5, 9, 22, 162
Social choice function, 208
Strategy proof, see Truthful mechanism
Symmetric wireless medium, 110, 163

Topology control
Definition, 30
Direction-based, 32, 115
for k-connectivity, 114, 122
Homogeneous, see Critical

transmitting range
Implementation, 173, 199
Level-based, 162
Location-based, 32, 103
Mobile network, 143, 144, 196
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Topology control (continued )
Neighbor-based, 127
Nonhomogeneous, 31
Per-packet, 32, 145, 173
Periodical, 32, 145, 176

Transmitting range, 17
Tree, 228

Broadcast tree, 92
Rooted, 228
Spanning, 104, 228

Triangle inequality, 27, 104, 164
Truthful mechanism, 208
Type, 207

Unidirectional link, see Asymmetric link
Uniform distribution, 235

Unit disk graph, 18, 193
Utility, 207

VCG payments, 213

Wireless advantage, 109
Wireless channel, 13, 193
Wireless footprint, 164
Wireless Sensor Network, see Sensor

network

XTC protocol, 138

Yao graph, 90, 116, 231
Undirected, 232


