Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3418

Ulrik Brandes Thomas Erlebach (Eds.)

Network
Analysis

Methodological Foundations

@ Springer

Volume Editors

Ulrik Brandes

University of Konstanz

Department of Computer and Information Science
Box D 67, 78457 Konstanz, Germany

E-mail: ulrik.brandes @uni-konstanz.de

Thomas Erlebach

University of Leicester

Department of Computer Science
University Road, Leicester, LE1 7RH, U.K.
E-mail: t.erlebach@mcs.le.ac.uk

Library of Congress Control Number: 2005920456

CR Subject Classification (1998): G.2, F2.2, E.1, G.1, C.2

ISSN 0302-9743
ISBN 3-540-24979-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Markus Richter, Heidelberg
Printed on acid-free paper SPIN: 11394051 06/3142 543210

Preface

The present book is the outcome of a seminar organized by the editors, sponsored
by the Gesellschaft fiir Informatik e.V. (GI) and held in Dagstuhl, 13-16 April
2004.

GI-Dagstuhl-Seminars are organized on current topics in computer science
that are not yet well covered in textbooks. Most importantly, this gives young
researchers an opportunity to become actively involved in such topics, and to
produce a book that can provide an introduction for others as well.

The participants of this seminar were assigned subtopics on which they did
half a year of research prior to the meeting. After a week of presentations and
discussion at Schloss Dagstuhl, slightly more than another half-year was spent
on writing the chapters. These were cross-reviewed internally and blind-reviewed
by external experts. Since we anticipate that readers will come from various
disciplines, we would like to emphasize that it is customary in our field to order
authors alphabetically.

The intended audience consists of everyone interested in formal aspects of
network analysis, though a background in computer science on, roughly, the
undergraduate level is assumed. No prior knowledge about network analysis is
required. Ideally, this book will be used as an introduction to the field, a reference
and a basis for graduate-level courses in applied graph theory.

First and foremost, we would like to thank all participants of the seminar
and thus the authors of this book. We were blessed with a focused and deter-
mined group of people that worked professionally throughout. We are grateful
to the GI and Schloss Dagstuhl for granting us the opportunity to organize the
seminar, and we are happy to acknowledge that we were actually talked into
doing so by Dorothea Wagner who was then chairing the GI-Beirat der Uni-
versitdtsprofessor(inn)en. We received much appreciated chapter reviews from
Vladimir Batagelj, Stephen P. Borgatti, Carter Butts, Petros Drineas, Robert
Elsésser, Martin G. Everett, Ove Frank, Seokhee Hong, David Hunter, Sven
O. Krumke, Ulrich Meyer, Haiko Miiller, Philippa Pattison and Dieter Raut-
enbach. We thank Barny Martin for proof-reading several chapters and Daniel
Fleischer, Martin Hoefer and Christian Pich for preparing the index.

December 2004 Ulrik Brandes
Thomas Erlebach

List of Contributors

Andreas Baltz
Mathematisches Seminar
Christian-Albrechts-Platz 4
University of Kiel

24118 Kiel, Germany

Nadine Baumann
Department of Mathematics
University of Dortmund
44221 Dortmund, Germany

Michael Baur

Faculty of Informatics
University of Karlsruhe
Box D 6980

76128 Karlsruhe, Germany

Marc Benkert

Faculty of Informatics
University of Karlsruhe
Box D 6980

76128 Karlsruhe, Germany

Ulrik Brandes

Computer & Information Science
University of Konstanz

Box D 67

78457 Konstanz, Germany

Michael Brinkmeier
Automation & Computer Science
Technical University of Ilmenau
98684 Ilmenau, Germany

Thomas Erlebach

Department of Computer Science
University of Leicester
University Road

Leicester LE1 7TRH, U.K.

Marco Gaertler

Faculty of Informatics
University of Karlsruhe
Box D 6980

76128 Karlsruhe, Germany

Riko Jacob

Theoretical Computer Science
Swiss Federal Institute

of Technology Ziirich

8092 Ziirich, Switzerland

Frank Kammer

Theoretical Computer Science
Faculty of Informatics
University of Augsburg

86135 Augsburg, Germany

Gunnar W. Klau

Computer Graphics & Algorithms
Vienna University of Technology
1040 Vienna, Austria

Lasse Kliemann
Mathematisches Seminar
Christian-Albrechts-Platz 4
University of Kiel

24118 Kiel, Germany

VIII List of Contributors

Dirk Koschiitzki

IPK Gatersleben
Corrensstrafie 3

06466 Gatersleben, Germany

Sven Kosub

Department of Computer Science
Technische Universitat Miinchen
Boltzmannstrafle 3

D-85748 Garching, Germany

Katharina A. Lehmann
Wilhelm-Schickard-Institut
fir Informatik

Universitat Tiibingen
Sand 14, C108

72076 Tiibingen, Germany

Jiirgen Lerner

Computer & Information Science
University of Konstanz

Box D 67

78457 Konstanz, Germany

Marc Nunkesser
Theoretical Computer Science
Swiss Federal Institute

of Technology Ziirich

8092 Ziirich, Switzerland

Leon Peeters

Theoretical Computer Science
Swiss Federal Institute

of Technology Ziirich

8092 Ziirich, Switzerland

Stefan Richter

Theoretical Computer Science
RWTH Aachen

Ahornstrafie 55

52056 aachen, Germany

Daniel Sawitzki
Computer Science 2
University of Dortmund
44221 Dortmund, Germany

Thomas Schank

Faculty of Informatics
University of Karlsruhe
Box D 6980

76128 Karlsruhe, Germany

Sebastian Stiller

Institute of Mathematics
Technische Universitat Berlin
10623 Berlin, Germany

Hanjo Téaubig

Department of Computer Science
Technische Universitat Miinchen
Boltzmannstrafie 3

85748 Garching, Germany

Dagmar Tenfelde-Podehl
Department of Mathematics
Technische Universitat
Kaiserslautern

67653 Kaiserslautern, Germany

René Weiskircher

Computer Graphics & Algorithms
Vienna University of Technology
1040 Vienna, Austria

Oliver Zlotowski

Algorithms and Data Structures
Univeristat Trier

54296 Trier, Germany

Table of Contents

Preface A%
List of Contributors VII
1 Introduction
U. Brandes and T. Erlebach 1
2 Fundamentals
U. Brandes and T. Erlebach 7
2.1 Graph Theory e 7
2.2 Essential Problems and Algorithms 9
2.3 Algebraic Graph Theory........ 13
2.4 Probability and Random Walks 14
2.5 Chapter NOtes . ..ot e 15

Part I Elements

3

Centrality Indices
D. Koschiitzki, K. A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-

Podehl, and O. Zlotowski. 16
3.1 Introductory Examples i 17
3.2 A Loose Definition., 19
3.3 Distances and Neighborhoods 19
3.4 Shortest Paths 28
3.5 Derived Edge Centralities 34
3.6 Vitalityoo 36
3.7 Current Flow i 40
3.8 Random Processes............... .. 43
3.9 Feedback 46
3.10 Dealing with Insufficient Connectivity 56
3.11 Graph- vs. Vertex-Level Indices 59

3.12 Chapter Notes 60

X

Table of Contents

Algorithms for Centrality Indices
R. Jacob, D. Koschiitzki, K. A. Lehmann, L. Peeters, and D. Tenfelde-

Podehl.o 62
4.1 Basic Algorithms 63
4.2 Centrality-Specific Algorithms 67
4.3 Fast Approximation 72
4.4 Dynamic Computation i 80

Advanced Centrality Concepts
D. Koschiitzki, K.A. Lehmann, D. Tenfelde-Podehl, and O. Zlotowski 83

5.1 Normalization........... ...t 84
5.2 Personalization...............ouiiiiii i 87
5.3 Four Dimensions of a Centrality Index 92
5.4 Axiomatization................ . 96
5.5 Stability and Sensitivity i 104

Part II Groups

6

Local Density

S K0SUb . oo 112
6.1 Perfectly Dense Groups: Cliques 114
6.2 Structurally Dense Groups............cooiiiiiiiinaa... 126
6.3 Statistically Dense Groups. ..o, 131
6.4 Chapter NOtesii it e 140
Connectivity

F. Kammer and H. Taubig 143
7.1 Fundamental Theorems 144
7.2 Introduction to Minimum Cuts............ 147
7.3 All-Pairs Minimum Cuts 148
7.4 Properties of Minimum Cuts in Undirected Graphs 149
7.5 Cactus Representation of All Minimum Cuts................. 157
7.6 Flow-Based Connectivity Algorithms..................... ... 158
7.7 Non-flow-based Algorithms 165
7.8 Basic Algorithms for Components 169
7.9 Chapter Notest 176
Clustering

M. Gaertler 178
8.1 Quality Measurements for Clusterings....................... 180
8.2 Clustering Methods i 196
8.3 Other Approaches i 209

8.4 Chapter Notes 215

10

Table of Contents XI

Role Assignments

Jo Lermer 216
9.1 Structural Equivalence 218
9.2 Regular Equivalence i 223
9.3 Other Equivalences i 238
9.4 Graphs with Multiple Relations 244
9.5 The Semigroup of a Graph 246
9.6 Chapter Notes 251
Blockmodels

M. Nunkesser, D. Sawitzki i, 253
10.1 Deterministic Models i 256
10.2 Stochastic Models i 275
10.3 Chapter Notes it e 290

Part III Networks

11

12

13

Network Statistics

M. Brinkmeier and T. Schank 293
11.1 Degree Statisticsot 294
11.2 Distance Statisticsottt 295
11.3 The Number of Shortest Paths 300
11.4 Distortion and Routing Costs oo .. 301
11.5 Clustering Coefficient and Transitivity 302
11.6 Network Motifs i 306
11.7 Types of Network Statistics............ 307
11.8 Chapter Notest 316
Network Comparison

M. Baur and M. Benkert. 318
12.1 Graph Isomorphism., 319
12.2 Graph Similarity 332
12.3 Chapter Notest e 340
Network Models

N. Baumann and S. Stiller 341
13.1 Fundamental Models........ i .. 342
13.2 Global Structure Analysisc. .. 350
13.3 Further Models of Network Evolution 364
13.4 Internet Topologycuiii i i 368

13.5 Chapter Notest 372

XII

Table of Contents

14 Spectral Analysis
A. Baltz and L. Kliemann. 373
14.1 Fundamental Properties 373
14.2 Numerical Methods i i 385
14.3 Subgraphs and Operations on Graphs 388
14.4 Bounds on Global Statistics.............o i 393
14.5 Heuristics for Graph Identification 406
14.6 Chapter Notes 415

15 Robustness and Resilience
G.W. Klau and R. Weiskircher 417
15.1 Worst-Case Connectivity Statistics 417
15.2 Worst-Case Distance Statistics 422
15.3 Average Robustness Statistics........... 424
15.4 Probabilistic Robustness Statistics 432
15.5 Chapter Notes 435

Bibliography 439

1 Introduction

Ulrik Brandes and Thomas Erlebach

Many readers will find the title of this book misleading — at least, at first sight.
This is because ‘network’ is a heavily overloaded term used to denote relational
data in so vast a number of applications that it is far from surprising that
‘network analysis’ means different things to different people.

To name but a few examples, ‘network analysis’ is carried out in areas such
as project planning, complex systems, electrical circuits, social networks, trans-
portation systems, communication networks, epidemiology, bioinformatics, hy-
pertext systems, text analysis, bibliometrics, organization theory, genealogical
research and event analysis.

Most of these application areas, however, rely on a formal basis that is fairly
coherent. While many approaches have been developed in isolation, quite a few
have been re-invented several times or proven useful in other contexts as well.
It therefore seems adequate to treat network analysis as a field of its own. From
a computer science point of view, it might well be subsumed under ‘applied
graph theory,” since structural and algorithmic aspects of abstract graphs are the
prevalent methodological determinants in many applications, no matter which
type of networks are being modeled.

There is an especially long tradition of network analysis in the social sci-
ences [228], but a dramatically increased visibility of the field is owed to recent
interest of physicists, who discovered the usefulness of methods developed in
statistical mechanics for the analysis of large-scale networks [15]. However, there
seem to be some fundamental differences in how to approach the topic. For
computer scientists and mathematicians a statement like, e.g., the following is
somewhat problematic.

“Also, we follow the hierarchy of values in Western science: an experi-
ment and empirical data are more valuable than an estimate; an esti-
mate is more valuable than an approximate calculation; an approximate
calculation is more valuable than a rigorous result.” [165, Preface]

Since the focus of this book is on structure theory and methods, the content is
organized by level of analysis rather than, e.g., domain of application or formal
concept used. If at all, applications are mentioned only for motivation or to
explain the origins of a particular method. The following three examples stand
in for the wide range of applications and at the same time serve to illustrate
what is meant by level of analysis.

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 1-6, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 U. Brandes and T. Erlebach

Element-Level Analysis (Google’s PageRank)

Standard Web search engines index large numbers of documents from the Web
in order to answer keyword queries by returning documents that appear relevant
to the query. Aside from scaling issues due to the incredible, yet still growing
size of the Web, the large number of hits (documents containing the required
combination of keywords) generated by typical queries poses a serious problem.
When results are returned, they are therefore ordered by their relevance with
respect to the query.

The success of a search engine is thus crucially dependent on its definition of
relevance. Contemporary search engines use a weighted combination of several
criteria. Besides straightforward components such as the number, position, and
markup of keyword occurrences, their distance and order in the text, or the
creation date of the document, a structural measure of relevance employed by
market leader Google turned out to be most successful.

Consider the graph consisting of a vertex for each indexed document, and a
directed edge from a vertex to another vertex, if the corresponding document
contains a hyperlink to the other one. This graph is called the Web graph and
represents the link structure of documents on the Web. Since a link corresponds
to a referral from one document to another, it embodies the idea that the second
document contains relevant information. It is thus reasonable to assume that a
document that is often referred to is a relevant document, and even more so,
if the referring documents are relevant themselves. Technically, this (structural)
relevance of a document is expressed by a positive real number, and the par-
ticular definition used by Google [101] is called the PageRank of the document.
Figure 1.1 shows the PageRank of documents in a network of some 5,000 Web
pages and 15,000 links. Section 3.9.3 contains are more detailed description of
PageRank and some close relatives.

Note that the PageRank of a document is completely determined by the
structure of (the indexed part of) the Web graph and independent of any query. It
is thus an example of a structural vertex index, i.e. an assignment of real numbers
to vertices of a graph that is not influenced by anything but the adjacency
relation.

Similar valuations of vertices and also of edges of a graph have been proposed
in many application domains, and “Which is the most important element?” or,
more specifically, “How important is this element?” is the fundamental question
in element-level analysis. It is typically addressed using concepts of structural
centrality, but while a plethora of definitions have been proposed, no general,
comprehensive, and accepted theory is available.

This is precisely what made the organization of the first part of the book most
difficult. Together with the authors, the editor’s original division into themes and
topics was revised substantially towards the end of the seminar from which this
book arose. A particular consequence is that subtopics prepared by different par-
ticipants may now be spread throughout the three chapters. This naturally led
to a larger number of authors for each chapter, though potentially with heavily

1 Introduction 3

—=0 www.sikasenbey.orjp/~ueshima/

home.interlink.or jp/~ichisaka/

WAWABORE ey gamelan.com
o © www.sun.com
Java.sun.com

© wiww.nep.chubu.ac jp/~nepjava/

NN lacocity.com.tw/java/
=0 \vw.stat.duke.edufsites/java.html

www.phy.syr.edu/courses/java-suite/crosspro. html
om

Fig. 1.1. PageRank in a network of some 5,000 Web pages containing the keyword
‘java’ (documents with higher value are further to the right; from [93])

skewed workload. To counterbalance this effect, leading authors are identified in
such chapters.

Chapter 3 provides an overview of centrality measures for network elements.
The authors have organized the material from a conceptual point of view, which
is very different from how it is covered in the literature. Algorithms are rarely
discussed in the application-oriented literature, but of central interest in com-
puter science. The underdeveloped field of algorithmic approaches to centrality
is therefore reviewed in Chapter 4. Advanced issues related to centrality are
treated in Chapter 5. It is remarkable that some of the original contributions
contained in this chapter have been developed independently by established re-
searchers [85].

Group-Level Analysis (Political Ties)

Doreian and Albert [161] is an illustrative example of network analysis on the
level of groups. The network in question is made up of influential local politicians
and their strong political ties. This is by definition a difficult network to measure,
because personal variations in perception and political incentives may affect the
outcome of direct questioning. Therefore, not the politicians themselves, but staff
members of the local daily newspaper who regularly report on political affairs
were asked to provide the data shown in Figure 1.2.

Black nodes represent politicians who are members of the city council and
had to vote on the proposed construction of a new jail. The County Executive,

4 U. Brandes and T. Erlebach

oFmier
Council Member

Fig. 1.2. Strong political ties between prominent politicians of a county; the two
apparent groups predict the voting pattern of City Council members (black nodes) on
a crucial issue (data from [161])

who was in favor of building the new jail, and the County Auditor were in
strong personal opposition, so that the latter publicly opposed the construction.
While the diagram indicates that the former Council President is structurally
most important (closeness to the center reflects a vertex index called closeness
centrality), it is the group structure which is of interest here.

The voting pattern on the jail issue is predicted precisely by the membership
to one of two apparent groups of strong internal bonds. Members of the group
containing the County Executive voted for the new jail, and those of the group
containing the County Auditor voted against. Note that the entire network is
very homogeneous with respect to gender, race, and political affiliation, so that
these variables are of no influence.

Note also that two council members in the upper right have ties to exactly
the same other actors. Similar patterns of relationships suggest that actors have
similar (structural) ‘roles’ in the network. In fact, the network could roughly
be reduced to two internally tied parties that are linked by the former Council
President.

Methods for defining and finding groups are treated extensively in the second
part of the book. Generally speaking, there are two major perspectives on what
constitutes a group in a network, namely strong or similar linkages.

In the first three chapters on group-level analysis, a group is identified by
strong linkages among its members. These may be based on relatively heavy
induced subgraphs (Chapters 6) or relatively high connectivity between each

1 Introduction 5

Arnold Schwarzenegger

Terminator Il

Stan Laurel
Earl Boen

Babes in Toyland To Be or Not To Be

Henry Brandon

Fig. 1.3. Actors appearing jointly (proving that the co-starring distance of S. Laurel
and A. Schwarzenegger is no larger than 3)

pair of members (Chapter 7). Methods for splitting a network into groups based
on strong linkage are then reviewed in Chapter 8.

Chapters 9 and 10 focus on groups defined by the pattern of relations that
members have. While such groups need not be connected at all, strong internal
combined with weak external linkage can be seen as a special case.

Network-Level Analysis (Oracle of Bacon)

Empirical networks representing diverse relations such as linkages among Web
pages, gene regulation in primitive organisms, sexual contacts among Swedes, or
the power grid of the western United States appear to have, maybe surprisingly,
some statistical properties in common.

A very popular example of a network that evolves over time is the movie
actor collaboration graph feeding the Oracle of Bacon at Virginia.! From all
movies stored in the Internet Movie Database? it is determined which pairs of
actors co-appeared in which movie. The ‘Oracle’ can be queried to determine
(an upper bound on) the co-starring distance of an actor from Kevin Bacon, or
in a variant game between any two actors. Except for fun and anecdotal pur-
poses (exemplified in Figure 1.3), actual links between actors are not of primary
interest. The fascinating characteristics of this data are on the aggregate level. It
turns out, for instance, that Kevin Bacon is on average only three movies apart
from any of the more than half a million actors in the database, and that there
are more than a thousand actors who have the same property.

Many more properties of this data can be studied. A particularly pertinent
observation is, for instance, that in many empirical networks the distribution
of at least some statistic obeys a power-law. But the network could also be
compared to other empirical networks from related domains (like science collab-
oration) or fabricated networks for which a suitable model would be required.

! www.oracleofbacon. org
2 www.imdb.com

6 U. Brandes and T. Erlebach

The focus of network-level analysis in general is on properties of networks as a
whole. These may reflect, e.g., typical or atypical traits relative to an application
domain or similarities occuring in networks of entirely different origin.

Network statistics, reviewed in Chapter 11, are a first indicator of network
similarity, often employed in complex systems analysis. In Chapter 12, more
rigorous methods for detailed structure comparison of equally (or at least com-
paratively) sized networks are discussed. A different line of research is the at-
tempt to understand the governing principles of network formation. Chapter 13
is therefore devoted to models for networks with certain properties. A particu-
larly powerful approach to global network analysis is the utilization of spectral
properties of matrices defined describing the network. These are described in
detail in Chapter 14. The final chapter of this book is devoted to the important
question of how sensitive a network is to the loss of some of its elements.

Despite the wealth of material covered, the scope of this book is necessarily
limited. No matter which personal background, the reader will easily identify
gems from the repertoire of network analysis that have been consciously omitted
or woefully overlooked. We nevertheless hope that the book will serve as a useful
introduction and handy reference for everyone interested in the methods that
drive network analysis.

2 Fundamentals

Ulrik Brandes and Thomas Erlebach

In this chapter we discuss basic terminology and notation for graphs, some fun-
damental algorithms, and a few other mathematical preliminaries.

We denote the set of integers by Z, the set of real numbers by R, the set of
complex numbers by C, and the set of rationals by Q. For a set X of numbers,
X denotes the subset of positive numbers in X, and XJ’ the subset of non-
negative numbers. The set of positive integers is denoted by IN = ZT and the
set of non-negative integers by INg = ZJ .

We use R™ ™ to denote the set of all real-valued matrices with n rows and m
columns. If the entries of the matrix can be complex numbers, we write C**™.
The n-dimensional identity matrix is denoted by I,,. The n-dimensional vector
with all entries equal to 1 (equal to 0) is denoted by 1,, (by 0,).

For two functions f : N — IN and g : N — IN, we say that f is in O(g)
if there are positive constants ng € IN and ¢ € R* such that f(n) < c¢- g(n)
holds for all n > ng. Furthermore, we say that f is in £2(g) if ¢ is in O(f). This
notation is useful to estimate the asymptotic growth of functions. In particular,
running-times of algorithms are usually specified using this notation.

2.1 Graph Theory

We take the term network to refer to the informal concept describing an object
composed of elements and interactions or connections between these elements.
For example, the Internet is a network composed of nodes (routers, hosts) and
connections between these nodes (e.g. fiber cables). The natural means to model
networks mathematically is provided by the notion of graphs.

A graph G = (V,E) is an abstract object formed by a set V of wertices
(nodes) and a set E of edges (links) that join (connect) pairs of vertices. The
vertex set and edge set of a graph G are denoted by V(G) and E(G), respectively.
The cardinality of V' is usually denoted by n, the cardinality of E by m. The two
vertices joined by an edge are called its endvertices. If two vertices are joined by
an edge, they are adjacent and we call them neighbors. Graphs can be undirected
or directed. In undirected graphs, the order of the endvertices of an edge is
immaterial. An undirected edge joining vertices u,v € V is denoted by {u,v}. In
directed graphs, each directed edge (arc) has an origin (tail) and a destination
(head). An edge with origin u € V' and destination v € V is represented by an
ordered pair (u,v). As a shorthand notation, an edge {u, v} or (u,v) can also be

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 7-15, 2005.
© Springer-Verlag Berlin Heidelberg 2005

8 U. Brandes and T. Erlebach

denoted by uwv. In a directed graph, wv is short for (u, v), while in an undirected
graph, uv and vu are the same and both stand for {u,v}. For a directed graph
G = (V, E), the underlying undirected graph is the undirected graph with vertex
set V' that has an undirected edge between two vertices u,v € V if (u,v) or
(v,u) is in E. Graphs that can have directed edges as well as undirected edges
are called mized graphs, but such graphs are encountered rarely and we will not
discuss them explicitly in the following.

Multigraphs. In both undirected and directed graphs, we may allow the edge
set F to contain the same edge several times, i.e., E' can be a multiset. If an
edge occurs several times in E, the copies of that edge are called parallel edges.
Graphs with parallel edges are also called multigraphs. A graph is called simple,
if each of its edges is contained in E only once, i.e., if the graph does not have
parallel edges. An edge joining a vertex to itself, i.e., an edge whose endvertices
are identical, is called a loop. A graph is called loop-free if it has no loops. We
will assume all graphs to be loop-free unless specified otherwise.

Weighted graphs. Often it is useful to associate numerical values (weights) with
the edges or vertices of a graph G = (V, E'). Here we discuss only edge weights.
Edge weights can be represented as a function w : E — R that assigns each
edge e € F a weight w(e). Depending on the context, edge weights can describe
various properties such as cost (e.g. travel time or distance), capacity, strength
of interaction, or similarity. One usually tries to indicate the characteristics of
the edge weights by the choice of the name for the function. In particular, a
function assigning (upper) capacities to edges is often denoted by u, especially
in the context of network flow problems (see below). In general, we will mostly
use w to denote edge weights that express costs and other letters to denote edge
weights that express capacities or interaction strengths. For most purposes, an
unweighted graph G = (V, E) is equivalent to a weighted graph with unit edge
weights w(e) =1 for all e € E.

Degrees. The degree of a vertex v in an undirected graph G = (V, E), denoted
by d(v), is the number of edges in E that have v as an endvertex. If G is a
multigraph, parallel edges are counted according to their multiplicity in E. The
set of edges that have v as an endvertex is denoted by I'(v). The set of neighbors
of v is denoted by N (v). In a directed graph G = (V, E), the out-degree of v € V,
denoted by d*(v), is the number of edges in E that have origin v. The in-degree
of v € V, denoted by d~(v), is the number of edges with destination v. For
weighted graphs, all these notions are generalized by summing over edge weights
rather than taking their number. The set of edges with origin v is denoted by
't (v), the set of edges with destination v by I'"(v). The set of destinations
of edges in I'*(v) is denoted by N*(v), the set of origins of edges in I'~(v)
by N~ (v). If the graph under consideration is not clear from the context, these
notations can be augmented by specifying the graph as an index. For example,
de(v) denotes the degree of v in G. The maximum and minimum degree of
an undirected graph G = (V, E) are denoted by A(G) and §(G), respectively.

2 Fundamentals 9

The average degree is denoted by d(G) = ﬁ > vev d(v). An undirected graph
G = (V, E) is called regular if all its vertices have the same degree, and r-regular
if that degree is equal to r.

Subgraphs. A graph G' = (V' E’) is a subgraph of the graph G = (V, E) if
V' CVand E' C E. It is a (vertex-)induced subgraph if E’' contains all edges
e € F that join vertices in V’. The induced subgraph of G = (V, E) with vertex
set V! C V is denoted by G[V’]. The (edge-)induced subgraph with edge set
E' C E, denoted by G[E’], is the subgraph G’ = (V', E’) of G, where V' is the
set of all vertices in V' that are endvertices of at least one edge in F’, If C'is a
proper subset of V', then G — C' denotes the graph obtained from G by deleting
all vertices in C and their incident edges. If F' is a subset of E, G — F' denotes
the graph obtained from G by deleting all edges in F.

Walks, paths and cycles. A walk from z to x in a graph G = (V, E) is an al-
ternating sequence xg, e1, 1, €2, T2, ..., Tk_1, €k, Tr Of vertices and edges, where
e; = {zi—1,2;} in the undirected case and e; = (z;-1,;) in the directed case.
The length of the walk is defined as the number of edges on the walk. The walk
is called a path, if e; # e; for i # j, and a path is a simple path if x; # x; for
i # j. A path with zo = z} is a cycle. A cycle is a simple cycle if z; # x; for
0<i<j<k-1.

2.2 Essential Problems and Algorithms

2.2.1 Connected Components

An undirected graph G = (V, E) is connected if every vertex can be reached from
every other vertex, i.e., if there is a path from every vertex to every other vertex.
A graph consisting of a single vertex is also taken to be connected. Graphs that
are not connected are called disconnected. For a given undirected graph G =
(V, E), a connected component of G is an induced subgraph G’ = (V' E’) that is
connected and maximal (i.e., there is no connected subgraph G” = (V" E") with
V" > V'). Checking whether a graph is connected and finding all its connected
components can be done in time O(n + m) using depth-first search (DFS) or
breadth-first search (BFS).

A directed graph G = (V, E) is strongly connected if there is a directed path
from every vertex to every other vertex. A strongly connected component of a
directed graph G is an induced subgraph that is strongly connected and maximal.
The strongly connected components of a directed graph can be computed in time
O(n+m) using a modified DFS [542]. A directed graph is called weakly connected
if its underlying undirected graph is connected.

2.2.2 Distances and Shortest Paths

For a path p in a graph G = (V, E) with edge weights w, the weight of the path,
denoted by w(p), is defined as the sum of the weights of the edges on p. A path

10 U. Brandes and T. Erlebach

from u to v in G is a shortest path (with respect to w) if its weight is the smallest
possible among all paths from u to v. The length of a shortest path from u to v,
also called the shortest-path distance between u and v, is denoted by dg . (u, v),
where the subscripts G and/or w are usually dropped if no confusion can arise.

The single-source shortest paths problem (SSSP) is defined as follows: Given
agraph G = (V, E) with edge weights w : E — R and a vertex s € V (the source),
compute shortest paths from s to all other vertices in the graph. The problem is
only well-defined if the graph does not contain a cycle of negative weight. If the
edge weights are non-negative, SSSP can be solved in time O(m + nlogn) using
an efficient implementation of Dijkstra’s algorithm [133]. If the edge weights
are arbitrary, the Bellman-Ford algorithm uses time O(mn) to detect a cycle of
negative length or, if no such cycle exists, solve the problem. For the special case
of unit edge weights, BFS solves the problem in linear time O(n + m).

In the all-pairs shortest paths problem (APSP), one is given a graph G =
(V, E) with edge weights w : E — R and wants to compute the shortest-path
distances for all pairs of nodes. Provided that G does not contain a cycle of
negative length, this problem can be solved by the Floyd-Warshall algorithm in
time O(n?), or by n SSSP computations in time O(nm + n?logn).

These algorithms work for both directed and undirected graphs.

2.2.3 Network Flow

A flow network is given by a directed graph G = (V, E), a function v : E — R
assigning non-negative capacities to the edges, and two distinct vertices s,t € V
designated as the source and the sink, respectively. A flow f from s to t, or an
s-t-flow for short, is a function f: F — R satisfying the following constraints:

— Capacity constraints: Ve € E: 0 < f(e) < u(e)
— Balance conditions: Vv € V\ {s,t}: 3" cr—(,) fle) = X ccr+ () fl€)
The value of the flow f is defined as

Yo flo= > fle).
)

eel't(s) eel' (s

The problem of computing a flow of maximum value is called the maz-flow
problem. The max-flow problem can be solved in time O(nmlog(n?/m)) using
the algorithm of Goldberg and Tarjan [252], for example.

For a given graph G = (V, E), a cut is a partition (5,5) of V into two non-
empty subsets S and S. A cut (S,S) is an s-t-cut, for s,t € V, if s € S and
t € S. The capacity of a cut (S, S) is defined as the sum of the capacities of the
edges with origin in S and destination in S. A minimum s-t-cut is an s-t-cut
whose capacity is minimum among all s-t-cuts. It is easy to see that the value of
an s-t-flow can never be larger than the capacity of a s-t-cut. A classical result
in the theory of network flows states that the maximum value and the minimum
capacity are in fact the same.

2 Fundamentals 11

Theorem 2.2.1 (Ford and Fulkerson [218]). The value of a mazimum s-t-
flow is equal to the capacity of a minimum s-t-cut.

Algorithms for the max-flow problem can also be used to compute a minimum
s-t-cut efficiently. A minimum cut in an undirected graph G = (V, E) with edge
capacities v : E — R is a cut that is an s-t-cut for some vertices s,t € V and
has minimum capacity.

In the min-cost flow problem, one is given a directed graph G = (V| E), a
non-negative capacity function u : £ — R, a cost function ¢ : £ — R, and a
function b : V' — R assigning each vertex a demand/supply value. Here, a flow
is a function f : E — R that satisfies the capacity constraints and, in addition,
the following version of the balance conditions:

Yo eV : Z fle) — Z f(e) =b(v)

eel't(v) ecl'= (v)

The cost of a flow f is defined as c(f) = > . f(e)c(e). The problem of com-
puting a flow of minimum cost can be solved in polynomial time.

2.2.4 Graph k-Connectivity

An undirected graph G = (V, E) is called k-vertez-connected if |V| > k and
G — X is connected for every X C V with | X| < k. Note that every (non-empty)
graph is O-vertex-connected, and the 1-vertex-connected graphs are precisely the
connected graphs on at least two vertices. Furthermore, a graph consisting of a
single vertex is connected and 0-vertex-connected, but not 1-vertex-connected.
The vertez-connectivity of G is the largest integer k such that G is k-vertex-
connected. Similarly, G is called k-edge-connected if |V| > 2 and G — Y is
connected for every Y C F with |Y| < k. The edge-connectivity of G is the
largest integer k such that G is k-edge-connected. The edge-connectivity of a
disconnected graph and of a graph consisting of a single vertex is 0.

The notions of vertex-connectivity and edge-connectivity can be adapted to
directed graphs by requiring in the definitions above that G — X and G — Y,
respectively, be strongly connected.

Consider an undirected graph G = (V, E). A subset C C V is called a
vertez-separator (or verter cutset) if the number of connected components of
G — C is larger than that of G. If two vertices s and t are in the same connected
component of G, but in different connected components of G—C, then C is called
an s-t-vertex-separator. Edge-separators (edge cutsets) and s-t-edge-separators
are defined analogously. The notion of s-t-separators can be adapted to directed
graphs in the natural way: a set of vertices or edges is an s-t-separator if there
is no more path from s to t after deleting the set from the graph.

Let G = (V, E) be an undirected or directed graph. Two (directed or undi-
rected) paths p; and py from s € V to t € V are called vertez-disjoint if they do
not share any vertices except s and t. They are called edge-disjoint if they do
not share any edges. By Menger’s Theorem (see Chapter 7 for further details),

12 U. Brandes and T. Erlebach

a graph G with at least k + 1 vertices is k-vertex-connected if and only if there
are k vertex-disjoint paths between any pair of distinct vertices, and a graph G
with at least 2 vertices is k-edge-connected if and only if there are at least k
edge-disjoint paths between any pair of distinct vertices.

The number of vertex- or edge-disjoint paths between two given vertices in
a graph can be computed in polynomial time using network flow algorithms.
Therefore, the vertex- and edge-connectivity of a graph can be determined in
polynomial time as well. Special algorithms for these problems will be discussed
in Chapter 7.

2.2.5 Linear Programming

Let A be a real m x m matrix, b a real m-dimensional vector, and ¢ a real
n-dimensional vector. Furthermore, let x = (z1,...,z,) be a vector of n real
variables. The optimization problem

max CTJ?

st. Az <b
x>0

is called a linear program. It asks to find a real vector x that satisfies the con-
straints Az < b and z > 0 (where < is to be understood component-wise)
and maximizes the objective function ¢’z = 2?21 c;x;. Linear programs with
rational coefficients can be solved in time polynomial in the size of the input.

If the variables of a linear program are constrained to be integers, the program
is called an integer linear program. Computing optimal solutions to integer linear
programs is an A/P-hard problem (see the next section), and no polynomial-time
algorithm is known for this problem.

2.2.6 NP-Completeness

It is important to consider the running-time of an algorithm for a given problem.
Usually, one wants to give an upper bound on the running time of the algorithm
for inputs of a certain size. If the running-time of an algorithm is n®™ for inputs
of size n, we say that the algorithm runs in polynomial time. (For graph prob-
lems, the running-time is usually specified as a function of n and m, the number
of edges and vertices of the graph, respectively.) For many problems, however, no
polynomial-time algorithm has been discovered. Although one cannot rule out
the possible existence of polynomial-time algorithms for such problems, the the-
ory of N'P-completeness provides means to give evidence for the computational
intractability of a problem. A decision problem is in the complexity class NP
if there is a non-deterministic Turing machine that solves the problem in poly-
nomial time. Equivalently, for every yes-instance of the problem there is a proof
of polynomial size that can be verified in polynomial time. A decision problem
is N"P-hard if every decision problem in AP can be reduced to it by a poly-
nomial many-one reduction. Problems that are in NP and A'P-hard are called

2 Fundamentals 13

NP-complete. An example of an N'P-complete problem is SATISFIABILITY, i.e.,
checking whether a given Boolean formula in conjunctive normal form has a sat-
isfying truth assignment. A polynomial-time algorithm for an A/P-hard problem
would imply a polynomial-time algorithm for all problems in NP—something
that is considered very unlikely. Therefore, N"P-hardness of a problem is con-
sidered substantial evidence for the computational difficulty of the problem. For
optimization problems (where the goal is to compute a feasible solution that
maximizes or minimizes some objective function), we say that the problem is
NP-hard if the corresponding decision problem (checking whether a solution
with objective value better than a given value k exists) is A'P-hard. In order to
solve N'P-hard optimization problems, the only known approaches either settle
with approximate solutions or incur a potentially exponential running-time.

2.3 Algebraic Graph Theory

Two directed graphs Gy = (V4, E1) and Gy = (Va, Es) are isomorphic (written
as G ~ () if there is a bijection ¢ : Vi — Vo with

Yu,v e Vi (u,v) € By & (¢(u),p(v)) € Es.

Such a bijection is called an isomorphism. An isomorphism that maps a graph
onto itself is called an automorphism. Usually we consider two graphs to be
the same if they are isomorphic. Isomorphism and automorphism for undirected
graphs are defined analogously.

The incidence matriz (or node-arc incidence matriz) of a directed graph
G = (V,E) with V = {vy,...,v,} and E = {e1,...,en} is a matrix B with n
rows and m columns that has entries b; ; satisfying

—1, if v; is the origin of e;
bij = ¢ 1, if v; is the destination of e;
0, otherwise

The adjacency matriz of a simple directed graph G = (V, E) with V =
{v1,v2,..., 05} is an n x n matrix A(G) = (ai,j)1<i,j<n With

o 1, if (vi,vj)EE
Wij = 0, otherwise

If G is an undirected graph, its adjacency matrix is symmetric and has a; ; =1
if v; and v; are adjacent. For weighted graphs, the non-zero entries are w(v;, v;)
rather than 1.

The Laplacian of an undirected graph G = (V| E) is an n X n matrix defined
by L(G) = D(G) — A(G), where D(G) is the diagonal matrix that has its i-th
diagonal entry equal to dg(v;). Note that L(G) = BBT for any fixed orientation
of the edges of G. The normalized Laplacian of G is the n x n matrix defined by
L(G) = D(G)"Y2L(G)D(G)~*/?, where D(G)~'/? is the diagonal matrix where
the i-th diagonal entry is 0 if dg(v;) = 0 and 1/4/dg(v;) otherwise.

14 U. Brandes and T. Erlebach

Let A € C™*™ be a matrix. A value A € C is called an eigenvalue of A if
there is a non-zero n-dimensional vector x such that Ax = Az. Such a vector
x is then called an eigenvector of A (with eigenvalue). The (multi-)set of all
eigenvalues of a matrix is called its spectrum. It is equal to the set of the roots
of the characteristic polynomial of A, where the characteristic polynomial of A
is defined as the determinant of A — X - I,,.

If A is a real symmetric matrix, all eigenvalues are real. Therefore, the spec-
tra of the adjacency matrix, the Laplacian, and the normalized Laplacian of an
undirected graph G = (V, E') are multisets containing n real values. The spec-
trum of the adjacency matrix A(G) of a graph G is also called the spectrum
of G. The spectra of the Laplacian and the normalized Laplacian of G are called
the Laplacian spectrum and the normalized Laplacian spectrum of G.

2.4 Probability and Random Walks

A discrete probability space is a pair ({2, Pr), where {2 is a non-empty, finite or
countably infinite set and Pr is a mapping from the power set P(§2) of {2 to the
real numbers satisfying the following:

— Pr[A] >0, for all A C 02

- Pr[) =1

— Pr[Uen Ai] = X Pr[4;], for every sequence (4;);en of pairwise disjoint
sets from P(£2).

We call 2 a sample space. Subsets of {2 are called events. Note that we write
the probability of an event A as Pr[A] (and not as Pr(A)). The conditional
probability of event A given the occurrence of event B is written as Pr[A | B|
and is well-defined by Pr[A N B]/ Pr[B] whenever Pr[B] # 0.

A random variable X is a mapping from the sample space to the real numbers.
The image of X is denoted by Ix = X(£2). The expected value of a random
variable X is defined as E[X] = }° ., X(w)Pr[w]. Note that this definition
implies E[X] =" v ()2 Pr[X =a].

A Markov chain on state set S, where S can be finite or countably infinite,
is given by a sequence (X):enw, of random variables X; with Ix, C S and an
initial distribution go that maps S to R{ and satisfies > ¢ qo(s) = 1. It must
satisfy the Markov condition, i.e. for all t > 0 and all I C {0,1,...,¢t — 1} and
all 4, 7, s, € S we must have:

PI'[Xt+1 :] | Xt :Z,Vk el: Xk = Sk] :PI'[Xt+1 :] | Xt = Z]

In words, the probability distribution of the successor state X1 depends only
on the current state Xy, not on the history of how the chain has arrived in the
current state. We interpret X; as the state of the Markov chain at time t. By ¢
we denote the probability distribution on the state set S at time ¢, i.e., ¢; is a
vector whose i-th entry, for ¢ € S, is defined by ¢:(i) = Pr[X; = i].

If Pr[X;41 = j | X¢ =] is independent of ¢ for all states i, j € S, the Markov
chain is called homogeneous. We consider only homogeneous Markov chains with

2 Fundamentals 15

finite state set S in the following. For such Markov chains, the transition matrix
is defined as the |S| x |S| matrix T' = (¢, ;) with ¢, ; = Pr[Xpyq = j | Xy = 1].
The transition matrix is a stochastic matriz, i.e., a non-negative matrix in which
the entries in each row sum up to 1. Note that the probability distribution g;11
on the state set S at time ¢ + 1, viewed as a row vector, can be computed from
the probability distribution ¢, at time ¢ by ¢41 = ¢ - T, for all ¢ > 0. This
implies that ¢; = qo - T holds for all ¢ > 0.

A Markov chain is called irreducible if for every pair (i, j) of states there exists
a k > 0 such that Pr[Xy, = j | Xo = ¢] > 0. In other words, a Markov chain
is irreducible if every state can be reached from any given state with positive
probability. The graph of a Markov chain is defined as the directed graph with
vertex set S and edges (i, j) for all ¢, j with Pr[X,11 = j | X; = 4] > 0. A Markov
chain is irreducible if and only if its graph is strongly connected.

The period of a state s € S of an irreducible Markov chain is the greatest
common divisor of all £ > 0 such that Pr[Xy; = s | Xo = s] > 0. A Markov chain
is aperiodic if all its states have period 1.

For a given Markov chain with state set S and transition matrix 7', a non-
negative row vector m = (7s)ses is called a stationary distribution if) g7 =1
and 7 - T = m. Every irreducible Markov chain with finite state set S has a
unique stationary distribution. If, in addition, the Markov chain is aperiodic,
the probability distribution on the states converges to the stationary distibution
independently of the initial distribution, i.e., lim; .o gz = 7.

The hitting time of state j starting at state i is the expected number of steps
the Markov chain makes if it starts in state ¢ at time O until it first arrives in
state j at some time ¢ > 1.

A random walk in a simple directed graph G = (V, E) is a Markov chain with
S =V and:)

@) if (u,v) € E

PriXo =v| Xy =u] = {0 otherwise

In every step, the random walk picks a random edge leaving the current vertex

and follows it to the destination of that edge. The random walk is well-defined

only if d*(v) > 1 for all v € V. In this case, the transition matrix of the random

walk is the stochastic |V| x |V| matrix T' = (¢; ;) with ¢; ; = 1/d* (i) if (i,j) € E

and ¢; ; = 0 otherwise. Note that the Markov chain given by a random walk in

a directed graph G is irreducible if and only if G is strongly connected.
Random walks in undirected graphs can be defined analogously.

2.5 Chapter Notes

There are many good textbooks for the topics discussed in this chapter. Graph
theory is treated in [145, 67]. An introduction to algorithms can be found in [133].
Network flows are treated in [6]. Linear programming is covered extensively
in [505]. The standard reference for the theory of N’P-completeness is [240]. A
textbook about algebraic graph theory is [247]. An introduction to probability
theory is provided by [498].

3 Centrality Indices

Dirk Koschiitzki,* Katharina Anna Lehmann,* Leon Peeters, Stefan Richter,
Dagmar Tenfelde-Podehl,* and Oliver Zlotowski*

Centrality indices are to quantify an intuitive feeling that in most networks some
vertices or edges are more central than others. Many vertex centrality indices
were introduced for the first time in the 1950s: e.g., the Bavelas index [50, 51],
degree centrality [483] or a first feedback centrality, introduced by Seeley [510].
These early centralities raised a rush of research in which manifold applications
were found. However, not every centrality index was suitable to every application,
so with time, dozens of new centrality indices were published. This chapter will
present some of the more influential, ‘classic’ centrality indices. We do not strive
for completeness, but hope to give a catalog of basic centrality indices with some
of their main applications.

In Section 3.1 we will begin with two simple examples to show how centrality
indices can help to analyze networks and the situation these networks represent.
In Section 3.2 we discuss the properties that are minimally required for a real-
valued function on the set of vertices or edges of a graph to be a centrality index
for vertices and edges, respectively.

In subsequent Sections 3.3-3.9, various families of vertex and edge centrali-
ties are presented. First, centrality indices based on distance and neighborhood
are discussed in Section 3.3. Additionally, this section presents in detail some
instances of facility location problems as a possible application for centrality
indices. Next we discuss the centrality indices based on shortest paths in Sec-
tion 3.4. These are naturally defined for both, vertices and edges. We decided to
present both, vertex and edge centrality indices, in one chapter together since
many families of centrality indices are naturally defined for both and many in-
dices can be easily transformed from a vertex centrality to an edge centrality, and
vice versa. Up to date there have been proposed many more centrality indices for
vertices than for edges. Therefore, we discuss general methods to derive an edge
centrality out of the definition of a vertex centrality in Section 3.5. The general
approach of vitality measures is also applicable to edges and vertices. We will
describe this family in Section 3.6. In Section 3.7, a family of centrality indices
is presented that is derived from a certain analogy between information flow
and current flow. In Section 3.8 centrality indices based on random processes
are presented. In Section 3.9 we present some of the more prominent feedback
centralities that evaluate the importance of a vertex by evaluating the centrality
of its surrounding vertices.

* Lead authors

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 16-61, 2005.
© Springer-Verlag Berlin Heidelberg 2005

3 Centrality Indices 17

For many centrality indices it is required that the network at hand be con-
nected. If this is not the case, computing these centralities might be a problem.
As an example, shortest paths based centralities encounter the problem that
certain vertices are not reachable from vertices in a different component of the
network. This yields infinite distances for closeness centrality, and zero shortest-
path counts for betweenness centrality. Section 3.10 of this chapter discusses how
to deal with these problems in disconnected graphs.

Before we close the chapter we want to discuss a topic that spans the bridge
between the analysis of networks on the level of elements and the level of the
whole graph. In Section 3.11, we propose a very general method with which
a structural index for vertices can be transformed into a structural index for
graphs. This is helpful, e.g., in the design of new centrality indices which will be
explained on a simple example. We close this chapter with some remarks on the
history of centrality indices in Section 3.12.

3.1 Introductory Examples

Election of a leader is a frequent event in many social groups and intuitively,
some persons in such an event are more important or ‘central’ than others, e.g.
the candidates. The question is now how centrality indices can help to derive a
measure of this intuitive observation. On this first example we want to illustrate
that different kind of networks can be abstracted from such a social interaction
and we want to show how network analysis with centrality indices may help to
identify important vertices of these networks. A second example illustrates how
the application of an edge centrality index may help to figure out important edges
in a network. Both illustrations underline that there is no centrality index that
fits all applications and that the same network may be meaningfully analyzed
with different centrality indices depending on the question to be answered.

Before we begin the discussion on the examples, it should be noted that the
term ‘centrality’ is by no means clearly defined. What is it that makes a vertex
central and another vertex peripheral? In the course of time there have been
different answers to this question. Each of them serves another intuition about
the notion of centrality. Centrality can be interpreted as - among other things
- ‘influence’, as ‘prestige’ or as ‘control’. For example, a vertex can be regarded
as central if it is heavily required for the transport of information within the
network or if it is connected to other important vertices. These few examples
from a set of dozens other possibilities show that the interpretation of ‘centrality’
is heavily dependent on the context.

We will demonstrate the application of three different interpretations on the
following example: A school class of 30 students has to elect a class representative
and every student is allowed to vote for one other student. We can derive different
graph abstractions from this situation that can later be analyzed with different
centrality indices. We will first look at a network that represents the voting
results directly. In this network vertices represent students and an edge from
student A to student B is established if A has voted for B. In such a situation

18 D. Koschiitzki et al.

a student could be said to be the more ‘central’ the more people have voted
for him or her. This kind of centrality is directly represented by the number of
edges pointing to the corresponding vertex. The so called ‘in-degree centrality’
is presented in Section 3.3.1.

Another view on the same situation results in another network: In this net-
work an edge between A and B represents that student A has convinced student
B to vote for his or her favorite candidate. We will call this network an ‘influence
network’. Let us assume that the class is mainly split into two big groups X and
Y. Let some person have social relationships to members from both groups. If
this person has a favorite candidate from group X and convinces a big part of
group Y to vote for this candidate, he or she is ‘central’ because he or she me-
diates the most information between both groups. With this argument we can
say that a vertex in the given influence network is the more central the more
it is needed to transport the opinion of others. A family of centrality indices
that tries to capture this intuition of ‘being between groups’ is the family of
betweenness centrality indices, presented in Sections 3.4.2, 3.6.1 and 3.8.2.

In yet another perspective we could view the general social network of the
class: Who is friends with whom? Someone who is a friend of an important
person could be regarded as more important than someone having friends with
low social prestige. The centrality of a vertex in this kind of network is therefore
given by the centrality of adjacent vertices. This kind of ‘feedback centrality’ is
captured by many centrality indices that are presented in Section 3.9.

In analogy to the centrality of vertices, some of the edges in a network can
be viewed as being more important than others. We will illustrate this on a
commonly used network, the Internet. Looking at the backbone of the Internet
it is clear that the cables between servers on different continents are few and
thus very important for the functionality of the system. This importance stems
from the enormous data flow through the intercontinental cables that had to
be redirected if one of these cables was out of service. There are mainly two
different approaches to measure the centrality of an edge in a network: The
first counts the number of substructures like traversal sets or the set of shortest
paths in the graph on which an edge participates. An example for this approach
is the betweenness centrality of edges, presented in Section 3.4.2. The second
approach is based on the idea of measuring how much a certain network param-
eter is changed if the edge is removed. An example for this approach is the flow
betweenness vitality, presented in Section 3.6.1.

We have shown for two examples that very different ideas of centrality can
lead to centrality indices that help to analyze the situation represented by the
given network. It is important to note that none of these measures is superior to
the others. Every one is appropriate for some but not all questions in network
analysis.

3 Centrality Indices 19

3.2 A Loose Definition

Before presenting any centrality indices, we first have to give a definition for
centrality indices.! Historically there is no commonly accepted definition of what
a centrality index is, and almost everybody introduced his or her centrality
without giving a strict definition for centrality in general. Thus, here we will
just state the least common ground for all centralities presented in the following
sections. In Section 5.4 we will give some classes of centralities that follow much
stricter definitions.

The intuition about a centrality is that it denotes an order of importance on
the vertices or edges of a graph by assigning real values to them. As we have
pointed out in the introduction to this chapter, the notion of ‘importance’ is by
no means unambiguous. Nonetheless, as a minimal requirement we demand that
the result of a centrality index is only depending on the structure of the graph.
This demand is stated in the following definition of a structural index. Every
of the centrality indices presented here is a structural index but it is important
to note that not every structural index will be accepted as a centrality index.
Section 5.4 will also show that to date there is no stricter definition that captures
all of the introduced centrality indices.

Recall, that two graphs G; = (V1, E1) and Gy = (Va, Es) are isomorphic
(G1 =~ G9) if there exists a one-to-one mapping ¢: V3 — V4 such that (u,v) is
an edge in E; if and only if (¢(u), ¢(v)) is an edge in Ey (cf. Section 2.3).

Definition 3.2.1 (Structural Index). Let G = (V, E) be a weighted, directed
or undirected multigraph and let X represent the set of vertices or edges of G,
respectively. A real-valued function s is called a structural indez if and only if
the following condition is satisfied: Vo € X: G ~ H = sq(x) = su(d(x)),
where sq(x) denotes the value of s(x) in G.

A centrality index c is required to be a structural index and thus induces
at least a semi-order on the set of vertices or edges, respectively. By this order
we can say that z € X is at least as central as y € X with respect to a given
centrality ¢ if ¢(x) > ¢(y). Note that, in general, the difference or ratio of two
centrality values cannot be interpreted as a quantification of how much more
central one element is than the other.

The definition of a structural index expresses the natural requirement that a
centrality measure must be invariant under isomorphisms. In particular, this con-
dition implies that a centrality measure is also invariant under automorphisms.

3.3 Distances and Neighborhoods

In this section we will present centrality indices that evaluate the ‘reachability’
of a vertex. Given any network these measures rank the vertices according to the

! Centrality index will be used synonymously with centrality measure and, shortly,
centrality.

20 D. Koschiitzki et al.

number of neighbors or to the cost it takes to reach all other vertices from it.
These centralities are directly based on the notion of distances within a graph,
or on the notion of neighborhood, as in the case of the degree centrality. We
start with this very basic index, the degree centrality. Other centralities, like
eccentricity or closeness, will be presented in the light of a special application,
the facility location problem.

3.3.1 Degree

The most simple centrality is the degree centrality cp(v) of a vertex v that is
simply defined as the degree d(v) of v if the considered graph is undirected.
In directed networks two variants of the degree centrality may be appropriate:
the in-degree centrality ¢;p(v) = d~(v) and the out-degree centrality c¢,p(v) =
dT (v). The degree centrality is, e.g., applicable whenever the graph represents
something like a voting result. These networks represent a static situation and
we are interested in the vertex that has the most direct votes or that can reach
most other vertices directly. The degree centrality is a local measure, because the
centrality value of a vertex is only determined by the number of its neighbors.
In the next section we investigate global centrality measures and consider their
applications in a special set of problems, namely Facility Location Problems.

3.3.2 Facility Location Problems

Facility location analysis deals with the problem of finding optimal locations for
one or more facilities in a given environment. Location problems are classical
optimization problems with many applications in industry and economy. The
spatial location of facilities often take place in the context of a given transporta-
tion, communication, or transmission system, which may be represented as a
network for analytic purposes.

A first paradigm for location based on the minimization of transportation
costs was introduced by Weber [575] in 1909. However, a significant progress
was not made before 1960 when facility location emerged as a research field.

There exist several ways to classify location problems. According to Hakami
[271] who considered two families of location problems we categorize them with
respect to their objective function. The first family consists of those problems
that use a minimax criterion. As an example, consider the problem of determin-
ing the location for an emergency facility such as a hospital. The main objective
of such an emergency facility location problem is to find a site that minimizes
the maximum response time between the facility and the site of a possible emer-
gency. The second family of location problems considered by Hakimi optimizes a
minisum criterion which is used in determining the location for a service facility
like a shopping mall. The aim here is to minimize the total travel time. A third
family of location problems described for example in [524, 527] deals with the lo-
cation of commercial facilities which operate in a competitive environment. The
goal of a competitive location problem is to estimate the market share captured
by each competing facility in order to optimize its location.

3 Centrality Indices 21

Our focus here is not to treat all facility location problems. The interested
reader is referred to a bibliography devoted to facility location analysis [158].
The aim of this section is to introduce three important vertex centralities by
examining location problems. In the subsequent section we investigate some
structural properties of the sets of most central indices that are given by these
centrality indices.

The definition of different objectives leads to different centrality measures.
A common feature, however, is that each objective function depends on the dis-
tance between the vertices of a graph. In the following we assume that G = (V, E)
is a connected undirected graph with at least two vertices and we suppose that
the distance d(u,v) between two vertices u and v is defined as the length of
the shortest path from u to v (cf. in Section 2.2.2). These assumptions ensure
that the following centrality indices are well defined. Moreover, for reasons of
simplicity we consider G to be an unweighted graph, i.e., all edge weights are
equal to one. Of course, all indices presented here can equally well be applied to
weighted graphs.

Eccentricity. The aim of the first problem family is to determine a location that
minimizes the maximum distance to any other location in the network. Suppose
that a hospital is located at a vertex u € V. We denote the maximum distance
from u to a random vertex v in the network, representing a possible incident, as
the eccentricity e(u) of u, where e(u) = max{d(u,v): v € V}. The problem of
finding an optimal location can be solved by determining the minimum over all
e(u) with w € V. In graph theory, the set of vertices with minimal eccentricity
is denoted as the center of G (cf. Section 3.3.3). The concept is illustrated in
Figure 3.1. The eccentricity values are shown and the most central vertices are
highlighted.

Fig. 3.1. Eccentricity values of a graph. Vertices in the center are colored in grey

22 D. Koschiitzki et al.

Hage and Harary [278] proposed a centrality measure based on the eccentric-
ity
1 1
= =) 3.1
cs(u) e(u) max{d(u,v): veV} (8-1)

This measure is consistent with our general notion of vertex centrality, since
e(u)~! grows if the maximal distance of u decreases. Thus, for all vertices u € V
of the center of G: cg(u) > cg(v) for all v € V.

Closeness. Next we consider the second type of location problems — the min-
isum location problem, often also called the median problem or service facility
location problem. Suppose we want to place a service facility, e.g., a shopping
mall, such that the total distance to all customers in the region is minimal. This
would make traveling to the mall as convenient as possible for most customers.

We denote the sum of the distances from a vertex u € V' to any other vertex
in a graph G = (V,E) as the total distance? > vev A(u,v). The problem of
finding an appropriate location can be solved by computing the set of vertices
with minimum total distance. In Figure 3.2 the total distances for all vertices
are shown and the vertices with minimal total distance are highlighted.

Fig. 3.2. Total distances of a graph. Lowest valued vertices are colored in grey. Note,
the vertices v and w are more important with respect to the eccentricity

In social network analysis a centrality index based on this concept is called
closeness. The focus lies here, for example, on measuring the closeness of a person
to all other people in the network. People with a small total distance are consid-
ered as more important as those with a high total distance. Various closeness-
based measures have been developed, see for example [500, 51, 52, 433, 558, 451,
88]. In Section 3.10 we outline a measures developed for digraphs. The most
commonly employed definition of closeness is the reciprocal of the total distance

2 In [273], Harary used the term status to describe a status of a person in an organi-
zation or a group. In the context of communication networks this sum is also called
transmission number.

3 Centrality Indices 23

1

In our sense this definition is a vertex centrality, since co(u) grows with
decreasing total distance of u and it is clearly a structural index.

Before we discuss the competitive location problem, we want to mention the
radiality measure and integration measure proposed by Valente and Foreman
[658]. These measures can also be viewed as closeness-based indices. They were
developed for digraphs but an undirected version is applicable to undirected
connected graphs, too. This variant is defined as

2vev (A +1—d(u,v))
n—1

cr(u) = (3.3)
where Ag and n denote the diameter of the graph and the number of vertices,
respectively. The index measures how well a vertex is integrated in a network.
The better a vertex is integrated the closer the vertex must be to other vertices.
The primary difference between cc and cp is that cg reverses the distances to
get a closeness-based measure and then averages these values for each vertex.

Centroid Values. The last centrality index presented here is used in competi-
tive settings: Suppose each vertex represents a customer in a graph. The service
location problem considered above assumes a single store in a region. In reality,
however, this is usually not the case. There is often at least one competitor of-
fering the same products or services. Competitive location problems deal with
the planning of commercial facilities which operate in such a competitive envi-
ronment. For reasons of simplicity, we assume that the competing facilities are
equally attractive and that customers prefer the facility closest to them. Consider
now the following situation: A salesman selects a location for his store knowing
that a competitor can observe the selection process and decide afterwards which
location to select for her shop. Which vertex should the salesman choose?

Given a connected undirected graph G of n vertices. For a pair of vertices u
and v, 7, (v) denotes the number of vertices which are closer to u than to v, that is
Yu(v) = {w € V: d(u, w) < d(v,w)}|. If the salesman selects a vertex u and his
competitor selects a vertex v, then he will have v, (v) + 3(n — vu(v) — 7, (u)) =
in + 1(vu(v) — 7 (u)) customers. Thus, letting f(u,v) = vu(v) — Yo (u), the
competitor will choose a vertex v which minimizes f(u,v). The salesman knows
this strategy and calculates for each vertex u the worst case, that is

cr(u) = min{f(u,v): v eV —u}. (3.4)

cr(u) is called the centroid value and measures the advantage of the location
u compared to other locations, that is the minimal difference of the number of
customers which the salesman gains or loses if he selects u and a competitor
chooses an appropriate vertex v different from wu.

In Figure 3.3 an example is shown where the centroid vertex is highlighted.
Notice that for each vertex u € V in graph shown in Figure 3.4 cp(u) < —1.

24 D. Koschiitzki et al.

Fig. 3.3. A graph with one centroid vertex. Note that v is the vertex with maximal
closeness centrality

Fig. 3.4. All centroid values are negative. There is no profitable location for the
salesman

Here, the salesman loses his advantage to choose as first. The strategy “choose
after the leader has chosen” would be optimal.

Also the centroid measure is a structural index according to Definition 3.2.1.
But in contrast to eccentricity and closeness, centroid values can be negative as
well.

3.3.3 Structural Properties

In this section we will investigate several structural properties for the distance-
based vertex centralities introduced in Section 3.3.2. Using Definition 3.2.1 the
set of maximum centrality vertices S.(G) of G with respect to a given vertex
centrality c is given by

S(G)={ueV:VoeVc(u)>cw)} (3.5)

Center of a Graph. In Section 3.3.2 the eccentricity of a vertex u € G was
defined as e(u) = max{d(u,v): v € V}. Recall, that by taking the minimum over

3 Centrality Indices 25

all e(u) we solve the emergency location problem. In graph theory, this minimum
is called the radius r(G) = min{e(u): v € V'}. Using the radius of G the center
C(Q) of a graph G is

C(G)={ueV:r(G)=ec(u)}. (3.6)

It is easy to show that S.,(G) = C(G). Clearly, every undirected connected
graph has a non-empty center. But where are the vertices of the center located?
A basic result concerning the center of a tree is due to Jordan [336]

Theorem 3.3.1. For any tree, the center of a tree consists of at most two ad-
jacent vertices.

Proof. The result is trivial if the tree consists of at most two vertices. We show
that any other tree T has the same center as the tree T' which is obtained from
T by removing all leaves. For each vertex u of T, only a leaf can be an eccentric
vertex. Aa vertex u is an eccentric vertex of a vertex v if d(u, v) = e(v). Since the
eccentricity of each u € T” is one less than its eccentricity in T, T and T" have
the same center. If the process of removing leaves is continued, we successively
obtain trees having the same center as T'. Finally, we obtain a subtree of T which
consists of either one vertex or a pair of adjacent vertices. a

The proof shows that it is possible to determine the center without computing
the vertex eccentricities. The following generalization of Theorem 3.3.1 due to
Harary and Norman [281] deals with the location of the center in a connected
separable graph, i.e., a graph which contains a cut-vertex. Recall, a cut-vertex
of a graph is a vertex whose removal increases the number of components, i.e., if
u is a cut-vertex of a connected graph G, then G — w is disconnected. We call a
graph 2-vertex-connected if G contains no cut-vertices (cf. Section 2.2.4). Note,
each vertex of a graph distinct from a cut-vertex lies in exactly one 2-vertex-
connected subgraph, and each cut-vertex lies in more than one.

Theorem 3.3.2. Let G be a connected undirected graph. There exists a 2-vertex-
connected subgraph in G containing all vertices of C(G).

Proof. Suppose there is no 2-vertex-connected subgraph in G containing all the
vertices of C(G). Then G has a cut-vertex u such that G —u decomposes into the
subgraphs G; and G4 each of them containing at least one vertex of C(G). Let v
be an eccentric vertex of u and P the corresponding shortest path between u and
v of length e(u). Then v must lie in G; or Ga, say Gs. Furthermore there exists
at least one vertex w in G; which does not belong to P. Now, let w € C(G) and
let P’ be a shortest path in G between w and w. Then e(w) > d(w, u)+d(u,v) >
1+ e(u). So w does not belong to the center of G, a contradiction. Thus, there
must be a 2-vertex-connected subgraph containing all vertices of center of G. 0O

Figure 3.1 in Section 3.3.2 shows a graph consisting of fourteen 2-vertex-
connected subgraphs consisting of two vertices and one 2-vertex-connected sub-
graph in the middle containing the two central vertices.

26 D. Koschiitzki et al.

Median of a Graph. The service facility problem presented in Sect. 3.3.2
was solved by determining the set of vertices with minimum total distance. If
the minimum total distance of G is denoted by s(G) = min{s(u): u € V}, the
median M(G) of G is given by

M(G)={ueV:s(GQ) =s(u)}. (3.7)

Clearly S..(G) = M(G). Truszczynski [552] studied the location of the me-
dian in a connected undirected graph.

Theorem 3.3.3. The median of a connected undirected graph G lies within a
2-vertex-connected subgraph of G.

Similar to the center of a tree Theorem 3.3.3 implies the existence of at least
one 2-vertex-connected subgraph containing the median of a tree.

Corollary 3.3.4. The median of a tree consists of either a single vertex or a
pair of adjacent vertices.

The graph in Figure 3.2 contains a 2-vertex-connected subgraph of six vertices
containing the median. Moreover, the example illustrates that C(G) NM(G) = ()
is possible. Let (M(G)) and (C(G)) denote the subgraphs induced by M(G) and
C(G), respectively. The results due to Hendry [293] and Holbert [300] show that
the center and median can be arbitrarily far apart.

Theorem 3.3.5. Let Hy and Hs be two connected undirected graphs. For any
integer k > 0, there exists a connected undirected graph G, such that (M(G)) ~
H,y, (C(G)) =~ Hs, and the distance between M(G) and C(G) is at least k.

This result is not surprising, because the center and the median represent
solution sets of distinct objective functions.

Centroid of a Graph. The computation of the centroid of a graph is a maximin
optimization problem. In Sect. 3.3.2 we have shown the relation to a competitive
location problem. We defined the centroid value for a given vertex u by cp(u) =
min{ f(u,v): v € V—u}. In addition we call the objective function value f(G) =
max{cp(u): u € V'} the centroid value of G and denote by

Z2(G) ={ueV: f(G) = cr(u)} (3-8)

the set of vertices representing the centroid of G. With it the set Z(G) consists
of all appropriate locations for the competitive location problem considered in
Section 3.3.2.

We now focus on the location of the centroid in a graph. First we assume the
graph is an undirected tree T' = (V, E). Let u be vertex of T'. A branch of u is
a maximal subtree containing u as a leaf. The number of branches at u is equal
to the degree of u. The branch weight of u is the maximum number of edges
among all branches of u. The vertex u is called a branch weight centroid vertex

3 Centrality Indices 27

if 4 has minimum branch weight and the branch weight centroid of T consists
of all such vertices. Zenlinka [594] has shown that the branch weight centroid of
T is identical with its median. Slater [524] used this result to show

Theorem 3.3.6. For any tree the centroid and the median are identical.

Theorem 3.3.6 and Corollary 3.3.4 together imply that the centroid of a tree
consists of either a single vertex or a pair of adjacent vertices. Smart and Slater
[527] also studied the relative location of the centroid in a connected undirected
graph. The following Theorem is a generalization of Theorem 3.3.6.

Theorem 3.3.7. For any connected undirected graph, the median and the cen-
troid lie in the same 2-vertex-connected subgraph.

Reconsider the graph in Fig. 3.3. The median and the centroid lie within the
subgraph but Z(G) N M(G) = 0. Let (Z(G)) be the graph induced by Z(G).
Smart and Slater [527] have shown the following.

Theorem 3.3.8. Let Hy and Hs be to connected undirected graphs. For any
integer k > 4, there exists a connected undirected graph G, such that (Z(G)) ~
Hy, (M(G)) ~ Ha, and the distance between Z(G) and M(QG) is at least k.

Furthermore, Smart and Slater [527] proved that the center, the median, and
the centroid can be arbitrarily far apart in a connected undirected graph. In
Fig. 3.5 an example is given where all sets are pairwise distinct. The following
result summarizes Theorems 3.3.5 and 3.3.8.

C% @ T

<

O

Fig. 3.5. C(G) = {v1,v2}, M(G) = {w1}, and Z(G) = {w1, w2} are pairwise distinct

Theorem 3.3.9. For three connected undirected graphs Hy, Hs, and Hs, and
any integer k > 4, there exists an undirected connected graph G such that
(C(G)) = Hy, (M(G)) ~ Hs, (Z(G)) ~ Hs, and the distances between any
two of them is at least k.

28 D. Koschiitzki et al.

Some of concepts presented here can be extended to digraphs. Chartrand
et al. [115] showed that the result of Theorem 3.3.5 also holds for digraphs.

3.4 Shortest Paths

This section presents centrality indices that are based on the set of shortest
paths in a graph. Shortest paths are defined on vertices as well as on edges and
such, some centrality indices were first introduced as vertex centralities and later
adapted as edge centralities. In the following, we will sometimes make a general
statement regarding vertices and edges equally. We will call a vertex v or an edge
e (graph) ’element’ and denote the centrality of an element in general by z. The
first two indices, stress and betweenness centrality of an element x, are based
on the (relative) number of shortest paths that contain x. The last centrality
index is only defined on edges and based on traversal sets. All three centrality
indices can be defined on weighted or unweighted and directed or undirected
and simple or multi graphs. For simplification we will discard any information
about the underlying graph in the notation for a given centrality. Thus, cx
might denote the centrality indices of a weighted, undirected graph or any other
combination of weights, direction and edge multiplicity. Note that the set of all
shortest paths has to be computed in a preprocessing step with the appropriate
algorithm, depending on the combination of these graph properties.

3.4.1 Stress Centrality

The first centrality index based on enumeration of shortest paths is stress cen-
trality cg(z), introduced in [519]. The author was concerned with the question
how much ‘work’ is done by each vertex in a communication network. It is clear
that communication or transport of goods will follow different kinds of paths in
a social network. Nonetheless, the author of [519] models the set of paths used
for communication as the set of shortest paths. The assumption is that counting
the number of shortest path that contain an element = gives an approximation
of the amount of ‘work’ or ‘stress’ the element has to sustain in the network.
With this, an element is the more central the more shortest paths run through
it. The formal definition is given by:

cs(v) = Z Z ost(v) (3.9)

s#EVEV t#veV

where 0, (v) denotes the number of shortest paths containing v. The definition
given in [519] is not rigorous, but in analogy to the betweenness centrality all
shortest paths that either start or end in v are not accounted for this centrality
index. The calculation of this centrality index is given by a variant of a simple
all-pairs shortest-paths algorithm that not only calculates one shortest path but
all shortest paths between any pair of vertices. More about the algorithm for
this centrality can be found in Section 4.2.1.

3 Centrality Indices 29

Although this centrality was designed to measure stress on vertices, the same
definition can be applied for edges:

cs(e) =D) oule) (3.10)

seV teV

where o4 (e) denotes the number of shortest paths containing edge e. In both
cases stress centrality measures the amount of communication that passes an
element in an all-to-all scenario. More precisely, it is not only an all-to-all scenario
but every vertex sends as many goods or information units to every other vertex
as there are shortest paths between them and stress centrality measures the
according stress.

We next want to show how the stress centrality value of a vertex v is related
to the stress centrality indices of the edges incident to v.

Lemma 3.4.1 (Relation between cg(v) and cs(e)). In a directed graph
G = (V, E), stress centrality on vertices and edges are related by

cs(v):% Z cs(e) — Z Osv — Z Out (3.11)

eel'(v) v#SEV v#£ELEV
forallveV.

Proof. Consider any shortest path connecting a pair s # t € V. It contributes a
value of 1 to the stress of each of its vertices and edges. Summing the contribution
of a path over all edges that are incident to a vertex v thus yields twice its
contribution to v itself if v € V'\ {s,t}, and 1 otherwise. The sum of contributions
of all shortest paths to edges incident to a common vertex v hence satisfies the
above relation, since v is), 2scv Osv T > Ztev Ot times an endvertex of any
shortest path. a

3.4.2 Shortest-Path Betweenness Centrality

Shortest-path betweenness centrality can be viewed as some kind of relative
stress centrality. Here, we will first define it and then discuss the motivation
behind this centrality index: Let ds:(v) denote the fraction of shortest paths
between s and t that contain vertex v:

(3.12)

Ost

where o4 denotes the number of all shortest-path between s and t. Ratios 05 (v)
can be interpreted as the probability that vertex v is involved into any com-
munication between s and ¢. Note, that the index implicitly assumes that all
communication is conducted along shortest paths. Then the betweenness cen-
trality cp(v) of a vertex v is given by:

30 D. Koschiitzki et al.

)= > D dulv) (3.13)

s#EVEV t#veV

As for stress centrality, the shortest paths ending or starting in v are explicitly
excluded. The motivation for this is that the betweenness centrality of a vertex
measures the control over communication between others.

The betweenness centrality index was introduced in [32, 226] and has found
a wide field of applications. In [226] this new centrality index was introduced
because it is problematic to apply the closeness centrality to a disconnected
graph: the distance between two vertices in different components is usually set
to infinity. With this, the closeness centrality (see subsection 3.2) in discon-
nected graphs will give no information because each vertex is assigned the same
centrality value, namely 1/00. We will discuss some resorts to this problem in
Section 3.10.

The betweenness centrality does not suffer from this problem: Any pair of
vertices s and t without any shortest path from s to t just will add zero to the
betweenness centrality of every other vertex in the network.

Betweenness centrality is similar to stress centrality introduced in [519], but
instead of counting the absolute number of shortest paths, the shortest-path
betweenness centrality sums up the relative number of shortest paths for each
pair of endvertices. These are interpreted as the extent to which a vertex v con-
trols the communication between such pairs. Figure 3.6 gives an example why
this might be more interesting than the absolute number of shortest paths. It
shows two tripartite graphs in which the middle layer mediates all communica-
tion between the upper and the lower layer. The stress centrality of vertices in
the middle layer is the same in both graphs but the removal of the middle vertex
on the right would disconnect the whole system whereas in the right graph the
removal of a single vertex would not. This is because the former has full respon-
sibility for the communication in its graph whereas on the left side every vertex
just bears one third of it.

0

Fig. 3.6. cs(ui) = 16 and cp(ui) = 3,7 = 1,2,3 and cs(v) = 16 but cp(v) = 1. The
graph shows on an example that stress centrality is not designed to evaluate how much

communication control a vertex has

In [32] the shortest-path betweenness centrality — here called ‘rush’ —is viewed
as a flow centrality: “The rush in an element is the total flow through that
element, resulting from a flow between each pair of vertices”. In this sense,

3 Centrality Indices 31

05t (v) is interpreted as the amount of flow that passes if one unit of flow is sent
from s to t along shortest paths, and with a special division rule. In [32] the
‘rush’ is also defined for edges with d4(e) as the flow over edge e:

dst(e) = out(c) (3.14)

Ost

For reasons of consistency we will denote the resulting centrality not as ‘rush on
edges’ but as the betweenness centrality cg(e) of edge e:

cp(e) = Z Zést(e) . (3.15)

seVteV

Variants of Shortest-Path Betweenness Centrality. In [111, 580] some
variants of the shortest-path betweenness centrality have been introduced. The
authors generalize the approach of betweenness centrality by changing the set of
paths P(s,t) on which the betweenness centrality is evaluated. Instead of just
using the set of all shortest paths between s and ¢ any other set can be used for
this variant. The general pattern is always the same: For each node pair s and
t compute the fraction of paths in P(s,t) that contain an element from the sum
of all paths between s and t. To get the betweenness centrality cg(P(s,t)) on
a specified path set p sum over the terms for all node pairs. In [580], a number
of possible path sets P(s,t) was defined, as e.g. the set of k-shortest paths, i.e.
the set of all paths not longer than k € IN or the set of k-shortest, node-disjoint
paths. The according betweenness centralities did not get any special name but
for reasons of consistency we will denote them as k-shortest paths and k-shortest
vertex-disjoint paths betweenness centrality.

The authors in [111] were motivated by the fact that the betweenness central-
ity is not very stable in dynamic graphs (see also our discussion of the stability
and sensitivity of centrality indices in Section 5.5). The removal or addition of
an edge might cause great perturbations in the betweenness centrality values.
To eliminate this, P(s,t) was defined to contain all paths between a node pair s
and t that are not longer than (1+¢€)d(s,t). The resulting betweenness centrality
for nodes and edges has been named e-betweenness centrality. The idea behind
this centrality index seems reasonable but analytical or empirical results on the
stability of this index were not given.

Other variants of the general betweenness centrality concept are fundamen-
tally different in their approach and calculation. We will discuss the flow between-
ness centrality in Section 3.6.1 and the random-walk betweenness centrality in
Section 3.8.2.

In the following theorem we state the relation between the edge and vertex
betweenness centrality cg(e) and cpg(v) of vertices and edges incident to each
other:

Lemma 3.4.2 (Relation between cg(v) and cg(e)). In a directed graph
G = (V, E), shortest-path betweenness on vertices and edges are related by

32 D. Koschiitzki et al.

forallveV.

Proof. Consider any shortest path connecting a pair s # t € V. It contributes
exactly = 5 to the betweenness of its vertices and edges. Summing the contribu-
tion of a path over all incoming (or outgomg) edges of a vertex v thus equals its
contribution to v itself if v € V'\ {s,t}, and U—St otherwise. The sum of contribu-
tions of all shortest paths to edges incident to a common vertex v hence satisfies
the above relation, since v is (n — 1) times the first (last) vertex of paths to some
vertex t (from some vertex s). a

3.4.3 Reach

In 2004, Ron Gutman [266] published a new approach to shortest path com-
putation in hierarchical networks like road maps, for example. It is based on
employing Dijkstras algorithm or the A* algorithm alternatively on a select sub-
set of nodes. More specifically, only nodes having a high reach are considered.
The concept is defined as follows:

Definition 3.4.3. Given

— a directed graph G = (V, E) with a nonnegative distance function m : E — RT,
which is called reach metric

— a path P in G starting at node s and ending at node t

— a node v on P

the reach of v on P is defined as r(v, P) := min{m(s,v, P),m(v,t, P)}, the
minimum of the distance from s to v and the distance from v to t, following path
P according to the reach metric. The reach of v in G, r(v,G) is the mazimum
value of (v, Q) over all least-cost paths Q in G containing v.

When performing a Dijkstra-like shortest-path search towards a target t,
nodes are only enqueued if they pass test(v), where test(v) := r(v, G) > m(P) Vv
r(v,G) > d(v,t). That is v is only disregarded if its reach is too small for it to
lie on a least-cost path a distance m(P) — denoting the length of the computed
path from the origin s to v at the time v is to be inserted into the priority queue
— from s and at a straight-line distance d(v,t) from the destination. Note that
this requires a distance function that is consistent with reach metric, such that
on a path P from u to v, the path length m(P) = m(u,v, P) must be at least
d(u,v).

At first, this reach centrality does not seem to make sense in order to simplify
computation of shortest paths, since there is no obvious way of computing r(v, G)
for all nodes without solving an all pairs shortest path problem in the first place.
However, Gutman goes on to show that in the above algorithm, even an upper
bound for (v, G) suffices to preserve guaranteed shortest paths. Naturally, using
an upper bound increases the number of nodes that need to be enqueued. The

3 Centrality Indices 33

author gives a sophisticated algorithm that yields practically useful bounds in a
more feasible time complexity. Unfortunately, both quality and complexity are
only empirically analyzed.

3.4.4 Traversal Sets
For G = (V, E) and an edge e € E we call

T. ={(a,b) € V x V| Ip. p is a shortest path from a to b and contains e}

the edge’s traversal set — the set of source-destination pairs where for every
pair some shortest path contains this edge. Now, the size of the traversal set
would be an obvious measure for the importance of the edge. As claimed by
Tangmunarunkit et al. [540], this simple method may not yield the desired result
in some cases, so they propose the following different counting scheme.?

The traversal set T, can be seen as a set of new edges, connecting those pairs
of vertices that have shortest paths along e in the original graph. These edges
(together with the vertices they connect) naturally constitute a graph, which is
bipartite as we will now see.

Sl z .-~
Se— o7

Fig. 3.7. The traversal set graph is bipartite

Let (a,b) be any edge in the traversal set graph T, of edge e = (y, z). This
means that there is a shortest path p connecting a and b via e (cf. Figure 3.7).

Without loss of generality, assume that p has the foorma —--- —y — 2z —--- —b.
Then, there cannot be an a — z path shorter than the a — y prefix of p, for else
the resulting path alonga — --- — 2z — - - - — b would be shorter than our shortest

path p. In the other direction, no y — b path may be shorter than our z — b suffix
of p. To summarize, a is closer to y, and b is closer to z. Let) denote the set of
all vertices closer to y than to z and let Z denote the set of all vertices closer to
z. Thus, Y and Z form a partition of V. No two vertices belonging to the same
set can be connected by an edge in this graph since the shortest path connecting
them can never contain e. Thus, T, is naturally bipartite with regard to) and
Z.

3 Both ways of counting yield values of different orders of magnitude for certain ex-
ample graphs. However, we have not been able to identify a case where one scheme
differentiates between two situations while the other does not. That is why we can
only rely on the experience of Tangmunarunkit et al (ibid.).

34 D. Koschiitzki et al.

An edge’s value is then defined as the size of a minimum vertex cover on the
bipartite graph formed by the traversal set:

Cis(e) =min{|H| | H is a vertex cover for T}

Unlike the non-bipartite case, this is computable in polynomial time (less than
O(n?)) using a theorem by Kénig and Egervary [366, 173], which states that
the minimum size of a vertex cover equals the size of a maximum matching on
bipartite graphs.

In [540] this centrality index has been used to characterize a graph with
regard to its hierarchical organization. The authors determine the edge value
pattern of sample paths in the original graph. If a high fraction of paths shows
an up-down pattern of edge values, i.e., a paths begins with edges having a small
value, the value raises along the path and then drops again to low values, the
authors assume that this shows a high level of hierarchical organization of the
underlying graph. An example on which this assumption is intuitively true is
the graph of streets in a country: Some of them are only within cities, others are
connecting smaller suburbs and some are high-speed freeways. Most paths from
one location to another will follow streets that have low values at the beginning,
then the driver will use a freeway and at last will use inner-city streets again at
the end. This example shows that hierarchically organized networks may show
an up-down pattern in the edge value distribution on many paths but the reverse
will be hard to prove. This empirical finding should thus be treated with care.

3.5 Derived Edge Centralities

Historically, centrality indices were developed to analyze social networks. From
this application, the emphasis lay on the analysis of the most central persons in
social networks. This lead to a great number of different centrality indices for
vertices. Most centrality indices for edges, e.g., the shortest path betweenness
centrality, were only developed as a variant of the centrality index for vertices.
Here, we want to discuss two methods with which every given centrality index
for vertices can be transformed into a centrality index for edges.

3.5.1 Edge Centralities Derived from Vertex Centralities

One intuitive idea to derive an edge centrality from a vertex centrality is to apply
the vertex centrality to the edge graph that is corresponding to the network to
be analyzed:

Definition 3.5.1. The edge graph of G = (V,E) is G' = (E,K) where K is
the set of all edges e = ((z,y), (y,2)) where (x,y),(y,z) € E. That is, two
edges have a connection if they are adjacent to the same vertex y (with the first
one in- and the second outbound for directed graphs).

There are biased and unbiased centralities for vertices. Note that methods
that incorporate previous knowledge usually do this by assuming that a subset

3 Centrality Indices 35

of ‘root vertices’ is especially important. For details on personalization see Sec-
tion 5.2. Unlike the approaches described in there, an application on the edge
graph then needs a description of central edges.

The size of the edge graph may be quadratic in the size of the original graph.
For large graphs and computationally expensive methods this might well be a
hindrance.

There is another caveat. Some of the more advanced techniques for vertices
incorporate weighted edges, a feature that allows for more detailed models. How-
ever, in the edge graph these become weighted vertices, and there is no canonical
way to use this data.

Finally, there is a philosophical point to be made against this approach: The
vertex centralities described so far fall into the categories of degree, closeness
and betweenness centrality. On the edge graph, these concepts translate into
counting incident edges, closeness to other edges and position on paths between
pairs of edges. However, when modeling phenomena using networks, we tend to
have vertices representing entities, while edges describe relationships between
these. Most of the time, these relationships are meaningless without the entities
they connect. Therefore, none of the three mentioned categories seems to make
a lot of sense as a centrality measure for edges.

Fig. 3.8. Edge graph example

As an illustrative instance, look at the evaluation of the stress centrality on
the left example graph in Figure 3.8. For a vertex z it is defined as the number
of shortest paths that use x and do not end in x. The straightforward translation
for an edge, say a, would be the number of shortest paths that use a, adding
up to three in this example. In the middle, you find the corresponding edge
graph. In contrast to the above, no shortest path (except those that end in a)
crosses the vertex a. Obviously, the edge graph does not lead to the natural edge
generalization of stress centrality. However, this natural generalization may be
attained using a different graph translation. We will call this construction the
incidence graph, and there is an illustrative instance on the right hand side of
Figure 3.8: Each edge e is split by a new ‘edge vertex’ that receives the link’s
name.

Definition 3.5.2. The incidence graph of G = (V, E) is
G"=VUE{(v,e) | Fw:e= (v,w) € E}U{(e,w) | Fv:e=(v,w) € E}.

36 D. Koschiitzki et al.

That is, a ‘real vertexr’ and an ‘edge vertexr’ become linked if they are incident in
the original graph.

We can now use a biased version of stress vertex betweenness (see Section 5.2
for details on how to personalize measures), which only takes into account ‘real
vertex’ pairs to measure the importance of ‘edge vertices’. This way, most vertex
measures may be translated into edge measures. As with the original centralities,
it remains to check if the measure we achieve does have a sensible semantics with
respect to the function of the network.

3.6 Vitality

Vitality measures are commonly used to determine the importance of vertices or
edges in a graph. Given an arbitrary real-valued function on G a vitality measure
quantifies the difference between the value on G with and without the vertex or
edge. The main motivation behind this idea is that most networks have some
quality that can be evaluated by a function on G: Imagine a transport network
with different capacities on the edges in which the goal is to transport as much as
possible of some good from some vertex s to another vertex ¢. The functionality
of a network for this goal can be described by the maximal possible flow in it
(see Section 2.2.3). The degree to which this quality is impaired by the loss of
an edge or vertex can be viewed as the extent to which this edge or vertex is
‘central’ for the network. A second example is a graph representing a mobile
communication network in which every vertex should be indirectly connected
to all others over as few switching points as possible. The quality of this graph
could be evaluated by its Wiener index, the sum over all distances in the graph
(see Section 3.6.2). Then, the vitality of a vertex or edge = denotes the loss of
this quality if z was removed from the network. More formally:

Definition 3.6.1 (Vitality Index). Let G be the set of all simple, undirected
and unweighted graphs G = (V,E) and f : G — R be any real-valued function
on G € G. A vitality index V(G, x) is then defined as the difference of the values
of f on G and on G without element x: V(G,z) = f(G) — f(G\{z}).

We will begin with a centrality index that is derived from the field of network
flow problems. After that, a new centrality index, the closeness vitality, is pre-
sented that might be useful for some applications. The next subsection presents
a new centrality index that is not a vitality index in the strict sense but the re-
lationship to vitality indices is strong. The last subsection presents a discussion
in how far the stress centrality presented in Section 3.4.1 can be interpreted as
a vitality index.

3.6.1 Flow Betweenness Vitality

In this subsection we present a vertex centrality based on network flows. More
precisely a measure for max-flow networks is presented which is similar to the

3 Centrality Indices 37

shortest-path betweenness described in Section 3.4.2 and makes the measure pro-
posed in Freeman et al. [229] concrete.? As Stephenson and Zelen [533] observed,
there is no reason to believe that information in a communication network be-
tween a pair of vertices takes place only on the shortest path. Obviously, there are
applications where the centrality values computed by shortest path betweenness
leads to misleading results. Thus other paths have to be considered instead.

Taking up the example of communication networks, Freeman et al. assumed
information as flow and assigned with each edge a non-negative value repre-
senting the maximum of information that can be passed between its endpoints.
In extending the betweenness model to flow networks, a vertex u will be seen
as standing between other vertices. The goal is to measure the degree that the
maximum flow between those vertices depends on .

Based on this idea we provide a concise definition of a vertex centrality based
on maximum flows. We call this centrality the max-flow betweenness vitality.
Note that the maximum-flow problem between a source vertex s and a target
vertex t was introduced in Section 2.2.3. For reasons of simplicity we further
assume G = (V, E) as a connected undirected network with non-negative edge
capacities. By fs+ we denote the objective function value of a maximum s-t-flow.
The value f,; represents the maximal flow between s and ¢ in G with respect to
the capacity constraints and the balance conditions. As indicated above, we are
now interested in the answer of the questions: How much flow must go over a
vertex u in order to obtain the maximum flow value? And how does the objective
function value change if we remove u from the network?

According to the betweenness centrality for shortest paths we define the
max-flow betweenness for a vertex u € V' by

fst(u)
Cnp(W) = Y Ji— (3.17)
s,teEV st
uts, uFtt
fst>0

where fq(u) is the amount of flow which must go through u. We determine
fst(u) by fst(u) = fst — fst where fqr(u) is the maximal s-t-flow in G \ u. That
is, fst(u) is determined by removing u form G and computing the maximal
s-t-flow in the resulting network G \ u.

It is important to note, that this concept may also be applied to other net-
work flow problems, e.g., the minimum-cost maximum-flow problem (MCMF)
which may be viewed as a generalization of the max-flow problem. In a MCMF
network each edge has a non-negative cost value and a non-negative upper ca-
pacity bound. The objective is to find a maximum flow of minimum cost between
two designated vertices s and t. Applying the idea of measuring the vitality of
each vertex to MCMF networks yields a new meaningful vitality measure. For
further details relating to the MCMF problem see [6].

4 Note that the original definition in [229] is ambiguous, because it neglects that a
max-flow is not unique in general.

38 D. Koschiitzki et al.

3.6.2 Closeness Vitality

In analogy to the closeness centrality index presented in Section 3.3.2, we will
introduce a new centrality, based on the Wiener Index® [583]. The Wiener Index
Iw (G) of a graph G is defined as the sum over the distances of all vertex pairs:

Iw(G)=>_ > dv,w) (3.18)

veV weV

It is easy to see that the Wiener Index can also be written as the sum of the
closeness centrality values co(v) (see Section 3.2) of all vertices v:

Iw(G) =) . (3.19)

veV CC(U)

We will now define a new centrality called closeness vitality cov (x), defined
on both vertices and edges:

cov(z) = Iw(GQ) — Iw (G \ {z}) (3.20)

Clearly, this new centrality is a vitality, with f(G) = Iw(G). What does
this centrality index measure? Let the distance between two vertices represent
the costs to send a message from s to t. Then the closeness vitality denotes
how much the transport costs in an all-to-all communication will increase if the
corresponding element x is removed from the graph. With a small modification
we can also calculate the average distance dy(G) between two vertices:

Iw (G)
n(n—1)

This variant computes how much the costs are increased on average if the
element x is removed from the graph.

There is one pitfall in the general idea of a closeness vitality: If x is a cut-
vertex or a bridge, respectively, the graph will be disconnected after the removal.
Then coy(z) is —oo for this element. We will discuss some ideas to deal with
the calculation of distance based centrality indices in Section 3.10.

dy(G) = (3.21)

3.6.3 Shortcut Values as a Vitality-Like Index

Although shortcut values are not a vitality index in the sense of Definition 3.6.1,
they are nevertheless based on the concept of vitality. Thus, we present shortcut
values here as a vitality-like index.

The shortcut value for edge e is defined by the maximum increase in distance
between any two vertices if e = (u, v) is removed from the graph. It is clear that
this maximum increase can only be found between vertices that use e for all of

5 Wiener itself named it ‘path number’ which is misleading. Subsequent articles quoted
it as ‘Wiener Index’ [592]

3 Centrality Indices 39

their shortest paths. We claim that the increase in path length is maximized for
the pair (u, v). This can easily be seen as follows. Clearly, the increase in distance
for the pair (u,v) equals the difference between the length of ¢ and the length
of the shortest path p from u to v that does not use e. Further, other pair of
vertices will either use their old path with e replaced by p, or use an alternative
that is shorter than that.

Alternatively, the shortcut value can also be defined as the maximum relative
increase in distance when all edge lengths are non-negative. In this case, the
length of a shortest path using e is larger than the length of e, such that the
relative increase is also maximized for the pair (u,v).

The shortcut values for all edges can be computed naively by m = |E| many
calls to a single-source shortest-path routine. Section 4.2.2 introduces a more
efficient algorithm that is as efficient as computing |V| single-source-shortest
paths trees.

The notion of a shortcut value for an edge can be directly generalized to
vertices, as the maximum increase in distance if the vertex is deleted.

3.6.4 Stress Centrality as a Vitality-Like Index

Stress centrality can be viewed as a vitality-like measure: Stress centrality (Sec-
tion 3.4.1) counts the number of shortest paths containing a vertex or an edge
and can thus be interpreted as the number of shortest paths that are lost if the
vertex or edge is removed from the graph.

This sounds like a vitality measure but there is a crucial difference to the
definition of vitality: The number of lost shortest paths has to be measured rel-
atively to the number of shortest paths in the original graph. This is important,
because a simple example shows that the total number of shortest paths can
actually increase if a vertex or edge is removed from a graph (see Figure 3.9).

&

a) b)

Fig. 3.9. The figure shows that the removal of an edge can actually increase the number
of shortest paths in a graph

On the left side of Figure 3.9 (a) a small graph is shown with a total number
of 54 shortest paths, 8 of them containing edge e. After the removal of e we find
64 shortest paths in the resulting graph. Of course, 18 of them are now longer

40 D. Koschiitzki et al.

than before. When will the removal of an edge lead to an increase in the edge
number? In this example, edge e is a shortcut for some of the paths from or
to the two outermost vertices. As an example, we will take the path from the
left outermost vertex to the right outermost vertex. As soon as e is removed,
the distance between these nodes increases by one. Additionally, the number of
shortest paths between them increases by three because now there are four paths
with length 4 instead of only one with length 3 as before.

To interpret the stress centrality as a vitality measure we have to disregard
shortest paths that have an increased length after the removal of an element.
To formalize this idea we will give a definition of f(G \ {z}) that allows us to
interpret the stress centrality of a vertex or an edge as vitality.

Let f(G) be the number of all shortest paths in G and f(G\{v}) be defined
as following:

FG\{v}) =D oulda(s,t) = de oy (s, 1)] (3.22)

seV teV

The definition is given in Iverson-Notation, first described in [322], adapted by
Knuth in [365]. The term inside the parentheses can be any logical statement.
If the statement is true the term evaluates to 1, if it is false the term is 0. This
notation makes the summation much easier to read than the classical notation in
which logical statements are combined with the index of the sum. The definition
of f(G\ {v}) is thus defined as the sum over the number of all those shortest
paths that have the same length as the distance of s and ¢ in G.
Analogously, let f(G\{e}) be defined as following:

FG\{e}) =D oule)lda(s,t) = da (e (s,)] (3.23)

seV teV

Defined in this way, the stress centrality Cs(x) of an element z is exactly the
difference between f(G) and f(G\{z}). It is important to note that the defini-
tion of f(G \ {z}) does not match the formal definition for a vitality measure.
Nonetheless, the similarity of both is evident and thus we will denote the stress
centrality as a vitality-like centrality index.

3.7 Current Flow

Shortest paths centralities rely on the crucial assumption that the flow of infor-
mation, or the transport of goods in general, takes place along shortest paths.
This section describes the current flow centralities, which are appropriate when
the flow of information or transport does not adhere to this shortest paths as-
sumption, but rather follows the behavior of an electrical current flowing through
an electrical network.

3.7.1 Electrical Networks

Current flow centralities are based on the flow of electrical current in a net-
work. We briefly describe currents in electrical networks below, and refer to [67]

3 Centrality Indices 41

for an extensive discussion. An electrical network is defined by an undirected,
connected, and simple graph G = (V, E), together with a conductance func-
tion ¢ : E — R. External electrical current enters and leaves this network,
which is specified by a supply function b : V' — R. Positive values of b rep-
resent entering current, negative values represent current that leaves the net-
work, and the amounts of entering and leaving currents are required to be equal:
> wev b(v) = 0. Since it is useful to talk about the direction of a current in the
undirected graph, each edge e € E is arbitrarily oriented to obtain an oriented
edge €, which results in an oriented edge set E.

A function z : E — R is called a (electrical) current in N = (G = (V, E), ¢)

if
Z x(v,w) — Z z(w,v) = b(v) for allv e V
(v,w)eﬁ (w,v)eﬁ
and
Z z(€)=0
ecC

for every cycle C' C FE, that is, for every cycle in the undirected graph G. The
former equation is known as Kirchoff’s current law, and the latter as Kirchoff’s
potential law. Negative values of x are to be interpreted as current flowing against
the direction of an oriented edge.

Alternatively to the current x, an electrical flow can also be represented by
potentials. A function p : V. — R is a (electrical) potential if p(v) — p(w) =
z(v,w)/c(v,w) for all (v,w) € E. As an electrical network N = (G,c) has a
unique current x for any supply b, it also has a potential p that is unique up to
an additive factor [67].

Define the Laplacian matrix L = L(N) of the electrical network N to be

Yoesecle) fv=w
Ly = { —c(e) if e = {v,w}
0 otherwise

for v,w € V. Then, a potential p for an electrical network N = (G,¢) and a
supply b can be found by solving the linear system Lp = b.

Finally, for the purpose of stating centralities based on electrical currents,
define a unit s-t-supply bs; as a supply of one unit that enters the network at
s and leaves it at t, that is, bs(s) = 1,bs(t) = —1, and bg(v) = 0 for all
veV\{st}

3.7.2 Current-Flow Betweenness Centrality

Newman [443] first considered centrality measures based on electrical currents.
The current-flow betweenness of a vertex represents the fraction of unit s-t-
supplies that passes through that vertex, just as shortest paths betweenness

42 D. Koschiitzki et al.

counts the fraction of shortest s-t-paths through a vertex. For a fixed s-t pair,
the so-called throughput of a vertex v forms the current-flow equivalent of the
number of shortest paths o4 (v) through v. More precisely, the throughput of a
vertex v € V with respect to a unit s-t-supply bs; is defined as

Tst(v):—<—|b5t W)+ |=(e)

esSv

Here, the term —|bs(v)| sets the throughput of a vertex with non-zero supply
equal to zero. For the current-flow betweenness, this ensures that a given unit
s-t-supply does not count for the throughput of its source and sink nodes s and
t. Further, the term % adjusts for the fact that the summation counts both the
current into and out of the vertex v.

Using the throughput definition, the current-flow betweenness centrality
cop : V — R for an electrical network N = (G = (V, E), ¢) is defined as

1
cop(v) = ————— 3 Tu(v),
(n—1)(n-2) =t
for allv € V, where 1/(n—1)(n—2) is a normalizing constant. Thus, current-flow
betweenness measures the fraction of throughput through vertex v, taken over
all possible s-t pairs. Since an electrical network has a unique current for a given
supply, current-flow betweenness is well defined.

3.7.3 Current-Flow Closeness Centrality

As with betweenness, the concept of closeness can also be extended from shortest
paths to electrical current. For shortest paths, closeness is a measure of the
shortest path distance from a certain vertex to all other vertices. For electrical
current, Brandes and Fleischer [94] propose a closeness centrality that measures
the distance between two vertices v and w as the difference of their potentials
p(v) — p(w). Their current-flow closeness centrality ccco(v) : V. — R is defined

as
n—1

Zt;ﬁq; Dot (’U) — Put (t)

for all v € V, where (n — 1) is again a normalizing factor. Here, the subscript vt
on the potentials means that the potential stems from a unit v-t-supply b:.

Interestingly, Brandes and Fleischer [94] prove that current-flow closeness
centrality is equal to information centrality. Stephenson and Zelen [533] intro-
duced information centrality to account for information that flows along all paths
in a network, rather than just along shortest paths. Information centrality also
takes into account that certain paths carry a larger amount of information than
others. Mathematically, information centrality ¢; : V' — R is defined by

2
cr(v)™! = nM,, + trace(M) — -

Ccc(v) =

where the matrix M is defined as (L+U)~!, with L being the Laplacian matrix,
and U being a matrix of the same size with all entries equal to one.

3 Centrality Indices 43

3.8 Random Processes

Sometimes, it may not be possible for a vertex to compute shortest paths be-
cause of a lack of global knowledge. In such a case, shortest paths based cen-
tralities make no sense, and a random-walk model provides an alternative way
of traversing the network. In a random walk something walks from vertex to
vertex, following the edges of the network. Reaching some vertex v, it chooses
one of the edges of v randomly to follow it to the next vertex.

The ‘travel’ of a bank note is a typical example for such a random walk.
Somebody gets a brand new bill from her bank and gives it to someone else she
encounters later on. Normally, nobody has any intention to give the bank note to
someone special and the same bill may get to the same person more than once.
For a marketing study, it could be of interest to find out the person or company
who mediates most of these transactions. In the next section, we will have a
closer look at the so-called random walk betweenness centrality that calculates
the hot spots of mediation in such transactions.

3.8.1 Random Walks and Degree Centrality

In the case of undirected graphs, an observation can be made that relates the
random-walk centrality with its complex definition to the most basic of all cen-
tralities, degree.

In the following theorem we prove that the stationary probabilities in the
canonical random walk on a graph are proportional to the degree of the vertex.

(27 _ d(z
Theorem 3.8.1. p;; = a — Ti= %

Proof.

o rope — Ziev d(i)pij _ Ziev @ij _ d(4) —
(WP)j B ZEZV Zp” ZUEV d(v) ZUGV d(v) ZUEV d(’U) !

3.8.2 Random-Walk Betweenness Centrality

The random-walk betweenness centrality introduced in [443] is based on the
following idea. Suppose that vertex s has a message for vertex t but neither s
nor any other vertex knows how to send it to ¢ on a shortest path. Each vertex
that gets the message for vertex t will just send it to any of its adjacent vertices
at random. We assume that the graph is unweighted, undirected and connected.

This so-called random walk is modeled by a discrete-time stochastic process.
At time 0, vertex s sends a message to one of its neighbors. If the message reaches
vertex t at any time it will not be forwarded any further and such be absorbed
by t. More formally, let m;; describe the probability that vertex j sends the
message to vertex ¢ in time k 4 1 if it had it at time k:

44 D. Koschiitzki et al.

L7 if j 1t
=4 d() J 24
i { 0 else (8:24)

where a;; denotes the ij-th element of the adjacency matrix A (see Section 2.3)
and d(7) is the degree of vertex j. The resulting matrix is denoted by M. Let D
be the degree matrix of the graph:

d(i) ifi=3j

dij = { 0 else (3.25)

The inverse D~ of this matrix has the inverted vertex degrees on its diagonal,

and is zero elsewhere. Because of the special behavior of vertex ¢ the matrix

notation M = A- D! is not correct. Removing the t-th row and column of all
matrices yields a correct relation between the three matrices:

M; = A;-D; Y, (3.26)

where the index denotes the missing row and column, respectively.

Random-walk betweenness centrality considers all paths that a random walk
can use, as well as the probabilities that such paths are used. Thus, the question
arises how to compute the set of used paths, and how to compute the probability
of using a single one of these paths. To guide the reader on his way, we first discuss
how many different ¢ — j paths of length r exist in a given graph, where ¢ and
J are arbitrarily chosen vertices. It can easily be seen that the answer is (A7),
where A" denotes the rth power of A. However, we are not interested in the
number of random walks, but in the probability that a random walk of r steps,
that starts at s, ends in vertex j. This is given by the r-th power of M; at row
J, column s, denoted by (M]) js- With this, the probability that the message is
sent to vertex ¢ in step r + 1 is given by:

(M[“)js =m,;! (M{),, (3.27)

Now, we are interested in the probability that vertex j is sending a message
that is starting at s to vertex ¢, summing over all paths, beginning at length 0
to oo.

Note that all entries in any matrix M are values between 0 and 1, and thus
the sum over all paths is convergent (see Theorem 3.9.2):

o0

Y omit (M7) ;= mi [(Ta-1 = My) s (3.28)
r=0

where I,,_1 is the identity matrix of dimension n — 1.
Let s be a vector with dimension n — 1 that is 1 at vertex s and 0 else.
Writing equation 3.28 in matrix notation we get:

vt =D, (I - M) s (3.29)
=(Di—A) s (3.30)

3 Centrality Indices 45

The vector v®* describes the probability to find the message at vertex 4
while it is on its random walk from vertex s to vertex t. Of course, some of
the random walks will have redundant parts, going from vertex a to vertex b
and back again to vertex a. It does not seem reasonable to give a vertex a high
centrality if most of the random walks containing it follow this pattern. Since
the network is undirected every cycle will be accounted for in both directions,
thus extinguishing each other. It is important to note that v*¢ contains only the
net probability that disregards these cycles.

At this point, it becomes clear that random walks are closely related to
current flows in electrical networks, see Section 3.7. Indeed, consider an electrical
network N = (G, ¢) with unit edge weights c(e) = 1 for all e € E. The unit edge
weights yield a Laplacian matrix L(N) = D — A, where D is the degree matrix
and A the adjacency matrix of the graph G. So, a potential py; in IV for a unit
s-t-supply bs; is a solution to the system Lps; = bg;. The matrix L is not of full
rank, but this problem can be circumvented by fixing one potential, say for vertex
v, since potentials are unique up to an additive factor. Removing the rows and
columns corresponding to the fixed vertex v yields the matrices L,,, D,, and A,,
where L, has full rank and is thus invertible. We conclude that a potential p; for
the unit s-t-supply b is given by ps = Ly 1bs = (D — Ay) " Lbs:. The latter is
equivalent to Equation (3.29) above, which shows the relation between electrical
currents and potentials and random walks. For a more in-depth discussion of
this relation, we refer to [67].

Thus, the random-walk betweenness centrality crywp : V — R that we are
looking for is equivalent to current-flow betweenness, that is, crw s (v) = cop(v)
for all v € V. Newman [443] and Brandes and Fleischer [94] describe this be-
tweenness equivalence in more detail.

3.8.3 Random-Walk Closeness Centrality

The same approach gives a kind of random-walk closeness centrality, where we
look for the mean first passage time (MFPT). A centrality based on MFPT is
introduced as Markov centrality in [580]. The mean first passage time mg; is
defined as the expected number of nodes a particle or message starting at vertex
s has encountered until it encounters vertex ¢ for the first time. It is given by
the following series:

oo
Mgt = ans(tn) (3.31)
n=1

where fq(?) denotes the probability that ¢ is arrived for the first time after
exactly n steps. Let M denote the MFPT matrix in which my; is given for all
pairs s,t. M can be computed by the following equation:

M = (I — EZq,) D (3.32)

where I denotes the identity matrix, E is a matrix containing all ones, and
S is a diagonal matrix with:

46 D. Koschiitzki et al.

L if i =j
o=) w(v
Sij = { 6) olse (3.33)

7 denotes the stationary distribution of the random walk in the given graph
(see Section 2.4), i.e., the expected relative time a particle will be on vertex v
during the random walk. (This model assumes that the transport of the message
or particle to another nodes takes virtually no time.) The matrix Z,, agrees with
the so called fundamental matrix Z on the diagonal but is 0 everywhere else.
Matrix Z itself is given by:

Z=(I-A-1,x")" (3.34)

where 1,, is a column vector of all ones. The Markov centrality cps(v) is now
defined as the inverse of the average MFPT for all random walks starting in any
node s with target v (or vice versa):

cm(v) = - 3.35

M (v) S (3.35)

This centrality can be defined for both directed and undirected networks. In

directed networks the centrality is meaningfully defined for both, the average

MFPT for random walks ending in v or leaving v. The expected number of steps

from v to all other vertices or from all other vertices to v might be interpreted

as a distance from v to all other vertices if a particle or information uses a

random walk. Thus, the Markov centrality of a vertex is a kind of a (averaged)
random-walk closeness centrality.

3.9 Feedback

This section presents centralities in which a node is the more central the more
central its neighbors are. Some of these measures like Katzs status index belong
to the oldest centralities presented in this chapter, others have their roots in the
analysis of social networks. A third group belongs to the big class of analysis
methods for the Web graph that is defined as the set of pages in the WWW
connected by Web links.

Note, that in the following subsections centrality indices will be denoted as
vectors. All feedback centralities are calculated by solving linear systems, such
that the notation as a vector is much more convenient than using a function
expressing the same. We just want to state here that all centrality indices pre-
sented here are fulfilling the definition of a structural index in Definition 3.2.1 if
cx (4) is defined as (cx);.

3.9.1 Counting All Paths — The Status Index of Katz

One of the first ideas with respect to feedback centralities was presented by Leo
Katz [352] in 1953. It is based on the following observation: To determine the

3 Centrality Indices 47

importance or status of an individual in a social network where directed edges
(i,7) can, for example, be interpreted as “i votes for j”, it is not enough to
count direct votes. If, e.g., only two individuals k£ and [vote for ¢ but all other
persons in the network vote either for k or for I, then it may be that ¢ is the
most important person in the network — even if she got only two direct votes.
All other individuals voted for her indirectly.

The idea of Katz is therefore to count additionally all indirect votes where
the number of intermediate individuals may be arbitrarily large.

To take the number of intermediate individuals into account, a damping
factor a > 0 is introduced: the longer the path between two vertices i and j is,
the smaller should its impact on the status of j be.

The associated mathematical model is hence an unweighted (i.e. all weights
are 1) directed simple graph G = (V, E) without loops and associated adjacency
matrix A. Using the fact that (4%);; holds the number of paths from j to i with
length k£ we hence have as status of vertex i

cr(i) =YY aF(4F);

k=1j=1

if the infinite sum converges.
In matrix notation we have

cx =Y af (A7), (3.36)
k=1

(Note that 1,, is the n-dimensional vector where every entry is 1, cf. also Chapter
2)
To guarantee convergence we have to restrict a.

Theorem 3.9.1. If A is the adjacency matriz of a graph G, a > 0, and A\ the
largest eigenvalue of A, then

1 oo
M < — <= E a* AF converges.
@ k=1

For the proof see, e.g., [208].
Assuming convergence we find a closed form expression for the status index
of Katz:

cK = ia’f(AT)’ﬂn =(I-a4a") N1,
k=1

or, in another form
(I — aAT)cK = 1n,

an inhomogeneous system of linear equations emphasizing the feedback nature
of the centrality: the value of ¢k (i) depends on the other centrality values cx (j),

j#L

48 D. Koschiitzki et al.

3.9.2 General Feedback Centralities

In this subsection three centralities that are well known in the area of social
network analysis are described.

Bonacich’s Eigenvector Centrality. In 1972 Phillip Bonacich introduced
a centrality measure based on the eigenvectors of adjacency matrices [71]. He
presented three different approaches for the calculation and all three of them
result in the same valuation of the vertices, the vectors differ only in a constant
factor. In the following we assume that the graph G to be analyzed is undirected,
connected, loop-free, simple, and unweighted. As the graph is undirected and
loop-free the adjacency matrix A(G) is symmetric and all diagonal entries are 0.
The three methods of calculation are:

a. the factor analysis approach,
b. the convergence of an infinite sequence, and
c. the solving of a linear equation system

In the following we describe all three approaches and call the results s%, s?,

and s°€.

First, we explain the factor analysis approach. For a better understanding
think of the graph as a friendship network, where an edge denotes friendship
between the persons that are modeled as vertices. We want to define a centrality
that measures the ability to ‘find friends’. Thus, we are interested in a vector
s* € R", such that the i-th entry s should hold the interaction or ‘friendship’
potential of the vertex i. We declare that s{S¢ should be close to a;; and inter-
prete the problem as the minimization of the least squared difference. We are
therefore interested in the vector s® that minimizes the following expression:

n n

DO (sist —ai)? (3.37)

i=1 j=1

A second approach presented by Bonacich is based on an infinite sequence.
For a given A1 # 0 we define

b1 b
S

0
bo
n i

s =1, and sb’“zAS

According to Theorem 3.9.2, the sequence

sbo
s’ = lim s = lim Ak—k
k—o0 k—oo0)\1
converges towards an eigenvector s’ of the adjacency matrix A if \; equals
the largest eigenvalue.

3 Centrality Indices 49

Theorem 3.9.2. Let A € R™*™ be a symmetric matriz and \y the largest eigen-
value of A, then
sbo
k—oo)\1’

converges towards an eigenvector of A with eigenvalue .

The third approach follows the idea of calculating an eigenvector of a linear
equation system. If we define the centrality of a vertex to be equal to the sum
of the centralities of its adjacent vertices, we get the following equation system:

n
s = Zaijs;‘f resp. 8°= Axs¢ (3.38)

j=1
This equation system has a solution only if det(A—1) = 0. We solve As = As,
the eigenvalue problem for A, instead. According to Theorem 3.9.3, under the
given conditions for the graph defined above, exactly one eigenvector contains
entries that are either all positive or all negative. Therefore, we use the absolute

value of the entries of this eigenvector as the solution.

Theorem 3.9.3. Let A € R™ ™ be the adjacency matriz of an undirected and
connected graph. Then:

— The largest eigenvalue N\ of A is simple.
— All entries of the eigenvector for A1 are of the same sign and not equal to zero.

We have seen three methods for the calculation of the solution vectors
5%, 8% s These vectors differ only by a constant factor. The eigenvector cen-
trality is therefore (independently from the solution method) defined by:

_ 1]

N b 3.39
BV = g7 (3.39)

In general, whenever one has a graph with multiple, poorly spanned dense
clusters, no single eigenvector will do a satisfactory job of characterizing walk-
based centrality. This is because each eigenvector will tend to correspond to
loadings on a given cluster: Everett and Borgatti [194] explain this behavior via
their core-periphery model, where in the idealized case the core corresponds to
a complete subgraph and the nodes in the periphery do not interact with each
other. To measure how close a graph is to the ideal core-periphery structure (or,
in other words, how concentrated the graph is) they define the p-measure

p=2_aijb
,J

with d;; = c;cj, where a;; are the components of the adjacency matrix and c;
measures the coreness of a node, ¢; € [0,1].

To determine the coreness of the nodes, the authors propose to minimize the
sum of squared distances of a;; and the product c;c;, which is nothing else than

50 D. Koschiitzki et al.

one approach to compute Bonacich’s Standard Centrality, see 3.37, hence nothing
else then computing the principal eigenvector of the adjacency matrix. Thus, only
the core-vertices get high c-values, nodes in smaller clusters not belonging to the
core will get values near zero.

According to [71], the eigenvector centrality can be applied to disconnected
graphs. In this case several eigenvectors have to be taken into account, one for
every component of the graph.

Hubbell Index. Even earlier than Bonacich, Charles Hubbell [319] suggested
in 1965 a centrality measure based on the solution of a system of linear equations.
His approach uses directed weighted graphs where the weights of the edges may
be real numbers. A graph may contain loops but has to be simple, too. Please
note that the adjacency matrix W (G) of a graph G is asymmetric and contains
real numbers instead of zeros and ones.

The general assumption of Hubbell’s centrality measure is similar to the
idea of Bonacich: the value of a vertex v depends on the sum of the values
of each adjacent vertex w multiplied with the weight of the incident edge e =
(v,w). Therefore, the following equation should hold: e = We. To make the
equation system solvable an additional parameter called the exogenous input or
the boundary condition E has to be added. This is a column vector containing
external information for every vertex. Hubbell suggested that if this boundary
condition is unknown E = 1 may be used.

The final equation is

s=E+Ws (3.40)

Through a simple transformation this equation can be rewritten into s =
(I—W)~LE. This system has a solution if the matrix (I — W) is invertible. Since
ﬁ = 220:1 WF holds, this is identical to the problem of the convergence of
the geometric series. According to Theorem 3.9.1, the series converges against
ﬁ if and only if the largest eigenvalue A; of W is less than one.

The solution S of the equation system 3.40 is called Hubbell centrality cypr,
or Hubbell Index.

Bonacich’s Bargaining Centrality. Both feedback centralities presented so
far follow the idea of positive feedback: the centrality of a vertex is higher if it is
connected to other high-valued vertices. In 1987 Phillip Bonacich [72] suggested
a centrality which is not restricted to this concept. His idea supports both,
the positive influence as seen for example in communication networks, and the
negative influence as seen in bargaining situations. In bargaining situations a
participant is strong if he is connected to individuals having no other options
and are therefore weak.

Bonacich’s bargaining centrality is defined for unweighted and directed
graphs G = (V, E') without loops. Therefore the adjacency matrix is not neces-
sarily symmetric and contains only zeros and ones. The definition is

3 Centrality Indices 51

Cap(i) = Y (o + B cap(f))ais

Jj=1

or, in matrix notation,

cap=a(l —BA)TAL (3.41)

As can easily be seen from the matrix notation, the parameter « is just a
scaling factor. Bonacich suggests a value such that Y7 | cq,5(i)> = n holds.
Therefore only the second parameter § is of interest. This parameter may be
chosen either positive or negative, covering positive or negative influence, re-
spectively. The choice § = 0 leads to a trivial solution where the centrality
correlates with the degree of the vertices. A negative value for § may lead to
negative values for the centralities of the vertices. Additionally it follows from
the equation that the larger || the higher the impact of the structure of the
network on the centrality index is.

Equation 3.41 is solvable if the inverse of (I — SA) exists. According to
Theorem 3.9.4, this inverse exists if no eigenvalue of A is equal to 1.

Theorem 3.9.4. Let M € R"** be a matriz and A1, ..., A, the eigenvalues of
M.
(I — M) is invertible <= Vi€ {l...n} A\; #1.

We call ¢, 3 the bargaining centrality cgre.

In this subsection three different approaches to measure feedback centrality
values where presented. They seem very similar but differences are for example
the coverage of weighted versus unweighted edges or positive versus negative
influence networks.

3.9.3 Web Centralities

Many people use the World Wide Web to search for information about interesting
topics. Due to the immense size of the network consisting of Web pages that are
connected by hyperlinks powerful search engines are required. But how does a
search engine decide which Web pages are appropriate for a certain search query?
For this, it is necessary to score the Web pages according to their relevance or
importance. This is partly done by a pure text search within the content of
the pages. Additionally, search engines use the structure of the network to rank
pages and this is where centrality indices come into play.®

In this section we discuss three main representatives of Web-scoring algo-
rithms:

8 Many concepts used for the ‘Web centralities’ are not new, especially the idea of
eigenvectors as a centrality was known long before the Web was established. We
decided to use this headline due to the interest of the last years into this topic.

52 D. Koschiitzki et al.

— PageRank
— Hubs & Authorities
— SALSA

Whereas PageRank only takes the topological structure into account, the
latter two algorithms combine the ‘textual importance’ of the Web page with its
‘topological importance’. Moreover, Hubs & Authorities (sometimes also called
HITS algorithm) assigns two score values to each Web page, called hub and
authority. The third approach, SALSA, discussed at the end of this section, is
in some sense a combination of the others.

In the following we assume that the Web is represented by a digraph G =
(V, E) with a one-to-one-correspondence between the Web pages and the vertices
v € V as well as between the links and the directed edges (v, w) € E.

The Model of a Random-Surfer. Before defining centrality indices suitable
for the analysis of the Web graph it might be useful to model the behavior of a
Web surfer. The most common model simulates the navigation of a user through
the Web as as a random walk within the Web graph.

In Section 2.4 the concept of random walks in graphs was introduced. The
Web graph G = (V, E) is formally defined as V the set of all Web pages p;
where an edge e = (p;,p;) € E is drawn between two pages if and only if page p;
displays a link to page p;. As the Web graph is usually not strongly connected the
underlying transition matrix 7" is not irreducible and may not even be stochastic
as ‘sinks’ (vertices without outgoing links) may exist. Therefore, the transition
matrix T of the Web graph has to be modified such that the corresponding
Markov chain converges to a stationary distribution.

To make the matrix T stochastic we assume that the surfer jumps to a random
page after he arrived at a sink, and therefore we set all entries of all rows for
sinks to % The definition of the modified transition matrix 7" is

t{v:{d%(i)v 1f(Z,])EE
* %, if d(i) =0

This matrix is stochastic but not necessarily irreducible and the computation
of the stationary distribution 7’ may not be possible. We therefore modify the
matrix again to get an irreducible version T”. Let E = %151,1 be the matrix
with all entries % This matrix can be interpreted as a ‘random jump’ matrix.
Every page is directly reachable from every page by the same probability. To
make the transition matrix irreducible we simply add this new matrix F to the
existing matrix T":

T"=aT'"+(1-a)E

Factor « is chosen from the range 0 to 1 and can be interpreted as the
probability of either following a link on the page by using T’ or performing a
jump to a random page by using E. The matrix 7" is by construction stochastic

3 Centrality Indices 53

and irreducible and the stationary distribution 7/ may be computed for example
with the power method (see Section 4.1.5).

By modifying E, the concept of a random jump may be adjusted for example
more towards a biased surfer. Such modifications leads directly to a personalized
version of the Web centrality indices presented here. For more details on this
topic, see Section 5.2.

PageRank. PageRank is one of the main ingredients of the search engine Google
[101] and was presented by Page et al. in 1998 [458]. The main idea is to score
a Web page with respect to its topological properties, i.e., its location in the
network, but independent of its content. PageRank is a feedback centrality since
the score or centrality of a Web page depends on the number and centrality of
Web pages linking to it

() =4 3 S 10, (3.42)
qely,

where cpr(q) is the PageRank of page ¢ and d is a damping factor.
The corresponding matrix notation is

cpr = dPcpr + (1 — d)ln R (343)

where the transition matriz P is defined by

o= (G D<E
0, otherwise

This is equivalent to p;; = d%(j)aﬁ or P = DT A in matrix notation, where
D denotes the diagonal matrix where the i-th diagonal entry contains the out
degree d* (i) of vertex i.

Mostly, the linear system 3.43 is solved by a simple power (or Jacobi) itera-

tion:
chp = dPcig! + (1 —d)1,. (3.44)

The following theorem guarantees the convergence and a unique solution of
this iteration if d < 1.

Theorem 3.9.5. If 0 < d < 1 then Equ. 8.43 has a unique solution cpp =
(1 —4d), —dP)f1 1, and the solutions of the dynamic system 8.44 satisfy
limy, oo €hp = Chp for any initial state-vector cbp.

A slightly different approach is to solve the following dynamic system

. k-1
chr = dPcpy' + 1,, (3.45)
where af~1 = ||cE2| — [|[dPcERY|. The solutions of this system converge to
PR PR

*

PR the normalized solution of 3.44.
HCPRH

54 D. Koschiitzki et al.

Hubs & Authorities. Shortly after the presentation of PageRank, Klein-
berg introduced the idea of scoring Web pages with respect to two different
‘scales’ [359], called hub and authority, where

“A good hub is a page that points to many good authorities”
and
“A good authority is a page that is pointed to by many good hubs”.

In contrast to PageRank, Kleinberg proposed to include also the content of a
Web page into the scoring process. The corresponding algorithm for determining
the hub and authority values of a Web page consists of two phases, where the
first phase depends on the search query and the second phase deals only with
the link structure of the associated network.

Given the search query o, in the first phase of the algorithm an appropriate
subgraph G[V,] induced by a set of Web pages V,, C V is extracted, where

— V; should be comparably small,
— V, should contain many pages relevant for the search query o, and
— V5 should contain many important authorities.

This goal is achieved by using algorithm 1 to calculate V,, the set of relevant
Web pages.

Algorithm 1: Hubs & Authorities, 15 Phase
Output: V,, the set of relevant pages

Use a text based search engine for search query o
Let W5 be the list of results
Choose t € N
Let W! C W, contain the t pages ranked highest
V, =W}
forall i ¢ W/} do
Vo= Vo U (4)
if [I'~(4)] <7 (r is a user-specified bound) then
| Vo=V,ul(3)
else
choose I (i) C I'" (i) such that | (4)
Vo =V UL (@

=r

return V,

The second phase of the Hubs & Authorities algorithm consists of computing
the hub and authority scores for the Web pages in G[V,] which is done by taking
into account the mutual dependence between hubs and authorities. This mutual
dependence can be expressed by

caa-H = AscHa-A assuming cpa.a is known and (3.46)

CHA-A = AZ;CHA_H assuming cga-g is known, (3.47)

3 Centrality Indices 55

where A, is the adjacency matrix of G[V,].

Algorithm 2: Hubs & Authorities Iteration
Output: Approximations for cua-g and cupa-a

0
CHA-A ‘—]-n
for k=1...do
k o k—1
CHA-H ‘— AGCHA—A
k ATk
Ciia-A ‘= AsClian

k
ck .— _SHA-H
HA-H = Jiek 1l
k
ck . _“HA-A
HA-A 7 Jiek I

Since neither ega.g nor ecya.a are known, Kleinberg proposes an iterative
procedure including a normalization step shown in algorithm 2. He shows

Theorem 3.9.6. If A, is the adjacency matriz of G[V,] then klim chaa =

cHa-a and klim chiag = cua.m, where cya.a (Cua_m) is the first eigenvector of
c— OO
T T
AT A, (A,ATL)

Therefore, the given iterative procedure is nothing but solving the eigen-
vector-equations

Aenaa = (AT A,)enana

Aean = (Ao AD)enan

for the largest eigenvalue by a power iteration, see Section 4.1.5. The vector
cua-a then contains the scores for the vertices with respect to their authority,
whereas epga-g is the vector of hub scores.

SALSA. In 2000, Lempel and Moran developed the SALSA (Stochastic Ap-
proach for Link Structure Analysis) algorithm [387]. The authors introduced
this new Web-scoring approach to retain on the one hand the intuitive and
appealing idea of hubs and authorities and to provide the index on the other
hand with a higher robustness against the so called ‘TKC effect’. TKC stands
for Tightly-Knit Community, a small set of highly connected Web pages that in
some cases may cause the Hubs & Authorities algorithm to rank the correspond-
ing Web pages high even if they cover only a small (or no) aspect of the query.
To this end Lempel and Moran combined the ideas of PageRank with those of
Hubs & Authorities.

SALSA is a 3-phase algorithm where the first phase is identical to the first
phase of the Hubs & Authorities algorithm: it constructs the graph G[V,] for
a certain search query o (see algorithm 1). In the second phase an artificial
bipartite undirected graph G, = (V/UV2 E) according to the algorithm 3 is

56 D. Koschiitzki et al.

built. For the third phase of SALSA recall that the PageRank algorithm works
with the transition matrix P which is the transposed adjacency matrix of the
underlying graph with the non-zero columns weighted by their column sums.
The Hubs & Authorities algorithm uses the product of the adjacency matrix A,
of G|V,] with its transpose. For SALSA the following matrices are defined:

P,: A, with each non-zero column weighted by its column sum
R,: A, with each non-zero row weighted by its row sum

Algorithm 3: SALSA, 2"? phase
Output: The bipartite undirected graph G

forall 1 € V, do
if d*(i) > 0 then
create a copy i* of ¢ in V
if d7 (i) > 0 then
| create a copy i* of 4 in V!
forall e = (i,j) € E(G[V5]) do B
L create an undirected edge & = {i",j%} in F

Then the indices of the non-zero columns (rows) of R, PI correspond to the
elements in V,* and those of PT R, to V2. Define

Ahl: non-zero rows and columns of R, PT
A%: mnon-zero rows and columns of PT R,

and use power iteration (see Section 4.1.5) to compute the SALSA authority
scores cs.a and the SALSA hub scores cg.x.

3.10 Dealing with Insufficient Connectivity

Most of the centrality-measures presented so far assume that the underlying
network is connected. If this is not the case, computing these centralities might be
a problem. For local centrality indices, such as degree centrality, this connectivity
assumption has no implications. However, this is not the case in general. In this
section, we investigate how to deal with disconnected undirected graphs and
weakly connected digraphs.

Consider, for example, the centralities based on shortest paths, such as the
measures based on eccentricity or closeness. Both centralities depend on the
knowledge of the shortest paths length d(u,v) between all pairs of vertices u and
v. For a disconnected undirected graph or a weakly connected digraph there are
pairs of vertices for which this length is not defined, and it is not clear how to
deal with them. A very naive approach would be to restrict the computation of
centrality values to subgraphs where the measure is well defined, i.e., to compute

3 Centrality Indices 57

the centrality measure for a vertex with respect to its component or strong
components in the case of digraphs. This approach is not very reasonable in
most applications. Consider, for example, a (directed) network consisting of two
(strong) components, where one is the complete graph of two vertices, and the
other one is the complete graph with n — 2 vertices, where n is large. Then the
above approach yields a closeness value of 1 for all vertices, but it seems obvious
that the vertices in the large component are much more central than the two
other vertices.

3.10.1 Intuitive Approaches

A common way to deal with this problem is to simply multiply the centrality
values with the size of the component, following the intuition that the vertices
in large components are more important. This seems to be reasonable, but it is
not proper unless the centrality measure behaves proportional to the size of the
network. Computational experiments of Poulin, Boily and Mésse [481] indicate
that this is not the case for closeness and eccentricity.

Two other repair mechanisms use inverse path lengths, and arbitrary fixed
values for the distance between unconnected vertices. The latter possibility yields
an approximation of the desired centrality values. However, Botafogo et al. [88]
have shown that the result strongly depends on the fixed value k for the uncon-
nected vertex pairs. They defined a closeness-based measure for digraphs

cor (u) — ZUEV ZwEV d(U, w)
ZUEV d(uv U)

where the distance d(u,v) between any unconnected vertex pair v and v is set
to k. Clearly, an appropriate value for k is the number of vertices n, since the
maximum distance between any two vertices is at most n — 1. In the digraph of
Fig. 3.10 the vertex reaching all other vertices is w. For k = 2n w becomes the
vertex with highest centrality value but for kK = n the vertex v which does not
reach w has highest value. This example shows that the choice of k will crucially
influence the order of centrality index values assigned to the vertices.

Moreover, the centrality based on the eccentricity does not make sense any-
more in non-connected graphs or in non-strongly connected digraphs. If the
fixed value is large enough, then it dominates all other distances in the graph
and yields centrality values that differ only in a very small range.

The usage of inverse path lengths makes it more difficult to interpret and
compare centrality values. By substituting the path lengths in the closeness
centrality by their inverses, and multiplying the sum of the inverse path length
by (n — 1), we do not obtain the closeness centrality but an entirely different
centrality measure.

(3.48)

3.10.2 Cumulative Nominations

A more sophisticated approach was presented by Poulin, Boily and Masse [481].
Their starting point is a measure that is very similar to Bonacich’s eigenvector

58 D. Koschiitzki et al.

7.6 7.3
2.5 4.5 6.6 11.0 29 4.8 6.4 6.4

(a) k=2n) k=n

Fig. 3.10. The centralities with respect to the measure due to Botafogo et al. are
shown. In each subfigure the vertex with the maximum value is colored grey

centrality. The cumulative number of nominations centrality conn (i) of vertex i
is defined to be the ith component of the /1-normalized eigenvector correspond-
ing to the largest eigenvalue of A+ I, where A is the adjacency matrix. In other
words, conn is the solution of (A+1—A;I)p = 0 under the restriction), p; = 1.
Therefore, Bonacich’s centrality and the cumulative number of nominations only
differ by a constant. Poulin, Boily and Masse claim that their measure when com-
puted by an iterative algorithm converges faster and is more stable. Moreover,
their centrality may be applied to bipartite graphs as the graph corresponding
to (A + I) is not bipartite, even if the graph for A is.

Due to the normalization, cony is not independent of the size of the connected
component. The more vertices the component contains, the smaller the absolute
centrality values become. But, using the approach of iteratively solving

Céﬁ\l = (A+ I)cénn,

the authors obtain the cumulative nominations index of centrality
con(i) = cos(d) lim ey (d),
k—o0

where ccg(i) is the size of the component containing vertex i. This cumulative
nominations index assigns a value of 1 to a vertex having an average structural
position in a connected component.

In addition, the cumulated nominations growth rate centrality index of a ver-
tex is defined as

1

. . k(s k(2

cona (i) = kh_{go ZaijCCNN (J) + cénn (@) Fal
j CNN

and is the same for each vertex in a connected component.

This growth rate allows a comparison between different connected compo-
nents. To this end, the multi-component cumulated nominations centrality index
cMceN is defined by

3 Centrality Indices 59

emen (i) = con (i) cona (),

and, to take into account the (relative) size of the components (vertices in larger
components should get a larger centrality score), we get the corrected multi-
component cumulated nominations centrality index

comen (1) = emen (i) ecs (7).

The authors report on computational experiments which indicate that neither
cMeN nor comeN depends on n, hence both are centrality measures well suited
for networks consisting of more than one component.

3.11 Graph- vs. Vertex-Level Indices

This section makes a connection between the analysis of a network on the level
of vertices and on the level of the whole graph: Intuitively, it is clear that some
graphs are more centralized than others, i.e., some graphs are more depending
on the most central nodes than others. The star topology in which only one
vertex v is connected to all others but all other vertices are only connected to
v is a very centralized graph. A clique where every vertex is connected to every
other vertex is not centralized.

Freeman [226] has proposed a very general approach with which the central-
ization cx(G) of a graph G can be calculated in relation to the values of any
vertex centrality index cx :

Yicvex(d) —ex(i)
n—1

cx(G) = (3.49)
where cx (j)* denotes the largest centrality value associated with any vertex in
the graph under investigation. This approach measures the average difference in
centrality between the most central point and all others. If normalized centralities
in the range of [0, 1] are used, the centralization value will also be in the range
[0, 1] (for further details to the normalization of centrality indices see Section 5.1).
Other obvious possibilities to generate a graph index from the distribution of
centrality indices are to compute the variance of the values or the maximal
difference between centrality values or any other statistics on these values.

On the other hand, also a structural index for graphs like the Wiener Index
(see Section 3.6.2) can be transformed into a structural index for vertices. We
want to formalize this idea by first defining a structural index for graphs.

Definition 3.11.1 (Structural Index for Graphs). Let G = (V,E) be a
weighted, directed or undirected multigraph. A function C: G — R is called
a structural index for graphs if and only if the following condition is satisfied:

VG ~ G = C(G") = C(G)).

Let f : V — R be any structural index on the vertices of a graph and
let (O be an operator on the set of all vertices V, like the summation over

60 D. Koschiitzki et al.

f(v), the average of all terms f(v), the calculation of the variance of all f(v) or
the maximum/minimum operator. Then (O V =: f(G) defines a graph measure
because all structural indices on vertices are stable under isomorphism. On the
other hand, let f : G < R be a structural index on the whole graph. Let G(v, d)
be the induced subgraph in which all vertices are contained with a hopping
distance to v of no more than d. Le. G(v,d) = (V', E’) is a subset of G = (V, E)
with V' = {w € Vl]d(w,v) < d} and E' = {(z,y) € V' x V'|(x,y) € E}. Then
f(G(d,v)) defines at least a structural index on the vertices of this graph, and
in most cases also a reasonable vertex centrality index.

With this we can for example derive a centrality index from the Wiener Index
by constraining the calculation of it to subgraphs with a small diameter. Such an
approach might be useful in networks, where a message will not be transported
more than k steps before it dies, as it is the case in some peer-to-peer network
protocols. The new centrality index would then measure how well connected a
node is within the subgraph of diameter k. It should be noted, however, that
these subgraphs will be of different sizes in most cases. How centrality index
values can be compared with each other in this case is discussed in the section
about applying centrality indices to disconnected graphs (see Section 3.10).

3.12 Chapter Notes

Many interesting facts and a good overview of centrality indices used in social
network analysis are given in [569]. Hage and Harary carried some of these ideas
to a graph theoretic notation [269).

The notion of ‘centrality’ is very graphic and can be supported by adequate
visualization. An approach to visualizing centrality measures in an intuitive way
is [96] (see also Figure 1.2).

Closeness Centrality. Closeness centrality is often cited in the version of
Sabidussi [500]. Nonetheless, it was also mentioned by Shimbel [519] but not as
a centrality index. He defined the dispersion as the sum of all distances in a
graph. Thus, it is a synonym for the Wiener Index [583] (see also Section 3.6.2).
For directed graphs he defined the accessibility A(i, G) of G from vertex i as
A(i,G) = 3 ey d(i,j) and the accessibility A71(i,GQ) of vertex i from G as
A7Yi,G) = > jev d(j,i). These two values are easily recognized as directed
version of the closeness centrality.

Betweenness Centrality. Betweenness centrality was introduced by Free-
man [226] and, independently, Anthonisse [32]. He was inspired by ideas of Bave-
las [50]. Bavelas was the first who tried to map psychological situations to graphs.
His main interest was the notion of centers (called ‘innermost regions’), but he
additionally discussed the following example: A group of Italian speaking women
is employed in a large garment factory. Only one of them speaks English. Bave-
las states: “It is difficult to imagine that the English speaking member would

3 Centrality Indices 61

be other than central with respect to communication which had of necessity to
pass through her (...) It is interesting in passing to point out the importance
of the English speaking member with respect to the group’s perception of the
‘outside’. (...)To the extent that policy decisions are based upon information, as
to the state of affairs ‘outside’, withholding information, coloring or distroting
it in transmission, or in other ways misrepresenting the state of the outside will
fundamentally affect these decisions.”

Both edge and vertex betweenness have found many applications in the analy-
sis of social networks (for example [457]), sexual intercourse networks (see [81]),
or terrorist networks (for example [111]). Another interesting application is a
graph clustering algorithm based on edge betweenness centrality [445]. Modern
techniques try to approximate the expected congestion in a communication net-
work using vertex betweenness [522]. According to this, the probability for con-
gestion can be decreased by scaling the bandwidth proportional to betweenness
centrality of a vertex. Nonetheless, betweenness centrality does not always scale
with the expected congestion, as indicated in [304] (see also the introduction to
Chapter 4).

The algorithmic complexity of this index is O(nm) for unweighted networks
and O(nm + n?logn) for weighted networks (for details see Section 4.2. Since
this runtime makes it very hard to compute the betweenness centrality for graphs
bigger than approximately 10,000 vertices, one should consider alternatives. In
Section 4.3.1 we will discuss a way to approximate betweenness centrality. In
Section 5.2.1 a personalized variant of the betweenness centrality is presented.
A directed version of shortest-path betweenness centrality was first discussed
in [32] and reinvented in [578].

Feedback Centralities. As far as we know, the first paper that defined a feed-
back centrality (without actually naming it in this way) was published by Seeley
[510]. The status index of Katz was presented shortly afterwards in 1953 [352].
The index defined by Hubbell [319] and the approach presented by Bonacich [71]
focus on the idea of propagating strength, where a high value vertex influences
all vertices in his vicinity. All of these approaches solely focus on positive feed-
back relations. The first centrality index that covered negative feedback relation
was presented by Bonacich [72].

Web Centralities. We covered three Web centralities: PageRank ([101, 458]),
Hubs & Authorities ([359]) and SALSA ([387]). Especially for PageRank a whole
bunch of papers is available and therefore we just give three references ([61, 378,
379]) which are a good starting point for further investigations of the topic.

4 Algorithms for Centrality Indices

Riko Jacob,* Dirk Koschiitzki, Katharina Anna Lehmann, Leon Peeters,*
and Dagmar Tenfelde-Podehl

The usefulness of centrality indices stands or falls with the ability to compute
them quickly. This is a problem at the heart of computer science, and much
research is devoted to the design and analysis of efficient algorithms. For example,
shortest-path computations are well understood, and these insights are easily
applicable to all distance based centrality measures. This chapter is concerned
with algorithms that efficiently compute the centrality indices of the previous
chapters.

Most of the distance based centralities can be computed by directly evaluat-
ing their definition. Usually, this naive approach is reasonably efficient once all
shortest path distances are known. For example, the closeness centrality requires
to sum over all distances from a certain vertex to all other vertices. Given a ma-
trix containing all distances, this corresponds to summing the entries of one row
or column. Computing all closeness values thus traverses the matrix once com-
pletely, taking n? steps. Computing the distance matrix using the fastest known
algorithms will take between n? and n? steps, depending on the algorithm, and
on the possibility to exploit the special structure of the network. Thus, comput-
ing the closeness centrality for all vertices can be done efficiently in polynomial
time. Nevertheless, for large networks this can lead to significant computation
times, in which case a specialized algorithm can be the crucial ingredient for an-
alyzing the network at hand. However, even a specialized exact algorithm might
still be too time consuming for really large networks, such as the Web graph. So,
for such huge networks it is reasonable to approximate the outcome with very
fast, preferably linear time, algorithms.

Another important aspect of real life networks is that they frequently change
over time. The most prominent example of this behavior is the Web graph.
Rather than recomputing all centrality values from scratch after some changes,
we prefer to somehow reuse the previous computations. Such dynamic algorithms
are not only valuable in a changing environment. They can also increase per-
formance for vitality based centrality indices, where the definition requires to
repeatedly remove an element from the network. For example, dynamic all-pairs
shortest paths algorithms can be used in this setting.

This chapter not only lists the known results, but also provides the ideas
that make such algorithms work. To that end, Section 4.1 recapitulates some
basic shortest paths algorithms, to provide the background for the more special-

* Lead authors

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 62-82, 2005.
© Springer-Verlag Berlin Heidelberg 2005

4 Algorithms for Centrality Indices 63

ized centrality algorithms presented in Section 4.2. Next, Section 4.3 describes
fast approximation algorithms for closeness centrality as well as for web central-
ities. Finally, algorithms for dynamically changing networks are considered in
Section 4.4.

4.1 Basic Algorithms

Several good text books on basic graph algorithms are available, such as Ahuja,
Magnanti, and Orlin [6], and Cormen, Leiserson, Rivest, and Stein [133]. This
section recapitulates some basic and important algorithmic ideas, to provide a
basis for the specific centrality algorithms in Section 4.2. Further, we briefly
review the running times of some of the algorithms to indicate how computa-
tionally expensive different centrality measures are, especially for large networks.

4.1.1 Shortest Paths

The computation of the shortest-path distances between one specific vertex,
called the source, and all other vertices is a classical algorithmic problem, known
as the Single Source Shortest Path (SSSP) problem.

Dijkstra [146] provided the first polynomial-time algorithm for the SSSP
for graphs with non-negative edge weights. The algorithm maintains a set of
shortest-path labels d(s,v) denoting the length of the shortest path found so-far
between s and v. These labels are initialized to infinity, since no shortest paths
are known when the algorithm starts. The algorithm further maintains a list P
of permanently labeled vertices, and a list T" of temporarily labeled vertices. For
a vertex v € P, the label d(s, v) equals the shortest-path distance between s and
v, whereas for vertices v € T the labels d(s,v) are upper bounds (or estimates)
on the shortest-path distances.

The algorithm starts by marking the source vertex s as permanent and in-
serting it into P, scanning all its neighbors N (s), and setting the labels for the
neighbors v € N(s) to the edge lengths: d(s,v) = w(s,v). Next, the algorithm
repeatedly removes a non-permanent vertex v with minimum label d(s, v) from
T, marks v as permanent, and scans all its neighbors w € N(v). If this scan
discovers a new shortest path to w using the edge (v, w), then the label d(s, w)
is updated accordingly. The algorithm relies upon a priority queue for finding
the next node to be marked as permanent. Implementing this priority queue as
a Fibonacci heap, Dijkstra’s algorithm runs in time O(m + nlogn). For unit
edge weights, the priority queue can be replaced by a regular queue. Then, the
algorithm boils down to Breadth-First Search (BFS), taking O(m + n) time.
Algorithm 4 describes Dijkstra’s algorithm more precisely.

Often, one is not only interested in the shortest-path distances, but also in the
shortest paths themselves. These can be retraced using a function pred(v) € V,
which stores the predecessor of the vertex v on its shortest path from s. Start-
ing at a vertex v, the shortest path from s is obtained by recursively applying
pred(v), pred(pred(v)), ..., until one of the pred() functions returns s. Since

64 R. Jacob et al.

Algorithm 4: Dijkstra’s SSSP algorithm

Input: Graph G = (V, E), edge weights w : E — R, source vertex s € V
Output: Shortest path distances d(s,v) to all v e V

P=0,T=V
d(s,v) = oo for all v € V,d(s,s) = 0,pred(s) =0
while P # V do
v = argmin{d(s,v)|v € T}
P:=PUv,T:=T\v
for w € N(v) do
if d(s,w) > d(s,v) + w(v,w) then
d(s,w) :=d(s,v) + w(v,w)
L pred(w) = v

the algorithm computes exactly one shortest path to each vertex, and no such
shortest path can contain a cycle, the set of edges {(pred(v),v) | v € V}, de-
fines a spanning tree of GG. Such a tree, which need not be unique, is called a
shortest-paths tree.

Since Dijkstra’s original work in 1954 [146], many improved algorithms for
the SSSP have been developed. For an overview, we refer to Ahuja, Magnanti,
and Orlin [6], and Cormen, Leiserson, Rivest, and Stein [133].

4.1.2 Shortest Paths Between All Vertex Pairs

The problem of computing the shortest path distances between all vertex pairs
is called the All-Pairs Shortest Paths problem (APSP). All-pairs shortest paths
can be straightforwardly computed by computing n shortest paths trees, one
for each vertex v € V, with v as the source vertex s. For sparse graphs, this
approach may very well yield the best running time. In particular, it yields a
running time of O(nm + n?) for unweighted graphs.

For non-sparse graphs, however, this may induce more work than necessary.
The following shortest path label optimality conditions form a crucial observa-
tion for improving the above straightforward APSP algorithm.

Lemma 4.1.1. Let the distance labels d(u,v),u,v € V, represent the length of
some path from u to v. Then the labels d represent shortest path distances if and
only if
d(u,w) < d(u,v) + d(v,w) for all u,v,w,e V.

Thus, given some set of distance labels, it takes n3 operations to check if these
optimality conditions hold. Based on this observation and a theorem of War-
shall [568], Floyd [217] developed an APSP algorithm that achieves an O(n?)
time bound, see Algorithm 5. The algorithm first initializes all distance labels
to infinity, and then sets the distance labels d(u,v), for {u,v} € F, to the edge
lengths w(u,v). After this initialization, the algorithm basically checks whether
there exists a vertex triple u, v, w for which the distance labels violate the condi-
tion in Lemma 4.1.1. If so, it decreases the involved distance label d(u, w). This

4 Algorithms for Centrality Indices 65

check is performed in a triple for-loop over the vertices. Since we are looking
for all-pairs shortest paths, the algorithm maintains a set of predecessor indices
pred(u,v) that contain the predecessor vertex of v on some shortest path from
u to v.

Algorithm 5: Floyd-Warshall’s APSP algorithm

Input: Graph G = (V, E), edge weights w: E — R
Output: Shortest path distances d(u,v) between all u,v € V

d(u,v) = oo, pred(u,v) =0 for all u,v € V
d(v,v) =0forallv eV
d(u,v) = w(u,v),pred(u,v) = u for all {u,v} € E
for v € V do
for {u,w} € V xV do
if d(u,w) > d(u,v) + d(v,w) then
d(u,w) := d(u,v) + d(v,w)
L pred(u,w) := pred(v,w)

4.1.3 Dynamic All-Pairs Shortest Paths

The dynamic variant of the APSP problem is particularly interesting in the con-
text of network analysis. The dynamic APSP problem consists of maintaining
an optimal set of shortest path distance labels d(u,v),u,v € V, in a graph that
changes by edge insertions and deletions. Typically, one also wants to simulta-
neously maintain the corresponding shortest paths themselves, rather than only
the distances.

Thus, dynamic APSP’s are of importance for vitality related questions, such
as how shortest path distances change upon removing an edge. Since removing
a vertex from a graph results in the removal of its incident edges, vertex vitality
corresponds to sequences of edge removals in a dynamic APSP setting. Further,
the dynamic APSP is clearly applicable in the setting of the changing Web graph.

The challenge for the dynamic APSP problem is to do better than recomput-
ing a set of optimal distance labels from scratch after an update. Recently, Deme-
trescu and Italiano [142] described an algorithm for the dynamic APSP problem
on directed graphs with non-negative real-valued edge weights. Per edge inser-
tion, edge deletion, or edge weight change, their algorithm takes O(n? log® n)
amortized time to maintain the all-pairs shortest path distance labels. As the
algorithm and its analysis are quite involved, their discussion falls outside the
scope of this book. Instead, we refer to Demetrescu and Italiano [142] for details
on the dynamic APSP.

Further, Thorup [549] provides an alternative description of the algorithm,
as well as an improved amortized update time of O(n?(logn + log?(m +n/n))).
Moreover, the improved algorithm allows for negative weights. Roditty and

66 R. Jacob et al.

Zwick [496] argue that the dynamic SSSP problem on weighted graphs is as
difficult as the static APSP problem. Further, they present a randomized algo-
rithm for the dynamic APSP, returning correct results with very high probability,
with improved amortized update time for sparse graphs.

4.1.4 Maximum Flows and Minimum-Cost Flows

For flow betweenness (see Section 3.6.1), the maximum flow between a des-
ignated source node s and a designated sink node t needs to be computed.
The maximum-flow problem has been studied extensively in the literature, and
several algorithms are available. Some are generally applicable, some focus on
restricted cases of the problem, such as unit edge capacities, and others pro-
vide improvements that may have more theoretical than practical impact. The
same applies to minimum-cost flows, with the remark that minimum-cost flow
algorithms are even more complex.

Again, we refer to the textbooks by Ahuja, Magnanti, and Orlin [6], and
Cormen, Leiserson, Rivest, and Stein [133] for good in-depth descriptions of the
algorithms. To give an idea of flow algorithms’ worst-case running times, and
of the resulting impact on centrality computations in large networks, we briefly
mention the following algorithms. The preflow-push algorithm by Goldberg and
Tarjan [252] runs in O(nmlog(n?/m)), and the capacity scaling algorithm by
Ahuja and Orlin [8] runs in O(nmlogU), where U is the largest edge capac-
ity. For minimum cost flows, the capacity scaling algorithm by Edmonds and
Karp [172] runs in O((mlogU)(m + nlogn)).

Alternatively, both maximum flow and minimum-cost flow problems can be
solved using linear programming. The linear program for flow problems has a
special structure which guarantees an integer optimal solution for any integer
inputs (costs, capacities, and net inflows). Moreover, specialized network simplex
algorithms for flow-based linear programs with polynomial running times are
available.

4.1.5 Computing the Largest Eigenvector

Several centrality measures described in this part of the book are based on the
computation of eigenvectors of a given matrix. This section provides a short in-
troduction to the computation of eigenvectors and eigenvalues. In general, the
problem of computing eigenvalues and eigenvectors is non-trivial, and complete
books are dedicated to this topic. We focus on a single algorithm and sketch
the main idea. All further information, such as optimized algorithms, or algo-
rithms for special matrices, are available in textbooks like [256, 482]. Further-
more, Section 14.2 (chapter on spectral analysis) considers the computation of
all eigenvalues of the matrix representing a graph.

The eigenvalue with largest absolute value and the corresponding eigenvector
can be computed by the power method, which is described by Algorithm 6. As
input the algorithm takes the matrix A and a start vector ¢(°®) € R"™ with
||q(0)||2 = 1. After the k-th iteration, the current approximation of the largest

4 Algorithms for Centrality Indices 67

eigenvalue in absolute value and the corresponding eigenvector are stored in the
variables A(*) and ¢(®) | respectively.

Algorithm 6: Power method for computating the largest eigenvalue

Input: Matrix A € R™*™ and vector ||¢¥]2 =1
Output: Largest eigenvalue A% in absolute value
and corresponding eigenvector q(’c>

k:=1

repeat
2(k) . Aq(kfl)
q(k> = z(k)/‘|z(k>”2
AR (q(k>)TAq(k)

k:=k+1
until A* and ¢'® are acceptable approzimations

The power method is guaranteed to converge if the matrix A € C™*" has
a dominant eigenvalue, i.e., |[A\1| > |\;| for i € {2...n}, or, alternatively, if the
matrix A € R™*" is symmetric. The ratio R—fl of the second largest and the
largest eigenvalues determines the rate of convergence, as the approximation
%)k) Further details on the power method can be
found in many textbooks on linear algebra, e.g., Wilkinson [587].

As the power method only requires matrix-vector multiplication, it is par-
ticularly suited for large matrices. For one iteration, it suffices to scan over the
matrix once. So, the power method can be reasonably efficient, even without

storing the complete matrix in main memory.

error decreases with O((

4.2 Centrality-Specific Algorithms

As already mentioned, most centrality indices can be computed reasonably
fast by directly following their definition. Nevertheless, improvements over this
straightforward approach are possible. This section elaborates on two algorith-
mic ideas for such an improvement.

4.2.1 Betweenness Centrality

Recall the definition of the betweenness centrality of a vertex v € V:

cp(v) = Z USt(U)7

g
s#EVALEV st

with o being the number of shortest paths between vertices s and ¢, and o4 (v)
the number of those paths passing through vertex v. A straightforward idea
for computing cp(v) for all v € V is the following. First compute tables with

68 R. Jacob et al.

the length and number of shortest paths between all vertex pairs. Then, for
each vertex v, consider all possible pairs s and ¢, use the tables to identify the
fraction of shortest s-t-paths through v, and sum these fractions to obtain the
betweenness centrality of v.

For computing the number of shortest paths in the first step, one can adjust
Dijkstra’s algorithm as follows. From Lemma 4.1.1, observe that a vertex v is on a
shortest path between two vertices s and ¢ if and only if d(s,t) = d(s,v)+d(v,t).
We replace the predecessor vertices by predecessor sets pred(s,v), and each time
a vertex w € N(v) is scanned for which d(s,t) = d(s,v) + d(v,t), that vertex is
added to the predecessor set pred(s,v). Then, the following relation holds:

Osy = g Osu-

u€Epred(s,v)

Setting pred(s,v) = s for all v € N(s), we can thus compute the number of
shortest paths between a source vertex s and all other vertices. This adjustment
can easily be incorporated into Dijkstra’s algorithm, as well as in the BFS for
unweighted graphs.

As for the second step, vertex v is on a shortest s-t-path if d(s,t) = d(s,v) +
d(v,t). If this is the case, the number of shortest s-t-paths using v is computed
as 0s(v) = 0 - 0. Thus, computing cp(v) requires O(n?) time per vertex v
because of the summation over all vertices s # v # t, yielding O(n?) time in
total. This second step dominates the computation of the length and the number
of shortest paths. Thus, the straightforward idea for computing betweenness
centrality has an overall running time of O(n?).

Brandes [92] describes a specific algorithm that computes the betweenness
centrality of all vertices in a graph in O(nm+n?logn) time for weighted graphs,
and O(nm) time for unweighted graphs. Note that this basically corresponds
to the time complexity for the n SSSP computations in the first step of the
straightforward idea. We describe this betweenness algorithm below.

The pair-dependency of a vertex pair s,¢ € V on an intermediate vertex v is
defined as ¢ (v) = 05t (v)/0st, and the dependency of a source vertex s € V on

a vertex v € V as
Sse(v) = 0at(v).
tev

So, the betweenness centrality of a vertex v can be computed as cp(v) =
Zs;ﬁve\/ 55' (v)

The betweenness centrality algorithm exploits the following recursive rela-
tions for the dependencies dse(v).

Theorem 4.2.1 (Brandes [92]). The dependency dse(v) of a source vertex s €
V' on any other vertex v € V satisfies

b)) = > (14 b(w)).

g
w:vEpred(s,w) sw

4 Algorithms for Centrality Indices 69

Proof. First, extend the variables for the number of shortest paths and for the
dependency as follows. Define o4 (v, e) as the number of shortest paths from s
to ¢ that contain both the vertex v € V and the edge e € E. Further, define
the pair-dependency of a vertex pair s,t on both a vertex v and an edge e as
0st(v,e) = os(v,e)/ost. Using these, we write

V)= @)=Y > bu(v.{v,w}).

teV teV wwepred(s,w)

Consider a vertex w for which v € pred(s, w). There are o4, shortest paths from
s to w, of which oy, go from s to v and then use the edge {v,w}. Thus, given
a vertex t, a fraction o4, /05, of the number of shortest paths o4 (w) from s to
t # w using w also uses the edge {v, w}. For the pair-dependency of s and t on
v and {v,w}, this yields

O-S’U

ift=w

v v, wh) = ST 5 (w)

Osw Ost

if t £ w.

Exchanging the sums in the above summation, and substituting this relation for
dst (v, {v, w}) gives

Osy Osy Ost|\W
j :6515 {U ’LU} _ E + § . t()
Z Osw Osw Ost
w:vEpred(s,w) teEV w:vEpred(s,w) teV\w
O.Q/U
= E — (1 + dse(w)).

sw

w:vEpred(s,w)
O

The betweenness centrality algorithm is now stated as follows. First, compute
n shortest-paths trees, one for each s € V. During these computations, also
maintain the predecessor sets pred(s,v). Second, take some s € V, its shortest-
paths tree, and its predecessor sets, and compute the dependencies dsq(v) for
all other v € V' using the dependency relations in Theorem 4.2.1. For vertex s,
the dependencies can be computed by traversing the vertices in non-increasing
order of their distance from s. In other words, start at the leaves of the shortest-
paths tree, work backwardly towards s, and afterwards proceed with the next
vertex s. To finally compute the centrality value of vertex v, we merely have to
add all dependencies values computed during the n different SSSP computations.
The resulting O(n?) space usage can be avoided by immediately adding the
dependency values to a ‘running centrality score’ for each vertex.

This algorithm computes the betweenness centrality for each vertex v € V,
and requires the computation of one shortest-paths tree for each v € V. More-
over, it requires a storage linear in the number of vertices and edges.

Theorem 4.2.2 (Brandes [92]). The betweenness centrality cg(v) for all v €
V' can be computed in O(nm+n?logn) time for weighted graphs, and in O(nm)
time for unweighted graphs. The required storage space is O(n + m).

70 R. Jacob et al.

Other shortest-path based centrality indices, such as closeness centrality,
graph centrality, and stress centrality can be computed with similar shortest-
paths tree computations followed by iterative dependency computations. For
further details on this, we refer to Brandes [92].

4.2.2 Shortcut Values

Another algorithmic task is to compute the shortcut value for all edges of a
directed graph G = (V, E), as introduced in Section 3.6.3. More precisely, the
task is to compute the shortest path distance from vertex w to vertex v in
G. = (V,E\ {e}) for every directed edge e = (u,v) € E. The shortcut value for
edge e is a vitality based centrality measure for edges, defined as the maximum
increase in shortest path length (absolute, or relative for non-negative distances)
if e is removed from the graph.

The shortcut values for all edges can be naively computed by m = |E| calls to
a SSSP routine. This section describes an algorithm that computes the shortcut
values for all edges with only n = |V/| calls to a routine that is asymptotically as
efficient as a SSSP computation. To the best of our knowledge this is the first
detailed exposition of this algorithm, which is based on an idea of Brandes.

We assume that the directed graph G contains no negative cycles, such that
d(i,7) is well defined for all vertices ¢ and j. To simplify the description we
assume that the graph contains no parallel edges, such that an edge is identified
by its endpoints.

The main idea is to consider some vertex u, and to execute one computation
to determine the shortcut values for all edges starting at u. These shortcut
values are defined by shortest paths that start at vertex v and reach an adjacent
vertex v, without using the edge (u,v). To compute this, define o; = d(u,1)
to be the length of a shortest path from w to i, the well known shortest path
distance. Further, let the variable 7; € V' denote the second vertex (identifying
the first edge of the path) of all paths from wu to ¢ with length «, if this is unique,
otherwise it is undefined, 7; = L. Thus, 7; = L implies that there are at least
two paths of length «; from u to i that start with different edges. Finally, the
value (; is the length of the shortest path from w to ¢ that does not have 7; as
the second vertex, oo if no such path exists, or 5; = a; if 7, = L.

Assume that the values «,, 7,, and 3, are computed for a neighbor v of u.
Then, the shortcut value for the edge (u,v) is a, if 7, # v, i.e., the edge (u,v)
is not the unique shortest path from u to v. Otherwise, if 7, = v, the value g3, is
the shortcut value for (u,v). Hence, it remains to compute the values a;, 7;, G;
for ¢ € V. The algorithm exploits that the values «;, 7;, §; obey some recursions.
At the base of these recursions we have:

@, =0, 7,=0, Bu=o00
The values o; obey the shortest paths recursion:

= i o +)

4 Algorithms for Centrality Indices 71
To define the recursion for 7;, it is convenient to consider the set of incoming
neighbors I; of vertices from which a shortest path can reach j,
Li={i|(i,j) e Fand oj = a; +w(4,J)}.
It holds that

7 =1qa if a=7 for all i € I;(all predecessors have first edge (u, a)),

1 otherwise.

The value 7; is only defined if all shortest paths to vertex j start with the same
edge, which is the case only if all 7; values agree on the vertices in I;. For the
case 7; = L it holds that 8; = «a;, otherwise

i = min min i +w(i,jg) min «o; +w(i,J
b z‘z(z;j)eE,Bl (i.9) i(ig)EB, (i:9)
Ti=Tj T #Tj

To see this, consider the path p that achieves (;, i.e., a shortest path p from
u to j that does not start with 7;. If the last vertex ¢ of p before j has 7, = 7,
the path p up to ¢ does not start with 7;, and this path is considered in 3; and
hence in 3;. If instead the path p has as the next to last vertex ¢, and 7 # 75,
then one of the shortest paths from u to 7 does not start with 7;, and the length
of pis a; +w(i, J).

With the above recursions, we can efficiently compute the values ay, 74, 5;.
For the case of positive weights, any value a; depends only on values «; that
are smaller than «;, so these values can be computed in non-decreasing order
(just as Dijkstra’s algorithm does). If all edge weights are positive, the directed
graph containing all shortest paths (another view on the sets I;) is acyclic, and
the values 7; can be in topological order. Otherwise, we have to identify the
strongly connected components of GG, and contract them for the computation
of 7. Observe that 3; only depends upon g§; if 3; < B;. Hence, these values
can be computed in non-decreasing order in a Dijkstra-like algorithm. In the
unweighted case, this algorithm does not need a priority queue and its running
time is only that of BFS.

If there are negative edge weights, but no negative cycles, the Dijkstra-
like algorithm is replaced by a Bellman-Ford type algorithm to compute the
« values. The computation of 7 remains unchanged. Instead of computing ;,
we compute B, = (; — «;, l.e., we apply the shortest-paths potential to
avoid negative edge weights. This replaces all w(7,j) terms with terms of the
form w(i, j) —a; +a; > 0, and hence the 3] values can be set in increasing order,
and this computes the 3; values as well.

Note that the above method can be modified to also work in networks with
parallel edges. There, the first edge of a path is no longer identified by the
second vertex of the path, such that this edge should be used instead. We can
even modify the method to compute the shortcut value of the vertex v, i.e.,

72 R. Jacob et al.

the two neighbors of v whose distance increases most if v is deleted from the
network. To achieve this, negate the length and direction of the incoming edges,
run the above algorithm, and subtract the length of the outgoing edges from the
resulting (3; values on the neighbors of v. In this way, for all pairs of neighbors
that can reach each other through v the difference between the direct connection
and the shortest alternative are computed.

Summarizing, we showed that in the above mentioned types of graphs all
shortcut values can be computed in the time of computing n times a SSSP.

4.3 Fast Approximation

Most of the centralities introduced in Chapter 3 can be computed in polynomial
time. Although this is a general indication that such computations are feasible, it
might still be practically impossible to analyze huge networks in reasonable time.
As an example, it may be impossible to compute betweenness centrality for large
networks, even when using the improved betweenness algorithm of Section 4.2.1.
This phenomenon is particularly prominent when investigating the web graph.
For such a huge graph, we typically do not want to invest more than a small
number of scans over the complete input.

With this limited computational investment, it might not be possible to de-
termine exact centrality values. Instead, the focus should be on approximate
solutions and their quality. In this setting, approximation algorithms provide a
guaranteed compromise between running time and accuracy.

Below, we describe an approximation algorithm for the calculation of close-
ness centrality, and then adapt this algorithm to an approximative calculation
for betweenness centrality. Next, Section 4.3.2 discusses approximation methods
for the computation of web centralities.

4.3.1 Approximation of Centralities Based on All Pairs Shortest
Paths Computations

We have argued above that the calculation of centrality indices can require a
lot of computing time. This also applies to the computation of all-pairs shortest
paths, even when using the algorithms discussed in Section 4.1.2. In many ap-
plications, it is valuable to instead compute a good approximate value for the
centrality index, if this is faster. With the random sampling technique intro-
duced by Eppstein and Wang [179], the closeness centrality of all vertices in a
weighted, undirected graph can be approximated in (’)(loegz” (nlogn +m)) time.
The approximated value has an additive error of at most eAg with high proba-
bility, where € is any fixed constant, and Ag is the diameter of the graph. We
adapt this technique for the approximative calculation of betweenness central-
ity, yielding an approximation of the betweenness centrality of all vertices in a
weighted, directed graph with an additive error of (n — 2)e, and with the same
time bound as above.

4 Algorithms for Centrality Indices 73

The following randomized approximative algorithm estimates the closeness
centrality of all vertices in a weighted graph by picking K sample vertices and
computing single source shortest paths (SSSP) from each sample vertex to all
other vertices. Recall the definition of closeness centrality of a vertex v € V:

> d(v,x)
€V
= 4.1
cofv) = ZE— (11)
The centrality ¢ (v) can be estimated by the calculation of the distance of v to
K other vertices v, ...,vk as follows

K
éc(v) = ﬁ Z d(U, Ui). (42)
i=1

For undirected graphs, this calculates the average distance from v to K other
vertices, then scales this to the sum of distances to/from all other n vertices,
and divides by n— 1. As both ¢¢ and ¢é¢ consider average distances in the graph,
the expected value of éc(v) is equal to ¢ (v) for any K and v. This leads to the
following algorithm:

1. Pick a set of K vertices {v1,va, ..., vk} uniformly at random from V.
2. For each vertex v € {vy,v2,...,0k}, solve the SSSP problem with that
vertex as source.

K
3. For each vertex v € V, compute éc(v) = ﬁ Zd(v,vi)
(n—
i=1

We now recapitulate the result from [179] to compute the required number of
sample vertices K that suffices to achieve the desired approximation. The result
uses Hoeflding’s Bound [299]:

Lemma 4.3.1. If x1,xs,...,xx are independent with a; < x; < b;, and p =
E[" x;/K] is the expected mean, then for £ >0

K
Pr{‘zz;(lx% —u

> 5} <92. 6—2K2§2/Zf{=1(bi—a,;)2' (4.3)

By setting x; to %ﬁl’"), i to cc(v), a; to 0, and b; to g—fl, we can bound

the probability that the error of estimating cc(v) by éc(v), for any vertex, is
more than &:

E‘I; Li —2K262/ K (bi—a;)?
Pr ’LT—/L >£ <2-e =117 T (44)

= 2. ¢ /K (4.5)

— 9. o RAKE/AY) (4.6)

74 R. Jacob et al.

If we set € to € - A and use @(1052”) samples, the probability of having an
error greater than ¢ - A is at most 1/n for every estimated value.

The running time of an SSSP algorithm is O(n + m) in unweighted graphs,
and O(m + nlogn) in weighted graphs, yielding a total running time of O(K -
(n+ m)) and O(K(m + nlogn)) for this approach, respectively. With K set
to 9(106#), this results in running times of O(%(n +m)) and O(li#(m +
nlogn)).

We now adapt this technique to the estimation of betweenness centrality in
weighted and directed graphs. As before, a set of K sample vertices is randomly
picked from V. For every source vertex v;, we calculate the total dependency
duv;e (V) (see Section 3.4.2) for all other vertices v, and sum them up. The esti-
mated betweenness centrality ¢z (v) is then defined as

K
OB %51“.(@). (4.7)
=1

Again, the expected value of ¢g(v) is equal to c¢g(v) for all K and v. For this
new problem, we set x; to 1 dy,e, i to cp(v), and a; to 0. The total dependency
du,e(v) can be at most n — 2 if and only if v is the only responsible vertex
for all shortest paths leaving v;. Thus, we set b; to n(n — 2). Using the bound
(4.3.1), it follows that the probability that the difference between the estimated
betweenness centrality ¢z (v) and the betweenness centrality cp(v) is more than

£ is
Pr{|ep(v) — cp(v)| > €} < 262K/ K (n(n=2))" (4.8)
— 9. ¢2KE/(n(n-2)) (4.9)

Setting £ to e(n(n—2)), and the number of sample vertices K to ©(logn/e?),
the difference between the estimated centrality value and the correct value is at
most en(n — 1) with probability 1/n. As stated above, the total dependency
du,e(v) of & vertex v; can be calculated in O(n + m) in unweighted graphs and
in O(m + nlogn) in weighted graph. With K set as above, this yields running
times of O(loe%(n + m)) and O(%(m + nlogn)), respectively. Hence, the
improvement over the exact betweenness algorithm in Section 4.2.1 is the factor
K which replaces a factor n, for the number of SSSP-like computations.

Note that this approach can be applied to many centrality indices, namely
those that are based on summations over some primitive term defined for each
vertex. As such, those indices can be understood as taking a normalized average,

which makes them susceptible to random vertex sampling.

4.3.2 Approximation of Web Centralities

Most of the approximation and acceleration techniques for computing Web-
centralities are designed for the PageRank method. Therefore, in the following
we concentrate on this method. A good short overview of existing acceleration
PageRank techniques can be found in [378]. We distinguish the following accel-
eration approaches:

4 Algorithms for Centrality Indices 75

— approximation by cheaper computations, usually by avoiding matrix multipli-
cations,

— acceleration of convergence,

— solving a linear system of equations instead of solving an eigenvector problem,

— using decomposition of the Web-graph, and

— updating instead of recomputations.

We discuss these approaches separately below.

Approximation by Cheaper Computations. In [148] and [149], Ding et al.
report on experimental results indicating that the rankings obtained by both
PageRank and Hubs & Authorities are strongly correlated to the in-degree of
the vertices. This especially applies if only the top-20 query results are taken into
consideration. Within the unifying framework the authors propose, the ranking
by in-degree can be viewed as an intermediate between the rankings produced by
PageRank and Hubs & Authorities. This result is claimed to also theoretically
show that the in-degree is a good approximation of both PageRank and Hubs &
Authorities. This seems to be true for graphs in which the rankings of PageRank
and Hubs & Authorities are strongly related. However, other authors performed
computational experiments with parts of the Web graph, and detected only little
correlation between in-degree and PageRank, see, e.g., [463]. A larger scale study
confirming the latter result can be found in [380].

Acceleration of Convergence. The basis for this acceleration technique is
the power method for determining the eigenvector corresponding to the largest
eigenvalue, see Section 4.1.5.

Since each iteration of the power-method consists of matrix multiplication,
and is hence very expensive for the Web graph, the goal is to reduce the number
of iterations. One possibility was proposed by Kamvar et al. [340] and extended
by Haveliwala et al. [292]. In the first paper the authors propose a quadratic
extrapolation that is based on the so-called Aitken A% method. The Aitken ex-
trapolation assumes that an iterate (*~2) can be written as a linear combination
of the first two eigenvectors uw and v. With this assumption, the next two iterates
are linear combinations of the first two eigenvectors as well:

z*F=2) =u-+av

25D = Ax(=2) = 4 4 alv
z® = Ax*-1) = 4 + arlv.

By defining
2
(xz(‘k_l) _ xgk—z))

Yi = _ _
v xz(k) _2%(@ 1)+x§k 2)

and some algebraic reductions (see [340]) we get y = v and hence

76 R. Jacob et al.

u=aF2 _y (4.10)

Note that the assumption that (*=2) can be written as a linear combination of
w and v is only an approximation, hence (4.10) is also only an approximation
of the first eigenvector, which is then periodically computed during the ordinary
power method.

For the quadratic extrapolation the authors assume that an iterate a(*=2)
is a linear combination of the first three eigenvectors w, v and w. Using the
characteristic polynomial they arrive at an approximation of u only depending
on the iterates:

u = ﬁga:(k72) + 61:12(]671) + 60:1:(’“).

As in the Aitken extrapolation, this approximation is periodically computed
during the ordinary power method. The authors report on computational ex-
periments indicating that the accelerated power method is much faster than the
ordinary power method, especially for large values of the damping factor d, for
which the power method converges very slowly. As we discuss in Section 5.5.2,
this is due to the fact that d equals the second largest eigenvalue (see [290]),
hence a large value for d implies a small eigengap.

The second paper [292] is based on the ideas described above. Instead of
having a linear combination of only two or three eigenvector approximations, the
authors assume that £(*~") is a linear combination of the first h + 1 eigenvector
approximations. Since the corresponding eigenvalues are assumed to be the h-th
roots of unity, scaled by d, it is possible to find a simple closed form for the first
eigenvector. This acceleration step is used as above.

Kamvar et al. [338] presented a further idea to accelerate the convergence,
based on the observation that the speed of convergence in general varies consid-
erably from vertex to vertex. As soon as a certain convergence criteria is reached
for a certain vertex, this vertex is taken out of the computation. This reduces the
size of the matrix from step to step and therefore accelerates the power method.

The Linear System Approach. Each eigenvalue problem
Ax = \x
can be written as homogeneous linear system of equations
(A= M)z =0,.

Arasu et al. [33] applied this idea to the PageRank algorithm and conducted
some experiments with the largest strongly connected component of a snapshot
of the Web graph from 1998. The most simple linear system approach for the
PageRank system

(I—dP)CPR = (1 —d)ln

is probably the Jacobi iteration. But, as was mentioned in the description of the
PageRank algorithm, the Jacobi iteration is very similar to the power method,
and hence does not yield any acceleration.

4 Algorithms for Centrality Indices 7

Arasu et al. applied the Gauss-Seidel iteration defined by

b k1
((i) = +dZPUC§DR) +dZPmCPR

j<i 3>

For d = 0.9, their experiments on the above described graph are very promising:
the Gauss-Seidel iteration converges much faster than the power iteration. Arasu
et al. then combine this result with the fact that the Web graph has a so-called
bow tie structure. The next paragraph describes how this structure and other
decomposition approaches may be used to accelerate the computations.

Decomposition Techniques. Since the Web graph is very large, and grows
larger every day, some researchers propose to decompose the graph. So, it is
possible to determine centrality values in smaller components of the Web in a
first step, and to adjust them to the complete Web graph in the second step, if
necessary. As noted above, Arasu et al. [33] exploit the observation of Broder
et al. [102] that the Web graph has a so-called bow tie structure, see Figure 4.1
and Section 15.3.2. Note that the Web crawl of Broder et al. was carried out in
1999, and it is not clear whether the web structure has changed since.

Tends
4 Millicn
/nm'ﬂ

ScC

3& Militen nexles

ouT

-
4 Million nsdes

R0

~——" Disconnected componeats

Fig. 4.1. Bow tie structure of the Web graph (from http://www9.org/w9cdrom/160/
160.htm1)

This structure may be used for the power method, but the authors claim that
it is especially well suited for the linear system approach, since the corresponding
link-matrix has the block upper triangular form:

78 R. Jacob et al.

Py P Pi3 ... Pig
0 Py Po3... Pog

P = : . P3... By

By partitioning cpr in the same way, the large problem may be solved by the
following sequence of smaller problems

(I —dPkr)cprx = (1 —d)1y,
K
(I —dPy)cpri=(1—d)l,, +d Y Pjcer,;
jmitl

A second approach was proposed by Kamvar et al. [339]. They investigated,
besides a smaller partial Web graph, a Web crawl of 2001, and found the following
interesting structure:

1. There is a block structure of the Web.

2. The individual blocks are much smaller than the entire Web.

3. There are nested blocks corresponding to domains, hosts and sub-
directories within the path.

Algorithm 7: PageRank exploiting the block structure: BlockRank

1. For each block I,

compute the local PageRank scores cpg (%) for each vertex i € I
2. Weight the local PageRank scores

according to the importance of the block the vertices belongs to
3. Apply the standard PageRank algorithm

using the vector obtained in the first two steps

Based on this observation, the authors suggest the three-step-algorithm 7. In
the first and third step the ordinary PageRank algorithm can be applied. The
question is how to formalize the second step. This is done via a block graph B
where each block I is represented by a vertex, and an edge (I, J) is part of the
block graph if there exists an edge (i,7) in the original graph satisfying i € I
and j € J, where (4,j) may be a loop. The weight w;; associated with an edge
(I, J) is computed as the sum of edge weights from vertices i € I to j € J in the
original graph, weighted by the local PageRank scores computed from Step 1:

wip= Y agepra ().

i€l jed

4 Algorithms for Centrality Indices 79

If the local PageRank vectors are normalized using the l-norm, then the
weight matrix {2 = (wyy) is a stochastic matrix, and the ordinary PageRank
algorithm can be applied to the block graph B to obtain the block weights b;.

The starting vector for Step 3 is then determined by

Cg)}%(i) = cprqy(1)br V I,V i€ I

Another decomposition idea was proposed by Avrachenkov and Litvak [367]
who showed that if a graph consists of several connected components (which
is obviously true for the Web graph), then the final PageRank vector may be
computed by determining the PageRank vectors in the connected components
and combining them appropriately using the following theorem.

Theorem 4.3.2.

S (IVllc [Vl , Vil)
— Ty CPR(1) \xr1 “PR(2)5- > |xr| “PR(K)>)
V] (1) V] (2) V] (K)
where Gy = (Vi, Ex) are the connected components, k =1,..., K and cpr) is

the PageRank vector computed for the kth connected component.

Finally, we briefly mention the 2-step-algorithm of Lee et al. [383] that is
based on the observation that the Markov chain associated with the PageRank
matrix is lumpable.

Definition 4.3.3. If L = {Li,Ls,...,Lx} is a partition of the states of a
Markov chain P then P is lumpable with respect to L if and only if for any
pair of sets L, L' € L and any state i in L the probability of going from i to L'
doesn’t depend on i, i.e. for all i,i’ € L

PI'[Xt+1 S L/|Xt = Z] = Z Dij = PI'[Xt+1 S L/|Xt = Z/] = Z Dirj -
jeL’ jer’
The common probabilities define a new Markov chain, the lumped chain Pr, with
state space L and transition probabilities prr» = Pr[Xi41 € L'| Xy € L].

The partition the authors use is to combine the dangling vertices (i.e., ver-
tices without outgoing edges) into one block and to take all dangling vertices
as singleton-blocks. This is useful since the number of dangling vertices is of-
ten much larger than the number of non-dangling vertices (a Web crawl from
2001 contained 290 million pages in total, but only 70 million non-dangling ver-
tices, see [339]). In a second step, the Markov chain is transformed into a chain
with all non-dangling vertices combined into one block using a state aggregation
technique.

For the lumped chain of the first step, the PageRank algorithm is used for
computing the corresponding centrality values. For the second Markov chain,
having all non-dangling vertices combined, the authors prove that the algorithm
to compute the limiting distribution consists of only three iterations (and one
Aitken extrapolation step, if necessary, see Section 4.3.2). The vectors obtained
in the two steps are finally concatenated to form the PageRank score vector of
the original problem.

80 R. Jacob et al.

4.4 Dynamic Computation

In Section 4.3.2, several approaches for accelerating the calculation of page im-
portance were described. In this section, we focus on the ‘on the fly’ computation
of the same information, and on the problem of keeping the centrality values up-
to-date in the dynamically changing Web.

4.4.1 Continuously Updated Approximations of PageRank

For the computation of page importance, e.g. via PageRank, the link matrix has
to be known in advance. Usually, this matrix is created by a crawling process.
As this process takes a considerable amount of time, approaches for the ‘on the
fly’ computation of page importance are of interest. Abiteboul et al. [1] describe
the ‘On-line Page Importance Computation’ (OPIC) algorithm, which computes
an approximation of PageRank, and does not require to store the possibly huge
link matrix.

The idea is based on the distribution of ‘cash.” At initialization, every page
receives an amount of cash and distributes this cash during the iterative compu-
tation. The estimated PageRank can then be computed directly from the current
cash distribution, even while the approximation algorithm is still running.

Algorithm 8 describes the OPIC algorithm. The array ¢ holds the actual
distribution of cash for every page, and the array h holds the history of the cash
for every page. The scalar g is just a shortcut for Y 7, h[d].

An estimate of the PageRank of page i is given by cprapprox (i) = % To
guarantee that the algorithm calculates a correct approximation of PageRank,
the selection of the vertices is crucial. Abiteboul et al. discuss three strategies:
random, greedy, and circular. The strategies ‘randomly select a page’ and ‘cir-
cularly select all pages’ are obvious. Greedy selects the page with the highest
cash. For the convergence of the computation, the selection of the vertices has
to be fair, and this has to be guaranteed in all selection strategies.

After several iterations the algorithm converges towards the page impor-
tance information defined by the eigenvector for the largest eigenvalue of the
adjacency matrix of the graph. To guarantee the convergence of the calculation
similar concepts as for the random surfer (see Section 3.9.3) have to be applied.
These are, for example, the inclusion of a ‘virtual page’ that every page links
upon. The original work contains an adaptive version that covers link additions
and removals, and in some parts vertex additions and removals. This modified
adaptive OPIC algorithm is not discussed here, and can be found in [1].

4.4.2 Dynamically Updating PageRank

An interesting approach to accelerate the calculation of page importance lies
in the recomputation of the PageRank for the ‘changed’ part of the network
only. In case of the Web these changes are page additions and removals and link
additions and removals. For this idea, Chien et al. [124] described an approach
for link additions.

4 Algorithms for Centrality Indices 81

Algorithm 8: OPIC: On-line Page Importance Computation

Input: The graph G
Output: ¢ and h: arrays for cash and history, g: sum of the history values

Initialization
for i «— 1 ton do
cfi] < 1/n
L R[] <0
g0
repeat
choose a vertex i from G
See text for vertex selection strategies

Update the history of i
h[i] « h[i] + c[i]
Distribute the cash from i to children
for each child j of i do
L els] « els] + clal/d* 3]
Update the global history value
g g+cli
Reset cash for i
cfi] <0
until hell freezes over

The idea is founded on an observation regarding the perturbation of the
probability matrix P of the PageRank Markov chain for the Web graph W. This
perturbation, stemming from link additions, can be modeled by the relation
P=P+ E, where E is an error matrix and P is the perturbed matrix. For
a single edge addition®, F contains only changes in some row i. Therefore, the
matrix P differs from the original matrix P only in this row. Chien et al. observed
that the recomputation of PageRank is required for a small area around the
perturbation to achieve a good approximation for the modified Web graph W”.
This small area is defined by the graph structure and can be extracted from
the original Web graph W. The extraction yields a graph G that contains the
new edge between i and j, and further every vertex and edge which are ‘near’
to the new edge. Additionally, the graph G contains a ‘supervertex’ that models
all vertices from the graph W that are not in G. A transition matrix T for the
graph G is constructed, and its stationary distribution 7 is calculated.

For all vertices of the graph G (except for the supervertex), the stationary
distribution 7 of the perturbed matrix P can, therefore, be approximated by
the stationary distribution 7 of the matrix 7. For the vertices in W that are
not covered by G, the stationary distribution 7 of P is simply approximated by
the stationary distribution 7 of the matrix P. Several experiments showed that

! In the original work a description for the single edge case is given and extended
towards multiple edge changes. We only cover the single edge case here.

82 R. Jacob et al.

this approach gives a good approximation for the modified Web graph W', and
that the computation time decreases due to the computation of the stationary
distribution of the smaller matrix 7" instead of P.

5 Advanced Centrality Concepts

Dirk Koschiitzki,* Katharina Anna Lehmann,* Dagmar Tenfelde-Podehl,
and Oliver Zlotowski

The sheer number of different centrality indices introduced in the literature, or
even only the ones in Chapter 3, is daunting. Frequently, a new definition is
motivated by the previous ones failing to capture the notion of centrality of
a vertex in a new application. In this chapter we will discuss the connections,
similarities and differences of centralities. The goal of this chapter is to present an
overview of such connections, thus providing some kind of map of the existing
centrality indices. For that we focus on formal descriptions that hold for all
networks. However, this approach has its limits.

Usually such approaches do not consider the special structure of the network
that might be known for a concrete application, and it might not be able to
convey the intuitive appeal of certain definitions in a concrete application. Nev-
ertheless we consider such an approach appropriate to investigate the abstract
definitions of different centrality indices. This is in a certain contrast to some of
the literature, that only intuitively justifies a new definition of a centrality index
on small example graphs.

Such connection between different definitions have been studied before,
though usually not in a mathematical setting. One typical example is the work
by Holme [304]. He considers a connection of betweenness centrality and con-
gestion of a simulated particle hopping network. The particles are routed along
shortest paths, but two particles are not allowed to occupy the same vertex. He
investigates two policies of dealing with this requirement, namely that a particle
waits if the next scheduled vertex is occupied, thus creating the possibility of
deadlocks. Alternatively the particles can be allowed to continue their journey
on a detour. He finds that such a prediction is only possible if the total number
of particles in the network is small. Thus shortest-path betweenness for the ap-
plication of the particle hopping model is the wrong choice, as it fails to predict
congestion. In retrospect this is not really surprising because the definition of
betweenness does not account for one path being blocked by another path, thus
assuming that the particles do not interfere with each other. In particular the
possibility of spill-backs as a result of overcrowded vertices is well known for car
traffic flow on road networks, as for example addressed by the traffic-simulation
presented by Gawron in [242]. Nagel [437] gives a more general overview of traffic
considerations.

* Lead authors

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 83-111, 2005.
© Springer-Verlag Berlin Heidelberg 2005

84 D. Koschiitzki et al.

Unfortunately, the only general lesson to be learned from this is that it does
matter which precise definition of centrality one uses in a concrete application.
This sheds another light on our attempts to classify centrality indices, namely
to help identify the ‘right’ centrality index for a particular application. This
is perhaps not possible in general, just because we have no idea what kind of
applications might be of interest, and how the network is constructed. However,
for a concrete application the considerations here might give valuable ideas on
how to model the situation precisely or as a reasonable approximation.

In Section 5.1 we start with some general approaches to normalize centrality
indices. Many of these techniques are so general that they can be applied to all
indices presented in Chapter 3. We will differentiate between approaches that
facilitate the comparison of centrality values within the same graph and between
different graphs.

We then consider the possibility to modify a centrality index by letting it
focus on a certain subset of vertices. This set can, e.g., be a subset of Web
pages that a Web surfer is most interested in. With such a subset a ranking
can be personalized to the interests of an user. This idea of personalization is
explained in more detail in Section 5.2. As in the case of normalization some
of the techniques are virtually applicable to all centrality indices presented in
Chapter 3, whereas others are designed especially for only one centrality index.

An informal approach to structure the wide field of centrality indices pre-
sented in this book is given in Section 5.3. For that we dissect these indices into
different components, namely a basic term, a term operator, personalization,
and normalization and thereby we define four categories of centrality indices.
This approach finally leads to a flow chart that may be used to ‘design’ a new
centrality index.

Section 5.4 elaborates on fundamental properties that any general or applica-
tion specific centrality index should respect. Several such properties are proposed
and discussed, resulting in different sets of axioms for centrality indices.

Finally, in Section 5.5 we discuss how centrality indices react on changes
on the structure of the network. Typical examples are experimentally attained
networks, where a new experiments or a new threshold changes the valuation or
even existence of elements, or the Web graph, where the addition of pages and
links happens at all times. For this kind of modifications the question of stability
of ranking results is of interest and we will provide several examples of centrality
indices and their reactions on such modifications.

5.1 Normalization

In Chapter 3 we saw different centrality concepts for vertices and edges in a
graph. Many of them were restricted to the nonnegative reals, and some to the
interval [0, 1], such as the Hub- & Authority-scores which are obtained using
normalization with respect to the Euclidean norm.

The question that arises is what it means to have a centrality of, say, 0.8 for
an edge or vertex? Among other things, this strongly depends on the maximum

5 Advanced Centrality Concepts 85

centrality that occurs in the graph, on the topology of the graph, and on the
number of vertices in the graph. In this section we discuss whether there are
general concepts of normalization that allow a comparison of centrality scores
between the elements of a graph, or between the elements of different graphs.
Most of the material presented here stems from Ruhnau [499] and Moller [430].

In the following, we restrict our investigations to the centrality concepts of
vertices, but the ideas can be carried over to those for edges.

5.1.1 Comparing Elements of a Graph

We start by investigating the question how centrality scores, possibly produced
by different centrality concepts, may be compared in a given graph G = (V, E)
with n vertices. To simplify the notation of the normalization approaches we
will use here a centrality vector instead of a function. For any centrality cx,
where X is a wildcard for the different acronyms, we will define the vector cx
where ¢x; = cx (i) for all vertices ¢ € V. Each centrality vector ¢x may then
be normalized by dividing the centrality by the p-norm of the centrality vector

1
exll, = J Cimlexi)'”, 1< p<oo
L=
max;—1, n{lcxil}, p=o0

to produce centrality scores cx; < 1.

The main difference between the p-norm for p < oo and p = oo (the maximum
norm) is that, when normalizing using p = oo, the maximum centrality score
in the graph is 1, and this value is attained for at least one vertex. Therefore,
the normalization using the maximum norm yields a ‘relative’ centrality for each
vertex in a graph. Note that this normalization is not appropriate for comparing
vertices in different graphs, since the value of 1 (or —1, if negative values are
allowed) is attained in each graph, independent of its topology.

For p < oo, the centrality concepts that may produce negative centrality
scores (e.g. Bonacich’s bargaining centrality, see Section 3.9.2) have to be treated
in a special way. Moller [430] proposes to separate the negative and positive
components:

1/p
cxif (Zj:cxj>0|cxj|p> , c¢x; >0,

cxi=10, cxi =0,
1/p
cXi/ (Z.jZCXj<0 |ch|p> ; exi <0.

Taking p = 1, this means (for non-negative centralities) that each of the vertices
is assigned their associated percentage of centrality within a graph. It might
be worth discussing whether a similar approach is reasonable when using the
maximum norm — or whether one should normalize using the maximum value
instead of the maximum absolute value. The latter would have the advantage
that in each graph we would obtain a 1 as the maximal normalized centrality
value.

86 D. Koschiitzki et al.

A normalization with the p-norm is in general not appropriate for comparing
vertices of different graphs. We will see that the Euclidean norm (p = 2) forms
an exception for eigenvector centralities in that the maximal value that can be
attained is independent of the number of vertices, see the end of Section 5.4.2.

5.1.2 Comparing Elements of Different Graphs

When vertices in different graphs have to be compared, the varying size of the
graphs can be problematic. Let G,, be the set of connected graphs G = (V, E)
with n vertices. Freeman [227] proposed to define the point-centrality

CXx;
Cg(iz c*z, (51)
X

where €% = maxgeg, maxX;cy(g) Cxi is the maximum centrality value that a
vertex can obtain taken over all graphs with n vertices.

Using the point-centrality ¢y ;, the maximum value 1 is always attained by at
least one vertex in at least one graph of size n. Thus, a comparison of centrality
values in different graphs is possible. Unfortunately, this is often only possible in
theory, since the determination of ¢% is not trivial in general, and even impossi-
ble for some centrality concepts. Consider, for example, the status-index of Katz
(see Section 3.9.1), where the centrality scores are related to the chosen damping
factor. Theorem 3.9.1 states that the damping factor « is itself strongly related
to the maximum eigenvalue A1 of the adjacency matrix. Hence, it is not clear
that a feasible damping factor for the graph under investigation is also feasible
for all other graphs of the same size.

Moller provides a nice example with the following two adjacency matrices:

01 01
Al_(oo)’ A2_<10)'

Since A% is the zero matrix for & > 2, convergence is guaranteed for any o €
10, 1]. If we choose the maximum possible value o = 1, then the infinite sum
> ne, af A% does not converge, since it is equal to limg .o Eszl 1,17, This
example shows that it is not clear which damping factor to choose in order to
determine the value ¢}, (especially if we have to do that for different n).

Nevertheless, there are centrality concepts that allow the computation of c% .
A very simple example is the degree centrality. It is obvious that in a simple,
undirected graph with n vertices the maximum centrality value a vertex can
obtain (with respect to degree centrality) is n—1. Another example is the shortest
paths betweenness centrality (s. Section 3.4.2): The maximum value any vertex
can obtain is given in a star with a value of % [227].

Further, the minimum total distance from a vertex i to all other vertices is
attained when ¢ is incident to all other vertices, that is, when ¢ has maximum
degree. So, it is clear that for the closeness centrality (see Section 3.2) we have
ct=(Mm-1)""

5 Advanced Centrality Concepts 87

Moller shows that, in addition, the eccentricity centrality as well as the Hubs
& Authorities centrality allow the calculation of the value ¢% . For the eccentric-
ity centrality we just note that a vertex with maximum degree has an eccentricity
value of 1 and all other vertices have smaller eccentricity values, hence cj = 1.
Similarly, the maximum values for hub- and authority centrality values (central-
ity vectors are assumed to be normalized using the Euclidean norm) are 1 and
they are attained by the center of a star (either all edges directed to the center
of the star or all edges directed away from the center).

Shortest-path betweenness centrality and the Euclidean normalized eigen-
vector centrality provide other, more sophisticated, examples, see, e.g., Ruhnau
[499]: These two centralities have the additional property that the maximum
centrality score of 1 is attained exactly for the central vertex of a star. This
property is useful when comparing vertices of different graphs, and is explained
in more detail in the Section 5.4.2.

Finally we note that Everett, Sinclair and Dankelmann found an expression
for the maximum betweenness in bipartite graphs, see [195].

5.2 Personalization

The motivation for a personalization of centrality analysis of networks is easily
given: Imagine that you could configure your favorite Web search engine to order
the WWW according to your interests and liking. In this way every user would
always get the most relevant pages for every search, in an individualized way.

There are two major approaches to this task: The first is to change weights
on the vertices (pages) or edges (links) of the Web graph with a personalization
vector v. The weights on vertices can describe something like the time spent
each day on the relevant page and a weight on the edge could describe the
probability that the represented link will be used. With this, variants of Web-
centrality algorithms can be run that take these personal settings into account.
The other approach is to choose a rootset’” R C V of vertices and to measure
the importance of other vertices and edges relative to this rootset.

We will see in Section 5.3 that these two approaches can be used as two
operators. The first approach changes the description of the graph itself and the
corresponding operator is denoted by P,. Then the corresponding term for each
vertex (or edge) is evaluated on the resulting graph. The second personalization
approach chooses a subset of all terms that is given by the rootset R. This
operator is denoted by Pg.

We will first discuss personalization approaches for distance and shortest
paths based centralities and then discuss approaches for Web centralities.

5.2.1 Personalization for Distance and Shortest Paths Based
Centralities

All centralities that were presented in Chapter 3 rank every vertex relative to
all other vertices in the graph. In this subsection we will be concerned with

88 D. Koschiitzki et al.

variants of these centralities that determine the relative importance of vertices
with respect to a set R of root vertices. R is chosen such that the vertices in R
are assumed to be important and the question is how all other vertices should
be ranked in importance with respect to R. The approach presented by White
and Smith in [580] is very general and deserves some attention.

Let ¢(v) be some centrality index on vertices. Then, c¢(v|R) denotes the rel-
ative importance of vertex v with respect to the given rootset R. Let P(s,t)
denote any well defined set of paths between vertex s and t. The authors suggest
different kinds of path sets:

— a set of shortest paths

— a set of k-shortest paths, defined as the set of all paths with length smaller
than a given k

— a set of k-shortest vertex-disjoint paths’

The set of shortest paths is used e.g. in the shortest-path betweenness cen-
trality (see Section 3.4.2). The relative betweenness centrality crpc(v) can be
defined in three ways. In the first variant we define a vertex v as important
if the fraction of shortest paths leaving a vertex r from R contains v. We will
denote this source relative betweenness centrality by

csrpo(v) =D) " 6u(v) . (5.2)
reRteV
If an element v is important if it is contained in a large fraction of short-
est paths ending in a vertex r of R we denote the target relative betweenness
centrality as

ctrpe (V) = Z Z dor(v) . (5.3)
seVreRr

In the last case, an element is supposed to be important if it is contained in
a large fraction of shortest paths leading from R to R, denoted by

cree(v) = Y > b (v) . (5.4)

rs€ERTr€ER

If any other set of paths P(s,t), e.g. the set of k-shortest paths, is chosen,
then the definition of d,:(v) has to be changed, denoted by

Ost ('U)
O = — 5.5
<t|P(’U) |P(S,t>| ()
where 05 (v) denotes the number of paths p € P(s,t) that contain vertex v.
This example demonstrates the general idea behind this kind of personaliza-

tion. It can be easily expanded to all centralities that are based on distance.

1 We just want to note that this set of paths is not unique in most graphs. For a
deterministic centrality it is of course important to determine a unique path set, so
this last path set should only be used on graphs where there is only one set for each
vertex pair.

5 Advanced Centrality Concepts 89

5.2.2 Personalization for Web Centralities

Consider again the random surfer model (see Section 3.9.3) for Web centralities
and assume the random surfer arrived at a page where there is no outlink or
where the existing out links are not relevant. The original assumption in this case
is a jump to a random page where each page has equal probability. It is obvious
that the assumption of equal probability is not very realistic: some surfers prefer
Web pages about sports if they get stuck in a sink, others continue with a news-
page etc. The question at hand is hence how to model the many different types
of Web users.

A very intuitive approach is to replace 1,, (cf. Equation 3.44) by a personal-
ization vector v satisfying v; > 0V i and), v; = 1. White and Smyth [580], for
example, proposed to score the vertices relative to a kernel set R using

Y TR G€R
Colem g R

where 0 < e << 1.

They also proposed a very similar approach for the Hubs & Authorities al-
gorithm. Instead of applying the iterative procedure given in Algorithm 2 on
page 55 they added in each step a portion of the personalization vector and
obtained the following modified equations:

C%A-H = dA%CII;—;L_A{A + (1 —d)v
CHA-A = df‘{a ciiag + (1 —d)v

Clian = CEIA'H
- HC A_HH
C]flA A= —CI;IA'A

- HCHA_AH ’

where d € [0, 1] is chosen to control the influence of v.

Going back to the PageRank algorithm it is clear that as long as all elements
of v are positive and v is a stochastic vector, the associated Markov chain is still
irreducible hence the convergence of the PageRank algorithm is not touched.
Thus, at a first glance, this approach seems to be appealing. But there is one big
disadvantage: As already known the computations of PageRank vectors for the
non-personalized version is very time consuming, there is, at least at the moment,
no chance to compute PageRank centralities for many different types of Web
users. Nevertheless there are some promising approaches to obtain personalized
PageRank vectors in an adequate amount of time.

To this end we give a general approach of personalization for PageRank,
taken from Haveliwala et al. [291]. As noted above the personalized PageRank
vector is given as the solution of the following equation

cpr = dPTepr + (1 — d)v.

Since (I — dPT) is a strictly diagonally dominant matrix, it is invertible and
hence

90 D. Koschiitzki et al.

cpri=cpr=(1-d) (I - dPT)f1 v =: Qu. (5.6)

(We write ¢ to emphasize the dependence of cpr on v.)

If we choose v to be the ith unit vector v = e?, then cf;R = @Q.;, hence the
set of columns of () may be seen as a basis for the personalized PageRanks.

The Problem that occurs is that the determination of) needs to invert
a matrix which is very time consuming if the matrices are large. To reduce
the computational complexity @) is approximated by Q € R™¥ and hence we
consider only a subset of K basis vectors (independent columns of Q) taking a
convex combination to obtain an estimate for

CpRr = Qw

where w € R¥ is a stochastic vector, w; > 0V 3.
Haveliwala et al. show that the following three personalization approaches
can be subsumed under the general approach described above:

— Topic sensitive PageRank [289],
— Modular PageRank [326],
~ BlockRank [339].

They only differ in how the approximation is conducted. We describe these
approaches briefly in the following subsections.

Topic Sensitive PageRank. Haveliwala [289] proposes to proceed in a com-
bined offline-online algorithm where the first phase (offline) consists of the fol-
lowing two steps

1. Choose the K most important topics t1,...,tx and define v¥ to be the
(normalized) degree of membership of page i to topic tg, i = 1,...,n, k=
1,...,K.

2. Compute Q. = cﬁ%, k=1,....K

The second phase that is run online is as follows

1. For query o compute (normalized) topic-weights wy, ..., w%
2. Combine the columns of @) with respect to the weights to get

K
o E o A
CpRr = ka.k.
k=1

Note that to apply this approach it is important that

— K is small enough (e.g. K = 16) and
— the range of topics is broad enough.

5 Advanced Centrality Concepts 91

Modular PageRank. A second approach was proposed by Jeh and Widom
[326]. Their algorithm consists of an offline and an online step. In the offline step
K pages i1, ...,1x with high rank are chosen. These high-ranked pages form the
set of hubs.

Using personalization vectors e’ the associated PageRank vectors called
basis vectors or hub vectors C%Lﬂ are computed. By linearity for each personal-
ization vector v that is a convex combination of e'1, ..., e’* the corresponding
personalized PageRank vector can be computed as a convex combination of the
hub vectors. But if K gets larger, it is neither possible to compute all hub vec-
tors in advance nor to store them efficiently. To overcome this deficiency, Jeh
and Widom propose a procedure using partial vectors and a hubs skeleton. They
are able to show that in contrast to the hub vectors it is possible to compute and
store the partial vectors efficiently. These partial vectors together with the hubs
skeleton are enough to compute all hub vectors and hence (by transitivity) the
final personalized PageRank. Essentially the idea is to reduce the computations
to the set of hubs, which is much smaller than the Web graph (but K > 10*
is possible). Note that the larger K may be chosen, the better the Q-matrix is
represented.

The online step then consists of determining a personalization vector v? =
Zszl af e’ and the corresponding PageRank vector

K /
o _ aje'k
Cpr = CpRr
k=1

(again by using partial vectors and the hubs skeleton).

BlockRank. This approach of Kamvar et al. [339] was originally invented for
accelerating the computation of PageRank, see Section 4.3.2. It consists of a 3-
phase-algorithm where the main idea is to decompose the Web graph according
to hosts. But, as already proposed by the authors, this approach may also be
applied to find personalized PageRank scores: In the second step of the algorithm
the host-weights have to be introduced, hence the algorithm is the following:

1. (offline) Choose K blocks (hosts) and let v¥ be the local PageRank of page
iinblock k,i=1,...,n, k=1,...,K. Compute Q., = c}é% (the authors
claim that K > 103 is possible if the Web structure is exploited).

2. (online) For query o find appropriate host-weights to combine the hosts.

3. (online) Apply the (standard) PageRank algorithm to compute the associ-
ated centralities. Use as input the local PageRank scores computed in the
first step, weighted by the host-weights of step 2.

Both, the concept of personalization from this section and normalization from
the previous section will be rediscussed in the following two sections to introduce
the four dimensions of centrality indices.

92 D. Koschiitzki et al.

5.3 Four Dimensions of a Centrality Index

In this section we present a four dimension approach which is an attempt to
structure the wide field of different centrality measures and related personaliza-
tion and normalization methods presented so far. The idea to this model emerged
from the observation that there is currently no consistent axiomatic schema that
captures all the centrality measures considered in Chapter 3, for more details
see Section 5.4. But it is important to note, that the following contribution does
not constitute a formal approach or even claims completeness. Nevertheless, we
believe that it may be a helpful tool in praxis.

The analysis of the centrality measures in Chapter 3 has led to the idea
of dividing the centralities into four categories according to their fundamental
computation model. Each computation model is represented by a so-called basic
term. Given a basic term, a term operator (e.g. the sum or the maximum), and
several personalization and normalization methods may be applied to it. In the
following we want to discuss the idea in more detail. At the end of this section we
provide a scheme based on our perception that helps to classify new centrality
measures, or helps to customize existing ones.

Basic Term. The classification of the centrality measures into four categories
and the representation of each category by a basic term constitutes the first
dimension of our approach. Once again, we want to mention that this classifi-
cation is only a proposal which emerged form the analysis of existing measures
described so far.

Reachability. The first category of centrality measures is based on the notion of
‘reachability’. A vertex is supposed to be central if it reaches many other vertices.
Centrality measures of this category are the degree centrality (cf. Section 3.3.1),
the centrality based on eccentricity and closeness (cf. Section 3.3.2), and the ran-
dom walk closeness centrality (cf. Section 3.8.3). All of these centralities rely on
the distance concept d(u,v) of two vertices u and v. In the degree centrality, for
example, we count the number of vertices that can be reached within distance 1.
The closeness of a vertex u is measured by the reciprocal of the sum over the
distances to all other vertices v. The same is true for the centrality based on
eccentricity, where the maximum is taken instead of the total distance. In the
case of the random walk closeness centrality the notion of distance is equivalently
given as the mean first passage time from vertex u to all other vertices v in a
random walk.

Amount of flow. The second category of centrality measures is based on the
amount of flow fs(z) from a vertex s to a vertex t that goes through a vertex
or an edge x. This can be easily seen at centrality measures based on current
flow processes (cf. Section 3.7) and random walks as described in Section 3.8.1
and 3.8.2. But also measures based on the enumeration of shortest paths belong
to this category. The stress centrality presented in Section 3.4.1 may also be

5 Advanced Centrality Concepts 93

interpreted as measuring the amount of flow going through an element z if every
vertex s sends to every other vertex t one unit flow along each shortest path
connecting them. In the same context, the shortest-path betweenness centrality
introduced in Section 3.4.2 measures the expected fraction of times a unit flow
goes through the element if every vertex s sends one unit flow consecutively to
every other vertex ¢, and each time choosing one of all shortest paths connect-
ing them uniformly, independently at random. The basic term covering these
measures is [().

Vitality. A third category of centrality measures is based on the vitality as
defined in Section 3.6. Here, the centrality value of an element x is defined as
the difference of a real-valued function f on G with and without the element.
Recall, a general vitality measure was denoted by V(G, z) = f(G) — f(G\{z}).
The maximum flow betweenness vitality presented in Sect. 3.6.1 belongs to this
category.

Feedback. A fourth category of centrality measures is based on a implicit def-
inition of a centrality (cf. Section 3.9). These measures might be subsumed by
the abstract formula c(v;) = f(c¢(v1),...,c(vyn)), where the centrality value of a
certain vertex v; depends on the centrality values of all vertices vy,...,v,.

Term Operator. The second dimension is represented by the term operator.
Consider the first three categories: here we observed that often a set of suitable
operators can be applied to a basic term to obtain meaningful centrality mea-
sures. We want to illustrate this idea on some centrality measures: If we have
carefully defined the distance for a given application, we can choose whether the
centrality index is given by the maximum of all distances from u to any other
vertex v (as in the eccentricity), or the sum over all distances (as in the close-
ness centrality), or the average distance to all other vertices (as a normalized
closeness centrality). In some cases even a special operator as the variance of
all the distance might led a meaningful centrality index. Thus, for all centrality
indices of the first three categories, it makes sense to separate the choice of a
term operator from the basic term.

Personalization. The third dimension is given by the methods that help to
personalize centrality measures. In Section 5.2 we differentiate two variants of
personalization. The first approach, denoted by P,, is applicable to all centrality
measure that can deal with vertex or edge weights. This personalization applies
a weight vector v to V', E, or to the transition matrix of the random surfer model
in the case of the Web centralities. The second personalization method, denoted
by Pgr, considers a subset of vertices, the so called rootset R. The centrality of
a vertex is measured with respect to this rootset. This method is applicable to
all distance based centrality indices. Both personalization methods and all other
approaches to personalization build the third dimension.

94 D. Koschiitzki et al.

Normalization. All of the centrality measures presented in this book can be
normalized. Thus, the normalization forms a fourth dimension. Recall, a common
normalization applicable to most centrality measures is to divide every value by
the maximum centrality value. In Section 5.1 several normalization methods
were considered.

Independence of the Dimensions. All of these four dimensions: basic term,
term operator, personalization, and normalization are independent of each other
and we have outlined that the centrality measures presented in this book can be
meaningfully dissected into them. Of course, we cannot claim that all centrality
indices ever published will fall into one of these categories or can be dissected as
demonstrated. Moreover, since we lack any strict definition of centrality indices,
we cannot ensure that every possible combinations will result in meaningful
centrality index. Our aim is to provide a model that helps to structure the design
of a suitable centrality index according to our four-dimensional approach.

Designing a Centrality Index. The diagram in Figure 5.1 shows an approach
that demonstrates how an appropriate centrality can be found or adapted for a
given application. The first step in choosing an appropriate centrality index is to
find the question that should be answered by the centrality measure. That deter-
mines the category and the corresponding basic term. In general, however, the
basic term refers only to an abstract concept. The distance between two vertices,
for example, could be measured by the mean first passage time in a random walk
or by the classic definition of distance on shortest paths. Thus a concrete com-
putational model must be developed for the chosen basic term. After this step, a
first personalization might be applied. This personalization leads to a personal-
ized graph with modified or added weights on the vertices or edges, respectively.
Afterwards, a second personalization might be applicable by choosing a ’rootset’
if the basic term corresponds to one of the categories reachability, amount of
flow or vitality. The centrality of a vertex is then measured with respect to this
rootset. If the resulting term belongs to the first three categories, 'reachability’,
"amount of flow’, or ’vitality’, we have to chose a term operator which will be
applied to the term with respect to the personalized graph. We want to mention
here as examples the maximum-operator or the summation over all terms.

If the chosen centrality index is a feedback centrality a personalization with
a rootset is not always applicable. Thus, the route through the diagram follows a
special path for these indices. The next step here is to determine the appropriate
linear equation system and to solve it.

In all four categories the resulting centrality values might be normalized, as
discussed in Section 5.1. Usually this normalization is performed by a multipli-
cation with a scalar.

As a tool for describing, structuring, and developing centrality measures our
four dimension approach provides a flexible alternative to classical approaches
even though more formalization and refinement is needed. In the next section

5 Advanced Centrality Concepts

- Application

Y

C Network)

Y

Aspect to be evaluated by centrality index:

Reachability Amount Vitality Feedback
of Flow
i
d(u, +(7) V(G,x) c(v)=f(...)

u,v) s

Personalization P,
with personalized weight

vector v

—

with personalized

rootset R

Personalization Pg

Term Operator

Determine the set
of Linear Equations
to be solved

.
.
.
.
.
.
.
.
.
.
»

Normalization

Y

(Centrality index)

95

Fig. 5.1. A flow chart for choosing, adapting or designing an appropriate centrality

measure for a given application

96 D. Koschiitzki et al.

we consider several classical approaches which may also be used to characterize
centrality measures.

5.4 Axiomatization

In Chapter 3, we saw that there are many different centrality indices fitting for
many different applications. This section discusses the question whether there
exist general properties a centrality should have.

We will first cover two axiomatizations of distance-based approaches of cen-
trality indices and in a second subsection discuss two aximatisations for feedback
centralities.

5.4.1 Axiomatization for Distance-Based Vertex Centralities

In the fundamental paper of Sabidussi [500], several axioms are defined for a
vertex centrality of an undirected connected graph G = (V, E). In the following
we restate these in a slightly modified way. Sabidussi studied two operations on
graphs:

Adding an edge (u,v): Let uand v be distinct vertices of G where (u,v) ¢ E(G).
The graph H = (V, EU{(u, v)}) is obtained from G by adding the edge (u, v).

Movwing an edge (u,v): Let u,v,w be three distinct vertices of G such that
(u,v) € E(G) and (u,w) ¢ E(G). The graph H = (V,(E \ {(u,v)}) U
{(u,w)}) is obtained by removing (u,v) and inserting (u,w). Moving an
edge must be admissible, i.e., the resulting graph must still be connected.

Let G, be the class of connected undirected graphs with n vertices. Fur-
thermore, let ¢: V. — RJ be a function on the vertex set V of a graph
G = (V,E) € G,, which assigns a non-negative real value to each vertex v € V.
Recall, in Section 3.3.3 we denoted by S.(G) = {u € V: Vv € V ¢(u) > c(v)}
the set of vertices of G of maximum centrality with respect to a given vertex
centrality c.

Definition 5.4.1 (Vertex Centrality (Sabidussi [500])). A function c is
called a vertex centrality on G € G/, C G,, and G/, is called c-admissible, if
and only if the following conditions are satisfied:

1. G is closed under isomorphism, i.e., if G € G!, and H is isomorphic to G
then also H € G,.

2. If G = (V,E) € G, u € V(Q), and H is obtained from G by moving an
edge to u or by adding an edge to u, then H € G, i.e., Gl is closed under
moving and adding an edge.

3. Let G~y H, then cg(u) = cg(¢(u)) for each u € V(G).?

2 By cc(u) and cx(u) we denote the centrality value of vertex u in G and H, respec-
tively.

5 Advanced Centrality Concepts 97

4. Let uw € V(G), and H be obtained from G by adding an edge to u, then
ca(u) < cg(u) and cq(v) < cp(v) for each v € V.

5. Let u € S.(G), and H be obtained from G either by moving an edge to u or
by adding an edge to u, then cg(u) < cg(uw) and v € Sc(H).

The first two conditions provide a foundation for Condition 3 and 5. Note
that certain classes of graphs fail to satisfy Condition 2, e.g., the class of all trees
is closed under moving of edges, but not under addition of edges. Condition 3
describes the invariance under isomorphisms, also claimed in Definition 3.2.1.
The idea behind Condition 4 is that adding an edge increases the degree of
centralization of a network. Condition 5 is the most significant one. If an edge
is moved or added to a vertex u € S.(G), then the centrality of u should be
increased and it should contained in S.(H), i.e., v must have maximal centrality
in the new graph H.

For the degree centrality introduced in Section 3.3.1, it is easy to verify that
the axioms are satisfied. Thus, the degree centrality is a vertex centrality in
terms of Sabidussi’s definition.

We shall now see that the vertex centrality cg(u) based on the eccentricity
e(u) introduced in Section 3.1 is not a vertex centrality according to Sabidussi’s
definition. In Figure 5.2 two graphs are shown where the eccentricity value for
each vertex is indicated. The first graph is a simple path with one central vertex
us. After adding the edge (us,ug) the new central vertex is uy. Thus, adding
an edge according to Condition 5 does not preserve the center of a graph. Note,
also Condition 4 is violated.

O—D—60—C—0—C0—6—0—®

Us Ug
O—EO—@—¢ 996@6
Uy Us Uy

Fig. 5.2. The eccentricity e(u) for each vertex u € V' is shown. The example illustrates
that the eccentricity centrality given by cm(u) = e(u)™! is not a vertex centrality
according to Sabidussi’s definition (see Definition 5.4.1)

In Section 3.2 the closeness centrality of a vertex was defined by co(u) =
s(u)~1. Kishi [357] showed that this centrality is not a vertex centrality respect-
ing Sabidussi’s definition. An example is given in Figure 5.3, where the value
of the total distance for each vertex is indicated. The median M(G) = {u €
V: s(G) = s(u)} of the left graph G consists of the vertices u,u’, and u”. The
insertion of edge (u,v) yields a graph H with M(H) N M(G) = 0.

98 D. Koschiitzki et al.

Fig. 5.3. The total distance s(u) for each vertex u € V is shown. The example depicts
that the closeness centrality defined by cc(u) = s(u)~! is not a vertex centrality
according to Sabidussi’s definition (see Definition5.4.1)

Kishi [357] provides a definition for distance-based vertex centralities relying
on Sabidussi’s definition. Let ¢ be a real valued function on the vertices of a
connected undirected graph G = (V, E), and let u and v be two distinct non-
adjacent vertices of G. The insertion of (u,v) leads to a graph H = (V,E U
{(u,v)}) where the difference of the centrality values is measured by A,,(w) =
cg(w) — cg(w) for each vertex w € G.

Definition 5.4.2 (Vertex Centrality (Kishi [357])). The function c¢ is
called a vertex centrality if and only if the following conditions are satisfied

1. Ayp(u) >0, ie., co(u) < ch(u).
2. For each w € V with d(u,w) < d(v,w) it holds that Ayy(u) > Ayy(w) for
any pair of non-adjacent vertices u and v.

The conditions of Definition 5.4.2 are quite similar to Condition 4 and 5 of
Sabidussi’s definition 5.4.1. Therefore, it is not surprising that the eccentricity
is not a vertex centrality according to Kishi’s definition. To see that, reconsider
Figure 5.2 where vertex us violates the Condition 2 of Kishi’s definition. However,
Kishi [357] showed that the closeness centrality is a vertex centrality with respect
to Definition 5.4.2.

As these two examples show, it will still be a challenge to find minimal
requirements which can be satisfied by a distance-based centrality index. In
Section 3.2 we claimed that the centrality index only depends on the structure
of the graph (cf. Def. 3.2.1). But as mentioned already, not every structural index
will be accepted as a centrality index.

Finally, we want to note that there are also attempts to define requirements
for a vertex centrality of an weakly connected directed graphs, see e.g. Nieminen
[451].

5 Advanced Centrality Concepts 99

5.4.2 Axiomatization for Feedback-Centralities

Up to now, we mainly discussed sets of axioms that defined and admitted cen-
tralities that are based either on shortest path distances or on the degree of the
vertex. This section reviews axiomatizations that lead to feedback centralities or
feedback-like centralities.

Far from being complete we want to give two examples of how an axioma-
tization could work. To our knowledge there are several approaches concerning
axiomatization, but up to now there is a lack of structure and generality: Many
properties a centrality should have are proposed in the literature, but those sets
of properties in most cases depend very much on the application the authors
have in mind and exclude known and well-established centralities.

We start with a paper by van den Brink and Gilles [563], which may serve as
a bridge between degree-based and feedback-like centralities. This is continued
by presenting results of Volij and his co-workers that axiomatically characterize
special feedback-centralities.

From Degree to Feedback. In [563], van den Brink and Gilles consider di-
rected graphs. In the main part of their paper the graphs are unweighted, but
the axiomatic results are generalized to the weighted case. We only review the
results for the unweighted case - the weighted case is strongly related but much
more complicated with respect to notation.

The goal is to find an axiomatic characterization of centralities, or, to be
more specific, of what they call relational power measures which assign to each
directed network with n vertices an n-dimensional vector of reals such that the
ith component of the vector is a measure of the relational power (or dominance)
of vertex i.

The first measure is the §-measure, that was developed by the same authors
[562] for hierarchical economic organizations. It measures the potential influence
of agents on trade processes.

Let G,, be the set of unweighted directed graphs having n vertices. For a
directed edge (i,j) € E, vertex i is said to dominate vertex j.

Definition 5.4.3. Given a set of vertices V' with |V| = n, the S-measure on V
is the function B : G, — R" given by

Bali)= > 1 VieV, Geg,

JENE () dcJ)

(Remember that d~(j) is the in-degree of vertex j and N7 (i) is the set of vertices
j for which a directed edge (i, j) exists.)

This S-measure may be viewed as a feedback centrality, since the score for
vertex ¢ depends on properties of the vertices in its forward neighborhood.

A set of four axioms uniquely determines the S-measure. To state the four
axioms, let f : G, — R™ be a relational power measure on V. Moreover, we need
the following definition:

100 D. Koschiitzki et al.

Definition 5.4.4. A partition of G € G, is a subset {G1,...,Gk} C G, such
that

- Uszl Ey,=FE and
- ErNE=0V1<kI<K, k#I.

The partition is called independent if in addition
|{k6{1,...,K}:d5k(z’) >0} <1VieV,
i.e., if each vertex is dominated in at most one directed graph of the partition.

Which properties should a centrality have in order to measure the relational
power or dominance of a vertex?

First of all it would be good to normalize the measure in order to compare
dominance values of different vertices - possibly in different networks. Due to
the domination structure of their approach van den Brink and Gilles propose to
take the number of dominated vertices as the total value that is distributed over
the vertices according to their relational power:

Axiom 1: Dominance normalization| For every G € G, it holds that

> fali) = {j € Vo : dg(j) > 0} |.

1€Va

The second axiom simply says that a vertex that does not dominate any other
vertex has no relational power and hence gets the value zero:

‘Axiom 2: Dummy vertex property‘ For every G € G, and i € V satisfying
N (i) = 0 it holds that fg(i) = 0.

In the third axiom the authors formalize the fact that if two vertices have the
same dominance structure, i.e. the same number of dominated vertices and the
same number of dominating vertices, then they should get the same dominance-
value:

Axiom 3: Symmetry‘ For every G € G, and i, j € V satisfying df; (i) = d5(j)
and dg (i) = d(j) it holds that fo(i) = fa(j).

Finally, the fourth axiom addresses the case of putting together directed
graphs. It says that if several directed graphs are combined in such a way that
a vertex is dominated in at most one directed graph (i.e. if the result of the
combination may be viewed as an independent partition), then the total domi-
nance value of a vertex should simply be the sum of its dominance values in the
directed graphs.

Axiom 4: Additivity over independent partitions‘ For every G € G,, and every
independent partition {G1,...,Gx} of G it holds

K
fo=Y fa.
k=1

5 Advanced Centrality Concepts 101

Interestingly, these axioms are linked to the preceding sections on degree-
based centralities: If the normalization axiom is changed in a specific way, then
the unique centrality score that satisfies the set of axioms is the out-degree
centrality. The authors call this score-measure. Note that an analogous result
also holds for the weighted case.

In more detail, after substituting the dominance normalization by the score
normalization (see Axiom 1b below), the following function is the unique rela-
tional power measure that satisfies Axioms 2 — 4 and 1b:

oc(i)=d5(i)VieV, Geg,

Instead of taking the number of dominated vertices as the total value that is
distributed over the vertices according to their dominance, the total number of
relations is now taken as a basis for normalization:

Axiom 1b: Score normalizati0n| For every G € G, it holds that

> fali) = |E|.

i€V

Above, we presented a set of axioms that describe a certain measure that has
some aspects of feedback centralities but also links to the preceding section via
its strong relation to the score measure. We now pass over to feedback centralities
in the narrower sense.

Feedback Centralities. In terms of citation networks, Palacios-Huerta and
Volij [460] proposed a set of axioms for which a centrality with normalized influ-
ence proposed by Pinski and Narin [479] is the unique centrality that satisfies all
of them. This Pinski-Narin-centrality is strongly related to the PageRank score
in that it may be seen as the basis (of PageRank) that is augmented by the
addition of a stochastic vector that allows for leaving the sinks.

To state the axioms properly we need some definitions. We are given a di-
rected graph G = (V, E) with weights w on the edges and weights « on the
vertices. In terms of citation networks V' corresponds to the set of journals and
(i,4) € E iff journal i is cited by journal j. The weight w(i, j) is defined to be the
number of citations to journal ¢ by journal j if (,j) € F and 0 otherwise, while
the vertex weight «() corresponds to the number of articles published in jour-
nal 4. The authors consider strongly connected subgraphs with the additional
property that there is no path from a vertex outside the subgraph to a vertex
contained in it. (Note that they allow loops and loop weights.) Palacios-Huerta
and Volij call such subgraphs a discipline, where a discipline is a special com-
munication class (a strongly connected subgraph) which itself is defined to be
an equivalence class with respect to the equivalence relation of communication.
Two journals i and j communicate, if either i = j or if ¢ and j impact each other,
where ¢ impacts j if there is a sequence of journals i = ig,41,...,ix_1,ix = J
such that 4;_1 is cited by 4;, that is, if there is a path from i to j.

102 D. Koschiitzki et al.
Define the (|V| x |V|)-matrices

W = (w(i,)), De = diag(w(-j)) with w(-j) = > w(i,j),
eV

and set WD_! to be the normalized weight matrix, and D, = diag (a(i)). Then
the ranking problem (V,a, W) is defined for the vertex set V of a discipline,
the associated vertices weights « and the corresponding citation matrix W, and
considers the ranking (a centrality vector) epyy > 0 that is normalized with
respect to the ly-norm: ||epuv]1 = 1.

The authors consider two special classes of ranking problems:

1. ranking problems with all vertex weights equal, a(i) = «(j) V i, € V
(isoarticle problems) and
2. ranking problems with all reference intensities equal, “;(('Z)) = % Vi,jeVv

(homogeneous problems).
To relate small and large problems, the reduced ranking problem RF for a ranking
problem R = (V,a, W) with respect to a given vertex k is defined as R* =
(VAAEY, (a(@))iev(rys (Wil 5)) eV (k) x v\ {k}), With

w(i, k)
Zlev\{k} w(l, k)

Finally, consider the problem of splitting a vertex j of a ranking problem
R = (V,a,W) into |T}| sets of identical vertices (j,t;) for t; € Tj. For V' =
{(j,t;) : 5 € V) t; € T;}, the ranking problem resulting from splitting j is denoted
by

wi (i,) = w(i, j) + w(k, j) Vi,je VA{k}

R = (V' (&/((4,t))))jestsery, (W' (5 8:)(5,85))) (i) Gty evixve)s
with) (i)
o/ ((.5)) = T w((i,t)(,)) = =2
’ T3] T T Ty

Note that the latter two definitions of special ranking problems are needed
to formulate the following axioms.

A ranking method @ assigning to each ranking problem a centrality vector
should then satisfy the following four axioms (at least the weak formulations):

Axiom 1: invariance with respect to reference intensity‘
@ is invariant with respect to reference intensity if

S((V,a, WI')) = d((Va, W))

for all ranking problems (V, o, W) and every Matrix I" = diag(y;) jev with
v >0 VjeV.
‘Axiom 2: (weak) homogeneity‘

5 Advanced Centrality Concepts 103

a) @ satisfies weak homogeneity if for all two-journal problems R = ({i,j},
a, W) that are homogeneous and isoarticle, it holds that
2;(R) w(j,9)

(5.7)

b) @ satisfies homogeneity if (Equation 5.7) holds for all homogeneous prob-
lems.
‘Axiom 3: (weak) consistency‘

a) & satisfies weak consistency if for all homogeneous, isoarticle problems
R=(V,a,W) with |[V|>2and for all k € V

?;(R) @;(RF)

O;(R) ®i(RY) ..
! ——i Vi.J € V\ {k}. (5.8)
b) @ satisfies consistency if (Equation 5.8) holds for all homogeneous prob-
lems.
‘Axiom 4: invariance with respect to the splitting of joumals‘

@ is invariant to splitting of journals, i.e. for all ranking problems R and
for all splittings R’ of R holds

Di(R) _ Py (R)
Pi(R) D, (R)

Vi,jeV,VieT, VjeT;.

Palacios-Huerta and Volij show that the ranking method assigning the Pinski-
Narin centrality cpy given as the unique solution of

D 'WDy'Dae=c

is the only ranking method that satisfies

— invariance to reference intensity (Axiom 1),
weak homogeneity (Axiom 2a),

— weak consistency (Axiom 3a), and
invariance to splitting of journals (Axiom 4).

Slutzki and Volij [526] also consider the axiomatization of ranking problems,
which they call scoring problems. Although their main field of application is
shifted from citation networks to (generalized) tournaments, it essentially con-
siders the same definitions as above, excluding the vertex weights «. Further,
they consider strongly connected subgraphs (not necessarily disciplines), and set
w(i,i) = 0 for all i € V, meaning that there are no self-references, i.e. no loops
in the corresponding graph. For this case, the Pinski-Narin centrality may be
characterized by an alternative set of axioms, and again it is the only centrality
satisfying this set.

104 D. Koschiitzki et al.

The Link to Normalization. Above, we saw that normalization is a question
when dealing with axiomatizations. Either it is explicitly stated as an axiom (see
the centralities of van den Brink and Gilles) or the normalization is implicitly
assumed when talking about centralities (see the papers of Volij and his cowork-
ers). The topic of normalization was already investigated in Section 5.1. Here,
we report on investigations of Ruhnau [499] about normalizing centralities.

Her idea is based on an intuitive understanding of centrality, already formu-
lated by Freeman in 1979 [227]:

“A person located in the center of a star is universally assumed to be
structurally more central than any other person in any other position in any
other network of similar size.”

She formalizes this in the definition of a vertex-centrality for undirected con-
nected graphs G = (V, E).

Definition 5.4.5 (Ruhnau’s vertex centrality axioms). Let G = (V, E) be
an undirected and connected graph with |V| =n and let cv : V — R. ¢y is called
a vertex-centrality if

1. cy(i) € 10,1] for alli € V and
2. cy(i) =1 if and only if G is a star with n vertices and i the central vertex
of it.

(Note: Ruhnau calls this a node centrality. For consistency with the rest of the
chapter we used the equivalent term vertex centrality here.)

The property of being a vertex-centrality may be very useful when comparing
vertices of different graphs. To see this, compare the central vertex of a star of
order n with any vertex in a complete graph of order n. Both have a degree of
n — 1, but intuitively the central vertex of a star has a much more prominent
role in the graph than any of the vertices in a complete graph.

Freeman [226] showed that the betweenness centrality satisfies the conditions
of the above definition. Due to the fact that the eigenvector centrality normalized
by the Euclidean norm has the property that the maximal attainable value is
1/4/2 (independent of n), and that it is attained exactly at the center of a star
(see [465]), it is also a vertex-centrality (multiplied by v/2). For more information
about normalization, see Section 5.1.

5.5 Stability and Sensitivity

Assume that a network is modified slightly for example due to the addition of a
new link or the inclusion of a new page in case of the Web graph. In this situation
the ‘stability’ of the results are of interest: does the modification invalidate the
computed centralities completely?

In the following subsection we will discuss the topic of stability for distance
based centralities, i.e., eccentricity and closeness, introduce the concept of stable,

5 Advanced Centrality Concepts 105

quasi-stable and unstable graphs and give some conditions for the existence of
stable, quasi-stable and unstable graphs.

A second subsection will cover Web centralities and present results for the
numerical stability and rank stability of the centralities discussed in Section 3.9.3.

5.5.1 Stability of Distance-Based Centralities

In Section5.4.1 we considered the axiomatization of connected undirected graphs
G = (V, E) and presented two definitions for distance-based vertex centralities.
Moreover, we denoted by S.(G) = {u € V: Vv € V ¢(u) > ¢(v)} the set of
maximum centrality vertices of G with respect to a centrality ¢ and we studied
the change of the centrality values if we add an edge (u, v) between two distinct
non-adjacent vertices in G. In this section we focus on the stability of the center
S.(G) with respect to this graph operation (cf. Condition 5 of Definition 5.4.1).

Let u € S:(G) be a central vertex with respect to ¢, and (u,v) ¢ G. Then
the insertion of an edge (u,v) to G yields a graph H = (V, EU(u,v)). Regarding
S.(H) two cases can occur, either

S.(H) € 8.(G) U {o} (5.9)

Se(H) € 8.(G) U{v} (5.10)

for every vertex v € V. Kishi [357] calls a graph for which the second case
(Equation 5.10) occurs an unstable graph with respect to c. Figures 5.2 and 5.3
in Section 5.4.1 show unstable graphs with respect to the eccentricity and the
closeness centrality. The first case (Equation 5.9) can be further classified into

S(H)CS(G) and wue S.(H) (5.11)
and

SAH) Z S.(G) or u¢ S.(H) (5.12)

A graph G is called a stable graph if the first case (Equation 5.11) occurs,
otherwise G is called a quasi-stable graph. The definition of stable graphs with
respect to ¢ encourages Sabidussi’s claim [500] that an edge added to a central
vertex u € S¢(G) should strengthen its position.

In Figure 5.4 an example for a quasi-stable graph with respect to closeness
centrality is shown. For each vertex the status value s(u) = > .y d(u,v) is
indicated. Adding the edge (u,v) leads to a graph with a new central vertex v.

In [357] a more generalized form of closeness centrality is presented by Kishi:
The centrality value cgenc(u) of a vertex u € V' is

1

TS awn(w) (5.13)

CGenC (u)

106 D. Koschiitzki et al.

44 42

29 u 27 u

40 34 40 34

33 33
39 39

48 48

32 v 26

Fig. 5.4. A quasi-stable graph with respect to the closeness centrality. The values
indicate the total distances s(u). After inserting the edge (u,v) the new median is
vertex v

where ny(u) is the number of vertices whose distance from u is k and each ay, is
a real constant. With a; = k it is easy to see that

1 1

S)~ Sy dln)

Kishi and Takeuchi [358] have shown under which conditions there exists
a stable, quasi-stable, and unstable graph for generalized centrality functions
caenc of the form in Equation 5.13:

Theorem 5.5.1. For any generalized vertex centrality cgenc of the form in
Equation 5.18 holds:

1. if as < as, then there exists a quasi-stable graph, and
2. if ag < aa, then there exists an unstable graph.

Theorem 5.5.2. Any connected undirected graph G is stable if and only if the
generalized vertex centrality cgenc given in Equation 5.18 satisfies as = agz.
Moreover, G is not unstable if and only if cgenc satisfies as = ay.

Sabidussi has shown in [500] that the class of undirected trees are stable
graphs with respect to the closeness centrality.

Theorem 5.5.3. If an undirected graph G forms a tree, then G is stable with
respect to the closeness centrality.

5.5.2 Stability and Sensitivity of Web-Centralities

First, we consider stability with respect to the centrality wvalues, later on we
report on investigations on the centrality rank. We call the former numerical
stability and the latter rank stability.

5 Advanced Centrality Concepts 107

Numerical Stability. Langville and Meyer [378] remark that it is not reason-
able to consider the linear system formulation of, e.g., the PageRank approach
and the associated condition number?, since it may be that the solution vector of
the linear system changes considerable but the normalized solution vector stays
almost the same. Hence, what we are looking for is to consider the stability of the
eigenvector problem which is the basis for different Web centralities mentioned
in Section 3.9.3.

Ng et al. [449] give a nice example showing that an eigenvector may vary con-
siderably even if the underlying network changes only slightly. They considered
a set of Web pages where 100 of them are linked to algore.com and the other
103 pages link to georgewbush.com. The first two eigenvectors (or, in more de-
tail, the projection onto their nonzero components) are drawn in Figure 5.5(a).
How the scene changes if five new Web pages linking to both algore.com and
georgewbush.com enter the collection is then depicted in Figure 5.5(b).

| Bush(103) Bush&Gore(5)
Bh(103) ® &
0 %Gore(lOO)
0- % Gore(100) (‘) 1‘
5 i \
(a) (b)

Fig. 5.5. A small example showing instability resulting from perturbations of the
graph. The projection of the eigenvector is shown and the perturbation is visible as a
strong shift of the eigenvector

Regarding the Hubs & Authorities approach Ng et al. the authors give a
second example, cf. Figs 5.6(a) and 5.6(b). In the Hubs & Authorities algorithm
the largest eigenvector for S = AT A is computed. The solid lines in the figures
represent the contours of the quadratic form 27 S;x for two matrices Sy, S> as
well as the contours of the slightly (but equally) perturbed matrices. In both
figures the associated eigenvectors are depicted. The difference (strong shift in
the eigenvectors in the first case, almost no change in the eigenvectors in the

3 cond(A) = ||A||||A™Y| (for A regular)

108 D. Koschiitzki et al.

second case) between the two figures consists of the fact that S; has an eigengap?
01 ~ 0 whereas S5 has eigengap d2 = 2. Hence in the case that the eigengap is
almost zero, the algorithm may be very sensitive about small changes in the
matrix whereas in case the eigengap is large the sensitivity is small.

Fig. 5.6. A simple example showing the instability resulting from different eigengaps.
The position of the eigenvectors changes dramatically in the case of a small eigengap

(a)

Ng et al. also show this behavior theoretically

Theorem 5.5.4. Given S = AT A, let cga.a be the principal eigenvector and
§ the eigengap of S. Assume d*(i) < d for every i € V and let € > 0. If the
Web graph is perturbed by adding or deleting at most k links from one page, k <

2
(\/d +a— \/E) , o= 4:\%6 then the perturbed principal eigenvector ¢ga_a of

the perturbed matriz S satisfies lcaa-a — €na-all2 <e.

Theorem 5.5.5. If S is a symmetric matriz with eigengap 6, then there exists
a perturbed version S of S with ||S — S||p = O(8) that causes a large (£2(1))
change in the principal eigenvector.

1/2
(Note that || X||r = (Zl Z](xfj)> denotes the Frobenius norm.)

If we consider the PageRank algorithm, then the first fact that we have to
note is that for a Markov chain having transition matrix P the sensitivity of the
principal eigenvector is determined by the difference of the second eigenvalue
to 1. As shown by Haveliwala and Kamvar [290] the second eigenvalue for the
PageRank-matrix with P having at least two irreducible closed subsets satisfies

4 Difference between the first and the second largest eigenvalue.

5 Advanced Centrality Concepts 109

Ay = d. This is true even in the case that in Formula 3.43 the vector 1,, is
substituted by any stochastic vector v, the so-called personalization vector, cf.
Section 5.2 for more information about the personalization vector.

Therefore a damping factor of d = 0.85 (this is the value proposed by the
founders of Google) yields in general much more stable results than d = 0.99
which would be desirable if the similarity of the original Web graph with its
perturbed graph should be as large as possible.

Ng et al. [449] proved

Theorem 5.5.6. Let U C V be the set of pages where the outlinks are changed,
cpr be the old PageRank score and c% 5 be the new PageRank score corresponding
to the perturbed situation. Then

2 .
lepr — cppll < 14 > " eprli).
ieU

Bianchini, Gori and Scarselli [61] were able to strengthen this bound. They
showed

Theorem 5.5.7. Under the same conditions as given in Theorem 5.5.6 it holds

2d .
lepr — cprl < T-4 ZCPR(Z)-
ieU

(Note that d < 1.)

Rank Stability. When considering Web centralities, the results are in general
returned as a list of Web pages matching the search-query. The scores attained
by the Web pages are in most cases not displayed and hence the questions that
occurs is whether numeric stability also implies stability with respect to the rank
in the list (called rank-stability). Lempel and Moran [388] investigated the three
main representatives of Web centrality approaches with respect to rank-stability.

To show that numeric stability does not necessarily imply rank-stability they
used the graph G = (V, E) depicted in Figure 5.7. Note that in the graph any
undirected edge [u, v] represents two directed edges (u,v) and (v, u). From G two
different graphs G, = (V, EU {(y, ha)}) and Gy, = (V, EU{(y, hs)}) are derived
(they are not displayed). It is clear that the PageRank vector cfy corresponding
to G, satisfies

0 < cpr(ea) = cpr(y) = pr(2s),

and therefore cgp (ha) > cfp (hs)-
Analogously in G}, we have

0< C%R(@"a) = C%R(y) = C%R(xb)7

hence cby (hq) < chg (hp).
Concluding we see that by shifting one single outlink from a very low-ranking
vertex y induces a complete change in the ranking:

110 D. Koschiitzki et al.

Fig. 5.7. The graph G used for the explanation of the rank stability effect of PageRank.
Please note that for G, a directed edge from y to h, is added and in the case of G,
from y to hp

cprla;) > cpr(b;) and Clb:)R(ai) < Clpr(bi) V1.

To decide whether an algorithm is rank-stable or not we have to define the
term rank-stability precisely. Here we follow the lines of Borodin et al. [87] and
[388]. Let G be a set of directed graphs and G,, the subset of G where all directed
graphs have n vertices.

Definition 5.5.8. 1. Given two ranking vectors r' and r2, associated to a
vertex-set of order n, the ranking-distance between them is defined by

n
do(rl r2) = 1 o
r(r,r7) =) ij
,5=1
1 1 2 S 2
Ly <rj andri >3

1 2

rT,T
where [;."" = .
& { 0, otherwise

2. An algorithm A is called rank-stable on G if for each k fixed we have

Jim - max - dp (A(Gh), A(G2)) — 0,
de(G1,G2)<k

where de(Gl,Gg) = |(E1 U Eg) \ (E1 n E2)|

Hence an algorithm A is rank-stable on G if for each k the effect on the
ranking of the nodes of changing k edges vanishes if the size of the node-set of
a graph tends to infinity.

Borodin et al. were able to show that neither the Hubs & Authorities algo-
rithm nor the SALSA method are rank-stable on the set of all directed graphs G.

However, they obtained a positive result by considering a special subset of
G, the set of authority connected directed graphs G¢:

5 Advanced Centrality Concepts 111

Definition 5.5.9. 1. Two vertices p,q € V are called co-cited, if there is a
vertex v € V' satisfying (r,p), (r,q) € E.
2. p,q are connected by a co-citation path if there exist vertices p = vg, vy, . . .
Vk—1, Uk = q such that (v;—1,v;) are co-cited for alli=1,... k.
3. A directed graph G = (V, E) is authority connected if for all p,q satisfying
d~(p),d™(q) > 0 there is a co-citation path.

)

Lempel and Moran argue that it is reasonable to restrict the stability inves-
tigations to this subset of directed graphs due to the following observation:

— if p, ¢ are co-cited then they cover the same subject,

— the relevance of p and ¢ should be measured with respect to the same bar,
and

— there is no interest in answering questions like “is p a better geography resource
that ¢ is an authority on sports?”

For authority connected subgraphs it holds that

— SALSA is rank-stable on G*¢,
— The Hubs & Authorities algorithm is not rank-stable on G, and
— PageRank is not rank-stable on G*¢.

Note that the latter two results were obtained by Lempel and Moran [388].

With this result we finish the discussion of sensitivity and stability of Web
centralities. Interested readers are directed to the original papers shortly men-
tioned in this section.

6 Local Density

Sven Kosub

Actors in networks usually do not act alone. By a selective process of establish-
ing relationships with other actors, they form groups. The groups are typically
founded by common goals, interests, preferences or other similarities. Standard
examples include personal acquaintance relations, collaborative relations in sev-
eral social domains, and coalitions or contractual relationships in markets. The
cohesion inside these groups enables them to influence the functionality of the
whole network.

Discovering cohesive groups is a fundamental aspect in network analysis. For
a computational treatment, we need formal concepts reflecting some intuitive
meaning of cohesiveness. At a general level, the following characteristics have
been attributed to cohesive groups [569]:

— Mutuality: Group members choose each other to be included in the group. In
a graph-theoretical sense, this means that they are adjacent.

— Compactness: Group members are well reachable for each other, though not
necessarily adjacent. Graph-theoretically, this comes in two flavors: being well
reachable can be interpreted as having short distances or high connectivity.

— Density: Group members have many contacts to each other. In terms of graph
theory, that is group members have a large neighborhood inside the group.

— Separation: Group members have more contacts inside the group than outside.

Depending on the network in question, diverse concepts can be employed, in-
corporating cohesiveness characteristics with different emphases. Notions where
density is a dominant aspect are of particular importance.

Density has an outstanding relevance in social networks. On the one hand, re-
cent studies have found that social networks show assortative mixing on vertices
[441, 444, 446], i.e, they tend to have the property that neighbors of vertices with
high degree have also high degree. Assortative mixing is an expression of the typ-
ical observation that social networks are structured by groups of high density.!
On the other hand, there are several mathematical results demonstrating that
high density implies the other characteristics of cohesiveness. For instance, one
classical result [431] says that if each member of a group shares ties with at least

1 Assortativity is now considered as one statistical criterion separating social networks
and non-social networks [446]. For instance, some experimental analyses have shown
that in the Internet at the level of autonomous systems, the mean degree of the
neighbors of an autonomous system with k neighbors is approximately k12 [468].
At this level, the Internet is disassortatively mixed.

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 112-142, 2005.
© Springer-Verlag Berlin Heidelberg 2005

6 Local Density 113

a %—fraction of the other members of the group, then the tie distance within the
group is at most k. Results comparable to that can be proven for connectivity
as well. Here, however, the dependency from density is not as strong as in the
case of distances (see Chapter 7).

In this chapter, we survey computational approaches and solutions for dis-
covering locally dense groups. A graph-theoretical group property is local if it
is definable over subgraphs induced by the groups only. Locality does not cor-
respond to the above-mentioned separation characteristic of cohesiveness, since
it neglects the network outside the group. In fact, most notions that have been
defined to cover cohesiveness have a maximality condition. That is, they require
for a group to be cohesive with respect to some property II, in addition to
fulfilling I7, that it is not contained in any larger group of the network that sat-
isfies IT as well. Maximality is non-local. We present the notions on the basis of
their underlying graph-theoretical properties and without the additional max-
imality requirements. Instead, maximality appears in connection with several
computational problems derived from these notions. This is not a conceptual
loss. Actually, it emphasizes that locality reflects an important hidden aspect of
cohesive groups: being invariant under network changes outside the group. Inte-
rior robustness and stability is an inherent quality of groups. Non-local density
notions and the corresponding algorithmic problems and solutions are presented
in Chapter 8. A short list of frequently used non-local notions is also discussed
in Section 6.4.

The prototype of a cohesive group is the clique. Since its introduction into
sociology in 1949 [401], numerous efforts in combinatorial optimization and al-
gorithms have been dedicated to solving computational problems for cliques.
Therefore, the treatment of algorithms and hardness results for clique problems
deserves a large part of this chapter. We present some landmark results in detail
in Section 6.1. All other notions that we discuss are relaxations of the clique
concept. We make a distinction between structural and statistical relaxations. A
characteristic of structural densities is that all members of a group have to satisfy
the same requirement for group membership. These notions (plexes, cores) ad-
mit strong statements about the structure within the group. Structurally dense
groups are discussed in Section 6.2. In contrast, statistical densities average over
members of a group. That is, the property that defines group membership needs
only be satisfied in average (or expectation) over all group members. In general,
statistically dense groups reveal only few insights into the group structure. How-
ever, statistical densities can be applied under information uncertainty. They are
discussed in Section 6.3.

All algorithms are presented for the case of unweighted, undirected simple
graphs exclusively. Mostly, they can be readily translated for directed or weighted
graphs. In some exceptional cases where new ideas are needed, we mention these
explicitly.

114 S. Kosub

6.1 Perfectly Dense Groups: Cliques

The graph with perfect cohesion is the clique [401].

Definition 6.1.1. Let G = (V, E) be an undirected graph. A subset U C V is
said to be a clique if and only if G[U] is a complete graph.

In a clique, each member has ties with each other member. A clique U is a
maximal clique in a graph G = (V, E) if and only if there is no clique U’ in G
with U C U’. A clique is a maximum clique in graph G if and only if it has
maximum cardinality among all cliques in G.

The striking reasons for perfectness of cliques as cohesive structures are ob-
vious:

1. Cliques are perfectly dense, i.e., if U is a clique of size k, then §(G[U]) =
d(G[U]) = A(G[U]) = k — 1. A higher degree is not possible.

2. Cliques are perfectly compact, i.e., diam(G[U]) = 1. A shorter distance
between any two vertices is not possible.

3. Cliques are perfectly connected, i.e., if U is a clique of size k, then U is
(k — 1)-vertex-connected and (k — 1)-edge-connected. A higher connectivity
is not possible.

The structural properties of a clique are very strong. In real-world settings,
large cliques thus should be rarely observable. The famous theorem of Turan
[654] gives precise sufficient conditions for the guaranteed existence of cliques of
certain sizes with respect to the size of the entire network.

Theorem 6.1.2 (Turdn, 1941). Let G = (V,E) be an undirected graph. If
k—

m > "72 . ﬁ, then there exists a clique of size k within G.

An immediate consequence of this theorem is that a network itself needs to
be dense in order to surely possess a large clique. However, as social networks
are usually sparse, we have no a priori evidence for the existence of a clique.
Identifying cliques becomes an algorithmic task. Note that, as we will see below,
even if we knew that there is a clique of a certain size in a network, we would
not be able to locate it in reasonable time.

Maximal cliques do always exist in a graph. In fact, there are many of them
and they tend to overlap, i.e., in general it can be the case that maximal cliques
U, and U, exist satisfying Uy # Us and Uy N Us is non-empty. Another classical
result due to Moon and Moser [432] gives a tight estimation of the number of
maximal cliques:

Theorem 6.1.3 (Moon and Moser, 1965). Every undirected graph G
with n vertices has at most 3131 mazimal cliques.

In reality, the expected enormous number of maximal cliques leads to the serious
problem of how to identify the more important ones among them. There are
only few algorithmic techniques available providing helpful interpretation of the

6 Local Density 115

maximal-clique collection. Prominent examples for methods are based on the
co-membership matrix or the clique overlap centrality [192].
The family of all cliques of a certain graph shows some structure:

1. Cliques are closed under exclusion, i.e., if U is a clique in G and v € U, then
U — {v} is also a clique.?

2. Cliques are nested, i.e., each clique of size n contains a clique of size n — 1
(even n cliques of size n — 1). Though this is an immediate consequence of
the closure under exclusion, it is a property to be proved for related notions
that are not closed under exclusion.

Distance-based cliques. There is a number of approaches to generalize the notion
of a clique that are relevant in several settings of social-network theory. We list
some of them [400, 14, 429]. Let G = (V, E) be an undirected graph, let U be a
vertex subset of V', and let N > 0 be any natural number.

1. U is said to be an N-clique if and ouly if for all u,v € U, dg(u,v) < N.

2. U is said to be an N-club if and only if diam(G[U]) < N.

3. U is said to be an N-clan if and only if U is a maximal N-clique and
diam(G[U]) < N.

N-cliques are based on non-local properties, as the distance between vertices
u and v is measured with respect to graph G, and not with respect to G[U].
An immediate consequence is that N-cliques need not be connected for N > 1.
Though clubs and clans are local structures (except the maximality condition),
they are of minor interest in our context, since they emphasize distances rather
than density. Moreover, there has been some criticism of distance-based cliques,
which was sparked off by at least two facts (cf., e.g., [514, 189]). First, in many
cases real-world networks have globally a small diameter, thus, the distance is
a rather coarse measure to identify meaningful network substructures. Second,
distance-based cliques are in general neither closed under exclusion nor nested.

6.1.1 Computational Primitives

In many respects, cliques are simple objects, easily manageable from an algo-
rithmic point of view. We have fast algorithms with run-time O(n +m) at hand
for several computational primitives:

1. Determine if a given set U CV of vertices is a clique in G. We simply test
whether each pair of vertices of U is an edge in G. Note that these are up
to (72’) pairs, but even if we have much fewer edges, after testing m pairs we
are done in any case.

2. Determine if a given clique U C V is mazximal in G. We simply test whether
there exists a vertex in V' — U which is adjacent to all vertices in U. Again,
after testing m edges we are done in the worst case.

2 In graph theory, a property IT is called hereditary if and only if, whenever a graph
satisfies I, so does every induced subgraph. Being a clique is a hereditary property
of graphs.

116 S. Kosub

Another efficiently computable primitive is finding some maximal clique. For
later use, we state this in a more general form. Suppose that the vertex set V'
of a graph G = (V, E) is ordered. We say that a set U C V is lexicographically
smaller than a set U’ C V if and only if the first vertex that is not in both U
and U’ belongs to U. Our third primitive is the following:

3. Compute the lexicographically smallest maximal clique containing some clique
U’. We start with setting U := U’, iterate over all v € V — U in increasing
order, and test for each v whether U C N (v); if this is the case then add ver-
tex v to U. After completing the iteration, U is a maximal clique containing
U’. This works in time O(n + m).

Algorithmic difficulties appear only when we are interested in finding cliques
of certain sizes or maximum cliques. For these problems, no algorithms with
running times comparable to the one above are known (and, probably, no such
algorithms exist).

6.1.2 Finding Maximum Cliques

We discuss several aspects of the maximum clique problem. Of course, it is easy
to compute a clique of maximum size, if we do not care about time. The obvious
approach is exhaustive search. In an exhaustive search algorithm, we simply
enumerate all possible candidate sets U C V and examine if U is a clique. We
output the largest clique found. A simple estimation gives a worst-case upper
bound O(n? - 2") on the time complexity of the algorithm.

Computational hardness. The problem arises whether we can improve the ex-
haustive search algorithm significantly with respect to the amount of time.
Unfortunately, this will probably not be the case. Computationally, finding a
maximum clique is an inherently hard problem. We consider the corresponding
decision problem:

Problem: CLIQUE
Input: Graph G, Parameter k € IN
Question: Does there exist a clique of size at least k within G7

Let w(G) denote the size of a maximum clique of a graph G. Note that if we have
an algorithm that decides CLIQUE in time T'(n) then we are able to compute
w(G) in time O(T(n) - logn) using binary search. The other way around, any
T'(n) algorithm for computing w(G), gives a T'(n) algorithm for deciding CLIQUE.
Thus, if we had a polynomial algorithm for CLIQUE, we would have a polyno-
mial algorithm for maximum-clique sizes, and vice versa. However, CLIQUE was
among the first problems for which NP-completeness was established [345].

Theorem 6.1.4. CLIQUE is N'P-complete.

6 Local Density 117

Proof. Note that testing whether some guessed set is a clique is possible in
polynomial time. This shows the containment in A"P. In order to prove the
N'P-hardness, we describe a polynomial-time transformation of SATISFIABILITY
into CLIQUE. Suppose we are given a Boolean formula H in conjunctive normal
form consisting of m clauses Cy,...,Cy. For H we construct a k-partite graph
G where vertices are the literals of H labeled by their clause, and where edges
connect literals that are not negations of each other. More precisely, define Gy =
(Vi, Ex) to be the following graph:

VH =det { (L,1) | 1€{l,...,k} and L is a literal in clause C; }
EH =def { {(va)v(L/vj)} | 27&] and L# _'L/ }

Clearly, the graph Gy can be computed in time polynomial in the size of the
formula H. We show that H is satisfiable if and only if the graph Gy contains
a clique of size k.

Suppose that H is satisfiable. Then there exists a truth assignment to vari-
ables x1, ..., x, such that in each clause at least one literal is true. Let L1, ..., Lg
be such literals. Then, of course, it must hold that L; # —L; for i # j. We thus
obtain that the set {(L1,1),..., (L, k)} is a clique of size k in Gp.

Suppose now that U C Vp is a clique of size k in graph Gp. Since Gy is
k-partite, U contains exactly one vertex from each part of V. By definition of
set Vi, we have that for all vertices (L,4) and (L', j) of U, L # —L' whenever
i # j. Hence, we can assign truth values to variables in such a way that all
literals contained in U are satisfied. This gives a satisfying truth assignment to
formula H. a

So, unless P = NP, there are no algorithms with a running time polynomial
in n for solving CLIQUE with arbitrary clique size or computing the maximum
clique. On the other hand, even if we have a guarantee that there is a clique of
size k in graph G, then we are not able to find it in polynomial time.

Corollary 6.1.5. Unless P = NP, there is no algorithm running in polynomial
time to find a clique of size k in a graph which is guaranteed to have a clique of
size k.

Proof. Suppose we have an algorithm A that runs in polynomial time on each
input (G, k) and outputs a clique of size k, if it exists, and behaves in an arbitrary
way in the other cases. A can be easily modified into an algorithm A’ that decides
CLIQUE in polynomial time. On input (G, k), run algorithm A, if A produces no
output, then reject the instance. If A outputs a set U, then test whether U is
a clique. If so, accept, otherwise reject. This procedure is certainly polynomial
time. a

Note that the hardness of finding the hidden clique does not depend on the size
of the clique. Even very large hidden cliques (of size (1 —&)n for € > 0) cannot be
found unless P = NP (see, e.g., [308, 37]). The situation becomes slightly better
if we consider randomly chosen graphs, i.e., graphs where each edge appears

118 S. Kosub

with probability % Suppose we additionally place at random a clique of size k
in such a random graph of size n. How fast can we find this clique? It has been
observed that, if k = 2(y/nlogn), then almost surely the k vertices with highest
degree form the clique [374]. This gives a trivial O((n + m)logn) algorithm
(which can be improved to an O(n+m) algorithm with a technique discussed in
Theorem 6.2.7). For k = 2(y/n), algorithms based on spectral techniques have
been proven to find hidden cliques of size k in polynomial time [22] (even in
some weaker random graph models [202]). However, many natural algorithmic
techniques do not achieve the goal of finding hidden cliques of size k = o(y/n)
[328].

Better exponential algorithms. Even though we will probably never have a
polynomial-time algorithm for finding maximum cliques, we can try to design
fast, super-polynomial algorithms. Exhaustive search gives the upper bound
O(n? - 2"), or O*(2") when omitting polynomial factors. Our goal is to de-
sign algorithms having running times O*(4™) with § as small as possible. The
following theorem that can be found in [590] shows that we can do better than
exhaustive search.

Theorem 6.1.6. There exists an algorithm for computing a mazimum clique in
time O*(1.3803™).

Sketch of Proof. We use a backtracking scheme with pruning of the recursion
tree. Let G be a graph having n vertices and m edges. Let v € V be any
vertex of minimum degree. If §(G) > n — 3 then the graph misses collections of
pairwise disjoint cycles and paths, for being a complete graph. In this case, it
is fairly easy to compute a maximum clique in O(n + m).? Assume that there
is a vertex v with degree dg(v) < n — 4. Every maximum clique either contains
v or not. Corresponding to these two cases, a maximum clique of G is either
{v} combined with a maximum clique of the induced subgraph G[N(v)] or a
maximum clique of the induced subgraph G[V — {v}]. We recursively compute
maximum cliques in both subgraphs and derive from them a solution for G
(breaking ties arbitrarily). The worst-case time T'(n) essentially depends on the
following recursive inequality:

Tn)<Tn—-4)+Tn—-1)+c-(n+m) for somec >0

Using standard techniques based on generating functions, we calculate that T'(n)
is within a polynomial factor of 8" where g = 1.3803 is the largest real zero of
the polynomial 3% — 3% — 1. a

3 It might be easier to think of independent sets rather than cliques. An independent
set in a graph G is a set U of vertices such that G[U] has no edges. A clique in graph
G corresponds to an independent set in graph G, where in G exactly those vertices
are adjacent that are not adjacent in G. Independent sets are a little bit easier to
handle, since we do not have to reason about edges that are not in the graph. In
fact, many algorithms in the literature are described for independent sets.

6 Local Density 119

The intuitive algorithm in the theorem captures the essence of a series of fast
exponential algorithms for the maximum clique problem. It started with an
0*(1.286™) algorithm [543] that follows essentially the ideas of the algorithm
above. This algorithm has been subsequently improved to O*(1.2599™) [545],
by using a smart and tedious case analysis of the neighborhood around a low-
degree vertex. The running time of the algorithm has been further improved
to 0*(1.2346™) [330], and, using combinatorial arguments on connected regular
graphs, to 0*(1.2108™) [495]. Unfortunately, the latter algorithm needs expo-
nential space. This drawback can be avoided: there is a polynomial-space algo-
rithm with a slightly weaker O*(1.2227™) time complexity [54]. A non-trivial
lower bound on the basis of the exponential is still unknown (even under some
complexity-theoretic assumptions).

6.1.3 Approximating Maximum Cliques

Since we are apparently not able to compute a maximum clique in moderate time,
we could ask up to what size we can recognize cliques in justifiable time. Recall
that w(G) denotes the size of the largest clique in G. We say that an algorithm
approximates w(G) within factor f(n) if and only if the algorithm produces,
on input G, a clique U in G such that w(G) < f(n) - |U|. Note that, since a
maximum clique consists of at most n vertices, we can trivially approximate
maximum clique within factor O(n), simply by outputting some edge, if there
is one in the graph. With a lot of work and combinatorial arguments, we arrive
at the next theorem [79], which is unfortunateley not very much better than the
trivial ratio.

Theorem 6.1.7. There exists a polynomial-time algorithm whose output, for

graph G with n vertices, is a clique of size within factor O (W) of w(@G).

The approximation ratio stated in the theorem is the best known. The follow-
ing celebrated result [287] indicates that in fact, there is not much space for
improving over that ratio.

Theorem 6.1.8. Unless NP = ZPP,?* there exists no polynomial-time algo-
rithm whose output for a graph G with n vertices is a clique of size within factor
nt=¢ of w(G) for any e > 0.

The complexity-theoretic assumption used in the theorem is almost as strong as
P = N'P. The inapproximability result has been strengthened to subconstant

values of ¢, first to O (ﬁ) [177] and further to O (m) [353] for some

~v > 0. These results are based on much stronger complexity assumptions — es-
sentially, that no NP-complete problem can be solved by randomized algorithms

with quasi-polynomial running time, i.e., in time 2008 Y Note that the ratio

4 ZPP is the class of all problems that can be solved with randomized algorithms
running in expected polynomial time while making no errors. Such algorithms are
also known as (polynomial-time) Las Vegas algorithms.

120 S. Kosub

n : : loglogn
oz 18 expressible as {2 (—logn

) in terms of €. The gap between the lower
bound and the upper bound for approximability is thus pretty close.

Also many heuristic techniques for finding maximum cliques have been pro-
posed. They often show reasonable behavior, but of course, they cannot improve
over the theoretical inapproximability ratio. An extensive discussion of heuristics
for finding maximum cliques can be found in [70].

In the random graph model, we known that, with high probability, w(G)
is either (2 4 o(1))logn rounded up or rounded down, for a random graph of
size n (see, e.g., [24]). There are several polynomial-time algorithms producing
cliques of size (1+0(1)) log n, i.e., they achieve an approximation ratio of roughly
two [263]. However, it is conjectured that there is no polynomial-time algorithm
outputting a clique of size at least (1 + ¢)logn for any € > 0 [328, 347].

6.1.4 Finding Fixed-Size Cliques

In many cases, it might be appropriate to search only for cliques of bounded
sizes. Technically that is, we consider the clique size not as part of the input.
For instance, exhaustive search has running time ©(n*) when the clique size k
is fixed. A nice trick helps us to obtain an algorithm for detecting cliques of size
three (triangles) faster than O(n?). The idea to the algorithm in the following
theorem can be found in [321].

Theorem 6.1.9. There exists an algorithm for testing a graph for triangles that
runs in time O(n?37).

Proof. Let G be any graph with n vertices. Let A(G) denote the adjacency
matrix of G, i.e., entry a;; of A(G) is one if vertices v; and v; are adjacent, and
zero otherwise. Consider the matrix A(G)? = A(G) - A(G) where - is the usual
matrix multiplication. The entry b;; of the matrix A(G)? is exactly the number
of walks of length two between v; and v;. Suppose there exists an entry b;; > 1.
That is, there is at least one vertex u € V different to v; and v; which is adjacent
to both v; and vj;. If the graph G has an edge {v;,v;}, then we know that G
contains the triangle {v;,v;,u}. Thus, an algorithm for triangle-testing simply
computes A(G)? and checks whether there exists an edge {v;,v;} for some non-
zero entry b;; in A(G)?2. Since fast square matrix multiplication can be done in
time O(n®) where a < 2.376 [132], the algorithm runs in time O(n2-376). O

Note that for sparse graphs there is an even faster algorithm running in time
(’)(mf_fl) = O(m**) for finding triangles which makes use of the same technique
[26] (see also Section 11.5).

Once we have reached this point, we would like to apply the matrix-
multiplication technique to come up with algorithms for clique size larger than
three as well. However, the direct argument does not work for some reasons. For
instance, there exists always a walk of length three between adjacent vertices.
This makes the matrix A(G)? and all higher powers ambiguous. We need a more
sophisticated approach [174, 440].

6 Local Density 121

Theorem 6.1.10. For every k > 3 there exists an algorithm for finding a clique
of size k in a graph with n vertices that runs in time O(nP®)) where B(k) =
a(lk/3],[(k—1)/3],[k/3]) and multiplying an n" X n®-matriz with an n® x n'-
matriz can be done in time O(n®(51).

Proof. Let k1 denote |k/3], let ko denote [(k—1)/3], and let k3 denote the value
[k/3]. Note that k = ki +ka+Fks. Let G be any graph with n vertices and m edges.
We first construct a tripartite auxiliary graph G as follows: the vertex set V is
divided into three sets Vl, Vg, and V3 where V consists of all cliques of size k; in G.
Define two vertices U € V; and U’ € V to be adjacent in G if and only if i # j and
UUU’ is a clique of size k; +k; in G. The algorithm now tests the auxiliary graph
G for triangles. If there is such a triangle {U1,Us,Us}, then the construction of
G implies that U; U Uy U Us is a clique of size k in G. Testing the graph G for
triangles can be done by matrix multiplication as described in Theorem 6.1.9.
However, we now have to multiply an n*1 x n*? adjacency matrix, representing
edges between Vi and Va, with an n*2 x n¥s adjacency matrix, representing edges
between V, and V3. This step can be done in time (’)(nﬂ(k)) Computing the
three matrices needs in the worst case O(nmax{kitha kiths kaths}y — O(nl%1),
which is asymptotically dominated by the time for the fast rectangular matrix
multiplication [318]. O

We give an impression of the algorithmic gain of using matrix multiplication
(see, e.g., [260]).

Clique size | Exhaustive search | Matrix multiplication
3) RICEIL)!
4 O(n) O(n3376)
5 O(nd) O(n*220)
6 O(nb) O(n*™1)
7 O(n7) O(n5'751)
8 (nS) O(n6.595)

The theorem has a nice application to the membership counting problem for
cliques of fixed size. The following result is due to [260].

Theorem 6.1.11. For every k > 3, there exists an algorithm that counts the
number of cliques of size k to which each vertex of a graph on n vertices belongs,
in time O(nP®)) where B(k) is the same function as in Theorem 6.1.10.

Proof. The theorem is based on the observation that for the case k = 3 (see
Theorem 6.1.9), it is not only easy to check whether two vertices v; and v;
belong to some triangle in G, but also to compute in how many triangles they
lie: if the edge {v;,v;} exists in G, then the number is just the entry b;; in
the square of the adjacency matrix A(G). In general, we apply this observation
to the auxiliary graph G. For any vertex v € V, let Ck(v) denote the number
of different cliques of size k in G in which v is contained. Similarly, let C5(U)
denote the number of triangles to which node U of G belongs. Notice that U is a
clique in G of size smaller than k. Clearly, cliques of G of size k may have many

122 S. Kosub

representations in graph G. The exact number is the number of partitionings of
a set of cardinality k into sets of cardinalities k1, ko, and ks, i.e. (k]f k3) where
k1, ko, and k3 are defined as in the proof of Theorem 6.1.10. Wlthout loss of
generality, let k1 be the minimum of these three parameters. Let I (v) be the set
of all cliques U of size k; in G such that v € U. We then obtain the following
equation:

k—1
> G ((,ﬁ(_n ,2 kg)-cm (6.1)

Uel(v)

Clearly, using Theorem 6.1.10, the left-hand side of this equation can be com-
puted in time (’)(nﬁ(k)) (first, compute the matrices and second, search entries
for all U containing v). We now easily calculate Cy(v) from Equation 6.1. O

A recent study of the corresponding decremental problem [260], i.e., the scenario
where starting from a given graph vertices and edges can be removed, has shown
that we can save roughly n°® time compared to computing the number of size-k
cliques to which the vertices belong each time from the scratch. For example,
the problem of counting triangles in a decremental setting now takes O(n!-57%).

Fized-parameter tractability. A way to study which time bounds we might ex-
pect for fixed-parameter clique problems is parameterized complexity [168]. The
goal here is to figure out which input parameter makes a problem computation-
ally hard. We say that a parameterized problem (with parameter k) is fixed-
parameter tractable if and only if there is an algorithm for the problem that
needs time polynomial in input size n, if k is fixed, and which is asymptotically
independent of k. More precisely, the time complexity of the algorithm has the
form O(f(k) - p(n)) where p is some polynomial independent of k£ and f is an
arbitrary function independent of n. Note that the algorithm above does not
satisfy such a bound. A good bound would be, e.g., O(k* - n?). However, we
are far from proving such bounds, and in fact, we should not even expect to
obtain such algorithms. Let FP7 denote the class of fixed-parameter tractable
problems. We know that parameterized CLIQUE is complete for the class WI1],
a superclass of FPT [167]. However, it is widely believed that FPT # WI[1],
which would imply both P # NP and CLIQUE is not fixed parameter tractable.

6.1.5 Enumerating Maximal Cliques

Enumerative algorithms for the clique problem have some tradition (cf., e.g.,
[70]), with probably the first appearing already in 1957 [284]. Several other,
now classical, algorithms were proposed (e.g., [473, 103]). Most recently, also
algorithms for the dynamic graph setting have been investigated [534].

We are interested in having efficient algorithms for enumerating maximal
cliques. There are some gradations in the meaning of ‘efficient.” Most of the in-
teresting combinatorial problems have an exponential number of configurations;
in our case indicated by the 313! matching upper bound for the number of max-
imal cliques. A typical requirement for an enumerative algorithm to be efficient

6 Local Density 123

is polynomial total time. That is, the algorithm outputs all C' possible configu-
rations in time bounded by a polynomial in C' and the input size n. Exhaustive
search is not polynomial total time. In contrast, one of the classical algorithms
[473] first runs O(n%C) steps with no output and then outputs all C' maximal
cliques all at once. However, an algorithm for the enumeration of all mazimum
cliques that runs in polynomial total time does not exist, unless P = NP [382].

We next review enumerative algorithms for maximal cliques with polynomial
total time having some further desirable properties.

Polynomial delay. An algorithm fulfilling this condition generates the configu-
rations, one after the other in some order, in such a way that the delay until
the first output, the delay between any two consecutive configurations, and the
delay until it stops after the last output is bounded by a polynomial in the input
size. For maximal cliques we know such algorithms that in addition, require only
linear space [553].

Theorem 6.1.12. There is an algorithm enumerating all maximal cliques of a
graph with polynomial delay O(n3) using only O(n +m) space.

Proof. We construct a binary tree with n levels and leaves only at level n. Each
level is associated with a vertex, i.e., at level ¢ we consider vertex v;. The nodes
of the tree at level ¢ are all maximal cliques of G[{v1,...,v;}]. It immediately
follows that the leaves are exactly the maximal cliques of G. Fix level ¢ and
maximal clique U in G[{v1,...,v;}]. We want to determine the children of U at
level 7 + 1. We have two main cases:

1. Suppose all vertices of U are adjacent to v;41 in G. Then U U {v;41} is
maximal clique in G[{vy,...,v;,v;11}]. Note that this is the only way to
obtain a maximal clique of G[{v1,...,v;, v;1+1}] that contains U. In this case
U has only one child in the tree.

2. Suppose there is a vertex in U not adjacent to v;41 in G. Here, we can
obtain maximal cliques in G[{v1,...,v;, vi+1}] in two different ways: U itself
is certainly a maximal clique, and another clique is (U — N(v;41)) U {vit1},
where N (v;;1) are all vertices of G' not adjacent to v;y1. If the latter set
is a maximal clique, U would have two children. However, as the set (U —
N(vit1))U{vis1} is potentially a child of several sets, we define it to be the
child of the lexicographically smallest set U, if it is maximal.

By this definition, we have a tree where all internal nodes have one or two
children, thus a binary tree, and all leaves are at level n.

Our enumerative algorithm now simply traverses the tree using a depth-first
search and outputs all leaves. All we need to be able to perform the computation,
given a node U of the tree at level 4, is the following:

— Parent(U,): According to the definition of the tree, the parent node of U is
the lexicographically smallest maximal clique in G[{vy,...,v;_1}] containing
the clique U — {v;}. This is one of our efficiently computable primitives: the
set can be computed in time O(n + m).

124 S. Kosub

— LeftChild(U,4): If U C N(v;41) (the first case above), then the left child is
UU{vit1}. U € N(vit1) (one part of the second case above), then the left
child is U. Checking which case has to be applied needs O(n + m) time.

— RightChild(U,4): If U C N(v;41), then there is no right child defined.If U ¢
N (vi41), then the right child of U is (U — N (vi11)) U {viy1} if it is a maximal
clique and U = Parent((U — N (v;11))U{vi+1},i+ 1), otherwise the right child
is not defined. Note that we only need O(n + m) processing time.

The longest path between any two leaves in the tree is 2n — 2 passing through
2n — 1 nodes. For each node we need O(n + m) time. Since any subtree of our
tree has a leaf at level n, this shows that the delay between outputs is O(n?).
Note that the algorithm only needs to store while processing a node, the set U,
the level 7, and a label indicating whether it is the left or the right child. Hence,
the amount of space is O(n + m). O

Specified order. A more difficult problem is generating maximal cliques in a
specific order, such as lexicographic order. If we only insist in polynomial total
time, this is obviously not a restriction, since we need only collect all outputs
and sort them for outputting in lexicographic order. Considering orders is only
interesting in the case of polynomial delay. Note that the DFS-based polynomial-
delay algorithm in Theorem 6.1.12 does not produce its outputs in lexicographic
order. Another DFS-based algorithm [395] has been proposed that produces the
outputs in lexicographic order but is not polynomial delay. We first observe that
it is not obvious how to break the tradeoff.

Theorem 6.1.13. Deciding for any given graph G and any maximal clique U
of G, whether there is a mazximal clique U’ lexicographically larger than U, is
NP-complete.

The theorem is proven by a polynomial transformation from SATISFIABILITY
[334]. It has some immediate consequences, e.g., it rules out polynomial-delay
algorithms with respect to inverse lexicographic order.

Corollary 6.1.14. 1. Unless P = NP, there is no algorithm that generates
for any given graph G and any maximal clique U in G the lexicographically
next mazimal clique in polynomial time.

2. Unless P = NP, there is no algorithm that generates for any given graph
all mazimal cliques in inverse lexicographic order with polynomial delay.

It might seem surprising that algorithms exist generating all maximal cliques
in lexicographic order, with polynomial delay. The idea of such an algorithm
is simply that while producing the current output, we invest additional time
in producing lexicographically larger maximal cliques. We store these cliques
in a priority queue . Thus, @) contains a potentially exponential number of
cliques and requires potentially exponential space. The following algorithm has
been proposed in [334] and uses in a clever way the tree structure employed in
Theorem 6.1.12.

6 Local Density 125

Algorithm 9: Lexicographic enumeration of maximal cliques [334]

Input: Graph G = (V, E)
Output: Sequence of maximal cliques of G in lexicographic order

Let Up be the lexicographically first maximal clique;
Insert Up into priority queue Q;
while @ is not empty do
U :=ExtractMin(Q);
Output U;
foreach vertex v; of G not adjacent to some vertex v; € U with ¢ < j do
Uj :=Un{v,...,v}
if (U; — N(v;))U{v;} is a maximal clique in G[{v1,...,v;}] then
Let T be the lexicographically smallest maximal clique which
L contains (U; — N(v;)) U {v; };
Insert T" into @

Theorem 6.1.15. Algorithm 9 enumerates all mazimal cliques of a graph with
n vertices in lexicographic order, and with delay O(n?).

Proof. For the correctness of the algorithm, first observe that the set T being
inserted into @ when considering U is lexicographically greater than U. Thus,
we store only sets into the queue that have to be output after U. Hence, the
sequence of maximal cliques we produce is indeed lexicographically ascending.
We also have to show that all maximal cliques are in the sequence. We do this
by proving inductively: if U is the lexicographically first maximal clique not yet
output, then U is in Q.

Base of induction: Suppose U = Uy. Then the statement is obviously true.

Step of induction: Suppose U is lexicographically greater than Uy. Let j be
the largest index such that U; = U N{v1,...,v;} is not a maximal clique in the
graph restricted to vertices vy, ...,v;. Such an index must exist, since otherwise
we would have U = Uy. Moreover, we have that j < n, since U is a maximal
clique in the whole graph G. By maximality of j, we must have vj41 € U. There
exists a non-empty set S such that U; US is a maximal clique in G[{v1,...,v;}].
Again, by maximality of j, the vertex v;;; is not adjacent to all vertices in S.
We conclude that there is a maximal clique U’ containing U; U .S but not vertex
vj+1. Note that U’ is lexicographically smaller than U, since they differ on set S.
By induction hypothesis, U’ has already been output. At the time when U’ was
output, the vertex v;;1 was found not to be adjacent to some vertex v; in U’ with

index i < j + 1. Clearly, we have (U} ; — N(vj41)) U{vjt1} = Ujr and Ujpq
is a maximal clique in G[{v1,...,v;41}]. So the lexicographically first maximal
clique T' containing U;11 was inserted into (). Once more by maximality of j,
U and T coincide on the first j 4+ 1 vertices. Assume that U # T'. Let k be the
first index such that U and T disagree on vg. It follows that k& > j + 1. Since T’
is lexicographically less than U, we have vy, € T and vy, ¢ U. Hence, Uy, is not a
maximal clique in G[{vy, ..., vt }], a contradiction to maximality of j. Therefore,

U =T and so U is in Q). This proves the induction step.

126 S. Kosub

For the time bound, the costly operations are the extraction of the lexi-
cographically smallest maximal clique from @ (which needs O(nlogC)), the n
computations of maximal cliques containing a given set (which takes O(n+m) for
each set), and attempting to insert a maximal clique into @ (at costs O(nlog C)
per clique). Since C' < 3[31, the total delay is O(n?®) in the worst case. O

Counting complexity. We conclude this section with some remarks on the com-
plexity of counting the number of maximal cliques. An obvious way to count
maximal cliques is to enumerate them with some of the above-mentioned al-
gorithms and increment a counter each time a clique is output. This, however,
would take exponential time. The question is whether it is possible to compute
the number more directly and in time polynomial in the graph size. To study
such issues the class #P has been introduced [559], which can be considered
as the class of all functions counting the number of solutions of instances of
NP-problems. It can be shown that counting the number of maximal cliques
is #P-complete (with respect to an appropriate reducibility notion) [560]. An
immediate consequence is that if there is a polynomial-time algorithm for com-
puting the number of maximal cliques, then CLIQUE is in P, and thus, P = N'P.
Note that in the case of planar, bipartite or bounded-degree graphs there are
polynomial-time algorithms for counting maximal cliques [557].

6.2 Structurally Dense Groups

We review two relaxations of the clique concept based on minimal degrees [515,
514, 513]. Both relaxations are structural, as they impose universal constraints
on individuals in a group.

6.2.1 Plexes

We generalize the clique concept by allowing members in a group to miss some
ties with other group members, but only up to a certain number N > 1. This
leads to the notion of an N-plex [514, 511].

Definition 6.2.1. Let G = (V,E) be any undirected graph and let N €
{1,...,n — 1} be a natural number. A subset U C V is said to be an N-plex
if and only if §(G[U]) > |U| — N.

Clearly, a clique is simply a 1-plex, and an N-plex is also an (N + 1)-plex. We
say that a subset U C V is a maximal N-plex if and only if U is an N-plex
and it is not strictly contained in any larger N-plex of G. A subset U C V is a
maximum N-plex if and only if U has a maximum number of vertices among all
N-plexes of G.

It is easily seen that any subgraph of an N-plex is also an N-plex, that is,
N-plexes are closed under exclusion. Moreover, we have the following relation
between the size of an N-plex and its diameter [514, 189, 431].

6 Local Density 127

Proposition 6.2.2. Let N € {1,...,n—1} be a natural number. Let G = (V, E)
be any undirected graph on n vertices.

1. If V is an N-plex with N < “£2, then diam(G) < 2 and, if additionally
n >4, G is 2-edge-connected.

2. If V is an N-plex with N > "TH and G is connected, then diam(G) <
2N —n + 2.

Proof. 1. Suppose N < "TH Let u,v € V be vertices such that u # v. If w and
v are adjacent, the distance between them is one. Now, suppose v and v are not
adjacent. Assume that the distance between u and v is at least three, i.e., with
respect to neighborhoods it holds N(u) N N(v) = (). We obtain

n—22|N(u)UN(U)|225(G)22(n—N)>2<n—nT+2> =n-2,

a contradiction. Thus, the distance between u and v is at most two. Hence,
diam(G) < 2. To verify that for n > 4, G is 2-edge-connected, assume to the
contrary that there is a bridge, i.e., an edge e such that after removing it, G—{e}
consists of two connected components V; and V5. Obviously, every shortest path
from a vertex in V; to a vertex in Vo must use that bridge. Since diam(G) < 2,
one component is a singleton. This implies that the vertex in this component
has degree one. However, as V' is an N-plex with n > 4 vertices, we obtain for
the degree of this vertex n— N >n—(n+2)/2 = (n—2)/2 > 1, a contradiction.
Thus, a bridge cannot exist in G.

2. Suppose N > ”T“ Let {vo,v1,...,v,} be the longest shortest path of
G, i.e., a path that realizes the diameter r. We may suppose that r > 4. Since
there is no shorter path between vy and v,., we have that v; is not adjacent to
VO, .-y Vi—2,Vita, ..., foralli € {0,...,r} (where vertices with negative index
do not exist). Furthermore, there cannot exist a vertex adjacent to both vy and
vz. Thus, the following inclusion is true:

{vo} U {v2,v3,...,v.} U (N(v3) — {v2,v4}) € N(vo)

Note that we have a disjoint union on the left-hand side. We thus obtain the
inequality 1+ (r — 1) + dg(vs) — 2 < N. It follows r + n — N — 2 < N. Hence,
diam(G) =r < 2N —n + 2. O

From a computational point of view, finding maximum plexes is not easier than
finding maximum cliques. This is immediate when we consider the variable de-
cision problem for plexes, where the problem instance consists of graph G, the
size parameter k, and the plex parameter N. Since CLIQUE appears as instances
of the form (G, k,1), the problem is AN'P-complete. We discuss the complexity
of finding N-plexes of certain sizes for fixed N. For any natural number N > 0,
we define the following decision problem:

Problem: N-PLEX
Input: Graph G, Parameter k € IN
Question: Does there exist an N-plex of size at least k within G7

128 S. Kosub

As 1-PLEX = CLIQUE, and thus 1-PLEX is N'P-complete, it is not surprising
that finding maximum N-plexes is NP-hard for all N > 0 as well.

Theorem 6.2.3. N-PLEX is N'P-complete for all natural numbers N > 0.

Proof. Tt suffices to consider the case N > 1. There is a generic proof of the
theorem which is based on the fact that being an N-plex is a hereditary graph
property (see, e.g., [240]). We give a direct proof in order to demonstrate the
structural similarity between cliques and plexes. We describe a polynomial trans-
formation of CLIQUE into N-PLEX. Let (G, k) be any instance of the clique prob-
lem. We construct a new graph G’ in the following way: we take N — 1 copies of
each vertex of G, connect them to each other by an edge, and all new vertices to
the vertices of G except to the original one. More specifically, let G’ = (V' E’)
be the graph defined as follows:

V' =qet V x {0,1,...,N —1}

E' =aer { {(u,0), (v,0)} | {u,v} € E} U
U{{(u,i),(v,j)} | u,vEVandi,j>O} U
U{ {(v,0),(v,9)} | w,veV withuzvandi>0}

The graph G’ can certainly be computed in time polynomial in the size of G. A
crucial observation is that copy vertices, i.e., vertices in V' x {1,..., N — 1} are
adjacent to all vertices in V' except one. We will show that G contains a clique
of size k if and only if G’ contains an N-plex of size k 4+ (N — 1)n.

Suppose there exists a clique U C V of size exactly k in G. Let U’ denote the
vertex set in G’ consisting of all original vertices of U and all copies of vertices
of Vyie,U' =Ux {0} UV x{l,...,N —1}. Notice that U’ has cardinality
k + (N — 1)n. Each vertex with label ¢ € {1,..., N — 1} is directly connected
to each other vertex in U’ except one vertex with label zero, thus has degree
|U'| =2 =k+ (N —1)n — 2. Each vertex (u,0) is adjacent to all vertices in U’
except (u,4) with ¢ > 0. That is, (u,0) has degree k + (N —1)n — 1 — (N —1).
Hence, U’ is an N-plex.

Suppose there is no clique of size k£ in G. Thus, any induced subgraph of G
having k' > k vertices has minimal degree at most k' — 2. Let U C V' be any
vertex set with k + (N — 1)n vertices. Then there is another set U’ C V' on
k + (N — 1)n vertices such that §(G'[U’]) > §(G'[U]) and U’ contains all copy
vertices of G', i.e., U' D V x{1,..., N —1}. This follows from the fact that there
is always a vertex in Uy = UN(V x {0}) that is not adjacent to some other vertex
in Uy (otherwise Uy would induce a clique of size |Up| > k in G). Remembering
the observation above, we are now allowed to recursively exchange such vertices
by vertices of V' x{1,..., N—1} as long as possible, without decreasing minimum
degrees. We end up with a desired set U’ C V. Since we have no size-k clique in
G, we may conclude §(G'[U]) < §(G'[U']) <k+ (N —1)n—2— (N —1). Hence,
there is no N-plex in G'. O

6 Local Density 129

6.2.2 Cores

A concept dual to plexes is that of a core. Here, we do not ask how many edges
are missing in the subgraph for being complete, but we simply fix a threshold
in terms of a minimal degree for each member of the subgroup. One of the
most important things to learn about cores is that there exist polynomial-time
algorithms for finding maximum cores. Cores have been introduced in [513].

Definition 6.2.4. Let G = (V, E) be any undirected graph. A subset U CV is
said to be an N-core if and only if 6(G[U]) > N.

The parameter N of an N-core is the order of the N-core. A subset U C V is a
maximal N-core if and only if U is an N-core and it is not strictly contained in
any larger N-core of G. A subset U C V is a maximum N-core if and only if U
has maximum number of vertices among all N-cores of G. Maximum cores are
also known as main cores.

Any (N 4+ 1)-core is an N-core and any N-core is an (n — N)-plex. Moreover,
if U and U’ are N-cores, then U UU’ is an N-core as well. That means maximal
N-cores are unique. However, N-cores are not closed under exclusion and are in
general not nested. As an example, a cycle is certainly a 2-core but any proper
subgraph has at least one vertex with degree less than two. N-cores need not
be connected. The following proposition relates maximal connected N-cores to
each other.

Proposition 6.2.5. Let G = (V,E) be any undirected graph and let N > 0
be any natural number. Let U and U’ be mazximal connected N-cores in G with
U # U’'. Then there exists no edge between U and U’ in G.

Proof. Assume there is an edge {u,v} with v € U and v € U’. It follows that
U UU’ is an N-core containing both U and U’. Furthermore, it is connected,
since U and U’ are connected. a

Some immediate consequences of the proposition are the following: the unique
maximum N-core of a graph is the union of all its maximal connected N-cores,
the maximum 2-core of a connected graph is connected (notice that the internal
vertices of a path have degree two), and a graph is a forest if and only if it
possesses no 2-cores. The next result is an important algorithmic property of
N-cores, that was exhibited in [46].

Proposition 6.2.6. Let G = (V, E) be any undirected graph and let N > 0 be
any natural number. If we recursively remove all vertices with degree strictly less
than N, and all edges incident with them, then the remaining set U of vertices
is the mazimum N -core.

Proof. Clearly, U is an N-core. We have to show that it is maximum. Assume
to the contrary, the N-core U obtained is not maximum. Then there exists a
non-empty set 7" C V such that U U T is the maximum N-core, but vertices of
T have been removed. Let ¢ be the first vertex of T' that has been removed. At
that time, the degree of ¢ must have been strictly less than V. However, as t has

130 S. Kosub

at least IV neighbors in U UT and all other vertices have still been in the graph
when t was removed, we have a contradiction. O

The procedure described in the proposition suggests an algorithm for computing
N-cores. We extend the procedure for obtaining auxiliary values which provide
us with complete information on the core decomposition of a network. Define
the core number of a vertex v € V to be the highest order N of a maximum
N-core vertex v belongs to, i.e.,

€6 (v) =get max{ N | there is an N-core U in G such that v € U }.

A method, according to [47], for computing all core numbers is shown in Algo-
rithm 10. The algorithm is correct due to the following reasons: any graph G is
certainly a §(G)-core, and each neighbor of vertex v having lower degree than v
decrements the potential core number of v. A straightforward implementation of
the algorithm yields a worst-case time bound of O(mnlogn) — the most costly
operations being sorting vertices with respect to their degree. A more clever
implementation guarantees linear time [47].

Algorithm 10: Computing core numbers [47]

Input: Graph G = (V, E)
Output: Array {¢ containing the core numbers of all vertices in G

Compute the degrees of all vertices and store them into D;
Sort V' in increasing degree-order D;
foreach v € V in sorted order do
€ (v):=DIul;
foreach vertex u adjacent to v do
if D[u] > D[v] then
Dlu] := Du] — 1;
Resort V in increasing degree-order of D

Theorem 6.2.7. There is an implementation of Algorithm 10 that computes
the core numbers of all vertices in a given graph G = (V, E) having n vertices
and m edges in time O(n +m).

Proof. To reduce the running time of the algorithm, we have to speed up the
sorting operations in the algorithm. This can be achieved by two techniques.

1. Since the degree of a vertex lies in the range {0,...,n — 1}, we do sorting
using n buckets, one for each vertex degree. This gives us an O(n) time
complexity for initially sorting the vertex-set array V.

2. We can save resorting entirely, by maintaining information about where in
the array V', which contains the vertices in ascending order of their degree, a
new region with higher degree starts. More specifically, we maintain an array

6 Local Density 131

J where entry J[i] is the minimum index j such that for all r > j, vertex
V[r] has degree at least i. We can now replace the ‘resort’-line in Algorithm
10 by the following instructions:

if u # vertex w at position J[D[u] + 1] then swap vertices v and w in V;
Increment J[D[u] + 1]

Resorting the array V' in order to maintain the increasing order of degrees
now takes O(1) time. Notice that the array J can initially be computed in

time O(n).

For the total running time of Algorithm 10, we now obtain O(n) for initializing
and sorting and O(m) for the main part of the algorithm (since each edge is
handled at most twice). This proves the O(n + m) implementation. O

Corollary 6.2.8. For all N > 0, the maximum N-core for a graph with n
vertices and m edges can be computed in time O(n + m), which is independent
of N.

6.3 Statistically Dense Groups

In general, statistical measures over networks do not impose any universal struc-
tural requirements on individuals. This makes them more flexible than structural
measures but usually harder to analyze. We turn to statistical measures for den-
sities of graphs.

6.3.1 Dense Subgraphs

The natural notion of density of a graph is the following. Let G = (V, E) be
any undirected graph with n vertices and m edges. The density o(G) of G is the

ratio defined as
m

Q(G) —def @ .

That is, the density of a graph is the percentage of the number of edges of a
clique, observable in a graph. We are interested in subgraphs of certain densities.

Definition 6.3.1. Let G = (V, E) be an undirected graph and let 0 < n <1 be
a real number. A subset U C'V is said to be an n-dense subgraph if and only if
o(G[UY) z .

In an n-dense subgraph, the interpretation is that any two members share with
probability (or frequency) at least 7 a relationship with each other. It is, however,
immediate that even graphs of fairly high density are allowed to have isolated
vertices.

A clique, as the subgraph with highest density, is a 1-dense subgraph. An
N-plex has density 1 — % Thus, for n approaching infinity, the density of
an N-plex approaches one. A little bit more exactly, for all N > 0 and for all

132 S. Kosub

0 <n <1, an N-plex of size at least H is an 7-dense subgraph. But evidently,
not every (1 — %)—dense subgraph (when allowing non-constant densities) is

an N-plex. An N-core is an %—dense subgraph, which can have a density
arbitrarily close to zero for large n.

In general, n-dense subgraphs are not closed under exclusion. However, they
are nested.

Proposition 6.3.2. Let 0 < n <1 be real number. An n-dense subgraph of size
k in a graph G contains an n-dense subgraph of size k — 1 in G.

Proof. Let U be any n-dense subgraph of G, |U| = k. Let my denote the number
of edges in G[U]. Let v be a vertex with minimal degree in G[U]. Note that
§(GU)) < d(G[U]) = 2z = p(G[U])(k — 1). Consider the subset U’ obtained
by excluding vertex v from U. Let my denote the number of edges of U’. We
have

mo = my — 8(GIU]) > o(GIU]) (’“

> 2) —o(GIUN(k —1) = Q(G[U])(k ; 1)

Hence, o(G[U']) > o(G[U]) > n. Thus, U’ is an n-dense subgraph. O

The proposition suggests a greedy approach for obtaining n-dense graphs: recur-
sively deleting a vertex with minimal degree until an 7-dense subgraph remains.
However, this procedure can fail drastically. We will discuss this below.

Walks. The density averages over edges in subgraphs. An edge is a walk of length
one. A generalization of density can involve walks of larger length. To make this
more precise, we introduce some notations. Let G = (V, E) be any undirected
graph with n vertices. Let £ € IN be any walk-length. For a vertex v € V, we
define its degree of order £ in G as the number of walks of length ¢ that start in
v. Let d%(v) denote v’s degree of order £ in G. We set d%(v) =1 for all v € V.
Clearly, d; (v) is the degree of v in G. The number of walks of length ¢ in a graph
G is denoted by Wy(G). We have the following relation between the degrees of
higher order and the number of walks in a graph.

Proposition 6.3.3. Let G = (V, E) be any undirected graph. For all £ € N and
for allr €{0,....0}, Wo(G) =3 oy dia(v) - d& " (v).

Proof. Any walk of length ¢ consists of vertices vg,v1,...,ve. Fix an arbitrary
r € {0,...,£}. Consider the element v,. Then the walk vg,v1, ..., v, contributes
to the degree of order r of v,, and the walk v, v,41,...,v¢ contributes to the

degree of order ¢ — r of v,. Thus, there are df(v,) - d5 " (v,) walks of length ¢
having vertex v, at position r. Summing over all possible choices of a vertex at
position r shows the statement. a

It is clear that the maximum number of walks of length ¢ in a graph with n
vertices is n(n — 1)*. We thus define the density of order ¢ of a graph G as

6 Local Density 133

Wi(G)

QZ(G) =def m

Note that 01(G) = o(G) as in W;(G) each edge counts twice. We easily conclude
the following proposition.

Proposition 6.3.4. It holds 0/(G) < g¢—1(G) for all graphs G and all natural
numbers £ > 2.

Proof. Let G = (V, E) be any undirected graph with n vertices. By Proposition
6.3.3, Wo(G) = X v d&(v)-d5 (v) < (n=1) 3y d5 H(v) = (n—1)-We1(G).
Now, the inequality follows easily. O

For a graph G = (V, E) we can define a subset U C V to be an n-dense subgraph
of order ¢ if and only if o,(G[U]) > n. From the proposition above, any n-dense
subgraph of order £ is an 7-dense subgraph of order ¢ — 1 as well. The n-dense
subgraphs of order ¢ > 2 inherit the property of being nested from the n-dense
subgraphs. If we fix a density and consider dense subgraphs of increasing order,
then we can observe that they become more and more similar to cliques. A
formal argument goes as follows. Define the density of infinite order of a graph
G as
050(G) Zder im 0¢(G).

The density of infinite order induces a discrete density function due to the fol-
lowing zero-one law [307].

Theorem 6.3.5. Let G = (V, E) be any undirected graph.

1. It holds that 0o (G) is either zero or one.
2. V is a clique if and only if 0o (G) = 1.

The theorem says that the only subgroup that is n-dense for some 7 > 0 and for
all orders, is a clique. In a sense, the order of a density functions allows a scaling
of how important compactness of groups is in relation to density.

Average degree. One can easily translate the density of a graph with n vertices
into its average degree (as we did in the proof of Proposition 6.3.2): d(G) =
0o(G)(n — 1). Technically, density and average degree are interchangeable (with
appropriate modifications). We thus can define dense subgraphs alternatively
in terms of average degrees. Let N > 0 be any rational number. An N-dense
subgraph of a graph G = (V, E) is any subset U C V such that d(G[U]) > N.
Clearly, an n-dense subgraph (with respect to percentage densities) of size k is
an n(k — 1)-dense subgraph (with respect to average degrees), and an N-dense
subgraph (with respect to average degrees) of size k is an k—lfl—dense subgraph
(with respect to percentage densities). Any N-core is an N-dense subgraph. N-
dense subgraphs are neither closed under exclusion nor nested. This is easily seen
by considering N-regular graphs (for N € IN). Removing some vertices decreases
the average degree strictly below N. However, average degrees allow a more
fine-grained analysis of network structure. Since a number of edges quadratic

134 S. Kosub

in the number of vertices is required for a graph to be denser than some given
percentage threshold, small graphs are favored. Average degrees avoid this pitfall.

Eztremal graphs. Based upon Turdn’s theorem (see Theorem 6.1.2), a whole new
area in graph theory has emerged which has been called extremal graph theory
(see, e.g., [66]). It studies questions like the following: how many edges may a
graph have such that some of a given set of subgraphs are not contained in the
graph? Clearly, if we have more edges in the graph, then all these subgraphs
must be contained in it. This has been applied to dense subgraphs as well. The
following classical theorem due to Dirac [156] is a direct strengthening of Turdn’s
theorem.

Theorem 6.3.6 (Dirac, 1963). Let G = (V,E) be any undirected graph. If

m > "72 . Z:—%, then G contains subgraphs of size k + r having average degree at

least k +r — 1 — 2 for allr € {0,...,k =2} and n > k + .

Notice that the case r = 0 corresponds to the existence of size-k cliques as
expressed by Turdn’s theorem. In many cases, only asymptotic estimations are
possible. For example, it can be shown that, for a graph G = (V| E) on n vertices
and m edges, if m = w (nzf Vv ﬁ), then G has a subgraph with k£ vertices and
average degree d [368, 262]. It follows that to be sure that there are reasonably
dense subgraphs of sizes not very small, the graph itself has to be reasonably
dense. Some more results are discussed in [262].

6.3.2 Densest Subgraphs

We review a solution for computing a densest subgraph with respect to average
degrees. Let v*(G) be the maximum average degree of any non-empty induced
subgraph of G, i.e.,

Y(G) =qef max{ d(G[U]) | UCV and U # 0 }.

As in the case of N-cores, the maximal subgraph realizing v*(G) is uniquely
determined. We consider the following problem:

Problem: DENSEST SUBGRAPH
Input: Graph G
Output: A vertex set of G that realizes v*(G)

This problem can be solved in polynomial time using flow techniques [477, 248,
239]; our proof is from [248].

Theorem 6.3.7. There is an algorithm for solving DENSEST SUBGRAPH on
2
graphs with n vertices and m edges in time O(mn(logn)(log %-)).

6 Local Density 135

Proof. We formulate DENSEST SUBGRAPH as a maximum flow problem depend-
ing on some parameter v € QT. Let G = (V, E) be any undirected graph with n
vertices and m edges. Consider a flow network consisting of graph G’ = (V' E')
and capacity function u, : E/ — Q" given as follows. Add to V a source s and a
sink ¢; replace each edge of G (which is undirected) by two directed edges of ca-
pacity one each; connect the source to all vertices of V' by an edge of capacity m;
and connect each vertex v € V' to the sink by an edge of capacity m+~ —dg(v).
More specifically, the network is defined as

v’ =def VU{S,t}
E' =gt {(v,w) | {v,w} € E}U{(s,v) |ve V}u{(v,t) |veV}

and for v, w € V' the capacity function u, is defined as

1 if {fv,w} e F
m ifv=s

U (U, W) Zaer m+y—dg) fw=t
0 if (v,w) ¢ E'

We consider capacities of cuts in the network. Let S,T be any partitioning of
V' into two disjoint vertex sets with s € S and t € T, Sy = S — {s} and
T, =T — {t}. Note that S, UT = V. If S, = 0, then the capacity of the cut
is ¢(9,5) = m|V|. Otherwise we obtain:

(S, T)= Y uyv,w)

veS,weT
= Z Uy (s, w) + Z Uy (v, t) + Z Uy (v, W)
weTy vESy veESy,weTy

=it + (mlsi 45l - ¥ dew)) + ¥ 1

vESL vES L, weTy
{v,w}eE
1
=m|V|+[54] 7_|S—|< dodalw)— Y 1)
+ ’UES+ ’UES+,’WET+
{v,w}eE
=m|V|+[S4|(v — d(G[S4])) (6.2)

It is clear from this equation that ~y is our guess on the maximum average degree
of G. We need to know how we can detect whether v is too big or too small. We
prove the following claim.

Claim. Let S and T be sets that realize the minimum capacity cut, with respect
to . Then we have the following:

1. If S; # 0, then v < v*(G).
2. If S =0, then v > v*(G).

136 S. Kosub

The claim is proven by the following arguments.

1. Suppose Si # 0. Since ¢({s}, V' —{s}) = m|V| > ¢(S,T), we have |S|(y —
d(G[S,])) < 0. Hence, 7 < d(G[S4]) < 7*(G).

2. Suppose S; = (. Assume further to the contrary, that v < 7v*(G). Let
U C V be any non-empty vertex subset satisfying d(G[U]) = v*(G). By
Equation 6.2, we obtain

c(UU{sh,TU{t}) =m|V]+|Ul(y —v"(G)) < m|V| = (8, T),

a contradiction to the minimality of the cut capacity ¢(S,T). Thus, v >
7 (G).

The claim suggests an algorithm for finding the right guess for v by binary
search. Notice that 4*(G) can have only a finite number of values, i.e.,

fy*(G)e{% ‘ i1€40,...,m} andjE{l,uwn}}'

It is easily seen that the smallest possible distance between two different points
in the set is ﬁ A binary search procedure for finding a maximum average
degree subgraph is given as Algorithm 11.

Algorithm 11: Densest subgraph by min-cut and binary search [248]
Input: Graph G = (V, E))
Output: A set of k vertices of G
Initialize [:= 0, r := m, and U := {;
while r — [> ﬁ do
I+r
Y=
Construct flow network (V' E', uy);

Find minimum cut S and T of the flow network;
if S = {s} then
L

="
else
L=
U:=5-{s}
R;turn U

For a time bound, note that we execute the iteration [log((m+1)n(n—1))] =
O(logn) times. Inside each iteration we have to run an algorithm which finds
a minimum capacity cut. If we use, e.g., the push-relabel algorithm [252] for
max-flow computations, we can do this in time O(nm log %) in a network with
n vertices and m edges. Out network has n + 2 vertices and 2m + 2n edges. This
does not change the complexity of the max-flow algorithm asymptotically. We

thus obtain the overall time bound O(nm(logn)(log ’fn—Q)) O

6 Local Density 137

Parametric maximum flow algorithms [239, 6] have been employed to improve
the time bound to O(nm log %2) [239]. In [113], DENSEST SUBGRAPH has been
solved by linear programming. This gives certainly a worse upper bound for the
time complexity, but has some extensions to the case of directed graphs.

Directed graphs. There is no obvious way to define the notion of density in
directed graphs. Since average in-degree and average out-degree in a directed
graph are always equal, both measures are not sensitive to orientedness. One
approach followed in the literature [342, 113] is based on considering two vertex
sets S and T', which are not necessarily disjoint, to capture orientations. For any
directed graph G = (V, E') and non-empty sets S, T C V, let E(S,T) denote the
set of edges going from S to T, i.e., E(S,T) = {(u,v) | u € Sand v € T}. We
define an average degree of the pair (S,T) in the graph as [342]:

B(S,T)|
VISTIT]

This notion was introduced to measure the connectedness between hubs and
authorities in web graphs. The set S is understood as the set of hubs, and the
set T is understood as the set of authorities in the sense of [359], or fans and
centers in the sense of [376]. If S = T then dg(S,T) is precisely the average
degree of G[S] (i.e., the sum of the average in-degree and the average out-degree
of G[S]). The maximum average degree for a directed graph G = (V, E) is defined
as

dc(S,T) =aet

7V (G) =aet max{ da(S,T) | ;T CV and S £ 0, T #0 }.

DENSEST SUBGRAPH on directed graphs can be solved in polynomial time by
linear programming [113]. To do so, we consider the following LP relaxations
LP.,, where « ranges over all possible ratios |.S|/|T:

max E(u,v)EE Z(u,v)
5.t () < 8y forall (u,v) € E
T(yv) <ty for all (u,v) € B
ZUEV Su S ﬁ
ZUEV ty < N
T(yw), Sus by > 0 for all u,v € V and (u,v) € E

It can be shown that the maximum average degree for G is the maximum of
the optimal solutions for LP, over all v. Each linear program can be solved in
polynomial time. Since there are O(n?) many ratios for |S|/|T| and thus for v,
we can now compute the maximum average degree for G (and a corresponding
subgraph as well) in polynomial time by binary search.

6.3.3 Densest Subgraphs of Given Sizes

The densest subgraph of a graph is highly fragile, as a graph with some average
degree need not possess a subgraph with the same average degree. We are thus

138 S. Kosub

not able to deduce easily information on the existence of subgraphs with certain
average degrees and certain sizes, from a solution of DENSEST SUBGRAPH. We
discuss this problem independently. For an undirected graph G = (V, E) and
parameter k € IN, let v*(G, k) denote the maximum value of the average degrees
of all induced subgraphs of G having k vertices, i.e.,

Y(G, k) =gt max{ d(G[U]) | UCV and |U|=k }.
The following optimization problem has been introduced in [201]:

Problem: DENSE k-SUBGRAPH
Input: Graph G, Parameter k € IN
Output: A vertex set of G that realizes v*(G, k)

In contrast to DENSEST SUBGRAPH, this problem is computationally difficult.
It is clear that DENSE k-SUBGRAPH is A'P-hard (observe that the instance
(G, k,k —1) to the corresponding decision problem means searching for a clique
of size k in G). The best we may hope for is a polynomial algorithm with moder-
ate approximation ratio. A natural approach for approximating v*(G, k) is based
on greedy methods. An example of a greedy procedure due to [201] is given as
Algorithm 12.

Algorithm 12: Greedy procedure

Input: Graph G = (V, E) and even parameter k € IN (with |V| > k)
Output: A set of k vertices of G

Sort the vertices in decreasing order of their degrees;

Let H be the set of g vertices of highest degree;

Compute Ny (v) = |[N(v) N H| for all vertices v € V — H;

Sort the vertices in V — H in decreasing order of the Ng-values;
Let R be the set of g vertices of V' — H of highest Npg-values;
Return HU R

Theorem 6.3.8. Let G be any graph with n vertices and let k € IN be an even
natural number with k < n. Let A(G, k) denote the average degree of the subgraph
of G induced by the vertex set that is the output of Algorithm 12. We have

2 AGL).

Proof. For subsets U,U’ C V, let E(U,U’) denote the set of edges consisting
of one vertex of U and one vertex of U’. Let my denote the cardinality of the
edge set E(G[U]). Let dy denote the average degree of the % vertices of G with
highest degree with respect to G. We certainly have, dg > v*(G, k). We obtain

dig -k

\E(H,V — H)| = dy - |H| — 2my > — 2mp > 0.

6 Local Density 139

By the greedy rule, at least the fraction of

Bl __k _k
V—-Hl 2n—k 2n

of these edges has been selected to be in G[H U R]. Hence, the total number of
edges in G[H U R] is at least

dy -k k dy - k2
—omy) > .
(2 mH) o T Z T

This proves the inequality for the average degree. O

The greedy procedure is the better the larger k is in relation to n. It is an appro-
priate choice if we want to find large dense regions in a graph. However, for very
small parameters, e.g., for k£ = O(1), it is almost as bad as any trivial procedure.
An approximation ratio O(%) has been obtained by several other approximation
methods, e.g., by greedy methods based on recursively deleting vertices of mini-
mal degree [38] or by semidefinite programming [204, 531]. However, to overcome
the connection between n and k, we need complementary algorithms that work
well on smaller values of k. In the light of the following theorem [201], this seems
possible for up to k = O(n3).

Theorem 6.3.9. DENSE k-SUBGRAPH can be approximated in polynomial time
1
within ratio O(ns—¢) for some € > 0.

No better bound for the general problem is known. In special graph classes, how-
ever, approximation can be done within better ratio. For instance, on families of
dense graphs, i.e., graphs with £2(n?) edges, there exist polynomial-time approx-
imation algorithms with ratio arbitrary close to one [35, 137]. A drawback here is
that most of the social networks are sparse, not dense. As to lower bounds on the
approximation ratio, it has recently been proven that an approximation ratio of
1+ ¢ for all € > 0 cannot be achieved unless all AP problems can be simulated
by randomized algorithms with double-sided error and sub-exponential running
time (more specifically, in time O(2"") for all £ > 0)[354]. Moreover, it is even
conjectured that there is no polynomial-time algorithm with approximation ratio
O(n®) for all € > 0 [201].

6.3.4 Parameterized Density

As we have argued, the decision version of DENSE k-SUBGRAPH is AP-complete.
In contrast to this variable decision problem (note that the density parameter is
part of the input), we are now interested in studying the fixed-parameter version.
A function v : N — Q4 is a density threshold if and only if v is computable
in polynomial time and (k) < k — 1 for all ¥ € IN. For any density threshold
v, a y-dense subgraph of a graph G = (V, E) is any subset U C V such that
d(G[U]) > ~4(|U|). We consider the following problem:

140 S. Kosub

Problem: ~-DENSE SUBGRAPH
Input: Graph G, Parameter k € IN
Question: Does there exist y-dense subgraph of size k within G?

Clearly, on the one hand, if we choose v(k) = k — 1 for all £k € IN, then we
obtain v-DENSE SUBGRAPH = CLIQUE, and thus an N'P-complete problem. On
the other hand, if we choose (k) = 0, then any choice of k vertices induces a
~-dense subgraph and thus 7-DENSE SUBGRAPH is solvable in polynomial time.
The question is: which choices of v do still admit polynomial-time algorithms
and for which v does the problem become NP-complete? This problem has been
studied by several authors [204, 37, 308]. The following theorem due to [308] gives
a sharp boundary, which also shows that a complexity jump appears very early.

Theorem 6.3.10. Let v be any density threshold.

1. Ify=2+4+0 (%), then ~v-DENSE SUBGRAPH is solvable in polynomial time.
2. Ifvy =241 (kl%a) for some ¢ > 0, then y-DENSE SUBGRAPH is N'P-
complete.

A direct application of the theorem gives the following result for the case of
constant density functions.

Corollary 6.3.11. Finding a k-vertex subgraph with average degree at least two
can be done in polynomial time. However, there is no algorithm for finding a k-
vertex subgraph with average degree at least 2+ ¢ for any € > 0, unless P = N'P.

This result should be contrasted with the corresponding result for N-cores, where
detecting N-cores of size k can be done in linear time in the graph size, even
for all N > 0. This demonstrates a drastic computational difference between
statistical and structural density.

Results similar to Theorem 6.3.10 have been proven for the case of special net-
work classes with real-world characteristics, in particular, for power-law graphs
and general sparse graphs [306].

6.4 Chapter Notes

In this chapter, we studied computational aspects of notions of local densities,
i.e., density notions defined over induced subgraphs only, consequently suppress-
ing network structure outside a subgroup. We considered structural (N-plexes,
N-cores) and statistical relaxations (n-dense subgraphs) of the clique concept,
which is the perfectly cohesive subgroup. Although many algorithmic problems
for these notions are computationally hard, i.e., we do not know polynomial
algorithms for solving them, there are several cases where fast algorithms exist
producing desirable information on the density-based cohesive structure of a net-
work, e.g., the number of small cliques in graphs, core numbers, or the maximum
average degree reachable by a subgroup in a directed and undirected network.

6 Local Density 141

An observation coming up from the presented results is that there is a seem-
ingly hard tradeoff between mathematical soundness and meaningfulness of these
notions and their algorithmic tractability. This is evident from the following table
summarizing properties of our main notions:

subgroup closed under | nested | tractable
exclusion

clique + + -

N-plex (for N € IN) + + -

N-core (for N € N) - - +

n-dense subgraph (for n € [0,1]) - + -

Here, we see that nestedness, as a meaningful structure inside a group, excludes
fast algorithms for computing subgroups of certain sizes. This exclusion is also
inherited by some further relaxations. However, we have no rigorous proof for this
observation in case of general locally definable subgroups. On the other hand,
a similar relation is provably true for closure under exclusion and efficiently de-
tecting subgroups of a given size: we cannot achieve both with an appropriate
notion of density (see, e.g., [240, GT21,GT22)).

We conclude this chapter with a brief discussion of a selection of non-local
concepts of cohesive subgroups that have attracted interest in social network
analysis. Since non-locality emphasizes the importance for a cohesive subgroup
to be separated from the remaining network, such notions play an important role
in models for core/periphery structures [84, 193]. An extensive study of non-local
density notions and their applications to network decomposition problems can
be found in Chapter 8 and Chapter 10.

LS sets (Luccio-Sami sets). The notion of an LS set has been introduced in
[399, 381]. An LS set can be seen as a network region where internal ties are
more significant than external ties. More specifically, for a graph G = (V, E)
a vertex subset U C V is said to be an LS set if and only if for all proper,
non-empty subsets U’ C U, we have

BU,V - U] > [BU.V -)|

Trivially, V' is an LS set. Also the singleton sets {v} are LS sets in G for each
v € V. LS sets have some nice structural properties. For instance, they do
not non-trivially overlap [399, 381], i.e., if U; and Uy are LS sets such that
U; NUs # (), then either U; C Uy or Uy C U;. Moreover, LS sets are rather
dense: the minimum degree of a non-trivial LS set is at least half of the number
of outgoing edges [512]. Note that the structural strength of LS sets depends
heavily on the universal requirement that all proper subsets share more ties
with the network outside than the set U does (see [512] for a discussion of this
point). Some relaxations of LS sets can be found in [86].

142 S. Kosub

Lambda sets. A notion closely related to LS sets is that of a lambda set. Let
G = (V,E) be any undirected graph. For vertices u,v € V, let A(u,v) denote
the number of edge-disjoint paths between u and v in G, i.e., A(u,v) measures
the edge connectivity of v and v in G. A subset U C V is said to be a lambda
set if and only if

min A(u,v) > max A(u,v).

u,velU uelUweV-U
In a lambda set, the members have more edge-disjoint paths connecting them to
each other than to non-members. Each LS set is a lambda set [512, 86]. Lambda
sets do not directly measure the density of a subset. However, they have some
importance as they allow a polynomial-time algorithm for computing them [86].
The algorithm essentially consists of two parts, namely computing the edge-
connectivity matrix for the vertex set V' (which can be done by flow algorithms
in time O(n*) [258]) and based on this matrix, grouping vertices together in a
level-wise manner, i.e., vertices u and v belong to the same lambda set (at level
N) if and only if M(u,v) > N. The algorithm can also be easily extended to
compute LS sets.

Normal sets. In [285], a normality predicate for network subgroups has been
defined in a statistical way over random walks on graphs. One of the most
important reasons for considering random walks is that typically the resulting
algorithms are simple, fast, and general. A random walk is a stochastic process
by which we go over a graph by selecting the next vertex to visit at random
among all neighbors of the current vertex. We can use random walks to capture
a notion of cohesiveness quality of a subgroup. The intuition is that a group is
the more cohesive the higher the probability is that a random walk originating at
some group member does not leave the group. Let G = (V, E) be any undirected
graph. For d € IN and o € Ry, a subset U C V is said to be (d, a)-normal if and
only if for all vertices u,v € U such that dg(u,v) < d, the probability that a
random walk starting at u will reach v before visiting any vertex w € V —U, is at
least a. Though this notion is rather intuitive, we do not know how to compute
normal sets or decomposing a network into normal sets. Instead, some heuristic
algorithms, running in linear time (at least on graphs with bounded degree),
have been developed producing decompositions in the spirit of normality [285].

7 Connectivity

Frank Kammer and Hanjo Tdubig

This chapter is mainly concerned with the strength of connections between ver-
tices with respect to the number of vertex- or edge-disjoint paths. As we shall
see, this is equivalent to the question of how many nodes or edges must be re-
moved from a graph to destroy all paths between two (arbitrary or specified)
vertices. For basic definitions of connectivity see Section 2.2.4.

We present algorithms which

— check k-vertex (k-edge) connectivity,
— compute the vertex (edge) connectivity, and
— compute the maximal k-connected components

of a given graph.

After a few definitions we present some important theorems which summarize
fundamental properties of connectivity and which provide a basis for understand-
ing the algorithms in the subsequent sections.

We denote the vertex-connectivity of a graph G by k(G) and the edge-
connectivity by A(G); compare Section 2.2.4. Furthermore, we define the local
(vertex-)connectivity kg(s,t) for two distinct vertices s and ¢ as the minimum
number of vertices which must be removed to destroy all paths from s to ¢. In
the case that an edge from s to ¢ exists we set kg (s,t) = n — 1 since kg cannot
exceed n — 2 in the other case!. Accordingly, we define Ag(s,t) to be the least
number of edges to be removed such that no path from s to ¢ remains. Note,
that for undirected graphs kg (s,t) = ka(t,s) and Ag(s,t) = Ag(t, s), whereas
for directed graphs these functions are, in general, not symmetric.

Some of the terms we use in this chapter occur under different names in
the literature. In what follows, we mainly use (alternatives in parentheses): cut-
vertex (articulation point, separation vertex), cut-edge (isthmus, bridge), com-
ponent (connected component), biconnected component (non-separable compo-
nent, block). A cut-vertez is a vertex which increases the number of connected
components when it is removed from the graph; the term cut-edge is defined sim-
ilarly. A biconnected component is a maximal 2-connected subgraph; see Chap-
ter 2. A block of a graph G is a maximal connected subgraph of G containing
no cut-vertex, that is, the set of all blocks of a graph consists of its isolated

LIf s and ¢ are connected by an edge, it is not possible to disconnect s from t by
removing only vertices.

U. Brandes and T. Erlebach (Eds.): Network Analysis, LNCS 3418, pp. 143-177, 2005.
© Springer-Verlag Berlin Heidelberg 2005

144 F. Kammer and H. Taubig

(b) 2 vertex-disjoint paths and a (c) 3 edge-disjoint paths and an
vertex-cutset of size 2. edge-cutset of size 3.

Fig. 7.1. Vertex-/edge-disjoint paths and vertex-/edge-cutsets

vertices, its cut-edges, and its maximal biconnected subgraphs. Hence, with our
definition, a block is (slightly) different from a biconnected component.

The block-graph B(G) of a graph G consists of one vertex for each block
of G. Two vertices of the block-graph are adjacent if and only if the correspond-
ing blocks share a common vertex (that is, a cut-vertex). The cutpoint-graph
C(G) of G consists of one vertex for each cut-vertex of G, where vertices are
adjacent if and only if the corresponding cut-vertices reside in the same block
of G. For the block- and the cutpoint-graph of G the equalities B(B(G)) = C(G)
and B(C(G)) = C(B(Q)) hold [275]. The block-cutpoint-graph of a graph G is
the bipartite graph which consists of the set of cut-vertices of G and a set of ver-
tices which represent the blocks of G. A cut-vertex is adjacent to a block-vertex
whenever the cut-vertex belongs to the corresponding block. The block-cutpoint-
graph of a connected graph is a tree [283]. The maximal k-vertex-connected (k-
edge-connected) subgraphs are called k-vertez-components (k-edge-components).
A k-edge-component which does not contain any (k + 1)-components is called a
cluster [410, 470, 411, 412].

7.1 Fundamental Theorems

Theorem 7.1.1. For all non-trivial graphs G it holds that:
K(G) < MG) <60(G)

7 Connectivity 145

Proof. The incident edges of a vertex having minimum degree §(G) form an edge
separator. Thus we conclude A(G) < 6(G).

The vertex-connectivity of any graph on mn vertices can be bounded from
above by the connectivity of the complete graph x(K,) =n — 1.

Let G = (V, E) be a graph with at least 2 vertices and consider a minimal
edge separator that separates a vertex set S from all other vertices S = V'\ S. In
the case that all edges between S and S are present in G we get A\(G) = |S|-|S| >
|V| — 1. Otherwise there exist vertices € S,y € S such that {z,y} ¢ E, and
the set of all neighbors of z in S as well as all vertices from S\ {z} that have
neighbors in S form a vertex separator; the size of that separator is at most the
number of edges from S to S, and it separates (at least) z and y. O

The following is the graph-theoretic equivalent of a theorem that was pub-
lished by Karl Menger in his work on the general curve theory [419)].

Theorem 7.1.2 (Menger, 1927). If P and Q are subsets of vertices of an
undirected graph, then the mazimum number of vertex-disjoint paths connecting
vertices from P and Q is equal to the minimum cardinality of any set of vertices
intersecting every path from a vertex in P to a vertex in Q.

This theorem is also known as the n-chain or n-arc theorem, and it yields as a
consequence one of the most fundamental statements of graph theory:

Corollary 7.1.3 (Menger’s Theorem). Let s,t be two vertices of an undi-
rected graph G = (V, E). If s and t are not adjacent, the mazimum number of
vertex-disjoint s-t-paths is equal to the minimum cardinality of an s-t-vertex-
separator.

The analog for the case of edge-cuts is stated in the next theorem.

Theorem 7.1.4. The mazimum number of edge-disjoint s-t-paths is equal to
the minimum cardinality of an s-t-edge-separator.

This theorem is most often called the edge version of Menger’s Theorem although
it was first explicitely stated three decades after Menger’s paper in publications
due to Ford and Fulkerson [218], Dantzig and Fulkerson [141], as well as Elias,
Feinstein, and Shannon [175].

A closely related result is the Max-Flow Min-Cut Theorem by Ford and
Fulkerson (see Theorem 2.2.1, [218]). The edge variant of Menger’s Theorem can
be seen as a restricted version where all edge capacities have a unit value.

The following global version of Menger’s Theorem was published by Hassler
Whitney [581] and is sometimes referred to as ‘Whitney’s Theorem’.

Theorem 7.1.5 (Whitney, 1932). Let G = (V, E) be a non-trivial graph and
k a positive integer. G is k-(vertex-)connected if and only if all pairs of distinct
vertices can be connected by k vertex-disjoint paths.

The difficulty in deriving this theorem is that Menger’s Theorem requires the
nodes to be not adjacent. Since this precondition is not present in the edge ver-
sion of Menger’s Theorem, the following follows immediately from Theorem 7.1.4:

146 F. Kammer and H. T&ubig

Theorem 7.1.6. Let G = (V, E) be a non-trivial graph and k a positive integer.
G is k-edge-connected if and only if all pairs of distinct vertices can be connected
by k edge-disjoint paths.

For a detailed review of the history of Menger’s Theorem we refer to the
survey by Schrijver [506].

Beineke and Harary discovered a similar theorem for a combined vertex-
edge-connectivity (see [55]). They considered connectivity pairs (k,l) such that
there is some set of k vertices and [edges whose removal disconnects the graph,
whereas there is no set of £ — 1 vertices and [edges or of k vertices and [— 1
edges forming a mixed vertex/edge cut set.

Theorem 7.1.7 (Beineke & Harary, 1967). If (k,1) is a connectivity
pair for vertices s and t in graph G, then there are k + | edge-disjoint paths
joining s and t, of which k are mutually non-intersecting.

The following theorem gives bounds on vertex- and edge-connectivity (see [274]).

Theorem 7.1.8. The mazimum (vertex-/edge-) connectivity of some graph on
n vertices and m edges is
LQTmJ , ifm>n-—1
0 , otherwise.
The minimum (vertez-/edge-) connectivity of some graph on n vertices and
m edges is
m—("Y) i (") <m<(5)
0 , otherwise.
A further proposition concerning the edge connectivity in a special case has
been given by Chartrand [114]:

Theorem 7.1.9. For all graphs G = (V,E) having minimum degree 6(G) >
[IV'|/2], the edge-connectivity equals the minimum degree of the graph: \(G) =
(G)

For more bounds on graph connectivity see [28, 62, 390, 63, 182, 523].

The following theorems deal with the k-vertex/edge-components of graphs.
The rather obvious facts that two different components of a graph have no vertex
in common, and two different blocks share at most one common vertex, have been
generalized by Harary and Kodama [279]:

Theorem 7.1.10. Two distinct k-(vertex-)components have at most k — 1 ver-
tices tn common.

While k-vertex-components might overlap, k-edge-components do not.

Theorem 7.1.11 (Matula, 1968). For any fized natural number k > 1 the
k-edge-components of a graph are vertex-disjoint.

Proof. The proof is due to Matula (see [410]). Consider an (overlapping) decom-
position G = G1UG>2U. . .UG} of a connected subgraph G of G. Let C' = (A, A) be
a minimum edge-cut of G into the disconnected parts A and A. To skip the trivial

7 Connectivity 147

case, assume that G has at least 2 vertices. For each subgraph G; that contains
a certain edge e € C of the min-cut, the cut also contains a cut for G; (otherwise
the two vertices would be connected in G; \ C' and G\ C which would contradict
the assumption that C' is a minimum cut). We conclude that there is a G; such

that A(G) = |C| > A(G;), which directly implies A\(G) > minj<;<:{A(G;)} and
thereby proves the theorem. a

Although we can see from Theorem 7.1.1 that k-vertex/edge-connectivity
implies a minimum degree of at least k, the converse is not true. But in the case
of a large minimum degree, there must be a highly connected subgraph.

Theorem 7.1.12 (Mader, 1972). Every graph of average degree at least 4k
has a k-connected subgraph.

For a proof see [404].

Several observations regarding the connectivity of directed graphs have been
made. One of them considers directed spanning trees rooted at a node r, so
called r-branchings:

Theorem 7.1.13 (Edmonds’ Branching Theorem [171]). In a directed
multigraph G = (V, E) containing a vertez r, the mazimum number of pairwise
edge-disjoint r-branchings is equal to kg (r), where kg(r) denotes the minimum,
taken over all vertexr sets S C V' that contain r, of the number of edges leaving S.

The following theorem due to Lovdsz [396] states an interrelation of the
maximum number of directed edge-disjoint paths and the in- and out-degree of
a vertex.

Theorem 7.1.14 (Lovész, 1973). Let v € V be a vertex of a graph G =
(V,E). If A\g(v,w) < Ag(w,v) for all vertices w € V, then d* (v) < d~(v).

As an immediate consequence, this theorem provided a proof for Kotzig’s con-
jecture:

Theorem 7.1.15 (Kotzig’s Theorem). For a directed graph G, Ag(v,w)
equals Ag(w,v) for all v,w € V if and only if the graph is pseudo-symmetric,
i.e. the in-degree equals the out-degree for all vertices: d*(v) = d~ (v).

7.2 Introduction to Minimum Cuts

For short, in an undirected weighted graph the sum of the weights of the edges
with one endpoint in each of two disjoint vertex sets X and Y is denoted by
w(X,Y). For directed graphs, w(X,Y) is defined in nearly the same way, but
we only count the weight of edges with their origin in X and their destination in
Y. A cut in a weighted graph G = (V, E) is a set of vertices) C S C V and its
weight is w(S, V'\ S). In an unweighted graph, the weight of a cut is the number
of edges from S to V'\ S.

Definition 7.2.1. A minimum cut is a cut S such that for all other cuts T,

w(S,V\S) <w(T,V\T).

148 F. Kammer and H. T&ubig

Observation 7.2.2. A minimum cut in a connected graph G with edge weights
greater than zero induces a connected subgraph of G.

An algorithm that computes all minimum cuts has to represent these cuts. A
problem is to store all minimum cuts without using too much space. A suggestion
was made in 1976 by Dinitz et al. [153]. They presented a data structure called
cactus that represents all minimum cuts of an undirected (weighted) graph. The
size of a cactus is linear in the number of vertices of the input graph and a cactus
allows us to compute a cut in a time linear in the size of the cut.

Karzanov and Timofeev outlined in [351] a first algorithm to construct a
cactus for unweighted, undirected graphs. Their algorithm consists of two parts.
Given an arbitrary input graph G, the first part finds a sequence of all minimum
cuts in G and the second constructs the cactus Cg from this sequence. The
algorithm also works on weighted graphs, as long as all weights are positive.

If negative weights are allowed, the problem of finding a minimum cut is
NP-hard [345]. Moreover, no generalization for directed graphs is known. An
unweighted graph can be reduced to a weighted graph by assigning weight 1
to all edges. In the following, we will therefore consider the problem of finding
minimum cuts only for undirected connected graphs with positive weights.

Consider a network N defined by the directed graph G = (V,E), a ca-
pacity function up, a source s, a sink ¢ and a flow f (Chapter 2). A resid-
ual network Ry consists of those edges that can carry additional flow, be-
yond what they already carry under f. Thus Ry is defined on the graph
Gr, = (V,{(u,v)|((u,v) € EV (v,u) € E) Aug, ((u,v)) > 0}) with the same
source s and sink t and the following capacity function

C(aab)_f(a b)+f(b CL) (a,b)EE/\(b,a)
wy (@)= 4 e fad) it () € B (o) ¢ E
f(ba) if (a,b) ¢ EN(b,a) € E

Let Ry,,.. be the residual network of N and fy,qz, where fp,q. is a maximum
s-t-flow in V. As a consequence of Theorem 2.2.1 on page 11, the maximum flow
saturates all minimum s-t-cuts and therefore each set S C V' \ ¢ is a minimum
s-t-cut iff s € S and no edges leave S in Ry, .

7.3 All-Pairs Minimum Cuts

The problem of computing a minimum cut between all pairs of vertices can, of
course, easily be done by solving n(n — 1)/2 flow problems. As has been shown
by Gomory and Hu [257], the computation of n — 1 maximum flow problems is
already sufficient to determine the value of a maximum flow / minimum cut for
all pairs of vertices. The result can be represented in the equivalent flow tree,
which is a weighted tree on n vertices, where the minimum weight of any edge on
the (unique) path between two vertices s and ¢ equals the maximum flow from s
to t. They furthermore showed that there always exists an equivalent flow tree,

7 Connectivity 149

where the components that result from removing the minimum weight edge of
the s-t-path represent a minimum cut between s and ¢. This tree is called the
Gomory-Hu cut tree.

Gusfield [265] demonstrated how to do the same computation without node
contractions and without the overhead for avoiding the so called crossing cuts.
See also [272, 344, 253)].

If one is only interested in any edge cutset of minimum weight in an undi-
rected weighted graph (without a specified vertex pair to be disconnected), this
can be done using the algorithm of Stoer and Wagner, see Section 7.7.1.

7.4 Properties of Minimum Cuts in Undirected Graphs

There are 2/V! sets and each of them is possibly a minimum cut, but the number
of minimum cuts in a fixed undirected graph is polynomial in |V'|. To see this, we
need to discuss some well-known facts about minimum cuts. These facts also help
us to define a data structure called cactus. A cactus can represent all minimum
cuts, but needs only space linear in |V].

For short, for a graph G, let in this chapter Ag always denote the weight of
a minimum cut. If the considered graph G is clear from the context, the index
G of \g is omitted.

Lemma 7.4.1. Let S be a minimum cut in G = (V, E). Then, for all) # T C
S:w(T,S\T) > 3.

Proof. Assume w(T, S\T) < 3. Since w (T, V' \ S)+w (S\ T,V \ S) = A\, w.lLo.g.
w (T, V\ S) < 3 (if not, define T as S\ T). Then w (T, V\T) = w(T,S\ T) +
w (T, V'\ S) < A Contradiction. O

Lemma 7.4.2. Let A # B be two minimum cuts such that T := AU B 1is also
a minimum cut. Then

w(AT) =w(B,T) =w(A\B,B)=w(4B\A)=}.
Proof. As in the Figure 7.2, let a = w (A,T), b= w(T), =w(A,B\A)
and = w(B,A\ B). Then w (4,A) =a+a =\ w(B,B) =b+ 3=\ and

w(T,T) = a+ b= A We also know that w(A\B,BUT) =a+pF > X and

w (B \AAU T) = b+ a > A. This system of equations and inequalities has
3 . Ot g — v — b — 3 — A

only one unique solution: a =a=b=08= 3 . O

Definition 7.4.3. A pair (S1,S2) is called crossing cut, if S1, S2 are two min-

imum cuts and neither S1 N Sa, S1\ S2, S2\ S1 nor S; N Sy is empty.

Lemma 7.4.4. Let (S1,52) be crossing cuts and let A= S1 NSy, B =51\ 5z,
CZSQ\Sl andDleﬂSg. Then

a. A, B, C and D are minimum cuts

150 F. Kammer and H. T&ubig

P Ll - Sum of the weights
/ x‘ “, of edges that cross
i Co 3 ———a
!.\ A ,'B P s b

Fig. 7.2. Intersection of two minimum cuts A and B

b. w(4,D) =w(B,C) =
c. w(A,B) =w(B,D) =w(D,C) =w(C,A) =3

Proof. Since we know that S; and S5 are minimum cuts, we can conclude
w (S1,51) = w(A,C) +w(A, D) +w(B,C) + w(B,D) = X
w (S, 52) = w(A, B) + w(A, D) + w(B,C) + w(C,D) = X

and since there is no cut with weight smaller than A, we know that

w (A, A) =w(A,B) +w(A,C) +w(A, D) > X
w (B, B) = w(A,B) +w(B,C) +w(B,D) > X
w(C,C) =w(A,C) +w(B,C) +w(C,D) > A

w (D, D) = w(A, D) + w(B, D) + w(C, D) > A

Summing up twice the middle and the right side of the first two equalities
we obtain

2-w(A,B)+2-w(A,C)+4-w(A,D)+4-w(B,C)+2-w(B,D)+2-w(C,D) =4-\
and summing up both side of the four inequalities we have
2-w(A,B)+2-w(A,C)+2-w(A,D)+2-w(B,C)+2-w(B,D)+2-w(C,D) > 4-\

Therefore w(A, D) = w(B,C) = 0. In other words, there are no diagonal
edges in Figure 7.3.

For a better imagination, let us assume that the length of the four inner line
segments in the figure separating A, B, C and D is proportional to the sum of
the weights of all edges crossing this corresponding line segments. Thus the total
length [of both horizontal or both vertical lines, respectively, is proportional to
the weight A.

Let us assume the four line segments have different length, in other words,
the two lines separating the sets S; from S; or Sy from Ss, respectively, do not
cross each other exactly in the midpoint of the square, then the total length of
the separating line segments of one vertex set A = A, B,C or D is shorter then
I. Thus w(A, A) < A. Contradiction.

As a consequence, w(A,B) = w(B,D) = w(D,C) = w(C,A) = 2 and
w(A,A) = w(B,B) =w (C.C) = w(D,D) = A 0

7 Connectivity 151

(. 8,
E: Sz

Fig. 7.3. Crossing cuts (S1, S2) with S;:= AU B and S2 :=AUC

A crossing cut in G = (V, E) partitions the vertex set V into exactly four
parts. A more general definition is the following, where the vertex set can be
divided in three or more parts.

Definition 7.4.5. A circular partition is a partition of V' into k > 3 disjoint
sets Vi, Vo, ..., Vi such that

A2 o |i—jl=1mod k
0 : otherwise
b. If S is a minimum cut, then
1. S or S is a proper subset of some V; or
2. the circular partition is a refinement of the partition defined by the min-
imum cut S. In other words, the minimum cut is the union of some of
the sets of the circular partition.

a. w(Vi,V;) =

Let Vi, Va,..., Vi be the disjoint sets of a circular partition, then for all
1<a<b<kS:= (Uf:aVi) is a minimum cut. Of course, the complement of
S containing Vj is a minimum cut, too. Let us define these minimum cuts as
circular partition cuts. Especially each V;, 1 <7 < k, is a minimum cut (property
a. of the last definition).

Consider a minimum cut S such that neither S nor its complement is con-
tained in a set of the circular partition. Since S is connected (Observation 7.2.2),
S or its complement are equal to UY_,V; for some 1 < a < b < k.

Moreover, for all sets V; of a circular partition, there exists no minimum cut
S such that (V;,S) is a crossing cut (property b. of the last definition).

Definition 7.4.6. Two different circular partitions P := {Uy,..., U} and Q :=
{V1,...,Vi} are compatible if there is a unique r and s, 1 <r,s <k, such that
foralli#r:U; CVy and forall j #s:V; CU,.

Lemma 7.4.7 ([216]). All different circular partitions are pairwise compatible.

Proof. Consider two circular partitions P and @ in a graph G = (V, E). All sets
of the partitions are minimum cuts. Assume a set S € P is equal to the union of
more than one and less than all sets of Q). Exactly two sets A, B € @) contained
in S are connected by at least an edge to the vertices V' \ S. Obtain T from S
by replacing A C S by an element of @) connected to B and not contained in S.
Then (S,T) is a crossing cut, contradiction.

152 F. Kammer and H. T&ubig

Fig. 7.4. Example graph G = ({a1...ar,b1...bs}, E) shows two compatible partitions
P, Q defined as follows:

P:={{a1},..., {ar—1},{ar,b1,... 0}, {ars1}, ... {ax}}
Q:={{b1},...,{bs=1},{bs,a1,...ar},{bst1},...{bi}}

Therefore each set of P or its complement is contained in some set of Q).

Assume two sets of P are contained in two different sets of Q). Since each
complement of the remaining sets of P cannot be contained in one set of @,
each remaining set of P must be contained in one subset of). Thus, P = Q.
Contradiction.

Assume now all sets of P are contained in one set Y of Q. Then Y = V.
Again a contradiction.

Since the union of two complements of sets in P is V' and @) contains at least
three sets, only one complement can be contained in one set of). Thus, there
is exactly one set X of P that is not contained in Y of @, but X C Y. O

Lemma 7.4.8. If S1, Sy and Ss are pairwise crossing cuts, then
S1NS;NSs=0.

Proof. Assume that the lemma is not true. As shown in Figure 7.5, let

=w (53 \ (81U S2), m)
— w((S5 1 S5)\ Sy, 8\ (S1U S5))
=w (51N S2N S5, (51 NS2)\ S3)

w ((S1NS3) \ 52,51\ (52U 53))

On one hand $; N S is a minimum cut (Lemma 7.4.4.a.) so that ¢ > 3
(Lemma 7.4.1). On the other hand ¢+b = c+d = % (Lemma 7.4.4.c.). Therefore
b=d=0and (51053)\522(52053)\51:0

If we apply Lemma 7.4.4.b. to S7 and Sa, then S1N.S2NS3 and S3\ (51 U S2)

are not connected. Contradiction. O

7 Connectivity 153

Fig. 7.5. Three pairwise crossing cuts 51,52 and S3

Lemma 7.4.9. If 51,55 and T are minimum cuts with S;1 C S, T ¢ Sy and
(S1,T) is a crossing cut, then A := (S \ S1)\T, B:= 51 \T, C:=5.NT and
D :=(S2\ S1)NT are minimum cuts, w(A, B) = w(B,C) = w(C,D) = % and
w(A,C) =w(4,D) =w(B,D)=0.

Proof. Since (S1,T) and therefore (S, T) is a crossing cut,

w(AUB,CUD) =5 (1), w(B,C) =5 (2),
w(4,B)+w (B,ST0S) =w (B, AUSTUS;) = 5 (3) and

2
All equalities follow from Lemma 7.4.4.c.. Moreover w (A, T\ S2) = 0,
w(D,S1US2) =0 (7.4.4.b.) and B, C are minimum cuts. Since (1), (2) and

w(A,S1USQ)+w(B,51USQ) Zw(AUB,SlUSQ) = A (4)
(

w(AUB,CUD) =w(A,C)+w(A, D)+ w(B,C)+w(B,D),

we can conclude that w(A,C) = w(A, D) = w(B,D) = 0.

A consequence of (3) and (4) is w(A,S1US2) = w(A,B). Moreover,
w(A,B) > 3 (Lemma 7.4.1) and w (4,5, US;) < w (A,S1US,) = 3. There-
fore w (A, S U Sg) =w(A,B) = % and A is a minimum cut.

With a similar argument we can see, w(C, D) = % and D is a minimum cut.

Therefore, the general case shown in Figure 7.6(a) can always be transformed
into the Figure 7.6(b). O

For short, given some sets S1, ..., Sk, let
k

Y.y R Si if o = 1
]:5117~~~Skk - ﬂ {E if ; = 0} and

i=1

154 F. Kammer and H. T&ubig

(1.8 BE:S, O:' T

Fig. 7.6. Intersection of three minimum cuts

f{sl,...,sk}=< U f{gi:::::;f})\{@}-
ar,...,ar€{0,1}F

Lemma 7.4.10. Let (S1,S2) be a crossing cut and A € Fig, s,}. Choose B €
Fs1,55) such that w (A, B) = 2. For all crossing cuts (B, T):

A = A
w(A,BﬂT)ZE 0rw(A,BﬂT):§

Proof. W.lo.g. A = S; N Sy (if not, interchange S; and S; or Sy and 57%),
B = 51\ S92 (if not, interchange S; and S2). Let C' = S5\ S; and D = S; N Se.
Then () : w(B,C) =0 (Lemma 7.4.4.b.). Consider the following four cases:

T C (AUB) (Figure 7.7(a)) : w(A,BNT) = % (Lemma 7.4.9)
TND # 0 : Because (S1,T) is a crossing cut,
wA\NT,ANT)+w(A\T,BNT)+w(B\T,ANT)+w(B\T,BNT)

=w((A\T)U(B\T),(ANT)u(BNT))
zw(Sl\T,SlﬂT):%.

Together with w(B\ T,BNT) > 3 (Lemma 7.4.1), we can conclude
—w(A\T,ANT) =0 and therefore ANT =0 or A\T =0,
—w(A\T,BNT)=0 (1) and

- w(ANT,B\T)=0 (2).

Note that w(A, B) = 3. If ANT = 0, w(4, BT) ¥ 0 and w(4, B\T) = 2.

Otherwise A\T =0, w(4,B\T) 2 0 and w(A,BNT)=3.

7 Connectivity 155

T¢Z(AUB)and TND =0 (3) and (AUC) C T (4) (Figure 7.7(b)) :

wATnB) Y wAue,TnB) Y w((Aue)NT, T\ (AUC)) > %
since (AU C) is a minimum cut (Lemma 7.4.1). Using the fact w(A4, B) = 3,
we get w (A, TN B) = 3.
TZ(AUB)and TND =0 (5) and (AUC) ¢ T (Figure 7.7(c)) :
wA,TNB) L wue,TnB) 2 wAuc, T\ (AUC)) = %
since (AU C,T) is a crossing cut.
This concludes the proof. a

(1.8 BE:S, O: T

(a) (b) (c)

Fig. 7.7. A minimum cut T and a crossing cut (S, S2)

Corollary 7.4.11. The intersection of a crossing cut partitions the vertices of
the input graph into four minimum cuts. Lemma 7.4.4.c. guarantees us that
for each of the four minimum cuts A there exist two of the three remaining
minimum cuts B,C such that w(A, B) = w(A,C) = 5. Although set B or C
may be divided in smaller parts by further crossing cuts, there are always ezxactly
two disjoint minimum cuts X C B and Y C C with w (A, X)=w (A4,Y) = %

Proof. Assume the corollary is not true. Let (S, X1g2) be the first crossing cut
that divides the set X1g2 with w (A, Xi1g2) = % into the two disjoint sets X, Xo
with w (A4, X1),w (A4, X2) > 0. But then (S, B) or (S,B) is also a crossing
cut, which divides B into By and By with X; C B; and Xs C Bs. Thus,
w (A, By),w (A, By) > 0. This is a contradiction to Lemma 7.4.10. O

156 F. Kammer and H. T&ubig

Different crossing cuts interact in a very specific way, as shown in the next
theorem.

Theorem 7.4.12 ([63, 153]). In a graph G = (V, E), for each partition P of
V into 4 disjoint sets due to a crossing cut in G, there exists a circular partition
in G that is a refinement of P.

Proof. Given crossing cut (S7, S2), choose the set
A= {Sl n 52,51 \ SQ,SQ \ 51,51 @] SQ}

as a starting point.

As long as there is a crossing cut (S,T) for some T ¢ A and S € A, add T
to A. This process terminates since we can only add each set T € P(V) into A
once. All sets in A are minimum cuts. Definition 7.4.5.b. is satisfied for A.

The disjoint minimum cuts F(A) give us a partitioning of the graph. All sets
in F(A) can be built by crossing cuts of minimum cuts in A. Therefore, each set in
F(A) has exactly two neighbors, i.e., for each set X € F(A), there exist exactly
two different sets Y, Z € F(A) such that w(X,Y) = w(X,Z) = 5 (Corollary
7.4.11). For all other sets Z € F(A), w(X, Z) = 0. Since G is a connected graph,
all sets in F(A) can be ordered, so that Definition 7.4.5.a. holds. Observe that
Definition 7.4.5.b. is still true, since splitting the sets in A into smaller sets still
allows a reconstruction of the sets in A. O

Lemma 7.4.13 ([63, 153]). A graph G = (V,E) has O ((‘gl)) many mini-

mum cuts and this bound is tight. This means that a graph can have {2 ((“2/‘))
many minimum cuts.

Proof. The upper bound is a consequence of the last theorem. Given a graph
G = (V, E), the following recursive function Z describes the number of minimum
cuts in G:

k 4 k A circular partition
2zt (Z(Vil) + (2) Vi,...,Vp exists in G

No circular partition, but a
minimum cut S exists in G

ZUVD=9 z(s)+ z(v - 8 +1

0 otherwise

It is easy to see that this function achieves the maximum in the case where
a circular partition Wy, ..., Wy exist. Therefore Z (|V]) = O ((“2/‘))
The lower bound is achieved by a simple cycle of n vertices. There are {2 (),

n

(3
pairs of edges. Each pair of edges defines another two minimum cuts S and S.
These two sets are separated by simply removing the pair of edges. O

"—

7 Connectivity 157

7.5 Cactus Representation of All Minimum Cuts

In the following, a description of the cactus is given. First consider a graph
G = (V,E) without any circular partitions. Then due to the absence of all
crossing cuts, all minimum cuts of G are laminar.

A set S of sets is called laminar if for every pair of sets S1, 52 € S, either
S1 and Sy are disjoint or S; is contained in S or vice versa. Therefore each
set T € S contained in some Sp,S53,... € S has a unique smallest superset.
For clarity, we say that a tree has nodes and leaves, while a graph has vertices.
Each laminar set S can be represented in a tree. Each node represents a set
in §; the leaves represent the sets in & that contain no other sets of S. The
parent of a node representing a set T" represents the smallest superset of 7. This
construction ends with a set of trees called forest. Add an extra node r to the
forest and connect all roots of the trees of the forest by an edge to this new
node 7, which is now the root of one big tree. Therefore, the nodes of one tree
represent all sets of S, and the root of the tree represents the entire underlying
set, i.e. the union of all elements of all S € S. If this union has n elements, then
such a tree can have at most n leaves and therefore at most 2n — 1 nodes.

Since all minimum cuts G are laminar, these can be represented by a tree
T defined as follows. Consider the smaller vertex set of every minimum cut.
Denote this set of sets as A. If the vertex sets of a minimum cut are of same
size, take one of these sets. Represent each set of A by a single node. T'wo nodes
corresponding to minimum cuts A and B in G are connected by an edge if A C B
and there is no other minimum cut C such that A C C' C B. The roots of the
forest represent the minimum cuts in A that are contained in no other minimum
cut in A. Again, connect all roots of the forest by an edge to a single extra node
that we define as root of the tree.

Because removing one edge in the tree separates a subtree from the rest of the
tree, let us define the following mapping: each vertex of the graph G is mapped
to the node of the tree T that corresponds to the smallest cut containing this
vertex. All vertices that are contained in no node of Tz are mapped to the root
of TG.

For each minimum cut S of G, the vertices of S are then mapped to some set
of nodes X such that there is an edge and removing this edge separates the nodes
X from the rest of the tree. Conversely, removing one edge from T separates
the nodes of the tree into two parts such that the set of all vertices mapped into
one part is a minimum cut.

If G has no circular partitions, the tree Tg is the cactus Cg for G. The
number of nodes of a cactus is bounded by 2 |[V| — 1.

Consider a graph G = (V| F) that has only one circular partition Vi,... V.
The circular partition cuts can be represented by a circle of k& nodes. For 1 <
i < k, the vertices of each part V; are represented by one node N; of the circle in
such a way that two parts V; and V, ;1 are represented by two adjacent nodes.

Now we make use of the fact that for each minimum cut S that is no circular
partition cut, either S or S is a proper subset of a V;. Therefore, we can construct
the tree T(y, gy for all minimum cuts that are a subset of V;, but now with the

158 F. Kammer and H. T&ubig

restriction that only the vertices of V; are mapped to this tree. The root of
Tv,,r) corresponds exactly to the set V;. Thus we can merge node N; of the
circle and the root of T{y, gy for all 1 < ¢ < k. This circle connected with all
the trees is the cactus C¢g for G. The number of nodes is equal to the sum of
all nodes in the trees T(y, g) with 1 <4 < k. Therefore, the number of nodes of
the cactus is bounded by 2|V| — 1 and again, there is a 1 — 1 correspondence
between minimum cuts in G and the separation of Cg into two parts.

Now consider a graph G = (V, E) with the circular partitions Pi,..., P,.
Take all circular partitions as a set of sets. Construct a cactus Cg representing
the circular partition cuts of G in the following way.

The vertices of each set F' € Fp,u..up, are mapped to one node and two
nodes are connected, if for their corresponding sets Fy and Fy, w (Fy, Fy) > 0.
Then each circular partition creates one circle in Cg. Since all circular partitions
are pairwise compatible, the circles are connected by edges that are not part of
any circle. The cactus Cg is now a tree-like graph (Figure 7.8).

After representing the remaining minimum cuts that are not part of a circular
partition, we get the cactus T¢ for G. As before, the number of nodes of the
cactus is bounded by 2|V| — 1.

Fig. 7.8. A cactus representing the circular partition cuts of 6 circular partitions

7.6 Flow-Based Connectivity Algorithms

We distinguish algorithms that check k-vertex/edge-connectivity of a graph G
for a given natural number k, and algorithms that compute the vertex/edge-
connectivity £(G) or A(G) respectively. (A third kind of algorithms computes
the maximal k-vertex/edge-connected subgraphs (k-components), which is the
subject of discussion in Section 7.8.)

7 Connectivity 159

Most of the algorithms for computing vertex- or edge-connectivities are based
on the computation of the maximum flow through a derived network. While the
flow problem in undirected graphs can be reduced to a directed flow problem of
comparable size [220], for the other direction only a reduction with increased ca-
pacities is known [478]. There were several algorithms published for the solution

of (general) flow problems, see Table 7.1.

Table 7.1. The history of max-flow algorithms

1955 Dantzig & Fulkerson [231, 141]
Network simplex method O(n*mU) [140, 139]

1956 Ford & Fulkerson [218, 219]
Augmenting path / Labeling ~ O(nmU) [220]

1969 Edmonds & Karp [172]
Shortest augmenting path O(nm?) [593]
Capacity scaling O(m?logU)

1970 Dinitz [150]
Layered network / blocking flow O(n*m)

1973 Dinitz [151, 234]
Capacity scaling O(nmlogU)

1974 Karzanov [350]
Preflow-push / layered network O(n?)

1977 Cherkassky O(n’y/m) [122, 123]

1978 Malhotra, Kumar, Maheshwari O(n?) [406]

1978 Galil O(n°Pm?/3) [236]

1979 Galil & Naamad / Shiloach O(nm(logn)?) [238, 518]

1980 Sleater & Tarjan [525]
Dynamic trees O(nmlogn)

1985 Goldberg [249]
Push-relabel O(n?)

1986 Goldberg & Tarjan [252]
Push-relabel O(nmlog(n?/m))

1987 Ahuja & Orlin [7]
Excess scaling O(nm +n?logU)

1990 Cheriyan, Hagerup, Mehlhorn [119]
Incremental algorithm O(n®/logn)

1990 Alon [118, 20]
Derandomization O(nm + n®?logn)

1992 King, Rao, Tarjan [118, 356]
Online game O(nm + n>Te)

1993 Phillips & Westbrook [476]
Online game O(nmlog,, ,, n +n’log?*e n)

1998 Goldberg & Rao [250]

Non-unit length function O(min(n?/3, /m)mlog T:n—2 log U)

U denotes the largest possible capacity (integer capacities case only)

Better algorithms for the more restricted version of unit capacity networks

exist.

160 F. Kammer and H. T&ubig

Definition 7.6.1. A network is said to be a unit capacity network (or 0-1
network) if the capacity is 1 for all edges. A unit capacity network is of type 1
if it has no parallel edges. It is called type 2 if for each vertex v (v # s, v #t)
either the in-degree d~(v) or the out-degree d™(v) is only 1.

Lemma 7.6.2. 1. For unit capacity networks, the computation of the maxi-
mum flow can be done (using Dinitz’s algorithm) in O(m>/?).
2. For unit capacity networks of type 1, the time complexity of Dinitz’s algo-
rithm is O(n?/3m).
8. For unit capacity networks of type 2, the time complezity of Dinitz’s algo-
rithm is O(n'/?m).

For a proof of the lemma see [188, 187, 349].

While the best bound for directed unit capacity flow problems differs only by
logarithmic factors from the best known bound for integer capacities, even better
bounds for the case of undirected unit capacity networks exist: O(min(m, n3/2)
v/m) by Goldberg and Rao [251], O(n7/5m?/3) by Karger and Levine [343].

7.6.1 Vertex-Connectivity Algorithms

Table 7.2. The history of computing the vertex-connectivity x

Year Author(s) MaxFlow calls Compute K Ref.
1974 Even & Tarjan (k+1)(n—0 —1) O(kn*m) [188]
O(n1/2m2)
1984 Esfahanian & n—6—1+ O((n—0+r6—~K*/2)- [183]
Hakimi k(20—Kk—3)/2 n?/3m)
1996 Henzinger, O(min{x® + n, kn}xn) [298]
Rao, Gabow

Table 7.3. The history of checking vertex-connectivity

Year Author(s) MaxFlow calls Check k-VC Ref.

1969 Kleitman k(n — 6) — (’“ ;r 1) Ok*n®) 362]
k 3

1973 Even n—k+ 9 O(k°m + knm) [186]

1984 Esfahanian & Hakimi n—k+ (k ; 1) O(K*m + knm) [183]

The basis of all flow-based connectivity algorithms is a subroutine that com-
putes the local connectivity between two distinct vertices s and ¢. Even [185, 186,

7 Connectivity 161

ef 3@ @
e

Fig. 7.9. Construction of the directed graph G that is derived from the undirected
input graph G to compute the local vertex-connectivity kg (s, t)

187] presented a method for computing kg (s,t) that is based on the following
construction: For the given graph G = (V, E) having n vertices and m edges we
derive a directed graph G = (V, E) with |V| = 2n and |E| = 2m+n by replacing
each vertex v € V with two vertices v/,v” € V connected by an (internal) edge
e, = (v',v") € E. Every edge e = (u,v) € E is replaced by two (external) edges
e = (u",v"),e" = (v, u') € E, see Figure 7.9.

#(s,t) is now computed as the maximum flow in G from source s” to the
target ¢ with unit capacities for all edges?. For a proof of correctness see [187].
For each pair v/,v” € V representing a vertex v € V the internal edge (v',v")
is the only edge that emanates from v’ and the only edge entering v”, thus
the network G is of type 2. According to Lemma 7.6.2 the computation of the
maximum flow resp. the local vertex-connectivity has time complexity O(y/nm).

A trivial algorithm for computing k(G) could determine the minimum for the
local connectivity of all pairs of vertices. Since kg (s,t) = n— 1 for all pairs (s, t)
that are directly connected by an edge, this algorithm would make nn-l) _
calls to the flow-based subroutine. We will see that we can do much better.

If we consider a minimum vertex separator S C V that separates a ‘left’
vertex subset L C V from a ‘right’ subset R C V', we could compute k(G) by
fixing one vertex s in either subset L or R and computing the local connectivities
ka(s,t) for all vertices t € V'\ {s} one of which must lie on the other side of the
vertex cut. The problem is: how to select a vertex s such that s does not belong
to every minimum vertex separator? Since x(G) < 6(G) (see Theorem 7.1.1), we
could try §(G) + 1 vertices for s, one of which must not be part of all minimum
vertex cuts. This would result in an algorithm of complexity O((6+1)-n-y/nm)) =
O(6n3/?m)

Even and Tarjan [188] proposed Algorithm 13 that stops computing the local
connectivities if the size of the current minimum cut falls below the number of
examined vertices.

The resulting algorithm examines not more than x + 1 vertices in the loop
for variable i. Each vertex has at least §(G) neighbors, thus at most O((n —
d — 1)(k + 1)) calls to the maximum flow subroutine are carried out. Since
k(G) < 2m/n (see Theorem 7.1.8), the minimum capacity is found not later
than in call 2m/n + 1. As a result, the overall time complexity is O(y/nm?).

m

2 Firstly, Even used c(e,) = 1, c(e') = c(e”’) = oo which leads to the same results.

162 F. Kammer and H. T&ubig

Algorithm 13: Vertex-connectivity computation by Even & Tarjan

Input : An (undirected) graph G = (V, E)
Output: k(G)

Kmin < 10 — 1
i — 1
while 7 < kpin do
for j «— i+ 1 ton do
if 7 > Kmin then
| break

else if {v;,v;} ¢ E then
compute kg (vi, v;) using the MaxFlow algorithm
Kmin <— min{"flmifh K'G(’Uiv Uj)}

return Kmin

Esfahanian and Hakimi [183] further improved the algorithm by the following
observation:

Lemma 7.6.3. If a vertex v belongs to all minimum vertez-separators then there
are for each minimum vertex-cut S two vertices | € Lg and r € Rg that are
adjacent to v.

Proof. Assume v takes part in all minimum vertex-cuts of GG. Consider the par-
tition of the vertex set V' induced by a minimum vertex-cut S with a component
L (the ‘left’ side) of the remaining graph and the respective ‘right’ side R. Each
side must contain at least one of v’s neighbors, because otherwise v would not
be necessary to break the graph into parts. Actually each side having more than
one vertex must contain 2 neighbors since otherwise replacing v by the only
neighbor would be a minimum cut without v, in contrast to the assumption. 0O

These considerations suggest Algorithm 14. The first loop makes n —§ — 1
calls to the MaxFlow procedure, the second requires x(26 — x — 3)/2 calls. The
overall complexity is thus n —§ — 1+ k(25 — k — 3) /2 calls of the maximum flow
algorithm.

7.6.2 Edge-Connectivity Algorithms

Similar to the computation of the vertex-connectivity, the calculation of the
edge-connectivity is based on a maximum-flow algorithm that solves the local
edge-connectivity problem, i.e. the computation of Ag(s,t). Simply replace all
undirected edges by pairs of antiparallel directed edges with capacity 1 and
compute the maximum flow from the source s to the sink ¢. Since the resulting
network is of type 1, the computation is, due to Lemma 7.6.2, of complexity
O(min{m?'2,n?/3m}).

A trivial algorithm for computing A(G) could simply calculate the minimum
of the local edge-connectivities for all vertex pairs. This algorithm would thus
make n(n — 1)/2 calls to the MaxFlow subroutine. We can easily improve the

7 Connectivity 163

Algorithm 14: Vertex-connectivity computation by Esfahanian & Hakimi

Input : An (undirected) graph G = (V, E)
Output: k(G)

Kmin < 10 — 1

Choose v € V having minimum degree, d(v) = 6(G)
Denote the neighbors N(v) by vi, va, ..., vs
foreach non-neighbor w € V' \ (N(v) U {v}) do

compute kg (v, w) using the MaxFlow algorithm
| Kmin < Min{Kmin, ka (v, w)}

i — 1
while 7 < kpin do
for j—i+1tod—1do
if i >0 —2 ori> Kmin then
| return Kmin

else if {v,w} ¢ E then
compute kg (vi, v;) using the MaxFlow algorithm
Kmin <— min{"flmifh K'G(’Uiv Uj)}

L 1+—1+1
return Kmin

complexity of the algorithm if we consider only the local connectivities A (s, t)
for a single (fixed) vertex s and all other vertices ¢. Since one of the vertices
t € V'\ {s} must be separated from s by an arbitrary minimum edge-cut, A(G)
equals the minimum of all these values. The number of MaxFlow calls is thereby
reduced to n — 1. The overall time complexity is thus O(nm - min{n?/3,m'/2})
(see also [188]). The aforementioned algorithm also works if the whole vertex set
is replaced by a subset that contains two vertices that are separated by some
minimum edge-cut. Consequently, the next algorithms try to reduce the size of
this vertex set (which is called a A-covering). They utilize the following lemma.
Let S be a minimum edge-cut of a graph G = (V,E) and let L,R C V be a
partition of the vertex set such that L and R are separated by S.

Lemma 7.6.4. If A\(G) < 6(G) then each component of G — S consists of more
than 0(G) vertices, i.e. |L| > 0(G) and |R| > §(G).

Table 7.4. The history of edge-connectivity algorithms

Year Author(s) MaxFlow calls Check k-EC
Compute A
1975 Even, Tarjan [188]
n—1 O(nm - min{n?/3,m/?})
1984 Esfahanian, Hakimi [183]
<n/2 O(Anm)
1987 Matula [413] O(kn?)

O(\n?)

164 F. Kammer and H. T&ubig

Proof. Let the elements of L be denoted by {l1, 2, ..., } and denote the induced
edges by E[L] = E(G[L)]).

k
5(G) k<Y da(l)
i=1
<2-|E[L]|+]S|
k(k—1)
——— + 15|
< k(k—1)+6(G)

From 6(G) - (k— 1) < k(k — 1) we conclude |L| =k > 1 and |L| = k > §(G) (as
well as |R| > 0(G)). O

Corollary 7.6.5. If A(G) < §(G) then each component of G — S contains a
vertex that is not incident to any of the edges in S.

<2.

Lemma 7.6.6. Assume again that \(G) < 6(G). If T is a spanning tree of G
then all components of G — S contain at least one vertex that is not a leaf of T
(i.e. the non-leaf vertices of T form a A-covering).

Proof. Assume the converse, that is all vertices in L are leaves of T'. Thus no
edge of T has both ends in L, i.e. |L| = |S|. Lemma 7.6.4 immediately implies
that A(G) = |S| =|L| > §(G), a contradiction to the assumption. O

Lemma 7.6.6 suggests an algorithm that first computes a spanning tree of the
given graph, then selects an arbitrary inner vertex v of the tree and computes
the local connectivity A(v,w) to each other non-leaf vertex w. The minimum of
these values together with §(G) yields exactly the edge connectivity A(G). This
algorithm would profit from a larger number of leaves in T but, unfortunately,
finding a spanning tree with maximum number of leaves is N'P-hard.Esfahanian

Algorithm 15: Spanning tree computation by Esfahanian & Hakimi
Input : An (undirected) graph G = (V, E)
Output: Spanning Tree T' with a leaf and an inner vertex in L and R, resp.
Choose v € V
T < all edges incident at v
while |E(T)| <n—1do
L Select a leaf w in T' such that for all leaves r in T

IN(w) N (V = V(T))| > [N(r)n (V- V(T))]
T—TUGuwU{Nw)NV =V(T))}]
return T

and Hakimi [183] proposed an algorithm for computing a spanning tree T of G
such that both, L and R of some minimum edge separator contain at least one leaf
of T, and due to Lemma 7.6.6 at least one inner vertex (see Algorithm 15