

PRINCIPLES OF
ARTIFICIAL NEURAL

NETWORKS
2nd Edition

ADVANCED SERIES IN CIRCUITS AND SYSTEMS

Editor-in-Charge: Wai-Kai Chen (Univ. Illinois, Chicago, USA)
Associate Editor: Dieter A. Mlynski (Univ. Karlsruhe, Germany)

Published

Vol. 1: Interval Methods for Circuit Analysis
by L. V. Kolev

Vol. 2: Network Scattering Parameters
by R. Mavaddat

Vol. 3: Principles of Artificial Neural Networks
by D Graupe

Vol. 4: Computer-Aided Design of Communication Networks
by Y-S Zhu & W K Chen

Vol. 5: Feedback Networks: Theory & Circuit Applications
by J Choma & W K Chen

Vol. 6: Principles of Artificial Neural Networks (2nd Edition)
by D Graupe

Steven - Principles of Arti Neural.pmd 1/30/2007, 4:11 PM2

World Scientific

PRINCIPLES OF
ARTIFICIAL NEURAL

NETWORKS
2nd Edition

Advanced Series on Circuits and Systems – Vol. 6

Daniel Graupe
University of lllinois, Chicago, USA

NEW JWRSEY . LONDON . SINGAPORE . BEIJING . SHANGHAI . HONG KONG . TAIPEI . CHENNAI

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from
the publisher.

ISBN-13 978-981-270-624-9
ISBN-10 981-270-624-0

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or
mechanical, including photocopying, recording or any information storage and retrieval system now known or to
be invented, without written permission from the Publisher.

Copyright © 2007 by World Scientific Publishing Co. Pte. Ltd.

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Printed in Singapore.

PRINCIPLES OF ARTIFICIAL NEURAL NETWORKS (2nd Edition)
Advanced Series on Circuits and Systems – Vol. 6

Steven - Principles of Arti Neural.pmd 1/30/2007, 4:11 PM1

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Dedicated to the memory of my parents,

to my wife Dalia,

to our children, our daughters-in-law and our grandchildren

It is also dedicated to the memory of Dr. Kate H Kohn

v

This page intentionally left blankThis page intentionally left blank

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Acknowledgments

I am most thankful to Hubert Kordylewski of the Department of Electrical

Engineering and Computer Science of the University of Illinois at Chicago for his

help towards the development of LAMSTAR network of Chapter 13 of this text.

I am grateful to several students who attended my classes on Neural Network at

the Department of Electrical Engineering and Computer Science of the University

of Illinois at Chicago over the past fourteen years and who allowed me to append

programs they wrote as part of homework assignments and course projects to var-

ious chapters of this book. They are Vasanth Arunachalam, Sang Lee, Maxim

Kolesnikov, Hubert Kordylewski, Maha Nujeimo, Michele Panzeri, Padmagandha

Sahoo, Daniele Scarpazza, Sanjeeb Shah and Yunde Zhong.

I am deeply indebted to the memory of Dr. Kate H. Kohn of Michael Reese

Hospital, Chicago and of the College of Medicine of the University of Illinois

at Chicago and to Dr. Boris Vern of the College of Medicine of the University

of Illinois at Chicago for reviewing parts of the manuscript of this text and for their

helpful comments.

Ms. Barbara Aman and the production and editorial staff at World Scientific

Publishing Company in Singapore were extremely helpful and patient with me

during all phases of preparing this book for print.

vii

This page intentionally left blankThis page intentionally left blank

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Preface to the First Edition

This book evolved from the lecture notes of a first-year graduate course entitled

“Neural Networks” which I taught at the Department of Electrical Engineering

and Computer Science of the University of Illinois at Chicago over the years 1990–

1996. Whereas that course was a first-year graduate course, several Senior-Year

undergraduate students from different engineering departments, attended it with

little difficulty. It was mainly for historical and scheduling reasons that the course

was a graduate course, since no such course existed in our program of studies and in

the curricula of most U.S. universities in the Senior Year Undergraduate program. I

therefore consider this book, which closely follows these lecture notes, to be suitable

for such undergraduate students. Furthermore, it should be applicable to students

at that level from essentially every science and engineering University department.

Its prerequisites are the mathematical fundamentals in terms of some linear algebra

and calculus, and computational programming skills (not limited to a particular

programming language) that all such students possess.

Indeed, I strongly believe that Neural Networks are a field of both intellectual

interest and practical value to all such students and young professionals. Artificial

neural networks not only provide an understanding into an important computa-

tional architecture and methodology, but they also provide an understanding (very

simplified, of course) of the mechanism of the biological neural network.

Neural networks were until recently considered as a “toy” by many computer

engineers and business executives. This was probably somewhat justified in the

past, since neural nets could at best apply to small memories that were analyzable

just as successfully by other computational tools. I believe (and I tried in the

later chapters below to give some demonstration to support this belief) that neural

networks are indeed a valid, and presently, the only efficient tool, to deal with very

large memories.

The beauty of such nets is that they can allow and will in the near-future allow,

for instance, a computer user to overcome slight errors in representation, in pro-

gramming (missing a trivial but essential command such as a period or any other

symbol or character) and yet have the computer execute the command. This will

obviously require a neural network buffer between the keyboard and the main pro-

ix

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

x Principles of Artificial and Neural Networks

grams. It should allow browsing through the Internet with both fun and efficiency.

Advances in VLSI realizations of neural networks should allow in the coming years

many concrete applications in control, communications and medical devices, includ-

ing in artificial limbs and organs and in neural prostheses, such as neuromuscular

stimulation aids in certain paralysis situations.

For me as a teacher, it was remarkable to see how students with no background

in signal processing or pattern recognition could easily, a few weeks (10–15 hours)

into the course, solve speech recognition, character identification and parameter

estimation problems as in the case studies included in the text. Such computational

capabilities make it clear to me that the merit in the neural network tool is huge.

In any other class, students might need to spend many more hours in performing

such tasks and will spend so much more computing time. Note that my students

used only PCs for these tasks (for simulating all the networks concerned). Since

the building blocks of neural nets are so simple, this becomes possible. And this

simplicity is the main feature of neural networks: A house fly does not, to the

best of my knowledge, use advanced calculus to recognize a pattern (food, danger),

nor does its CNS computer work in picosecond-cycle times. Researches into neural

networks try, therefore, to find out why this is so. This leads and led to neural

network theory and development, and is the guiding light to be followed in this

exciting field.

Daniel Graupe

Chicago, IL

January 1997

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Preface to the Second Edition

The Second Edition contains certain changes and additions to the First

Edition. Apart from corrections of typos and insertion of minor additional details

that I considered to be helpful to the reader, I decided to interchange the order of

Chapters 4 and 5 and to rewrite Chapter 13 so as to make it easier to apply the

LAMSTAR neural network to practical applications. I also moved the Case Study

6.D to become Case Study 4.A, since it is essentially a Perceptron solution.

I consider the Case Studies important to a reader who wishes to see a concrete

application of the neural networks considered in the text, including a complete

source code for that particular application with explanations on organizing that ap-

plication. Therefore, I replaced some of the older Case Studies with new ones with

more detail and using most current coding languages (MATLAB, Java, C++). To

allow better comparison between the various neural network architectures regarding

performance, robustness and programming effort, all Chapters dealing with major

networks have a Case Study to solve the same problem, namely, character recogni-

tion. Consequently, the Case studies 5.A (previously, 4.A, since the order of these

chapters is interchanged), 6.A (previously, 6.C), 7.A, 8.A, have all been replaced

with new and more detailed Case Studies, all on character recognition in a 6 × 6

grid. Case Studies on the same problem have been added to Chapter 9, 12 and

13 as Case Studies 9.A, 12.A and 13.A (the old Case Studies 9.A and 13.A now

became 9.B and 13.B). Also, a Case Study 7.B on applying the Hopfield Network to

the well known Traveling Salesman Problem (TSP) was added to Chapter 7. Other

Case Studies remained as in the First Edition.

I hope that these updates will add to the readers’ ability to better understand

what Neural Networks can do, how they are applied and what the differences are

between the different major architectures. I feel that this and the case studies with

their source codes and the respective code-design details will help to fill a gap in the

literature available to a graduate student or to an advanced undergraduate Senior

who is interested to study artificial neural networks or to apply them.

Above all, the text should enable the reader to grasp the very broad range of

problems to which neural networks are applicable, especially those that defy analysis

and/or are very complex, such as in medicine or finance. It (and its Case Studies)

xi

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

xii Principles of Artificial and Neural Networks

should also help the reader to understand that this is both doable and rather easily

programmable and executable.

Daniel Graupe

Chicago, IL

September 2006

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Contents

Acknowledgments vii

Preface to the First Edition ix

Preface to the Second Edition xi

Chapter 1. Introduction and Role of Artificial Neural Networks 1

Chapter 2. Fundamentals of Biological Neural Networks 5

Chapter 3. Basic Principles of ANNs and Their Early Structures 9

3.1. Basic Principles of ANN Design 9

3.2. Basic Network Structures 10

3.3. The Perceptron’s Input-Output Principles 11

3.4. The Adaline (ALC) . 12

Chapter 4. The Perceptron 17

4.1. The Basic Structure . 17

4.2. The Single-Layer Representation Problem 22

4.3. The Limitations of the Single-Layer Perceptron 23

4.4. Many-Layer Perceptrons 24

4.A. Perceptron Case Study: Identifying Autoregressive

Parameters of a Signal (AR Time Series Identification) . . 25

Chapter 5. The Madaline 37

5.1. Madaline Training . 37

5.A. Madaline Case Study: Character Recognition 39

Chapter 6. Back Propagation 59

6.1. The Back Propagation Learning Procedure 59

6.2. Derivation of the BP Algorithm 59

6.3. Modified BP Algorithms 63

6.A. Back Propagation Case Study: Character Recognition . . 65

xiii

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

xiv Principles of Artificial and Neural Networks

6.B. Back Propagation Case Study: The Exclusive-OR (XOR)

Problem (2-Layer BP) . 76

6.C. Back Propagation Case Study: The XOR Problem —

3 Layer BP Network . 94

Chapter 7. Hopfield Networks 113

7.1. Introduction . 113

7.2. Binary Hopfield Networks 113

7.3. Setting of Weights in Hopfield Nets — Bidirectional

Associative Memory (BAM) Principle 114

7.4. Walsh Functions . 117

7.5. Network Stability . 118

7.6. Summary of the Procedure for Implementing the

Hopfield Network . 121

7.7. Continuous Hopfield Models 122

7.8. The Continuous Energy (Lyapunov) Function 123

7.A. Hopfield Network Case Study: Character Recognition . . 125

7.B. Hopfield Network Case Study: Traveling Salesman

Problem . 136

Chapter 8. Counter Propagation 161

8.1. Introduction . 161

8.2. Kohonen Self-Organizing Map (SOM) Layer 161

8.3. Grossberg Layer . 162

8.4. Training of the Kohonen Layer 162

8.5. Training of Grossberg Layers 165

8.6. The Combined Counter Propagation Network 165

8.A. Counter Propagation Network Case Study: Character

Recognition . 166

Chapter 9. Adaptive Resonance Theory 179

9.1. Motivation . 179

9.2. The ART Network Structure 179

9.3. Setting-Up of the ART Network 183

9.4. Network Operation . 184

9.5. Properties of ART . 186

9.6. Discussion and General Comments on ART-I and ART-II 186

9.A. ART-I Network Case Study: Character Recognition . . . 187

9.B. ART-I Case Study: Speech Recognition 201

Chapter 10. The Cognitron and the Neocognitron 209

10.1. Background of the Cognitron 209

10.2. The Basic Principles of the Cognitron 209

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Contents xv

10.3. Network Operation . 209

10.4. Cognitron’s Network Training 211

10.5. The Neocognitron . 213

Chapter 11. Statistical Training 215

11.1. Fundamental Philosophy 215

11.2. Annealing Methods . 216

11.3. Simulated Annealing by Boltzman Training of Weights . . 216

11.4. Stochastic Determination of Magnitude of Weight Change 217

11.5. Temperature-Equivalent Setting 217

11.6. Cauchy Training of Neural Network 217

11.A. Statistical Training Case Study — A Stochastic Hopfield

Network for Character Recognition 219

11.B. Statistical Training Case Study: Identifying AR Signal

Parameters with a Stochastic Perceptron Model 222

Chapter 12. Recurrent (Time Cycling) Back Propagation Networks 233

12.1. Recurrent/Discrete Time Networks 233

12.2. Fully Recurrent Networks 234

12.3. Continuously Recurrent Back Propagation Networks . . . 235

12.A. Recurrent Back Propagation Case Study: Character

Recognition . 236

Chapter 13. Large Scale Memory Storage and Retrieval (LAMSTAR)

Network 249

13.1. Basic Principles of the LAMSTAR Neural Network 249

13.2. Detailed Outline of the LAMSTAR Network 251

13.3. Forgetting Feature . 257

13.4. Training vs. Operational Runs 258

13.5. Advanced Data Analysis Capabilities 259

13.6. Correlation, Interpolation, Extrapolation and

Innovation-Detection . 261

13.7. Concluding Comments and Discussion of Applicability . . 262

13.A. LAMSTAR Network Case Study: Character Recognition . 265

13.B. Application to Medical Diagnosis Problems 280

Problems 285

References 291

Author Index 299

Subject Index 301

This page intentionally left blankThis page intentionally left blank

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Chapter 1

Introduction and Role
of Artificial Neural Networks

Artificial neural networks are, as their name indicates, computational networks

which attempt to simulate, in a gross manner, the networks of nerve cell (neurons)

of the biological (human or animal) central nervous system. This simulation is

a gross cell-by-cell (neuron-by-neuron, element-by-element) simulation. It borrows

from the neurophysiological knowledge of biological neurons and of networks of such

biological neurons. It thus differs from conventional (digital or analog) computing

machines that serve to replace, enhance or speed-up human brain computation

without regard to organization of the computing elements and of their networking.

Still, we emphasize that the simulation afforded by neural networks is very gross.

Why then should we view artificial neural networks (denoted below as neural

networks or ANNs) as more than an exercise in simulation? We must ask this

question especially since, computationally (at least), a conventional digital computer

can do everything that an artificial neural network can do.

The answer lies in two aspects of major importance. The neural network, by

its simulating a biological neural network, is in fact a novel computer architecture

and a novel algorithmization architecture relative to conventional computers. It

allows using very simple computational operations (additions, multiplication and

fundamental logic elements) to solve complex, mathematically ill-defined problems,

nonlinear problems or stochastic problems. A conventional algorithm will employ

complex sets of equations, and will apply to only a given problem and exactly to

it. The ANN will be (a) computationally and algorithmically very simple and (b) it

will have a self-organizing feature to allow it to hold for a wide range of problems.

For example, if a house fly avoids an obstacle or if a mouse avoids a cat, it

certainly solves no differential equations on trajectories, nor does it employ com-

plex pattern recognition algorithms. Its brain is very simple, yet it employs a few

basic neuronal cells that fundamentally obey the structure of such cells in advanced

animals and in man. The artificial neural network’s solution will also aim at such

(most likely not the same) simplicity. Albert Einstein stated that a solution or a

model must be as simple as possible to fit the problem at hand. Biological systems,

in order to be as efficient and as versatile as they certainly are despite their inherent

slowness (their basic computational step takes about a millisecond versus less than

1

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

2 Principles of Artificial and Neural Networks

a nanosecond in today’s electronic computers), can only do so by converging to the

simplest algorithmic architecture that is possible. Whereas high level mathematics

and logic can yield a broad general frame for solutions and can be reduced to spe-

cific but complicated algorithmization, the neural network’s design aims at utmost

simplicity and utmost self-organization. A very simple base algorithmic structure

lies behind a neural network, but it is one which is highly adaptable to a broad

range of problems. We note that at the present state of neural networks their range

of adaptability is limited. However, their design is guided to achieve this simplicity

and self-organization by its gross simulation of the biological network that is (must

be) guided by the same principles.

Another aspect of ANNs that is different and advantageous to conventional com-

puters, at least potentially, is in its high parallelity (element-wise parallelity). A

conventional digital computer is a sequential machine. If one transistor (out of

many millions) fails, then the whole machine comes to a halt. In the adult hu-

man central nervous system, neurons in the thousands die out each year, whereas

brain function is totally unaffected, except when cells at very few key locations

should die and this in very large numbers (e.g., major strokes). This insensitivity

to damage of few cells is due to the high parallelity of biological neural networks, in

contrast to the said sequential design of conventional digital computers (or analog

computers, in case of damage to a single operational amplifier or disconnections

of a resistor or wire). The same redundancy feature applies to ANNs. However,

since presently most ANNs are still simulated on conventional digital computers,

this aspect of insensitivity to component failure does not hold. Still, there is an

increased availability of ANN hardware in terms of integrated circuits consisting of

hundreds and even thousands of ANN neurons on a single chip does hold. [cf. Jabri

et al., 1996, Hammerstom, 1990, Haykin, 1994]. In that case, the latter feature

of ANNs.

In summary, the excitement in ANNs should not be limited to its greater re-

semblance to the human brain. Even its degree of self-organizing capability can

be built into conventional digital computers using complicated artificial intelligence

algorithms. The main contribution of ANNs is that, in its gross imitation of the

biological neural network, it allows for very low level programming to allow solving

complex problems, especially those that are non-analytical and/or nonlinear and/or

nonstationary and/or stochastic, and to do so in a self-organizing manner that ap-

plies to a wide range of problems with no re-programming or other interference in

the program itself. The insensitivity to partial hardware failure is another great

attraction, but only when dedicated ANN hardware is used.

It is becoming widely accepted that the advent of ANN will open new under-

standing into how to simplify programming and algorithm design for a given end

and for a wide range of ends. It should bring attention to the simplest algorithm

without, of course, dethroning advanced mathematics and logic, whose role will al-

ways be supreme in mathematical understanding and which will always provide a

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Introduction and Role of Artificial Neural Networks 3

systematic basis for eventual reduction to specifics.

What is always amazing to many students and to myself is that after six weeks of

class, first year engineering graduate students of widely varying backgrounds with no

prior background in neural networks or in signal processing or pattern recognition,

were able to solve, individually and unassisted, problems of speech recognition, of

pattern recognition and character recognition, which could adapt in seconds or in

minutes to changes (with a range) in pronunciation or in pattern. They would,

by the end of the one-semester course, all be able to demonstrate these programs

running and adapting to such changes, using PC simulations of their respective

ANNs. My experience is that the study time and the background to achieve the

same results by conventional methods by far exceeds that achieved with ANNs.

This, to me, demonstrates the degree of simplicity and generality afforded by

ANN; and therefore the potential of ANNs.

Obviously, if one is to solve a set of differential equations, one would not use an

ANN, just as one will not ask the mouse or the cat to solve it. But problems of

recognition, filtering and control would be problems suited for ANNs. As always,

no tool or discipline can be expected to do it all. And then, ANNs are certainly

at their infancy. They started in the 1950s; and widespread interest in them dates

from the early 1980s. So, all in all, ANNs deserve our serious attention. The days

when they were brushed off as a gimmick or as a mere mental exercise are certainly

over. Hybrid ANN/serial computer designs should also be considered to utilize the

advantages of both designs where appropriate.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

This page intentionally left blankThis page intentionally left blank

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Chapter 2

Fundamentals of Biological
Neural Networks

The biological neural network consists of nerve cells (neurons) as in Fig. 2.1,

which are interconnected as in Fig. 2.2. The cell body of the neuron, which includes

the neuron’s nucleus is where most of the neural “computation” takes place. Neural

Fig. 2.1. A biological neural cell (neuron).

activity passes from one neuron to another in terms of electrical triggers which

travel from one cell to the other down the neuron’s axon, by means of an electro-

chemical process of voltage-gated ion exchange along the axon and of diffusion of

neurotransmitter molecules through the membrane over the synaptic gap (Fig. 2.3).

The axon can be viewed as a connection wire. However, the mechanism of signal

flow is not via electrical conduction but via charge exchange that is transported by

diffusion of ions. This transportation process moves along the neuron’s cell, down

the axon and then through synaptic junctions at the end of the axon via a very nar-

row synaptic space to the dendrites and/or soma of the next neuron at an average

rate of 3 m/sec., as in Fig. 2.3.

5

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

6 Principles of Artificial and Neural Networks

Fig. 2.2. Interconnection of biological neural nets.

Fig. 2.3. Synaptic junction — detail (of Fig. 2.2).

Figures 2.1 and 2.2 indicate that since a given neuron may have several (hundreds

of) synapses, a neuron can connect (pass its message/signal) to many (hundreds of)

other neurons. Similarly, since there are many dendrites per each neuron, a single

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Fundamentals of Biological Neural Networks 7

neuron can receive messages (neural signals) from many other neurons. In this

manner, the biological neural network interconnects [Ganong, 1973].

It is important to note that not all interconnections, are equally weighted. Some

have a higher priority (a higher weight) than others. Also some are excitory and

some are inhibitory (serving to block transmission of a message). These differences

are effected by differences in chemistry and by the existence of chemical transmit-

ter and modulating substances inside and near the neurons, the axons and in the

synaptic junction. This nature of interconnection between neurons and weighting

of messages is also fundamental to artificial neural networks (ANNs).

A simple analog of the neural element of Fig. 2.1 is as in Fig. 2.4. In that analog,

which is the common building block (neuron) of every artificial neural network, we

observe the differences in weighting of messages at the various interconnections

(synapses) as mentioned above. Analogs of cell body, dendrite, axon and synaptic

junction of the biological neuron of Fig. 2.1 are indicated in the appropriate parts

of Fig. 2.4. The biological network of Fig. 2.2 thus becomes the network of Fig. 2.5.

Fig. 2.4. Schematic analog of a biological neural cell.

Fig. 2.5. Schematic analog of a biological neural network.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

8 Principles of Artificial and Neural Networks

The details of the diffusion process and of charge∗ (signal) propagation along the

axon are well documented elsewhere [B. Katz, 1966]. These are beyond the scope

of this text and do not affect the design or the understanding of artificial neural

networks, where electrical conduction takes place rather than diffusion of positive

and negative ions.

This difference also accounts for the slowness of biological neural networks, where

signals travel at velocities of 1.5 to 5.0 meters per second, rather than the speeds

of electrical conduction in wires (of the order of speed of light). We comment

that discrete digital processing in digitally simulated or realized artificial networks,

brings the speed down. It will still be well above the biological networks’s speed

and is a function of the (micro-) computer instruction execution speed.

∗Actually, “charge” does not propagate; membrane polarization change does and is mediated by
ionic shifts.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Chapter 3

Basic Principles of ANNs and
Their Early Structures

3.1. Basic Principles of ANN Design

The basic principles of the artificial neural networks (ANNs) were first formu-

lated by McCulloch and Pitts in 1943, in terms of five assumptions, as follows:

(1) The activity of a neuron (ANN) is all-or-nothing.

(2) A certain fixed number of synapses larger than 1 must be excited within a given

interval of neural addition for a neuron to be excited.

(3) The only significant delay within the neural system is the synaptic delay.

(4) The activity of any inhibitory synapse absolutely prevents the excitation of the

neuron at that time.

(5) The structure of the interconnection network does not change over time.

By assumption (1) above, the neuron is a binary element.

Whereas these are probably historically the earliest systematic principles, they

do not all apply to today’s state-of-the-art of ANN design.

The Hebbian Learning Law (Hebbian Rule) due to Donald Hebb (1949) is also

a widely applied principle. The Hebbian Learning Law states that:

“When an axon of cell A is near-enough to excite cell B and when it repeatedly

and persistently takes part in firing it, then some growth process or metabolic change

takes place in one or both these cells such that the efficiency of cell A [Hebb, 1949]

is increased” (i.e. — the weight of the contribution of the output of cell A to the

above firing of cell B is increased).

The Hebbian rule can be explained in terms of the following example: Suppose

that cell S causes salivation and is excited by cell F which, in turn, is excited by

the sight of food. Also, suppose that cell L, which is excited by hearing a bell ring,

connects to cell S but cannot alone cause S to fire.

Now, after repeated firing of S by cell F while also cell L is firing, then L will

eventually be able to cause S to fire without having cell F fire. This will be due to

the eventual increase in the weight of the input from cell L into cell S. Here cells L

and S play the role of cells A, B respectively, as in the formulation of the Hebbian

rule above.

9

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

10 Principles of Artificial and Neural Networks

Also the Hebbian rule need not be employed in all ANN designs. Still, it is

implicitly used in designs such as in Chapters 8, 10 and 13.

However, the employment of weights at the input to any neuron of an ANN, and

the variation of these weights according to some procedure is common to all ANNs.

It takes place in all biological neurons. In the latter, weights variation takes place

through complex biochemical processes at the dendrite side of the neural cell, at

the synaptic junction, and in the biochemical structures of the chemical messengers

that pass through that junction. It is also influenced by other biochemical changes

outside the cell’s membrane in close proximity to the membrane.

3.2. Basic Network Structures

(1) Historically, the earliest ANNs are The Perceptron, proposed by the psychologist

Frank Rosenblatt (Psychological Review, 1958).

(2) The Artron (Statistical Switch-based ANN) due to R. Lee (1950s).

(3) The Adaline (Adaptive Linear Neuron, due to B. Widrow, 1960). This artificial

neuron is also known as the ALC (adaptive linear combiner), the ALC being

its principal component. It is a single neuron, not a network.

(4) The Madaline (Many Adaline), also due to Widrow (1988). This is an ANN

(network) formulation based on the Adaline above.

Principles of the above four neurons, especially of the Perceptron, are common

building blocks in most later ANN developments.

Three later fundamental networks are:

(5) The Back-Propagation network — A multi-layer Perceptron-based ANN, giving

an elegant solution to hidden-layers learning [Rumelhart et al., 1986 and others].

(6) The Hopfield Network, due to John Hopfield (1982).

This network is different from the earlier four ANNs in many important

aspects, especially in its recurrent feature of feedback between neurons. Hence,

although several of its principles have not been incorporated in ANNs based on

the earlier four ANNs, it is to a great extent an ANN-class in itself.

(7) The Counter-Propagation Network [Hecht-Nielsen, 1987] — where Kohonen’s

Self-Organizing Mapping (SOM) is utilized to facilitate unsupervised learning

(absence of a “teacher”).

The other networks, such as those of Chaps. 9 to 13 below (ART, Cognitron,

LAMSTAR, etc.) incorporate certain elements of these fundamental networks, or

use them as building blocks, usually when combined with other decision elements,

statistical or deterministic and with higher-level controllers.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Basic Principles of ANNs and Their Early Structures 11

3.3. The Perceptron’s Input-Output Principles

The Perceptron, which is historically possibly the earliest artificial neuron that

was proposed [Rosenblatt, 1958], is also the basic building block of nearly all ANNs.

The Artron may share the claim for the oldest artificial neuron. However, it lacks

the generality of the Perceptron and of its closely related Adaline, and it was not

as influential in the later history of ANN except in its introduction of the statistical

switch. Its discussion follows in Sec. 5 below. Here, it suffices to say that its basic

structure is as in Fig. 2.5 of Sec. 2, namely, it is a very gross but simple model

of the biological neuron, as repeated in Fig. 3.1 below. It obeys the input/output

relations

Z =
∑

i

wixi (3.1)

y = fN(z) (3.2)

Fig. 3.1. A biological neuron’s input output structure. Comment: Weights of inputs are de-
termined through dendritic biochemistry changes and synapse modification. See: M. F. Bear,
L. N. Cooper and F. E. Ebner, “A physiological basis for a theory of synapse modification,
Science, 237 (1987) 42–48.

Fig. 3.2. A perceptron’s schematic input/output structure.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

12 Principles of Artificial and Neural Networks

where wi is the weight at the inputs xi where z is the node (summation) output

and fN is a nonlinear operator to be discussed later, to yield the neuron’s output

y as in Fig. 3.2 is a nonlinear operator to be discussed later, to yield the neuron’s

output y as in Fig. 3.2.

3.4. The Adaline (ALC)

The Adaline (ADaptive LInear NEuron) of B. Widow (1960) has the basic struc-

ture of a bipolar Perceptron as in Sec. 3.1 above and involves some kind of least-

error-square (LS) weight training. It obeys the input/node relationships where:

z = wo +

n
∑

i=1

wixi (3.3)

where wo is a bias term and is subject to the training procedure of Sec. 3.4.1 or

3.4.2 below. The nonlinear element (operator) of Eq. (3.2) is here a simple threshold

element, to yield the Adaline output y as:

y = sign(z) (3.4)

as in Fig. 3.3, such that, for

Fig. 3.3. Activation function nonlinearity (Signum function).

wo = 0 (3.5-a)

we obtain that

z =
∑

i

wixi (3.5-b)

3.4.1. LMS training of ALC

The training of an ANN is the procedure of setting its weights. The training

of the Adaline involves training the weights of the ALC (Adaptive Linear Com-

biner) which is the linear summation element in common to all Adaline/Perceptron

neurons. This training is according to the following procedure:

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Basic Principles of ANNs and Their Early Structures 13

Given L training sets x1 · · ·xL ; d1 · · · dL

where

xi = [x1 · · ·xn]Ti ; i = 1, 2, . . . , L (3.6)

i denoting the ith set, n being the number of inputs, and di denoting the desired

outputs of the neuron, we define a training cost, such that:

J(w) , E
[

e2
k

] ∼= 1

L

L
∑

k=1

e2
k (3.7)

w , [w1 · · ·wn]TL (3.8)

E denoting expectation and ek being a training error at the kth set, namely

ek , dk − zk (3.9)

zk denoting the neuron’s actual output.

Following the above notation we have that

E
[

e2
k

]

= E
[

d2
k

]

+ wT E
[

xkx
T
k

]

w − 2wT E[dkxk] (3.10)

with

E[xxT] , R (3.11)

E[dx] = p (3.12)

to yield the gradient ∇J such that:

∇J =
∂J(w)

∂w
= 2Rw − 2p (3.13)

Hence, the (optimal) LMS (least mean square) setting of w, namely the setting to

yield a minimum cost J(w) becomes:

∇J =
∂J

∂w
= 0 (3.14)

which, by Eq. (3.13) satisfies the weight setting of

wLMS = R−1p (3.15)

The above LMS procedure employs expecting whereas the training data is lim-

ited to a small number of L sets, such that sample averages will be inaccurate

estimates of the true expectations employed in the LMS procedure, convergence

to the true estimate requiring L → ∞. An alternative to employing small-sample

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

14 Principles of Artificial and Neural Networks

averages of L sets, is provided by using a Steepest Descent (gradient least squares)

training procedure for ALC, as in Sec. 3.4.2.

3.4.2. Steepest descent training of ALC

The steepest descent procedure for training an ALC neuron does not overcome

the shortcomings of small sample averaging, as discussed in relation to the LMS

procedure of Sec. 3.4.1 above. It does however attempt to provide weight-setting

estimates from one training set to the next, starting estimates from one training set

to the next, starting with L = n + 1, where n is the number of inputs, noting that

to from n weights, it is imperative that

L > n + 1 (3.16)

The steepest descent procedure, which is a gradient search procedure, is as follows:

Denoting a weights vector setting after the w’th iteration (the m’th training set)

as w(m), then

w(m + 1) = w(m) + ∆w(m) (3.17)

where ∆w is the change (variation) in w(m), this variation being given by:

∆w(m) = µ∇J
w(m) (3.18)

µ is the rate parameter whose setting discussed below, and

∇J =

[

∂J

∂w1
· · · ∂J

∂wn

]T

(3.19)

The steepest descent procedure to update w(m) of Eq. (3.17) follows the steps:

(1) Apply input vector xm and the desired output dm for the mth training set.

(2) Determine e2
m where

e2
m = [dm −wT

(m)x(m)]2

= d2
m − 2dmwT (m)x(m) + wT (m)x(m)xT (m)w(m) (3.20)

(3) Evaluate

∇J =
∂e2

m

∂w(m)
= 2x(m)wT (m)x(m) − 2dmx(m)

= −2
[

d(m) −wT (m)x(m)
]

x(m) = −2emx(m) (3.21)

thus obtaining an approximation to ∆J by using e2
m as the approximate to J ,

namely

∇J ∼= −2emx(m)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Basic Principles of ANNs and Their Early Structures 15

(4) Update w(m + 1) via Eqs. (3.17), (3.18) above, namely

w(m + 1) = w(m) − 2µemx(m) (3.22)

This is called the Delta Rule of ANN.

Here µ is chosen to satisfy

1

λmax
> µ > 0 (3.23)

if the statistics of x are known, where

λmax = max[λ(R)] (3.24)

λ(R) being an eigenvalve of R of Eq. (3.11) above. Else, one may consider

the Droretzky theorem of stochastic approximation [Graupe, Time Series Anal.,

Chap. 7] for selecting µ, such that

µ =
µ0

m
(3.25)

with some convenient µ0, say µ0 = 1, to guarantee convergence of w(m) to the

unknown but true w for m → ∞, namely, in the (impractical but theoretical) limit.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

This page intentionally left blankThis page intentionally left blank

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Chapter 4

The Perceptron

4.1. The Basic Structure

The Perceptron, which is possibly the earliest neural computation model, is

due to F. Rosenblatt and dates back to 1958 (see Sec. 3.1). We can consider

the neuronal model using the signum nonlinearity, as in Sec. 3.4) to be a spe-

cial case of the Perceptron. The Perceptron serves as a building block to most

later models, including the Adaline discussed earlier whose neuronal model may

be considered as a special case of the Perceptron. The Perceptrron possesses the

fundamental structure as in Fig. 4.1 of a neural cell, of several weighted input

Fig. 4.1. A biological neuron.

connections which connect to the outputs, of several neurons on the input side and

of a cell’s output connecting to several other neural cells at the output side. It

differs from the neuronal model of the Adaline (and Madaline) in its employment of

a smooth activation function (“smooth switch” nonlinearity). However the “hard

switch” activation function of the Adaline and of the Madaline may be considered

as a limit-case of the Perceptron’s activation function. The neuronal model of the

unit of several weighted inputs/cell/outputs is the perceptron, and it resembles in

17

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

18 Principles of Artificial and Neural Networks

Fig. 4.2. A perceptron (artificial neuron).

structure, in its weighted inputs whose weights are adjustable and in its provision

for an output that is a function of the above weighted input, the biological neuron

as in Fig. 4.2.

A network of such Perceptrons is thus termed a neural network of Perceptrons.

Denoting the summation output of the ith Perceptron as zi and its inputs as xli · · · ·
xni, the Perceptron’s summation relation is given by

zi =
m

∑

j=1

wijxij (4.1)

wij being the weight (which are adjustable as shown below) of the jth input to the

ith cell. Equation (4.1) can be written in vector form as:

zi = wT
i xi (4.2)

where

wi = [wi1 · · ·win]T (4.3)

xi = [xi1 · · ·xin]T (4.4)

T being denoting the transpose of w.

4.1.1. Perceptron’s activation functions

The Perceptron’s cell’s output differs from the summation output of

Eqs. (4.1) or (4.2) above by the activation operation of the cell’s body, just as

the output of the biological cell differs from the weighted sum of its input. The

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Perceptron 19

Fig. 4.3. A unipolar activation function for a perceptron.

Fig. 4.4. A binary (0,1) activation function.

activation operation is in terms of an activation function f(zi), which is a nonlinear

function yielding the ith cell’s output yi to satisfy

yi = f(zi) (4.5)

The activation function f is also known as a squashing function. It keeps the cell’s

output between certain limits as is the case in the biological neuron. Different

functions f(zi) are in use, all of which have the above limiting property. The

most common activation function is the sigmoid function which is a continuously

differentiable function that satisfies the relation (see Fig. 4.3), as follows:

yi =
1

1 + exp(−zi)
= f(zi) (4.6)

such that for

{zi → −∞} ⇔ {yi → 0}; {zi = 0} ⇔ {yi = 0.5}; {zi → ∞} ⇔ {yi → 1}

See Fig. 4.4.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

20 Principles of Artificial and Neural Networks

Another popular activation function is:

yi =
1 + tanh(zi)

2
= f(zi) =

1

1 − exp(−2zi)
(4.7)

whose shape is rather similar to that of the S-shaped sigmoid function of Eq. (4.6),

with {zi → −∞} ⇔ {yi → 0}; {zi = 0} ⇔ {yi = 0.5} and {zi → ∞} ⇔ {yi → 1}
The simplest activation function is a hard-switch limits threshold element; such

that:

yi =

{

1 for zi ≥ 0

0 for zi < 0
(4.8)

as in Fig. 4.4 and as used in the Adaline described earlier (Chap. 4 above). One

may thus consider the activation functions of Eqs. (4.6) or (4.7) to be modified

binary threshold elements as in Eq. (4.8) where transition when passing through

the threshold is being smoothed.

(a) y = 2
1+exp(−z)

− 1

(b) y = tan h(z) = ez
−e−z

ez+e−z

Fig. 4.5. Bipolar activation functions.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Perceptron 21

(a) Single-layer perceptron: 2-input representation

(b) Two-input perceptron

Fig. 4.6. Two-input perceptron and its representation.

In many applications the activation function is moved such that its output y:

ranges is from −1 to +1 as in Fig. 4.5, rather than from 0 to 1. This is afforded

by multiplying the earlier activation function of Eqs. (4.6) or (4.7) by 2 and then

subtracting 1.0 from the result, namely, via Eq. (4.6):

yi =
2

1 + exp(−zi)
− 1 = tanh(zi/2) (4.9)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

22 Principles of Artificial and Neural Networks

Fig. 4.7. A single layer’s 3-input representation.

or, via Eq. (4.7),

yi = tanh(zi) =
1 − exp(−2zi)

1 + exp(−2zi)
(4.10)

Although the Perceptron is only a single neuron (at best, a single-layer network),

we present in Sec. 4.A below a case study of its ability to solve a simple linear

parameter identification problem.

4.2. The Single-Layer Representation Problem

The perceptron’s learning theorem was formulated by Rosenblatt in 1961. The

theorem states that a perceptron can learn (solve) anything it can represent

(simulate). However, we shall see that this theorem does not hold for a single

Perceptron (or for any neuronal model with a binary or bipolar output, such as in

Chapter 3) or for a single layer of such neuronal models. We shall see later that it

does hold for models where the neurons are connected in a multi-layer network.

The single layer perceptron yields the representation description as in Fig. 4.6(a)

for a two input situation. This representation holds for several such neurons in a

single layer if they do not interconnect.

The above representation diagram results from the perceptron’s schematic as in

Fig. 4.6(b).

The representation of a 3-input perceptron thus becomes as in Fig. 4.7, where

the threshold becomes a flat plane.

By the representation theorem, the perceptron can solve all problems that are

or can be reduced to a linear separation (classification) problem.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Perceptron 23

Table 4.1. XOR Truth-Table.

inputs output
state x1 x2 z

A 0 0 0
B 1 0 1
C 0 1 1
D 1 1 0

(x1 or x2) and (x̄1 or x̄2);
x̄ denoting: not (x)

Table 4.2. Number of linearly separable binary problem.
(based on P. P. Wasserman: Neural Computing Theory
and Practice c© 1989 International Thomson Computer
Press. Reprinted with permission).

No. of linearly

No. of inputs n 22n
separable problems

1 4 4
2 16 14 (all but XOR, XNOR)
3 256 104
4 65 K 1.9 K
5 4.3 × 109 95 K
· · ·
· · ·
· · ·

n > 7 x < x1/3

4.3. The Limitations of the Single-Layer Perceptron

In 1969, Minsky and Papert published a book where they pointed out as did

E. B. Crane in 1965 in a less-known book, to the grave limitations in the capabilities

of the perceptron, as is evident by its representation theorem. They have shown

that, for example, the perceptron cannot solve even a 2-state Exclusive-Or (XOR)

problem [(x1 ∪ x2) ∩ (x̄1 ∪ x̄2)], as illustrated in the Truth-Table of Table 4.1,

or its complement, the 2-state contradiction problem (XNOR).

Obviously, no linear separation as in Fig. 4.1 can represent (classify) this

problem.

Indeed, there is a large class of problems that single-layer classifiers cannot solve.

So much so, that for a single layer neural network with an increasing number of

inputs, the number of problems that can be classified becomes a very small fraction

of the totality of problems that can be formulated.

Specifically, a neuron with binary inputs can have 2n different input patterns.

Since each input pattern can produce 2 different binary outputs, then there are 22n

different functions of n variables. The number of linearly separable problems of n

binary inputs is however a small fraction of 22n

as is evident from Table 4.2 that is

due to Windner (1960). See also Wasserman (1989).

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

24 Principles of Artificial and Neural Networks

Fig. 4.8. Convex and non-convex regions.

4.4. Many-Layer Perceptrons

To overcome the limitations pointed out by Minsky and Papert, which at the

time resulted in a great disappointment with ANNs and in a sharp drop (nearly

total) of research into them, it was necessary to go beyond the single layer ANN.

Minsky and Papert (1969) have shown that a single-layer ANN can solve (repre-

sent) problems of classification of points that lie in a convex open region or in a con-

vex closed region as in Fig. 4.8. (A convex region is one where any two points in that

region can be connected by a straight line that lies fully in that region). In 1969 there

was no method to set weights other than for neurons whose output (y) was accessi-

ble. It was subsequently shown [Rumelhart et al., 1986] that a 2-layer ANN can solve

also non-convex problems, including the XOR problem above. Extension to three

or more layers extends the classes of problems that can be represented and hence

solved by ANN to, essentially, no bound. However, in the 1960s and 1970s there was

no powerful tool to set weights of a multi-layer ANN. Although multilayer training

was already used to some extent for the Madaline, it was slow and not rigorous

enough for the general multi-layer problem. The solution awaited the formulation

of the Back Propagation algorithm, to be described in Chapter 6.

Our comments above, concerning a multi-layer Perceptron network, fully apply

to any neuronal model and therefore to any multi-layer neural network, including all

networks discussed in later chapters of this text. It therefore applies the Madaline

of the next chapter and recurrent networks whose recurrent structure makes a single

layer behave as a dynamic multi-layer network.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Perceptron 25

4.A. Perceptron Case Study: Identifying Autoregressive Parameters

of a Signal (AR Time Series Identification)

Goal:

To model a time series parameter identification of a 5th order autoregressive (AR)

model using a single Perceptron.

Problem Set Up:

First, a time series signal x(n) of 2000 samples is generated using a 5th order AR

model added with white Gaussian noise w(n). The mathematical model is as follows,

x(n) =
M
∑

i=1

aix(n − i) + w(n) (4.A.1)

where

M = order of the model

ai = ith element of the AR parameter vector α (alpha)

The true AR parameters as have been used unknown to the neural network to

generate the signal x(u), are:

a1 = 1.15

a2 = 0.17

a3 = −0.34

a4 = −0.01

a5 = 0.01

The algorithm presented here is based on deterministic training. A stochastic ver-

sion of the same algorithm and for the same problem is given in Sec. 11.B below.

Given a time series signal x(n), and the order M of the AR model of that signal,

we have that

x̂(n) =
M
∑

i=1

âix(n − i) (4.A.2)

where x̂(n) is the estimate of x(n), and then define

e(n) , x(n) − x̂(n) (4.A.3)

Therefore, if and when âi have converged to a:

e(n) → w(n) (4.A.4)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

26 Principles of Artificial and Neural Networks

Fig. 4.A.1. Signal flow diagram.

The Perceptron neural network for this model is given in Fig. 4.A.1. Since the

white Gaussian noise is uncorrelated with its past,

E[w(n)w(n − k)] =

{

σ2
x for k = 0

0 otherwise
(4.A.5)

Thus we define a mean square error (MSE) as

MSE , Ê[e2(n)] =
1

N

N
∑

i=1

e2(i) (4.A.6)

which is the sampled variance of the error e(h) above over N samples

Deterministic Training:

Given x(n) from Eq. (4.A.2), find âi such that

x̂(n) =

M
∑

i=1

âix(n − i) = âT x(n − 1)

â , [â1 · · · âM]
T

then calculate

e(n) = x(n) − x̂(n) (4.A.7)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Perceptron 27

Fig. 4.A.2. Signal versus time.

update the weight vector â to minimize the MSE error of Eq. (4.A.6), by using the

delta rule and momentum term

∆â(n) = 2µe(n)x(n − 1) + α∆â(n − 1) (4.A.8)

â(n + 1) = â(n) + ∆â(n) (4.A.9)

where

â(n) = [â1(n), . . . , â5(n)]
T

x(n − 1) = [x(n − 1) · · ·x(n − 5)]T

µ0 = 0.001

α = 0.5

and µ is decreasing in iteration step as,

µ =
µ0

1 + k
(4.A.10)

Note that α is a momentum coefficient which is added to the update equation

since it can serve to increase the speed of convergence.

A plot of MSE versus the number of iteration is shown in Fig. 4.A.3. The flow

chart of deterministic training is shown in Fig. 4.A.4.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

28 Principles of Artificial and Neural Networks

Fig. 4.A.3. Mean squared error versus time.

Fig. 4.A.4. Flow chart of deterministic training.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Perceptron 29

Program Printout: written in MATLABr (MATLAB is a registered trademark

of The MathWorks, Inc.)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

30 Principles of Artificial and Neural Networks

Computational Results: Parameter Estimates (Weights) and Mean

Square Error Deterministic Training, No Bias Term Added

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Perceptron 31

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

32 Principles of Artificial and Neural Networks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Perceptron 33

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

34 Principles of Artificial and Neural Networks

Parameter Estimates (Weights) and The Mean Square Error

Deterministic Training only with Bias Term Added

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Perceptron 35

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

36 Principles of Artificial and Neural Networks

Observe the closeness of the parameters identified above (say, at iteration 200) to

the original but unknown parameters as at the beginning of Sec. 4.A.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Chapter 5

The Madaline

The Madaline (Many Adaline) is a multilayer extension of the single-neuron bipolar

Adaline to a network. It is also due to B. Widrow (1988). Since the Madaline

network is a direct multi-layer extension of the Adaline of Sec. 3, we present it

before discussing the Back Propagation network that is historically earlier (see our

discussion in Sec. 4.4 above). Its weight adjustment methodology is more intuitive

than in Back Propagation and provides understanding into the difficulty of adjusting

weights in a multi-layer network, though it is less efficient. Its basic structure is

given in Fig. 5.1 which is in terms of two layers of Adalines, plus an input layer

which merely serves as a network’s input distributor (see Fig. 5.2).

5.1. Madaline Training

Madaline training differs from Adaline training in that no partial desired outputs

of the inside layers are or can be available. The inside layers are thus termed hidden

layers. Just as in the human central nervous system (CNS), we may receive learning

information in terms of desired and undesired outcome, though the human is not

conscious of outcomes of individual neurons inside the CNS that participate in that

learning, so in ANN no information of inside layers of neurons is available.

The Madaline employs a training procedure known as Madaline Rule II, which

is based on a Minimum Disturbance Principle, as follows [Widrow et al., 1987]:

(1) All weights are initialized at low random values. Subsequently, a training set of

L input vectors xi(i = 1, 2, . . . , L) is applied one vector at a time to the input.

(2) The number of incorrect bipolar values at the output layer is counted and this

number is denoted as the error e per a given input vector.

(3) For all neurons at the output layer:

(a) Denoting th as the threshold of the activation function (preferably 0), check:

[z-th] for every input vector of the given training set of vectors for the

particular layer that is considered at this step. Select the first unset neuron

from the above but which corresponds to the lowest abs[z-th] occurring over

that set of input vectors. Hence, for a case of L input vectors in an input

set and for a layer of n neurons, selection is from n×L values of z. This is

37

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

38 Principles of Artificial and Neural Networks

Fig. 5.1. A simple Madaline structure.

Fig. 5.2. The Madaline network of 2 layers.

the node that can reverse its polarity by the smallest change in its weights,

thus being denoted as the minimum-disturbance neuron, from which the

procedures name is derived. A previously unset neuron is a neuron whose

weights have not been set yet.

(b) Subsequently, one should change the weights of the latter neuron such that

the bipolar output y of that unit changes. The smallest change in weight via

a modified steepest procedure as in Sec. 3.4.2 that considers [z-th] instead

of em of Eq. (3.22) will cause this change. Alternatively, random changes

may be employed.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Madaline 39

(c) The input set of vectors is propagated to the output once again.

(d) If the change in weight reduced the performance cost “e” of Step 2, then

this change is accepted. Else, the original (earlier) weights are restored to

that neuron.

(4) Repeat Step 3 for all layers except for the input layer.

(5) For all neurons of the output layer: Apply Steps 3, 4 for a pair of neurons whose

analog node-outputs z are closest to zero, etc.

(6) For all neurons of the output layer: Apply Steps 3, 4 for a triplet of neurons

whose analog node-outputs are closest to zero, etc.

(7) Go to next vector up to the L’th vector.

(8) Repeat for further combinations of L vectors till training is satisfactory.

The same can be repeated for quadruples of neurons, etc. However, this setting

then becomes very lengthy and may therefore be unjustified. All weights are initially

set to (different) low random values. The values of the weights can be positive or

negative within some fixed range, say, between −1 and 1. The initial learning rate

µ of Eq. (3.18) of the previous chapter should be between 1 and 20. For adequate

convergence, the number of hidden layer neurons should be at least 3, preferably

higher. Many iterations steps (often, thousands) of the steepest descent algorithm

of Sec. 3.4.2 are needed for convergence. It is preferable to use a bipolar rather than

a binary configuration for the activation function.

The above discussion of the Madeline neural network (NN) indicates that the

Madeline is an intuitive but rather primitive and inefficient NN. It is also very sen-

sitive to noise. Though it has the basic properties of several other neural networks

discussed in later chapters of this text, we shall see that the networks discussed

later are considerably more efficient and less noise-sensitive.

5.A. Madaline Case Study∗: Character Recognition

5.A.1. Problem statement

Designing a Madaline (Multiple Adaline) Neural Network to recognize 3 charac-

ters 0, C and F supplied in a binary format and represented using a 6×6 grid. The

Neural Network should be trained and tested with various patterns and the total

error rate and the amount of convergence should be observed. Typical patterns

used for training and testing are as in Fig. 5.A.1.

∗Computed by Vasanath Arunachalam, ECS Dept. University of Illinois, Chicago, 2006.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

40 Principles of Artificial and Neural Networks

Fig. 5.A.1: Patterns to be recognized

1 1 1 1 1 1

1 -1 -1 -1 -1 -1

1 -1 -1 -1 -1 -1

1 -1 -1 -1 -1 -1

1 -1 -1 -1 -1 -1

1 1 1 1 1 1

Fig. 5.A.1(a). Pattern representing character C.

1 1 1 1 1 1

1 -1 -1 -1 -1 1

1 -1 -1 -1 -1 1

1 -1 -1 -1 -1 1

1 -1 -1 -1 -1 1

1 1 1 1 1 1

Fig. 5.A.1(b). Pattern representing character 0.

1 1 1 1 1 1

1 -1 -1 -1 -1 -1

1 1 1 1 1 1

1 -1 -1 -1 -1 -1

1 -1 -1 -1 -1 -1

1 -1 -1 -1 -1 -1

Fig. 5.A.1(c). Pattern representing character F.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Madaline 41

5.A.2. Design of network

A Madaline network as in Fig. 5.A.2 was implemented with 3 layer, input (6

neurons), hidden (3 neurons), and output (2 neurons), layers. 36 inputs from a grid

containing characters 0, C or F are given as input to the network. 15 such input

sets are given, 5 each for 3’s and 0’s. The weights of the network are initially set in

a random fashion in the range {−1, 1}.

Fig. 5.A.2: The Madaline network

Input Layer
 Hidden Layer

 Output Layer

X1

 Z1

 Output Layer

 Z2

Xn

5.A.3. Training of the network

The following are the basic steps for Training of a Back Propagation Neural

Network

• Generate a training data set with 5 sets of 0’s, C’s and F’s each.

• Feed this training set (see Fig. 5.A.3) to the network.

• Set weights of the network randomly in the range {−1, 1}.
• Use hardlimiter transfer function for each neuron.

Y (n) =

{

1, if x = 0

−1, if x < 0

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

42 Principles of Artificial and Neural Networks

• Each output is passed as input to the successive layer.

• The final output is compare with the desired output and cumulative error for the

15 inputs is calculated.

• If the error percent is above 15% then the weights (for the neuron which has

output closest to 0) of the output layer is changed using

weightnew = weightold + 2*constant*output (previous layer)*error

• Weight(s) are updated and the new error is determined.

• Weights are updated for various neurons until there is no error or the error is

below a desired threshold.

• Test data set is fed to the network with updated weights and the output (error)

is obtained thereby determining the efficiency of the network.

Fig. 5.A.3: The Training Sets:

Fig. 5.A.1(a): Training Set 1

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Madaline 43

Fig. 5.A.3(b): Test Set 2

Fig.5.A.3(b): Test Set 2

5.A.4. Results

The results are as shown below:

• Hidden Layer Weight Matrix:

w hidden =

Columns 1 through 12

−0.9830 0.6393 0.1550 −0.2982 −0.7469 −0.0668 0.1325 −0.9485 0.2037 0.1573 0.1903 −0.8288

0.2329 −0.1504 0.6761 0.0423 0.6629 0.1875 0.1533 −0.1751 −0.6016 −0.9714 0.7511 −0.3460

0.9927 −0.4033 0.4272 0.8406 0.6071 0.5501 −0.3400 −0.8596 −0.7581 0.3686 −0.6020 −0.6334

0.8494 −0.7395 −0.2944 0.7219 −0.1397 −0.4833 0.5416 −0.8979 −0.1973 0.6348 −0.2891 0.5008

0.7706 0.9166 −0.0775 −0.4108 −0.1773 −0.6749 0.4772 0.1271 −0.8654 0.7380 −0.0697 0.4995

0.5930 −0.0853 0.8175 −0.0605 −0.7407 0.4429 0.6812 −0.7174 0.9599 −0.3352 −0.3762 −0.5934

Columns 13 through 24

0.5423 0.1111 0.7599 −0.4438 −0.5097 0.9520 −0.1713 −0.7768 −0.1371 0.7247 −0.2830 0.4197

−0.2570 −0.4116 −0.3409 0.5087 0.6436 −0.0342 −0.7515 −0.7608 0.2439 −0.8767 0.4824 −0.3426

0.6383 −0.0592 0.9073 0.0101 −0.2051 0.9051 −0.6792 0.4301 −0.7850 −0.1500 −0.2993 0.2404

−0.2520 0.2275 0.1467 0.3491 −0.5696 −0.7650 −0.3104 0.5042 −0.8040 0.5050 0.1335 0.1340

−0.0943 0.9710 −0.2042 −0.6193 −0.8348 0.3316 0.4818 −0.7792 0.6217 0.9533 0.3451 0.7745

−0.2432 −0.1404 −0.7061 −0.8046 −0.6752 0.6320 −0.2957 0.9080 0.5916 −0.7896 0.6390 0.4778

Columns 25 through 36

0.1716 −0.2363 0.8769 0.6879 0.6093 −0.3614 −0.6604 −0.6515 0.4398 0.4617 −0.8053 0.5862

0.7573 −0.4263 −0.6195 −0.4669 0.1387 −0.0657 −0.6288 −0.2554 0.5135 −0.5389 −0.5124 −0.7017

0.1269 0.9827 −0.2652 −0.5645 0.3812 −0.3181 0.6370 −0.9764 −0.6817 −0.6304 0.9424 0.0069

−0.4123 0.0556 −0.8414 −0.4920 0.4873 0.3931 0.6202 −0.8650 0.3017 0.7456 0.0283 0.3789

−0.9717 −0.2941 −0.9094 −0.6815 −0.5724 0.9575 −0.9727 −0.4461 −0.1779 0.9563 −0.6917 0.8462

0.6046 −0.0979 −0.0292 −0.3385 0.6320 −0.3507 −0.3482 −0.1802 0.4422 0.8711 0.0372 0.1665

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

44 Principles of Artificial and Neural Networks

• Output Layer Weight Matrix:

w output =
0.9749 0.5933 −0.7103 0.5541 −0.6888 −0.3538

0.0140 0.2826 0.9855 0.8707 0.4141 0.2090

Before any Changes

w output =
0.9749 0.5933 −0.7103 0.5541 −0.6888 −0.3538

0.0140 0.2826 0.9855 0.8707 0.4141 0.2090

z output = 0.5047 1.501

y output = 1 1

Weight Modification at Output Layer:

• Neuron with Z closest to threshold

z index = 1

• Weights before change:

w output min =
0.9749 0.5933 −0.7103 0.5541 −0.6888 −0.3538

0.0140 0.2826 0.9855 0.8707 0.4141 0.2090

• Weights after change:

w output min =
0.2549 1.3133 0.0097 1.2741 −1.4088 −0.3538

0.0140 0.2826 0.9855 0.8707 0.4141 0.2090

• Next Output Layer Neuron

z ind = 2

Final values for Output Layer after Convergence:

w output =
0.2549 1.3133 0.0097 1.2741 −1.4088 −0.3538

−0.7060 1.0026 1.7055 1.5907 −0.3059 0.2090

z output = 1.7970 3.0778

y output = 1 1

Final values for Hidden Layer after Convergence:

w hidden =

Columns 1 through 12

−0.2630 1.3593 0.8750 0.4218 −0.0269 0.6532 0.8525 −1.6685 −0.5163 −0.5627 −0.5297 −1.5488

0.2329 −0.1504 0.6761 0.0423 0.6629 0.1875 0.1533 −0.1751 −0.6016 −0.9714 0.7511 −0.3460

0.9927 −0.4033 0.4272 0.8406 0.6071 0.5501 −0.3400 −0.8596 −0.7581 0.3686 −0.6020 −0.6334

0.8494 −0.7395 −0.2944 0.7219 −0.1397 −0.4833 0.5416 −0.8979 −0.1973 0.6348 −0.2891 0.5008

1.4906 1.6366 0.6425 0.3092 0.5427 0.0451 1.1972 −0.5929 −1.5854 0.0180 −0.7897 −0.2205

0.5930 −0.0853 0.8175 −0.0605 −0.7407 0.4429 0.6812 −0.7174 0.9599 −0.3352 −0.3762 −0.5934

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Madaline 45

Columns 13 through 24

1.2623 0.8311 1.4799 0.2762 0.2103 0.2320 0.5487 −1.4968 −0.8571 0.0047 −1.0030 −0.3003

−0.2570 −0.4116 −0.3409 0.5087 0.6436 −0.0342 −0.7515 −0.7608 0.2439 −0.8767 0.4824 −0.3426

0.6383 −0.0592 0.9073 0.0101 −0.2051 0.9051 −0.6792 0.4301 −0.7850 −0.1500 −0.2993 0.2404

−0.2520 0.2275 0.1467 0.3491 −0.5696 −0.7650 −0.3104 0.5042 −0.8040 0.5050 0.1335 0.1340

0.6257 1.6910 0.5158 0.1007 −0.1148 −0.3884 1.2018 −1.4992 −0.0983 0.2333 −0.3749 0.0545

−0.2432 −0.1404 −0.7061 −0.8046 −0.6752 0.6320 −0.2957 0.9080 0.5916 −0.7896 0.6390 0.4778

Columns 25 through 36

0.8916 −0.9563 0.1569 −0.0321 −0.1107 −1.0814 0.0596 −1.3715 −0.2802 −0.2583 −1.5253 −0.1338

0.7573 −0.4263 −0.6195 −0.4669 0.1387 −0.0657 −0.6288 −0.2554 0.5135 −0.5389 −0.5124 −0.7017

0.1269 0.9827 −0.2652 −0.5645 0.3812 −0.3181 0.6370 −0.9764 −0.6817 −0.6304 0.9424 0.0069

−0.4123 0.0556 −0.8414 −0.4920 0.4873 0.3931 0.6202 −0.8650 0.3017 0.7456 0.0283 0.3789

−0.2517 −1.0141 −1.6294 −1.4015 −1.2924 0.2375 −0.2527 −1.1661 −0.8979 0.2363 −1.4117 0.1262

0.6046 −0.0979 −0.0292 −0.3385 0.6320 −0.3507 −0.3482 −0.1802 0.4422 0.8711 0.0372 0.1665

z hidden = 23.2709 6.8902 7.3169 0.6040 22.8362 −3.5097

y hidden = 1 1 1 1 1 −1

Final Cumulative error

counter = 7

Training Efficiency

eff = 82.5000

Testing Procedure:

5 characters each for ‘0’, ‘C’ and ‘F’ were used for testing the trained network. The

network was found to detect 12 characters out of the 15 given characters resulting

in an efficiency of 80%

Testing Efficiency:

eff = 80.0000%

5.A.5. Conclusions and observations

• The Neural Network was trained and tested for different test and training pat-

terns. In all the cases the amount of convergence and error rate was observed.

• The convergence greatly depended on the hidden layers and number of neurons

in each hidden layer.

• The number in each hidden layer should neither be too less or too high.

• The Neural network once properly trained was very accurate in classifying data

in most of the test cases. The amount of error observed was 6%(approx.), which

is ideal for classification problems like Face Detection.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

46 Principles of Artificial and Neural Networks

5.A.6. MATLAB code for implementing MADALINE network:

Main Function:

% Training Patterns

X = train_pattern;

nu = 0.04;

% Displaying the 15 training patterns

figure(1)

for i = 1:15,

subplot(5,3,i)

display_image(X(:,i),6,6,1);

end

% Testing Patterns

Y = test_pattern;

nu = 0.04;

% Displaying the 15 testing patterns

figure(2)

for i = 1:15,

subplot(5,3,i)

display_image(Y(:,i),6,6,1);

end

% Initializations

index = zeros(2,6);

counter1 = 0;

counter2 = 0;

% Assign random weights initially at the start of training

w_hidden = (rand(6,36)-0.5)*2

w_output = (rand(2,6)-0.5)*2

%load w_hidden.mat

%load w_output.mat

% Function to calculate the parameters (z,y at the hidden and output

layers given the weights at the two layers)

[z_hidden, w_hidden, y_hidden, z_output, w_output, y_output, counter] =

calculation(w_hidden, w_output, X);

disp(‘Before Any Changes’)

w_output

z_output

y_output

save z_output z_output;

save z_hidden z_hidden;

save y_hidden y_hidden;

save y_output y_output;

counter

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Madaline 47

%i = 1;

%min_z_output = min(abs(z_output));

disp(‘At counter minimum’)

if (counter~= 0),

[w_output_min,z_index] =

min_case(z_output,w_output,counter,y_hidden,nu);

[z_hidden_min, w_hidden_min, y_hidden_min, z_output_min,

w_output_min, y_output_min, counter1] = calculation(w_hidden, w_output_min, X);

counter1

end

w_output_min;

z_output_min;

y_output_min;

if (counter > counter1),

%load w_output.mat;

%load z_output.mat;

%load y_output.mat;

counter = counter1;

w_output = w_output_min;

z_output = z_output_min;

y_output = y_output_min;

index(2,z_index) = 1;

end

[w_output_max,z_ind] = max_case(z_output,w_output,counter,y_hidden,nu);

[z_hidden_max, w_hidden_max, y_hidden_max, z_output_max, w_output_max,

y_output_max, counter2] = calculation(w_hidden, w_output_max, X);

disp(‘At Counter minimum’)

counter2

w_output_max;

z_output_max;

y_output_max;

if (counter2<counter),

counter = counter2;

w_output = w_output_max;

z_output = z_output_max;

y_output = y_output_max;

index(2,z_ind) = 1;

end

% Adjusting the weights of the hidden layer

hidden_ind = zeros(1,6);

z_hid_asc = sort(abs(z_hidden));

for i = 1:6,

for k = 1:6,

if z_hid_asc(i) == abs(z_hidden(k)),

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

48 Principles of Artificial and Neural Networks

hidden_ind(i) = k;

end

end

end

r1 = hidden_ind(1);

r2 = hidden_ind(2);

r3 = hidden_ind(3);

r4 = hidden_ind(4);

r5 = hidden_ind(5);

r6 = hidden_ind(6);

disp(‘At the beginning of the hidden layer Weight Changes - Neuron 1’)

%load w_hidden.mat;

if ((counter~=0)&(counter>6)),

[w_hidden_min] =

min_hidden_case(z_hidden,w_hidden,counter,X,nu,hidden_ind(1));

[z_hidden_min, w_hidden_min, y_hidden_min, z_output_min, w_output,

y_output_min, counter3] = calculation(w_hidden_min, w_output, X);

counter3

end

w_hidden;

if (counter3<counter),

counter=counter3;

w_hidden = w_hidden_min;

y_hidden = y_hidden_min;

z_hidden = z_hidden_min;

z_output = z_output_min;

y_output = y_output_min;

index(1,r1) = 1;

end

disp(‘Hidden Layer - Neuron 2’)

%load w_hidden.mat;

%counter=counter2;

if ((counter~=0)&(counter>6)),

[w_hidden_min] =

min_hidden_case(z_hidden,w_hidden,counter,X,nu,hidden_ind(2));

[z_hidden_min, w_hidden_min, y_hidden_min, z_output_min, w_output,

y_output_min, counter3] = calculation(w_hidden_min, w_output, X);

counter3

end

w_hidden;

w_hidden_min;

if (counter3<counter),

counter = counter3;

w_hidden = w_hidden_min;

y_hidden = y_hidden_min;

z_hidden = z_hidden_min;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Madaline 49

z_output = z_output_min;

y_output = y_output_min;

index(1,r2)=1;

end

disp(‘Hidden Layer - Neuron 3’)

%load w_hidden.mat;

%counter=counter2;

if ((counter~=0)&(counter>6)),

[w_hidden_min] =

min_hidden_case(z_hidden,w_hidden,counter,X,nu,hidden_ind(3));

[z_hidden_min, w_hidden_min, y_hidden_min, z_output_min, w_output,

y_output_min, counter3] = calculation(w_hidden_min, w_output, X);

counter3

end

w_hidden;

w_hidden_min;

if (counter3<counter),

counter = counter3;

w_hidden = w_hidden_min;

y_hidden = y_hidden_min;

z_hidden = z_hidden_min;

z_output = z_output_min;

y_output = y_output_min;

index(1,r3) = 1;

end

disp(‘Hidden Layer - Neuron 4’)

%load w_hidden.mat;

%counter=counter2;

if ((counter~=0)&(counter>6)),

[w_hidden_min] =

min_hidden_case(z_hidden,w_hidden,counter,X,nu,hidden_ind(4));

[z_hidden_min, w_hidden_min, y_hidden_min, z_output_min, w_output,

y_output_min, counter3] = calculation(w_hidden_min, w_output, X);

counter3

end

w_hidden;

w_hidden_min;

if (counter3<counter),

counter = counter3;

w_hidden = w_hidden_min;

y_hidden = y_hidden_min;

z_hidden = z_hidden_min;

z_output = z_output_min;

y_output = y_output_min;

index(1,r4)=1;

end

disp(‘Hidden Layer - Neuron 5’)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

50 Principles of Artificial and Neural Networks

%load w_hidden.mat;

%counter=counter2;

if (counter~=0),

[w_hidden_min] =

min_hidden_case(z_hidden,w_hidden,counter,X,nu,hidden_ind(5));

[z_hidden_min, w_hidden_min, y_hidden_min, z_output_min, w_output,

y_output_min, counter3] = calculation(w_hidden_min, w_output, X);

counter3

end

end

w_hidden;

w_hidden_min;

if (counter3<counter),

counter = counter3;

w_hidden = w_hidden_min;

y_hidden = y_hidden_min;

z_hidden = z_hidden_min;

z_output = z_output_min;

y_output = y_output_min;

index(1,r5)=1;

end

disp(‘Combined Output Layer Neurons weight change’);

%load w_hidden.mat;

%counter = counter2;

if ((counter~=0)&(index(2,[1:2])~=1)&(counter>6)),

[w_output_two] =

min_output_double(z_hidden,y_hidden,counter,X,nu,w_output);

[z_hidden_min, w_hidden_min, y_hidden_min, z_output_min, w_output,

y_output_min, counter3] = calculation(w_hidden,w_output_two, X);

counter3

end

end

w_output;

%w_output_two;

if (counter3<counter),

counter = counter3;

%w_hidden = w_hidden_min;

y_hidden = y_hidden_min;

z_hidden = z_hidden_min;

z_output = z_output_min;

y_output = y_output_min;

w_output = w_output_two;

end

disp(‘Begin 2 neuron changes - First Pair’)

%load w_hidden.mat;

%counter = counter2;

if ((counter~=0)&(index(1,r1)~=1)&(index(1,r2)~=1)&(counter>6)),

[w_hidden_two] =

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Madaline 51

min_hidden_double(z_hidden,w_hidden,counter,X,nu,hidden_ind(1),hidden_ind(2));

[z_hidden_min, w_hidden_min, y_hidden_min, z_output_min, w_output,

y_output_min, counter3] = calculation(w_hidden_two, w_output, X);

counter3

end

w_hidden;

w_hidden_min;

if (counter3<counter),

counter = counter3;

w_hidden = w_hidden_min;

y_hidden = y_hidden_min;

z_hidden = z_hidden_min;

z_output = z_output_min;

y_output = y_output_min;

end

disp(‘Begin 2 neuron changes - Second Pair’)

%load w_hidden.mat;

%counter = counter2;

if ((counter~=0)&(index(1,r2)~=1)&(index(1,r3)~=1)&(counter>6)),

[w_hidden_two] =

min_hidden_double(z_hidden,w_hidden,counter,X,nu,hidden_ind(2),hidden_ind(3));

[z_hidden_min, w_hidden_min, y_hidden_min, z_output_min, w_output,

y_output_min, counter3] = calculation(w_hidden_two, w_output, X);

counter3

end

w_hidden;

w_hidden_min;

if (counter3<counter),

counter = counter3;

w_hidden = w_hidden_min;

y_hidden = y_hidden_min;

z_hidden = z_hidden_min;

z_output = z_output_min;

y_output = y_output_min;

end

disp(‘Begin 2 neuron changes - Third Pair’)

%load w_hidden.mat;

%counter = counter2;

if ((counter~=0)&(index(1,r3)~=1)&(index(1,r4)~=1)&(counter>6)),

[w_hidden_two] =

min_hidden_double(z_hidden,w_hidden,counter,X,nu,hidden_ind(3),hidden_ind(4));

[z_hidden_min, w_hidden_min, y_hidden_min, z_output_min, w_output,

y_output_min, counter3] = calculation(w_hidden_two, w_output, X);

counter3

end

w_hidden;

w_hidden_min;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

52 Principles of Artificial and Neural Networks

if (counter3<counter),

counter = counter3;

w_hidden = w_hidden_min;

y_hidden = y_hidden_min;

z_hidden = z_hidden_min;

z_output = z_output_min;

y_output = y_output_min;

end

disp(‘Begin 2 neuron changes - Fourth Pair’)

%load w_hidden.mat;

%counter = counter2;

if ((counter~=0)&(index(1,r4)~=1)&(index(1,r5)~=1)&(counter>6)),

[w_hidden_two] =

min_hidden_double(z_hidden,w_hidden,counter,X,nu,hidden_ind(4),hidden_ind(5));

[z_hidden_min, w_hidden_min, y_hidden_min, z_output_min, w_output,

y_output_min, counter3] = calculation(w_hidden_two, w_output, X);

counter3

end

w_hidden;

w_hidden_min;

disp(‘Final Values For Output’)

w_output

z_output

y_output

disp(‘Final Values for Hidden’)

w_hidden

z_hidden

y_hidden

disp(‘Final Error Number’)

counter

disp(‘Efficiency’)

eff = 100 - counter/40*100

Sub-functions:

*****************Function to calculate the parameters (z,y at the

hidden and output layers given the weights at the two layers)******************

function [z_hidden, w_hidden, y_hidden, z_output, w_output, y_output,

counter] = calculation(w_hidden, w_output, X)

% Outputs:

% z_hidden - hidden layer z value

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Madaline 53

% w_hidden - hidden layer weight

% y_hidden - hidden layer output

% Respecitvely for the output layers

% Inputs:

% Weights at the hidden and output layers and the training pattern set

counter = 0;

r = 1;

while(r<=15),

r;

for i = 1:6,

z_hidden(i) = w_hidden(i,:)*X(:,r);

if (z_hidden(i)>=0),

y_hidden(i) = 1;

else

y_hidden(i) = -1;

end %%End of If loop

end %% End of for loop

z_hidden;

y_hiddent = y_hidden’;

for i = 1:2

z_output(i) = w_output(i,:)*y_hiddent;

if (z_output(i)>=0),

y_output(i) = 1;

else

y_output(i) = -1;

end %% End of If loop

end%% End of for loop

y_output;

% Desired Output

if (r<=5),

d1 = [1 1]; % For 0

else if (r>10),

d1 = [-1 -1] %For F

else

d1 = [-1 1]; % For C

end

end

for i = 1:2,

error_val(i) = d1(i)-y_output(i);

if (error_val(i)~=0),

counter = counter+1;

end

end

r = r+1;

end

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

54 Principles of Artificial and Neural Networks

******Function to find weight changes for paired hidden layer**********

function [w_hidden_two] =

min_hidden_double(z_hidden,w_hidden,counter,X,nu,k,l)

w_hidden_two = w_hidden;

for j = 1:36,

w_hidden_two(k,j) = w_hidden_two(k,j) + 2*nu*X(j,15)*counter;

w_hidden_two(l,j) = w_hidden_two(l,j) + 2*nu*X(j,15)*counter;

end

*********Function to find weight changes at hidden layer**************

function [w_hidden_min] =

min_hidden_case(z_hidden,w_hidden,counter,X,nu,k)

w_hidden_min = w_hidden;

for j = 1:36,

w_hidden_min(k,j) = w_hidden_min(k,j) + 2*nu*X(j,15)*counter;

end

%w_hidden_min

****Function to change weights for the max of 2z values at Output****

function [w_output_max,z_ind] =

max_case(z_output,w_output,counter,y_hidden,nu)

%load w_output;

%load z_output;

w_output_max = w_output;

z_ind = find(abs(z_output) == max(abs(z_output)))

for j = 1:5,

w_output_max(z_ind,j) = w_output(z_ind,j)+2*nu*y_hidden(j)*counter;

% end

% z_output(z_index) = w_output(z_index,:)*y_hiddent;

end

****************Function to compute weight change at the output for

neuron whose Z value is close to the threshold**********************

function [w_output_min,z_index] =

min_case(z_output,w_output,counter,y_hidden,nu)

z_index = find(abs(z_output) == min(abs(z_output)))

w_output_min = w_output

for j = 1:5,

w_output_min(z_index,j) = w_output(z_index,j) +

2*nu*y_hidden(j)*counter;

end

w_output_min

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Madaline 55

*******Function to find weight changes with paired output neurons******

function [w_output_two] =

min_output_double(z_hidden,y_hidden,counter,X,nu,w_output)

w_output_two = w_output;

for j = 1:6,

w_output_two([1:2],j) = w_output([1:2],j)+2*nu*y_hidden(j)*counter;

end

y_hidden;

counter;

2*nu*y_hidden*counter;

Generating Training Set:

function X = train_pattern

x1 = [1 1 1 1 1 1 ; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1;

1 -1 -1 -1 -1 1; 1 1 1 1 1 1];

x2 = [-1 1 1 1 1 1 ; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1;

1 -1 -1 -1 -1 1; 1 1 1 1 1 1];

x3 = [1 1 1 1 1 -1 ; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1;

1 -1 -1 -1 -1 1; 1 1 1 1 1 1];

x4 = [1 1 1 1 1 1 ; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1;

1 -1 -1 -1 -1 1; -1 1 1 1 1 1];

x5 = [-1 1 1 1 1 -1 ; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1;

1 -1 -1 -1 -1 1; 1 1 1 1 1 1];

x6 = [1 1 1 1 1 1 ; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1; 1 1 1 1 1 1];

x7 = [-1 1 1 1 1 1 ; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1; 1 1 1 1 1 1];

x8 = [1 1 1 1 1 1 ; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1; -1 1 1 1 1 1];

x9 = [1 1 1 1 1 -1 ; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1;1 1 1 1 1 -1];

x10 = [-1 1 1 1 1 1 ; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1; 1 1 1 1 1 -1];

x11 = [1 1 1 1 1 1 ; 1 -1 -1 -1 -1 -1; 1 1 1 1 1 1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1];

x12 = [-1 1 1 1 1 1 ; 1 -1 -1 -1 -1 -1; 1 1 1 1 1 1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1];

x13 = [1 1 1 1 1 -1 ; 1 -1 -1 -1 -1 -1; 1 1 1 1 1 -1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1];

x14 = [1 1 1 1 1 1 ; 1 -1 -1 -1 -1 -1; -1 1 1 1 1 1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1];

x15 = [1 1 1 1 1 1 ; 1 -1 -1 -1 -1 -1; 1 1 1 1 1 -1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1];

xr1 = reshape(x1’,1,36);

xr2 = reshape(x2’,1,36);

xr3 = reshape(x3’,1,36);

xr4 = reshape(x4’,1,36);

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

56 Principles of Artificial and Neural Networks

xr5 = reshape(x5’,1,36);

xr6 = reshape(x6’,1,36);

xr7 = reshape(x7’,1,36);

xr8 = reshape(x8’,1,36);

xr9 = reshape(x9’,1,36);

xr10 = reshape(x10’,1,36);

xr11 = reshape(x11’,1,36);

xr12 = reshape(x12’,1,36);

xr13 = reshape(x13’,1,36);

xr14 = reshape(x14’,1,36);

xr15 = reshape(x15’,1,36);

X = [xr1’ xr2’ xr3’ xr4’ xr5’ xr6’ xr7’ xr8’ xr9’ xr10’ xr11’ xr12’ xr13’

xr14’ xr15’];

Generating Test Set:

function [X_test] = test_pattern

X1 = [1 1 1 -1 1 1 ; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 1; 1 1 1 -1 1 1];

X2 = [1 1 1 1 1 -1 ; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1;

1 -1 -1 -1 -1 1; -1 1 1 1 1 1];

X3 = [-1 1 1 1 1 1 ; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1;

1 -1 -1 -1 -1 1; -1 1 1 1 1 1];

X4 = [1 1 1 1 1 1 ; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1;

-1 1 -1 -1 -1 1; -1 -1 1 1 1 -1];

X5 = [-1 1 1 1 -1 -1 ; 1 -1 -1 -1 1 1; 1 -1 -1 -1 -1 1; 1 -1 -1 -1 -1 1;

1 -1 -1 -1 -1 1; -1 1 1 1 1 1];

X6 = [-1 -1 1 1 1 1 ; -1 1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1;

-1 1 -1 -1 -1 -1; -1 -1 1 1 1 1];

X7 = [1 1 1 1 -1 -1 ; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1; 1 1 1 1 1 1];

X8 = [1 1 1 1 1 1 ; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1; 1 1 1 1 -1 -1];

X9 = [1 1 1 1 1 -1 ; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1;

-1 1 -1 -1 -1 -1;-1 -1 1 1 1 -1];

X10 = [-1 1 1 1 1 1 ; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1; -1 -1 1 1 1 -1];

X11 = [-1 1 1 1 1 1 ; 1 -1 -1 -1 -1 -1; 1 1 1 -1 -1 -1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1];

X12 = [1 1 1 1 1 1 ; -1 -1 -1 -1 -1 -1; 1 1 1 1 1 1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1];

X13 = [1 1 1 -1 -1 -1 ; 1 -1 -1 -1 -1 -1; 1 1 1 1 1 -1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1];

X14 = [1 1 -1 1 1 -1 ; 1 -1 -1 -1 -1 -1; -1 -1 1 1 1 1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1; -1 -1 -1 -1 -1 -1];

X15 = [-1 -1 1 1 1 1 ; -1 1 -1 -1 -1 -1; -1 1 1 1 1 -1; 1 -1 -1 -1 -1 -1;

1 -1 -1 -1 -1 -1; 1 -1 -1 -1 -1 -1];

xr1 = reshape(X1’,1,36);

xr2 = reshape(X2’,1,36);

xr3 = reshape(X3’,1,36);

xr4 = reshape(X4’,1,36);

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Madaline 57

xr5 = reshape(X5’,1,36);

xr6 = reshape(X6’,1,36);

xr7 = reshape(X7’,1,36);

xr8 = reshape(X8’,1,36);

xr9 = reshape(X9’,1,36);

xr10 = reshape(X10’,1,36);

xr11 = reshape(X11’,1,36);

xr12 = reshape(X12’,1,36);

xr13 = reshape(X13’,1,36);

xr14 = reshape(X14’,1,36);

xr15 = reshape(X15’,1,36);

X_test = [xr1’ xr2’ xr3’ xr4’ xr5’ xr6’ xr7’ xr8’ xr9’ xr10’ xr11’ xr12’ xr13’

xr14’ xr15’];

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

This page intentionally left blankThis page intentionally left blank

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Chapter 6

Back Propagation

6.1. The Back Propagation Learning Procedure

The back propagation (BP) algorithm was proposed in 1986 by Rumelhart,

Hinton and Williams for setting weights and hence for the training of multi-layer

perceptrons. This opened the way for using multi-layer ANNs, nothing that the

hidden layers have no desired (hidden) outputs accessible. Once the BP algorithm

of Rumelhart et al. was published, it was very close to algorithms proposed earlier

by Werbos in his Ph.D. dissertation in Harvard in 1974 and then in a report by

D. B. Parker at Stanford in 1982, both unpublished and thus unavailable to the

community at large. It goes without saying that the availability of a rigorous

method to set intermediate weights, namely to train hidden layers of ANNs gave a

major boost to the further development of ANN, opening the way to overcome the

single-layer shortcomings that had been pointed out by Minsky and which nearly

dealt a death blow to ANNs.

6.2. Derivation of the BP Algorithm

The BP algorithm starts, of necessity with computing the output layer, which is

the only one where desired outputs are available, but the outputs of the intermediate

layers are unavailable (see Fig. 6.1), as follows:

Let ε denote the error-energy at the output layer, where:

ε ,
1

2

∑

k

(dk − yk)2 =
1

2

∑

k

e2
k (6.1)

k = 1 · · ·N ; N being the number of neurons in the output layer. Consequently, a

gradient of ε is considered, where:

∇εk =
∂ε

∂wkj

(6.2)

Now, by the steepest descent (gradient) procedure, as in Sec. 3.4.2, we have that

wkj(m + 1) = wkj(m) + ∆wkj (m) (6.3)

59

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

60 Principles of Artificial and Neural Networks

Fig. 6.1. A multi-layer perceptron.

j denoting the jth input to the kth neuron of the output layer, where, again by the

steepest descent procedure:

∆wkj = −η
∂ε

∂wkj

(6.4)

The minus (−) sign in Eq. (6.4) indicates a down-hill direction towards a min-

imum. We note from the perceptron’s definition that the k’s perceptron’s node-

output zk is given by

zk =
∑

j

wkjxj (6.5)

xj being the jth input to that neuron, and noting that the perceptron’s output

yk is:

yk = FN (zk) (6.6)

F being a nonlinear function as discussed in Chap. 5. We now substitute

∂ε

∂wkj

=
∂ε

∂zk

∂zk

∂wkj

(6.7)

and, by Eq. (6.5):

∂zk

∂wkj

= xj(p) = yj(p − 1) (6.8)

p denoting the output layer, such that Eq. (6.7) becomes:

∂ε

∂wkj

=
∂ε

∂zk

xj(p) =
∂ε

∂zr

yj(p − 1) (6.9)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 61

Defining:

Φk(p) = − ∂ε

∂zk(p)
(6.10)

then Eq. (6.9) yields:

∂ε

∂wkj

= −Φk(p)xj(p) = −Φkyj(p − 1) (6.11)

and, by Eqs. (6.4) and (6.11):

∆wkj = ηφk(p)xj(p) = ηΦk(p)yj(p − 1) (6.12)

j denoting the jth input to neuron k of the output (p) layer.

Furthermore, by Eq. (6.10):

Φk = − ∂ε

∂zk

= − ∂ε

∂yk

∂yk

∂zk

(6.13)

But, by Eq. (6.1):

∂ε

∂yk

= −(dk − yk) = yk − dk (6.14)

whereas, for a sigmoid nonlinearity:

yk = FN (zk) =
1

1 + exp(−zk)
(6.15)

we have that:

∂yk

∂zk

= yk(1 − yk) (6.16)

Consequently; by Eqs. (6.13), (6.14) and (6.16):

Φk = yk(1 − yk)(dk − yk) (6.17)

such that, at the output layer, by Eqs. (6.4), (6.7):

∆wkj = −η
∂ε

∂wkj

= −η
∂ε

∂zk

∂zk

∂wkj

(6.18)

where, by Eqs. (6.8) and (6.13)

∆wkj(p) = ηΦk(p)yj(p − 1) (6.19)

Φk being as in Eq. (6.17), to complete the derivation of the setting of output layer

weights.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

62 Principles of Artificial and Neural Networks

Back-propagating to the rth hidden layer, we still have, as before

∆wji = −η
∂ε

∂wji

(6.20)

for the ith branch into the jth neuron of the rth hidden layer. Consequently, in

parallelity to Eq. (6.7):

∆wji = −η
∂ε

∂zj

∂zj

∂wji

(6.21)

and noting Eq. (6.8) and the definition of Φ in Eq. (6.13):

∆wji = −η
∂ε

∂zj

yi(r − 1) = ηΦj(r)yi(r − 1) (6.22)

such that, by the right hand-side relation of Eq. (6.13)

∆wji = −η

[

∂ε

∂yj(r)

∂yj

∂zj

]

yi(r − 1) (6.23)

where ∂ε
∂yj

is inaccessible (as is, therefore, also Φj(r) above).

However, ε can only be affected by upstream neurons when one propagates back-

wards from the output. No other information is available at that stage. Therefore:

∂ε

∂yj(r)
=

∑

k

∂ε

∂zk(r + 1)

[

∂zk(r + 1)

∂yj(r)

]

=
∑

k

∂ε

∂zk

[

∂

∂yj(r)

∑

m

wkm(r + 1)ym(r)

]

(6.24)

where the summation over k is performed over the neurons of the next (the r + 1)

layer that connect to yj(r), whereas summation over m is over all inputs to each

k’th neuron of the (r + 1) layer.

Hence, and noting the definition of Φ, Eq. (6.24) yields:

∂ε

∂yj(r)
=

∑

k

∂ε

∂zk(r + 1)
wkj = −

∑

k

Φk(r + 1)wkj(r + 1) (6.25)

since only wkj (r + 1) is connected to yj(r).

Consequently, by Eqs. (6.13), (6.16) and (6.25):

Φj(r) =
∂yj

∂zj

∑

k

Φk(r + 1)wkj(r + 1)

= yj(r)[1 − yj(r)]
∑

k

Φk(r + 1)wkj(r + 1) (6.26)

and, via Eq. (6.19):

∆wji(r) = ηΦj(r)yi(r − 1) (6.27)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 63

to obtain ∆wji(r) as a function of φ and the weights of the (r + 1) layer, noting

Eq. (6.26).

Note that we cannot take partial derivatives of ε with respect to the hidden

layer considered. We thus must take the partial derivatives of ε with respect to the

variables upstream in the direction of the output, which are the only ones that affect

ε. This observation is the basis for the Back-Propagation procedure, to facilitate

overcoming the lack of accessible error data in the hidden layers.

The BP algorithm thus propagates backwards all the way to r = 1 (the first

layer), to complete its derivation. Its computation can thus be summarized as

follows:

Apply the first training vector. Subsequently, compute ∆wkj(p) from Eqs. (6.17)

and (6.19) for the output (the p) layer and then proceed through computing ∆wji(r)

from Eq. (6.27) for r = p − 1, p − 2, . . . , 2, 1; using Eq. (6.26) to update Φj(r) on

the basis of Φj(r + 1) upstream (namely back-propagating from layer r + 1 to layer

r), etc. Next, update w(m + 1) from w(m) and ∆w(m) for the m + 1 iteration

via Eq. (6.3) for the latter training set. Repeat the whole process when applying

the next training vector until you go through all L training vectors, then repeat the

whole process for the next (m+2), (m+3) iteration until adequate convergence

is reached.

The learning rate η should be adjusted stepwise, considering out comment at

the end of Sec. 3.4.2. However, since convergence is considerably faster than in

Adaline/Madaline designs, when the error becomes very small, it is advisable to

reinstate η to its initial value before proceeding.

Initialization of wji(o) is accomplished by setting each weight to a low-valued

random value selected from a pool of random numbers, say in the range from −5

to +5.

As in the case of the Madaline network of Sec. 5, the number of hidden layer

neurons should be higher rather than lower. However, for simple problems, one or

two hidden layers may suffice.

6.3. Modified BP Algorithms

6.3.1. Introduction of bias into NN

It is often advantageous to apply some bias to the neurons of a neural network

(see Fig. 6.2). The bias can be trainable when associated with a trainable weight to

be modified as is any other weight. Hence the bias is realized in terms of an input

with some constant (say +1 or +B) input, and the exact bias bi (at the ith neuron)

is then given

bi = woiB (6.28)

woi being the weight of the bias term at the input to neuron i (see Fig. 7). Note

that the bias may be positive or negative, depending on its weight.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

64 Principles of Artificial and Neural Networks

Fig. 6.2. A biased neuron.

6.3.2. Incorporating momentum or smoothing to weight adjustment

The backpropagation (BP) algorithm to compute weights of neurons may tend to

instability under certain operation conditions. To reduce the tendency to instability

Rumelhart et al. (1986) suggested to add a momentum term to Eq. (6.1). Hence,

Eq. (6.12) is modified to:

∆w
(m)
ij = ηΦi(r)yj(r − 1) + α∆w

(m−1)
ij (6.29)

w
(m+1)
ij = w

(m)
ij + ∆w

(m)
ij (6.30)

for the m + 1 iteration, with 0 < α < 1; α being the momentum coefficient (usually

around 0.9). The employment of α will tend to avoid fast fluctuations, but it may

not always work, or could even harm convergence.

Another smoothing method, for the same purpose and also not always advisable,

is that of employing a smoothing term as proposed by Sejnowski and Rosenberg

(1987), is given as follows:

∆w
(m)
ij = α∆w

(m−1)
ij + (1 − α)Φi(r)yj(r − 1) (6.31)

w
(m+1)
ij = w

(m)
ij + η∆w

(m)
ij (6.32)

with 0 < α < 1. Note that for α = 0 no smoothing takes place whereas causes the

algorithm to get stuck. η of Eq. (6.32) is again between 0 and 1.

6.3.3. Other modification concerning convergence

Improved convergence of the BP algorithm can often be achieved by modifying

the range of the sigmoid function from the range of zero to one, to a range from

−0.5 to +0.5. Introduction of feedback (see Ch. 12) may sometimes be used.

Modifying step size can be employed to avoid the BP algorithm from getting

stuck (learning paralysis) or from oscillating. This is often achieved by reducing step

size, at least when the algorithm approached paralysis or when it starts oscillating.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 65

Convergence to local minima can best be avoided by statistical methods where

there always exists a finite probability of moving the network away from an apparent

or a real minimum by a large step.

Modified (resilient) BP algorithms, such as RPROP (Riedmiller and Braun,

1993) greatly speed up convergence and reduce sensitivity to initialization. It con-

siders only signs of partial derivatives to compute weights by BP, rather than their

values.

6.A. Back Propagation Case Study∗: Character Recognition

6.A.1. Introduction

We are trying to solve a simple character recognition problem using a network

of perceptrons with back propagation learning procedure. Our task is to teach the

neural network to recognize 3 characters, that is, to map them to respective pairs

{0,1}, {1,0} and {1,1}. We would also like the network to produce a special error

signal {0,0} in response to any other character.

6.A.2. Network design

(a) Structure: The neural network of the present design consists of three layers

with 2 neurons each, one output layer and two hidden layers. There are 36 inputs

to the network. In this particular case the sigmoid function:

y =
1

1 + exp(−z)

is chosen as a nonlinear neuron activation function. Bias terms (equal to 1) with

trainable weights were also included in the network structure. The structural dia-

gram of the neural network is given in Fig. 6.A.1.

Fig. 6.A.1. Schematic design of the back-propagation neural network.

∗Computed by Maxim Kolesnikov, ECE Dept., University of Illinois, Chicago, 2005.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

66 Principles of Artificial and Neural Networks

(b) Dataset Design: We teach the neural network to recognize characters ‘A’,

‘B’ and ‘C’. To train the network to produce error signal we will use another 6

characters ‘D’, ‘E’, ‘F’, ‘G’, ‘H’ and ‘I’. To check whether the network has learned

to recognize errors we will use characters ‘X’, ‘Y’ and ‘Z’. Note that we are interested

in checking the response of the network to errors on the characters which were not

involved in the training procedure.

The characters to be recognized are given on a 6 × 6 grid. Each of the 36

pixels is set to either 0 or 1. The Corresponding 6 × 6 matrices of the character

representation is given as:

A: 001100 B: 111110 C: 011111

010010 100001 100000

100001 111110 100000

111111 100001 100000

100001 100001 100000

100001 111110 011111

D: 111110 E: 111111 F: 111111

100001 100000 100000

100001 111111 111111

100001 100000 100000

100001 100000 100000

111110 111111 100000

G: 011111 H: 100001 I: 001110

100000 100001 000100

100000 111111 000100

101111 100001 000100

100001 100001 000100

011111 100001 001110

X: 100001 Y: 010001 Z: 111111

010010 001010 000010

001100 000100 000100

001100 000100 001000

010010 000100 010000

100001 000100 111111

(c) Network Set-Up: The Back propagation (BP) learning algorithm of Section

6.2 was used to solve the problem. The goal of this algorithm is to minimize the

error-energy at the output layer, as in Sect. 6.2 above, using equations (6.17),

(6.19), (6.26), (6.27) thereof. In this method a training set of input vectors is

applied vector-by-vector to the input of the network and is forward-propagated to

the output. Weights are then adjusted by the BP algorithm as above. Subsequently,

we repeat these steps for all training sets. The whole process is then repeated for

the next (m + 2)-th iteration and so on. We stop when adequate convergence is

reached.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 67

The program code in C++ was written to simulate the response of the network

and perform the learning procedure, as in Section 6.A.5 below.

6.A.3. Results

(a) Network Training: To train the network to recognize the above characters we

applied the corresponding 6×6 grids in the form of 1×36 vectors to the input of the

network. The character was considered recognized if both outputs of the network

were no more than 0.1 off their respective desired values. The initial learning rate

η was experimentally set to 1.5 and was decreased by a factor of 2 after each 100th

iteration. This approach, however, resulted in the learning procedure getting stuck

in various local minima. We tried running the learning algorithm for 1000 iterations

and it became clear that the error-energy parameter had converged to some steady

value, but recognition failed for all characters (vectors).

However, none of our training vectors were recognized at this point:

TRAINING VECTOR 0: [0.42169 0.798603] — NOT RECOGNIZED —

TRAINING VECTOR 1: [0.158372 0.0697667] — NOT RECOGNIZED —

TRAINING VECTOR 2: [0.441823 0.833824] — NOT RECOGNIZED —

TRAINING VECTOR 3: [0.161472 0.0741904] — NOT RECOGNIZED —

TRAINING VECTOR 4: [0.163374 0.0769596] — NOT RECOGNIZED —

TRAINING VECTOR 5: [0.161593 0.074359] — NOT RECOGNIZED —

TRAINING VECTOR 6: [0.172719 0.0918946] — NOT RECOGNIZED —

TRAINING VECTOR 7: [0.15857 0.0700591] — NOT RECOGNIZED —

TRAINING VECTOR 8: [0.159657 0.0719576] — NOT RECOGNIZED —

Training vectors 0, 1, . . . , 8 in these log entries correspond to the characters ‘A’, ‘B’,

. . . , ‘I’.

To prevent this from happening, one more modification was made. After each

400th iteration we reset the learning rate to its initial value. Then after about

2000 iterations we were able to converge to 0 error and to correctly recognize all

characters:

TRAINING VECTOR 0: [0.0551348 0.966846] — RECOGNIZED —

TRAINING VECTOR 1: [0.929722 0.0401743] — RECOGNIZED —

TRAINING VECTOR 2: [0.972215 0.994715] — RECOGNIZED —

TRAINING VECTOR 3: [0.0172118 0.00638034] — RECOGNIZED —

TRAINING VECTOR 4: [0.0193525 0.00616272] — RECOGNIZED —

TRAINING VECTOR 5: [0.00878156 0.00799531] — RECOGNIZED —

TRAINING VECTOR 6: [0.0173236 0.00651032] — RECOGNIZED —

TRAINING VECTOR 7: [0.00861903 0.00801831] — RECOGNIZED —

TRAINING VECTOR 8: [0.0132965 0.00701945] — RECOGNIZED —

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

68 Principles of Artificial and Neural Networks

(b) Recognition Results: In order to determine if error detection is performed

correctly, we saved the obtained weights into a data file, modified the datasets in

the program replacing the characters ‘G’, ‘H’ and ‘I’ (training vectors 6, 7 and 8)

by the characters ‘X’, ‘Y’ and ‘Z’. We then ran the program, loaded the previously

saved weights from the data file and applied the input to the network. Note that

we performed no further training. We got the following results:

TRAINING VECTOR 6: [0.00790376 0.00843078] — RECOGNIZED —

TRAINING VECTOR 7: [0.0105325 0.00890258] — RECOGNIZED —

TRAINING VECTOR 8: [0.0126299 0.00761764] — RECOGNIZED —

All three characters were successfully mapped to error signal 0,0.

(c) Robustness Investigation: To investigate how robust our neural network

was, we added some noise to the input and got the following results. In the case of

1-bit distortion (out of 36 bits) the recognition rates were:

TRAINING VECTOR 0: 25/36 recognitions (69.4444%)

TRAINING VECTOR 1: 33/36 recognitions (91.6667%)

TRAINING VECTOR 2: 32/36 recognitions (88.8889%)

TRAINING VECTOR 3: 35/36 recognitions (97.2222%)

TRAINING VECTOR 4: 34/36 recognitions (94.4444%)

TRAINING VECTOR 5: 35/36 recognitions (97.2222%)

TRAINING VECTOR 6: 36/36 recognitions (100%)

TRAINING VECTOR 7: 35/36 recognitions (97.2222%)

TRAINING VECTOR 8: 36/36 recognitions (100%)

We also investigated the case of 2-bit distortion and were able to achieve the

following recognition rates:

TRAINING VECTOR 0: 668/1260 recognitions (53.0159%)

TRAINING VECTOR 1: 788/1260 recognitions (62.5397%)

TRAINING VECTOR 2: 906/1260 recognitions (71.9048%)

TRAINING VECTOR 3: 1170/1260 recognitions (92.8571%)

TRAINING VECTOR 4: 1158/1260 recognitions (91.9048%)

TRAINING VECTOR 5: 1220/1260 recognitions (96.8254%)

TRAINING VECTOR 6: 1260/1260 recognitions (100%)

TRAINING VECTOR 7: 1170/1260 recognitions (92.8571%)

TRAINING VECTOR 8: 1204/1260 recognitions (95.5556%)

6.A.4. Discussion and conclusions

We were able to train our neural network so that it successfully eecognizes the

three given characters and at the same time is able to classify other characters as

errors. However, there is a price to pay for this convenience. It seems that the

greater the error detection rate is, the less robust our network is. For instance,

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 69

when 2 bits of character ‘A’ are distorted, the network has only 53% recognition

rate. Roughly speaking, in 1 out of 2 such cases, the network ‘thinks’ that its

input is not the symbol ‘A’ and therefore must be classified as error. Overall, the

back propagation network proved to be much more powerful than Madaline. It is

possible to achieve convergence much faster and it is also easier to program. There

are cases, however, when the back propagation learning algorithm gets stuck in a

local minimum but they can be successfully dealt with by tuning the learning rate

and the law of changing learning rate during the learning process for each particular

problem.

6.A.5. Program Code (C++)

/*

*/

#include<math.h>

#include<iostream>

#include<fstream>

using namespace std;

#define N_DATASETS 9

#define N_INPUTS 36

#define N_OUTPUTS 2

#define N_LAYERS 3

// {# inputs, # of neurons in L1, # of neurons in L2, # of neurons in L3}

short conf[4] = {N_INPUTS, 2, 2, N_OUTPUTS};

float **w[3], *z[3], *y[3], *Fi[3], eta; // According to the number of

layers ofstream ErrorFile("error.txt", ios::out);

// 3 training sets

bool dataset[N_DATASETS][N_INPUTS] = {

{ 0, 0, 1, 1, 0, 0, // ‘A’

0, 1, 0, 0, 1, 0,

1, 0, 0, 0, 0, 1,

1, 1, 1, 1, 1, 1,

1, 0, 0, 0, 0, 1,

1, 0, 0, 0, 0, 1},

{ 1, 1, 1, 1, 1, 0, // ‘B’

1, 0, 0, 0, 0, 1,

1, 1, 1, 1, 1, 0,

1, 0, 0, 0, 0, 1,

1, 0, 0, 0, 0, 1,

1, 1, 1, 1, 1, 0},

{ 0, 1, 1, 1, 1, 1, // ‘C’

1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0,

0, 1, 1, 1, 1, 1},

{ 1, 1, 1, 1, 1, 0, // ‘D’

1, 0, 0, 0, 0, 1,

1, 0, 0, 0, 0, 1,

1, 0, 0, 0, 0, 1,

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

70 Principles of Artificial and Neural Networks

1, 0, 0, 0, 0, 1,

1, 1, 1, 1, 1, 0},

{ 1, 1, 1, 1, 1, 1, // ‘E’

1, 0, 0, 0, 0, 0,

1, 1, 1, 1, 1, 1,

1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0,

1, 1, 1, 1, 1, 1},

{ 1, 1, 1, 1, 1, 1, // ‘F’

1, 0, 0, 0, 0, 0,

1, 1, 1, 1, 1, 1,

1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0},

{ 0, 1, 1, 1, 1, 1, // ‘G’

1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0,

1, 0, 1, 1, 1, 1,

1, 0, 0, 0, 0, 1,

0, 1, 1, 1, 1, 1},

{ 1, 0, 0, 0, 0, 1, // ‘H’

1, 0, 0, 0, 0, 1,

1, 1, 1, 1, 1, 1,

1, 0, 0, 0, 0, 1,

1, 0, 0, 0, 0, 1,

1, 0, 0, 0, 0, 1},

{ 0, 0, 1, 1, 1, 0, // ‘I’

0, 0, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0,

0, 0, 1, 1, 1, 0}

// Below are the datasets for checking "the rest of the world".

// They are not the ones the NN was trained on.

/* { 1, 0, 0, 0, 0, 1, // ‘X’

0, 1, 0, 0, 1, 0,

0, 0, 1, 1, 0, 0,

0, 0, 1, 1, 0, 0,

0, 1, 0, 0, 1, 0,

1, 0, 0, 0, 0, 1},

{ 0, 1, 0, 0, 0, 1, // ‘Y’

0, 0, 1, 0, 1, 0,

0, 0, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0},

{ 1, 1, 1, 1, 1, 1, // ‘Z’

0, 0, 0, 0, 1, 0,

0, 0, 0, 1, 0, 0,

0, 0, 1, 0, 0, 0,

0, 1, 0, 0, 0, 0,

1, 1, 1, 1, 1, 1}*/

},

datatrue[N_DATASETS][N_OUTPUTS] = {{0,1}, {1,0}, {1,1},

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 71

{0,0}, {0,0}, {0,0}, {0,0}, {0,0}, {0,0}};

// Memory allocation and initialization function void MemAllocAndInit(char S)

{

if(S == ‘A’)

for(int i = 0; i < N_LAYERS; i++)

{

w[i] = new float*[conf[i + 1]];

z[i] = new float[conf[i + 1]];

y[i] = new float[conf[i + 1]]; Fi[i] = new float[conf[i + 1]];

for(int j = 0; j < conf[i + 1]; j++)

{

}

}

w[i][j] = new float[conf[i] + 1];

// Initializing in the range (-0.5;0.5) (including bias weight)

for(int k = 0; k <= conf[i]; k++)

w[i][j][k] = rand()/(float)RAND_MAX - 0.5;

if(S == ‘D’)

{

for(int i = 0; i < N_LAYERS; i++)

{

}

for(int j = 0; j < conf[i + 1]; j++)

delete[] w[i][j];

delete[] w[i], z[i], y[i], Fi[i];

}

}

ErrorFile.close();

// Activation function float FNL(float z)

{

}

float y;

y = 1. / (1. + exp(-z));

return y;

// Applying input

void ApplyInput(short sn)

{

float input;

for(short i = 0; i < N_LAYERS; i++) // Counting layers

for(short j = 0; j < conf[i + 1]; j++) // Counting neurons in each layer

{

z[i][j] = 0.;

// Counting input to each layer (= # of neurons in the previous layer)

for(short k = 0; k < conf[i]; k++)

{

}

if(i) // If the layer is not the first one input = y[i - 1][k];

else

input = dataset[sn][k];

z[i][j] += w[i][j][k] * input;

}

}

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

72 Principles of Artificial and Neural Networks

z[i][j] += w[i][j][conf[i]]; // Bias term y[i][j] = FNL(z[i][j]);

// Training function, tr - # of runs void Train(int tr)

{

short i, j, k, m, sn;

float eta, prev_output, multiple3, SqErr, eta0;

eta0 = 1.5; // Starting learning rate eta = eta0;

for(m = 0; m < tr; m++) // Going through all tr training runs

{

SqErr = 0.;

// Each training run consists of runs through each training set for(sn = 0;

sn < N_DATASETS; sn++)

{

ApplyInput(sn);

// Counting the layers down

for(i = N_LAYERS - 1; i >= 0; i--)

// Counting neurons in the layer for(j = 0; j < conf[i + 1]; j++)

{

if(i == 2) // If it is the output layer multiple3 = datatrue[sn][j] - y[i][j];

else

{

}

multiple3 = 0.;

// Counting neurons in the following layer for(k = 0; k < conf[i + 2]; k++)

multiple3 += Fi[i + 1][k] * w[i + 1][k][j];

Fi[i][j] = y[i][j] * (1 - y[i][j]) * multiple3;

// Counting weights in the neuron

// (neurons in the previous layer)

for(k = 0; k < conf[i]; k++)

{

}

if(i) // If it is not a first layer prev_output = y[i - 1][k];

else

prev_output = dataset[sn][k];

w[i][j][k] += eta * Fi[i][j] * prev_output;

}

// Bias weight correction w[i][j][conf[i]] += eta * Fi[i][j];

}

SqErr += pow((y[N_LAYERS - 1][0] - datatrue[sn][0]), 2) +

pow((y[N_LAYERS - 1][1] - datatrue[sn][1]), 2);

}

}

ErrorFile << 0.5 * SqErr << endl;

// Decrease learning rate every 100th iteration if(!(m % 100))

eta /= 2.;

// Go back to original learning rate every 400th iteration if(!(m % 400))

eta = eta0;

// Prints complete information about the network void PrintInfo(void)

{

for(short i = 0; i < N_LAYERS; i++) // Counting layers

{

cout << "LAYER " << i << endl;

// Counting neurons in each layer for(short j = 0; j < conf[i + 1]; j++)

{

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 73

}

}

}

cout << "NEURON " << j << endl;

// Counting input to each layer (= # of neurons in the previous layer)

for(short k = 0; k < conf[i]; k++)

cout << "w[" << i << "][" << j << "][" << k << "]=" << w[i][j][k]

<< ‘ ’;

cout << "w[" << i << "][" << j << "][BIAS]=" << w[i][j][conf[i]]

<< ‘ ’ << endl;

cout << "z[" << i << "][" << j << "]=" << z[i][j] << endl;

cout << "y[" << i << "][" << j << "]=" << y[i][j] << endl;

// Prints the output of the network void PrintOutput(void)

{

// Counting number of datasets

for(short sn = 0; sn < N_DATASETS; sn++)

{

}

}

ApplyInput(sn);

cout << "TRAINING SET " << sn << ": [";

// Counting neurons in the output layer for(short j = 0; j < conf[3]; j++)

cout << y[N_LAYERS - 1][j] << ‘ ’;

cout << "] ";

if(y[N_LAYERS - 1][0] > (datatrue[sn][0] - 0.1)

&& y[N_LAYERS - 1][0] < (datatrue[sn][0] + 0.1)

&& y[N_LAYERS - 1][1] > (datatrue[sn][1] - 0.1)

&& y[N_LAYERS - 1][1] < (datatrue[sn][1] + 0.1))

cout << "--- RECOGNIZED ---";

else

cout << "--- NOT RECOGNIZED ---";

cout << endl;

// Loads weithts from a file void LoadWeights(void)

{

float in;

ifstream file("weights.txt", ios::in);

// Counting layers

for(short i = 0; i < N_LAYERS; i++)

// Counting neurons in each layer

for(short j = 0; j < conf[i + 1]; j++)

// Counting input to each layer (= # of neurons in the previous layer)

for(short k = 0; k <= conf[i]; k++)

{

}

file >> in;

w[i][j][k] = in;

}

file.close();

// Saves weithts to a file void SaveWeights(void)

{

}

ofstream file("weights.txt", ios::out);

// Counting layers

for(short i = 0; i < N_LAYERS; i++)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

74 Principles of Artificial and Neural Networks

// Counting neurons in each layer

for(short j = 0; j < conf[i + 1]; j++)

// Counting input to each layer (= # of neurons in the previous layer)

for(short k = 0; k <= conf[i]; k++)

file << w[i][j][k] << endl;

file.close();

// Gathers recognition statistics for 1 and 2 false bit cases void

GatherStatistics(void)

{

short sn, j, k, TotalCases;

int cou;

cout << "WITH 1 FALSE BIT PER CHARACTER:" << endl; TotalCases = conf[0];

// Looking at each dataset

for(sn = 0; sn < N_DATASETS; sn++)

{

cou = 0;

// Looking at each bit in a dataset for(j = 0; j < conf[0]; j++)

{

}

if(dataset[sn][j])

dataset[sn][j] = 0;

else

dataset[sn][j] = 1; ApplyInput(sn);

if(y[N_LAYERS - 1][0] > (datatrue[sn][0] - 0.1)

&& y[N_LAYERS - 1][0] < (datatrue[sn][0] + 0.1)

&& y[N_LAYERS - 1][1] > (datatrue[sn][1] - 0.1)

&& y[N_LAYERS - 1][1] < (datatrue[sn][1] + 0.1))

cou++;

if(dataset[sn][j]) // Switching back dataset[sn][j] = 0;

else

dataset[sn][j] = 1;

}

cout << "TRAINING SET " << sn << ": " << cou << ‘/’ << TotalCases

<< " recognitions (" << (float)cou / TotalCases * 100. << "%)"

<< endl;

cout << "WITH 2 FALSE BITS PER CHARACTER:" << endl; TotalCases =

conf[0] * (conf[0] - 1.);

// Looking at each dataset

for(sn = 0; sn < N_DATASETS; sn++)

{

cou = 0;

// Looking at each bit in a dataset for(j = 0; j < conf[0]; j++)

for(k = 0; k < conf[0]; k++)

{

}

if(j == k)

continue;

if(dataset[sn][j])

dataset[sn][j] = 0;

else

dataset[sn][j] = 1;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 75

if(dataset[sn][k])

dataset[sn][k] = 0;

else

dataset[sn][k] = 1; ApplyInput(sn);

if(y[N_LAYERS - 1][0] > (datatrue[sn][0] - 0.1)

&& y[N_LAYERS - 1][0] < (datatrue[sn][0] + 0.1)

&& y[N_LAYERS - 1][1] > (datatrue[sn][1] - 0.1)

&& y[N_LAYERS - 1][1] < (datatrue[sn][1] + 0.1))

cou++;

if(dataset[sn][j]) // Switching back dataset[sn][j] = 0;

else

dataset[sn][j] = 1;

if(dataset[sn][k])

dataset[sn][k] = 0;

else

dataset[sn][k] = 1;

}

}

cout << "TRAINING SET " << sn << ": " << cou << ‘/’ << TotalCases

<< " recognitions (" << (float)cou / TotalCases * 100. << "%)"

<< endl;

// Entry point: main menu void main(void)

{

short ch;

int x;

MemAllocAndInit(‘A’);

do

{

system("cls");

cout << "MENU" << endl;

cout << "1. Apply input and print parameters" << endl;

cout << "2. Apply input (all training sets) and print output" << endl;

cout << "3. Train network" << endl; cout << "4. Load weights" << endl;

cout << "5. Save weights" << endl;

cout << "6. Gather recognition statistics" << endl;

cout << "0. Exit" << endl; cout << "Your choice: "; cin >> ch;

cout << endl;

switch(ch)

{

case 1: cout << "Enter set number: ";

cin >> x;

ApplyInput(x);

PrintInfo(); break;

case 2: PrintOutput();

break;

case 3: cout << "How many training runs?: ";

cin >> x; Train(x); break;

case 4: LoadWeights();

break;

case 5: SaveWeights();

break;

case 6: GatherStatistics();

break;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

76 Principles of Artificial and Neural Networks

case 0: MemAllocAndInit(‘D’);

return;

}

}

cout << endl;

cin.get();

cout << "Press ENTER to continue..." << endl;

cin.get();

}

while(ch);

6.B. Back Propagation Case Study†: The Exclusive-OR (XOR)

Problem (2-Layer BP)

The final weights and outputs for XOR 2 layers Network after 200 iterations are

6.B.1. Final weight values.

input: (0, 0) → (0.06) = (output)

(0, 1) → (0.91)

(1, 0) → (0.91)

(1, 1) → (0.11)

Starting learning rate: 6

Learning rate after 100 iterations: 3

†Computed by Mr. Sang Lee, EECS Dept., University of Illinois, Chicago, 1993.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 77

The C-language program for the aboves XOR problem is as follows:

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

78 Principles of Artificial and Neural Networks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 79

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

80 Principles of Artificial and Neural Networks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 81

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

82 Principles of Artificial and Neural Networks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 83

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

84 Principles of Artificial and Neural Networks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 85

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

86 Principles of Artificial and Neural Networks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 87

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

88 Principles of Artificial and Neural Networks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 89

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

90 Principles of Artificial and Neural Networks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 91

Computation Results (see footnote at end of table for notation)∗

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

92 Principles of Artificial and Neural Networks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 93

∗See final output values in Fig. 6.B.1 above for weight location by layer: top row of each iter-
ation gives set of values (input 1, input 2, output) for each possible input combination {0,0};
{1,0}; {1,1}.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

94 Principles of Artificial and Neural Networks

6.C. Back Propagation Case Study§: The XOR Problem 3 Layer

BP Network

The final weights and outputs for XOR 3 layers Network after 420 iterations are:

input #1 : (0, 0) → 0.03 output #1

#2 : (0, 1) → 0.94 #2

#3 : (1, 0) → 0.93 #3

#4 : (1, 1) → 0.07 #4

Fig. 6.C.1. Final weight values.

Learning rate: 30 initially, 5 final

Learning rate is reduced by 1 every 10 iterations, namely:

30, 29, 28, . . . , 5

Program: XOR 3.C (C-language)

Purpose: Exclusive-OR function using 3 Hidden Layers

§Computed by Sang Lee, EECS Dept., University of Illinois, Chicago, 1993.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 95

Use program of Sec. 6.A up to this point except for denoting XOR

3 instead of XOR 2 where indicated by ← at right-hand side, then,

continue here:

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

96 Principles of Artificial and Neural Networks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 97

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

98 Principles of Artificial and Neural Networks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 99

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

100 Principles of Artificial and Neural Networks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 101

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

102 Principles of Artificial and Neural Networks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 103

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

104 Principles of Artificial and Neural Networks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 105

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

106 Principles of Artificial and Neural Networks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 107

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

108 Principles of Artificial and Neural Networks

J
a
n
u
a
ry

3
0
,
2
0
0
7

1
6
:2

4
W

o
rld

S
c
ie

n
tifi

c
B
o
o
k

-
9
.7

5
in

x
6
.5

in
w

s-b
o
o
k
9
7
5
x
6
5

B
a
ck

P
ro

pa
ga

tio
n

1
0
9

J
a
n
u
a
ry

3
0
,
2
0
0
7

1
6
:2

4
W

o
rld

S
c
ie

n
tifi

c
B
o
o
k

-
9
.7

5
in

x
6
.5

in
w

s-b
o
o
k
9
7
5
x
6
5

1
1
0

P
rin

cip
les

o
f
A
rtifi

cia
l
a
n
d

N
eu

ra
l
N

etw
o
rks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Back Propagation 111

See Fig. 6.B.1 for weight locations by layer output. 1 denoting output for input set

0,0. 2 denoting output for input set 0,1 etc.

Comments:

1. Bias helps to speed up convergence

2. 3 layers are slower than 2 layers

3. Convergence is sudden, not gradual. Also, no relation can be found in this

example between rate and convergence speed

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

This page intentionally left blankThis page intentionally left blank

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Chapter 7

Hopfield Networks

7.1. Introduction

All networks considered until now assumed only forward flow from input to

output, namely nonrecurrent interconnections. This guaranteed network stability.

Since biological neural networks incorporate feed-back, (i.e., they are recurrent), it

is natural that certain artificial networks will also incorporate that feature. The

Hopfield neural networks [Hopfield, 1982] do indeed employ both feed-forward and

feedback. Once feedback is employed, stability cannot be guaranteed in the general

case. Consequently, the Hopfield network design must be one that accounts for

stability in its settings.

7.2. Binary Hopfield Networks

Figure 7.1 illustrates a recurrent single layer Hopfield network. Though it is

basically a single-layer network, its feedback structure makes it effectively to behave

as a multi-layer network. The delay in the feedback will be shown to play a major

role in its stability. Such a delay is natural to biological neural networks, noting the

delay in the synaptic gap and the finite rate of neuronal firing. Whereas Hopfield

networks can be of continuous or of binary output, we consider first a binary Hopfield

network, to introduce the concepts of the Hopfield network.

The network of Fig. 7.1 thus satisfies

zj =
∑

i6=j

wijyi(n) + Ij ; n = 0, 1, 2 . . . (7.1)

yj(n + 1) =

{

1 ∀ zj ≥ Thj

0 ∀ zj < Thj

or:











1 ∀ zj(n) > Thj

yj(n) ∀ zj = Thj

0 ∀ zj < Thj

(7.2)

The ii weight in Eq. (7.1) is zero to indicate no self feedback. The 0-state of y

becomes −1 in the bipolar case.

113

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

114 Principles of Artificial and Neural Networks

Key : Ni = ith neuron

D = distribution node (external inputs x1 . . . x3

also entered to D: not shown)

F = activation function

Ii = bias input

wij = weight

Fig. 7.1. The structure of a Hopfield network.

By Eqs. (7.1) and (7.2), the Hopfield network employs the basic structure of

individual neurons as in the Perceptron or the Adaline. However, by Fig. 7.1, it

departs from the previous designs in its feedback structure.

Note that a two neuron binary Hopfield network can be considered as a 2n

state system, with outputs belonging to the four state set {00, 01, 10, 11}. The

network, when inputted by an input vector, will stabilize at one of the above states

as determined by its weight configurations. A partially incorrect input vector may

lead the network to the nearest state to the desired one (to the one related) to the

correct input vector).

7.3. Setting of Weights in Hopfield Nets Bidirectional Associative

Memory (BAM) Principle

Hopfield networks employ the principle of BAM (Bidirectional Associative Mem-

ory). This implies that the networks’ weights are set to satisfy bidirectional asso-

ciative memory principles; as first proposed by Longuett-Higgins (1968) and also

by Cooper (1973) and Kohonen (1977) in relation to other structures, as follows:

Let:

xiεR
m ; yiεR

n ; i = 1, 2 · · ·L (7.3)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 115

and let:

W =
∑

i

yix
T
i (7.4)

where W is a weight matrix for connections between x and y vector elements. This

interconnection is termed as an associative network. In particular, when yi = xi

then the connection is termed as autoassociative, namely

W =

L
∑

i=1

xix
T
i over L vectors (7.5)

such that if the inputs xi are orthonormal, namely if

xT
i xj = δij (7.6)

then:

Wxi = xi (7.7)

to retrieve xi. This setting is called BAM since all xi that are associated with the

weights W are retrieved whereas the others are not (yielding zero output). Observe

that the above implies that W serves as a memory that will allow the network

to remember similar input vectors as incorporated in W . The latter structure

can be used to reconstruct information, especially incomplete or partly erroneous

information.

Specifically, if a single-layer network is considered, then:

W =
L

∑

i=1

xix
T
i (7.8)

with:

wij = wji ∀ i, j (7.9)

by Eq. (7.5)

However, to satisfy the stability requirement to be discussed in Sec. 7.5 below,

we also set:

wii = 0 ∀ i (7.10)

to yield the structure of Fig. (7.1) above.

For converting binary inputs x(0, 1) to yield a bipolar (±1) form, one must set:

W =
∑

i

(2xi − 1̄)(2xi − 1̄)T (7.11)

1̄ being a unify vector, namely

1̄ , [1, 1, . . . , 1]T (7.12)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

116 Principles of Artificial and Neural Networks

If certain (or all) inputs are not close to orthogonal, one can first transform them

via a Walsh transform as in Sec. 6.4, to yield orthogonal sets for further use.

The BAM feature of the Hopfield NN is what allows it to function with incorrect

or partly missing data sets.

Example 7.1:

Let:

W =
L

∑

i=1

xix
T
i = x1x

T
1 + x2x

T
2 + · · ·xLxT

L

with

xT
i xj = δij , xi = [xi1 · · ·xin]T

then, for n = 2:

Wxj =

[

w11 w12

w21 w22

] [

xj1

xj2

]

such that

Wxj = (x1x
T
1 + x2x

T
2 + · · ·xjx

T
j + · · ·xLxT

L)xj

= x1(x
T
1 xj) + x2(x

T
2 xj) + · · ·xj(x

T
j xj) + · · ·xL(xT

Lxj) = xj(x
T
j xj) = xj

as long as the inputs are orthonormal.

The degree of closeness of a pattern (input vector) to a memory is evaluated

by the Hamming Distance [Hamming, 1950, see also: Carlson, 1986, p. 473]. The

number of terms in which an error exists in a network (regardless of magnitude of

error) is defined as the Hamming distance for that network to provide a measure of

distance between an input and the memory considered.

Example 7.2:

Let xi be given as a 10-dimensional vectors x1 and x2, such that

xT
1 x2 = [1 − 1 − 1 1 − 1 1 1 − 1 − 1 1]



































1

1

1

−1

−1

−1

1

1

−1

−1



































= −2

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 117

In that case, the Hamming distance d is:

d(x1, ;x2) = 6

while

xT
i xi = dim(xi) = 10 for i = 1, 2

such that

d =
1

2

[

dim(x) − xT
1 x2

]

Hence the net will emphasize an input that (nearly) belongs to a given training set

and de-emphasize those inputs that do not (nearly) belong (is associated — hence

the term “BAM”).

7.4. Walsh Functions

Walsh functions were proposed by J. L. Walsh in 1923 (see Beauchamp, 1984).

They form an ordered set of rectangular (stair-case) values +1, −1 defined over a

limited time interval t. The Walsh function WAL(n, t) is thus defined by an ordering

number n and the time period t, such that:

x(t) =
N−1
∑

i=0

XiWal(i, t) (7.13)

Walsh functions are orthogonal, s.t.

N−1
∑

t=0

Wal(m, t)Wal(n, t) =

{

N ∀ n = m

0 ∀ n 6= m
(7.14)

Consider a time series {xi} of N samples: The Walsh Transform (WT) of {xi} is

given by Xn where

Xn =
1

N

N−1
∑

i=0

xiWal(n, i) (7.15)

and the IWT (inverse Walsh transform) is:

xi =

N−1
∑

n=0

XnWal(n, i) (7.16)

where

i, n = 0, 1, . . . , N − 1 (7.17)

Xn thus being the discrete Walsh transform and xi being its inverse, in parallelity

to the discrete Fourier Transform of xi, which is given by:

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

118 Principles of Artificial and Neural Networks

Xk =

N−1
∑

n=0

xnF nk
N (7.18)

and to the IFT (inverse Fourier transform), namely:

xn =
1

N

N−1
∑

k=0

XkF−nk
n (7.19)

where:

FN = exp(−j2π/N) (7.20)

Hence, to apply BAM to memories (vectors) that are not orthonormal we may

first transform them to obtain their orthogonal Walsh transforms and then apply

BAM to these transforms.

Example 7.4:

Table 7.1. (Reference: K. Beauchamp, Sequence
and Series, Encyclopedia of Science and Technology,
Vol. 12, pp. 534–544, 1987. Courtesy of Academic
Press, Orlando, FL.

i, t Wal (i, t)

0, 8 1 1 · · · · · 1
1, 8 1 1 1 1 −1 −1 −1 −1
2, 8 1 1 −1 −1 −1 −1 1 1
3, 8 1 1 −1 −1 1 1 −1 −1
4, 8 1 −1 −1 1 1 −1 −1 1
5, 8 1 −1 −1 1 −1 1 1 −1
6, 8 1 −1 1 −1 −1 1 −1 1
7, 8 1 −1 1 −1 1 −1 1 −1

7.5. Network Stability

Weight adjustment in a feedback network must guarantee network stability. It

was shown by Cohen and Grossberg (1983) that recurrent networks can be guaran-

teed to be stable if the W matrix of weights is symmetrical and if its diagonal is

zero, namely

wij = wji ∀ i, j (7.21)

with

wii = 0 ∀ i (7.22)

The above requirements result from the Lyapunov stability theorem which states

that a system (network) is stable if an energy function (its Lyapunov function)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 119

can be defined for that system which is guaranteed to always decrease over time

[Lyapunov, 1907, see also Sage and White, 1977].

Network (or system) stability can be satisfied via the Lyapunov stability theorem

if a function E of the states y of the network (system) can be defined, that satisfies

the following conditions:

Condition (A): Any finite change in the states y of the network (system) yields

a finite decrease in E.

Condition (B): E is bounded from below.

We thus define an energy function E (denoted also as Lyapunov function) as

E =
∑

j

Thjyj −
∑

j

Ijyj −
1

2

∑

i

∑

j 6=i

wijyjyi (7.23)

i denoting the ith neuron

j denoting the jth neuron

Ij being on external input to neuron j

Thj being the threshold to neuron j

wij being an element of the weight matrix W , to denote the weight from the output

of neuron i to the input of neuron j.

We now prove the network’s stability by the Lyapunov theorem as follows: First

we set W to be symmetric with all diagonal elements being zero, namely

W = W T (7.24a)

wii = 0 ∀ i (7.24b)

and where |wij··| are bounded for all i, j.

We prove that E satisfies condition (A) of the Lyapunov stability theorem, by

considering a change in and only in one component yk(n + 1) of the output layer:

Denoting E(n) as E at the nth iteration and yk(n) as yk at that same iteration, we

write:

∆En = E(n + 1) − E(n)

= [yk(n) − yk(n + 1)] ·





∑

i6=k

wikyi(n) + Ik − Thk



 (7.25)

We observe via Eq. (7.2) that the binary Hopfield neural network must satisfy that

yk(n + 1) =











1 · · ∀ zk(n) > Thk

yk(n) · · · ∀ zk(n) = Thk

0 · · · ∀ zk(n) < Thk

(7.26)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

120 Principles of Artificial and Neural Networks

where

zk =
∑

i

wikyi + Ik (7.27)

and where Thk denotes the threshold to the given (kth) neuron. Therefore, yk can

undertake only two changes in value:

(i)

If yk(n) = 1 then yk(n + 1) = 0 (7.28)

(ii)

If yk(n) = 0 then yk(n + 1) = 1 (7.29)

Now, under scenario (i):

[yk(n) − yk(n + 1)] > 0 (7.30)

However, this can occur only if
∑

i6=k

wikyi + Ik − Thk = zk(n) − Thk < 0 (7.31)

by Eq. (7.26) above. Hence, by Eq. (7.25) ∆E < 0, such that E is reduced as

required by condition (A) of the Lyapunov Stability theorem.

Similarly under scenario (ii);

[yk(n) − yk(n + 1)] < 0 (7.32)

However, this can occur only if
∑

i

wikyi + Ik − Thk = zk(n) − Thk > 0 (7.33)

by Eq. (7.26) above. Hence, again ∆E < 0 such that E is again reduced as required.

Finally, condition (B) of the Lyapunov stability theorem is trivially satisfied

since in the worst case (the most negative-energy case) all yi = yj = 1 such that

E = −
∑

i

∑

j

|wij | −
∑

i

|Ii| +
∑

i

Thi (7.34)

which is bounded from below noting that wij must all be finite and bounded.

The proof also holds for situations where several yj terms are changed.

Also, note that in the feedback interconnection of the Hopfield network we

have that:

zi =
∑

i6=k

wikyj (7.35)

However, if wii 6= 0, then ∆E as in Eq. (7.25) would have included terms of the

form of

−wkky2
k(n + 1)∆y

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 121

which could be either positive or negative, depending on the sign of wii and on the

old and new values of yi. This would have violated the convergence proof above.

Lack of symmetry in the W matrix would invalidate the expressions used in the

present proof.

7.6. Summary of the Procedure for Implementing the

Hopfield Network

Let the weight matrix of the Hopfield network satisfy:

W =
L

∑

i=1

(2xi − 1̄)(2xi − 1̄)T (1)∗

L = numbers of training sets:

The computation of the Hopfield network with BAM memory as in Eq. (1)*

above, will then proceed according to the following procedure.

(1) Assign weights wij of matrix W according to Eq. (1)∗, with wii = 0 ∀ i and xi

being the training vectors of the network.

(2) Enter an unknown input pattern x and set:

yi(0) = xi (2)∗

where xi is the ith element of vector x considered.

(3) Subsequently, iterate:

yi(n + 1) = fN [zi(n)] (3)∗

where fn denotes the activation function,

fN (z) =







1 · · · ∀ z > Th

unchanged · · · ∀ z = Th

−1 · · · ∀ z < Th

(4)∗

and where

zi(n) =
∑

i=1

wijyi(n) (5)∗

n being all integer denoting the number of the iteration (n = 0, 1, 2, . . .).

Continue iteration until convergence is reached, namely, until changes in yi(n+1)

as compared with yi(n) are below some low threshold value.

(4) The process is repeated for all elements of the unknown vector above by going

back to Step (2) while choosing the next element until all elements of the vector

have been so processed.

(5) As long as new (unknown) input vectors exist for a given problem, go to the

next input vector x and return to Step (2) above.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

122 Principles of Artificial and Neural Networks

The node outputs to which y(n) converge per each unknown input vector x

represent the exemplar (training) vector which best represents (best matches) the

unknown input.

For each element of input of the Hopfield network there is an output. Hence, for

a character recognition problem in a 5× 5 grid there are 25 inputs and 25 outputs.

7.7. Continuous Hopfield Models

The discrete Hopfield network has been extended by Hopfield and others to a

continuous form as follows: Letting zi be the net summed output, then the network

output yi satisfies

yi = fi(λzi) =
1

2
[1 + tanh(λzi)] (7.36)

as in Fig. 7.2. Note that λ determines the slope of f at y = 1
2 , namely the rate of

rise of y.

Fig. 7.2. Activation function with variable-λ.

Also, a differential equation can replace the time delay relation between input

and network summed output. Hence, the steady state model for the circuit of

Fig. 7.3:

∑

j 6=i

Tijyj −
zi

Ri

+ Ii = 0 (7.37)

satisfies the transient equation

C
dzi

dt
=

∑

j 6=i

Tijyj −
zi

Ri

+ Ii (7.38a)

where

yi = fN (zi) (7.38b)

as in Fig. 7.3:

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 123

Fig. 7.3. A continuous Hopfield net.

7.8. The Continuous Energy (Lyapunov) Function

Consider the continuous energy function E where:

E = −1

2

∑

i

∑

j 6=i

Tijyiyj +
1

λ

∫ yi

0

f−1(y)dy −
∑

i

Iiyi (7.39)

E above yields that, noting Eq. (7.36):

dE

dt
= −

∑

i

dyi

dt





∑

j 6=i

Tijyj −
zi

Ri

+ Ii



 = −
∑

i

C
dyi

dt

dzi

dt
(7.40)

the last equality being due to Eq. (7.38).

Since zi = f−1(yi), we can write

dzi

dt
=

df−1(yi)

dyi

dyi

dt
(7.41)

to yield, via Eq. (7.40) that:

dE

dt
= −C

df−1(yi)

dyi

(

dyi

dt

)2

(7.42)

Since f−1(v) monotonously increases with v, as in Fig. 7.4, dE
dt

always decreases; to

satisfy the Lyapunov stability criterion as earlier stated. Note that the minimum of

E exists by the similarity of E to the energy function of the bipolar case and noting

the limiting effect of f(v), as in Fig. 7.2.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

124 Principles of Artificial and Neural Networks

Fig. 7.4. Inverse activation function: f−1.

One important application of the continuous Hopfield network that is worth men-

tioning is to the Traveling-Salesman problem (TSP) and to related NP-Complete

problems (see: Hopfield, J. J. and Tank, D. W., Biol. Cybern. 5, 141–152, 1985).

In these problems, the Hopfield network yields extremely fast solutions which, if

not optimal (for, say, a high number of cities in the Traveling-Salesman problem)

are within a reasonable percentage error of the optimum value, after a small num-

ber of iterations. These should compare to the theoretically needed calculations of

the order of (N − 1)! For N cities for a truly optimal solution. This illustrates a

very important property of neural networks in general. They yield a good working

solution in reasonable time (number of iterations) for many problems that are very

complex and which otherwise may often defy any exact solution. Even though the

Hopfield network may not be the best neural network for many of these problems,

especially those that defy any analytical description (networks such as Back Prop-

agation of the LAMSTAR may be often the way to go in many such cases, and

can also be applied to the TSP problem), for good approximations of NP-complete

problems the Hopfield network is the way to go. In these cases, and where the exact

solution is often available, one can also compute the error of the network relative

to the exact solution. When a problem defies any analysis, this is, of course, not

possible. Appendix 7.B below presents a case of applying the Hopfield NN to the

TSP problem (with computed results for up to 25 cities).

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 125

7.A. Hopfield Network Case Study∗: Character Recognition

7.A.1. Introduction

The goal of this case study is to recognize three digits of ‘0’, ‘1’, ‘2’ and ‘4’. To

this end, a one-layer Hopfield network is created, it is trained with standard data

sets (8*8); make the algorithm converge and it is tested the network with a set of

test data having 1, 3, 5, 10, 20, 30-bit errors.

7.A.2. Network design

The general Hopfield structure is given in Fig. 7.A.1:

1 N1

2 N2

3 Nn

 … …

Fig.7.A.1. Hopfield network: a schematic diagram.

The Hopfield neural network is designed and applied to the present case study (using

MATLAB) to create a default network:

Example 1: Creating a 64-neuron Hopfield network with initial random weights

%% Example #1:

%% neuronNumber = 64

%% weitghtCat = ‘rand’

%% defaultWeight = [−5 5]

%% use:

%% hopfield = createDefaultHopfield(neuronNumber, ‘rand’, [−5 5])

Example 2: Creating a 36-neuron Hopfield network with initial weights of 0.5

%% neuronNumber = 36

%% weitghtCat = ‘const’

%% defaultWeight = ‘0.5’

%% use:

%% hopfield = createDefaultHopfield(neuronNumber, ‘const’, 0.5)

∗Computed by Sang K. Lee, EECS Dept., University of Illinois, Chicago, 1993.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

126 Principles of Artificial and Neural Networks

7.A.3. Setting of weights

(a) The training data set

The training data set applied to the Hopfield network is illustrated as follows:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
trainingData(1).input = [. . .

−1 −1 −1 −1 −1 −1 −1 −1; . . .
−1 −1 −1 −1 −1 −1 −1 −1; . . .

1 1 1 1 1 −1 −1 1; . . .
1 1 1 1 −1 −1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 −1 −1 1 1 1 1; . . .
1 −1 −1 −1 −1 −1 −1 −1; . . .
1 −1 −1 −1 −1 −1 −1 −1 . . .

];
trainingData(1).name = ‘2’;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
trainingData(2).input = [. . .

1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1 . . .

];
trainingData(2).name = ‘1’;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
trainingData(3).input = [. . .

−1 −1 1 1 1 1 1 1; . . .
−1 −1 1 1 1 1 1 1; . . .
−1 −1 1 1 −1 −1 1 1; . . .
−1 −1 1 1 −1 −1 1 1; . . .
−1 −1 −1 −1 −1 −1 −1 −1; . . .
−1 −1 −1 −1 −1 −1 −1 −1; . . .

1 1 1 1 −1 −1 1 1; . . .
1 1 1 1 −1 −1 1 1 . . .

];

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 127

trainingData(3).name = ‘4’;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
trainingData(4).input = [. . .

1 −1 −1 −1 −1 −1 −1 1; . . .
1 −1 −1 −1 −1 −1 −1 1; . . .
1 −1 −1 1 1 −1 −1 1; . . .
1 −1 −1 1 1 −1 −1 1; . . .
1 −1 −1 1 1 −1 −1 −1; . . .
1 −1 −1 1 1 −1 −1 −1; . . .
1 −1 −1 −1 −1 −1 −1 1; . . .
1 −1 −1 −1 −1 −1 −1 1 . . .

];
trainingData(4).name = ‘0’;

(b) Initial Weights:

(1) Get all training data vectors Xi, i = 1, 2 . . . L

(2) Compute the weight matrix W = ΣXiX
T
i over L vectors

(3) Set wii = 0, for all i, where wii is the ith diagonal element of the weight matrix

(4) Assign the jth row vector of the weight matrix to the j-th neuron as its initial

weights.

7.A.4. Testing

The test data set is generated by a procedure which adds a specified number of

error bits to the original training data set. In this case study, a random procedure

is used to implement this function.

Example:

testingData = getHopfieldTestingData(trainingData, numberOfBitError, number-

PerTrainingSet)

where the parameter, ‘numberOfBitError’, is to specify the expected number of bit

errors; ‘numberPerTrainingSet’ is to specify the expected size of the testing data set.

The expected testing data set is obtained via the output parameter ‘testingData’.

7.A.5. Results and conclusions

(a) Success rate VS bit errors

In this experiment, a 64-neuron 1-layer Hopfield is used. The success rate is

tabulated as follows:

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

128 Principles of Artificial and Neural Networks

Number of Testing data set

Success Rate
12 100 1000

1 100% 100% 100%

3 100% 100% 100%

5 100% 100% 100%

10 100% 100% 100%

15 100% 100% 100%

20 100% 100% 99.9%

25 100% 98% 97.3%

30 83.3333% 94% 94.2%

35 91.6667% 93% 88.8%

Number of

Bit Error

40 83.3333% 82% 83.6%

(b) Conclusion

(1) The Hopfield network is robust with high convergence rate

(2) Hopfield network has high success rate even if in the case of large bit errors.

7.A.6. MATALAB codes

File #1

function hopfield = nnHopfield

\%\% Create a default Hopfield network

hopfield = createDefaultHopfield(64, ‘const’, 0);

\%\% Training the Hopfield network

trainingData = getHopfieldTrainingData;

[hopfield] = trainingHopfield(hopfield, trainingData);

\%\% test the original training data set;

str = [];

tdSize = size(trainingData);

for n = 1: tdSize(2);

[hopfield, output] = propagatingHopfield(hopfield,

trainingData(n).input, 0, 20);

[outputName, outputVector, outputError] =

hopfieldClassifier(hopfield, trainingData);

if strcmp(outputName, trainingData(n).name)

astr = [num2str(n), ‘==> Succeed!! The Error Is:’,

num2str(outputError)];

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 129

else

astr = [num2str(n), ‘==> Failed!!’];

end

str = strvcat(str, astr);

end

output = str;

display(output);

\%\% test on the testing data set with bit errors

testingData = getHopfieldTestingData(trainingData, 4, 33);

trdSize = size(trainingData);

tedSize = size(testingData);

str = [];

successNum = 0;

for n = 1: tedSize(2)

[hopfield, output, nInterationNum] = propagatingHopfield(hopfield,

testingData(n).input, 0, 20);

[outputName, outputVector, outputError] = hopfieldClassifier(hopfield,

trainingData);

strFormat = ‘ ’;

vStr = strvcat(strFormat,num2str(n),num2str(nInterationNum));

if strcmp(outputName, testingData(n).name)

successNum = successNum + 1;

astr = [vStr(2,:), ‘==> Succeed!! Iternation # Is:,’, vStr(3,:),

‘The Error Is:’, num2str(outputError)];

else

astr = [vStr(2,:), ‘==> Failed!! Iternation # Is:,’, vStr(3,:),];

end

str = strvcat(str, astr);

end

astr = [‘The success rate is: ’, num2str(successNum * 100/ tedSize(2)),‘\%’];

str = strvcat(str, astr);

testResults = str;

display(testResults);

File #2

function [hopfield, output, nInterationNum] = propagatingHopfield(hopfield,

inputData, errorThreshold, interationNumber)

output = [];

if nargin < 2

display(‘propagatingHopfield.m needs at least two parameter’);

return;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

130 Principles of Artificial and Neural Networks

end

if nargin == 2

errorThreshold = 1e-7;

interationNumber = [];

end

if nargin == 3

interationNumber = [];

end

% get inputs

nnInputs = inputData(:)’;

nInterationNum = 0;

dError = 2* errorThreshold + 1;

while dError > errorThreshold

nInterationNum = nInterationNum + 1;

if ~isempty(interationNumber)

if nInterationNum > interationNumber

break;

end

end

%% interation here

dError = 0;

output = [];

analogOutput= [];

for ele = 1:hopfield.number

% retrieve one neuron

aNeuron = hopfield.neurons(ele);

% get analog outputs

z = aNeuron.weights * nnInputs’;

aNeuron.z = z;

analogOutput = [analogOutput, z];

% get output

Th = 0;

if z > Th

y = 1;

elseif z < Th

y = -1;

else

y = z;

end

aNeuron.y = y;

output = [output, aNeuron.y];

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 131

% update the structure

hopfield.neurons(ele) = aNeuron;

% get the error

newError = (y - nnInputs(ele)) * (y - nnInputs(ele));

dError = dError + newError;

end

hopfield.output = output;

hopfield.analogOutput = analogOutput;

hopfield.error = dError;

%% feedback

nnInputs = output;

%% for tracing only

%nInterationNum, dError

end

return;

File #3

function hopfield = trainingHopfield(hopfield, trainingData)

if nargin < 2

display(‘trainingHopfield.m needs at least two parameter’);

return;

end

datasetSize = size(trainingData);

weights = [];

for datasetIndex = 1: datasetSize(2)

mIn = trainingData(datasetIndex).input(:);

if isempty(weights)

weights = mIn * mIn’;

else

weights = weights + mIn * mIn’;

end

end

wSize = size(weights);

for wInd = 1: wSize(1)

weights(wInd, wInd) = 0;

hopfield.neurons(wInd).weights = weights(wInd,:);

end

hopfield.weights = weights;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

132 Principles of Artificial and Neural Networks

File #4

function [outputName, outputVector, outputError] = hopfieldClassifier(hopfield,

trainingData)

outputName = [];

outputVector = [];

if nargin < 2

display(‘hopfieldClassifier.m needs at least two parameter’);

return;

end

dError = [];

dataSize = size(trainingData);

output = hopfield.output’;

for dataInd = 1 : dataSize(2)

aSet = trainingData(dataInd).input(:);

vDiff = abs(aSet - output);

vDiff = vDiff.^2;

newError = sum(vDiff);

dError = [dError, newError];

end

if ~isempty(dError)

[eMin, eInd] = min(dError);

outputName = trainingData(eInd).name;

outputVector = trainingData(eInd).input;

outputError = eMin;

end

File #5

%%%

%% A function to create a default one layer Hopfield model

%%

%% input parameters:

%% neuronNumber, to specify all neuron number

%%

%% defaultWeight, to set the default weights

%%

%% Example #1:

%% neuronNumber = 64

%% weitghtCat = ‘rand’

%% defaultWeight = [-5 5]

%% use:

%% hopfield = createDefaultHopfield(neuronNumber, ‘rand’, [-5 5])

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 133

%%

%% Example #2:

%% neuronNumber = 36

%% weitghtCat = ‘const’

%% defaultWeight = ‘0.5’

%% use:

%% hopfield = createDefaultHopfield(neuronNumber, ‘const’, 0.5)

%%

%% Author: Yunde Zhong

%%%

function hopfield = createDefaultHopfield(neuronNumber, weightCat,

defaultWeight)

hopfield = [];

if nargin < 3

display(‘createDefaultHopfield.m needs at least two parameter’);

return;

end

aLayer.number = neuronNumber;

aLayer.error = [];

aLayer.output = [];

aLayer.neurons = [];

aLayer.analogOutput = [];

aLayer.weights = [];

%% create a default layer

for ind = 1: aLayer.number

%% create a default neuron

inputsNumber = neuronNumber;

if strcmp(weightCat, ‘rand’)

offset = (defaultWeight(1) + defaultWeight(2))/2.0;

range = abs(defaultWeight(2) - defaultWeight(1));

weights = (rand(1,inputsNumber) -0.5)* range + offset;

elseif strcmp(weightCat, ‘const’)

weights = ones(1,inputsNumber) * defaultWeight;

else

error(‘error paramters when calling createDefaultHopfield.m’);

return;

end

aNeuron.weights = weights;

aNeuron.z = 0;

aNeuron.y = 0;

aLayer.neurons = [aLayer.neurons, aNeuron];

aLayer.weights = [aLayer.weights; weights];

end

hopfield = aLayer;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

134 Principles of Artificial and Neural Networks

File #6

function testingData = getHopfieldTestingData(trainingData, numberOfBitError,

numberPerTrainingSet)

testingData = [];

tdSize = size(trainingData);

tdSize = tdSize(2);

ind = 1;

for tdIndex = 1: tdSize

input = trainingData(tdIndex).input;

name = trainingData(tdIndex).name;

inputSize = size(input);

for ii = 1: numberPerTrainingSet

rowInd = [];

colInd = [];

flag = ones(size(input));

bitErrorNum = 0;

while bitErrorNum < numberOfBitError

x = ceil(rand(1) * inputSize(1));

y = ceil(rand(1) * inputSize(2));

if x <= 0

x = 1;

end

if y <= 0

y = 1;

end

if flag(x, y) ~= -1

bitErrorNum = bitErrorNum + 1;

flag(x, y) == -1;

rowInd = [rowInd, x];

colInd = [colInd, y];

end

end

newInput = input;

for en = 1:numberOfBitError

newInput(rowInd(en), colInd(en)) = newInput(rowInd(en),

colInd(en)) * (-1);

end

testingData(ind).input = newInput;

testingData(ind).name = name;

ind = ind + 1;

end

end

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 135

File #7

function trainingData = getHopfieldTrainingData

trainingData = [];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
trainingData(1).input = [. . .

−1 −1 −1 −1 −1 −1 −1 −1; . . .
−1 −1 −1 −1 −1 −1 −1 −1; . . .

1 1 1 1 1 −1 −1 1; . . .
1 1 1 1 −1 −1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 −1 −1 1 1 1 1; . . .
1 −1 −1 −1 −1 −1 −1 −1; . . .
1 −1 −1 −1 −1 −1 −1 −1 . . .

];
trainingData(1).name = ‘2’;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
trainingData(2).input = [. . .

1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1 . . .

];
trainingData(2).name = ‘1’;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
trainingData(3).input = [. . .

−1 −1 1 1 1 1 1 1; . . .
−1 −1 1 1 1 1 1 1; . . .
−1 −1 1 1 −1 −1 1 1; . . .
−1 −1 1 1 −1 −1 1 1; . . .
−1 −1 −1 −1 −1 −1 −1 1; . . .
−1 −1 −1 −1 −1 −1 −1 1; . . .

1 1 1 1 −1 −1 1 1; . . .
1 1 1 1 −1 −1 1 1 . . .

];
trainingData(3).name = ‘4’;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

136 Principles of Artificial and Neural Networks

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
trainingData(4).input = [. . .

1 −1 −1 −1 −1 −1 −1 1; . . .
1 −1 −1 −1 −1 −1 −1 1; . . .
1 −1 −1 1 1 −1 −1 1; . . .
1 −1 −1 1 1 −1 −1 1; . . .
1 −1 −1 1 1 −1 −1 −1; . . .
1 −1 −1 1 1 −1 −1 −1; . . .
1 −1 −1 −1 −1 −1 −1 1; . . .
1 −1 −1 −1 −1 −1 −1 1 . . .

];
trainingData(4).name = ‘0’;

7.B. Hopfield Network Case Study†: Traveling Salesman Problem

7.B.1. Introduction

The traveling salesman problem (TSP) is a classical optimization problem. It is

a NP-complete (Non-deterministic Polynomial) problem. There is no algorithm for

this problem, which gives a perfect solution. Thus any algorithm for this problem

is going to be impractical with certain examples.

There are various neural network algorithms that can be used to try to solve

such constrain satisfaction problems. Most solution have used one of the following

methods

• Hopfield Network

• Kohonen Self-organizing Map

• Genetic Algorithm

• Simulated Annealing

Hopfield explored an innovative method to solve this combinatorial optimization

problem in 1986. Hopfield-Tank algorithm [Hopfied and Tank, 1985] used the energy

function to to efficiently implement TSP. Many other NN algorithms then followed.

The TSP Problem: A salesman is required to visit each of a given set of cities

once and only once, returning to the starting city at the end of his trip (or tour).

The path that the salesman takes is called a tour. The tour of minimum distance

is desired.

Assume that we are given n cities and a nonnegative integer distance Dij between

any two cities i and j. We are asked to find the shortest tour of the cities. We can

solve this problem by enumerating all possible solutions, computing the cost of each

and finding the best. Testing every possibility for an n city tour would require n!

(There are actually (n − 1)!/2 calculations to consider) math additions. A 30 city

†Case study by Padmagandha Sahoo, ECE Dept., University of Illinois, Chicago, 2003.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 137

tour would require 2.65× 1032 additions. The amount of computation will increase

dramatically with the increase in the number of cities.

The neural network approach tends to give solutions with less computing time

than other available algorithms.

For n cities to be visited, let Xij be the variable that has value 1 if the salesman

goes from city i to city j and value 0, otherwise. Let Dij be the distance from city

i to city j. The TSP can also be stated as follows:

Minimize the linear objective function:

n
∑

i=j

n
∑

j=1

XijDij

A simple strategy for this problem is to numerate all feasible tours to calculate

the total distance for each tour, and to pick the tour with the smallest total dis-

tance. However, if there are n cities in the tour, the number of all feasible tours

would be (n − 1)!. So this simple strategy becomes impractical if the number

of cities is large. For example, if there are 11 cities to be visited, there will be

10! = 3,628,800 possible tours (including the tour with the same route but the

different direction). This number grows to over 6.2 billion with only 13 cities in the

tour. Hence, Hopfield-Tank algorithm is used to approximately solve this problem

with minimal computation. Few applications of TSP include determining a Postal

Delivery network, find the optimal path for a school bus route etc.

7.B.2. Hopfield neural network design

The Hopfield network is a dynamic network, which iterates to converge from

an arbitrary input state, as shown in Fig. 7.B.1. The Hopfield Network serves to

minimize an energy function. It is a fully connected weighted network where the

output of the network is fed back and there are weights to each of this link. A fully

connected Hopfield network is shown in Fig. 7.B.1. Here we use n2 neurons in the

network, where n is the total number of cities to be visited. The neurons here have

a threshold and step function. The inputs are given to the weighted input node.

The major task is to find appropriate connection weights such that invalid tours

should be prevented and valid tours should be preferred.

The output result of TSP can be represented in form of a Tour Matrix as in

Fig. 7.B.2 below. The example is shown for 4 cities. The optimal visiting route, in

the above example is:

City2 → City1 → City4 → City3 → City2

Hence, the total traveling distance is:

D = D21 + D14 + D43 + D32

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

138 Principles of Artificial and Neural Networks

• • •

•

•

•

•

•

•

 X1,1 X1,2 X1,3 X1,n

 X2,1 X2,2 X2,3 X2,n

 Xn,2 Xn,1 Xn,3 Xn,n

•

•

•

•

•

•

• • •

• • •

Fig. 7.B.1. The layout of Hopfield Network structure for TSP with n cities.

Fig. 7.B.2. Tour matrix at network output.

7.B.2.1. The energy function

The Hopfield network for the application of the neural network can be best

understood by the energy function. The energy function developed by Hopfield

and Tank [1] is used for the project. The energy function has various hollows that

represent the patterns stored in the network. An unknown input pattern represents

a particular point in the energy landscape and the pattern iterates its way to a

solution, the point moves through the landscape towards one of the hollows. The

iteration is carried on for some fixed number of times or till the stable state is

reached when the energy difference between two successive iterations lies below a

very small threshold value (∼ 0.000001).

The energy function used should satisfy the following criteria:

• The energy function should be able to lead to a stable combination matrix.

• The energy function should lead to the shortest traveling path.

The energy function used for the hopfield neural network is:

E = AΣiΣkΣj 6=kXikXij + BΣiΣkΣj 6=kXkiXji + C[(ΣiΣkXik) − n]2

+ DΣkΣj 6=kΣidkjXki(Xj,i+1 + Xj,i−1) . (1)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 139

Here, A, B, C, D are positive integers. The setting of these constants are critical

for the performance of Hopfield network. Xij is the variable to denote the fact that

city i is the jth city visited in a tour. Thus Xij is the output of the jth neuron in

the array of neurons corresponding to the ith city. We have n2 such variables and

their value will finally be 0 or 1 or very close to 0 or 1.

Hopfield and Tank [1] showed that if a combinatorial optimization problem can

be expressed in terms of an energy function of the general form given in Eq. (1), a

Hopfield network can be used to find locally optimal solutions of the energy func-

tion, which may translate to local minimum solutions of the optimization problem.

Typically, the network energy function is made equivalent to the objective function

which is to be minimized, while each of the constraints of the optimization problem

are included in the energy function as penalty terms [4]. Sometimes a minimum

of the energy function does not necessarily correspond to a constrained minimum

of the objective function because there are likely to be several terms in the energy

function, which contributes to many local minima. Thus, a tradeoff exists between

which tems will be minimized completely, and feasibility of the network is unlikely

unless the penalty parameters are chosen carefully. Furthermore, even if the net-

work does manage to converge to a feasible solution, its quality is likely to be poor

compared to other techniques, since the Hopfield network is a descent technique

and converges to the first local minimum it encounters.

The energy function can be analyzed as follows:

• ROW CONSTRAINT : (AΣiΣkΣj 6=kXikXij) In the energy function the first

triple sum is zero if and only if there is only one “1” in each order column. Thus

this takes care that no two or more cities are in same travel order i.e. no two

cities are visited simultaneously.

• COLUMN CONSTRAINT : (BΣiΣkΣj 6=kXkiXji) In the energy function, the

first triple sum is zero if and only if there is only one city appears in each order

column. Thus this takes care that each city is visited only once.

• TOTAL NUMBER OF “1” CONSTRAINT : (C[(ΣiΣkXik) − n]2) The

third triple sum is zero if and only if there are only N number of 1 appearing in

the whole n ∗ n matrix. Thus this takes into care that all cities are visited.

• The first three summation are set up to satisfy the condition 1, which is necessary

to produce a legal traveling path.

• SHORTEST DISTANCE CONSTRAINT : [DΣkΣj 6=kΣidkjXki(Xj,i+1 +

Xj,i−1)] The forth triple summation provides the constrain for the shortest path.

Dij is the distance between city i and city j. The value of this term is minimum

when the total distance traveled is shortest.

• The value of D is important to decide between the time taken to converge and the

optimality of the solution. If the value of D is low it takes long time for the NN

to converge but it gives solution nearer to the optimal solution but if the value

of D is high, the network converges fast but the solution may not be optimal.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

140 Principles of Artificial and Neural Networks

7.B.2.2. Weight matrix setting

The network here is fully connected with feedback and there are n2 neurons,

thus the weight matrix will be a square matrix of n2 ∗ n2 elements. According to

the Energy function the weight matrix can be set up as follows [1]:

Wik,lj = −Aδil(1 − δkj) − Bδkj(1 − δjl) − C − Ddjl(δj,k+1 + δj,k−1) (2)

Here the value of constants A, B, C, D are same as we have it in the Energy function.

Weights are also updated keeping in mind various constraints to give a valid tour

with minimum cost of travel. In this context, the Kronecker delta function (δ) is

used to facilitate simple notation.

The weight function can be analyzed as follows:

• The neuron whose weight is updated is referred with two subscripts, one for the

city it refers to and the other for the order of the city in the tour.

• Therefore, an element of the weight matrix for a connection between two neurons

needs to have four subscripts, with a comma after two of the subscripts.

• The negative signs indicate inhibition through the lateral connections in a row or

a column.

• The Kronecker delta function has two arguments (two subscripts of the symbol

δ). By definition δik has value 1 if i = k, and 0 if i 6= k.

• The first term gives the row constraint, thus taking care that no two cities are

updated simultaneously.

• The second term gives the column constraint, thus taking care that no city is

visited more than once.

• The third term here is for global inhibitation

• The fourth term takes care of the minimum distance covered.

7.B.2.3. Activation function

The activation function also follows various constraints to get a valid path. It

can be defined as follows [1]:

aij = ∆t(T1 + T2 + T3 + T4 + T5)

T1 = −aij/τ

T2 = −AΣiXik

T3 = −BΣiXik

T4 = −C(ΣiΣkΣik − m)

T5 = −DΣkdik(Xk,j+1 + Xk,j−1)

(3)

• We denote the activation of the neuron in the ith row and jth column by aij ,

and the output is denoted by Xij .

• A time constant τ is also used. The value of τ is taken as 1.0.

• A constant m is also another parameter used. The value of m is 15.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 141

• The first term in activation function is decreasing on each iteration.

• The second, third, fourth and the fifth term give the constraints for the valid

tour.

The activation is updated as:

aij(new) = aij(old) + ∆aij . (4)

7.B.2.4. The activation function

This a continuous hopfield network with the following output function

Xij = (1 + tanh(λaij))/2 . (5)

• Here Xij is the output of the neuron.

• The hyperbolic tangent function gives an output.

• The value of λ determines the slope of the function. Here the value of λ is 3.

• Ideally we want output either 1 or 0. But the hyperbolic tangent function gives

a real number and we settle at a value that is very close to desired result, for

example, 0.956 instead of 1 or say 0.0078 instead of 0.

7.B.3. Input selection

The inputs to the network are chosen arbitrarily. The initial state of the network

is thus not fixed and is not biased against any particular route. If as a consequence

of the choice of the inputs, the activation works out to give outputs that add up to

the number of cities, and initial solution for the problem, a legal tour will result.

A problem may also arise that the network will get stuck to a local minimum. To

avoid such an occurrence, random noise is generated and added to initial input.

Also there are inputs that are taken from user. The user is asked to input the

number of cities he want to travel and the distance between those cities which are

used to generate the distance matrix.

Distance matrix is a n2 square matrix whose principal diagonal is zero.

Figure 7.B.3 below shows a typical distance matrix for 4 cities.
below shows a typical distance matrix for 4 cities.

Fig. 13.B.3. Distance matrix (based on distance in
Fig. 7.B.3. Distance matrix (based on distance information input).

Hence, the distance between cities C1 and C3 is 18 and distance of a city to

itself is 0.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

142 Principles of Artificial and Neural Networks

7.B.4. Implementation details

The algorithm is implemented in C++ for the Hopfield network operation for

the traveling salesman problem. This code can handle for maximum upto 25 cities

it can be very easily extended for more number of cities. The following steps are

followed to implement this network.

1. Given the number of N cities and their co-ordinates, compute the Distance

matrix D.

2. Initialize the network and setup the weight matrix as shown in Eq. (2).

3. Randomly assign initial input states to the network and compute the activation

and output of the network, After that, the network is left alone, and it proceeds

to cycle through a succession of states, until it converges to a stable solution.

4. Compute the energy using Eq. (1) for each iteration. Energy should decrease

from iteration to iteration.

5. Iterate the updating to the activation and output until the network converges to a

stable solution. This happens when the change in energy between two successive

iterations lies below a small threshold value (∼ 0.000001) or, when the energy

starts to increase instead of decreasing.

The following is a listing of the characteristics of the C++ program along with

definitions and/or functions used. The number of cities and the distances between

the cities are solicited from the user.

• The distance is taken as integer values.

• A neuron corresponds to each combination of a city and its order in the tour.

The ith city visited in the order j, is the neuron corresponding to the element

j + i∗n, in the array for neurons. Here n is the number of cities. The i and j vary

from 0 to n−1. There are n2 neurons.

• A random input vector is generated in the function main(), and is later referred

to as the input activation for the network.

• getnwk(): It generates the weight matrix as per Eq. (2). It is a square matrix of

order n2.

• initdist(): It takes the distances between corresponding cities from the user given

in form of distance matrix.

• asgninpt(): It assigns the randomly generated intial input to the network.

• iterate(): This function finds the final path that is optimal or near optimal.

It iterates and the final state of the network is set in such a way that all the

constraint of the network is fulfilled.

• Getacts(): Compute the output of the activation function that gets used in

Iterate() routine.

• findtour(): It generates a Tour Matrix and the exact route of travel.

• calcdist(): calculates the total distance of the tour based on the tour generated

by the function findtour().

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 143

Parameters setting

The parameter settings in the Hopfield network are critical to the performance of

the Network. The initial values of the input parameters used are as follows:

A : 0.5

B : 0.5

C : 0.2

D : 0.5

λ : 3.0

τ : 1.0

m : 15

7.B.5. Output results

The attached result shows the simulation using 5, 10, 15, 20, 25 cities. The trav-

eling paths generated are shown in form of matrices, which are in the “output.txt”

file.

Hopfield neural network is efficient and can converge to stable states in a finite

number of iterations. It is observed that for upto 20 cities problem, the network

converges well to a stable state most of the time with a global minimum solution.

However, with further increase in the number of cities, the network converges to a

stable state less frequently. The graphical outputs are shown in Appendix 1.

The output.txt file (Appendix 2) first gives the inputs that are taken from the

user i.e. the number of cities and their distances in the form of distance matrix.

Then for those cities the output that is generated is printed in the form of Tour

Matrix, Tour Route and Total Distance Traveled. The solution is optimal or near

optimal.

The results attached along with the code are for 5, 10, 15, 20, 25 cities respec-

tively. The number of iterations and time taken to converge the network in each

case can be summarized as follows:

Cities Iteration Time (sec) Result

5 152 0.4652 Good

10 581 1.8075 Good

15 1021 3.2873 Good

20 2433 7.6458 Good

25 5292 16.2264 OK

The graphical output representations of routes for 5, 10, 15, 20 and 25 citlies are

shown in Fig. 7.B.4 below. Figure 7.B.5 illustrates the energy convergenge for the

5, 10, 15, 20 cities problems and Fig. 7.B.6 shows the number of iterations required

for convergence vs. number of cities.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

144 Principles of Artificial and Neural Networks

Fig. 7.B.4. Travel route: 5, 10, 15, 20 cities.

Comments on the results:

• The result above shows that as the number of cities increases the number of

iteration required increases sharply. The increase is not a linear increase.

• The number of iterations required for the convergence did not remain same for any

particular city. For example, for 5 cities the network usually converged between

120 to 170 iterations, but on few occasions it took around 80 iterations while

in few cases it did not converge at all or took more than 250 iterations. This

is because the initial network state is randomly generated. This may sometimes

result to no convergence also.

• Many times the result converges to local minimum instead of global minimum.

To avoid this, random bias is added to the initial inputs.

• The algorithm developed is non-deterministic. Thus it does not promise an op-

timal solution every time. Though it does give near optimal solution in most of

the cases, it may fail to converge and give a correct solution.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 145

Fig. 7.B.5. Energy convergence: 5, 10, 15, 20 cities.

Fig. 7.B.5 : Energy convergenge: 5, 10, 15, 20 cities

Fig. 7.B.6. Number of iterations required for convergence vs. number of cities.

• Many times when the energy of the system was calculated, it was found to increase

instead of decreasing.

• Thus the algorithm failed in few cases. This again was the consequence of the

random initial state of the network.

• In 93% of test cases the algorithm converged, while in 7% algorithm failed to

converge and sometimes the energy of the system increased instead of decreasing

while the network iterates towards convergence. There are various advantages of

using Hopfield network though I had seen many other approaches like Kohonen

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

146 Principles of Artificial and Neural Networks

Network and Genetic Algorithm approach.

• Hopfield neural network setup is very optimal for the solution of TSP. It can be

easily used for the optimization problems like that of TSP.

• It gives very accurate result due to very powerful and complete Energy equation

developed by Hopfield and Tank.

• The approach is much faster than Kohonen as the number of iteration required

to get the solution is less. The result obtained is much more near optimal than

compared to Genetic Algorithm approach as in genetic algorithm it is more like

trial error and chances to get the optimal solution is comparatively very less.

• This neural network approach is very fast compared to standard programing

techniques used for TSP solution. With very few changes this algorithm can be

modified to get the approximate solution for many other NP-complete problems.

7.B.6. Concluding discussion

• The setting for various parameter values like A, B, C, D, λ, τ, m, etc is a major

challenge. The best value was chosen by trial and error. Improvement is still

possible for these parameter values.

• Many times the algorithm converged to local minima instead of global minimum.

This problem was mostly resolved by adding a random noise to the initial inputs

of the system [2].

• The testing of algorithm gets difficult as the number of cities increase. Though

there are few software and programs available for the testing, none of them guar-

antees the optimal solution each time. So an approximation was made during the

testing of the algorithm.

• The network, as developed below, does not always give optimal solution though

in most cases it is near optimal. Few more changes or improvements can be made

to energy function along with other functions like weight updating function and

activation function to get better answer.

• Various values of constants (i.e. A, B, C, D) can be tried in multiple combinations

to get optimal or near optimal result in the present algorithm.

• Problems of infeasibility and poor solution quality can be essentially eliminated by

an appropriate form of energy function and modification of the internal dynamics

of the Hopfield network. By expressing all constraints of the problem in a single

term, overall number of terms and parameters in the energy function can be

reduced [4].

• Even if one of the distances between the cities is wrong the network has to start

form the very first stage. This error can be handled in some way in future.

• If we want to add or delete a city, the network must be restarted from the initial

state with the required changes. Some equations can be developed to incorporate

these changes.

• The algorithm can be modified for solving other NP-complete problems.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 147

7.B.7. Source code (C++)

//TSP.CPP

#include "tsp.h"

#include <stdlib.h>

#include <time.h>

int randomnum(int maxval) // Create random numbers between 1 to 100

{

return rand()%maxval;

}

/* ========= Compute the Kronecker delta function ======================= */

int krondelt(int i,int j)

{

int k;

k=((i==j)?(1):(0));

return k;

};

/* ========== compute the distance between two co-ordinates =============== */

int distance(int x1,int x2,int y1,int y2)

{

int x,y,d;

x=x1-x2;

x=x*x;

y=y1-y2;

y=y*y;

d=(int)sqrt(x+y);

return d;

}

void neuron::getnrn(int i,int j)

{

cit=i;

ord=j;

output=0.0;

activation=0.0;

}

/* =========== Randomly generate the co-ordinates of the cities ================== */

void HP_network::initdist(int cityno) //initiate the distances between the k cities

{

int i,j;

int rows=cityno, cols=2;

int **ordinate;

int **row;

ordinate = (int **)malloc((rows+1) *sizeof(int *));/*one extra for sentinel*/

/* now allocate the actual rows */

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

148 Principles of Artificial and Neural Networks

for(i = 0; i < rows; i++)

{

ordinate[i] = (int *)malloc(cols * sizeof(int));

}

/* initialize the sentinel value */

ordinate[rows] = 0;

srand(cityno);

for(i=0; i<rows; i++)

{

ordinate[i][0] = rand() % 100;

ordinate[i][1] = rand() % 100;

}

outFile<<"\nThe Co-ordinates of "<<cityno<<" cities: \n";

for (i=0;i<cityno;++i)

{

outFile<<"X "<<i<<": "<<ordinate[i][0]<<" ";

outFile<<"Y "<<i<<": "<<ordinate[i][1]<<"\n";

}

for (i=0;i<cityno;++i)

{

dist[i][i]=0;

for (j=i+1;j<cityno;++j)

{

dist[i][j]=distance(ordinate[i][0],ordinate[j][0],

ordinate[i][1],ordinate[j][1])/1;

}

}

for (i=0;i<cityno;++i)

{

for (j=0;j<i;++j)

{

dist[i][j]=dist[j][i];

}

}

print_dist(); //print the distance matrix

cout<<"\n";

for(row = ordinate; *row != 0; row++)

{

free(*row);

}

free(ordinate);

}

/* ============== Print Distance Matrix ==================== */

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 149

void HP_network::print_dist()

{

int i,j;

outFile<<"\n Distance Matrix\n";

for (i=0;i<cityno;++i)

{

for (j=0;j<cityno;++j)

{

outFile<<dist[i][j]<<" ";

}

outFile<<"\n";

}

}

/* ============ Compute the weight matrix ==================== */

void HP_network::getnwk(int citynum,float x,float y,float z,float w)

{

int i,j,k,l,t1,t2,t3,t4,t5,t6;

int p,q;

cityno=citynum;

a=x;

b=y;

c=z;

d=w;

initdist(cityno);

for (i=0;i<cityno;++i)

{

for (j=0;j<cityno;++j)

{

tnrn[i][j].getnrn(i,j);

}

}

for (i=0;i<cityno;++i)

{

for (j=0;j<cityno;++j)

{

p=((j==cityno-1)?(0):(j+1));

q=((j==0)?(cityno-1):(j-1));

t1=j+i*cityno;

for (k=0;k<cityno;++k)

{

for (l=0;l<cityno;++l)

{

t2=l+k*cityno;

t3=krondelt(i,k);

t4=krondelt(j,l);

t5=krondelt(l,p);

t6=krondelt(l,q);

weight[t1][t2]=-a*t3*(1-t4)-b*t4*(1-t3)

-c-d*dist[i][k]*(t5+t6)/100;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

150 Principles of Artificial and Neural Networks

}

}

}

}

// print_weight(cityno);

}

void HP_network::print_weight(int k)

{

int i,j,nbrsq;

nbrsq=k*k;

cout<<"\nWeight Matrix\n";

outFile<<"\nWeight Matrix\n";

for (i=0;i<nbrsq;++i)

{

for (j=0;j<nbrsq;++j)

{

outFile<<weight[i][j]<<" ";

}

outFile<<"\n";

}

}

/* =========== Assign initial inputs to the network ============= */

void HP_network::asgninpt(float *ip)

{

int i,j,k,l,t1,t2;

for (i=0;i<cityno;++i)

{

for (j=0;j<cityno;++j)

{

acts[i][j]=0.0;

}

}

//find initial activations

for (i=0;i<cityno;++i)

{

for (j=0;j<cityno;++j)

{

t1=j+i*cityno;

for (k=0;k<cityno;++k)

{

for (l=0;l<cityno;++l)

{

t2=l+k*cityno;

acts[i][j]+=weight[t1][t2]*ip[t1];

}

}

}

}

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 151

//print activations

// outFile<<"\n initial activations\n";

// print_acts();

}

/* ======== Compute the activation function outputs =================== */

void HP_network::getacts(int nprm,float dlt,float tau)

{

int i,j,k,p,q;

float r1,r2,r3,r4,r5;

r3=totout-nprm;

for (i=0;i<cityno;++i)

{

r4=0.0;

p=((i==cityno-1)?(0):(i+1));

q=((i==0)?(cityno-1):(i-1));

for (j=0;j<cityno;++j)

{

r1=citouts[i]-outs[i][j];

r2=ordouts[j]-outs[i][j];

for (k=0;k<cityno;++k)

{

r4+=dist[i][k]*(outs[k][p]+outs[k][q])/100;

}

r5=dlt*(-acts[i][j]/tau-a*r1-b*r2-c*r3-d*r4);

acts[i][j]+=r5;

}

}

}

/* ============== Get Neural Network Output ===================== */

void HP_network::getouts(float la)

{

double b1,b2,b3,b4;

int i,j;

totout=0.0;

for (i=0;i<cityno;++i)

{

citouts[i]=0.0;

for (j=0;j<cityno;++j)

{

b1=la*acts[i][j];

b4=b1;

b2=exp(b4);

b3=exp(-b4);

outs[i][j]= (float)(1.0+(b2-b3)/(b2+b3))/2.0;

citouts[i]+=outs[i][j];

}

totout+=citouts[i];

}

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

152 Principles of Artificial and Neural Networks

for (j=0;j<cityno;++j)

{

ordouts[j]=0.0;

for (i=0;i<cityno;++i)

{

ordouts[j]+=outs[i][j];

}

}

}

/* ============ Compute the Energy function ======================= */

float HP_network::getenergy()

{

int i,j,k,p,q;

float t1,t2,t3,t4,e;

t1=0.0;

t2=0.0;

t3=0.0;

t4=0.0;

for (i=0;i<cityno;++i)

{

p=((i==cityno-1)?(0):(i+1));

q=((i==0)?(cityno-1):(i-1));

for (j=0;j<cityno;++j)

{

t3+=outs[i][j];

for (k=0;k<cityno;++k)

{

if (k!=j)

{

t1+=outs[i][j]*outs[i][k];

t2+=outs[j][i]*outs[k][i];

t4+=dist[k][j]*outs[k][i]

*(outs[j][p]+outs[j][q])/10;

}

}

}

}

t3=t3-cityno;

t3=t3*t3;

e=0.5*(a*t1+b*t2+c*t3+d*t4);

return e;

}

/* ======== find a valid tour ========================= */

void HP_network::findtour()

{

int i,j,k,tag[Maxsize][Maxsize];

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 153

float tmp;

for (i=0;i<cityno;++i)

{

for (j=0;j<cityno;++j)

{

tag[i][j]=0;

}

}

for (i=0;i<cityno;++i)

{

tmp=-10.0;

for (j=0;j<cityno;++j)

{

for (k=0;k<cityno;++k)

{

if ((outs[i][k]>=tmp)&&(tag[i][k]==0))

tmp=outs[i][k];

}

if ((outs[i][j]==tmp)&&(tag[i][j]==0))

{

tourcity[i]=j;

tourorder[j]=i;

cout<<"tour order"<<j<<"\n";

for (k=0;k<cityno;++k)

{

tag[i][k]=1;

tag[k][j]=1;

}

}

}

}

}

//print outputs

void HP_network::print_outs()

{

int i,j;

outFile<<"\n the outputs\n";

for (i=0;i<cityno;++i)

{

for (j=0;j<cityno;++j)

{

outFile<<outs[i][j]<<" ";

}

outFile<<"\n";

}

}

/* ======= Calculate total distance for tour ============== */

void HP_network::calcdist()

{

int i,k,l;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

154 Principles of Artificial and Neural Networks

distnce=0.0;

for (i=0;i<cityno;++i)

{

k=tourorder[i];

l=((i==cityno-1)?(tourorder[0]):(tourorder[i+1]));

distnce+=dist[k][l];

}

outFile<<"\nTotal distance of tour is : "<<distnce<<"\n";

}

/* ======= Print Tour Matrix ============================== */

void HP_network::print_tour()

{

int i;

outFile<<"\nThe tour order: \n";

for (i=0;i<cityno;++i)

{

outFile<<tourorder[i]<<" ";

outFile<<"\n";

}

}

/* ======= Print network activations ======================== */

void HP_network::print_acts()

{

int i,j;

outFile<<"\n the activations:\n";

for (i=0;i<cityno;++i)

{

for (j=0;j<cityno;++j)

{

outFile<<acts[i][j]<<" ";

}

outFile<<"\n";

}

}

/*========== Iterate the network specified number of times =============== */

void HP_network::iterate(int nit,int nprm,float dlt,float tau,float la)

{

int k,b;

double oldenergy,newenergy, energy_diff;

b=1;

oldenergy=getenergy();

outFile1<<""<<oldenergy<<"\n";

k=0;

do

{

getacts(nprm,dlt,tau);

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 155

getouts(la);

newenergy=getenergy();

outFile1<<""<<newenergy<<"\n";

//energy_diff = oldenergy - newenergy;

//if (energy_diff < 0)

// energy_diff = energy_diff*(-1);

if (oldenergy - newenergy < 0.0000001)

{

//printf("\nbefore break: %lf\n", oldenergy - newenergy);

break;

}

oldenergy = newenergy;

k++;

}

while (k<nit) ;

outFile<<"\n"<<k<<" iterations taken for convergence\n";

//print_acts();

//outFile<<"\n";

//print_outs();

//outFile<<"\n";

}

void main()

{

/*========= Constants used in Energy, Weight and Activation Matrix ============== */

int nprm=15;

float a=0.5;

float b=0.5;

float c=0.2;

float d=0.5;

double dt=0.01;

float tau=1;

float lambda=3.0;

int i,n2;

int numit=4000;

int cityno=15;

// cin>>cityno; //No. of cities

float input_vector[Maxsize*Maxsize];

time_t start,end;

double dif;

start = time(NULL);

srand((unsigned)time(NULL));

//time (&start);

n2=cityno*cityno;

outFile<<"Input vector:\n";

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

156 Principles of Artificial and Neural Networks

for (i=0;i<n2;++i)

{

if (i%cityno==0)

{

outFile<<"\n";

}

input_vector[i]=(float)(randomnum(100)/100.0)-1;

outFile<<input_vector[i]<<" ";

}

outFile<<"\n";

//creat HP_network and operate

HP_network *TSP_NW=new HP_network;

if (TSP_NW==0)

{

cout<<"not enough memory\n";

exit(1);

}

TSP_NW->getnwk(cityno,a,b,c,d);

TSP_NW->asgninpt(input_vector);

TSP_NW->getouts(lambda);

//TSP_NW->print_outs();

TSP_NW->iterate(numit,nprm,dt,tau,lambda);

TSP_NW->findtour();

TSP_NW->print_tour();

TSP_NW->calcdist();

//time (&end);

end = time(NULL);

dif = end - start;

printf("Time taken to run this simulation: %lf\n",dif);

}

/**

Network: Solving TSP using Hopfield Network

ECE 559 (Neural Networks)

Author: PADMAGANDHA SAHOO

Date: 11th Dec ’03

**/

// TSP.H

#include <iostream.h>

#include <stdlib.h>

#include <math.h>

#include <stdio.h>

#include <time.h>

#include <fstream.h>

#define Maxsize 30

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 157

ofstream outFile("Output.txt",ios::out);

ofstream outFile1("Output1.txt",ios::out);

class neuron

{

protected:

int cit,ord;

float output;

float activation;

friend class HP_network;

public:

neuron() {};

void getnrn(int,int);

};

class HP_network

{

public:

int cityno; //Number of City

float a,b,c,d,totout,distnce;

neuron (tnrn)[Maxsize][Maxsize];

int dist[Maxsize][Maxsize];

int tourcity[Maxsize];

int tourorder[Maxsize];

float outs[Maxsize][Maxsize];

float acts[Maxsize][Maxsize];

float weight[Maxsize*Maxsize][Maxsize*Maxsize];

float citouts[Maxsize];

float ordouts[Maxsize];

float energy;

HP_network() { };

void getnwk(int,float,float,float,float);

void initdist(int);

void findtour();

void asgninpt(float *);

void calcdist();

void iterate(int,int,float,float,float);

void getacts(int,float,float);

void getouts(float);

float getenergy();

void print_dist(); // print the distance matrix among n cities

void print_weight(int); // print the weight matrix of the network

void print_tour(); // print the tour order of n cities

void print_acts(); // print the activations of the neurons

in the network

void print_outs(); // print the outputs of the neurons in

the network

};

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

158 Principles of Artificial and Neural Networks

%%
% Matlab Routine: tour.m

% Description: This routine contains the code to plot all graphical outputs for the
% TSP problem. It plots the optimum tour for all cities, energy con-
% vergence graph, iterations and time taken for each simulation etc.
%%

clear all; close all;

x = [54 55 72 60 27 54];
y = [93 49 40 30 49 93];
subplot(2,2,1);plot(x,y,‘.-’);
title(‘Optimum Tour for 5 Cities’);
xlabel(‘X-axis →’);ylabel(‘Y-axis →’);

x = [4 22 23 81 74 83 97 72 71 26 4];
y = [50 12 4 29 41 62 96 94 99 99 50];
subplot(2,2,2);plot(x,y,‘.-’);
title(‘Optimum Tour for 10 Cities’);
xlabel(‘X-axis →’);ylabel(‘Y-axis →’);

x = [2 1 26 35 40 48 56 47 68 84 98 87 57 45 29 2];
y = [53 62 65 61 48 27 38 74 61 44 2 5 2 4 5 53];
subplot(2,2,3);plot(x,y,‘.-’);
title(‘Optimum Tour for 15 Cities’);
xlabel(‘X-axis →’);ylabel(‘Y-axis →’);

x = [10 2 3 5 17 16 32 40 38 58 76 95 68 73 97 78 60 43 36 28 10];
y = [30 55 79 90 81 73 68 58 95 98 95 81 74 51 8 8 16 21 27 35 30];
subplot(2,2,4);plot(x,y,‘.-’);
title(‘Optimum Tour for 20 Cities’);
xlabel(‘X-axis →’);ylabel(‘Y-axis →’);

x = [10 14 14 7 20 24 34 50 51 85 86 90 97 69 75 84 99 73 55 36 39 34 26 27 40 10];
y = [63 66 79 94 85 82 63 61 98 89 97 95 72 68 61 48 12 17 2 5 16 20 23 35 39 63];
figure;subplot(1,2,1);plot(x,y,‘.-’);
title(‘Optimum Tour for 25 Cities’);
xlabel(‘X-axis →’);ylabel(‘Y-axis →’);

x = [10 14 14 7 20 24 34 50 51 85 86 90 97 69 75 84 99 73 55 36 39 34 26 27 40 10];
y = [63 79 66 94 85 82 63 98 61 89 97 95 72 68 61 48 12 17 2 5 16 20 23 35 39 63];
subplot(1,2,2);plot(x,y,‘.-’);
title(‘Non-optimal Tour for 25 Cities’);
xlabel(‘X-axis →’);ylabel(‘Y-axis →’);

% Plot the graphs to show iterations and time taken for each simulation
iteration = [152 581 1021 2433 5292];
city = [5 10 15 20 25];
time = [0.4652 1.8075 3.2873 7.6458 16.2264];
figure;subplot(1,2,1);plot(city,iteration,‘.-’);

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Hopfield Networks 159

title(‘Iterations taken for convergence’);
ylabel(‘Iterations →’);xlabel(‘No. of Cities →’);
subplot(1,2,2);plot(city,time,’.-’);
title(‘Time taken for convergence’);
ylabel(‘Time taken (in sec) →’);xlabel(‘No. of Cities →’);

% Plot the Energy convergence plots
n5 = textread(‘energy5.txt’);
n10 = textread(‘energy10.txt’);
n15 = textread(‘energy15.txt’);
n20 = textread(‘energy20.txt’);
n25 = textread(‘energy25.txt’);
figure;subplot(2,2,1);plot(n5);
title(‘Energy Convergence for 5 Cities’);
ylabel(‘Energy →’);xlabel(‘Iterations →’);
subplot(2,2,2);plot(n10);
title(‘Energy Convergence for 10 Cities’);
ylabel(‘Energy →’);xlabel(‘Iterations →’);
subplot(2,2,3);plot(n15);
title(‘Energy Convergence for 15 Cities’);
ylabel(‘Energy →’);xlabel(‘Iterations →’);
subplot(2,2,4);plot(n20);
title(‘Energy Convergence for 20 Cities’);
ylabel(‘Energy →’);xlabel(‘Iterations →’);

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

This page intentionally left blankThis page intentionally left blank

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Chapter 8

Counter Propagation

8.1. Introduction

The Counter Propagation neural network, due to Hecht–Nielsen (1987), is faster

by approximately a factor of 100 than back propagation, but more limited in range of

applications. It combines the Self-Organizing (Instar) networks of Kohonen (1984)

and the Grossberg’s Oustar net (1969, 1974, 1982) consisting of one layer of each.

It has good properties of Generalization (essential, in some degree, to all neural

networks) that allow it to deal well with partially incomplete or partially incorrect

input vectors. Counter Propagation network serves as a very fast clustering network.

Its Structure is as in Fig. 8.1, where a (hidden) K-layer is followed by an output

G-layer.

Note: number of neurons in the Kohonen and the Grossberg layer need not be equal.

Fig. 8.1. Counter propagation network.

8.2. Kohonen Self-Organizing Map (SOM) Layer

The Kohonen layer [Kohonen 1984, 1988] is a “Winner-take-all” (WTA) layer.

Thus, for a given input vector, only one Kohonen layer output is 1 whereas all others

161

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

162 Principles of Artificial and Neural Networks

are 0. No training vector is required to achieve this performance. Hence, the name:

Self-Organizing Map Layer (SOM-Layer).

Let the net output of a Kohonen layer neuron be denoted as kj . Then

kj =

m
∑

i=1

wijxi = wT
i x ; wj , [w1j · · ·wmj]

T

x , [x1 · · ·xm]
T

(8.1)

and, for the hth (j = h) neuron where

kh > kj 6=h (8.2)

we then set wj such that:

kh =

m
∑

i=1

wihxi = 1 = wT
h x (8.3a)

and, possibly via lateral inhibition as in Sec. 9.2.b

kj 6=h = 0 (8.3b)

8.3. Grossberg Layer

The output of the Grossberg layer is the weighted output of the Kohonen layers,

by Fig. 8.1.

Denoting the net output of the Grossberg layer [Grossberg, 1974] as gj then

gj =
∑

i

kivij = kT vj ; k , [k1 · · · km]T

vj , [v1j · · · vmj]
T (8.4)

But, by the “winner-take-all” nature of the Kohonen layer; if

kh = 1
hj 6=h = 0

}

(8.5)

then

gj =

p
∑

i=1

kivij = knvhj = vhj (8.6)

the right-hand side equality being due to kh = 1.

8.4. Training of the Kohonen Layer

The Kohonen layer acts as a classifier where all similar input vectors, namely

those belonging to the same class produce a unity output in the same Kohonen

neuron. Subsequently, the Grossberg layer produces the desired output for the given

class as has been classified in the Kohonen layer above. In this manner, generaliza-

tion is then accomplished.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Counter Propagation 163

8.4.1. Preprocessing of Kohonen layer’s inputs

It is usually required to normalize the Kohonen layer’s inputs, as follows

x′
i =

xi
√

∑

j

x2
j

(8.7)

yield a normalized input vector x′ where

(x′)T x′ = 1 = ‖x′‖ (8.8)

The training of the Kohonen layer now proceeds as follows:

1. Normalize the input vector x to obtain x′

2. The Kohonen layer neuron whose

(x′)T wh = k′
h5 (8.9)

is the highest, is declared the winner and its weights are adjusted to yield a unity

output kh = 1

Note that

k′
h =

∑

i

x′
iwih = x′

1wh1 + x′
2wh2 + · · ·x′

mwhm = (x′)T wh (8.10)

But since

(x′)T x′ = 1

and by comparing Eqs. (8.9) and (8.10) we obtain that

w = x′ (8.11)

namely, the weight vector of the winning Kohonen neuron (the hth neuron in the

Kohonen layer) equals (best approximates) the input vector. Note that there is no

“teacher”. We start with the winning weights to be the ones that best approximate

x and then we make these weights even more similar to x, via

w(n + 1) = w(n) + α [x−w(n)] (8.12)

where α is a training rate coefficient (usually α ∼= 0.7) and it may be gradually

reduced to allow large initial steps and smaller for final convergence to x.

In case of a single input training vector, one can simply set the weight to equal

the inputs in a single step.

If many training input-vectors of the same class are employed, all of which are

supposed to activate the same Kohonen neuron, the weights should become the

average of the input vectors xi of a given class h, as in Fig. 8.2.

Since ‖wn+1‖ above is not necessarily 1, it must be normalized to 1 once derived

as above!

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

164 Principles of Artificial and Neural Networks

Fig. 8.2. Training of a Kohonen layer.

8.4.2. Initializing the weights of the Kohonen layer

Whereas in practically all NN’s the initial weights are selected to be of pseudo

random low values, in the case of Kohonen networks, any pseudo random weights

must be normalized if an approximation to x′ is to be of any meaning. But then,

even normalized random weights may be too far off from x′ to have a chance for

convergence at a reasonable rate. Furthermore if there are several relatively close

classes that are to be separated via Kohonen network classification, one may never

get there. If, however, a given class has a wide spread of values, several Kohonen

neurons may be activated for the same class. Still, the latter situation can be

subsequently corrected by the Grossberg layer which will then guide certain different

Kohonen layer outputs to the same overall output.

The above considerations lead to a solution that distributes the randomness of

the initial weights to resemble the spread of the input vectors of a given class.

To accomplish the latter initialization strategy, one may employ the convex

combination initialization method as follows:

Set all initial weights to the same value of 1/
√

N where N is the number of inputs

(dimension of x′). Thus all input vectors will be of unity length (as required) since

N

(

1√
N

)2

= 1 (8.13)

and add a small noise ripple component to these weights. Subsequently, set all xi

to satisfy

x∗
i = γxi + (1 − γ)

1√
N

(8.14)

with γ � 1 initially.

As the network trains, γ is gradually increased towards 1. Note that for γ = 1;

x∗
i = xi

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Counter Propagation 165

Another approach is to add noise to the input vector. But this is slower than

the earlier method.

A third alternative method starts with randomized normalized weights. But

during the first few training sets all weights are adjusted, not just those of the

“winning neuron”. Hence, the declaration of a “winner” will be delayed by a few

iterations.

However, the best approach is to select a representative set of input vectors x

and use these as initial weights s.t. each neuron will be initialized by one vector

from that set.

8.4.3. Interpolative mode layer

Whereas a Kohonen layer retains only the “winning neuron” for a given class,

the Interpolative Mode layer retains a group of Kohonen neurons per a given class.

The retained neurons are those having the highest inputs. The number of neurons

to be retained for a given class must be predetermined.

The outputs of that group will then be normalized to unit length. All other

outputs will be zero.

8.5. Training of Grossberg Layers

A major asset of the Grossberg layer is the ease of its training. First the outputs

of the Grossberg layer are calculated as in other networks, namely

gi =
∑

j

vijkj = vihkh = vih (8.15)

Kj being the Kohonen layer outputs and vij denoting the Grossberg layer weights.

Obviously, only weights from non-zero Kohonen neurons (non-zero Grossberg

layer inputs) are adjusted.

Weight adjustment follows the relations often used before, namely:

vij(n + 1) = vij(n) + β [Ti − vij(n)kj] (8.16)

Ti being the desired outputs (targets), and for the n + 1 iteration β being initially

set to about 1 and is gradually reduced. Initially vij are randomly set to yield a

vector of norm 1 per each neuron.

Hence, the weights will converge to the average value of the desired outputs to

best match an input-output (x-T) pair.

8.6. The Combined Counter Propagation Network

We observe that the Grossberg layer is trained to converge to the desired (T)

outputs whereas the Kohonen layer is trained to converge to the average inputs.

Hence, the Kohonen layer is essentially a pre-classifier to account for imperfect

inputs, the Kohonen layer being unsupervised while the Grossberg layer is super-

vised of.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

166 Principles of Artificial and Neural Networks

If m target vectors Tj (of dimension p) are simultaneously applied at m × p

outputs at the output side of the Grossberg layer to map Grossberg neurons then

each set of p Grossberg neurons will converge to the appropriate target input, given

the closest x input being applied at the Kohonen layer input at the time. The term

Counter-Propagation (CP) is due to this application of input and target at each

end of the network, respectively.

8.A. Counter Propagation Network Case Study∗:

Character Recognition

8.A.1. Introduction

This case study is concerned with recognizing three digits of “0”, “1”, “2” and

“4”. By using a Counter Propagation (CP) neural network. It involves designing

the CP network, training it with standard data sets (8-by-8); testing the network

using test data with 1, 5, 10, 20, 30, 40-bit errors and evaluating the recognition

performance.

8.A.2. Network structure

The general CP structure is given in Fig. 8.A.1:

Fig. 8.A.1. Schematic diagram of the CP network.

A MATLAB-based design was established to create a default network:

Example: For creating a CP network with 64-input-neuron, 4-Kohonen-neuron, and

3-Grossberg-neuron:

%% Example:

% neuronNumberVector = [64 4 3]

%% use:

%% cp = createDefaultCP(neuronNumberVector);

%

∗Computed by Yunde Zhong, ECE Dept., University of Illinois, Chicago, 2005.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Counter Propagation 167

8.A.3. Network training

(a) Training data set

The training data set applied to the CP network is as follows:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
classID = 0;
classID = classID + 1;
trainingData(1).input = [. . .

−1 −1 −1 −1 −1 −1 −1 −1; . . .
−1 −1 −1 −1 −1 −1 −1 −1; . . .

1 1 1 1 1 −1 −1 1; . . .
1 1 1 1 −1 −1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 −1 −1 1 1 1 1; . . .
1 −1 −1 −1 −1 −1 −1 −1; . . .
1 −1 −1 −1 −1 −1 −1 −1 . . .

];
trainingData(1).classID = classID;
trainingData(1).output = [0&1 0];
trainingData(1).name = ‘2’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
classID = classID + 1;
trainingData(2).input = [. . .

1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1 . . .

];
trainingData(2).classID = classID;
trainingData(2).output = [0 0 1];
trainingData(2).name = ‘1’;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

168 Principles of Artificial and Neural Networks

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
classID = classID + 1;
trainingData(3).input = [. . .

−1 −1 1 1 1 1 1 1; . . .
−1 −1 1 1 1 1 1 1; . . .
−1 −1 1 1 −1 −1 1 1; . . .
−1 −1 1 1 −1 −1 1 1; . . .
−1 −1 −1 −1 −1 −1 −1 −1; . . .
−1 −1 −1 −1 −1 −1 −1 −1; . . .

1 1 1 1 −1 −1 1 1; . . .
1 1 1 1 −1 −1 1 1 . . .

];
trainingData(3).classID = classID;
trainingData(3).output = [1 0 0];
trainingData(3).name = ‘4’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
classID = classID + 1;
trainingData(4).input = [. . .

1 −1 −1 −1 −1 −1 −1 1; . . .
1 −1 −1 −1 −1 −1 −1 1; . . .
1 −1 −1 1 1 −1 −1 1; . . .
1 −1 −1 1 1 −1 −1 1; . . .
1 −1 −1 1 1 −1 −1 −1; . . .
1 −1 −1 1 1 −1 −1 −1; . . .
1 −1 −1 −1 −1 −1 −1 1; . . .
1 −1 −1 −1 −1 −1 −1 1 . . .

];
trainingData(4).classID = classID;
trainingData(4).output = [0 0 0];
trainingData(4).name = ‘0’;

(b) Setting of Weights:

(1) Get all training data vectors Xi, i = 1, 2 . . . L

(2) For each group of data vectors belonging to the same class, Xi, i = 1, 2 . . .N .

(a) Normalize each Xi, i = 1, 2 . . .N, X ′
i = Xi/sqrt(ΣX2j)

(b) Compute the average vector X = (ΣX ′
j)/N

(c) Normalize the average vector X, X ′ = X/sqrt(X2)

(d) Set the corresponding Kohonen Neuron’s weights Wk = X

(e) Set the Grossberg weights [W1kW1k . . . W1k] to the output vector Y

(3) Repeat step 2 until each class of training data is propagated into the network.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Counter Propagation 169

8.A.4. Test mode

The test data set is generated by a procedure, which adds a specified number of

error bits to the original training data set. In this case study, a random procedure

is used to implement this function.

Example:

testingData = getCPTestingData(trainingData, numberOfBitError, numberPer-

TrainingSet)

where the parameter, “numberOfBitError”, is to specify the expected number of

bit errors; “numberPerTrainingSet” is to specify the expected size of the testing

data set. And the expected testing data set is gotten by the output parameter

“testingData”.

8.A.5. Results and conclusions

(a) Success rate vs. bit errors

In this experiment, a CP network with 64-input, 4-Kohonen-neuron, and

3-Grossberg-neuron is used. The success rate is tabulated as follows:

Number of Testing data set

Success Rate
12 100 1000

1 100% 100% 100%

5 100% 100% 100%

10 100% 100% 100%

20 100% 100% 100%

30 100% 97% 98.2%

40 91.6667% 88% 90.3%

Number of

Bit Error

50 83.3333% 78% 74.9%

(b) Conclusions

(1) The CP network is robust and fast.

(2) CP network has high success rate even if in the case of large bit errors.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

170 Principles of Artificial and Neural Networks

8.A.6. Source codes (MATLAB)

File #1

function cp= nnCP

%% Get the training data

[trainingData, classNumber] = getCPTrainingData;

%% Create a default CP network

outputLen = length(trainingData(1).output);

cp = createDefaultCP([64, classNumber, outputLen]);

%% Training the CP network

[cp] = trainingCP(cp, trainingData);

%% test the original training data set;

str = [];

tdSize = size(trainingData);

for n = 1: tdSize(2);

[cp, output] = propagatingCP(cp, trainingData(n).input(:));

[outputName, outputVector, outputError, outputClassID] = cpClassifier(cp,

trainingData);

if strcmp(outputName, trainingData(n).name)

astr = [num2str(n), ‘==> Succeed!! The Error Is:’, num2str(outputError)];

else

astr = [num2str(n), ‘==> Failed!!’];

end

str = strvcat(str, astr);

end

output = str;

display(output);

%% test on the testing data set with bit errors

testingData = getCPTestingData(trainingData, 40, 250);

trdSize = size(trainingData);

tedSize = size(testingData);

str = [];

successNum = 0;

for n = 1: tedSize(2)

[cp, output] = propagatingCP(cp, testingData(n).input(:));

[outputName, outputVector, outputError, outputClassID] = cpClassifier(cp,

trainingData);

strFormat = ‘ ’;

vStr = strvcat(strFormat,num2str(n));

if strcmp(outputName, testingData(n).name)

successNum = successNum + 1;

astr = [vStr(2,:), ‘==> Succeed!! The Error Is:’, num2str(outputError)];

else

astr = [vStr(2,:), ‘==> Failed!!’];

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Counter Propagation 171

end

str = strvcat(str, astr);

end

astr = [‘The success rate is:’, num2str(successNum *100/tedSize(2)),‘%’];

str = strvcat(str, astr);

testResults = str;

display(testResults);

File #2

%%%

%% A function to create a default Counter Propagation model

%%

%% input parameters:

%% neuronNumberVector to specify neuron number in each layer

%%

%% Example #1:

%% neuronNumberVector = [64 3 3]

%% use:

%% cp = createDefaultCP(neuronNumberVector);

%%

%% Author: Yunde Zhong

%%%

function cp = createDefaultCP(neuronNumberVector)

cp = [];

if nargin < 1

display(‘createDefaultCP.m needs one parameter’);

return;

end

nSize = length(neuronNumberVector);

if nSize ~= 3

display(‘error parameter when calling createDefaultCP.m’);

return;

end

%% nn network paramters

cp.layerMatrix = neuronNumberVector;

%% Kohonen layer

aLayer.number = neuronNumberVector(2);

aLayer.error = [];

aLayer.output = [];

aLayer.neurons = [];

aLayer.analogOutput = [];

aLayer.weights = [];

for ind = 1: aLayer.number

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

172 Principles of Artificial and Neural Networks

%% create a default neuron

inputsNumber = neuronNumberVector(1);

weights = ones(1,inputsNumber) / sqrt(aLayer.number);

aNeuron.weights = weights;

aNeuron.weightsUpdateNumber = 0;

aNeuron.z = 0;

aNeuron.y = 0;

aLayer.neurons = [aLayer.neurons, aNeuron];

aLayer.weights = [aLayer.weights; weights];

end

cp.kohonen = aLayer;

%% Grossberg Layer

aLayer.number = neuronNumberVector(3);

aLayer.error = [];

aLayer.output = [];

aLayer.neurons = [];

aLayer.analogOutput = [];

aLayer.weights = [];

%% create a default layer

for ind = 1: aLayer.number

%% create a default neuron

inputsNumber = neuronNumberVector(2);

weights = zeros(1,inputsNumber);

aNeuron.weights = weights;

aNeuron.weightsUpdateNumber = 0;

aNeuron.z = 0;

aNeuron.y = 0;

aLayer.neurons = [aLayer.neurons, aNeuron];

aLayer.weights = [aLayer.weights; weights];

end

cp.grossberg = aLayer;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Counter Propagation 173

File #3

function [trainingData, classNumber] = getCPTrainingData

trainingData = [];
classNumber =[];

classID = 0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
classID = classID + 1;
trainingData(1).input = [. . .

−1 −1 −1 −1 −1 −1 −1 −1; . . .
−1 −1 −1 −1 −1 −1 −1 −1; . . .

1 1 1 1 1 −1 −1 1; . . .
1 1 1 1 −1 −1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 −1 −1 1 1 1 1; . . .
1 −1 −1 −1 −1 −1 −1 −1; . . .
1 −1 −1 −1 −1 −1 −1 −1

];
trainingData(1).classID = classID;
trainingData(1).output = [0&1 0];
trainingData(1).name = ‘2’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
classID = classID + 1;
trainingData(2).input = [. . .

1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1; . . .
1 1 1 −1 −1 1 1 1

];
trainingData(2).classID = classID;
trainingData(2).output = [0 0 1];
trainingData(2).name = ‘1’;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

174 Principles of Artificial and Neural Networks

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 4
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
classID = classID + 1;
trainingData(3).input = [. . .

−1 −1 1 1 1 1 1 1; . . .
−1 −1 1 1 1 1 1 1; . . .
−1 −1 1 1 −1 −1 1 1; . . .
−1 −1 1 1 −1 −1 1 1; . . .
−1 −1 −1 −1 −1 −1 −1 −1; . . .
−1 −1 −1 −1 −1 −1 −1 −1; . . .

1 1 1 1 −1 −1 1 1; . . .
1 1 1 1 −1 −1 1 1 . . .

];
trainingData(3).classID = classID;
trainingData(3).output = [1 0 0];
trainingData(3).name = ‘4’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
classID = classID + 1;
trainingData(4).input = [. . .

1 −1 −1 −1 −1 −1 −1 1; . . .
1 −1 −1 −1 −1 −1 −1 1; . . .
1 −1 −1 1 1 −1 −1 1; . . .
1 −1 −1 1 1 −1 −1 1; . . .
1 −1 −1 1 1 −1 −1 −1; . . .
1 −1 −1 1 1 −1 −1 −1; . . .
1 −1 −1 −1 −1 −1 −1 1; . . .
1 −1 −1 −1 −1 −1 −1 1 . . .

];
trainingData(4).classID = classID;
trainingData(4).output = [0 0 0];
trainingData(4).name = ‘0’;

%% Other parameters
classNumber = classID;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Counter Propagation 175

File #4

function cp = trainingCP(cp, trainingData)

if nargin < 2

display(’trainingCP.m needs at least two parameter’);

return;

end

datbasetSize = size(trainingData);

kWeights = [];

gWeights = zeros(cp.grossberg.number,cp.kohonen.number);

for datbasetIndex = 1: datbasetSize(2)

mIn = trainingData(datbasetIndex).input(:);

mOut = trainingData(datbasetIndex).output(:);

mClassID = trainingData(datbasetIndex).classID;

mIn = mIn / sqrt(sum(mIn.*mIn));

%% training the Kohonen Layer

oldweights = cp.kohonen.neurons(mClassID).weights;

weightUpdateNumber = cp.kohonen.neurons(mClassID).weightsUpdateNumber + 1;

if weightUpdateNumber >&1

mIn = (oldweights * weightUpdateNumber + mIn) / weightUpdateNumber;

mIn = mIn / sqrt(sum(mIn .* mIn));

end

cp.kohonen.neurons(mClassID).weights = mIn’;

cp.kohonen.neurons(mClassID).weightsUpdateNumber = weightUpdateNumber;

kWeights = [kWeights; mIn’];

%% training the Grossberg Layer

if weightUpdateNumber >&1

mOut = (mOut * weightUpdateNumber + mOut) / weightUpdateNumber;

end

gWeights(:,mClassID) = mOut;

end

for gInd = 1: cp.grossberg.number

cp.grossberg.neurons(gInd).weights = gWeights(gInd,:);

end

cp.kohonen.weights = kWeights;

cp.grossberg.weights = gWeights;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

176 Principles of Artificial and Neural Networks

File #5

function [cp, output] = propagatingCP(cp, inputData)

output = [];

if nargin < 2

display(’propagatingCP.m needs two parameters’);

return;

end

% propagation of Kohonen Layer

zOut = cp.kohonen.weights * inputData;

[zMax, zMaxInd] = max(zOut);

yOut = zeros(size(zOut));

yOut(zMaxInd) = 1;

cp.kohonen.analogOutput = zOut;

cp.kohonen.output = yOut;

for kInd =&1 : cp.kohonen.number

cp.kohonen.neurons(kInd).z = zOut(kInd);

cp.kohonen.neurons(kInd).y = yOut(kInd);

end

% propagation of Grossberg Layer

zOut = cp.grossberg.weights * yOut;

yOut = zOut;

cp.grossberg.analogOutput = zOut;

cp.grossberg.output = yOut;

for gInd =&1 : cp.grossberg.number

cp.grossberg.neurons(gInd).z = zOut(gInd);

cp.grossberg.neurons(gInd).y = yOut(gInd);

end

File #6

function [outputName, outputVector, outputError, outputClassID] = cpClassifier(cp, trainingData)

outputName = [];

outputVector = [];

if nargin < 2

display(’cpClassifier.m needs at least two parameter’);

return;

end

dError = [];

dataSize = size(trainingData);

output = cp.grossberg.output;

for dataInd =1 : dataSize(2)

aSet = trainingData(dataInd).output(:);

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Counter Propagation 177

vDiff = abs(aSet - output);

vDiff = vDiff.*vDiff;

newError = sum(vDiff);

dError = [dError, newError];

end

if ~isempty(dError)

[eMin, eInd] = min(dError);

outputName = trainingData(eInd).name;

outputVector = trainingData(eInd).output;

outputError = eMin;

outputClassID = trainingData(eInd).classID;

end

File #7

function testingData = getCPTestingData(trainingData, numberOfBitError,

numberPerTrainingSet)

testingData = [];

tdSize = size(trainingData);

tdSize = tdSize(2);

ind = 1;

for tdIndex = 1: tdSize

input = trainingData(tdIndex).input;

name = trainingData(tdIndex).name;

output = trainingData(tdIndex).output;

classID = trainingData(tdIndex).classID;

inputSize = size(input);

for ii = 1: numberPerTrainingSet

rowInd = [];

colInd = [];

flag = ones(size(input));

bitErrorNum = 0;

while bitErrorNum < numberOfBitError

x = ceil(rand(1) * inputSize(1));

y = ceil(rand(1) * inputSize(2));

if x <= 0

x = 1;

end

if y <= 0

y = 1;

end

if flag(x, y) ~= &-1

bitErrorNum = bitErrorNum + 1;

flag(x, y) == -1;

rowInd = [rowInd, x];

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

178 Principles of Artificial and Neural Networks

colInd = [colInd, y];

end

end

newInput = input;

for en = 1:numberOfBitError

newInput(rowInd(en), colInd(en)) = newInput(rowInd(en), colInd(en)) * (-1);

end

testingData(ind).input = newInput;

testingData(ind).name = name;

testingData(ind).output = output;

testingData(ind).classID = classID;

ind = ind + 1;

end

end

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Chapter 9

Adaptive Resonance Theory

9.1. Motivation

The Adaptive Resonance Theory (ART) was originated by Carpenter and Gross-

berg (1987a) for the purpose of developing artificial neural networks whose manner

of performance, especially (but not only) in pattern recognition or classification

tasks, is closer to that of the biological neural network (NN) than was the case in

the previously discussed networks. One of their main goals was to come up with

neural networks that can preserve the biological network’s plasticity in learning or

in recognizing new patterns, namely, in learning without having to erase (forget) or

to substantially erase earlier learned patterns.

Since the purpose of the ART neural network is to closely approximate the

biological NN, the ART neural network needs no “teacher” but functions as an

unsupervised self-organizing network. Its ART-I version deals with binary inputs.

The extension of ART-I known as ART-II [Carpenter and Grossberg, 1987b] deals

with both analog patterns and with patterns represented by different levels of grey.

9.2. The ART Network Structure

The ART network consists of 2 layers; (I) a Comparison Layer (CL) and (II) a

Recognition Layer (RL), which are interconnected. In addition, the network consists

of two Gain elements, one, (G1) feeding its output g1 to the Comparison layer and

the second, (G2) feeding its output g2 to the Recognition Layer, and thirdly, a Reset

element where the comparison, as performed in the Comparison Layer, is evaluated

with respect to a preselected tolerance value (“vigilance” value). See Fig. 9.1.

9.2. (a) The comparison layer (CL)

A binary element xj of the m-dimensional input vector x is inputted into the

jth (j = 1 · · ·m; m = dim(x)) neuron of the CL. The jth neuron is also inputted

by a weighted sum (pj) of the recognition-output vector r from the RL where

pj =

m
∑

i=1

tijri (9.1)

179

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

180 Principles of Artificial and Neural Networks

Fig. 9.1. ART-I network schematic.

ri being the ith component of the m-dimensional recognition-output vector r of the

RL layer and n being the number of categories to be recognized.

Furthermore, all CL neurons receive the same g1 scalar output of the same

element G1. The m-dimensional (m = dim(x)) binary comparison-layer output

vector c of the CL layer initially equals the input vector, namely, at the initial

iteration

cj(0) = xj(0) (9.2)

Also, initially:

g1(0) = 1 (9.3)

The CL’s output vector c satisfies a (two-thirds) majority rule requirement s.t. its

output is

cj = 1

only if at least two of this (CL) neuron’s three inputs are 1. Hence, Eqs. (9.2), (9.3)

imply, by the “two-thirds majority” rule, that initially

c(0) = x(0) (9.4)

since initially no feedback exists from the RL layer, while g1(0) = 1.

9.2. (b) The recognition layer (RL)

The RL layer serves as a classification layer. It receives as its input an

n-dimensional weight vector d with elements dj , which is the weighted form of

the CL’s output vector c; s.t.

dj =

m
∑

i=1

bjici = bT
j c ; bj ,







bj1
...

bjm






;

i = 1, 2, . . .m ;

j = 1, 2, . . . n ;

m = dim(x)

n = number of categories

(9.5)

where bji are real numbers.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Adaptive Resonance Theory 181

The RL neuron with the maximal (winning) dj will output a “1” as long as

g2 = 1. All others will output a zero. Hence, the RL layer serves to classify its

input vector. The weights bij of the jth (winning) RL neuron that fires (having

maximal output dj) constitute an exemplar of the pattern of vector c, in similarity

to the properties of the BAM memory discussed earlier (Sec. 7.3), noting that an

output dj satisfies

dj = cT c at maximum (as in the Kohonen layer) (9.6)

dj being the maximal possible outcome of Eq. (9.5), since bj = c; di6=j = 0.

We achieve the locking of one neuron (the winning neuron) to the maximal

output by outputting a winner-take-all (as in Sec. 8.2):

rj = 1 (9.7)

while all other neurons yield

ri6=j = 0 if ρ = 0 (no inhibition) (9.8)

For this purpose an interconnection scheme is employed in the RL that is based on

lateral inhibition. The lateral inhibition interconnection is as in Fig. 9.2, where the

output ri of each neuron (i) is connected via an inhibitory (negative) weight matrix

L = {lij}, i 6= j, where lij < 0 to any other neuron (j). Hence, a neuron with a

Fig. 9.2. Lateral inhibition in an RL layer of an ART-I network.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

182 Principles of Artificial and Neural Networks

large output inhibits all other neurons. Furthermore, positive feedback ljj > 0 is

employed such that each neuron’s output rj is fed back with a positive weight to

its own input to reinforce its output if it is to fire (to output a “one”). This posi-

tive reinforcement is termed as adaptive resonance to motivate the resonance term

in “ART”.

9.2. (c) Gain and reset elements

The gain elements feed the same scalar output to all neurons concerned as in

Fig. 1, g1 being inputted to the CL neurons and g2 to RL neurons, where:

g2 = OR(x) = OR(x1 · · ·xN)

g1 = OR(r) ∩ OR(x)

= OR(r1 · · · rN) ∩ OR(x1 · · ·xN) = g2 ∩ OR(r) (9.9)

Hence, if at least one element of x is 1 then g2 = 1. Also, if any element of

g2 = 1 but also no elements of r is 1 then g1 = 1, else g1 = 0. (See Table 9.1).

Note that the overhead bar denotes negation, whereas ∩ denotes a logical “and”

(intersection). Also, note that if OR(x) is zero, then OR(r) is always zero, by the

derivation of r as above.

Table 9.1.

OR(x) OR(r) OR(r) g1

0 0 1 0
1 0 1 1

1 1 0 0
0 1 0 0

Finally, the reset element evaluates the degree of similarity between the input

vector x and the CL output vector c in terms of the ratio η, where:

η =
No. of “1′′s in c

No. of “1′′s in x
(9.10)

Subsequently, if

η < η0 (9.11)

η0 being a pre-set initial tolerance (vigilance) value, then a reset signal (ρ) is out-

putted to inhibit the particular RL neuron that has fired at the given iteration. See

Fig. 9.2. A reset factor based of the Hamming distance between vectors c and x

can also be considered.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Adaptive Resonance Theory 183

9.3. Setting-Up of the ART Network

9.3. (a) Initialization of weights

The CL weight matrix B is initialized [Carpenter and Grossberg, 1987a] as

follows:

bij <
E

E + m − 1
∀i, j (9.12)

where

m = dim(x)

E > 1 (typically E = 2)

The RL weight matrix T is initialized such that

tij = 1 ∀i, j (9.13)

(See: Carpenter and Grossberg, 1987a)

The tolerance level η0 (vigilance) is chosen as

0 < η0 < 1 (9.14)

A high η0 yields fine discrimination whereas a low η0 allows grouping of more

dissimilar patterns. Hence, one may start with lower η0 and raise it gradually.

9.3. (b) Training

The training involves the setting of the weight matrices B (of the RL) and T

(of the CL) of the ART network.

Specifically, the network may first be exposed for brief periods to successive input

vectors, not having time to converge to any input vector but only to approach some

settings corresponding to some averaged x.

The parameters bij of vector bj of B are set according to:

bij =
Eci

E + 1 +
∑

k

ck

(9.15)

where E > 1 (usually, E = 2)

ci = the ith component of vector c where j corresponds to the winning neuron.

Furthermore, the parameter tij of T are set such that

tij = ci ∀i = 1 · · ·m; m = dim(x) (9.16)

j denoting the winning neuron.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

184 Principles of Artificial and Neural Networks

9.4. Network Operation

(a) Initially, at iteration 0, x = 0. Hence, by Eq. (9.9),

g2(0) = 0

and

g1(0) = 0

Consequently c(0) = 0 by Eq. (4).

Also, since g2(0) = 0, the output vector r to the CL is, by the majority (2
3) rule

that governs both layers is: r(0) = 0.

(b) Subsequently, when a vector x 6= 0 is being applied, no neuron has an advantage

on any other. Since now x 6= 0, then g2 = 1 and thus also g1 = 1 (due to r(0) = 0).

Hence

c = x (9.17)

by the majority rule described earlier.

(c) Subsequently, by Eqs. (9.5), (9.6) and the properties of the RL, the jth of

the RL neuron, which best matches vector c will be the only RL neuron to fire

(to output a one). Hence rj = 1 and rl6=j = 0 to determine vector r at the output

of the RL. Note that if several neurons have same d then the first one will be chosen

(lowest j).

Now r as above is fed back to the CL such that it is inputted to the CL neurons

via weights tij . The m-dimensional weight vector p at the input of the CL thus

satisfies namely

pj = tj ; tj denoting a vector of T (9.18a)

for winning neuron, and

pj = 0 (9.18b)

otherwise

Notice that rj = 1 and tij are binary values. The values tij of T of the CL are set

by the training algorithm to correspond to the real weight matrix B (with elements

bij) of the RL.

Since now r 6= 0, then g1 becomes 0 by Eq. (9.9) and by the majority rule,

the CL neurons which receive that non-zero components of x and of p will fire (to

output a “one” in the CL’s output vector c). Hence, the outputs of the RL force

these components of c to zero where x and p do not have matching “ones”.

(d) If classification is considered by the reset element to be adequate, then classifi-

cation is stopped. Go to (f), else: A considerable mismatch between vectors p and

x will result in a considerable mismatch (in terms of “one’s”) between vectors x

and c. This will lead to a low η as in Eq. (9.10) as computed by the reset element

of the network such that η < η0. This, in turn, will inhibit the firing neuron of the

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Adaptive Resonance Theory 185

Fig. 9.3. Flow-chart of ART-I operation.

Fig. 9.4. Simplified ART-I flow chart (encircled numbers: as in Fig. 9.3).

RL. Since now η < η0, then also all elements of r = 0. Hence, g1 = 1 and x = c

by the majority rule. Consequently, as long as neurons that are weighted still exist,

a different neuron in the RL will win (the last winner being now inhibited), go to

(c). (If at this iteration the reset element still considers the fit (classification) to be

inadequate, the cycle is repeated. Now either a match will eventually be found: In

that case the network will enter a training cycle where the weights vectors tj and bj

associated with the firing RL neuron are modified to match the input x considered.)

Alternatively , if no neuron matches the input within the tolerance, then go to (e).

(e) Now, a previously unassigned neuron is assigned weights vectors tj , and bj

to match the input vector x. In this manner, the network does not lose (forget)

previously learned patterns, but is also able to learn new ones, as does a biological

network

(f) Apply new input vector.

The procedure above is summarized in Fig. 9.3. The categories (classes, patterns)

which have been trained to be recognized are thus in terms of vectors (columns tj)

of the weights matrix T ; j denoting the particular category (class) considered, and

j = 1, 2, . . . , n, where n is the total number of classes considered.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

186 Principles of Artificial and Neural Networks

9.5. Properties of ART

One can show [Carpenter and Grossberg, 1987a] that the ART network has

several features that characterize the network, as follows:

1. Once the network stabilizes (weights reach steady state), the application of an

input vector x, that has been used in training, will activate the correct RL neuron

without any search (iterations). This property of direct access is similar to the

rapid retrieval of previously learned patterns in biological networks.

2. The search process stabilizes at the winning neuron.

3. The training is stable and does not switch once a winning neuron has been

identified.

4. The training stabilizes in a finite number of iterations.

To proceed from binary patterns (0/1) to patterns with different shades of gray,

the authors of the ART-I network above developed the ART-II network [Carpenter

and Grossberg, 1987b] which is not discussed here but which follows the basic

philosophy of the ART-I network described above while extending it to continuous

inputs.

The above indicates that the ART network; have many desirable features of

biological networks, such as its being unsupervised, plastic, stable and of a finite

number of iterations, and having immediate recall of previously learned patterns.

The main shortcoming of the ART-I network is that a missing neuron destroys

the whole learning process (since x and c must be of the same dimension). This

contrasts an important property of biological neural networks. Whereas many of

the properties of the ART network outlined above were missing in the previous

networks, the latter shortcoming is not fundamental to the networks of the earlier

chapters. It also leads us to consider the neural network designs of the next chapters,

specifically, the Cognitron/Neocognitron neural network design and the LAMSTAR

network design, which (among other things) avoid the above shortcoming.

9.6. Discussion and General Comments on ART-I and ART-II

We observe that the ART-I network incorporates the best features of practi-

cally all previously discussed neural networks. It employs a multilayer structure.

It utilizes feedback as does the Hopfield network, though in a different form. It

employs BAM learning as in the Hopfield network (Sec. 7.3) or as in the Kohonen

layers discussed in counterpropagation designs (Chap. 6). It also uses a “winner-

take-all” rule and as do the Kohonen (SOM) layer. In contrast to these other

networks, it however incorporates all and not just some of these features in one

design, noting that essentially all these features are also found in biological neural

networks. In addition, and again in similarity to biological networks, it employs

inhibition and via its reset function it has a plasticity feature. The ART-network’s

shortcomings in its failure to perform when one or more neurons are missing or

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Adaptive Resonance Theory 187

malfunctioning, can be overcome by a modified design, such as proposed by Graupe

and Kordylewski, (1995), where it is also shown how ART-I is modified to use non-

binary inputs through performing simple input-coding. In general, ART-II networks

are specifically derived for continuous (analog) inputs and their structure is thus

modified to allow them to employ such inputs, whereas the network of the case

study below still employs the ART-I architecture and its main modifications rela-

tive to the standard ART-I, if there is such a standard, as is necessitated for the

specific application. Indeed, many applications do require modifications from a stan-

dard network whichever it is, for best results. Hence the modification below is not

an exception.

9.A. ART-I Network Case Study∗: Character Recognition

9.A.1. Introduction

This case study aims at implementing simple character recognition using the

ART-I neural network.

The ART network consists of 2 layers: a comparison Layer and a Recognition

Layer.

The general structure of the ART-I network is given in Fig. 9.A.1:

Comparison

Layer

Recognition

Layer

Reset

G1

X

g1

r

c

inhibition

d

b

t p

Fig. 9.A.1. General schematic diagram of the ART-I neural network.

The network’s design follows Sect. 9.2 above.

9.A.2. The data set

Our Artificial neural network must be recognizing some characters in a 6 × 6

grid. This Neural network is tested on the following 3 characters:

∗Computed by Michele Panzeri, ECE Dept., University of Illinois, Chicago, 2005.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

188 Principles of Artificial and Neural Networks

 ██

 █ █

 █ █
 A =██████
 █ █
 █ █

 ███

 █ █

 ████

 B = █ █

 █ █
 █████

 ████

 █ █
 █

 C =█

 █ █
 ████

Moreover the network is tested on character with some noise (from 1 to 14 bits

of error), as in the following examples:

1 bit of noise on X0:

 ██

 █ █

 █ █
 ██ ███
 █ █
 █ █

5 bits of noise on X0:

 ██

 █ █

 █ █
 ██ ██

 █ █
 █ █ █

Also, the network must be able to understand if a character does not belong to

the predefined set. For example the following characters are not in the predefined

(trained) set:

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Adaptive Resonance Theory 189

 █ █ ██
 ███

 █ ██

?= █ █ █

 █ █
 █

 █
 █ ██
 █ █

?= █ ██

 █ ██ █
 █████

We could consider a large number of characters not predefined, for this reason

these character are simply created randomly.

9.A.3. Network design

(a) Network structure

To solve this problem the network structure of Fig. 9.A.2 is adopted, where x0 · · ·x35

is the array that implements the 6× 6 grid in input to our network.

Comparison

Layer

Recognition

Layer

Reset

G1

x0

g1

r

c

inhibition

d

b

t p

x1 x35

r0

r1

r2

Fig. 9.A.2: The ART network for the present study.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

190 Principles of Artificial and Neural Networks

(b) Setting of weights

The weights are initially set with:

bij =
E

E + m − 1

and

tij = 1

During the training phase we update the weights according to:

bij =
E ∗ ci

E + 1 +
∑

k

ck

and

tij = ci

where j is the winning neuron

(c) Algorithm basics

The following is the procedure for the computation of the ART network:

(1) Assign weights as explained before.

(2) Train the network with the formulas explained before with some character.

Now we can test the network with pattern with noise and test the network with

pattern that does not belong to the original set.

To distinguish the known pattern from the unknown pattern the network com-

pute the following

η =
#1 in c

#1 in x

If η < η0 than the Recognition Layer is inhibited and all his neuron will output

“0”.

We comment that while the above setting of (is very simple (and satisfactory in

our simple application, it is often advisable to set (by using a Hamming distance

(see Sect. 7.3 above).

(d) Network training

This network is trained as follows (code in Java):

for(int i=0;i<m;i++){

for(int j=0;j£<£nx;j++){

b[j][i]=E/(E+m-1);

t[i][j]=1;

}

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Adaptive Resonance Theory 191

}

a();

r[0]=1;

r[1]=0;

r[2]=0;

compute();

sumck=0;

for(int k=0;k<m;k++){

sumck+=x[k];

}

for(int i=0;i<m;i++){

b[0][i]=E*x[i]/(E+1+sumck);

t[i][0]=x[i];

}

[...]//The same for b and c

for(int i=0;i<m;i++){

c[i]=0;

}

for(int j=0;j<nx;j++){

r[j]=0;

}

This is the code used for the evaluation of the network:

int sumc=0;

int sumx=0;

for(int i=0;i<m;i++){

p[i]=0;

for(int j=0;j<nx;j++){

p[i]+=t[i][j]*r[j];

}

if(p[i]>0.5){

p[i]=1;

}else{

p[i]=0;

}

if(g1){

c[i]=x[i];

}else{

if((p[i]+x[i])>=2.0){

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

192 Principles of Artificial and Neural Networks

c[i]=1;

}else{

c[i]=0;

}

}

if(c[i]==1){

sumc++;

}

if(x[i]==1){

sumx++;

}

}

if((((double)sumc)/((double)sumx))<pho0){

for(int j=0;j<nx;j++){

r[j]=0;

}

}else{

double max=Double.MIN_VALUE;

int rmax=-1;

for(int i=0;i<nx;i++){

d[i]=0;

for(int j=0;j<m;j++){

d[i]+=b[i][j]*c[j];

}

}

for(int i=0;i<nx;i++){

if(d[i]>0.5 &&d[i]>max){

max=d[i];

rmax=i;

}

}

for(int i=0;i<nx;i++){

if(i==rmax){

r[i]=1;

}else{

r[i]=0;

}

}

}

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Adaptive Resonance Theory 193

The full code of the implementation is on the appendix.

9.A.4. Performance results and conclusions

The network is simulated to investigate how robust it is.

For this reason we simulated this network adding 1 to 18 bits of noise. The

results of this simulation are collected in the following table.

The first column contains the number of bits of noise added at the input and

the second column gives the percentage of error.

Number of bit of noise Error %

0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 5,8

10 7,5
11 18,4
12 21,9
13 34,1
14 35,1
15 46,2
16 49,4
17 56
18 63,4

Figure 9.A.3. provides a graphical display of the trend of the recognition error.

-10

0

10

20

30

40

50

60

70

-2 3 8 13 18

Number of bits of noise

E
rr

o
r

%

Fig. 9.A.3. Error percentage vs. number of error bits.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

194 Principles of Artificial and Neural Networks

Error when we insert an unknown pattern

error

Fig. 9.A.4. Recognition error when dataset includes an untrained character.

As can be seen from the table and from Fig. 9.A.3, the network is incredibly

robust at the noise, With noise of 8 bits or less the network always recognizes the

correct pattern. With noise of 10 bits (of a total of 36 bits), the networks identifies

correctly in the 90% of the cases.

We also investigated the behavior of the network when we use an unknown

(untrained) character. For this reason we did another simulation to test if the

network activates the output called “No pattern” when presented with an untrained

character.

In this case the network still performs well (it understands that this is not a

usual pattern) at a success rate of 95.30% (i.e. it fails in 4,70% of the cases). See

Fig. 9.A.4.

9.A.5. Code for ART neural network (Java)

public class Network {

//Number of inputs 6x6

final int m=36;

//Number of char/Neuron for each layer

final int nx=3;

final double pho0=0.65;

final int E=2;

//State of the net

public int winner;

public boolean g1;

public double [] x=new double[m];

public double [] p=new double[m];

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Adaptive Resonance Theory 195

public double [][] t=new double[m][nx];

public double [] c=new double[m];

public double [][] b=new double[nx][m];

public double [] d=new double[nx];

public int [] r=new int[nx];

public int [] exp=new int[nx];

public double rho;

//public double g1;

public Network(){

//Training

training();

//test

test();

//test not predefined pattern

testNoPattern();

}

private void testNoPattern() {

int errorOnNoise=0;

for(int trial=0;trial<1000;trial++){

for(int addNoise=0;addNoise<1000;addNoise++){

addNoise();

}

r[0]=0;

r[1]=0;

r[2]=0;

g1=true;

compute();

g1=false;

for(int y=0;y<10;y++)

compute();

if(r[0]==1||r[1]==1||r[2]==1){

errorOnNoise++;

}

}

System.out.println("No pattern"+(double)errorOnNoise/10.0);

}

public void training(){

g1=true;

float sumck;

for(int i=0;i<m;i++){

for(int j=0;j<nx;j++){

b[j][i]=E/(E+m-1);

t[i][j]=1;

}

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

196 Principles of Artificial and Neural Networks

}

a();

r[0]=1;

r[1]=0;

r[2]=0;

compute();

sumck=0;

for(int k=0;k<m;k++){

sumck+=x[k];

}

for(int i=0;i<m;i++){

b[0][i]=E*x[i]/(E+1+sumck);

t[i][0]=x[i];

}

b();

r[0]=0;

r[1]=1;

r[2]=0;

compute();

sumck=0;

for(int k=0;k<m;k++){

sumck+=x[k];

}

for(int i=0;i<m;i++){

b[1][i]=E*x[i]/(E+1+sumck);

t[i][1]=x[i];

}

c();

r[0]=0;

r[1]=0;

r[2]=1;

compute();

sumck=0;

for(int k=0;k<m;k++){

sumck+=x[k];

}

for(int i=0;i<m;i++){

b[2][i]=E*x[i]/(E+1+sumck);

t[i][2]=x[i];

}

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Adaptive Resonance Theory 197

for(int i=0;i<m;i++){

c[i]=0;

}

for(int j=0;j<nx;j++){

r[j]=0;

}

}

//Evaluation of the net

private void compute() {

int sumc=0;

int sumx=0;

for(int i=0;i<m;i++){

p[i]=0;

for(int j=0;j<nx;j++){

p[i]+=t[i][j]*r[j];

}

if(p[i]>0.5){

p[i]=1;

}else{

p[i]=0;

}

if(g1){

c[i]=x[i];

}else{

if((p[i]+x[i])>=2.0){

c[i]=1;

}else{

c[i]=0;

}

}

if(c[i]==1){

sumc++;

}

if(x[i]==1){

sumx++;

}

}

if((((double)sumc)/((double)sumx))<pho0){

for(int j=0;j<nx;j++){

r[j]=0;

}

}else{

double max=Double.MIN_VALUE;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

198 Principles of Artificial and Neural Networks

int rmax=-1;

for(int i=0;i<nx;i++){

d[i]=0;

for(int j=0;j<m;j++){

d[i]+=b[i][j]*c[j];

}

}

for(int i=0;i<nx;i++){

if(d[i]>0.5 &&d[i]>max){

max=d[i];

rmax=i;

}

}

for(int i=0;i<nx;i++){

if(i==rmax){

r[i]=1;

}else{

r[i]=0;

}

}

}

}

//Select a char

private void selectAchar() {

if(Math.random()<0.33)

a();

else

if(Math.random()<0.5)

b();

else

c();

}

//add a bit of noise

private void addNoise() {

int change=(int)(Math.random()*35.99);

x[change]=1-x[change];

}

//Test 100 input with increasing noise

public void test(){

for(int noise=0;noise<50;noise++){

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Adaptive Resonance Theory 199

int errorOnNoise=0;

for(int trial=0;trial<1000;trial++){

selectAchar();

//Add noise

for(int addNoise=0;addNoise<noise;addNoise++){

addNoise();

}

r[0]=0;

r[1]=0;

r[2]=0;

g1=true;

compute();

g1=false;

for(int y=0;y<10;y++)

compute();

for(int e=0;e<nx;e++){

if(exp[e]!=r[e]){

errorOnNoise++;

break;

}

}

}

System.out.println(noise+","+(double)errorOnNoise/10.0);

}

}

public void a(){

// **

// * *

//* *

//******

//* *

//* *

x[0]=0;x[1]=0;x[2]=1;x[3]=1;x[4]=0;x[5]=0;

x[6]=0;x[7]=1;x[8]=0;x[9]=0;x[10]=1;x[11]=0;

x[12]=1;x[13]=0;x[14]=0;x[15]=0;x[16]=0;x[17]=1;

x[18]=1;x[19]=1;x[20]=1;x[21]=1;x[22]=1;x[23]=1;

x[24]=1;x[25]=0;x[26]=0;x[27]=0;x[28]=0;x[29]=1;

x[30]=1;x[31]=0;x[32]=0;x[33]=0;x[34]=0;x[35]=1;

exp[0]=1;

exp[1]=0;

exp[2]=0;

}

public void b(){

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

200 Principles of Artificial and Neural Networks

// ***

// * *

// ****

// * *

// * *

// *****

x[0]=0;x[1]=1;x[2]=1;x[3]=1;x[4]=0;x[5]=0;

x[6]=0;x[7]=1;x[8]=0;x[9]=0;x[10]=1;x[11]=0;

x[12]=0;x[13]=1;x[14]=1;x[15]=1;x[16]=1;x[17]=0;

x[18]=0;x[19]=1;x[20]=0;x[21]=0;x[22]=0;x[23]=1;

x[24]=0;x[25]=1;x[26]=0;x[27]=0;x[28]=0;x[29]=1;

x[30]=0;x[31]=1;x[32]=1;x[33]=1;x[34]=1;x[35]=1;

exp[0]=0;

exp[1]=1;

exp[2]=0;

}

public void c(){

// ****

//* *

//*

//*

//* *

// ****

x[0]=0;x[1]=1;x[2]=1;x[3]=1;x[4]=1;x[5]=0;

x[6]=1;x[7]=0;x[8]=0;x[9]=0;x[10]=0;x[11]=1;

x[12]=1;x[13]=0;x[14]=0;x[15]=0;x[16]=0;x[17]=0;

x[18]=1;x[19]=0;x[20]=0;x[21]=0;x[22]=0;x[23]=0;

x[24]=1;x[25]=0;x[26]=0;x[27]=0;x[28]=0;x[29]=1;

x[30]=0;x[31]=1;x[32]=1;x[33]=1;x[34]=1;x[35]=0;

exp[0]=0;

exp[1]=0;

exp[2]=1;

}

}

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Adaptive Resonance Theory 201

9.B. ART-I Case Study: Speech Recognition†

9.B.1. Input matrix set-up for spoken words

The speech recognition problem considered here is one of distinguishing between

three spoken words: “five”, “six” and “seven”. Under the present design, the above

words, once spoken, are passed through an array of five band pass filters and the

energy of the outputs of each of these filters is first averaged over intervals of 20

milliseconds over 5 such segments totaling 100 milliseconds. The power (energy)

is compared against a weighted threshold at each frequency band to yield a 5 × 5

matrix of 1’s and 0’s that corresponds to each uttered word of the set of words

considered, as shown below. The reference input matrix is obtained by repeating

each of the three words 20 times and averaging the power at each frequency band

per each over 20 millisecond time segments.

9.B.2. Simulation programs Set-Up

EXECUTION PROGRAM a:art100.exe

Text of the program written in C a:art100.cpp

To use this program:

Display

“5”, “6” or “7” (zero-random noise) – choose input pattern (patterns are in three

groups:

5 patterns which represents word “5” when uttered in different intonations:

“6” -similar to “5”

“7” -similar to “6”

Pattern # (0-random) – there are 10 different input patterns representing words

from the set of words “5”, “6” or “7”, so choose one

Create new pattern for: – specify to which number the new pattern should be

assigned

TERMINATION OF PROGRAM:

When the program does not ask for some input, press any key but for the space key.

When pressing space and not being asked for some input, the program will continue.

The variables used in the program are as follows:

PATT – stored patterns

PPATT – previous inputs associated with the patterns stored in the comparison

layer

(used when updating old patterns)

T – weights associated with the comparison layer neurons

†Computed by Hubert Kordylewski, EECS Dept., University of illinois, Chicago, 1993.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

202 Principles of Artificial and Neural Networks

TO – weights of a neuron in the comparison layer associated with the winning

neuron form the recognition layer

TS – status of the recognition layer neurons (inhibited from firing −1, no

inhibition −0)

BO – input to the recognition layer neurons (dot product between input and weights

in the recognition layer)

C – outputs form the recognition layer

INP – input vector

NR – the number of patterns stored in weights of the recognition and comparison

layers

GAIN – 1-when a stored pattern matches with input and 2-when input does not

match with any stored pattern

SINP – number of “1”s in the input vector

SC – number of “1”s in the comparison layer output

STO – number of “1”s in the chosen pattern form (patterns are stored in the weights

of the comparison layer)

MAXB – pointer to chosen pattern which best matches the input vector

The program’s flow chart is given in Fig. 9.B.1.

We comment that in the ART program below the measure of similarity of ART-I

and which is denoted as D, is modified from its regular ART-I form, to become

D (modified) = min(D, D1)

where D is the regular D of ART-I and

D1 = c/p; p = number of 1’s in chosen pattern

Example:

Input vector 1111000000; x = 4

Chosen pattern 1111001111; p = 8

Comparison layer 1111000000; c = 4

to yield:

D = c/x = 4/4 = 1.0 in regular ART-I

D1 = c/p = 4/8 = 0.5

D (modified) = min(D, D1) = 0.5

This modification avoids certain difficulties in recognition in the present application.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Adaptive Resonance Theory 203

Fig. 9.B.1. Flow chart of program.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

204 Principles of Artificial and Neural Networks

9.B.3. Computer simulation of ART program (C-language)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Adaptive Resonance Theory 205

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

206 Principles of Artificial and Neural Networks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Adaptive Resonance Theory 207

9.B.4. Simulation results

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

208 Principles of Artificial and Neural Networks

These are identical since input was the same.

Updated pattern = 1 only if: LAST INP = 1 and [(INPUT) or (PATTERN)] = 1.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Chapter 10

The Cognitron and the Neocognitron

10.1. Background of the Cognitron

The cognitron, as its name implies, is a network designed mainly with recognition

of patterns in mind. To do this, the cognitron network employs both inhibitory and

excitory neurons in its various layers. It was first devised by Fukushima (1975), and

is an unsupervised network such that it resembles the biological neural network in

that respect.

10.2. The Basic Principles of the Cognitron

The cognitron basically consists of layers of inhibitory and excitory neurons.

Interconnection of a neuron in a given layer is only to neurons of the previous layer

that are in the vicinity of that neuron. This vicinity is termed as the connection

competition region of the given neuron. For training efficiency, not all neurons are

being trained. Training is thus limited to only an elite group of the most relevant

neurons, namely to neurons already previously trained for a related task.

Whereas connection regions lead to overlaps of neurons, where a given neuron

may belong to the connection region of more than one upstream neuron, compe-

tition (for “elite” selection) is introduced to overcome the effect of the overlaps.

Competition will disconnect the neurons whose responses are weaker. The above

feature provides the network with considerable redundancy, to enable it to function

well in the face of “lost” neurons.

The cognitron’s structure is based on a multi-layer architecture with a progres-

sive reduction in number of competition regions. Alternatively, groups of two layers,

L-I and L-II may be repeated n times to result in 2n layers in total (L-I1, L-II1,

L-I2, L-II2, etc.).

10.3. Network Operation

(a) Excitory Neurons

The output of an excitory neuron is computed as follows:

209

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

210 Principles of Artificial and Neural Networks

Let yk be the output from an excitory neuron at the previous layer and let vj

be the output from an inhibitory neuron at its previous layer. Define the output

components of the excitory ith neuron as:

xi =
∑

k

aikyk due to excitation inputs (10.1)

zi =
∑

k

bikvk due to inhibition inputs (10.2)

aik and bik being relevant weights, that are adjusted when the neuron concerned

is more active than its neighbors, as discussed in 10.4 below. The total output of

above neuron is given as:

yi = f(Ni) (10.3)

where

Ni =
1 + xi

1 + zi

− 1 =
xi − zi

1 + zi

(10.4)

f(Ni) =

{

Ni · · · for Ni ≥ 0

0 · · · for Ni < 0
(10.5)

Hence, for small zi

Ni
∼= xi − zi (10.6)

However, for very large x, z

Ni =
xi

zi

− 1 (10.7)

Furthermore, if both x and z increase linearly with some γ namely:

x = pγ (10.8)

z = qγ (10.9)

p and q being constants, then

y =
p − q

2q

[

1 + tanh
(

log
pq

2

)]

(10.10)

which is of the form of the Weber–Fechner law (See: Guyton, 1971, pp. 562–563)

that approximates responses of biological sensory neurons.

(b) Inhibitory Neurons

The output of an inhibitory neuron is given by:

v =
∑

i

ciyi (10.11)

where
∑

i

ci = 1 (10.12)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Cognitron and the Neocognitron 211

yi being an output of an excitory cell. The weights ci are preselected and do not

undergo modification during network training.

10.4. Cognitron’s Network Training

The aji weights of the excitory neuron in a two-layer cognitron structure are

iterated by δa as in Eq. (10.13) but only if that neuron is a winning neuron in

a region, where aji is as in Eq. (10.1) (namely, aji is the weight on an excitory

input yj to the given excitory neuron), and cj being the weight at the input to the

inhibitory neuron of this layer, whereas q is a preadjusted learning (training) rate

coefficient (see Fig. 10.1).

Fig. 10.1. Schematic description of a cognitron network (a competition region with two excitory
neurons in each layer).

∂ aji = q c∗j y∗
j (asterisk denoting previous layer) (10.13)

Note that there are several excitory neurons in each competition region of layer

L1 and only one inhibitory layer.

The inhibitory weights bj to excitory neurons are iterated according to:

∂bi =

q
∑

j

ajiy
z
j

2v∗
; ∂bi = change in bi (10.14)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

212 Principles of Artificial and Neural Networks

where bi are the weights on the connection between the inhibitory neuron of layer

L1 and the ith excitory neuron in L2, Σj denoting the summation on weights from

all excitory L1 neurons to the same ith neurons of L2, while v is the value of the

inhibitory output as in Eq. (10.11), q being a rate coefficient.

If no neuron is active in a given competition region, then Eqs. (10.13), (10.14)

are replaced by (10.15), (10.16), respectively:

∂aji = q′cjyj (10.15)

∂bi = q′vi (10.16)

where

q′ < q (10.17)

such that now the higher the inhibition output, the higher is its weight, in sharp

contrast to the situation according to Eq. (10.13).

Initialization

Note that initially all weights are 0 and no neuron is active (providing an output).

Now, the first output goes through since at the first layer of excitory neurons the

network’s input vector serves as the y vector of inputs to L1, to start the process

via Eq. (10.15) above.

Lateral Inhibition

An inhibitory neuron is also located in each competition region as in layer L2 of

Fig. 10.1 to provide lateral inhibition whose purpose (not execution) is as in the

ART network of Chap. 9 above. This inhibitory neuron receives inputs from the

excitory neurons of its layer via weights gi. It’s output λ is given:

λ =
∑

i

giyi (10.18)

yi being the outputs of the excitory neuron of the previous (say, L1) layer, and
∑

i

gi = 1 (10.19)

Subsequently the output λ of the L2 inhibitory neuron above modifies the actual

output of the ith L2 excitory neuron from yi to φi where

φi = f

[

1 + yi

1 + λ
− 1

]

(10.20)

where yi are as in Eqs. (10.3) and (10.5) above, f(. . .) being as in Eq. (10.5),

resulting in a feedforward form of lateral inhibition and which is applicable to

all layers.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

The Cognitron and the Neocognitron 213

10.5. The Neocognitron

A more advanced version of the cognitron also developed by Fukushima et

al. (1983), is the neocognitron. It is hierarchical in nature and is geared toward

simulating human vision. Specific algorithms for the neocognitron are few and very

complex, and will therefore not be covered in this text.

The recognition is arranged in a hierarchical structure of groups of 2 layers, as

in the case of the cognitron. The two layers now are a (simple-cells-) layer (S-layer)

and a concentrating layer (C-layer), starting with an S-layer denoted as S1 and

ending with a C layer (say, C4). Each neuron of the S-layer responds to a given

feature of its input layers (including the overall network’s input). Each of the arrays

of the C layer processes in depth inputs from usually one S layer array.

The number of neurons and arrays generally goes down from layer to layer.

This structure enables the neocognitron to overcome recognition problems where

the original cognitron failed, such as images under position or angular distortions

(say somewhat rotated characters or digits in handwriting recognition problems).

See Fig. 10.2.

Fig. 10.2. Schematic of a neocognitron.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

This page intentionally left blankThis page intentionally left blank

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Chapter 11

Statistical Training

11.1. Fundamental Philosophy

The fundamental idea behind statistical (stochastic) training of neural networks

is: Change weights by a random small amount and keep those changes that improve

performance.

The weakness of this approach is that it is extremely slow! Also, it can get

stuck at a local minimum if random changes are small since the change may not

have enough power to climb “over a hill” (see Fig. 11.1) in order to look for another

valley.

Fig. 11.1. A performance cost with many minima.

To overcome getting stuck in a local minimum, large weight changes can be used.

However, then the network may become oscillatory and miss settling at any mini-

mum. To avoid this possible instability, weight changes can be gradually decreased

in size. This strategy resembles the processes of annealing in metallurgy. It basi-

cally applies to all networks described earlier, but in particular to back propagation

and modified networks.

215

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

216 Principles of Artificial and Neural Networks

11.2. Annealing Methods

In metallurgy, annealing serves to obtain a desired mixing of molecules for

forming a metal alloy. Hence, the metal is initially raised to a temperature above its

melting point. In that liquid state the molecules are shaken around wildly, resulting

in a high distance of travel. Gradually the temperature is reduced and consequently

the amplitude of motion is reduced until the metal settles at the lowest energy level.

The motion of molecules is governed by a Boltzman probability distribution.

p(e) = exp(−e/KT) (11.1)

Where p(e) is the probability of the system being at energy level e. K being the

Boltzman constant, T denoting absolute temperature in Kelvin degrees (always

positive). In that case, when T is high, exp(−e/KT) approaches zero, such that

almost any value of e is probable, namely is p(e) is high for any relatively high e.

However, when T is reduced, the probability of high values of e is reduced since

e/KT increases such that exp(−e/KT) is reduced for high e.

11.3. Simulated Annealing by Boltzman Training of Weights

We substitute for e of Eq. (11.1) with ∆E which denotes a change in the energy

function E

p(∆E) = exp(−∆E/KT) (11.2)

while T denotes some temperature equivalent. A neural network weight training

procedure will thus become:

(1) Set the temperature equivalent T at some high initial value.

(2) Apply a set of training inputs to the network and calculate the network’s

outputs, and compute the energy function.

(3) Apply a random weight change ∆w and recalculate the corresponding output

and the energy function (say a squared error function E = Σi (error)2).

(4) If the energy of the network is reduced (to indicate improved performance)

then keep ∆w, else: calculate the probability of p(∆E) of accepting ∆w, via

Eq. (11.2) above and select some pseudo random number r from a uniform

distribution between 0 and 1. Now, if p(∆E) > r (note: ∆E > 0 in the case of

increase in E) then still accept the above change, else, go back to the previous

value of w.

(5) Go to Step (3) and repeat for all weights of the network, while gradually reduc-

ing T after each complete set of weights has been (re-)adjusted.

The above procedure allows the system to occasionally accept a weight change

in the wrong direction (worsening performance) to help avoiding it from getting

stuck at the local minimum.

The gradual reduction of the temperature equivalent T may be deterministic

(following a pre-determined rate as a function of the number of the iteration). The

stochastic adjustment of ∆w may be as in Sec. 11.4.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Statistical Training 217

11.4. Stochastic Determination of Magnitude of Weight Change

A stochastic adjustment of ∆w (step 3 in Sec. 11.3 above) can also follow a

thermodynamic equivalent, where ∆w may be considered to obey a Gaussian dis-

tribution as in Eq. (11.4):

p(∆w) = exp

[

− (∆w)2

T 2

]

(11.3)

p(∆w) denoting the probability of a weight change ∆w. Alternatively p(∆w) may

obey a Boltzman distribution similar to that for ∆E. In these cases, Step 3 is

modified to select the step change ∆w as follows [Metropolis et al., 1953].

(3.a) Pre-compute the cumulative distribution 1P (w), via numerical integration

P (w) =

∫ w

0

p(∆w)d∆w (11.4)

and store P (w) versus w.

(3.b) Select a random number µ from a uniform distribution over an interval from

0 to 1. Use this value of µ so that P (w) will satisfy, for some w:

µ = P (w) (11.5)

and look up the corresponding w to P (w) according to (11.6). Denote the resultant

w as the present wk for the given neural branch. Hence, derive

∆wk = wk − wk−1 (11.6)

wk−1 being the previous weight value at the considered branch in the network.

11.5. Temperature-Equivalent Setting

We have stated that a gradual temperature reduction is fundamental to the

simulated annealing process. It has been proven [Geman and Geman 1984] that

for convergence to a global minimum, the rate of temperature-equivalent reduction

must satisfy

T (k) =
To

log(1 + k)
; k = 0, 1, 2, (11.7)

k denoting the iteration step.

11.6. Cauchy Training of Neural Network

Since the Boltzman training of a neural network as in Secs. 11.2 to 11.4 is very

slow, a faster stochastic method based on Cauchy probability distributions was

proposed by Szu (1986). The Cauchy distribution of the energy changes is given by

p(∆E) =
a T

T 2 + (∆E)2
; a = constant (11.8)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

218 Principles of Artificial and Neural Networks

to result in a distribution function of longer (slower receding) tails than in the

case of the Boltzman or the Gaussian distribution. Observe that for the Cauchy

distribution:

var(∆E) = ∞!!

When the Cauchy distribution is used for ∆w, the resultant ∆w will satisfy

∆w = ρT · tan [p(∆w)] (11.9)

ρ being a learning rate coefficient. Step (3) and Step (4) of the framing procedure

of Sec. 11.3 will thus become:

(3.a) Select a random number n from a uniform distribution between 0 and 1

and let

p(∆w) = n (11.10)

where p(∆w) is in the form of Eq. (11.8) above

(3.b) Subsequently, determine ∆w via Eq. (11.9) to satisfy

∆w = ρT · tan(n) (11.11)

where T is updated by: T = To

1+k
for k = 1, 2, 3, . . . in contrast to the inverse

log rate of Sec. 11.5.

Note that the new algorithm for T is reminiscent of the Dvoretzky condition for

convergence in stochastic approximation [Graupe, 1989].

(4) Employ a Cauchy or a Boltzman distribution in (4) of Sec. 11.3.

The above training method is faster than the Boltzman training. However, it is

still very slow. Furthermore, it may result in steps in the wrong direction to cause

instability. Since the Cauchy-machine may yield very large ∆w, the network can get

stuck. To avoid this, hard limits may be set. Alternatively, ∆w may be squashed

using an algorithm similar to that used for the activation function, namely:

∆w(modified) = −M +
2M

1 + exp(−∆w/M)
(11.12)

M being the hard limit on the amplitude of ∆w.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Statistical Training 219

11.A. Statistical Training Case Study A Stochastic Hopfield

Network for Character Recognition∗

11.A.1. Motivation

The case study of Sec. 11.A was concerned with situations where no local minima

were encountered and thus there appeared to be no benefit in a stochastic network.

We now present a problem where in certain situations a stochastic network can

improve on a deterministic one, since local minima do exist. Still, not always does

the stochastic algorithm improve on the deterministic one even in the present case

study, as is indicated by the results below.

11.A.2. Problem statement

The problem of the present case study is that of recognizing noisy characters.

Specifically, we are attempting to identify the characters: “H”, “5”, “1” all presented

in an 8 × 8 matrix. A Hopfield network is employed in the present study whose

schematic is given in Fig. 11.A.1. The study compares recognition performance

Fig. 11.A.1. The Hopfield memory.

of a deterministic Hopfield network, generally similar to that of the Case Study

of Sec. 7.A, with its stochastic Hopfield network equivalent, which was simulated

annealing via a Cauchy approach as in the Case Study of Sec. 11.B and via a

Boltzman approach that was further discussed in Sec. 11 above.

∗Computed by Sanjeev Shah, EECS Dept., University of Illinois, Chicago, 1993.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

220 Principles of Artificial and Neural Networks

11.A.3. Algorithm set-up

We consider an input 8×8 matrix of elements xi and their net values (calculated

via a sigmoid function of xi) denoted as neti. We then follow the procedure of

[cf. Freeman and Skapura 1991]:

1. Apply the incomplete or garbled vector x̄’ to the inputs of the Hopfield net.

2. Select at random an input and compute its corresponding netk.

3. Assign xk = 1 with probability of pk = 1
1+e−netk/T . Compare pk to a number, z,

taken from a uniform distribution between zero and one. If z ≤ pk, keep xk .

4. Repeat 2 and 3 until all units have been selected for update.

5. Repeat 4 until thermal equilibrium has been reached at the given T . At the

thermal equilibrium, the output of the units remains the same (or within a small

tolerance between any two processing cycles).

6. Lower T and repeat Steps 2 to 6.

Temperatures are reduced according to Boltzman and according to Cauchy sched-

ules. By performing annealing during pattern recall, we attempt to avoid shallow,

local minima.

11.A.4. Computed results

The network discussed above considered inputs in an 8× 8 matrix format as in

Fig. 11.A.2. Recognition results are summarized in Table 11.A.1 below, as follows:

The results of Table 11.A.1 indicate that the Boltzman annealing outperformed

the Cauchy annealing in all but the case of M = 5 exemplars. It appears that

with increasing M the Cauchy annealing may improve, as also the theory seems to

indicate (see Sec. 11). Also, the deterministic network outperformed the stochastic

(Boltzman) network in most situations. However, in the noisy cases of M = 4

exemplars, the stochastic network was usually quite better. This may indicate

that the deterministic network was stuck in a local minimum which the stochastic

network avoided.

The Hopfield network is limited in the number of exemplars by the capacity of

the Hopfield network to store pattern exemplars. In the network used, which was of

64 nodes, we could not store more than 5 exemplars, which is below the empirical

low of

M < 0.15N (11.A.1)

for which error in recall should be low. According to relation (11.B.1), we might

have been able to reach M = 9.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Statistical Training 221

Fig. 11.A.2. Sample patterns of input to the Hopfield net and the corresponding clean versions as
output by the net.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

222 Principles of Artificial and Neural Networks

Table 11.A.1. Recognition Performance.

(a) Deterministic Hopfield net (no simulated annealing)

Number of Noiseless Random noise Random noise Random noise
exemplars(m) input 1–10% 11–20% 21–30%

3 100 67 78 67
4 75 66 76 54
5 87 80 45 47

In percent, the number of cases when recall of an applied image pattern corresponded to
its exemplar

(b) Hopfield net — simulated annealing — Boltzman approach Starting temperature 6,
iterations 150

Number of Noiseless Random noise Random noise Random noise

exemplars(m) input 1–10% 11–20% 21–30%

3 44 26 34 17
4 75 100 63 95
5 43 35 36 28

In percent, the number of cases when recall of an applied image pattern corresponded to
its exemplar

(c) Hopfield net — simulated annealing — Cauchy approach

3 33 5 14 1
4 38 49 7 25
5 37 35 36 29

In percent, the number of cases when recall of an applied image pattern corresponded to
its exemplar.

11.B. Statistical Training Case Study: Identifying AR Signal

Parameters with a Stochastic Perceptron Model†

11.B.1. Problem set-up

This case study parallels the case study of Sec. 4.A of a recurrent Perceptron-

based model for identifying autoregressive (AR) parameters of a signal. Whereas

in Sec. 4.A a deterministic Perceptron was used for identification, the present case

study employs a stochastic Perceptron model for the same purpose.

Again the signal x(n) is considered to satisfy a pure AR time series model given

by the AR equation:

x(n) =
m

∑

i=1

aix(n − i) + w(n) (11.B.1)

†Computed by Alvin Ng, EECS Dept., University of Illinois, Chicago, 1994.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Statistical Training 223

where

m = order of the model

ai = ith element of the AR parameter vector (alpha)

The true AR parameters as have been used (unknown to the neural network) to

generate x(n) are:

a1 = 1.15

a2 = 0.17

a3 = −0.34

a4 = −0.01

a5 = 0.01

As in Sec. 6.D, an estimate of âi of ai is sought to minimize an MSE (mean

square error) term given by

MSE = Ê
[

e2(n)
]

=
1

N

N
∑

i=1

e2(i) (11.B.2)

which is the sample variance (over N sampling points) of the error e(n) defined as

e(n) = x(n) − x̂(n) (11.B.3)

where

x̂(n) =

m
∑

i=1

âix(n − i) (11.B.4)

â(i) being the estimated (identified) AR parameters as sought by the neural network,

exactly (so far) as was the deterministic case of Sec. 6.D. We note that Eq. (11.B.4)

can also be written in vector form as:

x̂(n) = âT x(n) ; â = [â1 · · · âm]
T

(11.B.5)
x̂n = [x(n − 1) · · ·x(n − m)]

T

T denoting transposition.

The procedure of stochastic training is described as the following: We define

E(n) = γe2(n) (11.B.6)

where γ = 0.5, and e(n) is the error energy. We subsequently update the weight

vector (parameter vector estimate) â(n) of Eq. (11.B.5) by an uploadable ∆ã

given by

∆â(n) = ρT · tanh(r) (11.B.7)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

224 Principles of Artificial and Neural Networks

where

r = random number from uniform distribution

T = temperature

ρ = learning rate coefficient = 0.001

For this purpose we use a Cauchy procedure for simulated annealing. Since the

Cauchy procedure may yield very large ∆â which may cause the network to get

stuck, ∆â is modified as

∆âmodified = −M +
2m

1 + exp

(

−∆â

M

) (11.B.8)

where M is the hard limited value in which −M ≤ ∆âmodified ≤ M . Now, recal-

culate e, e(n) with the new weight (parameter estimate) vector using Eqs. (11.B.3)

to (11.B.6). If the error is reduced, the parameter estimate has been improved

and accepts the new weight. If not, find the probability P (∆e) of accepting this

new weight from Cauchy distribution and also selected a random number r from a

uniform distribution and compare this number with P (∆e) which is defined as:

p(∆e) =
T

T 2 + ∆2e
(11.B.9)

where T is an equivalent (hypothetical) temperature value. If P (∆e) is less than

r, the network still accepts this worsening performance. Otherwise, restore the old

weight (parameter estimate). Perform this process for each weight element. The

temperature t should be decreased gradually to ensure convergence according to a

temperature reduction algorithm:

T =
To

log(1 + k)
(11.B.10)

where To = 200◦.

This weight updating is continued until the mean square error (MSE) is small

enough, say MSE < 0.1. Then the network should stop.

The flow diagram of stochastic training is shown in Fig. 11.B.1.

J
a
n
u
a
ry

3
0
,
2
0
0
7

1
6
:2

4
W

o
rld

S
c
ie

n
tifi

c
B
o
o
k

-
9
.7

5
in

x
6
.5

in
w

s-b
o
o
k
9
7
5
x
6
5

S
ta

tistica
l
T
ra

in
in

g
2
2
5

Fig. 11.B.1. Flow diagram of stochastic training.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

226 Principles of Artificial and Neural Networks

11.B.2. Program printout (written in MATLABr — see also Sec. 6.D)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Statistical Training 227

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

228 Principles of Artificial and Neural Networks

11.B.3. Estimated parameter set at each iteration

(using stochastic training)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Statistical Training 229

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

230 Principles of Artificial and Neural Networks

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Statistical Training 231

Observe that the convergence of the stochastic algorithm of the present case

study is considerably slower than the convergence of its deterministic parallel of

Sec. 4.A. This can be expected due to the randomness of the present search relative

to the systematic nature of the deterministic algorithm. The main benefit of a

stochastic algorithm is in its avoidance of local minima which does not occur in

the present problem. In the present case we often seem to get very close to good

estimates, only to be thrown off (by the randomness of the search) a bit later on. The

next case study (Sec. 11.B below) will show some situations where a deterministic

network is stuck at a local minimum and where, in certain situations, the stochastic

network overcomes that difficulty.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

This page intentionally left blankThis page intentionally left blank

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Chapter 12

Recurrent (Time Cycling) Back
Propagation Networks

12.1. Recurrent/Discrete Time Networks

A recurrent structure can be introduced into back propagation neural networks

by feeding back the network’s output to the input after an epoch of learning has been

completed. This recurrent feature is in discrete steps (cycles) of weight computation.

It was first proposed by Rumelhart et al. (1986) and subsequently by Pineda (1988),

Hecht–Nielson (1990) and by Hertz et al. (1991). This arrangement allows the

employment of back propagation with a small number of hidden layers (and hence

of weights) in a manner that effectively is equivalent to using m-times that many

layers if m cycles of recurrent computation are employed [cf. Fausett, 1993].

A recurrent (time cycling) back propagation network is described in Fig. 12.1.

The delay elements (D in Fig. 12.1) in the feedback loops separate between the

time-steps (epochs, which usually correspond to single iterations). At end of

Fig. 12.1. A recurrent neural network structure.

233

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

234 Principles of Artificial and Neural Networks

the first epoch the outputs are fed back to the input. Alternatively, one may feed

back the output-errors alone at the end of each epoch, to serve as inputs for the

next epoch.

The network of Fig. 12.1 receives inputs x1 and x2 at various time steps of one

complete sequence (set) that consititutes the first epoch (cycle). The weights are

calculated as in conventional back-propagation networks and totalled over all time

steps of an epoch with no actual adjustment of weights until the end of that epoch.

At each time step the outputs y1 and y2 are fed back to be employed as the inputs

for the next time step. At the end of one complete scan of all inputs, a next epoch

is started with a new complete scan of the same inputs and time steps as in the

previous epoch. When the number of inputs differs from the number of outputs,

then the structure of Fig. 12.2 may be employed.

Fig. 12.2. A recurrent neural network structure (3 inputs/2 output).

Both structures in Figs. 12.1 and 12.2 are equivalent to a structure where the

basic networks (except for the feedback from one time step to the other) is repeated

m-times, to account for the time steps in the recurrent structure. See Fig. 12.3.

12.2. Fully Recurrent Networks

Fully recurrent networks are similar to the networks of Sec. 12.1 except that each

layer feeds back to each preceding layer, as in Fig. 12.4 (rather than feeding back

from the output of a n-layer network to the input of the network, as in Sec. 12.1).

Now the output at each epoch becomes an input to a recurrent neuron at the

next epoch.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Recurrent (Time Cycling) Back Propagation Networks 235

Fig. 12.3. A non-recurrent equivalent of the recurrent structures of Figs. 12.1, 12.2.

Fig. 12.4. A Fully Recurrent Back-Propagation Network.

12.3. Continuously Recurrent Back Propagation Networks

A continuously recurrent back propagation based neural network employs the

same structure as in Figs. 12.1 and 12.2 but recurrency is repeated over infinitesi-

mally small time interval. Hence, recurrency obeys a differential equation progres-

sion as in continuous Hopfield networks, namely

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

236 Principles of Artificial and Neural Networks

τ
dyi

dt
= −yi + g



xi +
∑

j

wijvj



 (12.1)

where τ is a time constant coefficient, xi being the external input, g(· · ·) denoting

an activation function, yi denoting the output and vj being the outputs of the

hidden layers neurons. For stability it is required that at least one stable solution

of Eq. (12.1) exists, namely that

yi = g



xi +
∑

j

wijvj



 (12.2)

The Case Study of Sec. 6D illustrates a recurrent back-propagation algorithm.

12.A. Recurrent Back Propagation Case Study:

Character Recognition∗

12.A.1. Introduction

The present case study s concerned with solving a simple character recognition

problem using a recurrent back propagation neural network. The task is to teach

the neural network to recognize 3 characters, that is, to map them to respective

pairs {0,1}, {1,0} and {1,1}. The network should also produce a special error signal

0,0 in response to any other character.

12.A.2. Design of neural network

Structure: The neural network consists of three layers with 2 neurons each, one

output layer and two hidden layers. There are 36 regular inputs to the network

and 2 inputs that are connected to the 2 output errors. Thus, in total there are 38

inputs to the neural network. The neural network is as in Section 6.A, except that

it is a recurrent network, such that its outputs y1 and y2 are fed back as additional

inputs at the end of each iteration. Bias terms (equal to 1) with trainable weights

are also included in the network structure. The structural diagram of our neural

network is given in Fig. 12.A.1.

(a) Dataset Design: The neural network is designed to recognize characters

‘A’, ‘B’ and ‘C’. To train the network to produce error signal we will use another 6

characters: ‘D’, ‘E’, ‘F’, ‘G’, ‘H’ and ‘I’. To check whether the network has learned

to recognize errors we will use characters ‘X’, ‘Y’ and ‘Z’. Note that we are interested

in checking the response of the network to errors on the characters which were not

involved in the training procedure. The characters to be recognized are given on a

6×6 grid. Each of the 36 pixels is set to either 0 or 1. Corresponding 6×6 matrices

are as follows:

∗Computed by Maxim Kolesnikov, ECE Dept., University of Illinois, Chicago, 2006.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Recurrent (Time Cycling) Back Propagation Networks 237

Fig. 12.A.1: Recurrent back-propagation neural network.

A: 001100 B: 111110 C: 011111

010010 100001 100000

100001 111110 100000

111111 100001 100000

100001 100001 100000

100001 111110 011111

D: 111110 E: 111111 F: 111111

100001 100000 100000

100001 111111 111111

100001 100000 100000

100001 100000 100000

111110 111111 100000

G: 011111 H: 100001 I: 001110

100000 100001 000100

100000 111111 000100

101111 100001 000100

100001 100001 000100

011111 100001 001110

X: 100001 Y: 010001 Z: 111111

010010 001010 000010

001100 000100 000100

001100 000100 001000

010010 000100 010000

100001 000100 111111

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

238 Principles of Artificial and Neural Networks

(b) Setting of Weights: Back propagation learning was used to solve the problem.

The goal of this algorithm is to minimize the error-energy at the output layer.

Weight setting is as in regular Back-Propagation, Section 6.2 of Chapter 6 above.

A source code for this case study (written in C++) is given in Sect. 12.A.5.

12.A.3. Results

(a) Training Mode

To train the network to recognize the above characters we applied corresponding

6×6 grids in the form of 1×36 vectors to the input of the network. Additional two

inputs were initially set equal to zero and in the course of the training procedure

were set equal to the current output error. A character was considered recognized

if both outputs of the network were no more than 0.1 off their respective desired

values. The initial learning rate η was experimentally set at 1.5 and was decreased

by a factor of 2 after each 100th iteration. Just as in regular back propagation

(Sect. 6.A), after each 400th iteration we reset the learning rate to its initial value,

in order to prevent the learning process from getting stuck at a local minimum.

Then after about 3000 iterations we were able to correctly recognize all datasets.

We, however, continued until 5000 iterations were completed to make sure that the

energy-error value cannot be lowered even further. At this point we obtained:

TRAINING VECTOR 0: [0.0296153 0.95788] — RECOGNIZED —

TRAINING VECTOR 1: [0.963354 2.83491e-06] — RECOGNIZED —

TRAINING VECTOR 2: [0.962479 0.998554] — RECOGNIZED —

TRAINING VECTOR 3: [0.0162449 0.0149129] — RECOGNIZED —

TRAINING VECTOR 4: [0.0162506 0.0149274] — RECOGNIZED —

TRAINING VECTOR 5: [0.0161561 0.014852] — RECOGNIZED —

TRAINING VECTOR 6: [0.0168284 0.0153119] — RECOGNIZED —

TRAINING VECTOR 7: [0.016117 0.0148073] — RECOGNIZED —

TRAINING VECTOR 8: [0.016294 0.0149248] — RECOGNIZED —

Training vectors 0, 1, . . . , 8 in these log entries correspond to the characters ‘A’,

‘B’, . . . , ‘I’.

3(b) Recognition Results (test runs)

Error Detection: To check error detection performance, we saved the obtained

weights into a data file, modified the datasets in the program replacing the charac-

ters ‘G’, ‘H’ and ‘I’ (training vectors 6, 7 and 8) by the characters ‘X’, ‘Y’ and ‘Z’.

Then we ran the program, loaded the previously saved weights from the data file

and applied the input to the network. Note that we performed no further training.

We got the following results:

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Recurrent (Time Cycling) Back Propagation Networks 239

TRAINING VECTOR 6: [0.00599388 0.00745234] — RECOGNIZED —

TRAINING VECTOR 7: [0.0123415 0.00887678] — RECOGNIZED —

TRAINING VECTOR 8: [0.0433571 0.00461456] — RECOGNIZED —

All three characters were successfully mapped to error signal {0, 0}.

Robustness: To investigate how robust our neural network was, we added some

noise to the input and got the following results. In the case of 1-bit distortion (out

of 36 bits) the recognition rates were:

TRAINING SET 0: 18/38 recognitions (47.3684%)

TRAINING SET 1: 37/38 recognitions (97.3684%)

TRAINING SET 2: 37/38 recognitions (97.3684%)

TRAINING SET 3: 5/38 recognitions (13.1579%)

TRAINING SET 4: 5/38 recognitions (13.1579%)

TRAINING SET 5: 5/38 recognitions (13.1579%)

TRAINING SET 6: 6/38 recognitions (15.7895%)

TRAINING SET 7: 5/38 recognitions (13.1579%)

TRAINING SET 8: 6/38 recognitions (15.7895%)

With 2 error bits per character, performance was even worse.

12.A.4. Discussion and conclusions

We were able to train our neural network so that it successfully recognizes the

three given characters and at the same time is able to classify other characters as

errors. However, the results are not spectacular for the distorted input datasets.

Characters ‘A’, ‘B’ and ‘C’, that our network was trained on, were successfully

recognized with 1 and 2 bit distortions (with the possible exception of character ‘A’

but it could be improved by increasing the number of iterations). But recognition

of the ‘rest of the world’ characters was not great.

Comparing this result with the result achieved using pure back propagation,

we can see that for this particular problem, if noise bits were added to the data,

recurrency worsened the recognition performance results as compared with regular

(non-recurrent) Back-Propagation. Also, due to the introduction of recurrent inputs

we had to increase the total number of inputs by two. This resulted in the increased

number of weights in the network and, therefore, in somewhat slower learning.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

240 Principles of Artificial and Neural Networks

12.A.5. Source code (C++)

/*

*/

#include<cmath>

#include<iostream>

#include<fstream>

using namespace std;

#define N_DATASETS 9

#define N_INPUTS 38

#define N_OUTPUTS 2

#define N_LAYERS 3

// {# inputs, # of neurons in L1, # of neurons in L2, # of neurons in

// L3}

short conf[4] = {N_INPUTS, 2, 2, N_OUTPUTS};

// According to the number of layers double **w[3], *z[3], *y[3], *Fi[3], eta; ofstream

ErrorFile("error.txt", ios::out);

// 3 training sets; inputs 36 and 37 (starting from 0) will be used

// for feeding back the output error bool dataset[N_DATASETS][N_INPUTS] = {

{ 0, 0, 1, 1, 0, 0, // ‘A’

0, 1, 0, 0, 1, 0,

1, 0, 0, 0, 0, 1,

1, 1, 1, 1, 1, 1,

1, 0, 0, 0, 0, 1,

1, 0, 0, 0, 0, 1, 0, 0},

{ 1, 1, 1, 1, 1, 0, // ‘B’

9

1, 0, 0, 0, 0, 1,

1, 1, 1, 1, 1, 0,

1, 0, 0, 0, 0, 1,

1, 0, 0, 0, 0, 1,

1, 1, 1, 1, 1, 0, 0, 0},

{ 0, 1, 1, 1, 1, 1, // ‘C’

1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0,

0, 1, 1, 1, 1, 1, 0, 0},

{ 1, 1, 1, 1, 1, 0, // ‘D’

1, 0, 0, 0, 0, 1,

1, 0, 0, 0, 0, 1,

1, 0, 0, 0, 0, 1,

1, 0, 0, 0, 0, 1,

1, 1, 1, 1, 1, 0, 0, 0},

{ 1, 1, 1, 1, 1, 1, // ‘E’

1, 0, 0, 0, 0, 0,

1, 1, 1, 1, 1, 1,

1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0,

1, 1, 1, 1, 1, 1, 0, 0},

{ 1, 1, 1, 1, 1, 1, // ‘F’

1, 0, 0, 0, 0, 0,

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Recurrent (Time Cycling) Back Propagation Networks 241

1, 1, 1, 1, 1, 1,

1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0},

{ 0, 1, 1, 1, 1, 1, // ‘G’

1, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0,

1, 0, 1, 1, 1, 1,

1, 0, 0, 0, 0, 1,

0, 1, 1, 1, 1, 1, 0, 0},

{ 1, 0, 0, 0, 0, 1, // ‘H’

1, 0, 0, 0, 0, 1,

1, 1, 1, 1, 1, 1,

10

1, 0, 0, 0, 0, 1,

1, 0, 0, 0, 0, 1,

1, 0, 0, 0, 0, 1, 0, 0},

{ 0, 0, 1, 1, 1, 0, // ‘I’

0, 0, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0,

0, 0, 1, 1, 1, 0, 0, 0}

// Below are the datasets for checking "the rest of the world". They

// are not the ones the NN was trained on.

/*

{ 1, 0, 0, 0, 0, 1, // ‘X’

0, 1, 0, 0, 1, 0,

0, 0, 1, 1, 0, 0,

0, 0, 1, 1, 0, 0,

0, 1, 0, 0, 1, 0,

1, 0, 0, 0, 0, 1, 0, 0},

{ 0, 1, 0, 0, 0, 1, // ‘Y’

0, 0, 1, 0, 1, 0,

0, 0, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0,

0, 0, 0, 1, 0, 0, 0, 0},

{ 1, 1, 1, 1, 1, 1, // ‘Z’

0, 0, 0, 0, 1, 0,

0, 0, 0, 1, 0, 0,

0, 0, 1, 0, 0, 0,

0, 1, 0, 0, 0, 0,

1, 1, 1, 1, 1, 1, 0, 0}*/

},

datatrue[N_DATASETS][N_OUTPUTS] = {{0,1}, {1,0}, {1,1},

{0,0}, {0,0}, {0,0}, {0,0}, {0,0}, {0,0}};

// Memory allocation and initialization function void MemAllocAndInit(char S)

{

if(S == ‘A’)

for(int i = 0; i < N_LAYERS; i++)

11

{

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

242 Principles of Artificial and Neural Networks

w[i] = new double*[conf[i + 1]]; z[i] = new double[conf[i + 1]];

y[i] = new double[conf[i + 1]]; Fi[i] = new double[conf[i + 1]];

for(int j = 0; j < conf[i + 1]; j++)

{

}

}

w[i][j] = new double[conf[i] + 1];

// Initializing in the range (-0.5;0.5) (including bias

// weight)

for(int k = 0; k <= conf[i]; k++)

w[i][j][k] = rand()/(double)RAND_MAX - 0.5;

if(S == ‘D’)

{

for(int i = 0; i < N_LAYERS; i++)

{

}

for(int j = 0; j < conf[i + 1]; j++)

delete[] w[i][j];

delete[] w[i], z[i], y[i], Fi[i];

}

}

ErrorFile.close();

// Activation function double FNL(double z)

{

}

double y;

y = 1. / (1. + exp(-z));

return y;

// Applying input

void ApplyInput(short sn)

{

double input;

12

// Counting layers

for(short i = 0; i < N_LAYERS; i++)

// Counting neurons in each layer for(short j = 0; j < conf[i + 1]; j++)

{

z[i][j] = 0.;

// Counting input to each layer (= # of neurons in the previous

// layer)

for(short k = 0; k < conf[i]; k++)

{

// If the layer is not the first one if(i)

input = y[i - 1][k];

else

input = dataset[sn][k];

z[i][j] += w[i][j][k] * input;

}

}

}

z[i][j] += w[i][j][conf[i]]; // Bias term y[i][j] = FNL(z[i][j]);

// Training function, tr - # of runs void Train(int tr)

{

short i, j, k, m, sn;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Recurrent (Time Cycling) Back Propagation Networks 243

double eta, prev_output, multiple3, SqErr, eta0;

// Starting learning rate eta0 = 1.5;

eta = eta0;

// Going through all tr training runs for(m = 0; m < tr; m++)

{

SqErr = 0.;

// Each training run consists of runs through each training set for(sn = 0;

sn < N_DATASETS; sn++)

{

13

ApplyInput(sn);

// Counting the layers down

for(i = N_LAYERS - 1; i >= 0; i--)

// Counting neurons in the layer for(j = 0; j < conf[i + 1]; j++)

{

if(i == 2) // If it is the output layer multiple3 = datatrue[sn][j] - y[i][j];

else

{

}

multiple3 = 0.;

// Counting neurons in the following layer for(k = 0; k < conf[i + 2]; k++)

multiple3 += Fi[i + 1][k] * w[i + 1][k][j];

Fi[i][j] = y[i][j] * (1 - y[i][j]) * multiple3;

// Counting weights in the neuron

// (neurons in the previous layer)

for(k = 0; k < conf[i]; k++)

{

{

switch(k)

{

case 36:

if(i) // If it is not a first layer prev_output = y[i - 1][k];

else

prev_output = y[N_LAYERS - 1][0] - datatrue[sn][0];

break;

case 37:

prev_output = y[N_LAYERS - 1][1] - datatrue[sn][1];

break;

default:

prev_output = dataset[sn][k];

}

}

}

w[i][j][k] += eta * Fi[i][j] * prev_output;

14

}

// Bias weight correction w[i][j][conf[i]] += eta * Fi[i][j];

}

SqErr += pow((y[N_LAYERS - 1][0] - datatrue[sn][0]), 2) +

pow((y[N_LAYERS - 1][1] - datatrue[sn][1]), 2);

}

}

ErrorFile << 0.5 * SqErr << endl;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

244 Principles of Artificial and Neural Networks

// Decrease learning rate every 100th iteration if(!(m % 100))

eta /= 2.;

// Go back to original learning rate every 400th iteration if(!(m % 400))

eta = eta0;

// Prints complete information about the network void PrintInfo(void)

{

// Counting layers

for(short i = 0; i < N_LAYERS; i++)

{

cout << "LAYER " << i << endl;

// Counting neurons in each layer for(short j = 0; j < conf[i + 1]; j++)

{

cout << "NEURON " << j << endl;

// Counting input to each layer (= # of neurons in the previous

// layer)

for(short k = 0; k < conf[i]; k++)

cout << "w[" << i << "][" << j << "][" << k << "]="

<< w[i][j][k] << ‘ ’;

cout << "w[" << i << "][" << j << "][BIAS]="

<< w[i][j][conf[i]] << ‘ ’ << endl;

cout << "z[" << i << "][" << j << "]=" << z[i][j] << endl;

cout << "y[" << i << "][" << j << "]=" << y[i][j] << endl;

}

}

15

}

// Prints the output of the network void PrintOutput(void)

{

// Counting number of datasets

for(short sn = 0; sn < N_DATASETS; sn++)

{

}

}

ApplyInput(sn);

cout << "TRAINING SET " << sn << ": [";

// Counting neurons in the output layer for(short j = 0; j < conf[3]; j++)

cout << y[N_LAYERS - 1][j] << ‘ ’;

cout << "] ";

if(y[N_LAYERS - 1][0] > (datatrue[sn][0] - 0.1)

&& y[N_LAYERS - 1][0] < (datatrue[sn][0] + 0.1)

&& y[N_LAYERS - 1][1] > (datatrue[sn][1] - 0.1)

&& y[N_LAYERS - 1][1] < (datatrue[sn][1] + 0.1))

cout << "--- RECOGNIZED ---";

else

cout << "--- NOT RECOGNIZED ---";

cout << endl;

// Loads weithts from a file void LoadWeights(void)

{

double in;

ifstream file("weights.txt", ios::in);

// Counting layers

for(short i = 0; i < N_LAYERS; i++)

// Counting neurons in each layer for(short j = 0; j < conf[i + 1]; j++)

// Counting input to each layer (= # of neurons in the previous

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Recurrent (Time Cycling) Back Propagation Networks 245

// layer)

for(short k = 0; k <= conf[i]; k++)

{

16

}

file >> in;

w[i][j][k] = in;

}

file.close();

// Saves weithts to a file void SaveWeights(void)

{

}

ofstream file("weights.txt", ios::out);

// Counting layers

for(short i = 0; i < N_LAYERS; i++)

// Counting neurons in each layer for(short j = 0; j < conf[i + 1]; j++)

// Counting input to each layer (= # of neurons in the previous

// layer)

for(short k = 0; k <= conf[i]; k++)

file << w[i][j][k] << endl;

file.close();

// Gathers recognition statistics for 1 and 2 false bit cases void

GatherStatistics(void)

{

short sn, j, k, TotalCases;

int cou;

cout << "WITH 1 FALSE BIT PER CHARACTER:" << endl; TotalCases = conf[0];

// Looking at each dataset

for(sn = 0; sn < N_DATASETS; sn++)

{

cou = 0;

// Looking at each bit in a dataset for(j = 0; j < conf[0]; j++)

{

if(dataset[sn][j])

dataset[sn][j] = 0;

17

}

else

dataset[sn][j] = 1; ApplyInput(sn);

if(y[N_LAYERS - 1][0] > (datatrue[sn][0] - 0.1)

&& y[N_LAYERS - 1][0] < (datatrue[sn][0] + 0.1)

&& y[N_LAYERS - 1][1] > (datatrue[sn][1] - 0.1)

&& y[N_LAYERS - 1][1] < (datatrue[sn][1] + 0.1))

cou++;

// Switching back if(dataset[sn][j])

dataset[sn][j] = 0;

else

dataset[sn][j] = 1;

}

cout << "TRAINING SET " << sn << ": " << cou << ‘/’ << TotalCases

<< " recognitions (" << (double)cou / TotalCases * 100. << "%)" << endl;

cout << "WITH 2 FALSE BITS PER CHARACTER:" << endl;

TotalCases = conf[0] * (conf[0] - 1);

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

246 Principles of Artificial and Neural Networks

// Looking at each dataset

for(sn = 0; sn < N_DATASETS; sn++)

{

cou = 0;

// Looking at each bit in a dataset for(j = 0; j < conf[0]; j++)

for(k = 0; k < conf[0]; k++)

{

if(j == k)

continue;

if(dataset[sn][j])

dataset[sn][j] = 0;

else

dataset[sn][j] = 1;

if(dataset[sn][k])

dataset[sn][k] = 0;

else

dataset[sn][k] = 1;

18

}

ApplyInput(sn);

if(y[N_LAYERS - 1][0] > (datatrue[sn][0] - 0.1)

&& y[N_LAYERS - 1][0] < (datatrue[sn][0] + 0.1)

&& y[N_LAYERS - 1][1] > (datatrue[sn][1] - 0.1)

&& y[N_LAYERS - 1][1] < (datatrue[sn][1] + 0.1))

cou++;

if(dataset[sn][j]) // Switching back dataset[sn][j] = 0;

else

dataset[sn][j] = 1;

if(dataset[sn][k])

dataset[sn][k] = 0;

else

dataset[sn][k] = 1;

}

}

cout << "TRAINING SET " << sn << ": " << cou << ‘/’ << TotalCases

<< " recognitions (" << (double)cou / TotalCases * 100. << "%)" << endl;

// Entry point: main menu int main(void)

{

short ch;

int x;

MemAllocAndInit(‘A’);

do

{

cout << "MENU" << endl;

cout << "1. Apply input and print parameters" << endl;

cout << "2. Apply input (all training sets) and print output" << endl;

cout << "3. Train network" << endl; cout << "4. Load weights" << endl;

cout << "5. Save weights" << endl;

cout << "6. Gather recognition statistics" << endl;

cout << "0. Exit" << endl;

19

cout << "Your choice: ";

cin >> ch; cout << endl; switch(ch)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Recurrent (Time Cycling) Back Propagation Networks 247

{

case 1: cout << "Enter set number: ";

cin >> x; ApplyInput(x); PrintInfo(); break;

case 2: PrintOutput();

break;

case 3: cout << "How many training runs?: ";

cin >> x; Train(x); break;

case 4: LoadWeights();

break;

case 5: SaveWeights();

break;

case 6: GatherStatistics();

break;

case 0: MemAllocAndInit(‘D’);

return 0;

}

}

cout << endl;

cin.get();

cout << "Press ENTER to continue..." << endl;

cin.get();

}

while(ch);

20

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

This page intentionally left blankThis page intentionally left blank

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Chapter 13

Large Scale Memory Storage and
Retrieval (LAMSTAR) Network

13.0. Motivation

The neural network discussed in the present section is an artificial neural net-

work for large scale memory storage and retrieval of information [Graupe and Ko-

rdylewski, 1996a,b]. This network attempts to imitate, in a gross manner, processes

of the human central nervous system (CNS), concerning storage and retrieval of pat-

terns, impressions and sensed observations, including processes of forgetting and of

recall. It attempts to achieve this without contradicting findings from physiological

and psychological observations, at least in an input/output manner. Furthermore,

the LAMSTAR (LArge Memory STorage And Retrieval) model considered attempts

to do so in a computationally efficient manner, using tools of neural networks from

the previous sections, especially SOM (Self Organizing Map)-based network mod-

ules (similar to those of Sec. 8 above), combined with statistical decision tools. The

LAMSTAR network is therefore not a specific network but a system of networks

for storage, recognition, comparison and decision that in combination allow such

storage and retrieval to be accomplished.

13.1. Basic Principles of the LAMSTAR Neural Network

The LAMSTAR neural network is specifically designed for application to re-

trieval, diagnosis, classification, prediction and decision problems which involve

a very large number of categories. The resulting LAMSTAR (LArge Memory

STorage And Retrieval) neural network [graupe, 1997, Graupe and Kordylewski,

1998] is designed to store and retrieve patterns in a computationally efficient man-

ner, using tools of neural networks, especially Kohonen’s SOM (Self Organizing

Map)-based network modules [Kohonen, 1988], combined with statistical decision

tools.

By its structure as described in Sec. 13.2, the LAMSTAR network is uniquely

suited to deal with analytical and non-analytical problems where data are of many

vastly different categories and where some categories may be missing, where data are

both exact and fuzzy and where the vastness of data requires very fast algorithms

249

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

250 Principles of Artificial and Neural Networks

[Graupe, 1997, Graupe and Kordylewski, 1998]. These features are rare to find,

especially when coming together, in other neural networks.

The LAMSTAR can be viewed as in intelligent expert system, where expert

information is continuously being ranked for each case through learning and corre-

lation. What is unique about the LAMSTAR network is its capability to deal with

non-analytical data, which may be exact or fuzzy and where some categories may be

missing. These characteristics are facilitated by the network’s features of forgetting,

interpolation and extrapolation. These allow the network to zoom out of stored in-

formation via forgetting and still being able to approximate forgotten information

by extrapolation or interpolation. The LAMSTAR was specifically developed for

application to problems involving very large memory that relates to many differ-

ent categories (attributes), where some of the data is exact while other data are

fuzzy and where (for a given problem) some data categories may occasionally be

totally missing. Also, the LAMSTAR NN is insensitive to initialization and is doe

not converge to local minima. Furthermore, in contrast to most Neural Networks

(say, Back-Propagation as in Chapter 6), the LAMSTAR’s unique weight structure

makes it fully transparent, since its weights provide clear information on what is go-

ing on inside the network. Consequently, the network has been successfully applied

to many decision, diagnosis and recognition problems in various fields.

The major principles of neural networks (NN’s) are common to practically all

NN approaches. Its elementary neural unit or cell (neuron) is the one employed in

all NN’s, as described in Chapters 2 and 4 of this text. Accordingly, if the p inputs

into a given neuron (from other neurons or from sensors or transducers at the input

to the whole or part of the whole network) at the j’th SOM layer are denoted as

x(ij); i = 1, 2, . . . , p, and if the (single) output of that neuron is denoted as y, then

the neuron’s output y satisfies;

y = f

[

p
∑

i=1

wijxij

]

(13.1)

where f [.] is a nonlinear function denoted as Activation Function, that can be

considered as a (hard or soft) binary (or bipolar) switch, as in Chapter 4 above.

The weights wij of Eq. (13.1) are the weights assigned to the neuron’s inputs and

whose setting is the learning action of the NN. Also, neural firing (producing of an

output) is of all-or-nothing nature [McCulloch and Pitts, 1943]. For details of the

setting of the storage weights (wij), see Secs. 13.2.2 and 13.2.6 below.

The WTA (Winner-Take-All) principle, as in Chapter 8, is employed [Kohonen,

1988], such that an output (firing) is produced only at the winning neuron, namely,

at the output of the neuron whose storage weights wij are closest to vector x(j)

when a best-matching memory is sought at the j’th SOM module.

By using a link weights structure for its decision and browsing, the LAMSTAR

network utilizes not just the stored memory values w(ij) as in other neural networks,

but also the interrelations these memories (Verbindungen, as Immanuel Kant called

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Large Scale Memory Storage and Retrieval (LAMSTAR) Network 251

them [Ewing, 1938]) to the decision module and between the memories themselves.

The LAMSTAR’s understanding is thus based not just on memories (in terms of

its storage weights) but also on relations between them, (in terms of link weights).

These relations (link weights) are fundamental to its operation. By Hebb’s Law

[Hebb, 1949], interconnecting weights (link weights) adjust and serve to establish

flow of neuronal signal traffic between groups of neurons, such that when a certain

neuron fires very often in close time proximity (regarding a given situation/task),

then the interconnecting link-weights (not the memory-storage weights) relating to

that traffic, increase as compared to other interconnections [Graupe, 1997; Graupe

and Lynn, 1970]. Indeed, link weights serve as Hebbian intersynaptic weights and

adjust accordingly [Hebb, 1949]. These weights and their method of adjustment

(according to flow of traffic in the interconnections) fit recent results from brain

research [Levitan et al., 1997]. They are also responsible to the LAMSTAR’s ability

to interpolate/extrapolate and perform (with no re-programming or retraining) with

incomplete dare sets.

13.2. Detailed Outline of the LAMSTAR Network

13.2.1. Basic structural elements

The basic storage modules of the LAMSTAR network are modified Kohonen

SOM modules [Kohonen, 1988] of Chapter 8 that are Asociate-Memory-based WTA,

in accordance to degree of proximity of storage weights in the BAM-sense to any

input subword that is being considered per any given input word to the NN. In

the LAMSTAR network the information is stored and processed via correlation links

between individual neurons in separate SOM modules. Its ability to deal with a large

number of categories is partly due to its use of simple calculation of link weights

and by its use of forgetting features and features of recovery from forgetting. The

link weights are the main engine of the network, connecting many layers of SOM

modules such that the emphasis is on (co)relation of link weights between atoms of

memory, not on the memory atoms (BAM weights of the SOM modules) themselves.

In this manner, the design becomes closer to knowledge processing in the biological

central nervous system than is the practice in most conventional artificial neural

networks. The forgetting feature too, is a basic feature of biological networks whose

efficiency depends on it, as is the ability to deal with incomplete data sets.

The input word is a coded real matrix X given by:

X =
[

xT
1 , xT

2 , . . . , xT
N

]T
(13.2)

where T denotes transposition., x
T
i being subvectors (subwords describing categories

or attributes of the input word). Each subword xi is channeled to a corresponding

i’th SOM module that stores data concerning the i’th category of the input word.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

252 Principles of Artificial and Neural Networks

adjustments and related topics are discussed in the sections below.

Figure 13.1 : A Generalized LANSTAR Bock-Diagram

Fig. 13.1. A generalized LAMSTAR block-diagram.

Many input subwords (and similarly, many inputs to practically any other neu-

ral network approach) can be derived only after pre-processing. This is the case

in signal/image-processing problems, where only autoregressive or discrete spec-

tral/wavelet parameters can serve as a subword rather than the signal itself.

Whereas in most SOM networks [Kohonen, 1988] all neurons of an SOM module

are checked for proximity to a given input vector, in the LAMSTAR network only a

finite group of p neurons may checked at a time due to the huge number of neurons

involved (the large memory involved). The final set of p neurons is determined by

link-weights (Ni) as shown in Fig. 13.1. However, if a given problem requires (by

considerations of its quantization) only a small number of neurons in a given SOM

storage module (namely, of possible states of an input subword), then all neurons

in a given SOM module will be checked for possible storage and for subsequent

selection of a winning neuron in that SOM module (layer) and Ni weights are not

used. Consequently, if the number of quantization levels in an input subword is

small, then the subword is channeled directly to all neurons in a predetermined

SOM module (layer).

The main element of the LAMSTAR, which is its decision engine, is the array

of link weights that interconnect neurons between input SOM layers and from all

storage neurons of the inpout layers to the output (decision) layers. The inter-input-

layer link weights are updated in accordance with traffic volume. The link weights

to the output layers are updated by a reward/punishment process in accordance

to success or failure of any decision, thus forming a learning process that is not

limited to training data but continuous throughout running the LAMSTAR on a

give problem. Weight-initialization is simple and unproblematic. Its feed-forward

structure guarantees its stability, as is also discussed below. Details on the link

weight adjustments and related topics are discussed in the sections below.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Large Scale Memory Storage and Retrieval (LAMSTAR) Network 253

Fig. 13.2. The basic LAMSTAR architecture: simplified version for most applications.

Figure 13.1 gives a block-diagram of the complete and generalized of the

LAMSTAR network. A more basic diagram, to be employed in most applications

where the number of neurons per SOM layer is not huge, is given in Fig. 13.2. This

design is a slight simplification of the generalized architecture. It is also employed in

the case studies of Appendices 13.A and 13.B below. Only large browsing/retrieval

cases should employ the complete design of Fig. 13.1. In the design of Fig. 13.2,

the internal weights from one input layer to other input layers are omitted, as are

the Nij weights.

13.2.2. Setting of storage weights and determination of winning

neurons

When a new input word is presented to the system during the training phase,

the LAMSTAR network inspects all storage-weight vectors (wi) in SOM module

i that corresponds to an input subword xi that is to be stored. If any stored

pattern matches the input subword xi within a preset tolerance, it is declared as

the winning neuron for that particularly observed input subword. A winning

neuron is thus determined for each input based on the similarity between the input

(vector x in Figs. 13.1 and 13.2) and a storage-weight vector w (stored information).

For an input subword xi, the winning neuron is thus determined by minimizing a

distance norm ‖ ∗ ‖, as follows:

d(j, j) = ‖xj − wj‖ ≤ ‖xj − wk 6=j‖ , d(j, k) ∀ k (13.3)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

254 Principles of Artificial and Neural Networks

13.2.3. Adjustment of resolution in SOM modules

Equation (13.3), which serves to determine the winning neuron, does not deal

effectively with the resolution of close clusters/patterns. This may lead to degraded

accuracy in the decision making process when decision depends on local and closely

related patterns/clusters which lead to different diagnosis/decision. The local sen-

sitivity of neuron in SOM modules can be adjusted by incorporating an adjustable

maximal Hamming distance function dmax as in Eq. (13.4):

dmax = max[d(xi wi)] . (13.4)

Consequently, if the number of subwords stored in a given neuron (of the appropriate

module) exceeds a threshold value, then storage is divided into two adjacent storage

neurons (i.e. a new-neighbor neuron is set) and dmax is reduced accordingly.

For fast adjustment of resolution, link weight to the output layer (as discussed in

Sec. 13.2.3 below) can serve to adjust the resolution, such that storage in cells that

yield a relatively high Nij weights can be divided (say into 2 cells), while cells with

low output link weights can be merged into the neighboring cells. This adjustment

can be automatically or periodically changed when certain link weights increase

or decrease relative to others over time (and considering the networks forgetting

capability as in Sec. 13.3 below).

13.2.4. Links between SOM modules and from SOM modules to

output modules

Information in the LAMSTAR system is encoded via correlation links Li,j

(Figs. 13.1, 13.2) between individual neurons in different SOM modules. The LAM-

STAR system does not create neurons for an entire input word. Instead, only

selected subwords are stored in Associative-Memory-like manner in SOM mod-

ules (w weights), and correlations between subwords are stored in terms of cre-

ating/adjusting L-links (Li,j in Fig. 13.1) that connect neurons in different SOM

modules. This allows the LAMSTAR network to be trained with partially incom-

plete data sets. The L-links are fundamental to allow interpolation and extrapola-

tion of patterns (when a neuron in an SOM model does not correspond to an input

subword but is highly linked to other modules serves as an interpolated estimate).

We comment that the setting (updating) of Link Weights, as considered in this

sub-section, applies to both link weights between input-storage (internal) SOM

modules AND also link-weights from any storage SOM module and an output

module (layer). In many applications it is advisable to consider only links

to ouput (decision) modules.

Specifically, link weight values L are set (updated) such that for a given input

word, after determining a winning k’th neuron in module i and a winning m’th

neuron in module j, then the link weight Lk,m
i,j is counted up by a reward increment

∆L, whereas, all other links Ls,v
i,j may be reduced by a punishment increment ∆M .

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Large Scale Memory Storage and Retrieval (LAMSTAR) Network 255

(Fig.13.2) [Graupe 1997, Graupe and Kordylewski Graupe, 1997]. The values of

L-link weights are modified according to:

Lk,m
i,j (t + 1) = Lk,m

i,j (t) + ∆L : Lk,m
i,j ≤ Lmax (13.5a)

Li,j(t + 1) = Li,j(t) − ∆M (13.5b)

L(0) = 0 (13.5c)

where:

Lk,m
i,j : links between winning neuron i in k’th module and winning neuron j in

m’th module (which may also be the m’th output module).

∆L, ∆M : reward/punishment increment values (predetermined fixed values).

It is sometimes desirable to set ∆M (either for all LAMSTAR decisions or only

when the decision is correct) as:

∆M = 0 (13.6)

Lmax: maximal links value (not generally necessary, especially when update via

forgetting is performed).

The link weights thus serve as address correlations [Graupe and Lynn, 1970] to

evaluate traffic rates between neurons [Graupe, 1997, Minsky, 1980]. See Fig. 13.1.

The L link weights above thus serve to guide the storage process and to speed it

up in problems involving very many subwords (patterns) and huge memory in each

such pattern. They also serves to exclude patterns that totally overlap, such that

one (or more) of them are redundant and need be omitted. In many applications,

the only link weights considered (and updated) are those between the SOM stor-

age layers (modules) and the output layers (as in Fig. 13.2), while link-weights

between the various SOM input-storage layers (namely, internal link-weights)

are not considered or updated, unless they are required for decisions related to

Sec. 13.2.6 below.

13.2.5. Determination of winning decision via link weights

The diagnosis/decision at the output SOM modules is found by analyzing cor-

relation links L between diagnosis/decision neurons in the output SOM modules

and the winning neurons in all input SOM modules selected and accepted by

the process outlined in Sec. 13.2.4. Furthermore, all L-weight values are set

(updated) as discussed in Sec. 13.2.4 above (Eqs. (13.6), (13.7a) and (13.7b)).

The winning neuron (diagnosis/decision) from the output SOM module is a

neuron with the highest cumulative value of links L connecting to the selected

(winning) input neurons in the input modules. The diagnosis/detection formula for

output SOM module (i) is given by:

M
∑

kw

Li,n
kw ≥

M
∑

kw

Li,j
kw ∀ k, j, n; i 6= n (13.7)

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

256 Principles of Artificial and Neural Networks

where:

i: i’th output module.

n: winning neuron in the i’th output module

kw: winning neuron in the k’th input module.

M : number of input modules.

Li,j
kw: link weight between winning neuron in input module k and neuron j in

i’th output module.

Link weights may be either positive or negative. They are preferably initiated

at a small random value close to zero, though initialization of all weights at zero

(or at some other fixed value) poses no difficulty. If two or more weights are equal

then a certain decision must be pre-programmed to be given a priority.

13.2.6. Nj weights (not implemented in most applications)

The Nj weights of Fig. 13.1 [Graupe and Kordyleski, 1998] are updated by the

amount of traffic to a given neuron at a given input SOM module, namely by the

accumulative number of subwords stored at a given neuron (subject to adjustments

due to forgetting as in Sec. 13.3 below), as determined by Eq. (13.8):

‖xi − wi,m‖ = min ‖xi − wi,k‖, ∀ k ∈ 〈l, l + p〉; l ∼ {Ni,j} (13.8)

where

m: is the winning unit in i’th SOM module (WTA),

(Ni,j): denoting of the weights to determine the neighborhood of top priority

neurons in SOM module i, for the purpose of storage search. In most applications,

k covers all neurons in a module and both Nij and l are disregarded, as in Fig. 13.2.

l: denoting the first neuron to be scanned (determined by weights Ni,j);

∼ denoting proportionality.

The Nj weights of Fig. 13.1 above are only used in huge retrieval/browsing

problems. They are initialized at some small random non-zero value (selected from

a uniforms distribution) and increase linearly each time the appropriate neuron is

chosen as winner.

13.2.7. Initialization and local minima

In contrast to most other networks, the LAMSTAR neural network is not sensi-

tive to initialization and will not converge to local minima. All link weights should

be initialized with the same constant value, preferably zero. However initialization

of the storage weights ωij of Sec. 13.2.2 and of Nj of Sec. 13.2.6 should be at random

(very) low values.

Again, in contrast to most other neural networks, the LAMSTAR will not con-

verge to a local minimum, due to its link -weight punishment/reward structure since

punishments will continue at local minima.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Large Scale Memory Storage and Retrieval (LAMSTAR) Network 257

13.3. Forgetting Feature

Forgetting is introduced in by a forgetting factor F (k); such that:

L(k + 1) = L(k) − F{k}, L(k) > 0, ∀ k (13.9)

For any link weight L, where k denotes the k’th input word considered and where

F (k) is a small increment that varies over time (over k).

In certain realizations of the LAMSTAR, the forgetting adjustment is set as:

F (k) = 0 over successive p − 1 input words considered; (13.10-a)

but

F (k) = bL per each p’th input word (13.10-b)

where L is any link weight and

b < 1 (13.10-c)

say, b = 0.5.

Furthermore, in preferred realizations Lmax is unbounded, except for reductions

due to forgetting.

Noting the forgetting formula of Eqs. (13.9) and (13.10), link weights Li,j de-

cay over time. Hence, if not chosen successfully, the appropriate Li,j will drop

towards zero. Therefore, correlation links L which do not participate in successful

diagnosis/decision over time, or lead to an incorrect diagnosis/decision are gradu-

ally forgotten. The forgetting feature allows the network to rapidly retrieve very

recent information. Since the value of these links decreases only gradually and does

not drop immediately to zero, the network can re-retrieve information associated

with those links. The forgetting feature of the LAMSTAR network helps to avoid

the need to consider a very large number of links, thus contributing to the network

efficiency. At the forgetting feature requires storage of link weights and numbering

of input words. Hence, in the simplest application of forgetting, old link weights are

forgotten (subtracted from their current value) after, say every M input words. The

forgetting can be applied gradually rather than stepwise as in Eqs. (13.5) above.

A stepwise Forgetting algorithm can be implemented such that all weights and

decisions must have an index number (k, k = 1, 2, 3, . . .) starting from the very

first entry. Also, then one must remember the weights as they are every M (say,

M = 20) input words. Consequently, one updates ALL weights every M = 20 input

words by subtracting from EACH weight its stored value to be forgotten.

For example, at input word k = 100 one subtracts the weights as of Input Word

k = 20 (or alternatively X%, say, 50% thereof) from the corresponding weights at

input word k = 100 and thus one KEEPS only the weights of the last 80 input words.

Updating of weights is otherwise still done as before and so is the advancement of k.

Again, at input word k = 120 one subtracts the weights as of input word k = 40 to

keep the weights for an input-words interval of duration of, say, P = 80, and so on.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

258 Principles of Artificial and Neural Networks

Therefore, at k = 121 the weights (after the subtraction above) cover experience

relating to a period of 81 input words. At k = 122, they cover a stored-weights

experience over 82 input words . . . , at k = 139 they covers a period of 99 input

words, at k = 140 they cover 120–20 input words, since now one subtracted the

weights of k = 40, etc. Hence, weights cover always a period of no more than 99

input words and no less than 80 input words. Weights must then be stored only

every M = 20 input words, not per every input word. Note that the M = 20 and

P = 80 input words mentioned are arbitrary. When one wishes to keep data over

longer periods, one may set M and P to other values as desired.

Simple applications of the LAMSTAR neural network do not always require

the implementation of the forgetting feature. If in doubt about using the for-

getting property, it may be advisable to compare performance “with forgetting”

against “without forgetting” (when continuing the training throughout the testing

period).

13.4. Training vs. Operational Runs

There is no reason to stop training as the first n sets (input words) of data are

only to establish initial weights for the testing set of input words (which are, indeed,

normal run situations), which, in LAMSTAR, we can still continue training set by

set (input-word by input-word). Thus, the NETWORK continues adapting itself

during testing and regular operational runs. The network’s performance benefits

significantly from continued training while the network does not slow down and no

additional complexity is involved. In fact, this does slightly simplify the network’s

design.

13.4.1. INPUT WORD for training and for information retrieval

In applications such as medical diagnosis, the LAMSTAR system is trained

by entering the symptoms/diagnosis pairs (or diagnosis/medication pairs). The

training input word X is then of the following form:

X = [xT
1 , xT

2 , . . . , xT
n , dT

1 , . . . , dT
k]T (13.11)

where xi are input subwords and di are subwords representing past outputs of the

network (diagnosis/decision). Note also that one or more SOM modules may serve

as output modules to output the LAMSTAR’s decisions/diagnoses.

The input word of Eqs. (13.2) and (13.11) is set to be a set of coded subword

(Sec. 13.1), comprising of coded vector-subwords (xi) that relate to various cat-

egories (input dimensions). Also, each SOM module of the LAMSTAR network

corresponds to one of the categories of xi such that the number of SOM modules

equals the number of subvectors (subwords) xn and d in X defined by Eq. (13.11).

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Large Scale Memory Storage and Retrieval (LAMSTAR) Network 259

13.5. Advanced Data Analysis Capabilities

Since all information in the LAMSTAR network is encoded in the correlation

links, the LAMSTAR can be utilized as a data analysis tool. In this case the system

provides analysis of input data such as evaluating the importance of input subwords,

the strengths of correlation between categories, or the strengths of correlation of

between individual neurons.

The system’s analysis of the input data involves two phases:

(1) training of the system (as outlined in Sec. 13.4)

(2) analysis of the values of correlation links as discussed below.

Since the correlation links connecting clusters (patterns) among categories are modi-

fied (increased/decreased) in the training phase, it is possible to single out the links

with the highest values. Therefore, the clusters connected by the links with the

highest values determine the trends in the input data. In contrast to using data

averaging methods, isolated cases of the input data will not affect the LAMSTAR

results, noting its forgetting feature. Furthermore, the LAMSTAR structure makes

it very robust to missing input subwords.

After the training phase is completed, the LAMSTAR system finds the highest

correlation links (link weights) and reports messages associated with the clusters in

SOM modules connected by these links. The links can be chosen by two methods:

(1) links with value exceeding a pre-defined threshold, (2) a pre-defined number of

links with the highest value.

13.5.1. Feature extraction and reduction in the LAMSTAR NN

Features can be extracted and reduced in the LAMSTAR network according

to the derivations leading to the properties of certain elements of the LAMSTAR

network as follows:

Definition I: A feature can be extracted by the matrix A(i, j) where i denotes a

winning neuron in SOM storage module j. All winning entries are 1 while the rest

are 0. Furthermore, A(i, j) can be reduced via considering properties (b) to (e)

below.

(a) The most (least) significant subword (winning memory neuron) {i} over

all SOM modules (i.e., over the whole NN) with respect to a given output

decision {dk} and over all input words, denoted as [i∗, s∗/dk], is given by:

[i∗, s∗/dk] : L(i, s/dk) ≥ L(j, p/dk) for any winning neuron {j} in any module {p}
(13.12)

where p is not equal to s, L(j, p/dk) denoting the link weight between the j’th

(winning) neuron in layer p and the winning output-layer neuron dk. Note that for

determining the least significant neuron, the inequality as above is reversed.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

260 Principles of Artificial and Neural Networks

(b) The most (least) significant SOM module {s∗∗} per a given winning

output decision {dk} over all input words, is given by:

s∗∗(dk) :
∑

i

({L(i, s/dk)} =
∑

j

({L(j, p/dk)} for any module p (13.13)

Note that for determining the least significant module, the inequality above is

reversed.

(c) The neuron {i∗∗(dk)} that is most (least) significant in a particular SOM

module (s) per a given output decision (dk), over all input words per a

given class of problems, is given by i∗(s, dk) such that:

L(i, s/dk) = L(j, s/dk) for any neuron (j) in same module (s) . (13.14)

Note that for determining the least significant neuron in module (s), the inequality

above is reversed.

(d) Redundancy via Internal Links: If the link weights L(p, a/q, b) from any

neuron {p} in layer {a} to some neuron {q} in layer {b} is very high, WHILE it is

(near) zero to EVERY OTHER neuron in layer {b}, we denote the neuron {q} in

layer {b} as q(p). Now, IF this holds for ALL neurons {p} in layer {a} which were

ever selected (declared winners) , THEN layer {b} is REDUNDANT, as long as the

number of neurons {p} is larger or equal to the number of {q(p)}, AND layer {b}
should be removed.

Definition II: If the number of {q(p)} neurons is less than the number of {p}
neurons, then layer {b} is called an INFERIOR LAYER to {a}.

Also see Property (i) below on redundancy determination via correlation-layers.

(e) Zero-Information Redundancy: If only one neuron is ALWAYS the winner

in layer (k), regardless of the output decision, then the layer contains no information

and is redundant.

The above definitions and properties can serve to reduce number of features

or memories by considering only a reduced number of most-significant modules or

memories or by eliminating the least significant ones.

13.6. Correlation, Interpolation, Extrapolation and

Innovation-Detection

13.6.1. Correlation feature

Consider the (m) most significant layers (modules) with respect to output de-

cision (dk) and the (n) most significant neurons in each of these (m) layers, with

respect to the same output decision. (Example: Let m = n = 4). We comment

that correlation between subwords can also be accommodated in the network by

assigning a specific input subword of that correlation, this subword being formed

by pre-processing.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Large Scale Memory Storage and Retrieval (LAMSTAR) Network 261

(f) Correlation-Layer Set-Up Rule: Establish additional SOM layers denoted

as CORRELATION-LAYERS λ(p/q, dk), such that the number of these additional

correlation-layers is:
m−1
∑

i=1

per output decision dk (13.15)

(Example: The correlation-layers for the case of n = m = 4 are: λ(1/2, dk);

λ(1/3, dk); λ(1/4, dk); λ(2/3, dk); λ(2/4, dk); λ(3/4, dk).)

Subsequently, WHENEVER neurons N(i, p) and N(j, q) are simultaneously

(namely, for the same given input word) winners at layers (p) and (q) respectively,

and both these neurons also belong to the subset of ‘most significant’ neurons in

‘most significant’ layers (such that p and q are ‘most significant’ layers), THEN

we declare a neuron N(i, p/j, q) in Correlation-Layer λ(p/q, dk) to be the win-

ning neuron in that correlation-layer and we reward/punish its output link-weight

L(i, p/j, q − dk) as need be for any winning neuron in any other input SOM layer.

(Example: The neurons in correlation-layer λ(p/q) are: N(1, p/1, q); N(1, p/2, q);

N(1, p/3, q); N(1, p/4, q), N(2, p/1, q); . . .N(2, p/4, q); N(3, p/1, q); . . .N(4, p/1, q);

. . . N(4, p/4, q), to total mxm neurons in the correlation-layer).

Any winning neuron in a correlation layer is treated and weighted as any winning

neuron in another (input-SOM) layer as far as its weights to any output layer neuron

are concerned and updated. Obviously, a winning neuron (per a given input word),

if any, in a correlation layer p/q is a neuron N(i, p/j, q) in that layer where both

neuron N(i, p) in input layer (p) and neuron N(j, q) in layer (q) were winners for

the given input word.

(g) Interpolation/Extrapolation via Internal Link: For a given input word

that relates to output decision dk, if no input subword exists that relates to layer (p),

then the neuron N(i, p) which has the highest summed-correlation link (internal link

weights) with winning neurons (for the same input word) in other layers v, will be

considered the interpolation/extrapolation neuron in layer p for that input word.

However, no rewards/punishments will be applied to that neuron while it is an

interpolation/extrapolation neuron.

(h) Interpolation/Extrapolation via Correlation Layers: Let p be a ‘most

significant’ layer and let i be a ‘most significant neuron with respect to output

decision dk in layer p, where no input subword exists in a given input word relating

to layer p. Thus, neuron N(i, p) is considered as the interpolation/extrapolation

neuron for layer p if it satisfies:
∑

q

{L(i, p/w, q − dk)} =
∑

q

{L(v, p/w, q − dk)} (13.16)

where v are different from i and where L(i, p/j, q − dk) denote link weights from

correlation-layer λ(p/q). Note that in every layer q there is only one winning neuron

for the given input word, denoted as N(w, q), whichever w may be at any q’th, layer.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

262 Principles of Artificial and Neural Networks

(Example: Let p = 3. Thus consider correlation-layers λ(1/3, dk); λ(2/3, dκ);

λ(3/4, dk) such that: q = 1, 2, 4.)

(i) Redundancy via Correlation-Layers: Let p be a ‘most significant’ layer and

let i be a ‘most significant’ neuron in that layer. Layer p is redundant if for all

input words there is there is another ‘most significant’ layer q such that, for any

output decision and for any neuron N(i, p), only one correlation neuron i, p/j, q

(i.e., for only one j per each such i, p) has non-zero output-link weights to any

output decision dk, such that every neuron N(j, p) is always associated with only

one neuron N(j, p) in some layer p.

(Example: Neuron N(1, p) is always associated with neuron N(3, q) and never with

N(1, q) or N(2, q) or N(4, q), while neuron N(2, p) is always associated with N(4, q)

and never with other neurons in layer q).

Also, see property (d) above.

13.6.2. Innovation detection in the LAMSTAR NN

(j) If link-weights from a given input SOM layer to the output layer output change

considerably and repeatedly (beyond a threshold level) within a certain time inter-

val (a certain specified number of successive input words that are being applied),

relatively to link weights from other input SOM layers, then innovation is detected

with respect to that input layer (category).

(k) Innovation is also detected if weights between neurons from one input SOM

layer to another input SOM layer similarly change.

13.7. Concluding Comments and Discussion of Applicability

The LAMSTAR neural network utilizes the basic features of many other neural

network, and adopts Kohonen’s SOM modules [Kohonen, 1977, 1984] with their

associative-memory — based setting of storage weights (wij in this Chapter) and

its WTA (Winner-Take-All) feature, it differs in its neuronal structure in that every

neuron has not only storage weights wij (see Chapter 8 above), but also the link

weights Lij . This feature directly follows Hebb’s Law [Hebb, 1949] and its relation

to Pavlov’s Dog experiment, as discussed in Sec. 3.1. It also follows Minsky’s

k-lines model [Minsky, 1980] and Kant’s emphasis on the essential role Verbindungen

in “understanding”, which obviously relates to the ability to decide. Hence, not

only does LAMSTAR deal with two kinds of neuronal weights (for storage and for

linkage to other layers), but in the LAMSTAR, the link weights are the ones that

count for decision purposes. The storage weights form “atoms of memory” in the

Kantian sense [Ewing, 1938]. The LAMSTAR’s decisions are solely based on these

link weights — see Sec. 13.2 below.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Large Scale Memory Storage and Retrieval (LAMSTAR) Network 263

The LAMSTAR, like all other neural networks, attempts to provide a repre-

sentation of the problem it must solve (Rosenblatt, 1961). This representation,

regarding the networks decision, can be formulated in terms of a nonlinear mapping

L of the weights between the inputs (input vector) and the outputs, that is arranged

in a matrix form. Therefore, L is a nonlinear mapping function whose entries are

the weights between inputs an the outputs, which map the inputs to the output de-

cision. Considering the Back-Propagation (BP) network, the weights in each layer

are the columns of L. The same holds for the link weights Lij of L to a winning out-

put decision in the LAMSTAR network. Obviously, in both BP and LAMSTAR,

L is not a square matrix-like function, nor are all its columns of same length.

However, in BP, L has many entries (weights) in each column per any output

decision. In contrast, in the LAMSTAR, each column of L has only one non-zero

entry. This accounts both for the speed and the transparency of LAMSTAR.

There weights in BP do not yield direct information on what their values mean. In

the LAMSTAR, the link weights directly indicate the significance of a given fea-

ture and of a particular subword relative to the particular decision, as indicated in

Sec. 13.5 below. The basic LAMSTAR algorithm require the computation of only

Eqs. (13.5) and (13.7) per iteration. These involve only addition/subtraction and

thresholding operations while no multiplication is involved, to further contribute to

the LAMSTAR’s computational speed.

The LAMSTAR network facilitates a multidimensional analysis of input vari-

ables to assign, for example, different weights (importance) to the items of data, find

correlation among input variables, or perform identification, recognition and clus-

tering of patterns. Being a neural network, the LAMSTAR can do all this without

re-programming for each diagnostic problem.

The decisions of the LAMSTAR neural network are based on many categories

of data, where often some categories are fuzzy while some are exact, and often cat-

egories are missing (incomplete data sets). As mentioned in Sec. 13.1 above, the

LAMSTAR network can be trained with incomplete data or category sets. There-

fore, due to its features, the LAMSTAR neural network is a very effective tool in

just such situations. As an input, the system accepts data defined by the user,

such as, system state, system parameters, or very specific data as it is shown in the

application examples presented below. Then, the system builds a model (based on

data from past experience and training) and searches the stored knowledge to find

the best approximation/description to the features/parameters given as input data.

The input data could be automatically sent through an interface to the LAMSTAR’s

input from sensors in the system to be diagnosed, say, an aircraft into which the

network is built in.

The LAMSTAR system can be utilized as:

— Computer-based medical diagnosis system [Kordylewski and Graupe, 2001,

Nigam and Graupe, 2004, Muralidharan and Rousche, 2005].

— Tool for financial evaluations.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

264 Principles of Artificial and Neural Networks

— Tool for industrial maintenance and fault diagnosis (on same lines as applications

to medical diagnosis).

— Tool for data mining [Carino et al., 2005].

— Tool for browsing and information retrieval .

— Tool for data analysis, classification, browsing, and prediction [Sivaramakrish-

nan and Graupe, 2004].

— Tool for image detection and recognition [Girado et al., 2004].

— Teaching aid.

— Tool for analyzing surveys and questionnaires on diverse items.

All these applications can employ many of the other neural networks that we

discussed. However, the LAMSTAR has certain advantages, such as insensitivity

to initialization, the avoidance of local minima, its forgetting capability (this can

often be implemented in other networks), its transparency (the link weights carry

clear information as to the link weights on relative importance of certain inputs,

on their correlation with other inputs, on innovation detection capability and on

redundancy of data — see Secs. 13.5 and 13.6 above). The latter allow downloading

data without prior determination of its significance and letting the network decide

for itself , via the link weights to the outputs. The LAMSTAR, in contrast to many

other networks, can work uninterrupted if certain sets of data (input-words) are

incomplete (missing subwords) without requiring any new training or algorithmic

changes. Similarly, input subwords can be added during the network’s operation

without reprogramming while taking advantage of its forgetting feature. Further-

more, the LAMSTAR is very fast, especially in comparison to back-propagation or

to statistical networks, without sacrificing performance and it always learns during

regular runs.

Appendix 13.A provides details of the LAMSTAR algorithm for the Character

Recognition problem that was also the subject of Appendices to Chapters 5, 6, 7, 8,

9, 11 and 12. Examples of applications to medical decision and diagnosis problems

are given in Appendix 13.B below.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Large Scale Memory Storage and Retrieval (LAMSTAR) Network 265

Fig. 13.A. 1: Example of a training pattern (‘6’).

1 1 1 1 1 1

1 0 0 0 0 0

1 1 1 1 1 1

1 0 0 0 0 1

1 0 0 0 0 1

1 1 1 1 1 1

Fig. 13.A.2: Unipolar Representation of ‘6’.

13.A. LAMSTAR Network Case Study∗: Character Recognition

13.A.1. Introduction

This case study focuses on recognizing characters ‘6’, ‘7’, ‘X’ and “rest of the

world” patterns namely, patterns not belonging to the set ‘6’, ‘7’, ‘X’). The charac-

ters in the training and testing set are represented as unipolar inputs ‘1’ and ‘0’ in

a 6 ∗ 6 grid. An example of a character is as follows:

13.A.2. Design of the network

The LAMSTAR network has the following components:

(a) INPUT WORD AND ITS SUBWORDS:

The input word (in this case, the character) is divided into a number of subwords.

Each subword represents an attribute of the input word. The subword division in

the character recognition problem was done by considering every row and every

column as a subword hence resulting in a total of 12 subwords for a given character.

(b) SOM MODULES FOR STORING INPUT SUBWORDS:

For every subword there is an associated Self Organizing Map (SOM) module with

neurons that are designed to function as Kohonen ‘Winner Take All’ neurons where

the winning neuron has an output of 1 while all other neurons in that SOM module

have a zero output.

∗Computed by Vasanth Arunachalam, ECE Dept., University of Illinois, Chicago, 2005.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

266 Principles of Artificial and Neural Networks

In this project, the SOM modules are built dynamically in the sense that instead

of setting the number of neurons at some fixed value arbitrarily, the network was

built to have neurons depending on the class to which a given input to a particular

subword might belong. For example if there are two subwords that have all their

pixels as ‘1’s, then these would fire the same neuron in their SOM layer and hence

all they need is 1 neuron in the place of 2 neurons. This way the network is designed

with lesser number of neurons and the time taken to fire a particular neuron at the

classification stage is reduced considerably.

(c) OUTPUT (DECISION) LAYER:

The present output layer is designed to have two layers, which have the following

neuron firing patterns:

Table 13.A.1: Firing order of the output neurons.

Pattern Output Neuron 1 Output Neuron 2

‘6’ Not fired Not fired

‘7’ Not fired Fired

‘X’ Fired Not fired

‘Rest of the World’ Fired Fired

The link-weights from the input SOM modules to the output decision layer are

adjusted during training on a reward/punishment principle. Furthermore, they

continue being trained during normal operational runs. Specifically, if the output

of the particular output neuron is what is desired, then the link weights to that

neuron is rewarded by increasing it by a non-zero increment, while punishing it by

a small non-zero number if the output is not what is desired.

Note: The same can be done (correlation weights) between the winning neurons of

the different SOM modules but has not been adopted here due to the complexities

involved in implementing the same for a generic character recognition problem.

The design of the network is illustrated in Fig. 13.A.3.

13.A.3. Fundamental principles

Fundamental principles used in dynamic SOM layer design

As explained earlier the number of neurons in every SOM module is not fixed.

The network is designed to grow dynamically. At the beginning there are no neurons

in any of the modules. So when the training character is sent to the network, the

first neuron in every subword is built. Its output is made 1 by adjusting the weights

based on the ‘Winner Take All’ principle. When the second training pattern is input

to the system, this is given as input to the first neuron and if the output is close to

1 (with a tolerance value of 0.05), then the same neuron is fired and another neuron

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Large Scale Memory Storage and Retrieval (LAMSTAR) Network 267

 3

Fig. 13.A.3: Design of the LAMSTAR neural network for character recognition. Number of SOM

modules in the network is 12. The neurons (Kohonen) are designed to build dynamically which

enables an adaptive design of the network. Number of neurons in the output layer is 2. There are 12

subwords for every character input to the network. Green denotes the winning neuron in every SOM

module for the respective shaded subword pixel. Reward/Punishment principle is used for the

output weights.

SUBWORD 1 SUBWORD 2 SUBWORD 12

INPUT WORD

WINNING NEURON

SOM MODULE 1 SOM MODULE 2 SOM MODULE 3

OUTPUT

LAYER

Fig. 13.A.3. Design of the LAMSTAR neural network for character recognition. Number of SOM
modules in the network is 12. The neurons (Kohonen) are designed to build dynamically which
enables an adaptive design of the network. Number of neurons in the output layer is 2. There are
12 subwords for every character input to the network. Green denotes the winning neuron in every
SOM module for the respective shaded subword pixel. Reward/Punishment principle is used for
the output weights.

is not built. The second neuron is built only when a distinct subword appears

at the input of all the previously built neuron resulting in their output not being

sufficiently close to 1 so as to declare any of them a winning neuron.

It has been observed that there has been a significant reduction in the number

of neurons required in every SOM modules.

Winner Take All principle

The SOM modules are designed to be Kohonen layer neurons, which act in

accordance to the ‘Winner Take All’ Principle. This layer is a competitive layer

wherein the Eucledian distance between the weights at every Kohonen layer and

the input pattern is measured and the neuron that has the least distance if declared

to be the winner. This Kohonen neuron best represents the input and hence its

output is made equal to 1 whereas all other neuron outputs are forced to go to 0.

This principle is called the ‘Winner Take All’ principle. During training the weights

corresponding to the winning neuron is adjusted such that it closely resembles the

input pattern while all other neurons move away from the input pattern.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

268 Principles of Artificial and Neural Networks

13.A.4. Training algorithm

The training of the LAMSTAR network if performed as follows:

(i) Subword Formation:

The input patterns are to be divided into subwords before training/testing

the LAMSTAR network. In order to perform this, the every row of the input

6*6 character is read to make 6 subwords followed by every column to make

another 6 subwords resulting in a total of 12 subwords.

(ii) Input Normalization:

Each subwords of every input pattern is normalized as follows:

xi′ = xi

/√

Σx2
j

where, x — subword of an input pattern. During the process, those subwords,

which are all zeros, are identified and their normalized values are manually set

to zero.

(iii) Rest of the world Patterns:

The network is also trained with the rest of the world patterns ‘C’, ‘I’ and ‘‖’.
This is done by taking the average of these patterns and including the average

as one of the training patterns.

(iv) Dynamic Neuron formation in the SOM modules:

The first neuron in all the SOM modules are constructed as Kohonen neurons

as follows:

• As the first pattern is input to the system, one neuron is built with 6 inputs

and random weights to start with initially and they are also normalized just

like the input subwords. Then the weights are adjusted such that the output

of this neuron is made equal to 1 (with a tolerance of 10−5 according to the

formula:

w(n + 1) = w(n) + α∗(x − w(n))

where,

α — learning constant = 0.8

w — weight at the input of the neuron

x — subword

z = w∗x

where, z — output of the neuron (in the case of the first neuron it is made

equal to 1).

• When the subwords of the subsequent patterns is input to the respective

modules, the output at any of the previously built neuron is checked to see

if it is close to 1 (with a tolerance of 0.05). If one of the neurons satisfies the

condition, then this is declared as the winning neuron, i.e., a neuron whose

weights closely resemble the input pattern. Else another neuron is built with

new sets of weights that are normalized and adjusted as above to resemble

the input subword.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Large Scale Memory Storage and Retrieval (LAMSTAR) Network 269

• During this process, if there is a subword with all zeros then this will not

contribute to a change in the output and hence the output is made to zero

and the process of finding a winning neuron is bypassed for such a case.

(v) Desired neuron firing pattern:

The output neuron firing pattern for each character in the training set has

been established as given in Table 1.

(vi) Link weights:

Link weights are defined as the weights that come from the winning neuron at

every module to the 2 output neurons. If in the desired firing, a neuron is to

be fired, then its corresponding link weights are rewarded by adding a small

positive value of 0.05 every iteration for 20 iterations. On the other hand, if a

neuron should not be fired then its link weights are reduced 20 times by 0.05.

This will result in the summed link weights at the output layer being a positive

value indicating a fired neuron if the neuron has to be fired for the pattern and

high negative value if it should not be fired.

(vii) The weights at the SOM neuron modules and the link weights are stored.

13.A.4.1. Training set

The LAMSTAR network is trained to detect the characters ‘6’, ‘7’, ‘X’ and ‘rest

of the world’ characters. The training set consists of 16 training patterns 5 each for

‘6’, ‘7’ and ‘X’ and one average of the ‘rest of the world’ characters.

Fig. 13.A.4. Training Pattern Set for recognizing characters ‘6’, ‘7’, ‘X’ and ‘mean of rest of world’

patterns ‘C’, ‘I’, ‘‖’.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

270 Principles of Artificial and Neural Networks

Fig. 13.A.5. ‘Rest of the world patterns ‘I’, ‘C’ and ‘‖’.

13.A.4.2. ‘Rest of the world’ patterns

The rest of the world patterns used to train the network are as follows:

13.A.5. Testing procedure

The LAMSTAR network was tested with 8 patterns as follows:

• The patterns are processed to get 12 subwords as before. Normalization is done

for the subwords as explained in the training.

• The stored weights are loaded

• The subwords are propagated through the network and the neuron with the max-

imum output at the Kohonen layer is found and their link weights are sent to the

output neurons.

• The output is a sum of all the link weights.

• All the patterns were successfully classified. There were subwords that were

completely zero so that the pattern would be partially incorrect. Even these were

correctly classified.

13.A.5.1. Test pattern set

The network was tested with 8 characters consisting of 2 pattern each of ‘6’, ‘7’,

‘X’ and rest of the world. All the patterns are noisy, either distorted or a whole

row/column removed to test the efficiency of the training. The following is the test

pattern set.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Large Scale Memory Storage and Retrieval (LAMSTAR) Network 271

Fig. 13.A.6. Test pattern set consisting of 2 patterns each for ‘2’, ‘7’, ‘X’ and ‘rest of the world’.

13.A.6. Results and their analysis

13.A.6.1. Training results

The results obtained after training the network are presented in Table 13.A.2:

• Number of training patterns = 16

• Training efficiency = 100%

• Number of SOM modules = 12

• The number of neurons in the 12 SOM modules after dynamic neuron formation

in are:

Table 13.A.2. Number of neurons in the SOM modules.

SOM Module Number Number of neurons

1 3

2 2

3 2

4 4

5 2

6 4

7 3

8 3

9 3

10 3

11 3

12 7

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

272 Principles of Artificial and Neural Networks

13.A.6.2. Test results

The result of testing the network are as in Table 13.A.3:

• Number of testing patterns = 8

• Neurons fired at the modules for the 8 test patterns:

Table 13.A.3: Neurons fired during the testing for respective patterns.

Module Number

Pattern 1 2 3 4 5 6 7 8 9 10 11 12

6 0 0 0 1 1 1 1 1 1 1 1 4

6 0 0 1 1 1 1 1 2 3 2 1 1

7 1 1 2 4 2 2 1 2 3 2 1 5

7 1 2 2 4 2 2 1 2 3 2 1 5

X 2 2 2 4 2 3 2 2 3 2 1 6

X 2 2 2 4 2 3 2 2 3 2 1 6

| 2 2 2 4 2 3 2 2 3 3 1 6

‖ 2 2 2 4 2 3 2 2 3 3 1 6

The firing pattern of the output neurons for the test set is given in Table 13.A.4:

Table 13.A.4: Firing pattern for the test characters.

Test Pattern Neuron 1 Neuron 2

6 (with bit error) −25.49 (Not fired) −25.49 (Not fired)

6 (with bit error) −20.94 (Not fired) −20.94 (Not fired)

7 (with bit error) −29.99 (Not fired) 15.99 (Fired)

7 (with bit error) −24.89 (Not fired) 18.36 (Fired)

X (with bit error) 9.99 (Fired) −7.99 (Not fired)

X (with bit error) 9.99 (Fired) −7.99 (Not fired)

| (with bit error) 0.98 (Fired) 0.98 (Fired)

‖ (with bit error) 1.92 (Fired) 1.92 (Fired)

• Efficiency: 100%.

13.A.7. Summary and concluding observations

Summary:

• Number of training patterns = 16 (5 each of ‘6’, ‘7’, ‘X’ and 1 mean image of

‘rest of the world’

• Number of test patterns = 8 (2 each for ‘6’, ‘7’, ‘X’ and ‘rest of the world’ with

bit errors)

• Number of SOM modules = 12

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Large Scale Memory Storage and Retrieval (LAMSTAR) Network 273

• Number of neurons in the output layer = 2

• Number of neurons in the SOM module changes dynamically. Refer table 2 for

the number of neurons in each module.

• Efficiency = 100%

Observations:

• The network was much faster than the Back Propagation network for the same

character recognition problem.

• By dynamically building the neurons in the SOM modules, the number of compu-

tations is largely reduced as the search time to find the winning neuron is reduced

to a small number of neurons in many cases.

• Even in the case when neurons are lost (simulated as a case where the output of

the neuron is zero i.e., all its inputs are zeros), the recognition efficiency is 100%.

This is attributed to the link weights, which takes cares of the above situations.

• The NN learns as it goes even if untrained

• The test patterns where all noisy (even at several bits, yet efficiency was 100%.

13.A.8. LAMSTAR CODE (MATLAB)

Main.m

clear all

close all

X = train_pattern;

%pause(1)

%close all

n = 12 % Number of subwords

flag = zeros(1,n);

% To make 12 subwords from 1 input

for i = 1:min(size(X)),

X_r{i} = reshape(X(:,i),6,6);

for j = 1:n,

if (j<=6),

X_in{i}(j,:) = X_r{i}(:,j)’;

else

X_in{i}(j,:) = X_r{i}(j-6,:);

end

end

% To check if a subword is all ’0’s and makes it normalized value equal to zero

% and to normalize all other input subwords

p(1,:) = zeros(1,6);

for k = 1:n,

for t = 1:6,

if (X_in{i}(k,t)~= p(1,t)),

X_norm{i}(k,:) = X_in{i}(k,:)/sqrt(sum(X_in{i}(k,:).^2));

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

274 Principles of Artificial and Neural Networks

else

X_norm{i}(k,:) = zeros(1,6);

end

end

end

end%%%End of for

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Dynamic Building of neurons

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Building of the first neuron is done as Kohonen Layer neuron

%(this is for all the subwords in the first input pattern for all SOM modules

i = 1;

ct = 1;

while (i<=n),

i

cl = 0;

for t = 1:6,

if (X_norm{ct}(i,t)==0),

cl = cl+1;

end

end

if (cl == 6),

Z{ct}(i) = 0;

elseif (flag(i) == 0),

W{i}(:,ct) = rand(6,1);

flag(i) = ct;

W_norm{i}(:,ct) = W{i}(:,ct)/sqrt(sum(W{i}(:,ct).^2));

Z{ct}(i)= X_norm{ct}(i,:)*W_norm{i};

alpha =0.8;

tol = 1e-5;

while(Z{ct}(i) <= (1-tol)),

W_norm{i}(:,ct) = W_norm{i}(:,ct) + alpha*(X_norm{ct}(i,:)’ -

W_norm{i}(:,ct));

Z{ct}(i) = X_norm{ct}(i,:)*W_norm{i}(:,ct);

end%%%%%End of while

end%%%%End of if

r(ct,i) = 1;

i = i+1;

end%%%%End of while

r(ct,:) = 1;

ct = ct+1;

while (ct <= min(size(X))),

for i = 1:n,

cl = 0;

for t = 1:6,

if (X_norm{ct}(i,t)==0),

cl = cl+1;

end

end

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Large Scale Memory Storage and Retrieval (LAMSTAR) Network 275

if (cl == 6),

Z{ct}(i) = 0;

else

i

r(ct,i) = flag(i);

r_new=0;

for k = 1:max(r(ct,i)),

Z{ct}(i) = X_norm{ct}(i,:)*W_norm{i}(:,k);

if Z{ct}(i)>=0.95,

r_new = k;

flag(i) = r_new;

r(ct,i) = flag(i);

break;

end%%%End of if

end%%%%%%%End of for

if (r_new==0),

flag(i) = flag(i)+1;

r(ct,i) = flag(i);

W{i}(:,r(ct,i)) = rand(6,1);

%flag(i) = r

W_norm{i}(:,r(ct,i)) = W{i}(:,r(ct,i))/sqrt(sum(W{i}(:,r(ct,i)).^2));

Z{ct}(i) = X_norm{ct}(i,:)*W_norm{i}(:,r(ct,i));

alpha =0.8;

tol = 1e-5;

while(Z{ct}(i) <= (1-tol)),

W_norm{i}(:,r(ct,i)) = W_norm{i}(:,r(ct,i)) + alpha*(X_norm{ct}(i,:)’ -

W_norm{i}(:,r(ct,i)));

Z{ct}(i) = X_norm{ct}(i,:)*W_norm{i}(:,r(ct,i));

end%%%End of while

end%%%End of if

%r_new

%disp(’Flag’)

%flag(i)

end%%%%End of if

end

ct = ct+1;

end

save W_norm W_norm

for i = 1:5,

d(i,:) = [0 0];

d(i+5,:) = [0 1];

d(i+10,:) = [1 0];

end

d(16,:) = [1 1];

%%%%%%%%%%%%%%%

% Link Weights

%%%%%%%%%%%%%%%

ct = 1;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

276 Principles of Artificial and Neural Networks

m_r = max(r);

for i = 1:n,

L_w{i} = zeros(m_r(i),2);

end

ct = 1;

%%% Link weights and output calculations

Z_out = zeros(16,2);

while (ct <= 16),

ct

%for mn = 1:2

L = zeros(12,2);

% for count = 1:20,

for i = 1:n,

if (r(ct,i)~=0),

for j = 1:2,

if (d(ct,j)==0),

L_w{i}(r(ct,i),j) = L_w{i}(r(ct,i),j)-0.05*20;

else

L_w{i}(r(ct,i),j) = L_w{i}(r(ct,i),j)+0.05*20;

end %%End if loop

end %%% End for loop

L(i,:) = L_w{i}(r(ct,i),:);

end %%%End for loop

end

% end %%% End for loop

Z_out(ct,:) = sum(L);

ct = ct+1;

end

save L_w L_w

Test.m

clear all

X = test_pattern;

load W_norm

load L_w

% To make 12 subwords

for i = 1:min(size(X)),

i

X_r{i} = reshape(X(:,i),6,6);

for j = 1:12,

if (j<=6),

X_in{i}(j,:) = X_r{i}(:,j)’;

else

X_in{i}(j,:) = X_r{i}(j-6,:);

end

end

p(1,:) = zeros(1,6);

for k = 1:12,

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Large Scale Memory Storage and Retrieval (LAMSTAR) Network 277

for t = 1:6,

if (X_in{i}(k,t)~= p(1,t)),

X_norm{i}(k,:) = X_in{i}(k,:)/sqrt(sum(X_in{i}(k,:).^2));

else

X_norm{i}(k,:) = zeros(1,6);

end

end

end

for k = 1:12,

Z = X_norm{i}(k,:)*W_norm{k};

if (max(Z) == 0),

Z_out(k,:) = [0 0];

else

index(k) = find(Z == max(Z));

L(k,:) = L_w{k}(index(k),:);

Z_out(k,:) = L(k,:)*Z(index(k));

end

end

final_Z = sum(Z_out)

end

training pattern.m

function train = train_pattern

x1 = [1 1 1 1 1 1; 1 0 0 0 0 0; 1 1 1 1 1 1; 1 0 0 0 0 1; 1 0 0 0 0 1;

1 1 1 1 1 1];

x2 = [1 1 1 1 1 1; 1 0 0 0 0 1; 1 0 0 0 0 0; 1 1 1 1 1 1; 1 0 0 0 0 1;

1 1 1 1 1 1];

x3 = [1 1 1 1 1 1; 1 0 0 0 0 0; 1 1 1 1 1 0; 1 0 0 0 0 1; 1 0 0 0 0 1;

1 1 1 1 1 1];

x4 = [1 1 1 1 1 1; 1 0 0 0 0 0; 1 0 1 1 1 0; 1 1 0 0 0 1; 1 0 0 0 0 1;

1 1 1 1 1 1];

x5 = [1 1 1 1 1 0; 1 0 0 0 0 1; 1 0 0 0 0 0; 1 1 1 1 1 1; 1 0 0 0 0 1;

1 1 1 1 1 1];

x6 = zeros(6,6);

x6(1,:) = 1;

x6(:,6) = 1;

x7 = zeros(6,6);

x7(1,3:6) = 1;

x7(:,6) = 1;

x8 = zeros(6,6);

x8(1,2:6) = 1;

x8(:,6) = 1;

x9 = zeros(6,6);

x9(1,:) = 1;

x9(1:5,6) = 1;

x10 = zeros(6,6);

x10(1,2:5) = 1;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

278 Principles of Artificial and Neural Networks

x10(2:5,6) = 1;

x11 = zeros(6,6);

for i = 1:6,

x11(i,i) = 1;

end

x11(1,6) = 1;

x11(2,5) = 1;

x11(3,4) = 1;

x11(4,3) = 1;

x11(5,2) = 1;

x11(6,1) = 1;

x12 = x11;

x12(1,1) = 0;

x12(6,6) = 0;

x12(1,6) = 0;

x12(6,1) = 0;

x13 = x11;

x13(1,1) = 0;

x13(6,6) = 0;

x14 = x11;

x14(1,6) = 0;

x14(6,1) = 1;

x15 = x11;

x15(3:4,3:4) = 0;

x16 = zeros(6,6);

x16(:,3:4) = 1;

x17 = zeros(6,6);

x17(1,:) = 1;

x17(6,:) = 1;

x17(:,1) = 1;

x18 = zeros(6,6);

x18(:,2) = 1;

x18(:,4) = 1;

x19 = (x16+x17+x18)/3;

xr1 = reshape(x1’,1,36);

xr2 = reshape(x2’,1,36);

xr3 = reshape(x3’,1,36);

xr4 = reshape(x4’,1,36);

xr5 = reshape(x5’,1,36);

xr6 = reshape(x6’,1,36);

xr7 = reshape(x7’,1,36);

xr8 = reshape(x8’,1,36);

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Large Scale Memory Storage and Retrieval (LAMSTAR) Network 279

xr9 = reshape(x9’,1,36);

xr10 = reshape(x10’,1,36);

xr11 = reshape(x11’,1,36);

xr12 = reshape(x12’,1,36);

xr13 = reshape(x13’,1,36);

xr14 = reshape(x14’,1,36);

xr15 = reshape(x15’,1,36);

xr19 = reshape(x19’,1,36);

xr16 = reshape(x16’,1,36);

xr17 = reshape(x17’,1,36);

xr18 = reshape(x18’,1,36);

train = [xr1’ xr2’ xr3’ xr4’ xr5’ xr6’ xr7’ xr8’ xr9’ xr10’ xr11’ xr12’

xr13’ xr14’ xr15’ xr19’];

rest = [xr16’ xr17’ xr18’];

test pattern.m

function t_pat = test_pattern

x1 = [0 0 0 0 0 0; 1 0 0 0 0 0; 1 1 1 1 1 0; 1 0 0 0 0 1; 1 0 0 0 0 1;

1 1 1 1 1 1];

x2 = zeros(6,6);

x2(:,1) = 1;

x2(3:6,6) = 1;

x2(6,:) = 1;

x2(3,5) = 1;

x2(4,4) = 1;

x2(5,3) = 1;

3 = zeros(6,6);

x3(1,:) = 1;

x3(:,6) = 1;

x3(1:2,1) = 1;

x4 = zeros(6,6);

x4(1,3:6) = 1;

x4(1:5,6) = 1;

x5 = zeros(6,6);

for i = 1:6,

x5(i,i) = 1;

end

x5(1,6) = 1;

x5(6,1) = 1;

x6 = x5;

x6(3,4) = 1;

x6(4,3) = 1;

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

280 Principles of Artificial and Neural Networks

x7 = zeros(6,6);

x7(:,4) = 1;

x8 = zeros(6,6);

x8(:,3:4) = 1;

xr1 = reshape(x1’,1,36);

xr2 = reshape(x2’,1,36);

xr3 = reshape(x3’,1,36);

xr4 = reshape(x4’,1,36);

xr5 = reshape(x5’,1,36);

xr6 = reshape(x6’,1,36);

xr7 = reshape(x7’,1,36);

xr8 = reshape(x8’,1,36);

t_pat = [xr1’ xr2’ xr3’ xr4’ xr5’ xr6’ xr7’ xr8’];

13.B. Application to Medical Diagnosis Problems

(a) Application to ESWL Medical Diagnosis Problem

In this application, the LAMSTAR network serves to aid in a typical urological

diagnosis problem that is, in fact, a prediction problem [Graupe 1997, Kordylewski

et al., 1999]. The network evaluates a patient’s condition and provides long term

forecasting after removal of renal stones via Extracorporeal Shock Wave Lithotripsy

(denoted as ESWL). The ESWL procedure breaks very large renal stones into small

pieces that are then naturally removed from the kidney with the urine. Unfortu-

nately, the large kidney stones appear again in 10% to 50% of patients (1–4 years

post surgery). It is difficult to predict with reasonable accuracy (more than 50%)

if the surgery was a success or a failure, due to the large number of analyzed vari-

ables. In this particular example, the input data (denoted as a “word” for each

analyzed case, namely, for each patient) are divided into 16 subwords (categories).

The length in bytes for each subword in this example varies from 1 to 6 bytes. The

subwords describe patient’s physical and physiological characteristics, such as pa-

tient demographics, stone’s chemical composition, stone location, laboratory assays,

follow-up, re-treatments, medical therapy, etc.

Table 13.B.1 below compares results for the LAMSTAR network and for a Back-

Propagation (BP) neural network [Niederberger et al., 1996], as applied to exactly

the same training and test data sets [Kordylewski et al., 1999]. While both net-

works model the problems with high accuracy, the results show that the LAMSTAR

network is over 1000 times faster in this case. The difference in training time is due

to the incorporation of an unsupervised learning scheme in the LAMSTAR network,

while the BP network training is based on error minimization in a 37-dimensional

space (when counting elements of subword vectors) which requires over 1000 itera-

tions.

Both networks were used to perform the Wilks’ Lambda test [Morrison, 1996,

Wilks, 1938] which serves to determine which input variables are meaningful with

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Large Scale Memory Storage and Retrieval (LAMSTAR) Network 281

Table 13.B.1. Performance comparison of the LAMSTAR network and the BP network for the
renal cancer and the ESWL diagnosis.

Renal Cancer Diagnosis ESWL Diagnosis

LAMSTAR BP Network LAMSTAR BP
Network Network Network Network

Training Time 0.08 sec 65 sec 0.15 sec 177 sec

Test Accuracy 83.15% 89.23% 85.6% 78.79%

Negative Specificity 0.818 0.909 0.53 0.68

Positive Predictive Value 0.95 0.85 1 0.65

Negative Predictive Value 0.714 0.81 0.82 0.86

Positive Specificity 0.95 0.85 1 0.83

Wilks’ Test Computation < 15 mins weeks < 15 mins Weeks
Time

Comments:

Positive/Negative Predictive Values — ratio of the positive/negative cases that are correctly
diagnosed to the positive/negative cases diagnosed as negative/positive.
Positive/Negative Specificity — he ratio of the positive/negative
cases that are correctly diagnosed to the negative/positive cases that are incorrectly diagnosed as
positive/negative.

regard to system performance. In clinical settings, the test is used to determine

the importance of specific parameters in order to limit the number of patient’s

examination procedures.

(b) Application to Renal Cancer Diagnosis Problem

This application illustrates how the LAMSTAR serves to predict if patients will

develop a metastatic disease after surgery for removal of renal-cell-tumors. The in-

put variables were grouped into sub-words describing patient’s demographics, bone

metastases, histologic subtype, tumor characteristics, and tumor stage [Kordylewski

et al., 1999]. In this case study we used 232 data sets (patient record), 100 sets

for training and 132 for testing. The performance comparison of the LAMSTAR

network versus the BP network are also summarized in Table 13.B.1 above. As

we observe, the LAMSTAR network is not only much faster to train (over 1000

times), but clearly gives better prediction accuracy (85% as compared to 78% for

BP networks) with less sensitivity.

(c) Application to Diagnosis of Drug Abuse for Emergency Cases

In this application, the LAMSTAR network is used as a decision support system

to identify the type of drug used by an unconscious patient who is brought to

an emergency-room (data obtained from Maha Noujeime, University of Illinois at

Chicago [Beirut et al., 1998, Noujeime, 1997]). A correct and very rapid iden-

tification of the drug type, will provide the emergency room physician with the

immediate treatment required under critical conditions, whereas wrong or delayed

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

282 Principles of Artificial and Neural Networks

identification may prove fatal and when no time can be lost, while the patient

is unconscious and cannot help in identifying the drug. The LAMSTAR system

can diagnose to distinguish between five groups of drugs: alcohol, cannabis (mari-

juana), opiates (heroin, morphine, etc.), hallucinogens (LSD), and CNS stimulants

(cocaine) [Beirut et al., 1998]. In the drug abuse identification problem diagno-

sis can not be based on one or two symptoms since in most cases the symptoms

overlap. The drug abuse identification is very complex problem since most of the

drugs can cause opposite symptoms depending on additional factors like: regu-

lar/periodic use, high/low dose, time of intake [Beirut et al., 1998]. The diagnosis

is based on a complex relation between 21 input variables arranged in 4 categories

(subword vectors) representing drug abuse symptoms. Most of these variables are

easily detectable in an emergency-room setting by simple evaluation (Table 2). The

large number of variables makes it often difficult for a doctor to properly interre-

late them under emergency room conditions for a correct diagnosis. An incorrect

diagnosis, and a subsequent incorrect treatments may be lethal to a patient. For ex-

ample, while cannabis and cocaine require different treatment, when analyzing only

mental state of the patient, both cannabis and large doses of cocaine can result in

the same mental state classified as mild panic and paranoia. Furthermore, often

not all variables can be evaluated for a given patient. In emergency-room setting it

is impossible to determine all 21 symptoms, and there is no time for urine test or

other drug tests.

The LAMSTAR network was trained with 300 sets of simulated input data of

the kind considered in actual emergency room situations [Kordylewski et al., 1999].

The testing of the network was performed with 300 data sets (patient cases), some

of which have incomplete data (in emergency-room setting there is no time for

urine or other drug tests). Because of the specific requirements of the drug abuse

identification problem (abuse of cannabis should never be mistakenly identified as

any other drug), the training of the system consisted of two phases. In the first

phase, 200 training sets were used for unsupervised training, followed by the second

phase where 100 training sets were used in on-line supervised training .

The LAMSTAR network successfully recognized 100% of cannabis cases, 97% of

CNS stimulants, and hallucinogens (in all incorrect identification cases both drugs

were mistaken with alcohol), 98% of alcohol abuse (2% incorrectly recognized as

opiates), and 96% of opiates (4% incorrectly recognized as alcohol).

(d) Application to Assessing of Fetal Well-Being

This application [Scarpazza et al., 2002] is to determine neurological and cardiologic

risk to a fetus prior to delivery. It concerns situations where, in the hours before

delivery, the expectant mother is connected to standard monitors of fetal heart rate

and of maternal uterine activity. Also available are maternal and other related

clinical records. However, unexpected events that may endanger the fetus, while

recorded, can reveal themselves over several seconds in one monitor and are not

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Large Scale Memory Storage and Retrieval (LAMSTAR) Network 283

Table 13.B.2. Symptoms divided into four categories for drug abuse diagnosis problem.

CATEGORY 1 CATEGORY 2 CATEGORY 3 CATEGORY 4

Respiration Pulse Euphoria Physical Dependence

Temperature Appetite Conscious Level Psychological Dependence

Cardiac Arrhythmia Vision Activity Status Duration of Action

Reflexes Hearing Violent Behavior Method of Administration

Saliva Secretion Constipation Convulsions Urine Drug Screen

conclusive unless considered in the framework of data in anther monitor and of

other clinical data. Furthermore, there is no expert physician available to constantly

read any such data, even from a single monitor, during the several hours prior to

delivery. This causes undue emergencies and possible neurological damage or death

in approximately 2% of deliveries. In [Scarpazza et al., 2002] preliminary results

are given where all data above are fed to a LAMSTAR neural network, in terms

of 126 features, including 20 maternal history features, 9 maternal condition data

at time of test (body temperature, number of contractions, dilation measurements,

etc.) and 48 items from preprocessed but automatically accessed instruments data

(including fetal heart rate, fetal movements, uterine activity and cross-correlations

between the above).

This study on real data involved 37 cases used for training the LAMSTAR NN

and 36 for actual testing. The 36 test cases involved 18 positives and 18 negatives.

Only one of the positives (namely, indicating fetal distress) was missed by the

NN, to yield a 94.44% sensitivity (miss-rate of 5.56%). There were 7 false alarms

as is explained by the small set of training cases. However, in a matter of fetal

endangerment, one obviously must bias the NN to minimize misses at the cost of

higher rate of false alarms. Computation time is such that decisions can be almost

real time if the NN and the preprocessors involved are directly connected to the

instrumentation considered.

Several other applications to this problem were reported in the literature, using

other neural networks [Scarpazza et al., 2002]. Of these, results were obtained in

[Rosen et al., 1997] where the miss percentage (for the best of several NN’s discussed

in that study) was reported as 26.4% despite using 3 times as many cases for NN-

training. Studies based on Back-Propagation yielded accuracy of 86.3% for 29 cases

over 10.000 iterations and a miss rate of 20% [Maeda et al., 1998], and 11.1%

miss-rate using 631 training cases on a test set of 319 cases with 15,000 iterations

[Kol et al. 1995].

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

This page intentionally left blankThis page intentionally left blank

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Problems

Chapter 1:

Problem 1.1:

Explain the major difference between a conventional (serial) computer and a

neural network.

Problem 2.2:

Explain the points of difference between a mathematical simulation of a biological

neural system (central nervous system) and an artificial neural network.

Chapter 2:

Problem 2.1:

Reconstruct a fundamental input/nonlinear-operator/output structure of a biolog-

ical neuronal network, stating the role of each element of the biological neuron in

that structure.

Chapter 3:

Problem 3.1:

Explain the difference between the LMS algorithm of Sec. 3.4.1 and the gradient

algorithm of Sec. 3.4.2. What are their relative merits?

Problem 3.2:

Intuitively, explain the role of µ in the gradient algorithm, noting its form as in

Eq. (3.25).

Chapter 4:

Problem 4.1:

Compute the weights wk of a single perceptron to minimize the cost J where J =

E[(dk −zk)2]; E denoting expectation, dk being the desired output and zn denoting

285

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

286 Principles of Artificial and Neural Networks

the net (summation) output, and where zk = wT
k xn; xk being the input vector.

Problem 4.2:

Explain why a single-layer perceptron cannot solve the XOR problem. Use an X1

vs. X2 plot to show that a straight line cannot separate the XNOR states.

Problem 4.3:

Explain why a 2-layer perceptron can solve the XOR problem.

Chapter 5:

Problem 5.1:

Design a 2-layer Madaline neural network to recognize digits from a set of 3 cursive

digits in a 5-by-5 grid.

Chapter 6:

Problem 6.1:

Design a back propagation (BP) network to solve the XOR problem.

Problem 6.2:

Design a BP network to solve the XNOR problem.

Problem 6.3:

Design a BP network to recognize handwritten cursive digits from a set of 3 digits

written in a 10-by-10 grid.

Problem 6.4:

Design a BP network to recognize cursive digits as in Prob. 6.3, but with additive

single-error-bit noise.

Problem 6.5:

Design a BP network to perform a continuous wavelet transform W (α, τ) where:

W (α, τ) =
1√
α

∫

f(t)g

(

t − τ

α

)

dt

f(t) being a time-domain signal, α denoting scaling, and τ denoting translation.

Chapter 7:

Problem 7.1:

Design a Hopfield network to solve a 6-city and an 8-city Travelling-Salesman prob-

lem. Give solutions for 30 iterations. Determine distances as for 6 or 8 cities

arbitrarily chosen from a US road-map, to serve as your distance matrix.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Problems 287

Problem 7.2:

Design a Hopfield network to recognize handwritten cursive characters from a set

of 5 characters in a 6-by-6 grid.

Problem 7.3:

Repeat Prod. 7.2 for added single-error-bit noise.

Problem 7.4:

Repeat Problem 7.2 for added two-bit noise.

Problem 7.5:

Explain why wii must be 0 for stability of the Hopfield Network.

Chapter 8:

Problem 8.1:

Design a Counter-Propagation (CP) network to recognize cursive handwritten digits

from a set of 6 digits written in an 8-by-8 grid.

Problem 8.2:

Repeat Prob. 8.1 for added single-error-bit noise.

Problem 8.3:

Explain how the CP network can solve the XOR problem.

Chapter 9:

Problem 9.1:

Design an ART-I network to recognize cursive handwritten characters from a set of

6 characters written in an 8-by-8 grid.

Problem 9.2:

Repeat Prob. 9.1 for added single-error-bit noise.

Chapter 10:

Problem 10.1:

Explain how competition is accomplished in Cognitron networks and what its pur-

pose is.

Problem 10.2:

Explain the difference between the S and the C layers in a neocognitron network

and comment on their respective roles.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

288 Principles of Artificial and Neural Networks

Chapter 11:

Problem 11.1:

Design a sochastic BP network to recognize cursive characters from a set of 6 char-

acters written in an 8-by-8 grid.

Problem 11.2:

Repeat Prob. 11.1 for characters with additive single-error-bit noise.

Problem 11.3:

Design a stochastic BP network to identify the autoregressive (AR) parameters of

an AR model of a discrete-time signal xk given by:

xk = a1xk−1 + a2xk−2 + wk; k = 1, 2, 3, . . .

where a1; a2 are the AR parameters to be identified.

Generate the signal by using a model (unknown to the neural network), as follows:

xk = 0.5xk−1 − 0.2xk−2 + wk

where wk is Gaussian white noise.

Chapter 12:

Problem 12.1:

Design a recurrent BP network to solve the AR-identification problem as in

Prob. 11.3.

Problem 12.2:

Repeat Prob. 12.1 when employing simulated annealing in the recurrent BP net-

work.

Chapter 13:

Problem 13.1:

In applying the LAMSTAR network to a diagnostic situation as in Sec. 13.A, when

a piece of diagnostic information (a subword) is missing, what will the display for

that subword show?

Problem 13.2:

In applying the LAMSTAR network to a diagnostic situation as in Sec. 13.A, when a

certain diagnostic information (a subword) is missing, can the LAMSTAR network

still yield a diagnostic decision-output? If so, then how?

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Problems 289

Problem 13.3:

(a) Given examples of several (4 to 6) input words and of their subwords and

briefly explain the LAMSTAR process of troubleshooting for a simple fault-diagnosis

problem involved in detecting why your car does not start in the morning. You

should set up simulated scenarios based on your personal experiences.

(b) What should a typical output word be? Explain how the CP network can solve

the XNOR problem.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

This page intentionally left blankThis page intentionally left blank

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

References

Allman, J., Miezen, F., and McGuiness, E. [1985] “Stimulus specific responses from beyond
the classical receptive field”, Annual Review of Neuroscience 8, 147–169.

Barlow, H. [1972] “Single units and sensation: A neuron doctrine for perceptual
psychology”, Perception 1, 371–392.

Barlow, H. [1994] “What is the computational goal of the neocortex?”, Large-Scale
Neuronal Theories of the Brain, MIT Press, Chap. 1.

Bear, M. F., Cooper, L. N. and Ebner, F. E. [1989] “A physiological basis for a theory of
synapse modification”, Science, 237, pp. 42–47.

Beauchamp, K. G. [1984] Applications of Walsh and Related Functions, Academic Press,
London.

Beauchamp, K. G. [1987] “Sequency and Series, in Encyclopedia of Science and Technology,
ed. Meyers, R. A., Academic Press, Orlando, FL, pp. 534–544.

Bellman, R. [1961], Dynamic Programming, Princeton Univ. Press, Princeton, N.J.

Bierut, L. J. et al. [1998], “Familiar transmission of substance dependence: alcohol, mari-
juana, cocaine, and habitual smoking”, Arch. Gen. Psychiatry, 55(11), pp. 982–988.

Carino, C., Lambert, B., West, P. M., Yu, C. [2005], Mining officially unrecognized side
effects of drugs by combining web search and machine learning — Proceedings of the
14th ACM International Conference on Information and Knowledge Management.

Carlson, A. B. [1986] Communications Systems, McGraw Hill, New York.

Carpenter, G. A. and Grossberg, S. [1987a] “A massively parallel architecture for a
self-organizing neural pattern recognition machine”, Computer Vision, Graphics, and
Image Processing, 37, 54–115.

Carpenter, G. A. and Grossberg, S. [1987b] “ART-2: Self-organizing of stable category
recognition codes for analog input patterns”, Applied Optics 26, 4919–4930.

Cohen, M. and Grossberg, S. [1983] “Absolute stability of global pattern formation and
parallel memory storage by competitive neural networks”, IEEE Trans. Sys., Man
and Cybernet. SMC-13, 815–826.

Cooper, L. N. [1973] “A possible organization of animal memory and learning”, Proc.

291

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

292 Principles of Artificial and Neural Networks

Nobel Symp. on Collective Properties of Physical Systems, ed. Lundquist, B. and
Lundquist, S., Academic Press, New York, pp. 252–264.

Crane, E. B. [1965] Artificial Intelligence Techniques, Spartan Press, Washington, DC.

Ewing, A. C. [1938] A Short Commentary of Kant’s Critique of Pure Reason, Univ. of
Chicago Press.

Fausett, L. [1993] Fundamentals of Neural Networks, Architecture, Algorithms and
Applications, Prentice Hall, Englewood Cliffs, N.J.

Freeman, J. A. and Sakpura, D. M. [1991] Neural Nentworks, Algorithms, Applications and
Programming Techniques, Addison Wesley, Reading, MA.

Fukushima, K. [1975] “Cognitron, a self-organizing multilayered neural network”, Biolog-
ical Cybernetics, 20, pp. 121–175.

Fukushima, K., Miake, S. and Ito, T. [1983] “Neocognitron: a neural network model
for a mechanism of visual pattern recognition”, IEEE Trans. on Systems, Man and
Cybernetics, SMC-13, 826–834.

Ganong, W. F. [1973] Review of Medical Physiology, Lange Medical Publications,
Los Altos, CA.

Gee, A. H. and Prager, R. W. [1995], Limitations of neural networks for solving traveling
salesman problems, IEEE Trans. Neural Networks, vol. 6, pp. 280–282.

Geman, S. and Geman, D. [1984] “Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images”, IEEE Trans. on Pattern Anal. and Machine
Intelligence PAM1-6, 721–741.

Gilstrap, L. O., Lee, R. J. and Pedelty, M. J. [1962] “Learning automata and artificial
intelligence”, in Human Factors in Technology, ed. Bennett, E. W. Degan, J. and
Spiegel, J., McGraw-Hill, New York, NY, pp. 463–481.

Girado, J. I., Sandin, D. J., DeFanti T. A., Wolf, L. K. [2003], Real-time Camera-based
Face Detection using a Modified LAMSTAR Neural Network System — Proceedings
of IS&T/SPIE’s 15th Annual Symposium Electron. Imaging.

Graupe, D. [1997] Principles of Artificial Neural Networks, World Scientific Publishing
Co., Singapore and River Edge, N.J., (especially, chapter 13 thereof).

Graupe, D. [1989] Time Series Analysis, Identification and Adaptive Filtering, second
edition, Krieger Publishing Co., Malabar, FL.

Graupe, D. and Kordylewski, H. [1995] “Artificial neural network control of FES in
paraplegics for patient responsive ambulation”, IEEE Trans. on Biomed. Eng., 42,
pp. 699–707.

Graupe, D. and Kordylewski, H. [1996a] “Network based on SOM modules combined
with statistical decision tools”, Proc. 29th Midwest Symp. on Circuits and Systems,
Ames, IO.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

References 293

Graupe, D. and Kordylewski, H. [1996b] “A large memory storage and retrieval neural
network for browsing and medical diagnosis applications”, in “Intelligent Engineering
Systems Through Artificial Neural Networks”, Vol. 6, Editors: Dagli, C. H., Akay, M.,
Chen, C. L. P., Fernandez, B. and Ghosh, J., Proc. Sixth ANNIE Conf., St. Louis,
MO, ASME Press, NY, pp. 711–716.

Graupe, D. and Kordylewski, H. [1998] A Large Memory Storage and Retrieval Neural Net-
work for Adaptive Retrieval and Diagnosis, Internat. J. Software Eng. and Knowledge
Eng., Vol. 8, No. 1, pp. 115–138.

Graupe, D. and Kordilewski, H., [2001], A Novel Large-Memory Neural Network as an
Aid in Medical Diagnosis, IEEE Trans. on Information Technology in Biomedicine,
Vol. 5, No. 3, pp. 202–209, Sept. 2001.

Graupe, D., Lynn, J. W. [1970] “Some aspects regarding mechanistic modelling of
recognition and memory”, Cybernetica, 3, 119–141.

Grossberg, S. [1969] “Some networks that can learn, remember and reproduce any number
of complicated space-time patterns”, J. Math. and Mechanics, 19, 53–91.

Grossberg, S. [1974] “Classical and instrumental learning by neural networks”, Progress
in Theoret. Biol., 3, 51–141, Academic Press, New York.

Grossberg, S. [1982] “Learning by neural networks”, in Studies in Mind and Brain,
ed. Grossberg, S., D. Reidel Publishing Co., Boston, MA., pp. 65–156.

Grossberg, S. [1987] “Competitive learning: From interactive activation to adaptive
resonance”, Cognitive Science 11, 23–63.

Guyton, A. C. [1971] Textbook of Medical Physiology, 14th edition, W. B. Saunders Publ.
Co., Philadelphia.

Hammer, A., Lynn, J. W., and Graupe, D. [1972] “Investigation of a learning control system
with interpolation”, IEEE Trans. on System Man, and Cybernetics 2, 388–395.

Hammerstrom, D. [1990] “A VLSI architecture for high-performance low-cost on-chip
learning”, Proc. Int. Joint Conf. on Neural Networks, vol. 2, San Diego, CA,
pp. 537–544.

Hamming, R. W. [1950] Error Detecting and Error Correcting Codes, Bell Sys. Tech.
J. 29, 147–160.

Happel, B. L. M., Murre, J. M. J. [1994] “Design and evolution of modular neural network
architectures”, Neural Networks 7, 7, 985–1004.

Harris, C. S. [1980] “Insight or out of sight?” Two examples of perceptual plasticity in the
human”, Visual Coding and Adaptability, 95–149.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

294 Principles of Artificial and Neural Networks

Haykin, S., [1994] Neural Networks, A Comprehensive Foundation, Macmillan Publ. Co.,
Englewood Cliffs, NJ.

Hebb, D. [1949] The Organization of Behavior, John Wiley, New York.

Hecht-Nielsen, R. [1987] “Counter propagation networks”, Applied Optics 26, 4979–4984.

Hecht-Nielsen, R. [1990] Neurocomputing, Addison-Wesley, Reading, MA.

Hertz, J., Krogh, A. and Palmer, R. G. [1991] Introduction to the Theory of Neural
Computation, Addison-Wesley, Reading, MA.

Hinton, G. E. [1986] “Learning distributed representations of concepts”, Proc. Eighth Conf.
of Cognitive Science Society vol. 1, Amherst, MA.

Hopfield, J. J. [1982] “Neural networks and physical systems with emergent collective
computational abilities”, Proceedings of the National Academy of Sciences 79,
2554–2558.

Hopfield, J. J. and Tank, D. W. [1985], Neural computation of decisions in optimization
problems, Biol. Cybern., vol. 52, pp. 141–152.

Hubel, D. H. and Wiesel, T. N. [1979] “Brain mechanisms of vision”, Scientific American
241, 150–162.

Jabri, M. A., Coggins, R. J. and Flower, B. G. [1996] Adaptive Analog VLSI Neural
Systems, Chapman and Hall, London.

Kaski, S., Kohonen, T. [1994] “Winner-take-all networks for physiological models of
competitive learning”, Neural Networks 7 (7) 973–984.

Katz, B. [1966] Nerve, Muscle and Synapse, McGraw-Hill, New York.

Kohonen, T. [1977] Associated Memory: A System-Theoretical Approach, Springer Verlag,
Berlin.

Kohonen, T. [1984] Self-Organization and Associative Memory, Springer Verlag, Berlin.

Kohonen, T. [1988] “The neural phonetic typewriter”, Computer 21(3).

Kohonen, T. [1988] Self Organizing and Associative Memory, second edition, Springer
Verlag, New York.

Kol, S., Thaler, I., Paz, N. and Shmueli, O. [1995], Interpretation of Nonstress Tests by
an Artificial NN, Amer. J. Obstetrics & Gynecol., 172(5), 1372–1379.

Kordylewski, H. and Graupe, D. [1997] Applications of the LAMSTAR Neural Network
to Medical and Engineering Diagnosis/Fault Detection, Proc. 7th ANNIE Conf., St.
Louis, MO.

Kordylewski, H. [1998], A Large Memory Storage and Retrieval Neural Network for Medical
and Industrial Diagnosis, Ph.D. Thesis, EECS Dept., Univ. of Illinois, Chicago.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

References 295

Kordylewski, H., Graupe, D. and Liu, K. [1999] Medical Diagnosis Applications of the
LAMSTAR Neural Network, Proc. of Biol. Signal Interpretation Conf. (BSI-99),
Chicago, IL.

Kosko, B. [1987] “Adaptive bidirectional associative memories”, Applied Optics 26,
4947–4960.

Lee, R. J. [1959] “Generalization of learning in a machine”, Proc. 14th ACM National
Meeting, September.

Levitan, L. B., Kaczmarek, L. K. [1997] The Neuron, Oxford Univ. Press, 2nd Ed.

Livingstone, M., and Hubel, D. H. [1988] “Segregation of form, color, movement, and
depth: Anatomy, physiology, and perception”, Science 240, 740–749.

Longuett-Higgins, H. C. [1968] “Holographic model of temporal recall”, Nature 217, 104.

Lyapunov, A. M. [1907] “Probléme général de la stabilité du mouvement”, Ann. Fac. Sci.
Toulouse 9, 203–474; English edition: Stability of Motion, Academic Press, New York,
1957.

Martin, K. A. C. [1988] “From single cells to simple circuits in the cerebral cortex”, Quart.
J. of Experimental Physiology 73, 637–702.

Maeda, K., Utsu, M., Makio, A., Serizawa, M., Noguchi, Y., Hamada, T., Mariko, K.
and Matsumo, F. [1998], Neural Network Computer Analysis of Fetal Heart Rate,
J. Maternal-Fetal Investigation 8, 163–171.

McClelland, J. L. [1988] “Putting knowledge in its place: a scheme for programming parallel
processing structures on the fly”, in Connectionist Models and Their Implication,
Chap. 3, Ablex Publishing Corporation.

McCulluch, W. S. and Pitts, W. [1943] “A logical calculus of the ideas imminent in nervous
activity”, Bulletin Mathematical Biophysics, 5, 115–133.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. [1953]
“Equations of state calculations by fast computing machines”, J. Chemistry and
Physics 21, 1087–1091.

Minsky, M. L. [1980] “K-lines: A theory of memory”, Cognitive Science 4, 117–133.

Minsky, M. L. [1987] “The society of mind”, Simon and Schuster, New York.

Minsky, M. L. [1991] “Logical versus analogical or symbolic versus neat versus scruffy”,
AI Mag.

Minsky, M. and Papert, S. [1969] Perceptrons, MIT Press, Cambridge, MA.

Morrison, D. F. [1996], Multivariate Statistical Methods, McGraw-Hill, p. 222.

Mumford, D. [1994] “Neural architectures for pattern-theoretic problems”, Large-Scale
Neuronal Theories of the Brain, Chap. 7, MIT Press.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

296 Principles of Artificial and Neural Networks

Niederberger, C. S. et al. [1996], A neural computational model of stone recurrence after
ESWL, Internat. Conf. on Eng. Appl. of Neural Networks (EANN ’96), pp. 423–426.

Noujeime, M. [1997], Primary Diagnosis of Drug Abuse for Emergency Case, Project Re-
port, EECS Dept., Univ. of Illinois, Chicago.

Nii, H. P. [1986] “Blackboard systems: Blackboard application systems”, AI Mag. 7,
82–106.

Parker, D. B. [1982] Learning Logic, Invention Report 5-81-64, File 1, Office of Technology
Licensing, Stanford University, Stanford, CA.

Patel, T. S. [2000], LAMSTAR NN for Real Time Speech Recognition to Control Func-
tional Electrical Stimulation for Ambulation by Paraplegics, MS Project Report, EECS
Dept., Univ. of Illinois, Chicago.

Pineda, F. J. [1988] “Generalization of backpropagation to recurrent and higher order
neural networks”, pp. 602–611, in Neural Information Processing Systems, ed.
Anderson, D. Z. Amer. Inst. of Physics, New York.

Poggio, T., Gamble, E. B., and Little, J. J. [1988] “Parallel integration of vision modules”,
Science 242, 436–440.

Riedmiller, M. and Braun, H. [1993], “A direct adaptive method for faster backpropagation
learning: The RPROP algorithm”, Proc. IEEE Conf. Neur. Networks, 586–591, San
Francisco.

Rosen, B. E., Bylander, T. and Schifrin, B. [1997], Automated diagnosis of fetal outcome
from cardio-tocograms, Intelligent Eng. Systems Through Artificial Neural Networks,
NY, ASME Press, 7, 683–689.

Rosenblatt, F. [1958] “The perceptron, a probabilistic model for information storage and
organization in the brain”, Psychol. Rev. 65, 386–408.

Rosenblatt, F. [1961] Principles of Neurodynamics, Perceptrons and the Theory of Brain
Mechanisms, Spartan Press, Washington, DC.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. [1986] “Learning internal
representations by error propagation”, pp. 318–362 in Parallel Distributed Processing:
Explorations in the Microstructures of Cognition, eds. Rumelhart, D. E. and
McClelland, J. L. MIT Press, Cambridge, MA.

Rumelhart, D. E. and McClelland, J. L. [1986] “An interactive activation model of the
effect of context in language learning”, Psychological Review 89, 60–94.

Sage, A. P. and White, C. C., III [1977] Optimum Systems Control, second edition, Prentice
Hall, Englewood Cliffs, NJ.

Scarpazza, D. P., Graupe, M. H., Graupe, D. and Hubel, C. J. [2002], Assessment of
Fetal Well-Being Via A Novel Neural Network, Proc. IASTED International Conf.
On Signal Processing, Pattern Recognition and Application, Heraklion, Greece, pp.
119–124.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

References 297

Sejnowski, T. J. [1986] “Open questions about computation in cerebral cortex”, Parallel
Distributed Processing, 2, 167–190.

Sejnowski, T. J. and Rosenberg, C. R. [1987] “Parallel networks that learn to pronounce
English text”, Complex Systems 1, 145–168.

Singer, W. [1993] “Synchronization of cortical activity and its putative role in information
processing and learning”, Ann. Rev. Physiol. 55, 349–374.

Smith, K., Palaniswami, M. and Krishnamoorthy, M. [1998], Neural Techniques for Com-
binatorial Optimization with Applications, vol. 9, no. 6, pp. 1301–1318.

Szu, H. [1986] “Fast simulated annealing”, in Neural Networks for Computing, ed. Denker,
J. S. Amer. Inst. of Physics, New York.

Thompson, R. F. [1986] “The neurobiology of learning and memory”, Science, 233,
941–947.

Todorovic, V. [1998], Load Balancing in Distributed Computing, Project Report, EECS
Dept., Univ. of Illinois, Chicago.

Ullman, S. [1994] “Sequence seeking and counterstreams: A model for bidirectional
information flow in the cortex”, Large-Scale Neuronal Theories of the Brain, Chap. 12
MIT Press.

Waltz, D. and Feldman, J. [1988] Connectionist Models and Their Implication, Ablex
Publishing Corporation.

Wasserman, P. D. [1989] Neural Computing; Theory and Practice, Van Nostrand Reinhold,
New York.

Werbos, P. J. [1974] “Beyond recognition; new tools for prediction and analysis in the
behavioral sciences”, Ph.D. Thesis, Harvard Univ., Cambridge, MA.

Widrow, B. and Hoff, M. E. [1960] “Adaptive switching circuits”, Proc. IRE WESCON
Conf., New York, pp. 96–104.

Widrow, B. and Winter, R. [1988] “Neural nets for adaptive filtering and adaptive pattern
recognition”, Computer 21, pp. 25-39.

Wilks, S. [1938] “The large sample distribution of the likelihood ration for testing com-
posite hypothesis”, Ann. Math. Stat., Vol. 9, pp. 2–60.

Wilson, G. V. and Pawley, G. S. [1998], On the stability of the TSP algorithm of Hopfield
and Tank, Biol. Cybern., vol. 58, pp. 63–70.

Windner, R. O. [1960] “Single storage logic”, Proc. AIEE, Fall Meeting, 1960.

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

This page intentionally left blankThis page intentionally left blank

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Author Index

Aariko, K., 295
Allman, J., 291
Arunchalam, V., vii

Barlow, H., 291
Bear, M. F., 11, 291
Beauchamp, K. G., 117, 118, 291
Bellman, R., 291
Bierut, L. J., 291
Braun, H., 65, 296
Bylander, T., 296

Carino, C., 291
Carlson, A. B., 116, 291
Carpenter, G. A., 179, 183, 186, 291
Coggins, R. J., 294
Cohen, M., 291
Cooper, L. N., 11, 114, 291
Crane, E. B., 23, 292

DeFanti T. A., 292

Ebner, F. E., 11, 291
Ewing, A. C., 292

Fausett, L., 292
Feldman, J., 297
Flower, B. G., 294
Freeman, J. A., 292
Fukushima, K., 209, 213, 292

Gamble, E. B., 296
Gee, A. H., 292
Gilstrap, L. O., 292
Girado, J. I., 292

Graupe, D., 249, 292, 293

Grossberg, S., 179, 183, 186, 291

Guyton, A. C., 210, 293

Hameda, K., 295

Hammer, A., 293

Hammerstrom, D., 2, 293

Hamming, R. W., 116, 293

Happel, B. L. M., 293

Harris, C. S., 293

Haykin, S., 2, 294

Hebb, D., 9, 294

Hecht-Nielsen, R., 10, 161, 233, 294

Hertz, J., 233, 294

Hinton, G. E., 59, 294, 296

Hoff, M. E., 297

Hopfield, J. J., 10, 113, 235, 294

Hubel, D. H., 294, 295

Ito, T., 292

Jabri, M. A., 2, 294

Kaczmarek, L. K., 295

Kaski, S., 294

Katz, B., 8, 294

Kohonen, T., 10, 114, 161–163, 181, 186,
294

Kol, S., 294

Kolesnikov, M., vii

Kordylewski, H., 249, 292

Kosko, B., 295

Krishnamoorthy, M., 297

Krogh, A., 294

299

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

300 Principles of Artificial and Neural Networks

Lambert, B., 291
Lee, R. J., 10, 295
Lee, S., vii
Levitan, L. B., 295
Little, J. J., 296
Livingstone, M., 295
Longuett-Higgins, H. C., 114, 295
Lyapunov, A. M., 119, 295
Lynn, J. W., 293

Maeda, K., 295
Maiko, A., 295
Martin, K. A. C., 295
Matsumo, F., 295
McClelland, J. L., 295, 296
McCulluch, W. S., 9, 295
McGuiness, E., 291
Metropolis, N., 217, 295
Miake, S., 292
Miezen, F., 291
Minsky, M. L., 23, 24, 295
Morrison, D. F., 295
Mumford, D., 295
Murre, J. M. J., 293

Ng, A.,
Niederberger, C. S., 296
Nii, H. P., 296
Noguchi, Y., 295
Noujeime, M., 296

Palaniswami, M., 297
Palmer, R. G., 294
Palazzo, R.,
Panzeri, M., vii
Papert, S., 23, 295
Parker, D. B., 59, 296
Patel, T. S., 296
Pawley, G. S., 297
Paz, N., 294
Pedelty, M. J., 292
Pineda, F. J., 233, 296
Pitts, W., 9, 295
Poggio, T., 296
Prager, R. W., 292
Principoli, C.,

Riedmiller, M., 65, 296
Rosen, B. E., 296
Rosenberg, C. R., 64, 297
Rosenblatt, F., 10, 11, 17, 22, 296
Rosenbluth, A. W., 295
Rosenbluth, M. N., 295
Rumelhart, D. E., 10, 24, 59, 64, 233, 296

Sage, A. P., 119, 296
Sahoo, P., vii
Sakpura, D. M., 292
Sandin, D. J., 292
Scarpazza, D. P., 296
Schifrin, B., 296
Sejnowski, T. J., 64, 297
Serizawa, M., 295
Singer, W., 297
Smith, K., 297
Szu, H., 217, 297

Teller, A. H., 295
Teller, E., 295
Thaler, I., 294
Thompson, R. F., 297
Todorovic, V., 297

Ullman, S., 297
Utsu, M., 295

Walsh, 116
Waltz, D., 297
Wasserman, P. D., 297
Werbos, P. J., 59, 297
West, P. M., 291
White, C. C., 119, 296
Widrow, B., 10, 37, 297
Wiesel, T. N., 294
Wilks, S., 297
Williams, R. J., 59, 296
Wilson, G. V., 297
Windner, R. O., 23, 297
Winter, R., 297
Wolf, L. K., 292

Yu, C., 291

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Subject Index

accessible error, 63
activation function, 114, 121, 124
Adaline, 10–12, 17
Adaptive Linear Combiner, 12
Adaptive Resonance Theory, 179
Albert Einstein, 1
ALC (adaptive linear combiner), 10
ANN, 1
ANN hardware, 2
annealing, 215
AR model, 25
AR parameters, 25, 223
AR time series, 222
ART, 10
ART-I, 179–181, 185, 186
ART-II, xiv, 186, 187
Artron, 10, 11
associative network, 115
autoassociative, 115
autoregressive, 25
axon, 5, 7

Back Propagation, xv, 10, 24, 59, 233,
235

Back Propagation algorithm, 24
BAM (Bidirectional Associative Mem-

ory, 114–116, 118, 121
bias, 63
Binary Hopfield Networks, xiv, 113
biological network, 179, 185
biological neural network, 209
bipolar Adaline, 37
Boltzman, 219
Boltzman annealing, 220
Boltzman distribution, 217

Boltzman probability distribution, 216
Boltzman training, 217, 218

C-language, 77, 94
Cauchy annealing, 220
Cauchy distribution, 217, 218
Cauchy probability distributions, 217
Cauchy Training, xv, 217
cell body, 5
cell’s body, 18
cell’s membrane, 10
central nervous system, 1, 2, 37, 249
character recognition, 219
CL, 179
CL neuron, 180
classification, 179
cognitron, 10
computer architecture, 1
connection competition region, 209
Continuous Hopfield Models, xiv, 122
continuous Hopfield networks, 235
continuously recurrent back propagation,

235
convergence, 13, 15
convex, 24
convex combination initialization

method, 164
Counter-Propagation (CP), 10, 166
cumulative distribution, 217

Delta Rule, 15
dendrites, 5, 6
deterministic Perceptron, 222
deterministic training, 25
diffusion, 5, 8

301

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

302 Principles of Artificial and Neural Networks

Droretzky theorem, 15

eigenvalve, 15
elite group, 209
epoch, 233
excitation inputs, 210
excitatory neurons, 211, 212
Exclusive-Or (XOR), 23

feeds back, 234
forget, 179
forgetting, 249
Fourier Transform, 117
fully recurrent networks, 234

Gaussian distribution, 217, 218
global minimum, 217
gradient least squares, 14
Grossberg layer, 162, 164–166

Hamming Distance, 116
Hebbian Learning Law, 9
Hebbian rule, 9
(hidden) K-layer, 161
hidden layers, 37, 59, 63
hierarchical structure, 213
Hopfield Network, 113, 219, 220
Hopfield neural networks, 119

identification, 25, 222
identifying autoregressive (AR) parame-

ters, 222
inaccessible, 62
inhibit, 182
inhibition, 212
inhibition inputs, 210
inhibitory, 7, 209
inhibitory neuron, 210, 211
initialization, 63, 183, 212
initializing, xiv, 164
instability, 64, 215, 218
Instar, 161
Interpolative mode, xiv, 165
inverse Fourier transform, 118
inverse Walsh transform, 117
ion exchange, 5
ions, 5

Kohonen (SOM) layer, 186
Kohonen layer, 161–166

Kohonen Self-Organizing Map (SOM),
xiv, 161

LAMSTAR (LArge Memory STorage
And Retrieval), 249

lateral inhibition, 162, 181

Layer BP, 76

learning rate, 218, 224

linear separation, 22

LMS (least mean square), 13

local minima, 65

Lyapunov function, 118, 119

Lyapunov stability criterion, 123

Lyapunov stability theorem, 118–120

Madaline, 37, 38

Madaline Rule II, 37

Madaline Training, xiii, 37

MATLAB, 226

mean square error, 26, 223

Minimum Disturbance Principle, 37

modified BP, xiii, 63

momentum, xiv, 64

momentum term, 64

MSE, 26, 27

multi-layer, 24

multi-layer ANN, 24

multilayer structure, 186

Neocognitron, xiv, 209, 213

neuron, 1, 2, 5

neurotransmitter, 5

noise ripple, 164

non-convex, 24

nonstationary, 2

NP-complete, 124, 136, 146

orthogonal Walsh transforms, 118

orthonormal, 115, 116, 118

Oustar, 161

parallelity, 2

pattern recognition, 179

Perceptron, xiii, 17, 18, 23, 114

perceptron’s learning theorem, 22

plasticity, 179

positive reinforcement, 182

pseudo random number, 216

pseudo random weights, 164

January 30, 2007 16:24 World Scientific Book - 9.75in x 6.5in ws-book975x65

Subject Index 303

recognition layer (RL), 179, 180
recurrent, 233
recurrent neural network, 233
redundancy, 2
representation theorem, 22
Reset element, 179, 182, 184, 185
resilient BP, 65
retrieval of information, 249
RL, 181
RL neuron, 181
RPROP, 65

Sanjeev Shah, 219
self-organizing, 2, 179
self-organizing feature, 1
Self-Organizing Map, xiv, 161, 162
Self-Organizing Mapping (SOM), 10
sequential machine, 2
sigmoid, 20
sigmoid function, 19
simulated annealing, 224
simulated annealing process, 217
smoothing, 64
SOM (Self Organizing Map), 249
speech recognition, 201
stability, 113, 236
statistical (stochastic) training, 215
statistical decision, 249
statistical training, 222
steepest, xiii, 14
steepest descent, 14
stochastic, 1
stochastic adjustment, 216
stochastic approximation, 15, 218
stochastic Perceptron, 222
Stochastic Hopfield Network, 219

stochastic network, 231
stochastic training, 223, 224
storage, 249
symmetry, 121
synapses, 9, 11
synaptic delay, 9
synaptic junctions, 5, 7, 10

teacher, 10, 179
time cycling, 233
time series, 117
tolerance, 179, 182, 183, 185, 220
training, 37, 209, 211, 216, 218
training of Grossberg Layers, xiv, 165
transparency, 263, 264
Traveling-Salesman problem, 124
Truth-Table, 23
two-Layer BP, 76

uniform distribution, 216–218, 220, 224
unsupervised learning, 10
unsupervised network, 209

vigilance, 179, 182, 183

Walsh function, 117
Walsh Transform, 117
Weber–Fechner law, 210
white Gaussian noise, 25, 26
Winner-take-all (WTA), 161, 162, 181,

186

XNOR, 23
XOR, 23, 24

	Contents
	Acknowledgments
	Preface to the First Edition
	Preface to the Second Edition
	Chapter 1. Introduction and Role of Artificial Neural Networks
	Chapter 2. Fundamentals of Biological Neural Networks
	Chapter 3. Basic Principles of ANNs and Their Early Structures
	3.1. Basic Principles of ANN Design
	3.2. Basic Network Structures
	3.3. The Perceptron's Input-Output Principles
	3.4. The Adaline (ALC)
	3.4.1. LMS training of ALC
	3.4.2. Steepest descent training of ALC

	Chapter 4. The Perceptron
	4.1. The Basic Structure
	4.1.1. Perceptron's activation functions

	4.2. The Single-Layer Representation Problem
	4.3. The Limitations of the Single-Layer Perceptron
	4.4. Many-Layer Perceptrons
	4.A. Perceptron Case Study: Identifying Autoregressive Parameters of a Signal (AR Time Series Identification)

	Chapter 5. The Madaline
	5.1. Madaline Training
	5.A. Madaline Case Study: Character Recognition
	5.A.1. Problem statement
	5.A.2. Design of network
	5.A.3. Training of the network
	5.A.4. Results
	5.A.5. Conclusions and observations
	5.A.6. MATLAB code for implementing MADALINE network

	Chapter 6. Back Propagation
	6.1. The Back Propagation Learning Procedure
	6.2. Derivation of the BP Algorithm
	6.3. Modified BP Algorithms
	6.3.1. Introduction of bias into NN
	6.3.2. Incorporating momentum or smoothing to weight adjustment
	6.3.3. Other modification concerning convergence

	6.A. Back Propagation Case Study: Character Recognition
	6.A.1. Introduction
	6.A.2. Network design
	6.A.3. Results
	6.A.4. Discussion and conclusions
	6.A.5. Program Code (C++)

	6.B. Back Propagation Case Study: The Exclusive-OR (XOR) Problem (2-Layer BP)
	6.C. Back Propagation Case Study: The XOR Problem — 3 Layer BP Network

	Chapter 7. Hopfield Networks
	7.1. Introduction
	7.2. Binary Hopfield Networks
	7.3. Setting of Weights in Hopfield Nets — Bidirectional Associative Memory (BAM) Principle
	7.4. Walsh Functions
	7.5. Network Stability
	7.6. Summary of the Procedure for Implementing the Hopfield Network
	7.7. Continuous Hopfield Models
	7.8. The Continuous Energy (Lyapunov) Function
	7.A. Hopfield Network Case Study: Character Recognition
	7.A.1. Introduction
	7.A.2. Network design
	7.A.3. Setting of weights
	7.A.4. Testing
	7.A.5. Results and conclusions
	7.A.6. MATALAB codes

	7.B. Hopfield Network Case Study: Traveling Salesman Problem
	7.B.1. Introduction
	7.B.2. Hopfield neural network design
	7.B.3. Input selection
	7.B.4. Implementation details
	7.B.5. Output results
	7.B.6. Concluding discussion

	Chapter 8. Counter Propagation
	8.1. Introduction
	8.2. Kohonen Self-Organizing Map (SOM) Layer
	8.3. Grossberg Layer
	8.4. Training of the Kohonen Layer
	8.4.1. Preprocessing of Kohonen layer's inputs
	8.4.2. Initializing the weights of the Kohonen layer
	8.4.3. Interpolative mode layer

	8.5. Training of Grossberg Layers
	8.6. The Combined Counter Propagation Network
	8.A. Counter Propagation Network Case Study: Character Recognition
	8.A.1. Introduction
	8.A.2. Network structure
	8.A.3. Network training
	8.A.4. Test mode
	8.A.5. Results and conclusions
	8.A.6. Source codes (MATLAB)

	Chapter 9. Adaptive Resonance Theory
	9.1. Motivation
	9.2. The ART Network Structure
	9.3. Setting-Up of the ART Network
	9.4. Network Operation
	9.5. Properties of ART
	9.6. Discussion and General Comments on ART-I and ART-II
	9.A. ART-I Network Case Study: Character Recognition
	9.A.1. Introduction
	9.A.2. The data set
	9.A.3. Network design
	9.A.4. Performance results and conclusions
	9.A.5. Code for ART neural network (Java)

	9.B. ART-I Case Study: Speech Recognition
	9.B.1. Input matrix set-up for spoken words
	9.B.2. Simulation programs Set-Up
	9.B.3. Computer simulation of ART program (C-language)
	9.B.4. Simulation results

	Chapter 10. The Cognitron and the Neocognitron
	10.1. Background of the Cognitron
	10.2. The Basic Principles of the Cognitron
	10.3. Network Operation
	10.4. Cognitron's Network Training
	10.5. The Neocognitron

	Chapter 11. Statistical Training
	11.1. Fundamental Philosophy
	11.2. Annealing Methods
	11.3. Simulated Annealing by Boltzman Training of Weights
	11.4. Stochastic Determination of Magnitude of Weight Change
	11.5. Temperature-Equivalent Setting
	11.6. Cauchy Training of Neural Network
	11.A. Statistical Training Case Study — A Stochastic Hopfield Network for Character Recognition
	11.A.1. Motivation
	11.A.2. Problem statement
	11.A.3. Algorithm set-up
	11.A.4. Computed results

	11.B. Statistical Training Case Study: Identifying AR Signal Parameters with a Stochastic Perceptron Model
	11.B.1. Problem set-up
	11.B.2. Program printout (written in MATLAB — see also Sec. 6.D)
	11.B.3. Estimated parameter set at each iteration (using stochastic training)

	Chapter 12. Recurrent (Time Cycling) Back Propagation Networks
	12.1. Recurrent/Discrete Time Networks
	12.2. Fully Recurrent Networks
	12.3. Continuously Recurrent Back Propagation Networks
	12.A. Recurrent Back Propagation Case Study: Character Recognition
	12.A.1. Introduction
	12.A.2. Design of neural network
	12.A.3. Results
	12.A.4. Discussion and conclusions
	12.A.5. Source code (C++)

	Chapter 13. Large Scale Memory Storage and Retrieval (LAMSTAR) Network
	13.0. Motivation
	13.1. Basic Principles of the LAMSTAR Neural Network
	13.2. Detailed Outline of the LAMSTAR Network
	13.2.1. Basic structural elements
	13.2.2. Setting of storage weights and determination of winning neurons
	13.2.3. Adjustment of resolution in SOM modules
	13.2.4. Links between SOM modules and from SOM modules to output modules
	13.2.5. Determination of winning decision via link weights
	13.2.6. Nj weights (not implemented in most applications)
	13.2.7. Initialization and local minima

	13.3. Forgetting Feature
	13.4. Training vs. Operational Runs
	13.4.1. INPUT WORD for training and for information retrieval

	13.5. Advanced Data Analysis Capabilities
	13.5.1. Feature extraction and reduction in the LAMSTAR NN

	13.6. Correlation, Interpolation, Extrapolation and Innovation-Detection
	13.6.1. Correlation feature
	13.6.2. Innovation detection in the LAMSTAR NN

	13.7. Concluding Comments and Discussion of Applicability
	13.A. LAMSTAR Network Case Study : Character Recognition
	13.A.1. Introduction
	13.A.2. Design of the network
	13.A.3. Fundamental principles
	13.A.4. Training algorithm
	13.A.5. Testing procedure
	13.A.6. Results and their analysis
	13.A.7. Summary and concluding observations
	13.A.8. LAMSTAR CODE (MATLAB)

	13.B. Application to Medical Diagnosis Problems

	Problems
	References
	Author Index
	Subject Index

