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Preface

This book deals with the issue of fundamental limitations in filtering and
control system design. This issue lies at the very heart of feedback theory
since it reveals what is achievable, and conversely what is not achievable,
in feedback systems.

The subject has a rich history beginning with the seminal work of Bode
during the 1940’s and as subsequently published in his well-known book
Feedback Amplifier Design (Van Nostrand, 1945). An interesting fact is that,
although Bode’s book is now fifty years old, it is still extensively quoted.
This is supported by a science citation count which remains comparable
with the best contemporary texts on control theory.

Interpretations of Bode’s results in the context of control system design
were provided by Horowitz in the 1960’s. For example, it has been shown
that, for single-input single-output stable open-loop systems having rel-
ative degree greater than one, the integral of the logarithmic sensitivity
with respect to frequency is zero. This result implies, among other things,
that a reduction in sensitivity in one frequency band is necessarily accom-
panied by an increase of sensitivity in other frequency bands. Although
the original results were restricted to open-loop stable systems, they have
been subsequently extended to open-loop unstable systems and systems
having nonminimum phase zeros.

The original motivation for the study of fundamental limitations in
feedback was control system design. However, it has been recently real-
ized that similar constraints hold for many related problems including
filtering and fault detection. To give the flavor of the filtering results, con-
sider the frequently quoted problem of an inverted pendulum. It is well
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Vi Preface

known that this system is completely observable from measurements of
the carriage position. What is less well known is that it is fundamentally
difficult to estimate the pendulum angle from measurements of the car-
riage position due to the location of open-loop nonminimum phase zeros
and unstable poles. Minimum sensitivity peaks of 40 dB are readily pre-
dictable using Poisson integral type formulae without needing to carry out
a specific design. This clearly suggests that a change in the instrumenta-
tion is called for, i.e., one should measure the angle directly. We see, in this ex-
ample, that the fundamental limitations point directly to the inescapable
nature of the difficulty and thereby eliminate the possibility of expend-
ing effort on various filter design strategies that we know, ab initio, are
doomed to failure.

Recent developments in the field of fundamental design limitations in-
clude extensions to multivariable linear systems, sampled-data systems,
and nonlinear systems.

At this point in time, a considerable body of knowledge has been assem-
bled on the topic of fundamental design limitations in feedback systems.
It is thus timely to summarize the key developments in a modern and
comprehensive text. This has been our principal objective in writing this
book. We aim to cover all necessary background and to give new succinct
treatments of Bode’s original work together with all contemporary results.

The book is organized in four parts. The first part is introductory and it
contains a chapter where we cover the significance and history of design
limitations, and motivate future chapters by analyzing design limitations
arising in the time domain.

The second part of the book is devoted to design limitations in feed-
back control systems and is divided in five chapters. In Chapter 2, we
summarize the key concepts from the theory of control systems that will
be needed in the sequel. Chapter 3 examines fundamental design limita-
tions in linear single-input single-output control, while Chapter 4 presents
results on multi-input multi-output control. Chapters 5 and 6 develop cor-
responding results for periodic and sampled-data systems respectively.

Part III deals with design limitations in linear filtering problems. After
setting up some notation and definitions in Chapter 7, Chapter 8 covers
the single-input single-output filtering case, while Chapter 9 studies the
multivariable case. Chapters 10 and 11 develop the extensions to the re-
lated problems of prediction and fixed-lag smoothing.

Finally, Part IV presents three chapters with very recent results on sen-
sitivity limitations for nonlinear filtering and control systems. Chapter 12
introduces notation and some preliminary results, Chapter 13 covers feed-
back control systems, and Chapter 14 the filtering case.

In addition, we provide an appendix with an almost self-contained re-
view of complex variable theory, which furnishes the necessary mathe-
matical background required in the book.
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Preface vii

Because of the pivotal role played by design limitations in the study of
feedback systems, we believe that this book should be of interest to re-
search and practitioners from a variety of fields including Control, Com-
munications, Signal Processing, and Fault Detection. The book is self-
contained and includes all necessary background and mathematical pre-
liminaries. It would therefore also be suitable for junior graduate students
in Control, Filtering, Signal Processing or Applied Mathematics.

The authors wish to deeply thank several people who, directly or in-
directly, assisted in the preparation of the text. Our appreciation goes
to Greta Davies for facilitating the authors the opportunity to complete
this project in Australia. In the technical ground, input and insight were
obtained from Gjerrit Meinsma, Guillermo Gémez, Rick Middleton and
Thomas Brinsmead. The influence of Jim Freudenberg in this work is im-
mense.
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1

A Chronicle of System Design
Limitations

1.1 Introduction

This book is concerned with fundamental limits in the design of feedback
control systems and filters. These limits tell us what is feasible and, con-
versely, what is infeasible, in a given set of circumstances. Their signifi-
cance arises from the fact that they subsume any particular solution to a
problem by defining the characteristics of all possible solutions.

Our emphasis throughout is on system analysis, although the results
that we provide convey strong implications in system synthesis. For a va-
riety of dynamical systems, we will derive relations that represent funda-
mental limits on the achievable performance of all possible designs. These
relations depend on both constitutive and structural properties of the sys-
tem under study, and are stated in terms of functions that quantify system
performance in various senses.

Fundamental limits are actually at the core of many fields of engineer-
ing, science and mathematics. The following examples are probably well
known to the reader.

Example 1.1.1 (The Cramér-Rao Inequality). In Point Estimation Theory, a
function 8(Y) of a random variable Y — whose distribution depends on an
unknown parameter 6 — is an unbiased estimator for 0 if its expected value
satisfies

Eo{B(Y)} =0, 1.1)
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4 1. A Chronicle of System Design Limitations

where Eg denotes expectation over the parametrized density function
p(-;0) for the data.

A natural measure of performance for a parameter estimator is the co-
variance of the estimation error, defined by Eo{(6—0)2). Achieving a small
covariance of the error is usually considered to be a good property of an
unbiased estimator. There is, however, a limit on the minimum value of
covariance that can be attained. Indeed, a relatively straightforward math-
ematical derivation from (1.1) leads to the following inequality, which
holds for any unbiased estimator,

. 2 71
Eol(6—0)2} > <%{<%) }) ,

where p(-;0) defines the density function of the datay € Y.

The above relation is known as the Cramér-Rao Inequality, and the right
hand side (RHS) the Cramér-Rao Lower Bound (Cramér, 1946). This plays a
fundamental role in Estimation Theory (Caines, 1988). Indeed, an estima-
tor is considered to be efficient if its covariance is equal to the Cramér-Rao
Lower Bound. Thus, this bound provides a benchmark against which all
practical estimators can be compared. o

Another illustration of a relation expressing fundamental limits is given
by Shannon’s Theorem of Communications.

Example 1.1.2 (The Shannon Theorem). A celebrated result in Commu-
nication Theory is the Shannon Theorem (Shannon, 1948). This crucial the-
orem establishes that given an information source and a communication
channel, there exists a coding technique such that the information can be
transmitted over the channel at any rate R less than the channel capac-
ity C and with arbitrarily small frequency of errors despite the presence
of noise (Carlson, 1975). In short, the probability of error in the received
information can be made arbitrarily small provided that

R<C. (1.2)

Conversely, if R > C, then reliable communication is impossible. When
specialized to continuous channels,! a complementary result (known as
the Shannon-Hartley Theorem) gives the channel capacity of a band-lim-
ited channel corrupted by white gaussian noise as

C=Blog,(1+S/N) bits/sec,

where the bandwidth, B, and the signal-to-noise ratio, S/N, are the rele-
vant channel parameters.

LA continuous channel is one in which messages are represented as waveforms, i.e., con-
tinuous functions of time, and the relevant parameters are the bandwidth and the signal-to-
noise ratio (Carlson, 1975).
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1.1 Introduction 5

The Shannon-Hartley law, together with inequality (1.2), are fundamen-
tal to communication engineers since they (i) represent the absolute best
that can be achieved in the way of reliable information transmission, and
(ii) they show that, for a specified information rate, one can reduce the sig-
nal power provided one increases the bandwidth, and vice versa (Carlson,
1975). Hence these results both provide a benchmark against which prac-
tical communication systems can be evaluated, and capture the inherent
trade-offs associated with physical communication systems. o

Comparing the fundamental relations in the above examples, we see
that they possess common qualities. Firstly, they evolve from basic ax-
ioms about the nature of the universe. Secondly, they describe inescapable
performance bounds that act as benchmarks for practical systems. And
thirdly, they are recognized as being central to the design of real systems.

The reader may wonder why it is important to know the existence of
fundamental limitations before carrying out a particular design to meet
some desired specifications. Astrém (1996) quotes an interesting exam-
ple of the latter issue. This example concerns the design of the flight con-
troller for the X-29 aircraft. Considerable design effort was recently de-
voted to this problem and many different optimization methods were
compared and contrasted. One of the design criteria was that the phase
margin should be greater than 45° for all flight conditions. At one flight
condition the model contained an unstable pole at 6 and a nonminimum
phase zero at 26. A relatively simple argument based on the fundamental
laws applicable to feedback loops (see Example 2.3.2 in Chapter 2) shows
that a phase margin of 45° is infeasible! It is interesting to note that many
design methods were used in a futile attempt to reach the desired goal.

As another illustration of inherently difficult problems, we learn from
virtually every undergraduate text book on control that the states of
an inverted pendulum are completely observable from measurements of
the carriage position. However, the system has an open right half plane
(ORHP) zero to the left of a real ORHP pole. A simple calculation based
on integral sensitivity constraints (see §8.5 in Chapter 8) shows that sen-
sitivity peaks of the order of 50:1 are unavoidable in the estimation of the
pendulum angle when only the carriage position is measured. This, in
turn, implies that relative input errors of the order of 1% will appear as
angle relative estimation errors of the order of 50%. Note that this claim
can be made before any particular estimator is considered. Thus much wasted
effort can again be avoided. The inescapable conclusion is that we should
redirect our efforts to building angle measuring transducers rather than
attempting to estimate the angle by an inherently sensitive procedure.

In the remainder of the book we will expand on the themes outlined
above. We will find that the fundamental laws divide problems into those
that are essentially easy (in which case virtually any sensible design
method will give a satisfactory solution) and those that are essentially
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6 1. A Chronicle of System Design Limitations

hard (in which case no design method will give a satisfactory solution).
We believe that understanding these inherent design difficulties readily
justifies the effort needed to appreciate the results.

1.2 Performance Limitations in Dynamical
Systems

In this book we will deal with very general classes of dynamic systems.
The dynamic systems that we consider are characterized by three key at-
tributes, namely:

(i) they consist of particular interconnections of a “known part” — the
plant — and a “design part” — the controller or filter — whose struc-
ture is such that certain signals interconnecting the parts are indica-
tors of the performance of the overall system;

(ii) the parts of the interconnection are modeled as input-output opera-
tors® with causal dynamics, i.e., an input applied at time to produces
an output response for t > to; and

(iii) the interconnection regarded as a whole system is stable, i.e., a
bounded input produces a bounded response (the precise definition
will be given later).

We will show that, when these attributes are combined within an appro-
priate mathematical formalism, we can derive fundamental relations that
may be considered as being systemic versions of the Cramér-Rao Lower
Bound of Probability and the Channel Capacity Limit of Communications.
These relations are fundamental in the sense that they describe achievable
— or non achievable — properties of the overall system only in terms of
the known part of the system, i.e., they hold for any particular choice of
the design part.

As a simple illustrative example, consider the unity feedback control
system shown in Figure 1.1.

To add a mathematical formalism to the problem, let us assume that
the plant and controller are described by finite dimensional, linear time-
invariant (LTI), scalar, continuous-time dynamical systems. We can thus
use Laplace transforms to represent signals. The plant and controller can
be described in transfer function form by G(s) and K(s), where

_ Ng(s)
Dg(s)’

~ Nk(s)

Gls) ~ Dxl(s)

and K(s)

(1.3)

21t is sufficient here to consider an input-output operator as a mapping between input
and output signals.
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1.2 Performance Limitations in Dynamical Systems 7

Disturbance
d
Reference  Error + ; Output
T Controller || Plant >0
+ - e + Yy

FIGURE 1.1. Feedback control system.

The reader will undoubtedly know? that the transfer functions from ref-
erence input to output and from disturbance input to output are given
respectively by T and S, where

NN

T—_ 6K 14

NgNk + DDk (14)
DgD

S G K (1.5)

~ NgNk + DgDg

Note that these are dimensionless quantities since they represent the
transfer function (ratio) between like quantities that are measured in the
same units. Also T(jw) and S(jw) describe the response to inputs of a
particular type, namely pure sinusoids. Since T(jw) and S(jw) are dimen-
sionless, it is appropriate to compare their respective amplitudes to bench-
mark values. At each frequency, the usual value chosen as a benchmark
is unity, since T(jwo) = 1 implies that the magnitude of the output is
equal to the magnitude of the reference input at frequency wy, and since
S(jwo) = T implies that the magnitude of the output is equal to the mag-
nitude of the disturbance input at frequency wo. More generally, the fre-
quency response of T and S can be used as measures of stability robustness
with respect to modeling uncertainties, and hence it is sensible to compare
them to “desired shapes” that act as benchmarks.

Other domains also use dimensionless quantities. For example, in Elec-
trical Power Engineering it is common to measure currents, voltages, etc.,
as a fraction of the “rated” currents, voltages, etc., of the machine. This
system of units is commonly called a “per-unit” system. Similarly, in Fluid
Dynamics, it is often desirable to determine when two different flow sit-
uations are similar. It was shown by Osborne Reynolds (Reynolds, 1883)
that two flow scenarios are dynamically similar when the quantity

3See Chapter 2 for more details.
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8 1. A Chronicle of System Design Limitations

(now called the Reynolds number) is the same for both problems.* The
Reynolds number is the ratio of inertial to viscous forces, and high values
of R invariable imply that the flow will be turbulent rather than laminar.
As can be seen from these examples, dimensionless quantities facilitate
the comparison of problems with critical (or benchmark) values.

The key question in scalar feedback control synthesis is how to find a
particular value for the design polynomials Nk and Dy in (1.3) so that the
feedback loop satisfies certain desired properties. For example, it is usu-
ally desirable (see Chapter 2) to have T(jw) = 1 at low frequencies and
S(jw) = 1 at high frequencies. These kinds of design goals are, of course,
important questions; but we seek deeper insights. Our aim is to examine
the fundamental and unavoidable constraints on T and S that hold irre-
spective of which controller K is used — provided only that the loop is
stable, linear, and time-invariant (actually, in the text we will relax these
latter restrictions and also consider nonlinear and time-varying loops).

In the linear scalar case, equations (1.5) and (1.4) encapsulate the key
relationships that lead to the constraints. The central observation is that
we require the loop to be stable and hence we require that, whatever value
for the controller transfer function we choose, the resultant closed loop
characteristic polynomial NgNk + DgDx must have its zeros in the open
left half plane.

A further observation is that the two terms NgNk and DgDk of the
characteristic polynomial appear in the numerator of T and S respectively.
These observations, in combination, have many consequences, for exam-
ple we see that

(i) S(s) 4+ T(s) =1 for all s (called the complementarity constraint);

(ii) if the characteristic polynomial has all its zeros to the left of —«,
where o is some nonnegative real number, then the functions S and
T are analytic in the half plane to the right of —« (called analyticity
constraint);

(iii) if q is a zero of the plant numerator N¢ (i.e., a plant zero), such that
Req > —o (here Res denotes real part of the complex number s),
then T(q) = 0 and S(q) = 1; similarly, if p is a zero of the plant de-
nominator D¢ (i.e., a plant pole), such that Re g > —«, then T(p) =1
and S(p) = 0 (called interpolation constraints).

The above seemingly innocuous constraints actually have profound im-
plications on the achievable performance as we will see below.

4Here u is a characteristic velocity, 1 a characteristic length, p the fluid density, and p the
viscosity.
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1.3 Time Domain Constraints 9

1.3 Time Domain Constraints

In the main body of the book we will carry out an in-depth treatment
of constraints for interconnected dynamic systems. However, to motivate
our future developments we will first examine some preliminary results
that follow very easily from the use of the Laplace transform formalism.
In particular we have the following result.

Lemma 1.3.1. Let H(s) be a strictly proper transfer function that has all its
poles in the half plane Re s < —x, where « is some finite real positive num-
ber (i.e., H(s) is analytic in Re s > —o). Also, let h(t) be the corresponding
time domain function, i.e.,

H(s) = Lh(t),

where £ denotes the Laplace transform. Then, for any so such that Re sg >
—, we have
o0
J e So'h(t)dt = lim H(s) .
0 S—So

Proof. From the definition of the Laplace transform we have that, for all s
in the region of convergence of the transform, i.e., for Res > —«,

H(s) = J:o e S'h(t)dt.

The result then follows since sy is in the region of convergence of the trans-
form. O

In the following subsection, we will apply the above result to examine
the properties of the step responses of the output and error in Figure 1.1.

1.3.1 Integrals on the Step Response

We will analyze here the impact on the step response of the closed-loop
system of open-loop poles at the origin, unstable poles, and nonminimum
phase zeros. We will then see that the results below quantify limits in per-
formance as constraints on transient properties of the system such as rise
time, settling time, overshoot and undershoot.

Throughout this subsection, we refer to Figure 1.1, where the plant and
controller are as in (1.3), and where e and y are the time responses to a
unit step input (i.e., r(t) =1, d(t) =0, Vt).

We then have the following results relating open-loop poles and zeros
with the step response.

Theorem 1.3.2 (Open-loop integrators). Suppose that the closed loop in
Figure 1.1 is stable. Then,
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10 1. A Chronicle of System Design Limitations

(1) forlims_,osG(s)K(s) =c1,0 < |ci| < oo, we have that

tlirn e(t) =0,
> 1

J e(t)dt=—;
0 C1

(ii) for limg_,0 s?G(s)K(s) = c2, 0 < |c2| < 0o, we have that

lim e(t) =0,
t—o0

J e(t)dt=0.
0

Proof. Let E, Y, R and D denote the Laplace transforms of e, y, r and d,
respectively. Then,

E(s) = S(s)[R(s) = D(s)], (1.6)

where S is the sensitivity function defined in (1.5), and R(s) — D(s) = 1/s
for a unit step input. Next, note that in case (i) the open-loop system GK
has a simple pole at s = 0, i.e., G(s)K(s) = L(s)/s, where lims_,o L(s) = c1.
Accordingly, the sensitivity function has the form

s
S(s) = —
(s) s+ L(s)
and thus, from (1.6),
1
imE(s) = — . .
gl_rg (s) o (1.7)

From (1.7) and the Final Value Theorem (e.g., Middleton and Goodwin,
1990), we have that

tll)n;o e(t) = 21_1’)1’(1) sE(s)

=0.

Similarly, from (1.7) and Lemma 1.3.1,

J'oo e(t)dt = lim E(s)
0 s—0

_ 1
=
This completes the proof of case (i).
Case (ii) follows in the same fashion, on noting that here the open-loop
system GK has a double pole at s = 0. O

www.4electron.com



1.3 Time Domain Constraints 11

Theorem 1.3.2 states conditions that the error step response has to sat-
isfy provided the open-loop system has poles at the origin, i.e., it has pure
integrators. The following result gives similar constraints for ORHP open-
loop poles.

Theorem 1.3.3 (ORHP open-loop poles). Consider Figure 1.1, and sup-
pose that the open-loop plant has a pole at s = p, such that Rep > 0.
Then, if the closed loop is stable,

JOO e Ple(t)dt =0, (1.8)
0
and -
J e Ply(t)dt = 1 ) (1.9)
0 P

Proof. Note that, by assumption, s = p is in the region of convergence of
E(s), the Laplace transform of the error. Then, using (1.6) and Lemma 1.3.1,
we have that

on e Ple(t)dt = E(p)
0

where the last step follows since s = p is a zero of S, by the interpolation
constraints. This proves (1.8). Relation (1.9) follows easily from (1.8) and
the fact thatr =1, i.e.,

Joo e Ply(t) dt = J'oo e Pt (r(t) —e(t)) dt
0 0

o0
= J e Ptdt
1
P

o

O

A result symmetric to that of Theorem 1.3.3 holds for plants with non-
minimum phase zeros, as we see in the following theorem.

Theorem 1.3.4 (ORHP open-loop zeros). Consider Figure 1.1, and sup-
pose that the open-loop plant has a zero at s = ¢, such that Req > 0.
Then, if the closed loop is stable,

J e dte(t)dt = 1 , (1.10)
0 q
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12 1. A Chronicle of System Design Limitations

and

Joo e ty(t)dt=0. (1.11)
0

Proof. Similar to that of Theorem 1.3.3, except that here T(q) = 0. O

The above theorems assert that if the plant has an ORHP open-loop pole
or zero, then the error and output time responses to a step must satisfy in-
tegral constraints that hold for all possible controller giving a stable closed
loop. Moreover, if the plant has real zeros or poles in the ORHP, then these
constraints display a balance of exponentially weighted areas of positive
and negative error (or output). It is evident that the same conclusions
hold for ORHP zeros and/or poles of the controller. Actually, equations
(1.8) and (1.10) hold for open-loop poles and zeros that lie to the right
of all closed-loop poles, provided the open-loop system has an integra-
tor. Hence, stable poles and minimum phase zeros also lead to limitations in
certain circumstances.

The time domain integral constraints of the previous theorems tell us
fundamental properties of the resulting performance. For example, The-
orem 1.3.2 shows that a plant-controller combination containing a dou-
ble integrator will have an error step response that necessarily overshoots
(changes sign) since the integral of the error is zero. Similarly, Theo-
rem 1.3.4 implies that if the open-loop plant (or controller) has real ORHP
zeros then the closed-loop transient response can be arbitrarily poor (de-
pending only on the location of the closed-loop poles relative to q), as we
show next. Assume that the closed-loop poles are located to the left of —c,
o > 0. Observe that the time evolution of e is governed by the closed-loop
poles. Then as g becomes much smaller than o, the weight inside the in-
tegral, e~ 9%, can be approximated to 1 over the transient response of the
error. Hence, since the RHS of (1.10) grows as q decreases, we can imme-
diately conclude that real ORHP zeros much smaller than the magnitude
of the closed-loop poles will produce large transients in the step response
of a feedback loop. Moreover this effect gets worse as the zeros approach
the imaginary axis.

The following example illustrates the interpretation of the above con-
straints.

Example 1.3.1. Consider the plant

q—s
s(s+1)°

G(s) =

where q is a positive real number. For this plant we use the internal model
control paradigm (Morari and Zafiriou, 1989) to design a controller in Fig-
ure 1.1 that achieves the following complementarity sensitivity function

q—s

TS = om0
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1.3 Time Domain Constraints 13

This design has the properties that, for every value of the ORHP plant
zero, q, (i) the two closed-loop poles are fixed at s = —5, and (ii) the er-
ror goes to zero in steady state. This allows us to study the effect in the
transient response of q approaching the imaginary axis. Figure 1.2 shows
the time responses of the error and the output for decreasing values of
q. We can see from this figure that the amplitude of the transients in-
deed becomes larger as q becomes much smaller than the magnitude of
the closed-loop poles, as already predicted from our previous discussion.

2

y(®)

&(t)

0 0.5

1 15 2 0 05 1 15 2
t t

FIGURE 1.2. Error and output time responses of a nonminimum phase plant.

1.3.2 Design Interpretations

The results of the previous section have straightforward implications con-
cerning standard quantities used as figures of merit of the system’s ability
to reproduce step functions. We consider here the rise time, the settling time,
the overshoot and the undershoot.

The rise time approximately quantifies the minimum time it takes the
system to reach the vicinity of its new set point. Although this term has
intuitive significance, there are numerous possibilities to define it rigor-
ously (cf. Bower and Schultheiss, 1958). We define it by

for all tin [0, 6]} . (1.12)

t
t, ésup{é:y(t) <<
6 6

The settling time quantifies the time it takes the transients to decay below
a given settling level, say €, commonly between 1 and 10%. It is defined

by
ty £ ilgf{é ‘ly(t) =1/ <e foralltin [é,oo)} . (1.13)

Here, the step response of the system has been normalized to have unitary
final value, which is also assumed throughout this section.
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14 1. A Chronicle of System Design Limitations

Finally, the overshoot is the maximum value by which the output exceeds
its final set point value, i.e.,

Yos = sup{—e(t)} ;

and the undershoot is the maximum negative peak of the system’s output,
ie.,
Yus = sup {—y(t)} .
t

Figure 1.3 shows a typical step response and illustrates these quantities.

'

Yus
1

~— t, —

ts

FIGURE 1.3. Time domain specifications.

Corollary 1.3.5 (Overshoot and real ORHP poles). A stable unity feed-
back system with a real ORHP open-loop pole, say at s = p, must have
overshoot in its step response. Moreover, if t, is the rise time defined by
(1.12), then

(pt, — 1)ePt +1

ptr (1.14)

yOS Z
- Ptr .
- 2
Proof. The existence of overshoot follows immediately from Theo-
rem 1.3.3, since e(t) cannot have a single sign unless it is zero for all t.

From the definition of rise time in (1.12) we have that y(t) < t/t, for
t < t,, ie., e(t) > 1 —t/t,. Using this, we can write from the integral

equality (1.8)
—ro e Ple(t) dt > Jtr et (1 - ti) dt . (1.15)

tr 0 T
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1.3 Time Domain Constraints 15

From (1.15) and the definition of overshoot, it follows that

efptr o]
Yos P :yosJ' e*'pt dt (116)
tr

t, t
> J e Pt (1 - —) dt
0 tr

ty —1 Pt
_ [ptr pz):e . (1.17)

Equation (1.14) is then obtained from (1.16) - (1.17). a

Corollary 1.3.5 shows that if the closed-loop system is “slow”, i.e., it has
a large rise time, the step response will present a large overshoot if there
are open-loop unstable real poles®. Intuitively, we can deduce from this
result that unstable poles will demand a “fast” closed-loop system — or
equivalently, a larger closed-loop bandwidth — to keep an acceptable per-
formance. The farther from the jw-axis the poles are, the more stringent
this bandwidth demand will be.

An analogous situation is found in relation with real nonminimum
phase zeros and undershoot in the system’s response, as we see in the
next corollary.

Corollary 1.3.6 (Undershoot and real ORHP zeros). A stable unity feed-
back system with a real ORHP open-loop zero, say at s = q, must have
undershoot in its step response. Moreover, if t; and e are the settling time
and level defined by (1.13),

1—c¢

W . (1.18)

Yus =

Proof. Similar to Corollary 1.3.5, this time using (1.11) and the definition
of settling time and undershoot. O

The interpretation for Corollary 1.3.6 is that if the system has real non-
minimum phase zeros, then its step response will display large under-
shoots as the settling time is reduced, i.e., the closed-loop system is made
“faster”. Notice that this situation is quite the opposite to that for real un-
stable poles, for now real nonminimum phase zeros will demand a short
closed-loop bandwidth for good performance. Moreover, here the closer
to the imaginary axis the zeros are, the stronger the demand for a short
bandwidth will be.

Evidently from the previous remarks, a clear trade-off in design arises
when the open-loop system is both unstable and nonminimum phase,

5This is in contrast with the case of open-loop stable systems, where large overshoots
normally arise from short rise times.
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16 1. A Chronicle of System Design Limitations

since, depending on the relative position of these poles and zeros, a com-
pletely satisfactory performance may not be possible. The following result
considers such a case.

Corollary 1.3.7. Suppose a stable unity feedback system has a real ORHP
open-loop zero at s = g and a real ORHP open-loop pole at s =p, p # q.
Then,

(i) if p < q, the overshoot satisfies

yosqu%p)

(ii) if p > q, the undershoot satisfies

q
UusZm-

Proof. For case (i) combine (1.8) and (1.10) to obtain

Joo (e Pt —e ) [—e(t)] dt = 1 )
0 q

Using the definition of overshoot yields

L J (ePt—e 9)dt
q 0
q—p
=Yos—— . 1.19
Pq (1.19)
The result then follows from (1.19) by using the fact that g > p.
Case (ii) can be shown similarly by combining (1.9) and (1.11) and using

the fact that q < p. O

In the following subsection, we illustrate the previous results by ana-
lyzing time domain limitations arising in the control of an inverted pen-
dulum. This example will be revisited in Chapter 3, where we study
frequency domain limitations in the context of feedback control, and in
Chapter 8, where we analyze frequency domain limitations from a filter-
ing point of view.

1.3.3 Example: Inverted Pendulum

Consider the inverted pendulum shown in Figure 1.4. The linearized
model for this system about the origin (ie, 8 = 6 = y = y = 0) has
the following transfer function from force, u, to carriage position, y

Y(s) (s—q)(s+a)

U(s) B MsZ(s —p)(s+p)’ (1.20)
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o™
7
¢
M

— Y

u
—_—

QO

FIGURE 1.4. Inverted pendulum.

where

a=+9/t,
/(M +m)g
PEVTTME

In the above definitions, g is the gravitational constant, m is the mass at
the end of the pendulum, M is the carriage’s mass, and { is the pendulum’s
length.

We readily see that this system satisfies the conditions discussed in
Corollary 1.3.7, part (ii). Say that we normalize so that ¢ = 1 and take
m/M = 0.1, so that p = 1.05. Corollary 1.3.7 then predicts an undershoot
greater than 20!

0 2 4 6 8 10

FIGURE 1.5. Position time response of the inverted pendulum.
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18 1. A Chronicle of System Design Limitations

To test the results, we designed an LOG-LOR controller® that fixes the
closed-loop poles at s = —1,—2,—3,—4. Figure 1.5 shows the step re-
sponse of the carriage position for fixed q = 1, and for different values
of the mass ratio m/M (which imply, in turn, different locations of the
open-loop poles of the plant). We can see from this figure that (i) the lower
bound on the undershoot predicted by Corollary 1.3.7 is conservative (this
is due to the approximation —y ~ Yy implicitly used to derived this
bound), and (ii) the bound correctly predicts an increase of the undershoot
as the difference p — q decreases.

14 Frequency Domain Constraints

The results presented in §1.3 were expressed in the time domain using
Laplace transforms. However, one might expect that corresponding re-
sults hold in the frequency domain. This will be a major theme in the
remainder of the book. To give the flavor of the results, we will briefly
discuss constraints induced by zeros on the imaginary axis, or ORHP ze-
ros arbitrarily close to the imaginary axis. Analogous conclusions hold for
poles on the imaginary axis.

Note that, assuming closed-loop stability, then an open-loop zero on the
imaginary axis at jw ¢ implies that

Tlwgq) =0, and S(jwg) =1. (1.21)

We have remarked earlier that a common design objective is to have
S(jw) <« 1 at low frequencies, i.e., for w € [0, w1] for some w;. Clearly,
if wg < w;i, then this goal is inconsistent with (1.21). Now say that the
open-loop plant has a zero at q = € + jwg, where € is small and positive.
Then we might expect (by continuity) that |S(jw)| would have a tendency
to be near 1 in the vicinity of w = w. Actually, it turns out to be possible
to force |S(jw)| to be small for frequencies w € [0, w1] where w; > wy.
However, one has to pay a heavy price for trying to defeat “the laws of na-
ture” by not allowing |S(jw)| to approach 1 near wg. Indeed, it turns out
that the “price” is an even larger peak in [S(jw)| for some other value of w.
We will show this using the continuity (analyticity) properties of functions
of a complex variable. Actually, we will see that many interesting proper-
ties of linear feedback systems are a direct consequence of the properties
of analytic functions.

%See e.g., Kwakernaak and Sivan (1972).
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1.5 A Brief History

Bode (1945) used analytic function theory to examine the properties of
feedback loops in the frequency domain. At the time, Bode was working
at Bell Laboratories. He used complex variable theory to show that there
were restrictions on the type of frequency domain response that could be
obtained from a stable feedback amplifier circuit. In particular, he showed
— mutatis mutandis — that the sensitivity function, S, (defined in (1.5) for
a particular case) must satisfy the following integral relation for a stable
open-loop plant

o0

J log|S(jw)|dw =0 (1.22)

0

This result shows that it is not possible to achieve arbitrary sensitivity
reduction (i.e., |S| < 1) at all points of the imaginary axis. Thus, if [S(jw)| is
smaller than one over a particular frequency range then it must necessarily
be greater than one over some other frequency range.

Bode also showed that, for stable minimum phase systems, it was not
necessary to specify both the magnitude and phase response in the fre-
quency domain since each was determined uniquely by the other.

Horowitz (1963) applied Bode’s theorems to the feedback control prob-
lem, and also obtained some preliminary results for open-loop unstable
systems. These latter extensions turned out to be in error due to a missing
term, but the principle is sound.

Francis and Zames (1984) studied the feedback constraints imposed by
ORHP zeros of the plant in the context of H, optimization. They showed
that if the plant has zeros in the ORHP, then the peak magnitude of the
frequency response of S(jw) necessarily becomes very large if [S(jw)| is
made small over frequencies which exceed the magnitude of the zeros.
This phenomenon has become known as the “water-bed” or “push-pop”
effect.

Freudenberg and Looze (1985) brought many of the results together.
They also produced definitive results for the open-loop unstable case. For
example, in the case of an unstable open-loop plant, (1.22) generalizes to
(see Theorem 3.1.4 in Chapter 3)

1 (> , <
~ | rogistiwlaw = 3 b, (123)
0 i=1

where {p; :1=1,...,n,}is the set of ORHP poles of the open-loop plant.
Equality is achieved in (1.23) if the set {p; : i = 1,...,n,} also includes all
the ORHP poles of the controller.

In addition, Freudenberg and Looze expressed the integral constraints
in various formats, both along the lines of Bode and in a different form
using the related idea of Poisson integrals. In particular, the Poisson inte-
grals permit the derivation of an insightful closed expression that displays
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20 1. A Chronicle of System Design Limitations

the water-bed effect experienced by nonminimum phase systems. This ex-
pression, however, is not tight if the plant has more than one ORHP zero.

About the same time, O’Young and Francis (1985) used Nevanlinna-
Pick theory to characterize the smallest upper bound on the norm of the
multivariable sensitivity function over a frequency range, with the con-
straint that the norm remain bounded at all frequencies. This characteri-
zation can be used to show the water-bed effect in multivariable nonmin-
imum phase systems, and is tight for any number of ORHP zeros of the
plant. Yet, no closed expression is available for this characterization but
rather it has to be computed iteratively for each given plant.

In 1987, Freudenberg and Looze extended the Bode integrals to scalar
plants with time delays. In 1988 the same authors published a book that
summarized the results for scalar systems, and also addressed the multi-
variable case using singular values.

In 1990, Middleton obtained Bode-type integrals for the complemen-
tary sensitivity function T. For example, the result equivalent to (1.23), for
an open-loop system having at least two pure integrators, is (see Theo-
rem 3.1.5 in Chapter 3)

1 (™ Cdw T &1
= rosmien £3 > 3 +3 o (1.24)
where {g; : 1 =1,...,n4} is the set of ORHP zeros of the open-loop plant,
and T is the plant pure time delay.

Comparing (1.24) with (1.10) we see that (perhaps not unexpectedly)
there is a strong connection between the time and frequency domain re-
sults. Indeed, this is reasonable since the only elements that are being used
are the complementarity, interpolation and analyticity constraints intro-
duced in §1.2.

Recent extensions of the results include multivariable systems, filter-
ing problems, periodic systems, sampled-data systems and, very recently,
nonlinear systems. We will cover all of these results in the remainder of
the book.

1.6 Summary

This chapter has introduced the central topic of this book. We are con-
cerned with fundamental limitations in the design of dynamical systems,
limitations that are imposed by structural and constitutive characteristics
of the system under study. As we have seen, fundamental limitations are
central to other disciplines; indeed, we have provided as examples the
Cramér-Rao Inequality of Estimation Theory, and the Shannon Theorem
of Communications.
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We have presented, through an example of scalar feedback control, two
of the mappings that are central to this book, namely, the sensitivity and
complementarity sensitivity functions. These mappings are indicators of
closed-loop performance as well as stability robustness and, as such, it is
natural to require that they meet certain desired design specifications. We
argue that it is important to establish the limits that one faces when at-
tempting to achieve these specifications before any design is carried out.
For example, it is impossible for a stable closed-loop system to achieve
sensitivity reduction over a frequency range where the open-loop sys-
tem has a pure imaginary zero. More generally, ORHP zeros and poles
of the open-loop system impose constraints on the achievable frequency
response of the sensitivity and complementarity sensitivity functions.

As a further illustration of these constraints, we have studied the ef-
fect on the closed-loop step response of pure integrators and ORHP zeros
and poles of the open-loop system. We have seen, inter-alia, that a sta-
ble unity feedback system with a real ORHP open-loop zero must have
undershoot in its step response. A similar conclusion holds with ORHP
open-loop poles and overshoot in the step response. These limitations are
obviously worse for plants having both nonminimum phase zeros and
unstable poles; the inverted pendulum example illustrates these compli-
cations.

Finally, we have provided an overview of the published work that fo-
cuses on systems design limitations, the majority of which build on the
original work of Bode (1945).

Notes and References

Some of the studies of Bode seem to have been paralleled in Europe. For example,
some old books refer to the Bode gain-phase relationship as the Bayard-Bode gain-
phase relationship (e.g., Gille et al. (1959, pp. 154-155), Naslin (1965)), although
precise references are not given.

§1.3 is mainly extracted from Middleton (1991).
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Part 11

Limitations in Linear
Control
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2

Review of General Concepts

This chapter collects some concepts related to linear, time-invariant sys-
tems, as well as properties of feedback control systems. It is mainly in-
tended to introduce notation and terminology, and also to provide moti-
vation and a brief review of the background material for Part II. The in-
terested reader may find a more extensive treatment of the topics covered
here in the books and papers cited in the Notes and References section at
the end of the chapter.

Notation. Asusual, N, R and C denote the natural, real and complex num-
bers, respectively. No denotes the set N U {0}. The extended complex plane is
the set of all finite complex numbers (the complex plane C) and the point
at infinity, co. We denote the extended complex plane by C. = C U {oo}.
The real and imaginary parts of a complex number, s, are denoted by Re s
and Im s respectively.

We will denote by C* and €~ the open right and left halves of the com-
plex plane, and by C* and C~ their corresponding closed versions. Some-
times, we will use the obvious acronyms ORHP, OLHP, CRHP, and CLHP.
Similarly, the symbols D and D° denote the regions inside and outside the
unit circle |z| = 1 in the complex plane, and D and D€ their corresponding
closed versions.

The Laplace and Z transforms of a function f are denoted by Lf and
Zf, respectively. In general, the symbol s is used to denote variables when
working with Laplace transforms, and z when working with Z transforms.
Finally, we use lower case letters for time domain functions, and upper
case letters for both constant matrices and transfer functions.

www.4electron.com



26 2. Review of General Concepts

2.1 Linear Time-Invariant Systems

A common practice is to assume that the system under study is linear
time-invariant (LTI), causal, and of finite-dimension.! If the signals are as-
sumed to evolve in continuous time,? then an input-output model for such
a system in the time domain has the form of a convolution equation,

y(t) = J'Oo h(t—71)u(t)dr, (2.1)

—00

where u and y are the system’s input and output respectively. The func-
tion h in (2.1) is called the impulse response of the system, and causality
means that h(t) =0 for t < 0.

The above system has an equivalent state-space description

x(t) = Ax(t) + Bu(t) 2.2)
y(t) = Cx(t) + Du(t) '
where A, B, C, D are real matrices of appropriate dimensions.

An alternative input-output description, which is of special interest
here, makes use of the transfer function,® corresponding to system (2.1).
The transfer function, H say, is given by the Laplace transform of h in
(2.1),i.e,

H(s) = Joo e Sth(t)dt.
0

After taking Laplace transform, (2.1) takes the form
Y(s) =H(s)U(s) , (2.3)

where U and Y are the Laplace transforms of the input and output signals
respectively.
The transfer function is related with the state-space description as fol-
lows
H(s) = C(sI—A)"'B+D,

which is sometimes denoted as

2]

1For an introduction to these concepts see e.g., Kailath (1980), or Sontag (1990) for a more
mathematically oriented perspective.

2Chapters 3 and 4 assume LTI systems in continuous time, Chapter 5 deals with period-
ically time-varying systems in discrete time, and Chapter 6 with sampled-data systems, i.e.,
a combination of digital control and LTI plants in continuous time.

3Sometimes the name transfer matrix is also used in the multivariable case.
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We next discuss some properties of transfer functions. The transfer func-
tion H in (2.4) is a matrix whose entries are scalar rational functions (due
to the hypothesis of finite-dimensionality) with real coefficients. A scalar
rational function will be said to be proper if its relative degree, defined as the
difference between the degree of the denominator polynomial minus the
degree of the numerator polynomial, is nonnegative. We then say that a
transfer matrix H is proper if all its entries are proper scalar transfer func-
tions. We say that H is biproper if both H and H™! are proper. A square
transfer matrix H is nonsingular if its determinant, det H, is not identically
Zero.

For a discrete-time system mapping a discrete input sequence, uy, into
an output sequence, Yy, an appropriate input-output model is given by

Y(z) = H(z)U(z)

where U and Y are the Z transforms of the sequences uy and yi, and are
given by

U(z) = Zuk 27k and Y(z) = Zyk 27k
k=0 k=0

and where H is the corresponding transfer matrix in the Z-transform do-
main. All of the above properties of transfer matrices apply also to transfer
functions of discrete-time systems.

2.1.1 Zeros and Poles

The zeros and poles of a scalar, or single-input single-output (SISO), transfer
function H are the roots of its numerator and denominator polynomials
respectively. Then H is said to be minimum phase if all its zeros are in the
OLHP, and stable if all its poles are in the OLHP. If H has a zero in the
CRHP, then H is said to be nonminimum phase; similarly, if H has a pole in
the CRHP, then H is said to be unstable.

Zeros and poles of multivariable, or multiple-input multiple-output
(MIMO), systems are similarly defined but also involve directionality
properties. Given a proper transfer matrix H with the minimal realiza-
tion* (A, B, C,D) as in (2.2), a point q € C is called a transmission zero® of
H if there exist complex vectors x and ¥, such that the relation

" v {ql__CA :g] —0 2.5)

4A minimal realization is a state-space description that is both controllable and observ-
able.

5Since transmission zeros are the only type of multivariable zeros that we will deal with,
we will often refer to them simply as “zeros”. See MacFarlane and Karcanias (1976) for a
complete characterization.
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holds, where ¥;W¥,=1 (the superscript ‘" indicates conjugate transpose).
The vector V¥, is called the output zero direction associated with q and, from
(2.5), it satisfies W H(q) = 0. Transmission zeros verify a similar property
with input zero directions, i.e., there exists a complex vector ¥;, Vi¥; =1,
such that H(q)¥; = 0. A zero direction is said to be canonical if it has only
one nonzero component.

For a given zero at s = q of a transfer matrix H, there may exist more
than one input (or output) direction. In fact, there exist as many input (or
output) directions as the drop in rank of the matrix H(q). This deficiency
in rank of the matrix H(s) at s = q is called the geometric multiplicity of the
zero at frequency g.

The poles of a transfer matrix H are the eigenvalues of the evolution
matrix of any minimal realization of H. We will assume that the sets of
ORHP zeros and poles of H are disjoint. Then, as in the scalar case, H is
said to be nonminimum phase if it has a transmission zero at s = q with g in
the CRHP. Similarly, H is said to be unstable if it has a pole at s = p with p
in the CRHP. By extension, a pole in the CRHP is said to be unstable, and
a zero in the CRHP is called nonminimum phase.

It is known (e.g., Kailath, 1980, p. 467) that if H admits a left or right
inverse, then a pole of H will be a zero of H™'. In this case we will refer to
the input and output directions of the pole as those of the corresponding
zero of H™'.

With a slight abuse of terminology, the above notions of zeros and poles
will be used also for nonproper transfer functions, without of course the
state-space interpretation.

Finally, poles and zeros of discrete-time systems are defined in a simi-
lar way, the stability region being then the open unit disk instead of the
OLHP. In particular, a transfer function is nonminimum phase if it has ze-
ros outside the open unit disk, ID, and it is unstable if it has poles outside
D.

For certain applications, it will be convenient to factorize transfer func-
tions of discrete systems in a way that their zeros at infinity are explicitly
displayed.

Example 2.1.1. A proper transfer function corresponding to a scalar discrete-
time system has the form

R Y s
Szt aizv T+t ag

H(z) , (2.6)

where n > m. Let 6 = n—m be the relative degree of H given above. Then
H can be equivalently written as

H(z) = H(z)z7?, (2.7)
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where H is a biproper transfer function, i.e., it has relative degree zero.
Note that (2.7) explicitly shows the zeros at infinity of H.® o

2.1.2  Singular Values

At a fixed point s € C, let the singular value decomposition (Golub and
Van Loan, 1983) of a transfer matrix H € C**™ be given by

H(s) = ) oi(H(s))vi (H(s)wi(H(s)) ,

i=1

where o3 (H(s)) are the singular values of H(s), and are ordered so that o7 >
02 > -+ > on. Each set of vectors v; and u; form an orthonormal basis of
the space C™ and are termed the left and right singular vectors, respectively.
When the singular values are evaluated on the imaginary axis, i.e., for
s = jw, then they are called principal gains of the transfer matrix, and
the corresponding singular vectors are the principal directions. Principal
gains and directions are useful in characterizing directionality properties
of matrix transfer functions (Freudenberg and Looze, 1987).

It is well-known that the singular values of H can be alternatively deter-
mined from the relation

ot (H(s)) = A(H*(s)H(s)) , (2.8)

where Ai(H*H) denotes the i-th eigenvalue of the matrix H*H. We will
denote the largest singular value of H by o(H), and its smallest singular
value by o(H).

2.1.3 Frequency Response

The frequency response of a stable system, is defined as the response in
steady-state (i.e., after the natural response has died out) to complex si-
nusoidal inputs of the form u = ug e/®t where ug is a constant vector. It
is well known that this response, denoted by yss, is given by

Yss(t) = H(jw) uo vt

Hence, the steady-state response of a stable transfer function H to a com-
plex sinusoid of frequency w is given by the input scaled by a “complex
gain” equal to H(jw).

For scalar systems, note that Hjw) = [H(jw)|e] arg H(jw) Tt §s usual to
call H(jw) the frequency response of the system, and [H(jw)| and arg H(jw)

®Note that the transfer function H(z) has, including those at co, the same number of zeros
and poles, i.e.,, n. In fact, a rational function assumes every value the same number of times
(e.g., Markushevich, 1965, p. 163), 0 and oo being just two particular values of interest.
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the magnitude and phase frequency responses, respectively. Note that the
magnitude frequency response gives the “gain” of H at each frequency,
i.e., the ratio of output amplitude to input amplitude. It is a common
practice to plot the logarithm of the magnitude response,” and the phase
response versus w on a logarithmic scale. These are called the Bode plots.

For multivariable systems, the extension of these concepts is not unique.
One possible characterization of the gain of a MIMO system is by means of
its principal gains, defined in §2.1.2. In particular, the smallest and largest
principal gains are of special interest, since

Hiw)u(jw)|
u(jw)l

oH(jw)) < <o(H(w)), (2.9)

where | - | denotes the Euclidean norm. Hence, the gain of H (understood
here as the ratio of output norm to input norm) is always between its
smallest and largest principal gains.

A useful measure of the gain of a system is obtained by taking the supre-
mum over all frequencies of its largest principal gain. Let H be proper
transfer function with no poles on the imaginary axis; then the infinity
norm of H, denoted by ||H|| 0, is defined as

[Hlloo =supo(H(w)) . (2.10)

For scalar systems o(H(jw)) = |H(jw)|, and hence the infinity norm is
simply the peak value of the magnitude frequency response.

2.1.4 Coprime Factorization

Coprime factorization of transfer matrices is a useful way of describing
multivariable systems. It consists of expressing the transfer matrix in ques-
tion as a “ratio” between stable transfer matrices. Due to the noncommu-
tativity of matrices, there exist left and right coprime factorizations. We
will use the notation “lcf” and “rcf” to stand for left and right coprime
factorization, respectively.

The following definitions are reviewed from Vidyasagar (1985).

Definition 2.1.1 (Coprimeness). Two stable and proper transfer matrices
D, N (N, D) having the same number of rows (columns) are left (right)
coprime if and only if there exist stable and proper transfer matrices Y, X
(X, Y) such that

NX+DY=1. (XN+YD =1.)

7Frequently in decibels (dB), where [H|qp = 201og, , [HI.
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Definition 2.1.2 (Lcf, Ref). Suppose H is a proper transfer matrix. An or-
dered pair, (D, N), of proper and stable transfer matrices is a lcf of H if D
is square and det(D) # 0, H=D~'N, and D, N are right coprime.
Similarly, an ordered pair (N, D), of proper and stable transfer matrices
is a ref of Hif D is square and det(D) # 0, H = ND~',and N, D are right
coprime. o

N and N will be called the numerators of the lcf or rcf, respectively. Sim-
ilarly, D and D will be called the denominators of the Icf or rcf, respectively.

Every proper transfer matrix admits left and right coprime factoriza-
tions. Also, if H=D~"'N = ND !, then (Kailath, 1980, Chapter 6)

e qisa zero of Hif and only if N(s) (N(s)) loses rank at s = q.

e pisa pole of Hif and only if D(s) (D(s)) loses rank at s = p.

Note that all of the concepts defined above apply to both continuous
and discrete-time systems. In particular, for continuous-time systems, the
factorizations are performed over the ring of proper transfer matrices with
poles in the OLHP; on the other hand, for discrete-time systems, the fac-
torizations are performed over the ring of proper transfer matrices with
poles in the open unit disk.

2.2 Feedback Control Systems

Most of Part Il is concerned with the unity feedback configuration of Fig-
ure 2.1, where the open-loop system, L, is formed of the series connection of
the plant, G, and controller, K, i.e.,

L=GK.

In broad terms, the general feedback control problem is to design the con-
troller for a given plant such that the output, y, follows the reference input,
T, in some specified way. This task has to be accomplished, in general,
in the presence of disturbances affecting the loop. Two common distur-
bances are output disturbances, d, and sensor or measurement noise, w. The
design generally assumes a nominal model for the plant, and then takes
additional precautions to ensure that the system continues to perform in
a reasonable fashion under perturbations of this nominal model.

We consider throughout the rest of this chapter that the (nominal) plant
and controller are continuous-time, linear, time-invariant systems, described
by transfer functions G and K respectively. Some of these assumptions will
be relaxed in other chapters.
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FIGURE 2.1. Feedback control system.

2.2.1 Closed-Loop Stability

A basic requirement for a feedback control loop is that of internal stability,
or simply closed-loop stability, according to the following definition.

Definition 2.2.1 (Internal Stability). Let the open-loop system in Fig-
ure 2.1 be given by L = GK. Then the closed loop is internally stable if
and only if I + GK is nonsingular and the four transfer functions

(I+GK)™! —(I+GK)'G
K(I+GK)™" I—K(I+GK)“'G|
have all of their poles in the OLHP. o

We say that L is free of unstable hidden modes if there are no cancelations
of CRHP zeros and poles between the plant and controller whose cascade
connection forms L. In the multivariable case, cancelations involve both
location and directions of zeros and poles. For example, if the plant and
controller are expressed using coprime factorizations as

G=Dg'Ng =NgDg',

K= DE”{JK = NKDE1 ,
then L = GK has an unstable hidden mode if D¢ and N share an ORHP
zero with the same input direction (Gémez and Goodwin, 1995). It is easy
to see that the closed loop is not internally stable if L has unstable hidden
modes.

For discrete-time systems, the above concepts apply with the correspond-
ing definition of the stability region.

2.2.2  Sensitivity Functions

From Figure 2.1 we see that
Y=D+LR-W-Y].
Solving for Y we have

Y=(I+L)"'"D+L(I+L)"R-W]. (2.11)
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The above expression suggests that two functions of central interest in the
design of feedback systems are the sensitivity function, S, and complemen-
tary sensitivity function, T, given respectively by

S(s)=[0+L(s))"", and T(s)=L(s)I+L(s)]'. (212

We see that S maps output disturbances to the output, and T maps both
reference and sensor noise to the output. It is also straightforward to check
that S also maps the reference input to the error in Figure 2.1.% In fact, S
and T are intimately connected with closed-loop performance and robust-
ness properties, as we show in the following subsections.

2.2.3 Performance Considerations

If the closed loop is internally stable, S and T are stable transfer functions.
Then, the steady-state response of the system output to a disturbance d =
doe'“t, for do € C™, is given by (cf. §2.1.3)

yalt) = Sw)doe’®" .

Thus, the response to d can be made small by requiring |S(jw)do| < 1.
Clearly, from (2.9), the response of the system to output disturbances of
any direction and frequency w can be made small if

(SGw)) < 1. (2.13)

A similar analysis for T shows that the response of the system to sensor
noise of any direction and frequency w can be made small if

o(ThHw)) <« 1. (2.14)

Recall that T also maps the reference input to the system output. It is
thus clear that the feedback loop will have poor performance unless the
frequency content of the reference input and the measurement noise are
disjoint. This shows that there is an inherent trade-off between reference
tracking and noise attenuation.

Another trade-off arises between attenuation of output disturbances
and sensor noise. Namely, the relationship S+ T = I implies that the speci-
fications (2.13) and (2.14) cannot be both satisfied over the same frequency
range.

The above discussion suggests that a sensible design should focus on
achievable specifications. Consider, for example, the scalar case. If we as-
sume that the reference input has low frequency content (which is typi-
cally the case), then it is reasonable to require

Tw)l~1, Yw € [0, wq],

81n the following chapters, d and w in this figure are frequently set to zero; the reader is
asked to keep in mind that S and T also lead the output response to these signals.
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for some wj. This is equivalent to
ISHw)| <« 1, Yw € [0, wq] . (2.15)

Note that the above specification implies that output disturbances having
frequency content in the range [0, wq] will be attenuated at the system
output. However, making w1 too large may result in large magnitudes
at the plant input. To see this, note that |S| = 1/|1 + L| can only be made
small by making the magnitude of the open-loop system L = GK large.
However, making the open-loop gain large over a frequency range where
the gain of the plant |G| is small requires a high controller gain; hence, the
response of the plant input to disturbances in this range will be very large,
usually leading to saturation. We conclude that the range of sensitivity
reduction (and thus of reference tracking) is limited by the plant’s input
response to disturbances.

It is then common to aim at a design that achieves specifications of the
form

IS(w)l <1, Vw € [0, wq],
Tw)l <1, Vw € [wz,00),

for some w, > w;. Typical shapes for S and T satisfying specifications of
this kind are shown in Figure 2.2.

1t 1
3 3
[k =4
2 o5 E o5
o ‘ ; ; o
107 107 10° 10" 10° 107
2}

FIGURE 2.2. Typical shapes for |S(jw)| and [T (jw)!.

If the above requirements are satisfied, then the peak values of Sand T
will occur in the intermediate range (w1, w;). It is desirable to keep these
peaks as small as possible in order to avoid overly large sensitivity to dis-
turbances and excessive influence of sensor noise. A key point to emerge
later in the book, however, is that nonminimum phase zeros and unsta-
ble poles of the open-loop system impose lower limits on the achievable
peaks of the sensitivity and complementary sensitivity functions.
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2.2.4 Robustness Considerations

If the actual plant, G say, differs from the nominal model G, then ad-
ditional requirements are needed to preserve stability and good perfor-
mance. The usual procedure is to consider a particular model for the al-
lowable perturbations (usually based on practical considerations), and then
to impose a condition on the design that will guarantee robust stability
(and/or performance) for all perturbed plants within the set of models
having the allowable perturbations.

Two common models used to describe plant uncertainty are divisive
and multiplicative perturbation models. The (input) divisive perturbation
model, or perturbation of the plant inverse, assumes that

G=G(I+A)", (2.16)

where A is a stable transfer function satisfying a frequency dependent
magnitude bound

o(Aljw)) < W(w), Vo . (2.17)
The (output) multiplicative perturbation model assumes that
G=(I+A)G, (2.18)

where A is a stable transfer function satisfying a frequency dependent
magnitude bound similar to (2.17). If this is the only information avail-
able about the uncertainty, then A is termed unstructured uncertainty.

It turns out that the sensitivity and complementary sensitivity functions
each characterize stability robustness of the system against divisive and
multiplicative plant uncertainty respectively. Indeed, the feedback system
will be stable for all plants described by (2.16), (2.17), with A stable, if and
only if the system is stable when A = 0 and

o(SHw)) < 1/ W(w) , Yw , (2.19)

where W is the bound in (2.17).

Similarly, if the nominal closed loop is stable, then the perturbed closed
loop will remain stable for all plants described by (2.18), (2.17), with A
stable, if and only if

o(THw)) < 1/W(w) , Yw . (2.20)

We remark that the same condition (2.19) is also necessary and sufficient
for robust stability against additive perturbations of the open-loop of the
form [ = L + A, where A is stable and satisfies (2.17).

Note that specifications such as (2.19) and (2.20) give more insights into
the desirable shapes for S and T. For example, in the scalar case, a typical
bound W/(w) for multiplicative perturbation grows at high frequencies.’

9The multiplicative perturbation model is useful to describe high frequency modelling
inaccuracy, common in practice (Doyle and Stein, 1981).
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Thus, robust stability against multiplicative uncertainty requires that [T (jw)|
be small at high frequencies.

Finally, we briefly turn to performance robustness considerations. We
have seen in §2.2.3 that S and T are indicators of feedback system perfor-
mance. We will next consider how these functions are affected by plant
variations. We focus on the scalar case but similar conclusions hold, mu-
tatis mutandis, for multivariable systems.

Assume that the loop gain changes from its nominal value L to its actual
value L. It is not difficult to show that the relative changes in the sensitivity
and complementary sensitivity functions are given by
- S _ T L-L ’

S L
T-T _L-L

T L

These relations show that the sensitivity function will be robust with re-
spect to changes in the loop gain in those frequency ranges where the
nominal complementary sensitivity is small (typically at high frequen-
cies); conversely the complementary sensitivity will be robust with respect
to changes in the loop gain in those frequency ranges where the nominal
sensitivity is small (typically at low frequencies).

2.3 Two Applications of Complex Integration

In the previous section we discussed the importance of attaining a desired
shape for the frequency response of relevant transfer functions of feed-
back control loops. As we will see later, zeros and poles of the plant to be
controlled impose restrictions on the behavior of these functions at partic-
ular complex frequencies in the ORHP. A powerful tool exists by means
of which these restrictions in the ORHP can be transformed directly into
equivalent constraints on the frequency response. Indeed, the imaginary
axis can be looked upon as the boundary of the ORHP, which is the region
where the special restrictions on the transfer functions occur, so that the
broad mathematical problem is that of relating the behavior of a function
inside a region to its behavior on the boundary of the region. A mechanism
for this purpose is found in Cauchy’s theory of analytic functions and its
integrals around closed contours. The remainder of the book will make
extensive use of this theory, and a self-contained review of this theory is
given in Appendix A for convenience.

As a preliminary use of Cauchy’s theory of complex integration, we will
present two well-known applications. First we will establish the Nyquist
stability theorem. We treat the continuous-time case; however, similar ar-
guments apply to the discrete-time problem. As a second application, we
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will derive the Bode gain-phase relationship. The latter relationship will
also serve as an introduction to the constraints introduced by nonmini-
mum phase zeros on the achievable shape of the frequency response.

2.3.1 Nyquist Stability Criterion

The Nyquist criterion depends on a result known as the Principle of the
Argument. This result uses the residue theorem (Theorem A.9.1 in Ap-
pendix A) to obtain information about the number of zeros of an analytic
function (or about the number of zeros minus the number of poles of a
meromorphic function.!”

Theorem 2.3.1 (Principle of the Argument). Let C be a closed simple con-
tour contained in a simply connected domain D. Let f be a meromorphic
function in D and suppose that f has no zeros or poles on C. Let nq be
the number of zeros and n,, the number of poles of f in the interior of C,
where a multiple zero or pole is counted according to its multiplicity. Then

fls) .
ﬂgc ) ds =j2n(ng —myp), (2.21)

where f’ denotes the derivative of f, and integration in (2.21) is performed
in the counter-clockwise direction.

Proof. The only possible singularities of the meromorphic function f’/f
inside C are the zeros and poles of f. Suppose that s, represents a zero or
pole of f with multiplicity n. We can write

f(s) = (s —s0)"f(s) (2.22)
where f is analytic in a neighborhood of so and f(so) # 0. Hence

f'ls)  n f'(s)
f(s)  s—so * f(s) 223

in a neighborhood of so. Thus the residue of f’/f at sp is n (see §A.9.1 in
Appendix A). Note that n is positive if s¢ is a zero of f, and 1 is negative if
so is a pole of f. Applying Theorem A.9.1 of Appendix A yields (2.21) and
completes the proof. O

We will next see why Theorem 2.3.1 is called the principle of the argu-
ment. Let the equation for C be s = s({), with Cin [a, b] and let & = f(s).
Consider now the image of C under f, C say. Thus, the equation of C in
the & plane is

£=1(s(C), Celab].

10A function is meromorphic in a domain D if it is defined and analytic in D except for
poles.
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Since f is never zero on C, then the curve C does not pass through the
origin of the & plane. Hence, it is possible to define a continuous logarithm

F(C) = log f(s(C))

on C.On any smooth portion of C, we have, by differentiation,

and hence, by the fundamental theorem of calculus (cf. (A.18) in Appendix A),

b

Jb f'(s(0)

T(s(0) s'(¢) d¢ =logf(s(())

a

This is equivalent to

=log|f(s)]

% fis) ds =logf(s)
c c

f(s)

+jargf(s)
C C

The first term on the right is zero since C is closed. Then, dividing by 27
and using (2.21), we get

2n(ng —np) = argf(s) (2.24)

C

That is, ng — 1y, is the number of times the image curve C winds around
the origin in the & plane, when C is traversed in the counter-clockwise
sense.

The principle of the argument finds immediate application in the Nyquist
stability criterion. Specifically, let L = GK be the open-loop transfer func-
tion of the feedback control system shown in Figure 2.1. Assume further
that L is scalar. We have seen in §2.2.1 that the closed loop is internally
stable if and only if there are no unstable cancelations in L, L(co) # —T,
and all the zeros of the characteristic equation

T+1L(s) =0 (2.25)

have negative real part.

Consider next the contour C shown in Figure 2.3, consisting of the imag-
inary axis and a semicircle of infinite radius into the ORHP. If L has poles
on the imaginary axis, then C must have small indentations to avoid them.
Such a contour is called Nyquist contour and its image through L(s) is
called the Nyquist plot of L.

A necessary and sufficient condition for closed-loop stability is furnished
by the following theorem.
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jw

FIGURE 2.3. Nyquist contour.

Theorem 2.3.2 (Nyquist Stability Criterion). The feedback control sys-
tem of Figure 2.1 is internally stable if and only if L(co) # —1 and the
number of counter-clockwise revolutions made by the Nyquist plot of the
open-loop transfer function L = GK around the point s = —1, is equal to
the number of unstable poles of G plus the number of unstable poles of K.

Proof. We apply Theorem 2.3.1 to the function f = 1+ L using the Nyquist
contour, C in Figure 2.3 (note that now integration is in the clockwise di-
rection). Any pole or zero of 1 + L with positive real part will therefore lie
within this contour. Thus, closed-loop stability is equivalent to ng = 0 in
(2.21) or (2.24).

It follows from (2.24) that the phase-shift increment of 1+ L(s) as s tra-
verses the Nyquist contour is 27t (n, — 1), where n,, is the number of un-
stable poles of L. But, since L and 1+-L have the same poles, it is equivalent
to count revolutions of L(s) around the point (—1,0). Thus the number of
counter-clockwise revolutions of the Nyquist plot of L = GK around the
point s = —1 is different from the number of unstable poles of G plus the
number of unstable poles of K if and only if there is an unstable cancela-
tion in L, or 1 4 L is nonminimum phase (i.e., nq # 0). The result then
follows. O

Example 2.3.1. Let L in Figure 2.1 be a strictly proper transfer function.
Since L(Re’?) vanishes as R becomes infinite, it follows that the phase-shift
of 1 + L(s) as s traverses the Nyquist contour is given by its phase-shift
when s moves on the imaginary axis. Moreover, since L has real coeffi-
cients, then it suffices to consider 2 times the phase-shift encountered as s
moves along the positive imaginary axis. Also, note that 1 + L(jw) is the
vector from the —1 point to the point on the Nyquist plot at frequency w.

Now assume that L is strictly proper and has one unstable pole. Ac-
cording to the Nyquist stability criterion and the previous discussion, if
the closed loop is stable, then the vector 1 + L(jw) must rotate an angle
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of 7 (in the counter-clockwise sense) as w goes from 0 to co. But, since L
is strictly proper, 1 4 L(joo) is the vector from the —1 point to the origin
of the complex plane. It thus follows that closed-loop stability requires
L(O) < -1 o

2.3.2  Bode Gain-Phase Relationships

As a further application of analytic function theory, we will review the
gain-phase relationships originally developed by Bode (1945), which es-
tablish that, for a stable minimum phase transfer function, the phase of
the frequency response is uniquely determined by the magnitude of the
frequency response and vice versa.

We begin by showing that the real and imaginary parts of a proper sta-
ble rational function with real coefficients are dependent of each other. We
consider this dependence at points of the imaginary axis.

Theorem 2.3.3 (Bode’s Real-imaginary Parts Relationship). ' Let Hbe a
proper stable transfer function, and suppose that, at s = jw, H(s) can be
written as H(jw) = U(w) + jV(w), where U and V are real valued. Then
for any wo

V(wo) = dw . (2.26)

T 2

2wo J'°° U(w) — U(wo)
0 wz — Wy

Proof. Let C be the clockwise oriented contour shown in Figure 2.4, and
consisting of the imaginary axis, with infinitely small indentations at the
points +jwo and —jwp (C2 and Cjz in Figure 2.4), and the semicircle C;,
which has infinite radius in the ORHP2.

Then the functions

H(s) — U(wo) and H(s) — U(wo)
s —jwo s+jwo

are analytic on and inside C. Hence, applying Cauchy’s integral theorem
(see §A.5.2 in Appendix A) to both functions and subtracting yields

H(s) — H(s) —
ﬂg ( (s) .U(wo) _ His) _U(wo)) ds — 0. (227)
c S —J)Wo S +Jjwo
The integral above may be decomposed as
zwoJ deJrhnLIerIg:O, (2.28)
o w? —w§

1This is, in fact, one of the many real-imaginary relationships derived by Bode .

12This should be understood as follows: the indentations on the imaginary axis have radii
p > 0, and the large semicircle in the ORHP has finite radius R. These are then considered
in the limit as p — 0 and R — o0. In fact, the large semicircle is nothing but an indentation
around co.
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jw

jwo D
C

—jwo '>

G

FIGURE 2.4. Contour used in Theorem 2.3.3.

where I, I, and I3 are the integrals over C;, C;, and Cj3 respectively. The
integral on the imaginary axis can be written as

2 |7 BN U00) g,y [ Ul W),
—0o0 -— %o 0 - W

since the real and imaginary parts of a transfer function evaluated at s =
jw are even and odd functions of w respectively.

Next note that the integral Iy vanishes because H is proper.

Now consider the integral I,. Since the radius of C; is infinitely small,
we can approximate H(s) on C, by the constant H(jwg). We can also ne-
glect the contribution of the fraction 1/(s +jw) in comparison with that of
1/(s —jw). Then

L :J' H{jwo) — U(wo) ds
Ca

s —jwo
1
c, S—Jjwo

= —nV(wo) ,

ds

=Mwo)J

where the last step follows from (A.32) in Appendix A.
Similarly, we can show that the integral I3 equals —7V(wy). Finally, sub-
stituting into (2.28) and rearranging gives the desired expression. O

The above theorem shows that values on the jw-axis of the imaginary
part of a stable and proper transfer function can be reconstructed from
knowledge of the real part on the entire jw-axis. Conversely, under the
assumption that the transfer function is strictly proper and stable, it can be
shown that the real part can be obtained from the imaginary part, i.e.,

2 J‘” w [V(w) — V(wo)]

U(wp) = —77[

0 s dw , (2.29)
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which follows similarly by adding instead of subtracting in (2.27).

It is shown in §A.6 of Appendix A that the values of a function analytic
in a given region can be reconstructed from its values on the boundary.
Combining this with relations (2.26) and (2.29), we deduce that the val-
ues of a stable and strictly proper transfer function on the CRHP are com-
pletely determined by the real or imaginary part of its frequency response.

We will next show that the gain and the phase of the frequency response
of a stable, minimum phase transfer function are dependent on each other.

Theorem 2.3.4 (Bode’s Gain-phase Relationship). Let H be a proper, sta-
ble, and minimum phase transfer function, such that H(0) > 0. Then, at
any frequency wy, the phase ¢(wo) £ arg H(jwy) satisfies

d(wo) = :—TJiO w logcoth’%‘ du, (2.30)
where u = log(w/wy).
Proof. Consider
H(jwo) = U(wo) +jV(wo) £ [H(jwo)| ¥ (2.31)

Since H has no zeros in the CRHP, taking logarithms in (2.31) gives
log H(jwo) = log [H(jwo)l +jdb(wo) = m(wo) +jdb(wo). (2.32)

Comparing (2.31) and (2.32) shows that the magnitude characteristic m(wy)
and the phase ¢(wy) are related to log H(jwo) and to each other in the
same way that U(wy) and V(wy) are related to H(jwy) and each other.
Hence (2.29) and (2.26) immediately imply

m(ws) _%E" w [(1)5;)_—(232(000)] dw | (233)
0

d(wo) = 2:" JO m(z)z__t(zw()) dw . (2.34)
0

Note that the assumption that H has no zeros or poles in the CRHP guar-
antees the validity of the integrals above, since log H is analytic in the
finite CRHP. The singularity at oo arising from a strictly proper H is ruled
out in the chosen contour of integration (see footnote 12 on page 40). The
fact that |log H(s)|/|s| — 0 when |s| — oo eliminates the integral along the
large semicircle in the ORHP.

Next, consider (2.34). Changing variables to u = log(w/wy) and denot-
ing m(u) = m(w) gives

plw) = 2 [ Pl 4,
1 mu) —m(wy)
o %J'_oo sinh(u) du.
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Dividing the complete range of integration into separate ranges above and
below u = 0 and integrating by parts yields

1J° m(u) — m(wo) 1J°° m(u) — m(wo) du

simh(w) T %], T sinh(w)
0

[ (u) — m(wo)] log coth (‘T“)

—oQ

1 0 dﬁ’L(u) —u (2 35)
+ %J'_Oo 0 log coth (T) du

o

[ (u) — m(wo)] log coth (%)

0

T

1 (* dm(u) u
Jo log coth (E) du.

Near u = 0, the quantity m(u) — m(wy) behaves proportionally to u,
whilst log coth(u/2) will vary as —log(u/2). Thus, at the limit u — 0, the
integrated portions of (2.35) behave as u logu, which is known to van-
ish as u — 0. As for the other limits, we have that lim,_, o m(u) =
lim,_,0 m(w) = m(0), which is finite since H is stable and minimum
phase; also lim, o ™ (u) logcoth(u/2) = limy 0 M(w)2(wo/w) = 0.
Hence both integrated portions in (2.35) are equal to zero. The result then
follows on combining the remaining two integrals in (2.35). O

The implications of (2.30) can be easily appreciated using properties of
the weighting function appearing in (2.30), namely

w + Wwo

(2.36)

logcoth‘%‘ log’w_w0

This function is plotted in Figure 2.5.

As we can see from this figure, the weighting function becomes logarith-
mically infinite at the point w = wy. Thus, we conclude from (2.30) that
the slope of the magnitude curve in the vicinity of wy, say ¢, determines
the phase ¢(wo):

o0

c u c 2 m
dlwo) =~ p Joo log coth ‘5‘ du=—

n2 2
Hence, for stable and minimum phase transfer functions, a slope of 20c
dB/decade in the gain in the vicinity of wo implies a phase angle of ap-
proximately ¢ 7t/2 rad sec™'.

The above arguments lead classical designers to conclude that, to ensure
closed-loop stability, the slope of the open-loop gain characteristic, [L(jw),

should be in the range -20 to -30 dB/decade at the gain cross-over point
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2.5

157

log (coth u/2])

-1 ‘ 0 1
10 10 10
el

FIGURE 2.5. Weighting function of the Bode gain-phase relationship.

(i.e., at the frequency at which |L| = 1 or 0 dB), since this would imply the
phase would be less than 180° i.e. the Nyquist plot would not encircle the
-1’ point.

Example 2.3.2. Let us consider the X-29 aircraft design example discussed
in §1.1 of Chapter 1. This system is (approximately) modelled by a strictly
proper transfer function, G, which is unstable and nonminimum phase.
For one flight condition, the unstable pole is at 6 and the nonminimum
phase zero at 26. It is desired to use a stable, minimum phase controller in
series with G, such that the closed loop is stable and has a phase margin
of /4. Consider the open-loop system formed by the cascade of plant and
controller and modeled by a transfer function, L say. This system is neither
stable nor minimum phase in open loop. However, we can associate with
L another transfer function, T, defined as follows

L(s)—t(s)<ztz) (213) , (2.37)

where [ is stable, minimum phase, and such that £(0) > 0, and where p
and q correspond to the (real) ORHP pole and zero of G respectively.'®
The negative sign in (2.37) is necessary to guarantee a stable closed loop
(see Example 2.3.1). We note that

ILiw)l = LHw)] . (2.38)

Now from (2.37) we have that ¢(wg) £ arg L(jwo) is given by

Poiwo JWo +4q

= iG — .
dlwo) =argL(jwo) —arg -8 —argy o

13Actually, the device used above to associate a stable, minimum phase transfer function
with an unstable, nonminimum phase one will be used repeatedly in subsequent chapters.
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Also, since [ is stable, minimum phase, and L(0) > 0, we can use (2.30) to
obtain

1 [ dlog|L(jwoeY)] u (p—jwo)(jwo+4q)
wy) = — ——=———— logcoth |- | du—ar - - .
Plwo) =2 — 4 goth |3 & (p+iwo)jwo—a)
Finally, using (2.38) we obtain
1 (> dlog|L(jwee")| u (p—jwo)(jwo+4q)
wp) = — —2——— logcoth |- | du—ar . -
b(wo) T o du & 2 g(P-i-