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Series Preface

Signal processing applications are now widespread. Relatively cheap consumer
products through to the more expensive military and industrial systems extensively
exploit this technology. This spread was initiated in the 1960s by the introduction of
cheap digital technology to implement signal processing algorithms in real-time for
some applications. Since that time semiconductor technology has developed rapidly
to support the spread. In parallel, an ever increasing body of mathematical theory
is being used to develop signal processing algorithms. The basic mathematical
foundations, however, have been known and well understood for some time.

Signal Processing and its Applications addresses the entire breadth and depth
of the subject with texts that cover the theory, technology and applications of signal
processing in its widest sense. This is reflected in the composition of the Editorial
Board, who have interests in:

(i) Theory – The physics of the application and the mathematics to model the
system;

(ii) Implementation – VLSI/ASIC design, computer architecture, numerical
methods, systems design methodology, and CAE;

(iii) Applications – Speech, sonar, radar, seismic, medical, communications (both
audio and video), guidance, navigation, remote sensing, imaging, survey,
archiving, non-destructive and non-intrusive testing, and personal entertain-
ment.

Signal Processing and its Applications will typically be of most interest to post-
graduate students, academics, and practising engineers who work in the field and
develop signal processing applications. Some texts may also be of interest to final
year undergraduates.

Richard C. Green
The Engineering Practice,

Farnborough, UK
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Preface

It is hoped that this book will serve both as a text in time-series analysis and signal
processing and as a reference book for research workers and practitioners. Time-
series analysis and signal processing are two subjects which ought to be treated
as one; and they are the concern of a wide range of applied disciplines includ-
ing statistics, electrical engineering, mechanical engineering, physics, medicine and
economics.

The book is primarily a didactic text and, as such, it has three main aspects.
The first aspect of the exposition is the mathematical theory which is the foundation
of the two subjects. The book does not skimp this. The exposition begins in
Chapters 2 and 3 with polynomial algebra and complex analysis, and it reaches
into the middle of the book where a lengthy chapter on Fourier analysis is to be
found.

The second aspect of the exposition is an extensive treatment of the numerical
analysis which is specifically related to the subjects of time-series analysis and
signal processing but which is, usually, of a much wider applicability. This be-
gins in earnest with the account of polynomial computation, in Chapter 4, and
of matrix computation, in Chapter 7, and it continues unabated throughout the
text. The computer code, which is the product of the analysis, is distributed
evenly throughout the book, but it is also hierarchically ordered in the sense that
computer procedures which come later often invoke their predecessors.

The third and most important didactic aspect of the text is the exposition of
the subjects of time-series analysis and signal processing themselves. This begins
as soon as, in logic, it can. However, the fact that the treatment of the substantive
aspects of the subject is delayed until the mathematical foundations are in place
should not prevent the reader from embarking immediately upon such topics as the
statistical analysis of time series or the theory of linear filtering. The book has been
assembled in the expectation that it will be read backwards as well as forwards, as
is usual with such texts. Therefore it contains extensive cross-referencing.

The book is also intended as an accessible work of reference. The computer
code which implements the algorithms is woven into the text so that it binds closely
with the mathematical exposition; and this should allow the detailed workings of
the algorithms to be understood quickly. However, the function of each of the Pascal
procedures and the means of invoking them are described in a reference section,
and the code of the procedures is available in electronic form on a computer disc.

The associated disc contains the Pascal code precisely as it is printed in the
text. An alternative code in the C language is also provided. Each procedure is
coupled with a so-called driver, which is a small program which shows the procedure
in action. The essential object of the driver is to demonstrate the workings of
the procedure; but usually it fulfils the additional purpose of demonstrating some
aspect the theory which has been set forth in the chapter in which the code of the
procedure it to be found. It is hoped that, by using the algorithms provided in this
book, scientists and engineers will be able to piece together reliable software tools
tailored to their own specific needs.
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The compact disc also contains a collection of reference material which includes
the libraries of the computer routines and various versions of the bibliography of
the book. The numbers in brackets which accompany the bibliographic citations
refer to their order in the composite bibliography which is to be found on the disc.
On the disc, there is also a bibliography which is classified by subject area.

A preface is the appropriate place to describe the philosophy and the motiva-
tion of the author in so far as they affect the book. A characteristic of this book,
which may require some justification, is its heavy emphasis on the mathematical
foundations of its subjects. There are some who regard mathematics as a burden
which should be eased or lightened whenever possible. The opinion which is re-
flected in the book is that a firm mathematical framework is needed in order to bear
the weight of the practical subjects which are its principal concern. For example,
it seems that, unless the reader is adequately appraised of the notions underlying
Fourier analysis, then the perplexities and confusions which will inevitably arise
will limit their ability to commit much of the theory of linear filters to memory.
Practical mathematical results which are well-supported by theory are far more
accessible than those which are to be found beneath piles of technological detritus.

Another characteristic of the book which reflects a methodological opinion is
the manner in which the computer code is presented. There are some who regard
computer procedures merely as technological artefacts to be encapsulated in boxes
whose contents are best left undisturbed for fear of disarranging them. An opposite
opinion is reflected in this book. The computer code presented here should be read
and picked to pieces before being reassembled in whichever way pleases the reader.
In short, the computer procedures should be approached in a spirit of constructive
play. An individual who takes such an approach in general will not be balked by
the non-availability of a crucial procedure or by the incapacity of some large-scale
computer program upon which they have come to rely. They will be prepared
to make for themselves whatever tools they happen to need for their immediate
purposes.

The advent of the microcomputer has enabled the approach of individualist
self-help advocated above to become a practical one. At the same time, it has
stimulated the production of a great variety of highly competent scientific software
which is supplied commercially. It often seems like wasted effort to do for oneself
what can sometimes be done better by purpose-built commercial programs. Clearly,
there are opposing forces at work here—and the issue is the perennial one of whether
we are to be the masters or the slaves of our technology. The conflict will never be
resolved; but a balance can be struck. This book, which aims to help the reader to
master one of the central technologies of the latter half of this century, places most
of its weight on one side of the scales.

D.S.G. POLLOCK
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CHAPTER 1

The Methods of
Time-Series Analysis

The methods to be presented in this book are designed for the purpose of analysing
series of statistical observations taken at regular intervals in time. The methods
have a wide range of applications. We can cite astronomy [539], meteorology [444],
seismology [491], oceanography [232], [251], communications engineering and signal
processing [425], the control of continuous process plants [479], neurology and elec-
troencephalography [151], [540], and economics [233]; and this list is by no means
complete.

The Frequency Domain and the Time Domain

The methods apply, in the main, to what are described as stationary or non-
evolutionary time series. Such series manifest statistical properties which are in-
variant throughout time, so that the behaviour during one epoch is the same as it
would be during any other.

When we speak of a weakly stationary or covariance-stationary process, we
have in mind a sequence of random variables y(t) = {yt; t = 0,±1,±2, . . .}, rep-
resenting the potential observations of the process, which have a common finite
expected value E(yt) = µ and a set of autocovariances C(yt, ys) = E{(yt − µ)(ys −
µ)} = γ|t−s| which depend only on the temporal separation τ = |t− s| of the dates
t and s and not on their absolute values. Usually, we require of such a process
that lim(τ → ∞)γτ = 0, which is to say that the correlation between increasingly
remote elements of the sequence tends to zero. This is a way of expressing the
notion that the events of the past have a diminishing effect upon the present as
they recede in time. In an appendix to the chapter, we review the definitions of
mathematical expectations and covariances.

There are two distinct yet broadly equivalent modes of time-series analysis
which may be pursued. On the one hand are the time-domain methods which
have their origin in the classical theory of correlation. Such methods deal pre-
ponderantly with the autocovariance functions and the cross-covariance functions
of the series, and they lead inevitably towards the construction of structural or
parametric models of the autoregressive moving-average type for single series and
of the transfer-function type for two or more causally related series. Many of the
methods which are used to estimate the parameters of these models can be viewed
as sophisticated variants of the method of linear regression.

On the other hand are the frequency-domain methods of spectral analysis.
These are based on an extension of the methods of Fourier analysis which originate
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in the idea that, over a finite interval, any analytic function can be approximated,
to whatever degree of accuracy is desired, by taking a weighted sum of sine and
cosine functions of harmonically increasing frequencies.

Harmonic Analysis

The astronomers are usually given credit for being the first to apply the meth-
ods of Fourier analysis to time series. Their endeavours could be described as the
search for hidden periodicities within astronomical data. Typical examples were
the attempts to uncover periodicities within the activities recorded by the Wolfer
sunspot index—see Izenman [266]—and in the indices of luminosity of variable
stars.

The relevant methods were developed over a long period of time. Lagrange
[306] suggested methods for detecting hidden periodicities in 1772 and 1778. The
Dutchman Buijs-Ballot [86] propounded effective computational procedures for the
statistical analysis of astronomical data in 1847. However, we should probably
credit Sir Arthur Schuster [444], who in 1889 propounded the technique of periodo-
gram analysis, with being the progenitor of the modern methods for analysing time
series in the frequency domain.

In essence, these frequency-domain methods envisaged a model underlying the
observations which takes the form of

y(t) =
∑
j

ρj cos(ωjt− θj) + ε(t)

=
∑
j

{
αj cos(ωjt) + βj sin(ωjt)

}
+ ε(t),

(1.1)

where αj = ρj cos θj and βj = ρj sin θj , and where ε(t) is a sequence of indepen-
dently and identically distributed random variables which we call a white-noise
process. Thus the model depicts the series y(t) as a weighted sum of perfectly
regular periodic components upon which is superimposed a random component.

The factor ρj =
√

(α2
j + β2

j ) is called the amplitude of the jth periodic com-
ponent, and it indicates the importance of that component within the sum. Since
the variance of a cosine function, which is also called its mean-square deviation, is
just one half, and since cosine functions at different frequencies are uncorrelated,
it follows that the variance of y(t) is expressible as V {y(t)} = 1

2

∑
j ρ

2
j + σ2

ε where
σ2
ε = V {ε(t)} is the variance of the noise.

The periodogram is simply a device for determining how much of the variance
of y(t) is attributable to any given harmonic component. Its value at ωj = 2πj/T ,
calculated from a sample y0, . . . , yT−1 comprising T observations on y(t), is given
by

I(ωj) =
2
T

[{∑
t

yt cos(ωjt)
}2

+
{∑

t

yt sin(ωjt)
}2
]

=
T

2
{
a2(ωj) + b2(ωj)

}
.

(1.2)
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Figure 1.1. The graph of a sine function.

 0 10 20 30 40 50 60 70 80 90

Figure 1.2. Graph of a sine function with small random fluctuations superimposed.

If y(t) does indeed comprise only a finite number of well-defined harmonic compo-
nents, then it can be shown that 2I(ωj)/T is a consistent estimator of ρ2

j in the
sense that it converges to the latter in probability as the size T of the sample of
the observations on y(t) increases.

The process by which the ordinates of the periodogram converge upon the
squared values of the harmonic amplitudes was well expressed by Yule [539] in a
seminal article of 1927:

If we take a curve representing a simple harmonic function of time, and
superpose on the ordinates small random errors, the only effect is to make
the graph somewhat irregular, leaving the suggestion of periodicity still
clear to the eye (see Figures 1.1 and 1.2). If the errors are increased in
magnitude, the graph becomes more irregular, the suggestion of periodic-
ity more obscure, and we have only sufficiently to increase the errors to
mask completely any appearance of periodicity. But, however large the
errors, periodogram analysis is applicable to such a curve, and, given a
sufficient number of periods, should yield a close approximation to the
period and amplitude of the underlying harmonic function.
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Figure 1.3. Wolfer’s sunspot numbers 1749–1924.

We should not quote this passage without mentioning that Yule proceeded to
question whether the hypothesis underlying periodogram analysis, which postulates
the equation under (1.1), was an appropriate hypothesis for all cases.

A highly successful application of periodogram analysis was that of Whittaker
and Robinson [515] who, in 1924, showed that the series recording the brightness or
magnitude of the star T. Ursa Major over 600 days could be fitted almost exactly by
the sum of two harmonic functions with periods of 24 and 29 days. This led to the
suggestion that what was being observed was actually a two-star system wherein the
larger star periodically masked the smaller, brighter star. Somewhat less successful
were the attempts of Arthur Schuster himself [445] in 1906 to substantiate the claim
that there is an 11-year cycle in the activity recorded by the Wolfer sunspot index
(see Figure 1.3).

Other applications of the method of periodogram analysis were even less suc-
cessful; and one application which was a significant failure was its use by William
Beveridge [51], [52] in 1921 and 1922 to analyse a long series of European wheat
prices. The periodogram of this data had so many peaks that at least twenty
possible hidden periodicities could be picked out, and this seemed to be many
more than could be accounted for by plausible explanations within the realm of
economic history. Such experiences seemed to point to the inappropriateness to
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economic circumstances of a model containing perfectly regular cycles. A classic
expression of disbelief was made by Slutsky [468] in another article of 1927:

Suppose we are inclined to believe in the reality of the strict periodicity of
the business cycle, such, for example, as the eight-year period postulated
by Moore [352]. Then we should encounter another difficulty. Wherein
lies the source of this regularity? What is the mechanism of causality
which, decade after decade, reproduces the same sinusoidal wave which
rises and falls on the surface of the social ocean with the regularity of day
and night?

Autoregressive and Moving-Average Models

The next major episode in the history of the development of time-series analysis
took place in the time domain, and it began with the two articles of 1927 by Yule
[539] and Slutsky [468] from which we have already quoted. In both articles, we
find a rejection of the model with deterministic harmonic components in favour
of models more firmly rooted in the notion of random causes. In a wonderfully
figurative exposition, Yule invited his readers to imagine a pendulum attached to
a recording device and left to swing. Then any deviations from perfectly harmonic
motion which might be recorded must be the result of errors of observation which
could be all but eliminated if a long sequence of observations were subjected to a
periodogram analysis. Next, Yule enjoined the reader to imagine that the regular
swing of the pendulum is interrupted by small boys who get into the room and
start pelting the pendulum with peas sometimes from one side and sometimes from
the other. The motion is now affected not by superposed fluctuations but by true
disturbances.

In this example, Yule contrives a perfect analogy for the autoregressive time-
series model. To explain the analogy, let us begin by considering a homogeneous
second-order difference equation of the form

y(t) = φ1y(t− 1) + φ2y(t− 2).(1.3)

Given the initial values y−1 and y−2, this equation can be used recursively to
generate an ensuing sequence {y0, y1, . . .}. This sequence will show a regular
pattern of behaviour whose nature depends on the parameters φ1 and φ2. If
these parameters are such that the roots of the quadratic equation z2 − φ1z −
φ2 = 0 are complex and less than unity in modulus, then the sequence of
values will show a damped sinusoidal behaviour just as a clock pendulum will
which is left to swing without the assistance of the falling weights. In fact, in
such a case, the general solution to the difference equation will take the form
of

y(t) = αρt cos(ωt− θ),(1.4)

where the modulus ρ, which has a value between 0 and 1, is now the damp-
ing factor which is responsible for the attenuation of the swing as the time t
elapses.

7
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Figure 1.4. A series generated by Yule’s equation
y(t) = 1.343y(t− 1)− 0.655y(t− 2) + ε(t).

 0 10 20 30 40 50 60 70 80 90

Figure 1.5. A series generated by the equation
y(t) = 1.576y(t− 1)− 0.903y(t− 2) + ε(t).

The autoregressive model which Yule was proposing takes the form of

y(t) = φ1y(t− 1) + φ2y(t− 2) + ε(t),(1.5)

where ε(t) is, once more, a white-noise sequence. Now, instead of masking the reg-
ular periodicity of the pendulum, the white noise has actually become the engine
which drives the pendulum by striking it randomly in one direction and another. Its
haphazard influence has replaced the steady force of the falling weights. Neverthe-
less, the pendulum will still manifest a deceptively regular motion which is liable,
if the sequence of observations is short and contains insufficient contrary evidence,
to be misinterpreted as the effect of an underlying mechanism.

In his article of 1927, Yule attempted to explain the Wolfer index in terms
of the second-order autoregressive model of equation (1.5). From the empirical
autocovariances of the sample represented in Figure 1.3, he estimated the values

8
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φ1 = 1.343 and φ2 = −0.655. The general solution of the corresponding homoge-
neous difference equation has a damping factor of ρ = 0.809 and an angular velocity
of ω = 33.96 degrees. The angular velocity indicates a period of 10.6 years which
is a little shorter than the 11-year period obtained by Schuster in his periodogram
analysis of the same data. In Figure 1.4, we show a series which has been gen-
erated artificially from Yule’s equation, which may be compared with a series, in
Figure 1.5, generated by the equation y(t) = 1.576y(t − 1) − 0.903y(t − 2) + ε(t).
The homogeneous difference equation which corresponds to the latter has the same
value of ω as before. Its damping factor has the value ρ = 0.95, and this increase
accounts for the greater regularity of the second series.

Neither of our two series accurately mimics the sunspot index; although the
second series seems closer to it than the series generated by Yule’s equation. An
obvious feature of the sunspot index which is not shared by the artificial series is the
fact that the numbers are constrained to be nonnegative. To relieve this constraint,
we might apply to Wolf’s numbers yt a transformation of the form log(yt + λ) or
of the more general form (yt + λ)κ−1, such as has been advocated by Box and Cox
[69]. A transformed series could be more closely mimicked.

The contributions to time-series analysis made by Yule [539] and Slutsky [468]
in 1927 were complementary: in fact, the two authors grasped opposite ends of
the same pole. For ten years, Slutsky’s paper was available only in its original
Russian version; but its contents became widely known within a much shorter
period.

Slutsky posed the same question as did Yule, and in much the same man-
ner. Was it possible, he asked, that a definite structure of a connection between
chaotically random elements could form them into a system of more or less regular
waves? Slutsky proceeded to demonstrate this possibility by methods which were
partly analytic and partly inductive. He discriminated between coherent series
whose elements were serially correlated and incoherent or purely random series of
the sort which we have described as white noise. As to the coherent series, he
declared that

their origin may be extremely varied, but it seems probable that an espe-
cially prominent role is played in nature by the process of moving summa-
tion with weights of one kind or another; by this process coherent series
are obtained from other coherent series or from incoherent series.

By taking, as his basis, a purely random series obtained by the People’s Com-
missariat of Finance in drawing the numbers of a government lottery loan, and
by repeatedly taking moving summations, Slutsky was able to generate a series
which closely mimicked an index, of a distinctly undulatory nature, of the English
business cycle from 1855 to 1877.

The general form of Slutsky’s moving summation can be expressed by writing

y(t) = µ0ε(t) + µ1ε(t− 1) + · · ·+ µqε(t− q),(1.6)

where ε(t) is a white-noise process. This is nowadays called a qth-order moving-
average model, and it is readily compared to an autoregressive model of the sort
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depicted under (1.5). The more general pth-order autoregressive model can be
expressed by writing

α0y(t) + α1y(t− 1) + · · ·+ αpy(t− p) = ε(t).(1.7)

Thus, whereas the autoregressive process depends upon a linear combination of the
function y(t) with its own lagged values, the moving-average process depends upon
a similar combination of the function ε(t) with its lagged values. The affinity of the
two sorts of process is further confirmed when it is recognised that an autoregressive
process of finite order is equivalent to a moving-average process of infinite order
and that, conversely, a finite-order moving-average process is just an infinite-order
autoregressive process.

Generalised Harmonic Analysis

The next step to be taken in the development of the theory of time series was
to generalise the traditional method of periodogram analysis in such a way as to
overcome the problems which arise when the model depicted under (1.1) is clearly
inappropriate.

At first sight, it would not seem possible to describe a covariance-stationary
process, whose only regularities are statistical ones, as a linear combination of
perfectly regular periodic components. However, any difficulties which we might
envisage can be overcome if we are prepared to accept a description which is in
terms of a nondenumerable infinity of periodic components. Thus, on replacing the
so-called Fourier sum within equation (1.1) by a Fourier integral, and by deleting the
term ε(t), whose effect is now absorbed by the integrand, we obtain an expression
in the form of

y(t) =
∫ π

0

{
cos(ωt)dA(ω) + sin(ωt)dB(ω)

}
.(1.8)

Here we write dA(ω) and dB(ω) rather than α(ω)dω and β(ω)dω because there
can be no presumption that the functions A(ω) and B(ω) are continuous. As it
stands, this expression is devoid of any statistical interpretation. Moreover, if we
are talking of only a single realisation of the process y(t), then the generalised
functions A(ω) and B(ω) will reflect the unique peculiarities of that realisation and
will not be amenable to any systematic description.

However, a fruitful interpretation can be given to these functions if we consider
the observable sequence y(t) = {yt; t = 0,±1,±2, . . .} to be a particular realisation
which has been drawn from an infinite population representing all possible reali-
sations of the process. For, if this population is subject to statistical regularities,
then it is reasonable to regard dA(ω) and dB(ω) as mutually uncorrelated random
variables with well-defined distributions which depend upon the parameters of the
population.

We may therefore assume that, for any value of ω,

E{dA(ω)} = E{dB(ω)} = 0 and
E{dA(ω)dB(ω)} = 0.

(1.9)
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Figure 1.6. The spectrum of the process y(t) = 1.343y(t − 1) − 0.655y(t −
2) + ε(t) which generated the series in Figure 1.4. A series of a more regular
nature would be generated if the spectrum were more narrowly concentrated
around its modal value.

Moreover, to express the discontinuous nature of the generalised functions, we as-
sume that, for any two values ω and λ in their domain, we have

E{dA(ω)dA(λ)} = E{dB(ω)dB(λ)} = 0,(1.10)

which means that A(ω) and B(ω) are stochastic processes—indexed on the
frequency parameter ω rather than on time—which are uncorrelated in non-
overlapping intervals. Finally, we assume that dA(ω) and dB(ω) have a common
variance so that

V {dA(ω)} = V {dB(ω)} = dG(ω).(1.11)

Given the assumption of the mutual uncorrelatedness of dA(ω) and dB(ω), it
therefore follows from (1.8) that the variance of y(t) is expressible as

V {y(t)}=
∫ π

0

[
cos2(ωt)V {dA(ω)}+ sin2(ωt)V {dB(ω)}

]
=
∫ π

0

dG(ω).

(1.12)

The function G(ω), which is called the spectral distribution, tells us how much of
the variance is attributable to the periodic components whose frequencies range
continuously from 0 to ω. If none of these components contributes more than
an infinitesimal amount to the total variance, then the function G(ω) is absolutely
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continuous, and we can write dG(ω) = g(ω)dω under the integral of equation (1.11).
The new function g(ω), which is called the spectral density function or the spectrum,
is directly analogous to the function expressing the squared amplitude which is
associated with each component in the simple harmonic model discussed in our
earlier sections. Figure 1.6 provides an an example of a spectral density function.

Smoothing the Periodogram

It might be imagined that there is little hope of obtaining worthwhile estimates
of the parameters of the population from which the single available realisation y(t)
has been drawn. However, provided that y(t) is a stationary process, and provided
that the statistical dependencies between widely separated elements are weak, the
single realisation contains all the information which is necessary for the estimation
of the spectral density function. In fact, a modified version of the traditional
periodogram analysis is sufficient for the purpose of estimating the spectral density.

In some respects, the problems posed by the estimation of the spectral density
are similar to those posed by the estimation of a continuous probability density func-
tion of unknown functional form. It is fruitless to attempt directly to estimate the
ordinates of such a function. Instead, we might set about our task by constructing a
histogram or bar chart to show the relative frequencies with which the observations
that have been drawn from the distribution fall within broad intervals. Then, by
passing a curve through the mid points of the tops of the bars, we could construct
an envelope that might approximate to the sought-after density function. A more
sophisticated estimation procedure would not group the observations into the fixed
intervals of a histogram; instead it would record the number of observations falling
within a moving interval. Moreover, a consistent method of estimation, which aims
at converging upon the true function as the number of observations increases, would
vary the width of the moving interval with the size of the sample, diminishing it
sufficiently slowly as the sample size increases for the number of sample points
falling within any interval to increase without bound.

A common method for estimating the spectral density is very similar to the
one which we have described for estimating a probability density function. Instead
of being based on raw sample observations as is the method of density-function
estimation, it is based upon the ordinates of a periodogram which has been fitted
to the observations on y(t). This procedure for spectral estimation is therefore
called smoothing the periodogram.

A disadvantage of the procedure, which for many years inhibited its widespread
use, lies in the fact that calculating the periodogram by what would seem to be
the obvious methods be can be vastly time-consuming. Indeed, it was not until the
mid 1960s that wholly practical computational methods were developed.

The Equivalence of the Two Domains

It is remarkable that such a simple technique as smoothing the periodogram
should provide a theoretical resolution to the problems encountered by Beveridge
and others in their attempts to detect the hidden periodicities in economic and
astronomical data. Even more remarkable is the way in which the generalised
harmonic analysis that gave rise to the concept of the spectral density of a time
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series should prove to be wholly conformable with the alternative methods of time-
series analysis in the time domain which arose largely as a consequence of the failure
of the traditional methods of periodogram analysis.

The synthesis of the two branches of time-series analysis was achieved inde-
pendently and almost simultaneously in the early 1930s by Norbert Wiener [522]
in America and A. Khintchine [289] in Russia. The Wiener–Khintchine theorem
indicates that there is a one-to-one relationship between the autocovariance func-
tion of a stationary process and its spectral density function. The relationship is
expressed, in one direction, by writing

g(ω) =
1

2π

∞∑
τ=−∞

γτ cos(ωτ); γτ = γ−τ ,(1.13)

where g(ω) is the spectral density function and {γτ ; τ = 0, 1, 2, . . .} is the sequence
of the autocovariances of the series y(t).

The relationship is invertible in the sense that it is equally possible to express
each of the autocovariances as a function of the spectral density:

γτ =
∫ π

0

cos(ωτ)g(ω)dω.(1.14)

If we set τ = 0, then cos(ωτ) = 1, and we obtain, once more, the equation (1.12)
which neatly expresses the way in which the variance γ0 = V {y(t)} of the series
y(t) is attributable to the constituent harmonic components; for g(ω) is simply the
expected value of the squared amplitude of the component at frequency ω.

We have stated the relationships of the Wiener–Khintchine theorem in terms of
the theoretical spectral density function g(ω) and the true autocovariance function
{γτ ; τ = 0, 1, 2, . . .}. An analogous relationship holds between the periodogram
I(ωj) defined in (1.2) and the sample autocovariance function {cτ ; τ = 0, 1, . . . ,
T − 1} where cτ =

∑
(yt− ȳ)(yt−τ − ȳ)/T . Thus, in the appendix, we demonstrate

the identity

I(ωj) = 2
T−1∑
t=1−T

cτ cos(ωjτ); cτ = c−τ .(1.15)

The upshot of the Wiener–Khintchine theorem is that many of the techniques
of time-series analysis can, in theory, be expressed in two mathematically equivalent
ways which may differ markedly in their conceptual qualities.

Often, a problem which appears to be intractable from the point of view of one
of the domains of time-series analysis becomes quite manageable when translated
into the other domain. A good example is provided by the matter of spectral
estimation. Given that there are difficulties in computing all T of the ordinates of
the periodogram when the sample size is large, we are impelled to look for a method
of spectral estimation which depends not upon smoothing the periodogram but
upon performing some equivalent operation upon the sequence of autocovariances.
The fact that there is a one-to-one correspondence between the spectrum and the
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Figure 1.7. The periodogram of Wolfer’s sunspot numbers 1749–1924.

sequence of autocovariances assures us that this equivalent operation must exist;
though there is, of course, no guarantee that it will be easy to perform.

In fact, the operation which we perform upon the sample autocovariances is
simple. For, if the sequence of autocovariances {cτ ; τ = 0, 1, . . . , T − 1} in (1.15) is
replaced by a modified sequence {wτ cτ ; τ = 0, 1, . . . , T−1} incorporating a specially
devised set of declining weights {wτ ; τ = 0, 1, . . . , T − 1}, then an effect which is
much the same as that of smoothing the periodogram can be achieved (compare
Figures 1.7 and 1.8). Moreover, it may be relatively straightforward to calculate
the weighted autocovariance function.

The task of devising appropriate sets of weights provided a major research
topic in time-series analysis in the 1950s and early 1960s. Together with the task
of devising equivalent procedures for smoothing the periodogram, it came to be
known as spectral carpentry.

The Maturing of Time-Series Analysis

In retrospect, it seems that time-series analysis reached its maturity in the
1970s when significant developments occurred in both of its domains.

A major development in the frequency domain occurred when Cooley and
Tukey [125] described an algorithm which greatly reduces the effort involved in
computing the periodogram. The fast Fourier transform (FFT), as this algorithm
has come to be known, allied with advances in computer technology, has enabled
the routine analysis of extensive sets of data; and it has transformed the procedure
of smoothing the periodogram into a practical method of spectral estimation.

The contemporaneous developments in the time domain were influenced by
an important book by Box and Jenkins [70]. These authors developed the time-
domain methodology by collating some of its major themes and by applying it
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Figure 1.8. The spectrum of the sunspot numbers calculated from
the autocovariances using Parzen’s [383] system of weights.

to such important functions as forecasting and control. They demonstrated how
wide had become the scope of time-series analysis by applying it to problems as
diverse as the forecasting of airline passenger numbers and the analysis of com-
bustion processes in a gas furnace. They also adapted the methodology to the
computer.

Many of the current practitioners of time-series analysis have learnt their skills
in recent years during a time when the subject has been expanding rapidly. Lack-
ing a longer perspective, it is difficult for them to gauge the significance of the
recent practical advances. One might be surprised to hear, for example, that, as
late as 1971, Granger and Hughes [227] were capable of declaring that Beveridge’s
calculation of the periodogram of the wheat price index (see 14.4), comprising
300 ordinates, was the most extensive calculation of its type to date. Nowadays,
computations of this order are performed on a routine basis using microcomputers
containing specially designed chips which are dedicated to the purpose.

The rapidity of the recent developments also belies the fact that time-series
analysis has had a long history. The frequency domain of time-series analysis, to
which the idea of the harmonic decomposition of a function is central, is an inheri-
tance from Euler (1707–1783), d’Alembert (1717–1783), Lagrange (1736–1813) and
Fourier (1768–1830). The search for hidden periodicities was a dominant theme of
nineteenth century science. It has been transmogrified through the refinements of
Wiener’s generalised harmonic analysis [522] which has enabled us to understand
how cyclical phenomena can arise out of the aggregation of random causes. The
parts of time-series analysis which bear a truly twentieth-century stamp are the
time-domain models which originate with Slutsky and Yule and the computational
technology which renders the methods of both domains practical.
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The effect of the revolution in digital electronic computing upon the
practicability of time-series analysis can be gauged by inspecting the purely
mechanical devices (such as the Henrici–Conradi and Michelson–Stratton harmonic
analysers invented in the 1890s) which were once used, with very limited success, to
grapple with problems which are nowadays almost routine. These devices, some of
which are displayed in London’s Science Museum, also serve to remind us that many
of the developments of applied mathematics which startle us with their modernity
were foreshadowed many years ago.

Mathematical Appendix

Mathematical Expectations

The mathematical expectation or the expected value of a random variable x is
defined by

E(x) =
∫ ∞
−∞

xdF (x),(1.16)

where F (x) is the probability distribution function of x. The probability distribu-
tion function is defined by the expression F (x∗) = P{x ≤ x∗} which denotes the
probability that x assumes a value no greater than x∗. If F (x) is a differentiable
function, then we can write dF (x) = f(x)dx in equation (1.16). The function
f(x) = dF (x)/dx is called the probability density function.

If y(t) = {yt; t = 0,±1,±2, . . .} is a stationary stochastic process, then E(yt) =
µ is the same value for all t.

If y0, . . . , yT−1 is a sample of T values generated by the process, then we may
estimate µ from the sample mean

ȳ =
1
T

T−1∑
t=0

yt.(1.17)

Autocovariances

The autocovariance of lag τ of the stationary stochastic process y(t) is defined
by

γτ = E{(yt − µ)(yt−τ − µ)}.(1.18)

The autocovariance of lag τ provides a measure of the relatedness of the elements
of the sequence y(t) which are separated by τ time periods.

The variance, which is denoted by V {y(t)} = γ0 and defined by

γ0 = E
{

(yt − µ)2
}
,(1.19)

is a measure of the dispersion of the elements of y(t). It is formally the autocovari-
ance of lag zero.
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If yt and yt−τ are statistically independent, then their joint probability density
function is the product of their individual probability density functions so that
f(yt, yt−τ ) = f(yt)f(yt−τ ). It follows that

γτ = E(yt − µ)E(yt−τ − µ) = 0 for all τ 6= 0.(1.20)

If y0, . . . , yT−1 is a sample from the process, and if τ < T , then we may estimate
γτ from the sample autocovariance or empirical autocovariance of lag τ :

cτ =
1
T

T−1∑
t=τ

(yt − ȳ)(yt−τ − ȳ).(1.21)

The Periodogram and the Autocovariance Function

The periodogram is defined by

I(ωj) =
2
T

[{ T−1∑
t=0

cos(ωjt)(yt − ȳ)
}2

+
{ T−1∑

t=0

sin(ωjt)(yt − ȳ)
}2
]
.(1.22)

The identity
∑
t cos(ωjt)(yt − ȳ) =

∑
t cos(ωjt)yt follows from the fact that, by

construction,
∑
t cos(ωjt) = 0 for all j. Hence the above expression has the same

value as the expression in (1.2). Expanding the expression in (1.22) gives

I(ωj) =
2
T

{∑
t

∑
s

cos(ωjt) cos(ωjs)(yt − ȳ)(ys − ȳ)
}

+
2
T

{∑
t

∑
s

sin(ωjt) sin(ωjs)(yt − ȳ)(ys − ȳ)
}
,

(1.23)

and, by using the identity cos(A) cos(B) + sin(A) sin(B) = cos(A − B), we can
rewrite this as

I(ωj) =
2
T

{∑
t

∑
s

cos(ωj [t− s])(yt − ȳ)(ys − ȳ)
}
.(1.24)

Next, on defining τ = t−s and writing cτ =
∑
t(yt− ȳ)(yt−τ − ȳ)/T , we can reduce

the latter expression to

I(ωj) = 2
T−1∑

τ=1−T
cos(ωjτ)cτ ,(1.25)

which appears in the text as equation (1.15).
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Polynomial Methods





CHAPTER 2

Elements of
Polynomial Algebra

In mathematical terminology, a time series is properly described as a temporal
sequence; and the term series is reserved for power series. By transforming temporal
sequences into power series, we can make use of the methods of polynomial algebra.
In engineering terminology, the resulting power series is described as the z-transform
of the sequence.

We shall begin this chapter by examining some of the properties of sequences
and by defining some of the operations which may be performed upon them. Then
we shall examine briefly the basic features of time-series models which consist of lin-
ear relationships amongst the elements of two or more sequences. We shall quickly
reach the opinion that, to conduct the analysis effectively, some more mathematical
tools are needed. Amongst such tools are a variety of linear operators defined on
the set of infinite sequences; and it transpires that the algebra of the operators
is synonymous with the algebra of polynomials of some indeterminate argument.
Therefore, we shall turn to the task of setting forth the requisite results from the
algebra of polynomials. In subsequent chapters, further aspects of this algebra will
be considered, including methods of computation.

Sequences

An indefinite sequence x(t) = {xt; t = 0,±1,±2, . . .} is any function mapping
from the set of integers Z = {t = 0,±1,±2, . . .} onto the real line R or onto the
complex plane C. The adjectives indefinite and infinite may be used interchangeably.
Whenever the integers represents a sequence of dates separated by a unit time
interval, the function x(t) may be described as a time series. The value of the
function at the point τ ∈ Z will be denoted by xτ = x(τ). The functional notation
will be used only when τ ∈ Z, which is to say when τ ranges over the entire set of
positive and negative integers.

A finite sequence {α0, α1, . . . , αp} is one whose elements may be placed in a
one-to-one correspondence with a finite set of consecutive integers. Such sequences
may be specified by enumeration. Usually, the first (nonzero) element of a finite
sequence will be given a zero subscript. A set of T observations on a time series
x(t) will be denoted by x0, x1, . . . , xT−1. Occasionally, t itself will denote a nonzero
base index.

It is often convenient to extend a finite sequence so that it is defined over
the entire set of integers Z. An ordinary extension α(i) of a finite sequence
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{α0, α1, . . . , αp} is obtained by extending the sequence on either side by an in-
definite number of zeros. Thus

α(i) =
{
αi, for 0 ≤ i ≤ p;
0, otherwise.

(2.1)

A periodic extension α̃(i) of the sequence is obtained by replicating its elements
indefinitely in successive segments. Thus

α̃(i) =

{
αi, for 0 ≤ i ≤ p;
α(imod[p+1]), otherwise,

(2.2)

where (i mod [p+1]) is the (positive) remainder after the division of i by p+1. The
ordinary extension of the finite sequence {α0, α1, . . . , αp} and its periodic extension
are connected by the following formula:

α̃(i) =
∞∑

j=−∞
α(i+ [p+ 1]j).(2.3)

It is helpful to name a few sequences which are especially important for analytic
purposes. The sequence specified by the conditions

δ(τ) =
{ 1, if τ = 0;

0, if τ 6= 0
(2.4)

is called the unit impulse. The formulation which takes i as the index of this
sequence and which sets δ(i − j) = 1 when i = j and δ(i − j) = 0 when i 6= j
reminds us of Kronecker’s delta. The continuous-time counterpart of the impulse
sequence is known as Dirac’s delta.

The unit-step sequence is specified by

u(τ) =
{ 1, if τ ≥ 0;

0, if τ < 0.
(2.5)

This is related to the unit-impulse sequence by the equations

δ(τ) = u(τ)− u(τ − 1) and u(τ) =
τ∑

t=−∞
δ(t).(2.6)

Also of fundamental importance are real and complex exponential sequences.
A real exponential sequence is given by the function x(t) = ert = at where a = er

is a real number. A complex exponential sequence is given by x(t) = eiωt+φ with
i =
√
−1. A sinusoidal sequence is a combination of conjugate complex exponential

sequences:

x(t) = ρ cos(ωt− θ) =
1
2
ρ
{
ei(ωt−θ) + e−i(ωt−θ)

}
.(2.7)
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Here ω, which is a number of radians, is a measure of the angular velocity or angular
frequency of the sinusoid. The parameter ρ represents the amplitude or maximum
value of the sinusoid, whilst θ is its phase displacement.

A sequence x(t) is said to be periodic with a period of T if x(t + T ) = x(t)
for all integer values t or, equivalently, if x(t) = x(t mod T ). The function x(t) =
ρ cos(ωt−θ) is periodic in this sense only if 2π/ω is a rational number. If 2π/ω = T
is an integer, then it is the period itself. In that case, its inverse f = ω/2π is the
frequency of the function measured in cycles per unit of time.

In some cases, it is helpful to define the energy of a sequence x(t) as the sum of
squares of the moduli of its elements if the elements are complex valued, or simply
as the sum of squares if the elements are real:

J =
∑
|xt|2.(2.8)

In many cases, the total energy will be unbounded, although we should expect it
to be finite over a finite time interval.

The power of a sequence is the time-average of its energy. The concept is
meaningful only if the sequence manifests some kind of stationarity. The power of a
constant sequence x(t) = a is just a2. The power of the sequence x(t) = ρ cos(ωt) is
1
2ρ

2. This result can be obtained in view of the identity cos2(ωt) = 1
2{1+cos(2ωt)};

for the average of cos(2ωt) over an integral number of cycles is zero.
In electrical engineering, the measure of the power of an alternating current is

its so-called mean-square deviation. In statistical theory, the mean-square deviation
of a finite sequence of values drawn from a statistical population is known as the
sample variance. The notions of power and variance will be closely linked in this
text.

When the condition that ∑
|xt| <∞(2.9)

is fulfilled, the sequence x(t) = {xt; t = 0,±1,±2, . . .} is said to be absolutely
summable. A sequence which is absolutely summable has finite energy and vice
versa.

There are numerous operations which may be performed upon sequences.
Amongst the simplest of such operations are the scalar multiplication of the ele-
ments of a sequence, the pairwise addition of the elements of two sequences bearing
the same index and the pairwise multiplication of the same elements. Thus, if
λ is a scalar and x(t) = {xt} is a sequence, then λx(t) = {λxt} is the sequence
obtained by scalar multiplication. If x(t) = {xt} and y(t) = {yt} are two se-
quences, then x(t) + y(t) = {xt + yt} is the sequence obtained by their addition,
and x(t)y(t) = {xtyt} is the sequence obtained by their multiplication.

In signal processing, a multiplication of one continuous-time signal by another
often corresponds to a process of amplitude modulation. This entails superimposing
the characteristics of a (continuous-time) signal y(t) onto a carrier x(t) so that in-
formation in the signal can be transmitted by the carrier. Usually, the unmodulated
carrier, which should contain no information of its own, has a periodic waveform.

Also of fundamental importance are the operations linear and circular convo-
lution which are described in the next two sections.
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α0 α1 α2 0 0 0

β3 β2 β1 β0 0 0

Figure 2.1. A method for finding the linear convolution of two sequences.
The element γ4 = α1β3 +α2β2 of the convolution may be formed by multiply-
ing the adjacent elements on the two rulers and by summing their products.

Linear Convolution

Let {α0, α1, . . . , αp} and {β0, β1, . . . , βk} be two finite sequences, and consider
forming the pairwise products of all of their elements. The products can be arrayed
as follows:

α0β0 α0β1 α0β2 . . . α0βk

α1β0 α1β1 α1β2 . . . α1βk
α2β0 α2β1 α2β2 . . . α2βk

...
...

...
...

αpβ0 αpβ1 αpβ2 . . . αpβk.

(2.10)

Then a sequence γ0, γ1, . . . , γp+q can be defined whose elements are obtained by
summing the elements of the array along each of the diagonals which run in the
NE–SW direction:

γ0 =α0β0,

γ1 =α0β1 + α1β0,

γ2 =α0β2 + α1β1 + α2β0,
...

γp+k =αpβk.

(2.11)

The sequence {γj} is described as the convolution of the sequences {αj} and {βj}.
It will be observed that

p+k∑
j=0

γj =
( p∑
j=0

αj

)( k∑
j=0

βj

)
and that

p+k∑
j=0

|γj | ≤
( p∑
j=0

|αj |
)( k∑

j=0

|βj |
)
.

(2.12)

26



2: ELEMENTS OF POLYNOMIAL ALGEBRA

Example 2.1. The process of linear convolution can be illustrated with a simple
physical model. Imagine two rulers with adjacent edges (see Figure 2.1). The lower
edge of one ruler is marked with the elements of the sequence {α0, α1, . . . , αp} at
equally spaced intervals. The upper edge of the other ruler is marked with the
elements of the reversed sequence {βk, . . . , β1, β0} with the same spacing. At first,
the rulers are placed so that α0 is above β0. The pair (α0, β0) is written down
and the product γ0 = α0β0 is formed. Next the lower ruler is shifted one space to
the right and the pairs (α0, β1) and (α1, β0) are recorded from which the sum of
products γ1 = α0β1 + α1β0 is formed. The lower ruler is shifted to the right again
and γ2 is formed. The process continues until the final product γp+k = αpβk is
formed from the pair (αp, βk).

The need to form the linear convolution of two finite sequences arises very
frequently, and a simple procedure is required which will perform the task. The
generic element of the convolution of {α0, α1, . . . , αp} and {β0, β1, . . . , βk}, is given
by

γj =
s∑
i=r

αiβj−i, where

r= max(0, j − k) and s = min(p, j).

(2.13)

Here the restriction r ≤ i ≤ s upon the index of the summation arises from the
restrictions that 0 ≤ i ≤ p and that 0 ≤ (j − i) ≤ k which apply to the indices of
αi and βj−i.

In the following procedure, which implements this formula, the elements γj are
generated in the order of j = p+ k, . . . , 0 and they are written into the array beta
which has hitherto contained the elements of {βj}.

(2.14) procedure Convolution(var alpha, beta : vector;
p, k : integer);

var
gamma : real;
i, j, r, s : integer;

begin
for j := p+ k downto 0 do

begin {j}
s := Min(j, p);
r := Max(0, j − k);
gamma := 0.0;
for i := r to s do
gamma := gamma+ alpha[i] ∗ beta[j − i];

beta[j] := gamma;
end; {j}

end; {Convolution}
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Some care must be exercised in extending the operation of linear convolution
to the case of indefinite sequences, since certain conditions have to be imposed to
ensure that the elements of the product sequence will be bounded. The simplest
case concerns the convolution of two sequences which are absolutely summable:

(2.15) If α(i) = {αi} and β(i) = {βi} are absolutely summable sequences
such that

∑
|αi| <∞ and

∑
|βi| <∞, then their convolution product,

which is defined by

α(i) ∗ β(i) =
∞∑

i=−∞
αiβ(j − i) =

∞∑
i=−∞

βiα(j − i),

is also an absolutely summable sequence.

Here the absolute summability of the product sequence, which entails its bounded-
ness, can be demonstrated by adapting the inequality under (2.12) to the case of
infinite sequences.

Circular Convolution

Indefinite sequences which are obtained from the periodic extension of finite
sequences cannot fulfil the condition of absolute summability; and the operation of
linear convolution is undefined for them. However, it may be useful, in such cases,
to define an alternative operation of circular convolution.

(2.16) Let α̃(i) = {α̃i} and β̃(i) = {β̃i} be the indefinite sequences
which are formed by the periodic extension of the finite sequences
{α0, α1, . . . , αn−1} and {β0, β1, . . . , βn−1} respectively. Then the cir-
cular convolution of α̃(i) and β̃(i) is a periodic sequence defined by

γ̃(j) =
n−1∑
i=0

α̃iβ̃(j − i) =
n−1∑
i=0

β̃iα̃(j − i).

To reveal the implications of the definition, consider the linear convolution of the
finite sequences {αj} and {βj} which is a sequence {γ0, γ1, . . . , γ2n−2}. Also, let
α̃j = α(jmodn) and β̃j = β(jmodn) denote elements of α̃(i) and β̃(i). Then the
generic element of the sequence γ̃(j) is

γ̃j =
j∑
i=0

α̃iβ̃j−i +
n−1∑
i=j+1

α̃iβ̃j−i

=
j∑
i=0

αiβj−i +
n−1∑
i=j+1

αiβj+n−i

= γj + γj+n.

(2.17)

The second equality depends upon the conditions that α̃i = αi when 0 ≤ i < n,
that β̃j−i = βj−i when 0 ≤ (j − i) < n and that β̃j−i = β(j−i)modn = βj+n−i when
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Figure 2.2. A device for finding the circular convolution of two sequences.
The upper disc is rotated clockwise through successive angles of 30 degrees.
Adjacent numbers on the two discs are multiplied and the products are
summed to obtain the coefficients of the convolution.

−n < (j − i) < 0. Thus it can be seen that γ̃(j) represents the periodic extension
of the finite sequence {γ̃0, γ̃1, . . . , γ̃n−1} wherein

γ̃j = γj + γj+n for j = 0, . . . , n− 2 and γ̃n−1 = γn−1.(2.18)

Example 2.2. There is a simple analogy for the process of circular convolution
which also serves to explain the terminology. One can imagine two discs placed one
above the other on a common axis with the rim of the lower disc protruding (see Fig-
ure 2.2). On this rim, are written the elements of the sequence {α0, α1, . . . , αn−1} at
equally spaced intervals in clockwise order. On the rim of the upper disc are written
the elements of the sequence {β0, β1, . . . , βn−1} equally spaced in an anticlockwise
order. The circular disposition of the sequences corresponds to the periodic nature
of the functions α̃(i) and β̃(i) defined in (2.16).

At the start of the process of circular convolution, α0 and β0 are in alignment,
and the pairs (α0, β0), (α1, βn−1), . . . , (αn−1, β1) are read from the discs. Then,
the upper disc is turned clockwise through an angle 2π/n radians and the pairs
(α0, β1), (α1, β0), . . . , (αn−1, β2) are read and recorded. The process continues until
the (n − 1)th turn when the pairs (α0, βn−1), (α1, βn−2), . . . , (αn−1, β0) are read.
One more turn would bring the disc back to the starting position. From what has
been recorded, one can form the products γ̃0 = α0β0 + α1βn−1 + · · · + αn−1β1,
γ̃1 = α0β1 + α1β0 + · · · + αn−1β2, . . . , γ̃n−1 = α0βn−1 + α1βn−2 + · · · + αn−1β0

which are the coefficients of the convolution.

The Pascal procedure which effects the circular convolution of two sequences
is a straightforward one:

(2.19) procedure Circonvolve(alpha, beta : vector;
var gamma : vector;
n : integer);
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var
i, j, k : integer;

begin
for j := 0 to n− 1 do

begin {j}
gamma[j] := 0.0;

for i := 0 to n− 1 do
begin
k := j − i;
if k < 0 then
k := k + n;

gamma[j] := gamma[j] + alpha[i] ∗ beta[k];
end;

end; {j}
end; {Circonvolve}

Time-Series Models

A time-series model is one which postulates a relationship amongst a number
of temporal sequences or time series. Consider, for example, the regression model

y(t) = βx(t) + ε(t),(2.20)

where x(t) and y(t) are observable sequences indexed by the time subscript t and
ε(t) is an unobservable sequence of independently and identically distributed ran-
dom variables which are also uncorrelated with the elements of the explanatory
sequence of x(t). The purely random sequence ε(t) is often described as white
noise.

A more general model is one which postulates a relationship comprising any
number of consecutive elements of x(t), y(t) and ε(t). Such a relationship is ex-
pressed by the equation

p∑
i=0

αiy(t− i) =
k∑
i=0

βix(t− i) +
q∑
i=0

µiε(t− i),(2.21)

wherein the restriction α0 = 1 is imposed in order to identify y(t) as the output of
the model. The effect of the remaining terms on the LHS is described as feedback.
Any of the sums in this equation can be infinite; but, if the model is to be viable,
the sequences of coefficients {αi}, {βi} and {µi} must depend on a strictly limited
number of underlying parameters. Notice that each of the terms of the equation
represents a convolution product.

A model which includes an observable explanatory sequence or signal sequence
x(t) is described as a regression model. When x(t) is deleted, the simpler uncondi-
tional linear stochastic models are obtained. Thus the equation

p∑
i=0

αiy(t− i) =
q∑
i=0

µiε(t− i)(2.22)
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represents a so-called autoregressive moving-average (ARMA) process. When αi =
0 for all i > 0, this becomes a pure moving-average (MA) process. When µi = 0
for all i > 0, it becomes a pure autoregressive (AR) process.

Transfer Functions

Temporal regression models are more easily intelligible if they can be repre-
sented by equations in the form of

y(t) =
∑
i≥0

ωix(t− i) +
∑
i≥0

ψiε(t− i),(2.23)

where there is no lag scheme affecting the output sequence y(t). This equation
depicts y(t) as a sum of a systematic component h(t) =

∑
ωix(t−i) and a stochastic

component η(t) =
∑
ψiε(t − i). Both of these components comprise transfer-

function relationships whereby the input sequences x(t) and ε(t) are translated,
respectively, into output sequences h(t) and η(t).

In the case of the systematic component, the transfer function describes how
the signal x(t) is commuted into the sequence of systematic values which explain a
major part of y(t) and which may be used in forecasting it.

In the case of the stochastic component, the transfer function describes how a
white-noise process ε(t), comprising a sequence of independent random elements, is
transformed into a sequence of serially correlated disturbances. In fact, the elements
of h(t) represent efficient predictors of the corresponding elements of y(t) only when
η(t) = ψ0ε(t) is white noise.

A fruitful way of characterising a transfer function is to determine the response,
in terms of its output, to a variety of standardised input signals. Examples of such
signals, which have already been presented, are the unit-impulse δ(t), the unit-step
u(t) and the sinusoidal and complex exponential sequences defined over a range of
frequencies.

The impulse response of the systematic transfer function is given by the se-
quence h(t) =

∑
i ωiδ(t − i). Since i ∈ {0, 1, 2, . . .}, it follows that h(t) = 0 for all

t < 0. By setting t = {0, 1, 2, . . .}, a sequence is generated beginning with

h0 =ω0,
h1 =ω1,
h2 =ω2.

(2.24)

The impulse-response function is nothing but the sequence of coefficients which
define the transfer function.

The response of the transfer function to the unit-step sequence is given by
h(t) =

∑
i ωiu(t − i). By setting t = {0, 1, 2, . . .}, a sequence is generated which

begins with

h0 =ω0,
h1 =ω0 + ω1,
h2 =ω0 + ω1 + ω2.

(2.25)

Thus the step response is obtained simply by cumulating the impulse response.
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In most applications, the output sequence h(t) of the transfer function should
be bounded in absolute value whenever the input sequence x(t) is bounded.
This is described as the condition of bounded input–bounded output (BIBO)
stability.

If the coefficients {ω0, ω1, . . . , ωp} of the transfer function form a finite se-
quence, then a necessary and sufficient condition for BIBO stability is that |ωi| <∞
for all i, which is to say that the impulse-response function must be bounded.
If {ω0, ω1, . . .} is an indefinite sequence, then it is necessary, in addition, that
|
∑
ωi| < ∞, which is the condition that the step-response function is bounded.

Together, the two conditions are equivalent to the single condition that
∑
|ωi| <∞,

which is to say that the impulse response is absolutely summable.
To confirm that the latter is a sufficient condition for stability, let us consider

any input sequence x(t) which is bounded such that |x(t)| < M for some finite M .
Then

|h(t)| =
∣∣∣∑ωix(t− i)

∣∣∣ ≤M ∣∣∣∑ωi

∣∣∣ <∞,(2.26)

and so the output sequence h(t) is bounded. To show that the condition is necessary,
imagine that

∑
|ωi| is unbounded. Then a bounded input sequence can be found

which gives rise to an unbounded output sequence. One such input sequence is
specified by

x−i =


ωi
|ωi|

, if ωi 6= 0;

0, if ωi = 0.
(2.27)

This gives

h0 =
∑

ωix−i =
∑
|ωi|,(2.28)

and so h(t) is unbounded.
A summary of this result may be given which makes no reference to the specific

context in which it has arisen:

(2.29) The convolution product h(t) =
∑
ωix(t − i), which comprises a

bounded sequence x(t) = {xt}, is itself bounded if and only if the
sequence {ωi} is absolutely summable such that

∑
i |ωi| <∞.

In order to investigate the transfer-function characteristics of a relationship in
the form of the general temporal model of equation (2.21), it is best to eliminate
the lagged values of the output sequence y(t) which represent feedback. This may
be done in a number of ways, including a process of repeated substitution.

A simple example is provided by the equation

y(t) = φy(t− 1) + βx(t) + ε(t).(2.30)
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A process of repeated substitution gives

y(t) =φy(t− 1) + βx(t) + ε(t)
=φ2y(t− 2) + β

{
x(t) + φx(t− 1)

}
+ ε(t) + φε(t− 1)

...
=φny(t− n) + β

{
x(t) + φx(t− 1) + · · ·+ φn−1x(t− n+ 1)

}
+ ε(t) + φε(t− 1) + · · ·+ φn−1ε(t− n+ 1).

(2.31)

If |φ| < 1, then lim(n→∞)φn = 0; and it follows that, if x(t) and ε(t) are bounded
sequences, then, as the number of repeated substitutions increases indefinitely, the
equation will tend to the limiting form of

y(t) = β
∞∑
i=0

φix(t− i) +
∞∑
i=0

φiε(t− i),(2.32)

which is an instance of the equation under (2.23).
For models more complicated than the present one, the method of repeated

substitution, if pursued directly, becomes intractable. Thus we are motivated to
use more powerful algebraic methods to effect the transformation of the equation.

The Lag Operator

The pursuit of more powerful methods of analysis begins with the recognition
that the set of all time series {x(t); t ∈ Z, x ∈ R} represents a vector space. Various
linear transformations or operators may be defined over the space. The lag operator
L, which is the primitive operator, is defined by

Lx(t) = x(t− 1).(2.33)

Now, L{Lx(t)} = Lx(t− 1) = x(t− 2); so it makes sense to define L2 by L2x(t) =
x(t − 2). More generally, Lkx(t) = x(t − k) and, likewise, L−kx(t) = x(t + k).
Other important operators are the identity operator I = L0, the annihilator or zero
operator 0 = I − I, the forward-difference operator ∆ = L−1 − I, the backwards-
difference operator ∇ = L∆ = I − L and the summation operator S = (I + L +
L2 + · · ·).

The backwards-difference operator has the effect that

∇x(t) = x(t)− x(t− 1),(2.34)

whilst the summation operator has the effect that

Sx(t) =
∞∑
i=0

x(t− i).(2.35)

These two operators bear an inverse relationship to each other. On the one
hand, there is the following subtraction:

S = I + L+ L2 + · · ·
LS = L+ L2 + · · ·

S − LS = I.

(2.36)
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This gives S(I − L) = S∇ = I, from which S = ∇−1. The result is familiar from
the way in which the sum is obtained of a convergent geometric progression. On
the other hand is expansion of S = I/(I − L). A process of repeated substitution
gives rise to

S= I + LS

= I + L+ L2S

= I + L+ L2 + L3S.

(2.37)

If this process is continued indefinitely, then the original definition of the summation
operator is derived. The process of repeated substitution is already familiar from
the way in which the equation under (2.30), which stands for a simple temporal
regression model, has been converted to its transfer-function form under (2.32).

Another way of expanding the operator S = I/(I − L) is to use the algorithm
of long division:

(2.38) I +L+L2 + · · ·

I − L
)
I

I − L

L
L−L2

L2

L2 −L3

If this process is stopped at any stage, then the results are the same as those from
the corresponding stage of the process under (2.37). The binomial theorem can also
be used in expanding S = (I − L)−1.

To all appearances, the algebra of the lag operator is synonymous with ordinary
polynomial algebra. In general, a polynomial of the lag operator of the form p(L) =
p0 + p1L+ · · ·+ pnL

n =
∑
piL

i has the effect that

p(L)x(t) = p0x(t) + p1x(t− 1) + · · ·+ pnx(t− n)

=
n∑
i=0

pix(t− i).
(2.39)

The polynomial operator can be used to re-express the temporal regression
model of (2.21) as

α(L)y(t) = β(L)x(t) + µ(L)ε(t).(2.40)

In these terms, the conversion of the model to the transfer-function form of equation
(2.23) is a matter of expanding the rational polynomial operators β(L)/α(L) and
µ(L)/α(L) in the expression

y(t) =
β(L)
α(L)

x(t) +
µ(L)
α(L)

ε(t).(2.41)
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We shall be assisted in such matters by having an account of the relevant algebra
and of the corresponding algorithms readily to hand.

Algebraic Polynomials

A polynomial of the pth degree in a variable z, which may stand for a real or a
complex-valued variable, or which may be regarded as an indeterminate algebraic
symbol, is an expression in the form of

α(z) = α0 + α1z + · · ·+ αpz
p,(2.42)

where it is understood that α0, αp 6= 0. When z ∈ C is a complex-valued variable,
α(z) may be described as the z-transform of the sequence {α0, α1, . . . , α1}. From
another point of view, α(z) is regarded as the generating function of the sequence.

Let α(z) = α0 + α1z + · · · + αpz
p and β(z) = β0 + β1z + · · · + βkz

k be two
polynomials of degrees p and k respectively. Then, if k ≥ p, their sum is defined by

α(z) + β(z) = (α0 +β0) + (α1 + β1)z + · · ·+ (αp + βp)zp

+βp+1z
p+1 + · · ·+ βkz

k.
(2.43)

A similar definition applies when k < p.
The product of the polynomials α(z) and β(z) is defined by

α(z)β(z) =α0β0 + (α0β1 + α1β0)z + · · ·+ αpβkz
p+k

= γ0 + γ1z + γ2z
2 + · · ·+ γp+kz

p+k

= γ(z).
(2.44)

The sequence of coefficients {γi} in the product is just the convolution of the se-
quences {αi} and {βi} of the coefficients belonging to its factors.

These operations of polynomial addition and multiplication obey the simple
rules of (i) associativity, (ii) commutativity and (iii) distributivity which are found
in arithmetic. If α(z), β(z) and γ(z) are any three polynomials, then

(i)
{
α(z)β(z)

}
γ(z) = α(z)

{
β(z)γ(z)

}
,{

α(z) + β(z)
}

+ γ(z) = α(z) +
{
β(z) + γ(z)

}
;

(ii) α(z) + β(z) = β(z) + α(z),
α(z)β(z) = β(z)α(z);

(iii) α(z)
{
β(z) + γ(z)

}
= α(z)β(z) + α(z)γ(z).

(2.45)

Periodic Polynomials and Circular Convolution

If the polynomial argument zj is a periodic function of the index j, then the set
of polynomials is closed under the operation of polynomial multiplication. To be
precise, let α(z) = α0 +α1z+ · · ·+αn−1z

n−1 and β(z) = β0 +β1z+ · · ·+βn−1z
n−1

be polynomials of degree n − 1 at most in an argument which is n-periodic such
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that zj+n = zj for all j, or equivalently z ↑ j = z ↑ (j mod n). Then the product
of γ(z) = α(z)β(z) is given by

γ(z) = γ0 + γ1z + · · ·+ γ2n−2z
2n−2

= γ̃0 + γ̃1z + · · ·+ γ̃n−1z
n−1,

(2.46)

where the elements of {γ0, γ1, . . . , γ2n−2} are the products of the linear convolution
of {α0, α1, . . . , αn−1} and {β0, β1, . . . , βn−1}, and where

γ̃j = γj + γj+n for j = 0, . . . , n− 2 and γ̃n−1 = γn−1.(2.47)

These coefficients {γ̃0, γ̃1, . . . , γ̃n−1} may be generated by applying a pro-
cess of circular convolution to sequences which are the periodic extensions of
{α0, α1, . . . , αn−1} and {β0, β1, . . . , βn−1}.

The circular convolution of (the periodic extensions of) two sequences
{α0, α1, . . . , αn−1} and {β0, β1, . . . , βn−1} may be effected indirectly via a method
which involves finding their discrete Fourier transforms. The Fourier transforms
of the sequences are obtained by evaluating their z-transforms α(z), β(z) at n
distinct points which are equally spaced around the circumference of a unit circle
in the complex plane. These points {zk; k = 0, . . . , n − 1} come from setting
zk = exp(−i2πk/n). From the values {α(zk); k = 0, . . . , n − 1} and {β(zk);
k = 0, . . . , n− 1}, the corresponding values {γ(zk) = α(zk)β(zk); k = 0, . . . , n− 1}
can be found by simple multiplication. The latter represent n ordinates of the poly-
nomial product whose n coefficients are being sought. Therefore, the coefficients
can be recovered by an application of an (inverse) Fourier transform.

It will be demonstrated in a later chapter that there are some highly effi-
cient algorithms for computing the discrete Fourier transform of a finite sequence.
Therefore, it is practical to consider effecting the circular convolution of two se-
quences first by computing their discrete Fourier transforms, then by multiplying
the transforms and finally by applying the inverse Fourier transform to recover the
coefficients of the convolution.

The Fourier method may also be used to affect the linear convolution of two
sequences. Consider the sequences {α0, α1, . . . , αp} and {β0, β1, . . . , βk} whose z-
transforms may be denoted by α(z) and β(z). If zj is periodic in j with a period
of n > p+ k, then

α(z)β(z) = γ0 + γ1z + · · ·+ γp+kz
p+k(2.48)

resembles the product of two polynomials of a non-periodic argument, and its co-
efficients are exactly those which would be generated by a linear convolution of the
sequences. The reason is that the degree p+k of the product is less than the period
n of the argument.

In the context of the discrete Fourier transform, the period of the argument z
corresponds to the length n of the sequence which is subject to the transformation.
In order to increase the period, the usual expedient is to extend the length of the
sequence by appending a number of zeros to the end of it. This is described as
“padding” the sequence.
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Consider the padded sequences {α0, α1, . . . , αn−1} and {β0, β1, . . . , βn−1} in
which αp+1 = · · · = αn−1 = 0 and βk+1 = · · · = βn−1 = 0. Let their z-transforms
be denoted by α̃(z) and β̃(z), and let the period of z be n > p+k. Then the product
γ̃(z) = α̃(z)β̃(z), will entail the coefficients γ̃0 = γ0, γ̃1 = γ1, . . . , γ̃p+k = γp+k of
the linear convolution of {α0, α1, . . . , αp} and {β0, β1, . . . , βk} together with some
higher-order coefficients which are zeros. Nevertheless, these are the coefficients
which would result from applying the process of circular convolution to the padded
sequences; and, moreover, they can be obtained via the Fourier method.

The result can be made intuitively clear by thinking in terms of the physical
model of circular convolution illustrated in Figure 2.2. If the sequences which are
written on the rims of the two discs are padded with a sufficient number of zeros,
then one sequence cannot engage both the head and the tail of the other sequence
at the same time, and the result is a linear convolution.

Polynomial Factorisation

Consider the equation α0 + α1z + α2z
2 = 0. This can be factorised as α2(z −

λ1)(z − λ2) where λ1, λ2 are the roots of the equation which are given by the
formula

λ =
−α1 ±

√
α2

1 − 4α2α0

2α2
.(2.49)

If α2
1 ≥ 4α2α0, then the roots λ1, λ2 are real. If α2

1 = 4α2α0, then λ1 = λ2. If α2
1 <

4α2α0, then the roots are the conjugate complex numbers λ = α+ iβ, λ∗ = α− iβ
where i =

√
−1.

It is helpful to have at hand a Pascal procedure for finding the roots of a
quadratic equation:

(2.50) procedure QuadraticRoots(a, b, c : real);
var
discriminant, root1, root2,modulus : real;

begin
discriminant := Sqr(b)− 4 ∗ a ∗ c;
if (discriminant > 0) and (a <> 0) then

begin
root1 := (−b+ Sqrt(discriminant))/(2 ∗ a);
root2 := (−b− Sqrt(discriminant))/(2 ∗ a);
Writeln(′Root(1) = ′, root1 : 10 : 5);
Writeln(′Root(2) = ′, root2 : 10 : 5);

end;
if (discriminant = 0) and (a <> 0) then

begin
root1 := −b/(2 ∗ a);
Writeln(′The roots coincide at the value = ′, root1 : 10 : 5);

end;
if (discriminant < 0) and (a <> 0) then
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begin
root1 := −b/(2 ∗ a);
root2 := Sqrt(−discriminant)/(2 ∗ a);
modulus := Sqrt(Sqr(root1) + Sqr(root2));
Writeln(′We have conjugate complex roots′);
Writeln(′The real part is ′, root1 : 10 : 5);
Writeln(′The imaginary part is ′, root2 : 10 : 5);
Writeln(′The modulus is ′,modulus : 10 : 5);

end;
end; {QuadraticRoots}

Complex Roots

There are three ways of representing the conjugate complex numbers λ and λ∗:

λ=α+ iβ = ρ(cos θ + i sin θ) = ρeiθ,

λ∗=α− iβ = ρ(cos θ − i sin θ) = ρe−iθ.
(2.51)

Here there are

ρ =
√
α2 + β2 and tan θ = β/α.(2.52)

The three representations are called, respectively, the Cartesian form, the trigono-
metrical form and the exponential form. The parameter ρ = |λ| is the modulus of
the roots and the parameter θ, which is sometimes denoted by θ = arg(λ), is the
argument of the exponential form. This is the angle, measured in radians, which λ
makes with the positive real axis when it is interpreted as a vector bound to the
origin. Observe that θ is not uniquely determined by this definition, since the value
of the tangent is unaffected if 2nπ is added to or subtracted from θ, where n is
any integer. The principal value of arg(λ), denoted Arg(λ), is the unique value of
θ ∈ (−π, π] which satisfies the definition.

The Cartesian and trigonometrical representations are understood by consid-
ering the Argand diagram (see Figure 2.3). The exponential form is understood by
considering the series expansions of cos θ and i sin θ about the point θ = 0:

cos θ=
{

1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

}
,

i sin θ=
{
iθ − iθ3

3!
+
iθ5

5!
− iθ7

7!
+ · · ·

}
.

(2.53)

Adding the series gives

cos θ + i sin θ=
{

1 + iθ − θ2

2!
− iθ3

3!
+
θ4

4!
+ · · ·

}
= eiθ.

(2.54)

Likewise, subtraction gives

cos θ − i sin θ = e−iθ.(2.55)
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ρ

α

β

θ

−θ

λ

λ*

Re

Im

Figure 2.3. The Argand diagram showing a complex
number λ = α+ iβ and its conjugate λ∗ = α− iβ.

The equations (2.54) and (2.55) are known as Euler’s formulae. The inverse formu-
lae are

cos θ =
eiθ + e−iθ

2
(2.56)

and

sin θ = − i
2

(eiθ − e−iθ) =
eiθ − e−iθ

2i
.(2.57)

In some computer languages—for example, in FORTRAN—complex numbers
correspond to a predefined type; and the usual operations of complex arithmetic
are also provided. This is not the case in Pascal; and it is helpful to define the
complex type and to create a small library of complex operations. It is convenient
to use a record type:

(2.58) type
complex = record

re, im : real;
end;

The modulus of a complex number defined in (2.52) and its square are provided
by the following two functions:

(2.59) function Cmod(a : complex) : real;
begin
Cmod := Sqrt(Sqr(a.re) + Sqr(a.im));

end; {Cmod}
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function Cmodsqr(a : complex) : real;
begin
Cmodsqr := Sqr(a.re) + Sqr(a.im);

end; {Cmodsqr}

The addition of a pair of complex numbers is a matter of adding their real and
imaginary components:

(α+ iβ) + (γ + iδ) = (α+ γ) + i(β + δ).(2.60)

Functions are provided both for addition and for subtraction:

(2.61) function Cadd(a, b : complex) : complex;
var
c : complex;

begin
c.re := a.re+ b.re;
c.im := a.im+ b.im;
Cadd := c;

end; {Cadd}

function Csubtract(a, b : complex) : complex;
var
c : complex;

begin
c.re := a.re− b.re;
c.im := a.im− b.im;
Csubtract := c;

end; {Csubtract}

The product of the numbers

λ=α+ iβ = ρ(cos θ + i sin θ) = ρeiθ,

µ= γ + iδ = κ(cosω + i sinω) = κeiω
(2.62)

is given by

λµ=αγ − βδ + i(αδ + βγ)

= ρκ
{

(cos θ cosω − sin θ sinω) + i(cos θ sinω + sin θ cosω)
}

= ρκ
{

cos(θ + ω) + i sin(θ + ω)
}

= ρκei(θ+ω),

(2.63)

where two trigonometrical identities have been used to obtain the third equality.
In the exponential form, the product of the complex numbers comprises the

product of their moduli and the sum of their arguments. The exponential repre-
sentation clarifies a fundamental identity known as DeMoivre’s theorem:{

ρ(cos θ + i sin θ)
}n = ρn

{
cos(nθ) + i sin(nθ)

}
.(2.64)
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In exponential form, this becomes {ρeiθ}n = ρneinθ.
For the purposes of computing a complex multiplication, the Cartesian repre-

sentation is adopted:

(2.65) function Cmultiply(a, b : complex) : complex;
var
c : complex;

begin
c.re := a.re ∗ b.re− a.im ∗ b.im;
c.im := a.im ∗ b.re+ b.im ∗ a.re;
Cmultiply := c;

end; {Cmultiply}

The inverse of the number α+ iβ is

(α+ iβ)−1 =
α− iβ
α2 + β2

.(2.66)

This is obtained from the identity λ−1 = λ∗/(λ∗λ). A formula for the division of
one complex number by another follows immediately; and the trigonometrical and
polar forms of these identities are easily obtained. Separate code is provided for
the operations of inversion and division:

(2.67) function Cinverse(a : complex) : complex;
var
c : complex;

begin
c.re := a.re/(Sqr(a.re) + Sqr(a.im));
c.im := −a.im/(Sqr(a.re) + Sqr(a.im));
Cinverse := c;

end; {Cinverse}

function Cdivide(a, b : complex) : complex;
var
c : complex;

begin
c.re := (a.re ∗ b.re+ a.im ∗ b.im)/(Sqr(b.re) + Sqr(b.im));
c.im := (a.im ∗ b.re− b.im ∗ a.re)/(Sqr(b.re) + Sqr(b.im));
Cdivide := c;

end; {Cdivide}

Finally, there is the code for computing the square root of a complex number.
In this case, the polar representation is used:

(2.68) function Csqrt(a : complex) : complex;

const
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virtualZero = 1E − 12;
pi = 3.1415926;

var
rho, theta : real;
c : complex;

begin {complex square root}
rho := Sqrt(Sqr(a.re) + Sqr(a.im));
if Abs(a.re) < virtualZero then

begin
if a.im < 0 then
theta := pi/2
else
theta := −pi/2

end
else if a.re < 0 then
theta := ArcTan(a.im/a.re) + pi

else
theta := Arctan(a.im/a.re);

c.re := Sqrt(rho) ∗ Cos(theta/2);
c.im := Sqrt(rho) ∗ Sin(theta/2);
Csqrt := c;

end; {Csqrt : complex square root}

The Roots of Unity

Consider the equation zn = 1. This is always satisfied by z = 1; and, if n is
even, then z = −1 is also a solution. There are no other solutions amongst the set
of real numbers. The solution set is enlarged if z is allowed to be a complex number.
Let z = ρeiθ = ρ{cos(θ) + i sin(θ)}. Then zn = ρneiθn = 1 implies that ρn = 1 and
therefore ρ = 1, since the equality of two complex numbers implies the equality
of their moduli. Now consider zn = eiθn = cos(nθ) + i sin(nθ). Equating the real
parts of the equation zn = 1 shows that cos(nθ) = 1 which implies that nθ = 2πk,
where k is any integer. Equating the imaginary parts shows that sin(nθ) = 0 which,
again, implies that nθ = 2πk. Therefore, the solutions take the form of

z = exp
(
i2πk
n

)
= cos

2πk
n

+ i sin
2πk
n
.(2.69)

Such solutions are called roots of unity.
Since cos{2πk/n} and sin{2πk/n} are periodic functions with a period of k =

n, it makes sense to consider only solutions with values of k less than n. Also, if z
is a root of unity, then so too is z∗. The nth roots of unity may be represented by
n equally spaced points around the circumference of the unit circle in the complex
plane (see Figure 2.4).

The roots of unity are entailed in the process of finding the discrete Fourier
transform of a finite sequence. Later in the present chapter, and in Chapter 14,

42



2: ELEMENTS OF POLYNOMIAL ALGEBRA
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Figure 2.4. The 6th roots of unity inscribed in the unit circle.

where we consider the discrete Fourier transform of a sequence of data points yt; t =
0, . . . , T − 1, we adopt the notation

W jt
T = exp

(
−i2πjt
T

)
; t = 0, . . . , T − 1(2.70)

to describe the T points on the unit circle at which the argument zj is evaluated.

The Polynomial of Degree n

Now consider the general equation of the nth degree:

α0 + α1z + · · ·+ αnz
n = 0.(2.71)

On dividing by αn, a monic polynomial is obtained which has a unit associated
with the highest power of z. This can be factorised as

(z − λ1)(z − λ2) · · · (z − λn) = 0,(2.72)

where some of the roots may be real and others may be complex. If the coefficients
of the polynomial are real-valued, then the complex roots must come in conjugate
pairs. Thus, if λ = α + iβ is a complex root, then there is a corresponding root
λ∗ = α− iβ such that the product (z−λ)(z−λ∗) = z2 +2αz+(α2 +β2) is real and
quadratic. When the n factors are multiplied together, we obtain the expansion

0 = zn −
∑
i

λiz
n−1 +

∑
i 6=j

λiλjz
n−2 − · · · (−1)n(λ1λ2 · · ·λn).(2.73)

This can be compared with the expression (α0/αn) + (α1/αn)z + · · ·+ zn = 0. By
equating coefficients of the two expressions, it is found that (α0/αn) = (−1)n

∏
λi

or, equivalently,

αn = α0

n∏
i=1

(−λi)−1.(2.74)
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Thus the polynomial may be expressed in any of the following forms:∑
αiz

i =αn
∏

(z − λi)

=α0

∏
(−λi)−1

∏
(z − λi)

=α0

∏
(1− z/λi).

(2.75)

The following procedure provides the means for compounding the coefficients
of a monic polynomial from its roots. The n roots are contained in a complex array
lambda. When all the complex roots are in conjugate pairs, the coefficients become
the real elements of the complex array alpha.

(2.76) procedure RootsToCoefficients(n : integer;
var alpha, lambda : complexVector);

var
j, k : integer;
store : complex;

begin {RootsToCoefficients}
alpha[0].re := 1.0;
alpha[0].im := 0.0;

for k := 1 to n do
begin {k}
alpha[k].im := 0.0;
alpha[k].re := 0.0;
for j := k downto 1 do

begin {j}
store := Cmultiply(lambda[k], alpha[j]);
alpha[j] := Csubtract(alpha[j − 1], store);

end; {j}
alpha[0] := Cmultiply(lambda[k], alpha[0]);
alpha[0].re := −alpha[0].re;
alpha[0].im := −alpha[0].im

end; {k}

end; {RootsToCoefficients}

Occasionally it is useful to consider, instead of the polynomial α(z) of (2.71),
a polynomial in the form

α′(z) = α0z
n + α1z

n−1 + · · ·+ αn−1z + αn.(2.77)

This has the same coefficients as α(z), but is has declining powers of z instead of
rising powers. Reference to (2.71) shows that α′(z) = znα(z−1).
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If λ is a root of the equation α(z) =
∑
αiz

i = 0, then µ = 1/λ is a root of the
equation α′(z) =

∑
αiz

n−i = 0. This follows since
∑
αiµ

n−i = µn
∑
αiµ
−i = 0

implies that
∑
αiµ
−i =

∑
αiλ

i = 0. Confusion can arise from not knowing which
of the two equations one is dealing with.

Another possibility, which may give rise to confusion, is to write the factorisa-
tion of α(z) in terms of the inverse values of its roots which are the roots of α(z−1).
Thus, in place of the final expression under (2.75), one may write∑

αiz
i = α0

∏
(1− µiz).(2.78)

Since it is often convenient to specify α(z) in this manner, a procedure is provided
for compounding the coefficients from the inverse roots. In the procedure, it is
assumed that α0 = 1.

(2.79) procedure InverseRootsToCoeffs(n : integer;
var alpha,mu : complexVector);

var
j, k : integer;
store : complex;

begin
alpha[0].re := 1.0;
alpha[0].im := 0.0;

for k := 1 to n do
begin {k}
alpha[k].im := 0.0;
alpha[k].re := 0.0;
for j := k downto 1 do

begin {j}
store := Cmultiply(mu[k], alpha[j − 1]);
alpha[j] := Csubtract(alpha[j], store);

end; {j}
end; {k}

end; {InverseRootsToCoefficients}

To form the coefficients of a polynomial from its roots is a simple matter. To
unravel the roots from the coefficients is generally far more difficult. The topic of
polynomial factorisation is pursued is a subsequent chapter where practical methods
are presented for extracting the roots of polynomials of high degrees.

Matrices and Polynomial Algebra

So far, in representing time-series models, we have used rational polynomial
operators. The expansion of a rational operator gives rise to an indefinite power
series. However, when it comes to the numerical representation of a model, one is
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constrained to work with finite sequences; and therefore it is necessary to truncate
the power series. Moreover, whenever the concepts of multivariate statistical anal-
ysis are applied to the problem of estimating the parameters of time-series model,
it becomes convenient to think in terms of the algebra of vectors and matrices. For
these reasons, it is important to elucidate the relationship between the algebra of
coordinate vector spaces and the algebra of polynomials.

Lower-Triangular Toeplitz Matrices

Some of the essential aspects of the algebra of polynomials are reflected in the
algebra of lower-triangular Toeplitz matrices.

A Toeplitz matrix A = [αij ] is defined by the condition that αij = αi+k,j+k for
all i, j and k within the allowable range of the indices. The elements of a Toeplitz
matrix vary only when the difference of the row and column indices varies; and,
therefore, the generic element can be written as αij = αi−j . The n × n matrix
A = [αi−j ] takes the following form:

A =


α0 α−1 α−2 . . . α1−n
α1 α0 α−1 . . . α2−n
α2 α1 α0 . . . α3−n
...

...
...

. . .
...

αn−1 αn−2 αn−3 . . . α0

 .(2.80)

A lower-triangular Toeplitz A = [αi−j ] has αi−j = 0 whenever i < j. Such a
matrix is completely specified by its leading vector α = {α0, . . . , αn−1}. This vector
is provided by the equation α = Ae0 where e0 is the leading vector of the identity
matrix of order n which has a unit as its leading element and zeros elsewhere.
Occasionally, when it is necessary to indicate that A is completely specified by α,
we shall write A = A(α).

Any lower-triangular Toeplitz matrix A of order n can be expressed as a
linear combination of a set of basis matrices I, L, . . . , Ln−1, where the matrix
L = [e1, . . . , en−2, 0], which has units on the first subdiagonal and zeros elsewhere,
is formed from the identity matrix I = [e0, e1, . . . , en−1] by deleting the leading
vector and appending a zero vector to the end of the array:

L =



0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 1 0


.(2.81)

This is a matrix analogue of the lag operator. When q < n, the matrix Lq, which
is the qth power of L, has units on the qth subdiagonal and zeros elsewhere. When
q ≥ n the matrix Lq is null; and therefore L is said to be nilpotent of degree n.
Thus the lower-triangular Toeplitz matrix A may be expressed as

A=α0I + α1L+ · · ·+ αn−1L
n−1

=α(L).(2.82)
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This can be construed as polynomial whose argument is the matrix L. The notation
is confusable with that of a polynomial in the lag operator L which operates on
the set of infinite sequences. Distinctions can be made by indicating the order of
the matrix via a subscript. The matrix L∞ is synonymous with the ordinary lag
operator.

According to the algebra of polynomials, the product of the pth degree polyno-
mial α(z) and the kth degree polynomial β(z) is a polynomial γ(z) = α(z)β(z) =
β(z)α(z) of degree p+ k. However, in forming the matrix product AB = α(L)β(L)
according the rules of polynomial algebra, it must be recognised that Lq = 0 for all
q ≥ n; which means that the product corresponds to a polynomial of degree n− 1
at most. The matter is summarised as follows:

(2.83) If A = α(L) and B = β(L) are lower-triangular Toeplitz matrices, then
their product Γ = AB = BA is also a lower-triangular Toeplitz matrix.
If the order of Γ exceeds the degree of γ(z) = α(z)β(z) = β(z)α(z),
then the leading vector γ = Γe1 contains the complete sequence of the
coefficients of γ(z). Otherwise it contains a truncated version of the
sequence.

If the matrices A, B and Γ were of infinite order, then the products of multiplying
polynomials of any degree could accommodated.

The notable feature of this result is that lower-triangular Toeplitz matrices
commute in multiplication; and this corresponds to the commutativity of polyno-
mials in multiplication.

Example 2.3. Consider the polynomial product

α(z)β(z) = (α0 + α1z + α2z
2)(β0 + β1z)

=α0β0 + (α0β1 + α1β0)z + (α1β1 + α2β0)z2 + α2β1z
3.

(2.84)

This may be compared with the following commutative matrix multiplication:
α0 0 0 0
α1 α0 0 0
α2 α1 α0 0
0 α2 α1 α0



β0 0 0 0
β1 β0 0 0
0 β1 β0 0
0 0 β1 β0

 =


γ0 0 0 0
γ1 γ0 0 0
γ2 γ1 γ0 0
γ3 γ2 γ1 γ0

 ,(2.85)

where

γ0 =α0β0,

γ1 =α0β1 + α1β0,

γ2 =α1β1 + α2β0,

γ3 =α2β1.

(2.86)

The inverse of a lower-triangular Toeplitz matrix A = α(L) is defined by the
identity

A−1A = α−1(L)α(L) = I.(2.87)
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Let α−1(z) = {ω0 +ω1z+ · · ·+ωn−1z
n−1 + · · ·} denote the expansion of the inverse

polynomial. Then, when L in put in place of z and when it is recognised that
Lq = 0 for q ≥ n, it will be found that

A−1 = ω0 + ω1L+ · · ·+ ωn−1L
n−1.(2.88)

The result may be summarised as follows:

(2.89) Let α(z) = α0 + α1z + · · ·+ αpz
p be a polynomial of degree p and let

A = α(L) be a lower-triangular Toeplitz matrix of order n. Then the
leading vector of A−1 contains the leading coefficients of the expansion
of α−1(z) = {ω0 + ω1z + · · ·+ ωn−1z

n−1 + · · ·}.

Notice that there is no requirement that n ≥ p. When n < p, the elements of the
inverse matrix A−1 are still provided by the leading coefficients of the expansion
of α−1(z), despite the fact that the original matrix A = α(L) contains only the
leading coefficients of α(z).

Example 2.4. The matrix analogue of the product of 1 − θz and (1 − θz)−1 =
{1 + θz + θ2z2 + · · ·} is

1 0 0 0
−θ 1 0 0
0 −θ 1 0
0 0 −θ 1




1 0 0 0
θ 1 0 0
θ2 θ 1 0
θ3 θ2 θ 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .(2.90)

This matrix equation is also the analogue of the product of (1− θz)/(1− θ4z4) and
1 + θz + θ2z2 + θ3z3.

Circulant Matrices

A circulant matrix is a Toeplitz matrix which has the general form of

A =


α0 αn−1 αn−2 . . . α1

α1 α0 αn−1 . . . α2

α2 α1 α0 . . . α3

...
...

...
. . .

...
αn−1 αn−2 αn−3 . . . α0

 .(2.91)

The vectors of such a matrix are generated by applying a succession of cyclic
permutations to the leading vector, which therefore serves to specify the matrix
completely. The elements of the circulant matrix A = [αij ] fulfil the condition that
αij = α{(i−j) mod n}. Hence, the index for the supradiagonal elements, for which
1− n < i− j < 0, becomes (i− j) mod n = n+ (i− j).

Any circulant matrix of order n can be expressed as a linear combination of a
set of basis matrices I,K, . . . ,Kn−1, where K = [e1, . . . , en−1, e0] is formed from
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the identity matrix I = [e0, e1, . . . , en−1] by moving the leading vector to the back
of the array:

K =



0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 1 0


.(2.92)

This is a matrix operator which effects a cyclic permutation of the elements of any
(column) vector which it premultiplies. Thus, an arbitrary circulant matrix A of
order n can be expressed as

A=α0I + α1K + · · ·+ αn−1K
n−1

=α(K).
(2.93)

The powers of K form an n-periodic sequence such that Kj+n = Kj for all
j or, equivalently, K ↑ j = K ↑ (j mod n). The inverse powers of the operator
K are defined by the condition that K−qKq = K0 = I. It can be confirmed
directly that K−q = Kn−q. However, this also follows formally from the condition
that Kn = K0 = I. It may also be confirmed directly that the transpose of K is
K ′ = Kn−1 = K−1.

It is easy to see that circulant matrices commute in multiplication, since this
is a natural consequence of identifying them with polynomials. Thus

(2.94) If A = α(K) and B = β(K) are circulant matrices, then their product
Γ = AB = BA is also a circulant matrix whose leading vector γ =
Γe0 contains the coefficients of the circular convolution of the leading
vectors α = Ae0 and β = Be0.

Example 2.5. Consider the following product of circulant matrices:
α0 0 α2 α1

α1 α0 0 α2

α2 α1 α0 0
0 α2 α1 α0



β0 0 β2 β1

β1 β0 0 β2

β2 β1 β0 0
0 β2 β1 β0

 =


γ0 γ3 γ2 γ1

γ1 γ0 γ3 γ2

γ2 γ1 γ0 γ3

γ3 γ2 γ1 γ0

 .(2.95)

Here

γ0 =α0β0 + α2β2,

γ1 =α1β0 + α0β1,

γ2 =α2β0 + α1β1 + α0β2,

γ3 =α2β1 + α1β2,

(2.96)

represent the coefficients of the circular convolution of {α0, α1, α2, 0} and
{β0, β1, β2, 0}. Notice that, with β2 = 0, the coefficients {γ0, γ1, γ2, γ3} would
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be the same as those from the linear convolution depicted under (2.85). Thus
it is confirmed that the coefficients of the linear convolution of {α0, α1, α2} and
{β0, β1} may be obtained by applying the process of circular convolution to the
padded sequences {α0, α1, α2, 0} and {β0, β1, 0, 0}.

If A = α(K) is a circulant matrix, then its inverse is also a circulant matrix
which is defined by the condition

A−1A = α−1(K)α(K) = I.(2.97)

If the roots of α(z) = 0 lie outside the unit circle, then coefficients of the
expansion α(z)−1 = {ω0 +ω1z+ · · ·+ωn−1z

n−1 + · · ·} form a convergent sequence.
Therefore, by putting K in place of z and noting that K ↑ q = K ↑ (q mod n), it is
found that

A−1 =
∞∑
j=0

ωjn +
{ ∞∑
j=0

ω(jn+1)

}
K + · · ·+

{ ∞∑
j=0

ω(jn+n−1)

}
Kn−1

=ψ0 + ψ1K + · · ·+ ψn−1K
n−1.

(2.98)

Given that ωj → 0 as j → ∞, it follows that the sequence {ψ0, ψ1, . . . , ψn−1}
converges to the sequence {ω0, ω1, . . . , ωn−1} as n increases. If the roots of
α(z) = 0 lie inside the unit circle, then it becomes appropriate to express A as
A = K−1(αn−1 + αn−2K

−1 + · · · + α1K
2−n + α0K

1−n) = K−1α′(K−1) and to
defined the inverse of A by the condition

A−1A = α′−1(K−1)α′(K−1) = I.(2.99)

The expression under (2.98) must then be replaced by a similar expression in terms
of a convergent sequence of coefficients from the expansion of α′(z−1).

The Factorisation of Circulant Matrices

The matrix operator K has a spectral factorisation which is particularly useful
in analysing the properties of the discrete Fourier transform. To demonstrate this
factorisation, we must first define the so-called Fourier matrix. This is a symmetric
matrix U = n−1/2[W jt; t, j = 0, . . . , n − 1] whose generic element in the jth row
and tth column is W jt = exp(−i2πtj/n). On taking account of the n-periodicity
of W q = exp(−i2πq/n), the matrix can be written explicitly as

U =
1√
n


1 1 1 . . . 1
1 W W 2 . . . Wn−1

1 W 2 W 4 . . . Wn−2

...
...

...
...

1 Wn−1 Wn−2 . . . W

 .(2.100)

The second row and the second column of this matrix contain the nth roots of
unity. The conjugate matrix is defined as Ū = n−1/2[W−jt; t, j = 0, . . . , n − 1];
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and, by using W−q = Wn−q, this can be written explicitly as

Ū =
1√
n


1 1 1 . . . 1
1 Wn−1 Wn−2 . . . W
1 Wn−2 Wn−4 . . . W 2

...
...

...
...

1 W W 2 . . . Wn−1

 .(2.101)

It is readily confirmed that U is a unitary matrix fulfilling the condition

ŪU = UŪ = I.(2.102)

To demonstrate this result, consider the generic element in the rth row and the sth
column of the matrix UŪ = [δrs]. This is given by

δrs =
1
n

n−1∑
t=0

W rtW−st

=
1
n

n−1∑
t=0

W (r−s)t.

(2.103)

Here there is

W (r−s)t = W qt = exp(−i2πqt/n)
= cos(−i2πqt/n)− i sin(−i2πqt/n).

(2.104)

Unless q = 0, the sums of these trigonometrical functions over an integral number
of cycles are zero, and therefore

∑
tW

qt = 0. If q = 0, then the sine and cosine
functions assume the values of zero and unity respectively, and therefore

∑
tW

qt =
n. It follows that

δrs =
{ 1, if r = s;

0, if r 6= s,

which proves the result.

Example 2.6. Consider the matrix

U =
1
2


1 1 1 1
1 W W 2 W 3

1 W 2 W 4 W 6

1 W 3 W 6 W 9

 =
1
2


1 1 1 1
1 W W 2 W 3

1 W 2 1 W 2

1 W 3 W 2 W

 .(2.105)

The equality comes from the 4-period periodicity of W q = exp(−πq/2). The con-
jugate matrix is

Ū =
1
2


1 1 1 1
1 W−1 W−2 W−3

1 W−2 W−4 W−6

1 W−3 W−6 W−9

 =
1
2


1 1 1 1
1 W 3 W 2 W
1 W 2 1 W 2

1 W W 2 W 3

 .(2.106)
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With W q = exp(−πq/2) = cos(−πq/2) − i sin(−πq/2), it is found that W 0 = 1,
W 1 = −i, W 2 = −1 and W 3 = i. Therefore,

UŪ =
1
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .(2.107)

Consider postmultiplying the unitary matrix U of (2.100) by a diagonal matrix

D =


1 0 0 . . . 0
0 Wn−1 0 . . . 0
0 0 Wn−2 . . . 0
...

...
...

. . .
...

0 0 0 . . . W

 .(2.108)

Then it is easy to see that

UD = KU,(2.109)

where K is the circulant operator from (2.92). From this it follows that K = UDŪ
and, more generally, that

Kq = UDqŪ .(2.110)

By similar means, it can be shown that K ′ = UD̄Ū , where

D̄ = diag{1,W,W 2, . . . ,Wn−1}(2.111)

is the conjugate of D. The following conclusions can be reached in a straightforward
manner:

(2.112) If A = α(K) is a circulant matrix then

(i) A = α(K) = Uα(D)Ū ,
(ii) A′ = α(K ′) = Uα(D̄)Ū ,
(iii) A−1 = α(K) = Uα−1(D)Ū .

(2.113) If the elements of the circulant matrix A are real numbers, then the
matrix is its own conjugate and

A = Ā = Ūα(D̄)U.

Notice that the set of matrices Dk; k = 0, . . . , n − 1 forms a basis for an
n-dimensional complex vector space comprising all diagonal matrices of order n.
Therefore, provided that its coefficients can be complex numbers, the polynomial
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α(D) in the expressions above stands for an arbitrary diagonal matrix with real or
complex elements. If the coefficients of α(D) are constrained to be real, then the
jth element of the diagonal matrix takes the form of

δj =
∑
j

αjW
jt =

∑
j

αj
{

cos(ωjt)− i sin(ωjt)
}
,(2.114)

where ωj = 2πj/n. In that case, the sequence of complex numbers {δj ; j =
0, 1, . . . , n − 1} consists of a real part which is an even or symmetric function of t
and an imaginary part which is an odd or anti-symmetric function.

Example 2.7. Consider the equation

X = Ux(D)Ū = Ūx(D̄)U,(2.115)

which defines the real-valued circulant matrix X. The second equality follows from
the fact that matrix is its own conjugate. Observe that, if e0 = [1, 0, . . . , 0]′ is the
leading vector of the identity matrix of order n, then

Xe0 =x = [x0, x1, . . . , xn−1]′,

Ue0 = Ūe0 = i = [1, 1, . . . , 1]′,

x(D̄)i= ξ = [ξ0, ξ1, . . . , ξn−1]′ and

x(D)i= ξ∗ = [ξn−1, ξn−2, . . . , ξ0]′.

(2.116)

Here the vector ξ is the discrete Fourier transform of the vector x. Its elements
are the values {ξk = x(zk); k = 0, . . . , n − 1} which come from setting z = zk =
exp(−2πk/n) in x(z) which is the z-transform of the sequence. {x0, x1, . . . , xn−1}.
Premultiplying the equation X = Ūx(D̄)U from (2.115) by U and postmultiplying
it by e0 gives

Ux = ξ,(2.117)

which represents the direct Fourier transform of the vector x. Postmultiplying the
equation by e0 gives

x = Ūξ;(2.118)

and this represents the inverse Fourier transform by which x is recovered from ξ.

Example 2.8. Consider the multiplication of two circulant matrices

A=α(K) = Uα(D)Ū and

B=α(K) = Uβ(D)Ū .
(2.119)

Their product is

AB=Uα(D)ŪUβ(D)Ū

=Uα(D)β(D)Ū .
(2.120)
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On the LHS, there is a matrix multiplication which has already been interpreted
in Example 2.5 as the circular convolution of the sequences {α0, . . . , αn−1} and
{β0, . . . , βn−1} which are the coefficients of the polynomials of α(z) and β(z). On
the RHS there is a matrix multiplication α(D)β(D) which represents the pairwise
multiplication of the corresponding nonzero elements of the diagonal matrices in
question. These diagonal elements are the values {α(zk); k = 0, . . . , n − 1} and
{β(zk); k = 0, . . . , n − 1} of the discrete Fourier transforms of the sequences; and
they come from setting z = zk = exp(−2πk/n) in α(z) and β(z). Thus it can
be demonstrated that a convolution product in the time domain is equivalent to a
modulation product in the frequency domain.
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CHAPTER 3

Rational Functions
and Complex Analysis

The results in the algebra of polynomials which were presented in the previous
chapter are not, on their own, sufficient for the analysis of time-series models.
Certain results regarding rational functions of a complex variable are also amongst
the basic requirements.

Rational functions may be expanded as Taylor series or, more generally, as
Laurent series; and the conditions under which such series converge are a matter
for complex analysis.

The first part of this chapter provides a reasonably complete treatment of the
basic algebra of rational functions. Most of the results which are needed in time-
series analysis are accessible without reference to a more sophisticated theory of
complex analysis of the sort which pursues general results applicable to unspecified
functions of the complex variable. However, some of the classic works in time-series
analysis and signal processing do make extensive use of complex analysis; and they
are liable to prove inaccessible unless one has studied the rudiments of the subject.

Our recourse is to present a section of complex analysis which is largely self-
contained and which might be regarded as surplus to the basic requirements of time-
series analysis. Nevertheless, it may contribute towards a deeper understanding of
the mathematical foundations of the subject.

Rational Functions

In many respects, the algebra of polynomials is merely an elaboration of the
algebra of numbers, or of arithmetic in other words. In dividing one number by
another lesser number, there can be two outcomes. If the quotient is restricted to
be an integer, then there is liable to be a remainder which is also an integer. If no
such restriction is imposed, then the quotient may take the form of a interminable
decimal. Likewise, with polynomials, there is a process of synthetic division which
generates a remainder, and there is a process of rational expansion which is liable
to generate an infinite power-series.

It is often helpful in polynomial algebra, as much as in arithmetic, to be aware
of the presence of factors which are common to the numerator and the denominator.

Euclid’s Algorithm

Euclid’s method, which is familiar from arithmetic, can be used to discover
whether two polynomials α(z) = α0+α1z+· · ·+αpzp and β(z) = β0+β1z+· · ·+βkzk
possess a polynomial factor in common. Assume that the degree of α(z) is no less
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