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S8IMILARITIES AND DIFFERENCES IN SIGNAL PROCESSING
FOR RADAR AND S8ONAR

David Creasey*
1 INTRODUCTION

1.1 Information
Both sonar and radar systems are types of communication
systems. Shannon states that in a single ideal communication
channel, the maximum information output is given by [1)
I < 2BTlogy( 1 + s/n ) bit (1)

where B = the bandwidth of the channel,
T = the observation time and
s/n = the signal-to-noise ratio.

Neither radar nor sonar are ideal information channels, but
Equation 1 does indicate what we must do in order to get more
information from the system.

Firstly, note that if the signal-to-noise ratio approaches
zero then the information that can be derived from the system is
also v1rtua11y zero, (logzl = 0). Put another way, if you put
rubbish in you get rubbish out. The system designer and the
system user must always ensure that there is signal to process.

Secondly, a long observation time will produce more
information than a short observation time. Thus if we can
integrate the output of a system over along time then we shall
obtain some processing gain.

Thirdly, always use a signal with a wide bandwidth. In some
ways, this contradicts the requirement for a hlgh signal-to-noise
ratio since noise increases as the bandwidth increases. However,
the 51gnal-to-n01se term is included in a logarithm, so there is
a gain in an information sense by using a high bandwidth.

Often radar and sonar systems use an array of elements. If
the array elements are sufficiently spaced, more than half a
wavelength apart, then each element can be considered to form a
single channel. This means in a system with an array of M
elements, each suitably spaced, there are M separate channels.
Shannon’s simple information limit can then be increased by a
factor of M to give

I < 2BTMlog,( 1 + s/n ) bit (2)

1.2 Active and Passive Systems
1.2.1 Active systems.

If energy is propagated into a medium, an object within that
medium will intercept and re-radiate some of the transmitted
energy. A receiver will then be able to detect the presence of
the object by observing the reflected energy. Such systems are
known as echo-ranging systems since they measure the two-way
propagation time and, from a knowledge of the speed of
propagation, the range of the target can be calculated.

The most obvious difference between a radar and a sonar
system is the difference between the speed of electromagetic
propagation for a radar (300 x 10 m/s) compared to the speed of
sound in water (1.5 x 103 m/s). For a target at a range of
15 km the two-way propagation time for a radar is only 100 pus.

*
School of Electronic and Electrical Engineering,
The University of Birmingham.
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For a sonar target at the same range the two-way
propagation time is 20 s. Things happen very much more
slowly in sonar than they do in a radar.

There are three sources of interference in both radar and
sonar systems. Firstly, there is the background noise. A signal
that is always present due to many causes. These causes can be
naturally occuring noise, or, in the other extreme, it may be
noise deliberately generated to confuse the echo-ranging system.
The system must ensure that the output of the receiver can have a
sufficiently large signal component so that it may be detected in
the presence of noise. This can often be accomplished by
increasing the quantity of energy radiated by the transmitter.

There are often many scatterers both within the medium and
at its boundaries. These scatterers are often individually small
but there are many of them so that they can combine to produce
large but very variable signals at the receiver. Such signals are
called clutter in radar and reverberation in sonar. Increasing
the transmitted signal level does not improve the
signal-to-reverberation level since they are both proportional to
the level of the signal transmitted. A large amount of
directionality in the receiver or the differences in Doppler
shift between the signals backscattered from the target and the
clutter/reverberation can be used to differentiate between
signal and clutter/reverberation.

The third form of interference signal is very similar to
clutter/reverberation. Energy can often propagate over different
paths, for example by a direct path and by reflection from a
boundary. Differences in propagation time can be used to
differentiate between the direct path and the reflected path.

The signal-to-noise ratio at the receiver can be evaluated
from a number of factors. These result in an energy balance
equation where the level of the echo signal is compared to the
interference (noise). The resulting radar equation and sonar
equation are both derived by taking the transmitted signal level
multiplying by the losses expected in the two-way transmission
path and further multiplying by the ratio of the energy reflected
from the target to that intercepted by the target. This gives the
level of the echo signal at the receiver. This is then divided by
the level of the noise to give the signal-to-noise ratio. Often
the series of multiplications and divisions provides a very
cumbersome representation. Alternatively, the ratio can be
expressd in a logarithmic form and usually this is done by taking
the terms individually and expressing them in logarithmic form.
This results in an equation of the type

S/N = SL - 2PL + TS - NL dB (3)
Equation 3 appears very simple but it hides many components. For
example the source level, SL, will depend upon the directivity of
the transmitter; the propagation loss, PL, will contain
components that comprise spreading losses and absorption losses;
the target strength, TS, is aspect dependent for many practical
targets; and the noise level, NL, will depend upon the noise
spectral density, the bandwidth and possibly the directional
properties of the receiver. In radar and sonar the basic
formulation of Equation 3 is identical but the detailed
components within each of the terms differ.

Active sonars operate over frequencies from a few hundred
hertz to about 1 MHz. Radar on the other hand operates from r.f.
frequencies of say 10 MHz up to frequencies just below the
infra-red region at about 30 GHz. Thus a second major difference
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between radar and sonar is the operating frequency. Strangely the
wavelengths used overlap because of the major difference of
propagation speed. The relationship between velocity, ¢,
frequency, f, and wavelength, A, is

A= c/f (4)
Thus, the wavelengths for an active sonar range from about 3 m
down to 1.5 mm. The range of radar wavelengths are from 30 m
down to 10 mm or so.
1.2.2 Passive operations

The need for covert operations underwater has lead to the
development of sophisticated systems that rely upon the noise
created at the target by its propellers, on-board rotating and
reciprocating machinery and flow noise.

Radio telescopes are effectively passive radar systems
although they are not often viewed as such. The nearest direct
passive equivalent usually associated with radar area electronic
support measures (ESM) where listening equipment detects
radiation from active radars and communications systems. Sonar
intercept equipments are of course used in the underwater
environment.

The operating frequencies of ESM and sonar intercept
equipments are dictated by the frequencies used in active radars
and active sonars. Ideally, passive sonars would operate at
frequencies from 10 Hz or so and up to about 3 kHz so as to
encompass all the useful spectrum of the radiated signatures of
passive targets. The difficulty of operating at the frequencies
of around 10 Hz is the high ambient sea noise and the difficulty
of operating with large apertures so as to obtain directional
information.

The major interference component in a passive sonar is the
ambient noise of the sea. Multi-path propagation can cause
problems when narrow-band operation results from such operations
as spectrum analysis. Here the signals from different paths can
combine either constructively of destructively and the signal
levels perceived by the sonar can fluctuate wildly. However, the
basic premise of a passive sonar is often wideband operation so
that over the wideband the signal level is more constant.

1.3 Objectives

The objectives of radar and sonar are threefold. They must
detect, locate and classify targets so that effective
actions,such as the derivation of a fire-control solution, can be
obtained. All of these objectives require high signal-to-noise
ratios to be effective.

Detection requires that the target signal should be well
above any interference. If that interference is clutter or
reverberation, it may be necessary to look for differences in
Doppler between the target and the interference. When an active
system is noise limited and it may be impossible to increase the
peak transmitted signal level. One solution is to code the
transmitted signal, for example, changing the frequency during
the pulse. On reception the echo signal plus noise is cross
correlated agianst a replica of the transmitted signal. The echo
should produce a high degree of correlation while the noise
should be poorly correlated.

The range, bearing and heading are the three basic
parameters that an echo ranging system can produce. The range is
obtained simply from the time between pulse transmission and echo
reception. Bearing is obtained from the directional response of

1/3



the system arrays. Heading information is obtained from the
changes in range and bearing observed over a period of time.
Doppler shift will give radial speed directly.

In a passive system, range is not directly available and must be
computed from a number of sets of data samples either separated
in time or space.

Classification is a very sensitive topic. Suffice to say, if
a very short pulse is used the amplitude highlights in the echo
signal may give clues about the target shape. Alternatively the
behaviour of the target observed over a period of time may be the
only clue available in an active system. In passive sonar, the
received signal spectrum will contain a number of discrete lines
that may be used to classify the target.

Thus radars and sonars both need to generate signals in the
receiver above interference signals. They need to look at the
spectrum of the received signals. Time integration is used in
replica correlators and both need to process the data received
from arrays of elements.

1.4 Bandwidth

The speed of propagation causes the major difference between
the digital processing of radar and sonar signals. This speed
difference is directly responsible for the differences in system
bandwidth. The bandwidth in an active system is fixed by the need
to obtain a good range resolution. The range-resolution cell is
equal 0.5cT where T is the effective pulse length and c is the
velocity of propagation. The system is matched when it has a
bandwidth, B, just sufficiently wide to accommodate the pulse
length. This is usually expressed in the
simple equation

B=1/T ceeeee(B)

Table 1.1 gives comparative parameters for typical radars and
active sonars.

TABLE 1.1
Operating |Pulse Range res’n
Activity frequency |length |Bandwidth cell
Long Range: Radar 1.25 GHz 1 us 1 MHz 150 m
Sonar 4 kHz 1 ms 1 kHz 0.75 m
Weapons System | Radar 15 GHz 30 _ns 33 MHz 4.5 m
Sonar 40 kHz]| 100 us 10 kHz 75 mm

This bring us to the question about how signals should be
sampled prior to quantisation and being processed digitally. It
is possible for signals from an active soanr and a passive sonar
to be sampled directly as baseband signals at a rate something
slightly above the Nyquist rate. For the long range sonar
operating over the band 3.5 kHz to 4.5 kHz then a sampling
frequency of about 10 kHz will suffice. Even the signals from a
weapons sonar could be sampled as a baseband signal at about
sampling rate of 100 kHz.

However, analog-to-digital converters operating in the
gigahertz region are very rare. To accommodate radar signals the
signals have to be modulated down to baseband frequencies. When
this is done, it is usual to modulate down to baseband using a
local oscillator working at the centre frequency of the radar
signal. The signal then needs to be modulated with both the sine
and the cosine of the carrier in separate channels to produce
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in-phase (I) and quadrature (Q) signals. The sampling frequency
in each channel can then be halved but as there are two channels
the number of samples is still equal to those rquired by the
Nyquist sampling theorem. Table 1.2 compares sampling rates for
radar and sonar signals.

TABLE 1.2
Operating Min. Sampling
Activity frequency | Bandwidth Frequency
Long Range Radar 1.25 GHz 1 MHz 1 MHz in both
I & QO channels
Sonar 4 KHz 1 kHz 2 kHz as base-
band signal or
1 KHz in both
I & O channels
Weapons System| Radar 15 GHz 33 MHz 33 MHz in both
I & O channels |
Sonar 40 kHz 10 kHz 20 kHz as base-
band signal or
10 kHz in both
I & O channels

Note that for many situations sonar signals need to be sampled in
quadrature and apart from the sampling frequencies involved radar
and sonar signals are often treated similarly.

2 SPECTRUM ANALYSIS

2.1 System Model
Spectrum analysis is one of the basic processes used in
signal analysis. The technique is based upon a linear-system
model that assumes all signals consist of a summation of cosine
waveforms of different frequencies. So that time delays can be
incorporated each cosine term has an associated phase shift.
Mathematically this can be written simply as
x(t) = IXpcos(wpt + &y) R ()
Alternatively, the cosine term can be expanded to give
x(t) = I(Xpcosé,.coswpt - Xpsingp.sinwgt) ... (7)
= Zapcoswpt -~ IZbpsinwgt ceseses(8)
Complex waveforms, such as noise, can consist of an infinite
number of sines and cosines. The problem in spectrum analysis is
to determine the terms X, and ¢, or the alternative pair a, and
bn. We will now discuss how a practical spectrum analyser could
be constructed.

2.2 Spectrum Analysers
The simplest method of realisation would be to feed the
signals through a set of band pass filters each with a narrow
pass band and centred at different frequencies, see Figure 2.1.
This has three disadvantages:
i) cost
ii) the required phase term is not available
iii) such filters may be impossible to design.
The system could be made simpler by mixing the signals with
a local oscillator and selecting one of the sidebands in a single
filter, see Figure 2.2. This has the advantage that only one
filter is required. To check all frequencies the local oscillator
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frequency would need to be altered. This is how a radio or
television receiver works.

The design of the band pass filter could still be a problen
if the centre frequency is too high. A low pass filter could be
substituted for the band pass filter if the local oscillator
frequency is made equal to the frequency of the signal being
measured, see Figure 2.3.

IN A, | OUT
at frequency Y
fo

@ Local Oscillator

at frequency f,

Fig. 2.3

If the local oscillator is say 2.coswpt, and the input
signal is apcoswpt - bpsinwyt, the modulation process produces a
waveform

ap + apcos2wpnt - bpsin2wnt
The low pass filter removes the last two terms (the upper
sidebands) and only passes a, (the lower sideband). The problem
with this realisation is that there is no measure of bp. This may
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be overcome by incorporating a second channel where the local
oscillator is 2.sinw,t, see Figure 2.4. There are now two outputs
one from each channel, ap and bp.

3 kﬁ IN-PHASE

OUTPUT

IN at frequency

t, ’\/ Local Oscillator

at frequency f,

057
QUADRATURE
- Ay |—=—OUTPUT

Fig. 2.4

2.3 Mathematical Representatiom

To represent this process mathematically, we need to express
the modulation processes as simple multipliers and the low pass
filters as integrators. The two channels also need separating by
using a multiplier, say a, in front of the sine channel. Hence,
for the time waveform x(t), the component, X(w), with angular
frequency w can be written

X(w) = Tx(t).(coswt + a.sinwt).dt csecees(9)
-~ald

Note that the factor 2 in the multiplier has not been used. This
is because in Egn 7, there are two outputs, one at an angular
frequency -w as well as the expected component at +w.

2.4 The Fourier Integral Equation
The a indicates that two channels are being used and that

the resulting two terms are not added directly. The two channels
act in qguadrature to one and other. Of course, engineers and
mathematicians commonly use "3j" or "i", the square root of -1 to
represent quadrature components. In fact we can write a= -j so
that Egn.9 becomes oo

X(w) = [x(t).(coswt - j.sinwt).dt ceeeees(10)

-%0 .

Remembering that by de Moivre’s theorem

coswt - j.sinwt = e ¥t

a more compact form of Egn.10 becomes

jwt

ab
X(0) =_I'x(t).e'J .dt ceeeee.(11)
-0l

This is the Fourier integral equation, one of a pair of equations
that form the Fourier transform pair [2]. The second equation
forming the pair is
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x(t) = 1/2m).] X(w).e3% a0 el (12)

Egn.ll enables a time waveform to be represented by a collection
of sine and cosine waveforms and produces the so-called spectrum.
Eqn.12, on the other hand provides the reverse operation where
the spectrum can be converted back into the time waveform.

2.5 The Discrete Fourier Transform (DFT) Pair
To calculate the Fourier transform in a digital form
requires that the input signal is a sampled set of data. Thus
x(t) becomes x(k.At), where samples are taken at instants of time
At apart and for brevity we write
x(t) = x(kAt) = xp

2.5.1 Band limiting

If we assume that we are dealing with a baseband signal with
bandwidth B and sampled at the Nyquist rate, the time samples are
taken at instants At = 1/2B. Thus in Egn. 11 and Eqn. 12 we can
replace the time term t in the exponential by k/2B.

2.5.2 Time limiting

Any set of data being processed by a computer must be
limited in length. Time signals found in radar and sonar have to
be time limited. Suppose that we place a time window around our
time waveform so that

x(t) = 0 for t < -0.5T,
x(t) = xx for -0.5T < t < +0.5T7, and
x(t) = 0 for £t > 0.5T.

The Fourier transform is a linear process so that superposition
applies. This means that we can apply one component of signal at
a time to Egn. 11. The result using this signal can be evaluated
and then added to similar results obtained by applying other
signal components to Eqn. 11. Hence, suppose that we consider
that within the time window -0.5T to +0.5T
x(t) = Ajcosw;t
Applying this to Egn.l1l1 and evaluating with the integral limits
+/-0.5T gives the standard result
X(w) = 0.5A;T.[sin{0.5(w-w;)T}/{0.5(w-w;)T}+
sin{0.5(w+w;)T}/{0.5(w+w1)T}] «eeeee..(13)

Egn. 13 is sketched in Fig. 2.5. It can be seen that the
function X(w) has two peaks, one at w = -w; and the second at
= +w;. This gives rise to the concept of negative frequency which
we shall deal with in a moment. However, if we consider Egn. 13
more closely we note that the positve frequency component peaks
at ©= +w; and that this component first passes through zero
when the sine function in the sinX/X term equals +/-m. Thus zeros
occur at at w= +w; - (27/T) and at w= +w; + (27/T). The size of
the frequency resolution cell can be defined as 1/T Hz.

Remembering the 27 multiplier involved between frequency and
angular frequency, the resolution cell size is equivalent to
placing sinX/X functions along the frequency axis so that the
peak of one function coincides with zeros for the other
functions, see Fig.2.6.

Returning now to Egqn. 11 and Egn. 12, the continuous
spectrum X(w) must be replaced by samples of that spectrum at
frequency spacing 2n/T radian. These samples we shall call
Fourier coefficients, A;. In Egqn. 11 and Egn. 12 the w in the
exponential terms must also be represented by samples. Hence, we
replace w by 2nr/T.
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2.5.3 The number of samples.

It is impossible [2] to limit the frequency bandwidth of a
signal while simultaneously time limiting that same signal. A
time-limited signal requires an infinite bandwidth and vice
versa. However, if the number of samples taken is sufficiently
large the resulting errors are sufficiently small for the
equations to provide a good approximation. Combining the ideas of
Section 2.5.1 and Section 2.5.2, we see that the time waveform of
duration T has been sampled at instants separated by 1/2B. Thus
the number of time samples is 2BT. If the one-sided bandwidth is
B we also note that there is a band of positive signals and a
band of negative signals. This means that the total two-sided
bandwidth is 2B. Samples of the spectrum are taken 1/T apart so
the total number of Fourier coefficients is also 2BT. This
indicates that the total information in the system remains
unaltered by the transformation.

The integral equations that define the Fourier transform
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pairs must be replaced by summations in the discrete format. If
we write 2BT = N, the total number of data samples in the time
and frequency domains, we obtain equations of the form

N-1

Ay = 1/N I xg.e 27ITK/N e (14)
and N-1 k=0
X = L Ap.e T2PITK/N ceeeens.(15)
r=0

These two equations represent the discrete Fourier pair [2].

The 1/N multiplier can be found in the equation for xy
rather than in front of the equation for A;. Alternatively, some
authors use (1/N)0.5 [3]. The reason for using Eqn. 14 and Eqn.
15 is that Egn. 14 does at least have a physical significance.
For example, with r = 0, Ay is simply the average value. Thus the
zero-frequency term is equivalent to the d.c. value. For other
values of r, the time samples, xx, are multiplied by samples of
cosine and sine. in orthogonal channels. If a frequency component
equivalent to r is present, the summation and divide by N, then
averages the lower sideband or base-banded component. Hopefully,
the upper sideband components resulting from the multiplication
will average to zero.

2.5.4 Relationship to the Fourier series.
If a continuous signal, x(t), is periodic with a period
2n/wg, the signal may be expressed as a complex Fourier series [2]

400 jrwot
x(t) = Zc;.e ceseesess(l6)
r==0b

Comparing Egn. 15 and Egn. 16, it can be seen that the two
equations are almost identical. In Egn. 15, the time waveform is
continuous whereas in Eqn. 14 the time wavefrom is sampled and
time is represented by the variable k/2B. The fundamental
frequency in Egn. 16 is wo/2n. The equivalent fundamental
frequency in Egn.15 is r/T.

It is important to note that the discrete Fourier transform
is simply a band-limited discrete version of the complex Fourier
series. Such a representation requires that the signal being
analysed is a PERIODIC signal with a period T.

In radar and sonar it is very unlikely that the signals
being analysed will be periodic and as such the DFT is only an
approximation. The non-periodic nature of the signals analysed
gives rise to errors in the estimation of the Fourier
coefficients. In particular, the Fourier coeficients are spaced
along the frequency axis at spacings of 1/T Hz. If a component
does not fall at one of these discrete frequencies, r/T, it will
cause all the frequency bins (all values of r) to have an output.
These outputs will be modulated in amplitude by the sinX/X
envelope. Thus if the frequency component is at (r+d) /T Hz, where
5 is a positve fraction less than unity, bins r and r+1 will have
major outputs from the forward DFT operation. Bins r-1 and r+2
will also have significant outputs and these might be only about
-13 dB below the expected output.

2.6 Negative Frequencies
The concept of negative frequency is sometimes difficult to
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comprehend. It may be explained pictorially by reference to
Fig. 2.7. In Fig. 2.7(a), the arrow represents a vector of unit
amplitude with a phase ¢. If a perpendicular is dropped to the x
axis the distance along the x axis is cos¢. A second line drawn
to the y axis will be offset along the y axis by an amount siné.
If ¢=wt the vector becomes a phasor that rotates at an angular
frequency w. In representing coswt as a phasor, the problem is
to remove the sinwt component on the quadrature axis. This is
done by having two phasors each of amplitude 0.5 rotating in
opposite directions, see Fig. 2.7(b). Along the x axis the
phasors add vectorially to give coswt. Along the y axis the
resulting components add to give zero.

+ot

cOoS §
—f;.4 -0t

(a) (b)

Fig. 2.7

Effectively, Fig. 2.7(b) represents the function

0.5[eI¥ 730,
This is of course the expression for cos$ derived from de
Moivre’s theoren.

A similar phasor diagram will produce a representation for
sindé. From this second phasor diagram sind can be seen to be
equal to
jwt

[0t o-Iuty oy e (17).

2.7 Doppler Effects

In active systems, relative movement between the the source
and receiver on one hand and the target on the other will produce
a Doppler shift. The received pulse will be lengthened or
shortened relative to the transmitted pulse. This in turn
produces a change in the received signal spectrum compared to the
spectrum of the transmitted pulse. For a relative radial velocity
u (considered to be positive for a closing target), the
fractional change in angular frequency is given by

Aw/wy = 2u/c essess(18)

where c is the velocity of energy propagation.

Table 2.1 shows the Doppler shifts expected for a relative
radial velocity of 1m/s in typical sonar and radar systems.

Radial velocities in sonar can be from zero to 40 m/s. In
radars the radial velocities can be from zero to values in excess
of 600 m/s. Thus, the Doppler shifts in radar and sonar are
similar in magnitude.
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TABLE 2.1

System Carrier frequency Doppler shift
(Hz) per 1m/s radial
velocity (Hz)
Sonar 3 x 103 4
30 x 103 40
Radar 1.5 x10° 0.1
15 x 10° 1

It is important to note that differences arise when the
spectrum of the signals are considered. Egn. 13 can be adapted
for this purpose. Consider a pulse of a carrier signal of angular
frequency w, and of pulse width T. Egqn. 13 is then the spectrum
of this pulse, see Fig. 2.5. However, in sonar and radar systens,
the pulse itself is repeated at a regular pulse repetition
frequency. This pulse repetition frequency has to be small
enocegh to allow the energy to propagate to maximum range and be
reflected from targets at that range. Thus the pulse repetion
period, Tp, for a system operating to a maximum range R is given
by

Tp = 2R/c veeee.(19)

The periodic pulsing of the transmit signal produces a line
spectrum with a spacing between the lines equal to 1/Tp. The
spectrum of Fig. 2.8 shows the positive frequency components of
the spectrum of a pulse of carrier signal of frequency fo.

\\\u i

i —

Frequency

Fig. 2.8
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Consider

i) a sonar operating at a frequency of 3 kHz and R = 15 Kkm
and ii) a radar operating at 1.5 GHz and R = 150 km.
The values of pulse repetition frequency are then 1/20 Hz and 500
kHz respectively. By reference to Fig.2.8 it can be seen that in
sonar the Doppler shift for a modest radial velocity of 1 m/s (4
Hz) exceeds the line spacing in the spectrum (1/20 Hz). In the
case of the radar, the Doppler shift for a mach 2 (600 m/s)
target is only 60 Hz with a line spacing of 500 kHz. To detect
the Doppler in the radar requires detection of the shift in the
spectral line associated wth the carrier. In sonar, it is
necessary to detect changes in the whole sinX/X spectrum.

3 ARRAY SIGNAL PROCESSING

3.1 System Model

A receiving array with a large aperture is directional and
is able to discriminate against noise sources that fall outside
the array’s directional pattern. An array with an area A operat-
ing at a wavelength A has a field of view A2/A steradian. Such an
array is also beneficial as far as clutter (or reverberation) is
concerned. Because the array has a restricted field of view, the
number of clutter (reverberation) scatterers is reduced by com-
parison to an omnidirectional array whose field of view is 4=
steradian. Thus, an array is able to improve the signal-to-
interference level simply by virtue of its size.

As was stated in Section 1.1, an array containing M elements
suitably spaced is capable of increasing the information rate of
a system by the factor M. This increase is due to the increase in
data fed into the system in an M-element array by comparison to a
single element. If this increased data is processed correctly a
number of individual beams can be formed each of which is steered
in a different direction. The M elements sample the spatial field
and if the spacing is more than half wavelength, the resulting
beams are said to be independent of each other. This spacing
requirement is equivalent to the Nyquist sampling theorem.

Imagine an array in the form of a straight line with the
elements equally spaced at a distance d apart, see Fig. 3.1. Such
an array is common in modern sonars where to obtain a sufficient-
ly large aperture operating at low frequencies a towed array is
used. In radar also the synthetic aperture that is formed in many
space-bourne systems forms such a line array. A major difference
in the processing needs of radar and sonar arrays results again
from the difference in propagation speeds.

In sonar it is vital to steer beams because of the otherwise
slow data rate. For example, consider a sonar with a maximum
range of 15 km, a sector to interrogate of 360° and resolution of
100, It would require 20 s for the sound to travel to maximum
range and back to the receiver. If the array were to be mechanic-
ally scanned, the array could not be moved mechanically during
this time. Thus it would take 36 sequential transmissions of
sound in each of the 36 bearing resolution cells to interrogate
the complete 360° sector. The minimum time taken for a single
look in each bearing cell over all ranges is 720 s or 12 minutes.

A radar, on the other hand, operating to a range of 150 km
only requires 10 ps for the electromagnetic energy to travel from
the transmitter, to maximum range and back to the receiver. Thus,
for a 1° resolution cell in bearing it is theoretically possible
to interrogate the complete sector in only 3.6 ms. In practice of
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course, the array could not be rotated sufficiently fast and
simple radars dwell in the same bearing resolution cell for many
pings of the transmitter.

Beam steering by electronic means in radar is used to scan
in elevation while allowing mechanical scanning to provide azim-
uthal information. The Plessey 3-D AR radar is such a radar. Some
radars operating at in the h.f. frequency band (where the wave-
lengths are tens or even hundreds of meters) use electronic
methods to steer the beams. When such h.f. radars require a high
angular resolution, it is impossible to rotate the massive arrays
employed. Sonar must rely upon electronic beam steering in all
but very short-range situations.

Suppose that a plain wave approaches the array shown in Fig.
3.1 from a bearing 6.There will be difference between adjacent
elements in path lenth travelled by the plain wave equal to
d.sin®. This results in

i) a difference in time delay equal to (d.sinf)/c
or ii) a difference in phase of (2m.sin®)/A.
The processing necessary for a simple beam steering system is to
place either the time delays or phase shifts in the appropriate
signal paths to make all the signals in phase before they are
added to form a beam output.

Time-delay beam steering methods are wide-band in their
operation. This is essential in most sonar operations. Even
though sonar signals only have bandwidths that are typically say
5 kHz they are base-band signals and the ratio of centre
frequency to bandwidth is very low. Time delays in sonar systens
is readily achieved by using random-access memories that are
addressed so that they behave like serial shift registers. Some
radars still use coaxial lines to produce the differential time
delays. In digital processing schemes, the penalty for using time
delays to steer beams is that the signals need to be sampled at a
minimum of 0.5M times the the Nyquist rate. Interpolation tech-
niques are used to avoid this high sampling rate, but these all
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use much addition processing power.

Many phased arrays only produce coherence at a single
frequency. Hence phasing techniques are generally only narrow
band. Radars operating with a pulsed-carrier signal of a single
frequency use phasing techniques to steer beams. One advantage of
a phased array is that in theory the signals from each channel
need only be sampled at the Nyquist rate. It should be stressed
here that the specific case where the phase shift ¢ =-wT
produces a pure time delay Tat all frequencies. However, most
phasing techniques do not have this property. When such general
phasing techniques need to be used with broad-band signals, the
signals need to be separated by filtering into a number of narrow
bands. Each band is applied to a beam~steering unit where the
inter-element phase shifts are made proportional to frequency.
The outputs of these individual beam-steering units are then
combined to produce the required wide-band output.

3.2 Narrow-band Operations
3.2.1 Physical interpretation.

Suppose that a plain wave approaches an array of elements
from the broadside direction. If the elements form a staight line
and are equally spaced as in Fig. 3.1, the waveforms produced at
the output of each element are as shown in Fig. 3.2. If these
waveforms are sampled at the instant indicated, it can be seen
that the outputs of the sampling operations produce a signal of
equal amplitude in each channel.

Fig. 3.3 shows the effect of sampling the signals received
on the same multi-element array when the single-frequency input
waveform produces sinusoidal outputs on the array elements that
are delayed with respect to each other. It can be seen that if
these samples are placed so as to form a data series, the series
is a sampled sine wave. The frequency of the sine wave increases
as the bearing of the signal increases. As already shown in Fig.
3.2 a broadside target (bearing = 0) produces samples of a
zero-frequency signal. Thus, one way of estimating the bearing of
the target is via spectrum analysis of the sampled data series.

A problem does arise because the simple process illustrated
in Fig. 3.2 and Fig. 3.3 produces the same frequency component in
the sampled data series for targets arising in the port and star-
board sectors. This left-right ambiguity is overcome by sampling
the input signals in quadrature. The negative-frequency com-
ponents represent beams formed in one half sector. Those from the
other half sector are represented by the positive-frequencies.

3.2.2 Mathematical representation

The range of inter-element phase shifts that can be inserted
in the signal paths before addition to form the individual beams
is limited to 27 rad. If this value of 21 rad is exceeded, the
phases repeat themselves because of the periodicity of the sine
and cosine waveforms involved. With M elements sampling the
spatial field, no more than M independent beams can be expected.
If these beams are formed by inserting equal increments of inter-
element phase shifts, the rth beam will be formed by using an
inter-element phase shift of 2ar/M rad. The phase shifts used to
form the rth beam produce a linear phase taper across the array.
It is sensible to label the array elements starting at one end 0,
1, 2,ie0es0.,k , cvees.e..,(M=-1) and the phase shift applied to the
kth element is 2mnrk/M.
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The rth beam is then formed by summing the phase-shifted
signals. If a target exists in the direction 8given by the
equation (2nd.sinB)/A =2nrkM, the phase-shifted signals will add
coherently to produce a maximum response. This phase shifting and
subsequent addition may be represented by

M-1
By =X xx./2nrk/M seeees(20)
k=0

Note that xx is a complex number. This was discussed in
Section 3.2.1. Hence, the spatial samples must be formed by
quadrature sampling. A more elegant way of representing the phase
shifts is to use multiplications by cosine and sine in quadrature
channels. This can be condensed into a single complex exponential
form. Hence:

M-1
Br=Lxg.e
k=0

Of course, this is the same expression as Eqn. 14, the
discrete Fourier transform. Thus, the process of beam steering in
narrow-band systems is to form discrete Fourier coefficients via
the discrete Fourier transform. For this reason, the beams are
often called spatial frequencies. Algorithms, such as the fast
Fourier transform, devised to perform the discrete Fourier trans-
form efficiently and quickly, are equally applicable to both
sampled time series and to spatial samples.

-2njrk/M ceesss(21)

4 Correlation Processing

4.1 Averaging

One method of improving the signal-to-interference ratio is
to average signals. This assumes that the interference is in-
coherent and that the averaging will only increase the power
associated with the interference component in a mean-square
manner. The signal on the other hand is assumed to be coherent
from sample to sample. The averaging process will then combine
the signal components together coherently so that the power is
proportional to the square of the sum of the magnitudes. Ideally,
this results in an increase in signal-to-interference ratio prop-
ortional to the number of samples averaged.

Correlation processing comes in this general area of time
averaging. Sonar and radar signals vary with time. For example in
narrow-band systems the signals can be expected to be sinusoidal.
Time averaging is only advantageous if the signal being averaged
is constant from sample to sample. To achieve this the signals
received in sonar and radar systems must first be modified. The
method employed is to create a model or replica of the expected
signal. This is then multiplied by the received signal and the
averaging process then removes all high frequency components
leaving an average value of the product with frequencies at or
very near to zero frequency. This averaged product is the
cross-correlation between the two waveforms at a particular value
of time delay.

Consider an active signal where the transmitted signal is
y(t). Let the received signal be x(t). This will be delayed due
to the time of flight, T, to and from the target. The recieved
signal is assumed to have the same form as that transmitted. If a
Doppler shift is expected, y(t) must be modified to account for
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the Doppler shift. Hence, the model for the process can be the
transmitted signal or a Doppler-shifted version of this signal.
To account for the time delay in the received signal, y(t) must
be delayed by Tbefore being multiplied by x(t) and the product
averaged. Hence, we can write the cross correlation coefficient
ob
c(T = [ x(t).y(t+T).dt ceeeea(22)
-l
This represents the correlation between x(t) and y(t). Strictly
Egn. 22 should be divided by a normalising factor to represent a
true average but this factor is often ignored. In discrete form
with N samples present and a time delay of d units the discrete
correlation coefficient becomes
N-1
Cd = L Xx.Yk+d eeeeee(23)
k=0
Again Egn. 23 should be divided by N for it to be a true average.
This factor is usually neglected.

Radar signals are often processed using a surface acoustic
waveform correlator. This correlator uses a replica in sampled-
data form and a continuous version of the received signal.
Similarly, sonar systems have used correlators made from charge-
coupled devices. Here both the signal and the replica are sampled
data signals but they are not coded in a binary fashion. Neither
is then of the form normally recognised as digital signal
processors. However, both sonar and radar regularly use equations
such as Egn. 23 to carry out cross correlation using true digtal
signal-processing techniques. Signals with time-bandwith products
of the order of 5x103 are quite easily processed.

4.2 Relationship with the Fourier Transform and Beam Steering

Comparison of Egn. 11 with Egn. 22 and Egn. 14 with Egn.23
reveals that the Fourier and discrete Fourier transforms are in
fact correlation processes. The delay terms T and d respectively
in Egqn. 11 and Eqn. 14 are zero. Thus, these Fourier transforms
are the cross correlations of the signal with

(i) a cosine waveform of zero delay in the in-phase channel
and (ii) a sine waveform of zero delay in the quadrature channel.
The ratio of the signals in the two channels provides for the
delay. It is of interest to note that the chirp-z transform (4]
is an algorithm based upon a sampled data correlator to evaluate
the discrete Fourier transform.

Using the same arguements, beam steering is also a correl-
ation process. Eqn. 21 can be compared with Egn. 23. It is seen
that the model assumed for the beam-steering system is that the
spatial samples will consist of a number of equally-spaced,
discrete spatial frequencies. The system model is then cross
correlated with the spatial samples to produce the beams, B;.

4.3 Correlation Processing in the Frequency Domain

It is often advantageous to evaluate correlation coeff-
icients by working with the spectra of the signals. In
particular, by using efficient algorithms such as the fast
Fourier transform, the correlation process may be evaluated very
quickly and with a much reduced computational load. Consider the
Fourier transform of Eqn. 22

cw) = J c(T.exp(-3wl).dT = [ [ x(t).y(t+T).dt.exp(-joT) .dT

-0 —— =00
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Write (t+T) = s so that ds = dT and separate the variables so that

o0 -4
C(w) = | x(t).exp(-jwt).dt . | y(s).exp(+jws).ds
e d -

The first integral is the Fourier transform X(w) of x(t). The
second integral is very similar except that the complex expon-
ential multiplier has a positive sign in the exponent. This
simply changes the sign of the imaginary part of the Fourier
transform. Hence the second integral is the complex conjugate of

the Fourier transform. This is written as Y*(w). Thus, we have
the simple relationship

C(w) = X(w). ¥ (0) eee..(24)

This equation is known as the Weiner-Khinchine algorithm and
it is used regqularly in radar and sonar signal processing to re-
duce the computational load. The advantage of using the algorithm
is often missed. In the discrete form, with both data sequences
of length N, N separate correlation coefficients are evaluated.
Care must be exercised when using the discrete form of Egn. (24),

*
CI=XI'YII ......(25)

since the discrete Fourier transform assumes the data is period-
ic. Most signals in radar and sonar are aperiodic. To overcome
this lack of periodicty the data in one of the data sequences can
have zeros added (zero padding). If this is not done only the
coefficient with zero time lag is meaningful. When increasing
numbers of zeros are added to one of the sequences an increasing
number of coefficients are meaningful. It is usual to take two
data sequences with N data points each. One consists of 0.5N non-
zero data samples and 0.5N zeros. The second sequence contains N
non-zero data points. The application of Eqn. 25 then produces
0.5N valid coefficients. The remaining 0.5 invalid coefficients
are discarded. The time windows are made to overlap and in this
way all the required coefficients are evaluated.

5 Concluding Remarks

This paper has looked at the differences and similarities
between the regirements and execution of digital signal
processing in radar and sonar systems. The major differences are
caused by the 2x105 ratio in the velocities of propagation of
electromagnetics and sound. This results in differences in the
bandwidths of the signals employed, the durations of the time
windows that can be processed, differences in the ways that
Doppler shifts are processed and the urgent need in sonar for the
use of beam steering using electronic methods.

In spite of the vast difference in the velocities of
propagation, surprisingly the wavelengths involved in radar and
sonar overlap. At h.f. radars also need to employ electronic
methods to steer beams. At higher frequencies it is becoming
fashionable to process the signals received by the radar array to
avoid the necessity of mechanical rotation. The time-bandwidth
products involved in radar and sonar are also very similar.

The paper has also reviewed the basic methods of processing
in the time, frequency and spatial domains. Spectrum analysis is
often the key to the algoritms used. Where it is relevant a
physical explaination of the methods described have been given
together with a brief interpretation of the mathematics involved.
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The paper has been purposely restricted to a description of

techniques based on Fourier methods. More modern methods of
analysis [5] using alternative models follow in subsequent
papers. Similarly, details of the methods employed will also be
covered in other papers.
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INTRODUCTION TO MATRIX TECHNIQUES

Philip Hargrave"

1 INTRODUCTION

The Digital Signal Processing algorithms employed in radar and sonar applications
invariably involve the manipulation of time series samples taken from a muitiplicity of
sensor elements. Matrix algebra provides a powerful symbology to represent such
samples and to analyze their manipulation in a concise manner. Once candidate
algorithms have been expressed in this algebra there are a wealth of techniques and
theorems available to assist with the prediction of performance, and thereby optimise the
design of the finally implemented signal processing structure.

In what follows we review the use of matrix algebra to represent sampled signals
and to analyze Digital Signal processing algorithms. We also present some of the key
theorems of matrix algebra that find applications in such analysis.

2. THE VECTOR REPRESENTATION OF SAMPLED SIGNALS

Consider an arbitrary band-limited waveform, x(t), originating from a single sensor
element. If v, denotes the maximum frequency component in x(t), it follows from the
Nyquist sampling theorem that the waveform can be re-constructed for all values of t
from samples taken at times t, = kat, with integral k and at < 1/2v,,,. If the bandwidth
of the waveform, B, is less than v,,, one may seek to reduce this sampling interval by a
suitable down-conversion process. In the limit one can in principle down convert such
that the waveform spans the baseband range o<v<B. In this case the Nyquist sampling
interval is reduced to at = 1/2B.

A series of p such samples with m-p+1<k<m may be represented by a p
component column vector, x given by

T
X - (x.,_wl, Xy pig x,)

where x, is the sample obtained at time kat. The notation T denotes the transpose of a
matrix. For an arbitrary matrix this operation involves the interchange of rows and
columns. It is used here because it is more compact to represent vectors in row form.

An alternative to using real samples is to represent the waveform in complex
notation. The waveform x(t) can be viewed as being composed of sinusoidal components
and expressed in the form

'STC Technology Limited, London Road, Harlow, Essex, CM17 9NA
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x(t)- f:A(w)cos[m+¢(w)]dv.

We may then define the complex representation of the waveform
by

) - f:A(w).exp{ j wt+dw)] dv.

We then have that

x(®) - R, { &}

We also have that

1, { %) )- f: A(w) sin [wr+d(w)ldv.
= [TAM) cos [w+d(w)-n/ldv.

Samples of the imaginary component of %(t) can therefore in principle be
obtained from x(t) by passing the latter waveform through a filter with a flat unit
amplitude response and a frequency-independent phase shift of -w/,. Alternatively
samples of the imaginary component can be directly computed from samples of x(t) by
means of the Discrete Hilbert Transform which performs this filtering operation digitally.

We may therefore alternatively represent the series of p samples with
m-p+1<k<m by a complex column vector given by

£-G, .. % FAL

m-p+1? “m-p+2 °*

A third representation that is commonly employed involves the use of complex
baseband notation. The complex baseband representation of the waveform x(t) may be
defined by
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£() - #o).exp {-j wa.

Here w, is the angular frequency at the centre of the band of interest.
%(t) may be expressed in the form

0= Aww) exp fwidv,

where A(w) is a complex function of w spanning both positive and negative frequencies.

The real and imaginary components of £(t) have spectra which span the band
o=<v=<B/2. The Nyquist sampling interval appropriate to each is therefore at = 1/B. This
is twice the interval required for real baseband samples, but each complex baseband
sample has both a real and imaginary component.

The real and imaginary components of £(t) can be obtained by mixing x(t) with
orthogonal local oscillator signals of the form cos[w,t] and -sin[w,t] and subjecting the
resulting waveforms to low pass filters which span the frequency range osv<B/2. This
mixing and filtering may be undertaken in the analogue domain, in which case
appropriate samples need to be taken at the outputs from the low pass filters, or in the
digital domain in which case the input to the process will be the sequence x, of real
samplie values of x(t).

We have thus far developed three possible vector representations of the last p
samples obtained from a single element sensor. If we have n such sensor elements we
may similarly represent the set of samples obtained at time t = mat across the array by
an n component column vector of the form

T

X = (x),, X, - xm) .

Here x, , is the sampled output from the ith sensor at time t=mat. Such x,, can
either be real samples, or samples in one of the two forms of complex representation we
have considered. It is now a simple extrapolation to represent the last p samples from
all the n sensors by an np component column vector.

3. DIGITAL FILTERING IN VECTOR NOTATION
Now that we have a column vector representation of signals sampled both in time

and, via an array of sensor elements, in space, we may consider the development of
sampled frequency and spatial filters in vector notation.
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Consider the sampled output from the ith sensor. We may apply a sampled finite
impulse response filter to the output from this sensor by forming a weighted combination
of the last p samples. We then have for the output, y, appropriate to time t=mat

J=p-1
Y= Y Way Xy
J=0

Here the w; are the components of the impulse response of the filter. We may represent
this impulse response by a p component column vector, w, given by

T
W~ (w__”l, W pazr wl

We then have in vector notation

y=w

where

T
X - (xi___’d, Xipypi2s = xu) .

If we are working in one of the two complex notations, the components of w will
be complex, representing amplitude scaling factors and phase shifts applied to the
complex representations of the sensor samples. Conversely, if we are working in real
notation the components of w will be real. The vector notation for the filter output is
equally valid in all three cases. From now on we will develop the matrix algebra for the
more general complex case. The processing of real samples can then be treated as an
appropriate special case.

The finite impulse response filter we have applied to the output from the ith
sensor implements a filtering operation in the frequency domain. If we replace x by the
vector of samples obtained across the array at time t=mat we may similarly implement
a spatial filter. Such a filter corresponds to a far field reception pattern for the sensor
array which varies with bearing. In general, with a column vector, x, containing both
space and time samples we may implement a combination of frequency and spatial
filtering. In all cases we may employ the simple inner vector product

T

y=w'z

to represent the filtering operation.



4. FREQUENCY AND SPATIAL FILTERING

When the components of the column vector x represent the last p samples taken
from a sensor element, the transformation y = w'x corresponds to that of implementing
a discrete time finite impulse response filter in the frequency domain. If the samples are
in complex baseband notation, a particularly important form for w is one of the set w,,
with o=q=p-1, given by

w = L (1, expl-j2E o), exp (-j2"2g),..exp (2% (p-Dg)T.
R P p b4

Such an impulse response seeks to combine coherently the time series samples of
any component of the sensor waveform that has a frequency given by

4.k
pat  at

V =

where at is the sampling interval, and k is an appropriate integer selected such that

L cuc sl

2at 2at

For a more general component of the form S, exp{jwt}, the output from the filter
at time t= kat follows as

_ S, sinprigp - van)] _h
% sin [agp - van) PR

Yq

The complete set of w_ thus corresponds to a set of filters with centre frequencies
separated by av = 1/pat which span the band

1 1
_— SV +—,
2at 2at
If we define
T
E-@,Wew )
and

¥ = Op Yy V)
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we may write

y=-Fux

The column vector y then has components equal to the outputs from each of the
filters in the set. This equation expresses, in matrix notation, the operation of taking the
Discrete Fourier Transform of the samples that are the components of x. It is
straightforward to show that F is a full rank transformation. It therefore has an inverse,
F7, defined by F' F = ] where I denotes the identity matrix. We may therefore write

x=-F'y

It follows from Fourier Transform theory that if we set
1 5\ ERY |
E' -G, B, . ¥
then

W = (1, exp {+jﬁ l}, exp {+j2—n21},.. exp {+j2—“(p-l)l})r.
p p p

Sl

_ That is
F!-PF.

If the components of x correspond to a single time snapshot of samples from an
array of sensors, the transformation y = w'x corresponds to that of implementing a
spatial beamforming operation. The spatial domain equivalent to a single frequency
component is a plane wave incident on the array from a specific bearing. Let such a
wave have an angular frequency w. The output from the ith sensor may then be
expressed in the form o; exp {jw[t-r;]}. If the receiver chain associated with each sensor
produces noise of equal power, but uncorrelated from sensor to sensor, it follows from
matched filter theory that the optimum weight vector to combine these outputs is given
by

we-n(eexpljwrhaexpl{jwe,),..a,exp{jwr )7,
where 7 is an arbitrary scaling factor. For the case of a linear array of equally spaced

isotropic elements the Discrete Fourier Transform forms a useful set of receiving beams
spanning all space.



5. THE REPRESENTATION OF POWER THROUGH COVARIANCE
MATRICES

The instantaneous value of the magnitude squared of the voltage at the output of
an arbitrary filter follows as

yy=@ ) @ o
Here the notation * denotes the operation of complex conjugate.

Since w'x is, in general, a complex scalar, it follows that

wix - @ HT
Now, for arbitrary matrices A and B it may readily be shown that

AaB’-BT4"

wr-wT-2Tw

We thus have that
Yy=-@T ) Tw-wfraxTw

Here the notation ™ denotes the operation of taking the complex conjugate of the
transpose of a matrix.

The expectation of the magnitude squared of the output voltage therefore follows

P=E{y'ylawfE{xxT)}w

Here E{...} denotes the expectation operator, and it has been assumed that w is time
invariant. We may define the covariance matrix, R, characterising the components of x

by
R-E{xxT}

We then have that
RIE-E{@x D) =-E{(xxHT}=-E{z xT}=-R
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Such a matrix is said to be Hermitian, or in the case of real variables orthogonal.

In terms of the co-variance matrix we thus have

P-wiRw

P is termed the filter output power. In the case of real variables this is an exact
definition if the sampled voltages are referenced to a transmission line of unit
characteristic impedance. In the case of complex notation, P is strictly twice the power,
but this factor of two is conventionally ignored.

The diagonal components of the co-variance matrix R represent the powers in the
individual components of x. The off-diagonal elements represent correlations between
distinct components of x.

6. CONSTRAINED MINIMISATION IN MATRIX ALGEBRA

A powerful tool much used in the solution of constrained minimisation problems
with real functions of several variables is that of the method of Lagrange Multipliers. If,
for example, we wish to compute the values of x and y that minimise ¢ = f(x,y) subject
to the real constraint y=y(x), rather than eliminating one of the variables in f(x,y) with
the aid of the constraint equation, we can instead consider the function

6=-f@y)+Aly-y@]

where ) is a Lagrange multiplier. A necessary condition for the constrained minimisation
of ¢ is that

These two equations, together with that defining the constraint, can be used to
solve for the three unknowns x,y and . The procedure can be extended to deal with
multiple constraints by adding additional Lagrange Multipliers. FEach additional
constraint introduces an additional unknown Lagrange Multiplier and an additional
constraint equation such that the number of equations remains equal to the number of
unknowns.

Quantities to be minimised are necessarily real, but constraints are in general
complex. Suppose for example we wish to find the weight vector, w, that minimises the
output power w"'Rw, from a filter, subject to the constraint that a certain weighted
sum of elements of the weight vector is equal to a given, in general complex, number.
Such a constraint may be written in the form
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Y ¢, w-B.
i

If we define

€=(€1sCq0 )T

the constraint equation can be expressed in matrix form as

cT w-p.

This complex constraint can be viewed as two real constraints, given by

R, " w} - Rfp}

and

LT w -1 )

We are therefore led to consider the function

o - wi Rw+k, RicTw-p} + X, 1 T w -B),

where X, and }, are two real undetermined Lagrange Multipliers. This augmented
equation can be re-expressed in the form

i
6-w"Rw+ —2—1[97)2-[3 + ¢ w-p°]

A
-j;’tc’ w-B-c¥ w'+p*]

i i
-wiRw+ [—2—1 -j 72] [ cT w-P)

+[—A—1

.Xz H o _qp»
2 ]7][(2 w-p]
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Hence

6 = w? Rw+Al ¢7 w-p] + A"[c” w'-B°].

Here

A=t ;2
2 72

is a single complex Lagrange Multiplier.

In order to proceed to obtain the solution to the constrained power minimisation
problem we must now evaluate the complex vector w that minimises §.

We may write

5 = b(ww")
where
wew +j w,
and
Wew jr,
Thus
o - 602,+J'120,12,-j120)
-1, 120)
Now

86-3 | sw+ 2 sw
i aw,,. ! awot ®
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where wy; is the ith component of w;, and w, the ith component of wq.

We may now define a complex vector gradient, ¥ §, by

T
26 - ;:L +j on on +j on

which is a generalisation of the three dimensional real gradient operator denoted by grad

or V. For a small change 8w = 8w, +j 8w, in the weight vector w the corresponding
changes in ¢ follows as

8 -R @) ow +LIEOT) s w,
- @) - @) w - @O - @by,
- e w -js )+ (@) By, )b w )
- R, {(36)" 6 w'} - R, {6 wi.3 0}

It therefore follows that,if ¥ = 0,8 ¢ = o for all 8w, the condition required
to find the desired minimum of ¢.

Since ¢ is expressed as a function of w and w’, rather than w; and w, it is

convenient to re-express ¥ ¢ in terms of derivatives with respect to the components of
wand w".

Now
o 3 W s w
Ow, Ow, Ow; gy Ow,
) 06
- —
ow, ow,’
We also have that

o _ 86 MW oo oW
My oW, My gur oWy
-jl%e -8
o ow/
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Hence

@a)‘-i“_+jﬂ-2_a_é.

owy, Wy ow’

Thus

. % o )
3% -2 y ——aeeres .
ow;  ow,

Returning to the expression for ¢, we have that

6 - wI Rw+d (cTw -B) + A°(c? w-B").

Hence

¥ -2Rw+ac}

The required condition for the minimisation is therefore

% -2Rwr ¢ ] -0

Hence we require

Rw=-A"¢c".

Pre-multiplying both sides by the inverse of R, we thus have that

we=-A"R?c.
But
cTw=-A2"cTR!'c - B.
Hence
- —=P
¢cTR!'¢



Rlc
m-pr 1.
¢ R'¢c

7. EIGENVALUES AND EIGENVECTORS

Let us consider a further constrained minimisation problem, namely that of finding
the weight vector w that minimises the output power subject to the sum of the squares
of the moduli of the components of w being constrained to unity. This constraint can
be expressed as

wi¥w -1

and is necessarily real. We therefore consider the real function

8=wiRw-2 @¥w-1,

where -) is a real Lagrange multiplier. We thus require
56 -2[Rw-Ar]-0

or

Rw - Aw.

We are thus seeking a column vector w which when pre-multiplied by the matrix
R produces a scaled version of w. Such a vector is called an eigenvector of the matrix
R, and the scaling factor is termed the corresponding eigenvalue. In general there are a
number of eigenvectors of a matrix. Let the ith be denoted by w; and its corresponding
eigenvalue by A, We then have that

Rw, =% w.

Clearly, if w, is as eigenvector of R so is any scaled version of w,. We may
therefore, without loss of generality, choose to work with normalised eigenvectors

satisfying w w; = 1.
Pre-multiplying both sides of the defining equation for w; by w;" we find that

wiRw = A, ww,
i i i L
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Taking the complex conjugate of the transpose of both sides we then have that

wiR?w - A wlw,

When, as in the case of a covariance matrix, the matrix R is Hermitian we have that

R¥ - R

Hence
-4 - At whH
w' Rw =2, w w.
We therefore conclude that )" = ). The eigenvalues of an Hermitian matrix are
therefore always real.

Let w; be a second eigenvector of R, with eigenvalue );. Then

Ry -4, w.
Thus
w!Bw - A wlw,
But
wBw - Rw)w - A w)w-Aiww -2 ww
Hence

H., . H
Aywiw =d wiw,

Thus, if X; # );, we must have that

whw -0
i

Thus eigenvectors of an Hermitian matrix corresponding to distinct eigenvalues
satisfy w;" w; = O. By analogy with the expression for the dot product of two real
vectors, eigenvectors satisfying such a condition are said to be orthogonal.
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Even if the eigenvectors have the same eigenvalue, in which case the eigenvalue
is said to be degenerate, we may still incorporate them into a set of orthogonal
eigenvectors. As an example let w; and w; both have the same eigenvalue . Then a w;
+ B w; is also an eigenvector w1th exgenvalue ). We may take as our two eigenvectors

uianda}zﬁﬁ)zf

we may require that

w! (aw, + B w) - O (orthogonality)

and

(@w +Bw)(@w +Bw)=~1 (normalization).

If we solve these two expressions for a and B we will have constructed two
orthogonal and normalized eigenvectors. We may generalize this approach to greater
than two-fold degeneracy to prove that, even in the case of degeneracy, the eigenvectors
of an Hermitian matrix can be constructed to be normalized and orthogonal to each
other. They are then said to constitute an orthonormal set.

We may solve for the eigenvalues of a matrix R by means of the following
procedure. Since

Rw =i w,

wehayethat
R-Allw -Q

where [ is the identity matrix with elements 5.
If [R - M]J? exists, we have that
w,-[R-lI]"Q-Q.

In this case the only solution for w; is the trivial solution w;=0. We may therefore
demand that [R - AI]” does not ex:st to gain information about the non-trivial solutions.
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But

adj [R - A 1]

_ 1 AW Ad
R -1 det [R- A1

Here adj[...] denotes the adjoint of a matrix, and det [...] the determinant of a matrix.
Since the adjoint of a matrix may always be evaluated, we conclude that the condition
for the existence of non-trivial solutions reduces to

det[R-21 - 0.

The expansion of this determinant when R is an (n x n) matrix will yield an nth order
polynomial. There are therefore in general n eigenvalues, and hence n eigenvectors, of
such a matrix. As we have seen above, we may construct these eigenvectors to form an
orthonormal set.

The n orthonormal eigenvectors of the matrix R may then be written as the rows
of a matrix B. We will then have that

RB" - BTD,

where D is a diagonal matrix containing the n eigenvalues ).

Since the rows of B form an orthonormal set, it follows that

B B -1

and hence that

BB* - 1L

A matrix B satisfying such a condition is said to be a unitary matrix. The inverse of a
unitary matrix is therefore equal to the complex conjugate of its tranpose.

It therefore follows that

B*RB"-B B"D-D.

A transformation of a matrix R by means of a unitary matrix B as in this last
equation is called a unitary transformation. We have thus shown that any Hermitian
matrix can be transformed into a purely diagonal form by means of a unitary
transformation. Such diagonalization of an Hermitian matrix is a powerful tool which can
be used to uncouple matrix equations as we shall now see.
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8. THE SOLUTION OF TIME DEPENDENT COUPLED EQUATIONS

In Section 6 we considered the determination of the weight vector corresponding
to the minimum output power subject to the constraint ¢’ w = B. One method of
evaluating such a vector is to implement a recursive procedure in which the gradient of
the output power with respect to the currently applied weight vector is computed, and
a small step applied in the direction of steepest descent until the minimum condition is
reached. Clearly such steps must not be allowed to violate the constraint condition.The
gradient can, for example, be evaluated by monitoring the effects of small perturbations
in the applied weight vector components.

Such a recursive update procedure may be expressed in the form

¥, -¥ -wRPIW Rw)

Here
T
cc
B~ T §
c'c
Now
T T cc”
¢’ B Aw-¢ l-—T Aw
c’c
Hence

cTPAw=[cT- ¢ Aw - Q.

The matrix P ensures that the desired constraint is maintained by such a procedure
provided that w, satisfies cT w, = B. P is known as a projection matrix.

We therefore have that
W, ¥, -2LPRw,.

The recursive procedure will reach a stead-state condition in which

Ebl = Ek sy
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We therefore have that
BRw_ -0

We may therefore write that

w

by "R -, -w -2uPR[w -w]

If we define

A}gk-}!k-}!.,

the equation can be expressed in the form.
Aw =-Aw -2pPRAW,

Since
ew -c"w -B
It follows that
e lw, -w]-c"Ap, -0
Hence
BAmk - A&k-

We therefore have that
Aw =-A8w -2pPRPAW,

This represents a set of coupled equations. We may seek to uncouple these
equations by noting that P R P is an Hermitian matrix. If B is a matrix with rows equal
to n orthonormal eigenvectors of P R P we then have that

BE@®RPE -D,
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where Dis a diagonal matrix with elements equal to the eigenvalues of P R P.

Premultiplying both sides of the coupled equation set by B’, we find that
BAw -BAw -2pB BRPAw,
B Aw -2wE RERPDE B Aw)
-BAw -2uDE Aw,

since
B - &)
We now have a set of uncoupled equations which we can solve for B® A w,, and
hence for A w,. The time constants of convergence of this equation set are directly
related to the eigenvalues of the matrix P R P.

9. LEAST SQUARES PROCESSING

Suppose we wish to find the weight vector which minimizes the output power from
an arbitrary spatial/frequency filter, subject to the constraint of one of the components
of the weight vector being held fixed at unity. Although we may address this problem
using the techniques described in Section 6, it is instructive to re-couch it as follows.

Let successive snapshots across the filter inputs to which the variable weight
components are to be applied be denoted by column vectors x;. Let the corresponding
scalar snapshots associated with the input to which the fixed weight is to be applied be
denoted by y;. Let N such snapshots be available, with 1<i<N. We may then define

X-(x,%-2,)7

and

Y - ( Yo Yo - ¥y )T

Let w denote the vector of variable weight components we are seeking. If we
consider

e=-Xw+y
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the best estimate of w after the N snapshots is that which minimizes e e. The problem
has therefore been reduced to that of classical least squares processing.

Now

efe-(Xw+y)f(Xw+y)
~wT XE X w e wF Xy + yF XwyHy

Hence

Vel =2 X0 Xw+ X2y

The required value of w therefore follows as

w=-X7 0! X7y

A problem with using this expression to evaluate w is that the equation set may
be ill conditioned. That is, small perturbations applied to the input data may produce
large fluctuations in the solution. Such perturbations arise from the finite step size
associated with the analogue to digital conversion process. The problem is made worse
by the particular equation set we are considering because it involves the computation of
X" X, which means that the input data samples are effectively subjected to a squaring
process.

Instead of employing such a squaring process, we can instead consider multiplying
both sides of the equation defining ¢ by a series of unitary matrix transformations. Let
the first of this series be denoted by Q. Since Q¥ Q = [ for a unitary matrix, we have
that

Qo Qo -G Qec-ce.

The length of the vector Q e is therefore the same as that of e. By means of an
appropriate choice of the series of rotations, the compound effect of which we denote
by the matrix Q, we may reduce the equation set to the form

Qe-QXw+Qy

[el-
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Here R now denotes a matrix with zeros below the main diagonal. It is clear that the
condition corresponding to the minimum length of Q e, and hence of ¢, is

Rw =~ -b.
The vector w can then be found by the process of back substitution. This method
of solving the least squares problem is known as "QR processing".
A particularly important form for the constituent rotations Q is when each is
constrained to operate on only a pair of rows of the equation set at a time, leaving all

the other rows unaltered. We may represent each such a transformation by a [2x2]
matrix, q, which operates on its associated pair of rows, and is given by

We require that " § = [, and hence that

s's+c'c=1

and
c" =c.
These two conditions will be satisfied if we select
Ix|
€ —
JxP+TyP
and

[~
]
® |
(2]

With these forms for ¢ and s we also have that

-}
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A series of such Givens’ rotations may therefore be used to annihilate successive
components of the data matrix X, until it is reduced to the desired upper triangular form.

By avoiding the explicit computation of X" X the data domain QR processing
technique offers a numerically superior algorithm for determining the required weight
vector.

10. CONCLUDING COMMENTS

In the preceding sections we have given an introduction to the use of matrix
techniques in representing and analyzing time series samples taken from the elements of
a sensor array. Matrix representation provides a concise notation with which to represent
the samples taken with such systems, and the wealth of available theorems relating to
manipulations in this algebra means that it also represents an extremely powerful
analytical tool.

11. ACKNOWLEDGEMENT

The author thanks the Directors of STC Technology Ltd for permission to publish
this tutorial paper.

2/22



THEINSTITUTION
OF ELECTRICAL
ENGINEERS

LECTURE 2

INTRODUCTION TO MATRIX TECHHIQUES

P J HARGRAVE (STC TECHNOLOGY)



