Digital Signal Processing: Laboratory Experiments Using C and the TMS320C31 DSK Rulph Chassaing Copyright © 1999 John Wiley & Sons, Inc. Print ISBN 0-471-29362-8 Electronic ISBN 0-471-20065-4

Digital Signal Processing

WILEY SERIES ON TOPICS IN DIGITAL SIGNAL PROCESSING

- DFT/FFT and Convolution Algorithms and Implementation *by* C. S. Burrus and T. W. Parks
- Digital Signal Processing: Laboratory Experiments Using C and the TMS320C31 DSK *by* Rulph Chassaing
- Digital Signal Processing with the TMS320C25 *by* Rulph Chassaing and Darrell W. Horning
- A Simple Approach to Digital Signal Processing by Craig Marven and Gillian Ewers
- Digital Filter Design *by* T. W. Parks and C. S. Burrus
- Theory and Design of Adaptive Filters *by* John R. Treichler and C. Richard Johnson

Digital Signal Processing

Laboratory Experiments Using C and the TMS320C31 DSK

RULPH CHASSAING

University of Massachusetts, Dartmouth

A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York • Chichester • Weinheim • Brisbane • Singapore • Toronto Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

Copyright © 1999 by John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, including uploading, downloading, printing, decompiling, recording or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional person should be sought.

ISBN 0-471-20065-4.

This title is also available in print as ISBN 0-471-29362-8.

For more information about Wiley products, visit our web site at www.Wiley.com.

Contents

Pr	eface		ix				
Li	st of H	Examples	xiii				
Li	st of I	Programs/Files on Accompanying Disk	XV				
1	DIGITAL SIGNAL PROCESSING DEVELOPMENT SYSTEM						
	1.1	Introduction	1				
	1.2	DSK Support Tools	2				
	1.3	Programming Examples to Test the DSK Tools	3				
	1.4	Additional Support Tools	14				
	1.5 Experiment 1: Testing the DSK Tools						
	Refe	erences	17				
2	ARCHITECTURE AND INSTRUCTION SET OF THE TMS320C3x PROCESSOR						
	2.1	Introduction	19				
	2.2	TMS320C3x Architecture and Memory Organization	21				
	2.3	Addressing Modes	25				
	2.4	TMS320C3x Instruction Set	26				
	2.5	Assembler Directives	30				
	2.6	Other Considerations	32				
	2.7	Programming Examples Using TMS320C3x and C code	34				
	2.8	Experiment 2: TMS320C3x Instructions and Associated Tools	47				
	Refe	erences	48				
3	INP	UT AND OUTPUT WITH THE DSK	51				
	3.1	Introduction	51				
	3.2	The Analog Interface Circuit (AIC) Chip	53				
			v				

	3.3	Interrupts and Peripherals	59
	3.4	Programming Examples Using TMS320C3x and C code	60
	3.5	PC Host - TMS320C31 Communication	80
	3.6	External/Flash Memory and I/O with 16-bit Stereo Audio Codec	87
	3.7	Experiment 3: Input and Output with the DSK	88
	Refe	prences	89
4	FIN	ITE IMPULSE RESPONSE FILTERS	91
	4.1	Introduction to the z-Transform	91
	4.2	Discrete Signals	96
	4.3	Finite Impulse Response Filters	97
	4.4	FIR Implementation Using Fourier Series	99
	4.5	Window Functions	103
	4.6	Filter Design Packages	106
	4.7	Programming Examples using TMS320C3x and C Code	106
	4.8	Experiment 4: FIR Filter Implementation	129
	Refe	prences	131
5	INF	INITE IMPULSE RESPONSE FILTERS	135
	5.1	Introduction	135
	5.2	IIR Filter Structures	136
	5.3	Bilinear Transformation	143
	5.4	Programming Examples Using TMS320C3x and C Code	150
	5.5	Experiment 5: IIR Filter Design and Implementation	160
	Refe	prences	163
6	FAS	T FOURIER TRANSFORM	165
Ū	(1	Later destion	1(5
	0.1	Introduction	105
	0.2	Development of the FFT Algorithm with Radix-2	103
	0.5	Decimation-In-Frequency FF1 Algorithm with Radix-2	10/
	0.4 6.5	Decimation-in-time FFT Algorithm with Radix-2	174
	0. <i>3</i>	Dir Revelopment of the EET Algorithm with Radiy A	170
	6.7	Inverse Fact Fourier Transform	19
	6.9	Programming Examples Using C and TMS220C2x Code	103
	6.0	Experiment 6: FFT Implementation	103
	Refe	rences	194
	1.010		

vi Contents

		Contents	vii
7	ADAPTIVE FILTERS		195
	7.1 Introduction		195
	7.2 Adaptive Structures		197
	7.3 Programming Examples Using C and TMS320C3x Co	ode	199
	7.4 Experiment 7: Adaptive Filtering Implementation		221
	References		222
8	DSP APPLICATIONS AND PROJECTS		223
	8.1 Banks of FIR Filters		223
	8.2 Multirate Filter		228
	8.3 Pass/Fail Alarm Generator		235
	8.4 External Interrupt for Control		239
	8.5 Miscellaneous Applications and Projects		242
	References		254
Aŀ	257		
	A.1 TMS320C3x Instruction Set		257
	A.2 TMS320C3x Registers		257
	Reference	263	
Aŀ	PPENDIX B SUPPORT TOOLS		265
	B.1 Code Explorer Debugger from GO DSP		265
	B.2 Virtual Instrument Using Shareware Utility Package		269
	B.3 Filter Design and Implementation Using DigiFilter		271
	B.4 MATLAB for FIR/IIR Filter Design, FFT, and Data A	cquisition	275
	References		281
AF	PPENDIX C EXTERNAL AND FLASH MEMORY		283
	C.1 External Memory		286
	C.2 Flash Memory		287
	References		289
Ał	PPENDIX D INPUT AND OUTPUT WITH 16-BIT STE AUDIO CODEC	291	
	References		298
In	299		

Preface

Digital signal processors, such as the TMS320 family of processors, are found in a wide range of applications such as in communications and controls, speech processing, and so on. They are used in Fax, modems, cellular phones, etc. These devices have also found their way into the university classroom, where they provide an economical way to introduce real-time digital signal processing (DSP) to the student.

With the introduction of Texas Instruments' third-generation TMS320C3x processor, floating-point instructions and a new architecture that supports features which facilitate the development of high-level language compilers appeared. The C optimizing compiler takes advantage of the special features of the TMS320C3x processor such as parallel instructions and delayed branches. Throughout the book, we refer to the C/C++ language as simply C. Generally, the price paid for going to a high-level language is a reduction in speed and a similar increase in the size of the executable file. Although TMS320C3x/assembly language produces fast code, problems with documentation and maintenance may exist. A compromise solution is to write time-critical routines in TMS320C3x code that can be called from C.

This book is intended primarily for senior undergraduate and first-year graduate students in electrical and computer engineering and as a tutorial for the practicing engineer. It is written with the conviction that the principles of DSP can best be learned through interaction in a laboratory setting, where the student can appreciate the concepts of DSP through real-time implementation of experiments and projects. The background assumed is a system course and some knowledge of assembly language or a high-level language such as C.

Most chapters begin with a theoretical discussion, followed by representative examples that provide the necessary background to perform the concluding experiments. There are a total of 60 solved programming examples using both TMS320C3x and C code. Several sample projects are also discussed.

Programming examples using both TMS320C3x and C code are included throughout the text. This can be useful to the reader who is familiar with both DSP and C programming, but who is not necessarily an expert in both. Although the

ix

X Preface

reader who elects to study the programming examples in either TMS320C3x or C code will benefit from this book, the ideal reader is one with an appreciation for both TMS320C3x and C code.

This book can be used in the following ways:

- For a laboratory course using many of the Examples and Experiments from Chapters 1-7. The beginning of the semester can be devoted to short programming examples and experiments and the remainder of the semester used for a final project.
- For a senior undergraduate or first-year graduate design project course, using Chapters 1-5, selected materials from Chapters 6-8, and Appendices C and D.
- 3. For the practicing engineer as a tutorial and for workshops and seminars.

Chapter 1 introduces the tools through three examples. These tools include an assembler and a debugger that are provided with the DSP Starter Kit (DSK). Program examples in C can be tested without a C compiler since all associated executables files are on the accompanying disk. Chapter 2 covers the architecture and the instructions available for the TMS320C3x processor. Special instructions and assembler directives that are useful in DSP are discussed. Chapter 3 illustrates input and output (I/O) with the two-input analog interface chip (AIC) on the DSK board through several programming examples. An alternative I/O with a 16-bit stereo audio codec that can be interfaced with the DSK is described.

Chapter 4 introduces the z-transform and discusses finite impulse response (FIR) filters and the effect of window functions on these filters. Chapter 5 covers infinite impulse response (IIR) filters. Programming examples to implement FIR and IIR filters, in both TMS320C3x and C code, are included.

Chapter 6 covers the development of the fast Fourier transform (FFT). Programming examples on FFT are included. Chapter 7 demonstrates the usefulness of the adaptive filter for a number of applications with the least mean square (LMS). Chapter 8 discusses a number of DSP applications.

A disk included with this book contains all the programs discussed in the text. See page xv for a list of the programs/files included on the disk.

During the summers of 1996-1998, a total of 115 faculty members from over 100 Institutions took my DSP and Applications workshops supported by grants from the National Science Foundation (NSF). I am thankful to them for their encouragement, participation and feedback on this book. In particular, Dr. Hisham Alnajjar from the University of Hartford, Dr. Armando Barreto from Florida International University, Dr. Paul Giolma from Trinity University, Dr. William Monaghan from the College of Staten Island—CUNY, and Dr. Mark Wickert from the University of Colorado at Colorado Springs. I also thank Dr. Darrell Horning from the University of New Haven, with whom I coauthored the text *Digital Signal Processing with the TMS320C25*, for introducing me to book-writing. I thank all the students who have taken my DSP and Senior Design Project courses. I am particularly indebted to two former students, Bill Bitler and Peter Martin, who have worked with me for many

years and have contributed to this book as well as to my previous book *Digital Sig*nal Processing with C and the TMS320C30.

The support of the National Science Foundation's Undergraduate Faculty Enhancement (UFE) Program in the Division of Undergraduate Education, Texas Instruments, and the Roger Williams University Research Foundation is appreciated.

RULPH CHASSAING

List of Examples

1.1	Matrix/vector multiplication using TMS320C3x code	4
1.2	Sine generation with 4 points using TMS320C3x code	8
1.3	Matrix/vector multiplication using C code	11
2.1	Addition of four values using TMS320C3x code	34
2.2	Multiplication of two arrays using TMS320C3x code	35
2.3	Background for digital filtering using TMS320C3x code	37
2.4	Matrix/vector multiplication using TMS320C3x code	42
2.5	Addition using C and C-called TMS320C3x assembly function	42
2.6	Matrix/vector multiplication using C and C-called TMS320C3x	45
	assembly function	
3.1	Internal interrupt using TMS320C3x code	60
3.2	Sine generation with AIC data using TMS320C3x code	62
3.3	Loop/echo with AIC routines in separate file, using TMS320C3x code	65
3.4	Loop/echo with interrupt using TMS320C3x code	69
3.5	Sine generation with interrupt using TMS320C3x code	70
3.6	Pseudorandom noise generation using TMS320C3x code	70
3.7	Alternative pseudorandom noise generation with interrupt using	73
	TMS320C3x code	
3.8	Loop/echo with AIC data using C code	75
3.9	Loop/echo Calling AIC routines in separate file, using C code	75
3.10	D Loop/echo with interrupt using C code	79
3.1	1 PC-TMS320C31 communication using C code	82
3.12	2 Loop control with PC-TMS320C31 communication using C code	84
3.13	3 Data acquisition with the DSK using C and TMS320C3x code	85
4.1	FIR lowpass filter simulation with 11 coefficients using TMS320C3x	108
	code	
4.2	FIR bandpass filter simulation with 45 coefficients using TMS320C3x	111
	code	
4.3	Generic FIR filter specified at run-time, using TMS320C3x code	112
4.4	FIR filter incorporating pseudorandom noise as input, using	115
	TMS320C3x code	

xiii

4.5	Mixed-code FIR filter with main C program calling filter function in TMS320C3x code	117
4.6	FIR filter with data move using C code	121
4.7	FIR filter using C code	123
4.8	FIR filter with samples shifted, using C code	125
4.9	FIR filter design using filter development package	127
5.1	Sine generation by recursive equation using TMS320C3x code	152
5.2	Cosine generation by recursive equation using TMS320C3x code	154
5.3	Sine generation by recursive equation using C code	154
5.4	Sixth-order IIR bandpass filter using TMS320C3x code	156
5.5	Sixth-order IIR bandpass filter using C code	160
6.1	Eight-point complex FFT using C code	184
6.2	Eight-point FFT with real-valued Input, using mixed C and	187
()	IMS520C5X code	101
0.3	A lastice filter size C as la serve il d aith D ale d C/C/L	191
7.1	A deputive filter for noise sensellation using C and	200
1.2	A deputive filter for hoise cancellation using C code	203
1.5	A depuive predictor using C code	200
7.4	A daptive predictor with table lookup for delay, using C code	208
1.5	A daptive motion filter with two weights, using TMS520C5x code	210
7.0	Adaptive predictor using TMS520C3x code	213
/./	EID filter using Code Evaluation for debugging and platting	210
B.1	FIR filter design and implementation using DisiEiter	205
В.2 D 2	FIR filter design and implementation using DigiFilter	274
В.3 D 4	FIR filter design and implementation using DigiFilter	274
B.4	FIR filter design using MAILAB	275
В.Э D 6	Multiband FIR filter design using MATLAB	270
D.0	IIK IIIter design using MAILAD	2//
В./	H(Z) from H(S) using officer function in MATLAB	278
B.ð	Eigni-point FFT and IFFT using MATLAB	279
B.9	Data acquisition, plotting, and FFT using MATLAB	2/9
C.1	TMS320C3x code	287
C.2	Sine generation with four points from flash memory, using C code	287
C.3	FIR bandpass filter from flash memory using C code	289
D.1	Loop programs for input and output with the Crystal 16-bit stereo	297
D.2	FIR filter with the Crystal stereo audio codec using TMS320C3x code	298

List of Programs/Files on Accompanying Disk

README	TXT	169	Directory of Cl	Directory of CH3	
EGAVGA	BGI	5363	INTERR	ASM	1915
Directory of CH	1		LOOP	ASM ASM	3093 838
MATRIX SINE4P MATRIXC MATRIXC MATRIXC AICCOM31 Directory of CH	ASM ASM C CMD OUT ASM	1628 1118 6860 482 750 1901 5308	LOOPI SINE8I PRNOISE PRNOISEI VECS_DSK LOOPALL LOOPC PCLOOP C31COM	ASM ASM ASM ASM ASM ASM EXE ASM	1076 1539 1829 2214 222 8525 9635 212306 3169
Directory of CH	2		DAQ	EXE	250093
ADD4 MULT4 FIR4	ASM ASM ASM	702 1150 3016	DAQ LOOPALL AICCOMC	ASM C C	9627 2488 2271
MATRIXMF ADDMFUNC	ASM ASM	1369 556	LOOPC LOOPCI	C C	610 740
ADDM FIR11 ADDM	ASM ASM C	4179 2595 393	C31COM C31LOOP	C C	439 873
MATRIXM	C C	488	LOOPALL	CMD	1029
ADDM ADDM MATRIXM	OUT	1878 2053	C31LOOP	CMD CMD	905 905 2100
FIR11L FIR11X	DAT	2033 190 242	LOOPALL LOOPC LOOPCI	OUT OUT OUT	2100 2146 2422

xv

XVI List of Programs/Files on Accompanying Disk

C31LOOP	OUT	2856	BP45	COF	843
C31COM	OUT	1664	BP33	COF	706
PCCOM	CPP	1309	COMB14	COF	273
PCLOOP	CPP	1033	KBP53	COF	2426
DAQ	CPP	1632	RBP53	COF	2424
DAQ	DAT	3117	BP45COEF	Н	721
DSKLIB	LIB	143872			
SYMBOLS	Н	4190	Directory of CH	5	
DSKLIB	Н	293		1014	1767
VECS DSK	OBJ	427	SINEA	ASM	1/6/
SINEFM	ASM	2622	COSINEA	ASM	1833
			IIR6BP	ASM	2335
Directory of CH	4		SINEC	C	1971
			IIR6BPC	С	1057
BP45SIM	ASM	2383	IIR6BPC	CMD	1033
LP11SIM	ASM	2385	SINEC	OUT	3986
FIRNC	ASM	2147	IIR6BPC	OUT	3115
FIRPRN	ASM	3550	AMPLIT	CPP	17889
FIRMCF	ASM	2016	BLT	BAS	5363
FIRMC	ASM	16714	IIR6COEF	Н	639
AICCOMC	С	2233	SINECMOD	С	2456
FIRDMOVE	С	1106	SINESW	ASM	2553
FIRERIC	С	1509			
FIRMC	С	713	Directory of CH	5	
FIRC	С	1376	TWID120	ACM	2006
FIRMC	CMD	1091	I WID126	ASM	2090
FIRDMOVE	OUT	3018	FFI_KL	OBJ	1011
FIRERIC	OUT	3113	FFI_KL	ASM	0338
FIRMC	OUT	3040	I WID8	ASM	221
FIRC	OUT	3089	FF1128C	C	2498
BP45SIM	DAT	371	FFI	C	2294
LP11SIM	DAT	190	SINEGEN	C	540
FIR	BAT	97	TWIDGEN	C	814
FIRPROGA	BAS	20237	FFT8C	C	680
FIRPROG	BAS	17752	FFT8MC	С	1124
BP55	COF	1080	FFT128C	CMD	1033
PASS2B	COF	1083	FFT128C	OUT	8327
PASS3B	COF	1088	FFT8C	OUT	5837
LP55	COF	1095	FFT8MC	OUT	2985
BS55	COF	1082	TWIDDLE	Н	8557
I P11	COF	578	COMPLEX	Н	212
ЦР55	COF	1070	FFT8C	CMD	922
DASS/P	COF	1079			
STOP3P	COF	1086	Directory of CH	7	
BD13	COF	551	Δ Γ Δ ΡΤΡ	ASM	<i>A</i> 110
DF 25 DD/1	COF	201 201	NOTCUN	ASM	4072
DF41	COF	004	NOTCH2W	ASM	40/2

		List of Prog	grams/Files on Accomp	anying Disk	xvii
ADAPTER	ASM	3848	SINE4INT	CMD	947
ADAPTC	С	1684	SINE4INT	OUT	4035
ADAPTDMV	С	1600	SINE4C	С	959
ADAPTIVE	С	7783	SINE4C	CMD	959
ADAPTSH	С	1938	SINE4C	OUT	2317
ADAPTTB	С	1639	FIREXT	ASM	11292
ADAPTDMV	CMD	983			
ADAPTSH	CMD	746	Directory of Al	PPB	
ADAPTDMV	OUT	3414	DD45SIMD	ASM	2572
ADAPTSH	OUT	5227	DF4JSIMF DD45SIMD	DAT	2373 788
ADAPTTB	OUT	4543	DI 455IWII		700 2117
SIN312		694	DAQ MATER22	COF	504
SIN312A		776	MAT33	M	523
HCOS312		686	MAT63	M	544
HCOS312A		749	DAO	M	752
COS312A		798	DilQ	141	132
DPLUSN		730	Directory of Al	PPC	
DPLUSNA		840	Directory of m	10	
SCDAT		3985	SINEHEX	С	1254
SIN1000		647	BP45HEX	С	1580
SHIFT	С	812	TESTMEM	CPP	3690
ADAPTERC	ASM	4321	C31DLHEX	CPP	2087
			SINEHEX	CMD	1015
Directory of CH	18		SINHEX30	CMD	448
MR7DSK	ASM	33624	BP45HEX	CMD	1048
FIR8SETS	ASM	10251	BPHEX30	CMD	471
FIRALL	ASM	10311	BP45HEX	OUT	3177
MR10SRAM	ASM	46118	BP45HEX	A0	4717
ALARMGEN	ASM	6053	SINEHEX	OUT	2632
SIM2	С	3803	SINEHEX	A0	3113
FIRALL	CPP	1226	SINEHEX	MAP	4439
FIR8SETP		3057			
FIRALL	EXE	212589	Directory of AF	PPD	
EISINE	С	1521	LOOPL CS	ASM	865
EISINE	CMD	1061	LOOPR_CS	ASM	848
EISINE	OUT	4307	LOOPB_CS	ASM	1015
VEC_DSK	ASM	215	CSCOM	ASM	6646
VEC_DSK1	ASM	290	BP45CS	ASM	2702
SINE4INT	С	1454			

Index

Acoustic direction tracker, 242-245 Adaptive filters: background, 195-197 C and TMS320C3x code programming, 199-221 adaptive predictor, C code, 206-210 adaptive predictor, TMS320C3x code, 215-218 C code compiled with Borland C/C++, 200-201 interactive adaptation, 200, 202 noise cancellation, 203-206 notch filter with two weights, 210-215 real-time adaptive filter, noise cancellation, 218-221 table lookup for delay, adaptive predictor, 208–210 implementation, 221-222 structure, 197-199 TMS320C30 EVM, 250 Adaptive notch filter: TMS320C30 EVM, 250 two-weights, TMS320C3x code, 210-215 Adaptive predictor: adaptive filter system identification, 198 C code programming, 206-210 table lookup delay, 208-210 TMS320C3x programming code, 215-218 ADDM.OUT execution, 45 AIC master clock, sine generation, four points, loading and execution, 10-11 Aliased sinusoidal waveform, DSK input/output, 52-53

AM, 156, 163 AMPLIT.CPP utility program, infinite impulse response (IIR) filters, 149-150 Analog interface circuit (AIC) chip, DSK input/output, 53-58 control, 54-55 data configuration, 60 desired F_s and filter BW values, 55-58 loop/echo with C code, 75-79 loop/echo with TMS320C3x code, 65-69 sine generation with TMS320C3x code, 62-65 ARn, TMS320C3x processor, 25 ARn++(d), TMS320C3x addressing, 25 ARn++(d)%, TMS320C3x addressing, 25 - 26+ARn(d), TMS320C3x addressing, 25 ++ARn(d)B, TMS320C3x addressing, 25 ARn++(IR0), TMS320C3x addressing, 26 Assembler directives, TMS320C3x processor, 30-32 Assembly function, TMS320C3x: C code, addition with, 42-45 matrix/vector multiplication, 5, 45-47

Bandpass filter: finite impulse response filters, 111–112 infinite impulse response filters: C code, 160 TMS320C3x code, 156–160 multirate filters, 228–235

299

Bandstop filters: finite impulse response (FIR), 117-118 infinite impulse response (IIR), 146-148 Batch file for finite impulse response filters, generic filter, TMS320C3x code, 114-115 Bilinear transformation (BLT), infinite impulse response (IIR) filters, 143-150 AMPLIT.CPP utility program, 149-150 BLT.BAS utility program, 148 design procedure, 143-145 first-order highpass filter, 146 first-order lowpass filter, 145-146 fourth-order bandpass filter, 147-148 second-order bandstop filter, 146-147 sixth-order bandpass filter, C code, 160-162 sixth-order bandpass filter, TMS320C3x code, 156-160 Bit reversal, fast Fourier transforms (FFT), unscrambling applications, 178-179 Blackman window, finite impulse response filters, 105 BLT.BAS utility program, infinite impulse response (IIR) filters, 148 Boot loader, sine generation, four points, loading and execution, 9-11 Borland's C/C++ compiler: adaptive filter programming, 200 PC host-TMS320C31 communication, 80-82 Branch conflicts, TMS320C3x processor, 32 Branch instructions, TMS320C3x processor, 28-29 Cache, TMS320C3x processor, 33 Cascade structure, infinite impulse response (IIR) filters, 140-141 C code programming: adaptive filters, 199-210 adaptive predictor, C code, 206-210 C code compiled with Borland C/C++, 200-201 interactive adaptation, 200, 202 noise cancellation, 203-206

table lookup for delay, adaptive

predictor, 208-210 DSK input/output, 60-80 loop/echo with AIC data, 75-79 loop/echo with interrupt, 79-80 external/flash memory: FIR bandpass filter, 289 sine generation, 287-289 fast Fourier transform (FFT): eight-point complex, 184-187 real-time 128-point FFT, mixed code, 191-193 real-valued input, 8-point mixed C and TMS320C3x code, 187-191 finite impulse response filters: data move, 121-122 filter convolutions, 123-124 flash memory, 285-289 sample shifting, 125-127 infinite impulse response (IIR) filters: sine generation, 154-156 sixth-order bandpass filters, 160-162 linking, 44 matrix/vector multiplication, 45-46 PC host-TMS320C31 communication, 80-87 Circular buffering, TMS320C3x processor, 30 Code Explorer, DSK support, 14 Code Explorer debugger, GO DSP, 265-270 Computer-aided approximation, finite impulse response filters, 105-106 Conflicts, TMS320C3x processor, 32-34 Convolution equation, finite impulse response filters, 98-99 TMS320C31 memory organization, 106-108 Cosine generation, 152, 154 Crystal CS4216/CS4218 stereo audio codec, DSK input/output, external/flash memory, 88 C3x tools, DSK support, 14-16 Data acquisition:

DSK communications, C and TMS320C3x code, 85–87 MATLAB design, 279–281 Data move applications, finite impulse response filters, C code, 121–122 Debugger windows, matrix/vector multiplication, TMS320C3x code, 5 - 7Decimation-in-frequency FFT algorithm, RADIX-2 development, 167-174 eight-point FFT, 170-172 sixteen-point FFT, 172-174 Decimation-in-time algorithm, fast Fourier transform (FFT), RADIX-2 development, 174-176 eight-point FFT, 176-178 Difference equations, finite impulse response filters, 95-96 DigiFilter: DSK support, 14 filter design and implementation with, 271-274 Digital filtering, TMS320C3x code, 37-42 Digital signal processing (DSP): applications and projects: acoustic direction tracker, 242-245 external interrupt for control, 239-242 FFT-based security system, 248-249 FIR filter banks, 223–228 harmonic analyzer, 246-247 multirate filters, 228-235 pass/fail alarm generator, 235-239 speech processing for identification, 248 TMS320C30 EVM projects, 250-254 development system, 1-2 DSK support tools, 2-3 support tools, 14-16, 265-281 tools testing, 16-17 Direct form structures, infinite impulse response (IIR) filters, 136-140 Discrete Fourier transform (DFT): inverse discrete Fourier transform (IDFT), 183 RADIX-2 algorithm development, 165-179 RADIX-4 algorithm development, 179-182 Discrete signals, finite impulse response filters, 96-97 DMA, TMS320C3x processor, 33-34 DSP Starter Kit (DSK), 2

components of, 3

input/output, 51-89 analog interface circuit (AIC) chip, 53-58 external/flash memory with 16-bit stereo audio codec, 87-88 interrupts and peripherals, 59-60 PC host-TMS320C3x communication, 80-87 Euler's formula, z-transforms of sinusoid, 93-94 External/flash memory: board construction, 283-286 DSK input/output, 87-88 memory decode ranges: external memory, 286-287 FIR bandpass filter, 289 flash memory, 287 sine generation, 287-289 External and flash memory, DSK support, 14-15 Fast Fourier transform (FFT): background, 165 bit reversal for unscrambling, 178 MATLAB design: data acquisition, 279-281 eight-point FFT, 279 RADIX-2 algorithm development, 165-170, 174-176 decimation-in-frequency algorithm, 167-174 eight-point FFT, 170–172 sixteen-point FFT, 172-174 decimation-in-time algorithm, 174-179 eight-point FFT, 176-178 RADIX-4 algorithm development, 179-182 sixteen-point FFT, 181-182 TMS320C3x/C code programming: eight-point complex, 184-187 real-time 128-point FFT, mixed code, 191-193 real-valued input, 8-point mixed C and TMS320C3x code, 187-191 Filter design packages: DigiFilter components, 271-274 finite impulse response filters, 106

Filter development package (FDP), finite impulse response filters, 127-129 Finite impulse response (FIR) filters: adaptive filter structure and, 197 banks, implementation of, 223-228 Code Explorer debugging and plotting, 265-270 design criteria and techniques, 97-99 DigiFilter design and implementation, 271-274 discrete signals, 96-97 filter design packages, 106 filter development package, 127-129 generic, TMS320C3x code, 112-115 MATLAB design, 275-276, 281 multiband FIR filter, 276-278 s-plane to z-plane mapping, 94–95 window functions, 103-105 Flash memory, construction, 283-286 Floating-point tools, C compilation and linkage, matrix/vector multiplication, 12-14 FM, 70, 88 Four-channel multiplexer, TMS320C30 EVM, 253 Fourier series, finite impulse response filters, 98-104 window functions, 104-106 Four values addition, TMS320C3x code, 34-35 Frequency shift modulation, TMS320C30 EVM, 253

Generated output frequency, sine generation, four points, loading and execution, 9–10 Goldwave software: DSK support, 14 virtual instrument shareware, 269–271

Hamming window, finite impulse response filters, 104
Hanning window, finite impulse response filters, 104–105
Harmonic analyzer, 246–247
Highpass filters, infinite impulse response (IIR)filters, 146

Image processing, TMS320C30 EVM, 250 Indirect addressing: bit reversal, fast Fourier transforms (FFT), 178-179 TMS320C3x processor, 25-26 Infinite impulse response (IIR) filters: AMPLIT.CPP utility program, 149-150 background, 135–136 bilinear transformation (BLT), 143-148 BLT.BAS utility program, 148 cosine generation, recursive equation, TMS320C3x code, 154 cosine generation, TMS320C3x code, 154 design procedure, 143-145 DigiFilter design and implementation, 274 filter structures, 136-143 cascade structure, 140-141 direct form II structure, 137-139 direct form II transpose, 139-140 direct form I structure, 136-137 parallel form structure, 141-143 first-order highpass filter, 146 first-order lowpass filter, 145-146 fourth-order bandpass filter, 147-148 MATLAB design, 277-279 second-order bandstop filter, 146-147 sine generation, recursive equation, C code, 154-156 sine generation, TMS320C3x code, 152-154 sixth-order bandpass filter, C code, 160-162 sixth-order bandpass filter, TMS320C3x code, 156-160 Input/output: DSK support, 51-89 analog interface circuit (AIC) chip, 53-58 16-bit stereo codec, 15, 88 interrupts and peripherals, 59-60 PC host-TMS320C3x communication, 80 - 87TMS320C3x and C code programming examples, 60-87 16-bit stereo audio codec design, 291-298 FIR filter, 298

loop programs, 297-298 TMS320C3x instruction, 28 Instruction sets, TMS320C3x processor, 26-30, 257-260 branch instructions, 28-29 circular buffering, 30 input/output instructions, 28 load and store instructions, 27-28 math instructions, 27 parallel instructions, 260 repeat and parallel instructions, 29-30 Interactive adaptation, adaptive filter, C code programming, 200-202 Interactive implementation, FIR filter banks, 225-228 Interrupts: DSK input/output, 59 internal, with TMS320C3x code, 60-62 loop/echo using C code, 79-80 loop/echo using TMS320C3x code, 69-70 sine generation using TMS320C3x code, 70 external control, 239-242 Inverse fast Fourier transform (IFFT): eight-point IFFT, 183 MATLAB design, 279 Kaiser window, finite impulse response filters, 105 Laplace transform, finite impulse response filters, 91-92, 94 Least mean square algorithm (LMS), adaptive filter structure, 196-197, 199 Linking command, 13 Load and store instructions, TMS320C3x, 27, 257 Loop/echo programs, 75-80 AIC routines using C code, 75-79 AIC routines using TMS320C3x code, 65-69 crystal 16-bit stereo audio codec, 297-298 interrupt using TMS320C3x code, 69-70

Lowpass filters:

finite impulse response (FIR) filter: Fourier series, 101–103 TMS320C3x simulation, 108-110 infinite impulse response (IIR) filter, 145-146 Math instructions, TMS320C3x processor, 27 MATLAB software: data acquisition, plotting and FFT, 279-281 eight-point FFT and IFFT, 279 filter design, 275-279, 281 infinite impulse response (IIR) filter design, 277-279 multiband FIR filter design, 276-278 real-time FIR/IIR filter design, 281 Matrix/vector multiplication: C and C-called function, 45-47 C code, 11-14 TMS320C3x, 4-7, 42 Memory access: external/flash memory, 286-289 organization, 21-25 TMS320C3x processor, 33 Memory conflicts, TMS320C3x processor, 33 Mixed-mode FIR filter, C and TMS320C3x code, 117-121 Multiband FIR filter design, MATLAB design, 276-278 Multirate filter, 228-235 design criteria, 228-233 external and TMS320C3x code, 287 implementation, 233-235 TMS320C30 EVM, 250 Neural networks, TMS320C30 EVM, signal

Neural networks, TMS320C30 EVM, signa recognition, 253–254 Noise cancellation: adaptive filter: C code, 203–206 real-time filter, TMS320C3x code, 218–221 adaptive filter structure, 197 TMS320C30 EVM, 250

Oscilloscopes, DSK support tool, 2

Parallel form structure, infinite impulse response (IIR) filters, 141–143 Parametric equalizer, TMS320C30 EVM, 250 Pass/fail alarm generator, programming for, 235-239 PC host-TMS320C31 communication: C code, 81-87 library support file DSKLIB.LIB, Borland's C/C++ compiler, 81 support header file DSKLIB.H, 80-81 PID controller, TMS320C30 EVM, 251 Pseudorandom noise: finite impulse response filters, 115–117 pass/fail alarm generator, 238-239 Pseudorandom noise generation, TMS320C3x code, 70-74 RADIX-2 algorithm development, fast Fourier transform (FFT), 165-179 decimation-in-frequency algorithm, 167-174 decimation-in-time algorithm, 174-178 RADIX-4 algorithm development, fast Fourier transform (FFT), 179-182 sixteen-point FFT, 181-182 Read-only memory (ROM), 34 Real-time adaptive filter, noise cancellation, TMS320C3x code, 218-221 Recursive equation, infinite impulse response (IIR) filters: cosine generation, 154 sine generation, 152-156 Recursive least squares (RLS) algorithm, adaptive filter structure, 199 Register conflicts, TMS320C3x processor, 32-33 **Registers:** interrupt enable (IE), 261 interrupt flag (IF), 263 status (ST), 261 Repeat and parallel instructions, 29-30 RIDE40, DSK support, 15 Sample shifting, finite impulse response filters, C code, 125-127 Sampling frequency (F_s) , sine generation,

four points, loading and execution, 10–11

Security system design, fast Fourier transform (FFT), 248-249 Serial port, DSK input/output, 59 SigLab, DSK support, 15 Signal generator, DSK support tool, 2 Signal recognition, TMS320C30 EVM, neural networks, 253-254 Signal/spectrum analyzer, DSK support tool, 2 Sine generation: C code, 154-156 DSK input/output: AIC data using TMS320C3x, 62-65 interrupt using TMS320C3x, 70 external/flash memory, 287-289 four points, TMS320C3x code, 8-11 TMS320C3x code, 150-154 16-bit stereo/audio codec: DSK input/output, 87-88 input/output, 291-298 Speech processing for identification, 248-249 *s*-plane mapping, finite impulse response filters, z-plane mapping, 94-95 Swept frequency response, TMS320C30 EVM, 250 Taylor series approximation, finite impulse response filters, z-transforms of exponential functions, 92-93 Timers, DSK input/output, 59 TMS320C30 EVM projects, 250-254 TMS320C3x: adaptive filters, 210-221 adaptive predictor, TMS320C3x code, 215-218 real-time adaptive filter, noise cancellation, 218-221 addressing modes, 25-26 architecture and memory organization, 21-25 conflicts, 32-34 CPU registers, 22-25 crystal 16-bit stereo audio codec: FIR filter, 298 loop programs, 297-298 developmental background, 19-21 digital filtering background, 37-42

DSK input/output, 60-74

305 Index

loop/echo with AIC routines, 65-69 loop/echo with interrupt, 69-70 pseudorandom noise generation, 70-74 functional block diagram, 22-23 sine generation with AIC data, 62-65 sine generation with interrupt, 70 external memory, multirate filter, 287 finite impulse response filters, 106-121 generic filter specification, 112–115 lowpass filter simulation, 108-110 mixed-mode filter, C program calling, 117-121 infinite impulse response (IIR) filters: cosine generation, 152, 154 sine generation, 150-154 sixth-order bandpass filter, 156-160 instruction set, 26-30, 257-260 memory organization, 21-25 registers, 22-25, 257, 259, 261-263 TMS320 floating-point DSP assembly language tools, DSK support, 2-3 Tools testing, DSK experiments, 16-17 Transfer functions, finite impulse response filters, 97-102

Two arrays multiplication, TMS320C3x code, 35–37
Two-weighted notch structure, adaptive filters, 198
Unscrambling, bit reversal, fast Fourier transforms (FFT), 178–179
Video line rate analysis, TMS320C30 EVM, 250–251
Virtual bench, DSK support, 14
Virtual instrument, shareware utility package, 269–271
Wait states, TMS320C3x processor, 34
Window functions finite impulse response

Window functions, finite impulse response filters, 103–106 Wireguided submersible, TMS320C30 EVM, 251–253

z-transform, finite impulse response filters, 91–96 *ZT* of exponential function, 92–93 *ZT* of sinusoid, 93–94