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INTRODUCTION

1.1 A CONTROL ENGINEERING APPROACH TO FUZZY CONTROL

This book gives a comprehensive treatment of model-based fuzzy control
systems. The central subject of this book is a systematic framework for the
stability and design of nonlinear fuzzy control systems. Building on the
so-called Takagi-Sugeno fuzzy model, a number of most important issues in
fuzzy control systems are addressed. These include stability analysis, system-
atic design procedures, incorporation of performance specifications, robust-
ness, optimality, numerical implementations, and last but not the least,
applications.

The guiding philosophy of this book is to arrive at a middle ground
between conventional fuzzy control practice and established rigor and sys-
tematic synthesis of systems and control theory. The authors view this
balanced approach as an attempt to blend the best of both worlds. On one
hand, fuzzy logic provides a simple and straightforward way to decompose
the task of modeling and control design into a group of local tasks, which
tend to be easier to handle. In the end, fuzzy logic also provides the
mechanism to blend these local tasks together to deliver the overall model
and control design. On the other hand, advances in modern control have
made available a large number of powerful design tools. This is especially
true in the case of linear control designs. These tools for linear systems range
from elegant state space optimal control to the more recent robust control
paradigms. By employing the Takagi-Sugeno fuzzy model, which utilizes local
linear system description for each rule, we devise a control methodology to
fully take advantage of the advances of modern control theory.
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2 INTRODUCTION

We have witnessed rapidly growing interest in fuzzy control in recent
years. This is largely sparked by the numerous successful applications fuzzy
control has enjoyed. Despite the visible success, it has been made aware that
many basic issues remain to be addressed. Among them, stability analysis,
systematic design, and performance analysis, to name a few, are crucial to the
validity and applicability of any control design methodology. This book is
intended to address these issues in the framework of the Takagi-Sugeno
fuzzy model and a controller structure devised in accordance with the fuzzy
model.

1.2 OUTLINE OF THIS BOOK

This book is intended to be used either as a textbook or as a reference for
control researchers and engineers. For the first objective, the book can be
used as a graduate textbook or upper level undergraduate textbook. It is
particularly rewarding that using the approaches presented in this book, a
student just entering the field of control can solve a large class of problems
that would normally require rather advanced training at the graduate level.

This book is organized into 15 chapters. Figure 1.1 shows the relation
among chapters in this book. For example, Chapters 1-3 provide the basis
for Chapters 4-5. Chapters 1-3, 9, and 10 are necessary prerequisites to

Ch. 1
Basic level
(graduate textbook) Ch. 2
| |
Ch. 3

Ch.7 Ch. 11 Ch. 13

Research level
(research topics)

Fig. 1.1 Relation among chapters.
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OUTLINE OF THIS BOOK 3

understand Chapter 11. Beyond Chapter 3, all chapters, with the exception of
Chapters 7, 11, and 13, are designed to be basically independent of each
other, to give the reader flexibility in progressing through the materials of
this book. Chapters 1-3 contain the fundamental materials for later chapters.
The level of mathematical sophistication and prior knowledge in control have
been kept in an elementary context. This part is suitable as a starting point in
a graduate-level course. Chapters 4—15 cover advanced analysis and design
topics which may require a higher level of mathematical sophistication and
advanced knowledge of control engineering. This part provides a wide range
of advanced topics for a graduate-level course and more importantly some
timely and powerful analysis and design techniques for researchers and
engineers in systems and controls.

Each chapter from 1 to 15 ends with a section of references which contain
the most relevant literature for the specific topic of each chapter. To probe
further into each topic, the readers are encouraged to consult with the listed
references.

In this book, S > 0 means that § is a positive definite matrix, § > T
means that S — T > 0 and W = 0 means that W is a zero matrix, that is, its
elements are all zero.

To lighten the notation, this book employs several particular notions which
are listed as follow:

i<jsthnh + ¢,

i<jst.h;O\h;# ¢.
For instance, the condition (2.31) in Chapter 2 has the notation,
i<j<rst.h,Nh;+¢.

This means that the condition should be hold for all i < excepting h; N A;
= ¢ [ie., h(z(1)) X hj(z(t)) = 0 for all z(¢))], where h,(z(t)) denotes the
weight of the ith rule calculated from membership functions in the premise
parts and r denotes the number of if-then rules. Note that 4, N h; = ¢ if
and only if the ith rule and jth rule have no overlap.
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TAKAGI-SUGENO FUZzY
MODEL AND PARALLEL
DISTRIBUTED COMPENSATION

Recent years have witnessed rapidly growing popularity of fuzzy control
systems in engineering applications. The numerous successful applications
of fuzzy control have sparked a flurry of activities in the analysis and design
of fuzzy control systems. In this book, we introduce a wide range of analysis
and design tools for fuzzy control systems to assist control researchers and
engineers to solve engineering problems. The toolkit developed in this book
is based on the framework of the Takagi-Sugeno fuzzy model and the
so-called parallel distributed compensation, a controller structure devised in
accordance with the fuzzy model. This chapter introduces the basic concepts,
analysis, and design procedures of this approach.

This chapter starts with the introduction of the Takagi-Sugeno fuzzy
model (T-S fuzzy model) followed by construction procedures of such models.
Then a model-based fuzzy controller design utilizing the concept of “parallel
distributed compensation” is described. The main idea of the controller
design is to derive each control rule so as to compensate each rule of a fuzzy
system. The design procedure is conceptually simple and natural. Moreover,
it is shown in this chapter that the stability analysis and control design
problems can be reduced to linear matrix inequality (LMI) problems. The
design methodology is illustrated by application to the problem of balancing
and swing-up of an inverted pendulum on a cart.

The focus of this chapter is on the basic concept of techniques of stability
analysis via LMIs [14, 15,24]. The more advanced material on analysis and
design involving LMIs will be given in Chapter 3.
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6  TAKAGI-SUGENO FUZZY MODEL AND PARALLEL DISTRIBUTED COMPENSATION
2.1 TAKAGI-SUGENO FUZZY MODEL

The design procedure describing in this book begins with representing a
given nonlinear plant by the so-called Takagi-Sugeno fuzzy model. The fuzzy
model proposed by Takagi and Sugeno [7] is described by fuzzy IF-THEN
rules which represent local linear input-output relations of a nonlinear
system. The main feature of a Takagi-Sugeno fuzzy model is to express the
local dynamics of each fuzzy implication (rule) by a linear system model.
The overall fuzzy model of the system is achieved by fuzzy “blending” of the
linear system models. In this book, the readers will find that many nonlinear
dynamic systems can be represented by Takagi-Sugeno fuzzy models. In fact,
it is proved that Takagi-Sugeno fuzzy models are universal approximators.
The details will be discussed in Chapter 14.

The ith rules of the T-S fuzzy models are of the following forms, where
CFS and DFS denote the continuous fuzzy system and the discrete fuzzy
system, respectively.

Continuous Fuzzy System: CFS
Model Rule i:
IF z((¢) is M;; and --- and z,(¢)is M,,,

x(t) =A;x(t) + Bu(t),

y(1) = Cix(1), i=12,...,r. (2.1)

THEN {

Discrete Fuzzy System: DFS
Model Rule i:

IF z/(t) is M;; and --- and z,(¢) is M,,,

1

x(t+1) =4,x(t) + Bu(t),
y(1) = Cix(1),

Here, M;; is the fuzzy set and r is the number of model rules; x(t) € R" is
the state vector, u(t) € R™ is the input vector, y(¢) € R? is the output
vector, 4; € R"*", B, € R"™", and C; € R”"; z/(t),..., z,(t) are known
premise variables that may be functions of the state variables, external
disturbances, and /or time. We will use z(¢) to denote the vector containing
all the individual elements z,(¢), ..., z,(¢). It is assumed in this book that the
premise variables are not functions of the input variables u(¢). This assump-
tion is needed to avoid a complicated defuzzification process of fuzzy
controllers [12]. Note that stability conditions derived in this book can be

THEN{ i=1,2,...,r. (22
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TAKAGI-SUGENO FUZZY MODEL 7

applied even to the case that the premise variables are functions of the input
variables u(¢). Each linear consequent equation represented by A,x(¢) +
B,u(¢) is called a “subsystem.”

Given a pair of (x(¢), u(¢)), the final outputs of the fuzzy systems are
inferred as follows:

CFS

T w(=(0){A,x(1) + Bu(n)
(1) = =

L (a(0)
= L) (A4x(0) + Bau(0). (23)

L () €x(r)

y(1)
wi(z(1))

\IM\

- Z h(2(1)Cx(0). (24)
DFS

L (2(0) (4,50 + Bau0)

x(t+1) = 7
(x(1)
= L) (dix(0) + Ban). (25)
i (2(6))Cx(1)
y(t) = ——=
Agwi(z(t))
- ilh,-(z(r»cix(r), (2.6)
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8 TAKAGI-SUGENO FUZZY MODEL AND PARALLEL DISTRIBUTED COMPENSATION
where
2(1) = [21(0) 2,(2) =+ 2,(1)]
p
wi(z(1)) = 1_{ M;;(z;(1)),
j=
w;(z(1))

- (2.7)
:21 wi(z(1))

hi(z(1)) =

for all 7. The term M,(z,(¢)) is the grade of membership of z,(#) in M.
Since

Zrll w(z(t)) >0,

(2.8)
wi(z(t)) =0, i=1,2,...,r,
we have
Zhi(z(t)) =1,
i=1 (2.9)
h(z(1)) =0, i=1,2,...,r,
for all ¢.

Example 1 Assume in the DFS that
p=n,
z)(t) =x(1),z,(t) =x(t = 1),...,z,(t) =x(t —n + 1).

Then, the model rules can be represented as follows.
Model Rule i:
IF x(¢) is M;; and --- and x(t —n + D is M,,,

x(t+1) =A.x(t) + B.u(t),
THEN ( ) =Ax(1) + Bu(1) i=12,...,r,
y(t) = Cix(1),

where x(¢) = [x(t) x(t = 1D+ x(t — n + D]".
Remark 1 The Takagi-Sugeno fuzzy model is sometimes referred as the

Takagi-Sugeno-Kang fuzzy model (TSK fuzzy model) in the literature. In this
book, the authors do not refer to (2.1) and (2.2) as the TSK fuzzy model. The
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CONSTRUCTION OF FUZZY MODEL 9

reason is that this type of fuzzy model was originally proposed by Takagi and
Sugeno in [7]. Following that, Kang and Sugeno [8, 9] did excellent work on
identification of the fuzzy model. From this historical background, we feel
that (2.1) and (2.2) should be addressed as the Takagi-Sugeno fuzzy model.
On the other hand, the excellent work on identification by Kang and Sugeno
is best referred to as the Kang-Sugeno fuzzy modeling method. In this book
the authors choose to distinguish between the Takagi-Sugeno fuzzy model
and the Kang-Sugeno fuzzy modeling method.

2.2 CONSTRUCTION OF FUZZY MODEL

Figure 2.1 illustrates the model-based fuzzy control design approach dis-
cussed in this book. To design a fuzzy controller, we need a Takagi-Sugeno
fuzzy model for a nonlinear system. Therefore the construction of a fuzzy
model represents an important and basic procedure in this approach. In this
section we discuss the issue of how to construct such a fuzzy model.

In general there are two approaches for constructing fuzzy models:

1. Identification (fuzzy modeling) using input-output data and
2. Derivation from given nonlinear system equations.

There has been an extensive literature on fuzzy modeling using input-out-
put data following Takagi’s, Sugeno’s, and Kang’s excellent work [8, 9]. The
procedure mainly consists of two parts: structure identification and parame-
ter identification. The identification approach to fuzzy modeling is suitable

Nonlinear system

\

Physical model

/

Fuzzy model
(Takagi-Sugeno fuzzy model)

\

Identification using
input-output data

/

Parallel distributed
compensation (PDC)

4

Fuzzy controller

Fig. 2.1 Model-based fuzzy control design.
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10 TAKAGI-SUGENO FUZZY MODEL AND PARALLEL DISTRIBUTED COMPENSATION

for plants that are unable or too difficult to be represented by analytical
and/or physical models. On the other hand, nonlinear dynamic models for
mechanical systems can be readily obtained by, for example, the Lagrange
method and the Newton-Euler method. In such cases, the second approach,
which derives a fuzzy model from given nonlinear dynamical models, is more
appropriate. This section focuses on this second approach. This approach
utilizes the idea of “sector nonlinearity,” “local approximation,” or a combi-
nation of them to construct fuzzy models.

2.2.1 Sector Nonlinearity

The idea of using sector nonlinearity in fuzzy model construction first
appeared in [10]. Sector nonlinearity is based on the following idea. Consider
a simple nonlinear system x(¢) = f(x(¢)), where f(0) = 0. The aim is to find
the global sector such that x(¢) = f(x(¢)) € [a, a,]x(¢). Figure 2.2 illustrates
the sector nonlinearity approach. This approach guarantees an exact fuzzy
model construction. However, it is sometimes difficult to find global sectors
for general nonlinear systems. In this case, we can consider local sector
nonlinearity. This is reasonable as variables of physical systems are always
bounded. Figure 2.3 shows the local sector nonlinearity, where two lines
become the local sectors under —d < x(¢) < d. The fuzzy model exactly
represents the nonlinear system in the “local” region, that is, —d < x(¢) < d.
The following two examples illustrate the concrete steps to construct fuzzy
models.

alfv(t)

f(x(1))

Fig. 2.2 Global sector nonlinearity.
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CONSTRUCTION OF FUZZY MODEL 11

f(x(0))

x(t)

Fig. 2.3 Local sector nonlinearity.

Example 2 Consider the following nonlinear system:

(2.10)

(xlm) _ ( —x,(t) +x,(1)x3(1) )
X(1) —x,(1) + (3 +x,(1))x7(¢) ‘

For simplicity, we assume that x,(¢1) € [—1,1] and x,(¢:) € [—1,1] . Of
course, we can assume any range for x,(z) and x,(¢) to construct a fuzzy
model.

Equation (2.10) can be written as

T mmEe
*(0 = [(s OO

}x(t),

where x(¢) = [x,(¢) x,(O)]" and x,(1)x3(¢) and 3 + x,(¢))x7(¢) are nonlinear
terms. For the nonlinear terms, define z,(¢) = x(1)x3(¢+) and z,(t) = (3 +
x,(t))x3(¢). Then, we have

-1 z(1)

() -1 lx(t).
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12 TAKAGI-SUGENO FUZZY MODEL AND PARALLEL DISTRIBUTED COMPENSATION

Next, calculate the minimum and maximum values of z,(¢) and z,(¢) under
x(t) € [—1,1] and x,(¢) € [—1,1]. They are obtained as follows:

max z.(t) =1, min z,(t) = —1,
(0, 25(0) (1) (), 20) (1)

max z,(t) =4, min z,(t) = 0.
x,(8), x,(¢) x1(0), x,(1)

From the maximum and minimum values, z,(¢) and z,(¢) can be represented
by

zy(t) = x, (1) x3(1) = M(z,(2)) - 1 + My(2,(1)) - (—1),
7,(1) = (3 +x,(1))xi (1) = Ni(25(1)) - 4 + Ny(25(1)) - 0,
where
My(z,(2)) + My(z,(1)) = 1,
Ni(2:(1)) + Ny(2,(1)) = 1.

Therefore the membership functions can be calculated as

z; 1 11—z
M(z,(1)) = (t)T+’ M,(zy(1)) = %’

Z, 4 -2z,
Ni(z,y(1)) = it) ) Ny(z,(1)) = %

We name the membership functions “Positive,” “Negative,” “Big,” and
“Small,” respectively. Then, the nonlinear system (2.10) is represented by the
following fuzzy model.

Model Rule 1:
IF z,(¢) is “Positive” and z,(¢) is “Big,”
THEN x(t) = A, x(1).
Model Rule 2:
IF z,(¢) is “Positive” and z,(¢) is “Small,”
THEN x(t) = A,x(2).

Model Rule 3:

IF z,(t) is “Negative” and z,(¢) is “Big,”
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My(z,(1)) M \(z,(1))

Positive

0 ] 1 1z
-1 0 1
Fig. 24 Membership functions M,(z,(¢)) and M,(z,(¢)).

1 N>(z,(1)) Ni(z:(1))

O ! | 22(1)
0 2 4
Fig. 2.5 Membership functions N(z,(¢)) and N,(z,(¢)).
THEN x(t) = A;x(1).
Model Rule 4:
IF z,(t) is “Negative” and z,(¢) is “Small,”
THEN x(t) = A, x(¢).

Here,

_ | -1 1 _ | -1 1
S IR A (|
_ -1 -1 _ -1 -1
e P R R
Figures 2.4 and 2.5 show the membership functions.
The defuzzification is carried out as

4
x(1) = 'ghi(z(t))Aix(tL

www.4electron.com
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14 TAKAGI-SUGENO FUZZY MODEL AND PARALLEL DISTRIBUTED COMPENSATION

where
hi(z(1)) = My(z,(1)) X Ni(2,(2)),
hy(z(1)) = My(z,(1)) X Ny(z5(1)),
ha(z(1)) = My(z)(1)) X Ny(2,(1)),
hy(2(1)) = My(2,(2)) X Ny(25(2)).

This fuzzy model exactly represents the nonlinear system in the region
[-1,1] X [—1,1] on the x,-x, space.

Example 3 The equations of motion for the inverted pendulum [21] are

(1) = x,(1),

) g sin(x,(r)) — amlx3 () sin(2x,(t)) /2 — a cos(x,() )u(r)
$(t) = 41/3 — aml cos*(x,(1))

>

(2.11)

where x,(¢) denotes the angle (in radians) of the pendulum from the vertical
and x,(¢) is the angular velocity; g = 9.8 m/s* is the gravity constant,
m is the mass of the pendulum, M is the mass of the cart, 2/ is the length
of the pendulum, and u is the force applied to the cart (in newtons);
a=1/(m + M).

Equation (2.11) is rewritten as

%a(1) = 41/3 — aml cos®(x(1))
amlx, in(2x,
x| g sin(x,(t)) — ) s;n( (t))xz(t) —acos(x,(t))u(t)|.
(2.12)
Define
zy(t) =

41/3 — aml cos*(x,(1))’
z,(t) = sin(x,(1)),
z5(t) =x,(1) sin(2x,(1)),
z4(1) = cos(x,(1)),
where x,(t) € (—7/2,7/2) and x,(t) € [—a, a]. Note that the system is

uncontrollable when x,(¢) = + /2. To maintain controllability of the fuzzy
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CONSTRUCTION OF FUZZY MODEL 15

model, we assume that x,(z) € [—88° 88°]. Equation (2.12) is rewritten as
) aml
(0 =20 g(0) = Tram(0) - a(u(n)

As shown in Example 2, we replace z,(t) — z,(t) with T-S fuzzy model
representation. Since

1
)= —————— =gq,, = cos(88°),
1;2(3['))(21( ) 41/3 _ amlﬁz QI B COS( )
. N —
fcrll(ltr)lzl( ) 175 —aml 9
z,(¢) can be rewritten as
2
z(t) = L E(z(1))4:, (2.13)
i=1
where
z(t) — q» g, — zi(1)
E(z/(t)) = ————, E,(z(t)) = —————.
(=(1) 91 — 9> 2(2(0) 91— 9>

The membership functions, E,(z,(t)) and E,(z,(¢)), are obtained from the
property of E(z,(t)) + E,(z,(¢)) = 1.

Figure 2.6 shows z,(z) = sin(x,(¢)) and its local sector, where x,(z)
(—m/2, w/2). From Figure 2.6, we can find the sector [b,, b,] that consists of
two lines b,x, and b,x,, where the slopes are b, =1 and b, =2/7.

blx}(t) L baxy(0)

sin(x,(4))

—a/2

' x,(t)
w/2

Fig. 2.6 sin(x,(¢)) and its sector.
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16 TAKAGI-SUGENO FUZZY MODEL AND PARALLEL DISTRIBUTED COMPENSATION

Therefore, we represent sin(x,(¢)) as follows:

z,(t) = sin(x,(1)) = ('z:lMi(ZZ(t))bi)xl(t)‘

(2.14)

From the property of membership functions [ M,(z,(¢)) + My(z,(¢)) = 1], we

can obtain the membership functions

z,(t) — (2/m) Sin~'(z,(1))

Mi(z,(1)) = (1 —=2/7)Sin"!(z,(1)) ’ z,(t) # 0,
1 otherwise,
Sin~'(z,(1)) — z,(1)
M2(22(t)) = (1 _2/7T)Sin_1(zz(t))’ Zz(t) #=0
0, otherwise.
Next, consider z;(1) = x,(¢#) sin(2x(¢)). Since
max z3(f) = a=c¢, and min  zy(t) = —a =c,,

x4(2), x,(¢) x4(2), x,(2)

we can derive in the same way as the z,(¢) case:

2
z3(1) = x,(1) sin(2x,(1)) = 'EM(Z(I‘))CD

where

Ni(z3(1)) = 3( ) ) Ny(z3(1)) = o 3( )

€1 G — G
We take the same procedure for z,(¢) as well. Since

max z,(t) = 1=d, and min z,(¢t) = B=d,,
x(1) x(8)

we obtain
z,(1) = cos(x(1)) = ; Si(z(1))d;,

where

24 —d, dy —z,
Si(z4(1)) = %, Sy(z4(1)) = r;;)

www.4electron.com
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CONSTRUCTION OF FUZZY MODEL 17

From (2.13)—(2.16), we construct the following Takagi-Sugeno fuzzy model
for the inverted pendulum:

[X1(t)l - Z Y Y E(2:(0))M(2,(1))Ne(25(2)) S,(24(1))

xX,(1) i=1j=1k=11=1

0 1 X
[ FRE N ]  B
g 4qb; ~ 5 4% x,(1) —a-q;d

2 2 2
by kE IZ Ei(z,(2))M;(25(2) )N (25(2)) S1(24(1))
j=1k=11=1
A x (1) +Bijklu(t)}' (2.17)

The summations in (2.17) can be aggregated as one summation:

WMN

'—'\»d

X

16
x(t) = ; h,(z(1)){Aix(t) + BFu(r)}, (2.18)

where
p=l+2(k—-1)+4(j—-1) +8(i—1),

h,(z(t)) = E(z,(¢))M;(25(1)) Ni(z5(2))Si(24(2))s
Ai = Aijkl’ B,;k = Bijkl'
Equation (2.18) means that the fuzzy model has the following 16 rules:
Model Rule 1:

IF z (¢) is “Positive” and z,(¢) is “Zero”
and z,(¢) is “Positive” and z,(¢) is “Big,”

THEN x(t) = A¥x(¢) + BFu(¢).
Model Rule 2:

IF z/(t) is “Positive” and z,(¢) is “Zero”
and z,(¢) is “Positive” and z,(¢) is “Small,”

THEN x(1) = A%x(¢) + Biu(t).
Model Rule 3:

IF z (1) is “Positive” and z,(¢) is “Zero”
and z4(¢) is “Negative” and z,(¢) is “Big,”

THEN x(t) = A%x(t) + Biu(t).
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18 TAKAGI-SUGENO FUZZY MODEL AND PARALLEL DISTRIBUTED COMPENSATION
Model Rule 4:

IF z,(¢t) is “Positive” and z,(¢) is “Zero”
and z4(¢) is “Negative” and z,(¢) is “Small,”

THEN x(t) = A%x(¢) + Biu(s).

Model Rule 5:

IF z/(¢) is “Positive” and z,(¢) is “Not Zero”
and z,(¢) is “Positive” and z,(¢) is “Big,”

THEN x(t) = A%x(t) + BXu(z).

Model Rule 6:

IF z (1) is “Positive” and z,(¢) is “Not Zero”
and z4(¢) is “Positive” and z,(¢) is “Small,”

THEN x(t) = A¥x(¢) + B}u(¢).

Model Rule 7:

IF z (¢) is “Positive” and z,(¢) is “Not Zero”
and z,(¢) is “Negative” and z,(¢) is “Big,”

THEN x(t) = A%x(t) + Biu(¢).

Model Rule 8:

IF z/(¢) is “Positive” and z,(¢) is “Not Zero”
and z,(¢) is “Negative” and z,(¢) is “Small,”

THEN x(t) = A§x(t) + Biu(1).

Model Rule 9:

IF z (1) is “Negative” and z,(t) is “Zero”
and z4(¢) is “Positive” and z,(¢) is “Big,”

THEN x(t) = A¥x(¢) + Biu(s).
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Model Rule 10:

IF z /(1) is “Negative” and z,(¢) is “Zero”
and z,(¢) is “Positive” and z,(¢) is “Small,”

THEN x(t) = Ajx(¢) + Bju(s).

Model Rule 11:

IF z/(t) is “Negative” and z,(¢) is “Zero”
and z,(¢) is “Negative” and z,(¢) is “Big,”

THEN x(1) = A3x(t) + Bfu(o).

Model Rule 12:

IF z (1) is “Negative” and z,(¢) is “Zero”
and z4(¢) is “Negative” and z,(¢) is “Small,”

THEN (1) = A x(1) + Biu(o).

Model Rule 13:

IF z (¢) is “Negative” and z,(¢) is “Not Zero”
and z,(¢) is “Positive” and z,(¢) is “Big,”

THEN x(t) = Ajx(¢) + Bju(s).

Model Rule 14:

IF z/(¢) is “Negative” and z,(¢) is “Not Zero”
and z,(¢) is “Positive” and z,(¢) is “Small,”

THEN x(1) = A x(t) + Bu(o).

Model Rule 15:

IF z (1) is “Negative” and z,(¢) is “Not Zero”
and z4(¢) is “Negative” and z,(¢) is “Big,”

THEN (1) = A5x(1) + B (o).

www.4electron.com

19



20 TAKAGI-SUGENO FUZZY MODEL AND PARALLEL DISTRIBUTED COMPENSATION
Model Rule 16:

IF z,(1) is “Negative” and z,(¢) is “Not Zero”
and z4(¢) is “Negative” and z,(¢) is “Small,”

THEN x(t) = Ajix(¢) + Btu(o).

Here, z,(¢), z,(¢), z5(¢) and z,(¢) are premise variables and

[0 1 ] [0 ]
A=A = g qby - aTml “q¢y | Bi =B = —a-q,d;
[0 1 ] [0 ]
Az = A = g q1b _aTml “qi¢y | By =B = —a-q,d,
[0 1 ] [0 ]
A>§=A1121= g-q.b, —aTml‘C]lCz > B§k=31121= —a-q,d,
[0 1 ] [0 ]
Ai = Az = g8 q:b, _aTml “qi¢y | Bi = Buxn = —a-q,d,
[0 1 ] [0 ]
A5 = A = g q1b, _aTml * 416 By = Bon = —a-q,d;
[0 1 ] [0 ]
As = A = 8 q1b, _aTml “qicy | By = Bra = —a-q,d,
[0 1 | [0 ]
A7 = A = g qb, _aTml “qic,y | B = Bin = —a-q,d,
[0 1 | 0 ]
A?;:Alzzz: g q.b, _aTml'%Cz > B§<=B1222= —a-q,d, >
[0 1 0
A§=A2111= g q,b, _aTml,qzcl > B§=32111= —a-q,d, >
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0 1 0
ANy =Ay, = aml , B* —=B. = ,
10 2112 g ‘12191 _ T - g,c, 10 2112 —a '612dz

[0 1 1 0
A% = Ay, = aml , BY=B,, =
11 2121 g CIzb1 _ T S gy, 11 2121 —a '512d1
[0 1 1 0 ]
A=Ay, = aml B}, = By, =
12 2122 g q2b1 _ T - gy, 12 2122 —a C]gd
C o . C o0
Af, = Ay, = aml , B* = B... =
13 2211 g q2b2 _ T “g,c, 13 2211 —a QZdl
) 1 1 [0 ]
A*, = A = aml , B =B, =
14 2212 g q2b2 _ T “q,c 14 2212 —a Clzd
[0 1 1 0 ]
A¥. = A4 = aml , B* =B —
15 2221 g q2b2 _ T g,y 15 2221 —a qzd
) 1 1 [0 ]
A =4 - aml , B* =B = .
16 2222 g C]zbz _ T S g,y 16 2222 —a -q2d2

Figures 2.7-2.10 show the membership functions, that is,

E\(2(1)) = 1( — —g 0 Ba)= ;t)
sin(x,(1)) — (2/7) z,(¢) x,(1) = z,(1)
M=) = mnm o M) T T
Ny(z5(1)) = 3( ) ¢, No(z3(1)) = 1c1 —Z%c(zt)
(t) —d, d; — z,(t)

Si(z4(1)) = 211177 Sy(z4(1)) = 4 —d,
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1.E2(Zl(1)) E\(z,(1))

: Negative Positive

0 : z,(t)

1 1
41/3 — aml 41/3 — amiB?

Fig. 2.7 Membership functions E,(z,(¢)) and E,(z,(1)).

]1\42(22([)) M(z,(1))

Not zero

0 2,(1)
—1 0 1

Fig. 2.8 Membership functions M,(z,(¢)) and M,(z,(¢)).

1 Ny(z3(1)) Ny(z3(1))

Negative Positive

o 2(1)

-« 0 @

Fig. 2.9 Membership functions N,(z5(¢)) and N,(z;(1)).

1 S(z4(1)) Si(z4(1))

Fig. 2.10 Membership functions S,(z,(¢)) and S,(z,(¢)).
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Remark 2 Prior to applying the sector nonlinearity approach, it is often a
good practice to simplify the original nonlinear model as much as possible.
This step is important for practical applications because it always leads to the
reduction of the number of model rules, which reduces the effort for analysis
and design of control systems. This aspect will be illustrated in design
examples throughout this book. For instance, in the vehicle control described
in Chapter 8, a two-rule fuzzy model is obtained. If we attempt to derive a
fuzzy model without simplifying the original nonlinear model, 2° rules would
be needed to exactly represent the nonlinear model. We will see in Chapter 8
that the fuzzy controller design based on the two-rule fuzzy model performs
well even for the original nonlinear system.

2.2.2 Local Approximation in Fuzzy Partition Spaces

Another approach to obtain T-S fuzzy models is the so-called local approxi-
mation in fuzzy partition spaces. The spirit of the approach is to approximate
nonlinear terms by judiciously chosen linear terms. This procedure leads to
reduction of the number of model rules. For instance, the fuzzy model for
the inverted pendulum in Example 3 has 16 rules. In comparison, in Example
4 a 2-rule fuzzy model will be constructed using the local approximation idea.
The number of model rules is directly related to complexity of analysis and
design LMI conditions. This is because the number of rules for the overall
control system is basically the combination of the model rules and control
rules.

Remark 3 As pointed out above, the local approximation technique leads to
the reduction of the number of rules for fuzzy models. However, designing
control laws based on the approximated fuzzy model may not guarantee the
stability of the original nonlinear systems under such control laws. One of the
approaches to alleviate the problem is to introduce robust controller design,
described in Chapter 5.

Example 4 Recall the inverted pendulum in Example 3. In that example,
the constructed fuzzy model has 16 rules. In the following we attempt to
construct a two-rule fuzzy model by local approximation in fuzzy partition
spaces. Of course, the derived model is only an approximation to the original
system. However, it will be shown later in this chapter that a fuzzy controller
design based on the two-rule fuzzy model performs well when applied to the
original nonlinear pendulum system.
When x,(¢) is near zero, the nonlinear equations can be simplified as

(1) = x,(2), (2.19)

e - B0~ au()

2.2
41/3 — aml (2.20)
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24  TAKAGI-SUGENO FUZZY MODEL AND PARALLEL DISTRIBUTED COMPENSATION
When x,(¢) is near + /2, the nonlinear equations can be simplified as

A(1) = x,(1), (2.21)

| 28n(0)/7 — apu()
$(1) = 41/3 —amiB? ~

(2.22)

where B = cos(88°).
Note that (2.19)—(2.22) are now linear systems. We arrive at the following
fuzzy model based on the linear subsystems:
Model Rule 1
IF x,(¢) is about 0,
THEN x(t) = A,x(¢t) + B u(s).
Model Rule 2:

IF x,(¢) is about +7/2(|x,| < 7/2),

THEN x(t) = A,x(t) + B,u(¢).

Here,
[ 0 1 [ 0
A1 = L > B1 = _é >
41/3 — aml 41/3 — aml
i 0 1 i 0
A, = 28 ol B=1_ ap ,
w(41/3 — amlB?) 41/3 — amlB*

and B = cos(88°). Membership functions for Rules 1 and 2 can be simply
defined as shown in Figure 2.11.

Remark 4 In Example 4, the membership functions are simply defined
using triangular types. Note that the fuzzy model is an approximated model.
Therefore we may simply define triangular-type membership functions. On
the other hand, in the fuzzy model in Example 3, the membership functions
are obtained so as to exactly represent the nonlinear dynamics.

The following remark addresses the important issue of approximating
nonlinear systems via T-S models.
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Rule 2
1 j \
Rule 1
0 X1
-90 0 90 (deg)

Fig. 2.11 Membership functions of two-rule model.

Remark 5 Section 2.2 presents the approaches to obtain a fuzzy model for a
nonlinear system. An important and natural question arises in the construc-
tion using local approximation in fuzzy partition spaces or simplification
before using sector nonlinearity. One may ask, “Is it possible to approximate
any smooth nonlinear systems with Takagi-Sugeno fuzzy models (2.1) having
no consequent constant terms?” The answer is fortunately Yes if we consider
the problem in C° or C' context. That is, the original vector field plus its
first-order derivative can be accurately approximated. Details will be pre-
sented in Chapter 14.

2.3 PARALLEL DISTRIBUTED COMPENSATION

The history of the so-called parallel distributed compensation (PDC) began
with a model-based design procedure proposed by Kang and Sugeno (e.g.,
[16]). However, the stability of the control systems was not addressed in the
design procedure. The design procedure was improved and the stability of
the control systems was analyzed in [2]. The design procedure is named
“parallel distributed compensation” in [14].

The PDC [2, 14, 15] offers a procedure to design a fuzzy controller from a
given T-S fuzzy model. To realize the PDC, a controlled object (nonlinear
system) is first represented by a T-S fuzzy model. We emphasize that many
real systems, for example, mechanical systems and chaotic systems, can be
and have been represented by T-S fuzzy models.

In the PDC design, each control rule is designed from the corresponding
rule of a T-S fuzzy model. The designed fuzzy controller shares the same
fuzzy sets with the fuzzy model in the premise parts. For the fuzzy models
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(2.1) and (2.2), we construct the following fuzzy controller via the PDC:
Control Rule i:
IF z((¢) is M;; and --- and z,(¢)is M,,,
THEN u(t) = —Fx(t), i=12,...,r.

The fuzzy control rules have a linear controller (state feedback laws in this
case) in the consequent parts. We can use other controllers, for example,
output feedback controllers and dynamic output feedback controllers, instead
of the state feedback controllers. For details, consult Chapters 12 and 13,
which are devoted to the problem of dynamic output feedback.

The overall fuzzy controller is represented by

Tw(z(O)Fx()
u(t) = - = = — Y h(z(1)Fx(r). (223)
L wi((1)

The fuzzy controller design is to determine the local feedback gains F, in
the consequent parts. With PDC we have a simple and natural procedure to
handle nonlinear control systems. Other nonlinear control techniques require

special and rather involved knowledge.

Remark 6 Although the fuzzy controller (2.23) is constructed using the local
design structure, the feedback gains F; should be determined using global
design conditions. The global design conditions are needed to guarantee the
global stability and control performance. An interesting example will be
presented in the next section.

Example 5 1If the controlled object is represented as the model rules shown
in Example 1, the following control rules can be constructed via the PDC:

Control Rule i:
IF x(¢) is M;; and --- and x(t —n + D is M,,,

THEN u(t) = —F,x(1), i=12,...,r.

2.4 A MOTIVATING EXAMPLE

In this chapter, for brevity only results for discrete-time systems are pre-
sented. The results, however, also hold for continuous-time systems subject to
some minor modifications.
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The open-loop system of (2.5) is
x(t+1) = Y hi(z(1))A4;x(1). (2.24)
i=1

A sufficient stability condition, derived by Tanaka and Sugeno [1, 2], for
ensuring stability of (2.24) follows.

THEOREM 1 [1,2] The equilibrium of a fuzzy system (2.24) is globally asymp-
totically stable if there exists a common positive definite matrix P such that

ATPA, - P <0, i=12,...,r, (2.25)

that is, a common P has to exist for all subsystems.

This theorem reduces to the Lyapunov stability theorem for (discrete-time)
linear systems when r = 1.

The stability condition of Theorem 1 is derived using a quadratic function
V(x(1)) = x(t)"Px(¢). If there exists a P > 0 such that V(x(¢)) = x(£)"Px(¢)
proves the stability of system (2.24), system (2.24) is also said to be quadrati-
cally stable and V(x(¢)) is called a quadratic Lyapunov function. Theorem 1
thus presents a sufficient condition for the quadratic stability of system
(2.24).

To check the stability of fuzzy system (2.24), the lack of systematic
procedures to find a common positive definite matrix P has long been
recognized. Most of the time a trial-and-error type of procedure has been
used [2,23]. In [13] a procedure to construct a common P is given for
second-order fuzzy systems, that is, the dimension of state n = 2. We first
pointed out in [14,15,24] that the common P problem can be solved
efficiently via convex optimization techniques for LMIs [18]. To do this, a
very important observation is that the stability condition of Theorem 1 is
expressed in LMIs. To check stability, we need to find a common P or
determine that no such P exists. This is an LMI problem. See Section 2.5.2
for details on LMIs and the related LMI approach to stability analysis and
design of fuzzy control systems. Numerically the LMI problems can be solved
very efficiently by means of some of the most powerful tools available to date
in the mathematical programming literature. For instance, the recently
developed interior-point methods [19] are extremely efficient in practice.

A question naturally arises of whether system (2.24) is stable if all its
subsystems are stable, that is, all A,’s are stable. The answer is no in general,
as illustrated by the following example.

Example 6 Consider the following fuzzy system:
Rule 1:
IF x,(¢) is M, (e.g., Small),

THEN x(t + 1) = A, x(¢).
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M, M,

0 ! I x5(t)

Fig. 2.12 Membership functions of Example 6.

Rule 2:
IF x,(t) is M, (e.g., Big),
THEN x(t + 1) = 4, x(1).

Here, x(¢) = [x,(t) x,(¢)]" and

1 —05 ~1 -05
S N |

Figure 2.12 shows the membership functions of M, and M,. Since 4, and
A, are stable, the linear subsystems are stable. However, for some initial
conditions the fuzzy system can be unstable, as shown in Figure 2.13 for the
initial condition x = [0.90 —0.70]”. It should be noted that the linearization
of the fuzzy system around 0 is stable (which implies that the fuzzy system is
locally stable). Obviously there does not exist a common P > 0 since the
fuzzy system is unstable. This can be shown analytically. Moreover this can
also be shown numerically by convex optimization algorithms involving LMIs.

Still an interesting question is for what initial conditions the fuzzy system
is stable (or unstable). This is determined by studying the basin of attraction
of the origin.!

Figure 2.14(a) shows the basin of attraction for the case of a = 1. The
black area indicates regions of instability (horizontal axis is x,). It is also of
interest to consider how the basin of attraction changes as the membership
functions vary, for instance, how the basin of attraction would change as a
varies for this example. Figures (b), (c), and (d) show the basin of attraction

'Sugeno mentioned this point in his plenary talk titled “Fuzzy Control: Principles, Practice, and
Perspectives” at 1992 IEEE International Conference on Fuzzy Systems, March 9, 1992.
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Fig. 2.13 Response of Example 6 (a = 1).

for various values of a. It can be seen that as a decreases (increases) from 1,
the basin of attraction becomes smaller (larger). Therefore, the basin of
attraction for the fuzzy system could be membership function dependent. In
the example, when a = oo, the fuzzy system becomes

A, + A4,
x(t+1) = Tx(t),

which is linear and globally asymptotically stable.

For this example, an interesting interpretation can be given for the
dependence of basin of attraction on membership functions. As a increases
(decreases), the inference process tends to be “fuzzier” (“crisper”). Hence a
fuzzier decision leads to a larger basin of attraction while a crisper decision
leads to a smaller basin of attraction.

As illustrated by the example, we have to take stability into consideration
when selecting rules and membership functions. How to systematically select
rules and membership functions to satisfy prescribed stability properties is an
interesting topic. In the next section, we consider the control design problems
via parallel distributed compensations.

2.5 ORIGIN OF THE LMI-BASED DESIGN APPROACH

This section gives the origin of the control design approach, which forms the
core subject of this book, that is, the LMI-based design approach. The
objective here is to illustrate the basic ideas [24] of stability analysis and
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Fig. 2.14 Basin of attraction for Example 6.

stable fuzzy controller design via LMIs. The details will be presented in
Chapter 3.

2.5.1 Stable Controller Design via Iterative Procedure

The PDC fuzzy controller is
u(r) = = ¥ h(z(1) Fx(1). (2.26)
i=1

Note that the controller (2.26) is nonlinear in general.
Substituting (2.26) into (2.5), we obtain

i+ 1) = ¥ Y (O ()4 - BE(D). (227

Applying Theorem 1, we have the following sufficient condition for
(quadratic) stability.
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THEOREM 2 The equilibrium of a fuzzy control system (2.27) is globally
asymptotically stable if there exists a common positive definite matrix P such that

{4, - B,F) P{4, -~ BF) — P <0 (2.28)

for hi(z(1) - h(z(t)) # 0, V1, i,j=1,2,...,r.
Note that system (2.27) can also be written as

(e 1) = | D () ((0) (4, ~ BE)x(0)

+2) Zhi(z(t))hj(z(t))Gijx(t) ) (2.29)
i=1i<j
where
{Ai - BiF}} + {A/‘ - BjFi} . .
G, = 2 , 1<j st. h;Nh;# ¢.

Therefore we have the following sufficient condition.

THEOREM 3 The equilibrium of a fuzzy control system (2.27) is globally
asymptotically stable if there exists a common positive definite matrix P such that
the following two conditions are satisfied:

(4, -~ B,F} ' P{4,—B,F) —P<0, i=12,...,r (2.30)
T . .
G;PG; — P <0, i<j<r st hNh #¢. (2.31)

For the meaning of the notation i <j<r st h;Nh;# ¢, see
Chapter 1.

Remark 7 The conditions of Theorem 3 are more relaxed than those of
Theorem 2.

The control design problem is to select F; (i = 1,2,...,r) such that
conditions (2.30) and (2.31) in Theorem 3 are satisfied. Using the notation of
quadratic stability, we can also formulate the control design problem as to
find F’s such that the closed-loop system (2.27) is quadratically stable.
If there exist such F/’s, the system (2.5) is also said to be quadratically
stabilizable via PDC design.

In this chapter, we first design a controller for each rule and check
whether the stability conditions are satisfied. Recall we can use LMI convex
programming techniques to solve this stability analysis problem. If the stabil-
ity conditions are not satisfied, we have to repeat the procedure. Consult
Section 2.5.2 on how LMIs can be used to directly solve the control design
problem.
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Next consider the common B matrix case, that is, B, = B(i = 1,2,...,r).
In this case, Theorem 3 reduces to:

THEOREM 4 When B, = B, i = 1,...,r, the equilibrium of the fuzzy control

system (2.27) is globally asymptotically stable if there exists a common positive
definite matrix P such that

{4, - B,F}'P{4,—BF) —P<0, i=12,....r. (232)
Furthermore, for the common B case, if we can choose F; such that
A, — BF; = G, (2.33)
where G is a Hurwitz matrix, then the system (2.27) becomes a linear system
x(t+1) = Gx(t).

This is a global linearization result. We remark that a common G might not
always be possible even if (A;, B;) are controllable.

Remark 8 As shown in Theorem 4, the stability conditions are simplified in
the common B matrix case. The same feature will be observed in all the
chapters.
Let us look at some examples.

Example 7 Consider the following fuzzy system:
Model Rule 1:

IF x,(¢) is M|,

THEN x(¢t + 1) = A,x(¢t) + Bu(¢).

Model Rule 2:

IF x,(¢) is M,,

THEN x(¢t + 1) = A, x(¢t) + Bu(¢).

Here, A,, A, are the same as in Example 6 and

-]
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Employ the PDC controller (2.26) and choose the closed-loop eigenvalues
to be [0.5 0.35]. We obtain

F, = [0.15 —0.3250],
F,=[-1.85 —0.3250],

and

_ 085 —0.1750

A —BF, =4, BF,=G ) )

The closed loop becomes
x(t+1) = Gx(t),

which is stable since G is stable.
Next we consider the more general case.

Example 8
Consider the following fuzzy system:

Model Rule 1:
IF x,(t) is M,
THEN x(t + 1) = A,x(t) + Bu(?).
Model Rule 2:
IF x,(t) is M,,
THEN x(t + 1) = A,x(¢t) + B,u(1).

Here, 4,, A, are the same as in Example 6 and

el we (]

The membership functions of Example 6 (a = 1) are used in the simulation.
Again choose the closed-loop eigenvalues to be [0.5 ,0.35]. We have

F, =[0.65 —0.5],
F, =[0.87 —0.11],
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and

A1—31F1=[0'35 0 0.74 —0.72},

0.35 0.5]’ A2_BZF2=[0.13 0.11

G.. = 0.2150  —0.9450
12 0.2400 0.3050 |°

Note that G, is stable.
The PDC controller is given as follows:

Control Rule 1:
IF x,(t) is M,
THEN u(t) = —F,x(¢).
Control Rule 2:
IF x,(t) is M,,
THEN u(t) = —F,x(¢).
It can be easily shown that if we choose the positive definite matrix P to

be

p_| 11810 —00614
~0.0614 23044 |’

the stability conditions (2.30) and (2.31) are satisfied. In other words, the
closed-loop fuzzy control system which consists of the fuzzy model and the
PDC controller is globally asymptotically stable. The P is obtained by
utilizing an LMI optimization algorithm. Figure 2.15 illustrates the behavior
of the fuzzy control system for the same initial condition of Figure 2.13.

In the next section, we present an introduction to LMIs as well as the LMI
approach to stability analysis and design of fuzzy control systems.

2.5.2 Stable Controller Design via Linear Matrix Inequalities

Recently a class of numerical optimization problems called linear matrix
inequality (LMI) problems has received significant attention [18]. These
optimization problems can be solved in polynomial time and hence are
tractable, at least in a theoretical sense. The recently developed interior-point
methods [19] for these problems have been found to be extremely efficient in
practice. For systems and control, the importance of LMI optimization stems
from the fact that a wide variety of system and control problems can be
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Fig. 2.15 Response of Example 8.

recast as LMI problems [18]. Except for a few special cases these problems
do not have analytical solutions. However, the main point is that through the
LMI framework they can be efficiently solved numerically in all cases.
Therefore recasting a control problem as an LMI problem is equivalent to
finding a “solution” to the original problem.

DEFINITION 1 [18] An LMI is a matrix inequality of the form

m
F(x)=F,+ ) x;F. >0, (2.34)
i=1
where x” = (x, x,,...,x,,) is the variable and the symmetric matrices F, =
FT e R, i=0,...,m, are given. The inequality symbol > 0 means that
F(x) is positive definite.

The LMI (2.34) is a convex constraint on x, that is, the set {x|F(x) > 0} is
convex. The LMI (2.34) can represent a wide variety of convex constraints on
x. In particular, linear inequalities, convex quadratic inequalities, matrix
norm inequalities, and constraints that arise in control theory, such as
Lyapunov and convex quadratic matrix inequalities, can all be cast in the
form of an LMI. Multiple LMIs F®» > 0,i =1,..., p, can be expressed as a
single LMI diag(F®, ..., F") > 0.

Very often in the LMIs the variables are matrices, for example, the
Lyapunov inequality

A"PA — P <0, (2.35)
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where 4 € R"*" is given and P = PT is the variable. In this case the LMI
will not be written explicitly in the form F(x) > 0. In addition to saving
notation, this may lead to more efficient computation [18]. Of course, the
inequality (2.35) can be readily put in the form (2.34): take F, =0, F, =
—A"P,A + P, where P,,..., P, are a basis for symmetric n X n matrices.

m

LMI problems [18] Given an LMI F(x) > 0, the LMI problem is to find
xf such that F(x®*) > 0 or determine that the LMI is infeasible. This is a
convex feasibility problem.

As an example, the simultaneous Lyapunov stability condition in Theorem
1 is exactly an LMI problem: Given 4, € R"*" i = 1,..., r, we need to find
P satisfying the LMI

P>0, A'PA,-P<0, i=12,...,r,

or determine that no such P exists.

The LMI problems are tractable from both theoretical and practical
viewpoints: They can be solved in polynomial time, and they can be solved in
practice very efficiently by means of some of the most powerful tools
available to date in the mathematical programming literature (e.g., the
recently developed interior-point methods [19)).

The stability conditions encountered in this book are expressed in the
form of LMIs. This recasting is significant in the sense that efficient convex
optimization algorithms can be used for stability analysis and control design
problems. The recasting therefore constitutes solutions to the stability analy-
sis and control design problems in the framework of the Takagi-Sugeno fuzzy
model and PDC design.

The design procedure presented in the previous section involves an
iterative process. For each rule a controller is designed based on considera-
tion of local performance only. Then an LMI-based stability analysis is
carried out to check whether the stability conditions are satisfied. In the case
that the stability conditions are not satisfied, the controller for each rule will
be redesigned. The iterative design procedure has been very effective in our
experience. However, from the standpoint of control design, it is more
desirable to be able to directly design a control that ensures the stability of
the closed-loop system. This is referred as the control problem in the
framework of the Takagi-Sugeno fuzzy model and PDC design. We claim
that the control problem can be recast (hence solved) using the LMI
approach. Here we only briefly state the ideas of the LMI approach to the
control design problem. We show a simple case (r = 1), that is, the linear
case, below. Fuzzy control case will be presented in Chapter 3.

Consider the case r = 1, that is, there is only one IF-THEN rule; (2.5)
becomes a linear time-invariant system,

x(t+ 1) = Ax(t) + Bu(t). (2.36)
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For a given control gain F, using standard stability theory for linear time-in-
variant systems or Theorem 2, the system (2.36) is (quadratically) stable if
there exists P > 0 such that

{4 — BF}'P{4 — BF) — P <0. (2.37)

The control design problem is to find a state feedback gain F such that
the closed-loop system is (quadratically) stable. If such a gain F exists, the
system is said to be quadratically stabilizable (via linear state feedback). This
quadratic stabilizability problem can be recast as an LMI problem.

The condition (2.37) is not jointly convex in F and P. Now multiplying the
inequality on the left and right by P~!, and defining a new variable X = P!,
we may rewrite (2.37) as

X{A -~ BF)'X"'{4 - BF)X - X <0. (2.38)

Define M = FX so that for X > 0 we have F = MX . Substituting into
(2.38) yields

X — {AX — BM}' X '{4X — BM} > 0. (2.39)

This nonlinear (convex) inequality can now be converted to LMI form using
Schur complements [18]. The resulting LMI is

T
X (AX=BM)"1 5 o (2.40)
(AX — BM) X

in X and M. Thus the system (2.36) is quadratically stabilizable if there exist
X > 0 and M such that the LMI (2.40) holds. The state feedback gain is
F=Mx"

We can easily extend the LMI-based control design approach to multiple-
rule (r > 1) cases of the Takagi-Sugeno fuzzy models. For instance, the
quadratic stabilizability of the Takagi-Sugeno fuzzy models via a linear state
feedback can be cast as the following LMI problem in X and M:

X>0,

X (4,X - BM)" S0 io12
b l= b 7“"r’
(4,X — BM) X

with the state feedback gain F = MX ™.

The LMI-based control design approach has also been developed for the
control of Takagi-Sugeno fuzzy models via PDC design. For more details, see
Chapter 3.

Some important remarks are in order.
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Remark 9 The stability conditions presented in this book not only guaran-
tee stability of fuzzy models and fuzzy control systems, they also guarantee
stability for related uncertain linear time-varying [linear differential inclusion
(LDD)] systems and nonlinear systems satisfying some global or local sector
conditions. Thus a controller that works well with the fuzzy model is likely to
work well when applied to the real system. This point is clearly demonstrated
by the application in the next section. The theoretical details, however, will
be discussed in other chapters.

Remark 10 The stability analysis and control design results presented in this
section hold for continuous-time systems as well. Instead of using the
Lyapunov inequality for discrete-time systems, we should use the Lyapunov
inequality for continuous-time systems,

AP + P4 < 0.

In the next section, we apply the PDC approach to a continuous-time
system.

2.6 APPLICATION: INVERTED PENDULUM ON A CART

To illustrate the PDC approach, consider the problem of balancing and
swing-up of an inverted pendulum on a cart. Recall the equations of motion
for the pendulum [21]:

X,(1) = x,(1)

gsin(x,(t)) — amlx3(t)sin(2x,(1)) /2 — acos(x,() )u(r)
41/3 — aml cos*(x,(1))

(1) = , (2.41)

where x,(¢) denotes the angle (in radians) of the pendulum from the vertical
and x,(¢) is the angular velocity; g = 9.8 m/s? is the gravity constant,
m is the mass of the pendulum, M is the mass of the cart, 2/ is the length of
the pendulum, and u is the force applied to the cart (in newtons); and
a=1/(m + M). We choose m = 2.0 kg, M =8.0 kg, 2l = 1.0 m in the
simulations [20].

2.6.1 Two-Rule Modeling and Control

The control objective of this subsection is to balance the inverted pendulum
for the approximate range x, € (—w/2,w/2). In order to use the PDC
approach, we must have a fuzzy model which represents the dynamics of the
nonlinear plant. Therefore we first represent the system (2.41) by a Takagi-
Sugeno fuzzy model. To minimize the design effort and complexity, we try to
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use as few rules as possible. Notice that when x, = + /2, the system is
uncontrollable. Hence, as shown in Example 4, we approximate the system by
the following two-rule fuzzy model:

Rule 1:
IF x(¢) is about 0,
THEN x(t) = A,x(t) + Bu(1).
Rule 2:

IF x(¢) is about +7/2 (|x,|< 7/2),

THEN x(t) = A, x(¢t) + B,u(¢).

Here,
[ 0 1 [ 0
A1 = L > Bl = _; >
41/3 — aml 41/3 — aml
[ 0 1 i 0
A, = 28 ol B=|_ ap ,
mw(41/3 — aml B?) 41/3 — amlp?

and B = cos(88°).
Membership functions for Rules 1 and 2 are shown in Figure 2.16.

Rule 2

Rule 1
0 T
-90 0 90 (deg)

Fig. 2.16 Membership functions of two-rule model.
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Choose the closed-loop eigenvalues [—2, —2] for 4, — B,F, and 4, —
B,F,. We have

F, = [—120.6667 —22.6667],
F, = [-2551.6 —764.0].

It follows that

0 1
A, —BF, =4, - B,F, =G = [_4 _4]

and
G.. — 0 1
12 —212.1325 —67.4675 ]|

Note that G,, is Hurwitz.
Using an LMI optimization algorithm, we obtain

p_ [3.6250 0.6250]‘ (2.42)

0.6250 0.2812

It can be easily shown that the following stability conditions are satisfied:

(A, -~ B,F)'P + P{4, - B,F) <0, i=1,2, (2.43)
GL,P + PG, <0. (2.44)

The resulting PDC control law is as follows:
Rule 1:
IF x(¢) is about 0,
THEN u(t) = —F,x(¢).
Rule 2:
IF x (1) is about +7/2 (|x,|< 7/2),
THEN u(t) = —F,x(2).

That is,
u(t) = —hy(x,())Fix(t) — hy(x,(1))F,x(t). (2.45)

The membership values of Rules 1 and 2 are h, and h,, respectively
(hy + h, = 1). This (nonlinear) control law guarantees the stability of the
fuzzy control system (fuzzy model + PDC control). To assess the effective-
ness of the PDC controller, we apply the controller to the original system
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Fig. 2.17 Angle response using linear and two-rule fuzzy control.

(2.41). As pointed out in Remark 3, we may design a robust fuzzy controller
(see Chapter 5 for the details) that can compensate the approximation error.

Simulations indicate the control law can balance the pendulum for initial
conditions x; € [—88°%88°] (x, = 0). In contrast, the linear control alone
u = —F,x fails to balance the pendulum for initial angles |x,|> 45°. Figure
2.17 shows the response of the pendulum system using linear and fuzzy PDC
controls for initial conditions x, = 15°, 30°, 45°, and x, = 0. The solid lines
indicate responses with the fuzzy controller. The dotted lines show those with
the linear controller. Figure 2.18 illustrates the closed-loop behavior of the
system with the fuzzy controller for initial conditions x; = 65°, 75°, 85°, and
x, = 0.

We remark that given the nonlinear plant (2.41) nonlinear control laws can
be designed to balance the pendulum for initial angles x, € (— /2, w/2).
However, such control laws often tend to be quite involved. For example, one
such control law is [20] u = k(x,, x,), where

4le e,

k(xy,x,) = —gtan(xl) - In[sec(x,) + tan(x,)]

+ e,e,mlsin( x,)
N (e; +ey)x, [ 4l

p; ?sec(xl) — aml cos(x,) (2.46)

and ey, e, are the specified closed-loop eigenvalues.
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Fig. 2.18 Angle response using two-rule fuzzy control.

In contrast, the PDC design is intuitive and simple. The resulting con-

troller is simple as well.

2.6.2 Four-Rule Modeling and Control

Suppose the pendulum on the cart system is built in such a way that the work
space of the pendulum is the full circle [—#, 7 ]. In this subsection, we
extend the results to the range of x, € [—a 7] except for a thin strip near
+ 7/2. Balancing the pendulum for the angle range of 7/2 <|x,|< 7 is
referred to as swing-up control of the pendulum. Recall that for x, = +7/2
the system is uncontrollable. We add two more rules (Rules 3 and 4) to the

fuzzy model.
Rule 1:
IF x,(¢) is about 0,
THEN x(t) = A,x(¢t) + Bu(2).
Rule 2:
IF x,(1) is about +7/2 (|x,(t)| < m/2),

THEN x(t) = A,x(¢t) + B,u(¢).

www.4electron.com



Rule 3:

APPLICATION: INVERTED PENDULUM ON A CART

IF x,(1) is about +m/2 (| x,(t)|> 7/2),

THEN (1) = A3x(t) + Byu(t).

Rule 4:

IF x(¢) is about 7,

THEN x (t) = A, x(t) + B,u(?).

Here A4,, B,, A,, B, are the same as above and

0 1
A5 = 28 , By =
w(41/3 — aml B?)
!
=1y of B, =

43

0
ap ,
41/3 — aml B*?

[ 0
a

41/3 — aml .

The membership functions of this four-rule fuzzy model are shown in Figure

2.19.

Again choose the closed-loop eigenvalues [—2, —2] for A; — B;F; and

A, — B,F,. We have

Rule 4

0

Rule 3

F, = [2551.6 764.0],

F, = [22.6667 22.6667].

Rule 2

Rule 1

| !
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

|
Rule 2 Rule 3 J

Rule 4

|

—180

=90 0 90

X1

180 (deg)

Fig. 2.19 Membership functions of four-rule model.
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It follows that

A, —~B,F,=A4, - B,F, =G

and

0
Gy =

Note that G, is Hurwitz.

| =220.5230 —67.4675 |

It can be shown that the P of (2.42) satisfies the additional stability

conditions

(A, — B,F)'P + P{4, — B.F) <0, i=3,4,

GI,P+ PG, <0.

(2.47)
(2.48)

There is no overlap between membership values %, and A5, h, and h,, h,
and A5, and &, and h,. Hence only G,, and G;, are needed in stability

check.
The PDC controller is given as follows:

Rule 1:
IF x,(¢) is about 0,
THEN u(t) = —F,x(¢).
Rule 2:
IF x,(1) is about +7/2 (|x,(1)| < m/2),
THEN u(t) = —F,x(1).
Rule 3:
IF x (1) is about +7/2 (|x,(t)|> m/2),
THEN u(t) = —F;x(¢).
Rule 4:
IF x(¢) is about r,
THEN u(t) = —F,x (1)

That is,

u(t) = —hy(xy(1))Fyx(t) = hy(x,(2)) Fox(t)
— h3(xy(1)) Fax(t) = hy(x,(2))Fx(t).
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Fig. 2.20 Angle response using four-rule fuzzy control.

This control law guarantees stability of the fuzzy control system (four-rule
fuzzy model + PDC control). This controller is applied to the original system
(2.41) for evaluation of its performance. Simulation results demonstrate that
the controller (2.49) is able to balance the pendulum for all initial angles
except when x,(¢) is in a thin strip 88° <|x,(#)|< 94°. The size of this thin
strip can be reduced by adding more rules to the model and controller.
Figure 2.20 illustrates the response of the closed-loop system for initial
conditions x; = 125°, 145°, 165°, 180° and x, = 0.

Note that the nonlinear controller (2.46) does not apply for /2
<|x,(t)|< =

Some comparisons between the linear, nonlinear, and fuzzy control de-
signs are summarized loosely in Table 2.1.

To test the robustness of this controller, the following simulations are
conducted: (1) m is changed from 2.0 to 4.0 kg, (2) M is changed from 8.0 to
4.0 kg, and (3) 2/ is changed from 1.0 to 0.5 m. For each case, we simulate

TABLE 2.1 Comparisons of Different Control Designs

Work range Simple? Stability
Linear (—m/4 w/4) Yes Local
Nonlinear (=m/2 ©/2) No Nonlocal
Fuzzy PDC [—7 7] Yes Nonlocal
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Fig. 2.21 Closed-loop angle response with m changed.
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Fig. 2.22 Closed-loop angle response with M changed.
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Fig. 2.23 Closed-loop angle response with / changed.

the closed-loop system for the following initial conditions x, = 45°, 85°, 145°,
180° and x,(¢) = 0. The results are shown in Figures 2.21, 2.22, and 2.23,
respectively, for cases 1, 2, and 3.

Robustness is not considered in this design. Robust fuzzy control design in

Chapter 5 is applicable to this system.
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LMI CONTROL PERFORMANCE
CONDITIONS AND DESIGNS

The preceding chapter introduced the concept and basic procedure of
parallel distributed compensation and LMI-based designs. The goal of this
chapter is to present the details of analysis and design via LMIs. This chapter
forms a basic and important component of this book. To this end, it will be
shown that various kinds of control performance specifications can be repre-
sented in terms of LMIs. The control performance specifications include
stability conditions, relaxed stability conditions, decay rate conditions, con-
strains on control input and output, and disturbance rejection for both
continuous and discrete fuzzy control systems [1-3]. Other more advanced
control performance considerations utilizing LMI conditions will be pre-
sented in later chapters.

3.1 STABILITY CONDITIONS

In the 1990’s, the issue of stability of fuzzy control systems has been
investigated extensively in the framework of nonlinear system stability [1-18].
Today, there exist a large number of papers on stability analysis of fuzzy
control in the literature. This section discusses some basic results on the
stability of fuzzy control systems.

In the following, Theorems 5 and 6 deal with stability conditions for the
open-loop systems. Theorem 5 can be readily obtained via Lyapunov stability
theory. The proof of Theorem 6 is given in [4, 7].

49
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THEOREM 5 [CES] The equilibrium of the continuous fuzzy system (2.3) with
u(t) = 0 is globally asymptotically stable if there exists a common positive definite
matrix P such that

ATP + P4, <0, i=12,...,r, (3.1)

that is, a common P has to exist for all subsystems.

THEOREM 6 [DFS] The equilibrium of the discrete fuzzy system (2.5) with
u(t) = 0 is globally asymptotically stable if there exists a common positive definite
matrix P such that

ATPA, —P <0, i=1,2,...,r, (3.2)

that is, a common P has to exist for all subsystems.

Next, let us consider the stability of the closed-loop system. By substituting
(2.23) into (2.3) and (2.5), we obtain (3.3) and (3.4), respectively.

CFS
x(t) = g gh(z(t))h(z(t)){ , — BF}x(1). (3.3)
DFS
x(t+1) = _Z ;hi(z(t))hj(z(t)){Ai_BiF}'}x(t)‘ (34)
Denote

G, =4, — BF,.

Equations (3.3) and (3.4) can be rewritten as (3.5) and (3.6), respectively.

CFS
x(t) = =Z hi(z(t))h(z(t))G;x(t)
£2Y Lhi(z(t)h, (z(r»{ i*6 }x(r) (3.5)
i=11i<j
DFS

(e 1) = L A(O)A((0)Gx(0)

+
+2Y Yhy(z(t)h, (z(t)){ }x(r) (3.6)

i=1i<j
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By applying the stability conditions for the open-loop system (Theorems 5
and 6) to (3.5) and (3.6), we can derive stability conditions for the CFS and
the DFS, respectively.

THEOREM 7 [CFS] The equilibrium of the continuous fuzzy control system
described by (3.5) is globally asymptotically stable if there exists a common
positive definite matrix P such that

G.P + PG, < 0, (3.7)
T

P+ P2

(G,,+Gj,. o

G, +Gﬁ)

i<jst.h;Nh;+é. (3.8)
Proof. 1t follows directly from Theorem 5.

For the explanation of the notation i <j s.t. h; Nh; # ¢, refer to
Chapter 1.

THEOREM 8 [DFS] The equilibrium of the discrete fuzzy control system
described by (3.6) is globally asymptotically stable if there exists a common
positive definite matrix P such that

G PG; — P <0, (3.9)

T
Gy + Gi\' (G + Gy
2 2

|-r<o.
i <jst.h;Nh;+ ¢ (3.10)
Proof. 1t follows directly from Theorem 6.

The fuzzy control design problem is to determine F’s (j =1,2,...,r)
which satisfy the conditions of Theorem 7 or 8§ with a common positive
definite matrix P.

Consider the common B matrix case, that is, B, = B, = --- = B,. In this
case, the stability conditions of Theorems 7 and 8 can be simplified as
follows.

COROLLARY 1 Assume that B, = B, = -+ = B,. The equilibrium of the
fuzzy control system (3.5) is globally asymptotically stable if there exists a
common positive definite matrix P satisfying (3.7).

COROLLARY 2 Assume that B, = B, = -+ = B,. The equilibrium of the
fuzzy control system (3.6) is globally asymptotically stable if there exists a
common positive definite matrix P satisfying (3.9).
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52 LMI CONTROL PERFORMANCE CONDITIONS AND DESIGNS

In other words, the corollaries state that in the common B case, G,-TiP +
PG,; < 0 implies

G.+G.\T G. +G.
(5 e

<0
2 2
and G]:PG, — P < 0 implies
T
EETN RTINS

To check stability of the fuzzy control system, it has long been considered
difficult to find a common positive definite matrix P satisfying the conditions
of Theorems 5-8. A trial-and-error type of procedure was first used [4, 7, 9].
In [19], a procedure to construct a common P is given for second-order fuzzy
systems, that is, the dimension of the state is 2. It was first stated in
[11,12,17] that the common P problem for fuzzy controller design can be
solved numerically, that is, the stability conditions of Theorems 5—8 can be
expressed in LMIs. For example, to check the stability conditions of Theorem
7, we need to find P satistying the LMIs

P>0, GZP + PG; <0,
Gij + Gji i Gij + Gji
T — ] <0, i<js.t.hiﬁhj¢¢>,

or determine that no such P exists. This is a convex feasibility problem. As
shown in Chapter 2, this feasibility problem can be numerically solved very
efficiently by means of the most powerful tools available to date in the
mathematical programming literature.

3.2 RELAXED STABILITY CONDITIONS

We have shown that the stability analysis of the fuzzy control system is
reduced to a problem of finding a common P. If r, that is the number of
IF-THEN rules, is large, it might be difficult to find a common P satisfying
the conditions of Theorem 7 (or Theorem 8). This section presents new
stability conditions by relaxing the conditions of Theorems 7 and 8. Theorems
9 and 10 provide relaxed stability conditions [1-3]. First, we need the
following corollaries to prove Theorems 9 and 10.

COROLLARY 3

r 1 r
LH(a(0) = =5 £ T2(x(0)iy(x(1) 2 0

i=1i<j
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where
L A(0) = 1 h((0) 0

forall i.

Proof. 1t holds since

L HG0) = 727 T S 20 ((0)

i=1i<j

1 )
= — ¥ L{n(z(0) ~h(z(1)} 20.  QED.

i=1i<j

COROLLARY 4 If the number of rules that fire for all t is less than or equal to
s, where 1 <s <r, then

L)) ~ — & L2 () (3(0) = 0,
i=1 i=1i<j

where
i hi(z(t)) =1,  hi(z(t)) =0
i=1

for all i.

Proof. 1t follows directly from Corollary 3.

THEOREM 9 [CFS] Assume that the number of rules that fire for all t is less
than or equal to s, where 1 <s < r. The equilibrium of the continuous fuzzy
control system described by (3.5) is globally asymptotically stable if there exist a
common positive definite matrix P and a common positive semidefinite matrix Q
such that

GP+PG,+ (s—1)0<0 (3.11)
G,;+G;\" G, +G,
—5— | P+P|—5—]|-¢x=0o,

i<jst.h,nh;#¢  (3.12)

where s > 1.
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Proof. Consider a candidate of Lyapunov function V(x(¢)) = x(#)Px(t),
where P > 0. Then,

V(x(1)) = Zl Zlh (2(6))h(2(1))x" (1)

x| (4, - B.E) P+ P(4, - BF)|x(1)

- szl R (z(t))x"(¢t)[GEP + PG, x(1)

£ Y 2(2(0))hy(2(0) 27 (1)

i=1i<j
G,;+G;\" G, +G,
X||—=—=| P+ P|———||x(1),
2 2
h
where GijzAi_BiF'j'

From condition (3.12) and Corollary 4, we have

V(x(t)) < Zrllhf(z(t))xT(t)[GiTiP +PGl-l-]x(t)

£ Y T ah(2(6) (1)) £ (1) 0x(1)

i=1i<j

IA

_2 h3(z(t))x"(¢)[GEP + PG| x(t)

#(5=1) LR G0) (1)ex(n)

Y h2(z(t))x" (1) [GEP + PG, + (s — 1)Q]x(¢).

i=1

If condition (3.11) holds, V(x(¢)) < 0 at x(¢) # 0. Q.E.D.
THEOREM 10 [DFS]  Assume that the number of rules that fire for all t is less
than or equal to s, where 1 < s < r. The equilibrium of the discrete fuzzy control

system described by (3.6) is globally asymptotically stable if there exist a common
positive definite matrix P and a common positive semidefinite matrix Q such that

GiPG,—P+ (s—1)0<0, (3.13)
G;+G;\" (G,;+G,
> P > -P-0<0,

i <js.t. hiﬁhj# @, (3.14)
where s > 1.
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Proof. Consider a candidate of Lyapunov function V(x(¢)) = x(#)Px(t),
where P > 0. Then,

AV(x(1)) = V(x(t + 1)) = V(x(1))

\IM%

ZZ Z () () e (2(0))hi(2(1))

XxT(t)[ L PG, — P|x(1)

1 r r r r

=17 ; g g :Zlhi(z(t))hj(z(t))hk(z(t))hl(z(t))

<xT()](Gy; + G;) P(Gy + Gy) — 4P|x(1)

1 r r
<5 ¥ L) h((0)2 ()| HIPH, ~ 4P]x(1)

i=1j=1

= I D)0 (0| 5P P <0

= L R((0)€ (0] 6PG, - Plx(r)
5 H
+ 2T D) ((0)2 ()| 5P =[x,

where Hij = Gij + Gjl._
From condition (3.14) and Corollary 4, the right side of the above
inequality becomes

~

< X h%(z(t))xT(t)[GiTiPGii - P]x(t)

F2 Y Thy((0)hy((1)) € (1)Qx(1)

i=1i<j
,

< X h%(z(t))xT(t)[GiTiPGii - P]x(t)

#(3=1) L RGO ()ex(n)

= Y 12 (z()xT(t)[GIPG,; — P + (s — 1)Q]x(¢).

If condition (3.13) holds, AV(x(¢)) < 0 at x(¢z) # 0. Q.E.D.
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Corollary 4 is used in the proofs of Theorems 9 and 10. The use of
Corollary 3 would lead to conservative results because s < r.

Remark 11 1t is assumed in the derivations of Theorems 7-10 that the
weight #4.(z(¢)) of each rule in the fuzzy controller is equal to that of each
rule in the fuzzy model for all . Note that Theorems 7—10 cannot be used if
the assumption does not hold. This fact will show up again in a case (case B)
of fuzzy observer design given in Chapter 4. If the assumption does not hold,
the following stability conditions should be used instead of Theorems 7-10:

G,@P + PG; <0
in the CFS case and
G/ PG, —P <0

in the DFS case. These conditions imply those of Theorems 7-10. These
conditions may be regarded as robust stability conditions for premise part
uncertainty [18].
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Fig. 3.1 Feasible area for the stability conditions of Theorem 7.
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Fig. 3.2 Feasible area for the stability conditions of Theorem 9.

The conditions of Theorems 9 and 10 reduce to those of Theorems 7
and 8, respectively, when Q = 0.

Example 9 This example demonstrates the utility of the relaxed conditions
in the CFS case. Consider the CFS, where r = s = 2,

_ 12 -=10 _ |1
=7 7%l m-f)
_la -—10 _|b
e e
The local feedback gains F, and F, are determined by selecting [-2 —2] as
the eigenvalues of the subsystems in the PDC. Figures 3.1 and 3.2 show the
feasible areas satisfying the conditions of Theorems 7 and 9 for the variables
a and b, respectively. In these figures, the feasible areas are plotted for
a > 2and b > 20. A common P (and a common Q) satisfying the conditions
of Theorem 7 (Figure 3.1) and Theorem 9 (Figure 3.2) exists if and only if the
system parameters a and b are located in the feasible areas under a > 2 and

b > 20. It is found in these figures that the conditions of Theorem 7 lead to
conservative results.
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3.3 STABLE CONTROLLER DESIGN

This section presents stable fuzzy controller designs for CFS and DFS.

We first present a stable fuzzy controller design problem which is to
determine the feedback gains F, for the CFS using the stability conditions of
Theorem 7. The conditions (3.7) and (3.8) are not jointly convex in F, and P.
Now multiplying the inequality on the left and right by P~!' and defining a
new variable X = P!, we rewrite the conditions as

—XAT —4,X + XF/B] + B,F.X > 0,
—XA] —A,X — XA — 4, X
+XF'B! + B,F.X + XF/B] + B,F,.X > 0.

Define M; = F,X so that for X > 0 we have F, = M;X"'. Substituting into
the above inequalities yields

—XA" —4,X + M'B! + B,M, > 0,
—XA] —4,X - XA — 4;X
+MjTBiT + B;M; + MiTBjT +B;M; = 0.

Using these LMI conditions, we define a stable fuzzy controller design
problem.

Stable Fuzzy Controller Design: CFS Find X >0 and M, (i=1,...,7)
satisfying

—XAT —4,X + M'B! + B,M, > 0, (3.15)
~XA] —4,X — XA] — A, X
+M/B] + BM; + M/B + B;M, > 0,
i<jsth,Nh;+¢ (3.16)
where

X=P', M =FX. (3.17)

The above conditions are LMIs with respect to variables X and M,. We can
find a positive definite matrix X and M, satisfying the LMIs or determina-

1

tion that no such X and M, exist. The feedback gains F; and a common P
can be obtained as

P=X"'  F=MX" (3.18)

from the solutions X and M,.
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A stable fuzzy controller design problem for the DFS can be defined from
the conditions of Theorem 8 as well:

X(A4;, — B,F)'X (4, - B,F)X — X <0,

{A- ~BF, + A, — BF, }T
1 1 1 71
. X

{Ai—BiFj +A4; — B/F,
X
2

}X—XSO.

Define M; = F,X so that for X > 0 we have F, = M,X"'. Substituting into
the above inequalities yields

X—(4,X—-BM)X '(4,X - BM) >0,

{A,.X ~ B,M, + A,X — B,M, }T
X-X X!

2

{A,X — BM; + A,X — B,M,
X

X=>0.
)

These nonlinear (convex) inequalities can now be converted to LMIs using
the Schur complement. The resulting LMIs are

[ x X4” — MTBT
>0,

A4,X - BM, X
[ AX+A4,X—-BM -BM\"

X

{ 2 } >0
{AiX+A,-X—BiM,- —BJ.M,-} B
. . X
2

in X and F,.

Stable Fuzzy Controller Design: DFS Find X >0 and M, i=1,...,r)
satisfying

X XA — M/B]

P e ) (3.19)
[ AX +A,X ~ BM, - B;M,\"

X

{ ; e
{AiX+AjX—BiMj—BjMi}
X
2

i<jst.h;Nh;# ¢, (3.20)
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where

X=P', M =FX. (3.21)

The feedback gain F; and a common P can be obtained as

P=X"'  F=MX" (3.22)

from the solutions X and M,.
From the relaxed stability conditions of Theorem 9, the design problem to
determine the feedback gains F; for CFS can be defined as well.

Fuzzy Controller Design Using Relaxed Stability Conditions: CFS Find
X>0,Y>0,and M,(i = 1,...,r) satisfying

—XAT — A X+ M'B] + BM, — (s — )Y > 0, (3.23)
2Y —XA] —A,X —XA] —AX
+M/B] + BM; + M/B + B;M, > 0,
i<jst h,Nh;# ¢, (3.24)
where
X=pP", M, =FX, Y = X0X. (3.25)

The above conditions are LMIs with respect to variables X, Y, and M,. We
can find a positive definite matrix X, a positive semidefinite matrix Y, and M,
satisfying the LMIs or determine that no such X, Y, and M, exist. The
feedback gains F;, a common P, and a common Q can be obtained as

P=X", F,=MX", Q = PYP (3.26)

from the solutions X, Y, and M,.
From the relaxed conditions of Theorem 10, the design problem for DFS
can be defined as well.

Fuzzy Controller Design Using Relaxed Stability Conditions: DFS Find
X>0,Y>0,and M; (i = 1,...,r) satisfying

X-(s—-1)Y x4a7 - M/B]
(5= DY XA = MEBEY (3.27)
A;X — B;M, X
X+Y HAX+A,X - BM, — BM}' )
>0,
2{4,X +4,X - BM; — B;M,} X

i<jst.h;Nh;# ¢, (3.28)
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where
X=pr! M,=FX, Y = X0X.

The feedback gain F;, a common P, and a common @ can be obtained as
P=Xx", F,=MX', Q = PYP

from the solutions X, Y, and M,.
The conditions (3.27) and (3.28) can be obtained as follows: Multiplying
both sides of (3.13) by P~! gives

P 'GIPG,P' —P '+ (s— 1P 'oP ' <.
Therefore,
P! —(s—1)P'gp!
~(4,P"" ~B,F,P"") P(4,P"" — BF,P ') > 0.
Since P~!' = X, we have
X— (s —1)X0X — (A4,X — BF,X)' X '(4,X — B,FX) > 0.
Define M, = F,X and Y = XQX. By substituting into the above inequality,
we obtain

X—(s—1)Y— (4,X-BM) X'(4,X - BM,) > 0.

It easily follows that the above inequality can be transformed into (3.27) by
the Schur complement procedure.
Similarly, from (3.14), we have

T
_I(Gi, + Gj,.) P( G, + G,

Pl—p'—plogP ! <.
2 2 ) ¢

Therefore,
Pl +P QP!
~1(G,P" + G P) P(G,P + G,P ) > 0.
Since P~! = X, we have
X + XOX — {%(Gijx + Gjix)T}X‘l{%(GuX + G, X))
=X+ XOX — {}(A,X + 4,X ~ BEX - BEX)' }X!

x{3(4,X +4,X — BFX — BFX)} > 0.
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By substituting M; = F;X and Y = XQX into the above inequality, we obtain
X+Y—{3(4X+4X-BM - BM) |x"
x{3(4,X +4,X - BM, - BM,) } > 0.

Equation (3.28) is obtained by applying the Schur complement.

3.4 DECAY RATE

The speed of response is related to decay rate, that is, the largest Lyapunov
exponent. This section deals with the decay rate fuzzy controller design [1-3].

Decay Rate Controller Design: CFS The condition that V(x(¢)) <
—2aV(x(¢)) [20] for all trajectories is equivalent to

G.P + PG;; + 2aP <0 (3.29)

for all i and
G, +G;\" G, +G,
— P+P — +2aP <0 (3.30)

for i < j excepting the pairs (i, j) such that h(z(t)h(z(¢)) = 0, V ¢, where
a > 0. Therefore, the largest lower bound on the decay rate that we can find
using a quadratic Lyapunov function can be found by solving the following
GEVP (generalized eigenvalue minimization problem) in X and a:

maximize o

X, My,..., M,
subject to
X >0,

—XAT — 4,X + M/B! + BM, — 2aX > 0, (3.31)

~XA] —A4,X — XA] - A4,X

+M/B] + BM; + M/B/ + B.M, — 4aX > 0,

i<jst.h;Nh #d¢, (332)

where

X=P', M =FX. (3.33)
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Decay Rate Fuzzy Controller Design: DFS The condition that AV(x(¢)) <
(a? — DV(x(2)) [20] for all trajectories is equivalent to

GI'PG,, — a’P <0, (3.34)

T
(Gl., + Gji) (G,, + G,

- a’P <0,
2 2

i<jst.h;Nh;+é, (3.35)

where a < 1. Therefore, we define the following GEVP in X and B, where
B = a’:

minimize f

X, My,..., M,
subject to
X>0,
BX Xa! - M/B]
AX— BM ¥ >0, (3.36)
[ AX +A,X — BM; - B;M,\"
BX
{ ; Mo,
{AiX+AjX—BiMj—BjMi} ’
X
2
i<jst.h;Nh;+ ¢, (3.37)
where
X=P', M =FX. (3.38)

It should be noted that 0 < 8 < 1.

Remark 12 The decay rate fuzzy controller designs reduce to the stable
fuzzy controller designs when « = 0 and B = 1. Therefore, a fuzzy controller
that satisfies the LMI conditions of (3.31) and (3.32) or (3.36) and (3.37) is a
stable fuzzy controller. In other words, the LMI conditions of (3.15) and
(3.16) or (3.19) and (3.20) are special cases of those of (3.31) and (3.32) or
(3.36) and (3.37), respectively.
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Decay Rate Controller Design Using Relaxed Stability Conditions: CFS
The condition that V(x(#)) < —2aV(x(¢)) for all trajectories is equivalent to

GIP + PG, + (s — 1)@ + 2aP < 0,

T
G, + Gﬁ)

G, + G,
——) pP+p

—Q+2aP <0,

i<jst.h,Nh;+ ¢,
where « > 0. Therefore, the largest lower bound on the decay rate that we
can find using a quadratic Lyapunov function can be found by solving the

following GEVP in X and a:

maximize «

subject to
X>0,Y>0,
—XAT —4,X + M!B + B;M,
(3.39)
—(s —1)Y—2aX >0,
2Y - XA] —A,X — XAT - A, X
+MjTB,.T + BM; + M,.TB].T + B;M,
—4aX >0,
i<jst.h;Nh;+é¢, (3.40)
where

X=pP", M. =FX, Y = X0X.

1 1

Decay Rate Controller Design Using Relaxed Stability Conditions: DFS
The condition that AV(x(¢)) < (a? — DV(x(¢)) for all trajectories is equiva-
lent to

GIPG, — a’P + (s — 1)Q < 0, (3.41)

G.+G\" (G,+G.
( = ]I)P( - ﬂ)_azp_QSO’

i<jst.h;Nh;+é¢, (3.42)
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where a < 1. Therefore, we define the following GEVP in X and B where
B = a’.

minimize f

subject to
X>0,Y>0,
X—-(s—-1Y x4a7 —Mm/B]
BX = (s = DY XAi = MiBEL o, (3.43)
A,X — BM, X
BX+Y HAX+A,X - BM, — BM}' o
>
3{A,X + A;X — B.M; — B;M}) b¢ 7
i<jsth,nh #¢, (344)
where

X=P', M=FX, Y=X0X.
It should be noted that 0 < B < 1.
The condition (3.43) is derived as follows. Multiplying both sides of (3.41)
by P! gives
P 'GIPG,P7' — a?P7' + (s —1)P'QP7! <0.

Therefore, from G;; = A; — B, F,

(4,P7" — Bl-F,-P‘l)TP(A,-P‘l ~BFP ')~ a’P ' + (s—1)P'QP"' <0.
From X =P, Y=XQX, M, = F,X, and B = «?, we have

BX — (s — 1)Y - (4,X — BM,)' X~'(4,X — B,M,) > 0.
Therefore, the Schur complement procedure yields

X-(s—1)Y Xx4" —m'B’
P ( ) ' > 0. (3.45)
AX - B.M, X
Inequality (3.44) can be obtained from (3.42) in the same fashion.
Remark 13 A fuzzy controller that satisfies the LMI conditions of (3.39) and

(3.40) [or (3.43) and (3.44)] is a stable fuzzy controller. In other words, it also
satisfies the LMI conditions of (3.23) and (3.24) [or (3.27) and (3.28)].
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Remark 14 As illustrated in Example 9, the conditions of Theorems 9 and
10 lead to less conservative results for the stability of a given fuzzy control
system. For the design of stabilizing fuzzy controllers, it is recommended to
use the conditions of these theorems together with other control perfor-
mance considerations such as pole placement LMI conditions.

3.5 CONSTRAINTS ON CONTROL INPUT AND OUTPUT

3.5.1 Constraint on the Control Input

THEOREM 11 Assume that the initial condition x(0) is known. The con-
straint ||lu(t)ll, < w is enforced at all times t > 0 if the LMIs

.

Lox07 ) (3.46)
x(0) X

XM 0 3.47

> .

M| (3.47)

hold, where X = P~ and M, = F,X.

Proof. Assume that V(x(¢)) = x"(¢1)Px(¢) is a Lyapunov function and

x7(0)Px(0) < 1.
Then,
1—x"(0)X 'x(0) =0, (3.48)

where X = P~'. The inequality (3.48) is transformed into (3.46) by the Schur
complement procedure.
The derivation of (3.47) is as follows: From |lu(t)ll, < uw,

u' (t)u(t) = Z ihi(Z(t))hj(Z(t))xT(t)ETP}X(t) <’
i=1j=1
Therefore,

i ilhl-(z(t))hj(z(t))xT(t)FiTij(t) <1. (3.49)

1
w?
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Since xT())X 'x(t) < xT(0)X 'x(0) < 1 for ¢ > 0, if
1 & ¢ T T T -1
7 _Z _Zlh,-(z(t))hj(z(t))x (t)F, F}x(t) <x'(t)X 'x(t), (3.50)
then (3.49) holds. Therefore, we have

r r 1
; ; hi(Z(f))hj(z(t))xT(t)(?FiTF]_ —X_l)x(t) <0. (351)

From the left side of (3.51),

N =

>y h,»(zo))hj(z(t))xT(t)(%FfF,- - %F,TF,» - le)xm

i=1j=1

1 r r
= 5 L X h(z())hi(z(0)x" (1)
i=1j=1
1 1 nn
X I(F F,+ F'F) - ?(Fi ~ F')(F, - F) - 2X } (1)
1o 1
<5 ; ;h (z(1))h;(z(1))x" (1) —2( F'F, + F/F)) - 2X‘1}x(t)

x(1).

r 1
) hi(z(t))xT([)(_zFiTFi -x!
i=1 r
It
1 T —1
—F'F,-Xx" <0, (3.52)
u
(3.51) holds. By defining M, = F.X for (3.52), we obtain
1
— MM, — X <0.
o

Inequality (3.47) can be obtained from the above inequality by the Schur
Complement procedure.
Another solution to obtain (3.47) is as follows. From (3.51), we have

X' FT
=)
F  u*I

l

L h(z(0)
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Multiplying both side of the above inequality by block-diag [ X I] gives
r X MmT
h.(z(t ‘1>0
Hence we arrive at the condition (3.47). This derivation is more direct and

compact. Q.E.D.

The LMIs are available for both CFSs and DFSs. A design problem of
stable fuzzy controllers satisfying the input constraint can be defined as
follows: Find X > 0, Y > 0, and M, (i = 1,..., r) satisfying (3.23) and (3.24)
[or (3.27) and (3.28)] and (3.46) and (3.47).

3.5.2 Constraint on the Output

THEOREM 12 Assume that the initial condition x(0) is known. The con-
straint ||y(0)ll, < A is enforced at all times t > 0 if the LMIs

T
Lo, (3.53)
x(0) X
X xc!
cx ap =0 (3.54)

hold, where X = P~ 1.
Proof. The proof can be completed in the same procedure as in Theorem 11.

The LMIs are available for both CFSs and DFSs. A design problem of
stable fuzzy controllers satisfying the output constraint can be defined as
follows: Find X > 0, Y > 0, and M, (i = 1,..., r) satisfying (3.23) and (3.24)
[or (3.27) and (3.28)] and (3.53) and (3.54) .

3.6 INITIAL STATE INDEPENDENT CONDITION

The above LMI design conditions for input and output constraints depend on
the initial states of the system. This means that the feedback gains F; must
be again determined using the above LMIs if the initial states x(0) change.
This is a disadvantage of using the LMIs on the control input and output. We
modify the LMI constraints on the control input and output, where x(0) is
unknown but the upper bound ¢ of [|x(0)l| is known, that is, [|x(0)]| < ¢. To
encompass a large set of initial states, we can set ¢ to be a large quantity
even if x(0) is unknown. Of course, a large ¢ could lead to conservative
designs.
The modified LMI is accomplished by the following results.
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THEOREM 13 Assume that ||x(0)|| < ¢, where x(0) is unknown but the
upper bound ¢ is known. Then,

x(0)X 'x(0) <1 (3.55)
if
I <X, (3.56)
where X = P~ 1.
Proof. From (3.56),
1
X< ?I.
Therefore,
1
x"(0) X 'x(0) < ?xT(O)x(O) <1 Q.E.D.

Note that (3.55) is equivalent to (3.46) and (3.53). The condition (3.56) can
be used instead of (3.55). A design example using the initial state indepen-
dent condition will be presented in Chapter 8.

3.7 DISTURBANCE REJECTION
This section presents a disturbance rejection fuzzy controller design for the

Takagi-Sugeno fuzzy models. Consider the following CFS with disturbance
[1]:

#0) = TGO A0 + Bar) + Eo()). (35T

y(1) = L hi(2(1))Cix(t), (3.58)
i=1

where v(¢) is the disturbance. The disturbance rejection can be realized by
minimizing vy subject to

ly ()l

sup
lool=0 12(0)112

<. (3.59)

THEOREM 14 [CFS] The feedback gains F; that stabilize the fuzzy model and
minimize vy in (3.59) can be obtained by solving the following minimization
problem based on LMIs.
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minimize y?

x,M,..., M,

subject to

X>0,

—3{x47 - M/B] + 4, X - BM,

~W(E,+E) 1x(c,+cC)"
+XAT — M/B! + A4,X — B,M}} 2B+ By X6 6

>0,
—3(E; +Ej)T v 0
2(C+ CHX 0 I
i<jst.h(z(t)) Nh(z(t)) # &, (3.61)

where

M, = FX.

1 L

Proof. Suppose there exists a quadratic function V(x(#)) = x7(¢£)Px(¢),
P > 0, and y > 0 such that, for all ¢,

V(x(1)) +y"(1)y(1) = y* o' ()v(t) <0 (3.62)
for (3.57) and (3.58). By integrating (3.62) from 0 to T, we obtain
[OT(V(x(z)) +yT(0)y(t) = 20" ()p(1)) di < 0.
By assuming that initial condition x(0) = 0, we have
V(D) + [T (03() = YT (e(0) di = 0. (3.63)

Since V(x(T)) = 0, this implies

Iyl _
(ol =7
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Therefore the L, gain of the fuzzy model is less than vy if (3.62) holds. We

derive an LMI condition from (3.62). From (3.62),

2T(t)Px(t) + x"(t) Pi(t)

M\

+

i

S i (2(6))hy(2(6)) £ CIC (1) — 30" (1) (1)

j=1

I
—_

|\M~<

ihuo»muu»ﬂuxm—B@fmu>

¥ X h(2(0)h(2() 5 (1)) P(4, ~ BF)x(1)

j=1

+
It1-

+

i

M\
-~

1hi(z(t))hj(z(t))xTCiTij(t) — v (t)v(r)

1j

- ilh,-(z(t))vT(z)El_TPx(t) - il h,(2(6))x" (1) PEw(1)

= ¥ S ()7 (1) (0]

i=1j=1
(4, - BF)'P
+P(A; — B;F, PE, |[x(t
X ) . 2 (1) <0. (3.64)
+C/¢; v(t)
E’P -y

From (3.64), we have the following conditions:

=Y Y hiz)hz(){(4; - B.F)P r
i=1j=1 —P ) h(z()E,
+P(4, — BF)) + CIC}) = > 0.
- Y hi(z()EP v
i=1

(3.65)
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The left-hand side of (3.65) can be decomposed as follows:

= 2 X h(z(t)h(z(1) r
=1 -1 —P X hi(z(1)E,

X {(Ai - BiF})TP + P(4; - B-F.)} i=1
— Y h(z(t)E]P

i=1

v

hi(z()h(z(1)) CIC; 0
i=1j=1

0 0

- X X hz@)h(z(0)
i=1j=1
x{(4; - B,F,)"P + P(A4; — B;F,)} =

— X h(z())E]P

i=1

o

2 hi(z()C]

i=1

[ Y hi(z())C; 0
0

> 0.
i=1

=P} hi(z(1)E,

(3.66)

Inequality (3.67) is equivalent to

=Y Y hiz())h(z(1)
i=1j=1

T
x{(4, - B,F))'P

+P(4; - BiFj)}

- Y hi(z(1)ETP

i=1

Y hi(z(1))C;

i=1

Inequality (3.67) can be rewritten as

L h(0)h(x(0)

~3{(4, - B,F))"P + P(4, - BF))
+(A; — B;F))'P + P(4; — B;F))}
~3(E, +E)'P
%(Ci +C)

—P )Y h(zU)E, Y hi(z(t)CT

i=

1 i=1

>0. (3.67)
el | 0

0

*%P(Ei +E)) %(Ci + Cj)T
> 0.

e | 0

0 I

www.4electron.com



DISTURBANCE REJECTION 73

Therefore, we have

— 14, —BF)'P+P(A - BF
{4 - B, 11 (4; - B.E) —3P(E, +E) 3(C+C)
+(4; — B;F,)' P + P(4; — B;F,)}
~3(E +E)P vl )
3 (¢ +C) 0 !
(3.68)

By multiplying both side of (3.68) by block-diag {X I I}, (3.61) is obtained,
where X = P71, Q.E.D.

Next, consider the following DFS with disturbance [21]:

x(t 4+ 1) = X h(2(0){Ax(t) + Bu(r) + En(1)}),  (3.69)
i=1

y(0) = L h((0)C(0), (3.70)

where v(¢) is the disturbance. The disturbance rejection can be realized by
minimizing vy subject to

ly(t)ll>
sup
loola=o 12()112

<. (3.71)

THEOREM 15 [DFS] The feedback gains F; that stabilize the fuzzy model and
minimize vy in (3.71) can be obtained by solving the following LMIs:

minimize y*

X, M,,..., M,
subject to
X>0,
_ X 0 AKX BM LX(C, +C T_
2 +A/-X—B]-Mi)T 2X(C + C))
2 1
0 vl 3(E; + E)’ 0 - 0.
[ (AX—BM, 1 Y 0
2\ +4,X - B;M)) 2B+ E)
%(Ci + C;‘)X 0 0 T

i<jst.h,Nh;+ ¢, (3.72)
where X > 0 and M; = F;X.
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Proof. Suppose there exists a quadratic function V(x(¢)) = x7(¢)Px(¢), P > 0,
and y > 0 such that, for all ¢,

AV(x(1)) +37(1)3(1) = y20" (1)(1) < 0 (3.73)
for (3.69) and (3.70). From (3.73), we obtain

g{AV(x(t)) +y" () y(t) — y* o' (t)v(r)} <O0.

By assuming that initial condition x(0) = 0, we obtain

T
V(x(T)) + X2 (y"(0)y(t) — y*v"(1)v(1)) < 0. (3.74)
=0
Since V(x(T)) > 0, this implies

Iyl _
(ol =7

Therefore the L, gain of the fuzzy model is less than vy if (3.73) holds. We
derive an LMI condition from (3.73):

2ol ()o(t) —y" (1) y(r) — AV(x(1))

= y*0" (1)0(1) —xT(r)( A_ilh,(z(r))c,-) (A_ilh,(z(r))c,-)x(r)

—{ X ¥ h(z(0)hy((0) (A, ~ BE)x(1) + Ai}h,(z(r))E,-v(r)}

i=1j=1
<r| £ LRG0 - 1R + L) Ee)]

+ xT(1) Px(1)
e o
~[¥(0) o] { £ L b)), - BE Ei]}

x(1)
v(1)

i=1j=1

xP{ Y X hi(z(0))hi(z(1))[A4; — BF; E,]}
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0| £rme) | Lntmeso
= [«"(1) (1]

|7 [Eneme) [ Lneue] oo
(1)

0 v

—[x7(1) vT(t)]{

i=1j=1

XP{Zl E R 04,

; — B,F, E]}

x(t)
v(t)

From the Schur complement, we obtain the LMI condition:

|

Y Y h(2(0))h(2(1))] 4, - BF Ef]}

B r T
- ( )y hl-(z(r))c,-) -
ir=l 0 lg:l
x( thzm)a)

i=1

0 e |

Z
= Y hi(z(0))E;
% i=1

( L Xtz <z<t))) r

{A—BF}

= 0 o |

i=1j
i=1

( Y Y hiz(t)h; (z(t))) r

;{A ~ B,F}

r T
( ) h,»<z(t>>cl-)
i=1

0 I:i=1

0

j=

Y hi(z(1)E,

Y hiz(e)c; 0 0}_

~

hi(z(1))h;(z(0))

1
x{4; - BF)'

Y hi(z()EF

i=1

P71

Z Z h(z()h;(2(1))
=1j=1
x{4, - B.F}"

thz(r))Ef

i=1

P71

\
i
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Inequality (3.75) is equivalent to

Z hi(z(1D)h(2(1)) ’ !
P 0 oA ( Zh,-(z(z))c,-)
{ }T i=1
0 v I Y )T 0
i=1
hi(z(1))h;(z(1)) "
I-:Z ; S Y h(z)E; P! 0
x{4; — B,F}) =
Z (D), 0 0 g
r r
= 2 X hi(z(1)hi(2(1))
i=1j=1
0 T(4;i - B+ 4~ BE) 5(Ci+ ¢)f
2 1 T
x| 0 . v 2(E:i + E)) 0 > 0.
3(4; — BiF;+ 4; - BjF;) 5(E; +E)) P 0
3(C+C) 0 0 I
(3.76)
Therefore,
0 24 = BE + 4, - BE) 5(C+ ¢
0 v2I 3(E +E)' 0
1 1 » >0,
3(A;, — B.F, + A, — B;F)) 3(E, +E)) P 0
3(C +C)) 0 0 I

i<jst.h,nh #¢.  (3.77)

By multiplying both sides of (3.77) by block-diag[X I I I], (3.72) is ob-
tained, where X = P~ L. Q.ED.

A design example for disturbance rejection will be discussed in Chapter 8.
3.8 DESIGN EXAMPLE: A SIMPLE MECHANICAL SYSTEM

Let us consider an example of dc motor controlling an inverted pendulum via
a gear train [22]. Fuzzy modeling for the nonlinear system was done in [3],
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[23] and [24]. The fuzzy model is as follows:
Plant Rule 1

IF x,(¢) is M|,

x(t) =Ax(t) + Byu(t),
THEN{y(t) _Cox(). (3.78)
Plant Rule 2
IF x (1) is M,,
x(t) =A,x(t) + Byu(t),
THEN {y(t) _Cux(1). (3.79)

Here,

x(1) = [x,(1) xy(1) x3(1)]",

0 1 0
A4,=198 0 1
0 -10 -10

) Blz

c,=[1 0 0]
[0 1 0 0
A,=10 0 1, B,=| 0},
[0 —10 -10 10
C,=[1 0 0]

The angle of the pendulum is x,(¢), x,(¢) = x,(¢), and x;(¢) is current of the
motor. The M, and M, are fuzzy sets defined as

M’ xl(t) +* 0’
M(x,(1)) = x,(1)
1, x,(t) =0,

My(x,(2)) =1 — My(x,(2)).

This fuzzy model exactly represents the dynamics of the nonlinear me-
chanical system under —m <x,(¢) < 7. Note that the fuzzy model has a
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common B matrix, that is, B, = B,. The fuzzy controller design of the
common B matrix cases is simple in general. To show the effect of the
LMI-based designs, we consider a more difficult case, that is, we change B,
as follows:

3.8.1 Design Case 1: Decay Rate

We first design a stable fuzzy controller by considering the decay rate. The
design problem of the CFS is defined as follows:

maximize «

1.5 2
Time (sec)
200 T . .
= -200 / .
= 400 |/ 1
—600 ¢ ]
_ 800 1 1 1
0 0.5 1 1.5 2
Time (sec)

Fig. 3.3 Design examples 1 and 2.
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We obtain

a =150,
F, = [282.3129 62.4176 3.2238],
F, = [110.4644 24.9381 1.2716],

105.108 20.4393 1.05294
P =X'=204393 429985 0.23680 | > 0,

1.05294 0.23680 0.01567

1432.034  299.8039 16.26773
Q0 =X'YX'=[299.8039 63.19188 3.449801 | > 0.
16.26773  3.449801 0.190786

The dotted line in Figure 3.3 shows the responses of y(#) [= x,(¢)]
and u(?).

3.8.2 Design Case 2: Decay Rate + Constraint on the Control Input

It can be seen in the design example 1 that max,|lu(¢)ll, = 624. In practical
design, there is a limitation of control input. It is important to consider not
only the decay rate but also the constraint on the control input. The design
problem that considers the decay rate and the constraint on the control input
is defined as follows, where w = 100 and x(0) =[0 10 0]

maximize o

subject to X > 0, Y > 0 (3.39), (3.40), (3.46), and (3.47).
The solution is obtained as
a =4.23,
F, = [38.3637 9.9338 0.7203],
F, = [18.2429 6.4771 0.5118],

[ 0.1578 0.03847 0.002738
P = 0.03847 0.009995 0.000742 >0,

| 0.002738  0.000742 5.831 X 10~°

0.001250 0.000281 4275 X 107?
0 = 0.000281 0.0001215 6.332x107° [ > 0.
14275 X 107° 6332 x10°% 1.976 x 10°°
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The real line in Figure 3.3 shows the responses of y(¢)(= x,(¢)) and u(¢). The
designed controller realizes the input constraint max,|lu(s)|l, = 99.3 < pw.

3.8.3 Design Case 3: Stability + Constraint on the Control Input

It is also possible to design a stable fuzzy controller satisfying the constraint
on the control input, where u = 100.

Find X>0,Y>0, and M, (i = 1,...,r) satisfying (3.23), (3.24), (3.53),
and (3.54).

The solution is obtained as

F, = [13.0065 3.6948 0.1786],
F,

[7.7309 2.7900 0.1163],

[0.0335 0.0106 0.0015 |
P ={0.0106 0.0036 0.0005]| >0,
|0.0015  0.0005 0.0001 |

[0.0522  0.0203  0.0040 |
0 =1(0.0203 0.0082 0.0016 | > 0.
0.0040 0.0016 0.0003 |

The dotted line in Figure 3.4 shows the responses of y(¢) [= x,(#)] and
u(t). It can be found that max,|lu(t)|l, = 38.1 < u.

3 T T T
2b |
s
- ]. L | |
0 0.5 1 15 2
Time (sec)
50 T . :
~ 0Ft e T e
-50 | ]
-100 L . \
0 0.5 1 1.5 2
Time (sec)

Fig. 3.4 Design examples 3 and 4.
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3.8.4 Design Case 4: Stability + Constraint on the Control Input +
Constraint on the Output

The response of the control system in the design example 3 has a large
output error (max,||y(¢)|l, = 2.16) since the constraint on the output is not
considered in the fuzzy controller design. To improve the response, we can
design a fuzzy controller by adding the constraint on the output.

Find X>0,Y>0, and M, (i = 1,...,r) satisfying (3.23), (3.24), (3.46),

(3.47), and (3.54) where w = 100 and A = 2.

The solution is obtained as

F, =[59.2819 9.3038 0.5580],
F,

[33.7254 7.4115 0.4122],

[0.5478  0.0519  0.0034
P =10.0519 0.0098 0.0006 | > 0,
| 0.0034 0.0006 0.0001

[0.9936  0.0334  0.0075
0 =1(0.0334 00118 0.0008 | > 0.
| 0.0075  0.0008  0.0001

The real line in Figure 3.4 shows the responses of y(¢) [= x,(#)] and wu(?).
The response of the control system satisfies the constraints max,||lu(¢)|l, = 93

< p and max,||y(dll, = 1.25 < A.
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FUZZY OBSERVER DESIGN

In practical applications, the state of a system is often not readily available.
Under such circumstances, the question arises whether it is possible to
determine the state from the system response to some input over some
period of time. For linear systems, a linear observer [1] provides an affirma-
tive answer if the system is observable. Likewise, a systematic design method
of fuzzy regulators and fuzzy observers plays an important role for fuzzy
control systems. This chapter presents the concept of fuzzy observers and two
design procedures for fuzzy observer-based control [2,3]. In linear system
theory, one of the most important results on observer design is the so-called
separation principle, that is, the controller and observer design can be
carried out separately without compromising the stability of the overall
closed-loop system. In this chapter, it is shown that a similar separation
principle also holds for a large class of fuzzy control systems.

41 FUZZY OBSERVER

Up to this point we have mainly dealt with LMI-based fuzzy control designs
involving state feedback. In real-world control problems, however, it is often
the case that the complete information of the states of a system is not always
available. In such cases, one need to resort to output feedback design
methods such as observer-based designs. This chapter presents fuzzy ob-
server design methodologies involving state estimation for T-S fuzzy models.
Alternatively, output feedback design can be treated in the framework of
dynamic feedback, which is the subject of Chapter 12.

83
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84 FUZZY OBSERVATION DESIGN

As in all observer designs, fuzzy observers [4] are required to satisfy
x(t) —x(t) >0 ast— x,

where x(¢) denotes the state vector estimated by a fuzzy observer. This
condition guarantees that the steady-state error between x(¢) and £(¢)
converges to 0. As in the case of controller design, the PDC concept is
employed to arrive at the following fuzzy observer structures:

CFS

Observer Rule i
IF z(t) is M;) and --- and z,(¢)is M,
THEN

x(t) = 4, £(t) + Bu(t) + K,(y(t) = 5(1)),
(1) =Cx(t), i=1,2,...,r. (4.1)

DFS
Observer Rule i
IF z((¢) is M;; and --- and z,(¢)is M,
THEN
£(t+1)=A4,2(t) + Bu(t) + K,(y(t) —¥(1)),
y(1) = C;x(1), i=1,2,...,r. (4.2)

The fuzzy observer has the linear state observer’s laws in its consequent
parts. The steady-state error between x(¢) and £(¢) will be discussed in the
next section.

4.2 DESIGN OF AUGMENTED SYSTEMS
This section presents LMI-based designs for an augmented system containing
both the fuzzy controller and observer.

The dependence of the premise variables on the state variables makes it

necessary to consider two cases for fuzzy observer design:

Case A z,(1),..., z,(¢t) do not depend on the state variables estimated by a
fuzzy observer.
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Case B z,(¢),..., z,(t) depend on the state variables estimated by a fuzzy
observer.

Obviously the stability analysis and design of the augmented system for
Case A are more straightforward, whereas the stability analysis and design
for Case B are complicated since the premise variables depend on the state
variables, which have to estimated by a fuzzy observer. This fact leads to
significant difference between z(t) (Case A) and Z(¢) (Case B) in the design
of fuzzy observer and controller.

421 CaseA

The fuzzy observer for Case A is represented as follows:

CFS
) AR + Ba(r) + K (3() = 3(1)
i(1) = = 7
':lei(z(t))
= L) AZ0) + Ba(t) + K(5(0) =50 (43)
5 = T h((0)CR0). (44)
DFS
T w2 AE(0) + Bu(o) + K (3(1) ~5(1)))
#(r+1) == -
IE)
= LR + Ba(t) + K(() ~5(0). (49
5(0) = L)1) (46)

We use the same weight w;(z(¢#)) as that of the ith rule of the fuzzy models
(2.3) and (2.4), and (2.5) and (2.6). The fuzzy observer design is to determine
the local gains K; in the consequent parts.

In the presence of the fuzzy observer for Case A, the PDC fuzzy controller
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takes on the following form, instead of (2.23):

i (GOVER()
Y () EE().  (47)
£ ()

u(t) = -

Combining the fuzzy controller (4.7) and the fuzzy observers (4.3)—(4.6)
and denoting e(#) = x(¢) — £(¢), we obtain the following system representa-
tions:

CFS

=.

~

~

~
I

h i(z(1))h; (Z(t)){(Ai — B;F)x(t) + BiFje(t)}’

I - u -

é(t)

DFS

h(Z(f))h(Z(t)){A K Cjle(1).

lM\ \IM\:

.

r

(e 1) = 1 ih (2(0))hy(2(D)){(A4; — B )x(1) + B,Fe(1)).

_ih (2(0)hy(2(0) {4, — K,CJe(0).

W M\: u

e(t+1) =

Therefore, the augmented systems are represented as follows:

CFS

r r

x,(1) = Z Zh(Z(f))h(Z(f))G,, o(1)

h i(2(0))hi(2(2)) Gyx (1)

i M\: u

i, @)

L2y Y hi(z(1))h (Z(f))

i=11i<j

DFS

x,(1+1) = h i(2(0))h;(2(1)) Gijx,(1)

u[\/]~<

I M\ T [\1\

hi(2(0)) hi(2(2)) Gy x (1)

~

£2% Thi(z(t)h, ) 2 %, @)

i=1i<j
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where
[ x(1)
t) =
(0= o |
(4, - B,F,  BF,
G, = 0 4~ KC, | (4.10)

By applying Theorems 7 and 8 to the augmented system (4.8) and (4.9),
respectively, we arrive at the following theorems.

THEOREM 16 [CFS] The equilibrium of the augmented system described by
(4.8) is globally asymptotically stable if there exists a common positive definite
matrix P such that

G;:P + PG; <0, (4.11)
G,;+G;\" G, +G,
T P+ P T < 0,

i<jst.h;Nh;+ ¢ (4.12)

Proof. 1t follows directly from Theorem 7.

THEOREM 17 [DFS] The equilibrium of the augmented system described by
(4.9) is globally asymptotically stable if there exists a common positive definite
matrix P such that

GPG; — P <0, (4.13)
G.+G\" (G, +G.
ij Ji ij ]l) —-P<0,
2 2

P<jsthinh#¢.  (4.14)

Proof. 1t follows directly from Theorem 8.

Recall that Theorems 9 and 10 represent less conservative conditions than
those of Theorems 7 and 8. Therefore, by applying Theorems 9 and 10 to
(4.8) and (4.9), respectively, we can obtain the following less conservative
conditions:
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THEOREM 18 [CFS] The equilibrium of the augmented system described by
(4.8) is globally asymptotically stable if there exist a common positive definite
matrix P and a common positive semidefinite matrix Q such that

GP+ PG, + (s—1)0<0, (4.15)

G,;+Gy\" G, + G,
—5— | P+P|—5—]|-¢=0

i<jst.h,Nh #¢,  (4.16)

where s > 1.
Proof. 1t follows directly from Theorem 9.

THEOREM 19 [DFS] The equilibrium of the augmented system described by
(4.9) is globally asymptotically stable if there exist a common positive definite
matrix P and a common positive semidefinite matrix Q such that

GIPG,— P+ (s—1)0<0, (4.17)
G;+G;\" (G;+G,
> P > -P-0<0,

i <jst.h;h;# ¢, (4.18)
where s > 1.
Proof. 1t follows directly from Theorem 10.

As a further refinement, we can incorporate the decay rate condition into
the augmented systems as follows:

CFS: The condition that V(x(t)) < —2aW(x,(t)) for all trajectories is
equivalent to

GP+ PG, + (s —1)Q +2aP <0, (4.19)
G,;+G;\" G, +G,
— | P+P|—5—| - Q+2aP <0,

P<jsth0h # ¢, (4.20)

where a > 0.

DFS: The condition that AV(x,(1) < (a® — DV(x,(¢)) for all trajectories is
equivalent to

GLPG,; — a*P + (s — 1)Q <0, (4.21)
G.+G\" (G, +G,
() oSt gz

i<jst.h;Nh;+é, (4.22)

where a < 1.
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Next we consider the controller and observer design problem. The ap-
proach is to transform the conditions above for CFS and DFS into LMI ones
so as to directly determine the feedback gains F; and the observer gains K,.
The transformation procedure can be similarly applied to all theorems in this
section. In the following, we present some representative results. Other cases
are left as exercises for the readers.

Design Procedure for Case A: CFS Assume that the number of rules that
fire for all ¢ is less than or equal to s, where 1 < s < r. The largest bound on
the decay rate that we can find using a quadratic Lyapunov function can be
found by solving the GEVP.

maximize a
Py, P,,Y, 00, My;, Ny;

subject to a > 0,
P,P,>0, Y>0, Q,>0,
P Al —MB] + AP, —BM, + (s —1)Y +2aP, <0,
A'P, — CINJ. + P,A, — N,,C; + (s — 1)Q,, + 2aP, <0,
P A} — M[B] + A,P, — BM,; — 2Y + 4aP,
+P Al — M{B] + AP, — BM,; <0,
i<jsth,Oh + o,
AP, — C/N], + P,4, — N,,C; — 20,, + 4aP,
+A]P, — C/N); + P,4; — N,,C; < 0,
i<jst.h,Nh + ¢,

where s > 1, M, = F,P,, N,; = P,K,, and Y = P|Q, P,.

The matrices P,, P,, Q,,, M,;, N,;, and Y can be found by using convex
optimization techniques involving LMIs if they exist. The feedback gains and
the observer gains can then be obtained as F, = M,;P;! and K, = P;'N,,.
The design conditions above address decay rate and relaxed stability condi-
tions and are reduced to the stable controller design problem if we set a = 0,
Y=0,and Q,, = 0.

The design problem for discrete systems can be handled similarly.

Design Procedure for Case A: DFS
PP, >0,

P1 PlAiT_MlTiBiT >0 4.23
AiPl_BiMli P1 ’ ( ' )

www.4electron.com



20

FUZZY OBSERVATION DESIGN

P, Az‘TPZ - CiTNZTi
- , (4.24)
4; — Ny G, P,
P, A] — MB]
4P, - g
+P,A; —Mh- F
>0, (4.25)
AP, — BM,;
P
+A4,P, — BM,, !
AP, — C/N,,
4P, T TN T
+A4'P, — CI'N},
> 0. (4.26)
P,A; — N;C,
T P,
+P,4, — N)C

Remark 15 Note that in the designs above the controller gains and the
observer gains can be determined separately. This powerful result is similar
to the well-known separation principle for linear systems. Unfortunately,
such a separation principle only holds for Case A and does not hold for Case
B [3].

Finally, we would like to point out, as in Chapter 3, that a variety of
control performance specifications can be incorporated into the LMI-based
observer and controller design.

4.2.2 Case B

In Case B we deal with the situation when the premise variables z(¢) are
unknown since they depend on the state variables to be estimated by fuzzy
observers. As a result, we must use w,(Z(¢)) instead of w,/(z(¢)). In other
words, in Case B, h,(z(¢)) # h,(Z(¢)) because of z(¢) # z(¢) in general.

The fuzzy observers for Case B are of the following forms, instead of (4.3)
or (4.5):

CFS .
H0) = (O AR0) + Batr) + K1) ~5(0). (427
ﬁ(r)=_i (2(0)C2(1).
DFS ,
2(r+1) = g,h (2(0)){A4,2(1) + Biu(t) + K,(y(1) —5(1))}, (4.28)
ﬁ(r)==i (E(0))CE().
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Accordingly, instead of (4.7), the PDC fuzzy controller becomes
Z (1)) Fix(1) ,

u(t) = — 71 = — L h(2(0))E(1).  (429)
Z wi(2(1))

Then the augmented systems are obtained as follows:

CFS

Y Y h(2(0) (A0 h( (1)) Gopera(1)

=1j=1 k=1

x,(1)

I
M\

Y h(2(0) Ay (2(0)) y(2(6)) Gy

j=1

I
—

i

+22 Zh(Z(f))h(Z(f))h (Z(f)) x,(1). (4.30)

i=1 j<k

DFS

Y X h(2(6)) iy (2(0)) g (2(6)) Gopexa(1)

1j=1k=1

I
M\

x,(t+1)

i

Y hi(2(0) Ay (2(0)) y(2(6)) Gy )

j=1

I
Itg-

i

P28 T b)) (E0)) h(3(0) 22O 1y,

i=1 j<k
(4.31)

where
_[x(
xa(t) - _e(t) }’
e(t) =x(t) —x(1),
4, — B,F, B,F,

1 2
Sijk Sijk

b

= (4,—4;) — (B, - B,)F, + K;(C, — C)),

%)
<=
=
I

S%, =4, - K,C, + (B, — B))F,. (4.32)
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The following stability theorem for the augmented system (4.30) can be
derived from Theorem 7.

THEOREM 20 [CFS] The equilibrium of the augmented system described by
(4.30) is globally asymptotically stable if there exists a common positive definite
matrix P such that

Gl;P + PG,; <0, (4.33)
G.+G., . \T G.+G,, .
( ijk 2 lk/) P+P( ijk 2 zk/) <0’

Vi,j<kst.h,0h0h + ¢ (4.34)

Proof. 1t follows directly from Theorem 7.
The following stability theorem for the augmented system (4.31) can be
derived from Theorem 8.

THEOREM 21 [DFS] The equilibrium of the augmented system described by
(4.31) is globally asymptotically stable if there exists a common positive definite
matrix P such that

ngPGijj - P <0, (4.35)
T
(Gijk '; Gikj) P( Gijk '; Gikj) —p<o,

Vi,j<kst. h,0h 0h +¢. (4.36)

Proof. 1t follows directly from Theorem 8.

Remark 16 Consider the common C matrix case, that is, C, = C, = -+ =
C, = C. In this case,

S}jk = (Ai _Aj) - (B,- - B]-)Fk,
S}« =A; — K,C + (B, — B,)F,.

The conditions of Theorems 20 and 21 imply those of Theorems 18 and 19,
respectively.

Remark 17 We can no longer apply the relaxed conditions (Theorems 9 and
10) to Case B because of h,(z(¢)) # h,(z(¢)) in general.
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4.3 DESIGN EXAMPLE

Consider the following nonlinear system:

%(1) =x,5(t) + sin x;(1r) + (xf(t) + Du(r),
X,(t) =x,(t) + 2x,(1),

x5(t) = xi (1) xy (1) +x,(1),

X4(1) = sin x5(7),

yi(t) = (x7(8) + D)xy(t) +x,(2),

ya(1) = x,(1) + x5(1).

Assume that x,(#) and x,(¢) are observable. In other words, x,(¢#) and
x,(¢) are estimated using a fuzzy observer. It is also assumed that

x(1) € [~a.al,  xs(1) € [~b,b],

where @ and b are positive values. The nonlinear terms are xi{(¢) and
sin x,(¢). The nonlinear terms can be represented as

xi(1) = M (x,(0)) - a® + M (x,(1)) - 0,

in b
sin (1) = MA(xa(1)) - 1-202(0) + MZ(xa(0)) - = 2(0),

where
Mi(x,(1), ME(x(0), Ma(xs(0)), M3(x5(1)) € [0,1],
Mi(x(1)) + M{(xy(2)) = 1, My(x3(2)) + M7 (x5(2)) = 1.
By solving the equations, they are obtained as follows:

2
1 i
Ml(xl(t)) = ?’

) B . B x*(1)
MP(x,(t)) =1 —M{(x,(1)) =1- 2

b-sin x5(t) — sin b - x5(¢)
M;(x5(1)) = x5(t) - (b —sinb)
1, x5(1) =0,

x5(t) # 0,
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M3 (x5(1)) = 1 = My(x5(1))
b (x3(1) — sin x5(1))
T b =Sy 0 DO
0, x5(1) =0,

where

x,(t) € [—a,a], x5(t) € [—b,b].

The terms M\, M), M?, and Mj can be interpreted as membership func-
tions of fuzzy sets. By using these fuzzy sets, the nonlinear system can be

represented by the following T-S fuzzy model:
Model Rule 1
IF x(t) is M| and x5(¢) is M;,

x(t) =A,x(t) + Bu(t),

"’EN{y(r) = C,x(1).

Model Rule 2
IF x (t) is M| and x;(¢) is M3,

x(t) = A,x(t) + Byu(t),

THEN{y(t> = ¢,x(1).

Model Rule 3
IF x (¢) is M? and x4(¢) is M),

x(t) = Asx(t) + Byu(t),

THEN) y(6) = cpx(1).

Model Rule 4
IF x (1) is M{ and x5(¢) is M3,

X(1) = Aux(1r) + Byu(t),

THEN{y(o - Cox(1).

(4.37)

(4.38)

(4.39)

(4.40)
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Here,
x(t) =
[0 1
1 2
4, = 1 a2
0 0
0 1
G=1lp 1
[0 1
1 2
4, = 1 da?
0 0
0 1
=10 1
[0 1
1 2
A=11 0
0 0
0 1
G=1o 1
[0 1
1 2
A=11 0
0 0
0 1
G=10 1

1 0
0 0 ’ B, =
0 0
1 0
0 1+a?
1 0o |
sinb/b 0
0 0
0 0
sinb/b 0
0 1+a?
1 0o |
10
0 0 _
o o B~
1 0
0 1
1 0
sinb/b 0
0 0
0 0y
sinb/b 0
0 1
1 0]

DESIGN EXAMPLE 95

[x,(6) () x5(6) xu(0)]

SO O =

Note that it exactly represents the nonlinear system under the condition

xl([) = [_aaa]a

x5(t) € [-b,b].

In this simulation, we use ¢ = 0.8 and b = 0.6. The design procedure for
Case A is adapted since the premise variables are independent of the
variables x,(¢) and x,(¢) to be estimated.

Figure 4.1 shows a simulation result, where the dotted lines denote the
state variables estimated by the fuzzy observer. We found F; and K; satisfy-
ing the LMI conditions by the Design Procedure for Case A using a convex
optimization technique involving LMIs.

The designed fuzzy controller stabilizes the overall control system. The
fuzzy observer estimates the states of the nonlinear system without steady-
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X (t) xZ(t)
0.4 — 025
, 02}
02 . = . L . . 015 I :‘
. [ 01 /i
0 e 0.0
-0.2 { 0 \E /i
Vol -0.05 |
04+ -0} A
—0.15 £
-0.6 -0.2
0 5 10 15 0 5 10 15
Time Time
xa(t X (l)
03 ) 02 :
0.2 ‘ / : N 0 N ]
e WA 02}
O [/ -V )
—0.1 - s L L L . —041}-
02 | _o06)
-03 - . /
-0.8
—04 -
— 0_5 \ ’/" : — l . i A m\\(,."? .
-0.6 : -12
0 5 10 15 0 5 10 15
Time Time

Fig. 4.1 Simulation result.

state errors for the range
x,(t) € [-0.8,0.8], x5(t) € [-0.6,0.6].
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ROBUST FUZZY CONTROL

This chapter deals with the issue of robust fuzzy control [1-3]. In general,
there exist an infinite number of stabilizing controllers if the plant is
stabilizable. The selection of a particular controller among this group of
available controllers is often decided by certain specifications of control
performance. Fuzzy control designs which guarantee a number of control
performance considerations were presented in Chapter 3. The LMI-based
techniques ensure not only stabilization but also, for example, good speed of
response, avoidance of actuator saturation, and output error constraint. In
this and next chapters, a systematic treatment is given for two advanced and
important issues of control performance, namely, robustness and optimality,
in fuzzy control system designs. The robustness issue is dictated by practical
control applications in which there are always uncertainties associated with,
for example, the plant, actuators, and sensors in a control system. Robust
control addresses these uncertainties and aims to derive the best design
possible under the circumstances. This chapter presents such a robust fuzzy
control methodology, whereas optimal fuzzy control based on quadratic
performance functions will be treated in the next chapter.

This chapter defines a class of Takagi-Sugeno fuzzy systems with uncer-
tainty. Robust stability conditions for this class of systems are derived by
applying the relaxed stability conditions described in Chapter 3. This chapter
also gives a design method that selects the robust fuzzy controller so as to
maximize the norm of the uncertain blocks out of the class of stabilizing PDC
controllers. This chapter focuses on robust fuzzy control for CFS. For the
design of robust fuzzy control for DFS, refer to [4, 5].

97
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98  ROBUST FUZZY CONTROL
5.1 FUZZY MODEL WITH UNCERTAINTY
To address the robustness of fuzzy control systems, a first and necessary step
is to introduce a class of fuzzy systems with uncertainty. For this purpose, we
introduce uncertainty blocks to the Takagi-Sugeno fuzzy model to arrive at
the following fuzzy model with uncertainty:
Plant Rule i

IF z/(t) is M;; and ---and z,(t) is M;,

THEN (1) = (4, + DA, (D E,)x(t)
+(Bl +Db1Abl(t)Ebl)u(t), l = l,2,...,r, (5.1)

where the uncertain blocks satisfy

1
AL <—. (52)
Yai
A (1) = AL(1), (5.3)
1
Ay ()] < T (54)
Abi(t) = Aii(t) (5-5)

for all i. The fuzzy model is represented as

£(0) = Lh(0)((4 + Dabu(DE)5(1)
+(B; + Dy; A, (1)E,;)u(r)}. (5.6)

The fuzzy model (5.1) [or (5.6)] contains uncertainty in the consequent
parts. The robust stability for the fuzzy model with premise uncertainty was
first discussed in [6] and [7]. This chapter will focus on the consequent
uncertainty.

5.2 ROBUST STABILITY CONDITION

To begin with, this section presents a stability condition for the uncertain
fuzzy model (5.1) [i.e., (5.6)]. By substituting the PDC controller (2.23) into
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(5.6), we have

#0) = £ L () (1)

p, p,][% " B«
X Ai_BiI7j+[ ai bi] 0 Abi _Ebilrj X(t)
= ihz(Z(t)) A, BF, + [D,; Dy B 0 ()

i=1 ! ' e “ b 0 Abi _EhiFi
+ 2 X h(z(2)) hi(z(1))

i=1i<j
wla —BF 14 —BE+[D, D% O Eai

A A A [ ai bi] 0 A, || —E.F

D. D Ay 0 a

+[2y Dyl N x(1). (5.7)

The following theorem presents robust stability conditions for the fuzzy
model (5.1) [i.e., (5.6)] with a given PDC fuzzy controller (2.23). This theorem
provides a basis for the robust stabilization problem which is considered in
the next section.

THEOREM 22 The fuzzy system (5.1) [i.e., (5.6)] is stabilized via the PDC
controller (2.23) if there exist a common positive definite matrix P and a common
positive semidefinite matrix Q,, satisfying

Si+ (s —1)Q, <0, (58)
T, —20,<0, i<jsthNh#a¢, (5.9)

where s > 1,

_(Ai - BiFi)TP +P(A;, - B,F;) PD, PD, E; _FiTEhTi_
DLp —1I 0 0 0
S = D}, P 0 -1 0 0 )
E, 0 0 vl 0
—E,F,; 0 0 0 —yil
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100 ROBUST FUZZY CONTROL

T
(4, - BF)'P
+P(4; — BiF)) T TRpT T TRT
” PD, PD, PD, PD, EIL -F'E[, EI -F'E[
+(4; - B;F))'P
+P(4; - B;F,)
DLP -1 0 0 0 0 0 0 0
T = Dl.P 0 -1 0 0 0 0 0 0
Y DLP 0o 0 -1 0 0 0 0 0
DJ;P 0 0 0 -1 0 0 0 0
E,; 0 0 0 0 —y2I 0 0 ]
~E,F; 0 0 0 0 0 -y 0 0
E,; 0 0 0 0 0 0 —vil 0
—E,F, 0 0 0 0 0 0 0 -y i1

Q1=block-diag(Q0 0 0 0 0),

Q2=block-diag(Q0 0 0 0 0 0 0 O 0),

Proof. Consider the T-S fuzzy control system with uncertainty (5.1), where
A (t) and A, (¢) are the uncertain blocks satisfying

1
”Aai(t)” = _‘7 Aai(t) = Aj;i(t)7

at

1
A ()] < 77 A1) = AL(1).

bi

Consider a candidate of Lyapunov functions x”(#)Px(¢). Then,

d
& (1) Px(1)

=x"(t)Px(t) +x" (1) Px(t)

T
d A, 0 E,,
— 2 T _RBF D. D, ai ai
,':Zlhl(Z(t))x (t){ Al BIE + [ at bl][ 0 Abi _Ebil;vi P
Pla BF D D Aai 0 ai
+ i~ Bk + [ ai bi] 0o A,ll-E,F x(t)
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+ Y T hi(z(0)h(2(1) 2" (1)

i=1i<j
T
Aai 0 Eai
X Ai—BiFjJr[Dm- Dbi] 0 A, || —E.F P
P A, 0 E,
+P Ai - BIIFI + [ ai bi] 0 Abi _Ehilrj
D. D 0 0 E,j '
+14; — BF + [ @ bj] 0 A, EyF; i
o, p,l|% " B
+P A/ a BJE + [ aj bj] 0 Abj _EbjFi x(t)
= L hi(z(1))x"(1)
i=1
DT
T ai
x{(Ai—BiF,-) P+ P(4; - BF) + P[D,; D] pr [F
bi
T
T T Aal A”i 0 Eai
+[Eai —(E,F) ] 0 A, 0 A, || —E,F
T
DaZ; Aai 0 Eai
B DT, o A, || -ELF
D; Aai 0 Eai
% _ t
Dy, 0 A, || —EnF *(1)

£ Y T hi(2(0))h(2(0) 2" (1)

i=1i<j
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D,
X {(4; — B.F) P+ P(A,— BF,) + P[ D, Dy| o P
bi
T
[ET —(E. F T] Aai 0 Aai 0 Eai
+ ai ( bi j) 0 Abi 0 Abi EbiF}
T
DLZ: Aai 0 Eai D[Z; Aai 0 Eai
D}, 0 A, || —EunF D], 0 A, E, F;
T.
+(A4; - BiF) P+ P(4,— BF,) + P[Dy Dy D“T’ P
bj
A 0 1'[Aa,. o E
+[EaT (E,F T] aj aj aj
j (EpFi) 0 A, 0 A, E,F,
T
T
(25| [As 0 E,
Dy, 0 Ay —EyF
D! A, 0 E,
X P- x(1). 5.10
D! 0 Al -E,F (1) (5.10)
If
: D,
(A, — B,F,) P+ P(A,— BF) + P[D,; D] ol P
1o
T T 7a2i Eai
+[Eai _(EbiF/)] 1 E,.F.
. it
Ygi
D
T aj
+(4;— BiF) P+ P(4;~ BiF) + P[Dy Dyl U
bj
1
—1 0 E,
T aj
+[EaTj —(E,,jFi)] . —E,F, | — 20, <0, (5.11)
0 —
Ybj
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then

d r
2 (O Px(1) < X ki (2(0)x"(1)
i=1

D
x{(Ai — B,F,)'P + P(A; — B,F) + P[D,; D] o |
bi
T T Aai 0 ! Aai 0 [ Eai
+[Eai _(EbiFi) ] 0 A, 0 A, || —E,,F,
~ . _ o T
DaTz P Aai 0 Eai
_DZi_ | 0 Ay || —EF

-DZ;-P -Aai 0 N Eai |
D}, o Ay || —EF; *(1)

£25 Th(2(6)) i (2(6)) £ (1) Qo (1)

i=1i<j
< Y hi(z(1))x" (1)
i=1
o
X{(A; — B;F))'P + P(A, — B,F,) + P[D,; D] D“T‘ P
bi
T
0 .0 E
T T ai ai ai
+[Eai (EbiFi) ] 0 Abz} [ 0 Abz} Eszz
T
DaTi P Aai 0 Eai
- D}, 0 A,|| —E.F
DaTi Aai 0 ai
X —
P A N | A TR

#(3=1) LRG0 ()2ux(0)
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104 ROBUST FUZZY CONTROL

= R0+ (1)

X {(Ai - BiFi)TP +P(A4;, - B,F) + (s —1)0,

T
D(;ri P Aai 0 Eai
- D], |0 Ay E,F,
th;’ P Aai 0 ai
D}, 0 A, E,F, x(1).

It

DT
+P[Dai Dbl] DZZ P
1I 0
+[EaT, (Ebe,-)T] K 1 2F <0,
0 —1I billi
Ybi

then

d T
7" (t)Px(t) <0
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at x(¢) # 0. Since

1 1
ALi(1)A (1) < 2h ALi(1) Ay(1) < — 1,

Yai Ybi

T
DZ; P Aai 0 Eai
- DI, o Ay || —EpF

DaTi A1/1i 0 Eai 0
X - <0.

D}, 0 Al —E.F|]

By the Schur complement, (5.12) and (5.11) are rewritten as (5.8) and (5.9),
respectively. Q.E.D.

When @, =0 and Q, =0, that is, Q, = 0, the relaxed robust stability
conditions are reduced to just the robust conditions:

P>0, S,<0, T,<0, i<jst.hnh+é.

As a result, by utilizing the relaxed stability conditions, less conservative
results can be obtained in the robust stability analysis.

5.3 ROBUST STABILIZATION

We define a robust stabilization problem so as to select a PDC fuzzy
controller, in the class of PDC controllers (2.23) satisfying the robust stability
conditions (5.8) and (5.9), to maximize the norm of the uncertainty blocks, or
equivalently, to minimize v,; and vy,; in (5.7). The following theorem provides
a solution to the robust stabilization problem.

THEOREM 23 The feedback gains F, that stabilize the fuzzy model (5.1) and
maximize the norms of the uncertain blocks (i.e., minimize vy,; and vy,;) can be
obtained by solving the following LMIs, where a;, 3; > 0 are design parameters:

r

minimize Y {ay2+ Byl
Ve ¥E XMy, MY, =1
subject to
X>0, Y20, S,+(s—1)Y, <0, (5.13)
T, —2Y,<0, i<jsth,Nh #do, (5.14)
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where s > 1,

XA] + A.X
k % * *
—-B,M, — M'B"
§ D’ -1 0 0 0
i )
D}, 0o I 0 0
E,X 0 0 —vyi 0
2
L —E,M; 0 0 0 - 'YbiI_
XAT + 4,X
_BiM/ _M/'TB"T T TRpT T TRpT
+x4T + 4.X D,; Dy, Daj Dbf XE,; _]Wj E;; XEaj —M; Ehj
J J
-B,M, - M/B]
D} -1 0 0 0 0 0
Fo— DJ; 0o -1 0 0 0 0 0
Y Dl 0 0 -1 0 0 0 0 0
D}, o 0 0 -I 0 0 0 0
E, X 0 0 0 0 -y 0 0 0
—E,: M, 0o 0 o0 0 0 —yiI 0 0
E, X 0 0 0 0 0 0 —val 0
—Ey; M, o 0 o0 0 0 0 0 — I
Y, = block-diag(¥y 0 0 0 0),
Y, = block-diag( Y, 0 0 0 0 0 0 0 O )
where

Y, = X0, X

and the asterisk denotes the transposed elements (matrices) for symmetric
positions.

Proof. The main idea is to transform the conditions of Theorem 22 into
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LMIs:

{block-diag [Xx I I I I|}{S;+ (s—1)Q,}
X {block-diag [X 1 I I I}

[ (XAT + 4,X |
* * ES ES
—B;M; — MiTBiT
B D] -1 0 0 0
D!, (I 0 0
E X 0 0 —yi 0
—E,.M, 0 0 0 —yil

+(s — 1) - block-diag (X@pX 0 0 0 0)
=S, + (s -1y, (5.15)
{block-diag [Xx I I I I I I I I]}-{T;-20,}
x{block-diag[X I I 1 I I I I I]}

XAT + 4,X
_BiMi - MjTBiT T TpT T TpT
+XAT + A, X Dii Dyi Doy Dy XEy  —MEy  XE,;  —MiE,
] ]
—B;M, — M/B]
DL, -1 0 0 0 0 0
_ DL, 0o -I 0 0 0 0 0
D], 0o o0 -I 0 0 0 0 0
D, 0o 0 o0 -I 0 0 0 0
E, X 0 0 0 0 —9y 0 0 0
—E,;M; 0 0 0 0 0 -y 0 0
2
E, X 0 0 0 o0 0 0 -3 0
—E,;M, 0 0 0 0 0 0 — vyl
— 2 block-diag (X@,X 0 0 0 0 0 0 0 0)
=T, - 2Y,, (5.16)
where
X=P', M=FP'
for all i. Q.E.D.
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108 ROBUST FUZZY CONTROL
The feedback gains can be obtained as
F=MXx"'

from the solutions X and M, of the above LMIs.

A design example for robust fuzzy control will be presented in Chapter 7.
H,, control for the fuzzy model (5.1) was first discussed in [8]. Since then, a
number of papers considering H, control for fuzzy control systems have
appeared in the literature. Chapters 13 and 15 give an extensive treatment of
H,, control for fuzzy control systems.
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OPTIMAL FUZZY CONTROL

In control design, it is often of interest to synthesize a controller to satisfy, in
an optimal fashion, certain performance criteria and constraints in addition
to stability. The subject of optimal control addresses this aspect of control
system design. For linear systems, the problem of designing optimal con-
trollers reduces to solving algebraic Riccati equations (AREs), which are
usually easy to solve and detailed discussion of their solutions can be found
in many textbooks [1]. However, for a general nonlinear system, the optimiza-
tion problem reduces to the so-called Hamilton-Jacobi (HJ) equations, which
are nonlinear partial differential equations (PDEs) [2]. Different from their
counterparts for linear systems, HJ equations are usually hard to solve both
numerically and analytically. Results have been given on the relationship
between solution of the HJ equation and the invariant manifold for the
Hamiltonian vector field. Progress has also been made on the numerical
computation of the approximated solution of HJ equations [3]. But few
results so far can provide an effective way of designing optimal controllers for
general nonlinear systems.

In this chapter, we propose an alternative approach to nonlinear optimal
control based on fuzzy logic. The optimal fuzzy control methodology pre-
sented in this chapter is based on a quadratic performance function [4-7]
utilizing the relaxed stability conditions. The optimal fuzzy controller is
designed by solving a minimization problem that minimizes the upper bound
of a given quadratic performance function. In a strict sense, this approach is
a suboptimal design. One of the advantages of this methodology is that the
design conditions are represented in terms of LMIs. Refer to [8] for a more
thorough treatment of optimal fuzzy control.

109
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6.1 QUADRATIC PERFORMANCE FUNCTION
AND STABILIZING CONTROL

The control objective of optimal fuzzy control is to minimize certain perfor-
mance functions. In this chapter, we present a fuzzy controller design to
minimize the upper bound of the following quadratic performance function
(6.1):

J = fooo{yT(t)Wy(t) +u (1) Ru(t)) dt, (6.1)
where

¥(1) = X (=) Cox(1).

The following theorem presents a basis to the optimal fuzzy control
problem. The set of conditions given herein, however, are not in terms of
LMIs. The LMI-based optimal fuzzy control design will be addressed in the
next section.

THEOREM 24 The fuzzy system (2.3) and (2.4) can be stabilized by the PDC
fuzzy controller (2.23) if there exist a common positive definite matrix P and a
common positive semidefinite matrix Q,, satisfying

Ui+ (s —1)05 <0 (6.2)
Vi, —20,<0, i<jst.h,Nh;# ¢, (6.3)
where s > 1,
B T
(Ai - BiFi) P cT _FT
+P(A; — B;F,) l l
U, = , (6.4)
C -wto0
~F, 0 —-R7!
(Ai - BiF})TP
+P(A; — B;F)
CiT _F}T C]T _F'iT
+(4, - B,F)'P
+P(A; — B.F.
V;j — ( J J l) , (65)
C w0 0 0
~F, 0 —R! 0 0
C, 0 0 -w! 0
—F 0 0 0 —-R7!
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Q; = block-diag (2, 0 0),
Q, = block-diag (@ 0 0 0 0).
Then, the performance function satisfies
J <x"(0) Px(0),
where x*(0)Px(0) acts as an upper bound of J.

Proof. Let us define the following new variable

5(1) = Hg] - Yh(a(0)

i=1
Equation (6.1) can be rewritten as

x(1).

Ci
-F,

1= 30|y R

Assume that there exists a common positive definite matrix P and a common
positive semidefinite matrix Q, satisfying (6.2) and (6.3). Then, from Schur
complements, we have

(4, — BiFi)TP +P(A4; - BF) + (s — 1)Q,
C

L

l

w0
+[ct —Ff][ <0 (6.6)

! 0 R

and

(A, — B.F,)' P + P(4; - B;F)

+(4; — B,F))'P + P(4; - BF,) - 20,

. Lm0l ¢
+[Ci —F ] 0 R||-F
S AN e
+[c] —F] 0 R||-F|< 0. (6.7)
From (6.6) and (6.7), we obtain
(4; — BiFi)TP +P(4;, - BF)+(s—1)0,<0 (6.8)
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and
(4, - B.F,)' P + P(4, - B;F)

+(4; — B,F))'P + P(4; — BF,) — 20, < 0. (6.9)

It is clear from Theorem 9 in Chapter 3 that the fuzzy control system is
globally asymptotically stable if (6.2) and (6.3) hold.

Next, it will be proved that the quadratic performance function satisfies

J < x"(0)Px(0). Consider a Lyapunov function candidate x”(#)Px(¢). Then,
from (6.6), (6.7), and the Appendix,

d T
7" (1) Px(t)
=x"(t)Px(t) + x" (1) Px(1)

1h,-(z(r))hj(z(t))xT(t){(A,- — B,F)'P + P(4, — BF)}x(1)

Il
M\

L

J

I
[un

,_ilh%(zm)xT(r){mi —BE) P+ P(4, — BE)(1)

v Zl T h(2(0)h(2(0)) € (){(4, = BE) P+ P(4, - BF))x(1)

A

TR () (){(A,~ BE) P+ (4, ~ BE)x(0)

- W
—x"(1) { :21 2hi(1(t))hj(z(t))[CiT _FT]

o][ ¢
i 0 R —Fj
, w c
# L DhGOMEDE ]y || g }x(r)
£2 8 Th(z(0)hy(2(0) " (1)@yx(1)
i=1i<j
r w C,
<—xT(r>{.§1h%<z<r>>[cf ~F|y gl |
r w ol c
—xT(t){'=12hi(z(t))hj(z(t))[CiT _F}T] 0 R||-F
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, w ool ¢
# L ThGOmGEON ]|y || }x(r)
“(5 = 1) DR GO) (00x(1)
25 T 20y (2(0)2 ()Q0x(1)
, w ol c
= —xT(t){A_Zlh?(z(t))[Cl—T _FiT] 0 R||-F }x(t)

i w oo][ ¢
_xT(t){‘Z Zhi(z(t))hj(z(t))[CiT _F}T] 0 R —F
i=1i<j i
r w ol c
# L ThOEDE F ]y gl g |
~(5 =) DRG0 (1)20x(0)
+242r: Zh,-(z(t))hj(z(t))xT(t)Qox(t)
i=1i<j
T S v T r1|W 0 G
- (t){g L aomeole w1y 4] }x(t)
—((s - 1) L A() ~ 25 D) () | (10ux(1)
=—xT(t){(§h,-<z(t>)[cf —ET])[I,V Rl S| }xm

—((s -1) éh?(z(r)) RS Zhi(z<t>>hj(z(t>))xT(t)Qoxm

i=1i<j
- oy &o
—((s - LE(0) - 28 Zhi(z<r>>hj<z(r)))xT(t)Qox<r>

i=1i<j

<o}y R
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Therefore,

d
ar e < =570y 85,

Integrating both side from 0 to «, we get

1= [y oy Riwa< el

Since the fuzzy control system is stable,

J = [;yT(t)H)V 2]&(0 dt < x7(0) Px(0). (6.10)
Q.E.D.

Remark 18 The above design procedure guarantees J < x7(0)Px(0) for all
the values of £,(z(¢)) € [0, 1].

When Q; =0 and Q, =0, that is, Q, = 0, the relaxed conditions in
Theorem 24 are reduced to the following conditions:

P>0, U;<0, V<0, i<jst.h,Nh #é.

Then, the performance function J' satisfies J' < x”(0)Px(0).

6.2 OPTIMAL FUZZY CONTROLLER DESIGN

We present a design problem to minimize the upper bound of the perfor-
mance function based on the results derived in Theorem 24. As shown in the
previous section, x7(0)Px(0) gives an upper bound of J under the conditions
of Theorem 24. The optimal fuzzy controller to be introduced is in the strict
sense a “sub-optimal” controller since x”(0)Px(0) will be minimized instead
of J in the control design procedure. The following theorem summarizes the
design conditions for such scheme.

THEOREM 25 The feedback gains to minimize the upper bound of the
performance function can be obtained by solving the following LMIs. From the
solution of the LMIs, the feedback gains are obtained as

F=MX"

for all i. Then, the performance function satisfies J < xT(0)Px(0) < A.
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minimize A
subject to

X>0, Y,>0,

A (o
Oy (6.11)
x(0) X
U, + (s — Y, <0, (6.12)
V,—2Y,<0, i<jsthnh+do, (6.13)
where s > 1,
[ (x4T +4,x
XCl-T _Ml'T
. —B,.M;, — M/B/
U, = ’
CX -wtoo0
-M, 0 -R!
XAT +4,X
~BM; — ]WjTBl-T
T xc!' -Mm! xc/  -m!
+XAT + 4,X ! !
. —B,.M, — M/B/
V.=
1 ’
Cl‘X _W_l 0 0 0
-M, 0 —R! 0 0
C.X 0 0 -w! 0
-M, 0 0 0 -R'

Y, = block-diag (Yo 0 0),

Y, = block-diag (Yo 0 0 0 0).

Proof. The main idea here is to transform the inequality J < x(0)Px(0) < A
and the conditions of Theorem 24 into LMIs:
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{block-diag [X I I]}-{U;+ (s —1)Q;}- {block-diag [X I 1]}

XA + 4,x
¢t -Mm!
—B.M, — M'BT ' '
(69.¢ —-w! 0
-M, 0 -R!

+(s — 1) - block-diag (X0,X 0 0)

ﬁii + (S - 1)Y37

where
Y, = X0, X.

We obtain the following condition as well:

{block-diag [X I I} - {V;; — 20,} - {block-diag [ X I I}

D ZHE ¢
_BiMf B ]WjTBiT T T T
+XAT + 4,X G M X
~B,M, — M/B/
C.X -w! 0 0
M, 0 -R™! 0
C,X 0 0 -w!
-M, 0 0 0

— 2 - block-diag (XQ,X 0 0 0 0)
=V, - 2Y,.

L

Then, the quadratic performance function satisfies

J<xT(0)X 'x(0) < A.

Q.E.D.

Theorem 25 shows that by minimizing A, we obtain the feedback gains
which minimize the upper bound of J. To solve this design problem,
the initial values x(0) are assumed known. If not so, Theorem 25 is not
directly applicable. In this case, however, if all the vertex points x,(0) of
a polyhedron containing the unknown initial values x(0) are known,
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that is,
1

x(0) = X pex,(0),

k=1

Theorem 25 can be modified as follows to handle this case.

THEOREM 26 The feedback gains to minimize the upper bound of the
performance function can be obtained by solving the following LMIs. From the
solution of the LMIs, we obtain

F=MX"'
for all i. Then, the performance function satisfies J < xT(0)P x(0) < A:

minimize A

subject to
X>0, Y,>0,
A xI(0
<(0) >0, k=12,...,1,
x,(0) X
U, + (s — 1)Y, <0,
V,—2Y,<0, i<jsthnh+d.
Proof. 1t directly follows from Theorem 25. Q.E.D.

Remark 19 An alternative approach to handle the uncertainty in initial
condition is to employ the initial condition independent design [see Chapter
3, equation (3.56)].

An interesting and important theorem is given below.

THEOREM 27 The following statements are equivalent.

(1) There exist a common positive definite X and a common positive semidefi-
nite Y satisfying (3.23) and (3.24).
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(2) There exist a common positive definite X' = X/& and a common positive
semidefinite Y, satisfying (6.12) and (6.13), where % > 0.

Proof. (1) = (2) Assume that (3.23) is satisfied. Since

w o o][ cx
0 R||-M

1

[xc! —M,-T][ > 0,

there exists a very small & > 0 satisfying

a(mf +A4,X - BM, - M/Bl + (s — 1)Y,

+e[xC! M WO G <
it illo R||-M
for i = 1,2,...,r. The above condition is equivalent to
XAT + 4.X
S eXc!'  —eM!
—B;M; — M; B,
eC,X —-w! 0
—eM, 0 —-R7!

+e(s— 1Y, <0, i=1,2,...,r.

Since X' = ¢X, M| = ¢M,, and Y; = £Y; can be regarded as new X, M,,
and Y;, respectively, we obtain the condition (6.12).
We can obtain the condition (6.13) from (3.24) as well.

(2) = (1). It is obvious. Q.E.D.

The theorem above says that there exists a common X' satisfying (6.12)
and (6.13) for any W and R if conditions (3.23) and (3.24) hold. The optimal
fuzzy controller design in Theorem 25 is feasible if the stability conditions
(3.23) and (3.24) hold.

A design example for optimal fuzzy control will be discussed in detail in
Chapter 7.

APPENDIX TO CHAPTER 6

COROLLARY A.1
—cr'wc, - clwe, < —cl'we, - cl'we,

where
w > 0.
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Proof. 1t is clear.

COROLLARY A.2

T 1L G T LA G
-le —F] 0 R|| -F [c] —F] 0 R||-F
T T w0 G T r w0 C,
where
W>0 and R > 0.
Proof. From Corollary A.1, we have
T T w0 G - r w 0 C;
[C" _Ff] 0 R||-F _[CJ —F ] 0 R||l-F
= —C/WC, — F'RF, — CI'W C; - F/RF,
< —C!/WC, — F'RF, — C/WC, — F/RF,
T T W 0 C] T T W 0 Ci
__[Ci _Fj] 0 R||-F _[Cj _Fi] 0 R||-F|
Q.E.D.
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ROBUST-OPTIMAL FUZZY CONTROL

This chapter discusses the robust-optimal fuzzy control problem [1-3], which
combines robust fuzzy control and optimal fuzzy control. The robust-optimal
fuzzy control problem is useful for practical control system designs that call
for both robustness and optimality. In the last two chapters the robustness
and optimality issues have been addressed separately. This chapter presents a
unified design procedure to address both issues simultaneously to provide
a solution to the robust-optimal fuzzy control problem. A design example is
included to illustrate the merits of robust fuzzy control, optimal fuzzy control,
and robust-optimal fuzzy control. The well-known nonlinear control bench-
mark problem, that is, the translational actuator with rotational actuator
(TORA) system [4—6], is employed as the design example.

7.1 ROBUST-OPTIMAL FUZZY CONTROL PROBLEM

The robust-optimal fuzzy control design conditions are captured in the
following theorem. Naturally these conditions are rendered by combining
Theorems 23 (robust fuzzy control) and 25 (optimal fuzzy control).

THEOREM 28 The PDC controller (2.23) that simultaneously considers both
the robust fuzzy controller design (Theorem 23) and the optimal fuzzy controller

121
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design (Theorem 25) can be designed by solving the following LMIs:

M\

minimize A +
A Y Vi X i
Ml""er’Y(]

. {ai')’azi + Bi')’hzi}

subject to
X>0, Y, >0,

A x7(0)
x(0) X
S;+(s—DY; <0, i=12,...,r,

T, —2Y,<0, i<j<rsthnh +é¢,
U+ (s—1)Y; <0, i=12,..,r,
V,—2Y, <0, i<j<rsthnh +é¢,

where s > 1,

XAT + 4,X
% * *
_BiMi - MiTBiT
D -1 0 0 0
§ _ ai
i ’
DT, 0 I 0 0
2
E, X 0 0 —y 0
2
—E,;M, 0 0 0 — vl
x4t + 4,x
~BiM; - MfTB"T T TRT T
b, D, D, D, XEL -M'El, XEL
T ai bi aj bj ai Jj ~bi aj
+XAT + 4;X
—B;M; - MB]
DL | 0 0 0 0 0 0
R D} 0 -1 0 0 0 0 0
T, = D}, o 0 I 0 0 0 0
Df; 0 0 o I 0 0 0
E, X 0 0 0 0 -yl 0 0
—EyM; 0 0 0 0 0 —yAI 0
E, X 0 0 0 0 0 0 -yl
—EyM; 0 0 0 0 0 0 0
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Y, = block-diag( Y, 0 0 0 0 ),

Y, = block-diag(¥, 0 0 0 0 0 0 0 0),

XA +4,x
xc!  -m!
. ~B,M, — MB’
U, = ’
C.X —-w! 0
-M, 0 -R!
XA+ 4,x
—BM; - jijBiT T T T T
+XAT + 4,X A A A
J J
. —B;M, — M[B]
Vij = ’
CX -w! 0 0 0
-M, 0  -R' 0 0
C X 0 0 w0
-M, 0 0 0 ~R!

Y, = block-diag (¥, 0 0),
Y, = block-diag (¥, 0 0 0 0),

where the asterisk denotes the transposed elements (matrices) for symmetric
positions.

Proof. It follows directly from Theorems 23 and 25.

Remark 20 As shown in Chapter 3, the condition (7.1) may be replaced with
(3.56) to handle the uncertainty in initial conditions.

When Q, = 0 (i.e., Y, = X0,X), the relaxed conditions are reduced to the
following conditions:

,
minimize A + Y {oy} + By}
A, Vi Vi X, i=1

subject to

X>0,

www.4electron.com



124 ROBUST-OPTIMAL FUZZY CONTROL

A xT(0)
>0,
x(0) X
Aii<0) i:1’27"-;r,
[, <0, i<j<rsthNh #¢,
U,<0, i=1,2,...,r,
V,<0, i<j<rst.h,0h # .

In the design problem above, the initial conditions x(0) are assumed
known. If not so, the theorem is not directly applicable. In this case, if all the
vertex points x,(0) of a polyhedron containing the initial conditions x(0) are
known, that is,

!
H0) = ¥ pixi(0),

I
P20, Ym=1 x(0) €R",
k=1

Theorem 28 can be modified as follows to handle the uncertain initial
conditions.

THEOREM 29 The PDC controller (2.23) that simultaneously considers both
the robust fuzzy controller design (Theorem 23) and the optimal fuzzy control
design (Theorem 25) can be designed by solving the following LMls:

minimize A + Z {avs + Bovi}

)\a')’aziv'ybzi’xa i=1
My,..., M,.Y,
subject to
X>0 Y, >0,
A xI(0
«(0) >0, k=1,2,...,1,
x(0) X

S;+(s—1)Y, <0, i=12,..,r
T,-2Y,<0, i<j<rsthnh+é¢
U+ (s—DY;<0, i=12,...,r

A

|4

-2, <0, i<j<rsthnh #d

Proof. 1t follows directly from Theorem 28.
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7 /777

Fig. 7.1 TORA system.

7.2 DESIGN EXAMPLE: TORA

Consider the system shown in Figure 7.1, which represents a translational
oscillator with an eccentric rotational proof mass actuator (TORA) [4-6].
The nonlinear coupling between the rotational motion of the actuator and
the translational motion of the oscillator provides the mechanism for control.

Let x, and x, denote the translational position and velocity of the cart
with x, =x,. Let x; =60 and x, = x; denote the angular position and
velocity of the rotational proof mass. Then the system dynamics can be
described by the equation

x=f(x) +g(x)u +d, (7.2)

where u is the torque applied to the eccentric mass, d is the disturbance, and

X2
—x, + ex}sin x;
1 — &% cos? x;
f(x) = :
X4
& cos x3(x; — £xj sin x3)
1 — &% cos® x,
0
—£COS X,
1 — &% cos? x;
g(x) = 0 ]
1
1 — &% cos? x,
e=0.1
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Consider the case of no disturbance, as in [4-6], introduce new state
variables z, = x; + £sin x5, z, = X, + £x,C0S X5, y; = X3, ¥, = X,, and em-
ploy the feedback transformation

1

V= Tcoszyl[acosyl(zl - (1 +y%)8 sin yl) + u]

=a(z,y) + B(y)u

to bring the system into the following form:

Z, = z,, (7.3)
Zy = —z; + esinyy, (7.4)
Vi =Y, (7.5)
Y, = V. (7.6)

The equilibrium point of system (7.2) can be any point [0, 0, x?, 0], where xJ
is an arbitrary constant. Consider [0, 0,0, 0] as the desired equilibrium point.
The linearization around this point has a pair of nonzero imaginary eigenval-
ues and two zero eigenvalues. Hence the system (7.2) at the origin is an
example of a critical nonlinear system. This control problem is interpreted as
a regulator problem of z, —» 0, z, » 0, y, —» 0, and y, — 0.

The T-S model of the TORA system can be constructed from (7.3)—(7.6)
by using the fuzzy model construction described in Chapter 2:

Rule 1
IF y,(1) is “about —a or 7 rad,”
THEN
x(t) =A,x(t) + Byu(t),

y(1) = Cix(1).

Rule 2
IF y (¢) is “about — § or 3 rad,”

THEN
x(t) =A,x(t) + Byu(t),

y(t) = Cyx(1).
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Rule 3
IF y (1) is “about 0 rad” and y,(¢) is “about 0,”

THEN
x(t) = A;x(t) + Byu(t),

y(1) = Cx(1).

Rule 4
IF y (1) is “about 0 rad” and y,(¢) is “about —a or a,”

THEN
x(t) =A,x(t) + Byu(t),

y(1) = Cyx(1),

Here, x7(t) = [z,(1), z,(2), y (1), y,(1)],

0 1 0 0 r
sin( ar) 0
-1 0 ¢ 0 0
A: T , B= O ,
! 0 0 0 1 ! 1
— &
_1_82 0 0 0 _1_32
0 1 02 0 0
-1 0 e— 0 0
A, = T . B, = ol
0 0 0 1 1
| 0 0 0 0 -
[0 1 0 [0 ]
-1 0 & 0 0
As=| 0 0 1], B,=| o |
& —¢&? 1
_1—82 0 1— &2 0 _1—.92_
0 1 0 0 0
-1 0 & 0 0
A, = 0 0 0 1|, B, = 0 ,
& —&2(1 +a?%) 1
_1—82 0 1—¢2 0 _1—82_
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SO = O
O = OO
-0 OO

In this simulation, x, € [—a,a] (¢ =4) and 0 < @ < 1 instead of a =1
(e.g., @ =10.99) is used to maintain the controllability of the subsystem
(4,, B)) in Rule 1.

The above fuzzy model is represented as

(1) = £ ((0){4,5(0) + Ba(0). (1.7)
y(0) = Lh(s(0)Cx(0) (78)

where r = 4 and z(¢t) = [y,(¢1) y,(1)]. Here, h(z(¢)) is the weight of the ith
rules calculated by the membership values. Figure 7.2 shows the membership
functions.
The PDC fuzzy controller is designed as follows:
Control Rule 1
IF y (¢) is “about —a or = rad,”
THEN u(t) = —F,x(¢).
Control Rule 2

IF y (¢) is “about — ¥ or 3 rad,”

THEN u(t) = —F,x(2).

“About —r or m”
/

_ Pry
P l;l/)out —-m/2o0r w/2 \\\ “About —a or a”
e
1 AN 1\ AN
“About 0°” \\ “About 0°”
\
\ \
\
- -3 0 7 T -a 0 a

Fig. 7.2 Membership functions.
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Control Rule 3
IF y (1) is “about 0 rad” and y,(¢) is “about 0,”
THEN u(t) = —F,x(1).
Control Rule 4
IF y (¢) is “about 0 rad” and y,(¢) is “about —a or a,”
THEN u(t) = —F,x(¢).

Figure 7.3 shows the comparison between a stable fuzzy controller [satisfy-
ing (3.23) and (3.24)] and a robust fuzzy controller (satisfying the conditions
in Theorem 23) for the TORA system with parameter change & = 0.05.
Figure 7.4 compares the performance of the stable fuzzy controller and an
optimal fuzzy controller (satisfying the conditions in Theorem 25) for the
nominal TORA system. Figure 7.5 shows the control results of the robust

1 1
0.5 0.5
) Ny
-0.5 -0.5
-1 -1
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)

Fig. 7.3 Control results for TORA with parameter change (& = 0.05).

1 1
0.5 0.5
= =
-0.5 —-0.5
-1 -1
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)

Fig. 7.4 Control results for the nominal TORA.
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1
0.5
E 0 g
= =
-0.5 -0.5
-1 ; i . . ; ;
0 20 40 60 80 100 0 20 40 60 80 100

Time (s) Time (s)
Fig. 7.5 Control results for TORA with parameter change (& = 0.05).

1 1

0.5 0.5

2 ol E
= =

-05 -0.5

-1 -1

0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)

Fig. 7.6 Control results for the nominal TORA.

fuzzy controller and the robust-optimal fuzzy controller (satisfying the condi-
tions in Theorem 28) for the TORA with the parameter change. Figure 7.6
compares the control results of the optimal fuzzy controller and the robust-
optimal fuzzy controller for the nominal TORA. In all cases, the fuzzy
control designs get the job done but with different performance characteris-
tics. The robust-optimal fuzzy controller is the most versatile in that it
addresses both the robustness and the optimality.
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TRAJECTORY CONTROL OF A
VEHICLE WITH MULTIPLE TRAILERS

This chapter contains an in-depth application study of the fuzzy control
methodologies introduced in this book. The system under study is a vehicle
with multiple trailers. The control objective is to back the vehicle into a
straight-line configuration without forward motion. This is often referred as
the problem of backing up control of a truck-trailer. A truck with a single
trailer is often used as a testbed to study different control strategies. In this
chapter, we consider the more challenging problem of backing up control of a
vehicle with multiple trailers. Both simulation and experimental results [1-4]
are presented. The results demonstrate that the designed fuzzy controller can
effectively achieve the backing-up control of the vehicle with multiple trailers
while avoiding the saturation of the actuator and “jack-knife” phenomenon.
Moreover, the controller guarantees the stability and performance even in
the presence of disturbance.

As mentioned above, the backing-up control of “trailer-truck,” that is, a
vehicle with a trailer, has been used as a testbed for a variety of control
design methods [1-11]. In particular, in order to successfully back up the
trailer-truck, the so-called jack-knife phenomenon needs to be avoided
throughout the operation. In the field of automatic control, a number of
control methodologies including nonlinear control, fuzzy control, neural
control, and hybrid neural-fuzzy control [5-8] have been applied to this
testbed problem. Most of these are simulation-based studies; the important
issue of the stability of the control systems was often left out. In our work,
stabilizing fuzzy control was applied to the case of a truck with one trailer
case in [9] and experimental demonstrations were reported in [1, 10].
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This chapter mainly deals with the triple-trailer case [3, 4]. The triple-trailer
case, that is, backing-up control of a vehicle with triple trailers, is much more
challenging than that of the one-trailer case. To the best of our knowledge,
experimental results of the triple-trailer case had not been reported in the
literature prior to our work. Part of the difficulties associated with multiple-
trailer cases, the triple-trailer case included, lie in the exponentially increas-
ing number of jack-knife configurations as the number of trailers increases.
In the one-trailer case, only two jack-knife configurations exist. For the
triple-trailer case, the number of jack-knife configurations increases to eight.
Moreover, we need to address a number of practical constraints, for example,
saturation of the steering angle and disturbance rejection, for such difficult
control objects. In the control design for the vehicle with triple trailers, we
utilize the LMI conditions described in Chapter 3 to explicitly handle the
saturation of the steering angle and the jack-knife phenomenon. Both simula-
tion and experimental results demonstrate that the fuzzy controller effec-
tively achieves the backing-up control of the vehicle with triple trailers while
avoiding the saturation of the actuator and jack-knife phenomenon. More-
over, the feedback controller guarantees the stability and performance even
in the presence of disturbance.

8.1 FUZZY MODELING OF A VEHICLE WITH TRIPLE TRAILERS

Figure 8.1 shows the vehicle model with triple trailers and its coordinate
system. We use the following control-oriented model to design a fuzzy
controller:

v At
xo(t+ 1) =x4(t) + ; tan(u(t)), (8.1)
x1(1) = xo(1) = x,5(1), (8.2)

v At
x(t+ 1) =x,(¢) + 7 sin(x,(1)), (8.3)
x3(1) = x,(1) — x,(1), (8.4)

v At
x,(t+1) =x,(t) + 7 sin(x5(1)), (8.5)
xs5(1) = x4(1) — x4(1), (8.6)

v- At
xe(t + 1) =x4(2) + 7 sin(x5(1)), (8.7)
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x4(1)
@ L L
L L L
(x5(r), x7(1))
Desired path
xg(1) 0

Fig. 8.1 Vehicle model with triple trailers.

o (t+ 1) = x)(1) + v- Atcos(xS(t))sin(xﬁ(t * 1; * xo(t) ) (8.8)
xg(t + 1) =xg4(t) + v- Atcos(xs(t))cos(xé(t * 1; *x(0) ), (8.9)

where

x,(t) = angle of vehicle,
x,(¢) = angle difference between vehicle and first trailer,
x,(t) = angle of first trailer,
x5(¢) = angle difference between first trailer and second trailer,
x,(¢) = angle of second trailer,
x5(¢) = angle difference between second trailer and third trailer,
x4(¢) = angle of third trailer,
x,(t) = vertical position of rear end of third trailer,
x4(¢) = horizontal position of rear end of third trailer,
u(t) = steering angle.

The model presented above is a discretized model with several simplifica-
tions. It is not intended to be a model to study the detailed dynamics of the
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trailer-truck system. Because of the simplicity, its main usage is for control
design. This is the same idea as the so-called control-oriented modeling in
which some reduced-order type of models are sought instead of the full-
fledged dynamic models. The trailer-truck model herein has proven to be
effective in designing controllers for the experimental setup which is dis-
cussed later in this chapter.

In the simulation and experimental studies the following parameter values
are used:

/=0.087m, L=0130m, »= —0.10m/sec., At = 0.5 sec.,

where [ is the length of the vehicle, L is the length of the trailer, At is the
sampling time, and v is the constant speed of the backward movement. For
x,(t), x5(¢), and x4(¢), 90° and —90° correspond to eight ““jack-knife” posi-
tions.

The control objective is to back the vehicle into the straight line (x, = 0)
without any forward movement, that is,

x(t) >0, x5(t) >0, x5(¢) >0, x4(¢t) >0, x,(¢t)—0.

To employ the model-based fuzzy control design methodology described in
this book, we start with the construction of a Takagi-Sugeno fuzzy model to
represent the nonlinear equations (8.1)—(8.8). To facilitate the control design,
with the assumption that the values of u(z), x,(¢), x5(¢), and x4(¢) are small,
we further simplify the model to be of the following form:

v- At
xo(t+ 1) =x,(t) + 7 u(t), (8.10)
v- At v At
x(t+1) = (1 -7 )xl(t) + ; u(t), (8.11)
v At
x,(t+ 1) =x,(t) + Txl(t), (8.12)
v At v- At
x(t+1) = (1 — )x3(t) + 7 x,(2), (8.13)
v At
x(t+1) =x,(¢) + 7 x5(1), (8.14)
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v- At v- At
xs(t+1) = (1 -7 )xs(t) + i3 x5(1), (8.15)
v At
xe(t + 1) =x4(t) + 7 x5(1), (8.16)

v- At
x,(t+1) =x,(¢) + v-At-sin(xﬁ(t) + sz(t)). (8.17)

In this simplified model, the only nonlinear term is in (8.17),

v- At
v-At- sin(xé(t) +

7 xs(t)). (8.18)

This term can be represented by the following Takagi-Sugeno fuzzy model:

o)

v- At
(1)) et [x(0) + 0]

v At sin(xﬁ(t) +

v At
Fw(p0) v g (50 + 0] 19)

where
v At
p(t) =x4(t) + oL x5(1),
g=10"/m,

sin( p(t)) —g-p(t)

wip) = s -5 = PO7TC (50
1, p(t) =0,
p(t) —sin( p(1))

w(p(1)) =1 p(0)-(1-g) * PO (821)
0, p(t) =0.
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From (8.20) and (8.21), it can be seen that w(p(z)) = 1 and w,(p(¢)) = 0
when p(¢) is about 0 rad. Similarly, w,(p(¢)) = 0 and w,(p(¢)) = 1 when p(z)
is about 7 or —r rad.

When w,(p(¢)) = 1 and w,(p(¢)) = 0, that is, p(¢) is about 0 rad, substi-
tuting (8.19) into (8.17), we have

(v-Ar)?
x,(t+ 1) =x,(2) + v-At-xg(t) + > x5(1).

As a result the simplified nonlinear model can be represented by

B v- At
x,(t+ 1) 1- 7 0 0 0 0
v At v At
x3(t+ 1) 7 -7 0 0 0
v- At v- At
xs(t+1) | = 0 7 1- 7 0 0
v- At
xq(t + 1) 0 0 7 1 0
(v-Ar)?
x.(t+ 1) 0 0 57 v-At 1
B 7 v- At
x,(1) ]
x5(1) 0
X|xs() |+ 0 Ju). (8.22)
Xe(1) 0
x4(1) 0

When w(p(¢)) = 0 and w,(p(¢)) = 1, that is, p(¢) is about = or — 7 rad,
(8.17) is represented as

g (v-Ar)’

x,(t+ 1) =x,(8) +g-v-Ar-x4(2) + Y3

x5(1).
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The resulting simplified nonlinear model can be represented by

v- At
x(t+ 1) 1- 7 0 0 0 0
v- At v- At
x;(t+ 1) 7 1- 7 0 0 0
v- At v- At
xs(t+1) | = 0 - 1-— 0 0
v- At
xg(t+ 1) 0 0 7 1 0
“(v-Ar)?
X+ 1) 0 0 % g v-Ar 1
B 7 v- At ]
x,(1) 7
x5() 0
X|xs() [+ | 0 u(). (8.23)
x6(1) 0
x5(t) 0

In this representation, if g = 0, system (8.23) becomes uncontrollable. To
alleviate the problem, we select g = 1072/7. With this choice of g, the
nonlinear term of (8.18) is exactly represented by the expression of (8.19)
under the condition

—179.4270° < p(1) < 179.4270°.

To this end, in application to the vehicle with triple trailers, we arrive at
the following Takagi-Sugeno fuzzy model:

Rule 1
IF p(¢) is “about 0 rad,”
THEN x(t + 1) = A,x(t) + B,u(t), (8.24)
Rule 2
IF p(t) is “about 7 rad or — 7 rad,”

THEN x(t + 1) = A, x(t) + B,u(?),
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Here,

v-A

t
p(t) =xq(1) + oL xs5(1),

2(1) = [xi(0) x5(0) x5(1) xe(1) x(0)],
[ - ”'LAt 0 0 0 0
v-LAt 1— v-LAt 0 0 0
A, - 0 VLAt 1— V'LA[ 0 0 ’
0 V'LAI 1 0
0 0 (”'Zi’)z v-Ar 1
v At ]
/
0
B,=| 0 |
0
0
B ”'Lm 0 0 0 0
V'LAt 1 — V'LAt 0 0 0
Az— VLAz 1— v~LAt 0 0 ’
0 0 e 10
0 0 g'(;'LA”Z g v Ar 1
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v Ar ]

The overall fuzzy model is inferred as
2
x(t+1) = Y h(p(1)){4;x(t) + Bu(t)}. (8.25)
i=1

Figure 8.2 shows the membership functions “about 0 rad” and “about 7 rad
or —m rad.”

Remark 21 As pointed out in Chapters 2—7, the stability conditions for the
case of the common B matrix (B, = --- = B,) can be simplified. In this

09 | “About 0
08 | / A\

o | \
06 |
05 |
04 |

02t
“About — 7 or 7’}
0.1+

-7 0 T
p(1) (rad)
Fig. 8.2 Membership functions.
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chapter we employ the general design conditions, that is, not the common B
matrix case, although the fuzzy model of the vehicle shares common
B among the rules.

Remark 22 As pointed out in Chapter 2, we construct the fuzzy model for a
simplified nonlinear model. The fuzzy model has two rules. If we try to derive
a fuzzy model for the original nonlinear system (8.1)—(8.9), 2° rules are
required to exactly represent the nonlinear dynamics. The rule reduction
leads to significant reduction of the effort for the analysis and design of
control systems. This approach is useful in practice.

8.1.1 Avoidance of Jack-Knife Utilizing Constraint on Output

Let us recall the LMI constraint on the output (shown in Chapter 3) to avoid
the jack-knife phenomenon. The following theorem deals with this aspect of
the control design.

THEOREM 30 Assume that the initial condition x(0) is known. The con-
straints ||x, (DI < A, 1x;DI < Ay, and ||x5(DI < A5 are enforced at all times
t > 0 if the LMIs

o
SRS (8.26)

x(0) X

X  xd’|
>0, (8.27)

dX MNI

[ x  xa’]
> 0, (8.28)

d,X MI

[ x  xa7]
> 0 (8.29)

d;X M1

hold, where X = P~'. In the triple-trailer case, we can select x(t), x;(t), and
x5(t) as outputs:

_xl(t)_
x;5(1)
x,(t)y=dx(t)=[1 0 0 0 0]]|xs(t) ]|,
x6(1)
_x7(t)_
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x(1)
x3(1)
xy(t) =dyx(t) =[0 1 0 0 0]]xs(r)
xq(1)
x47(1)
x,(1)
x5(1)
x5(t) =dsx(r) =[0 0 1 0 0]fxs(1)
x4(1)

_x7(t)_

Proof. The proof of (8.27) is as follows. From | x,(7) | < A,,
xI()x,(t) =xT(t)dld,x(t) < AL
Therefore, )
PxT(t)ledﬁ(t) <1.
i

In the same way as in the proof of Theorem 12, we have
1
/\—%xT(t)ledlx(t) <xT(1)X 'x(1).
The above inequality is
1
xT(1) Fledl -X'x(¢r) <0.
1
Therefore, we have
1
X - FXlele > 0.
1

Inequality (8.27) can then be obtained from the above inequality. We obtain
the LMI conditions (8.28) and (8.29) in the same fashion. (Q.E.D)

As mentioned in Chapter 3, the above LMI design conditions for output
constraints depend on the initial states of the system. To alleviate this
problem, the initial-state-independent condition given in Theorem 13 may be
utilized in the control design.
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8.2 SIMULATION RESULTS

In applying the LMI-based fuzzy control design to the backing-up control of
a vehicle with triple trailers, we investigate design conditions involving
stability, decay rate, constraint on the input and constraints on the output,
and disturbance rejection.

The purpose of considering decay rate is to achieve a desired rate of
backing up into the straight line. The system settles on to the straight line
quicker for a larger decay rate. However, an aggressive decay rate could
result in the occurrence of the jack-knife phenomenon and the saturation of
the steering angle.

The control input is the steering angle of the vehicle. The objective of the
input constraint is to avoid the saturation of the steering angle.

The outputs are the relative angles between the truck and the first trailer,
the first trailer and the second trailer, and the second trailer and the third
trailer. The purpose of the constraints is to avoid the jack-knife phenomenon.

The following design parameters are used in the simulation:

¢ The constraint on the input is w = 15°.
* The constraints on the outputs are A; = 90° for i = 1,2, 3.

The control input constraint “u = 15°” is the limitation of the steering
angle of the vehicle. The constraint “A = 90°” directly means the avoidance
of the jack-knife phenomenon. Figure 8.3 shows the simulation results of an
easy initial position for the stable fuzzy controller and the decay rate fuzzy
controller. Figure 8.4 shows the simulation results of a difficult initial
position for the stable fuzzy controller, the decay rate fuzzy controller and

2

15+ ‘ 3 ; Initial position
o R B S

E 05k ~ Stable fuzzy controller : 9\2@&@
0 ko arme grs (RN 00 ce
—051t Decay rate fuzzy controller

-1 i i I 1 i

-5 —4 -3 -2 -1 0 1
xg (m)

Fig. 8.3 Simulation result 1.
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3 :
251 . Decay rate fuzzy controller (jack-knife: here)
2 - : ‘ p— DEEn DQ&
Lsl ‘ Initial position Q%%
1 Decay rate fuzzy controller satisfying %
e 05} constraints on control input and output j
-’
N T2 e g :
85, oeeo
—05
S
. =
1L Bemn ©
! 5 5880 ey g o IS Y:99“1
—15r " Stable fuzzy controller
-2 i i i i i I
-5 -4 -3 -2 -1 0 1 2

Xg (m)

Fig. 8.4 Simulation result 2.

the fuzzy controller satisfying the decay rate and constraint on control input
and output. The following important remarks can be made from the simula-
tion results.

Remark 23 When we only invoke the stability conditions in the design, the
closed-loop system does not necessarily have the desired performances in
terms of decay rate and other specifications. Decay rate condition is included
in the design to arrive at a speedy response of the controlled system.

Remark 24 When the vehicle is at an “easy” initial position, the decay rate
design is effective, that is, the vehicle approaches the desired straight line
quickly. However, if the vehicle starts from a “difficulty” initial position, the
following problems occur. The first problem is the occurrence of the satura-
tion of the steering angle. The second problem is the occurrence of the
jack-knife phenomenon. In Figure 8.4, the jack-knife phenomenon occurs as
soon as the decay rate control starts.

Remark 25 To circumvent these problems, we invoke design conditions
involving input constraint (avoiding the steering angle saturation), output
constraints (avoiding jack-knife phenomenon), and stability and decay rate.
Hence we have a procedure to determine control gains to satisfy the stability
and performance of the control system.
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? Decay rate fuzzy controller satisfying
L3 | constraints on control input and output
1} (jack-knife: here) Initial position
~ e
E o5 z
=
O LS.
-05¢ ?)ecay rate fuzzy controller satisfying disturbance
_1 rejection and constraints on control input and output
-5 —4 -3 -2 -1 0 1
xg (m)

Fig. 8.5 Simulation result 3.

Next, the effect of disturbance rejection is demonstrated. Figure 8.5 shows
the control result for the disturbance v(¢) = (87/180) sin(¢) rad, where

1 00 00 1 00 0 0
01 0 0 0 01 0 0 0
E=l0 0 1 0 0|, ¢={0 01 0 0
00 0 0 0 000 0 0
00 0 0 0 00 0 0 0

for i = 1,2. This means that v(¢)’s are added to the angles x,(¢), x;(¢), and
x5(t), where the maximum values of each element in v(¢) correspond to +8°.
The decay rate fuzzy controller could no longer avoid the jack-knife phe-
nomenon. The decay rate fuzzy controller together with disturbance rejection
succeeds in the backing-up control though the vehicle oscillates around x,(¢)
due to a large disturbance.

Figure 8.6 shows the control result for a larger disturbance wv(z) =
(107 /180) sin(¢) rad, where

1 00 0 O 1 00 0 0
01 0 0 0 01 0 0 0
E=l0 0 1 0 0|, ¢={0 01 0 0
0000 0 000 0 0
00 0 0 0 000 0 0

for i = 1,2. Figure 8.7 shows the magnified area (arca A in Figure 8.6)
around initial positions. The decay rate fuzzy controller with disturbance
rejection performs well even for this large disturbance.

These results demonstrate that the control design is effective for the
backing-up control problem.
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;Decay rate fuzzy controller satisfying
15 “constraints on control input and output
‘(jack-knife: here)

Soeiapaanean

o,

5
5

o

o 10 - ‘ ‘ :

~ Decay rate fuzzy controller satisfying

® 5 disturbance rejection and constraints on
control input and output ‘ ‘
0 ‘ e SV

-40 -35 =30 -25 -20 -15 —-10 -5 0 5 10

xg (m)

Fig. 8.6 Simulation result 4.

17 Decay rate fuzzy controller satisfying constraints on
16.5 F control input and output (jack-knife: here)
16 r
15.5 ¢ o :
Initial posi
—~ 15r :
g
145 ¢
b3
14 +
135} ‘Decay rate fuzzy controller satisfying
13 + -disturbance rejection and constraints on
125 | control input and output
12 i i i i i i
-2 -1 0 1 2 3 4 5
Xg (m)

Fig. 8.7 Magnification of Figure 8.6 (area A).

8.3 EXPERIMENTAL STUDY

In this section, we describe the experimental study which is used to validate
and evaluate the fuzzy control design methodology presented above. The
experimental vehicle with triple trailers is shown in Figure 8.8. The experi-
mental setup is illustrated in Figure 8.9. The forward- and backward-motion
control of the vehicle is realized through a DC motor. The steering is done by
a stepping motor. The consecutive angle differences x,(¢), x5(¢), x;(¢) are
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Fig. 8.8 Photograph of articulated vehicle.

Personal Py CCD camera
computer processing -
™= Board
et A /D Converter
— |=={D /A Converter * * I *

Potentiometer

Stepping motor
DC motor

A\

part part1 part 2 part3 \"

Trailer  Trailer Trailer Trailer

Fig. 8.9 Experimental system.

provided by three potential meters. The third trailer has a marked surface
which is tracked by a CCD camera. The variables x(z) and x,(¢) are
computed successively via the image processing of the CCD camera images.
The control input, the steering angle u(?), is determined by the PDC fuzzy
controller.

Figures 8.10 and 8.11 show some representative experimental results. It is
demonstrated that the backing-up control of the vehicle with triple trailers
can be effectively realized by the fuzzy controller.

In the experiments, the CCD camera images are used to compute the
angle and position of the third trailer. The image processing speed is slow in
the experimental setup. Therefore the vehicle is controlled in a quasi-
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Fig. 8.10 Experimental result.
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Fig. 8.11 Experimental result.
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dynamic manner, that is, the vehicle stops momentarily between controls.
Also the stepsize of the vehicle movement is kept small. In addition the
coverage area of the CCD camera is limited to a small area. As a result, the
workspace of the vehicle is also limited so that some configurations cannot be
studied within the current setup. A direct benefit of the quasi-dynamic
nature of the vehicle motion is that the control-oriented models turn out to
be quite suitable and effective in the control design from a practical point of
view.

8.4 CONTROL OF TEN-TRAILER CASE

In this section, we present results on the stability analysis and control design
for a vehicle with 10 trailers (Figure 8.12). We apply similar design tech-

o

X13
X1s

X117
19
@Jzo

Fig. 8.12 Ten-trailer case.

= X g

X
X99 Xo t] 0

Initial state

”40_1: i e :
20 N : :
-350 | =300 -250 —200 —150 —100 =-30 0 50

X2

Fig. 8.13 Simulation result 1.
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Fig. 8.14 Simulation result 2.

niques as in the triple-trailer case to the 10-trailer case. The backing-up
control is very difficult even in theoretical studies. Some simulation results
are summarized in Figures 8.13 and 8.14. The simulation results demonstrate
the effectiveness of the systematic design techniques [2]. Even for this rather
complicated system, the design methodology yields a stabilizing PDC fuzzy
controller.

Remark 26 In the 10-trailer case, 2™ rules are required to exactly represent
the nonlinear dynamics. The stabilizing controller is designed based on a
simplified fuzzy model with only two rules [2]. Tt is demonstrated that the
controller performs well for the original nonlinear system. This design
example yet again demonstrates the importance of adopting a practical
engineering approach to complicated problems.
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FUZZY MODELING AND CONTROL
OF CHAOTIC SYSTEMS

Chaotic behavior is a seemingly random behavior of a deterministic system
that is characterized by sensitive dependence on initial conditions. Chaotic
behavior of a physical system can either be desirable or undesirable, depend-
ing on the application. It can be beneficial in many circumstances, such as
enhanced mixing of chemical reactants. Chaos can, on the other hand, entail
large-amplitude motions and oscillations that might lead to system failure.
The OGY method [1,2] for controlling chaos sparked a great number of
schemes on controlling chaos in linear and /or nonlinear control frameworks
(e.g.. [3]-[9D. In this chapter we explore the interaction between fuzzy
control systems and chaos. First, we show that fuzzy modeling techniques can
be used to model chaotic dynamical systems, which also implies that fuzzy
systems can be chaotic. This is not surprising given the fact that fuzzy systems
are essentially nonlinear. On the subject of controlling chaos, this chapter
presents a unified approach [10]-[14] using the LMI-based fuzzy control
system design.

Up to this point of the book, we have mostly considered the regulation
problem in control systems. Regulation is no doubt one of the most impor-
tant problems in control engineering. For chaotic systems, however, there are
a number of interesting nonstandard control problems. In this chapter, we
develop a unified approach to address some of these problems, including
stabilization, synchronization, and chaotic model following control (CMFC)
for chaotic systems. A cancellation technique (CT) is presented as a main
result for stabilization. The CT also plays an important role in synchroniza-
tion and chaotic model following control. Two cases are considered in
synchronization. The first one deals with the feasible case of the cancellation
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problem. The other one addresses the infeasible case of the cancellation
problem. Furthermore, the chaotic model following control problem, which is
more difficult than the synchronization problem, is discussed using the CT.
One of the most important aspects is that the approach described here can
be applied not only to stabilization and synchronization but also to the
CMFC in the same control framework. That is, it is a unified approach to
controlling chaos. In fact, the stabilization and the synchronization discussed
here can be regarded as a special case of CMFC. Simulation results show the
utility of the unified design approach. This chapter deals with the common B
matrix case. Some extended results including the different B matrix case will
be given in Chapter 11.

9.1 FUZZY MODELING OF CHAOTIC SYSTEMS
To utilize the LMI-based fuzzy system design techniques, we start with
representing chaotic systems using T-S fuzzy models. In this regard, the
techniques described in Chapter 2 are employed to construct fuzzy models
for chaotic systems. In the following, a number of typical chaotic systems with
the control input term added are represented in the T-S modeling frame-
work.
Lorenz’s Equation with Input Term
A1) = —ax, (1) + axy(1) + u(1),
Xy(1) = cxy(t) = x,(1) = x,(2)x5(1),
X3(1) = x, (1) x,(1) — bxy(1),
where a, b, and ¢ are constants and u(¢) is the input term. Assume that
x(t) €[—-d d] and d > 0. Then, we can have the following fuzzy model
which exactly represents the nonlinear equation under x,(¢) € [—d d]:
Rule 1
IF x,(¢) is M,
THEN x(t) = A, x(¢) + Bu(?).
Rule 2
IF x (1) is M,,

THEN 5(t) = A,x(1) + Bu(?).
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Here, x(1) = [x,(t) x,(t) x;OI,

[ —a a 0 —a a 0
A, = c -1 —df, A, = c -1 d|.
0 d -—b 0 —-d -b
1
0}
|1 0

x(1)
d

M(x(1)) = %(1 + ) M,(x(1)) = %(1 -

In this chapter, a = 10, b = §/3, ¢ = 28 and d = 30.
Rossler’s Equation with Input Term
x(1) = —x,(1) — x5(2),

%5(1) = x,(1) + axy(1),

k(1) = bxy(1) = fe —x,(0))x5(1) +u(t),

x,(1) )
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where a, b, and ¢ are constants. Assume that x,(¢) € [c —d ¢+ d] and
d > 0. Then, we obtain the following fuzzy model which exactly represents

the nonlinear equation under x,(t) € [c —d ¢ +dI:

Rule 1
IF x(¢) is M,,

THEN x(t) = A,x(t) + Bu(¢).

Rule 2
IF x(¢) is M,,

THEN x(t) = A, x(t) + Bu(¢).

Here, x(1) = [x,(t) x,(t) x;(O]".
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[0 -1 -1 0 -1 -1
Al= 1 a 0 5 Az_ 1 a 0
b 0 -d b 0 d
[0
B=10]|.
|1
1 c —x(t) 1 c —x(t)
My(xy(1)) = 5(1 + T), My(x,(1)) = E(l - T)

In this chapter, a = 0.34, b = 0.4, and d = 10.
Duffing Forced-Oscillation Model
X,(1) = x,(1)
i,(1) = —x7(1) — 0.1x,(¢) + 12cos(t) + u(t)

Assume that x,(1) € [—d d]and d > 0. Then we can have the following
fuzzy model as well:

Rule 1
IF x(¢) is M,
THEN x(t) = A,x(t) + Bu*(¢).
Rule 2
IF x (1) is M,,
THEN x(t) = A,x(t) + Bu*(¢).

Here, x(t) = [x,(t) x,()]" and u*(¢) = u(t) + 12 cos(t),

_[o 1 [ o 1
Al_[o —01} AZ_[—dZ —01}

xi(1) xi(1)
PR My(xy(t)) = FE

My(x,(t)) =1 -
In this chapter, d = 50 in this model.
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Henon Mapping Model
x,(t+ 1) = =xi(t) +03x,(1) + 1.4 + u(t),
x,(t+1) =x,(1).

Assume that x(¢) €[—d d] and d > 0. The following equivalent fuzzy
model can be constructed as well:

Rule 1
IF x(¢) is M|,
THEN x(t + 1) = A, x(t) + Bu*(¢).
Rule 2
IF x,(1) is M,,
THEN x(¢t + 1) = A, x(¢t) + Bu*(¢).

Here, x(t) = [x,(t) x,()]" and u*(t) = u(t) + 1.4,

_|d 03 | —d 03
A"[l 0}’ AZ‘[ 1 0}’

o[}
M (x,(1)) = %(1 - xlﬁlt) ) M,(x,(1)) = %(1 + xlgt) )

In this chapter, d = 30 in this model.

In all cases above, the fuzzy models exactly represent the original systems.
As mentioned in Remark 5, the Takagi-Sugeno fuzzy model is a universal
approximator for nonlinear dynamical systems. Other chaotic systems can be
approximated by the Takagi-Sugeno fuzzy models.

The fuzzy models above have the common B matrix in the consequent
parts and x,(¢) in the premise parts. In this chapter, all the fuzzy models are
assumed to be the common B matrix case, that is, the fuzzy model (9.1) is
considered. The different B matrix case will be discussed in Chapter 11. That
is, Chapter 11 deals with the more general setting.

Plant Rule i
IF z|(¢) is M;; and ---and z,(¢) is M,,,

1

THEN sx(¢t) = A,x(t) + Bu(¢), i=1,2,...,r, (9.1)
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where p = 1 and z,(¢) = x,(¢). Equation (9.1) is represented by the defuzzifi-
cation form

£ (2(0) (Ayx(1) + Ba(0)

sx(t) 7
:Zl wi(z(1))

;émdeM0+MML (92)

where sx(¢) denote x(¢) and x(z + 1) for CFS and DFS, respectively. In the
fuzzy models above for chaotic systems, z(¢) = z,(¢) = x,(¢).

Remark 27 The fuzzy models above have a single input. We can also
consider the multi-input case. For instance, we may consider Lorenz's
equation with multi-inputs:

x(1) = —ax (1) + axy(1) +u(1),
%5(1) = oxy(1) —x,(1) — xy(1)x5(1) + uy(1),
X5(1) = x,(1)x,(1) — bxy (1) + us(2).

As before, we can derive the following fuzzy model to exactly represent the
nonlinear equation under x,(t) € [-d dI:

Rule 1
IF x,(¢) is M|,

THEN x(t) = A,x(t) + Bu(t),
9.3)

Rule 2
IF x(8) is M,,
THEN x(t) = A,x(t) + Bu(t),

where u(t) = [u(t) uy(t) uy()]" and x(t) = [x,(t) x,(¢) x;(O,

[ —a a 0 —a a 0
A, = c -1 —=d|, A,= c -1 d|,
0 d -b 0 —-d -b

r
S O =

O = O
-0 O
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M,(x,(1)) = %(1 + xlg) ) My(x,(1)) = %(1 - xlg) )

This fuzzy model with three inputs is used as a design example later in this
chapter.

9.2 STABILIZATION

Two techniques for the stabilization of chaotic systems (or nonlinear systems)
are presented in this section. We first consider the common B stabilization
problem followed by a so-called cancellation technique. In particular, the
cancellation technique plays an important role in synchronization and chaotic
model following control, which are presented in Sections 9.3 and 9.4, respec-
tively.

9.2.1 Stabilization via Parallel Distributed Compensation

Equation (9.4) shows the PDC controller for the fuzzy models given in
Section 9.1:

Rule 1
IF x,(¢) is M,

THEN u(t) = —F,x(1). 9.4
Rule 2

IF x,(t) is M,,
THEN u(t) = —F,x(2).
Note that the chaotic systems under consideration in the previous section are

represented (coincidentally) by simple T-S fuzzy models with two rules.
Therefore the following PDC fuzzy controller also has only two rules:

Yow(z()Fx(t)
u(t) = == = — L h(z(1))Fx(r).  (93)
wi(z(1)) o

e

i=1

By substituting (9.5) into (9.2), we have

() = L ((0)(4, ~ BE)x(1), (9.6)
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where r = 2. We recall stable and decay rate fuzzy controller designs for CFS
and DFS cases, where the following conditions are simplified due to the
common B matrix case. These design conditions are all given for the general
T-S model with » number of rules.

Stable Fuzzy Controller Design: CFS Find X >0 and M, (i=1,...,r)
satisfying

—XAT — 4,X + M'B" + BM, > 0,
where X = P! and M, = F,X.

Stable Fuzzy Controller Design: DFS Find X >0 and M, (i =1,...,r)
satisfying

X xAT — m'BT
> 0,
A.X — BM, X
where X = P~! and M, = F,X.
Decay Rate Fuzzy Controller Design: CFS

maximize «

subject to X > 0,
XA —4,X + M'B" + BM;, — 2aX > 0,
where a« >0, X =P ! and M, = F.X.
Decay Rate Fuzzy Controller Design: DFS
minimize B
X, My,..., M,

subject to X > 0,

BX xX4] - M/B"| o
A, X — BM, X ’

where X = P~ and M, = F,X. It should be noted that 0 < 8 < 1.

Example 10 Let us consider the fuzzy model for Lorenz’s equation with
the input term. The stable fuzzy controller design for the CFS is feasible.
Figure 9.1 shows the control result, where the control input is added at
t > 10 sec. It can be seen that the designed fuzzy controller stabilizes the
chaotic system, that is, x,(0) = 0, x,(0) — 0, and x;(0) — 0.
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Fig. 9.1 Control result (Example 10).
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Fig. 9.2 Control result (Example 11).

Example 11 We design a stable fuzzy controller for Rossler’s equation with
the input as well. The stable fuzzy controller design for the CFS is feasible.
Figure 9.2 shows the control result, where the control input is added at
t > 70 sec. It can be seen that the designed fuzzy controller stabilizes the
chaotic system.
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Example 12 We design a stable fuzzy controller for Duffing forced oscilla-
tion with the input. The stable fuzzy controller design for the CFS is feasible.
Figure 9.3 shows the control result, where the control input is added at
t > 30 sec. The designed fuzzy controller stabilizes the chaotic system.
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=
-5 I I I 1 1 I 1 1 1
0 5 10 15 20 25 30 35 40 40 50
—_ 20 I I I ! ! I ! ! !
0 5 10 15 20 25 30 35 40 40 50
Time
Fig. 9.3 Control result (Example 12).
2 T T T
Tol
— 2 1 i 1 I I I I
0 5 10 15 20 25 30 35 40
2 T T T T T T T
So
=
-2 I 1 I | I | I
0 5 10 15 20 25 30 35 40
1 . . .
S ol
= 1l |
—_ 2 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40
Time

Fig. 9.4 Control result (Example 13).
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Example 13 Let us consider the fuzzy model for the Henon mapping model.
The stable fuzzy controller design for the DFS is feasible. Figure 9.4 shows
the control result, where the control input is added at ¢ > 20 sec.

Example 14 Consider the fuzzy model for Lorenz’s equation with the input
term. The decay rate fuzzy controller design for the CFS is feasible. Figure
9.5 shows the control result, where the control input is added at ¢ > 10 sec.
Note that the speed of response of the decay rate fuzzy controller is better
than that of the stable fuzzy controller in Example 10.

Example 15 Consider the fuzzy model for Lorenz’s equation with the input
term. The fuzzy controller design satisfying the stability conditions and the
constraint on the output for the CFS is feasible, where A = 9 and C = C, =
C, =[1 0 0]. This means that x,(z) is selected as the output, that is,
y(t) = x,(¢t) = Cx(¢). Figure 9.6 shows the control result, where the control
input is added at ¢ > 10 sec. Note that the fuzzy controller satisfies
max,|[x,(1)|| < A, but the control effort is very large.

Example 16 To solve the excessive control effort problem, the constraint on
the control input is added to the design of Example 15. The fuzzy controller
design satisfying the stability conditions and the constraints on the output
and the control input for the CFS is feasible, where A =9, u = 500, and
C=C,=C,=1[1 0 0]. Figure 9.7 shows the control result, where the con-
trol input is added at ¢ > 10 sec. The designed fuzzy controller stabilizes the
chaotic system. It should be emphasized that the control input and output
satisfy the constraints, that is, max,|lu(t)|l, < w and max,|lx ()|, < A.
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Fig. 9.5 Control result (Example 14).
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Fig. 9.6 Control result (Example 15).
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Fig. 9.7 Control result (Example 16).
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Fig. 9.8 Control result (Example 17).

Example 17 Consider Lorenz’s equation with three inputs described in
Remark 27. The fuzzy controller design satisfying the stability condition and
the constraints on the output and the control input for the CFS is feasible,
where A =9, u =500, and C=C, = C, =[1 0 0]. Figure 9.8 shows the
control result, where the control input is added at r > 10 sec. Note that the
control input and output also satisfy the constraints, that is, max,||u(¢)ll, < u
and max [lx,()l, < A.

9.2.2 Cancellation Technique

This subsection discusses a cancellation technique (CT). This approach
attempts to cancel the nonlinearity of a chaotic system via a PDC controller.
If this problem is feasible, the resulting controller can be considered as a
solution to the so-called global linearization and the feedback linearization
problems. The conditions for realizing the cancellation via the PDC are given
in the following theorem.

THEOREM 31 Chaotic systems represented by the fuzzy system (9.2) are
exactly linearized via the fuzzy controller (9.5) if there exist the feedback gains F,
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such that

{(Al - BFl) - (Ai - BFi)}T
x{(A4, — BF,) — (4, —BF)} =0, i=23,...,r. (9.7)

Then, the overall control system is linearized as sx(¢) = Gx(t), where G = A, —
BF, = A, — BF.

Proof. Tt is obvious that G = A, — BF, = A, — BF, if the condition (9.7)
holds.

The conditions are applicable to both the CFS and the DFS. If B is a
nonsingular matrix, the system is exactly linearized using F, = B~'(G — A4,).
However, the assumption that B is a nonsingular matrix is very strict. If B is
not a nonsingular matrix, the conditions of Theorem 31 can still be utilized
by the following approximation technique. That is, the equality conditions of
Theorem 31 are approximate by the following inequality conditions:

X{(Al - BFl) - (Ai - BFi)}T
x{(A4, —BF,) — (A, — BF)}X < BS, i=2,3,...,r,

where X is a positive definite matrix and § is a positive definite matrix such
that STS < I. The conditions (9.7) are likely to be satisfied if the elements in
BS are near zero, that is, S = 0, in the above inequality. Using the Schur
complement, we obtain

BS X{(Al - BFI) - (Ai - BFi)}T

{(A, — BF,) — (4, — BF)}X I > 0,

i=2,3,...,r.

Define M, = F,X so that for X > 0 we have F, = M;X"'. Substituting into
the inequalities above yields

BS {(Alx_ BM,) — (A4, X - BMi)}T >0

{(A1X - BMI) o (AiX o BMi)} 1 7
i=2,3,...,r.

Note that G is not always a stable matrix even if the condition of Theorem 31

holds.

From the discussion above as well as the stability conditions described in

this section, we define the following design problems using the CT:
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Stable Fuzzy Controller Design Using the CT: CFS

minimize

subject to X >0, B3>0, S > 0,

(1 S
>
s I 0,

—A,X + BM, — XA” + M'B" > 0, i=1,2,...,r,

BS {(4,X = BM)) — (4.X = BM)Y' | _ o
{(4,X — BM,) — (4,X — BM,)} I ’
i=2,3,...,r.
where X = P~ and M, = F,X.
Stable Fuzzy Controller Design Using the CT: DFS
minimize B
X, 8, M, M,,..., M,
subject to X >0, 8> 0, S > 0,
(1 S
s 1 >0,
[ X XA, — M/B” _
>0, i=1,2,...,r,
A;X — BM, X
BS {(A1X - BM,) — (4;X - BMi)}T >0
{(4,X — BM,) — (4;X — BM,)} I ’
i=2,3,...,r,

where X = P! and M, = F,X.
Decay Rate Fuzzy Controller Design Using the CT: CFS

maximize o

subject to X > 0,8> 0,2 > 0,5 > 0,
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(1 S

s 17"

—A,X + BM, — XAT + M/B" — 2aX > 0, i=1,2,...,r,

BS {(4,X = BM,) — (4, X = BM)}Y' | _
{(A1X - BM,) — (4,X — BMi)} 1 ’
i=2,3,...,r,
where X = P~! and M, = F,X.
Decay Rate Fuzzy Controller Design Using the CT: DFS
minimize o
X, 8, M, M,,..., M,
minimize 8
X, S\M|,M,,..., M,
subjectto X >0, B>0,0<a<1,S5>0,
(1 S
>
s I 0,
[ ax X4, — M'B” .
>0, i=1,2,...,r,
A,X — BM, X
BS {(4,X = BM)) = (4.X = BM)Y' | _ o
{(A1X - BMI) - (AiX - BML’)} 1 ’
i=2,3,...,r,

where X = P~ and M, = F,X.

Remark 28 1In the LMIs above, if the elements in 8-S are near zero, that
is, B8-S = 0, the CT problems are feasible. In this case, G = 4; — BF;, for all
i and G is a stable matrix.

Remark 29 The decay rate design problems have two parameters « and
to be maximized or minimized. These problems can be solved as follows: For
instance, first minimize B, where « = 0. After B is fixed, a« can be mini-
mized or maximized. This procedure may be repeated to obtain a tighter
solution. Another way is to introduce an idea for mixing « and B as shown
in Theorems 28 and 29.

Of course, other LMI conditions, for example, the constraints on control
input and output, can be added to the design problem. Thus, by combining a
variety of control performances represented by LMIs, we can realize multi-
objective control. Chapter 13 will present multiobjective control based on
dynamic output feedback.
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Fig. 9.9 Control result (Example 18).
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Fig. 9.10 Control result (Example 19).
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Example 18 The stable fuzzy controller design to realize the CT for Lorenz’s
equation with three inputs is feasible. Figure 9.9 shows the control result,
where the control input is added at ¢ > 10 sec. The designed fuzzy controller
linearizes and stabilizes the chaotic system.

Example 19 Let us consider the fuzzy model for Rossler’s equation with
the input term. The stable fuzzy controller design using the CT is feasible.
Figure 9.10 shows the control result, where the control input is added at
time > 70 sec. It can be seen that the designed fuzzy controller linearizes
and stabilizes the chaotic system.

9.3 SYNCHRONIZATION

In addition to the stabilization of chaotic systems (Section 9.2), chaos
synchronization and model following are perhaps more stimulating problems
in that chaotic behavior is exploited for potential applications such as secure
communications.

In this section, we consider the following synchronization problem: design
the control input so that the controlled system achieves asymptotic synchro-
nization with the reference system given that two systems start from different
initial conditions. Here the reference system and controlled system are taken
to be the same chaotic oscillator except that the controlled system has control
input(s) (the controlled system can be viewed as an observer of the reference
system). In this section, only the special case of full state feedback based on
the CT is considered. Two cases of the cancellation problem are discussed.

Case 1: The cancellation problem is feasible, that is, all the elements in
B - S are near zero.

Case 2: The cancellation problem is infeasible, that is, all the elements in
B - S are not near zero.

9.3.1 Case 1

Consider a reference fuzzy model which represents a reference chaotic
system.

Reference Rule i
IF z (1) is M;; and ---and zg (¢) is M,,,

THEN sxp(t) = A, x (1), i=12,...,r, 9.8)
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where  zp(t) = [25,(t) 2z, (1) =+ zg,(D]'. The defuzzification process is
given as

sxp(t) = X hi(zp(1))A;xx(1). (9:9)
i=1
Assume that e(t) = x(¢) — xz(¢). Then, from (9.2) and (9.9), we have
se(t) = X hi(z(1))A;x(t) — X hi(zp(2)) A;xg(r) + Bu(t). (9.10)
i=1 i=1

We design two fuzzy subcontrollers to realize the synchronization:
Subcontroller A
Control Rule i
IF z(t) is M;) and ---and z,(¢) is M,,,
THENu ,t) = —Fx(t), i=12,...,r. 9.11)
Subcontroller B
Control Rule i
IF z (1) is M;; and ---and zg ,(¢) is M,
THEN ug(t) = F,xg(t), i=12,...,r 9.12)

The overall fuzzy controller is constructed by combining the two subcon-
trollers:

u(1)

u, (1) +ug(r)

_ El hi(z(1)) Fix(1) + 21 hi(zg(1))Fxg(t).  (9.13)

The design is to determine the feedback gains F.. By substituting (9.13) into
(9.10), we obtain

se(r) = £ (2(0)(4; = BE)x(1)

- L), = BE) i) (9.14)
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Fig. 9.11 Control result 1 (Example 20).

Applying Theorem 31 to the error system (9.14), we attempt to linearize the
error system using the fuzzy control law (9.13). If the conditions of Theorem
31 hold, the linearized error system becomes se(t) = Ge(t), where G = A; —
BF,. As mentioned before, the G is not always a stable matrix even if the
conditions of Theorem 31 hold. If we can find feedback gains F; such that G
is a stable matrix, the fuzzy controller linearizes and stabilizes the error
system. The linearizable and stable fuzzy controllers with the feedback gains
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F; can be designed by solving the LMI-based design problems using the
approximate CT algorithm described in Section 9.2.

Example 20 The decay rate fuzzy controller design to realize the synchro-
nization for Lorenz’s equation with three input terms is feasible. Figures 9.11
and 9.12 show the control result, where the control input is added at ¢ > 20
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Fig. 9.12 Control result 2 (Example 20).
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Fig. 9.13 Control result 1 (Example 21).

sec and the initial values of x(0) are slightly different from those of xz(0). It
can be seen that the designed fuzzy controller linearizes and stabilizes the
error system, that is, e,(#) = 0, e,(¢#) = 0, and e;(z) — 0.

Example 21 Consider Lorenz’s equation with three inputs. The fuzzy con-
troller design satisfying the stability conditions and the constraints on the
output and the control input for the CFS is feasible, where A = 100,
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Fig. 9.14 Control result 2 (Example 21).

175

w =500, and C = C, = C, = I,. This means that e,(¢), e,(¢), and e4(¢) are
selected as the outputs, that is, e(t) = [e(r) e,(¢) e;(¢+)] = Cx(¢). Figures
9.13 and 9.14 show the control result. The designed fuzzy controller lin-
earizes and stabilizes the error system. It should be emphasized that the
control input and output satisfy the constraints, that is, max,|lu(¢)ll, < p and

max,[le(H)ll, < A.
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Fig. 9.15 Control result 1 (Example 22).

Example 22 Consider Rossler’s equation with the input term. The fuzzy
controller design satisfying the stability conditions and the constraints on the
output and the control input for the CFS is feasible, where A = 10, u = 30,
and C=C, =C, =1, Figures 9.15 and 9.16 show the control result,
where the control input is added at ¢ > 30 sec. It can be seen that the
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Fig. 9.16 Control result 2 (Example 22).

designed fuzzy controller linearizes and stabilizes the error system. Note
that the control input and the output satisfy the constraints, that is,
max,|lu(s)l| < p and max,|le(H)ll, < A.

Example 23 Consider Rossler’s equation with the input term. The fuzzy
controller design satisfying the stability conditions and the constraints on the
output and the control input for the CFS is feasible, where A = 10, u = 30,
and C = C, = C, = I,. Figures 9.17 and 9.18 show the control result. It can
be seen that the designed fuzzy controller linearizes and stabilizes the error
system. It should be emphasized that the control input and the output satisfy
the constraints, that is, max,|lu(s)|l, < u and max,|le(s)ll, < A. In addition,
note that this control result is better than that of Example 22 since the decay
rate is considered in the design.
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Fig. 9.17 Control result 1 (Example 23).
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Fig. 9.18 Control result 2 (Example 23).
9.3.2 Case 2

179

If the cancellation problem is infeasible, that is, all the elements in 8- § are
not near zero, the error system cannot be linearized. Then, we have

hi(z(1))A;x(t) — Zh (zg(t))A;xx (1) + Bu(t)

se(t)

W Mw N M~

+ Z [ (=(6)) ~ hi(za(D)Arxa(e) + Bu().

hi(z(t)) 4;e(t)

(9.15)

Assume that z(#) = x(¢) and zz(¢) = xz(z). Then, the second term is

almost zero:

M\

{hi(2(2)) = hi(zr(1))}4;xx(1) = 0

I
—

www.4electron.com



180

FUZZY MODELING AND CONTROL OF CHAOTIC SYSTEMS

0 10 20 30 40 50 60 70 8 90 100

0 10 20 30 40 50 60 70 8 90 100

0 10 20 30 40 50 60 70 8 90 100

0 10 20 30 40 50 60 70 8 90 100

Time
Fig. 9.19 Control result 1 (Example 24).
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if lle(t)|l < 5, where & is a small value. As a result, the overall system is
approximated as

é(1) = X h(z(1)) Ae(t) + Bu(t).
i=1
Consider the following fuzzy feedback law for the error system:

u(t) = —i_ilhi(z(t))Fie(t), le(t)ll < 8,

0, otherwise.

Then, if there exist the feedback gains F; satisfying the stability conditions
described in Chapter 3, the stability of the error system is guaranteed near
the equilibrium points, that is, [le(s)]| < 6. The feedback gains F; can be
found by solving the design problems in Section 9.2. It should be noted that
this approach guarantees only the local stability. This is the same idea as the
OGY method [1]. Therefore, the converging time to an equilibrium point is
very long in general, but the control effort is small.
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Fig. 9.20 Control result 2 (Example 24).
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Example 24 We design a stable fuzzy controller for Rossler’s equation with
the input using the “case 2” design technique. The design problem is
feasible. Figures 9.19 and 9.20 show the control result, where the control
starts at ¢ = 40 sec. However, the control input is added around 83 seconds
and stabilizes the error system and the synchronization is realized.

9.4 CHAOTIC MODEL FOLLOWING CONTROL

Section 9.3 has presented the synchronization of chaotic systems, where A4,
matrices of the fuzzy model should be the same as A; matrices of the fuzzy
reference model. This section presents chaotic model following control
(CMFCO), where A; matrices of the fuzzy model do not have to be the same as
A; matrices of the fuzzy reference model. Therefore, the CMFC is more
difficult than the synchronization. In this section, the controlled objects are
assumed to be chaotic systems. However, note that the CMFC can be
designed for general nonlinear systems represented by T-S fuzzy models.

Consider a reference fuzzy model which represents a reference chaotic
system.

Reference Rule i

IF zp((t) is N and ---and zg () is N,

THEN sxp(t) = D;xg(2), i=1,2,...,rz 9.16)

Assume that xz(¢) € R" and A4, # D,. The defuzzification process is given as
"R

sxp(t) = 2 vi(2r(1)) Dixp(t). (9.17)
i=1

The CMFC can be regarded as nonlinear model following control for the
reference fuzzy model (9.17). Assume that e(t) = x(¢) — x4(¢). Then, from
(9.2) and (9.17), we have

se(t) = X hi(z(1))A;x(1)
i=1
"R
— 2 ui(zg(1))D;xp(t) + Bu(r). (9.18)
i=1
Consider two sub-fuzzy controllers to realize the CMFC:
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Subcontroller A
Control Rule i
IF z|(¢) is M;; and ---and z,(¢) is M, ,,
THEN u [(t) = —F.x(¢), i=1,2,...,r. 9.19)
Subcontroller B
Control Rule i
IF zp /(1) is N and ---and zg () is N,
THEN uy(t) = K,xx(t), i=1,2,...,7. (9.20)

The combination of the subcontroller A and the subcontroller B is repre-
sented as

u(t) =uy(t) +up(t)

r 'R
= = L hi(2()) Fix(t) + X vi(zx(1)) Kixp(2).  (9.21)
i=1 i=1
By substituting (9.21) into (9.18), the overall control system is represented as

se(r) = L () (4, - BE)x(1)

. 2] 0(2x(1))(D; — BK,)x(1). (9.22)

THEOREM 32 The chaotic system represented by the fuzzy system (9.2) is
exactly linearized via the fuzzy controller (9.21) if there exist the feedback gains F;
and K; such that

T
{(A1 - BF1) - (Ai - BF:)}
x{(4, —BF,) — (4, — BF,))} =0, i=2,3,...,r, (9.23)
T
{(4, - BF)) - (D, - BK))}
x{(4, —BF)) — (D; - BK,)} =0, j=1,2,...,rp,. (9.24)
Then, the overall control system is linearized as sx(t) = Gx(t), where G =

A, — BF, = A, — BF, = D, — BK,.
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Proof. 1t is obvious that G = A, — BF, = A; — BF, = D; — BK, if conditions
(9.23) and (9.24) hold.

An important remark is in order here.

Remark 30 The CMFC reduces to the synchronization problem when r = rg
and 4, =D; for i = 1,...,r and j =1,...,rg. The CMFC reduces to the
stabilization problem when D; = 0 and x,(0) = 0 for i = 1,..., rg. There-
fore, as mentioned above, the CMFC problem is more general and difficult
than the stabilization and synchronization problems. In addition, the con-
troller design described here can be applied not only to stabilization and
synchronization but also to the CMFC in the same control framework.
Therefore the LMI-based methodology represents a unified approach to the
problem of controlling chaos.

If B is a nonsingular matrix, the error system is exactly linearized and
stabilized using F, =B (G — A4,) and K, = B '(G — D,). However, the
assumption that B is a nonsingular matrix is very strict. On the other hand, if
B is not a nonsingular matrix, Theorem 32 can be utilized by the approxima-
tion CT technique. The LMI conditions can be derived from Theorem 32 in
the same way as described in Section 9.2.

Note that G is not always a stable matrix even if the conditions of
Theorem 32 hold. From Theorem 32 and the stability conditions, we define
the following design problems:

Stable Fuzzy Controller Design Using the CT: CFS

minimize B

subject to X > 0, 8> 0,5 > 0,

[; f] >0,
~A,X+BM, — XAT + MTB" >0, i=1,2,...,r,
[ BS ((4,X — BM) — (4,X —BM)Y' | _
| {(4,X — BM,) — (4,X — BM,)} I ’
i=2,3,...,r,
[ BS {(4,X - BM,) — (D;X — BN].)}T] -0
{(4,X - BM,) — (D;X — BN,)} I ’
J=12,...,rk,

where X = P!, M, = F\X, M; = F,X, and N, = K X.
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Stable Fuzzy Controller Design Using the CT: DFS

minimize B

subject to X > 0,8> 0, S > 0,

(1 s
>
s I 0,
[ X XA, — M'B” ,
>0, i=1,2,...,r,
A,X — BM, X
BS {(4,X = BM,) — (4,X — BMi)}T >0
{(4,X — BM,) — (A, X — BM))} I ’
i=2,3,...,r,
BS (X —BM) = (DX =BV} |
{(A1X - BM,) — (DjX - BN/)} 1 ,
J=12,...,rk,
where X = P!, M, = F\X, M; = F,X, and N, = K X.
Decay Rate Fuzzy Controller Design Using the CT: CFS
maximize «
X,S, M, M,, ..., M,
minimize 8
X, S\M;,M,, ..., M,
subjectto X > 0,8> 0, > 0,5 > 0,
(1 S
s 1]7%
~A,X +BM, — XAT + M/B" —2aX>0, i=1,2,...,r,
[ BS (4, X~ BM) — (4,X —BMY' |
{(4,X — BM,) — (A,X — BM))} I ’
i=23,...,r,
BS (X —BM) = (DX =BV} |
{(A1X — BM,) — (DjX - BN/)} I ,
j=12,...,r,

where X = P!, M, = F\X, M; = F,X, and N, = K X.
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Decay Rate Fuzzy Controller Design Using the CT: DFS

minimize «

subjectto X >0,8>0,0<a < 1,8 >0,

(1 s
s 1 >0,
[ ax XA, — M/B" _
>0, i=1,2,...,r,
A, X — BM, X
pS {(4,X = BM)) — (4.X = BMD)Y' | _ o
{(A1X —BM,) — (4,X — BMi)} 1 ’
i=2,3,...,r,
BS (X = BM) = (DX =BN)}' |
 {(4,X — BM)) — (D,X — BN))) 1 ’
j=12,...,r,

where X =P~', M, = F,X, M, = F,X, and N, = K X.

Remark 31 In the LMIs, if all elements in B8-S are near zero, that is,
B-S = 0, the cancellation problems for decay rate fuzzy controller designs
are feasible. In this case, G =4, — BF, =4, —BF,=D; - BK; V, ;, and G

is a stable matrix.

Example 25 Let us consider the fuzzy model for Lorenz’s equation with
three inputs. The parameters are set as follows:

Rule 1
IF x,(¢) is M,
THEN x(t) = A,x(t) + Bu(¢).
Rule 2
IF x(8) is M,,

THEN x(t) = A, x(t) + Bu(¢).
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Here, x(1) = [x,(t) x,(t) x;OI,

[ —05-a 05-a 0

A =| 2-¢ -1 —d |,
0 d —0.5-b |
[—05-a 05-a 0 |

A, = 2-c -1 d ,
|0 -d -05-b]
(1 0 0

B= 0 1 O 3
0 0 1

x(1)

10).

M,(x,(1)) = —( ) My(x(1)) = 1(1 -y

Consider the following reference fuzzy model:

Reference Rule 1

IF x, (1) is Ny,
THEN x(t) = D, xz(0).

Reference Rule 2

IF x, () is N,,
THEN x(t) = D,xx(1).

Here, xz(1) = [x(t) xpy(t) x5O,

—-a a 0
c -1 —-d|,
0 d -b

Rl( )

D, = D, =

0 -d —b

—a a 0
C _1 d ’

m@)y

M) = 51 2] ) = 5[

where xg,(t) € [—d d] The stable fuzzy controller design using the CT is
feasible. Figures 9.21 and 9.22 show the control result, where the control
input is added at ¢ > 10 sec. It can be seen that the designed fuzzy controller
realizes chaotic model following control, that is, e,(t) = 0, e,(t) = 0, and
e;(t) = 0.
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Fig. 9.21 Control result 1 (Example 25).

Example 26 Let us consider the fuzzy model for Rossler’s equation with the
input term. The parameters are set as follows:

Rule 1
IF x(¢) is M,
THEN x(t) = A,x(t) + Bu(t).
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Fig. 9.22 Control result 2 (Example 25).
Rule 2

IF x(8) is M,,

THEN x(t) = A, x(t) + Bu(¢).
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Here, x(1) = [x,(t) x,(t) x;OI,

0 -1 -1 0 -1 -1
Alz 1 a 0 5 AZ_ 1 a O 5
1056 0 —d 05-b 0 d
[0
B=10],
!
1 2-c—x(t)
M) = 51+ T,
1 2-c—x(t)
M S | S
Z(XI(I)) 2( d )

Consider the following reference fuzzy model:
Reference Rule 1
IF x x(¢) is Ny,
THEN x(t) = D, xz(¢).
Reference Rule 2
IF x,x(t) is N,,
THEN x(t) = D,xg(2).

Here, xz(t) = [xz(1)  xpo(1)  xp5(DT,

0 -1 -1 0O -1 -1
Dl =11 a 0 , D2 =1 a 0 )
b 0 —-d b 0 d
1 ¢ —xp(1)
Ny(xpy(1)) = = |1+ —282
l(‘le( )) 2( d )’
1 ¢ —xp(1)
Ny(xpi(1)) = =1 — ——222
2(xR1( )) 2( d )’

where x,,(¢) € [c —d ¢ + d]. The stable fuzzy controller design using the
CT is feasible. Figures 9.23 and 9.24 show the control result, where the
control input is added at ¢ > 30 sec. The designed fuzzy controller realizes
chaotic model following control.
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Fig. 9.23 Control result 1 (Example 26).
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Fig. 9.24 Control result 2 (Example 26).
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FUZZY DESCRIPTOR SYSTEMS
AND CONTROL

This chapter deals with a fuzzy descriptor system defined by extending the
original Takagi-Sugeno fuzzy model. A number of stability conditions for the
fuzzy descriptor system are derived and represented in terms of LMIs.
A motivating example for using the fuzzy descriptor system instead of the
original Takagi-Sugeno fuzzy model is presented. An LMlI-based design
approach is employed to find stabilizing feedback gains and a common
Lyapunov function.

The descriptor system, which differs from a state-space representation, has
generated a great deal of interest in control systems design. The descriptor
system describes a wider class of systems including physical models and
nondynamic constraints [1]. It is well known that the descriptor system is
much tighter than the state-space model for representing real independent
parametric perturbations. There exist a large number of papers on the
stability analysis of the T-S fuzzy systems based on the state-space represen-
tation. In contrast, the definition of a fuzzy descriptor system and its stability
analysis have not been discussed until recently [2]. In [2] we introduced the
fuzzy descriptor systems and analyzed the stability of such systems. This
chapter presents both the basic framework of [2,3] as well as some new
developments on this topic.

As mentioned in Chapter 1, h; N v, # ¢ denotes all the pairs (i, k)
excepting h,(z(1)v,(z(¢)) = 0 for all z(t); h; N h; N v, # ¢ denotes all
the pairs (i, j, k) excepting h,(z(¢))h (z(t))vk(z(t)) =0 for all z(¢); and
i <jst h;"h;Nu + @ denotes all i <;j excepting h,(z(t)h;(z(t))v,(z(2))
=0, Vz(t).

195
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10.1 FUZZY DESCRIPTOR SYSTEM

In [4,5], a fuzzy descriptor system is defined by extending the T-S fuzzy
model (2.3) and (2.4). The ordinary Takagi-Sugeno fuzzy model is a special
case of the fuzzy descriptor system. We derive stability conditions for the
fuzzy descriptor system, where the E matrix in the fuzzy descriptor system
is assumed to be not always nonsingular. The fuzzy descriptor system is
defined as

re

¥ 0 (2(0) Ek(1) = X h(2(0)(A,x(1) + Bu(o)),
k= -l (10.1)

y(1) = T h=(0)Cx(0),

where x(t) €R", y(t) €RI, u(t) €R™,

h(z(0) 20, T h(x(0) =1,

re

0(2(1)) 20, ¥ u,(z(1)) = 1.

k=1

Here x € R" is the descriptor vector, u € R™ is the input vector, y € RY is
the output vector, E, € R"*", A, € R"*", B, € R"*™, and C;, € R”*". The
known premise variables z,(¢) ~ z,(#) may be functions of the states, external
disturbances, and /or time.

Remark 32 A fuzzy descriptor system was first defined in [2]. In [2], a
special case, that is, h,(z(1)) = v,(z(¢)) and r = r¢, was presented. In [4, 5],
the fuzzy descriptor system was generalized as shown in (10.1).

By defining x*(¢) = [x7(¢) 7(t)]", the fuzzy descriptor system (10.1) can
be rewritten as

B (1) = £ T h(2(0)(2(0) (A55°(1) + Bru(r)),

i=1k=1

. (10.2)
y(t) = _Z hi(z(1))Clx*(1),

where

In the following the stability for the fuzzy descriptor system (10.2) is
considered.
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10.2 STABILITY CONDITIONS

The open-loop systems of (10.2) is defined as follows:
E*i*(t) = X X hi(2(1))u(2(1)) Afx*(1). (10.3)
i=1 k=1
The fuzzy descriptor system (10.3) is quadratically stable if

dv(x*(1))

S < el ()b

where
V(x*(1)) = x*" (1) E* Xx* (1),
and the following conditions are satisfied:
1. det(sE* — Y Y h(z(t))v(z(t))A%) #+ 0 and the open-loop system

L. i=1 k=1
is impulse free.

2. There exist a common matrix X and « > 0 such that
X € R¥2n, E*"X =XTE* > 0, detX #= 0.

Theorem 33 gives a sufficient condition for ensuring the stability of (10.3).

THEOREM 33 The fuzzy descriptor system (10.3) is quadratically stable if
there exists a common matrix X such that

E*"X=XTE* > 0, (10.4)
ATX + XT45 <0,  h,Nu #*d. (10.5)
Proof. Consider a candidate of the quadratic function
V(x*(t)) =x*T(t) E* " Xx*(1).
Then,
V(x*(1)) = X X hi(2(0)v(2(0)) 27 (1) (AKX + X )x*(1).
i=1 k=1
Therefore, we have the following stability conditions:

AYX +X45, <0,  h,Nuy # 4. (Q.E.D.)
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Remark 33 As mentioned before, h; N v, #+ ¢ denotes “all the pairs (i, k)
excepting h,;(z(¢+))v,(z(¢)) = 0 for all z(¢).” In other words, we can ignore the
condition (10.5) for the pairs (i, k) such that 4,(z(¢))v,(z(¢)) = 0 for all z(z).

Remark 34 In Theorem 33, X is not required to be positive definite.
Corollary 5 is needed to discuss the stability of closed-loop systems.

COROLLARY 5 The conditions (10.6) and (10.7) imply (10.4) and (10.5),
where S, is a positive definite matrix:

S, = ST >0, (10.6)

ATS, + 874, i

<0,
S, + 8,4, — ElS;, —E!S, —S,E,

h,Nnu #¢, (10.7)

where the asterisk denotes the transposed elements (matrices) for symmetric
positions. For example, in (10.7), it represents (S, + S;4; — E{S;)".

s 5

Then, (10.6) is obtained from (10.4) as follows:

Proof. Define X as

Sy
S,

ey (1 o][s, o] [s o0 o
0 0[|S, S, 0o of
e - [s7 sT1[1 o LA o
0 S’||o o 0 o|"

Equation (10.7) is obtained as follows:

AN X + X4y

o A7 |[s, o] [sT sTl[o 1
= +
I -E||S5 s 0 ST||4, -E
ATS, +8I4, S, +A'S, — SIE
= o Tt B <0, (QED.)
S, + 8,4, — E[S;  —E[S, — S,E,
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Remark 35 1t is stated in Remark 34 that X is not required to be posi-
tive definite. However, in Corollary 5, X is assumed to be invertible since

s 0
X = s, Sl],where S, > 0.

Next, we consider stability conditions for closed-loop systems. We propose
a modified PDC (10.8) to stabilize the fuzzy descriptor system (10.2):

a()= = ¥ ThOEES©.  (108)

p
i=1

where F} = [Ek 0]. The fuzzy controller design problem is to determine
the local feedback gains F;,.
By substituting (10.8) into (10.2), the fuzzy control system is represented as

e

B () = ¥ 8 L h(2(0)hy(2(6))0e(2(0)) (45 — BIEL)x(0).

i=1j=1 k=1
(10.9)

Theorem 34 gives a sufficient condition for ensuring the stability of (10.9).

THEOREM 34 The fuzzy descriptor system (10.2) can be stabilized via the
PDC fuzzy controller (10.8) if there exist Z,, Z,, and M, such that

z' =27, >0, (10.10)

—Z; — Z3T *
Z, +A,Z,
—B M, +EZ,

<0,
_Z1EkT - Ekzl

h,Nu, #¢, (10.11)

—2Z, - 277 s
27, + A,Z,
—BM;, +A4;Z, —2Z,E] — 2E,Z,
—-BM, + 2E,Z,

<0

b

i<j<rst.h,Nh Ny #g, (10.12)

where the asterisk denotes the transposed elements (matrices) for symmetric
positions.
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Proof. Consider a candidate of a quadratic function

V(x*(t)) = x*T (1) E¥"Xx*(1),
S, 0
5l

V) = £ T TR0 ((0)n(=0)x7 (1)

where

Then,

x{(A:Fk—Bmi)Tm XT(43, — BYFy) (1)

~
«

= Y ¥ R (2(0)u(2(6) (1)

i=1k

X {(Afk — BiF) X + XT( A%, — ByF)}x*(1)

P28 T L h(z(6) (1)) 2(0) ¥ (1)

i=1i<j k=1

T
y {(A:*k - BF} ;A;fk ~ BF} ) R

A¥, — B¥F: + A% — BiF;
+XT( k ’k2 i k)}x*(t)

Therefore, the stability conditions are derived as follows:

E*"X=X"E* > 0, (10.13)
G, X+X'G,;, <0, h,Nuy #4g, (10.14)
(Gijk + Gjiy )TX +XT( G + Gjik) <0
2 2 -
i<j<rst.h,Nh Ny #g, (10.15)
where

0 1
Gij = Al — B"*F}ﬂ/; - [Ai — B,F _Ek}’

Fi=[Fy 0].
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Equation (10.13) can be rewritten as
X TE*T=E*X"' > 0.

The above inequality is
s, o] '[r o I 0
S, S, 0 of |0 o
Therefore, we obtain
zI =ZT||1 o
0 Zl |10 o
I ol z o Z, 0
= = >0,
0 0| -2, Z, 0 0

Z, =S8;' and Z,=S8;'S.8;".

s, o]
S3 Sl

where

Note that the following relation holds:
S 0
S; 5

Equation (10.14) can be rewritten as

Z, 0
_Zs Zl

XT'GLxx '+ X 7X'G,, X!

1

zl -Zi||0o A'-FIB'
1o ozt |1 —E
N 0 I Z, 0
Ai - BiFik _Ek _Z3 Zl
—Z; — Z3T *
=|(z,+4,z S pg | <0
—~B,M, + E,Z, 15— Bkt

Equation (10.12) is also derived in the same way as condition (10.11).

(QED.)
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The fuzzy controller design problem is to determine F, (i = 1,2,...,r;

k=1.2,...,r°) satisfying the conditions of Theorem 34. The feedback gains
are obtained as

Fo=M,Z'

from the solution Z, and M,, of the above LMIs. The matrix X = [:1 SO ] is
obtained as §;, = Z; ' and S, = Z,;'Z,Z;". >

Next, we derive stability conditions for (10.9) in the case of 4 ,(z(¢)) =
v, (z(¢)) and r = r°. In this case, the fuzzy descriptor system (10.2) can be
rewritten as

E*x*(t) = i’, hi(z(t))(A%x*(t) + Biu(t)), (10.16)

where

In this case, the PDC controller (10.17) instead of (10.8) is used:
u(t) = — Y hi(z(1)) Fix*(1), (10.17)
i=1

where F¥ = [F; 0] In this case, Theorem 34 can be simplified as follows.

THEOREM 35  Assume that h(z(1)) = v,(z(t)) and r = r¢. Then, the fuzzy
descriptor system (10.16) can be stabilized via the PDC fuzzy controller (10.17) if
there exist Z,, Z,, and M; such that

zr =1z, >0, (10.18)
—Z,—- 73 *
Z, +A4,Z, JE Bz <0,
—-BM; + E,Z, 1 i

i=1,2,...,r, (10.19)
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—2Z, - 277 *
27, + A,Z,
<0,
—BM; + A;Z, —2Z,El - 2E,Z,
—BM; + 2E,Z,

i<j<rst.h;,nh; #g. (10.20)

The feedback gains F; are obtained as F;, = M,Z; .
Proof. Consider a candidate of quadratic function
V(x*(t)) =x*T(t) E* " Xx*(1).

Then,
V() = B X h((0)h(() 5 (1)
x[(45 = BrE) X + X7 (45 - BFy)| v (1)

= Y R2(2(0)) X (1)

i=1

x [(4% — BrF) X + X7 (A5 — BFY)]x*(1)

£2% Th(z(0)h(2(0)) (1)

i=1i<j

l}]

2

A* — B*F* +A* _ *F*
X - ) X

L

2

XT(A;— BiF + A% — BIF;!
+

)lx*(t) <0.

Therefore, we have the following stability conditions:

E*"X = XTE* > 0,
GIX+X"G, <0, i=1.2,...,r,

G,;+G;\" G, +G,
— X+XTT <0, i<j<rst.h,Nh +g,
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where
G.. = A* — B*F*

oot 5] wefi)

Fi=[F 0]
We can obtain the conditions (10.18)-(10.20) in the same way as in
Theorem 34. (Q.E.D.)
Now consider the common B matrix case, that is, B, = B, = -+ = B, in

(10.2). The stability analysis for the common B matrix case is simpler and
easier in comparison with that of the general case. Keep this in mind because
we will refer to this when discussing the motivation behind the introduction
of the fuzzy descriptor system.

In the common B matrix case, the stability conditions of Theorems 34 and
35 can be simplified as Theorems 36 and 37, respectively. Theorem 37 gives
stability conditions for the case of /,(z(¢)) = v, (z(¢)) and r = r°.

THEOREM 36 The fuzzy descriptor system (10.2) with the common B matrix,
thatis, B, = B, = --- = B, = B, can be stabilized via the PDC fuzzy controller
(10.8) if there exist Z,, Z,, and M, such that

27—z, (1021)
—Z; — Z3T *
Z, +A,Z, <0, hnNnuy#g. (1022)

~Z,E] — E,Z,

-BM,, + E Z,
The feedback gains F,; are obtained as F,;, = M, Z; .

Proof. Consider a candidate of quadratic function

V(x*(t)) = x*T(t) E*"Xx*(1).
Then,

V() = £ T h0)ul0)e ()

i=1
x[(A5 — B*F) X + X7 (A% — BF)|x*(1) <0,

where
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Therefore, the fuzzy control system is stable if
E*"X=XTE* > 0,
(A5 = B*F) X + X" (A5 = B'F}) <0, hny #g.

In the same way as in the proof of Theorem 34, we obtain the LMI condition
(10.21) and (10.22). (QED.)

Next, we discuss the stability of the fuzzy descriptor system with the
common B matrix in the case of h,(z(¢)) = v,(z(¢)) and r = r°. By utilizing
the property of 4,(z(¢)) = v,(z(¢#)), Theorem 36 can be simplified as follows.

THEOREM 37 Assume that h(z(¢)) = v,(z(¢)) and r = r°. The fuzzy descrip-
tor system (10.2) with the common B matrix can be stabilized via the PDC fuzzy
controller (10.17) if there exist Z,, Z, and M; such that

zZr =1z, >0, (10.23)

—Z; - Z3T %
Z, +A,Z,
—BM, + E,Z,

i=1,2,...,r. (10.24)
The feedback gains F, are obtained as F; = M, Z; .

Proof. Consider a candidate of a quadratic function
V(x*(t)) = x*T(t) E*"Xx*(1).
Then,
V(x*(1)) = X hi(z(1))x*" (1)
i=1
x[(45 — B*F) X + X7 (A5 — B*F)|x*(1) <0.
Therefore, the fuzzy control system is stable if
E*TX=XTE* > 0,
(A% — B*F3) X + XT(A% — B*F}) <0, i=1,2,...,r.

In the same way as in the proof of Theorem 35, we obtain the LMI
conditions (10.23) and (10.24). (QED.)
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10.3 RELAXED STABILITY CONDITIONS

This section derives relaxed stability conditions by utilizing properties of
membership functions. Theorem 38 is a relaxed stability condition for

Theorem 34.

THEOREM 38 Assume that the number of rules that fire for all t is less than
or equal to s, where 1 <s <r. The fuzzy descriptor system (10.2) can be
stabilized via the PDC fuzzy controller (10.8) if there exist a common matrix Z,,

Z,,Y,Y,, and Y, such that

zZl =7, >0,
'y, v
y=|" >0,
Y3 YZ

[ -z, - 2T + (s - 1Y,
Z1 +Aizl - BiMik
+E.Z, + (s - 1)Y3

h;,Nv, # 4,
[ -2z, — 227 -2y, x
2Z, + A,Z, — B.M,, o
+A4;Z, — B;M;; —-2Z,Ef - 2E,Z, - 2Y, ’
+2E,Z, — 2Y,
i<j<rst.h,Nnh Ny #4g.

The feedback gains are obtained as F,, = M, Z; .

Proof. Consider a candidate of quadratic function
V(x*(t)) = x*T(r) E*" Xx*(1).
Now assume that
T
(Gijk + Gjik) X -I—XT( Gijx + Gy

-Ux<0,
2 2

~Z,E] —EZ, + (s — 1)Y,

I<j<rst.h,Nh Ny #4g,

where
0 I
Gijk B [Ai - BiFik _Ek}’

0, 0
Q3 Q2

> 0.

U =
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From the above assumption, we have
V(x*(1)) = ¥ X hi(2()u(z(0))x*7(1)(GL X + X"Gyy )x*(1)
i=1 k=1

F28 T T h(2(0)h(2(0) n(2(0) 7 (1)

i=1i<j k=1

G + Gy \' G, + G
X{( 1k2 ]k)X+XT( sz ]k)}x*T(t)

e

IA
-

h?(z(t))uk(z(t))x*T(t)(Gika +X7G,; ) x*(1)

1

Il
—_

k=

—_

F28 T T h(2(0)hy(2(0) n(2(0) 2T (1)U (1)

i=1i<j k=1

IA

L A0)n(x0) (1)

X(Glx X + XTGyy + (s — 1)U)x*(1)

since

r 1 r
LH((0) = ;=7 T E2(z0)h(2(0) 20, i<s =,

i=1i<j
Therefore, the closed-loop system is stable if

E*TX =XTE* > 0,

GLX+X'Gy +(s—1DU<0, h,Nnuy #dg, (10.27)

T
(Gijk + Gjik) ¥4 XT( Gk + Gy

-Ux<0,
2 2

i<j<rst.h,nh Ny #4g. (10.28)

In the same way as in the proof of Theorem 34, we obtain the LMI
conditions of Theorem 38. Therefore, only derivation of condition (10.25) is
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given below. Equation (10.27) can be rewritten as well:

XTGLxx ' +X'X"G,, x '+ (s-1DXx Tux!

zi ~zi|[o 4 - rlB
1ozt |1 —ET
N 0 I Z, 0
A, - BF, -E/||-Z, Z
zr -7z7 T VA 0
(s —1) 1 T3 0, 0; 1
0 Z, 0, 0O,|| -4 Z,
—Z,—-ZT + (s - 1)Y, *
=|(zZ,+4,Z, - BM, -ZEl -E Z || <0,
+E.Z; + (s — 1Y, +(s —1)Y,
where
Y, =2,0,Z, - Z3TQ3Z1 - ZIQ§Z3 + Z3TQ2 Zs,
Y,=2,0,Z,,
Y, =2,0,2, - 2,0,Z;. (QE.D.)

Theorem 38 is reduced to Theorem 34 when Y, =Y, =Y, = 0. This
means that Theorem 38 gives more relaxed conditions.

Next, we derive stability conditions for Theorem 38 in the case of 4,(z(¢))
=y (z(t)) and r = r°.

THEOREM 39 Assume that the number of rules that fire for all t is less than
or equal to s, where 1 < s < r. Moreover, assume that h(z(t)) = v,(z(¢)) and
r = r° Then, the fuzzy descriptor system (10.16) can be stabilized via the PDC
fuzzy controller (10.17) if there exist Z,, Z5, Y, Y,, and Y; such that

Zl =27,>0,
[y, ¥/
y=|"'" 3 |>o0,
Y3 Y2
[ -z, — 727 + (s - 1)y, x
Lt AL~ BM Z,E —EZ ny, | <%
_ r _ g + _
VEZ, + (s — )Y, Bl = EZ A+ (s = DY
i=1,2,...,r,
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—2Zy - 22 - 2, *

2Z, + A,Z, — BM, o
+A4,Z, — B;M, - 2Z,E] - 2E,Z, - 2Y, ’
+2E,Z; — 2Y,

i<j<rsth,nh +g.
The feedback gains are obtained as F, = M,Z; .
Proof. Consider a candidate of a quadratic function
V(x*(1)) = x*T(¢) E*"Xx*(1).

Now assume that

G,;+G;\" G, +G,
—) X+XT(—’ :
2 2

)—UsO, i<j<rst.h,0h +g,
where
0 1
Gj=|4,-BF -E|

0, 03
2; 0,

U =

From the above assumption, we have

V(x(0) = LR((0)x ()(GLX + X76,)x*(1)

£2% Thy(z(0)hy(2(1)) (1)

i=1i<j
G, +G.\T G.+G.
x{ #) X+XT(%) }x*T(t)

IA

X RE((0) 2" () (G1X + X6, ) (1)

F 28 T hi(2(0)hy(2(6) 2 (1)U (1)

i=1i<j

IA

2 R2(z2(1)) 27 (£)(GIX + XTG,, + (5 — 1)U)x*(1)
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since

r 1 r
;hf(z(t)) e Y 2 2h(2(2))h(2(1)) =0, i<s<r.

i=1i<j
Therefore, the closed-loop system is stable if

E*'X = X"E* > 0,
GIX+X'G, + (s—1)U<0, i=1,2,...,r (1029)

G.+G,\" G.+G,
() e (G %) o,

i<j<rst.h,nh #g. (10.30)

In the same way as in the proof of Theorem 38, we obtain the LMI
conditions of Theorem 39. (Q.E.D.)

Theorem 39 is reduced to Theorem 35 when Y, =Y, =Y, = 0. This
means that Theorem 39 gives more relaxed conditions.

Consider the common B matrix case, that is, B, =B, = - = B,. It
should be emphasized that stability conditions for the common B matrix case
become very easy.

THEOREM 40 The fuzzy descriptor system (10.2) with the common B matrix,
that is, B, = B, = -+ = B, = B, can be stabilized via the PDC fuzzy controller
(10.8) if there exist Z,, Z,, and M, such that

Zl =27,>0,
—Z3—Z3T *
Z, +A,Z, LB E7Z <0, hi\h;#4g.
—-BM,, +E, Z, 17k k=1

The feedback gains F;, are obtained as F,;, = M, Z; .

Proof. Theorem 40 is derived in the same way as in the proof of Theorem 36.

(Q.EED))
Next, we discuss the stability of the fuzzy descriptor system with the

common B matrix in the case of h,(z(¢)) = v,(z(¢)) and r = r°. By utilizing
the property of 4,(z(¢)) = v, (z(¢)), Theorem 40 can be simplified as follows.
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THEOREM 41 Assume that h(z(t)) = v,(z(¢)) and r = r°. The fuzzy de-
scriptor system (10.2) with the common B matrix can be stabilized via the PDC
fuzzy controller (10.17) if there exist Z,, Z,, and M; such that

zZl =7, >0,
—Z3—Z3T *
Z, +A,Z, 2 E —EZ <0, i=1,2,...,r
—BM, + E,Z, [ !

The feedback gains F, are obtained as F;, = M,Z; .

Proof. Theorem 41 is derived in the same way as in the proof of Theorem 37.
Note that Theorems 40 and 41 are the same as Theorems 36 and 37,

respectively.

10.4 WHY FUZZY DESCRIPTOR SYSTEMS?

We present a motivating example of the need of the fuzzy descriptor system
instead of the ordinary fuzzy model. Consider a simple nonlinear system,

(1+acos0(t))6(t) = —bO3(t) + cO(t) +du(t),  (10.31)

where a < 1 and assume the range of 0(t) as |6(2)] < ®.
First, we replace the nonlinear dynamics (10.31) with the ordinary Takagi-
Sugeno fuzzy model. From (10.31), we have

6(t) = — 63(1)

1+ acos6(t)

(1) + u(t). (10.32)

9 —
1+ acos6(t) 1+ acos6(t)

Equation (10.32) can be exactly represented by the following fuzzy model:

4

(1) = Xomy(x,(1), x5(1))(A;x(t) + Bu(t)), (10.33)

i=1
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where x(1) = [x,(t) x,(DI =[0(t) 6,

0 1

W=/ va) —bg/(1+a)|
[ o 1

Lo e/i-a) —be/1-a)|

0 1 0 1
A3=_c/(1+a) 0}’ A4=[c/(1—a) 0}’

0 0
Bizla/avay| %27 [d/(l —a)}’

0 0
B=laa+a| B~ [d/(l —a)}’

x3(1)(1 + a)(1 + cos x,(1))
2¢*(a + cos x,(1)) ’

x3(0)(1 = a)(1 = cos x,(1))
2¢*(a + cos x,(1))

(¢ —x3(1))(a + 1)(1 + cos x,(1))
2¢*(a + cos x,(1))

((152 —x%(t))(l —a)(1 — cos x,(1))
2¢*(a + cos x,(1)) ’

ml(xl(t)’ xz(t)) =

my(xy(1), x,()) =

b

b

my(x,(1), x,(2)) =

my(x,(1), x,(1)) =
The PDC fuzzy controller is constructed from the fuzzy model (10.33):
4
u(t) = = X m,(x,(1), 52(0)) Fox(1). (10.34)
i=1
By substituting (10.34) into (10.33), the fuzzy control system is represented as

x(t) =

4
g i((x1(1), xo(8))m;(x,(2), x2(t)){Ai_BiFj}x(t)' (10.35)

HM.&

The stability conditions for (10.35) were given in Chapter 3 as follows.
Assume that the number of rules that fire for all ¢ is less than or equal to
s, where 1 <'s < r. The fuzzy system (10.33) can be stabilized via the PDC
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fuzzy controller (10.34) if there exist X, ¥, and M, such that
X>0, Y>>0,
-XAT - A4, X+M'Bl + BM;, — (s —1)Y>0, i=1,....,4,
2Y — XA] — XA] — A, X — A, X
+M/B] + M!B] + B.M; + B.M, > 0,

i=1,...,4, i<j<4,

where M, = F;X. Note that 12 LMI conditions are required to find stable
feedback gains F,.

Next, we replace the nonlinear dynamics (10.31) with the fuzzy descriptor
system. Equation (10.31) can be exactly represented by the following fuzzy
descriptor system:

Y u(x,(2))Ex(t) = ghi(xl(t))(Aix(t) + Bu(t)), (10.36)

k=1

where x(1) = [x,(1) x,(D =[0() 6,
[1 0 1 0
El__O 1+a}’ EZ_[O 1—a}’
[0 1
A=l —b'qbz}’ AZ:[S (1)]
B- g == [2)

x3(1) x3(1)

hi(xy(2)) = > hy(xy(2)) =1 — B

(1)) = Iy - L0

Note that the fuzzy descriptor system has the common B matrix. The simpler
stability condition, Theorem 36 or 41, is applicable for designing a stable
fuzzy controller for (10.36). In contrast, the ordinary fuzzy system (10.33) has
different B matrices. The fuzzy descriptor system (10.36) can be stabilized
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Fig. 10.1 Control result 1.

x,(1)

0.5

-05 ' : ‘ :

Time

xz(t)
o
)

—_ 1 1 1 L 1
0 20 40 60 80 100
Time

Fig. 10.2 Control result 2.
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via the fuzzy controller (10.8) if there exist Z,, Z;, and M, such that

Z,=272l>0,
_Zs_st *
Z, +AZ, LB B2 <0, i=1,2 k=1,2.
—BM, + E,Z, 15k ke

Note that five LMI conditions are required to find feedback gains F;,.

Therefore the fuzzy descriptor system is suitable for modeling and analysis
of complex systems represented in the form (10.31). The form is often
observed in nonlinear mechanical systems [6, 7].

Figures 10.1 and 10.2 show the control results for the fuzzy descriptor
system. The fuzzy controller is designed using Theorem 41. The designed
controller stabilizes the fuzzy descriptor system (10.36), that is, the nonlinear
system (10.31).
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NONLINEAR MODEL
FOLLOWING CONTROL

In Chapter 9, the model following control for chaotic systems based on the
Takagi-Sugeno fuzzy models with the common B matrix is discussed. In this
chapter, we present a more general framework [1, 2] to address the nonlinear
model following control problem for the fuzzy descriptor systems introduced
in Chapter 10. Specifically, these extended results deal with nonlinear model
following control for fuzzy descriptor systems with different B matrices. A
new parallel distributed compensation, the so-called twin parallel distributed
compensation (TPDC), is proposed to solve the nonlinear model following
control. The TPDC fuzzy controller mirrors the structures of the fuzzy
descriptor systems which represent a nonlinear plant and a nonlinear refer-
ence model. A design procedure based on the TPDC is presented. As in the
usual spirit of this book, all design conditions are rendered in terms of LMIs.
The proposed method represents a unified approach to nonlinear model
following control. It contains the regulation and servo control problems as
special cases. Several design examples are included to show the utility of the
nonlinear model following control.

11.1 INTRODUCTION

This chapter presents a unified approach to nonlinear model following
control that is much more difficult than the regulation problem. In this
chapter, the nonlinear model following control means nonlinear control to
reduce the error between the states of a nonlinear system and those of a
nonlinear reference model, that is, lim, , ,x(z) — xz(z) = 0, where x(¢) and

217
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xz(¢) denote the states of the nonlinear system and those of the nonlinear
reference model, respectively. The important feature is that x;(¢) is not
necessarily zero or a constant. The nonlinear system and the nonlinear
reference model are allowed to be linear, nonlinear, or even chaotic if the
nonlinear models are represented in the form of the fuzzy descriptor systems.
Thus, to execute the nonlinear model following control, we need the fuzzy
descriptor systems for a nonlinear system and a nonlinear reference model.
Now the question that needs to be addressed is “Is it possible to approximate
any smooth nonlinear systems with the Takagi-Sugeno fuzzy model having no
consequent constant terms.” The answer is yes in the C° or C' context. As
mentioned in Chapter 2, it was proven in [3] and [4] that any smooth
nonlinear systems plus their first-order derived systems can be approximated
using the Takagi-Sugeno fuzzy model (having no consequent constant terms)
with any desired accuracy (for more details, see Chapter 14). Thus, the
nonlinear model following control discussed here is a unified approach
containing the regulation and servo control problems as special cases, where
“servo control” means control for step inputs of reference signals.

As mentioned in Chapters 1 and 10, &, N v, # @ denotes all the pairs
(i, k) excepting h(z(t)v,(z(¢)) = 0 for all z(t); h, N h; N v, # ¢ denotes all
the pairs (i, j, k) excepting h,(z(t)h (z(1)v,(z(1)) = 0 for all z(2); and i <j
s.t(f;i N h; N v, # ¢ denotes all i <j excepting h,(z(t)Dh(z(t)v,(z(1)) = 0,
Vz(2).

11.2 DESIGN CONCEPT

In the nonlinear model following control, we use the fuzzy descriptor system
model introduced in Chapter 10 to describe both the plant and the reference
system. The plant is represented by the fuzzy descriptor system (10.1). To
facilitate the analysis, system (10.1) is rewritten as (10.2). In the following, we
develop the fuzzy descriptor system model for the reference system.

11.2.1 Reference Fuzzy Descriptor System

Consider a nonlinear reference model described via a descriptor fuzzy
system:

. (zal0)En #(0) = Ll ea(0)Dyxa(0). (L)

=1
where xz(¢) € R"* and D, € R"*""%,

e (2r(0) 2 0, Lo (24(0) = 1,
r

h (zr(1)) 20, ZR‘,] hg (zr(1)) = 1.
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We use zx(7) to denote the vector containing all the individual elements
zg () (= 1,2,..., pp).

The augmented system with the new state xj(¢) = [xx(t) xL(O]" is
described as

rRTR

E(1) = ¥ L g (2(D) g, (2x(0)Dfexi().  (112)

p=1r=1

where

11.2.2 Twin-Parallel Distributed Compensations

This section introduces the so-called twin parallel distributed compensation
(TPDC) to realize nonlinear model following control. The main difference
for the ordinary PDC controller presented in Chapter 2 is to add a control
term feeding back the signal of x;(¢z). It might be reminded that a similar
controller structure as TPDC was first employed in Chapter 9 in the nonlin-
ear model following control for chaotic systems.

Specifically, the TPDC fuzzy controller consists of two subcontrollers:

u (1) = =3 Y hi(z(t))v(z(r))Fix*(t), subcontroller A
i=1 k=1
rROTR
up(t) = 2 2 hg (2r(t))vg, (2r(1)) Ky x%(1), subcontroller B
p=1r=1
where
i = [Fy 0], pr= [Kpf 0]‘

Note that u ,(¢) is the same as (10.8). The TPDC controller is obtained as

u(t) =u,(1) +up(t)

Mw

krglhi(z(t»vk(z(r))mtx*(z)

i

1

b Y e (2n(0)vn (zr(D)KEE().  (113)
p=1r=1
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The error system consisting of (10.2), (11.2), and (11.3) is as follows:

Eé() = ¥ T h2(a(0)0(2()) (A% — BEFL) £ (1)

i=1k=1
EPDWICOIICOIAE)

% _ pk % _ k%
i« — B; jk—;Ajk B} Fj; (1)

SX YL R0 (200, (2a(1)
i=1p=1 /=1

X (D}, — BfK, ) xi(t), (11.4)
where e(1) = x*(¢) — x%(1).
THEOREM 42  If conditions (11.6) hold, the error system becomes
E*é(1) = {Gx*(1) — Gx}(1)} = Ge(1) (11.5)
by the TPDC fuzzy controller (11.3),
G = A% — BI'Fj, hy Ny # &,
= 3(4% — BfFj + A}, — BfF}),

i<j<rsth,0hNu #4g,

D}, — BK;,, hiOVhg O # 8. (11.6)

Proof. We naturally arrive at the conditions (11.6) to cancel the nonlinearity
of the error system (11.4). (Q.E.D.)

Note that G is not always a stable matrix. The TPDC fuzzy controller
(11.3) with the feedback gains F; and K,, should be designed so as to
guarantee the condition (11.6) and the stability of the error system (11.4).

THEOREM 43  The feedback gains F,;, and K, can be determined by solving
the following eigenvalue problem (EVP):

minimize 3
Y,Z, M;, N,

subjectto B > 0,
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zo 0| _,
<
0 Zz ’
T Yl YST
Zr=27,>0, Y= > 0, (11.7)
Y, Y,
[ —Z,—ZT + (s - DY, x

<0,
Z,+A,Z, —BM,; +E.Z,+ (s —1)Y, —ZE —EZ + (s—1)Y,

h,Nno, =g,  (11.8)
—2Z,—2ZT -2y, *
2Z, + A,Z, — BM,,

+A,Z, — BM, + 2E,Z; — 2Y,

<0,
—2Z,E] — 2E,Z, - 2Y,

i<j<r st. h,nhnu#g, (119

BI * * *
0 BI w0 w o
0 0 g « |~ %

| A4,Z, - B M, —A,Z, + BM,, —EZ +EZ 0 I

hi—gqy Nv, # &, (11.10)

i BI * * % |
0 BI * *
A;Z, — B.M;,
1 0 0 I
—3(4,Z, - BM; + A,Z, — B.M,,)

i<j<r st. h,nhnNu#g,  (1111)

BI * ® %
0 BI % %
0 0 I

A,Z, - BM, —D,Z, +BN,, -EZ +ExZ 0 I

hiO o N hg N vg, # ¢, (11.12)

where h;_,, N hy # @ denotes all the pairs excepting h(z(t))v,(z(2)) # 0, Vz(t)
for i =23,...,r and k=1,2,...,r°. The feedback gains are obtained as
F,, = M,-,{Zf1 and Kp[ = Np[Zfl.
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Proof. Consider the condition of (11.6). The condition (11.6) to cancel the
nonlinearity of the error system is satisfied if (11.13), (11.14), and (11.15)
hold for

|8~ (block-diag[Z, Z,])”" (block-diag[2, Z,]) ‘[, =0

under [Zl 0] <.
Z,

0
T
Z,
><{A’]"l — BYFj, — (A%, —B*F”,z)} 0 z >0,
1
hif{]} Nv, # 4, (11.13)
T
BI= |y g | 1% — BEEL = 3(45 — BEMG + 45— BYM))
* % gk 1( g% % gk * * Z,
X{Aik — Bj'Fj; — (A}, — BF;; + A5, — B; Fik)} 0z >0,
i<j<r st h0h Ny +#4g, (11.14)
T
T
pr- o o | i - BrEL - (03 - BEG)
* % gk * % gk z, 0
X{Aik - B'F; — (Dpl_ B; Kp[)} 0z >0,
hiﬁthﬁUR[aéQf, (11.15)

where B8 > 0. By the Schur complement, the above conditions (11.13)—(11.15)
can be converted into (11.10)—(11.12). (Q.E.D))

From the solutions Z;, M;, and N, o we obtain the feedback gains as
follows: F, = M, Z;' and K, =N, Z " If the LMI design problem is
feasible and

” B (bloc—diag[Zl Zl]fl)(block-diag,’[l1 Zl]71)||2 =0,

the nonlinear model following control based on the cancellation technique
can be realized. Then, the TPDC fuzzy controller with the feasible solutions
F, and K, provides a tractable means to achieve lim, _, .e(t) = 0. As shown
in Theorem 38, equations (11.7)-(11.9) are stability conditions of the error
system.
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The nonlinear model following control is reduced to the servo control

problem when we select D, (p=1,2,...,rg) such that xz(¢) = ¢, where
¢ # 0 in general. It is reduced to the regulation problem when we select D,

(p =1,2,...,rg) such that xz(¢) = 0. In these cases, note that r, = 1. The
fact will be seen in design examples.

As mentioned above, this method contains the typical regulation and servo
control problems as special cases. However, it realizes not only stabilization
but also cancellation of the nonlinearity for the error system. If only stabiliza-
tion (regulation) is required in controller designs, the feedback gains should
be determined only by using the stability conditions (11.7)-(11.9), that is,
Theorem 38.

Remark 36 The condition (11.6) to cancel the nonlinearity might often be
conservative since it completely requires the cancellation of nonlinearity. A
relaxed approach was reported in [5].

11.2.3 The Common B Matrix Case

Consider the common B matrix case, that is, B, = B, = -+ = B,. In this
case, the cancellation technique of Theorem 43 can be simplified as follows.

THEOREM 44  The feedback gains F,; and K ,,; can be determined by solving
the following EVP:

minimize 3
Y,Z, M;, N,

subjectto B > 0,

iz s0 |77 Y < (11.16)
=7 >0, <TI, .
1 1 0 Z1
[ ~Z, - 77 *
3 3 <o,
Z,+A.Z, —BM, +E,Z, —ZE—E.Z,
h.Nu # g, (11.17)
BI * * % |
0 BI * %
0 0 I 0>,
A4z, — BM,, E Z +EZ 0 I
—A,Z, + BM, | v TR
hi_gy Nu # &, (11.18)
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BI * ER
0 BI *
0 0 I 0],
A,Z, — BM,,
-EZ +E;Z, 0 I
—-D,Z, + BN, k&1 R21
hinuv Nhg O vg, # @ (11.19)

The feedback gains are obtained as F,, = M, Z;" and K, = Np[Zf].

Proof. Consider the condition of (11.6). The condition (11.6) to cancel the
nonlinearity of the error system is satisfied if (11.20) and (11.21) hold for

“.3‘ (block-diag[21 Z,])_l(block-diag[Z] Zl])_1 ”2 =0

Z, 0
under [0 Z1:| < I

T
Zl T
Bl 4 {4%) — B*F}; — (4%, — B*M;)}
1
§ Zl 0
X {4}, — B*Fj; — (A% — BI'F};)} >0,
0 Z,
hi oy N U # 8, (11.20)
Z T
1 T
Bl 4 (4%, — B*Fj; — (D, — B*K},)}
1
A% — B*F* — (D*, — B* K* Z 0 0
X{ ik = = (Dyr— p[)} 0 z >0,
h, N, # &, (11.21)

where B8 > 0. By the Schur complement, conditions (11.20) and (11.21) can
be converted into (11.18) and (11.19). (Q.E.D.)

11.3 DESIGN EXAMPLES

This section gives design examples for the nonlinear model following control.
Recall the simple nonlinear system (10.31):

(1+acos0(1))6(t) = —bb3(t) + cO(t) + du(t),
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where a = 0.2 and assume the range of 6(¢) as |é(t)|< ¢. We also recall
the fuzzy descriptor system (10.36),

Y u(x,(0))Epx(t) = :Zl hy(x,(2))(A;x(t) + Bu(r)),

k=1

where x(t) = [x,(1) x,(OI =[6(t) 6T,

I 10

Bimlo 144 P70 1-4af

1 1
A1: ¢ _b'¢2}’ A2= ¢ }7

0 0

Bl = d}’ Bz - d}?

x3(1) x3(1)
hy(x,(2)) = 22 ) hy(xy(2)) =1 - 2; )

1+ cos x(t 1 — cos x,(t
vi(x,(2)) = fl()a vy(xy(1)) = fl()

We use a =02, b=1, c= —1, d =10, and ¢ = 4. Note that the fuzzy
descriptor system has the common B matrix.
We consider three cases of reference nonlinear models.

Case 1: Descriptor reference system:

(1 + €cos (1)) Br(1) = —0(1) + k(1 — 02(1))0:(1). (11.22)

Case 2: Constant output model (servo control problem).
Case 3: Zero output model (regulator control problem).

All the cases of the reference nonlinear models can be represented by the
following fuzzy model:

X o (20(0) B 1) = X i (21D, e(1).

=1

where xp(t) =[x (1) xp (DI = [0(1) 6z (DT,
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In Case 1, rg = rg = 2,

10 10
ERlz[o 1+§]’ ERzz[o 1—5]’

0 1 0 1
Dl:[—l k(1—¢2)}’ DZ:[—I k}’

1 1
he(xp(1)) = szzel(t), h(xp(1)) =1 = —5xp(1),

-5
1 + cos xg (1) 1 — cos xg ()
() = Dy (e 0)) =

where it is assumed that xp (1) € [—¢ ] We use k =1 and ¢ = 4. This
reference system is reduced to the van del Pol equation when ¢ = 0 for
all /.

Cases 2 and 3 are special cases of nonlinear model following control. By

considering the condition of iz(¢) = ig(t) = 0, we select E; and D, as
follows, where rg =rg = 1,

&0 0 1
SRl I

. 4 T T
> 2
4 )
= 0p
= -2
X -4
§4
O
"uv
\CKO
S¥ -2t
g -4
2
1
0
|
__2_ i n

0 10 20 30 40 50 60 70 8 90 100
Time

Fig. 11.1 Simulation result 1 (Case 1 for & = 0).
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In the servo control problem (Case 2), xz(0) =[0 c}I’, ¢ # 0. In this
example, ¢ = 1.5. In the regulator design problem (Case 3), xz(0) = [0 0]".
Two kinds of ¢ are selected: £ =0 and ¢ = 0.5 in Case 1. Figures 11.1
and 11.2 show the control results for Case 1 (¢ = 0 and & = 0.5). In Cases 2
and 3, {; =1 and ¢, = 1. Figure 11.3 shows the control result for Case 2.

(9]
4
4

dx(t)/dt,
dxg(t)/de x(t), xg(1)
B Ii) (= =]

u(t)
RO

o

n s

10 20 30 40 50 60 70 80 96 100
Time

Fig. 11.2 Simulation result 2 (Case 1 for & = 0.5).

~ 2 - —
= 1 i
=
> 0f -
T: _1 I 1 1 1 " i 1 i N
0 10 20 30 40 50 60 70 8 90 100
= 2 T — T T T T T T T
~
3 )
N K
-~
N
RS . . K .
60 70 80 90 100

10 20 30 40 50 60 70 80 90 100

Time

Fig. 11.3  Simulation result 3 (Case 2 for {; = 1 and ¢, = 1).
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—~ 2
= 1 T
=
0 10 20 30 40 50 60 70 80 90 100
s 2 —
N
§3 ! 1
N K
=8 0R/Y
< -1 — ‘ : : ‘
80 90 100
-0.02 ‘ R S

0 10 20 30 40 S50 60 70 8 90 100
Time
Fig. 11.4 Simulation result 4 (Case 3 for {; = 1 and ¢, = 1).

Figure 11.4 shows the control result for Case 3. In these figures, the dotted
and real lines denote xz(¢) and x(¢), respectively. The control input u(¢) is
added after 20 sec in these simulations. It can be seen that the nonlinear
model following control is effectively realized even for the complex descriptor
reference system (11.22).
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NEW STABILITY CONDITIONS AND
DYNAMIC FEEDBACK DESIGNS

This chapter presents a unified systematic framework of control synthesis
[1-5] for dynamic systems described by the Takagi-Sugeno fuzzy model. In
comparison with preceding chapters, this chapter provides two significant
extensions. First we provide a new sufficient condition for the existence of a
quadratically stabilizing state feedback PDC controller which is more general
and relaxed than the existing conditions. Second, we introduce the notion of
dynamic parallel distributed compensation (DPDC) and we provide a set of
sufficient LMI conditions for the existence of quadratically stabilizing dy-
namic compensators.

In this chapter, the notation M > 0 stands for a positive definite symmet-
ric matrix M; L(A, P) = A"P" + PA is defined as a mapping from R"*"
X R to R, The same holds for £ (AT, QT) = AQ + QA". The term
P~T is the same as (P~!)’. From this chapter onward, we will use italic
symbols such as A and B instead of 4 and B. In addition, to lighten the
notation, we will use x, y, z, p, and u instead of x(¢), y(¢), z(¢), p(¢), and
u(?), respectively. Another notable point regarding the notation is that we
will use p(¢) or p instead of z(¢) as premise variables. This is because z is
used as performance variables in Chapters 13 and 15 which are based on the
setting presented in this chapter. The symbol x' denotes the transposed
vector of x. We often drop the p and just write #4;, but it should be kept in
mind that the £,;’s are functions of the variable p.

The summation process associated with the center of gravity defuzzifica-
tion in system (2.3) and (2.4) can also be viewed as an interpolation between
the vectors A4;x + B;u based on the value of the parameter p. The parameter
p can be given several different interpretations. First, we can assume that the

229
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parameter p is a measurable external disturbance signal which does not
depend on the state or control input of the system (2.3) and (2.4). Using this
interpretation, equations (2.3) and (2.4) describe a time-varying linear system.
Second, we can assume that the parameter p is a function of the state,
p = f(x). Using this interpretation, equations (2.3) and (2.4) describe a
nonlinear system. As a slight modification to this interpretation, we can
assume that the parameter p is a function of the measurable outputs of the
system, p = f(y). Finally, we can assume that p is an unknown constant
value, in which case equations (2.3) and (2.4) describe a linear differential
inclusion (LDI). In most cases, we can only derive a benefit from the fuzzy
rule base description if we know the values of the parameters, so we will
not usually consider this last interpretation. It is also possible to interpret
p using a combination of these approaches.

12.1 QUADRATIC STABILIZABILITY USING
STATE FEEDBACK PDC

In this section, we consider the special form of parameter-dependent state
feedback which mirrors the structure of the T-S model, that is, parallel
distributed compensation (PDC) [19, 20]
The PDC controller structure consists of fuzzy rules:
Control Rule i
IF p(¢) is M,; ---and p,(¢)is M,;,
THEN u(t) = K, x(t),
where i = 1,2,...,r. The output of the PDC controller is

u= Y hKx. (12.1)
i=1

Remark 37 Note that the notation for PDC here is in slightly different form
from earlier chapters where the PDC controller is of the following form

u=— Y hFx. (12.2)
i=1

Let us consider the Lyapunov function candidate V(x) = x'Px, where
P > 0. Taking the time derivative of this function along the flow of
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the system,

d r r
V() = Y X hhx(L(A;,P) +K'B'P+PBK)x (12.3)
i=1j=1

1 r r
=3 3 Zlhihjx'( L(A; +A;,P)+K/B/P
i

i=1
+PBK; + K/B[P + PBK,)x. (12.4)

If for each 1 <i <j <r there exists a symmetric n X n matrix T;; = T}
such that

L(A; +A;,P)+ K]-TBl-TP + PBK; + K,-TB]-P +PBK,<T;, V.,V
(12.5)
and
Ty T,,
T=|: - |<o, (12.6)
T, T,
then

d r r
V() < ¥ X hihe Tx

i=1j=1

T
X']

=[hx ... b, X]T[hx ... h
< 0.

In order to express these inequalities as LMI conditions, we need to use a

transformation. Define Q = P!, T;; = OT,;0, and M, = K,;Q. Pre- and

postmultiplying equation (12.5) by Q produces the expression
£(AT + AT, Q) + MBI + B.M; + MB] + BM,<T,,,

i<jst.h;Nh;+g. (12.7)

We also know that T < 0 if and only if

Iy, - T,

T=|: - <o (12.8)

The resulting LMI conditions are summarized in the following theorem:
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THEOREM 45 The T-S model (2.3) is quadratically stabilizable in the large
via a state feedback PDC controller (12.1) if there exist Q > 0, M, i = 1,2,...,r,
and T;; such that the LMI conditions (12.7) and (12.8) have feasible solutions.

The ith gain of the PDC controller is given by

K, =MQ"' (12.9)
and the Lyapunov function is given by

V=x"Q 'x. (12.10)

Remark 38 The above theorem is a generalization of the stability condition
given in [17] and [20]. It is also weaker than the LMI condition given in [25],
in which case T;; becomes ¢;;1. The above theorem can be further relaxed if
we know the structure of the fuzzy membership function:

¢ Sometimes there is no overlap between two rules, that is, the product of
the h; and the h; may be identically zero. In this case, the above
theorem can be relaxed by dropping the condition (12.7) corresponding
to the i and j in (12.7).

¢ If only s < r rules can fire at the same time, then the conditions of this
theorem can be further relaxed to only require that all the diagonal
s X s principal submatrices of T are negative definite.

12.2 DYNAMIC FEEDBACK CONTROLLERS

In this section we introduce the concept of a DPDC, and we derive a set of
LMI conditions which can be used to design a stabilizing DPDC.

In order to derive the LMI design conditions, it is useful to begin with a
parameter-dependent linear model described by the equations

x(t) =A(p)x(t) + B(p)u(r),
y(1) = C(p)x(1), (12.11)

where x(¢), y(¢), and u(¢) denote the state, measurement, and input vectors,
respectively. The variable p(¢) is a vector of measurable parameters. In
general, these parameters may be functions of the system states, external
disturbances, and time. Note that the T-S model is in this form.

A parameter-dependent dynamic compensator is a parameter-dependent
linear system of the form

x(1) =A(p)x(1) + B(p)y(2),
u(r) = C(p)x(1) + D(p)y(1). (12.12)
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Defining the augmented system matrix

A(p) + B(p)D.(p)C(p) B(p)C.p)
B.(p)C(p) A.(p)

and the augmented state vector

T
xg () = [x"(0) x(D],
the resulting closed-loop dynamic equations are described by the equation

X(1) = Aq(p)xa(1). (12.13)

The system (12.11) is said to be quadratically stabilizable via an s-dimen-
sional parameter-dependent linear compensator if and only if there exists an
s-dimensional parameter-dependent controller and a positive definite matrix
P.; > 0 such that

Acl(p) =

PyA.(p) +Au(p) P <0. (12.14)

Remark 39 1f we fix the value of p, equation (12.14) represents a sufficient
condition for the existence of a set of linear, time-invariant controller
matrices A.(p), B.(p), C.(p), and D.(p) which will stabilize the system (2.3)
and (2.4) at the fixed value of p. The unknown controller does not enter
linearly into equation (12.14), so this equation does not represent an LMI
condition. However, the authors of the paper [14] present a transformation
procedure which results in a modified set of inequalities which are linear in
the unknown data. In what follows, we perform this transformation pointwise
with respect to p.

We will first partition the constant matrices P and P~' into components:

Py Py
Fa=\pr p
12 2
and
PJ] _ Q1T1 O ’
2 9»
and we will also define the matrices
Oy I
I, = T
Op 0
and
m-p <| o
2 cl 1 O Plg *
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Equation (12.14) will hold if and only if
I[P, A, (p)IL; + M{A(p) Py1T, < 0.
This equation can also be rewritten as
A, (p)I, + I{AL(p)TT, < 0.

Writing out the first term on the left-hand side of this equation, we have

I 0 [[(A(p) +B(p)D(p)C(p)) B(p)C.p)||Qn I
Py P Bc(P)C(P) Ac(P) Q1T2 0
=E(p).

If we define the new variables

HA(p) = Pi(A(p) + B(p)D(p)C(P))Qy + P B(p)C(p)Qy
+ P B(p)C(p)Qi + P, A(P)0Oh,

B(p) = PuB(p)D.(p) + PuB.(p),

2(p) =D.(p)C(p)Qu + Cc( )L,

D(p) =D.(p),

then the matrix E(p) can be rewritten as

A(p)Qn +B(p)C(p) A(p)+B(p) D(p)C(p)

E(p) = A(p) P, A(p) + B(p) C(p)

b

and the closed-loop stability condition can be expressed as

E(p) +E"(p) <0

or
L(A"(p), Q1) ) ( A(p) )
+B(p)C(p) + C'(p)BT(p) +B(p) D(p)C(p) + A (p) .
<
H(p) +AT(p) ) ( L (A(p), Pyy) )
+CT(p) D(p)B (p) +B(p)C(p) + CT(p) B'(p)

together with the constraint that

> 0.

cl
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This last condition holds if and only if

e, I, > 0,
or

I 0 I
e, = . (12.15)
Py O, 0
0] I
- |~ > 0. (12.16)
1 P,
We also have the constraint that
P,0, + P,0L =1 (12.17)

We will now assume that the parameter-dependent plant can be described
by a fuzzy T-S model using r model rules. In this case, the parameter-depen-
dent plant can be described by the equation

A(p) B(p) 4 A; B
C(p) 0 =i§hi(p)[ci 0}7

where h(p) satisfies the normalization condition,
h(p) =0 and ) h(p)=1.
i=1

The matrix E(p) can be written as

Ean) £ (219
where
Ey(p) = ; Elh (P)h(p)((A; + B,D.(p)C;)Qy
+B,C.(p)0h), (12.19)
Ea(p) = £ 3 h(p)h(p)(4; + BDP)C). (12.20)

Ey(p) = i _i (p)h (P)( 11(145 +BiDc(p)Cj)Q11

+P,B.(p)C,0Oy + PuBiCc(P)Qsz
+P12AC(P)Q1T2)> (12.21)
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r r
En(p) =2 X hi(p)hj(p)(Pll(Ai + B,D.(p) Cj)
i=1j=1
+P,B.(p)C,). (12.22)

We are now ready to introduce dynamic parallel distributed compensators
for this system. In general, a DPDC can have cubic, quadratic, or linear
parameterization. For a given T-S model, the choice of a particular DPDC
parameterization will be influenced by the structure of the T-S subsystems. In
the following subsections, we discuss each of these three parameterizations.

12.2.1 Cubic Parameterization

Controller Synthesis. In this section, we will assume that the controller has
the form

T X X h(p)h(p)hy( p) A (1)

1j=1k=1

M\

x.(t) =

# T T h(p)hy(p)BIY(), (12.23)
i=1j=1
) = I ERI(PICI) + TR0, (122

or equivalently that

zup3§é§h>mmmmﬁh (1225)
mm=§émmmmw, (12.26)
um=éémmmmc (12.27)
D.(p) = é:l hl-(p)DLf. (12.28)

Using this controller form, we can rewrite the equations for the matrix
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E\(p)

E,(p)

Ey(p)

Exn(p)
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Y X X h(p)hi(p)h(p)
i=1j=1k=1
X ((A; + BDIC,)Qy, + BCIFOL), (12.29)
MDY hi(p)hj(p)hk(p)(Ai + BichCk)7 (12.30)
i=1j=1 k=1

XX Xk (P)h (p)hk(p)( (A + B;.D/ Ck)Qll
i=1j=1k=1
+P,, BIC,Qy, + P B,CIQL, + Py, AT OF), (12.31)
'Z Z Z hi(p)hi(P)hi(p)

(P \(A; + BDIC,) + P, BIC,), (12.32)

and we have that

H(p)

B(p)

2(p)

D(p)

[I>

[I>

>

[I>
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The matrix E(p) then becomes

Y Y Y h(p)h(p)he(p) Exy

E(p) =
i=1j=1 k=1
=2 X X h(p)hi(p)h(p)
i=1j=1k=1
A0, +BC, A+ B, DG,
x . (12.33)

A Py A, + B,C,

The closed-loop stability condition then becomes

||M\

I T T hhp(p)

L(AL,Qu) +BC, +C o A, + B, %J,,ck+a4

JkL ijk

X A <0, (12.34)
HAy + (A4 + B; %_,].ck) L(A;, Py) + BC + CL B,

So the system will be stable if the following LMI holds.

r T
L(A},Qu) + B, + G B! A;+ B DO+ Ay <0
At (A +B,DC) LA P+ B+ CIB |

Vi, j k. (12.35)
THEOREM 46 The T-S model (2.3) and (2.4) is globally quadratically stabi-
lizable via a DPDC controller (12.25)—(12.28) if the LMI conditions (12.16) and

(12.35) are feasible with LMI variables Qy,, Py, HA,, B, C;, and D, The
controller is given by

Al = P12(04,~,k Py, BjC 0y — Py B,C50O1,

—Pyy(A4; + BszCCk)Qn)szl, (12.36)
Bi = p]le( B, - PHB,.D_;'), (12.37)
C¥ = (¢, - DiC;0 )05 (12.38)
D =D, (12.39)

where Py, P,,, Q,,, and Q,, satisfy the constraint P,,Q,, + P,,0l, = I.
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Reduction of LMI Equations (12.34) can be simplified by permuting in-
dices. To this end, we first note that the controller equations can be rewritten

as

A(p) = Y 1 (p) AT

i=1

d |
£ X L3 (p)hy(p) 5 (AY + AV + )

i=1j<i

i=1j<i

+ Y L X 6h(p)h(p)hi( p)

i=1j<i k<j
1 ijk ikj jik ki kij kji
xg(Ag + AN+ A+ AR+ AT+ A,

B.(p) = ¥ h3(p)B"

i=1

r 1T
+ ) ZZh,«(p)h,-(p)E(Bé’ + BJ'),

i=1j<i

C.(p) = X K p)Ct

i=1

d 1 )
+ ¥ X 2h(p)hy(p)5(CI + €I,

i=1j<i
D.(p) = X hi(p)D..
i=1

From these equations, we can define an “average” set of vertex variables

Ak = %(Aifk + AN+ AR+ AR+ AR+ AN, (12.40)
B = l(B"f + Bl (12.41)
¢ =5 (B )

Ci = l(ci/ + CI) (12.42)
¢ =5(C ¢ )

Di=D.. (12.43)
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Our aim is to show that the stability conditions (12.34) can also be written
in terms of this set of variables. In fact, the controller (12.25)—(12.28) is the
same as the following controller:

4(p) = LH(PA + T T3h(p) hy( p) AL

i=1 i=1j<i

+ Z Y 3hi(p)hi(p) AV

+121 jg kgj 6h(p)h (p)hk(p)A”k (12.44)
B.(p) = LH(nE T ¥ Lon(p(n)BL (1249
C.p) = LT+ 1 Lom(p(pIE, (1240
D.(p) = ,_i h, (p)D’. (12.47)

Consequently, the number of unknowns which must be determined can be
reduced considerably. In terms of E(p) our stability condition can be
written as

E(p) +E"(p) <0

MDY hi(p)hj(p)hk(p)(Eijk + Egk) <0.
i=1j=1k=1
This can be rewritten as

Y 1 p)(Ey + EL)
i=1

+Z Z3h2(p)h(p)[ (Ey; + Ej + Ey)

i=1j<i

jii

wl»—n

(Eij + Ej; +E)}

+ Xr: Z3hf(p)hi(p)[ (Ej; + E;; + E))

i=1j<i

—_

g(E//t +E +Etu) ]
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||M~=

Z 2 6h,(p)h(p)hi(p)

Jj<i k<j

E(Eijk +Ey; + Ey + Ey + Ey + Ep)

1
+ = (B + By + Ej + Ey, +Ey; +E)' | <0

We will define the matrices

W, = (E; + EL),

(12.48)
LT/ij=(§(Ei,.j+Eiﬁ+ ]”)+ (E +E;; + ],,)) (12.49)

1
ijk = (E(Eijk + Eikj + Ejik + Ejki + Ekij + Ekji)

1 T

In terms of the decision variables, W, can be written as

L

(4.0u + S, (4, + B, D¢, + AL
+Q11A{+€jkBiT) i T B DGy ijk

r | (Pud; + B,C
HAy + (4 + B DC,)

T
+AP,, + Cl B8]}

(Ainl + Bickj

T
+0,,47 + 1 BT (4, + B, n,C; + A1)

+
, (P”Ai + B, C,
s (A + B DC) +ATP, + C] B}
i J ik
i (AjQH + B,C, 1
_,'_Q“AT + UlkBJT) (Al + Bj %ick + O%’Tk)
+

. [(PaA;+ BC,
Hy + (A, + B DCY) ,
+ATP, + C[ B])
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(4,01 + B,G,,
+Q, AT + ¢ BT )

T
Ay + (A4, + B DC,)

(Aan + B.C

Jji

+0,, 4 + ¢/B])

(Alel + Bkeij

+0,, A% + C’JB[)

We also define variables as

T
H .+ (A + B, DC)

T
Hi; + (A + By DC))

NEW STABILITY CONDITIONS AND DYNAMIC FEEDBACK DESIGN

(4, + B, DC + A,

(PyA; + B,C,
+ATP, + C! 8]

(4, + B, DC,+ 4

(Py 4, + B,C,

T
+ALP, + CT 8]

(4, + B, D€+ 4,

(P, A, + B,.C

+ALP, + CT B,i.)

— 1

Hjp = g( Hp T gt FHu t H t Sy + 04/(;;)’ (12.51)
1

=5 (B,+B,). (12.52)
-1

¢, =3¢, +¢). (12.53)

D, =D, (12.54)

It is noted that W, W,
have the following corollary:

and W, can be represented by these variables, so we

COROLLARY 6 The fuzzy control system of the T-S model (2.3) and (2.4) is
globally quadratically stabilizable via a DPDC controller (12.44)—(12.47) if the

Jollowing LMls are feasible with LMI variables Oy, P,;, <4, A

B

ij?

o, ¢

ij’

and D:

ij> O%jk’ B,
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[QI“ Pil >0, (12.55)
W, <0, (12.56)
W, <0, (12.57)
Wi < 0. (12.58)

The controller is given in a similar way as (12.36)—(12.39).

12.2.2 Quadratic Parameterization

Choose the form of the controller as

X.= 2 YL h(p)h(p)Alx .+ Y hBy, (12.59)
i=1j=1 i=1
u= ) h(p)Cix. +D.y, (12.60)
i=1
or equivalently that
A(p) = X X h(p)h(p) AL, (12.61)
i=1j=1
B.(p) = L hi(p)B, (12.62)
i=1
C(p) = L h(p)CL, (12.63)
i=1
D.(p) = D.. (12.64)

So the closed-loop system for the T-S model (2.3) and (2.4) with this
controller can be written as

Xg= ) Zhi(p)hj(p)Aicjlxcl’ (12.65)
i=1j=1

where
A; + B,-DCCJ- B,Cj

Al = | -
BiC, Al
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We can rewrite the equations for the matrix E(p) as

Eu(p) = i i hi(p)hj(p)((Ai + BiDch)Qll + BiC£Q1T2)7 (12.66)

i=1j=1

E,(p) = é‘i j_ilhi(p)hj(p)(Ai +Bl-Dch), (12.67)
Ea(p) = ¥ Zl (DYn(P)(Pu(A; + BD.C)Qy + Py BICQ,
+P, B.CIO, + P, AU0L,),  (12.68)
Ey(p) = 2 ih (P)hi(p)(Pu(A4; + BD.C;) + P, BIC;), (12.69)
and we have that
Ap) = X Zh (p)hy(p) A
ey imp)h(p)( Pu(A; + BD.C)O,

1

Il
—_

J
+P,BIC,Q,, + P,,B,CIO], + P, AJ )
,

B(p) = _Zh (p) B

[I>
<

Z h; (p)(PllBiDc + PIZBg)’

~

C(p) = Zh (p)¢

[I>
<

Zh (P)(D On + CéQsz),

I
%

D(p)

lI>
>
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The matrix E(p) then becomes

E(p) = Z Y hi(p)h(p)E;, (12.70)
=1 j=1
where
El E} A,Qy +BC A+ B, DC
E; 2| 0 = .(1271)
Ej Ey = Py A, + BC

t

The closed-loop stability condition in terms of E(p) is

E(p) +E(p) <0
or

|\M~<

i (p)hj(p)(Eij + E;) <0,

which is

Y X hi(p)hi(p)
i=1j=1
[(A1T> Qll) + Bicj
- A, + B, DC; + A,
+C BT Y
X ’ <0. (12.72)
L(A;, Py) + BC,

T
041.], + (A,. + B, %Cj) +C]TB,.T

In this case, we can have a similar theorem as Theorem 46 for the quadratic
parameterization case.

In the following we simplify the stability condition by means of permuta-
tion. As discussed above, the controller (12.61)-(12.64) is equivalent to

L) = £ L h(p(p) AL, (12.73)

B.(p) = L h(p)BL (12.74)

C(p) = T h(p)C (12.75)
i=1

D.(p) = D, (12.76)
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where

A= 37 + A7),

B =B,

cr=ci,

D, =D,.

Also define variables:

o, 24 A, + ).
_l ig

2,

DLED

Now we are ready to permute the stability condition

E(p) +E"(p) <0

or

|\M~<

i (p)hj(p)(Eij + Ez) <0,

which can be permuted to be

HM\

1
2

i

T (B, + E5) + (5 + ED) <o

(12.77)
(12.78)
(12.79)

(12.80)

(12.81)
(12.82)
(12.83)

(12.84)

Expressing the permuted stability condition in terms of the permuted system

variables, we can arrive at the following conditions:

T=| - - - |<0

(12.85)
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and
Eii EiN + Eii EiNT g EiN + Eit EinT
ll+(ll) + ll+( 11) 12+( 21) + 12+( 2])
(EB)" +EY + (Ef)" + Ef  Ei+ (ES) + Eb+ (EE)
Vi<j, (12.86)

<T,

where
ij ij\T ji i\T s
E1]1 + (E1]1) "‘Efl + (E{l) =[(Ai7Q11) + [(Aj’Qll) +Bi£j
T _ T
+(B2) +BE+(BE)
Ep + (E%) +Ej + (Ef) =A,+A;+ B, DC; + B, DC, + 2 A,

Ej + (ES) +Ely + (Efy) = £(AL Py) + £(AL P,) + BC,
T

+BC, + ( éicj) + ( EjCi)T.

The result is summarized in the following theorem:

THEOREM 47 The fuzzy control system of the T-S model (2.3) and (2.4) is
globally quadratically stabilizable via a DPDC controller (12.73)—(12.76) if the
LMI conditions (12.16), (12.85),and (12.86) are feasible with LMI variables Q,,,
Py, T, 041.]., B, C., and D. The controller is given by

Al = %szl(z 04,‘,' - Plzgéchu - P, BchiQn - PnBiE,‘CQ{z

_PllBjC_'icQ{Z - Pll(Ai + BchCj)Qu

—Py(A4; + le_)CC,.)Q“)Ql‘zl, (12.87)
B = P;zl( B, - PyBD,), (12.88)
Ci= (2 -D.con)or, (12.89)
D, =D, (12.90)

where P,,, Py, Qy,, and Q,, satisfy the constraint P;;Q,, + P,,0f, = I.
12.2.3 Linear Parameterization

In this section, we consider linear parameterization dynamic feedback de-
signs for system (2.3) and (2.4).
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Linear Parameterization: Common B Assume that B, =B, = - =
B, = B in system (2.3) and (2.4). We have

%= Y h(p)A,x + Bu, (12.91)
i=1

y = :Z h,(p)C;x. (12.92)

In general, system (2.3) and (2.4) can be transformed into the common B
form (12.91)—(12.92) by the following system augmentation: Introduce v = i,
and augment the system (2.3) and (2.4) as

[u} Zh(p)[A l;} + (I)v, (12.93)
y=i_ilh,.(p)[c,. O]M- (12.94)

Therefore, without loss of generality, let us consider system (12.91). To
design a dynamic compensator for system (12.91), instead of using the
general cubic or quadratic parameterization, we can employ the following
linear parameterization:

Dynamic Part: Rule i
IF p\(t) is M;, and ---and p,(¢) is M,
THEN x (t) = A’ x (t) + B, y(¢).
Output Part: Rule i
IF p\(t) is M;; and ---and p,(¢) is M,
THEN u(t) = Cix(t) + D,y(¢).

The controller can be written as

.= Y. h(p)A.x,+B.y, (12.95)
i=1
u= Z h,(p)Cix, + D.y. (12.96)
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The controller parameters are

ALp) = Lh(p)A. (12.97)
B.(p) = ;?_C, (12.98)
C.(p) = Lh(p)C: (12.99)
D(p) = D_ (12.100)

The closed-loop system will be

X=X h(p)Auyxa, (12.101)
i=1

where
A, + BD_.C, BCé

AL, = .
B.C, Al

(12.102)

The closed-loop system (12.101) will be stable with quadratic Lyapunov
function if there exists a symmetric positive matrix P such that

I(Ai,, P) <0, Vi (12.103)
Define
= = P12A2Q1T2 + P,pB.COy + PnBCinTz
+ Py(A4; + BD.C;)Qy,
B=P,B,+P,BD,
¢ = C.0, +D.C X,
D=D,.

We have the following theorem:

THEOREM 48 The fuzzy T-S model (12.93)—(12.94) is globally quadratically
stabilizable via a DPDC controller (12.95) and (12.96) if the following LMI
conditions are feasible with LMI variables Q,,, Py, <4, B, C,, and D:

(Qn

;e |70 (12.104)
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£(A%,0,,) + BC, + ¢'BT A+ BDC+ A" '
(4, +BDC) +4  L(A;,Py) + BC, +C B <0V
(12.105)
The controller is given by

A, = P! (=4 — P,B.C,Q,, —PyBCLO],
—P, (A, + BDIC,)0,,)0r' s (12.106)
B, =Py'(B—-P,BD,), (12.107)
Ci=(¢~-DC0,)00, (12.108)
D, =D, (12.109)

where Py, P,,, Q,,, and Q,, satisfy the constraint P,,Q,, + P,,0L, = I.

Linear Parameterization: Common C The case corresponding to common
C, thatis, C;, = C, = -+ = C, = C in system (2.3) and (2.4) can be handled
analogous to the Common B case. Consider

X = Zr: h,(p)(A;x + Bu), (12.110)

y = Cx. (12.111)
As in the previous case, a common C matrix case can always be obtained
by augmenting the outputs of the system with integrators and using the
augmented states as a new set of outputs.
In this case, a linear parameterization dynamic controller takes the follow-
ing form:
Dynamic Part: Rule i
IF p(t)is M, ---and p/(t)is M,,
THEN % (1) = A’ x (t) + Bly(¢).
Output Part: Rule i
IF p(¢)is M, ---and p/(¢) is M,

THEN u(t) = C,x(t) + D, y(2).

www.4electron.com



DYNAMIC FEEDBACK CONTROLLERS 251

The controller can be written as

i.= Y hi(p)(Aix. + Bly), (12.112)
i=1
u=Cux,+D.y. (12.113)

The stabilizing LMISs in this case are given in the following theorem.

THEOREM 49 The fuzzy T-S model (12.110) and (12.111) is globally
quadratically stabilizable via the DPDC controller (12.112) and (12.113) if the
following LMI conditions are feasible in Q,,, P,,, <4, B, C, and D:

(QI“ PIH >0, (12.114)
L(AY, Q) + B+ B! A;+ B, DC+ A" .
(A, + B, DC) +A4  L(A,P,)+BC+C'B <0 v
(12.115)
The controller is given by:

Aic = szl( 04, - P1zB£CQ11 - PuBiCchTz
~P(A; + BD.C)0,)0n' (12.116)
Bl =P,'( B —P,BD,), (12.117)
C.=(¢-D.CQ,)05, (12.118)
D, =D, (12.119)

where P,,, P,,, Oy, and Q,, satisfy the constraint P,;Q,, + P,,01, = L

Linear Parameterization: Common B and Common C Consider the case
of B;=B and C; = C:

%= ) hi(p)A;x + Bu, (12.120)
i=1

y = Cx. (12.121)
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In this case, a linear parameterization dynamic controller takes the follow-
ing form:

Dynamic Part: Rule i
IF p(t)is M, ---and p,(¢) is M,
THEN x (1) = A.x (1) + Bly(¢).

QOutput Part: Rule i
IF p(8)is M, ---and p/(¢) is M,,

THEN u(t) = Clx(t) + Diy(¢).

The controller can be written as
r

io= Y h(p)(Aix. + Bly), (12.122)
i=1

u= Y h(p)(Cix, + Dly). (12.123)
i=1

The design conditions are given in the following theorem:

THEOREM 50 The fuzzy T-S model (12.120) and (12.121) is globally
quadratically stabilizable via the DPDC controller (12.122) and (12.123) if the
following LMI conditions are feasible in the LMI variables Q,,, P, <4, B, C,
and D.:

(QI” PIH > 0, (12.124)
£(A,0y) +BC + ¢'BT A;+BDC+ A" .
(A4, +BDC) +4  L£(A,P,) +BC+CTB <0V
(12.125)
The controller is given by

Aic = PIE]( = = PIZBZ:CQH - PnBCZ-erz
—Py(A; + BDC)Q,)0' s (12.126)
Bl =P,'( B - P,BD]), (12.127)
Ci=(¢ - DiCQ,)0n", (12.128)
D=2, (12.129)

where P,,, Py, Q,;, and Q,, satisfy the constraint P,;Q,, + P,,01, = L
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u

0 mg

Fig. 12.1 The ball and beam system.

12.3 EXAMPLE

In this section, we consider a ball-and-beam system which is commonly used
as an illustrative application of various control schemes. The system is shown
in Figure 12.1. To begin with, we represent the original model exactly using a
T-S model via sector nonlinearity.

The beam is made to rotate in a vertical plane by applying a torque at the
center of rotation and the ball is free to roll along the beam. Assume no
slipping between the ball and the beam. Let x = (r, 7, 0, 6) be the state of
the system and y = r is the system output. The system can be expressed
by the state-space model:

x=f(x)+g(x)u, (12.130)
where
X2
B(x,x? — Gsinx
flay = | Ploi = Goinss)
Xy
0
and
0
0
g§(x) =1,
1

There are two nonlinearities in (12.130), the x,x7 term and the sinx,
term. As we know, most nonlinearity can be bounded by sector. In this
example, assume x; € [—7/2 7/2] and x,x, € [—d d] This is the re-
gion that we assume the system will operate within. It follows that

<|sin(x)| <|x|, (12.131)

2
—X
T

— dx, <x,x2 < dx,. (12.132)
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Define
1 — sin(x3) /x5
Mp(x3) = —/—,——
1-2/=
and
M (x3) =1 = Mp(x3),
1, X,x, >d,
XX
My (x,x,) = 4’ 0 <xxy <d,
0, x; x4 <0,
0, x;x, 20,
XXy
My (x,x,) = —7’ —d <x;x, <0,
1, xXx, < —d,
and

My (x1xy) =1 = My(x,x4) — Mp(x,x4).

Therefore within the region |x;| < 7/2, |x,x,| < d, we can write f(x) as

X3 X
—BGx —BGx, + Bdx
f(x) =M My : + M M, ’ !
x4 x4
0 0
= 2);32G
—BGx, — Bdx -
+ My My, 3 ¢ + M, My, T s
X4
0 ta
0
Xs X
2BG Bix 2BG Bix
= _ Xa —
+ M, M, T Y+ MMy, 3 4
Xy Xy
0 0

The T-S model follows directly as follows:
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Rule ij
IF |x;lis M,; and x,x, is M,;,
THEN 5i(t) = A;;x(t) + Bju(t), i = 1,2, j = 1,2,3.

For example,

01 0 0 0
0 0 —-BG 0 0
Av=19 0 o 1| B0
00 0 0 1

Since the ball-and-beam system is a common B and common C case as
discussed in Section 12.2.3.3, we will apply DPDC with linear parameteriza-
tion for the system. The simulation result is shown in Figure 12.2. The system
parameters for simulation are chosen as B = 0.7143, G = 9.81, d = 5, and
the initial condition is [1, 0, 0.0564, 0].

Time Time

10 15 20 10 15 20
Time Time

Fig. 12.2 Response of Ball and Beam using DPDC with linear parameterization.

www.4electron.com



256 NEW STABILITY CONDITIONS AND DYNAMIC FEEDBACK DESIGN

Remark 40 From the simulation results, we know that x; and x,x, do not
exceed the bound limit assumed in the modeling. A more systematic ap-
proach is to incorporate the constraints as performance specifications in the
controller design. This issue is addressed in the next chapter.
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MULTIOBJECTIVE CONTROL
VIA DYNAMIC PARALLEL
DISTRIBUTED COMPENSATION

This chapter treats the multiobjective control synthesis problems [1-5] via the
dynamic parallel distributed compensation (DPDC). It is often the case in the
practice of control engineering that a number of design objectives have to be
achieved concurrently. The associated synthesis problems are formulated as
linear matrix inequality (LMI) problems, that is, the parameters of the DPDC
controllers are obtained from a set of LMI conditions. The approach in this
chapter can also be applied to hybrid or switching systems.

We present the performance-oriented controller synthesis of DPDCs to
incorporate a number of practical design objectives such as disturbance
attenuation, passivity, and output constraint. Performance specifications
presented in this chapter include L, gain, general quadratic constraints,
generalized H, performance, and output and input constraints. The con-
troller synthesis procedures are formulated as LMI problems. In the case
of meeting multiple design objectives, we only need to group these LMI
conditions together and find a feasible solution to the augmented LMI
problem [15].

First we introduce some notation: R+ = [0,); LI(N™T) is defined as the
set of all p-dimensional vector valued functions u(¢), t € R*, such that
lull, = (lluColl> de)'/> < oo and LS(RT) is its extended space, which is
defined as the set of the vector-valued functions u(¢), t € R*, such that
lulls = (T NuON* do)'/? < o for all T € R,

As discussed in Chapter 12, in general, the choice of a particular DPDC
parameterization will be influenced by the structure of the T-S subsystems.
In this chapter, we will only discuss DPDC in the quadratic parameteri-
zation form. It is easy to extend the results in this chapter to the cubic

259

www.4electron.com



260 MULTIOBJECTIVE CONTROL VIA DYNAMIC PARALLEL DISTRIBUTED COMPENSATION

parameterization case. Recall the quadratic parameterization is represented
as

. Y hi(p)h(p)Alx. + Y h; Bly, (13.1)
i=1j=1 i=1

=.
II

<
Il

th(p)cclxc +Dcy7 (132)
i=1
or equivalently that

4(p) = £ ()AL B(p) = X hi(p)BL.
t:rl j=1 i=1 (133)
C(p) = L hi(p) Cis D(p) = D..

As in Chapter 12, we use p as premise variables and z as performance
variables.

13.1 PERFORMANCE-ORIENTED CONTROLLER SYNTHESIS

This section presents LMI conditions which can be used to design DPDC
controllers which satisfy a variety of useful performance criteria. The presen-
tation is divided into two subsections. In the first subsection, we assume only
a linear parameter-dependent controller structure and derive a collection of
parameter-dependent conditions expressed in inequalities. Each condition
corresponds to a different performance criterion. In the second subsection,
we restrict our consideration to a DPDC controller structure. This restriction
allows us to convert the parameter-dependent inequalities to parameter-free
LMIs which can be solved numerically

13.1.1 Starting from Design Specifications

We will consider the class of systems G which can be described by the
equations

xcl(t) =Acl(p)xcl(t) +Bcl(p)w(t)’
Z(t) =Ccl(p)xcl(t) +Dcl(p)w(t)’
where x(¢), w(t), and z(¢) stand for state, input, and performance variables

correspondingly; p(¢) is the system parameter which may be affected by both
the system states or some exogenous input variables.

(13.4)
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L, Gain Performance

Definition 2 [14]: For a casual NLTI (nonlinear time-invariant operator) G:
we LS(NT) -z e LS(NY) with G(0) =0, G is L, stable if w € L,(N)
implies z € L,(N). Here, G is said to have L, gain less than or equal to
v = 0 if and only if

T 2 T 2
SNz de <y [Clw(n)] de (13.5)
0 0
forall T € R,
The well-known Bounded Real Lemma is given below [25].

LEMMA 1 For system G: (A.(p), B.,(p),C.(p), D.(p)), the L, gain will
be less than y > 0 if there exists a matrix P = PT > 0 such that

[(ACI(p)7P) PBcl(p) Ccl(p)T
B,(p)" P —yI D, (p)"|<0. (13.6)
Ccl(p) DLl(p) _71

General Quadratic Constraint

Definition 3 [15]: For a casual NLTI, G: w — z with G(0) = 0. Given fixed
matrices U = S37'ST, V= VT, and W, where 3 > 0. The variables z(¢) and
w(t) need to satisfy the following constraint:

fT(Z(t) )( u w (z(t)
0 W(t) wT v

W(t) s = ’ ( )

Remark 41 [15]: Many performance specifications (such as L, gain, passiv-
ity, and sector constraint) can be incorporated into this general quadratic
constraint framework by choosing different U, V, and W.

Define the function V(x,,) = x.,Px,,, where P = PT > (. Suppose

L(A (p), P) PB,(p) + CIW
Bg}(p)P + WTCCZ DCCW-F WTDC, +V

T

Ca(p) U(Cu(p) Du(p)) <0. (13.8)

D/i(p)
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Then
d x| [ £(Au(p). P) PBu(p) | [%a(D)
EV(xcl(t)) = ( w(r) ) BL(p)P 0 w(t) )
< —(Z(t) B ) (13.9)
w() | \wT V] \w()

Inequality (13.7) will result by integrating both sides of (13.9).
Applying the Schur complement to (13.8), we get the following lemma:

LEMMA 2 For system G: (A,(p), B,(p),C.(p), D.(p)), the general

quadratic constraint (13.7) will be satisfied if there exists a matrix P = PT > (
such that

L(A,(p),P)  PB,(p) +CL(p)W CL(p)S
BY(p)P+W'C,, W'D, +DIW+V DI(p)S|<0. (13.10)
STCcl(p) STDcl(p) _2

Generalized H, Performance

Definition 4 [15]: A causal NLTI G: w — z with G(0) = 0 is said to have
generalized H, performance less than or equal to ¢ if and only if

lz2(T)|l<¢, VT=0, (13.11)
where x,,(0) = 0 and [[[lw(o)lI*> dt < 1.

Define the function V(x_,(¢)) = x', Px,;, where P > 0. Suppose

[(ACI(P)’P) PB.(p)

<0. 13.12
Bl(p)P -1 ( )

Then (d/dOV(x,(1) < {w' ()w(2). We will suppose D.(p) = 0. In this
case, if the equation

P Cli(p)

>0 13.13
Culp) I (13.13)

is satisfied, then z'(¢)z(¢) < {V(x_.(¢)). This leads to the following lemma:
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LEMMA 3 For system G: (A.(p), B.(p),C.(p),0), the generalized H, per-
formance will be less than { if there exists a matrix P = PT > 0 such that (13.12)
and (13.13) are feasible.

Constraint on System Output

Definition 5 [24]: A casual NLTI G: x.,=A,(p)x., and z=C,.(p)x,
satisfies an exponential constraint on the output if

l2(T) | < gem*", VT =0, (13.14)
where x,.,(0) = x,,.

Define the function V(x,,) = x.,Px,;, where P = PT > 0. Suppose that the
equation

L(A,,P)+2aP <0 (13.15)

holds. In this case, the inequality V(x_(¢)) < e 2*V(x,,(0)) will be satisfied.
Furthermore, if the equations

P P
xC’(O)) >0 (13.16)
x,(0)P I
and
P Cli(p)
>0 13.17
Cup) (13.17)

hold, then the inequality
Z'(t)z(t) < {(xl (1) Pxy(1)) < Le >*(x,,(0) Px,(0)) < {2e 2

will also be satisfied. Combining these results, we have the following lemma:

LEMMA 4 For the system G: x, = A,(p)x, and z = C,(p)x,,, the expo-
nential constraint ||z(T)|| < e *T,YT > 0, will be satisfied if there exists a
matrix P = PT > 0 such that (13.15), (13.16), and (13.17) are feasible.

Constraints on Control Input

Definition 6 [24]: A casual NLTI G: x,, = A,,(p)x, and u = K(p)x,, with
a specified initial condition x(0) satisfies an exponential constraint on the
input if

[u(T)| < Ze T, VT = 0. (13.18)

Similar to the discussion for exponential constraint on the system output, we
have the following lemma:
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LEMMA 5 For system G: %, = A.(p)x,, and u = K(p)x,,, the exponential
constraint |[u(T)|| < Ze *T,VT = 0, will be satisfied if there exists a matrix
P = PT > 0 such that (13.15), (13.16), and

P K(p)

k(o) il (13.19)

13.1.2 Performance-Oriented Controller Synthesis

In this subsection, we consider T-S models which are represented by a set of
fuzzy rules in the following form:

Dynamic Part
Rule i
IF p(t)is M, ---and p/(¢) is M,
THEN 5(1) = A,x(t) + B;u(t) + B!, w(?).
Output Part
Rule i

IF p () is M, -~ and p,(¢) is M,

l

THEN
(1) = Cix(1) + Dyw(1),
z(t) = Clx(t) + Dlu(t) + DL w(t).

Here, p,(t) are some fuzzy variables, x(¢) are the system states, u(¢) are the
control inputs, w(#) are exogenous inputs such as disturbance signals, noises,
or reference signals, y(¢) represent the measurements, and z(¢) stand for
performance variables of the control systems.

We can simplify the expressions of the T-S model as

i= Y h(p)(A;x + Bu + Biw), (13.20)

i=1

z= ) h(p)(Cix + Diu + Di,w), (13.21)
1

i

<
Il
[\1\ I

. h(p)(Cix + Diw). (13.22)
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The closed-loop system equations for a T-S model (13.20)-(13.22) with
DPDC controller (13.1) and (13.2) have the form

- i ¥ b p)y(p) (Al + Bijw), (13.23)
=1 j=1

hi(p)h;(p)(Clix. + Dijw), (13.24)

cl

Il
™~
|\[\1~<

I
-

where

A; + B.D.C; B.C!

_ |, Bi=
BIC, Al

BD]

B + B,.DCDJVW

Clj = [C’+DDC DlC/] D}j = [Di, + D:D.D]].

Now, we are ready to apply the results in Section 13.1.1 to (13.23) and
(13.24).

L, Gain Performance We begin by applying a congruence transformation
on (13.6) using the matrix

1

O~ O
~N o O

II
0
0

where the closed-loop system is defined as in (13.23) and (13.24). By utilizing
the notation in the quadratic parametrization discussed in Chapter 12, (13.6)
becomes

Y X hi(p) hi(p) E;; <0, (13.25)
i=1j=1
where
Ey EY)  ELY  Ej

(E4)  E}  EL  (EY
Tl (ED)" (R -yl (EB)
(E})"  EY  EL -yl
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and

. T ij
Eff = £(A4,00) +BG+ (BG) . Bl =4+ B, DC + A]

ij?
Ei = Bi + B, DD], Ei = (ClQ, +Dic),
.. T ij i i
E} = L(A], Py) + BC; + (Bicj) > Bz =PuB, + BDy,
Ei]z _ C; + th ch’ Efé = Dzl %Dd, + Dziw.

Condition (13.25) is equivalent to
Y X hi(p)hi(p)(E; + E;) <0. (13.26)
i=1j=1

The inequality (13.26) will hold true according to Theorem 45 if there exist
symmetric matrices 7;; satisfying (12.85) and (E;; + E;) < T;;.

We will express the resulting theorem using the notation in the previous
section:

THEOREM 51 Given a T-S model of the form (13.20)-(13.22) with DPDC
controller (13.1) and (13.2), the L, gain performance will be less than vy if the
LMI conditions (12.16), (13.27), and (12.85) are feasible with LMI variables Q,,,
Py, Ty, o?l.j, B, ¢, and D:

Ej  Ei E} Ej

(Ei)  E4  E% (E4) o

— T — . \T .7l < Tija Vi<j, (13.27)
(E%)  (E%)  -2v1 (E)

(E)'  Ej  Ei -2y

where
Eff = £(A,Qu) +£(4,,00) + BZ, + (BZ) +BZ + (BE)
Ej) = A, +4;+ B, BC; + B, BC, + 2 4.
Ei, =Bl + Bi + B, DD} + B, D],

T

Eﬂ = (CéQn + Can + Dzlé] + Dzjg,') >

Ef = £(Al,Py)+£(Al,P,)+ BC +BC + ( EC.)

1] J ot
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EY = P, Bl + P,,B} + B.D} + BD],
Ei, = CI + C + D! DC; + D! DC,,
Ell = D! DD/ + DI DD! + D!, + DI, .

The resulting dynamic controller is given by (12.87)—(12.90) where P,;, P,, Oy,
and Q,, satisfy the constraint P,,Q,, + P,, O, =1.

General Quadratic Performance Similarly, we get the following theorem
by applying a congruence transform on (13.10) using the matrix

1

O~ O
~ o O

11
0
0

THEOREM 52 For a T-S model (13.20)-(13.22) with a DPDC controller

(13.1) and (13.2), the generalized quadratic constraint (13.7) will be satisfied if
the LMI conditions (12.16), (12.85), and (13.28) are feasible with LMI variables

Oun> Py, Ty, A B, ¢ and D
Ej Ef EY} B
— T —..
(EB) E3 B Ey
—..\T —..\T —. _— < Tija Vl Sj’ (1328)
(E)  (E3) £y Ey

_ T
Ef = £(A,00) + £(A;,0,) + BZ + (B,.dj) +B,C+(B2)

Efy=A,+A4,+B, DC,+ B, DC, +2 A

ij
Ei, = BL + Bi + B, DD] + B, DD

T

+(cioy + Dig + clo, + D) W,

T
Ej = (C;'QH +ClQ, + DG + DZCE) 5
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_ _ _ T _ T
By = £(Al,Py) + £(4],P,) + BC + BC + ( BC) + (B,
EY = P, Bl + P,,B} + BD] + BD,
[R— | — T
+(C;' + C] + D! DC; + D] BC,.) W,

T
Eil = (C;‘ + C] + D! DC; + D] %Ci) S,

E{y =2+ w'(Di, + DJ, + DI BD] + DI DD}

T
+(Di, + D, + DI BD] + DI DD ) W,
T

EY (D;W + D}, + Di BD] + DI BD;) S,

Ei = —23.
The controller is given by (12.87)—(12.90).

Generalized H, Performance If we apply a congruence transform on both
(13.12) and (13.13) using the matrix

I, 0
0o 1)

THEOREM 53 For a T-S model (13.20)-(13.22) with PDC controller (13.1)
and (13.2), the generalized H, performance will be less than { if the LMI
conditions (12.16), (12.85), (1_3.2())_, (1_3.30), and (13.31) are feasible with LMI
variables Qy,, Py, Ty, Sy, A, B;, €, and D forall i <t

ij’ l_}’

we get the following theorem:

((Ci+ ChHoy
20y, 21 - -
+DZ'CJ. + D/0)
_ T
Ci + Cl + D! DC;
21 2P, ( _ ! > Sij,
+DJ] DC)
(Ci+CHOy (Ci+c!
= = = = 201
+D.C + D{(, +D. DC; + D] DC)
(13.29)
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Sy . Sy,
S=| - - < |>0, (13.30)
Slr Srr
Ej  E} E}
— T —.
(E) EY  Ey | <Ty, (13.31)
— T —-\T
(E)  (E%)  E3

- T - -
Ef = £(A,0,) + £(A;,0,) + B + (B,.cj) +BG + (B2

Efj=4,+4; + B, DC; + B, BC, + 2 ],

E, = B, + B} + B, DD} + B; DD},

— — T T
Ejy=2£(Al,P,) + £(ALP,) + BC + BC, + ( BC.) + ( BC) ,

i

EY = P, Bi, + P,,B} + BD} + BD],

Ll
R
I

—241,

D!, + D) + D! DD] + D! DD =0, Vi<j. (13.32)
The controller is given by (12.87)—(12.90).

Constraints on the Outputs Applying a congruence transform on (13.15)
using the matrix IT and on (13.16) and (13.17) using the matrix

we get the following theorem.

THEOREM 54 Consider a T-S model (13.20)-(13.22) (suppose D!, =0,
D! =0 and B, = 0) with DPDC controller (13.1) and (13.2). Suppose the
initial state is given by [x(0) x (0)'; then ||z < e~ *" for all t > 0 if the
LMI conditions (13.33)—(13.35) and (12.85) and (13.31) are feasible with LMI
variables Q,,, P\, Py, T;;, S;;, 4., B, C; and D:

ij» ij» ij?

<T, Vi<j, (13.33)
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where
—.. — T
Ef =2L(A4;,0n) + [(Ap Qll) + Bidj + (Bicj)
_ T
+ B0+ (B) +2a0,,
Eff=A,+A4;+ B, DC; + B; DC, + A, + 2al,
E} = £(A],Py) + L(A], P,) + BC, + BC,
_ T _ T
+( B¢ +(B].Ci) +2aP,,,
On I x(0)
Pyx(0)
! P tPLx(0) ] | > 0,
, x'(0) Py
0 ( ()P, o
(13.34)
(Cé + Cé)Qll
20y 21 - =
+D.C + D!C,
_ T
C. + Cl+ D! DC;
21 2P, _ > S,
+D! DC;
(C:+ C)Qu Ci+ Ci+ DI D,
== _ 201
+D;C + DIC, +Di DC,
(13.35)

The controller is given by (12.87)—(12.90).

Constraints on the Inputs Applying a congruence transform on (13.15)
using the matrix IT; and on (13.16) and (13.19) using the matrix

Im, 0
0o 1)

we get the following theorem:
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THEOREM 55 Consider a T-S model (13.20)-(13.22) (suppose D!, =0,
D! =0, and B, = 0) with PDC controller (13.1) and (13.2). Suppose the initial
state is given by [x(0) x.0)]; then |lu(Dll < {e~*" for all t > 0 if the LMI
conditions (13.33), (13.34), (13.36), and (12.85) are feasible with LMI variables

O, Py, T, A B, €, and D.
o, 1 ¢
_ T
I P, ( %Ci) > 0. (13.36)
N6 (I

The controller is given by (12.87)—(12.90).

13.2 EXAMPLE

To illustrate the DPDC approach, consider the problem of balancing an
inverted pendulum on a cart. Recall the equations of motion for the pendu-
lum [26]:

X1 = Xy,

gsin(x,) — amlxj sin(2x,) /2 — a cos(x,)u
- 41/3 — aml cos*(x,)

X, , (13.37)

where x; denotes the angle (in radians) of the pendulum from the vertical
and x, is the angular velocity; g = 9.8 m/s* is the gravity constant, m is
the mass of the pendulum, M is the mass of the cart, 2/ is the length
of the pendulum, and u is the force applied to the cart (in newtons);
a=1/(m + M). We choose m = 2.0 kg, M =8.0 kg, 2/ = 1.0 m in this
study.

The control objective is to balance the inverted pendulum for the approxi-
mate range x, € (—a/2, w/2). In order to use the DPDC approach, we first
represent the system (13.37) by a Takagi-Sugeno fuzzy model. Notice that
when x, = + /2, the system is uncontrollable. Hence we use the following
two-rule fuzzy model as shown in Chapter 2.

Model Rule 1
IF x, is about 0,

THEN x = A,x + Bju.
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Model Rule 2
IF x, is about + /2 (|x,|< 7/2),

THEN x = A,x + B,u.

Here,
[ 0 1 [ 0
Al = g 0 s Bl = ——a 4
41/3 — aml 41/3 — aml
[ 0 1 [ 0
A, = 28 ol B,=| ap ’
w(41/3 — amiB?) 41/3 — amlB*

and B = cos(88°).

Membership functions for Rules 1 and 2 are shown in Figure 13.1.

Now we apply the DPDC design to the pendulum system. Assume that
only x, is measurable, that is, y = Cx = [1 0]x. We employ the following
DPDC controller:

2
Y hi(y)h(y)Alx, + Zh

j=1

&
I
M o

I
—_

<
I
M

h(y)C +ch.

I
—

Rule 1

—7/2 /2 X,

Fig. 13.1 Membership functions of the fuzzy model.
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Employing Theorem 47, we obtain the following control parameters for the
DPDC controller:

0 — —13.2565 — 1.4197
¢ —79.0890 —21.9652]’

Py 30.7121 — 4.8468
¢ ¢ —173.9217 —51.7244 °

g2 _ |~ 40809 09859
© | -245808 —6.5791)
Bl _ | 5:0666
¢ [20.8530
=2 _ | 3.4824
Be _12.5320]’

C! =[388.9291 113.6926],
C? = [794.6242 247.5543],
D, = 4.4624.

Figure 13.2 illustrates the closed-loop system response with the DPDC
controller for initial conditions x; = 7/4 and x, = 0.1. A number of perfor-

mance-oriented DPDC designs have also been carried out according to the
principles of Section 13.1.

1 Response of Pendulum

|
=)
SN

I ! I I 1

0 2 4 6 8 10 12 14 16 18 20
Time

Fig. 13.2 Angle response using the DPDC controller.
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If variable p comes from the output of the system, the dynamic feedback
controller will become a dynamic output feedback controller which is essen-
tial for practical applications when only the system output is available.

The framework used in this chapter can also be applied to generate
nonlinear controllers for uncertain systems. One of the basic tools for
robustness analysis of such uncertain systems is the small-gain theorem which
can be related to the L, gain. Thus by making the gain of the nominal plant
sufficiently small, we can guarantee the robust stability. The results in this
chapter are also applicable to hybrid and switching systems.
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T-S FUZZY MODEL AS
UNIVERSAL APPROXIMATOR

In this chapter, we present two results concerning the fuzzy modeling and
control of nonlinear systems [1]. First, we prove that any smooth nonlinear
control systems can be approximated by Takagi-Sugeno fuzzy models with
linear rule consequence. Then, we prove that any smooth nonlinear state
feedback controller can be approximated by the parallel distributed compen-
sation (PDC) controller.

Among various fuzzy modeling themes, the Takagi-Sugeno (T-S) model [2]
has been one of the most popular modeling frameworks. A general T-S
model employs an affine model with a constant term in the consequent part
for each rule. This is often referred as an affine T-S model. In this book, we
focus on the special type of T-S fuzzy model in which the consequent part for
each rule is represented by a linear model (without a constant term). We
refer to this type of T-S fuzzy model as a T-S model with linear rule
consequence, or simply a linear T-S model. As evident throughout this book,
the appeal of a T-S model with linear rule consequence is that it renders
itself naturally to Lyapunov based system analysis and design techniques
[12,15]. A commonly held view is that a T-S model with linear rule conse-
quence has limited capability in representing a nonlinear system in compari-
son with an affine T-S model [9].

In Chapter 2, the PDC controller structure was introduced [11, 12]. This
structure utilizes a fuzzy state feedback controller which mirrors the struc-
ture of the associated T-S model with linear rule consequence. As shown
throughout this book, T-S models together with PDC controllers form a
powerful framework for fuzzy control systems resulting in many successful
applications [10, 13, 14].

277
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In this chapter, we attempt to address the fundamental capabilities of T-S
models with linear rule consequence and PDC controllers. To this end, two
results are presented. The first result is that a linear Takagi-Sugeno fuzzy
model can be a universal approximator of any smooth nonlinear control
system. It has been known that smooth nonlinear dynamic systems can be
approximated by T-S models with affine models as fuzzy rule consequences
[4,7]. However, most results on stability analysis and controller design of T-S
models are based on T-S models with linear rule consequence. The question
needed to be addressed is: “Is it possible to approximate any smooth
nonlinear systems with Takagi-Sugeno models having linear models as rule
consequences?” Reference [6] gave an answer to this question for the simple
one-dimensional case. This chapter tries to answer this question for the
n-dimensional nonlinear dynamic system by constructing T-S model to ap-
proximate the original nonlinear system. The answer is yes. That is, the
original vector field plus its velocity can be accurately approximated if
enough fuzzy rules are used.

The second result is that the PDC controller can be a universal approxi-
mator of any nonlinear state feedback controller. Therefore linear T-S
models and PDC controllers together provide a universal framework for the
modeling and control of nonlinear control systems.

In this chapter, R" is used to denote the n-dimensional vector spaces of
real vectors; C," is used to represent the set of n-dimension functions whose
mth derivative is continuous on the defined region; x; stands for the ith
component of vector x and || || stands for the standard vector norm or matrix
norm; O(x) is the set of numbers y such that |y/x| < M, where M is a
constant.; and Y;;  is used to represent the summation with all
the possible combinations of j,, j,,...,j,. We will often drop the x and
just write A;, but it should be kept in mind that A/s are functions of the
variable x.

14.1 APPROXIMATION OF NONLINEAR FUNCTIONS
USING LINEAR T-S SYSTEMS
14.1.1 Linear T-S Fuzzy Systems

The main feature of linear Takagi-Sugeno fuzzy systems is to express the
local properties of each fuzzy implication (rule) by a linear function. The
overall fuzzy system is achieved by fuzzy “blending” of these linear functions.
Specifically, the linear Takagi-Sugeno fuzzy system is of the following form:

Rule i
IF x, is M;, ---and x, is M,,,

m

THENy = a;x,
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where x” =[x, x,,..., x,] are the function variables; i = 1,2,...,r and r is
the number of IF-THEN rules; and M;; are fuzzy sets. The linear function
y = a;x is the consequence of the ith IF-THEN rule, where a, € R

The possibility that the ith rule will fire is given by the product of all the

membership functions associated with the ith rule:
hi(x) = jl;ll Mij(xj)'

We will assume that %,’s have already been normalized, that is, #,(x) > 0 and
'_1h,(x) = 1. Then by using the center-of-gravity method for defuzzifica-
tion, we can represent the T-S system as

y=/f(x) = 21 hi(x)ax. (14.1)

The summation process associated with the center of gravity defuzzifica-
tion in system (14.1) can also be viewed as an interpolation between the
functions a;x based on the value of the parameter x.

14.1.2 Construction Procedure of T-S Fuzzy Systems

Suppose that the nonlinear function f(x): R" — R is defined over the
compact region D C R” with the following assumptions:

1. f(0)=0.
2. f € C}. Therefore, f, df/dx, and d*f/dx* are continuous and there-
fore bounded over D.

Next, we will construct the T-S system f(x) = X/_,h,(x)a;x to approxi-
mate f(x). The objective is to make the approximation error e(x) = f(x) —
f(x) and its derivative de/dx small for all x € D.

Construction Procedures:

1. In region D, = {x||x;| < €} where ¢, is a chosen positive number,
choose a, = df/dx|x=o.

2. Define the projection operator P| mapping R” to n — 1 dimensional
subspace R" /x as

(y,x)
D X
[l

. . . . T .
In region D\ D,, choose x;; . as[je€ j,e...j,€l’, where € is a

positive number and j; are integers. Build the linear model a;; ; as
Jae-en

Ply=y-—
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the solution of the following linear equations:

YT (VL (14.2)
_of
a,. Pl PRV 14.3
Juz2--+Jn Juz---in (?x I | Juiz---n ( )
For fixed x; ; ;,(14.2)=(14.3) are n linear equations with the compo-_

nent of a; ; as the variables. Equation (14.2) implies that f and f
2 Jn

have the same value at point x;; . Equation (14.3) implies that

a; ;. ;. agree with df/dx in the n — 1 dlmensmnal space R"/x;; ;.

They are always solvable since x and P are independent of each other,

that is, the matrices [xj] i P|x]I i ] are always invertible.

3. Choose the fuzzy rules as followmg.
Rule 0
IF x, is about 0---and x, is about 0,
THEN f(x) = a,x.
Rulej,j,...J,
IF x, is about j € ---and x, is about j, e,

THEN f(x) = a;,; _;x.
For Rule 0, choose the possibility of firing /,(x) as 1 inside D, and 0
outside. The possibility of firing for the (j,j,...j,)th rule is given by the
product of all the membership functions associated with the (j,j,...j,)th
rule:
h. . j”(x) = HM(x) (14.4)

2 -

where the membership function for x; is given as

1 |x; — ji€l X, —jie| < e
M,(x;) = e T ’ (14.5)
0, elsewhere.
It is noted that h; ;. J(x) have already been normalized, that is, h; ; ;(x)

>0and ¥;;  h;; () =1

Jn T2

Therefore, we can write f(x) as

f(x) =hyayx + ) B a X (14.6)

Ju2 e dn
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Remark 42 It should be pointed out that the specific membership function
constructed above is only needed when we want to approximate both the
nonlinear function and its derivative. There will be much more freedom if we
only want to approximate the function itself.

14.1.3 Analysis of Approximation

In this subsection, we will prove the fact that any smooth nonlinear function
satisfying the assumptions outlined in the previous subsection can be approxi-
mated, to any degree of accuracy, using the linear T-S fuzzy systems con-
structed above. This fact forms the foundation of the two statements in this
chapter.

First, we divide region D \ D, into many small regions:

D, = {x|x €D, jie<x; <(j,+1)e Vi}.

In the following discussions, we concentrate on one such region (D s ]"),
which is shown in Figure 14.1, by assuming that x €D, ; .. From the
construction procedure above, we know that only the fuzzy rules centered at
the vertices of D;; ; can be activated at x. That is, &, ; _,(x) # 0 only if
Xy, .., isone of the vertex points of D, .

Consider e(x), the approximation error between f(x) and f(x):

||€(x)||—Hf(x) - Z i, (X)ag;,  x

JiJ2---n
Hf(x)_ Z Ry () @, X0,
JiJ2 - n
- Z hh/z J,,(X)amz /,(x Xz J,,)H
Ji2 - n
Xi2
ji26+ € UL
Jop€ | el
Ji Jn€+ € X
Fig. 14.1 Projection of D; ; ; on x; x; plane.
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- - L b (S0

JiJ2 - Jn
o Z h}m Jn(x)alljz Jn(x Xjija .- J,,)H
Jidz - n
= Z h]l]z ]n(x)”f(x) f(lejZ"'jn) |
JiJ2 - n
+ _Z , gy @, (=5, )|
JiJ2---Un
< max ||f(x) —f(x1,.0) ” + max ”alllz...ln(x_xlllz...l,,)”'
Li...1, Liy...I,

Note that

alllz‘..ln(x - lezz...ln)

ﬂt ((x - 361112..41")#51112

(x - xl,lz...ln) -

= 2 Li,...1,
0X beiiy...i, I, 0
((x = IR )s X0,
+ 2 (xl Ly /)-
[ Xit,...1,
Since x €D, ; ;. the distance between x and any vertex point of
D;; . is less than Vr e, that is, [x — X, 1< Vn e, we can make e(x)

arbitrarﬂy small by just reducing e.
Now consider the approximation of Jf/dx. Before doing that, three facts
for the membership functions are presented.

LEMMA 6 Define

iy _ | M| M| Mg
ox x axy |, Ix, |, ox,, B
where it exists; then
oh; . .
Yool o, (14.7)
iy 0%k

Proof. Take the derivatives of X;;  ; h;; ;. .Since X, h;; . =1,its
derivatives with respect to x; will be 0. Q.E.D.)
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LEMMA 7

oh. ..
JiJa -]

N e e it

VIVERRR A o

Proof. For vertex point x,, , €D, ;. define I, =2j,+1— 1; then it
can be proven that

Wil | oy,
(X =X, 0,0, P (X = X1, 1,); P
X N x|,
= = (P, oy o, )
Iy iy Iy
(x—=x10, i.1) )t (x—xyy, ), =0,
e T Jx e /g X,
J x J x

i#].

Summing up these equations for all the rules /,/, .../, that are effective in
region D, ; ., the fact is proved. (Q.E.D)

LEMMA 8 Define a, as the solution of the following linear equations:

a.x = f(x), (14.8)
a.Pl, = Z—)’: ) (14.9)

Then V8, Je such that lla, — a; ---J',,” <d5if llx —X; j”II <e< 1.

12 J2---
Proof. Since a, is the solution of the linear equations (14.8) and (14.9) and
all the parameters of the equations (f(x), df/dx, and P|,) are continuous
functions of x, a, will depend continuously on x. Consequently, [la — a I jn”
can be made arbitrarily small by choosing a small enough value for e.

(QED.)

Now consider de/dx, the difference between df/dx and df/ dx.

‘ﬁ _ L?_f _ a(zjljz"‘jnhjljz"‘jnajljZ"‘jn-x)H
ox X |x Jx
_ef] S 4 Ihjj, ..,
T oxl, T & T gy
JiJ2 - Jn x

o Z hflfz--~j/x(x)aj1j2...jn

Sz n
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_I19f S 4 (x—x )5}’/11‘2---/”
Jij2 - n Jij2 - n J
- . X
9% L Ji2--n X
Y . Ihjj, ...,
T ARy F o [V S0 A
JiJ2 -+ Jn X
- ,Z hyg, () ag, L,
JiJ2 -+ Un
| S 4 (x—x )5}’/11‘2---/”
Jij2 - n Jij2 - n J
.. . X
9% L Ji2---n X

oh, . .
JiJ2 -+ n
- ZAf(xh]'z'n]'n) S - Z_hjljz...j,l(x)“mz..‘fn

VIVERRRN 9% x  Jizeeidn
_I1ef| T (x—x )ahjljz...j,,
ax | o 2 Juz2--+Jn Ix

Ji2---In X

i oh, .
- X (f(x)Jra_iCL(lejz...,'n—x)+0(52))M

.. . ax
JiJ2--+n

- Z . hjljz--~jrx(x)aj1jz~--j,,

Ji2-+Jn
e ¥ B Ihjj, ..,
BT j"jljz...jn(x Xy i) gy
N
_ ¥ I NI
Ix (x/1f2--~j/; X) Ix
ey OF ¥

- X hig, i (X¥)ag;,
Jrda-in
|| oh

Jujz - n
Yo (=X ) ax

+ O(¢€) (from Fact 6)

Juz e

= X My (0)ag, | +O0(e)  (from Fact 7)

JiJ2---Jn
oh. . .
JU2--+Jn
e Z ) af1jz~--jn(x lejZ"'jn) ox +a,
Ji2 - o

+ X - X Ry (0)a,

Tz Jidz - n

+ O(€)
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< v B B Ihjj, ..,
S (@, — @) (X =255, 5,) ax
JiJ2+ - n

+

)y iy (@, g, — A

Ji2 e

+ O(€) (from Fact 7).

From Fact 8, it is known that de/dx can be made arbitrarily small by
reducing e.

Next consider region D,. In region D, it is known from Taylor series that
e(x) and de/dx can also be made arbitrarily small by reducing e,. There-
fore, we have the following theorem by summarizing the results above:

THEOREM 56 For any smooth nonlinear function f(x): R" — R! defined on
a compact region, satisfying f(0) = 0 and f € C?, both the function and its
derivatives can be approximated, to any degree of accuracy, by linear T-S fuzzy
systems.

Remark 43 1t may be argued that the condition f(0) = 0 is too restrictive.
However, in the case of f(0) # 0, we argue that f can still be approximated
by a linear T-S model through a simple coordination transformation, that is,
the function f is now represented by a linear T-S model in the new
coordinate system. A coordination transformation might puzzle the mind of a
purist of function approximation. However, for control system analysis and
design, which is the sole focus of this book, this is not a problem at all. It is
well known that for the stability analysis and design of nonlinear control
systems, it can be assumed without loss of generality that the origin is an
equilibrium point of the system.

f(xy,x,) = 8x; + 10x, sin(4x,) +x} — 4x,x,

200

Ty
it
1,

s

17 17144 s .

e

Z

100

l;;;;"—., 77

IIII[[;"’II;;"'.,

W i

””llll[%’”’l‘ 77
17

i)
27
5%
g

Fig. 14.2 Nonlinear function f(x,, x,) = 8x, + 10x,sin(4x,) + x3 — 4x,x,.
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Remark 44 It may be argued that the membership function is not continu-
ous on the boundary between D, and D;; ;. To overcome the discontinu-
ity, some bumper functions can be included to smooth the membership

function without affecting the approximation accuracy [16].

14.1.4 Example

An example is given in this subsection for illustration. Consider the approxi-
mation of a two-dimensional nonlinear function f(x,, x,) = 8x, +
10x, sin(4x,) + x; — 4x,x, as shown in Figure 14.2. The constructed T-S
fuzzy model is shown in Figure 14.3. A 25 X 40 grid is used. The maximum
approximation error is 1.38. We also plot the approximation error in Figure
14.4. It should be pointed out that the approximation error could be further
reduced by using more fuzzy rules.

Constructed T-S fuzzy model!

200 e
. IIIIII[[I T
[
i
1l Uil iyttt
100 Wl

o
P ”Il;%;’”lllfl ittty
Vi R (T
(R, (Il
i g s

20,
iy
lIll/ i 11t
'IIII s IIII[”/’III,, 7% 1017700
Ut 01555 el e
Lzl ’lll”;z?zz;'u

2
0 0

Fig. 14.3 Constructed T-S fuzzy model.

Approximation error

U I' " L
" > I' B AR
u':'ﬂ',ﬂz'g!!lf/% o
iz
Mg

Ui
i

0 0

Fig. 144 Approximation error of nonlinear function.
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14.2 APPLICATIONS TO MODELING AND CONTROL
OF NONLINEAR SYSTEMS

14.2.1 Approximation of Nonlinear Dynamic Systems
Using Linear Takagi-Sugeno Fuzzy Models
The following dynamic linear Takagi-Sugeno fuzzy model is used to describe
dynamic systems:
Rule i
IF x(¢) is M, ---and x,(¢)is M,,,
THEN x(¢t) = A,x(1),

where x7(¢) = [x,(1), x,(1),..., x,(¢)] are the system states; i = 1,2,...,r
and r is the number of IF-THEN rules; M;; are fuzzy sets; and (1) = A4,;x(¢)
are the consequences of the ith IF-THEN rule.

By using the center-of-gravity method for defuzzification, we can represent
the T-S model as

x=f(x) = _2 hi(x)A,x, (14.10)

where h,(x) is the possibility for the ith rule to fire.
Consider the nonlinear system

& =f(x), (14.11)

where f(x) is a vector field defined over the compact region D C R”" with
the following assumptions:

1. f(0) = 0, that is, the origin is an equilibrium point.
2. f € C2. Therefore, f, df/dx, and 9°f/dx* are continuous and bounded
over D.

Suppose f(x) can be written as [ f,(x)... f,(x)]". What we mean by approxi-
mation is finding a T-S fuzzy model f(x) =[f,(x)...f,(x)]" such that
Il f(x) — f(x)ll is small. Since || f(x) — f(x)ll is small if and only if each of its
components (which are nonlinear functions) are small, then by applying
Theorem 56, we obtain the following corollary:

COROLLARY 7 For any smooth nonlinear system (14.11) satisfying the as-

sumptions stated above, it can be approximated, to any degree of accuracy, by a
T-S model (14.10).
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Similarly, a smooth nonlinear control system x = f(x) + g(x)u can also
be approximated using a T-S fuzzy model x = X/_ h,(x)(A4;x + B;u). By
treating u as an extraneous system state, we can also approximate the
smooth nonlinear control system i = f(x,u) by a T-S fuzzy model x =
Yi_ h(x,u)A;x + Bu). In this case, the fuzzy rule is of the following form:

Rule i

IF x(t)is My, ..., x,(t)is M,

mn’

u(t)is Nyj,..., and u, (1) is N;

THEN 5(t) = A,x(t) + Bu(t),

where x7(¢) = [x,(¢), x,(¢),..., x,(t)] are the system states and u’(¢) =
[u,(8), uy(t),...,u,(t)] are the system inputs; i = 1,2,...,r and r is the
number of IF-THEN rules; M;;, N;; are fuzzy sets and i(t) = A;x(¢) + Bu(t)
is the consequence of the ith IF-THEN rule; and

f‘i(xy u) = jl;[] Mi_i(xi(t))kl;[l Nie(ui(1))
is the possibility for the ith rule to fire.

14.2.2 Approximation of Nonlinear State Feedback Controller
Using PDC Controller

In this chapter, we consider the special form of the fuzzy controller intro-
duced in [12] where it was termed parallel distributed compensation (PDC).
The PDC controller structure consists of the following fuzzy rules:

Rule j
IF x,(t) is M;; ---and x,(¢) is M,
THEN u(1) = K;x(1),
where j = 1,2,...,s. The output of the PDC controller is

u= i hi(x)K;x. (14.12)

Following a similar argument as in the above subsection, we obtain the
following theorem:

THEOREM 57 For a smooth nonlinear state feedback controller, u = K(x)
defined over a compact region (u(0) = 0) can be approximated, to any degree of
accuracy, by a PDC controller (14.12).
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FUZZY CONTROL OF NONLINEAR
TIME-DELAY SYSTEMS

In this chapter, a class of nonlinear time-delay systems based on the Takagi-
Sugeno (T-S) fuzzy model is defined [1]. We investigate the delay-indepen-
dent stability of this model. A model-based fuzzy stabilization design utilizing
the concept of parallel distributed compensation (PDC) is employed. The
main idea of the controller design is to derive each control rule to compen-
sate each rule of a fuzzy system. Moreover, the problem of H,, control of this
class of nonlinear time-delay systems is considered. The associated control
synthesis problems are formulated as linear matrix inequality (LMI) prob-
lems.

In the original T-S fuzzy model formulation, there is no delay in the
control and state. However, time delays often occur in many dynamical
systems such as biological systems, chemical systems, metallurgical processing
systems, and network systems. Their existence is frequently a cause of
instability and poor performance. The study of stability and stabilization for
linear time-delay systems has received considerable attention [2—-6]. But these
efforts were mainly restricted to linear time-delay systems. Thus, it is impor-
tant to extend the stability and stabilization issues to nonlinear time-delay
systems. In this chapter, a particular class of nonlinear time-delay systems is
introduced based on the Tagaki-Sugeno fuzzy model. This kind of nonlinear
system is represented by a set of linear time-delay systems. We will call this a
T-S model with time delays (T-SMTD). In the literature, the problem of
stability and stabilization of time-delay systems has been dealt with a number
of different ways. There are some results that are independent of the size of
the time delays in [2—-4], and the stability is satisfied for any value of the time
delays. There are also some delay-dependent results, in which the stability is

291
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guaranteed up to some maximum value for the time delays [5,6]. This
chapter is concerned with the problems of delay-independent stability and
stabilization of T-S fuzzy models with time delays. Particularly, we will
employ the concept of parallel distributed compensation to study these
problems. Several new results concerned with the stability and stabilization of
T-SMTD are derived. Also, a sufficient condition for the H, control of this
model is given. All the synthesis problems are formulated as LMIs, thus they
are numerically efficient.

Throughout the chapter, the notation M > 0 will mean that M is a
positive definite symmetric matrix. The symbol p will be used for premise
variables as in Chapters 12 and 13.

15.1 T-S FUZZY MODEL WITH DELAYS AND STABILITY
CONDITIONS

15.1.1 T-S Fuzzy Model with Delays

To begin with, we represent a given nonlinear plant by the Takagi-Sugeno
fuzzy model. Then, we will define a new kind of model, the Takagi-Sugeno
fuzzy model with time delays. The main feature of the T-S fuzzy model is to
express the joint dynamics of each fuzzy implication (rule) by a linear system
model. Specifically, the Takagi-Sugeno fuzzy system is described by fuzzy
IF-THEN rules, which locally represent linear input-output relations of a
system. The fuzzy system is of the following form:

Dynamic Part: Rule i
IFp()is M,,...,and p(2)is M,,

THEN

#(1) = A;x(1) + Bu(t), i=1,2,...,r. (15.1)

Output Part: Rule i
IF p(t)is M,,...,and p/(t)is M,,
THEN

y(t) = Cix(1).

Here, x(¢), u(t), y(¢), and p(t) respectively denote the state, input, output,
and parameter vectors. The jth component of p(¢) is denoted by p;(¢), and
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the fuzzy membership function associated with the ith rule and jth parame-
ter component is denoted by M;;. Each p(¢) is a measurable time-varying
quantity. In general, these parameters may be functions of the state variables,
external disturbances, and /or time.

There are two functions of p(¢) associated with each rule. The first
function is called the truth value. The truth value for the ith rule is defined
by the equation

1
wi(P(t)) = 111 Mij(pj(t))'

Throughout this chapter, we will assume that each ; is a nonnegative
function and that the truth value of at least one rule is always nonzero. The
second function is called the firing probability. The firing probability for the
ith rule is defined by the equation

w; t

hi(p(1)) = L))
Tisio;(p(1))
where r denotes the number of rules in the rule base. Under the previously
stated assumptions, this is always a well-defined function taking values
between 0 and 1, and the sum of all the firing probabilities is identically
equal to 1.

Now, we introduce time delays into the above T-S fuzzy model. Here, we
assume there are time delays in both the state and control of the dynamic
part. Then, the i rule of the dynamic part of T-S fuzzy model becomes:

Rule i

IFp()is M,,..., and p/(¢)is M,

1

THEN

x(t) =Apx(t) + Ayx(t — 1) + Byou(t) + Bju(t — 7,),

i=1,2,...,r, (152)

where 0 < 7, < @ and 0 < 7, < « are the size of the time delays. The initial
condition is x(z) = 0, where ¢ < 0.

We call this model the T-S model with time delays (T-SMTD). In the

following we will investigate the stability and design issues, such as delay-
independent stabilization and H,, control, of this system.
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The dynamics described by the T-SMTD evolve according to the system of
equations

1) = T h(p)Ax(0) +A,x( = )
+B;yu(t) + Bu(t — 7,)}, (15.3)

y(t) = X hi(p)Cix(t).
i=1
The open-loop system is of the form
x(t) = Zhi(p){AiO'x(t) +Ajgx(t = 7'1)}- (15.4)
i=1

Remark 45 Our proposed model description can also be viewed as parame-
ter-dependent interpolation between linear models; however, the exact classi-
fication of the resultant system depends on the nature of the parameters. For
example, if each p; is a known function of time, then the T-S model describes
a linear time-varying system. If, on the other hand, each p, is a function of
the state variables, then the T-S model describes an autonomous nonlinear
system.

15.1.2 Stability Analysis via Lyapunov Approach

A sufficient delay-independent stability condition for the open-loop system
(15.4) is given as follows:

THEOREM 58 The open-loop T-S fuzzy system with time delays (15.4) is
globally asymptotically stable if there exist two common positive definite matrices
P and R such that

PA,y + AP + PA,R AL, P+R<0, i=1,2,...,r, (15.5)

that is, two common matrices P and R have to exist for all subsystems.

Proof. For the open-loop system (15.4), we define a Lyapunov function as the
following:

V(x) =x(t) Px(1) + /tt_fx(s)TRx(s)ds. (15.6)
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The derivate of V(x) along the open-loop system (15.4) is
V(x) = Zhi(p)x(t)T[PAiO + Afy P x(1)
i=1
+2 Zhi(p)x(t)TPAidx(t - 7)
i=1
+x(t) Re(t) — x(t — 7)) Re(t — 7). (15.7)
Using the fact that
2x(t) PAx(t — 7)) <x(t) PA,,R™'AL, Px(1)
+x(t — 1) Re(t — 1), (15.8)

we have

V(x) < Ehi(p)x(1)’
i=1
X{PA;y + AL P + PA,,R™ 'A%, P + R}x(1) <0, Vx+#0. (15.9)
(QE.D.)

Remark 46 The system (15.4) is also said to be quadratically stable and the
function V(x) is called a quadratic Lyapunov function. Theorem 58 thus
presents a sufficient condition for quadratic stability of the open-loop system
(15.4).

15.1.3 Parallel Distributed Compensation Control

In [7], Wang et al. utilized the concept of parallel distributed compensation
(PDO) to design fuzzy controllers to stabilize fuzzy system (15.1). The idea is
to design a compensator for each rule of the fuzzy model. The resulting
overall fuzzy controller, which is nonlinear in general, is a fuzzy blending of
each individual linear controller. The fuzzy controller shares the same fuzzy
sets with the fuzzy system (15.1). Here, we will apply the same controller
structure to the T-SMTD, so the ith control rule is as follows:

Control Rule i
IF p(t)is M,, and,...,and p/(t) isM,,

THEN u(t) = —Fx(¢), i=1,...,r.
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The output of the PDC controller is determined by the summation
u(t) = = X hy(p)Fx(t). (15.10)
i=1

Note that the controller (15.10) is nonlinear in general.
The Closed-Loop System Substituting (15.10) into (15.3), we obtain the

corresponding closed-loop system

i(t) = Y h}(pH{Gyux(t) + Ayyx(t — 7)) — By F,x(t — 7,)}
i=1

+23Y Y h(p)hi(p)

i=1i<j

Gij + Gﬁ A x(t — 1)) +Ajdx(t -7
{ ) + -

—B Fix(t — ) — BjyFix(t — 7,)
+
; J

(15.11)

where G;; = A,y — B, F;.

15.2 STABILITY OF THE CLOSED-LOOP SYSTEMS

Now, we present a delay-independent stability condition for the closed-loop
system (15.11).

THEOREM 59 If there exist matrices P > 0, R, > 0, and R, > 0 such that
the following matrix inequalities are satisfied, the closed-loop system (15.11) is
quadratically stable:

PG, + GIP + PA,,R;'A",P + R, + PB,,F;P"'R;'P~'F'BLP + PR,P < 0,

i=1,....,r, (15.12)

Gi'+G'i Gi'+G'i ! 1
P[Z ) (F5 ) P SR AL + a4 R AL

1
+R, + EP(BMEP—IR;IP*F]TB;

+B;,F,P"'R;'P"'F/BJ}) + PR,P < 0. (15.13)
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Proof. Define the following Lyapunov function for the closed-loop system:
V(x) =x(0) Pr(t) + [* x(5)"Ryx(s) ds
t—74
+[* x(s)" PRy Px(s) ds. (15.14)
t—7,

Taking the derivative of V(x) along the closed-loop system and using the
fact that for any vector x; and x, and matrix Y

T Y, +x3Y x, <x] YR 'Y'x, + xIRx,, (15.15)

where R is a positive definite matrix, we have

V(x) = Y h¥(p)x(t) (PG, + GLP + PA, R 'AL,P + R,
i=1

+PB, ,F,P"'R;'P"'F'Bl,P + PR, P}x(t)
4 G+ G, G, +G,\"
+2) Zhihjx(t)T{P L ) + | = )
i=1i<j 2 2
1 -1 4T -1 4T
+ EP(Aide Al + A RTAL )P+ R,
1 —1p-1p-1pTRT
+§(BidFjP R;'P 'F'B],

+B;,F,P"'R;'PT'F/B]}) + PRZP}x(t).

(15.16)

Since XI_,h; > 0 and h; > 0, we have
V(x) <0, VYx=#0. (15.17)
(QED.)

15.3 STATE FEEDBACK STABILIZATION DESIGN VIA LMIs

The state feedback stabilization design problem can be stated as follows:
Given a plant described by a T-SMTD model, find a PDC control that
quadratically stabilizes the closed-loop system. The design variables in this
problem are the gain matrices F; (1 <i < r). The following theorem states
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conditions that are sufficient for the existence of such a PDC controller.
Taken together, these conditions form an LMI feasibility problem. If this
problem is analyzed numerically and a feasible solution is found, then a set of
stabilizing gain matrices can be computed directly from the solution data.

THEOREM 60 A sufficient condition for the existence of a PDC controller
that quadratically stabilizes the T-SMTD model (15.3) is that there exist matrices
X>0,W, >0, W,>0, and M;, 1 <i <r, such that the following two LMI
conditions hold:

(a) Forevery 1 < i <r, the following equation is satisfied:

A X + XA + 4, W, A%,

TpT X BidMi
_BiOMi - Mi Bi() + Wz
<0. (15.18)
X -w, 0
M!B; 0o -m

(b) For every pair of indices satisfying 1 <i <j < r, the equation

U,+V,+W, X ByM, B,M,

1

X ~lw, 0 0
M/!B, 0 0o -,

holds, where
Uj;=A4,0X+ XA,.T0 +A4;0X +XA]TO,
— T T
Vij - _BiOMj - A/[j BiO - BjOMi - Mi Bj(]’

W, = A, W, ALy + A W AL + 20,

Furthermore, if the matrices exist which satisfy these inequalities, then the
feedback gains F, = M, X~" will provide a quadratically stabilizing PDC
controller.

Proof. Let P=X"', W, =R;', and W, = R,. Then we can get the above
results following Theorem 59. (Q.EE.D.)
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154 H, CONTROL

In this section, we will investigate the problem of disturbance rejection for
the T-S fuzzy model with time delays. We assume the ith rule of the model is

IF p(¢)is M, and,...,and p/(¢)is M,,
THEN

x(t) =A;ox(t) + Ajyx(t — 7)) + Byu(t) + Bu(t — 7,) + Dw(t),

i=1,2,...,r, (15.20)

z(1) = Ex(1),

where w(¢) is the square integrable disturbance input vector and z(¢) is the
controlled output.

Our objective here is to construct an H,, controller in the form (15.10) such
that (a) the controller is a stabilizer for the nonlinear time-delay system and
(b) subject to assumption of zero initial condition, the controlled output z
satisties [(1lz(ON* < y2[ [ZIw()lde] for all w € L,[0 o], where y is a pre-
specified positive constant. If this kind of controller exists, the nonlinear
time-delay system (15.20) is said to be stabilizable with an H,-norm bound 7.

THEOREM 61 For the system (15.20), a sufficient condition for the existence
of a PDC controller that stabilizes the T-SMTD model with an H,.-norm bound y
is that there exist matrices X > 0, W, > 0, W, > 0, and M;, 1 < i < r, such that
the following two LMI conditions hold:

(1) Forevery 1 <i <r, the equation

where

I—Iii X BidMi Di XEiT
X -w 0 0
M'BL 0 —-W, <0, (1521
D! 0 0 —yI 0
EX 0 0 0 —vI

H, = A, X + XA}, + A, W, A}, — ByM, — MBj, + W,,

is satisfied.
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(2) For every pair of indices satisfying 1 < i <j < r, the equation

A
Uij + Vij + Wij X Bidjwj Bdei Dij XEij
X ~lw, 0 0 0 0
M/B, 0 -w, 0 0 0
r <0 (15.22)
M/B], 0 0 W, 0 0
T
D/ X 0 0 -yl 0
E;X 0 0 0 —vI

holds, where
Uj;=A;g X + XA, + A;) X + XA,

V, =

TRT TRT
j _BioMj - ]WJ Bi() - BjOMi - Mz’ B

j0
W, =AW Al + AW, Al + 2W,,
D, = [D.D! + D,DIT,
E,;=|EE' +EE]".
Furthermore, if matrices exist which satisfy these inequalities, then the
feedback gains are given by F, = M, X~ ".
15.5 DESIGN EXAMPLE

Consider the following simple T-S fuzzy model with time delays where the
fuzzy rules are given by

Rule 1
IF x,(¢) is M, (e.g., Small)
THEN
X(1) = Aypx(t) + A x(t = 7y) + Byu(t) + Byu(t = 7,).
Rule 2
IF x,(¢) is M, (e.g., Big)

THEN
x(t) = Ayx(t) + Ayyx(t — 7)) + Byu(t) + Byyu(t — 7,).
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Here x(¢) = [x,(t) x,()]" and

1 —-05 -1 —-05

Am:[l 0 ] A”:[ 10 }
0 -0.2 1
Ald:Azd:[O'z 0 ]’ Bw:Bzo:[O}’

0.2
By =By, = [ 0 }
This system is unstable for some initial conditions as shown in Figure 15.1 for
the initial condition x(z) = [2 2]". Now we want to design a PDC controller

to stabilize this system. Using Theorem 60, we obtain the feedback gains of
the PDC controller:

F,=[11.22 12.87],
F, = [8.87 12.33].

The closed-loop response for the initial condition x(¢) =[2 2]" is shown in
Figure 15.2. In the simulations, 7, and 7, are chosen to 1 though they can be
of different values.

n
— x(1)
e = = x,(1)

Fig. 15.2 Response of the closed-loop system.
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Duffing forced-oscillation, 162
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Dynamic output feedback controller, 26
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Jack-knife, 133
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Linear differential inclusion, 230

Linear matrix inequality, 5, 27, 34
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Nonlinear model following control, 217
Nonlinear reference model, 217-218
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Nonlinear time-invariant operator, 261
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OGY method, 153

Open-loop, 27

Optimal control, 109

Optimality, 97

Optimal fuzzy control, 109, 121
Output and input constraints, 259
Output constraint, 68, 259

Output feedback controller, 26
Output vector, 6

Parallel distributed compensation, 5, 25

Parameter dependent linear model, 232

Parameter dependent plant, 235

Parameter dependent state feedback, 230
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PDC, 25, 84

PDC controller, 159

PDC fuzzy controller, 30
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Premise uncertainty, 98

Premise variables, 6
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Quadratic Lyapunov function, 27, 89
Quadratic performance function, 109-110
Quadratic stability, 27

Reference chaotic system, 170, 182
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Regulation problem, 153
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Robust controller design, 23

Robust fuzzy control, 97, 121
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Robust-optimal fuzzy control problem, 121

Robust stabilization problem, 105

Rossler’s equation, 155, 161, 170, 17677, 182,
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Rule reduction, 142

Saturation of the actuator, 133

Schur complement, 37, 59, 166

Sector nonlinearity, 10

Separation principle, 83, 90

Stable fuzzy controller design, 58

Stable fuzzy controller design: CFS, 58, 160

Stable fuzzy controller design: DFS, 59, 160

Stable fuzzy controller design using the CT:
CFS, 167, 184

Stable fuzzy controller design using the CT:
DFS, 167, 185

Stabilization 153, 159

Stability, 27, 49

Stability analysis, 5, 49

Stability conditions for the open-loop systems,
49

Stability of the closed-loop system, 50

State feedback, 26
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State-space representation, 195
State vector, 6

Structure identification, 9
Subsystem, 7

Sufficient stability condition, 27
Switching system, 259
Synchronization, 153

Takagi-Sugeno fuzzy model, 5

Takagi-Sugeno fuzzy systems with uncertainty,
97

Ten-trailer case, 151

Time-varying linear system, 230

TORA, 125

TORA system, 121

TPDC, 217, 219

Trailer-truck, 133

Translational oscillator with an eccentric
rotational proof mass actuator, 125

Trial-and-error, 27

Triple trailer, 134

T-S fuzzy model, 5

T-S model with linear rule consequence, 277

T-SMTD, 291, 293

T-S model with time delays, 291, 293

Twin parallel distributed compensation, 217,
219

Uncertainty, 98

Universal, 6

Universal approximator, 278
Upper bound, 110

Van del pol, 226
Vehicle with a trailer, 133
Vehicle with multiple trailers, 133
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