

 www.4electron.com موقع عالم الإلكترون

....موقع عالم الإلكترون
واختصاصاتھا المختلفة لتكنلوجيةموقع إلكتروني متخصص في علوم الھندسة ا

 4electron.comمكتبة عالم الإلكترون

 ...إلى قارئ ھذا الكتاب ، تحية طيبة وبعد

حقيقياً في عالم يعج بالأبحاث والكتب والمعلومات، وأصبح العلم معياراً نعيش لقد أصبحنا
حلاً شبه بدورهوقد أمسى لتفاضل الأمم والدول والمؤسسات والأشخاص على حدٍّ سواء،

، فالبيئة تبحث عن حلول، وصحة الإنسان تبحث عن دة وخطورةاكل العالم حوحيدٍ لأكثر مش
الطاقة والغذاء حلول، والموارد التي تشكل حاجة أساسية للإنسان تبحث عن حلول كذلك، و

فأين نحن من . ويحاول أن يجد الحلول لھاالآن والماء جميعھا تحديات يقف العلم في وجھھا
 ھذا العلم ؟ وأين ھو منا؟

ن نوفر بين أيدي كل من حمل لأ www.4electron.comسعى في موقع عالم الإلكترون ن
من أدوات تساعده في ھذا الدرب، من ما نستطيعالتحديات لى عاتقه مسيرة درب تملؤه ع

ء والأفكار العلمية مواضيع علمية، ومراجع أجنبية بأحدث إصداراتھا، وساحات لتبادل الآرا
والمرتبطة بحياتنا الھندسية، وشروحٍ لأھم برمجيات الحاسب التي تتداخل مع تطبيقات الحياة
الأكاديمية والعملية، ولكننا نتوقع في نفس الوقت أن نجد بين الطلاب والمھندسين والباحثين

مجتمعٍ يساھم من يسعى مثلنا لتحقيق النفع والفائدة للجميع، ويحلم أن يكون عضواً في
 بتحقيق بيئة خصبة للمواھب والإبداعات والتألق، فھل تحلم بذلك ؟

رأيتھا في إحدى المواضيع حاول أن تساھم بفكرة، بومضة من خواطر تفكيرك العلمي، بفائدة
تأكد بأنك ستلتمس الفائدة في كل . جانب مضيء لمحته خلف ثنايا مفھوم ھندسي ماالعلمية، ب

 ...رى غيرك يخطوھا معك خطوة تخطوھا، وت

، أخي القارئ، نرجو أن يكون ھذا الكتاب مقدمة لمشاركتك في عالمنا العلمي التعاوني
بكل الإمكانيات المتوفرة لديه جاھزاً ww.4electron.com سيكون موقعكم عالم الإلكترونو

، أو طالب في علوم الھندسة قع الذي يبحث عنه كل باحثالبيئة والوا على الدوام لأن يحقق
 . ويسعى فيه للإفادة كل ساعٍ ، فأھلاً وسھلاً بكم

 مع تحيات إدارة الموقع وفريق عمله

www.4electron.com

E�cient Collision Detection for

Animation and Robotics

Ming C. Lin

Department of Electrical Engineering

and Computer Science

University of California, Berkeley

Berkeley, CA,

E�cient Collision Detection for Animation and Robotics

by

Ming Chieh Lin

B.S. (University of California at Berkeley) 1988

M.S. (University of California at Berkeley) 1991

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering

and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor John F. Canny, Chair

Professor Ronald Fearing

Professor Andrew Packard

1993

E�cient Collision Detection for Animation and Robotics

Copyright c 1993

by

Ming Chieh Lin

i

Abstract

E�cient Collision Detection for Animation and Robotics

by

Ming Chieh Lin

Doctor of Philosophy in Electrical Engineering

and Computer Science

University of California at Berkeley

Professor John F. Canny, Chair

We present e�cient algorithms for collision detection and contact determina-

tion between geometric models, described by linear or curved boundaries, undergoing

rigid motion. The heart of our collision detection algorithm is a simple and fast

incremental method to compute the distance between two convex polyhedra. It uti-

lizes convexity to establish some local applicability criteria for verifying the closest

features. A preprocessing procedure is used to subdivide each feature's neighboring

features to a constant size and thus guarantee expected constant running time for

each test.

The expected constant time performance is an attribute from exploiting the

geometric coherence and locality. Let n be the total number of features, the expected

run time is between O(
p
n) and O(n) depending on the shape, if no special initial-

ization is done. This technique can be used for dynamic collision detection, planning

in three-dimensional space, physical simulation, and other robotics problems.

The set of models we consider includes polyhedra and objects with surfaces

described by rational spline patches or piecewise algebraic functions. We use the

expected constant time distance computation algorithm for collision detection be-

ii

tween convex polyhedral objects and extend it using a hierarchical representation to

distance measurement between non-convex polytopes. Next, we use global algebraic

methods for solving polynomial equations and the hierarchical description to devise

e�cient algorithms for arbitrary curved objects.

We also describe two di�erent approaches to reduce the frequency of colli-

sion detection from

0
@ N

2

1
A pairwise comparisons in an environment with n moving

objects. One of them is to use a priority queue sorted by a lower bound on time to

collision; the other uses an overlap test on bounding boxes.

Finally, we present an opportunistic global path planner algorithm which

uses the incremental distance computation algorithm to trace out a one-dimensional

skeleton for the purpose of robot motion planning.

The performance of the distance computation and collision detection algo-

rithms attests their promise for real-time dynamic simulations as well as applications

in a computer generated virtual environment.

Approved: John F. Canny

iii

Acknowledgements

The successful completion of this thesis is the result of the help, coop-

eration, faith and support of many people.

First of all, I would like to thank Professor John Canny for the in-

sightful discussions we had, his guidance during my graduate studies at

Berkeley, his patience and support through some of the worst times in

my life. Some of the results in this thesis would not have been possible

without his suggestions and feedbacks.

I am also grateful to all my committee members (Professor R. Fear-

ing, A. Packard, and J. Malik), especailly Professor Ronald Fearing and

Andrew Packard for carefully proofreading my thesis and providing con-

structive criticism.

I would like to extend my sincere appreciation to Professor Dinesh

Manocha for his cheerful support and collaboration, and for sharing his

invaluable experience in \job hunting". Parts of Chapter 4 and a section

of Chapter 5 in this thesis are the result of our joint work.

Special thanks are due to Brian Mirtich for his help in re-implementing

the distance algorithm (described in Chapter 3) in ANSI C, thorough

testing, bug reporting, and his input to the robustness of the distance

computation for convex polyhedra.

I wish to acknowledge Professor David Bara� at Carnegie Mellon Uni-

versity for the discussion we had on one-dimensional sweeping method. I

would also like to thank Professor Raimond Seidel and Professor Herbert

Edelsbrunner for comments on rectangle intersection and convex decom-

position algorithms; and to Professor George Vanecek of Purdue Univer-

sity and Professor James Cremer for discussions on contact analysis and

dynamics.

I also appreciate the chance to converse about our work through elec-

tronic mail correspondence, telephone conversation, and in-person inter-

action with Dr. David Stripe in Sandia National Lab, Richard Mastro and

Karel Zikan in Boeing. These discussions helped me discover some of the

possible research problems I need to address as well as future application

areas for our collision detection algorithms.

iv

I would also like to thank all my long time college pals: Yvonne and

Robert Hou, Caroline and Gani Jusuf, Alfred Yeung, Leslie Field, Dev

Chen and Gautam Doshi. Thank you all for the last six, seven years of

friendship and support, especially when I was at Denver. Berkeley can

never be the same wthout you!!!

And, I am not forgetting you all: Isabell Mazon, the \Canny Gang",

and all my (30+) o�cemates and labmates for all the intellectual conver-

sations and casual chatting. Thanks for the #333 Cory Hall and Robotics

Lab memories, as well as the many fun hours we shared together.

I also wish to express my gratitude to Dr. Colbert for her genuine care,

100% attentiveness, and buoyant spirit. Her vivacity was contagious. I

could not have made it without her!

Last but not least, I would like to thank my family, who are always

supportive, caring, and mainly responsible for my enormous amount of

huge phone bills. I have gone through some traumatic experiences during

my years at CAL, but they have been there to catch me when I fell, to

stand by my side when I was down, and were ALWAYS there for me no

matter what happened. I would like to acknowledge them for being my

\moral backbone", especially to Dad and Mom, who taught me to be

strong in the face of all adversities.

Ming C. Lin

v

Contents

List of Figures viii

1 Introduction 1

1.1 Previous Work : 4

1.2 Overview of the Thesis : 9

2 Background 12

2.1 Basic Concenpts : 12

2.1.1 Model Representations : 12

2.1.2 Data Structures and Basic Terminology : : : : : : : : : : : : : 14

2.1.3 Voronoi Diagram : 16

2.1.4 Voronoi Region : 17

2.2 Object Modeling : 17

2.2.1 Motion Description : 18

2.2.2 System of Algebraic Equations : : : : : : : : : : : : : : : : : : 19

3 An Incremental Distance Computation Algorithm 21

3.1 Closest Feature Pair : 22

3.2 Applicability Criteria : 25

3.2.1 Point-Vertex Applicability Criterion : : : : : : : : : : : : : : : 25

3.2.2 Point-Edge Applicability Criterion : : : : : : : : : : : : : : : 25

3.2.3 Point-Face Applicability Criterion : : : : : : : : : : : : : : : : 26

3.2.4 Subdivision Procedure : 28

3.2.5 Implementation Issues : 29

3.3 The Algorithm : 32

3.3.1 Description of the Overall Approach : : : : : : : : : : : : : : 32

3.3.2 Geometric Subroutines : 36

3.3.3 Analysis of the Algorithm : 38

3.3.4 Expected Running Time : 39

3.4 Proof of Completeness : 40

3.5 Numerical Experiments : 52

vi

3.6 Dynamic Collision Detection for Convex Polyhedra : : : : : : : : : : 56

4 Extension to Non-Convex Objects and Curved Objects 58

4.1 Collision Detection for Non-convex Objects : : : : : : : : : : : : : : : 58

4.1.1 Sub-Part Hierarchical Tree Representation : : : : : : : : : : : 58

4.1.2 Detection for Non-Convex Polyhedra : : : : : : : : : : : : : : 61

4.2 Collision Detection for Curved Objects : : : : : : : : : : : : : : : : : 64

4.2.1 Collision Detection and Surface Intersection : : : : : : : : : : 64

4.2.2 Closest Features : 64

4.2.3 Contact Formulation : 68

4.3 Coherence for Collision Detection between Curved Objects : : : : : : 71

4.3.1 Approximating Curved Objects by Polyhedral Models : : : : : 71

4.3.2 Convex Curved Surfaces : 72

4.3.3 Non-Convex Curved Objects : : : : : : : : : : : : : : : : : : : 74

5 Interference Tests for Multiple Objects 77

5.1 Scheduling Scheme : 78

5.1.1 Bounding Time to Collision : : : : : : : : : : : : : : : : : : : 78

5.1.2 The Overall Approach : 80

5.2 Sweep & Sort and Interval Tree : 81

5.2.1 Using Bounding Volumes : 81

5.2.2 One-Dimensional Sort and Sweep : : : : : : : : : : : : : : : : 84

5.2.3 Interval Tree for 2D Intersection Tests : : : : : : : : : : : : : 85

5.3 Other Approaches : 86

5.3.1 BSP-Trees and Octrees : 86

5.3.2 Uniform Spatial Subdivision : : : : : : : : : : : : : : : : : : : 87

5.4 Applications in Dynamic Simulation and Virtual Environment : : : : 87

6 An Opportunistic Global Path Planner 89

6.1 Background : 90

6.2 A Maximum Clearance Roadmap Algorithm : : : : : : : : : : : : : : 92

6.2.1 De�nitions : 92

6.2.2 The General Roadmap : 93

6.3 De�ning the Distance Function : 99

6.4 Algorithm Details : 100

6.4.1 Freeways and Bridges : 101

6.4.2 Two-Dimensional Workspace : : : : : : : : : : : : : : : : : : : 103

6.4.3 Three-Dimensional Workspace : : : : : : : : : : : : : : : : : : 106

6.4.4 Path Optimization : 107

6.5 Proof of Completeness for an Opportunistic Global Path Planner : : 108

6.6 Complexity Bound : 114

6.7 Geometric Relations between Critical Points and Contact Constraints 114

vii

6.8 Brief Discussion : 116

7 Conclusions 118

7.1 Summary : 118

7.2 Future Work : 119

7.2.1 Overlap Detection for Convex Polyhedra : : : : : : : : : : : : 120

7.2.2 Intersection Test for Concave Objects : : : : : : : : : : : : : : 121

7.2.3 Collision Detection for Deformable objects : : : : : : : : : : : 123

7.2.4 Collision Response : 125

Bibliography 127

A Calculating the Nearest Points between Two Features 136

B Pseudo Code of the Distance Algorithm 139

viii

List of Figures

2.1 A winged edge representation : 15

3.1 Applicability Test: (Fa; Vb) ! (Ea; Vb) since Vb fails the applicability

test imposed by the constraint plane CP . R1 and R2 are the Voronoi

regions of Fa and Ea respectively. : 24

3.2 Point-Vertex Applicability Criterion : : : : : : : : : : : : : : : : : : : 26

3.3 Point-Edge Applicability Criterion : 27

3.4 Vertex-Face Applicability Criterion : : : : : : : : : : : : : : : : : : : 28

3.5 Preprocessing of a vertex's conical applicability region and a face's

cylindrical applicability region : 30

3.6 An example of Flared Voronoi Cells: CPF corresponds to the ared

constraint place CP of a face and CPE corresponds to the ared con-

straint plane CP of an edge. R0

1 and R0

2 are the ared Voronoi regions

of unperturbed R1 and R2. Note that they overlap each other. : : : : 31

3.7 (a) An overhead view of an edge lying above a face (b) A side view of

the face outward normal bounded by the two outward normals of the

edge's left and right faces. : 35

3.8 A Side View for Point-Vertex Applicability Criterion Proof : : : : : : 43

3.9 An Overhead View for Point-Edge Applicability Criterion Proof : : : 44

3.10 A Side View for Point-Edge Applicability Criterion Proof : : : : : : : 44

3.11 A Side View for Point-Face Applicability Criterion Proof : : : : : : : 45

3.12 Computation time vs. total no. of vertices : : : : : : : : : : : : : : : 53

3.13 Polytopes Used in Example Computations : : : : : : : : : : : : : : : 55

4.1 An example of sub-part hierarchy tree : : : : : : : : : : : : : : : : : 59

4.2 An example for non-convex objects : : : : : : : : : : : : : : : : : : : 63

4.3 Tangential intersection and boundary intersection between two B�ezier

surfaces : 67

4.4 Closest features between two di�erent orientations of a cylinder : : : 71

4.5 Hierarchical representation of a torus composed of B�ezier surfaces : : 75

ix

6.1 A schematized 2-d con�guration space and the partition of free space

into x1-channels. : 94

6.2 Two channels C1 and C2 joining the channel C3, and a bridge curve in

C3. : 96

6.3 A pictorial example of an inection point in CS � R vs. its view in

R � y at the slice x = x0 : 103

6.4 An example of the algorithm in the 2-d workspace : : : : : : : : : : : 105

1

Chapter 1

Introduction

The problem of collision detection or contact determination between two

or more objects is fundamental to computer animation, physical based modeling,

molecular modeling, computer simulated environments (e.g. virtual environments)

and robot motion planning as well [3, 7, 12, 20, 43, 45, 63, 69, 70, 72, 82, 85]. (De-

pending on the content of applications, it is also called with many di�erent names,

such as interference detection, clash detection, intersection tests, etc.) In robotics,

an essential component of robot motion planning and collision avoidance is a geo-

metric reasoning system which can detect potential contacts and determine the exact

collision points between the robot manipulator and the obstacles in the workspace.

Although it doesn't provide a complete solution to the path planning and obstacle

avoidance problems, it often serves as a good indicator to steer the robot away from

its surrounding obstacles before an actual collision occurs.

Similarly, in computer animation, interactions among objects are simulated

by modeling the contact constraints and impact dynamics. Since prompt recognition

of possible impacts is a key to successful response to collisions in a timely fashion, a

simple yet e�cient algorithm for collision detection is important for fast and realistic

animation and simulation of moving objects. The interference detection problem

has been considered one of the major bottlenecks in acheiving real-time dynamic

simulation.

Collision detection is also an integral part of many new, exciting technolog-

2

ical developments. Virtual prototyping systems create electronic representations of

mechanical parts, tools, and machines, which need to be tested for interconnectivity,

functionality, and reliability. The goal of these systems is to save processing and

manufacturing costs by avoiding the actual physical manufacture of prototypes. This

is similar to the goal of CAD tools for VLSI, except that virtual prototyping is more

demanding. It requires a complete test environment containing hundreds of parts,

whose complex interactions are based on physics and geometry. Collision detection

is vital component of such environments.

Another area of rising interests is synthetic environment, commonly known

as \virtual reality" (which is a comprehensive term promoting much hypes and hopes).

In a synthetic environment, virtual objects (most of them stationary) are created and

placed in the world. A human participant may wish to move the virtual objects or

alter the scene. Such a simple action as touching and grasping involves geometric

contacts. A collision detection algorithm must be implemented to achieve any degree

of realism for such a basic motion. However, often there are hundreds, even thousands

of objects in the virtual world, a naive algorithm would probably take hours just to

check for possible interference whenever a human participant moves. This is not

acceptable for an interactive virtual environment. Therefore, a simple yet e�cient

collision detection algorithm is almost indispensable to an interactive, realistic virtual

environment.

The objective of collision detection is to automatically report a geometric

contact when it is about to occur or has actually occurred. It is typically used in order

to simulate the physics of moving objects, or to provide the geometric information

which is needed in path planning for robots. The static collision detection problem

is often studied and then later extended to a dynamic environment. However, the

choice of step size can easily a�ect the outcome of the dynamic algorithms. If the

position and orientation of the objects is known in advance, the collision detection

can be solved as a function of time.

A related problem to collision detection is determining the minimum Eu-

clidean distance between two objects. The Euclidean distance between two objects

is a natural measurement of proximity for reasoning about their spatial relationship.

3

A dynamic solution to determining the minimum separation between two moving

objects can be a useful tool in solving the interference detection problem, since the

distance measurement provides all the necessary local geometric information and the

solution to the proximity question between two objects. However, it is not necessary

to determine the exact amount of separation or penetration between two objects to

decide whether a collision has taken place or not. That is, determining the minimum

separation or maximum penetration makes a much stronger statement than what

is necessary to answer the collision detection problem. But, this additional knowl-

edge can be extremely useful in computing the interaction forces and other penalty

functions in motion planning.

Collision detection is usually coupled with an appropriate response to the

collision. The collision response is generally application dependent and many algo-

rithms have been proposed for di�erent environments like motion control in anima-

tion by Moore and Wilhelm [63], physical simulations by Bara�, Hahn, Pentland and

Williams [3, 43, 70] or molecular modeling by Turk [85]. Since simplicity and ease of

implementation is considered as one of the important factors for any practical algo-

rithm in the computer graphics community, most collision detection algorithms used

for computer animation are rather simple but not necessary e�cient. The simplest

algorithms for collision detection are based upon using bounding volumes and spatial

decomposition techniques. Typical examples of bounding volumes include cuboids,

spheres, octrees etc., and they are chosen due to the simplicity of �nding collisions

between two such volumes. Once the two objects are in the vicinity of each other,

spatial decomposition techniques based on subdivision are used to solve the interfer-

ence problem. Recursive subdivision is robust but computationally expensive, and it

often requires substantially more memory. Furthermore the convergence to the solu-

tion corresponding to the contact point is linear. Repeating these steps at each time

instant makes the overall algorithm very slow. The run time impact of a subdivision

based collision detection algorithm on the physical simulation has been highlighted

by Hahn [43].

As interest in dynamic simulations has been rising in computer graphics

and robotics, collision detection has also received a great deal of attention. The im-

4

portance of collision detection extends to several areas like robot motion planning,

dynamic simulation, virtual reality applications and it has been extensively studied

in robotics, computational geometry, and computer graphics for more than a decade

[3, 4, 11, 13, 17, 41, 43, 45, 51, 53, 63]. Yet, there is no practical, e�cient algo-

rithm available yet for general geometric models to perform collision detection in real

time. Recently, Pentland has listed collision detection as one of the major bottlenecks

towards real time virtual environment simulations [69].

In this thesis, we present an e�cient algorithm for collision detection between

objects with linear and curved boundaries, undergoing rigid motion. No assumption is

made on the motion of the object to be expressed as a closed form function of time. At

each instant, we only assume the knowledge of position and orientation with respect to

a global origin. We �rst develop a fast, incremental distance computation algorithm

which keeps track of a pair of closest features between two convex polyhedra. The

expected running time of this algorithm is constant.

Next we will extend this incremental algorithm to non-convex objects by

using sub-part hierarchy tree representation and to curved objects by combining local

and global equation solving techniques. In addition, two methods are described to

reduce the frequency of interference detections by (1) a priority queue sorted by lower

bound on time to collisions (2) sweeping and sorting algorithms and a geometric

data structure. Some examples for applications of these algorithms are also briey

mentioned. The performance of these algorithms shows great promise for real-time

robotics simulation and computer animation.

1.1 Previous Work

Collision detection and the related problem of determining minimum dis-

tance has a long history. It has been considered in both static and dynamic (moving

objects) versions in [3], [11], [13], [17], [26], [27], [39], [40], [41], [65].

One of the earlier survey on \clash detection" was presented by Cameron

[12]. He mentioned three di�erent approaches for dynamic collision detection. One of

them is to perform static collision detection repetitively at each discrete time steps,

5

but it is possible to miss a collision between time steps if the step size is too large.

Yet, it would be a waste of computation e�ort if the step size is too small. Another

method is to use a space-time approach: working directly in the four-dimensional sets

which form the abstract modes of the motion shapes (swept volumes in 4D). Not

only is it di�cult to visualize, but it is also a challenging task to model such sets,

especially when the motion is complex. The last method is to using sweeping volume

to represent moving objects over a period of time. This seems to be a rather intuitive

approach, but rather restrictive. Unless the motion of the objects are already known

in advance, it is impossible to sweep out the envelope of the moving objects and it

suppresses the temporal information. If two objects are both moving, the intersection

of two sweeping volume does not necessarily indicate an actual \clash" between two

objects.

Local properties have been used in the earlier motion planning algorithms

by Donald, Lozano-P�erez and Wesley [28, 53] when two features come into contact.

In [53], Lozano-P�erez and Wesley characterized the collision free motion planning

problem by using a point robot navigating in the con�guration space by growing the

stationary obstacles with the size of the robot. As long as the point robot does not

enter a forbidden zone, a collision does not take place.

A fact that has often been overlooked is that collision detection for convex

polyhedra can be done in linear time in the worst case by Sancheti and Keerthi [77].

The proof is by reduction to linear programming. If two point sets have disjoint convex

hulls, then there is a plane which separates the two sets. Letting the four parameters of

the plane equations be variables, add a linear inequality for each vertex of polyhedron

A that speci�es that the vertex is on one side of the plane, and an inequality for each

vertex of polyhedron B that speci�es that it is on the other side. Megiddo and Dyers

work [30], [58], [59] showed that linear programming is solvable in linear time for any

�xed number of variables. More recent work by Seidel [79] has shown that linear time

linear programming algorithms are quite practical for a small number of variables.

The algorithm of [79] has been implemented, and seems fast in practice.

Using linear-time preprocessing, Dobkin and Kirkpatrick were able to solve

the collision detection problem as well as compute the separation between two convex

6

polytopes in O(logjAj � logjBj) where A and B are polyhedra and j � j denotes the total
number of faces [27]. This approach uses a hierarchical description of the convex

objects and extension of their previous work [26]. This is one of the best known

theoretical bounds.

The capability of determining possible contacts in dynamic domains is im-

portant for computer animation of moving objects. We would like an animator to

perform impact determination by itself without high computational costs or much

coding e�orts. Some algorithms (such as Boyse's [11] and Canny's [17]) solve the

problem in more generality than is necessary for computer animation; while others

do not easily produce the exact collision points and contact normal direction for col-

lision response [34]. In one of the earlier animation papers addressing the issue of

collision detection, Moore and Wilhelms [63] mentioned the method based on the

Cyrus-Beck clipping algorithm [74], which provides a simple, robust alternative but

runs in O(n2m2) time for m polyhedra and n vertices per polyhedron. The method

works by checking whether a point lies inside a polygon or polyhedron by using a inner

product calculation test. First, all vertices from polyhedron B are tested against poly-

hedron A, and then all vertices from A are tested for inclusion in B. This approach

along with special case treatments is reasonably reliable. But, the computation runs

in O(n2) time where n is the number of vertices per polyhedron.

Hahn [43] used a hierarchical method involving bounding boxes for intersec-

tion tests which run in O(n2) time for each pair of polyhedra where n is the number of

vertices for each polyhedron. The algorithm sweeps out the volume of bounding boxes

over a small time step to �nd the exact contact locations. In testing for interference,

it takes every edge to check against each polygon and vice versa. Its performance is

comparable to Cyrus-Beck clipping algorithm. Our algorithm is a simple and e�cient

method which runs in expected constant time for each pair of polyhedra, independent

of the geometric complexity of each polyhedron. (It would only take O(m2) time for

m polyhedra with any number of vertices per polyhedron.) This provides a signi�cant

gain in speed for computer animation, especially for polyhedra with a large number

of vertices.

In applications involving dynamic simulations and physical motion, geomet-

7

ric coherence has been utilized to devise algorithms based on local features [3]. This

has signi�cantly improved the performance of collision detection algorithms in dy-

namic environments. Bara� uses cached edges and faces to �nd a separating plane

between two convex polytopes [3]. However, Bara�'s assumption to cache the last

\witnesses" does not hold when relative displacement of objects between successive

time steps are large and when closest features changes, it falls back on a global search;

while our method works fast even when there are relatively large displacements of ob-

jects and changes in closest features.

As for curved objects, Herzen and etc. [45] have described a general al-

gorithm based on time dependent parametric surfaces. It treats time as an extra

dimension and also assumes bounds on derivatives. The algorithm uses subdivision

technique in the resulting space and can therefore be slow. A similar method us-

ing interval arithmetic and subdivision has been presented for collision detection by

Du� [29]. Du� has extended it to dynamic environments as well. However, for com-

monly used spline patches computing and representing the implicit representations

is computationally expensive as stated by Ho�mann [46]. Both algorithms, [29, 46],

expect a closed form expression of motion as a function of time. In [70], Pentland and

Williams proposes using implicit functions to represent shape and the property of the

\inside-outside" functions for collision detection. Besides its restriction to implicits

only, this algorithm has a drawback in terms of robustness, as it uses point samples.

A detailed explanation of these problems are described in [29]. Bara� has also pre-

sented an algorithm for �nding closest points between two convex closed objects only

[3].

In the related problem of computing the minimum separation between two

objects, Gilbert and his collaborators computed the minimum distance between two

convex objects with an expected linear time algorithm and used it for collision de-

tection. Our work shares with [38], [39], and [41] the calculation and maintenance

of closest points during incremental motion. But whereas [38], [39], and [41] require

expected linear time to verify the closest points, we use the properties of convex sets

to reduce this check to constant time.

Cameron and Culley further discussed the problem of interpenetration and

8

provided the intersection measurement for the use in a penalty function for robot mo-

tion planning [13]. The classical non-linear programming approaches for this problem

are presented in [1] and [9]. More recently, Sancheti and Keerthi [77] discussed the

computation of proximity between two convex polytopes from a complexity view-

point, in which the use of quadratic programming is proposed as an alternative to

compute the separation and detection problem between two convex objects in O(n)

time in a �xed dimension d, where n is the number of vertices of each polytopes.

In fact, these techniques are used by researchers Karel Zikan [91], Richard Mastro,

etc. at the Boeing Virtual Reality Research Laboratory as a mean of computing the

distance between two objects.

Meggido's result in [58] stated that we can solve the problem of minimiz-

ing a convex quadratic function, subject to linear constraints in R3 in linear time by

transforming the quadratic programming using an appropriate a�ne transformation

of R3 (found in constant time) to a linear programming problem. In [60], Megiddo

and Tamir have further shown that a large class of separable convex quadratic trans-

portation problems with a �xed number of sources and separable convex quadratic

programming with nonnegativity constraints and a �xed number of linear equality

constraints can be solved in linear time. Below, we will present a short description of

how we can reduce the distance computation problem using quadratic programming

to a linear programming problem and solve it in linear time.

The convex optimization problem of computing the distance between two

convex polyhedra A and B by quadratic programming can be formulated as follows:

Minimize kvk2 = kq � pk2, s.t. p 2 A, q 2 B

subject to
n1X
i=1

�ipi = p;
n1X
i=1

�i = 1; �i � 0

n2X
j=1

�jqj = q = p + v;
n2X
j=1

�j = 1; �j � 0

where pi and qj are vertices of A and B respectively. The variables are p, v, �i's and

�j's. There are (n1+n2+6) constraints: n1 and n2 linear constraints from solving �i's

and �j's and 3 linear constraints each from solving the x; y; z�coordinates of p and

v respectively. Since we also have the nonnegativity constraints for p and v, we can

9

displace both A and B to ensure the coordinates of p � 0 and to �nd the solutions

of 8 systems of equations (in 8 octants) to verify that the constraints, the x; y; z�
coordinates of v � 0, are enforced as well. According to the result on separable

quadratic programming in [60], this QP problem can be solved in O(n1 + n2) time.

Overall, no good collision detection algorithms or distance computation

methods are known for general geometric models. Moreover, most of the litera-

ture has focussed on collision detection and the separation problem between a pair of

objects as compared to handling environments with multiple object models.

1.2 Overview of the Thesis

Chapter 3 through 5 of this thesis deal with algorithms for collision detection,

while chapter 6 gives an application of the collision detection algorithms in robot

motion planning. We begin in Chapter 2 by describing the basic knowledge necessary

to follow the development of this thesis work. The core of the collision detection

algorithms lies in Chapter 3, where the incremental distance computation algorithm

is described. Since this method is especially tailored toward convex polyhedra, its

extension toward non-convex polytopes and the objects with curved boundaries is

described in Chapter 4. Chapter 5 gives a treatment on reducing the frequency of

collision checks in a large environment where there may be thousands of objects

present. Chapter 6 is more or less self contained, and describes an opportunistic

global path planner which uses the techniques described in Chapter 3 to construct a

one-dimensional skeleton for the purpose of robot motion planning.

Chapter 2 described some computational geometry and modeling concepts

which leads to the development of the algorithms presented in this thesis, as well as

the object modeling to the input of our algorithms described in this thesis.

Chapter 3 contains the main result of thesis, which is a simple and fast

algorithm to compute the distance between two polyhedra by �nding the closest fea-

tures between two convex polyhedra. It utilizes the geometry of polyhedra to establish

some local applicability criteria for verifying the closest features, with a preprocessing

procedure to reduce each feature's neighbors to a constant size, and thus guarantees

10

expected constant running time for each test. Data from numerous experiments tested

on a broad set of convex polyhedra in R3 show that the expected running time is con-

stant for �nding closest features when the closest features from the previous time step

are known. It is linear in total number of features if no special initialization is done.

This technique can be used for dynamic collision detection, physical simulation, plan-

ning in three-dimensional space, and other robotics problems. It forms the heart of

the motion planning algorithm described in Chapter 6.

In Chapter 4, we will discuss how we can use the incremental distance com-

putation algorithm in Chapter 3 for dynamic collision detection between non-convex

polytopes and objects with curved boundary. Since the incremental distance com-

putation algorithm is designed based upon the properties of convex sets, extension

to non-convex polytopes using a sub-part hierarchical tree representation will be de-

scribed in detail here. The later part of this chapter deals with contact determination

between geometric models described by curved boundaries and undergoing rigid mo-

tion. The set of models include surfaces described by rational spline patches or piece-

wise algebraic functions. In contrast to previous approaches, we utilize the expected

constant time algorithm for tracking the closest features between convex polytopes

described in Chapter 3 and local numerical methods to extend the incremental nature

to convex curved objects. This approach preserves the coherence between successive

motions and exploits the locality in updating their possible contact status. We use

local and global algebraic methods for solving polynomial equations and the geomet-

ric formulation of the problem to devise e�cient algorithms for non-convex curved

objects as well, and to determine the exact contact points when collisions occur. Parts

of this chapter represent joint work with Dinesh Manocha of the University of North

Carolina at Chapel Hill.

Chapter 5 complements the previous chapters by describing two methods

which further reduce the frequency of collision checks in an environment with multiple

objects moving around. One assumes the knowledge of maximum acceleration and

velocity to establish a priority queue sorted by the lower bound on time to collision.

The other purely exploits the spatial arrangement without any other information

to reduce the number of pairwise interference tests. The rational behind this work

11

comes from the fact that though each pairwise interference test only takes expected

constant time, to check for all possible contacts among n objects at all time can be

quite time consuming, especially if n is in the range of hundreds or thousands. This

n2 factor in the collision detection computation will dominate the run time, once n

increases. Therefore, it is essential to come up with either heuristic approaches or

good theoretical algorithms to reduce the n2 pairwise comparisons.

Chapter 6 is independent of the other chapters of the thesis, and presents

a new robot path planning algorithm that constructs a global skeleton of free-space

by the incremental local method described in Chapter 3. The curves of the skeleton

are the loci of maxima of an arti�cial potential �eld that is directly proportional to

distance of the robot from obstacles. This method has the advantage of fast conver-

gence of local methods in uncluttered environments, but it also has a deterministic

and e�cient method of escaping local extremal points of the potential function. We

�rst describe a general roadmap algorithm, for con�guration spaces of any dimension,

and then describe speci�c applications of the algorithm for robots with two and three

degrees of freedom.

12

Chapter 2

Background

In this chapter, we will describe some modeling and computational geome-

try concepts which leads to the development of the algorithms presented later in this

thesis, as well as the object modeling for the input to our collision detection algo-

rithms. Some of the materials presented in this chapter can be found in the books by

Ho�mann, Preparata and Shamos [46, 71].

The set of models we used include rigid polyhedra and objects with surfaces

described by rational spline or piecewise algebraic functions. No deformation of the

objects is assumed under motion or external forces. (This may seem a restrictive

constraint. However, in general this assumption yields very satisfactory results, unless

the object nature is exible and deformable.)

2.1 Basic Concenpts

We will �rst review some of the basic concepts and terminologies which are

essential to the later development of this thesis work.

2.1.1 Model Representations

In solid and geometricmodeling, there are two major representations schemata:

B-rep (boundary representation) and CSG (constructive solid geometry). Each has

13

its own advantages and inherent problems.

� Boundary Representation: to represent a solid object by describing its surface,

such that we have the complete information about the interior and exterior of an

object. This representation gives us two types of description: (a) geometric { the

parameters needed to describe a face, an edge, and a vertex; (b) topological { the

adjacencies and incidences of vertices, edges, and faces. This representation evolves

from the description for polyhedra.

� Constructive Solid Geometry: to represent a solid object by a set-theoretic

Boolean expression of primitive objects. The CSG operations include rotation, trans-

lation, regularized union, regularized intersection and regularized di�erence. The CSG

standard primitives are the sphere, the cylinder, the cone, the parallelepiped, the tri-

angular prism, and the torus. To create a primitive part, the user needs to specify

the dimensions (such as the height, width, and length of a block) of these primitives.

Each object has a local coordinate frame associated with it. The con�guration of each

object is expressed by the basic CSG operations (i.e. rotation and translation) to

place each object with respect to a global world coordinate frame.

Due to the nature of the distance computation algorithm for convex poly-

topes (presented in Chapter 3), which utilizes the adjacencies and incidences of fea-

tures as well as the geometric information to describe the geometric embedding re-

lationship, we have chosen the (modi�ed) boundary representation to describe each

polyhedron (described in the next section). However, the basic concept of CSG rep-

resentation is used in constructing the subpart hierarchical tree to describe the non-

convex polyhedral objects, since each convex piece encloses a volume (can be thought

of as an object primitive).

14

2.1.2 Data Structures and Basic Terminology

Given the two major di�erent representation schema, next we will describe

the modi�ed boundary representation, which we use to represent convex polytope in

our algorithm, as well as some basic terminologies describing the geometric relation-

ship between geometric entities.

Let A be a polytope. A is partitioned into features f1; : : : ; fn where n is

the total number of features, i.e. n = f + e + v where f, e, v stands for the total

number of faces, edges, vertices respectively. Each feature (except vertex) is an open

subset of an a�ne plane and does not contain its boundary. This implies the following

relationships:

[fi = A; i = 1; : : : ; n

fi \ fj = ;; i 6= j

De�nition: B is in the boundary of F and F is in coboundary of B, if and only if B

is in the closure of F , i.e. B � F and B has one fewer dimension than F does.

For example, the coboundary of a vertex is the set of edges touching it and

the coboundary of an edge is the two faces adjacent to it. The boundary of a face is

the set of edges in the closure of the face.

We also adapt the winged edge representation. For those readers who are

not familiar with this terminology, please refer to [46]. Here we give a brief description

of the winged edge representation:

The edge is oriented by giving two incident vertices (the head and tail).

The edge points from tail to head. It has two adjacent faces cobounding it as well.

Looking from the the tail end toward the head, the adjacent face lying to the right

hand side is what we called the \right face" and similarly for the \left face" (please

see Fig.2.1).

Each polyhedron data structure has a �eld for its features (faces, edges,

vertices) and Voronoi cells described below in Sec 2.1.4. Each feature (a vertex, an

edge, or a face) is described by its geometric parameters. Its data structure also

includes a list of its boundary, coboundary, and Voronoi regions (de�ned later in

Sec 2.1.4).

15

HE

TE

Right
Face

Left
Face

E

Figure 2.1: A winged edge representation

In addition, we will use the word \above" and \beneath" to describe the

relationship between a point and a face. In the homogeneous representation where

a point P is presented as a vector (Px; Py; Pz; 1) and F 's normalized unit outward

normal NF is presented as vector (a; b; c;�d), where �d is the directional distance

from the origin and the vector n = (a; b; c) has the magnitude of 1. The plane which

F lies on is described by the plane equation ax+ by + cz + d = 0.

A point P is above F , P �NF > 0

A point P is on F , P �NF = 0

A point P is beneath F , P �NF < 0

So, if �d > 0, then the origin lies �d units beneath the face F and vice versa.

Similarly, let ~e be the vector representing an edge E. Let HE = (Hx;Hy;Hz) and

TE = (Tx; Ty; Tz). ~e = HE � TE = (Hx � Tx;Hy � Ty;Hz � TZ; 0) where HE and TE

are the head and tail of the edge E respectively.

An edge E points into a face F , ~e �NF < 0

An edge E is parallel to a face F , ~e �NF = 0

An edge E points out of a face F , ~e �NF > 0

16

2.1.3 Voronoi Diagram

The proximity problem, i.e. \given a set S of N points in R2, for each point

pi 2 S what is the set of points (x; y) in the plane that are closer to pi than to any

other point in S ?", is often answered by the retraction approach in computational

geometry. This approach is commonly known as constructing the Voronoi diagram

of the point set S. This is an important concept which we will revisit in Chapter 3.

Here we will give a brief de�nition of Voronoi diagram.

The intuition to solve the proximity problem in R2 is to partition the plane

into regions, each of these is the set of the points which are closer to a point pi 2 S

than any other. If we know this partitioning, then we can solve the problem of

proximity directly by a simple query. The partition is based on the set of closest

points, e.g. bisectors which have 2 or 3 closest points.

Given two points pi and pj , the set of points closer to pi than to pj is just the

half-plane Hi(pi; pj) containing pi. Hi(pi; pj) is de�ned by the perpendicular bisector

to pipj . The set of points closer to pi than to any other point is formed by the

intersection of at most N � 1 half-planes, where N is the number of points in the set

S. This set of points, Vi, is called the Voronoi polygon associated with pi.

The collection of N Voronoi polygons given the N points in the set S is

the Voronoi diagram, V or(S), of the point set S. Every point (x; y) in the plane lies

within a Voronoi polygon. If a point (x; y) 2 V (i), then pi is a nearest point to the

point (x; y). Therefore, the Voronoi diagram contains all the information necessary

to solve the proximity problems given a set of points in R2. A similar idea applies to

the same problem in three-dimensional or higher dimensional space [15, 32].

The extension of the Voronoi diagram to higher dimensional features (instead

of points) is called the generalized Voronoi diagram, i.e. the set of points closest to

a feature, e.g. that of a polyhedron. In general, the generalized Voronoi diagram

has quadratic surface boundaries in it. However, if the objects are convex, then the

generalized Voronoi diagram has planar boundaries. This leads to the de�nition of

Voronoi regions which will be described next in Sec 2.1.4.

17

2.1.4 Voronoi Region

A Voronoi region associated with a feature is a set of points exterior to the

polyhedron which are closer to that feature than any other. The Voronoi regions

form a partition of space outside the polyhedron according to the closest feature.

The collection of Voronoi regions of each polyhedron is the Voronoi diagram of the

polyhedron. Note that the Voronoi diagram of a convex polyhedron has linear size

and consists of polyhedral regions. A cell is the data structure for a Voronoi region.

It has a set of constraint planes which bound the Voronoi region with pointers to the

neighboring cells (which share a constraint plane with it) in its data structure. If a

point lies on a constraint plane, then it is equi-distant from the two features which

share this constraint plane in their Voronoi regions.

Using the geometric properties of convex sets, applicability criteria (ex-

plained in Sec.3.2) are established based upon the Voronoi regions. If a point P

on object A lies inside the Voronoi region of fB on object B, then fB is a closest

feature to the point P . (More details will be presented in Chapter 3.)

In Chapter 3, we will describe our incremental distance computation al-

gorithm which utilizes the concept of Voronoi regions and the properties of convex

polyhedra to perform collision detection in expected constant time. After giving the

details of polyhedral model representations, in the next section we will describe more

general object modeling to include the class of non-polyhedral objects as well, with

emphasis on curved surfaces.

2.2 Object Modeling

The set of objects we consider, besides convex polytopes, includes non-

convex objects (like a torus) as well as two dimensional manifolds described using

polynomials. The class of parametric and implicit surfaces described in terms of

piecewise polynomial equations is currently considered the state of the art for mod-

eling applications [35, 46]. These include free-form surfaces described using spline

patches, primitive objects like polyhedra, quadrics surfaces (like cones, ellipsoids),

18

torus and their combinations obtained using CSG operations. For arbitrary curved

objects it is possible to obtain reasonably good approximations using B-splines

Most of the earlier animation and simulation systems are restricted to poly-

hedral models. However, modeling with surfaces bounded by linear boundaries poses a

serious restriction in these systems. Our contact determination algorithms for curved

objects are applicable on objects described using spline representations (B�ezier and

B-spline patches) and algebraic surfaces. These representations can be used as prim-

itives for CSG operations as well.

Typically spline patches are described geometrically by their control points,

knot vectors and order continuity [35]. The control points have the property that the

entire patch lies in the convex hull of these points. The spline patches are represented

as piecewise B�ezier patches. Although these models are described geometrically using

control polytopes, we assume that the B�ezier surface has an algebraic formulation in

homogeneous coordinates as:

F(s; t) = (X(s; t); Y (s; t); Z(s; t);W (s; t)): (2:1)

We also allow the objects to be described implicitly as algebraic surfaces. For exam-

ples, the quadric surfaces like spheres, cylinders can be simply described as a degree

two algebraic surface. The algebraic surfaces are represented as f(x; y; z) = 0.

2.2.1 Motion Description

All objects are de�ned with respect to a global coordinate system, the world

coordinate frame. The initial con�guration is speci�ed in terms of the origin of the

system. As the objects undergo rigid motion, we update their positions using a 4� 4

matrix,M , used to represent the rotation as well as translational components of the

motion (with respect to the origin). The collision detection algorithm is based only

on local features of the polyhedra (or control polytope of spline patches) and does not

require the position of the other features to be updated for the purpose of collision

detection at every instant.

19

2.2.2 System of Algebraic Equations

Our algorithm for collision detection for algebraic surface formulates the

problem of �nding closest points between object models and contact determination

in terms of solving a system of algebraic equations. For most instances, we obtain a

zero dimensional algebraic system consisting of n equations in n unknowns. However

at times, we may have an overconstrained system, where the number of equations is

more than the number of unknowns or an underconstrained system, which has in�nite

number of solutions. We will be using algorithms for solving zero dimensional systems

and address how they can be modi�ed to other cases. In particular, we are given a

system of n algebraic equations in n unknowns:

F1(x1; x2; : : : ; xn) = 0

... (2.2)

Fn(x1; x2; : : : ; xn) = 0

Let their degrees be d1, d2, : : :, dn, respectively. We are interested in computing all

the solutions in some domain (like all the real solutions to the given system).

Current algorithms for solving polynomial equations can be classi�ed into

local and global methods. Local methods like Newton's method or optimization

routines need good initial guesses to each solution in the given domain. Their perfor-

mance is a function of the initial guesses. If we are interested in computing all the real

solutions of a system of polynomials, solving equations by local methods requires that

we know the number of real solutions to the system of equations and good guesses to

these solutions.

The global approaches do not need any initial guesses. They are based on

algebraic approaches like resultants, Gr}obner bases or purely numerical techniques

like the homotopy methods and interval arithmetic. Purely symbolic methods based

on resultants and Gr}obner bases are rather slow in practice and require multiprecision

arithmetic for accurate computations. In the context of �nite precision arithmetic,

the main approaches are based on resultant and matrix computations [55], continua-

20

tion methods [64] and interval arithmetic [29, 81]. The recently developed algorithm

based on resultants and matrix computations has been shown to be very fast and

accurate on many geometric problems and is reasonably simple to implement using

linear algebra routines by Manocha [55]. In particular, given a polynomial system

the algorithm in [55] reduces the problem of root �nding to an eigenvalue problem.

Based on the eigenvalue and eigenvectors, all the solutions of the original system are

computed. For large systems the matrix tends to be sparse. The order of the matrix,

say N , is a function of the algebraic complexity of the system. This is bounded by

the Bezout bound of the given system corresponding to the product of the degrees of

the equations. In most applications, the equations are sparse and therefore, the order

of the resulting matrix is much lower than the Bezout bound. Good algorithms are

available for computing the eigenvalues and eigenvectors of a matrix. Their running

time can be as high as O(N3). However, in our applications we are only interested

in a few solutions to the given system of equations in a corresponding domain, i.e.

real eigenvalues. This corresponds to �nding selected eigenvalues of the matrix corre-

sponding to the domain. Algorithms combining this with the sparsity of the matrix

are presented in [56] and they work very well in practice.

The global root �nders are used in the preprocessing stage. As the objects

undergo motion, the problem of collision detection and contact determination is posed

in terms of a new algebraic system. However, the new algebraic system is obtained

by a slight change in the coe�cients of the previous system of equations. The change

in coe�cients is a function of the motion between successive instances and this is

typically small due to temporal and spatial coherence. Since the roots of an algebraic

system are a continuous function of the coe�cients, the roots change slightly as well.

As a result, the new set of roots can be computed using local methods only. We can

either use Newton's method to compute the roots of the new set of algebraic equations

or inverse power iterations [42] to compute the eigenvalues of the new matrix obtained

using resultant formulation.

21

Chapter 3

An Incremental Distance

Computation Algorithm

In this chapter we present a simple and e�cient method to compute the

distance between two convex polyhedra by �nding and tracking the closest points.

The method is generally applicable, but is especially well suited to repetitive distance

calculation as the objects move in a sequence of small, discrete steps due to its

incremental nature. The method works by �nding and maintaining a pair of closest

features (vertex, edge, or face) on the two polyhedra as the they move. We take

advantage of the fact that the closest features change only infrequently as the objects

move along �nely discretized paths. By preprocessing the polyhedra, we can verify

that the closest features have not changed or performed an update to a neighboring

feature in expected constant time. Our experiments show that, once initialized, the

expected running time of our incremental algorithm is constant independent of the

complexity of the polyhedra, provided the motion is not abruptly large.

Our method is very straightforward in its conception. We start with a

candidate pair of features, one from each polyhedron, and check whether the closest

points lie on these features. Since the objects are convex, this is a local test involving

only the neighboring features (boundary and coboundary as de�ned in Sec. 2.1.2) of

the candidate features. If the features fail the test, we step to a neighboring feature

of one or both candidates, and try again. With some simple preprocessing, we can

22

guarantee that every feature has a constant number of neighboring features. This is

how we can verify a closest feature pair in expected constant time.

When a pair of features fails the test, the new pair we choose is guaranteed

to be closer than the old one. Usually when the objects move and one of the closest

features changes, we can �nd it after a single iteration. Even if the closest features

are changing rapidly, say once per step along the path, our algorithm will take only

slightly longer. It is also clear that in any situation the algorithm must terminate in

a number of steps at most equal to the number of feature pairs.

This algorithm is a key part of our general planning algorithm, described

in Chap.6 That algorithm creates a one-dimensional roadmap of the free space of

a robot by tracing out curves of maximal clearance from obstacles. We use the

algorithm in this chapter to compute distances and closest points. From there we can

easily compute gradients of the distance function in con�guration space, and thereby

�nd the direction of the maximal clearance curves.

In addition, this technique is well adapted for dynamic collision detection.

This follows naturally from the fact that two objects collide if and only if the distance

between them is less than or equal to zero (plus some user de�ned tolerance). In fact,

our approach provide more geometric information than what is necessary, i.e. the

distance information and the closest feature pair may be used to compute inter-object

forces.

3.1 Closest Feature Pair

Each object is represented as a convex polyhedron, or a union of convex

polyhedra. Many real-world objects that have curved surfaces are represented by

polyhedral approximations. The accuracy of the approximations can be improved by

increasing the resolution or the number of vertices. With our method, there is little

or no degradation in performance when the resolution is increased in the convex case.

For nonconvex objects, we rely on subdivision into convex pieces, which unfortunately,

may take O((n+ r2)logr) time to partition a nondegenerate simple polytope of genus

0, where n is the number of vertices and r is the number of reex edges of the original

23

nonconvex object [23, 2]. In general, a polytope of n vertices can always be partitioned

into O(n2) convex pieces [22].

Given the object representation and data structure for convex polyhedra

described in Chapter 2, here we will de�ne the term closest feature pair which we

quote frequently in our description of the distance computation algorithm for convex

polyhedra.

The closest pair of features between two general convex polyhedra is de�ned

as the pair of features which contain the closest points. Let polytopes A and B denote

the convex sets in R3. Assume A and B are closed and bounded, therefore, compact.

The distance between objects A and B is the shortest Euclidean distance dAB:

dAB = inf
p2A;q2B

j p� q j

and let PA 2 A, PB 2 B be such that

dAB =j PA � PB j

then PA and PB are a pair of closest points between objects A and B.

For each pair of features (fA and fB) from objects A and B, �rst we �nd the

pair of nearest points (say PA and PB) between these two features. Then, we check

whether these points are a pair of closest points between A and B. That is, we need

to verify that fB is truly a closest feature on B to PA and fA is truly a closest feature

on A to PB This is veri�cation of whether PA lies inside the Voronoi region of fB

and whether PB lies inside the Voronoi region of fA (please see Fig. 3.1). If either

check fails, a new (closer) feature is substituted, and the new pair is checked again.

Eventually, we must terminate with a closest pair, since the distance between each

candidate feature pair decreases, as the algorithm steps through them.

The test of whether one point lies inside of a Voronoi region of a feature

is what we call an \applicability test". In the next section three intuitive geometric

applicability tests, which are the essential components of our algorithm, will be de-

scribed. The overall description of our approach and the completeness proof will be

presented in more detail in the following sections.

24

R1

R2

Fa

CP

Object B

Object A

Vb

Pa

Ea

(a)

Figure 3.1: Applicability Test: (Fa; Vb)! (Ea; Vb) since Vb fails the applicability test

imposed by the constraint plane CP . R1 and R2 are the Voronoi regions of Fa and

Ea respectively.

25

3.2 Applicability Criteria

There are three basic applicability criteria which we use throughout our

distance computation algorithm. These are (i) point-vertex, (ii) point-edge, and (iii)

point-face applicability conditions. Each of these applicability criteria is equivalent

to a membership test which veri�es whether the point lies in the Voronoi region of

the feature. If the nearest points on two features both lie inside the Voronoi region of

the other feature, then the two features are a closest feature pair and the points are

closest points between the polyhedra.

3.2.1 Point-Vertex Applicability Criterion

If a vertex V of polyhedron B is truly a closest feature to point P on polyhe-

dron A, then P must lie within the Voronoi region bounded by the constraint planes

which are perpendicular to the coboundary of V (the edges touching V). This can be

seen from Fig.3.2. If P lies outside the region de�ned by the constraint planes and

hence on the other side of one of the constraint planes, then this implies that there

is at least one edge of V 's coboundary closer to P than V . This edge is normal to

the violated constraint. Therefore, the procedure will walk to the corresponding edge

and iteratively call the closest feature test to verify whether the feature containing P

and the new edge are the closest features on the two polyhedra.

3.2.2 Point-Edge Applicability Criterion

As for the point-edge case, if edge E of polyhedron B is really a closest

feature to the point P of polyhedron A, then P must lie within the Voronoi region

bounded by the four constraint planes of E as shown in Fig.3.3. Let the head and

tail of E be HE and TE respectively. Two of these planes are perpendicular to E

passing through the head HE and the tail TE of E. The other two planes contain E

and one of the normals to the coboundaries of E (i.e. the right and the left faces of

E). If P lies inside this wedge-shaped Voronoi region, the applicability test succeeds.

If P fails the test imposed by HE (or TE), then the procedure will walk to HE (or

26

V

 ObjectB

P

ObjectA Voronoi Region

Figure 3.2: Point-Vertex Applicability Criterion

TE) which must be closer to P and recursively call the general algorithm to verify

whether the new vertex and the feature containing P are the two closest features on

two polyhedra respectively. If P fails the applicability test imposed by the right (or

left) face, then the procedure will walk to the right (or left) face in the coboundary

of E and call the general algorithm recursively to verify whether the new face (the

right or left face of E) and the feature containing P are a pair of closest features.

3.2.3 Point-Face Applicability Criterion

Similarly, if a face F of polyhedron B is actually a closest feature to P on

polyhedron A, then P must lie within F 's Voronoi region de�ned by F 's prism and

above the plane containing F , as shown in Fig.3.4. F 's prism is the region bounded

by the constraint planes which are perpendicular to F and contain the edges in the

boundary of F .

First of all, the algorithm checks if P passes the applicability constraints

imposed by F 's edges in its coboundary. If so, the feature containing P and F

27

ETe He

Right-Face

 P

Left-Face

ObjectA

Voronoi Region

Figure 3.3: Point-Edge Applicability Criterion

are a pair of closest features; else, the procedure will once again walk to the edge

corresponding to a failed constraint check and call the general algorithm to check

whether the new edge in F 's boundary (i.e. EF) and the feature containing P are a

pair of the closest features.

Next, we need to check whether P lies above F to guarantee that P is not

inside the polyhedron B. If P lies beneath F , it implies that there is at least one

feature on polyhedron B closer to the feature containing P than F or that collision

is possible. In such a case, the nearest points on F and the feature containing P may

de�ne a local minimum of distance, and stepping to a neighboring feature of F may

increase the distance. Therefore, the procedure will call upon a O(n) routine (where

n is the number of features of B) to search for the closest feature on the polyhedron

B to the feature containing P and proceed with the general algorithm.

28

N

F 2

 F

P

F

Voronoi Region

ObjectA

Figure 3.4: Vertex-Face Applicability Criterion

3.2.4 Subdivision Procedure

For vertices of typical convex polyhedra, there are usually three to six edges

in the coboundary. Faces of typical polyhedra also have three to six edges in the

boundaries. Therefore, frequently the applicability criteria require only a few quick

tests for each round. When a face has more than �ve edges in its boundary or when a

vertex has more than �ve edges in its coboundary, the Voronoi region associated with

each feature is preprocessed by subdividing the whole region into smaller cells. That

is, we subdivide the prismatic Voronoi region of a face (with more than �ve edges)

into quadrilateral cells and divide the Voronoi region of a vertex (with more than �ve

coboundaries) into pyrmidal cells. After subdivision, each Voronoi cell is de�ned by

4 or 5 constraint planes in its boundary or coboundary. Fig.3.5 shows how this can

be done on a vertex's Voronoi region with 8 constraint planes and a face's Voronoi

region with 8 constraint planes. This subdivision procedure is a simple algorithm

which can be done in linear time as part of preprocessing, and it guarantees that

when the algorithm starts, each Voronoi region has a constant number of constraint

29

planes. Consequently, the three applicability tests described above run in constant

time.

3.2.5 Implementation Issues

In order to minimize online computation time, we do all the subdivision

procedures and compute all the Voronoi regions �rst in a one-time computational

e�ort. Therefore, as the algorithm steps through each iteration, all the applicabil-

ity tests would look uniformly alike | all as \point-cell applicability test", with a

slight di�erence to the point-face applicability criterion. There will no longer be any

distinction among the three basic applicability criteria.

Each feature is an open subset of an a�ne plane. Therefore, end points

are not consider part of an edge. This is done to simplify the proof of convergence.

Though we use the winged edge representation for our implementation, all the edges

are not deliberately oriented as in the winged edge representation.

We also use hysteresis to avoid cycling in degenerate cases when there is more

than one feature pair separated at approximately the same distance. We achieve this

by making the Voronoi regions overlap each other with small and \ared" displace-

ments. To illustrate the \ared Voronoi cells", we demonstrate them by an example

in Fig. 3.6. Note that all the constraint planes are tilted outward by a small angular

displacement as well as in�nitesimal translational displacement. The angular dis-

placement is used to ensure the overlap of adjacent regions. So, when a point falls on

the borderline case, it will not ip back and forth between the two adjacent Voronoi

regions. The small translational displacement in addition to angular displacement is

needed for numerical problem arising from point coordinate transformations. For an

example, if we transform a point p by a homogeneous matrix T and transform it back

by T�1, we will not get the same point p but p0 with small di�erences in each of its

coordinate, i.e. T�1(Tp)=neqp.

All faces are convex, but because of subdivision they can be coplanar. Where

the faces are coplanar, the Voronoi regions of the edges between them is null and face

constraints point directly to the next Voronoi region associated with their neighboring

30

R1 R2 R3

R5 R6

R4

Va

Fb

Object A

Object B

(b)Rb

Ra

Figure 3.5: Preprocessing of a vertex's conical applicability region and a face's cylin-

drical applicability region

31

CPE

R1’ CPF

CP
R2’

R2
R1

Object A

Figure 3.6: An example of Flared Voronoi Cells: CPF corresponds to the ared

constraint place CP of a face and CPE corresponds to the ared constraint plane

CP of an edge. R0

1 and R0

2 are the ared Voronoi regions of unperturbed R1 and R2.

Note that they overlap each other.

32

coplanar faces.

In addition, the order of the applicability test in each case does not a�ect

the �nal result of the algorithm. However, to achieve faster convergence, we look for

the constraint plane which is violated the most and its associated neighboring feature

to continue the veri�cation process in our implementation.

We can also calculate how frequently we need to check for collision by taking

into consideration the maximum magnitude of acceleration and velocity and initial

separation. We use a priority queue based on the lower bound on time to collision to

detect possible intersection at a timely fashion. Here the step size is adaptively set

according to the lower bound on time to collision we calculate. For more information

on this approach, please see Chapter 5 of this thesis.

In the next section, we will show how these applicability conditions are used

to update a pair of closest features between two convex polyhedra in expected constant

time.

3.3 The Algorithm

Given a pair of features, there are altogether 6 possible cases that we need

to consider: (1) a pair of vertices, (2) a vertex and an edge, (3) a vertex and a face,

(4) a pair of edges, (5) an edge and a face, and (6) two faces. In general, the case of

two faces or edge-face rarely happens. However, in applications such as path planning

we may end up moving along maximal clearance paths which keep two faces parallel,

or an edge parallel to a face. It is important to be able to detect when we have such

a degenerate case.

3.3.1 Description of the Overall Approach

Given a pair of features fA and fB each from convex polyhedra A and B

respectively, except for cases (1), (5) and (6), we begin by computing the nearest

points between fA and fB. The details for computing these nearest points between fA

and fB are rather trivial, thus omitted here (please refer to Appendix A if necessary).

33

However, we would like to reinforce one point. We do not assume in�nitely long

edges when we compute these nearest points. The nearest points computed given two

features are the actual points on the features, not some virtual points on in�nitely

extended edges, i.e. nearest points between edges may be their endpoints.

(1) If the features are a pair of vertices, VA and VB, then both VA and VB have to

satisfy the point-vertex applicability conditions imposed by each other, in order for

them to be the closest features. If VA fails the point-vertex applicability test imposed

by VB or vice versa, then the algorithm will return a new pair of features, say VA

and EB (the edge whose corresponding constraint was violated in the point-vertex

applicability test), then continue verifying the new feature pair until it �nds a closest

pair.

(2) Given a vertex VA and an edge EB from A and B respectively, the algorithm will

check whether the vertex VA satis�es the point-edge applicability conditions imposed

by the edge EB and whether the nearest point PE on the edge EB to VA satis�es the

point-vertex applicability conditions imposed by the vertex VA. If both checks return

\true", then VA and EB are the closest features. Otherwise, a corresponding new pair

of features (depending on which test failed) will be returned and the algorithm will

continue to walk closer and closer toward a pair of closest features.

(3) For the case of a vertex VA and a face FB, both of the point-face applicability tests

imposed by the face FB to the vertex VA and the point-vertex applicability criterion

by VA to the nearest point PF on the face must be satis�ed for this pair of features

to qualify as a closest-feature pair. Otherwise, a new pair of features will be returned

and the algorithm will be called again until the closest-feature pair is found.

(4) Similarly, given a pair of edges EA and EB as inputs, if their nearest points PA

and PB satisfy the point-edge applicability criterion imposed by EB and EA, then

they are a pair of closest features between two polyhedra. If not, one of the edges

will be changed to a neighboring vertex or a face and the veri�cation process will be

done again on the new pair of features.

(5) When a given pair of features is an edge EA and a face FB, we �rst need to decide

34

whether the edge is parallel to the face. If it is not, then either one of two edge's

endpoints and the face, or the edge and some other edge bounding the face will be the

next candidate pair. The former case occurs when the head or tail of the edge satis�es

the point-face applicability condition imposed by the face, and when one endpoint of

E is closer to the plane containing F than the other endpoint of E. Otherwise, the

edge E and the closest edge EF on the face's boundary to E will be returned as the

next candidate features.

If the edge and the face are parallel, then they are the closest features

provided three conditions are met. (i) The edge must cut the \applicability prism"

PrismF which is the region bounded by the constraint planes perpendicular to FB

and passing through FB's boundary (or the region swept out by FB along its normal

direction), that is E \ PrismF 6= ; (ii) the face normal must lie between the face

normals of the faces bounding the edge (see Fig. 3.7, Sec. 3.4, and the pseudo code in

Appendix B), (iii) the edge must lie above the face. There are several other situations

which may occur, please see Appendix B or the proof of completeness in Sec. 3.4 for

a detailed treatment of edge-face case.

(6) In the rare occasion when two faces FA and FB are given as inputs, the algorithm

�rst has to decide if they are parallel. If they are, it will invoke an overlap-checking

subroutine which runs in linear time in the total number of edges of FA and FB.

(Note: it actually runs in constant time after we preprocess the polyhedra, since

now all the faces have constant size of boundaries.) If they are both parallel, FA's

projection down onto the face FB overlaps FB and each face is above the other face

relative to their outward normals, then they are in fact the closest features.

But, if they are parallel yet not overlapping, then we use a linear time

procedure [71] to �nd the closest pair of edges, say EA and EB between FA and FB,

then invoke the algorithm again with this new pair of candidates (EA; EB).

If FA and FB are not parallel, then �rst we �nd the closest feature (either

a vertex or an edge) fA of FA to the plane containing FB and vice versa. Then, we

check if this closest feature fA satisfy the applicability constraint imposed by FB.

If so, the new candidate pair will be this closest feature fA and FB; otherwise, we

35

E NRNL

NF

Object A

F

(a)

(b)

NF

E

F

Object A E x NRNL x E

PR

NL

PL

NR

Figure 3.7: (a) An overhead view of an edge lying above a face (b) A side view of

the face outward normal bounded by the two outward normals of the edge's left and

right faces.

36

enumerate over all edge-pairs between two faces to �nd a closest pair of edges and

proceed from there.

If one face lies on the \far side" of the other (where the face is beneath the

other face relative to their face outward normals) or vice versa, then the algorithm

invokes a linear-time routine to step away from this local minimum of distance, and

provides a new pair of features much closer than the previous pair. Please refer to

Appendix B for a complete description of face-face case.

3.3.2 Geometric Subroutines

In this section, we will present some algorithms for geometric operations on

polytopes. They are used in our implementation of the algorithms described in this

thesis.

� Edge & Face's Prism Intersection:

To test for the intersection of a parallel edgeEA to FB within a prism PrismF

swept out by a face FB along its face normal direction NF , we check whether portion

of this edge lies within the interior region of PrismF . This region can be visualized

as the space bounded by n planes which are perpendicular to the face FB and passing

through the n edges in its boundary.

Suppose Fi is a face of the prismatic region PrismF and perpendicular to the

face FB and passing through the edge Ei bounding FB. To test for EA's intersection

within the prism PrismF , we need to check whether EA intersects some face Fi of

RF .

We can perform this test with easy and e�cient implementation1 of this

intersection test. We �rst parameterize the edge EA between 0 and l where l is the

length of EA. The idea is to intersect the intervals of the edge EA contained in the

exterior2 of each half-space with each constraint plane in the prism of a face FB.

1suggested by Brian Mirtich
2We de�ne the exterior half-space of each constraint plane to be the half-space where all the points

satisfy the applicability constraints imposed by FB's boundary. The "point-cell-checkp" routine in

the pseudo code can clarify all the ambiguity. Please refer to Appendix B if necessary.

37

First, we decide whether the edge EA points inward or outward of each hyperplane

Fi of the region by taking the inner product of EA's unit directional vector with Fi's

outward normal NFi
.

Then, we can decide which portion of EA intersect the exterior half-space

of Fi by taking another inner product of the head of EA and Fi's outward normal

normalized by the inner product of EA and NFi
to calculate the relative \inclusion"

factor of EA inside of the prism region. The relative (beginning and ending) inclusion

factors should be in the range of 0 and l for an indication of an edge-face's prism

intersection.

Pseudo code for this approach just described is listed in Appendix B. This

geometric test is used in our implementation of distance computation algorithm as a

subroutine to check whether a given edge intersects the Voronoi prism of a given face

to test their eligibilities be a pair of closest features.

� Face & Face's Prisim Intersection:

To check if two convex polygons A and B are overlapping, one of the basic

approaches is to verify if there is some vertex of A lying on the \inside" of all edges in

the boundary of B or vice versa. The \inside" refers to the interior half-plane of the

edge, not necessary the interior of the polygon. A n-sided convex polygon is formed

by the intersection of interior half-planes of n edges. We can use the fact that two

polygons do no overlap if there exists a separating line passing through one edge in

the boundary of either face. The polygons overlap, if and only if none of the edges

in the boundary of both polygons forms a separating line.

For our own application, we are interested to verify whether a face A's pro-

jection down to the plane containing the face B overlaps with the face B, where A

and B are parallel and in R3. To �nd a separating line between two such polygons

in R3, we check if there exists a supporting plane passing through an edge in the

boundary of one polygon such that all vertices of the other polygon lies in the \exte-

rior half-space" of the supporting plane. The supporting plane is perpendicular the

polygon and containing an edge in the polygon's boundary. This approach runs in

O(N2) time where N is the number of edges of each polygon.

38

An elegant approach which runs in O(M + N) can be found in [66, 71],

where the two polygons A and B each has M , N vertices respectively. This approach

not only determines whether two convex polygon intersect or not, it also �nds the

intersections between them. The basic approach is to \advance" along the edges of

A and B to �nd the \internal chain" of vertices which form the intersection polygon.

Please refer to [66, 71] for all the details.

3.3.3 Analysis of the Algorithm

A careful study of all of the above checks shows that they all take time in

proportion to the size of the boundary and coboundary of each feature. Therefore,

after subdivision preprocessing, all local tests run in constant time since each feature

now has constant number of neighboring features. The only exception to this is when

fA is a face, and fB lies under the plane containing fA (or vise versa). In this case,

we can not use a local feature change, because this may lead to the procedure getting

stuck in a loop. Geometrically, we are moving around the local minimum of the

distance function, in which we may become trapped. When this situation occurs, we

search among all the features of object A to �nd a closest feature to the fB
3. This is

not a constant time step, but note that it is impossible for the algorithm to move to

such an opposing face once it is initialized and given a reasonable step size (not more

than a few degrees of rotation). So this situation can only occur when the algorithm

is �rst called on an arbitrary pair of features.

The algorithm can take any arbitrary pair of features of two polyhedra and

�nd a true pair of closest features by iteratively checking and changing features. In

this case, the running time is proportional to the number of feature pairs traversed

in this process. It is not more than the product of the numbers of features of the two

polyhedra, because the distance between feature pairs must always decrease when

a switch is made, which makes cycling impossible. Empirically, it seems to be not

worse than linear when started from an arbitrary pair of features. However, once

3We can also use a very expensive preprocessing step to �nd a feature on the opposite side of the

polyhedron of the current face. But, this involves searching for all facets whose the outward normals

pointing in the opposite direction, i.e. the dot product of the two face outward normals is negative.

39

it �nds the closest pair of features or a pair in their vicinity, it only takes expected

constant time to update a closest feature pair as the two objects translate and rotate

in three-space. The overall computational time is shorter in comparison with other

algorithms available at the present time.

If the two objects are just touching or intersecting, it gives an error message

to indicate collision and terminates the procedure with the contacting-feature pair as

returned values. A pseudo code is given in Appendix B. The completeness proof of

this algorithm is presented in Sec. 3.4 and it should give readers a better insight to

the algorithm.

3.3.4 Expected Running Time

Our approach works well by taking advantage of \continuity of motion"

or geometric coherence between discrete time steps. When the motion is abruptly

large, the performance doesn't achieve the potential of this algorithm though it still

typically �nds a pair of closest features in sub-linear time. One of the frequently asked

questions is how to choose step size so that we can preserve the geometric coherence

to exploit the locality of closest feature pairs in small discrete steps. This question

can be addressed indirectly by the following analysis:

For relatively spherical objects, the expected running time t is proportional

to
p
n. For cylindrical objects, the expected running time t is proportional to n,

where n is the number of faces (or vertices) per polyhedron.

This is derived from the following reasoning: Given a tessellated sphere

which has N faces around its equator, when the objects are rotated X degrees, it

takes roughly k�X

360=N
= K � N steps to update the closest feature pair, where k and

K are the adjustment constants. And the total number of features (vertices) for the

sphere is O(N2). Therefore, the number of steps (or accumulated running time) is

proportional to
p
n, where n = O(N2) is the total number of features (vertices or

faces). A similar argument holds for the cylindrical objects.

With this observation, we can set the step size to preserve the coherence at

each step. However, it is not necessary since the overall runtime is governed by the

40

number of intermediate feature pairs traversed in the process and the algorithm can

always �nd the pair of closest features, given any step size.

3.4 Proof of Completeness

The algorithm takes any pair of features on two polyhedra and returns a

pair of closest features by iteratively checking and changing features. Through each

applicability test, the algorithm steps closer and closer to a pair of closest features.

That is, after each applicability check, the distance between the updated feature-pair

is smaller than that of the previous feature-pair if a switch of feature-pairs is made.

To verify if a given pair of features is the closest pair, each step takes running time

proportional to the number of neighboring features (boundaries and/or coboundaries

of the features). Since each feature has a constant number of neighboring features,

each veri�cation step takes only constant time in all cases except when a feature

lies beneath a face and inside the face's Voronoi region (this corresponds to a local

minimum of distance function). Thus we call this pair of features as an \exceptional"

feature pair. This situation only occurs after a large motion in a single step when the

actual closest feature of A is on the other (or opposite) side of the last closest feature

on A.

Let n be the number of features from each object. If the algorithm never

encounters a local minimum, the algorithm will return a pair of closest feature in

O(n2) time since there are at most n2 feature-pairs to verify using constant-time

applicability criteria and other subroutines. If the algorithm runs into an exceptional

pair of features, then it is necessary to invoke a linear-time routine to continue the

veri�cation process. We will show later that the algorithm calls the linear-time routine

at most 2n times. Hence, the algorithm converges in O(n2) time.

Lemma 1 Each applicability test and closest feature-pair verifying subroutine will

necessarily return a new pair of features closer in distance than the previous pair

when a switch of feature-pairs is made.

41

Proof:

The algorithm works by �nding a pair of closest features. There are two

categories: (1) non-degenerate cases { vertex-vertex, vertex-edge, and vertex-face (2)

degenerate cases { edge-edge, edge-face, and face-face.

For non-degenerate and edge-edge cases, the algorithm �rst takes any pair

of features fA and fB, then �nd the nearest points PA and PB between them. Next,

it checks each nearest point against the applicability constraints of the other feature.

The distance between two features is the distance between the nearest points of two

features, which is the same as the distance between one nearest point to the other

feature. Therefore, if we can �nd another feature f 0
A
closer to PB or another feature

f 0
B
closer to PA, we have shown the distance between each candidate feature pair is

less after the switch.

Please note that edge-edge is a special degenerate case, since it can possibly

have either one pair or many pairs of nearest points. When a pair of edges has one

pair of nearest points, it is considered as all other non-degenerate cases. When both

edges are parallel, they can possibly have in�nitely many pairs of nearest points. In

such a case, we still treat it as the other non-degenerate cases by choosing the nearest

points to be the midpoints of the line segments which contains the entire sets of

nearest points between two edges. In this manner, the edge-edge degenerate case can

be easily treated as in the other non-degenerate cases and the proof of completeness

applies here as well.

The other two degenerate cases must be treated di�erently since they may

contain in�nitely many closest point pairs. We would like to recall that edges and

faces are treated as open subsets of lines and planes respectively. That is, the edge is

considered as the set of points between two endpoints of the edge, excluding the head

and the tail of the edge; similarly, a face is the set of points interior to its boundary

(excluding the edges and vertices in its boundary). This guarantees that when a

switch of features is made, the new features are strictly closer.

We will �rst show that each applicability test returns a pair of candidate

features closer in distance than the previous pair when a switch of feature pairs is

made. Then, we show the closest feature verifying subroutines for both edge-face and

42

face-face cases necessarily return a closer pair of features when a switch of feature

pairs is made.

(I) Point-Vertex Applicability Criterion

If vertex V is truly the closest feature to point P , then P must lie within

the region bounded by the planes which are perpendicular to the coboundaries of V

(the edges touching V). If so, the shortest distance between P and the other object

is clearly the distance between P and V (by the de�nition of Voronoi region) . When

P lies outside one of the plane boundaries, say CE1
, the constraint plane of an edge

E1 touching V , then there is at least one point on E1 closer to P than V itself, i.e.

the distance between the edge E1 (whose constraint is violated) and P is shorter than

the distance between V and P . This can be seen from Fig.3.8. When a point P lies

directly on the bisector CE1
between V and E1, then P is equi-distant from both

features; else, P is closer to V if P is inside of V 's Voronoi region, and vice versa.

Therefore, each Point-Vertex Applicability test is guaranteed to generate a pair of

features that is closer in distance than the previous pair (which fails the Point-Vertex

Applicability test), when a switch of feature pairs occurs.

(II) Point-Edge Applicability Criterion

If edge E is really the closest feature to point P , then P must lie within the

region bounded by the four constraint planes generated by the coboundary (the left

and right faces) and boundary (the two end points) of E. This is the Voronoi region

of E. If this is the case, the shortest distance between P and the other object is the

distance between P and E (see Fig.3.3 and Sec. 3.2.2 for the construction of point-

edge constraint planes.) When P fails an applicability constraint, say CF , imposed by

the left (or right) face of the edge E, there is at least one point on the corresponding

face closer to P than E, i.e. the distance between P and the corresponding face is

shorter than the distance between P and E (as in Fig.3.9). If P fails the applicability

criterion CV imposed by the head (or tail) of E, then P is closer to the corresponding

endpoint than to E itself (as in Fig.3.10). Therefore, the distance between the new

pair of features is guaranteed to be shorter than that of the previous pair which fails

43

V
E1

E2 E3

P
Voronoi Region

a

b

b < a

Figure 3.8: A Side View for Point-Vertex Applicability Criterion Proof

the Point-Edge Applicability Criterion, when a switch of feature pairs is made.

(III) Point-Face Applicability Criterion

If the face F is actually the closest feature to a point P , then P must lie

within the prism bounded by the constraint planes which are orthogonal to F and

containing the edges in F 's boundary and above F (by the de�nition of Voronoi

region and point-face applicability criterion in Sec. 3.2.3). If P fails one applicability

constraint, say CE1
imposed by one of F's edges, say E1, then E1 is closer to P than

F itself.

When a point lies beneath a face F and within the prism bounded by other

constraint planes, it is possible that P (and of course, the object A which contains

P) lies inside of the object B containing F . But, it is also possible that P lies out

side of B and on the other side of B from F. This corresponds to a local minimum of

distance function. It requires a linear-time routine to step to the next feature-pair.

The linear-time routine enumerates all features on the object B and searches for the

closest one to the feature fA containing P . This necessarily decreases the distance

44

b

E

P

b > a

Voronoi Rgn.

a

Figure 3.9: An Overhead View for Point-Edge Applicability Criterion Proof

P

E HETE

Voronoi Region

Figure 3.10: A Side View for Point-Edge Applicability Criterion Proof

45

F

EF

NF

Voronoi Region

P

Figure 3.11: A Side View for Point-Face Applicability Criterion Proof

between the closest feature candidates base upon the minimum distance information

during the search.

Therefore, we can conclude that the distance decreases when a switch of

feature pairs is made as the result of Point-Face Applicability Test.

(IV) Verifying Subroutines in Edge-Face Case

With the exception of edge-edge (as mentioned earlier in the beginning of

the proof), only edge-face and face-face may have multiple pairs of closest points and

require a more complex treatments. Whereas, the closest feature veri�cation for the

other non-degenerate cases and edge-edge solely depends on point-vertex, point-edge,

and point-face applicability tests which we have already studied. Now we will examine

each of these two cases closely.

� Edge-Face (E, F)
The indentation corresponds to the level of nested loops in the pseudo code (Ap-

pendix B). Please cross-reference if necessary.

46

Given an edge E and a face F , the algorithm �rst checks IF E AND F ARE

PARALLEL, i.e. the two endpoints HE and TE are equi-distant from the face F

(i.e. their signed distance is the same). The signed distance between HE and F can

be computed easily by HE �NF where NF is F 's unit outward normal and similarly

for the signed distance between F and HT .

THEN, when the head HE and tail TE of the edge E are equi-distant from the face

F , the subroutine checks IF E INTERSECTS F 'S PRISM REGION, (i.e. the

region bounded by F 's constraint planes constructed from the edges in F 's boundary).

THEN, if E intersects the prism region of F , the algorithm checks IF

THE HEAD HE (OR TAIL TE) OF E LIES ABOVE THE FACE

F .

THEN, it will check IF THE FACE OUTWARD NOR-

MAL NF IS \BOUNDED" BY THE NORMALS OF

THE EDGE'S LEFT AND RIGHT FACES, say NL and

NR respectively, to verify that the face F lies inside the Voronoi

region of the edge E, not in the Voronoi region of E's left or right

face (FL or FR). This is done by checking if (NL � ~E) �NF > 0

and (~E �NR) �NF > 0, where NF is the outward normal of the

face F , ~E is the edge vector (as described in Sec. 2.1.2), and

NR, NL denote the outward normal of the edge's right and left

face respectively.

THEN, the edge E and the face F will be returned as

the closest feature pair, since E and F lie within the

Voronoi region of each other.

ELSE, it returns the right or left face (FR or FL) of E,

which ever is closer to F .

ELSE, when the head HE (impliesE also) lies beneath F , then

it will invoke a subroutine e-�nd-min which �nds the closest

feature on the polyhedron B containing F to E by enumerating

all the features on B. Then the algorithm will return E and this

new feature fB as the next candidates for the closest feature pair

veri�cation.

ELSE, E does not intersect the prism de�ned by F 's boundary edges,

then there is at least one edge of F 's boundary which is closer to E

47

than the interior of F is to E (by the de�nition of Voronoi region). So,

when the test is failed, it calls a constant time routine (which takes time

proportional to the constant number of face's boundary) and returns the

edge E and the closest edge or vertex, say fF , on the F 's boundary to E.

ELSE, the algorithm checks IF ONE END POINT LIES ABOVE THE FACE

F AND THE OTHER LIES BENEATH F .

THEN, if so there is one edge on F 's boundary which is closer to E than

the interior of F . So, the algorithm will �nd the closest edge or vertex

fB, which has the minimum distance to E among all edges and vertices

in F 's boundary, and return (E, fB) as the next candidate pair.

ELSE, one endpoint HE (or TE) of E is closer (the magnitude j VE �
NF j instead of the signed distance is used for comparison here) to F

than the other endpoint, the algorithm will check IF THE CLOSER

ENDPOINT VE LIES INSIDE OF F 's PRISM REGION (bounded

by constraint planes generated by edges in F 's boundary), CellF , as in

the vertex-face case.

THEN, if closer endpoint VE lies inside of F 's prism region,

then the algorithm will next verify IF THIS ENDPOINT

LIES ABOVE THE FACE F (to detect a local minimum of

distance function).

THEN, if VE (the closer endpoint to F) is above F the

algorithm next veri�es IF THE CLOSEST POINT

PF ON F TO VE SATISFIES VE'S APPLICA-

BILITY CONSTRAINTS.

THEN, if so the algorithm returns VE and F

as the closest feature pair.

ELSE some constraint plane in VE 's Voronoi

cell CellVE is violated. This constraint plane is

generated by an edge, say E0, in VE's cobound-

ary. This edge E0 is closer to F , so the algo-

rithm will return (E0, F) as the next candidate

pair.

ELSE, if the closer endpoint VE of E lies beneath F ,

then the algorithm �nds the closest feature fB on the

polyhedron B to VE The algorithm returns (VE, fB) as

the next candidate feature pair.

48

ELSE, if the closer endpoint VE of E to F lies outside of F 's

prism region, then there is one edge on F 's boundary which is

closer to E than the interior of F . So, the algorithm will �nd

the closest edge or vertex fB, which has the minimum distance

to E among all edges and vertices in F 's boundary, and return

(E, fB) as the next candidate pair.

(V) Verifying Subroutines in Face-Face Case

� Face-Face (FA, FB)

The numbering system (n) in this proof is annotated for easy reference within the

proof. The indentation corresponds to the level of nested loops in the pseudo code

(Appendix B).

(0) Given two faces, FA and FB, the algorithm �rst checks IF THEY ARE PAR-

ALLEL.

(1) THEN, if they are parallel, it invokes a subroutines which runs in constant time

(proportional to the product of numbers of boundaries between two faces, which is a

constant after subdivision) to check IF THE ORTHOGONAL PROJECTION

OF FA ON TO THE PLANE OF FB OVERLAPS FB (i.e. FA intersects the

prism region of FB).

(2) THEN, if they overlapped, the algorithm next checks IF PA (implies

FA as well, since two faces are parallel) LIES ABOVE FB, where PA
is one of the points on FA and its projection down to the FB is in the

overlap region.

(3) THEN, if PA (thus FA) lies above FB, the algorithm next

checks IF PB (THUS FB) ALSO LIES ABOVE FA, where

PB is one of the points and its projection down to the FB is in

the overlap region.

(4) THEN, if PB (thus FB) is above FA and vice versa,

we have a pair of closest points (PA, PB) satisfy the

respective applicability constraints of FB and FA. So,

PA and PB are the closest points on A and B; and the

49

features containing them, FA and FB, will be returned

as the closest features.

(5) ELSE, if PB (thus FB) lies beneath FA, then the

algorithm �nds the closest feature fA on polyhedron A

containing FA to FB by enumerating all features of A to

search for the feature which has minimum distance to

FB. So, the new pair of features (fA, FB) is guaranteed

to be closer than (FA, FB).

(6) ELSE, if PA (thus FA) lies beneath FB, the algorithm �nds

the closest feature fB on polyhedron B containing FB to FA and

returns (FA, fB) as the next candidate feature pair. This pair

of new features has to be closer than FA to FB since fB has the

shortest distance among all features on B to FA.

(7) ELSE, if FA and FB are parallel but the projection of FA does not

overlap FB, a subroutine enumerates all possible combination of edge-

pairs (one from the boundary of each face respectively) and computes the

distance between each edge-pair to �nd a pair of closest edges which has

the minimum distance among all. This new pair of edges (EA, EB) is

guaranteed to be closer than the two faces, since two faces FA and FB do

not contain their boundaries.

(8) ELSE, if FA and FB are not parallel, this implies there is at least one vertex or

edge on FA closer to FB than FA to FB or vice versa. So, the algorithm �rst �nds

the closest vertex or edge on FA to the plane containing FB, �B.

(9) VERTEX: if there is only a single closest vertex VA to the plane

containing FB, VA is closer to FB than FA is to FB since two faces are

not parallel and their boundaries must be closer to each other than their

interior. Next, the algorithm checks if VA lies within the Voronoi region

of FB.

(10) THEN, if so VA and FB will be returned as the next can-

didate pair.

(11) ELSE, the algorithm �nds the closest vertex (or edge) on

FB to �A, and proceeds as before.

(12) VERTEX: if there is only a single vertex VB clos-

est to the plane �A containing FA, the algorithm checks

if VB lies inside of FA's Voronoi region bounded by the

constraint planes generated by the edges in FA's bound-

ary and above FA.

50

(13) THEN, if VB lies inside of FA's Voronoi

region, then FA and VB will naturally be the

next candidate pair. This new pair of features

is closer than the previous pair as already ana-

lyzed in (10).

(14) ELSE, the algorithm performs a search of

all edge pairs from the boundary of FA and FB

and returns the closest pair (EA, EB) as the

next candidate feature pair.

(15) EDGE:, similarly if the closest feature on FB to

�A is an edge EB, the algorithm once again checks if

EB cuts FA's prism to determine whether FA and EB

are the next candidate features.

(16) THEN, the algorithm checks IF THE

END POINT OF EB LIES ABOVE FA.

(17) THEN, the new pair of candidate

features is FA and EB since EB lies within

FA's Voronoi region.

(18) ELSE, the algorithm searches for the

closest feature fA which has the minimum

distance among all other features on A to

EB and returns (fA, EB) as the next pair

of candidate features.

(14) ELSE, if not, then this implies that nei-

ther face contains the closest points since nei-

ther FA nor FB's Voronoi regions contain a clos-

est point from the other's boundary. So, the

algorithm will enumerate all the edge-pairs in

the boundaries of FA and FB to �nd the pair of

edges which is closest in distance. This new

pair of edges (EA, EB) is guaranteed to be

closer than the two faces.

(19) EDGE: if there are two closest vertices on FA to �B, then the edge

EA containing the two vertices is closer to �B than FA is. Next, the

algorithm checks IF EA INTERSECTS THE PRISM REGION OF

FB, as in the edge-face case.

(20) THEN, the algorithm checks IF THE END POINT

OF EA LIES ABOVE FB.

(21) THEN, if so the edge EA and FB will be returned

as the next candidate pair.

51

(22) ELSE, the algorithm searches for the closest fea-

ture fB which has the minimum distance among all

other features on B to EA and returns (EA, fB) as the

next pair of candidate features.

(23) ELSE, if this is not the case, then the algorithm �nds the

closest vertex (or edge) on FB to the plane containing FA, say

�A and proceeds as before, from block (11) to block (18).

In either degenerate case (edge-face or face-face), a pair of features closer

in distance is always provided when a switch of feature pairs is made. All the veri-

fying subroutines run in constant time (proportional to the number of boundary or

coboundary of features or the product of numbers of boundaries between two fea-

tures), except where an edge lies beneath a face or when a face lies beneath a face.

In such local cases, a linear-time routine is invoked.

To sum up, all the applicability tests and closest feature-pair verifying sub-

routines generate a pair of new features closer in distance than the previous pair when

a switch of feature-pairs is made.

Corollary The algorithm takes O(n3) time to �nd the closest feature pair, since

each pair of features is visited at most once, and each step takes at most linear time.

O(n3) is a rather loose upper bound. We can �nd a tighter bound on the

running time if we study the local minimum case in greater details. As a result of

a new analysis, we claim in Lemma 2 that the algorithm should converge in O(n2)

time. The proof is stated below.

Lemma 2 The algorithm will converge in O(n2) time.

Proof:

Except for the case of a local minimum which corresponds to the situation

where one feature lies under the plane containing the other face, all the applicability

tests and subroutines run in constant time. Thus the overall running time is O(n2)

in this case, since the algorithm can only exhaustively visit O(n2) pairs of features

52

and no looping can possibly exist if it doesn't encounter local minima (by Lemma 1).

As mentioned earlier, when a local minimum is encountered, a linear-time routine is

invoked. But it is not necessary to call this linear-time routine more than 2n times

to �nd the closest feature-pair. The reasons are the following:

We claim that we will not revisit the same feature twice in a linear time

check. We will prove by contradiction. Assume that the linear time routine is called

to �nd a closest feature in B to fA. The routine will never again be called with (fA,

B) as argument. Suppose it was, i.e. suppose that fB was the result of the call to

the linear time routine with input (fA; B) and after several iterations from (fA, fB)

! : : : ! (f 0
A
, f 0

B
) we come to a feature pair (fA, f

0

B
) and that the linear routine is

invoked to �nd the closest feature on B to fA. Once again, fB must be returned as

the closest feature to fA. But, this violates Lemma 1 since the distance must strictly

decrease when changes of features are made, which is not true of the regular sequence

(fA; fB)! : : :! (fA; f
0

B
)! : : :! (fA; fB).

Similarly, the routine will not be called more than once with (fB, A) as

arguments. Thus, the linear-time routine can be called at most 2n times, where n is

the total number of features of object B (or A).

Therefore, the closest-feature algorithm will converge in O(n2) time, even in

the worst case where local minima are encountered.

3.5 Numerical Experiments

The algorithm for convex polyhedral objects described in this chapter has

been implemented in both Sun Common Lisp and ANSI C for general convex objects.

(The extension of this algorithm to non-convex objects is presented in the next chap-

ter.) The input data are arbitrary pairs of features from two given polyhedral objects

in three dimensional space. The routine outputs a pair of the closest features (and

a pair of nearest points) for these two objects and the Euclidean distance between

them.

Numerous examples in three dimensional space have been studied and tested.

Our implementation in ANSI C gives us an expected constant time performance of

53

0.0 100.0 200.0 300.0
total number of vertices

0.0

20.0

40.0

60.0

80.0

100.0

120.0
co

m
pu

ta
tio

n
tim

e
in

 m
ic

ro
se

co
nd

s

Figure 3.12: Computation time vs. total no. of vertices

50-70 usec per object pair of arbitrary complexity on SGI Indigo2 XZ (200-300 usec

per object pair on a 12.5 Mips 1.4 Mega ops Sun4 Sparc Station) for relative small

rotational displacement. Fig.3.12 shows the expected constant time performance for

polygonized spherical and cylindrical objects of various resolutions. Each data point

is taken as the average value of 1000 trials with the relative rotation of 1 degree per

step. (The closest features rarely change if two objects are translated along the line

connecting the closest feature pair.)

We would like to mention that the accumulated runtime for 1000 trials

shows slightly increasing trend for total vertices over 1000, this is due to the fact

that the number of feature pair changes for the same amount of rotation increases

if the resolution of objects increases. For spherical and most objects, the runtime is

roughly O(
p
n) where n is number of vertices for each object with a extremely small

constant. For the cylindrical objects where the total number of facets to approximate

the quadratic surface is linear with the number of vertices, the total accumulated

runtime is expectedly sub-linear with the total number of vertices.

54

For two convex hulls of teapots (each has 1047 vertices, 3135 edges, and 2090

faces), the algorithm takes roughly 50, 61, 100, 150 usec for 1, 5, 10, 20 degrees of

relative rotation and displacements. Note that when the relative movement between

2 objects becomes large, the runtime seems to increase as well, this is due to the fact

that the geometric coherence doesn't hold as well in the abrupt motions. Nevertheless,

the algorithm continues to perform well compared to other algorithms.

The examples we used in our simulation include a wide variety of polytopes:

cubes, rectangular boxes, cylinders, cones, frustrums, and a Puma link of di�erent

sizes as shown in Fig.3.13. In particular, the number of facets or the resolution for

cylinders, cones and frustrums have been varied from 12, 20, 24, 48, up to 120 in order

to generate a richer set of polytopes for testing purpose. Due to the programming

language's nature, Lisp code usually gives a longer run time (roughly 10 times slower

than the implementation written in ANSI C).

To give readers a feeling of speed di�erence the expected run time obtained

from our Lisp code is 3.5 msec which is roughly 10 times slower than our C imple-

mentation (from the same Sun4 SPARC station described above), independent of

object complexity. The experiment results obtained from our Lisp code are briey

summarized in Table 1. M1 and M2 stand for the number of vertices for each object

respectively; and N stands for the total number of vertices between the two objects.

The average CPU time is taken over 50 trials of experimental runs. (Each trial picks

all 18 arbitrary permuted combination of feature pairs to initialize the computation

and calculates the average run time based upon these 18 runs.) With initialization to

the previous closest feature, the routine can almost always keep track of the closest

features of two given polytopes in expected constant time (about 3 to 4 msec).

Without initialization (i.e. no previous closest feature pair is given), the

algorithm runs in average time not worse than linear in the total number of vertices.

This is what we would expect, since it seems unlikely that the algorithmwould need to

visit a given feature more than once. In practice, we believe our algorithm compares

very favorably with other algorithms designed for distance computations or collision

detection. Since the nature of problem is not the same, we cannot provide exact

comparisons to some of the previous algorithms. But, we can briey comment on the

55

 (a)

(b)

(c)

(d)

(e)

(f)

Figure 3.13: Polytopes Used in Example Computations

56

Objects M1 + M2 = N w/o Init w/ Init

(a),(b) 8 + 8 = 16 21 3.2

(a),(f) 8 + 16 = 24 23 3.3

(a),(c) 8 + 24 = 32 26 3.5

(d),(e) 48 + 21 = 69 41 3.5

(c),(c) 96 + 48 = 144 67 3.0

Table 3.1: Average CPU Time in Milliseconds

number of operations involved in a typical calculation. For an average computation

to track or update a pair of closest features, each run takes roughly 50-70 usec on a

SGI Indigo2 XZ or 92-131 arithmetic operations (roughly 12-51 operations to �nd the

nearest points, 2 x 16 operations on 2 point transformations, 2 x 4 x 6 operations for

two applicability tests and each involves 4 inner product calculations) independent

of the machines. By comparing the number of arithmetic operations in the previous

implemented algorithms, we believe that our implementation gives better performance

and probably is the fastest implemented collision detection algorithm. (Please see [65],

[13], [17], [40], [39], [38], [72], and [90].)

This is especially true in a dynamic environment where the trajectories are

not known (nor are they in closed form even between impacts, but are given by ellip-

tic integrals). The expected constant time performance comes from the fact that each

update of the closest feature pair involves only the constant number of neighboring

features (after the initialization and preprocessing procedures). The speed of algo-

rithm is an attribute from the incremental nature of our approach and the geometric

coherence between successive, discrete movements.

3.6 Dynamic Collision Detection for Convex Poly-

hedra

The distance computation algorithm can be easily used for detecting colli-

sion while the objects are moving. This is done by iteratively checking the distance

57

between any pair of moving objects. If the distance is less than or equal to zero (plus

� - a small safety margin de�ned by the user), then a collision is declared. We can set

the step size of the algorithm once we obtain the initial position, distance, velocity

and acceleration among all object pairs. We also use a simple queuing scheme to

reduce the frequency of collision checks by relying on the fact that only the object

pairs which have a small (Chapter 5).

Furthermore, we will not need to transform all the Voronoi regions and all

features of polyhedra but only the closest points and the new candidate features (if

necessary), since local applicability constraints are all we need for tracking a closest

pair of closest features. The transformation is done by taking the relative transfor-

mation between two objects. For example, given two objects moving in space, their

motions with respect to the origin of the world frame can be characterized by the

transformation matrices TA and TB respectively. Then, their relative motion can be

represented by the homogeneous relative transformation TAB = T�1
B
TA.

58

Chapter 4

Extension to Non-Convex Objects

and Curved Objects

Most of objects in the real world are not simple, convex polyhedral objects.

Curved corners and composite objects are what we see mostly in the man-made envi-

ronment. However, we can use the union of convex polyhedra to model a non-convex

object and reasonably re�ned polyhedral approximation for curved boundaries as well.

In this chapter, we will discuss how we extend the collision detection algorithm (de-

scribed in Chapter 3) from convex objects to non-convex objects. Then, the extension

to the curved objects will be described later in the chapter as well.

4.1 Collision Detection for Non-convex Objects

4.1.1 Sub-Part Hierarchical Tree Representation

Nonconvex objects can be either composite solid objects or they can be

articulated bodies. We assume that each nonconvex object is given as a union of

convex polyhedra or is composed of several nonconvex subparts, each of these can be

further represented as a union of convex polyhedra or a union of non-convex objects.

We use a sub-part hierarchy tree to represent each nonconvex object. At each node of

the tree, we store either a convex sub-part (at a leave) or the union of several convex

59

Figure 4.1: An example of sub-part hierarchy tree

60

subparts.

Depending on the applications, we �rst construct the convex hull of a rigid

non-convex object or dynamic bounding box for articulated bodies at each node and

work up the tree as part of preprocessing computation. We also include the convex

hull or dynamic bounding box of the union of sub-parts in the data structure. The

convex hull (or the bounding box) of each node is the convex hull (or bounding box)

of the union of its children. For instance, the root of the sub-part hierarchy tree for

a composite solid non-convex object is the nonconvex object with its convex hull in

its data structure; each convex sub-part is stored at a leave. The root of the sub-part

hierarchical tree for a Puma arm is the bounding box of the entire arm which consists

of 6 links; and each leave stores a convex link.

For example, in Fig. 4.1, the root of this tree is the aircraft and the convex

hull of the aircraft (outlined by the wire frames). The nodes on the �rst level of the

tree store the subparts and the union of the subparts of the aircraft, i.e. the left and

right wings (both convex), the convex body of airplane, and the union of the tail

pieces. Please note that at the node where the union of the tail pieces are stored, a

convex hull of union of these tail pieces is also stored there as well. This node, which

stores the union of all tail pieces, further branches out to 3 leaves, each of which

stores a convex tail piece.

For a robot manipulator like a Puma arm, each link can be treated as a

convex subpart in a leave node. The root of this tree can be a simple bounding box of

the entire Puma arm whose con�guration may be changing throughout the duration

of its task. (Therefore, the bounding box may be changing as well. Of course, the

e�ciency of our distance computation algorithm in Chapter 3 is lost when applied

to a changing volume, since the Voronoi regions will be changing as the volume of

the object changes and the preprocessing computation is not utilized to its maximum

extend. However, in Chapter 5 we will present another simple yet e�cient approach

to deal with such a situation.)

In addition, not only can we apply the hierarchical subpart tree representa-

tion to polyhedral models, we can also use it for non-convex curved objects as well.

Depending on the representation of the curved objects (parametric, algebraic, B�ezier,

61

or B-spline patches), each node of the tree will store a portion (such as a patch) of

the curved surfaces and the root of the tree is the entire curved object and the convex

hull of its polyhedral approximation. For more treatments on the non-convex curved

objects, please refer to Sec. 4.3.3.

4.1.2 Detection for Non-Convex Polyhedra

Given the subpart tree representation, we examine the possible interference

by a recursive algorithm at each time step. The algorithm will �rst check for collision

between two parent convex hulls. Of course, if there is no interference between two

parents, there is no collision and the algorithm updates the closest-feature pair and the

distance between them. If there is a collision, then it will expand their children. All

children of one parent node are checked against all children of the other parent node.

If there is also a collision between the children, then the algorithm will recursively call

upon itself to check for possible impacts among the children's children, and so on. In

this recursive manner, the algorithm will only signal a collision if there is actually an

impact between the sub-parts of two objects; otherwise, there is no collision between

the two objects.

For instance, assume for simplicity that one nonconvex object is composed of

m convex polyhedra and the other is composed of n convex polyhedra, the algorithm

will �rst check for collision between the two convex hulls of these two objects. If there

is a collision, mn convex polyhedra-pairs will be tested for possible contacts. If there

is a collision between any one of these mn pairs of convex polyhedra, then the two

objects interpenetrate; otherwise, the two objects have not yet intersected. Fig. 4.2

shows how this algorithm works on two simpli�ed aircraft models.

In Fig. 4.2, we �rst apply the algorithm described in Chapter 3 to the convex

hulls of the two aircrafts. If they do not intersect, then the algorithm terminates and

reports no collision. In the next step, the algorithm continues to track the motion of

the two planes and �nds their convex hulls overlap. Then, the algorithm goes down

the tree to the next level of tree nodes and check whether there is a collision among

the subparts (the wings, the bodies, and the union of subparts, i.e. the union of tail

62

pieces). If not, the algorithm will not report a collision. Otherwise, when there is an

actual penetration of subparts (such as two wings interpenetrating each other), then

a collision is reported.

We would like to clarify one fact that we never need to construct the Voronoi

regions of the non-convex objects, since it is absolutely unnecessary given the subpart

hierarchical tree. Instead, at the preprocessing step we only construct the Voronoi

regions for each convex piece at each node of the subpart hierarchical tree. When we

perform the collision checks, we only keep track of the closest feature pairs for the

convex hulls of parent nodes, unless a collision has taken place between the convex

hulls of two non-convex objects or the bounding boxes of articulated bodies. Under

such a situation, we have to track the closest pair of features for not only the convex

hulls or bounding boxes at the parent nodes, but also among all possible subpart

pairs at the children nodes as well. This can lead to O(n2) of comparisons, if each

object is consisted of n subparts and the trees only have two levels of leave nodes.

However, we can achieve a better performance if we have a good hierarchy of

the model. For complex objects, using a deep hierarchical tree with lower branching

factor will keep down the number of nodes which need to be expanded. This approach

guarantees that we �nd the earliest collision between two non-convex objects while

reducing computation costs. For example, given 2n subparts, we can further group

them into two subassemblies and each has n subparts. Each subassembly is further

divided into several smaller groups. This process generates a deep hierarchical tree

with lower branching factor, thus reduces the number of expansions needed whenever

the convex hulls (or bounding boxes) at the top-level parent nodes collide.

63

Figure 4.2: An example for non-convex objects

64

4.2 Collision Detection for Curved Objects

In this section1, we analyze the problem of collision detection between curved

objects represented as spline models or piecewise algebraic surfaces. Di�erent types of

surface representations have been desribed in Chapter 2, please refer to it if necessary.

We show that these problems reduce to �nding solutions of a system of algebraic

equations. In particular, we present algebraic formulations corresponding to closest

points determination and geometric contacts.

4.2.1 Collision Detection and Surface Intersection

In geometric and solid modeling, the problem of computing the intersection

of surfaces represented as spline surfaces or algebraic surfaces has received a great

deal of attention [46]. Given two surfaces, the problem corresponds to computing all

components of the intersection curve robustly and accurately. However, for collision

detection we are actually dealing with a restricted version of this problem. That is,

given two surfaces we want to know whether they intersect.

In general, given two spline surfaces, there is no good and quick solution

to the problem of whether they intersect or have a common geometric contact. The

simplest solution is based on checking the control polytopes (a convex bounding box)

for collision and using subdivision. However, we have highlighted the problems with

this approach (in Chapter 1) in terms of performance when the two objects are close

to touching. Our approach is based on formulating the problem in terms of solving

systems of algebraic equations and using global methods for solving these equations,

and local methods to update the solutions.

4.2.2 Closest Features

Given the homogeneous representation of two parametric surfaces, F(s; t) =

(X(s; t), Y (s; t), Z(s; t), W (s; t)) and G(u; v) = (X(u; v), Y (u; v); Z(u; v), W (u; v));

1This is the result of joint work with Prof. Dinesh Manocha at the University of North Carolina,

Chapel Hill

65

the closest features between two polyhedra correspond to the closest point sets on the

surface. The closest points are characterized by the property that the correspond-

ing surface normals are collinear. This can be expressed in terms of the following

variables. Let

F11(s; t; u; v; �1) = (F(s; t)�G(u; v))

F12(s; t; u; v; �1) = �1(Gu(u; v)�Gv(u; v))

F21(s; t; u; v; �2) = (Fs(s; t)� Ft(s; t))

F22(s; t; u; v; �2) = �2(Gu(u; v)�Gv(u; v));

where Fs;Ft;Gu;Gv correspond to the partial derivatives. The closest points between

the two surfaces satisfy the following equations:

F1(s; t; u; v; �1) = F11(s; t; u; v; �1) �F12(s; t; u; v; �1) =

0
BBBB@

0

0

0

1
CCCCA
: (4.1)

F2(s; t; u; v; �2) = F21(s; t; u; v; �2) �F22(s; t; u; v; �2) =

0
BBBB@

0

0

0

1
CCCCA
:

This results in 6 equations in 6 unknowns. These constraints between the closest

features can also be expressed as:

H1(s; t; u; v) = (F(s; t)�G(u; v)) �Gu(u; v) = 0

H2(s; t; u; v) = (F(s; t)�G(u; v)) �Gv(u; v) = 0 (4.2)

H3(s; t; u; v) = (F(s; t)�G(u; v)) � Fs(s; t) = 0

H4(s; t; u; v) = (F(s; t)�G(u; v)) � Ft(s; t) = 0;

where � corresponds to the dot product. This results in four equations in four un-

knowns.

Let us analyze the algebraic complexity of these two system of equations cor-

responding to closest features. Lets consider the �rst system corresponding to (4.1).

In particular, given 2 rational parametric surfaces F(s; t) and G(u; v), both of their

66

numerators and denominators are polynomials of degree n, the degrees of numerators

and denominators of the partials are 2n � 1 and 2n respectively in the given vari-

ables (due to quotient rule). The numerator and denominator of F11(s; t; u; v; �1)

have degree 2n and 2n due to subtraction of two rational polynomials. As for

F12(s; t; u; v; �1), taking the cross product doubles the degrees for both the numer-

ator and denominator; therefore, the degrees for the numerator and denominator of

F12(s; t; u; v; �1) are 4n�2 and 4n respectively. To eliminate�1 from F1(s; t; u; v; �1),

we get

F11(X(s; t; u; v; �1))

F12(X(s; t; u; v; �1))
=
F11(Y (s; t; u; v; �1))

F12(Y (s; t; u; v; �1))
=
F11(Z(s; t; u; v; �1))

F12(Z(s; t; u; v; �1))
(4:3)

After cross multiplication to clear out the denominators we get two polynomails of

degree 12n � 2 each. Once again, by the same reasoning as stated above, both the

numerators and denominators of F21(s; t; u; v; �2) and F22(s; t; u; v; �2) have degrees

of 4n � 2 and 4n. By similar method mentioned above, we can eliminate �2 from

F2(s; t; u; v; �2). We get two polynomial equations of degree 16n� 4 each after cross

multiplication. As a result the system has a Bezout bound of (12n � 2)2(16n � 4)2.

Each equation in the second system of equations has degree 4n�1 (obtained

after computing the partials and addition of two rational polynomials) and therefore

the overall algebraic complexity corresponding to the Bezout bound is (4n�1)4. Since
the later system results in a lower degree bound, in the rest of the analysis we will

use this system. However, we are only interested in the solutions in the domain of

interest (since each surface is de�ned on a subset of the real plane).

Bara� has used a formulation similar to (4.1)to keep track of closest points

between closed convex surfaces [3] based on local optimization routines. The main

problem is �nding a solution to these equations for the initial con�guration. In

general, these equations can have more than one solution in the associated domain, i.e.

the real plane, (even though there is only one closest point pair) and the optimization

routine may not converge to the right solution. A simple example is the formulation

for the problem of collision detection between two spheres. There is only one pair of

closest points, however equations (4.1) or (4.2) have four pairs of real solutions.

Given two algebraic surfaces, f(x; y; z) = 0 and g(x; y; z) = 0, the problem

67

(a)

Tangent Plane

Contact Point

Intersection
is a boundary point

(b)

Figure 4.3: Tangential intersection and boundary intersection between two B�ezier

surfaces

of closest point determination can be reduced to �nding roots of the following system

of 8 algebraic equations:

f(x1; y1; z1) = 0

g(x2; y2; z2) = 0 (4.4)0
BBBB@

fx(x1; y1; z1)

fy(x1; y1; z1)

fz(x1; y1; z1)

1
CCCCA

= �1

0
BBBB@

gx(x2; y2; z2)

gy(x2; y2; z2)

gz(x2; y2; z2)

1
CCCCA

0
BBBB@

x1

y1

z1

1
CCCCA
�

0
BBBB@

x2

y2

z2

1
CCCCA

= �2

0
BBBB@

gx(x2; y2; z2)

gy(x2; y2; z2)

gz(x2; y2; z2)

1
CCCCA

Given two algebraic surfaces of degree n, we can eliminate �1 by setting

fx(x1;y1;z1)

gx(x2;y2;z2)
=

fy(x1;y1;z1)

gy(x2;y2;z2)
. After cross multiplication, we have a polynomial equation

of 2n-2, since each partial has degree of n � 1 and the multiplication results in

68

the degree sum of 2n � 2. To eliminate �2, we set x1�x2

gx(x2;y2;z2)
= y1�y2

gy(x2;y2;z2)
and the

degree of the resulting polynomial equation is n. We have six quations after elim-

inating �1 and �2: two of degrees (2n � 2) and four of degress n respectively (2

from eliminating �2 and 2 from f(x1; y1; z1) and g(x2; y2; z2)). Therefore, the Bezout

bound of the resulting system can be as high as N = (2n � 2)2n4. In general, if

the system of equations is sparse, we can get a tight bound with Bernstein bound

[8]. The Bernstein bound for Eqn. 4.4 is n2(n2 + 3)(n � 1)2. Canny and Emiris

calculate the Bernstein bounds e�ciently by using sparse mixed resultant formula-

tion [16]. For example, the Bernstein bounds2 for the case of n = 2; 3; 4; 5; 6; 7; 8; 9

are 28; 432; 2736; 11200; 35100; 91728; 210112; 435456, while the Bezout bounds are

64; 1296; 9216; 40000; 129600; 345744; � � � respectively. Even for small values of n, N

can be large and therefore, the algebraic complexity of computing the closest points

can be fairly high. In our applications we are only interested in the real solutions to

these equations in the corresponding domain of interest. The actual number of real

solutions may change as the two objects undergo motion and some con�gurations can

result in in�nite solutions (e.g. when a closest pair corresponds to a curve on each

surface, as shown for two cylinders in Fig. 4.4.). As a result, it is fairly non-trivial to

keep track of all the closest points between objects and updating them as the objects

undergo motion.

4.2.3 Contact Formulation

The problem of collision detection corresponds to determining whether there

is any contact between the two objects. In particular, it is assumed that in the

beginning the objects are not overlapping. As they undergo motion, we are interested

in knowing whether there is any contact between the objects. There are two types

of contacts. They are tangential contact and boundary contact. In this section, we

formulate both of these problems in terms of a system of algebraic equations. In the

next section, we describe how the algorithm tests for these conditions as the object

2These �gures are calculated by John Canny and Ioannis Emiris using their code based on the

sparse mixed resultant formulation.

69

undergoes rigid motion.

� Tangential Intersection : This corresponds to a tangential intersection between

the two surfaces at a geometric contact point, as in Fig.4.3(a). The contact point

lies in the interior of each surface (as opposed to being on the boundary curve)

and the normal vectors at that point are collinear. These constraints can be

formulated as:

F(s; t) =G(u; v) (4.5)

(Fs(s; t)�Ft(s; t)) �Gu(u; v) = 0

(Fs(s; t)�Ft(s; t)) �Gv(u; v) = 0

The �rst vector equation corresponds to a contact between the two surfaces and

the last two equations represent the fact that their normals are collinear. They

are expressed as scalar triple product of the vector The last vector equation

represented in terms of cross product corresponds to three scalar equations.

We obtain 5 equations in 4 unknowns. This is an overconstrained system and

has a solution only when the two surfaces are touching each other tangentially.

However, we solve the problem by computing all the solutions to the �rst four

equations using global methods and substitute them into the �fth equation. If

the given equations have a common solution, than one of the solution of the

�rst four equation will satisfy the �fth equation as well. For the �rst three

equations, after cross multiplication we get 3 polynomial equations of degree

2n each. The dot product results in the addition of degrees of the numerator

polynomials. Therefore, we get a polynomial equation of degree 6n � 3 from

the fourth equation. Therefore, the Bezout bound of the system corresponding

to the �rst four equations is bounded by N = (2n)3(6n � 3), where n is the

parametric degree of each surface. Similarly for two algebraic surfaces, the

problem of tangential intersection can be formulated as:

f(x; y; z) = 0

g(x; y; z) = 0 (4.6)

70

0
BBBB@

fx(x; y; z)

fy(x; y; z)

fz(x; y; z)

1
CCCCA
= �

0
BBBB@

gx(x; y; z)

gy(x; y; z)

gz(x; y; z)

1
CCCCA

In this case, we obtain 4 equations in 3 unknowns (after eliminating �) and

these equations correspond to an overconstrained system as well. These over-

constrained system is solved in a manner similar to that of parametric surfaces.

The �rst two equations are of degrees n. To eliminate � from the third equa-

tion, we get a polynomial equation of degree 2(n-1) due to cross multiplication

and taking partial with respect to x; y; z. The Bezout bound for the �rst three

equations is N = n2(2n � 2).

� Boundary Intersection : Such intersections lie on the boundary curve of one

of the two surfaces. Say we are given a B�ezier surface, de�ned over the domain,

(s; t) 2 [0; 1]� [0; 1], we obtain the boundary curves by substituting s or t to be

0 or 1. The resulting problem reduces to solving the equations:

F(s; 1) =G(u; v) (4:7)

Other possible boundary intersections can be computed in a similar manner.

The intersection points can be easily computed using global methods. An ex-

ample has been shown in Figure 4.3(b)

Two objects collide if one of these sets of equations, (4.5) or (4.7) for para-

metric surfaces and (4.6) for algebraic surfaces, have a common solution in their

domain.

In a few degenerate cases, it is possible that the system of equations (4.5)

and (4.7) have an in�nite number of solutions. One such example is shown for two

cylinders in Fig.4.4. In this case the geometric contact corresponds to a curve on each

surface, as opposed to a point. These cases can be detected using resultant methods

as well [55].

71

(a) (b)

Closest
PointsPoint Sets

Closest

Figure 4.4: Closest features between two di�erent orientations of a cylinder

4.3 Coherence for Collision Detection between

Curved Objects

In most dynamic environments, the closest features or points between two

moving objects change infrequently between two time frames. We have used this

coherence property in designing the expected constant time algorithm for collision

detection among convex polytopes and applied to non-convex polytopes as well. In

this section we utilize this coherence property along with the algebraic formulations

presented in the previous section for curved models.

4.3.1 Approximating Curved Objects by Polyhedral Mod-

els

We approximate each physical object with curved boundary by a polyhedra

(or polygonal mesh). Such approximations are used by rendering algorithms utiliz-

72

ing polygon rendering capabilities available on current hardware. These polyhedral

models are used for collision detection, based on the almost constant time algorithm

utilizing local features. Eventually a geometric contact is determined by solving the

equations highlighted in the previous section. We use an �-polytope approximation

for a curved surface. It is de�ned as:

De�nition: Let S be a surface and P is �-polytope approximation, if for all points,

p on the boundary of polytope P , there is a point s on S such that k s � p k� �.

Similarly for each point s on S, there is a point p on the boundary of P such that

k p� s k� �.

An �-polytope approximation is obtained using either a simple mesh gener-

ation algorithm or an adaptive subdivision of the surfaces. Given a user de�ned �,

algorithms for generating such meshes are highlighted for parametric B-spline surfaces

in [36] and for algebraic surfaces in [44]. In our implementation we used an inscribed

polygonal approximation to the surface boundary.

We use the �-polytope approximations for convex surfaces only. In such

cases the resulting polytope is convex as well. Often a curved model can be repre-

sented as a union of convex objects. Such models are represented hierarchically, as

described in Section 4.1.1. Each polytope at a leaf node corresponds to an �-polytope

approximation.

4.3.2 Convex Curved Surfaces

In this section we present an algorithm for two convex spline surfaces. The

input to the algorithm are two convex B-spline surfaces (say SA and SB) and their

associated control polytopes. It is assumed that the surfaces have at least �rst order

continuity. We compute an �-polytope approximation for each spline surface. Let PA

and Pb be �A-polytope and �B-polytope approximations of SA and SB, respectively.

If the objects do not collide, there may be no need to �nd the exact closest

points between them but a rough estimate of location to preserve the property of

geometric coherence. In this case, we keep track of the closest points between PA

and PB. Based on those closest points, we have a good bound on the actual distance

73

between the two surfaces. At any instance let dp be the minimum distance between

PA and PB (computed using the polyhedral collision detection algorithm). Let ds be

the minimumdistance between the two surfaces. It follows from the �-approximation:

dp � �A � �B � ds � dp: (4:8)

The algorithm proceeds by keeping track of the closest points between PA and PB and

updating the bounds on ds based on dp. Whenever dp � �A+�B, we use Gauss Newton

routines to �nd the closest points between the surfaces SA and SB. In particular, we

formulate the problem: For Gauss Newton routines, we want to minimize the function

H(s; t; u; v) =
4X

i=1

(Hi(s; t; u; v))
2;

where Hi are de�ned in (4.2). We use Gauss-Newton algorithm to minimizeH. The

initial guess to the variables is computed in the following manner.

We use the line, say LA;B, joining the closest points of PA and PB as an

initial guess to the line joining the closest points of SA and SB (in terms of direction).

The initial estimate to the variables in the equations in (4.2) is obtained by �nding the

intersection of the line LA;B with the surfaces, F(s; t) and G(u; v). This corresponds

to a line-surface intersection problem and can be solved using subdivision or algebraic

methods [35, 55]. As the surfaces move along, the coe�cients of the equations in (4.2)

are updated according to the rigid motion. The closest points between the resulting

surfaces are updated using Gauss Newton routines. Finally, when these closest points

coincide, there is a collision.

In practice, the convergence of the Gauss Newton routines to the closest

points of SA and SB is a function of �A and �B. In fact, the choice of � in the �-polytope

approximation is important to the overall performance of the algorithm. Ideally, as

�! 0, we get a �ner approximation of the curved surface and better the convergence

of the Gauss Newton routines. However, a smaller � increases the number of features in

the resulting polytope. Though polyhedral collision detection is an expected constant

time algorithm at each step, the overall performance of this algorithm is governed by

the total number of feature pairs traversed by the algorithm. The latter is dependent

74

on motion and the resolution of the approximation. Consequently, a very small � can

slow down the overall algorithm. In our applications, we have chosen � as a function

of the dimension of a simple bounding box used to bound SA. In particular, let l

be dimension of the smallest cube, enclosing SA. We have chosen � = �l, where

:01 � � � :05. This has worked well in the examples we have tested so far.

The algorithm is similar for surfaces represented algebraically. Objects

which can be represented as a union of convex surfaces, we use the hierarchical rep-

resentation and the algorithm highlighted above on the leaf nodes.

4.3.3 Non-Convex Curved Objects

In this section we outline the algorithm for non-convex surfaces which cannot

be represented as a union of convex surfaces. A common example is a torus and even a

model of a teapot described by B-spline surfaces comes in this category. The approach

highlighted in terms of �-polytopes is not applicable to non-convex surfaces, as the

resulting polytope is non-convex and its convex decomposition would result in many

convex polytopes (of the order of O(1=�)).

Given two B-spline non-convex surface surfaces, we decompose them into

a series of B�ezier surfaces. After decomposition we use a hierarchical representation

for the non-convex surface. The height of the resulting tree is two. Each leaf node

corresponds to the B�ezier surface. The nodes at the �rst level of the tree correspond

to the convex hull of the control polytope of each B�ezier surface. The root of the tree

represents the union of the convex hull of all these polytopes. An example of such

a hierarchical representation is shown in Fig.4.5 for a torus. The torus is composed

of biquadratic B�ezier surfaces, shown at the leaf nodes. The convex polytopes at the

�rst level are the convex hull of control polytopes of each B�ezier surface and the root

is a convex hull of the union of all control points.

The algorithm proceeds on the hierarchical representation, as explained in

Section 3. However, each leaf node is a B�ezier surface. The fact that each surface

is non-convex implies that the closest points of the polytopes may not be a good

approximation to the closest points on the surface. Moreover, two such surfaces

75

Figure 4.5: Hierarchical representation of a torus composed of B�ezier surfaces

76

can have more than one closest feature at any time. As a result, local optimization

methods highlighted in the previous sections may not work for the non-convex objects.

The problem of collision detection between two B�ezier surfaces is solved by

�nding all the solutions to the equations (4.5) and (4.7). A real solution in the domain

to those equations implies a geometric collision and a precise contact between the

models. The algebraic method based on resultants and eigenvalues is used to �nd all

the solutions to the equations (4.5) and (4.7) [55]. This global root �nder is used when

the control polytopes of two B�ezier surfaces collide. At that instant the two surfaces

may or may not have a geometric contact. It is possible that all the solutions to these

equations are complex. The set of equations in (4.5) represents an overconstrained

system and may have no solution in the complex domain as well. However, we apply

the algebraic method to the �rst four equations in (4.5) and compute all the solutions.

The total number of solutions of a system of equations is bounded by the

Bezout bound. The resultant method computes all these solutions. As the objects

move, we update the coe�cients of these equations based on the rigid motion. We

obtain a new set of equations corresponding to (4.5) and (4.7), whose coe�cients are

slightly di�erent as compared to the previous set. All the roots of the new set of

equations are updated using Newton's method. The previous set of roots are used as

initial guesses. The overall approach is like homotopy methods [64], This procedure

represents an algebraic analog of the geometric coherence exploited in the earlier

section.

As the two objects move closer to each other, the imaginary components of

some of the roots start decreasing. Finally, a real collision occurs, when the imaginary

component of one of the roots becomes zero.

We do not have to track all the paths corresponding to the total number of

solutions. After a few time steps we only keep track of the solutions whose imaginary

components are decreasing. This is based on the fact that the number of closest

points is much lower than the Bezout bound of the equations.

77

Chapter 5

Interference Tests for Multiple

Objects

In a typical environment, there are moving objects and stationary obstacles

as well. Assume that there are N objects moving around in an environment of M

stationary obstacles. Each of N moving objects is also considered as a moving obstacle

to the other moving objects. Keeping track of the distance for

0
@ N

2

1
A+NM pairs of

objects at all time can be quite time consuming, especially in a large environment. In

order to avoid unnecessary computations and to speed up the run time, we present two

methods: one assumes the knowledge of maximumacceleration and velocity, the other

purely exploits the spatial arrangement without any other information to reduce the

number of pairwise interference tests. For the scheduling scheme in which we assume

the dynamics (velocities, accelerations, etc.) is known, we rely on the fact that only

the object pairs which have a small separation are likely to have an impact within the

next few time instances, and those object pairs which are far apart from each other

cannot possibly come to interfere with each other until certain time. For spatial

tests to reduce the number of pairwise comparisons, we assume the environment is

rather sparse and the objects move in such a way that the geometric coherence can

be preserved, i.e. the assumption that the motion is essentially continuous in time

domain.

78

5.1 Scheduling Scheme

The algorithm maintains a queue (implemented as a heap) of all pairs of

objects that might collide (e.g. a pair of objects which are rigidly attached to each

other will not appear in the queue). They are sorted by lower bound on time to

collision; with the one most likely to collide (i.e. the one that has the smallest

approximate time to collision) appearing at the top of the heap. The approximation

is a lower bound on the time to collision, so no collisions are missed. Non-convex

objects, which are represented as hierarchy trees as described in Chapter 4, are treated

as single objects from the point of view of the queue. That is, only the roots of the

hierarchy trees are paired with other objects in the queue.

The algorithm �rst has to compute the initial separation and the possible

collision time among all pairs of objects and the obstacles, assuming that the mag-

nitude of relative initial velocity, relative maximum acceleration and velocity limits

among them are given. After initialization, at each step it only computes the closest

feature pair and the distance between one object pair of our interests, i.e. the pair

of objects which are most likely to collide �rst; meanwhile we ignore the other object

pairs until one of them is about to collide. Basically, the algorithm puts all the object

pairs to sleep until the clock reaches the \wakeup" time for the �rst pair on top of

the heap. Wakeup time Wi for each object pair Pi is de�ned as

Wi = ti
w
+ t0

where ti
w
is the lower bound on the time to collision for each pair Pi for most situations

(with exceptions described in the next sub-section) and t0 is the current time.

5.1.1 Bounding Time to Collision

Given a trajectory that each moving object will travel, we can determine the

exact collision time. Please refer to [17] for more details. If the path that each object

travels is not known in advance, then we can calculate a lower bound on collision

time. This lower bound on collision time is calculated adaptively to speed up the

performance of dynamic collision detection.

79

Let amax be an upper bound on the relative acceleration between any two

points on any pair of objects. The bound amax can be easily obtained from bounds on

the relative absolute linear ~alin and relative rotational accelerations ~arot and relative

rotational velocities ~!r of the bodies and their diameters: ~amax = ~alin+~arot�~r+~!r�
(~!r�~r) where r is the vector di�erence between the centers of mass of two bodies. Let

d be the initial separation for a given pair of objects, and vi (where ~vi = ~vlin+~!r�~r)
the initial relative velocity of closest points on these objects. Then we can bound the

time tc to collision as

tc =

q
v2
i
+ 2amaxd � vi

amax

(5.1)

This is the minimum safe time that is added to the current time to give the

wakeup time for this pair of objects. To avoid a \Zeno's paradox" condition where

smaller and smaller times are added and the collision is never reached, we must add

a lower bound to the time increment. So rather than just adding tc as derived above,

we added tw = max(tc; tmin), where tmin is a constant (say 1 mSec or 1
FrameRate

) which

determines the e�ective time resolution of the calculation.

As a side note here, we would like to mention the fact that since we can

calculate the lower bound on collision time adaptively, we can give a fairly good

estimate of exact collision time to the precision in magnitude of tmin. In addition,

since the lower bound on time to collision is calculated adaptively for the object

most likely to collide �rst, it is impossible for the algorithm to fail to detect an

interpenetration.

This can be done by modifying tmin, the e�ective time resolution, and the

user de�ned safety tolerance � according to the environment so as to avoid the case

where one object collides with the other between time steps. � is used because the

polyhedra may be actually shrunk by � amount to approximate the actual object.

Therefore, the collision should be declared when the distance between two convex

polytopes is less than 2�. This is done to ensure that we can always report a collision

or near-misses.

80

5.1.2 The Overall Approach

Our scheme for dynamic simulation using our distance computation algo-

rithm is an iterative process which continuously inserts and deletes the object pairs

from a heap according to their approximate time to collision, as the objects move in

a dynamic environment.

It is assumed that there is a function Ai(t) given for each object, which

returns the object's pose at time t, as a 4x4 matrix. Initially, all poses are determined

at t = 0, and the distance calculation algorithm in Chapter 3 is run on all pairs of

objects that might collide. The pairs are inserted into the heap according to their

approximate time to collision.

Then the �rst pair of objects is pulled o� the queue. Its closest feature pair

at t = 0 will be available, and the distance measuring algorithm from Chapter refdist

is run. If a collision has occurred and been reported, then the pair is re-inserted

in the queue with a minimum time increment, tmin. If not, a new lower bound on

time-to-collision for that pair is computed, and the pair is re-inserted in the queue.

This process is repeated until the wakeup time of the head of the queue exceeds the

simulation time.

Note that the lower bound on collision time is calculated adaptively for the

pair most likely to collide. Therefore, no collision can be missed. We will not need to

worry about those sleeping pairs (which will not collide before their wake-up time),

until the clock reaches the wake-up time Wi for each pair Pi.

This scheme described above can take care of all object pairs e�ciently so

that the distant object pairs wake up much less frequently. Thus, it reduces the run

time in a signi�cant way.

If no upper bounds on the velocity and acceleration can be assumed, in the

next section we propose algorithms which impose a bounding box hierarchy on each

object in the environment to reduce the naive bound of

0
@ N

2

1
A pairwise comparisons

for a dynamic environment of n objects. Once the object pairs' bounding boxes

already collide, then we can apply the algorithm described in Chapter 3 to perform

81

collision detection and to �nd the exact contact points if applicable.

5.2 Sweep & Sort and Interval Tree

In the three-dimensional workspace, if two bodies collide then their projec-

tions down to the lower-dimensional x � y; y � z; x� z hyperplanes must overlap as

well. Therefore, if we can e�ciently update their overlapping status in each axis or in

a 2-dimensional plane, we can easily eliminate the object pairs which are de�nitely

not in contact with each other. In order to quickly determine all object pairs over-

lapping in the lower dimensions, we impose a virtual bounding box hierarchy on each

body.

5.2.1 Using Bounding Volumes

To compute exact collision contacts, using a bounding volume for an in-

terference test is not su�cient, but it is rather e�cient for eliminating those object

pairs which are of no immediate interests from the point of collision detection. The

bounding box can either be spherical or rectangular (even elliptical), depending on

the application and the environment. We prefer spherical and rectangular volume

due to their simplicity and suitability in our application.

Consider an environment where most of objects are elongated and only a

few objects (probably just the robot manipulators in most situations) are moving,

then rectangular bounding boxes are preferable. In a more dynamic environment

like a vibrating parts feeder where all objects are rather \fat" [68] and bouncing

around, then spherical bounding boxes are more desirable. If the objects are con-

cave or articulated, then a subpart-hierarchical bounding box representation (similar

to subpart-hierarchical tree representation, with each node storing a bounding box)

should be employed. The reasons for using each type of the bounding volumes are as

follows.

Using a spherical bounding volume, we can precompute the box during the

preprocessing step. At each time step, we only need to update the center of each

82

spherical volume and get the minimum and maximum x; y; z�coordinates almost

instantaneously by subtracting the measurement of radius from the coordinates of the

center. This involves only one vector-matrix multiplication and six simple arithmetic

operations (3 addition and 3 subtraction). However, if the objects are rather oblong,

then a sphere is a rather poor bounding volume to use.

Therefore, a rectangular bounding box emerges to be a better choice for

elogated objects. To impose a virtual rectangular bounding volume on an object

rotating and translating in space involves a recomputation of the rectangular bound-

ing volume. Recomputing a rectangular bounding volume is done by updating the

maximum and minimum x; y; z�coordinates at each time instance. This is a simple

procedure which can be done at constant time for each body. We can update the

\min" and \max" by the following approaches:

Since the bounding boxes are convex, the maximum and minimum in the

x; y; z� coordinates must be the coordinates of vertices. We can use a modi�ed

vertex-face routine from the incremental distance computation algorithm described

in Chapter 3. We can set up 6 imaginary boundary walls, each of these walls is located

at the maximal and minimal x; y; z� coordinates possible in the environment. Given

the previous bounding volume, we can update each vertex of the bounding volume

by performing only half of modi�ed vertex-face test, since all the vertices are always

in the Voronoi regions of these boundary walls. We �rst �nd the nearest point on the

boundary wall to the previous vertex (after motion transformation) on the bounding

volume, then we verify if the nearest point on the boundary wall lies inside of the

Voronoi region of the previous vertex. If so, the previous vertex is still the extremal

point (minimum or maximum in x; y, or z�axis). When a constraint is violated

by the nearest point on the face (wall) to the previous extremal vertex, the next

feature returned will be the neighboring vertex, instead of the neighboring edge. This

is a simple modi�cation to the point-vertex applicability criterion routine. It still

preserves the properties of locality and coherence well. This approach of recomputing

bounding volume dynamically involves 6 point-vertex applicability tests.

Another simple method can be used based on the property of convexity.

At each time step, all we need to do is to check if the current minimum (or max-

83

imum) vertex in x�(or y; z�)coordinate still has the smallest (or largest) x�(or

y; z�)coordinate values in comparison to its neighboring vertices. By performing this

veri�cation process recursively, we can recompute the bounding boxes at expected

constant rate. Once again, we are exploiting the temporal and geometric coherence

and the locality of convex polytopes. We only update the bounding volumes for the

moving objects. Therefore, if all objects are moving around (especially in a rather

unpredictable way), it's hard to preserve the coherence well and the update overhead

may slow down the overall computation.

But, we can speed up the performance of this approach by realizing that

we are only interested in one coordinate value of vertices for each update, say x

coordinate while updating the minimum or maximum value in x-axis. Therefore,

there is no need to transform the other coordinates, say y and z values, in updating

the x extremal vertices during the comparison with neighboring vertices. Therefore,

we only need to perform 24 vector-vector multiplications. (24 comes from 6 updates

in minimum and maximum in x; y; z� coordinates and each update involves 4 vector-

vector multiplications, assuming each vertex has 3 neighboring vertices.)

For concave and articulated bodies, we need to use a hierarchical bounding

box structure, i.e. a tree of bounding boxes. Before the top level bounding boxes

collide, there is no need to impose a bounding volume on each subpart or each link.

Once the collision occurs between the parent bounding boxes, then we compute the

bounding boxes for each child (subpart or linkage). At last we would like to briey

mention that in order to report \near-misses", we should \grow" the bounding boxes

by a small amount to ensure that we perform the exact collision detection algorithm

when two objects are about to collide, not after they collide.

Given the details of computing bounding volumedynamically, we will present

two approaches which use \sort and sweep" techniques and a geometric data struc-

ture to quickly perform intersection test on the real intervals to reduce the number

of pairwise comparison.

84

5.2.2 One-Dimensional Sort and Sweep

In computational geometry, there are several algorithms which can solve the

overlapping problem for d-dimensional bounding boxes in O(nlogd�1n+s) time where

s is the number of pairwise overlaps [31, 47, 80]. This bound can be improved using

coherence.

Let a one-dimensional bounding box be [b; e] where b and e are the real

numbers representing the beginning and ending points. To determine all pairs of

overlapping intervals given a list of n intervals, we need to verify for all pairs i and j

if bi 2 [bj; ej] or bj 2 [bi; ei], 1 � i < j � n. This can be solved by �rst sorting a list

of all bi and ei values, from the lowest to the highest. Then, the list is traversed to

�nd all the intervals which overlap. The sorting process takes O(nlogn) and O(n) to

sweep through a sorted list and O(s) to output each overlap where s is the number

of overlap.

For a sparse and dynamic environment, we do not anticipate each body to

make a relatively large movement between time steps, thus the sorted list should not

change much. Consequently the last sorted list would be a good starting point to

continue. To sort a \nearly sorted" list by bubble sort or insertion sort can be done

in O(n + e) where e is the number of exchanges.

All we need to do now is to keep track of \status change", i.e. from overlap-

ping in the last time step to non-overlapping in the current time step and vise versa.

We keep a list of overlapping intervals at all time and update it whenever there is a

status change. This can be done in O(n + ex + ey + ez) time, where ex; ey; ez are the

number of exchanges along the x; y; z-coordinate. Though the update can be done in

linear time, ex; ey; ez can be O(n2) with an extremely small constant. Therefore, the

expected run time is linear in the total number of vertices.

To use this approach in a three-dimensional workspace, we pre-sort the mini-

mum and maximumvalues of each object along the x; y; z�axis (as if we are imposing

a virtual bounding box hierarchy on each body), sweep through each nearly sorted list

every time step and update the list of overlapping intervals as we mentioned before.

If the environment is sparse and the motions between time frames are \smooth", we

85

expect the extra e�ort to check for collision will be negligible. This \pre-�ltering"

process to eliminate the pairs of objects not likely to collide will run essentially in

linear time. A similar approach has been mentioned by Bara� in [48].

This approach is especially suitable for an environment where only a few

objects are moving while most of objects are stationary, e.g. a virtual walk-through

environment.

5.2.3 Interval Tree for 2D Intersection Tests

Another approach is to extend the one-dimensional sorting and sweeping

technique to higher dimensional space. However, as mentioned earlier, the time bound

will be worse than O(n) for two or three-dimensional sort and sweep due to the

di�culty to make a tree structure dynamic and exible for quick insertion and deletion

of a higher dimensional boxes. Nevertheless, for more dense or special environments

(such as a mobile robot moving around in a room cluttered with moving obstacles,

such as people), it is more e�cient to use an interval tree for 2-dimensional intersection

tests to reduce the number of pairwise checks for overlapping. We can signi�cantly

reduce the extra e�ort in verifying the exchanges checked by the one-dimensional sort

and sweep. Here we will briey describe the data structure of an interval tree and

how we use it for intersection test of 2-dimensional rectangular boxes.

An interval tree is actually a range tree properly annotated at the nodes for

fast search of real intervals. Assume that n intervals are given, as [b1; e1]; � � � ; [bn; en]

where bi and ei are the endpoints of the interval as de�ned above. The range tree

is constructed by �rst sorting all the endpoints into a list (x1; � � � ; xm) in ascending

order, where m � 2n. Then, we construct the range tree top-down by splitting the

sort list L into the left subtree Ll and the right subtree Lr, where Ll = (x1; � � � ; xp)

and Lr = (xp+1; � � � ; xm). The root has the split value xp+xp+1
2

. We construct the

subtrees within each subtree recursively in this fashion till each leave contains only

an endpoint. The construction of the range tree for n intervals takes O(nlogn) time.

After we construct the range tree, we further link all nodes containing stored intervals

in a doubly linked list and annotate each node if it or any of its descendant contains

86

stored intervals. The embellished tree is called the interval tree.

We can use the interval tree for static query, as well as for the rectangle

intersection problem. To check for rectangle intersection using the sweep algorithm:

we take a sweeping line parallel to the y axis and sweep in increasing x direction, and

look for overlapping y intervals. As we sweep across the x axis, y intervals appears

or disappear. Whenever there is an appearing y interval, we check to see if the new

interval intersects the old set of intervals stored in the interval tree, report all intervals

it intersects as rectangle intersection, and add the new interval to the tree.

Each query of interval intersection takes O(logn + k) time where k is the

number of reported intersection and n is the number of intervals. Therefore, reporting

intersection among n rectangles can be done in O(nlogn +K) where K is the total

number of intersecting rectangles.

5.3 Other Approaches

Here we will also briey mention a few di�erent approaches which can be

used in other environments or applications.

5.3.1 BSP-Trees and Octrees

One of the commonly used tree structure is BSP-tree (binary space parti-

tioning tree) to speed up intersection tests in CSG (constructive solid geometry) [83].

This approach construct a tree from separating planes at each node recursively. It

partitions each object into groups of parts which are close together in binary space.

When, the separation planes are chosen to be aligned with the coordinate axes, then

a BSP tree becomes more or less like an octree.

One can think of an octree as tree of cubes within cubes. But, the size of the

cube varies depending on the number of objects occupying that region. A sparsely

populated region is covered by one large cube, while a densely occupied region is

divided into more smaller cubes. Each cube can be divided into 8 smaller cubes if

necessary. So, each node in the tree has 8 children (leaves).

87

Another modi�ed version of BSP-Tree proposed by Vanecek [37] is a multi-

dimensional space partitioning tree called Brep-Index. This tree structure is used for

collision detection [10] between moving objects in a system called Proxima developed

at Prudue University.

The problem with tree structures is similar to that of using 2-d interval tree

that its update (insertion and deletion) is inexible and cumbersome, especially for

a large tree. The overhead of insertion and deletion of a node in a tree can easily

dominate the run time, especially when a collision occurs. The tree structures also

cannot capture the temporal and spatial coherence well.

5.3.2 Uniform Spatial Subdivision

We can divide the space into unit cells (or volumes) and place each object

(or bounding box) in some cell(s) [68]. To check for collisions, we have to examine the

cell(s) occupied by each box to verify if the cell(s) is(are) shared by other objects. But,

it is di�cult to set a near-optimal size for each cell and it requires tremendous amount

of allocated memory. If the size of the cell is not properly chosen, the computation

can be rather expensive. For an environment where almost all objects are of uniform

size, like a vibrating parts feeder bowl or molecular modeling [85, 68], this is a rather

ideal algorithm, especially to run on a parallel-computing machine. In fact, Overmars

has shown that using a hash table to look up an enetry, we can use a data structure

of O(n) storage space to perform the point location queries in constant time [68].

5.4 Applications in Dynamic Simulation and Vir-

tual Environment

The algorithms presented in this chapter have been utilized in dynamic

simulation as well as in a walk-through environment. These applications attest for

the practicality of the algorithms and the importance of the problem natures.

The algorithm described in Sec. 5.1 and the distance computation algorithm

described in Chapter 3 have been used in the dynamics simulator written by Mirtich

88

[62]. It reduces the frequency of the collision checks signi�cantly and helps to speed up

the calculations of the dynamic simulator considerably. Our vision of this dynamic

simulator is the ability to to simulate thousands of small mechanical parts on a

vibrating parts feeder in real time. Looking at our current progress, we believe such

a goal is attainable using the collision detection algorithms described in this thesis.

At the same time, the algorithm described in Sec. 5.2.2 is currently under

testing to be eventually integrated into a Walk-Through environment developed at

the University of North Carolina, Chapel Hill on their in-house Pixel Plane machine

[24]. In a virtual world like \walk-through environment" where a human needs to

interact with his/her surrounding, it is important that the computer can simulate

the interactions of the human participants with the passively or actively changing

environment. Since the usual models of \walk-through" are rather complex and may

have thousands of objects in the world, an algorithm as described in Sec. 5.2.2 becomes

an essential component to generate a realism of motions.

89

Chapter 6

An Opportunistic Global Path

Planner

The algorithm described in Chapter 3 is a key part of our general planning

algorithm presented in this chapter. This path planning algorithm creates an one-

dimensional roadmap of the free space of a robot by tracing out curves of maximal

clearance from obstacles. We use the distance computation algorithm to incrementally

compute distances between the robot pieces and the nearby obstacles. From there

we can easily compute gradients of the distance function in con�guration space, and

thereby �nd the direction of the maximal clearance curves.

This is done by �rst �nding the pairs of closest features between the robot

and the obstacles, and then keeping track of these closest pairs incrementally by calls

to this algorithm. The curves traced out by this algorithm are in fact maximally

clear of the obstacles. As mentioned earlier, once a pair of initialization features

in the vicinity of the actual closest pair is found, the algorithm takes a very short

time (usually constant) to �nd the actual closest pair of features. Given the closest

features, it is straight forward to compute the gradient of the distance function in

con�guration space which is what we need to trace the skeleton curves.

In this chapter, we will describe an opportunistic global path planner which

uses the opportunistic local method (Chapter 3) to build up the one-dimensional

skeleton (or freeway) and global computation to �nd the critical points where linking

90

curves (or bridges) are constructed.

6.1 Background

There have been two major approaches to motion planning for manipulators,

(i) local methods, such as arti�cial potential �eld methods [50], which are usually fast

but are not guaranteed to �nd a path, and (ii) global methods, like the �rst Roadmap

Algorithm [18], which is guaranteed to �nd a path but may spend a long time doing

it. In this chapter, we present an algorithm which has characteristics of both. Our

method is an incremental construction of a skeleton of free-space. Like the potential

�eld methods, the curves of this skeleton locally maximizes a certain potential function

that varies with distance from obstacles. Like the Roadmap Algorithm, the skeleton,

computed incrementally, is eventually guaranteed to contain a path between two

con�gurations if one exists. The size of the skeleton in the worst case, is comparable

with the worst-case size of the roadmap.

Unlike the local methods, our algorithm never gets trapped in local extremal

points. Unlike the Roadmap Algorithm, our incremental algorithm can take advan-

tage of a non-worst-case environment. The complexity of the roadmap came from

the need to take recursive slices through con�guration space. In our incremental

algorithm, slices are only taken when an initial search fails and there is a \bridge"

through free space linking two \channels". The new algorithm is no longer recursive

because bridges can be computed directly by hill-climbing . The bridges are built

near \interesting" critical points and inection points. The conditions for a bridge

are quite strict. Possible candidate critical points can be locally checked before a slice

is taken. We expect few slices to be required in typical environments.

In fact, we can make a stronger statement about completeness of the algo-

rithm. The skeleton that the algorithm computes eventually contains paths that are

homotopic to all paths in free space. Thus, once we have computed slices through

all the bridges, we have a complete description of free-space for the purposes of path

planning. Of course, if we only want to �nd a path joining two given points, we stop

the algorithm as soon as it has found a path.

91

The tracing of individual skeleton curves is a simple enough task that we

expect that it could be done in real time on the robot's control hardware, as in other

arti�cial potential �eld algorithms. However, since the robot may have to backtrack

to pass across a bridge, it does not seem worthwhile to do this during the search.

For those readers already familiar with the Roadmap Algorithm, the follow-

ing description may help with understanding of the new method: If the con�guration

space is Rk, then we can construct a hypersurface in Rk+1 which is the graph of the

potential function, i.e. if P (x1; : : : ; xk) is the potential, the hypersurface is the set

of all points of the form (x1; : : : ; xk; P (x1; : : : ; xk)). The skeleton we de�ne here is a

subset of a roadmap (in the sense of [18]) of this hypersurface.

This work builds on a considerable volume of work in both global motion

planning methods [18] [54], [73], [78], and local planners, [50]. Our method shares a

common theme with the work of Barraquand and Latombe [6] in that it attempts to

use a local potential �eld planner for speed with some procedure for escaping local

maxima. But whereas Barraquand and Latombe's method is a local method made

global, we have taken a global method (the Roadmap Algorithm) and found a local

opportunistic way to compute it.

Although our starting point was completely di�erent, there are some other

similarities with [6]. Our \freeways" resemble the valleys intuitively described in [6].

But the main di�erence between our method and the method in [6] is that we have

a guaranteed (and reasonably e�cient) method of escaping local potential extremal

points and that our potential function is computed in the con�guration space.

The chapter is organized as follows: Section 6.2 contains a simple and gen-

eral description of roadmaps. The description deliberately ignores details of things

like the distance function used, because the algorithm can work with almost any

function. Section 6.3 gives some particulars of the application of arti�cial potential

�elds. Section 6.4 describes our incremental algorithm, �rst for robots with two de-

grees of freedom, then for three degrees of freedom. Section 6.5 gives the proof of

completeness for this algorithm.

92

6.2 A Maximum Clearance Roadmap Algorithm

We denote the space of all con�gurations of the robot as CS. For example,

for a rotary joint robot with k joints, the con�guration space CS is Rk, the set of all

joint angle tuples (�1; : : : ; �k). The set of con�gurations where the robot overlaps some

obstacle is the con�guration space obstacle CO, and the complement of CO is the

set of free (non-overlapping) con�gurations FP . As described in [18], FP is bounded

by algebraic hypersurfaces in the parameters ti after the standard substitution ti =

tan(�i
2
). This result is needed for the complexity bounds in [18] but we will not need

it here.

A roadmap is a one-dimensional subset of FP that is guaranteed to be

connected within each connected component of FP . Roadmaps are described in some

detail in [18] where it is shown that they can be computed in time O(nk log n(dO(n
2)))

for a robot with k degrees of freedom, and where free space is de�ned by n polynomial

constraints of degree d [14]. But nk may still be too large for many applications, and

in many cases the free space is much simpler than its worst case complexity, which

is O(nk). We would like to exploit this simplicity to the maximum extent possible.

The results of [6] suggest that in practice free space is usually much simpler than the

worst case bounds. What we will describe is a method aimed at getting a minimal

description of the connectivity of a particular free space. The original description of

roadmaps is quite technical and intricate. In this paper, we give a less formal and

hopefully more intuitive description.

6.2.1 De�nitions

Suppose CS has coordinates x1; : : : ; xk. A slice CSjv is a slice by the hy-

perplane x1 = v. Similarly, slicing FP with the same hyperplane gives a set denoted

FP jv. The algorithm is based on the key notion of a channel which we de�ne next:

A channel-slice of free space FP is a connected component of some slice

FP jv.

93

The term channel-slice is used because these sets are precursors to channels. To

construct a channel from channel slices, we vary v over some interval. As we do this,

for most values of v, all that happens is that the connected components of FP jv

change shape continuously. As v increases, there are however a �nite number of

values of v, called critical values, at which there is some topological change. Some

events are not signi�cant for us, such as where the topology of a component of the

cross-section changes, but there are four important events: As v increases a connected

component of FP jv may appear or disappear, or several components may join, or a

single component may split into several. The points where joins or splits occur are

called interesting critical points. We de�ne a channel as a maximal connected union

of cross sections that contains no image of interesting critical points. We use the

notation FP j(a;b) to mean the subset of FP where x1 2 (a; b) � R.

A channel through FP is a connected component of FP(a;b) containing no

splits or joins, and (maximality) which is not contained in a connected component of

FP(c;d) containing no splits or joins, for (c; d) a proper superset of (a; b). See Fig. 6.1

for an example of channels.

The property of no splits or joins can be stated in another way. A maximal

connected set Cj(a;b) � FP j(a;b) is a channel if every subset Cj(e;f) is connected for

(e; f) � (a; b).

6.2.2 The General Roadmap

Now to the heart of the method. A roadmap has two components:

(i) Freeways (called silhouette curves in [18]) and

(ii) Bridges (called linking curves in [18]).

A freeway is a connected one-dimensional subset of a channel that forms a backbone

for the channel. The key properties of a freeway are that it should span the channel,

and be continuable into adjacent channels. A freeway spans a channel if its range of

x1 values is the same as the channels, i.e. a freeway for the channel Cj(a;b) must have

points with all x1 coordinates in the range (a; b). A freeway is continuable if it meets

94

CO

Channels

x1

Figure 6.1: A schematized 2-d con�guration space and the partition of free space into

x1-channels.

95

another freeway at its endpoints. i.e. if Cj(a;b) and C 0j(b;c) are two adjacent channels,

the b endpoint of a freeway of Cj(a;b) should meet an endpoint of a freeway of C 0j(b;c).

(Technically, since the intervals are open, the word \endpoint" should be replaced by

\limit point")

In general, when a speci�c method of computing freeway curves is chosen,

there may be several freeways within one channel. For example, in the rest of this

chapter, freeways are de�ned using arti�cial potential functions which are directly

proportional to distance from obstacles. In this case each freeway is the locus of local

maxima in potential within slices FP jv of FP as v varies. This locus itself may have

some critical points, but as we shall see, the freeway curves can be extended easily

past them. Since there may be several local potential maxima within a slice, we may

have several disjoint freeway curves within a single channel, but with our incremental

roadmap construction, this is perfectly OK.

Now to bridges. A bridge is a one-dimensional set which links freeways from

channels that have just joined, or are about to split (as v increases). Suppose two

channels C1 and C2 have joined into a single channel C3, as shown in Fig. 6.2. We

know that the freeways of C1 and C2 will continue into two freeway curves in C3.

These freeways within C3 are not guaranteed to connect. However, we do know that

by de�nition C3 is connected in the slice slice x1 = v through the critical point, so

we add linking curves from the critical point to some freeway point in each of C1 and

C2. It does not matter which freeway point, because the freeway curves inside the

channels C1 and C2 must be connected within each channel, as we show in Sec. 6.5.

By adding bridges, we guarantee that whenever two channels meet (some points on)

their freeways are connected.

Once we can show that whenever channels meet, their freeways do also (via

bridges), we have shown that the roadmap, which is the union of freeways and bridges,

is connected. The proof of this very intuitive result is a simple inductive argument

on the (�nite number of) channels, given in Sec. 6.5.

The basic structure of the general Roadmap Algorithm follows:

96

C2

Bridge
Freeways

C3

C1

Figure 6.2: Two channels C1 and C2 joining the channel C3, and a bridge curve in

C3.

97

1. Start tracing a freeway curve from the start con�guration, and also from the

goal.

2. If the curves leading from the start and goal are not connected, enumerate a

split or join point, and add a bridge curve \near" the split or join (x1-coordinate

of the slice slightly greater than that of the joint point for a join, slightly less

for a split).

3. Find all the points on the bridge curve that lie on other freeways, and trace

from these freeways. Go to step (2).

The algorithm terminates at step (2) when either the start and goal are connected,

in which case the algorithm signals success and returns a connecting path, or if it

runs out of split and join points, in which case there is no path connecting the start

and goal. This description is quite abstract, but in later sections we will give detailed

description of the approach in two- and three-dimensional con�guration spaces.

Three things distinguish our new algorithm from the previous Roadmap

Algorithm. The most important is that the new algorithm is not recursive. Step 2

involves adding a bridge curve which is two pieces of curve found by hill-climbing on

the potential. In the original roadmap algorithm, linking curves had to be de�ned

recursively, because it is not possible to hill-climb to a maximum with an algebraic

curve. Another di�erence is that the freeways do not necessarily lie near the boundary

of free space as they did in [18]. In our present implementation we are in fact using

maximum clearance freeways. But the most important di�erence is that we now

only enumerate true split or join points. For a robot with k degrees of freedom and

an environment of complexity n, it can be shown that there are at most O(n(k�1))

potential split or join points. (Please refer to Sec. proof.planner for the proof on

the upper bound for the maximum number of interesting critical points.) But many

experiments with implemented planners in recent years have shown that the number

of true splits or joins in typical con�guration spaces is much lower. In our new

algorithm, we can make a purely local test on a potential split or join point to see

if it is really quali�ed. The vast majority of candidates will not be, so we expect far

98

fewer than O(n(k�1)) bridges to be required.

De�nition

A point p in Rk+1 is an interesting critical point if for every neighborhood U

of p, one of the following holds:

(i) The intersection U \ x�11 (x1(p) + �) consists of several connected components

for all su�ciently small �. This is a generalized split point.

(ii) The intersection U \ x�11 (x1(p)� �) consists of several components for all su�-

ciently small �. This is a generalized join point.

We will assume the environment is generic, i.e. there is no special topology

such that a small perturbation will change the clearance of the paths. This is true for

almost all practical situations: most obstacles have a reasonably large interior space

that a small perturbation will not a�ect much of the obstacle con�guration space.

Based on the transversality condition of general position assumptions in [18], the

interesting critical points can be computed as follows. Let S be the set of equations

used to calculate the critical points. The set S is de�ned by inequalities, and its

boundary is a union of surfaces of various dimensions. Let S� be such a surface; it

will be de�ned as the intersection of several con�guration space constraint surfaces.

Each of these is given by an equation of the form fi = 0. To �nd the critical points

of such a surface w.r.t. the function x1(:), we �rst de�ne a polynomial g as follows:

g =
lX

i=1

f2i (6:1)

and then solve the system

g = �;
@

@x2
g = 0 � � �

@

@xk
g = 0 (6:2)

where l is the number of equations which are zero on S�, the x2; : : : ; xk are coordinates

which are orthogonal to x1, and � is an in�nitesimal that is used to simplify the

computation (see [18]).

It can be shown [21] that the solutions of interest can be recovered from the

lowest degree coe�cient in � of the resultant of this system. This normally involves

99

computing a symbolic determinant which is a polynomial in � [57]. But a more

practical approach is to recover only the lowest coe�cient in � by using straight line

program representations and di�erentiating [33].

To enumerate all the interesting critical points is computationally expensive,

since we have to solve O(n(k�1)) systems of non-linear equations. Thus, we also plan

to experiment with randomly chosen slice values in some bounded ranges, alternating

with slices taken at true split or join points. The rationale for this is that in practice

the \range" of slice values over which a bridge joins two freeways is typically quite

large. There is a good probability of �nding a value in this range by using random

values. Occasionally there will be a wide range of slice values for a particular bridge,

but many irrelevant split and join points may be enumerated with values outside this

range. To make sure we do not make such easy problems harder than they should be,

our implementation alternates slices taken near true split and join points with slices

taken at random x1 values.

6.3 De�ning the Distance Function

The idea of our approach is to construct a potential �eld which repels the

point robot in con�guration space away from the obstacles. Given a goal position

and a description of its environment, a manipulator will move along a \maximum

potential" path in an \arti�cial potential �eld". The position to be reached represents

a critical point that will be linked by the bridge to the nearest maximum, and the

obstacles represent repulsive surfaces for the manipulator parts.

Let CO denote the obstacles, and x the position in Rk. The arti�cial po-

tential �eld Uart(x) induces an arti�cial repulsion from the surface of the obstacles.

Uart(x) is a non-negative function whose value tends to zero as any part of the robot

approaches an obstacle. One of the classical analytical potential �elds is the Euclidean

distance function.

Using the shortest distance to an obstacle O, we have proposed the following

potential �eld Uart(x):

100

Uart(x) = min
ij
(D(Oi; Lj(x)))

where D(Oi; Lj(x)) is the shortest Euclidean distance between an obstacle Oi and

the link Lj when the robot is at con�guration x. D(Oi; Lj(x)) is obtained by a local

method for fast computation of distance between convex polyhedra in Chapter 3.

Notice that the proposed Uart(x) is not a continuously di�erentiable function

as in many potential �eld methods. Uart(x) is piecewise continuous and di�erentiable.

This is perfectly all right for the application in our Roadmap algorithm. In fact it

will be a lower envelope of smooth functions. This is all the better because it means

that local maxima that do not occur where the function is smooth are all the more

sharply de�ned. The graph of the distance function certainly has a strati�cation into

a �nite number of smooth pieces [87]. Its maxima will be the union of certain local

maxima of these smooth pieces. So we can still use the system of equations de�ned

earlier to �nd them.

With this scheme, a manipulator moves in such a way to maximize the

arti�cial potential �eld Uart(x). But like any local method, just following one curve

of such maxima is not guaranteed to reach the goal. Thus, the need for bridges.

6.4 Algorithm Details

The algorithm takes as input a geometric description of the robot links

and obstacles as convex polyhedra or unions of convex polyhedra. It also takes the

initial and goal con�gurations, and the kinematic description of the robot, say via

Denavit-Hartenberg parameters. The output is a path between the initial and goal

con�gurations represented as a sequence of closely spaced points (more closely than

the C-space distance to the nearest obstacle at that point), assuming such a path

exists. If there is no path, the algorithm will eventually discover that, and output

\NO PATH".

The potential function is a map Uart : CS ! R. The graph of the function

is a surface in CS � R. Let u and v denote two coordinate axes, the Roadmap

101

Algorithm �xes v and then follows the extremal points in direction u as the value of

v varies. But, the new algorithm di�ers from the original roadmap algorithm[18] in

the following respects:

� It does not always construct the entire roadmap

� In the new algorithm, v = xi, where xi is one of the CS coordinates while u = h,

where h is the height of the potential function. Yet, in the original, v = xi and

u = xj where xi and xj are both CS coordinates.

� The original Roadmap algorithm �xes the xi coordinate and follows extremal

points (maxima, minima and saddles) in xj, to generate the silhouette curves.

On the other hand, the new algorithm �xes xi, and follows only maxima in h.

� The new algorithm is not recursive. Recursion was necessary in the original

because there is no single algebraic curve that connects an arbitrary point to

an extremum in u. But the new algorithm uses numerical hill-climbing which

has no such limitation.

6.4.1 Freeways and Bridges

A roadmap has two major components { freeways and bridges. They are

generated as following:

Freeway Tracing is done by tracking the locus of local maxima in distance within

each slice normal to the sweeping direction. Small steps are made in the sweep

direction, and the local maxima recomputed numerically. Freeway tracing con-

tinues in both directions along the freeway until it terminates in one of two

ways:

(a) The freeway runs into an inection point, a point where the curve tangent

becomes orthogonal to the sweep direction. It is always possible to continue

past these points by adding a bridge.

(b) The freeway runs into an obstacle. This is a normal termination, and the

tracing simply stops and the algorithm backtracks.

102

Bridges begin always at inection points or critical points and terminate always at

freeway points within the same slice. The algorithm simply follows the gradient

of the potential function from the start point within the slice until it reaches a

local maximum, which must be a freeway point.

Enumeration of Critical Points

Critical points are calculated as in Section 2. But most of these critical

points will not be interesting. We can check locally among all the critical points

to see if they qualify to be a \split" or \join". This test checks if the point has a

neighborhood that is \saddle-like". It is based on the orientations of the CSpace

boundary surface normals at the critical point.

Random Slicing

Optionally, the user may wish to add roadmaps of randomly chosen slices,

rather than calculating many critical points (or rather than calculating them at all,

but then of course, completeness will be lost). This is a recursive procedure, and

involves choosing a v value at random, making a recursive call to the algorithm on

this v-slice.

Random slicing may also be used within the slice itself, and so on, which

leads to a depth-k recursion tree. If this is done, some search heuristics must be added

to guide the choice of where in the tree the next slice (and hence the next child) should

be added. The heuristic also needs to trade o� random slicing and critical point

enumeration. The goal of the heuristic is to enumerate enough random slices that

the algorithm will have a good chance of success on \easy" environments (intuitively

where there are large passages between channels) without having to explore too many

critical points. Yet it should still �nd its way around a di�cult environment using

the critical slices without having wasted most of its time taking random slices.

Given the general outline of our algorithm, we will now give an instantiation

on 2-D and a detailed description of how it can be applied to 3-D.

103

y

R

x = x0

P inflect

x

y

R

Portion of silhouette curve in CS x R Slice projection at x = x 0 in R-y plane

P inflect

Figure 6.3: A pictorial example of an inection point in CS �R vs. its view in R� y

at the slice x = x0

6.4.2 Two-Dimensional Workspace

Starting from the initial position pinit 2 CS, we �rst �x one of the axes of

CS and then take the x coordinate of a slice to be the x coordinate of pinit. Then we

search this slice to �nd the nearest local maximum. (This local maximum is a freeway

point.) Next, we build a bridge between the point pinit and this local maximum. At

the same time, we begin tracing a freeway curve from the goal. If the goal is not on

the maximum contour of the potential �eld, then we must build a bridge to link it to

the nearest local maximum. Afterwards, we trace the locus of this local maximum as

x varies until we reach an endpoint. If the current position ploc on the curve is the goal

G, then we can terminate the procedure. Otherwise, we must verify whether ploc is a

\dead-end" or an inection point of the slice x = x0. (See Fig. 6.3.) If ploc is a point

of inection, then we can continue the curve by taking a slice at the neighborhood of

the inection point and hill-climbing along the gradient direction near the inection

point. This search necessarily takes us to another local maximum.

104

Fig. 6.4 demonstrates how the algorithm works in 2-d CS. This diagram is

a projection of a constructed potential �eld in CS x R onto the x-y plane of the 2-d

CS. The shaded area is the CO in the con�guration space. The solid curves represent

the contour of maximum potential, while the dashed curves represent the minima.

Furthermore, the path generated by our planner is indicated by arrows. In addition,

the vertical lines symbolize channel slices through the interesting critical points and

inection points. When this procedure has been taken to its conclusion and both

endpoints of the freeway terminate at dead-ends, then at this point it is necessary to

take a slice at some value of x. Our planner generates several random x-values for

slices (at a uniformly spaced distribution along the span of the freeway), interweaving

them with an enumeration of all the interesting critical points. If after a speci�ed

number of random values, our planner fails to �nd a connecting path to a nearby

local maximum, then it will take a slice through an interesting critical point. Each

slice, being 1-dimensional, itself forms the bridge curve (or a piece of it does). We

call this procedure repeatedly until we reach the goal position G or have enumerated

all the interesting critical points.

The algorithm is described schematically below:

� Algorithm

Procedure FindGoal (Environment, pinit, G)

if (pinit 6= G)

then Explore(pinit) and Explore(G)

else return(FoundGoal);

even := false;

While (CritPtRemain and NotOnSkeleton(G)) do

if (even)

then x := Random (x-range)

else x := x-coord(next-crit-pt());

TakeSlice(x);

105

Pinit

Boundary

Boundary

y

x

G

Silhouette
(freeway)

Bridge

Inflection Point
Inflection Point

Critical Points

Critical Point

Figure 6.4: An example of the algorithm in the 2-d workspace

even := not even;

end(while);

End(FindGoal);

Function Explore(p)

% Trace out a curve from p

q := search-up&down(p);

% To move up & down only in y, using gradient near p

if new(q) then

% new() checks if q is already on the curve

begin(if)

<e1,e2> := trace(q);

% trace out the curve from q, output two end points

if inection(e1) then Explore(e1);

106

if inection(e2) then Explore(e2);

% inection(p) checks if p is an inection point

end(if);

End(Explore);

Function TakeSlice(x-coordinate(p))

% This function generates all points on the slice and explore

% all the maxima on the slice.

old-pt := �nd-pt(x-coordinate);

% �nd-pt() �nd all the points on the x-coordinate.

% It moves up&down until reaches another maximum.

new-pt := null;

For (each pt in the old-pt) do

<up,down> := search-up&down(pt);

% <up,down> is a pair of points of 0,1,or2 pts

new-pt := new-pt + <up,down>;

For (each pt in the new-pt) do

Explore(pt);

End(TakeSlice);

6.4.3 Three-Dimensional Workspace

For a three-dimensional workspace, the construction is quite similar. Start-

ing from the initial position pinit and the goal G, we �rst �x one axis, X. We trace

from the start point to a local maximum of distance within the Y -Z plane containing

the start point. Then we follow this local maximum by taking steps in X. If this

curve terminates in an inection point, we can always reach another maximum by

following the direction of the potential gradient just beyond the inection point in X.

Eventually, though, we expect to terminate by running into an obstacle.

107

When we wish to enumerate a critical point, the bridge curve is the same

as the �rst segment that we used to get from pinit onto the freeway. That is, we

trace from the critical point along the direction of the gradient within the current

Y -Z slice. There will be two directions outward from the critical point along which

the distance increases. We follow both of these, which gives us a bridge curve linking

freeways of two distinct channels.

If we decide to use random slicing, we select a slice FP jx normal to the x-

axis and call the algorithm of the last section on that slice. We require it to produce a

roadmap containing any freeway points that we have found so far that lie in this slice.

This algorithm itself may take random slices, so we need to limit the total number of

random slices taken before we enumerate the next interesting critical point (in 3-D),

so that random slicing does not dominate the running time.

6.4.4 Path Optimization

After the solution path is obtained, we plan to smooth it by the classical

principles of variational calculus, i.e. to solve a classical two points boundary value

problem. Basically we minimize the potential which is a function of both distance

and smoothness to �nd a locally optimal (smooth) path.

Let s be the arc that is the path re�ned from a sequence of points between

a and b in space, r be the shortest Euclidean distance between the point robot and

the obstacle, and � be the curvature of the path at each point. The cost function for

path optimization that we want to minimize is:

f(s; r; �) =
Z b

a
(
A

r2
+B�2)ds

where r, �, and s are functions of a point Pi in a given point sequence, and A;B are

adjustment constants. Taking the gradient of this function with respect to each point

Pi gives us the direction of an improved, locally optimal path.

This can be done in the following manner: given a sequence of points

(P1; P2; � � � ; Pk), we want to minimize the cost function

108

g(Pi) =
X
i

A

r(Pi)2
j�Sij+B�(Pi)

2j�Sij (6.3)

where �Si and �(Pi) are de�ned as:

�Si =
Pi+1 � Pi�1

2

�(Pi) =
\Pi�1; Pi; Pi+1

j�Sij

Now, taking the gradient w.r.t. Pi, we have

rg(Pi) =
X
i

�2A

r(Pi)3
rr(Pi)j�Sij+ 2B�(Pi)r�(Pi)j�Sij (6.4)

The most expensive procedure in computing the above gradient is to com-

pute the distance at each point. By using the incremental distance calculation algo-

rithm described in Chapter 3, we can compute the distance between the robot and the

closest obstacle in constant time. Since we have to do this computation for a sequence

of points, the computation time for each iteration to smooth the curve traced out by

our planner is linear in the total number of points in a given sequence. After several

iterations of computing the gradient of the summation in Eqn.6.4, the solution path

will eventually be smooth and locally optimal.

6.5 Proof of Completeness for an Opportunistic

Global Path Planner

Careful completeness proofs for the roadmap algorithm are given in [18] and

[19]. These proofs apply with very slight modi�cation to the roadmap algorithm that

we describe in this paper. The roadmap of [18] is the set of extremal points in a certain

direction in free space. Therefore it hugs the boundary of free space. The roadmap

described in this paper follows extrema of the distance function, and therefore stays

well clear of obstacles (except at critical points). But in fact the two are very similar

109

if we think of the graph of the distance function in Rn. This is a surface S in R(n+1)

and if we follow the extrema of distance on this surface, the roadmap of this paper is

exactly a roadmap in the sense of [18] and [19].

The silhouette curves of [18] correspond to the freeway curves of this paper,

and the linking curves correspond to bridges. Recall the basic property required of

roadmaps:

De�nition

A subset of R of a set S satis�es the roadmap condition if every connected

component of S contains a single connected component of R.

For this de�nition to be useful, there is an additional requirement that any

point in S can \easily" reach a point on the roadmap.

There is one minor optimization that we take advantage of in this paper.

That is to trace only maxima of the distance function, rather than both maxima and

minima. This can also be applied to the original roadmap.

For those readers not familiar with the earlier papers, we give here an infor-

mal sketch of the completeness proof. We need some notation �rst.

Let S denote the surface in R(n+1) which is the graph of the distance function.

S is an n-dimensional set and is semi-algebraic if con�guration space is suitably

parametrized. This simply means that it can be de�ned as a boolean combination of

inequalities which are polynomials in the con�guration space parameters.

One of the coordinates in con�guration space Rn becomes the sweep direc-

tion. Let this direction be x1. Almost any direction in CS will work, and heuristics

can be used to pick a direction which should be good for a particular application.

When we take slices of the distance surface S, they are taken normal to the x1 co-

ordinate, so Sja means S \ (x1 = a). Also, for a point p in R
(n+1), x1(p) is the

x1-coordinate of p.

The other coordinate we are interested in is the distance itself, which we

think of as the height of the distance surface. So for a point p in R(n+1), h(p) is the

value of the distance at this con�guration.

110

For this paper, we use a slightly di�erent de�nition of silhouettes, taking only

local maxima into account. We will assume henceforth that the con�guration space is

bounded in every coordinate. This is certainly always the case for any practical robot

working in a con�ned environment, such as industrial robot manipulators, mobile

robots, etc. If it is not bounded, there are technical ways to reduce to a bounded

problem, see for example [14]. The set of free con�gurations is also assumed to be

closed. The closed and bounded assumptions ensure that the distance function will

attain locally maximal values on every connected component of free space.

A silhouette point is a locally maximal point of the function h(:) on some

slice Sja of S. The silhouette �(S) of S is the set of all such points for all a.

The key properties of the silhouette are ([18], [19]):

(i) Within each slice of S, each connected component of Sja must contain at least

one silhouette point.

(ii) The silhouette should be one-dimensional.

(iii) The critical points of the silhouette w.r.t the function x1(:) should include the

critical points of the set S.

Clearly, using local maxima will satisfy property (i). This is true simply

because a continuous function (in this case, a distance function with the value zero

on the boundary and positive values in the interior) has a local maximumin a compact

set. For property (ii) we require that the directions x1 and h be \generic" (see the

earlier papers). This is easily done by picking a general x1, but h may not be generic

a priori. However, rather than the true distance h, we assume that the distance

plus a very small linear combination of the other coordinates is used. This linear

combination can be arbitrarily small, and we assume that it is small enough that it

does not signi�cantly a�ect the clearance of silhouette points.

For property (iii), we depart somewhat from the original de�nition. The

critical points of the silhouette curves that we have traced can be discovered during

the tracing process (they are the points where the curve tangent becomes orthogo-

nal to x1). But we need to �nd all (or a su�cient set of) critical points to ensure

111

completeness. All critical points do indeed lie on silhouette curves, but since our

algorithm is incremental, we may not discover these other curves unless we encounter

points on them. So we need a systematic way to enumerate the critical points of S,

since these will serve as starting points for tracing the silhouette curves that we need

for completeness.

In fact, not all critical points of S are required. There is a subset of them

called interesting critical points that are su�cient for our purpose. Intuitively, the

interesting critical points are the split or join points in higher dimensions. They can

be de�ned as follows:

De�nition

A point p in Rk+1 is an interesting critical point if for every neighborhood U

of p, one of the following holds:

(i) The intersection U \ x�11 (x1(p) + �) consists of several connected components

for all su�ciently small �. This is a generalized split point.

(ii) The intersection U \ x�11 (x1(p)� �) consists of several components for all su�-

ciently small �. This is a generalized join point.

From the de�nition above, it follows that as we sweep the plane x1 = a

through S, the number of connected components of Sja changes only when the plane

passes though interesting critical points.

De�nition

Now we can de�ne the roadmap of the surface S. The roadmap R(S) is

de�ned as follows: Let PC(S) be the set of interesting critical points of x1(:) on S,

PC(�) be the set of critical points of x1(:) on the silhouette, and PC the union of

these two. The roadmap is then:

R(S) = �(S) [(
[
p2Pc

L(p)) (6:5)

That is, the roadmap of S is the union of the silhouette �(S) and various linking

curves L(p). The linking curves join critical points of S or � to other silhouette

points.

112

The new roadmap algorithm has an advantage over the original in that

it is not restricted to algebraic curve segments. This is because the original was

formulated to give precise algorithmic bounds on the planning problem, whereas the

new algorithm approximates the silhouette by tracing. Tracing is just as easy for

many types of non-algebraic curves as for algebraic ones.

This allows us to do linking in a single step, whereas algebraic linking curves

must be de�ned recursively. We generate linking curves in the present context by

simply �xing the x1 coordinate and hill-climbing to a local maximum in h(:). The

curve traced out by the hill-climbing procedure starts at the critical point and ends

at a local maximum (which will be a silhouette point) of the distance within the same

x1 slice. Thus it forms a linking curve to the silhouette. If we are at an interesting

critical point, there will be two opposing directions (both normal to x1) along which

the distance function increases. Tracing in both directions links the critical point to

silhouette points on both channels that meet at that critical point.

Theorem R(S) satis�es the roadmap condition.

Proof Let a1; : : : ; am be the x1-coordinates of the critical points PC , and assume the

ai's are arranged in ascending order. The proof is by induction on the ai's.

Our inductive hypothesis is that the roadmap condition holds to the \left"

of ai�1. That is, we assume that R(S)j�ai�1 = R(S) \ x�l1 (x1 � ai�1) satis�es the

roadmap condition as a subset of Sj�ai�1.

The base case is x1 = a1. If we have chosen a general direction x1, the set

Sja1 consists of a single point which will also be part of the roadmap.

For the inductive step we start with some basic results from Chapter 2 in [87],

which state that we can smoothly deform or retract a manifold (or union of manifolds

like the surface S) in the absence of critical points. In this case, it implies that the

set Sj<ai can be smoothly retracted onto Sj�ai�1 , because the interval (ai�1; ai) is free

of critical values. There is also a retraction which retracts R(S)j<ai onto R(S)j�ai�1.

These retractions imply that there are no topological changes in R(S) or S in the

interval (ai�1; ai), and if R(S)j�ai�1 satis�es the roadmap condition, then so does

R(S)j<ai .

113

So all that remains is the transition from R(S)j<ai to R(S)j�ai. Let pi be the

critical point whose x1 coordinate is ai. The roadmap condition holds for R(S)j<ai,

i.e. each component of Sj<ai contains a single component of R(S)j<ai . The only

way for the condition to fail as x1 increases to ai is if the number of silhouette curve

components increases, i.e. when pi is a critical point of the silhouette, or if the number

of connected components of S decreases, which happens when pi is a join point. Let

us consider these cases in turn:

If pi is a critical point of the silhouette, the tangent to the silhouette at pi

is normal to x1. By assumption, a new component of the silhouette appeared at pi as

x1 increased to ai. This means that in the slice x1 = ai� � (for � small enough) there

is no local maximum in the neighborhood of pi. On the other hand, there must be

a local maximum of distance in this slice, which we can �nd by hill-climbing. So to

link such a critical point, we move by � in the �x1 direction (or its projection on S

so that we remain on the surface) to a nearby point qi. Then we hill climb from qi in

the slice x1 = ai� � until we reach a local maximum, which will be a silhouette point.

This pair of curves links pi to the existing roadmap, and so our inductive hypothesis

is proved for R(S)j�ai .

At join points, though, the linking curve will join pi to a silhouette point in

each of the two channels which meet at pi. If these two channels are in fact separate

connected components of Sj<ai, the linking curve will join their respective roadmaps.

Those roadmaps are by hypothesis connected within each connected component of

Sj<ai. Thus the union of these roadmaps and the linking curve is a single connected

curve within the connected component of Sj�ai which contains pi. Thus we have

proved the inductive hypothesis for ai if pi is a join point.

We have proved that R(S) satis�es the roadmap condition. And it is easy

to link arbitrary points in free-space with the roadmap. To do this we simply �x x1

and hill-climb from the given point using the distance function. Thus our algorithm

is complete for �nding collision-free paths.

Note that we do not need to construct con�guration space explicitly to

compute the roadmap. Instead it su�ces to be able to compute the interesting critical

114

points, and to be able to compute the distance function and its gradient. This should

not surprise the reader familiar with di�erential topology. Morse theory has already

shown us that the topology of manifolds can be completely characterized by looking

locally at critical points.

6.6 Complexity Bound

Since our planner probably does not need to explore all the critical points,

this bound can be reduced by �nding only those interesting critical points where

adding a bridge helps to reach the goal. If n is the number of obstacle features (faces,

edges, vertices) in the environment and the con�guration space is Rk, then the number

of \interesting critical points" is at most O((2d)kn(k�1)). As mentioned earlier, the

algorithm is no longer recursive in calculating the critical points and linking curves

(bridges) as in [18], the complexity bound calculated in [18] does not apply here.

6.7 Geometric Relations between Critical Points

and Contact Constraints

Let n be the number of obstacle features in the environment and the robot

has constant complexity. Free space FP is bordered by O(n) constraint surfaces.

Each constraint surface corresponds to an elementary contact, either face-vertex or

edge-edge, between a feature of the robot and a feature of the environment. Other

types of contacts are called non-elementary, and can be viewed as multiple elementary

contacts at the same point, e.g. vertex-edge. They correspond to intersections of

constraint surfaces in con�guration space.

De�nition

An elementary contact is a local contact de�ned by a single equation. It

corresponds to a constraint surface in con�guration space. For example, face-vertex

or edge-edge.

115

De�nition

A non-elementary contact is a local contact de�ned by two or more equa-

tions. It corresponds to an intersection or conjunction of two or more constraint

surfaces in con�guration space. For example, vertex-edge or vertex-vertex. There are

O(n) of non-elementary contacts if the robot has constant complexity.

We can represent CO in disjunctive form:

CO = (
_

ei 2 edges(obstacles)

fj 2 faces(robot)

Oei;fj) _ (
_

ej 2 edges(robot)

fi 2 faces(obstacles)

Oej ;fi)

where Oei;fj is an overlap predicate for possible contact of an edge and a face. See [18]

for the de�nition of Oei;fj . For a �xed robot complexity, the number of branches for

the disjunctive tree grows linearly w.r.t. the environment complexity. Each Oei;fj has

constant size, if the polyhedron is preprocessed (described in Chapter 3). Each clause,

Oei;fj , is a conjunction of inequalities. This disjunctive tree structure is useful for

computing the maximum number of critical points by combinatorics. The interesting

critical points (which correspond to the non-elementary contacts) occur when two or

more constraint surfaces lie under one clause.

Using the disjunctive tree structure, we can calculate the upper bound for the

maximumnumber of critical points by combinatorial means (by counting the number

of systems of equations we must solve to �nd all the critical points). Generically, at

most k surfaces intersect in k dimensions. For a robot with k degrees of freedom and

an environment of complexity n, (i.e. n is the number of feature constraints between

robot and obstacles) the number of critical points is

(2d)k

0
@ n+ k

k

1
A = O((2d)knk)

where d is the maximum degree of constraint polynomial equations. This is an upper

bound on the number of critical points from [61] and [84]. Therefore, for a given

robot (with �xed complexity), there are at most O((2d)knk) critical points in terms

116

of n, where k is the dimension of con�guration space and n is the number of obstacle

features. (NOTE: We only use the above argument to prove the upper bound, not to

calculate critical points in this fashion.)

These O((2d)knk) intersection points fall into two categories: (a) All the

contacts are elementary; (b) one or more contacts are non-elementary. When all

contacts are elementary, i.e. all contact points are distinct on the object, free space in

a neighborhood of the intersection point is homeomorphic to the intersection of k half-

spaces (one side of a constraint surface), and forms a cone. This type of intersection

point cannot be a split or join point, and does not require a bridge. However if one or

more contacts are non-elementary, then the intersection point is a potential split or

join point. But because the O(n) non-elementary contact surfaces have codimension

� 2, there are only O(n(k�1)) systems of equations that de�ne critical points of type

(b), and therefore at most O((2d)knk�1) possible points. Interesting critical points

may be either intersection points, and we have seen that there are O((2d)kn(k�1))

candidates; or they may lie on higher dimensional intersection surfaces, but these

are certainly de�ned by fewer than k equations, and the number of possible critical

points is not more than O((2d)kn(k�1)) [84], [61]. Therefore, the number of interesting

critical points is at most O((2d)kn(k�1)).

6.8 Brief Discussion

By following the maxima of a well-designed potential �eld, and taking slice

projections through critical points and at random values, our approach builds in-

crementally an obstacle-avoiding path to guide a robot toward the desired goal, by

using the distance computation algorithm described in Chapter 3. The techniques

proposed in this chapter provide the planner with a systematic way to escape from

these local maxima that have been a long standing problem with using the potential

�eld approach in robot motion planning.

This path planning algorithm, computed from local information about the

geometry of con�guration space by using the incremental distance computation tech-

niques, requires no expensive precomputation steps as in most global methods devel-

117

oped thus far. In a two dimensional space, this method is comparable with using a

Voronoi Diagram for path planning. In three-dimensional space, however, our method

is more e�cient than computing hyperbolic surfaces for the Voronoi diagram method.

In the worst case, it should run at least as fast as the original roadmap algorithm.

But, it should run faster in almost all practical cases.

118

Chapter 7

Conclusions

7.1 Summary

A new algorithm for computing the Euclidean distance between two poly-

hedra has been presented in Chapter 3. It utilizes the convexity of polyhedra to

establish three important applicability criteria for tracking the closest feature pair.

With subdivision techniques to reduce the size of coboundaries/boundaries when ap-

propriate, its expected runtime is constant time in updating the closest feature pair.

If the previous closest features have not been provided, it is typically sublinear in

the total number of vertices, but linear for cylindrical objects. Besides its e�ciency

and simplicity, it is also complete | it is guaranteed to �nd the closest feature pair

if the objects are separated; it gives an error message to indicate collision (when the

distance � �, the user de�ned safety tolerance) and returns the contacting feature

pair if they are just touching or intersecting.

The methodology described can be employed in distance calculations, col-

lision detection, motion planning, and other robotics problems. In Chapter 4, this

algorithm is extended for dynamic collision detection between nonconvex objects by

using subpart hierarchical tree representation. In Chapter 4, we also presented an

extension of the expected constant time distance computation algorithm to contact

determination between convex objects with curved surfaces and boundary. Since the

distance computation algorithm described in Chapter 3 runs in expected constant

119

time once initialized, the algorithm is extremely useful in reducing the error by in-

creasing the resolution of polytope approximations for convex objects with smooth

curved surfaces. Re�ning the approximation to reduce error will no longer have a

detrimental side e�ect in running time.

In Chapter 5, we proposed techniques to reduce

0
@ N

2

1
A pairwise intersec-

tion tests for a large environment of n moving objects. One of them is to use the

priority queue (implemented as a heap) sorted by the lower bound on time to collsion;

the other is to use the sweeping and sorting techniques and geometric data structures

along with hierarchical bounding boxes to eliminate the objects pairs which are def-

initely not in the vicinity of each other. These algorithms work well in practice and

help to achieve almost real time performance for most environments.

One of our applications is path planning in the presence of obstacles de-

scribed in Chapter 6. That algorithm traces out the skeleton curves which are loci

of maxima of a distance function. This is done by �rst �nding the pairs of closest

features between the robot and the obstacles, and then keeping track of these clos-

est pairs incrementally by calls to our incremental distance computation algorithm.

The curves traced out by this algorithm are in fact maximally clear of the obsta-

cles. It is very computationally economical and e�cient to use our expected constant

time distance calculation for the purpose of computing the gradient of the distance

function.

7.2 Future Work

The chapters in this thesis address work which has been studied in robotics,

computational geometry and computer graphics for several years. The treatment of

these topics was far from exhaustive. There is no shortage of open problems awaiting

for new ideas and innovative solutions.

120

7.2.1 Overlap Detection for Convex Polyhedra

The core of the collision detection algorithm is built upon the concepts

of Voronoi regions for convex polyhedra. As mentioned earlier in Chapter 3, the

Voronoi regions form a partition of space outside the polyhedron. But the algorithm

can possibly run into a cyclic loop when interpenetration occurs, if no special care is

taken to prohibit such events. Hence, if the polyhedra can overlap, it is important

that we add a module which detects interpenetration when it occurs as well.

� Pseudo Voronoi Regions:

This small module can be constructed based upon similar ideas of space

partitioning to the interior space of the convex polyhedra. The partitioning does not

have to form the exact Voronoi regions since we are not interested in knowing the

closest features between two interpenetrating polyhedra but only to detect such a

case. A close approximation with simple calculation can provide the necessary tools

for detecting overlapping.

This is done by barycentric partition of the interior of a polyhedron. We �rst

calculate the centroid of each convex polyhedron, which is the weighted average, and

then construct the constraint planes of each face to the centroid of the polyhedron.

These interior constraint planes of a face F are the hyperplanes passing through the

centroid and each edge in F 's boundary and the hyperplane containing the face F .

If all the faces are equi-distant from the centroid, these hyperplanes form the exact

Voronoi diagrams for the interior of the polyhedron. Otherwise, they will provide a

reasonable space partition for the purpose of detecting interpenetration.

The data structure of these interior pseudo Voronoi regions is very much like

the exterior Voronoi regions described in Chapter 3. Each region associated with each

face has e + 1 hyperplanes de�ning it, where e is the number of edges in the face's

boundary. Each hyperplane has a pointer directing to a neighboring region where the

algorithm will step to next, if the constraint imposed by this hyperplane is violated.

In addition, a type �eld is added in the data structure of a Voronoi cell to indicate

whether it is an interior or exterior Voronoi region.

121

The exact Voronoi regions for the interior space of the polyhedron can also

be constructed by computing all the equi-distant bisectors of all facets. But, such an

elaborate precomputation is not necessary unless we are also interested in computing

the degree of interpenetration for constructing some type of penalty functions in

collision response or motion planning.

As two convex polyhedral objects move and pass through each other, the

change of feature pairs also indicate such a motion since the pointers associated with

each constraint plane keep track of the pseudo closest features between two objects

during penetration phase as well.

� Other Applications

In addition, by appending this small module to the expected constant time

algorithm described in Chapter 3, we can speed up the run time whenever one can-

didate feature lies beneath another candidate feature (this scenario corresponds to

local minima of distance function). We no longer need the linear search to enumerate

all features on one polyhedron to �nd the closest feature on one polyhedron to the

other. By traveling through the interior space of two convex objects, we can step

out of the local minima at the faster pace. This can be simply done by replacing the

linear time search by the overlap detection module described here, whenever a feature

lies beneath another face.

However, to ensure convergence, we will need to construct the exact Voronoi

regions of the interior space or use special cases analysis to guarantee that each switch

of feature necessarily decreases the distance between two objects.

7.2.2 Intersection Test for Concave Objects

� New Approaches for Collision Detection between Non-convex Objects

Currently, we are also investigating other possibilities of solving the intersec-

tion problem for non-convex objects. Though sub-part hierarchical tree representation

is an intuitive and natural approach, we have run into the problem of extending this

122

approach for any general input of models. This is due to the fact that there is no

optimal convex decomposition algorithm, but near-optimal algorithm [23]. A simple

convex decomposition does not necessarily give us the decomposition characterizing

the geometry structure of the object. Thus, it is hard to exploit the strength of this

methodology.

Another solution is to use the concept of \destructive solid geometry", that

is to represent each non-convex object by boolean operations of

C = A�
X
i

Bi

where A and Bi's are convex and C is the non-convex object. By examining the

overlap between A1 of the object C1 and B2i of the object C2 (where B2i represents

one of the notches or concavities of C2), we have the relevant information for the

actual contact location within the concavities. Again, we only have to keep track of

the local closest feature pairs within the concavities of our interests, once the convex

hulls of two non-convex objects intersect. We plan to use the fact that certain object

types, especially cylinders, have a bounded number of closest feature pairs.

In addition, we can possibly combine the priority queue and sweeping and

sorting techniques described in Chapter 5 with the basic algorithm for nonconvex

objects to further reduce the number of intersection tests needed inside of the con-

cavities.

� Automated Generation of the Sub-Part Hierarchical Representation

To support the simulation, geometricmodeling to represent three-dimensional

objects is necessary for collision detection and dynamics computation. Furthermore,

to automate the process of generating the hierarchical representation will be extremely

useful in handling complex, non-convex objects in a computer generated simulation.

Our collision detection algorithm for non-convex objects uses the sub-part

hierarchical tree representation to model each non-convex object. If the objects are

generated by hand, this representation is easy to use. However, if we are given a

set of faces describing the non-convex object without any special format, we can use

123

a convex decomposition module which does not necessarily give us an optimal con-

vex decomposition of the non-convex objects, since the problem itself is NP-complete

[52, 67, 22, 76]. Therefore, applying our sub-part hierarchical tree representation

directly to the output of a non-optimal convex decomposition routine may not yield

satisfactory results for the purpose of collision detection, especially if we have numer-

ous number of convex pieces. One possibility is to establish a criterion for grouping

nodes, e.g. maximize
volume(A[B)

volume(conv(A[B))
, where conv(P) represents the convex hull of

P .

So far, in our simulation, we have to build the sub-part hierarchical tree by

both visual inspection of the data and extracting the information by hand, in order

to take advantage of the geometry of the original object. This is a rather painful and

time consuming process.

One proposed solution would be to generate all models by a Computer Aided

Geometric Design tool which has only union as a primitive and all primitive volumes

are convex. However, to make a general system for collision detection, we still have

to face the problem when we are given only the face information without any special

format to extract the geometry information to construct the sub-part hierarchical

tree. This is an interesting and challenging geometry and modeling problem.

7.2.3 Collision Detection for Deformable objects

One of most challenging problems is collision detection for objects of de-

formable materials or with time varying surfaces. In terms of complexity, deformable

objects o�er us the greatest challenge for the problem of contact determination. Our

algorithms presented in this thesis work extremely well with rigid bodies. Whereas

using deformable models, it is very di�cult to predict where concavity and degeneracy

may be introduced due to external forces, and the shape of objects can be changed

in all possible ways. Therefore, the problem of collision detection becomes rather

complex and almost impossible to solve interactively.

Some work has been done for time-dependent parametric surfaces [45]. Herzen

and etc. use a hierarchical algorithm which �rst �nds the potential collision over large

124

volumes and then re�nes the solution to smaller volumes. The bound on these vol-

umes are derived from the derivatives with respect to time and the parameters of the

surfaces. Though it is reasonably robust and applicable for deforming time-dependent

surfaces, it cannot guarantee to detect collisions for surfaces with unbounded deriva-

tives. In many interactive environments, the derivatives of the surface with respect

to time are not obtainable and this approach cannot work under such a circumstance.

Another commonly used method is to model the deformable objects by �nite

element methods and nodal analysis [70]. However, this approach is computationally

too expensive. Unless we use specialized parallel machines to simulate the motions,

its speed is not satisfactory.

Bara� and Witkin use polyhedral approximation to handle the deformable

objects [5] for the purpose of collision detection. If the model is very re�ned, this

approach may yield reasonable results; however, even with the use of coherence based

on a culling step to reduce the number of the polygon-polygon intersection tests,

the resulting algorithm still takes longer than linear time. For low resolution of the

polyhedral model, the visual e�ect generated by this algorithm would be very discon-

certing (the viewer may see intersecting facets frequently) and the numerical solution

will be rather poor for the purpose of simulating dynamics and robust integration.

Snyder and etc. [81] present a general collision detection algorithm for any

type of surface by using interval arithmetics, optimization routines, and many other

numerical methods. Although the algorithm can be used for a large class of various

models, it is extremely slow. As Snyder admitted, it cannot be used for real time

simulation. However, these days it is not acceptable to spend hundreds of hours

generating a few seconds of simulation. One of the important factors as we mention

in the introduction is speed, i.e. how quickly the algorithm can generate results.

Our algorithm is especially tailored for rigid bodies, since the Voronoi regions

are constructed based on the properties of convex polyhedra. For linear deformation

where the objects remain convex, we can transform the precomputed Voronoi regions

for the purpose of collision detection between exible objects. But, in most situations,

the deformable object may become locally non-convex and the algorithm described

in Chapter 3 cannot be easily modi�ed to e�ciently handle such a contact during the

125

deformation phase. However, it is possible that we use the algorithms described in

this thesis as a top level module until the impacts occurs or external forces are applied

to the deformable objects, for the purpose of eliminating collision checks. But, a fast

and exact method is still needed. This leads to a new area of exciting research.

7.2.4 Collision Response

In a physically-based dynamic simulation, there are two major components

to a successful and realistic system display: collision detection and collision response.

Given that we have understood the problem of collision detection reasonably well for

the rigid objects, another related problem is to resolve the di�culty of simulating the

physics of real world objects: Contact forces must be calculated and applied until

separation �nally occurs; in addition, objects' velocities must be adjusted during the

contact course in response to the impacts. All these processes are considered as a

part of dynamics response to the collision following the basic laws of physics.

An automated dynamics generator allows the user to interact with a chang-

ing environment. Such an environment can arise because of active motion (locomo-

tion) or passive motion (riding a vehicle). Furthermore, modeling physics of dynamics

tightly couples interaction with force feedback between human participants in the vir-

tual world and guided agent (i.e. graphic images slaved to other human participants);

it also tightly couples among human participants and the force feedback devices. It

contributes to realistic portrayal of autonomous movements of all virtual objects in

the synthetic environments.

Most dynamic simulators [4, 7, 25, 88, 89] make simpli�cation of models in

simulating the physics of translating and rotating objects, and mostly on frictionless

impacts. Recently, Keller applied Routh's frictional impact equations [75] to a few

simpli�ed cases with numerous assumptions [49]. Wang and Mason also characterize

frictional impacts for the two-dimensional impacts [86]. Currently Mirtich and Canny

are investigating a better approach to model the three-dimensional frictional impact,

which will be extremely useful for a general-purpose dynamics simulator in computer

generated virtual environment or robotics simulation for manufacturing purposes.

126

Many open problems are still left to be addressed. The goal of research in

this area would be to simulate the dynamics (the geometric component, the physics

module, the numerical integrator, and motion control) in real time.

127

Bibliography

[1] L. E. Andersson and N. F. Steward. Maximal distance for robotic simulation: the

convex case. Journal of Optimization Theory and Applications, 57(No. 2):215{

222, 1988.

[2] C. Bajaj and T. Dey. Convex decomposition of polyhedra and robustness. SIAM

J. of Comput., (No. 2):339{364, 1992.

[3] D. Bara�. Curved surfaces and coherence for non-penetrating rigid body simu-

lation. ACM Computer Graphics, 24(4):19{28, 1990.

[4] D. Bara�. Issues on computing contact forces for non-penetrating rigid bodies.

Algorithmica, Vol. 10(2-4):292{352, Aug/Sept/Oct 1993.

[5] David Bara� and Andrew Witkin. Dynamic simulation of non-penetrating ex-

ible bodies. Computer Graphics, 26(2):303{308, July 1992.

[6] J. Barraquand, B. Langlois, and J-C. Latombe. Robot motion planning with

many degrees of freedom and dynamic constraints. In Proceedings 5th Int. Symp

Robotics Research, Tokyo, Japan, 1989.

[7] R. Barzel and A. Barr. A modeling system based on dynamic constraints. ACM

Computer Graphics, 22(4):31{39, 1988.

[8] D. N. Bernstein. The number of roots of a system of equations. Funktsional'nyi

Analiz i Ego Prilozheniya, 9(3):1{4, Jul-Sep 1975.

128

[9] J. E. Bobrow. A direct minimization approach for obtaining distance between

convex polyhedra. International Journal of Robotics Research, 8(No. 3):65{67,

1989.

[10] W. Bouma and Jr. G. Vanecek. Collision detection and analysis in a physi-

cally based simulation. In Proceeding of the Seconde Eurographics Workshop on

Animation and Simulation, 1992. Vienna Austria.

[11] J. W. Boyse. Interference detection among solids and surfaces. Comm. ACM,

22(1):3{9, 1979.

[12] S. A. Cameron. A study of the clash detection problem in robotics. Proc. IEEE

ICRA, pages pp. 488{493, 1985.

[13] S. A. Cameron and R. K. Culley. Determining the minimum translational dis-

tance between two convex polyhedra. Proc. IEEE ICRA, pages pp. 591{596,

1986.

[14] J. Canny. Computing roadmaps of general semi-algebraic sets. In AAECC-91,

pages 94{107, 1991.

[15] J. Canny and B. Donald. Simpli�ed voronoi diagrams. Discret Comput. Geom-

etry, pages 219{236, 1988.

[16] J. Canny and I. Emiris. An e�cient algorithm for the sparse mixed resultant.

In G. Cohen, T. Mora, and O. Moreno, editors, Proc. 10th Intern. Symp. on

Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pages 89{

104. Springer Verlag, May 1993. Lect. Notes in Comp. Science 263.

[17] J. F. Canny. Collision detection for moving polyhedra. IEEE Trans. PAMI, 8:pp.

200{209, 1986.

[18] J. F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge,

MA, 1988.

129

[19] J. F. Canny. Constructing roadmaps of semi-algebraic sets I: Completeness.

Arti�cial Intelligence, 37:203{222, 1988.

[20] J. F. Canny and M. C. Lin. An opportunistic global path planner. Algorithmica,

Special Issue on Computational Robotics, Vol. 10(2-4):102{120, Aug/Sept/Oct

1993.

[21] J.F. Canny. Generalized characteristic polynomials. Journal of Symbolic Com-

putation, 9(3):241{250, 1990.

[22] B. Chazelle. Convex partitions of polyhedra: A lower bound and worst-case

optimal algorithm. SIAM J. Comput., 13:488{507, 1984.

[23] B. Chazelle and L. Palios. Triangulating a non-convex polytope. Discrete &

Comput. Geom., (5):505{526, 1990.

[24] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi. Exact collision detection for in-

teractive, large-scaled environments. Tech Report #TR94-005, 1994. University

of North Carolina, Chapel Hill.

[25] James F. Cremer and A. James Stewart. The architecture of newton, a general-

purpose dynamics simulator. In IEEE Int. Conf. on Robotics and Automation,

pages 1806{1811, May 1989.

[26] D. P. Dobkin and D. G. Kirkpatrick. A linear algorithm for determining the

separation of convex polyhedra. J. Algorithms, 6(3):pp. 381{392, 1985.

[27] D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of prepro-

cessed polyhedra { a uni�ed approach. In Proc. 17th Internat. Colloq. Automata

Lang. Program, Lecture Notes in Computer Science 443, pages 400{413. Springer-

Verlag, 1990.

[28] B. R. Donald. Motion planning with six degrees of freedom. Master's thesis,

MIT Arti�cial Intelligence Lab., 1984. AI-TR-791.

130

[29] Tom Du�. Interval arithmetic and recursive subdivision for implicit functions

and constructive solid geometry. ACM Computer Graphics, 26(2):131{139, 1992.

[30] M. E. Dyer. Linear algorithms for two and three-variable linear programs. SIAM

J. on Computing, 13:pp. 31{45, 1984.

[31] H. Edelsbrunner. A new approach to rectangle intersections, part i&ii. Intern.

J. Computer Math., 13:pp. 209{229, 1983.

[32] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag,

Berlin, Heidelberg, New York, London, Paris, Tokyo, 1988.

[33] I. Emiris and J. Canny. A general approach to removing degeneracies. In IEEE

FOCS, pages 405{413, 1991.

[34] S. F. Fahlman. A planning system for robot construction tasks. Arti�cal Intel-

lignece, 5:pp. 1{49, 1974.

[35] G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A Prac-

tical Guide. Academic Press Inc., 1990.

[36] D. Filip, R. Magedson, and R. Markot. Surface algorithms using bounds on

derivatives. Computer Aided Geometric Design, 3:295{311, 1986.

[37] Jr. G. Vanecek. Brep-index: A multi-dimensional space partitioning tree.

ACM/SIGGRAPH Symposium on Solid Modeling Foundations and CAD Ap-

plications, pages 35{44, 1991. Austin Texas.

[38] E. G. Gilbert and C. P. Foo. Computing the distance between general convex

objects in three dimensional space. IEEE Trans. Robotics Automat., 6(1), 1990.

[39] E. G. Gilbert and S. M. Hong. A new algorithm for detecting the collision of

moving objects. Proc. IEEE ICRA, pages pp. 8{14, 1989.

[40] E. G. Gilbert and D. W. Johnson. Distance functions and their application to

robot path planning in the presence of obstacles. IEEE J. Robotics Automat.,

RA-1:pp. 21{30, 1985.

131

[41] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for computing

the distance between objects in three-dimensional space. IEEE J. Robotics and

Automation, vol RA-4:pp. 193{203, 1988.

[42] G.H. Golub and C.F. Van Loan. Matrix Computations. John Hopkins Press,

Baltimore, 1989.

[43] J. K. Hahn. Realistic animation of rigid bodies. ACM Computer Graphics,

22(4):pp. 299{308, 1988.

[44] Mark Hall and Joe Warren. Adaptive polygonalization of implicitly de�ned

surfaces. IEEE Computer Graphics and Applications, 10(6):33{42, November

1990.

[45] B. V. Herzen, A. H. Barr, and H. R. Zatz. Geometric collisions for time-

dependent parametric surfaces. ACM Computer Graphics, 24(4), August 1990.

[46] C. Ho�mann. Geometric & Solid Modeling. Morgan Kaufmann Publishers, Inc.,

San Mateo, CA, 1989.

[47] J.E. Hopcroft, J.T. Schwartz, and M. Sharir. E�cient detection of intersections

among spheres. The International Journal of Robotics Research, 2(4):77{80,

1983.

[48] Kass, Witkin, Bara�, and Barr. An introduction to physically based modeling.

Course Notes 60, 1993.

[49] J. B. Keller. Impact with friction. Journal of Applied Mathematics, Vol. 53,

March 1986.

[50] O. Khatib. Real-time obstable avoidance for manipulators and mobile robots.

IJRR, 5(1):90{98, 1986.

[51] J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

132

[52] A. Lingas. The power of non-rectilinear holes. In Proc. 9th Internat. Colloq.

Automata Lang. Program., volume 140 of Lecture Notes in Computer Science,

pages 369{383. Springer-Verlag, 1982.

[53] T. Lozano-P�erez and M. Wesley. An algorithm for planning collision-free paths

among polyhedral obstacles. Comm. ACM, 22(10):pp. 560{570, 1979.

[54] T. Lozano-P�erez and M. Wesley. An algorithm for planning collision-free paths

among polyhedral obstacles. Comm. ACM, 22(10):560{570, 1979.

[55] D. Manocha. Algebraic and Numeric Techniques for Modeling and Robotics.

PhD thesis, Computer Science Division, Department of Electrical Engineering

and Computer Science, University of California, Berkeley, May 1992.

[56] D. Manocha. Solving polynomial systems for curve, surface and solid model-

ing. In ACM/SIGGRAPH Symposium on Solid Modeling, pages 169{178, 1993.

Revised version to appear in IEEE Computer Graphics and Applications.

[57] D. Manocha and J. F. Canny. E�cient teniques for multipolynomial resultant

algorithms. Proceedings of ISSAC'91, 1991. Bonn, Germany.

[58] N. Megiddo. Linear-time algorithms for linear programming in R3 and related

problems. SIAM J. Computing, 12:pp. 759{776, 1983.

[59] N. Megiddo. Linear programming in linear time when the dimension is �xed.

Jour. ACM, 31:pp. 114{127, 1984.

[60] N. Megiddo and A. Tamir. Linear time algorithms for some separable quadratic

programming problems. Operations Research letters, 13(4):203{211, 1993.

[61] J. Milnor. On the betti numbers of real varieties. Proc. Amer. Math. Soc.,

15:275{280, 1964.

[62] B. Mirtich and J. Canny. Impusle-based, real time dynamic simulation. Submit-

ted to ACM SIGGRAPH, 1994. University of California, Berkeley.

133

[63] M. Moore and J. Wilhelms. Collision detection and response for computer ani-

mation. ACM Computer Graphics, 22(4):pp. 289{298, 1988.

[64] A. P. Morgan. Polynomial continuation and its relationship to the symbolic

reduction of polynomial systems. In Symbolic and Numerical Computation for

Arti�cial Intelligence, pages 23{45, 1992.

[65] M. Orlowski. The computation of the distance between polyhedra in 3-space.

Presented SIAM Conf. on Geometric Modeling and Robotics, 1985. Albany, NY.

[66] J. O'Rourke, C.-B Chien, T. Olson, and D. Naddor. A new linear algorithm for

intersecting convex polygons. Computer Graphics and Image Processing, 19:384{

391, 1982.

[67] J. O'Rourke and K. J. Supowit. Some NP-hard polygon decomposition problems.

IEEE Trans. Inform. Theory, IT-30:181{190, 1983.

[68] M. H. Overmars. Point location in fat subdivisions. Inform. Proc. Lett., 44:261{

265, 1992.

[69] A. Pentland. Computational complexity versus simulated environment. Com-

puter Graphics, 22(2):185{192, 1990.

[70] A. Pentland and J. Williams. Good vibrations: Modal dynamics for graphics

and animation. Computer Graphics, 23(3):185{192, 1990.

[71] F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag,

New York, 1985.

[72] W. E. Red. Minimum distances for robot task simulation. Robotics, 1:pp. 231{

238, 1983.

[73] J. Reif. Complexity of the Mover's Problem and Generalizations, chapter 11,

pages pp. 267{281. Ablex publishing corp., New Jersey, 1987. edited by J.T.

Schwartz and M. Sharir and J. Hopcroft.

134

[74] D. F. Rogers. Procedural Elements for Computer Graphics. McGraw-Hill Book

Company, 1985.

[75] Edward J. Routh. Elementary Rigid Dynamics. 1905.

[76] J. Ruppert and R. Seidel. On the di�culty of tetrahedralizing 3-dimensional non-

convex polyhedra. In Proc. of the Fifth Annual Symposium on Computational

Geometry, pages 380{392. ACM, 1989.

[77] N. Sancheti and S. Keerthi. Computation of certain measures of proximity be-

tween convex polytopes: A complexity viewpoint. Proceedings of IEEE ICRA'92,

3:2508{2513, May 1992.

[78] J.T. Schwartz and M. Sharir. On the `Piano Movers' Problem, II. General Tech-

niques for Computing Topological Properties of Real Algebraic Manifolds, chap-

ter 5, pages 154{186. Ablex publishing corp., New Jersey, 1987.

[79] R. Seidel. Linear programming and convex hulls made easy. In Proc. 6th Ann.

ACM Conf. on Computational Geometry, pages 211{215, Berkeley, California,

1990.

[80] H. W. Six and D. Wood. Counting and reporting intersections of d-ranges. IEEE

Trans. on Computers, C-31(No. 3), March 1982.

[81] J. Snyder, A. Woodbury, K Fleischer, B. Currin, and A. Barr. Interval methods

for multi-point collisions between time-dependent curved surfaces. Computer

Graphics, Proceedings of ACM SIGGRAPH'93, pages 321{334, August 1993.

[82] D. Sturman. A discussion on the development of motion control systems. In

SigGraph Course Notes: Computer Animation: 3-D Motion Speci�cation and

Control, number 10, 1987.

[83] W. Thibault and B. Naylor. Set operations on polyhedra using binary space

partitioning trees. Computer Graphics { SIGGRAPH'87, (4), 1987.

135

[84] R. Thom. Sur l'homologie des varietes algebriques reelles. Di�erential and Com-

binatorial Topology, pages 255{265, 1965.

[85] G. Turk. Interactive collision detection for molecular graphics. Master's thesis,

Computer Science Department, University of North Carolina at Chapel Hill,

1989.

[86] Yu Wang and Matthew T. Mason. Modeling impact dynamics for robotic op-

erations. In IEEE Int. Conf. on Robotics and Automation, pages 678{685, May

1987.

[87] C. G. Gibson K. Wirthmuller and A. A. du Plessis E. J. N. Looijenga. Topological

Stability of Smooth Mappings. Springer-Verlag, Berlin . Heidelberg . New York,

1976.

[88] Andrew Witkin, Michael Gleicher, and William Welch. Interactive dynamics.

Computer Graphics, 24(2):11{22, March 1990.

[89] Andrew Witkin and William Welch. Fast animation and control of nonrigid

structures. Computer Graphics, 24(4):243{252, August 1990.

[90] P. Wolfe. Finding the nearest points in a polytope. Math. Programming, 11:pp.

128{149, 1976.

[91] K. Zikan and W. D. Curtis. Intersection and separations of polytopes. Boeing

Computer Services Technology, BCSTECH-93-031, 1993. A note on collision and

interference detection.

136

Appendix A

Calculating the Nearest Points

between Two Features

In this appendix, we will described the equations which the implementation

of the distance computation algorithm described in Chapter 3 is based upon.

(I) VERTEX-VERTEX: The nearest points are just the vertices.

(II) VERTEX-EDGE: Let the vertex be V = (Vx; Vy; Vz; 1) and the edge E have head

HE = (Hx;Hy;Hz; 1), tail TE = (Tx; Ty; Tz; 1), and ~e = HE � TE = (Ex; Ey; Ez; 0).

Then, the nearest point PE on the edge E to the vertex V can be found by:

PE = TE +min(1;max(0;
(V � TE) � ~e

j ~e j2
))~e (A:1)

(III) VERTEX-FACE: Let the vertex be V = (Vx; Vy; Vz; 1); If we use a normalized

unit face outward normal vector, that is the normal n = (a; b; c) of the face has the

magnitude of 1 and NF = (n;�d) = (a; b; c;�d) and �d is the signed distance of the

face F from the origin, and the vertex V de�ned as above. We de�ne a new vector

quantity ~nF by ~nF = (n; 0). The nearest point PF on F to V can be simply expressed

as:

137

PF = V � (V �NF)~nF (A:2)

(IV) EDGE-EDGE: Let H1 and T1 be the head and tail of the edge E1 respectively.

And H2 and T2 be the head and tail of the edge E2 as well. Vectors ~e1 and ~e2 are

de�ned as ~e1 = H1 � T1 and ~e2 = H2 � T2. We can �nd for the nearest point pair P1

and P2 on E1 and E2 by the following:

P1 = H1 + s(T1 �H1) = H1 � s~e1 (A.3)

P2 = H2 + u(T2 �H2) = H2 � u~e2

where s and u are scalar values parameterized between 0 and 1 to indicate the relative

location of P1 and P2 on the edges E1 and E2. Let ~n = P1�P2 and j ~n j is the shortest

distance between the two edges E1 and E2. Since ~n must be orthogonal to the vectors

~e1 and ~e2, we have:

~n � ~e1 = (P1 � P2) � ~e1 = 0 (A.4)

~n � ~e2 = (P1 � P2) � ~e2 = 0

By substituting Eqn.(A.3) into these equations (A.4), we can solve for s and u:

s =
(~e1 � ~e2)[(H1 �H2) � ~e2]� (~e2 � ~e2)[(H1 �H2) � ~e1]

det
(A.5)

u =
(~e1 � ~e1)[(H1 �H2) � ~e2]� (~e1 � ~e2)[(H1 �H2) � ~e1]

det

where det = ((~e1 �~e2) � (~e1 �~e2))� (~e1 �~e1) � (~e2 �~e2). However, to make sure P1 and P2

lie on the edges E1 and E2, s and u are truncated to the range [0,1] which gives the

correct nearest point pair (P1; P2)

(V) EDGE-FACE: Degenerate, we don't compute them explicitly. Please see the

pseudo code in Appendix B for the detailed treatment.

138

(VI) FACE-FACE: Degenerate, we don't compute them explicitly. Please see the

pseudo code in Appendix B for the detailed treatment.

139

Appendix B

Pseudo Code of the Distance

Algorithm

PART I - Data Structure

type VEC {

REAL X %% X-coordinate

REAL Y %% Y-coordinate

REAL Z %% Z-coordinate

REAL W %% scaling factor

}

type VERTEX {

REAL X, Y, Z, W;

FEATURE *edges; %% pointer to its coboundary - a list of edges

CELL *cell; %% vertex's Voronoi region

};

type EDGE {

VERTEX *H, *T; %% the head and tail of this edge

FACE *fright, *fleft; %% the right and left face of this winged edge

VEC vector; %% unit vector representing this edge

140

CELL *cell; %% edge's Voronoi region

};

type FACE {

FEATURE *verts; %% list of vertices on the face

FEATURE *edges; %% list of edges bounding the face

VEC norm; %% face's unit outward normal

CELL *cell; %% face's PRISM, NOT including the plane of face

POLYHEDRON *cobnd; %% the polyhedron containing the FACE

};

type FEATURE {

union{ %% features are union of

VERTEX *v; %% vertices,

EDGE *e; %% edges,

FACE *f; %% and faces

};

FEATURE *next; %% pointer to next feature

};

struct CELL {

VEC cplane; %% one constraint plane of a Voronoi region:

%%%% cplane.X * X + cplane.Y * Y + cplane.Z * Z + cplane.W = 0 %%%%

PTR *neighbr; %% ptr to next feature if this app test fails

CELL *next; %% if there are more planes in this V. region

};

type POLYHEDRON {

FEATURE *verts; %% all its vertices

FEATURE *edges; %% all its edges

FEATURE *faces; %% all its faces

CELL *cells; %% all the Voronoi regions assoc. with features

141

VEC pos; %% its current location vector

VEC rot; %% its current direction vector

};

PART II - Algorithm

%%% vector or vertex operation: dot product

PROCEDURE vdot (v1, v2)

RETURN (v1.X*v2.X + v1.Y*v2.Y + v1.Z*v2.Z + v1.W*v2.W)

%%% vector operation: cross product

PROCEDURE vcross (v1, v2)

RETURN (v1.Y*v2.Z-v1.Z*v2.Y, v1.Z*v2.X-v1.X*v2.Z, v1.X*v2.Y-v1.Y*v2.X)

%%% vector operation: triple product

PROCEDURE triple(v1, v2, v3)

RETURN (vdot(vcross(v1, v2, v3))

%%% distance function: it tests for the type of features in order

%%% to calculate the distance between them. It takes in 2 features

%%% and returns the distance between them. Since it is rather simple,

%%% we only document its functionality and input here.

PROCEDURE dist(feat1, feat2)

%%% Given 2 features "feat1" and "feat2", this routine finds the

%%% nearest point of one feature to another:

PROCEDURE nearest-pt(feat1, feat2)

%%% Given 2 faces "Fa" and "Fb", it find the closest vertex

%%% or edges in Fb's boundary to the plane containing Fa

PROCEDURE closestToFplane(Fa, Fb)

%%% Given an edge E and a face F, it finds the closest vertex

%%% or edge in the boundary of the face F

PROCEDURE closestToE(E, F)

142

%%% Given 2 faces "Fa" and "Fb", it find the pair of edges

%%% closest in distance between 2 given faces

PROCEDURE closest-edges(Fa, Fb)

%%% Given 2 faces, it determines if the projection of Fa down

%%% to Fb overlaps with Fb. This can be implemented with best

%%% known bound O(N+M) by marching along the boundary of Fa and

%%% Fb to find the intersecting edges thus the overlap polygon,

%%% where N and M is the number of vertices of Fa and Fb.

PROCEDURE overlap(Fa, Fb)

%%% This is the linear time routine used to find the closest

%%% feature on one "polyhedron" to a given feature "feat"

PROCEDURE find-closest(feat, polyhedron)

%%% Point-Cell Applicability Condition:

%%% This routine returns TRUE if P satisfies all applicability

%%% constraints of the Voronoi cell, "Cell"; it returns the

%%% neighboring feature whose constraint is violated the most

%%% if "P" fails at least one constraint of "Cell".

PROCEDURE point-cell-checkp (P, Cell)

min = 0

NBR = NULL

while (NOT(Cell.cplane = NULL)) Do

test = vdot(P, Cell.cplane)

if (test < min)

then

min = test

NBR = Cell.neighbor

Cell = Cell.next

RETURN NBR

%%% Point-Face Applicability Condition

PROCEDURE point-face-checkp (P, F)

NBR = point-cell-checkp (P, F.cell)

if (NBR = NULL)

then if vdot(P, F.norm) > 0

143

then RETURN(NBR)

else RETURN(find-closest(P, F.cobnd))

else RETURN(NBR)

%% This procedure returns TRUE if Ea lies within the

%% prismatic region swept out by Fb along its face normal

%% direction, FALSE otherwise.

PROCEDURE E-FPrism(E, F)

min = 0

max = length(Ea)

for (cell = Fb.cell till cell=NULL; cell = cell.next)

norm = vdot(Ea.vector,cell.cplane)

%% Ea points inward of the hyperplane

if (norm > 0)

%% compute the relative inclusion factor

then K = vdot(Ea.H, cell.cplane) / norm

if (K < max) {

then max = K

if (min > max) RETURN(FALSE) }

%% Ea points outward from the hyperplane

else if (norm < 0)

%% compute the relative inclusion factor

then K = vdot(Ea.T, cell.cplane) / norm

if (K > min) {

min = K

if (max < min) RETURN(FALSE)}

%% norm = 0 if the edge Ea and Ei are parallel

else if vdot(Ea.H, cell.cplane) < 0 RETURN(FALSE)

RETURN(TRUE)

%%% Vertex-Vertex case:

PROCEDURE vertex-vertex (Va, Vb)

NBRb = point-cell-checkp (Va, Vb.cell)

if (NBRb = NULL)

then NBRa = point-cell-checkp (Vb, Va.cell))

if (NBRa = NULL)

144

then RETURN (Va, Vb, dist(Va,Vb))

else close-feat-checkp (NBRa, Vb)

else close-feat-checkp (Va, NBRb)

%%% Vertex-Edge case:

PROCEDURE vertex-edge (Va, Eb)

NBRb = point-cell-checkp(Va, Eb.cell)

if (NBRb = NULL)

then NBRa = point-cell-checkp(nearest-pt(Va, Eb), Va.cell)

if (NBRa = NULL)

then RETURN (Va, Eb, dist(Va,Eb))

else close-feat-checkp (NBRa, Eb)

else close-feat-checkp (Va, NBRb)

%%% Vertex-Face case:

PROCEDURE vertex-face (Va, Fb)

NBRb = point-face-checkp (Va,Fb)

if (NBRb = NULL)

then NBRa = point-cell-checkp (nearest-pt(Va, Fb), Va.cell)

if (NBRa = NULL)

then RETURN (Va, Fb, dist(Va,Fb))

else close-feat-checkp (NBRa, Fb)

else close-feat-checkp (Va, NBRb)

%%% Edge-Edge case:

PROCEDURE edge-edge (Ea, Eb)

NBRb = point-cell-checkp (nearest-pt(Eb, Ea), Eb.cell)

if (NBRb = NULL)

then NBRa = point-cell-checkp (nearest-pt(Ea, Eb), Ea.cell))

if (NBRa = NULL)

then RETURN (Ea, Eb, dist(Ea,Eb))

else close-feat-checkp (NBRa, Eb)

else close-feat-checkp (Ea, NBRb)

%%% Edge-Face case:

PROCEDURE edge-face (Ea Fb)

if (vdot(Ea.H, Fb.norm) = vdot(Ea.T, Fb.norm))

145

then if (E-FPrism(Ea, Fb.cell) # NULL)

then if (vdot(Ea.H, Fb.norm) > 0)

then cp_right = triple(E.fright.norm, Ea.vector, Fb.norm)

cp_left = triple(E.vector, F.fleft.norm, Fb.norm)

if (cp_right >= 0)

then if (cp_left >= 0)

then RETURN (Ea, Fb, dist(Ea,Fb))

else close-feat-checkp (Ea.fleft, Fb)

else close-feat-checkp (Ea.fright, Fb)

else close-feat-checkp (Ea, find-closest(Ea, Fb.cobnd))

else close-feat-checkp (Ea, closestToE(Ea, Fb))

else if (sign(vdot(Ea.H, Fb.norm)) # sign(vdot(Ea.T, Fb.norm)))

then close-feat-checkp (Ea, closestToE(Ea, Fb))

else if (dist(Ea.H, Fb) < dist(Ea.T, Fb))

%% dist returns unsigned magnitude

then sub-edge-face(Ea.H, Ea, Fb)

else sub-edge-face(Ea.T, Ea, Fb)

%%% Sub-Edge-Face case:

PROCEDURE sub-edge-face (Ve, E, F)

NBRb = point-cell-checkp (Ve, F.cell)

if (NBRb = NULL)

then if (vdot(Ve, F.norm) > 0)

then NBRa = point-cell-checkp (nearest-pt(Ve, F), Ve.cell)

if (NBRa = NULL)

then RETURN (Ve, F, dist(Ve,F))

else close-feat-checkp (NBRa, F)

else close-feat-checkp (Ve, find-closest(Ve, F.cobnd))

else close-feat-checkp (E, closestToE(E, F))

%%% Face-Face-case:

PROCEDURE face-face (Fa Fb)

if (abs(vdot(Fa.norm, Fb.norm)) = 1) %% check if Fa and Fb parallel

then if (overlap(Fa, Fb))

then if (vdot(Va, Fb.norm) > 0)

then if (vdot(Vb, Fa.norm) > 0)

then RETURN (Fa, Fb, dist(Fa,Fb))

146

else close-feat-checkp(find-closest(Fb, Fa.cobnd),Fb)

else close-feat-checkp (Fa, find-closest(Fa, Fb.cobnd))

else close-feat-checkp ((closest-edges(Fa, Fb))

else NBRa = closestToFplane(Fb, Fa)

if (type(NBRa) = VERTEX) %% check if NBRa is a vertex

then NBRb = point-face-checkp (NBRa, Fb)

if (NBRb = NULL)

then close-feat-checkp (NBRa, Fb)

else sub-face-face(Fa, Fb)

else if (E-FPrism(NBRa, Fb.cell))

then if (vdot(NBRa.H, Fb.norm) > 0)

then close-feat-checkp (NBRa, Fb)

else close-feat-checkp

(NBRa, find-closest(NBRa, Fb.cobnd))

else sub-face-face(Fa, Fb)

%%% Sub-Face-Face:

PROCEDURE sub-face-face(Fa, Fb)

NBRb = closestToFplane(Fa, Fb)

if (type(NBRb) = VERTEX) %% Is NBRb a vertex?

then NBRa = point-face-checkp (NBRb, Fa)

if (NBRa = NULL)

then close-feat-checkp (Fa, NBRb)

else close-feat-checkp (closest-edges(Fa,Fb))

else if (E-FPrism(NBRb, Fa.cell))

then if (vdot(NBRb.H, Fa.norm) > 0)

then close-feat-checkp (Fa, NBRb)

else close-feat-checkp

((find-closest(NBRb, Fa.cobnd), NBRb)

else close-feat-checkp (closest-edges(Fa,Fb))

%%% The main routine

PROCEDURE close-feat-checkp (feat1, feat2)

case (type(feat1), type(feat2))

(VERTEX, VERTEX) RETURN vertex-vertex(feat1, feat2)

(VERTEX, EDGE) RETURN vertex-edge(feat1, feat2)

(VERTEX, FACE) RETURN vertex-face(feat1, feat2)

147

(EDGE, VERTEX) RETURN reverse(vertex-edge(feat2, feat1)

(EDGE, EDGE) RETURN edge-edge(feat1, feat2)

(EDGE, FACE) RETURN edge-face(feat1 feat2)

(FACE, VERTEX) RETURN reverse(vertex-face(feat2, feat1))

(FACE, EDGE) RETURN reverse(edge-face(feat2, feat1))

(FACE, FACE) RETURN face-face(feat1, feat2)

%% To check if two objects collide by their minimum separation

if (dist(feat1,feat2) ~ 0)

then PRINT ("Collision")

