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PREFACE

This book presents a unified exposition of the physical principles at the
heart of NanoMEMS-based devices and applications. NanoMEMS exploits
the convergence between nanotechnology and microelectromechanical
systems (MEMS) brought about by advances in the ability to fabricate
nanometer-scale electronic and mechanical device structures. In this context,
NanoMEMS-based applications will be predicated upon a multitude of
physical phenomena, e.g., electrical, optical, mechanical, magnetic, fluidic,
quantum effects and mixed domain.

Principles and Applications of NanoMEMS Physics contains five
chapters. Chapter 1 provides a comprehensive presentation of the
fundamentals and limitations of nanotechnology and MEMS fabrication
techniques. Chapters 2 and 3 address the physics germane to this
dimensional regime, namely, quantum wave-particle phenomena, including,
the manifestation of charge discreteness, quantized electrostatic actuation,
and the Casimir effect, and quantum wave phenomena, including, quantized
electrical conductance, quantum interference, Liittinger liquids, quantum
entanglement, superconductivity and cavity quantum electrodynamics.
Chapter 4 addresses potential building blocks for NanoMEMS applications,
including, nanoelectromechanical quantum circuits and systems (NEMX)
such as charge detectors, the which-path electron interferometer, and the
Casimir oscillator, as well as a number of quantum computing
implementation paradigms, including, the ion-trap qubit, the NMR-qubit,
superconducting qubits, and a semiconductor qubit. Finally, Chapter 5
presents NanoMEMS applications in photonics, particularly focusing on the

xiii
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generation, propagation, and detection of surface plasmons, and emerging
devices based on them.

The  book  assumes a  preparation at the  advanced
undergraduate/beginning graduate student level in Physics, Electrical
Engineering, Materials Science, and Mechanical Engineering. It was
particularly conceived with the aim of providing newcomers with a much
needed coherent scientific base for undertaking study and research in the
NanoMEMS field. Thus, the book takes great pains in rendering transparent
advanced physical concepts and techniques, such as quantum information,
second quantization, Liittinger liquids, bosonization, and superconductivity.
It is also hoped that the book will be useful to faculty developing/teaching
courses emphasizing physics and applications of nanotechnology, and to
Nanotechnology researchers engaged in analyzing, modeling, and designing
NanoMEMS-based devices, circuits and systems.



ACKNOWLEDGMENTS

The idea for this book began to take shape upon meeting Mr. Mark de
Jongh, Senior Publishing Editor of Springer, at the European Microwave
Conference in Munich, Germany, in October, 2003. Unbeknownst to the
author, Dr. Harrie A.C. Tilmans, of IMEC, Belgium, had recommended him
to Mr. de Jongh as a potential author. Upon a “chance” encounter Mr. de
Jongh introduced himself and suggested the writing of a book for (then)
Kluwer. The author submitted the book proposal in late November, 2003 and
received news of its acceptance soon thereafter, as Springer’s Microsystems
book series editor, Dr. Stephen D. Senturia,. had provided a “very positive
and complementary report.” Therefore, the author is pleased to acknowledge
Dr. Tilmans, for bringing his name to Mr. de Jongh’s attention, Dr. Senturia,
for his positive recommendation of the book proposal, and Mr. de Jongh, for
providing him with the opportunity to write the book. Furthermore, the
author gratefully acknowledges Mr. Mark de Jongh and Ms. Cindy M. Zitter,
his Senior Assistant, for their patience and understanding during the course
of the work. The book cites more than 200 references. Access to these would
not have been possible without the excellent assistance of Mr. Tim Lee,
whom he gratefully acknowledges. Finally, the author gratefully
acknowledges the understanding of his wife, Violeta, along the course of the
project, as well as her excellent assistance in preparing the final camera-
ready manuscript.

Héctor J. De Los Santos

XV



Chapter 1
NANOELECTROMECHANICAL SYSTEMS

1.1 NanoMEMS Origins

The field of Nanotechnology, which aims at exploiting advances in the
fabrication and controlled manipulation of nanoscale objects, is attracting
worldwide attention. This attention is predicated upon the fact that obtaining
early supremacy in this field of miniaturization may well be the key to
dominating the world economy of the 21* century and beyond. NanoMEMS
exploits the convergence between nanotechnology and
microelectromechanical systems (MEMS) brought about by advances in the
ability to fabricate nanometer-scale electronic and mechanical device
structures. Indeed, the impact of our ability to make and control objects
possessing dimensions down to atomic scales, perhaps first considered by
the late Richard Feynman in his 1959 talk “There is Plenty of Room at the
Bottom” is expected to be astounding [1], [2]. In particular, miniaturization,
he insinuated, has the potential to fuel radical paradigm shifts encompassing
virtually all areas of science and technology, thus giving rise to an unlimited
amount of technical applications. Since high technology fuels the prosperity
of the world’s most developed nations, it is easy to see why the stakes are so
high.

Progress in the field of miniaturization benefited from the advent of the
semiconductor industry in the 1960s, and its race to increase profits through
the downscaling of circuit dimensions which, consequently, increased the
density and the yield of circuits fabricated on a given wafer area. This
density, which derived from progress in photolithographic tools to produce
the ever smaller two-dimensional patterns (device layouts) of an integrated
circuit (IC), has increased since by more than seven orders of magnitude and
has come to be captured by Moore’s law: The number of components per
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chip doubles every 18 months [2]. The culmination of such miniaturization
program, it is widely believed, is the demise of Moore’s law, whose
manifestation is already becoming apparent due to an increasing
predominance of the quantum mechanical nature of electrons in determining
the behaviour of devices with critical dimensions (roughly) below 100 nm.

This line of development is closely related to the field of quantum
devices/nanoelectronics, which was prompted by the conception of a number
of atomic-level deposition and manipulation techniques, in particular,
molecular beam epitaxy (MBE), originally exploited to construct laboratory
devices in which the physics of electrons might be probed and explored,
following the discovery of electron tunnelling in heavily-doped pr-junctions
[3]. Nanoelectronics did produce interesting physics, for instance, the
discovery of Coulomb blockade phenomena in single-electron transistors,
which manifested the particle nature of electrons, and resonant tunnelling
and conductance quantization in resonant tunnelling diodes and quantum
point contacts, respectively, which manifested the wave nature of electrons
[4-6]. These quantum devices, in conjunction with many others based on
exploiting quantum phenomena, generated a lot excitement during the late
1980s and early 1990s, as they promised to be the genesis for a new digital
electronics exhibiting the properties of ultra-high speed and ultra-low power
consumption [7-8]. While efforts to realize these devices helped develop the
skills for fabricating nanoscale devices, and efforts to analyze and model
these devices helped to develop and mature the field of mesoscopic quantum
transport, the sober reality that cryogenic temperatures would be necessary
to enable their operation drastically restricted their commercial importance.
A few practical devices, however, did exert commercial impact, although
none as much as that exerted by silicon IC technology, in particular,
heterojunction bipolar transistors (HBTs), and high-electron mobility
transistors (HEMTs), which exploit the conduction band discontinuities
germane to heterostructures, and modulation doping to create 2-D electron
confinement and quantization, respectively, and render devices superior to
their silicon counterparts for GHz-frequency microwave and low-transistor-
count digital circuit applications [9-14].

The commercial success of the semiconductor industry, and its
downscaling program, motivated emulation efforts in other disciplines, in
particular, those of optics, fluidics and mechanics, where it was soon
realized that, since ICs were fundamentally two-dimensional entities,
techniques had to be developed to shape the third dimension, necessary to
create mechanical devices exhibiting motion and produced in a batch planar
process [15]. These techniques, which included surface micromachining,
bulk micromachining, and wafer bonding, became the source of what are
now mature devices, such as accelerometers, used in automobile air bags,
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and pressure sensors, on the one hand, and a number of emerging devices,
such as, gyroscopes, flow sensors, micromotors, switches, and resonators, on
the other. Coinciding, as they do, with the dimensional features germane to
ICs, i.e., microns, these mechanical devices whose behavior was controlled
by electrical means, exemplified what has come to be known as the field of
microelectromechanical systems (MEMS).

Three events might be construed as conspiring to unite nanoelectronics
and MEMS, namely, the invention of a number of scanning probe
microscopies, in particular, scanning tunneling microscopy (STM) and
atomic force microscopy (AFM), the discovery of carbon nanotubes (CNTs),
and the application of MEMS technology to enable superior RF/Microwave
systems (RF MEMS) [16-18]. STM and AFM, by enabling our ability to
manipulate and measure individual atoms, became crucial agents in the
imaging of CNTs and other 3-D nanoscale objects so we could both “see”
what is built and utilize manipulation as a construction technique. CNTs,
conceptually, two-dimensional graphite sheets rolled-up into cylinders, are
quintessential nanoelectromechanical (NEMS) devices, as their close to 1-
nm diameter makes them intrinsically quantum mechanical 1-D electronic
systems while, at the same time, exhibiting superb mechanical properties.
MEMS, on the other hand, due to their internal mechanical structure, display
motional behavior that may invade the domain of the Casimir effect, a
quantum electrodynamical phenomenon elicited by a local change in the
distribution of the modes in the zero-point fluctuations of the vacuum field
permeating space [19-21]. This effect which, in its most fundamental
manifestation, appears as an attractive force between neutral metallic
surfaces, may both pose a limit on the packing density of NEMS devices, as
well as on the performance of RF MEMS devices [22].

In the balance of this chapter, we present the fundamentals of the
fabrication techniques which form the core of NanoMEMS devices, circuits
and systems.

1.2 NanoMEMS Fabrication Technologies

NanoMEMS fabrication technologies extend the capabilities of
conventional integrated circuit (IC) processes, which are predicated upon the
operations of forming precise patterns of metallization and doping (the
controlled introduction of atomic impurities) onto and within the surface and
bulk regions of a semiconductor wafer, respectively, with the performance of
the resulting devices depending on the fidelity with which these operations
are effected. Excellent books on IC fabrication, giving in-depth coverage of
the topic, already exist [23] and the reader interested in process development
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is advised to consult these. The exposition undertaken here is cursory in
nature and only aims at providing an understanding of the fundamentals and
issues of present and future NanoMEMS fabrication technologies.

1.2.1 Conventional IC Fabrication Processes

Conventional IC processes are based on photolithography and chemical
etching, and are synthesized by the iterative application to a wafer of a cyclic
sequence of steps, namely: Spin-casting and patterning, material deposition,
and etching. The salient elements of these steps are presented in what
follows.

1.2.1.1 Spin-Casting

The first step (after thoroughly cleaning the wafer), in defining a pattern
on a wafer, is to coat it with a photoresist (PR), Figure 1-1, a viscous light-

Photoresis

W afer
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(b) (c)
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Figure 1-1. Coating wafer with photoresist. (a) Spin-casting. (b) Soft-bake in oven. (c) Hard
bake in hot plate.

sensitive polymer whose chemical composition changes upon exposure to
ultraviolet (UV) light. The process of applying the PR to the wafer in order
to achieve a uniform thickness is called spin-casting, and usually involves
the following steps: 1) Pouring a few drops of the PR at the wafer center; 2)
Spinning the wafer for about 30 seconds once it reaches a prescribed
rotational speed of several thousand revolutions-per-minute; and 3) Baking it
at temperatures of several hundred degrees Celsius to produce a well-adhered
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solvent-free dry layer. The resulting PR film thickness is inversely
proportional to the square root of the rotational speed, and directly
proportional to the percent of solids in it. Determining these parameters is
one of the first steps in developing a process.

1.2.1.2 Wafer Patterning

Once a uniform solid PR layer coats the wafer, this is ready for
patterning. This is accomplished by interposing a glass mask, which contains
both areas that are transparent and areas that are opaque, between a UV
source and the PR-coated wafer. As a result, selective chemical changes are
effected on the PR in accordance with the desired pattern, Figure 1-2. When
it

® Photoresist (PR)
- Sio,
Si
(b) Mask
Sio,
Si )
Positive PR Negative PR
i0,
(c)
Sio,
Si
Sio,
(d)
Si '

Figure 1-2. Wafer patterning with positive and negative photoresists. (4Affer [24]).

is desired that the created pattern be identical to that in the glass mask, a
positive PR, which hardens when exposed to UV light, is employed.
Otherwise, when it is desired that the created pattern be the negative of that
in the mask, a negative PR is employed. In the former case, UV exposure
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hardens the PR, whereas in the latter, UV exposure weakens the PR. Thus,
subsequently, when the UV-exposed wafer is etched, the weakened parts of
the PR will be dissolved and the desired pattern revealed. There are two
techniques to dissolve the PR, namely, wet and dry etching. These are
presented next.

1.2.1.2.1 Lithography

The highest resolution (minimum size) and quality of the pattern to be
defined on a wafer depends on how well the mask image is transferred to the
PR. Image formation, in turn, is determined by the lithographic process and
type of PR employed. The lithographic process can make use of an optical
source, an electron beam source, or an X-ray source for creating the desired
pattern on the wafer. In this section we deal with the first and the last
approaches.

Optical lithography, Figure 1-3, may be employed in conjunction with

]

@ ©
wee P8 3¢
= &
o p—  p—
[—

Figure I-3. Sketches of common approaches to optical lithography. (a) Contact printing. (b)
Proximity. (c) Projection. (After [23]).

either, contact printing, in which the image is projected through a mask that
is in intimate contact with the wafer, or proximity printing, in which the
image is projected through a mask separated by ~10—25um from the
wafer, or projection printing, in which the mask is separated many
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centimeters away from the underlying wafer. Because, the contact and
proximity approaches are prone to suffer from dust particles present between
the mask and the PR, the projection approach is preferred for creating
nanoscale-feature patterns. The resolution of a good projection optical
lithography system is given by 0.5(1/NA), where A is the exposure
wavelength and NA is the numerical aperture of the projection optics, at a
depth of focus capability of iﬂ/ 2(NA)2 [23]. The highest resolution of
optical photolithography appears to be about 250nm-100nm for production
devices, down to 70nm for laboratory devices, and is set by diffraction, i.e.,
at smaller sizes features become blurred. Overcoming these technical issues,
which involves developing smaller wavelength light sources and optics, is
difficult. Thus, the cost of optical lithography production equipment capable
of reaching resolutions below 100 nm, is deemed by industry as prohibitive
[24].

X-ray lithography, see Fig. 1-4, utilizing the low energy of soft x-rays at
wavelengths between 4 and 50 A, is relatively impervious to scattering
effects.

X-ray Source

D
X-ray Mask \ L
r N

Substrate

S——

W afer I

—> — d [«
)
Figure 1-4. Sketch of factors eliciting geometrical limitations in x-ray lithography. Typical
values for the geometrical parameters are: @ =3mm, g=40um, L =50cm,

r = 63mm . (After [23].)

This makes them amenable for use in exposing thick PRs which, because of
their low absorption, can penetrate deeply and produce straight-walled PR
images with high fidelity. Because of difficulty in creating optical elements
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at these wavelengths, however, the method of image projection employed is
proximity printing through a mask containing x-ray absorbing patterns. The
mask is separated from the PR-wafer a distance of just about 25um, but
since dust particles with low atomic number do not absorb x-rays, no
damage is caused to the pattern. Despite the potential for highest resolution
germane to x-ray lithography, two factors have been identified as potentially
limiting it. Both factors originate in geometrical aspects of the illumination.
In particular, there is the possibility that a significant penumbral blur
o0=¢g / L be introduced on the position of the resist image by the extended
point source of diameter ¢ located a distance L above a mask separated
from the wafer a distance g. Also, a potential for lateral magnification error
is present, due to the divergence of the x-ray from the point source and the
finite mask to wafer separation. Accordingly, images of the projected mask
are shifted laterally by an amount d =r g / L.

Even with perfect resolution, pattern formation quality depends on how
the PR responds to the impinging lightwave or electron beam. This is
addressed next.

1.2.1.2.2 Photoresist

The mechanism for image transfer to the PR involves altering its
chemical or physical structure so the exposed area may subsequently be
easily dissolved or not dissolved. According to the previous sections, pattern
formation is effected on optical resists, electron beam resists, or x-ray resists.

Optical lithography resists may be negative or positive. The fundamental
difference, in terms of how they affect the resolution of the image
transferred, is rooted in their chemical composition.

In the negative resist, which combines a cyclized polyisopropene polymer
material with a photosensitive compound, the latter becomes activated by the
absorption of energy with wavelengths in the 2000- to 4500-A range. The
photosensor acts as an agent that causes cross linking of the polymer
molecules by transferring to them the received energy. As a result of the
cross linking, the molecules’ molecular weight increases and this elicits their
insolubility in the developing system. The highest resolution limit of a
negative PR derives from the fact that during development the exposed
(cross linked) areas swell, whereas the unexposed low molecular weight
areas are dissolved. The minimum resolvable feature when using a negative
resists is typically three times the film thickness [23].

In response to light the positive resist, which also contains a polymer and
a photosensitizer, the latter becomes insoluble in the developer and, thus,
prevents the dissolution of the polymer. Since the photosensitizer precludes
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the developer from permeating the PR film, no film swelling is produced and
a greater resolution is possible [23].

Electron beam lithography also utilizes negative and positive resists. In a
negative resist, the electron beam prompts cross-linking of the polymer,
which results on increased molecular weight, increased resistance to the
developer, and swelling during development. A common negative resist used
with electron beam lithography is COP, poly (glycidylmethacrylate-co-ethyl
acrylate), which renders a resolution of 1m. In a positive resist, the

electron beam causes chemical bond breaking, reduced molecular weight,
and reduced resistance to dissolution during development. Common positive
resists used with electron beam lithography include poly(methyl
methacrylate) (PMMA) and poly(butane-1 ketone) (PBS), which render a
resolution of 0.14m .

X-ray lithography also utilizes negative and positive resists, in particular,
COP, PBS and PMMA with resolution similar to that stated above is
obtained.

1.2.1.3 Etching

Defining the desired pattern on the PR coating the wafer is crucial. The
pattern fidelity is defined its selectivity and aspect ratio, Figure 1-5.

Photoresist
Layer
Etched Laye
@ Etch
Stop
Layer

d;: Etch Depth

S: Side Etch ~ w: Minimum Width

w
—f sy
®) Photoresist
La —
yer Selectivity = M

Etched Layer d;: Etch :.)epth Over Etch
Etch
Stop o d,: Over Etch Eich Depth
Layer Aspect  Ratio =—————

Mininum Width

Figure I-5. Pattern transfer definition. (a) Ideal. (b) Realistic. (After [25].)
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It is seen in this figure that the fidelity of the pattern transferred is function
of how precisely the resulting width of the etched layer resembles that of the
PR pattern, as quantified by the selectivity and aspect ratio. Accordingly,
four scenarios may be envisioned, Figure 1-6, which reflect the relative
strength with which the etchant attacks the PR, the etched material, and the
etch stop. In particular, it may be surmised from Figure 1-6(d) that the
minimum width of a pattern, i.e., how narrow it may be, is limited by the
lithography process to define the pertinent width in the PR and the resulting
degree of undercut of the PR mask. Thus, etchants producing isotropic
profiles (ones in which the vertical and horizontal etching rates are equal),
are not amenable to pattern the narrowest features. In general, the results
depend on a number of factors controlling the etching chemical reaction,
such as temperature and mixing conditions, whether or not the etching agent
employed is in the liquid or gaseous state, how well the PR adhered to the
wafer during spin-casting. In the next section we address two of the most
important factors, namely, the state of the etchant.

Figure 1-6. Etching characterization. (a) Over Etch<<Etch Depth—> Selective. (b) Over
Etch~Etch Depth->Non-selective. (¢) Side Etch<<Etch Depth. (d) Side Etch~Etch Depth.
(After [25].)

1.2.1.3.1 Wet Etching

In this approach to dissolve the weakened PR, the patterned wafers are
immersed in a liquid chemical etchant, Figure 1-7. The etched profile may
be isotropic or anisotropic depending of the wafer orientation. If this is
amorphous, an isotropic profile will result, i.e., the horizontal and vertical
etching rates are similar. Otherwise, if it is single-crystal, an anisotropic
profile may result. A number of chemicals employed to effect anisotropic
etching in silicon are in use. These include tetramethylammonium hydroxide
(TMHA), potassium hydroxide (KOH), and ethylene diamine pyrochatecol
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(EDP). Detailed experiments to elucidate the mechanism responsible for
anisotropic etching have been undertaken [23]. The fundamental principle
behind anisotropic etching appears to be this: when different crystal planes
possess different atomic densities, those planes with greater density will etch
at a slower rate than those with lower atomic density.

/

Etchefl Patterns

PR-Coated Wafer

Etchant

AN

Figure 1-7. Etching of wafer immersed in liquid chemical solution.

An exhaustive compilation of chemical reactions for pertinent etching
chemicals/wafer materials has been published by Williams and Muller [29].
Table 1-1 below gives some of typical etched material/etching solvent pairs.

Table 1-1. Wet etching targets and solvents

Etched Material Etching Solvent
Silicon KOH, TMAH, EDP
Silicon oxide HF

Silicon nitride H;PO4

Aluminum H;PO,

When it comes to creation of free-standing structures via surface
micromachining techniques (described below), wet etching is accompanied
by various drawbacks. For instance, the surface tension exerted on the
delicate free-standing structures by the fluid’s hydrodynamic forces may
preclude their complete release, or may even break them. Dry etching
techniques, circumvent these drawbacks and are discussed next.

1.2.1.3.2 Dry Etching

In this approach, shown in Figure 1-8, a gas/vapor or plasma is used as a
source of reactive atoms that dissolve the weakened PR. Typical matching
pairs of etched material and etching gas used in IC fabrication are shown in
Table 1-2.
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Table 1-2. Etched material-etching gas pairs.

Silicon or Polysilicon SF,, CF,4
Silicon dioxide CHF4/H,
Silicon nitride CF4/02
Aluminum BCl,

Two fluorine-containing gases have been recently adopted for dry
etching processes, namely, Xenon difluoride, XeF, [30] and Boron Fluoride,
BrF; [30]. XeF, enables an isotropic dry-etch process for silicon, which is
very selective to aluminum, silicon dioxide, silicon nitride and photoresist.
The XeF, gas is particularly useful in the post-processing of CMOS ICs. It
can be sublimated from its solid form at 1 Torr and room temperature and,
when applied to solid-phase Si, it obeys the following reaction:

2XeF, + Si>2Xe+SiF,

XeF, etching of Si achieves high selectivity with a number of masking
materials, such as, SiO,, Si3Ny4, Al, PR, and phosphosilicate glass (PSG), at
etching rates ranging from 1—3um/ min to as high as 40um/ min [30],
and is characterized by the production of measurable amounts of heat. When
in the presence of water or vapor, XeF, reacts with them to form HF. In
terms of its potential application to nanostructure formation, XeF, etching
has the drawback that the resulting surfaces tend to have a granular finish
with a feature size of about 10m .

Etch
Gas L— Pump
—_—
— Wafers [re—
Ground / Cathode
Shield S~

RF

Figure 1-8. Etching of wafer immersed in plasma
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BrF; on the other hand, enables isotropic etching of Si with masking
materials such as Al, Au, Cu, Ni, PR, SiO,, and Si;N,4, while achieving
surface finish feature size of 40-150nm. Dry etching, it may be concluded, is
not amenable to creating nanostructures.

1.2.1.4 Chemical Vapor Deposition

The result of patterning a wafer is to render some areas of its surface bare
to receive the deposition of various atomic species, while preventing such
deposition in other areas. Chemical vapor deposition (CVD) is one of the
techniques utilized to introduce atoms into the exposed wafer areas and, for
silicon wafers, entails the dissociation of gasses, such as silane, SiHy, arsine
(AsHj3), phosphine (PH3;), and diborane (B,Hg), on the wafer surface at high
temperatures, usually in the 450-800°C range. The chamber containing the
wafers during the deposition, Fig. 1-9, is usually held at pressures between
0.1 and 1Torr, and the resulting properties of the deposited materials varies.

Pressure
Sensor Wafers

3-Zone Furnace

11
T4 .
1 |

-
Load v

Door Gas
Inlet

Figure 1-9. Schematic of hot-wall, reduced pressure CVD reactor.

For instance, under appropriate parameters of temperature, deposition
rate, and crystallinity of the wafer, the deposited material may grow
epitaxially, i.e., maintaining the same crystallographic nature of the substrate
wafer, or become polycrystalline, i.e., exhibiting an agglomeration of
randomly oriented crystallites. In the context of silicon processes, typical
materials deposited via CVD include: polycrystalline silicon (polysilicon),
silicon dioxide (SiO,), and stoichiometric silicon nitride (SiNy), to
thicknesses ~2/m . The most common reactions for depositing these
materials are shown in Table 1-3.
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Table 1-3. Common CVD reactions and deposition temperatures for
pertinent materials. [24]

Product Reactants Deposition temperature (°C)
Silicon dioxide SiH4+CO,+H, 850-950
SiCl,H,+N,O 850-900
SiH4+N,O 750-850
SiH,-4+NO 650-750
Si(OC,HS5), 650-750
SiH,+0, 400-450
Silicon nitride SiH,+NH; 700-900
SiCl,H,+NH; 650-750
Polysilicon SiH, 600-650

An alternate method to effect material deposition on a wafer while
avoiding the high temperatures required in a CVD reactor is to utilize a hot-
wall plasma deposition reactor, Fig. 1-10. In this approach, the wafers are
oriented vertically in contact with long alternating slabs of graphite or
aluminum electrodes inside a quartz tube heated by a furnace.

Pressure
Sensor Graphite
Electrodes
3-Zone Furnace
QOO =™
]];‘mrl ‘ RF
00 Gas

Inlet

Figure 1-10. Sketch of hot-wall plasma deposition reactor. (After [24].)

Then, connection of the alternate slabs to a power supply, induces a glow
discharge of the gas flowing in the space between electrodes, which runs
parallel to the wafers. By taking the energy for the reaction from the glow
discharge, the deposition may be achieved at a wafer temperature in the
range of 100 to 350 °C, e.g., Table 1-4.

Table 1-4. Common plasma-assisted CVD reactions for depositing
pertinent materials [24].

Product Reactants Deposition temperature °0)
Plasma silicon dioxide SiH4+N,O 200-350
200-350
Plasma silicon nitride SiH,+NH; 200-350
SiH,+N, 200-350
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1.2.1.5 Sputtering

While deposition via CVD requires high temperatures to facilitate gas
dissociation, and migration once the atoms/molecules reach the wafer
surface, sputtering involves a totally different mechanism. In sputtering, a
plasma is created by ionizing an inert gas, typically Argon, at low pressures,
e.g., ~10mTorr. The material one wants to deposit on the wafer originates in
the bombardment with high energy (typically Argon, Ar™ ) ions, present in
the plasma above the target substrate containing the material to be deposited
on the wafer. Target (cathode) bombardment causes the ejection, via
momentum transfer, of its surface atoms, Fig. 1-11. The ejected atoms, in
turn, fly off from the target and come to rest on other surfaces within the
chamber, in particular, the wafers of interest. The material transfer process is
atomic in nature, therefore, its transfers to the wafer in the same ratio it
present in the target.

Y zzzz7z77z7z7zz77777/777

Figure 1-11. Sketch of sputtering deposition system.

Magnetron sputtering is one of the most versatile sputtering techniques
because it can be employed to deposit both insulating and non-insulating
materials, e.g., Ti, Pt, Au, Mo, W, Ni, Co, Al,O;, SiO,, Fe, Cr, Cu, FeNi,
TiNi, AIN, SiN, etc. The technique is based on creating a plasma by
inducing the breakdown of an inert gas, e.g., Ar, in the presence of a strong
magnetic field. The resulting Ar+ ions are accelerated by the potential
gradient between cathode and anode, impinge on the target and, thus, create
the flux of material towards the substrate to be coated. Typical maximum
thickness of deposited materials is ~5 i .
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1.2.1.6 Evaporation

In this deposition technique, the evaporant, the material one wants to
deposit on the wafer, is heated off a crucible. Heating may be effected by
resistive means or by direct electron-beam bombardment, Fig. 1-12. In the
resistive heating approach, the wafers to be coated and the crucible
containing the evaporant, are placed inside a vacuum chamber and the latter
heated until its vapor pressure is greater than that originally existing in the
chamber. Evaporation results in coating everything inside the chamber, in
particular, the wafers of interest. In the electron-beam bombardment
approach, line-of-sight coating is obtained.

7222222222222
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Figure 1-12. Sketch of electron-beam-based evaporation system.

Typical materials deposited by this technique include Al, Cr, Au, Ni, Fe, Ti,
Cu, Pt, FeNi, TiNi, SiW, MgO, SiO,, Al,O;, AIN, SiN. The deposition rate
is a function of the distance between the evaporant and the substrate, and its
typical maximum thickness is usually ~5zm .

1.2.2 MEMS Fabrication Methods

The creation of moveable structures necessitates extending the 2-D IC
fabrication process to include shaping of the third dimension, perpendicular to the
substrate; this is exemplified, in silicon, by four fundamental techniques, namely,
Surface Micromachining, Bulk Micromachining, Deep Reactive Ion Etching
(DRIE), and single crystal silicon reactive etch and metal (SCREAM), which are

presented next.
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1.2.2.1 Surface Micromachining

In surface micromachining, 3-D mechanical structures are constructed in
a layered fashion. Two types of layers, based on their material
composition/etching properties, are employed, namely, sacrificial and
structural layers. The former are ultimately dissolved via a process step
named release, and the latter remain, becoming part of the free-standing
movable structure proper. The simplest element illustrating the surface
micromachining technique is, perhaps, the cantilever beam. Figure 1.13
sketches its formation. Typical combinations of sacrificial and structural
materials, and corresponding etchant are shown in Table 1.5 [27].

SIDE VIEW TOP VIEW
Sacrificial layer

\ /W afer

Structural layer
\

Beam

v Process sequence

Figure 1-13. Sketch of the formation of a cantilever beam by surface micromachining. From
top to bottom of the figure, the sacrificial material is deposited and patterned (top), then the
structural material is deposited and patterned (middle), the sacrificial layer is released
(bottom).

Table 1-5. Structural/Sacrificial/Etchant Material Systems [27].

Structural Material Sacrificial Material Etchant

Aluminum Single-crystal silicon EDP, TMAH, XeF)

Aluminum Photoresist Oxygen plasma

Copper or Nickel Chrome HF

Polyimide Aluminum Al etch (Phosphoric, Acetic,
Nitric Acid)

Polysilicon Silicon dioxide HF

Photoresist Aluminum Al etch (Phosphoric, Acetic,
Nitric Acid)

Silicon dioxide Polysilicon XeFp

Silicon nitride pr Boron-  Undoped polysilicon KOH or TMAH
doped polysilicon
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1.2.2.2 Bulk Micromachining

As the name implies, bulk micromachining sculpts the substrate itself to
form the 3-D mechanical structure. The simplest example of this technique is
illustrated by the creation of a cavity, shown in Figure 1.14. As suggested,
the aspect ratio of the cavity or pit is determined by the etching properties of
the atomic planes which, in turn, are function of the crystallographic
properties and orientation of the wafer, in particular, the greater the number
of atoms on a given plane, the slower its etching rate. To understand this
statement we explain the concept of Miller indices [28].

Process sequence

/ Etch Masks

Wafer

Etch Mask

Etch Mask

(b)

Figure 1-14. Sketch of bulk micromachined cavity. (a) From top to bottom of the figure, a
mask is deposited (top), then patterned to expose the wafer (middle), and then the wafer is
exposed to an etchant (bottom). (b) Cavity walls are delimited by the crystallographic planes
of the wafer.
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The arrangement and orientation of atoms in a crystalline solid is
specified with reference to certain directions, see Figure 1-15. Thus, with
respect to the origin of a Cartesian set of coordinates, the position of an atom
may be described as being

Crystal Directions
[001]

[010] ¢

[100] 7

Figure 1-15 Nomenclature of crystal directions.

[abc], that is, a units along the direction [001], b units along the direction
[010], and c units along the direction [001]. Since a plane may be described
by a vector perpendicular to it (its normal), the direction [abc] also describes
a plane, which is denoted the plane (abc), shown in Figure 1-16(a).

Crystal Plane
[001]
! (abc)

[010]
[100] k
h
(@) )
(100) R (110) R (111) >
> > 7

(b)

Figure 1-16. (a) Description of crystallographic plane by its normal (abc). (b) Description of
crystallographic planes of cubic (atoms occupy the corners and faces of a cube) crystal by
Miller indices.

Notice that, since a plane is described by three points common to it, the
points of intersection between a plane and the three coordinate axes may also
be used to denote it. In particular, see Figure 1-16(b), the points 4, /, and £,
along the coordinate axes [100], [010], and [001], respectively, might be
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used for this purpose. However, to accommodate the possibility that the
plane might be parallel to one of the coordinate axes, in which case the
intersection would occur at infinity, the reciprocals of these points of
intersection, (//h, 1/, 1/k), are used instead. Figure 1-16(b) shows examples
crystallographic planes and their corresponding of Miller indices [28] for a
cubic crystal such as silicon.

The fact that the aspect ratio of bulk micromachined structures is limited
by the natural inclination of the crystallographic planes making up the walls,
motivated the development of techniques to increase it. The sections below
address two of these.

1.2.2.3 Deep Reactive Ion Etching

The idea behind DRIE is to achieve high-aspect ratio trenches by
selectively enhancing the etch rate at the bottom of the trench, while
inhibiting the lateral etch rate. This is accomplished by combining a
sequence of plasma etching and polymerization steps [31], [32], see Figure
1-17(a).

Etch Oxidize Etch

(@)

(b)

Figure 1-17. Deep reactive ion etching (a) Etching/polymerization sequence. (b) Wall
scalloping.

During the plasma etching steps, as indicated previously, positive ions
resulting from the breakdown discharge of a gas above the silicon wafer,
bombard the silicon surface as they fall vertically towards the negatively
charged wafer. To achieve vertical selectivity, the sidewalls are protected by
a polymer (PR). Thus, this results in etching being primarily effected at the
bottom of the trench. Each etching step, which may result in a lateral etch of
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tenths of microns, is stopped after the maximum tolerated lateral etch is
produced. By repeating the passivation/etch sequence, trenches with overall
depths of up to several hundreds of microns have been demonstrated. The
process proceeds at room temperature, can produce selectivities of 200:1 in
standard PR masks, 300:1 in hard masks such as SiO2 and Si3N4, and

exhibits etching rates of 6um/sec [30]. As a result of this process, the

walls of the etched trenches exhibit a scalloping structure, see Figure 1-
17(b). The application of DRIE requires acquiring the DRIE equipment. An
alternative to DRIE for better than conventional bulk micromachining, but
not as expensive as DRIE, is presented next.

1.2.2.4 Single Crystal Silicon Reactive Etch and Metal (SCREAM)

Similar to DRIE, the single crystal silicon reactive etch and metal
(SCREAM 1) process effects bulk micromachining using plasma and
reactive ion etching (RIE) [33], see Fig. 1.18. The process, however,
employs standard tools, is self-aligned, employs one mask to define
structural elements and metal contacts, and employs a temperature below
300 °C. This low temperature capability makes it amenable for integration of
MEMS devices with very large scale integration (VLSI) technology [33].

ol NN o [§
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Figure 1-18. SCREAM 1 process flow. (a) Deposition and patterning of PECVD masking
oxide. (b) RIE of silicon with BCI;/Cl,. Typically 4-20 /L m deep. (c) Deposition of oxide
sidewall via PECVD, typically 0.3 & m thick. (d) Vertical etch of bottom oxide with CF,/O,
RIE. (e) Etch of silicon 3-5 £/ m beyond end of sidewall with Cl, RIE. (f) Isotropic RIE
release of structures with SF¢ RIE. (g) Sputtering deposition of aluminum metal. The device
shown is a beam, free to move left-right, and its corresponding parallel-plate capacitor. (4fter

(331

(2)
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1.2.3 Nanoetechnology Fabrication Elements

The elements of nanotechnology fabrication range from techniques to
produce two-dimensional patterns with deep-submicron/nanometer-scale
widths, to techniques to produce atomic-thick layers/multi-layers of various
material compositions, to techniques to precisely manipulate atomic-size
particles. These techniques, together with those presented previously,
constitute the arsenal at the core of NanoMEMS.

1.2.3.1 Electron Beam Lithography
Electron beam lithography utilizes electrons, instead of the projection of a

mask image illuminated by photons, to create directly the desired pattern on
the PR, Figure 1-19.
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Figure 1-19. Sketch of electron bean lithography system. (After [23].)

Since the wavelength of electron accelerated through a potential difference
Vis A(4)= 150/, an electron beam may be focused to a diameter of
0.01-0.5um, and resolutions of Inm are obtained. The electron beam is
focused and scanned either in a raster (sequential) fashion, or in a vector
fashion where the image field consists of independently
addressable/exposable pixels, Fig. 1-20.
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Figure 1-20. Electron-beam patterns. (a) Raster scan. (b) Vector scan.

The ultimate resolution of electron-beam lithography is not posed by beam
spot size, but by the so-called electron scattering and proximity effects,
Figures 1-21, 1-22.
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Figure 1-21. Sketch of electron scattering effects on PR-coated wafer substrate. (After [23].)

The former captures the fact that, in the course of penetrating the PR and
underlying substrate, the electron beam scatters and experiences a directional
change manifested as a spreading out of the beam, i.e., increase in its spot
size. The latter, in turn, captures the fact that some of the scattered electrons
are absorbed, not under the profile of the beam spot, but in areas adjacent to
it. Two more effects resulting from beam scattering produce width- and
proximity-dependent patterns, Figure 1-22.
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Figure 1-22. Intra- and inter-proximity effects due to electron scattering. (Affer [23].)

The intra-proximity effect reflects the fact that the PR area near the
center of the beam spot receives more energy, from adjacent points, than the
PR nearest to the circumference. Thus corners, like point 4, tend to be
underexposed. The inter-proximity effect, on the other hand, reflects the fact
that electrons intended to define one pattern scatter unto adjacent patterns,
thus extending the effective width of the adjacent pattern. Reflecting all
these factors, the highest resolution of electron beam lithography as
employed for nanoscale device fabrication is about 10nm, however, the slow
nature of writing the patterns one at a time, makes this technique expensive
and not amenable for mass production. Its main applications are in the
creation of masks and in nanotechnology research.

1.2.3.2 Soft Lithography

The conventional IC fabrication processes, and the approaches to MEMS
fabrication derived from them, have as their core step the photolithographic
definition of patterns on a planar substrate/wafer. Thus, as indicated
previously, their application to creating nanoscale devices becomes
prohibitively expensive, as the development of the concomitant light sources
and tools to create devices at these length scales is very expensive. This is of
chief import, not just for research purposes but, more importantly, for the
large scale production germane to commercial applications.

Soft lithography, the production of nanoscale devices by creating elastic
(soft) polymer masters that can then be used to print, mold, and emboss
nanoscale structures, is a technique which has been the subject of much
recent research for the inexpensive creation of nanoscale devices. The
technique relies on first making an elastic stamp, shown in Figure 1-23, and
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LIQUID PRECURSOR TO PDMS

e

MASTER
()
PDMS STAMP
f
PHOTORESIST
(b) (©)

Figure 1-23. Soft lithography—Making an elastic stamp. (a) A liquid precursor to
polydimethylsiloxane (PDMS) is poured over a bas-relief master produced by
photolithography or electron-beam lithography. (b) The liquid is cured into a rubbery solid
that matches the original pattern. (c) The PDMS stamp is peeled off the master. (Affer [34].)

appears to have been advanced by Whitesides [34], who applied it as an
extension of his work on the creation of channels and chambers for
microfluidic systems.

Printing is effected by inking the elastic stamp with a solution of organic
molecules called thiols, and pressing it against a thin film of gold that has
been deposited on a silicon wafer, Figure 1-24(a). Due to the nature of the
chemical interaction between the thiol molecules and the gold, the surface is
wetted with the thiols displaying a preferred orientation and creating a self-
assembled monolayer, Figure 1-24(b), which delineates the stamp’s pattern.
The feature size or minimum width of the pattern is of the order of 50nm
[34].
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Figure 1-24. Microcontact printing. (a) The elastic stamp (PDMS) is inked in thiols and then
pressed against the gold film previously deposited in the wafer. (b) The stamp is retracted,
transferring a pattern of self-assembled thiols. (After [34].)

Molding is effected by pressing the elastic stamp against a liquid polymer
on the wafer, shown in Figure 1-25, which causes the polymer to flow into

STAMP

LIQUID POLYMER

(a)

SOLIDIFIED POLYMER

(b)

Figure 1-25. Molding. (a) The elastic stamp is pressed against the deposited liquid polymer,
which flows into the recesses/channels of the mold. (b) Upon curing, the polymer solidifies
into the mold pattern. (4fter [34].)
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the stamp’s recesses. Then, upon curing the polymer, this solidifies
according to the stamp’s pattern. The feature size for patterns thus created
may be as small as 10 nm [34].

1.2.3.3 Molecular Beam Epitaxy

The engineering of modern semiconductor device structures relies on the
appropriate introduction and distribution of impurities via doping, together
with band-gap engineering to effect electron confinement along the direction
of transport [34-37]. This latter gives rise to devices in which tunneling
phenomena becomes manifest. The key to these types of structures is the
technique for depositing down to mono-atomic-thick layers called molecular
beam epitaxy (MBE). MBE underwent extensive progress during the 1990s
and is now a well established production technology [38].

The essentials of MBE for growing a given structure are depicted in
Figure 1-26.
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Figure 1-26. (a) Sketch of MBE system. The atomic sources may be either in the solid or the
gaseous states. (b) Sketch of layered atomic deposition. (Affer [38].)
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The system consists of a steel chamber which is equipped with pumps, to
create a very low pressure environment, typically about 10~ Torr, and a
growth chamber containing several vacuum furnaces, called effusion cells or
K-cells, from where a variety of atomic or molecular materials evaporate.
The target wafer, on which growth is to occur, is placed inside the chamber
where it is held at a high, controlled temperature and under high vacuum,
and rotated to achieve uniformity over the wafer.

Growth occurs when heating of the K-cells causes the various materials
in them to evaporate, thus forming atomic beams that land on the wafer
surface. The properties of the growing layers are controlled by a number of
parameters, particularly, K-cell temperature, which controls beam intensity
or atomic/molecular flux, and substrate temperature, which controls the
dynamics of the atoms once these reach the wafer surface, see Figure 1-
26(b). In particular, the arriving atoms evolve according to the following
competing mechanisms: 1) Immediate absorption to the surface, i.e., they
“stick” wherever they land; 2) Migration across the surface, i.e., move
around before coming to a resting place which may not preserve the
crystalline structure; 3) Incorporation into the crystal lattice; and 4) Thermal
desorption, i.e., they reevaporate from the surface. To achieve good
crystal quality, such a set of flux and substrate temperature parameters must
be discovered that the arriving atoms have sufficient energy to move to the
appropriate position on the surface, without re-evaporating, and be
incorporated on the crystal.

The MBE technique is very versatile in that it allows the composition of
the layers to be fine tuned. This is accomplished by equipping the K-cells
with shutters which, through computer control, can turn on or off each beam
according to precise timing sequence. The fact that growth is controlled by
computer, endows MBE with the ability to deliver even atom-thick layers, of
abrupt composition, in a reproducible and reliable fashion. This, in turn,
enables bandgap engineering, the use of the material band gap as a degree of
freedom to engineer device properties. In the InP HBT, an emitter with a
band gap greater than that of the base, permits high base doping, without
compromising current gain, by virtue of the reduction of hole current
injection into the emitter effected by the latter’s energy barrier. In the RTD,
a lower band gap region, a potential well, sandwiched between two large
band gap regions, barriers, allows preferential current conduction only when
the energy of conduction electrons coincides with the discrete energy state in
the potential well, thus giving rise to the creation of a current-voltage
characteristic exhibiting negative differential resistance. The fact that the
path length of electron transport through the device is very short, leads to
these devices exhibiting very high speeds of operation, e.g., hundreds of
GHz in the case of the HBT, and close to a THz in the case of the RTD.
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Figures 1-27(a) and (b) show the layer structures of MBE-grown
heterostructure bipolar transistor (HBT) and resonant tunneling diodes
(RTD), respectively.

100 nm GalnAs Contact n=1x10"%cm-3
70 nm AllnAs Emitter Contact n=1x10!°
120 nm AllnAs Emitter n=8x10!7
30 nm Compositional Grade n=8x10"7
10 nm GalnAs Spacer p=2x1018
60 nm GalnAs Base p=2x101
20 nm GalnAs Spacer p=5x1017
50 nm GalnAs Spacer n=1x10!7
750 nm InP Collector n=3x10!6
700 nm GalnAs Subcollector n=1x10"°
10 nm GalnAs Buffer Undoped
InP Substrate
(a)
GalnAs contact (n+=5E18) 2000A
GalnAs spacer (n=5E17) 250A
GalnAs spacer (und.) 15A
AlAs barrier 13A
GalnAs/InAs/GalnAs well 12A/30A/12A
AlAs barrier 13A
GalnAs spacer (und.) 15A
GalnAs spacer (n=1E17) 250A
GalnAs contact layer (n+=5E18) | 5000A
GalnAs buffer (und.) 100A
InP substrate (semi-insulating)
(b)

Figure 1-27. Layer description of MBE-grown devices. (a) InP double heterostructure bipolar
transistor (DHBT) [39]. (b) Resonant tunneling diode (RTD) [40].

1.2.3.4 Scanning Probe Microscopy

Progress in Nanotechnology has been intimately related to the invention
of a number of techniques for imaging and manipulating atoms/nanoparticles
at nanoscales. All of these techniques are based on a very fine tip (with
atomic resolution), and the nature of what is imaged or manipulated is a
function of the tip itself, i.e., whether it is conductive, insulating, magnetic,
non-magnetic, etc. Excellent review articles summarizing advances in
scanning probe microscopy has been published recently by Giessibl [41] and
Baski [42]. In this section we focus on two of the main such techniques,
namely: 1) The scanning tunneling microscope (STM); 2) The atomic force
microscope (AFM).
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1.2.3.4.1 Scanning Tunneling Microscope
In STM, a sharp metal tip is brought in very close proximity to a

conductive sample, typically to a distance within a few Angstroms, see
Figure 1-28 [16].

XYZ-Scanner

/ tunneling

Electrically conductive surface

TIP

SAMPLE
(b)

Figure 1-28. (a) Sketch of STM system. (b) Probe tip detail. The sample is held in ultra high
vacuum. (After [16].)

Then, when a bias voltage is applied between the tip and the conductive
sample, electrons tunnel quantum mechanically across the air gap to elicit a
tunneling current of a magnitude not exceeding several nA. Due to the
nature of the tunneling current /,, which obeys the equation
1,(z)=1,e7, where k. =~/2m®/h embodies the properties of the
tunneling electron (its mass m), and the work function of the tip material @,
with 7 being Planck’s constant, the tunneling current is a very sensitive
function of the tip-sample distance, z. Imaging, therefore, may be produced
in two modes: 1) Scanning the tip in the x-y plane while forcing it to remain
at a fix z-position. This, so called constant height mode, extracts sample
morphology/relief image from modulation of the tunneling current
magnitude as the variations in the sample relief change the tip-sample
distance. Thus, an image of /, (x, V,z= constant) is obtained; 2) Scanning
the tip in the x-y plane while adjusting the tip position z to keep the
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tunneling current constant. This is the called topography mode, and produces
an image of z(x, y, I, = constant).

STM tips are fabricated via chemical etching or mechanical grinding of
W, Pt-Ir, or pure Ir [41]. By using a magnetic probe tip the STM can be
made sensitive to the spin of the tunneling electrons. Besides the tip
sharpness and material properties, moving the tip with atomic scale
precision, to obtain atomic resolution image, necessitates the utilization of a
piezoelectric ceramic, whose extremely fine deformation is induced by an
applied voltage.

1.2.3.4.2 Atomic Force Microscopy

In AFM, Figure 1-29, a sharp tip is also brought very close to the sample
surface.

XYZ-Scanner

Nonconductive surface

SAMPLE
(a)

Cantilever beam+Tip

vl

FOrCes mmy, /

(b)

Figure 1-29. (a) Sketch of AFM system. (b) Probe detail. The sample may be held at ambient
conditions. (After [41].)
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However, unlike STM, no voltage is applied between the tip and the
sample. Instead of a tunneling current, the AFM detects the force elicited
between the tip and the sample. The tip is part of a force-sensing cantilever
beam so that, when the latter is raster-scanned over the sample, much like a
phonograph, surface height variations are detected by monitoring the
interference pattern produced by a laser beam reflecting off the cantilever
beam when the latter deflects/deforms.

The image of the sample is then extracted by relating the cantilever beam

deflection to the force required to produce it, Fig. F in turn, is related to
the tip-sample (TS) potential V, via its negative gradient,
F; =—0V,5/0z and is characterized by an effective spring constant

ks =—0F, [dz. F, may be attractive or repulsive, as it embodies a

variety of forces, each one varying differently with TS distance z, thus
making it a nonlinear force, see Figure 1-30.

FTS

—

N

Repulsive  Attractive

Figure 1-30. Sketch of AFM tip-sample force versus their separation z.

For instance, at distances under 1nm, short-range chemical forces are
operative which, for anisotropic chemical bonds, are best characterized by a

Stillinger-Weber potential, Vg, =V, +V, ~where both nearest neighbor

potential V , given in Eq. (1), and next nearest

P | _1
V(r )ZEbUn/‘{B(;J —(;J }e’/‘f—” for r<ad’, else V,(r)=0 (1)

potential Vgiven in Eq. (2), and (3) are considered.

Vnn( i’rj’rk)zEbondlh(rzj’rik79ijk)+h(rji’rjk’6ijk)+h(rki’rkj59ikj)J’ (2)

with
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(=) 2
rilo’—a ry|o’-a 1 ,
h(;:j,rik,@ik):ﬂe i/0"=a 1] (cos@jik +3) for 1, <ad’, else 0. (3)
The optimal parameters, in terms of experimental agreement for a silicon tip
on a silicon sample, was found by Stillinger and Weber to be as follows: A =
7.049556277, p =4, y=1.20, B =0.6022245584, q =0, A = 21.0, Eypuua =
34723 al,a=1.8,6'=2.0951 A,and 0=2""0".

Similarly, at distances under 100nm, long-range forces, namely, van der
Waals, electrostatic, and magnetic forces are operative. The van der Waals

forces, are characterized by a potential given by Eq. (4)
alez
Viw ==~ @)

For the tip-sample situation found in AFM, namely, a spherical tip with
radius R separated a distance z from a flat surface (where z is the effective
distance between the plane connecting the centers of the surface atoms and
the center of the closest tip atom) the van der Waals potential is given by
[42] Eq. (5)

HR
Viaw ==—, (5)
6z

where H is the Hamaker constant embodying the atomic polarizability and
density of the tip and sample material pair and, for the majority of solids and
interactions across vacuum, has a value of H =lel . For tip-sample
materials characterized by this value of Hamaker constant, and with a spherical
tip of radius R~100nm separated from flat sample by ~0.5nm, the respective
van der Waals potential and force are approximately -30eV and -10nN,
respectively.

When both the tip and the sample are conductive and at separations of
~100nm, they may also experience electrostatic forces, characterized by the
potential, Eq. (6) [42-45]:

e, RV?
Felectrostatic (Z) = _OT > (6)

where V is the electrostatic potential difference. Accordingly, a potential
difference V~1Volt, between a spherical tip of radius R~100nm a distance
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7~0.5nm from a flat surface, will experience a force ~-5.5nN.
Based on the method employed to extract F, and hence the surface
image, AFM operation is classified following three modes:

1) Contact Mode-Static AFM: In this mode the tip is in repulsion regime
and exerts a large normal and lateral force on the sample. The force applied
to the cantilever is kept constant during the scan by applying feedback, while
the z-displacement is measured yielding the surface topography. The main
drawback of this technique is that it can only be applied in certain cases,
namely, at low temperatures, due to the need to circumvent its low-
frequency noise and thermal expansion effects on resonance frequency [42].

2) Non-Contact Mode-Dynamic AFM: In this mode the cantilever is
mounted on an actuator which vibrates and, thus, excites it with amplitude

A

distance is such that operation is in the attractive regime. This may avoid
the force and noise problems of contact mode, but is subject to jump-to-
contact if the spring constant corresponding to the tip-sample potential

e and frequency f,. to oscillate above the sample. The tip-sample

overcomes that of the cantilever, i.e., if kK <k, , . The imaging signal is
derived from the change in cantilever amplitude and phase that result when
the tip approaches the sample. Since the excitation signal may consist of]
either fixed amplitude and fixed frequency, or fixed amplitude and varying
frequency, these two modes of operation are distinguished. The former is
called AM-AFM and, while this method does provide atomic resolution, the
fact that the time required to capture the tip-surface interaction
Ty = 2Q/ /o is proportional to the quality factor (Q) of the cantilever,

which may be tens of thousand, makes it relatively slow.

The latter mode, in which the amplitude is fixed, but the frequency is
varied, is called FM-AFM mode of operation. This mode also provides
atomic resolution, but it is much faster than AM-AFM because the tip-

surface interaction time is only 7,,, =1/ f; .

3) Intermittent Contact Mode-Dynamic AFM : In this mode the tip is
excited to oscillate above sample, also in the attractive regime, but it is made
to contact (“tap”) the sample for a short time during every cycle.

One of the key aspects of AFM is the design of the cantilever,
particularly, its spring constant and resonance frequency. These are given by
Egs. (7) and (8), respectively, for a beam of thickness t, width w, length L,
Young’s modulus E, and mass density p .
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3
k= Ewt3
4L

7, =0.162L2\/E )
Z\p

Accordingly, various aspects, which depend on the application, must be
considered in designing the cantilever. For example, in the static AFM
mode, the spring constant must be chosen so that the beam easily deflects in

response to the tip-sample force. Thus, for k,; between 10N/m and

100N/m, the rule is to choose k between 0.01N/m and ~5N/m, with typical
resonance frequencies of 2kHz.

On the other hand, for the dynamic AFM techniques it has been found
that, to avoid jump-to-contact, the product of the cantilever spring constant
and the vibration amplitude must exceed the maximum tip-sample attractive

force, i.e., kA > F¢™ . This means that there is a trade-off between
cantilever stiffness and excitation drive amplitude. In other words, the spring
force pulling the cantilever away from its point of closest proximity to the

sample, must overcome the maximum attraction force. A refined criterion to
avoid jump-to-contact and which assumes the possibility of a hysteretic

Fig (z) relationship is given by [45]:

(7

response

1 0
~kA® SAE.. = 9
2 Son ®)

where AE ¢ is the hysteresis energy supplied to the cantilever beam in each

vibration cycle. A typical set of k, A values for FM-AFM are

k=17N/m, A=34nm.

Typically, the AFM cantilevers are fabricated via Si or Quartz
micromachining, and the usual tip materials include Si integrated with beam,
W, Diamond, Fe, Co, Sm, CoSm permanent magnets, and Ir.
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1.2.3.5 Carbon Nanotubes

Carbon nanotubes are, perhaps, the quintessential element of
nanotechnology. Their discovery is the fruit of research, originally
conducted by Kroto and Smalley in 1985, with the aim of studying the laser
vaporization of graphite. Such studies elicited the discovery by them of
clusters containing 60 carbon atoms (Cg: Buckminsterfullerene), arranged in
a spherical structure, see Figure 1-31, [1].

Figure 1-31. Sketch of the chemical structure of Cgy: Buckminsterfullerene. (After [46].)

Continued research to increase the yield of these Cg clusters led Iijima to

Figure 1-32. (a) Sketch of the chemical structure of a single-wall carbon nanotube (SWNT).
(After [1].) (b) SEM of SWNT and MWNT. In a multi-walled nanotube, an inner SWNT
forms the core of multiple concentric nanotubes which grow around it. (Courtesy of Prof.
Laszl6 Forrd, Swiss Federal Institute of Technology (EPFL), Lausanne Switzerland).

CNTs are molecular carbon fibers that consist of graphite cylinders
closed at each end by caps containing six pentagonal rings, i.e., each cap is
exactly one-half of a Cgp molecular cluster [46]. They tend to be produced in
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three main modalities, namely, single-walled nanotubes (SWNTs), which
range in diameter from approximately 0.4nm to more than 3nm, multi-
walled nanotubes (MWNTs), which range in diameter from approximately
1.4nm to more than 100nm, and ropes, which are parallel stripes of SWNTs
stuck to each other. Their physical properties are astounding. With aspect
ratios of the order of 10-1000, they are several m (ropes up to cm) long,
possess a Young’s modulus, tensile strength, and density of ~1TPa (Steel:
0.2TPa), 45GPa (Steel: 2 GPa), and 1.33 ~ 1.4 g /cm’ (Al: 2.7 g/cm’). In
addition, their conductivity may be metallic or semiconducting, and they
have a current carrying capability of ~1TA/cm’ (Cu: 1GA/cm’). A
number of techniques are employed to produce CNTs, for instance, the arc
discharge, laser ablation and chemical vapor deposition methods. These
methods usually yield a random mixture of SWNTs, MWNTs, and ropes and
research is under way to determine techniques for the controlled growth of a
specific type of CNT. For instance, Li et al. [47] have reported the
development of a catalyst-based method that predominantly yields SWNT.
In this method, a silicon wafer is pre-patterned with alumina nanoparticles,
which serve as catalysts for their CVD growth, producing SWNTs with
diameter under 1.5nm.

The narrow diameter of CNTs makes them ideal candidates for
applications as SPM tips, as well as a number of devices, such as channels
for field effect transistors. Figure 1-33 shows the formation of CNT tips.

Anisotropic etch

>

Catalyst deposition

CVD nanotube growth

o
>

Figure 1-33. Formation of AFM tips via CNT growth. (After [48].)

1.2.3.6 Nanomanipulation

The ultimate degree of control in nanofabrication, is embodied in the
ability to manipulate individual atoms/nanoparticles with precision. This is
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accomplished by two techniques, namely, exploiting AFM to push particles,
and DIP-Pen lithography.

1.2.3.6.1 AFM-based Nanomanipulation

In this technique, an oscillating AFM tip is brought close to a particle
until, as a result of jump-to-contact, the oscillation amplitude goes to zero.
The AFM approaches the nanoparticle via a fast X-Y scanning oscillation, in
a plane perpendicular to the desired pushing direction, z, see Figure 1-34.
Once contact of the AFM with the nanoparticle is established, motion
proceeds in the z-direction at a slow scan rate.

Trajec}y of Tip in X,Y

Pushing Direction

)

Fast Scan

Slow Scan
————————

Figure 1-34. Pushing a nanoparticle with AFM. (After [49].)
1.2.3.6.2 DIP-Pen Lithography

In this technique, developed by Mirkin’s group [50], see Fig. 1-35, and
AFM Tip - l

Writing
Molecular Direction
Transport

Water

R

Solid Substrate

Figure 1-35. Close-up of inked AFM tip as molecules flow down the tip via water meniscus.

(After [50].)
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reminiscent of a goose-feather pen, a molecular “ink” is deposited over a
gold surface according to a desired pattern. In one demonstration of the
technique, an AFM tip was coated with a thin film of thiol molecules (the
“ink™) and moved two-dimensionally so as to inscribe the underlying gold
surface.

Since the thiol molecules can only attach to the gold surface in one
particular orientation, a self-assembled monolayer of them, embodying the
desired “writing,” results. A variety of “inks” may be employed and, in
terms of line width capability, lines a few-nanometers wide have been
demonstrated.

1.3 Summary

In this chapter we have introduced the broad field of
nanoelectromechanical systems. In particular, we have traced its origins,
motivation, and presented a unified survey of its distinctive characteristic,
namely, the convergence of fabrication techniques, from conventional IC
fabrication, to microelectromechanical systems fabrication, to nanoscale
fabrication. In the next chapter, we address the fundamental physics on
which devices, circuits and systems exploiting the NanoMEMS fabrication
methods may be predicated.
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NANOMEMS PHYSICS: QUANTUM WAVE-
PARTICLE PHENOMENA

2.1 Introduction

As discussed in Chapter 1, NanoMEMS aims at exploiting the convergence
between nanotechnology and microelectromechanical systems (MEMS) brought
about by advances in the ability to fabricate nanometer-scale electronic and
mechanical device structures. This novel paradigm, in turn, poses an interesting
challenge from the device physics point of view. In particular, the invention and/or
discovery of a plethora of new materials, concepts and techniques such as carbon
nanotubes (CNTs) [17], photonic band-gap crystals (PBCs) [51], and MEMS [52-
55], respectively, has opened up new possibilities to implement novel devices upon
which a new “electronics” technology, with attributes that are far superior to
everything known to date, may be predicated. With the simultaneous convergence
and exploitability, at such small length scales (e.g., down to a few nanometers), of
various types of physical properties and effects, for instance, electronic, mechanical,
optical, and magnetic and quantum effects, the nature of the concomitant new
universe of devices and circuits that will fuel this new electronics will clearly be
vast, yet, it is at present mostly unknown. In this context, many domains of physics,
not usually invoked in describing the behavior of prior-art devices, become
simultaneously pertinent. Such elements include [56], the manifestation of charge
discreteness, the quantum electrodynamical (QED) Casimir effect, quantized heat
flow, manifestation of the wave nature of electrons, quantum information theory,
computing and communications, wave behavior in periodic and non-periodic media,
and quantum squeezing. In this chapter, and the following, we expose fundamental
knowledge required to analyze devices exploiting these phenomena.
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2.2 Manifestation of Charge Discreteness

2.2.1 Effects of Charge Discreteness in Transmission Lines

The most fundamental element in circuits and systems is the interconnect
or transmission line (TL). TLs play an essential role in configuring circuits
and systems at all length scales [56]. Ideally, TLs are the medium through
which signals propagate, from one point to another, with no effect on the
signals, except a frequency-independent delay. Figure 2-1 shows a sketch of
a microstrip TL, a commonly used TL in integrated circuits. It consists of a

metallic stripe of width w and thickness 7 , patterned on a dielectric

substrate of thickness / and dielectric constant £, , with the substrate resting
on a metallic ground plane.

e

1
T 1 ESignal er

]
S S

Figure 2-1 Sketch of microstrip transmission line.

From an electromagnetics perspective, the TL’s qualitative operation is
simple [57]. The signal of interest is impressed at its input, by way of its

equivalent electric field E between the metallic stripe and the ground

Signal
plane, and it elicits a propagating quasi-TEM electromagnetic wave which is
guided in the dielectric substrate region between the stripe and the ground
plane. A current /, flowing in one direction in the stripe, and in the opposite
direction in the ground plane, embodies the boundary conditions necessary
to sustain the propagating wave in the substrate, as per Maxwell’s equations
[57], and the magnitudes of the magnetic and electric fields stored along the
line give rise to an inductance per unit length, L, and a capacitance per unit
length, C, whose ratio is captured in the so-called characteristic impedance

of the line, given by Z, =4/L/C. TLs are usually designed to have
Z, =500, which results if, for example, h=635um, w=635um,
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t,=2um, and £ =9.8. Under these conditions of a metal stripe of

relatively  large  dimensions with respect to a Bohr radius,
25=0.592A=0.0592nm, the current / may be construed as consisting of an
ensemble of freely-propagating electrons, each characterized by a plane

ikz

wave-like wave function W ~ e™, with continuous energy E =h’k’ / 2m*,

where 7 is Planck’s constant, k = 2ﬂ/ A is the wave vector, A the electron

wavelength, and m* the effective mass [58].

Assuming a lossless TL, its circuit behavior may be represented as a
tandem connection of a number of finite-length cells, each cell consisting of
a length Az of its inductance, L, and capacitance, C, per unit length, see
Figure 2-2(a) [56].
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k k k
qi1 q; qi+1

(b)

Figure 2-2. (a) Model of ideal transmission line. (b) Model of monatomic linear chain.

Thus, the propagation of a signal from a source towards a load, down a TL,
can be visualized as an advancing tide of charge fluid charging the
successive cells until the load is reached.

Enter nanotechnology. In concert with exploiting the ability to pattern
nanoscale circuits, it is expected that TLs with stripes of nanoscale and sub-
nanoscale widths and thicknesses will be prominent. In this context, electron
currents will be transported down very narrow and thin metallic wires, so
narrow and thin, in fact, that their dimensions may stop at only tens of Bohr
radii. This means that the electrons involved will not only experience
quantum mechanical confinement, i.e., that their energy will become
quantized and given by [58], [59]:
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but also, that their discrete nature will be manifest. This latter feature
becomes operative when the system size along a transport dimension
becomes of the order of the carrier inelastic coherence length, and it implies
that, in addition to the quantum mechanical energy of confinement of Eq.
(1), the Coulomb charging energy required for adding or removing an

electron, E, =¢° /Ll. where L, is a characteristic length in direction i,
must be taken into account [58-62]. One must then turn to quantum
mechanics to properly describe the TL behavior.

The observation [61]-[63], that the charge ¢ in successive cells, and the
total energy, obey equations (2) and (3),

d’q, 1
L i’ :E(qiﬂ—'—qi—l_zqi) (2)

HIZLL%:L(Q -q,) 3)
—| 20\ dr 20 T

whose forms are identical to the equations describing the longitudinal
vibration modes in a monatomic linear chain (MLC) [64] (see Appendix A),
Figure 2(b), motivated the application of the quantum mechanical
description of the latter to the TL. In particular, in (3), the first and second
terms account for the magnetic and electric energies in the TL inductors and

dk
capacitors, respectively, and p =L 761 and g play the roles of “momentum”
t

and “coordinate,” respectively. Notice, however, that since ¢ is charge, p
represents electric current.

The above TL quantization assumed the electric charge ¢ to be a
continuous variable. As has been observed [59], however, under appropriate
circumstances, e.g., system size close to the inelastic coherence length, the
particle (or discrete) nature of electrons becomes evident. Li [61] considered
the consequences of this possibility and, accordingly, advanced a theory for
TL quantization assuming ¢ to be discrete.

The possibility of having the charge adopt exclusively discrete values,
was introduced [61] by imposing the condition that the eigenvalues of the
charge operator ¢ be discrete, i.e.,
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ila >=nq |g> @)
In other words, the result of measuring the charge in the TL must be # times
the fundamental electron charge, g., where n is a positive integer. Since,
from a comparison with the MLC description, charge adopts the role of a
“coordinate” operator in the quantized Hamiltonian, the form of the
corresponding “momentum” operator p , and in particular,

L (rnaY ., 09
B N 5
d (iaqj dgq’ ®

must reflect this new situation. This is accomplished by replacing the partial
derivative by its finite-difference approximation in charge coordinate space
[65],i.e.,

Oy _ym+1)-2y(n)+y(n-1)
g’ q.

(6)

where ¢, is the fundamental unit discretizing the charge “axis” and ¥ is the

electron wavefunction in the charge representation. Assuming the line is
driven by a voltage source V, Schrodinger’s for the TL is given by Eq.(7)
[61, 62]:

h’ 5
- 2q2L {l//nﬂ -2y, +v,, }+ {Z_C"'QV}'//n =&y, @)
or, using Eq. (4):
72 anz
_2q2L {W”+1_2Wn+Wn—l}+{ 0C +qun l//n =8y/n' (8)

Imposing charge discreteness, thus, turns Schrédinger’s equation for a TL
into a discrete, instead of a partial, differential equation.

The implications of charge discreteness are gauged from the nature of the
corresponding eigenvalues and eigenvectors for this equation. Obtaining
these becomes more transparent upon developing the quantum theory of
mesoscopic TLs [61, 62], which we outline below following Li [61].
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With ¢ as the charge operator, instead of the conventional spatial
coordinate, the corresponding conjugate variable is taken as p , which then

represents the current operator, instead of the usual momentum operator. The
quantum mechanics of the TL then evolves from (8) and the commutation
relation:

g, p]=in. 9)

The fact that the eigenstates of ¢ must be specified by an integer, n, allows

two consecutive states to be related to one another by the application of a

shift operator, in particular, Q ="' By expanding the exponential, and
using (4) and (9), this shift operator may be shown to obey the

commutation relations:

6,0]=—4.0 (10)
4,07 |=4,0° (1)
0'0=00" =1. (12)

The shift operator, when applied to the number eigenstates defined by,

c}‘n >=nq,|n >, produces the following new states:
Otln>=e"|n+1> (13)
Q‘n >=e'™|n-1> (14)

where «,s are undetermined phases. Therefore, (13) and (14) lead to the

interpretation of the shifter operators QO and O as ladder operators that

increase and decrease the charge of the charge operator in its diagonal
representation.

The quantization apparatus is completed when the completeness and
orthogonality relations, and the inner product are stipulated, in this case as
given by (15)-(17), respectively,

> |n><n=1, (15)
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< n|m >=0, , (16)

< ¢|l// >= ZneZ < ¢|’/Z >< n|l’// >=ZHEZ ¢* (n)l//(n) ’ (17)

where » belongs to the set of non-negative integers Z.

These relationships permit obtaining the fundamental quantum
mechanical properties of the TL, namely, the eigenfunctions of the
“momentum” operator p, i.e., the nature of the current, and the energy

spectrum.

Assuming  the usual relations  [53], 15‘ p>= p| p> and
f( f?)‘ p>=f( p)| p >, Li[62] expands the momentum states in terms of the

number states, ‘ p>= z ( p)|n > together with the shifting operation

neZ n
é| p >=ell'" | P>, to obtain the relationship

Cpu[Cy = exp(ig, p/h+ia,, ). This, in tumn, yields the momentum
expansion in terms of the number states as,

_ inq,p/h
‘p >= neZ K"’e |’/Z > (18)

n n
e S,

where K, =e’" and kK ,=e '  for n>0. Making the substitution
p—p +h(27z/ qe) in the exponential of (18) yields the same state |p >,

from where it is determined that the momentum operator p is periodic.

Further progress towards obtaining the eigenstates and dispersion is attained
by noticing that, if one defines new discrete derivative operators by:

_yn+1)—y(n)

V, yln)="——"—""=, (19)
q.
vqe y/(n) = M s (20)

then Schrédinger’s equation (8), may be expressed as:

h2 - éZ
_ {{V% -V, }+ {f + Vé}}y/ =ey, 1)

2¢2L
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from where a momentum operator P, given by:

P=2v, +V,)=5—0-0"), (2)
i 2iq,

may be defined. This new momentum operator is related to p in that

p=1lmP.
q,—0

2.2.1.1 Inductive Transmission Line Behavior
Inductive behavior is displayed by the so-called pure L-design, in which

the TL is considered to have very narrow width (high impedance). Its
mathematical description is given by:

A f? _
fy==3/1 v, -v. 1 (23)

where the terms involving the line capacitance is neglected and the driving
voltage is set to zero. With this definition, and taking into account the
iq.p/h

relationship §| p >=e | p >, the following relationships are obtained:

Plp >= Esin(%) p>, (24)
and
H p>= h 1—cosM |p> (25)
Tl h ’

These are the desired momentum eigenstates and the energy spectrum. What
is clear from (24) is that the current in a mesoscopic inductive line, given by

I= 13/ L, is periodic, becomes zero whenever p =27h/q, ; g, #0,and
that it is bounded by (= 7%/q,L,%/q,L). Similarly, from (25) it is determined
that the lowest energy state is degenerate at p = nh/ q, .
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Another peculiarity of mesoscopic TLs is the nature of their energy
spectrum when formed into a ring in the presence of a magnetic flux ¢. In
this case, Schrodinger’s becomes,

hZ
- 2q:L

{qu —qu}wzel//, (26)

where D ) and Dq are discrete derivatives that remain covariant in the

presence of the magnetic flux ¢ and are defined by Li [61] as,

.
_ﬂ¢§_eh g o h o —OF
— h S — . — ——
D, =e ; D, =e? . 27

9e 9.

Applying the Hamiltonian in (26) to the eigenstate | p >, the energy

eigenvalues are obtained as,

e(p,9)= @smz(‘zf; (p- ¢)j, (28)

e

where @ is the magnetic flux threading the TL. Thus, (28) implies that when
the discrete nature of charge is at play, the TL energy becomes a periodic

. . . . 2h .
function of p or ¢, with maximum amplitude — and nulls occurring

whenever p=¢+n h/ q, . Furthermore, it has also been shown that the TL

current is given by,

_ho 4
I(¢)_qe 7 Sln( ; ¢j, (29)

which implies that it becomes an oscillatory function of the magnetic flux.
Since no applied forcing function was assumed, (29) leads to the important
observation [62] that a TL in the discrete charge regime will, in the presence
of a magnetic flux, exhibit persistent currents [59]. These are currents
without dissipation, such as the atomic orbital currents that elicit orbital
magnetism.
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2.2.1.2 Capacitive Transmission Line Behavior

In this design the TL is capacitive (low-impedance) and the first
bracketed term in (21) is neglected and the Schrédinger equation is given by,

h2 62
— —+Vqgw=¢ 30
2q§L{2C Q}‘/f v, (30)

In this case, the Hamiltonian operator commutes with the charge operator
g , and consequently [60], they have simultaneous eigenstates. In particular,

the energy of the state |n > is given by [67],

1 2 C 2
=— -CV) ——V=, 31
£ 2C(nqe ) 5 (1)

where » is the number of elemental charges describing the TL state. Thus,
(31) implies that when the discrete nature of charge is at play in a low-
impedance line, the TL energy is a quadratic function of the state n of
charges.

An interesting phenomena is predicted for the current flow. In particular,
as the applied voltage increases, the TL charge can only increase in discrete

steps which are a multiple of ¢q,. Since the voltage required to cause this
charge to be injected into the TL is g, / C, it can be said that the voltage

axis is quantized in units of g, / C . Thus, the total charge of a line in the
ground state is given by [67],

cEbpffel b bl o

where u(z) is the unit step function. Consequently, by taking the time
derivative of (32), one obtains the corresponding current as,

- 1)q, dV
=% z S PR E N P P . (33)

dt iz 2)C 2 C dt
Eqn. (33) indicates that the current exhibits a series of delta-function
impulses with periodicity g, / C, consistent with every time a single electron
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charge is added, and amplitude proportional to the slope of the voltage
source. This leads to the important observation [67] that a low-impedance
ideal TL in the discrete charge regime will exhibit current flow dominated
by Coulomb blockade.

Clearly, as limiting cases, typifying the behavior of ideal high- and low-
impedance TLs in the discrete charge regime, the phenomena of persistent
currents and Coulomb blockade-type current flow, respectively, raise serious
questions in the context of achieving low-noise analog and reliable digital
circuits and systems at nanometric-length scales. As a result, complete
awareness of the possibility that these features might be inadvertently
included in the design space must be incorporated in TL/interconnect models
utilized in the design and analysis of future NanoMEMS.

2.2.2 Effects of Charge Discreteness in Electrostatic Actuation

One of the distinguishing features of NanoMEMS is the inclusion of
functions based on mechanical structures that can be actuated. For a variety
of reasons, in particular, its compatibility with IC processes, electrostatic
actuation is the actuation mechanism of choice for these devices [48], and is
the one on which we focus our attention next.

2.2.2.1 Fundamental Electrostatic Actuation

Perhaps the most fundamental electrostatically-actuated elements/building
blocks are the singly-(cantilever) and doubly-anchored beams [52], Figure 3.

r t

(a) L > g

77
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s

(b)
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Substrate
(b)

Figure 2-3. (a) Cantilever beam. (b) Doubly-anchored beam.
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The devices are essentially parallel-plate capacitors, of nominal plate
separation g, in which the top plate (beam) is free to move in response to

an electrostatic force developed between it and the rigid bottom plate, as a
result of a voltage applied between the two.

2.2.2.1.1 Large-signal Actuation—Switch

For typical dimensions employed in MEMS [48], e.g., beam gaps, lengths,
widths, and thicknesses of about 2um, 100—250um, 10's of um, and
1-10um , respectively, the displacement behavior of the beams, which
manifests itself as continuous gap reduction versus applied voltage, is
dictated by the equilibrium F,,,,, + F,.,, =0 established between the

. . 1 g4V’
quadratic electrostatic force , Fe,m == >
2 (g otz )

z, (Hooke’s law) which attempts to bring the beam

and the linear spring

force, F,,, =—k

back to its undeflected position. This dynamic equilibrium, and its
accompanying smooth displacement, is maintained up to about one-third of
the beam-to-substrate distance, at which point it is lost and the beam
collapses onto the bottom plate, abruptly reducing the gap to zero. The
voltage demarcating these two regimes is called pull-in voltage and is given
by [49],

Beam

VPull—in =

(34)

where k is the spring constant of the beam, and 4 is the electrode area.

Beam

2.2.2.1.2 Small-signal Actuation—Resonator

For application as resonators [54], an AC voltage, together with a so-
called DC polarization voltage, introduced to enhance the current elicited by
the variable beam capacitance, are applied. Since the resonators are intended
for application as stable frequency standards, with frequency given by [18],

E h
fr,nom :103K ;_2a

r

(35)
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where K is a scaling factor that models the effects of surface topography,
including for instance, the anchor step-up and its corresponding finite
elasticity, £ is the Young’s modulus of the beam material, p its density, 4

its thickness and L, its length, the combined amplitude of AC and DC

voltages is chosen to be lower than pull-in, thus keeping the beam from
collapsing.

2.2.2.2 Coulomb Blockade

The phenomenon of Coulomb blockade [68, 69] refers to the fact that
under certain conditions, namely, when junctions are defined whose

capacitance is of the order of C ~107"F or less, the energy required to
increase the charge by one electron is not negligible with respect to
temperature. For example [68], Figure 2.3 shows that, while a neutral
metallic island, such as the plates of a capacitor, emits no electric field and,
thus, allows the unimpeded approach of an electron, once this electron
becomes part of the island it emits an electric field that may prevent the
addition of more electrons.

_qE
-q -q
o .{/
o=0
¢ 1 1 (¢g) 14
E < =—C‘I/2 —t —_ = —
_I]_ Gugre 9 26[(:) 2C

(b)

Figure 2-4. (a) Charging Coulomb island. (a) Charging energy of small capacitor.

At this point, the island blocks such an addition of extra charge. For a
junction capacitance of C ~ 107" F , the minimum voltage required to add a
charge q is q / C, thus the charging energy is
E.= q2/2C =1.283x107J , which is close to the thermal energy at 1K.

If the capacitance were smaller, e.g., C ~ 6.2x107*F | such as might be
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typical for nanoparticles, then the charging energy would be close to the
thermal energy at 300K. The implication of this is that it may be impossible
to continuously inject charges into the capacitor when the charging energy
exceeds the ambient temperature. Rather, for an increasing applied voltage, a
charging event only occurs every time its magnitude exceeds the charging
energy of an electron; one enters the Coulomb blockade regime and the
current into the capacitor becomes pulse-like. The situation is illustrated in
Figure 2-4 with respect to the so-called single-electron box [69].

Tunnel
Barrier

O=-nq Gate

Source Electrode
Electrode
VG
Small CO
Island
(@)
Tunnel
Barrier
Gate

9.9

Source +] Electrode
Electrode - +
+ VG
Small -q,
Island
(b)

©

Figure 2-5. Voltage-controlled electron injection into metallic island. (a) Vg=0. (b) Vg>Vc.
(c) Circuit model (After [68], [ 69].)
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A voltage source Vg is connected through a small capacitor Cy, to a small
metallic island that rests over a tunnel barrier which, in turn, is in contact
with an electron reservoir. The capacitance of the tunnel barrier is denoted
C;, and the distance between the gate electrode and the small island, defining
Cy, is such that tunneling is suppressed [69]. With Vg=0, the system is
neutral; the small island containing » positive charges ¢, which are
neutralized by an equal amount of negative charges -ng, Figure 2-24(a).
When the gate voltage increases, the number of electrons in the small island
may change by amounts g, = C V, Figure 2-4(b). In particular, the field

induced by the gate causes an uncompensated charge ng to appear on the
island. The capacitance “seen” by the island is Cy+C;. Therefore, the

charging energy accompanying the injection of a charge g, = C,V; is,

_(ng—q.) G6)
©o2c, +Cy)

It is noticed that, while the external charge g, is continuous, the island

charge may only increase in discrete steps of value g. Therefore, the island
charge is a step-like function of the gate voltage. As a function of
temperature, the average number of electrons in the island is given by [68]
(37), Figure 2-5.

Z ne—EC/kBT

(m)="2——
Ze—EC/kET

(37

2
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£ 2 1 / 0 1 2
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Injected External Charge, 4,=C,V (Electrons)

Figure 2-6. Average island charge versus injected charge. (After [69].)
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2.2.3 Single-Electron Tunneling

Upon the island being populated by the injected charge, the charge
tunnels through C; and diffuses to the leads in a characteristic time 7 given
by the uncertainty principle (38) [69].

E.>—, (38)

S | >

If the bias Vg causes the injection of a charge g every 7 seconds, then a
current of magnitude / = ¢ /7 is set up, Figure 2-7.

Figure 2-7. Single-electron tunneling schematic.

However, if this time is too short, then the current would appear to be
continuous, as opposed to pulse-like. In this case, no discrete, single-electron
tunneling event is observed. To observe single-electron tunneling, the
characteristic time must exceed the product of the capacitance times the lead
resistance, 7 > RC, a condition which leads to a minimum value for lead
resistance, Eq. (38).

2n

2

q

R> (3%

Notice that transport is occurring through a tunneling junction.

2.2.3.1 Quantum Dots

Quantum Dots (QDs) are structures in which electrons are confined in all
three dimensions [59]. These structures include both gated layered structures
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grown by MBE, and metal and semiconductor nanoparticles up to several
nanometers, e.g., ~1-6 nm, in size. Because of their small size, which is

comparable to that of the Bohr exciton, a, =8-h2/ m_ e, electron

energy levels in QDs are quantized. Electron transport through a QD is
mediated by tunnel barriers, see Fig. 2-8, and is effected via a series of
individual tunneling events across the barriers.

Energy

Barrier DOT Barrier

7 7 O
//’ -0 v
e
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c, T, QD Cg,T'r
e
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0
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e : O
\ Vg
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Figure 2-8. (a) Sketch of quantum dot energy level diagram. The continuous line denotes
equilibrium, while the dashed line denotes reflects an applied voltage, V. The dashed arrow
denotes suppressed current due to Coulomb blockade by QD electrons. (b) Equivalent circuit
of QD.

The tunneling rate across the barriers is characterized by the change in free
energy, A, resulting from the tunneling event, and the tunnel resistance, R

(R, >>h/e?), and is given by [70], [71] Eq. (39).

= . (39)
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In general, the tunneling rate will depend on the number of available (empty)
states within the QD. If I'; is the tunneling rate into level f'in the QD, g, is

the degeneracy factor, m; is the number of electrons already occupying the

level, and F(g)= 1/ (1+exp(e/k,T)) is the Fermi function, then the total
tunneling rate is given by,

F(gg = zrf : (gf —m; )F<81?D - A)’ (40)
R

where the initial and final electron energies are related by, €/° =¢3” — A,

eiF ® being the initial electron energy [232], [233]. Notice that, at small bias

voltages, the occupancy of QD states precludes tunneling due to Coulomb
blockade.

2.2.4 Quantized Electrostatic Actuation

In contrast to conventional electrostatically-actuated MEM devices,
which exhibit continuous displacement versus bias behavior prior to pull-in,
the advent of precision nanoelectromechanical fabrication technology [72]
and carbon nanotube synthesis [17] has enabled access to beams with
dimensional features (gaps, lengths, widths, and thicknesses) of the order of
several hundred nanometers in which conditions for the manifestation of
charge discreteness become also evident. In fact, recent [73] theoretical
studies of suspended (doubly anchored/clamped) carbon nanotubes (CNTSs)
in which Coulomb blockade dominates current transport have predicted that
charge quantization in the CNTs will result in quantization of their
displacement.

Specifically, Sapmaz, et al. [73] considered a single-wall nanotube
(SWNT) modeled as a rod of radius 7, and length L, and separated by a gap

g, over a bottom electrode, Fig. 2-9.

Figure 2-9. Schematic of suspended CNT as doubly anchored beam.
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They described its behavior as follows. As the actuation voltage, V,

applied between the CNT and the bottom electrode increases, the beam
bends downwards causing the applied electrostatic energy to be converted
into elastic deformation energy, given by,

Ui l2(0)]= dx{ +5 } (41)

where E and [ = 7r* / 4 are the CNT Young’s modulus and moment of
inertia, respectively, and T=T o t T is total stress, comprised of the

residual stress, T, and the stress induced by V;, which is given by,

7= g, s=nm. (42)
2L

Since, ignoring residual stress, the beam elastic energy must correspond
to the electrostatic energy that induced it, the total energy the state of
deformed the beam arrives at is that at which the sum of elastic and
electrostatic energies is a minimum. In the Coulomb blockade regime,
however, as the bias voltage V is raised, a discrete number of charges, ng,
populates the suspended CNT. Thus, the electrostatic energy must include
this contribution, in addition to the actuation voltage (V )-induced

deformation. Taking both electrostatic energy sources, into account, Sapmaz,
et al. [73] approximated the total electrostatic energy by,

(ng)’ (na) lnzf (nq)’
UElectrostatic(Z ('x )) = —nq V;r' =

2C,(2) L 'R

f z(x)dx (43)

then, minimizing the total energy with respect to z, the following equation
for the CNT bending was obtained,

2
I (nq)

IEz" -Tz"=F, =——. (44)
" 'R

where F| is the electrostatic for per unit length. The bending of the doubly-

anchored CNT, with the boundary conditions
z(0)=z(L)=z'(0)=z"(L) =0 was given as,
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ﬂ(cosh@ —1)-

F.L hé&l -1 T
)= coshel : = (45)
sinh§x+§x—§xf

Finally, the effects of charge discreteness are manifest upon examining
the maximum displacement as a function of actuation voltage, and given by
(45) and (46).

2 52 5
E
Z e =0.013 M, T<< E—f (n << %} (462)
Erg, L q L
2/3 72/3 5
E
. =0.24(”")—L”3, T>>E—2[ n>> =80 (46b)
E1/3r2g0 L q’L
V.L
n=inf —cE L Lis) (47)
2rin(2g,/r) 2

For a given applied voltage, (47) gives the value of » that minimizes the total
energy, where on is a small correction. Clearly, (45)-(47) reveal that the
beam displacement is quantized, i.e., its position changes in discrete steps
every time an electron tunnels into it.

2.3 Manifestation of Quantum Electrodynamical Forces

When the proximity between material objects becomes of the order of
several nanometers, a regime is entered in which forces that are quantum
mechanical in nature [74-76], namely, van der Waals and Casimir forces,
become operative. These forces supplement, for instance, the electrostatic
force in countering Hooke’s law to determine the beam actuation behavior.
They also may be responsible for stiction [77], i.e., causing close by
elements to adhere together and, thus, may profoundly change actuation
dynamics.

2.3.1 van der Waals Force

van der Waals forces, of electromagnetic and quantum mechanical origin,
are responsible for intermolecular attraction and repulsion. When adjacent
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materials [78] are separated by distances R>>r, where r is the atomic radius,
the wave functions decay exponentially and no bonding forces are operative.
At these distances, each molecule (atom) may be characterized as a dipole
antenna emitting a fluctuating field with a frequency distribution
characterized by an average frequency @ . For distances, R, smaller than the

. . =~ Ro .
average emitted wavelength, i.e., R <A or —— << 1, the emitted fields are
c
reactive in nature, i.e., they vary with distance as E o< l/ R’ . Therefore,
with reference to two emitting molecules (atoms), separated a distance R and
endowed with dipole operators < d, >= aF ,, the van der Waals interaction

energy between them derives from the self-consistent field induction at each
others’ site. In particular, atom 1 induces a field at the site of atom 2 given

by, E i (2) = c:’l / R’ , which, in turn, induces a dipole at the site of atom 2
given by, c?é"d =a, (a)) aA’1 / R’ | where a, ((U) is the polarizability at the
site of atom 2. Similarly, the induced dipole at atom 2 induces a field at the

A A

. d d
site of atom 1 given by, EJ (l)zR—ZSzO(2 ((())R—l6 Thus, the average
ground state dipole energy of atom 1 is given by [78],
7k ~ o s 7k
U,(R)=<d, -E >=R—f,)<a'l -d, > and is a function of its average

dipole fluctuation. The signature of van der Waals forces is the
F :dedW/a’Rocl/R7 distance dependence.

For calculations, Desquesnes, Rotkin, and Aluru [79] have modeled the
van der Waals energy by the expression,

nn2
U B)=| ] =% ARG (48)

where V, and V, embody two domains of integration of the adjacent
materials, 7, and », are the densities of atoms pertaining to the domains
V, and V,, R(V,,V,) is the distance between any point in ¥; and V,,

and C;, with units [eVA6], is a constant characterizing the interaction

between atoms in materials 1 and 2. While a good first step for modeling
purposes, the exclusively pair wise nature of the contributions embodied by
(46) may not be accurate enough for tube geometry since it is known [80]
that, in exact calculations, one needs to consider three-particle, four-particle,
etc interactions, or equivalently multi-pole interactions. These multiple
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interactions must be included to improve modeling results. Nevertheless,
applied to a SWNT beam of diameter » and suspended by a gap R, they
obtained the van der Waals energy per unit length of the CNT as,

\4

L 2((R+r)2 —r2)7/2

U Coolm’r(r+ R)(3r2 +2(R+r) )

; (49)

where o =38nm™ is the atomic surface density, L is the CNT length. The
corresponding van der Waals force is given by,

d( UVdWJ
F.-LJ

vdW
dR . (50)
_ —c,orRR+21))-(8RY +32R*r+72R* +80RY +35°)
2R’(R+2r)

As mentioned previously, the van der Waals force is one contributor to
the phenomenon of stiction. Thus, its prominence must be accounted for in
the design of advanced structures, e.g., nanoelectromechanical frequency
tuning systems [54] based on quantum gears [81], as estimates of its
magnitude are useful in designing against it [18, 82].

2.3.2 Casimir Force

The Casimir force arises from the polarization of adjacent material
bodies, separated by distances of less than a few microns, as a result of
quantum-mechanical fluctuations in the electromagnetic field permeating the
free space between them [74-77]. It may also arise if vacuum fluctuations are
a classical real electromagnetic field [83]. The force may be computed as
retarded van der Waals forces or as due to changes in the boundary
conditions of vacuum fluctuations; these are equivalent viewpoints as far as
it is known [80].

When the material bodies are parallel conducting plates, separated by
free space, the Casimir force is attractive [74], however, in general whether
the force is attractive or repulsive [82], [84] depends on both the boundary
conditions, including specific geometrical features, imposed on the field as
well as the relationship among material properties of the plates and
the intervening space. For example, repulsive forces are predicted by
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Lifshitz formula [75] if the material between two plates has properties that
are intermediate between those of the plates.

The startling aspect of the Casimir force is that it is a manifestation of the
purely quantum-mechanical prediction of zero-point vacuum fluctuations
[74-77] (see Appendix A), i.e., of the fact that, even in circumstances in
which the average electromagnetic field is zero, its average energy shows
fluctuations with small but non-zero value, i.e., there is virtually infinite
energy in vacuum. Research efforts aimed at the practical exploitation of this
extremely large energy source, residing in free space, are under way [85-87].

Calculating the Casimir force entails circumventing the fact that the zero-

: 1 . .
point vacuum energy, £, = Ehz w, diverges, and many techniques to
n

accomplish this have been developed [74-77], [88], [89], but including these
in our presentation is well beyond the scope of this article. The essence of
many of these calculations, however, is to compute the physical energy as a
difference in energy corresponding to two different geometries, e.g., the
parallel plates at a distance “a” apart, and these at a distance “b,” where the
limit as b tends to infinity is taken. For flat surfaces, the infinite part of the
energy cancels when the energy difference of the two configurations is
taken. The calculated zero-temperature Casimir energy for the space
between two uncharged perfectly conducting parallel plates, Figure 2-10,

| — N

Figure 2-10. Casimir effect geometry.
is given by,

_;zzhci
720 2°°

(1

UCasimir (Z) =

and, the corresponding Casimir force per unit area is given by,
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FS. — nm’he 1
4 240 24 (52)

For planar parallel metallic plates with an area 4 =1cm® and separated a
distance z = 0.54m , the Casimir force is 2X10™° N .

Many experiments measuring the Casimir force under various conditions,
such as effecting normal displacement between a sphere and a smooth planar
metal and between parallel metallic surfaces, as well as, effecting lateral
displacement between a sphere and a sinusoidally corrugated surface, have
been performed [89-95]. A good recent review of experiments and theory for
Casimir forces has been published by Bordag, Mohideen, and Mostepanenko
[89].

Since the Casimir energy/force is a sensitive function of the boundary
conditions, corrections to the ideal expression (52) have been introduced to
account for certain deviations. For example, for the sphere-plate geometry,
the zero-temperature Casimir force is given by,

F° =

Cas_Sphere-Plate

_ﬁ) z

T _he
(2) R (53)

where R is the radius of curvature of the spherical surface.
To include the finite conductivity of the metallic boundaries, two
approaches have been advanced. In one, the force is modified as [96, 97],

2
FO(2)=F e

Cas _ Sphere—Plate

(z)1-4

, (54)
zo, 5 zo,

where @, is the metal plasma frequency [64]. In the other, obtained by

Lifshitz [98], the correction is ingrained in the derivation of the Casimir
force, and is given by,

-1
[M;if _1} .
Rh ¢ (s—p)
3Ldz'ffp2.f3dpd¢'x L0
c 2 2pg
{(HPS) e _1}

Fel(z)=-

(s - pe)
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where s=,€—1+p*, 8(i§)=1+£fwf—(i§2)da) is the dielectric

T w” +
constant of the metal, £” is the imaginary component of &£, and & is the
imaginary frequency given by @=i¢.
Corrections due to nonzero temperature yield [77],

Fe(2)=FC, (z){l +% (¢ )} , (56)

where { =k Tz/hc, k, is Boltzmann constant, T is the absolute
temperature, and

(&2 2x)93) - (7 J45), for ¢ <1)2

€)= (¢ /87)(3) - (2/720), for &>1)2

, (57

with 09(3)=1.202....

Roy and Mohideen [90] included originally the effects of surface
roughness, which changes the surface separation, by replacing the flat plate
with a spatial sinusoidal modulation of period A, and the energy averaged
over the size of the plates, L, to obtain,

. 27mx w’he 1 A4Y"
<U, . |z+ Asin— |>=— — > C | —
Caszmlr( ﬂ, j 720 Z3 ~ m ( z ] ) (58)

where A is the corrugation amplitude. The corresponding Casimir force is
then given by the so-called, Force Proximity Theorem [99] relating the
parallel plate geometry and the sphere-plate geometry, namely,

F

Cas _ Roughness

=27R <U s Rouchness > (59)

For A<<L and z+z, > A, where z, is the average surface separation
after contact due to stochastic roughness of the metal coating, they
recommend the following coefficients in (58): C, =1, C, =3, C, =45/8,
C,=35/4. A more accurate and general model for stochastic surface
roughness, advanced by Harris, Chen, and Mohideen [88], includes the
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effects of surface roughness, by replacing the flat plate with the mean
stochastic roughness amplitude 4, to obtain,

z

A 2
Fl(2)=FO.(2) 1+6[—j | .

where A is derived from direct measurements via an Atomic Force
Microscope (AFM).

2.4 Quantum Information Theory, Computing and Communications

The advent of nanoscale fabrication techniques has brought within our
reach the possibility of producing systems whose predominant behavior is
described by quantum mechanics (QM). While the engineering of systems
based on exploting this new physics/technological paradigm is still in its
infancy, this new paradigm is ultimately expected to manifest itself in the
ushering of a ‘new electronics’ technology era. Obviously, this ‘new
electronics’ is expected to change the way in which systems are implemented
to effect the functions of information processing, computing and
communications [100-111]. These functions, in turn, will exploit the
properties of quantum mechanical wave functions. In this section we
introduce key aspects of the fundamental physics on which these functions
are predicated, in particular, we focus on the concepts underpinning quantum
information processing, namely, quantum bits (qubits), quantum
entanglement, the Einstein-Podolsky-Rosen (EPR) State, quantum gates, and
quantum teleportation.

Quantum information is represented by quantum bits or qubits [103].
Qubits are fundamental physical entities, such as a two-level atom, which
may adopt two possible quantum (stationary) states (see Appendix A), say

the mutually orthogonal states |0> and |1> Due to its quantum nature,

however, the most general state is expressed as,
W)= 0)+2]1), (61)

i.e., as a superposition of both states. Thus, a measurement of the qubit will

2
, or

cause its wavefunction to collapse into the state |0> with probability |a

into the state |1> with probability |b|2. This means that during its time

evolution a qubit may be partly in both the |O> and |l> state at the same
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time, i.e., to the degree that @ and b may adopt an infinity of values, the qubit
has the potential to be in any of these. A quantum system possessing # qubits

is said to have 2" accessible mutually orthogonal quantum states. For
example, a system containing two noninteracting qubits will have the four
states: |00>, Ol), 10>, |11>. States such as these, which represent the

juxtaposition of independent or noninteracting systems (qubits), are called
tensor product states.

2.4.1 Quantum Entanglement

In general, a tensor product provides the mathematical description of the
state of a system that is constituted by bringing together noninteracting
quantum systems, assuming that they remain without interacting [60].
Comprehending this concept is useful to get a clear understanding of the
definition of an entangled state [107-111].

In particular, if associated with two quantum systems there are vector

spaces V| of dimension N, in which resides a vector |¢>, and V, of
dimension N, , in which resides a vector | ;{), and where N, and N, may

be finite or infinite, then the tensor product of V|, and V, is denoted by the
vector space V' [60],

V=V e, (62)
of dimension N, N, , where the vector,

|9)®1x) =[¢)lx). (63)

associated with the overall space V', is called the tensor product of |¢> and

7).
If the vectors |¢> and | ;(> can be expressed in terms of the respective

bases ﬂ%)} and ﬂvl)}, so that,

8)=2 alu,), (64)

i

and
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2)=20,[v,), (65)
J

then, the tensor product may be written as,
4)812)=2ab fu) ). (66)

from where it is seen that the components of a tensor product vector are the
products of the components of the two vectors of the product. An example

will help appreciate the meaning of a tensor product immediately. Let V_

and V, be two vector spaces in which the bases ﬂx>} and ﬂ y>}, reside.

Then the tensor product of the spaces is given by,

V,=V.®r, 67)
and the tensor product of the bases is given by,

) =x) ) (68)

Consequently, if X and Y are operators in V, , then we have,

X

X|xy) = X|x)( )= 2{x)( )= 2lx) ) = x| ). (69)
Yay) = (x))Y]5) = ()bly) = o2 ) = o). (70)

Essentially, then, the operators acting over a tensor product of spaces operate
only on the vector space to which they belong.
Now, assume that the global state of the system is embodied by the

wavefunction | y/> eV =V, ®V,. Then, according to the above,
|§//> =|l//1>®|y/2>, where |l//1>e V, and |l//2>e V, . A quantum system is
said to be entangled if it is impossible to express its global state as the tensor
l//> # | v, > ® | y/2> . Thus, in an entangled system, it is not

product, i.e.,

possible to act on one of its vector states independently without perturbing
the others. It is said then, that the states in an entangled system are
correlated.
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2.4.1.1 Einstein-Podolsky-Rosen (EPR) State

In a system with two noninteracting qubits, the global state may be
expressed as [108],

[w)=c,|00)+c,|01)+c,|10) +c,[11), (71)

2 .
where z |ci| =1 and each term is the tensor product of the components of

the corresponding qubits. When ¢, =c¢, =0, and ¢, =c¢; = l/\/E, the
resulting state,

)= 2110

is called an EPR state [108]. The EPR state is not a tensor product of the
vector states, therefore, it represents an entangled state; it does not belong to
any of the individual vector spaces, but is a combination of them. Associated
with an EPR state is the so-called Bell-state basis [108], which embodies the
possible states that can result upon measuring two-state quantum systems. In

particular, if |O>1’ 1>1 represent the two states of particle 1, and |O> - |l>2

(72)

represent two states of particle 2, then the measurement of their EPR pair
state may result in one of four state vectors, namely,

) = (10>1|0>2\/1;|1>1|1>2)’ (73)

and

‘(I)i> — q0>1 | 1>2\/i_§|1>1| 0>2 ) _ (74)

One of the most transparent demonstrations of entanglement and its
implications was the experiment by Kwiat et al. [107], see Figure 2-11
below. This experiment exploited the principle of type-II parametric down
conversion to produce directed beams of polarization entangled photons. In
type-1I parametric down conversion [107] an incident laser beam pump
passes through a crystal, such as beta barium borate, and can spontaneously
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Figure 2-11. Entangled photons via type-II parametric down conversion. (After [107].)

decay into two photons of lower energy, one polarized vertically and one
polarized horizontally, for instance. In particular, each photon can be emitted
along a cone in such a way that two photons of a pair are found opposite to
each other on the respective cones. If it occurs that the photons travel along
the cone intersections, however, then neither photon is in a definite
polarization state, but their relative polarizations are complementary, i.e.,
they are entangled. Taking the state of the photons along the intersecting
cones as entangled, i.e.,

o) = (JH>1|V>2\/—E|V>I|H>2), (75)

we see that, because the polarization relationship of complementarity must
be maintained, whenever photon 1 is measured and found to have vertical
polarization, the polarization of photon 2 will be horizontal, and vice versa.
This means that no matter the state in which photon 1 is found, the state of
photon 2 can be predicted to be in the orthogonal state when measured.
Entanglement, therefore, enables a strong correlation among the photons.
This is a general property among entangled particles. By appropriately
controlling the evolution of aggregates of particles, it is possible to induced
them into entangled states. The agents that control the evolution of states are
called quantum gates.

2.4.1.2 Quantum Gates

Given a qubit prepared in the initial state |l//(t0 )>, its state at a
subsequent time ¢ is given by |l//(t)>=U (t,to )|l//(to )>, where U is the

qubit’s tramsition matrix[60] Unitary reversible matrices U prescribing the
evolution of qubits are called quantum logic gates [102], [111]. Thus, a
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quantum gate transforming a qubit state such that |0>%|0> and
| 1> - exp(ia)t)| 1> , would have the form [102],

ot 2] o
0 ¢

where @ = @t . Since U is a unitary reversible transformation, the quantum
gate must be reversible. This means that, given the output, one must be able
to uniquely determine the value of the input. There are a number of
important quantum gates of which quantum information processing systems
are made of, namely, the identity gate [100-111],

0)—0), (77

1) =11, (78)
the NOT gate,

10) =[1). (79)

1) —10). (80)
the Z gate,

0) —>[0). 81

1) —-1). (82)
and the Hadamard gate,

|0) = 0)+[1), (83)

1) —[0)—[1). (84)

Quantum gates are represented graphically, as in Figure 2-12 [111]. In this
figure the operation of the gate is read from left to right using the following
convention. Each line represents the propagation or evolution of the input
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state and could, accordingly, represent propagation via a wire, in time, in
space, or in any other fashion evolution may be intended to take place. The

gate has control qubits and farget qubits. A control qubit, such as | x> , has its

line of propagation (wire) tapped at a dot. A target qubit, such as | y>, has its

line of propagation (wire) XOR’ed with a control bit. The gate’s purpose is
to effect a transformation on the target qubit based on the values of the
control qubit, in particular, if the control qubit is set to one, then the target
qubit is inverted. The realization of classical logic gates, which are
inherently irreversible, by totally reversible quantum gates may be effected
with the use of the Toffoli gate, see Figure 2-12(b). The Toffoli gate is an
irreversible gate that takes three inputs, namely, two control qubits and one
target qubit. By applying the Toffoli gate twice to its three input qubits, they
are repoduced, thus the irreversible gate is made reversible [111].

|x) x)

|») |»)
|y>$ |y@" |2) |2)® |xy)

X
0
0
1 (o [1 |1 0
0
1
1
1
1

2 a2l o]l o] 2| =] o]l o<
a2 o] alo| alo| na|lofnN
af a2l 2]l 2|l o] ol of of x

2| a2l ol o] 2| 2| of| o<
a|lo|l a|o]|2]lo| 2| N

g

(©)
Figure 2-12. Truth tables and graphical representations of some quantum gates. (a) Control-
NOT gate. (b) Control-control-NOT (Toffoli) gate. (c) Bit swapping.
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The control-NOT (CNOT) gate, as can be seen from Figure 2-12(a),
implements the exclusive-OR (XOR) operation. Thus, the gate inverts | y>,

if |x> =1, and leaves it as is if |x> = 0. This operation is expressed as,

C12|x>| y> = |x>| (x+ y)mod2>. (85)

Applied to a pair of single product states of two qubits, the CNOT gate
produces a set of entangled qubits, i.e.,

€ (0), +[1)Jo). = (0),J0), +[1) 1)) (36)

Similarly, since the CNOT gate is reversible, when applied to an entangled
state, it produces a set of disentangled states, i.e.,

Ca(0)]0), £[1),1),)=(0), [1),J0),. (87)

and

C12Q0>1|1>2 i|1>1|0>2): q0>1 i|1>1)1>2' (88)

These operations are essential for quantum teleportation.

One may recall that a classical NOT gate is called universal in the sense
that any other logic gate may be created by combining several NOT gates.
Similarly, a universal quantum gate should generate all unitary
transformations of » qubits. It can be shown that such a gate is realized by
combining a pair of gates, namely, one that produces a general rotation on a

single bit, U (6,0), where,

Universal

Uppop(0.9)=| 02 =i sinl0/2)

_ _ , 89
—ie" sin(6/2) cos(6/2) )

and a CNOT gate [100].

2.4.2 Quantum Teleportation

According to Bennett ez al. [106], quantum teleportation is “a process that
disembodies the exact quantum state of a particle into classical data and EPR
correlations, and then uses these ingredients to reincarnate the state in
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another particle which has never been anywhere near the first particle.” The
process does not involve sending any qubits, rather, the sender and the
receiver must have access to two other resources, namely, the ability to send
classical information, and an entangled EPR pairs of particles previously
shared between them.

As per the sketch of Figure 2-13, teleportation proceeds as follows.

¥) {UV\I_
EPR pair W

Figure 2-13. Quantum teleportation of state |l//> . (After [108].)

e Qs o n
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There are three particles involved, namely, particle 1, whose unknown state
|l//> = a| 0>1 +b| l>l (a and b are the unknowns) is to be teleported by a

sender to a receiver, and particles 2 and 3, which are prepared by an EPR
source into an entangled EPR state, for instance,

‘(I);r3> — (|0>2|0>3\/—%|1>2|1>3)_

(90)

Of these two entangled particles, one, namely, particle 3, is sent by the EPR
source to the receiver and the other, particle 2, is supplied to the sender.
Notice that locally both the sender and the receiver possess total knowledge
of the states of particles 2 and 3, respectively. However, globally, the three
states are described by tensor product state,

PRRLLELI LY KN o

consisting of the entangled pair, particles 2 and 3, and the unknown state.
Now, the specific actions that effect the teleportation are as follows. The
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sender performs a joint (XOR) measurement between particles 1 and 2. As
we saw previously, the outcome of measuring a pair of single product states
of two qubits, such as that of particles 1 and 2, has four possible outcomes

) = q0>1|0>2\/§|1>1|1>2)’ (92)

93)

‘q)r>12 — q0>1|1>2\/i5|1>1|0>2).

Taking this into account, the direct product state |l//, 23> may be expanded in

terms of these four outcomes and rewritten as,

|l// > <a| 000>123 +a|011>123 +b|100>123 +b|111>123)
123 \/5
|
=2 le*), do), +of1),) —\qa ) o
(= af0), +[1), )+ —\\P} (b]0), +41),)

+%“P>12(— b[0), +dl1),)

The result of performing the XOR between particles 1 and 2 will be the
collapse or projection of the global tensor product state |l//123> along one of

the four vector states “I‘i>12 and ‘CI)i>12 with equal probability, namely, V.

Notice that this will leave a new global state consisting of the tensor product
of one of the vectors “Pi>12 and ‘d)i>12, at the sender, and a modified

qubit 3, at the receiver. One possible result might be,
[w) (B[0), +d]1),). (95)

If these were the case then, to complete the teleportation process the sender
has to communicate to the receiver, using classical message, that the global
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wave function collapsed along “I’+>12, and that for its qubit to embody the

unknown state and, hence, complete the teleportation, it has to effect the
unitary transformations: |O>3 - |l>3 and |1>3 - |O>3 on its qubit 3.

2.4.3 Decoherence

A quantum system is said to decohere when, in the course of its time
evolution, it loses energy to the environment. Under these circumstances its
transition matrix, U, no longer conserves the norm of the states it acts upon.
Since the states change in a random manner, the property of superposition of
states is no longer maintained. From thermodynamics we know that systems
that experience energy loss are irreversible, therefore, decoherence precludes
the realization of quantum gates, e.g., the Toffoli gate, which must be
reversible. The ability of a quantum system to maintain its coherence and,
thus, be capable of manifesting superposition and entanglement, is captured
by the decoherence time. Obviously, the system is useful for quantum
information processing only during this period of time. A system made up of
many qubits will exhibit a compounded amount of errors as it approaches its
decoherence time., i.e., as it becomes irreversible. The decoherence of a
qubit, in particular, is quantitatively captured by the quality factor of
quantum coherence [112],

Q,=mv,T,, (96)

where Vv, is its transition frequency and T, is the coherence time of a

superposition of states. While error-correcting codes techniques have been
proposed to combat errors stemming from decoherence, the need for an
intrinsically coherent system to begin with, remains. Therefore, the
conception of approaches exhibiting long decoherence times, with respect to
the intended computational function to be implemented, is crucial, if
quantum information processing is to become practical. Vion et al. [112]
point out that, given a quantum computation with elementary operations

taking time t__, active compensation of deciherence requires Q(P's greater

op
than 104V01t0p. A number of approaches to the physical implementation of

qubits, and their respective decoherencetimes, are discussed in Chapter 4.
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2.5 Summary

This chapter has dealt with physical phenomena exploiting wave-particle
duality. We began by addressing conditions that manifest charge
discreteness, and its consequences on the performance of transmission lines,
namely, persistent currents and current exhibiting Coulomb blockade
(pulsating) behavior. Then, after introducing the concepts of single-electron
tunneling, the effect of charge discreteness in electrostatic actuation was
presented. In this context, we saw that charging dominated by Coulomb
blockade may lead to quantized electrostatic actuation. Following this, we
addressed the manifestation of quantum electrodynamical forces, in
particular, van der Waals and Casimir forces and their substantial influence
in moving nano- and micro-meter-scale devices. The chapter concluded with
an exposition of the salient points of quantum information theory, computing
and communications. In particular, we focused on the concepts of quantum
bits, quantum entanglement, the Einstein-Podolsky-Rosen (EPR) state,
quantum gates, and quantum teleportation. Lastly, the crucial issue of
decoherence was discussed.
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NANOMEMS PHYSICS: QUANTUM WAVE
PHENOMENA

3.1 Manifestation of Wave Nature of Electrons

The principles of nanoscale devices are based on the physics dominating
this dimensional regime. In particular, as the device size is reduced below
about 100nm, the electron behavior stops obeying classical physics, in which
its momentum and energy are continuous, and starts obeying quantum
mechanics, in which it behaves as waves with quantized energy, Figure 3-1.

Fig.3-1
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Figure 3-1. Size-dependent behavior of electrons.
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Then, depending on the particular device structure, behavior such as
interference, diffraction, etc., characteristic of waves, or Coulomb
interaction, characteristic of particles, may be prominent. The various types
of behavior are presented next.

3.1.1 Quantization of Electrical Conductance

The concept of electrical conductance quantization emerges from
considering electron transport in short, narrow (quantum) wires, Figure 3-2.

Figure 3-2. Electron transport down short, narrow wire between electron reservoirs with
Fermi levels £, and £, , under the influence of applied voltage V.

Here we have a short, narrow wire connected between two electron
reservoirs characterized by Fermi seas (contacts) filled up to energy levels

E ., and E,, Under the influence of an applied voltage V, which misaligns

the Fermi levels, electrons travel from reservoir £, towards reservoir £, ,

in an effort to equalize the Fermi levels and, as a result, establish a current.
Since the wire is very short, transport evolves without scattering, i.e.,
ballistically. However, since the wire is very narrow, the uncertainty
principle forces its transverse momentum (and consequently, its energy) to
be quantized, i.e., p, ~ nh/ d , where n is an integer representing the band

in which transport is occurring.

3.1.1.1 Landauer Formula

The question before us is: What is the conductance of this system? The
answer was determined by Landauer [113], and may be arrived at as follows
[76]. The current is the balance between the number of electrons being
launched from the left-hand reservoir into the wire, and the number of
electrons being launched from the right-hand reservoir into the wire. In
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particular, since in the momentum interval dp, this number equals dp / 27h

the corresponding current is dJ, = evdp /27 . Therefore, the total left-right

current, assuming a single band, and taking into account two spins, is given
by:

o Ep,
e € fgp = CEr 0
TTh TTh

—oo

Il

[\
S —

S,

<

Il

A similar result is obtained for the right-left current,

oo My E
J =2.-% J.vafp:i dE = &5r2 2
27h 7th 7h

0 —oo

so, the net current from left to right is:

J=J —J, =2 (E, -E,,) A3)
7th

+

Then, width the substitution £, —E,, = el , we obtain,

2
J=v. (4)
Th

The proportionality factor between current and voltage is the quantized
conductance for a single band:

2

e
= . (5)
8o 7h

Assuming transport is occurring in N bands (channels) under the Fermi
level, the total conductance is,

g=N-g,. (6)

This expression clearly reveals that the conductance is quantized in units of
g, - In reality, there is a finite probability that in going from the reservoir
into the wire, and vice versa, some electrons may be backscattered, in which

case the number of bands through which transport is operative is less than N.
In that case the effective value for N is conductance is given by:



N
N Effective — z T, (E F ) >
il

where 7, is the transmission coefficient of band n. Clearly, casting the

conductance in terms of the transmission coefficient uncovers its dependence

on the wave nature of the electron.

3.1.1.2 Quantum Point Contacts

In deriving the quantized electrical conductance of a quantum wire above
it was pointed out that it is proportional to N, the number of bands through
which transport is operative. The quantum point contact (QPC), Fig. 3-3,

represents a virtually zero-length quantum wire, in which the details of 7

dominate transport and are made patently manifest in the conductance.
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Figure 3-3. Quantum point contact. (a) Top view. (b) Cross-section. (¢) Conductance versus

gate voltage. (After [114].)

In the QPC a constriction is formed by modulating via, e.g., depletion
regions, the width of the channel between two two-dimensional electron gas
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(2DEG) regions, Figure 3-3 (a), (b). A rendition of the first experimental
demonstration of the effect is shown in Figure 3-3(c). It is observed that the
conductance decreases approximately linearly as the gate voltage is
increased negatively, i.e., as the constriction or channel width narrows. In
particular, at Vg=-2.2V, the channel is pinched-off and the conductance is

zero. Notice also, that the conductance decreases in discrete steps of 2e” / h.

An explanation of the observed quantized conductance was attributed to
the resistance of the constriction upon comparison with the semi-classical
formula for the conductance of a constriction in a 2DEG, denoted Gg, after
Sharvin who derived it [68]. Ggs is given by,

e* dN?P
"7 dE

s VW, ®)
where dN 2D/ dE = m*/ﬂfl is the quantum mechanical density of states,
including a factor of two for spin, v, = hk, / m’ is the Fermi velocity, with
kp =27/ A, = \/27mg being the Fermi vector and ns the 2DEG electron

density, and W is the width of the constriction. Rewriting (65) so that the
quantized conductance becomes explicit, one obtains,

G, = 28 kW _ 2e” 2W . 9)
h =« h A

The fact that this equation includes the ratio W/ A, suggested that,
experimentally, there should be deviations due to the manifestation of the
wave nature of electrons whenever A, ~ W . In particular, it was determined
that the plateau values of conductance are obtained whenever W is an
integral multiple of A, /2. Therefore, the quantized conductance is a
manifestation of the wave nature of electrons in that as the voltage is
increased from pinch-off, a new mode (band) for transport becomes
available every time the constriction widens by A. /2. The transmission
coefficient of the constriction captures this [115]. The deviations from
flatness of the conductance plateaus were attributed to scattering or to the
abruptness of the constriction. Finally, as the temperature increases, the
conductance steps smear out until at high temperature they disappear. This is
due to the non-monoenergetic, wider, distribution of electrons launched by
the reservoirs into the constriction [68] and exposes one of the practical
limitations of QPCs, namely, that their utilization requires extremely low
temperatures.
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3.1.2 Quantum Resonant Tunneling

One of the fundamental devices exploiting the wave nature of electrons,
and which finds practical application at room temperature, is the resonant
tunneling diode (RTD) [116], [117], see Figure 3-4.
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Figure 3.4. Resonant tunneling diode. (a) Energy band diagram and operation. (b) Current-
voltage characteristic.

The RTD consists of a double barrier sandwiching a potential well, and in
turn clad by two electron reservoirs (contacts). The potential well
dimensions are of the order of tens of Angstrom, such that electrons in it are
confined and, thus, can only exist in quantized energy levels. The barrier
lengths are of the order of a few Angstroms, so that electrons can tunnel
through them.



3. NANOMEMS PHYSICS: Quantum Wave Phenomena 85

Resonant tunneling devices are implemented in a variety well/barrier
materials systems [116], including, Type-I heterostructures (transport occurs
exclusively in the conduction band) such as GaAs/Al,Ga,As, InAs/AlSb,
Ing53Gag47As/AlAs, and Type-II heterostructures (transport involves
conduction and valence bands) such as GaSb/AlISb [118]

The ideal RTD current-voltage characteristic is shown in Fig. 3-4(b) and,
with respect to Fig. 3-4(a), an accepted plausible explanation of it is as
follows [116][, [117]. With no voltage applied, the system is in equilibrium as
no forces are experienced by the electrons in the contacts and no current
flows: (1) As the voltage is increased electrons tunnel the left-hand barrier,
propagate through the well and tunnel through the right-hand barrier, and an
increasingly large current flow; (2) When the voltage is such that the energy
of the incoming electron distribution overlaps the first quantized energy of

the well, £, maximum current transmission is achieved, this is the resonant

tunneling condition; (3) When the overlap decreases, at higher applied
voltages, the transmission, and thus current, rapidly decreases, thus the
negative resistance region is produced. This explanation assumes the
electron momentum transverse to the well is conserved.

Since the intrinsic time it takes an electron to traverse the structure is

related to Heisenberg’s uncertainty principle, 7 =7/I", where I is the

energy width of the quantized level, the process is very fast, i.e., ~1ps, so the
devices are ideal for THz applications [118, 119].

The simulation and modeling of RTDs is a relatively mature subject [116-
123] and includes a variety of approaches ranging from those neglecting
scattering and charge effects to those including them to a variety of degrees.
These models typically reproduce features of the I-V curve related to energy
levels in the device, such as the voltages at which peak and valley currents
occur, but not the magnitudes of these currents. A typical approach is the
two-band tight-binding model, exposed by Schulman [124] for modeling a
GaAs-GaAlAs RTD. In particular, by neglecting scattering and charge
effects it focuses on calculating the transmission coefficient of the structure
by employing an atom-to-atom transfer matrix technique that builds up the
electron wave function as it propagates through the device layers. The model
divides the structure as shown in Figure 3-5, assumes that the wave function
is a combination of s-like orbitals on each cation (Ga, Al) and a p-like orbital
on each anion (As), of the form,

¥ =Cyhy +C o). (10)

and sets up a tight-binding Hamiltonian of the form,
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g ES U(l_e—lka/Z) (11)
I~ _ —ikal/2 ’
U(l-e ) E p
HY¥, =EY,, (12)
Left Cladding | B w B Right Cladding
I >|< I ><—1

INCOMING

<

REFLECTED

TRANSMITTED

<

.. GaAsAI ... AlAsGaAs.. GaAsAlAs.. AlAsGaAsGaAs. ..
0 1 2... M n n+l...
Figure 3-5. RTD structure for two-band tight-binding modeling.

where E¢ and E, are orbital energies prior to coupling to next neighbors,

and a is the lattice constant. Next, solutions are formulated for the three
regions as follows. For region I, we have (13) and (14).

L 1 — e —ilk|(a/4) (13)
‘I’[ —m( |E Ep¢S+z |E ESe ¢p)

R_ 1 — k@) g
! \/m( E-E ¢ ~i[E-Ege »

For region II we have the transfer matrix (15).

- E (n-1)-E(n)

Un—1,n—1)

SO Uty “Totm G109

C,(m)| |[E-E.mUm-1n-1) Um-1n) . [E-E, (n)]IE,, (n-n-E]| C p(n—1)
U(n,n)U(n—1,n) U(n,n) U(n,mU(n—1,n)

For coupling regions II and III we have (16) and (17).
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_ L R
‘PH[—CS¢S+C ¢ _CLlPIH—l—CR‘P]H (16)
{C
Cr

The dispersion relation, velocity, and overlap integral defining the tight-
binding are given by (18), (19), and (20).

- B F - \/ﬁ(l+e—1ka/2) [E E (elka/4+e lka/4) C (17)
=\2E-Es-Ep c,

m(l n ezka/z) Jﬁ(@lka te zka/4)

(4 1 - — 1
k(E)= i(;Jarcsm {ﬁ\/(E E )E Ep} (18)
N aU 2 sin( ka /2) 19)

hQE-Es—Ep)

2
U=2h (Eg—Ep) 20)
m*a2

Finally, the current is given by (21), where X = £ / kT .

E o 1kT -
Sy U2 gy M Em h{ 1 ER O J(ﬂ)

4r2n 0 ‘C ‘2 hv 1+e{(EF—eV)/kT—x

This formulation, though not fully predictive, is a useful tool for the analysis
and design of RTDs and related devices. A typical I-V curve produced using
this formalism is shown in Figure 3-6.

4 InGaAs/Al1As RTD
4-10
83104 .
=
< 4 -
§2~10
IR —

0 0.5 1 1.5 2 2.5 3
Voltage (Volts)

Figure 3-6. Current-voltage curve calculated via two-band tight-binding formalism.
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3.1.3 Quantum Interference

While the RTD I-V characteristics are the result of constructive and
destructive interference between the barriers, as a one-dimensional device
these are really function of the degree of resonance with the energy levels in
the well. When transport occurs in two dimensions, we may have
constructive and destructive interference as a result of waves traveling
thorough different paths that converge at one point.

3.1.3.1 Aharonov-Bohm Effect

The quintessential example of this type of interference, which also
exposes the wave nature of electrons, is the Aharonov-Bohm (AB) effect
[125], Figure 3-7. The essence of the AB effect, see Fig. 3-7, is that an

electron beam, with wavefunction ¥, , split at point A into two waves, ¥/,
and ¥,, which subsequently follow paths ABF and ACF, around a solenoid
establishing a magnetic flux ¢, strictly in its interior, will gain respective

phases S, and S, so that at F the wavefunction is,
s, s,
emwe Sy (25)

or, in other words, there is a phase difference (Sl -8, )/ 7 between them. In
particular, the phase shift is given by,

Interference
Region

Electron
Beam

Solenoid

Shadow @

Radius, R

|
tz..elkZL I

(b)
Figure 3-7. (a) Aharonov-Bohm-effect electron wave interference setup. (After [125].) (b)
Sketch of metallic ring implementation.
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A5 Npar-Loar |- & [\ par-Lal |=-<-§d-ar - (20)
I/ e c oo c ch

where @ is the scalar potential and A is the vector potential, which is
related to the magnetic field inside the solenoid by (27).

¢0:42-df:§ﬁ-d§, (27)

The remarkable aspect of this effect is that, because of (27), it predicts, and
has been confirmed, that a vector potential exists even where no magnetic
field is existent, namely, outside the solenoid in this case, and this vector
potential endows the wave functions with a phase shift difference which
establishes that the electrons may exhibit interference. In particular, the
phase shift may be expressed as,

Ay=—¢, (28)
ch

so that when Ay =27 there is constructive interference, and when
Ay =2r(n+1/2) there is destructive interference.

3.1.4 Quantum Transport Theory

The wave nature of electrons is responsible for a number of phenomena,
such as quantized electrical conductance, resonant tunneling, and quantum
interference, which find their genesis in the quantum nature of electrons.
Since, in fact, at dimensions approaching 100nm feature sizes, these effects
are already beginning to dominate the characteristics of practical devices, the
question of how to simulate the behavior of these quantum devices has
received much attention. In this section, we focus on the principles of typical
theoretical approaches to the quantum transport of heat and electrons.

3.1.4.1 Quantized Heat Flow

In bulk devices, the rate of heat conduction per unit area is proportional to
the temperature gradient, i.e., Fourier’s law, Q/ A=—kVT ,where K isthe
bulk coefficient of thermal conductivity. This expression assumes
K =)Cvl, [126], where ¥ is a numerical factor, C is the specific heat per
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unit volume, v is the velocity of sound, and / , 18 the phonon mean free path,
i.e., the typical device dimension L >>/ ,- At nanoscale dimensions,

however, L </ , and the phonons propagate ballistically. In this case, theory

developed by Rego and Kirczenow [127], and experiments performed by
Schwab, Henriksen, Worlock, and Roukes [128], have shown that the
thermal conductance between isolated right and left temperature reservoirs,
which are only interconnected through the device, is given by Landauer’s

theory as,

where @, (k) and ¢, (k) are the frequency and phonon transmission

holk,T, 1)*1

e 5 ol P 15 onef I o

probability of normal mode « , respectively, and ni(a))z (e
represents the thermal distribution of phonons in reservoir with temperature
T.. While, it has been demonstrated in the works of Angelescu, Cross, and

Roukes [129], and of Rego and Kirczenow [127], that the transmission
probability is sensitive to the geometrical features of the nanoscopic systems,
in particular, to phonon scattering due to surface roughness and transitions
(non-adiabatic mode coupling), the main conclusion from (29) was that at
low temperatures heat transport is mediated by a universal constant, namely,

the quantum of thermal conductance due to phonons, kén' : / 3h [128]. This

has serious implications pertaining to the maximum rate at which power can
be dissipated in NanoMEMS, and indeed nanoscale thermal transport is a
very active area of current research [130].

3.1.4.2 Fermi Liquids and Liittinger Liquids

As suggested at the beginning of this chapter, transmission lines (TLs) are
ubiquitous in circuits and systems at all length scales. Since TLs should
simply transfer or guide signals from one location to another, without
decreasing their amplitude or power, it is imperative that they exhibit the
lowest possible loss. This is the reason why metals, due to their lowest
resistivity, are preferably utilized to implement interconnects (TLs).

The resistivity of conventional (large-dimension) TLs reflects the
dimensionality of electron motion. For instance, in TLs of rectangular cross-
sectional area A, as dimensions shrink electron motion may become
quantized in certain directions, thus giving rise the to the creation of energy
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sub-bands or “channels” in which transport can only occur once the electrons
acquire the corresponding necessary energy, in other words, electrons behave
as waves with discrete (quantized) wave vectors. The quantized electrical
conductance is a manifestation of this. In contrast, electrons in TLs of
relatively large dimensions may exist at virtually all energies and, if there
were no interaction among electrons, they would behave as free particles.
The theory of electron behavior in a metal, when electron-electron
interactions are taken into account, is due to Landau [131] and is denoted
Fermi liquid theory. A Fermi liquid is considered to be made up of “quasi-
particles,” which are fictitious entities that, while being physically different
from electrons, behave similarly to electrons, but with a different mass and
dispersion relationship.

When electron transport is confined along one dimension, a behavior
different to that of free electrons and that of a Fermi liquid is observed. The
new aggregate of entities is said to consist of another fictitious quasi-
particle, namely, the plasmon, and is referred to as a Liittinger liquid (LL).

The distinction between Fermi liquid and Liittinger liquid behaviors is
important to the realization of nanoscale circuits and systems, not only from
the point of view of TL properties, but also because their different behavior
elicits new issues when connecting a Fermi liquid TL to a Liittinger liquid
TL. The fundamental aspects of Fermi and Liittinger liquids are addressed
next.

3.1.4.2.1 Fermi Gas

The Fermi liquid theory explains the success of the free-electron
approximation in the calculation of transport problems, even in the context
of electron-electron interactions. The usual point of departure for describing
the Fermi liquid is the Fermi gas. This is the conceptual situation in which
the metal is modeled as a solid of volume V and length L on a side
(V =L3>, which contains moving non-interacting electrons in much the
same way as atoms and molecules move inside a gas container. Since the
electrons are assumed to be independent, i.e., do not interact, they each obey
a Schrodinger equation of the form [132],

2

Hot/f{i—mw(?)}v/:Ew, (30)

where the potential energy is taken to be U (17 ) = 0. The solution of this
equation is then obtained by assuming that all space is filled by cubes of side
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L, and that the wavefunction fulfills periodic boundary conditions at each of
its faces, namely,

p(F+L3) =y (7 + Lp) =y (7 + L2) =y (7). 3D

These assumptions yield solutions of the form

~=£ , 32
¢ (F) N (32)

where 0 ==%1/2 represents the two values of electron spin and
represents the two spin functions,

1 0
Xip = |:O:| s X = |:1:| (33)

Because of the periodic boundary condition, the wave vector is defined by,

2 2 2
k. =Tnx, k,=—n,, k. :Tnz, (36)

n, n =0x1,%2,.., |k|2 = kx2 +kj +k22. The energy

X9 ¥

where n

eigenvalues of (32) are given by,

E,=E, = . (37)

The salient properties of the electron gas as a whole are captured by its
wave function, its total energy, and various quantities such as its specific
heat, and its magnetic susceptibility. The wave function is given by the
Slater determinant [132],

9,2) .. o,(N)

8, (1)
) 4,,2) .. ¢.(N)

1 g0
JN!

W,y -Vy(1,23,.N)=

0.0) 9.0) - o.(v

which ensures that the Pauli exclusion principle is obeyed, i.e., if two of the
one-particle states V; are the same, then ¥, , ..., =0. With U (F)=0, the
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lowest energy eigenvalue (ground state energy) is given by the sum of the
one-electron energies up to a maximum energy level denoted by E, and
called Fermi energy. This is obtained when N electron states with energy less
than E, are occupied, and all states with energy greater than E, are
unoccupied. To obtain an expression for £,., one pictures the states in (38)

as a grid of point in k k k. space where they form a fine three-dimensional

grid of spacing 27[/ L, such that a sphere centered at k =0 would contain

ar 1 Vi Vi ~
— K- T =——2=—— points of the grid when its radius is &,
3 27 6r RY/4
L
including spin. Since each point in the grid represents one electron, the

number of grid points contained in a sphere with the largest radius, k.,

corresponding to £, must equal N,

Vk}
L=N. (39)

RY/4

Thus, the largest electron momentum is,

2
k, =1/3/3”TN= (Brn) ', (40)

where # is the electron density in the metal, and the Fermi energy is,

n? (3N Y n? 3
g, = _ 1 ), @1)
2m V 2m

At absolute zero, all levels are filled up to E, . For an arbitrary energy E,
less than E ., the total number of electrons with energy less than E is given
by,

y (z_mjs/z’ @)

ETACE

from where the density of states is given by,
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T dE 27t w?

p(E)=N Y (z—m)m\/f- (43)

Excitation of the ground state of a Fermi gas requires, due to Pauli exclusion
principle constraints, the addition of particles with momentum greater

‘/; ‘ > |k F| , or the destruction of a particles (creation of holes) with ‘IE‘ < |kF| .

However, if these particles came from outside the system, then the total
number of particles N would change and we would have a different system.
When one insists on inducing excitations that conserve the number of

particles, then creating a particle with ‘]g‘ > |kF| = ‘k , 18 accompanied by

creating a hole with ‘l;‘ < |kF| = ‘/?

, 1.e., particle-hole excitations which can

be identified by two quantum numbers k , k’ are created.

These excitations may be caused by a number of influences, in particular,
a rise in temperature or the application of a magnetic field k. . Since, under
no interaction, all states are occupied up to k., electrons closest to E,. will
require the minimum energy to excite. Thus, the energy necessary to excite

2 2
. . h (kF _kl)
an electron of momentum kl, for instance, is Ej . p =" .
2m

Temperature-induced excitations of the Fermi gas are captured by the
specific heat, given by [28],

E 2
el:g—T:%D(EF)k;T:}/Ta (44)

where k, is Boltzmann’s constant, and magnetic field-induced excitations
are captured by the magnetic susceptibility given by,
M

X = =2D(E Juy (45)

where 4, is the Bohr magneton. Clearly, these quantities involve the

density of states evaluated at one point, namely, the Fermi energy. This fact,
coupled to the circumstance that, as long as one is dealing with a non-

interacting free electron gas D(E,.) will have the same value, suggests that
solving both (44) and (45) for D(E,.) and taking the ratio of the resulting

quantity must be equal to one. This ratio, called the Wilson ratio, is given by
[133],
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272
R, = "k, (46)
2
3ugy

and captures the degree to which there are electron interaction effects. In
particular, deviations from R;, signal the presence of interaction. Discussions

on the Fermi liquid concept, which embodies phenomena due to electron-
electron interation, usually make use of this index as a characterization
parameter.

3.1.4.2.2 Fermi Liquids

Fermi liquid theory assumes that as the electron-electron interaction is
turned on, from its zero value in the Fermi gas, the states in the now
interacting system evolve directly from those of the noninteracting system,
in such a way that the excited particles may also be labeled by momentum

pairs k,k’, just as in the noninteracting electron case [134]. This

circumstance is exemplified by the evolution of states in a noninteracting
electron gas situated in an infinite-wall potential well as the interaction
between them is turned on very slowly (adiabatically), see Figure 3-8 [134].
Having identical quantum labels for noninteracting electrons and quasi-
particles implies that quantities that depend on these labels, such as the
configurational entropy and the energy distribution, remain unchanged after
the interaction is turned on [134]. Such is not case with the total energy
because the energy of interaction modifies its value from the simple sum of
that of the free particles.

d’y

_L +V(x)y = Ey Lax: |[x]< =
2 dx’ Vo(x) =42
oo |x|2 T
4 Energy
N L, Il N=4
o
. N=3
N=4 NLL 7 \J
Tt .."‘- N=2
N=3 ALY *
S N=1
N=2 ....‘.‘..
N=1 e N=0
N=0 =
A 1

Figure 3-8. Adiabatic continuity explains how the labels of the energy states in a

noninteracting electron gas may continue to be used as the interaction A is turned on. Notice
that, as the energy levels and their corresponding eigenfunctions evolve, the quantum labels
(N) of the original noninteracting problem remain. After [134].
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On the other hand, the excited particles, while finding themselves at the

same k R k' as the free elecrons, exhibit a different mass and a different E vs.

k relationship than these, in particular, see Figure 3-9, interactions among
the particles with states below FE,, and between these and the excited
electrons with energy above E,., are responsible for this. Thus, the

dynamical properties of quasi-particles differ from those of free electrons.
Under these circumstances, the theory assumes that for low-energy
excitations, the quasi-particle distribution evolves in such a way that, if
[133],

47

(a)

(©)
Figure 3-9. Fermi liquid representation. (a) Ground state. (b) Excited state. (¢c) The quasi-
particle exhibits a new effective mass, m*, which derives from its interaction with ground
state electrons as it moves through them. This effective mass is in addition to the mass
derived from its interaction with the crystal lattice (captured by the energy band curvature),
i.e., the dispersion relation E vs. k.

then the distribution of the noninteracting gas is 7, (k) , and, upon excitation
n, (k) — n,(k)+on(k), where on(k)=+1 when a quasi-particle is
excited, and &(k): —1 when a quasi-hole is excited. Here, k = (IE,O'),
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and 0 = (T,J/) represents spin. Similarly, the corresponding energy change
is assumed to be given by,

SE = Y E'on(k)+ %Zf(k,k’)&q(k)&n(k’), (48)

where the first term represents the energy of an individual quasi-particle,
defined as,

) hszQIE\—kF)

2m*

E, (49)

with m* representing its effective mass, and the second term, in particular,
f (k ,k') capturing the interaction energy between quasi-particles. Further, in

analogy with the the case of noninteracting states, the probability of a quasi-
particle occuping a state k obeys Fermi statistics,

1
k)=———7F—> 50
)= (50)

where f=1/k,T and E, is given by (49). In the case of the Fermi liquid,

it has been found that calculations may be simplified by expressing the
interaction function as the sum of symmetric and anti-symmettric terms,
namely,

FET 8= r5(.8)+ rok.8), (51a)
and
fET e )= 5k 5)- rok.F) (51b)

Then, assuming that these interaction functions exhibit rotational symmetry,

and vary slowly with ‘/; , the approximation ‘/; ‘ = ‘l; " = k. is made, which

permits a Legendre expansion of the form [132],

f‘v’"(l;,l;'): if;’”PL(cos @) ,cos O = kk~2k'

L=0
where P, are the Legendre polynomials. Inversion Of the expansion gives

; (52)

the coefficients,
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2L +1
iy

fs,a
L

IdZQPL (cos @) f (Ig,lg'), (53)

which in normalized form are rewritten as,

o k.m* )
it = S (54)

Following the considerations in the discussion of the noninteracting electron
gas, excitations of the Fermi liquid are also captured by the specific heat and
the magnetic susceptibility. These calculations assume that, for low energies,

E, — E; and m — m*, and yield [133],

% 2
_m*k kg ’

_mrkpky (55)
4 3
and
2
g=— L Hakem? (56)
1+ Fy V4

from where the Wilson ratio is given by (57) in terms of the Landau
parameter £’ .

1

= . (57)
1+ F,

w

For the quintessential example of a Fermi liquid, namely, liquid helium 3
(’He), a coefficient of F; =—0.7 [133] was obtained experimentally,

resulting in a Wilson ratio R, = 3.33, which denotes strong interaction.

Landau’s Fermi liquid theory succeeds in capturing the phenomenology of
near equilibrium properties, as shown above, however, in situations when it
is not possible to write a simple expansion for f, as is the case in highly
anisotropic metals, the application of the theory to obtain quantitative results
becomes impossible [133], [134].

A more fundamental limitation of the theory derives from the
circumstances under which the concept of quasi-particles is valid, namely,
when their lifetime is longer than the time it takes to turn on the interaction
[133], [134]. In particular, if the Hamiltonian for the interacting system as a
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function of the interaction parameter V and turn-on time 7, is given by
[135],

H=H,+Ve'" , (58)

then the time it takes a quasiparticle of excitation energy € to decay, 7,, must be
much greater than the interaction turn-on time, 7, , and also much greater

than the time it takes the quasiparticle of to absorb the excitation energy,
given by Heisenberg’s uncertainty principle 8/ #i form,

T, >> 1, >> Ly (59)
£

Obviously, at large excitation energies AE = &, the associated time during
which this energy is absorbed h/ £ may become much smaller than the
lifetime 7,, which means that no quasiparticle has a chance to form and,
thus, the quasiparticle concept breaks down. An estimate of this lifetime is
given in [134] by calculating the decay rate of a quasi-particle with energy
£ above the Fermi energy E,., at absolute zero. Using Fermi's golden rule,
which describes the transition between initial states i and final states f
elicited by a scattering potential V',

T

£

L2 [ see,) (60
f

assuming V,, is constant and enforcing conservation of energy and Pauli

exclusion principles, see Figure 3-10, one obtains,
.., loses w

‘o ains
o
quasi-particle o g»@

k+q,e”

p-g.e-m

Figure 3-10. Energy relationship of quasi-particle scattering process. The energy @ lost in a
scattering event by the quasi-particle must be lower than its initial energy &€ , and there must

be an electron state at an energy € ! capable of absorbing at this energy @ .
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1 27”‘1/‘2 J’D(EF )deD(EF )dg’]‘d(g—a)—e’nLg”)D(EF Ye”
0 0 —=

T, h . (61)

N%\V\ZN(EF)gZ

This results suggests that, the smaller the quasi-particle (excitation) energy
£, the longer will its lifetime be, in particular, as & — 0, the lifetime tends
to infinity. An interesting result that relates the validity of the quasiparticle
concept to the dimensionality d of the system was derived by Schofield
[134], by making a change of variables to express (61) in terms of the
momentum and energy transferred. His result was the expression,

1 2z g |D(g, o)
— =" [D(E, wdoo | ] qd‘ ‘2 (62)
7, hog L(ZE/L) (hVFQ)

e

The integral (62) is interpreted as follows [136]: 1) The integral over @
accounts for the number of possible hole excitations that can be created; 2)
The lower limit of the momentum integral, over ¢, signifies that a minimum
momentum must be transferred to give a change in energy of @; 3) The
denominator (hv Fq)z in the integrand embodies the fact of already having

performed integration over the direction of the momentum and it reflects that
there is an increased time available for small deflections; 4) The numerator,

D(q, a)) is the matrix element for the scattering process. Examination of the
impact of setting the dimension to d =1 reveals that, if one assumes
D(q, a)) to be constant, then due to the singularity of the g integral, the

projected quasiparticle lifetime 7, , is not much greater than, but in fact is it

close to, h/ £ . Therefore, (62) is violated as the quasiparticle, in principle,

can never have enough time to form. The importance of this result is that
Fermi liquid theory breaks down when applied to one-dimensional metallic
systems, such as are typical at nanoscales. The new situation is described by
the concept of the Liittinger liquid.

3.1.4.2.3 Liittinger Liquids

The term Liittinger liquid is used to denote the behavior of interacting
electrons confined to one-dimensional transport [137]. Such behavior is
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unraveled by solving the interacting electron problem. The Hamiltonian in
question, given by (see Appendix B),

2oy |1 1 -,
H,=""21| —+ S | =NZ+> n,blb
0 L 2{(g g] |:2 v - nq qv (Jv:|

v=L,R

1 7 7 + +
+ (—— gJ{NLNR -S> n, (b, +b5HbS )H

q

» (63)

must be diagonalized to determine the pertinent types of solutions holding in
one dimension. This Hamiltonian diagonalization is facilitated by the
procedure of bosonization [137]-[139] discussed in detail in Appendix B. In
essence, one-dimensional bosonization transforms a nondiagonal fermionic
Hamiltonian into a diagonal bosonic one, with the assumption that the one-
dimensional  dispersion relatonship is linear, and given by

E (k) =v Fh|k -k F| [134]. The nature of this dispersion relation gives rise
to the transport characterization in terms of spinless left- and right-moving
electrons with respective electron densities NV, and N,, the parameter g,
which captures the electron-electron interaction strength in the problem, and
the Fermi velocity v,. Kane and Fisher [140] have captured this

phenomenology with he following set of expressions. The Hamiltonian (63)
is rewritten as [140], [141],

H, =7, |[N2 + N2 + 20NN, |, (64)
with
-1 1— o2
vozv[@}, zz(léz), (65)

with A as the interaction strength parameter between the left- and right-
moving electron species, and g, called the Liittinger parameter. For g =1

the interaction is zero, and the Hamiltonian then captures the behavior of a
noninteracting electron gas with velocity equal to the Fermi velocity

V, = V. From (65) it is seen that repulsive interactions, which per (64)
imply A>0, lead to g<0, and the opposite is true for attractive
interactions. In terms of the two-particle interaction potentials, V, and V,,

between fermions moving in opposite directions, namely, left and right, and
either both left- or both right-moving, respectively, v and g are given by,
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V V:-V;}
V:VF\/H;N‘* Tl (66)
F F

and

_ [V, V2, )
1+V,[27v, +V, 27,

Kane and Fisher [140] interpret v in the case V, =V, >0, as the plasmon

velocity, which increases above v, when the repulsive interactions reduce
the compressibility of the electron gas.

When the electron spin is included in the Hamiltonian, the interaction
becomes,

V(=2 )P)B") = Voo (x = )5, (x)B, (') (68)

In this case, the kinetic energy part of the Hamiltonian may be written as
follows [133].

H,, = Z((k k )+kv Coris (_k_kF )cj,k,sc—,k,s)
k,s
_2 , (69)
mF Y P (a)p,,(-q)
q>0,0=%,s

where the subst1tut10n,

p+s Zc+ks +ks, (70)

representing density operators for spin projections s =T, 1 has been made.

The potential energy, in turn, contains two types of interaction, namely,
backward scattering and forward scattering. The backward scattering
Hamiltonian is given by,

1
H, —f Zgl +ksc+ktc+p+2kr+qtc—k 2k, —q.s 5 (71)

P.q,s,t
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which captures scattering events in which (k,,s;—k,,t) = (= k,,s;k, 1)
for s # ¢ . The forward scattering Hamiltonian is given by,

1

Hy = ZZ (€:(@)Pu, (@)p-, (- 0)+ 2. (@)P,. (@)p.. (- ). (72)

The full bosonized Hamiltonian has been shown by Schulz [133] to take the
form,

H Hkm+H1ntl+H

int 2

=H,+H, + Idxcos(\/_¢) (73)

where a is a short-distance cutoff, and for v = p, 0

u, K u
= d Y VHZ Y a : ’ 74
Jae| PEon v o0, )| 74

with,
2 ? 2, +2g,, +
Z/tv — VF + g4,v _ & , KV — F g4,v gv , (75)
V4 2r 2nve+2g,, -8,
and g, =g, —2g,. & =& &4, =0.

Schulz [133] has exposed a number of situations by examining (75). For
instance, he points out that a noninteracting system, for which #, = v and,

thus exhibits equal charge and spin velocities, is obtained by setting K, =1.
That if g, = 0, then there is no backscattering and (75) describes uncoupled
charge and spin density oscillations with a dispersion relation @, (k) = uv|k|

and the system is conducting.
The Hamiltonian (75) offers, as one of its consequences, the possibility of
complete separation in the dynamics of spin and charge. In particular, if

u, #u,, then spin and charge waves propagate with different velocities.

The electron, in this case, is said to dissolve into two particles, namely, a
spin particle, called a spinon, and a charge particle, called a holon [134]. A
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simple picture for visualizing spin-charge separation is shown in Figure 3-
11.

$OdEP bbb
$$PbEdo 4
PobPbibdd

Figure 3-11. Illustration of spin charge separation. If a photon impinges on an
antiferromagnetic Mott insulator an removes an electron, the disruption left behind changes
both the spin and charge order. Electron motion into the vacant site results in spin and charge
separation, giving rise to two distinct particles, namely, a holon and a spinon. (After [134].)

Qualitatively, the pertinent physics of the Liittinger liquid follow from the
dispersion relation and may be surmised from Fig. 3-11 [134]. An
examination of this figure indicates that, due to the linear dispersion relation,
changes in momentum determine energy changes. In particular, a momentun
excitation q imposed on the 1D electron system, will cause a compression

and rarefaction of the electron density with a wavelength 21t/ |(]| . The
degrees of compression and rarefaction embody a density wave, and has two
consequences. First, because ( determines the kinetic energy E in a unique

way, the density wave has a well-defined kinetic energy. Second, the
concomitant density will depend on both the spin interaction and the
Coulomb interaction amongst electrons which, being functions of distance,
embody the potential energy of the system. Therefore, the total energy of the
system may be specified by the properties of a density wave. This density
wave, in turn, contains a spin density and a charge density. This spin-charge
separation and coexistence is the hallmark of the Liittinger liquid.

4 Energy

Ve

Figure 3-12. Excitation of electron-hole pairs in one-dimensional structure. Affer [134].
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The behavior of the Liittinger liquid at low energy excitations is captured
by the specific heat and the magnetic susceptibility. The specific heat is
given by,

y/7, = l[V—HV—FJa (76)
2\ u

p Uy

where 7}, is the specific heat coefficient for noninteracting electrons at

Fermi velocity v, and the spin susceptibility is given by,

v
;{/ X, =—= . The Wilson ratio is given by [133],

Uy

2
R, =XYoo (77)

7//1/0 up+ua

The presentation in this section has exposed the fact that in one-
dimensional transport, the quasi-particles of a Fermi liquid morph into two
new entities, namely, spinons and holons, which, individually, transport spin
and charge, respectively, and characterize the Liittinger liquid. It will be seen
in the next section, that the manifestation of spin-charge separation is
responsible for a quantitative change in the behavior of 1D TLs.

3.2 Wave Behavior in Periodic and Aperiodic Media

The ability to create patterns of very high precision, made available by
NanoMEMS fabrication technology, will endow engineers with the ability to
effect signal processing on a variety of wave phenomena, e.g., electronic,
electromagnetic, acoustic, etc. Much of this functionality will exploit the
phenomenon of band gaps; typically, domains of energies or frequencies in
which wave propagation is forbidden. In what follows, the topics of
electronic [28] and photonic bandgaps [51, 142], are addressed.

3.2.1 Electronic Band-Gap Crystals
3.2.1.1 Carbon Nanotubes

Carbon nanotubes (CNTs) were already introduced in Chapter 1. They are
a relatively new type of material and are considered by many to be the
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quintessential nanotechnology device. Their properties are related to those of
a 2D perodic graphite sheet, see Figs. 3-13.

Figure 3-13. Sketch of a graphene lattice, a single sheet of carbon atoms arranged in the
honeycomb structure, showing vectors utilized in describing the lattice. In this case, the vector
C is defined by the pair n=4, m=4, i.e., (4, 4).

The graphene lattice is defined by a vector C of the form C=na, +ma,,
where a, and a, are the unit cell base vectors of the graphene sheet, Fig. 3-
13, with |a1| = |a2| =0.246nm. The pair of integers (n, m), where n > m,
is used to represent a possible CNT structure [46]. Three types of CNT
structures are typically identified according to how the conceptual graphene
rolling into a cylinder is effected, namely, the armchair, the zigzag, and the
chiral CNT structures, see Fig. 3-14 [143]. The chiral angle, 0, of the

wrapping vectors describing these CNTs are related to the indices # and m
by the equation [46],

1 3m (78)
2+/n?+nmm +m?

0 =sin

with =0 for the Zigzag CNT, 0=30" for the Armchair CNT, and
0<0<30° for the Chiral CNT. The corresponding CNT diameter is given
by,

dCNT(A)=0.783 n’ +nm+m’ . (79)
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Carbon Nanotube
Axis

I

(a)

I Carbon Nanotube

Axis

Figure 3-14. Carbon nanotube structures according to how the grapheme sheet is “wrapped.”
(a) Armchair. (b) Zig-zag. (c) Chiral. After [143].

As with conventional crystals, (electron) wave propagation is a function
of the atomic (direct lattice) periodicity and its reciprocal lattice, and is
captured by the dispersion relation, £ vs. k. In the case of graphene, the
direct lattice is of the honeycomb type, Fig. 3-15(a) and applying the tight-
binding or linear combination of atomic orbitals (LCAQO) method [64], the
graphene band structure is obtained as,

E(/€)= i71\/3 + 400{\52%“" Jcos(a;{" J + 4cos(a]2€xj ) (80)

where a is the lattice constant, i.e., a =\/§a0. A plot of this function is

shown in Figure 3-15(b). It may be noticed from this figure that at the K-
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points (the corners of the first Brilloin zone) there is zero gap between
conduction and valence bands in graphene.

15t Brillouin zone K point

Efy

Figure 3-15 (a) Reciprocal lattice of graphene with the 1% Brilloin zone (shaded). bl and

b2 are the primitive lattice vectors. The K point lies at the edge of the BZ. 2D grapheme

sheets “rolled” around the y axis, will give rise to armchair CNTs. (b) LCAO bandstructure of
grapheme. The Fermi level lies at E=0. Courtesy of Prof. Christian Schonenberger, University
of Basel, Switzerland].

The effect of rolling the graphene sheet to form the CNT manifests itself
in the band structure as follows. On the one hand, the momentum of
electrons along the circumference of the cylinder becomes quantized. On the
other, propagation is now only possible along the cylinder axis, i.e., in one
dimension, thus the concomitant CNT band structure corresponds to slices of
the 2D graphene structure. When the slice passes through a K-point, the
CNT is metallic since, at these points, the gap is zero; when it doesn’t, it is
semiconducting. In particular, CNT structure type and its electronic
properties are related as follows [46]. For armchair CNTs, the
circumferential momentum vector is quantized according to,
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v 2T

k! =——"— (81)
N, +3a

for v=1,..,N_, where N_ is the number of unit cells spanning the

circumference. Thus, it can be shown that an armchair CNT rolled such that
its circumference lies along k _ and the transport longitudinal axis is along

ky, would have longitudinal 1D band structures at each of the discrete

values of k _ given by (81), see Figure 3-18. Similarly, a zigzag CNT has its
circumferential momentum vector quantized according to,

k=Y 2T (82)
N. a

y

for v=1,...,N . In this case, the resulting CNT may be either metallic or

semiconducting. Metallic, when its index n is divisible by three, in which
case a slice passes through a K-point and the tube behaves as a 1D metal

with  Fermi velocity vg =8x10° m/s [144], and otherwise,
semiconducting. In the context of ballistic CNTs, their conductance is given
by Landauer’s formula, GZ(NG:2 /h)T, where N, the number of one-

dimensional channels is four, due to electron spin degeneracy and the two
bands at K- and K’-points, see Fig. 3-17(a). This works out to

G= (4e2 / h)= 1/6.5kQ, assuming T=1. The energy gap of semiconducting
CNTs is related to their diameter by [144], [145],

4

B, = v __09ev 83)
3d cyr d cnr [nm ]

In the general case of a chiral CNT, Dresselhaus et al. [146], [147] have

shown that a metallic CNT is obtained whenever,

n—m=3q, (84)

where q is an integer. In summary, the current knowledge of electronic-
structural properties of SWNTs is as follows [46]: all armchair tubes are
expected to be metallic, one-third of zigzag and chiral tubes are expected to
be metallic, and the rest are expected to be semiconducting [46].
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Figure 3-16 (a) A 1D band structure lies at each of the discrete values of kx for a (5, 5)
armchair CNT, dictated by the circumferential quantization in this direction. The armchair

CNT is metallic. (b) A 1D band structure lies at each of the discrete values of kv fora (9, 0)

zigzag CNT, dictated by the circumferential quantization in this direction. The zigzag CNT is
semiconducting. (After [46].)

It may be surmised from the slice passing through the K’, K points, see Fig.
3.17, that each channel is four-fold degenerate, on account of spin

degeneracy and the sublattice degeneracy of electrons in graphene [144].

4E (k)

Figure 3-17. Energy band diagram of metallic CNT for slice through Fermi points K’, K.
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This fact has been utilized by Burke [148] to propose an AC circuit model
for CNTs, including electron-electron interaction, see Fig. 3.18.

Figure 3-18. AC circuit model for interacting electrons in CNT. The four-fold degeneracy is
captured by four channels. (After [148].)

The circuit model is interpreted by Burke [148] as follows. The circuit
captures the existence of four modes, namely, three spin modes, which
corresponds to a differential excitation, and one charge mode, which
corresponds to common mode excitation. In the latter case (charge mode), all
four transmission lines appear in “parallel”, and they are characterized by an
effective line possessing a charge-mode propagation velocity and
characteristic impedance given by [148],

4C
Vo = : [I”L : ]zVF 14——9 = Ve, (85)
L CQ C s Cs g

and,

4L L
Zo = M Lo L (86)
Cs CQ g 2e

c,CM

where, L, = h/ 262VF (h is Planck’s constant) is the kinetic inductance per
unit  length, C, = 2¢’ / hv, is the quantum capacitance,and

C s =2me/cosh™ (2h/d) (h here is the CNT-to-ground distance) is the

electrostatic capacitance (the CNT-to-ground capacitance). Typical values
for these parameters are: L, =16nH/um, C. =50aF/um, and

C, =100aF/um . The characteristic impedance for the three spin modes is
given by,
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Ly h
¢PM C, 2¢’

: (87)

which Burke interprets as defining the ratio of excitation voltage to elicited
current when the spin wave is excited.

With diameters of the order of approximately lnm, CNTs are ideal
systems where the characteristics of Littinger liquids, namely, strong
electron-electron interaction and spin-charge separation, should be manifest.
Accordingly, efforts have been expended to develop ways of characterizing
and ascertaining such behavior. Noticeable among these, is experimental
work by Bockrath et al. [149] who deduced, from the measured 3D-1D
tunneling conductance dI/dV o<V, CNT Liittinger parameters g with
values between 0.2 and 0.3. These were extracted from comparison of

measurement to the theoretical relations Oy, Z(g_l —l)/ 4 or

Ok = (g_l +g- 2)/ 8, for 3D-1D contacts located at the end or at the
bulk, respectively, of the CNT [151], see Fig. 3-19.

Bulk Contact

End Contact

L>>L, Luttinger Liquid

Figure 3-19. 3D-1D contact to carbon nanotube. (4ffer [151].)

Similarly, efforts have been expended, and are being vigorously pursued,
to uncover the predicted spin-charge separation. These include proposals to
directly excite Liittinger liquid behavior in CNTs by impressing microwave
voltage waves in CNTs acting as transmission lines [149].

3.2.1.2 Superconductors

The phenomenon of superconductivity manifests itself as the drop in the
electrical resistance of metals and alloys at sufficiently low temperatures,
accompanied by the inhibition of magnetic fields from penetrating inside of
them [28]. Conversely, a material in the superconducting state loses this

property when its temperature is raised past a critical temperature, 7, or it
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is exposed to a high critical magnetic field H & [28]. We discuss the

principles of superconductivity here, mainly because of the importance of
superconductors (materials exhibiting superconductivity) as an alternative
means of implementing quantum bits (qubits). Our point of departure in
discussing superconductivity is the concept of superfluidity, from which it
may be understood in an intuitive fashion.

3.2.1.2.1 Superfluidity

Superfluidity refers to the property exhibited by a superfluid, i.e., a liquid
that flows without friction. A successful explanation of superfluidity was put
forth by Landau [153], [154]. Landau’s reasoning was as follows [131]. If
one assumes that the Bose quantum fluid of mass M is in its ground state at
absolute zero, and flowing within a capillary tube with velocity v, and

1
energy EMvz, then, in a coordinate system anchored in the fluid, the fluid

would be at rest and the capillary would appear to be moving at a velocity —
v. If friction emerges between the capillary and the fluid, then the part of the
latter in contact with the tube would no longer be at rest, but would begin to
be carried along by the capillary wall. However, since this part of the fluid
would no longer be at rest, the act of it being carried along by the tube wall
must induce excitations from its ground state. These excitations, in turn,
would manifest as changes in its energy and momentum, E and p, so that the

I | _
fluid’s total energy would now be E+p- V+5MV2 . Upon excitation, the

fluid itself would lose energy. Therefore, energy change must be negative,
i.e.,

E+p-v<0. (88)

Since the fluid is a quantum system of Bose particles, its energy is quantized
and must change discretely. The smallest energy excitation, therefore, is that
for which E+p-V is a minimum, which occurs when p and V are

opposite. This means that one must have,

E
E-pv<O or vV>—. (89)
p

This equation sets the minimum velocity at which excitations would begin,
as the critical velocity,
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v, > min [EJ . (90)
p

In particular, if v_#0, then it is possible for the fluid to flow free of

excitations, i.e., without friction/dissipation, as long as v <v_. This is the

so-called Landau’s criterion for superfluidity. This condition is maintained
as long as v is less than the speed of sound. This insight, led Landau to
propose that the low energy excitations of the superfluid ground state should
consist of two types of particles, namely, phonons and “rotons.” Phonons
being quantized sound waves, with an energy dispersion,

E=5p, o1

where S is the speed of sound and p the momentum, and rotons being
quantized rotational motion (vortices), with an energy dispersion,

E:A+(p_p0)2/2mcff' (92)

At temperatures above absolute zero, the fluid will be excited by thermal
energy. Therefore, it will be possible for some of the thermally excited fluid

particles to achieve velocities greater than v_ and will, consequently,

experience friction. Under these circumstances, the fluid will be composed
of these normal particles and superfluid particles, resulting in a mass current
given by,

I=p,V, 4PV (93)
where p and v are the mass density and velocity of the normal fluid, and
P, and v those of the superfluid. If one assumes that the whole fluid flows

with velocity V| =V, =V, then the total mass current may be written as,

j=(p, +p, JV=pv. (94)

One of the fundamental properties of a superfluid derives from the fact
that, since it possesses no excited particles, its momentum doesn’t change
and, consequently, it can’t exert a force on a body immersed in it. Flow with
this property, denoted “potential flow,” is mathematically characterized by
the equation,
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Vxv, =0. 95)

Eq.(95) signifies that a superfluid is irrotational, i.e., it exhibits no vorticity.
The quintessential example of a superfluid is embodied by a Bose liquid,
which consists of atoms of integral-value spins, in particular, liquid helium
(He"), which does not solidify at absolute zero and flows through capillaries
without dissipation.

Landau’s arguments, presented above, while successfully explaining
liquid helium behavior, were of an intuitive and phenomenological nature.
Elements for a first-principles theory to explain superfluid behavior began
taking shape with observations by Fritz London [155], to the effect that the
constitution of He atoms, which are composed of an even number of
elementary particles (2 protons, 2 neutrons, and 2 electrons) suggested that
they should be described by a symmetric wavefunction and, consequently,
should obey Bose statistics, together with the earlier observation by Einstein
that, at appropriately low temperatures and mass and density conditions, a
gas of non-interacting Bose particles condenses with the remarkable property
that a nonzero fraction of the condensed atoms occupies a single one-particle
state. Such a state, in particular, is a coherent state and has come to be
known as a Bose-Einstein condensate (BEC) [155]. A fundamental theory
capturing this behavior is the Gross-Pitaevskii (GP) model. The GP equation
models the general Bose gas by the equation [78],

., 0y o,
h—=- \Y% +U , 96

where m is particle mass,

2 ’
U _ezj|\|f(x)| dx

=

T ©7)
v = ]

is the mean field for Coulomb interaction between atoms, and may be
expressed as,

U, = [Vla=2 o) dx’ = [gdx—x @) dx' = glu(x’)". (98)
Substituting (98) into (96) one obtains a nonlinear Schrodinger equation,

.9 n’ h’ .
i =L Vi gy y(x) = Vi + gy'y’ . (99)
2m 2m
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Condensation is captured when in (99) one imposes the conditions for
obtaining the lowest possible state, ,, namely, that the wave function be

homogeneous, i.e.,
Viy, —0. (100)

This leads to the relation,
=n="—, (101)

where N is the number of atoms and V is the volume. In turn, substitution of
(100) and (101) into (99) leads to a simplified equation of motion, namely,

oy 0
ot

ih

=gny,, (102)

with a solution of the form,

_gnt

y,=Ce " . (103)
The dispersion relation for low-level excitations are obtained by

linearizing (99), in particular, writing W =W, + ), where ¥ <<V, and
substituting into (99), one obtains,

.0 h? .
lh—X=—EV2x+2gwozx+gwozx . (104)

Since this equation contains the two unknowns 7y and X*, we generate a
second equation by taking its complex conjugate,

_in 9%

hz * *
oy =—%V2x +2gW, %+ 8V, X (105)

Then, postulating solutions of the form,

i
x~&e (106)
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and

—iEt+ipx

X ~me , (107)

substituting them into (104) and (105), together with (101), and solving the
resulting system of equations for £, one obtains the result,

4
E(p)=,S*p* + P (108)
4dm

This is the dispersion relation of a superfluid. Expressing the fluid velocity
in terms of it, we obtain,

2
o E_ e, p? (109)
p

This equation has a positive minimum, occurring at p — 0, and given by

the constant velocity S. Since this velocity is independent of momentum,
E(p) must contain an energy gap. An energy gap in its spectrum, thus, is
another manifestation of superfluidic behavior.

The zero-vorticity property of a superfluid is derived from first principles
as follows. From (103) it may be seen that the wave function for the Bose
condensate in its lowest energy state is a one-particle complex wave.
Generalizing this expression to,

v (x)=|yle*™), (110)

. 2
one can express the mass density as p = m|1|!| , where \p(x) and the current

are related, as usual, by,

- lh * *

=S Vy-yvy). (1)
It then follows that, inserting (110) into (101) one obtains,

< 2 h

=V =p—Vy, (112)

which, upon comparison with (94) yields,
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v=Tlyy, (113)
m

that is, the velocity is related to the phase, ¥ , of the wave function, so one
can rewrite (113) as,

v=Vo, (114)

which clearly expresses that the flow is a potential flow, since the curl of any
gradient is zero, and the potential is given by,

o="ly . (115)
m

A further phenomenon accomplanying superfluidity, and elucidated by
first-principles considerations, pertains to the dynamics of superfluids when
placed in a rotating container. In particular, it is experimentally found, Fig.
3-19, in a vessel containing a mixture of normal and superfluid components,

and rotating at an angular velocity €2, that the dynamic behavior of the two
components is quite different. On the one hand, as is expected from classical
hydrodynamics, the normal component rotates with the vessel (i.e., it is
carried along with the vessel due to friction), so that it acquires an eddy

current V= QXT, and this velocity, in turn, gives rise to an accompanying

vortex, since V% vV, = 20 , see Fig. 3-19. The superfluid component, on the

other hand, becomes populated by a distribution of vortices. This appearance
of vortices in the superfluid component would appear to contradict the
fundamental condition for superfluidity of zero vorticity, see Eq.(95). The
clue to this behavior was to be found in the recognition that potential flow,
characterized by (95), may also be obtained whenever the equivalent form,
based on Stokes’ theorem,

{vsdfzo, (116)

is satisfied. In particular, if the potential of the rotating fluid is proportional
to the angle, see Fig. 3-20, so that one has,

_r .. 117
[0} 2na (117)
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Figure 3-20. (a) Normal fluid in rotating vessel acquires meniscus with shape depending only
on angular velocity €. Top view of fluid-containing vessel rotating with angular velocity

€ . The normal fluid acquires an eddy current with velocity V o

then the fluid velocity may be calculated as,
vo(r)=tLlg= L, (118)
r

and, since the velocity decays with distance, this is the profile of a vortex.
Now, calculation of the circulation of this vortex gives,

q%a-dl:Aq):r. (119)

Examination of Eq. (119) reveals that if the circulation (potential change) is
zero, one still has the conflict between the mathematical violation of
vorticity and the experimental observation of vortices. However, if the angle
ol is not uniquely defined, except up to modulus 27, then it would be
possible to reconcile the two if the potential ¢ were not single-valued. This,
in turn, would be the case if the phase of the wavefunction was not unique,
but also defined modulo 27, so that Ay = 21N . In this case, the circulation
(119) would be expressed as,
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Fr=A¢=""-N, (120)
m

that is, it would be quantized. Thus, a change in potential of 27//m would

bring it to the point of departure, due to its non-single-valuedness, yet would
allow a non-zero vorticity due to its finiteness. The quantum nature of a
superfluid contained in a rotating vessel manifests, therefore, in that its
circulation becomes quantized. One remarkable aspect of a rotating vessel
containing a superfluid pertains to the shape of its meniscus. In particular,
from the fact that a normal fluid in a vessel of area A rotating at an angular
velocity €2 has a circulation 2QA , and that a superfluid on the same vessel
would have a circulation I'VA , where V is the density of vortices per unit
area, one finds, equating circulations, that the € = FV/ 2 . This signifies, that

although the superfluid would not necessarily be rotating, due to the
appearance of vortices, the shape of its meniscus will be the same as that of a
normal fluid rotating at an angular velocity €2. In other words, one can
simulate the effect of rotation on a normal fluid by a population of vortices.
The fact that the circulation of a superfluid contained in a rotating vessel
is quantized means that the vessel must reach a certain minimum angular

velocity, the critical angular velocity, €2, and rotational energy before the

vortices begin to be created. From the ratio of vortex energy to vortex
angular momentum it can be shown that,

Q. =%, (121)
m

where R is the vessel radius. Figure 3-21 shows a picture of vortices in a
superfluid.

Figure 3-21. Observation of vortex lattices. The examples shown contains approximately
80, vortices. The vortices have “crystallized” in a triangular pattern. Reprinted with
permission from [156]. Copyright 2001 AAAS.
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3.2.1.2.2 Superconductivity

Our understanding of superfluidity, gained in the previous section,
facilitates that of superconductivity. Superconductivity, the absence of
electrical resistance to electron transport, may be conceptually visualized as
the “superfluidity of electrons”. A qualitative analogy between these two
phenomena may be summarized as follows. Whereas a superfluid embodies
a boson condensate of, e.g., helium atoms, a superconductor, on the other
hand, embodies boson condensates of, e.g., bound electron pairs. Electrons,
as is known, due to the Coulomb force of repulsion between them, do not,
strictly speaking, condense. However, under certain circumstances, an
effective binding force may be present that overcomes the force of repulsion
between electron pairs and turns these pairs, effectively, into bosons. These
electron pairs, which behave as bosons, are called Cooper pairs and have
zero spin (just as the helium atoms). Thus, while a boson condensate of
helium atoms may behave as a superfluid, under appropriate circumstances,
and when it does so it exhibits transport without friction, so too a condensate
of an aggregate of Cooper pairs, behaves as a superconductor. Continuing
with the analogy, while superfluid transport exists for velocities less than a

critical velocity, v  ~ mzn(E/ p), so too superconductive transport exists

below a critical velocity v ~ (A/ Dy ), where 2A in this case is the binding
energy of a Cooper pair. Finally, while dissipation and fluid vortices (rotons)
appear above V_ in the superfluid, so too ohmic dissipation and so-called
vortex states, i.e., circulation of superconducting currents in vortices
throughout the system, appear beyond v in the superconductor. With these
qualitative preliminaries, we next address the salient aspects of
superconductivity, namely, the criterion for superconductivity in light of its
conceptual relationship to superfluidity, the binding energy of Cooper pairs,
the inhibition of a magnetic field inside superconducting materials, the
conditions for the extinction of superconductivity.

In analogy with (105), the equation for a single electron moving in a
superconductor may be written as,

2
l-ha\vc(x’t):_h V2
ot 2m

Ve +8VaWaV,., (122)

where g represents charge, o=T or | represents the spin state, and

\V%WE is a 2-index summation that embodies the density from all spins. In
this context, the wave function of a pair of electrons is a product given by,
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\Pac(xlaxz):\ua(xl)\vc(xz)- 123)

Being the wave function of a boson, W, (xl,xz) must satisfy Pauli’s
exclusion principle, wheraby it must be anti-symmetric. Furthermore, since
spins and spatial coordinates operate in different (tensor) spaces, the wave
function must be a product of a spin-dependent factor, and a coordinate-
dependent factor, i.e.,

A
Yoo (x1,x,)= Ego f(x,,x,) = Eq, o (124)

where E is the anti-symmetric spin-dependent factor. With this definition,
one can rewrite (124) as,
oy, (x n’

— Vi +AE_ v 125
at 2m WG GGWG ( )

Following the same procedure as in the previous section, the dispersion
relation is obtained from the set of equations,

oy, (x,1 ’ ‘
Zh—wgix ):—;—l—mvzwc _EF\'VG +AE30W63 (126a)

and

* 2
i awggx,t)z_;lmvzwz_EFWts+A*Eoc\|"c’ (126b)

where the energy is now referred to the Fermi energy. Then, postulating
solutions of the form,

—iEt/h+ipx/h

Y. ~M.e , (127a)
and
Wg* N Cae—iEt/thipx/h ’ (127b)

it can be shown, upon substitution on (126), that the set of equations,
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2
Encz[p —EFJnG+AENCG, (128a)
2m
and
p2
'ECG:(__EFJCG+A*E05T‘0’ (128b)
2m

is obtained. Solving (128) for £ one obtains E = i\/|A|2 + Vi (p - Pr )2 .

This is the dispersion relation for superconducting electrons. It represents a
parabola with a minimum at p = p,., corresponding energy A, and energy

gap 2A . Therefore, application of the Landau criterion for superfluidity, to
the present case of superconductivity, yields the critical velocity,

vV, = (A/ pF), below which electron transport experiences no electrical

resistance, i.e., is superconductive. Next, we address the formation of Cooper
pairs.

In  exploiting the superfluid physics analogy to describe
superconductivity, one must confront the issue of explaining how electrons,
which would ordinarily be precluded from binding, due to Coulomb’s
repulsion force, would bond/condense to form bosons. The clue to this
possibility was advanced by the discovery that [157], [158] in
superconducting elements, the product of the square root of their isotopic

mass and the critical temperature, M 1/ZTC, is a constant. This experimental

fact, in turn, was interpreted by Frohlich [154] to mean that the properties of
the zero-point or thermal lattice phonons, were involved in
superconductivity and, in particular, that electrons residing within the crystal
lattice were capable, via interactions mediated by these phonons, of
attracting one another. This phenomenon is demonstrated next.

To determine the nature of the phonon-mediated electron-electron
interaction, we assume the coexistence of phonons and electrons is described
by a Hamiltonian consisting of three terms, namely, the energy of the
electrons, the energy of the phonons, and the energy of interaction between
electrons and phonons, respectively. The first two terms are captured by the
“unperturbed” Hamiltonian:

_ + +
H, = ZEIZ,GCEGCIEG + Zh(‘)éaé a; . (129)
ko q
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The third term is the familiar electron-phonon interaction [159], in which an
acoustic phonon distorts the lattice and, as a consequence, produces a grating
in the band edges which, in turn, causes electrons to scatter off of it. This

interaction is captured by the interaction potential for acoustic phonons
given by,

U,,(7,t)=DVu(f,t), (130)

where D is the deformation potential and,

u(f )= o (aq oild-o@n] a’; e—i[ﬁ-?—w(ﬁ)t])’ (131)

2pVa(q)

the lattice displacement. The pertinent energy of interaction is,
H, = [diw " (F)U,, F)¥ (7). (132)

where,
W(E)= e e, (), (133)
k

is the unperturbed one-electron Block state. With these definitions, the first-
order electron-phonon interaction may be written as,

H‘ = IDZ C§+Q,GCE,G (afl o a;) (134)

k,oq

The Hamiltonian describing the electron-phonon system, then, is given by,
_ + + : + L
H= ZEJ;,GCEGC;;,G + Jioaja +1DZCR+QCE (aa aa)- (135)
ko q kj

Now, to determine the nature of the electron-electron interaction, we have to
transform (135) into a Hamiltonian that does not contain the O(D) term, i.e.,
in which the phonon coordinates are eliminated and only electron-electron
interaction terms are present. This is accomplished by transforming (135)

into a new Hamiltonian given by H = ¢ He® , and so choosing S that H
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contains no off-diagonal terms of O(D). In particular, if we take
H=H,+ H', where H, gives rise to the solutions |n> when H =0, so

that H0|n> =E, n> , then H may be expanded as, [131],

2

H=c(H,+H )" = (1—S+S—22+...j(HO +H'{1+S+S?+...J

:H+[H,S]+%[[H,S],S]+... . (136)

=H,+H + [HO,S]+%[H' + [HO,S],S]+%[H',S]+...

If we select H +[HO,S]= 0, then the second and third terms in (136)
vanish and we have a prescription for S, namely,

<n"H'|n>+ (En‘ -E, )<n"S|n> =0= <n"S| n> = g‘%&? , (137)

n

which yields the desired Hamiltonian as,
~ 11
H:HO+E[H,S]+O(SZ). (138)

Now, in this diagonal formulation, effective electron-electron interaction is

elucidated by considering the case in which the perturbation H' causes the
following transitions: Either the electron in state k emits a phonon —q and
this is absorbed by the electron in state k’, or the electron in state k* emits a
phonon q and this is absorbed by the electron in state k. These transitions

may be mathematically represented as occurring from an initial state |1> toa
final state |f > via a virtual state |m>, in terms of which the expectation

value of the commutator in (138) may be expressed as,
(f s, H]1> => ((f |S|m)(m|[H |i) - <f|H|m><m|S|1>) (139)

m
Following [154], consideration of the phonon system at absolute zero, so that
one of the phonon states refers to the vacuum, the matrix element calculation
(134) over the phonon operators yields, without loss of generality,
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~ ic;_c¢.D
(1,]s|0) = Zk: . E;’_a o, (140a)
and
~ icg,ﬂicﬁ,D
(0 |S‘lq> = ; E+ho,—F,_ (140b)

Substituting (140) into (139) one obtains,

(tlls

2 1 B 1
[swli= DZCMCkcm Er —m ErrmoE_ |

Realizing that, due to energy conservation, E, — EE'—q = th —-E., (142
may be simplified to yield,
how.c: c.c: i
_Dzzz G k'+g k' k- (143)

q kk'(E‘_E‘ }z (’3*.

Equation (140) reveals that in circumstances when (E E )Q < (0< this

term is negative, thus embodying an electron-electron interaction that is
attractive, and that gives rise to the bosonic behavior mentioned previously.
Having shown that it is physically possible for a pair of electrons to attract
one another in the presence of a phonon, the next question before us is to
determine the binding energy of the pair. As usual, this is obtained from the
energy eigenvalues of Schrédinger equation, Hy = Ey . Towards this end,

we begin by expressing the Hamiltonian,

p; . P
H="1+=2+V|(f -7,]|), 144
2m  2m (Il 2) (144)

where the potential V(If1 -1, |) models the interaction (143), in the center-

of-mass and relative-motion coordinates, i.e.,

H=" B (i), (145)
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with R = (f +%,)/2, T =T —T,, P=p, +P,,and p= (P, —p,)/2.
Then, expressing the solution as,

= * > het (146)
k

and taking into consideration the symmetry properties of the problem, in

particular, upon interchange of 1, and T,, R >R, T —> T ,and h , =/,

and in the frame of reference in which the system is at rest KZO,
substitution of (146) into the Schrodinger equation, Hy = Ey , yields,

= 5 2m T ' Tt . (147

h2k2 - —ikF ik'F
= | E- jdre V(e h. = z Vooh
(@)

Since the electron-electron interaction is mediated by phonons, and the
phonon energies lie between 0 and 70, where ® is the Debye energy, the
electrons will be under the influence of the binding potential as long as the

their excitation energy of the pair is lower than the Debye energy, i.c.,
‘812 - 812" <hw,, €, = h2k2/2m . In this context, we have,

V. =-V (148)

and we can write (147) as,

21,2 i
[ hz;l; JhE =-VY .k, (149)

which, may be expressed as,

E-">
2m

=Y, [ hkz} (150)

which may be factored as,
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:(Zk hy 1+Z;(th =0 (151

Y
:‘Zaﬁ*l- (152)

Replacing summation by integration we obtain,

Ep+hop 1 Ep+7iop de
A% deN =VN(0 =1, 153
j eN(e)——=VN(0) I — (153)

where N(0) is the density of electronic states for a single spin population in
the normal metal [64]. Upon carrying out the integration we get,

VN(O)IHMZI, (154)
E.-E

which may be solved by the energy of the pair,

h
E,—-E=—"0 (155)

e VNO

Clearly, (155) denotes a system energy that is below the Fermi energy,
therefore, we have a bound state. Observing that the reduced mass m and

the electron mass m, are related by m = m, / 2, effecting the corresponding
substitution 7°k?/2m — h’k?/ m, = 2¢,, and repeating the operations of
(153)-(154) one obtains the result,

2hw,
0

E=2E, - (156)

e VNO) _q
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The zero-temperature binding energy (gap) is given by,

2h,
2
VN(O) _q

2A = =E,. (157)

(&

The binding energy (157) determines how far apart the electrons forming a
Cooper pair may separate while still acting as bound. In this context, the
radius R of a Cooper pair has been estimated as [160],

h’k
R ~ mEF , (158)
b

which, numerically, is of the order of Iplm . The implication of the binding

energy is as follows. At absolute zero, an energy greater than the binding
energy is required to separate Cooper pairs and, thus, create excited electrons

which are generated in pairs. At energies close to this threshold, E,, the

current will consist of both Cooper pairs and single (normal) electrons
resulting from the breaking of the pairs, giving rise to a two-fluid model

transport. Abrikosov has shown that as the temperature increases E,
decreases until it reaches zero a the critical temperature, T,. This is
temperature dependence is given by,

E, =3.06,/T.(T, - T). (159)

Next, we consider the phenomenon of magnetic field exclusion from a
superconductor. We examine the supercurrent in a superconductor containing

a density of n, electrons moving with velocity v, and, thus, given by

J, =en,v_, in the presence of a vector potential field A'. In general, the

s7s?

particle velocity in a vector potential is given by,
V=—{ﬁ—12). (160)
c

In the case of the superconductor, M =2m,, and g = 2e. If we let ¥ be
the wavefunction of the electron pair (boson), then we can express (160) as,
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v = i(— i VY —1|\P|221’j
M ¢ (161)
=L[—ih\y*V\P—£|T|221’J
2m c

e

Now, writing the complex wave function as ¥ = |‘I’|eix, where ¥ is a

space-dependent phase, and substituting into (161) we obtain,

T (162)
2m, m,c

e

This equation reveals that, even if Vy =0, current flow may be excited by

the vector potential. In fact, since ]§=VXA, we may redefine A to

include the phase, without changing B , 1.e.,

A=A +@Vx, (163)
2e

from where we get,

Vo =——-A. (164)

J =——4". (165)
The effects of a superconductor on a magnetic field inside its bulk follow
from from substituting (164) into the equation (165),

V><1§=4—RJS, (166)
C

and taking its curl, i.e.,

- 4me’n -
VxVxB= Ty =2 B, (167)
C m.C

€
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Since V-B =0, (167) becomes,

4me’n
- 2

m_.c

V’B

sB=0, (168)

which may be rewritten as,

1
Y
L

V’B-—B=0, (169)

with the London penetration depth given by,

2
§, = £ - C, (170)
4rne’n, ©

where @, is the plasma frequency in the material. Taken along one

direction, say z, (170) becomes,
d’B, 1
~—-—B, =0, (171)
dz*> &

where BX(O) is the magnetic field at the surface of the superconductor.
The solution stipulates that the magnetic field decays inside the
superconductor with a characteristic length O, . Assuming a plasma

frequency of 10" /s, the approximate value of the London penetration
depth is 300A. This means that at distances greater than ~300A from the
surface, the magnetic field and, per (165), the current, vanish inside a
superconductor, see Fig. 3-22.

Vacuum X Superconductor

B

X

Figure 3-22. Decaying magnetic field in superconductor.
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The vanishing of the magnetic field inside a superconductor is called the
Meissner effect, and has certain practical consequences. For instance, if a
superconducting wire is turned into a ring, then the fact that its bulk
magnetic field and current are zero implies that,

hVXzz—e;f:rifV)g-dl:Xz—xl:Z—erif;l'»dl- (172)
c B he ¢

Therefore, the Cooper pair wave function may be written as,

o

i i?{A«dl i?
Y, =%e*=%¥e’ =W¥e ', (173)

where ¢ is the magnetic flux inside the hollow part of the ring. Since the
phase must equal an integer multiple of 27, however, we have,

2e
7o 072, (174)
or,
mhn 1(2mhn 1
¢ ec 2(82750) 2(1)0 (175)

Thus, the magnetic flux confined by the superconducting ring is quantized in
units of flux ¢, = h/2e, called a fluxoid.

The phase of the Cooper pair wave function and the fluxoid are at the
heart of two effects of fundamental import for applications, namely, the
Josephson effect and the nonlinear Josephson inductance.

The Josephson effect refers to the fact that, whenever two
superconductors at the same temperature are brought in proximity to one
another, separated by a thin insulating layer (so thin that tunneling of Cooper

pairs may occur), Fig. 3-23, a supercurrent /; flows, which depends on the

—l IJ
Vi H V2, X2
S I S

Figure 3-23. Schematic of Josephson junction.
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phase difference & =7, —), of the respective wave functions in the
superconductors. Since the velocity of a Cooper pair is proportional to the
phase gradient of its wave function, i.e., v ~ VY, and since the phase has a

period of 2T, it is not difficult to accept that the supercurrent be periodic.
Indeed, it can be shown [28] that the Josephson junction current is given by,

I, =1,sind, (176)
where,
v=%d a77)
2m dt

is the voltage across the junction.
The Josephson inductance, in turn, derives from substituting (176) and
(177) in the definition of inductance voltage, namely,

dI,

V=Lt (178)
dt
Thus,
dLzlocos&ﬁzlocos SZ—EV, (179)
dt dt o,

and, from (178) we obtain,

) (179)

' 2ml, cos 5

Clearly, the denominator, cos® makes the inductance nonlinear, becoming

large as & — m/2, and negative in the range /2 <8 <3m/2. The
nonlinearity of the Josephson inductance gives rise to the formation of the
Josephson qubit, which is a nonlinear LC resonator consisting of the
Josephson junction’s inductance, L, and capacitance.

To conclude our exposition on superconductivity, we point out that there
are two types of superconductors according to how the Meissner effect
manifests in them [28]. In particular, type I superconductors are
characterized by a magnetization versus applied magnetic field curve that
increases up to a critical field, H_, where it drops to zero and, concurrently,
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the superconducting state disappears (it becomes normal). Type II
superconductors, on the other hand, are characterized by two critical fields,

namely, a lower critical field H_,, below which the superconducting state
exists exclusively, and above which the superconductor is threaded by flux
lines that give rise to a lattice of vortices, and an upper critical field H,,
beyond which superconductivity disappears. The vortices are circulating
superconducting currents around normal regions, and are such that the onset

of a vortex occurs when the corresponding flux is that of a single fluxoid.
Quantitatively,

b,
H, = , (180)
. 5
and
H,, ~ LI (181)
c TC&Z

where 8, is the magnetic field penetration depth, and & = v, /2A [28] is
the coherence length, which captures the lattice constant of vortex lattice.

3.2.2 Photonic Band-Gap Crystals

Continuing with the topic of wave phenomena in periodic structures, we
now briefly take on the subject of electromagnetic wave propagation and
manipulation in periodic dielectric structures or photonic band-gap crystals
(PBCs) [51]. PBCs are 1-, 2-, or 3-dimensionally periodically patterned
materials whose dispersion relation, i.e., propagation constant versus
frequency response, exhibits ranges in which wave propagation is forbidden
(band gaps) and ranges in which it is allowed.

3.2.2.1 One-dimensional PBC Physics

The fundamental physics of a PBC are easily grasped from considerations
of a 1-D PBC, which is of finite extent and consists of alternating regions of

dielectric constant, €, and €, , respectively, see Fig. 3.24.
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2 d dy dy di  dy 2
r\J_>812 1 2“1 92 f\J_»

& & g & gl & ...
Incoming Wave Exiting Wave

Figure 3-24 Sketch of one-dimensional PBC.

Focusing on a unit cell, see Fig. 3-25, we notice that if a wave impinges
from the left on this unit cell, it will in general, undergo multiple reflections

and trasmissions at two places, namely, ¢, r at the first €,/€,, discontinuity,

and r’, t’ at the €, /€, discontinuity.

d
_LdziL

I 2 2 |
i —— I | ik z
e ik z 1 € |e, e | ! 1otal © !
—ik,z -~ , |
"Torare ™! I UnitCell |
(a)
€, €, €,
i i >
0 d
_* ft'e ik o d
+ 2
e ikad, v ikd
i —
+ 4
I - tt'eikzdrleikzd
b
= Z‘Total
(b)

Figure 3-25 (a) PBC unit cell. (b) Transmission/reflection analysis. ki = (4/LE; is the

wave vector in region i.

Then, the amplitude of the transmitted wave will be given by the sum of the
following terms [58]:

(1) The fraction that is transmitted through the €,/€, interface, is
phase-shifted while traversing (left-to-right) the region €, of length
d, and then is transmitted through the €,/€&, discontinuity, namely,

te™?t". This is the amplitude for direct transmission through two
discontinuities.
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(2) The fraction that is reflected from €,/€,, is phase-shifted while
traversing (right-to-left) €, of length d, and then is reflected again

at €,/€,, phase-shifted left-to-right the region €, of length d, and

so on. This is the amplitude for transmission after two reflections,
and so on.

The frequency selectivity originates as follows [58]. At frequencies where
k2d is an even multiple of n/ 2, we have,

t ot [kzd = even number g) =t 1+ 2+ ), (182)

that is, every term inside the parenthesis is exactly in phase and there is
constructive interference; this results in maximum transmission.

On the other hand, if £2d is an odd multiple of n/ 2, we have,
— T 4! 12 14
trow| K,d =o0dd number-a =tt'"{l-r""+r"" +...), (183)

that is, every term inside the parenthesis alternates in sign and there is
destructive interference, which results in minimum transmission. With

z,= |4
£

i representing the characteristic impedance of region ¢, we obtain

the complex reflection and transmission coefficients as follows,

= Z,-2, :\/g_\/g 184
Z,+Z, e, +4fe, (184)

' 222 2\/8_1

t'= =
Z,+Z, \Je + e, (185)

The real reflection and transmission coefficients are given by,

)
R=|rf : (186)

and
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T=[¢|"ZL
4, (187)

The overall transmission coefficient for the €1/€2/€1 of Fig. 3-25(b) is given
by,

T2
" 14+R>—2Rcok,d

T]'"ota/ :|tT ota} ?
(188)

This expression can be used to compute the transmission coefficient of the
unit cell, which includes finite €
kod = (kid, +kydy) Figure 3-26 shows a plot of the transmission coefficient
of such a unit cell, Eq.(188).

regions of length d1/2, by replacing

0.8

Transmission Coefficient

0.0

o 1 2 3 4 s & 71 8
Unit Cell Phase Shift (k,d,+k,d,)/(n/2)

Figure 3-26. Transmission coefficient versus phase shift for unit cell for PBC in Fig. 3-25.
Parameters: dl:1.06in, d2:0.42in, & =1, €-89. Atodd multiples of 7 /2 one finds valleys,

whereas at even multiples of 7/2 one finds peaks of the transmission coefficient. The
destructive interference, of a single unit cell in this example, is responsible for a valley
transmission amplitude of only ~0.36. As the number of consecutive unit cells, N, making up
the crystal increases, the cumulative effect of the unit cell’s attenuation drives the overall
crystal attenuation from ~0.36, for a single unit cell, to arbitrarily low values, depending on
N. [161].

When multiple layers of unit cells are cascaded, the total transmission is
drastically reduced and a photonic bandgap is formed at the frequency in
question.

The 1-D PBC, being most often found in its embodiment as a multilayer
film in dielectric mirrors and in optical filters, is already an extensively
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studied structure. From these applications it is known that PBCs can act as
perfect mirrors for light whose frequency lies within a well-defined range,
namely, when kd (where d is the lattice constant) is an odd multiple of 7/2,
and that they may localize modes when endowed with defects [162]. The
application of PBCs in the context of routing and controlling the propagation
of light waves, for example, requires their realization in, at least, 2-D. Next,
we deal with multi-dimensional PBCs.

3.2.2.2 Multi-dimensional PBC Physics

The properties of 2- and 3-D PBCs may be formulated in terms of the
coherent scattering properties of 2- and 3-D lattices [64]. Fig. 3-27(a)
typifies a 2-D triangular-lattice PBC consisting of cylinders of dielectric
constant £, embedded in a host of dielectric constant ¢ .

Top View
o0 0 000 0606 00 00 00
o © 060 06 0600000 0 000
0 0 00 o, o 00 060 00
e 6 060 0O oo 0 0 00 0

O 0 6 06 06 6 006006 060 000
Host £, mummmummb>

° ® 000 0000 000090
Latticeﬁg/

(a)

(®)

Figure 3-27. (a) Sketch of 2-D PBC with lattice constants ¢, and g, consisting of cylinders

of dielectric constant €, embedded in a host of dielectric constant €, . (b) Detail of an

incoming wave with wave vector K impinging on two objects separated a distance é, and

scattered along wave vector K'.
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Specifically, the properties of these structures are given by arguments
advanced by Bragg [64], whose essence (for a 2-D periodic lattice) is that
the path difference (phase shift) between incoming and scattered rays,
A=a -}(k — k'j, see Fig. 3-27(b), determines whether the transmission of the
structure exhibits a maximum or a minimum; a maximum when A is an
integer multiple of 27, and a minimum when jt is an odd multiple of 7. For
a 3-D PBC, on the other hand, A= R -k - k'j must be valid simultaneously
for all vectors R that are Bravais lattice vectors [64].

A large number of computational techniques to obtain the properties of
general PBCs have been developed, most of which derive from the solid
state physics literature on computing band structures [162]-[166]. Obviously,
it would be impossible to engage in detailing these techniques here, thus we
instead provide a number of analytical results derived by Joannopoulos et al.
[162] that capture some general properties of PBCs and facilitate one’s
intuition when thinking about them.

3.2.2.2.1 General Properties of PBCs

Initially, techniques for computing the properties of dielectric PBCs
exploited previously introduced methods for computing the band structures
of semiconductors. Indeed, a comparison between the equations of quantum
mechanics (QM), used to describe semiconductors, and electromagnetics
(EM), used to describe dielectric PBCs, shows many similarities, Table 3-1.

Table 3-1. Comparison between quantum mechanics and electromagnetics
formulations. [159].

Field P(r,t)="P(F)e™ H(7,t) = H(F)e
Eigenvalue problem  HY = EW =H = (0)/ 0)2 H
Hermiti t _($2y2

ermitian operator He (h \Y )

RO

A key difference, however, which restricts the general applicability of the
QM formulation to solve PBC problems is the scalar nature of the QM
problem compared to the vector nature of the EM problem. Fortunately,
however, unlike the QM semiconductor band structure problem, in which the
Bohr radius introduces a fundamental length scale and, as a result, similar
lattices with differing dimensions give rise to different behaviors, the EM
problem possesses no fundamental length scale constant. This means that the
properties of PBCs which differ only via a length expansion or contraction
of all distances, are related by simple expressions. In particular, given an EM
eigenmode obeying the equation,
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w({w}ﬁ(f){‘*’fﬁ(f), (189)

e(t) c

if the dielectric profile defining a PBC is scaled as follows,
e(f) = €'(t) = &(¥)/s, where s is the scaling factor, then it can be shown
that the scaled PBC will obey the equation,

Vx( ! Vk}ﬁ(f'/s)z(wjzﬁ(?/s), (190)

e'(t') cs

from where one derives that the properties corresponding to the scaled PBC
are derived from those of the unscaled one as follows: ﬁ'(f') = ﬁ(?’/s) and

®'= ®/s. Thus, once the PBC solutions are known at one length scale, they
are automatically known at all others. As a practical application, microwave-
length-scale PBCs may be exploited as vehicles to study to optical-scale
PBC concepts.

Similarly, there is no fundamental value of dielectric constant, therefore,
it may be shown that whenever the dielectric constant is uniformly scaled

throughout a PBC as follows: &() — &'(t) = £(F)/s”, where s is the scaling
factor, then the scaled PBC will obey the equation,

Vx[evt?)v x)ﬁ(f):(ss)jzﬁ(f)' (191)

This means that, upon scaling the dielectric constant, the mode geometry
remains unchanged, but the frequency scales as: ® — @'=s®. Thus,
multiplying the dielectric constant by a factor of 1/9 will result in
multiplying the frequency of their modes by three.

Lastly, the properties of PBCs depend on parameters such as filling
fraction, the contrast between host and lattice dielectric constants, and the
number of layers employed. Fig. 3-28 shows the computed transmission

coefficient for an eleven-layer PBC as the index of refraction n = /€, is
increased from 1.2 to 2.98.
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Figure 3-28. Eleven-layer 2-D PBC transmission coefficient with index of refraction as a
parameter. The band gap attenuation increases from a few dB for n=1.2 to close to 80dB at
n=2.8.

3.2.2.3 Advanced PBC Structures

The initial investigations in the field of PBCs focused on dielectric
materials-based PBCs, whose structure consisted of either periodic arrays of
suitably shaped holes in a dielectric slab, thus forming a continuous
dielectric host matrix, or a periodic array of suitably shaped and isolated
dielectric objects. The former PBC is exemplified by a slab patterned with an
array of cylindrical air holes, whereas the latter PBC is exemplified by an
array of isolated cylinders embedded in air. These PBCs permitted the
creation of band gaps at finite frequencies, but did not produce them at DC.
Further investigations on metal-based PBCs, such as a wire mesh, soon
followed, which demonstrated the existence of band gaps down to DC [167],
[168].

While enabling the manipulation of electromagnetic waves, in particular,
achieving diffractionless guidance of light around sharp bends [162], the
overall propagation behavior in dielectrics and metallic meshes followed the
usual “right-hand” (RH) rule, in which the directions of the electric and

magnetic fields, E and ﬁ, and the propagation vector k form a right-

handed system with coincidence of the direction of energy flow and k.
Further work, aimed at manipulating the properties of the PBC medium, led
Pendry to propose two schemes, namely, a composite medium made up of an
array of metal posts which created a frequency region with negative
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permittivity, €. <0, and an array of interspersed split-ring resonators

which created a frequency region with negative permeability, W <O0.

These materials have become known as metamaterials and, when
implemented so that both the permittivity and the permeability are
simultaneously negative, they exhibit a negative refractive index

n((o): eff( )ueff( ), which is real and gives rise to the existence of
propagating modes with the remarkable property that they follow a “left-

hand” (LH) rule. In this case the vectors E, H, k form a left-handed
system, i.e., the direction of propagation is reversed with respect to the
direction of energy flow [169]. Left-handed materials have been the subject
of much attention because they exhibit unusual propagation properties. For
instance, they exactly reverse the propagation paths of rays within them,
which may be exploited to implement low reflectance surfaces by exactly
canceling the scattering properties of other materials. Another application,
exploits their potential to produce perfect lenses.

3.2.2.3.1 Negative Refraction and Perfect Lenses

The concept of a perfect lens was introduced by Pendry [170], upon
further examining the earlier analysis of Veselago [169] on the consequences
of negative refractive index materials. Veselago [169], in particular, had
indicated that reflection and refraction between vacuum and a negative
refraction material, would follow the situation depicted in Fig. 3-29.

Vacuum

Refractive Index n

Figure 3-29. Consequences of negative refractive index on refraction properties. 1—Incident
beam. 2—Reflected beam. 3—Refracted beam for n<0. 4—Refracted beam for n>0. (After
[169].)

Fig. 3-29 shows, that contrary to the usual case of a positive index, when the
refraction index is negative the angle of refraction is also negative with
respect to the surface normal. As a result, when such a medium is used as a
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lens, Fig. 3.30, it causes light originally diverging from a point source S to
be reversed and to converge back to a point S; in the medium.

n= n=- n=

Figure 3-30. Parallel-sided medium with negative refractive index refocuses light. (After
[170].)

The special feature contributed by a negative refraction lens was elucidated
by Pendry [170]. It consists in that, by being capable of amplifying
evanescent waves, all wave components emanating from the source are
present at the converging focus; this enables the perfect reconstruction of the

source image. This property was proven by Pendry [170] by assuming an
incident wave with electric field given by,

E,, = yexp(ik,z+ik x —iwmt), (192)

where, since ki + ki > / ¢’ , the wave vector,

2
k, =+11/ki+k§—cc‘)—2, (193)

implies an exponentially decaying (evanescent) wave, a reflected wave given
by,

E, = ryexp(—ik,z +ik x —iot), (194)
and transmitted wave given by,
Ejs, = tyexp(ik', z + ik, x —imt), (195)

where,
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k' = +i\/k§ +kI - (196)

Then, using the formula for the transmission coefficient of a slab of width d,
1e.,

tt'exp(ik’, d)
1-r7exp(2ik',d)’

T, = (197)

where,

t and t° are the vacuum/medium and medium/vacuum transmission
coefficients and r and 1’ the corresponding reflection coefficients, given by,

2uk -k
P LR | et (198)
pk +k, uk +k,
and
2k’ k' —uk
tl Y4 rv_ Y4 ““ Y4 (199)

- K +uk, K +uk,

If both the permeability and permittivity approach negative unity, then the
transmission coefficient becomes,

. . tt'exp (ik', d) . : (200)
T, = : = exp (- ik’ d) = exp (- ik,d)
lim Ts = lim 7 exp ik, d) exp (- ik',d) = exp (- ik d)

e—>-1 e—>-1

Since k, is imaginary, see (196), (200) is a growing exponential and the
wave is amplified.

By contrast, in a normal lens the large transverse wave vector of
propagating waves are evanescent and decay prior to reaching the focus, thus
the incomplete spectral contents makes it impossible to identically
reconstruct the image.
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3.2.3 Cavity Quantum Electrodynamics

The field of Cavity Quantum Electrodynamics or, cavity QED, deals with
the effect of the surrounding environment on the spontaneous emission rate
of atoms [171]. The concept was introduced by Purcell in 1946 [171] in the
context of nuclear magnetic moment transitions. He observed that at
conditions of temperature, radio frequency, and nuclear magneton given by
300°K, v=10"sec™, and W =1, respectively, the corresponding rate of
spontaneous emission, given by,

2 3.2
A, = [8“V jhv[gn b J sec (201)

c? 3h°

adopts a value of 2x10*sec™. So small is, indeed, this value, that it
implies the virtual impossibility of the spin system being able to achieve
thermal equilibrium with its surroundings. This expression, Eq. (201), for the

spontaneous emission rate 4 between initial and final states |1> and |f >,

assumes the atom is in free space and derives from Fermi’s golden rule
[172], namely,

£lHli)’
A=K%;&MW, (202)

where the initial state |1> , represents an atom in the absence of any photons,
and the final state |f >, represents the atom with a single photon. The

Hamiltonian H represents the atom-field interaction, and p(v) represents

the density of photon states or number of radiation oscillators per unit
volume, in a unit frequency range which, for free space, adopts the value of ,

ps = (81v?/c?). (203)

In other words, py embodies the number of electromagnetic modes into

which photons may be emittted at the location of the emitter [173].
When the atom is enclosed by a microwave cavity of quality factor Q,
however, the number of radiation oscillators per unit volume is limited to

those occupying the frequency range V/ 0O, which is, in fact, exactly one. If
one assumes the cavity volume and the wavelength to be related by
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V= (k/ 2)3 = (C/ 2\/)3 , then the density of photon states per unit frequency,

per unit volume, (1 mode)/ (AVV), may be expressed in terms of the cavity
Q as follows,

1l mde 1 mode _ 8v’Q (204)

RO E .
Q Nav

Comparing (203) and (204) it is seen that they are related by,

2
p. = (—jQ Ps- (205)
T

Thus, a cavity enclosure of quality factor Q increases the effective density of
photon states in free space by the factor of (2Q/ ﬂ:). In turn, since the

spontaneous emission rate is proportional to this density of photon states,
this rate is increased, in particular, to [172],

A, =QA. (206)

The larger issue elicited by Purcell’s observation was that the spontaneous
emission rate of an atom may be modified according to the properties of the
surroundings. In particular, as Kleppner [172] pointed out, the spontaneous
emission of an atom in a cavity may be inhibited if the cavity has dimensions
smaller than the radiaton wavelength, but it may be enhanced (increased), as
in (206), if the cavity resonates at this wavelength.

This realization that the spontaneous emission rate of an atom may be
suppressed or enhanced by modifying the properties of the radiation field in
the surroundings, has many practical applications. For instance, in solid-state
electronics it is well known that spontaneous emission is fundamentally
responsible for non-radiative recombination processes, which limit the
performance of semiconductor lasers, heterojunction bipolar transistors, and
solar cells [51]. How would one apply the cavity QED concept to inhibit the
spontaneous emission in these situations, where one is dealing not with
single atoms, but with entire devices, is not at all obvious. The answer to this
question was advanced by Yablonovitch in 1987 [51] with his photonic
band-gap crystal (PBC) idea. Indeed, by surrounding the devices in question
with a PBC exhibiting a band gap which overlaps the electronic band edge
(across which the non-radiative transitions would occur) the spontaneous
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emission can be forbidden, thus potentially eliminating non-radiative
transitions. This is so because, in the band gap of a PBC, the density of

photons states, Pppc = 0. The first experimental demonstration of the use of

three-dimensional PBCs to control the dynamics of spontaneous emission
from quantum dots has been recently published [173]. In this case, Fig. 3-31,
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(b)
Figure 3-31. (a) Scanning electron microscope image of the (111) face of a titania inverse
opal with lattice parameter a=460 nm. Reprinted with permission from[170] Copyright 2004
Nature. (b) Luminescence decay curves of quantum dots inside three different photonic
crystals. The data are recorded at frequencies 15,670 em’! (a= 370 nm) and 15,100 cm™ (a
=420 nm, and a=500 nm). The curves have been overlapped after 5 ns. The first part of the
decay curve is influenced by emission of titania (recorded at 15,400 cm™). After 5 ns this
contribution is negligible. [173].

the spectral distribution and time-dependent decay of light emitted from
excitons confined in the CdSe quantum dots are shown to be controlled by
the host PBC. In particular, the fact that lifetimes of 9.6+t 0.lns and
19.3+£0.2ns for quantum dots embedded in PBCs of lattice constants
a=420 nm and a=500 nm, respectively, are obtained, demonstrate a factor of
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2 variation produced by the PBCs. This corroborates the strong role the PBC
plays in controlling the radiative lifetime of the emitters.

3.3 Summary

This chapter has dealt with the physics of waves that is of relevance to
quantum phenomena occurring in NanoMEMS. It began with typical
phenomena that manifest and exploit the wave nature of electrons, in
particular, the quantization of electrical conductance, its calculation with
Landauer’s formula, and its manifestation in quantum wires, quantum point
contacts, resonant tunneling and quantum interference (Aharonov-Bohm
effect). Then, the topic of quantum transport theory was taken up, with
particular emphasis on dealing with phenomena dominating in one-
dimensional transport, such as the Liittinger liquid. Finally, wave behavior in
both periodic and non-periodic media was addressed, in particular, carbon
nanotubes, superconductors, photonic bandgap crystals, and cavity quantum
electrodynamics. In next chapter focuses on the application of the material
presented thus far to engineer a variety of circuits and systems that typify
elements to be found in NanoMEMS.
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NANOMEMS APPLICATIONS: CIRCUITS AND
SYSTEMS

4.1 Introduction

The new “electronics,” enabled by NanoMEMS, will exploit the
coexistence of mesoscopic and mechanical devices operating in the quantum
mechanical regime. Thus, a plethora of phenomena, such as tunneling,
charge quantization, the Casimir effect, motion quantization, entanglement,
etc., are at our disposal to be exploited in creating powerful computing and
communications hardware. This chapter exposes a variety of emerging
devices that embody potential nanoelectromechanical quantum circuits and
systems (NEMX) device-circuit paradigms [22].

4.2 NanoMEMS Systems on Chip

NanoMEMS Systems-on-Chip (SoC) may be predicated upon a multitude
of physical phenomena, e.g., electrical, optical, mechanical, magnetic,
fluidic, quantum effects and mixed domain. Therefore, their universe of
possible implementations and applications is vast and only limited by our
imagination. Possible areas of endeavor, already under research, include:
Nanoelectronics, Nanocomputation, Nanomechanics, Nanoengineering,
Nanobiotechnology, Nanomedicine, Nanochemistry, and RF MEMS. In
principle, then, there is the potential for conceiving new devices that might
spark a revolution as important and wide-ranging as that engendered by the
invention of the transistor and ICs. Ultimately, however, the success of the
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technology may well lie on its ability to deliver improved performance at
low cost on fechnology-blind applications, Figure 4-1, as well as in enabling
new applications (some of which are right now only limited by our
imagination). For the purposes of this book, we focus on NanoMEMS SoCs
in terms of implementation and applications.

t t
Input Outpu
Information Inform ation

/—. NanoMEMS SoC e

Electrom agnetic Picture
Heat Voice
Sound Computing
Biomolecules Diagnostic

Force Data

Figure 4-1. Conceptual rendition of a NanoMEMS System-on-Chip.

4.2.1 NanoMEMS SoC Architectures

Regardless of the technology of implementation utilized, a system must
perform a definite function and is characterized by how close it comes to
meeting certain technology-blind specifications (specs). Typically, the
design process begins with a block diagram of the system in question, which
displays an architecture or high-level topological diagram showing how the
constituent building blocks are interconnected to transform or process one or
more input signals into one or more output signals, see Figure 3-1.
Following this, overall systems analysis assigns or “flows down” the overall
system specs to the individual building blocks, which are then designed. In
the case of NanoMEMS SoCs this is difficult to do because the field is so
premature that, using a circuit analogy, the equivalents of passive
components (resistors, inductors, capacitors, diodes) and active components
(transistors) is not yet available to the degree of completeness that would
allow a complete consistent system implementation. Our course of action,
therefore, is to expose a variety of potential NanoMEMS SoC building
blocks.
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4.2.2 NanoMEMS SoC Building Blocks

4.2.2.1 Interfaces

The idea behind NanoMEMS is that of creating a system that, in order to
accomplish a given function, avails itself of devices and techniques spanning
the range from the micro- down to the nano-scale and beyond. In the most
general case, the input signal to a NanoMEMS SoC will be analog, i.e., will
exhibit continuous amplitude and will exist at all times, see Figure 3-1.
Processing this signal, therefore, will entail deciding whether it is feasible to
act on it as received/detected, or to transform it to a more convenient state.
The nature of the interface sensor, in particular, its sensitivity, bandwidth,
and dynamic range, will come into play here and will dictate the need for
transduction, amplification, digitization, filtering, etc., thus determining the
rest of the architecture. In this context, the doubly-anchored Si beam has
been considered as a potential mechanical sensing element in future
NanoMEMS SoCs, and impressive estimates for its intrinsic force sensitivity
(Sg), dynamic range (DR), mass sensitivity (M), and bandwidth (BW) have
been obtained by Roukes [174]. For instance, a beam of length, width, and
thickness 0.1 x 0.01 x 0.01 microns and active mass 10ag would exhibit

S}/z(a)o) =3x10""N/yHz, DR=35dB, M=17x10""g, and

BW =7.7GHz, assuming a temperature of 300K and a Q of 10,000.
Unfortunately, it is unclear whether the full extent of these parameters will
be accessible due to various practical difficulties such as mass variation due
to unpredictable adsorbates, and the impossibility of realizing a noiseless
read-out. This latter theme is also common to electrostatic- and optically-
based sensing interfaces as well. In the former case, which according to

Roukes [174] may attain a minimum capacitance of 107'* F, the parasitic
capacitance would preclude resolving it. In the latter case, the fact that the
spot size of the light delivered by the optical fiber used in AFM
displacement-sensing is much greater than nanoscale dimensions, precludes
its resolution and, hence, proper detection.

In systems with an electronic input signal sensing scheme, however, the
sensor may take the form of a quantum superlattice-based analog-to-digital
converter, Fig. 4-2 [175]. Here, the pulsating nature of the superlattice’s
current-voltage characteristic directly samples/quantizes the voltage axis.
The resulting current is used to generate pulses that drive a counter whose
output is a digital representation of the input voltage. For highest resolution,
the superlattice may be realized with molecular devices.
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Figure 4-2. Superlattice-based analog-to-digital converter architecture. (a) Superlattice band
diagram. (b) SL A/D conversion principle. (¢) ADC architecture [175].

4.2.2.2 Emerging Signal Processing Building Blocks

While the specific structure of a NanoMEMS SoC is still the subject of
much research, a number of potential building blocks for NanoMEMS-based
signal processing have been proposed. In what follows, we present a number
of these [22], namely, a charge detector, a which-path electron
interferometer, a parametric amplifier using a torsional MEM resonator, a
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Casimir effect-based oscillator, a magnetomechanically actuated beam, and
array-based functions. We conclude with an example of exploiting quantum
squeezing to reduce noise in mechanical structures.

4.2.2.2.1 Charge Detector

This device was experimentally demonstrated by Krommer et al. 176]. In
this device a low-power RF signal propagates through a suspended
resonator, Figure 4-3, and sets it into vibration.

TOP VIEW
END VIEW
i Resonator 1
W | I
RF Signal
Gate
SIDE VIEW
B ® 8o

L
Substrate

Transmission Lines

Figure 4-3. Schematic of charge detection resonator system [22].

With an in-plane magnetic field applied perpendicular to beam, a Lorentz
force perpendicular to the substrate surface is developed. Application of a
voltage, V, between the gate and the beam, induces a charge, Q, on the beam
via the relation, Q =CV, and essentially, modifies its stiffness (spring

constant). This results in a mechanical resonance frequency shift of

2 ”_2
C
= g—c(l - 22 J, where C is the gate-beam coupling capacitance, and

C” represents the second derivative of the capacitance with respect to beam
elongation amplitude, z(?), evaluated at z=(0. Optimum charge detection
(maximum frequency shift) is obtained when RF power drives the beam to
the verge of nonlinear amplitude vibration. For a gate bias of V' =14V | a
magnetic field of 12T, and an RF power of -52.8dBm at 37.29MHz, a charge
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detection resolution of about 70q /+/Hz . This device has the potential to
exploit charge discreteness effect.

4.2.2.2.2 Which-Path Electron Interferometer

Armour and Blencowe [177], [178] presented a theoretical analysis for
this concept. A cantilever resonator operating at radio frequencies is
disposed over one of the arms of an Aharonov-Bohm (AB) [125] ring
containing a quantum dot (QD), Figure 3-4. Electrostatic coupling of the
vibrating beam with

Bottom
Electrode

Aharonov-Bohm Ring

Beam
Resonator

SIDE VIEW

g“t’mt“m Substrate
°

Figure 4-4. Schematic of mechanical which-path electron interferometer [22].

electrons hopping in/out of the QD modulates the interference fringes,
according to vibration frequency (@, )-electron dwell time, 7, =nh/AE

product, where AFE,  is the electron energy spread. For @,7, <<1, short

dwell time, interference fringes are destroyed if gEAx,, > AE,, .., where x,,

inc *?
is the thermal position uncertainty of the cantilever and E the electric field.
This signals electron dephasing and detection in QD arm. For @,7, ~1, the

beam-QD behaves as a coherent quantum system, beam vibration and QD
exchange virtual energy quanta in resonance, and interference fringes are
modulated at beam vibrating frequency. For the largest dwell times, the
environment induces lost of coherence. This device has the potential to
exploit charge discreteness effect.
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4.2.2.2.3 Parametric Amplification in Torsional MEM Resonator

This device was experimentally demonstrated by Carr, Evoy, Sekaric,
Craighead and Parpia [179]. A torsional resonator of quality factor Q, Figure
3-5, is excited at a fundamental driving frequency, @, which applies

Torsional TOP VIEW END VIEW
VDC+VAC a)+VAC 20
Resonator _ = _
! [, A
hud 4—_L ( 1
T | ) 1
Do
Paddle
SIDE VIEW

8o

L
Substrate

Transmission Lines

Figure 4-5. Schematic of torsional parametric amplifier [22].

a torque T(a)t). If the device is driven at resonance, with an applied torque
given byz(t)=17,sin(ar +6), where @ is the phase angle between

excitations at @ and 2@, then the torsional spring constant exhibits a
modulation, K'(t)= K COS(ZCUOI). Under these circumstances, the angular

amplitude response, @, , adopts the form

1/2
7,0 cos’ @ N sin” @

x [(+oxg/26)  (1-0x; /26)°

Accordingly, with zero signal amplitude at 2@, K'(t)=0, and the

P (D

angular response is ’[OQ/ K . Otherwise, the square-root factor acts as a
phase-dependent gain and, becoming infinity when 6@=7/2, and
K, =2k/Q. For 0< @< /2, the angular response may be approximated
by,
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1/2

: 2

7,0 cos’ @ sin® @
@y = P (1 ,)2 + (1 »)2
+VAC_2w/V _VAC_Zw/V
where V'’ is a structure-dependent parameter, showing that the gain increases

with the pump signal amplitude. The device has the potential to exploit the
Casimir effect.

4.2.2.2.4 Casimir Effect Oscillator

This device, which was proposed and analyzed by Serry, Walliser, and
Maclay [180] in 1995, Figure 4-6, and experimentally realized by Chan,
Aksyuk, Kleiman, Bishop and Capasso [181] in 2001, represents the first
clear demonstration of the impact of the Casimir force in the performance of
NEMX.
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Figure 4-6. Summary of nonlinear Casimir effect MEM resonator physics [22].

The experiment entailed changing the proximity of a vibrating rotational
resonator to a metallic sphere, Figure 4-7(a), to measure its behavior in the
absence/presence of the Casimir force. After determining the drive for linear
response, the proximity of the oscillator to a metallic sphere was varied and
the resonance frequency measured exhibited a behavior as depicted in Figure
4-7(b). For sphere-oscillator distances greater than 3.3m, the oscillator
resonance frequency was equal to the drive frequency, 2748Hz, and the
angular amplitude frequency response was symmetric and centered around

the drive frequency, @, = k/ I, where k is the spring constant and 7 the
moment of inertia, consistent with mass-spring force oscillator behavior.
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Figure 4-7. Schematic of torsional MEMS oscillator and sketch of Casimir effect on
resonance response [22].

However, as the sphere-oscillator distance was decreased, in particular, at
141nm, 116.5nm, and 98nm, the resonance frequency shifted, according to,

o, = o, [1 -b*F '(z)/ 21w} J, where F’(z) is the first derivative of the

external force evaluated at z, and the angular amplitude frequency response
asymmetric and hysteretic. This behavior was shown to be consistent with
the dynamics of a mass-spring-Casimir force system. The ramifications of
this beautiful experiment are enormous, in particular, it may be concluded
that the Casimir force will be one of the factors limiting the integration level
or density of NEMX.

4.2.2.2.5 Magnetomechanically Actuated Beams

This idea was proposed and theoretically analyzed by Blom [182]. In
addition to their function as mechanical elements (actuators), narrow metal-
coated nanoscale beams also embody mesoscopic wires. If such a beam is
elongated due to, say, electrostatic actuation, this results in a reduction in its
cross-sectional area, and in particular, that of the -current-carrying
metallization/wire, and as a consequence, the conductance of the latter
changes as transverse quantized modes are pushed above the Fermi level.
The change in thermodynamic potential as the wire elongates, in turn
produces a force along the length of the wire, which is given by,
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where E . is the Fermi energy, m the electron mass, and E is the energy of

the transverse modes. This force manifests as force and beam deflection
fluctuations. On the other hand, if the beam is not electrostatically actuated,
but a magnetic field is applied along its length, it will also cause
conductance changes as the Landau levels [60] push the energy above the
Fermi level. Thus, the beam is magnetomechanically actuated. This devices
has the potential to exploit charge discreteness effect.

4.2.2.2.6 Systems—Functional Arrays

The dynamic properties of the collective modes in a MEMS resonator
array were studied experimentally by Buks and Roukes [183], and
theoretically by Lifshitz and Cross [184]. In this concept, the lateral
electrostatic coupling of an array of doubly-anchored beams leads to
collective modes that resemble phonons. Adjustment of the coupling serves
to tune the diffraction properties of the mechanical lattice the array
embodies. In a related concept, De Los Santos [185] unveiled the idea of
populating a rigid photonic band-gap crystal lattice with a sub-array of
MEMS switches. Then, by exploiting the noninvasive properties of these,
i.e., their ideal ON/OFF states, localized states modes could be formed that
enabled the ON/OFF switching of pass bands within the photonic band-gap,
thus making the system programmable.

4.2.2.2.7 Noise—Quantum Squeezing

Ultimately, the purity of resonator vibration is determined by its zero-
point fluctuations. In this context, quantum squeezing techniques [186] may
be applied to reduce the fluctuations in flexural motion. Application of
quantum squeezing to mechanical resonators has been studied theoretically
by Blencowe and Wybourne [187]. Accordingly, by exciting the resonator

with a pumping voltage of the form, V, (t): V, COS(a)pl‘ + ¢), its spring
constant becomes, k, =ma; + Ak, where Ak=C,V;] /Zgg , and
k, (t)= Ak cos(2a)pt + 2¢) When the effective resonator spring constant,
k=ky+k, (), increases, the curvature of the effective potential narrows

[187] and this squeezes the wavefunction. In particular, for a phase
o=—rx / 4, the quantum uncertainty in the flexural displacement becomes,
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AZ? - h(2n, +1)[1+ OAk J , )

2mw, 2mw.
-1
where n, = (ehw/ kT l) . Then, with \/i/2m@®, defining the zero-point
uncertainty, the squeezing factor R = AZ, / J1/2m@®, becomes,

R= |2ty 5)
1+ OAk / 2ma;

which, for R <1, denotes the occurrence of quantum squeezing. Blencowe
and Wybourne [174] found that using typical resonator values, e.g., density,

p=3.99x 10°kg / m*, Young’s modulus, £ =3.7x10"" N/m> , beam to
substrate distance, g, =50nm, beam thickness, #=100nm, and length,

L=2700nm, the squeezing factor is R=0.25, which signals the
realization of quantum squeezing, i.e., noise reduction below that of zero-
point fluctuations in the flexural displacement mode.

4.2.2.2.8 Nanomechanical Laser

This device concept was proposed by Bargatin and Roukes [188]. The
fundamental idea is to engineer a laser-like device in which the resonator is
realized by a nanomechanical beam, whose tip has been functionalized with
a ferromagnetic material, and whose vibration interacts with an adjacent
“active” medium containing nuclear spins biased by an external magnetic

field, B,. With the appropriate geometrical configuration, see Fig. 4-8,

>

Precessing Spins

Microwave
Pumping

Figure 4-8. Sketch of mechanical laser. (4ffer [188].)
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vibration of the nanomechanical beam causes superposition of the field
produced by its ferromagnetic tip with the external magnetic field.

This results in a modulation of the magnetic field perceived by the nuclear
spins and, as a consequence, can stimulate transitions in the Larmor
frequency of nuclear spins (Zeeman effect). In turn, a dipolar interaction
couples the rotating transverse component of the nuclear magnetization of
the nuclear spins with the ferromagnetic tip, resulting in a force that drives
the beam oscillations. This process, under resonance between Larmor
frequency and beam vibration, leads to self-sustained ocillations, i.e., to laser
behavior. The proposed device was called “cantilaser.” Typical parameters are
as follows: Fundamental frequency of beam, 20 MHz, effective spring constant, 0.1
N/m, quality factor, 10° , transverse magnetic field gradient due to ferromagnetic
tip, 10°T/m, transverse relaxation time of nuclear spins, S0US, nuclear

gyromagnetic ratio, 2TX10MHz /T , external magnetic field, 2 Tesla.

4.2.2.2.9 Quantum Entanglement Generation

As discussed in Chapter 3, quantum entanglement is a fundamental
ingredient for effecting quantum information processing. Most schemes for
quantum entanglement, however, were demonstrated in the context of optical
experiments, where the object of entanglement was photon polarization.
While the realm of implementation of NanoMEMS SoCs includes variants
that exploit optical signal processing, i.e., the processing and manipulation
of photons, electrons and, thus, electronic signal processing in solid-state
systems remain an important paradigm. It is not surprising, therefore, that a
number of efforts have been aimed at finding ways to achieve the electron
pair entanglement and transport over long distances. The superconductor-
carbon nanotube junction, proposed by Bena, Vishveshwara, Balents, and
Fisher [189] is a clever idea along these lines, see Fig. 4-9.

Figure 4-9. Quantum entanglement junction. A setup of two nanotubes A and B contacting a
superconductor. Voltage drops V and Vi may be preferentially applied across tubes A and B
respectively, and currents through each of them may be measured. [189].
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The concept consists in exploiting the inherent entanglement of
superconducting Cooper pair together with electron-electron interactions in
one dimension to enable the sequential injection of entangled pairs from a
superconductor into two nanotubes located next to each other at a distance
well below the Cooper pair coherence length. The key to the Cooper pair
injection and separation into entangled electrons relies on the Liittinger
liquid behavior exhibited by CNTs characterized by an interaction factor g

and subband spacing €,. In particular [189], the tunneling rate,

1
T\, ~(eV/h)kT/e,)e", at which Cooper pairs tunnel from the

superconductor into the end of a CNT, being proportional to eVp,,, turns

(1
out to be much smaller than the tunneling rate I',, ~ (e v/ h)(kT/ &, )E[E_IJ,

at which split entangled pairs are injected into both CNTs. This difference, is

rooted in the fact that Liittinger liquid behavior, manifested as the coherent

arrangement of all electrons in the CNT bulk, causes the single-electron

1(1
tunneling density of states, p,(E) ~ €' (E/ €, )Z(?lj to dominate the Cooper
1

pair tunneling density of states, p,,(E)~ EBI(E/SO Je. With T, << T,

virtually all the charge tunneling that occurs involves split entangled pairs.
Once split, the entangled electrons may propagate for long distances due

to the ballistic property that characterizes transport in CNTs of Fermi

velocity v, and length L at low temperatures T < T, = 7v,, /ksL at which

loss of coherence due to thermal effects are nonexistent.

4.3.1 Quantum Computing Paradigms

As indicated in Chapter 2, the fundamental building block on which
quantum information processing systems are based is the qubit, a two-state
quantum system. Qubits may take on many physical forms, however, to be
useful in realizing real, practical, systems, they must be endowed with three
key properties [190]: 1) They must be decoupled from the environment to
avoid disturbances which may deviate their time evolution from unitarity; 2)
They must be able to respond, in a controlled fashion, to purposeful
manipulation, in order to enable the formation of quantum logic gates and
entangled states, which rely on such interactions; 3) They must withstand the
momentary, but strong, coupling to the environment introduced by a
measuring device. In this section, we present the principles of various qubit
implementations, in particular, ion-trap-, nuclear-magnetic resonance-, solid-
state-, and superconducting-based qubits.
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4.3.1.1 The Ion-Trap Qubit

The ion-trap qubit was proposed by Cirac and Zoller [191]. It is embodied by
atomic ions confined by an electrode structure designed in such a way that a 3-
dimensional harmonic potential well (trap) is produced [190]. Cooling the ions
lowers their energy and, were it not because of Coulomb’s force of repulsion, which
maintains them apart, they would descend to, and meet at, the bottom of the well.
Instead, the collective state of the ions is the result of a balance between the
potential well energy profile and the forces of repulsion between ions, which
manifests in their assuming a linear array, see Figure 4-10.

L [ . [ & [

Tons

Co ——a o

e F-
f

Laser Beam

Figure 4-10. Sketch of ion trap qubit. The electrodes create a 3-D harmonic potential well
that confines the ions.

The ion trap simultaneously implements two types of qubit, Fig. 4-11. In one

Internal M otional
Qubit States Qubit States

SRS SE

At Rest [0)

Spin Antiparallel

& T
Spin Parallel f‘looi:f:l:“if)

Figure 4-]1. Qubit realizations with ion trap.

instance, the two states of the qubit are embodied by the direction of the
ion’s magnetic moment, which is parallel or antiparallel to an externally
applied magnetic field. In the second instance, the collective motion of an
array of ions forms the qubit. In particular, when expressed in terms of
normal modes, the two states of the motional qubit are the one in which the
ions move simultaneously in the same direction, common mode (CM) and
the one in which adjacent ions move in opposite directions, stretched mode.

In the motional case, the qubit is not associated with any individual ion,
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but rather, with the array as a whole. Since the ion trap produces two qubits,
a controlled interaction between them allows the realization of quantum
gates.

In the case of the spin-orientation qubit, the internal spin state of the ion

may be set into the “down” (‘ ~L>) or “up” (‘ T>) states, by application of a
uniform magnetic field. Alternatively, it may be prepared into superposition
states a‘ sL> + ,B‘ T> by varying the time duration of applied RF fields.

Further functionality is obtained out of the ion-trap system by coupling its
spin-orientation qubit to its motional qubit. In particular, superposition of a
spatially non-uniform magnetic field along the motional qubit, for instance,
of magnitude +AB at the ion’s left most position and —AB at its right-
most position, causes the ion to experience a field of amplitude AB and
frequency equal to the motional oscillation frequency. Under these
circumstances, an exchange of energy between the spin and the motional
states, ‘T>| 0> %‘sl/>| ]>, ensues if the magnetic field frequency coincides

with the energy difference between the two spin states. More generally, if
the spin qubit is in a superposition state, e.g., a‘ J/>+ /)" T> then, consistent
with conservation of energy, the energy exchange produces the transition

(a‘ ~L> + ,B‘ T>} 0> — ‘ \L>(a| 0> + ﬂ| ]>) As depicted in Fig. 4-11,

Confining Laser Beam Phononic
Electrode Motion

(a)

e))

(b)
Figure 4-12. (a) Cirac-Zoller ion-trap qubit. (b) Qubit states | g > and | e, > , are separated by

an energy hO)O .



164 Chapter 4

the interaction may be particularized, to the state of one of the ions in the
motional qubit, by causing the magnetic field gradient to exist on it. This is
accomplished by focusing a laser beam on the ion in question, see Figure 4-
12.

Analytically, the inner workings of the ion-trap qubit were described in
detail by Cirac and Zoller [191] as follows. The two states of a particular

ion, namely, its ground and excited states, are denoted by | g>n E|0>n and

|e>n E|1>n’ respectively. The 3-dimensional motion confinement of the

ions is described by an anisotropic harmonic potential characterized by
frequencies v, <<v ,v_. The typical energy level scheme contemplated for

the ion trap is shown in Fig. 4-12(b). When the extent of the ion’s motion is
much less than the inverse wavevector of the laser field, the so-called Lamb-
Dicke limit (LDL), the oscillations of the ground state become normal
modes. Under these circumstances, a laser beam with frequency
W, =®,—V,, or detuning equal to minus the CM mode frequency,

X

0, =—v_, will excite the common mode exclusively. This is the situation in
which transitions ‘\L> - ‘ T> lead to motional mode (phonon number)
transitions |n> —)|n—1>. On the other hand, if ®, =w®,+V,, then the
transition ‘\L> —>‘T> leads to |n> - | n+l> transitions. Finally, when

®, =®, the induced transitions ‘J/> —>‘T> leave |n> unchanged. Thus,

the relationship between laser detuning, 6 and motional frequency, and the
fact that the frequencies of the different normal modes are well separated in
the excitation spectrum, allows the control of interaction between ions via
the CM motion and, in fact constitutes the coupling of two qubits which is
necessary to produce quantum gates.

After the quantum qubits are manipulated to effect a quantum
computation, the result must be read. In the case of the ion trap this is
accomplished by measuring the spin-dependent scattered light when a laser
beam impinges upon an ion. Exploiting the fact that scattering is

substantially greater for the ‘i«> spin than for the ‘T> spin, the state of the

spin is inferred.
The manipulation of the state of an N-ion-trap qubit by a laser beam is
driven by the interaction between an ion and the electric field of the laser.

Starting with the Hamiltonian for the n-#4 ion, H ,, in the ground state and
in the absence of any laser field, and choosing the laser frequency as above,
ie, 0, =—v_, and the ion position to coincide with a node of the laser

n

standing wave, the system is described by,
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a+e"”] (6)

H,, \/—Zﬂ ,),(glae™ +|g) (e,

where a and a” are the creation an annihilation operators of CM phonons,
respectively, Q is the Rabi frequency, ¢ is the phase of the laser field at the

mean position of the ion, =0, 1 levels involved in the energy transition

excited by the laser, and # = 1/hk§ / 2Mv <<1 is the LDL parameter, with

k, =kcosO , k the laser wavevector, 0 the angle between the direction of
propagation of the laser and the x-axis of motion of the qubit, and M the ion
mass. The Rabi frequency, Q=-E, <T ‘d €, J«> / 2h, characterizes the

transition frequency between the ground and metastable states produced by a

laser with electric field amplitude E and polarization vector £, in an ion

of electric dipole operator d.
The evolution of the system upon being impinged by a laser beam pulse

of time duration t:kn/ (.Q}’]/ JN ) on the n-th ion is described by the
unitary operator,

Uk(p)= exp{— ik%@eq ><g|ae-i¢ +| g>n<

Application of this unitary operator on the various states of the »n-th qubit

ate” )} (7)

yields the results of Table 4-1. |0> and |1> represent the population of the

CM mode with zero and one phonon, respectively.

Table 4-1. Effect of Ion-Trap Unitary Operator on State Evolution

Oﬁperator Initial State Final State
U Jg),lo) £)./°)
O el l) costin2)g, )| 1)-iesinlia2)e, ) |0)
U”l"‘f |e>n 0> cos(kn/Z)( > |0> "”szn(kn’/Z)' > | >

The above interaction is amenable to the implementation of a two-bit gate.
In particular, Cirac and Zoller [191] have shown that this is accomplished by
following three steps: 1) Apply a 7 laser pulse with polarization q =0 and
phase ¢ =0 to the m-th ion to create the evolution IAJ;O = [Ajino (0);2) Turn
on the laser directed to the n-th ion for a time duration 27 and polarization
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and phase q =1 and phase ¢ =0, respectively. This creates the evolution
operator ﬁi’l, which exclusively changes the sign of the sate |g>n | 1> via a
rotation through the state |el>n|0>; 3) Apply again a T laser pulse with
polarization q =0 and phase ¢ =0 to the m-th ion to create the evolution
[AJL;O = [AJlno (O) Since these operators act on non-interacting ions, the
overall effect is given by the product [AJm,n = ﬁi;oﬁﬁ’lﬁ}f in Eq. (8) below.

Comparison of the first and last columns reveals that the effect of the
composite operation is to change the sign of the state only when both ions
are initially excited, thus, Eq. (8) embodies a C-NOT gate.

o e Lo
2 |2 [0~ |g.]g.l0— lg./e.10-> [g,]e),0)
)l 0) = |2 lel0— g le]0) = [g),[e0)|0) "
el 0— g, /e. )= ig,le, 0> [e),[e),[0)

o)l @),/ 0) = =lg), | e0), [ =il g), [eo),

Many successful implementations of ion-trap qubits have been
experimentally demonstrated [192]. Key to these experimental
demonstrations are techniques to address a variety of issues, most notably: 1)
Mitigating the decoherence of the ion trap, which is due to the spontaneous
decay of the internal atomic states and the motion damping; 2) Suppressing
spontaneous emission; 3) Obtaining highly efficient read-out schemes. A
thorough discussion of problems and solutions regarding ion-trap qubits is
given by Wineland et al [192].

4.3.1.2 The Nuclear Magnetic Resonance (NMR) Qubit

As is well known, some atoms exhibit an intrinsic nuclear magnetic
moment [I and an angular momentum 7/ , and these are related through the
gyromagnetic ratio y by [28],

f=vhl. ©)

Since the angular momentum is quantized [60], with values
m, =1 1—1,...—I,anucleus with an intrinsic angular momentum of half a

unit, i.e., [ = l/ 2, will have the allowed values of m; = il/ 2. Thus, in the

presence of a magnetic field B=B »Z , the energy of interaction between the
magnetic moment and the field,
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H,=—ji-B=—yhB,I_, (10)

will split into two energy levels, see Fig. 4-13 at the top of next page.

These two energy levels in a non-zero field embody a two-state quantum
system that can be used as a qubit. The controlled manipulation of these
qubits to effect quantum computations is the goal of NMR-based quantum
computing (QC). The origins, development, progress and status of NMR-
based QC has been addressed recently in extensive review articles by
Laflamme, Knill, Cory et al. [193], and by Vandersypen and Chuang [194].
Our presentation, therefore, will follow these closely.

B=B,

(S}

Figure 4-13. Energy level splitting when a nucleus of intrinsic angular momentum I = 1/ 2

is exposed to a constant magnetic field B 0-

In practice, limits germane to currently available techniques preclude
detecting the energy absorbed by a single nucleus. Therefore, a substance
containing a multitude of nuclei, whose contributions add, must be employed
[193]. The system of choice for NMR-based QC consists of the very large
number of nuclei belonging to atoms forming a molecule in a liquid, so-
called liquid-state NMR. Fig. 4-14 depicts a typical molecule used to form

Figure 4-14. Trichloroethylene molecule for liquid-state NMR-based QC. The proton (H),
and the two carbons (1*C) are employed to realize qubits. The '>C nucleus has spin %. [193].

qubits is the trichloroethylene (TCE) molecule, which contains a hydrogen
nucleus possessing a strong magnetic moment. As a result, when the
molecule is exposed to a constant strong magnetic field, B, each hydrogen’s
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spin orients itself in the direction of the field. If, in addition, an RF field is
applied in a pulsed fashion, the spins are made to tip off-axis, while
precessing about the direction of the constant field. The precession
frequency is the so-called Larmor frequency and is given by @ = uB . For
the hydrogen atom (proton), the magnetic moment is 42.7MHz/T and, at a
typical field of B=11.7T, its precession frequency is 500MHz. Sample
examination is accomplished placing a coil around it, tuned to the precession
frequency, which picks up the oscillating currents induced as a consequence
of the magnetic field produced by the precessing protons. The device that
applies the static magnetic field and the RF control pulses, and then detects
the magnetic induction is called an NMR spectrometer, see Fig. 4-15.

Sample Tube

t 1 I 1 Mixer
Computer
RF Coil
N f?? . B, Amplifier

@ Static Field Coil

Figure 4-15. Sketch of experimental NMR spectrometer. (After [195].)

NMR phenomena, which were first observed in 1946 [196], [197],
became the basis for a multitude of analytical studies of materials, in
particular, the determination of molecular structures [198], and magnetic
resonance imaging [199]. In these contexts, the technology of NMR
spectroscopy is rather mature.

The application of NMR to QC was advanced Cory, Fahmy and Havel
[200], and Gershenfeld and Chuang [201] in 1997. To overcome the
difficulty in detecting the spin of individual, adoption was made of qubits
implemented in the liquid state, where additive effects could be exploited to
yield a reasonably large signal amplitude. Also adopted were methods to
discern the fraction of nuclear spins pointing in the external field direction,
despite the effects of temperature-induced random spin orientation. The two-
state quantum system was realized by choosing molecules possessing spin-
1/2 nuclei, which in the presence of the external magnetic field adopts two
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states, namely, a low energy state denoted by |0> , and a higher energy state

denoted by | 1> .

Analytically, an NMR-based QC system is described in terms of two
Hamiltonians, namely, the system Hamiltonian, which captures the energy of
single and coupled spins in the presence of a magnetic field, and the control
Hamiltonian, which captures the effects of applied RF pulses controlling the
operations with qubits.

The system Hamiltonian for single spins is given by,

—hw,/2 0 }

11
0 hw,/2 (an

H,=-hyB,I. =—ho,]I. :{

where I, is the z-component of the angular momentum

I=xI,+yl, +zI . In general, the three components of the angular

momentum are related to the Pauli spin matrices as follows [60],

o,=2l,0,=21;0, =2l, (12)
where,
0 1 0 —i 1 0
o, = , 0, =| ; 0, = . (13)
’ 1 0 ! i 0 0 -1

H , embodies the time evolution given by the U = e " which represents
the precession of the overall state vector (the so-called Bloch vector) with

respect to the axis B , defined by the static magnetic field, see Fig. 4-16
[194].

Figure 4-16. Precession of a spin-1/2 about the axis of a static magnetic field. (4fter [194].)

Vandersypen and Chuang [194] indicate that in the most general case, the
system Hamiltonian for a molecule possessing N isolated nuclei is given by,

N N
H,= _Zh(]_gi WiB, I = _Zha’(i)[; , (14)
i=1 i=1
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where i labels the nuclei, and o, denotes the so-called chemical shifts,

which characterize the fact that distinctly different precession frequencies
are exhibited by identical atomic species within a given molecule, when the
shielding environment produced by their surrounding electrons results in a

different magnetic field, B. They also point out [194] that typical chemical

shifts range in the order of a few kilohertz, compared to the precession
frequencies, which range in the MHz.

In addition to isolated spin nuclei, liquid-state NMR includes the presence
of coupled spins. These are characterized by either a direct or an indirect
coupling mechanism. The direct coupling is of the magnetic dipole-dipole
nature, similar to the interaction between two adjacent bar magnets and, for

nuclei 7 and j, separated by a distance r;, is given by [194],

Hy =S M G p 3 (5w Y ). (1s)

-3 12
i<j 471"1”,7‘ ‘rij

where u, is the free space magnetic permeability, and 1" is the magnetic

moment vector of spin i. Under certain conditions, Eq. (15) may be
simplified. For instance, for large precessing frequencies it reduces to [194],

HD:ZM(I—3coszﬁv)[3ii-fj—(ii‘jj)]a (16)
i<j 87[‘17,.]

where 6 is the angle between B, and 7, whereas if ‘0); —(x)g)‘ is much

greater than the coupling strength it reduces to [191],

H, 22%(1—%0# 0, i1 (17)
i<j 471"1”{.1.

The indirect coupling is characterized by a strength J, which captures the
overlap of electronic wavefunctions between two atomic nuclei, and has
values ranging from several Hz, for three- to four-bond couplings, to several
KHz for one-bond coupling. The indirect coupling Hamiltonian takes the
form [194],

H, =Y 2z, I'T =03 J, (117 + 110 +1'17), (18)

i<j i<j
where J,; characterizes the coupling between spins i and j. Simplification of

this expression is also possible in certain circumstances, in particular, when
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‘(Di —O)J-‘>> ZE‘J ij‘, which may be obtained when dealing with

heteronuclear spins or with small homonuclear molecules, it reduces to
[194],

N
H,=h) 2nJ,I1}. (19)
i<j
Eq. (19) captures the circumstance that, in addition to a constant externally
applied magnetic field, B, the actual field at a given spin location includes a
static field along % Z, which is elicited by spins in its neighborhood. The
consequence of this additional field is to shift the spin’s energy levels and
manifests as a change in the Larmor frequency. For instance, a neighboring

spin j in state |O> will shift the frequency of spin i by —1J; / 2, whereas if
spin j is in state |1), it will shift the frequency of spini by J; +J, /2. In

general, it turns out that, when in the presence of neighboring spins, the
spectrum of a given spin would show, instead of a single line at its Larmor
frequency, two lines for every neighboring spin, the lines being separated by

the coupling strength J;; and located equidistantly above and below the
Larmor frequency.

In the majority of NMR-based QC experiments, the system Hamiltonian
realized is described by the simplified Hamiltonians [194], i.e.,

H, = —Zhwglj +hz 220 40 (20)
i i<j

where the first term arises from the energy of isolated spins, and the second
from the energy of interacting (coupled) spins.

To effect the manipulation of qubits in NMR-based QC [194], it is
necessary to apply a magnetic field that will rotate the state of the spin-1/2
nuclei, see Fig. 4-16. This is accomplished by adding to the static Z -directed
magnetic field, B,, a time-varying (RF) electromagnetic field oriented in
the X —¥ plane, of a frequency Mg close to the spin precession frequency
®, . This RF field gives rise to the contro/ Hamiltonian which, for a single

spin, is given by [194],
H,,. =—hyB, lcos(a)RFt+go)]x +Sl'n(a)RFt+(]))1yJ, (21)

where B, is the applied RF field amplitude and ¢ its phase. For liquid-state

NMR, B, =50KHz=®,. In the presence of N spins, the total control

Hamiltonian is the sum of the terms such as Eq. (21) of each spin. The
implementation of quantum gates in NMR-based QC exploits the ability to
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induce a certain time evolution of a spin state by the fine perturbation that
varying the amplitude, frequency, and phase of the control Hamiltonian
affords.

The analysis of spin rotations is facilitated by describing the motion with
respect to the so-called rotating frame [193], [194]. This is a coordinate

system that rotates with respect to the Z axis at a frequency M. A given
state in the rotating frame | \|I> “and the corresponding state| \|I> inthe laboratory
(non-rotating) frame are related by [191],

W)™ = exp(—iogtl, | v). (22)

It can be shown by substitution of (22) into Schodinger’s equation, that in
the rotating frame and in the presence of many, e.g., r, applied RF fields, the
system and control Hamiltonians adopt the forms [194],

H, =hY 2nJ,L,, . (23)
1<)

and
o= 3 rofleos(og, —oi oo +sinflg i hro ) | 29

The effect of the control Hamiltonian is most easily visualized with
reference to the Bloch sphere, see Fig. 4-17, whose surface contains the

Qubit Tip
Trajectgries

Figure 4-17. Bloch sphere surface: Dashed lines delineate the trajectories of the tip of a qubit
as a function of the RF pulse strength and duration. When the RF frequency equals the

Larmor frequency, i.e., at resonance, the pulse produces a 90° rotation. As WOpp — O,

increases, the rotation decreases, in particular, at large offsets the trajectory remains close to
‘ ()> . [194].
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locus of the tip of a qubit vector as a function of |(nRF ON | , for a given RF

pulse duration and the parameter @, .

NMR-based quantum gates are generated by “tuning” the parameters in
the control Hamiltonian to achieve a desired qubit rotation. Since any
quantum gate may be constructed from single-qubit rotations and the C-NOT
gate, the problem of NMR-based quantum computing reduces to determining
the control Hamiltonian that will implement these. In this context, we note
that the most general qubit rotation is defined by [194],

m#&}

R, = exp[— (25)
where N denotes the 3-dimensional axis of rotation, © is the angle of
rotation, and & =X0 +yo, +Zo. is a vector of Pauli matrices.
Furthermore, it can be shown that any qubit transformation may be

implemented as a sequence of rotations about only two axes. In particular,
Bloch’s theorem stipulates such a transformation as [194],

U=¢"R,(B)R, (YR, (3). (26)

Therefore, in terms of the control Hamiltonian parameters, implementing a
single-qubit gate may be accomplished in the rotating frame using RF

pulses. Specifically, if an RF field of amplitude ®, and frequency is

Wy = 0, is applied to a single spin, this will evolve according to [194],
U= exp[im] (cos oI +sin ¢l v )’[pulse J , 27

where the RF pulse duration is given by t In the context of the Bloch

pulse *

sphere, this transformation would rotate the qubit by an angle 6 ~ Ot e »

with respect to an axis in the X—¥ plane given by the phase ¢. For
=7/2 effect the R (90)

rotation about X, whereas doubling the pulse duration implements
R, (180), and changing the phase to ¢ =—1/2 effects the rotation about

instance, the parameters: ¢ =7 and Ot

¥ . In general, the phase of the RF pulse determines the nutation axis in the
rotating frame, so that to perform X and ¥ rotations it is not necessary to

orient the RF field along these axes; changing the phase suffices. A rotation
about the Z axis in terms of rotations about X and ¥ is given by [194],

U=R,(6)=XR,(6)X=YR,(-0)Y, (28)
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where the bar over X and Y denotes a rotation of -90 degrees with respect to
XorY.
The NMR-based implementation of the C-NOT quantum gate involves a

series of two-qubit rotations, namely [201]: |OO>—>|00>, 01>—>|01>,

|10>%|11>, and |11>—>|10>. Addressing a particular qubit, without
affecting the neighboring one, is accomplished by exploiting the fact that

different atoms possess different resonance frequencies, ®,, or that the
same type of atoms with a different chemical shift also possess different
®, . Taking two coupled spin-1/2 atoms with resonance frequencies ®, and
®,, and coupling J,, the C-NOT gate is implemented if applying a
narrowband 180-degree pulse at a frequency ®, +1J,, /2, causes spin 2 to
be inverted only if spin 1 is in state |l> In this case, spin 1 is the control

qubit and spin 2 the target qubit. Pictorially, the C-NOT gate may be
visualized following the construction of Steffen, Vandersypen and Chuang
[201], see Fig. 4-18. The sequence of rotations is produced as follows: 1) An

RF pulse at a frequency ®,, of a bandwidth such covering the frequency
range ®, +J ,, but that does not overlap with ®,, rotates spin 2 from +Z to

-Y; 2) The spin system is allowed to evolve freely for a duration of 1/2J,
seconds; 3) During the free evolution period, the precession frequency of
spin 2 will be shifted by *J,, /2 according to whether spin 1 is in the |1>

or |0> state. This will result in the rotation of spin 2 to either +X or —X by

the end of this period, depending on the state of spin 1; 4) A 90-degree pulse
applied to spin 2 about the —Y axis rotates spin 2 to +Z if spin 1 is in state

| 0> , or to —Z if spin 1 is in state | 1> .

90x Delay(1/2J,,)

Figure 4-18. Left-to-right: Sequence of qubit rotations for implementing the C-NOT quantum
gate in NMR-based QC. The coordinate system rotates around the Z axisata frequency @,

when spin 1 is |0> (solid line), and |1> (dashed line). (After [201].)
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While the maturity of NMR spectroscopy has enabled the successful
proof-of-concept implementation of various QC algorithms, the fact that the
technique must rely on measuring ensembles of spins to obtain a detectable
read-out signal is a limiting aspect of it, since this implies that one must
begin with the highly-mixed initial ensemble state; this is the result of there
being a very small energy difference between up and down spins at room
temperature, manifesting itself as a nearly random equilibrium distribution
[193].

A highly-mixed state possesses equally likely spin-up and spin-down
states, for example [193],

(1-¢)1/2+€[0)(0], (29)

€ ~107, which is an almost random state with a small excess of the |O>

state [193]. This expression for the equilibrium state follows from the
density matrix p,... Which, being proportional to e T (where the

nuclear spins in a molecule posses the internal Hamiltonian H, T is
temperature and k is the Boltzmann constant), admits an expansion [190],

o HAT e—a,ai’)/kre—azaﬁz)/krm’ (30)
which with,

e < [ -g,6Y) KT..., (31)
may be written as,

e AT I—slo'il)/kT-szagz)/kT..., (32)

where I is the identity matrix and, for spin i, the parameter &; represents the
energy difference between up and down states. While the desired initial state
0>, the actual

randomness of the initial ensemble state may be overcome by a technique to
transform it into an almost pure state.

An almost pure state is one that produces a signal that is proportional to
that of a pure-state signal. It is generated by exploiting three facts [193],
namely: 1) That the magnetization is determined by the traceless part of the

is a pure one, in which all spins are in the same state, e.g.,

density matrix; 2) That the completely mixed state I/2" is preserved under
both unitary and non-unitary transformations; and 3) That all scales are
relative, in particular, that only the ratio of two magnetizations determines
the final answer of a quantum computation, i.e., the deciding factor in a
measurement is, not the absolute magnetization, but its relative value
compared to the noise [193].
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Constructing a pseudo-pure state makes use of the concept of deviation
density matrix. This is the arbitrary matrix & for which d —p = Al for some

constant A .. From this definition, and inspection of Eq. (29), it is clear that
the matrix 8| O><O| is in fact a deviation matrix from the equilibrium state of

one nuclear spin. An interesting property of the deviation matrix is that, if
m is a traceless operator, then [193],

tr(5h) = tr((p + AI))
= tr(p) + tr(h). (33)

= tr(pth)

Thus, the expectation value (the measurement) of a traceless observable may
be obtained either from the density matrix or from the deviation matrix, as
prescribed in Eq. (33). A pseudo-pure state, in fact, is defined as one whose

equilibrium state has the deviation o= 8| O><O|. Its significance is as
follows. If we are interested in the probability of p, of measuring state |1> ,

given that the initial state was |0> , then this is given by [193],

P, =(I[U]0)(0[uT]1)
= tr(U]o)(o[u 1)1
= u(U]0)o[U* (1-0,))/2 , (34)
= (t(U]o)(o|u* )~ tr{u0)o]U*s, )) 2
= (1-w(ulo)oua, )2
Where U is the total unitary operator associated with a computation.
Therefore, Eq. (34) indicates that by measuring the initial and final

a=tr(dc.)=¢, and
a=t(dc.)= etr(U | 0><O|U+(5Z ), respectively, one can determine p,. In

expectation values of o

z?

fact, p, = (1-(a/a’))/2, independent of the scale & .
Most importantly, the technique may be extended to the case in which one
desires to determine the probability p, of measuring the state |1> ,» in the

case in which this state refers to the first qubic resulting from applying a
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quantum gate to an initial state |OOO...000> [193]. The result is the same,

namely, p, = (1 - (a/ a'))/ 2, except that now the deviation in question takes
the form & = €/000...000)(000...000 .

In general, if a state has a deviation proportional to a pure state |l|!><l|!

B

in particular, & = 8| \|I><l|f| , it is called a pseudo-pure state. Physically, Cory

et al. [200] stated that the justification for constructing a pseudo-pure state
derives from the fact that the spins in the different molecules of a liquid are
virtually independent of one another and that, as a result, they may be
construed as a large number of copies of a single type of molecule, thus
permitting the liquid to be approximated by a Gibbs ensemble. Because of

this, instead of dealing with a density matrix of size 2", which is the total

number of molecules, one can deal with a reduced density matrix of size 2",
where » is the number of spins in a single molecule. Analytically, instead of
the density matrix [200],

W= [pw)fw)(vldy, (35)
fw}
where p(\u) is the probability density of the pure state described by the

spinor Y and {W} denotes the set of all unit norm spinors, one uses the
approximation [200],

g o L 20wiy] (36)
(I-a2"+20

where |W> is a unit spinor. Thus, since the ensemble average of an

observable O is obtained by taking the trace of its product by the density
matrix, tr(O‘P), a simplification is obtained from using the pseudo-state,
since the ensemble average is now given by,
tr(OW¥) o< (1—ot)tr(0)+ 20(<\|I|O| l|1>, where tr(O) is known. While the

pseudo-pure state continues to be made up of a statistical mixture of
molecules, since by Eq. (36), each spinor determines a unique psudo-pure
density matrix, and each pseudo-pure density matrix determines a spinor that
is unique to within an overall phase factor (assuming the polarization is O
known), each addition of the magnetizations of all the molecules reveals the
predominance of one particular state present, in effect capturing each
molecule’s state for the final spectrum without the necessity of wavefunction
collapse [200]. The price paid as a result of using pseudo-pure states is the
loss of a factor of the order of one million in the effective number of
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molecules per state because the net polarization of spins is only about one
part in one million. Herein lies one of the main limitations of NMR-based
QC [193], [200]: The fact that the pseudo-pure state signal decreases
exponentially with the number of qubits prepared, while the noise level
remains constant, precludes the methods for extracting pseudo-pure states
from working for more than about 10 nuclear spins.

Thus, the use of pseudo-pure states enables one to obtain a result despite
the highly random nature of the initial state. The question then becomes,
how does one transform an initial random state into a pseudo-pure state with

deviation 000...000><000...000 ? A technique, among various, that is

employed applies magnetic field gradient to the sample in order to make the
frequency of the precessing spins position-dependent and, thus, make it
possible to distinguish different parts of the sample. In particular, the
gradient field induces a position-dependent phase change along the sample.
This is the basis of NMR imaging [193].

Another issue that derives from the ensemble nature of the sample, is that
care must be taken to reduce unintended coupling between qubits [193]. The
established technique to accomplish this is called “refocusing” [193], [194].
The fundamental idea is to apply a pulse at the midpoint of the evolution
period to a given spin, of such a phase (typically 180°) as to undue the
evolution it has experienced over the time period due to the influence of the
undesired coupling [193].

One common issue with QC is the effect of decoherence. In the case of
NMR-based QC decoherence is characterized in terms of two parameters,
namely, the energy relaxation rate, Ty, and the phase randomization rate, T,
[194]. T, captures the energy lost by precessing spins to various mechanisms
such as couplings to other spins, and to phonons and paramagnetic ions, and
chemical reactions such as ions exchanges with the solvent. This source of
decoherence may, by properly choosing the molecules and liquid samples,
be extended to tens of seconds. T, captures energy losses due to short- and
long-range spin-spin couplings, the effects of fluctuating magnetic fields due
to the spatial anisotropy of the chemical shifts, local paramagnetic ions, or
unstable laboratory fields. These factors, by properly choosing the quality of
the samples and laboratory equipment allow a decoherence time of one
second or more for molecules in solution [194].

4.3.1.3 The Semiconductor Solid-State Qubit

Given the predominance of solid state silicon electronics technology,
there is a strong motivation to discover and develop paradigms for quantum
computing that exploit qubits embedded in silicon wafers. An early example
of this is the scheme for a silicon-based nuclear spin quantum computer
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introduced by Kane [202], see Fig. 4-19. In this section this example is

reexamined.
BAC
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Figure 4-19. Sketch of nuclear spin QC concept. Illustrated are two cells in a one-dimensional

.. 31 . . .
array containing P donors and electrons in a Si host wafer, separated by a barrier from

3
metal gates on the surface. Bac ~ 1 0 Tesla, and B~ 2 Tesla. (After [202].)

In this scheme the qubits are embodied in the nuclear spins of donor atoms
located underneath biasing metallic gates in doped silicon structures, and the
coupling between qubits is enabled by the hyperfine interaction, which
couples electron and nuclear spins. In particular, with the wave function of
the donor electron being concentrated at the nucleus, a large hyperfine
energy, and thus coupling, between electron and nuclear spins is guaranteed
which, in turn, may be communicated to adjacent qubits by the
extension/overlap of the electron wave functions of the corresponding donor
electrons. Modulation of the coupling between electronic wave functions,
and thus between qubits, is facilitated by the charge nature of electrons,
which enables their manipulation via applied electric fields. Quantum
computation, therefore, may be effected by applying voltages through
biasing gates located on the wafer surface, in particular, “4 gates”, which
control the resonance frequency of the nuclear spin qubits, and “J gates”,
which control the electron-mediated coupling between neighboring nuclear
spins. In addition, two other biasing magnetic fields are necessary, namely, a

global field B

. » to enable flipping of the nuclear spin at resonance, and a
local magnetic field, B, to break the two-fold spin degeneracy of germane to
electrons occupying the lowest energy-bound state at the donor, which
manifests itself at low temperatures.

The detailed physics of the silicon-based nuclear spin quantum computer
is captured by the parameters governing the magnitude of the spin

interactions, which determines the time required for manipulating qubits and
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the separation required between adjacent donors. In the presence of a
magnetic field B”Z , and assuming a donor nucleus with [ =1/2 embedded

in a silicon host, the interaction in question, namely, the nuclear-spin
interaction, is given by the Hamiltonian [202],

H,, :,uBBaf—gN,uNBaZN+Aae'aN, (37)

where u, is the nuclear magneton, O are the Pauli spin matrices, g, is the

8
nuclear g-factor, and 4= 3 U v Uy |‘P(0)| ? is the contact hyperfine

interaction energy when the probability density of the electron wavefunction,
|‘P(0)|2 is evaluated at the nucleus. Clearly, examination of Eq. (37)

indicates that the interaction energy is a directly proportional to the magnetic
field and is a strong function of the wave function probability density at the
nucleus. A trade-off exists, however, because for electrons in their ground
state the frequency separation between nuclear levels is [202],

24°
hv, =2g uyB+24+ , (38)
HyB

which, for fields B < 3.5T is dominated by the second term. Thus, in this
regime the magnitudes of the nuclear magneton and the wavefunction
probability density at the nucleus take on a dominant character.

To perform arbitrary rotations on the nuclear spin, Kane indicates that it is
necessary to alter its precession frequency in comparison with that resulting
from the applied magnetic field B, [202]. This is accomplished by

exploiting the fact that the proximity of the donor-nuclear spin system to the
A gate allows the hyperfine interaction to be reduced by shifting the
envelope of the electron-donor wavefunction away from the nucleus, i.e., by

reducing |‘P(0)|2. In essence, such a shifting alters the frequency, Eq. (35),

and causes the nuclear spin-donor system to behave as a voltage-controlled
oscillator producing, for a donor placed 200 A under the gate, a tuning
parameter of the order of 30 MHz/V [202].

In addition to the single-qubit rotation, the two-qubit C-NOT operation
must be implemented in order to enable general quantum computations. In
the context of the nuclear spin-donor system, accomplishing this requires
developing the ability to induce nuclear-spin exchanges between two
nucleus-electron spin systems. The interaction between two such systems is
captured by the Hamiltonian [202],

H=H(B)+A4,6™ -6*+ 4,6 -¢” +Jo" -0, (39)
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where H (B ) represents the magnetic field interaction terms between spins,
the respective hyperfine interaction energies of the nucleus-electron systems
is given by A4, and 4, , respectively, and 4/ is the exchange energy, which
is a function of the electronic wavefunction overlap and, for donors in a host
semiconductor of dielectric constant &, and Bohr radius a,, and separated
by a distance » of about 100-200 A, is given by [203],

4J(r)= 16 e (L)zexp(_zrj- (40)

cay\ ag ag

The wavefunction overlap, to which J is proportional, is captured by this
exchange energy. Thus, varying the voltage applied via the J-gate one can
modulate coupling between separated qubits.

Once qubits have been manipulated to effect a quantum computation, the
result of the computation must be read off. In the silicon-based nuclear spin
QC, this is accomplished by measuring the current that results from the
conversion of nuclear spins into electron polarization, in response to a bias
voltage, see Fig. 4-20 below. In particular, this conversion of the nuclear
spin into an electron polarization is prompted by the coupling of the states

‘l«i«> and ‘/N«—J«T>, which is produced by the hyperfine interaction
between the nuclei and the electronic states as the exchange energy J is
increased adiabatically from J < u,B/2 to J > u,B/2, see Fig. 4-20(a)
[199].
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Figure 4-20. (a) Energy levels for electrons (solid lines) and lowest energy-coupled electron-

nuclear (dashed lines) systems as a function of exchange energy, J. When J < U BB/Z ,itis
possible to perform two-qubit computations by exercising control over the level splitting
|10—01> —| 10+ 01> with the J-gate. Above J = 1, B/2, the states of the coupled
system evolve into states with differing electron spin polarization. When J = (0 the state of

the nucleus with the larger energy splitting, which is controllable by the A-gate, determines
the final electron spin state after an adiabatic increase in J. (b) Only electrons in state

‘T\L — J/T> can make transitions into states in which electrons are bound to the same donor

(D states). These transitions elicit an electron current that is measurable by capacitive means,
thus enabling the underlying spin states of the electrons and nuclei to be determined. [202].

This implies a change in wavefunction symmetry, i.e., from that of ‘\Li> to

that of ‘ T - \LT> .

Two electrons with the latter symmetry, however, are capable of

occupying the same donor. In the Si:P the donor takes the form of a D~
state, which is always a singlet state with a second electron binding energy
of 1.7meV. Under these circumstances, it will be possible, with the
appropriate bias between the A-gates, to induce electrons from one donor to

move the adjacent, already occupied one in order to establish the D™ state in
it. This charge motion, in turn, is detectable utilizing single-electron
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capacitance techniques and produces a signal that remains observable until
the spin relaxes; for Si:P this time may be of the order of hours [202].

Kane points out that a number of practical considerations must be
addressed to make this scheme workable [202]. For instance, before
beginning a computation, initialization will require the individual
determination of gate biases to account for fluctuations due to the variation
with position of both donors and gate sizes. These voltages, in turn, will
have to be stored to effect the calibration as needed. Also, gate voltage
fluctuations in essence couple the environment to the qubits, thus
contributing to spin decoherence. This decoherence is elicited by the
induction of difference spin precession frequencies in pertinent qubits, and
manifests in that two spins in phase at a given time, will be 180° out of

phase a time t, later. It can be shown that [202],

1
t = ,
P (VIS (v,)

(41)

where o0 =dA/dV is the tuning parameter of the A-gates, with A the
fluctuating differential precession frequency of the spins, Sy, is the spectral
density of the frequency fluctuations, and Vv is the frequency difference
between the |10—01> and |10+ 01> states. Estimates, assuming the use of
low-temperature elctronics to bias the gates, suggest t, = 10° sec, which

implies the ability of the nuclear spin QC to perform between 10° —10"
logical operations during t, . Finally, measures have to be taken to render a
predominance of certain polarization of electrons spins, e.g.,
(n¢ / n, <l 0’ ), so that they can effectively mediate nuclear spin
interactions. This, in turn, requires the electrons to occupy the lowest energy
levels, which occurs when 2u,B >>kT. With B=2T, this sets the
operating temperature at 100mK.

4.3.1.4 Superconducting-Based Qubits

In the search for two-level quantum systems upon which qubits might be
based, Josephson junction-based superconducting qubits are currently the
most advanced. In contrast to the previously discussed qubits, which are
based on microscopic quantum effects of individual particles, such as ions,
electrons, or nuclei, superconducting-based qubits are based on macroscopic
quantum coherence effects [204], [205]. These are effects in which the qubit
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state is embodied, not in the wavefunction of elemental particles, but on the
coherent collective behavior of many particles, e.g., a superfluid. Thus, the
qubit states are defined by macroscopically observed quantities, such as the
charge or the current of particle condensates.

The key to superconducting qubits is the nonlinear nature of the resonant
LC circuit embodied in the Josephson junction [206]. The quantum
mechanical behavior of a linear LC circuit is captured by the flux @
through the inductor, which plays the role of position coordinate, and the
charge QO on the capacitor, which plays the role of conjugate momentum,

thus enabling the commutation relation [@, Q] = jh . With the Hamiltonian
given by, H=®" / 2L +Q°* / 2C, the usual eigenenergy states are given by

E=hw,(n+1/2), where ®,= l/ ~LC is the resonance frequency.

Reflecting the quadratic nature of the potential, the energy states are equally
spaced. Thus, it is difficult to define the two lowest states as the qubit states,
since transitions between higher-lying states are as equally likely [206].

The LC resonator may be made useful as a qubit if its energy spectrum is
caused to exhibit two lowest-lying states separated from the higher-lying
states. This is accomplished if a nonlinear inductance is introduced [206]. In

particular, the nonlinear Josephson inductance, L, =® /2nl cos?,
where 6 =¢; —¢p, ¢ is the phase of the wavefunction on either side of

the junction, and I, is the critical current, introduces a nonlinear potential in

which the two lowest-lying states are well separated from the higher-lying
states. These variables afford characterization of the Josephson junction in

terms of its energy, E (@, )=®,I, cosd/2n=E, cos§. In this context,
the conjugate variables of the quantum mechanical description of the LC
resonator become the flux, now given by ® =@,0, where ¢, =®,/2x,
and 0 =0mod 27 represents a point in the unit circle (an angle module
27), and the charge, now given by Q =2eN, which represents the charge

that has tunneled through the junction, and N an operator with integer
eigenvalues capturing the number of Cooper pairs that have tunneled. The

commutation relation now is given by [9, N ] =i [206]. The Hamiltonian is
given by,

H=E.,(N-Q,/2e)’—E, cos®, 42)

where E, 2(26)2 /ZC ; embodies the Coulomb energy for adding one

Cooper pair worth of charge to the junction capacitance C,, and Q,

embodies a residual random charge capturing an initial charge existing on
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the capacitor before it was connected to the inductor [206]. Q. originates
from the inevitable work function difference and/or the presence of excess

charged impurities on the capacitor electrodes of the junction.

In the course of developing approaches to minimize the effect of Q,,
while retaining the nonlinearity of the resonator, three fundamental types of

Josephson-based superconducting qubits have been developed, namely, the
charge qubit, the flux qubit, and the phase qubit, see Fig. 4-21.
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Figure 4-21. Fundamental types of superconducting qubits. (a) Charge qubit. (b) Flux qubit.

(c) Phase qubit. (d), (e), (f) Potential (dotted line), showing qualitatively different shapes for
these three respective qubit types. In (e) the nonlinearity of the first levels comes about from
near ® =

the cancellation between the superconducting loop inductance and the junction inductance
ext

‘DO /2. No closed-form expressions exist for the eigenvalues and
eigenfunctions of the potential, but its features are captured by two aspect ratios, namely,

EJ / ECJ and A= LJ /L —1. Ground-state wavefunction is also indicated (dashed-
double-dot line). The “x” represents a Josephson junction. (4fter [206] and [207].)

The nature of the Josephson-based qubit is a function of the relationship
between the relative magnitudes of the Josephson energy, E ;, which reflects

the strength of the coupling across the junction, and the Coulomb charging

energy, E;, which reflects the energy needed to increase the charge on the
junction by a Cooper pair, 2e [208].
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4.3.1.4.1 The Charge Qubit

The charge qubit, see Fig. 4-22, also known as the Cooper pair box, aims
at compensating the residual offset charge Q, by biasing the Josephson

junction with a voltage source V, in series with a “gate” capacitor C,. In

this case it can be shown that the Hamiltonian, with potential shown in Fig.
4-21(d), is given by,

H=E.(N-N,)]’ -E, cos, 43)

where E. = (26)2 / (Z(C ;+C, )) represents the energy required for
charging the island of the box and N, =Q, +C,V, /2e. To function as a

charge qubit, E; > E;, in which case the circuit favors fixing the numbers

of Cooper pairs. In the absence of tunneling, this state of affairs yields an
energy versus gate voltage as given by the dashed lines in Fig. 4-22(b), that

is, as the gate voltage increases, the energy of the zero state |O> increases

and that of the one state | l> decreases.

1% N 7
(VD s L4 12}2,
Cooper- //---- .
Pair Box * \
0.5
C.V, /2

(a) (b)

Figure 4-22. Charge qubit. (a) A qubit is created by the superposition of the two classical
states embodied by the presence of zero and one extra Cooper pair in the box. (b) Energy
levels as a function of controlling gate voltage.

However, in the presence of tunneling, coupling causes the energy levels to
split and avoid crossing, thus reflecting the creation of two new quantum
states (solid lines), namely, one materialized as the symmetric superposition

of the classical zero and one states (IO>+|1>), and the other as their
antisymmetric superposition (]O> — | 1>), both separated by an energy gap of

magnitude 2E; [208].

The dynamic behavior of the charge qubit is controlled by applying time-
varying signals to the voltage gate. Initial demonstration of the coherent
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control of macroscopic quantum states in a single-Cooper-pair box was
reported by Nakamura, ef al. [209]. In these experiments, the superposition
of two charge states (i.e. states with different number of Cooper pairs N) was
detected by a tunneling current through a probe junction. In particular, a
normal electron escaped through the probe junction every time the system
adopted the one state. Control of the state of the qubit was effected by
varying the length of the voltage pulse, with the probability of the system
returning to the zero or one state oscillating in proportion to it. The major
source of decoherence was found to be the probe junction itself, which
limited the coherence time to 2 ns [206].

Nakamura et al.’s [206] approach was improved by the quantronium
device demonstrated by Vion ef al.’s [112] see Fig. 4-23. In this device, the
Josephson junction of the Cooper pair is split into two small parallel

Josephson junctions which are characterized by their energy E; COS(S/ 2),
where O is the superconducting phase difference across the series
combination of the two junctions. These junctions, in turn, are shunted by a
larger Josephson junction, characterized by an energy E,, =20E, and by a
phase 7, thus forming a loop. A current I, applied to an adjacent coil
produces a flux @ that passes through the loop, with the consequence that it
induces a phase ¢ that now links the loop phases as follows, =Y+,
where ¢ =2e® /7. This action entangles the state of the box, N, via 0,
with the phase 7y, see Fig. 4-23(a). The quantum state of the qubit is
manipulated by applying a microwave pulse of frequency
v=v, ~16.5GHz, the transition frequency between charge levels in the
box corresponding to the zero and one states. Depending on the pulse
duration, any state |‘P> = Oc| O>+B| 1> can be prepared. Reading the state

exploits the fact that a current pulse I (t), see Fig. 4-23(b), of peak
amplitude slightly below the critical current of the large junction,
I, =2eE,,/h, causes a supercurrent to develop in the loop that is
proportional to N. In particular, when there is no extra charge in the box, this
supercurrent elicits a clockwise current in the loop formed by the two
junctions, whereas when there is an extra charge in the box, the current is
counterclockwise. In the former case, the current adds to the bias current in
the large junction with the result that, for precisely adjusted amplitude and

duration of the I, (t) pulse, it switches to a finite voltage for a state one and
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Figure 4-23. Quantronium circuit. (a) The circuit consists of a Cooper pair box island (node
N), to which two small Josephson junction branches are connected. These, together with a
larger Josephson junction, that is shunted by a capacitance C (to reduce phase fluctuations),
form a loop. The state of the circuit is embodied by the number of Cooper pairs, N, and the
phases O and Y . To tune the quantum energy levels, a DC voltage V s applied to the gate

capacitance, C o and a DC current [ o is forced through the coil to produce a flux ¢ in the

circuit loop. (b) To prepare arbitrary quantum states, microwave pulses U(t) are applied to
the gate. To read out the state a current pulse Ib (t) is applied to the large junction and the

resulting voltage V(t) across it is measured. A typical write/read timing sequence is shown.
(After [112].)

it does not switch for a state zero. In essence, the quantronium uses a phase
circuit to measure current, instead of the charge, thus avoiding the probe-
induced decoherence problem of Nakamura et al’s. A decoherence time of
0.5us was measured [112].

4.3.1.4.2 The Flux Qubit

The flux qubit, see Fig. 4-21(b) above, is considered as the dual of the
charge qubit [206]. It consists of a junction that is coupled to a current
source via a transformer, instead of a gate capacitor, with the junction itself
being connected in series with an inductance L, and the system being
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biased by an external flux @ _, through an auxiliary coil. In the flux qubit

ext
the approach to compensating the detrimental effect of Q. relies on shunting
the junction with the superconducting wire of the loop and choosing the
condition E; <E;. This results in making the quantum fluctuations of q

much larger than those of AQ,. The Hamiltonian, with potential shown in
Fig. 4-21(e), is given by,

2 2
q 0 2e
=——+—-E,;cos| — (-0, )|, (44)
ek o 200,
where ¢ is the integral of the voltage across the inductor L, which gives the
flux through the superconducting loop, and q is its conjugate variable,

which represents the charge on the junction capacitance C,. Both obey the

commutation relation [d), q]=ih. The prototypical flux qubit consists of

three Josephson junctions forming a loop and being controlled by an applied
magnetic field perpendicular to the loop to control the phase, see Fig. 4-24.

> AN e
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X S > 2B,
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/0,

(a) (b)

Figure 4-24. Flux qubit. (a) A qubit is created by the superposition of the two classical states
embodied by the loop phase of zero and 27T. While one or two junctions would be sufficient,
three junctions allow greater control over the behavior of the system. (b) Energy levels as a

function of controlling magnetic flux. The energy gap, E(D = C(‘Dg /2L)(N¢ -1/ 2),

plays the same role as E I C is a numerically determined parameter and

Ny =D, /P, . [207], [208].

ext

In this case the two qubit states |0> and |1> are embodied in transitions in

phase from loop phases of 0 to 27, which are associated with currents
circulating around the loop in clockwise and anti-clockwise directions. In
particular, states of zero and 27 phase difference around the loop, are
“coupled” when the flux through the loop equals half the quantum magnetic

flux in the superconductor, i.e., when ® =@ /2. Under this state of
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affairs, two new states, (|0>+|l>) and (IO>—|1>), that are quantum
superpositions, are formed, with the energy between them now given by the
tunneling strength. Control of the qubit, such as to change its state, is
effected by coupling to the flux ¢, which is accomplished by sending

current pulses on the transformer primary. Measurements of the states, made
with a superconducting quantum interference device (SQUID), a device
which consists of two Josephson junction in parallel, to detect the magnetic
flux, reveals that the currents are carried by a billion Cooper pairs, with
tunneling being the mechanism by which the directions of all of these
particles is reversed simultaneously [208]. The decoherence times, which are
limited by defects in the junction are in the range of 500 ns to 4Us.

4.3.1.4.3 The Phase Qubit

The phase qubit, see Fig. 4-21(c), utilizes only one Josephson junction,
and the two quantum states are embodied in the quantum oscillations of the
phase difference between junction electrodes [207]. In this case the approach

to compensating the detrimental effect of Q| relies on using large ratios of
E,/E, . A large nonlinearity in the Josephson inductance is achieved by
biasing the junction at a current I~ I,. The Hamiltonian, with potential
shown in Fig. 4-21(f), is given by,

H=E,p’-19,8-1,0, cosd. (45)
The conjugate variables, given by the phase difference operator &, which is
proportional to the flux across C,, and the charge on the capacitance 2ep,

obey the commutation relation [8, p]=i [207]. The potential is
approximated by the cubic form,

V(3) =, (1, _1)(5_71/2)_1()%(5%/2)3, (46)

from where it can be shown that the classical frequency of oscillation at the
bottom of the well is given by,

o =—[i—@r1,)]", @7)

' VLG,

and the first two levels that can be used for the qubit states have the
transition frequency ®,, = 0.95®, [207].
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Read out of the qubit state is accomplished by exploiting tunneling
through the barrier separating the potential well from the continuum, and
subsequent self-amplification due to the negative slope potential, see Fig. 4-
21(f). In particular, since the barrier becomes thinner at higher energies, and
those higher energy states have an increasing probability of escape, the one
state is measured by sending a probe signal to induce a particle in the one
state to tunnel out of the well. Upon tunneling out of the well, the downward
acceleration of the potential leads to the appearance of a voltage 2A/e
across the junction. This voltage is associated with reading a one state for the
qubit; zero voltage is associated with reading a zero state.

In terms of operating temperature, it is clear that superconducting qubits

must be operated at temperatures such that kT << 70, << A, where ®,, is
the transition frequency between the energy levels representing states |0>

and |1>, and A is the energy gap of the superconducting material. This

necessitates cooling to temperatures of the order of 20mK.

4.4 Summary

This chapter has dealt with a number of aspects surrounding the actual
implementation of NanoMEMS circuits and systems. We began discussing
architectural issues, as this is the first step in defining a NanoMEMS system
on chip (SoC). Then, emerging candidate building blocks, intended for
applications ranging from interfaces to signal processing functions, were
described. These included a charge detector, which-path electron
interferometer, torsional MEM resonator for parametric amplification,
Casimir effect oscillator, magnetomechanically actuated beam, functional
arrays, and a quantum entanglement generator. These building blocks
represented nanoelectromechanical quantum circuits and systems (NEMX),
as they exploited the coexistence of electronic and mechanical structures.
The chapter concluded with a presentation of physical implementations of
quantum bits (qubits), such as the ion-trap, the nuclear magnetic resonance,
the semiconductor solid-state, and superconducting qubits, upon which
quantum computing paradigms might be predicated.



Chapter 5
NANOMEMS APPLICATIONS: PHOTONICS

5.1 Introduction

The ability to fabricate nanometer-scale structures has given new impetus
to the field of miniaturization of optical devices, whose ultimate goal might
be articulated as that of integrating optics and electronics in the context of a
monolithic technology. While there are no fundamental limits to the
miniaturization of electronic functions down to nano- and sub-nanometer
scales, the minimum size of devices manipulating optical signals is limited
by diffraction to about half the wavelength (7\,/ 2n ) [210], which in practical
terms encompasses dimensions in the several hundreds of nanometer [211].
Two approaches have been devised to overcome these limitations, namely,
the design of optical elements based on very high refractive index materials
[212], which is accompanied by high losses in the sub-30 nm size regime
[213], and the conversion of photons into electromagnetic modes whose size
is determined by the size of the waveguide rather than by the wavelength of
the optical field [214]. The latter approach is based on surface plasmons
(SPs), collective oscillations of free electrons resulting from the interaction
of electromagnetic waves with free electrons at a dielectric-metal interface
[215]. In particular, Dickson and Lyon [212] point out that, by employing
SPs to transport light, the minimum waveguide size becomes only limited by
a combination of the Thomas-Fermi screening length, which is ~0.1 nm in
Au, and size effects affecting the dielectric constant, which have an onset at
dimensions less than 5 nm in Au. While we will focus on SP-based
approaches, a third approach to sub-wavelength photonic circuit elements,
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proposed by Barrelet, Greytak, and Lieber [216], employs semiconducting
nanowires and will be touched upon briefly.

In this chapter, we deal with the fundamental principles of
nanophotonics, the processing of light by nanometer-scale devices. In
particular, we address the topics of generation, propagation, and detection of
surface plasmons, and emerging devices based on them.

5.2 Surface Plasmons

The concept of plasmons emerges from considering the motion of a
concentration n(f,t) of free electrons, in a positive background n, as a

result of an applied electric field E.In particular, assuming the electrons to
behave as a fluid of velocity V(f,t), their motion is prescribed by the
consistent solution of Newton’s and the continuity equations [132],

dv . o\ =
mE+m(V-V)V:—eE, (1)
and
M V. (09)=0. 2)
ot

As a first step towards the solution, after neglecting the second term in (1)
due to its quadratic nature in V, one postulates that the effect of the electric
field is to cause the local electron density to deviate from the constant
background density by dn=n-n,. In this context, the extent of this

deviation is related to the electric field by Poisson’s equation,
V-E =—4ne(n—n,)=—4medn, (3)

and, because of electron inertia and the restoring force supplied by Coulomb
attraction to regain equilibrium, i.e., dn =0, oscillations ensue. These
collective bulk electron oscillations are denoted as volume plasmons, and
their frequency of oscillation is obtained by substitution of on into (2),
resulting in,

T'ﬁ‘l’lOV'\ﬁ/:O, (4)

which, upon differentiating with respect to time, becomes,
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0°8n 0. 0°6n —¢E
at—z‘f-HOV'aV:T‘FnOV'(?]:O, (5)

and which, in turn, upon substituting (3) into (5) becomes,

2 2
aatézn N 4me n,0n o ©
m

Eq. (6), being analogous to that of a harmonic oscillator, prescribes the
frequency of plasmon oscillation as,

47tn e’
W, = ———. (7
m

Of particular interest in this chapter, is the concept of surface plasmons,
(SPs), Fig. 5-1, thoroughly reviewed by Raether [215]. These are elicited by
the interaction of external electromagnetic fields with surface electrons, and
are characterized by a dispersion relation, a spatial extension, and a
propagation length or lifetime.

5.2.1 Surface Plasmon Characteristics
The dispersion relation for SPs at the interface between a dielectric

characterized by €, , deposited on the plane surface of a semi-infinite metal

characterized by €, =€, +ig,, is given by [215],

Dielectric, €, Evanescent Wave

Figure 5-1. Sketch of surface plasmon. The field accompanying a surface plasmon peaks at
the dielectric-metal interface and diminishes exponentially away from the interface.

2
k, = a{gj —k2 , i=12, )
C
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where the wave vector k _, is given by,

€, €
k, _0 il b 9)
c\e +¢,

Substituting the complex dielectric constant expression into (9), the wave
vector becomes k, =k +ik  , with components,

. €€
kx :9 '1—2’ (10)
c\e +e,

' 3/2 "

" | €&,& €

kxz—(,”J — . (11)
cle +e, ) 2()

Since (D/ c<k,, see (9), and 8; < 0, (characteristic of the metal), both

k, and k,, are imaginary. As a result, the SP field becomes evanescent.
The corresponding spatial decay of the field, away from the interface, is thus
proportional to exp(— k. Z|) [215], and is characterized by the distance at

which it has decreased into either medium by 1/e [215]. Thus is given by,

A g +E,

- , 12
2n\ € 12

Z,

into the medium with €, , and,

=l €, +¢,
2n\ e}

, (13)

Z,

into the medium with €, .

The propagation length L, for SPs propagating along a smooth surface is
defined as the distance, away from the interface, at which their intensity,
which is proportional to exp(— Zk;X), has decreased by 1/e, namely,

Li=—r. (14)
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Raether [215] has pointed out that at visible wavelengths in silver, L; may

be as high as 22um at A =51454, and 500um at A =10,6004. In

addition to characterizing the SP decay by a distance, it may also be
characterized by its lifetime. This is related to the SP group velocity by,

T, =L, / v, and, is a complex frequency ®= ® —io® and real k, are
assumed, may be expressed as T, = 2TC/ ® , where from (9), one obtains,
Sl 8182

2Ae,) & +es

o =k.c (15)

Since SPs are associated with both a field and electron motion, their lifetime
is influenced by mechanisms giving rise to attenuation. These include,
radiation damping (conversion of the SP into light due to scattering),
electron scattering processes giving rise to ohmic losses, and chemical
interface damping due to high interface state densities [217]. Two steps are
essential, therefore, in the miniaturization of optics by exploiting SPs,
namely, the processes of exciting the SPs by light, and of transporting SPs
with minimum loss. These subjects are taken up by nanophotonics.

5.3 Nanophotonics

Nanophotonics deals with the realization of nanometer-scale optical
components and signal processing functions. While the goal is to produce
miniaturized optical components, it is conceivable that components in the SP
domain, while performing equivalent optical functions, might take different
forms not derivable from a direct downscaling of their optical counterparts.
Nevertheless, functions such as light-to-SP conversion, SP wave guiding,
and SP-to-light conversion are expected to be fundamental to these pursuits.

5.3.1 Light-Surface Plasmon Transformation

Schemes for converting light into SPs, and vice versa, derive from
circumventing the incompatibility of their dispersion relations, which do not
intersect, see Fig. 5-2 below, and the necessity to conserve momentum.
Accordingly, there are two fundamental elements to supply the additional
momentum, namely, the grating coupler, and the ATR prism.
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Figure 5-2. Sketch of dispersion relations for light, k < =(J)/ C, and SPs,

'

kx =(x)\/8182 /C\/El +€, . An incoming light wave with wave vector k

x>
necessitates and added momentum Ak Ap to convert to an SP. Conversely, an SP

Necessitates losing a momentum Ak cp to transform to a light wave. (After [215].)

In the grating coupler technique, the wave vector of light impinging upon
the grating-metal interface at an angle 0 is resolved into one component
perpendicular to the grating-metal interface, and one component along the
interface, see Fig. 5-3. In particular, for a grating of period a, the wave

vectors along the interface are given by (D/C sin@tng, where n is an

integer and g= 27‘:/ a is the reciprocal lattice vector of the grating.
Coupling between the light and the SPs is achieved when the condition,

k, =Zsin0, +Ak, =2 -5 =k, (16)
c c e+l

Fig. 5-3 Concept of grating coupler to transform light into SPs. (After [215].)
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that is, when an incidence angle O exists at which the sum or difference of

the component of the light wave vector and a multiple of the grating
reciprocal lattice vector equal an SP wave vector. Reduction of an SP vector
by Ak transforms it into light, whereas addition of Ak  to the light’s

wave vector transforms it into an SP.
In the ATR method, , see Fig. 5-4, the wave vector of light impinging

upon a hemispherical prism of dielectric constant €, and the metal interface
at an angle O, resolves its wave vector into components that are

perpendicular and parallel to the prism-metal interface. In this case, coupling
between light and SPs occurs when the component of the light’s wave vector

along the interface, k, =./&, ®sinO,/c, equals the SP wave vector,

ke = (,0\/8182 /C\/Sl +¢€, . If the metal thickness is finite, e.g., of extent d,
there exists the possibility that for a certain value of d, the evanescent field at
the €, /€, interface may couple to the lower €, /€, interface, where it
could also excite SPs [215], see Fig. 5-14.

Normal

— 0. ]
om

€2

Figure 5-4. Concept of ATR coupler. A metal layer of thickness d and dielectric constant €,

is sandwiched between a prism of dielectric constant €, and a dielectric €, . (Affer [215].)

5.3.2 One-Dimensional Surface Plasmon Propagation

Once light has been converted into SPs, the next question is how to
provide efficient energy guidance. To elucidate the issues involved, a
number of studies on surface plasmon propagation, utilizing various forms of
waveguide, have been undertaken.



200 Chapter 5

5.3.2.1 SP Propagation in Narrow Metal Stripes

Lamprecht et al. [214] conducted studies of SP propagation in microscale
Au and Ag metal stripes of widths in the micrometer range, and determined
the effect of film width on SP propagation length, see Fig. 5-5.

CCD

High N.A.
Propagating L Objective

Surface \\O/ M etal Structure
Plasmons 50 nm SiO,
50 nm Al

"""""" - Glass Substrate
o1
E -—
1

Excitation Region Measurement Region

Figure 5-5. Sketch of setup for spatially confined SP excitation and measurement. (After
[214].)

In particular, they fabricated 70 nm-thick gold and silver stripes with
widths in the 54 —1um range. Their experimental scheme, see Fig. 5-5,
involved localized light-SP coupling by a prism arrangement utilizing an
opaque aluminum screen to achieve well demarcated excitation and
propagation regions. The propagation lengths were observed by detecting
SP stray light with a CDD camera upon excitation with three different
wavelengths, namely, 514, 633, and 785 nm. The experiment concluded that
the SP propagation length decreased with decreasing lateral stripe width, the
rate of decrease being very dramatic below 20um, and increased with
wavelength. At a wavelength of 633 nm, the propagation length in a silver
stripe was about 58um and a few microns, for stripe widths of 54um and
Ium , respectively.

5.3.2.2 SP Propagation in Nanowires

Dickson and Lyon [212], conducted studies of SP propagation in high-
aspect-ratio metal nanostructures and 20 nm diameter, 1 —15um -long Au
and Ag rods, observing propagation over distances greater than 10pum for
light wavelengths of 532 nm and 820 nm. In particular, they reported that
once the SP propagation is initiated, the SPs are guided down the length of
the wire and reemerge from the end as photons via plasmon scattering. In
addition, for specific incident excitation wavelength and waveguide
composition, they were able to demonstrate unidirectional SP propagation.
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5.3.2.3 SP Resonances in Single Metallic Nanoparticles

Further efforts were made to study the confinement of SPs to metallic
nanoparticles. Among these, Klar et al. [217] reported the measurement of
SP resonances in single metallic nanoparticles, and of the homogeneous line
shape of their resonance, via photon scanning tunneling microscopy (PSTM)
(PSTM detects a signal at the exit of an optical fiber tip that is proportional
to the near field.) These SP resonances are known to be determined by the
dielectric properties of the medium in which the particles are embedded, and
by the size and shape of the particles, and are accompanied by a large
resonant enhancement of the local field both inside and near the particle, see
Fig. 5-6 [218].
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Figure 5-6. Sketch illustrating the excitation of the dipole surface plasmon oscillation. The
electric field of an incoming light wave induces a polarization of the free electrons with
respect to the much heavier ionic core of a spherical metallic nanoparticle. The net charge
difference is only felt at the nanoparticle surface which, in turn, acts as a restoring force. In
this way a dipolar oscillation of the electrons is created with period 7. (4fter [218].)

The setup utilized by Klar et al. [217], see Fig. 5-7, consisted of a tunable
continuous wave (CW) laser illuminating the sample via a tapered Al-coated
fiber tip. The nanoparticles were gold spheres with a typical diameter of 40
nm, and occupying a volume fill fraction of 3 %, embedded in a 200 nm-
thick dielectric sol-gel TiO, matrix with a refractive index 2.19. The
experiment proceeded to position the fiber tip 7 nm from the sample and to
shine laser light of various photon energies, in particular, 2,11 eV, 2 eV, 1.94
eV, and 1.91 eV. Detection was effected by a silicon photodetector and plots
of the transmitted light intensity, scanned across a surface area of 750 x 750
nm’ were made. Three key results were obtained in the experiment, namely,
an enhanced transmission by a maximum factor of 12, with respect to the
background intensity, for a nanoparticle located near the center of the scan
area, a typical resonance width of ~160meV, corresponding to a dephasing
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time of 7fs, and a double-peak resonance structure. The field enhancement
was explained as caused by the excitation of the SP resonance by the
evanescent field of the fiber aperture and subsequent radiation, by the
particle, of propagating modes into the far field, much like an antenna. The

Au-
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Figure 5-7. Sketch of setup for measuring surface plasmon resonances in single metallic
nanoparticles. The fiber tip has an aperture diameter of about 80 nm and positioned 7 nm
away from the 200 nm thickTiO, film, which is supported by a 1 mm-thick glass substrate.
(After [217].)

double-peak feature was explained as denoting the electromagnetic coupling
of two close-lying particles.

5.3.2.4 SP Coupling of Metallic Nanoparticles

The properties of SP coupling between close-lying metallic nanoparticles
were studied by Krenn ef al. [219] and Kottmann and Martin [220]. Krenn et
al. [219] utilized PSTM to elucidate the evolution of the optical near-field
pattern when a large number of identical particles are arranged in a linear
chain. Comparison with theoretical calculations lead them to confirm the
unexpected squeezing of the optical near field due to SP coupling above a
chain of half oblate Au spheroids nanoparticles with sizes averaging 100 x
100 nm® in section, by 40 nm height.

Kottmann and Martin [220] conducted a theoretical investigation of the
plasmon resonances of interacting silver cylindrical nanoparticles with 50
nm diameter at various separations, e.g., see Fig. 5-8. This figure shows that
at a separation of 5 nm and incidence along the major axis (i.e., along the
horizontal arrow) a single cylinder exhibits a resonance (dotted line) at
A =344nm . This resonance has the same magnitude, although shifted down
to A =340nm, for two cylinders (dashed line). In addition, an extra
resonance at about 372 nm is observed (dashed line) for this latter case,
showing the coupling of the two cylinders. In this case, an enhancement in
gap field amplitude, with respect to the incident field amplitude, by a factor
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of 8 is observed. When the wave is incident normal to the major axis (as
indicated by the dashed arrow), a broad resonance is observed at
A =380nm, with a gap field enhancement of 40 with respect to the incident
illumination.
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Figure 5-8. Scattering cross section (SCS) calculation of 50 nm diameter cylinders with 5 nm
separation. [llumination is in two different directions, as indicated by the arrows in the inset.
The incident field polarization is in-plane, perpendicular to the arrows. The dotted curve
corresponds to a single cylinder. [220].

5.3.2.5 Plasmonic Waveguides

The concept of exploiting the coupling of resonant SP fields between
adjacent metal nanoparticles to realize plasmon waveguides was studied by
Maier et al. [211] via finite-difference time-domain (FDTD) simulations and
experimentally. The FDTD simulations involved exciting a linear array of 50
nm Au spheres with a center-to-center spacing d = 75nm, and driven by a
source dipole placed before the first particle. The driving pulse was centered
at 2.4 eV, the resonance energy of an individual particle and corresponding
to k =m/2d, the highest group velocity waveguide mode. The pulse had a

width of 30 fs, equivalent to 95% of the bandwidth of the dispersion relation
for each polarization, and 24% of the total simulation time. For a linear chain
of nine nanoparticles, the FDTD simulations predicted group velocities of
1.7x10"m/s and 5.7x10°m/s for field excitations of transverse and
longitudinal polarization, respectively. Similarly, energy decay lengths,
estimated by monitoring the maximum field amplitudes at the center of each
particle and at the longitudinally polarized source, of 6dB/280nm and
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6dB/86nm were determined. The FDTD study concluded that by optimizing
particle geometry it should be possible to achieve energy trabsport at a
velocity of 0.1c (c is the speed of light).

The direct experimental evidence of energy transport a waveguide
consisting of linear arrays of 90 nm x 30 nm x 30 nm rod-shaped Ag
nanoparticles with an inter-particle spacing of 50 nm and having the long
axis of the rods oriented perpendicular to the propagation direction to
increase the near-field coupling was fabricated. To probe energy transport,
the fluorescence of Molecular Probes Fluorspheres F-8801, polystyrene
nanospheres with a diameter of 110+ 8nm, placed randomly along the
waveguide, see Fig. 5-9, was detected.
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Figure 5-9. Sketch of SP propagation detection along waveguide by fluorescent molecules.
(After [211].)

The procedure entailed excitation of the first particle in the waveguide by
coupling laser light at a wavelength of 570 nm, the single particle resonance
wavelength, via the tip of an optical fiber, and monitoring its propagation
down the guide by measuring the position-dependent intensity of the light
emitted by the fluorescent molecules. The presence of plasmon transport was
signaled by a broader full width at half maximum of the fluorescent nano
spheres when a scan is done along the waveguide than perpendicular to it.
The results of the experiment were a decay length of 6dB/195+28nm,
corresponding to an energy propagation distance of 0.5um.

5.3.3 Nanophotonic SP-Based Devices

While still in its infancy, a number of SP-based devices have been
proposed [221], [222]. For instance, Bozhevolnyi et al. [221] advanced SP-
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based waveguiding structures inspired by photonic bandgap crystal (PBC)-
based designs. In particular, the propagation of SPs in the range of 780-820
nm launched into nanostructured gold film surfaces with areas of 200-nm-
wide scatterers arranged in a 400-nm period triangular lattice containing line
defects was demonstrated, see Fig. 5-10.

(b)

Figure 5-10. Sketch of SP-PBC devices. (a) Line defect waveguide. (b) Line defect junction.
The white circles represent 45-nm-thick gold posts.

The periodicity of the metallic scatterers was arranged to inhibit SP
propagation inside these areas, thus creating a plasmonic band gap at a
certain range of wavelengths, in particular, at 815 nm. Guidance of SPs
occurred at 782 nm along the line defects. This was the first observation of
SP band-gaps and SP guiding along line defects in SP-PBC structures.
Figure 5-10 shows sketches of the SP-PBCs.

Krenn et al. [222], on the other hand, demonstrated two-dimensional
optics based on SPs, in particular, local SP sources, Bragg mirrors, and beam
interferometer. The goal of the SP source was to launch laterally an SP
beam, and was based on the grating approach. In particular, it consisted of
periodic nanoscale protrusions on a metallic film with geometries providing
the matching between the light and SP wave vectors. SPs were launched by
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focusing a 750 nm, SmW laser beam on a silver nanoparticle of 200 nm
diameter and 60 nm height. Bragg mirrors, see Fig. 5-11(a), consisted of five

Bragg

Mirror\

\ SP Launcher

@

l\ SP Launcher

(b)

Figure 5-11. Sketches of SP-based devices. (a) Bragg mirror. (b) Beam interferometer. The
circle represents the focus of the impinging laser. The dashed arrows represent propagating
SPs.

lines of gold 140 nm diameter, 70 nm height gold inclined at a 30° angle
with respect to the nanowire used for launching the SPs. Within each line,
the center-to-center particle distance was 220 nm and, to fulfill the Bragg
condition at an SPP wavelength of 610 nm, the inter-line distance was 350
nm. A reflection coefficient of ~90% was estimated. Since the transmitted
intensity was found to be negligible, this was taken to mean that 10% of the
SP intensity was converted to light. A beam interferometer was configured



5. NANOMEMS APPLICATIONS: PHOTONICS 207

by combining two Bragg mirrors symmetrically with respect to a nanowire
used for launching SPs, see Fig. 5-11.

5.3.4 Semiconducting Nanowire-Based Nanophotonics

In addition to the SP-based nanophotonics approach, an approach based
on using active nanowire waveguides has been advanced by Lieber’s group
[216]. This approach is motivated by an attempt to circumvent the loss
limitations exhibited by passive waveguides, such as SP-based devices,
which may hinder their applicability for manipulating light over the extent of
integrated photonic systems.

Early examples of semiconducting nanowires include nanoscale lasers
[223], in which a sub-wavelength diameter nanocavity is created by
exploiting the high refractive index contrast between a nanowire and its
surroundings. The active waveguide concept pursued by Lieber’s group
[216] involves utilizing cavities such as these as waveguides. The feasibility
of the concept was investigated by quantitatively characterizing the losses
through straight and sharply bent CdS nanowires, of sub-wavelength (200
nm) diameter, by scanning optical microscopy. In particular, the experiments
recorded spatial maps of the intensity of light emitted from one end of the
nanowire, as a function of the position of a diffraction-limited laser spot with
energy greater than the CdS band gap. In this context, the laser energy
absorbed by the CdS nanowire was re-emitted via photoluminescence and
subsequently guided by it. The experiment indicated that active CdS
nanowires are capable of efficient guiding over straight and sharp and acute
angle bends, with typical losses of about 1-2dB in an abrupt bend. In
addition, by studying the characteristics of junctions between two nanowires
it was found that light may be coupled efficiently through sub-wavelength
bends defined by them. Finally, by applying a variable electric field across a
nanowire, it was demonstrated that it is possible to modulate the intensity of

the light exiting the nanowire ~25% at a field of ~2.4x10°V/cm.

5.4 Detection of Surface Plasmons

The detection of SPs relies on their conversion to light, and the
subsequent detection of this light. In this context, one can mention two
detection schemes. In one scheme, detection is effected by monitoring the
light emitted by fluorescent molecules covering the entire device; such was
the approach employed in Section 5.3.2.5 to show direct evidence of SP
propagation in a plasmon waveguide [211]. This approach is more of a
diagnostic tool and does not seem amenable to utilization in actual signal
processing systems where one is interested in detecting the output at the exit
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of, e.g., a nanowire. In a second approach, a near-field scanning optical
microscope (NSOM), which allows sub-wavelength resolution [224], is
utilized. In this section we provide the fundamental principles of operation
of the NSOM.

54.1 NSOM/SNOM

Near-field scanning optical microscopy (NSOM), also called scanning
near-field optical microscopy (SNOM), is a super-resolution optical
microscopy technique that enables the ability to view samples at spatial
resolutions beyond those attainable with conventional optical techniques
[224], [225]. Conventional optical techniques are limited by the diffraction
of light. This is characterized by the size of the spot to which a light beam
can be focused. The spot is part of a family of concentric rings, known as the
Airy disk pattern, and its size is defined as the distance d from the point of
highest intensity, located at the middle of the center spot, to the first node in
intensity (demarcating the beginning of the first ring), and it is given by,

Ao

d=0.61——,
nsin 0

(17)

where A, is the free-space wavelength, n is the index of refraction on the

medium in which the light propagates, and 0 is the angle describing the
light convergence for the focusing element [225]. With the value of the
denominator, denoted as numerical aperture (NA), for the objective, being
typically as high as 1.3-1.4, (17) is usually simplified to d = 7\,0/2. This is
taken as the distance two objects may be approached to one another other
while still being distinguishable. To circumvent this limit, Synge [226],
[227] proposed the scheme shown in Fig. 5-12.
Incident Light

Opaque Screen

Near Field ——— |

Sample Surface

‘Wavelength of Light
Figure 5-12. Sketch of Synge’s concept for overcoming diffraction limit. (4fter [225].)
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Here an opaque screen containing an aperture of dimension much smaller
than the optical wavelength is interposed in the light path, in front the
sample surface, thus circumscribing the passing light to diffract from this
small aperture. Fig. 5-13 shows a sketch of a typical SNOM imaging system.

apered Optical Fiber
Probe Tip

|Sample on Scanning Stagel

Figure 5-13. Sketch of typical SNOM system. The probe-sample distance is controlled via
normal force feedback. (After [228].)

By placing the sample surface in the immediate vicinity of the aperture, the
light emerging from it would be made to interact with the sample before
diffracting out, thus allowing a higher resolution image to be formed. In
practice, the sample is illuminated via a 50-100 nm-diameter hole in a
tapered optical fiber probe tip [228]. The system may be operated in at least
four modes, Fig. 5-14, according to whether the probe tip is used for
illumination, for light collection, or for both [228]. In the transmission mode,
Fig. 5-14(a), the probe tip illuminates the sample and the transmitted light is
collected and processed. In the reflection mode, the probe tip illuminates the
sample, and the reflected sample is collected and processed. In the collection
mode, Fig. 5-14(c), an external light source illuminates the sample, and the
probe tip collects the light reflected from the surface. In the illumination and
collection mode, Fig. 5-14(d), the probe tip is employed to both illuminate
the sample and collect the reflected light.
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(a) (b) (©) (d)
I l w &L l 1
4

Figure 5-14. Modes of operation of SMON system. (a) Transmission mode imaging. (b)

Reflection mode imaging. (c) Collection mode imaging. (d) Illumination/collection mode
imaging. (After [228].)

The theory of diffraction by small holes was originally treated by Bethe
[229] and corrected by Bouwkamp [230], [231]. The proper expressions for
the field components in the near-field region in the immediate vicinity of the
aperture are given by [231],

. 2 2
E =ikz— 2ikau 1+V-arc‘[anv+l 5 ! ~+ i 5> (18)
n 3ut+v 332(112 +V2)(1+V2)
4ik
E,=— ikxyu . (19)
3ma(u® +v? f1+v?)
E, = 4ikxv 20)

B 3mafu? +v2 J1+v2 )

where a is the aperture radius, k is the wave number, and x, y, and z are
related to the oblate-spheroidal coordinates u, v, and @ via the equations,

><=a[(1—u2)(l+vz)]l/2 cos @, (21)
y=a[l—u)i+v?)]* sing, (22)
Z =auv. (23)

5.5 Summary

This chapter has dealt with the application of NanoMEMS techniques to
photonics. After pointing out the limitations of conventional optics to render
miniaturized devices at sub-wavelength sizes, we went on to consider the
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paradigm of surface plasmons to enable such miniaturization. In particular,
the issues of converting light to surface plasmons, as well as a number of
approaches to SP propagation, i.e., in narrow metal stripes and in nanowires,
were discussed. Then, the behavior of SPs on nanoparticles was presented,
followed by the phenomena of coupling between SPs in adjacent
nanoparticles, and its subsequent application to create plasmonic
waveguides. An alternate proposal to realize nanophotonics, based on active
semiconducting nanowires was then presented. The chapter concluded with a
discussion of the near-field scanning optical microscopy technique to detect
surface plasmons.



Appendix A
QUANTUM MECHANICS PRIMER

A.1 Introduction

In this appendix we present some of the salient point of quantum
mechanics (QM) of relevance to the material in this book. These include the
basic laws governing quantum systems, the harmonic oscillator and
quantization, creation and annihilation operators, the second quantization
formalism,and field operators.

A.2 Some Basic Laws Governing Quantum Systems

Phenomena occurring at microscopic scales is governed by quantum
mechanics (QM) [60]. According to QM, all the information regarding a
microscopic particle (e.g., momentum and position) is contained in its
wavefunction, ¥ . This wavefunction obeys an operator equation, namely,
Schrodinger’s equation, and is determined by the total energy of the particle.
The possible energy states of the particle are given by the solutions to the
stationary Schrodinger’s equation,

Hy =Ey, (A.1)

where H is the Hamiltonian operator, which embodies the total energy of
the particle and is composed of the sum of its kinetic and potential energies,
and F is its eigenvalue. Since the result of measuring energy are real values,

H=H %, i.e., H is hermitian. In general, there can be a multitude of
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eigenvalues, both discrete and/or continuous, each one being accompanied
by a respective eigenfunction. Thus, the set of wavefunctions associated with
an operator are said to span a space, called state space. When a particle is not
in a stationary state, it is in a dynamic state. A particle is in a dynamic state
when it is between stationary states, and the dynamic state is embodied by a
superposition of stationary states. During these circumstances, the particle’s
state is found as a solution to the time-dependent Schrodinger’s equation,

N ) 81//
Hy =ih——, A2
y=1i 3 (A.2)

where % is Planck’s constant and 7 is time. If there are » stationary states,
then the solution to (A.2) is expressed as,

l//=cl(t)lﬂ1 +Cz(t)l/’2 +“‘+Cn(t)'//n’ (A.3)

where the wavefunctions ¥/, correspond to respective stationary states with

. . 2 o
energies E,, and for a normalized state |cl.| represents the probability that,

upon measuring the state of the particle, it will be found in state i. A state is
normalized when its inner product (l//,l//) =1. Thus, for a normalized state

2 ..
Z|cl.| =1. But this is the norm of ¥, therefore, the norm of the state

vector remains constant, i.e., does not depend on time. Two proportional
state vectors, say, ¥  and Y, where l//'zceigl//, represent the same

physical state, but in general, the superposition of states possessing
expansion coefficients with relative phases, such as

w” =cey, +c,e’”y, does not.
The state of a particle deprived of interaction with its environment, will

evolve according to the solution to (A.2), which, expressed in Dirac’s ket
notation, is given by,

wle) = Uty (e,)). (A4)
where, when H is time-independent, U is the evolution operator

—% ]Hdr’

Ult,t,))=e @ = 0l (A.5)

A system whose Hamiltonian is time-independent exhibits energy
conservation over time, i.e., the total energy is a constant of the motion.

Clearly, U'U =UU" =1. This means that U conserves the norm of the
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states it acts upon, i.e., it is a unitary operator. Also, since
Ult,t,)=U""(t,,¢), this means the system is reversible. When the system

is disturbed by (or coupled to) the environment, as a result of which its
energy is modified, then its evolution is modified, the norm is no longer
conserved, the system becomes irreversible, and the state is said to
decohere.

A.3 Harmonic Oscillator and Quantization

In the simplest case of a particle of mass m and constant total energy
(Hamiltonian), H, performing an oscillatory motion in a potential

2
V(q):kq2/2, with  kinetic  energy T=%m(%j =p2/217’I,

Schrodinger’s equation is given by,
A [A A ] l}\?z ~ h 1 A2
Hy=T¢)+"ql= jn"'V(Q) W= *ﬁ"‘*mﬂ}q =&y, (A.6)

where the first and second terms represent kinetic and potential energy
operators, tespectively, and are expressed in terms of momentum,

p =-ihd/dq, and position ¢, operators, with @ defined by, @= kjm .
As conjugate operators, p and ¢ obey a commutation relation, namely,
[4, pl=Gp — pG =ih, which indicates that the order in which they are
applied is important. 7 is Planck’s constant (6.626x107*J —sec) divided
by 27 . Furthermore, as conjugate operators, they also obey an uncertainty

relation, namely, AGAp =%, which gives the uncertainty in their values. A

state prepared such that, say, (A(j )2 <h/2,is called a squeezed state. Such
a state lowers the uncertainty in one operator at the expense of that in the
other [183].

To repeat ourselves, solving Schrodinger’s operator equation,
H
energies (frequencies) of the particle, and their corresponding eigenvectors,
W, giving the wavefunctions that describe propagation in the system. For

Y >= €|l// >, entails finding the eigenvalues, &, giving the possible

example, when the particle in question refers to atoms, separated by a
distance a, undergoing longitudinal vibration modes in a monatomic linear
chain (MLC), described by the Hamiltonian,
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1 mw*q,’
H]\/[LC =Z[Epn2 + 2 ]9 (A7)

then  the eigenvalues (frequency dispersion curve) are,

4k| . (qa
m 2

=‘f-exp(i(qna—a)t)) [64]. Since, comparing (A.6) and (A.7), it is
obvious that the latter is the sum of the Hamiltonian of »n “particles,” the
MLC may be visualized as consisting of a set of » particles vibrating
independently. In the context of the MLC, in which the vibrations represent
acoustic waves, such fictitious particles are, in fact, called phonons, and

(A.7) implies that the state of the MLC, in particular, its total energy, may be
specified by giving the number # of “particles” present.

a =

’ , and the eigenfunctions (propagating modes),

A.4 Creation and Annihilation Operators

It turns out that making the association:

—i@,t 1

a,e’ z—(mna)nc}n +if7n), (A.8)
\2m, ho,
+ iwt _ 1

(A.9)

an - (mna)nq,\n - iﬁn )’
\2m ho,
where a, and a, are new operators obeying the commutation relations

[an’azlza

nn’

(A.7) may be written as,

Hyye =hy a)n(a;an +%j : (A.10)

Then, using the Hamiltonian expressed as in (A.11), and the commutation
relations for the new operators, it can be shown that following result is
follows,

MLC|n> hZa) (aa +— j hZa) (n+ j|n> EMLC|n> (A.11)

This means that if the field contains » phonons, the result of measuring its
energy gives,

and [an, [an , n] 0, the quantized Hamiltonian
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Eye=h) o, (n + %j : (A.12)

However, if the field contains no phonons (#=0), the energy is not zero, but
is given by,

Eyc = hza) (A.13)

This, n=0, state is called the vacuum state, and the corresponding energy, is
called zero-point energy. Notice that, since n=0, 1, 2, 3...o0, the zero-

point vacuum energy is, in principle, infinite! In practice, however, various
factors, such as, dielectric constant cutoff, preclude it from becoming
infinity, although still very large.

It we imagine the free-space in which a z-directed, x-polarized
electromagnetic wave propagates as being divided into cubes of volume

V=0 , then, the solution to its associated electric field wave equation,

1 0°E
VE, =——*, A.14
Tocer oo (A1
may be obtained by separation of variables as,
t)=2a,q,)f,(2), (A.15)
where, subject to the spatial boundary conditions
E (z=0,t)=E_(z=L,t)=0, one obtains,
dZ
[d—+k }f( )=0— f,(z)=sin(k,z), (A.16)
/4
where,
k,=nm/L ,n=1, 2, 3...00, (A.17)
and,
d2
[F+a) } ()=0—>4¢,(t)=cos(w,t — @), (A.18)

where @, = ck, . Writing the electric field solution as
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E (z,1)=) a,q,(t)sin(k,z), (A.19)

the magnetic field is immediately obtained from Maxwell’s equation,
VX E=-0B/dt,as,

H (20)= za{qnl(j)go Jcos(knz), (&20)

n

n

and the total field energy (Hamiltonian), which is given by,

H g =% [ (eoEZ + ot Jav (A21)

becomes, upon substituting (A.19) and (A.20) into (A.21),

2
H i =%Z(mnw5q3 + mnqi)%Z(mnwqu + Lo ) (A.22)

n n m

n

provided one makes the associations: m, =a’Ve, / 20 ,and p,=m,q,.
The fact that each term in (A.22) is identical to the energy of a harmonic
oscillator of frequency @,, implies that the field may be visualized as

consisting of (or being populated by) a number »n of such oscillators
(photons), and the analysis given above follows directly. Accordingly, we
can write

1
Epug =hY o, (n +§j : (A.23)

Again, ideally for n=0, it is concluded that the electromagnetic vacuum
possesses infinite energy. Furthermore, it can be shown [183] that the

averages of the field and its magnitude squared are EX =0 and
Ex2=2|Ex|2(n+l/2), where E, =.hw,/e,V has dimensions of

electric field. Thus, even when there is no field present, »=0, the vacuum is
endowed with a non-zero root-mean-square deviation. These are called zero-
point vacuum fluctuations and are the essence of the Casimir effect [19].

A.5 Second Quantization | 232], [233]

Systems like the monatomic linear chain and the electromagnetic field,
whose behavior can be described in terms of fictitious particles, such as
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phonons and photons, respectively, permeate many branches of physics, in
particular, condensed matter physics. In the most general case, when
described in terms of these discrete particles, the system is said to be
represented in the second quantization or number representation formalism.
The term second-quantization derives from the fact that in this theory the
stuff the systems are made of, via this representation in terms of discrete
particles, become quantized, i.e., an aggregate of discrete particles. You will
recall that in the first quantization, it was the motion of the particles that
became quantized. A second-quantized system may exhibit particle creation
and annihilation, and multi-body interactions, and the formalism of second
quantization (or number representation) has been devised to deal with the
complex dynamics of these systems, in particular, for keeping track of the
large number, and the statistics, of the particles that may be involved. The
formalism, thus, prescribes ways to succintly represent pertinent
wavefunctions and operators. The mathematical space in which second-
quantized operators and vectors reside is called Fock space.

The simplest case occurs when the system has only one particle in, say,
the state ¥, where this state is completely specified by giving pertinent
quantum numbers, e.g., particle momentum, spin and spin projection. In this

case, the one-particle state is represented by the ket |la> , and is taken as
produced by the operation of the creation operator @, on the vacuum state

|O a>, the state of the system when there are no particles present.

Mathematically, this is expressed by,
11,)=azl0,). (A.24)

If the system can contain many noninteracting particles, where the state of

each particle, say, a, ﬂ, 7, 5, etc., respectively, is described by its

respective set of quantum numbers, then the state representation in the
second quantization formalism would be given by,

1,0 =a3]0,.05.0,.05..) =[1,.0,4.0,.04....). (A25)

If the system is in the vacuum state, i.e., there are no particles present in state

(X, then its state is represented by the ket |0 a> , which is taken as produced
by the operation of the annihilation operator a, on occupied single-particle

state |1a> . Mathematically, this is expressed as,

0,)=a,|l,). (A.26)
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In general, creation and annihilation operators are associated with each
specific particle. Thus, it would be imposible to annihilate a particle in the

state ,6 with the annihilation operator for state X, i.e.,

aa‘lﬁ>=0, B#a. (A.27)

Since, using X to label a general state, la> = a;|0a>, one can express

(A.27) as,
a,|l,)=a,az0,)=5,0,). (A.28)

When the system contains many particles in multiple states, say, three

particles in state 7, and one particle in state 5, following the above, the
state may be represented by,

‘3715> =aja a,a;|0), (A.29)

where |0> represents the vacuum state.

The particles involved in second quantization may be identical or distinct.
Due to the specificity/correspondence of the creation and annihilation
operators with the state on which they operate, for any two single-particle

states & and ,B, describing the system, the states,
1,15) ~ azaj|0): 1,1, )~ ajay|0). (A.30)

must be identical, except for a freely chosen phase factor. If the phase factor
is taken as real, then equating the two expressions gives,

‘lalﬂ>=‘lﬂla>:>a;a; =aza,. (A.31)

From knowldege that two identical boson are described by a symmetric
wavefunction, it is deduced that this expression gives the commutation
relation for bosons. On the other hand, from knowledge that two identical
fermions are described by an antisymmetric wavefunction, it is deduced that

|1,1,) =—1,1,) = aja) =-a}a. (A32)

gives the anticommutation relation for fermions. The anticommutation
relations for fermions embody the fact that two fermions cannot occupy the

same state (they obey Pauli’s exclusion principle), i.e., a,a, =—a,a, =0.



A. QUANTUM MECHANICS PRIMER 221

Other commutation relations are obtained as follows. For bosons, taking
the hermitian conjugate of (A.31) yields,

a,az =aza,. (A.33)

iy +
In addition, the facts that aa|0> =0 and a,a ﬁ|0> = 5aﬂ|0> , mean that we
can write aaa;|0>— a;aa|0> = §aﬁ|0> , since the second term is zero, so
that we also have the commutation relation,

a,ay—aza, =0,,. (A.34)

The operator whose eigenvalue measures the number of particles in a
given state, say, state (X, is the number operator, given by,

N, =a'a (A.35)

o oo’

whereas the total number of particles, including all the distinct states, is
given by,

Npya =2 N, . (A.36)

To measure (count) the number of particles in a given state, the operator N is
applied to that state’s eigenvector. The eigenvector of a state populated by »
particles is described by the application of the creation operator # times, i.e.,

(a+ )n|0> = a+a+...a+|0> , (A.37)

n

s0, measuring its occupation is effected by,

N(a+ )n|0> = Na+a+...a+|0> =a'a- a+a+...a+|0> . (A.38)

Now, using the commutation relation (A.34), we can substitute
aa® — 1+ a”a in (A.38), so it becomes,

N(a+)n‘0>=Na+a+..£‘0>=a+(1+a+a)-a+a+..i+‘0>
n n-1
=a+a+(2+N)a+a+..ij‘O>=... . (A.39)

n-2

&*&L.a*(n + N)‘O)

= (a*)”(n + a*a)‘0>= n(a+)n‘0>
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So, the eigenvalue of N is n. For fermion operators, the pertinent
anticommutation relations and number operator are,

a,a,+aza, = {aa,aﬁ}z 0, {a;,a;}= 0, {aa,a;}: 0, (A.40a)
a,a,=0,a,a,=0,N,=a,a,, (A.40b)
N.=ala,a’a, = ;(l—a;aa )aa =a,a,=N,. (A41)

The second quantization formalism is completed by the necessary
expressions for operators, which upon acting on the wavefunction will
measure certain quantities of interest. In this context, the quantities to be
measured are classified according to the number of fundamental particles
producing it. For instance, in a noninteracting system, these quantities may
depend on individual particles, where each particle contributes its share
independently from the others. An example of such a quantity is the kinetic
energy of the system. On the other hand, quantities such as the Coulomb
interaction energy, in an interacting system, depend on two-particle
potentials, thus two-particle operators must be employed. Next, expressions
for one- and two-particle operators are presented.

A typical one-particle operator is the kinetic energy. For a bosonic
system, this is obtained by counting the number of particles in a given state,
multiplying this number by the energy of each particle, and then adding the
energies of all states. If an arbitrary particle occupies state &, following this
prescription, then the one-particle operator is given by,

H=>(alk|a)N, => (a|K|a)aa, . (A.42)

o

In this expression, <0(|K | 0(> is the state energy, given by,

E, =(a|K|a) j¢ [——V }zﬁ (7 )dr , (A.43)

where m is the particle mass, and ¢a(17) is the configuration space

representation of the wavefunction. Notice, that <0{|K | 0{> may be computed

in any convenient basis in which the wavefunction are available. Thus, in
momentum-space basis we would have,

E, =(a|K|a)= [g:( { } . (D) (;f)3. (A.44)
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In the most general case, the one-particle energy operator is given by,
T +
H =Y (alK|Ba,a,. (A.45)
a.p
The kinetic energy of a one-particle state, is given by,

(L, 1A11,) = {0fa, 1a3]0) = 3 (o] K| B){0fa, 5,2 0

off

= 2 (K| 86,00 = (pIK)

(A.46)

where use was made of the identity a ﬁa; =0 5o+ In the case of the two-

particle potential,
o] .
EDNCHESI NG (A.46)
i<j i#j

the second-quantization operator, is given by,

|
V=3 D {app| o)asazasa, (A.47)

afys

where the two-particle interaction energy may be evaluated in any basis. One
typical source of confusion in this equation is the nature of the order of the
annihilation elements in the number operator, in particular, the fact that

instead of having a,aza,as, we have ajazasa, . This is done to make the

expression valid for both bosons, where a,a; = aza,, and fermions, where

y v
a,as =—asa,. Thus, for fermions the concomitant sign reversal will be

automatically present. The matrix element, in configuration space, is given
similarly as for the one-particle case, namely,

(eB18) = [0 (7)o F G 7)o, (7)o, (F)drr” (A48)

The two-particle interaction energy is given in terms of the wave functions
as,

<1m1n

_ 1 (x )o (x,)— 0" (x, )o" (x
V‘1p1q>—2 II[@,( l)¢n( 2) ¢n( 1)¢m( 2)] , (A.492)

X V(xl s Xy )[¢p (xl )¢q (xz ) - ¢q (xl )¢p (xz )]dxl dx,
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and may be expressed in second-quantization noation as,

<1p10 ‘Vl 1111/) 1 z<aﬂ|v| }/5><0|aaapa;a;a5aya:a:| 0>
== Z 065|V| 76>[( o ﬂa 16, ﬂp)( O ﬂp)]

2 o . (A.49b)

——lpohir)-+(phiva) ((oppi )+ (pobive)]
=(potizv)£(paivr)

A.5.1 Field Operators

A common practice in the application of the number representation
formalism in interacting (many-body) systems is to express the Hamiltonians

in terms of so-called field operators, y/(x) and l//+(x), which are defined
by,

= Z@ (x)e; (A.50)
and

= Z:dﬂi(x)cf+ . (A51)

The field operators obey the commutation relations,

} Z¢ cc +Z¢

(A.52)
= ZQ x)o, (x’ {ci,cj}: 0
Py (= 2 0.0)g; (e + X0, (), (e
= Z¢z (x)¢7 (x,){ci »C; }: 0 ) (A.53)

= Z¢z (x)¢i* (x,) = 5()6 - x,)
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where the latter simply expresses the completeness relation of the
wavefunctions.

For example, in terms of the field operators, the one-particle Hamiltonian
operator,

H, = ;(a|K| Bicics, (A.54)
where,

(|| B) = [@:(x)K (x)p, (x)ekx (A.55)
is expressed as,

Hy = [yt (0K (x)y(x)dx (A.56)

This is proven by substituting (A.53) and (A.54) into (A.59) to recover
(A.57):

20K (x ()220 (xheyetr =T c: ¢ [0 (K ()6 (x)ex
= (oK B)ee,

An interpretation of the field operators is obtained by operating with them

(A.57)

on the vacuum state. For inatsnce, operating with " (x) on |0> , We obtain,

“(x)0) =D ¢ (x)es| 0)
¢ , (A.58)
—Z¢> (x)g, (x,) = 6(x—x,)

since the operation of the creation operator of the state & on the vacuum
creates a particle there. This results indicates that l//+(x) behaves as the

creator or a particle at position x . Similarly, one obtains that i (x) destroys
a particle at position x .

In the context of this book, the second quantization formalism is key to
the presentation on the Luttinger liquid. This deals with the description of
electrons constrained to move in one dimension and described by the
Hamiltonian,

Iy

H=H,+H,,, (A.59)
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where the first term gives the electron kinetic energy,

Hy=> Y Eclc., (A.60)
=T &k

and the second term gives the electron-electron Coulomb interaction,
5 1 oo’ + +
Hlnt = ZZ ka'qaa'ck+qackchf'ck'a'ckﬂ . (A61)

Solving for the eigenvalues and eigenfunctions of the problem is
facilitated by modeling the fermions in terms of bosons, in which case the
Hamiltonian becomes diagonal and it is easy to solve. The procedure that
accomplishes this fermion-to-boson transformation is called bosonization,
and is presented Appendix B.
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BOSONIZATION

B.1 Introduction

The method of bosonization consists in modeling a fermionic system by
an equivalent bosonic system, with the advantage that the diagonalization of
the bosonized Hamiltonian of the fermionic system becomes easier [138].
This fact becomes more transparent upon comparing the 1D specific heats
for a solid with sound velocity c, , obtained by Debye ¢}, and that for a
Fermi gas of noninteracting electrons with Fermi velocity v, obtained by

Pauli

Pauli ¢;™,
k.T
e T (BT B.ia
¢ 37 hc, ( )
Pauli T kBT
c =—k . B.1b
t 3 B(thJ ®.10)

Clearly, replacing ¢, < v, one obtains identical results.

B.2 Bosonization “Rules”

While many works attempting to explain bosonization have been
published, a particularly lucid and very pedagogical treatment was that
advanced by Delft and Schoeller [139]. They clearly expose, in a systematic
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fashion the procedure of bosonization, and we follow their exposition
closely.

In general, bosonizing a theory involving M species of fermions may be
accomplished when a fix specific set of conditions are met, in particular:

1) The theory can be formulated in terms of a set of fermion creation and

annihilation operators, c,:q and c,:q, which obey the following canonical
anti-commutation relations

R S (B.2)
where the index 77 =1,...M labels M different species, which might be

present, and the index ke [— 00,00] is a discrete, unbounded wave number

of the form,
27 1 .
k = —55 , with n,eZ and J,€[0,2), (B.3)

with 7, are integers, L is a length associated with the size of the system, and

0, is a parameter that embodies the nature of the boundary conditions of the

fermion fields, i.e., whether they periodic or fixed. According to Delft and
Scholler [139], in typical examples n can denote electron spin: n = (1, |), in
which case M = 2, or it distinguishes left-moving from right-moving spinless
electrons, as found in a one-dimensional wire, in which case: n = (L,R), and

M = 2. k refers to the momentum index that labels the energy states, £, , of a
free noninteracting Fermi gas, defined with respect to the Fermi energy, so
that £, = E,. . The discrete and unbounded nature of k are needed in order to

enable the systematic accounting of the states, on the one hand, and the
proper definition of bosonic operators, oh the other.

2) The fermion fields are defined in terms of the creation and annihilation
operators as follows,

2” S —ikx
vy (x)=/ == 2 ey, (B.4)

f=—co

with inverse,
L/2 )
Chp = Ie’k”y/q(x)dx, (B.5)

RNGY) -L/2
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where x € [~ L/2,L/2], but may be allowed to go to infinity (L — ), at
the conclusion of the procedure, if necessary. The fields y/, (x) and the

variable x are, in general, mathematical constructs which result from the
development undertaken to formulate the model in terms of the operators

¢y, - In particular, for discrete &, ¥/, (x) obeys the following properties:
w,(x+L/2)=e"y, (x—L/2), (B.6)

where d, =0 for the periodicity condition and &, =1 for anti-periodicity.

3) The fermionic number representation (Fock) space is reorganized so
that the Fock space of states spanned by the operators ¢, is rendered as a

direct sum, F = ZH v over the Hilbert spaces H ; characterized by a
®N

fixed particle number N , within each of which all excitations are bosonic,
i.e., particle-hole-like. The first step towards accomplishing this is to define

the vacuum state |O> by,
Ciy|0)=0 for k>0, (n, >0), (B.7)

¢y|0)=0 for k<0, (n,<0). (B.8)

(B.7) signifies that states above k=0 are empty, therefore, none may be
destroyed, and states below k=0 are all occupied, therefore, none may be
populated. The occupation of all other states in Fock space are defined
relative to the vacuum, particularly the operation of fermion normal ordering
with respect to it. A function is said to be in fermion-normal-order form

when all ¢,, with k>0, and all c,:ﬂ with k£ <0 are positioned to the right of
all other operators c,:ﬂ with k>0 and ¢, with k£ <0. Thus, for operators

A,B,C,...e {ck,];c,:” }, this is represented by,
TABC..; = ABC...— (0|4BC..|0). (B.9)

Ly

4) The number operator N, possesses eigenvalues

N:(NI,NZ,...,NM)E Z"™, whose aggregate makes up the N-particle
Hilbert space H ;. In particular, N” counts the number of electrons of
species 77, is given by,
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Z c,mc,m = Z[c,jnck”—<0|c,:nckn|0>], (B.10)

o= fe=—so
and operates on states of the form ‘N > The ground state, denoted ‘]\7 >0 ,

represents the state in which there are no particle-hole excitations, and it is
constructed as follows.

V) =) ()" .(c,,)™|0), (B.11)
where,
€N, 1) -+Cin for N, >0,
(c,)" = 1 for N, =0, : (B.12)
C(;,”H)ncc\,ﬁz)”...cg” for N, <O0.

5) Given the fixed number of particles in every N -particle Hilbert space,
their excitations are construed as particle-hole excitations of the ground state

‘N >0 , and captured by bosonic creation and annihilation operators defined

by,

(B.13)

by, = /— chﬂmckn’ /— ch ankn »
fk=—oc0 f=—co

where g = " is a positive integer. Then, operating on

any state ‘N> with b;n or bq” causes an aggregate of particle-hole

excitations, where each excitation’s momentum differs, from that in the
ground state, by ¢ units. This permits interpreting b;,] and bq,7 as

momentum raising and lowering operators, which obey the following
commutation relations:

(6,8, )=l 85,10, [N b =[N, b |=0, for all g,q,m,77 (B.14)
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bl=66. (B.15)

G .

qn’

6) The bosonic vacuum states, the ground states given by ‘]\7 >0, are

defined such that,

b

qn

N>0=0, for allq,n (B.16)

and admit a boson-normal-ordering protocol, in which all bqn are moved to

the right of all b b, }, this is
represented by,

so that, for operators A,B,C,...€ {b

qn > kn >

[ABC..; = ABC...—(N,|4BC.|N,). (B.17)

7) Every state ‘]V > in the N -particle Hilbert space, may be generated by
acting on the ground state ‘N >0 by a properly chosen bilinear combination

of the fermion operators, ‘]\7 >= f_ (c,fnck”X]V >0, or of boson operators,
9)=16°] ),

8) There exist raising and lowering (ladder) operators whose action on a

given state ‘]\7 > of the N -particle Hilbert space changes the total number of

fermions by one. These operators are called Klein factors, denoted F,; and

F, , respectively, and obey the following properties, namely,

a) They commute with all bosonic operators, i.e.,

[q”, ] [b;'n,FJ’] [qn’ ] [q”, ] 0, for all ¢,n,7' (B.18)

b) Their action on a state ‘]\7 > of the N -particle Hilbert space may be
expressed as the product of a particle-hole excitations f (b+) acting on the

corresponding N -particle ground state ‘]\7 >0 , in particular,

N) = 167Nk

F+

NNy Ny, ) Ef(b*)f;]‘]\fl,..N”H,..NM% (B.19)
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[N = £6 Jewy| NNy N, ), = f 0 ) N N, =L, ) (B20)
where, f is the so-called the phase-counting operator,

7 =(-1 )ZN (B21)

n n=1
which keeps track of the number of signs picked up when acting with a

fermion operator ¢,, on a state ‘N >o to produce a different state ‘N '>0,

ie.,

N (o) [ (ehl O (ol o [V ey W (oAl KM (e Y (O

¢) The Klein factors obey commutation relations,

0). (B.22)

{F+ } 26,, for all n,7', (B.23)
F,F; =F F, =1, (B.24)
P FrY=1{F, F, }=0, for n=7, (B.25)
5, .F:)=6,F. [§.F]=-5,F, (B.26)

B.3 Bosonic Field Operators

In analogy with fermion field operators, boson fields operators, ¢, (x),

are defined in terms of bosonic operators as follows:

__;\/7

S - 1
qubq”e aq/2 ,and QJ:;(X) E_z\/7 €qub;ne_aq/2 , (B27)
9>0 nq

with

+ 1 —igx igx 3.+ —aq
(25,7(x)5(p,7()c)—f—¢,7 (X):_Zﬁ(e b,, +e bqﬂ)e 2, (B29)

q>0
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where @, (x) and ¢, (x) are constructed to exhibit periodicity L in x, and
a >0 is an artifact to regularize the divergent momentum sums (q - oo),
with its reciprocal 1/ a interpreted as the maximum momentum difference
for the c,fiqck -combinations occurring in the fermionic functions ¢. The

bosonic fields obey the commutation relations,

lp, @), 0, ()= o; (), 0;.(x)]=0, (B.29)

[(/M (x),(p,,*~(x ] O Z o-aliG=x)ral

q>0 q

e , (B.30)
= é',m, In {l - e_lT(X_x _M)}

In [1 = (x - y'—ia
where use was made of the identi y lln( ﬁz —» y"/n.1In terms of these

n=l
bosonic fields the normal-ordered electron density becomes a function of
.9, (x), as follows,

pn (x)E: l//n( )l//n /2”_ Ze quz Ck qnckn+

=_Z\/7 e b, —e b} )+ Z ot (B.31)

q>0
0 .
=M+lN” for (a —0)
2r L

B.4 Bosonization Identity and Its Application to Hamiltonian
with Linear Dispersion

The ultimate purpose of the preliminaries presented thus far, has been to
enable familiarization with the mathematical language and techniques
required to effect the transformation of Hamiltonians expressed in terms of
fermionic field operators, into Hamiltonians expressed in terms of the
bosonic field operators. This transformation is enabled by the bosonization
identity,
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27 5 —l p | X . .
l//”(x)zF”a_”“e L( "2 ) ew”(x)i)F”a_””ew”(x). (B.32)

The derivation of this identity was undertaken by Delft and Schoeller [138]
in two steps. First, the demonstration that , GIND, is an eigenstate of the

bosonic operator bq,7 was undertaken, which guarantees that , (N,
may be expressed as a coherent state, and then the consequences of acting
with ¥, on a general state were determined.

The relationship between /, and bq” is captured by their commutation

relation which, in turn, derives from their respective definitions given in
(B.5) and (B.8). The pertinent commutation relations are,

lbqn'7l//n (X)J: 57777'aql//77 (X) H (B33)
b, ()] = 8,000, (2), (B.34)
where &, (x)= ! e . Applying (A.91) on the ground state, we obtain,

N

bV, (xX ]V>0 -y, (x)bq,],

N) =8,a.p,x|N) . (B.35)

However, since b‘m‘]v >0 =0, the second term vanishes and we get the

result,

b, K| N) = e, (x|N) (B.36)

which shows that l//n(XX N>0 is an eigenvector of b, , the boson

annihilation operator, with eigenvalue @, .
A well known result of quantum mechanics is that if a state is an

eigenvector of the annihilation operator, then this state is a coherent state
[139]. A coherent state has many useful properties. For instance, its

uncertainty relation is minimized, i.e., AxAp =#/2. Such a state may be
expressed in the form,

v, (xx N>0 = exp{Zaq (x)b;”}Fﬂ/i,7 (x)( ]\7>0 , (B.37)

q>0
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where /?A,n is a phase operator, and F) effects the 77-particle removal

normally effected by ¥, (x) Inserting (C.27) into (B.37), the following

expression is obtained,
v, (N) =e E L (x|N) . (B.38)

Use of the operator identity, e ®Ae® =A+C or [A,eB]CeB, and
identification of A=b,,., B=-igp, (x), and C = 0,0, (x), secures the

compliance of (B.38) with (B.36).
The crux of the bozonization identity lies on (B.38). According to Delft
and Schoeller [139], this expression embodies the fact that acting with the

fermionic field y/,, (x) on |N > , may effect the removal of one 77 -particle

from the ground state in two ways. First, via the interpretation of ¥/, (x) as

2r -
7 E ’kxck”, it creates an infinite linear combination of single-hole
k=—co0

states caused by each application of the fermion annihilation operator ¢, ,
see Fig. B-1.

Figure B-1. Effect of acting with l//n on the ground state. We have expressed

w(x)~ iy"c,n ,with y =e?™'" (4fier [139])

n=0

On the other hand, observing the right-hand side of (B.38), this 77 -particle
removal may also be effected by removing the highest 77-electron from

|N > 0’ which yields a different ground state, namely, ¢ N”,]‘N >0, and then

creation of a linear combination of hole states through the action of the

—igy (x)

boson creation operators b;ﬂ present in e . The effect of first operating

with the Klein factor is shown in Fig. B-2, and that of operating with the
field operator is shown in Fig. B-3..
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F|0>0 = F = |_1>0

i
1

Figure B-2. Effect of acting on the ground state by the Klein factor. All levels are move down
by one, thus creating a hole at the top level.

e o Wp | 0>0 = o)

Figure B-3. Effect of acting with lﬂn (x) on the ground state. We have expressed

w(x)~e ™ YF (apier 1139])

The value of the operator /7:,7 (x) is determined by Delft and Schoeller [139]
to be,

~ 27[ —-i| N 775,7 X
A, (x)= e (3] . (B.39)
It may be shown [138], by example, that Figs. B-1 and B-2 are equivalent,
1.e., that,
2 —i[n—lﬁ,,jZm/L 2 —i[N”—lé,,)Z/r/L it ()
726 : c,|0), = F, TZe : e 0y, - (B.40)
neZ neZ

This involves writing,
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- Sy ]
D> ye, 0>O=e{”“" ’ ¢|0),, where y=¢™™'*, and p,=>cl,c,

n=0 neZ

1 1 1 1 1
=[l—ypl+y2(—2p2+2pf]+y3(3p3+2Ap2—6/%3}+--}co0>0 - (BA4D)

=Z[Any e, +By" et ) +Cy (e e, +] 0),

From (B.41) it is observed that the only nonzero coefficients in it are
A, =1, whereas all others, namely, B, = C, =...=0. This signifies that

whenever e ™) acts on co|0> ,» all the possible ways in which states of
the form c;c_nco|0> , may be excited interfere destructively, so that only

terms of the form y"c_,

> , interfere constructively. This can be seen by

considering (B.41) after inserting the sums p,. In that case for the 4,
coefficient one obtains,

0, ={-sie oo Sl et e |
+y3[—;(0303)+;(C+zc3)(cgc2) Nt e e )} }  (B42)

:{1+yc_l +y2B +ﬂc_2 +y3B +% +é}c_3 +} O)O

whereas for the B, one obtains,

dAye,
n=0

St (o e S
3 + + + + + + ' (B43)
+y |:— % (02 c, )+ l (Cz G )(C1 (o] )_é (Cz G )(cl o )(CO € )} + "}CO 0>°

2

e ) R R )
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Clearly, all the 4, =1 and B, =0 . These examples together with Figs. B-1

and B-2 should provide an intuitive way of assimilating the concept of
bosonization. What we will do next is to finally present an example of the
bosonization procedure, namely, their Delft and Scholler’s [139] application
of the procedure to a Hamiltonian with a linear dispersion.

They begin by assuming a linear dispersion of the form, E (k) =v,hk,

which measures all energies in units v, 7 , where the total Hamiltonian is,

H, = ZHOH’ (B.44)

n
with,
= D klcicy,
k=—co
" . (B.45)
— !y (x)iop, (x);

- [ e,

Then, the fact that the Hamiltonian commutes with the number operator

lH 0,],N J— 0 for all 7,7', is exploited as an argument to justify that any

N -particle ground state is an eigenstate of H in particular,

0n >

H OU‘N > =FE, v ‘N > The eigenvalue is obtained by adding the energy of

all levels,
N,
) Z —6,/2)=—N.+= N(l 8,) for N,=0,
Eé; ‘N> L g 2 B.46
2 T(n—5b/2)=§N,7+5‘Nn‘(l—é;) for N,<0- (B.46)
2 1
=—§N,,(N,]+1—é;)

This gives the ground state energy of H,. When the system is excited, its

eigenstate energy |E>, may increase in units of q. This follows from the

commutation relations,
[HOU ’ ] qbqr] nn' (B47)

and its consequence,
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H,,b,,|E)=(E+q)b,, (B.48)

qn’

and implies that the b;n acting on the ground state ‘]\7 >0 may generate the

complete N -particle Hilbert space. The bosonic variables then may be

employed to represent H, , including both the ground and excited states.

0n >
This is accomplished when it takes the bosonized form,

qmn—qn

27 1 ~
H,, =Y qbl,b,, +— TN N, (N, +1-5,). (BA49)
q>0
Since H, on does not change the particle number, no Klein factors, F,;,

appear.

B.5 Bosonization Treatment of Spinless Electrons in One-
Dimensional Wire

The one-dimensional wire is the prototypical system of a Liittinger liquid.
It is described as a one-dimensional conductor of length L with free spinless
left- and right-moving electrons. The electrons possess momentum

pE (— 00,00), and propagate according to a dispersion relation given by

E (p) = (p2 - p;) 2m . Since electrons are confined to move either to the
left or to the right in a 1D conductor, the usual fermion field,

2
\Pphvs 7[ Z lpr ’ (BSO)
e
is expressed as,
27[ —i +k )x i +
\Pphyx (X) L Z( (kr k) c —kp—k +e ((kp +h)x CkF+k) (BSI)
k=—ky

where the momentum p is written as p = F(k +k, ), with ke l— kF’OO),
and p <0 corresponds to the left(L)-moving electrons, and p >0 to the
right(R)-moving electrons. In the context of our species definitions, the
index v = (L, R) plays the analogous role to 77.

We now eftect the bosonization procedure described previously. First, one
must make ke l— kF,OO) unbounded from below and discrete. This is

accomplished by artificially extending the range of k to be unbounded,
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introducing L- and R-moving fermion fields ¥/, ., and imposing boundary
conditions (B.Cs) on these to discretize k. Making k€ (— 00,00) entails
defining energies of the form F, =FE (0)+v,(k+k,) in the range

k <=k, . These additional “unphysical”states do not alter the low-energy

physics of the system, however, a strong perturbation, such as might be due
to an electric field or an impurity, then the procedure would not apply
because of the larger energies involved [139]. Extending the range of k, the

fermionic field ¥ is written in terms of fields representing L- and R-

phys
moving electrons which now possess the unbounded k define above. This
new fermionic field takes the form,

W, ()=, (x)+ ", (x), (B.52)

where,

~ 27 & i
l//L/R(x): T e kck,L/R : (B.53)
k=—co

Lastly, imposing B.C.s quantizes the fermion fields momentum. If these are
taken as anti-periodic, we have, ¥,,,(L/2)=-W,, ,(~L/2), which

implies 0, =1. Having defined the prerequisite conditions for bosonization,

the consequent number operators, Klein factors, and boson operators, N, .,
F, z,and b, pare defined in terms of the fermion annihilation operator

¢,;,r - This results in the following,

Figx 3+
+e qu,R

5L/R(x):—z 1 e—ﬂq/l[e;iqxb

qL /R
n,ez* ﬂnq

27w( ~ 1
Fi—| Ny, g—=0p |x
+ L( L/R P b]

(4= 50) ®B59

1/7L/R(x) = ail/zFL/Re eii@ R(x), (B.55)
~ boror o~ F ~ 27 -~
pL/R(x)E+ ViRV iR, :iax¢L/R(x)+TNL/R’ (B.56)

where the boundary conditions 5L R (L/2)= 5L (= L/2) (periodic) on the
bosons and density fields have been imposed. Notice that, while the density
P,z is quadratic in the fermion field, it is only linear in the boson field.

This is key to the simplification brought about by the bosonization
procedure.
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