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Preface

This is a book for people who build and program LEGO® robots with the Robotics Invention System (RIS)™ set. This book is the answer to
the question, "How can | push this thing as far as it will go?" Once you've built a few robots and written a few programs, you'll probably be
itching for more: more complex robots, more powerful programming environments, more sensors, and more fun. This book will take you
there.

About This Book

For many of us, plastic LEGO bricks are the best toy money can buy. When | was five and broke my leg, a little LEGO set was the high
point of my six-week convalescence. | grew up building spaceships and planetary rovers, wearing grooves in the ends of my fingernails from
endlessly putting together and taking apart my creations. In high school, I shifted into the TECHNIC™ product line—what could be better
than cars with real shifting and pistons that worked?

In the Fall of 1998, The LEGO Group released the Robotics Invention System (RIS), a set that was part of a new product line called
MINDSTORMS™, This set entered the world like a lightning bolt—finally, the chance to make LEGO models that moved, sensed, and
thought! The LEGO Group made 80,000 of these sets in 1998 and sold every one. Although The LEGO Group was aiming for young adults,
11 and older, the RIS has also hypnotized many people in their 20s, 30s, and beyond.

A vibrant, inventive online community sprang up around MINDSTORMS robots. In some ways, this book is an introduction to the most
important developments in that community—alternate programming environments and advanced building techniques. But this book goes
farther than that, painting a backdrop of the theories and practices of mobile robotics.
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Building and programming robots is exhilarating. It's fun to build something that moves and thinks, in a sense; at the same time, you're
learning a lot about how things work, mechanically, and how to write programs that can deal with the real world. This book is designed to
take you to the next level of building and programming, all in the spirit of fun and learning.
This book's chapters come in two basic flavors. Five chapters have robot projects, complete with building instructions and programs. Four
chapters describe various programming environments for LEGO MINDSTORMS robots, including code examples and debugging tips. The
first and last chapters don't fit in either category.
Here's a description of each chapter in this book:

Chapter 1, Robotics and MINDSTORMS, introduces the field of mobile robotics and describes how the LEGO MINDSTORMS Robotic
Invention System fits in the larger picture of the field.

Chapter 2, Hank, the Bumper Tank, is the first building project—a tank-style robot that avoids obstacles in its path. This chapter discusses
basic mechanical features like gears and bumpers.

Chapter 3, Trusty, a Line Follower, covers a slightly trickier robot—a line-follower. It uses a light sensor to follow a black line on the floor.

Chapter 4, Not Quite C, introduces the Not Quite C (NQC) language. NQC is an excellent environment for programming robots. The chapter
includes descriptions of NQC's functions as well as many examples.

Chapter 5, Minerva, a Robot with an Arm, contains another building project—by far the most complex robot in the book. You'll learn about
directional transmissions and other neat stuff.

Chapter 6, ppFORTH, discusses an innovative programming environment based on a language called Forth.

Chapter 7, A Remote Control for Minerva, is another project-based chapter. Using a second robot kit, you can build a remote control for the
robot from Chapter 5.

Chapter 8, Using Spirit.ocx with Visual Basic, talks about how to control and program your robots using Microsoft's Visual Basic.
Chapter 9, RoboTag, a Game for Two Robots, shows how to create a pair of robots that play tag.
Chapter 10, legOS, discusses legOS, a programming environment that enables you to program your robots with C, C++, or assembly code.

Chapter 11, Make Your Own Sensors, describes how you can build sensors for your robots easily and inexpensively.
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Appendix A, Finding Parts and Programming Environments, describes various parts you can get to expand your RIS set and where to find
them. It also includes a summary of the programming environments that are available for RIS.

Appendix B, A ppFORTH Downloader, contains the source code for a program that downloads Forth code to your robots. It's a supplement
to Chapter 6.

Appendix C, Future Directions, describes some interesting emerging technologies related to LEGO robots. These are ideas or projects that
weren't fully baked as this book went to press.

About the Examples
Versions
This book covers a handful of rapidly evolving technologies. The versions used in this book are as follows:

RCX
Version 1.0

NQC
Version 2.0b1

pbFORTH
Version 1.0.7

legOS
The March 30, 1999 build, a patched version of 0.1.7

Downloading

All of the examples in this book can be downloaded from http://www.oreilly.com/catalog/Imstorms/ . This site also provides a listing of the
"Online Resources™ that appear at the end of each chapter.

Font Conventions

Constant width isused for:
* Function and subroutine name
* Source code

» Example command-line sessions—the input you type is shown in boldface


http://www.oreilly.com/catalog/lmstorms/
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Italic is used for:
* Pathnames and filenames
» New terms where they are defined
* Internet addresses, such as domain names and URLS

Boldface is used for the names of buttons.

This is a note with information that supplements the text.

This is a warning with a cautionary message for the reader.

Request for Comments

If you find typos, inaccuracies, or bugs, please let us know. You can reach O'Reilly by mail, telephone, fax, or email:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)
bookquestions@oreilly.com

Please let us know what we can do to make the book more helpful to you. We take your comments seriously, and will do whatever we can to
make this book as useful as it can be.

Acknowledgments

This book is the result of a crazy idea | had in mid-1998, when 1 first heard that the Robotics Invention System was coming. LEGO robots
sounded like something O'Reilly readers would like to play with—why not write a book about them? I'd like to thank Mike Loukides and
Tim O'Reilly for having the vision to believe in this book. Thanks to Mike, again, for excellent help and feedback.
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excellent feedback on many of its chapters; she got me RolyKits to help organize my pieces; she is able to keep a straight face when we tell
people I'm writing a book about LEGO robots; she stayed up late nights helping me finish the book.

I'm grateful to my daughter, Daphne, who finally believes that building LEGO robots is part of my job. "Want to see Daddy," she said one
day. Kristen explained, "No, no, sweetheart, Daddy's working right now." With tears in her eyes, Daphne said, "Daddy's not working. Daddy
play LEGOs." Someday, | promise, I'll let Daphne play with the whole set, not just the bendy purple things. And thanks to my sons, Luke
and Andrew, just for being great guys. You can build robots someday too, if you wish.

The building instructions in this book were a special challenge. | first sketched out the building instructions with photos from a digital
camera. Once these were finished, Kristen took over 475 photographs with a regular camera. We selected the best and sent them off to the
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produce the instructions that you see in the book. | owe many thanks to Rob Romano for his hard work on these instructions.

This book has had an excellent set of technical reviewers. Ralph Hempel, Todd Lehman, Russel Nelson, Suzanne Rich, John Tamplin,
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Welcome to MINDSTORMS

In this chapter:

» What Is a Robot?

*» Mobile Robots

» What Is MINDSTORMS?
» What Now?

» Online Resources

This is a book about creating robots with the LEGO® MINDSTORMS™ Robotic Invention System (RIS)™. If you've always
dreamed of building and programming your own robots, this is your big chance—the RIS set makes it easy to get started.
There are a lot of enthusiastic RIS owners out there already: other people have built robots that pick up empty soda cans;
robots that seek light; robots that play tag; walking robots with two, four, six, or even eight legs; robots that can be controlled
over the Internet; working computer peripherals like a plotter and an optical scanner; and robots that simulate a Tsunami and a
tornado.* You can build anything you can imaging. RIS gives you a chance to breathe life into LEGO creations, making them
move and respond to their surroundings. You can create a tank that scurries into the dark, or a monorail car that traverses your
living room on a string. You can create robots that hop, walk, and drive around with a mind of their own.

Furthermore, by owning the RIS set, you become part of a worldwide community of enthusiasts. The RIS set is a common
ground for building robots; if you build something cool, other people will be able to build it too. Similarly, you can build and
modify other people's creations. LEGO bricks, therefore, are a kind of lingua franca for mechanical design.

You have many options when it comes to building and programming robots. LEGO bricks, of course, can be assembled in
many different ways. Part of this book is about building robots; it includes five projects that you can build yourself. But you
also have lots of options for programming your robot. Aside from the "official" software that comes with RIS, the inventive
MINDSTORMS community has produced a bevy of other options. The most important ones are described in this book.

* Internet links to pictures of some of these robots are included in the "Online Resources" section at the end of this chapter.
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This chapter describes the basic concepts of robotics and creates a backdrop for the MINDSTORMS product line. I'll also
cover different approaches to programming mobile robotics. Finally, I'll describe the RIS set itself. If you're in a hurry to start
building something, skip ahead to Chapter 2, Hank, the Bumper Tank.

What Is a Robot?

A robot is a machine whose behavior can be programmed. This is a broad definition—it includes things like VCRs and
microwave ovens, a far cry from the talking androids you might be thinking of. Robots have five fundamental components:

1. A brain controls the robot's actions and responds to sensory input. Usually the brain is a computer of some kind.
2. A robot's body is simply the physical chassis that holds the other pieces of the robot together.

3. Actuators allow the robot to move. These are usually motors, although there are many other possibilities, such as hydraulic
pistons.

4. Sensors give a robot information about its environment. A touch sensor, for example, can tell a robot that it has come in
contact with something else.

The last component is not always obvious:

5. A power source supplies the juice needed to run the brain, actuators, and sensors.

For example, think about a robot that spraypaints cars in a factory. Its brain is probably a garden-variety desktop computer.
The body is a big arm with a paint sprayer at the end. The actuators are motors or pneumatic pistons that move the arm around.
Position and rotation sensors are used so the robot knows where the sprayer is and what direction it's pointing. The whole thing
is plugged into a wall socket for power.

Mobile Robots

Mobile robots present special challenges. These robots can move their bodies around from place to place. Why is this

capability difficult? Many more things can go wrong if your robot is free to move around rather than being bolted to one place.
Being mobile multiplies the number of situations your robot needs to be able to handle.
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Mobile robots actually come in two varieties: tethered and autonomous. A tethered robot "cheats" by dumping its power
supply and brain overboard, possibly relying on a desktop computer and a wall outlet. Control signals and power are run
through a bundle of wires (the tether) to the robot, which is free to move around, at least as far as the tether will allow.

Autonomous mobile robots are even more challenging. These robots need to bring everything along with them, including a
power supply and a brain. The power supply is typically an array of batteries, which adds a lot of weight to the robot. The brain
is also constrained because it has to fit on the robot, not weigh a ton, and be frugal about sucking power out of the batteries.

This Is Tough Stuff

The field of autonomous mobile robotics is extremely challenging. Have you ever seen an autonomous mobile robot, besides in
the movies? Probably not. If you have been lucky enough to see such a robot, was it doing something useful? Probably not. If
the robot was supposed to do something useful, did it work? Probably not.

If it wasn't so hard to make autonomous mobile robots, the world would be full of them. Wouldn't it be nice to have a robot do
your laundry or drive you to the airport? But the cold truth is that it's unbelievably difficult to make a robot that can do even
the simplest of tasks. It all comes down to one fact: it's very hard to deal with the real world.

To understand this, think about how you might try to make a robot to vacuum your living room. This is a pretty simple task to
describe: basically you just want to move the vacuum back and forth over the rug until the whole thing is clean. Suppose you
modify your vacuum cleaner so that it can move around on its own, by adding more motors and a small computer brain. Just
consider the staggering complexity:

» How does the robot keep from getting tangled up in its own power cord, assuming it's a tethered robot? If it's not tethered,
you need to find a power supply that will run the robot for long enough to clean at least one room.

» How does the robot know where it's been already? How does the robot know where it is? How does it know where to go
next?

» How does the robot navigate around obstacles like table legs and furniture?
« How does the robot recognize things it shouldn't vacuum, like money, or toys, or your cats?
You can answer these questions, but not well, not simply, and not cheaply. After years of sweat and expense, you might

produce a robot that could vacuum a room, but only under very closely controlled conditions. Add a rocking chair, or drop a
child's toy in the middle of the room, and you'd probably have to start all over again.
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Another reason that robotics is so challenging is that it spans many different disciplines. Suppose that you want to go down in
your basement and build a mobile robot. Without some sort of kit, you'd probably need to take along a team of highly
educated, highly paid engineers, including:

* An electrical engineer chooses the brain, sensors, and maybe the actuators, and wires them all together. This person probably
selects the power supply, as well.

» A mechanical engineer designs the body and possibly selects the actuators. The mechanical person needs to be familiar with
the other components of the robot (brain, sensors, actuators, and power supply) so that everything fits together mechanically.

» A computer programmer writes the software for the robot. This task usually requires intimate knowledge of the brain,
sensors, and actuators that the electronics and mechanical people have chosen.

* For specialized designs, you might even want to have a chemical engineer to select or design the power supply.
It is very rare for a single person to be knowledgeable in all of these fields. Designing a mobile robot, then, is often a
collaborative effort, which makes it even more complex.

Autonomous mobile robots, for the most part, are still confined to the research programs of colleges, universities, and
governments. This research is divided into two camps: the big robot people and the little robot people.

Big Is Beautiful

The big robot people believe that the robot should understand its environment and "think," more or less the same way that a
human does. This is the traditional Artificial Intelligence (Al) approach to robotics. In this approach, the robot takes input from
its sensors and tries to build a map of its surroundings. This process alone is very complicated: the robot might use a pair of
video cameras or some more exotic sensors to examine its surroundings, while heavy-duty computers analyze all the sensor
data and attempt to build a map. Finally, in a process called task planning, the robot tries to figure out how it will accomplish
an objective—getting from one point to another, or picking up an object, or some other simple task. In this respect, again, the
robot is expected to think like a human being. The heavy computing requirements of the Al approach consume a lot of power,
which implies a bulky, heavy power supply. Hence, the robot can be pretty big and expensive, too.



He Ain't Heavy, He's My Robot

A good example of the "big iron™ approach to mobile robots is Ambler,
developed by Carnegie Mellon University and the Jet Propulsion Laboratory.
This behemoth stands about 5m (16.4ft) tall, is up to 7m (23.0ft) wide,

and weights 2500 kg (5512 Ib). It moves at a blistering 35 cm (13.8 in) per
minute. Just sitting still, it consumes 1400 W of power. Ask it to walk and

it sucks up just about 4000 W. You can see a photograph of Ambler at
http://ranier.oact.hg.nasa.gov/telerobotics_page/Photos/Ambler.jpg .

Small Is Beautiful

Little robot people like to tease the big robot people for building tremendously large, tremendously expensive machines that
don't have the dexterity of a six-month-old baby. The little robot people make small mobile robots based around inexpensive,
off-the-shelf parts. They like to see themselves as mavericks, achieving decent results at a fraction of the cost and complexity
of big robotics.

One of the interesting ideas behind small robot research is the idea that quantity might get the job done rather than quality.
Instead of building a single bulky, complex robot to explore the surface of Mars, why not send a thousand robots the size of
mice to do the same job? So what if a few of them fail? Small robots offer a new and innovative way to approach big
problems.

The small robotics approach reduces the number of engineers you need in your basement. It makes robotics accessible to
sophisticated hobbyists—people with technical knowledge and some extra time and money. If you take the small robot
approach, you'll probably use standard batteries for power, which eliminates the need for a chemical engineer to design a
power supply. Small robots are usually based on an existing, cheap microprocessor, which makes the electrical engineer's job a
little easier. But you still need quite a bit of expertise:

» The electrical engineer still has to select sensors and actuators and wire them to the microprocessor. These parts are
inexpensive and can be bought from hobby stores or electronics part stores.

» The computer programmer still needs a pretty low-level understanding of the microprocessor and the attached sensors and
actuators.

« You still need a mechanical engineer to design the robot's body.
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The sophisticated hobbyist can do all of these things alone. But you have to be determined and have a lot of free time and
money. There are a couple of ways to make things easier:

* You could buy a prebuilt robot brain. Some companies sell kits that are designed specifically to be used as robot brains. This
approach saves you the trouble of selecting a microprocessor and getting it running, but you still have to select sensors and
actuators and attach them to the brain somehow.

* You could use a modular construction kit to build the robot's body. LEGO® bricks are one possibility—in fact, researchers
and students at the Massachusetts Institute of Technology (MIT) have been using LEGO bricks for mechanical prototyping for
over a decade.

An even better simplication, of course, is the MINDSTORMS™ Robotics Invention System itself.

What Is Mindstorms?

MINDSTORMS is the name of a product line sold by The LEGO Group. The LEGO Group has a handful of product lines that
cater to different age groups, some of which are shown in Table 1-1.

Table 1-1. Representative LEGO Product Lines

Product Line Name Suggested Ages

LEGO® PRIMO™ 3 months to 24 months

LEGO® DUPLO™ 18 months to 6 years

LEGO® SYSTEM™ 3 years to 12 years

LEGO® TECHNIC™ 7 years to 16 years

LEGO® MINDSTORMS™ 11 years and older

The centerpiece of MINDSTORMS is the Robatics Invention System (RIS), a set for building robots. It makes the challenges
and excitement of mobile robotics accessible to anyone with $200US and a desktop computer (PC). It gives you a chance to
solve problems in innovative ways. Best of all, it's a lot of fun.

The RIS set eliminates many of the difficulties of building mobile robots:

* The set comes with a robot brain called the RCX.* The RCX is a small computer that is neatly packaged in a palm-sized
LEGO brick.

* Some people think RCX stands for Robotic Controller X. According to the MINDSTORMS web site, RCX stands for
Robotic Command Explorer.
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« Two touch sensors and one light sensor are included in the RIS set. Wiring the sensors to the RCX is as simple as snapping
LEGO bricks together.

» The set also includes two motors. Like the sensors, they can be connected to the RCX by just snapping LEGO bricks
together.

» The RCX uses six standard AA batteries for power. It also includes a power jack. You can supply power in either polarity,
even AC, from 9V to 12V.

* The set includes more than 700 LEGO pieces that you can use to build the body of the robot.

* You can write programs for the brain using an intuitivé, highly visual programming environment on your PC. Programs are
sent to the RCX over an infrared (IR) data link. The set includes an IR tower that attaches to one of the serial ports on your PC.
Just point the tower at the RCX, and you're ready to download programs.

You don't need an electrical engineer anymore because the brain, sensors, and actuators that come with the RIS set are easy to
hook up. You don't need a computer programmer anymore because the programming environment is easy to use. And you
don't need a mechanical engineer because building a body is as simple as building a LEGO model.

Figure 1-1 illustrates the basic setup. Building a robot using MINDSTORMS consists of four steps:

1. Build the robot's body.

2. Write a program for the robot using software tools on your PC.

3. Download the program to the robot.

4. Run the program.

This is only a sketch of the process, of course; it's likely you'll repeat the steps many times as you gradually improve the
mechanical design and software of your robot.

You can create a program on your PC using the MINDSTORMS software. Then you need to download it to the RCX using the
IR link. Once the program is downloaded, your robot is ready to go.

Is it a good deal? Yes. You could build a comparable setup by buying the pieces separately, but it would cost more and would
not be nearly as easy to use.



Meet the RCX

The RCX is a robot brain in the form of a bulky LEGO brick. Figure 1-2 shows a photograph of the top of the RCX.

IR communications

Figure 1-1.
Basic MINDSTORMS setup

Rliok ol

Figure 1-2.
The RCX, a robot brain

The RCX is a small computer with the following features:

outputs
Three output ports, labeled A, B, and C, are located near the center of the brick. The robot's actuators (motors or lights) can be
attached to these ports.

inputs
Three input ports, labeled 1, 2, and 3, are provided. Various types of sensors can be attached to these ports to allow the RCX to
find out about its environment.



screen
The RCX includes a small LCD screen. This screen displays helpful information such as sensor readings and output port
settings.

sound
The RCX is capable of producing beeps of different frequencies.

front panel buttons
Four buttons are provided to control the RCX. You can select a program, start it, and stop it. You can also view the values of
attached sensors or check the settings on output ports.

IR communications link
The RCX communicates with your PC through the IR (infrared) link, similar to that on a television remote control. It can also
communicate with other RCXs through this link.

About the Software

The CD-ROM that comes with RIS contains a lot of software. Basically it can all be distilled down to three pieces:
documentation

The RIS software includes extension tutorials about setting up and programming the RCX. These include animations, movies,
and detailed, step-by-step instructions. When you first begin using the software, it is in guided mode, which means the software
tells you what to do next. This is a good way to get used to the software and the RCX.

programming environment

The RIS software includes an environment you can use to write programs that will run on the RCX. In the computer world, this
technique is called cross-compiling, meaning you write a program on one computer that you intend to run on another. In this
case, you use your PC to write a program that will be run on the RCX. As you'll see, there are many ways to write programs
for your RCX; the official environment that comes with RIS is only one of them. This book will introduce you to four powerful
alternate programming environments.

program downloader

Once you've written a program for the RCX, you need to know how to run it. The RIS software includes a program
downloader for this purpose. The program downloader is a special application that runs on your PC. It knows how to transmit
your robot programs into the RCX using the IR link.
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What About MacOS and Linux?

Currently, the software that comes with RIS runs only on Windows. If you have MacQOS or
Linux, however, you can still program your robots, just not with the official software. The
best option, at least to get started, is NQC, which is described in Chapter 4. Appendix A,
Finding Parts and Programming Environments, lists the different packages that are
available. If you really want visualstyle programming (like RCX Code), you can purchase
ROBOLAB, which provides a similar (but more powerful) environment on MacOS.
There's one final wrinkle if you want to program from MacOS: you'll need a suitable cable.
The following web page describes the issues of programming the RCX from MacOS,
including cables: http://www.enteract.com/~dbaum/lego/macmind/index.html .

You can purchase a Macintosh IR tower cable from Pitsco LEGO DACTA for $15US. See Appendix A for details.
Expansion Sets

Aside from the basic RIS set, the MINDSTORMS product line also includes expansion sets. These sets provide additional
parts and software to supplement the RIS set. Two such sets exist, each selling for about $50US :

Extreme Creatures
This set comes with about 150 LEGO pieces and is designed so you can add decorative jaws and claws to your robots. It
includes a light that can be attached to one of the output ports of the RCX.

Robosports
This expansion set includes about 90 LEGO pieces, two balls, two pucks, and an additional motor. It's oriented towards robots
that can play different sports.

A third expansion set, Exploration Mars, should be released sometime in 1999.

Among LEGO enthusiasts, the consensus is that the expansion sets are not as good a value as the RIS set itself. If you're
looking for extra pieces, it might be better to buy a LEGO TECHNIC set instead. If you're looking for additional sensors and
motors, by themselves, there are other ways to get these. See Appendix A, Finding Parts and Programming Environments, for
details.

Other Sets
RIS isn't the only game in town. In 1999, two new MINDSTORMS sets were released: the Droid Developer Kit and the

Robotics Discovery Set. Both sets are based on the same technology as RIS. They have more limited capabilities than RIS with
the intent of making them easier to use.


http://www.enteract.com/~dbaum/lego/macmind/index.html
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What Now?

Now that you have some background in mobile robots and LEGO MINDSTORMS, what should you do? Play.

Read the manuals, follow the instructions on the MINDSTORMS CD, and have fun with your new toy. When you're thirsty for
more, come back and read the rest of this book. It will tell you everything you need to know to push your MINDSTORMS set
as far as it can go.

Online Resources

One of the most exciting things about MINDSTORMS is the online community that supports it. On the one hand, LEGO's
official MINDSTORMS site provides some interesting information as well as a chance for RIS owners to exchange designs
and ideas. But in the months since the release of MINDSTORMS, many unofficial sites have appeared. These cover a broad
range of topics: clever mechanical designs, novel sensors, alternate programming environments, even a new operating system
for the RCX. I'll list references to online resources at the end of each chapter in this book; my lists are also available online at
http://www.oreilly.com/catalog/Imstorms/ There's a lot of information out there.

LEGO MINDSTORMS

http://www.legomindstorms.com/

This is the official site of MINDSTORMS. It contains handy tips and mildly informative articles. If you own a
MINDSTORMS RIS set, you can sign up for your own little corner of this web site, where you can post pictures of your
creations and even the programs that run them.

LEGO Worlds

http://www.lego.com/
Tis is the official site of The LEGO Group. It's a good place to go to browse through different product lines and to get a sense
of the entire company's product offerings.

Robotics

http://www.lugnet.com/robotics/

LUGNET (the international fan-created LEGO Users Group Network) forms the hub of the online LEGO universe. LUGNET
hosts many useful discussion groups; a whole hierarchy of them is devoted to robotics. This URL will take you to the top level
of the LEGO robotics discussion groups, which is further subdivided into more specific interests. LUGNET is an outstanding,
searchable resource.



http://www.oreilly.com/catalog/Imstorms/
http://www.legomindstorms.com/
http://www.lego.com/
http://www.lugnet.com/robotics/
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Lego Mindstorms Internals

http://www.crynwr.com/lego-robotics/
This page, maintained by Russell Nelson, contains many fascinating nuggets of information about RIS and the things you can
do with it.

RCX Internals

http://graphics.stanford.edu/~kekoa/rcx/

This page presents the results of Kekoa Proudfoot's reverse engineering efforts on the RCX, which enabled the development of
interesting technologies like NQC. pbFORTH, and legOS. For hardcore geeks, this page is fascinating reading. Kekoa is, to
quote Russell Nelson, a "minor deity" in the online MINDSTORMS world.

LEGO on my mind: Roboworld

http://homepages.svc.fcj.hvu.nl/brok/legomind/robo/
This comprehensive unofficial site contains a helpful section that introduces MINDSTORMS RIS and its TECHNIC
doppelgénger, CyberMaster™.

LEGO MINDSTORMS WebRing

http://members.tripod.com/~ssncommunity/webrings/legoms_index.html

A web ring is a set of sites that are all linked to each other. You can traverse forward or backward through the entire ring if you
wish, or visit sites in a random order. Browsing the MINDSTORMS web ring is a good way to acquaint yourself with the
MINDSTORMS online community.

LEGO MindStorms Gallery

http://member.nifty.ne.jp/mindstorms/

This Japanese web site, maintained by someone named Joe, includes photographs and descriptions of many, many different
robots, including several flavors of walkers. The text is mostly in Japanese, but the pictures are fascinating, even if you can't
read the text.

Ben's Lego Creations

http://www.pobox.com/~benw/lego/
Ben Williamson is a very gifted mechanical designer. This visually clean web site details Ben's creations, including a working
plotter, a treaded robot with a grabber arm, an intelligent truck, and other pearls.

Lego

http://www.mop.no~simen/lego.htm
Simen Svale Skogsrud maintains this fascinating site. It contains, among other interesting things, a detailed description of a
MINDSTORMS-based optical scanner.



http://www.crynwr.com/lego-robotics/
http://graphics.stanford.edu/~kekoa/rcx/
http://homepages.svc.fcj.hvu.nl/brok/legomind/robo/
http://members.tripod.com/~ssncommunity/webrings/legoms_index.html
http://member.nifty.ne.jp/mindstorms/
http://www.pobox.com/~benw/lego/
http://www.mop.no~simen/lego.htm
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Lego
http://www.fischer-mellbin.com/Marcus/Lego/lego.html

This web site belongs to Marcus Fischer-Mellbin, a ten-year-old with a penchant for natural disasters. Along with other
models, you'll find photographs and descriptions of a MINDSTORMSbased Tsunami and tornado.

The Epistemology and Learning Group

http://el.www.media.mit.edu/groups/el

The Epistemology and Learning Group (E&L group) at MIT's prestigious Media Lab basically developed the RCX that is the
centerpiece of MINDSTORMS. This web site provides an overview of the E&L group and describes its aspirations and current
projects.

The MIT Programmable Brick

http://el.www.media.mit.edu/groups/el/projects/programmable-brick/
The MIT Programmable Brick is the forerunner of the RCX. Looking through this site is like leafing through the RCX's family
photograph album.

Crickets: Tiny Computers for Big Ideas

http://fredm.www.media.mit.edu/people/fredm/projects/cricket/

If MINDSTORMS robots aren't small enough for you, take a look at Crickets, another project from the fine people at MIT.
Hardly larger than a nine-volt battery, Crickets are a very tiny mobile robot platform. Crickets are not publically available, but
this site can give you the inspiration to build your own tiny robots.

What's New at Eureka

http://www.eureka.com/whatsnew/robotvac.htm

I'm not the only one who doesn't want to vacuum the floor. This page at Eureka describes the Eureka Robot Vac, a kind of
concept car in the world of vacuum cleaners. Supposedly it will navigate through a room, around obstacles and over electrical
cords, vacuuming as it goes. My favorite part: "Switch on the robot vac and you'll hear a robotic tone" What's a robotic tone?



http://www.fischer-mellbin.com/Marcus/Lego/lego.html
http://el.www.media.mit.edu/groups/el
http://el.www.media.mit.edu/groups/el/projects/programmable-brick/
http://fredm.www.media.mit.edu/people/fredm/projects/cricket/
http://www.eureka.com/whatsnew/robotvac.htm
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2
Hank, the Bumper Tank

In this chapter:

« About the Building
Instructions

* Building Instructions
* A Simple Program

* Wheels

» Bumpers and Feelers
* Gears

 Multitasking

» Online Resources

Hank is the first robot we'll be building. He is a friendly robot who explores the floor of a room. Whenever he bumps into an
obstacle, like a chair leg or a shoe, he backs up, turns away from the obstacle, and goes forward again. This chapter includes
complete building and programming instructions so that you can build Hank yourself. Hank is a fairly simple robot that will
serve as a good jumping-off point to discuss:

* Various means of locomotion

» Bumper design

* The use of gears

* Motors

« Software multitasking

Figure 2-1 shows a picture of the completed robot. | suggest you begin by building and programming Hank. Let him run
around your floor for a while. Then come back and read the rest of the chapter, where I'll talk about some of Hank's interesting
features.

About the Building Instructions

The building instructions for the robots in this book are comprised of pictures, with a little bit of explanation here and there.
Each step shows you the parts you need as well as how they fit together. There are, however, some names with which you

should be familiar, so that | don't end up describing everything as a "doo-hickey" or a "little gray thingy." The parts you need
to know are beams, plates, shafts, gears, bushings, and wire bricks.
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Figure 2-1.
Hank, a friendly robot

Beams, plates, and shafts are characterized by their length. For beams, at least, this corresponds to how many studs (bumps)
are on the beam. Figure 2-2 shows a photograph of some beams, plates, and shafts with their corresponding lengths. The "u"
stands for "units."
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Figure 2-2.
Some beams, plates, and shafts and their lengths

Gears, for the most part, are described by the number of teeth they have. A 24t gear, for example, has 24 teeth. (The "t" stands
for "teeth.") Figure 2-3 shows a photograph of the various types of gears that come with the RIS kit.

There are two types of bushings in the RIS kit: regular and half-size. Both fit on shafts and are used for securing a shaft in
place or for spacing. Figure 2-4 shows the bushings.
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Figure 2-3.
Gears

Figure 2-4.
Full and half-size bushings

Finally, the term wire brick refers to the part shown in Figure 2-5. This piece is used to make an electrical connection between
a sensor or motor and the RCX.

Figure 2-5.
A wire brick
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Building Instructions=
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Create Hank's main chassis as shown in the next two steps; this will hold the RCX, the motors, and the bumpers.
Attach the shafts as shown. Hank's treads will be mounted on these shafts. The front pair do not rotate, while the rear pair
should. Don't push the front pair all the way in; you'll need to fit the tread wheel and another bushing on the end.

* The parts included with RIS 1.5 are slightly different than those in RIS 1.0. If you're building Hank using RIS 1.5, you
should use two bushings instead of the green pieces in Step 2.



The back tread wheels are anchored to the shafts with the 16t gears.
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Next, start building support for the drive motors.
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Place the wire bricks on the motors, then anchor them down with the yellow plates.
The wires themselves will fit into the grooves on the top of the motors.
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Attach the motor wires to output A and output C.
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Next, build the platform for the front bumpers.

22



(green)

The touch sensors are attached only by the shaft that runs through them.
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Hank's left bumper is next. A light touch on the bumper pushes the touch sensor.
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Hank's right bumper works exactly the same way.
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The bushings are pushed onto the plate in the next step. Note that the bushings are not
symmetrical; one side will push into the plate, and the other side won't.
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Finish Hank by attaching the bumper touch sensors to input 1 and input 3. Slide the blue
rubber bands onto the bumpers and anchor them to the bushings from the last step.
The rubber bands keep the bumpers from swinging forward.

A Simple Program

Now that you've built a robot, you need a program to make it work. Hank’s mission in life is to explore the world.

25
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His basic program works something like this:

go forward

it I"ve bumped into something
back up
turn away from the obstacle
start over

This program translates pretty simply into the RIS programming environment, as shown in Figure 2-6. The program assumes
that the two motors are attached to outputs A and C, while the touch sensors should be attached to inputs 1 and 3.

touch touch

1 2 @ 3 @1 @2 O3

|
! > et

release press release

Figure 2-6.
Hank's program

To create this program, enter the RIS software. Choose Program RCX from the main menu, then RCX Code. Use the menus
on the left side of the screen to click and drag out different program "blocks." If you're not familiar with this process, you
should probably go back and take a look at LEGQ's official documentation, either the printed material or the computer-based
tutorial.

Once you have created the program, download it and run it. (You can download or save a program by right-clicking on the
main program block.) If everything goes right. Hank should amble around on your floor, trying to avoid things he bumps into.
If you have pets, this would be a good time to introduce them to your new toy.
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Hank is a pretty simple robot, but you still may run into trouble:

* If your robot spins in place or goes backward instead of forward, you may need to adjust the wires that connect the motors to
the outputs. Remove one of the wires and turn it 180° around. This will reverse the direction of the attached motor. If the robot
is moving backward instead of forward, turn both wires around.

« Hank may not run well on very thick carpet, because there's not much space between the bottom of the body and the floor.
Once you've got things running smoothly, read on. I'll describe Hank's most interesting features in the rest of this chapter.

Locomotion

Hank gets around in the world on a pair of treads, like a tank or a bulldozer. This is just one approach to the general problem of
locomotion. Different designs have different merits - you should choose a locomotion method based on what kind of terrain
you're expecting your robot to encounter.

Treads

Hank's treads have some interesting properties. Foremost among these is zero turning radius, which is a fancy way of saying
that a treaded robot can turn around in one place. (I'll explain why it's a radius a little later.) Each tread is driven by one of the
motors, so all you need to do to turn is move the treads in opposite directions at the same speed. This turning, however, is
accomplished with a good deal of friction. Both treads slip on the driving surface. Tanks in Veteran's Day parades can really
chew up roads this way.

The large surface of the treads is one of their other assets. Treads are good for driving on jagged or slippery terrain. Hank
should do pretty well driving over uneven obstacles, like a small pile of LEGO bricks.

Differential Drive

Treads are a special kind of differential drive, in which two wheels are each driven by a motor. The wheels are mounted on
either side of the robot, like the treads. Figure 2-7 shows a top view of such a robot.

Independent drive wheels behave a lot like treads. If you run them both forward at the same speed, the robot moves forward.
Run the drive wheels in opposite directions, and the robot will spin in place. This design also exhibits zero turning radius, but
without the slipping of the treads.
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Figure 2-7.
Independent drive wheels

Zero turning radius is nice in robots that measure how far each wheel travels. (You could do this using rotation sensors.) Once
you know how far each wheel on a differential drive robot has traveled, you can calculate with a fair degree of accuracy the
location of the robot relative to its starting point.

The idler wheels don't drive or steer the robot. They exist to keep the robot from tipping over. They can turn freely to point in
whatever direction the rest of the robot is moving. Figure 2-8 shows a typical idler wheel.

Figure 2-8.
An idler wheel
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Cars

Modern automobiles demonstrate another popular approach to locomotion. Cars have four wheels, two in front and two in
back. The back wheels drive the robot (or car) forward and reverse, while the front wheels are used for steering. Figure 2-9
shows how this looks.

A

Figure 2-9.
Car-style locomotion

Rear-wheel drive is simpler because it decouples the drive mechanism from the steering mechanism. But you could obviously
build front-wheel drive robots, with enough parts. Whichever system you choose, this design does not have a zero turning

radius. (You can't spin in place in your car.) The term turning radius comes from what happens when a car-style robot drives
in circles, as shown in Figure 2-10.
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Figure 2-10.
Turning radius of a car

This type of design can be difficult to maneuver, as you'll know if you've ever tried to parallel park a car. The other subtlety of
this design involves the back drive wheels. When the car turns, the back wheels must turn at different speeds. Consider Figure
2-10 again—the inside back wheel has a smaller distance to go than the outside wheel.
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This means that you can't simply connect the two drive wheels with a shaft and hook it up to a motor. You need something
trickier, called a differential (not the same as differential drive).

A simple variation on the car design is the tricycle design. In this design, a single wheel, instead of a pair, is used for steering.
Exotic Drives
There are three other interesting drives that should be mentioned. The first of these is synchro drive. In this scheme, the robot

has three or more identical wheels. Each of the wheels pivots on its vertical center. All of the wheels point in the same
direction. as shown in Figure 2-11.

A Y

Figure 2-11.
Synchro drive

To turn, the robot swivels the wheels to point in a new direction. This has the interesting side effect that the robot can change
direction even though its body stays oriented the same. This property could be useful for robots that need to communicate with
the computer over the IR link. The key to building synchro drive robots is a piece called a large turntable. You can order these
pieces from Pitsco® LEGO DACTA®; see Appendix A, Finding Parts and Programming Environments, for details.

The tri-star wheel is another interesting idea. Figure 2-12 shows a side view of a tri-star robot and a close-up of the wheel
assembly.

caniey axis
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Figure 2-12.
Side view of the tri-star design
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Each wheel assembly is actually composed of three wheels arranged in a triangular fashion. The robot drives these wheels to
move. When a large obstacle (like a step) is encountered, the entire wheel assembly rolls on its center axis. In essence, the
entire wheel assembly acts like a large triangular wheel. This large wheel size enables the tri-star design to drive over large
obstacles.

Killough's platform is an interesting variation on the wheels-within-a-wheel concept. It's really too exotic to describe here; the
"Online Resources" lists two web pages that contain photographs and diagrams of this platform.

Bumpers and Feelers

Hank uses the touch sensors to figure out when he bumps into something. But it's not really enough to put a touch sensor just
on the front of your robot, because then it could be activated only in one specific spot. Instead, Hank uses a pair of bumpers to
detect touches across the entire front of the robot.

The idea of a bumper is to make a large area sensitive to touch so that the robot can detect collisions with a wide variety of
objects - chair legs, walls, pets, rocks, trees, and so forth.

Hank uses bumpers that rest lightly against the touch sensors. When the bumper is pressed anywhere along its length, the touch
sensor is then also pressed. A slightly different approach is to make a bumper that is held tightly against the sensor. When the
bumper collides with something, the sensor actually turns off instead of on.

The trick with bumpers is to make them sensitive but not too sensitive. The bumper needs to trigger the touch sensor when the
robot bumps into something. On the other hand, it should not trigger the touch sensor when the robot starts or stops moving
abruptly or when it's driving over a bumpy surface.

Gears
Gears are clever mechanical devices that can be used to trade speed for power or to translate motion from one axis to another.
A gear, in essence, is a disk with teeth on its edge. It has a space in its center where you can put a shaft. Gears have three

primary purposes:

1. You can trade speed for power by using a small gear to drive a larger gear. The shaft on the larger gear will turn more
slowly but more powerfully than the shaft on the smaller gear.

2. The opposite effect—trading power for speed—occurs if you use a large gear to drive a smaller gear. The shaft on the
smaller gear will turn faster than the one on the larger gear, but with less power.
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3. You can use gears to transfer motion from one axis to another. The gears in Hank's body transfer motion from the motors to
the drive axles of the treads, as shown in Figure 2-13.

Figure 2-13.
Using gears to transfer motion

The Palette of LEGO Gears

LEGO offers an impressive array of gears. The LEGO community has adopted names for these gears, which | will use
throughout this book. Refer back to Figure 2-3; it shows the gears that come with RIS and their names. For the most part, gears
are named based on the number of teeth they have. The 40t gear, for example, has 40 teeth. The number of teeth is directly
proportional to the gear's radius, so the 24t gear has a radius exactly three times as large as the 8t gear.

Specialty Gears

You're probably comfortable with the 8t, 16t, 24t, and 40t gears. They can be put together to transfer rotational motion from
one axis to another. In particular, these gears are used to transfer motion between parallel axes.

The gears in the bottom row of Figure 2-3 can be used to transfer motion between perpendicular axes. Two of these are bevel
and crown gears.

The worm gear is a real character, for two reasons:

1. While the other gears attach firmly to the shaft, the worm gear can slide freely along the shaft. If you want it to stay in one
place, you'll need to anchor it down somehow.

2. The worm gear really works only one way: you drive the worm gear, and it drives another gear. There's no way to turn the
other gear and have it translate to motion in the worm gear.
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Do the Math

The mathematics of gears can be described in a high school physics class. The two
important equations have to do with torque and angular velocity.

Here's the equation for torque, which is a measure of the power in a turning shaft:
r=Fr

In this case, t is torque, F is force, and r is the distance from the center of the rotation
to the point where the force is applied. For a gear, this is the distance from the center

(where the shaft runs through) to the teeth. This is the same as the radius of the gear.

Suppose, then, that you have an 8t gear driving a 24t gear.

The equation for the torque of the 8t gear's shaft is this:
g =Fr

The radius of the 24t gear is exactly three times the radius of the 8t gear. The force is the
same where the teeth of the two gears meet. Therefore, the torque on the shaft on the 24t
gear is exactly three times the torque on the 8t gear's shaft:

7,, =3Fr =3z,

Angular velocity is the measure of how fast a shaft rotates. The angular velocity of a shaft
can be expressed in terms of the velocity of a point on the gear as follows:

v
w=—
-

Here,  is the angular velocity, v is the velocity of the point on the gear, and r is the distance
between the point and the center of the gear. For the example I just described (an 8t gear driving
a 24t gear), the angular velocity of the 24t gear is exactly one third of the angular velocity of
the 8t gear. You can figure this out because the velocities of the gear teeth must be the same:

In general, then, it's easy to figure out the ratios of torque and angular velocity for two mating gears,
just by figuring out the ratios of gear teeth. If you use an 8t gear to drive a 40t gear, you'll end up with
fives times the torque and one fifth the angular velocity.
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Of Geared and Ungeared Motors

There's one more topic related to gears that's important. Most electric motors turn too fast and with too little power to be
useful. Gears are usually used to swap speed for power until a good balance is achieved. This process is called gearing down or
gear reduction.

The motors that come with RIS are internally geared, which means that the motor case actually contains an electric motor and
some number of gears. The output shaft is already adjusted to turn at a reasonable speed with a reasonable amount of power.
This means you can attach wheels directly to these motors to drive your robot around.

The LEGO group makes four different kinds of motors that can be driven from the outputs of the RCX:

standard motor

This has been the standard motor of the LEGO TECHNIC line for many years. It is an ungeared motor, which means its output
shaft rotates very rapidly, with little power, when electricity is applied. To do any useful work with it, you'll probably have to
use gears to reduce its output speed.

micro motor
This is a tiny motor with low speed and low power. You probably can't use this motor to move your robot, but it could be
useful for lighter tasks. It's harder to find than the other motors.

geared motor
Two of these motors come with the MINDSTORMS RIS kit. They are internally geared so that the output shaft has enough
power to drive your robot around. They are more efficient than the standard motor. The geared motor is shown in Figure 2-14.

Figure 2-14.
The geared motor
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train motor
LEGO sells an entire line of train sets. The train motor can be controlled by your RCX; as a matter of fact, you can make an
"intelligent" train by mounting the RCX in one of the cars.

For a Rainy Day
To see exactly how efficient the geared motors are, try this experiment. Use one of the
"wire bricks" to attach two motors to each other. When you turn the shaft of one motor,
the other motor's shaft will turn simultaneously. What's going on here? Just as you can
supply power to make the motor turn, turning the motor with your hand generates power.
This power is transferred to the other motor, where it's converted back to the movement
of the shaft.
Of course, you haven't actually built anything useful. But it's a good demonstration of the
efficiency of these motors. The shaft on the second motor turns at nearly the same speed as
the first motor, which means very little energy is lost in converting mechanical energy to
electrical energy and vice versa.

If you have a choice of motors, you'll probably always use a geared motor. It is more efficient, more convenient, and less bulky
than the standard motor. The micro motor is hard to find and not strong enough for most tasks.

How can you get more motors? RIS comes with two motors, but there are three outputs on the RCX. You can get another
motor in the RoboSports expansion set, but it'll cost you $50.

You can order extra motors from the LEGO Shop-at-Home service, one of The LEGO Group's best-kept secrets. This service
is available in the United States at (800) 835-4386. They have a variety of sets and spare parts—the item numbers for the
motors are as follows:

« Standard motor, item 5114

 Micro motor, item 5119

* Geared motor, item 5225

* Train motor, item 5300

You can also order the first three motors from Pitsco LEGO DACTA: (800) 362-4308.

For more information on extra parts and ordering, see Appendix A.
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Multitasking

Don't be fooled by the simplicity of the RIS programming environment—it hides some pretty messy details. Hank's simple
program demonstrates a powerful feature of the RCX software: multitasking. This is a term from the computer world—it just
means that the RCX can do more than one thing at a time. Each of the two instruction sequences hanging off the touch sensor
watchers is a separate task, and they can actually execute at the same time. To see this in action, touch one of Hank's bumpers
to trigger the first task, then touch the other bumper shortly afterward. (To really see this effect, you could try putting in longer
delay times in Hank's program.)

The sensor watchers in RCX Code exhibit another interesting property. If you trigger a sensor watcher, the code for that
watcher begins executing. If you trigger the same sensor watcher again, while the watcher code is still executing, the watcher
code starts over again from the beginning.

The relationship between the programs you create in RCX Code and the tasks that run on the RCX is not always clear. Tasks
and subroutines are declared explicitly in NQC, one of the alternate programming environments for the RCX. See Chapter 4,
Not Quite C, for details.

Figure 2-15 shows how the multitasking nature of the RCX can get you into trouble. The figure shows an alternate program for
Hank. At first glance, it makes sense. The main program starts Hank moving forward. When one of the bumpers is touched, the
robot backs up, waits, turns, waits, and starts going forward.

’ tewiach touch
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Figure 2-15.
A slightly dangerous program



37

A serious problem occurs if the same bumper is quickly hit twice. Suppose the bumper on input 1 is hit once. It begins
executing its sensor watcher code by reversing the direction of the motors.

The robot travels backwards for half a second, then output A reverses direction and the robot spins in place. Suppose, now, that
the bumper on input 1 is triggered again, before output C's direction is reversed again. The sensor watcher routine will begin
again, reversing the direction of both the motors. Hank, therefore, will begin spinning the other direction instead of moving
backwards.

Then output A's direction reverses, and the robot moves forward. Finally, output C's direction reverses, and the robot spins in
place again, instead of moving forward.

There are two solutions to this problem. First, you can be more explicit about controlling outputs. Instead of just reversing the
output directions in the sensor watcher routines, you could specifically set the directions and turn on the motors. This technique
is shown in Hank's first program, in Figure 2-6. It doesn't matter if the sensor watchers are interrupted before they finish,
because the directions of the motors are always set explicitly. The other solution is to structure your program differently. If
your sensor watchers don't have any delays built into them, for example, they will be much less likely to be interrupted.

Online Resources

The Art of LEGO Design

ftp://cherupakha.media.mit.edu/pub/people/fredm/artoflego.pd

This is an outstanding paper about building with LEGO parts. It includes helpful tips on making strong structures and using

gears. The paper is written by Fred Martin, one of the people at the MIT Media Lab whose programmable brick work formed
the basis of the RCX. I highly recommend this paper, especially if you are having trouble getting things to fit together.

Fred's 6.270 Home Page

http://lcs.www.media.mit.edu/people/fredm/projects/6270/

For a deeper treatment of many aspects of small mobile robotics, read the course guide for MIT's famous 6.270 class. In this
class, students build robots from the ground up. The 6.270 Robot

Builder's Guide was written by Fred Martin; it is a real bonanza of information and advice.

Doug's LEGO Technic Tri-Star Wheel ATV and Robotics page

http://www.net-info.com/~dcarlson/
Doug Carlson's fascinating page is full of pictures of his implementations of the tri-star design, synchro drive, and the Killough
platform. For sheer mechanical finesse, this page is hard to beat.



http://www.enteract.com/~dbaum/lego/motors.html
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Killough's mobile robot platform

http://carol.wins.uva.nl/~leo/lego/killough.html
This part of Leo Dorst's acclaimed site gives some background and explanation of the Killough platform.

Synchronicity

http://members.xoom.com/jknudsen/Synchronicity/Synchronicity.html
This page has photographs of my own synchro drive robot, which has three wheels and a compact design.

Pitsco LEGO DACTA

http://www.pitsco-legodacta.com/

This is the official home page of Pitsco LEGO DACTA. Many of the interesting things that Pitsco LEGO DACTA sells are not
listed online, but you can call and order a catalog. Make sure you get the LEGO DACTA catalog, as Pitsco has an entirely
different catalog that doesn't have anything to do with LEGO. This is the place to order the Robolab software that allows you
to program your RCX from a Macintosh.

Dacta Spares from Pitsco

http://www.ee.nmt.edu/~jmathis/dacta.html
This unofficial site contains images of some of the interesting pages in the Pitsco LEGO DACTA catalog, including the pages
with the motors and sensors.

LEGO Motors

http://www.enteract.com/~dbaum/lego/motors.html
This page contains a concise description of the three kinds of motors.
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3
Trusty, a Line Follower

In this chapter:

Building Instructions
Some Tricky Programming
The Light Sensor

Idler Wheels

Using Two Light Sensors

Online Resources

In this chapter, you'll build Trusty, a simple robot that exhibits a behavior called line following. This means that Trusty, shown
in Figure 3-1, can drive along a sort of "track™ defined by a thick black line on the floor. Your RIS kit includes a "Test Pad,"
which is simply a large piece of white paper with some black lines and other marks on it. Trusty will follow the large black
oval on this paper faithfully until he runs out of battery power.

Figure 3-1.
Trusty, a line follower

As you can see in Figure 3-1, Trusty's main feature is a downward pointing light sensor. This sensor is the key to line
following. The light sensor can distinguish between the white background of the Test Pad and the black line drawn on it. As



you'll discover, this feature doesn't make line following easy to program; but it does make it possible.

Building Instructions

SRR ..
o




In Step 4, make sure the top bushing allows the idler wheel to rotate freely by putting the round
side next to the plate. If you put it on the other way, the idler wheel will be locked in place.

Be sure to attach the wire bricks to the motors before putting them on Trusty.
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Next, build the support for the light sensor.

STEP 6
EEEERTRERS .
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The 2u beams between the motors will hold the ends of the drive shafts.
Make sure that you can see the holes.
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Flip the robot over and attach the wires as shown. The motors are attached to output A
and output C, while the light sensor is attached to input 2.

Some Tricky Programming

It's surprisingly hard to convince our robot to follow a black line on the floor. (A lot of things in mobile robotics are
urprisingly hard, as we discussed in Chapter 1, Robotics and MINDSTORMS.)

The simplest way to describe the program is this:
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if 1"m on the line, go straight forward
if 1"m off the line, find the line and start over

It's the "find the line" part that's difficult. When Trusty's light sensor goes off the black line, Trusty has no way of knowing if
he's on the right or the left side of the line. Ideally, Trusty would turn back to the line and start going straight again. He would
proceed in a zigzag fashion along the line.

State
Even if Trusty doesn't know which side of the line he's on, he can make a pretty good guess. If he knows he drove off the left

side of the line last time, it's a pretty good bet he'll drive off the right side the next time. Figure 3-2 shows a likely path as
Trusty tries to stay on the line.

Figure 3-2.
Trusty zigzags along the black line

With this in mind, Trusty's algorithm can be more specific:
if 1"m on the line, go straight forward
if 1'm off the line {

turn back the opposite direction from the way 1 turned last time
if 1 still don"t find the line, turn farther back the other direction

}

Another way of looking at this is to say that Trusty now has two possible states:

1. Just turned left (turn right next)

2. Just turned right (turn left next)

By keeping track of this state, Trusty can figure out the best way to turn the next time he drives off the black line.

Could I Please Have a Variable?

Some kind of variable is needed if Trusty is to keep track of his state. Said another way, Trusty needs some kind of memory to

remember which way he last turned. This highlights one of the weak points of RCX Code (the RIS programming
environment), its lack of variables.
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The environment does provide a counter, which we'll use in lieu of a variable to hold the turning direction. Although you can't
assign values directly to the counter, you can do two things: reset it to zero and add one to it. Trusty will use just two values, 0
and 1, to mean turn left and turn right, respectively.

Coping with Failure

Our basic assumption about Trusty is that he will drive off the black line on alternating sides. But this probably won't really
happen all the time, particularly if the black line has curves in it. What Trusty needs is some way to figure out if he's turning
the wrong way, away from the line instead of toward it. For this purpose, we'll use a timer. If Trusty doesn't find the line within
a certain time interval, we'll have him switch state and turn back the other way.

The real world is a very challenging place. You should always assume that bad things will happen to your robot and try to
create a program that responds appropriately.

The Program

Figure 3-3 shows Trusty's basic program. It begins by setting the two motors to the forward direction at speed 4. The central
decision point is the light sensor watcher. If the sensor sees the black line, Trusty moves straight ahead. If the sensor sees the
white background, then the program resets the timer and calls a subroutine called toggle. This subroutine turns the robot left
or right, alternating each time it is called.

program
MO NI,

Figure 3-3.
A top-level view of Trusty's software
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Use your own values for the thresholds of the light sensor watcher. The values shown in Figure 3-3 are calibrated to my
particular light sensor and may not work with yours.

The timer is used in case Trusty happens to turn the wrong way. Suppose, for example, that he runs off the right side of the
black line twice in a row. The first time, he would turn left to find the line again. The second time, however, he would turn
right, away from the line. The timer is used to limit this behavior. If Trusty is turning and the timer goes off, then Trusty
automatically turns back the other way. Figure 3-4 shows the timer watcher, which calls the same toggle subroutine if the
robot is still off the line.

You might be wondering why the timer counts for one half second. Why not three quarters of a second, or a full second?
Remember that the timer keeps Trusty from turning around completely.

The timer value is based on observation—if Trusty is turning toward the line, he will find it within a half second. If he is
turning away from the line, he can be pretty sure he's missed it after a half second. A line-follower with a different mechanical
design might need a different timer value.

program
MU N DS

Figure 3-4.
Details of Trusty's software

Figure 3-4 also shows the toggle subroutine itself. All it does is examine the value of the counter. If it's O, then the robot is
set to turn left and the counter value is changed to 1. The next time toggle is called, the robot turns right and the counter
value is reset to 0. It's useful to have toggle as a subroutine because it is called from two places in Trusty's program.
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The Light Sensor

Working with the light sensor can be a little tricky. As measured by the RCX, the light sensor outputs a value from 0 (dark) to
100 (bright). However, the signal generated by the sensor has some noise in it, which means the value jumps around
unpredictably. To use a light sensor effectively, then, you need to figure out what the interesting values are and how to respond
to them.

Testing Light Sensor Values

The easiest way to figure out what values your light sensor is generating is to use the RCX's View button. Press View
repeatedly until a little arrow appears under the input with the sensor. The RCX's screen should show the value of the sensor.
You can place Trusty so the light sensor is over the line, and then observe the value. Now see what values you get when Trusty
is off the line.

You should also try the green area of the Test Pad, and try all the measurements with the room both dark and light. This should
give you a good feel for the values that are important.

The View button only works if the input is configured to measure a light sensor. To have the input configured correctly, you'll
either have to run a program that sets it up or use the Test Panel, in the RCX Code section of the RIS software. Click on the
appropriate input until the light sensor appears. Then click on the Get Sensor Values button to get the current readings.

The choice of 35 and 40 in Trusty's program is based on my measurements; you may want to adjust these values for your
specific conditions.

Don't expect to get the same readings from two different light sensors, even under the same conditions with the same RCX.
Always test the values before you use them in a program.

The Light Sensor Watcher

What's going on with that sensor watcher in Figure 3-3? It's actually two sensor watchers rolled into one. The following
pseudocode shows how it works:

if the sensor value is in the range from 0 to 35 (but wasn"t previously),
execute the "dark™ commands

if the sensor value is in the range from 40 to 100 (but wasn"t previously),
execute the "bright" commands
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Figure 3-5 shows a hypothetical graph of the light sensor value, along with the times when the dark and bright commands will
be executed. Nothing happens until the sensor value enters either the dark or bright value ranges.

Light Semsor Volwe
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Figure 3-5.
The sensor watcher

Remember that the RCX runs some tasks at the same time. If the dark commands and bright commands both take a while to
execute, it's possible they may overlap. If the light sensor reading gets into the bright range and abruptly drops back into the
dark range, the dark commands will start running while the bright commands are still in progress. You should be aware of this
possibility and structure your code to deal with it. In Trusty's program, the dark and bright commands both execute quickly so
they won't overlap.

Ambient Light

You have to be careful with the light sensor; its value depends on all the light it receives. This includes the reflected light from
the red light that's part of the sensor as well as room light and sunlight.* In a line-following robot like Trusty, you really want
to measure only the reflected light. In this case, it's in your interests to block out the room lighting, sunlight, light from your
kid brother's flashlight, and anything else distracting. The light level that's present in a certain place is called the ambient light.
In a robot like Trusty, you might try surround the light sensor with dark bricks to block out the ambient light. This can improve
the accuracy of your sensor measurements. In this particular case, | didn't think it was necessary, but you might like to give it a
whirl.

* The light sensor is even sensitive to the infrared light that is produced from the IR port.
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Where's That Red Light Coming From, Anyhow?

Isn't it odd that the light sensor, an input device, has a red light on it? How did that happen?
And how is that possible with only two wires connecting the sensor to the RCX?

The basic role of the RCX's inputs is to measure the value of the sensor. For certain types of
sensors, like the light sensor, the RCX also provides power to the sensor. It does this by

very quickly alternating between providing power and taking a measurement. The RCX sends
power to the light sensor for about 3 ms (thousandths of a second) and takes a measurement

for about .1 ms. It repeats this cycle over and over. (These timings only apply to the standard
firmware. In an alternate firmware such as legOS, the timings are entirely different.) Inside the
light sensor, an electronic circuit smooths out the pulses and provides steady power to the red light.

Idler Wheels

Trusty's two main drive wheels determine whether he moves forward, backward, or turns. But without at least one more wheel,
Trusty can't balance and will tip forward or backward. Trusty's third wheel is a good example of an idler wheel. An idler wheel
provides support for the robot but doesn't constrain its motion. It does this by rotating freely on a vertical axis. The front
wheels on shopping carts are idler wheels, as are the casters under furniture. Ideally, an idler wheel can easily swivel in
response to changes in the robot's direction. You've already seen Trusty's idler wheel in Figure 2-8.

Make your idler wheels sturdy! One of Trusty's early designs could follow a line just fine. But after about a minute of back-
and-forth turning, the idler wheel broke off the bottom, and Trusty was left lying on his back, twitching.

Using Two Light Sensors

You can buy more light sensors for about $20US each (see the "Online Resources" section at the end of this chapter). By
adding one more light sensor to Trusty, we can simplify his program and make his movement along the black line smoother.

Adding the Sensor

To add the second light sensor to Trusty, just move over the one that's already there. You can leave the original one attached to
input 2 and just add the second one to input 3. Figure 3-6 shows how to do this.
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Figure 3-6.
Adding a second light sensor to Trusty
Programming
With two side-by-side light sensors, Trusty's algorithm is pretty simple. If both sensors are on the line, we just drive forward. If
only one of the sensors is on the line, we simply turn back to the line. If both sensors go off the line, we don't do anything; the
robot must already be turning and should return to the line soon.
This logic can be represented by a simple map from the sensor values to the motor settings, as shown in Table 3-1.

Table 3-1. Mapping from Sensor Inputs to Motor Outputs

Left Light Right Light Left Motor(A) Right Motor(C) Result
Sensor (2)  Sensor (3)

dark dark forward forward Go forward
dark bright stop forward Turn left
bright dark forward stop Turn right
bright bright - - No change

It's cumbersome to implement this algorithm in RCX Code. Figure 3-7 shows the program, which is based around two sensor
watchers. But go ahead and try it out; it works well even if it looks kind of strange. In Chapter 4, I'll show you how this
algorithm (as well as the single-light-sensor Trusty) can be reprogrammed in NQC.

The program centers around two sensor watchers, one for each light sensor. Whenever either sensor sees light or dark, the
value of the other is examined. Based on the values of the two sensors, the motors are set according to Table 3-1.



52

Figure 3-7.
Programming Trusty with two light sensors

Online Resources
LEGO World Shop

http://www.legoworldshop.com/

The RIS kit itself is available at this online store, although you can probably get it cheaper at a local retailer. However, the
online store also carries items you won't find locally, like extra motors, touch sensors, light sensors, and even a remote control
that sends messages to the RCX's IR port. You can even buy an extra RCX, although it's a much better value to spring for a
whole RIS kit.

LEGO MINDSTORMS Sensor Input

http://www.plazaearth.com/usr/gasperi/lego.htm
This is the authoritative resource for RCX sensor information. It describes how the sensors work, how you can modify sensors,
and how you can build your own sensors. It includes schematic diagrams, handy graphs, and photographs.

LEGO Light Sensor

http://www.plazaearth.com/usr/gasperi/light.htm
For the real skinny on LEGO's light sensor, check out this page. It includes a photograph of the circuit board inside the sensor,
a schematic diagram, and graphs of the sensor's response with and without the LED.
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4
Not Quite C

In this chapter:

* A Quick Start

* RCX Software Architecture
* NQC Overview

* Trusty Revisited

» Online Resources

Once you've written a few programs in RCX Code, it feels a little constrictive. For one thing, there aren't any variables. It
would be nice if your robot could remember things, like how many obstacles it's encountered or what the temperature was
three minutes ago. In RCX Code, the only thing remotely resembling a variable is the counter. Back in Chapter 3, Trusty, a
Line Follower, | used the counter to remember which way to turn. The counter was always a 0 or a 1, indicating whether the
robot should turn left or right. But it's tough going, and if you try anything more complicated, the counter is not going to get
the job done.

The lack of variables is only one of the limitations of RCX Code. Two other important limitations are:

« Although you can define subroutines (called "My Commands™), you can't call one subroutine from another. Likewise, a
subroutine can't call itself.

* You can't control the RCX's display very well. It would be really nice, for debugging purposes, to be able to show values on
the display.

The LEGO Group aimed the Robotics Invention System at people who had never programmed before. For this group, RCX
Code is a gentle way to get started with programming mobile robots. But RIS is exceedingly popular with programmers and
other technically savvy people, who are frustrated by the limitations of RCX Code. If you're reading this chapter, this probably
includes you.

Since RIS was released in the Fall of 1998, the MINDSTORMS community has produced an amazing stream of clever,
innovative software designed to overcome the limitations of RCX Code. Most of this software is available, free of charge, on
the Internet. In this chapter, I'll describe one of the most popular packages: Not Quite C (NQC). NQC allows you to write
programs for your RCX with a text-based language. I'll describe the syntax and commands of this language, with copious
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examples. If you've programmed in C, NQC will look familiar. If you have never programmed in C, don't worry; NQC is easy
to learn.

This chapter presents NQC in four steps:
1. To get you started with NQC, this chapter begins with a simple example.

2. To understand how NQC works, you need to understand the software that's running on the RCX. This chapter describes the
important pieces of the RCX's software architecture.

3. This chapter provides a detailed listing of NQC's commands, with examples.

4. Finally, this chapter contains software for Trusty written in NQC.

A Quick Start

Let's get right to the good stuff with a working example. First, you'll need to download and install NQC. It's available for

MacQOS, Linux, and Windows. Navigate to the NQC web site (http://www.enteract.com/~dbaum/lego/ngc/ ), and follow the
instructions to download and install the latest version. The examples in this book were written with the NQC version 2.0b1.

Once it's installed, enter the following program using a text editor. This program operates Hank, the robot from Chapter 2,
Hank, the Bumper Tank. Save the program in a file called Hank.nqc.

#define BACK_TIME 50
#define TURN_TIME 80

task main() {

SetSensor(SENSOR_1, SENSOR_TOUCH);

SetSensor(SENSOR_3, SENSOR_TOUCH);

OnFwd(OUT_A + OUT_C);

while (true) {

if (SENSOR_1 == 1) {

PlayTone(440, 50);
OnRev(OUT_A + OUT_C);
Wait(BACK_TIME);
OnFwd(OUT_A);
Wait(TURN_TIME);
OnFwd(OUT_C);

}

if (SENSOR_3 == 1) {
PlayTone(880, 50);
OnRev(OUT_A + OUT_C);
Wait(BACK_TIME);
OnFwd(OUT_C);
Wait(TURN_TIME);
OnFwd(OUT_A);
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Now compile the source code using the nqc command:
C:\>ngc Hank.ngc
C:\>

If you made a mistake typing in the program, ngc gives you a list of errors. Otherwise, you're ready to download the program
with the -d option:

c:\>ngc -d Hank.nqgc
Downloading Program:... .complete

c:\>
(If you need to specify a serial port different from the default, use the =S option.)

Go ahead and run the program. When you're done playing, come back and get some background on the software that runs the
RCX.

RCX Software Architecture

Writing a program for the RCX involves a handful of software layers, both on the development PC and on the RCX itself.
Figure 4-1 shows an overview of the important pieces.

PC (Win32)
RCX Code
' Spirit.ocx
RCX
serial part IR tower U
ser programs
Bl et e e 2
-
Firmware
E Hardware routines

Figure 4-1.
RCX software architecture
ROM

The RCX is a small computer that is based on a Hitachi H8/3292 microcontroller. The RCX contains two kinds of memory:
Read Only Memory (ROM) and Random
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Access Memory (RAM). As its name implies, ROM cannot be written. It is programmed at the factory and cannot be changed.
RAM, on the other hand, can be written and read as many times as you want, with one catch: it needs power. If you take the
batteries out of your RCX, the contents of the RAM are erased. Under normal circumstances, however, the batteries preserve
the contents of the RAM.

When you first get your RCX, it has some stuff in ROM and an empty RAM. The RCX's ROM routines know a little bit about
the RCX's hardware. These routines can run the motors or access the sensors. Most importantly, the ROM routines know how
to receive code from the IR port and place it in RAM.

Firmware

One of the first things you have to do with your RCX is download the firmware. The firmware is, essentially, an operating
system for your RCX. The routines in ROM know how to download a set of firmware from the IR port and store it in RAM.
The firmware is capable of more than just processing the ROM routines. It shows a clock on the display of the RCX. It can
recognize an respond to the View button. Most importantly, it can receive robot programs over the IR port and run them.

Although at first it sounds like the firmware and the robot programs are the same kind of animal, this is not the case. The
firmware is actual Hitachi H8 machine code. Together with the H8 machine code in ROM, the firmware defines an operating
system for the RCX. It provides access to the RCX's inputs and outputs. It also provides a way for programs to be downloaded,
stored, started, and stopped.

The actual robot programs are not H8 machine code. They are defined at a higher level called bytecode. Whereas the H8
machine instructions are very rudimentary, such as "move this value to register 1," bytecode instructions are more powerful,
such as "turn output 2 on with full power." The firmware interprets the bytecode and performs the appropriate action.

About Spirit.ocx

On the PC side, a piece of software called Spirit.ocx handles interaction with the RCX via the IR link. Spirit.ocx can execute
bytecode commands on the RCX, download new programs to the RCX, download firmware to the RCX, and receive data from
the RCX.

The RCX Code programming environment sits on top of Spirit.ocx. It provides the click-and-drag programming environment
that you're already familiar with. RCX Code converts these graphic programs into bytecode and uses Spirit.ocx to download
the programs to the RCX.

Spirit.ocx is a regular ActiveX control, which means its functions are accessible from programming languages like Visual
Basic and Visual C++.
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Spruce Up That Resume

Writing programs for the RCX is an example of cross-compiling for an embedded system, a
phrase that is bound to sound good on your resume. Cross-compiling means that you are
writing programs on one computer (your PC) that will run on another computer (the RCX).
An embedded system is a computer that is part of some other device. For example, microwave
ovens and mobile phones both contain embedded systems. Modern cars contain dozens of
embedded systems, as well.

The usual way to develop software for a chip like the Hitachi H8 would be to use a cross
compiler running on a PC. You would write source code (probably in C or assembly language)
on your PC and use the cross-compiler to create H8 machine code from the source. Then you
would probably use a special PC peripheral, called a burner, to place the machine code on
some sort of programmable memory chip.

The final step would be to physically place the memory chip in the embedded system.
When the embedded system boots up, the software you just wrote will run.

The RIS software simplifies this process in two important ways. First, it provides a graphic
programming environment that's very accessible, particularly for people who haven't
programmed before. Second, programs are downloaded to the RCX over the IR link and
stored in RAM. This feature eliminates the complexity of dealing with memory chips and
burners yourself.

The cross-compilation step is a little different, too, because RCX programs are bytecode
rather than machine code. But it's still cross-compilation: the end result is bytecode rather
than H8 machine code.

A Day in the Life of a Program

Let's examine the typical life of a robot program:

1. The program's life begins when you create something in RCX Code. RCX Code compiles your program to bytecode.

2. RCX Code uses Spirit.ocx to download the program to one of the RCX's five program slots. The compiled bytecode is
transferred to the RCX via the IR link.

3. The program is now available in RAM. When you run it, the firmware interprets the bytecode in your program and performs
the appropriate tasks.
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NQC Overview

Where does NQC fit in? NQC is a replacement for the software on the PC, both RCX Code and Spirit.ocx. NQC source code is
stored in simple text files, just like C, C++, or Java source code.

NQC compiles these source files to bytecode and can download them to the RCX using the IR tower. NQC is a good way to
overcome the limitations of RCX Code. But because it produces bytecode programs, it's still subject to the limitations of the
firmware's bytecode interpreter.

Because NQC talks to the IR tower directly, without depending on Spirit.ocx, it is very portable. NQC runs on MacOS (using
MPW), Linux, and of course Windows 95, 98, and NT. RCX Code, by contrast, only runs on Windows.

NQC was developed by Dave Baum, who maintains the official web site at http://www.enteract.com/~dbaum/lego/nqc/.
His web site also includes pithy documentation for the language.

If you're using NQC on Windows, you might want to also use RCX Command Center (RcxCC). RexCC is a Windows
application that wraps around NQC. It provides a syntax-colored program editor, push-button compilation and downloading,
real-time control of the RCX, and a host of other useful features. Although NQC is fairly easy to use all by itself, RexCC gives
you an even smoother ride. See the "Online Resources" at the end of this chapter for a URL and more information.

This chapter covers the important commands of NQC. If you have a background in C programming, the syntax and control
structures will look familiar. If you don't have a background in C, don't worry: NQC is easy to learn. I've included lots of
example programs to demonstrate how things work. | won't cover NQC exhaustively; several excellent web pages detail the
entire language. See the "Online Resources" section at the end of this chapter for details.

main

NQC programs are organized into one or more tasks. A task is simply some set of instructions that execute in order. A task is
analogous to a thread in other programming environments. A single program may consist of several tasks that execute at the
same time.

Tasks have names. Every program should have a special tasks called main. When the Run button is pressed, the RCX begins
the program by running main. If you define other tasks, you have to explicitly start and stop them. The main task is the only
one that is automatically run by the RCX. I'll explain more about starting and stopping tasks later.

* As this book goes to press, a standalone MacOS version of NQC is being released in beta test form. Now you can run NQC
on MacOs without MPW.
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Output Commands

NQC includes several commands for controlling the outputs of the RCX. You've already seen one of these, OnFwd, in our first
simple example.

On(const outputs)

This command turns on the specified outputs. The outputs should be some combination of the constant values OUT_A, OUT_B,
and OUT_C. Multiple outputs can be specified by adding them together, as shown in the first example. When an output is
turned on, its current power and direction are consulted to determine what actually happens.

Off(const outputs)
This command turns off the specified outputs, putting them in brake mode. For motors, this means that the motor shaft will be
hard to turn.

Float(const outputs)

Float() is really a variation of OFF(). No power is sent to the output, but the shaft of an attached motor will turn freely.
This is a useful option if you want your robot to coast to a stop.

You can set the direction of outputs with the following three commands:

Fwd(const outputs)
Use this command to set the direction of the specified outputs to forward.

Rev(const outputs)
This command sets the direction of the specified outputs to reverse.

Toggle(const outputs)
To switch the direction of one or more outputs, use this command.
To determine the output power, use the following command:

SetPower(const outputs, expression speed)
This command sets the power of the given outputs. Any expression that evaluates to a value from one to seven can be used as
the speed. You may use the constant values OUT_LOW (1), OUT_HALF (4), and OUT_FULL (7) if you desire.

To fully determine an output's actions, you should set its mode, direction, and power explicitly. By default, all three outputs are
set to full power and the forward direction. Therefore, calling On()is enough to get the motors running.

NQC provides two handy "combination” commands:

OnFwd(const outputs)
This command turns on the specified outputs in the forward direction.

OnRev(const outputs)
This command turns on the specified outputs in the reverse direction.
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These commands set the mode and direction of the outputs in one fell swoop, but you should still set the power level explicitly
with a call to SetPower ().

For timed actions, the following command will come in handy:

OnFor(const outputs, expression time)
This command turns on the specified outputs for the given time, measured in hundredths of a second. Then the given outputs
are turned off (in brake mode, not in float mode).

The following example runs outputs A and C forward, waits one second, then reverses outputs A and C. After another second,
the outputs are turned off.

task main() {
SetPower (OUT_A + OUT_C, OUT_HALF);

Fwd(OUT_A + OUT_C);
OnFor(OUT_A + OUT_C, 100);
Rev(OUT_A + OUT_C);

OnFor(OUT_A + OUT C, 100);
3

The On(), OFFQ), Float(), Fwd(), Rev(), and Toggle() commands are really shorthand for these lower-level output
commands:

SetOutput(const outputs, const mode)
This command sets the mode for the given outputs. The outputs are specified in the same way as in the Fwd() and Rev()
commands. The value of mode should be one of the constants OUT_ON, OUT_OFF, and OUT_FLOAT.

SetDirection(const outputs, const direction)

This command determines the direction of the supplied outputs. The direction parameter should be OUT_FWD,
OUT_REV, or OUT_TOGGLE. OUT_TOGGLE is a special value that sets the direction of the output to the opposite of its
current value.

In general, | recommend you don't call SetDirection() withthe OUT_TOGGLE value. If you explicitly set the directions
of your outputs, your program will be clearer. Furthermore, in programs with more than one task, your program is more likely
to behave as you expect.

Input Commands

Before you can read a value from one of the RCX's inputs, you need to tell the RCX what type of sensor is attached to the
input. NQC provides a command that does just this:
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SetSensor(expression sensor, const configuration)

This command tells the RCX how to configure the given input. Valid values for sensor are SENSOR_1, SENSOR_2, and
SENSOR__3, which represent the three inputs of the RCX. The sensor configurations are detailed in Table 4-1. See Appendix
A, Finding Parts and Programming Environments, which lists the sensors that are available for the RCX.

Table 4-1. NQC Sensor Modes

Configuration Sensor Type Input Value ClearSensor()
SENSOR_TOUCH Touch 1 (pressed) or 0 (not pressed) -

SENSOR_LIGHT Light 0 (dark) to 100 (bright) -
SENSOR_ROTATION Rotation 16 units per full rotation yes
SENSOR_CELSIUS Temperature Celsius degrees times 10 -

SENSOR_FAHRENHEIT Temperature Fahrenheit degrees times 10 -
SENSOR_PULSE Touch Count of presses yes
SENSOR_EDGE Touch Count of state transitions yes

The actual sensor value can be read using SENSOR_1, SENSOR_2, and SENSOR_3. These are shorthand for the following
command:

SensorValue(const input)
This command returns the current value of the given input, which should be 0, 1, or 2, for input 1, input 2, and input 3
respectively. The values returned from an input depend on the input's configuration and are described in Table 4-1.

SENSOR_1, SENSOR_2, and SENSOR_3 actually have a dual purpose in life. Their first purpose is to
identify the inputs on the RCX to commands like

SetSensor (). Their second purpose isto retrieve values from the inputs. Thus, there are two distinct uses for
SENSOR_1, SENSOR_2, and SENSOR_3.

The SENSOR_PULSE and SENSOR_EDGE configurations are variations on SENSOR_TOUCH. The SENSOR_PULSE
configuration counts the times the touch sensor has been pressed, while SENSOR_EDGE counts the transitions from on to off
and from off to on. When you read the value of an input in one of these configurations, the input value is the accumulated
count.

The configurations that keep a count can be reset with a call to ClearSensor () (as shown in Table 4-1):

ClearSensor(expression sensor)
This command resets the current count for the given input to 0.
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Edges and Pulses

If you examine the output of a touch sensor, over time, it looks something like this:

Tauch Sensor Yhse

0 I
T T @
':;;E Fﬁ Fma

The transitions from 0 to 1 and from 1 to 0 are called edges. A transition from 0 to 1 is a rising edge, while a transition from 1
to 0 is a falling edge.

The SENSOR_EDGE configuration counts all edges, rising or falling. SENSOR_PULSE s a little more selective—it counts
rising edges only.

The following example plays a sound after every fourth press on the touch sensor. It begins by configuring input 1 to count
touch presses with the SENSOR_PULSE configuration. Then it enters an endless loop, repeatedly testing the value of input 1.
If it is 4, a sound is played, and the count for input 1 is reset.

task main() {
SetSensor (SENSOR_1, SENSOR_PULSE);
while(true) {
if (SENSOR_1 == 4) {
PlaySound (SOUND_DOWN) ;
ClearSensor(SENSOR_1);
}
}
}

The SetSensor() command actually configures an input's type and mode at the same time. The input type describes the
electrical characteristics of the attached sensor, while the mode determines how the sensor values are interpreted. If you need
finer control over the inputs than you can get from SetSensor (), use the SetSensorType() and SetSensorMode()
commands:
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SetSensorType(expression sensor, const type)

This command specifies the type of sensor attached to the given input. Input types are listed in Table 4-2. This command
specifies how the RCX should treat an input, electrically speaking. The SENSOR_TYPE_LIGHT type, for example, supplies
power to the sensor. (I described this back in Chapter 3.)

Table 4-2. Input Type Constants

Type Constant Sensor Type

SENSOR_TYPE_TOUCH Touch sensor

SENSOR_TYPE_TEMPERATURE Temperature sensor

SENSOR_TYPE_LIGHT Light sensor (powered)

SENSOR_TYPE_ROTATION Rotation sensor (powered)

SetSensorMode(expression sensor, const mode)

Use this command to set the mode of the given input. While the SetSensorType() command is used to specify the

electrical characteristics of the input, the SetSensorMode () command specifies how the input value should be processed.
The modes are listed in Table 4-3.

Table 4-3. Input Mode Constants

Mode Constant Description

SENSOR_MODE_RAW Raw sensor value from 0 to 1023
SENSOR_MODE_BOOL Either 1 or 0

SENSOR_MODE_EDGE Counts transitions from 1 to 0 and vice versa
SENSOR_MODE_PULSE Counts transitions from 1 to 0
SENSOR_MODE_PERCENT Percent from 0 to 100

SENSOR_MODE_CELSIUS Celsius temperature

SENSOR_MODE_FAHRENHEIT Fahrenheit temperature

SENSOR_MODE_ROTATION Shaft angle, 16 counts per full revolution

Internally, input values initially have a raw value from 0 to 1023. Raw values are converted to the input values that your
program sees by a process that depends on the input mode. Three of the modes count events: SENSOR_MODE_EDGE,

SENSOR_MODE_PULSE, and SENSOR_MODE_ROTAT ION. The other modes perform a mathematical scaling operation on
the raw input value.

For example, if the input mode is SENSOR_MODE_PERCENT, the RCX converts the raw value into a percent according to the
equation:
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If you wanted to attach a temperature sensor to input 2 and measure Celsius values, you would do the following:

SetSensorType(SENSOR_2, SENSOR_TYPE_TEMPERATURE);
SetSensorMode (SENSOR_2, SENSOR_MODE_CELSIUS):

The SetSensor() command, which I described first in this section, is a convenient way of specifying both an input type
and an input mode. Table 4-4 shows what types and modes correspond to the configurations that SetSensor () recognizes.

Table 4-4. Input Configurations, Types, and Modes

Input Configuration Input Type Input Mode
SENSOR_TOUCH SENSOR_TYPE_TOUCH SENSOR_MODE_BOOL
SENSOR_PULSE SENSOR_TYPE_TOUCH SENSOR_MODE_PULSE
SENSOR_EDGE SENSOR_TYPE_TOUCH SENSOR_MODE_EDGE
SENSOR_LIGHT SENSOR_TYPE_LIGHT SENSOR_MODE_PERCENT
SENSOR_CELSIUS SENSOR_TYPE_TEMPERATURE SENSOR_MODE_CELSIUS

SENSOR_FAHRENHEIT SENSOR_TYPE_TEMPERATURE SENSOR_MODE_FAHRENHEIT
SENSOR_ROTATION SENSOR_TYPE_ROTATION SENSOR_MODE_ROTATION
Timers

The RCX has four internal timers, numbered 0, 1, 2, and 3. They count in increments of 100 ms, or once every 1/10 seconds.
NQC includes two commands for interacting with the timers:

Timer(const n)
This returns the value of the specified timer, which should be 0, 1, 2, or 3. The number returned is the number of 1/10 seconds
since the timer was cleared.

ClearTimer(const n)
This command resets the value of the given timer to 0. The timer begins counting up again immediately.

Random Numbers

NQC has a simple command for creating random numbers. Random numbers are often useful in robot programming. For
example, a robot that tries to drive around obstacles can easily get stuck in a corner if it always backs up and turns exactly the
same way to get away from an obstacle. A robot that backs up for a random amount of time and turns for a random amount of
time is less likely to get stuck in this way. The command for generating random numbers is:

Random(const n)
This command returns a random number between 0 and n.
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Program Flow

You've seen how to control the RCX's outputs and inputs. But robot programs aren't very interesting unless they can make
decisions and repeat actions. In this section, I'll sketch out NQC's program control commands. NQC supports a standard set of
conditional branches and loops; if you've ever programmed in other languages (particularly C), this will look familiar.

Waiting

Although it might not seem important, NQC includes a command that tells the robot to do nothing for a certain amount of time.
This is often useful if you need to allow some time for something to happen—maybe the robot needs to move forward or turn
for a little while, or you want to give a sound time to play. The command is:

Wait(expression ticks)

This command causes the current task to pause for the supplied hundredths of a second; a call to Wait(100) will pause the
task for a full second. Note that this only applies to the current task—other tasks will continue to execute. I'll talk more about
tasks a little later.

A variation on this theme is the concept of waiting for an event, like a press on a touch sensor, or a certain time of day. The
following command waits for a condition to become true:

until (boolean condition) [statements]
Use this command to wait for the given condition to become true. You could, for example, wait for the value of input 1 to
become 4 like this:*

until (SENSOR_1 == 4);

This particular until has an empty body, which means it won't do anything each time the condition is tested—it simply
waits until the condition is true. The following program beeps every half second until you press a touch sensor on input 1
four times:

task main() {
SetSensor (SENSOR_1, SENSOR_PULSE);
until (SENSOR_1 == 4) {
PlaySound(SOUND_CLICK);
Wait(50);
}
}

* As in C, conditional expressions are very different from evaluations. Use == to compare values and = to assign values.
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Loops

A loop is a series of commands that you want to be executed repeatedly. NQC offers three flavors of loop:

repeat (expression value) [statements]
This command simply repeats the given statements vallue times.

while (boolean condition) [statements]
This loop repeats the supplied statements until condition is no longer true.

do [statements] while (boolean condition)
This loop is similar to whi e but the statements are executed before the condition is tested. The statements will always
be executed at least once, which is not true forawhile loop.

Let's look at an example. The following code plays a sound every half second while a light sensor attached to input 3 sees dark:

while (SENSOR_3 < 35) {
PlaySound(0);
Wait(50);

Notice how curly braces are used to bracket the statements that belong to the whi le loop. If you have only one command in
the body of the whi le, you can omit the braces like this:

while (SENSOR_3 < 35)
Wait(50);

Conditionals
To test a condition, use the i command.

if (boolean condition) [statements]
This command executes the given statements only if condition is true.

if (boolean condition) [statements] else [statements]
This is a simple variation on the basic i command. If the condition is false, the statements after the else are executed.

The following example turns different directions depending on the value of input 2:

SetPower(OUT_A + OUT_C, OUT_FULL);
if (SENSOR 2 < 50) {
Fwd(OUT_A);
Rev(OUT_C);
}
else {
Rev(OUT_A);
Fwd(OUT_C);

}
On(OUT_A + OUT_C);
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Variables

To use a variable, you simply need to declare its name. Only integer variables are supported. Once a variable is declared, you
can assign the variable values and test it in the body of the program.
Here's a simple example:

int i;
task main() {
i = 0;
while (i < 10) {
PlaySound (0);
Wait(5 *1i);

1 += 1;
}
}

This example beeps at successively longer intervals. The variable, 1, is declared in the very first line:
int 1;

Values are assigned to the variable using the = operator:

You can also assign input values to variables, like this (not part of the example):
i = SENSOR_2;

In the following line, one is added to the value in variable i:
i++;

This is really shorthand for the following:

i += 1;

The += operator, in turn, is shorthand for this:
=1+ 1;

Using #define for Constants and Macros

Constant values can be assigned meaningful names using #define. This is a idiom that will be familiar to C programmers.
Here is an example:

#define POWER 5

task main() {

SetPower(OUT_A + OUT_C, POWER);
On(OUT_A + OUT_C);

}

NQC replaces every occurrence of POWER with 5 in your source code before compiling it. Although this may not seem like a
big deal, it is; #deFfine lets you create
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readable names for things that might otherwise be cryptic. It also lets you define things that might need to be adjusted
throughout your program in one place. Your program, for example, might have multiple places where it set the outputs to
power level 5. Instead of explicitly putting 5 all the way through your program, you can use the constant value POWER. If you
later decide you want the power level to be 7, you just have to change the definition of POWER, instead of finding all the places
in your program where the output power is set.

You can also create macros with #define. A macro is a kind of miniature program. Usually you'll define a macro for
something you want to do frequently. The following program uses three macros:

#define forward(power) \
SetPower (OUT_A + OUT_C, power); \
OnFwd(OUT_A + OUT_C);

#define left(power) \
SetPower(OUT_A + OUT_C, power); \
OnRev(OUT_A); OnFwd(OUT_C);

#define right(power) \
SetPower(OUT_A + OUT_C, power); \
OnFwd(OUT_A); OnRev(OUT_C);

task main() {
forward(OUT_FULL);
Wait(100);
left(OUT_HALF);
Wait(100);
right(OUT_HALF);
Wait(100);
Off(OUT_A + OUT_C);

by

The preceding example shows off two features of macros. First, each macro has a parameter, power, that is used in the body
of the macro. Second, the macros are split out to multiple lines by using a backslash.

Sounds and Music

Your RCX can play various prepackaged sounds, using the following command:

PlaySound(const n)

This command plays the sound represented by n. NQC includes constant names for each available sounds, as detailed in Table
4-5.

Table 4-5. RCX System Sounds

Sound Name Description

SOUND_CLICK Short beep

SOUND_DOUBLE_BEEP  Two medium beeps

(table continued on next page)
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(table continued from previous page)

Table 4-5. RCX System Sounds (continued)

Sound Name Description

SOUND_DOWN Descending arpeggio

SOUND_UP Ascending arpeggio

SOUND_LOW_BEEP Long low note

SOUND_FAST_UP Quick ascending arpeggio (same as SOUND_UP but faster)

If you'd prefer to make your own music, you can play individual notes with the PlayTone() command:

PlayTone(const frequency, const duration)

This command plays a note with the given frequency for the specified duration. The frequency is in Hz, so 440 is the pitch of
the A above middle C on a piano. The duration is in hundreths of a second. You can only specify integer values for the
frequency, so don't expect the pitches to be exactly in tune. No one expects your little robot to sound like Pavorotti.

If you want to play a sequence of notes, you have to be a little tricky about it. Each time you call PlayTone(), the command
returns almost immediately, with-out waiting for the sound you've requested to finish playing. The tone you've requested is put
in a queue; the system plays it while the rest of your program executes. If you call PlayTone() repeatedly, the queue will
fill up.

Subsequent calls to PlayTone() will not fit on the queue and the tones you've requested will not be played. The queue is
long enough to hold eight tones. If you want to play a sequence longer than this, you should insert calls to Wait() in your
program so that the queue has time to empty out as notes are played.

The following example demonstrates this technique; it plays part of Quando men vo, from Giacomo Puccini's La Bohéme.

#define SIXTH 12
#define HALF 3#SI1XTH

#define BEAT 2+HALF
#define GRACE 6

task main() {

PlayTone(330, 2*BEAT);
Wait(2+BEAT + 2+SIXTH);
PlayTone(115, SIXTH);
PlayTone(208, SIXTH);
PlayTone(247, SIXTH);
PlayTone(330, SIXTH);
PlayTone(311, 2*BEAT);
Wait(4+SIXTH + 2*BEAT + 2xSIXTH);
PlayTone(115, SIXTH);
PlayTone(208, SIXTH);
PlayTone(247, SIXTH);



70

PlayTone(311, SIXTH);

PlayTone(277, 3*BEAT);

Wait(4+SIXTH + 3*BEAT + HALF);

PlayTone(277, HALF);

PlayTone(311, HALF);

PlayTone(370, GRACE);

PlayTone(330, HALF);

PlayTone(311, HALF); Wait (2*HALF);

PlayTone(277, HALF);

PlayTone(330, HALF);

PlayTone(220, HALF);

PlayTone(220, 2*BEAT);

Wait(GRACE + 5#HALF + 2+BEAT + HALF);

PlayTone(247, HALF);

PlayTone(277, HALF);

PlayTone(330, GRACE);

PlayTone(311, HALF);

PlayTone(277, HALF); Wait (2+HALF);

PlayTone(247, HALF);

PlayTone(311, HALF);

PlayTone(208, HALF);

PlayTone(208, 2*BEAT);

Wait(GRACE + 5+HALF + 2+BEAT + HALF);
}

IR Communication
Your robot can send and receive data over its IR port. In NQC, three commands handle sending and receiving data:

SendMessage(expression m)
This command sends the given byte of data out the IR port.

Message()
Use this command to return the last byte of data received on the IR port.

ClearMessage()
This command clears the incoming message. You may want to do this after responding to an incoming message, to avoid
responding more than once

The Display

Although you can't control the display directly in NQC, you can configure it to some degree:

SelectDisplay(expression v)

This command tells the RCX to show the data source represented by v on its display. The legal values for v are shown in

Table 4-6. You can achieve the same results by pressing the View button on the front of the RCX to show the state of the
inputs or outputs, but the SelectDisplay() command allow you to do this as part of a program.
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Table 4-6. Display Values

Value  Description

0 System clock
1 View Input 1
2 View Input 2
3 View Input 3
4 View Output A
5 View Output B
6 View Output C

You can set the clock in the RCX using the following macro:

SetWatch(const hours, const minutes)
Use this macro to set the current time of the RCX's clock. Unfortunately, only constant values can be used.

The Datalog

With the default firmware, your RCX supports an interesting option called a dtalog. The datalog is simply a list of humbers.
You can create a new datalog and put numbers into it. Datalogs can be uploaded to your PC for analysis or display. The
datalog commands are:

CreateDatalog(const size)
This command tells the RCX to make space for the given number of elements. There is only one datalog, so this command will
erase any previous datalog.

AddToDatalog(expression v)
This command adds a value to the datalog. It's up to you to keep track of how many values are in the datalog. If you try to add
values after the datalog is full, nothing happens.

The following example waits for a touch sensor on input 1 to be pressed. For each press, the value of timer 0 is stored in the
datalog, which holds 20 values in this example:

int count;

task main() {
CreateDatalog(20);
ClearTimer(0);
SetSensor(SENSOR_1, SENSOR_TOUCH);

count = O;

until (count == 20) {
until (SENSOR_1 == 1);
AddToDatalog(Timer(0));
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count++;
unti I (SENSOR_1 == 0);
3
s

When you run this program, you'll notice the RCX shows the status of the datalog on the right side of the display. It looks kind
of like a pie; as you add values to the datalog the pie fills up.

To upload a datalog to the PC, you can use nqc's —datalog option, which simply dumps the values to the screen:

C:\>nqc -datalog
8
12
16
19
23
25
27
29
31
33
39
47
52
56
59
62
65
68
71
75

C:\>
The datalog actually stores the source of every value. If you use a tool like RCX Command Center, it can show you the source
of each value in the datalog. In Chapter 8, Using Spirit.ocx with Visual Basic, I'll show you how to write your own program in
Visual Basic to retrieve the contents of the datalog.

Tasks

NQC gives you powerful control over tasks and subroutines. Each of the RCX's five programs is made up of one or more
tasks. These tasks can execute at the same time, which is another way of saying that the RCX is multitasking.

Tasks are defined using the task command. Every program must have a main task which is executed when the program is
first started. Other tasks must be started and stopped explicitly:
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start taskname
This command starts the named task.

stop taskname
Use this command to stop the named task.

The following program controls its outputs from main and uses another task, sing, to play some music. The sing task has
to be started from main; otherwise, its commands will never be executed.

task main() {
start sing;
while (true) {
OnFwd(OUT_A);
OnRev(OUT_C);
Wait(100);
OnFwd(OUT_C);
OnRev(OUT_A);
Wait(100);
}
¥

#define SIXTH 12
#define HALF 3=SIXTH

#define BEAT 2#HALF
#define GRACE 6

task sing( {
PlayTone(330, 2*BEAT);
Wait(2+BEAT + 2+SIXTH);
PlayTone(115, SIXTH);
PlayTone(208, SIXTH);
PlayTone(247, SIXTH);
PlayTone(330, SIXTH);
PlayTone(311, 2*BEAT);
Wait(4+SIXTH + 2+BEAT + 2%SIXTH);
PlayTone(115, SIXTH);
PlayTone(208, SIXTH);
PlayTone(247, SIXTH);
PlayTone(311, SIXTH);
PlayTone(277, 3*BEAT);
Wait(4+SIXTH + 3*BEAT + HALF);
PlayTone(277, HALF);
PlayTone(311, HALF);
PlayTone(370, GRACE);
PlayTone(330, HALF);
PlayTone(311, HALF); Wait (2*HALF);
PlayTone(277, HALF);
PlayTone(330, HALF);
PlayTone(220, HALF);
PlayTone(220, 2*BEAT);
Wait(GRACE + 5#HALF + 2+BEAT + HALF);
PlayTone(247, HALF);
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PlayTone(277, HALF);
PlayTone(330, GRACE);
PlayTone(311, HALF);
PlayTone(277, HALF); Wait (2*HALF);
PlayTone(247, HALF);
PlayTone(311, HALF);
PlayTone(208, HALF);
PlayTone(208, 2*BEAT);
Wait(GRACE + 5#HALF + 2+BEAT + HALF);
stop main;
Float(OUT_A + OUT_C);
}

When the sing task is done playing music, it stops the main task with the stop command. Then it turns the motors off.
The order is critical. If we turned off the motors and then stopped the maiin task, it's possible that main would turn on the
motors again before it was stopped. Multithreaded programming is powerful but tricky.

Each RCX program can have up to ten tasks
Subroutines

A subroutine is a group of commands that you will execute frequently. Subroutines offer a way to clean up your source code
and reduce the size of compiled programs. Subroutines in NQC are defined in much the same way as tasks. The following
program has one subroutine, called wiggle (). The main task shows how this subroutine is called:

task main() {
wiggle(Q);
Wait(200);
wiggleQ);

sub wiggle(Q {
OnFwd(OUT_A);
OnRev(OUT_C);
Wait(20);
OnFwd(OUT_C);
OnRev(OUT_A);
Wait(20);
Off(OUT_A + OUT_C);

}

Subroutines execute as part of the task from which they are called. It works just as if the call towiggle() was replaced with
the commands it contains. The nice thing about subroutines is that their code is defined once, but you can call it as many times
as you like from other places in your program. You could accomplish the same sorts of things with subroutines and macros, but
subroutines are more
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efficient because the code is just compiled once. With a macro, the entire macro body would be placed at each point where it
was called.

The RCX imposes three crippling restrictions on subroutines. First, you can't call another subroutine from within a subroutine.
As a consequence, a subroutine also cannot call itself. Second, you can't pass parameters to a subroutine or get a return value.
Third, no more than eight subroutines can be defined for a single program. These limitations are imposed by the RCX's
bytecode interpreter, which is defined in the firmware. To get around restrictions like these, you'll need to use a different
firmware, like legOS or pbForth.

Inlines

NQC does offer another interesting option, the inline subroutine. In source code, it looks a lot like a subroutine except with a
C-style return type (always void):

void wiggle() {

}

OnFwd(OUT_A);
OnRev(OUT_C);
Wait(20);
OnFwd(OUT_C);
OnRev(OUT_A);
Wait(20);

OfFF(OUT_A + OUT_C);

Inlines are called the same way as subroutines. The compiler actually places the code of the inline wherever it is called, almost
like a macro or constant definition. This actually makes inlines appear a little more capable than subroutines: they can call
other inlines or even subroutines. In NQC version 2.0, for example, you can define inlines with a parameter, like this:

void wiggleTime(int waitTime) {

}

OnFwd(OUT_A);
OnRev(OUT_C);
Wait(waitTime);
OnFwd(OUT_C);
OnRev(OUT_A);
Wait(waitTime);
OffF(OUT_A + OUT_C);

You can have more than one argument, if you wish. Just remember that inlines are really an example of syntactic sugar,
something that makes your source code look pretty but doesn't necessarily result in better efficiency.

Arguments to inlines can be passed in four different ways. Table 4-7 summarizes the options.
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Table 4-7. Argument Passing for Inlines

Type By Value or By Reference? Temporary Variable Used?
int by value yes

const int by value no

int& by reference no

const int& by reference no

If you pass int by value, the parameter's value is copied into a temporary variable (from the pool of 31) and used in the
inline. const int passes by value, but the value must be a constant at compile time.

If you pass by reference, the variable that is passed in can actually be modified in the inline. In this code, for example, a
count variable is incremented in the body of an inline:

task main() {
int count = O;
while (count <= 5) {
PlaySound(SOUND_CLICK);
Wait(count *20);
increment(count);

}

}

void increment(int& n) {
n++;

}

The last option, const int &, is used when you want to pass a value that should not be changed. This is great for things
like Sensor () and Timer (). For example, you might have an inline like this:

void forward(const int& power) {
SetPower(OUT_A + OUT_C, power);

OnFwd(OUT_A + OUT_C);
}

With this inline, you can do normal things, like passing a variable or constant:

int power = 6;
forward(power) ;

forward(OUT_HALF);
But you can also do trickier stuff, like this:
forward(Message());

You can basically accomplish the same stuff with int parameters and const int& parameters. The advantage of const
inté& is that no temporary variables are used.
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Trusty Revisited

You've seen some small examples of NQC code. Now I'll show you how Trusty can be programmed using NQC. You'll be able
to compare the NQC programs to the RCX Code programs from Chapter 3.

New Brains For Trusty

As you may recall, we used a counter to keep track of Trusty's state. The counter value was used to decide if Trusty would turn
left or right the next time the light sensor left the black line. In NQC, we can store Trusty's state in a real variable. Plus, we'll
use symbolic constants to represent state values.

int state;

#define LEFT O
#define RIGHT 1

Trusty's program has two tasks. The first task (main) tests the value of the light sensor. If it is over the black line, the robot is
set to move forward:

while (true) {
if (SENSOR_2 < DARK2)
OnFwd(OUT_A + OUT_C);
}

The DARK2 and POWER constants are determined using #defines; this means it's easy to fiddle with their values, and our
program is easy to read.

The second task takes care of things when the light sensor leaves the black line. Whenever the robot leaves the line, the
toggle() subroutine is called. toggle() starts the robot turning. Then we wait a little while; if the robot is still not on
the black line, we call toggle() again to turn back the other way:

task lightWatcher() {
while (true) {
if (SENSOR_2 > LIGHT2) {
toggle();
Wait(TIMEOUT) ;
if (SENSOR_2 > LIGHT2) {
toggle();
Wait(TIMEOUT = 2);
}
}
}
}

The toggle() subroutine performs two important functions. First, it makes Trusty turn, based on the value of the state
variable. Second, it updates the value of state; if it was RIGHT, it will be LEFT, and vice versa.
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Here is the whole program:
int state;

#define LEFT O
#define RIGHT 1

#define DARK2 35
#define LIGHT2 40

#define POWER 7
#define TIMEOUT 50

task main() {
state = LEFT;
SetSensor(SENSOR_2, SENSOR_LIGHT);
SetPower(OUT_A + OUT_C, POWER);
start lightWatcher;
while (true) {
it (SENSOR_2 < DARK2)
OnFwd(OUT_A + OUT_C);
}
¥

task lightWatcher() {
while (true) {
if (SENSOR_2 > LIGHT2) {
toggle();
Wait(TIMEOUT);
if (SENSOR 2 > LIGHT2) {
toggle();
Wait(TIMEOUT = 2);
}
}
}
}

sub toggle() {
if (state == LEFT) {
OnRev(OUT_A);
OnFwd(OUT_C);
state = RIGHT;

}

else {
OnFwd(OUT_A);
OnRev(OUT_C);
state = LEFT;

}

}

The main task performs three important initializations which | haven't mentioned yet. First, main initializes the value of the
state variable. It just uses LEFT
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arbitrarily. Next, main configures input 2 for a light sensor. Finally, it starts the 1 ightWatcher task.
Using Two Light Sensors

In this section, I'll present an NQC program that works with the two light sensor version of Trusty. As you may recall,
programming this robot in RCX Code was cumbersome.

The programming is a lot cleaner in NQC. It's pretty straightforward to translate Table 3-1 into source code. The basic strategy
is to use a state variable to represent the four states of the robot, represented by the four lines of Table 3-1. Then one task
examines the sensors and updates the state variable. Another task examines the state variable and sets the motors appropriately.

The four possible states are represented by constant values. A fifth value, INDETERMINATE, is used when one or both of the
light sensor values is not in the dark or light range:

#define BOTH_ON 3
#define LEFT_ON 1
#define RIGHT_ON 2
#define BOTH_OFF O
#define INDETERMINATE 255

The main task simply tests the value of the state variable and sets the motors accordingly. No action is taken for
BOTH_OFF and INDETERMINATE:

while (true) {
if (state == BOTH_ON)
OnFwd(OUT_A + OUT_C);
else if (state == LEFT_ON) {
OFF(OUT_A);
OnFwd(OUT_C);
}
else If (state == RIGHT_ON) {
OFF(OUT_C);
OnFwd(OUT_A);
}
}

A separate task, watcher, examines the light sensor values and sets the state variable. Here is the entire source code for
the two sensor version of Trusty:

int state;

// "ON" refers to whether the light
// sensor is on the line. If it is,
// the light sensor is seeing black.
#define BOTH_ON 3
#define LEFT_ON 1



#define RIGHT_ON 2
#define BOTH_OFF O
#define INDETERMINATE 255

// Thresholds for light and dark.
#define DARK2 35
#define LIGHT2 40
#define DARK3 40
#define LIGHT3 45

#define POWER 4

task main() {
initialize();
while (true) {
if (state == BOTH_ON)
OnFwd(OUT_A + OUT_C);
else if (state == LEFT_ON) {
Off(OUT_A);
OnFwd(OUT_C);

Y
else if (state == RIGHT_ON) {
OFF(OUT_OC)
OnFwd(OUT_A);
b
}
¥

sub initialize() {
SetSensor (SENSOR_2, SENSOR_LIGHT);
SetSensor (SENSOR_3, SENSOR_LIGHT);
SetPower(OUT_A + OUT_C, POWER);
OnFwd(OUT_A + OUT_C);
start watcher;

}

task watcher() {
while (true) {
if (SENSOR_2 < DARK2) {
if (SENSOR_3 < DARK3) state = BOTH_ON;
else 1T (SENSOR_3 > LIGHT3) state = LEFT_ON;
else state = INDETERMINATE;

}

else 1T (SENSOR_2 > LIGHT2) {
ifT (SENSOR_3 < DARK3) state = RIGHT_ON;
else if (SENSOR_3 > LIGHT3) state = BOTH_OFF;
else state = INDETERMINATE;

}
else state = INDETERMINATE;
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Online Resources
NQC—Not Quite C

http://www.enteract.com/~dbaum/lego/ngc/

This is the official site for NQC. You can download the current release, read the documentation, or browse a FAQ. Dave Baum
has packed a lot of useful information into this site, including such gems as how to create a cable to connect your Macintosh to
the IR tower. This site also includes the definitive NQC documentation.

Lego Robots: RCX Command Center

http://www.cs.uu.nl/people/markov/lego/rexcc/

RCX Command Center (RcxCC), developed by Mark Overmars, is built on top of NQC. It's a Windows application that
provides a friendly graphic interface to the features of NQC. It includes a syntax-colored program editor, real-time control of
the RCX, utilities for making your RCX play music, and useful help files. I highly recommend this application.

Lego Robot Pages [NQC Tutorial]

http://www.cs.uu.nl/people/markov/lego/
Mark Overmars, creator of RcxCC (the previous entry), has written a detailed introduction to NQC. It's available off his main
web page as PDF, Word97, PostScript, or RTF. This document is a gentle and thorough introduction to NQC.

Kevin Saddi's NQC Reference Page

http://homel.gte.net/ksaddi/mindstorms/ngc-reference.html
This page provides a distilled view of NQC. It's very handy when you can't remember the input type constants, or you'd like to
see NQC's commands organized by function. Single-line code samples are also included.

Hitachi Single-Chip Microcomputer H8/3297 Series...

http://semiconductor.hitachi.com/products/pdf/h33th014d2.pdf

This PDF document has all the crufty details on the Hitachi H8 that forms the heart of the RCX. The specific model is the
H8/3292, which is covered in the manual. This information is not for casual browsing—you probably won't need to look here
unless you start writing your own firmware. (Hitachi's web site is a little flakey. If you're having trouble with this URL, try
starting at the URL http://semiconductor.hitachi.com/h8/ and searching for the H8/3292.)
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5
Minerva, a Robot with an Arm

In this chapter:

* Building Instructions
 Programming

« Directional Transmission
* Pulleys

» Mechanical Design

» Two Sensors, One Input
* Where Am 1?

» Online Resources

Minerva is a mechanical marvel. Although she has the same wheel layout as Trusty, Minerva's drivetrain is radically different.
In addition, she has a simple arm with a grabber, which allows her to pick up and drop small objects. Best of all, Minerva can
be built with the pieces from the RIS alone. The grabber arm is operated by a single motor. The other motor powers the
drivetrain, which moves the robot forward or spins it in place. Figure 5-1 shows a picture of this remarkable robot.

Figure 5-1.
Minerva, a mechanical masterpiece

When you run Minerva's program, she drives straight forward. When the light sensor (mounted on the end of the grabber arm)
sees something dark, Minerva stops driving. She uses the arm to try to pick up whatever the light sensor saw.
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Then she turns around and drives back to her starting point. She puts down whatever she's carrying, turns around and is ready
to start again.

Building Instructions

If there's one lesson to be learned from Minerva, it is that mechanical design is hard. | had to build this robot five times to get it
right. And | don't mean | moved a few pieces around—I actually disassembled and rebuilt the robot that many times. The
drivetrain alone took four tries before I got it right.=

Directional Transmission and Drivetrain

The long gray piece in Step 1 swivels freely on the shaft.

@3 Pora

* Minerva uses almost all of the gears that come with RIS 1.0. Unfortunately, RIS 1.5 comes with fewer gears (five 12t gears
instead of eight). To get the extra gears you'll need for Minerva, you can order the #5229 Gears & Differentials parts pack from
the LEGO Shop At Home Service, (800) 453-4652. Cost is $4.50 including shipping.
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The 8u shaft in Step 2 is loose and may fall out. It will be anchored in the next step. The 6u beam, like the long gray piece from
Step 1, swivels freely on its shaft.

| s
| 4




Make sure the bump on the long pin is up against the 4u beam.

—

Before you put all of Step 7 together, make sure the swiveling parts from Steps 1 and 2 are pointing up, as shown.

85



IS 10U

86



87



88

Step 11 is tricky. You'll need to slide the 8u shaft into the structure, adding bushings and gears as you go. The swiveling pieces
from Steps 1 and 2 are now anchored.

o

s e O |
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Step 14 is similar to Step 11; take a deep breath and go slowly.
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Grabber Arm
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In Step 17, the half-bushings go between the center block and the cams (pear-shaped pieces).
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Structural Support
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Idler Wheel
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Drive Motor

While you're putting the motor in, hold on to the worm gear so it doesn't slip off.
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Grabber Arm Motor
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RCX
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Attach the RCX on both sides as shown.
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Wiring

First, attach the left motor, which powers the arm, to output A. Then use a wire brick to attach the right motor (the drive motor)
to output C.
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Attach the light sensor to the front of the arm. The wire attaches to Minerva's side as shown.

Next, use a wire brick to attach the touch sensor to the light sensor wire. Then use a longer wire brick to attach both wires to
input 3.

=
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Programming
Minerva's basic program is straightforward:

find something to pick up
bring it back to the starting point

The program assumes that the objects to pick up will be dark and that the surface Minerva is driving on is light. To return to
the starting point, Minerva measures how long it has to drive forward to pick something up. Then it turns around and drives
back for the same amount of time. Here's a slightly exploded version of Minerva's program:

drive forward until the light sensor sees something dark
pick it up with the grabber

turn around

drive back to the starting point

drop whatever®s in the grabber

I've written Minerva's program in NQC (see Chapter 4, Not Quite C). You could create a program in RCX Code (the
environment that comes with RIS), but you wouldn't be able to implement some key features. In particular, Minerva's ability to
drive back just as far as she drove forward is crucial. There's no way to do this in RCX Code. Minerva's program also does
some sensor calibration that would also be impossible in RCX Code.

Here's the whole program:

#define TURNAROUND_TIME 425

Iint 1;

task main() {
// Arm limit sensor and grabber light sensor.
SetSensor (SENSOR_3, SENSOR_LIGHT);
SetPower(OUT_A + OUT_C, OUT_FULL);

calibrate() ;

i =0;

while (i < 5) {
retrieve();

1 += 1;

3
OFF(OUT_A + OUT C):
b

#define NUMBER_OF SAMPLES 10
int runningTotal;
int threshold;
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sub calibrate() {
// Take an average light reading.
i =0;
runningTotal = O;
while (i < NUMBER_OF_SAMPLES) {
runningTotal += SENSOR_3;
Wait(10);
i +=1;

}
threshold = runningTotal / NUMBER_OF_ SAMPLES;
}

void grab() {
// Run the motor until we hit the limit switch.
OnFwd(OUT_A);
until (SENSOR_3 == 100);
// Back off from the switch.
OnRev(OUT_A);
until (SENSOR_3 != 100);
OFF(OUT_A);

void release() {
// Run the motor until we hit the limit switch.
OnRev(OUT_A);
until (SENSOR_3 == 100);
// Back off from the switch.
OnFwd(OUT_A);
until (SENSOR_3 != 100);
OFfF(OUT_A);
3

int returnTime;

sub retrieve() {
// Drive forward until we see something.
OnFwd(OUT_C);
ClearTimer(0);
until (SENSOR_3 < threshold - 3);
Wait(20); // Move up on it a little.
returnTime = Timer(0);
OFffF(OUT_C);

grab(Q);

// Turn around (roughly).
OnRev(OUT_C);
Wai t(TURNAROUND_TIME) ;

// Drive back.

OnFwd(OUT_C);

ClearTimer(0);

until (Timer(0) >= returnTime);
Off (OUT_O);
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release();

// Turn around.

OnRev(OUT_C);

Wait(TURNAROUND_TIME);
¥

Let's look at the simple parts first. The grab() and release() inline subroutines take care of the grabber arm. All they
do is run the arm motor in one direction until the limit sensor is pressed. Running the motor forward causes the arm to descend,
the grabber to close, and the arm to lift again. Running the motor in reverse makes the arm descend, the grabber open, and the
arm lift again. The mechanics of the arm take care of everything, as I'll explain later in the chapter. All we have to do is wait
for the arm to lift, which presses the switch when it's finished. You might have noticed that the light sensor and the touch
sensor are both attached to the same input. I'll talk about how this works later. For now, just be aware that it's necessary for
grab() and release() tomove away from the touch sensor to use the light sensor.

The calibrate() subroutine examines the values coming from Minerva's light sensor. It computes an average value,
which is stored in the variable threshold. The retrieve() subroutine uses this value to figure out if it's looking at an
object that should be picked up. Specifically, it tests if the light sensor value is a little less than the original average:

until (SENSOR_3 < threshold - 3);

Calibrating the sensor in this way frees us from hard-coding a light sensor threshold value into Minerva's program. It also
makes Minerva better able to deal with different lighting conditions.

The retrieve() subroutine is the heart of Minerva's program. It drives forward (by turning output C on) until it finds
something dark to pick up. While it's driving forward, timer 0 is ticking away, measuring how long it takes until something is
found:

OnFwd(OUT_C);
ClearTimer(0);
until (SENSOR_3 < threshold - 3);

Once a dark object is found, Minerva moves forward a little farther to position the grabber over the object. She records the
forward movement time for the return trip. Finally, Minerva turns off output C to stop the robot's forward motion:

Wait(20); // Move up on it a little.
returnTime = Timer(0);
OFF(OUT_C);

Having found something interesting, Minerva picks it up:

grab(Q);
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Now she wants to turn around and return to her starting point. To turn around, she simply reverses the direction of output C for
the duration given by TURNAROUND_T IME:

OnRev(OUT_C);
Wait(TURNAROUND_TIME);

Now she drives back to her starting point, using the returnTime value, which was saved earlier:

OnFwd(OUT_C);

ClearTimer(0);

until (Timer(0) >= returnTime);
Off(OUT_C);

Finally, the retrieve() subroutine drops the object that Minerva's carrying and turns around again:
release();

OnRev(OUT_C);
Wai t(TURNAROUND_TIME);

The main task configures Minerva's inputs and then calls retrieve() five times in a row. If everything works perfectly,
which it probably won't, Minerva finds five dark objects and brings them back to her starting point. In the next section, I'll
explore some of the things that can confuse Minerva.

Try It Out!

To take Minerva out for a spin, | suggest using the back of the Test Pad that comes with RIS. It acts as a mostly uniform bright
surface. Put the Test Pad on a hard, flat surface. Different surfaces will give you different results. In particular, you may need
to adjust the TURNAROUND_TIME constant to make Minerva spin around 180°. Scatter some black blocks on the back of the
Test Pad and start Minerva running. If you're lucky, she'll go pick up some blocks and bring them back to her starting point.

There are quite a few things that can go wrong:

1. Minerva may not "see" the dark blocks to pick them up. | found that | got better results after the RCX was on for a minute or
two—the sensor values depend on the battery power, which stabilizes after the RCX is on for a while.

2. Minerva's wheels may stumble on the blocks, throwing her off course. Instead of driving and returning on a straight line,
Minerva will now be pointing in a different direction. She probably won't bring blocks back to her original starting point.

3. The grabber doesn't always pick up the block Minerva is aiming for.
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Some of the challenges Minerva faces are discussed later in this chapter. First, I'm going to talk about Minerva's amazing
mechanical features.

Directional Transmission
Minerva uses a single motor to drive forward and to turn. This mechanical magic is accomplished with the aid of a directional

transmission. A directional transmission does different things depending on whether you run a motor shaft forward or in
reverse. Functionally, you can think of it as a box with an input shaft and two output shafts, as shown in Figure 5-2.

inpat shaft

Directional ¥ansmission

oulpuy shaft ol shall

Figure 5-2.
A directional transmission will drive one of two output shafts

If you rotate the input shaft clockwise, one of the output shafts will rotate. If you rotate the input shaft counterclockwise, the
other output shaft rotates.

There are at least two ways to build a directional transmission with the parts included in your RIS. The first design uses a pair
of gears on a swinging arm. The second design uses a worm gear. Minerva uses the worm gear design, but I'll briefly explain
the fundamental ideas of both types of directional transmission.

Swing-Arm Design

A cutaway view of a swing-arm directional transmission is shown in Figure 5-3.

The bottom shaft is the input. A 24t gear mounted on this shaft drives another gear that is mounted on a beam that rotates on
the input shaft. Depending on which direction the input shaft turns, the beam swings to the left or right; the top gear on the
beam engages the gear on either the far left or far right. These gears are on the output shafts. You could create variations on

this configuration, using different combinations of gears, but the idea is the same.

This design relies on friction to swing the arm in the right direction. In an ideal, frictionless world, this design would never
work.
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Figure 5-3.
Cutaway view of a swing-arm directional transmission

Worm Gear Design

Minerva's drivetrain is based on a worm gear directional transmission. The basic design of the worm gear directional
transmission is quite simple. A cutaway view is shown in Figure 5-4.

oulput shafl—|

Figure 5-4.
Cutaway view of a worm gear directional transmission

The input shaft drives the worm gear, which slides freely along the shaft. In fact, it's easier for the worm gear to slide on its
shaft than to turn one of the output shafts. Depending on which way the input shaft turns, the worm gear slides as far as it can

in one direction or the other. When it can't slide any more (because it's hit a beam), the worm gear will turn one of the output
shafts.

Minerva actually uses a modified version of this design with four outputs. The worm gear engages two outputs at a time, as
shown in Figure 5-5.
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Figure 5-5.
Minerva's directional transmission has four outputs

The basic directional transmission designs I've described are quite simple. Try to use one of these to drive a robot, however,
and things get a little more complicated. Minerva, as you've seen, is a gear hog. The drivetrain alone sucks up all of the 8t
gears, all of the 16t gears, and most of the 24t gears that come with RIS. If you decide directional transmissions are useful for
your robot, you may want to have some extra gears handy from other sets.

Pulleys

Pulleys are an interesting alternative to gears. A pulley is simply a slotted wheel, like the ones used with outdoor clotheslines.
The RIS comes with a handful of rubber bands that can be used to link pulleys together. This type of linkage is similar to using
gears to transmit motion from one shaft to another. By using pulleys of different sizes, you can achieve the same power and
speed tradeoffs as with gears. The only difference is that pulleys connected by a band turn in the same direction, while two
gears meshed together turn in opposite directions. If you twist the band around once, you can get the pulleys to move in
opposite directions, just as with gears. However, a twisted band will rub on itself, which may significantly reduce its life span.
Pulleys also give you the flexibility to transmit motion between two perpendicular shafts. Figure 5-6 shows three different
pulley arrangements.

One of the early designs of Minerva's drivetrain used pulleys to replace several gears. Although pulleys are useful for light-
duty work, like the grabber arm, they don't work very well for drivetrains. Unless the band that connects two pulleys is very
tight, it's likely to slip if it's used to do heavy work, like moving an entire robot.
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Figure 5-6.
Linking shafts with pulleys and a band

On the other hand, you can use pulley slippage to your advantage. If part of your robot should have a limited range of motion,
like a trap door that opens and closes, a pulley can be very useful. You can run the motor for longer than it actually takes to
open or close the door—when the door has gone as far as it can go, the pulley band will simply slip.

In the final design, a pair of pulleys is used to link the arm motor to the arm worm gear shaft. You can see this arrangement on
the top of Minerva—ijust look for the white band. Note that this band does not slip, in general. Its motion is geared down so far
that the arm is likely to break apart before the pulley starts to slip.

Mechanical Design

Several thorny mechanical issues complicate the design and construction of Minerva. In this section, I'll talk about some of
Minerva's more interesting mechanical features.

Grabber Arm

Minerva's grabber arm is operated by a single motor. If you run the motor in one direction, the arm lowers, the grabber grabs,
and the arm rises again. Run the motor in the opposite direction and the arm lowers, the grabber relaxes, and the arm rises once
again. This mechanical sorcery is based on the FetchBot, created by Ben Williamson (see the "Online Resources™ section for
details). A cutaway view of the arm is shown in Figure 5-7.

The entire arm is controlled by the main drive shaft. A motor linked to a worm gear drives the 40t gear on the main drive shaft.
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main drive shaft

Figure 5-7.
Cutaway view of the grabber arm

The key to understanding how the arm works is that it moves up and down for two separate reasons:
1. The cams on the lower shaft push the arm up and let it move back down.

2. When the grabber grips something, the geartrain that controls the grabber locks up. When the main drive shaft continues
turning, it moves the entire arm up and down.

Suppose Minerva begins with her arm raised and the grabber open. When the main drive shaft starts turning counterclockwise,
the lower shaft turns clockwise. The cams rotate down, allowing the arm to lower. (At the same time, the rotation of the main
shaft closes the grabber a little bit.) As the main drive shaft continues turning, the grabber closes. When it is fully closed, either
on an object or itself, the grabber geartrain becomes stationary with respect to the arm. The main drive shaft keeps rotating,
raising the entire arm with the closed grabber.

A single touch sensor can be used to detect when the arm is fully raised, either with the gripper open or the gripper closed.
Picking up an object is simply a matter of running the motor in the right direction and waiting for the touch sensor to be
pressed. Releasing an object is just as simple.

The "fingers" of the gripper need to pick up objects. Ideally, they should be slightly pliable and tacky rather than smooth.
Minerva uses two of the rubber wheels as fingers, which work reasonably well.
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The arm also needs to be strong, as its parts are under a fair amount of stress. You may notice, as you use Minerva, that the
pieces of the arm loosen up after time. You could make the arm stronger, but it would also be bulkier. See Ben Williamson's
FetchBot (in the "Online Resources" section) for the original arm design, which is stronger and larger than Minerva's.

Balance

One of the fundamental issues Minerva faces is balance. The grabber arm sticks out in front of Minerva. Without some kind of
counterbalance, Minerva falls right on her face. One way to fix this is to move the drive wheels closer to the front of Minerva.
In this case, however, the directional transmission and the grabber arm gearing would not have enough space to coexist.
Minerva solves the problem of balance by mounting the RCX near the back of the robot. The weight of the RCX (the batteries,
mostly) more than compensates for the weight of the grabber arm.

Drivetrain

Although the directional transmission is relatively simple, Minerva's drivetrain is a little more complex. When the motor runs
one way, the two drive wheels both turn forward. When the motor runs the other way, the drive wheels turn in opposite
directions, causing Minerva to spin in place. Minerva uses a fairly complex system of gears to translate the outputs of the
directional transmission into the correct wheel movements. Only one of the outputs drives a wheel directly.

Two Sensors, One Input

You might think that the RCX's three inputs limit you to designing robots with only three sensors. In this section, I'll describe
one way to move beyond the three-input barrier: attaching more than one sensor to a single input. Minerva, for example, has a
touch sensor and a light sensor attached to a single input. If you have ambitious plans (and parts) for expanding Minerva,
you've got two inputs, not just one, with which to play.

There are two common variations on the theme of attaching multiple sensors to one input, both of which are discussed here.

Multiple Touch Sensors

The first and easiest possibility is to attach multiple touch sensors to a single input. With the input configured for a touch
sensor, a press on any one of the attached sensors will produce a value of 1 on the input.
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This might be useful, for example, in a robot with a "skirt" touch sensor that runs around the entire robot. Different parts of the
skirt might trigger different touch sensors. By putting all the skirt sensors on one input, you could easily detect any collision
with the skirt, anywhere around the robot.

The downside, of course, is that you don't know which touch sensor is being pressed. There's a way around this problem, of
course, but it involves using a soldering iron. I'll explain how it works in Chapter 11, Make Your Own Sensors.

Light and Touch

Minerva uses a light sensor and a touch sensor on one input. The input is configured for a light sensor. When the touch sensor
is not pressed, it has no effect on the light sensor reading. When the touch sensor is pressed, the input gives a value of 100; the
current value of the light sensor becomes irrelevant.

Usually the light sensor shows values in the range of 30 to 70, roughly speaking; the readings depend on the lighting
conditions around the sensor. You'll rarely see a real light sensor reading of 100 unless you point some very bright light
directly into the sensor. In general, it's safe to assume that readings of 100 correspond to the touch sensor being pressed.

Minerva's program must account for the two sensors being attached to one input. In particular, the touch sensor must normally
be not pressed. In the grab() and release() subroutines, for example, the grabber arm motor is run forward or in
reverse until the touch sensor is triggered. Then the motor must be run the other way briefly so the touch sensor is no longer
pressed. This allows Minerva to observe values from the light sensor.

Where Am 1?

You've probably discovered that Minerva gets lost easily. If she drives over anything, or if her wheels slip in any way, she can't
find her way back to her starting point. Minerva, basically, is trying to answer the question "Where am 1?" Unfortunately, she
can't answer it very well.

Timing

Minerva uses a fairly unreliable technique, called timing, to determine her current position. She moves forward for some
amount of time until she finds something to pick up. Then she turns around by spinning in place for a length of time defined in
TURNAROUND_TIME. Then she drives back to her starting point by moving forward for as much time as she moved forward
before. If Minerva drives forward for
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five seconds, she assumes she can reach her starting point by turning around and driving forward for five seconds again.

Timing is not a very accurate technique. Variations in battery power, the material Minerva is driving on, and other
unpredictable factors will mess things up. Turning around, in particular, is not very reliable: Minerva almost never heads back
precisely the way she came. Minerva's directional transmission makes things more complicated, as well, because it takes a
little time for the transmission to shift from one direction to the other. This affects the timing of Minerva's forward motion, as
the shifting time is also recorded.

Rotation Sensors

Ideally, Minerva should have some feedback about how far she's traveled and how far she's turned. You could, for example,
buy some rotation sensors and attach them to inputs 1 and 2. If you put the rotation sensors on Minerva's two main wheels, you
would know exactly how many times, and in what direction, each wheel had turned. By assuming that the wheels didn't slip on
the ground, you could get a very accurate idea of where Minerva was, relative to her starting position. You wouldn't have to
worry about the directional transmission any more.

Wheels do slip, sadly, so unexpected terrain like driving over blocks would likely throw this method of navigation off as well.
Still, it's a step up from timing.

Navigation Tools
There are several generic navigation tools that you might consider attaching to your RCX to answer the question of location:

1. A magnetic compass would give a good indication of what direction Minerva was pointing. Feedback from the compass
reading would allow Minerva to turn around with much better accuracy. The interface between the compass and Minerva's
inputs, of course, is entirely up to you and would probably require a bit of electronics hacking.

2. Triangulation is a commonly used navigation technique. Suppose you mounted three radio transmitters around the area
where Minerva was going to drive. By listening to the three signals, Minerva could determine her position relative to the radio
transmitters. Again, this is pretty high-tech, serious electronics.*

* An obvious choice might be the Global Positioning System (GPS). Unfortunately, garden variety GPS is only accurate to 100
m or so. Unless you're the US military, or willing to spend some serious money, you won't get accurate enough information
from GPS to help your robot navigate.
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Why Should I Care?

Before you tear your hair out trying to get a GPS unit to talk to your RCX, think about what you're trying to do. Do you really
need to know precisely where the robot is? Using precise positioning and having the robot build a map of its world are both
techniques of the big-metal artificial intelligence (Al) approach to mobile robotics. The RCX is not very powerful. If you just
want to avoid table legs and walls, build a bumper and back up when you hit something. After all, you probably won't be able
to build a map of the world in your RCX, no matter what programming environment you use.

Online Resources
Directional Transmission

http://www.sonic.net/~rci/transmission.htm
This page, created by Michael Powell, describes the basic principle of the directional transmission with detailed photographs.

Ben's Lego Creations

http://www.pobox.com/~benw/lego/
This page contains some fascinating robots created by Ben Williamson. A modified version of Ben's FetchBot arm was used as
Minerva's grabber arm. These robots are mechanically superlative; check them out.

"Where am 1?"—Systems and Methods for Mobile Robot Positioning

http://www-personal.engin.umich.edu/~johannb/position.htm

Johann Borenstein's book about mobile robot navigation can be downloaded from this site as an Adobe Acrobat PDF file. The
whole book is 13 Mb, which is a little hefty for my dial-up Internet connection, but a free book is a free book. It's gotten good
reviews from the MINDSTORMS online community.
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6

pbFORTH
In this chapter:

* Replacement Firmware

* pbFORTH Overview

* About Forth

* pbFORTH Words

» An Expensive Thermometer
* Minerva Revisited

* Debugging

» Online Resources

In Chapter 4, Not Quite C, | described how NQC allows you to get around many of the limitations of RCX Code, the
programming environment that comes with RIS. Even NQC, however, has its limitations. Even though you finally have the use
of variables, you're limited to 31 of them. Furthermore, you can't put your own data on the display, which would be very useful
for debugging. In this chapter, I'll talk about ppFORTH (Programmable Brick Forth), a piece of software that gives greater
access to the memory, display, and other resources in the RCX. ppFORTH allows you to program your robots using Forth, an
established language that is suitable for small systems like the RCX.

This chapter will get you up and running with ppFORTH by covering the following topics:

* An overview of the ppFORTH software architecture

* Obtaining and installing pbFORTH

* A brief description of Forth

« Listings of RCX-specific words defined in ppFORTH

» Example programs

Replacement Firmware

Later, in Chapter 10, legOS, I'll talk about another popular programming environment. legOS and pbFORTH are both
replacement firmware, which means they actually replace the software on the RCX. This is the next level of power and

complexity beyond NQC. If you're considering this move, which should you choose? It all depends, of course, on what you're
trying to do and what programming you've already done. Table 6-1 compares ppFORTH and legOS in several important areas.
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Table 6-1. ppFORTH and legOS Compared, Briefy

pbFORTH legOS
Programming language Forth CorC++
Interactive? Yes No
Development OS Any Unix, Linux, or similar
Programming tool Terminal emulator C compiler, either gcc or egcs

As a development environment, ppFORTH excels in two areas:

startup cost

There's a certain amount of pain, the startup cost, associated with learning and using a new development environment. For
pbFORTH, this startup cost is low. The software tools you'll need on the PC side are simple and commonly available. Compare
this with legOS, which requires some heavy-duty development tools that can be tricky to install and configure. ppFORTH is
very openended; all you need is a terminal emulator or some other simple software that talks to the RCX's IR port. You can
interact with ppFORTH from a Windows terminal emulator, a Java application running on Linux, or even a custom-developed
application on a PalmPilot.

development cycle

A development cycle is the sequence of steps you need to follow to write and run a program. With ppFORTH, this sequence of
steps is farily short. Basically, you upload or type your program into ppFORTH via a terminal emulator running on your PC.
The program is immediately available to run. With legOS, you need to compile the program on your PC and download the
whole thing to the RCX, which takes a couple of minutes.

However, before you get all fired up about ppFORTH, remember some caution is in order. ppFORTH itself works well,
especially considering it's relatively new software, but there are only a few good tools for working with it. As of this writing,
you will have to put up with ugly-looking terminal sessions to program your RCX with ppFORTH.

pbFORTH Overview

Although I'm describing ppFORTH as a way around the limitations of NQC, it's not NQC that limits your robot programs;
NQC just reflects the limitations of the RCX firmware. Remember, NQC is a replacement for software on the PC only. It
generates bytecodes, just like RCX Code, that are downloaded and interpreted on the RCX itself. NQC's limitations are the
result of the limitations of the bytecode interpreter on the RCX. To break through this barrier, you have to replace the RCX
firmware itself. Figure 6-1 shows a block diagram, similar to Figure 4-1, that shows how pbFORTH replaces the RCX's
firmware.
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PC (MacOS, Linux, Win32, others) |

Terminal emulator

RCX
serial port & _I_LM User programs
=
=
phFORTH
E Hardware routines

Figure 6-1.
pbFORTH software architecture

Forth is an interpreted language, which means you can type commands to ppbFORTH and have the robot respond immediately.
You don't have to compile and download programs; you simply type them directly to the interpreter.

Installing ppFORTH
Installing ppFORTH is a simple process:

1. Obtain ppFORTH from http://www.hempeldesigngroup.com/lego/pbFORTHY/ . It's available as an archive that contains the
pbFORTH replacement firmware, the source code, and example scripts.

2. Install ppFORTH on the RCX. To do this, you'll need a firmware downloader. The firmware downloader is a piece of
software that knows how to transmit firmware over the IR link to the RCX. Two freely available firmware downloaders are
ngc (described in Chapter 4) and Firmdl, available in C source code at http://graphics.stanford.edu/~kekoa/rcx/tools.html
.Downloading firmware to the RCX takes a couple of minutes, so be prepared to wait.

To download pbFORTH using ngc, for example, you use the —Firmware option, like this:
ngc -firmware pbforth.srec

When the download is complete, your RCX's screen will go entirely blank. Although the RCX looks dead, don't be fooled.
pbFORTH is running, and you will be able to talk to it as described in the next section.

pbFORTH will remain running on your RCX as long as the batteries are good. It replaces the regular MINDSTORMS
firmware entirely, so you won't be able to program with RCX Code or NQC without reinstalling the regular firmware. To
remove
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pbFORTH from your RCX, you'll need to remove the batteries to clear the memory. Then you can use ngc or firmdl to
download a different set of firmware. If you want to reinstall the default firmware, you can use the RIS software.

Talking to ppFORTH
To interact with ppFORTH, you need to use a terminal emulator to exchange data with the RCX over the IR link.

Windows users can use the HyperTerminal application that comes with Windows. Linux users can use minicom or
something similar. You'll need to point your emulator at whatever serial port has the IR tower attached. The other relevant
settings are 2400 Baud, 8 data bits, 1 stop bit, and no parity.

Once you've got your emulator running, press Enter on your keyboard a couple of times. pbFORTH should respond with "ok™
messages:

ok
ok

To get a quick start with ppFORTH, let's turn on one of the outputs. First, you'll need to initialize the RCX like this (the stuff
you should type is shown in bold):

RCX_INIT
Ok

To turn on an output, use the MOTOR_SET command, which will be covered later. Type the following:

7 2 0 MOTOR_SET
ok

Remember to press Return after you enter the whole line. Depending on your terminal settings, you will see the letters you
type two or three times in a row, like this:

77 22 00 MMOOTTOORR__SSEETT

I have removed the extra letters in the examples in this chapter, for clarity. To minimize the repeated characters as you type in
the examples, make sure "local echo™ is disabled in your terminal emulator.

The MOTOR_SET line turns on output A (represented in the code by 0) in reverse (represented by 2) with full power
(represented by 7). If your RCX is about to drive off your desk, you can turn off the output like this:

7 3 0 MOTOR_SET
ok
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This is the same as the previous example, except the 2 is now a 3. The 3 tells ppFORTH to turn the output off. I'll get to the
details of MOTOR_SET later, after I've introduced you to the Forth language itself.

Make sure you separate everything with spaces. ppFORTH reads different words by assuming that they're all separated by
whitespace, either spaces or returns. If you miss a space, pbFORTH will get confused and complain that it can't find a word
definition.

pbFORTH is also case sensitive. While MOTOR_SET is a defined word, Motor_Set is not, nor ismotor_set or
MOTOR_SETt.

Sending Files

For serious development, you'll want to create your source code in a text file and send the whole file to ppFORTH when you're
ready to test. You can do this with many terminal emulators, although you have to set it up correctly.

First, the terminal emulator needs to know how long to wait after sending each character. In HyperTerminal (in Windows 95,
98, or NT), this setting is available in the File > Properties menu option. In the window that appears, choose the Settings tab
and press the ASCII Setup button. You should set the Line delay to 100 milliseconds and the Character delay to 20
milliseconds, as shown in Figure 6-2.

ASCH Setup

o |
L

Figure 6-2.
Setting character delays for sending files

To upload a file to ppFORTH, choose Transfer — Send Text File from the menu.
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There are other options, as well. Appendix B, A pbFORTH Downloader, contains source code for a Java-based program
downloader. Furthermore, the ppFORTH web site has ppFORTH tools written in Tcl/Tk.

About Forth

In this section, I'll briefly describe the Forth language itself. Then I'll detail ppFORTH's RCX-specific words and present some
short examples of robotic programming with ppFORTH.

The Stack
Forth is a simple but powerful language. It is based around the idea of a stack. A stack is just what it sounds like, like a stack of
trays in one of those spring-loaded carts at a cafeteria. You can add something to the stack or remove the top item. Adding an

item to the stack is a push. Retrieving the top item is a pop. A pop always returns the last item that was pushed.

Assuming you've already gotten ppFORTH running on your RCX, let's see how this works. Let's begin by pushing a humber
on the stack. Type a number into your terminal emulator and hit return. ppFORTH responds with a friendly "ok":

77
ok

Now type a single period and press return. The period pops a value off the stack and prints it out to the console, along with that
ubiquitous "ok":
%7 ok

You can push multiple values on the stack by separating them with spaces. Similarly, you can pop more than one value off the
stack with more than one period, like this:

77 12 55
ok

55 12 ok

%7 ok
If you understand the stack, you know almost everything there is to know about Forth.
Words and the Dictionary

The other important concept in Forth is the dictionary. This is simply a list of words and what they mean. A word is a simply a
program with a name. To run it,
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you just type its name. Many programs expect to find input values on the stack and may place their results on the stack when
they're done.

Built-in words

Forth has a number of simple words that are built in to the dictionary. DUP, for example, duplicates the top element of the
stack. You can easily see how this works:

77
ok
DUP
ok

77 77 ok
Table 6-2 lists some of the important built-in words in Forth. The table shows the stack before (“Initial Stack™) and after
("Ending Stack™) the word runs. By convention, the top is shown on the right. For example, x1 x2 shows a stack with x2 at

the top and x1 as the second item. This seems confusing at first, but it makes sense after a while (and it's the convention in
Forth documentation).

Table 6-2. Forth Built-in Words

Word Meaning Initial Stack Ending Stack
DUP Duplicates the top item on the stack X X X

OVER Copies the second stack item x1 x2 x1 x2 x1
PICK Copies the nth stack item (n is zero-based) .. n . XN

SWAP Switches the top two stack items x1 x2 x2 x1

ROT Moves the third stack item to the top x1 x2 x3 x2 x3 x1
DROP Discards the top item on the stack X

Forth also supports mathematical operators, which operate on the top two items of the stack and leave their result at the top of
the stack. For example, you can divide two numbers like this:

84 2 /
ok

212 ok
Bitwise operators are also defined: AND, OR, XOR.
You can change the number base you're working in using the HEX and DECIMAL words. For example, if you wanted to work

in hexidecimal (base 16), you would type HEX. Base 10 is represented by DEC IMAL. Most of the numbers in this chapter will
be base 16.
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BASE is a word (a variable, which I'll talk about soon) that contains the current number base. To print out the current number
base, for example, do this:

BASE @ .
10 ok

Interestingly, the current base is printed in terms of the current base, so it will always be 10. Suppose you're working in base 8.
If you print out the current base, 8, in base 8, it's expressed as 10. Retrieving the current base with BASE @ may seem like a
pointless exercise, but it's useful if you want to save the current base away to be restored at some later time.

If you want to work in a number system other than HEX or DECIMAL, you can use BASE ! to store any base number. The
following example shows two ways you can use Forth to convert numbers between different bases:

HEX 20 DECIMAL . (20 in base 16 is 32 in base 10)
32 ok

8 BASE ! 20 DECIMAL . (20 in base 8 is 16 in base 10)
16 ok

The open parenthesis ( is used to indicate a comment. The ppFORTH interpreter simply ignores the rest of the line after it
sees the (.

Defining words

Writing programs in Forth is a matter of defining your own words in the dictionary. Word definitions begin with a colon and
end with a semicolon. Here's a simple example:

: threeTimes DUP DUP + + ;
ok

The colon tells the Forth interpreter that the words that follow define a new word for the dictionary and should be stored to run
later. The new word needs a name, threeTimes in this example, which is supplied immediately after the colon. Subsequent
words will be executed when the new word is executed. The semicolon tells the interpreter that the new word definition has
ended. threeTimes duplicates the top item on the stack twice, so there are three copies of it, then adds them all together.
Now that you've defined a new word, you can use it like any other Forth word:

5 threeTimes .
15 ok

And you can, of course, use it in subsequent definitions:

> nineTimes threeTimes threeTimes ;
ok

5 nineTimes .

45 ok
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Here's another simple example that demonstrates how to print messages from within a word. Be careful about the spacing: the
actual string to be printed is framed by the .““ and > words, which
are separate from the string.

: helloWorld ." Hello, world. " ;
ok

helloWorld

Hello, world. ok

If you define a word that already exists, it will be redefined:

: helloWorld . Tag, Welt. " ;
redefine helloWorld ok

Constants and Variables

You can define words in Forth that represent numerical values. These words are called constants; you can use the word
anywhere you really mean the number it represents. This is really handy for making programs more readable. To define a
constant, push its value on the stack. Then use the word CONSTANT and supply a name. like this:

7 CONSTANT FULL
ok

You can the use FULL anywhere you really mean 7, like this:

FULL 2 O MOTOR_SET
ok

Variables are even easier to define. Just use the word VARIABLE and supply a name:

VARIABLE z
ok
Values are stored in variables using the ! word, pronounced "store":

12 z !
ok

The value of a variable can be retrieved and placed on the stack with the @ word:

z 0 .
12 ok

There's some tricky stuff going on here that I'll briefly discuss. A variable is really an address in memory. The ! word expects
to find an address and a value on the stack; it stores the value at the specified address. Similarly, the @ word expects to find an
address on the stack. It replaces the address with the value at that address. When you declare a variable with the VARIABLE
word, all you're really doing is assigning an address (determined by the Forth interpreter) to a name.
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Conditionals and Loops

Forth supports a standard IF statement, though the order is switched around from what you might be used to. The IF word
comes in two different varieties:

condition IF body THEN

The IF word looks at the condition on the stack. If the condition is true, the body between IF and THEN is executed.
Table 6-3 lists some of the mathematical condition words that are available.

Table 6-3. Mathematical Condition Words

Word Description

< Compares the top two items on the stack; replaces them with true if the second item is less than the top item, false otherwise

Compares the top two items on the stack; replaces them with true if they are equal, false otherwise

> Compares the top two items on the stack; replaces them with true if the second item is greater than the top item, false
otherwise

0< Replaces the top item of the stack with true if it is less than zero; false otherwise
0= Replaces the top item of the stack with true if it is equal to zero; false otherwise

The following example prints out a message if the top item on the stack is less than 0:

: negative 0< IF ." less than zero " THEN ;
ok

-2 negative

less than zero ok

2 negative

ok

The O< word examines the top value on the stack. The result of this comparison is examined by the IF word. If it is true, the
body of the IF is executed. The .“ word tells ppFORTH to print text to the console, up until the > word. Finally, THEN
marks the end of the body of the IF.

There's also a slightly more complicated 1F word:

condition IF trueBody ELSE falseBody THEN
This is the same as before, except words between ELSE and THEN will be executed if the condition is false.

Forth also includes some simple loops, including:

limit start DO words LOOP
This loop performs the given words limit - start times. Internally, a loop index is given the value start. Each time
through the loop, the index is increased by one. When it is equal to 1 imit, the loop ends. You can put the
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value of the loop index on the stack with the 1 word. For example, the following shows how to define a word that prints the
numbers from 1 to 10.

> oneToTen 11 1 DO I . LOOP ;
ok

oneToTen
123456789 10 ok

limit start DO words delta +LOOP
This variation on the basic DO LOOP adds the given delta value to the loop index instead of always adding one. You can
use this type of loop to count backwards by supplying a negative del ta.

BEGIN body UNTIL
This loop performs its body until a false condition is left on the stack. The following example waits for the View button to be
pressed (using some stuff we haven't covered just yet):

BUTTON_INIT
ok

: waitForViewButton BEGIN RCX_BUTTON DUP BUTTON_GET @ 2 AND UNTIL ;
ok

In the body of this loop we push RCX_BUTTON on the stack and duplicate it. Then we call BUTTON_GET, which retrieves the
current state of the buttons into the RCX_BUTTON variable. Then the value of RCX_BUTTON is retrieved (with @) and
compared to 2, which corresponds to the View button on the RCX. When this condition is true, the loop ends and
WaitForViewButton isdone.

BEGIN body AGAIN
This variation on BEGIN UNTIL loops forever, executing its body each time through the loop.

pbFORTH Words

pbFORTH includes 34 words that perform RCX-specific functions. In this section, I'll describe them all for you. Each word's
name is listed along with the starting and ending state of the stack, like this:

WORD_NAME (startStack -- endStack)
For example, the SWAP word would be listed like this:
SWAP (x1 x2 -- x2 x1)

The starting stack and ending stack are shown such that the top of the stack is shown on the right side. If you push x1 on the
stack, then x2 and x3, then the stack would be shown like this: x1 x2 x3. The top of the stack is x3. The MOTOR_SET
word, for example, takes three values off the top of the stack:

MOTOR_SET (power mode index --)
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After MOTOR_SET runs, the stack is empty. The first thing you need to push on the stack is power; the last thing is index.
In your code, it comes out in the same order:

7 2 0 MOTOR_SET
In this case, 7 is power, 2 is mode, and 0 is index.
The very first ppFORTH word initializes the RCX:

RCX_INIT (--)
This word starts the input and output handlers, system timers, and performs other important initializations. After you load
pbFORTH on the RCX, call this word before you try to do anything with the inputs, outputs, buttons, or other RCX services.

Output Control
One word is devoted to controlling the RCX's outputs:

MOTOR_SET (power mode index -- )

This word turns an output on or off. It pops three parameters off the stack. The power parameter should be 1 to 7, where 7 is
full power. The mode parameter indicates whether the output should be turned on going forward (1) or in reverse (2), or if it
should be turned off in "brake" (3) or "float" (4) modes. In brake mode, the motor shaft resists turning; in float mode, it turns
freely. The top parameter, index, should be 0, 1, or 2, representing output A, B, or C, respectively.

For example, to turn on output 3 in full reverse, do this:

7 2 2 MOTOR_SET

Remember that constants can make this kind of code a lot nicer. For example:

7 CONSTANT OUT_FULL
ok

2 CONSTANT FORWARD 4 CONSTANT FLOAT
ok

2 CONSTANT OUT_3
ok

OUT_FULL FORWARD OUT_3 MOTOR_SET
ok

OUT_FULL FLOAT OUT_3 MOTOR_SET
Ok

Front Panel Buttons

pbFORTH provides two words that allow you to examine which front panels are pressed.
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BUTTON_INIT (--)
This word initializes ppFORTH's button-handling system. Make sure to call it once before you try to call BUTTON_GET.

BUTTON_GET (address --)

This word places the current button state into the variable address. ppFORTH provides a variable, RCX_BUTTON, that you
can use for this purpose. The value placed in the variable tells which buttons are pressed and is a combination (boolean OR) of
the values shown in Table 6-4.

Table 6-4. BUTTON_GET Return Values

Button Name Value
Run 1
View 2
Prgm 4

For example, if the Run and Prgm buttons are pressed simultaneously, the flags returned from BUTTON_GET will be 5.
Here's a word definition that retrieves the button state and places it on the top of the stack:

: buttonState RCX_BUTTON DUP BUTTON_GET @ ;
Building on this, here's a handy word definition that tests if the Run button is pressed:

: isRunButtonPressed buttonState 1 AND ;
Remember, you have to call BUTTON_INIT before you use this word; otherwise is won't work.
To test the state of the On-Off button, you'll need to use the POWER_GET word, described later in this chapter.
LCD Display Words
pbFORTH provides direct control of the RCX's display. This is exciting news because you can display the results of your
programs or even intermediate values. Every segment of the LCD display can be controlled individually; this includes the
"little man," the input and output arrows, the datalog indicators (which you might never have seen otherwise), and the large

numbers in the center. Figure 6-3 shows the display with most of its segments lit up.

pbFORTH offers words that show and hide individual segments, display numbers, or clear the entire display. For changes to
actually take effect, however, you must call LCD_REFRESH:
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LCD_REFRESH ( --)
Use this word after making changes to the display. The state of the display will not change until you call LCD_REFRESH.

inpus 2 selected
data transfer | imput 2 active

tngut 1 selected - - input 3 salseted

Input | active
lamg ronge downlond —
l.f‘.'p.'l range .::l'pw.'nlu;lpd'

Inpuf 3 ocfive

drinlog

|
Dutput 4 selected  Dutpot Bsetected  Dutpof { seleched

Figure 6-3.
The RCX's display

pbFORTH can display a number from the stack with the following word:

LCD_NUMBER (decimal value signed --)

This word shows the number vallue on the display. The decimall parameter controls the location of the decimal point, if
there is one, while the signed parameter determines whether value is shown as signed or unsigned. The acceptable values
of decimal and signed are shown in Table 6-5 and Table 6-6.

Table 6-5. Values for the decimal Parameter of LCD_NUMBER

Value (in hexadecimal) Description

3002 No decimal point

3003 One digit after the decimal point

3004 Two digits after the decimal point

3005 Three digits after the decimal point

any value Single digit on the right of the display (use 3017 for signed)

Table 6-6. Values for the signed Parameter of LCD_NUMBER

Value (in hexadecimal) Description

3001 Signed, no leading zeros

301F Unsigned with leading zeros

3017 Single digit on the right of the display (ignores decimal)

For example, to display the number -4198, use the following:

3002 -1066 3001 LCD_NUMBER LCD_REFRESH
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Note that we've specified the value in hexadecimal (-1066) but the display always shows decimal (-4198).
pbFORTH provides two words that show or hide individual display segments, basically everything except the numbers:
LCD_SHOW (segment -- )

LCD_HIDE (segment --)

These words show or hide the given display segment. Valid values are shown in Table 6-7. The values that are flagged as a
sequence can be repeatedly called to update the display automatically. For example, the datalog indicator (3018) consists of
four quarters of a circle. The first time you show 3018, you'll see one quarter. Show 3018 again, and a second quarter lights up.
Do this three more times, and the third quarter lights up, the fourth quarter lights up, and then all the quarters go blank and the
sequence begins again.

Table 6-7. LCD Segment Numbers

Segment Number (Hex) Sequence? Description

3006 no Standing figure

3007 no Walking figure

3008 no Input 1 selected

3009 no Input 1 active

300A no Input 2 selected

300B no Input 2 active

300C no Input 3 selected

300D no Input 3 active

300E no Output A selected

300F no Output A backward

3010 no Output A forward

3011 no Output B selected

3012 no Output B backward

3013 no Output B forward

3014 no Output C selected

3015 no Output C backward

3016 no Output C forward

3018 yes (4) Datalog indicator segments
3019 yes (5) Data transfer segments (ascending)
301A yes (5) Data transfer segments (descending)
301B no Low battery indicator

301C no Short range download indicator

(table continued on next page)
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(table continued from previous page)

Table 6-7. LCD Segment Numbers (continued)

Segment Number (hex) Sequence? Description
301D no Long range download indicator
3020 no All segment (LCD_SHOW only)

Conveniently, you can clear the entire display with a single word:

LCD_CLEAR (--)
This word clears the RCX's display so that no segments are lit.

Input Control Words
Before you configure inputs or read values from them, you should initialize ppFORTH's input system with the following word:

SENSOR_INIT ( --)
This word initializes ppFORTH's input system. Call it once before working with inputs.

Configuring inputs

You probably remember that the RCX's inputs may be powered. The light sensor, for example, is powered from an input.
These types of sensors are called active, all others are passive. In ppFORTH, the following words determine whether an input
is active or passive:

SENSOR_ACTIVE (index --)

SENSOR_PASSIVE (index -- )

These words set the input described by index to be active (powered) or passive. The index value should be 0, 1, or 2,
corresponding to input 1, 2 or 3.

You can configure an input for a particular type and mode, just as in NQC:

SENSOR_TYPE (type index --)

This word sets the type of an input, which describes the electrical characteristics of the sensor you. plan to attach. The values
for type are shown in Table 6-8. As before, index should be 0, 1, or 2.

Table 6-8. Input Type Values

Value  Description

0 Raw
1 Touch senso
2 Temperature sensor

(table continued on next page)



132

(table continued from previous page)

Table 6-8. Input Type Values (continued)

Value  Description

3 Light sensor

4 Rotation sensor

SENSOR_MODE (mode index --)

This word sets the mode of the given input. An input's mode determines how the sensor values will be interpreted. The modes

are shown in Table 6-9.

Table 6-9. Input Mode Values

Value (hex) Description

0 Raw sensor value from 0 to 1023

20 Boolean, either 1 or 0

40 Counts transitions from 1 to 0 and vice versa (edge counting)
60 Counts transitions from 1 to 0 (pulse counting)

80 Percent from 0 to 100

A0 Celsius temperature

Co Fahrenheit temperature

EO Shaft angle, 16 counts per full revolution

The following example shows how you could configure input 3 for a light sensor:

2 CONSTANT INPUT_3
ok

SENSOR_INIT
ok

INPUT_3 SENSOR_ACTIVE
ok

3 INPUT_3 SENSOR_TYPE
ok

80 INPUT_3 SENSOR_MODE
ok

Reading input values

Reading input values in ppFORTH is a two-step process. First, you need to tell ppFORTH to go and read the input values:
SENSOR_READ (index -- code)

This word tells ppFORTH to read the value of the specified input. The actual value can be retrieved with a call to
SENSOR_GET, which is described later. A status code is placed on the stack. If code is 0, then the read was successful.
Values other than 0 indicate that the RCX was busy and could not read the input value.
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Having read an input value, you are now ready to retrieve it using one of the following words:

SENSOR_VALUE (index--value)
This word returns the value of the given input. The range of the returned value is determined by the mode of the input.

SENSOR_RAW (index--value)
Use this word to obtain the raw value of the input described by index. The raw value will always be in the range from 0 to
1023.

SENSOR_BOOL (index--value)
This word returns the current value of the given input as a Forth-style boolean.

For example, to read the value of the sensor on input 3, you would do this:

: read 2 SENSOR_READ 2 SENSOR_VALUE . ;
Strictly speaking, of course, you should really check the return code from SENSOR_READ to make sure it was successful.

Finally, the current value of an input can be reset with the following word:

SENSOR_CLEAR (index--)
Some of the input modes count values, like the edge counting, pulse counting, and rotation modes. For these modes, the current
count of an input can be reset to 0 using SENSOR_CLEAR.

RCX Timers

The RCX has 14 timers that you can use in your programs. Four of these timers count in tenth-of-a-second intervals. Each of
these timers is identified by an index, from 0 to 3. The timers count up once every tenth of a second and have values from 0 to
7FFF (hexadecimal):

TIMER_SET (value index--)
This word sets the timer described by index to the supplied value.

TIMER_GET (index--value)

This word places the current value of the timer described by index on the stack.

There are also 10 timers with a hundredth-second resolution. These timers have an index from 0 to 9; they count down instead
of up and stop when they reach O:

timer_SET (value index--)
This word sets the timer described by index to the supplied value.

timer_GET (index--value)
This word places the current value of the timer described by index on the stack.
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Power Management
pbFORTH includes a simple power management scheme that allows you to turn the unit off. It doesn't actually turn off
completely; it just goes into a low power consumption mode until you press the On-Off button to turn it on. This is exactly the

same behavior as with the default RCX firmware. Three words in ppFORTH are related to power:

POWER_INIT (--)
This word initializes ppFORTH's power management.

POWER_OFF (--)

Use this word to turn the RCX off. Note that this does not clear the display, turn off active inputs, or turn off running outputs.
It does, however, put the interpreter in a kind of sleep mode; you should probably do this if you're going to stop using
pbFORTH for a while, say overnight.

POWER_GET (address code--)

This word serves two purposes, depending on the value of code. The result is placed in the variable represented by address.
pbFORTH provides the RCX_POWER variable for use with this word. The possibilities are shown in Table 6-10.

Table 6-10. POWER_GET Code and Value Possibilities

Code (hex) Value

4000 On-Off button state: 0 is pressed, 2 is not pressed

4001 Current battery level

The following example shows how to print out the current battery level:

RCX_POWER DUP 4001 POWER_GET @ -
11E ok

Sounds

Finally, pbFORTH can play the built-in beep sounds of the RCX, although it does not offer the possibility of playing arbitrary
notes. The two words related to sound are:

SOUND_PLAY (sound code--)
This word plays the sound described by the sound parameter, which can have the values shown in Table 6-11.

Table 6-11. SOUND_PLAY Sounds
Sound Number Description

0 Short beep

1 Two medium beeps

(table continued on next page)
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(table continued from previous page)
Table 6-11. SOUND_PLAY Sounds (continued)

Sound Number Description

2 Descending arpeggio

3 Ascending arpeggio

4 Long low note

5 Quick ascending arpeggio (same as 3 but faster)

The sounds can be either unqueued or queued. Unqueued sounds will be played right away if no sound is currently
playing. If a sound is currently playing (i.e., the sound system is already busy), then the unqueued sound will not be
played at all. A queued sound, on the other hand, waits for the sound system to finish whatever it's doing and then plays.
The value of code determines if a sound is queued (4003) or unqueued (4004).

SOUND_GET (address --)

This word returns the current state of the sound system to the given variable. You can use the ppFORTH-supplied variable
RCX_SOUND for this word. A zero indicates that the sound system is not busy. Any other value means that the sound system
is busy playing another sound.

Cooperative Multitasking

pbFORTH version 1.0.5 introduced words that support cooperative multitasking. Coo