
Managing Agile Projects

By Sanjiv Augustine

...

Publisher: Prentice Hall PTR

Pub Date: May 12, 2005

ISBN: 0-13-124071-4

Pages: 264

Slots: 1.0

Praise for Managing Agile Projects

"In the hands of another, this class of material could become

incoherent, but Sanjiv has enough intellectual power to ground his

subject…Fans of APM and those who prefer new ideas as a catalyst for

their management approach should find Managing Agile Projects

rewarding."

—Wes Balakian, Chairman and Executive Advisor, PMI eBusiness SIG

"I only wish I had read this book when I started my career in

software product management, or even better yet, when I was given my

first project to manage. In addition to providing an excellent

handbook for managing with agile software development methodologies,

Managing Agile Projects offers a guide to more effective project

management in many business settings."

—John P. Barnes, former Vice President of Product Management at

Emergis, Inc.

"The agile software development movement evolved from a half-dozen

methodologies—Scrum, Adaptive, XP, Crystal—that while different,

embodied a consistent set of values and similar practices. The agile

project management movement is following the same path—strength

through a blend of consistency and diversity. Sanjiv's book, Managing

Agile Projects, adds both—consistency and diversity—to the concepts

and practices of agile project management. His book is rich in ideas

and practical advice. It is a wonderful addition to the growing

literature about 'alternative' styles of project management."

http://www.informit.com/author_bio.asp/ISBN=0131240714
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0

—Jim Highsmith Sr. V.P. and Director Agile Software Development and

Project Management Practice Fellow, Business Technology Council

Cutter Consortium LLC, Arlington, MA

"Here is an innovative approach to the management of agile projects,

examining traditional project management practices that do not align

well with new agile methodologies. Augustine's alternative approaches

in regard to personnel, organization, and change make this a valuable

resource for project managers as well as for the customer/product

owner."

—Sydney H. Jammes, Retired C.I.A. Economist

"Project management has almost become a new paradigm for getting work

done in most corporations around the world. This book provides a long

overdue synthesis of the diverse strategies and practices in project

management. The holistic and organic approach in the book combines

the people factor and task complexity elements nicely and delivers an

easy-to-read narrative that should be a must-read for every manager."

—Tojo Thatchenkery, Professor of Organizational Learning, George

Mason University

"In our work with Sanjiv Augustine in New Zealand and Australia, he

has always impressed me with his practical, lucid approach to the

project management idea for our times—agile project management. This

book captures the essence of that approach."

—Martyn Jones, Managing Director, Software Education Associates,

Ltd.

"Rejoice! Sanjiv Augustine eloquently lays out a practical and

elegant organic project management model for being innovative and

delivering business value while maintaining a high quality of life.

And in the process, he gives the world a proven alternative to

mechanistic and rigid project management practices that have stifled

software development and killed creativity. A brilliant piece of

work."

—Doug DeCarlo, author, "eXtreme Project Management: Using

Leadership, Principles and Tools to Deliver Value in the Face of

Volatility"

"Sanjiv Augustine's informative new book, Managing Agile Projects,

takes the mystery out of bringing about the successful completion of

information technology projects. His innovative, clear, and sensible

approach to the management of agile projects is a must-read for all

members of the implementation team, from users to developers and from

consultants to managers. This work is a major contribution to the

field of project management."

—Martha C. Edmondson, Chief Financial Officer, African Development

Foundation

"This book significantly builds on and extends agile thinking."

—Jeff De Luca, creator of Feature Driven Development,

www.nebulon.com

"Sanjiv brings real world, interesting experiences to his topic and

conveys the essentials of project management in the new era in a way

that is both entertaining and enlightening. Busting the jargon and

slicing through the marketing-speak, this book is an essential tool

for anyone involved in development projects today."

—Shane Hastie, Chief Knowledge Engineer, Software Education

Associates, Ltd.

"Managing Agile Projects extends the values and principles of more

development-centric agile methodologies to project management,

something essential to the creation and evolution of the truly agile

organization. An excellent addition to the agile literature!"

—Steve Hayes, Professional Services Manager, Internet Business

Systems

"Agile Project Management, as outlined here, is a key component to

building a software development organization that can effectively

respond to changing market needs in a timely manner. "

—Madhu Garlanka, Senior Manager, eBusiness Application Development,

Nextel Communications

"Agile methods created by 'radicals' have matured into tools in

common use in many organizations. Now that teams are using these

methods on high-profile projects, executives are starting to ask,

'How can we manage these agile processes?' This book builds upon

http://www.nebulon.com/

scientific research of complex adaptive systems to present a handbook

for project managers and executives faced with the challenge of

monitoring and controlling agile projects."

—Kevin J.J. Aguanno, PMP®, MAPM IBM Certified Senior Project Manager

IBM Global Services, IBM Canada, Ltd.

"I read this book and immediately shared it with a manager of an XP

team. It's got great ideas on how to manage agile teams using a

'light touch.'"

—William Wake, Independent Consultant

Robert C. Martin Series

The mission of this series is to improve the state of the art of

software craftsmanship.The books in this series are technical,

pragmatic, and substantial. The authors are highly experienced

craftsmen and professionals dedicated to writing about what actually

works in practice, as opposed to what might work in theory. You will

read about what the author has done, not what he thinks you should

do. If the book is about programming, there will be lots of code. If

the book is about managing, there will be lots of case studies from

real projects.

These are the books that all serious practitioners will have on their

bookshelves. These are the books that will be remembered for making a

difference and for guiding professionals to become true craftsmen.

Managing Agile Projects

Sanjiv Augustine

Working Effectively with Legacy Code

Michael C. Feathers

Agile Java™: Crafting Code with Test-Driven Development

Jeff Langr

Agile Software Development: Principles, Patterns, and Practices

Robert C. Martin

UML For Java™ Programmers

Robert C. Martin

Fit for Developing Software: Framework for Integrated Tests

Rick Mugridge and Ward Cunningham

Agile Software Development with SCRUM

Ken Schwaber and Mike Beedle

Extreme Software Engineering: A Hands on Approach

Daniel H. Steinberg and Daniel W. Palmer

For more information, visit http://www.phptr.com/martinseries

About the Author

Sanjiv Augustine is the Director of the Lean-Agile Consulting

Practice at CC Pace, a financial services consulting firm in Fairfax,

Virginia. He is a leading agile management practitioner and

consultant, author of several articles on agile project management,

and a frequent presenter at industry conferences. His experience with

agile methodologies spans half a decade and includes projects varying

in size from 5 to more than 100 people. For more information, visit

http://www.sanjivaugustine.com.

Foreword

This book is a valuable addition to both the agile and the general

project management bookshelves. Sanjiv's talent is conveying what it

is actually like to be an effective manager of agile projects. Where

other authors discuss principles and concepts and then stop, Sanjiv

continues, addressing the weekly and day-to-day issues facing the

team and the project.

Sanjiv identifies the problem right at the start: "Managers trained

in predictive, plan-driven project-management techniques face a

learning curve when entrusted with the management of agile

development projects." This book addresses that learning curve. This

book begins with a fable undoubtedly drawn from Sanjiv's extensive

experience in turning projects around. It describes, first, failing

while using a waterfall- and-manager-driven approach (what I call "an

acceptable way of failing"), and then shifts to succeeding by using

an incremental approach with a Light Touch and Adaptive Leadership

(two core ideas in this book).

http://www.sanjivaugustine.com/
http://www.phptr.com/martinseries

Sanjiv's daunting task is breaking into manageable pieces the act of

moving into agile territory. To do this, he neatly constructs a

memorable language to talk about what should be: Alignment and

Cooperation, Emergence and Self-Organization, Learning and

Adaptation. The team operates with core practices: Organic Teams,

Guiding Vision, Simple Rules, Open Information, Light Touch, and

Adaptive Leadership. He creates one of the few delineation of roles

and responsibilities that I have seen that is both clear and

sensible, for leaders, managers, and technical staff, which attends

to the team's informal structures as well as the formal ones.

But that was still just the easy part. He takes it one step further,

showing how the team develops Simple Rules and Adaptive Leadership,

specific activities that grow the practices and principles. By

breaking down the complicated shift in attitude and practice, readers

can see the future they are stepping into. This reduces the sense of

unfamiliarity and doubt, two of the major hindrances to moving

forward into new territory.

I am finding this a book to be studied over and over and quoted at

length. If you are already doing agile development, review his

criteria for being an agile organization and try some of his

activities. If you are thinking of doing agile development, this book

gives you a path to follow.

Sanjiv writes, "The work of agile project management is energizing,

empowering, and enabling project teams." Easy to say. Sanjiv

illustrates how to do it.

Alistair Cockburn

Co-author of Agile Software Development Manifesto

Foreword

Pragmatics! That's what this series is about, and that's what this

book is about. There have been several good books published about

project management in an agile environment, but this is the first

book I've read that gets down in the trenches and tells us how to

actually do it in detail.

Pragmatics is what we need in this topic. We've read the fluffy

overviews and the motivating abstractions. We've heard the arguments,

exegesis, and hand-waving pitches. What we haven't seen, until now,

is a description of Agile Project Management with a solid foundation

based on experience. That's what this book provides.

This book begins with the story of a project that began with

traditional project management techniques, failed, and then was

restarted using agile methods. Although the story is fictionalized,

it rings true. From there, this book goes on to describe, chapter by

chapter, the principles and practices of Agile Project Management

(APM).

This book avoids the dogma that, all too often, pervades the agile

literature. Instead, it takes a pragmatic view of agile methods like

XP, Scrum, and FDD, and tells you how to adapt them to specific

values and issues within your company. Indeed, I believe this is the

first book to provide a detailed description of how the XP practices

can, and should, be altered to meet specific environmental and

cultural issues.

I first met Sanjiv four years ago at CC Pace. I was conducting a

class in eXtreme Programming there. He approached me after the class

and said that he had just finished managing an XP project and had

some ideas for a book. We struck up an email dialog that eventually

led me to ask Sanjiv to put his book in my series.

It was clear from his writings that he had a great deal to say about

the topic and that he could provide a badly needed depth.

Three years is a long time to wait, but the result is worth it. If

you are a project manager, a software developer, or a director of

software development, this book helps you get your arms around Agile

Project Management in a way that no other book I've seen can do.

Robert C. Martin, Series Editor, January 2005

Acknowledgments

The support and encouragement of an incredibly diverse community of

friends, colleagues, and professional acquaintances from all over the

world have made this book possible. Bob Martin, the series editor,

detected this book in the germ of the idea I presented to him many

moons ago. Many thanks are due to him for giving me the opportunity

to create this book and place it in his series.

At home, I could not have devoted the long hours necessary to create

this book without the innumerable and substantial sacrifices made in

my favor by my wife, Sujatha and my brother-in-law, Sudhir. My father

John, despite his ailing health, provided constant encouragement, as

did my mother Jean and my parents-in-law, Frederick and Malathy.

My colleagues at CC Pace have always made me proud to be associated

with such a talented and committed group of people. Mike Gordon,

president of CC Pace, provides a rare personal example of honest,

principled, and caring leadership. Arlen Bankston, whose creative and

vivid illustrations adorn this book, has been a quick study and a

constant delight to work with. Valerie Tonus, CC Pace's corporate

trainer, has introduced me to and guided me in the exciting field of

organization learning. Susan Woodcock has been an incredible support

and an engaged partner in capturing the basics of the APM practices.

Joanie Cassens and Michael Euripides have helped immensely in taking

APM to our clients. I also owe a very special debt to Flavio Diomede,

our erstwhile vice president of Technology, for hiring me,

introducing me to agile methodologies, and supporting me when I took

my first steps as an agile manager. The rest of the core agile team

at CC Pace—Roland Cuellar, Kevin Doyle, Clay Everhart, Lynne

Hemsteger, George Lively, Tricia Miller, David Patton, Lisa Powers,

Harold Rudolf, Tim Van Tassel, Kuryan Obi Thomas, Dawne Ward, and Jim

York—have also played an important part in this adventure.

Alistair Cockburn has been an inspiration and provided valuable

insights, including the W. L. Gore reference for holographic

organization. Donna Fitzgerald, Kent McDonald, and Roland Cuellar

provided incredible reviews and feedback that enabled me to organize

and adjust the book into a much more readable and enjoyable format.

Others who have aided include Alejandro Berganza, Mishkin Berteig,

Frank Hackney, Michael Hamman, Iain Jenkins, Martyn Jones, David

Kane, Bob Payne, Jason Yip, and my dear friend Fred Sencindiver of

George Washington University who passed on tragically some months

ago.

Last, but not the least, many thanks are due to Paul Petralia and his

great team at Prentice Hall. Paul provided all the guidance and

prodding necessary for me to get the book to market. His casual and

friendly demeanor masks his wisdom and skill. Jennifer Blackwell is a

development editor par excellence. San Dee Phillips took the book

over the "last mile" with cheerful enthusiasm, personal attention,

and consummate professionalism. Thanks also to Michelle Vincenti for

great administrative support.

To all who have aided in making this book possible, thank you and God

bless you.

Sanjiv Augustine

December 2004

Annandale, Virginia

Preface

When first placed in the position of leading an agile team nearly

five years ago, I had precious little guidance to assist me in my

job. This is the book that I wish I had then—I have endeavored to

capture my subsequent experience and learning and present them in a

form that is accessible to managers new to agile methodologies. Other

managers more familiar with the agile landscape should enjoy it as

well, albeit with the sense of the familiar. In the agile spirit of

continuous learning and experimentation, I have drawn on many diverse

disciplines to augment and to extend agile methodologies on my

projects, including complexity theory, organizational learning, and

Lean Thinking.

Although there certainly are insights within that will benefit all

those who are associated with agile project teams, this is primarily

a book for agile managers—those individuals who have been gifted

with, or are aspiring to, the privilege and responsibility of leading

agile project teams. Some of you might inquire as to how this book

differs from others on the agile market. I believe that Managing

Agile Projects is different in these respects:

• It presents a holistic, systems view of project teams and the

organizations that house them, especially their organizational

learning aspects.
• It squarely addresses the role of the project manager on agile

projects and presents practical ways to lead them.
• It acknowledges the necessary balance between management and

leadership, and provides insights around leadership not found

in other project management material.
• Although it draws primarily from XP, it incorporates several

principles and practices from Scrum, Crystal, and Feature-

Driven Development.
• It is wholly an "in-the-trenches" practitioner's view of the

world of a project manager on agile projects.

I have a passion for project management, and I have discovered that

it is due in large part to the deep sense of satisfaction and

fulfillment, fun, and ever-fresh learning that comes with working

with a peer group of skilled individuals in delivering things of

great value on agile teams. I trust that reading this book will help

create some of those same experiences for you.

Introduction

T o extend current thinking and practice in agile methodologies and

project management, Managing Agile Projects draws inspiration from

concepts and techniques from other disciplines including complexity

theory, organizational learning, and Lean Thinking; all honed through

real-life application. It contains four major parts that are rooted

in an underlying metaphor of projects as complex systems: a

definition of agile project management (APM) and a role for the agile

manager; APM practices for alignment and cooperation; practices for

emergence and self-organization; and a practice for learning and

adaptation. A chapter on transitioning from familiar tools and

techniques to APM closes this book.

Chapter 1, "Agile Project Management Defined," defines agile project

management and identifies its common grounding with agile

methodologies in complexity theory. Three foundational APM principles

are introduced, followed by the introduction of the six APM practices

that form the bulk the agile manager's discipline. Chapter 2, "The

Agile Manager," defines the agile manager's role and its associated

responsibilities, along with personal values for the agile manager.

Chapters 3 and 4, "Organic Teams—Part 1" and "Organic Teams—Part

2," and Chapter 5, "Guiding Vision," detail the practices needed to

apply the first APM principle: foster alignment and cooperation.

Chapters 3 and 4 present activities to establish a formal team

structure and important team practices, and explore ways to integrate

agile team into their larger organizations as well. Chapter 5 covers

activities to create a shared vision for driving behavior on agile

projects.

Chapters 6, 7, and 8 present the practices necessary to apply the

second APM principle: encourage emergence and self-organization.

Chapter 6, "Simple Rules," provides activities to implement a set of

simple, generative methodology rules that are tailored to and adapted

for the project's environment. Chapter 7, "Open Information," details

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch07#ch07
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch06#ch06
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch08#ch08
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch07#ch07
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch06#ch06
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch05#ch05
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch04#ch04
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch03#ch03
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch05#ch05
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch04#ch04
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch04#ch04
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch03#ch03
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch04#ch04
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch03#ch03
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch02#ch02
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch01#ch01

activities to create an open flow and exchange of information among

project team members and their associated external groups. Chapter 8,

"Light Touch," presents activities that facilitate managing agile

teams with autonomy and flexibility, but without sacrificing control.

Chapter 9, "Adaptive Leadership," presents the practice necessary to

apply the third and final APM principle: institute learning and

collaboration. It details activities to track and monitor the project

for timely and relevant feedback, institute systemic procedures for

learning and adaptation, and help the agile manager maintain a

leadership presence that animates the team. Finally, Chapter 10,

"Transitioning from the Familiar," examines how APM values and

guiding principles need to be interpreted to transition from the

familiar traditional, plan-driven style of management to an agile and

adaptive style of management. Managers new to agile methodologies

might want to begin with Chapter 10 before delving into the rest of

the book.

This book is offered to you as a guidebook, not dogma. The six

practices are available to you to implement as best suits your

project's environment. You should implement them judiciously and

carefully, always keeping their underlying principles and your

personal APM values in mind. Take care not to do things pro forma—

not every activity is needed for every project, and there are

certainly others not covered in this book that will be. Nevertheless,

the principles, values, and practices presented should provide you

with everything you need to get a good handle on managing your agile

project.

Other Resources

More information about APM is available on my personal Web site

http://www.sanjivaugustine.com and at http://www.agileprojectmgt.com.

General information on agile methodologies is available at

http://www.agilealliance.org. For information specific to Extreme

Program ming, visit http://www.xprogramming.com; for Scrum, visit

http://www.controlchaos.com; for Crystal, visit

http://alistair.cockburn.us/crystal/crystal.html; and for Feature-

Driven Development, check out

http://www.featuredrivendevelopment.com.

http://www.featuredrivendevelopment.com/
http://alistair.cockburn.us/crystal/crystal.html
http://www.controlchaos.com/
http://www.xprogramming.com/
http://www.agilealliance.org/
http://www.agileprojectmgt.com/
http://www.sanjivaugustine.com/
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch10#ch10
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch10#ch10
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch09#ch09
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch08#ch08

Prelude: Project Phoenix[*]—An APM Fable of

Revival and Renewal

Part I Crash and Burn: The Familiar Road to Failure

Part II Rising from the Ashes: Revival and Renewal

Part I Crash and Burn: The Familiar Road to Failure

Project Phoenix is a large mission-critical project with a charter to

develop and deliver a Web application product that replaces paper-

intensive business processes between many parties. The application is

crucial to helping the company maintain its competitiveness in its

domain. Project Phoenix's product in going to fill a void in the

industry and provide the company with significant financial reward.

Project Phoenix is born. It is a beautiful bird that basks in the

light of the sun gods of management. It is going to sing the most

beautiful song in the industry and bring great wealth to its

creators.

Launch

Project Phoenix's first release is scheduled for six months from the

start date. Initially, the team is organized into separate business

and technical teams, with offices at different geographic locations.

Project staffing begins with a large number of managers, business

analysts, developers, architects, and usability specialists. No

formal development process is chosen, but an ad-hoc waterfall process

is followed.

Early work involves conventional requirements definition on the

business side and hardware and infrastructure planning on the

technical side. Because of the high-profile nature of the project,

the excitement level is high, and the team embarks on product

development with great enthusiasm.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/fm01lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/fm01lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/pref09&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#fm01fn01

Management

The project-management approach is conventional and familiar. Project

plans are faithfully created. Tasks and dependencies between tasks

are sought out, and duration estimates are put on paper. The plans

follow a familiar pattern with phases, tasks, and subtasks ad

infinitum, all painstakingly mapped to durations, dates, and

resources.

Organization charts are created to establish top-down, command and

control hierarchy. A power structure is created and managers and

leads jostle for power. Teams are created not to deliver the product,

but to further career interests. Management works in isolation of the

development team, which is located in another building altogether.

Management struggles to define a cohesive vision for the project.

Project Phoenix is growing rapidly. It takes flight. The chests of

the gods of management swell with pride as they see their pet

creation take off.

Three Months

Continuing requirements definition is marked by the production of

extensive requirements artifacts. A requirements document is produced

with detailed requirements outlining functionality and several

hundred wireframes with screen designs and layout, all chock full of

minute detail. The work represents a Herculean effort on the part of

the team to design the system functionality as best as it can without

developing the software. But huge gaps in requirements are

discovered. Although business analysts have a compelling shared

vision for the product, they struggle to specify everything up front

in detail. Requirements are not consistent in level and format and

not well organized.

The technical team works separately from the business team,

blissfully unaware of challenges emerging on the business end. Money

is flowing, and hardware is procured. Highly paid architects and

developers are hired. Development tools are selected and installed.

The development team creates a technical architecture and technical

design: more artifacts based on the current understanding of desired

functionality as defined in the requirements document. The

development team's joy knows no bounds.

Management

No software is visible yet to the customer. It begins to dawn on

management that six months is not enough time to develop the system.

The schedule is quickly adjusted to avoid recrimination. Project

schedules are faithfully re-adjusted. Managers realize that, except

for the high-level functional breakout on the plan, most of the

information is already dated, but this is just the way things are

done.

Tensions begin building.

Project Phoenix begins to falter. The golden bird that is set to soar

in the skies tries to sing and discovers that it cannot.

Six Months

The original deadline comes and goes. Sparks are flying. Managers

blame the developers for not getting the coding done on time, and the

analysts for not providing requirements in adequate support of the

developers. Developers complain that they are working hard, but

requirements are changing all the time. Analysts complain that the

developers are recalcitrant and/or stupid—they do not understand the

requirements. There is lots of finger pointing: "You agreed to this.

No, I did not!" The project landscape has turned into a battle zone,

and people quickly join one group or another for security.

The shared vision between the business analysts collapses. They begin

to squabble about whose product is more important.

No software yet!

Management

Lots of individual communication is taking place between managers,

but decisions and the impact of decisions are not communicated to

everyone. It is clear that there is a lack of shared vision at

different levels of management, and no vision for the rest of the

team.

Managers are cracking down. Work schedules are reviewed, and longer

hours are instituted. Project schedules are reviewed in desperation:

Isn't there some way that we can squeeze some more time out of this

blasted plan! More work out of the developers? More requirements out

of the analysts?

There is great divergence in the skill sets of managers, analysts,

and developers. Ideally, it would be nice to be able to shift team

members around between teams to shore-up capabilities, but the

organization chart is etched in stone and the organization stovepipes

it manifests are now well established.

Executive management begins to sense that something is wrong.

Meetings are scheduled, and questions are asked of middle management.

Middle management responds with assurance that things are not really

as bad as they seem. A larger budget and a little more time will be

needed.

Project Phoenix is in serious trouble. It cannot sing its song of

wealth creation, and is having trouble flying. As it struggles, the

gods of management sense that something is wrong.

Nine–Twelve Months

Only one part of the application is delivered. It turns out that the

development teams have unilaterally made the decision to stop

development on other lines of functionality! System testing uncovers

hundreds of bugs. User acceptance testing is abandoned because

quality is so bad. Users realize that a huge gap exists between the

delivered software and requirements they specified originally.

A crisis situation explodes. All development is stopped for weeks.

The team implodes: Reorganization is at hand. The teams now fracture

along different fault lines—separate teams are created based on

application functionality on both the business and technical sides.

The business teams decide to produce use cases to fill the gap

between requirements and system functionality. Halfway along, most

use cases are not used because scope is reduced and requirements are

frozen. The development teams repair to extensive testing and bug

fixes. Some developers begin working with analysts to verify software

functionality.

Management

This is really where everything falls apart. An all-hands meeting is

called. Several hours are spent walking through the system. The

system is compared to requirements captured in analyst interview

notes. (The requirements document is well out-of-date.) The technical

team pushes back, and the sponsor is forced to agree to drastically

reduce scope and freeze requirements to make a realistic delivery

date. The release date is rescheduled for 15 months from start. The

functionality scope is scaled back to a third of the originally

planned scope.

Business managers begin weekly meetings with development managers.

However,incredibly enough, they still do not get to meet developers.

Project Phoenix is deathly sick. It starts to spiral downward. It no

longer even tries to sing its song. The gods of management are

worried. What will become of their pet creation?

Fifteen Months

A pilot release of the scaled-back, limited-functionality product is

made. It goes okay under carefully controlled circumstances and

limited user community. Development is ceased yet again, and the

application is tested furiously.

Management

Senior management steps in and requires a drastic change in

direction. An assessment is conducted. Problems spill out into the

open:

• People are shouting at each other in meetings.
• Managers are really cracking down. Developers are working

unearthly hours. They are burned out and completely dispirited.
• Analysts are angry and frustrated.
• Promises have been repeatedly broken.
• Trust is nonexistent.
• Managers blame each other.

Project Phoenix crashes and goes up in flames. The skies are

darkened. The gods of management are furious with each other, and war

breaks out in the heavens of the boardroom.

Part II Rising from the Ashes: Revival and Renewal

Suddenly, a strange doctor appears on the horizon. He carries with

him medicine that he claims will revive and renew Project Phoenix.

The distraught creators of Phoenix will try anything to save it. But

they have learned harsh lessons and are distrustful of quick-fix

remedies.

The doctor warns that his medicine will not be easy to take. He

explains that it will require extreme discipline, a drastic change in

work habits, and—most difficult—trust in each other. The only way

to revive Phoenix, the doctor gently tells them, is to work with each

other as One Team toward the same goal.

The gods of management confer with the rest of the team. They confer

with each other. The future of Project Phoenix hangs in balance. The

mood in the boardrooms of power is so tense that you can cut it with

a knife. Meeting after meeting is held with the doctor, who explains

in great detail how he plans to work his medicine. He reveals that

there is nothing strange about his medicine, but it requires a

following regimen that is available to all those who recognize its

value and who choose to practice it. He calls it eXtreme Programming

(XP). He maintains that because Project Phoenix is such a large and

precious bird, for his medicine to work, he will need to supplement

it with something he calls agile project management (APM). He will

also need a small team of six other doctors to assist him.

Finally, the gods make their decision—they will allow the doctor to

work his magic to revive Project Phoenix. The team will take the

medicine: XP and APM in the right doses. The seven doctors begin

their work amid great apprehension. They announce six practices for

APM: Organic Teams, Guiding Vision, Simple Rules, Open Information,

Light Touch, and Adaptive Leadership.

Month One

Organic Teams Are Set Up to Maximize Multidisciplinary

Information Exchange

Organic Teams need to be established to allow adaptability to change.

The teams are reorganized into small teams by functional area. Each

team is multidisciplinary. It has developers, analysts, and both a

development and a business manager. A system test team is maintained

from the previous organizational structure to provide quality

assurance, as is a configuration management team.

The Guiding Vision Is Created Through Release Planning

The creation of a Guiding Vision is entrusted to senior management of

Project Phoenix. A project office (PO), created with all middle-level

managers, will aid them with all the specifics. The PO will also have

the responsibility of day-to-day management of the project. A weekly

PO meeting is instituted. All decisions that affect the project will

be made here jointly.

Release Planning is scheduled within a week to quickly create a

shared Guiding Vision. An enterprising manager suggests release

planning simulations for each team so that they can be prepared for

the real thing. The idea is put to practice, and all teams enter the

release planning meeting prepared. The release planning meeting

begins. Business managers present their vision of the system as

recorded in user story format. A release plan is created that shows

the major functionality for the release, and the functionality by

iteration within the release. The release planning meeting turns out

to be congenial, and even ends on time. The managers spontaneously

applaud. This is the first time that everyone has been on the same

sheet of paper. The Guiding Vision has begun to manifest itself.

Simple Rules Are Established as the Basis for Complex, Adaptive

Behavior

Simple Rules are established for all members of the project team. The

project revival effort is kicked off with overall XP training for all

team members: developers, analysts, and managers. This is followed by

intensive breakout sessions of training tailored to each community.

XP process mentors are placed on each team to instill XP values and

bolster XP practice application. Two-week iterations are scheduled to

start within a few days. Iteration planning is conducted for all

teams individually. Four development teams work in parallel.

Information Is Opened Up to All to Facilitate Change and

Adaptation

The information floodgates are thrown open to implement Open

Information. A 15-minute daily standup meeting is instituted for the

entire Project Phoenix team, and, in addition, team standup meetings

are instituted for each subteam. A weekly PO meeting is set up, and

the first PO is held with all managers in attendance. The release

plan is reviewed at the PO, and project status is laid bare. The

change is difficult for many to deal with, but they cope because they

begin to see quick benefits: They can share the burden of problems,

and the work.

Light Touch Management Is Instituted to Provide Autonomy to Team

Members

A delicate Light Touch balance is struck: Developers are promised

that they will no longer be required to work overtime, but in

exchange, they have to commit fully to the new approach. Some

developers are very skeptical and continue to complain.

Adaptive Leadership Is Practiced to Tune the Approach Among

Tremendous Change

With a tremendous amount of change introduced all at once, managers

practice Adaptive Leadership by

• Managing the amount of change. They try not to push too hard on

the team until they can assimilate the change.
• Deciding that the first iteration will be a cleanup iteration.

The teams will not deliver functionality. Instead, they will

focus on implementing the XP practices: writing unit tests

while adjusting to an iterative delivery cycle.
• Dealing with the inevitable friction at the management level.

Some managers act as neutral arbitrators between other managers

to resolve conflicts. All managers agree to a common conflict

resolution process: They will table issues at the PO for joint

resolution.

Postscript: A Glimmer of Hope Is Seen

The project team reorganizes and trains for the new approach. The

foundations for APM and XP are laid.

Month Two

Organic Teams Prove an Excellent Vehicle for the Implementation of

Simple Rules

On the Organic Teams, the developers experiment with pair

programming. Many of them take to it enthusiastically, to the

surprise of the seasoned XP veterans on the team. The analysts are

beginning to like on-site customers, as are the developers. The

analysts like being in close proximity to the developers and seeing

them working hard to implement functionality. Friendships are

established, and bonds are formed. Now, when others criticize the

developers' work ethic, the analysts begin to stand up for them.

Developers like having their doubts clarified instantly.

Guiding Vision Is Reinforced Through the Release Plan and

Information Radiators

Senior management has refined their Guiding Vision. The release plan

now embodies the specifics of the Guiding Vision. Posters are hung in

the shared development area. They serve as "information radiators"

and broadcast the main objectives of the Guiding Vision. The release

plan is reviewed weekly at the PO. Minor modifications are made as

situations change. The release plan is presented at iteration

planning sessions to establish longer-term context.

Some Simple Rules are being neglected. They need to be reinforced

Simple Rules are suffering somewhat. Although two-week iterations

have been successfully implemented, along with several of the other

XP practices, the build process is broken, and the team just doesn't

seem to be able to get its arms around continuous integration. One of

the lead developers just cannot garner the confidence to provide

estimates in a timely fashion. When asked to provide an estimate, he

evades being pinned down by lapsing into seemingly infinite

speculation. Test-first design and unit testing suffer from neglect

as well. Managers request that XP coaches hold brown-bag sessions to

reinforce the XP practices.

Open Information fosters self-organization

Nowadays, in the development bullpen, as work progresses, one hears a

constant buzz: the flow of Open Information. The developer brown bag

serves as a process reflection to gather feedback and improve process

implementation. The daily standup meetings are well attended and all

team members are more aware of everything that is going on. The

management team rapidly self-organizes, and clear leaders emerge on

both the business and development sides. A development manager

volunteers to set up a Team Calendar so that everyone is aware of

project milestones. She takes to the XP process quickly as well. Her

enthusiasm and confidence is infectious. Her team begins to

outperform other teams.

Light Touch allows the team to absorb a major change dictated by

executive management

From up above, an edict is made: Executive management mandates a

major Graphical User Interface (GUI) change that is a vast

improvement over the current GUI. Several hundred JavaServer pages

(JSP) will need to be changed, and the development team grumbles

initially. Again, self-organization kicks in, and because of Light

Touch, a motivated developer is allowed to write Perl scripts to

automate the JSP fix of his own volition. In one fell swoop, he is

able to automate GUI changes to hundreds of files. The team finishes

the iteration ahead of schedule. Business is impressed. Senior

management is even more impressed. The developers gain a huge

confidence boost.

Adaptive Leadership prevents an errant manager from hijacking the

project

An errant development manager with a different agenda attempts to

hijack the process. Several disgruntled people are roused into

suggesting that a return to the big-bang approach will be quicker and

be better able to deal with architectural issues. A storm is brewing.

If these misguided souls are allowed to take Project Phoenix off-

course, everything will be lost. Adaptive Leadership on the part of

other managers results in an emergency PO meeting being called. The

meeting lasts four hours and extends well after business hours. The

senior management on the business side is angry and exhausted, but

determined to stay on track with the nascent XP process. The errant

development manager and motley crew present their alternate approach.

It is analyzed, dissected, and exposed to be an ill-conceived

repackaging of the waterfall process. After several hours of wearying

discussion, a consensus is reached: The APM/XP process will continue.

The irregulars have lost the battle. Project Phoenix will survive.

The bonds between business and systems management are stronger from

the ordeal. The process has proved resilient in the face of

remarkable odds.

Adaptive Leadership reduces meeting overload

On another front, the team is suffering from meeting overload.

Because of the team's size, managers hold meeting after meeting to

ensure all issues are thoroughly discussed. As a consequence,

developers suffer from frequent interruptions and the coding velocity

decreases. An Adaptive Leadership decision is made to consciously

reduce the number of meetings by optimizing the time spent in

meetings: Meetings are now held either early in the morning or just

before close of business, and formal agendas are introduced to

structure the meetings.

Postscript: The teams make visible improvements and measurable

progress

The iteration is completed on schedule, functionality is delivered,

and another baby step is made in the direction of success. The new

GUI is a huge win. It transforms the look and feel of the application

and wins plaudits from senior management.

Month Three

The Organic Teams change membership dynamically to tackle a code

merge

Because of past snafus, code development had progressed on two

separate branches. Maintaining two separate branches has become a

configuration management nightmare, and a code merge is necessary to

set thing right. Development management gets business buy-in, and it

is decided that the associated refactoring effort will be conducted

as a sprint (multi-day session of intense development) instead of a

regular iteration. The Organic Teams reorganize to tackle horizontal

layer modifications instead of vertical functionality with ease, and

the entire project team is energized. The code merge is completed

ahead of schedule, and the development team wins some more grudging

respect from the business side. At the end of the sprint, the Organic

Teams flow back into their original configurations and deliver

another iteration's worth of functionality. The senior management

team begins to speculate that a release in two months just might be

possible.

Senior Management assumes the burden for Guiding Vision from

diffident executive management

Guiding Vision has been set out by senior management and internalized

by the rest of the team. However, Project Phoenix still lacks clear

direction and Guiding Vision from executive management. Attempts are

made to engage executive management, but they seem less than

interested in the progress of the project and are content simply that

it has been recovered and stabilized.

The implementation of Simple Rules has improved because of brown-

bag training sessions

Implementation of Simple Rules has improved. The brown-bags have

borne fruit—the team is now familiar with XP practices and is

implementing many of them. A process reflection reveals that there is

process buy-in on all sides. A basic automated build is in place as

the first step toward continuous integration. The planning game has

been wildly successful in focusing analysts' requirements into user

stories, as a forum for analysts to determine what gets done and

when, and for developers to have significant input into those

decisions. Unit testing coverage has improved, as has pair

programming.

Simple Rules generate a complex iteration heartbeat

As iteration after iteration is completed, the team begins to settle

into a two-week routine. Analysts scamper to get their cards done in

time for the iteration planning meeting, held at the beginning of

each iteration. Developers push to get cards done at the end of the

iteration. The pace slows down for the first few days of the

iteration. Developers provide estimates and enjoy a little bit of

slack as they gear up to deliver on the next iteration's

functionality. From a distance, this activity is the first sign of

emergent order: A tangible project heartbeat that subsumes the

activities of the team members.

People Have Grown to Trust Each Other Because of Open

Information

More process reflections are conducted, this time for the managers

and the analysts. All managers, business and technical, reveal that

communication is excellent and that they are beginning to feel good

about the project. Open Information is deemed a great success. The

entire team is unequivocally committed to sharing information.

Light Touch Management Empowers the XP Coach to Make a Key

Decision Affecting the Implementation of the Code Merge

The XP coach is empowered enough by Light Touch to recommend a Zope-

style sprint to the team to implement a code merge. All managers

support the idea, and a code-merge sprint week begins; everyone works

hard and pulls it off with some time to spare.

Managers Practice Adaptive Leadership and Tune Simple Rules to

Adjust to the Project Environment

In employing Adaptive Leadership, development managers realize that

continuous integration cannot be implemented in one fell swoop

because of legacy code and scripts. A build of the system is somewhat

time-consuming and, until further refactoring is implemented to

reduce the time, a basic build is implemented as a nightly build that

runs all unit tests as well. As the code merge is conducted, managers

keep a close watch on the teams' progress and impose a deadline. The

merge is time bounded to avoid a runaway from the main development

path.

Adaptive Leadership also reveals that some Simple Rules need further

reinforcement. In particular, the development team is struggling with

simple design. There are no design discussions taking place at the

whiteboard, and each developer is implementing design on his or her

own. To improve the implementation of simple design, and to reinforce

other practices, an XP bootstrap training session is scheduled. An

external mentor is tapped to deliver the XP bootstrap training. Some

developers respond with enthusiasm, but there are still some

holdouts. Adaptive Leadership thus demands that some practices will

just have to be enforced top down because developers have been given

several opportunities to implement them but have remained sloppy.

Postscript

The changes take hold, and the teams gain momentum. They gain

confidence.

Month Four

The Teams Act in Alignment to Refine the Guiding Vision

Things are looking good on Project Phoenix. The team has left the

baggage of the past behind and is taking well to the new APM/XP

approach. With several iterations of successful delivery, the

development team has gained the confidence of their business

partners. Both the business and development teams jointly negotiate

the first production release to refine the Guiding Vision.

Managers Apply Adaptive Leadership to Resolve Snags on the

Organic Teams

On the Organic Teams front, some cross-team snags have developed

between two teams at different locations. The misalignment results in

duplicate code that breaks the combined automated build. Managers

step in quickly to apply Adaptive Leadership, and the measures to

facilitate collaboration between the teams are introduced. The teams

overcome their problems and move on.

Analysts Practice Open Information and Share Their Problems;

Simple Rules Are Tuned in Response

In a process reflection that is an application of Open Information,

the analysts express their difficulties in writing user stories so

that they can be easily understood and implemented by developers and

chunk the system implementation into manageable parts. To reinforce

Simple Rules, a training session is held for the analysts, and they

break down the system into vertical slices that cut across all layers

of the system's architecture (GUI to application logic to database).

For the most part, all team members have internalized Simple Rules:

Developers know their XP rights and responsibilities, analysts know

theirs, and managers know how implement them and track and measure

progress. The iteration heartbeat gets stronger from iteration to

iteration, and the teams fall into a comfortable rhythm: Analysts

buzz before iteration start; developers pick up the pace as

iterations begin, ramping up toward iteration end; and the test team

takes over at iteration end.

Light Touch Management Allows a DBA and a Release Manager to

Be Self-Selected by the Teams

Managers give developers more and more freedom in Light Touch spirit

because they have gained confidence in their ability to deliver. A

motivated new database administrator (DBA) takes it upon herself to

clean up the database and formalize database changes. This enormously

benefits the team. On the management team, Light Touch is even more

apparent. As the release draws nearer, a business manager steps

forward to assume the mantle of release manager. She defines and

directs the entire team through all the steps, business and

technical, of a readiness review, and as a result, the team is well

prepared for the release.

A Senior Manager Practices Adaptive Leadership to Head Off a

Late-Breaking Crisis

As soon as the release is scheduled, the business side begins to push

harder for more functionality than was agreed upon. The technical

side gets up in arms, and a crisis explodes. As all the great

camaraderie of the past few months is threatened, a senior manager

steps forward. In an Adaptive Leadership move, he takes the heat for

the business side by sending out a message reminding all sides of

their rights and responsibilities. He stresses the importance of

maintaining yesterday's weather—the XP practice of setting each

iteration's velocity based on the velocity of the previous one. He

insists that trying to cram in more functionality than supported by

the historical velocity is a bad idea and goes against the data

generated by the process. The business side backs off and reduces the

scope for the release to what was originally agreed. The technical

side breathes a sigh of relief, and the crisis recedes as everyone

gets back to work.

Postscript

The project is back on track, and a release is in sight!

Month Five

As the release approaches, the management team works in alignment

because of the Guiding Vision.

The management team works as a well-oiled unit, working in lockstep

according to the Guiding Vision, manifested by the release plan.

An issue between the testing and development teams is resolved based

on the relationships developed on Organic Teams; Simple Rules help

because they have ensured a robust test and build infrastructure.

A testing issue crops up between the development and test teams, but

is quickly resolved because of the working relationships built on

their Organic Teams. Development slows toward the latter half of the

month, and all focus is on testing and production support. Simple

Rules have ensured that a robust build and test infrastructure is in

place. Moreover, the teams have gone through the code integration

procedure at every iteration boundary, so they are able to pull off

the final builds without any major glitches.

An Availability Test for Production Is Rapidly Conceptualized,

Planned, and Implemented Because of Open Information and

Adaptive Leadership

Project Phoenix enters the final stretch of its major release.

Someone discovers that there is no way to ensure the application's

availability in the production environment. Because of Open

Information, this news travels fast and wide. Because of Light Touch,

another team member volunteers a solution: Write a test to confirm

the application's availability. Adaptive Leadership ensures that this

idea is supported and championed by management.

Release day approaches. The application passes system testing and is

deployed into a staging environment for final acceptance testing by

the users. The users bang on the application for a few days and

uncover no major bugs. On release day, a minor bug is found: Some

data is corrupt. A management decision is made to fix the data

problem manually. At 6:30 P.M., the release manager sends out the

fabulous news: Project Phoenix has gone live!

The first release is successfully rolled out to production. It is on

time to the day, with all expected business functionality and

improved usability, performance, and quality. The project staff has

had a sustainable workload. Managers are elated. This is a group that

has seen the project in the depths of failure, but has been

transformed into a winning team. Postscript: Go Live! The First

Release Is an Unqualified Success.

Project Phoenix rises from the ashes and soars into the sky. It

begins its song in a faltering tone that quickly waxes stronger and

stronger from iteration to iteration. The doctor has fulfilled his

promise. His team has done their job. Project Phoenix lives again. It

will indeed generate great wealth for its creators—the gods of

management. But they, too, have been through a fire of a different

kind. They have learned the lessons of cooperation and collaboration:

to work together toward a common goal. A tearful manager volunteers

on behalf of the group, "I don't know how we can ever go back to any

other methodology." The doctor's work is done.

Chapter 1. Agile Project Management Defined

Shrinking budgets. Shorter delivery cycles. Savvy, demanding

customers. Independent team members. Increasingly complex technology.

Constant need for innovation. Global competition. Corporate politics.

Organizational dependencies. Downsizing. Most project managers I

encounter nowadays are beleaguered, overworked, and stressed because

of their many pressing responsibilities. Some of them are required to

deliver results in the face of shorter delivery cycles while dealing

with demanding customers, bloated processes and controls, shrinking

budgets, and corporate politics. Others need to innovate constantly

in the face of global competition while managing downsized teams

working with increasingly complex technology. Although most of these

managers remain positively motivated, much of the work they do takes

a definite toll on the quality of their work lives and, consequently,

on the results they can deliver. Unfortunately, and somewhat

paradoxically, this hard work has not paid off in terms of value

delivered to customers. At several of the companies with which I

consult, project managers spend as much as 40 to 50 percent of their

time on activities that do not directly deliver customer value. How

is this time being spent, and what causes this enormous waste in

effort? More importantly, how can this be fixed?

Much of these project managers' time is wasted on trivial process

administration or administrivia: filling out multiple forms of

questionable purpose, creating advance schedules and plans that are

quickly outdated, conjuring up shaky estimates and budgets divorced

from actual project data, and creating reams of documentation that

creates illusory comfort and placates process watchdogs. Other wasted

time is spent performing incredible acts of communication and

coordination to cut through bureaucratic red tape: scheduling and

holding meetings with disparate groups to enlist their understanding

and cooperation, lining up external groups on which the project team

depends, creating multiple reports for senior manager after senior

manager, and seeking their contractual signoff and approval. In

essence, the time spent working on the things that directly deliver

something of value to customers is very little when compared with the

time spent working on all the other things that project managers are

required to do. Why is this happening? In trying to deliver customer

value in turbulent environments, it seems that organizations have

tilted too far in the direction of rigid control and cost

optimization, and have unwittingly sacrificed customer value along

with speed and flexibility in the process.

What Is Customer Value?

The right product for the right price at the right time. The

classic definition of customer value from Lean Thinking speaks

volumes through its simplicity. The right product is the

product with exactly the features that the customer wants. The

right price is the price that customer believes is a fair

deal. The right time is when the customer wants it. This is

the essence of customer value.

What must be done to address these issues and restore a focus on

customer value? Agile methodologies, with their concept of business

agility, offer a viable alternative to address project managers'

wasted effort and to increase overall value.

What Is Agility?

In today's turbulent environment, organizations face many cost

pressures along with increasing customer sophistication and

capriciousness. They need to identify, track, and maintain close

relationships with their stakeholders and customers. They need to be

able to manage uncertainty in these environments. With relentless

cost cutting and budget restrictions, they need to be able to do much

more with much less. But, fundamentally, above all else, these

organizations need to create and deliver customer value (see

sidebar).

Agility is the ability to deliver customer value while dealing with

inherentproject unpredictability and dynamism by recognizing and

adapting to change. It is the capability to balance stability with

flexibility, order with chaos, planning with execution, optimization

with exploration; and control with speed to deliver customer value

reliably in the face of uncertainty and change.

Agile methodologies including eXtreme Programming (XP), Crystal,

Scrum, and Feature-Driven Development (FDD) provide techniques (see

sidebar) for delivering customer value on software development

projects while creating agility through rapid iterative and

incremental delivery, flexibility, and a fo cus on working code.

Agile Methodology Basics

Agile methodologies advocate a "barely sufficient" or lean

approach to avoid waste and increase responsiveness to change.

Some of basic techniques employed by agile methodologies are

as follows:

Small releases. Work is divided into small chunks to manage

complexity and to get early feedback from customers and end

users. Releases are usually delivered in one to three months.

Iterative and incremental development. Plans, requirements,

design, code, and tests are evolved incrementally through

multiple passes or iterations, rather than through a single

"waterfall" pass with lockdowns of each. Iterations are fixed

length (usually around two weeks each) to maximize feedback,

and fixed scope to retain stability.

Collocation. All team members, including an on-site customer

are colocated in an open "bullpen or workcell" to facilitate

face-to-communication and rich interactions. Dedicated team

rooms are provided for impromptu meetings, design sessions,

and other formal and informal group activities.

Release plan/feature backlog. Desired features are defined at

a high level and prioritized by customers in a release plan or

feature backlog. The prioritization is done collaboratively

with developers in a release planning game (so named for its

use of game theory in balancing rights and responsibilities

among the different roles). Developers provide level of effort

estimates, and customers decide business priority.

Iteration plan/task backlog. High-level features from the

release plan are elaborated upon and prioritized along with

their implementation tasks in an iteration plan or task

backlog. The prioritization is done collaboratively with

developers in an iteration planning game. Developers provide

level of effort estimates, and customers decide business

priority.

Self-organizing teams. Team members self-organize by

continuously completing tasks collaboratively from the

backlogs without top-down management control.

Pairing.[*] Developers (and others) perform all production work

in groups of two to collaboratively construct and share

knowledge and enhance quality.

Test-driven development.[*] Developers write tests before they

write code and evolve the code to meet the tests. Tests

specify rather than validate code.

Tracking. Features and tasks are tracked within an iteration.

They count as complete only when 100 percent done. There is no

concept of partial completion.

Simple, lean, and adaptable. All aspects of work, including

processes, are kept simple, lean (low on wastes), and

adaptable to maximize customer value and to accommodate

change.

[*] Specific to eXtreme Programming

These methodologies evolved separately for a number of years, until a

group of their leading proponents arrived at common ground under the

label agile in February 2001, and captured their common, defining

essence in the Manifesto for Agile Software Development, reproduced

in Table 1-1.

Table 1-1. Manifesto for Agile Software Development

MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT

We are uncovering better ways of developing software by doing it and

helping others do it. Through this work, we have come to value:

Individuals and interaction over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value

items on the left more.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch01lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch01table01
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch01lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch01fn01
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch01lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch01fn01

Table 1-1. Manifesto for Agile Software Development

MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT

Source: http://www.agilemanifesto.org

Even as agile methodologies have gained in popularity, with the

exception of Scrum, the role of the project manager on projects using

these agile methodologies remains loosely defined and ill understood.

Scrum provides a clear role for the ScrumMaster (the Scrum project

manager), but other agile methodologies (XP in particular) have left

a lot unsaid about how managers can clearly add value in this new

world. Managers trained in predictive, plan-driven project management

techniques such as those based on the Project Management Institute

(PMI)'s Guide to Project Management Body of Knowledge (PMBOK) methods

face a learning curve when entrusted with the management of agile

development projects. How can project managers play an instrumental

part in assisting with the delivery of customer value on teams using

agile techniques? What must they manage, and what can they leave to

the team to self-organize? How can they arrange the facilities

conducive to and the conditions optimum for innovation? How can they

best coalesce and lead teams of highly technically skilled

individuals in this pursuit? The answer lies in Agile Project

Management.

What Is Agile Project Management?

Agile Project Management "Agile Project Management is the work of

energizing, empowering, and enabling project teams to rapidly and

reliably deliver business value by engaging customers and

continuously learning and adapting to their changing needs and

environments."

Agile methodologies differ from plan-driven ones (waterfall, CMM,

etc.) both quantitatively and qualitatively. Quantitatively, they are

different in that they take a "barely sufficient" approach to plans,

process, and control, while focusing heavily on execution and

delivery of customer value. Agile methodologies are also different

http://www.agilemanifesto.org/

because they are rooted in a complexity theory metaphor or model that

views projects as nonlinear, organic Complex Adaptive Systems (see

sidebar). This organic metaphor assumes change as normal and is

qualitatively different from the traditional linear, mechanistic

project model that assumes stability as its norm.

Complex Adaptive Systems

Living systems such as projects are complex in that they

consist of a great many autonomous agents interacting with

each other in many ways. The interaction of individual agents

is governed by simple, localized rules and characterized by

constant feedback. Collective behavior is characterized by an

overlaying order, self-organization, and a collective

intelligence so unified that the group cannot be described as

merely the sum of its parts. Complex order, known as emergent

order, arises from the system itself, rather than from an

external dominating force. These self-organizing Complex

Adaptive Systems (CAS) are adaptive in that they react

differently under different circumstances and co-evolve with

their environment.

Managing projects employing these methodologies therefore require a

style that is similarly "barely sufficient" in its plans, processes,

and controls; similarly oriented toward execution and customer value-

delivery; and that operates from common grounding in the complex

adaptive systems model. APM understands projects as Complex Adaptive

Systems (CAS), as illustrated in Figure 1-1.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch01lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch01fig01

Figure 1-1. Projects as Complex Adaptive Systems

APM's principles and practices, described next, are grounded in

complexity theory and align well with the "barely sufficient"

structure and customer-focus of agile methodologies. APM values that

underlie the principles and practices are presented in Chapter 2,

"The Agile Manager," because they pertain specifically to the agile

manager.

APM Principles

To be sustainable in the face of change, any methodology needs two

solid anchors: At its base, it needs a simple but unchanging core of

principles and values; in application, it should allow flexible

practices that are adaptable to changing environments and

circumstances. With this understanding, APM builds on CAS concepts to

derive these core foundational principles:

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch02#ch02

• Foster alignment and cooperation. People are considered the

primary agents driving value, change, learning, and adaptation.

Shared vision keeps people aligned and acting toward common

goals. When people are in alignment, they eschew competition

and cooperate to work with each other for mutual gain.
• Encourage emergence and self-organization. Processes and

practices are kept minimally simple. People self-organize to

deliver aximal business value. Complex patterns, including

self-organized behavior and optimal structure, emerge from

close interactions between many people following simple rules.
• Institute learning and adaptation. Feedback is used for

continuous learning, adaptation, and improvement. Projects

operate on their chaordic edge—the edge between chaos and

order—where there is "just enough" control, structure,

optimization, and exploration. Too little structure and a

project swings toward chaos, too much and it gets mired down.

Too little exploration and the project loses touch with

changing circumstances, too much and it veers off course.

These three principles provide a foundation for APM that is common

with that of agile methodologies. Consequently, they provide project

managers with an organic or living project metaphor that is far

better suited to agile projects than the traditional mechanistic

model. These principles also serve as the basis for the APM

practices, which is discussed next.

APM Practices

APM's practices are oriented primarily toward the delivery of

business value, rather than toward control and cost optimization.

They are by no means completely comprehensive and cannot cover

everything every manager needs to do on every agile project. But

because they are based on the organic CAS metaphor and the APM

principles just listed, they represent a flexible management style.

They specify different activities that are meant to be selected

according to project need. Always keeping the principles in mind, you

should select and tune these practices to match your own unique

project situation. The APM practices Organic Teams, Guiding Vision,

Simple Rules, Open Information, Light Touch, and Adaptive Leadership

are introduced next and are covered in detail in the following

chapters.

Organic Teams: Enabling connections and adaptation through close

relationships on small, flexible teams.

Self-organization and emergent order are due in part to rich

interactions or flows between people. Organizing the project into

small teams implies a low interaction penalty and can trigger this

rich interaction. Generally, teams are constructed by specialty.

Software development teams, for example, consist of developers and

business analysts selected by their specialization (J2EE, financial

services, etc.). If more effort is needed, more bodies are added.

This is the mechanistic way of ensuring a redundancy of parts. Each

part is designed to perform a particular function, and extra parts

are added to the system to either increase capacity or to back up

existing parts. On APM projects, agile managers seek to introduce a

redundancy of function. Instead of adding spare parts (developers,

business analysts, etc.), existing team members pick up extra

functions. This implies that every team member be a generalizing

specialist. Generalizing specialists possess skills not only in their

specialty areas, but in other areas as well.1 Allowing members to

roll on or off the team allows Organic Team composition and enables

adaptability to changing external conditions. Small team sizes

maintain optimal channels of communication and keep the interaction

penalty low. When the project requires a larger team size, organizing

the project into several small, organic subteams working in parallel

is a good strategy to scale up in size.

Guiding Vision: Keeping the team aligned and directed with a shared

mental model.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch01lev1sec6#ch01biblio01entry01

People's mental models are mechanisms for anticipation and

adaptation. When a project vision is translated into a statement of

project purpose and communicated to all members of the team, it

serves as a shared mental model that has a powerful effect on their

behavior. A real example of this principle is the use of the

commander's intent in the U.S. Army. The army knows that its leaders

cannot be omni-present. Therefore, army leaders clearly est-ablish

the commander's intent to serve as a guide on which soldiers can base

their own initiatives, actions, and decisions in the absence of

direction. Thus, even if the mission falls on the shoulders of the

lowest-ranking person, that person can carry out the mission.

Likewise, an agile manager guides the team and continuously

influences team behavior by defining, disseminating, and sustaining a

Guiding Vision that influences the mental models of individual team

members, and helps the team make consistent and appropriate choices.

Conventional project management techniques entail the creation of a

detailed plan with specific objectives for this purpose. Rather than

sinking time and energy into a detailed advance plan that will need

to change as assumptions and input change, agile managers maintain a

"good enough" vision. This means that instead of laying out detailed

project plans with locked-in tasks, they focus on desirable outcomes,

and allow the plans and their associated tasks needed to achieve

those outcomes to emerge over time.

Simple Rules: Establishing a set of simple, generative process rules

for the team.

Methodologies usually come with their own exhaustive set of

processes, templates, deliverables, and rules. More often than not,

these rules become so burdensome that they are not followed at all.

Some heavier processes enforce rule compliance by auditing. This is

counterproductive. On APM projects, team members follow Simple Rules,

but their interactions result in complex behavior emerging from the

bottom up over time. As an agile methodology example, the standard

practices of XP are a good set of Simple Rules for APM projects. They

are stated and agreed to by all members of the team at the outset,

although the team has the ability to adapt practices that are not

working or to add new practices. Throughout the project, the agile

manager identifies practices that are not followed, seeks to

understand why, and removes obstacles to their implementation. Used

thus, the XP practices provide simple generative rules without

restricting autonomy and creativity.

Open Information: Providing free and open access to information.

On agile projects, information is the catalyst for change and

adaptation. Interactions between people involve the continuous

exchange of information. The richness of the interactions between

people depends in large part on the openness of the information. For

an agile team to adapt, information must be open and free flowing.

Traditionally, managers have limited this openness and freedom for

fear that it will result in chaos. Organizational silos have also

hampered the free and open exchange of information. On APM projects,

obstacles to information exchange caused by organization silos are

identified and removed, reducing information cycle time. Information

flows freely and team members benefit from the power of this

unrestricted flow and exchange of information. Transforming exchanges

of information are the result, with each participant being

transformed in some way as a result of the exchange.

Light Touch: Applying intelligent control to foster emergent order

and maximal value.

Traditional management's primary focus on stability and control has

often resulted in elaborate methodologies, tools, and practices to

try and manage an inherently unstable and uncertain world. But

traditional tools fail when linear task breakdowns cannot easily

accommodate cyclical processes, and schedules require frequent

updating to reflect the reality of changing dates and circumstances.

This focus on control has obscured the original purpose of control—

to create order and deliver value. Consequently, some managers have

applied more control, hoping to deliver more order and value.

Unfortunately, this view has not accounted appropriately for the

uncertainties inherent in the real world. As experience teaches,

unforeseen events can ruin the best-laid plans. Skilled professionals

do not adapt well to micromanagement. Tools and techniques reach

their limitations quickly when used inappropriately. With Light Touch

control, managers realize that increased control does not

automatically decrease uncertainty and increase order and value; they

approach management with courage by accepting that they cannot know

everything in advance, and relinquish some control to achieve greater

order and value.

Adaptive Leadership: Steering the project by continuously monitoring,

learning, and adapting.

The most creative and agile work of a team occurs at the chaordic

edge—unpredictable enough to be interesting and ordered enough to

avoid falling into chaos. Leading a team by establishing a Guiding

Vision; nurturing small Organic Teams; setting Simple Rules;

championing Open Information; and managing with a Light Touch is

extremely challenging. A new, powerful way of team interaction does

not come without the risk of the team veering off course. Nonlinear

behavior can be either positive or negative in a project context;

controls placed on the system can have unintended outcomes.

Adaptive Leadership involves continually observing and assessing

practices, analyzing and adapting them for desired results, and

implementing them with maximum impact. It also requires an

understanding of the different parts of the project and its natural

forces. The agile manager understands the effects of the mutual

interactions among the project's parts and steers the project by

continuously monitoring the project, and by constantly learning and

adapting her approach.

Summary

By focusing too heavily on control and cost, organizations have

inadvertently compromised the delivery of customer value, and

required large amounts of wasted effort on the part of project

managers. Agile methodologies introduce a strong focus on customer

value and reduce waste through "barely sufficient" plans, processes,

and controls. However, the role of the project manager, with the

exception of Scrum, remains poorly defined on agile projects. APM is

a management approach that is philosophically aligned with agile

methodologies and similarly rooted in complexity theory. APM views

projects as Complex Adaptive Systems, and its principles and

practices drive rapid and reliable customer-value delivery by

• Stressing execution and value instead of control and cost

through the application of simple, generative processes.
• Employing an outcome-driven, organic, change-embracing approach

rather than a plan-driven, mechanistic, change-resistant one.
• Enabling feedback, collaboration, self-organization, learning,

adaptation, and continuous improvement.

Chapter 2 presents the agile manager's profile, role, and

responsibilities. Successive chapters thoroughly cover each APM

practice introduced here. Chapter 10, "Transitioning from the

Familiar," explores the transitions from familiar thinking and

behavior that are required of project managers to successfully apply

APM.

Reference

1. Ambler, Scott. "Generalizing Specialists: Improving Your IT

Skills."

http://www.agilemodeling.com/essays/generalizingSpecialists.htm,

2003.

Chapter 2. The Agile Manager

http://www.agilemodeling.com/essays/generalizingSpecialists.htm
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch10#ch10
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch02#ch02

Leadership and management are two distinctive and complementary

systems of action. Each has its own function and characteristic

activities. Both are necessary for success in today's business

environment.

—John Kotter, "What Leaders Really Do," Harvard Business Review on

Leadership

As noted in Chapter 1, "Agile Project Management Defined," aside from

Scrum, agile methodologies do not clearly define the role of the

project manager. Perhaps this lack of clarity arises from the fact

that there is no common agreement in the industry as to what the

title "project manager" means. I have seen it used variously to both

include and exclude functions such as technical architecture,

development process management, staffing, project administration,

change management, performance appraisal, project tracking,

accounting, and budgeting. Despite this variance, it has been my

experience that project managers—defined as those individuals

responsible for building and leading teams and accountable for their

success or failure—play a pivotal role in the delivery of business

value. This chapter introduces a role for such an individual—the

agile manager—who is accountable for delivering business value on

projects that employ agile software development methodologies. It

also explores what this role requires in terms of underlying values

and skills.

What Is the Agile Manager's Role?

The agile manager's role is to lead the delivery of business value on

agile projects by establishing APM principles and practices, and by

personally embodying APM values (covered later in this chapter).

Table 2-1 shows the different responsibilities required to fulfill

this role as they relate to the APM principles and practices.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch02lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch02table01
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch01#ch01

Table 2-1. The Agile Manager's Role and Responsibilities

AGILE PROJECT MANAGEMENT

APM Practice Leadership Management

Guiding Principle 1: Foster Alignment and Cooperation

Organic

Teams

• Promote software

craftsmanship

• Foster team

collaboration
• Form a guiding

coalition
• Cultivate informal

• communities of

practice

• Identify the project

community

• Design a holographic

formal structure
• Get self-disciplined

team players

• Propose an adaptive IT

enterprise

Guiding

Vision

• Evolve a team vision

• Align the team
• Envision a bold

future

• Create and maintain

shared expectations

• Discover business

outcomes

• Clearly delineate

scope
• Estimate level of

effort
• Design a vision box

• Develop an elevator

statement

Guiding Principle 2: Encourage Emergence and Self-Organization

Simple Rules • Enlist the team for

change

• Focus on business

value

• Assess the status quo

• Customize methodology
• Develop a release

plan/feature backlog
• Develop iteration

plans/task backlogs
• Facilitate software

design, code, test,

and deployment
• Conduct acceptance

testing

Table 2-1. The Agile Manager's Role and Responsibilities

AGILE PROJECT MANAGEMENT

APM Practice Leadership Management

• Manage the software

release

Open

Information

• Conduct a standup

meeting daily

• Encourage feedback
• Build trust

• Link language with

action

• Collocate team members

• Negotiate a customer

representative on-site
• Practice pairing
• Encourage the use of

information radiators

• Map the project's

value stream

Light Touch • Fit your style to

the situation

• Support roving

leadership
• Learn to go with the

flow
• Maintain quality of

work life
• Build on personal

strengths

• Manage commitments

through personal

interactions

• Decentralize control

• Establish a pull task

management system
• Manage the flow

• Use action sprints

Guiding Principle 3: Institute Learning and Adaptation

Adaptive

Leadership

• Cultivate an

embodied presence

• Practice embodied

learning

• Get plus-delta

feedback daily

• Monitor and adapt the

Simple Rules
• Monitor the APM

practices

Table 2-1. The Agile Manager's Role and Responsibilities

AGILE PROJECT MANAGEMENT

APM Practice Leadership Management

• Conduct regular

project reflections

• Conduct scenario

planning

The agile manager's responsibilities, shown in Table 2-1, are divided

into two major categories: leadership and management

responsibilities. Why this distinction? Although the terms leadership

and management are sometimes used interchangeably, they refer to

different things, as described next.

Leadership or Management—What Does It Take?

Leadership is drawing or guiding others by influencing their

behavior. Leadership's main purpose is to cope with change. Leaders

influence behavior in many ways and styles, depending on their own

personality. Good leadership brings out the best in people by

treating them as complete individuals, rather then merely employees.

Management, on the other hand, refers to the government or

administration of project affairs. Management's main purpose is to

deal with complexity. Tracking progress, reporting status, conducting

meetings, maintaining a budget, setting objectives, and providing

performance reviews are examples of management-oriented tasks. Good

management emphasizes rationality and control in bringing discipline

and order to the complexity inherent in today's global business

environment.

Although management and leadership are different, they complement one

another: Leadership allows the agile manager to influence people and

direct their behavior toward desired outcomes, and management allows

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch02lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch02table01

her to organize the project and manage its complexity. Figure 2-1

illustrates this complementary balance.

Figure 2.1. Leadership and Management (Adapted from Bellinger

20041)

Leadership and management skills are both equally important for the

agile manager to cultivate. Without management, leadership falls

victim to complexity. Leaders who do not employ good management

expose their teams to things such as the lack of proper coordination,

insufficient reporting procedures, and inadequate planning.

Management without leadership falls victim to a loss of soul.

Managers who do not lead may not be able to jell their teams,

communicate effectively with them, and connect enough with

individuals at a personal level to motivate them.

Taken together, the combined requirements for leadership and

management might seem extremely daunting. Fortunately, although the

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch02lev1sec4#ch02biblio01entry01
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch02lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch02fig01

agile manager's role is pivotal, it does not mean that she is the

sole leader on the project.

Shared Responsibilities

In keeping with the egalitarian ethos of agile methodologies, both

leadership and management responsibilities are shared between the

agile manager, the technical coach, the customer, and all other

members of the project team. This sharing of management

responsibilities translates to shared responsibility for establishing

APM principles and practices, as illustrated in Table 2-2.

Table 2-2. Shared Management Responsibilities

APM Principle APM Practice Responsibility

Foster alignment and

cooperation

Organic Teams Agile manager[*]

 Guiding Vision Agile manager, technical

coach, customer, team

Encourage emergence and

self-organization

Simple Rules Agile manager, technical

coach, customer, team

 Open

Information

Agile manager[*]

 Light Touch Agile manager[*]

Institute learning and

adaptation

Adaptive

Leadership

Agile manager[*]

[*] = Primary responsibility

As shown in bold typeface, the agile manager has primary

responsibility for these practices: Organic Teams, Open Information,

Light Touch, and Adaptive Leadership. For the other practices, the

agile manager is responsible for defining and communicating specific

requests to other responsible team members and collaborating with

them to implement the practices. Other management roles are discussed

next.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch02lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch02tn01
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch02lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch02tn01
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch02lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch02tn01
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch02lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch02tn01
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch02lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch02table02

Other Management Roles

APM prescribes three roles that bear management responsibility, and

complement and support the agile manager. These are individual roles

for customer/product owner and the technical coach, and a collective

role for the team.

The customer/product owner is responsible for business guidance in

the form of business outcome definition, and feature definition and

acceptance. This person has final authority and responsibility for

the release plan or feature backlog, including

• Owning the feature backlog/release plan
• Defining functional requirements as features
• Working with the technical coach and developers to prioritize

features and tasks
• Providing clarification and final say on requirements
• Accepting feature delivery at the end of each iteration

The technical coach leads the technical aspects of product or

application design and development. This person has responsibilities

mainly pertaining to the application of technical practices,

sustenance of technical discipline, and mentoring of other

developers, including

• Leading application design and development
• Practicing software craftsmanship and coaching and mentoring

other developers
• Leading the implementation of technical practices (i.e., pair

programming, simple design, refactoring, test-driven

development, etc.)
• Providing the final say on technical architecture
• Owning final responsibility for code delivery each iteration

Members of the team are all expected to be self-disciplined and self-

directed to a large degree. They are responsible for performing their

activities with minimum supervision and maximum collaboration, as in

• Expanding their skills outside their specialization in order to

assume multiple roles
• Applying self-discipline to complete work in a timely fashion

• Collaborating with other team members in a team spirit
• Pulling new tasks from the task backlog/iteration plan as they

complete tasks
• Raising issues in the daily standup and project reflections
• Keeping the team informed of progress on a continual basis

Can this sort of distributed leadership work on project teams? Yes.

Although the charismatic sort of leadership usually captures the

public imagination, the fact is that leadership exists in several

forms on every good project team. Project managers who inspire their

teams with a shared vision and delegate and empower their teams to

deliver on that vision are leaders. Technical coaches who lead by

example, architecting and implementing creative solutions in

collaboration with their teams are leaders. Savvy customers who

provide business expertise and influence product functionality are

leaders. Of course, skilled developers and analysts who bring

initiative and expertise to bear in system delivery are leaders as

well. An agile team thus consists of many leaders. The agile manager

needs to recognize, initiate, and cultivate this model of distributed

or collaborative leadership while still taking final responsibility

for the project.

What sort of person is best suited to operating in the collaborative

agile environment with these specific responsibilities? What kind of

skills and personality are called for here? A profile for the agile

manager that outlines the values and skills needed to assume these

responsibilities is covered next.

The Agile Manager's Profile

The agile style of operation involves initially accepting uncertainty

and complexity: It is only then that agile managers can become

skilled at adapting to change. When this initial hurdle is overcome,

the agile style also requires building closer and stronger

relationships with project sponsors, stakeholders, customers, and a

concentration on business outcomes and tangible customer value. In

general, agile managers need to be comfortable with

• Limited upfront analysis and limited detailed planning
• The urgency and excitement imposed by chunking work regularly

and delivering it incrementally

• Sharing authority with the technical coach, customer, and other

team members
• Increased communication and relationships with project

sponsors, stakeholders, and customers
• Personal coaching and mentoring for team members
• A relentless customer value-orientation

As described in the following section, these needs dictate a profile

for the agile manager that consists of a strong commitment to

underlying values, and a balance between leadership skills and

management skills.

Personal Values

In the book Built to Last, Collins and Porras reinforce the idea that

visionary companies distinguish their timeless core values and

enduring purpose from operating practices and business strategies.

They change the latter to adjust to a changing world, but hold fast

to the former as their bedrock foundation. Operating practices and

strategies differ between agile methodologies/ecosystems—XP, Scrum,

Crystal, etc., but the Agile Manifesto represents a strong, shared

foundation. Agile managers need to support these values and anchor

their behavior and style in four core personal values. These values

are trust, collaboration, learning, and courage:

• Trust. Trust is at the core of all effective professional

relationships. In a more informal agile environment, where

process overheads have been reduced to their minimum, it plays

an especially vital role. A high degree of trust develops when

all parties can understand and identify with each other. It is

definitely much easier to develop this sort of trust in others

with whom we have been working for a while. However, dynamic

environments do not afford this luxury. Consequently, APM

demands a "trust first" attitude that reposes trust in people

until proven otherwise.
• Collaboration. Collaborative relationships between business

experts and programmers, between team members and management,

between customers and providers all come with at least a

certain degree of tension. Before agile managers can work on

establishing team collaboration, they need to value

collaboration themselves. This requires a willingness to work

with others in peer relationships, and an understanding and

appreciation of the value of collaboration, as well as its

limits.
• Learning. To support learning and adaptation on their team,

agile managers require a deep personal commitment to learning,

whether it is individual learning or team learning. Agile

managers are required to construct a culture that allows the

freedom to fail, but with the discipline of failing fast and

learning from mistakes.

This sort of learning is central to dealing robustly with

uncertainty, ambiguity, and complexity.

• Courage. This is the most important value for agile managers.

Because of their unique position, usually between competing

interests and groups, project managers come under unusual

pressure to accede to the demands of many others. As agile

managers, they require courage (and diplomacy) to say no to

those demands on occasion, to confront unpleasant realities, to

stand up to senior management on behalf of their teams, to deal

with team conflict, and to accept criticism and learn from

mistakes.

For agile managers to effectively lead their teams, these four

personal values also need to be augmented by leadership and

management skills.

Leadership Skills—Dealing with Change

Leadership goes beyond the mundane in daily work life. Agile managers

require the leadership skills necessary to connect with the needs and

hopes of their team members. Tichy and Devanna identified several

characteristics of transformational leaders—people who effect

transformational change in organizations: They identify themselves as

change agents; they are courageous, believe in people, value-driven,

life-long learners, able to deal with complexity, ambiguity, and

uncertainty, and they are visionaries.2 These are elaborated from an

APM perspective in the following sidebar.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch02lev1sec4#ch02biblio01entry02

Agile Managers Aspire to Transformational

Leadership

They identify themselves as change agents. APM requires people

who constantly challenge the way things are. Where others may

act to limit choices and maintain the status quo, agile

managers need to take advantage of opportunities for change.

As agents of change, they also need to understand that people

are the key to change and work actively to gain trust before

they introduce change.

They are courageous individuals. APM requires giving up the

comfort of learned behavior of the past and striking into the

future with courage. Agile managers need courage to be able to

trust others to complete work without interference, to rely on

people when the stakes are high and time is money, to venture

into new territory, to constantly challenge the status quo,

and to continually give up the comfort of the past and present

and be oriented toward the future.

They believe in people. APM requires leaders who can relate to

people at a very personal level. They must believe in the

people with whom they work to the point that they can release

some control for greater order and value, delegate for greater

efficiency, network with customers to deliver greater value,

and inspire and motivate their team members.

They are values-driven. Agile managers need to maintain high

moral and ethical standards. Rather than being driven solely

by financial gain, recognition, or even power, they need to be

true to their values.

They are life-long learners. Because of the constant change on

agile projects that necessitates learning for survival, agile

managers need to enjoy learning. Where others may seek to

accept and even inadvertently create problems by not

questioning their own actions, agile managers stay committed

to analyzing the effects of their own and others' actions.

Where others seek comfort in routine, agile managers explore

and experiment to improve continuously.

They have the ability to deal with complexity, ambiguity, and

uncertainty. Acting in dynamic environments of higher levels

of complexity, ambiguity and uncertainty can cause fear and

anxiety. Some individuals are just not able to move beyond

this apprehension and act confidently. Agile managers need to

possess the ability to act decisively with incomplete

information.

They are visionaries. Leaders look beyond the past and present

to discern and develop a vision for the future. As such, agile

managers need to believe in their vision strongly enough, and

articulate it well enough that they are able to influence

others to share it and act toward fulfilling it.

Agile managers need strong leadership skills, and they need to aspire

to transformational leadership as was just defined.

Management Skills—Dealing with Complexity

Agile managers need to be able to handle complexity with focused

experimentation, analysis, feedback, and learning. For this, they

require Adaptive Management skills. Adaptive Management is the

systematic process of modeling, experimenting, and monitoring to

compare the outcomes of alternate management actions.3 Adaptive

Management seeks to reduce uncertainty in complex environments

through the common-sense approach of "learning by doing and testing."

Agile managers need to apply Adaptive Management to deal with

complexity by chunking: mimicking nature's way of building complex

systems from the bottom up in smaller chunks, after each chunk has

been shown to be capable on independent operation.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch02lev1sec4#ch02biblio01entry03

References

1. Bellinger, Gene . "Leadership and Management—A Structural

Perspective," http://www.systems-thinking.org/lamasp/lamasp.htm.

OutSights, Inc., 2004.

2. Tichy, Noel M. and Devanna, Mary Anne . The Transformational

Leader. John Wiley and Sons, 1986.

3. Farr, Dan . "Defining Adaptive Management."

http://www.ameteam.ca/About%20Flame/AAMdefinition.pdf, 2000.

Activities

These are the agile manager's leadership and management

responsibilities required to establish an agile project's Organic

Teams:

• Team structure-related activities that describe how best to

organize teams for value and flexibility
• Team practices to build expertise and community
• Enterprise integration techniques to help integrate the organic

team into the larger organization

Table 3-1 summarizes these activities, which are detailed in the rest

of this chapter and the next chapter.

Table 3-1. Establishing Organic Teams: The Agile Manager's

Leadership and Management Responsibilities

CATEGORY ACTIVITIES

Formal team structure Management:

• Identify the project community

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch03lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch03table01
http://www.ameteam.ca/About Flame/AAMdefinition.pdf
http://www.systems-thinking.org/lamasp/lamasp.htm

Table 3-1. Establishing Organic Teams: The Agile Manager's

Leadership and Management Responsibilities

CATEGORY ACTIVITIES

• Design a holographic formal structure

• Get self-disciplined team players

Team practices Leadership:

• Promote software craftsmanship

• Foster team collaboration

Enterprise integration Leadership:

• Form a guiding coalition
• Cultivate informal communities of

practice

Management:

• Propose an adaptive IT enterprise

Formal Team Structure

The mechanistic organizational model has been deployed with

phenomenal economic success over the past century to provide great

wealth and economies of scale. But, many of the wastes and

inefficiencies visible on software development teams—long

development cycles, poor quality, high failure rates, and customer

dissatisfaction with finished products—are traceable to the

mechanistic organizational model and the waterfall development model

that relies on its linear, componentized approach. Why is this so,

especially since it continues to perform well elsewhere—notably the

fast-food and restaurant industries? This is because, fundamentally,

the mechanistic model is designed for control in predictable

environments, and it is inappropriate for value-seeking knowledge

work performed by skilled professionals under dynamic conditions.

In this twenty-first century, although we have transitioned from an

industrial economy to a knowledge economy, we persist in applying the

mechanistic industrial model to software development knowledge work.

It is a poor choice when change is the name of the game. Even if we

set aside its dehumanizing effects of treating people like

interchangeable commodities, we see that today's software development

projects represent a qualitative difference in the nature of work.

Whereas the mechanistic model is efficient for routine, physical

work, it translates poorly to knowledge work, of which software

development is a subset. Furthermore, cutting costs to the bone and

instituting rigorous control—the time-honored ways of optimizing

organizations based on the mechanistic model—just do not work

because the model itself doesn't fit the bill. So, what is a viable

alternative to the traditional model when value and flexibility are

the paramount considerations? The alternative for agile teams is the

organic CAS model.

The Organic Complex Adaptive Systems Model

The flexibility, collaboration, and adaptation that agility requires

can be provided by the organic organizational model that has been

around since the 1950s. In their book, The Management of Innovation,

Burns and Stalker found the organic form to be better suited to

unstable, turbulent, and uncertain conditions.1 The CAS model

introduced in Chapter 1 is an organic model, as indicated by the

mapping in Table 3-2.

Table 3-2. Tracing the CAS Model to the Organic Model

FEATURE ORGANIC MODEL CAS MODEL

Flatter

structures with

decentralized

decision making

Wider span of supervisory

control. More decisions

made at middle levels of

the organization.

Semiautonomous,

intelligent agents

subject to minimal

controls.

Informal Lateral and as vertical Open Information to

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch03lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch03table02
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch01#ch01
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch03lev1sec4#ch03biblio01entry01

Table 3-2. Tracing the CAS Model to the Organic Model

FEATURE ORGANIC MODEL CAS MODEL

communication communication with

emphasis on relationships

and interactions instead

of hierarchy.

serve as an agent of

learning and adaptation.

Adaptable rules Less attention to formal

procedures; reshaping to

address new problems and

contingencies.

Local, Simple Rules to

facilitate complex,

overlaying behavior.

Collaboration Fluid organizational

design to facilitate

adaptation, flexibility,

and job redefinition;

departments, sections, and

teams formed and re-formed

as necessary.

Flexible and adaptable

grouping of agents.

Agent interactions

result in self-

organization and other

emergent phenomena.

Figure 3-1 illustrates a team organization based on the organic CAS

model. It enables flexibility and creativity through

multidisciplinary composition and advocates close personal

interactions between team members. Much of the work performed happens

with little or self-organized management. This organization aims to

reduce centrally coordinated bureaucracy in favor of more autonomous

units interacting closely.

Figure 3-1. Example Agile Team Organization

[View full size image]

http://safari.oreilly.com/bookImages/?0131240714/graphics/03fig01_alt.jpg;446951
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch03lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch03fig01

In designing a similar structure for your team, you must consider two

important factors the team's formal structure that determines rules,

regulations, and the distribution of power; and its informal

structure of self-organized communities of people.

The formal structure is deliberately designed and provides the limits

and routines necessary for its stability, efficient functioning, and

optimization. As we shall see, a formal holographic structure

(explained next) provides the stability for simple organizations to

evolve into complex ones. It also provides the ability to divide and

manage work to completion with the speed of the mechanistic model,

but in a holistic fashion and without its ill effects. The informal

structure, by contrast, is emergent and represents creativity,

adaptability, and vitality. Agile organizations maintain a balance

between designed and emergent organizational structures to achieve

harmony between freedom and stability, optimization, exploration,

control, and values.

Thus, when designing your team's structure, it is important to keep

in mind that its formal and informal structures play equally

important roles. Seasoned managers know that formal roles and

responsibilities, for example, play a relatively small part in a

team's operation. Although its formal structure plays an important

part in keeping a team stable, creativity, innovation, and self-

organization arise mainly from its informal structure. Organizations

therefore have a dual nature—they are simultaneously social

institutions designed for specific purposes and communities of people

who build relationships and interact at a personal level, as

illustrated in Figure 3-2.

Figure 3-2. The Dual Nature of Organizations

To design your team's formal structure, follow these steps: Identify

the project community, design a holographic formal structure, and get

self-disciplined team players, detailed next. Steps to help shape

your team's informal structure, including cultivating informal

communities of practice are covered in the next chapter as an

enterprise-integration activity.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch03lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch03fig02

Activity: Identify the Project Community

Your project community is made up of all the people who have some

influence over the project. Identifying these stakeholders and

analyzing how they fit into your project's larger organizational

structure is the first step toward designing and establishing an

organic team. Also an important step is ensuring that your project

meets its end outcomes. There is an important distinction between the

outputs that your project produces and the business outcomes it is

supposed to achieve. Outputs include things such as the working

software system, supporting documentation, and training provided by

the immediate project team. Outcomes include things such as reducing

costs, increasing revenues, or improving service. Usually, because

the outcomes are beyond the control of the project manager, we tend

to focus on the outputs and miss the importance of the outcomes. But,

if the end outcomes are not met, it is possible that your project

will be judged a failure even if all the outputs were produced to

specification. Because meeting end outcomes is so important, it is

important to identify how those who have direct or indirect influence

over the project will play a part in achieving those outcomes.

As a first step in identifying the project community, you can use Rob

Thomsett's classification to group your stakeholders into three

levels: critical, essential, and involved stakeholders:2

• Critical. Stakeholders who can prevent your project from

achieving success before or after implementation; in other

words, the showstoppers. For example, this group might include

your project sponsor, primary customers, end users, and product

manager.
• Essential. Stakeholders who can delay your project from

achieving success before or after implementation. In other

words, you can work around them through other stakeholders.

This group might include members of other related project

teams.
• Nonessential. Stakeholders who are interested parties. That is,

they do not directly impact your project; but unless they are

included in your communication, they can change their status to

critical or essential.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch03lev1sec4#ch03biblio01entry02

Next, a very useful way to analyze the structure of your project

community is by creating a map of the groups in which your

stakeholders exist. Each stakeholder is part of a cluster or group

that has a sphere of influence over other clusters in the

organization. This sphere of influence results from the working

relationships that stakeholders have with each other. To create a

stakeholder map, draw the clusters and their relationships to

indicate their relationships, as shown in Figure 3-3.

Figure 3-3. Stakeholder Map

[View full size image]

This map helps in understanding the context of the project within the

larger organizational structure: its objectives, outcomes, scope, its

relation to other projects, and the value it will add to the

organization. It should also provide you with a "big-picture" view of

your project's organizational context that will assist you in

http://safari.oreilly.com/bookImages/?0131240714/graphics/03fig03_alt.jpg;446951
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch03lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch03fig03

designing the holographic formal structure of your team, as covered

in the next activity.

Activity: Design a Holographic Formal Structure

Organizational Development practitioners prescribe a holographic

structure similar to that of the brain (see sidebar) for

organizations that require constant learning and adaptation. The

holographic structure provides excellent guidelines for developing

the structure of an organic CAS because the brain itself is a

complex, adaptive system of connected neurons. Each part of the brain

contains information relevant to the whole. That is, each thought and

behavior is embedded in the neutral network as complex holographic

interference patterns, and emerges when the neurons work together

through their dense interconnections in patterns. The power of the

brain derives from the dense network of neural pathways and the

simultaneous processing capability of all neurons. Memory and memory

storage is based on the firing and traveling of impulses across

patterns of nerve cells. The behavior of the brain as a whole is thus

largely an emergent, holographic phenomenon.

The Brain as a Holographic System

Karl Pribram compared the brain to a holographic system in

1969. A holographic system constructs a three-dimensional

image from information recorded on a photographic plate known

as a hologram. A hologram is created by splitting a laser beam

into two separate beams, bouncing one beam off an object and

using the other as a reference beam to create an interference

pattern. The interference pattern bears little resemblance to

the object, but contains all the information necessary to re-

create the image of the object. Even if broken, the entire

image can be constructed from any single piece of the

hologram. Pribram proposed the holographic operation of the

mind to explain why specific memories were not lost when

portions of the brain were removed in brain-injured patients.

Instead of being lost completely, these memories became

progressively hazier as more portions of the brain were

removed. The conclusion he reached was that memories are not

stored in specific cells, but rather distributed throughout

the entire brain as a sort of "neural hologram."

Organizational development guru Gareth Morgan offers these principles

for building holographic structures: Build the whole into all the

parts, create redundancy in information processing and skills and the

design of work, match internal complexity to that of the environment,

keep specifications to a minimum, and learn to learn.3 The overriding

principle here is to build the "whole" into the "parts." This

involves equipping every individual on every team with an

approximation of the vision, culture, and skills of the whole team,

just as the team should approximate the vision, culture, and skills

of the whole organization.

Agile managers can apply Morgan's principles to design their agile

team's holographic formal structure through a flexible fractal team

structure, diversified roles on holistic teams, team vision and

culture as memes, networked intelligence, redundancy of functions,

minimum specifications, and iterative design, as explained next.

Flexible Fractal Team Structure

Fractals reproduce the same basic pattern over and over again at

ever-smaller scales in their basic structure. A fractal-like

organization represents a way that a project team can grow large

while staying small, while building the "whole" into the "parts," as

illustrated in Figure 3-4. When your team reaches a size limit,

around nine people, the only way it should be allowed to grow further

is by spinning off another team. Following this approach helps you

avoid "team bloat," and help your teams retain their agile qualities.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch03lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch03fig04
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch03lev1sec4#ch03biblio01entry03

Figure 3-4. Fractal Team Structure

To ensure that the new team is properly set up, a small seed group

breaks off from the original team to form its core. This core group—

typically a manager, lead developer, and business analyst—ensures

that the agile team vision and culture are propagated intact to the

new team. Now, how can you ensure that this fractal team structure

remains flexible enough to adapt to rapid change? An excellent way is

employ a variation of the feature teams invented by Jeff De Luca for

teams implementing the Feature-Driven Development (FDD) agile

methodology.

The Fractal Structure at W.L. Gore and

Associates

W.L. Gore and Associates, best known for its GORE-TEX fabric

for rainwear, has a long history of innovation in the consumer

products business. Since 1958, W.L. Gore has built on unique

technical expertise in fluorocarbon polymers to deliver

hundreds of diverse products to market. Today, it holds an

enviable position with annual revenues in excess of $1

billion, more than 7,000 associates worldwide, and a number 12

ranking in 2004 on Fortune magazine's 100 Best Companies to

Work For.

The company's success is credited to its organizational

structure: a flat hierarchy without formal ranks and title;

multidisciplinary, Organic Teams that organize dynamically

around business endeavors; and leaders that emerge based on

business needs.

Significantly, W.L. Gore maintains a fractal organizational

structure that does not permit any operating division to

exceed a size of 200 associates to maintain its identity,

smaller teams, and facile collaboration. When divisions begin

to grow beyond this limit, they are divided to remain small,

and to ensure that vision and culture are kept intact.

FDD's feature teams are temporary teams led by a chief programmer. A

chief programmer assumes responsibility for delivering specified

features for an iteration of a few weeks' duration. He then

identifies the class owners—owners of specific code modules—and

pulls them together for the duration of the iteration to deliver the

specified features. Agile managers can use this concept to organize

teams dynamically: Instead of being led by a chief programmer, the

organic team is led by the agile manager. Besides a small core group

maintained for consistency and continuity, members in the team may

change from iteration to iteration depending on the functionality to

be delivered, as illustrated in Figure 3-5.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch03lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch03fig05

Figure 3-5. Dynamic Membership on Organic Teams

Incidentally, feature teams led by chief programmers can still be

used within these Organic Teams.

Diversified Roles on Holistic Teams

Another way to build the "whole" into the "parts" is to define the

work of the agile team in a holistic fashion. This principle is

contrary to the mechanistic, reductionist approach to work that calls

for division of labor, highly specialized tasks, and management

controls to link the tasks and see the work to completion. With

holistic team design, the basic unit of design is the whole team. You

need to make your whole team responsible for delivering customer

value, usually in the form of working software. Within the team,

define roles holistically so that your team members can develop into

generalizing specialists. A generalizing specialist is someone with

one or more specialties who actively seeks to gain new skills in

existing specialties, as well as in other areas. As Scott Ambler

defines it:

A generalizing specialist is someone with a good grasp of how

everything fits together. As a result they will typically have a

greater understanding and appreciation of what their teammates are

working on. They are willing to listen to and work with their

teammates because they know that they'll likely learn something new.

Specialists, on the other hand, often do not have the background to

appreciate what other specialists are doing, often look down on that

other work, and often aren't as willing to cooperate. Specialists, by

their very nature, can become a barrier to communication within your

team. A generalizing specialist is more than just a generalist. A

generalist is a jack-of-all-trades but a master of none, whereas a

generalizing specialist is a jack-of-all-trades and master of a few.4

Generalizing specialists can function in a flexible, organic way

because they feel knowledgeable and empowered enough to tackle a wide

variety of tasks. They can substitute for each other in at least a

limited capacity if necessary. For example, an agile project manager

who is a generalizing specialist might choose to develop her skills

in technical architecture and gain basic subject matter expertise in

biotechnology, in addition to honing her project management skills.

Such a person, when faced with managing a complex data crunching and

analysis project in the biotechnology domain, is undoubtedly better

equipped to manage the project than another with a project management

specialization and no domain specific knowledge or appreciation for

the project's technical complexity. An example set of roles and

responsibilities for an agile team of generalizing specialists is

shown in Table 3-3.

Table 3-3. Sample Diversified Roles and Responsibilities

ROLE RESPONSIBILITIES

Project Manager

(Project management,

technical, and capital

markets domain expertise)

Oversee the project to better align the

technical direction of project to the

straight-through processing business goal

Communicate rationale for design,

architecture, and process implementation

Work with other managers and staff to

facilitate communication

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch03lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch03table03
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch03lev1sec4#ch03biblio01entry04

Table 3-3. Sample Diversified Roles and Responsibilities

ROLE RESPONSIBILITIES

Function as the main project contact and

be responsible for application delivery

Manage and coordinate development of

application and XP process implementation

Track, monitor, and provide status on

project progress

Technical Coach

Advanced technical and XP

expertise; basic capital

markets domain expertise)

Work with project manager to help ensure

that input and feedback from customer and

users is given due consideration

Lead team in addressing straight-through

processing issues (security, exception

management, trade compliance,

connectivity, integration, etc.)

Work with customer, project manager, lead

developer, and development team to

implement the XP process

Work with project manager to establish

clear lines of communication and clearly

understood process with business team

Guide the design and architecture so that

it is simple, well designed, and

appropriate to the enterprise

Oversee J2EE development work,

infrastructure choices, application

security

Work with developers to implement

automated unit testing and automated

builds

Table 3-3. Sample Diversified Roles and Responsibilities

ROLE RESPONSIBILITIES

Customer Proxy/Tester

(Advanced capital markets

domain expertise, basic

XP expertise)

Interact closely with customers and end

users to interpret and document user

stories pertaining to straight-through

processing application

Interact closely with customer to

interpret, document and prioritize user

stories

Interact closely with developers to

explain and clarify user stories

Develop acceptance tests for user stories

Work with end users to run acceptance

tests to ensure application functionality

matches user stories

Developer

(Technical, XP, and basic

capital markets domain

expertise)

Understand straight-through processing

issues (security, exception management,

trade compliance, connectivity,

integration, etc.)

Develop straight-through processing

application within J2EE framework and XP

process with component development

Work with lead developer to incorporate

project-wide tools to support automated

builds and automated unit testing

Holistic teams with generalizing specialists lend themselves readily

to self-organization because they possess an intrinsic slack or

capacity. It is this excess capacity or redundancy that creates drive

and initiative at all levels and locations of the organization.

Team Vision and Culture as Memes

A meme is a unit of cultural information, such as a cultural practice

or idea that is transmitted verbally or by repeated action from one

mind to another,5 illustrated in Figure 3-6.

Figure 3-6. Meme Image

Just as DNA carries contains the holographic genetic code necessary

to evolve the development of the human body, memes give form to our

cultural and social norms. Memes function the same way genes and

viruses do and propagate through communication networks and face-to-

face contact between people.6 They are both carriers of information

and determinants of behavior.

For your team to be maximally effective, each member must carry the

agile blueprint or meme for success. The "whole" in "parts" in this

case is an individual equipped with an appreciation for your agile

team's vision and culture who embodies them, and who behaves in a way

that represents the whole team. Your team's vision and culture serve

as holographic cultural codes that need to spread from member to

member to form an agile meme complex, or organized agile belief

system. To ensure the neural network capacity for self-organization,

it is critical that these cultural codes also foster openness and

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch03lev1sec4#ch03biblio01entry06
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch03lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch03fig06
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch03lev1sec4#ch03biblio01entry05

tolerance. As mentioned in Chapter 2, visionary companies distinguish

their core values and culture from their operating practices and

business strategies for this express purpose. Similarly, you need to

keep operating practices and business strategies open to change as

situations demand, but lock-in on core values and culture as an

anchoring foundation.

Networked Intelligence

The use of networked information systems is another way to

disseminate the agile philosophy to every individual on the team and

build the "whole" into each "part." The growing wired global

community provides an unparalleled facility for creating an aggregate

networked intelligence that evolves from the interactions between

individuals connected by information systems. Corporate intranets,

blogs, wikis, and such are all networked systems that provide you

with an opportunity to spread team information and intelligence.

Redundancy of Functions

Your team's generalizing specialists create a redundancy of functions

so that each person is able to engage in a number of functions; and

unleash innovation and creativity as well. Intelligent action can

originate from multiple sources and evolve through any number of

patterns of collaboration similar to the functioning of the brain. To

build in the appropriate amount of redundancy, the internal variety

of the project team must be at least as great as the variety of the

project environment. Put another way, to be capable of self-

organizing in response to varying project situations, all members of

your team should manifest the variety of skills needed in your

project's environment.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch02#ch02

Minimum Specification

Another important consideration in the design of a holistic agile

team is to keep specifications to a critical minimum. Applying a

"barely sufficient" principle to your team's organizational design

will afford it the flexibility and freedom for self-organize. At

times, some managers have tended to go overboard in attempts to

comprehensively define organizational elements such as roles,

responsibilities, policies, and procedures. Instead, a holographic

structure limits design to just the critical minimum specifications.

This barely sufficient design approach reserves a certain amount of

freedom to enable team organization to evolve in response to changing

circumstances. As agile manager, you are also responsible for

identifying minimum boundary conditions and allowing the team

autonomy within those boundaries.

Iterative Design

Finally, there is the need to iterate, learn, and adapt the team's

organizational design. Keeping organization specification to a

critical minimum, defining roles at a broad level, employing

generalizing specialists, and keeping the whole team responsible for

delivery provides an ability to tune the organization and adapt in

response to changing needs. For example, if code quality is not

meeting expectations after a few iterations, you may choose to add a

tester to your team. If you find that you are making exceptional

progress, you may choose to scale down your team size to reduce

costs.

The holographic structure comes with several benefits, which are

explained in the next section.

Benefits of the Holographic Structure

There are several benefits to designing a holographic organizational

structure, as summarized in Table 3-4.

Table 3-4. Benefits of the Holographic Structure

ASPECT BENEFIT

Fractal structure

Advanced technical and

XP expertise; basic

capital markets domain

expertise

Retention of agile qualities.

Ability to scale upward in size.

Develop acceptance tests for user stories.

Holistic teams Joint partnership and accountability without

"passing the buck."

Developers and business experts jointly

responsible for requirements because both are

parts of the requirements development process

from the beginning.

Developers and testers get to understand and

clarify requirements right from the

beginning, and are jointly responsible with

business experts for clarity in requirements.

Business experts are always available as

customer proxies to assist developers and

testers. They are jointly responsible for all

development, because they work hand in hand

with the developers all through.

Testers understand requirements right from

the beginning and devise well thought-out

test scenarios from both a black-box and

white-box perspective leading to greater

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch03lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch03table04

Table 3-4. Benefits of the Holographic Structure

ASPECT BENEFIT

quality.

Diversified roles Flexibility is created by excess capacity of

individuals to perform different forms of

work.

Ability to self-organize and adapt is created

by individuals with multiple competencies.

Team vision and

culture as memes

Openness and tolerance to new ideas and ways

of operation.

Capability for self organization.

Networked intelligence Creativity, adaptability, and vitality.

Emergent structure.

All the activities covered thus far need individuals with motivation

and commitment to their work. These people enjoy the work they do,

self-regulate it, and work well with others. Agile teams need these

self-disciplined team players.

Activity: Get Self-Disciplined Team Players

The sun is fast setting on the world where developers could go off on

tangents, code in splendid isolation, and not be accountable for

delivering business value. In the past few years, companies have

responded to competitive pressures by increasing outsourcing and,

more recently, employing offshore project teams. Additionally,

business representatives (operations, sales, and marketing) have

taken a more active role in working with their information technology

counterparts. As a result, project teams have become diverse.

Previously, with a more homogenous technical team makeup, managers

were used to staffing their teams based strictly on technical

proficiency. Now that teams are multidisciplinary, more accountable

for meeting business goals, and perhaps even geographically

distributed, how are managers to best staff agile teams and manage

their performance? The answer lies in making the ability to function

as part of a team a major consideration when staffing the team.

Members of agile teams need to be technically proficient, self-

disciplined, and team savvy.

The software craftsmanship model discussed later in this chapter

presents techniques for building a progression of technical

proficiency from apprentice to master craftsman. Jim Highsmith

recommends keeping these qualities in mind regarding self-discipline:

• Accepting of individual accountability for performance results
• Confronting reality through rigorous data collection and

analytical thinking
• Engaging in intense interaction, debate, discussions, and

decision making
• Willingness to work within the agreed-upon self-organizing

framework7

Regarding team savvy or the ability to function as part of a team,

some skills that you should evaluate are helping and receiving help,

following plans and creating plans, sharing information, learning and

teaching, giving and receiving constructive criticism, negotiating

differences, and appreciating and enjoying other's contributions.

Individual team-play styles vary, so a one-size-fits-all approach to

evaluating them does not work. To be successful, agile managers

should ensure that their teams contain people with a variety of team-

play styles.

Summary

This chapter covered several formal and informal ways to structure an

agile team, as the first group of activities related to the Organic

Teams practice. The next chapter covers the two remaining groups of

activities for the Organic Teams practice: team practices and

enterprise integration.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch03lev1sec4#ch03biblio01entry07

References

1. Burns, Tom, and Stalker, George M. The Management of Innovation.

Oxford University Press, 1994.

2. Thomsett, Rob . Radical Project Management. Prentice Hall PTR,

2002.

3. Morgan, Gareth , Images of Organization, Sage Publications, 1996.

4. Ambler, Scott . Generalizing Specialists: Improving Your IT

Skills.

http://www.agilemodeling.com/essays/generalizingSpecialists.htm,

2003.

5. [The] American Heritage Dictionary of the English Language.

Houghton Mifflin, 2000

6. Bennahum, David S. "Meme." http://memex.org/meme.html, 2003.

7. Highsmith, Jim . Agile Project Management: Creating Innovative

Products. Addison-Wesley, 2004.

Chapter 4. Organic Teams—Part 2

Some responsibilities that have been associated in the past with

project managers are assumed by various team members on Organic

Teams. For example, the lead responsibility for technical decisions

lies with the technical coach. Other developers on the team assume

important responsibilities as well. These usually occur as team

practices within a software craftsmanship skills framework that

allows each developer increasing responsibility commensurate with her

software development expertise. Formal team structure and team

practices address the organization of agile teams within the

boundaries of the project itself. Current material on agile

methodologies stops here without addressing the larger practical

issues of how these teams interact with other units in their

organizations beyond their immediate boundaries. How can agile teams

transition from insular pilot status to full integration with the

mainstream? What needs to change in the larger organizational

http://memex.org/meme.html
http://www.agilemodeling.com/essays/generalizingSpecialists.htm

structure to make the entire organization more agile and adaptive? As

organizations begin deploying agile methodologies as an enterprise

solution, senior management within these organizations need to pay

special attention to how agile teams are set up and organized to

operate within the larger enterprise, and how the larger enterprise

itself must change to fully benefit from their agility and

adaptability. Activities for the agile manager to enable team

practices and enterprise integration are covered next.

Activities

As discussed in the preceding chapter, these are the agile manager's

leadership and management responsibilities required to establish an

agile project's Organic Teams:

• Team structure-related activities that describe how best to

organize teams for value and flexibility
• Team practices to build expertise and community
• Enterprise integration techniques to help integrate the organic

team into the larger organization

These activities are reproduced for reference in Table 4-1.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch04lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch04table01

Table 4-1. Establishing Organic Teams: The Agile Manager's

Leadership and Management Responsibilities

CATEGORY ACTIVITIES

Formal team structure Management:

• Identify the project community
• Design a holographic formal structure

• Get self-disciplined team players

Team practices Leadership:

• Promote software craftsmanship

• Foster team collaboration

Enterprise integration Leadership:

• Form a guiding coalition
• Cultivate informal communities of

practice

Management:

• Propose an adaptive IT enterprise

Structuring the team formally for value and flexibility by applying

the organic CAS model was covered in Chapter 3, "Organic Teams—Part

1"; team practices and enterprise integration are detailed next.

Team Practices

Some practices need to be handled mostly by the team itself, with

limited assistance from you. Your responsibilities as agile manager

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch03#ch03

in this respect are to promote software craftsmanship and foster team

collaboration. These two activities are covered next.

Activity: Promote Software Craftsmanship

As Pete McBreen states in Software Craftsmanship, software

engineering was conceived of to build life- or safety-critical, real-

time, and embedded systems and systems engineering projects. In

contrast, many agile developers follow software craftsmanship to

deliver robust, high-quality applications at reasonable cost in

relatively shorter periods of time. Software craftsmanship replaces

the traditional notion of software development as an engineering

activity in favor of an older concept of a software studio with a

skills progression from apprentice to journeyman to master craftsman.

Developers are expected to take on multiple roles and be responsible

for a complete job from start to finish. There is no narrow

specialization—all developers are expected to be generalizing

specialists who develop proficiency across the spectrum of the core

skills of programming: programming, testing, debugging, and

maintenance. There is no separation between "thinkers" and "doers"—

all developers are required to be both.

Software craftsmanship is very personal and focuses on each

individual, grooming them step-by-step to master software

development. Developers progress from entry-level apprentices to

journeymen by becoming skilled generalizing specialists who are able

to take on application development projects without assistance.

Master craftsmen are journeymen who develop their mastery through

learning and experience on many projects and nurture other developers

in their own development. As in traditional crafts, this education is

situated learning that advances through social interaction and

supervision. Software is developed in a software development studio

or open bullpen that facilitates close interaction between

developers. Apprentices work on the easier, mundane tasks and develop

tacital knowledge through observation and practice under supervision.

There is recognition that mastery takes time and developers are

treated as knowledge workers who bring dedication, self-discipline,

and a desire to learn and improve continuously. Each apprentice

trains a successor before moving on to more challenging work. This

frees master craftsmen to teach only the most advanced skills and

concentrate on productive work.

To promote software craftsmanship, the agile manager needs to

establish and maintain a studio with a small number of skilled

software craftsmen. Here are some guidelines on how to do this:

• Hire your master craftsman based on personal recommendation,

reputation, and portfolio.
• Let the master craftsman have a vetoing influence over picking

the rest of the development team.
• Deal with mistakes in selection as early as possible.
• Foster strong relationships between developers and users.
• Most importantly, cede responsibility for the technical

management (design reviews, code inspections, etc.) of the team

to your master craftsman. Your master craftsman or lead

developer is also the best fit for the technical coach role.

She is the person who can be most effective in ensuring that

XP's development practices, test-driven development, pair

programming, refactoring, and simple design, are being

implemented and sustained. This does not mean that you abdicate

your responsibility for the team as project manager, but simply

that you focus on managing the project context (stakeholders,

users, communication, etc.) and leave the project's content in

the hands of someone you selected for that purpose.

These are some basic guidelines for you to promote software

craftsmanship. More details are available in McBreen's book.1

Activity: Foster Team Collaboration

The mechanistic model treats software development as an assembly-line

production activity that fragments the development team by dividing

labor between narrowly specialized groups. This not only creates

problems for communication and coordination, but it makes it hard to

assign ownership for total delivery of business results. Each group

sees itself as responsible for a part of the process, but not the

whole. An inordinate share of the coordination burden falls on the

project manager; other groups, including customers and users, fall

into counterproductive "us" versus "them" stances.

Designing holographic organic team organizations that remove the

separation between these specialized groups and making the team

responsible for the entire process from start to finish can minimize

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch04lev1sec5#ch04biblio01entry01

organizational fractures. But agile teams require a high degree of

cooperation, collaboration, and trust that go well beyond a cessation

of work-related hostilities. What can be done to create the optimum

conditions for cooperation on agile teams? A major clue lies in the

relationship between self-interest and cooperation. Within most

organizations, these two have parted company, and it seems as though

never the twain shall meet. In today's world, it seems that the path

to success lies in ruthless individualism and self-interest. However,

there is evidence from the world of science that cooperation allows

us to do better in evolutionary terms, provided the benefits of

cooperation outweigh its costs. How can this lesson be applied to

cooperation on agile teams? Agile managers can provide leadership by

fostering team collaboration although balance of power, customer

collaboration, and participatory decision making.

Balance of Power

Agile methodologies are profoundly informed by game theory in

enhancing collaboration. Take XP's planning game, for instance. It is

structured around two Simple Rules designed to balance the power and

maximize the benefit derived by all involved: developers' own task

estimation and customers' own task creation and prioritization. This

creates a situation where it is in each party's self-interest to

cooperate with the other to maximize collective gains. Developers try

to maximize the number of bug-free features while customers try to

maximize the value of those features. Adhering to these base rules

allows constructive negotiation instead of destructive gridlock or

competing agendas. Imagine for a moment if the rules were swapped.

Developers would get to own task creation and would indulge in work

of little business value, and customers would own estimates and set

meaningless deadlines for developers!

To promote collaboration, the agile manager should look for

opportunities to redress situations that disturb the balance of power

on agile projects. For example, on one of our early XP projects, our

lead developer was an excellent Java programmer and nominally

committed to XP. In practice, he turned out to be an overbearing

individual who was prone to browbeating the other developers on the

team. They felt powerless to oppose him in the face of his superior

skills. To restore the balance of power, the project manager acted

swiftly by removing the lead developer from the team and replacing

him with someone equally skilled, although more congenial.

Characteristics of Agile Teams

How can one tell whether one's team is agile? As an example,

here are some of the distinguishing characteristics of agile

teams: customer-value orientation, individual competence,

sustainable self-discipline, intense collaboration, reduced

cost of information transfer, reduced decision feedback delay,

and constant learning and adaptation. Here's how these

characteristics apply within the context of an XP team:

Customer-value orientation. Agile teams take seriously the

exhortation to make customers an integral part of every

project team. XP, for example, institutionalizes customer

involvement through practices such as on-site customer (a

customer or proxy is collocated with the development team),

one team (all team members—customers, developers, testers,

and managers—are considered to be important to the project),

and customer tests (customers define acceptance tests along

with each desired feature). Most significantly, through

planning games, customers get to decide the order in which

features get implemented (giving them the opportunity to

select features with the highest value first) and to change

their minds about which features to implement at the beginning

of each iteration. This high level of customer involvement

ensures that the final result closely matches the customers'

needs for maximum customer value.

Individual competence. Strong demand for individual competence

differentiates agile teams from others that focus solely on

process, and mistake process skills for individual competence.

For instance, three out of four of XP's core developer

practices—simple design, test-driven development, and

refactoring—call for a high level of competence among

developers. The fourth, pair programming, helps ensure that

that level of competence is continually being raised. Many

agile teams employ the software craftsmanship model (covered

later) of software development to exploit the advantage that

comes with using small teams of really good developers.

Likewise, testers, managers, and business experts are also

expected to carry their weight and play a part in keeping the

team light and nimble.

Small team sizes. True to the value of simplicity, agile teams

are built around small groups of talented individuals. Because

team members are individually competent and highly self-

disciplined, the overall team size can be kept to a minimum.

For example, Scrum recommends a team size of seven people.

Sustainable self-discipline. Along with possessing individual

competence, agile team members are highly disciplined. A

development-focused process, such as XP, far from being a

license to hack, requires sustained self- discipline. Take the

XP practice of continuous integration. It calls for

integrating the entire code base every time new code is

checked in by anyone on the team. Automated scripts are

usually used to check out all the code, build it, and run all

automated unit and acceptance tests. Although this might not

sound too difficult, I have only seen it practiced in full

measure on a handful of truly agile teams. This is because

continuous integration is predicated on the fact that every

developer on the team needs to be self-disciplined. A practice

such as this simply cannot be mandated top down—it will

suffer deterioration in its application over the long term.

Intense collaboration. From planning games to pair programming

to customer tests on agile teams, collaboration draws in all

the people, all the time. Planning games demand intense

collaboration between customers and developers: Developers

provide effort estimates to implement features, and customers

decide priorities and order features contingent on developer

estimates. Pair programming keeps all developers in

collaboration with each other in groups of two whenever

production code is written. A daily stand-up is held every

morning to communicate problems and solutions and to keep team

focus. Project reflections are conducted periodically with all

team members to garner lessons and to adapt the process

appropriately.

Reduced cost of information transfer. Collocating people to

facilitate in-person communication, and using user stories as

"contracts for conversation" in place of detailed, written

requirements are examples of the techniques agile teams use to

reduce the cost of information transfer. They strongly believe

that the best communication is face to face, and strive to

achieve modes of communication that reduce the cost of

information transfer.

Reduced decision feedback time. A fundamental tenet of the

agile approach is to develop software incrementally and

iteratively. The main intent with this is to reduce the time

between when a decision is made and when the effect of that

decision is seen. Agile teams accomplish this in several other

ways besides incremental and iterative development, including

making customer representatives available to the development

team to validate and approve every increment, ensuring that a

regression test suite is always available to monitor the

effects of any changes, and making small releases to ensure

viability of the solution.

Constant learning and adaptation. Because agile teams embrace

change, they also embrace constant learning and adaptation.

Daily stand-up meetings are opportunities to monitor, learn,

and adapt. Project reflections are conducted regularly to

discuss and unearth issues, as well as to tune process

implementation. The XP practice of tracking is used to track

and monitor progress within each iteration. In the development

realm, pair programming is an opportunity both for learning as

well as adaptation. Every planning game provides an

opportunity to check and adjust course to accommodate changing

requirements, as necessary.

Customer Collaboration

Traditionally, customers and users have always been placed "outside"

the team by management. Agile methodologies stress close customer

collaboration as a fundamental practice. XP also introduced the

concept of one team with its notion of close relationships between

customer, developer, and manager groups. The one team philosophy

opposes the "us versus them" thinking prevalent in our organizations

and fosters the creation of strong networks of informal

relationships. You need to implement customer collaboration and

continually reinforce the one team message.

Participatory Decision Making

Participatory decision making is the process by which all team

members influence and share control over the project's initiatives

and decisions that affect them. Although, as agile manager, you will

be ultimately accountable for the team's decisions, you need to

permit all team members to participate and influence decisions that

affect them. When granted this privilege, teams respond with

enthusiasm and energy in implementing decisions because they feel

they own them. With participatory decision making, every team member

becomes both a leader and a follower. Command and control is thus

replaced with leadership and collaboration. It is important to note

that participatory decision making does not always translate to

decision by consensus. There may be times that you need to make a

decision on the team's behalf that does not represent its consensus

opinion. But as long as you have sought the team's input and

considered all the options, this is still your prerogative.

Now that you understand more about formal team structure and team

practices for the organic team, activities to help integrate agile

teams into the larger enterprise are covered next.

Enterprise Integration

Developing agility is a larger effort of transforming your

organization's culture, not just a matter of restructuring your agile

project teams and revising their techniques. Several years of

experience with managing and advising agile project teams have taught

me that the sustained success of these teams and long adoption of the

structure and techniques for agile teams presented thus far depends

in large part on how they integrate into the larger enterprise. Agile

teams cannot deliver on their full potential without accompanying

organizational change. Organizations wanting to realize the full

benefits of their investment in agile project teams therefore need to

commit to transforming their larger organizational structure and

underlying culture as well. Otherwise, APM will just remain a

contemporary fad that will soon be replaced the next technique en

vogue, dissipating the investment in agile project teams. What are

some of the things that an agile manager can do at the enterprise

level to help ensure that increasingly scarce project dollars bear

full fruit?

The agile manager can play a role in helping evolve the larger

enterprise to an adaptive IT model that is better aligned with

business and more responsive to change. Activities to help accomplish

this objective include form a guiding coalition, cultivate

communities of practice, and propose an adaptive IT organization.

Activity: Form a Guiding Coalition

After you identify your project's community by grouping stakeholders

and creating a stakeholder map, the next step is to form a guiding

coalition. John Kotter recommends creating a powerful guiding

coalition for successful organizational transformation efforts.2 The

coalition should have a core of senior managers who have the power,

credibility, and experience to lead the change represented by your

project. It should also include interested stakeholders at all levels

of the organization that are committed to the success of the project.

Members of this group should share an accurate view of the project

and its implications, trust each other, and possess good

communication skills. They will be the ambassadors and evangelists of

the agile initiative. They will need to officially or unofficially

sign up to remove obstacles, promote the project, and act as change

agents. You will need their help to ensure the project achieves its

outcomes, and the changes made are sustained. One of your goals

should be to expand this group strategically to include more and more

people over the course of the project to expand the change effort and

ensure a diversity of views.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch04lev1sec5#ch04biblio01entry02

Activity: Cultivate Informal Communities of Practice

Organic Teams require the design of a formal holographic structure to

reproduce the bureaucracy's stability and management of work while

avoiding its stated dysfunctions. But agile teams also need a balance

between designed and emergent organizational structures to manifest

the essential creativity, adaptability, and vitality of living

organizations. The key to achieving this balance lies in

understanding the unstructured ways and means that people use to

reach out to others and collaborate on an informal basis.

Small groups or communities where people interact informally have

existed since time immemorial. These small group social systems are

what many of us find simultaneously productive and fulfilling. Much

of the work in these informal groups happens with very little or

self-organized management. It is in these forums where we can act

with purpose and freedom that we feel most creative and alive. These

small, informal groups exist everywhere that people congregate, and

therefore, they exist in our organizations outside of the formal

structure. In every organization, people get together to discuss,

analyze, and collaborate informally around platforms of shared

interests. Organization theorist Etienne Wenger coined the term

communities of practice for groups of people who share a concern, a

set of problems, or a passion about a topic, and who deepen their

knowledge and expertise in this area by interacting on a regular

basis.

Communities of practice starkly highlight the dual nature of our

organizations: They are simultaneously social institutions designed

for specific purposes and communities of people who build

relationships and interact at a very personal level. Agile managers

need to keep this duality in mind when molding a team to achieve the

agile fundamentals covered of customer-value orientation, individual

competence, sustainable self-discipline, intense collaboration, and

constant learning and adaptation. These agile fundamentals are very

personal and achieved by team members who bring a strong individual

capability and attitude of excellence to the team, and who need to be

able to sustain these qualities with knowledge obtained through

informal, emergent relationships. As such, communities of practice

are humankind's natural system for the ownership of knowledge and its

management. Agile managers need to recognize and cultivate

communities of practice, because knowledge is not a commodity that is

separate from people, and the best way to cultivate and manage

knowledge is to cultivate communities of practice.

Communities of practice are characterized by three features: mutual

engagement of members; a joint enterprise; and a shared repertoire of

routines, tacit rules of conduct, and knowledge.3 These features

relate to organic agile teams as shown in Table 4-2.

Table 4-2. Features of Communities of Practice and Their Agile Team

Manifestations

FEATURE AGILE TEAM MANIFESTATION

Mutual engagement Projects with Organic Teams

Joint enterprise Shared purpose or Guiding Vision

Shared repertoire Agile team fundamentals, software craftsmanship

Even though communities of practice are largely informal structures,

cultivating them through formal support is the best way to sustain

their existence and ensure their value. As an agile manager, take

care not to squelch your communities of practice through over-

supervision and control. But you will still need to follow some basic

steps to amplify their value and steer their efforts.

Some guidelines to cultivate communities of practice from Etienne

Wenger's book Cultivating Communities of Practice are evolutionary

design, multiple perspectives, different levels of participation,

public and private spaces, focus on value, familiarity and

excitement, and community rhythm.4 Agile managers need to apply these

principles thus:

• Evolutionary design. Begin with the bare essentials—a

coordinator and a core group and regular meetings. Allow the

group to evolve the community's design over time in response to

changing interests.
• Multiple perspectives. Ensure that multiple perspectives exist

in the community's makeup. Open a dialog between inside and

outside perspectives to do this. Inside perspectives are

important to understand issues and incorporate change

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch04lev1sec5#ch04biblio01entry04
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch04lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch04table02
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch04lev1sec5#ch04biblio01entry03

effectively. Outside perspectives are vital for opening up

possibilities and getting the group to consider options not

known locally.
• Different levels of participation. Invite many levels of

participation. Plan for a core group that is very active and

drives the community forward along its agenda. An active group

may not take on the strong leadership role of the core group,

but will participate regularly and remain engaged in its

activities. Finally, many members will be peripheral, watching

the interactions of the core and active groups, and

occasionally, stepping in to join them.
• Public and private spaces. Private interactions between members

are just as important as public ones. Besides public

presentations, meetings, and seminars, encourage members to

interact informally, visiting each other and working together

on each other's problems.
• Focus on value. Communities of practice cannot thrive without

the measurable delivery of value. They will lose their

credibility and support not only from the organization, but

also from the members themselves. Encourage members to focus on

delivering value regularly.
• Familiarity and excitement. To be successful, communities need

to maintain familiar activities that create a level of comfort.

They also need to combine familiar activities with new

activities to create the excitement that keeps members animated

and engaged.
• Community rhythm. Vibrant communities need to establish a

rhythm that is neither too fast that it overwhelms people, nor

too slow that they become sluggish. Regular meetings, email

exchanges, and other informal activities all contribute to the

rhythm of a community.

Activity: Propose an Adaptive IT Enterprise

I realize that it may not be within the purview of most project

managers' influence or authority to decide on the organization of

their enterprise. However, as teams implementing agile methodologies

move from pilot initiatives to full integration, the longer team

success of agile initiatives is dependent in large part on a

transformation of the organization's culture that is facilitated by

an evolution of its IT enterprise to an adaptive model focused more

on business value than on control and cost. To make this a reality,

agile managers will need to propose the need for an adaptive IT

enterprise model to executive management in their organizations. The

adaptive IT enterprise is a hybrid evolved from the traditional

dedicated IT enterprise and today's fully matrixed IT enterprise.

Traditional dedicated IT enterprises had a strong focus on business

value enabled by the advantage of tight lines of communication, as

illustrated in Figure 4-1.

Figure 4-1. Dedicated IT Enterprise

CM = configuration manager, DBA = database administrator

[View full size image]

Typically, in dedicated IT enterprises

• Business units initiate projects based on corporate strategy.
• All project team members are directly accountable for value

contributed to corporate strategy.
• The project manager has a strong management role.
• There is little or no coordination of common standards between

projects.

http://safari.oreilly.com/bookImages/?0131240714/graphics/04fig01_alt.gif;446951
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch04lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch04fig01

Although this enterprise lends itself well to generating value, it

also generates waste due to the lack of overall coordination and

efficiencies across projects. As a result, most IT enterprises are

now organized in a strongly matrixed project style.

The matrixed IT enterprise attempts to improve efficiencies and

reduce waste due to duplication of resources and uncoordinated

practices and standards. However, because it achieves this with an

underlying mechanistic model that calls for narrow specialization

within organizational silos, the matrixed IT organization falls

victim to calcification in the face of change and ends up generating

wastes itself in the form of the need for excessive coordination,

large team sizes and feedback delays.

Because of narrow specializations, the responsibility for delivering

business value gets diffused across organizational silos to the point

that no one is clearly identifiable for the delivering business

value. Notably, as illustrated in Figure 4-2, the project manager

acts as a scheduler and coordinator with very little management

influence. Project team members too are usually not truly dedicated

to the project, but rather matrixed into it from external silos. This

style of organization has introduced a great deal of control and

standardization, but comes at the expense of project throughput and

effective customer value delivery.

Figure 4-2. Matrixed IT Enterprise

PMO = project management office, QA = quality assurance

[View full size image]

http://safari.oreilly.com/bookImages/?0131240714/graphics/04fig02_alt.jpg;446951
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch04lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch04fig02

Typically, in matrixed IT enterprises

• Business units initiate projects based on corporate strategy.
• All project team members are responsible for value contributed

to group silos, rather than for corporate strategy.
• The project manager has a weak scheduling and coordination

role.
• Specialist groups, such as the program management office (PMO)

and other groups, have a strong influence on the organization.

There is suboptimization at the group level, because group

priorities usually override project or business priorities on a

localized basis.

The adaptive IT enterprise delivers high project throughput and

business value more consistently and effectively. It is a hybrid

between the dedicated project teams and a fully matrixed

organization, as illustrated in Figure 4-3.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch04lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch04fig03

Figure 4-3. Adaptive IT Enterprise

[View full size image]

Typically, in adaptive IT enterprises

• Business units initiate projects based on corporate strategy.
• All project team members are accountable for the delivery of

business value contributed toward corporate strategy.
• The agile manager has a strong collaboration, empowerment and

facilitation role, as well as a leadership role.
• Various communities of practice help maintain specialized

practices and standards but do not fracture the organization

into silos of specialists.

http://safari.oreilly.com/bookImages/?0131240714/graphics/04fig03_alt.jpg;446951

The adaptive IT enterprise supports project delivery on business

strategy, while simultaneously allowing consistent technical and

operational standards across project teams. The agile manager and all

team members become "generalizing specialists," where they have a

primary area of expertise but are empowered to contribute to all

aspects of project delivery. A product manager serves as the agile

manager's partner to deliver projects. Most significantly, for the

duration of the project, the entire project organization reports to a

business executive.

You will need to propose the adaptive IT enterprise as the preferred

organizational model for integrating your agile team into the larger

organization.

Summary

The objective of the Organic Teams practice is to structure and build

self- organizing agile teams based on the organic CAS model and to

integrate them effectively into the larger enterprise. The activities

associated with the Organic Teams' APM practice fall into three

categories: formal team structure, team practices, and enterprise

integration. Steps for the agile manager to design an agile team's

formal structure include identify the project community, design a

holographic formal structure, and get self-disciplined team players.

The agile manager's responsibilities for initiating team practices

are to promote software craftsmanship and foster team collaboration.

Finally, to integrate agile project teams into the larger enterprise,

the agile manager needs to form a guiding coalition, cultivate

communities of practice to help shape the team's informal structure,

and to propose an adaptive IT enterprise to executive management.

The next chapter covers the Guiding Vision practice; the objective is

to create a shared vision or mental model for directing behavior on

the agile project's Organic Teams.

References

1. McBreen, Pete . Software Craftsmanship. Addison-Wesley, 2002.

2. Kotter, John . "Leading Change: Why Transformation Efforts Fail,"

Harvard Business Review on Change, Harvard Business School Press,

1998.

3. Wenger, Etienne et al. Communities of Practice: Learning, Meaning

and Identity. Cambridge University Press, 1999.

4. Wenger, Etienne, Richard McDermott, and William M. Snyder .

Cultivating Communities of Practice. Harvard Business School Press,

2002.

Chapter 5. Guiding Vision

A shared vision is not an idea . . . it is, rather, a force in

people's hearts, a force of impressive power.

—Peter Senge, The Fifth Discipline

Along with scope creep and weak sponsorship, lack of a clear vision

and strategy repeatedly present among the top reasons for project

failure. The symptoms of ill-defined project vision—disagreement

about project outcomes, mismanaged and unmet expectations, and poor

team alignment—are easy to recognize. In this chapter, we explore

ways that agile managers can facilitate the formation of a guiding

vision that influences and directs team behavior by keeping team

members aligned and working toward a common purpose.

Popularized by Peter Senge in his landmark book The Fifth Discipline,

mental models and shared vision are concepts well recognized today in

the fields of organizational learning and management. Fundamentally,

mental models and shared vision are explanations of how we mentally

represent information and how those representations affect our

interactions with others and our environment. In organic complex

adaptive systems (CAS), agents build and adjust their mental models

in response to interactions with the environment and use them as

mechanisms for anticipation and behavior. This is consistent with

psychologists' view that the mind constructs small-scale models of

real and imaginary situations that it uses to create thoughts and

anticipate events. Building shared vision on a project involves

sharing and melding these individual mental models to build a common

aspiration and identity.

Senge goes a step further to describe a shared vision as an image

that people carry in their hearts and in their heads, and presents it

as a power to connect and commit individuals to one another—and to

the common future they seek to create.

The objective of the Guiding Vision practice is to create a shared

vision or mental model for driving behavior on agile projects. The

Guiding Vision is an aggregate of three component visions: team

vision, project vision, and product vision, as illustrated in Figure

5-1.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch05&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch05fig01
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch05&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch05fig01

Figure 5-1. Guiding Vision as a Shared Mental Model

These related, but different visions drive the behavior of

individuals: Team vision defines how a team can jell into a cohesive

whole, project vision defines how project members can best interact

to achieve the goals of the organization, and product vision defines

the model for the product. Collectively, the team, project, and

product visions form a Guiding Vision that creates a shared mental

model, common purpose, and alignment on agile teams. The rest of this

chapter outlines the activities you need to conduct to create these

visions.

Activities

Table 5-1 shows the leadership and management responsibilities

required to establish an agile project team's guiding vision:

• Team vision to drive team behavior
• Project vision to drive project behavior
• Product vision to drive project evolution

Table 5-1. Establishing the Guiding Vision: The Agile Manager's

Leadership and Management Responsibilities

COMPONENT ACTIVITIES

Team vision Leadership:

• Evolve a team vision

• Align the team

Product vision Leadership:

• Envision a bold future
• Create and maintain shared expectations

Management:

• Discover business outcomes
• Clearly delineate scope

• Estimate level of effort

Project vision Management:

• Design a vision box

• Develop an elevator statement

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch05lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch05table01

The activities associated with the agile manager's responsibilities

in Table 5-1 are covered in detail in the rest of this chapter. They

are discussed within the contexts of the team, project, and product

vision components of the Guiding Vision.

Team Vision

The team vision component provides a shared mental image or model in

answer to the question, "How do we want to work together?" Team

vision transcends the life of individual projects. It is a shared

work aspiration of technical excellence, agility, teamwork, and

commitment to customer value that draws a disparate group of people

closely together. When team members share a common vision, they

connect with each other at a fundamental level. The net result is

that individuals on a team with shared team vision share a common

identity, and are tightly focused toward the same goals.

Agile development is characterized by an iterative, sustainable,

self-disciplined, customer value-oriented approach on small, Organic

Teams that embrace change, feedback, and communication. One of the

first things an agile team needs to do is to verbalize and evolve a

team vision of how it is going to work together to achieve this style

of operation. Obviously, a team is an inseparable part of the

organization within which it operates. Because of this nexus with the

organization, team visions usually grow out of organizational

visions. Sometimes, in bureaucratic organizations, talented and

persistent managers or employees go against the grain and create

"skunkworks" teams that operate under the radar to overcome

bureaucracy and deliver customer value. Unfortunately, these teams

are usually not sustainable over the long haul—inevitably, they run

into organizational hurdles at some point or another. The most

enduring agile team visions grow out of deep organizational

commitment to core values. Jim Collins and Jerry Porras found that

the companies that have enjoyed enduring success are the ones that

preserve core values with a clear purpose while constantly changing

strategies and operating practices.1 It is these organizations with

strong core values and clear purpose that will find it easiest to

evolve an agile team vision. This is because although the agile way

represents new practices and strategies, core agile values are by no

means unique, and are in fact already well established at many

successful companies worldwide. Organizations with core agile values

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch05lev1sec6#ch05biblio01entry01
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch05lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch05table01

that are open to changing strategies and operating practices will

take to an agile vision naturally.

Evolving Team Vision at CC Pace

CC Pace, my current employer, has a very strong organizational

culture. The company vision has two facets: great clients and

great employees. Strong ideals for customer satisfaction and

value, personal integrity, and mutual respect have built a

collaborative culture that has taken the company through thick

and thin in the IT industry for more than 25 years. The

company has changed its operating practices and strategy many

times over that period. There have been moves from strictly

business-oriented consulting to technology-based business

consulting. Prominence in the mortgage industry has led to

diversification into other financial services domains,

including capital markets and banking. Five years ago, CC Pace

began an experimental eXtreme Programming project. Buoyed by

its success, XP was deployed on other projects. Experience

with XP led to augmenting it with usage-centered design and

agile project management. This blended approach has been

pulled together in a suite of corporate agile methodologies.

But the core values have remained the same through the years.

Commitment to core values of integrity, accomplishment,

work/life balance, and teamwork have brought like-minded

employees together over the years and helped them work

together. Newer employees have been attracted by this

commitment to customer satisfaction and agile culture.

Teams at CC Pace have this bedrock of core values to build

upon when evolving a team vision. On my teams, I like to point

out how the XP/agile values are consistent with company

values. Working with each other, we usually form a team vision

that includes teamwork, constant communication and feedback,

and customer-focused accomplishment. Because this vision is

completely consistent with CC Pace's core values, it is

quickly established as a shared aspiration for team members.

Activity: Evolve a Team Vision

To evolve a team vision, work with your team to identify the core

values and purpose of your organization and blend them with agile

principles to define a vision that is representative of them all.

The agile principles behind the Manifesto for Agile Software

Development serve as excellent guidelines for developing an agile

team vision. For instance, let's say your organization is committed

to these core values: integrity, customer satisfaction, flexibility

and adaptability, cooperation, employee growth, and professional

excellence. You can blend these core values with the agile principles

to build a basic team vision, as shown in Table 5-2. Because this

team vision is grown in part from your core organizational values, it

is naturally aligned with them, and makes it easier for the team to

make the change to an agile way of operation. Once developed, your

team vision provides a shared model that answers the question, "How

do we want to work together?"

Table 5-2. Agile Principles as Guidelines for a Basic Team Vision

Customer Satisfaction and Integrity: Deliver Customer Value

Frequently

Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software.

Deliver working software frequently, from a couple of weeks to a

couple of months, with a preference to the shorter timescale.

Working software is the primary measure of progress.

Integrity[*]: We do what is best for our clients. We keep our

commitments. We treat our staff with respect. We are honest, open,

and fair in all our dealings.

Flexibility and Adaptability: Embrace Change

Welcome changing requirements, even late in development. Agile

processes harness change for the customer's competitive advantage.

At regular intervals, the team reflects on how to become more

effective, then tunes and adjusts its behavior accordingly.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch05lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch05tn01
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch05lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch05table02

Table 5-2. Agile Principles as Guidelines for a Basic Team Vision

Customer Satisfaction and Integrity: Deliver Customer Value

Frequently

Learning[*]: We seek continuous improvement and growth through self-

examination and learning. We place a high value on both individual

and corporate learning.

Cooperation: Embrace Communication and Feedback

Business people and developers must work together daily throughout

the project.

The most efficient and effective method of conveying information to

and within a development team is face-to-face conversation.

Feedback[*]: We welcome and accept feedback that can generate growth

and change. We directly address issues with each other out of a

shared commitment to our corporate and individual success. We do so

objectively and without judgment.

Employee Growth and Professional Excellence: Commit to Sustainable

Self-Discipline

Build projects around motivated individuals. Give them the

environment and support they need, and trust them to get the job

done.

Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace

indefinitely.

Continuous attention to technical excellence and good design enhances

agility.

Simplicity—the art of maximizing the amount of work not done—is

essential.

The best architectures, requirements, and designs emerge from self-

organizing teams.

[*] CC Pace values (used with permission).

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch05lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch05tn01
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch05lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch05tn01

Activity: Align the Team

Because agile development is rapid and agile teams are self-managing

to a large extent, it is critical for team members to act in

alignment with the team vision. Aligning the team involves

continuously communicating and sharing the team vision with all team

members and enlisting their commitment so that their behavior is

consistent with it. The steps required to align your team are

discover individual aspirations, engage the team, request commitment

to the team vision, and steward the team vision.

Discover Individual Aspirations

As individuals on a project team, we all have our own aspirations and

agenda. For some, it might be working on the latest and greatest

technology; for others, it might be tackling challenging problems,

working with other smart people, or simply taking home a paycheck.

Where some of us might be motivated by delivering innovative

solutions to our customers, others might by motivated by job

stability. On a recent, small agile project, I discovered that our

team of four—one business analyst/tester, two developers, and myself

as project manager—definitely had varying aspirations. Our lead

developer was a brilliant individual who had a burning desire to

deliver quality code. As XP coach, he obsessed about making sure that

all the XP practices were practiced with adequate discipline. His

commitment to technical excellence drove him to aspire to make ours a

model agile project. His pair developer, on the other hand, was

motivated more by the novelty of the technology with which we were

working. For him, the agile methodology was more a means than an end.

Although nominally committed to the process, he was much more excited

about the .NET framework that we were using. Our business

analyst/tester was a 10-year company veteran. Although new to the

process, she brought more than a decade of experience of delivering

value to our customers. Beyond delivering a quality application to

our customer, my own motivation on that project was to closely knit

the team together so that it could operate independently. Each of us

had different aspirations for what we wanted out of the project. As

agile manager, it is up to you to spend time observing your team to

discover what really motivates them. Only then can you begin to

figure out how to build commitment toward the team vision. On my

project, I discovered that all of us had a deep commitment to

quality. For our lead developer, it came naturally with the

discipline of the XP practices. His pair developer wanted to write

quality code to best utilize the .NET framework. Our business

analyst/tester intensely wanted to do right by our customer because

quality was something the customer had identified as a very high

priority. For me, it was matter of keeping up our track record of

successful agile projects.

Engage the Team

After evolving a team vision based on core organizational values and

agile principles, you need to share it with your team and engage them

at a personal level. You can do this by relating the team vision to

the personal aspirations that you discover. Drawing your team members

into discussions about the vision at a level that is relevant to them

and will start to create feelings of ownership around the team

vision. As team members share their personal visions, the personal

visions begin to coalesce with the team vision. Be prepared to adapt

the team vision in response to this exchange of ideas. On the project

just mentioned, because our business analyst was new to agile

development, she had serious doubts about what she saw as the

informality of requirements documentation and upfront planning. She

was uncomfortable with the exploratory approach the rest of the team

was willing to take with flexible user stories that would change in

response to ongoing customer requests. To accommodate her discomfort,

team members voluntarily did two things: They adopted an approach

that was a little more detailed in its treatment of upfront planning

and documentation (allowing her to document user stories in more

detail than usual), and they took special pains to explain their

actions when they intentionally kept things "light." Because of this

interaction and engagement, the team vision took on a richer, fuller

form: It truly became the shared mental model of how we wanted to

work together.

Request Commitment to the Team Vision

This might seem like the most obvious of actions, and perhaps because

of that, it is one that doesn't happen often enough! The simple, yet

powerful step of a personal request from you, the agile manager, to

the team is crucial. The reason that you need to personally request

commitment to the vision is simple—until the time when the vision is

fully rooted, the only reason the team will support it is because of

their trust in you. Assuming you treat your team with respect, go to

bat on their behalf, and maintain integrity in your dealings with

them individually, they will have faith in you. So, a personal

request on your part is probably the most powerful thing you can do

to establish the team vision. When your team members commit to the

vision, something important happens—they begin to want the vision.

Instead of simply accepting it or faking compliance with it, they now

feel personally vested in it.

Steward the Team Vision

After the team vision has taken root and your team members are acting

in alignment with it, you may still need to sustain it. Although all

team members contribute to the team vision, you must remember that

you have the ultimate responsibility for sustaining it and keeping it

real for the project team. As circumstances change, perhaps with

conflict on the team, unmet customer expectations or even missed

deadlines, there may be a temptation to fall back upon traditional

fragmented ways of operation. Discouragement with the vision may set

in, bringing about its premature death. In such situations, you need

to jump in and spark reengagement with the vision. If real-life

situations warrant altering the vision, you need to do so to sustain

it. If some team members lose faith in it, you may need to enlist

others on your team as advocates to revive the vision by

demonstrating their own personal commitment to it.

By discovering your team members' individual aspirations, engaging

them, requesting their commitment, and, finally, by stewarding the

team vision, you can develop a shared mental model of how you want to

work together.

Project Vision

Project vision provides a shared mental image or model in answer to

the question, "What do we hope to achieve for the organization with

this project?" A project vision seeks to define the key pieces of the

project's context:

• What are the project's end goals or desirable outcomes?
• What are its objectives?
• What is its scope?
• How does it relate to other projects?
• On what other projects/factors does it depend?
• What value will it add to the organization?
• How will it contribute toward achieving the organization's

strategic goals?
• What is the strategy to deal with external changes?

These are all important facets of the project context that a project

vision needs to define. A clear project vision with a proper

understanding of project context is perhaps the most critical factor

to project success. As the Australian project management expert Rob

Thomsett says, "Projects fail because of the context, not the

content."2 Rob's opinion is that the traditional emphasis on project

content (i.e., the technical issues) has created a weakness in the

tools and techniques for dealing with the more complex people side of

things. Conversely, agile methodologies elevate the people side of

project management by explicitly codifying it into the Agile

Manifesto: people and interactions over processes and tools. They

also explicitly structure and amplify key aspects of the project that

relate to personal interaction, such as face-to-face communication,

feedback, learning, and sustainable self-discipline. Despite this

explicit improvement in the handling of "soft" project management

issues, some work remains from a management perspective. This work is

mainly in the area of aligning people to share a common project

vision. At any point in time, every team member—whether technical,

business oriented or management—should share a common understanding

of the envisioned future, expectations, business outcomes, scope, and

level of effort for the project. These are described in the

activities covered next: envision a bold future, create and maintain

shared expectations, discover business outcomes, clearly delineate

scope, and estimate project effort.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch05lev1sec6#ch05biblio01entry02

Activity: Envision a Bold Future

Bold visions capture our imaginations. They act as unifying forces

that excite us, challenge us, and drive our collective behavior. It's

rare to see someone excited by tepid visions of minor improvements.

Agile teams, in particular, enjoy huge challenges. Individuals

attracted to agile teams are the ones who are comfortable with the

risk and uncertainty that goes along with the embrace change modus

operandi.

You need to create a clear, compelling statement that envisions a

bold future. It should be a stretch goal that is well beyond what

your team has achieved before. For example, at CC Pace, after we had

experimented with many of the XP practices on a couple of trial

projects, our then vice president of technology—who had introduced

XP to the company—sold our customer on a bold future vision for our

next project: "We will implement all the XP practices on this project

to deliver a maximum value solution to our client." Implement all the

XP practices while delivering a maximum value solution—there were to

be no exceptions. We were challenged with implementing all the

practices and making them work. Our project team was skilled in the

organization practices: planning game, customer tests, and small

releases. We had had some success with some of the team practices,

such as sustainable pace and metaphor, but we needed to really pull

up our socks around the discipline of high-quality coding. Our lead

developer, who had just joined the company, brought a wealth of

experience with him. At that time, our XP coach was the most seasoned

XP person on the team. They worked tirelessly with the other team

members to raise the bar of technical discipline. They began with

continuous integration—in a few days, they had Cruise Control

(http://cruisecontrol.sourceforge.net/) set up for automated builds

and went on to simple design and test-driven development. On the

customer side, I worked with the customer to arrange for our business

analyst to function as a customer proxy. He would be the on-site

customer. Our Wall Street clients intuitively took to the planning

game. Many of the planning games were even held using

videoconferencing tools because the users were in different

geographical locations. For every challenge that came up, we knew we

had to find a solution—it was going to be all XP or nothing. In the

end, we pulled it off. The power of the bold vision drew us all in.

It brought out creativity, perseverance, and dedication. It unified

http://cruisecontrol.sourceforge.net/

us in a common project purpose and focused our efforts in delivery.

The team rose to meet every challenge and delivered a system to the

customer's satisfaction. Code quality? Zero bugs in production.

Usability? One influential user said, "This is a fantastic format,

very user friendly." Overall satisfaction? Our customer mentioned

later on that he thought that our team had set a gold standard for

his other consultants. Buoyed by that success and excitement, our

teams looked forward to a bold future vision on every subsequent

project. Here are a couple that we set on recent projects. When we

took on a large recovery and stabilization project, our vision was

this: "We will use our agile methodology skills to assist our client

in recovering this project. This will be one of the largest XP

projects in the world." On another recent project, we were re-engaged

by a client who had used a system that the company had delivered for

more than five years without any problems. Our business executive in

this case, set the bold vision: "We will deliver a high-quality

solution that meets our customer's high expectations of zero

maintenance costs." When agile teams with skilled professionals come

together to meet challenges like these, the results are truly

amazing.

To envision a bold future, set a bold vision that is immediately

understandable and appealing to your team members. You can make it

either quantitative (all 12 XP practices, one of the largest agile

projects in the world) or qualitative (high-quality solution that

meets our customers' expectations). Mainly, it should create a

compelling image or mental model that inspires team members and

impels them to action.

Activity: Create and Maintain Shared Expectations

Ensuring that all team members share common expectations is an

important part of the agile manager's job. To create this alignment

in expectations on the project team, you need to ensure that your

customers and stakeholders share the same expectations of the project

as your development team. Although managing expectations is a complex

and demanding subject well beyond what we can cover here, here are

some general guidelines: clarify roles and responsibilities, agree on

appropriate service criteria, communicate change continuously,

communicate clearly and consistently, and define shared success

criteria.

Clarify Roles and Responsibilities

Although agile teams encourage multitasking and self-organization,

you still need to define basic roles and high-level responsibilities.

Once defined and implemented, periodically clarify them to help

reduce unrealistic expectations and confusion. Although roles may

change and people may migrate to different functions, at any point in

time, everyone on the team should be clearly accountable for their

defined role. An important, but often neglected part of this endeavor

is to define and clarify roles and responsibilities for your

project's sponsor, customers, users, and any other stakeholders. If

you expect them to play a part in your project, make sure you apprise

them of your expectations by clarifying their roles and

responsibilities. For the development and customer teams, a good tool

that lays out rights and responsibilities for both developers and

customers is the XP bill of rights.3

Agree on Appropriate Service Criteria

Because agile methodologies change the way software is developed, you

need to explicitly state and agree to service criteria. This is

especially applicable for groups not used to any form of iterative

and incremental development. For example, for customers used to

getting software at the end of a project, it means letting them know

that they can expect software deliverables at the end of every

iteration. For testers used to getting full-featured systems, it

means letting them know that they will get a fully functional but

partially complete system at iteration end. For end users, it means

letting them know that their participation and input is critical to

help evolve the system. Work with your customers and stakeholders to

define a set of appropriate service criteria that will meet their

expectations and is within your team's capability to deliver.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch05lev1sec6#ch05biblio01entry03

Communicate Change Continuously

Because changes need to be constantly absorbed on agile projects, you

need to continuously communicate these changes to various project

team members. For example, critical stakeholders may need to be kept

apprised of project progress at every iteration milestone. Changes in

stakeholder priorities need to be communicated with the development

team as they occur. Changes in the status of risks and issues need to

be communicated to everyone on the team. You can use the XP

practices, such as the daily-standup, on-site customer, and team

collocation to accomplish this. The daily stand-up is a daily

opportunity to apprise your team of any changes that might have

occurred. On-site customer and team collocation (explained in Chapter

7, "Open Information"), once set up, allow for continuous information

transfer between diverse parties without intervention.

Communicating Clearly and Consistently

In her book Managing Expectations, Naomi Karten lists

excellent guidelines for clear communication that sets the

stage for expectations that are well managed:

• Guard against conflicting messages.
• Use jargon with care.
• Identify communication preferences.

• Listen persuasively. 4

Communicate Clearly and Consistently

Communication is an important part of the agile manager's job and has

special bearing on expectations management. To ensure that

expectations are kept aligned, you need to communicate clearly and

consistently. I use Naomi Karten's guidelines (see sidebar) to help

me accomplish this as follows:

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch05lev1sec6#ch05biblio01entry04
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch07#ch07
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch07#ch07

• Guard against conflicting messages. Promising more than you can

deliver, delivering more than you promise, implying something

and doing something else are examples of conflicting messages.

One unfortunate conflicting message, for instance, is delivered

by the phrase extreme in eXtreme Programming. One of the first

things I like to do when I meet stakeholders is to explain that

XP is a highly disciplined methodology, and that the extreme

stands for the extreme application of proven development

practices. This guards against any conflicting message they

might legitimately infer from the name. Another conflicting

message is what you say you will do versus what you do. An

example of this is when you say that no new user stories are to

be introduced within an iteration, and you then compromise by

allowing customers to slip user stories in while an iteration

is underway. Although this might be required in special cases,

it should be an exception rather than a rule because of the

conflicting message it sends.
• Use jargon with care. After having used XP for years, I now

have to be careful to catch myself from throwing around XP

jargon such as do the simplest thing that could possibly work

or refactoring. These terms and other technical jargon (XML

payloads, WSDL, app server) may not be familiar to all

audiences, and may alienate the listener. Although technical

jargon may be called for on occasion, be wary of excessively

using it to avoid miscommunication.
• Identify communication preferences. On a recent project, I

discovered that our customer was a "numbers" person. He liked

to have our reports in tabular format with as much of the

detailed data as possible. He delighted in delving into the

reports himself and forming his own high-level conclusions. On

the project just before that one, the customer was just the

opposite—he was interested in getting high-level summaries of

the data in graphical format. Because communication preferences

vary widely from person to person, and may even change during

the course of a project for a particular person, you should

begin each project by determining the your stakeholders'

communication preferences. A good way to do this is to ask them

how they would like information: what format, how often, and at

what level. I like to do this by discussing communication

preferences: communication modes such as in-person meeting,

teleconferences, or simply e-mail bulletins; reporting format;

and other communication mechanisms. After I have initiated a

communication style, I periodically check to see whether it

continues to meet expectations.

• Listen persuasively. The crux here is to listen and demonstrate

that you're listening. In our team meetings with customers, at

least one of our team will take notes and follow up the meeting

with a recap of what we thought we heard. This simple, but

effective technique ensures that we're listening and also

confirms that we have heard what was said. Also, an important

part of listening persuasively to arrive at shared expectations

is to listen for statements of expectations. Here is a recent

incident where I missed verbal statements of expectations from

a project sponsor. As our project entered its last month, in

our weekly management status meeting, the sponsor commented to

me, "The team seems to lack a sense of urgency." I quickly

assured him that this was not true, that they were hard at work

and were on track to complete the project by the deadline. When

he brought it up again, I responded in similar vein. When the

project was over, despite the fact that we delivered on time,

the sponsor stated that he was unhappy that I had not

communicated his "sense of urgency" to the team. It turned out

that he had an expectation that we should operate under growing

pressure as the deadline neared. With the benefit of a highly

skilled and experienced agile team, I had no such expectation—

I was confident in my team's commitment to delivering on time

and trusted them to do so. The correct response would have been

for me to pick up on his repeated verbal cues and reiterate why

missing last-minute "big bang" integrations were a good thing,

and a sign of a successful agile project.

Define Shared Success Criteria

A major source of unmet expectations is success criteria that are

different between project groups. For instance, although the

technical team might consider delivering quality code to be a measure

of success, their business counterparts might feel the code itself is

of no value until it adds some measurable value to the organization.

To facilitate a shared understanding of success, and to define

success in terms beyond the basic "on-time, within budget," you can

use Rob Thomsett's sliders tool,2 as illustrated in Figure 5-2.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch05lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch05fig02
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch05lev1sec6#ch05biblio01entry02

Figure 5-2. Project Sliders (Source: The Thomsett Company)

You can use Thomsett's project success sliders to set common

expectations around the relative importance of seven key project

success criteria: client satisfaction, meeting objectives and

requirements, meeting a budget, meeting deadlines, adding value,

meeting quality requirements, and achieving team satisfaction. The

sliders graphically demonstrate that when resources are limited,

compromises have to be made. Each slider can be turned all the way

on, all the way off, or placed anywhere in-between. You should get

all project stakeholders to jointly negotiate slider placement. This

ensures that if an agreement is made, all parties are on board. To

stay on top of changing priorities, make it a point to revisit the

sliders with the stakeholders periodically.

Activity: Discover Business Outcomes

Specifying business outcomes is important to align the project with

organizational strategy, to enhance its chances of success in

delivering value to the organization, and to enable innovative, self-

regulated behavior on your team to achieve these goals. This means

that you need to identify specific outcomes in answer to the

question, "What do we hope to achieve for the organization with this

project?" However, projects differ vastly in the amount of risk,

uncertainty, and change that they need to handle. Outcome definition

for projects with higher risk, uncertainty, and change needs to be

handled differently from that of more stable and conventional

projects. To ensure that your project is delivering value in

alignment with your organization's needs and objectives, you need to

work with stakeholders to discover appropriate business outcomes.

Discovering specific outcomes is important for at least three

reasons: to ensure that your business stakeholders are fulfilling

their proper responsibility, to enable aligned self-regulating

behavior on your team, and to enable learning and adaptation.

Stakeholder Responsibility

Technical teams are primarily responsible for creating the technical

outputs that help achieve business outcomes. Projects fail if your

technical team ends up determining project outcomes or if they

produce a product that does not add business value. Your technical

team could produce the best possible product, and yet if your

stakeholders have not ensured that it is used to meet business

outcomes, the project will be a failure. To avoid this quandary,

ensure that your business stakeholders articulate specific project

outcomes. This will have the effect of translating into specifics the

business objectives that your stakeholders often do not have the

means or inclination to communicate to your team.

Self-Regulating Behavior

To develop agility and self-direction, all your team members need to

be cognizant of the project's desired outcomes. When your team

members share an understanding of the overarching purpose of the

project and independence in working together to achieve that purpose,

you will see that they respond with creativity, enthusiasm, and

dedication to that purpose.

Learning and Adaptation

Agile teams adapt to change through constant "test-and-learn"

learning cycles. Every iteration is an opportunity to slice off an

increment of system functionality, plan necessary action via an

iteration plan, get right to work on delivering incremental results,

gather vital data and feedback to reflect on what has been

accomplished at the end of the iteration, and adapt appropriately.

The next iteration is another "test-and-learn" learning opportunity.

This exploratory, adaptive "sense-and-respond" style of operation

creates an openness and space that spurs innovation at a local level.

New approaches emerge to seize business opportunities that arise

along the way. New techniques emerge in response to new challenges.

Customers have the leeway to adapt to changing situations. The end

solution evolves through constant interaction, feedback, and

reflection.

If you were to use conventional practices to specify outcomes, they

would require setting very specific outcomes in advance and rigidly

trying to meet those outcomes. In a dynamically changing environment,

this can be dangerous practice because outcomes are always set based

on underlying assumptions. For example, here are some dangerous

assumptions:

• We can predict all of our customers' requirements in advance.
• Our customers will like our product because we know what they

like.
• Our customers will sign up enthusiastically to test our

product.

• Our customers' requirements will stay the same until we finish

developing our product for them.
• Our stakeholders have a good sense of the requirements without

involving end users.
• We have a good handle on our chosen technology.
• If we create a quality product, nothing else is important.
• Our stakeholders will commit the time and effort necessary to

make our project a success.
• We have the right team to make our project happen.
• We have all the information we need to develop our product on

time and within budget.
• All branches of our organization will enthusiastically support

us in our project work.

As the preceding list indicates, on new and exploratory projects, the

ratio of assumptions to factual knowledge is very high. As new

knowledge is discovered, assumptions must be revisited. When

assumptions change, it is likely that projected outcomes need to

change as well. This is the opposite situation to that of established

projects or predictable process-oriented work, where outcomes can be

set in an environment where the body of factual knowledge is high.

Conventional management practice constrains this sort of learning by

requiring detailed requirements and functions well in advance. Top-

down management with rigid detailed targets creates a compliance

mentality and discourages learning and incremental evolution. So, how

can you avoid this rigidity without descending into complete

randomness and chaos? What can you do to encourage the exploration

and learning that will lead to an incrementally evolved system? Use

an outcomes/assumptions checklist and an outcome test plan to evolve

product features and business functions, while keeping outcomes

clear, yet flexible to accommodate change. Table 5-3 provides an

example outcomes/assumptions checklist.

Table 5-3. Outcomes/Assumptions Checklist

OUTCOME MEASUREMENT ASSUMPTION(S)

Product

viability/market

opportunity

100 customers Competing products do not

exist.

Our value proposition

will resonate with

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch05lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch05table03

Table 5-3. Outcomes/Assumptions Checklist

OUTCOME MEASUREMENT ASSUMPTION(S)

customers.

Product is affordably

priced.

End-user

satisfaction/product

usability

80 percent user

satisfaction

Intuitive and easy-to-use

product.

Esthetically appealing

product.

Product meets users'

needs.

Customer participation 5 pilot customers Special incentives

available for these

customers.

Marketing/adoption group

will line up 5 customers

in time.

Team satisfaction 75 percent of team

members report

satisfaction

No sustained overtime.

Favorable working

conditions.

Product production

release

6 months from

development start

date

Team availability.

Customer availability.

Monthly incremental

releases.

After you have an initial outcomes/assumptions checklist, set up an

outcome test plan to revisit the outcomes on a periodic basis. This

approach is based on the McGrath and MacMillan's Discovery-Driven

Planning technique,5 and has the effect of systematically converting

assumptions into concrete knowledge. A sample outcomes test plan is

shown in Table 5-4.

Table 5-4. Outcomes Test Plan

MILESTONE OUTCOME(S) TO BE TESTED

2- and 4-month mark Product viability/market opportunity

Every iteration end End-user satisfaction/product

usability Product production release

Prior to project kickoff Customer participation

Every project

reflection/retrospective

Team satisfaction

The outcomes test plan is a great way of "planning to test and learn"

in uncertain environments, contrasted with the traditional "plan the

work, work the plan" rigidity. As new data and results emerge, use

them to update the outcomes/assumptions checklist. Used together,

these two tools are powerful contributors to an evolving project

vision.

Activity: Clearly Delineate Scope

Clearly delineating scope is always a challenge for project managers.

Traditionally, the burden of managing scope falls mainly on the

shoulders of the project manager. The project manager responds by

creating a scope statement, scope definition, and a scope management

plan, and makes a valiant effort to control changes in scope. Scope

management becomes a tiring balancing act of appeasing customers on

one end, overworking developers on the other, and staying as close to

the scope baseline because of the triple constraints of time, money,

and quality. Tools are not of much help either—traditional scope

statements seek to accurately document project deliverables and

requirements. Project deliverables and requirements are meant to

express goals and objectives in quantifiable ways. This approach

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch05lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch05table04
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch05lev1sec6#ch05biblio01entry05

encounters problems even on nonagile projects—it is understandably

hard to get to the minute specifics required to define scope in a

comprehensive fashion. What should one put in scope? What should be

left out? Will leaving things out of scope affect the project later

on? These are dilemmas faced by project managers as they attempt to

create clear and unambiguous definitions of scope. On agile projects,

this problem is compounded by the fact that scope is deliberately

kept flexible. Scope definition is a regular iterative activity, not

one that is completed and put to rest at the beginning of the

project. Customers have the prerogative to revise scope at end of

every iteration. It is clear that having a rigid scope definition

statement is not tenable under such circumstances. It cannot serve as

a baseline for future project decisions because it will itself be

unstable.

So, what is a good way for you to clearly delineate scope and keep

the definition open to change? APM takes a different approach to

scope management from traditional management: On agile projects,

managing scope is everyone's business. You can use a scope/objectives

model to delineate scope at a project level. Using the

scope/objectives model, your project stakeholders place objectives in

or out of scope. Your responsibility shifts from one of carrying the

entire burden of scope management to one of managing this

scope/objectives negotiation between customers, stakeholders, and the

development team.

The scope/objectives model is Rob Thomsett's simple and elegant tool

to state project scope that lends itself well to agile projects.2 The

tool has a table with two columns: one for project items in scope and

one for those out of scope, as shown in Figure 5-3.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch05lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch05fig03
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch05lev1sec6#ch05biblio01entry02

Figure 5-3. Sample Scope/Objectives (Adapted from Rob Thomsett's

Scope/Objectives Model)

You can use the scope/objectives model tool to clearly delineate

scope in the following fashion:

1. Hold a planning meeting for the entire team, including stakeholders, customer, and
development team.

2. Get stakeholders to place objectives in either the IS column if they are in scope, or the IS-
NOT if they are not. Handling objectives in this way explicitly addresses things are not in
scope. It brings to the forefront any assumptions that individual stakeholders might have. It
also sparks conversation and negotiation around project scope.

3. Put any unresolved items in the UNRESOLVED section. These go to the project sponsor for
final resolution who will place them either in or out of scope.

4. To explicitly assign responsibility for the items that are not in scope, you can also add a third
column to assign responsibility to appropriate stakeholders.

5. Repeat this exercise as often as necessary.

You can repeat this activity as often as necessary to adjust to

changes in scope. I have needed to perform it once or twice for each

product release.

Activity: Estimate Project Effort

Over the years, several techniques of estimating have been developed

—COCOMO, function-point analysis, etc. As software development moves

toward agile and Lean methodologies, folks increasingly own up to the

fact that software estimation is more craft than science. Perhaps

this is also because agile methodologies also help remove some of the

penalties associated with "wrong" estimates (cost overruns, blown

schedules, and the like) by providing regular data collection points

after every iteration and decreasing uncertainty by delivering

business value at regular intervals. When estimating your project

effort, remember that estimates are predictions in the face of

uncertainty and incomplete knowledge. This might not be the message

that project executives like to hear, but it is the truth

nevertheless. Consequently, remember that being able to negotiate

effectively with your project stakeholders is as important as being

able to get your team to estimate effectively! Here's a bare-bones

agile estimation process:

1. List and estimate known/fixed costs. The main point here is that there is a difference between
known or fixed costs and unknown or variable costs. Begin by listing the fixed costs for
things that you would normally be able to determine at the beginning of a project:
development hardware, application hosting, development software licenses, system software,
database software, application software, facility rentals, etc. Develop estimates for these fixed
cost items.

2. Identify the unknown/variable cost items. The big-ticket item here is the cost for
implementing user stories. We know that these will vary from iteration to iteration depending
on customer choices.

3. Develop and estimate high-level stories. Based on the information available, get with your
team to create high-level user stories for the software to be developed. Now, get them to
provide three estimates for each user story: optimistic, most likely, and pessimistic. XP teams
use ideal engineering days as the unit of estimation. You need to develop a rough translation
factor for translating ideal engineering days to person days for each team—account for things
such as varying experience levels, software complexity, level of continuing uncertainty, etc.

4. Estimate other unknown/variable cost items. Provide a cushion by estimating for other
variable cost items. This could be the cost of rework or additional work at the end of project
or the cost of replacing a core team member.

5. Use Wideband Delphi to combine and improve the estimates. Wideband Delphi is the
approach developed in the 1970s by Barry Boehm that prescribes developing individual
estimates, and then generating consensus on a final set of estimates through progressive,
iterative refinement. Although Boehm recommends that the estimates remain anonymous, I
maintain that this should not be necessary on an agile team with a high level of trust. When

your initial estimates are ready, hold a facilitated meeting to coalesce and refine them. The
facilitator collects each person's estimates and displays them, along with averages. Estimates
are discussed, and the process is repeated a couple of times until the group is comfortable with
the results.

These final estimates are calculated expert judgment on the part of

your team, and this approach has proven to be the most effective in

our experience. Quickly into the project (around one to three

iterations), you should be able to zero in on an accurate per

iteration cost. You can match this per iteration cost to the number

of iterations as projected by your release plan to further refine

your estimate.

Product Vision

Product vision provides a shared mental image or model in answer to

the question, "What are we building and how will it achieve the

project vision?" Product vision guides the reality that is unfolded

daily by your team members through their project interactions. From

an initial concept—provided by your customer—it will be refined and

evolved painstakingly through exploration, and evolved through these

tools: product vision box and elevator test statement. Working in

increasing detail from a high-level vision recorded in a vision box

to an elevator statement targeted toward customers is the agile way

of transferring ideas and concepts into product (or application)

reality. Once created, product vision is not static. Instead, it can

be altered in response to change. Activities to achieve this, design

a vision box and develop an elevator statement, are covered next.

Activity: Design a Vision Box

A particularly effective practice to develop a common product vision

is the design-the-box exercise developed by Jim Highsmith and Bill

Shackelford.6 You can conduct the exercise in this manner.

Break up the entire team (customers, developers, business analysts,

etc.) into cross-functional groups of four to six people. On each

team, have members prepare the front and back covers of a shrink-

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch05lev1sec6#ch05biblio01entry06

wrapped box to sell the product. They will need to work together to

come up with a product name, a graphic, and a few key points for the

front cover. For the back cover, have them record detailed features

and operating requirements. Once completed, have each group present

their results. Round off the exercise by having the groups combine

their results into a single product vision box, as illustrated in

Figure 5-4.

Figure 5-4. A Sample Product Vision Box

Activity: Develop an Elevator Statement

After you have a product vision box, use it as input to an elevator

statement. You can use Geoffrey Moore's elevator statement format7 as

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch05lev1sec6#ch05biblio01entry07
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch05lev1sec4&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch05fig04

a formula for creating an effective 30-second product synopsis. The

elevator statement format is also an excellent way to articulate a

product vision to cross the chasm of understanding between nebulous

individual ideas and a common, defined product vision. Here is

Moore's widely adopted format:

For (target customer)

Who (statement of the need or opportunity)

The (product name) is a (product category)

That (key benefit, compelling reason to buy)

Unlike (primary competitive alternative)

Our product (statement of primary differentiation)

An example of the elevator statement is the following definition for

agile project management developed on the Yahoo! Agile Project

Management Group

(http://groups.yahoo.com/group/agileprojectmanagement/message/697):

For managers of product development and other innovative business

solution delivery teams who need to lead highly skilled individuals

in delivering business value rapidly and reliably, Agile Project

Management is a project management paradigm that provides core

values, principles, practices and tools to energize, enable and

empower project teams that work in close concert with customers to

meet their business needs. Unlike traditional mechanistic management

approaches Agile Project Management's humanistic approach considers

all members skilled and valuable stakeholders in team management and

hence uses complexity theory as a metaphor for embracing change and

delivering results in extreme environments.

Summary

A shared vision is crucial to project success. Building shared vision

on a project involves sharing and melding individual mental models to

build a common aspiration and identity. The Guiding Vision practice

helps agile managers build this shared vision and influence and

http://groups.yahoo.com/group/agileprojectmanagement/message/697

direct team behavior by keeping team members aligned and working

toward its common purpose. The Guiding Vision is an aggregate of

three component visions—team vision, project vision, and product

vision—and can be created through a combination of leadership

activities (evolve a team vision, align the team, envision a bold

future, and create and maintain shared expectations) and management

activities (discover business outcomes, clearly delineate scope,

estimate level of effort, design a vision box, and develop an

elevator statement).

References

1. Collins, James C., and Jerry I. Porras . "Building Your Company's

Vision." Harvard Business Review on Change. Harvard Business School

Press, 1998.

2. Thomsett, Rob . Radical Project Management. Prentice Hall PTR,

2002.

3. Jeffries, Ron ,Ann Anderson, and Chet Hendrickson , Extreme

Programming Installed. Addison-Wesley, 2000.

4. Karten, Naomi . Managing Expectations. Dorset House, 1994.

5. McGrath, Rita Gunther, and Ian C. Macmillan . "Discovery-Driven

Planning." Harvard Business Review on Managing Uncertainty. Harvard

Business School Press, 1999.

6. Highsmith, Jim . Agile Project Management: Creating Innovative

Products. Addison-Wesley, 2004.

7. Moore, Geoffrey A. Crossing the Chasm. HarperBusiness, 2002.

Chapter 6. Simple Rules

Simple, clear purpose and principles give rise to complex,

intelligent behavior. Complex rules and regulations give rise to

simple, stupid behavior.

—Dee Hock, Birth of the Chaordic Age

Development methodologies in the software development industry run

the gamut from the ad hoc methods usually seen at smaller

organizations to the overwhelmingly rigid and complex monoliths

deployed at many large organizations. Despite a variance in size and

complexity, many in the software industry still mistakenly believe

that complexity and rigid control equates to discipline and value.

Because of this mindset, once methodologies are in place, even at

small organizations, they seem to grow inexorably in size and

complexity. When managers find it difficult to lead their teams in

fulfilling the requirements of complex methodologies with detailed

and complex routines and documentation, their professional maturity

is called into question. It is my contention that true discipline and

maturity lie in the regular and consistent application of the bare

essentials needed to deliver results rapidly and reliably.

In reality, the best disciplined organizations—small or large—are

those that consistently apply straightforward methods that are

customized to their environment to enable, rather than hinder, their

teams to rapidly and reliably develop and deliver software. The

complex adaptive systems (CAS) view introduced in Chapter 1, "Agile

Project Management Defined," holds that complex, intelligent behavior

emerges from the interactions of team members following simple,

generative rules. Superior outcomes are achieved by specifying Simple

Rules for project teams and by encouraging their creativity, rather

than by attempting to enforce complex and rigid regulations. Agile

methodologies support this approach through their "barely sufficient"

mindset toward plans, processes, and controls, and their focus on

business outcome delivery.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch01#ch01

Complex Flocking from Simple Rules

The complex coordination and adaptation in flight of a flock

of birds is genuinely a beautiful sight. How does this awe-

inspiring phenomenon occur? Is there a manager bird that

coordinates and directs the others?

Computer models have reproduced this behavior by giving each

simulated bird a degree of decision-making capacity. In these

models, each bird makes all decisions in accordance with these

Simple Rules:

• Separation. Avoid crowding flock-mates or hitting

obstacles.
• Alignment. Steer toward the general direction of flock-

mates.
• Cohesion. Move toward an average distance from flock-

mates.

These three Simple Rules result in complex flocking behavior.

Although the individual "agents" in these groups possess only

local strategic rules and capacity, their collective behavior

is characterized by an overlaying order, self-organization,

and a collective intelligence that is greater than the sum of

the parts.

The objective of the Simple Rules practice is to implement a set of

simple, adaptable methodology rules that allow agile teams to deliver

business value rapidly and reliably. As an example of such, this

chapter presents ways for the agile manager to customize and

implement eXtreme Programming (XP) practices for agile software

development teams. The activities associated with this practice have

the following implications:

• Assessing the environment to determine its characteristics
• Identifying and implementing a simple set of methodology rules

that is congruent with the environment
• Honing the discipline needed for continuous and consistent

application of the Simple Rules

The activities are grouped into two categories of actions needed to

institute Simple Rules: customizing the rules to the environment and

implementing the rules, as covered next.

Activities

To implement a Lean or "barely sufficient" methodology through a

minimal set of simple process rules, you need to specify the few

essential disciplines and boundaries that create an environment of

freedom and innovation within which team members can work

collaboratively toward desired business outcomes. Table 6-1 shows the

leadership and management responsibilities required to establish an

agile project's Simple Rules.

Table 6-1. Establishing Simple Rules: The Agile Manager's

Responsibilities

CATEGORY ACTIVITIES

Customizing the rules to the

environment

Management:

• Assess the status quo
• Customize methodology

Leadership:

• Enlist the team for change

Implementing the rules Management:

• Develop a release plan/feature

backlog
• Develop iteration plans/task

backlogs
• Facilitate software design, code,

test, and deploy
• Conduct acceptance testing

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch06lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch06table01

Table 6-1. Establishing Simple Rules: The Agile Manager's

Responsibilities

CATEGORY ACTIVITIES

• Manage the software release

Leadership:

• Focus on business value

These activities are detailed in the rest of this chapter.

Customizing the Rules to the Environment

Two major factors affecting methodology implementation are

environmental fit and environmental interaction. Environmental fit is

important because different organizational environments require

different process rules. Whereas some environments may be more

structured and need heavier processes, others may be more nimble and

need lighter processes.

Environmental interaction plays a part, too, because project teams

are "open systems" that interact with the organizational environment

continually through cycles of input, transformation, output, and

feedback, which implies that there in no single set of rules that

represent the "best way." Both these factors need to be considered

when implementing methodology rules to avoid problems with

misalignment, to orient the rules toward meeting an organization's

desired business outcomes, and to enhance their adoption. The

activities to address environmental fit are assess the status quo and

customize methodology. The activity to address environmental

interaction is enlist the team for change.

Activity: Assess the Status Quo

Data about your organization needs to be gathered before a customized

methodology implementation can be developed. To gather this data,

whether introducing an agile methodology on a completely new

"greenfield" project or building on an existing project, you need to

conduct a quick but solid assessment of the state of your

organization and its development processes. The best way to assess

the status quo is to build a profile based on data about your

organization's culture and processes. Data you will need for this

profile includes the following:

• Is the organization's environment stable or turbulent? How

often and how much is it affected by market forces, labor

issues, and financial considerations?
• What kind of strategic planning does it do? Is goal setting

defensive or is it aggressive and entrepreneurial?
• How is technology leveraged? Are technical systems simple

without integration, or are they complex and integrated? Is

there an overarching enterprise architecture?
• What is the evident culture? Do people seem to show up to work

unmotivated and watch the clock, or do they seem to be

motivated and energized? Is there a friendly and trusting

atmosphere or does the atmosphere seem to be one of competition

and distrust?
• Is the organization structure bureaucratic or is it organic?

Are there layers upon layers in the organization chart or is it

reasonably flat in hierarchy?
• How does staff view management? Is the management style top

down and authoritarian or is it democratic and collaborative?

The objective is to quickly gather as much data as possible and

decide on a methodology implementation that is congruent with the

organization's environment and its subsystems. You can use the

organizational profile tool shown in Figure 6-1 to chart the data

obtained. Place the sliders approximately where you think the

environment and subsystems are on the relevant continuum. For

example, if the organization's structure is extremely bureaucratic,

place that slider all the way to the left. If its management style is

formal but not quite authoritarian, place that slider toward the

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch06lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch06fig01

middle. In general, you will find that the sliders tend to cluster

together.

Figure 6-1. Organizational Profile (Source: Adapted from Images of

Organization by Gareth Morgan)

[View full size image]

The clustering of the sliders provide reasonably clear indications

about the nature of the implementation you should employ.

Organizations with democratic management and organic structure in a

turbulent environment (sliders clustered toward the right side), for

example, are great candidates for a lean, low-ceremony methodology

implementation. Organizations with more stable environments,

defensive strategy, and bureaucratic structure (sliders clustered

toward the left side) are better suited for heavier, higher-ceremony

methodology implementations. In fact, if all sliders end up way on

the left, reconsider implementing agile methodologies and go with

another heavier, more control-oriented methodology instead.

After you assess the status quo and built the organizational sliders,

you should have the information necessary to customize your agile

methodology, as described next.

http://safari.oreilly.com/bookImages/?0131240714/graphics/06fig01_alt.jpg;446951

Activity: Customize Methodology

Methodologies cannot be successfully implemented using a cookie-

cutter approach: Every project brings it own set of unique challenges

and goals. As a working example for the rest of this chapter,

consider what is involved in customizing XP. To customize XP to fit

each project, aspects that can be adjusted to accommodate varying

situations need to be identified. What is an effective way to

categorize XP practices to meet this objective?

XP Practices in a Nutshell

Planning Game. Quickly determine the scope of the next release

by combining business priorities and technical estimates. As

reality overtakes the plan, update the plan.

Small Releases. Put a simple system into production quickly,

and then release new versions on a very short cycle.

Metaphor. Guide all development with a simple shared story of

how the whole system works.

Simple Design. Design the system as simply as possible at any

given moment. Remove extra complexity as soon as it is

discovered.

Testing. Programmers continually write unit tests, which must

run flawlessly for development to continue. Customers write

tests demonstrating that features are finished.

Refactoring. Programmers restructure the system without

changing its behavior to remove duplication, improve

communication, and simplify or add flexibility.

Pair Programming. All production code is written with two

programmers at one machine.

Collective Ownership. Anyone can change the code anywhere in

the system at any time.

Continuous Integration. Integrate and build the system many

times a day, every time a task is completed.

Sustainable Pace. Never work overtime more than a one week in

a row.

On-Site Customer. Include a real, live user on the team who is

available full-time to answer questions.

Coding Standard. Programmers write all code in accordance with

rules emphasizing communication through the code.

Source: eXtreme Programming eXplained by Kent Beck.

According to Eisenhardt and Sull, Simple Rules can be categorized as

how-to rules, boundary rules, priority rules, timing rules, and exit

rules.1 Agile managers can use these five categories to customize XP

to an organization's environment and desired business outcomes:

• How-to rules describe the key features of the XP process.
• Boundary rules delineate boundary conditions that govern

allowable action.
• Priority rules help rank opportunities for feature development

in order of business value.
• Timing rules define the pace of delivery and synchronize it

across multiple teams.
• Exit rules define an exit strategy to avoid sinking costs in

areas with diminishing returns.

Two scenarios are considered next to illustrate in detail how this

categorization can be used to customize the way in which XP is

implemented.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch06lev1sec5#ch06biblio01entry01

Scenario 1: Time-to-Value

Scenario 1 has a small development team of four senior programmers in

a small organization that is eager to get started with XP and willing

to commit to all practices. It has a willing and enthusiastic

customer who has an urgent need to create and release a software

product rapidly and begin reaping returns on it within a few months.

Product quality needs to be good, but it is not the primary

consideration. The software has to be flexible enough to handle

additional functionality. The team's primary business goal is to

develop and release a base product to users as quickly as possible

and build incrementally from that base. Logistically, it has set

aside space to collocate the development team, and it will use a

business analyst as a customer proxy to represent the customer. The

organizational profile, shown in Figure 6-2, indicates that this

project is a good fit for a Lean, low-ceremony implementation.

Figure 6-2. Scenario 1 Organization's Profile

[View full size image]

Table 6-2 provides a minimum set of Simple Rules for this project.

The how-to rules specify the XP practices required to create quality

software. For this scenario, all XP's development practices have been

selected except pair programming. Because the four programmers

believe that they can code faster individually, they will try pair

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch06lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch06table02
http://safari.oreilly.com/bookImages/?0131240714/graphics/06fig02_alt.jpg;446951
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch06lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch06fig02

programming for a few iterations, but are ready to program alone. To

minimize the impact on quality, they agree to collocate and review

each other's code every day.

Table 6-2. The "Time-to-Value" Project's Simple Rules

TYPE PURPOSE XP PRACTICES

How-to

rules

Key features of the XP

process.

• Test-driven Development

• Simple Design
• Refactoring
• Coding Standard
• Metaphor
• Continuous Integration
• Collective Ownership

• On-site Customer

Boundary

rules

Boundary conditions to

delineate allowable action.

• Customer and programmer

bills of rights

• You aren't going to

need it

• Do the simplest thing

that could possibly

work

Priority

rules

Help rank work

opportunities.

• Planning Game

Timing

rules

Define and synchronize the

pace of delivery.

• Small, monthly releases

• 1-week iterations

• Sustainable pace

Exit rules Define an exit strategy to

minimize sunk costs.

• Option to abandon,

switch, defer, or grow

The boundary rules delineate allowable action. The customer and

programmer bills of rights balance key responsibilities: customers

own feature specification and priorities, and programmers own

estimation and development. This balance ensures that the highest

business value is always being delivered (because customers specify

it) and that the work estimates are always realistic (because

programmers specify them). The "you aren't going to need it" rule

requires implementation when it is needed, not when it is anticipated

to be needed, and ensures that only the things that are actually

needed get implemented reducing time-to-value. The "do the simplest

thing that could actually work" rule drives minimal solutions by

insisting that things are done simply, quickly, and professionally.

XP's planning game practice supplies the priority rules. Customers

get to specify business priorities so that features are delivered in

order of business value. Features with highest business value are

delivered first, ensuring minimum time-to-value. Developers get to

specify the riskiest things from a technical standpoint. Risky things

get tackled first to mitigate project risk.

For this scenario, the timing rules are the most crucial. They are

chosen to minimize time-to-value and set the team on an aggressive

schedule. Small releases will be made every month to end users. Each

iteration will be exactly one week long, and functional software will

be delivered to the customer at the end of every iteration. The team

will use sustainable pace to ensure that it does not tire itself out

by working more than one week of overtime in a row.

Exit rules are covered by providing the customer with flexible

options at the end of every iteration. Weekly iterations and monthly

releases allow quick validation of any assumptions about the product.

Feedback data about product viability is readily available because

end users have been involved all through. The customer thus can

choose to abandon the project at the end of any iteration, switch

priorities at any iteration boundary based on changing circumstances,

or defer or grow functionality based on end-user and market feedback.

Scenario 2: Recovery and Stabilization

Scenario 2 involves a large organization with a mid-size development

team that is failing to deliver working software, has missed

deadlines, and has delivered software with serious quality issues.

This organization has a customer who wants at least a baseline

product delivered as quickly as possible and with fewer defects.

Although not the primary consideration, delivery speed needs to be

reasonable. The organization's primary business goal is thus recovery

and stabilization of the effort. Logistically, the organization

cannot collocate all developers. It will use business analysts as

customer proxies to represent the customer. Because it is more

subject to governmental regulation and scrutiny, it has a need for

more control and documentation than the company in Scenario 1. This

organization's profile, shown in Figure 6-3, indicates that the

project is a good fit for a heavier, higher-ceremony implementation.

Figure 6-3. Scenario 1 Organization's Profile

[View full size image]

Table 6-3 provides a minimum set of Simple Rules for this project.

For this scenario, how-to rules XP practices have been selectively

employed. Pair programming, collective ownership, and coding standard

have been selected to help transfer knowledge about XP from experts

to novices quickly and raise quality. Because simple design is not

possible because of legacy code rot, it has been replaced by standard

design reviews. Refactoring is selected, although sparingly practiced

because no automated tests are in place. Because continuous

integration is not possible, a daily build is instituted. Customer

proxies act on behalf of the customer. Finally, to identify defects

and raise quality, system testing with dedicated testers and

automated acceptance tests is implemented.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch06lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch06table03
http://safari.oreilly.com/bookImages/?0131240714/graphics/06fig03_alt.jpg;446951
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch06lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch06fig03

Table 6-3. The "Recovery and Stabilization" Project's Simple Rules

TYPE PURPOSE XP PRACTICES

How-to

rules

Key features of the XP

process.

• Pair Programming

• Design reviews
• Refactoring
• Coding Standard
• Daily build
• Collective ownership
• Customer proxy
• System testing

• Automated acceptance tests

Boundary

rules

Boundary conditions to

delineate allowable

action.

• Customer and programmer bills

of rights

• Test-driven development (for

new code only)

• Detailed requirements, system

architecture, test plan, and

release notes documentation

Priority

rules

Help rank work

opportunities.

• Planning Game

Timing

rules

Define and synchronize

the pace of delivery.

• Small releases every 3 months

• 3-week iterations

• Sustainable Pace

Exit

rules

Define an exit

strategy to minimize

sunk costs.

• Option to abandon, switch,

defer, or grow

Boundary rules include the customer and programmer bills of rights to

balance key responsibilities and a rule to implement test-driven

development only for new code. Also, to meet regulatory requirements,

detailed requirements, system architecture, test plan and release

notes documentation will be created. The timing of the creation of

documentation will be negotiated with the customer. The content and

level of detail will be negotiated with the customer as well as an

internal audit group.

Here too, XP's planning game practice supplies the priority rules.

Customers get to specify business priorities so that features are

delivered in order of business value. However, priority is also given

to things that aid in stabilizing the project: reducing defects

through extensive testing, establishing a daily build, and allowing

longer iterations.

Timing rules are relatively less important in this scenario, although

fixed-length iterations are still strictly followed. Small releases

will be made every few months to end users. Each iteration will be

three weeks long to ensure enough overhead time for planning on all

teams and to accommodate system testing time. The team will use

sustainable pace to ensure that it does not tire itself out by

working more than one week of overtime in a row.

Exit rules are covered by providing the customer with flexible

options at the end of every iteration. The customer thus can choose

to abandon the project at the end of any iteration, switch priorities

at any iteration boundary based on changing circumstances, or defer

or grow functionality based on feedback.

Activity: Enlist the Team for Change

To operate with a simple, generative set of process rules, project

teams usually need to institute changes in the way they develop

software. A usual, piecemeal approach to preparing for this change is

to isolate specific "pieces" of the software development process that

need to change without any organizational considerations. This can

run the danger of missing the forest for the trees. A holistic

approach, in contrast, requires agile teams to examine the process

within the context of the development organization as a whole and to

identify both the big organizational picture as well as individual

software process pieces: that is, both the forest and the trees.

Changes can affect the way in which requirements are defined, the way

in which analysis and design are conducted, the way code is written,

and the way it is tested. These sorts of changes affect the

organizational groups that are involved in the software development

life cycle—developers, testers, business analysts, etc. It is

therefore impossible to divorce the software development process from

the change it has on the underlying organization.

To enlist the team for change, the agile manager needs to enable the

whole team to identify both the larger context of change and

individual process pieces that may require change. A tool to

accomplish this task is force field analysis. Force field analysis is

a way to create a holistic view of all forces for or against change,

to work to reinforce driving forces, and to reduce the impact of

restraining forces. To conduct a force field analysis, you can follow

these steps to create a diagram like the one shown in Figure 6-4:

1. Record the current situation and the desired change goal.

2. List all driving forces in one column and all restraining forces in another.

3. Assign a score between 1 (weak) and 5 (strong) to each force.

Figure 6-4. Force Field Diagram

After the force field analysis has been completed, you should lead

the team in discussing ways to reduce the strength of restraining

forces and to increase the strength of driving forces. Because simply

increasing the strength of driving forces can result in additional

opposition, reducing the strength of restraining forces is generally

the more elegant option. Offering team members this chance to play an

active part in determining their own futures is the best way to

minimize resistance to change. Preparing for change is best initiated

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch06lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch06fig04

by getting the team's intelligent professionals to understand the

rationale and requirements for change and involving them in its

execution. Resistance to change tends to not build up when team

members understand the rationale behind change and participate in its

execution first-hand. In fact, given this situation, many team

members will volunteer to be change agents themselves. You can

periodically conduct this activity to see what progress is being made

and to see whether new restraining forces crop up as your process

implementation gets underway.

Having arrived at a minimal set of Simple Rules and prepared your

team for the potential change, you are now ready to implement the

rules, as covered next.

Implementing the Rules

This section covers activities to implement XP practices as a set of

Simple Rules to deliver working software that is accordance with the

Guiding Vision. For further details and instruction on XP, read

eXtreme Programming eXplained: Embrace Change by Kent Beck and

Planning Extreme Programming by Kent Beck and Martin Fowler.

The Guiding Vision forms the foundation for the features that need to

be implemented as working software. You will need to incorporate the

artifacts from the Guiding Vision as important inputs to your

customized XP process: discovered business outcomes,

scope/objectives, and vision box and elevator statement. Figure 6-5

shows the essential activities involved to implement the customized

XP practices you selected as Simple Rules for your project.

Figure 6-5. Implementing XP as Simple Rules

[View full size image]

http://safari.oreilly.com/bookImages/?0131240714/graphics/06fig05_alt.jpg;446951
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch06lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch06fig05

These activities, covered next, are essential to implement your

customized XP implementation: develop a release plan/feature backlog;

develop iteration plans/task backlogs; facilitate software design,

coding, testing, and deployment; conduct acceptance testing; and

manage the software release.

Activity: Develop a Release Plan/Feature Backlog

Agile methodologies utilize iterative and incremental development to

control unpredictability and provide regular, systematic feedback.

With XP's version of iterative development, fixed-length iterations

of one, two, or three weeks, each are used to deliver evolving

versions of the final product. Each iteration is used to collect

feedback data on work estimates, customer satisfaction, and customer

requirements. The system is built incrementally and progressively

elaborated upon in every iteration, as illustrated in Figure 6-6.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch06lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch06fig06

Figure 6-6. Progressive Elaboration and Incremental Development

[View full size image]

Progressive elaboration and incremental development requires a

matching, flexible planning approach. Adaptive planning recognizes

that there is rapidly diminishing value in trying to project a high

level of detail of the entire project timeline. It accommodates the

fact that the farther out the time horizon, the more difficult it is

to make estimates. To deal with future uncertainty, adaptive planning

handles changes in requirements by deliberately maintaining a long-

term plan that is flexible and at a high-level, and only making

detailed plans for a single iteration at a time. In XP, the high-

level plan is called a release plan and detailed plans are called

iteration plans.

Release planning begins with the customer presenting desired features

to developers. Developers respond with high-level effort estimates.

Balancing the estimates with the relative importance of features, the

customer decides what features go into the release plan and lays them

out iteration by iteration in order of business importance. The

release plan is also sometimes referred to as a feature backlog.

Highest value features are slated for development in early

iterations. To develop a release plan, begin by working with your

customers to prepare user stories that draw on the scope/objectives

and list desired features at a high level.

http://safari.oreilly.com/bookImages/?0131240714/graphics/06fig06_alt.jpg;446951

User Stories

User stories are high-level descriptions of how the system is

supposed to solve a problem. A good user story, when

implemented, implements a vertical "slice" of the system's

functionality—that is, a functional slice that goes from user

interface all the way to data storage, not a technical slice

confined to a horizontal technical subsystem, such as a

database. User stories are meant to be "contracts for

conversation" and not all-inclusive definitions of

requirements. XP teams should use user stories as a basis for

face-to-face conversations between customers and developers.

High-level user stories (those that take one to three weeks to

implement) describe features and go into the release plan.

Detailed user stories (those that take one to three days to

implement) go into iteration plans.

Print or write the high-level user stories on index cards. Then,

conduct a release planning meeting to create the release plan. In the

release planning meeting, the following events take place:

• Customers explain their overall needs and expectations for the

release.
• The development team estimates each user story in terms of

ideal development time. Each story gets an estimate of one,

two, or three weeks. Ideal development time is the time

required, given no distractions, interruptions, or other

responsibilities.
• Customers assign priorities to each story. Each card gets a

high, medium, or low priority. The cards are now sorted into

three groups—high priority, medium priority, and low priority.
• Customers and developers move the cards around on a large table

to create a set of stories to be implemented as the release.

The user stories in the high priority group become candidates

for implementation in the first iteration.

Figure 6-7 shows a sample release plan. Note the last column that

links every user story to a specific business outcome. This is

important for aligning system features with the larger project and

organizational plans.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch06lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch06fig07

Figure 6-7. Sample Release Plan

[View full size image]

You may need to renegotiate the release plan with your customers

every three to five iterations—you need to conduct release planning

meetings to re-estimate the user stories and adjust the plan in

response to changing estimates and customer priorities. Each planning

meeting is also an opportunity for customers to introduce new stories

and add them into the mix.

Activity: Develop Iteration Plans/Task Backlogs

To address the detailed part of adaptive planning, you need to create

an iteration plan for each iteration. Iteration plans are also

sometimes referred to as task backlogs because they contain detailed

user stories and the tasks necessary to implement them. Figure 6-8

shows a sample iteration plan. Prepare for building the iteration

plan by working with your customer to print or write detailed user

stories on index cards. These user stories should be detailed at a

level that can be implemented in less than three days. They should

implement system functionality as captured by the high-level user

stories in the release plan. To create iteration plans, hold an

iteration planning meeting at the beginning of every iteration where

the following occurs:

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch06lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch06fig08
http://safari.oreilly.com/bookImages/?0131240714/graphics/06fig07_alt.jpg;446951

• Customers choose the most valuable user stories from the

release plan.
• Each user story is broken down into tasks that will be

necessary to complete it. These and other nonprogramming tasks

(documentation, design, etc.) are written down on cards like

the stories.
• Developers sign up for cards and estimate how long the task

will take to complete in terms of ideal development time. Each

task gets an estimate of up to three days in duration. The

estimate is called a point. Tasks that are estimated as longer

than three days are broken down in smaller tasks of less than

three days.
• For the first iteration, the team aims to deliver the estimated

amount of points for each pair of developers. That is, for a

team with 2 pairs of developers using 2-week iterations, the

first iteration's goal will be 2*10 days = 20 points. For

subsequent iterations, the team aims to implement as the same

amount of points that they completed in the prior iteration.

Figure 6-8. Sample Iteration Plan

XP allows developers and other team members to sign up or volunteer

for implementing user stories and tasks in the iteration plan at

will. This system is known as pull scheduling and contrasts with

conventional top-down assignment or push scheduling. Pull systems,

covered in Chapter 8, "Light Touch," allow people to operate

independently and autonomously in changing situations without wasting

time waiting for work to be scheduled by someone else. It is thus one

of the primary enablers of self-organization.

Methodology Madness—Things to Avoid

Methodology implementations can quickly spiral into failure if

not approached carefully. Here are some "methodology madness"

issues to watch out for:

• Potemkin villages. These are named after the fake

villages created by Grigori Potemkin to convince the

Russian Empress Catherine the Great of nonexistent peace

and prosperity in newly conquered lands in Crimea.

Potemkin villages are now a moniker for attempts by

those in authority to create facádes that mask

unpleasant realities and divert official attention from

them. Many project teams fall prey to the ultimately

damaging practices of creating facades that mask or

divert official attention away from problems with their

methodology implementations. When Potemkin villages

appear, it is a sure sign that there are underlying

problems with software development methodology

implementation.
• Cargo-cult software engineering. The term cargo cult

refers to the legend of South Sea islanders who believed

that building mockups of airplanes and constructing

runways would bring back the planes and all the wealth

that accompanied them during World War II, when advance

U.S. bases in the Pacific used the islands as staging

areas. The islanders hoped that by following all the

activities they had observed and knew about, the planes

would return. When software development organizations

attempt to follow methodologies by simply going through

the motions without any real understanding of why

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch08#ch08

practices work, they are practicing cargo-cult software

engineering.
• Technology boondoggles. Vast sums of money have been

spent on IT, especially in the boom years of the dot-com

era. These significant investments have oftentimes not

returned equivalent business value. One of the reasons

for this lack of return on IT investment in many

organizations is the tendency for IT experts who are

very technically oriented to indulge in technology

boondoggles. In many situations, these experts get

distracted by the latest fad or the coolest technology

and lose sight of delivering business value. The end

result is that the IT organization is set on the course

of an IT boondoggle and business partners are alienated.

Usually, these projects end in failure and the cycle

begins again with the advent of the next "cool"

technology.

• Fundamentalist zeal. This issue is perhaps more

prevalent among practitioners of agile methodologies.

The advent of agile methodologies has swept many along

in a grass-roots movement against the root causes of

bloated, inefficient, and unproductive projects. Much

good has come of this as organizations have discovered

the merits of iterative and incremental development.

Unfortunately, the same burning conviction that some

agile practitioners carry toward their methodologies

causes them to be dismissive toward others. Caught up in

the emotion of success with their own methodologies they

forget that other methodologies, can work as well

depending on project circumstances. Fundamentalist zeal

creates a methodology dogmatism that leads projects to

failure.

Activity: Facilitate Software Design, Coding, Testing, and

Deployment

XP-style iterative development requires that traditional activities,

such as requirements definition, analysis and design, and development

and test, are iterated through in each iteration. You can follow

these steps to facilitate the design, coding, testing, and deployment

of software using XP: Conduct an infrastructure/application spike,

develop code using XP development practices, deploy code using

continuous integration, and track project velocity.

Conduct an Infrastructure/Application Spike

You should begin iterative development by conducting "Iteration 0," a

time-bound initial infrastructure/application spike to establish

baseline system infrastructure and implement an initial functional

slice of the system. Spikes are used when not enough is known about a

technology or user story to be able to estimate it. In a spike, the

team investigates the technology or user story for a short period of

time until they understand it enough to estimate its related tasks.

Conduct an infrastructure spike to select, procure, install, and

configure the system infrastructure and an application spike to

implement an end-to-end functional slice (that includes user

interface, business logic, and data storage) of the system.

Develop Code Using XP Development Practices

Work with your technical coach to enable the design and development

of code in XP fashion. The team should practice test-driven

development to create and automate unit and acceptance tests to test

functionality. These are used to perform whiteand black-box testing

of the system, usually in conjunction with an automated build. The

team should also practice simple design, refactoring, pair

programming, coding standard, and other XP practices selected as

appropriate for Simple Rules.

Deploy Code Using Continuous Integration

Ensure that your team is practicing continuous integration to

frequently integrate and unit test code. Your team can use a tool

like Cruise Control (http://cruisecontrol.sourceforge.net/) to

implement a continuous build, integration, and test process. Cruise

Control monitors the source code repository for check-ins. On a

check-in by a developer, it extracts code from the repository

(ideally to an integration server), integrates and builds it and then

runs any specified automated unit and acceptance tests. Once done, it

can be configured to email the results of the continuous integration

process.

Track Project Velocity

Project velocity is the measure of how many points (previously

described) are completed in an iteration. It is crucial to keeping

development moving at a steady pace. To track project velocity, just

add up the point estimates in your iteration plan/task backlog for

all the user stories and tasks that have been completed, as

illustrated in Figure 6-9.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch06lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch06fig09
http://cruisecontrol.sourceforge.net/

Figure 6-9. Tracking Project Velocity

There is, however, a golden rule in this regard: You cannot consider

a task done until it is 100 percent complete. In different

development environments, this can mean different things. For

instance, the most common definition of a complete user story that I

have seen is this: user story with unit tests coded and integrated,

with all unit and acceptance tests run and passed. If you have an

additional layer of system testing, you might not consider a user

story to be complete until it passes system testing. For this reason,

it is important for you to work with your customer and team to define

what it means to be "complete."

You can track project velocity three times per two-week iteration:

twice during the iteration at equally spaced intervals, and once at

the end of the iteration. This allows ensuring that work is getting

done during the iteration, and allows measuring how much total work

got done in an iteration. This total number can be used to estimate

the amount of work to attempt in the next iteration.

Activity: Conduct Acceptance Testing

Acceptance tests are tests of functionality of user stories.

Customers specify acceptance criteria along with user stories at the

beginning of an iteration. During an iteration, developers design and

code to meet these acceptance criteria. If possible, you might even

have your team develop automated acceptance tests using tools like

Fit and FitNesse. At a minimum, you need to schedule and conduct

acceptance testing for customers to verify that the software passes

acceptance tests and then accept the software. If your customer is on

site, this can be done as stories are completed. If you have a

customer proxy on site instead, you need to schedule and conduct

acceptance testing with your customer at the end of the iteration.

Activity: Manage the Software Release

Iteration releases yield fully functional, but not fully featured,

software. Usually, iteration releases are deployed internally in

integration environments to customers on the team, not in production

environments to end users. Customers provide feedback on the system

as it grows incrementally. The system may also be deployed to a pilot

group of end users for early feedback because it is always fully

functional. At any point, when the system's functionality reaches a

critical usable mass that delivers a significant increment in value,

the customer can choose to release the system into production.

XP's small releases practice specifies that small increments of

functionality be released often. Small releases typically take one to

three months. Depending on the size, complexity, and user base of the

system, there may be many activities for the agile manager to manage.

These may include operational release readiness testing, production

deployment of the release, production "smoke" testing, final user

acceptance, user documentation delivery, and user training. The agile

manager needs to prepare for these activities in advance, working out

the details with the customer, users, and the team, and managing the

transition of the system into a production environment.

Activity: Focus On Business Value

Many methodology implementation problems can be avoided by ensuring

that the team maintains an ongoing focus on business value. Agile

methodologies are popular in the business community because they

force concentration on business value above purely technical

pursuits. There are some simple but golden principles in this regard:

• All work should be prioritized in order of business value all

the time.
• Prioritization should always be done by customers or their

business representatives, not technical personnel.
• All user stories should tie back to the Guiding Vision.
• The Guiding Vision itself should be aligned with the

organization's strategic objectives.
• Every iteration should produce a fully tested working system

with incremental progress in its functionality.
• The system should be released to end users frequently.

The implication is that, at any point in time, the team should be

working on things that are of highest business importance to

customers. The agile manager needs to continually reinforce these

principles with the team. What are some examples of how this can be

done?

Let's take a typical iteration. As user stories are created, they

should be aligned with the Guiding Vision. In iteration planning,

customers should ensure a business focus by prioritizing user stories

in order of business value and updating the release plan, thus

providing an emerging list of prioritized requirements. Technical

team members should provide estimates based on completing just the

work described by the user stories and nothing more. After iteration

planning is complete, the development team should spend just a few

hours on planning and design and not get sidetracked into creating

unnecessary design artifacts. When code development begins,

developers should concentrate on completing user stories in order of

business priority providing an emerging system honed to optimal

business value. Any decisions at this point should be guided by the

"barely sufficient" principle to avoid waste: Pro forma or

unnecessary documentation needs to be avoided, and code development

options should be weighed in light of business requirements. All

through the iteration, only those user stories that have been

identified as being in scope should be worked on: None should be

added to ensure that scope is being managed. Because the iteration

itself is short (one to three weeks), it provides a feedback point

with customers to validate that what is being developed is exactly

what they need.

But how does the team essentially define business value? As covered

in Chapter 5, "Guiding Vision," the Discover Business Outcomes

activity enables the identification of specific business outcomes in

response to the question, "What do we hope to achieve for the

organization with this project?". The outcomes/assumptions checklist

and the outcomes test plan can help the agile manager keep business

outcomes on track in uncertain environments.

Summary

The best-disciplined organizations consistently apply straightforward

methods that are customized to their environment. The objective of

the Simple Rules practice is to customize and implement methodology

practices as a set of simple, adaptable rules that allow agile teams

to deliver business value rapidly and reliably.

The related activities needed to institute Simple Rules are

customizing the rules to the environment, implementing the rules, and

adapting the rules. The activities to implement customizing the rules

to the environment are assess the status quo, customize methodology,

and enlist the team for change. The Guiding Vision forms the

foundation for desired features and is an input into these activities

essential to the customized methodology implementation: Develop a

release plan/feature backlog; develop iteration plans/task backlogs;

facilitate software design, coding, testing, and deployment; conduct

acceptance testing; manage the software release; and focus on

business value.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch05#ch05

Reference

1. Eisenhardt, Kathleen M., and Donald Sull . "Strategy as Simple

Rules." Harvard Business Review, January 2001.

Chapter 7. Open Information

"All life uses information to organize itself into form."

—Margaret Wheatley, Leadership and the New Science

The lack of information is an obvious and well-known project risk

factor. Whether it is the information that developers require to

understand customer requirements at a high level and accurately

estimate scope at the beginning of a project, or the information that

they need to understand the details of requirements during a project,

there is no doubt that not having the right information at the right

time can sink a project. Information is also the key to creativity

and innovation. The better the sharing of information among and

within project teams, the better the creativity and value of the

solutions they produce collectively. It follows that one of the

toughest challenges that managers face is making the right

information readily available to everyone. The mechanistic org-

anizational model and conventional practices exacerbate this problem

no end by creating obstructions to the free flow of information.

Splitting teams into narrowly specialized group silos and locating

them apart from each other, not establishing regular contact with

project stakeholders, users and customers; and delaying deployment

until product completion are unfortunately common ways by which we

regularly stifle the flow of information on projects. When project

teams are starved of the information they need to get their work

done, their ability to self-organize, to innovate, and to deliver

business value degenerates quickly. In fact, any closed system that

is insulated from its environment atrophies and eventually descends

into chaos.

Projects therefore need to be open to their environment—constantly

gathering and providing information—to survive. Internally, project

teams also need to be able to constantly share information to thrive.

Individuals on project teams thus need to be continuously exchanging

information with each other and with others in their organizational

environment. When this continuous information exchange takes place,

people are energized, and creative results emerge. Creativity happens

because energy in human organizations is guided by information. It is

information that synchronizes the different parts of the project,

keeps them in touch with each other, and enables them to thrive.

Thus, the function of information on projects is to guide and sustain

the creative energy that drives project teams to innovate, to solve

problems, and to deliver value.

Agile methodologies, with their underlying organic complex adaptive

systems (CAS) model, provide many techniques to facilitate a

continuous flow and exchange of information (for example, collocation

of project team members, team rooms, and on-site customer). But they

fall short in two important areas: dealing with information sharing

across groups external to the project team and structuring action-

based information exchange within the project team. The Open

Information practice provides guidance to institute agile information

sharing practices and addresses these two shortfalls as well.

The objective of the Open Information practice is to create an open

flow and exchange of information among project team members and among

other associated external groups. The activities associated with

practices have the following implications:

• Reorganizing team facilities and seating to institute agile

information sharing practices on a project

• Analyzing the time taken to exchange information with external

groups to identify and reduce the information cycle time
• Structuring conversations on the project team so as to generate

transforming exchanges of information among project team

members

The rest of this chapter lays out the activities you need to conduct

to achieve these objectives. The activities are grouped into three

categories for clarity: agile practices, information cycle time, and

transforming exchanges.

Information Cycle Time

In dynamically changing environments, close interactions between

people with the open flow and rapid exchange of information are the

key sources of formation or self-organizing structure. This

information flow and exchange allows project teams to self-organize

in different formations, or to "in-form."

Information cycle time is the time it takes for information to get

from one party to another and back. Agile techniques, such as those

just presented, dramatically reduce information cycle time on project

teams. But your project team is not an island unto itself when it

comes to developing and delivering software. More than likely, it is

dependent on several external groups to deliver complete results to

your customers. To enable free information flow and exchange between

your team and the external groups with which it interacts, you need

to identify any obstacles that may obstruct this flow of information.

A tool that enables this identification of the project's value stream

is the value stream map, which is covered next.

Activity: Map the Project's Value Stream

The concept of the value stream comes from the world of Lean

Thinking, popular in manufacturing for several decades and applied to

software development for the past few years. A value stream is the

set of activities—from concept to delivery—that it takes to deliver

a product into a customer's hands. In the case of software

development, the value stream involves all the specific activities

necessary to create a software application or product from concept to

completion. A value stream map identifies all these activities and is

of immeasurable value to the agile manager as a management tool.

You can identify obstacles to the flow of information by creating a

value stream map and analyzing the information cycle time for

different activities between various parties within your team and

external to it, as shown in the simplified sample in Figure 7-3.

Cycle time for each activity is divided into touch time (days in

task) and wait time or (days waiting). Some of the activities with

large wait time are circled to highlight them. These are prime

candidates for information bottlenecks. Why, for example, is there a

wait time of 20 days to create customer input from the product

modification profile created by the marketing team? Why does a

request for a small release have to wait on the infrastructure team

for 10 days before it can be serviced in a quarter day? It is likely

that besides their own internal dependencies, these teams need

information from other groups themselves. Creating a value stream is

the first step that helps all interdependent groups understand where

the flow of information is impeded and consequently value is being

obstructed, and how to improve it.

Figure 7-3. Sample Value Stream Map

[View full size image]

http://safari.oreilly.com/bookImages/?0131240714/graphics/07fig03_alt.jpg;446951
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch07lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch07fig03

Your task as agile manager is to map the value stream with input from

external groups, and then work with the other groups to remove any

information roadblocks by providing them with the information that

they need from your team. Some ways to do this are to confer with

external groups, assign a liaison, and track improvement, as follows:

• Confer with external groups. You need to seek the cooperation

and assistance from the external groups to resolve any

information bottlenecks that exist. Confer with other managers

and team members to identify the value stream and information

bottlenecks and to resolve issues cooperatively.
• Assign a liaison. One of the best ways to expedite information

is to assign a liaison to the external group. This might be in

the form of an assigned representative from your team working

on site with the external group (e.g., marketing team,

infrastructure team) while your request is being serviced to

seek and provide information instantly and to improve the

timely sharing of information.

• Track improvement. To ensure that information bottlenecks are

being removed, you need to track and monitor efforts to deal

with them. Keep an eye on problem resolution progress to ensure

that there is steady improvement.

Improving information sharing between your team and external groups

and instituting agile practices as previously covered still leaves

one area to improve Open Information: creating action-oriented

information exchanges, which is covered next.

Transforming Exchanges

Transforming exchanges are exchanges of information between people

that result in personal transformations: each person participating in

the exchange gleans some new insight, some new experience, or some

new learning. Take the example of an acceptance test, when a customer

first sees a demonstration of a requested feature. The customer may

learn something from the exchange about the restrictions in system

implementation. Or she may get some new insight into further

possibilities. The development team may learn something from the

customer's initial response. Was the feature exactly as she had

imagined it, or was it implemented differently from the way she had

described it? The customer's reaction usually speaks volumes to the

development team, and they learn much as a result. The acceptance

test serves as a great vehicle for transforming exchanges of

information. If there aren't sufficient transforming exchanges

between team members, their work will be disjointed and lacking in

end-value. Agile methodologies enable transforming exchanges through

several practices, which were previously covered. However, there is

still a need for agile managers to recognize transforming exchanges

as such and enable them in fuller fashion. The three activities

presented next—encourage feedback, build trust, and link language

with action—all contribute toward amplifying the intensity of the

transforming exchanges on your agile team.

Activity: Encourage Feedback

From a CAS viewpoint, feedback is crucial and necessary for learning

and adaptation. Feedback is what turns a complex system into a

complex adaptive system: Positive feedback reinforces certain types

of successful behaviors, and negative feedback weakens unsuccessful

ones. Translated to a personal standpoint, this means that feedback

is essential to continuous improvement. On agile project teams,

feedback should imbue the daily operation of all team members:

Learning from feedback should be a constant and systemic practice. To

initiate constant learning from feedback, you need to begin by

encouraging real-time, "as-it-happens" feedback at several levels:

• Personally coach individual team members and provide feedback

"in the moment" while performing work.
• Improve personal performance by requesting and receiving

feedback from team members as often as possible.
• Prompt senior team members to coach junior team members.

Pairing provides a good opportunity for this.
• Learn from customers by requesting their feedback. Check every

iteration with them to ensure that you are meeting their

expectations and whether there is any room for improvement.
• Arrange for the team to regulate itself through self-provided

feedback. Arrange for the team members to self-evaluate the

team's performance briefly in daily stand-up meetings and

thoroughly during project reflections (covered in Chapter 9,

"Adaptive Leadership").

You need to help ensure that there is a safe environment for giving

and receiving feedback. Make sure that feedback does not turn into

negativity or abuse and that it is always constructive.

Activity: Build Trust

People need to trust each other before they share information

willingly and completely. But, it is through sharing information that

trust grows between people. This dependency can cause an unfortunate

deadlock: Should people trust first and share information freely or

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch09#ch09

share information sparingly and build trust incrementally? The latter

is known as inductive trust and is the confidence we accumulate

through the experience of repeated interactions with others over

time. On agile projects, because things are changing rapidly and team

members do not have time to build inductive trust, they need to

assume trust as the norm and practice deductive trust. Because teams

are committed to the same Guiding Vision and because they share the

same values, people need to be able to deduce that trusting is a good

strategy.

The best way to begin building trust on your team is by trusting

first. Until you can prove that trusting is not the right thing to

do, you should be willing to take the risk of being the first person

to begin with trust. Sharing personal information and values,

spending time in candid one-on-one conversations, opening oneself to

criticism by accepting feedback, and trusting team members to do

their jobs without interference are all good ways to begin building

trust. Trust on the teams is self-reinforcing—it catches on and

builds upon itself as teams members open up, share information, and

trust more.

Activity: Link Language with Action

From a business-value perspective, transforming exchanges are useful

only if they result in business outcome-oriented commitment, action,

and accomplishment. The language/action perspective stresses that

most of the actual work in organizations happens through the making,

keeping, and coordination of individual commitments. People make

commitments and deliver on them through performance or action.

Transforming exchanges and concomitant business value can only

materialize if the networks of these commitments that exist in

organizations are coordinated effectively. A large part of agile

manager's work thus involves engaging in conversations that create

and coordinate team member's commitments and orient these commitments

toward transforming exchanges of information. Three important types

of conversations enable action-oriented transforming exchanges:

conversations for action, conversations for possibilities, and

conversations for disclosure.4

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch07lev1sec6#ch07biblio01entry04

Conversations for Action

A conversation for action is a series of speech acts—meaningful acts

of speech—that generate explicit coordinated action,5 as illustrated

in Figure 7-4.

Figure 7-4. Basic Conversation for Action

[View full size image]

An effective conversation for action begins with a customer making an

offer or request that has clear conditions of satisfaction. This is

followed by a performer's promise with a clear completion date and

time, and subsequent performance—action to deliver on the promise.

When the job is complete, the performer makes a declaration of

completion. Finally, a declaration of satisfaction by the customer

completes the cycle, and it begins again with another offer or

request. The cycle emphasizes what people do while communicating, how

http://safari.oreilly.com/bookImages/?0131240714/graphics/07fig04_alt.jpg;446951
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch07lev1sec4&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch07fig04
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch07lev1sec6#ch07biblio01entry05

work is accomplished through language, and how effective

communication can result in effective coordination of the work.

On agile teams, a clear example of a conversation for action takes

place in every iteration:

• User stories are estimated and prioritized in the iteration

planning meeting. Customers identify user stories for an

iteration in order of priority. Working with the team the

project manager creates an iteration plan with a backlog of

user stories to be completed. The backlog represents

outstanding "requests" of user stories to be completed.
• Team members accept responsibility or "promise" to implement

user stories from the iteration plan and perform work to

complete them during the iteration.
• Team members follow their "promise" with the "performance" of

user story implementation.
• At the next iteration planning meeting, team members "declare

completion" of the user stories. Customers then "declare

satisfaction" by accepting the user stories they requested.

How can this knowledge help the agile manager? It can help because,

by understanding the structure of effective conversations for action,

agile managers can enable transforming exchanges of information

during the iteration. For instance, they can help ensure that

customer requests are clear to the development team by requesting

clear conditions of satisfaction in the form of acceptance tests.

They can help manage customer expectations by ensuring that promises

made by the development team are grounded in experience. They can

coordinate the performance of team members to ensure that they are

delivering on the right commitments. Finally, agile managers can

ensure that customers make explicit declarations of completion to

eliminate any confusion on the part of the development team.

Conversation for Action Example

Agile manager: David, could you please implement this loan

performance user story completely by close of business

tomorrow? [request with clear condition of satisfaction]

David: Well, I need to finish another story I'm working on

before I can begin this one. I'll complete the loan

performance one by noon the day-after-tomorrow. [promise]

David: I've completed the loan performance user story as you

requested. [declaration of completion]

Agile manager: (After verifying it) Yes, it looks good. Thanks

for completing it. [declaration of satisfaction]

Agile managers can also apply the knowledge of conversations for

action to their own requests of team members: Specify clear

conditions of satisfaction when requesting work, and clear

declarations of completion when accepting completed work.

Conversations for Possibility

Collective action on project teams creates results that are beyond

the capability of any single team member. Conversations for

possibility are transforming exchanges of information that create the

background and opportunities for action to be taken collectively.

Team conversations reinterpret current and past events as a basis for

future possibilities. A common example of a conversation for

possibility is scenario planning (to be covered in Chapter 9).

Scenario planning involves brainstorming potential future scenarios

based on current and past realities.

Agile managers can help spark creative dialogue and transforming

exchanges on project teams by initiating conversations for

possibility. All activities connected to the Guiding Vision,

including release and iteration planning, are opportunities to engage

in creative conversations about future possibilities of the product

or application being developed. Project reflections, where process

pros and cons are evaluated, are also another good forum for these

conversations.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch09#ch09
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch09lev1sec2#ch09lev2sec5

Conversations for Disclosure

Conversations for disclosures reveal our interpretation of events and

realities to each other. Truly transforming exchanges of information

cannot take place unless team members understand each other's

interpretations of reality. One of the most important effects of

collocation is that team members in close proximity of each other are

pushed to understand each other and disclose much more than they

would otherwise. This deeper understanding of each other's

interpretation of events and realities is needed before team members

can align and coordinate effortlessly with each other. The close

personal interactions on agile teams create several opportunities for

disclosing and synchronizing team members' views with each other.

Disclosure is aided not just by speaking, but also by effective

listening.

The agile manager can enable transforming exchanges through

conversations for disclosure known as assessments. Fernando Flores

provides the script for delivering assessments, which is shown in the

sidebar.6

Script for Delivering Assessments

Assessor: [Name], [negative assessment]; [positive

assessment].

Person assessed: [Name], thank you for your assessment. I

appreciate your sincerity. I would like to have further

conversations with you about the topic.

Assessor: Thank you.

Person assessed: You're welcome.

Source: "The Power of Words" by Harriet Rubin, Fast Company,

January 1999.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch07lev1sec6#ch07biblio01entry06

Here is an example of a personal assessment that I received in a team

meeting:

Deirdre: Sanjiv, You are not doing enough to support business

expansion at our largest client; you did a good job managing the last

project there.

Sanjiv: Deirdre, thank you for your assessment. I appreciate your

sincerity. I would like to have further conversations with you about

the topic.

Deirdre: Thank you.

Sanjiv: You're welcome.

As you can imagine, delivering and receiving assessments is not easy

for software development professionals who have been trained over a

lifetime to be polite to each other. But assessments are sometimes

necessary for team members to speak the truth to each other,

especially when they share responsibility for the success or failure

of a project. They are especially useful when things begin to go

wrong, and team members need to speak frankly and honestly with each

other. Assessments are great transforming exchanges, because trust

builds up very quickly when people are able to speak honestly to each

other.

Summary

Information is crucial to creativity, innovation and reducing risk on

projects. Agile methodologies provide many techniques to facilitate a

continuous flow and exchange of information, but fall short in two

important areas: dealing with information sharing across groups

external to the project team and structuring action-based information

exchange within the project team.

The Open Information practice provides activities for instituting

agile information sharing practices on a project: collocate team

members, negotiate a customer representative on site, practice

pairing, encourage the use of information radiators, and conduct a

stand-up meeting daily. It also recommends that agile managers map

the project's value stream to reduce the information cycle time with

groups external to the project team. Finally, to generate

transforming exchanges of information among project team members,

Open Information provides these activities: encourage feedback, build

trust, and link language with action.

References

1. Teasley, Stephanie D., Lisa A. Covi, M. S. Krishnan, and Judith S.

Olson . "Rapid Software Development Through Team Collocation." IEEE

Transactions on Software Engineering. Volume 28, Issue 7, July 2002.

2. Cockburn, Alistair . Agile Software Development, First Edition.

Addison-Wesley, 2001.

3. Ibid.

4. Denning, Peter J. "Accomplishment." Communications of the ACM.

Volume 46, Number 7, July 2003.

5. Winograd, Terry, and Fernando Flores . Understanding Computers and

Cognition. Addison-Wesley, 1990.

6. Rubin, Harriet . "The Power of Words." Fast Company. Issue 21,

January 1999.

Chapter 8. Light Touch

"Intelligent control appears as uncontrol or freedom.

And for that reason it is genuinely intelligent control.

Unintelligent control appears as external domination.

And for that reason it is really unintelligent control.

Intelligent control exerts influence without appearing to do so.

Unintelligent control tries to influence by making a show of force."

—Lao Tzu, Book of Ethics

Most project managers work in companies that have some form of

hierarchical organization. Organizational hierarchies extend into our

project teams as well, along with modern, subtle forms of command and

control. For example, in many of our organizations, team members are

still required to perform tasks specifically assigned to them by

their project managers without advance consultation. In the more

egalitarian of these organizations, team members may be consulted by

the project manager; but in the end, the assignment of work still

happens in a top-down fashion. In other organizations, the

hierarchical control lies with someone other than the project manager

—perhaps a line of business manager. In this case, the project

manager's responsibilities are reduced to the administration of the

project schedule and lots of coordination among multiple groups, but

these responsibilities come with very little influence over the teams

they are supposed to be managing. Top-down decisions are still made,

but by the line of business manager, not the project manager or the

team. In previous chapters, I contended that these structures are

mechanistic ones that are constructed to optimize cost and control.

Chapter 1, "Agile Project Management Defined," introduced the organic

complex adaptive systems (CAS) model as the preferred alternative for

agile teams with highly skilled members whose primary charter is to

deliver customer value. Chapters 3, "Organic Teams—Part 1," and 4,

"Organic Teams—Part 2," detail how to construct Organic Teams based

on the organic CAS model. But the question of control remains

unanswered—how are agile managers supposed to control their teams

that are organized according to the organic CAS model?

The objective of the Light Touch practice is to manage agile teams

with a style that allows team autonomy and flexibility and a customer

value focus without sacrificing control. The activities associated

with this practice carry the following implications for agile

managers:

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch04#ch04
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch03#ch03
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch01#ch01

• Establishing decentralized control that defers decision making

for frequently occurring, less critical events to the team
• Managing the flow of customer value from one creative stage to

another
• Recognizing team members as whole-persons and treating them

accordingly
• Focusing on strengths rather than weaknesses to leverage

people's uniqueness

The rest of this chapter lays out the activities you need to conduct

to achieve this objective. The activities are grouped into two

categories: intelligent control and whole-person recognition, and

they are covered next.

Activities

Table 8-1 shows the leadership and management responsibilities

required to establish Light Touch management on an agile project

team.

Table 8-1. Establishing Light Touch: The Agile Manager's

Responsibilities

CATEGORY ACTIVITIES

Intelligent control Management:

• Decentralize control
• Establish a pull task management system
• Manage the flow
• Use action sprints

Leadership:

• Fit your style to the situation
• Support roving leadership

• Learn to go with the flow

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch08lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch08table01

Table 8-1. Establishing Light Touch: The Agile Manager's

Responsibilities

CATEGORY ACTIVITIES

Whole-person

recognition

Leadership:

• Maintain quality of work life
• Build on personal strengths

• Manage commitments through personal

interactions

The activities shown in Table 8-1 are covered in detail in the rest

of this chapter, beginning with those in the intelligent control

category, covered next.

Intelligent Control

"Hire good people and get out of the way." Most of us have heard this

popular management maxim. When I first heard it years ago, it

appealed to me because of its simplicity. But having tried to

implement it, I now know that it is too simplistic in its outlook:

Hiring good people works very well for the most part, but getting

completely out of the way doesn't because it usually leaves a vacuum

that affects the team's ability to deliver. As we have seen in the

past several chapters, several things are the agile manager's sole

responsibility. So, although command and control is not the way to

manage agile teams, getting completely out of the way does not work

either. So, what are some of the key things of which the agile

manager needs to maintain control, while "getting out of the way" for

the rest? Put another way, what is the way for agile managers to

intelligently control the skilled professionals on their agile teams?

Intelligent control is the exertion of influence and direction with

minimal top-down control. Intelligent control is needed to manage

skilled professionals with a style that best allows them to fulfill

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch08lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch08table01

their creative potential and to function as self-organized groups

that react rapidly to change. The activities for you to practice

intelligent control—decentralize control, establish a pull task

management system, manage the flow, use action sprints, fit your

style to the situation, support roving leadership, and learn to go

with the flow—are covered next.

Activity: Decentralize Control

The most important decision about control is deciding who will

control what and when. On an agile project, the control system

consists of the simple process rules and other working rules that the

team commits to follow. A good way to decentralize control is to

break out the control system into levels and distribute decision

making among the levels. An agile project's control systems can be

broken out into these three levels: the governing strategy and

selected rule system, the rules, and the application of the rules.1

For instance, if you have selected Scrum, then Scrum is your rule

system. The reason you selected Scrum and what you want to accomplish

with it is your governing strategy. The Scrum practices are your

rules, and the application of Scrum practices is the rule

application.

To decentralize control on your agile project, you can apply the

project control system breakout shown in Figure 8-1. At level 1 where

the rules are applied, there are many decisions to be made, and they

need to be made frequently and quickly. These decisions have limited

impact and cost. Decision making at level 1 should be delegated to

individual team members, affording them a large degree of autonomy,

flexibility, and speed. Level 2 is where the rules themselves are

decided. These decisions take place less frequently and are fewer in

number, but they have a much larger impact and cost. Decision making

at level 2 should be handled by the team. Customers are considered to

be part of the team.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch08lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch08fig01
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch08lev1sec5#ch08biblio01entry01

Figure 8-1. Example of Decentralized Control with Multiple Control

Levels

[View full size image]

Level 3 is where the choice of the rule system (XP, Scrum, Crystal,

etc.) takes place and where corporate strategy is decided. These

decisions are made occasionally and are very few, but they have the

largest impact and cost. Decision making at level 3 should be handled

by management. It has been my experience that agile managers

participate mostly at level 2, and sometimes at level 3. Figure 8-1

also illustrates decision breakout between the levels. For example, a

management strategy decision at level 3 to have a high quality of

work life translates to team decisions at level 2 about appropriate

work hours. In turn, related decisions about personal schedule are

made by the individual team member at level 1. Similarly, a level 3

management decision to enhance knowledge transfer translates into

decisions about pairing and collocation at level 2. At level 1, these

decisions about the choice of a pairing partner are made by

individual team members.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch08lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch08fig01
http://safari.oreilly.com/bookImages/?0131240714/graphics/08fig01_alt.jpg;446951

Activity: Establish a Pull Task Management System

A pull task management system is one in which tasks are "pulled" from

a task queue or backlog by team members themselves, instead of

"pushed" or assigned by a central coordinator, such as a project

manager. Pull systems allow people to operate independently and

autonomously in changing situations without wasting time waiting for

work to be scheduled by someone else. On an agile team, the pull

system includes prioritized backlogs of user stories (eXtreme

Programming) or equivalent tasks (Scrum and others), as illustrated

in Figure 8-2, and information radiators used as visual controls to

indicate completion of the task to the next responsible group in the

value stream.

Figure 8-2. Pull Task Management System on an Agile Team

[View full size image]

http://safari.oreilly.com/bookImages/?0131240714/graphics/08fig02_alt.jpg;446951
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch08lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch08fig02

A user story flows from the customer through the development value

stream and back to the customer in this sequence (as shown in Figure

8-2):

1. The customer creates and prioritizes a user story representing a part of the system's
functionality in iteration planning. Stories are placed along with associated tasks in an
iteration plan/task backlog in order of priority. Acceptance criteria are also specified.

2. Developers pull user stories and tasks from the iteration plan/task backlog.

3. Developers pair with other developers, business analysts, etc., to design, code, unit test, and
integrate the user story into the code base.

4. When the code for the user story passes all unit and acceptance tests, developers release it to
test.

5. Testers pull the user story from the test backlog for testing.

6. Testers test the user story to see whether it meets the acceptance criteria specified by the
customer.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch08lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch08fig02
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch08lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch08fig02

7. Testers either pass the user story and place it in the acceptance test backlog for the customers
to test, or they reject it and place it once again in the iteration plan/task backlog.

8. The customer pulls user stories from the acceptance test backlog for final acceptance.

The iteration plan/task backlog is replenished and reprioritized at

every iteration planning meeting. It is serviced continuously during

the iteration. The test and acceptance test backlogs are replenished

and serviced continuously within the iteration. You need to display

visual representations of the backlogs so that team members can

easily perform their work.

A Volunteer Pull Task Management System

Using a pull task management system with backlogs and visual

controls is a great way to enable self-organization. This

concept is not new or restricted to the software development

industry. Figures 8-3 and 8-4 show a "job jar" created for a

church workday by Alan Moser, a recently retired U.S. Navy

captain, and junior warden at St. Barnabas Episcopal Church in

Annandale, Virginia.

Figure 8-3. "Job Jar" Pull Task Management System

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch08lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch08fig04
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch08lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch08fig03

Figure 8-4. "Job Jar" Detail

On the workday, the job jar served as task backlog and visual

control, and small groups of parishioners self-organized to

complete the tasks, all of them working without Alan's direct

supervision.

You can create charts with the user stories split into three to-do,

for testing, and tested categories to serve as visual controls. These

visual controls can be dynamically updated by team members as they

complete their work, and serve as pull signals for the next group in

the value stream to begin performing their work.

Activity: Manage the Flow

Lean Thinking has been used to reduce wastes and improve quality in

many organizations for several decades with remarkable results.

Besides the pull system, another key concept of Lean Thinking is

continuous flow. Pull task management systems need to be implemented

with serious thought to the flow of business value across the team.

How should business value in the form of user stories be kept flowing

continuously through it? In Lean organizations, one-piece flow or

continuous flow is employed to make one part of a system correctly

and completely without interruptions and with low cycle times. Agile

teams practice this concept when they define, develop, integrate, and

deploy software development systems a user story at a time. The user

story (in XP) or equivalent task (Scrum and others) represents the

"one piece" of business value that needs to flow from the customer

through development, testing, and deployment back to the customer as

quickly as possible without interruptions. Pull task management helps

ensure that team members are performing their work with flexibility

and autonomy. So, what can the agile manager do to help the work of

the team? Instead of supervising task completion, you should turn

your attention to managing the flow of user stories from creation to

completion.

Mary and Tom Poppendieck discuss these guidelines to avoid

bottlenecks in software development queues: small batch size, steady

rate of arrival and service, and slack.2 You can apply these

guidelines to manage the flow of user stories through your team's

pull task management system as follows:

• Small batch size. Agile teams use iterative development to

avoid the issues caused by large batch size—lack of early

feedback, large inventory, and associated large potential waste

of time and other resources. Small releases and iterative

development provide two levels at which batch size can be

controlled. You need to work with your customers to ensure that

system functionality is being defined, created and released in

small batches. At the release level, this means ensuring that

feature batch size is kept small by breaking features into

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch08lev1sec5#ch08biblio01entry02

high-level user stories that take no longer than three weeks to

implement, and that no release takes longer than three to four

months, even for large projects. At the iteration level, it

involves ensuring that detailed user stories that implement

high-level ones represent no more than three days of work, and

that iterations are kept to one, two, or three weeks in

duration each.
• Steady rate of arrival and service. Each backlog in the agile

project's task management system shown in Figure 8-2 is a

queue. You need to keep an eye on all these queues to see that

user stories both arrive at the respective backlog, and are

serviced at a steady rate. With the iteration plan/task

backlog, this is straightforward: Iteration planning is a

systematic way of prioritizing and scheduling the user stories;

iteration planning ensures that user stories arrive in the

iteration plan/task backlog, at a steady rate. You also need to

ensure that user stories are being pulled at a steady rate from

the iteration plan/task backlog.

If you have an intermediate test backlog, you need to monitor

it to ensure that user stories are being serviced at a steady

rate by developers and arriving at the test backlog at a steady

rate. Again, the user stories in the test backlog need to be

serviced and passed at a steady rate by your testers to arrive

at a steady rate at the acceptance test backlog. Finally, you

need to monitor the acceptance test backlog to ensure that user

stories are being pulled for final acceptance by your

customers. Backups at any of the backlogs immediately indicate

a disruption to continuous flow and, hence, a problem for you

to deal with.

Take the iteration plan/task backlog, for instance. If it

starts backing up within an iteration, it could either mean

that your developers are having difficulties coding user

stories and are not pulling new ones from it quickly enough or

that testers are rejecting an inordinate share of user stories

because of defects or unmet requirements. Either of these

situations merits your immediate attention.

• Slack. Any system's performance degrades rapidly when its

resources are overloaded. A software development project team

is no exception. Besides, because there are humans involved, it

will be even more prone to errors when utilization goes beyond

70 or 80 percent. You therefore need to ensure that you afford

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch08lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch08fig02

your team a certain amount of slack to ensure that they are

consistently productive.

Use Action Sprints

Sometimes, even the best agile team will fall into a rut of creating

user stories, coding them, testing them, and releasing them. People

will settle into familiar roles and do what has come to be expected

of them. Many members on your team may begin to get restless or bored

because of the lack of variety in work and the lack of variation in

method. Quality might begin to suffer and schedules might begin to

slip because motivation has slipped. When this happens to me, I fall

back on a technique that was introduced to me by Bob Payne, an

independent XP consultant: a sprint. Bob came across the technique

through his involvement with the Zope development community.3

In the Zope community, a sprint is an intense twoor three-day

development session, focused on building a particular subsystem. Zope

sprints differ from Scrum sprints in that they are narrowly focused

and are oriented toward technical rather than business activities. My

own experience with a Zope-style sprint came on a large recovery-and-

stabilization project whose managers I was responsible for coaching.

Bob, who was the XP process coach, introduced the idea of a sprint as

a solution for massive architectural refactoring that was needed.

After consultation with all managers, we decided to devote a single

iteration's worth of time to a single task—to refactor the legacy

code. Everybody took part in some way or the other, just not their

usual way. Six teams of more than a hundred people threw themselves

into this effort. There were no formal management positions—anyone

who knew the most about a particular part of the system took the

lead. The pace was blistering, the pressure intense, and the goal was

deliberately challenging. The entire effort was completely self-

organized around a single goal. The code base developed in more than

a year was refactored in a single iteration. It was a stupendous

effort. That experience taught me the power of focused self-

organization that a sprint can provide. Since then, I have used a

variation of this technique—action sprints—on several occasions,

not only to get very challenging work done in a short time, but also

to identify and develop leaders on my agile teams.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch08lev1sec5#ch08biblio01entry03

An action sprint is a short, intensely focused activity that you can

use to attack particularly difficult businessor technology-oriented

problems in an unconventional way. Follow these guidelines to make

the most of your action sprints:

• Focus on a single, narrow goal or action.
• Make the goal absolutely clear to everyone on the team.
• Time limit the action sprint strictly to no more than a few

days.
• Dissolve all roles and responsibilities, especially management

roles and responsibilities.
• Devote some time at the beginning of the action sprint for your

team to come together and generate a plan.
• Participate, along with everyone else, in a hands-on fashion.

Allowing your team to conduct an action sprint requires quite a bit

of trust in the team's abilities on your part, as well as the part of

your organization's senior management. There is always a risk of very

little resulting from it, but that is why it is time limited. On the

other hand, you should seriously consider the possibility that it

could yield some dramatic results for you and your organization.

Activity: Fit Your Style to the Situation

There is no "best way" to manage anything or lead everyone. Even on

agile teams with their self-disciplined team members, a single

leadership style simply does not exist. The reason is simple—people

are complex beings. Each person's behavior springs from a lifetime of

accumulated experiences, insights and values. Different people

require different styles of leadership. In fact, the same people may

require different styles of leadership in different situations. For

instance, a software craftsman with the ability to write code without

any guidance or supervision may require assistance in developing user

documentation. Or an expert business analyst who deeply understands

the subject behind a set of data may require help in retrieving that

data from a database. An agile manager needs to be able to adapt

herself to the situation to fit her team members and the situations

in which they work. What is a good way for the agile manager to do

this?

Paul Hersey and Ken Blanchard's Situational Leadership4 framework

categorizes a leader's necessary behavior based on the combination of

direction and support needed by her follower. Accordingly, they

prescribe four different styles depending on the capability and

willingness of the person to perform the work, determined by asking

two questions:

1. Can the person do the job?

2. Will he or she take responsibility for it?5

The answers to these questions determine the type of style that a

leader should apply to the situation:

• The directive style is called for when the answers to both

these questions is no—when the person both cannot do the job

and will not take responsibility for it. This is the high-

direction, low-support style. A leader provides high direction

on the task, providing guidance on both what tasks are to be

done and how to perform them. Very little support or

encouragement is provided in this case.
• The consultative style is needed when the person cannot perform

the work but is willing to take responsibility for it. This is

the high-direction, high-support style. In this case, the

leader still assists with the direction in both the what and

how of the task, but provides a high level of support and

encouragement in addition.
• The participative style is used when the person can perform the

job but will not take responsibility for it. This is the low-

direction, high-support style. There is much less direction on

how to perform the task but still a high level of support and

encouragement.
• The delegative style is applied when the answer to both

questions is yes—the person can both do the job and will take

responsibility for it. This is the low-direction, low-support

style. Very little direction or support is provided.

Agile teams are designed to operate mainly with the delegative style.

Agile team members are selected for their competence and self-

discipline. However, any experienced manager knows that getting an

entire team of highly competent and self-disciplined team members

does not happen very often. Skill levels vary from person to person,

as does the ability to self-discipline. Furthermore, skill levels for

the same vary from situation to situation as well. Depending on the

situation, you need to decide which one of the four styles to adopt.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch08lev1sec5#ch08biblio01entry05
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch08lev1sec5#ch08biblio01entry04

The picture is a little complicated, because in many cases, you will

need to defer to your technical coach to provide task assistance. My

personal preference is to gauge the leadership style needed for the

situation and, if I cannot provide the direction necessary, I

identify someone who can.

Activity: Support Roving Leadership

Roving leadership6 is the term coined by Max DePree for unofficial

leaders who rise to the occasion and take charge because of the

strength of their personalities. By this definition, anyone on the

team can become a leader depending on his or her response to

challenging circumstances.

For instance, on one my large projects, we had a serious

configuration management issue for several different reasons—legacy

code integration, third-party product integration, etc. The

configuration management team on this project was struggling to come

up with a viable solution in time. When the release came closer and

the situation became increasingly dire, one of our developers stepped

up and provided the leadership and direction necessary for the

configuration management team. Although he was not formally a

configuration management specialist, he had recently worked for a

company that develops configuration management tools. It turned out

that he had just the right combination of experience necessary to

perform the work, and took on the mantle of a roving leader. On

another project, when I was having a difficult time answering our

customer's questions, our technical coach stepped in and took charge

as a roving leader to manage our response to our customer. Roving

leadership like this should be common on your agile projects. What

can you do to foster it?

The APM practices directly foster roving leadership. Activities such

as decentralizing control and cultivating communities of practices

help nurture other leaders in the team besides you. But in the end,

it is up to you to support the roving leaders as they come forth from

your team to handle different situations. If you do not, roving

leadership will eventually die out. What can you do to support roving

leadership?

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch08lev1sec5#ch08biblio01entry06

When pressure situations arise and roving leaders step forth, you

need to gracefully step aside, let them handle the issue, and provide

them with your full support. This is not abdicating your

responsibility to lead the team. In fact, it is fulfilling your

leadership responsibility in full measure and more because you are

grooming the leaders of tomorrow.

Activity: Learn to Go with the Flow

There is something inherently attractive, fulfilling, and even

spiritual about creative work that fulfills a vision. Creative work,

including software development, seems to satisfy something very deep

and primal within us. Perhaps that is why few experiences compare

with working on a team that has a clear purpose and delivers clearly

measurable value to its customers. The experience of periods of

intense concentration, close camaraderie and trust, hard work,

challenge, fun, and sparks of brilliance and creativity is so

fulfilling and rewarding that almost everybody wants to be a part of

it. Given the right team, following the practices in this book is

likely to result in this sort of intense, time-suspending, deeply

rewarding experience—sometimes called flow (psychological flow,

distinct from the value flow discussed thus far). Part of intelligent

control is simply relaxing and letting this experience happen, and

when it does, letting it attract team members to the work you are

doing on your team. Because, after you have established the right

control system and team members have assumed individual

responsibility for the work that needs to be done, there will be

times when you will need to do little managing. During these times,

you do not need to do much besides monitor the team's progress and

its value flow. Your responsibility at this point is to let your team

go where it needs to go and simply immerse yourself in the

experience. This activity, then, is somewhat of a nonactivity: Learn

to let go and go with the flow.

Whole-Person Recognition

Just like all other people, project managers have different

personalities. Personality profiling tools, such as the Myers Briggs

Type Indicator and the Keirsey Temperament Sorter, identify different

personality types. The Myers Briggs Type Indicator, for example,

measures personal preferences on four scales: extrovert/introvert,

sensate/intuitive, thinking/feeling, and judging/perceiving. It turns

out that the more factual, practical, and structured personality

types account for up to 44 percent of the population in general and

represent many business managers, educators, and administrators.3

Project managers with these personality types have been known to find

dealing with the "soft" side of project management difficult, and may

judge the material presented in this section as impractical and

difficult. Project managers with other personality types—intuitive,

personal, and spontaneous—will more than likely find the material

here somewhat obvious and trivial. Either way, I have included the

material in this section to make the point that project management is

at least as much about dealing with people at a personal level as it

is about tools and techniques or practices and activities.

Agile managers of all personality types need to begin to practice the

softer skills of project management by recognizing a fundamental

reality—your project team members are flesh-and-blood people. If you

think this sounds obvious and trivial, think about the ubiquity of

these terms used to refer to people: resources, staff, and FTE. These

terms, rooted as they are in the mechanistic model, indicate a deeper

problem: Our organizations are not very good at recognizing people as

whole persons. At many organizations people leave important parts of

their selves at the door because they are not recognized as whole

persons at work.

To be strong and effective leaders of their project teams, agile

managers need to recognize the wholeness of each of their team

members. Each person on the team comes with a peculiar and unique mix

of hopes, dreams, aspirations, philosophies, shortcomings,

idiosyncrasies, personalities, moods, and emotions that go well

beyond their physical selves. Now, it certainly is not up to you to

manage all of these for your team members. That is primarily each

individual's personal responsibility. But, to manage with a Light

Touch and utilize each person's unique potential to the fullest

extent, you need to begin by recognizing each one of your team

members as a whole person. Activities that will help you treat your

team as whole persons are maintain quality of work life, build on

personal strengths, and manage commitments through personal

interactions. These are discussed next.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch08lev1sec5#ch08biblio01entry03

Activity: Maintain Quality of Work Life

Software development is a fast-paced, demanding venture. For many

professionals in today's software development world, life revolves

around work. Or, at the very least, it plays a significant part in

our lives. Most of us spend the majority of our waking hours in the

workplace. For instance, software development professionals in India

work close to six days a week. In the United States, it is at least

five days and sometime part of the weekend. Unlike our parents'

generation, our work also follows us home—we remain connected to

work because of the double-edged sword of modern technology. My own

laptop follows me everywhere I go. There is a connection—our quality

of life in general is much more dependent on the quality of our work

life than ever before. How can agile managers assist their teams in

maintaining a positive quality of work life, and why should they

bother to do so?

Numerous studies have shown the link between quality of work life and

productivity. It is also at least intuitively clear that creative

activity depends on quality of work life. So, there is a strong

fiscal incentive to maintain quality of work life as a means of

maintaining high productivity. Besides this fiscal motivation, agile

methodologies value individuals and interactions over processes and

tools. So, a high quality of work life is an extension of the

humanistic agile value system and an essential way of treating people

as whole persons.

To maintain a high quality of work life on your team, you need to

make different judgment calls based on the agile value system.

Although quality of work life begins with appropriate compensation,

it goes beyond that to personal growth, achievement, responsibility,

and reward. Two basics that can help in this regard are sustainable

pace and support for individual responsibility:

• Sustainable pace. XP's sustainable pace practice recommends

that the team work at a pace that can be sustained over the

project's long haul. XP teams do not work overtime for more

than one week in a row to maintain a sustainable pace of

development. You can use the sustainable pace practice to help

avoid team burnout and maintain a high quality of work life.

• Individual responsibility. Agile teams place a premium on

individual responsibility. Creating opportunities for team

members to share in the responsibilities and reward of team

management is an excellent way to motivate them and to enhance

their quality of work life. Table 8-2 indicates some

"intelligent control" ways for you to support individual

responsibility and allow your team members to share in the

management of the team, and thereby enhance the quality of

their work lives.

Table 8-2. Centralized Responsibility versus Individual

Responsibility

CENTRALIZED RESPONSIBILITY INDIVIDUAL RESPONSIBILITY

Rigid roles with detailed job

descriptions

Generalizing specialists with

multiple responsibilities

Top-down control with

micromanagement

Self-organization and self-

discipline

Impersonal communication Personal, face-to-face

communication

Rigid specialty-focused, role-

limited training

Flexible training opportunities

Sole reliance on yearly reviews

for performance evaluation

Regular, "in the moment"

performance evaluation and

coaching

Task focus Outcome focus

Implementing XP's sustainable pace practice and allowing your team

members to assume greater individual responsibility are two basic

ways to enhance quality of work life. Although circumstances will

vary from team to team and from project to project, the guiding

principle that you can use is to always remember that your team

members are whole persons.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch08lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch08table02

Activity: Build on Personal Strengths

Performance reviews are supposed to improve productivity by comparing

employees' personal performance to some uniform "standard," and then

identifying all the weaknesses to improve. I have a confession to

make—I intensely dislike these annual 360-degree performance

reviews. In my opinion, the whole process is tiresome, time-

consuming, and marginally effective when it works. When it does not

work, it turns out to be demoralizing, negatively motivating, and

counterproductive. In my own performance reviews, some of my managers

have complained about my difficulties in conducting these reviews.

Interestingly and confusingly, some have considered me to be too

lenient, whereas others have found me to be too harsh. Apparently, I

am far from being alone—Marcus Buckingham and Curt Coffman's book,

First, Break All the Rules, which is based on interviews with more

than 80,000 mangers worldwide, underscores my point of view.

According to Buckingham and Coffman, the world's greatest managers

recognize that trying to standardize human behavior is futile, and

therefore, they do not waste their time trying to dramatically change

people. Rather than focus on weaknesses, these managers build on the

personal strengths of their team members and help them become more of

who they already are.6 I cannot recommend this approach enough to

agile managers. For a start, it is based on the presumption that each

person is unique and has unique strengths and weaknesses—whole

persons, in other words. Here is a simple example from one of my

projects that illustrates how you can build on your team members'

strengths.

Tom is one of our most senior and brilliant developers. A master

craftsman who loves teaching almost as much as he loves programming,

Tom has coached many junior developers and delivered many elegant

programming solutions. He is a great learner, always researching new

technologies and tools. Tom is also a strong leader of technical

people because he commands their respect and affection. Despite all

these gifts, Tom has a serious weakness in the eyes of the world—he

can be abrasive with certain people in personal interactions. When

Tom came to work on one of my projects, I was warned about a

situation that he had created with a client on a previous project.

Now, conventional wisdom would have had me watch for further

infractions on my project, attribute them to his weakness, and write

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch08lev1sec5#ch08biblio01entry06

it all up on his annual review. Conventional wisdom would have him

spend the rest of his tenure at our company trying to correct

something that I discovered springs from his deeply rooted lack of

respect for people who are not well informed.

Instead of harkening to conventional wisdom, I went with my gut

feeling that Tom really could not change his attitude, at least in

the time he was working with me. So, I made sure that I placed Tom in

the role where he was likely to excel due to his numerous technical

and analytical strengths—as technical coach. However, for all client

interactions, I insisted that Tom and another team member, Linda,

went as a pair. Linda is a business analyst with strong technical

knowledge and great client interaction skills. Between the two of

them, Tom and Linda delighted our client, delivered a great system,

and the entire team had fun doing it. In short, I did not insist that

Tom significantly improve his weakness, I simply worked around it and

built on his many other strengths.

Activity: Manage Commitments Through Personal

Interactions

In Chapter 7, "Open Information," we saw that in order to be useful,

transforming exchanges between team members should result in the

making, keeping, and coordination of commitments; those commitments

should, in turn, result in accomplishment and action. We also saw

that different types of conversations—for action, for possibility,

and for disclosure—can enable action-oriented transforming

exchanges. All of these—conversations, commitments, and connected

action—can happen easily only when team members on an agile project

are participating regularly in close, personal interactions. To

manage this network of commitments, you need to engage in close,

personal interactions with team members, sponsors, and all other

stakeholders.

Three main things affect all personal interactions: speaking,

listening, and mood awareness. You need to attend to all three of

these aspects of your personal interactions to effectively coordinate

and manage the team's commitments:

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch07#ch07

• Speaking. When making requests of other team members, make sure

your requests are clear and that they have clear conditions of

satisfaction. Target your speech to generate action in others.

When you make promises to your customers, ensure that your

promises have clear commitments, such as completion dates. Keep

your speech positive and open to develop trust.
• Listening. Listen carefully to your customers, sponsors, team

members, and other stakeholders. Assume nothing and ask

questions whenever something is even remotely unclear. Clarify

conditions of satisfaction when your customer makes requests of

the team. State your understanding of things regularly as an

act of active listening. Listen openly and positively to give

others a positive impression.
• Mood awareness. Pay careful attention to moods and try to shift

them when necessary. Emotions and moods color how people react,

speak, and listen. Positive moods generate positive thinking,

speech, and listening. People are more hopeful, confident, and

receptive to what you might have to say when they are in a

positive mood. Negative moods generate negative thinking,

speech, and listening. People are more negative and less likely

to listen to what you have to say when they are in a negative

mood. If you remain positive and maintain a positive mood, your

presence can have a positive effect on the parties with whom

you interact. If you remain aware of the moods on your project,

you can even actively shift the mood in a positive direction.

By attending to your speaking, listening, and mood awareness, you can

make a positive difference in the close, personal interactions you

have with others on your team, and consequently, you can better

coordinate commitments toward action.

Summary

Most organizations have some form of hierarchical organizational

structure that propagates into project teams. The organic CAS model

presents a viable alternative for agile team, but questions about

control remain. The objective of the Light Touch practice is to

manage agile teams with a style that allows team autonomy and

flexibility, and a customer value focus without sacrificing control.

The activities for this practice fall into two categories:

intelligent control and whole-person recognition.

The intelligent control activities provide agile managers with ways

to intelligently control the skilled professionals on their agile

teams. They include decentralize control, establish a pull task

management system, manage the flow, use action sprints, fit your

style to the situation, support roving leadership, and learn to go

with the flow. The whole-person recognition activities help agile

managers to be strong and effective leaders of their project teams by

recognizing the wholeness of each of their team members. They include

maintain quality of work life, build on personal strengths, and

manage commitments through personal interactions.

References

1. Reinertsen, Donald G. Managing the Design Factory. Simon and

Schuster, 1997.

2. Poppendieck, Mary, and Tom Poppendieck . Lean Software

Development. Addison-Wesley, 2003.

3. From http://www.zope.org/.

4. Hersey, Paul, and Ken Blanchard . Management of Organizational

Behavior: Utilizing Human Resources. Prentice-Hall 1981.

5. Lewis, James P. Project Leadership. McGraw-Hill, 2002.

6. DePree, Max . Leadership Is an Art. Bantam Dell, 1989.

7. Buckingham, Marcus, and Curt Coffman . First, Break All the Rules:

What the World's Greatest Managers Do Differently. Simon and

Schuster, 1999.

Chapter 9. Adaptive Leadership

"It is not the strongest of the species that survive, nor the most

intelligent, but the one most responsive to change."

—Charles Darwin, The Origin of Species

http://www.zope.org/

An agile team's most creative and valuable work occurs when there is

an optimum balance between flexibility and structure, control and

freedom, and optimization and exploration. But keeping the team on

this creative edge comes with the risk of veering off course. A

project's outcome can be nonlinear in either positive or negative

directions, accruing rapid success or spiraling into failure;

controls placed on the system can have unintended outcomes. To keep

the team on its creative edge and the project on track in a positive

direction, the agile manager needs to be able to continuously monitor

the project, understand the effects of the agile project management

(APM) practices, and constantly learn from and adapt to change.

Leading the team in this effort by nurturing Organic Teams,

establishing a Guiding Vision, setting Simple Rules, championing Open

Information, and managing with a Light Touch is not for the faint of

heart or the uncommitted. Besides continuously tracking and

monitoring the project, it requires a leadership presence with self-

mastery, commitment, and discipline on the part of the agile manager.

How can these best be achieved?

The objectives of the Adaptive Leadership practice are to track and

monitor the project for timely and relevant feedback, institute

systemic procedures for learning and adaptation, and to help the

agile manager maintain a leadership presence that animates the team.

The activities associated with this practice carry the following

implications for agile managers:

• Tracking and monitoring APM practices to ensure their proper

application and desired outcomes
• Learning and adapting continuously according to the feedback

obtained
• Embodying leadership that inspires and energizes the team

The rest of this chapter lays out the activities you need to conduct

to achieve these objectives. The activities are grouped into two

categories: double-loop learning and embodied leadership, and they

are covered next.

Activities

Table 9-1 shows the leadership and management responsibilities

required to establish Adaptive Leadership on an agile project team.

Table 9-1. Adaptive Leadership: The Agile Manager's

Responsibilities

CATEGORY ACTIVITIES

Double-loop learning Management:

• Get Plus-Delta feedback daily
• Monitor and adapt the Simple Rules
• Monitor the APM practices
• Conduct regular project reflections

• Conduct Scenario Planning

Embodied leadership Leadership:

• Cultivate an embodied presence

• Practice embodied learning

The activities shown in Table 9-1 are covered in detail in the rest

of this chapter, beginning with the double-loop learning activities,

which are covered next.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch09lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch09table01
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch09lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch09table01

Double-Loop Learning

From an organic complex adaptive systems (CAS) perspective, learning

and adaptation involves continually making slight adjustments to

discover the best fit to the environment. Learning is enabled by

continuous feedback from the environment, and it is accomplished

through adaptation of strategies and rules. An agile team needs

continuous feedback from its project environment to enable learning,

just as the feedback that the driver of a vehicle gets (the feel of

the steering wheel, the road conditions, other traffic, etc.) enables

the micro-adjustments that she makes to steer it. The APM practices

provide many feedback mechanisms that enable the team to track and

monitor the project environment. How do these mechanisms enable the

team to learn?

As first conceived of by Chris Argyris and Donald Schon, there are

two types of organizational learning: single-loop and double-loop

learning. Single-loop learning is based on stable assumptions, rules

and desired outcomes, and is useful when project conditions remain

stable. As illustrated in Figure 9-1, single-loop learning is a three

step process: Track and monitor the project environment, compare the

feedback obtained to the project's operating norms (outcomes,

assumptions, rules, etc.), and take appropriate action.

Figure 9-1. Single-Loop Learning on an Agile Team

[View full size image]

http://safari.oreilly.com/bookImages/?0131240714/graphics/09fig01_alt.jpg;446951
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch09lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch09fig01
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/11041535&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0

The operation of a thermostat is a common example of single-loop

learning. When a thermostat at a particular setting learns it is

either too hot ortoo cold, it turns itself off. It performs this

corrective action on receiving information about the temperature of

the room. All the APM practices have this sort of corrective single-

loop learning activities integrated into thepractices themselves. For

instance, Guiding Vision has the create and maintain shared

expectations activity to keep track of and learn from customer

expectations. Open Information has the conduct a stand-up meeting

daily activity to track and monitor project changes, and Light Touch

integrates the manage the flow activity to track and monitor the

backlogs and take appropriate action.

These integrated single-loop learning activities allow you and your

agile team to respond to changes, such as changes in requirements and

changes in scope, by making appropriate adjustments. Requirements

changes are handled by adjusting release and iteration plans. Scope

changes are managed by adjusting the scope/objectives and adjusting

release and iteration plans appropriately. Similarly, the flow of

business value can be managed by ensuring a steady rate of arrival

and service of user stories and tasks in the backlogs. These single-

loop learning activities will suffice as long as project conditions

like desired outcomes and end-user needs in the project environment

remain relatively stable. But, what happens when the project

conditions and environment begin to change markedly? Simply reacting

to these environmental changes by repeating actions based on the same

operating norms (rules, strategies, assumptions, etc.) does not work

because the norms themselves are outdated and no longer fit the

project environment. What must the agile manager do to ensure

environmental fit and accommodate environmental change? What can be

done, for example, when the Guiding Vision itself is outdated and

needs to be adjusted or when the Simple Rules are not working quite

right?

Double-loop learning provides the answer. As illustrated in Figure 9-

2,double-loop learning involves an additional learning loop with

steps to reflect and adapt the operating norms themselves. Consider

the example of the thermostat. With double-loop learning, one

questions the norm represented by the temperature setting. Why is the

thermostat at this particular setting? Is it the optimum temperature

all day? Should it be changed to accommodate the number of people in

the room, for example? This sort of self-reflection and learning

results in intelligent, congruent action. Similarly, leading agile

teams adaptively thus involves continually observing and assessing

the effect of practices on the project and adapting the practices and

other norms for desired results and maximum impact.

Figure 9-2. Double-Loop Learning

[View full size image]

The activities necessary to track changing project conditions and to

learn and adapt practices appropriately are get Plus-Delta feedback

daily, monitor and adapt the Simple Rules, monitor the APM practices,

http://safari.oreilly.com/bookImages/?0131240714/graphics/09fig02_alt.jpg;446951
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch09lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch09fig02
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch09lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch09fig02

conduct regular project reflections, and conduct scenario planning,

as described next.

Activity: Get Plus-Delta Feedback Daily

The Plus-Delta tool is a simple and powerful visual tool you can use

to evaluate your project daily. Right after your daily stand-up

meeting, take a few minutes to get your team to provide feedback on

the project and place it in the tabular format shown in Figure 9-3.

Figure 9-3. Visual Feedback via the Plus-Delta Tool

Place the things that are working in the Plus column, and those that

need improvement in the Delta column. On my projects, I usually

record the Plus-Delta on a publicly visible display, such as a

whiteboard, and leave it up as an information radiator that is a

constant reminder of its contents. This also makes it accessible for

convenient updating everyday.

By facilitating timely feedback on a daily basis, the Plus-Delta tool

allows you and your team to track and monitor your project and

highlight the areas that need improvement or adjustment. When

something remains in the Delta column for an extended period of time,

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch09lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch09fig03

it is a clear indication that it needs to be adjusted in some way to

better fit the project.

Activity: Monitor and Adapt the Simple Rules

When you begin your process implementation, the Simple Rules

practice's customization activities will ensure that the rules are

tailored to your environment. However, as time goes by, things will

definitely change. As your experience with implementing the rules

mounts, you should begin thinking about how to adapt them to ensure

that they continue to fit the environment.

In a CAS, agents' rules evolve as their environment changes and their

behavior changes as a result. This evolution of rules takes place as

agents repeatedly select between successful and unsuccessful rules.

The process is known as credit assignment, and the rules that lead to

successful results are strengthened as they are chosen time and

again, or are awarded credit. Rules that do not result in successful

results debilitate over time as they lose credit, until they are

eventually discarded. Credit is awarded or removed based on feedback

from the environment. Credit assignment is therefore a form of

double-loop learning.

You can apply the credit assignment principle to rate and adapt rules

by conducting brief rating sessions with the team every iteration to

see how the rules are faring. A good opportunity to do this is the

iteration planning meeting. Get the team to rate the rules on a

simple numeric scale, as shown in the sample in Figure 9-4.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch09lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch09fig04

Figure 9-4. Credit Assignment of XP Rules

The sample shown in Figure 9-4 is from a project on which my project

team had significant challenges in getting a small release out of the

door because of several unresolvable dependencies. In the end, we had

to give up on the small releases practice, even though it had

appeared to be an easy one to achieve when we began the project. This

exercise also serves another purpose—to enable fine-tuning of the

process by highlighting rules that may not be working, such as the

acceptance test practice in the figure. Because it was so noticeable,

we were able to tune its implementation and get it to work after a

few iterations.

You can tune your methodology implementation and keep it current as

things change by adapting the Simple Rules. Some guidelines to keep

in mind are the following:

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch09lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch09fig04

• Try all rules for several iterations and give them a real try-

out before adapting them to avoid instability.
• When a rule is not working, explore ways to improve its

implementation before adapting it or discarding it.
• Adapt only a rule or two at a time.
• Discard a rule "reluctantly," only when it has unequivocally

proven not to be of value.

Adapting the Simple Rules is a special case of adapting APM

practices. To monitor all the APM practices, you can implement the

activity described next. You also need to conduct regular project

reflections and adapt the practices based on the feedback from these

two activities.

Activity: Monitor the APM Practices

Monitoring the process rules of the Simple Rules practice as just

described is a specialized case that lends itself well to the credit

assignment principle because the process rules are simple, well-

defined, and lend themselves to a comparative rating. But, what about

the other APM practices, including the nonprocess aspects of the

Simple Rules practice? All the APM practices need to be monitored to

provide the feedback necessary for learning and adaptation.

To accomplish this, you need to monitor various aspects of the APM

practices through your close, personal interactions and other

opportunities to observe the team. Tables 9-2 through 9-7 9-7contain

the activities for each APM practice that require tracking and their

associated tracking checks.

Table 9-2. Monitoring the Organic Teams Practice (Continued)

ACTIVITY TRACKING CHECKS

Promote software

craftsmanship

How is your master craftsman performing?

Are apprentices progressing in skill?

Is your development team capable of

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch09lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch09table07
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch09lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch09table02

Table 9-2. Monitoring the Organic Teams Practice (Continued)

ACTIVITY TRACKING CHECKS

delivering software reliably?

Get self-disciplined

team players

Do your team members demonstrate self-

discipline? Can you trust them to perform

work without supervision?

Foster team

collaboration

Are team members working well together? Is

anyone getting left out of the group

consistently?

Does the team show enthusiasm for the work?

Form a guiding

coalition

Is the guiding coalition able to effectively

assist the team by removing organizational

obstacles to change?

Are the stakeholders in the guiding

coalition engaged and knowledgeable about

your team's progress?

Do other influential stakeholders need to be

recruited for more impact?

Cultivate informal

communities of practice

Are they vibrant?

Is membership and active participation

growing?

Are the communities helping deliver business

value?

Identify the project

community

Has the project community changed? Have any

organizational changes occurred?

Do you need to reach out to other

stakeholders?

Design a formal

structure

Does the formal structure need iteration?

Table 9-2. Monitoring the Organic Teams Practice (Continued)

ACTIVITY TRACKING CHECKS

Is it helping or hindering team functioning?

Propose an adaptive IT

enterprise

How is it being accepted by senior

management?

If it is not being accepted, are there

workarounds?

Table 9-3. Monitoring the Guiding Vision Practice

ACTIVITY TRACKING CHECKS

Evolve a team vision Is the team vision energizing the team?

Is it representative of the direction in which

the team wants to go?

Align the team Is the team aligned, or are any of the team

members working at cross-purposes?

Envision a bold future Is the future vision still compelling?

Does it continue to capture the imagination of

the team?

Create and maintain

shared expectations

Do customers and other stakeholders still have

the same expectations of the project as the

team?

Have any of the success criteria changed?

Discover business

outcomes

Have any assumptions behind the desired

outcomes changed?

Have the outcomes been revisited periodically?

Table 9-3. Monitoring the Guiding Vision Practice

ACTIVITY TRACKING CHECKS

Clearly delineate

scope

Has the scope changed? If so, is there

agreement on the changes with customers?

Has the scope/objectives model been updated?

Table 9-4. Monitoring the Simple Rules Practice

ACTIVITY TRACKING CHECKS

Enlist the team for

change

Has the force field analysis been conducted

periodically?

Are there any new restraining forces?

Focus on business

value

Do all detailed stories in iteration plans

link to higher-level stories in the release

plan?

Do the high-level stories in the release plan

all tie back to the Guiding Vision?

Customize XP Are the rules being applied consistently? Are

there any violations of the boundary rules?Are

the timing rules being followed?

Develop a release

plan/feature backlog

Is the release plan up-to-date?

Does it still represent the product vision?

Facilitate software

design, code, test,and

deploy

Are there any issues with automated build

and/or automated testing?

Are the release planning and iterationplanning

meetings effective?

Is the team able to develop software in a

Table 9-4. Monitoring the Simple Rules Practice

ACTIVITY TRACKING CHECKS

smooth iterative fashion?

Is unit test coverage complete?

Do all the unit tests pass all the time?

Conduct acceptance

testing

Is acceptance test coverage complete?

Do all the acceptance tests pass all the time?

Are customers engaging fully in acceptance

testing?

Manage the software

release

Are the software releases smooth?

Can they be improved further in any way?

Table 9-5. Monitoring the Open Information Practice

ACTIVITY TRACKING CHECKS

Conduct a stand-up

meeting daily

How effective is the stand-up meeting?

Does it take less than 15 minutes to

complete?

Are there issues with the facility and/or

location? Can people hear and speak easily?

Encourage feedback Are you and the technical coach able to coach

team members in real-time? Are team members

getting feedback "in the moment"?

Is the environment safe for feedback? Do

people feel empowered to talk freely to each

Table 9-5. Monitoring the Open Information Practice

ACTIVITY TRACKING CHECKS

other?

Does the team self-evaluate regularly?

Building trust Are you extending trust first?

Do team members trust each other?

Do you trust your team?

Link language with

action

Are commitments being fulfilled?

Are there clear conditions for satisfaction

for user stories?

Are customers pleased with the performance of

the development team?

Are transforming exchanges taking place

through conversations for disclosure?

Collocate team members Are there any space or other facility-related

issues?

Is there excessive noise or any such

disturbance?

Negotiate a customer

representative on site

Is the development team able to communicate

better with the customer with the on-site

representative?

Is the on-site presence building trust

between the customer and development team?

Practice pairing

Do team members have

Table 9-5. Monitoring the Open Information Practice

ACTIVITY TRACKING CHECKS

any issues with

pairing?

Is knowledge being

transferred through

pairing?

Encourage the use of

information radiators

Is the information being posted useful?

Are they being updated regularly?

Map the project's value

stream

Is information reaching external groups in a

timely fashion? If not, what are the

obstacles to the flow of information?

Table 9-6. Monitoring the Light Touch Practice

ACTIVITY TRACKING CHECKS

Learn to go with the

flow

Are you delegating enough?

Do you trust your team enough to relax?

Maintain quality of

work life

Is the team going home at reasonable hours?

Do they have some slack time to unwind?

Build on personal

strengths

Are you building on the personal strengths of

team members?

Manage commitments

through personal

interactions

Do you need closer interactions with team

members? With sponsors?

Are you listening actively to stakeholders

and customers?

Are you able to sense moods and emotions and

Table 9-6. Monitoring the Light Touch Practice

ACTIVITY TRACKING CHECKS

adjust appropriately?

Manage the flow Is user story batch size small enough? Are

high-level stories less than 3 weeks?

Detailed stories less than 3 days?

Are stories arriving at backlogs and being

serviced at a steady rate?

Does the team have some slack time between

batches of user stories?

Table 9-7. Monitoring the Adaptive Leadership Practice

ACTIVITY TRACKING CHECKS

Cultivate an

embodied presence

Do you feel and notice yourself increasingly able

to stay focused and centered?

Do you sense team members respondingbetter to you

in person?

Practice embodied

learning

Are you able to devote time to learning?

Is a large part of your learning "learning by

doing?"

Get Plus-Delta

feedback daily

Are you able to conduct this activity every day?

Is the feedback you get from it meaningful?

Monitor and adapt

the Simple Rules

Do trends show up clearly in the rule credit

assignment?

Do the changes you make have clear positive

Table 9-7. Monitoring the Adaptive Leadership Practice

ACTIVITY TRACKING CHECKS

effects?

Conduct regular

project

reflections

Have you established regular project reflections

while the project is underway?

Are you following up with the learning from the

reflections?

Are team members actively engaged in the

reflections?

Conduct scenario

planning

Are you able to lead your team in considering

multiple possible futures?

Are you getting too bogged down in the analysis?

Is the scenario planning proving useful? Is the

team better able to respond to events when they

transpire because of the scenario plan?

If you go through these checks periodically, you should be able to

get good feedback on the application of APM practices and your

project in general. After some time, performing these checks will

become second nature for you and probably will not require serious

conscious effort. The feedback you obtain from this activity will be

substantial and will serve as excellent input into the next activity:

conduct regular project reflections.

Activity: Conduct Regular Project Reflections

Project reflections (also called project retrospectives) are

facilitated meetings that are formal methods for reflecting on the

successes and failures of the project and any of the tools and

techniques applied on it. Agile teams employ ongoing project

reflections as a powerful technique for continuous learning and

adaptation. They provide a way to test and improve practice

implementation. They also encourage double-loop learning as team

members reflect on the underlying causes of success or failure. You

can conduct a project reflection by following these steps:

1. Arrange for a neutral facilitator—someone other than yourself—to run the reflection.

2. All project team members seat themselves in a large conference room, preferably in a circle.

3. All participants follow simple ground rules (cell phones off, no interrupting others, each
person gets a time-limited turn, and no judgment on feedback).

4. Each team member provides feedback on these questions:

• What's working well?
• What can we improve?

• What are some obstacles or issues facing the team?
5. A brainstorming period follows to address the major issues.

6. The meeting ends with the facilitator capturing action items.

Unlike the traditional "lessons learned," you should conduct

reflections while the project is underway. I like to conduct

reflections on my project every three iterations or so to make sure

that we do not go too long without taking time to reflect upon and

improve our work.

Activity: Conduct Scenario Planning

Pioneered at the Royal Dutch Shell Group by Arie de Geus, scenario

planning is a strategic planning approach that explores the actions

to be taken in a few possible futures or scenarios, instead of

predicting or attempting to forecast a single version of the future.

This technique is especially useful on the high complexity and

uncertainty projects that employ agile methodologies. Instead of

projecting detailed tasks toward a single-point future (as in

conventional project planning), scenario planning explores multiple

possible futures at a higher level and identifies the corresponding

courses of action. This concept is illustrated in Figure 9-5.

Figure 9-5. Scenarios in Different Possible Futures

You can conduct scenario planning at multiple levels: at your

business strategy level, at product release level, and at the

iteration release level. Obviously, the more strategic the level, the

wider the involvement that will be necessary for the effort. Scenario

planning at the business strategy level, for example, requires

members from all across your organization (marketing, sales,

operations, technology, etc.). At the more tactical level, scenario

planning is useful for preparing for different possible iteration

outcomes.

To conduct scenario planning for your team, get your team to consider

a few possible scenarios, and then discuss how the team can be

prepared to respond differently in those different scenarios. Do not

try to predict a likely outcome. Instead, just brainstorm the

different possible outcomes, and discuss what the team will need in

order to be prepared for those outcomes. Figure 9-6 provides a sample

iteration-level scenario plan from a recent project.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch09lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch09fig06
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch09lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch09fig05

Figure 9-6. Sample Iteration-Level Scenario Plan

This exercise gets your team thinking about multiple options, the

uncertainty behind any one of those options, and prepares them for

action in any of those scenario options. It also helps with deferring

decisions until what is known in lean software development as "the

last responsible moment." However, you should be careful to keep it

in abbreviated form and not get bogged down in "analysis paralysis."

The double-loop learning activities enables you to track, monitor,

and adapt your approach as things change on your project. To lead

your team in adopting this approach, you need to develop a leadership

presence that consciously draws on both your mental and physical

self. Developing this presence is discussed next.

Embodied Leadership

Until now, we have discussed leadership primarily as a cognitive

skill. The leadership practices presented thus far can be assimilated

by the agile manager at an intellectual level. But, leadership is

more than a cognitive skill—it is also a personal presence that goes

beyond cognition into the realm of the physical. Through a personal

leadership presence, leaders embody the values and qualities that

draw people and influence them to follow of their own free will.

Followers accept leaders at a personal level almost unconsciously,

because leaders embody and project openness, accessibility,

integrity, and trustworthiness through their physical presence. This

quality of the body to communicate through nonverbal or somatic

language happens without cognitive intervention. For instance,

sweating is a somatic response to elevated surrounding temperatures

or to nervousness. Somatic responses—such as tightening up when

stressed or cringing when frightened—happen unconsciously in

response to mental activity. But, somatic responses can also be

consciously shifted through awareness and adjustment of the body with

accompanying mental activity. Techniques such as meditation and

martial arts alleviate stress by not only centering and relaxing the

mind, but also by centering and balancing the body. Embodied

leadership is leadership that integrates cognitive and somatic

faculties to create a compelling leadership presence. It means

showing up and carrying oneself with authentic and trust-inspiring

openness; a willingness to listen and learn; and a centered,

confidence-inspiring physical presence. How can this state of

embodied leadership be attained?

Embodied leadership is created and sustained by a leader's firm

consistency in carriage, thought, word, and deed. It involves

congruence in a leader's actions that demonstrates commitment to team

values, self-confidence, integrity, and caring for others' well-

being. It requires shifting the body and its carriage to enhance

leadership presence and to enable a calm centeredness. To embody

leadership, the agile manager must begin by cultivating an embodied

presence and practicing embodied learning. Activities that describe

these are covered next.

Activity: Cultivate an Embodied Presence

We all know what being out of balance, or off-center feels like:

showing up late, running around and not getting much done, reacting

emotionally and perhaps inappropriately to minor matters, feeling

stressed, tired, and burnt out. These are the times when we are off-

center, and the quality of our lives degrades quite visibly. Now, how

about the times when we feel most comfortable and open, but also most

alert and engaged with others? The times when we are able to move

around, listen to others, and relate to them effortlessly. These are

times when we are centered. Being centered is being open, alert, and

engaged in the present. It is the position from which we feel most

open to relationships, possibilities, and actions. It is when our

bodies are balanced and relaxed, and our thinking minds are present

in the moment and not distracted by anything other than the immediate

happening. When we are embodied fully in the moment, present and

vital both physically and mentally, that is when we are said to have

an embodied presence. An embodied presence brings both a sense of

potential and fulfillment. We lead with a comfort and ease that is

evident to ourselves and to others. To cultivate this embodied

presence, agile managers need to practice centering physically and

mentally.

To center physically, you should consciously straighten and align

yourself vertically with your body's center of gravity. This is the

spot that is a little below the navel and a little inside the abdomen

from where we maintain our physical balance. If you are standing,

shift your body into a position so that you are comfortably upright

and aligned with your center of gravity. Your back should be

straight, your shoulders relaxed and your arms by your sides. Your

feet should be about shoulder width apart and completely connected to

the ground, and you should be looking straight ahead. If you are

sitting, your feet should be flat on the ground, and your head,

shoulders, and back should be comfortably upright. This is the

physical center from which all movements are equally possible.

Centering mentally is the next step toward embodied presence.

To center mentally, you need to put your mind in a state that is not

too relaxed or too agitated, but where its attention is just in the

present. Centered breathing is the key to mental centering. Begin by

centering physically and inhale with a deep breath down to your

abdomen, and feel your neck and shoulders relax as you do so. When

you exhale, imagine any tensions leaving your body with the outgoing

breath. Now, breathe slowly and deeply into your abdomen for at least

a few minutes. Imagine your breath making its way toward your center

of gravity as you inhale and away from it as you exhale. Keep your

attention focused on your breath. If your mind wanders, just bring it

back to your breath by staying aware of your inhalation and

exhalation. This is the mental center from which all decisions are

equally possible.

By initially practicing centering mentally and physically on your

own, you will find it easier to center at any time and in any place.

You will cultivate an embodied presence as you operate more

frequently from a position of mental and physical center.

Activity: Practice Embodied Learning

Managing an agile team places special demands on the agile manager.

Perhaps the most crucial of these is the need for the agile manager

to be a life-long learner. Being a generalizing specialist and

leading the team in continuous learning and adaptation are just a

couple of examples of the learning demands placed on the agile

manager. What is the best way to accomplish this required continuous

learning?

The easiest way to learn something and become proficient at it is to

experience it through personal application and practice. The ability

to learn experientially from interaction with one's environment is

known as embodied learning. It is the "learning by doing" that one

achieves through a full physical and mental engagement of senses,

perception, language, action, and emotion with the craft that one

practices. To be a continuous learner, it is not enough to simply

read about methodologies (although reading is important to learning)

and discuss them; the actual experience of putting practices into

action is needed. Embodied learning also creates the skills in action

needed for the agile manager to embody leadership. By personally

demonstrating a strong commitment to learning, and by embodying that

commitment in action, you will lead your team to practice embodied

learning themselves. What are some of the guidelines in this regard?

Three basic steps for you to practice embodied learning are formal

instruction, practice and awareness, and personal reflection:

• Formal instruction. Although many skills can be self-taught,

formal instruction at the hands of experts is the best way to

propel you to learning quickly with ease. The best sort of

formal instruction comes from a coach or a small group who can

observe you in your own environment and mentor you toward

improvement. However, formal instruction should not be used as

a crutch. Because primary onus for learning is on you, formal

instruction needs to be a launching pad to practice and

awareness.
• Practice and awareness. This is the crux of embodied learning.

You need to discover the essential experiences around which APM

is formed within yourself through practice and application. As

you apply APM principles and practices and embody its values,

you will also need to develop a keen sense of self-awareness.

Stay aware of your own reactions, moods, and physique as you do

things such as manage commitments through personal

interactions, arrange reflections, conduct stand-up meetings,

and link language with action.
• Personal reflection. You need to augment formal instruction and

practice and awareness with personal reflection. Set aside and

make an effort to spend some time in quiet solitude to analyze

and evaluate things. Too many managers think that busy action

is all there is to managing and learning. But personal

reflection on those actions is an important part of embodied

learning. Use your reflection time to conceptualize and analyze

your project's complexities, to strategize about possible

courses of action, and to reflect on the consequences of those

actions.

Summary

Keeping an agile team on its creative edge comes with the risk of

veering off course. To keep the team on its creative edge and the

project on track in a positive direction, the agile manager needs to

be able to continuously monitor the project, understand the effects

of the Agile Project Management (APM) practices, and constantly learn

from and adapt to change. The objectives of the Adaptive Leadership

practice are to track and monitor the project for timely and relevant

feedback, institute systemic procedures for learning and adaptation,

and to help the agile manager maintain a leadership presence that

animates the team. The activities for this practice are divided into

two categories: double-loop learning and embodied leadership.

The double-loop learning activities enable you to track, analyze,

learn, and adapt to changing project conditions. They include get

Plus-Delta feedback daily, monitor and adapt the Simple Rules,

monitor the APM practices, conduct regular project reflections, and

conduct scenario planning. The embodied leadership activities help

agile manager cultivate a somatic or embodied leadership presence.

The embodied leadership activities are cultivating an embodied

presence and practicing embodied learning.

Chapter 10. Transitioning from the Familiar

"The past went that-a-way. When faced with a totally new situation,

we tend always to attach ourselves to the objects, to the flavor of

the most recent past. We look at the present through a rear view

mirror. We march backward into the future."

—Marshall McLuhan

How does agile project management (APM) differ from plan-driven

management? What must I do differently on agile projects? I am often

asked these are questions by managers new to agile methodologies.

Rather than the APM practices covered in previous chapters, the real

fundamental change lies in the interpretation of underlying values

and principles. APM's values and principles are meant to influence

the adaptation of practices to different project situations and

environments. That is, the values and principles express the

underlying spirit of APM, whereas the practices represent its

specific implementation. Recall that the guiding principles foster

alignment and cooperation, encourage emergence and self-organization,

and institute learning and adaptation imply a view of projects as

organic complex adaptive systems (CAS), and are designed to help

agile teams stay on the chaordic edge with just enough structure,

exploration, innovation, and rigor. With these guiding principles in

mind, what must a project manager do differently to effectively

transition to APM?

This chapter examines how the values and guiding principles need to

be interpreted to transition from the familiar traditional, plan-

driven style of management to an agile and adaptive style of

management. The transitions are grouped by the APM guiding

principles, and they are covered next.

Transitions

Table 10-1 shows the transitions required to practice APM and manage

an agile project team.

Table 10-1. Transitioning to APM from familiar Plan-Driven

Management

APM PRINCIPLE TRANSACTIONS

Foster alignment and

cooperation

Recognize that people are the longer-

term project.

Use the organic CAS model for stability

and flexibility.

Replace software engineering with

software craftsmanship.

Focus on project context, not content.

Use feature breakdown structures instead

of work breakdown structures.

Encourage emergence and

self-organization

Acknowledge that the perfect plan is a

myth.

Replace predictive planning with

adaptive planning.

Use release plans instead of task Gantt

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch10lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch10table01

Table 10-1. Transitioning to APM from familiar Plan-Driven

Management

APM PRINCIPLE TRANSACTIONS

charts.

Stress execution over planning.

Practice time pacing, not event pacing.

Practice participatory, not

authoritarian, decision making.

Coordinate work execution through

commitments, not commands.

Increase personal interactions,

especially across organizational

stovepipes.

Institute learning and

adaptation

Respond to change with adaptive, not

corrective, action.

Move from lessons learned to project

reflections.

Lead through presence, not power.

The transitions shown in Table 10-1 are covered in detail in the rest

of this chapter, beginning with those pertaining to the foster

alignment and cooperation APM principle, which are covered next.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch10lev1sec1&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch10table01

Principle 1: Foster Alignment and Cooperation

Team behavior is driven both by team structure and individual

responses to events. Team structure affects how team members are

deployed on a project, how they participate in its daily operation,

and how power is distributed among the team. All these factors can

affect how team members behave on a day-to-day basis. At a personal

level, individuals respond to events based on their view of the

project. If this view of the project is different from what others

perceive, the response will be different in turn. To foster alignment

and cooperation on agile projects, you need to transition with some

structural changes in team organization and operation, and you need

to actively manage the creation of a vision that is shared across all

team members and stakeholders. The transitions to adjust team

structure are recognize that people are the longer-term project, use

the organic CAS model for stability and flexibility, and replace

software engineering with software craftsmanship. The transitions

necessary to create a shared Guiding Vision are focus on project

context, not content; and use feature breakdown structures instead of

work breakdown structures. These transitions are covered next.

Transition: Recognize That People Are the Longer-Term

Project

Have you been managing projects for a while now? If so, over time,

you have accrued a set of tools and techniques that you carry from

project to project. Because certain things about projects are

similar, with a little tweaking, you can re-apply your familiar tools

for reliable results. These tools may be as simple as a few Microsoft

Project schedules that represent typical project lifespans and

essential Microsoft Excel spreadsheets for data collection and

charting. Or they may be an organized suite of cradle-to-grave

software life cycle deliverable templates. In general, these tools

represent a basic "system for building systems." You use this system

as occasion demands from project to project to build systems and

improve them along the way. Certainly such a system is bound to be of

great use, refined as it is over several projects. But, are tools and

techniques sufficient to reliably build and deliver systems?

Jeff de Luca and Peter Coad, creators of the Feature-Driven

Development (FDD) agile methodology propose that building people up

is a must to build anything of lasting value. They also position FDD

as a "system for building systems," which is consistent with the view

of organizations as CAS with sets of interacting and interdependent

elements. Because of interdependence between elements, changes in one

part of the system cause changes elsewhere, and the behavior of the

system must be examined as a whole to make sense of it. APM provides

tools and techniques to manage the building of a system to build

systems. APM influences managers to look beyond just the project at

hand to the longer-term goal of building teams of skilledpeople—the

system to build systems.

So, where traditional management might have focused primarily on the

tools and techniques to manage projects, APM focuses primarily on

managing the individuals on project teams and their interactions. As

you seek to master APM, this shift, which recognizes that people are

the longer-term project, isnecessary.

Transition: Use the Organic CAS Model for Stability and

Flexibility

Chapter 1, "Agile Project Management Defined," introduces the organic

CAS model as an alternative to the traditional mechanistic project

model when stability and flexibility are desired. We saw that

although the traditional model is remarkably efficient under stable

conditions, it faces severe difficulties in the dynamic environment

typical of agile projects. It cannot support demands for innovation

and creative action because it is essentially designed for

efficiency. Although it is efficient for routine, predictable work,

it struggles to support knowledge-based, unpredictable software

development work. The organic CAS model is the preferred alternative

for agile projects.

The organic CAS model recommends clusters of groups of generalizing

specialists who are coordinated by communications and relationships

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch01#ch01

for agility. It reduces centrally coordinated bureaucracy in favor of

more autonomous units with close connections. Flexibility and

adaptability are provided by close connections of people, problems,

and resources. By increasing communication across group boundaries,

increasing relationships among people and building trust, organic

organizations spark innovation and adaptation. Table 10-2 indicates

these differences between the mechanistic and organic CAS models.

Table 10-2. Comparing the Mechanistic and Organic CAS Models

 MECHANISTIC MODEL ORGANIC CAS MODEL

Management:

 Top-down control Mix of top-down control and self-

organizing teams

Line versus staff—thinkers

separated from doers

Thinkers as doers (e.g., architects as

lead developers)

Doers as thinkers—whole team as

participants in planning and

management

 Division of labor Accepted responsibility/volunteerism

 Manager-as-thinker Manager-as-coordinator

 Workers-as-implementers Workers-as-thinkers/implementers

Characteristics:

 Routine, physical work Dynamic, knowledge work

 Geared toward efficiency

and repeatability

Geared toward adaptation and

reliability

 Quantity emphasized over

quality

Quality emphasized over quantity

 Robust in predictable

circumstances

Robust in unpredictable circumstances

Replacement of human by

nonhuman contributions

Human contribution highly valued

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch10lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch10table02

If you come from an environment that employs the mechanistic model,

you may need to accept its limitations in dynamic environments and

transition to the organic model as the better suited alternative. For

example, managers familiar with the Capability Maturity Model (CMM),

which stresses predictability and repeatability, need to examine the

presuppositions of this approach to see whether it applies to

software development in dynamically changing environments.

Specifically, how does CMM hold up when requirements are changing all

the time, when the realm of development is more exploratory (like

product development) or when new technologies are being used for the

first time? Moving to APM requires adopting the organic CAS model

with its autonomous units, close connections, and dynamic membership

on Organic Teams.

Transition: Replace Software Engineering with Software

Craftsmanship

A modern byproduct of the mechanistic model is the notion of software

development as engineering work. The waterfall development process

and its attendant stovepipe organizations both lean on and add

credence to this view. Interestingly, software engineering was

originally designed for large development projects that are more the

exception than the norm today. The great majority of software

projects today involve small teams of people for a several weeks or a

few months. These projects are the ones that are best suited to agile

development. This is not to suggest that agile methodologies do not

scale. They do, and I have personally worked on large agile projects

of more than 100 people. But, the real sweet spot for agile

development is on small, high-productivity teams that innovate

rapidly and reliably.

In his book Software Craftsmanship, Pete McBreen advises replacing

the newer software engineering metaphor in favor of an older one of

software craftsmanship, where developers on these teams are

considered craftsmen. He advocates the creation of software studios

where modern-day software developers can practice the craft of

software development, with the same individual attention to and pride

in their work as the craftsmen of old. The software craftsmanship

paradigm has taken firm roots in the agile development community, not

least because of its fit with XP developer-centric practices.

If you are a project manager who assumes responsibility for leading

these agile teams, you need to be well prepared for the differences

with software craftsmanship. How does this play out on a day-to-day

basis? In my experience, teams practicing software engineering tend

to be larger and have a smaller ratio of highly skilled programmers

to other programmers with lesser skills. To compensate for this,

these teams introduce a hierarchy with software architects, software

engineers, and entry-level programmers. On the other hand, teams

practicing software craftsmanship tend to have a higher ratio of

skilled programmers to other programmers, albeit with a different

hierarchy of master craftsmen, journeymen, and apprentices. A manager

leading a team of software craftsmen needs to establish an

egalitarian relationship with the master craftsman and both defer to

and rely on her superior technical judgment on technical matters.

This does not mean that the manager should be ignorant of technology,

but that she should allow the master craftsman to heavily influence

technical decisions. Additionally, the manager needs to be prepared

to allow all members of the technical team input into decision

making.

Transition: Focus on Project Context, Not Content

Australian project management consultant Rob Thomsett says, "Projects

fail because of the context, not the content."1 He maintains that

traditional emphasis on project content (i.e., the technical

deliverables and issues) has created a weakness in the tools and

techniques for dealing with the more complex people side of things.

Projects fail when project managers neglect managing project context

—managing processes, creating shared vision, managing stakeholder

and sponsor expectations in favor of deep involvement with technical

deliverables. So, what is the agile alternative?

Agile methodologies elevate the people side of project management by

explicitly codifying it into the Agile Manifesto: people and

interactions over processes and tools. They also explicitly structure

and amplify key aspects of the project that relate to personal

interaction, such as face-to-face communication, feedback, learning,

and sustainable self-discipline. If you are a technical manager not

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch10lev1sec6#ch10biblio01entry01

used to constant, involved interaction with your team and

stakeholders, you need to adjust your behavior accordingly. You need

to learn how to focus on the project context, not just its content.

You need to transition your personal engagement—actively managing

frequent, personal interactions from daily stand-up meetings with

your team, regular stakeholder updates, and on-site interactions with

customers.

Transition: Use Feature Breakdown Structures Instead of

Work Breakdown Structures

As we know, a work breakdown structure (WBS) is meant to map out

project deliverables, subdeliverables, and supporting tasks in a tree

format, as shown in Figure 10-1.

Figure 10-1. Traditional Work Breakdown Structure

[View full size image]

A major issue with the common interpretation and application of the

WBS is that it tends to be applied with a nonsoftware deliverables

orientation that detracts from a focus on the working software, and

thereby from things of genuine business value. For instance, many of

the deliverables appear on the WBS simply because they are prescribed

by the methodology being applied and not because they are of direct

value to the customer. In this example, can one determine from the

WBS to what business initiative the requirements document is

http://safari.oreilly.com/bookImages/?0131240714/graphics/10fig01_alt.gif;446951
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch10lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch10fig01

connected? Can any value be measured when the task "Interview Users"

is complete?

A feature breakdown structure (FBS) is a variation on the WBS where

the software deliverables are features, and these features are

clearly associated with business activities and business areas, as

illustrated in Figure 10-2.

Figure 10-2. Feature Breakdown Structure

[View full size image]

The advantage of the FBS is that it forces a focus on the

functionality of the software and its associated business value. On

XP projects, the FBS feeds into the release plan/feature backlog and

the iteration plans/task backlogs, where each feature is broken down

further into user stories and associated tasks. Programmers then

implement the user stories in code iteratively. Because the value of

each feature can be measured, the FBS thus orients all technical

activity toward the delivery of measurable business value.

Now wait a minute, you might be thinking—what about the nonsoftware-

related aspects of the project? Things such as project meetings,

product demonstrations, documents, and the like. The answer is that

you can continue to handle these the way you have always done. A

conventional WBS for these deliverables will serve just fine just as

long as you make sure that the FBS drives the implementation of your

software application or product. Both the FBS and the WBS can be

http://safari.oreilly.com/bookImages/?0131240714/graphics/10fig02_alt.jpg;446951
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch10lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch10fig02

linked to user stories in the release plan/feature backlog and the

iteration plans/task backlogs.

Principle 2: Encourage Emergence and Self-Organization

Agile methodologies subscribe to the view that in dynamic

environments, several forms of emergence exist:

• Emergent requirements. New or modified requirements emerge as

original ones are implemented and information from their

implementation forces rethinking. New requirements may also

emerge if business conditions change and user needs change.
• Emergent systems. As requirements change and the system being

built is adapted in response, the system itself is changing

incrementally until final delivery.
• Emergent order. Rather than relying solely on order imposed

from the top down, agile teams also manifest self-organization,

or order that emerges from the bottom up, created by shared

vision, Simple Rules, and rich interactions between team

members and stakeholders.

Self-organization, emergent requirements, and an emergent system are

all valuable in their own right. Self-organization aids in keeping

teams flexible and motivated and reduces the need for management

overhead. Emergent requirements and an emergent system help ensure

that the final system delivered to customers closely in line with

what they need, not just what they wanted when it was conceived.

Accepting these notions of emergence and adjusting to their

implications may be difficult for managers trained to believe in a

more structured, deterministic view of the projects. Some very

definite changes in behavior are required of the aspiring agile

manager in this respect: accept uncertainty, keep rules simple,

steer, do not control, and use information as a force for self-

organization.

To accept uncertainty, these transitions are useful: Acknowledge that

the perfect plan is a myth, replace predictive planning with adaptive

planning, and use release plans instead of Gantt charts. To keep

rules simple, these are the necessary transitions: Stress execution

over planning and practice time pacing, not event pacing. To steer

and not control, these are the necessary transitions: Practice

participatory, not authoritarian decision making; and coordinate work

execution through commitments, not commands. Finally, to use

information as a force for self-organization, the transition is to

increase personal interactions, especially across organizational

stovepipes.

Transition: Acknowledge That the Perfect Plan Is a Myth

Lying buried somewhere underneath the practices of traditional

management are the assumptions behind the "perfect plan." This

perfect plan, as the legend goes, lists every task for every required

milestone. It identifies all dependencies between said tasks. It

uncovers all risk and levels all resources. It yields nearly perfect

level of effort estimates within + or –1 percent of the final

figures. The lure of the perfect plan concept is strong. Its

attraction gets even stronger when risk is high and projects are

complex. Under these circumstances, managers spurred by the fear of

failure will try to drive out the demons of uncertainty by attempting

to build the perfect plan. What are the forgotten assumptions behind

the perfect plan that drive such a strong conclusion?

The main assumptions behind the perfect plan are predictability,

stability, and information adequacy. They are accepted as true

without proof and further legitimized by the fact that our project

management tools and techniques implicitly support them. For

otherwise diligent project managers to accept these underlying

assumptions unquestioningly and without adequate analysis is naïve.

Soldiering on with aspects of software development as scripted by the

perfect plan is irresponsible and perhaps even dangerous. Surely,

none of us have done this—we know better, don't we? Yes, of course

we do. Therein lies the rub—our own project experience has revealed

that the perfect plan is a perfect myth. Why have we never been able

to build the perfect plan?

The perfect plan is perfectly elusive because the assumptions on

which it is built are suspect. Let's see how:

• Predictability. That software projects face uncertainty is

stating the obvious. Newer technologies, untested team members,

unknown or unclear product requirements all contribute to

ambiguity. The inability to evaluate the collective effect of

these factors contributes to complexity. When we face

uncertainty in the form of ambiguity and complexity, project

planning is largely predictive. As Niels Bohr's popular maxim

goes, prediction is especially difficult when it concerns the

future.
• Stability. In a dynamic environment, plans quickly become

outdated. Stability is suspect when requirements change,

business environments remain volatile, and users stay fickle.
• Information adequacy. "Hindsight is 20/20," goes another

popular maxim. In our private lives, except for the psychically

gifted among us, few would claim to be able to predict the

future. Yet at work, the quest for the perfect plan blinds us

to this truism. In reality, having access to adequate advance

information is a precious rarity reserved to the smallest,

simplest projects doing something that has been done before.

Information is rarely ever adequate to make perfect

predictions.

Quite simply, given the hollowness of its underlying assumptions, the

perfect plan is a myth. This must be acknowledged, especially on

agile projects. What can you do to hasten the demise of the myth of

the perfect plan? You should acknowledge unpredictability,

instability, and information adequacy; you should use agile tools and

techniques designed to accommodate these realities.

Agile methodologies acknowledge unpredictability in several ways. For

example, some of XP's explicit admissions are user stories are

accepted as incomplete representations of product requirements;

release plans, with their coarse-grained stories are somewhat

predictive in nature, but are designed for use in tandem with

iteration plans; and iteration plans with their fine-grained stories

are only developed for short periods of time with much lower levels

of complexity and ambiguity.

Agile methodologies are also geared toward managing change in

unstable environments. Rather than futilely attempt to limit change,

they are oriented toward robustness in dealing with change. For

example, XP's defining message is "embrace change." Its systemic

approach to change advocates practices such as the following:

• Continuous testing. Test early and test often.
• Refactoring. Improve code quality by periodically changing its

structure without affecting its function; iteration planning to

accommodate and prioritize scope changes at frequent,

predetermined, and time-bound occasions thus enabling options

to cancel, to defer, or to enhance by delivering working code

at the end of every iteration.
• Test-driven development, unit testing, and acceptance testing

to evolve a test harness of unit tests and acceptance tests

incrementally that enables code changes with confidence.

Agile methodologies also incorporate the notion of emergent

requirements.

Scrum and XP both acknowledge emergent requirements and design

intrinsically to incorporate the reality of incomplete and inadequate

information. A coarse-grained release plan/feature backlog

acknowledges lack of information without being cavalier in handling

risk, while accommodating discovered information in finer-grained

iteration plans/task backlogs.

Transition: Replace Predictive Planning with Adaptive

Planning

After one accepts that the perfect plan is a myth, how is one to plan

on agile projects? Agile practitioners are fond of invoking Dwight

Eisenhower in this regard, "Plans are useless, but planning is

indispensable." Adaptive planning is a way to accommodate uncertainty

in requirements, their level-of-effort estimates, and schedules that

may need to change in response.

With adaptive planning, a fine-grained or detailed schedule is

created only for an iteration at a time because tasks in the near

future are well-defined and have a lower level of uncertainty around

them. This concept is illustrated in Figure 10-3. Because tasks

beyond the near future are of higher uncertainty, schedules for

subsequent iterations are kept at a higher, coarse-grained level.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch10lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch10fig03

Figure 10-3. Adaptive Planning

This adaptive, progressive refinement of detailed work planning

recognizes that planning for the immediate future is easier, more

accurate, and more useful. As time progresses, more information is

collected and the level of uncertainty around estimates and schedules

decreases.

Transition: Use Release Plans Instead of Gantt Charts

Gantt charts are ubiquitous today in their use because of their

simplicity and widespread tool support. Originally developed by Henry

Gantt in the early 1900s, Gantt charts were used extensively on large

construction projects such as building dams, highways, and factories

from the 1920s. True Gantt charts began with the desired results and

worked backward as the means of determining what needed to be

accomplished to achieve those results. The required activities were

then laid out in relation to each other to engineer the desired

results. Therefore, although these projects were obviously complex,

from a planning perspective, they involved straightforward sequencing

and parallelizing of discrete tasks. In a sense, the original Gantt

chart was the perfect plan, because the results were known, as were

the tasks needed to accomplish them. On today's software development

projects, Gantt charts appear to have the structure of Henry Gantt's

originals, but they lack their content. Why is this so?

On agile projects, the desired system is continually evolving in

response to changing requirements and user needs. So, although the

general business outcomes are usually defined, the finer system

details rarely are. Until an iteration is undertaken, its detailed

tasks and activities are not known. This implies that Gantt charts,

if used at the task detail level, need to be continually reworked. To

make matters worse, iterative development also implies that the

output of some tasks will feed back into the input of others,

requiring further changes. On even a small project, a typical

(detailed) Gantt chart may consist of hundreds of tasks running into

tens of pages. If the purpose is to provide scheduling information,

maintenance of a Gantt chart thus represents an activity of severely

diminishing returns because of the need for constant rework. The

preferred alternative to a detailed Gantt chart on agile projects is

to use the feature-based structure as the basis for a release plan

(illustrated in Figure 10-4) that provides the required scheduling

information.

Figure 10-4. Release Plan

[View full size image]

http://safari.oreilly.com/bookImages/?0131240714/graphics/10fig04_alt.jpg;446951
http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/ch10lev1sec3&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#ch10fig04

Higher-value and higher-risk features (represented here by user

stories) are tackled in earlier iterations. Dependencies between

features are accommodated by the order in which they are implemented.

But what about the work of charting the dependencies between tasks

that forms such an involved part of creating a Gantt chart? The good

news is that in exchange for the independence you give team members

in choosing their work, they get the responsibility for determining

and handling dependencies between tasks. How can this work,

especially on larger projects?

It works because agile development and APM is more about information,

not tasks. Agile projects are about innovation, and innovation needs

feedback. Tasks are repeated as new information comes to light via

complex feedback loops. For instance, user stories are adjusted in

response to changing end-user requirements, and the software design

is modified appropriately. Daily activities are adjusted on-the-fly

in response to information shared in the daily stand-up meeting.

Refactoring is performed repeatedly to improve code clarity and

performance. Because information is shared among team members,

stakeholders, and end users all the time via so many agile practices,

the team has all the information it needs to determine micro-level

tasks and their dependencies (as well as to perform the requisite

work) without the need for the conventional dependency mapping of a

Gantt chart.

Transition: Stress Execution over Planning

In theory, traditional approaches have stressed project planning over

execution. In the literature, theoretical planning processes dominate

executing processes not just in number, but in content. In reality,

project managers have learned, by dint of hard work and real-life

experience, that all the plans in the world are not worth a fig

without execution. Reality also teaches that plans are increasingly

less useful when things are uncertain or constantly changing. With

APM, this impractical dichotomy ceases to exist.

Delivering business value is a core APM value that stresses execution

over planning. The Simple Rules practice is completely oriented

toward execution. Other practices also stress execution. Furthermore,

the Agile Manifesto reinforces that agile teams value working

products. However, with all this stress on execution, it is important

to note that planning is not ignored. In fact, adaptive planning is

done throughout the project to enable adjustments to changing

circumstances. Scenario planning is performed to prepare for multiple

contingencies. Possibly, agile teams perform more planning than

others, but it is real-time planning and heavily oriented toward

execution. How does this different focus affect you?

Agile managers need to perform "just enough" planning upfront. Your

responsibility will be to create upfront plans—project plan, release

plan, etc.—and then quickly lead your team into setting up iterative

and incremental delivery to execute the plan. During the normal

course of the project, you will execute iteration plans to deliver

working system increments every iteration. After every iteration, and

before you begin the next one, you will create another iteration

plan. Thus, your plans will always be fresh with regard to changing

information, and regular, frequent delivery will ensure that

execution maintains primacy.

Transition: Practice Time Pacing, Not Event Pacing

Scope-bound iterations are one of the major causes of missed

deadlines and scope creep. Consider a project that is beginning to

slip its dates toward the end of its delivery schedule. What is the

first thing that happens when it begins to falter? The delivery date

has to be moved—an action that has several ramifications. Crucial

data about project progress cannot be collected, just when it is

needed the most. Team motivation is affected because someone usually

needs to be blamed for the slippage. Managers begin to panic and put

pressure on programmers, causing them to make mistakes and deliver

poor-quality software. The confidence of business customers in their

technical partners' ability to deliver erodes just a bit. Now, how

about a project that is sailing along obliviously about halfway

through its delivery schedule? Because iterations are scope bound,

customers see no issues with adding on scope and allowing scope to

creep. After all, that slick feature needs to be developed "just

right," doesn't it? Smart programmers feel enthused to try out just

one of those cool new programming techniques. So what if it takes a

few extra days? This event pacing is reactive, lacks any sort of

momentum, and often involves late responses to crises.2 To counter

this, agile teams use time pacing instead of event pacing.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch10lev1sec6#ch10biblio01entry02

Time pacing, or time-bound iterations of equal length, represents a

different way of operation. On XP projects, with the common iteration

length of two weeks, all software life cycle activities need to be

stripped down to their bare essentials so that working increments of

the system can be delivered at the end of every two weeks. On Scrum

projects, the iteration (or sprint) length is a month. This time

pacing creates a routine of change due to the passage of time, not

events. This routine builds into a rhythm of software delivery that

literally enforces change, but does it in manageable chunks. It

forces tradeoffs and ensures that project teams are continuously

delivering business value. All in all, it forces entire teams to

deliver quickly and to stop and reflect on what they're doing to

adapt before proceeding any further.

As an agile manager, this aspect of project execution may seem

disarmingly simple to change to you. But beware—it requires

associated changes in almost everything you do on a project.

Customers (or their representatives) have to be ready to engage more

closely—providing user stories, clarifying doubts, and accepting

software increments every two weeks. Programmers need to stay closely

on track with implementing user stories and will not have much time

for extensive research, unless expressly sanctioned. The whole team

needs to be ready to iterate through the software development life

cycle, albeit at a micro level. So what exactly can you do to support

time-boxed iterations?

Your responsibility in this respect is to create a choreography to

manage the flow of work between people. An example is the "life of a

user story." When are user stories to be prepared so that they can be

ready for planning games? When will they be in possession of the

programming team? When are they to be acceptance tested by customers

or their representatives? What happens to them once implemented? You

need to work with your team to define and script each of these flows.

Transition: Practice Participatory, Not Authoritarian Decision

Making

Organizations today are replete with turf battles, inflated egos, and

power-balanced hierarchies. Besides being somewhat inherent to human

nature, these are aggravated by the mechanistic model. Because of the

scalar chain of command, decisions are more likely to be made by

individuals higher up on the totem pole without the input and

consultation of others who are likely to be affected by them. Because

of staff and line distinctions, staff personnel are not likely to be

involved in decisions made within the line hierarchy. This sort of

authoritarian decision making happens in isolation. Team members are

not consulted or kept informed until a decision is made. When a

decision is made, it is simply announced as an order and team members

are expected to obey it without question. Obviously, skilled self-

disciplined professionals will not tolerate authoritarian decision

making.

In sharp contrast, participatory decision making provides all those

affected by decisions with a say in the decision making process,

either through personal or representative participation.

Participatory decision making leverages the fact that most people are

more motivated to implement solutions with which they have had

creative involvement. They are more likely to be motivated to

implement their own ideas than they would be to implement ideas

imposed on them by others. Participatory decision making is part of

everyday life on an agile team. For instance, every morning at the

stand-up meeting or Scrum, each team member provides input on work,

progress, and issues. This ensures that everybody has a say in

decisions that are made in this meeting. Frequent project

retrospectives are held to make step back and reflect on things that

are working well and those that are not, and to make corresponding

changes. All team members participate in these retrospectives and

everyone present gets to have a say in the decisions that are made.

Your participatory decision-making responsibility involves

consultation with all affected team members, adequate discussion to

analyze and rank alternatives, and getting team members to indicate

their preferences and leading the team in making the decision.

Transition: Coordinate Work Execution Through

Commitments, Not Commands

Commanding via assigning tasks is usually taken as a project

manager's prerogative. After all, the reasoning goes, it is the

project manager who has the knowledge about what needs to happen

across the entire project. It is the project manager who created the

project plan, and therefore should be the one dictating who does

what. Then, there is the power angle—some project managers like to

tell people exactly what to do. But, top-down control can run into

problems when team members are more skilled than the project manager

at what they are doing. Also, in today's world, most people like to

have the option to do work of their own free will. If your team is

composed of junior, tentative members, they might welcome this style

of functioning. But, if you are trying to create self-organizing

teams of confident, self-disciplined professionals, this is

definitely not the way to go. In such cases, the language/action

perspective provides a means to accomplish work execution through

commitments. As covered in Chapter 7, "Open Information," you can

link language with action to generate transforming exchanges between

your team members. You can use conversations for action,

conversations for possibility, and conversations for disclosure to

manage your team's commitments.

Now, common sense dictates that there will always be exceptions to

this. For example, on some occasions, you might need to request team

members to do something specific and urgent. On others, you might

choose to gently overrule a junior team member. In extreme

situations, you may even need to force an errant team member to do

something for the greater good of the team. But, in general, if you

allow the team flexibility in choosing and accepting their work, you

can manage successfully through commitments instead of commands.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch07#ch07

Transition: Increase Personal Interactions, Especially Across

Organizational Stovepipes

APM views information as a catalyst for change and adaptation. On

agile teams, innovation and value are enabled through the open flow

of information caused by close personal interactions between all

project team members. Creativity is sparked through the regular

interaction between people with different skills and knowledge. When

business experts partner effectively with technical gurus and end

users, practical and innovative solutions result. In most

organizations, these multidisciplinary partnerships are rare.

Bureaucracy is usually the root cause of the scarcity of

multidisciplinary partnerships.

In bureaucratic organizations, organizational stovepipes of

specialized groups formed due to traditional division of labor drift

apart and usually end up isolated from each other. As an example, few

in the software development world have been lucky enough to escape

the bifurcations between teams of business specialists, teams of

programmers, and teams of testers.

Organizational stovepipes like these negatively impact communication

and cooperation and reduce the efficiency and innovation of the

organization as a whole. In such situations, project managers can end

up feeling helpless. But, increasing personal interactions across

stovepipes can cause constructive changes that have larger effects on

the larger organization.

To increase personal interactions, you need to look for opportunities

to maximize regular face-to-face communication between members of

specialized groups. For instance, collocating your technical team

with your business experts is one powerful way to maximize face-to-

face communication. Establishing regular usability reviews during

development with end-users is another. Finally, a good way to create

regular feedback cycles between specialized groups is to establish

multidisciplinary kaizen teams that generate and implement employee

process improvement ideas. Kaizen teams are voluntary teams that meet

regularly during normal work hours and identify, analyze, and

recommend solutions to work-related problems to management. For

example, on a recent large project with several development teams and

a dedicated configuration management team interested senior

programmers and system administrators formed a kaizen team to address

configuration management and automated build issues.

Principle 3: Institute Learning and Adaptation

Traditionally, projects have been controlled in thermostat fashion. A

baseline plan is created, and any changes or deviations from the

baseline are believed to merit corrective action. This form of

control engenders the necessity for a conformance-to-plan style to

control change. It is usually accompanied by an administrative

mindset toward team leadership. Agile projects, in contrast, employ

decentralized control (as seen in Chapter 8, "Light Touch") that

accommodates double-loop learning and adaptive action in iterative

cycles (as seen in Chapter 9, "Adaptive Leadership"). This form of

control creates the necessity for an experimental test, learn, and

adapt style required to both embrace and manage change. It also needs

to be accompanied by an influencing mindset toward team leadership.

To adopt this style and institute learning and adaptation, you need

to affect these transitions: Respond to change with adaptive, not

corrective action; move from lessons learned to project reflections;

and lead through presence, not power.

Transition: Respond to Change with Adaptive, Not Corrective

Action

To control change, traditional management prescribes corrective

action to ensure that products and project performance adhere or

conform to product requirements and the project plan. The downfall of

this approach is that when change occurs in business situations, the

project environment or even desired outcomes, managers voluntarily

choose to conform to outdated and irrelevant artifacts. When they do

this, they lose the opportunity to chart alternative routes to the

ultimate goal of the project—some form of business value.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch09#ch09
http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch08#ch08

Underneath this approach is the driving assumption that change is

essentially a dangerous thing because of its potential ramifications

on scope, cost, and schedule. Certainly, uncontrolled and mindless

change will drive projects to disaster by quickly melting the "iron

triangle." But, in dynamic and turbulent environments, adapting to

change is a critical necessity. In these environments, change is

simultaneously dangerous and beneficial. Danger arises from fighting

change and attempting to control it. However, adapting to change with

a test, learn, and adapt scientific experimentation-like approach is

the best way to benefit from change.

To manage and benefit from change, ensure that you are always

delivering business value. For example, always be willing to accept

change requests from your customers, even late in the project to keep

value flowing to them. In XP, tradeoffs to accommodate such change

requests are regularly conducted every iteration at the beginning of

the planning game. This implies that you need to transition to the

agile approach of responding to change with adaptive action instead

of corrective action to ensure a continuous flow of business value.

Transition: Move from Lessons Learned to Project Reflections

Conventionally, the lesson learned practice captures information from

projects at the end of the project with the goal of improving future

projects. Project factors such as successes and failures and their

associated reasons, unplanned risks and their impacts, and corrective

actions and their reasons are documented. The resulting lessons

learned document contains extremely valuable information. It is too

bad that it arrives too late to be of any use in the current project!

Wouldn't it be wonderful if these lessons were available in real time

to actually help adjust processes and immediately respond to the

situations from which they arose? Holding project reflections is a

good way to do this.

As described in Chapter 9, project reflections are a collaborative

form of constructing lessons learned throughout a project. In a

project reflection, everyone on the team responds to a few simple

questions:

• What's working well?
• What can we improve?

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch09#ch09

• What are some obstacles or issues facing the team?

By answering these questions, everyone contributes to the

effectiveness of future projects. To transition to a more agile

style, hold reflections every few iterations. The benefit of having

several reflections while a project is underway instead of a single

lessons learned at its end is straightforward—lessons learned can

immediately be put to use through adaptive action. You can make finer

project and process adaptations based on the information that

surfaces in the project reflections, adjusting and adapting your

management of the project in real time.

Transition: Lead Through Presence, Not Power

Management's main purpose is to deal with complexity. It emphasizes

rationality and control to bring discipline and order to complex

business environments. On the other hand, leadership's main purpose

is to deal with change. Project managers are supposed to act as

managers to deal with complexity and as leaders seek to inspire and

influence team members to deliver value. By any measure, this is a

tough balancing act not aided in the least by the fact that

traditional management is understated on the subject of project

leadership. We know much more about management than we do about

leadership.

We have clear guidelines and techniques to create work breakdown

structures and Gantt charts, how to track, monitor, and report

project progress, and so on. But we do not have clear guidelines to

inspire and motivate individuals on a team, to help jell them into

high-performance units, or to deal with team conflict when it arises.

Traditional discussions of leadership are limited to ways of using

power in some form to convince team members to do things in specific

ways. These methods fall short because they focus exclusively on the

external imposition of power. The reality is that project managers

only have power invoked on behalf of sponsors, customers, or other

management stakeholders. There is no question that there are severe

limits to this power, especially as a force for motivating and

directing skilled individuals on a team. With these limits in mind,

how are agile managers to lead the team, especially after ceding

command-and-control power to self- organizing teams?

The answer lies in cultivating a leadership presence that enables you

to connect authentically with others in such a way that they are

willing to trust and follow you in achieving a desired outcome. As

described in Chapter 9, rather than attempting to impose control

through power, you need to transition by embodying leadership that

quickly builds trust and enables collaboration.

Summary

The key to dealing with the fundamental differences between plan-

driven management and APM lies in the interpretation of underlying

values and principles. APM's values and principles influence the

adaptation of practices to different project situations and

environments. To correctly interpret APM values and guiding

principles, project managers need to consider specific transitions

related to the three APM guiding principles: Foster alignment and

cooperation, encourage emergence and self-organization, and institute

learning and adaptation.

The transitions required to foster alignment and cooperation are to

recognize that people are the longer-term project; use the organic

CAS model for stability and flexibility; replace software engineering

with software craftsmanship; focus on project context, not content;

and use feature breakdown structures instead of work breakdown

structures.

Transitions to encourage emergence and self-organization are to

acknowledge that the perfect plan is a myth; replace predictive

planning with adaptive planning; use release plans instead of task

Gantt charts; stress execution over planning; practice time pacing,

not event pacing; practice participatory, not authoritarian decision

making; coordinate work execution through commitments, not commands;

and increase personal interactions, especially organizational

stovepipes.

Finally, the necessary transitions to institute learning and

adaptation are to respond to change with adaptive, not corrective

action; move from lessons learned to project reflections; and lead

through presence, not power.

http://safari.oreilly.com/JVXSL.asp?xmlid=0131240714/ch09#ch09

References

1. Thomsett, Rob . Radical Project Management. Prentice Hall PTR,

2002.

2. Eisenhardt, Kathleen M., and Shona L. Brown . Competing on the

Edge: Strategy as Structured Chaos. Harvard Business School Press,

1998.

Afterword

Agile methodologies continue to grow in popularity all over the

world. eXtreme Programming and Scrum seem to have the largest number

of adherents, although the communities that devotedly practice

Crystal, Feature Driven Development, and other agile methodologies

are also growing. As the agile phenomenon continues to spread and the

number of agile projects grows, the need for Agile Project Management

(APM) will become even more critical. As more managers adopt APM,

they need a touchstone of underlying values to inspire and calibrate

their efforts. With this concern in mind, several of us who have been

actively writing about and advocating for APM came together in

February 2005 and co-authored "The Declaration of Inter-Dependence

(DOI) for Agile and Adaptive Management." (The terms Agile and

Adaptive are not final at this point.)

The Declaration of Inter-Dependence for Agile and Adaptive

Management

Similar to the Agile Manifesto meeting of 2001, a group of managers,

authors, consultants, and team members from different project and

product domains met in Redmond, Washington, in February 2005, to

discover our common ground with respect to Agile and Adaptive

Management. Six core values emerged from our collaboration. Together

they form what we have titled "The Declaration of Inter-Dependence

(DOI) for Agile and Adaptive Management":

• We increase return on investment by making continuous flow of

value our focus.
• We deliver reliable results by engaging customers in frequent

interactions and shared ownership.
• We expect uncertainty and manage for it through iterations,

anticipation, and adaptation.
• We unleash creativity and innovation by recognizing that

individuals are the ultimate source of value, and creating an

environment where they can make a difference.
• We boost performance through group accountability for results

and shared responsibility for team effectiveness.
• We improve effectiveness and reliability through situationally

specific strategies, processes, and practices.

©2005 David Anderson, Sanjiv Augustine, Christopher Avery, Alistair

Cockburn, Mike Cohn, Doug DeCarlo, Donna Fitzgerald, Jim Highsmith,

Ole Jepsen, Lowell Lindstrom, Todd Little, Kent MacDonald, Polyanna

Pixton, Preston Smith, and Robert Wysocki

This declaration represents a tremendous level of consensus on and

closure regarding the values therein. However, the terms agile and

adaptive have not been finalized; although, right now, we do believe

they describe this management paradigm. What does the DOI mean to you

as an APM practitioner? How do the DOI values relate to the APM

practices presented thus far?

Mapping the DOI to APM

Coincidentally, the DOI has six values that map closely to the six

APM practices covered in this book. Although not all activities

within each APM practice correspond specifically to a DOI value,

several activities are related, as indicated in Table A-1. In

general, a close correspondence exists between APM practices and DOI

values.

http://safari.oreilly.com/JVXSL.asp?x=1&mode=section&sortKey=publishingdate&sortOrder=desc&view=book&xmlid=0131240714/art01lev1sec2&g=&srchText=cmm&code=&h=&m=&l=1&catid=&s=1&b=1&f=1&t=1&c=1&u=1&r=&o=1&n=1&d=1&p=1&a=0&page=0#art01table01

Table A-1. Mapping APM to DOI Values

APM PRACTICE DOI VALUE RELATED ACTIVITIES

Organic

Teams

Boost performance through group

accountability for results and

shared responsibility for team

effectiveness.

• Design a

holographic

formal

structure

• Get self-

disciplined

team players

• Identify the

project

community

Guiding

Vision

Deliver reliable results by

engaging customers in frequent

interactions and shared ownership

• Design a vision

box

• Create and

maintain shared

expectations

• Clearly

delineate scope

Simple Rules Improve effectiveness and

reliability through situationally

specific strategies, processes,

and practices

• Assess the

status quo

• Customize

methodology

Open

Information

Increase return on investment

(ROI) by making continuous flow

of value the focus

• Map the

project's value

stream

• Conduct a

standup meeting

daily

• Link language

with action

Light Touch Unleash creativity and innovation

by recognizing that individuals

• Decentralize

control

Table A-1. Mapping APM to DOI Values

APM PRACTICE DOI VALUE RELATED ACTIVITIES

are the ultimate source of value

and by creating an environment in

which they can make a difference

• Establish a

pull task

management

system

• Maintain

quality of work

life

Adaptive

Leadership

Manage uncertainty through

iterations, anticipation, and

adaptation

• Conduct

scenario

planning

• Practice

embodied

learning

The somewhat serendipitous correspondences here can help you

understand and realize the DOI values on your projects as you

practice APM. Good luck!

The Agile Manager's Role and Responsibilities

AGILE PROJECT MANAGEMENT

APM PRACTICE LEADERSHIP MANAGEMENT

Guiding Principle 1: Foster Alignment and Cooperation

Organic Teams • Promote software

craftsmanship

• Foster team

collaboration
• Form a guiding

coalition

• Identify the project

community

• Design a holographic

formal structure
• Get self-disciplined

The Agile Manager's Role and Responsibilities

AGILE PROJECT MANAGEMENT

APM PRACTICE LEADERSHIP MANAGEMENT

• Cultivate informal

communities of

practice

team players

• Propose an adaptive IT

enterprise

Guiding

Vision

• Evolve a team

vision

• Align the team
• Envision a bold

future

• Create and maintain

shared expectations

• Discover business

outcomes

• Clearly delineate scope
• Estimate level of

effort
• Design a vision box

• Develop an elevator

statement

Guiding Principle 2: Encourage Emergence and Self-Organization

Simple Rules • Enlist the team for

change

• Focus on business

value

• Assess the status quo

• Customize methodology
• Develop a release

plan/feature backlog
• Develop iteration

plans/task backlogs
• Facilitate software

design, code, test and

deployment
• Conduct acceptance

testing

• Manage the software

release

Open

Information

• Conduct a standup

meeting daily

• Encourage feedback

• Collocate team members

• Negotiate a customer

representative on site
• Practice pairing

The Agile Manager's Role and Responsibilities

AGILE PROJECT MANAGEMENT

APM PRACTICE LEADERSHIP MANAGEMENT

• Build trust

• Link language with

action

• Encourage the use of

information radiators

• Map the project's value

stream

Light Touch • Fit your style to

the situation

• Support roving

leadership
• Learn to go with

the flow
• Maintain quality of

work life
• Build on personal

strengths

• Manage commitments

through personal

interactions

• Decentralize control

• Establish a pull task

management system
• Manage the flow

• Use action sprints

Guiding Principle 3: Institute Learning and Adaptation

Adaptive

Leadership

• Cultivate an

embodied presence

• Practice embodied

learning

• Get plus-delta feedback

daily

• Monitor and adapt the

Simple Rules
• Monitor the APM

practices
• Conduct regular project

reflections

• Conduct scenario

planning

	Praise for Managing Agile Projects
	Robert C. Martin Series
	About the Author
	Foreword
	Foreword
	Acknowledgments
	Preface
	Introduction
	Other Resources

	Prelude: Project Phoenix[*]—An APM Fable of Revival and Renewal
	Part I Crash and Burn: The Familiar Road to Failure
	Launch
	Management

	Three Months
	Management

	Six Months
	Management

	Nine–Twelve Months
	Management

	Fifteen Months
	Management

	Part II Rising from the Ashes: Revival and Renewal
	Month One
	Organic Teams Are Set Up to Maximize Multidisciplinary Information Exchange
	The Guiding Vision Is Created Through Release Planning
	Simple Rules Are Established as the Basis for Complex, Adaptive Behavior
	Information Is Opened Up to All to Facilitate Change and Adaptation
	Light Touch Management Is Instituted to Provide Autonomy to Team Members
	Adaptive Leadership Is Practiced to Tune the Approach Among Tremendous Change
	Postscript: A Glimmer of Hope Is Seen

	Month Two
	Organic Teams Prove an Excellent Vehicle for the Implementation of Simple Rules
	Guiding Vision Is Reinforced Through the Release Plan and Information Radiators
	Some Simple Rules are being neglected. They need to be reinforced
	Open Information fosters self-organization
	Light Touch allows the team to absorb a major change dictated by executive management
	Adaptive Leadership prevents an errant manager from hijacking the project
	Adaptive Leadership reduces meeting overload
	Postscript: The teams make visible improvements and measurable progress

	Month Three
	The Organic Teams change membership dynamically to tackle a code merge
	Senior Management assumes the burden for Guiding Vision from diffident executive management
	The implementation of Simple Rules has improved because of brown-bag training sessions
	Simple Rules generate a complex iteration heartbeat
	People Have Grown to Trust Each Other Because of Open Information
	Light Touch Management Empowers the XP Coach to Make a Key Decision Affecting the Implementation of the Code Merge
	Managers Practice Adaptive Leadership and Tune Simple Rules to Adjust to the Project Environment
	Postscript

	Month Four
	The Teams Act in Alignment to Refine the Guiding Vision
	Managers Apply Adaptive Leadership to Resolve Snags on the Organic Teams
	Analysts Practice Open Information and Share Their Problems; Simple Rules Are Tuned in Response
	Light Touch Management Allows a DBA and a Release Manager to Be Self-Selected by the Teams
	A Senior Manager Practices Adaptive Leadership to Head Off a Late-Breaking Crisis
	Postscript

	Month Five
	An Availability Test for Production Is Rapidly Conceptualized, Planned, and Implemented Because of Open Information and Adaptive Leadership

	What Is Agility?

	Agile Methodology Basics
	Table 1-1. Manifesto for Agile Software Development
	What Is Agile Project Management?

	Complex Adaptive Systems
	Figure 1-1. Projects as Complex Adaptive Systems
	APM Principles
	APM Practices
	Summary
	Reference

	Chapter 2. The Agile Manager
	What Is the Agile Manager's Role?
	Table 2-1. The Agile Manager's Role and Responsibilities
	Leadership or Management—What Does It Take?
	Figure 2.1. Leadership and Management (Adapted from Bellinger 20041)

	Shared Responsibilities
	Table 2-2. Shared Management Responsibilities

	Other Management Roles

	The Agile Manager's Profile
	Personal Values
	Leadership Skills—Dealing with Change

	Agile Managers Aspire to Transformational Leadership
	Management Skills—Dealing with Complexity
	References
	Activities
	Table 3-1. Establishing Organic Teams: The Agile Manager's Leadership and Management Responsibilities

	Formal Team Structure
	The Organic Complex Adaptive Systems Model
	Table 3-2. Tracing the CAS Model to the Organic Model
	Figure 3-1. Example Agile Team Organization
	Figure 3-2. The Dual Nature of Organizations

	Activity: Identify the Project Community
	Figure 3-3. Stakeholder Map

	Activity: Design a Holographic Formal Structure

	The Brain as a Holographic System
	Flexible Fractal Team Structure
	Figure 3-4. Fractal Team Structure

	The Fractal Structure at W.L. Gore and Associates
	Figure 3-5. Dynamic Membership on Organic Teams
	Diversified Roles on Holistic Teams
	Table 3-3. Sample Diversified Roles and Responsibilities
	Team Vision and Culture as Memes
	Figure 3-6. Meme Image
	Networked Intelligence
	Redundancy of Functions
	Minimum Specification
	Iterative Design
	Benefits of the Holographic Structure
	Table 3-4. Benefits of the Holographic Structure
	Activity: Get Self-Disciplined Team Players
	Summary
	References

	Chapter 4. Organic Teams—Part 2
	Activities
	Table 4-1. Establishing Organic Teams: The Agile Manager's Leadership and Management Responsibilities

	Team Practices
	Activity: Promote Software Craftsmanship
	Activity: Foster Team Collaboration
	Balance of Power

	Characteristics of Agile Teams
	Customer Collaboration
	Participatory Decision Making
	Enterprise Integration
	Activity: Form a Guiding Coalition
	Activity: Cultivate Informal Communities of Practice
	Table 4-2. Features of Communities of Practice and Their Agile Team Manifestations

	Activity: Propose an Adaptive IT Enterprise
	Figure 4-1. Dedicated IT Enterprise
	Figure 4-2. Matrixed IT Enterprise
	Figure 4-3. Adaptive IT Enterprise

	Summary
	References

	Chapter 5. Guiding Vision
	Figure 5-1. Guiding Vision as a Shared Mental Model
	Activities
	Table 5-1. Establishing the Guiding Vision: The Agile Manager's Leadership and Management Responsibilities

	Team Vision

	Evolving Team Vision at CC Pace
	Activity: Evolve a Team Vision
	Table 5-2. Agile Principles as Guidelines for a Basic Team Vision

	Activity: Align the Team
	Discover Individual Aspirations
	Engage the Team
	Request Commitment to the Team Vision
	Steward the Team Vision

	Project Vision
	Activity: Envision a Bold Future
	Activity: Create and Maintain Shared Expectations
	Clarify Roles and Responsibilities
	Agree on Appropriate Service Criteria
	Communicate Change Continuously

	Communicating Clearly and Consistently
	Communicate Clearly and Consistently
	Define Shared Success Criteria
	Figure 5-2. Project Sliders (Source: The Thomsett Company)
	Activity: Discover Business Outcomes
	Stakeholder Responsibility
	Self-Regulating Behavior
	Learning and Adaptation
	Table 5-3. Outcomes/Assumptions Checklist
	Table 5-4. Outcomes Test Plan

	Activity: Clearly Delineate Scope
	Figure 5-3. Sample Scope/Objectives (Adapted from Rob Thomsett's Scope/Objectives Model)

	Activity: Estimate Project Effort
	Product Vision
	Activity: Design a Vision Box
	Figure 5-4. A Sample Product Vision Box

	Activity: Develop an Elevator Statement

	Summary
	References
	Activities
	Table 6-1. Establishing Simple Rules: The Agile Manager's Responsibilities

	Customizing the Rules to the Environment
	Activity: Assess the Status Quo
	Figure 6-1. Organizational Profile (Source: Adapted from Images of Organization by Gareth Morgan)

	Activity: Customize Methodology

	XP Practices in a Nutshell
	Scenario 1: Time-to-Value
	Figure 6-2. Scenario 1 Organization's Profile
	Table 6-2. The "Time-to-Value" Project's Simple Rules
	Scenario 2: Recovery and Stabilization
	Figure 6-3. Scenario 1 Organization's Profile
	Table 6-3. The "Recovery and Stabilization" Project's Simple Rules
	Activity: Enlist the Team for Change
	Figure 6-4. Force Field Diagram

	Implementing the Rules
	Figure 6-5. Implementing XP as Simple Rules
	Activity: Develop a Release Plan/Feature Backlog
	Figure 6-6. Progressive Elaboration and Incremental Development

	User Stories
	Figure 6-7. Sample Release Plan
	Activity: Develop Iteration Plans/Task Backlogs
	Figure 6-8. Sample Iteration Plan

	Methodology Madness—Things to Avoid
	Activity: Facilitate Software Design, Coding, Testing, and Deployment
	Conduct an Infrastructure/Application Spike
	Develop Code Using XP Development Practices
	Deploy Code Using Continuous Integration
	Track Project Velocity
	Figure 6-9. Tracking Project Velocity

	Activity: Conduct Acceptance Testing
	Activity: Manage the Software Release
	Activity: Focus On Business Value
	Summary
	Reference

	Chapter 7. Open Information
	Information Cycle Time
	Activity: Map the Project's Value Stream
	Figure 7-3. Sample Value Stream Map

	Transforming Exchanges
	Activity: Encourage Feedback
	Activity: Build Trust
	Activity: Link Language with Action
	Conversations for Action
	Figure 7-4. Basic Conversation for Action

	Conversation for Action Example
	Conversations for Possibility
	Conversations for Disclosure

	Script for Delivering Assessments
	Summary
	References

	Chapter 8. Light Touch
	Activities
	Table 8-1. Establishing Light Touch: The Agile Manager's Responsibilities

	Intelligent Control
	Activity: Decentralize Control
	Figure 8-1. Example of Decentralized Control with Multiple Control Levels

	Activity: Establish a Pull Task Management System
	Figure 8-2. Pull Task Management System on an Agile Team

	A Volunteer Pull Task Management System
	Figure 8-3. "Job Jar" Pull Task Management System
	Figure 8-4. "Job Jar" Detail
	Activity: Manage the Flow
	Use Action Sprints
	Activity: Fit Your Style to the Situation
	Activity: Support Roving Leadership
	Activity: Learn to Go with the Flow
	Whole-Person Recognition
	Activity: Maintain Quality of Work Life
	Table 8-2. Centralized Responsibility versus Individual Responsibility

	Activity: Build on Personal Strengths
	Activity: Manage Commitments Through Personal Interactions

	Summary
	References

	Chapter 9. Adaptive Leadership
	Activities
	Table 9-1. Adaptive Leadership: The Agile Manager's Responsibilities

	Double-Loop Learning
	Figure 9-1. Single-Loop Learning on an Agile Team
	Figure 9-2. Double-Loop Learning
	Activity: Get Plus-Delta Feedback Daily
	Figure 9-3. Visual Feedback via the Plus-Delta Tool

	Activity: Monitor and Adapt the Simple Rules
	Figure 9-4. Credit Assignment of XP Rules

	Activity: Monitor the APM Practices
	Table 9-2. Monitoring the Organic Teams Practice (Continued)
	Table 9-3. Monitoring the Guiding Vision Practice
	Table 9-4. Monitoring the Simple Rules Practice
	Table 9-5. Monitoring the Open Information Practice
	Table 9-6. Monitoring the Light Touch Practice
	Table 9-7. Monitoring the Adaptive Leadership Practice

	Activity: Conduct Regular Project Reflections
	Activity: Conduct Scenario Planning
	Figure 9-5. Scenarios in Different Possible Futures
	Figure 9-6. Sample Iteration-Level Scenario Plan

	Embodied Leadership
	Activity: Cultivate an Embodied Presence
	Activity: Practice Embodied Learning

	Summary

	Chapter 10. Transitioning from the Familiar
	Transitions
	Table 10-1. Transitioning to APM from familiar Plan-Driven Management

	Principle 1: Foster Alignment and Cooperation
	Transition: Recognize That People Are the Longer-Term Project
	Transition: Use the Organic CAS Model for Stability and Flexibility
	Table 10-2. Comparing the Mechanistic and Organic CAS Models

	Transition: Replace Software Engineering with Software Craftsmanship
	Transition: Focus on Project Context, Not Content
	Transition: Use Feature Breakdown Structures Instead of Work Breakdown Structures
	Figure 10-1. Traditional Work Breakdown Structure
	Figure 10-2. Feature Breakdown Structure

	Principle 2: Encourage Emergence and Self-Organization
	Transition: Acknowledge That the Perfect Plan Is a Myth
	Transition: Replace Predictive Planning with Adaptive Planning
	Figure 10-3. Adaptive Planning

	Transition: Use Release Plans Instead of Gantt Charts
	Figure 10-4. Release Plan

	Transition: Stress Execution over Planning
	Transition: Practice Time Pacing, Not Event Pacing
	Transition: Practice Participatory, Not Authoritarian Decision Making
	Transition: Coordinate Work Execution Through Commitments, Not Commands
	Transition: Increase Personal Interactions, Especially Across Organizational Stovepipes

	Principle 3: Institute Learning and Adaptation
	Transition: Respond to Change with Adaptive, Not Corrective Action
	Transition: Move from Lessons Learned to Project Reflections
	Transition: Lead Through Presence, Not Power

	Summary
	References

	Afterword
	The Declaration of Inter-Dependence for Agile and Adaptive Management
	Mapping the DOI to APM
	Table A-1. Mapping APM to DOI Values
	The Agile Manager's Role and Responsibilities

