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Chapter One

Complex Numbers

1.1 Introduction. Let us hark back to the first grade when the only numbers you knew
were the ordinary everyday integers. You had no trouble solving problems in which you
were, for instance, asked to find a number x such that 3x  6. You were quick to answer
”2”. Then, in the second grade, Miss Holt asked you to find a number x such that 3x  8.
You were stumped—there was no such ”number”! You perhaps explained to Miss Holt that
32  6 and 33  9, and since 8 is between 6 and 9, you would somehow need a number
between 2 and 3, but there isn’t any such number. Thus were you introduced to ”fractions.”

These fractions, or rational numbers, were defined by Miss Holt to be ordered pairs of
integers—thus, for instance, 8,3 is a rational number. Two rational numbers n,m and
p,q were defined to be equal whenever nq  pm. (More precisely, in other words, a
rational number is an equivalence class of ordered pairs, etc.) Recall that the arithmetic of
these pairs was then introduced: the sum of n,m and p,q was defined by

n,m  p,q  nq  pm,mq,

and the product by

n,mp,q  np,mq.

Subtraction and division were defined, as usual, simply as the inverses of the two
operations.

In the second grade, you probably felt at first like you had thrown away the familiar
integers and were starting over. But no. You noticed that n, 1  p, 1  n  p, 1 and
also n, 1p, 1  np, 1. Thus the set of all rational numbers whose second coordinate is
one behave just like the integers. If we simply abbreviate the rational number n, 1 by n,
there is absolutely no danger of confusion: 2  3  5 stands for 2,1  3,1  5,1. The
equation 3x  8 that started this all may then be interpreted as shorthand for the equation
3,1u,v  8,1, and one easily verifies that x  u,v  8,3 is a solution. Now, if
someone runs at you in the night and hands you a note with 5 written on it, you do not
know whether this is simply the integer 5 or whether it is shorthand for the rational number
5,1. What we see is that it really doesn’t matter. What we have ”really” done is
expanded the collection of integers to the collection of rational numbers. In other words,
we can think of the set of all rational numbers as including the integers–they are simply the
rationals with second coordinate 1.

One last observation about rational numbers. It is, as everyone must know, traditional to
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write the ordered pair n,m as n
m . Thus n stands simply for the rational number n

1 , etc.

Now why have we spent this time on something everyone learned in the second grade?
Because this is almost a paradigm for what we do in constructing or defining the so-called
complex numbers. Watch.

Euclid showed us there is no rational solution to the equation x2  2. We were thus led to
defining even more new numbers, the so-called real numbers, which, of course, include the
rationals. This is hard, and you likely did not see it done in elementary school, but we shall
assume you know all about it and move along to the equation x2  1. Now we define
complex numbers. These are simply ordered pairs x,y of real numbers, just as the
rationals are ordered pairs of integers. Two complex numbers are equal only when there
are actually the same–that is x,y  u,v precisely when x  u and y  v. We define the
sum and product of two complex numbers:

x,y  u,v  x  u,y  v

and
x,yu,v  xu  yv,xv  yu

As always, subtraction and division are the inverses of these operations.

Now let’s consider the arithmetic of the complex numbers with second coordinate 0:

x, 0  u, 0  x  u, 0,

and
x, 0u, 0  xu, 0.

Note that what happens is completely analogous to what happens with rationals with
second coordinate 1. We simply use x as an abbreviation for x, 0 and there is no danger of
confusion: x  u is short-hand for x, 0  u, 0  x  u, 0 and xu is short-hand for
x, 0u, 0. We see that our new complex numbers include a copy of the real numbers, just
as the rational numbers include a copy of the integers.

Next, notice that xu,v  u,vx  x, 0u,v  xu,xv. Now then, any complex number
z  x,y may be written
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z  x,y  x, 0  0,y
 x  y0,1

When we let   0,1, then we have

z  x,y  x  y

Now, suppose z  x,y  x  y and w  u,v  u  v. Then we have

zw  x  yu  v
 xu  xv  yu  2yv

We need only see what 2 is: 2  0,10,1  1,0, and we have agreed that we can
safely abbreviate 1,0 as 1. Thus, 2  1, and so

zw  xu  yv  xv  yu

and we have reduced the fairly complicated definition of complex arithmetic simply to
ordinary real arithmetic together with the fact that 2  1.

Let’s take a look at division–the inverse of multiplication. Thus z
w stands for that complex

number you must multiply w by in order to get z . An example:

z
w  x  y

u  v  x  y
u  v 

u  v
u  v

 xu  yv  yu  xv
u2  v2

 xu  yv
u2  v2

  yu  xv
u2  v2

Note this is just fine except when u2  v2  0; that is, when u  v  0. We may thus divide
by any complex number except 0  0,0.

One final note in all this. Almost everyone in the world except an electrical engineer uses
the letter i to denote the complex number we have called . We shall accordingly use i
rather than  to stand for the number 0,1.

Exercises
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1. Find the following complex numbers in the form x  iy:
a) 4  7i2  3i b) 1  i3

b) 52i
1i c) 1

i

2. Find all complex z  x,y such that
z2  z  1  0

3. Prove that if wz  0, then w  0 or z  0.

1.2. Geometry. We now have this collection of all ordered pairs of real numbers, and so
there is an uncontrollable urge to plot them on the usual coordinate axes. We see at once
then there is a one-to-one correspondence between the complex numbers and the points in
the plane. In the usual way, we can think of the sum of two complex numbers, the point in
the plane corresponding to z  w is the diagonal of the parallelogram having z and w as
sides:

We shall postpone until the next section the geometric interpretation of the product of two
complex numbers.

The modulus of a complex number z  x  iy is defined to be the nonnegative real number
x2  y2 , which is, of course, the length of the vector interpretation of z. This modulus is
traditionally denoted |z|, and is sometimes called the length of z. Note that
|x, 0|  x2  |x|, and so || is an excellent choice of notation for the modulus.

The conjugate z of a complex number z  x  iy is defined by z  x  iy. Thus |z|2  z z .
Geometrically, the conjugate of z is simply the reflection of z in the horizontal axis:
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Observe that if z  x  iy and w  u  iv, then

z  w  x  u  iy  v
 x  iy  u  iv
 z  w.

In other words, the conjugate of the sum is the sum of the conjugates. It is also true that
zw  z w. If z  x  iy, then x is called the real part of z, and y is called the imaginary
part of z. These are usually denoted Re z and Im z, respectively. Observe then that
z  z  2Re z and z  z  2Im z.

Now, for any two complex numbers z and w consider

|z  w|2  z  wz  w  z  w z  w
 z z  w z  wz  ww
 |z|2  2Rew z   |w|2

 |z|2  2|z||w|  |w|2  |z|  |w|2

In other words,

|z  w|  |z|  |w|
the so-called triangle inequality. (This inequality is an obvious geometric fact–can you
guess why it is called the triangle inequality?)

Exercises

4. a)Prove that for any two complex numbers, zw  z w.
b)Prove that  zw   z

w .
c)Prove that ||z|  |w||  |z  w|.

5. Prove that |zw|  |z||w| and that | zw | 
|z|
|w | .
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6. Sketch the set of points satisfying
a) |z  2  3i|  2 b)|z  2i|  1
c) Re z  i  4 d) |z  1  2i|  |z  3  i|
e)|z  1|  |z  1|  4 f) |z  1|  |z  1|  4

1.3. Polar coordinates. Now let’s look at polar coordinates r, of complex numbers.
Then we may write z  rcos  i sin. In complex analysis, we do not allow r to be
negative; thus r is simply the modulus of z. The number  is called an argument of z, and
there are, of course, many different possibilities for . Thus a complex numbers has an
infinite number of arguments, any two of which differ by an integral multiple of 2. We
usually write   arg z. The principal argument of z is the unique argument that lies on
the interval ,.

Example. For 1  i, we have

1  i  2 cos 7
4  i sin 7

4 

 2 cos  4  i sin  4 

 2 cos 399
4  i sin 399

4 

etc., etc., etc. Each of the numbers 7
4 , 


4 , and

399
4 is an argument of 1  i, but the

principal argument is  
4 .

Suppose z  rcos  i sin and w  scos  i sin. Then
zw  rcos  i sinscos  i sin

 rscoscos  sin sin  isincos  sincos
 rscos    i sin  

We have the nice result that the product of two complex numbers is the complex number
whose modulus is the product of the moduli of the two factors and an argument is the sum
of arguments of the factors. A picture:
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We now define expi, or ei by
ei  cos  i sin

We shall see later as the drama of the term unfolds that this very suggestive notation is an
excellent choice. Now, we have in polar form

z  rei,

where r  |z| and  is any argument of z. Observe we have just shown that

eiei  ei.

It follows from this that eiei  1. Thus

1
ei

 ei

It is easy to see that

z
w  rei

sei
 r
s cos    i sin  

Exercises

7. Write in polar form rei:
a) i b) 1  i
c) 2 d) 3i
e) 3  3i

8.Write in rectangular form—no decimal approximations, no trig functions:
a) 2ei3 b) ei100
c) 10ei/6 d) 2 ei5/4

9. a) Find a polar form of 1  i1  i 3 .
b) Use the result of a) to find cos 7

12 and sin 7
12 .

10. Find the rectangular form of 1  i100.
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11. Find all z such that z3  1. (Again, rectangular form, no trig functions.)

12. Find all z such that z4  16i. (Rectangular form, etc.)
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Chapter Two

Complex Functions

2.1. Functions of a real variable. A function  : I  C from a set I of reals into the
complex numbers C is actually a familiar concept from elementary calculus. It is simply a
function from a subset of the reals into the plane, what we sometimes call a vector-valued
function. Assuming the function  is nice, it provides a vector, or parametric, description
of a curve. Thus, the set of all t : t  eit  cos t  i sin t  cos t, sin t, 0  t  2
is the circle of radius one, centered at the origin.

We also already know about the derivatives of such functions. If t  xt  iyt, then
the derivative of  is simply  t  x t  iy t, interpreted as a vector in the plane, it is
tangent to the curve described by  at the point t.

Example. Let t  t  it2, 1  t  1. One easily sees that this function describes that
part of the curve y  x2 between x  1 and x  1:

0

1

-1 -0.5 0.5 1x

Another example. Suppose there is a body of mass M ”fixed” at the origin–perhaps the
sun–and there is a body of mass m which is free to move–perhaps a planet. Let the location
of this second body at time t be given by the complex-valued function zt. We assume the
only force on this mass is the gravitational force of the fixed body. This force f is thus

f  GMm
|zt|2

 zt
|zt|

where G is the universal gravitational constant. Sir Isaac Newton tells us that

mzt  f  GMm
|zt|2

 zt
|zt|
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Hence,

z   GM
|z|3

z

Next, let’s write this in polar form, z  rei:

d2
dt2 

rei   kr2
ei

where we have written GM  k. Now, let’s see what we have.

d
dt re

i  r ddt e
i   drdt e

i

Now,

d
dt e

i   d
dt cos  i sin

  sin  icos ddt
 icos  i sin ddt
 i ddt e

i.

(Additional evidence that our notation ei  cos  i sin is reasonable.)
Thus,

d
dt re

i  r ddt e
i   drdt e

i

 r i ddt e
i  drdt e

i

 dr
dt  ir

d
dt ei.

Now,
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d2
dt2 

rei  d2r
dt2

 i drdt
d
dt  ir

d2
dt2

ei 

dr
dt  ir

d
dt i ddt e

i

 d2r
dt2

 r d
dt

2
 i r d

2
dt2

 2 drdt
d
dt ei

Now, the equation d2
dt2 re

i   k
r2
ei becomes

d2r
dt2

 r d
dt

2
 i r d

2
dt2

 2 drdt
d
dt   k

r2
.

This gives us the two equations

d2r
dt2

 r d
dt

2
  k

r2
,

and,

r d
2
dt2

 2 drdt
d
dt  0.

Multiply by r and this second equation becomes

d
dt r2 ddt  0.

This tells us that

  r2 ddt

is a constant. (This constant  is called the angular momentum.) This result allows us to
get rid of d

dt in the first of the two differential equations above:

d2r
dt2

 r 
r2

2
  k

r2

or,

d2r
dt2

 2
r3

  k
r2
.
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Although this now involves only the one unknown function r, as it stands it is tough to
solve. Let’s change variables and think of r as a function of . Let’s also write things in
terms of the function s  1

r . Then,

d
dt 

d
dt

d
d  

r2
d
d .

Hence,
dr
dt  

r2
dr
d   dsd ,

and so
d2r
dt2

 d
dt 

ds
d  s2 dd  dsd

 2s2 d
2s
d2

,

and our differential equation looks like

d2r
dt2

 2
r3

 2s2 d
2s
d2

 2s3  ks2,

or,
d2s
d2

 s  k
2
.

This one is easy. From high school differential equations class, we remember that

s  1
r  Acos    k

2
,

where A and  are constants which depend on the initial conditions. At long last,

r  2/k
1  cos   ,

where we have set   A2/k. The graph of this equation is, of course, a conic section of
eccentricity .

Exercises
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1. a)What curve is described by the function t  3t  4  it  6, 0  t  1 ?
b)Suppose z and w are complex numbers. What is the curve described by

t  1  tw  tz, 0  t  1 ?

2. Find a function  that describes that part of the curve y  4x3  1 between x  0 and
x  10.

3. Find a function  that describes the circle of radius 2 centered at z  3  2i .

4. Note that in the discussion of the motion of a body in a central gravitational force field,
it was assumed that the angular momentum  is nonzero. Explain what happens in case
  0.

2.2 Functions of a complex variable. The real excitement begins when we consider
function f : D  C in which the domain D is a subset of the complex numbers. In some
sense, these too are familiar to us from elementary calculus—they are simply functions
from a subset of the plane into the plane:

fz  fx,y  ux,y  ivx,y  ux,y,vx,y

Thus fz  z2 looks like fz  z2  x  iy2  x2  y2  2xyi. In other words,
ux,y  x2  y2 and vx,y  2xy. The complex perspective, as we shall see, generally
provides richer and more profitable insights into these functions.

The definition of the limit of a function f at a point z  z0 is essentially the same as that
which we learned in elementary calculus:

zz0
lim fz  L

means that given an   0, there is a  so that |fz  L|   whenever 0  |z  z0 |  . As
you could guess, we say that f is continuous at z0 if it is true that

zz0
lim fz  fz0. If f is

continuous at each point of its domain, we say simply that f is continuous.

Suppose both
zz0
lim fz and

zz0
lim gz exist. Then the following properties are easy to

establish:
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zz0
lim fz  gz 

zz0
lim fz 

zz0
lim gz

zz0
lim fzgz 

zz0
lim fz

zz0
lim gz

and,

zz0
lim fz

gz  zz0
lim fz

zz0
lim gz

provided, of course, that
zz0
lim gz  0.

It now follows at once from these properties that the sum, difference, product, and quotient
of two functions continuous at z0 are also continuous at z0. (We must, as usual, except the
dreaded 0 in the denominator.)

It should not be too difficult to convince yourself that if z  x,y, z0  x0,y0, and
fz  ux,y  ivx,y, then

zz0
lim fz 

x,yx0,y0
lim ux,y  i

x,yx0,y0
lim vx,y

Thus f is continuous at z0  x0,y0 precisely when u and v are.

Our next step is the definition of the derivative of a complex function f. It is the obvious
thing. Suppose f is a function and z0 is an interior point of the domain of f . The derivative
f z0 of f is

f z0 
zz0
lim fz  fz0

z  z0

Example

Suppose fz  z2 . Then, letting z  z  z0, we have
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zz0
lim fz  fz0

z  z0 
z0
lim fz0  z  fz0

z


z0
lim z0  z2  z02

z


z0
lim 2z0z  z2

z


z0
lim 2z0  z

 2z0

No surprise here–the function fz  z2 has a derivative at every z, and it’s simply 2z.

Another Example

Let fz  zz. Then,

z0
lim fz0  z  fz0

z 
z0
lim z0  zz0  z  z0 z 0

z


z0
lim z0z  z 0z  zz

z


z0
lim z 0  z  z0 zz

Suppose this limit exists, and choose z  x, 0. Then,

z0
lim z 0  z  z0 zz 

x0
lim z 0  x  z0 xx

 z 0  z0
Now, choose z  0,y. Then,

z0
lim z 0  z  z0 zz 

y0
lim z 0  iy  z0 iyiy

 z 0  z0

Thus, we must have z 0  z0  z 0  z0, or z0  0. In other words, there is no chance of
this limit’s existing, except possibly at z0  0. So, this function does not have a derivative
at most places.

Now, take another look at the first of these two examples. It looks exactly like what you
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did in Mrs. Turner’s 3rd grade calculus class for plain old real-valued functions. Meditate
on this and you will be convinced that all the ”usual” results for real-valued functions also
hold for these new complex functions: the derivative of a constant is zero, the derivative of
the sum of two functions is the sum of the derivatives, the ”product” and ”quotient” rules
for derivatives are valid, the chain rule for the composition of functions holds, etc., etc. For
proofs, you need only go back to your elementary calculus book and change x’s to z’s.

A bit of jargon is in order. If f has a derivative at z0, we say that f is differentiable at z0. If
f is differentiable at every point of a neighborhood of z0, we say that f is analytic at z0. (A
set S is a neighborhood of z0 if there is a disk D  z : |z  z0 |  r, r  0 so that D  S.
) If f is analytic at every point of some set S, we say that f is analytic on S. A function that
is analytic on the set of all complex numbers is said to be an entire function.

Exercises

5. Suppose fz  3xy  ix  y2. Find
z32i
lim fz, or explain carefully why it does not

exist.

6. Prove that if f has a derivative at z, then f is continuous at z.

7. Find all points at which the valued function f defined by fz  z has a derivative.

8. Find all points at which the valued function f defined by
fz  2  iz3  iz2  4z  1  7i

has a derivative.

9. Is the function f given by

fz 
 z 2
z , z  0

0 , z  0

differentiable at z  0? Explain.

2.3. Derivatives. Suppose the function f given by fz  ux,y  ivx,y has a derivative
at z  z0  x0,y0. We know this means there is a number f z0 so that

f z0 
z0
lim fz0  z  fz0

z .
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Choose z  x, 0  x. Then,

f z0 
z0
lim fz0  z  fz0

z


x0
lim ux0  x,y0  ivx0  x,y0  ux0,y0  ivx0,y0

x


x0
lim ux0  x,y0  ux0,y0

x  i vx0  x,y0  vx0,y0x

 u
x x0,y0  i

v
x x0,y0

Next, choose z  0,y  iy. Then,

f z0 
z0
lim fz0  z  fz0

z


y0
lim ux0,y0  y  ivx0,y0  y  ux0,y0  ivx0,y0

iy


y0
lim vx0,y0  y  vx0,y0

y  i ux0,y0  y  ux0,y0y

 v
y x0,y0  i

u
y x0,y0

We have two different expressions for the derivative f z0, and so

u
x x0,y0  i

v
x x0,y0 

v
y x0,y0  i

u
y x0,y0

or,

u
x x0,y0 

v
y x0,y0,

u
y x0,y0  

v
x x0,y0

These equations are called the Cauchy-Riemann Equations.

We have shown that if f has a derivative at a point z0, then its real and imaginary parts
satisfy these equations. Even more exciting is the fact that if the real and imaginary parts of
f satisfy these equations and if in addition, they have continuous first partial derivatives,
then the function f has a derivative. Specifically, suppose ux,y and vx,y have partial
derivatives in a neighborhood of z0  x0,y0, suppose these derivatives are continuous at
z0, and suppose
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u
x x0,y0 

v
y x0,y0,

u
y x0,y0  

v
x x0,y0.

We shall see that f is differentiable at z0.

fz0  z  fz0
z

 ux0  x,y0  y  ux0,y0  ivx0  x,y0  y  vx0,y0
x  iy .

Observe that

ux0  x,y0  y  ux0,y0  ux0  x,y0  y  ux0,y0  y 
ux0,y0  y  ux0,y0.

Thus,

ux0  x,y0  y  ux0,y0  y  x u
x ,y0  y,

and,
u
x ,y0  y 

u
x x0,y0  1,

where,

z0
lim 1  0.

Thus,

ux0  x,y0  y  ux0,y0  y  x u
x x0,y0  1 .

Proceeding similarly, we get
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fz0  z  fz0
z

 ux0  x,y0  y  ux0,y0  ivx0  x,y0  y  vx0,y0
x  iy


x u

x x0,y0  1  i
v
x x0,y0  i 2  y u

y x0,y0  3  i
v
y x0,y0  i 4

x  iy , .

where  i  0 as z  0. Now, unleash the Cauchy-Riemann equations on this quotient and
obtain,

fz0  z  fz0
z


x u

x  i
v
x  iy u

x  i
v
x

x  iy  stuff
x  iy

 u
x  i v

x  stuff
x  iy .

Here,
stuff  x1  i 2  y3  i 4.

It’s easy to show that

z0
lim stuff

z  0,

and so,

z0
lim fz0  z  fz0

z  u
x  i v

x .

In particular we have, as promised, shown that f is differentiable at z0.

Example

Let’s find all points at which the function f given by fz  x3  i1  y3 is differentiable.
Here we have u  x3 and v  1  y3. The Cauchy-Riemann equations thus look like

3x2  31  y2, and
0  0.
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The partial derivatives of u and v are nice and continuous everywhere, so f will be
differentiable everywhere the C-R equations are satisfied. That is, everywhere

x2  1  y2; that is, where
x  1  y, or x  1  y.

This is simply the set of all points on the cross formed by the two straight lines

-2

-1

0

1

2

3

4

-3 -2 -1 1 2 3x

Exercises

10. At what points is the function f given by fz  x3  i1  y3 analytic? Explain.

11. Do the real and imaginary parts of the function f in Exercise 9 satisfy the
Cauchy-Riemann equations at z  0? What do you make of your answer?

12. Find all points at which fz  2y  ix is differentiable.

13. Suppose f is analytic on a connected open set D, and f z  0 for all zD. Prove that f
is constant.

14. Find all points at which

fz  x
x2  y2

 i y
x2  y2

is differentiable. At what points is f analytic? Explain.

15. Suppose f is analytic on the set D, and suppose Re f is constant on D. Is f necessarily
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constant on D? Explain.

16. Suppose f is analytic on the set D, and suppose |fz| is constant on D. Is f necessarily
constant on D? Explain.
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Chapter Three

Elementary Functions

3.1. Introduction. Complex functions are, of course, quite easy to come by—they are
simply ordered pairs of real-valued functions of two variables. We have, however, already
seen enough to realize that it is those complex functions that are differentiable that are the
most interesting. It was important in our invention of the complex numbers that these new
numbers in some sense included the old real numbers—in other words, we extended the
reals. We shall find it most useful and profitable to do a similar thing with many of the
familiar real functions. That is, we seek complex functions such that when restricted to the
reals are familiar real functions. As we have seen, the extension of polynomials and
rational functions to complex functions is easy; we simply change x’s to z’s. Thus, for
instance, the function f defined by

fz  z2  z  1
z  1

has a derivative at each point of its domain, and for z  x  0i, becomes a familiar real
rational function

fx  x2  x  1
x  1 .

What happens with the trigonometric functions, exponentials, logarithms, etc., is not so
obvious. Let us begin.

3.2. The exponential function. Let the so-called exponential function exp be defined by

expz  excosy  i siny,

where, as usual, z  x  iy. From the Cauchy-Riemann equations, we see at once that this
function has a derivative every where—it is an entire function. Moreover,

d
dz expz  expz.

Note next that if z  x  iy and w  u  iv, then
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expz  w  exucosy  v  i siny  v
 exeycosycosv  siny sinv  isinycosv  cosy sinv
 exeycosy  i sinycosv  i sinv
 expzexpw.

We thus use the quite reasonable notation ez  expz and observe that we have extended
the real exponential ex to the complex numbers.

Example

Recall from elementary circuit analysis that the relation between the voltage drop V and the
current flow I through a resistor is V  RI, where R is the resistance. For an inductor, the
relation is V  L dIdt , where L is the inductance; and for a capacitor, C

dV
dt  I, where C is

the capacitance. (The variable t is, of course, time.) Note that if V is sinusoidal with a
frequency , then so also is I. Suppose then that V  A sint  . We can write this as
V  ImAeieit  ImBeit, where B is complex. We know the current I will have this
same form: I  ImCeit. The relations between the voltage and the current are linear, and
so we can consider complex voltages and currents and use the fact that
eit  cost  i sint. We thus assume a more or less fictional complex voltage V , the
imaginary part of which is the actual voltage, and then the actual current will be the
imaginary part of the resulting complex current.

What makes this a good idea is the fact that differentiation with respect to time t becomes
simply multiplication by i: d

dt Ae
it  iAeit. If I  beit, the above relations between

current and voltage become V  iLI for an inductor, and iVC  I, or V  I
iC for a

capacitor. Calculus is thereby turned into algebra. To illustrate, suppose we have a simple
RLC circuit with a voltage source V  a sint. We let E  aeiwt .

Then the fact that the voltage drop around a closed circuit must be zero (one of Kirchoff’s
celebrated laws) looks like
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iLI  I
iC  RI  aeit, or

iLb  b
iC  Rb  a

Thus,
b  a

R  i L  1
C

.

In polar form,

b  a
R2  L  1

C
2
ei,

where

tan 
L  1

C
R . (R  0)

Hence,

I  Imbeit  Im a
R2  L  1

C
2
eit

 a
R2  L  1

C
2
sint  

This result is well-known to all, but I hope you are convinced that this algebraic approach
afforded us by the use of complex numbers is far easier than solving the differential
equation. You should note that this method yields the steady state solution—the transient
solution is not necessarily sinusoidal.

Exercises

1. Show that expz  2i  expz.

2. Show that expz
expw  expz  w.

3. Show that |expz|  ex, and argexpz  y  2k for any argexpz and some
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integer k.

4. Find all z such that expz  1, or explain why there are none.

5. Find all z such that expz  1  i, or explain why there are none.

6. For what complex numbers w does the equation expz  w have solutions? Explain.

7. Find the indicated mesh currents in the network:

3.3 Trigonometric functions. Define the functions cosine and sine as follows:

cos z  eiz  eiz
2 ,

sin z  eiz  eiz
2i

where we are using ez  expz.

First, let’s verify that these are honest-to-goodness extensions of the familiar real functions,
cosine and sine–otherwise we have chosen very bad names for these complex functions.
So, suppose z  x  0i  x. Then,

eix  cosx  i sinx, and
eix  cosx  i sinx.

Thus,
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cosx  eix  eix
2 ,

sinx  eix  eix
2i ,

and everything is just fine.

Next, observe that the sine and cosine functions are entire–they are simply linear
combinations of the entire functions eiz and eiz. Moreover, we see that

d
dz sin z  cos z, and

d
dz   sin z,

just as we would hope.

It may not have been clear to you back in elementary calculus what the so-called
hyperbolic sine and cosine functions had to do with the ordinary sine and cosine functions.
Now perhaps it will be evident. Recall that for real t,

sinh t  et  et
2 , and cosh t  et  et

2 .

Thus,

sinit  eiit  eiit
2i  i e

t  et
2  i sinh t.

Similarly,
cosit  cosh t.

How nice!

Most of the identities you learned in the 3rd grade for the real sine and cosine functions are
also valid in the general complex case. Let’s look at some.

sin2z  cos2z  1
4 e

iz  eiz2  eiz  eiz2 

 1
4 e

2iz  2eizeiz  e2iz  e2iz  2eizeiz  e2iz 

 1
4 2  2  1
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It is also relative straight-forward and easy to show that:

sinz  w  sin zcosw  cos z sinw, and
cosz  w  cos zcosw  sin z sinw

Other familiar ones follow from these in the usual elementary school trigonometry fashion.

Let’s find the real and imaginary parts of these functions:

sin z  sinx  iy  sinxcosiy  cosx siniy
 sinxcoshy  icosx sinhy.

In the same way, we get cos z  cosxcoshy  i sinx sinhy.

Exercises

8. Show that for all z,
a)sinz  2  sin z; b)cosz  2  cos z; c)sin z  

2  cos z.

9. Show that |sin z|2  sin2x  sinh2y and |cos z|2  cos2x  sinh2y.

10. Find all z such that sin z  0.

11. Find all z such that cos z  2, or explain why there are none.

3.4. Logarithms and complex exponents. In the case of real functions, the logarithm
function was simply the inverse of the exponential function. Life is more complicated in
the complex case—as we have seen, the complex exponential function is not invertible.
There are many solutions to the equation ez  w.

If z  0, we define log z by

log z  ln|z|  iarg z.

There are thus many log z’s; one for each argument of z. The difference between any two of
these is thus an integral multiple of 2i. First, for any value of log z we have
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e log z  e ln |z|iarg z  e ln |z|eiarg z  z.

This is familiar. But next there is a slight complication:

logez  lnex  iargez  x  y  2ki
 z  2ki,

where k is an integer. We also have

logzw  ln|z||w|  iargzw
 ln |z|  iarg z  ln |w|  iargw  2ki
 log z  logw  2ki

for some integer k.

There is defined a function, called the principal logarithm, or principal branch of the
logarithm, function, given by

Log z  ln|z|  iArg z,

where Arg z is the principal argument of z. Observe that for any log z, it is true that
log z Log z  2ki for some integer k which depends on z. This new function is an
extension of the real logarithm function:

Log x  lnx  iArg x  lnx.

This function is analytic at a lot of places. First, note that it is not defined at z  0, and is
not continuous anywhere on the negative real axis (z  x  0i, where x  0.). So, let’s
suppose z0  x0  iy0, where z0 is not zero or on the negative real axis, and see about a
derivative of Log z :

zz0
lim Log z  Log z0

z  z0 
zz0
lim Log z  Log z0

eLog z  eLog z0
.

Now if we let w Log z and w0 Log z0, and notice that w  w0 as z  z0, this becomes
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zz0
lim Log z  Log z0

z  z0 
ww0
lim w  w0

ew  ew0

 1
ew0  1

z0

Thus, Log is differentiable at z0 , and its derivative is 1
z0 .

We are now ready to give meaning to zc, where c is a complex number. We do the obvious
and define

zc  ec log z.

There are many values of log z, and so there can be many values of zc. As one might guess,
ecLog z is called the principal value of zc.

Note that we are faced with two different definitions of zc in case c is an integer. Let’s see
if we have anything to unlearn. Suppose c is simply an integer, c  n. Then

zn  en log z  ekLog z2ki
 enLog ze2kni  enLog z

There is thus just one value of zn, and it is exactly what it should be: enLog z  |z|neinarg z. It
is easy to verify that in case c is a rational number, zc is also exactly what it should be.

Far more serious is the fact that we are faced with conflicting definitions of zc in case
z  e. In the above discussion, we have assumed that ez stands for expz. Now we have a
definition for ez that implies that ez can have many values. For instance, if someone runs at
you in the night and hands you a note with e1/2 written on it, how to you know whether this
means exp1/2 or the two values e and  e ? Strictly speaking, you do not know. This
ambiguity could be avoided, of course, by always using the notation expz for exeiy, but
almost everybody in the world uses ez with the understanding that this is expz, or
equivalently, the principal value of ez. This will be our practice.

Exercises

12. Is the collection of all values of logi1/2 the same as the collection of all values of
1
2 log i ? Explain.

13. Is the collection of all values of logi2 the same as the collection of all values of
2 log i ? Explain.
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14. Find all values of logz1/2. (in rectangular form)

15. At what points is the function given by Log z2  1 analytic? Explain.

16. Find the principal value of
a) ii. b) 1  i4i

17. a)Find all values of |ii |.

3.9



Chapter Four

Integration

4.1. Introduction. If  : D  C is simply a function on a real interval D  , , then the

integral 




tdt is, of course, simply an ordered pair of everyday 3rd grade calculus

integrals:






tdt  




xtdt  i 




ytdt,

where t  xt  iyt. Thus, for example,


0

1

t2  1  it3 dt  4
3  i

4 .

Nothing really new here. The excitement begins when we consider the idea of an integral
of an honest-to-goodness complex function f : D  C, where D is a subset of the complex
plane. Let’s define the integral of such things; it is pretty much a straight-forward extension
to two dimensions of what we did in one dimension back in Mrs. Turner’s class.

Suppose f is a complex-valued function on a subset of the complex plane and suppose a
and b are complex numbers in the domain of f. In one dimension, there is just one way to
get from one number to the other; here we must also specify a path from a to b. Let C be a
path from a to b, and we must also require that C be a subset of the domain of f.
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(Note we do not even require that a  b; but in case a  b, we must specify an orientation
for the closed path C.) Next, let P be a partition of the curve; that is, P  z0, z1, z2, , zn
is a finite subset of C, such that a  z0, b  zn, and such that zj comes immediately after
zj1 as we travel along C from a to b.

A Riemann sum associated with the partition P is just what it is in the real case:

SP 
j1

n

fzjzj,

where zj is a point on the arc between zj1 and zj , and zj  zj  zj1. (Note that for a
given partition P, there are many SP—depending on how the points zj are chosen.) If
there is a number L so that given any   0, there is a partition P of C such that

|SP  L|  

whenever P  P, then f is said to be integrable on C and the number L is called the
integral of f on C. This number L is usually written 

C
fzdz.

Some properties of integrals are more or less evident from looking at Riemann sums:


C

cfzdz  c 
C

fzdz

for any complex constant c.
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
C

fz  gzdz  
C

fzdz  
C

gzdz

4.2 Evaluating integrals. Now, how on Earth do we ever find such an integral? Let
 : ,  C be a complex description of the curve C. We partition C by partitioning the
interval , in the usual way:   t0  t1  t2  tn  . Then
a  ,t1,t2, ,  b is partition of C. (Recall we assume that  t  0
for a complex description of a curve C.) A corresponding Riemann sum looks like

SP 
j1

n

ftjtj  tj1.

We have chosen the points zj  tj, where tj1  tj  tj. Next, multiply each term in the
sum by 1 in disguise:

SP 
j1

n

ftj
tj  tj1
tj  tj1 tj  tj1.

I hope it is now reasonably convincing that ”in the limit”, we have


C

fzdz  




ft tdt.

(We are, of course, assuming that the derivative   exists.)

Example

We shall find the integral of fz  x2  y  ixy from a  0 to b  1  i along three
different paths, or contours, as some call them.

First, let C1 be the part of the parabola y  x2 connecting the two points. A complex
description of C1 is 1t  t  it2, 0  t  1:
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0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1x

Now, 1 t  1  2ti, and f 1t  t2  t2  itt2  2t2  it3. Hence,


C1

fzdz  
0

1

f 1t1 tdt

 
0

1

2t2  it31  2tidt

 
0

1

2t2  2t4  5t3idt

 4
15  54 i

Next, let’s integrate along the straight line segment C2 joining 0 and 1  i.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1x

Here we have 2t  t  it, 0  t  1. Thus, 2 t  1  i, and our integral looks like
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
C2

fzdz  
0

1

f 2t2 tdt

 
0

1

t2  t  it2 1  idt

 
0

1

t  it  2t2dt

 1
2  76 i

Finally, let’s integrate along C3, the path consisting of the line segment from 0 to 1
together with the segment from 1 to 1  i.

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

We shall do this in two parts: C31, the line from 0 to 1 ; and C32, the line from 1 to 1  i.
Then we have


C3

fzdz  
C31

fzdz  
C32

fzdz.

For C31 we have t  t, 0  t  1. Hence,


C31

fzdz  
0

1

dt  1
3 .

For C32 we have t  1  it, 0  t  1. Hence,


C32

fzdz  
0

1

1  t  ititdt   13  56 i.
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Thus,


C3

fzdz  
C31

fzdz  
C32

fzdz

 5
6 i.

Suppose there is a numberM so that |fz|  M for all zC. Then


C

fzdz  




ft tdt

 




|ft t|dt

 M 




| t|dt  ML,

where L  




| t|dt is the length of C.

Exercises

1. Evaluate the integral 
C
z dz, where C is the parabola y  x2 from 0 to 1  i.

2. Evaluate 
C

1
z dz, where C is the circle of radius 2 centered at 0 oriented

counterclockwise.

4. Evaluate 
C
fzdz, where C is the curve y  x3 from 1  i to 1  i , and

fz 
1 for y  0
4y for y  0

.

5. Let C be the part of the circle t  eit in the first quadrant from a  1 to b  i. Find as
small an upper bound as you can for 

C
z2  z 4  5dz .
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6. Evaluate 
C
fzdz where fz  z  2 z and C is the path from z  0 to z  1  2i

consisting of the line segment from 0 to 1 together with the segment from 1 to 1  2i.

4.3 Antiderivatives. Suppose D is a subset of the reals and  : D  C is differentiable at t.
Suppose further that g is differentiable at t. Then let’s see about the derivative of the
composition gt. It is, in fact, exactly what one would guess. First,

gt  uxt,yt  ivxt,yt,

where gz  ux,y  ivx,y and t  xt  iyt. Then,

d
dt gt  u

x
dx
dt 

u
y
dy
dt  i

v
x
dx
dt 

v
y
dy
dt .

The places at which the functions on the right-hand side of the equation are evaluated are
obvious. Now, apply the Cauchy-Riemann equations:

d
dt gt  u

x
dx
dt 

v
x
dy
dt  i

v
x
dx
dt 

u
x
dy
dt

 u
x  i v

x
dx
dt  i

dy
dt

 gt t.

The nicest result in the world!

Now, back to integrals. Let F : D  C and suppose F z  fz in D. Suppose moreover
that a and b are in D and that C  D is a contour from a to b. Then


C

fzdz  




ft tdt,

where  : ,  C describes C. From our introductory discussion, we know that
d
dt Ft  F t t  ft t. Hence,
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
C

fzdz  




ft tdt

 




d
dt Ftdt  F  F

 Fb  Fa.

This is very pleasing. Note that integral depends only on the points a and b and not at all
on the path C. We say the integral is path independent. Observe that this is equivalent to
saying that the integral of f around any closed path is 0. We have thus shown that if in D
the integrand f is the derivative of a function F, then any integral 

C
fzdz for C  D is path

independent.

Example

Let C be the curve y  1
x2
from the point z  1  i to the point z  3  i

9 . Let’s find


C

z2dz.

This is easy—we know that F z  z2 , where Fz  1
3 z

3. Thus,


C

z2dz  1
3 1  i3  3  i

9
3

  26027 
728
2187 i

Now, instead of assuming f has an antiderivative, let us suppose that the integral of f
between any two points in the domain is independent of path and that f is continuous.
Assume also that every point in the domain D is an interior point of D and that D is
connected. We shall see that in this case, f has an antiderivative. To do so, let z0 be any
point in D, and define the function F by

Fz  
Cz

fzdz,

where Cz is any path in D from z0 to z. Here is important that the integral is path
independent, otherwise Fz would not be well-defined. Note also we need the assumption
that D is connected in order to be sure there always is at least one such path.
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Now, for the computation of the derivative of F:

Fz  z  Fz  
Lz

fsds,

where Lz is the line segment from z to z  z.

Next, observe that 
Lz
ds  z. Thus, fz  1

z 
Lz
fzds, and we have

Fz  z  Fz
z  fz  1

z 
Lz

fs  fzds.

Now then,

1
z 

Lz

fs  fzds  1
z |z|max|fs  fz| : sLz

 max|fs  fz| : sLz.

We know f is continuous at z, and so
z0
lim max|fs  fz| : sLz  0. Hence,

z0
lim Fz  z  Fz

z  fz 
z0
lim 1

z 
Lz

fs  fzds

 0.
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In other words, F z  fz, and so, just as promised, f has an antiderivative! Let’s
summarize what we have shown in this section:

Suppose f : D  C is continuous, where D is connected and every point of D is an interior
point. Then f has an antiderivative if and only if the integral between any two points of D is
path independent.

Exercises

7. Suppose C is any curve from 0 to   2i. Evaluate the integral


C

cos z
2 dz.

8. a)Let Fz  log z, 0  arg z  2. Show that the derivative F z  1
z .

b)Let Gz  log z,  
4  arg z  7

4 . Show that the derivative G
z  1

z .
c)Let C1 be a curve in the right-half plane D1  z : Re z  0 from i to i that does not

pass through the origin. Find the integral


C1

1
z dz.

d)Let C2 be a curve in the left-half plane D2  z : Re z  0 from i to i that does not
pass through the origin. Find the integral.


C2

1
z dz.

9. Let C be the circle of radius 1 centered at 0 with the clockwise orientation. Find


C

1
z dz.

10. a)Let Hz  zc,  arg z  . Find the derivative Hz.
b)Let Kz  zc, 

4  arg z  7
4 . What is the largest subset of the plane on which

Hz  Kz?
c)Let C be any path from 1 to 1 that lies completely in the upper half-plane. (Upper
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half-plane  z : Im z  0.) Find


C

Fzdz,

where Fz  zi,  arg z  .

11. Suppose P is a polynomial and C is a closed curve. Explain how you know that

C
Pzdz  0.
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Chapter Five

Cauchy’s Theorem

5.1. Homotopy. Suppose D is a connected subset of the plane such that every point of D is
an interior point—we call such a set a region—and let C1 and C2 be oriented closed curves
in D. We say C1 is homotopic to C2 in D if there is a continuous function H : S  D,
where S is the square S  t, s : 0  s, t  1, such that Ht, 0 describes C1 and Ht, 1
describes C2, and for each fixed s, the function Ht, s describes a closed curve Cs in D.
The function H is called a homotopy between C1 and C2. Note that if C1 is homotopic to
C2 in D, then C2 is homotopic to C1 in D. Just observe that the function
Kt, s  Ht, 1  s is a homotopy.

It is convenient to consider a point to be a closed curve. The point c is a described by a
constant function t  c. We thus speak of a closed curve C being homotopic to a
constant—we sometimes say C is contractible to a point.

Emotionally, the fact that two closed curves are homotopic in D means that one can be
continuously deformed into the other in D.

Example

Let D be the annular region D  z : 1  |z|  5. Suppose C1 is the circle described by
1t  2ei2t, 0  t  1; and C2 is the circle described by 2t  4ei2t, 0  t  1. Then
Ht, s  2  2sei2t is a homotopy in D between C1 and C2. Suppose C3 is the same
circle as C2 but with the opposite orientation; that is, a description is given by
3t  4ei2t, 0  t  1. A homotopy between C1 and C3 is not too easy to construct—in
fact, it is not possible! The moral: orientation counts. From now on, the term ”closed
curve” will mean an oriented closed curve.
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Another Example

Let D be the set obtained by removing the point z  0 from the plane. Take a look at the
picture. Meditate on it and convince yourself that C and K are homotopic in D, but  and 
are homotopic in D, while K and  are not homotopic in D.

Exercises

1. Suppose C1 is homotopic to C2 in D, and C2 is homotopic to C3 in D. Prove that C1 is
homotopic to C3 in D.

2. Explain how you know that any two closed curves in the plane C are homotopic in C.

3. A region D is said to be simply connected if every closed curve in D is contractible to a
point in D. Prove that any two closed curves in a simply connected region are homotopic in
D.

5.2 Cauchy’s Theorem. Suppose C1 and C2 are closed curves in a region D that are
homotopic in D, and suppose f is a function analytic on D. Let Ht, s be a homotopy
between C1 and C2. For each s, the function st describes a closed curve Cs in D. Let
Is be given by

Is  
Cs

fzdz.

Then,

5.2



Is  
0

1

fHt, s Ht, s
t dt.

Now let’s look at the derivative of Is. We assume everything is nice enough to allow us
to differentiate under the integral:

Is  d
ds 

0

1

fHt, s Ht, s
t dt

 
0

1

f Ht, s Ht, s
s

Ht, s
t  fHt, s 

2Ht, s
st dt

 
0

1

f Ht, s Ht, s
s

Ht, s
t  fHt, s 

2Ht, s
ts dt

 
0

1

t fHt, s Ht, s

s dt

 fH1, s H1, s
s  fH0, s H0, s

s .

But we know each Ht, s describes a closed curve, and so H0, s  H1, s for all s. Thus,

Is  fH1, s H1, s
s  fH0, s H0, s

s  0,

which means Is is constant! In particular, I0  I1, or


C1

fzdz  
C2

fzdz.

This is a big deal. We have shown that if C1 and C2 are closed curves in a region D that are
homotopic in D, and f is analytic on D, then 

C1

fzdz  
C2

fzdz.

An easy corollary of this result is the celebrated Cauchy’s Theorem, which says that if f is
analytic on a simply connected region D, then for any closed curve C in D,
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
C

fzdz  0.

In court testimony, one is admonished to tell the truth, the whole truth, and nothing but the
truth. Well, so far in this chapter, we have told the truth and nothing but the truth, but we
have not quite told the whole truth. We assumed all sorts of continuous derivatives in the
preceding discussion. These are not always necessary—specifically, the results can be
proved true without all our smoothness assumptions—think about approximation.

Example

Look at the picture below and convince your self that the path C is homotopic to the closed
path consisting of the two curves C1 and C2 together with the line L. We traverse the line
twice, once from C1 to C2 and once from C2 to C1.

Observe then that an integral over this closed path is simply the sum of the integrals over
C1 and C2, since the two integrals along L , being in opposite directions, would sum to
zero. Thus, if f is analytic in the region bounded by these curves (the region with two holes
in it), then we know that


C

fzdz  
C1

fzdz  
C2

fzdz.

Exercises

4. Prove Cauchy’s Theorem.

5. Let S be the square with sides x  100, and y  100 with the counterclockwise
orientation. Find
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
S

1
z dz.

6. a)Find 
C

1
z1 dz, where C is any circle centered at z  1 with the usual counterclockwise

orientation: t  1  Ae2it, 0  t  1.
b)Find 

C

1
z1 dz, where C is any circle centered at z  1 with the usual counterclockwise

orientation.

c)Find 
C

1
z21

dz, where C is the ellipse 4x2  y2  100 with the counterclockwise

orientation. [Hint: partial fractions]

d)Find 
C

1
z21

dz, where C is the circle x2  10x  y2  0 with the counterclockwise

orientation.

8. Evaluate 
C
Log z  3dz, where C is the circle |z|  2 oriented counterclockwise.

9. Evaluate 
C

1
zn dz where C is the circle described by t  e

2it, 0  t  1, and n is an

integer  1.

10. a)Does the function fz  1
z have an antiderivative on the set of all z  0? Explain.

b)How about fz  1
zn , n an integer  1 ?

11. Find as large a set D as you can so that the function fz  ez2 have an antiderivative
on D.

12. Explain how you know that every function analytic in a simply connected (cf. Exercise
3) region D is the derivative of a function analytic in D.
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Chapter Six

More Integration

6.1. Cauchy’s Integral Formula. Suppose f is analytic in a region containing a simple
closed contour C with the usual positive orientation and its inside , and suppose z0 is inside
C. Then it turns out that

fz0  1
2i 

C

fz
z  z0 dz.

This is the famous Cauchy Integral Formula. Let’s see why it’s true.

Let   0 be any positive number. We know that f is continuous at z0 and so there is a
number  such that |fz  fz0|   whenever |z  z0 |  . Now let   0 be a number
such that    and the circle C0  z : |z  z0 |   is also inside C. Now, the function
fz
zz0 is analytic in the region between C and C0; thus


C

fz
z  z0 dz  

C0

fz
z  z0 dz.

We know that 
C0

1
zz0 dz  2i, so we can write


C0

fz
z  z0 dz  2ifz0  

C0

fz
z  z0 dz  fz0 

C0

1
z  z0 dz

 
C0

fz  fz0
z  z0 dz.

For zC0 we have
fz  fz0
z  z0  |fz  fz0|

|z  z0 |
 
 .

Thus,
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
C0

fz
z  z0 dz  2ifz0  

C0

fz  fz0
z  z0 dz

 
 2  2.

But  is any positive number, and so


C0

fz
z  z0 dz  2ifz0  0,

or,

fz0  1
2i 

C0

fz
z  z0 dz 

1
2i 

C

fz
z  z0 dz,

which is exactly what we set out to show.

Meditate on this result. It says that if f is analytic on and inside a simple closed curve and
we know the values fz for every z on the simple closed curve, then we know the value for
the function at every point inside the curve—quite remarkable indeed.

Example

Let C be the circle |z|  4 traversed once in the counterclockwise direction. Let’s evaluate
the integral


C

cos z
z2  6z  5

dz.

We simply write the integrand as

cos z
z2  6z  5

 cos z
z  5z  1  fz

z  1 ,

where
fz  cos z

z  5 .

Observe that f is analytic on and inside C, and so,
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
C

cos z
z2  6z  5

dz  
C

fz
z  1 dz  2if1

 2i cos11  5   i2 cos1

Exercises

1. Suppose f and g are analytic on and inside the simple closed curve C, and suppose
moreover that fz  gz for all z on C. Prove that fz  gz for all z inside C.

2. Let C be the ellipse 9x2  4y2  36 traversed once in the counterclockwise direction.
Define the function g by

gz  
C

s2  s  1
s  z ds.

Find a) gi b) g4i

3. Find


C

e2z
z2  4

dz,

where C is the closed curve in the picture:

4. Find 


e2z
z24

dz, where  is the contour in the picture:
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6.2. Functions defined by integrals. Suppose C is a curve (not necessarily a simple closed
curve, just a curve) and suppose the function g is continuous on C (not necessarily analytic,
just continuous). Let the function G be defined by

Gz  
C

gs
s  z ds

for all z  C. We shall show that G is analytic. Here we go.

Consider,
Gz  z  Gz

z  1
z 

C

1
s  z  z 

1
s  z gsds

 
C

gs
s  z  zs  z ds.

Next,

Gz  z  Gz
z  

C

gs
s  z2

ds  
C

1
s  z  zs  z 

1
s  z2

gsds

 
C

s  z  s  z  z
s  z  zs  z2

gsds

 z 
C

gs
s  z  zs  z2

ds.

Now we want to show that
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z0
lim z 

C

gs
s  z  zs  z2

ds  0.

To that end, let M  max|gs| : s  C, and let d be the shortest distance from z to C.
Thus, for s  C, we have |s  z|  d  0 and also

|s  z  z|  |s  z|  |z|  d  |z|.

Putting this all together, we can estimate the integrand above:

gs
s  z  zs  z2

 M
d  |z|d2

for all s  C. Finally,

z 
C

gs
s  z  zs  z2

ds  |z| M
d  |z|d2

lengthC,

and it is clear that

z0
lim z 

C

gs
s  z  zs  z2

ds  0,

just as we set out to show. Hence G has a derivative at z, and

Gz  
C

gs
s  z2

ds.

Truly a miracle!

Next we see that G has a derivative and it is just what you think it should be. Consider
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Gz  z  Gz
z  1

z 
C

1
s  z  z2

 1
s  z2

gsds

 1
z 

C

s  z2  s  z  z2
s  z  z2s  z2

gsds

 1
z 

C

2s  zz  z2
s  z  z2s  z2

gsds

 
C

2s  z  z
s  z  z2s  z2

gsds

Next,

Gz  z  Gz
z  2 

C

gs
s  z3

ds

 
C

2s  z  z
s  z  z2s  z2

 2
s  z3

gsds

 
C

2s  z2  zs  z  2s  z  z2
s  z  z2s  z3

gsds

 
C

2s  z2  zs  z  2s  z2  4zs  z  2z2
s  z  z2s  z3

gsds

 
C

3zs  z  2z2
s  z  z2s  z3

gsds

Hence,

Gz  z  Gz
z  2 

C

gs
s  z3

ds  
C

3zs  z  2z2
s  z  z2s  z3

gsds

 |z| |3m|  2|z|M
d  z2d3

,

where m  max|s  z| : s  C. It should be clear then that

z0
lim Gz  z  Gz

z  2 
C

gs
s  z3

ds  0,

or in other words,
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Gz  2 
C

gs
s  z3

ds.

Suppose f is analytic in a region D and suppose C is a positively oriented simple closed
curve in D. Suppose also the inside of C is in D. Then from the Cauchy Integral formula,
we know that

2ifz  
C

fs
s  z ds

and so with g  f in the formulas just derived, we have

f z  1
2i 

C

fs
s  z2

ds, and f z  2
2i 

C

fs
s  z3

ds

for all z inside the closed curve C. Meditate on these results. They say that the derivative
of an analytic function is also analytic. Now suppose f is continuous on a domain D in
which every point of D is an interior point and suppose that 

C
fzdz  0 for every closed

curve in D. Then we know that f has an antiderivative in D—in other words f is the
derivative of an analytic function. We now know this means that f is itself analytic. We
thus have the celebratedMorera’s Theorem:

If f:D  C is continuous and such that 
C
fzdz  0 for every closed curve in D, then f is

analytic in D.

Example

Let’s evaluate the integral


C

ez
z3
dz,

where C is any positively oriented closed curve around the origin. We simply use the
equation

f z  2
2i 

C

fs
s  z3

ds
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with z  0 and fs  es.Thus,

ie0  i  
C

ez
z3
dz.

Exercises

5. Evaluate


C

sin z
z2
dz

where C is a positively oriented closed curve around the origin.

6. Let C be the circle |z  i|  2 with the positive orientation. Evaluate

a) 
C

1
z24

dz b) 
C

1
z242

dz

7. Suppose f is analytic inside and on the simple closed curve C. Show that


C

f z
z  w dz  

C

fz
z  w2

dz

for every w  C.

8. a) Let  be a real constant, and let C be the circle t  eit,   t  . Evaluate


C

ez
z dz.

b) Use your answer in part a) to show that


0



ecos t cos sin tdt  .

6.3. Liouville’s Theorem. Suppose f is entire and bounded; that is, f is analytic in the
entire plane and there is a constant M such that |fz|  M for all z. Then it must be true
that f z  0 identically. To see this, suppose that f w  0 for some w. Choose R large
enough to insure that M

R  |f w|. Now let C be a circle centered at 0 and with radius
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  maxR, |w|. Then we have :

M
  |f w|  1

2i 
C

fs
s  w2

dz

 1
2

M
2
2  M

 ,

a contradiction. It must therefore be true that there is no w for which f w  0; or, in other
words, f z  0 for all z. This, of course, means that f is a constant function. What we
have shown has a name, Liouville’s Theorem:

The only bounded entire functions are the constant functions.

Let’s put this theorem to some good use. Let pz  anzn  an1zn1 a1z  a0 be a
polynomial. Then

pz  an  an1z  an2
z2

 a0zn zn.

Now choose R large enough to insure that for each j  1,2, ,n, we have anj
zj

 |an |
2n

whenever |z|  R. (We are assuming that an  0. ) Hence, for |z|  R, we know that

|pz|  |an |  an1
z  an2

z2
 a0zn |z|n

 |an |  an1
z  an2

z2
 a0

zn |z|n

 |an |  |
an |
2n 

|an |
2n 

|an |
2n |z|n

 |an |
2 |z|n.

Hence, for |z|  R,

1
pz  2

|an ||z|n
 2
|an |Rn

.

Now suppose pz  0 for all z. Then 1
pz is also bounded on the disk |z|  R. Thus,

1
pz

is a bounded entire function, and hence, by Liouville’s Theorem, constant! Hence the
polynomial is constant if it has no zeros. In other words, if pz is of degree at least one,
there must be at least one z0 for which pz0  0. This is, of course, the celebrated
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Fundamental Theorem of Algebra.

Exercises

9. Suppose f is an entire function, and suppose there is an M such that Re fz  M for all
z. Prove that f is a constant function.

10. Suppose w is a solution of 5z4  z3  z2  7z  14  0. Prove that |w|  3.

11. Prove that if p is a polynomial of degree n, and if pa  0, then pz  z  aqz,
where q is a polynomial of degree n  1.

12. Prove that if p is a polynomial of degree n  1, then

pz  cz  z1k1z  z2k2 z  zjkj ,

where k1,k2, ,kj are positive integers such that n  k1  k2 kj.

13. Suppose p is a polynomial with real coefficients. Prove that p can be expressed as a
product of linear and quadratic factors, each with real coefficients.

6.4. Maximum moduli. Suppose f is analytic on a closed domain D. Then, being
continuous, |fz| must attain its maximum value somewhere in this domain. Suppose this
happens at an interior point. That is, suppose |fz|  M for all z  D and suppose that
|fz0|  M for some z0 in the interior of D. Now z0 is an interior point of D, so there is a
number R such that the disk  centered at z0 having radius R is included in D. Let C be a
positively oriented circle of radius   R centered at z0. From Cauchy’s formula, we
know

fz0  1
2i 

C

fs
s  z0 ds.

Hence,

fz0  1
2 

0

2

fz0  eitdt,

and so,
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M  |fz0|  1
2 

0

2

|fz0  eit|dt  M.

since |fz0  eit|  M. This means

M  1
2 

0

2

|fz0  eit|dt.

Thus,

M  1
2 

0

2

|fz0  eit|dt  1
2 

0

2

M  |fz0  eit|dt  0.

This integrand is continuous and non-negative, and so must be zero. In other words,
|fz|  M for all z  C. There was nothing special about C except its radius   R, and so
we have shown that f must be constant on the disk .

I hope it is easy to see that if D is a region (connected and open), then the only way in
which the modulus |fz| of the analytic function f can attain a maximum on D is for f to be
constant.

Exercises

14. Suppose f is analytic and not constant on a region D and suppose fz  0 for all z  D.
Explain why |fz| does not have a minimum in D.

15. Suppose fz  ux,y  ivx,y is analytic on a region D. Prove that if ux,y attains a
maximum value in D, then u must be constant.
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Chapter Seven

Harmonic Functions

7.1. The Laplace equation. The Fourier law of heat conduction says that the rate at which
heat passes across a surface S is proportional to the flux, or surface integral, of the
temperature gradient on the surface:

k 
S

T  dA.

Here k is the constant of proportionality, generally called the thermal conductivity of the
substance (We assume uniform stuff. ). We further assume no heat sources or sinks, and we
assume steady-state conditions—the temperature does not depend on time. Now if we take
S to be an arbitrary closed surface, then this rate of flow must be 0:

k 
S

T  dA  0.

Otherwise there would be more heat entering the region B bounded by S than is coming
out, or vice-versa. Now, apply the celebrated Divergence Theorem to conclude that


B

  TdV  0,

where B is the region bounded by the closed surface S. But since the region B is completely
arbitrary, this means that

  T  
2T
x2

 
2T
y2

 
2T
z2

 0.

This is the world-famous Laplace Equation.

Now consider a slab of heat conducting material,
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in which we assume there is no heat flow in the z-direction. Equivalently, we could assume
we are looking at the cross-section of a long rod in which there is no longitudinal heat
flow. In other words, we are looking at a two-dimensional problem—the temperature
depends only on x and y, and satisfies the two-dimensional version of the Laplace equation:

2T
x2

 
2T
y2

 0.

Suppose now, for instance, the temperature is specified on the boundary of our region D,
and we wish to find the temperature Tx,y in region. We are simply looking for a solution
of the Laplace equation that satisfies the specified boundary condition.

Let’s look at another physical problem which leads to Laplace’s equation. Gauss’s Law of
electrostatics tells us that the integral over a closed surface S of the electric field E is
proportional to the charge included in the region B enclosed by S. Thus in the absence of
any charge, we have


S

E dA  0.

But in this case, we know the field E is conservative; let  be the potential function—that
is,

E  .

Thus,


S

E dA  
S

 dA.

Again, we call on the Divergence Theorem to conclude that  must satisfy the Laplace
equation. Mathematically, we cannot tell the problem of finding the electric potential in a
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region D, given the potential on the boundary of D, from the previous problem of finding
the temperature in the region, given the temperature on the boundary. These are but two of
the many physical problems that lead to the Laplace equation—You probably already know
of some others. Let D be a domain and let  be a given function continuous on the
boundary of D. The problem of finding a function  harmonic on the interior of D and
which agrees with  on the boundary of D is called the Dirichlet problem.

7.2. Harmonic functions. If D is a region in the plane, a real-valued function ux,y
having continuous second partial derivatives is said to be harmonic on D if it satisfies
Laplace’s equation on D :

2u
x2

 
2u
y2

 0.

There is an intimate relationship between harmonic functions and analytic functions.
Suppose f is analytic on D, and let fz  ux,y  ivx,y. Now, from the Cauchy-Riemann
equations, we know

u
x  v

y , and

u
y   v

x .

If we differentiate the first of these with respect to x and the second with respect to y, and
then add the two results, we have

2u
x2

 
2u
y2

 2v
xy 

2v
yx  0.

Thus the real part of any analytic function is harmonic! Next, if we differentiate the first of
the Cauchy-Riemann equations with respect to y and the second with respect to x, and then
subtract the second from the first, we have

2v
x2

 
2v
y2

 0,

and we see that the imaginary part of an analytic function is also harmonic.

There is even more excitement. Suppose we are given a function  harmonic in a simply
connected region D. Then there is a function f analytic on D which is such that Re f  .
Let’s see why this is so. First, define g by
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gz  
x  i


y .

We’ll show that g is analytic by verifying that the real and imaginary parts satisfy the
Cauchy-Riemann equations:


x


x  

2
x2

  
2
y2

 
y  

y ,

since  is harmonic. Next,


y


x  2

yx  2
xy   

x  
y .

Since g is analytic on the simply connected region D, we know that the integral of g around
any closed curve is zero, and so it has an antiderivative Gz  u  iv. This antiderivative
is, of course, analytic on D, and we know that

Gz  u
x  i

u
y  

x  i

y .

Thus, ux,y  x,y  hy. From this,

u
y  

y  hy,

and so hy  0, or h  constant, from which it follows that ux,y  x,y  c. In other
words, ReG  u, as we promised to show.

Example

The function x,y  x3  3xy2 is harmonic everywhere. We shall find an analytic
function G so that ReG  . We know that Gz  x3  3xy2  iv, and so from the
Cauchy-Riemann equations:

v
x   u

y  6xy
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Hence,

vx,y  3x2y  ky.

To find ky differentiate with respect to y :

v
y  3x2  k y  u

x  3x2  3y2,

and so,

k y  3y2, or
ky  y3  any constant.

If we choose the constant to be zero, this gives us

v  3x2y  ky  3x2y  y3,

and finally,

Gz  u  iv  x3  3xy2  i3x2y  y3.

Exercises

1. Suppose  is harmonic on a simply connected region D. Prove that if  assumes its
maximum or its minimum value at some point in D, then  is constant in D.

2. Suppose  and  are harmonic in a simply connected region D bounded by the curve C.
Suppose moreover that x,y  x,y for all x,y  C. Explain how you know that
   everywhere in D.

3. Find an entire function f such that Re f  x2  3x  y2, or explain why there is no such
function f.

4. Find an entire function f such that Re f  x2  3x  y2, or explain why there is no such
function f.
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7.3. Poisson’s integral formula. Let  be the disk bounded by the circle
C  z : |z|  . Suppose  is harmonic on  and let f be a function analytic on  and
such that Re f  . Now then, for fixed z with |z|  , the function

gs  fs z
2  s z

is analyic on . Thus from Cauchy’s Theorem


C

gsds  
C

fs z
2  s z

ds  0.

We know also that

fz  1
2i 

C

fs
s  z ds.

Adding these two equations gives us

fz  1
2i 

C

1
s  z 

z
2  s z

fsds

 1
2i 

C

2  |z|2

s  z2  s z 
fsds.

Next, let t  eit, and our integral becomes

fz  1
2i 

0

2
2  |z|2

eit  z2  eit z 
feitieitdt

 2  |z|2
2 

0

2
feit

eit  zeit  z 
dt

 2  |z|2
2 

0

2
feit
|eit  z|2

dt

Now,
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x,y  Re f  2  |z|2
2 

0

2
eit
|eit  z|2

dt.

Next, use polar coordinates: z  rei :

r,  2  r2
2 

0

2
eit

|eit  rei |2
dt.

Now,

|eit  rei |2  eit  reieit  rei  2  r2  reit  eit
 2  r2  2rcost  .

Substituting this in the integral, we have Poisson’s integral formula:

r,  2  r2
2 

0

2
eit

2  r2  2rcost  
dt

This famous formula essentially solves the Dirichlet problem for a disk.

Exercises

5. Evaluate 
0

2
1

2r22rcost
dt. [Hint: This is easy.]

6. Suppose  is harmonic in a region D. If x0,y0  D and if C  D is a circle centered at
x0,y0, the inside of which is also in D, then x0,y0 is the average value of  on the
circle C.

7. Suppose  is harmonic on the disk   z : |z|  . Prove that

0,0  1
2



dA.
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Chapter Eight

Series

8.1. Sequences. The basic definitions for complex sequences and series are essentially the
same as for the real case. A sequence of complex numbers is a function g : Z  C from
the positive integers into the complex numbers. It is traditional to use subscripts to indicate
the values of the function. Thus we write gn  zn and an explicit name for the sequence
is seldom used; we write simply zn to stand for the sequence g which is such that
gn  zn. For example,  in  is the sequence g for which gn  i

n .

The number L is a limit of the sequence zn if given an   0, there is an integer N such
that |zn  L|   for all n  N. If L is a limit of zn, we sometimes say that zn
converges to L. We frequently write limzn  L. It is relatively easy to see that if the
complex sequence zn  un  ivn converges to L, then the two real sequences un and
vn each have a limit: un converges to ReL and vn converges to ImL. Conversely, if
the two real sequences un and vn each have a limit, then so also does the complex
sequence un  ivn. All the usual nice properties of limits of sequences are thus true:

limzn  wn  limzn  limwn;
limznwn  limzn limwn; and

lim zn
wn  limzn

limwn
.

provided that limzn and limwn exist. (And in the last equation, we must, of course,
insist that limwn  0.)

A necessary and sufficient condition for the convergence of a sequence an is the
celebrated Cauchy criterion: given   0, there is an integer N so that |an  am |  
whenever n,m  N.

A sequence fn of functions on a domain D is the obvious thing: a function from the
positive integers into the set of complex functions on D. Thus, for each zD, we have an
ordinary sequence fnz. If each of the sequences fnz converges, then we say the
sequence of functions fn converges to the function f defined by fz  limfnz. This
pretty obvious stuff. The sequence fn is said to converge to f uniformly on a set S if
given an   0, there is an integer N so that |fnz  fz|   for all n  N and all z  S.

Note that it is possible for a sequence of continuous functions to have a limit function that
is not continuous. This cannot happen if the convergence is uniform. To see this, suppose
the sequence fn of continuous functions converges uniformly to f on a domain D, let
z0D, and let   0. We need to show there is a  so that |fz0  fz|   whenever
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|z0  z|  . Let’s do it. First, choose N so that |fNz  fz|  
3 . We can do this because

of the uniform convergence of the sequence fn. Next, choose  so that
|fNz0  fNz|  

3 whenever |z0  z|  . This is possible because fN is continuous.
Now then, when |z0  z|  , we have

|fz0  fz|  |fz0  fNz0  fNz0  fNz  fNz  fz|
 |fz0  fNz0|  |fNz0  fNz|  |fNz  fz|
 
3  

3  
3  ,

and we have done it!

Now suppose we have a sequence fn of continuous functions which converges uniformly

on a contour C to the function f. Then the sequence 
C
fnzdz converges to 

C
fzdz. This

is easy to see. Let   0. Now let N be so that |fnz  fz|  
A for n  N, where A is the

length of C. Then,


C

fnzdz  
C

fzdz  
C

fnz  fzdz

 
A A  

whenever n  N.

Now suppose fn is a sequence of functions each analytic on some region D, and suppose
the sequence converges uniformly on D to the function f. Then f is analytic. This result is in
marked contrast to what happens with real functions—examples of uniformly convergent
sequences of differentiable functions with a nondifferentiable limit abound in the real case.
To see that this uniform limit is analytic, let z0D, and let S  z : |z  z0 |  r  D . Now
consider any simple closed curve C  S. Each fn is analytic, and so 

C
fnzdz  0 for every

n. From the uniform convergence of fn , we know that 
C
fzdz is the limit of the sequence


C
fnzdz , and so 

C
fzdz  0. Morera’s theorem now tells us that f is analytic on S, and

hence at z0. Truly a miracle.

Exercises
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1. Prove that a sequence cannot have more than one limit. (We thus speak of the limit of a
sequence.)

2. Give an example of a sequence that does not have a limit, or explain carefully why there
is no such sequence.

3. Give an example of a bounded sequence that does not have a limit, or explain carefully
why there is no such sequence.

4. Give a sequence fn of functions continuous on a set D with a limit that is not
continuous.

5. Give a sequence of real functions differentiable on an interval which converges
uniformly to a nondifferentiable function.

8.2 Series. A series is simply a sequence sn in which sn  a1  a2 an. In other
words, there is sequence an so that sn  sn1  an. The sn are usually called the partial

sums. Recall from Mrs. Turner’s class that if the series 
j1

n
aj has a limit, then it must be

true that
n
lim an  0.

Consider a series 
j1

n
fjz of functions. Chances are this series will converge for some

values of z and not converge for others. A useful result is the celebrated Weierstrass
M-test: Suppose Mj is a sequence of real numbers such that Mj  0 for all j  J, where

J is some number., and suppose also that the series 
j1

n
Mj converges. If for all zD, we

have |fjz|  Mj for all j  J, then the series 
j1

n
fjz converges uniformly on D.

To prove this, begin by letting   0 and choosing N  J so that


jm

n

Mj  

for all n,m  N. (We can do this because of the famous Cauchy criterion.) Next, observe
that
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
jm

n

fjz  
jm

n

|fjz|  
jm

n

Mj  .

This shows that 
j1

n
fjz converges. To see the uniform convergence, observe that


jm

n

fjz  
j0

n

fjz 
j0

m1

fjz  

for all zD and n  m  N. Thus,

n
lim 

j0

n

fjz 
j0

m1

fjz  
j0



fjz 
j0

m1

fjz  

for m  N.(The limit of a series 
j0

n
aj is almost always written as

j0


aj.)

Exercises

6. Find the set D of all z for which the sequence zn
zn3n has a limit. Find the limit.

7. Prove that the series 
j1

n
aj convegres if and only if both the series 

j1

n
Reaj and


j1

n
Imaj converge.

8. Explain how you know that the series 
j1

n
 1z 

j converges uniformly on the set

|z|  5.

8.3 Power series. We are particularly interested in series of functions in which the partial
sums are polynomials of increasing degree:

snz  c0  c1z  z0  c2z  z02 cnz  z0n.
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(We start with n  0 for esthetic reasons.) These are the so-called power series. Thus,

a power series is a series of functions of the form 
j0

n
cjz  z0 j .

Let’s look first as a very special power series, the so-called Geometric series:


j0

n

zj .

Here
sn  1  z  z2 zn, and
zsn  z  z2  z3 zn1.

Subtracting the second of these from the first gives us

1  zsn  1  zn1.

If z  1, then we can’t go any further with this, but I hope it’s clear that the series does not
have a limit in case z  1. Suppose now z  1. Then we have

sn  1
1  z 

zn1
1  z .

Now if |z|  1, it should be clear that limzn1  0, and so

lim 
j0

n

zj  lim sn  1
1  z .

Or,


j0



zj  1
1  z , for |z|  1.

There is a bit more to the story. First, note that if |z|  1, then the Geometric series does
not have a limit (why?). Next, note that if |z|    1, then the Geometric series converges
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uniformly to 1
1z . To see this, note that


j0

n

j

has a limit and appeal to the Weierstrass M-test.

Clearly a power series will have a limit for some values of z and perhaps not for others.
First, note that any power series has a limit when z  z0. Let’s see what else we can say.

Consider a power series 
j0

n
cjz  z0 j . Let

  lim sup j |cj | .

(Recall from 6th grade that lim supak  limsupak : k  n. ) Now let R  1
 . (We

shall say R  0 if   , and R   if   0. ) We are going to show that the series
converges uniformly for all |z  z0 |    R and diverges for all |z  z0 |  R.

First, let’s show the series does not converge for |z  z0 |  R. To begin, let k be so that

1
|z  z0 |

 k  1
R  .

There are an infinite number of cj for which j |cj |  k, otherwise lim sup j |cj |  k. For
each of these cj we have

|cjz  z0 j |  j |cj | |z  z0 |
j
 k|z  z0 | j  1.

It is thus not possible for
n
lim |cnz  z0n |  0, and so the series does not converge.

Next, we show that the series does converge uniformly for |z  z0 |    R. Let k be so
that

  1
R  k  1

 .

Now, for j large enough, we have j |cj |  k. Thus for |z  z0 |  , we have
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|cjz  z0 j |  j |cj | |z  z0 |
j
 k|z  z0 | j  k j.

The geometric series 
j0

n
k j converges because k  1 and the uniform convergence

of 
j0

n
cjz  z0 j follows from the M-test.

Example

Consider the series 
j0

n
1
j! z

j . Let’s compute R  1/ lim sup j |cj |  lim sup j j! . Let

K be any positive integer and choose an integer m large enough to insure that 2m  K2K
2K! .

Now consider n!
Kn , where n  2K  m:

n!
Kn  2K  m!

K2Km
 2K  m2K  m  1 2K  12K!

KmK2K

 2m 2K!
K2K

 1

Thus n n!  K. Reflect on what we have just shown: given any number K, there is a
number n such that n n! is bigger than it. In other words, R  lim sup j j!   , and so the

series 
j0

n
1
j! z

j converges for all z.

Let’s summarize what we have. For any power series 
j0

n
cjz  z0 j , there is a number

R  1
lim sup j |cj |

such that the series converges uniformly for |z  z0 |    R and does not

converge for |z  z0 |  R. (Note that we may have R  0 or R  .) The number R is
called the radius of convergence of the series, and the set |z  z0 |  R is called the circle
of convergence. Observe also that the limit of a power series is a function analytic inside
the circle of convergence (why?).

Exercises

9. Suppose the sequence of real numbers  j has a limit. Prove that
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lim sup j  lim j.

For each of the following, find the set D of points at which the series converges:

10. 
j0

n
j!zj .

11. 
j0

n
jzj .

12. 
j0

n
j2

3j
zj .

13. 
j0

n
1j

22jj!2
z2j

8.4 Integration of power series. Inside the circle of convergence, the limit

Sz 
j0



cjz  z0 j

is an analytic function. We shall show that this series may be integrated
”term-by-term”—that is, the integral of the limit is the limit of the integrals. Specifically, if
C is any contour inside the circle of convergence, and the function g is continuous on C,
then


C

gzSzdz 
j0



cj 
C

gzz  z0 jdz.

Let’s see why this. First, let   0. Let M be the maximum of |gz| on C and let L be the
length of C. Then there is an integer N so that


jn



cjz  z0 j  
ML
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for all n  N. Thus,


C

gz
jn



cjz  z0 j dz  ML 
ML  ,

Hence,


C

gzSzdz 
j0

n1

cj 
C

gzz  z0 jdz  
C

gz
jn



cjz  z0 j dz

 ,

and we have shown what we promised.

8.5 Differentiation of power series. Again, let

Sz 
j0



cjz  z0 j.

Now we are ready to show that inside the circle of convergence,

Sz 
j1



jcjz  z0 j1.

Let z be a point inside the circle of convergence and let C be a positive oriented circle
centered at z and inside the circle of convergence. Define

gs  1
2is  z2

,

and apply the result of the previous section to conclude that
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
C

gsSsds 
j0



cj 
C

gss  z0 jds, or

1
2i 

C

Ss
s  z2

ds 
j0



cj 
C

s  z0 j
s  z2

ds. Thus

Sz 
j0



jcjz  z0 j1,

as promised!

Exercises

14. Find the limit of


j0

n

j  1zj .

For what values of z does the series converge?

15. Find the limit of


j1

n
zj
j .

For what values of z does the series converge?

16. Find a power series 
j0

n
cjz  1 j such that

1
z 

j0



cjz  1 j, for |z  1|  1.

17. Find a power series 
j0

n
cjz  1 j such that
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Log z 
j0



cjz  1 j, for |z  1|  1.
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Chapter Nine

Taylor and Laurent Series

9.1. Taylor series. Suppose f is analytic on the open disk |z  z0 |  r. Let z be any point in
this disk and choose C to be the positively oriented circle of radius , where
|z  z0 |    r. Then for sC we have

1
s  z  1

s  z0  z  z0
 1
s  z0

1
1  zz0

sz0


j0


z  z0 j

s  z0 j1

since | zz0sz0 |  1. The convergence is uniform, so we may integrate


C

fs
s  z ds 

j0




C

fs
s  z0 j1

ds z  z0 j, or

fz  1
2i 

C

fs
s  z ds 

j0


1
2i 

C

fs
s  z0 j1

ds z  z0 j.

We have thus produced a power series having the given analytic function as a limit:

fz 
j0



cjz  z0 j, |z  z0 |  r,

where

cj  1
2i 

C

fs
s  z0 j1

ds.

This is the celebrated Taylor Series for f at z  z0.

We know we may differentiate the series to get

f z 
j1



jcjz  z0 j1
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and this one converges uniformly where the series for f does. We can thus differentiate
again and again to obtain

fnz 
jn



jj  1j  2 j  n  1cjz  z0 jn.

Hence,

fnz0  n!cn, or

cn  fnz0
n! .

But we also know that

cn  1
2i 

C

fs
s  z0n1

ds.

This gives us

fnz0  n!
2i 

C

fs
s  z0n1

ds, for n  0,1,2, .

This is the famous Generalized Cauchy Integral Formula. Recall that we previously
derived this formula for n  0 and 1.

What does all this tell us about the radius of convergence of a power series? Suppose we
have

fz 
j0



cjz  z0 j,

and the radius of convergence is R. Then we know, of course, that the limit function f is
analytic for |z  z0 |  R. We showed that if f is analytic in |z  z0 |  r, then the series
converges for |z  z0 |  r. Thus r  R, and so f cannot be analytic at any point z for which
|z  z0 |  R. In other words, the circle of convergence is the largest circle centered at z0
inside of which the limit f is analytic.
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Example

Let fz  expz  ez. Then f0  f 0  fn0  1, and the Taylor series for f
at z0  0 is

ez 
j0


1
j! z

j

and this is valid for all values of z since f is entire. (We also showed earlier that this
particular series has an infinite radius of convergence.)

Exercises

1. Show that for all z,

ez  e
j0


1
j! z  1

j.

2.What is the radius of convergence of the Taylor series 
j0

n
cjzj for tanh z ?

3. Show that

1
1  z 

j0


z  i j
1  i j1

for |z  i|  2 .

4. If fz  1
1z , what is f

10i ?

5. Suppose f is analytic at z  0 and f0  f 0  f 0  0. Prove there is a function g
analytic at 0 such that fz  z3gz in a neighborhood of 0.

6. Find the Taylor series for fz  sin z at z0  0.

7. Show that the function f defined by
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fz 
sin z
z for z  0
1 for z  0

is analytic at z  0, and find f 0.

9.2. Laurent series. Suppose f is analytic in the region R1  |z  z0 |  R2, and let C be a
positively oriented simple closed curve around z0 in this region. (Note: we include the
possiblites that R1 can be 0, and R2  .) We shall show that for z  C in this region

fz 
j0



ajz  z0 j 
j1

 bj
z  z0 j

,

where

aj  1
2i 

C

fs
s  z0 j1

ds, for j  0,1,2,

and

bj  1
2i 

C

fs
s  z0j1

ds, for j  1,2, .

The sum of the limits of these two series is frequently written

fz 
j



cjz  z0 j,

where

cj  1
2i 

C

fs
s  z0 j1

, j  0,1,2, .

This recipe for fz is called a Laurent series, although it is important to keep in mind that
it is really two series.
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Okay, now let’s derive the above formula. First, let r1 and r2 be so that
R1  r1  |z  z0 |  r2  R2 and so that the point z and the curve C are included in the
region r1  |z  z0 |  r2. Also, let  be a circle centered at z and such that  is included in
this region.

Then fs
sz is an analytic function (of s) on the region bounded by C1,C2, and , where C1 is

the circle |z|  r1 and C2 is the circle |z|  r2. Thus,


C2

fs
s  z ds  

C1

fs
s  z ds  



fs
s  z ds.

(All three circles are positively oriented, of course.) But 


fs
sz ds  2ifz, and so we have

2ifz  
C2

fs
s  z ds  

C1

fs
s  z ds.

Look at the first of the two integrals on the right-hand side of this equation. For sC2, we
have |z  z0 |  |s  z0 |, and so

1
s  z  1

s  z0  z  z0

 1
s  z0

1
1   zz0sz0 

 1
s  z0 

j0


z  z0
s  z0

j


j0


1

s  z0 j1
z  z0 j.
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Hence,


C2

fs
s  z ds 

j0




C2

fs
s  z0 j1

ds z  z0 j

 .
j0




C

fs
s  z0 j1

ds z  z0 j

For the second of these two integrals, note that for sC1 we have |s  z0 |  |z  z0 |, and so

1
s  z  1

z  z0  s  z0
 1
z  z0

1
1   sz0zz0 

 1
z  z0 

j0


s  z0
z  z0

j
 

j0



s  z0 j 1
z  z0 j1

 
j1



s  z0 j1 1
z  z0 j

 
j1


1

s  z0j1
1

z  z0 j

As before,


C1

fs
s  z ds  

j1




C2

fs
s  z0j1

ds 1
z  z0 j

 
j1




C

fs
s  z0j1

ds 1
z  z0 j

Putting this altogether, we have the Laurent series:

fz  1
2i 

C2

fs
s  z ds 

1
2i 

C1

fs
s  z ds


j0


1
2i 

C

fs
s  z0 j1

ds z  z0 j 
j1


1
2i 

C

fs
s  z0j1

ds 1
z  z0 j

.

Example
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Let f be defined by

fz  1
zz  1 .

First, observe that f is analytic in the region 0  |z|  1. Let’s find the Laurent series for f
valid in this region. First,

fz  1
zz  1   1z  1

z  1 .

From our vast knowledge of the Geometric series, we have

fz   1z 
j0



zj.

Now let’s find another Laurent series for f, the one valid for the region 1  |z|  .
First,

1
z  1  1

z
1

1  1
z

.

Now since | 1z |  1, we have

1
z  1  1

z
1

1  1
z

 1
z 

j0



zj 
j1



zj,

and so

fz   1z  1
z  1   1z 

j1



zj

fz 
j2



zj.

Exercises

8. Find two Laurent series in powers of z for the function f defined by
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fz  1
z21  z

and specify the regions in which the series converge to fz.

9. Find two Laurent series in powers of z for the function f defined by

fz  1
z1  z2

and specify the regions in which the series converge to fz.

10. Find the Laurent series in powers of z  1 for fz  1
z in the region 1  |z  1|  .
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Chapter Ten

Poles, Residues, and All That

10.1. Residues. A point z0 is a singular point of a function f if f not analytic at z0, but is
analytic at some point of each neighborhood of z0. A singular point z0 of f is said to be
isolated if there is a neighborhood of z0 which contains no singular points of f save z0. In
other words, f is analytic on some region 0  |z  z0 |  .

Examples

The function f given by

fz  1
zz2  4

has isolated singular points at z  0, z  2i, and z  2i.

Every point on the negative real axis and the origin is a singular point of Log z , but there
are no isolated singular points.

Suppose now that z0 is an isolated singular point of f . Then there is a Laurent series

fz 
j



cjz  z0 j

valid for 0  |z  z0 |  R, for some positive R. The coefficient c1 of z  z01 is called the
residue of f at z0, and is frequently written

zz0
Res f.

Now, why do we care enough about c1to give it a special name? Well, observe that if C is
any positively oriented simple closed curve in 0  |z  z0 |  R and which contains z0
inside, then

c1  1
2i 

C

fzdz.
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This provides the key to evaluating many complex integrals.

Example

We shall evaluate the integral


C

e1/zdz

where C is the circle |z|  1 with the usual positive orientation. Observe that the integrand
has an isolated singularity at z  0. We know then that the value of the integral is simply
2i times the residue of e1/z at 0. Let’s find the Laurent series about 0. We already know
that

ez 
j0


1
j! z

j

for all z . Thus,

e1/z 
j0


1
j! z

j  1  1z  1
2!
1
z2



The residue c1  1, and so the value of the integral is simply 2i.

Now suppose we have a function f which is analytic everywhere except for isolated
singularities, and let C be a simple closed curve (positively oriented) on which f is analytic.
Then there will be only a finite number of singularities of f inside C (why?). Call them z1,
z2,  , zn. For each k  1,2, ,n, let Ck be a positively oriented circle centered at zk and
with radius small enough to insure that it is inside C and has no other singular points inside
it.
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Then,


C

fzdz  
C1

fzdz  
C2

fzdz  
Cn

fzdz

 2i
zz1
Res f  2i

zz2
Res f 2i

zzn
Res f

 2i
k1

n

zzk
Res f.

This is the celebrated Residue Theorem. It says that the integral of f is simply 2i times
the sum of the residues at the singular points enclosed by the contour C.

Exercises

Evaluate the integrals. In each case, C is the positively oriented circle |z|  2.

1. 
C
e1/z2dz.

2. 
C
sin 1z dz.

3. 
C
cos 1z dz.

4. 
C

1
z sin 1z dz.

5. 
C

1
z cos 1z dz.
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10.2. Poles and other singularities. In order for the Residue Theorem to be of much help
in evaluating integrals, there needs to be some better way of computing the
residue—finding the Laurent expansion about each isolated singular point is a chore. We
shall now see that in the case of a special but commonly occurring type of singularity the
residue is easy to find. Suppose z0 is an isolated singularity of f and suppose that the
Laurent series of f at z0 contains only a finite number of terms involving negative powers
of z  z0. Thus,

fz  cn
z  z0n

 cn1
z  z0n1

 c1
z  z0

 c0  c1z  z0  .

Multiply this expression by z  z0n :

z  z  z0nfz  cn  cn1z  z0 c1z  z0n1  .

What we see is the Taylor series at z0 for the function z  z  z0nfz. The coefficient
of z  z0n1 is what we seek, and we know that this is

n1z0
n  1!

.

The sought after residue c1 is thus

c1 
zz0
Res f  n1z0

n  1! ,

where z  z  z0nfz.

Example

We shall find all the residues of the function

fz  ez
z2z2  1

.

First, observe that f has isolated singularities at 0, and i. Let’s see about the residue at 0.
Here we have
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z  z2fz  ez
z2  1

.

The residue is simply  0 :

 z  z2  1ez  2zez
z2  12

.

Hence,

z0
Res f   0  1.

Next, let’s see what we have at z  i:

z  z  ifz  ez
z2z  i

,

and so

zi
Res fz  i   e

i

2i .

In the same way, we see that

zi
Res f  ei

2i .

Let’s find the integral 
C

ez
z2z21

dz , where C is the contour pictured:
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This is now easy. The contour is positive oriented and encloses two singularities of f; viz, i
and i. Hence,


C

ez
z2z2  1

dz  2i
zi
Res f 

zi
Res f

 2i  e
i

2i 
ei
2i

 2i sin1.

Miraculously easy!

There is some jargon that goes with all this. An isolated singular point z0 of f such that the
Laurent series at z0 includes only a finite number of terms involving negative powers of
z  z0 is called a pole. Thus, if z0 is a pole, there is an integer n so that z  z  z0nfz
is analytic at z0, and fz0  0. The number n is called the order of the pole. Thus, in the
preceding example, 0 is a pole of order 2, while i and i are poles of order 1. (A pole of
order 1 is frequently called a simple pole.) We must hedge just a bit here. If z0 is an
isolated singularity of f and there are no Laurent series terms involving negative powers of
z  z0, then we say z0 is a removable singularity.

Example

Let

fz  sin z
z ;

then the singularity z  0 is a removable singularity:

fz  1
z sin z 

1
z z 

z3
3! 

z5
5!  

 1  z
2

3! 
z4
5! 

and we see that in some sense f is ”really” analytic at z  0 if we would just define it to be
the right thing there.

A singularity that is neither a pole or removable is called an essential singularity.

Let’s look at one more labor-saving trick—or technique, if you prefer. Suppose f is a
function:
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fz  pz
qz ,

where p and q are analytic at z0, and we have qz0  0, while qz0  0, and pz0  0.
Then

fz  pz
qz  pz0  pz0z  z0 

qz0z  z0  qz0
2 z  z02

,

and so

z  z  z0fz  pz0  pz0z  z0 
qz0  qz0

2 z  z0 
.

Thus z0 is a simple pole and

zz0
Res f  z0  pz0

qz0
.

Example

Find the integral


C

cos z
ez  1 dz,

where C is the rectangle with sides x  1, y  , and y  3.
The singularities of the integrand are all the places at which ez  1, or in other words, the
points z  0,2i,4i, . The singularities enclosed by C are 0 and 2i. Thus,


C

cos z
ez  1 dz  2i z0

Res f 
z2i
Res f ,

where

fz  cos z
ez  1 .
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Observe this is precisely the situation just discussed: fz  pz
qz , where p and q are

analytic, etc.,etc. Now,

pz
qz

 cos z
ez .

Thus,

z0
Res f  cos0

1  1,and

z2i
Res f  cos2i

e2i
 e2  e2

2  cosh2.

Finally,


C

cos z
ez  1 dz  2i z0

Res f 
z2i
Res f

 2i1  cosh2

Exercises

6. Suppose f has an isolated singularity at z0. Then, of course, the derivative f  also has an
isolated singularity at z0. Find the residue

zz0
Res f .

7. Given an example of a function f with a simple pole at z0 such that
zz0
Res f  0, or explain

carefully why there is no such function.

8. Given an example of a function f with a pole of order 2 at z0 such that
zz0
Res f  0, or

explain carefully why there is no such function.

9. Suppose g is analytic and has a zero of order n at z0 (That is, gz  z  z0nhz, where
hz0  0.). Show that the function f given by

fz  1
gz
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has a pole of order n at z0. What is
zz0
Res f ?

10. Suppose g is analytic and has a zero of order n at z0. Show that the function f given by

fz  gz
gz

has a simple pole at z0, and
zz0
Res f  n.

11. Find


C

cos z
z2  4

dz,

where C is the positively oriented circle |z|  6.

12. Find


C

tan zdz,

where C is the positively oriented circle |z|  2.

13. Find


C

1
z2  z  1

dz,

where C is the positively oriented circle |z|  10.
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Chapter Eleven

Argument Principle

11.1. Argument principle. Let C be a simple closed curve, and suppose f is analytic on C.
Suppose moreover that the only singularities of f inside C are poles. If fz  0 for all zC,
then   fC is a closed curve which does not pass through the origin. If

t,   t  

is a complex description of C, then

t  ft,   t  

is a complex description of . Now, let’s compute


C

f z
fz dz  




f t
ft 

tdt.

But notice that t  f t t. Hence,


C

f z
fz dz  




f t
ft 

tdt  



 t
t dt

 


1
z dz  n2i,

where |n| is the number of times  ”winds around” the origin. The integer n is positive in
case  is traversed in the positive direction, and negative in case the traversal is in the
negative direction.

Next, we shall use the Residue Theorem to evaluate the integral 
C

fz
fz dz. The singularities

of the integrand fz
fz are the poles of f together with the zeros of f. Let’s find the residues at

these points. First, let Z  z1, z2, , zK be set of all zeros of f. Suppose the order of the
zero zj is nj. Then fz  z  zjnjhz and hzj  0. Thus,
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f z
fz 

z  zjnjhz  njz  zjnj1hz
z  zjnjhz

 hz
hz 

nj
z  zj

.

Then

z  z  zj f
z
fz  z  zj h

z
hz  nj,

and

zzj
Res f



f  nj.

The sum of all these residues is thus

N  n1  n2 nK.

Next, we go after the residues at the poles of f. Let the set of poles of f be
P  p1,p2, ,pJ. Suppose pj is a pole of order mj. Then

hz  z  pjmj fz

is analytic at pj. In other words,

fz  hz
z  pjmj

.

Hence,

f z
fz 

z  pjmjhz  mjz  pjmj1hz
z  pj2mj


z  pjmj
hz

 hz
hz 

mj
z  pjmj

.

Now then,
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z  z  pjmj f
z
fz  z  pjmj h

z
hz  mj,

and so

zpj
Res f



f  pj  mj.

The sum of all these residues is

 P  m1  m2 mJ

Then,


C

f z
fz dz  2iN  P;

and we already found that


C

f z
fz dz  n2i,

where n is the ”winding number”, or the number of times  winds around the
origin—n  0 means  winds in the positive sense, and n negative means it winds in the
negative sense. Finally, we have

n  N  P,

where N  n1  n2 nK is the number of zeros inside C, counting multiplicity, or the
order of the zeros, and P  m1  m2 mJ is the number of poles, counting the order.
This result is the celebrated argument principle.

Exercises

1. Let C be the unit circle |z|  1 positively oriented, and let f be given by
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fz  z3.

How many times does the curve fC wind around the origin? Explain.

2. Let C be the unit circle |z|  1 positively oriented, and let f be given by

fz  z2  2
z3

.

How many times does the curve fC wind around the origin? Explain.

3. Let pz  anzn  an1zn1 a1z  a0, with an  0. Prove there is an R  0 so that if
C is the circle |z|  R positively oriented, then


C

pz
pz dz  2ni.

4. How many solutions of 3ez  z  0 are in the disk |z|  1? Explain.

5. Suppose f is entire and fz is real if and only if z is real. Explain how you know that f
has at most one zero.

11.2 Rouche’s Theorem. Suppose f and g are analytic on and inside a simple closed
contour C. Suppose moreover that |fz|  |gz| for all zC. Then we shall see that f and
f  g have the same number of zeros inside C. This result is Rouche’s Theorem. To see
why it is so, start by defining the function t on the interval 0  t  1 :

t  1
2i 

C

f z  tg t
fz  tgz dz.

Observe that this is okay—that is, the denominator of the integrand is never zero:

|fz  tgz|  ||ft|  t|gt||  ||ft|  |gt||  0.

Observe that  is continuous on the interval 0,1 and is integer-valued—t is the
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number of zeros of f  tg inside C. Being continuous and integer-valued on the connected
set 0,1, it must be constant. In particular, 0  1. This does the job!

0  1
2i 

C

f z
fz dz

is the number of zeros of f inside C, and

1  1
2i 

C

f z  gz
fz  gz dz

is the number of zeros of f  g inside C.

Example

How many solutions of the equation z6  5z5  z3  2  0 are inside the circle |z|  1?
Rouche’s Theorem makes it quite easy to answer this. Simply let fz  5z5 and let
gz  z6  z3  2. Then |fz|  5 and |gz|  |z|6  |z|3  2  4 for all |z|  1. Hence
|fz|  |gz| on the unit circle. From Rouche’s Theorem we know then that f and f  g
have the same number of zeros inside |z|  1. Thus, there are 5 such solutions.

The following nice result follows easily from Rouche’s Theorem. Suppose U is an open set
(i.e., every point of U is an interior point) and suppose that a sequence fn of functions
analytic on U converges uniformly to the function f. Suppose further that f is not zero on
the circle C  z : |z  z0 |  R  U. Then there is an integer N so that for all n  N, the
functions fn and f have the same number of zeros inside C.

This result, called Hurwitz’s Theorem, is an easy consequence of Rouche’s Theorem.
Simply observe that for zC, we have |fz|    0 for some . Now let N be large enough
to insure that |fnz  fz|   on C. It follows from Rouche’s Theorem that f and
f  fn  f  fn have the same number of zeros inside C.

Example

On any bounded set, the sequence fn, where fnz  1  z  z2
2  zn

n! , converges
uniformly to fz  ez, and fz  0 for all z. Thus for any R, there is an N so that for
n  N, every zero of 1  z  z2

2  zn
n! has modulus  R. Or to put it another way, given

an R there is an N so that for n  N no polynomial 1  z  z2
2  zn

n! has a zero inside the
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circle of radius R.

Exercises

6. Show that the polynomial z6  4z2  1 has exactly two zeros inside the circle |z|  1.

7. How many solutions of 2z4  2z3  2z2  2z  9  0 lie inside the circle |z|  1?

8. Use Rouche’s Theorem to prove that every polynomial of degree n has exactly n zeros
(counting multiplicity, of course).

9. Let C be the closed unit disk |z|  1. Suppose the function f analytic on C maps C into
the open unit disk |z|  1—that is, |fz|  1 for all zC. Prove there is exactly one wC
such that fw  w. (The point w is called a fixed point of f .)
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