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2 J.S. MILNE

Introduction

Just as the starting point of linear algebra is the study of the solutions of systems
of linear equations,

n∑
j=1

aijXj = di, i = 1, . . . , m, (*)

the starting point for algebraic geometry is the study of the solutions of systems of
polynomial equations,

fi(X1, . . . , Xn) = 0, i = 1, . . . , m, fi ∈ k[X1, . . . , Xn].

Note immediately one difference between linear equations and polynomial equations:
theorems for linear equations don’t depend on which field k you are working over,1

but those for polynomial equations depend on whether or not k is algebraically closed
and (to a lesser extent) whether k has characteristic zero. Since I intend to emphasize
the geometry in this course, we will work over algebraically closed fields for the major
part of the course.

A better description of algebraic geometry is that it is the study of polynomial func-
tions and the spaces on which they are defined (algebraic varieties), just as topology
is the study of continuous functions and the spaces on which they are defined (topo-
logical spaces), differential geometry (=advanced calculus) the study of differentiable
functions and the spaces on which they are defined (differentiable manifolds), and
complex analysis the study of holomorphic functions and the spaces on which they
are defined (Riemann surfaces and complex manifolds). The approach adopted in
this course makes plain the similarities between these different fields. Of course, the
polynomial functions form a much less rich class than the others, but by restricting
our study to polynomials we are able to do calculus over any field: we simply define

d

dX

∑
aiX

i =
∑

iaiX
i−1.

Moreover, calculations (on a computer) with polynomials are easier than with more
general functions.

Consider a differentiable function f(x, y, z). In calculus, we learn that the equation

f(x, y, z) = C (**)

defines a surface S in R3, and that the tangent space to S at a point P = (a, b, c) has
equation2 (

∂f

∂x

)
P

(x− a) +

(
∂f

∂y

)
P

(y − b) +

(
∂f

∂z

)
P

(z − c) = 0. (***).

The inverse function theorem says that a differentiable map α : S → S ′ of surfaces is
a local isomorphism at a point P ∈ S if it maps the tangent space at P isomorphically
onto the tangent space at P ′ = α(P ).

1For example, suppose that the system (*) has coefficients aij ∈ k and that K is a field containing
k. Then (*) has a solution in kn if and only if it has a solution in Kn, and the dimension of the
space of solutions is the same for both fields. (Exercise!)

2Think of S as a level surface for the function f , and note that the equation is that of a plane
through (a, b, c) perpendicular to the gradient vector (�f)P at P .)
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Consider a polynomial f(x, y, z) with coefficients in a field k. In this course, we
shall learn that the equation (**) defines a surface in k3, and we shall use the equation
(***) to define the tangent space at a point P on the surface. However, and this is
one of the essential differences between algebraic geometry and the other fields, the
inverse function theorem doesn’t hold in algebraic geometry. One other essential
difference: 1/X is not the derivative of any rational function of X; nor is Xnp−1 in
characteristic p �= 0. Neither can be integrated in the ring of polynomial functions.

Some notations. Recall that a field k is said to be algebraically closed if every
polynomial f(X) with coefficients in k factors completely in k. Examples: C, or the
subfield Q al of C consisting of all complex numbers algebraic over Q. Every field k
is contained in an algebraically closed field.

A field of characteristic zero contains a copy of Q, the field of rational numbers. A
field of characteristic p contains a copy of Fp, the field Z/pZ. The symbol N denotes
the natural numbers, N = {0, 1, 2, . . . }. Given an equivalence relation, [∗] sometimes
denotes the equivalence class containing ∗.

“Ring” will mean “commutative ring with 1”, and a homomorphism of rings will
always carry 1 to 1. For a ring A, A× is the group of units in A:

A× = {a ∈ A | ∃b ∈ A such that ab = 1}.
A subset R of a ring A is a subring if it is closed under addition, multiplication, the
formation of negatives, and contains the identity element.3 We use Gothic (fraktur)
letters for ideals:

a b c m n p q A B C M N P Q
a b c m n p q A B C M N P Q

We use the following notations:

X ≈ Y X and Y are isomorphic;
X ∼= Y X and Y are canonically isomorphic (or there is a given or unique isomorphism);

X
df
= Y X is defined to be Y , or equals Y by definition;

X ⊂ Y X is a subset of Y (not necessarily proper).

3The definition on page 2 of Atiyah and MacDonald 1969 is incorrect, since it omits the condition
that x ∈ R ⇒ −x ∈ R — the subset N of Z satisfies their conditions, but it is not a subring of Z.
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0. Algorithms for Polynomials

In this section, we first review some basic definitions from commutative algebra,
and then we derive some algorithms for working in polynomial rings. Those not
interested in algorithms can skip the section.

Throughout the section, k will be a field (not necessarily algebraically).

Ideals. Let A be a ring. Recall that an ideal a in A is a subset such that

(a) a is a subgroup of A regarded as a group under addition;
(b) a ∈ a, r ∈ A⇒ ra ∈ A.

The ideal generated by a subset S of A is the intersection of all ideals A containing
a — it is easy to verify that this is in fact an ideal, and that it consists of all finite
sums of the form

∑
risi with ri ∈ A, si ∈ S. When S = {s1, . . . , sm}, we shall write

(s1, . . . , sm) for the ideal it generates.

Let a and b be ideals in A. The set {a + b | a ∈ a, b ∈ b} is an ideal, denoted
by a + b. The ideal generated by {ab | a ∈ a, b ∈ b} is denoted by ab. Note that
ab ⊂ a ∩ b. Clearly ab consists of all finite sums

∑
aibi with ai ∈ a and bi ∈ b, and

if a = (a1, . . . , am) and b = (b1, . . . , bn), then ab = (a1b1, . . . , aibj, . . . , ambn).

Let a be an ideal of A. The set of cosets of a in A forms a ring A/a, and a �→ a+a is
a homomorphism ϕ : A→ A/a. The map b �→ ϕ−1(b) is a one-to-one correspondence
between the ideals of A/a and the ideals of A containing a.

An ideal p if prime if p �= A and ab ∈ p ⇒ a ∈ p or b ∈ p. Thus p is prime if and
only if A/p is nonzero and has the property that

ab = 0, b �= 0 ⇒ a = 0,

i.e., A/p is an integral domain.

An ideal m is maximal if m �= A and there does not exist an ideal n contained
strictly between m and A. Thus m is maximal if and only if A/m has no proper
nonzero ideals, and so is a field. Note that

m maximal ⇒ m prime.

The ideals of A × B are all of the form a × b, with a and b ideals in A and B. To
see this, note that if c is an ideal in A×B and (a, b) ∈ c, then (a, 0) = (a, b)(1, 0) ∈ c
and (0, b) = (a, b)(0, 1) ∈ c. This shows that c = a× b with

a = {a | (a, b) ∈ c some b ∈ b}
and

b = {b | (a, b) ∈ c some a ∈ a}.
Proposition 0.1. The following conditions on a ring A are equivalent:

(a) every ideal in A is finitely generated;
(b) every ascending chain of ideals a1 ⊂ a2 ⊂ · · · becomes stationary, i.e., for some

m, am = am+1 = · · · .
(c) every nonempty set of ideals in A has maximal element, i.e., an element not

properly contained in any other ideal in the set.
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Proof. (a) ⇒ (b): If a1 ⊂ a2 ⊂ · · · is an ascending chain, then ∪ai is again an
ideal, and hence has a finite set {a1, . . . , an} of generators. For some m, all the ai
belong am and then

am = am+1 = · · · = a.

(b) ⇒ (c): If (c) is false, then there exists a nonempty set S of ideals with no
maximal element. Let a1 ∈ S; because a1 is not maximal in S, there exists an
ideal a2 in S that properly contains a1. Similarly, there exists an ideal a3 in S
properly containing a2, etc.. In this way, we can construct an ascending chain of
ideals a1 ⊂ a2 ⊂ a3 ⊂ · · · in S that never becomes stationary.

(c) ⇒ (a): Let a be an ideal, and let S be the set of ideals b ⊂ a that are finitely
generated. Let c = (a1, . . . , ar) be a maximal element of S. If c �= a, so that there
exists an element a ∈ a, a /∈ c, then c′ = (a1, . . . , ar, a) ⊂ a and properly contains c,
which contradicts the definition of c.

A ring A is Noetherian if it satisfies the conditions of the proposition. Note that,
in a Noetherian ring, every ideal is contained in a maximal ideal (apply (c) to the
set of all proper ideals of A containing the given ideal). In fact, this is true in any
ring, but the proof for non-Noetherian rings requires the axiom of choice (Atiyah and
MacDonald 1969, p3).

Algebras. Let A be a ring. An A-algebra is a ring B together with a homomorphism
iB : A → B. A homomorphism of A-algebras B → C is a homomorphism of rings
ϕ : B → C such that ϕ(iB(a)) = iC(a) for all a ∈ A.

An A-algebra B is said to be finitely generated (or of finite-type over A) if there
exist elements x1, . . . , xn ∈ B such that every element of B can be expressed as
a polynomial in the xi with coefficients in i(A), i.e., such that the homomorphism
A[X1, . . . , Xn] → B sending Xi to xi is surjective.

A ring homomorphism A→ B is finite, and B is a finite A-algebra, if B is finitely
generated as an A-module4.

Let k be a field, and let A be a k-algebra. If 1 �= 0 in A, then the map k → A is
injective, and we can identify k with its image, i.e., we can regard k as a subring of
A. If 1 = 0 in a ring R, the R is the zero ring, i.e., R = {0}.

Polynomial rings. Let k be a field. A monomial in X1, . . . , Xn is an expression of
the form

Xa11 · · ·Xan
n , aj ∈ N.

The total degree of the monomial is
∑

ai. We sometimes abbreviate it by Xα, α =
(a1, . . . , an) ∈ Nn.

The elements of the polynomial ring k[X1, . . . , Xn] are finite sums∑
ca1···anX

a1
1 · · ·Xan

n , ca1···an ∈ k, aj ∈ N.

with the obvious notions of equality, addition, and multiplication. Thus the mono-
mials from a basis for k[X1, . . . , Xn] as a k-vector space.

4The term “module-finite” is used in this context only by the English-insensitive.
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The ring k[X1, . . . , Xn] is an integral domain, and the only units in it are the
nonzero constant polynomials. A polynomial f(X1, . . . , Xn) is irreducible if it is
nonconstant and has only the obvious factorizations, i.e., f = gh⇒ g or h is constant.

Theorem 0.2. The ring k[X1, . . . , Xn] is a unique factorization domain, i.e., each
nonzero nonconstant polynomial f can be written as a finite product of irreducible
polynomials in exactly one way (up to constants and the order of the factors).

Proof. This is usually proved in basic graduate algebra courses. There is a de-
tailed proof in Herstein, Topics in Algebra, 1975, 3.11. It proceeds by induction on the
number of variables: if R is a unique factorization domain, then so also is R[X].

Corollary 0.3. A nonzero principal ideal (f) in k[X1, . . . , Xn] is prime if and
only f is irreducible.

Proof. Assume (f) is a prime ideal. Then f can’t be a unit (otherwise (f) is the
whole ring), and if f = gh then gh ∈ (f), which, because (f) is prime, implies that
g or h is in (f), i.e., that one is divisible by f , say g = fq. Now f = fq h implies
that q h = 1, and that h is a unit. Conversely, assume f is irreducible. If gh ∈ (f),
then f |gh, which implies that f |g or f |h (here we use that k[X1, . . . , Xn] is a unique
factorization domain), i.e., that g or h ∈ (f).

The two main results of this section will be:

(a) (Hilbert basis theorem) Every ideal in k[X1, . . . , Xn] has a finite set of generators
(in fact, of a special sort).

(b) There exists an algorithm for deciding whether a polynomial belongs to an ideal.

This remainder of this section is a summary of Cox et al.1992, pp 1–111, to which
I refer the reader for more details.

Division in k[X]. The division algorithm allows us to divide a nonzero polynomial
into another: let f and g be polynomials in k[X] with g �= 0; then there exist unique
polynomials q, r ∈ k[X] such that f = qg + r with either r = 0 or deg r < deg g.
Moreover, there is an algorithm for deciding whether f ∈ (g), namely, find r and
check whether it is zero.

In Maple,

quo(f, g, X); computes q
rem(f, g, X); computes r

Moreover, the Euclidean algorithm allows you to pass from a finite set of genera-
tors for an ideal in k[X] to a single generator by successively replacing each pair of
generators with their greatest common divisor.

Orderings on monomials. Before we can describe an algorithm for dividing in
k[X1, . . . , Xn], we shall need to choose a way of ordering monomials. Essentially this
amounts to defining an ordering on Nn. There are two main systems, the first of
which is preferred by humans, and the second by machines.

(Pure) lexicographic ordering (lex). Here monomials are orderd by lexicographic
(dictionary) order. More precisely, let α = (a1, . . . , an) and β = (b1, . . . , bn) be two
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elements of Nn; then

α > β and Xα > Xβ (lexicographic ordering)

if, in the vector difference α − β ∈ Z, the left-most nonzero entry is positive. For
example,

XY 2 > Y 3Z4; X3Y 2Z4 > X3Y 2Z.

Note that this isn’t quite how the dictionary would order them: it would put
XXXYYZZZZ after XXXYYZ.

Graded reverse lexicographic order (grevlex). Here monomials are ordered by total
degree, with ties broken by reverse lexicographic ordering. Thus, α > β if

∑
ai >∑

bi, or
∑

ai =
∑

bi and in α − β the right-most nonzero entry is negative. For
example:

X4Y 4Z7 > X5Y 5Z4 (total degree greater)

XY 5Z2 > X4Y Z3, X5Y Z > X4Y Z2.

Orderings on k[X1, . . . , Xn]. Fix an ordering on the monomials in k[X1, . . . , Xn].
Then we can write an element f of k[X1, . . . , Xn] in a canonical fashion, by re-ordering
its elements in decreasing order. For example, we would write

f = 4XY 2Z + 4Z2 − 5X3 + 7X2Z2

as

f = −5X3 + 7X2Z2 + 4XY 2Z + 4Z2 (lex)

or

f = 4XY 2Z + 7X2Z2 − 5X3 + 4Z2 (grevlex)

Let f =
∑

aαX
α ∈ k[X1, . . . , Xn]. Write it in decreasing order:

f = aα0X
α0 + aα1X

α1 + · · · , α0 > α1 > · · · , aα0 �= 0.

Then we define:

(a) the multidegree of f to be multdeg(f) = α0;
(b) the leading coefficient of f to be LC(f) = aα0;
(c) the leading monomial of f to be LM(f) = Xα0;
(d) the leading term of f to be LT(f) = aα0X

α0 .

For example, for the polynomial f = 4XY 2Z + · · · , the multidegree is (1, 2, 1),
the leading coefficient is 4, the leading monomial is XY 2Z, and the leading term is
4XY 2Z.

The division algorithm in k[X1, . . . , Xn]. Fix a monomial ordering in Nn. Suppose
given a polynomial f and an ordered set (g1, . . . , gs) of polynomials; the division
algorithm then constructs polynomials a1, . . . , as and r such that

f = a1g1 + · · ·+ asgs + r

where either r = 0 or no monomial in r is divisible by any of LT(g1), . . . ,LT(gs).
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Step 1: If LT(g1)|LT(f), divide g1 into f to get

f = a1g1 + h, a1 =
LT(f)

LT(g1)
∈ k[X1, . . . , Xn].

If LT(g1)|LT(h), repeat the process until

f = a1g1 + f1

(different a1) with LT(f1) not divisible by LT(g1). Now divide g2 into f1, and so on,
until

f = a1g1 + · · ·+ asgs + r1

with LT(r1) not divisible by any of LT(g1), . . . ,LT(gs).

Step 2: Rewrite r1 = LT(r1) + r2, and repeat Step 1 with r2 for f :

f = a1g1 + · · ·+ asgs + LT(r1) + r3

(different ai’s).

Step 3: Rewrite r3 = LT(r3) + r4, and repeat Step 1 with r4 for f . f=a

f = a1g1 + · · ·+ asgs + LT(r1) + LT(r3) + r3

(different ai’s).

Continue until you achieve a remainder with the required property. In more detail,5

after dividing through once by g1, . . . , gs, you repeat the process until no leading term
of one of the gi’s divides the leading term of the remainder. Then you discard the
leading term of the remainder, and repeat . . . .

Example 0.4. (a) Consider

f = X2Y + XY 2 + Y 2, g1 = XY − 1, g2 = Y 2 − 1.

First, on dividing g1 into f , we obtain

X2Y + XY 2 + Y 2 = (X + Y )(XY − 1) + X + Y 2 + Y.

This completes the first step, because the leading term of Y 2− 1 does not divide the
leading term of the remainder X + Y 2 + Y . We discard X, and write

Y 2 + Y = 1 · (Y 2 − 1) + Y + 1.

Altogether

X2Y + XY 2 + Y 2 = (X + Y ) · (XY − 1) + 1 · (Y 2 − 1) + X + Y + 1.

(b) Consider the same polynomials, but with a different order for the divisors

f = X2Y + XY 2 + Y 2, g1 = Y 2 − 1, g2 = XY − 1.

In the first step,

X2Y + XY 2 + Y 2 = (X + 1) · (Y 2 − 1) + X · (XY − 1) + 2X + 1.

Thus, in this case, the remainder is 2X + 1.

5This differs from the algorithm in Cox et al. 1992, p63, which says to go back to g1 after every
successful division.
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Remark 0.5. (a) If r = 0, then f ∈ (g1, . . . , gs).

(b) Unfortunately, the remainder one obtains depends on the ordering of the gi’s.
For example, (lex ordering)

XY 2 −X = Y · (XY + 1) + 0 · (Y 2 − 1) +−X − Y

but

XY 2 −X = X · (Y 2 − 1) + 0 · (XY − 1) + 0.

Thus, the division algorithm (as stated) will not provide a test for f lying in the ideal
generated by g1, . . . , gs.

Monomial ideals. In general, an ideal a will contain a polynomial without contain-
ing the individual terms of the polynomial; for example, the ideal a = (Y 2 − X3)
contains Y 2 −X3 but not Y 2 or X3.

Definition 0.6. An ideal a is monomial if∑
cαX

α ∈ a ⇒ Xα ∈ a all α with cα �= 0.

Proposition 0.7. Let a be a monomial ideal, and let A = {α | Xα ∈ a}. Then A
satisfies the condition

α ∈ A, β ∈ Nn ⇒ α + β ∈ A. (*)

and a is the k-subspace of k[X1, . . . , Xn] generated by the Xα, α ∈ A. Conversely, if
A is a subset of Nn satisfying (*), then the k-subspace a of k[X1, . . . , Xn] generated
by {Xα | α ∈ A} is a monomial ideal.

Proof. It is clear from its definition that a monomial ideal a is the k-subspace
of k[X1, . . . , Xn] generated by the set of monomials it contains. If Xα ∈ a and
Xβ ∈ k[X1, . . . , Xn], then XαXβ = Xα+β ∈ a, and so A satisfies the condition (*).
Conversely, (∑

α∈A
cαX

α

)(∑
β∈Nn

dβX
β

)
=
∑
α,β

cαdβX
α+β (finite sums),

and so if A satisfies (*), then the subspace generated by the monomials Xα, α ∈ A,
is an ideal.

The proposition gives a classification of the monomial ideals in k[X1, . . . , Xn]: they
are in one-to-one correspondence with the subsets A of Nn satisfying (*). For example,
the monomial ideals in k[X] are exactly the ideals (Xn), n ≥ 1, and the zero ideal
(corresponding to the empty set A). We write

〈Xα | α ∈ A〉
for the ideal corresponding to A (subspace generated by the Xα, α ∈ A).

Lemma 0.8. Let S be a subset of Nn. Then the ideal a generated by {Xα | α ∈ S}
is the monomial ideal corresponding to

A
df
= {β ∈ Nn | β − α ∈ Nn, some α ∈ S}.

Thus, a monomial is in a if and only if it is divisible by one of the Xα, α ∈ S.
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Proof. Clearly A satisfies (*), and a ⊂ 〈Xβ | β ∈ A〉. Conversely, if β ∈ A, then
β−α ∈ Nn for some α ∈ S, and Xβ = XαXβ−α ∈ a. The last statement follows from
the fact that Xα|Xβ ⇐⇒ β − α ∈ Nn.

Let A ⊂ N2 satisfy (*). From the geometry of A, it is clear that there is a finite
set of elements S = {α1, . . . , αs} of A such that

A = {β ∈ N2 | β − αi ∈ N2, some αi ∈ S}.
(The αi’s are the “corners” of A.) Moreover, a

df
= 〈Xα | α ∈ A〉 is generated by the

monomials Xαi, αi ∈ S. This suggests the following result.

Theorem 0.9 (Dickson’s Lemma). Let a be the monomial ideal corresponding to
the subset A ⊂ Nn. Then a is generated by a finite subset of {Xα | α ∈ A}.

Proof. This is proved by induction on the number of variables — Cox et al. 1992,
p70.

Hilbert Basis Theorem.

Definition 0.10. For a nonzero ideal a in k[X1, . . . , Xn], we let (LT(a)) be the
ideal generated by

{LT(f) | f ∈ a}.
Lemma 0.11. Let a be a nonzero ideal in k[X1, . . . , Xn]; then (LT(a)) is a mono-

mial ideal, and it equals (LT(g1), . . . ,LT(gn)) for some g1, . . . , gn ∈ a.

Proof. Since (LT(a)) can also be described as the ideal generated by the leading
monomials (rather than the leading terms) of elements of a, it follows from Lemma 0.8
that it is monomial. Now Dickson’s Lemma shows that it equals (LT(g1), . . . ,LT(gs))
for some gi ∈ a.

Theorem 0.12 (Hilbert Basis Theorem). Every ideal a in k[X1, . . . , Xn] is
finitely generated; more precisely, a = (g1, . . . , gs) where g1, . . . , gs are any elements
of a whose leading terms generate LT(a).

Proof. Let f ∈ a. On applying the division algorithm, we find

f = a1g1 + · · · + asgs + r, ai, r ∈ k[X1, . . . , Xn],

where either r = 0 or no monomial occurring in it is divisible by any LT(gi). But
r = f −∑ aigi ∈ a, and therefore LT(r) ∈ LT(a) = (LT(g1), . . . ,LT(gs)), which,
according to Lemma 0.8, implies that every monomial occurring in r is divisible by
one in LT(gi). Thus r = 0, and g ∈ (g1, . . . , gs).

Standard (Gröbner) bases. Fix a monomial ordering of k[X1, . . . , Xn].

Definition 0.13. A finite subset S = {g1, . . . , gs} of an ideal a is a standard
(Grobner, Groebner, Gröbner) basis for 6 a if

(LT(g1), . . . ,LT(gs)) = LT(a).

6Standard bases were first introduced (under that name) by Hironaka in the mid-1960s, and
independently, but slightly later, by Buchberger in his Ph.D. thesis. Buchberger named them after
his thesis adviser Gröbner.



Algebraic Geometry: 0. Algorithms for Polynomials 11

In other words, S is a standard basis if the leading term of every element of a is
divisible by at least one of the leading terms of the gi.

Theorem 0.14. Every ideal has a standard basis, and it generates the ideal; if
{g1, . . . , gs} is a standard basis for an ideal a, then f ∈ a ⇐⇒ the remainder on
division by the gi is 0.

Proof. Our proof of the Hilbert basis theorem shows that every ideal has a stan-
dard basis, and that it generates the ideal. Let f ∈ a. The argument in the same
proof, that the remainder of f on division by g1, . . . , gs is 0, used only that {g1, . . . , gs}
is a standard basis for a..

Remark 0.15. The proposition shows that, for f ∈ a, the remainder of f on
division by {g1, . . . , gs} is independent of the order of the gi (in fact, it’s always
zero). This is not true if f /∈ a — see the example using Maple at the end of this
section.

Let a = (f1, . . . , fs). Typically, {f1, . . . , fs} will fail to be a standard basis because
in some expression

cXαfi − dXβfj, c, d ∈ k, (**)

the leading terms will cancel, and we will get a new leading term not in the ideal
generated by the leading terms of the fi. For example,

X2 = X · (X2Y + X − 2Y 2)− Y · (X3 − 2XY )

is in the ideal generated by X2Y +X − 2Y 2 and X3 − 2XY but it is not in the ideal
generated by their leading terms.

There is an algorithm for transforming a set of generators for an ideal into a stan-
dard basis, which, roughly speaking, makes adroit use of equations of the form (**)
to construct enough new elements to make a standard basis — see Cox et al. 1992,
pp80–87.

We now have an algorithm for deciding whether f ∈ (f1, . . . , fr). First transform
{f1, . . . , fr} into a standard basis {g1, . . . , gs}, and then divide f by g1, . . . , gs to
see whether the remainder is 0 (in which case f lies in the ideal) or nonzero (and it
doesn’t). This algorithm is implemented in Maple — see below.

A standard basis {g1, . . . , gs} is minimal if each gi has leading coefficient 1 and,
for all i, the leading term of gi does not belong to the ideal generated by the leading
terms of the remaining g’s. A standard basis {g1, . . . , gs} is reduced if each gi has
leading coefficient 1 and if, for all i, no monomial of gi lies in the ideal generated by
the leading terms of the remaining g’s. One can prove (Cox et al. 1992, p91) that
every nonzero ideal has a unique reduced standard basis.

Remark 0.16. Consider polynomials f, g1, . . . , gs ∈ k[X1, . . . , Xn]. The al-
gorithm that replaces g1, . . . , gs with a standard basis works entirely within
k[X1, . . . , Xn], i.e., it doesn’t require a field extension. Likewise, the division al-
gorithm doesn’t require a field extension. Because these operations give well-defined
answers, whether we carry them out in k[X1, . . . , Xn] or in K[X1, . . . , Xn], K ⊃ k,
we get the same answer. Maple appears to work in the subfield of C generated over
Q by all the constants occurring in the polynomials.
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As we said earlier, the reader is referred to Cox et al. 1992 pp1–111 for more details
on standard bases.

We conclude this section with the annotated transcript of a session in Maple ap-
plying the above algorithm to show that

q = 3x3yz2 − xz2 + y3 + yz

doesn’t lie in the ideal

(x2 − 2xz + 5, xy2 + yz3, 3y2 − 8z3).

A Maple Session

> with(grobner);

[This loads the grobner package, and lists the available commands:

finduni, finite, gbasis, gsolve, leadmon, normalf, solvable, spoly

To discover the syntax of a command, a brief description of the command, and an
example, type “?command;”]

>G:=gbasis([x^2-2*x*z+5,x*y^2+y*z^3,3*y^2-8*z^3],[x,y,z]);

[This asks Maple to find the reduced Grobner basis for the ideal generated by the
three polynomials listed, with respect to the indeterminates listed (in that order). It
will automatically use grevlex order unless you add ,plex to the command.]

G := [x2 − 2xz + 5,−3y2 + 8z3, 8xy2 + 3y3, 9y4 + 48zy3 + 320y2]

> q:=3*x^3*y*z^2 - x*z^2 + y^3 + y*z;

q := 3x3yz2 − xz2 + y3 + zy

[This defines the polynomial q.]

> normalf(q,G,[x,y,z]);

9z2y3 − 15yz2x− 41
4
y3 + 60y2z − xz2 + zy

[Asks for the remainder when q is divided by the polynomials listed in G using
the indeterminates listed. This particular example is amusing—the program gives
different orderings for G, and different answers for the remainder, depending on which
computer I use. This is O.K., because, since q isn’t in the ideal, the remainder may
depend on the ordering of G.]

Notes:

1. To start Maple on a Unix computer type “maple”; to quit type “quit”.

2. Maple won’t do anything until you type “;” or “:” at the end of a line.

3. The student version of Maple is quite cheap, but unfortunately, it doesn’t have
the Grobner package.

4. For more information on Maple:

(a) There is a brief discussion of the Grobner package in Cox et al. 1992, especially
pp 487–489.

(b) The Maple V Library Reference Manual pp469–478 briefly describes what the
Grobner package does (exactly the same information is available on line, by
typing ?command).

(c) There are many books containing general introductions to Maple syntax.
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5. Gröbner bases are also implemented in Macsyma, Mathematica, and Axiom,
but for serious work it is better to use one of the programs especially designed for
Gröbner basis computation, namely, CoCoA (Computations in Commutative Alge-
bra) or Macaulay (available at: ftp math.harvard.edu, login ftp, password any,
cd Macaulay; better, point your web browser to ftp.math.harvard.edu).
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1. Algebraic Sets

We now take k to be an algebraically closed field.

Definition of an algebraic set. An algebraic subset V (S) of kn is the set of common
zeros of some set S of polynomials in k[X1, . . . , Xn]:

V (S) = {(a1, . . . , an) ∈ kn | f(a1, . . . , an) = 0 all f(X1, . . . , Xn) ∈ S}.
Note that

S ⊂ S ′ ⇒ V (S) ⊃ V (S ′);

— the more equations we have, the fewer solutions.

Recall that the ideal a generated by a set S consists of all finite sums∑
figi, fi ∈ k[X1, . . . , Xn], gi ∈ S.

Such a sum
∑

figi is zero at any point at which the gi are zero, and so V (S) ⊂ V (a),
but the reverse conclusion is also true because S ⊂ a. Thus V (S) = V (a)—the zero
set of S is the same as that of the ideal generated by S. Hence the algebraic sets can
also be described as the sets of the form V (a), a an ideal in k[X1, . . . , Xn].

Example 1.1. (a) If S is a system of homogeneous linear equations, then V (S) is
a subspace of kn. If S is a system of nonhomogeneous linear equations, V (S) is either
empty or is the translate of a subspace of kn.

(b) If S consists of the single equation

Y 2 = X3 + aX + b, 4a3 + 27b2 �= 0,

then V (S) is an elliptic curve. For more on elliptic curves, and their relation to
Fermat’s last theorem, see my notes on Elliptic Curves. The reader should sketch the
curve for particular values of a and b. We generally visualize algebraic sets as though
the field k were R.

(c) If S is the empty set, then V (S) = kn.

(d) The algebraic subsets of k are the finite subsets (including ∅) and k itself.

(e) Some generating sets for an ideal will be more useful than others for determining
what the algebraic set is. For example, a Gröbner basis for the ideal

a = (X2 + Y 2 + Z2 − 1, X2 + Y 2 − Y, X − Z)

is (according to Maple)

X − Z, Y 2 − 2Y + 1, Z2 − 1 + Y.

The middle polynomial has (double) root 1, and it follows easily that V (a) consists
of the single point (0, 1, 0).

The Hilbert basis theorem. In our definition of an algebraic set, we didn’t require
the set S of polynomials to be finite, but the Hilbert basis theorem shows that every
algebraic set will also be the zero set of a finite set of polynomials. More precisely,
the theorem shows that every ideal in k[X1, . . . , Xn] can be generated by a finite set
of elements, and we have already observed that any set of generators of an ideal has
the same zero set as the ideal.
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We sketched an algorithmic proof of the Hilbert basis theorem in the last section.
Here we give the slick proof.

Theorem 1.2 (Hilbert Basis Theorem). The ring k[X1, . . . , Xn] is Noetherian,
i.e., every ideal is finitely generated.

Proof. For n = 1, this is proved in advanced undergraduate algebra courses:
k[X] is a principal ideal domain, which means that every ideal is generated by a
single element. We shall prove the theorem by induction on n. Note that the obvious
map

k[X1, . . . , Xn−1][Xn] → k[X1, . . . , Xn]

is an isomorphism—this simply says that every polynomial f in n variables
X1, . . . , Xn can be expressed uniquely as a polynomial in Xn with coefficients in
k[X1, . . . , Xn−1] :

f(X1, . . . , Xn) = a0(X1, . . . , Xn−1)Xrn + · · ·+ ar(X1, . . . , Xn−1).

Thus the next lemma will complete the proof.

Lemma 1.3. If A is Noetherian, then so also is A[X].

Proof. For a polynomial

f(X) = a0X
r + a1X

r−1 + · · ·+ ar, ai ∈ A, a0 �= 0,

r is called the degree of f , and a0 is its leading coefficient. We call 0 the leading
coefficient of the polynomial 0.

Let a be an ideal in A[X]. The leading coefficients of the polynomials in a form an
ideal a′ in A, and since A is Noetherian, a′ will be finitely generated. Let g1, . . . , gm
be elements of a whose leading coefficients generate a′, and let r be the maximum
degree of the gi.

Now let f ∈ a, and suppose f has degree s > r, say, f = aXs + · · · . Then a ∈ a′,
and so we can write

a =
∑

biai, bi ∈ A, ai = leading coefficient of gi.

Now

f −
∑

bigiX
s−ri , ri = deg(gi),

has degree < deg(f). By continuing in this way, we find that

f ≡ ft mod (g1, . . . , gm)

with ft a polynomial of degree t < r.

For each d < r, let ad be the subset of A consisting of 0 and the leading coefficients
of all polynomials in a of degree d; it is again an ideal in A. Let gd,1, . . . , gd,md

be polynomials of degree d whose leading coefficients generate ad. Then the same
argument as above shows that any polynomial fd in a of degree d can be written

fd ≡ fd−1 mod (gd,1, . . . , gd,md
)

with fd−1 of degree ≤ d− 1. On applying this remark repeatedly we find that

ft ∈ (gr−1,1, . . . , gr−1,mr−1 , . . . , g0,1, . . . , g0,m0).
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Hence

f ∈ (g1, . . . , gm, gr−1,1, . . . , gr−1,mr−1 , . . . , g0,1, . . . , g0,m0),

and so the polynomials g1, . . . , g0,m0 generate a.

Aside 1.4. One may ask how many elements are needed to generate an ideal a in
k[X1, . . . , Xn], or, what is not quite the same thing, how many equations are needed
to define an algebraic set V . When n = 1, we know that every ideal is generated
by a single element. Also, if V is a linear subspace of kn, then linear algebra shows
that it is the zero set of n− dim(V ) polynomials. All one can say in general, is that
at least n− dim(V ) polynomials are needed to define V (see §6), but often more are
required. Determining exactly how many is an area of active research. Chapter V of
Kunz 1985 contains a good discussion of this problem.

The Zariski topology.

Proposition 1.5. There are the following relations:

(a) a ⊂ b⇒ V (a) ⊃ V (b);
(b) V (0) = kn; V (k[X1, . . . , Xn]) = ∅;
(c) V (ab) = V (a ∩ b) = V (a) ∪ V (b);
(d) V (

∑
ai) = ∩V (ai).

Proof. The first two statements are obvious. For (c), note that

ab ⊂ a ∩ b ⊂ a, b⇒ V (ab) ⊃ V (a ∩ b) ⊃ V (a) ∪ V (b).

For the reverse inclusions, observe that if a /∈ V (a) ∪ V (b), then there exist f ∈ a,
g ∈ b such that f(a) �= 0, g(a) �= 0; but then (fg)(a) �= 0, and so a /∈ V (ab). For (d)
recall that, by definition,

∑
ai consists of all finite sums of the form

∑
fi, fi ∈ ai.

Thus (d) is obvious.

Statements (b), (c), and (d) show that the algebraic subsets of kn satisfy the axioms
to be the closed subsets for a topology on kn: both the whole space and the empty set
are closed; a finite union of closed sets is closed; an arbitrary intersection of closed sets
is closed. This topology is called the Zariski topology. It has many strange properties
(for example, already on k one sees that it not Hausdorff), but it is nevertheless of
great importance.

The closed subsets of k are just the finite sets and k. Call a curve in k2 the set
of zeros of a nonzero irreducible polynomial f(X, Y ) ∈ k[X, Y ]. Then we shall see
in (1.25) below that, apart from k2 itself, the closed sets in k2 are finite unions of
(isolated) points and curves. Note that the Zariski topologies on C and C2 are much
coarser (have many fewer open sets) than the complex topologies.

The Hilbert Nullstellensatz. We wish to examine the relation between the alge-
braic subsets of kn and the ideals of k[X1, . . . , Xn], but first we consider the question
of when a set of polynomials has a common zero, i.e., when the equations

g(X1, . . . , Xn) = 0, g ∈ a,

are “consistent”. Obviously, equations

gi(X1, . . . , Xn) = 0, i = 1, . . . , m
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are inconsistent if there exist fi ∈ k[X1, . . . , Xn] such that∑
figi = 1,

i.e., if 1 ∈ (g1, . . . , gm) or, equivalently, (g1, . . . , gm) = k[X1, . . . , Xn]. The next
theorem provides a converse to this.

Theorem 1.6 (Hilbert Nullstellensatz). Every proper ideal a in k[X1, . . . , Xn] has
a zero in kn.

Proof. A point a ∈ kn defines a homomorphism “evaluate at a”

k[X1, . . . , Xn] → k, f(X1, . . . , Xn) �→ f(a1, . . . , an),

and clearly

a ∈ V (a) ⇐⇒ a ⊂ kernel of this map.

Conversely, if ϕ : k[X1, . . . , Xn] → k is a homomorphism of k-algebras such that
Ker(ϕ) ⊃ a, then

(a1, . . . , an)
df
= (ϕ(X1), . . . , ϕ(Xn))

lies in V (a). Thus, to prove the theorem, we have to show that there exists a k-algebra
homomorphism k[X1, . . . , Xn]/a→ k.

Since every proper ideal is contained in a maximal ideal, it suffices to prove this for

a maximal ideal m. Then K
df
= k[X1, . . . , Xn]/m is a field, and it is finitely generated

as an algebra over k (with generators X1 + m, . . . , Xn + m). To complete the proof,
we must show K = k. The next lemma accomplishes this.

Although we shall apply the lemma only in the case that k is algebraically closed,
in order to make the induction in its proof work, we need to allow arbitrary k’s in
the statement.

Lemma 1.7 (Zariski’s Lemma). Let k ⊂ K be fields (k not necessarily algebraically
closed). If K is finitely generated as an algebra over k, then K is algebraic over k.
(Hence K = k if k is algebraically closed.)

Proof. We shall prove this by induction on r, the minimum number of elements
required to generate K as a k-algebra. Suppose first that r = 1, so that K = k[x] for
some x ∈ K. Write k[X] for the polynomial ring over k in the single variable X, and
consider the homomorphism of k-algebras k[X] → K, X �→ x. If x is not algebraic
over k, then this is an isomorphism k[X] → K, which contradicts the condition that
K be a field. Therefore x is algebraic over k, and this implies that every element of
K = k[x] is algebraic over k (because it is finite over k).

For the general case, we need to use results about integrality (see the Appendix to
this Section). Consider an integral domain A with field of fractions K, and a field L
containing K. An element of L is said to be integral over A if it satisfies an equation
of the form

Xn + a1X
n−1 + · · ·+ an = 0, ai ∈ A.

We shall need three facts:

(a) The elements of L integral over A form a subring of L.
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(b) If β ∈ L is algebraic over K, then aβ is integral over A for some a ∈ A.
(c) If A is a unique factorization domain, then every element of K that is integral

over A lies in A.

Now suppose that K can be generated (as a k-algebra) by r elements, say, K =
k[x1, . . . , xr]. If the conclusion of the lemma is false for K/k, then at least one xi,
say x1, is not algebraic over k. Thus, as before, k[x1] is a polynomial ring in one
variable over k (≈ k[X]), and its field of fractions k(x1) is a subfield of K. Clearly K
is generated as a k(x1)-algebra by x2, . . . , xr, and so the induction hypothesis implies
that x2, . . . , xr are algebraic over k(x1). From (b) we find there exist di ∈ k[x1] such
that dixi is integral over k[x1], i = 2, . . . , r. Write d =

∏
di.

Let f ∈ K; by assumption, f is a polynomial in the xi with coefficients in k.
For a sufficiently large N , dNf will be a polynomial in the dixi. Then (a) implies
that dNf is integral over k[x1]. When we apply this to an element f of k(x1), (c)
shows that dNf ∈ k[x1]. Therefore, k(x1) = ∪Nd−Nk[x1], but this is absurd, because
k[x1] (≈ k[X]) has infinitely many distinct irreducible polynomials7 that can occur
as denominators of elements of k(x1).

The correspondence between algebraic sets and ideals. For a subset W of kn,
we write I(W ) for the set of polynomials that are zero on W :

I(W ) = {f ∈ k[X1, . . . , Xn] | f(a) = 0 all a ∈W}.
It is an ideal in k[X1, . . . , Xn]. There are the following relations:

(a) V ⊂W ⇒ I(V ) ⊃ I(W );
(b) I(∅) = k[X1, . . . , Xn]; I(kn) = 0;
(c) I(∪Wi) = ∩I(Wi).

Only the statement I(kn) = 0, i.e., that every nonzero polynomial is nonzero at
some point of kn, is nonobvious. It is not difficult to prove this directly by induction
on the number of variables—in fact it’s true for any infinite field k—but it also follows
easily from the Nullstellensatz (see (1.11a) below).

Example 1.8. Let P be the point (a1, . . . , an). Clearly I(P ) ⊃ (X1−a1, . . . , Xn−
an), but (X1−a1, . . . , Xn−an) is a maximal ideal, because “evaluation at (a1, . . . , an)”
defines an isomorphism

k[X1, . . . , Xn]/(X1 − a1, . . . , Xn − an) → k.

As I(P ) �= k[X1, . . . , Xn], we must have I(P ) = (X1 − a1, . . . , Xn − an).

The radical rad(a) of an ideal a is defined to be

{f | f r ∈ a, some r ∈ N, r > 0}.
It is again an ideal, and rad(rad(a)) = rad(a).

An ideal is said to be radical if it equals its radical, i.e., f r ∈ a ⇒ f ∈ a. Equiv-
alently, a is radical if and only if A/a is a reduced ring, i.e., a ring without nonzero
nilpotent elements (elements some power of which is zero). Since an integral domain
is reduced, a prime ideal (a fortiori a maximal ideal) is radical.

7If k is infinite, then consider the polynomials X − a, and if k is finite, consider the minimum
polynomials of generators of the extension fields of k. Alternatively, and better, adapt Euclid’s proof
that there are infinitely many prime numbers.
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If a and b are radical, then a ∩ b is radical, but a + b need not be — consider, for
example, a = (X2−Y ) and b = (X2+Y ); they are both prime ideals in k[X, Y ], but
X2 ∈ a + b, X /∈ a + b.

As f r(a) = f(a)r, f r is zero wherever f is zero, and so I(W ) is radical. In
particular, IV (a) ⊃ rad(a). The next theorem states that these two ideals are equal.

Theorem 1.9 (Strong Hilbert Nullstellensatz). (a) The ideal IV (a) is the radi-
cal of a; in particular, IV (a) = a if a is a radical ideal.

(b) The set V I(W ) is the smallest algebraic subset of kn containing W ; in particular,
V I(W ) = W if W is an algebraic set.

Proof. (a) We have already noted that IV (a) ⊃ rad(a). For the reverse inclusion,
consider h ∈ IV (a); we have to show that some power of h belongs to a. We may
assume h �= 0 as 0 ∈ a. We are given that h is identically zero on V (a), and we have
to show that hN ∈ a for some N > 0. Let g1, . . . , gm be a generating set for a, and
consider the system of m + 1 equations in n + 1 variables, X1, . . . , Xn, Y,{

gi(X1, . . . , Xn) = 0, i = 1, . . . , m
1− Y h(X1, . . . , Xn) = 0.

If (a1, . . . , an, b) satisfies the first m equations, then (a1, . . . , an) ∈ V (a); conse-
quently, h(a1, . . . , an) = 0, and (a1, . . . , an, b) doesn’t satisfy the last equation. There-
fore, the equations are inconsistent, and so, according to the original Nullstellensatz,
there exist fi ∈ k[X1, . . . , Xn, Y ] such that

1 =

m∑
i=1

figi + fm+1 · (1− Y h).

On regarding this as an identity in the field k(X1, . . . , Xn, Y ) and substituting 1/h
for Y , we obtain the identity

1 =
m∑
i=1

fi(X1, . . . , Xn,
1

h
) · gi(X1, . . . , Xn)

in k(X1, . . . , Xn). Clearly

fi(X1, . . . , Xn,
1

h
) =

polynomial in X1, . . . , Xn
hNi

for some Ni. Let N be the largest of the Ni. On multiplying the identity by hN we
obtain an equation

hN =
∑

(polynomial in X1, . . . , Xn) · gi(X1, . . . , Xn),
which shows that hN ∈ a.

(b) Let V be an algebraic set containing W , and write V = V (a). Then a ⊂ I(W ),
and so V (a) ⊃ V I(W ).

Corollary 1.10. The map a �→ V (a) defines a one-to-one correspondence be-
tween the set of radical ideals in k[X1, . . . , Xn] and the set of algebraic subsets of kn;
its inverse is I.

Proof. We know that IV (a) = a if a is a radical ideal, and that V I(W ) = W if
W is an algebraic set.
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Remark 1.11. (a) Note that V (0) = kn, and so

I(kn) = IV (0) = rad(0) = 0,

as claimed above.

(b) The one-to-one correspondence in the corollary is order inverting. Therefore
the maximal proper radical ideals correspond to the minimal nonempty algebraic sets.
But the maximal proper radical ideals are simply the maximal ideals in k[X1, . . . , Xn],
and the minimal nonempty algebraic sets are the one-point sets. As I((a1, . . . , an)) =
(X1 − a1, . . . , Xn − an), this shows that the maximal ideals of k[X1, . . . , Xn] are
precisely the ideals of the form (X1 − a1, . . . , Xn − an).

(c) The algebraic set V (a) is empty if and only if a = k[X1, . . . , Xn], because V (a)
empty ⇒ rad(a) = k[X1, . . . , Xn] ⇒ 1 ∈ rad(a)⇒ 1 ∈ a.

(d) Let W and W ′ be algebraic sets. Then W ∩W ′ is the largest algebraic subset
contained in both W and W ′, and so I(W ∩W ′) must be the smallest radical ideal
containing both I(W ) and I(W ′). Hence I(W ∩W ′) = rad(I(W ) + I(W ′)).

For example, let W = V (X2 − Y ) and W ′ = V (X2 + Y ); then I(W ∩ W ′) =
rad(X2, Y ) = (X, Y ) (assuming characteristic �= 2). Note that W ∩W ′ = {(0, 0)},
but when realized as the intersection of Y = X2 and Y = −X2, it has “multiplicity
2”. [The reader should draw a picture.]

Finding the radical of an ideal. Typically, an algebraic set V will be defined
by a finite set of polynomials {g1, . . . , gs}, and then we shall need to find I(V ) =
rad((g1, . . . , gs)).

Proposition 1.12. The polynomial h ∈ rad(a) if and only if 1 ∈ (a, 1− Y h) (the
ideal in k[X1, . . . , Xn, Y ] generated by the elements of a and 1− Y h).

Proof. We saw that 1 ∈ (a, 1− Y h) implies h ∈ rad(a) in the course of proving
(1.9). Conversely, if hN ∈ a, then

1 = Y NhN + (1− Y NhN)

= Y NhN + (1− Y h) · (1 + Y h + · · ·+ Y N−1hN−1) ∈ a + (1− Y h).

Thus we have an algorithm for deciding whether h ∈ rad(a), but not yet an algo-
rithm for finding a set of generators for rad(a). There do exist such algorithms (see
Cox et al. 1992, p177 for references), and one has been implemented in the computer
algebra system Macaulay. To start Macaulay on most computers, type: Macaulay;
type <radical to find out the syntax for finding radicals.

The Zariski topology on an algebraic set. We now examine the Zariski topology
on kn and on an algebraic subset of kn more closely. The Zariski topology on Cn
is much coarser than the complex topology. Part (b) of (1.9) says that, for each
subset W of kn, V I(W ) is the closure of W , and (1.10) says that there is a one-
to-one correspondence between the closed subsets of kn and the radical ideals of
k[X1, . . . , Xn].

Let V be an algebraic subset of kn, and let I(V ) = a. Then the algebraic subsets
of V correspond to the radical ideals of k[X1, . . . , Xn] containing a.
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Proposition 1.13. Let V be an algebraic subset of kn.

(a) The points of V are closed for the Zariski topology (thus V is a T1-space).

(b) Every descending chain of closed subsets of V becomes constant, i.e., given

V1 ⊃ V2 ⊃ V3 ⊃ · · · (closed subsets of V ),

eventually VN = VN+1 = . . . . Alternatively, every ascending chain of open sets
becomes constant.

(c) Every open covering of V has a finite subcovering.

Proof. (a) We have already observed that {(a1, . . . , an)} is the algebraic set de-
fined by the ideal (X1 − a1, . . . , Xn − an).

(b) A sequence V1 ⊃ V2 ⊃ · · · gives rise to a sequence of radical ideals I(V1) ⊂
I(V2) ⊂ . . . , which eventually becomes constant because k[X1, . . . , Xn] is Noetherian.

(c) Let V =
⋃
i∈I Ui with each Ui open. Choose an i0 ∈ I ; if Ui0 �= V , then there

exists an i1 ∈ I such that Ui0 � Ui0 ∪Ui1 . If Ui0 ∪Ui1 �= V , then there exists an i2 ∈ I
etc.. Because of (b), this process must eventually stop.

A topological space having the property (b) is said to be Noetherian. The condition
is equivalent to the following: every nonempty set of closed subsets of V has a minimal
element. A space having property (c) is said to be quasi-compact (by Bourbaki at
least; others call it compact, but Bourbaki requires a compact space to be Hausdorff).

The coordinate ring of an algebraic set. Let V be an algebraic subset of kn, and
let I(V ) = a. An element f(X1, . . . , Xn) of k[X1, . . . , Xn] defines a mapping kn → k,
a �→ f(a) whose restriction to V depends only on the coset f + a of f in the quotient
ring

k[V ] = k[X1, . . . , Xn]/a = k[x1, . . . , xn].

Moreover, two polynomials f1(X1, . . . , Xn) and f2(X1, . . . , Xn) restrict to the same
function on V only if they define the same element of k[V ]. Thus k[V ] can be identified
with a ring of functions V → k.

We call k[V ] the ring of regular functions on V , or the coordinate ring of V . It
is a finitely generated reduced k-algebra (because a is radical), but need not be an
integral domain.

For an ideal b in k[V ], we set

V (b) = {a ∈ V | f(a) = 0, all f ∈ b}.
Let W = V (b). The maps

k[X1, . . . , Xn] → k[V ] =
k[X1, . . . , Xn]

a
→ k[W ] =

k[V ]

b

should be regarded as restricting a function from kn to V , and then restricting that
function to W .

Write π for the map k[X1, . . . , Xn] → k[V ]. Then b �→ π−1(b) is a bijection
from the set of ideals of k[V ] to the set of ideals of k[X1, . . . , Xn] containing a,
under which radical, prime, and maximal ideals correspond to radical, prime, and
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maximal ideals (each of these conditions can be checked on the quotient ring, and
k[X1, . . . , Xn]/π

−1(b) ≈ k[V ]/b). Clearly

V (π−1(b)) = V (b),

and so b �→ V (b) gives a bijection between the set of radical ideals in k[V ] and the
set of algebraic sets contained in V .

For h ∈ k[V ], we write

D(h) = {a ∈ V | h(a) �= 0}.
It is an open subset of V , because it is the complement of V ((h)).

Proposition 1.14. (a) The points of V are in one-to-one correspondence with
the maximal ideals of k[V ].

(b) The closed subsets of V are in one-to-one correspondence with the radical ideals
of k[V ].

(c) The sets D(h), h ∈ k[V ], form a basis for the topology of V , i.e., each D(h) is
open, and each open set is a union (in fact, a finite union) of D(h)’s.

Proof. (a) and (b) are obvious from the above discussion. For (c), we have already
observed that D(h) is open. Any other open set U ⊂ V is the complement of a set of
the form V (b), b an ideal in k[V ]. If f1, . . . , fm generate b, then U = ∪D(fi).

The D(h) are called the basic (or principal) open subsets of V . We sometimes
write Vh for D(h). Note that D(h) ⊂ D(h′) ⇐⇒ V (h) ⊃ V (h′) ⇐⇒ rad((h)) ⊂
rad((h′)) ⇐⇒ hr ∈ (h′) some r ⇐⇒ hr = h′g, some g.

Some of this should look familiar: if V is a topological space, then the zero set of a
family of continuous functions f : V → R is closed, and the set where such a function
is nonzero is open.

Irreducible algebraic sets. A nonempty subset W of a topological space V is said
to be irreducible if it satisfies any one of the following equivalent conditions:

(a) W is not the union of two proper closed subsets;
(b) any two nonempty open subsets of W have a nonempty intersection;
(c) any nonempty open subset of W is dense.

The equivalences (a) ⇐⇒ (b) and (b) ⇐⇒ (c) are obvious. Also, one sees that
if W is irreducible, and W = W1 ∪ . . . ∪Wr with each Wi closed, then W = Wi for
some i.

This notion is not useful for Hausdorff topological spaces, because such a space
is irreducible only if it consists of a single point — otherwise any two points have
disjoint open neighbourhoods, and so (b) fails.

Proposition 1.15. An algebraic set W is irreducible and only if I(W ) is prime.

Proof. ⇒: Suppose fg ∈ I(W ). At each point of W , either f or g is zero, and
so W ⊂ V (f) ∪ V (g). Hence

W = (W ∩ V (f)) ∪ (W ∩ V (g)).

As W is irreducible, one of these sets, say W ∩ V (f), must equal W . But then
f ∈ I(W ). Thus I(W ) is prime.
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⇐=: Suppose W = V (a) ∪ V (b) with a and b radical ideals—we have to show
that W equals V (a) or V (b). Recall that V (a) ∪ V (b) = V (a ∩ b), and that a ∩ b is
radical; hence I(W ) = a ∩ b. If W �= V (a), then there is an f ∈ a, f /∈ I(W ). But
fg ∈ a ∩ b = I(W ) for all g ∈ b, and, because f /∈ I(W ) and I(W ) is prime, this
implies that b ⊂ I(W ); therefore W ⊂ V (b).

Thus, there are one-to-one correspondences

radical ideals ↔ algebraic subsets

prime ideals ↔ irreducible algebraic subsets

maximal ideals ↔ one-point sets.

These correspondences are valid whether we mean ideals in k[X1, . . . , Xn] and al-
gebraic subsets of kn, or ideals in k[V ] and algebraic subsets of V . Note that
the last correspondence implies that the maximal ideals in k[V ] are of the form
(x1 − a1, . . . , xn − an), (a1, . . . , an) ∈ V .

Example 1.16. Let f ∈ k[X1, . . . , Xn]. As we noted in §0, k[X1, . . . , Xn] is a
unique factorization domain, and so (f) is a prime ideal ⇐⇒ f is irreducible. Thus

V (f) is irreducible ⇐⇒ f is irreducible.

On the other hand, suppose f factors, f =
∏

fmi
i , with the fi distinct irreducible

polynomials. Then (f) = ∩(fmi
i ), rad((f)) = (

∏
fi) = ∩(fi), and V (f) = ∪V (fi)

with V (fi) irreducible.

Proposition 1.17. Let V be a Noetherian topological space. Then V is a finite
union of irreducible closed subsets, V = V1 ∪ . . .∪Vm. Moreover, if the decomposition
is irredundant in the sense that there are no inclusions among the Vi, then the Vi are
uniquely determined up to order.

Proof. Suppose the first assertion is false. Then, because V is Noetherian, there
will be a closed subset W of V that is minimal among those that cannot be written as
a finite union of irreducible closed subsets. But such a W cannot itself be irreducible,
and so W = W1∪W2, with each Wi a proper closed subset of W . From the minimality
of W , it follows that each Wi is a finite union of irreducible closed subsets, and so
therefore is W . We have arrived at a contradiction.

Suppose that V = V1∪. . .∪Vm = W1∪. . .∪Wn are two irredundant decompositions.
Then Vi = ∪j(Vi ∩Wj), and so, because Vi is irreducible, Vi ⊂ Vi ∩Wj for some j.
Consequently, there is a function f : {1, . . . , m} → {1, . . . , n} such that Vi ⊂ Wf(i) for
each i. Similarly, there is a function g : {1, . . . , n} → {1, . . . , m} such that Wj ⊂ Vg(j).
Since Vi ⊂ Wf(i) ⊂ Vgf(i), we must have gf(i) = i and Vi = Wf(i); similarly fg = id.
Thus f and g are bijections, and the decompositions differ only in the numbering of
the sets.

The Vi given uniquely by the proposition are called the irreducible components of
V . They are the maximal closed irreducible subsets of V . In Example 1.16, the V (fi)
are the irreducible components of V (f).

Corollary 1.18. A radical ideal a of k[X1, . . . , Xn] is a finite intersection of
prime ideals, a = p1 ∩ . . . ∩ pn; if there are no inclusions among the pi, then the pi
are uniquely determined up to order.
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Proof. Write V (a) = ∪Vi, and take pi = I(Vi).

Remark 1.19. (a) In a Noetherian ring, every ideal a has a decomposition into
primary ideals: a = ∩qi (see Atiyah and MacDonald 1969, IV, VII). For radical ideals,
this becomes a much simpler decomposition into prime ideals, as in the corollary.

(b) In k[X], (f(X)) is radical if and only if f is square-free, in which case f is a
product of distinct irreducible polynomials, f = p1 . . . pr, and (f) = (p1) ∩ . . . ∩ (pr)
(a polynomial is divisible by f if and only if it is divisible by each pi).

(c) A Hausdorff space is Noetherian if and only if it is finite, in which case its
irreducible components are the one-point sets.

Dimension. We briefly introduce the notion of the dimension of an algebraic variety.
In Section 7 we shall discuss this in more detail.

Let V be an irreducible algebraic subset. Then I(V ) is a prime ideal, and so k[V ]
is an integral domain. Let k(V ) be its field of fractions—k(V ) is called the field of
rational functions on V . The dimension of V is defined to be the transcendence
degree of k(V ) over k.

For those who know some commutative algebra, according to the last theorem in
Atiyah and MacDonald 1969, this is equal to the Krull dimension of k[V ]; we shall
prove this later.

Example 1.20. (a) Let V = kn; then k(V ) = k(X1, . . . , Xn), and so dim(V ) =
n. Later we shall see that the Noether normalization theorem implies that V has
dimension n if and only if there is a surjective finite-to-one map V → kn.

(b) If V is a linear subspace of kn (or a translate of such a subspace), then it is
an easy exercise to show that the dimension of V in the above sense is the same as
its dimension in the sense of linear algebra (in fact, k[V ] is canonically isomorphic to
k[Xi1, . . . , Xid ] where the Xij are the “free” variables in the system of linear equations
defining V ).

In linear algebra, we justify saying V has dimension n by pointing out that its
elements are parametrized by n-tuples; unfortunately, it is not true in general that
the points of an algebraic set of dimension n are parametrized by n-tuples; the most
one can say is that there is a finite-to-one map to kn.

(c) An irreducible algebraic set has dimension 0 if and only if it consists of a single
point. Certainly, for any point P ∈ kn, k[P ] = k, and so k(P ) = k. Conversely,
suppose V = V (p), p prime, has dimension 0. Then k(V ) is an algebraic extension of
k, and so equals k. From the inclusions

k ⊂ k[V ] ⊂ k(V ) = k

we see that k[V ] = k. Hence p is maximal, and we saw in (1.11b) that this implies
that V (p) is a point.

The zero set of a single nonconstant nonzero polynomial f(X1, . . . , Xn) is called a
hypersurface in kn.

Proposition 1.21. An irreducible hypersurface in kn has dimension n− 1.

Proof. Let k[x1, . . . , xn] = k[X1, . . . , Xn]/(f), xi = Xi + p, and let k(x1, . . . , xn)
be the field of fractions of k[x1, . . . , xn]. Since x1, . . . , xn generate k(x1, . . . , xn) and
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they are algebraically dependent, the transcendence degree must be < n (because
{x1, . . . , xn} contains a transcendence basis — see 6.12 of my notes on Fields and
Galois Theory). To see that it is not < n − 1, note that if Xn occurs in f , then it
occurs in all nonzero multiples of f , and so no nonzero polynomial in X1, . . . , Xn−1
belongs to (f). This means that x1, . . . , xn−1 are algebraically independent.

For a reducible algebraic set V , we define the dimension of V to be the maximum of
the dimensions of its irreducible components. When these all have the same dimension
d, we say that V has pure dimension d.

Proposition 1.22. If V is irreducible and Z is a proper closed subvariety of V ,
then dim(Z) < dim(V ).

Proof. We may assume that Z is irreducible. Then Z corresponds to a nonzero
prime ideal p in k[V ], and k[Z] = k[V ]/p.

Suppose V ⊂ kn, so that k[V ] = k[X1, . . . , Xn]/I(V ) = k[x1, . . . , xn]. If Xi is
regarded as a function on kn, then its image xi in k[V ] is the restriction of this
function to V .

Let f ∈ k[V ]. The image f̄ of f in k[V ]/p = k[Z] can be regarded as the restriction
of f to Z. With this notation, k[Z] = k[x̄1, . . . , x̄n]. Suppose that dimZ = d
and that x̄1, . . . , x̄d are algebraically independent. I will show that, for any nonzero
f ∈ p, the d + 1 elements x1, . . . , xd, f are algebraically independent, which implies
that dimV ≥ d + 1.

Suppose otherwise. Then there is a nontrivial algebraic relation among the xi and
f , which we can write

a0(x1, . . . , xd)f
m + a1(x1, . . . , xd)f

n−1 + · · ·+ am(x1, . . . , xd) = 0,

with ai(x1, . . . , xd) ∈ k[x1, . . . , xd]. Because the relation is nontrivial, at least one of
the ai is nonzero (in the polynomial ring k[x1, . . . , xd]). After cancelling by a power
of f if necessary, we can assume am(x1, . . . , xd) �= 0 (in this step, we use that k[V ]
is an integral domain). On restricting the functions in the above equality to Z, i.e.,
applying the homomorphism k[V ] → k[Z], we find that

am(x̄1, . . . , x̄d) = 0,

which contradicts the algebraic independence of x̄1, . . . , x̄d.

Example 1.23. Let F (X, Y ) and G(X, Y ) be nonconstant polynomials with no
common factor. Then V (F (X, Y )) has dimension 1 by (1.21), and so V (F (X, Y )) ∩
V (G(X, Y )) must have dimension zero; it is therefore a finite set.

Remark 1.24. Later we shall show that if, in the situation of (1.22), Z is a max-
imal proper irreducible subset of V , then dimZ = dimV − 1. This implies that the
dimension of an algebraic set V is the maximum length of a chain

V0 � V1 � · · · � Vd

with each Vi closed and irreducible and V0 an irreducible component of V . Note that
this description of dimension is purely topological—it makes sense for any Noetherian
topological space.
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On translating the description in terms of ideals, we see immediately that the
dimension of V is equal to the Krull dimension of k[V ]—the maximal length of a
chain of prime ideals,

pd � pd−1 � · · · � p0.

Example 1.25. We classify the irreducible closed subsets V of k2. If V has di-
mension 2, then (by 1.22) it can’t be a proper subset of k2, so it is k2. If V has
dimension 1, then V �= k2, and so I(V ) contains a nonzero polynomial, and hence
a nonzero irreducible polynomial f (being a prime ideal). Then V ⊃ V (f), and so
equals V (f). Finally, if V has dimension zero, it is a point. Correspondingly, we can
make a list of all the prime ideals in k[X, Y ]: they have the form (0), (f) (with f
irreducible), or (X − a, Y − b).

Appendix A: Integrality. Throughout this subsection, A is an integral domain.
An element α of a field L containing A is said to be integral over A if it is a root of
a monic polynomial with coefficients in A, i.e., if it satisfies an equation

αn + a1α
n−1 + . . . + an = 0, ai ∈ A.

Before proving that the elements of L integral over A form a ring, we need to review
symmetric polynomials.

Symmetric polynomials. A polynomial P (X1, ..., Xr) ∈ A[X1, . . . , Xr] is said to
be symmetric if it is unchanged when its variables are permuted, i.e., if

P (Xσ(1), . . . , Xσ(r)) = P (X1, . . . , Xr), all σ ∈ Symr.

For example

S1 =
∑

Xi, S2 =
∑
i<j

XiXj, . . . , Sr = X1 · · ·Xr,

are all symmetric. These particular polynomials are called the elementary symmetric
polynomials.

Theorem 1.26 (Symmetric function theorem). Let A be a ring. Every symmetric
polynomial P (X1, ..., Xr) in A[X1, ..., Xr] is equal to a polynomial in the symmetric
elementary polynomials with coefficients in A, i.e., P ∈ A[S1, ..., Sr].

Proof. We define an ordering on the monomials in the Xi by requiring that

Xi11 X
i2
2 · · ·Xirr > Xj11 Xj22 · · ·Xjrr

if either

i1 + i2 + · · ·+ ir > j1 + j2 + · · · + jr

or equality holds and, for some s,

i1 = j1, . . . , is = js, but is+1 > js+1.

Let Xk11 · · ·Xkrr be the highest monomial occurring in P with a coefficient c �= 0.
Because P is symmetric, it contains all monomials obtained from Xk11 · · ·Xkrr by
permuting the X’s. Hence k1 ≥ k2 ≥ · · · ≥ kr.
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Clearly, the highest monomial in Si is X1 · · ·Xi, and it follows that the highest
monomial in Sd11 · · ·Sdrr is

Xd1+d2+···+dr1 Xd2+···+dr2 · · ·Xdrr .

Therefore

P (X1, . . . , Xr)− cSk1−k21 Sk2−k32 · · ·Skrr < P (X1, . . . , Xr).

We can repeat this argument with the polynomial on the left, and after a finite number
of steps, we will arrive at a representation of P as a polynomial in S1, . . . , Sr. (For
more details, see Jacobson, Basic Algebra I, 2.20, p139.)

Let f(X) = Xn + a1X
n−1 + · · · + an ∈ A[X], and let α1, . . . , αn be the roots of

f(X) in some ring containing A, i.e., f(X) =
∏

(X − αi). Then

a1 = −S1(α1, . . . , αn), a2 = S2(α1, . . . , αn), . . . , an = ±Sn(α1, . . . , αn).

Thus the elementary symmetric polynomials in the roots of f(X) lie in A, and so the
theorem implies that every symmetric polynomial in the roots of f(X) lie in A.

Integral elements.

Theorem 1.27. The set of elements of L integral over A forms a ring.

Proof. Let α and β be integral over A; we have to show that α ± β and αβ are
integral over A. Let Ω be an algebraically closed field containing L.

We are given that α is a root of a polynomial f(X) = Xm + a1X
m−1 + · · · + am,

ai ∈ A. Write

f(X) =
∏

(X − αi), αi ∈ Ω.

Similarly, β is a root of polynomial g(X) = Xn + b1X
n−1 + ... +bn, bi ∈ A, and we

write

f(X) =
∏

(X − βi), βi ∈ Ω.

Let γ1, γ2, ..., γmn be the family of numbers of the form αi + βj (or αi − βj, or αiβj).
I claim that

h(X)
df
=

∏
1≤i≤m, 1≤j≤n

(X − γij)

has coefficients in A. This will prove that α+β is integral over A because h(α+β) = 0.

The coefficients of h are symmetric in the αi and βj. Let P (α1, ..., αm, β1, ..., βn) be
one of these coefficients, and regard it as a polynomial Q(β1, ..., βn) in the β’s with
coefficients in A[α1, ..., αm]; then its coefficients are symmetric in the αi, and so lie in
A. Thus P (α1, ..., αm, β1, ..., βn) is a symmetric polynomial in the β’s with coefficients
in A—it therefore lies in A, as claimed.

Definition 1.28. The ring of elements of L integral over A is called the integral
closure of A in L.

Proposition 1.29. Let K be the field of fractions of A, and let L be a field con-
taining K. If α ∈ L is algebraic over K, then there exists a d ∈ A such that dα is
integral over A.
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Proof. By assumption, α satisfies an equation

αm + a1α
m−1 + · · ·+ am = 0, ai ∈ K.

Let d be a common denominator for the ai, so that dai ∈ A, all i, and multiply
through the equation by dm:

dmαm + a1d
mαm−1 + · · ·+ amd

m = 0.

We can rewrite this as

(dα)m + a1d(dα)m−1 + · · ·+ amd
m = 0.

As a1d, . . . , amd
m ∈ A, this shows that dα is integral over A.

Corollary 1.30. Let A be an integral domain with field of fractions K, and let
L be an algebraic extension of K. If B is the integral closure of A in L, then L is the
field of fractions of B.

Proof. The proposition shows that every α ∈ L can be written α = β/d with
β ∈ B, d ∈ A.

Definition 1.31. A ring A is integrally closed if it is its own integral closure in
its field of fractions K, i.e., if

α ∈ K, α integral over A⇒ α ∈ A.

Proposition 1.32. A unique factorization domain (e.g. a principal ideal domain)
is integrally closed.

Proof. Suppose a/b, a, b ∈ A, is an element of the field of fractions of A and is
integral over A. If b is a unit, then a/b ∈ A. Otherwise we may suppose that there
is an irreducible element p of A dividing b but not a. As a/b is integral over A, it
satisifies an equation

(a/b)n + a1(a/b)
n−1 + · · ·+ an = 0, ai ∈ A.

On multiplying through by bn, we obtain the equation

an + a1a
n−1b + ... + anb

n = 0.

The element p then divides every term on the left except an, and hence must divide
an. Since it doesn’t divide a, this is a contradiction.

Proposition 1.33. Let K be the field of fractions of A, and let L be an extension
of K of finite degree. Assume A is integrally closed. An element α of L is integral
over A if and only if its minimum polynomial over K has coefficients in A.

Proof. Assume α is integral over A, so that

αm + a1α
m−1 + ... + am = 0, some ai ∈ A.

Let α′ be a conjugate of α, i.e., a root of the minimum polynomial of α over K. Then
there is an K-isomorphism8

σ : K[α] → K[α′], σ(α) = α′.

8If f(X) is the minimum polynomial of α, hence also of α′, over K, then the map h(X) �→
h(α) : K[X] → K[α] induces an isomorphism τ : K[X]/(f(X)) → K[α]. Similarly, h(X) �→ h(α′) :
K[X]→ K[α′] induces an isomorphism τ ′ : K[X]/(f(X)) → K[α′], and we set σ = τ ′ ◦ τ−1.
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On applying σ to the above equation we obtain the equation

α′m + a1α
′m−1 + ... + am = 0,

which shows that α′ is integral over A. Hence all the conjugates of α are integral over
A, and it follows from (1.27) that the coefficients of f(X) are integral over A. They
lie in K, and A is integrally closed, and so they lie in A. This proves the “only if”
part of the statement, and the “if” part is obvious.

Appendix B: Transcendence degree. I have deleted this subsection from the
notes since it was merely a copy of Section 6 of my notes Fields and Galois Theory.
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2. Affine Algebraic Varieties

In this section we define on an algebraic set the structure of a ringed space, and
then we define the notion of affine algebraic variety—roughly speaking, this is an
algebraic set with no preferred embedding into kn. This is in preparation for §3,
where we define an algebraic variety to be a ringed space that is a finite union of
affine algebraic varieties satisfying a natural separation axiom (in the same way that
a topological manifold is a union of subsets homeomorphic to open subsets of Rn
satisfying the Hausdorff axiom).

Ringed spaces. Let V be a topological space and k a field.

Definition 2.1. Suppose that for every open subset U of V we have a set OV (U)
of functions U → k. Then OV is called a sheaf of k-algebras if it satisfies the following
conditions:

(a) OV (U) is an k-subalgebra of the algebra of all functions U → k, i.e., for each
c ∈ k, the constant function c is in OV (U), and if f, g ∈ OV (V ), then so also do
f ± g, and fg.

(b) If U ′ is an open subset of U and f ∈ OV (U), then f |U ′ ∈ OV (U ′).
(c) Let U = ∪Uα be an open covering of an open subset U of V ; then a function

f : U → k is in OV (U) if f |Uα ∈ OV (Uα) for all α (i.e., the condition for f to be
in OV (U) is local .

Example 2.2. (a) Let V be any topological space, and for each open subset U of
V let OV (U) be the set of all continuous real-valued functions on U . Then OV is a
sheaf of R-algebras.

(b) Recall that a function f : U → R, where U is an open subset of Rn, is said
to be C∞ (or infinitely differentiable) if its partial derivatives of all orders exist and
are continous. Let V be an open subset of Rn, and for each open subset U of V let
OV (U) be the set of all infinitely differentiable functions on U . Then OV is a sheaf
of R-algebras.

(c) Recall that a function f : U → C, where U is an open subset of Cn, is said
to be analytic (or holomorphic) if it is described by a convergent power series in a
neighbourhood of each point of U . Let V be an open subset of Cn, and for each open
subset U of V let OV (U) be the set of all analytic functions on U . Then OV is a sheaf
of C-algebras.

(d) Nonexample: let V be a topological space, and for each open subset U of V let
OV (U) be the set of all real-valued constant functions on U ; then OV is not a sheaf,
unless V is irreducible! If “constant” is replaced with “locally constant”, then OV
becomes a sheaf of R-algebras (in fact, the smallest such sheaf).

A pair (V,OV ) consisting of a topological space V and a sheaf of k-algebras will be
called a ringed space. For historical reasons, we often write Γ(U,OV ) for OV (U) and
call its elements sections of OV over U .

Let (V,OV ) be a ringed space. For any open subset U of V , the restriction OV |U
of OV to U , defined by

Γ(U ′,OV |U) = Γ(U ′,OV ), all open U ′ ⊂ U,



Algebraic Geometry: 2. Affine Algebraic Varieties 31

is a sheaf again.

Let (V,OV ) be ringed space, and let P ∈ V . Consider pairs (f, U) consisting of
an open neighbourhood U of P and an f ∈ OV (U). We write (f, U) ∼ (f ′, U ′)
if f |U ′′ = f ′|U ′′ for some U ′′ ⊂ U ∩ U ′. This is an equivalence relation, and an
equivalence class of pairs is called a germ of a function at P . The set of equivalence
classes of such pairs forms a k-algebra denoted OV,P or OP . In all the interesting
cases, it is a local ring with maximal ideal the set of germs that are zero at P .

In a fancier terminology,

OP = lim−→OV (U), (direct limit over open neighbourhoods U of P ).

Example 2.3. Let V = C, and let OV be the sheaf of holomorphic functions on
C. For c ∈ C, call a power series

∑
n≥0 an(z − c)n, an ∈ C, convergent if it converges

on some neighbourhood of c. The set of such power series is a C-algebra, and I claim
that it is canonically isomorphic to the ring of germs of functions Oc. From basic
complex analysis, we know that if f is a holomorphic function on a neighbourhood U
of c, then f has a power series expansion f =

∑
an(z− c)n in some (possibly smaller)

neighbourhood. Moreover another pair (g, U ′) will define the same power series if and
only if g agrees with f on some neighbourhood of c contained in U ∩ U ′. Thus we
have injective map from the ring of germs of holomorphic functions at c to the ring
of convergent power series, and it is obvious that it is an isomorphism.

Review of rings of fractions. Before defining the sheaf of regular functions on an
algebraic set, we need to review some of the theory of rings of fractions. When the
initial ring is an integral domain (the most important case), the theory is very easy
because all the rings are subrings of the field of fractions.

A multiplicative subset of a ring A is a subset S with the property:

1 ∈ S, a, b ∈ S ⇒ ab ∈ S.

Define an equivalence relation on A× S by

(a, s) ∼ (b, t) ⇐⇒ u(at− bs) = 0 for some u ∈ S.

Write a
s

for the equivalence class containing (a, s), and define addition and multipli-
cation in the obvious way:

a

s
+

b

t
=

at + bs

st
,

a

s

b

t
=

ab

st
.

We then obtain a ring S−1A = {a
s
| a ∈ A, s ∈ S}, and a canonical homomorphism

a �→ a
1

: A→ S−1A, not necessarily injective. For example, if S contains 0, then S−1A
is the zero ring.

Write i for the homomorphism a �→ a
1

: A→ S−1A. Then (S−1A, i) has the follow-
ing universal property: every element s ∈ S maps to a unit in S−1A, and any other
homomorphism α : A→ B with this property factors uniquely through i:

A
i✲ S−1A

❅
❅

❅
α

❘

B.
❄

.

.

.

.

.
∃!
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The uniqueness is obvious—the map S−1A → B must be a
s
�→ α(a) · α(s)−1 — and

it is easy to check that this formula does define a homomorphism S−1A → B. For
example, to see that it is well-defined, note that

a

c
=

b

d
⇒ s(ad− bc) = 0 some s ∈ S ⇒ α(a)α(d) − α(b)α(c) = 0,

because α(s) is a unit in B, and so

α(a)α(c)−1 = α(b)α(d)−1.

As usual, this universal property determines the pair (S−1A, i) uniquely up to a unique
isomorphism.

In the case that A is an integral domain we can form the field of fractions F = S−1A,
S = A − {0}, and then for any other multiplicative subset S of A not containing 0,
S−1A can be identified with {a

s
∈ F | a ∈ A, s ∈ S}.

We shall be especially interested in the following examples.

(i) Let h ∈ A. Then Sh
df
= {1, h, h2, . . .} is a multiplicative subset of A, and we

write Ah = S−1h A. Thus every element of Ah can be written in the form a/hm, a ∈ A,
and

a

hm
=

b

hn
⇐⇒ hN (ahn − bhm) = 0, some N.

In the case that A is an integral domain, with field of fractions F , Ah is the subring
of F of elements of the form a/hm, a ∈ A, m ∈ N.

(ii) Let p be a prime ideal in A. Then Sp

df
= A 	 p is a multiplicative subset of A,

and we write Ap = S−1
p

A. Thus each element of Ap can be written in the form a
c
,

c /∈ p, and

a

c
=

b

d
⇐⇒ s(ad− bc) = 0, some s /∈ p.

The subset m = {a
s
| a ∈ p, s /∈ p} is a maximal ideal in Ap, and it is the only

maximal ideal 9 . Therefore Ap is a local ring. Again, when A is an integral domain
with field of fractions F , Ap is the subring of F consisting of elements expressible in
the form a

s
, a ∈ A, s /∈ p.

Lemma 2.4. For any ring A, the map
∑

aiX
i �→∑

ai

hi defines an isomorphism

A[X]/(1− hX)
≈→ Ah.

Proof. In the ring A[x] = A[X]/(1− hX), 1 = hx, and so h is a unit. Consider
a homomorphism of rings α : A→ B such that α(h) is a unit in B. Then α extends
to a homomorphism ∑

aiX
i �→

∑
α(ai)α(h)−i : A[X]→ B.

Under this homomorphism 1 − hX �→ 1 − α(h)α(h)−1 = 0, and so the map factors
through A[x]. The resulting homomorphism γ : A[x] → B has the property that
its composite with A → A[x] is α, and (because hx = 1 in A[x]) it is the unique

9First check m is an ideal. Next, if m = Ap, then 1 ∈ m; but 1 = a
s
, a ∈ p, s /∈ p means

u(s− a) = 0 some u /∈ p, and so a = us /∈ p. Finally, m is maximal, because any element of Ap not
in m is a unit.
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homomorphism with this property. Therefore A[x] has the same universal property
as Ah, and so the two are (uniquely) isomorphic by an isomorphism that makes h−1

correspond to x.

For more on rings of fractions, see Atiyah and MacDonald 1969, Chapt 3.

The ringed space structure on an algebraic set. We now take k to be an
algebraically closed field. Let V be an algebraic subset of kn. An element h of k[V ]
defines functions

a �→ h(a) : V → k, and a �→ 1/h(a) : D(h) → k.

Thus a pair of elements g, h ∈ k[V ] with h �= 0 defines a function

a �→ g(a)

h(a)
: D(h) → k.

We say that a function f : U → k on an open subset U of V is regular if it is of
this form in a neighbourhood of each of its points, i.e., if for all a ∈ U , there exist
g, h ∈ k[V ] with h(a) �= 0 such that the functions f and g

h
agree in a neighbourhood

of a. Write OV (U) for the set of regular functions on U .

For example, if V = kn, then a function f : U → k is regular at a point a ∈ U if there
are polynomials g(X1, . . . , Xn) and h(X1, . . . , Xn) with h(a) �= 0 and f(b) = g(b)

h(b)
for

all b such that the expression on the right is defined.

Proposition 2.5. The map U �→ OV (U) defines a sheaf of k-algebras on V .

Proof. We have to check the conditions (2.1).

(a) Clearly, a constant function is regular. Suppose f and f ′ are regular on U , and
let a ∈ U . By assumption, there exist g, g′, h, h′ ∈ k[V ], with h(a) �= 0 �= h′(a) such

that f and f ′ agree with g
h

and g′
h′ respectively near a. Then ff ′ agrees with gh′+g′h

hh′
near a, and so ff ′ is regular on U . Similarly f ± f ′ are regular on U . Thus OV (U)
is a k-algebra.

(b) It is clear from the definition that the restriction of a regular function to an
open subset is again regular.

(c) The condition for f to be regular is obviously local.

Lemma 2.6. The element g/hm of k[V ]h defines the zero function on D(h) if and
only if gh = 0 (in k[V ]) (and hence g/hm = 0 in k[V ]h).

Proof. If g/hm is zero on D(h), then gh is zero on V because h is zero on the
complement of D(h). Therefore gh is zero in k[V ]. Conversely, if gh = 0, then
g(a)h(a) = 0 for all a ∈ kn, and so g(a) = 0 for all a ∈ D(h).

Proposition 2.7. (a) The canonical map k[V ]h → OV (D(h)) is an isomorphism.

(b) For any a ∈ V , there is a canonical isomorphism Oa → k[V ]ma, where ma is
the maximal ideal (x1 − a1, . . . , xn − an).

Proof. (a) The preceding lemma shows that k[V ]h →OV (D(h)) is injective, and
so it remains to show that every regular function f on D(h) arises from an element
of k[V ]h.
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By definition, we know that there is an open covering D(h) = ∪Vi and elements
gi, hi ∈ k[V ] with hi nowhere zero on Vi such that f |Vi = gi

hi
. Since the sets of the

form D(a) form a basis for the topology on V , we can assume that Vi = D(ai), some
ai ∈ k[V ]. By assumption D(ai) ⊂ D(hi), and so aNi = hig

′
i for some h′i ∈ k[V ] (see

paragraph after 1.14). On D(ai), f = gi
hi

=
gig

′
i

hig
′
i

=
gig

′
i

aN
i

. Note that D(aNi ) = D(ai).

Therefore, after replacing gi with gig
′
i and hi with aNi , we can suppose that Vi = D(hi).

We now have that D(h) = ∪D(hi) and that f |D(hi) = gi
hi

. Because D(h) is

quasicompact10, we can assume that the covering is finite. As gi
hi

=
gj
hj

on D(hi) ∩
D(hj) = D(hihj), we have (by the lemma) that

hihj(gihj − gjhi) = 0. (*)

Because D(h) = ∪D(hi) = ∪D(h2i ), V ((h)) = V ((h21, . . . , h
2
m)), and so there exist

ai ∈ k[V ] such that

hN =
∑

aih
2
i . (**)

I claim that f is the function on D(h) defined by
∑
aigihi

hN .

Let a be a point of D(h). Then a will be in one of the D(hi), say D(hj). We have
the following equalities in k[V ]:

h2j

n∑
i=1

aigihi =

n∑
i=1

aigjh
2
ihj by (*)

= gjhjh
N by (**).

But f |D(hj) =
gj
hj

, i.e., fhj and gj agree as functions on D(hj). Therefore we have

the following equality of functions on D(hj):

h2j
∑

aigihi = fh2jh
N .

Since h2j is never zero on D(hj), we can cancel it, to find that, as claimed, the function

fhN on D(hj) equals that defined by
∑

aigihi.

(b) First a general observation: in the definition of the germs of a sheaf at a, it
suffices to consider pairs (f, U) with U lying in a fixed basis for the neighbourhoods
of a. Thus each element of Oa is represented by a pair (f,D(h)) where h(a) �= 0 and
f ∈ k[V ]h, and two pairs (f1, D(h1)) and (f2, D(h2)) represent the same element of
Oa if and only if f1 and f2 restrict to the same function on D(h) for some a ∈ D(h) ⊂
D(h1h2).

For each h /∈ p, there is a canonical homomorphism αh : k[V ]h → k[V ]p, and we
map the element of Oa represented by (f,D(h)) to αh(f). It is now an easy exercise
to check that this map is well-defined, injective, and surjective.

The proposition gives us an explicit description of the value of OV on any basic
open set and of the ring of germs at any point a of V . When V is irreducible, this

10Recall (1.13) that V is Noetherian, i.e., has the ascending chain condition on open subsets. This
implies that any open subset of V is also Noetherian, and hence is quasi-compact.
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becomes a little simpler because all the rings are subrings of k(V ). We have:

Γ(D(h),OV ) = { g

hN
∈ k(V ) | g ∈ k[V ], N ∈ N};

Oa = {g
h
∈ k(V ) | h(a) �= 0};

Γ(U,OV ) = ∩Oa (intersection over all a ∈ U}
= ∩Γ(D(hi),OV ) if U = ∪D(hi).

Note that every element of k(V ) defines a function on some nonempty open subset of
V . Following tradition, we call the elements of k(V ) rational functions on V (even
though they are not functions on V ). The last equality then says that the regular
functions on U are the rational functions on V that are defined at each point of U .

Example 2.8. (a) Let V = kn. Then the ring of regular functions on V , Γ(V,OV ),
is k[X1, . . . , Xn]. For any nonzero polynomial h(X1, . . . , Xn), the ring of regular
functions on D(h) is

{ g

hN
∈ k(X1, . . . , Xn) | g, h ∈ k[X1, . . . , Xn]}.

For any point a = (a1, . . . , an), the ring of germs of functions at a is

Oa = {g
h
∈ k(X1, . . . , Xn) | h(a) �= 0} = k[X1, . . . , Xn](X1−a1,... ,Xn−an),

and its maximal ideal consists of those g/h with g(a) = 0.

(b) Let U = {(a, b) ∈ k2 | (a, b) �= (0, 0)}. It is an open subset of k2, but it is not
a basic open subset, because its complement {(0, 0)} has dimension 0, and therefore
can’t be of the form V ((f)) (see 1.21). Since U = D(X) ∪D(Y ), the ring of regular
functions on U is

Γ(D(X),O) ∩ Γ(D(Y ),O) = k[X, Y ]X ∩ k[X, Y ]Y .

Thus (as an element of k(X, Y )), a regular function on U can be written

f =
g(X, Y )

XN
=

h(X, Y )

Y M
.

Since k[X, Y ] is a unique factorization domain, we can assume that the fractions are
in their lowest terms. On multiplying through by XNY M , we find that

g(X, Y )Y M = h(X, Y )XN .

Because X doesn’t divide the left hand side, it can’t divide the right either, and so
N = 0. Similarly, M = 0, and so f ∈ k[X, Y ]: every regular function on U extends
to a regular function on k2.

Morphisms of ringed spaces. A morphism of ringed spaces (V,OV ) → (W,OW )
is a continuous map ϕ : V → W such that

f ∈ OW (U) ⇒ f ◦ ϕ ∈ OV (ϕ−1U)

for all open subsets U of W . Sometimes we write ϕ∗(f) for f ◦ ϕ. If U is an open
subset of V , then the inclusion (U,OV |V ) ↪→ (V,OV ) is a morphism of ringed spaces.
A morphism of ringed spaces is an isomorphism if it is bijective and its inverse is also
a morphism of ringed spaces (in particular, it is a homeomorphism).
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Example 2.9. (a) Let V and V ′ be topological spaces endowed with their sheaves
OV and OV ′ of continuous real valued functions. Any continuous map ϕ : V → V ′ is
a morphism of ringed structures (V,OV ) → (V ′, OV ′).

(b) Let U and U ′ be open subsets of Rn and Rm respectively. Recall from advanced
calculus that a mapping

ϕ = (ϕ1, . . . , ϕm) : U → U ′ ⊂ Rm

is said to be infinitely differentiable (or C∞) if each ϕi is infinitely differentiable, in
which case f ◦ ϕ is infinitely differentiable for every infinitely differentiable function
f : U ′ → R. Note that ϕi = xi ◦ϕ, where xi is the coordinate function (a1, . . . , an) �→
ai.

Let V and V ′ be open subsets of Rn and Rm respectively, endowed with their
sheaves of infinitely differentiable functions OV and OV ′. The above statements show
that a continuous map ϕ : V → V ′ is infinitely differentiable if and only if it is a
morphism of ringed spaces.

(c) Same as (b), but replace R with C and “infinitely differentiable” with “analytic”.

Remark 2.10. A morphism of ringed spaces maps germs of functions to germs of
functions. More precisely, a morphism ϕ : (V,OV ) → (V ′,OV ′) induces a map

OV,P ← OV ′,ϕ(P ),

namely, [(f, U)] �→ [(f ◦ ϕ, ϕ−1(U))].

Affine algebraic varieties. We have just seen that every algebraic set gives rise to
a ringed space (V,OV ). We define an affine algebraic variety over k to be a ringed
space that is isomorphic to a ringed space of this form. A morphism of affine algebraic
varieties is a morphism of ringed spaces; we often call it a regular map V → W or
a morphism V → W , and we write Mor(V,W ) for the set of such morphisms. With
these definitions, the affine algebraic varieties become a category. Since we consider
no nonalgebraic affine varieties, we shall often drop the “algebraic”.

In particular, every algebraic set has a natural structure of an affine variety. We
usually write An for kn regarded as an affine algebraic variety. Note that the affine
varieties we have constructed so far have all been embedded in An. We shall now see
how to construct “unembedded” affine varieties.

A reduced finitely generated k-algebra is called an affine k-algebra. For such an
algebra A, there exist xi ∈ A (not necessarily algebraically independent), such that
A = k[x1, . . . , xn], and the kernel of the homomorphism

Xi �→ xi : k[X1, . . . , Xn] → A

is a radical ideal. Zariski’s Lemma 1.7 implies that, for any maximal ideal m ∈ A,
the map k → A → A/m is an isomorphism. Thus we can identify A/m with k. For
f ∈ A, we write f(m) for the image of f in A/m = k, i.e., f(m) = f (mod m).

We can associate with any affine k-algebra A a ringed space (V,OV ). First, V is
the set of maximal ideals in A. For h ∈ A, h �= 0, let

D(h) = {m | h(m) �= 0, i.e., h /∈ m},
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and endow V with the topology for which the D(h) form a basis. A pair of elements
g, h ∈ A, h �= 0, defines a function

m �→ g(m)

h(m)
: D(h) → k,

and we call a function f : U → k on an open subset U of V regular if it is of this form
on a neighbourhood of each point of U . Write OV (U) for the set of regular functions
on U.

Proposition 2.11. The pair (V,OV ) is an affine variety with Γ(V,OV ) = A.

Proof. Represent A as a quotient k[X1, . . . , Xn]/a = k[x1, . . . , xn]. Then the
map

(a1, . . . , an) �→ (x1 − a1, . . . , xn − an) (ideal in A)

is a bijection ϕ : V (a)→ V with inverse

m �→ (x1(m), . . . , xn(m)) : V → V (a) ⊂ kn.

It is easy to check that this is a homeomorphism, and that a function f on an open
subset of V is regular (according to the above definition) if and only if f ◦ ϕ is
regular.

We write specm(A) for the topological space V , and Specm(A) for the ringed
space (V,OV ). If we start with an affine variety V and let A = Γ(V,OV ), then the
Specm(A) ≈ (V,OV ) (canonically). We again write k[V ] for Γ(V,OV ), the ring of
functions regular on the whole of V.

Thus, for each affine k-algebra A, we have an affine variety Specm(A), and con-
versely, for each affine variety (V,OV ), we have an affine k-algebra Γ(V,OV ). We now
make this correspondence into an equivalence of categories.

Remark 2.12. I claim that a radical ideal a in k[X1, . . . , Xn] is equal to the
intersection of the maximal ideals containing it. Indeed, the maximal ideals in
k[X1, . . . , Xn] are all of the form ma = (X1 − a1, . . . , Xn − an), and f ∈ ma ⇐⇒
f(a) = 0. Thus ma ⊃ a ⇐⇒ a ∈ V (a), and if f ∈ ma for all a ∈ V (a), then f is
zero on V (a), i.e., f ∈ IV (a) = a.

This remark implies that, for any affine k-algebra A, the intersection of the maximal
ideals of A is zero, because A is isomorphic to a k-algebra k[X1, . . . , Xn]/a and we
can apply the remark to a. Hence the map that associates with f ∈ A the map
specmA→ k, m �→ f(m), is injective: A can be identified with a ring of functions on
specmA.

The category of affine algebraic varieties. Let α : A→ B be a homomorphism of
affine k-algebras. For any h ∈ A, α(h) is invertible in Bα(h), and so the homomorphism
A→ B → Bα(h) extends to a homomorphism

g

hm
�→ α(g)

α(h)m
: Ah → Bα(h).

For any maximal ideal n of B, m
df
= α−1(n) is maximal in A, because A/m→ B/n = k

is an injective map of k-algebras and this implies A/m = k. Thus α defines a map

ϕ : specmB → specmA, ϕ(n) = α−1(n) = m.
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For m = α−1(n) = ϕ(n), we have a commutative diagram:

A
α−−−→ B� �

A/m
=−−−→ A/n.

Recall that the image of an element f of A in A/m = k is denoted f(m). Therefore,
the commutativity of the diagram means that, for f ∈ A,

f(ϕ(n)) = α(f)(n), i.e., f ◦ ϕ = α. (*).

Since ϕ−1D(f) = D(f ◦ ϕ) (obviously), it follows from (*) that

ϕ−1(D(f)) = D(α(f)),

and so ϕ is continuous.

Let f be a regular function on D(h), and write f = g/hm, g ∈ A. Then, from (*)
we see that f ◦ ϕ is the function on D(α(h)) defined by α(g)/α(h)m. In particular,
it is regular, and so f �→ f ◦ ϕ maps regular functions on D(h) to regular functions
on D(α(h)). It follows that f �→ f ◦ ϕ sends regular functions on any open subset
of specm(A) to regular functions on the inverse image of the open subset. Thus α
defines a morphism Specm(B) → Specm(A).

Conversely, by definition, a morphism of ϕ : (V,OV ) → (W,OW ) of affine algebraic
varieties defines a homomorphism of the associated affine k-algebras k[W ] → k[V ].
Since these maps are inverse, we have shown:

Proposition 2.13. For any affine algebras A and B,

Homk-alg(A,B)
≈→ Mor(Specm(B), Specm(A));

for any affine varieties V and W ,

Mor(V,W )
≈→ Homk-alg(k[W ], k[V ]).

A covariant functor F : A → B of categories is said to be an equivalence of cate-
gories if

(a) for all objects A, A′ of A,

Hom(A,A′) → Hom(F (A), F (A′))

is a bijection (F is fully faithful);
(b) every object of B is isomorphic to an object of the form F (A), A ∈ Ob(A) (F

is essentially surjective).

One can show that such a functor F has a quasi-inverse, i.e., there is a functor
G : B→ A, which is also an equivalence, and is such that G(F (A)) ≈ A (functorially)
and F (G(B)) ≈ B (functorially). Hence the relation of equivalence is an equivalence
relation. (In fact one can do better—see, for example, Bucur and Deleanu, Introduc-
tion to the Theory of Categories and Functors, 1968, I.6.)

Similarly one defines the notion of a contravariant functor being an equivalence of
categories. Proposition 2.13 can now be restated in stronger form as:
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Proposition 2.14. The functor A �→ SpecmA is a (contravariant) equivalence
from the category of affine k-algebras to that of affine varieties with quasi-inverse
(V,OV ) �→ Γ(V,OV ).

Explicit description of morphisms of affine varieties.

Proposition 2.15. Let V = V (a) ⊂ km, W = V (b) ⊂ kn. The following condi-
tions on a continuous map ϕ : V → W are equivalent:

(a) ϕ is regular;
(b) the components ϕ1, . . . , ϕm of ϕ are all regular;
(c) f ∈ k[W ] ⇒ f ◦ ϕ ∈ k[V ].

Proof. (a) ⇒ (b). By definition ϕi = yi ◦ ϕ where yi is the coordinate function
(b1, . . . , bn) �→ bi : W → k. Hence this implication follows directly from the definition
of a regular map.

(b) ⇒ (c). The map f �→ f ◦ ϕ is a k-algebra homomorphism from the ring of
all functions W → k to the ring of all functions V → k, and (b) says that the map
sends the coordinate functions yi on W into k[V ]. Since the yi’s generate k[W ] as a
k-algebra, this implies that this map sends k[W ] into k[V ].

(c) ⇒ (a). The map f �→ f ◦ ϕ is a homomorphism α : k[W ] → k[V ]. It therefore
defines a map specm k[V ] → specm k[W ], and it remains to show that this coincides
with ϕ when we identify specm k[V ] with V and specm k[W ] with W . Let a ∈ V , let
b = ϕ(a), and let ma and mb be the ideals of elements of k[V ] and k[W ] that are zero
at a and b respectively. Then, for f ∈ k[W ],

α(f) ∈ ma ⇐⇒ f(ϕ(a)) = 0 ⇐⇒ f(b) = 0 ⇐⇒ f ∈ mb.

Therefore α−1(ma) = mb, which is what we needed to show.

Remark 2.16. For all a ∈ V , f �→ f ◦ ϕ maps germs of regular functions at
ϕ(a) to germs of regular functions at a; in fact, it induces a local homomorphism
OV ,ϕ(a) → OV,a.

Now consider equations

Y1 = P1(X1, . . . , Xm)

. . .

Yn = Pn(X1, . . . , Xm).

On the one hand, they define a mapping ϕ : km → kn, namely,

(a1, . . . , am) �→ (P1(a1, . . . , am), . . . , Pn(a1, . . . , am)).

On the other, they define a homomorphism of k-algebras α : k[Y1, . . . , Yn] →
k[X1, . . . , Xn], namely, that sending

Yi �→ Pi(X1, . . . , Xn).

This map coincides with f �→ f ◦ ϕ, because

α(f)(a) = f(. . . , Pi(a), . . . ) = f(ϕ(a)).
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Now consider closed subsets V (a) ⊂ km and V (b) ⊂ kn with a and b radical ideals. I
claim that ϕ maps V (a) into V (b) if and only if α(b) ⊂ a. Indeed, suppose ϕ(V (a)) ⊂
V (b), and let f ∈ b; for b ∈ V (b),

α(f)(b) = f(ϕ(b)) = 0,

and so α(f) ∈ IV (b) = b. Conversely, suppose α(b) ⊂ a, and let a ∈ V (a); for f ∈ a,

f(ϕ(a)) = α(f)(a) = 0,

and so ϕ(a) ∈ V (a). When these conditions hold, ϕ is the morphism of affine
varieties V (a) → V (b) corresponding to the homomorphism k[Y1, . . . , Ym]/b →
k[X1, . . . , Xn]/a defined by α.

Thus, we see that the morphisms

V (a) → V (b)

are all of the form

a �→ (P1(a), . . . , Pm(a)), Pi ∈ k[X1, . . . , Xn].

Example 2.17. (a) Consider a k-algebra R. From a k-algebra homomorphism
α : k[X] → R, we obtain an element α(X) ∈ R, and α(X) determines α completely.
Moreover, α(X) can be any element of R. Thus

α �→ α(X) : Homk−alg(k[X], R)
≈→ R.

According to (2.13)

Mor(V,A1) = Homk-alg(k[X], k[V ]).

Thus the regular maps V → A1 are simply the regular functions on V (as we would
hope).

(b) Define A0 to be the ringed space (V0,OV0) with V0 consisting of a single point,
and Γ(V0,OV0) = k. Equivalently, A0 = Specm k. Then, for any affine variety V ,

Mor(A0, V ) ∼= Homk-alg(k[V ], k) ∼= V

where the last map sends α to the point corresponding to the maximal ideal Ker(α).

(c) Consider t �→ (t2, t3) : A1 → A2. This is bijective onto its image, the variety
V : Y 2 = X3, but it is not an isomorphism onto its image — the inverse map is
not a morphism. Because of (2.14), it suffices to show that t �→ (t2, t3) doesn’t
induce an isomorphism on the rings of regular functions. We have k[A1] = k[T ] and
k[V ] = k[X, Y ]/(Y 2 −X3) = k[x, y]. The map on rings is

x �→ T 2, y �→ T 3, k[x, y]→ k[T ],

which is injective, but the image is k[T 2, T 3] �= k[T ]. In fact, k[x, y] is not integrally
closed: (y/x)2−x = 0, and so (y/x) is integral over k[x, y], but y/x /∈ k[x, y] (it maps
to T under the inclusion k(x, y) ↪→ k(T )).

(d) Assume that k has characteristic p �= 0, and consider x �→ xp : An → An. This
is a bijection, but it is not an isomorphism because the corresponing map on rings,

Xi �→ Xpi : k[X1, . . . , Xn] → k[X1, . . . , Xn],

is not surjective.



Algebraic Geometry: 2. Affine Algebraic Varieties 41

This map is the famous Frobenius map. Take k to be the algebraic closure of Fp,
the field with p elements, and write F for the map. Then the fixed points of Fm are
precisely the points of An with coordinates in Fpm , the field with pm-elements (recall
from Galois theory that Fpm is the subfield of k consisting of those elements satisfying
the equation Xp

m
= X). Let P (X1, . . . , Xn) be a polynomial with coefficients in Fpm,

P =
∑

cαX
α, cα ∈ Fpm . If P (a) = 0, a ∈ kn, i.e.,

∑
cαa

i1
1 · · · ainn = 0, then

0 =
(∑

cαa
i1
1 · · · ainn

)pm
=
∑

cαa
pmi1
1 · · · apminn ,

and so P (Fma) = 0. Thus Fm maps V (P ) into V (P ), and its fixed points are the
solutions of

P (X1, . . . , Xn) = 0

in Fpm.

In one of the most beautiful pieces of mathematics of the last fifty years,
Grothendieck defined a cohomology theory (étale cohomology) that allowed him to
obtain an expression for the number of solutions of a system of polynomial equations
with coordinates in Fpn in terms of a Lefschetz fixed point formula, and Deligne used
the theory to obtain very precise estimates for the number of solutions. See my course
notes: Lectures on Etale Cohomology.

Subvarieties. For any ideal a in A, we define

V (a) = {P ∈ specmA | f(P ) = 0 all f ∈ a}
= {m maximal ideal in A | a ⊂ m}.

This is a closed subset of specmA, and every closed subset is of this form.

Now assume a is radical, so that A/a is again reduced. Corresponding to the
homomorphism A→ A/a, we get a regular map

SpecmA/a→ SpecmAA

The image is V (a), and specmA/a → V (a) is a homeomorphism. Thus every closed
subset of specmA has a natural ringed structure making it into an affine algebraic
variety. We call V (a) with this structure a closed subvariety of V.

Aside 2.18. If (V,OV ) is a ringed space, and Z is a closed subset of V , we can
define a ringed space structure on Z as follows: let U be an open subset of Z, and let
f be a function U → k; then f ∈ Γ(U,OZ) if for each P ∈ U there is a germ (U ′, f ′)
of a function at P (regarded as a point of V ) such that f ′|Z ∩ U ′ = f . One can
check that when this construction is applied to Z = V (a), the ringed space structure
obtained is that described above.

Proposition 2.19. Let (V,OV ) be an affine variety and let h ∈ k[V ], h �= 0.
Then (D(h),OV |D(h)) is an affine variety; in fact if V = specm(A), then D(h) =
specm(Ah). More explicitly, if V = V (a) ⊂ kn, then

(a1, . . . , an) �→ (a1, . . . , an, h(a1, . . . , an)
−1) : D(h) → kn+1,

defines an isomorphism of D(h) onto V (a, 1− hXn+1).

Proof. The map A → Ah defines a morphism specmAh → specmA. The image
is D(h), and it is routine (using (2.4)) to verify the rest of the statement.
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For example, there is an isomorphism of affine varieties

x �→ (x, 1/x) : A1 − {0} → V ⊂ A2,

where V is the subvariety XY = 1 of A2 — the reader should draw a picture.

Remark 2.20. We have seen that all closed subsets, and all basic open subsets, of
an affine variety V are again affine varieties, but it need not be true that (U,OV |U)
is an affine variety when U open in V . Note that if (U,OV |U) is an affine variety,
then we must have (U,OV ) ∼= Specm(A), A = Γ(U,OV ). In particular, the map

P �→ mP = {f ∈ A | f(P ) = 0}
will be a bijection from U onto specm(A).

Consider U ⊂ A2 \ (0, 0) = D(X) ∪ D(Y ). We saw in (2.8b) that Γ(U,OA2) =
k[X, Y ]. Now U → specm k[X, Y ] is not a bijection, because the ideal (X, Y ) is not
in the image.

However, U is clearly a union of affine algebraic varieties — we shall see in the next
section that it is a (nonaffine) algebraic variety.

Properties of specm(α).

Proposition 2.21. Let α : A → B be a homomorphism of affine k-algebras, and
let ϕ : Specm(B)→ Specm(A) be the corresponding morphism of affine varieties (so
that α(f) = ϕ ◦ f).

(a) The image of ϕ is dense for the Zariski topology if and only if α it is injective.
(b) ϕ defines an isomorphism of Specm(B) onto a closed subvariety of Specm(A) if

and only if α is surjective.

Proof. (a) Let f ∈ A. If the image of ϕ is dense, then

f ◦ ϕ = 0 ⇒ f = 0.

Conversely, if the image of ϕ is not dense, there will be a nonzero function f ∈ A
that is zero on its image, i.e., such that f ◦ ϕ = 0.

(b) If α is surjective, then it defines an isomorphism A/a → B where a is the kernel
of α. This induces an isomorphism of Specm(B) with its image in Specm(A).

A regular map ϕ : V →W of affine algebraic varieties is said to be a dominating if
the image is dense in W . The proposition then says that:

ϕ is dominating ⇐⇒ f �→ f ◦ ϕ : Γ(W,OW ) → Γ(V,OV ) is injective.

A little history. We have associated with any affine k-algebra A an affine variety
whose underlying topological space is the set of maximal ideals in A. It may seem
strange to be describing a topological space in terms of maximal ideals in a ring, but
the analysts have been doing this for more than 50 years. Gel’fand and Kolmogorov
in 1939 proved that if S and T are completely regular topological spaces, and the
rings of real-valued continuous functions on S and T are isomorphic (just as rings),
then S and T are homeomorphic. The first step in the proof showed that, for such a
space S, the map

P �→ mP = {f : S → R | f(P ) = 0}
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defines a one-to-one correspondence between the points in the space and maximal
ideals in the ring. (See Shields’s article in Math. Intelligencer, Summer 1989, pp
15-17.) (A space S is completely regular if it is T1 and for every closed subset C
and point P /∈ C , there is a real-valued continuous function f on the space such that
f(P ) = 0 and f is identically 1 on C .)
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3. Algebraic Varieties

An algebraic variety is a ringed space that is locally isomorphic to an affine algebraic
variety, just as a topological manifold is a ringed space that is locally isomorphic to
an open subset of Rn; both are required to satisfy a separation axiom.

Algebraic prevarieties. As motivation, recall the following definitions.

Definition 3.1. (a) A topological manifold is a ringed space (V,OV ) such that V
is Hausdorff and every point of V has an open neighbourhood U for which (U,OV |U)
is isomorphic to the ringed space of continuous functions on an open subset of Rn (cf.
(2.2a)).

(b) A differentiable manifold is a ringed space such that V is Hausdorff and every
point of V has an open neighbourhood U for which (U,OV |U) is isomorphic to a
ringed space as in (2.2b).

(c) A complex manifold is a ringed space such that V is Hausdorff and every point
of V has an open neighbourhood U for which (U,OV |U) is isomorphic to a ringed
space as in (2.2c).

The above definitions are easily seen to be equivalent to the more classical defini-
tions in terms of charts and atlases. Often one imposes additional conditions on V ,
for example, that it is second countable or connected.

Definition 3.2. An algebraic prevariety is a ringed space (V,OV ) such that V
is quasi-compact and every point of V has an open neighbourhood U such that
(V,OV |U) is an affine algebraic variety.

Equivalently, a ringed space (V,OV ) is an algebraic prevariety if there is a finite
open covering V = ∪Vi such that (Vi,OV |Vi) is an affine algebraic variety for all i.

An algebraic variety will be defined to be an algebraic prevariety satisfying a certain
separation condition.

An open subset U of an algebraic prevariety V such that (U , OV |U) is an affine
algebraic variety is called an open affine (subvariety) in V .

Let (V,OV ) be an algebraic variety, and let U be an open subset of V . The functions
f : U → k lying in Γ(U,OV ) are called regular. Note that if (Ui) is an open covering of
V by affine varieties, then f : U → k is regular if and only if f |Ui ∩U is regular for all
i (this is just a special case of condition (c) to be a sheaf, p12). Thus understanding
the regular functions on open subsets of V amounts to understanding the regular
functions on the open affine subvarieties and how these subvarieties fit together to
form V .

Example 3.3. Any open subset of an affine variety together with its induced
ringed structure is an algebraic prevariety (in fact variety). For example, A2 \{(0, 0)}
is an algebraic variety.

Example 3.4. (Projective space). Let

Pn = kn+1 \ {(0, . . . , 0)}/∼
where (a0, . . . , an) ∼ (b0, . . . , bn) if there is a c ∈ k× such that (a0, . . . , an) =
(cb0, . . . , cbn). Thus the equivalence classes are the lines through the origin in kn+1.
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Write (a0 : . . . : an) for the equivalence class containing (a0, . . . , an). For each i, let

Ui = {(a0 : . . . : ai : . . . : an) ∈ Pn | ai �= 0}.
Then Pn = ∪Ui, and the map ui

(a1, . . . , an) �→ (a0 : . . . : ai−1 : 1 : ai+1, . . . : an) : kn → Ui

is a bijection. We use this map to transfer the Zariski topology on kn to Ui, and we
endow Pn with the topology such that U ⊂ Pn is open if and only if U ∩ Ui is open
in Ui for all i. Define a function f : U → k on an open subset U of Pn to be regular
if f ◦ ui is a regular function on kn for all i. These definitions endow Pn with the
structure of a ringed space, and each map ui is an isomorphism of ringed spaces (An,
OAn) → (Ui, OV |Ui). Thus Pn is an algebraic prevariety. Later (see Section 5), we
shall study Pn in detail.

Regular maps. In each of the examples (3.1a,b,c), a morphism of manifolds (con-
tinuous map, differentiable map, analytic map respectively) is just a morphism of
ringed spaces. This motivates the following definition.

Let (V,OV ) and (W,OW ) be algebraic prevarieties. A map ϕ : V → W is said to
be regular if it is a morphism of ringed spaces. A composite of regular maps is again
regular (this is a general fact about morphisms of ringed spaces).

Note that we have four categories:

(Affine varieties) ⊂ (Alg. prevarieties) ⊂ (ringed spaces).

Each subcategory is full (i.e., the morphisms Mor(V,W ) are the same in the four
categories).

Proposition 3.5. Let (V,OV ) and (W,OW ) be prevarieties, and let ϕ : V → W
be a continuous map (of topological spaces). Let W = ∪Wi be a covering of W by
open affines, and let ϕ−1(Wj) = ∪Vji be a covering of ϕ−1(Wj) by open affines. Then
ϕ is regular if and only if its restrictions

ϕ|Vji : Vji → Wj

are regular for all i, j.

Proof. We assume that ϕ satisfies this condition, and prove that it is regular. Let
f be a regular function on an open subset U of W . Then f |U ∩Wj is regular for each
Wj (because the regular functions form a sheaf), and so f ◦ϕ|ϕ−1(U) ∩ Vji is regular
for each j, i (this is our assumption). It follows that f ◦ϕ is regular on ϕ−1(U) (sheaf
condition). Thus ϕ is regular. The converse is equally easy.

Aside 3.6. A differentiable manifold of dimension d is locally isomorphic to an
open subset of Rd. In particular, all manifolds of the same dimension are locally
isomorphic. This is not true for algebraic varieties, for two reasons:

(a) We are not assuming our varieties are nonsingular (see the next section).

(b) The inverse function theorem fails in our context. If P is a nonsingular point on
variety of dimension d, we shall see (in the next section) that there is a neighbourhood
U of P and a regular map ϕ : U → Ad such that map (dϕ)P : TP → Tϕ(P ) on the
tangent spaces is an isomorphism. If the inverse function theorem were true in our
context, it would tell us that an open neighbourhood of P is isomorphic to an open
neighbourhood of ϕ(P ).
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Algebraic varieties. In the study of topological manifolds, the Hausdorff condi-
tion eliminates such bizarre possibilities as the line with the origin doubled, where a
sequence tending to the origin has two limits.

It is not immediately obvious how to impose a separation axiom on our algebraic
varieties, because even affine algebraic varieties are not Hausdorff. The key is to
restate the Hausdorff condition. Intuitively, the significance of this condition is that
it implies that a sequence in the space can have at most one limit. Thus a continuous
map into the space should be determined by its values on a dense subset, i.e., if ϕ
and ψ are continuous maps Z → U that agree on a dense subset of Z then they
should agree on the whole of Z. Equivalently, the set where two continuous maps
ϕ, ψ : Z → U agree should be closed. Surprisingly, affine varieties have this property,
provided ϕ and ψ are required to be regular maps.

Lemma 3.7. Let ϕ and ψ be regular maps of affine algebraic varieties Z ⇒ V .
The subset of Z on which ϕ and ψ agree is closed.

Proof. There are regular functions xi on V such that P �→ (x1(P ), . . . , xn(P ))
identifies V with a closed subset of An (take the xi to be any set of generators for
k[V ] as a k-algebra). Now xi ◦ ϕ and xi ◦ ϕ are regular functions on Z, and the set
where ϕ and ψ agree is

⋂n
i=1 V (xi ◦ ϕ− xi ◦ ψ), which is closed.

Definition 3.8. An algebraic prevariety V is said to be separated, or to be an
algebraic variety, if it satisfies the following additional condition:

separation axiom: for every pair of regular maps ϕ, ψ : Z ⇒ V with Z an algebraic
prevariety, the set {z ∈ Z | ϕ(z) = ψ(z)} is closed in Z.

The terminology not completely standardized: often one requires a variety to be
irreducible, and sometimes one calls a prevariety a variety.

Remark 3.9. In order to check that a prevariety V is separated, it suffices to
show that for every pair of regular maps ϕ, ψ : Z → V with Z an affine algebraic
variety {z ∈ Z | ϕ(z) = ψ(z)} is closed in Z. To prove this remark, cover Z with
open affines. Thus (3.7) shows that affine varieties are separated.

Example 3.10. (The affine line with the origin doubled.) Let V1 and V2 be copies
of A1. Let V ∗ = V1 # V2 (disjoint union), and give it the obvious topology. Define an
equivalence relation on V ∗ by

x (in V1) ∼ y (in V2) ⇐⇒ x = y and x �= 0.

Let V be the quotient space V = V ∗/∼ with the quotient topology (a set is open if
and only if its inverse image in V ∗ is open). Then V1 and V2 are open subspaces of
V , V = V1 ∪ V2, and V1 ∩ V2 = A1 − {0}. Define a function on an open subset to be
regular if its restriction to each Vi is regular. This makes V into a prevariety, but not
a variety: it fails the separation axiom because the two maps

A1 = V1 ↪→ V ∗, A1 = V2 ↪→ V ∗

agree exactly on A1 − {0}, which is not closed in A1.
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Subvarieties. Let (V,OV ) be a prevariety. Then V is a finite union of open affines,
and in each open affine the open affines (in fact the basic open subsets) form a basis
for the topology. From this it follows the open affines form a basis for the topology on
V , i.e., every open subset U of V is a union of open affines (of V ). It follows that, for
any open subset U of V , (U,OV |U) is a prevariety. Obviously the inclusion U ↪→ V
is regular. A regular map ϕ : W → V is an open immersion if ϕ(W ) is open in V and
ϕ defines an isomorphism W → ϕ(W ) (of prevarieties).

Any closed subset Z in V has a canonical structure of an algebraic prevariety:
endow it with the induced topology, and say that a function f on an open subset of Z
is regular if each point P in the open subset has an open neighbourhood U in V such
that f extends to a regular function on U . To show that Z, with this ringed space
structure is a prevariety, check that for every open affine U ⊂ V , the ringed space
(U ∩Z,OZ|U ∩Z) is isomorphic to U ∩Z with its ringed space structure acquired as
a closed subset of U (see p45). A regular map ϕ : W → V is a closed immersion if
ϕ(W ) is closed in V and ϕ defines an isomorphism W → ϕ(W ) (of prevarieties).

A subset W of a topological space V is said to be locally closed if every point P in
W has an open neighbourhood U in V such that W ∩ U is closed in U ; equivalently,
W is the intersection of an open and a closed subset of V . A locally closed subset
W of a prevariety V acquires a natural structure as a prevariety: write it as the
intersection W = U ∩ Z of an open and a closed subset; Z is a prevariety, and W
(being open in Z) therefore acquires the structure of a prevariety. This structure
on W has the following characterization: the inclusion map W ↪→ V is regular, and
a map ϕ : V ′ → W with V ′ a prevariety is regular if and only if it is regular when
regarded as a map into V . With this structure, W is called a sub(pre)variety of V .
A morphism ϕ : V ′ → V is called an immersion if it induces an isomorphism of V ′

onto a subvariety of V . Every immersion is the composite of an open immersion with
a closed immersion (in both orders).

A subprevariety of a variety is automatically separated.

Proposition 3.11. A prevariety V is separated if and only if it has the following
property: if two regular maps ϕ, ψ : Z ⇒ V agree on a dense subset of Z, then they
agree on the whole of Z.

Proof. If V is separated, then the set where ϕ and ψ agree is closed, and so must
be the whole of Z.

Conversely, consider a pair of maps ϕ, ψ : Z ⇒ V , and let S be the subset of Z
on which they agree. We assume V has the property in the statement of the lemma,
and show that S is closed. Let S̄ be the closure of S in Z. According to the above
discussion, S̄ has the structure of a closed prevariety of Z, and the maps ϕ|S̄ and
ψ|S̄ are regular. Because they agree on a dense subset of S̄ they agree on the whole
of S̄, and so S = S̄ is closed.

Prevarieties obtained by patching. Let V = ∪Vi (finite union), and suppose that
each Vi has the structure of an algebraic prevariety satisfying the following condition:
for all i, j, Vi∩Vj is open in both Vi and Vj and the structures of an algebraic prevariety
induced on it by Vi and Vj are equal. Then we can define the structure of a ringed
space on V as follows: U ⊂ V is open if and only if U ∩ Vi is open for all i, and
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f : U → k is regular if and only if f |U ∩ Vi is regular for all i. It is straightforward to
check that this does make V into a ringed space (V,OV ).

Proposition 3.12. The ringed space (V,OV ) is a prevariety, and the inclusions
Vi ↪→ V are regular maps.

Proof. One only has to check that the ringed space structure on each Vi induced
by that of V is the original one.

Products of varieties. Let V and W be objects in a category C. A triple

(V ×W, p : V ×W → V , q : V ×W →W )

is said to be the product of V and W if, for all objects Z inC, the map ϕ �→ (p◦ϕ, q◦ϕ)
is a bijection

Hom(Z, V ×W )→ Hom(Z, V )× Hom(Z,W ),

i.e., if every pair of morphisms Z → V , Z →W factors uniquely through V ×W :

Z

✠�
�

� ❅
❅

❅❘

V ✛ V ×W
❄

.

.

.

.

.
∃!

✲ W.

Clearly, the product, if it exists, is uniquely determined up to a unique isomorphism11.

For example, the product of two sets (in the category of sets) is the usual cartesion
product of the sets, and the product of two topological spaces (in the category of
topological spaces) is the cartesian product of the spaces (as sets) with the usual
product topology.

We shall show that products exist in the category of algebraic varieties. Suppose,
for the moment, that V ×W exists. It follows from (2.17b) that for any prevariety
Z, Mor(A0, Z) is the underlying set of Z, i.e., for any z ∈ Z, the map A0 → Z with
image z is regular, and these are all the regular maps. Thus, from the definition of
products we have

(underlying set of V ×W ) = Mor(A0, V ×W )

= Mor(A0, V ) ×Mor(A0,W )

= (underlying set of V )× (underlying set of W ).

Thus our problem can be restated as follows: given two prevarieties V and W , define
on the set V ×W the structure of a prevariety such that the projection maps p, q : V ×
W ⇒ V,W are regular, and such that a map ϕ : T → V × W of sets (with T an
algebraic prevariety) is regular if and only if its components p ◦ ϕ, q ◦ ϕ are regular.
Clearly, there can be at most one such structure on the set V × W (because the
identity map will identify any two structures having these properties).

11If (P, p′ : P → V, q′ : P → W ) also has this property, then there exists a unique morphism
γ : P → V ×W such that p ◦ γ = p′ and q ◦ γ = q′ (universal property of V ×W ), and there exists
a unique morphism γ′ : V ×W → P such that p′ ◦ γ′ = p and q′ ◦ γ′ = q (universal property of
P ). The composite γ ◦ γ′ is the unique morphism V ×W → V ×W such that p ◦ γ ◦ γ′ = p and
q ◦ γ ◦ γ′ = q. But we already know one such morphism, namely, the identity morphism, and so
γ ◦ γ′ = id. Similarly γ′ ◦ γ = id, and so γ and γ′ are inverse isomorphisms.
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Before we can define products of algebraic varieties, we need to review tensor
products.

Review of tensor products. Let A and B be k-algebras. A k-algebra C together
with homomorphisms i : A→ C and j : B → C is called the tensor product of A and
B if it has the following universal mapping property: for every pair of homomorphisms
(of k-algebras) α : A→ R and β : B → R, there is a unique homomorphism γ : C → R
such that γ ◦ i = α and γ ◦ j = β:

A
i ✲ C ✛ j

B

❅
❅

❅α ❘ ✠�
�

�
β

R.

∃!
❄

.

.

.

.

.
γ

Clearly, if the tensor product exists, it is uniquely determined up to a unique isomor-
phism (same argument as in the above footnote). We write it A⊗k B.

Construction. Let C∗ be the k-vector space with basis A× B. Thus the elements of
C∗ are finite sums

∑
ci(ai, bi) with ci ∈ k, ai ∈ A, bi ∈ B. Let D be the subspace of

C∗ generated by the following elements,

(a + a′, b)− (a, b)− (a′, b), a, a′ ∈ A, b ∈ B,

(a, b + b′)− (a, b)− (a, b′), a ∈ A, b, b′ ∈ B,

(ca, b)− c(a, b), a ∈ A, b ∈ B, c ∈ k,

(a, cb)− c(a, b), a ∈ A, b ∈ B, c ∈ k,

and define C = C∗/D. Write a⊗ b for the class of (a, b) in C — we have imposed the
fewest conditions forcing (a, b) �→ a⊗ b to be k-bilinear. Every element of C can be
written as a finite sum,

∑
ai ⊗ bi, ai ∈ A, bi ∈ B, and the map

A× B → C, (a, b) �→ a⊗ b

is k-bilinear. By definition, C is a k-vector space, and there is a product structure on
C such that (a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′ — for this one has to check that the map

C∗ × C∗ → C, ((a, b), (a′, b′)) �→ aa′⊗ bb′

factors through C × C . It becomes a k-algebra by means of the homomorphism
c �→ c(1⊗ 1) = c⊗ 1 = 1⊗ c. The maps

a �→ a⊗ 1: A→ C and b �→ 1⊗ b : B → C

are homomorphisms, and it is routine to check that they make C into the tensor
product of A and B in the above sense.

Example 3.13. The algebra B, together with the given map k → B and the
identity map B → B, has the universal property characterizing k ⊗k B. In terms of
the constructive definition of tensor products, the map c⊗ b �→ cb : k⊗kB → B is an
isomorphism.
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Example 3.14. (a) The ring k[X1, . . . , Xm, Xm+1, . . . , Xm+n], together with the
maps

k[X1, . . . , Xm]
obvious inclusion−−−−−−−−−→ k[X1, . . . , Xm+n]

obvious inclusion←−−−−−−−−− k[Xm+1, . . . , Xm+n]

is the tensor product of k[X1, . . . , Xm] and k[Xm+1, . . . , Xm+n]. To verify this we
only have to check that, for every k-algebra R, the map

Homk-alg(k[X1, . . . , Xm+n], R) → Homk-alg(k[X1, . . . ], R)×Homk-alg(k[Xm+1, . . . ], R)

induced by the inclusions is a bijection. But this map can be identified with the
bijection

Rm+n → Rm × Rn.

In terms of the constructive definition of tensor products, the map

f ⊗ g �→ fg : k[X1, . . . , Xm]⊗k k[Xm+1, . . . , Xm+n] → k[X1, . . . , Xm+n]

is an isomorphism.

(b) Let a and b be ideals in k[X1, . . . , Xm] and k[Xm+1, . . . , Xm+n] respectively,
and let (a, b) be the ideal in k[X1, . . . , Xm+n] generated by the elements of a and b.
Then there is an isomorphism

f ⊗ g �→ fg :
k[X1, . . . , Xm]

a
⊗k k[Xm+1, . . . , Xm+n]

b
→ k[X1, . . . , Xm+n]

(a, b)
.

Again this comes down to checking that the natural map from
Homk-alg(k[X1, . . . , Xm+n]/(a, b), R) to

Homk-alg(k[X1, . . . , Xm]/a, R) ×Homk-alg(k[Xm+1, . . . , Xm+n]/b, R)

is a bijection. But the three sets are respectively

V (a, b) = zero-set of (a, b) in Rm+n,

V (a) = zero-set of a in Rm,

V (b) = zero-set of b in Rn,

and so this is obvious.

Remark 3.15. (a) If (bα) is a family of generators (resp. basis) for B as a k-vector
space, then (1⊗ bα) is a family of generators (resp. basis) for A⊗kB as an A-module.

(b) Let k ↪→ Ω be fields. Then

Ω⊗k k[X1, . . . , Xn] ∼= Ω[1⊗X1, . . . , 1⊗Xn] ∼= Ω[X1, . . . , Xn].

If A = k[X1, . . . , Xn]/(g1, . . . , gm), then

Ω⊗k A ∼= Ω[X1, . . . , Xn]/(g1, . . . , gm).

For more details on tensor products, see Atiyah and MacDonald 1969, Chapter 2
(but note that the description there (p31) of the homomorphism A→ D making the
tensor product into an A-algebra is incorrect — the map is a �→ f(a)⊗ 1 = 1⊗ g(a).
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Products of affine varieties. The tensor product of two k-algebras A and B has the
universal property to be a product, but with the arrows reversed. Because of the
category anti-equivalence (2.14), this will show that Specm(A ⊗k B) is the product
of SpecmA and SpecmB in the category of affine algebraic varieties once we have
shown that A⊗k B is an affine k-algebra.

Proposition 3.16. Let A and B be finitely generated k-algebras; if A and B are
reduced, then so also is A ⊗k B; if A and B are integral domains, then so also is
A⊗k B.

Proof. Assume A and B to be reduced, and let α ∈ A⊗kB. Then α =
∑n
i=1 ai⊗bi,

some ai ∈ A, bi ∈ B. If one of the bi’s is a linear combination of the remaining b’s,
say, bn =

∑n−1
i=1 cibi, ci ∈ k, then, using the bilinearity of ⊗, we find that

α =

n−1∑
i=1

ai ⊗ bi +

n−1∑
i=1

cian ⊗ bi =

n−1∑
i=1

(ai + cian)⊗ bi.

Thus we can suppose that in the original expression of α, the bi’s are linearly inde-
pendent over k.

Now suppose that α is nilpotent, and let m be a maximal ideal in A. From a �→
ā : A→ A/m = k we obtain homomorphisms

a⊗ b �→ ā⊗ b �→ āb : A⊗k B → k ⊗k B ≈→ B

The image
∑

āibi of α under this homomorphism is a nilpotent element of B, and
hence is zero (because B is reduced). As the bi’s are linearly independent over k, this
means that the āi are all zero. Thus, for all i, ai lies in every maximal ideal m of A,
and so is zero (by 2.12). Hence α = 0. This shows that A⊗k B is reduced.

Assume A and B to be integral domains, and let α, α′ ∈ A⊗B be such that αα′ = 0.
As before, we can write α =

∑
ai ⊗ bi and α′ =

∑
a′i ⊗ b′i with the sets {b1, b2, . . .}

and {b′1, b′2, . . .} each linearly independent over k. For each maximal ideal m of A, we
know (

∑
āibi)(

∑
ā′ib
′
i) = 0 in B, and so either (

∑
āibi) = 0 or (

∑
ā′ib
′
i) = 0. Thus

either all the ai ∈ m or all the a′i ∈ m. This shows that

specm(A) = V (a1, . . . , am) ∪ V (a′1, . . . , a
′
n).

Since specm(A) is irreducible (see 1.15), we must have specm(A) = V (a1, . . . , am) or
V (a′1, . . . , a

′
n). In the first case α = 0, and in the second α′ = 0.

Example 3.17. We give some examples to illustrate that k must be taken to be
algebraically closed in the proposition.

(a) Suppose k is nonperfect of characteristic p. To say that k is not perfect means
that there is an element α in an algebraic closure of k such that α /∈ k but αp ∈ k.
Let k′ = k[α], αp = a ∈ k, α /∈ k. Then (α ⊗ 1− 1⊗ α) �= 0 in k′ ⊗k k′ (in fact, the
elements αi ⊗ αj, 0 ≤ i, j ≤ p− 1, form a basis for k′ ⊗k k′ as a k-vector space), but

(α⊗ 1− 1⊗ α)p = (a⊗ 1− 1⊗ a) = (1⊗ a− 1⊗ a) = 0.

Thus k′ ⊗k k′ is not reduced, even though k′ is a field.

(b) Let K be a finite separable extension of k and let Ω be a “big” field containing k
(for example an algebraic closure of k). Write K = k[α] = k[X]/(f(X)), and assume
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f(X) splits in Ω[X], say, f(X) =
∏

X − αi. Because K/k is separable, the αi are
distinct, and so

K ⊗k Ω ∼= Ω[X]/(f(X)) ∼=
∏

Ω[X]/(X − αi),

and so it is not an integral domain. (The second isomorphism follows from the Chinese
remainder theorem.)

Having (3.16), we can make the following definition: let V and W be affine varieties,
and let Γ(V,OV ) = A and Γ(W,OW ) = B; then V × W = Specm(A ⊗k B) with
the projection maps p : V × W → V and q : V × W → W defined by the maps
a �→ a⊗ 1: A→ A⊗k B and b �→ 1⊗ b : B → A⊗k B.

Proposition 3.18. Let V and W be affine varieties; the projection maps p : V ×
W → V , q : V ×W → W are regular, and a map ϕ : U → V ×W is regular if and
only if p ◦ϕ and q ◦ϕ are regular. Therefore (V ×W, p, q) is the product of V and W
in the category of algebraic prevarieties. If V and W are irreducible, then so also is
V ×W .

Proof. The projection maps are regular because they correspond to the k-algebra
homomorphisms k[V ] → k[V ]⊗k k[W ] and k[W ] → k[V ]⊗k k[W ]. Let ϕ : U → V ×W
be a map (of sets) such that p◦ϕ and q◦ϕ are regular. If U is affine, then ϕ corresponds
to the map k[V ]⊗ k[W ] → k[U ] induced by

f �→ f ◦ (p ◦ ϕ) : k[V ] → k[U ] and f �→ f ◦ (q ◦ ϕ) : k[W ] → k[U ],

and so is regular. This shows that, for a general U , the restriction of ϕ to every open
affine of U is regular, and this implies that ϕ is regular (see 3.5).

The final statement follows from the second statement in 3.16.

Example 3.19. (a) It follows from (3.14a) that

Am p← Am+n q→ An,
where

p(a1, . . . , am+n) = (a1, . . . , am),

q(a1, . . . , am+n) = (am+1, . . . , am+n),

is the product of Am and An.
(b) It follows from (3.14b) that

V (a)
p← V (a, b)

q→ V (b)

is the product of V (a) and V (b).

Warning! The topology on V ×W is not the product topology; for example, the
topology on A2 = A1 × A1 is not the product topology.

Products in general. Now let V and W be two algebraic prevarieties V and W .
We define their product as follows: As a set, we take V ×W . Now write V and W
as unions of open affines, V = ∪Vi, W = ∪Wj . Then V ×W = ∪Vi ×Wj , and we
give V ×W the topology for which U ⊂ V ×W is open if and only if U ∩ (Vi ×Wj)
is open for all i and j. Finally, we define a ringed space structure by saying that a
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function f : U → k on an open subset U is regular if its restriction to U ∩ (Ui × Vj)
is regular for all i and j.

Proposition 3.20. With the above structure, V×W is a prevariety, the projection
maps

p : V ×W → V , q : V ×W → W

are regular, and a map ϕ : U → V × W is regular if and only if p ◦ ϕ and q ◦ ϕ
are regular. Therefore (V ×W, p, q) is the product of V and W in the category of
prevarieties.

Proof. Straightforward.

Proposition 3.21. If V and W are separated, then so also is V ×W .

Proof. Straightforward.

Example 3.22. An algebraic group is a variety G together with regular maps

mult: G×G→ G, inverse: G→ G,

and an element e ∈ G that make G into a group in the usual sense. For example, SLn
and GLn are algebraic groups, and any finite group can be regarded as an algebraic
group. Connected affine algebraic groups are called linear algebraic groups because
they can all be realized as closed subgroups of GLn for some n, and connected algebraic
groups that can be realized as closed algebraic subvarieties of a projective space are
called abelian because they are related to the integrals studied by Abel.

Coarse Classification: every algebraic group contains a sequence of normal sub-
groups G ⊃ G0 ⊃ G1 ⊃ {e} with G/G0 a finite group, G0/G1 an abelian variety, and
G1 a linear algebraic group.

The separation axiom. Now that we have the notion of the product of varieties,
we can restate the separation axiom in terms of the diagonal.

By way of motivation, consider a topological space V and the diagonal ∆ ⊂ V ×V ,

∆
df
= {(x, x) | x ∈ V }.

If ∆ is closed (for the product topology), then every pair of points (x, y) /∈ ∆ has a
neighbourhood U × U ′ such that U × U ′ ∩ ∆ = ∅. In other words, if x and y are
distinct points in V then there are neighbourhoods U and U ′ of x and y respectively
such that U ∩U ′ = ∅. Thus V is Hausdorff. Conversely, if V is Hausdorff, the reverse
argument shows that ∆ is closed.

For a variety V , we let ∆ = ∆V (the diagonal) be the subset {(v, v) | v ∈ V } of
V × V .

Proposition 3.23. An algebraic prevariety V is separated if and only if ∆V is
closed.

Proof. Assume ∆ to be closed, and let ϕ and ψ be regular maps Z → V . The
map

(ϕ, ψ) : Z → V × V , z �→ (ϕ(z), ψ(z))
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is regular, because its composites with the projections to V are ϕ and ψ. In particular,
it is continuous, and so (ϕ, ψ)−1(∆) is closed. But this is precisely the subset on which
ϕ and ψ agree.

Conversely, suppose V is separated. By definition, this means that for any preva-
riety Z and regular maps ϕ, ψ : Z → V , the set on which ϕ and ψ agree is closed in
Z. Apply this with ϕ and ψ the two projection maps V × V → V , and note that the
set on which they agree is ∆.

Corollary 3.24. For any prevariety V , the diagonal is a locally closed subset of
V × V .

Proof. Let P ∈ V , and let U be an open affine neighbourhood of P . Then U ×U
is a neighbourhood of (P, P ) in V × V , and ∆V ∩ (U × U) = ∆U , which is closed in
U × U because U is separated.

Thus ∆V is always a subvariety of V × V , and it is closed if and only if V is
separated.

The graph Γϕ of a regular map ϕ : V →W is defined to be

{(v, ϕ(v)) ∈ V ×W | v ∈ V }.
At this point, the reader should draw a picture, suggested by calculus.

Corollary 3.25. For any morphism ϕ : V →W of prevarieties, the graph Γϕ of
ϕ is locally closed in V ×W , and it is closed if W is separated. The map v �→ (v, ϕ(v))
is an isomorphism of V onto Γϕ.

Proof. The first statement follows from the preceding corollary because the graph
is the inverse image of the diagonal of W ×W under the regular map

(v, w) �→ (ϕ(v), w) : V ×W →W ×W.

The second follows from the fact that the regular map Γϕ ↪→ V × W
p→ V is an

inverse to v �→ (v, ϕ(v)) : V → Γϕ.

Theorem 3.26. The following three conditions on a prevariety are equivalent:

(a) V is separated;
(b) for every pair of open affines U and U ′ in V , U ∩ U ′ is an open affine, and

Γ(U ∩ U ′,OV ) is generated by the functions P �→ f(P )g(P ), f ∈ Γ(U,OV ),
g ∈ Γ(U ′,OV ), i.e., the map k[U ]⊗k k[U ′] → k[U ∩ U ′] is surjective;

(c) the condition in (b) holds for the sets in some open affine covering of V .

Proof. Let Ui and Uj be open affines in V . We shall prove:

(i) ∆ closed ⇒ Ui ∩ Uj affine.

(ii) If Ui ∩ Uj is affine, then

(Ui × Uj) ∩∆ is closed ⇐⇒ the map k[Ui]⊗k k[Uj] → k[Ui ∩ Uj] is surjective.

If {Ui × Uj}(i,j)∈I×J is an open covering of V × V , ∆ is closed in V × V ⇐⇒
∆ ∩ (Ui × Uj) is closed in Ui × Uj for each pair (i, j). Thus these statements show
that (a)⇒(b) and (c)⇒(a). Since the implication (b)⇒(c) is trivial, this shows that
(i) and (ii) imply the theorem.
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Proof of (i): The graph of the inclusion ι : Ui ∩ Uj ↪→ V is Γι = (Ui × Uj) ∩ ∆ ⊂
(Ui ∩Uj)× V . If ∆ is closed, (Ui ×Uj) ∩∆ is a closed subvariety of an affine variety,
and hence is affine (see p45). Since Ui ∩ Uj ≈ Γι, it also is affine.

Proof of (ii): Now assume that Ui ∩ Uj is affine. Then (Ui × Uj) ∩∆V is closed in
Ui×Uj ⇐⇒ v �→ (v, v) : Ui∩Uj → Ui×Uj is a closed immersion⇐⇒ the morphism
k[Ui×Uj] → k[Ui ∩Uj] is surjective (see 2.21). Since k[Ui×Uj ] = k[Ui]⊗k k[Uj], this
completes the proof of (ii).

Example 3.27. (a) Let V = P1, and let U0 and U1 be the standard open subsets
(Ui = A1). Then U0 ∩ U1 = A1 − {0}, and the maps on rings corresponding to the
inclusions Ui ↪→ U0 ∩ U1 are k[X] → k[X,X−1], X �→ X, and k[X] → k[X,X−1],
X �→ X−1. Thus the sets U0 and U1 satisfy the condition in (b).

(b) Let V be A1 with the origin doubled (see 3.10), and let U and U ′ be the upper
and lower copies of A1 in V . Then U ∩ U ′ is affine, but k[U ]⊗ k[U ′] → k[U ∩ U ′] is
not surjective. In fact the map is

k[X]⊗ k[Y ] = k[X, Y ] → k[X,X−1], X �→ X, Y �→ X.

(c) Let V be A2 with the origin doubled, and let U and U ′ be the upper and lower
copies of A2 in V . Then U ∩ U ′ is not affine (see 2.20).

Dimension. Let V be an irreducible algebraic variety. Then every open subset of V
is dense, and is irreducible. If U ⊃ U ′ are open affines in V , then we have

k[U ] ⊂ k[U ′] ⊂ k(U).

Therefore k(U) is also the field of fractions of k[U ′]. This remark shows that we can
attach to V a field k(V ), called the field of rational functions on V , such that for
every open affine U in V , k(V ) is the field of fractions of k[U ]. The dimension of V
is defined to be the transcendence degree of k(V ) over k. Note the dim(V ) = dim(U)
for any open subset U of V . In particular, dim(V ) = dim(U) for U an open affine in
V . It follows that some of the results in §1 carry over — for example, if Z is a proper
closed subvariety of V , then dim(Z) < dim(V ).

Proposition 3.28. Let V and W be irreducible varieties. Then

dim(V ×W ) = dim(V ) + dim(W ).

Proof. We can assume V and W to be affine, and write k[V ] = k[x1, . . . , xm] and
k[W ] = k[y1, . . . , yn] where {x1, . . . , xd} and {y1, . . . , ye} are maximal algebraically
independent sets of elements of k[V ] and k[W ]. Thus d = dim(V ) and e = dim(W ).
Then12

k[V ×W ] = k[V ]⊗k k[W ] ⊃ k[x1, . . . , xd]⊗k k[y1, . . . , ye] ≈ k[x1, . . . , xd, y1, . . . , ye].

Therefore {x1⊗ 1, . . . , xd⊗ 1, 1⊗ y1, . . . , 1⊗ ye} will be algebraically independent in
k[V ]⊗k k[W ]. Obviously k[V ×W ] is generated as a k-algebra by the elements xi⊗1,
1⊗ yj, 1 ≤ i ≤ m, 1 ≤ j ≤ n, and all of them are algebraic over

k[x1, . . . , xd]⊗k k[y1, . . . , ye].

12In general, it is not true that if M ′ and N ′ are R-submodules of M and N , then M ′ ⊗R N
′ is

an R-submodule of M ⊗R N . However, this is true if R is a field, because then M ′ and N ′ will be
direct summands of M and N , and tensor products preserve direct summands.
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Thus the transcendence degree of k(V ×W ) is d + e.

We extend the definition to an arbitrary variety V as follows. A variety is a
finite union of Noetherian topological spaces, and so is Noetherian. Consequently
(see 1.17), V is a finite union V = ∪Vi of its irreducible components, and we define
dim(V ) = max dim(Vi).

An algebraic variety as a functor of affine k-algebras. Let A be an affine k-
algebra, and let V be an algebraic variety. We define a point of V with coordinates
in A to be a regular map Specm(A)→ V . For example, if V = V (a) ⊂ kn, then

V (A) = {(a1, . . . , an) ∈ An | f(a1, . . . , an) = 0 all f ∈ a},
which is what you expect. In particular V (k) = V (as a set), i.e., V (as a set) can be
identified with the set of points of V with coordinates in k. Note that (V ×W )(A) =
V (A)×W (A).

Theorem 3.29. A regular map ϕ : V → W of algebraic varieties defines a family
of maps of sets, ϕ(A) : V (A)→ W (A), one for each affine k-algebra A, such that for
every homomorphism α : A→ B of k-algebras,

A V (A)
ϕ(A)

> W (A)

(*)

B
∨
α

V (B)
∨
V (α)

ϕ(B)
> V (B)

∨
W (α)

commutes. Every family of maps with this property arises from a unique morphism
of algebraic varieties.

The proof is trivial, once one has made the correct definitions, which we do in the
next subsection.

Categories and functors. A category C consists of

(a) a class of objects ob(C);
(b) for each pair (A,B) of objects, a set Mor(A,B), whose elements are called

morphisms from A to B, and are written α : A→ B;
(c) for each triple of objects (A,B,C) a map (called composition)

(α, β) �→ β ◦ α : Mor(A,B)×Mor(B,C)→ Mor(A,C).

Composition is required to be associative, i.e., (γ ◦β)◦α = γ ◦ (β ◦α), and for each
object A there is required to be an element idA ∈ Mor(A,A) such that idA ◦α = α,
β ◦ idA = β, for all (appropriate) α and β. The sets Mor(A,B) are required to be
disjoint (so that a morphism α determines its source and target).

Example 3.30. (a) There is a category of sets, Sets, whose objects are the sets
and whose morphisms are the usual maps of sets.

(b) There is a category Affk of affine k-algebras, whose objects are the affine k-
algebras and whose morphisms are the homomorphisms of k-algebras.

(c) There is a category Vark of algebraic varieties over k, whose objects are the
algbraic varieties over k and whose morphisms are the regular maps.
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The objects in a category need not be sets with structure, and the morphisms need
not be maps.

Exercise 3.31. List twenty more examples of categories.

Let C and D be categories. A covariant functor F from C to D consists of

(a) a map A �→ F (A), sending each object of C to an object of D, and,
(b) for each pair of objects A,B of C, a map

α �→ F (α) : Mor(A,B)→ Mor(F (A), F (B))

such that F (idA) = idF (A) and F (β ◦ α) = F (β) ◦ F (α).

A contravariant functor is defined similarly, except that the map on morphisms is

α �→ F (α) : Mor(A,B)→ Mor(F (B), F (A))

A functor F : C→ D is fully faithful if, for all objects A and B of C, the map

Mor(A,B)→Mor(F (A), F (B))

is a bijection. Then F defines an equivalence of C with the full subcategory of D
whose objects are isomorphic to F (A) for some object A of C (see p42). For example,
the functor A �→ SpecmA is fully faithful contravariant functor Affk → Vark, and
defines an equivalence of the first category with the subcategory of the second whose
objects are the affine algebraic varieties.

Example 3.32. (a) For any object V of a category C, we have a contravariant
functor

hV : C→ Sets,

which sends an object A to the set Mor(A, V ) and sends a morphism α : A→ B to

ϕ �→ ϕ ◦ α : hV (B)→ hV (A),

i.e., hV (∗) = Mor(∗, V ) and hV (α) = ∗ ◦ α.

(b) We have a contravariant functor

V �→ Γ(V,OV ) : Vark → Affk.

Let F and G be two functors C → D. A morphism α : F → G is a collection of
morphisms α(A) : F (A) → G(A), one for each object A of C, such that, for every
morphism u : A→ B in C, the following diagram commutes:

A F (A)
α(A)

> G(A)

(**)

B
∨
u

F (B)
∨
F (u)

α(B)
> G(B)

∨
G(u)

.

Example 3.33. Let α : V → W be a morphism in C. The collection of maps

hα(A) : hV (A)→ hW (A), ϕ �→ α ◦ ϕ
is a morphism of functors.

With this notion of morphism, the functors C → D form a category Fun(C,D)
(we ignore the problem that Mor(F,G) may not be a set — only a class).
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Proposition 3.34 (Yoneda Lemma). The functor

V �→ hV : C→ Fun(C,Sets)

is fully faithful.

Proof. Let A,B be objects of C. We construct an inverse to

α �→ hα : Mor(A,B)→Mor(hA, hB).

For a morphism of functors γ : hA → hB, define β(γ) = γ(idA)—it is morphism
A→ B. Then

β(hα)
df
= hα(idA)

df
= α ◦ idA = α,

and

hβ(γ)(α)
df
= β(γ) ◦ α df

= γ(idA) ◦ α = γ(α)

because of the commutativity of (**):

A hA(A)
γ
> hB(A)

(***)

B
∨
α

hB(B)

∗◦α
∨

γ
> hB(B)

∨
∗◦α

Thus α→ hα and γ �→ β(γ) are inverse maps.

Algebraic varieties as functors (continued). The Yoneda lemma shows that the
functor V �→ hV embeds the category of affine algebraic varieties as a full subcategory
of the category of covariant functors Affk → Sets, and it is not difficult to deduce
that it embeds the category of all algebraic varieties in to the category of such functors
(use 3.12 for example). This proves (3.29).

It is not unusual for a variety to be most naturally defined in terms of its points
functor. For example, for any affine k-algebra, let SLn(A) be the group of n × n
matrices with coefficients in A having determinant 1. A homomorphism A → B
induces a homomorphism SLn(A) → SLn(B), and so SLn(A) is a functor. In fact, it
is the points functor of the affine variety:

Specm k[X11, . . . , Xnn]/(det(Xij)− 1).

Matrix multiplication defines a morphism of functors

SLn× SLn → SLn

which, because of (3.29), arises from a morphism of algebraic varieties. In fact, SLn
is an algebraic group.

Instead of defining varieties to be ringed spaces, it is possible to define them to be
functors Affk → Sets satisfying certain conditions.

Dominating maps. A regular map α : V → W is said to be dominating if the
image of α is dense in W . Suppose V and W are irreducible. If V ′ and W ′ are open
affine subsets of V and W such that ϕ(V ′) ⊂ W ′, then (2.21) implies that the map
f �→ f ◦ ϕ : k[W ′] → k[V ′] is injective. Therefore it extends to a map on the fields of
fractions, k(W ) → k(V ), and this map is independent of the choice of V ′ and W ′.
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4. Local Study: Tangent Planes, Tangent Cones, Singularities

In this section, we examine the structure of a variety near a point. I begin with
the case of a curve, since the ideas in the general case are the same, but the formulas
are more complicated. Throughout, k is an algebraically closed field.

Tangent spaces to plane curves. Consider the curve

V : F (X, Y ) = 0

in the plane A2 defined by a nonconstant polynomial F (X, Y ). We assume that
F (X, Y ) has no multiple factors, so that (F (X, Y )) is a radical ideal and I(V ) =
(F (X, Y )). We can factor F into a product of irreducible polynomials, F (X, Y ) =∏

Fi(X, Y ), and then V = ∪V (Fi) expresses V as a union of its irreducible compo-
nents. Each component V (Fi) has dimension 1 (see 1.21) and so V has pure dimension
1. More explicitly, suppose for simplicity that F (X, Y ) itself is irreducible, so that
k[V ] = k[X, Y ]/(F (X, Y )) = k[x, y] is an integral domain. If F �= X − c, then x is
transcendental over k and y is algebraic over k(x), and so x is a transcendence basis
for k(V ) over k. Similarly, if F �= Y − c, then y is a transcendence basis for k(V ) over
k.

Let (a, b) be a point on V . In calculus, the equation of the tangent at P = (a, b) is
defined to be

∂F

∂X
(a, b)(X − a) +

∂F

∂Y
(a, b)(Y − b) = 0. (*)

This is the equation of a line unless both ∂F
∂X

(a, b) and ∂F
∂Y

(a, b) are zero, in which case
it is the equation of a plane.

Definition 4.1. The tangent space TPV to V at P = (a, b) is the space defined
by equation (*).

When ∂F
∂X

(a, b) and ∂F
∂Y

(a, b) are not both zero, TP (V ) is a line, and we say that P
is a nonsingular or smooth point of V . Otherwise, TP(V ) has dimension 2, and we
say that P is singular or multiple. The curve V is said to be nonsingular or smooth
when all its points are nonsingular.

We regard TP (V ) as a subspace of the two-dimensional vector space TP (A2), which
is the two-dimensional space of vectors with origin P .

Example 4.2. In each case, the reader is invited to sketch the curve. The char-
acteristic of k is assumed to be �= 2, 3.

(a) Xm+Y m = 1. All points are nonsingular unless the characteristic divides m (in
which case Xm + Y m − 1 has multiple factors).

(b) Y 2 = X3. Here only (0, 0) is singular.
(c) Y 2 = X2(X + 1). Here again only (0, 0) is singular.
(d) Y 2 = X3+ aX + b. In this case, V is singular ⇐⇒ Y 2−X3− aX − b, 2Y , and

3X2 + a have a common zero ⇐⇒ X3 + aX + b and 3X2 + a have a common
zero. Since 3X2 + a is the derivative of X3 + aX + b, we see that V is singular
if and only if X3 + aX + b has a multiple root.

(e) (X2 + Y 2)2 + 3X2Y − Y 3 = 0. The origin is (very) singular.
(f) (X2 + Y 2)3 − 4X2Y 2 = 0. The origin is (even more) singular.
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(g) V = V (FG) where FG has no multiple factors and F and G are relatively
prime. Then V = V (F )∪ V (G), and a point (a, b) is singular if and only if it is
a singular point of V (F ), a singular point of V (G), or a point of V (F ) ∩ V (G).
This follows immediately from the equations given by the product rule:

∂(FG)

∂X
= F · ∂G

∂X
+

∂F

∂X
·G,

∂(FG)

∂Y
= F · ∂G

∂Y
+

∂F

∂Y
·G.

Proposition 4.3. Let V be the curve defined by a nonconstant polynomial F with-
out multiple factors. The set of nonsingular points13 is an open dense subset V .

Proof. We can assume that F is irreducible. We have to show that the set of
singular points is a proper closed subset. Since it is defined by the equations

F = 0,
∂F

∂X
= 0,

∂F

∂Y
= 0,

it is obviously closed. It will be proper unless ∂F/∂X and ∂F/∂Y are identically
zero on V , and are therefore both multiples of F , but, since they have lower degree,
this is impossible unless they are both zero. Clearly ∂F/∂X = 0 if and only if F is
a polynomial in Y (k of characteristic zero) or is a polynomial in Xp and Y (k of
characteristic p). A similar remark applies to ∂F/∂Y . Thus if ∂F/∂X and ∂F/∂Y
are both zero, then F is constant (characteristic zero) or a polynomial in Xp, Y p, and
hence a pth power (characteristic p). These are contrary to our assumptions.

The set of singular points of a variety is often called the singular locus of the variety.

Tangent cones to plane curves. Note that if P = (0, 0), then the equation defining
the tangent space is the linear term of F : since (0, 0) is on V ,

F = aX + bY + terms of higher degree,

and the equation of the tangent space is F-(X, Y )
df
= aX + bY = 0.

In general a polynomial F (X, Y ) can be written (uniquely) as a finite sum

F = F0 + F1 + F2 + · · ·+ Fm + · · ·
where Fm is a homogeneous polynomial of degree m. The first nonzero term on the
right (the homogeneous summand of F of least degree) will be written F∗ and called
the leading form of F .

Definition 4.4. Let F (X, Y ) be a polynomial without square factors, and let V
be the curve defined by F . If (0, 0) ∈ V , then the geometric tangent cone to V at
(0, 0) is the zero set of F∗. The tangent cone is the pair (V (F∗), F∗). To obtain the
tangent cone at any other point, translate to the origin, and then translate back.

Example 4.5. (a) Y 2 = X3: the geometric tangent cone at (0, 0) is given by
Y 2 = 0 — it is the X-axis (doubled).

(b) Y 2 = X2(X + 1): the geometric tangent cone at (0,0) is given by Y 2 = X2 —
it is the pair of lines Y = ±X.

13In common usage, “singular” means uncommon or extraordinary as in, for example, he spoke
with singular shrewdness. Thus the proposition says that singular points (mathematical sense) are
singular (usual sense).
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(c) (X2 + Y 2)2 + 3X2Y − Y 3 = 0: the geometric tangent cone at (0, 0) is given by

3X2Y − Y 3 = 0 — it is the union of the lines Y = 0, Y = ±√3X .

(d) (X2 + Y 2)3 − 4X2Y 2 = 0: the geometric tangent cone at (0, 0) is given by
4X2Y 2 = 0 — it is the union of the x and y axes (each doubled).

In general we can factor F∗ as

F∗(X, Y ) =
∏

Xr0(Y − aiX)ri.

Then deg F∗ =
∑

ri is called the multiplicity of the singularity, multP (V ). A multiple
point is ordinary if its tangents are nonmultiple, i.e., ri = 1 all i. An ordinary double
point is called a node, and a nonordinary double point is called a cusp. (There are
many names for special types of singularities — see any book, especially an old book,
on curves.)

The local ring at a point on a curve.

Proposition 4.6. Let P be a point on a curve V , and let m be the corresponding
maximal ideal in k[V ]. If P is nonsingular, then dimkm/m2 = 1, and otherwise
dimk m/m2 = 2.

Proof. Assume first that P = (0, 0). Then m = (x, y) in k[V ] =
k[X, Y ]/(F (X, Y )) = k[x, y]. Note that m2 = (x2, xy, y2), and

m/m2 = (X, Y )/(m2 + F (X, Y )) = (X, Y )/(X2, XY, Y 2, F (X, Y )).

In this quotient, every element is represented by a linear polynomial cx + dy, and
the only relation is F-(x, y) = 0. Clearly dim m/m2 = 1 if F- �= 0, and dim m/m2 =
2 otherwise. Since F- = 0 is the equation of the tangent space, this proves the
proposition in this case.

The same argument works for an arbitrary point (a, b) except that one uses the
variables X ′ = X − a and Y ′ = Y − b — in essence, one translates the point to the
origin.

We explain what the condition dimk(m/m2) = 1 means for the local ring OP =
k[V ]m — see later for more details. Let n be the maximal ideal mk[V ]m of this local
ring. The map m→ n induces an isomorphism m/m2 → n/n2, and so we have

P nonsingular ⇐⇒ dimkm/m2 = 1 ⇐⇒ dimk n/n2 = 1.

Nakayama’s lemma shows that the last condition is equivalent to n being a principal
ideal. Since OP is of dimension 1, n being principal means OP is a regular local ring
of dimension 1, and hence a discrete valuation ring, i.e., a principal ideal domain with
exactly one prime element (up to associates). Thus, for a curve,

P nonsingular ⇐⇒ OP regular ⇐⇒ OP is a discrete valuation ring.

Tangent spaces of subvarieties of Am. Before defining tangent spaces at points
of closed subvarietes of Am we review some terminology from linear algebra.
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Linear algebra. For a vector space km, let Xi be the ith coordinate function a �→ ai.
Thus X1, . . . , Xm is the dual basis to the standard basis for km. A linear form

∑
aiXi

can be regarded as an element of the dual vector space (km)∨ = Hom(km, k).

Let A = (aij) be an n×m matrix. It defines a linear map α : km → kn, by
 a1

...
am


 �→ A


 a1

...
am


 .

Thus, if α(a) = b, then

bi =

m∑
j=1

aijaj.

Write X1, . . . , Xm for the coordinate functions on km and Y1, . . . , Yn for the coordi-
nate functions on kn. Then the last equation can be rewritten as:

Yi ◦ α =
m∑
j=1

aijXj .

This says that, when we apply α to a, then the ith coordinate of the result is∑m
j=1 aij(Xja) =

∑m
j=1 aijaj.

Tangent spaces. Consider an affine variety V ⊂ km, and let a = I(V ). The tangent
space Ta(V ) to V at a = (a1, . . . , am) is the subspace of the vector space with origin
a cut out by the linear equations

m∑
i=1

∂F

∂Xi

∣∣∣∣
a

(Xi − ai) = 0, F ∈ a. (*).

Thus Ta(Am) is the vector space of dimension m with origin a, and Ta(V ) is the
subspace of Ta(Am) defined by the equations (*).

Write (dXi)a for (Xi − ai); then the (dXi)a form a basis for the dual vector space
Ta(Am)∨ to Ta(Am)—in fact, they are the coordinate functions on Ta(Am). As in
advanced calculus, for a function F ∈ k[X1, . . . , Xm], we define the differential of F
at a by the equation:

(dF )a =
∑ ∂F

∂Xi

∣∣∣∣
a

(dXi)a.

It is again a linear form on Ta(Am). In terms of differentials, Ta(V ) is the subspace
of Ta(Am) defined by the equations:

(dF )a = 0, F ∈ a (**).

I claim that, in (*) and (**), it suffices to take the F in a generating subset for a.
The product rule for differentiation shows that if G =

∑
jHjFj, then

(dG)a =
∑
j

Hj(a) · (dFj)a + Fj(a) · (dGj)a.
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If F1, . . . , Fr generate a and a ∈ V (a), so that Fj(a) = 0 for all j, then this equation
becomes

(dG)a =
∑
j

Hj(a) · (dFj)a.

Thus (dG)a(t) = 0 if (dFj)a(t) = 0 for all j.

When V is irreducible, a point a on V is said to be nonsingular ( or smooth) if the
dimension of the tangent space at a is equal to the dimension of V ; otherwise it is
singular ( or multiple). When V is reducible, we say a is nonsingular if dimTa(V ) is
equal to the maximum dimension of an irreducible component of V passing through a.
It turns out then that a is singular precisely when it lies on more than one irreducible
component, or when it lies on only one but is a singular point of that component.

Let a = (F1, . . . , Fr), and let

J = Jac(F1, . . . , Fr) =

(
∂Fi
∂Xj

)
=




∂F1

∂X1
, . . . , ∂F1

∂Xm
...

...
∂Fr

∂X1
, . . . , ∂Fr

∂Xm


 .

Then the equations defining Ta(V ) as a subspace of Ta(Am) have matrix J(a). There-
fore, from linear algebra,

dimk Ta(V ) = m− rankJ(a),

and so a is nonsingular if and only if the rank of Jac(F1, . . . , Fr)(a) is equal to
m− dim(V ). For example, if V is a hypersurface, say I(V ) = (F (X1, . . . , Xm)), then

Jac(F )(a) =

(
∂F

∂X1
(a), . . . ,

∂F

∂Xm
(a)

)
,

and a is nonsingular if and only if not all of the partial derivatives ∂F
∂Xi

vanish at a.

We can regard J as a matrix of regular functions on V . For each r,

{a ∈ B | rankJ(a) ≤ r}
is closed in V , because it the set where certain determinants vanish. Therefore, there
is an open subset U of V on which rankJ(a) attains its maximum value, and the rank
jumps on closed subsets. Later we shall show that the maximum value of rankJ(a) is
m− dimV , and so the nonsingular points of V form a nonempty open subset of V .

The differential of a map. Consider a regular map

α : Am → An, a �→ (P1(a1, . . . , am), . . . , Pn(a1, . . . , am)).

We think of α as being given by the equations

Yi = Pi(X1, . . . , Xm), i = 1, . . . n.

It corresponds to the map of rings α∗ : k[Y1, . . . , Yn] → k[X1, . . . , Xm] sending Yi to
Pi(X1, . . . , Xm), i = 1, . . . n.

Define (dα)a : Ta(Am) → Tb(An) to be the map such that

(dYi)b ◦ (dα)a =
∑ ∂Pi

∂Xj

∣∣∣∣
a

(dXj)a,
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i.e., relative to the standard bases, (dα)a is the map with matrix

Jac(P1, . . . , Pn)(a) =




∂P1

∂X1
(a), . . . , ∂P1

∂Xm
(a)

...
...

∂Pn

∂X1
(a), . . . , ∂Pn

∂Xm
(a)


 .

For example, suppose a = (0, . . . , 0) and b = (0, . . . , 0), so that Ta(Am) = km and
Tb(An) = kn, and

Pi =
m∑

j=1

cijXj + (higher terms), i = 1, . . . , n.

Then Yi ◦ (dα)a =
∑
j cijXj , and the map on tangent spaces is given by the matrix

(cij), i.e., it is simply t �→ (cij)t.

Let F ∈ k[X1, . . . , Xm]. We can regard F as a regular map Am → A1, whose
differential will be a linear map

(dF )a : Ta(Am)→ Tb(A1), b = F (a).

When we identify Tb(A1) with k, we obtain an identification of the differential of F
(F regarded as a regular map) with the differential of F (F regarded as a regular
function).

Lemma 4.7. Let α : Am → An be as at the start of this subsection. If α maps
V = V (a) ⊂ km into W = V (b) ⊂ kn, then (dα)a maps Ta(V ) into Tb(W ), b = α(a).

Proof. We are given that

f ∈ b⇒ f ◦ α ∈ a,

and have to prove that

f ∈ b⇒ (df)b ◦ (dα)a is zero on Ta(V ).

The chain rule holds in our situation:

∂f

∂Xi
=

n∑
i=1

∂f

∂Yj

∂Yj
∂Xi

, Yj = Pj(X1, . . . , Xm), f = f(Y1, . . . , Yn).

If α is the map given by the equations

Yj = Pj(X1, . . . , Xm), j = 1, . . . , m,

then the chain rule implies

d(f ◦ α)a = (df)b ◦ (dα)a, b = α(a).

Let t ∈ Ta(V ); then

(df)b ◦ (dα)a(t) = d(f ◦ α)a(t),

which is zero if f ∈ b because then f ◦ α ∈ a. Thus (dα)a(t) ∈ Tb(W ).

We therefore get a map (dα)a : Ta(V ) → Tb(W ). The usual rules from advanced
calculus (alias differential geometry) hold. For example,

(dβ)b ◦ (dα)a = d(β ◦ α)a, b = α(a).
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Example 4.8. Let V be the union of the coordinate axes in A3, and let W be
V (XY (X−Y )) ⊂ A2 (union of three lines). Then V is not isomorphic to W because
To(V ) has dimension 3, but To(W ) has dimension 2. (Note that V = V (XY, Y Z,XZ),
from which it is clear that the origin o is the only singular point on V , and that the
tangent space there has dimension 3. An isomorphism V → W would have to send
the singular point to the singular point, i.e., o �→ o, and map To(V ) isomorphically
onto To(W ).)

Etale maps. Let V and W be smooth varieties. A regular map α : V → W is étale
at a if (dα)a : Ta(V ) → Tb(W ) is an isomorphism; α is étale if it is étale at all points
of V .

Example 4.9. (a) A regular map α = (P1, . . . , Pn) : An → An is étale at a if
and only if rank Jac(P1, . . . , Pn)(a) = n, because the map on the tangent spaces has

matrix Jac(P1, . . . , Pn)(a)). Equivalent condition: det
(
∂Pi

∂Xj
(a)
)
�= 0

(b) Let V = Specm(A) be an affine variety, and let f =
∑

ciX
i ∈ A[X]. Let

W = Specm(A[X]/(f(X)) (assuming this is an affine k-algebra), and consider the
map W → V corresponding to the inclusion A ↪→ A[X]/(f). The points of W lying
over a point a ∈ V correspond to the roots of

∑
ci(a)Xi. I claim that the map

W → V is étale at a point (a, b) if and only if b is a simple root of
∑

ci(a)Xi.

To see this, write A = Specm k[X1, . . . , Xn]/a, a = (f1, . . . , fr), so that A[X]/(f) =
k[X1, . . . , Xn]/(f1, . . . , fr, f). The tangent spaces to W and V at (a, b) and a respec-
tively are the null spaces of the matrices


∂f1
∂X1

(a) . . . ∂f1
∂Xm

(a) 0
...

...
∂fn
∂X1

(a) . . . ∂fn
∂Xm

(a) 0
∂f
∂X1

(a) . . . ∂f
∂Xm

(a) ∂f
∂X

(a, b)







∂f1
∂X1

(a) . . . ∂f1
∂Xm

(a)
...

...
∂fn
∂X1

(a) . . . ∂fn
∂Xm

(a)




and the map T(a,b)(W ) → Ta(V ) is induced by the projection map kn+1 → kn that

omits the last coordinate. This map is an isomorphism if and only if ∂f
∂X

(a, b) �= 0,
because then any solution to the smaller set of equations extends uniquely to a solution

of the larger set. But ∂f
∂X

(a, b) =
d(
∑

i ci(a)X
i)

dX
(b), which is zero if and only if b is a

multiple root of
∑
i ci(a)Xi.

(c) Consider a dominating map α : W → V of smooth affine varieties, corresponding
to a map A→ B of rings. Suppose B can be written B = A[Y1, . . . , Yn]/(P1, . . . , Pn)
(same number of polynomials as variables). A similar argument to the above shows

that α is étale if and only if det
(
∂Pi

∂Xj
(a)
)
�= 0.

(d) The example in (b) is typical; in fact every étale map is locally of this form,
provided V is normal (in the sense defined below). More precisely, let α : W → V be
étale at P ∈W , and assume V to normal; then there exist a map α′ : W ′ → V ′ with
k[W ′] = k[V ′][X]/(f(X)), and a commutative diagram

W ⊃ U1 ≈ U ′1 ⊂ W ′

↓ ↓ ↓ ↓
V ⊃ U2 ≈ U ′2 ⊂ V ′

with the U ’s all open subvarieties and P ∈ U1.
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Warning! In advanced calculus (or differential geometry, or the theory of complex
manifolds), the inverse function theorem says that a map α that is étale at a point
a is a local isomorphism there, i.e., there exist open neighbourhoods U and U ′ of
a and α(a) such that α induces an isomorphism U → U ′. This is not true in
algebraic geometry, at least not for the Zariski topology: a map can be étale at a
point without being a local isomorphism. Consider for example the map

α : A1 \ {0} → A1 \ {0}, a �→ a2.

This is étale if the characteristic is �= 2, because the Jacobian matrix is (2X), which
has rank one for all X �= 0 (alternatively, it is of the form (4.9b) with f(X) = X2−T ,
where T is the coordinate function on A1, and X2 − c has distinct roots for c �= 0).
Nevertheless, I claim that there do not exist nonempty open subsets U and U ′ of
A1−{0} such that α defines an isomorphism U → U ′. If there did, then α would define
an isomorphism k[U ′] → k[U ] and hence an isomorphism on the fields of fractions
k(A1) → k(A1). But on the fields of fractions, α defines the map k(X) → k(X),
X �→ X2, which is not an isomorphism.

Aside 4.10. There is a conjecture that any étale map α : An → An is an isomor-
phism. If we write α = (P1, . . . , Pn), then this becomes the statement

det

(
∂Pi
∂Xj

(a)

)
�= 0 all a⇒ α has a inverse.

The condition, det
(
∂Pi

∂Xj
(a)
)
�= 0 all a, implies that det

(
∂Pi

∂Xj

)
is a nonzero constant.

This conjecture, which is known as the Jacobian problem, has not been solved in
general as far as I know. It has caused many mathematicians a good deal of grief.
It is probably harder than it is interesting. See Bass et al., Bull. AMS 7 (1982),
287-330.

Intrinsic definition of the tangent space. The definition we have given of the
tangent space at a point requires the variety to be embedded in affine space. In this
subsection, we give a more intrinsic definition.

By a linear form in X1, . . . , Xn we mean an expression
∑

ciXi, ci ∈ k. The linear
forms form a vector space of dimension n, which is naturally dual to kn.

Lemma 4.11. Let c be an ideal in k[X1, . . . , Xn] generated by linear forms,
B1, . . . , Br, which we may assume to be linearly independent. Let Xi1 , . . . , Xin−r be
such that {B1, . . . , Br, Xi1 , . . . , Xin−r} is a basis for the linear forms in X1, . . . , Xn.
Then k[X1, . . . , Xn]/c ∼= k[Xi1 , . . . , Xin−r ].

Proof. This is obvious if the linear forms B1, . . . , Br are X1, . . . , Xr . In the general
case, because {X1, . . . , Xn} and {B1, . . . , Br, Xi1 , . . . , Xin−r} are both bases for the
linear forms, each element of one set can be expressed as a linear combination of the
elements of the second set. Therefore

k[X1, . . . , Xn] = k[B1, . . . , Br , Xi1, . . . , Xin−r ]

and so

k[X1, . . . , Xn]/c = k[B1, . . . , Br , Xi1, . . . , Xin−r ]/(B1, . . . , Br) ∼= k[Xi1 , . . . , Xin−r ].
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Let V = V (a) ⊂ kn, and assume the origin P ∈ V . Let a- be the ideal generated
by the linear terms f- of the f ∈ a. By definition, TP (V ) = V (a-). Let A- =
k[X1, . . . , Xn]/a-, and let m be the maximal ideal in k[V ] corresponding to the origin;
thus m = (x1, . . . , xn).

Proposition 4.12. There are canonical isomorphisms

Homk-linear(m/m2, k)
∼=→ Homk-alg(A-, k)

∼=→ TP (V ).

Proof. First isomorphism. Let n = (X1, . . . , Xn) be the maximal ideal at the
origin in k[X1, . . . , Xn]. Then m/m2 = n/(n2 + a), and as f − f- ∈ n2 for every
f ∈ a, we have m/m2 = n/(n2 + a-). Let f1,-, . . . , fr,- be a basis for the vector space
a-; there are n− r indeterminates Xi1 . . . , Xin−r forming with the fi,- a basis for the
linear forms on kn. Then Xi1 + m2, . . . , Xin−r + m2 form a basis for m/m2 as a k-
vector space, and the lemma shows that A- = k[Xi1 . . . , Xin−r ]. Any homomorphism
α : A- → k of k-algebras is determined by its values α(Xi1), . . . , α(Xin−r ), and they
can be arbitrarily given. Since the k-linear maps m/m2 → k have a similar description,
the first isomorphism is now obvious.

Second isomorphism. To give a k-algebra homomorphism A- → k is the same as to
give an element (a1, . . . , an) ∈ kn such that f(a1, . . . , an) = 0 for all f ∈ A-, which
is the same as to give an element of TP(V ).

Lemma 4.13. Let m be a maximal ideal of a ring A, and let n = mAm. For all n,
the map

a + mn �→ a + nn : A/mn → Am/n
n

is an isomorphism. Moreover, it induces isomorphisms

mr/mn → nr/nn

for all r < n.

Proof. The second statement follows from the first, because of the exact commu-
tative diagram:

0 −−−→ mr/mn −−−→ A/mn −−−→ A/mr −−−→ 0� �≈ �≈
0 −−−→ nr/nn −−−→ Am/n

n −−−→ Am/n
r −−−→ 0.

To simplify the exposition, in proving that the first map is an isomorphism, I’ll assume
A ⊂ S−1A. In order to show that the map A/mn → An/n

n is injective, we have to
show that nm ∩A = mm. But nm = S−1mm, S = A−m, and so we have to show that
mm = (S−1mm)∩A. An element of (S−1mm)∩A can be written a = b/s with b ∈ mm,
s ∈ S, and a ∈ A. Then sa ∈ mm, and so sa = 0 in A/mm. The only maximal ideal
containing mm is m (because m′ ⊃ mm ⇒ m′ ⊃ m), and so the only maximal ideal in
A/mm is m/mm; in particular, A/mm is a local ring. As s is not in m/mm, it is a unit
in A/mm, and so sa = 0 in A/mm implies a = 0 in A/mm, i.e., a ∈ mm.

We now prove that the map is surjective. Let a
s
∈ Am. Because s /∈ m and m is

maximal, we have that (s) + m = A, i.e., (s) and m are relatively prime. Therefore
(s) and mm are relatively prime (no maximal ideal contains both of them), and so
there exist b ∈ A and q ∈ mm such that bs+q = 1. Then b maps to s−1 in Am/n

m and
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so ba maps to a
s
. More precisely: because s is invertible in Am/n

m, a
s

is the unique
element of this ring such that sa

s
= a; since s(ba) = a(1− q), the image of ba in Am

also has this property and therefore equals a
s
.

Therefore, we also have a canonical isomorphism

TP (V )
≈→ Homk-lin(nP /n

2
P , k),

where nP is now the maximal ideal in OP (= Am).

Definition 4.14. The tangent space TP(V ) at a point P of a variety V is
Homk-lin(nP/n

2
P , k), where nP the maximal ideal in OP .

When V is embedded in affine space, the above remarks show that this definition
agrees with the more explicit definition on p68. The advantage of the present defini-
tion is that it depends only on a (small) neighbourhood of P . In particular, it doesn’t
depend on an affine embedding of V .

A regular map α : V → W sending P to Q defines a local homomorphismOQ →OP ,
which induces maps mQ → mP , mQ/m

2
Q → mP/m

2
P , and TP (V ) → TQ(W ). The last

map is written (dα)P . When some open neighbourhoods of P and Q are realized
as closed subvarieties of affine space, then (dα)P becomes identified with the map
defined earlier.

In particular, if f ∈ mP , then f is represented by a regular map U → A1, P �→ 0,
and hence defines a linear map (df)P : TP (V ) → k. This is just the map sending a
tangent vector (element of Homk-lin(mP/m

2
P , k)) to its value at f mod m2P . Again, in

the concrete situation V ⊂ Am this agrees with the previous definition. In general,
for f ∈ OP , i.e., for f a germ of a function at P , we define

(df)P = f − f(P ) mod m2.

The tangent space at P and the space of differentials at P are dual vector spaces—in
contrast to the situation in advanced calculus, for us it is easier to define first the
space of differentials, and then define the tangent space to be its dual.

Consider for example, a ∈ V (a) ⊂ An, with a a radical ideal. For f ∈ k[An] =
k[X1, . . . , Xn], we have (trivial Taylor expansion)

f = f(P ) +
∑

ci(Xi − ai) + terms of degree ≥ 2 in the Xi − ai,

that is,

f − f(P ) ≡
∑

ci(Xi − ai) mod m2P .

Therefore (df)P can be identified with∑
ci(Xi − ai) =

∑ ∂f

∂Xi

∣∣∣∣
a

(Xi − ai),

which is how we originally defined the differential.14 The tangent space Ta(V (a)) is
the zero set of the equations

(df)P = 0, f ∈ a,

14The same discussion applies to any f ∈ OP . Such an f is of the form g
h
with h(a) �= 0, and has

a (not quite so trivial) Taylor expansion of the same form, but with an infinite number of terms,
i.e., it lies in the power series ring k[[X1 − a1, . . . , Xn − an]].
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and the set {(df)P |Ta(V ) | f ∈ k[X1, . . . , Xn]} is the dual space to Ta(V ).

The dimension of the tangent space. In this subsection we show that the di-
mension of the tangent space is at least that of the variety. First we review some
commutative algebra.

Some commutative algebra. Let S be a multiplicative subset of a ring A, and let S−1A
be the corresponding ring of fractions. Any ideal a in A, generates an ideal S−1a in
S−1A. If a contains an element of S, then S−1a contains a unit, and so is the whole
ring. Thus some of the ideal structure of A is lost in the passage to S−1A, but, as
the next lemma shows, some is retained.

Proposition 4.15. Let S be a multiplicative subset of the ring A. The map p �→
S−1p = p(S−1A) is a bijection from the set of prime ideals of A disjoint from S to
the set of prime ideals of S−1A.

Proof. It is straightforward to verify that

q �→ (inverse image of q in A)

provides an inverse to p �→ S−1p. (See Atiyah and MacDonald 1969, p41–42.)

For example, let V be an affine variety and P a point on V . The proposition shows
that there is a one-to-one correspondence between the prime ideals of k[V ] contained
in mP and the prime ideals of OP . In geometric terms, this says that there is a
one-to-one correspondence between the prime ideals in OP and the irreducible closed
subvarieties of V passing through P .

Now let A be a local Noetherian ring with maximal ideal m. Then m is an A-

module, and the action of A on m/m2 factors through k
df
= A/m.

Proposition 4.16. The elements a1, . . . , an of m generate m as an ideal if and
only if their residues modulo m2 generate m/m2 as a vector space over k. In particular,
the minimum number of generators for the maximal ideal is equal to the dimension
of the vector space m/m2.

Proof. If a1, . . . , an generate m, it is obvious that their residues generate m/m2.
Conversely, suppose that their residues generate m/m2, so that m = (a1, . . . , an)+m2.
Since A is Noetherian and (hence) m is finitely generated, Nakayama’s lemma, applied
with M = m and N = (a1, . . . , an), shows that m = (a1, . . . , an).

Lemma 4.17 (Nakayama’s Lemma). Let A be a local Noetherian ring, and let M
be a finitely generated A-module. If N is a submodule of M such that M = N + mM ,
then M = N .

Proof. After replacing M with the quotient module M/N , we can assume that
N = 0. Thus we have to show that if M = mM , then M = 0. Let x1, . . . , xn generate
M , and write

xi =
∑
j

aijxj
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for some aij ∈ m. We see that x1, . . . , xn can be considered to be solutions to the
system of n equations in n variables∑

j

(δij − aij)xj = 0, δij = Kronecker delta,

and so Cramer’s rule tells us that det(δij − aij) · xi = 0 for all i. But on expanding it
out, we find that det(δij− aij) = 1 +m with m ∈ m. In particular, det(δij − aij) /∈ m,
and so it is a unit. We deduce that all the xi are zero, and that M = 0.

A Noetherian local ring A of Krull dimension d is said to be regular if its maximal
ideal can be generated by d elements. Thus A is regular if and only if its Krull
dimension is equal to the dimension of m/m2.

Two results from Section 7. We shall need to use two results that won’t be proved
until §7.

4.18. For any irreducible variety V and regular functions f1, . . . , fr on V , the
irreducible components of V (f1, . . . , fr) have codimension ≤ r.

Note that for polynomials of degree 1 on kn, this is familiar from linear algebra: A
system of r linear equations in n variables either has no solutions (the equations are
inconsistent) or has a family of solutions of dimension at least n− r.

Recall that the Krull dimension of a Noetherian local ring A is the maximum length
of a chain of prime ideals:

m = p0  p1  · · ·  pd.

In §7, we shall prove:

4.19. If V is an irreducible variety of dimension d, then the local ring at each
point P of V has dimension d.

The height of a prime ideal p in a Noetherian ring A, is the maximum length of a
chain of prime ideals:

p = p0  p1  · · ·  pd.

Because of (4.15), the height of p is the Krull dimension of Ap. Thus the above result
can be restated as: If V is an irreducible affine variety of dimension d, then every
maximal ideal in k[V ] has height d.

Sketch of proof of (4.19): If V = Ad, then A = k[X1, . . . , Xd], and all maximal
ideals in this ring have height d, for example,

(X1 − a1, . . . , Xd − ad) ⊃ (X1 − a1, . . . , Xd−1 − ad−1) ⊃ . . . ⊃ (X1 − a1) ⊃ 0

is a chain of prime ideals of length d that can’t be refined. In the general case,
the Noether normalization theorem says that k[V ] is integral over a polynomial ring
k[x1, . . . , xd], xi ∈ k[V ]; then clearly x1, . . . , xd is a transcendence basis for k(V ), and
the going up and down theorems (see Atiyah and MacDonald 1969, Chapt 5) show
that the local rings of k[V ] and k[x1, . . . , xd] have the same dimension.
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The dimension of the tangent space. Note that (4.16) implies that the dimension of
TP (V ) is the minimum number of elements needed to generate nP ⊂ OP .

Theorem 4.20. Let V be irreducible; then dimTP (V ) ≥ dim(V ), and equality
holds if and only if OP is regular.

Proof. Suppose f1, . . . , fr generate the maximal ideal nP in OP . Then f1, . . . , fr
are all defined on some open affine neighbourhood U of P , and I claim that P is an
irreducible component of the zero-set V (f1, . . . , fr) of f1, . . . , fr in U . If not, there
will be some irreducible component Z �= P of V (f1, . . . , fr) passing through P . Write
Z = V (p) with p a prime ideal in k[U ]. Because V (p) ⊂ V (f1, . . . , fr) and because
Z contains P and is not equal to it, we have

(f1, . . . , fr) ⊂ p � mP (ideals in k[U ]).

On passing to the local ring OP = k[U ]mP
, we find (using 4.15) that

(f1, . . . , fr) ⊂ pOP � nP (ideals in OP ).

This contradicts the assumption that the fi generate mP . Hence P is an irreducible
component of V (f1, . . . , fr), and (4.18) implies that

r ≥ codimP = dimV.

Since the dimension of TP (V ) is the minimum value of r, this implies that
dimTP (V ) ≥ dimV . If equality holds, then mP can be generated by dimV elements,
which (because of 4.19) implies that OP is regular. Conversely, if OP is regular, then
the minimum value of r is dimV , and so equality holds.

As in the affine case, we define a point P to be nonsingular if dimTP (V ) = dimV .
Thus a point P is nonsingular if and only if OP is a regular local ring. In more geo-
metric terms, we can say that a point P on a variety V of dimension d is nonsingular
if and only if it can be defined by d equations in some neighbourhood of the point;
more precisely, P is nonsingular if there exists an open neighbourhood U of P and d
regular functions f1, . . . , fd on U that generate the ideal mP .

According to (Atiyah and MacDonald 1969, 11.23), a regular local ring is an integral
domain. This provides another explanation of why a point on the intersection of two
irreducible components of a variety can’t be nonsingular: the local ring at such a
point in not an integral domain. (Suppose P ∈ Z1 ∩Z2, with Z1 ∩Z2 �= Z1, Z2. Since
Z1∩Z2 �= Z1, there is a nonzero regular function f1 defined on an open neighbourhood
U of P in Z1 that is zero on U∩Z1∩Z2. Extend f1 to a neighbourhood of P in Z1∪Z2
by setting f1(Q) = 0 for all Q ∈ Z2. Then f1 defines a germ of regular function at P .
Similarly construct a function f2 that is zero on Z1. Then f1 and f2 define nonzero
germs of functions at P , but their product is zero.)

An integral domain that is integrally closed in its field of fractions is also called a
normal ring.

An algebraic variety is normal if OP is normal for all P ∈ V . Equivalent condition
(Atiyah and MacDonald 1969, 5.13): for all open affines U ⊂ V , k[U ] is a finite
product of normal rings. Since, as we just noted, the local ring at a point lying on
two irreducible components can’t be an integral domain, a normal variety is a disjoint
union of irreducible varieties.
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A regular local Noetherian ring is always normal (cf. Atiyah and MacDonald 1969,
p123); conversely, a normal local integral domain of dimension one is regular (ibid.).
Thus nonsingular varieties are normal, and normal curves are nonsingular. However,
a normal surface need not be nonsingular: the cone

X2 + Y 2 − Z2 = 0

is normal, but is singular at the origin — the tangent space at the origin is k3.
However, it is true that the singular locus of a normal variety must have codimension
≥ 2. For example, a normal surface can only have isolated singularities — the singular
locus can’t contain a curve.

Singular points are singular. The set of singular points on a variety is called the
singular locus of the variety.

Theorem 4.21. The nonsingular points of a variety V form a dense open subset.

Proof. We have to show that the singular points form a proper closed subset of
every irreducible component of V .

Closed: We can assume that V is affine, say V = V (a) ⊂ An. Let P1, . . . , Pr
generate a. Then the set of singular points is the zero set of the ideal generated by
the (n− d)× (n− d) minors of the matrix

Jac(P1, . . . , Pr)(a) =




∂P1

∂X1
(a) . . . ∂P1

∂Xm
(a)

...
...

∂Pr

∂X1
(a) . . . ∂Pr

∂Xm
(a)




Proper: Suppose first that V is an irreducible hypersurface in Ad+1, i.e., that it is the
zero set of a single nonconstant irreducible polynomial F (X1, . . . , Xd+1). By (1.21),
dimV = d. In this case, the proof is the same as that of (4.3): if ∂F

∂X1
is identically

zero on V (F ), then ∂F
∂X1

must be divisible by F , and hence be zero. Thus F must be a

polynomial in X2, . . . Xd+1 (characteristic zero) or in Xp1 , X2, . . . , Xd+1 (characteristic
p). Therefore, if all the points of V are singular, then F is constant (characteristic 0)
or a pth power (characteristic p) which contradict the hypothesis.

We shall complete the proof by showing (Lemma 4.21) that there is a nonempty
open subset of V that is isomorphic to a nonempty open subset of an irreducible
hypersurface in Ad+1.

Two irreducible varieties V and W are said to be birationally equivalent if k(V ) ≈
k(W ).

Lemma 4.22. Two irreducible varieties V and W are birationally equivalent if and
only if there are open subsets U and U ′ of V and W respectively such that U ≈ U ′.

Proof. Assume that V and W are birationally equivalent. We may suppose that
V and W are affine, corresponding to the rings A and B say, and that A and B have
a common field of fractions K. Write B = k[x1, . . . , xn]. Then xi = ai/bi, ai, bi ∈ A,
and B ⊂ Ab1...br . Since Specm(Ab1...br) is a basic open subvariety of V , we may replace
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A with Ab1...br , and suppose that B ⊂ A. The same argument shows that there exists
a d ∈ B ⊂ A such A ⊂ Bd. Now

B ⊂ A ⊂ Bd ⇒ Bd ⊂ Ad ⊂ (Bd)d = Bd,

and so Ad = Bd. This shows that the open subvarieties D(b) ⊂ V and D(b) ⊂ W are
isomorphic. This proves the “only if” part, and the “if” part is obvious.

Lemma 4.23. Let V be an irreducible algebraic variety of dimension d; then there
is a hypersurface H in Ad+1 birationally equivalent to V .

Proof. Let K = k(x1, . . . , xn), and assume n > d + 1. After renumbering, we
may suppose that x1, . . . , xd are algebraically independent. Then f(x1, . . . , xd+1) = 0
for some nonzero irreducible polynomial f(X1, . . . , Xd+1) with coefficients in k.
Not all ∂f/∂Xi are zero, for otherwise k will have characteristic p �= 0 and f
will be a pth power. After renumbering, we may suppose that ∂f/∂Xd+1 �= 0.
Then k(x1, . . . , xd+1, xd+2) is algebraic over k(x1, . . . , xd) and xd+1 is separable over
k(x1, . . . , xd), and so, by the Primitive Element Theorem (my notes on Fields and Ga-
lois Theory 5.1), there is an element y such that k(x1, . . . , xd+2) = k(x1, . . . , xd, y).
Thus K is generated by n − 1 elements (as a field containing k). After repeating
the process, possibly several times, we will have K = k(z1, . . . , zd+1) with zd+1 sep-
arable over k(z1, . . . , zd). Now take f to be an irreducible polynomial satisfied by
z1, . . . , zd+1 and H to be the hypersurface f = 0.

Corollary 4.24. Any algebraic group G is nonsingular.

Proof. From the theorem we know that there is an open dense subset U of G of
nonsingular points. For any g ∈ G, a �→ ga is an isomorphism G → G, and so gU
consists of nonsingular points. Clearly G = ∪gU .

In fact, any variety on which a group acts transitively by regular maps will be
nonsingular.

Aside 4.25. If V has pure codimension 1 in Ad+1, then I(V ) = (f) for some
polynomial f .

Proof. We know I(V ) = ∩I(Vi) where the Vi are the irreducible components of
V , and so if we can prove I(Vi) = (fi) then I(V ) = (f1 · · · fr). Thus we may suppose
that V is irreducible. Let p = I(V ); it is a prime ideal, and it is nonzero because
otherwise dim(V ) = d + 1. Therefore it contains an irreducible polynomial f . From
(0.3) we know (f) is prime. If (f) �= p , then we have

V = V (p) � V ((f)) � Ad+1,
and dim(V ) < dim(V (f)) < d + 1 (see 1.22), which contradicts the fact that V has
dimension d.

Aside 4.26. Lemma 4.22 can be improved as follows: if V and W are irreducible
varieties, then every inclusion k(W ) ⊂ k(V ) is defined by a regular surjective map
α : U → U ′ from an open subset U of W onto an open subset U ′ of V .

Aside 4.27. An irreducible variety V of dimension d is said to rational if it is bira-
tionally equivalent to Ad. It is said to be unirational if k(V ) can be embedded in k(Ad)
— according to the last aside, this means that there is a regular surjective map from
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an open subset of AdimV onto an open subset of V . Lüroth’s theorem (which some-
times used to be included in basic graduate algebra courses) says that a unirational
curve is rational, that is, a subfield of k(X) not equal to k is a pure transcendental
extension of k. It was proved by Castelnuovo that when k has characteristic zero ev-
ery unirational surface is rational. Only in the seventies was it shown that this is not
true for three dimensional varieties (Artin, Mumford, Clemens, Griffiths, Manin,...).
When k has characteristic p �= 0, Zariski showed that there exist nonrational unira-
tional surfaces, and P. Blass (UM thesis 1977) showed that there exist infinitely many
surfaces V , no two birationally equivalent, such that k(Xp, Y p) ⊂ k(V ) ⊂ k(X, Y ).

Aside 4.28. Note that, if V is irreducible, then

dimV = min
P

dimTP (V )

This formula can be useful in computing the dimension of a variety.

Etale neighbourhoods. Recall that a regular map α : W → V is said to be étale at
a nonsingular point P of W if the map (dα)P : TP (W )→ Tα(P )(V ) is an isomorphism.

Let P be a nonsingular point on a variety V of dimension d. A local system of
parameters at P is a family {f1, . . . , fd} of germs of regular functions at P generating
the maximal ideal nP ⊂ OP . Equivalent conditions: the images of f1, . . . , fd in nP /n

2
P

generate it as a k-vector space (see 4.16); or (df1)P , . . . , (dfd)P is a basis for dual space
to TP (V ).

Proposition 4.29. Let {f1, . . . , fd} be a local system of parameters at a non-
singular point P of V . Then there is a nonsingular open neighbourhood U of P
such that f1, f2, . . . , fd are represented by pairs (f̃1, U), . . . , (f̃d, U) and the map

(f̃1, . . . , f̃d) : U → Ad is étale.

Proof. Obviously, the fi are represented by regular functions f̃i defined on a
single open neighbourhood U ′ of P , which, because of (4.21), we can choose to be
nonsingular. The map α = (f̃1, . . . , f̃d) : U ′ → Ad is étale at P , because the dual map

to (dα)a is (dXi)0 �→ (df̃i)a. The next lemma then shows that α is étale on an open
neighbourhood U of P .

Lemma 4.30. Let W and V be nonsingular varieties. If α : W → V is étale at P ,
then it is étale at all points in an open neighbourhood of P .

Proof. The hypotheses imply that W and V have the same dimension d, and
that their tangent spaces all have dimension d. We may assume W and V to
be affine, say W ⊂ Am and V ⊂ An, and that α is given by polynomials
P1(X1, . . . , Xm), . . . , Pn(X1, . . . , Xm). Then (dα)a : Ta(Am) → Tα(a)(An) is a lin-

ear map with matrix
(
∂Pi

∂Xj
(a)
)

, and α is not étale at a if and only if the kernel of

this map contains a nonzero vector in the subspace Ta(V ) of Ta(An). Let f1, . . . , fr
generate I(W ). Then α is not étale at a if and only if the matrix(

∂fi
∂Xj

(a)
∂Pi

∂Xj
(a)

)

has rank less than m. This is a polynomial condition on a, and so it fails on a closed
subset of W , which doesn’t contain P .
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Let V be a nonsingular variety, and let P ∈ V . An étale neighbourhood of a point
P of V is pair (Q, π : U → V ) with π an étale map from a nonsingular variety U to
V and Q a point of U such that π(Q) = P .

Corollary 4.31. Let V be a nonsingular variety of dimension d, and let P ∈ V .
There is an open Zariski neighbourhood U of P and a map π : U → Ad realizing (P, U)
as an étale neighbourhood of (0, . . . , 0) ∈ Ad.

Proof. This is a restatement of the Proposition.

Aside 4.32. Note the analogy with the definition of a differentiable manifold:
every point P on nonsingular variety of dimension d has an open neighbourhood
that is also a “neighbourhood” of the origin in Ad. There is a “topology” on algebraic
varieties for which the “open neighbourhoods” of a point are the étale neighbourhoods.
Relative to this “topology”, any two nonsingular varieties are locally isomorphic (this
is not true for the Zariski topology). The “topology” is called the étale topology —
see my notes Lectures on Etale Cohomology.

Dual numbers and derivations. In general, if A is a k-algebra and M is an A-
module, then a k-derivation is a map D : A→ M such that

(a) D(c) = 0 for all c ∈ k;
(b) D(a + b) = D(a) + D(b);
(c) D(a · b) = a ·Db + b ·Da (Leibniz rule).

Note that the conditions imply that D is k-linear (but not A-linear). We write
Derk(A,M) for the space of all k-derivations A→ M .

For example, the map f �→ (df)P
df
= f−f(P ) mod n2P is a k-derivationOP → nP/n

2
P .

Proposition 4.33. There are canonical isomorphisms

Derk(OP , k)
≈→ Homk-lin(nP/n

2
P , k)

≈→ TP (V ).

Proof. Note that, as a k-vector space,

OP = k ⊕ nP , f ↔ (f(P ), f − f(P )).

A derivation D : OP → k is zero on k and on n2P (Leibniz’s rule). It therefore defines
a linear map nP/n

2
P → k, and all such linear maps arise in this way, by composition

OP f �→(df)P→ nP /n
2
P → k.

The ring of dual numbers is k[ε] = k[X]/(X2), ε = X mod X2. As a k-vector
space it has a basis {1, ε}.

Proposition 4.34. The tangent space

TP (V ) = Hom(OP , k[ε]) (local homomorphisms of local k-algebras).
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Proof. Let α : OP → k[ε] be a local homomorphism of k-algebras, and write
α(a) = a0 + Dα(a)ε. Because α is a homomorphism of k-algebras, a �→ a0 is the
quotient map OP →OP/m = k. We have

α(ab) = (ab)0 + Dα(ab)ε, and

α(a)α(b) = (a0 + Dα(a)ε)(b0 + Dα(b)ε) = a0b0 + (a0Dα(b) + b0Dα(a))ε.

On comparing these expressions, we see that Dα satisfies Leibniz’s rule, and therefore
is a k-derivation OP → k. All such derivations arise in this way.

For an affine variety V and a k-algebra A (not necessarily an affine k-algebra), we
define V (A), the set of points of V with coordinates in A, to be Homk-alg(k[V ], A).
For example, if V = V (a) ⊂ An, then

V (A) = {(a1, . . . , an) ∈ An | f(a1, . . . , an) = 0 all f ∈ a}.
Consider an α ∈ V (k[ε]), i.e., a k-algebra homomorphism α : k[V ] → k[ε]. The
composite k[V ] → k[ε] → k is a point P of V , and

mP = Ker(k[V ] → k[ε] → k) = α−1((ε)).

Therefore elements of k[V ] not in mP map to units in k[ε], and so α extends to
a homomorphism α′ : OP → k[ε]. By construction, this is a local homomorphism
of local k-algebras, and every such homomorphism arises in this way. In this way
we get a one-to-one correspondence between the local homomorphisms of k-algebras
OP → k[ε] and the set

{P ′ ∈ V (k[ε]) | P ′ �→ P under the map V (k[ε])→ V (k)}.
This gives us a new interpretation of the tangent space at P .

Consider, for example, V = V (a) ⊂ An, a a radical ideal in k[X1, . . . , Xn], and let
a ∈ V . In this case, it is possible to show directly that

Ta(V ) = {a′ ∈ V (k[ε]) | a′ maps to a under V (k[ε])→ V (k)}
Note that when we write a polynomial F (X1, . . . , Xn) in terms of the variables Xi−ai,
we obtain a formula (trivial Taylor formula)

F (X1, . . . , Xn) = F (a1, . . . , an) +
∑ ∂F

∂Xi

∣∣∣∣
a

(Xi − ai) + R

with R a finite sum of products of at least two terms (Xi − ai). Now let a ∈ kn be a
point on V , and consider the condition for a+ εb ∈ k[ε]n to be a point on V . When
we substitute ai + εbi for Xi in the above formula and take F ∈ a, we obtain:

F (a1 + εb1, . . . , an + εbn) = ε(
∑ ∂F

∂Xi

∣∣∣∣
a

bi).

Consequently, (a1 + εb1, . . . , an + εbn) lies on V if and only if (b1, . . . , bn) ∈ Ta(V )
(original definition p68).

Geometrically, we can think of a point of V with coordinates in k[ε] as being a
point of V with coordinates in k (the image of the point under V (k[ε]) → V (k))
together with a “direction”
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Remark 4.35. The description of the tangent space in terms of dual numbers is
particularly convenient when our variety is given to us in terms of its points functor.
For example, let Mn be the set of n × n matrices, and let I be the identity matrix.
Write e for I when it is to be regarded as the identity element of GLn. Then we have

Te(GLn) = {I + εA | A ∈Mn} ≈Mn;

Te(SLn) = {I + εA | det(I + εA) = I} = {I + εA | trace(A) = 0}.
Assume the characteristic �= 2, and let On be orthogonal group:

On = {A ∈ GLn | AAtr = I}.
(tr=transpose). This is the group of matrices preserving the quadratic form X2

1 +
· · · + X2

n. Then det : On → {±1} is a homomorphism, and the special orthogonal
group SOn is defined to be the kernel of this map. We have

Te(On) = Te(SOn)

= {I + εA ∈Mn | (I + εA)(I + εA)tr = I}
= {I + εA ∈Mn | A is skew-symmetric}.

Note that, because an algebraic group is nonsingular, dimTe(G) = dimG — this
gives a very convenient way of computing the dimension of an algebraic group.

On the tangent space Te(GLn) = Mn of GLn, there is a bracket operation

[M,N ]
df
= MN −NM

which makes Te(GLn) into a Lie algebra. For any closed algbraic subgroup G of GLn,
Te(G) is stable under the bracket operation on Te(GLn) and is a sub-Lie-algebra of
Mn, which we denote Lie(G). The Lie algebra structure on Lie(G) is independent of
the embedding of G into GLn (in fact, it has an intrinsic definition), and G �→ Lie(G)
is a functor from the category of linear algebraic groups to that of Lie algebras.

This functor is not fully faithful, for example, any étale homomorphism G → G′

will define an isomorphism Lie(G) → Lie(G′), but is nevertheless very useful.

Assume k has characteristic zero. A connected algebraic group G is said to be
semisimple if it has no closed connected solvable normal subgroup (except {e}). Such
a group G may have a finite nontrivial centre Z(G), and we call two semisimple
groups G and G′ locally isomorphic if G/Z(G) ≈ G′/Z(G′). For example, SLn is
semisimple, with centre µn, the set of diagonal matrices diag(ζ, . . . , ζ), ζn = 1, and
SLn /µn = PSLn. A Lie algebra is semisimple if it has no commutative ideal (except
{0}). One can prove that

G is semisimple ⇐⇒ Lie(G) is semisimple,

and the map G �→ Lie(G) defines a one-to-one correspondence between the set of local
isomorphism classes of semisimple algebraic groups and the set of isomorphism classes
of Lie algebras. The classification of semisimple algebraic groups can be deduced
from that of semisimple Lie algebras and a study of the finite coverings of semisimple
algebraic groups — this is quite similar to the relation between Lie groups and Lie
algebras.
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Tangent cones. In this subsection, I assume familiarity with parts of Atiyah and
MacDonald 1969, Chapters 11, 12.

Let V = V (a) ⊂ km, a = rad(a), and let P = (0, . . . , 0) ∈ V . Define a∗ to be the
ideal generated by the polynomials F∗ for F ∈ a, where F∗ is the leading form of F
(see p66). The geometric tangent cone at P , CP (V ) is V (a∗), and the tangent cone
is the pair (V (a∗), k[X1, . . . , Xn]/a∗). Obviously, CP (V ) ⊂ TP (V ).

Computing the tangent cone. If a is principal, say a = (F ), then a∗ = (F∗), but if
a = (F1, . . . , Fr), then it need not be true that a∗ = (F1∗, . . . , Fr∗). Consider for
example a = (XY,XZ +Z(Y 2−Z2)). One can show that this is a radical ideal either
by asking Macaulay (assuming you believe Macaulay), or by following the method
suggested in Cox et al. 1992, p474, prob 3 to show that it is an intersection of prime
ideals. Since

Y Z(Y 2 − Z2) = Y · (XZ + Z(Y 2 − Z2))− Z · (XY ) ∈ a

and is homogeneous, it is in a∗, but it is not in the ideal generated by XY , XZ. In
fact, a∗ is the ideal generated by

XY, XZ, Y Z(Y 2 − Z2).

This raises the following question: given a set of generators for an ideal a, how do
you find a set of generators for a∗? There is an algorithm for this in Cox et al. 1992,
p467. Let a be an ideal (not necessarily radical) such that V = V (a), and assume
the origin is in V . Introduce an extra variable T such that T “>” the remaining
variables. Make each generator of a homogeneous by multiplying its monomials by
appropriate (small) powers of T , and find a Gröbner basis for the ideal generated by
these homogeneous polynomials. Remove T from the elements of the basis, and then
the polynomials you get generate a∗.

Intrinsic definition of the tangent cone. Let A be a local ring with maximal ideal n.
The associated graded ring is

gr(A) = ⊕ni/ni+1.

Note that if A = Bm and n = mA, then gr(A) = ⊕mi/mi+1 (because of (4.13)).

Proposition 4.36. The map k[X1, . . . , Xm]/a∗ → gr(OP ) sending the class of Xi
in k[X1, . . . , Xm]/a∗ to the class of Xi in gr(OP ) is an isomorphism.

Proof. Let m be the maximal ideal in k[X1, . . . , Xm]/a corresponding to P . Then

gr(OP) =
∑

mi/mi+1

=
∑

(X1, . . . , Xm)i/(X1, . . . , Xm)i+1 + a ∩ (X1, . . . , Xm)i

=
∑

(X1, . . . , Xm)i/(X1, . . . , Xm)i+1 + ai

where ai is the homogeneous piece of a∗ of degree i (that is, the subspace of a∗
consisting of homogeneous polynomials of degree i). But

(X1, . . . , Xm)i/(X1, . . . , Xm)i+1 + ai = ith homogeneous piece of k[X1, . . . , Xm]/a∗.
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For a general variety V and P ∈ V , we define the geometric tangent cone CP (V )
of V at P to be Specm(gr(OP )red), where gr(OP )red is the quotient of gr(OP ) by its
nilradical.

Recall (Atiyah and MacDonald 1969, 11.21) that dim(A) = dim(gr(A)). Therefore
the dimension of the geometric tangent cone at P is the same as the dimension of V
(in contrast to the dimension of the tangent space).

Recall (ibid., 11.22) that gr(OP ) is a polynomial ring in d variables (d = dimV )
if and only if OP is regular. Therefore, P is nonsingular if and only if gr(OP ) is a
polynomial ring in d variables, in which case CP (V ) = TP (V ).

Using tangent cones, we can extend the notion of an étale morphism to singular
varieties. Obviously, a regular map α : V →W induces a homomorphism gr(Oα(P )) →
gr(OP ). We say that α is étale at P if this is an isomorphism. Note that then there
is an isomorphism of the geometric tangent cones CP (V ) → Cα(P )(W ), but this map
may be an isomorphism without α being étale at P . Roughly speaking, to be étale
at P , we need the map on geometric tangent cones to be an isomorphism and to
preserve the “multiplicities” of the components.

It is a fairly elementary result that a local homomorphism of local rings α : A→ B
induces an isomorphism on the graded rings if and only if it induces an isomorphism on
the completions. Thus α : V →W is étale at P if and only if the map is Ôα(P ) → ÔP
an isomorphism. Hence (4.29) shows that the choice of a local system of parameters

f1, . . . , fd at a nonsingular point P determines an isomorphism ÔP → k[[X1, . . . , Xd]].

We can rewrite this as follows: let t1, . . . , td be a local system of parameters at a
nonsingular point P ; then there is a canonical isomorphism ÔP → k[[t1, . . . , td]]. For

f ∈ ÔP , the image of f ∈ k[[t1, . . . , td]] can be regarded as the Taylor series of f .

For example, let V = A1, and let P be the point a. Then t = X − a is a local
parameter at a, OP consists of quotients f(X) = g(X)/h(X) with h(a) �= 0, and the
coefficients of the Taylor expansion

∑
n≥0 an(X − a)n of f(X) can be computed as in

elementary calculus courses: an = f (n)(a)/n!.
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5. Projective Varieties and Complete Varieties

Throughout this section, k will be an algebraically closed field. Recall that we
defined

Pn = kn+1 \ {origin}/∼,

where (a0, . . . , an) ∼ (b0, . . . , bn) if and only if there exists a c �= 0 in k such
that (a0, . . . , an) = c(b0, . . . , bn). Write (a0 : . . . : an) for the equivalence class
of (a0, . . . , an), and π for the map kn+1 \ {origin}/∼→ Pn. Let Ui be the set of
(a0 : . . . : an) ∈ Pn such that ai �= 0. Then (a0 : . . . : an) �→ (a0

ai
, . . . , ai−1

ai
, ai+1

ai
, . . . , an

ai
)

is a bijection vi : Ui → kn, and we used these bijections to define the structure of a
ringed space on Pn; specifically, we said that U ⊂ Pn is open if and only if vi(U ∩Ui)
is open for all i, and that a function f : U → k is regular if and only if (f |U ∩Ui)◦v−1i
is regular on vi(U ∩ Ui) for all i.

In this chapter, we shall first derive another description of the topology on Pn,
and then we shall show that the ringed space structure makes Pn into a separated
algebraic variety. A closed subvariety of Pn (or any variety isomorphic to such a
variety) is called a projective variety, and a locally closed subvariety of Pn (or any
variety isomorphic to such a variety) is called a quasi -projective variety. Note that
every affine variety is quasi-projective, but there are many varieties that are not quasi-
projective. We study morphisms between (quasi-) projective varieties. Finally, we
show that a projective variety is “complete”, that is, it has the analogue of a property
that distinguishes compact topological spaces among locally compact spaces.

Projective varieties are important for the same reason compact manifolds are im-
portant: results are often simpler when stated for projective varieties, and the “part
at infinity” often plays a role, even when we would like to ignore it. For example,
a famous theorem of Bezout says that a curve of degree m in the projective plane15

intersects a curve of degree n in exactly mn points (counting multiplicities). For affine
curves, one has only an inequality.

Algebraic subsets of Pn. A polynomial F (X0, . . . , Xn) is said to be homogeneous
of degree d if it is a sum of terms ai0,... ,inX

i0
0 · · ·Xinn with i0+· · ·+in = d; equivalently,

F (tX0, . . . , tXn) = tdF (X0, . . . , Xn)

for all t ∈ k. Write k[X0, . . . , Xn]d for the subspace of k[X0, . . . , Xn] of polynomials
of degree d. Then

k[X0, . . . , Xn] =
⊕
d≥0

k[X0, . . . , Xn]d;

that is, each polynomial F can be written uniquely as a sum F =
∑

Fd with Fd of
degree d.

Let P = (a0 : . . . : an) ∈ Pn. Then P can also be written (ca0 : . . . : can) for
any c ∈ k×, and so we can’t speak of the value of a polynomial F (X0, . . . , Xn) at P .
However, if F is homogeneous, then F (ca0, . . . , can) = cdF (a0, . . . , an), and so it does
make sense to say that F is zero or not zero at P . We define a projective algebraic
set to be the set of common zeros in Pn of a collection of homogeneous polynomials.

15This means that it is defined by a homogeneous polynomial F (X, Y, Z) of degree m.
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Example 5.1. Consider the projective algebraic subset E of P2 defined by the
homogeneous equation

Y 2Z = X3 + aXZ2 + bZ3 (*)

where X3 + aX + b is assumed not to have multiple roots. It consists of the points
(x : y : 1) on the affine curve Eaff

Y 2 = X3 + aX + b,

together with the point “at infinity” (0:1:0).

Poincaré is usually credited (incorrectly!) with showing that E is an algebraic
group, with the group law such that P +Q +R = 0 if and only if P , Q, and R lie on
a straight line. The zero for the group is the point at infinity.

Curves defined by equations of the form (*) are called elliptic curves. They can
also be described as the curves of genus one, or as the abelian varieties of dimension
one.

In the case k = C, for each equation (*), there is a lattice L ⊂ C and a function
℘ (the Weierstrass ℘-function) that is analytic on C − L and doubly periodic for L
(i.e., such that ℘(z + λ) = ℘(z) for all λ ∈ L) such that

℘′2 = ℘3 + a℘ + b.

The map z �→ (℘(z) : ℘′(z) : 1) : C/L − {0} → P2 is a bijection from C/L − {0}
onto Eaff . This map can be extended to an isomorphism C/L

≈→ E by sending 0 to
(0 : 1 : 0).

In the case that a, b ∈ Q, we can speak of the zeros of (*) with coordinates in
Q. They also form a group E(Q), which Mordell showed to be finitely generated. It
is easy to compute the torsion subgroup of E(Q), but there is at present no known
algorithm for computing the rank of E(Q). More precisely, there is an “algorithm”
which always works, but which has not been proved to terminate after a finite amount
of time, at least not in general. There is a very beautiful theory surrounding elliptic
curves over Q and other number fields, whose origins can be traced back 1,800 years
to Diophantus. (See my notes on Elliptic Curves for all of this.)

An ideal a ⊂ k[X0, . . . , Xn] is said to be homogeneous if it contains with any
polynomial F all the homogeneous components of F , i.e., if F ∈ a ⇒ Fd ∈ a, all d.
Such an ideal is generated by homogeneous polynomials (obviously), and conversely,
an ideal generated by a set of homogeneous polynomials is homogeneous. The radical
of a homogeneous ideal is homogeneous, the intersection of two homogeneous ideals
is homogeneous, and a sum of homogeneous ideals is homogeneous.

For a homogeneous ideal a, we write V (a) for the set of common zeros of the
homogeneous polynomials in a — clearly every polynomial in a will then be zero on
V (a). If F1, . . . , Fr are homogeneous generators for a, then V (a) is the set of common
zeros of the Fi. The sets V (a) have similar properties to their namesakes in An :

a ⊂ b ⇒ V (a) ⊃ V (b);

V (0) = Pn; V (a) = ∅ ⇐⇒ rad(a) ⊃ (X0, . . . , Xn);

V (ab) = V (a ∩ b) = V (a) ∪ V (b);

V (
∑

ai) = ∩V (ai).
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The first statement is obvious. For the second, let V aff(a) be the zero set of a in
kn+1. It is a cone — it contains together with any point P the line through P and
the origin — and

V (a) = (V aff(a) \ (0, . . . , 0))/∼ .

We have V (a) = ∅ ⇐⇒ V aff(a) ⊂ {(0, . . . , 0)} ⇐⇒ rad(a) ⊃ (X0, . . . , Xn), by
the Hilbert Nullstellensatz. The remaining statements can be proved directly, or by
using the relation between V (a) and V aff(a).

Let C be a cone in kn+1; then I(C) is a homogeneous ideal in k[X0, . . . , Xn],
because

F (ca0, . . . , can) =
∑

cdFd(a0, . . . , an),

and so, if F (ca0, . . . , can) = 0 for all c ∈ k×, we must also have Fd(a0, . . . , an) = 0.
For any S ⊂ Pn, C = π−1(S)∪{origin} is a cone in kn+1, and we define I(S) = I(C).

Proposition 5.2. The maps V and I define a bijection between the set of algebraic
subsets of Pn and the set of homogeneous radical ideals of k[X0, . . . , Xn], except that V
maps both the ideals (X0, . . . , Xn) and k[X0, . . . , Xn] to the empty set. An algebraic
set V in Pn is irreducible if and only if I(V ) is prime; in particular, Pn is irreducible.

Proof. Note that we have bijections

{algebraic subsets of Pn, �= ∅} π−1→
{closed cones in kn+1, �= {(0, . . . , 0),∅} I→
{homogeneous radical ideals in k[X0, . . . , Xn], �= (X0, . . . , Xn), k[X0, . . . , Xn]} V→
{algebraic subsets of Pn, �= ∅}.

Here the first map sends V to π−1(V )∪ {origin}, which is also the closure of π−1(V ),
and the third map is V in the sense of projective geometry. The composite of any
three of these maps is the identity map. Obviously, V is irreducible if and only if the
closure of π−1(V ) is irreducible, which is true if and only if I(V ) is a prime ideal.

The Zariski topology on Pn. The statements above show that projective algebraic
sets are the closed sets for a topology on Pn. In this subsection, we verify that it agrees
with that defined in the first paragraph of this section. For a homogeneous polynomial
F , let

D(F ) = {P ∈ Pn | F (P ) �= 0}.
Then, just as in the affine case, D(F ) is open and the sets of this type form a basis
for the topology of Pn.

With each polynomial f(X1, . . . , Xn), we associate the homogeneous polynomial
of the same degree

f∗(X0, . . . , Xn) = X
deg(f)
0 f

(
X1
X0

, . . . ,
Xn
X0

)
,

and with each homogeneous polynomial F (X0, . . . , Xn) we associate the polynomial

F∗(X1, . . . , Xn) = F (1, X1, . . . , Xn).
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Proposition 5.3. For the topology on Pn just defined, each Ui is open, and when
we endow it with the induced topology, the bijection

Ui ↔ An, (a0 : . . . : 1 : . . . : an) ↔ (a0, . . . , ai−1, ai+1, . . . , an)

becomes a homeomorphism.

Proof. It suffices to prove this with i = 0. The set U0 = D(X0), and so it is a
basic open subset in Pn. Clearly, for any homogeneous polynomial F ∈ k[X0, . . . , Xn],

D(F (X0, . . . , Xn)) ∩ U0 = D(F (1, X1, . . . , Xn)) = D(F∗)

and, for any polynomial f ∈ k[X1, . . . , Xn],

D(f) = D(f∗) ∩ U0.

Thus, under U0 ↔ An, the basic open subsets of An correspond to the intersections
with Ui of the basic open subsets of Pn, which proves that the bijection is a homeo-
morphism.

Remark 5.4. It is possible to use this to give a different proof that Pn is ir-
reducible. We apply the criterion that a space is irreducible if and only if every
nonempty open subset is dense (see p22). Note that each Ui is irreducible, and that
Ui∩Uj is open and dense in each of Ui and Uj (as a subset of Ui, it is the set of points
(a0 : . . . : 1 : . . . : aj : . . . : an) with aj �= 0). Let U be a nonempty open subset of Pn;
then U ∩Ui is open in Ui. For some i, U ∩Ui is nonempty, and so must meet Ui ∩Uj.
Therefore U meets every Uj, and so is dense in every Uj. It follows that its closure is
all of Pn.

We identify An with U0, and examine the closures in Pn of closed subsets of An.
With each ideal a in k[X1, . . . , Xn], we associate the homogeneous ideal a∗ in

k[X0, . . . , Xn] generated by {f∗ | f ∈ a}. For a closed subset V of An, set V ∗ = V (a∗)
with a = I(V ).

With each homogeneous ideal a in k[X0, X1, . . . , Xn], we associate the ideal a∗ in
k[X1, . . . , Xn] generated by {F∗ | F ∈ a}. When V is a closed subset of Pn, we set
V∗ = V (a∗) with a = I(V ).

Proposition 5.5. (a) For V a closed algebraic subset of An, V ∗ is the closure
of V in Pn, and (V ∗)∗ = V . If V = ∪Vi is the decomposition of V into its irre-
ducible components, then V ∗ = ∪V ∗i is the decomposition of V ∗ into its irreducible
components.

(b) For V a closed algebraic subset of Pn, V∗ = V ∩An. If no irreducible component
of V lies in H∞ or contains H∞, then V∗ is a proper subset of An, and (V∗)∗ = V .

Proof. Straightforward.

The hyperplane at infinity. It is often convenient to think of Pn as being An = U0
with a hyperplane added “at infinity”. More precisely, identify the U0 with An. The
complement of U0 in Pn is H∞ = {(0 : a1 : . . . : an) ⊂ Pn}, which can be identified
with Pn−1.
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For example, P1 = A1 ∪H∞ (disjoint union), with H∞ consisting of a single point,
and P2 = A2 ∪H∞ with H∞ a projective line. Consider the line

aX + bY + 1 = 0

in A2. Its closure in P2 is the line

aX + bY + Z = 0.

It intersects the hyperplane H∞ = V (Z) at the point (−b : a : 0), which equals
(1 : −a/b : 0) when b �= 0. Note that −a/b is the slope of the line aX + bY + 1 = 0,
and so the point at which a line intersects H∞ depends only on the slope of the line:
parallel lines meet in one point at infinity. We can think of the projective plane P2
as being the affine plane A2 with one point added at infinity for each direction in A2.

Similarly, we can think of Pn as being An with one point added at infinity for each
direction in An — being parallel is an equivalence relation on the lines in An, and
there is one point at infinity for each equivalence class of lines.

Note that the point at infinity on the elliptic curve Y 2 = X3 + aX + b is the
intersection of the closure of any vertical line with H∞.

Pn is an algebraic variety. For each i, write Oi for the sheaf on Ui defined by the
bijection An ↔ Ui ⊂ Pn.

Lemma 5.6. Write Uij = Ui ∩ Uj; then Oi|Uij = Oj|Uij . When endowed with this
sheaf Uij is an affine variety; moreover, Γ(Uij ,Oi) is generated as a k-algebra by the
functions (f |Uij)(g|Uij) with f ∈ Γ(Ui,Oi), g ∈ Γ(Uj ,Oj).

Proof. It suffices to prove this for (i, j) = (0, 1). All rings occurring in the proof
will be identified with subrings of the field k(X0, X1, . . . , Xn).

Recall that

U0 = {(a0 : a1 : . . . : an) | a0 �= 0}; (a0 : a1 : . . . : an) ↔ (
a1
a0

,
a2
a0

, . . . ,
an
a0

) ∈ An.

Let k[X1

X0
, X2

X0
, . . . , Xn

X0
] be the subring of k(X0, X1, . . . , Xn) generated by the quo-

tients Xi

X0
—it is the polynomial ring in the n variables X1

X0
, . . . , Xn

X0
. An element

f(X1

X0
, . . . , Xn

X0
) ∈ k[X1

X0
, . . . , Xn

X0
] defines the map

(a0 : a1 : . . . : an) �→ f(
a1
a0

, . . . ,
an
a0

) : U0 → k,

and in this way k[X1

X0
, X2

X0
, . . . , Xn

X0
] becomes identified with the ring of regular functions

on U0, and U0 with Specm k[X1

X0
, . . . , Xn

X0
].

Next consider the open subset of U0,

U01 = {(a0 : . . . : an) | a0 �= 0, a1 �= 0}.
It is D(X1

X0
), and is therefore an affine subvariety of (U0,O0). The inclusion U01 ↪→

U0 corresponds to the inclusion of rings k[X1

X0
, . . . , Xn

X0
] ↪→ k[X1

X0
, . . . , Xn

X0
, X0

X1
]. An

element f(X1

X0
, . . . , Xn

X0
, X0

X1
) of k[X1

X0
, . . . , Xn

X0
, X0

X1
] defines the function (a0 : . . . : an) �→

f(a1
a0
, . . . , an

a0
, a0
a1

) on U01.
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Similarly,

U1 = {(a0 : a1 : . . . : an) | a1 �= 0}; (a0 : a1 : . . . : an) ↔ (
a0
a1

, . . . ,
an
a1

) ∈ An,

and we identify U1 with Specmk[X0

X1
, X2

X0
, . . . , Xn

X1
]. An element f(X0

X1
, . . . , Xn

X1
) ∈

k[X0

X1
, . . . , Xn

X1
] defines the map (a0 : . . . : an) �→ f(a0

a1
, . . . , an

a1
) : U1 → k.

When regarded as an open subset of U1,

U01 = {(a0 : . . . : an) | a0 �= 0, a1 �= 0},
is D(X0

X1
), and is therefore an affine subvariety of (U1,O1), and the inclusion U01 ↪→

U1 corresponds to the inclusion of rings k[X0

X1
, . . . , Xn

X1
] ↪→ k[X0

X1
, . . . , Xn

X1
, X1

X0
]. An

element f(X0

X1
, . . . , Xn

X1
) of k[X0

X1
, . . . , Xn

X1
, X1

X0
] defines the function (a0 : . . . : an) �→

f(a0
a1
, . . . , an

a1
, a1
a0

) on U01.

The two rings k[X1

X0
, . . . , Xn

X0
, X0

X1
], k[X0

X1
, . . . , Xn

X1
, X1

X0
] are equal as subrings of

k(X0, X1, . . . , Xn), and an element of this ring defines the same function on U01
regardless of which of the two rings it is considered an element. Therefore,
whether we regard U01 as a subvariety of U0 or of U1 it inherits the same struc-
ture as an affine algebraic variety. This proves the first two assertions, and the
third is obvious: k[X1

X0
, . . . , Xn

X0
, X0

X1
] is generated by its subrings k[X1

X0
, . . . , Xn

X0
] and

k[X0

X1
, X2

X1
, . . . , Xn

X1
].

Write ui for the map An → Ui ⊂ Pn. For any open subset U of Pn, we define
f : U → k to be regular if and only if f ◦ ui is a regular function on u−1i (U) for all i.
This obviously defines a sheaf O of k-algebras on Pn.

Proposition 5.7. For each i, the bijection An → Ui is an isomorphism of ringed
spaces, An → (Ui,O|Ui); therefore (Pn,O) is a prevariety. It is in fact a variety.

Proof. Let U be an open subset of Ui. Then f : U → k is regular if and only if

(a) it is regular on U ∩ Ui, and
(b) it is regular on U ∩ Uj for all j �= i.

But the last lemma shows that (a) implies (b) because U ∩Uj ⊂ Uij. To prove that
Pn is separated, apply the criterion (3.26c) to the covering {Ui} of Pn.

Example 5.8. Assume k does not have characteristic 2, and let C be the plane
projective curve: Y 2Z = X3. For each a ∈ k×, there is an automorphism

ϕa : C → C , (x : y : z) �→ (ax : y : a3z).

Patch two copies of C ×A1 together along C × (A1 − {0}) by identifying (P, u) with
(ϕu(P ), u−1), P ∈ C , u ∈ A1−{0}. One obtains in this way a singular 2-dimensional
variety that is not quasi-projective (see Hartshorne 1977, p171). (It is even complete
(see below), and so if it were quasi-projective, it would be projective. It is known that
every irreducible separated curve is quasi-projective, and every nonsingular complete
surface is projective, and so this is an example of minimum dimension. In Shafarevich
1994, VI.2.3 there is an example of a nonsingular complete variety of dimension 3 that
is not projective.)
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The field of rational functions of a projective variety. Recall (page 24) that
we attached to each irreducible variety V a field k(V ) with the property that k(V ) is
the field of fractions of k[U ] for any open affine U ⊂ V . We now describe this field in
the case that V = Pn. Recall that k[U0] = k[X1

X0
, . . . , Xn

X0
]. We regard this as a subring

of k(X0, . . . , Xn), and wish to identify the field of fractions of k[U0] as a subfield of
k(X0, . . . , Xn). Any nonzero F ∈ k[U0] can be written

F (
X1
X0

, . . . ,
Xn
X0

) =
F ∗(X0, . . . , Xn)

X
deg(F )
0

,

and it follows that the field of fractions of k[U0] is

k(U0) =

{
G(X0, . . . , Xn)

H(X0, . . . , Xn)
| G, H homogeneous of the same degree

}
∪ {0}.

Write k(X0, . . . , Xn)0 for this field (the subscript 0 is short for “subfield of elements
of degree 0”), so that k(Pn) = k(X0, . . . , Xn)0. Note that an element F = G

H
in

k(X0, . . . , Xn)0 defines a well-defined function

D(H) → k, (a0 : . . . : an) �→ G(a0, . . . , an)

H(a0, . . . , an)
,

which is obviously regular (look at its restriction to Ui).

We now extend this discussion to any irreducible projective variety V . Such a V
can be written V = V (p), where p is a homogeneous ideal in k[X0, . . . , Xn]. Let
kh[V ] = k[X0, . . . , Xn]/p—it is called the homogeneous coordinate ring of V . (Note
that kh[V ] is the ring of regular functions on the affine cone over V ; therefore its
dimension is dim(V ) + 1. It depends, not only on V , but on the embedding of V into
Pn—it is not intrinsic to V (see 5.17 below).) We say that a nonzero f ∈ kh[V ] is
homogeneous of degree d if it can be represented by a homogeneous polynomial F of
degree d in k[X0, . . . , Xn]. We give 0 degree 0.

Lemma 5.9. Each element of kh[V ] can be written uniquely in the form

f = f0 + · · ·+ fd

with fi homogeneous of degree i.

Proof. Let F represent f ; then F can be written F = F0 + · · · + Fd with Fi
homogeneous of degree i, and when reduced modulo p, this gives a decomposition
of f of the required type. Suppose f also has a decomposition f =

∑
gi, with gi

represented by the homogeneous polynomial Gi of degree i. Then F − G ∈ p, and
the homogeneity of p implies that Fi −Gi = (F −G)i ∈ p. Therefore fi = gi.

It therefore makes sense to speak of homogeneous elements of k[V ]. For such an
element h, we define D(h) = {P ∈ V | h(P ) �= 0}.

Since kh[V ] is an integral domain, we can form its field of fractions kh(V ). Define

kh(V )0 = {g
h
∈ kh(V ) | g and h homogeneous of the same degree} ∪ {0}.

Proposition 5.10. The field of rational functions on V is kh(V )0.
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Proof. Consider V0
df
= U0 ∩ V . As in the case of Pn, we can identify k[V0] with

a subring of kh[V ], and then the field of fractions of k[V0] becomes identified with
kh(V )0.

Regular functions on a projective variety. Again, let V be an irreducible pro-
jective variety. Let f ∈ k(V )0, and let P ∈ V . If we can write f = g

h
with g and

h homogeneous of the same degree and h(P ) �= 0, then we define f(P ) = g(P )
h(P )

. By

g(P ) we mean the following: let P = (a0 : . . . : an); represent g by a homogeneous
G ∈ k[X0, . . . , Xn], and write g(P ) = G(a0, . . . , an); this is independent of the choice
of G, and if (a0, . . . , an) is replaced by (ca0, . . . , can), then g(P ) is multiplied by

cdeg(g) = cdeg(h). Thus the quotient g(P )
h(P )

is well-defined.

Note that we may be able to write f as g
h

with g and h homogeneous polynomials
of the same degree in many essentially different ways (because kh[V ] need not be a
unique factorization domain), and we define the value of f at P if there is one such
representation with h(P ) �= 0. The value f(P ) is independent of the representation

f = g
h

(write P = (a0 : . . . : an) = a; if g
h

= g′
h′ in kh(V )0, then gh′ = g′h in kh[V ],

which is the ring of regular functions on the affine cone over V ; hence g(a)h′(a) =
g′(a)h(a), which proves the claim).

Proposition 5.11. For each f ∈ k(V )
df
= kh(V )0, there is an open subset U of

V where f(P ) is defined, and P �→ f(P ) is a regular function on U . Every regular
function ϕ on an open subset of V is defined by some f ∈ k(V ).

Proof. Straightforward from the above discussion. Note that if the functions
defined by f1 and f2 agree on an open subset of V , then f1 = f2 in k(V ).

Remark 5.12. (a) The elements of k(V ) = kh(V )0 should be thought of as the
analogues of meromorphic functions on a complex manifold; the regular functions on
an open subset U of V are the “meromorphic functions without poles” on U . [In fact,
when k = C, this is more than an analogy: a nonsingular projective algebraic variety
over C defines a complex manifold, and the meromorphic functions on the manifold
are precisely the rational functions on the variety. For example, the meromorphic
functions on the Riemann sphere are the rational functions in z.]

(b) We shall see presently (5.19) that, for any nonzero homogeneous h ∈ kh[V ],
D(h) is an open affine subset of V . The ring of regular functions on it is

k[D(h)] = {g/hm | g homogeneous of degree m deg(h)} ∪ {0}.
We shall also see that the ring of regular functions on V itself is just k, i.e., any
regular function on an irreducible (connected will do) projective variety is constant.
However, if U is an open nonaffine subset of V , then the ring Γ(U,OV ) of regular
functions can be almost anything—it needn’t even be a finitely generated k-algebra!

Morphisms from projective varieties. We describe the morphisms from a pro-
jective variety to another variety.

Proposition 5.13. The map

π : An+1 \ {origin} → Pn, (a0, . . . , an) �→ (a0 : . . . : an)
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is an open morphism of algebraic varieties. A map α : Pn → V with V a prevariety
is regular if and only if α ◦ π is regular.

Proof. The restriction of π to D(Xi) is the projection

(a0, . . . , an) �→ (
a0
ai

: . . . :
an
ai

) : kn+1 \ V (Xi) → Ui,

which is the regular map of affine varieties corresponding to the map of k-algebras

k

[
X0
Xi

, . . . ,
Xn
Xi

]
→ k[X0, . . . , Xn][X

−1
i ].

(In the first algebra
Xj

Xi
is to be thought of as a single variable.) It now follows from

(3.5) that π is regular.

Let U be an open subset of kn+1 \ {origin}, and let U ′ be the union of all the
lines through the origin that meet U , that is, U ′ = π−1π(U). Then U ′ is again open
in kn+1 \ {origin}, because U ′ = ∪cU , c ∈ k×, and x �→ cx is an automorphism of
kn+1 	 {origin}. The complement Z of U ′ in kn+1 	 {origin} is a closed cone, and
the proof of (5.2) shows that its image is closed in Pn; but π(U) is the complement
of π(Z). Thus π sends open sets to open sets.

The rest of the proof is straightforward.

Thus, the regular maps Pn → V are just the regular maps An+1 	 {origin} → V
factoring through Pn (as maps of sets).

Remark 5.14. Consider polynomials F0(X0, . . . , Xm), . . . , Fn(X0, . . . , Xm) of the
same degree. The map

(a0 : . . . : am) �→ (F0(a0, . . . , am) : . . . : Fn(a0, . . . , am))

obviously defines a regular map to Pn on the open subset of Pm where not all Fi vanish,
that is, on the set ∪D(Fi) = Pn \ V (F1, . . . , Fn). Its restriction to any subvariety V
of Pm will also be regular. It may be possible to extend the map to a larger set by
representing it by different polynomials. Conversely, every such map arises in this
way, at least locally. More precisely, there is the following result.

Proposition 5.15. Let V = V (a) ⊂ Pm, W = V (b) ⊂ Pn. A map
ϕ : V → W is regular if and only if, for every P ∈ V , there exist polynomials
F0(X0, . . . , Xm), . . . , Fn(X0, . . . , Xm), homogeneous of the same degree, such that

Q = (b0 : . . . : bn) �→ (F0(b0, . . . , bm) : . . . : Fn(b0, . . . , bm))

for all points Q = (b0 : . . . : bm) in some neighbourhood of P in V (a).

Proof. Straightforward.

Example 5.16. We prove that the circle X2+Y 2 = Z2 is isomorphic to P1. After
an obvious change of variables, the equation of the circle becomes C : XZ = Y 2.
Define

ϕ : P1 → C , (a : b) �→ (a2 : ab : b2).

For the inverse, define

ψ : C → P1 by

{
(a : b : c) �→ (a : b) if a �= 0
(a : b : c) �→ (b : c) if b �= 0

.
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Note that,

a �= 0 �= b, ac = b2 ⇒ c

b
=

b

a

and so the two maps agree on the set where they are both defined. Clearly, both ϕ
and ψ are regular, and one checks directly that they are inverse.

Examples of regular maps of projective varieties. We list some of the classic
maps.

Example 5.17. Let L =
∑

ciXi be a nonzero linear form in n+1 variables. Then
the map

(a0 : . . . : an) �→ (
a0

L(a)
, . . . ,

an
L(a)

)

is a bijection of D(L) ⊂ Pn onto the hyperplane L(X1, . . . , Xn) = 1 of An+1, with
inverse

(a0, . . . , an) �→ (a0 : . . . : an).

Both maps are regular — for example, the components of the first map are the
regular functions

Xj∑
ciXi

. As V (L− 1) is affine, so also is D(L), and its ring of regular

functions is k[ X0∑
ciXi

, . . . , Xn∑
ciXi

]. (This is really a polynomial ring in n variables—any

one variable Xj/
∑

ciXi for which cj �= 0 can be omitted—see lemma 4.11.)

Example 5.18. (The Veronese mapping.) Let

I = {(i0, . . . , in) ∈ Nn+1 |
∑

ij = m}.
Note that I indexes the monomials of degree m in n + 1 variables. It has (m+nm )
elements16. Write νn,m = (m+nm ) − 1, and consider the projective space Pνn,m whose
coordinates are indexed by I ; thus a point of Pνn,m can be written (. . . : bi0...in : . . . ).
The Veronese mapping is defined to be

v : Pn → Pνn,m , (a0 : . . . : an) �→ (. . . : bi0...in : . . . ), bi0...in = ai00 . . . ainn .

For example, when n = 1 and m = 2, the Veronese map is

P1 → P2, (a0 : a1) �→ (a20 : a0a1 : a21).

Its image is the curve ν(P1) : X0X2 = X2
1 , and the map

(b2,0 : b1,1 : b0,2) �→
{

(b2,0 : b1,1) if b2,0 �= 1
(b1,1 : b0,2) if b0,2 �= 0.

16This can be proved by induction on m+ n. If m = 0 = n, then ( 0
0 ) = 1, which is correct. A

general homogeneous polynomial of degree m can be written uniquely as

F (X0, X1, . . . , Xn) = F1(X1, . . . , Xn) +X0F2(X0, X1, . . . , Xn)

with F1 homogeneous of degree m and F2 homogeneous of degree m− 1. But

(m+n
n ) = (m+n−1

m ) +
(

m+n−1
m−1

)
because they are the coefficients of Xm in

(X + 1)m+n = (X + 1)(X + 1)m+n−1,

and this proves what we want.
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is an inverse ν(P1)→ P1. (Cf. Example 5.17.) 17

When n = 1 and m is general, the Veronese map is

P1 → Pm, (a0 : a1) �→ (am0 : am−10 a1 : . . . : am1 ).

I claim that, in the general case, the image of ν is a closed subset of Pνn,m and that
ν defines an isomorphism of projective varieties ν : Pn → ν(Pn).

First note that the map has the following interpretation: if we regard the coor-
dinates ai of a point P of Pn as being the coefficients of a linear form L =

∑
aiXi

(well-defined up to multiplication by nonzero scalar), then the coordinates of ν(P )
are the coefficients of the homogeneous polynomial Lm with the binomial coefficients
omitted.

As L �= 0 ⇒ Lm �= 0, the map ν is defined on the whole of Pn, that is,

(a0, . . . , an) �= (0, . . . , 0) ⇒ (. . . , bi0...in, . . . ) �= (0, . . . , 0).

Moreover, L1 �= cL2 ⇒ Lm1 �= cLm2 , because k[X0, . . . , Xn] is a unique factorization
domain, and so ν is injective. It is clear from its definition that ν is regular.

We shall see later in this section that the image of any projective variety under a
regular map is closed, but in this case we can prove directly that ν(Pn) is defined by
the system of equations:

bi0...inbj0...jn = bk0...knb-0...-n, ih + jh = kh + Bh, all h (*).

Obviously Pn maps into the algebraic set defined by these equations. Conversely, let

Vi = {(. . . . : bi0...in : . . . ) | b0...0m0...0 �= 0}.
Then ν(Ui) ⊂ Vi and ν−1(Vi) = Ui. It is possible to write down a regular map Vi → Ui
inverse to ν|Ui: for example, define V0 → Pn to be

(. . . : bi0...in : . . . ) �→ (bm,0,... ,0 : bm−1,1,0,... ,0 : bm−1,0,1,0,... ,0 : . . . : bm−1,0,... ,0,1).

Finally, one checks that ν(Pn) ⊂ ∪Vi.
For any closed variety W ⊂ Pn, ν|W is an isomorphism of W onto a closed subva-

riety ν(W ) of ν(Pn) ⊂ Pνn,m .

Remark 5.19. The Veronese mapping has a very important property. If F is a
nonzero homogeneous form of degree m ≥ 1, then V (F ) ⊂ Pn is called a hypersurface
of degree m and V (F ) ∩W is called a hypersurface section of the projective variety
W . When m = 1, “surface” is replaced by “plane”.

Now let H be the hypersurface in Pn of degree m∑
ai0...inX

i0
0 · · ·Xinn = 0,

and let L be the hyperplane in Pνn,m defined by∑
ai0...inXi0...in.

17Note that, although P1 and ν(P1) are isomorphic, their homogeneous coordinate rings are not.
In fact kh[P1] = k[X0, X1], which is the affine coordinate ring of the smooth variety A2, whereas
kh[ν(P1)] = k[X0, X1, X2]/(X0X2 − X2

1 ) which is the affine coordinate ring of the singular variety
X0X2 −X2

1 .
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Then ν(H) = ν(Pn) ∩ L, i.e.,

H(a) = 0 ⇐⇒ L(ν(a)) = 0.

Thus for any closed subvariety W of Pn, ν defines an isomorphism of the hypersurface
section W ∩H of V onto the hyperplane section ν(W )∩L of ν(W ). This observation
often allows one to reduce questions about hypersurface sections to questions about
hyperplane sections.

As one example of this, note that ν maps the complement of a hypersurface section
of W isomorphically onto the complement of a hyperplane section of ν(W ), which we
know to be affine. Thus the complement of any hypersurface section of a projective
variety is an affine variety—we have proved the statement in (5.12b).

Example 5.20. An element A = (aij) of GLn+1 defines an automorphism of Pn:

(x0 : . . . : xn) �→ (. . . :
∑

aijxj : . . . );

clearly it is a regular map, and the inverse matrix gives the inverse map. Scalar
matrices act as the identity map.

Let PGLn+1 = GLn+1 /k
×I , where I is the identity matrix, that is, PGLn+1 is the

quotient of GLn+1 by its centre. Then PGLn+1 is the complement in P(n+1)2−1 of the
hypersurface det(Xij) = 0, and so it is an affine variety with ring of regular functions

k[PGLn+1] = {F (. . . , Xij, . . . )/det(Xij)
m | deg(F ) = m · (n + 1)} ∪ {0}.

It is an affine algebraic group.

The homomorphism PGLn+1 → Aut(Pn) is obviously injective. It is also surjective
— see Mumford, Geometric Invariant Theory, Springer, 1965, p20.

Example 5.21. (The Segre mapping.) This is the mapping

((a0 : . . . : am), (b0 : . . . : bn)) �→ ((. . . : aibj : . . . )) : Pm × Pn → Pmn+m+n .

The index set for Pmn+m+n is {(i, j) | 0 ≤ i ≤ m, 0 ≤ j ≤ n}. Note that if we
interprete the tuples on the left as being the coefficients of two linear forms L1 =∑

aiXi and L2 =
∑

bjYj, then the image of the pair is the set of coefficients of the
homogeneous form of degree 2, L1L2. From this observation, it is obvious that the
map is defined on the whole of Pm × Pn (L1 �= 0 �= L2 ⇒ L1L2 �= 0) and is injective.
On any subset of the form Ui × Uj it is defined by polynomials, and so it is regular.
Again one can show that it is an isomorphism onto its image, which is the closed
subset of Pmn+m+n defined by the equations

wijwkl − wilwkj = 0.

(See Shafarevich 1988, I.5.1) For example, the map

((a0 : a1), (b0 : b1)) �→ (a0b0 : a0b1 : a1b0 : a1b1) : P1 × P1 → P3

has image the hypersurface

H : WZ = XY.

The map

(w : x : y : z) �→ ((w : y), (w : x))
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is an inverse on the set where it is defined. [Incidentally, P1 × P1 is not isomorphic
to P2, because in the first variety there are closed curves, e.g., two vertical lines, that
don’t intersect.]

If V and W are closed subvarieties of Pm and Pn, then the Segre map sends V ×W
isomorphically onto a closed subvariety of Pmn+m+n . Thus products of projective
varieties are projective.

There is an explicit description of the topology on Pm×Pn : the closed sets are the
sets of common solutions of families of equations

F (X0, . . . , Xm;Y0, . . . , Yn) = 0

with F separately homogeneous in the X’s and in the Y ’s.

Example 5.22. Let L1, . . . , Ln−d be linearly independent linear forms in n + 1
variables; their zero set E in kn+1 has dimension d + 1, and so their zero set in Pn is
a d-dimensional linear space. Define π : Pn − E → Pn−d−1 by π(a) = (L1(a) : . . . :
Ln−d(a)); such a map is called a projection with centre E. If V is a closed subvariety
disjoint from E, then π defines a regular map V → Pn−d−1 . More generally, if
F1, . . . , Fr are homogeneous forms of the same degree, and Z = V (F1, . . . , Fr), then
a �→ (F1(a) : . . . : Fr(a)) is a morphism Pn − Z → Pr−1.

By carefully choosing the centre E, it is possible to project any smooth curve in Pn
isomorphically onto a curve in P3, and nonisomorphically (but bijectively on an open
subset) onto a curve in P2 with only nodes as singularities.18 For example, suppose
we have a nonsingular curve C in P3. To project to P2 we need three linear forms
L0, L1, L2 and the centre of the projection is the point where all forms are zero. We
can think of the map as projecting from the centre P0 onto some (projective) plane
by sending the point P to the point where P0P intersects the plane. To project C to
a curve with only ordinary nodes as singularities, one needs to choose P0 so that it
doesn’t lie on any tangent to C , any trisecant (line crossing the curve in 3 points), or
any chord at whose extremities the tangents are coplanar. See for example Samuel,
P., Lectures on Old and New Results on Algebraic Curves, Tata Notes, 1966.

Proposition 5.23. Let V be a projective variety, and let S be a finite set of points
of V . Then S is contained in an open affine subset of V .

Proof. Find a hyperplane passing through at least one point of V but missing
the elements of S, and apply 5.19. (See the exercises.)

Remark 5.24. There is a converse: let V be a nonsingular complete (see below)
irreducible variety; if every finite set of points in V is contained in an open affine
subset of V then V is projective. (Conjecture of Chevalley; proved by Kleiman about
1966.)

Complete varieties. Complete varieties are the analogues in the category of vari-
eties of compact topological spaces in the category of Hausdorff topological spaces.
Recall that the image of a compact space under a continuous map is compact, and
hence is closed if the image space is Hausdorff. Moreover, a Hausdorff space V is

18A nonsingular curve of degree d in P2 has genus (d−1)(d−2)
2 . Thus, if g is not of this form, a

curve of genus g can’t be realized as a nonsingular curve in P2.
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compact if and only if, for all topological spaces W , the projection q : V ×W → W
is closed, i.e., maps closed sets to closed sets (see Bourbaki, Topologie Générale, I,
§10).

Definition 5.25. An algebraic variety V is said to be complete if for all algebraic
varieties W , the projection q : V ×W →W is closed.

Note that a complete variety is required to be separated — we really mean it to be
a variety and not a prevariety.

Example 5.26. Consider the projection

(x, y) �→ y : A1 × A1 → A1

This is not closed; for example, the variety V : XY = 1 is closed in A2 but its image
in A1 omits the origin. However, if we replace V with its closure in P1 ×A1, then its
projection is the whole of A1.

Proposition 5.27. Let V be complete.

(a) A closed subvariety of V is complete.
(b) If V ′ is complete, so also is V × V ′.
(c) For any morphism α : V → W , α(V ) is closed and complete; in particular, if V

is a subvariety of W , then it is closed in W .
(d) If V is connected, then any regular map α : V → P1 is either constant or onto.
(e) If V is connected, then any regular function on V is constant.

Proof. (a) Let Z be a closed subvariety of a complete variety V . Then for any
variety W , Z × W is closed in V × W , and so the restriction of the closed map
q : V ×W → W to Z ×W is also closed.

(b) The projection V × V ′ ×W →W is the composite of the projections

V × V ′ ×W → V ′ ×W → W,

both of which are closed.

(c) Let Γα = {(v, α(v))} ⊂ V ×W be the graph of α. It is a closed subset of V ×W
(because W is a variety, see 3.25), and α(V ) is the projection of Γα onto W . Since V
is complete, the projection is closed, and so α(V ) is closed, and hence is a subvariety
of W . Consider

Γα ×W → α(V )×W → W.

We have that Γα is complete (because it is isomorphic to V , see 3.25), and so the
mapping Γα × W → W is closed. As Γα → α(V ) is surjective, it follows that
α(V )×W → W is also closed.

(d) Recall that the only proper closed subsets of P1 are the finite sets, and such a
set is connected if and only if it consists of a single point. Because α(V ) is connected
and closed, it must either be a single point (and α is constant) or P1 (and α is onto).

(e) A regular function on V is a regular map f : V → A1 ⊂ P1. Regard it as a map
into P1. If it isn’t constant, it must be onto, which contradicts the fact that it maps
into A1.

Corollary 5.28. Consider a regular map α : V → W ; if V is complete and
connected and W is affine, then the image of α is a point.
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Proof. Embed W as a closed subvariety of An, and write α = (α1, . . . , αn) where
each αi is a regular map W → A1. Then each αi is a regular function on V , and
hence is constant.

Remark 5.29. The statement that a complete variety V is closed in any larger
variety W perhaps explains the name: if V is complete, W is irreducible, and dimV =
dimW , then V = W . (Contrast An ⊂ Pn.)

Theorem 5.30. A projective variety is complete.

Lemma 5.31. A variety V is complete if and only if q : V ×W → W is a closed
mapping for all irreducible affine varieties W .

Proof. Straightforward.

After (5.27a), it suffices to prove the Theorem for projective space Pn itself; thus
we have to prove that the projection W × Pn → W is a closed mapping in the case
that W is an affine variety. Note that W × Pn is covered by the open affines W ×Ui,
0 ≤ i ≤ n, and that a subset U of W × Pn is closed if and only if its intersection
with each W × Ui is closed. We shall need another more explicit description of the
topology on W × Pn.

Let A = k[W ], and let B = A[X0, . . . , Xn]. Note that B = A⊗kk[X0, . . . , Xn], and
so we can view it as the ring of regular functions on W ×An+1: f ⊗ g takes the value
f(w) · g(a) at the point (w, a) ∈ W × An+1. The ring B has an obvious grading—
a monomial aXi00 . . . Xinn , a ∈ A, has degree

∑
ij—and so we have the notion of a

homogeneous ideal b ⊂ B. It makes sense to speak of the zero set V (b) ⊂ W × Pn of
such an ideal. For any ideal a ⊂ A, aB is homogeneous, and V (aB) = V (a)× Pn.

Lemma 5.32. (i) For each homogeneous ideal b ⊂ B, the set V (b) is closed, and
every closed subset of W × Pn is of this form.

(ii) The set V (b) is empty if and only if rad(b) ⊃ (X0, . . . , Xn).

(iii) If W is irreducible, then W = V (b) for some homogeneous prime ideal b.

Proof. In the case that A = k, we proved all this on pp 90–92, and the same
arguments apply in the present more general situation. For example, to see that
V (b) is closed, apply the criterion stated above.

The set V (b) is empty if and only if the cone V aff(b) ⊂ W × An+1 defined by
b is contained in W × {origin}. But

∑
ai0...inX

i0
0 . . .Xinn , ai0...in ∈ k[W ], is zero on

W × {origin} if an only if its constant term is zero, and so

Iaff(W × {origin}) = (X0, X1, . . . , Xn).

Thus, the Nullstellensatz shows that V (b) = ∅ ⇒ rad(b) = (X0, . . . , Xn). Conversely,
if XNi ∈ b for all i, then obviously V (b) is empty.

For the final statement, note that if V (b) is irreducible, then the closure of its
inverse image in W ×An+1 is also irreducible, and so the ideal of functions zero on it
prime.

Proof of 5.30. Write p for the projection W × Pn →W . We have to show that
Z closed in W × Pn implies p(Z) closed in W . If Z is empty, this is true, and so we
can assume it to be nonempty. Then Z is a finite union of irreducible closed subsets
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Zi of W × Pn, and it suffices to show that each p(Zi) is closed. Thus we may assume
that Z is irreducible, and hence that Z = V (b) with b a prime homogeneous ideal in
B = A[X0, . . . , Xn].

Note that if p(Z) ⊂W ′, W ′ a closed subvariety of W , then Z ⊂ W ′ × Pn—we can
then replace W with W ′. This allows us to assume that p(Z) is dense in W , and we
now have to show that p(Z) = W .

Because p(Z) is dense in W , the image of the cone V aff(b) under the projection
W ×An+1 → W is also dense in W , and so (see 2.21a) the map A→ B/b is injective.

Let w ∈ W : we shall show that if w /∈ p(Z), i.e., if there does not exist a P ∈ Pn
such that (w, P ) ∈ Z, then p(Z) is empty, which is a contradiction.

Let m ⊂ A be the maximal ideal corresponding to w. Then mB+b is a homogeneous
ideal, and V (mB+b) = V (mB)∩V (b) = (w×Pn)∩V (b), and so w will be in the image
of Z unless V (mB+b) �= ∅. But if V (mB+b) = ∅, then mB+b ⊃ (X0, . . . , Xn)

N for
some N (by 5.33b), and so mB + b contains the set BN of homogeneous polynomials
of degree N . Because mB and b are homogeneous ideals,

BN ⊂ mB + b⇒ BN = mBN + BN ∩ b.

In detail: the first inclusion says that an f ∈ BN can be written f = g+h with g ∈ mB
and h ∈ b. On equating homogeneous components, we find that fN = gN + hN .
Moreover: fN = f ; if g =

∑
mibi, mi ∈ m, bi ∈ B, then gN =

∑
mibiN ; and hN ∈ b

because b is homogeneous. Together these show f ∈ mBN + BN ∩ b.

Let M = BN/BN ∩ b, regarded as an A-module. The displayed equation says
that M = mM . The argument in the proof of Nakayama’s lemma (4.17) shows that
(1 + m)M = 0 for some m ∈ m. Because A → B/b is injective, the image of 1 + m
in B/b is nonzero. But M = BN/BN ∩ b ⊂ B/b, which is an integral domain, and so
the equation (1 + m)M = 0 implies that M = 0. Hence BN ⊂ b, and so XNi ∈ b for
all i, which contradicts the assumption that Z = V (b) is nonempty.

Elimination theory. We have shown that, for any closed subset Z of Pm × W ,
the projection q(Z) of Z in W is closed. Elimination theory 19 is concerned with
providing an algorithm for passing from the equations defining Z to the equations
defining q(Z). We illustrate this in one case.

Let P = s0X
m+s1X

m−1+· · ·+sm and Q = t0X
n+t1X

n−1+· · ·+tn be polynomials.
The resultant of P and Q is defined to be the determinant∣∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sm
s0 . . . sm

. . . . . .
t0 t1 . . . tn

t0 . . . tn
. . . . . .

∣∣∣∣∣∣∣∣∣∣∣

n-rows

m-rows

19Elimination theory became unfashionable several decades ago—one prominent algebraic geome-
ter went so far as to announce that Theorem 5.30 eliminated elimination theory from mathematics,
provoking Abhyankar, who prefers equations to abstractions, to start the chant “eliminate the elim-
inators of elimination theory”. With the rise of computers, it has become fashionable again.
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There are n rows of s’s and m rows of t’s, so that the matrix is (m + n) × (m + n);
all blank spaces are to be filled with zeros. The resultant is a polynomial in the
coefficients of P and Q.

Proposition 5.33. The resultant Res(P,Q) = 0 if and only if

(a) both s0 and t0 are zero; or
(b) the two polyomials have a common root.

Proof. If (a) holds, then certainly Res(P,Q) = 0. Suppose that α is a common
root of P and Q, so that there exist polynomials P1 and Q1 of degrees m − 1 and
n− 1 respectively such that

P (X) = (X − α)P1(X), Q(X) = (X − α)Q1(X).

From these equations we find that

P (X)Q1(X)−Q(X)P1(X) = 0. (*)

On equating the coefficients of Xm+n−1 , . . . , X, 1 in (*) to zero, we find that the
coefficients of P1 and Q1 are the solutions of a system of m + n linear equations in
m + n unknowns. The matrix of coefficients of the system is the transpose of the
matrix 



s0 s1 . . . sm
s0 . . . sm

. . . . . .
t0 t1 . . . tn

t0 . . . tn
. . . . . .




The existence of the solution shows that this matrix has determinant zero, which
implies that Res(P,Q) = 0.

Conversely, suppose that Res(P,Q) = 0 but neither s0 nor t0 is zero. Because
the above matrix has determinant zero, we can solve the linear equations to find
polynomials P1 and Q1 satisfying (*). If α is a root of P , then it must also be a root
of P1 or Q. If the former, cancel X − α from the left hand side of (*) and continue.
As degP1 < degP , we eventually find a root of P that is not a root of P1, and so
must be a root of Q.

The proposition can be restated in projective terms. We define the resultant of two
homogeneous polynomials

P (X, Y ) = s0X
m + s1X

m−1Y + · · ·+ smY
m, Q(X, Y ) = t0X

n + · · ·+ tnY
n,

exactly as in the nonhomogeneous case.

Proposition 5.34. The resultant Res(P,Q) = 0 if and only if P and Q have a
common zero in P1.

Proof. The zeros of P (X, Y ) in P1 are of the form:

(a) (a : 1) with a a root of P (X, 1), or
(b) (1 : 0) in the case that s0 = 0.
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Thus (5.34) is a restatement of (5.33).

Now regard the coefficients of P and Q as indeterminants. The pairs of polynomials
(P,Q) are parametrized by the space Am+1 × An+1 = Am+n+2 . Consider the closed
subset V (P,Q) in Am+n+2×P1. The proposition shows that its projection on Am+n+2
is the set defined by Res(P,Q) = 0. Thus, not only have we shown that the projection
of V (P,Q) is closed, but we have given an algorithm for passing from the polynomials
defining the closed set to those defining its projection.

Elimination theory does this in general. Given a family of polynomials
Pi(T1, . . . , Tm;X0, . . . , Xn), homogeneous in the Xi, elimination theory gives an algo-
rithm for finding polynomials Rj(T1, . . . , Tn) such that the Pi(a1, . . . , am;X0, . . . , Xn)
have a common zero if and only if Rj(a1, . . . , an) = 0 for all j. (Our theorem only
shows that the Rj exist.) See Cox et al. 1992, Chapter 8, Section 5..

Maple can find the resultant of two polynomials in one variable: for example,
entering “resultant((x + a)5, (x + b)5, x)” gives the answer (−a + b)25. Explanation:
the polynomials have a common root if and only if a = b, and this can happen in 25
ways. Macaulay doesn’t seem to know how to do more.

The rigidity theorem. The paucity of maps between projective varieties has some
interesting consequences. First an observation: for any point w ∈ W , the projection
map V ×W → V defines an isomorphism V × {w} → V with inverse v �→ (v, w) :
V → V ×W (this map is regular because its components are).

Theorem 5.35. Let α : V × W → U be a regular map, and assume that V is
complete, that V and W are irreducible, and that U is separated. If there are points
u0 ∈ U , v0 ∈ V , and w0 ∈W such that

α(V × {w0}) = {u0} = α({v0} ×W )

then α(V ×W ) = {u0}.
Proof. Let U0 be an open affine neighbourhood of u0. Because the projection

map q : V ×W → W is closed, Z
df
= q(α−1(U −U0)) is closed in W . Note that a point

w of W lies outside Z if and only α(V × {w}) ⊂ U0. In particular w0 ∈W − Z, and
so W −Z is dense in W . As V ×{w} is complete and U0 is affine, α(V × {w}) must
be a point whenever w ∈ W − Z: in fact, α(V × {w}) = α(v0, w) = {u0}. Thus α is
constant on the dense subset V × (W − Z) of V ×W , and so is constant.

An abelian variety is a complete connected group variety.

Corollary 5.36. Every regular map α : A → B of abelian varieties is the com-
posite of a homomorphism with a translation; in particular, a regular map α : A→ B
such that α(0) = 0 is a homomorphism.

Proof. After composing α with a translation, we may assume that α(0) = 0.
Consider the map

ϕ : A× A→ B, ϕ(a, a′) = α(a + a′)− α(a)− α(a′).

Then ϕ(A×0) = 0 = ϕ(0×A) and so ϕ = 0. This means that α is a homomorphism.

Corollary 5.37. The group law on an abelian variety is commutative.
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Proof. Commutative groups are distinguished among all groups by the fact that
the map taking an element to its inverse is a homomorphism: if (gh)−1 = g−1h−1,
then, on taking inverses, we find that gh = hg. Since the negative map, a �→ −a :
A→ A, takes the identity element to itself, the preceding corollary shows that it is a
homomorphism.

Projective space without coordinates. Let E be a vector space over k of dimen-
sion n + 1. The set P(E) of lines through zero in E has a natural structure of an
algebraic variety: the choice of a basis for E defines an bijection P(E) → Pn, and
the inherited structure of an algebraic variety on P(E) is independent of the choice
of the basis. Note that in contrast to Pn, which has n + 1 distinguished hyperplanes,
namely, X0 = 0, . . . , Xn = 0, no hyperplane in P(E) is distinguished.

One can also define the structure of an algebraic variety on the set Gn+1,r(E) of
r-dimensional subspaces in E. The resulting varieties are called Grassmanians. They
are projective.

Bezout’s theorem. Let V be a hypersurface in Pn (that is, a closed subvariety of
codimension 1). For such a variety, I(V ) = (F (X0, . . . , Xn)) with F a homogenous
polynomial without repeated factors. We define the degree of V to be the degree of
F .

The next theorem is one of the oldest, and most famous, in algebraic geometry.

Theorem 5.38 (Bezout). Let C and D be curves in P2 of degrees m and n re-
spectively. If C and D have no irreducible component in common, then they intersect
in exactly mn points, counted with appropriate multiplicities.

Proof. Decompose C and D into their irreducible components. Clearly it suf-
fices to prove the theorem for each irreducible component of C and each irreducible
component of D. We can therefore assume that C and D are themselves irreducible.

We know from (1.22) that C ∩ D is of dimension zero, and so is finite. After a
change of variables, we can assume that a �= 0 for all points (a : b : c) ∈ C ∩D.

Let F (X, Y, Z) and G(X, Y, Z) be the polynomials defining C and D, and write

F = s0Z
m + s1Z

m−1 + · · ·+ sm, G = t0Z
n + t1Z

n−1 + · · · + tn

with si and tj polynomials in X and Y of degrees i and j respectively. Clearly
sm �= 0 �= tn, for otherwise F and G would have Z as a common factor. Let R
be the resultant of F and G, regarded as polynomials in Z. It is a homogeneous
polynomial of degree mn in X and Y , or else it is identically zero. If the latter
occurs, then for every (a, b) ∈ k2, F (a, b, Z) and G(a, b, Z) have a common zero,
which contradicts the finiteness of C ∩D. Thus R is a nonzero polynomial of degree
mn. Write R(X, Y ) = XmnR∗( YX ) where R∗(T ) is a polynomial of degree ≤ mn in

T = Y
X

.

Suppose first that degR∗ = mn, and let α1, . . . , αmn be the roots of R∗ (some of
them may be multiple). Each such root can be written αi = bi

ai
, and R(ai, bi) = 0.

According to (5.34) this means that the polynomials F (ai, bi, Z) and G(ai, bi, Z) have
a common root ci. Thus (ai : bi : ci) is a point on C ∩D, and conversely, if (a : b : c)
is a point on C ∩D (so a �= 0), then b

a
is a root of R∗(T ). Thus we see in this case,
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that C ∩D has precisely mn points, provided we take the multiplicity of (a : b : c) to
be the multiplicity of b

a
as a root of R∗.

Now suppose that R∗ has degree r < mn. Then R(X, Y ) = Xmn−rP (X, Y ) where
P (X, Y ) is a homogeneous polynomial of degree r not divisible by X. Obviously
R(0, 1) = 0, and so there is a point (0 : 1 : c) in C ∩ D, in contradiction with our
assumption.

Remark 5.39. The above proof has the defect that the notion of multiplicity has
been too obviously chosen to make the theorem come out right. It is possible to show
that the theorem holds with the following more natural definition of multiplicity. Let
P be an isolated point of C ∩D. There will be an affine neighbourhood U of P and
regular functions f and g on U such that C ∩ U = V (f) and D ∩ U = V (g). We
can regard f and g as elements of the local ring OP , and clearly rad(f, g) = m, the
maximal ideal in OP . It follows that OP/(f, g) is finite-dimensional over k, and we
define the multiplicity of P in C ∩D to be dimk(OP/(f, g)). For example, if C and
D cross transversely at P , then f and g will form a system of local parameters at P
— (f, g) = m — and so the multiplicity is one.

The attempt to find good notions of multiplicities in very general situations has
motivated much of the most interesting work in commutative algebra over the last 20
years.

Hilbert polynomials (sketch). Recall that for a projective variety V ⊂ Pn,
kh[V ] = k[X0, . . . , Xn]/b = k[x0, . . . , xn],

where b = I(V ). We observed that b is homogeneous, and therefore kh[V ] is a graded
ring:

kh[V ] = ⊕m≥0kh[V ]m,

where kh[V ]m is the subspace generated by the monomials in the xi of degree m.
Clearly kh[V ]m is a finite-dimensional k-vector space.

Theorem 5.40. There is a unique polynomial P (V, T ) such that P (V,m) =
dimk k[V ]m for all m sufficiently large.

Proof. Omitted.

Example 5.41. For V = Pn, kh[V ] = k[X0, . . . , Xn], and (see the footnote on

page 89), dim kh[V ]m = (m+nn ) = (m+n)···(m+1)
n!

, and so

P (Pn, T ) = ( T+nn ) =
(T + n) · · · (T + 1)

n!
.

The polynomial P (V, T ) in the theorem is called the Hilbert polynomial of V .
Despite the notation, it depends not just on V but also on its embedding in projective
space.

Theorem 5.42. Let V be a projective variety of dimension d and degree δ; then

P (V, T ) =
δ

d!
T d + terms of lower degree.

Proof. Omitted.
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The degree of a projective variety is the number of points in the intersection of the
variety and of a general linear variety of complementary dimension (see later).

Example 5.43. Let V be the image of the Veronese map

(a0 : a1) �→ (ad0 : ad−10 a1 : . . . : ad1) : P1 → Pd.
Then kh[V ]m can be identified with the set of homogeneous polynomials of degree
m · d in two variables (look at the map A2 → Ad+1 given by the same equations),
which is a space of dimension dm + 1, and so

P (V, T ) = dT + 1.

Thus V has dimension 1 (which we certainly knew) and degree d.

Macaulay knows how to compute Hilbert polynomials.

References: Hartshorne 1977, I.7; Atiyah and Macdonald 1969, Chapter 11; Harris
1992, Lecture 13.
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6. Finite Maps

Throughout this section, k is an algebraically closed field.

Recall that an A-algebra B is said to be finite if it is finitely generated as an A-
module. This is equivalent to B being finitely generated as an A-algebra and integral
over A.

Definition 6.1. A regular map ϕ : W → V is said to be finite if for all open affine
subsets U of V , ϕ−1(U) is an affine variety, and k[ϕ−1(U)] is a finite k[U ]-algebra.

Proposition 6.2. It suffices to check the condition in the definition for all subsets
in one open affine covering (Ui) of V .

Proof. Omitted. (See Mumford 1966, III.1, proposition 5).

Hence a map ϕ : Specm(B) → Specm(A) of affine varieties is finite if and only if
B is a finite A-algebra.

Proposition 6.3. (a) For any closed subvariety Z of V , the inclusion Z ↪→ V
is finite.

(b) The composite of two finite morphisms is finite.
(c) The product of two finite morphisms is finite.

Proof. (a) Let U be an open affine subvariety of V . Then Z ∩ U is a closed
subvariety of U . It is therefore affine, and the map Z ∩U → U corresponds to a map
A→ A/a of rings, which is obviously finite.

(b) If B is a finite A-algebra and C is a finite B-algebra, then C is a finite A-
algebra: indeed, if {bi} is a set of generators for B as an A-module, and {cj} is a
set of generators for C as a B-module, then {bicj} is a set of generators for C as an
A-module.

(c) If B and B ′ are respectively finite A and A′-algebras, then B ⊗k B ′ is a finite
A⊗kA′-algebra: indeed, if {bi} is a set of generators for B as an A-module, and {b′j}
is a set of generators for B ′ as an A-module, the {bi ⊗ b′j} is a set of generators for
B ⊗A B ′ as an A-module.

By way of contrast, an open immersion is rarely finite. For example, the inclusion
A1 − {0} ↪→ A1 is not finite because the ring k[T, T−1] is not finitely generated as
a k[T ]-module. (Any finite set of elements in k[T, T−1] has a fixed power of T as a
common denominator.)

The fibres of a regular map ϕ : W → V are the subvarieties ϕ−1(P ) of W for
P ∈ V . When the fibres are all finite, ϕ is said to be quasi-finite.

Proposition 6.4. A finite map ϕ : W → V is quasi-finite.

Proof. Let P ∈ V ; we wish to show ϕ−1(P ) is finite. After replacing V with an
affine neighbourhood of P , we can suppose that it is affine, and then W will be affine
also. The map ϕ then corresponds to a map α : A → B of affine k-algebras, and a
point Q of W maps to P if and only α−1(mQ) = mP . But this holds if and only if20

mQ ⊃ α(mP ), and so the points of W mapping to P are in one-to-one correspondence

20Clearly then α−1(mQ) ⊃ mP , and we know it is a maximal ideal.
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with the maximal ideals of B/α(m)B. Clearly B/α(m)B is generated as a k-vector
space by the image of any generating set for B as an A-module, and the next lemma
shows that it has only finitely many maximal ideals.

Lemma 6.5. A finite k-algebra A has only finitely many maximal ideals.

Proof. Let m1, . . . ,mn be maximal ideals in A. They are obviously coprime in
pairs, and so the Chinese Remainder Theorem (see below) shows that the map

A→ A/m1 × · · · × A/mn, a �→ (. . . , ai mod mi, . . . ),

is surjective. It follows that dimk A ≥ ∑ dimk(A/mi) ≥ n (dimensions as k-vector
spaces).

Lemma 6.6 (Chinese Remainder Theorem). Let a1, . . . , an be ideals in a ring A.
If ai is coprime to aj (i.e., ai + aj = A) whenever i �= j, then the map

A→ A/a1 × · · · × A/am

is surjective, with kernel
∏

ai = ∩ai.

Proof. The proof is elementary (see Atiyah and MacDonald 1969, 1.10).

Theorem 6.7. A finite map ϕ : W → V is closed.

Proof. Again we can assume V and W to be affine. Let Z be a closed subset of
W . The restriction of ϕ to Z is finite (by 6.3a and b), and so we can replace W with
Z; we then we have to show that Im(ϕ) is closed. The map corresponds to a finite
map of rings A→ B. This will factor, A→ A/a ↪→ B, from which we obtain maps

Specm(B) → Specm(A/a) ↪→ Specm(A).

The second map identifies Specm(A/a) with the closed subvariety V (a) of Specm(A),
and so it remains to show that the first map is surjective. This is a consequence of
the next lemma.

Lemma 6.8 (Going-Up Theorem). Let A ⊂ B be rings with B integral over A.

(a) For every prime ideal p of A, there is a prime ideal q of B such that q ∩A = p.
(b) Let p = q ∩A; then p is maximal if and only if q is maximal.

Proof. (a) If S is a multiplicative subset of a ring A, then the prime ideals of
S−1A are in one-to-one correspondence with the prime ideals of A not meeting S (see
4.15). It therefore suffices to prove (a) after A and B have been replaced by S−1A
and S−1B, where S = A− p. Thus we may assume that A is local, and that p is its
unique maximal ideal. In this case, for all proper ideals b of B, b∩A ⊂ p (otherwise
b ⊃ A ) 1). To complete the proof of (a), I shall show that for all maximal ideals n
of B, n ∩ A = p.

Consider B/n ⊃ A/(n ∩ A). Here B/n is a field, which is integral over its subring
A/(n ∩ A), and n ∩A will be equal to p if and only if A/(n ∩ A) is a field. Thus the
claim follows from the next lemma.

Lemma 6.9. Let A be a subring of a field K. If K is integral over A, then A also
is a field.
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Proof. Let a ∈ A, a �= 0. Then a−1 ∈ K, and it is integral over A:

(a−1)n + a1(a
−1)n−1 + · · ·+ an = 0, ai ∈ A.

On multiplying through by an−1, we find that

a−1 + a1 + · · · + ana
n−1 = 0,

from which it follows that a−1 ∈ A.

Proof. (of 6.8b)The ring B/q contains A/p, and it is integral over A/p. If q is
maximal, then (6.9) shows that p is also. For the converse, note that any integral
domain algebraic over a field is a field — it is a union of integral domains finite over
k, and multiplication by any nonzero element of an integral domain finite over a field
is an isomorphism (it is injective by definition, and an injective endomorphism of a
finite-dimensional vector space is also surjective).

Corollary 6.10. Let ϕ : W → V be finite; if V is complete, then so also is W .

Proof. Consider

W × T → V × T → T, (w, t) �→ (ϕ(w), t) �→ t.

Because W × T → V × T is finite (see 6.3c), it is closed, and because V is complete,
V × T → T is closed. A composite of closed maps is closed, and therefore the
projection W × T → T is closed.

Example 6.11. labelFM11 (a) Project XY = 1 onto the X axis. This map is
quasi-finite but not finite, because k[X,X−1] is not finite over k[X].

(b) The map A2 − {origin} ↪→ A2 is quasi-finite but not finite, because the inverse
image of A2 is not affine (2.20).

(c) Let V = V (Xn + T1X
n−1 + · · ·+ Tn) ⊂ An+1, and consider the projection map

(a1, . . . , an, x) �→ (a1, . . . , an) : V → An.

The fibre over any point (a1, . . . , an) ∈ An is the set of solutions of

Xn + a1X
n−1 + · · ·+ an = 0,

and so it has exactly n points, counted with multiplicities. The map is certainly
quasi-finite; it is also finite because it corresponds to the finite map of k-algebras,

k[T1, . . . , Tn] → k[T1, . . . , Tn, X]/(Xn + T1X
n−1 + · · ·+ Tn).

(d) Let V = V (T0X
n+T1X

n−1+· · ·+Tn) ⊂ An+2. The projection ϕ : V → An+1 has
finite fibres except for the fibre above (0, . . . , 0), which is A1. The restriction ϕ|V 	
ϕ−1(origin) is quasi-finite, but not finite. Above points of the form (0, . . . , 0, ∗, . . . , ∗)
some of the roots “vanish off to ∞”. (Example (a) is a special case of this.)

(e) Let P (X, Y ) = T0X
n + T1X

n−1Y + ... +TnY
n, and let V be its zero set in

P1 × (An+1 − {origin}). In this case, the projection map V → An+1 − {origin} is
finite. (Prove this directly, or apply 6.24 below.)

(f) The morphism A1 → A2, t �→ (t2, t3) is finite because the image of k[X, Y ] in
k[T ] is k[T 2, T 3], and {1, T} is a set of generators for k[T ] over this subring.

(g) The morphism A1 → A1, a �→ am is finite (special case of (c)).
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(h) The obvious map

(A1 with the origin doubled ) → A1

is quasi-finite but not finite (the inverse image of A1 is not affine).

Exercise 6.12. Prove that a finite map is an isomorphism if and only if it is
bijective and étale. (Cf. Harris 1992, 14.9.)

The Frobenius map t �→ tp : A1 → A1 in characteristic p �= 0 and the map t �→
(t2, t3) : A1 → V (Y 2 − X3) ⊂ A2 from the line to the cuspidal cubic (see 2.17c) are
examples of finite bijective regular maps that are not isomorphisms.

Noether Normalization Theorem. This theorem sometimes allows us to reduce
the proofs of statements about affine varieties to the case of An.

Theorem 6.13. For any irreducible affine algebraic variety V of a variety of di-
mension d, there is a finite surjective map ϕ : V → Ad.

Proof. This is a geometric re-statement of the original theorem.

Theorem 6.14 (Noether Normalization Theorem). Let A be a finitely generated
k-algebra, and assume that A is an integral domain. Then there exist elements
y1, . . . , yd ∈ A that are algebraically independent over k and such that A is integral
over k[y1, . . . , yd].

Proof. Let x1, . . . , xn generate A as a k-algebra. We can renumber the xi so that
x1, . . . , xd are algebraically independent and xd+1, . . . , xn are algebraically dependent
on x1, . . . , xd (see 6.12 of my notes on Fields and Galois Theory).

Because xn is algebraically dependent on x1, . . . , xd, there exists a nonzero poly-
nomial f(X1, . . . , Xd, T ) such that f(x1, . . . , xd, xn) = 0. Write

f(X1, . . . , Xd, T ) = a0T
m + a1T

m−1 + · · · + am

with ai ∈ k[X1, . . . , Xd] (≈ k[x1, . . . , xd]). If a0 is a nonzero constant, we can di-
vide through by it, and then xn will satisfy a monic polynomial with coefficients in
k[x1, . . . , xd], that is, xn will be integral (not merely algebraic) over k[x1, . . . , xd].
The next lemma suggest how we might achieve this happy state by making a linear
change of variables.

Lemma 6.15. If F (X1, . . . , Xd, T ) is a homogeneous polynomial of degree r, then

F (X1 + λ1T, . . . , Xd + λdT, T ) = F (λ1, . . . , λd, 1)T r + terms of degree < r in T.

Proof. The polynomial F (X1 + λ1T, . . . , Xd + λdT, T ) is still homogeneous of
degree r (in X1, . . . , Xd, T ), and the coefficient of the monomial T r in it can be
obtained by substituting 0 for each Xi and 1 for T .

Proof. (of the Noether Normalization Theorem, continued). Note that un-
less F (X1, . . . , Xd, T ) is the zero polynomial, it will always be possible to choose
(λ1, . . . , λd) so that F (λ1, . . . , λd, 1) �= 0 —substituting T = 1 merely dehomogenizes
the polynomial (no cancellation of terms occurs), and a nonzero polynomial can’t be
zero on all of kn (this can be proved by induction on the number of variables; it uses
only that k is infinite).
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Let F be the homogeneous part of highest degree of f , and choose (λ1, . . . , λd) so
that F (λ1, . . . , λd, 1) �= 0. The lemma then shows that

f(X1 + λ1T, . . . , Xd + λdT, T ) = cT r + b1T
r−1 + · · ·+ b0,

with c = F (λ1, . . . , λd, 1) ∈ k×, bi ∈ k[X1, . . . , Xd], deg bi < r. On substitut-
ing xn for T and xi − λixn for Xi we obtain an equation demonstrating that xn
is integral over k[x1 − λ1xn, . . . , xd − λdxn]. Put x′i = xi − λixn, 1 ≤ i ≤ d.
Then xn is integral over the ring k[x′1, . . . , x

′
d], and it follows that A is integral over

A′ = k[x′1, . . . , x
′
d, xd+1, . . . , xn−1]. Repeat the process for A′, and continue until the

theorem is proved.

Remark 6.16. The above proof uses only that k is infinite, not that it is alge-
braically closed (that’s all one needs for a nonzero polynomial not to be zero on all of
kn). There are other proofs that work also for finite fields (see Mumford 1966, p4-6),
but the above proof gives us the additional information that the yi’s can be chosen
to be linear combinations of the xi. This has the following geometric interpretation:

let V be a closed subvariety of An of dimension d; then there exists a linear map
An → Ad whose restriction to V is a finite map V � Ad.

Zariski’s main theorem. An obvious way to construct a nonfinite quasi-finite map
W → V is to take a finite map W ′ → V and remove a closed subset of W ′. Zariski’s
Main Theorem show that, when W and V are separated, every quasi-finite map arises
in this way.

Theorem 6.17 (Zariski’s Main Theorem). Any quasi-finite map of varieties ϕ :

W → V factors into W
ι
↪→W ′ ϕ′→ V with ϕ′ finite and ι an open immersion.

Proof. Omitted — see the references below.

Remark 6.18. Assume (for simplicity) that V and W are irreducible and affine.
The proof of the theorem provides the following description of the factorization: it
corresponds to the maps

k[V ] → k[W ′] → k[W ]

with k[W ′] the integral closure of k[V ] in k[W ].

A regular map ϕ : W → V of irreducible varieties is said to be birational if it
induces an isomorphism k(V ) → k(W ) on the fields of rational functions (that is, if
it demonstrates that W and V are birationally equivalent).

Remark 6.19. One may ask how a birational regular map ϕ : W → V can fail to
be an isomorphism. Here are three examples.

(a) The inclusion of an open subset into a variety is birational.
(b) The map A1 → C , t �→ (t2, t3), is birational. Here C is the cubic Y 2 = X3, and

the map k[C ] → k[A1] = k[T ] identifies k[C ] with the subring k[T 2, T 3] of k[T ].
Both rings have k(T ) as their fields of fractions.

(c) For any smooth variety V and point P ∈ V , there is a regular birational map
ϕ : V ′ → V such that the restriction of ϕ to V ′−ϕ−1(P ) is an isomorphism onto
V − P , but ϕ−1(P ) is the projective space attached to the vector space TP (V ).



106 Algebraic Geometry: 6. Finite Maps

The next result says that, if we require the target variety to be normal (thereby
excluding example (b)), and we require the map to be quasi-finite (thereby excluding
example (c)), then we are left with (a).

Corollary 6.20. Let ϕ : W → V be a birational regular map of irreducible
varieties. Assume

(a) V is normal, and
(b) ϕ is quasi-finite.

Then ϕ is an isomorphism of W onto an open subset of V .

Proof. Factor ϕ as in the theorem. For each open affine subset U of V , k[ϕ′−1(U)]
is the integral closure of k[U ] in k(W ). But k(W ) = k(V ) (because ϕ is birational),
and k[U ] is integrally closed in k(V ) (because V is normal), and so U = ϕ′−1(U) (as
varieties). It follows that W ′ = V .

Remark 6.21. Let W and V be irreducible varieties, and let ϕ : W → V be a
dominating map. It induces a map k(V ) ↪→ k(W ), and if dimW = dimV , then k(W )
is a finite extension of k(V ). We shall see later that, if n is the separable degree of
k(V ) over k(W ), then there is an open subset U of W such that ϕ is n : 1 on U , i.e.,
for P ∈ ϕ(U), ϕ−1(P ) has exactly n points.

Now suppose that ϕ is a bijective regular map W → V . We shall see later that
this implies that W and V have the same dimension. Assume:

(a) k(W ) is separable over k(V );
(b) V is normal.

From (i) and the preceding remark, we find that ϕ is birational, and from (ii) and
the corollary, we find that ϕ is an isomorphism of W onto an open subset of V ; as
it is surjective, it must be an isomorphism of W onto V . We conclude: a bijective
regular map ϕ : W → V satisfying the conditions (i) and (ii) is an isomorphism.

Remark 6.22. The full name of Theorem 6.17 is “the main theorem of Zariski’s
paper Trans. AMS, 53 (1943), 490-532”. Zariski’s original statement is that in (6.20).
Grothendieck proved it in the stronger form (6.17) for all schemes. There is a good
discussion of the theorem in Mumford 1966, III.9. See also: Nowak, Krzysztof Jan, A
simple algebraic proof of Zariski’s main theorem on birational transformations, Univ.
Iagel. Acta Math. No. 33 (1996), 115–118; MR 97m:14016.

Fibre products. Consider a variety S and two regular maps ϕ : V → S and ψ :
W → S. Then the set

V ×S W df
= {(v, w) ∈ V ×W | ϕ(v) = ψ(w)}

is a closed subvariety of V ×W , called the fibred product of V and W over S. Note
that if S consists of a single point, then V ×S W = V ×W .
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Write ϕ′ for the map (v, w) �→ w : V ×S W → W and ψ′ for the map (v, w) �→ v :
V ×S W → V . We then have a commutative diagram:

V ×S W ψ′−−−→ W�ϕ′ �ϕ
W

ψ−−−→ S.

The fibred product has the following universal property: consider a pair of regular
maps α : T → V , β : T →W ; then

(α, β) = t �→ (α(t), β(t)) : T → V ×W

factors through V ×S W (as a map of sets) if and only if ϕα = ψβ, in which case
(α, β) is regular (because it is regular as a map into V ×W ).

Suppose V , W , and S are affine, and let A, B, and R be their rings of regular
functions. Then A ⊗R B has the same universal property as V ×S W , except with
the directions of the arrows reversed. Since both objects are uniquely determined by
their universal properties, this shows that k[V ×SW ] = A⊗RB/ N , where N is the
nilradical of A⊗R B (that is, the set of nilpotent elements of A⊗R B).

The map ϕ′ in the above diagram is called the base change of ϕ with respect to ψ.
For any point P ∈ S, the base change of ϕ : V → S with respect to P ↪→ S is the
map ϕ−1(P )→ P induced by ϕ.

Proposition 6.23. The base change of a finite map is finite.

Proof. We may assume that all the varieties concerned are affine. Then the
statement becomes: if A is a finite R-algebra, then A⊗R B/ N is a finite B-algebra,
which is obvious.

Proper maps. A regular map ϕ : V → S of varieties is said to be proper if it is
“universally closed”, that is, if for all maps T → S, the base change ϕ′ : V ×S T → T
of ϕ is closed. Note that a variety V is complete if and only if the map V → {point}
is proper. From its very definition, it is clear that the base change of a proper map is
proper. In particular, if ϕ : V → S is proper, then ϕ−1(P ) is a complete variety for
all P ∈ S.

Proposition 6.24. A finite map of varieties is proper.

Proof. The base change of a finite map is finite, and hence closed.

The next result (whose proof requires Zariski’s Main Theorem) gives a purely geo-
metric criterion for a regular map to be finite.

Proposition 6.25. A proper quasi-finite map ϕ : W → V of varieties is finite.

Proof. Factor ϕ into W
ι
↪→ W ′ α→ W with α finite and ι an open immersion.

Factor ι into

W
w �→(w,ιw)→ W ×V W ′ (w,w′) �→w′

→ W ′.

The image of the first map is Γι, which is closed because W ′ is a variety (see 3.25;
W ′ is separated because it is finite over a variety — exercise). Because ϕ is proper,
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the second map is closed. Hence ι is an open immersion with closed image. It follows
that its image is a connected component of W ′, and that W is isomorphic to that
connected component.

If W and V are curves, then any surjective map W → V is closed. Thus it is easy
to give examples of closed surjective quasi-finite nonfinite maps. For example, the
map

a �→ an : A1 	 {0} → A1,
which corresponds to the map on rings

k[T ]→ k[T, T−1], T �→ T n,

is such a map. This doesn’t violate the theorem, because the map is only closed, not
universally closed.
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7. Dimension Theory

Recall that to an irreducible variety V , we attach a field k(V ) — it is the field of
fractions of k[U ] for any open affine subvariety U of V , and also the field of fractions
of OP for any point P in V . We defined the dimension of V to be the transcendence
degree of k(V ) over k. Note that, directly from this definition, dimV = dimU for
any open subvariety U of V . Also, that if W → V is a finite surjective map, then
dimW = dimV (because k(W ) is a finite field extension of k(V )).

When V is not irreducible, we defined the dimension of V to be the maximum
dimension of an irreducible component of V , and we said that V is pure of dimension
d if the dimensions of the irreducible components are all equal to d.

In §1 and §3 we proved the following results:

7.1. (a) The dimension of a linear subvariety of An (that is, a subvariety defined
by linear equations) has the value predicted by linear algebra (see 1.20b, 4.11).
In particular, dim An = n. As a consequence, dim Pn = n.

(b) Let Z be a proper closed subset of An; then Z has pure codimension one in An if
and only if I(Z) is generated by a single nonconstant polynomial. Such a variety
is called an affine hypersurface (see 1.21 and 4.25)21.

(c) If V is irreducible and Z is a proper closed subset of V , then dimZ < dimV
(see 1.22).

Affine varieties. The fundamental additional result that we need is that, when we
impose additional polynomial conditions on an algebraic set, the dimension doesn’t
go down by more than linear algebra would suggest.

Theorem 7.2. Let V be an irreducible affine variety, and let f ∈ k[V ]. If f is not
zero or a unit in k[V ], then V (f) is pure of dimension dim(V )− 1.

Alternatively we can state this as follows: let V be a closed subvariety of An and
let F ∈ k[X1, . . . , Xn]; then

V ∩ V (f) =




V if F is identically zero on V
∅ if F has no zeros on V
hypersurface otherwise.

where by hypersurface we mean a closed subvariety of codimension 1.

We can also state it in terms of the algebras: let A be an affine k-algebra; let
f ∈ A be neither zero nor a unit, and let p be a prime ideal that is minimal among
those containing (f); then

tr degkA/p = tr degkA− 1.

Proof. We begin the proof of Theorem 7.2. Note that we know it already in the
case that V = An (see 7.1b).

We first show that it suffices to prove the theorem in the case that V (f) is irre-
ducible.

Suppose Z0, . . . , Zn are the irreducible components of V (f). We can choose a point
P ∈ Z0 that does not lie on any other Zi (otherwise the decomposition V (f) = ∪Zi

21The cautious reader will check that we didn’t use 4.18 or 4.19 in the proof of 4.25.
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would be redundant). As Z1, . . . , Zn are closed, there is an open neighbourhood U
of P , which we can take to be affine, that does not meet any Zi except Z0. Now
V (f |U) = Z0 ∩ U , which is irreducible.

As V (f) is irreducible, rad(f) is a prime ideal p ⊂ k[V ]. According to the Noether
normalization theorem (6.14), there is a finite surjective map π : V → Ad, which
realizes k(V ) is a finite extension of the field k(Ad). The idea of the proof is to show
that π(V ) is the zero set of a single element f0 ∈ k[Ad], and to use that we already
know the theorem for Ad.

Lemma 7.3. Let A be an integral domain, and let L be a finite extension of the
field of fractions K of A. If α ∈ L is integral over A, then so also is NmL/Kα.
Hence, if A is integrally closed (e.g., if A is a unique factorization domain), then
NmL/Kα ∈ A. In this last case, α divides NmL/K α in the ring A[α].

Proof. Let g(X) be the minimum polynomial of α over K,

g(X) = Xr + ar−1Xr−1 + · · ·+ a0.

Then Nmα = ±a
n
r
0 = a

n
r
0 , where n = [L : K]. In some extension field E of L, g(X)

will split

g(X) =
∏

(X − αi), α1 = α,
∏

αi = ±a0.

Because α is integral over A, g(X) has coefficients in A (see 1.33), and so each αi
is integral over A. Since the elements of E integral over A form a subring of E, it
follows that Nmα is integral over A.

Now suppose A is integrally closed, so that a = Nmα ∈ A. From the equation

0 = α(αr−1 + ar−1αr−2 + · · ·+ a1) + a0

we see that α divides a0 in A[α], and therefore it also divides a = a
n
r
0 .

Proof. (of 7.2 continued) Let f0 = Nmk(V )/k(Ad) f . According to the lemma, f0
lies in k[Ad], and I claim that p ∩ k[Ad] = rad(f0). The lemma shows that f divides
f0 in k[V ], and so f0 ∈ (f) ⊂ p. Hence rad(f0) ⊂ p∩ k[Ad]. For the reverse inclusion,
suppose that g ∈ p ∩ k[Ad]. Then g ∈ rad(f), and so gm = fh for some h ∈ k[V ],
m ∈ N. Taking norms, we find that gme = Nm(fh) = f0 · Nm(h) ∈ (f0), where
e = [k(V ) : k(An)], which proves the claim.

The inclusion k[V ] ↪→ k[Ad] therefore induces an inclusion

k[Ad]/ rad(f0) = k[Ad]/p ∩ k[Ad] ↪→ k[V ]/p,

which makes k[V ]/p into a finite algebra over k[Ad]/ rad(f0). Hence

dimV (p) = dimV (f0).

Clearly f �= 0 ⇒ f0 �= 0, and f0 ∈ p ⇒ f0 is not a nonzero constant. Therefore
dimV (f0) = d − 1 by (7.1b).

Corollary 7.4. Let V be an irreducible variety, and let Z be a maximal proper
closed irreducible subset of V . Then dim(Z) = dim(V )− 1.
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Proof. For any open affine subset U of V meeting Z, dimU = dimV and dimU∩
Z = dimZ. We may therefore assume that V itself is affine. Let f be a nonzero
regular function on V vanishing on Z, and let V (f) be the set of zeros of f (in
V ). Then Z ⊂ V (f) ⊂ V , and Z must be an irreducible component of V (f) for
otherwise it wouldn’t be maximal in V . Thus we can apply the theorem to obtain
that dimZ = dimV − 1.

Corollary 7.5 (Topological Characterization of Dimension). Suppose V is irre-
ducible and that

V  V1  · · ·  Vd �= ∅
is a maximal chain of closed irreducible subsets of V . Then dim(V ) = d. (Maximal
means that the chain can’t be refined.)

Proof. From (7.4) we know that

dimV = dimV1 + 1 = dimV2 + 2 = · · · = dimVd + d = d.

Remark 7.6. (a) Recall that the Krull dimension of a ring A is the sup of the
lengths of chains of prime ideals in A. It may be infinite, even when A is Noetherian
(for an example of this, see Nagata, Local Rings, 1962, Appendix A.1). However a
local Noetherian ring has finite Krull dimension, and so

Krull dimA = sup
m maximal

Krull dimAm.

In Nagata’s nasty example, there is a sequence of maximal ideals m1, m2, m3, ... in
A such that the Krull dimension of Ami tends to infinity.

The corollary shows that, when V is affine, dimV = Krull dim k[V ], but it shows
much more. Note that each Vi in a maximal chain (as above) has dimension d − i,
and that any closed irreducible subset of V of dimension d − i occurs as a Vi in a
maximal chain. These facts translate into statements about ideals in affine k-algebras
that do not hold for all Noetherian rings. For example, if A is an affine k-algebra
that is an integral domain, then Krull dimAm is the same for all maximal ideals of A
— all maximal ideals in A have the same height (we have proved 4.19). Moreover, if
p is an ideal in k[V ] with height i, then there is a maximal (i.e., nonrefinable) chain
of prime ideals

(0) � p1 � p2 � · · · � pd � k[V ]

with pi = p.

(b) Now that we know that the two notions of dimension coincide, we can re-
state (7.2) as follows: let A be an affine k-algebra; let f ∈ A be neither zero nor a
unit, and let p be a prime ideal that is minimal among those containing (f); then

Krull dimA/p =Krull dimA− 1.

This statement does hold for all Noetherian local rings (see Atiyah and MacDonald
1969, 11.18), and is called Krull’s principal ideal theorem.

Corollary 7.7. Let V be an irreducible variety, and let Z be an irreducible com-
ponent of V (f1, . . . fr), where the fi are regular functions on V . Then codim(Z) ≤ r.
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Proof. As in the proof of (7.4), we can assume V to be affine. We use induction
on r. Because Z is a closed irreducible subset of V (f1, . . . fr−1), it is contained in
some irreducible component Z ′ of V (f1, . . . fr−1). By induction, codim(Z ′) ≤ r − 1.
Also Z is an irreducible component of Z ′ ∩ V (fr) because

Z ⊂ Z ′ ∩ V (fr) ⊂ V (f1, . . . , fr)

and Z is a maximal closed irreducible subset of V (f1, . . . , fr). If fr vanishes identically
on Z ′, then Z = Z ′ and codim(Z) = codim(Z ′) ≤ r−1; otherwise, the theorem shows
that Z has codimension 1 in Z ′, and codim(Z) = codim(Z ′) + 1 ≤ r.

Proposition 7.8. Let V and W be closed subvarieties of An; for any (nonempty)
irreducible component Z of V ∩W ,

dim(Z) ≥ dim(V ) + dim(W )− n;

that is,

codim(Z) ≤ codim(V ) + codim(W ).

Proof. In the course of the proof of (3.26), we showed that V ∩W is isomorphic
to ∆ ∩ (V ×W ), and this is defined by the n equations Xi = Yi in V ×W . Thus the
statement follows from (7.7).

Remark 7.9. (a) The example{
X2 + Y 2 = Z2

Z = 0

shows that Proposition 7.8 becomes false if one only looks at real points. Also, that
the pictures we draw can mislead.

(b) The statement of (7.8) is false if An is replaced by an arbitrary affine variety.
Consider for example the affine cone V

X1X4 −X2X3 = 0.

It contains the planes,

Z : X2 = 0 = X4; Z = {(∗, 0, ∗, 0)}
Z ′ : X1 = 0 = X3; Z ′ = {(0, ∗, 0, ∗)}

and Z ∩ Z ′ = {(0, 0, 0, 0)}. Because V is a hypersurface in A4, it has dimension 3,
and each of Z and Z ′ has dimension 2. Thus

codimZ ∩ Z ′ = 3 � 1 + 1 = codimZ + codimZ ′.

The proof of (7.8) fails because the diagonal in V ×V cannot be defined by 3 equations
(it takes the same 4 that define the diagonal in A4)—thus the diagonal is not a set-
theoretic complete intersection.

Remark 7.10. In (7.7), the components of V (f1, . . . , fr) need not all have the
same dimension, and it is possible for all of them to have codimension < r without
any of the fi being redundant.

For example, let V be the same affine cone as in the above remark. Note that
V (X1) ∩ V is a union of the planes:

V (X1) ∩ V = {(0, 0, ∗, ∗)} ∪ {(0, ∗, 0, ∗)}.
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Both of these have codimension 1 in V (as required by (7.2)). Similarly, V (X2) ∩ V
is the union of two planes,

V (X2) ∩ V = {(0, 0, ∗, ∗)} ∪ {(∗, 0, ∗, 0)},
but V (X1, X2) ∩ V consists of a single plane {(0, 0, ∗, ∗)}: it is still of codimension 1
in V , but if we drop one of two equations from its defining set, we get a larger set.

Proposition 7.11. Let Z be a closed irreducible subvariety of codimension r in an
affine variety V . Then there exist regular functions f1, . . . , fr on V such that Z is an
irreducible component of V (f1, . . . , fr) and all irreducible components of V (f1, . . . , fr)
have codimension r.

Proof. We know that there exists a chain of closed irreducible subsets

V ⊃ Z1 ⊃ · · · ⊃ Zr = Z

with codim Zi = i. We shall show that there exist f1, . . . , fr ∈ k[V ] such that, for all
s ≤ r, Zs is an irreducible component of V (f1, . . . , fs) and all irreducible components
of V (f1, . . . , fs) have codimension s.

We prove this by induction on s. For s = 1, take any f1 ∈ I(Z1), f1 �= 0, and apply
Theorem 7.2. Suppose f1, . . . , fs−1 have been chosen, and let Y1 = Zs−1, . . . , Ym, be
the irreducible components of V (f1, . . . , fs−1). We seek an element fs that is identi-
cally zero on Zs but is not identically zero on any Yi—for such an fs, all irreducible
components of Yi ∩V (fs) will have codimension s, and Zs will be an irreducible com-
ponent of Y1 ∩ V (fs). But Yi � Zs for any i (Zs has smaller dimension than Yi), and
so I(Zs) � I(Yi). Now the prime avoidance lemma (see below) tells us that there
is an element fs ∈ I(Zs) such that fs /∈ I(Yi) for any i, and this is the function we
want.

Lemma 7.12 (Prime Avoidance Lemma). If an ideal a of a ring A is not contained
in any of the prime ideals p1, . . . , pr, then it is not contained in their union.

Proof. We may assume that none of the prime ideals is contained in a second,
because then we could omit it. Fix an i0 and, for each i �= i0, choose an fi ∈ pi, fi /∈
pi0, and choose fi0 ∈ a, fi0 /∈ pi0 . Then hi0

df
=
∏

fi lies in each pi with i �= i0 and a,
but not in pi0 (here we use that pi0 is prime). The element

∑
hi is therefore in a but

not in any pi.

Remark 7.13. The proposition shows that for a prime ideal p in an affine k-
algebra, if p has height r, then there exist elements f1, . . . , fr ∈ A such that p is
minimal among the prime ideals containing (f1, . . . , fr). This statement is true for
all Noetherian local rings.

Remark 7.14. The last proposition shows that a curve C in A3 is an irreducible
component of V (f1, f2) for some f1, f2 ∈ k[X, Y, Z]. In fact C = V (f1, f2, f3) for
suitable polynomials f1, f2, and f3 — this is an exercise in Shafarevich 1994 (I.6,
Exercise 8); see also Hartshorne 1977, I, Exercise 2.17. Apparently, it is not known
whether two polynomials always suffice to define a curve in A3 — see Kunz 1985,
p136. The union of two skew lines in P3 can’t be defined by two polynomials (ibid.
p140), but it is unknown whether all connected curves in P3 can be defined by two
polynomials. Macaulay (the man, not the program) showed that for every r ≥ 1,
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there is a curve C in A3 such that I(C) requires at least r generators (see the same
exercise in Hartshorne for a curve whose ideal can’t be generated by 2 elements).

In general, a closed variety V of codimension r in An (resp. Pn) is said to be a set-
theoretic complete intersection if there exist r polynomials fi ∈ k[X1, . . . , Xn] (resp.
homogeneous polynomials fi ∈ k[X0, . . . , Xn]) such that

V = V (f1, . . . , fr).

Such a variety is said to be an ideal-theoretic complete intersection if the fi can be
chosen so that I(V ) = (f1, . . . , fr). Chapter V of Kunz’s book is concerned with
the question of when a variety is a complete intersection. Obviously there are many
ideal-theoretic complete intersections, but most of the varieties one happens to be
interested in turn out not to be. For example, no abelian variety of dimension > 1 is an
ideal-theoretic complete intersection (being an ideal-theoretic complete intersection
imposes constraints on the cohomology of the variety, which are not fulfilled in the
case of abelian varieties).

Let P be a point on an irreducible variety V ⊂ An. Then (7.11) shows that
there is a neighbourhood U of P in An and functions f1, . . . , fr on U such that
U ∩ V = V (f1, . . . , fr) (zero set in U). Thus U ∩ V is a set-theoretic complete
intersection in U . One says that V is a local complete intersection at P ∈ V if there
is an open affine neighbourhood U of P in An such that I(V ∩ U) can be generated
by r regular functions on U . Note that

ideal-theoretic complete intersection⇒ local complete intersection at all p.

It is not difficult to show that a variety is a local complete intersection at every
nonsingular point.

Proposition 7.15. Let Z be a closed subvariety of codimension r in variety V ,
and let P be a point of Z that is nonsingular when regarded both as a point on Z
and as a point on V . Then there is an open affine neighbourhood U of P and regular
functions f1, . . . , fr on U such that Z ∩ U = V (f1, . . . , fr).

Proof. By assumption

dimk TP (Z) = dimZ = dimV − r = dimk TP (V )− r.

There exist functions f1, . . . , fr contained in the ideal of OP corresponding to Z such
that TP (Z) is the subspace of TP (V ) defined by the equations

(df1)P = 0, . . . , (dfr)P = 0.

All the fi will be defined on some open affine neighbourhood U of P (in V ), and clearly

Z is the only component of Z ′ df= V (f1, . . . , fr) (zero set in U) passing through P .
After replacing U by a smaller neighbourhood, we can assume that Z ′ is irreducible.
As f1, . . . , fr ∈ I(Z ′), we must have TP (Z ′) ⊂ TP (Z), and therefore dimZ ′ ≤ dimZ.
But I(Z ′) ⊂ I(Z∩U), and so Z ′ ⊃ Z∩U . These two facts imply that Z ′ = Z∩U .

Proposition 7.16. Let V be an affine variety such that k[V ] is a unique factor-
ization domain. Then every pure closed subvariety Z of V of codimension one is
principal, i.e., I(Z) = (f) for some f ∈ k[V ].

Proof. In (4.25) we proved this in the case that V = An, but the argument only
used that k[An] is a unique factorization domain.
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Example 7.17. The condition that k[V ] is a unique factorization domain is defi-
nitely needed. Again let V be the cone

X1X4 −X2X3 = 0

in A4 and let Z and Z ′ be the planes

Z = {(∗, 0, ∗, 0)} Z ′ = {(0, ∗, 0, ∗)}.
Then Z ∩ Z ′ = {(0, 0, 0, 0)}, which has codimension 2 in Z ′. If Z = V (f) for some
regular function f on V , then V (f |Z ′) = {(0, . . . , 0)}, which is impossible (because
it has codimension 2, which violates 7.2). Thus Z is not principal, and so

k[X1, X2, X3, X4]/(X1X4 −X2X3)

is not a unique factorization domain.

Projective varieties. The results for affine varieties extend to projective varieties
with one important simplification: if V and W are projective varieties of dimensions
r and s in Pn and r + s ≥ n, then V ∩W �= ∅.

Theorem 7.18. Let V = V (a) ⊂ Pn be a projective variety of dimension ≥ 1,
and let f ∈ k[X0, . . . , Xn] be homogeneous, nonconstant, and /∈ a; then V ∩ V (f) is
nonempty and of pure codimension 1.

Proof. Since the dimension of a variety is equal to the dimension of any dense
open affine subset, the only part that doesn’t follow immediately from (7.2) is the
fact that V ∩ V (f) is nonempty. Let V aff(a) be the zero set of a in An+1 (that is,
the affine cone over V ). Then V aff(a)∩V aff(f) is nonempty (it contains (0, . . . , 0)),
and so it has codimension 1 in V aff(a). Clearly V aff(a) has dimension ≥ 2, and so
V aff(a) ∩ V aff(f) has dimension ≥ 1. This implies that the polynomials in a have a
zero in common with f other than the origin, and so V (a) ∩ V (f) �= ∅.

Corollary 7.19. Let f1, · · · , fr be homogeneous nonconstant elements of
k[X0, . . . , Xn]; and let Z be an irreducible component of V ∩ V (f1, . . . fr). Then
codim(Z) ≤ r, and if dim(V ) ≥ r, then V ∩ V (f1, . . . fr) is nonempty.

Proof. Induction on r, as before.

Corollary 7.20. Let α : Pn → Pm be regular; if m < n, then α is constant.

Proof. Let π : An+1 − {origin} → Pn be the map (a0, . . . , an) �→ (a0 : . . . : an).
Then α ◦ π is regular, and there exist polynomials F0, . . . , Fm ∈ k[X0, . . . , Xn] such
that α ◦ π is the map

(a0, . . . , an) �→ (F0(a) : . . . : Fm(a)).

As α ◦ π factors through Pn, the Fi must be homogeneous of the same degree. Note
that

α(a0 : . . . : an) = (F0(a) : . . . : Fm(a)).

If m < n and the Fi are nonconstant, then (7.18) shows they have a common zero
and so α is not defined on all of Pn. Hence the Fi’s must be constant.
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Proposition 7.21. Let Z be a closed irreducible subvariety of V ; if codim(Z) = r,
then there exist homogeneous polynomials f1, . . . , fr in k[X0, . . . , Xn] such that Z is
an irreducible component of V ∩ V (f1, . . . , fr).

Proof. Use the same argument as in the proof (7.11).

Proposition 7.22. Every pure closed subvariety Z of Pn of codimension one is
principal, i.e., I(Z) = (f) for some f homogeneous element of k[X0, . . . , Xn].

Proof. Follows from the affine case.

Corollary 7.23. Let V and W be closed subvarieties of Pn; if dim(V ) +
dim(W ) ≥ n, then V ∩ W �= ∅, and every irreducible component of it has
codim(Z) ≤codim(V )+codim(W ).

Proof. Write V = V (a) and W = V (b), and consider the affine cones V ′ = V (a)
and W ′ = W (b) over them. Then

dim(V ′) + dim(W ′) = dim(V ) + 1 + dim(W ) + 1 ≥ n + 2.

As V ′ ∩W ′ �= ∅, V ′ ∩W ′ has dimension ≥ 1, and so it contains a point other than
the origin. Therefore V ∩W �= ∅. The rest of the statement follows from the affine
case.

Proposition 7.24. Let V be a closed subvariety of Pn of dimension r < n; then
there is a linear projective variety E of dimension n− r − 1 (that is, E is defined by
r + 1 independent linear forms) such that E ∩ V = ∅.

Proof. Induction on r. If r = 0, then V is a finite set, and the next lemma shows
that there is a hyperplane in kn+1 not meeting V .

Lemma 7.25. Let W be a vector space of dimension d over an infinite field k, and
let E1, . . . , Er be a finite set of nonzero subspaces of W . Then there is a hyperplane
H in W containing none of the Ei.

Proof. Pass to the dual space V of W . The problem becomes that of showing
V is not a finite union of proper subspaces E∨i . Replace each E∨i by a hyperplane
Hi containing it. Then Hi is defined by a nonzero linear form Li. We have to show
that

∏
Lj is not identically zero on V . But this follows from the statement that a

polynomial in n variables, with coefficients not all zero, can not be identically zero
on kn. (See the first homework exercise.)

Suppose r > 0, and let V1, . . . , Vs be the irreducible components of V . By assump-
tion, they all have dimension ≤ r. The intersection Ei of all the linear projective
varieties containing Vi is the smallest such variety. The lemma shows that there is a
hyperplane H containing none of the nonzero Ei; consequently, H contains none of
the irreducible components Vi of V , and so each Vi ∩H is a pure variety of dimension
≤ r − 1 (or is empty). By induction, there is an linear subvariety E ′ not meeting
V ∩H. Take E = E ′ ∩H.

Let V and E be as in the theorem. If E is defined by the linear forms L0, . . . , Lr
then the projection a �→ (L0(a) : · · · : Lr(a)) defines a map V → Pr. We shall see
later that this map is finite, and so it can be regarded as a projective version of the
Noether normalization theorem.
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8. Regular Maps and Their Fibres.

Throughout this section, k is an algebraically closed field. Consider again the
regular map ϕ : A2 → A2, (x, y) �→ (x, xy). We have seen that its image

C = (A2 	 {y-axis}) ∪ {(0, 0)}
is neither open nor closed, and, in fact, is not even locally closed. The fibre

ϕ−1(x, y) = (A2 	 {y-axis}) ∪ {(0, 0)}.
From this unpromising example, it would appear that it is not possible to say anything
about the image of a regular map, nor about the dimension or number of elements in
its fibres. However, it turns out that (almost) everything that can go wrong already
goes wrong for this map. We shall show:

(a) the image of a regular map is a finite union of locally closed sets;
(b) the dimensions of the fibres can jump only on closed subsets;
(c) the number of elements (if finite) in the fibres can drop only on closed subsets,

provided the map is finite, the target variety is normal, and k has characteristic
zero.

Constructible sets. Let W be a topological space. A subset C of W is said to
constructible if it is a finite union of sets of the form U ∩ Z with U open and Z
closed. Obviously, if C is constructible and V ⊂ W , then C ∩ V is constructible. A
constructible set in An is definable by a finite number of polynomials; more precisely,
it is defined by a finite number of statements of the form

f(X1, · · · , Xn) = 0, g(X1, · · · , Xn) �= 0

combined using only “and” and “or” (or, better, statements of the form f = 0 com-
bined using “and”, “or”, and “not”). The next proposition shows that a constructible
set C that is dense in an irreducible variety V must contain a nonempty open subset
of V . Contrast Q, which is dense in R (real topology), but does not contain an open
subset of R, or any infinite subset of A1 that omits an infinite set.

Proposition 8.1. Let C be a constructible set whose closure C̄ is irreducible.
Then C contains a nonempty open subset of C̄.

Proof. We are given that C = ∪(Ui ∩ Zi) with each Ui open and each Zi closed.
We may assume that each set Ui ∩ Zi in this decomposition is nonempty. Clearly
C̄ ⊂ ∪Zi, and as C̄ is irreducible, it must be contained in one of the Zi. For this i

C ⊃ Ui ∩ Zi ⊃ Ui ∩ C̄ ⊃ Ui ∩ C ⊃ Ui ∩ (Ui ∩ Zi) = Ui ∩ Zi.

Thus Ui ∩ Zi = Ui ∩ C̄ is a nonempty open subset of C̄ contained in C .

Theorem 8.2. A regular map ϕ : W → V sends constructible sets to constructible
sets. In particular, if U is a nonempty open subset of W , then ϕ(U) contains a
nonempty open subset of its closure in V .

The key result we shall need from commutative algebra is the following. (In the next
two results, A and B are arbitrary commutative rings—they need not be k-algebras.)
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Proposition 8.3. Let A ⊂ B be integral domains with B finitely generated as an
algebra over A, and let b be a nonzero element of B. Then there exists an element
a �= 0 in A with the following property: every homomorphism α : A→ Ω from A into
an algebraically closed field Ω such that α(a) �= 0 can be extended to a homomorphism
β : B → Ω such that β(b) �= 0.

Consider, for example, the rings k[X] ⊂ k[X,X−1]. A homomorphism α : k[X] → k
extends to a homomorphism k[X,X−1] → k if and only if α(X) �= 0. Therefore, for
b = 1, we can take a = X. In the application we make of Proposition 8.3, we only
really need the case b = 1, but the more general statement is needed so that we can
prove it by induction.

Lemma 8.4. Let B ⊃ A be integral domains, and assume B = A[t] ≈ A[T ]/a.
Let c ⊂ A be the set of leading coefficients of the polynomials in a. Then every
homomorphism α : A→ Ω from A into an algebraically closed field Ω such that α(c) �=
0 can be extended to a homomorphism of B into Ω.

Proof. Note that c is an ideal in A. If a = 0, then c = 0, and there is nothing to
prove (in fact, every α extends). Thus we may assume a �= 0. Let f = amT

m+· · ·+a0
be a nonzero polynomial of minimum degree in a such that α(am) �= 0. Because B �= 0,
we have that m ≥ 1.

Extend α to a homomorphism α̃ : A[T ] → Ω[T ] by sending T to T . The Ω-
submodule of Ω[T ] generated by α̃(a) is an ideal (because T ·∑ ciα̃(gi) =

∑
ciα̃(giT )).

Therefore, unless α̃(a) contains a nonzero constant, it generates a proper ideal in Ω[T ],
which will have a zero c in Ω. The homomorphism

A[T ]
α̃→ Ω[T ] → Ω, T �→ T �→ c

then factors through A[T ]/a = B and extends α.

In the contrary case, a contains a polynomial

g(T ) = bnT
n + · · ·+ b0, α(bi) = 0 (i > 0), α(b0) �= 0.

On dividing f(T ) into g(T ) we find that

admg(T ) = q(T )f(T ) + r(T ), d ∈ N, q, r ∈ A[T ], deg r < m.

On applying α̃ to this equation, we obtain

α(am)dα(b0) = α̃(q)α̃(f) + α̃(r).

Because α̃(f) has degree m > 0, we must have α̃(q) = 0, and so α̃(r) is a nonzero
constant. After replacing g(T ) with r(T ), we may assume n < m. If m = 1, such a
g(T ) can’t exist, and so we may suppose m > 1 and (by induction) that the lemma
holds for smaller values of m.

For h(T ) = crT
r+cr−1T r−1+· · ·+c0, let h′(T ) = cr+· · ·+c0T

r. Then the A-module
generated by the polynomials T sh′(T ), s ≥ 0, h ∈ a, is an ideal a′ in A[T ]. Moreover,
a′ contains a nonzero constant if and only if a contains a nonzero polynomial cT r,
which implies t = 0 and A = B (since B is an integral domain).

If a′ does not contain nonzero constants, then set B ′ = A[T ]/a′ = A[t′]. Then a′

contains the polynomial g′ = bn + · · ·+ b0T
n, and α(b0) �= 0. Because deg g′ < m, the
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induction hypothesis implies that α extends to a homomorphism B ′ → Ω. Therefore,
there is a c ∈ Ω such that, for all h(T ) = crT

r + cr−1T r−1 + · · ·+ c0 ∈ a,

h′(c) = α(cr) + α(cr−1)c + · · ·+ c0c
r = 0.

On taking h = g, we see that c = 0, and on taking h = f , we obtain the contradiction
α(am) = 0.

Proof. (of 8.3) Suppose that we know the proposition in the case that B is gener-
ated by a single element, and write B = A[x1, . . . , xn]. Then there exists an element
bn−1 such that any homomorphism α : A[x1, . . . , xn−1] → Ω such that α(bn−1) �= 0 ex-
tends to a homomorphism β : B → Ω such that β(b) �= 0. Continuing in this fashion,
we obtain an element a ∈ A with the required property.

Thus we may assume B = A[x]. Let a be the kernel of the homomorphism X �→ x,
A[X] → A[x].

Case (i). The ideal a = (0). Write

b = f(x) = a0x
n + a1x

n−1 + · · ·+ an, ai ∈ A,

and take a = a0. If α : A→ Ω is such that α(a0) �= 0, then there exists a c ∈ Ω such
that f(c) �= 0, and we can take β to be the homomorphism

∑
dix

i �→∑
α(di)c

i.

Case (ii). The ideal a �= (0). Let f(T ) = amT
m + · · · , am �= 0, be an element of a

of minimum degree. Let h(T ) ∈ A[T ] represent b. Since b �= 0, h /∈ a. Because f is
irreducible over the field of fractions of A, it and h are coprime over that field. Hence
there exist u, v ∈ A[T ] and c ∈ A− {0} such that

uh + vf = c.

It follows now that cam satisfies our requirements, for if α(cam) �= 0, then α can be
extended to β : B → Ω by the previous lemma, and β(u(x) · b) = β(c) �= 0, and so
β(b) �= 0.

Aside 8.5. In case (ii) of the above proof, both b and b−1 are algebraic over A,
and so there exist equations

a0b
m + · · · + am = 0, ai ∈ A, a0 �= 0;

a′0b
−n + · · ·+ a′n = 0, a′i ∈ A, a′0 �= 0.

One can show that a = a0a
′
0 has the property required by the Proposition—see Atiyah

and MacDonald, 5.23.

Proof. (of 8.2) We first prove the “in particular” statement of the Theorem.
By considering suitable open affine coverings of W and V , one sees that it suffices to
prove this in the case that both W and V are affine. If W1, . . . ,Wr are the irreducible
components of W , then the closure of ϕ(W ) in V , ϕ(W )− = ϕ(W1)

− ∪ . . .∪ ϕ(Wr)
−,

and so it suffices to prove the statement in the case that W is irreducible. We may
also replace V with ϕ(W )−, and so assume that both W and V are irreducible. Then
ϕ corresponds to an injective homomorphism A → B of affine k-algebras. For some
b �= 0, D(b) ⊂ U . Choose a as in the lemma. Then for any point P ∈ D(a), the
homomorphism f �→ f(P ) : A→ k extends to a homomorphism β : B → k such that
β(b) �= 0. The kernel of β is a maximal ideal corresponding to a point Q ∈ D(b) lying
over P .
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We now prove the theorem. Let Wi be the irreducible components of W . Then
C ∩Wi is constructible in Wi, and ϕ(W ) is the union of the ϕ(C ∩Wi); it is therefore
constructible if the ϕ(C ∩ Wi) are. Hence we may assume that W is irreducible.
Moreover, C is a finite union of its irreducible components, and these are closed in C ;
they are therefore constructible. We may therefore assume that C also is irreducible;
C̄ is then an irreducible closed subvariety of W .

We shall prove the theorem by induction on the dimension of W . If dim(W ) = 0,
then the statement is obvious because W is a point. If C̄ �= W , then dim(C̄) <
dim(W ), and because C is constructible in C̄, we see that ϕ(C) is constructible (by
induction). We may therefore assume that C̄ = W . But then C̄ contains a nonempty
open subset of W , and so the case just proved shows that ϕ(C) contains an nonempty
open subset U of its closure. Replace V be the closure of ϕ(C), and write

ϕ(C) = U ∪ ϕ(C ∩ ϕ−1(V − U)).

Then ϕ−1(V −U) is a proper closed subset of W (the complement of V − U is dense
in V and ϕ is dominating). As C∩ϕ−1(V −U) is constructible in ϕ−1(V −U), the set
ϕ(C∩ϕ−1(V −U)) is constructible in V by induction, which completes the proof.

The fibres of morphisms. We wish to examine the fibres of a regular map ϕ : W →
V . Clearly, we can replace V by the closure of ϕ(W ) in V and so assume ϕ to be
dominating.

Theorem 8.6. Let ϕ : W → V be a dominating regular map of irreducible vari-
eties. Then

(a) dim(W ) ≥ dim(V );
(b) if P ∈ ϕ(W ), then

dim(ϕ−1(P )) ≥ dim(W )− dim(V )

for every P ∈ V , with equality holding exactly on a nonempty open subset U of
V .

(c) The sets

Vi = {P ∈ V | dim(ϕ−1(P )) ≥ i}
are closed ϕ(W ).

Example 8.7. Consider the subvariety W ⊂ V ×Am defined by r linear equations

m∑
j=1

aijXj = 0, aij ∈ k[V ], i = 1, . . . , r,

and let ϕ be the projection W → V . For P ∈ V , ϕ−1(P ) is the set of solutions of

m∑
j=1

aij(P )Xj = 0, aij(P ) ∈ k, i = 1, . . . , r,

and so its dimension is m− rank(aij(P )). Since the rank of the matrix (aij(P )) drops
on closed subsets, the dimension of the fibre jumps on closed subsets.
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Proof. (a) Because the map is dominating, there is a homomorphism k(V ) ↪→
k(W ), and obviously tr degkk(V ) ≤ tr degkk(W ) (an algebraically independent sub-
set of k(V ) remains algebraically independent in k(W )).

(b) In proving the first part of (b), we may replace V by any open neighbourhood
of P . In particular, we can assume V to be affine. Let m be the dimension of
V . From (7.11) we know that there exist regular functions f1, . . . , fm such that
P is an irreducible component of V (f1, . . . , fm). After replacing V by a smaller
neighbourhood of P , we can suppose that P = V (f1, . . . , fm). Then ϕ−1(P ) is
the zero set of the regular functions f1 ◦ ϕ, . . . , fm ◦ ϕ, and so (if nonempty) has
codimension ≤ m in W (see 7.7). Hence

dimϕ−1(P ) ≥ dimW −m = dim(W )− dim(V ).

In proving the second part of (b), we can replace both W and V with open affine
subsets. Since ϕ is dominating, k[V ] → k[W ] is injective, and we may regard it as an
inclusion (we identify a function x on V with x◦ϕ on W ). Then k(V ) ⊂ k(W ). Write
k[V ] = k[x1, . . . , xM ] and k[W ] = k[y1, . . . , yN ], and suppose V and W have dimen-
sions m and n respectively. Then k(W ) has transcendence degree n−m over k(V ), and
we may suppose that y1, . . . , yn−m are algebraically independent over k[x1, . . . , xm],
and that the remaining yi are algebraic over k[x1, . . . , xm, y1, . . . , yn−m]. There are
therefore relations

Fi(x1, . . . , xm, y1, . . . , yn−m, yi) = 0, i = n−m + 1, . . . , N. (*)

with Fi(X1, . . . , Xm, Y1, . . . , Yn−m, Yi) a nonzero polynomial. We write ȳi for the
restriction of yi to ϕ−1(P ). Then

k[ϕ−1(P )] = k[ȳ1, . . . , ȳN ].

The equations (*) give an algebraic relation among the functions x1, . . . , yi on W .
When we restrict them to ϕ−1(P ), they become equations:

Fi(x1(P ), . . . , xm(P ), ȳ1, . . . , ȳn−m, ȳi) = 0, i = n−m + 1, . . . , N. (**).

If these are nontrivial algebraic relations, i.e., if none of the polynomials

Fi(x1(P ), . . . , xm(P ), Y1, . . . , Yn−m, Yi)

is identically zero, then the transcendence degree of k(ȳ1, . . . , ȳN) over k will be
≤ n−m.

Thus, regard Fi(x1, . . . , xm, Y1, . . . , Yn−m, Yi) as a polynomial in the Y ’s with co-
efficients polynomials in the x’s. Let Vi be the closed subvariety of V defined by the
simultaneous vanishing of the coefficients of this polynomial—it is a proper closed
subset of V . Let U = V − ∪Vi—it is a nonempty open subset of V . If P ∈ U , then
none of the polynomials Fi(x1(P ), . . . , xm(P ), Y1, . . . , Yn−m, Yi) is identically zero,
and so for P ∈ U , the dimension of ϕ−1(P ) is ≤ n−m, and hence = n −m by (a).

Finally, if for a particular point P , dimϕ−1(P ) = n−m, then one can modify the
above argument to show that the same is true for all points in an open neighbourhood
of P .
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(c) We prove this by induction on the dimension of V —it is obviously true if
dimV = 0. We know from (b) that there is an open subset U of V such that

dimϕ−1(P ) = n−m ⇐⇒ P ∈ U.

Let Z be the complement of U in V ; thus Z = Vn−m+1 . Let Z1, . . . , Zr be the
irreducible components of Z. On applying the induction to the restriction of ϕ to the
map ϕ−1(Zj) → Zj for each j, we obtain the result.

Proposition 8.8. Let ϕ : W → V be a regular surjective closed mapping of vari-
eties (e.g., W complete or ϕ finite). If V is irreducible and all the fibres ϕ−1(P ) are
irreducible of dimension n, then W is irreducible of dimension dim(V ) + n.

Proof. Let Z be a closed irreducible subset of W , and consider the map ϕ|Z : Z →
V ; it has fibres (ϕ|Z)−1(P ) = ϕ−1(P ) ∩ Z. There are three possibilities.

(a) ϕ(Z) �= V . Then ϕ(Z) is a proper closed subset of V .
(b) ϕ(Z) = V , dim(Z) < n + dim(V ). Then (b) of (8.6) shows that there is a

nonempty open subset U of V such that for P ∈ U ,

dim(ϕ−1(P ) ∩ Z) = dim(Z)− dim(V ) < n;

thus for P ∈ U , ϕ−1(P ) � Z.
(c) ϕ(Z) = V , dim(Z) ≥ n + dim(V ). Then (b) of (8.6) shows that

dim(ϕ−1(P ) ∩ Z) ≥ dim(Z)− dim(V ) ≥ n

for all P ; thus ϕ−1(P ) ⊂ Z for all P ∈ V , and so Z = W ; moreover dimZ = n.

Now let Z1, . . . , Zr be the irreducible components of W . I claim that (iii) holds for
at least one of the Zi. Otherwise, there will be an open subset U of V such that for P
in U , ϕ−1(P ) � Zi for any i, but ϕ−1(P ) is irreducible and ϕ−1(P ) = ∪(ϕ−1(P )∪Zi),
and so this is impossible.

The fibres of finite maps. Let ϕ : W → V be a finite dominating morphism of
irreducible varieties. Then dim(W ) = dim(V ), and so k(W ) is a finite field extension
of k(V ). Its degree is called the degree of the map ϕ.

Lemma 8.9. An integral domain A is integrally closed if and only if Am is integrally
closed for all maximal ideals m of A.

Proof. ⇒: If A is integrally closed, then so is S−1A for any multiplicative subset
S (not containing 0), because if

bn + c1b
n−1 + · · · + cn = 0, ci ∈ S−1A,

then there is an s ∈ S such that sci ∈ A for all i, and then

(sb)n + (sc1)(sb)
n−1 + · · ·+ sncn = 0,

demonstrates that sb ∈ A, whence b ∈ S−1A.

⇐: If c is integral over A, it is integral over each Am, hence in each Am, and
A = ∩Am (if c ∈ ∩Am, then the set of a ∈ A such that ac ∈ A is an ideal in A, not
contained in any maximal ideal, and therefore equal to A itself).

Thus the following conditions on an irreducible variety V are equivalent:

(a) for all P ∈ V , OP is integrally closed;
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(b) for all irreducible open affines U of V , k[U ] is integrally closed;
(c) there is a covering V = ∪Vi of V by open affines such that k[Vi] is integrally

closed for all i.

An irreducible variety V satisfying these conditions is said to be normal. We also
call a disjoint union of such varieties normal. Thus a variety V is normal if and only
if OP is an integrally closed integral domain for all P ∈ V .

Theorem 8.10. Let ϕ : W → V be a finite surjective regular map of irreducible
varieties, and assume that V is normal.

(a) For all P ∈ V , #ϕ−1(P ) ≤ deg(ϕ).
(b) The set of points P of V such that #ϕ−1(P ) = deg(ϕ) is an open subset of V ,

and it is nonempty if k(W ) is separable over k(V ).

Before proving the theorem, we give examples to show that we need W to be
separated and V to be normal in (a), and that we need k(W ) to be separable over
k(V ) for the second part of (b).

Example 8.11. (a) Consider the map

{A1 with origin doubled } → A1.

The degree is one and that map is one-to-one except at the origin where it is two-to-
one.

(b) Let C be the curve Y 2 = X3 + X2, and let ϕ : A1 → C be the map t �→
(t2 − 1, t(t2 − 1)). The map corresponds to the inclusion k[x, y] ↪→ k[T ] and is of
degree one. The map is one-to-one except that the points t = ±1 both map to 0.
The ring k[x, y] is not integrally closed; in fact k[T ] is its integral closure in its field
of fractions.

(c) Consider the Frobenius map ϕ : An → An, (a1, . . . , an) �→ (ap1, . . . , a
p
n), where

p = chark. This map has degree pn but it is one-to-one. The field extension corre-
sponding to the map is

k(X1, . . . , Xn) ⊃ k(Xp1 , . . . , X
p
n)

which is purely inseparable.

Lemma 8.12. Let Q1, . . . , Qr be distinct points on an affine variety V . Then there
is a regular function f on V taking distinct values at the Qi.

Proof. We can embed V as closed subvariety of An, and then it suffices to prove
the statement with V = An — almost any linear form will do.

Proof. (of Theorem 8.10). In proving (a) of the theorem, we may assume that
V and W are affine, and so the map corresponds to a finite map of k-algebras,
k[V ] → k[W ]. Let ϕ−1(P ) = {Q1, . . . , Qr}. According to the lemma, there exists an
f ∈ k[W ] taking distinct values at the Qi. Let

F (T ) = Tm + a1T
m−1 + · · ·+ am

be the minimum polynomial of f over k(V ). It has degree m ≤ [k(W ) : k(V )] = deg ϕ,
and it has coefficients in k[V ] because V is normal (see 1.33). Now F (f) = 0 implies
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F (f(Qi)) = 0, i.e.,

f(Qi)
m + a1(P ) · f(Qi)

m−1 + · · ·+ am(P ) = 0.

Therefore the f(Qi) are all roots of a single polynomial of degree m, and so r ≤ m ≤
deg(ϕ).

In order to prove the first part of (b), we show that, if there is a point P ∈ V
such that ϕ−1(P ) has deg(ϕ) elements, then the same is true for all points in an open
neighbourhood of P . Choose f as in the last paragraph corresponding to such a P .
Then the polynomial

Tm + a1(P ) · Tm−1 + · · · + am(P ) = 0 (*)

has r = degϕ distinct roots, and so m = r. Consider the discriminant discF of F .
Because (*) has distinct roots, disc(F )(P ) �= 0, and so disc(F ) is nonzero on an open
neighbourhood U of P . The factorization

k[V ] → k[V ][T ]/(F )
T �→f→ k[W ]

gives a factorization

W → Specm(k[V ][T ]/(F ))→ V.

Each point P ′ ∈ U has exactly m inverse images under the second map, and the
first map is finite and dominating, and therefore surjective (recall that a finite map
is closed). This proves that ϕ−1(P ′) has at least deg(ϕ) points for P ′ ∈ U , and part
(a) of the theorem then implies that it has exactly deg(ϕ) points.

We now show that if the field extension is separable, then there exists a point such
that #ϕ−1(P ) has degϕ elements. Because k(W ) is separable over k(V ), there exists
a f ∈ k[W ] such that k(V )[f ] = k(W ). Its minimum polynomial F has degree deg(ϕ)
and its discriminant is a nonzero element of k[V ]. The diagram

W → Specm(A[T ]/(F ))→ V

shows that #ϕ−1(P ) ≥ deg(ϕ) for P a point such that disc(f)(P ) �= 0.

When k(W ) is separable over k(V ), then ϕ is said to be separable.

Remark 8.13. Let ϕ : W → V be as in the theorem, and let Vi = {P ∈ V |
#ϕ−1(P ) ≤ i}. Let d = deg ϕ. Part (b) of the theorem states that Vd−1 is closed, and
is a proper subset when ϕ is separable. I don’t know under what hypotheses all the
sets Vi will closed (and Vi will be a proper subset of Vi−1). The obvious induction
argument fails because Vi−1may not be normal.

Lines on surfaces. As an application of some of the above results, we consider the
problem of describing the set of lines on a surface of degree m in P3. To avoid possible
problems, we assume for the rest of this chapter that k has characteristic zero.

We first need a way of describing lines in P3. Recall that we can associate with
each projective variety V ⊂ Pn an affine cone over Ṽ in kn+1. This allows us to think
of points in P3 as being one-dimensional subspaces in k4, and lines in P3 as being
two-dimensional subspaces in k4. To such a subspace W ⊂ k4, we can attach a one-
dimensional subspace

∧2
W in

∧2
k4 ≈ k6, that is, to each line L in P3, we can attach

point p(L) in P5. Not every point in P5 should be of the form p(L)—heuristically,
the lines in P3 should form a four-dimensional set. (Fix two planes in P3; giving a



Algebraic Geometry: 8. Regular Maps and Their Fibres 125

line in P3 corresponds to choosing a point on each of the planes.) We shall show that
there is natural one-to-one correspondence between the set of lines in P3 and the set
of points on a certain hyperspace Π ⊂ P5. Rather than using exterior algebras, I shall
usually give the old-fashioned proofs.

Let L be a line in P3 and let x = (x0 : x1 : x2 : x3) and y = (y0 : y1 : y2 : y3) be
distinct points on L. Then

p(L) = (p01 : p02 : p03 : p12 : p13 : p23) ∈ P5, pij
df
=

∣∣∣∣ xi xj
yi yj

∣∣∣∣ ,
depends only on L. The pij are called the Plücker coordinates of L, after Plücker
(1801-1868).

In terms of exterior algebras, write e0, e1, e2, e3 for the canonical basis for k4,
so that x, regarded as a point of k4 is

∑
xiei, and y =

∑
yiei; then

∧2 k4 is a 6-
dimensional vector space with basis ei∧ej, 0 ≤ i < j ≤ 3, and x∧y =

∑
pijei∧ej with

pij given by the above formula.

We define pij for all i, j, 0 ≤ i, j ≤ 3 by the same formula — thus pij = −pji.

Lemma 8.14. The line L can be recovered from p(L) as follows:

L = {(
∑
j

ajp0j :
∑
j

ajp1j :
∑
j

ajp2j :
∑
j

ajp3j) | (a0 : a1 : a2 : a3) ∈ P3}.

Proof. Let L̃ be the cone over L in k4—it is a two-dimensional subspace of k4—
and let x = (x0, x1, x2, x3) and y = (y0, y1, y2, y3) be two linearly independent vectors
in L̃. Then

L̃ = {f(y)x− f(x)y | f : k4 → k linear}.
Write f =

∑
ajXj ; then

f(y)x− f(x)y = (
∑

ajp0j,
∑

ajp1j ,
∑

ajp2j,
∑

ajp3j).

Lemma 8.15. The point p(L) lies on the quadric Π ⊂ P5 defined by the equation

X01X23 −X02X13 + X03X12 = 0.

Proof. This can be verified by direct calculation, or by using that

0 =

∣∣∣∣∣∣∣∣
x0 x1 x2 x3
y0 y1 y2 y3
x0 x1 x2 x3
y0 y1 y2 y3

∣∣∣∣∣∣∣∣ = 2(p01p23 − p02p13 + p03p12)

(expansion in terms of 2× 2 minors).

Lemma 8.16. Every point of Π is of the form p(L) for a unique line L.

Proof. Assume p03 �= 0; then the line through the points (0 : p01 : p02 : p03) and
(p03 : p13 : p23 : 0) has Plücker coordinates

(−p01p03 : −p02p03 : −p203 : p01p23 − p02p13︸ ︷︷ ︸
−p03p12

: −p03p13 : −p03p23)

= (p01 : p02 : p03 : p12 : p13 : p23).
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A similar construction works when one of the other coordinates is nonzero, and this
way we get inverse maps.

Thus we have a canonical one-to-one correspondence

{lines in P3} ↔ {points on Π};
that is, we have identified the set of lines in P3 with the points of an algebraic variety.
We may now use the methods of algebraic geometry to study the set. [This is a
special case of the Grassmanians mentioned on p108.]

We next consider the set of homogeneous polynomials of degree m in 4 variables,

F (X0, X1, X2, X3) =
∑

i0+i1+i2+i3=m

ai0i1i2i3X
i0
0 . . . Xi33 .

We don’t distinguish two polynomials if one is a nonzero multiple of the other.

Lemma 8.17. The set of homogeneous polynomials of degree m in 4 variables is a
vector space of dimension ( 3+mm )

Proof. See a previous footnote page 89.

Let ν = ( 3+mm ) = (m+1)(m+2)(m+3)
6

− 1; then we have a surjective map

Pν → {surfaces of degree m in P3},

(. . . : ai0i1i2i3 : . . . ) �→ V (F ), F =
∑

ai0i1i2i3X
i0
0 X

i1
1 X

i2
2 X

i3
3 .

The map is not quite injective—for example, X2Y and XY 2 define the same surface—
but nevertheless, we can (somewhat loosely) think of the points of Pν as being (pos-
sible degenerate) surfaces of degree m in P3.

Let Γm ⊂ Π× Pν ⊂ P5 × Pν be the set of pairs (L, F ) consisting of a line L in P3
lying on the surface F (X0, X1, X2, X3) = 0.

Theorem 8.18. The set Γm is a closed irreducible subset of Π×Pν; it is therefore

a projective variety. The dimension of Γm is m(m+1)(m+5)
6

+ 3.

Example 8.19. For m = 1, Γm is the set of pairs consisting of a plane in P3 and
a line on the plane. The theorem says that the dimension of Γ1 is 5. Since there are
∞3 planes in P3, and each has ∞2 lines on it, this seems to be correct.

Proof. We first show that Γm is closed. Let

p(L) = (p01 : p02 : . . . ) F =
∑

ai0i1i2i3X
i0
0 · · ·Xi33 .

From (8.14) we see that L lies on the surface F (X0, X1, X2, X3) = 0 if and only if

F (
∑

bjp0j :
∑

bjp1j :
∑

bjp2j :
∑

bjp3j) = 0, all (b0, . . . , b3) ∈ k4.

Expand this out as a polynomial in the bj’s with coefficients polynomials in the ai0i1i2i3
and pij ’s. Then F (...) = 0 for all b ∈ k4 if and only if the coefficients of the polynomial
are all zero. But each coefficient is of the form

P (. . . , ai0i1i2i3, . . . ; p01, p02 : . . . )

with P homogeneous separately in the a’s and p’s, and so the set is closed in Π× Pν
(cf. the discussion in 5.32).
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It remains to compute the dimension of Γm. We shall apply Proposition 8.8 to the
projection map

(L, F ) Γm ⊂ Π× Pν
↓ ↓ ϕ
L Π

For L ∈ Π, ϕ−1(L) consists of the homomogeneous polynomials of degree m such
that L ⊂ V (F ) (taken up to nonzero scalars). After a change of coordinates, we can
assume that L is the line {

X0 = 0
X1 = 0,

i.e., L = {(0, 0, ∗, ∗)}. Then L lies on F (X0, X1, X2, X3) = 0 if and only if X0 or X1
occurs in each nonzero monomial term in F , i.e.,

F ∈ ϕ−1(L) ⇐⇒ ai0i1i2i3 = 0 whenever i0 = 0 = i1.

Thus ϕ−1(L) is a linear subspace of Pν ; in particular, it is irreducible. We now
compute its dimension. Recall that F has ν + 1 coefficients altogether; the number
with i0 = 0 = i1 is m + 1, and so ϕ−1(L) has dimension

(m + 1)(m + 2)(m + 3)

6
− 1− (m + 1) =

m(m + 1)(m + 5)

6
− 1.

We can now deduce from (8.8) that Γm is irreducible and that

dim(Γm) = dim(Π) + dim(ϕ−1(L)) =
m(m + 1)(m + 5)

6
+ 3,

as claimed.

Now consider the other projection

(L, F ) Γm ⊂ Π× Pν
↓ ↓ ψ
F Pν

By definition

ψ−1(F ) = {L | L lies on V (F )}.
Example 8.20. Let m = 1. Then ν = 3 and dim Γ1 = 5. The projection

ψ : Γ1 → P3 is surjective (every plane contains at least one line), and (8.6) tells us
that dimψ−1(F ) ≥ 2. In fact of course, the lines on any plane form a 2-dimensional
family, and so ψ−1(F ) = 2 for all F .

Theorem 8.21. When m > 3, the surfaces of degree m containing no line corre-
spond to an open subset of Pν .

Proof. We have

dim Γm − dim Pν =
m(m + 1)(m + 5)

6
+ 3− (m + 1)(m + 2)(m + 3)

6
+ 1 = 4− (m + 1).

Therefore, if m > 3, then dim Γm < dim Pν , and so ψ(Γm) is a proper closed subvariety
of Pν . This proves the claim.
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We now look at the case m = 2. Here dim Γm = 10, and ν = 9, which suggests
that ψ should be surjective and that its fibres should all have dimension ≥ 1. We
shall see that this is correct.

A quadric is said to be nondegenerate if it is defined by an irreducible polynomial
of degree 2. After a change of variables, any nondegenerate quadric will be defined
by an equation

XW = Y Z.

This is just the image of the Segre mapping (see 5.21)

(a0 : a1), (b0 : b1) �→ (a0b0 : a0b1 : a1b0 : a1b1) : P1 × P1 → P3.

There are two obvious families of lines on P1× P1, namely, the horizontal family and
the vertical family; each is parametrized by P1, and so is called a pencil of lines. They
map to two families of lines on the quadric:{

t0X = t1X
t0Y = t1W

and

{
t0X = t1Y
t0Z = t1W.

Since a degenerate quadric is a surface or a union of two surfaces, we see that every
quadric surface contains a line, that is, that ψ : Γ2 → P9 is surjective. Thus (8.6) tells
us that all the fibres have dimension ≥ 1, and the set where the dimension is > 1 is
a proper closed subset. In fact the dimension of the fibre is > 1 exactly on the set of
reducible F ’s, which we know to be closed (see the solution to Homework 9, Problem
1).

It follows from the above discussion that if F is nondegenerate, then ψ−1(F ) is
isomorphic to the disjoint union of two lines, ψ−1(F ) ≈ P1∪P1. Classically, one defines
a regulus to be a nondegenerate quadric surface together with a choice of a pencil of
lines. One can show that the set of reguli is, in a natural way, an algebraic variety
R, and that, over the set of nondegenerate quadrics, ψ factors into the composite of
two regular maps:

Γ2 − ψ−1(S) = pairs, (F, L) with L on F ;
↓
R = set of reguli;
↓

P9 − S = set of nondegenerate quadrics.

The fibres of the top map are connected, and of dimension 1 (they are all isomorphic
to P1), and the second map is finite and two-to-one. Factorizations of this type occur
quite generally (see the Stein factorization theorem (8.25) below).

We now look at the case m = 3. Here dim Γ3 = 19; ν = 19 : we have a map

ψ : Γ3 → P19.

Theorem 8.22. The set of cubic surfaces containing exactly 27 lines corresponds
to an open subset of P19; the remaining surfaces either contain an infinite number of
lines or a nonzero finite number ≤ 27.

Example 8.23. (a) Consider the Fermat surface

X3
0 + X3

1 + X3
2 + X3

3 = 0.



Algebraic Geometry: 8. Regular Maps and Their Fibres 129

Let ζ be a primitive cube root of one. There are the following lines on the surface,
0 ≤ i, j ≤ 2:{

X0 + ζ iX1 = 0
X2 + ζjX3 = 0

{
X0 + ζ iX2 = 0
X1 + ζjX3 = 0

{
X0 + ζ iX3 = 0
X1 + ζjX2 = 0

There are three sets, each with nine lines, for a total of 27 lines.

(b) Consider the surface

X1X2X3 = X3
0 .

In this case, there are exactly three lines. To see this, look first in the affine space
where X0 �= 0—here we can take the equation to be X1X2X3 = 1. A line in A3 can
be written in parametric form Xi = ait + bi, but a direct inspection shows that no
such line lies on the surface. Now look where X0 = 0, that is, in the plane at infinity.
The intersection of the surface with this plane is given by X1X2X3 = 0 (homogeneous
coordinates), which is the union of three lines, namely,

X1 = 0; X2 = 0; X3 = 0.

Therefore, the surface contains exactly three lines.

(c) Consider the surface

X3
1 + X3

2 = 0.

Here there is a pencil of lines: {
t0X1 = t1X0

t0X2 = −t1X0.

(In the affine space where X0 �= 0, the equation is X3 + Y 3 = 0, which contains the
line X = t, Y = −t, all t.)

We now discuss the proof of Theorem 8.22). If ψ : Γ3 → P19 were not surjective,
then ψ(Γ3) would be a proper closed subvariety of P19, and the nonempty fibres
would all have dimension ≥ 1 (by 8.6), which contradicts two of the above examples.
Therefore the map is surjective22, and there is an open subset U of P19 where the
fibres have dimension 0; outside U , the fibres have dimension > 0.

Given that every cubic surface has at least one line, it is not hard to show that
there is an open subset U ′ where the cubics have exactly 27 lines (see Reid, 1988,
pp106–110); in fact, U ′ can be taken to be the set of nonsingular cubics. According
to (6.24), the restriction of ψ to ψ−1(U) is finite, and so we can apply (8.10) to see
that all cubics in U − U ′ have fewer than 27 lines.

Remark 8.24. The twenty-seven lines on a cubic surface were discovered in 1849
by Salmon and Cayley, and have been much studied—see A. Henderson, The Twenty-
Seven Lines Upon the Cubic Surface, Cambridge University Press, 1911. For example,
it is known that the group of permutations of the set of 27 lines preserving intersections
(that is, such that L∩L′ �= ∅ ⇐⇒ σ(L)∩σ(L′) �= ∅) is isomorphic to the Weyl group
of the root system of a simple Lie algebra of type E6, and hence has 25920 elements.

It is known that there is a set of 6 skew lines on a nonsingular cubic surface V . Let
L and L′ be two skew lines. Then “in general” a line joining a point on L to a point

22According to Miles Reid (1988, p126) every adult algebraic geometer knows this proof that
every cubic contains a line.
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on L′ will meet the surface in exactly one further point. In this way one obtains an
invertible regular map from an open subset of P1 × P1 to an open subset of V , and
hence V is birationally equivalent to P2.

Stein factorization. The following important theorem shows that the fibres of a
proper map are disconnected only because the fibres of finite maps are disconnected.

Theorem 8.25. Let ϕ : W → V be a proper morphism of varieties. It is possible

to factor ϕ into W
ϕ1→W ′ ϕ2→ V with ϕ1 proper with connected fibres and ϕ2 finite.

Proof. This is usually proved at the same time as Zariski’s main theorem (if W
and V are irreducible, and V is affine, then W ′ is the affine variety with k[W ′] the
integral closure of k[V ] in k(W )).
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9. Algebraic Geometry over an Arbitrary Field

We now explain how to extend the theory in the preceding sections to a nonal-
gebraically closed base field. Fix a field k, and let kal be an algebraic closure of
k.

Sheaves. We shall need a more abstract notion of a ringed space and of a sheaf.

A presheaf F on a topological space V is a map assigning to each open subset U
of V a set F(U) and to each inclusion U ⊃ U ′ a “restriction” map

a �→ a|U ′ : F(U)→ F(U ′);

the restriction map F(U) → F(U) is required to be the identity map, and if U ′′ ⊃
U ′ ⊃ U , then the composite of the restriction maps F(U) → F(U ′) and F(U ′) →
F(U ′′) is required to be the restriction map F(U) → F(U ′′). In other words, a
presheaf is a contravariant functor to the category of sets from the category whose
objects are the open subsets of V and whose morphisms are the inclusions . A
homomorphism of presheaves α : F → F ′ is a family of maps

α(U) : F(U) → F ′(U)

commuting with the restriction maps.

A presheaf F is a sheaf if for every open covering {Ui} of an open subset U of V
and family of elements ai ∈ F(Ui) agreeing on overlaps (that is, such that ai|Ui∩Uj =
aj|Ui ∩ Uj for all i, j), there is a unique element a ∈ F(U) such that ai = a|Ui for all
i. A homomorphism of sheaves on V is a homomorphism of presheaves.

If the sets F(U) are abelian groups and the restriction maps are homomorphisms,
then the sheaf is a sheaf of abelian groups. Similarly one defines a sheaf of rings, a
sheaf of k-algebras, and a sheaf of modules over a sheaf of rings.

For v ∈ V , the stalk of a sheaf F (or presheaf) at v is

Fv = lim
←
F(U) (limit over open neighbourhoods of v).

A ringed space is a pair (V,O) consisting of topological space V together with a
sheaf of rings. If the stalk Ov of O at v is a local ring for all v ∈ V , then (V,O) is
called a locally ringed space. A morphism (V,O) → (V ′, O′) of ringed spaces is a pair
(ϕ, ψ) with ϕ a continuous map V → V ′ and ψ a family of maps

ψ(U ′) : O′(U ′) → O(ϕ−1(U ′)), U ′ open in V ′,

commuting with the restriction maps. Such a pair defines homomorphism of rings
ψv : O′ϕ(v) → Ov for all v ∈ V . A morphism of locally ringed spaces is a morphism of
ringed space such that ψv is a local homomorphism for all v.

Extending scalars. Recall that a ring A is reduced if it has no nonzero nilpotents.
If A is reduced, then A⊗k kal need not be reduced. Consider for example the algebra
A = k[X, Y ]/(Xp + Y p + a) where p = char(k) and a /∈ kp. Then A is reduced (even
an integral domain) because Xp + Y p + a is irreducible in k[X, Y ], but

A⊗k kal = kal[X, Y ]/(Xp + Y p + a) = kal[X, Y ]/((X + Y + α)p), αp = a,

which is not reduced because x + y + α �= 0 but (x + y + α)p = 0.
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The next proposition shows that problems of this kind arise only because of insep-
arability; in particular, they don’t occur if k is perfect.

Recall that the characteristic exponent of a field is p if k has characteristic p �= 0,
and it is 1 is k has characteristic zero. For p equal to the characteristic exponent of
k, let

k
1
p = {α ∈ kal | αp ∈ k}.

It is a subfield of k al , and k
1
p = k if and only if k is perfect.

Proposition 9.1. Let A be a reduced finitely generated k-algebra. The following
statements are equivalent:

(a) A⊗k k 1
p is reduced;

(b) A⊗k kal is reduced;
(c) A⊗k K is reduced for all fields K ⊃ k.

Proof. Clearly c=⇒b=⇒a. The implication a =⇒c follows from Zariski and
Samuel 1958, III.15, Theorem 39 (localize A at a minimal prime to get a field).

Even when A is an integral domain and A⊗k kal is reduced, the latter need not be
an integral domain. Suppose, for example, that A is a finite separable field extension
of k. Then A ≈ k[X]/(f(X)) with f(X) an irreducible separable polynomial. Hence

A⊗k kal ≈ kal[X]/(f(X)) = kal/(Π(X − ai)) ≈ Π kal/(X − ai)

(by the Chinese remainder theorem). This shows that if A contains a finite separable
field extension of k, then A⊗k kal can’t be an integral domain. The next proposition
gives a converse.

Proposition 9.2. Let A be a finitely generated k-algebra, and assume that A is
an integral domain, and that A⊗k kal is reduced. Then A⊗k kal is an integral domain
if and only if k is algebraically closed in A (i.e., if a ∈ A is algebraic over k, then
a ∈ k).

Proof. Ibid. III.15.

After these preliminaries, it is possible rewrite all of the preceding sections with k
not necessarily algebraically closed. I indicate briefly how this is done.

Affine algebraic varieties. An affine k-algebra A is a finitely generated k-algebra
A such that A ⊗k kal is reduced. Since A ⊂ A ⊗k kal, A itself is then reduced.
Proposition 9.1 has the following consequence.

Corollary 9.3. Let A be a reduced finitely generated k-algebra.

(a) If k is perfect, then A is an affine k-algebra.
(b) If A is an affine k-algebra, then A⊗kK is reduced for all fields K containing k.

Let A be a finitely generated k-algebra. The choice of a set {x1, ..., xn} of generators
for A, determines isomorphisms

A ∼= k[x1, ..., xn] ∼= k[X1, ..., Xn]/(f1, ..., fm),
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and

A⊗k kal ∼= kal[X1, ..., Xn]/(f1, ..., fm).

Thus A is an affine algebra if the elements f1, ..., fm of k[X1, ..., Xn] generate a radical
ideal when regarded as elements of kal[X1, ..., Xn]. From the above remarks, we see
that this condition implies that they generate a radical ideal in k[X1, ..., Xn], and the
converse implication holds when k is perfect.

Let A be an affine k-algebra. Define specm(A) to be the set of maximal ideals in A,
and endow it with the topology having as basis the sets D(f), D(f) = {m | f /∈ m}.
There is a unique sheaf of k-algebras O on specm(A) such that O(D(f)) = Af for all
f (recall that Af is the ring obtained from A by inverting f). Here O is a sheaf in the
above abstract sense — the elements of O(U) are not functions on U with values in k,
although we may wish to think of them as if they were. If f ∈ A and mv ∈ specm(A),

then we can define f(v) to be the image of f in the κ(v)
df
= A/mv, and it does make

sense to speak of the zero set of f in V . The ringed space

Specm(A) = (specm(A),O)

is called an affine variety over k. The stalk at m ∈ V is the local ring Am, and so
Specm(A) is a locally ringed space.

If k = kal, and

A = k[x1, ..., xn] = k[X1, ..., Xn]/(f1, ..., fm),

then the Nullstellensatz allows us to identify specm(A) with the set V (f1, ..., fm) of
common zeros of the fi, via

(x1 − a1, ..., xn− an) �−→ (a1, ..., an).

Moreover, in this case, the elements of O(U) can be identified with k-valued functions
on U .

A morphism of affine algebraic varieties over k is defined to be a morphism
(V,OV ) → (W,OW ) of ringed spaces of k-algebras — it is automatically a morphism
of locally ringed spaces.

A homomorphism of k-algebras A → B defines a morphism of affine k-varieties,

SpecmB → Specm A

in a natural way, and this gives a bijection:

Homk−alg(A,B) ∼= Homk(W,V ), V = SpecmA, W = Specm B.

Therefore A �→ Specm(A) is an equivalence of from the category of affine k-algebras

to that of affine algebraic varieties over k; its quasi-inverse is V �→ k[V ]
df
= Γ(V,OV ).

If A = k[X1, ..., Xm]/a and B = k[Y1, ..., Yn]/b, a homomorphism A → B is de-
termined by a family of polynomials, Pi(Y1, ..., Yn), i = 1, ..., m; the homomorphism
sends xi to Pi(y1, ..., yn); in order to define a homomorphism, the Pi must be such
that

F ∈ a =⇒ F (P1, ..., Pn) ∈ b;

two families P1, ..., Pm and Q1, ..., Qm determine the same map if and only if Pi ≡ Qi
mod b for all i.
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Let A be an affine k-algebra, and let V = SpecmA. For any field K ⊃ k, A⊗k K
is an affine algebra over K, and hence we get a variety VK

df
= Specm(A ⊗k K) over

K. We say that VK has been obtained from V by extension of scalars. Note that
if A = k[X1, ..., Xn]/(f1, ..., fm) then A ⊗k K = K[X1, ..., Xn]/(f1, ..., fm). The map
V �→ VK is a functor from affine varieties over k to affine varieties over K.

Let V0 = Specm(A0) be an affine variety over k, and let W = V (b) be a closed

subvariety of V
df
= V0,kal . Then W arises by extension of scalars from a closed sub-

variety W0 of V0 if and only if the ideal b of A0 ⊗k kal is generated by elements A0.
Except when k is perfect, this is stronger than saying W is the zero set of a family of
elements of A.

Algebraic varieties. A ringed space (V,O) is a prevariety over k if there is a finite
covering (Ui) of V by open subsets such that (Ui,O|Ui) is an affine variety over k for
all i. A morphism of prevarieties over k is a morphism of ringed spaces of k-algebras.

A prevariety V over k is separated if for all pairs of morphisms of k-varieties α, β :
Z → V , the subset of Z on which α and β agree is closed. A variety is a separated
prevariety.

Products: Let A and B be finitely generated k-algebras. It is possible for A and B
to be reduced but for A⊗k B fail to be reduced — consider for example,

A = k[X, Y ]/(Xp + Y p + a), B = k[Z]/(Zp − a), a /∈ kp.

However, if A and B are affine k-algebras, then A⊗k B is again an affine k-algebra.
To see this, note that (by definition), A⊗k kal and B⊗k kal are affine k-algebras, and
therefore so also is their tensor product over kal (3.16); but

(A⊗k kal)⊗kal (kal ⊗k B) = ((A⊗k kal)⊗kal kal)⊗k B = (A⊗k B)⊗k kal.
Thus we can define the product of two affine algebraic varieties, V = Specm A and
W = Specm B, over k by

V ×kW = Specm(A⊗k B).

It has the universal property expected of products, and the definition extends in a
natural way to (pre)varieties.

Just as in (3.18), the diagonal ∆ is locally closed in V × V , and it is closed if and
only if V is separated.

Extension of scalars: Let V be a variety over k, and let K be a field containing
k. There is a natural way of defining a variety VK , said to be obtained from V by
extension of scalars: if V is a union of open affines, V = ∪Ui, then VK = ∪Ui,K and
the Ui,K are patched together the same way as the Ui. The dimension of a variety
doesn’t change under extension of scalars.

When V is a variety over kal obtained from a variety V0 over k by extension of
scalars, we sometimes call V0 a model for V over k. More precisely, a model of V over
k is a variety V0 over k together with an isomorphism ϕ : V0,kal → V.

Of course, V need not have a model over k — for example, an elliptic curve

E : Y 2Z = X3 + aXZ2 + bZ3
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over kal will have a model over k ⊂ kal if and only if its j-invariant j(E)
df
= 1728(4a)3

−16(4a3+27b2)
lies in k. Moreover, when V has a model over k, it will usually have a large number
of them, no two of which are isomorphic over k. Consider, for example, the quadric
surface in P3over Qal,

V : X2 + Y 2 + Z2 + W 2 = 0.

The models over V over Q are defined by equations

aX2 + bY 2 + cZ2 + dW 2 = 0, a, b, c, d ∈ Q.

Classifying the models of V over Q is equivalent to classifying quadratic forms over
Q in 4 variables. This has been done, but it requires serious number theory. In
particular, there are infinitely many (see Chapter VIII of my notes on Class Field
Theory).

Exercise 9.4. Show directly that, up to isomorphism, the curve X2 + Y 2 = 1
over C has exactly two models over R.

The points on a variety. Let V be a variety over k. A point of V with coor-
dinates in k, or a point of V rational over k, is a morphism Specm k → V . For
example, if V is affine, say V = Specm(A), then a point of V with coordinates in
k is a k-homomorphism A → k. If A = k[X1, ..., Xn]/(f1, ..., fm), then to give a
k-homomorphism A→ k is the same as to give an n-tuple (a1, ..., an) such that

fi(a1, ..., an) = 0, i = 1, ..., m.

In other words, of V is the affine variety over k defined by the equations

fi(X1, . . . , Xn) = 0, i = 1, . . . , m

then a point of V with coordinates in k is a solution to this system of equations in k.
We write V (k) for the points of V with coordinates in k.

We extend this notion to obtain the set of points V (R) of a variety V with coordi-
nates in any k-algebra R. For example, when V = Specm(A), we set

V (R) = Homk−alg(A,R).

Again, if

A = k[X1, ..., Xn]/(f1, ..., fm),

then

V (R) = {(a1, ..., an) ∈ Rn | fi(a1, ..., an) = 0, i = 1, 2, ..., m}.
What is the relation between the elements of V and the elements of V (k)? Suppose

V is affine, say V = Specm(A). Let v ∈ V . Then v corresponds to a maximal ideal mv
in A (actually, it is a maximal ideal), and we write κ(v) for the residue field Ov/mv.
Then κ(v) is a finite extension of k, and we call the degree of κ(v) over k the degree
of v. Let K be a field algebraic over k. To give a point of V with coordinates in K is
to give a homomorphism of k-algebras A→ K. The kernel of such a homomorphism
is a maximal ideal mv in A, and the homomorphisms A → k with kernel mv are in
one-to-one correspondence with the k-homomorphisms κ(v) → K. In particular, we
see that there is a natural one-to-one correspondence between the points of V with



136 Algebraic Geometry: 9. Algebraic Geometry over an Arbitrary Field

coordinates in k and the points v of V with κ(v) = k, i.e., with the points v of V of
degree 1. This statement holds also for nonaffine algebraic varieties.

Assume now that k is perfect. The kal-rational points of V with image v ∈ V are
in one-to-one correspondence with the k-homomorphisms κ(v) → kal — therefore,
there are exactly deg(v) of them, and they form a single orbit under the action of
Gal(kal/k). Thus there is a natural bijection from V to the set of orbits for Gal(kal/k)
acting on V (kal).

Local Study. Let V = V (a) ⊂ An, and let a = (f1, ..., fr). The singular locus Vsing
of V is defined by the vanishing of the (n− d)× (n− d) minors of the matrix

Jac(f1, f2, . . . , fr) =




∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xr

∂f2
∂x1
...
∂fr
∂x1

∂fr
∂xr


 .

We say that v is nonsingular if some (n − d) × (n − d) minor doesn’t vanish at v.
We say V is nonsingular all its singular locus is empty. If V is nonsingular, then it is
regular, but not conversely. Obviously V is nonsingular ⇐⇒ Vkal is nonsingular.

Note that Vsing is compatible with extension of scalars. Therefore (Theorem 4.21)
it is a proper subvariety of V .

Projective varieties; complete varieties. It is possible to associate projective
varieties to certain graded rings over k. An algebraic variety over k is complete if for
all varieties W , the projection map V ×W →W is closed, and this property persists
under extension of scalars to kal. A projective variety is complete.

Finite maps. The Noether normalization theorem needs a different proof when the
field is finite.
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10. Divisors and Intersection Theory

In this section, k is an arbitrary field.

Divisors. Recall that a normal ring is an integral domain that is integrally closed
in its field of fractions. A variety V is normal if Ov is a normal ring for all v ∈ V .
Equivalent condition: for every open connected affine subset U of V , Γ(U,OV ) is a
normal ring.

Remark 10.1. Let V be a projective variety, say defined by a homogeneous ring
R. If R is normal, then V is said to be projectively normal. A projectively normal
variety is normal, but the converse statement is false.

Assume now that V is normal and irreducible.

A prime divisor on V is an irreducible subvariety of V of codimension 1. A divisor
on V is an element of the free abelian group Div(V ) generated by the prime divisors.
Thus a divisor D can be written uniquely as a finite (formal) sum

D =
∑

niZi, ni ∈ Z, Zi a prime divisor on V.

The support |D| of D is the union of the Zi corresponding to nonzero ni’s. A divisor
is said to be effective (or positive) if ni ≥ 0 for all i. We get a partial ordering on the
divisors defining D ≥ D′ to mean D −D′ ≥ 0.

Because V is normal, there is associated with every prime divisor Z on V a discrete
valuation ring OZ . This can be defined, for example, by choosing an open affine
subvariety U of V such that U ∩Z �= ∅; then U ∩Z is a maximal proper closed subset
of U , and so the ideal p corresponding to it is minimal among the nonzero ideals of
R = Γ(U,O); so Rp is a normal ring with exactly one nonzero prime ideal pR — it is
therefore a discrete valuation ring (Atiyah and MacDonald 9.2), which is defined to
be OZ . More intrinsically we can define OZ to be the set of rational functions on V
that are defined an open subset U of V with U ∩ Z �= ∅.

Let ordZ be the valuation of k(V )× � Z with valuation ring OZ . The divisor of a
nonzero element f of k(V ) is defined to be

div(f) =
∑

ordZ(f) · Z.
The sum is over all the prime divisors of V , but in fact ordZ(f) = 0 for all but finitely
many Z’s. In proving this, we can assume that V is affine (because it is a finite union
of affines), say V = Specm(R). Then k(V ) is the field of fractions of R, and so we
can write f = g/h with g, h ∈ R, and div(f) = div(g) − div(h). Therefore, we can
assume f ∈ R. The zero set of f , V (f) either is empty or is a finite union of prime
divisors, V = ∪Zi (see 7.2) and ordZ(f) = 0 unless Z is one of the Zi.

The map

f �→ div(f) : k(V )× → Div(V )

is a homomorphism. A divisor of the form div(f) is said to be principal, and two
divisors are said to be linearly equivalent, denoted D ∼ D′, if they differ by a principal
divisor.

When V is nonsingular, the Picard group Pic(V ) of V is defined to be the group
of divisors on V modulo principal divisors. (Later, we shall define Pic(V ) for an
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arbitrary variety; when V is singular it will differ from the group of divisors modulo
principal divisors, even when V is normal.)

Example 10.2. Let C be a nonsingular affine curve corresponding to the affine
k-algebra R. Because C is nonsingular, R is a Dedekind domain. A prime divisor on
C can be identified with a nonzero prime divisor in R, a divisor on C with a fractional
ideal, and Pic(C) with the ideal class group of R.

Let U be an open subset of V , and let Z be a prime divisor of V . Then Z ∩ U
is either empty or is a prime divisor of U . We define the restriction of a divisor
D =

∑
nZZ on V to U to be

D|U =
∑
Z∩U �=∅

nZ · Z ∩ U.

When V is nonsingular, every divisor D is locally principal, i.e., every point P has
an open neighbourhood U such that the restriction of D to U is principal. It suffices
to prove this for a divisor Z. If P is not in the support of D, we can take f = 1. The
prime divisors passing through P are in one-to-one correspondence with the prime
ideals p of height 1 in OP , i.e., the minimal nonzero prime ideals. Our assumption
implies that OP is a regular local ring. It is a (fairly hard) theorem in commutative
algebra that a regular local ring is a unique factorization domain. It is a (fairly easy)
theorem that a Noetherian integral domain is a unique factorization domain if every
prime ideal of height 1 is principal (Nagata 1962, 13.1). Thus p is principal in Op,
and this implies that it is principal in Γ(U,OV ) for some open affine set U containing
P (see also 7.13).

If D|U = div(f), then we call f a local equation for D on U .

Intersection theory. Fix a nonsingular variety V of dimension n over a field k,
assumed to be perfect. Let W1 and W2 be irreducible closed subsets of V , and let
Z be an irreducible component of W1 ∩ W2. Then intersection theory attaches a
multiplicity to Z. We shall only do this in an easy case.

Divisors. Let V be a nonsingular variety of dimension n, and let D1, . . . , Dn be
effective divisors on V . We say that D1, . . . , Dn intersect properly at P ∈ |D1| ∩ . . .∩
|Dn| if P is an isolated point of the intersection. In this case, we define

(D1 · . . . ·Dn)P = dimkOP/(f1, . . . , fn)

where fi is a local equation for Di near P . The hypothesis on P implies that this is
finite.

Example 10.3. In all the examples, the ambient variety is a surface.

(a) Let Z1 be the affine plane curve Y 2 −X3, let Z2 be the curve Y = X2, and let
P = (0, 0). Then

(Z1 · Z2)P = dim k[X, Y ](X,Y )/(Y −X3, Y 2 −X3) = dimk[X]/(X4 −X3) = 3.

(b) If Z1 and Z2 are prime divisors, then (Z1 · Z2)P = 1 if and only if f1, f2 are local
uniformizing parameters at P . Equivalently, (Z1 · Z2)P = 1 if and only if Z1 and Z2
are transversal at P , that is, TZ1(P ) ∩ TZ2(P ) = {0}.
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(c) Let D1 be the x-axis, and let D2 be the cuspidal cubic Y 2−X3. For P = (0, 0),
(D1 ·D2)P = 3.

(d) In general, (Z1 · Z2)P is the “order of contact” of the curves Z1 and Z2.

We say that D1, . . . , Dn intersect properly if they do so at every point of intersection
of their supports; equivalently, if |D1| ∩ . . . ∩ |Dn| is a finite set. We then define the
intersection number

(D1 · . . . ·Dn) =
∑

P∈|D1|∩...∩|Dn|
(D1 · . . . ·Dn)P .

Example 10.4. Let C be a curve. If D =
∑

niPi, then the intersection number

(D) =
∑

ni[k(Pi) : k].

By definition, this is the degree of D.

Consider a regular map α : W → V of connected nonsingular varieties, and let D
be a divisor on V whose support does not contain the image of W . There is then a
unique divisor α∗D on W with the following property: if D has local equation f on
the open subset U of V , then α∗D has local equation f ◦ α on α−1U . (Use 7.2 to
see that this does define a divisor on W ; if the image of α is disjoint from |D|, then
α∗D = 0.)

Example 10.5. Let C be a curve on a surface V , and let α : C ′ → C be the
normalization of C . For any divisor D on V ,

(C ·D) = degα∗D.

Lemma 10.6 (Additivity). Let D1, . . . , Dn, D be divisors on V . If (D1 · . . . ·Dn)P
and (D1 · . . . ·D)P are both defined, then so also is (D1 · . . . ·Dn + D)P , and

(D1 · . . . ·Dn + D)P = (D1 · . . . ·Dn)P + (D1 · . . . ·D)P .

Proof. One writes some exact sequences. See Shafarevich 1994, IV.1.2.

Note that in intersection theory, unlike every other part of mathematics, we add
first, and then multiply.

Since every divisor is the difference of two effective divisors, Lemma 10.1 allows us
to extend the definition of (D1 · . . . ·Dn) to all divisors intersecting properly (not just
effective divisors).

Lemma 10.7 (Invariance under linear equivalence). Assume V is complete. If
Dn ∼ D′n, then

(D1 · . . . ·Dn) = (D1 · . . . ·D′n).
Proof. By additivity, it suffices to show that (D1 · . . . ·Dn) = 0 if Dn is a principal

divisor. For n = 1, this is just the statement that a function has as many poles as
zeros (counted with multiplicities). Suppose n = 2. By additivity, we may assume
that D1 is a curve, and then the assertion follows from Example 10.5 because

D principal ⇒ α∗D principal.

The general case may be reduced to this last case (with some difficulty). See
Shafarevich 1994, IV.1.3.
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Lemma 10.8. For any n divisors D1, . . . , Dn on an n-dimensional variety, there
exists n divisors D′1, . . . , D

′
n intersect properly.

Proof. See Shafarevich 1994, IV.1.4.

We can use the last two lemmas to define (D1 · . . . · Dn) for any divisors on a
complete nonsingular variety V : choose D′1, . . . , D

′
n as in the lemma, and set

(D1 · . . . ·Dn) = (D′1 · . . . ·D′n).
Example 10.9. Let C be a smooth complete curve over C, and let α : C → C be

a regular map. Then the Lefschetz trace formula states that

(∆ · Γα) = Tr(α|H0(C,Q)−Tr(α|H1(C,Q)+Tr(α|H2(C,Q).

In particular, we see that (∆ ·∆) = 2 − 2g, which may be negative, even though ∆
is an effective divisor.

Let α : W → V be a finite map of irreducible varieties. Then k(W ) is a finite
extension of k(V ), and the degree of this extension is called the degree of α. If k(W )
is separable over k(V ) and k is algebraically closed, then there is an open subset U
of V such that α−1(u) consists exactly d = deg α points for all u ∈ U . In fact, α−1(u)
always consists of exactly degα points if one counts multiplicities. Number theorists
will recognize this as the formula

∑
eifi = d. Here the fi are 1 (if we take k to be

algebraically closed), and ei is the multiplicity of the ith point lying over the given
point.

A finite map α : W → V is flat if every point P of V has an open neighbourhood
U such that Γ(α−1U,OW ) is a free Γ(U,OV )-module — it is then free of rank deg α.

Theorem 10.10. Let α : W → V be a finite map between nonsingular varieties.
For any divisors D1, . . . , Dn on V intersecting properly at a point P of V ,∑

α(Q)=P

(α∗D1 · . . . · α∗Dn) = deg α · (D1 · . . . ·Dn)P .

Proof. After replacing V by a sufficiently small open affine neighbourhood of P ,
we may assume that α corresponds to a map of rings A→ B and that B is free of rank
d = deg α as an A-module. Moreover, we may assume that D1, . . . , Dn are principal
with equations f1, . . . , fn on V , and that P is the only point in |D1| ∩ . . . ∩ |Dn|.
Then mP is the only ideal of A containing a = (f1, . . . , fn). Set S = A \mP ; then

S−1A/S−1a = S−1(A/a) = A/a

because A/a is already local. Hence

(D1 · . . . ·Dn)P = dimA/(f1, . . . , fn).

Similarly,

(α∗D1 · . . . · α∗Dn)P = dimB/(f1 ◦ α, . . . , fn ◦ α).

But B is a free A-module of rank d, and

A/(f1, . . . , fn)⊗A B = B/(f1 ◦ α, . . . , fn ◦ α).
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Therefore, as A-modules, and hence as k-vector spaces,

B/(f1 ◦ α, . . . , fn ◦ α) ≈ (A/(f1, . . . , fn))
d

which proves the formula.

Example 10.11. Assume k is algebraically closed of characteristic p �= 0. Let
α : A1 → A1 be the Frobenius map c �→ cp. It corresponds to the map k[X] → k[X],
X �→ Xp, on rings. Let D be the divisor c. It has equation X − c on A1, and α∗D
has the equation Xp − c = (X − γ)p. Thus α∗D = p(γ), and so

deg(α∗D) = p = p · deg(D).

The general case. Let V be a nonsingular connected variety. A cycle of codimension
r on V is an element of the free abelian group Cr(V ) generated by the prime cycles
of codimension r.

Let Z1 and Z2 be prime cycles on any nonsingular variety V , and let W be an
irreducible component of Z1 ∩ Z2. We know that

dim Z1 + dim Z2 ≤ dim V + dim W,

and we say Z1 and Z2 intersect properly at W if equality holds.

Define OV,W to be the set of rational functions on V that are defined on some open
subset U of V with U ∩W �= ∅ — it is a local ring. Assume that Z1 and Z2 intersect
properly at W , and let p1 and p2 be the ideals in OV,W corresponding to Z1 and Z2
(so pi = (f1, f2, ..., fr) if the fj define Zi in some open subset of V meeting W ). The
example of divisors on a surface suggests that we should set

(Z1 · Z2)W = dimkOV,W/(p1, p2),

but examples show this is not a good definition. Note that

OV,W/(p1, p2) = OV,W/p1 ⊗OV,W
OV,W/p2.

It turns out that we also need to consider the higher Tor terms. Set

χO(O/p1,O/p2) =
dimV∑
i=0

(−1)i dimk(TorOi (O/p1,O/p2)

where O = OV,W . It is an integer ≥ 0, and = 0 if Z1 and Z2 do not intersect
properly at W . When they do intersect properly, we define (Z1 · Z2)W = mW ,
m = χO(O/p1,O/p2). When Z1 and Z2 are divisors on a surface, the higher Tor’s
vanish, and so this definition agrees with the previous one.

Now assume that V is projective. It is possible to define a notion of rational equiv-
alence for cycles of codimension r: let W be an irreducible subvariety of codimension
r−1, and let f ∈ k(W )×; then div(f) is a cycle of codimension r on V (since W may
not be normal, the definition of div(f) requires care), and we let Cr(V )′ be the sub-
group of Cr(V ) generated by such cycles as W ranges over all irreducible subvarieties
of codimension r − 1 and f ranges over all elements of k(W )×. Two cycles are said
to be rationally equivalent if they differ by an element of Cr(V )′, and the quotient of
Cr(V ) by Cr(V )′ is called the Chow group CHr(V ). A discussion similar to that in
the case of a surface leads to well-defined pairings

CHr(V )× CHs(V ) → CHr+s(V ).
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In general, we know very little about the Chow groups of varieties — for example,
there has been little success at algebraic cycles on varieties other than the obvious
one (divisors, intersections of divisors,...).

We can restate our definition of the degree of a variety in Pn as follows: a closed
subvariety V of Pn of dimension d has degree (V ·H) for any linear subspace of Pn of
codimension d. (All linear subspaces of Pnof codimension r are rationally equivalent,
and so (V ·H) is independent of the choice of H.)

Remark 10.12. (Bezout’s theorem). A divisor D on Pn is linearly equivalent of
δH, where δ is the degree of D and H is any hyperplane. Therefore

(D1 · · · · ·Dn) = δ1 · · · δn
where δj is the degree of Dj . For example, if C1 and C2 are curves in P2 defined by
irreducible polynomials F1 and F2 of degrees δ1 and δ2 respectively, then C1 and C2
intersect in δ1δ2 points (counting multiplicities).

References:

Shafarevich 1994, IV.1, IV.2.

Fulton, W., Introduction to Intersection Theory in Algebraic Geometry, (AMS
Publication; CBMS regional conference series #54.) This is a pleasant introduction.

Fulton, W., Intersection Theory. Springer, 1984. The ultimate source for every-
thing to do with intersection theory.

Serre: Algèbre Locale, Multiplicités, Springer Lecture Notes, 11, 1957/58 (third
edition 1975). This is where the definition in terms of Tor’s was first suggested.
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11. Coherent Sheaves; Invertible Sheaves.

Coherent Sheaves. Let V = SpecmA be an affine variety over k, and let M be a
finitely generated A-module. There is a unique sheaf of OV -modules M on V such
that, for all f ∈ A,

Γ(D(f),M) = Mf (= Af ⊗AM).

The sheafM is said to be coherent. A homomorphism M → N of A-modules defines a
homomorphism M→N of OV -modules, and M �→ M is a fully faithful functor from
the category of finitely generated A-modules to the category of coherentOV -modules,
with quasi-inverse M �→ Γ(V,M).

Now consider a variety V . An OV -module M is said to be coherent if, for every
open affine subset U of V , M|U is coherent. It suffices to check this condition for the
sets in an open affine covering of V .

For example, OnV is a coherent OV -module. An OV -module M is said to be locally
free of rank n if it is locally isomorphic to OnV , i.e., if every point P ∈ V has an open
neighbourhood such that M|U ≈ OnV . A locally free OV -module is coherent.

Let v ∈ V , and letM be a coherent OV -module. We define a κ(v)-moduleM(v) as
follows: after replacing V with an open neighbourhood of v, we can assume that it is
affine; hence we may suppose that V = Specm(A), that v corresponds to a maximal
ideal m in A (so that κ(v) = A/m), and M corresponds to the A-module M ; we then
define

M(v) = M ⊗A κ(v) = M/mM.

It is a finitely generated vector space over κ(v). Don’t confuse M(v) with the stalk
Mv of M which, with the above notations, is Mm = M ⊗A Am. Thus M(v) =
Mv/mMv = κ(v)⊗Am Mm. Nakayama’s Lemma shows that

M(v) = 0 ⇒Mv = 0.

The support of a coherent sheaf M is

Supp(M) = {v ∈ V | M(v) �= 0} = {v ∈ V | Mv �= 0}.
Suppose V is affine, and that M corresponds to the A-module M . Let a be the
annihilator of M :

a = {f ∈ A | fM = 0}.
Then M/mM �= 0 ⇐⇒ m ⊃ a (for otherwise A/mA contains a nonzero element
annihilating M/mM), and so

Supp(M) = V (a).

Thus the support of a coherent module is a closed subset of V .

Note that if M is locally free of rank n, then M(v) is a vector space of dimension
n for all v. There is a converse of this.

Proposition 11.1. If M is a coherent OV -module such that M(v) has constant
dimension n for all v ∈ V , then M is a locally free of rank n.
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Proof. We may assume that V is affine, and that M corresponds to the finitely
generated A-module M . Fix a maximal ideal m of A, and let x1, . . . , xnbe elements
of M whose images in M/mM form a basis for it over κ(v). Consider the map

γ : An→ M, (a1, . . . , an) �→
∑

aixi.

The cokernel is a finitely generated A-module whose support does not contain
v. Therefore there is an element f ∈ A, f /∈ m, such that γ defines a surjection
Anf → Mf . After replacing A with Af we may assume that γ itself is surjective.
For every maximal ideal n of A, the map (A/n)n → M/nM is surjective, and hence
(because of the condition on the dimension of M(v)) bijective. Therefore, the kernel
of γ is contained in nn (meaning n × · · · × n) for all maximal ideals n in A, and the
next lemma shows that this implies that the kernel is zero.

Lemma 11.2. Let A be an affine k-algebra. Then

∩m = 0 (intersection of all maximal ideals in A).

Proof. Suppose first that k is algebraically closed. Recall (1.9) that if a is a radical
ideal in k[X1, . . . , Xn], then IV (a) = a. When we use the one-to-one correspondence
between points of V (a) and the maximal ideals of k[X1, . . . , Xn] containing a, we see
that this says that a function that is in every maximal ideal containing a is, in fact,
in a. On applying this statement to the ring A = k[X1, . . . , Xn]/a, we obtain the
lemma.

Now drop the assumption that k is algebraically closed, and consider a maximal
ideal m of A⊗k k al . Then

A/m ∩ A ↪→ A⊗k k al = k al .

Therefore A/m ∩ A is an integral domain. Since it is finite-dimensional over k, it
is a field, and so m ∩ A is a maximal ideal in A. Thus if f ∈ A is in all maximal
ideals of A, then its image in A⊗ k al is in all maximal ideals of A, then its image in
A⊗ k al is in all maximal ideals of A⊗ k al , and so is zero.

For two coherent OV -modules M and N , there is a unique coherent OV -module
M⊗OV

N such that

Γ(U,M⊗OV
N ) = Γ(U,M)⊗Γ(U,OV ) Γ(U,N )

for all open affines U ⊂ V . The reader should be careful not to assume that this
formula holds for nonaffine open subsets U (see example 11.4 below). For a such a
U , one writes U = ∪Ui with the Ui open affines, and defines Γ(U,M⊗OV

N ) to be
the kernel of ∏

i

Γ(Ui,M⊗OV
N ) ⇒

∏
i,j

Γ(Uij ,M⊗OV
N ).

Define Hom(M,N ) to be the sheaf on V such that

Γ(U,Hom(M,N )) = HomOU
(M,N )

(homomorphisms of OU -modules) for all open U in V . It is easy to see that this is a
sheaf. If the restrictions of M and N to some open affine U correspond to A-modules
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M and N , then

Γ(U,Hom(M,N )) = HomA(M,N),

and so Hom(M,N ) is again a coherent OV -module.

Invertible sheaves. An invertible sheaf on V is a locally free OV -module L of rank
1. The tensor product of two invertible sheaves is again an invertible sheaf. In this
way, we get a product structure on the set of isomorphism classes of invertible sheaves:

[L] · [L′] = [L⊗ L′].
The product structure is associative and commutative (because tensor products are
associative and commutative, up to a canonical isomorphism), and [OV ] is an identity
element. Define

L∨ = Hom(L,OV ).

Clearly, L∨ is free of rank 1 over any open set where L is free of rank 1, and so L∨ is
again an invertible sheaf. Moreover, the canonical map

L∨ ⊗ L → OV , (f, x) �→ f(x)

is an isomorphism (because it is obviously an isomorphism over any open subset where
L is free). Thus

[L∨][L] = [OV ].

For this reason, we often write L−1 for L∨.

From these remarks, we see that the set of isomorphism classes of invertible sheaves
on V is a group — it is called the Picard group, Pic(V ), of V .

We say that an invertible sheaf L is trivial if it is isomorphic to OV — then L
represents the zero element in Pic(V ).

Proposition 11.3. An invertible sheaf L on a complete variety V is trivial if and
only if both it and its dual have nonzero global sections, i.e.,

Γ(V,L) �= 0 �= Γ(V,L∨).

Proof. We may assume that V is irreducible. Note first that, for any OV -module
M on any variety V , the map

Hom(OV ,M) → Γ(V,M), α �→ α(1)

is an isomorphism.

Next recall that the only regular functions on a complete variety are the constant
functions (see 5.28 in the case that k is algebraically closed), i.e., Γ(V,OV ) = k′

where k′ is the algebraic closure of k in k(V ). Hence Hom(OV ,OV ) = k′, and so a
homomorphism OV → OV is either 0 or an isomorphism.

We now prove the proposition. The sections define nonzero homomorphisms

s1 : OV → L, s2 : OV → L∨.
We can take the dual of the second homomorphism, and so obtain nonzero homo-

morphisms

OV s1→ L s∨2→ OV .
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The composite is nonzero, and hence an isomorphism, which shows that s∨2 is
surjective, and this implies that it is an isomorphism (for any ring A, a surjective
homomorphism of A-modules A→ A is bijective because 1 must map to a unit).

Invertible sheaves and divisors. Now assume that V is nonsingular. For a divisor
D on V , the vector space L(D) is defined to be

L(D) = {f ∈ k(V )× | div(f) + D ≥ 0}.
We make this definition local: define L(D) to be the sheaf on V such that, for any
open set U ,

Γ(U,L(D)) = {f ∈ k(V )× | div(f) + D ≥ 0 on U} ∪ {0}.
The condition “div(f)+D ≥ 0 on U” means that, if D =

∑
nZZ, then ordZ(f)+nZ ≥

0 for all Z with Z ∩ U �= ∅. Thus, Γ(U,L(D)) is a Γ(U,OV )-module, and if U ⊂ U ′,
then Γ(U ′,L(D)) ⊂ Γ(U,L(D)). We define the restriction map to be this inclusion.
In this way, L(D) becomes a sheaf of OV -modules.

Suppose D is principal on an open subset U , say D|U = div(g), g ∈ k(V )×. Then

Γ(U,L(D)) = {f ∈ k(V )× | div(fg) ≥ 0 on U} ∪ {0}.
Therefore,

Γ(U,L(D)) → Γ(U,OV ), f �→ fg,

is an isomorphism. These isomorphisms clearly commute with the restriction maps
for U ′ ⊂ U , and so we obtain an isomorphism L(D)|U → OU . Since every D is
locally principal, this shows that L(D) is locally isomorphic to OV , i.e., that it is an
invertible sheaf. If D itself is principal, then L(D) is trivial.

Next we note that the canonical map

L(D) ⊗ L(D′) → L(D + D′), f ⊗ g �→ fg

is an isomorphism on any open set where D and D′are principal, and hence it is an
isomorphism globally. Therefore, we have a homomorphism

Div(V ) → Pic(V ), D �→ [L(D)],

which is zero on the principal divisors.

Example 11.4. Let V be an elliptic curve, and let P be the point at infinity. Let
D be the divisor D = P . Then Γ(V,L(D)) = k, the ring of constant functions, but
Γ(V,L(2D)) contains a nonconstant function x. Therefore,

Γ(V,L(2D)) �= Γ(V,L(D)) ⊗ Γ(V,L(D)),

— in other words, Γ(V,L(D) ⊗ L(D)) �= Γ(U,L(D) ⊗ L(D)).

Proposition 11.5. For an irreducible nonsingular variety, the map D �→ [L(D)]
defines an isomorphism

Div(V )/PrinDiv(V ) → Pic(V ).

Proof. (Injectivity). If s is an isomorphism OV → L(D), then g = s(1) is an
element of k(V )× such that

(a) div(g) + D ≥ 0 (on the whole of V );
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(b) if div(f) + D ≥ 0 on U , that is, if f ∈ Γ(U,L(D)), then f = h(g|U) for some
h ∈ Γ(U,OV ).

Statement (a) says that D ≥ div(−g) (on the whole of V ). Suppose U is such that
D|U admits a local equation f = 0. When we apply (b) to −f , then we see that
div(−f) ≤ div(g) on U , so that D|U + div(g) ≥ 0. Since the U ’s cover V , together
with (a) this implies that D = div(−g).

(Surjectivity). Define

Γ(U,K) =

{
k(V )× if U is open an nonempty
0 if U is empty.

Because V is irreducible, K becomes a sheaf with the obvious restriction maps. On
any open subset U where L|U ≈ OU , we have L|U ⊗ K ≈ K. Since these open sets
form a covering of V , V is irreducible, and the restriction maps are all the identity
map, this implies that L⊗ K ≈ K on the whole of V . Choose such an isomorphism,
and identify L with a subsheaf of K. On any U where L ≈ OU , L|U = gOU as a
subsheaf of K, where g is the image of 1 ∈ Γ(U,OV ). Define D to be the divisor such
that, on a U , g−1 is a local equation for D.

Example 11.6. Suppose V is affine, say V = SpecmA. We know that coherent
OV -modules correspond to finitely generated A-modules, but what do the locally free
sheaves of rank n correspond to? They correspond to finitely generated projective A-
modules (Bourbaki, Commutative Algebra, II.5.2). The invertible sheaves correspond
to finitely generated projective A-modules of rank 1. Suppose for example that V is
a curve, so that A is a Dedekind domain. This gives a new interpretation of the ideal
class group: it is the group of isomorphism classes of finitely generated projective
A-modules of rank one (i.e., such that M ⊗A K is a vector space of dimension one).

This can be proved directly. First show that every (fractional) ideal is a projective
A-module — it is obviously finitely generated of rank one; then show that two ideals
are isomorphic as A-modules if and only if they differ by a principal divisor; finally,
show that every finitely generated projective A-module of rank 1 is isomorphic to
a fractional ideal (by assumption M ⊗A K ≈ K; when we choose an identification
M ⊗A K = K, then M ⊂ M ⊗A K becomes identified with a fractional ideal).
[Exercise: Prove the statements in this last paragraph.]

Remark 11.7. Quite a lot is known about Pic(V ), the group of divisors modulo
linear equivalence, or of invertible sheaves up to isomorphism. For example, for any
complete nonsingular variety V , there is an abelian variety P canonically attached to
V , called the Picard variety of V , and an exact sequence

0 → P (k) → Pic(V ) → NS(V ) → 0

where NS(V ) is a finitely generated group called the Néron-Severi group.

Much less is known about algebraic cycles of codimension > 1, and about locally
free sheaves of rank > 1 (and the two don’t correspond exactly, although the Chern
classes of locally free sheaves are algebraic cycles).

Direct images and inverse images of coherent sheaves. Consider a homomo-
morphism A → B of rings. From an A-module M , we get an B-module B ⊗A M ,
which is finitely generated if M is finitely generated. Conversely, an B-module M
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can also be considered an A-module, but it usually won’t be finitely generated (unless
B is finitely generated as an A-module). Both these operations extend to maps of
varieties.

Consider a regular map α : W → V , and let F be a coherent sheaf of OV -modules.
There is a unique coherent sheaf of OW -modules α∗F with the following property:
for any open affine subsets U ′ and U of W and V respectively such that α(U ′) ⊂
U , α∗F|U ′ is the sheaf corresponding to the Γ(U ′,OW )-module Γ(U ′,OW ) ⊗Γ(U,OV )

Γ(U,F).

Let F be a sheaf of OV -modules. For any open subset U of V , we define
Γ(U, α∗F) = Γ(α−1U,F), regarded as a Γ(U,OV )-module via the map Γ(U,OV ) →
Γ(α−1U,OW ). Then U �→ Γ(U, α∗F) is a sheaf of OV -modules. In general, α∗F will
not be coherent, even when F is.

Lemma 11.8. (a) For any regular maps U
α→ V

β→ W and coherent OW -module
F on W , there is a canonical isomorphism

(βα)∗F ≈→ α∗(β∗F).

(b) For any regular map α : V →W , α∗ maps locally free sheaves of rank n to locally
free sheaves of rank n (hence also invertible sheaves to invertible sheaves). It
preserves tensor products, and, for an invertible sheaf L, α∗(L−1) ∼= (α∗L)−1.

Proof. (a) This follows from the fact that, given homomorphisms of rings A →
B → T , T ⊗B (B ⊗AM) = T ⊗AM .

(b) This again follows from well-known facts about tensor products of rings.
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12. Differentials

In this section, we sketch the theory of differentials. We allow k to be an arbitrary
field.

Let A be a k-algebra, and let M be an A-module. Recall (from §4) that a k-
derivation is a k-linear map D : A→ M such that

D(fg) = f ◦Dg + g ◦Df (Leibniz’s rule).

A pair (Ω1A/k, d) comprising an A-module Ω1A/k and a k-derivation d : A → Ω1A/k is

called the module of differential one-forms for A over kal if it is universal:

A
d ✲ Ω1

❅
❅

❅D ❘

M
❄
∃!k-linear

Example 12.1. Let A = k[X1, ..., Xn]; then Ω1A/k is the free A-module with basis

the symbols dX1, ..., dXn, and df =
∑

∂f/∂Xi · dXi.
Example 12.2. Let A = k[X1, ..., Xn]/a; then Ω1A/k is the free A-module with

basis the symbols dX1, ..., dXn modulo the relations: df = 0 for all f ∈ a.

Proposition 12.3. Let V be a variety. For each n ≥ 0, there is a unique sheaf of
OV -modules ΩnV/k on V such that ΩnV/k(U) = ΛnΩ1A/k whenever U = SpecmA is an
open affine of V .

Proof. Omitted.

The sheaf ΩnV/k is called the sheaf of differential n-forms on V .

Example 12.4. Let E be the affine curve

Y 2 = X3 + aX + b,

and assume X3 + aX + b has no repeated roots (so that E is nonsingular). Write x
and y for regular functions on E defined by X and Y . On the open set D(y) where
y �= 0, let ω1 = dx/y, and on the open set D(3x2 + a), let ω2 = 2dy/(3x2 + a). Since
y2 = x3 + ax + b,

2ydy = (3x2 + a)dx.

and so ω1 and ω2 agree on . Since E = D(y) ∩ D(3x2 + a), we see that there
is a differential ω on E whose restrictions to D(y) and D(3x2 + a) are ω1 and ω2
respectively. It is an easy exercise in working with projective coordinates to show
that ω extends to a differential one-form on the whole projective curve

Y 2Z = X3 + aXZ2 + bZ3.

In fact, Ω1C/k(C) is a one-dimensional vector space over k, with ω as basis. More
generally, if C is a complete nonsingular absolutely irreducible curve of genus g, then
Ω1C/kC) is a vector space of dimension g over k. Note that ω = dx/y = dx/(x3+ax+

b)
1
2 , which can’t be integrated in terms of elementary functions. Its integral is called

an elliptic integral (integrals of this form arise when one tries to find the arc length
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of an ellipse). The study of elliptic integrals was one of the starting points for the
study of algebraic curves.

Proposition 12.5. If V is nonsingular, then Ω1V/k is a locally free sheaf of rank

dim(V ) (that is, every point P of V has a neighbourhood U such that Ω1V/k|U ≈
(OV |U)dim(V )).

Proof. Omitted.

Let C be a complete nonsingular absolutely irreducible curve, and let ω be a nonzero
element of Ω1k(C)/k. We define the divisor (ω) of ω as follows: let P ∈ C ; if t is a

uniformizing parameter at P , then dt is a basis for Ω1k(C)/k as a k(C)-vector space,

and so we can write ω = fdt, f ∈ k(V )×; define ordP (ω) = ordP (f), and (ω) =∑
ordP (ω)P . Because k(C) has transcendence degree 1 over k, Ω1k(C)/k is a k(C)-

vector space of dimension one, and so the divisor (ω) is independent of the choice of
ω up to linear equivalence. By an abuse of language, one calls (ω) for any nonzero
element of Ω1k(C)/k a canonical class K on C . For a divisor D on C , let B(D) =

dimk(L(D)).

Theorem 12.6 (Riemann-Roch). Let C be a complete nonsingular absolutely ir-
reducible curve over k.

(a) The degree of a canonical divisor is 2g − 2.
(b) For any divisor D on C,

B(D) − B(K −D) = 1 + g − deg(D).

More generally, if V is a smooth complete variety of dimension d, it is possible to
associate with the sheaf of differential d-forms on V a canonical linear equivalence
class of divisors K. This divisor class determines a rational map to projective space,
called the canonical map.
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13. Algebraic Varieties over the Complex Numbers

It is not hard to show that there is a unique way to endow all algebraic varieties
over C with a topology such that:

(a) on An = Cn it is just the usual complex topology;
(b) on closed subsets of An it is the induced toplogy;
(c) all morphisms of algebraic varieties are continuous;
(d) it is finer than the Zariski topology.

We call this new topology the complex topology on V . Note that (a), (b), and (c)
determine the topology uniquely for affine algebraic varieties ((c) implies that an iso-
morphism of algebraic varieties will be a homeomorphism for the complex topology),
and (d) then determines it for all varieties.

Of course, the complex topology is much finer than the Zariski topology — this
can be seen even on A1. In view of this, the next proposition is little surprising.

Proposition 13.1. Let V be an algebraic variety over C, and let C be a con-
structible subset of V (in the Zariski topology); then the closure of C in the Zariski
topology equals its closure in the complex topology.

Proof. Omitted.

For example, if U is an open dense subset of a closed subset Z of V (both for the
Zariski topology), then U is also dense in Z for the complex topology.

The next result helps explain why completeness is the analogue of compactness for
topological spaces.

Proposition 13.2. Let V be an algebraic variety over C; then V is complete (as
an algebraic variety) if and only if it is compact for the complex topology.

Proof. Omitted.

In general, there are many more holomorphic (complex analytic) functions than
there are polynomial functions on a variety over C. For example, by using the ex-
ponential function it is possible to construct many holomorphic functions on C that
are not polynomials in z, but all these functions have nasty singularities at the point
at infinity on the Riemann sphere. In fact, the only meromorphic functions on the
Riemann sphere are the rational functions. This generalizes.

Theorem 13.3. Let V be a complete nonsingular variety over C. Then V is, in
a natural way, a complex manifold, and the field of meromorphic functions on V (as
a complex manifold) is equal to the field of rational functions on V .

Proof. Omitted.

This provides one way of constructing compact complex manifolds that are not
algebraic varieties: find such a manifold M of dimension n such that the transcendence
degree of the field of meromorphic functions on M is < n. For a torus Cg/Λ of
dimension g ≥ 1, this is typically the case. However, when the transcendence degree
of the field of meromorphic functions is equal to the dimension of manifold, then M
can be given the structure, not necessarily of an algebraic variety, but of something
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more general, namely, that of an algebraic space. Roughly speaking, an algebraic
space is an object that is locally an affine algebraic variety, where locally means for
the étale “topology” rather than the Zariski topology.

One way to show that a complex manifold is algebraic is to embed it into projective
space.

Theorem 13.4. Any closed analytic submanifold of Pn is algebraic.

Proof. Omitted.

Corollary 13.5. Any holomorphic map from one projective algebraic variety to
a second projective algebraic variety is algebraic.

Proof. Let ϕ : V → W be the map. Then the graph Γϕ of ϕ is a closed subset of
V ×W , and hence is algebraic according to the theorem. Since ϕ is the composite
of the isomorphism V → Γϕ with the projection Γϕ → W , and both are algebraic, ϕ
itself is algebraic.

Since, in general, it is hopeless to write down a set of equations for a variety (it is a
fairly hopeless task even for an abelian variety of dimension 3), the most powerful way
we have for constructing varieties is to first construct a complex manifold and then
prove that it has a natural structure as a algebraic variety. Sometimes one can then
show that it has a canonical model over some number field, and then it is possible
to reduce the equations defining it modulo a prime of the number field, and obtain a
variety in characteristic p.

For example, it is known that Cg/Λ (Λ a lattic in Cg) has the structure of an
algebraic variety if and only if there is a skew-symmetric form ψ on Cg having certain
simple properties relative to Λ. The variety is then an abelian variety, and all abelian
varieties over C are of this form.
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14. Further Reading

In this course, we have associated an affine algebraic variety to any affine algebra
over a field k. For many reasons, for example, in order to be able to study the reduc-
tion of varieties to characteristic p �= 0, Grothendieck realized that it is important to
attach a geometric object to every commutative ring. Unfortunately, A �→ specmA
is not functorial in this generality: if α : A → B is a homomorphism of rings, then
α−1(m) for m maximal need not be maximal — consider for example the inclusion
Z ↪→ Q. Thus he was forced to replace specm(A) with spec(A), the set of all prime
ideals in A. He then attaches an affine scheme Spec(A) to each ring A, and defines a
scheme to be a locally ringed space that admits an open covering by affine schemes.

There is a natural functor V �→ V ∗ from the category of varieties over k to the
category of absolutely reduced schemes of finite-type over k, which is an equivalence of
categories. To construct V ∗ from V , one only has to add one point for each irreducible
closed subvariety of V . Then U �→ U∗ is a bijection from the set of open subsets of
V to the set of open subsets of V ∗. Moreover, Γ(U∗,OV ∗) = Γ(U,OV ) for each open
subset U of V . Therefore the topologies and sheaves on V and V ∗ are the same —
only the underlying sets differ.

Every aspiring algebraic and (especially) arithmetic geometer needs to learn the
basic theory of schemes, and for this I recommend reading Chapters II and III of
Hartshorne 1997.

Among the books listed below, I especially recommend Shafarevich 1994 — it is
very easy to read, and is generally more elementary than these notes, but covers more
ground (being much longer).

Commutative Algebra

Atiyah, M.F and MacDonald, I.G., Introduction to Commutative Algebra, Addison-
Wesley 1969. This is the most useful short text. It extracts the essence of a good
part of Bourbaki 1961–83.

Bourbaki, N., Algèbre Commutative, Chap. 1–7, Hermann, 1961–65; Chap 8–9, Masson,
1983. Very clearly written, but it is a reference book, not a text book.

Eisenbud, D., Commutative Algebra, Springer, 1995. The emphasis is on motivation.

Nagata, M., Local Rings, Wiley, 1962. Contains much important material, but it is
concise to the point of being almost unreadable.

Reid, M., Undergraduate Commutative Algebra, Cambridge 1995. According to the au-
thor, it covers roughly the same material as Chapters 1–8 of Atiyah and MacDonald
1969, but is cheaper, has more pictures, and is considerably more opinionated. (How-
ever, Chapters 10 and 11 of Atiyah and MacDonald 1969 contain crucial material.)

Serre: Algèbre Locale, Multiplicités, Lecture Notes in Math. 11, Springer, 1957/58
(third edition 1975).

Zariski, O., and Samuel, P., Commutative Algebra, Vol. I 1958, Vol II 1960, van Nos-
trand. Very detailed and well organized.

Elementary Algebraic Geometry

Reid, M., Undergraduate Algebraic Geometry. A brief, elementary introduction. The
final section contains an interesting, but idiosyncratic, account of algebraic geometry
in the twentieth century.
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Abhyankar, S., Algebraic Geometry for Scientists and Engineers, AMS, 1990. Mainly
curves, from a very explicit and down-to-earth point of view.

Computational Algebraic Geometry

Cox, D., Little, J., O’Shea, D., Ideals, Varieties, and Algorithms, Springer, 1992. This
gives an algorithmic approach to algebraic geometry, which makes everything very
down-to-earth and computational, but the cost is that the book doesn’t get very far
in 500pp.

Subvarieties of Projective Space

Shafarevich, I., Basic Algebraic Geometry, Book 1, Springer, 1994. Very easy to read.

Harris, Joe: Algebraic Geometry: A first course, Springer, 1992. The emphasis is on
examples.

Algebraic Geometry over the Complex Numbers

Griffiths, P., and Harris, J., Principles of Algebraic Geometry, Wiley, 1978. A com-
prehensive study of subvarieties of complex projective space using heavily analytic
methods.

Mumford, D., Algebraic Geometry I: Complex Projective Varieties. The approach is
mainly algebraic, but the complex topology is exploited at crucial points.

Shafarevich, I., Basic Algebraic Geometry, Book 3, Springer, 1994.

Abstract Algebraic Varieties

Dieudonné, J., Cours de Géometrie Algébrique, 2, PUF, 1974. A brief introduction to
abstract algebraic varieties over algebraically closed fields.

Kempf, G., Algebraic Varieties, Cambridge, 1993. Similar approach to these notes, but
is more concisely written, and includes two sections on the cohomology of coherent
sheaves.

Kunz, E., Introduction to Commutative Algebra and Algebraic Geometry, Birkhaüser,
1985. Similar approach to these notes, but includes more commutative algebra and
has a long chapter discussing how many equations it takes to describe an algebraic
variety.

Mumford, D. Introduction to Algebraic Geometry, Harvard notes, 1966. Notes of a
course written (as I recall) by W. Waterhouse. Apart from the original treatise
(Grothendieck and Dieudonné 1960–67), this was the first place one could learn the
new approach to algebraic geometry. The first chapter is on varieties, and last two
on schemes.

Mumford, David: The Red Book of Varieties and Schemes, Lecture Notes in Math.
1358, Springer, 1988. Reprint of Mumford 1966.

Schemes

Eisenbud, D., and Harris, J., Schemes: the language of modern algebraic geometry,
Wadsworth, 1992. A brief elementary introduction to scheme theory.

Grothendieck, A., and Dieudonné, J., Eléments de Géométrie Algébrique. Publ. Math.
IHES 1960–1967. This was intended to cover everything in algebraic geometry in 13
massive books, that is, it was supposed to do for algebraic geometry what Euclid’s
“Elements” did for geometry. Unlike the earlier Elements, it was abandoned after 4
books. It is an extremely useful reference.
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Hartshorne, R., Algebraic Geometry, Springer 1977. Chapters II and III give an excellent
account of scheme theory and cohomology, so good in fact, that no one seems willing
to write a competitor. The first chapter on varieties is very sketchy.

Iitaka, S. Algebraic Geometry: an introduction to birational geometry of algebraic vari-
eties, Springer, 1982. Not as well-written as Hartshorne 1977, but it is more elemen-
tary, and it covers some topics that Hartshorne doesn’t.

Shafarevich, I., Basic Algebraic Geometry, Book 2, Springer, 1994. A brief introduction
to schemes and abstract varieties.

History

Dieudonné, J., History of Algebraic Geometry, Wadsworth, 1985.

Of Historical Interest

Hodge, W., and Pedoe, D., Methods of Algebraic Geometry, Cambridge, 1947–54.

Lang, S., Introduction to Algebraic Geometry, Interscience, 1958. An introduction to
Weil 1946.

Weil, A., Foundations of Algebraic Geometry, AMS, 1946; Revised edition 1962. This is
where Weil laid the foundations for his work on abelian varieties and jacobian varieties
over arbitrary fields, and his proof of the analogue of the Riemann hypothesis for
curves and abelian varieties. Unfortunately, not only does its language differ from
the current language of algebraic geometry, but it is incompatible with it.

There is also a recent book by Kenji Ueno, which I haven’t seen.

J.S. Milne, Mathematics Department, University of Michigan, Ann Arbor, MI 48109.
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