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Introduction

If you’ve already bought this book or are thinking about buying it, it’s probably too late —
too late, that is, to change your mind and get the heck out of calculus. (If you’ve still got

a chance to break free, get out and run for the hills!) Okay, so you’re stuck with calculus;
you’re past the point of no return. Is there any hope? Of course! For starters, buy this gem
of a book and my other classic, Calculus For Dummies. In both books, you find calculus
explained in plain English with a minimum of technical jargon. Calculus For Dummies covers
topics in greater depth. Calculus Workbook For Dummies gives you the opportunity to
master the calculus topics you study in class or in Calculus For Dummies through a couple
hundred practice problems that will leave you giddy with the joy of learning . . . or pulling
your hair out.

In all seriousness, calculus is not nearly as difficult as you’d guess from its reputation. It’s a
logical extension of algebra and geometry, and many calculus topics can be easily under-
stood when you see the algebra and geometry that underlie them.

It should go without saying that regardless of how well you think you understand calculus,
you won’t fully understand it until you get your hands dirty by actually doing problems. On
that score, you’ve come to the right place.

About This Book
Calculus Workbook For Dummies, like Calculus For Dummies, is intended for three groups of
readers: high school seniors or college students in their first calculus course, students who’ve
taken calculus but who need a refresher to get ready for other pursuits, and adults of all ages
who want to practice the concepts they learned in Calculus For Dummies or elsewhere.

Whenever possible, I bring the calculus here down to earth by showing its connections to basic
algebra and geometry. Many calculus problems look harder than they actually are because
they contain so many fancy, foreign-looking symbols. When you see that the problems aren’t
that different from related algebra and geometry problems, they become far less intimidating.

I supplement the problem explanations with tips, shortcuts, and mnemonic devices. Often, a
simple tip or memory trick can make it much easier to learn and retain a new, difficult concept.

Conventions Used in This Book
This book uses certain conventions:

� Variables are in italics.

� Important math terms are often in italics and defined when necessary.

� In the solution section, I’ve given your eyes a rest and not bolded all the numbered
steps as is typical in For Dummies books.

� Extra hard problems are marked with an asterisk. You may want to skip these if you’re
prone to cerebral hemorrhaging.



How to Use This Book
Like all For Dummies books, you can use this book as a reference. You don’t need to
read it cover to cover or work through all problems in order. You may need more prac-
tice in some areas than others, so you may choose to do only half of the practice prob-
lems in some sections, or none at all.

However, as you’d expect, the order of the topics in Calculus Workbook For Dummies
follows the order of the traditional curriculum of a first-year calculus course. You can,
therefore, go through the book in order, using it to supplement your coursework. If I do
say so myself, I expect you’ll find that many of the explanations, methods, strategies,
and tips in this book will make problems you found difficult or confusing in class seem
much easier.

Foolish Assumptions
Now that you know a bit about how I see calculus, here’s what I’m assuming about you:

� You haven’t forgotten all the algebra, geometry, and trigonometry you learned 
in high school. If you have, calculus will be really tough. Just about every single
calculus problem involves algebra, a great many use trig, and quite a few use
geometry. If you’re really rusty, go back to these basics and do some brushing
up. This book contains some practice problems to give you a little pre-calc
refresher, and Calculus For Dummies has an excellent pre-calc review.

� You’re willing to invest some time and effort in doing these practice problems.
Like with anything, practice makes perfect, and, also like anything, practice
sometimes involves struggle. But that’s a good thing. Ideally, you should give
these problems your best shot before you turn to the solutions. Reading through
the solutions can be a good way to learn, but you’ll usually learn more if you
push yourself to solve the problems on your own — even if that means going
down a few dead ends.

How This Book Is Organized
Like all For Dummies books, this one is divided into parts, the parts into chapters, and
the chapters into topics. Remarkable!

Part I: Pre-Calculus Review
Part I is a brief review of the algebra, geometry, functions, and trigonometry that you’ll
need for calculus. You simply can’t do calculus without a working knowledge of alge-
bra and functions because virtually every single calculus problem involves both of
these pre-calc topics in some way or another. You might say that algebra is the lan-
guage calculus is written in and that functions are the objects that calculus analyzes.
Geometry and trig are not quite as critical because you could do some calculus with-
out them, but a great number of calculus problems and topics involve geometry and
trig. If your pre-calc is rusty, get out the Rust-Oleum.
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Part II: Limits and Continuity
You can actually do most practical calculus problems without knowing much about
limits and continuity. The calculus done by scientists, engineers, and economists
involves differential and integral calculus (see Parts III and IV), not limits and continu-
ity. But because mathematicians do care about limits and continuity and because
they’re the ones who write calculus texts and design calculus curricula, you have to
learn these topics.

Obviously, I’m being a bit cynical here. Limits and continuity are sort of the logical
scaffolding that holds calculus up, and, as such, they’re topics worthy of your time
and effort.

Part III: Differentiation
Differentiation and integration (Part IV) are the two big ideas in calculus. Differentiation
is the study of the derivative, or slope, of functions: where the slope is positive, nega-
tive, or zero; where the slope has a minimum or maximum value; whether the slope 
is increasing or decreasing; how the slope of one function is related to the slope of
another; and so on. In Part III, you get differentiation basics, differentiation rules, and
techniques for analyzing the shape of curves, and solving problems with the derivative. 

Part IV: Integration and Infinite Series
Like differentiation, “integration” is a fancy word for a simple idea: addition. Every 
integration problem involves addition in one way or another. What makes integration
such a big deal is that it enables you to add up an infinite number of infinitely small
amounts. Using the magic of limits, integration cuts up something (an area, a volume,
the pressure on the wall of a tank, and so on) into infinitely small chunks and then
adds up the chunks to arrive at the total. In Part IV, you work through integration
basics, techniques for finding integrals, and problem solving with integration.

Infinite series is a fascinating topic full of bizarre, counter-intuitive results, like the infi-
nitely long trumpet shape that has an infinite surface area but a finite volume! — hard
to believe but true. Your task with infinite series problems is to decide whether the sum
of an infinitely long list of numbers adds up to infinity (something that’s easy to imag-
ine) or to some ordinary, finite number (something many people find hard to imagine).

Part V: The Part of Tens
Here you get ten things you should know about limits and infinite series, ten things
you should know about differentiation, and ten things you should know about integra-
tion. If you find yourself knowing no calculus with your calc final coming up in 24
hours (perhaps because you were listening to Marilyn Manson on your iPod during
class and did all your assignments in a “study” group), turn to the Part of Tens and the
Cheat Sheet. If you learn only this material — not an approach I’d recommend — you
may actually be able to barely survive your exam.
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Icons Used in This Book
The icons help you to quickly find some of the most critical ideas in the book.

Next to this icon are important pre-calc or calculus definitions, theorems, and so on.

This icon is next to — are you sitting down? — example problems.

The tip icon gives you shortcuts, memory devices, strategies, and so on.

Ignore these icons and you’ll be doing lots of extra work and probably getting the
wrong answer.

Where to Go from Here
You can go

� To Chapter 1 — or to whatever chapter you need to practice.

� To Calculus For Dummies for more in-depth explanations. Then, because after fin-
ishing it and this workbook your newly acquired calculus expertise will at least
double or triple your sex appeal, pick up French For Dummies and Wine For
Dummies to impress Nanette or Jéan Paul.

� With the flow.

� To the head of the class, of course.

� Nowhere. There’s nowhere to go. After mastering calculus, your life is complete.
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Part I

Pre-Calculus Review



In this part . . .

Most of mathematics is cumulative — you can’t do
calculus without a solid knowledge of pre-calc.

Obviously, there’s much more to pre-calc than what’s cov-
ered in the two short chapters of Part I, but if you’re up to
speed with the concepts covered here, you’re in pretty
good shape to begin the study of calculus. You really
should be very comfortable with all this material, so work
through the practice problems in Chapters 1 and 2, and if
you find yourself on shaky ground, go back to your old
textbooks (assuming you didn’t burn them) or to the thor-
ough pre-calc review in Calculus For Dummies to fill in any
gaps in your knowledge of algebra, geometry, functions,
and trig. Now you finally have an answer to the question
you asked during high school math classes: “When am I
ever going to need this?” Unfortunately, now there’s the
new question: “When am I ever going to need calculus?”



Chapter 1

Getting Down the Basics: 
Algebra and Geometry

In This Chapter
� Fussing with fractions

� Brushing up on basic algebra

� Getting square with geometry

I know, I know. This is a calculus workbook, so what’s with the algebra and geometry? Don’t
worry, I’m not going to waste too many precious pages with algebra and geometry, but

these topics are essential for calculus. You can no more do calculus without algebra than you
can write French poetry without French. And basic geometry (but not geometry proofs —
hooray!) is critically important because much of calculus involves real-world problems that
include angles, slopes, shapes, and so on. So in this chapter — and in Chapter 2 on functions
and trigonometry — I give you some quick problems to help you brush up on your skills. If
you’ve already got these topics down pat, skip on over to Chapter 3.

If you miss some questions and don’t quite understand why, go back to your old textbooks
or check out the great pre-calc review in Calculus For Dummies. Getting these basics down
pat is really important.

Fraction Frustration
Many, many math students hate fractions. Maybe the concepts didn’t completely click when
they first learned them and so fractions then became a nagging frustration in every subse-
quent math course.

But you can’t do calculus without a good grasp of fractions. For example, the very definition
of the derivative is based on a fraction called the difference quotient. And, on top of that, the 

symbol for the derivative, 
dx
dy

, is a fraction. So, if you’re a bit rusty with fractions, get up to 

speed with the following problems ASAP — or else!

Q. Solve ?
b
a

d
c
=$

A.
bd
ac To multiply fractions, you multiply 

straight across. You do not cross-multiply!

Q. Solve ?
b
a

d
c

' =

A.
bc
ad

b
a

d
c

b
a

c
d

' = =$ To divide fractions, you 

flip the second one, then multiply.
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1. Solve ?
0
5
= .

Solve It

2. Solve ?
10
0

= .

Solve It

3. Does 
a c
a b

3
3

+

+ equal a c
a b
+
+ ? Why or why not?

Solve It

4. Does 
a c
a b

3
3

+

+ equal c
b ? Why or why not?

Solve It

5. Does 
ac
ab

4
4 equal ac

ab ? Why or why not?

Solve It

6. Does 
ac
ab

4
4 equal c

b ? Why or why not?

Solve It
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7. Rewrite x 3- without a negative power. 

Solve It

8. Does abc
4^ h equal a b c4 4 4? Why or why not?

Solve It

Misc. Algebra: You Know, 
Like Miss South Carolina

This section gives you a quick review of algebra basics like factors, powers and roots,
logarithms, and quadratics. You absolutely must know these basics. 

Q. Factor x y9 4 6
- .

A. x y x yx y 3 39 2 3 2 34 6
- = - +_ _i i This is an

example of the single most important
factor pattern: a b a b a b2 2

- = - +^ ^h h.
Make sure you know it!

Q. Rewrite x /2 5 without a fraction power.

A. x x25 5
2

= ` j Don’t forget how fraction
powers work!
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9. Does a b c
4

+ +^ h equal a b c4 4 4
+ + ? Why or

why not?

Solve It

10. Rewrite x43 with a single radical sign. 

Solve It

11. Does a b2 2
+ equal a b+ ? Why or why not? 

Solve It

12. Rewrite log b ca = as an exponential 
equation. 

Solve It
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13. Rewrite log loga bc c- with a single log.

Solve It

14. Rewrite log log5 200+ with a single log and
then solve.

Solve It

15. If x x5 3 82
= + , solve for x with the 

quadratic formula.

Solve It

16. Solve >x3 2 14+ .

Solve It
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17. Fill in the two missing lengths for the sides
of the triangle in the following figure.

Solve It

10

b

a

30˚

18. What are the lengths of the two missing
sides of the triangle in the following figure?

Solve It

8 b

a
60˚

Geometry: When Am I Ever Going to Need It?
You can use calculus to solve many real-world problems that involve surfaces, volumes,
and shapes, such as maximizing the volume of a cylindrical soup can or determining
the stress along a cable hanging in a parabolic shape. So you’ve got to know the basic
geometry formulas for length, area, and volume. You also need to know basic stuff like
the Pythagorean Theorem, proportional shapes, and basic coordinate geometry like the
distance formula.

Q. What’s the area of the triangle in the fol-
lowing figure?

A.
2
39

Area base height
2
1

2
1 13 3

2
39

triangle=

=

=

$

$

13

x 3

Q. How long is the hypotenuse of the triangle
in the previous example?

A. x = 4

a b c

x a b

x

x

x

x

13 3

13 3

16

4

2 2 2

2 2 2

2
2 2

2

2

+ =

= +

= +

= +

=

=
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19. Fill in the missing lengths for the sides of
the triangle in the following figure.

Solve It

b6

a
45˚

20. a. What’s the total area of the pentagon in
the following figure?

b. What’s the perimeter?

Solve It

10

60˚

60˚

21. Compute the area of the parallelogram in
the following figure. 

Solve It

10

4

45˚

22. What’s the slope of PQ?

Solve It

(a,b)

(c,d) Q

P

y

x
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23. How far is it from P to Q in the figure from
problem 22?

Solve It

24. What are the coordinates of the midpoint
of PQ in the figure from problem 22?

Solve It



Solutions for This Easy Elementary Stuff
a Solve ?

0
5
= . 

0
5 is undefined! Don’t mix this up with something like 

8
0 , which equals zero. Note 

that if you think about these two fractions as examples of slope ( run
rise ), 

0
5 has a rise of 5 and a 

run of 0 which gives you a vertical line that has sort of an infinite steepness or slope (that’s why
it’s undefined). Or just remember that it’s impossible to drive up a vertical road and so it’s 

impossible to come up with a slope for a vertical line. The fraction 
8
0 , on the other hand, has a 

rise of 0 and a run of 8, which gives you a horizontal line that has no steepness at all and thus
has the perfectly ordinary slope of zero. Of course, it’s also perfectly ordinary to drive on a 
horizontal road.

b 10
0 0= (See solution to problem 1.)

c Does 
a c
a b

3
3

+

+ equal a c
a b
+
+ ? No. You can’t cancel the 3s.

You can’t cancel in a fraction unless there’s an unbroken chain of multiplication running across
the entire numerator and ditto for the denominator. 

d Does 
a c
a b

3
3

+

+ equal c
b ? No. You can’t cancel the 3as. (See previous Warning.)

e Does 
ac
ab

4
4 equal ac

ab ? Yes. You can cancel the 4s because the entire numerator and the entire 

denominator are connected with multiplication. 

f Does 
ac
ab

4
4 equal c

b ? Yes. You can cancel the 4as.

g Rewrite x 3- without a negative power. 
x
1

3

h Does abc
4^ h equal a b c4 4 4? Yes. Exponents do distribute over multiplication.

i Does a b c
4

+ +^ h equal a b c4 4 4
+ + ? No! Exponents do not distribute over addition 

(or subtraction).

When you’re working a problem and can’t remember the algebra rule, try the problem with
numbers instead of variables. Just replace the variables with simple, round numbers and work
out the numerical problem. (Don’t use 0, 1, or 2 because they have special properties that can
mess up your example.) Whatever works for the numbers will work with variables, and what-
ever doesn’t work with numbers won’t work with variables. Watch what happens if you try this
problem with numbers:

,
13 81 256 1296

28 561 1633!

+ +

3 4 6 3 4 6
?

?

4 4 4 4

4

+ + = + +

=

^ h

j Rewrite x43 with a single radical sign. x x43 12=

k Does a b2 2
+ equal a b+ ? No! The explanation is basically the same as for problem 9. Consider 

this: If you turn the root into a power, you get a b a b
/

2 2 2 2
1 2

+ = +_ i . But because you can’t 

distribute the power, , ,ora b a b a b
/ / /

2 2
1 2

2
1 2

2
1 2

!+ + +_ _ _i i i and thus a b a b2 2
!+ + .

l Rewrite log b ca = as an exponential equation. a bc
=

m Rewrite log loga bc c- with a single log. log
b
a

c
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n Rewrite log log5 200+ with a single log and then solve. log log log log 35 200 5 200 1000+ = = =$^ h

When you see “log” without a base number, the base is 10. 

o If x x5 3 82
= + , solve for x with the quadratic formula. orx

5
8 1= -

Start by rearranging x x5 3 82
= + into x x5 3 8 02

- - = because you want just a zero on one side
of the equation. 

The quadratic formula tells you that x
a

b b ac
2

42
!

=
- -

. Plugging 5 into a, –3 into b, and –8 

into c gives you ,x
2 5

3 3 4 5 8

10
3 9 160

10
3 13

10
16

10
10or

2

! ! !
=
- - - - -

=
+

= =
-

$

^ ^ ^ ^h h h h

x
5
8 1so or= - .

p Solve >x3 2 14+ . < >x x
3

16 4,-

1. Turn the inequality into an equation: x3 2 14+ =

2. Solve the absolute value equation.

x

x

x

3 2 14

3 12

4

+ =

=

=

or

x

x

x

3 2 14

3 16

3
16

+ = -

= -

= -

3. Place both solutions on a number line (see the following figure). (You use hollow dots for
> and <; if the problem had been or$ #, you would use solid dots.)

4. Test a number from each of the three regions on the line in the original inequality.

For this problem you can use –10, 0, and 10. 

>

>

>

3 10 2 14

28 14

28 14

?

?

?

- +

-

$ ^ h

True, so you shade the left-most region.

>

>

3 0 2 14

2 14

?

?

+$ ^ h

False, so you don’t shade the middle region.

>

>

>

3 10 2 14

32 14

32 14

?

?

?

+$

True, so shade the region on the right. The following figure shows the result. x can be any
number where the line is shaded. That’s your final answer.

-16
3

4

-16
3

4
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5. If it floats your boat, you may also want to express the answer symbolically. 

Because x can equal a number in the left region or a number in the right region, this is an or
solution which means union ,^ h. When you want to include everything from both regions
on the number line, you want the union of the two regions. So, the symbolic answer is 

< >x x
3

16 4,-

If only the middle region were shaded, you’d have an and or intersection +^ h problem. When
you only want the section of the number line where the two regions overlap, you use the inter-
section of the two regions. Using the above number line points, for example, you would write
the middle-region solution like

< >

< >

< <

x x

x x

x

3
16 4

3
16 4

3
16 4

and or

or+

-

-

-

You say “to-may-to,” I say “to-mah-to.”

While we’re on the subject of absolute value, don’t forget that x x2
= . x 2 does not

equal x! .

q Fill in the two missing lengths for the sides of the triangle. anda b5 5 3= =

This is a 30°-60°-90° triangle — Well, duhh!

r Fill in the two missing lengths for the sides of the triangle.

a

b

3

8
3

8 3

3

16
3

16 3

or

or

=

=

Another 30°-60°-90° triangle. 

s Fill in the two missing lengths for the sides of the triangle. a = 6 and b = 6 2

Make sure you know your 45°-45°-90° triangle.

t a. What’s the total area of the pentagon? 50
2

25 3
+ .

The square is 
2

10

2

10by (because half a square is a 45°-45°-90° triangle), so the area is 

2

10

2

10
2

100 50= =$ . The equilateral triangle has a base of 
2

10 , or 5 2, so its height is 
2

5 6

(because half of an equilateral triangle is a 30°-60°-90° triangle). So the area of the triangle is 

2
1 5 2

2
5 6

4
25 12

4
50 3

2
25 3

= = =

J

L

KK`
N

P

OOj . The total area is thus 50
2

25 3
+ .

b. What’s the perimeter? The answer is 25.

The sides of the square are 
2

10 , or 5 2, as are the sides of the equilateral triangle. 

The pentagon has five sides, so the perimeter is ,5 5 2 25 2or$ .
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u Compute the area of the parallelogram. The answer is 20 2. 

The height is ,
2

4 2 2or , because the height is one of the legs of a 45°-45°-90° triangle, and 

the base is 10. So, because the area of a parallelogram equals base times height, the area is 

,10 2 2 20 2or$ .

v What’s the slope of PQ? c a
d b
-
- . Remember that slope run

rise
x x
y y

2 1

2 1
= = -

-
.

w How far is it from P to Q? c a d b
2 2

- + -^ ^h h

Remember that distance x x y y2 1

2

2 1

2

= - + -_ _i i .

x What are the coordinates of the midpoint of PQ? ,a c b d
2 2
+ +c m. The midpoint of a segment is 

given by the average of the two x coordinates and the average of the two y coordinates.
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Chapter 2

Funky Functions and Tricky Trig

In This Chapter
� Figuring functions

� Remembering Camp SohCahToa

In Chapter 2, you continue your pre-calc warm-up that you began in Chapter 1. If algebra is
the language calculus is written in, you might think of functions as the “sentences” of cal-

culus. And they’re as important to calculus as sentences are to writing. You can’t do calculus
without functions. Trig is important not because it’s an essential element of calculus — you
could do most of calculus without trig — but because many calculus problems happen to
involve trigonometry.

Figuring Out Your Functions
To make a long story short, a function is basically anything you can graph on your graphing
calculator in “ y =” or graphing mode. The line y x3 2= - is a function, as is the parabola
y x x4 3 62
= - + . On the other hand, the sideways parabola x y y3 4 62

= - + isn’t a function
because there’s no way to write it as y = something. Try it.

You can determine whether or not the graph of a curve is a function with the vertical line test.
If there’s no place on the graph where you could draw a vertical line that touches the curve
more than once, then it is a function. And if you can draw a vertical line anywhere on the
graph that touches the curve more than once, then it is not a function.

As you know, you can rewrite the above functions using “f x^ h” or “g x^ h” instead of “y.” This
changes nothing; using something like f x^ h is just a convenient notation. Here’s a sampling
of calculus functions:

lim

g x x x

f x
h

x h x

A x dt

3 20

10

h

f

x

5 3

0

3

= -

=
+ -

=

"

#

l

l

^
^
^

h
h
h

Virtually every single calculus problem involves functions in one way or another. So should
you review some function basics? You betcha. 
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1. Which of the four relations shown in the
figure represent functions and why? (A
relation, by the way, is any collection of
points on the x-y coordinate system.)

Solve It

y

x

y = |x|a. b.

c. d.

y

x

y = sinx

y

x

x 2  + y 2  = 9

y

x

x = y 3  - 5y 2  + 10

2. If the slope of line l is 3, 

a. What’s the slope of a line parallel to l? 

b. What’s the slope of a line perpendicular
to l?

Solve It

Q. If f x x x3 4 82
= - +^ h , what does f a b+^ h

equal?

A. a ab b a b3 6 3 4 4 82 2
+ + - - +

f x x x

f a b a b a b

a ab b a b

a ab b a b

3 4 8

3 4 8

3 2 4 4 8

3 6 3 4 4 8

2

2

2 2

2 2

= - +

+ = + - + +

= + + - - +

= + + - - +

^
^ ^ ^

_

h
h h h

i

Q. For the line g x x5 4= -^ h , what’s the slope
and what’s the y-intercept?

A. The slope is –4 and the y-intercept is 5.
Does y mx b= + ring a bell? It better!
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3. Sketch a graph of f x e x
=^ h .

Solve It

4. Sketch a graph of lng x x=^ h .

Solve It

5. The following figure shows the graph of
f x^ h. Sketch the inverse of f, f x1- ^ h.

Solve It

f(x)

x

y

6. The figure shows the graph of p x 2 x
=^ h .

Sketch the following transformation of p:
q x 2 5x 3

= +
+^ h .

Solve It

(0,1)

(1,2)

(3,8)

y

x

1

1 2 3 4

2

3

4

5

6

7

8

-2 -1-4 -3

y = 2
x



22 Part I: Pre-Calculus Review 

7. Use the right triangle to complete the
table. 

____

____

____

sin

cos

tan

30

30

30

c

c

c

=

=

=

____

____

____

csc

sec

cot

30

30

30

c

c

c

=

=

=

Solve It

1

2

30˚

3

8. Use the triangle from problem 7 to com-
plete the following table.

____

____

____

sin

cos

tan

60

60

60

c

c

c

=

=

=

____

____

____

csc

sec

cot

60

60

60

c

c

c

=

=

=

Solve It

Trigonometric Calisthenics
Believe it or not, trig is a very practical, real-world branch of mathematics, because it
involves the measurement of lengths and angles. Surveyors use it when surveying prop-
erty, making topographical maps, and so on. The ancient Greeks and Alexandrians,
among others, knew not only simple SohCahToa stuff, but a lot of sophisticated trig as
well. They used it for building, navigation, and astronomy. It’s all over the place in the
study of calculus, so if you snoozed through high school trig, WAKE UP! and review the
following problems. (If you want to delve further into trig (and functions), check out
Calculus For Dummies.)
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9. Use the following triangle to complete the
table below.

____

____

____

sin

cos

tan

45

45

45

c

c

c

=

=

=

____

____

____

csc

sec

cot

45

45

45

c

c

c

=

=

=

Solve It

1

1

45˚

2

10. Using your results from problems 7, 8, and
9, fill in the coordinates for the points on
the unit circle.

Solve It

y

x

(0, 1)

(0, -1)

(1, 0)(-1, 0)

-45˚

300˚

315˚

330˚

45˚

60˚120˚

135˚

210˚

225˚

240˚

150˚

30˚

11. Complete the following table using your
results from problem 10.

____

____

____

tan

csc

cot

120

150

270

c

c

c

=

=

=

____

____

____

csc

cot

sec

180

300

225

c

c

c

=

=

=

Solve It

12. Convert the following angle measures from
degrees to radians or vice-versa.

____

____

____

____

150

225

300

60

radians

radians

radians

radians

c

c

c

c

=

=

=

- =

____

____

____

____

π

π

π

π

3
4

4
7

2
5

6
7

c

c

c

c

=

=

=

- =

Solve It
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13. Sketch siny x= and cosy x= .

Solve It

14. Using your answers from problem 10, com-
plete the following table of inverse trig
functions. 

____

____

____

____

sin

sin

cos

tan

2
1

2
1

2
1

1

1

1

1

1

c

c

c

c

=

- =

- =

- =

-

-

-

-

c
c
c
^

m
m
m
h

____

____

____

____

tan

sin

cos

cos

3

1

1

0

radians

radians

radians

radians

1

1

1

1

=

=

=

=

-

-

-

-

Solve It



Solutions to Functions and Trigonometry
a Which of the four relations in the figure represent functions and why? A and D.

The circle and the S-shaped curve are not functions because they fail the vertical line test: You
can draw a vertical line somewhere on their graphs that touches the curve more than once.
These two curves also fail the algebraic test: A curve is a function if for each input value (x)
there is at most one output value (y). The circle and the S-shaped curve have some xs that cor-
respond to more than one y so they are not functions. Note that the reverse is not true: You can
have a function where there are two or more input values (xs) for a single output value (y).

b If the slope of line l is 3, 

a. What’s the slope of a line parallel to l? The answer is 3.

b. What’s the slope of a line perpendicular to l? The answer is 
3
1

- , the opposite reciprocal of 3.

c Sketch a graph of f x e x
=^ h .

d Sketch a graph of lng x x=^ h .

y

x
1

-3
-2
-1

-1-2 543-3 1 62

g(x) = lnx
2
3
4
5
6

f(x) = e
x

y

x
1

-3
-2
-1

-1-2 543-3 1 62

2
3
4
5
6
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e The figure shows the graph of f x^ h. Sketch the inverse of f, f x1- ^ h.
You obtain f x1- ^ h by reflecting f x^ h over the line y = x. See the figure.

f The figure shows the graph of p x 2 x
=^ h . Sketch the transformation of p, q x 2 5x 3

= +
+^ h .

You obtain q(x) from p(x) by taking p(x) and sliding it 3 to the left and 5 up. See the figure. Note
that q(x) contains “x plus 3,” but the horizontal transformation is 3 to the left — the opposite of
what you’d expect. The “ + 5” in q(x) tells you to go up 5. 

Horizontal transformations always work opposite the way you’d expect. Vertical
transformations, on the other hand, go the normal way — up for plus and down for
minus.

g Use the right triangle to complete the following table. 

csc 230c =sin

cos

tan

2
1

2
3

3
3

30

30

30

c

c

c

=

=

=

sec
3

2 3
30c =

cot 330c =

h Use the triangle from problem 7 to complete the following table.

csc
3

2 3
60c =sin

cos

tan

2
3

2
1

3

60

60

60

c

c

c

=

=

=

sec 260c =

cot
3
3

60c =

y

x
1

1 5 10 15

5

10

15
(0, 13)

(-2, 7)
(-3, 6)

-5 -1-15 -10

f -1(x)

x

y
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i Use the triangle to complete the table below.

csc 245c =sin

cos

tan

2
2

2
2

1

45

45

45

c

c

c

=

=

=

sec 245c =

cot 145c =

j Using your results from problems 7, 8, and 9, fill in the coordinates for the points on the unit
circle.

k Complete the following table using your results from problem 10.

tan 3120c = -

csc 2150c =

csc

cot

sec

undefined

3
3

2

180

300

225

c

c

c

=

= -

= -cot 0270c =

l Convert the following angle measures from degrees to radians or vice versa.

radians

radians

radians

radians

π

π

π

π

6
5

4
5

3
5

3

150

225

300

60

c

c

c

c

=

=

=

- = -

cot min

cot min

er al with

er al with

π

π

π

π

240

315

450 90

210 90

3
4

4
7

2
5

6
7

c

c

c c

c c

=

=

=

- = -

^
^

h
h

y

x
-45˚

300˚

315˚

330˚

45˚

60˚120˚

135˚

210˚

225˚

240˚

150˚

30˚

1 3

22

2

2

2

2

1

2

3

2

1

2

3

2
−

2

2

2

2
−

1

2

3

2
−

1

2

3

2
− −

2

2

2

2
− −

1

2

3

2
− −

1

2

3

2
−

1

2

3

2
−

2

2

2

2
−

(0, 1)

(0, -1)

(1, 0)(-1, 0)

27Chapter 2: Funky Functions and Tricky Trig



m Sketch siny x= and cosy x= .

n Using your answers from problem 10, complete the following table of inverse trigonometric
functions. 

sin

sin

cos

tan

30

30

120

45

2
1

2
1

2
1

1

1

1

1

1

c

c

c

c

=

- = -

- =

- = -

-

-

-

-

c
c
c
^

m
m
m
h

tan

sin

cos

cos

radians

radians

radians

radians

π

π

π

3

2

0

2

3

1

1

0

1

1

1

1

=

=

=

=

-

-

-

-

Don’t forget — inverse sine and inverse tangent answers have to be between –90° and 

90° (or π

2
- and π

2
radians) inclusive. And inverse cosine answers must be between 0°

and 180° (or 0 and π radians) inclusive.

y

x
90-90

1

-1

180 270 360

y = sinx

y

x
90-90

1

-1

180 270 360

y = cosx
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Part II

Limits and Continuity



In this part . . .

Isaac Newton and Gottfried Leibniz, co-inventors of cal-
culus in the late 17th century, did calculus without the

solid foundation provided by limits and continuity. Now,
since Newton and Leibniz were merely two of the greatest
geniuses who ever lived, you don’t want to do math at their
lowly level, do you? Of course not! You want your calculus
to be mathematically rigorous, and for that you need to
master limits and continuity — despite their almost com-
plete lack of practical importance. Now, don’t blame me for
this — heck, if practical relevance is your standard, you
might as well drop out of school all together. Actually, the
study of limits (and to a much lesser extent continuity) can
be fascinating. And in the event that you hail from the
show-me state, limits will allow you to prove that in a race
against a tortoise where you give the tortoise a head start,
you actually will catch up to and then pass the tortoise.
The things that mathematics allows you to accomplish!



Chapter 3

A Graph Is Worth a Thousand Words:
Limits and Continuity

In This Chapter
� The mathematical mumbo jumbo of limits and continuity

� When limits exist and don’t exist

� Discontinuity. . . or graphus interruptus

You can use ordinary algebra and geometry when the things in a math problem aren’t
changing (sort of) and when lines are straight. But you need calculus when things are

changing (these changing things are often represented as curves). For example, you need
calculus to analyze something like the motion of the space shuttle during the beginning of
its flight because its acceleration is changing every split second.

Ordinary algebra and geometry fall short for such things because the algebra or geometry
formula that works one moment no longer works a millionth of a second later. Calculus, on
the other hand, chops up these constantly changing things — like the motion of the space
shuttle — into such tiny bits (actually infinitely small bits) that within each bit, things don’t
change. Then you can use ordinary algebra and geometry.

Limits are the “magical” trick or tool that does this chopping up of something into infinitely
small bits. It’s the mathematics of limits that makes calculus work. Limits are so essential
that the formal definitions of the derivative and the definite integral both involve limits.

If — when your parents or other adults asked you, “What do you want to be when you grow
up?” — you responded, “Why, a mathematician, of course,” then you may ultimately spend a
great deal of time thoroughly studying the deep and rich subtleties of continuity. For the rest
of you, the concept of continuity is a total no-brainer. If you can draw a graph without lifting
your pen or pencil from the page, the graph is continuous. If you can’t — because there’s a
break in the graph — then the graph is not continuous. That’s all there is to it. By the way,
there are some subtle and technical connections between limits and continuity (which I
don’t want to get into), and that’s why they’re in the same chapter. But, be honest now,
did you buy this book because you were dying to learn about mathematical subtleties and
technicalities? 

Digesting the Definitions: Limit and Continuity
This short section covers a couple formal definitions and a couple other things you need to
know about limits and continuity. Here’s the formal, three-part definition of a limit:



For a function f x^ h and a real number a, lim f x
x a"

^ h exists if and only if

1. lim f x
x a"

-
^ h exists. In other words, there must be a limit from the left.

2. lim f x
x a"

+
^ h exists. There must be a limit from the right.

3. lim limf x f x
x a x a

=
" "

- +
^ ^h h The limit from the left must equal the limit from the right.

(Note that this definition does not apply to limits as x approaches infinity or negative
infinity.)

And here’s the definition of continuity: A function f x^ h is continuous at a point x a= if
three conditions are satisfied:

1. f a^ h is defined.

2. lim f x
x a"

^ h exists.

3. limf a f x
x a

=
"

^ ^h h.

Using these definitions and Figure 3-1, answer problems 1 through 4. 

y

x
1

1-1-5 5 10 15

5

10

15

Figure 3-1:

Graphus

interruptus:

A function

with many

disconti-

nuities.
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1. At which of the following x-values are all
three requirements for the existence of a
limit satisfied, and what is the limit at
those x-values? x = –2, 0, 2, 4, 5, 6, 8, 10,
and 11.

Solve It

2. For the x-values at which all three limit
requirements are not met, state which of
the three requirements are not satisfied.
If one or both one-sided limits exist at any
of these x-values, give the value of the 
one-sided limit.

Solve It

3. At which of the x-values are all three
requirements for continuity satisfied? 

Solve It

4. For the rest of the x-values, state which of
the three continuity requirements are not
satisfied.

Solve It



Taking a Closer Look: Limit 
and Continuity Graphs

In this section, you get more practice at solving limit and continuity problems visually.
Then in Chapter 4, you solve limit problems numerically (with your calculator) and
symbolically (with algebra).

Use Figure 3-2 to answer problems 5 through 10.

f (x)

y

x
1

1-1-5-10 5 10 15 20

5

10

15

20

Figure 3-2:

Another

bizarre

graph.
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Q. ?lim f x
x 0

=
"

^ h

A. lim f x 2
x 0

=
"

^ h Because f 0 2=^ h and because 

f is continuous there, the limit must equal
the function value. Whenever a function
passes through a point and there’s no dis-
continuity at the point, the limit equals the
function value.

Q. ?lim f x
x 13

=
"

^ h

A. lim f x 2
x 13

=
"

^ h because there’s a hole at 

,13 2_ i. The limit at a hole is the height
of the hole.
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5. ?lim f x
x 7

=
" -

^ h

Solve It

6. ?lim f x
x 5

=
"

^ h

Solve It

7. ?lim f x
x 5

=
"

-
^ h

Solve It

8. ?lim f x
x 18

=
"

^ h

Solve It
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9. ?lim f x
x 5

=
"

+
^ h

Solve It

10. List the x-coordinates of all points of 
discontinuity of f and state the type of 
discontinuity — removable, jump, or 
infinite.

Solve It

11. ?lim sinx
x

=
"3

See the following graph.

Solve It

y

x

1

−1

3

f(x) = sinx

π2

2

π3ππ

2

5π

2

π

2

−π

12. ?lim x
1

x
=

"3

See the following graph of y x
1

= .

Solve It

y

x
1

1

2

3

4

-4

-3

-2

-1 2 3 4-4 -3 -2 -1

1
x

y =



Solutions for Limits and Continuity
a At which of the following x-values are all three requirements for the existence of a limit satis-

fied, and what is the limit at those x-values? x = –2, 0, 2, 4, 5, 6, 8, 10, and 11.

At 0, the limit is 2.

At 4, the limit is 5.

At 8, the limit is 3.

At 10, the limit is 5.

To make a long story short, a limit exists at a particular x-value of a curve when the curve is
heading toward an exact y-value and keeps heading toward that y-value as you continue to zoom
in on the curve at the x-value. The curve must head toward that y-value from the right and from
the left (unless the limit is one where x approaches infinity). I emphasize “heading toward”
because what happens precisely at the given x-value isn’t relevant to this limit inquiry. That’s
why there is a limit at a hole like the ones at x = 8 and 10.

b For the rest of the x-values, state which of the three limit requirements are not satisfied. If one
or both one-sided limits exist at any of these x-values, give the value of the one-sided limit.

At –2 and 5, all three conditions fail.

At 2, 6, and 11, only the third requirement is not satisfied.

At 2, the limit from the left equals 5 and the limit from the right equals 3.

At 6, the limit from the left is 2 and the limit from the right is 3.

Finally, lim f x 3
x 11

=
"

-
^ h and lim f x 5

x 11
=

"
+

^ h .

c At which of the x-values are all three requirements for continuity satisfied? 

The function in Figure 3-1 is continuous at 0 and 4. The common-sense way of thinking about
continuity is that a curve is continuous wherever you can draw the curve without taking your
pen off the paper. It should be obvious that that’s true at 0 and 4, but not at any of the other
listed x-values.

d For the rest of the x-values, state which of the three continuity requirements are not satisfied.

All listed x-values other than 0 and 4 are points of discontinuity. A discontinuity is just a high-
falutin’ calculus way of saying a gap. If you’d have to take your pen off the paper at some point
when drawing a curve, then the curve has a discontinuity there.

At 5 and 11, all three conditions fail.

At –2, 2, and 6, continuity requirements 2 and 3 are not satisfied.

At 10, requirements 1 and 3 are not satisfied.

At 8, requirement 3 is not satisfied.

e lim f x
x 7" -

^ h does not exist (DNE) because there’s a vertical asymptote at –7. Or, because f x^ h
approaches 3- from the left and from the right, you could say the limit equals 3- .

f lim f x
x 5"

^ h does not exist because the limit from the left does not equal the limit from the 

right. Or you could say that the limit DNE because there’s a jump discontinuity at x = 5.

g lim f x 5
x 18

=
"

^ h because, like the second example problem, the limit at a hole is the height of  

the hole. The fact that f 18^ h is undefined is irrelevant to this limit question.
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h lim f x 4
x 5

=
"

-
^ h because f 5 4=^ h and f is continuous from the left at ,5 4_ i.

i lim f x 6
x 5

=
"

+
^ h . This question is just like problem 8 except that there’s a hollow dot — instead 

of a solid one — at ,5 6_ i. But the hollow dot at ,5 6_ i is irrelevant to the limit question — just
like with question 7 where the hole was irrelevant.

j List the x-coordinates of all points of discontinuity of f and state whether the points of disconti-
nuity are removable or non-removable, and state the type of discontinuity — removable, jump,
or infinite.

At x = –7, the vertical asymptote, there is a non-removable, infinite discontinuity.

At x = 5 there’s a non-removable, jump discontinuity.

At x = 13 and x = 18 there are holes which are removable discontinuities. Though infinitely
small, these are nevertheless discontinuities. They’re “removable” discontinuities because you
can “fix” the function by plugging the holes. 

k lim sinx
x "3

does not exist. There’s no limit as x approaches infinity because the curve oscillates — 

it never settles down to one exact y-value. (The three-part definition of a limit does not apply to
limits at infinity.)

l lim x
1 0

x

=
"3

. In contrast to sinx , this function does hone in on a single value; as you go out 

further and further to the right, the function gets closer and closer to zero, so that’s the limit.
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Chapter 4

Nitty-Gritty Limit Problems

In This Chapter
� Algebra, schmalgebra

� Calculators — taking the easy way out 

� Making limit sandwiches

� Infinity — “Are we there yet?”

� Conjugate multiplication — sounds R rated, but it’s strictly PG

In this chapter, you practice two very different methods for solving limit problems: using
algebra and using your calculator. Learning the algebraic techniques are valuable for two

reasons. The first, incredibly important reason is that the mathematics involved in the alge-
braic methods is beautiful, pure, and rigorous; and, second — something so trivial that per-
haps I shouldn’t mention it — you’ll be tested on it. Do I have my priorities straight or what?
The calculator techniques are useful for several reasons: 1) You can solve some limit prob-
lems on your calculator that are either impossible or just very difficult to do with algebra,
2) You can check your algebraic answers with your calculator, and 3) Limit problems can 
be solved with a calculator when you’re not required to show your work — like maybe on a
multiple choice test.

But before we get to these two major techniques, how about a little rote learning. A few limits
are a bit tricky to justify or prove, so to make life easier, simply commit them to memory.
Here they are:

� limc c
x a

=
"

(y = c is a horizontal 
line, so the limit equals 
c regardless of the 
arrow-number — the 
constant after the arrow.)

� lim x
1

x 0
3=

"
+

� lim x
1

x 0
3= -

"
-

� lim x
1 0

x
=

"3

� lim x
1 0

x
=

" 3-

� lim sin
x

x 1
x 0

=
"

� lim cos
x
x 1 0

x 0

-
=

"

� lim x e1 1
x

x

+ =
"3

c m

Solving Limits with Algebra
You can solve limit problems with several algebraic techniques. But your first step should
always be plugging the arrow-number into the limit expression. If you get a number, that’s
the answer. You’re done. You’re also done if plugging in the arrow-number gives you

� A number or infinity or negative infinity over zero, like 
0
3 , or 

0
!3 ; in these cases

the limit does not exist (DNE).

� Zero over infinity; the answer is zero.



When plugging in fails because it gives you 
0
0 , you’ve got a real limit problem, and you 

have to convert the fraction into some expression where plugging in does work. Here
are some algebraic methods you can try:

� FOILing

� Factoring

� Finding the least common denominator

� Canceling

� Simplification

� Conjugate multiplication

The following examples each use a different method to solve the limit.
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Q. Evaluate lim
x

x

4

16
x 16 -

-

"

.

A. The limit is 8.

1. Try plugging 16 into x — no good.

2. Multiply numerator and denomina-
tor by the conjugate of x4 - , 

namely x4 + .

The conjugate of a two-term expres-
sion has a plus sign instead of a
minus sign — or vice-versa.

lim
x

x

x

x

4

16

4

4

x 16 -

-

+

+

"
$`

^
`
`

j
h

j
j

3. FOIL the conjugates and simplify.

lim

lim

lim

x

x x

x

x x

x

4

16 4

16

16 4

4

x

x

x

16 2
2

16

16

=

-

- +

=
-

- +

= +

"

"

"

c
^ `

^
^ `

`

m
h j

h
h j

j

.

a b a b

a b

Because,
of course,

2 2

- + =

-

^ ^h h

4. Now you can cancel and then 
plug in.

4 16

8

= +

=

Note that while plugging in did not work
in Step 1, it did work in the final step.
That’s your goal: to change the original
expression — usually by canceling — so
that plugging in works.

Q. What’s lim
x x
x x

2
6

x 2
2

2

+ -

- -

" -

?

A. The limit is
3
5 .

1. Try plugging –2 into x — that gives 

you 
0
0 , so on to plan B.

2. Factor and cancel.

lim

lim

x x

x x

x

x

2 1

2 3

1

3

x

x

2

2

=
+ -

+ -

=
-

-

"

"

-

-

^ ^
^ ^

^
^

h h
h h

h
h

3. Cancel now and plug in.

2 1
2 3

3
5

3
5

=
- -

- -

=
-

-

=
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1. lim
x
x

3
9

x 3

2

-

-

"

Solve It

2. lim
x x

x
2

1
x 1

2
+ -

-

"

Solve It

3. lim
x
x

8
2

x 2
3
+

+

" -

Solve It

4. lim
x x

x
4 5 6

4
x 2

2

2

+ -

-

"

Solve It
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5. lim
x

x

3

9
x 9 -

-

"

Solve It

6. lim
x

x
10

5 5
x 10 -

- -

"

Solve It

7. lim cos
x
x 1

x 0

-

"

Solve It

8. lim
x

x

2

1
2
1

x 2 -

-

"

Solve It
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9. lim

x

x

6
1

6
1x 0

+
-

"

Solve It

10. lim sin
x

x
x 0"

Solve It

*11. lim
sin x

x
3x 0"

Solve It

*12. lim tanx
x

x 0"

Solve It



Pulling Out Your Calculator: 
Useful “Cheating”

Your calculator is a great tool for understanding limits. It can often give you a better
feel for how a limit works than the algebraic techniques can. A limit problem asks you
to determine what the y-value of a function is zeroing in on as the x-value approaches a
particular number. With your calculator, you can actually witness the process and the
result. You can solve a limit problem with you calculator in three different ways. 

Method I. First, store a number into x that’s extremely close to the arrow-number,
enter the limit expression in the home screen, and hit enter. If you get a result really
close to a round number, that’s your answer — you’re done. If you have any doubt
about the answer, just store another number into x that’s even closer to the arrow-
number and hit enter again. This will likely give you a result even closer to the same
round number — that’s it, you’ve got it. This method can be the quickest, but it often
doesn’t give you a good feel for how the y-values zero in on the result. To get a better
picture of this process, you can store three or four numbers into x (one after another),
each a bit closer to the arrow-number, and look at the sequence of results.

Method II. Enter the limit expression in graphing or “y =” mode, go to Table Setup, set
Tblstart to the arrow-number, and set ∆Tbl to something small like 0.01 or 0.001. When
you look at the table, you’ll often see the y-values getting closer and closer to the limit
answer as x hones in on the arrow-number. If it’s not clear what the y-values are
approaching, try a smaller increment for the ∆Tbl number. This method often gives
you a good feel for what’s happening in a limit problem.

Method III. This method gives you the best visual understanding of how a limit works.
Enter the limit expression in graphing or “y =” mode. (If you’re using the second
method, you may want to try this third method at the same time.) Next, graph the
function, and then go into the window and tweak the xmin, xmax, ymin, and ymax set-
tings, if necessary, so that the part of the function corresponding to the arrow-number
is within the viewing window. Use the trace feature to trace along the function until you
get close to the arrow-number. You can’t trace exactly onto the arrow-number because
there’s a little hole in the function there, the height of which, by the way, is your
answer. When you trace close to the arrow-number, the y-value will get close to the
limit answer. Use the ZoomBox feature to draw a little box around the part of the graph
containing the arrow-number and zoom in until you see that the y-values are getting
very close to a round number — that’s your answer.
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13. Use your calculator to evaluate 

lim
x

x x
3

5 24
x 3

2

+

- -

" -

. Try all three methods.

Solve It

14. Use your calculator to determine 

lim
tan
sin

x
x

x 0
1

"
-

. Use all three methods.

Solve It

Q. Evaluate lim
sin x
x x

6
5 6

x 6

2

-

- -

" ^ h .

A. The answer is 7.

Method I.

1. Use the STO → button to store 6.01
into x.

2. Enter 
sin x
x x

6
5 62

-

- -^ h on the home 

screen and hit enter. (Note: You
must be in radian mode.)

This gives you a result of ~7.01, sug-
gesting that the answer is 7.

3. Repeat Steps 1 and 2 with 6.001
stored into x.

This gives you a result of ~7.001.

4. Repeat Steps 1 and 2 with 6.0001
stored into x.

This gives you a result of ~7.0001.
Because the results are obviously
honing in on the round number of 7,
that’s your answer.

Method II.

1. Enter 
sin x
x x

6
5 62

-

- -^ h in graphing or 

“y =” mode.

2. Go to Table Setup and set tblStart
to the arrow-number, 6, and ∆Tbl
to 0.01.

3. Go to the Table and you’ll see the
y-values getting closer and closer to
7 as you scroll toward x = 6 from
above and below 6.

So 7 is your answer.

Method III.

1. Enter 
sin x
x x

6
5 62

-

- -^ h in graphing 

mode again.

2. Graph the function. For your first
viewing, ZoomStd, ZoomFit, and
ZoomTrig (for expressions contain-
ing trig functions) are good win-
dows to try.

For this funny function, none of
these three window options works
very well, but ZoomStd is the best.

3. Trace close to x = 6 and you’ll see
that y is near 7. Use ZoomBox to
draw a little box around the point

,6 7_ i then hit enter.

4. Trace near x = 6 on this zoomed-in
graph until you get very near to 
x = 6.

5. Repeat the Zoombox process
maybe two more times and you
should be able to trace extremely
close to x = 6.

(When I did this, I could trace to 
x = 6.0000022, y = 7.0000023.)
The answer is 7.



Making Yourself a Limit Sandwich
The sandwich or squeeze method is something you can try when you can’t solve a limit
problem with algebra. The basic idea is to find one function that’s always greater than
the limit function (at least near the arrow-number) and another function that’s always
less than the limit function. Both of your new functions must have the same limit as x
approaches the arrow-number. Then, because the limit function is “sandwiched”
between the other two, like salami between slices of bread, it must have that same
limit as well. See Figure 4-1.

f
f

g

h h

g

y

x

3

2

5

4

1

-1-2-3-4 3 421
-1

-2

5

Figure 4-1:

A limit 

sandwich —

functions f

and h are

the bread

and g is the

salami.
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Q. What’s lim
x

x
x 0 3"

?

A. The limit is 0.

1. Try plugging in 0. No good, you get
0 over 0.

You should be able to solve this
limit problem with algebra. But let’s
say you tried and failed so now
you’re going to try the sandwich
method.

2. Graph the function.

Looks like the limit as x approaches
0 is 0. 

3. To prove it, try to find two bread
functions that both have a limit of
0 as x approaches 0.

It’s easy to show that the function is
always positive (except perhaps at

x = 0) so you can use the simple
function y = 0 as the bottom slice of
bread. Of course, it’s obvious that
lim0 0
x 0

=
"

. Finding a function for the 

top slice is harder. But let’s just say
that for some mysterious reason,
you know that y x= is greater 

than 
x

x
3

near the arrow-number — 

the only place that matters for
the sandwich method. Because 

lim x 0
x 0

=
"

, y x= makes a good 

top slice.

You’re done. Because 
x

x
3

is 

squeezed between y = 0 and 

y x= , both of which have limits of 

0 as x approaches 0, 
x

x
3

must also
have a limit of 0.
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15. Evaluate lim sinx
x
1

x 0
2

"

d n.

Solve It

16. Evaluate lim cosx x
1

x 0

2

"

c m.

Solve It

Into the Great Beyond: Limits at Infinity 
To find a limit at infinity lim limor

x x" "3 3-

b l, you can use the same techniques from the 

bulleted list in the “Solving Limits with Algebra” section of this chapter in order to
change the limit expression so that you can plug in and solve. 

If you’re taking the limit at infinity of a rational function (which is one polynomial 

divided by another, such as 
x x x

x x
5 4 2

3 8 12
3 2

2

+ - -

- + ), the limit will be the same as the y-value 

of the function’s horizontal asymptote, which is an imaginary line that a curve gets closer
and closer to as it goes right, left, up, or down toward infinity or negative infinity. Here
are the two cases where this works:

� Case 1: If the degree of the polynomial in the numerator is less than the degree of
the polynomial in the denominator, there’s a horizontal asymptote at y = 0 and
the limit as x approaches 3 or 3- is 0 as well. 

� Case 2: If the degrees of the two polynomials are equal, there’s a horizontal
asymptote at the number you get when you divide the coefficient of the highest
power term in the numerator by the coefficient of the highest power term in the
denominator. This number is the answer to the limit as x approaches infinity or
negative infinity. By the way, if the degree of the numerator is greater than the
degree of the denominator, there’s no horizontal asymptote and no limit.
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17. What’s lim
x x

x x
2 3

5 10
x

4

3 2

+ +

- +

"3

? Explain your 

answer.

Solve It

18. What’s lim
x

x x
8 1

3 100 4
x

4

4 3

+

+ +

" 3-

? Explain your 

answer.

Solve It

Consider the following four types of expressions: x 10, 5 x , !x , and x x . If a limit at infinity
involves a fraction with one of them over another, you can apply a handy little tip.
These four expressions are listed from “smallest” to “biggest.” (This isn’t a true order-
ing; it’s only for problems of this type; and note that the actual numbers don’t matter;
they could just as easily be x 8 , 3 x , !x , and x x .) The limit will equal 0 if you have a
“smaller” expression over a “bigger” one, and the limit will equal infinity if you have a
“bigger” expression over a “smaller” one. And this rule is not affected by coefficients. 

For example, 
!

lim
x

x
3

1000 0
x

100

=
"3

$ and lim x
500 100x

x

x

3=
"3 $

. Note, however, that something 

like (2x)! can change the ordering.

Q. Find 
.

lim x
1 01x

x

3

"3

.

A. The limit is 0.

This is an example of a “small” expression
over a “big” one, so the answer is 0. Perhaps
this result surprises you. You may think
that this fraction will keep getting bigger
and bigger because it seems that no matter
what power 1.01 is raised to, it will never
grow very large. And, in fact, if you plug
1000 into x, the quotient is big — over 

47,000. But if you enter 
.
x

1 01x

3

in graphing 

mode and then set both tblStart and ∆tbl to
1000, the table values show quite convinc-
ingly that the limit is 0. By the time x = 3000,
the answer is .00293, and when x = 10,000,
the answer is 6 10 32

#
- .

Q. lim
cosx x5

100
x

2
-"3

A. The limit is 0.

lim
cosx x5

100

100

0

x
2

3

-

=

=

"3

The values of cosx 2 that oscillate indefi-
nitely between –1 and 1 are insignificant
compared with 5x as x approaches infinity. 

Or consider the fact that lim
x5 10
100 0

x -
=

"3

and that <
cosx x x5

100
5 10

100
2

- -
for large 

values of x. Because 
cosx x5

100
2

-
is always 

positive for large values of x and less than
something whose limit is 0, it must also
have a limit of 0.
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19. Use your calculator to figure 
!

lim
x
x

x

x

"3

.

Solve It

20. Determine lim
x

x

4 1

5 2
x 2

-

+

"3

.

Solve It

*21. Evaluate lim x x x4 16 3
x

2
+ -

" 3-

` j.

Solve It

*22. Evaluate lim
x

x
x

x
1

3
1

3
x

2 2

-
-

+" 3-

c m.

Solve It



Solutions for Problems with Limits
a lim

x
x

3
9

x 3

2

-

-

"

= 6

Factor, cancel, plug in.

lim

lim

x

x x

x

3

3 3

1
3

1
3 3

6

x

x

3

3

=
-

- +

=
+

=
+

=

"

"

^
^ ^

h
h h

b lim
x x

x
3
1

2
1

x 1
2
+ -

-
=

"

Factor, cancel, plug in.

lim

lim

x x

x

x

1 2

1

2
1

1 2
1

3
1

x

x

1

1

=
- +

-

=
+

=
+

=

"

"

^ ^
^

h h
h

c lim
x
x

12
1

8
2

x 2
3
+

+
=

" -

Factor, cancel, plug in.

lim

lim

x x x

x

x x

2 2 4

2

2 4
1

2 2 2 4

1

12
1

x

x

2
2

2
2

2

=
+ - +

+

=
- +

=
- - - +

=

"

"

-

-

^ _
^

^ ^

h i
h

h h

d lim
x x

x
4 5 6

4
x 2

2

2

+ -

-

"

= 0

Did you waste your time factoring the numerator and denominator? Gotcha! Always 

plug in first! When you plug 2 into the limit expression, you get 
20
0 , or 0 — that’s your

answer.

e lim
x

x

3

9
x 9 -

-

"

= –6

1. Multiply numerator and denominator by x3 + .

lim
x

x

x

x

3

9

3

3

x 9
=

-

-

+

+

"
$`

^
`
`

j
h

j
j
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2. Multiply out the part of the fraction containing the conjugate pair (the denominator here).

lim
x

x x

9

9 3

x 9
=

-

- +

" ^
^ `

h
h j

3. Cancel.

lim x1 3
x 9

= - +
"

`b jl
Don’t forget that any fraction of the form 

b a
a b
-

- always equals –1.

4. Plug in

1 3 9

6

= - +

= -

` j

f lim
x

x
10

5 5
x 10 -

- -

"

= 
10

5

Multiply by conjugate, multiply out, cancel, plug in.

lim

lim

lim

lim

x

x

x

x

x x

x

x x

x

x

10

5 5

5 5

5 5

10 5 5

5 5

10 5 5

10

5 5

1

10 5 5

1

2 5

1

10
5

x

x

x

x

10

10

10

10

=
-

- -

- +

- +

=
- - +

- -

=
- - +

-

=
- +

=
- +

=

=

"

"

"

"

$^
`

`
`

^ `
^

^ `
^

h
j

j
j

h j
h

h j
h

g lim cos
x
x 1

x 0

-

"

= 0

Did you try multiplying the numerator and denominator by the conjugate of cosx 1- ? Gotcha
again! That method doesn’t work here. The answer to this limit is 0, something you just have to
memorize.

h lim
x

x
4
1

2

1
2
1

x 2 -

-

= -
"

1. Multiply numerator and denominator by the least common denominator of the little frac-
tions inside the big fraction — that’s 2x.

lim
x

x

x
x

2

1
2
1

2
2

x 2
=

-

-

"
$

2. Multiply out the numerator.

lim
x x

x

2 2

2
x 2

=
-

-

" ^ ^
^

h h
h
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3. Cancel.

lim
x2
1

x 2
=

-

"

4. Plug in.

4
1

4
1

=
-

= -

i lim

x

x

6
1

6
1x 0

+
-

"

= –36

Multiply by the least common denominator, multiply out, cancel, plug in.

lim

lim

lim

lim

x

x
x

x

x

x x

x
x x

x

6
1

6
1 6 6

6 6

6 6

6 6

6 6

6 6

6 0 6

36

x

x

x

x

0

0

0

0

=

+
-

-

-

=
- +

-

=
-

= -

= -

= -

"

"

"

"

$ ^
^

^
^
^

^
^

h
h

h
h
h

h
h

j lim sin
x

x 1
x 0

=
"

No work required — except for the memorization, that is.

*k lim
sin x

x
3
1

3x 0
=

"

Did you get it? If not, try the following hint before you read the solution: This fraction sort of
resembles the one in problem 10. Still stuck? Okay, here you go:

1. Multiply numerator and denominator by 3.

You’ve got a 3x in the denominator, so you need 3x in the numerator as well (to make the frac-
tion look more like the one in problem 10).

lim
sin

lim
sin

x
x

x
x
3 3

3

3 3
3

x

x

0

0

=

=

"

"

$

2. Pull the 
3
1 through the lim symbol (the 3 in the denominator is really a 

3
1 , right?).

lim
sin x

x
3
1

3
3

x 0
=

"

Now, if your calc teacher lets you, you can just stop here — since it’s “obvious” that 

lim
sin x

x
3

3 1
x 0

=
"

— and put down your final answer of 
3
1 1$ , or 

3
1 . But if your teacher’s a stickler 

for showing work, you’ll have to do a couple more steps.

3. Set u x3= .
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4. Substitute u for 3x. And, because u approaches 0 as x approaches 0, you can substitute u
for x under the lim symbol.

lim
sinu

u
3
1

3
1 1

3
1

u 0
=

=

=

"

$

Because lim sin
x

x 1
x 0

=
"

, the limit of the reciprocal of sin
x

x , namely 
sinx

x , must equal the 

reciprocal of 1 — which is, of course, 1. 

*l lim tanx
x

x 0"

= 1

1. Use the fact that lim sin
x

x 1
x 0

=
"

and replace tanx with cos
sin

x
x .

lim

cos
sin

x
x

x
x 0

=
"

2. Multiply numerator and denominator by cosx.

lim

cos
sin cos

cos

lim
sin
cos

x
x

x
x
x

x
x x

x

x

0

0

=

=

"

"

$

3. Rewrite the expression as the product of two functions.

lim
sin

cos
x

x x
1x 0

=
"

$c m

4. Break this into two limits, using the fact that lim lim limf x g x f x g x
x c x c x c

=
" " "

$ $^ ^` ^ ^h hj h h
(provided that both limits on the right exist).

lim
sin

lim cos
x

x x

1 1 1
x x0 0

=

= =

" "
$

$

m lim
x

x x
3

5 24
x 3

2

+

- -

" -

= –11

You want the limit as x approaches –3, so pick a number really close to –3 like –3.0001, plug that 

into x in your function 
x

x x
3

5 242

+

- - and enter that into your calculator. (If you’ve got a calcula-

tor like a Texas Instruments TI-83, TI-86, or TI-89, a good way to do this is to use the STO→

button to store –3.0001 into x, then enter 
x

x x
3

5 242

+

- - into the home screen and punch enter.) 

The calculator’s answer is –11.0001. Because this is near the round number –11, your answer
is –11. By the way, you can do this problem easily with algebra as well.

n lim
tan
sin

x
x

x 0
1

"
-

= 1

Enter the function in graphing mode like this: 
tan
siny

x
x
1=

-
. Then go to table setup and enter a 

small increment into ∆tbl (try 0.01 for this problem), and enter the arrow-number, 0, into
tblStart. When you scroll through the table near x = 0, you’ll see the y values getting closer and
closer to the round number 1. That’s your answer. This problem, unlike problem 13, is not easy
to do with algebra.
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o Evaluate lim sinx
x
1

x 0
2

"

d n = 0

Here are three ways to do this. First, common sense should tell you that this limit equals 0. limx
x 0"

is 0, of course, and lim sin
x
1

x 0
2

"

d n never gets bigger than 1 or smaller than –1. You could say that, 

therefore, lim sin
x
1

x 0
2

"

d n is “bounded” (bounded by –1 and 1). Then, because zero × bounded = zero,

the limit is 0. Don’t try this logic with you calc teacher — he won’t like it.

Second, you can use your calculator: Store something small like .1 into x and then input sinx
x
1

2

into your home screen and hit enter. You should get a result of .05+ - . Now store 0.01 into x

and use the entry button to get back to sinx
x
1

2 and hit enter again. The result is .003+ . Now 

try .001, then .0001 (giving you .00035+ - and .00009+ ) and so on. It’s pretty clear — though
probably not to the satisfaction of your professor — that the limit is 0.

The third way will definitely satisfy those typically persnickety professors. You’ve got to 

sandwich (or squeeze) your salami function, sinx
x
1

2 , between two bread functions that have 

identical limits as x approaches the same arrow-number it approaches in the salami function. 

Because sin
x
1

2 never gets bigger than 1 or smaller than –1, sinx
x
1

2 will never get bigger than 

x or smaller than x- . (You need the absolute value bars, by the way, to take care of negative
values of x.) This suggests that you can use b x x= -^ h for the bottom piece of bread and 

t x x=^ h as the top piece of bread. Graph b x x= -^ h , sinf x x
x
1

2=^ h , and t x x=^ h at the 

same time on your graphing calculator and you can see that sinx
x
1

2 is always greater than or 

equal to x- and always less than or equal to x . Because lim x 0
x 0

- =
"

` j and lim x 0
x 0

=
"

and 

because sinx
x
1

2 is sandwiched between them, lim sinx
x
1

x 0
2

"

d n must also be 0.

p Evaluate lim cosx x
1

x 0

2

"

c m = 0

For lim cosx x
1

x 0

2

"

c m, use b x x 2
= -^ h and t x x 2

=^ h for the bread functions. The cosine of anything 

is always between –1 and 1, so cosx x
12 is sandwiched between those two bread functions. (You

should confirm this by looking at their graphs; use the following window on your graphing cal-
culator — Radian mode, xMin = –0.15625, xMax = 0.15625, xScl = 0.05, yMin = –0.0125, yMax = 

0.0125, yScl = 0.05.) Because lim x 0
x 0

2
- =

"

_ i and limx 0
x 0

2
=

"

, lim cosx x
1

x 0

2

"

c m is also 0. 

q lim
x x

x x 0
2 3

5 10
x

4

3 2

+ +

- +
=

"3

Because the degree of the numerator is less than the degree of the denominator, this is a Case 1
problem. So the limit as x approaches infinity is 0.

r lim
x

x x
8
3

8 1
3 100 4

x
4

4 3

+

+ +
=

" 3-

lim
x

x x
8 1

3 100 4
x

4

4 3

+

+ +

" 3-

is a Case 2 example because the degrees of the numerator and denominator 

are both 4. The limit is thus 
8
3 .
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s !
lim

x
x

x

x

"3

= 3

According to the “big” over “small” tip, this answer must be infinity. Or you can get this result with
your calculator. If you set the table (don’t forget: fork on the left, spoon on the right) the same as 
in problem 19, you’ll see “undef” for all y values. You’ve got to be careful when trying to interpret
what “undef” (for “undefined”) means on your calculator, but in this case — because a 0 denomina-
tor is impossible and thus can’t be the reason the fraction is undefined — it looks like “undef”
means infinity. To confirm this, make tblStart and ∆tbl smaller, say, 10. Sure enough, the y values
grow huge very fast, and you can safely conclude that the limit is infinity. 

t lim
x

x
2
5

4 1

5 2
x 2

-

+
=

"3

1. Divide numerator and denominator by x.

lim

x
x

x
x

4 1

5 2

x 2
=

-

+

"3

2. Put the x into the square root (it becomes x2 ).

lim

x
x

x
x

4 1

5 2

x

2

2
=

-

+

"3

3. Distribute the division.

lim

x

x

4 1

5 2

x

2

=

-

+

"3

4. Plug in and simplify.

4 1

5 2

4 0

5 0

2
5

2
3

3
=

-

+

=
-

+

=

*u lim x x x
8
34 16 3

x

2
+ - =

" 3-

` j
1. Put the entire expression over 1 so you can use the conjugate trick.

lim
x x x

x x x

x x x

1

4 16 3

4 16 3

4 16 3

x

2

2

2

=

+ -

- -

- -

" 3-
$

`
`
`j

j
j

2. FOIL the numerator. 

lim
x x x

x x x

4 16 3

16 16 3

x 2

2 2

=
- -

- -

" 3-

_ i

3. Simplify the numerator and factor 16x2 inside the radicand. 

lim

x x
x

x

4 16 1
16

3

3
x

2

=

- -
" 3- c m
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4. Pull the 16x2 out of the square root — it becomes –4x.

It becomes negative 4x because x is negative when x" 3- , and because you’ve got to pull out
a positive, you pull out –4x because when x is negative, –4x is positive. Got it?

lim

lim

x x
x

x

x
x

x

4 4 1
16

3
3

4 1 1
16

3

3

x

x

=

- - -

=

+ -

"

"

3

3

-

-

^

d

h

n

5. Cancel and plug in. 

lim

x
4 1 1

16
3

3

4 1 1
16

3

3

4 1 1 0

3

8
3 Piece o’ cake.

x

3

=

+ -

=

+ -
-

=
+ -

=

" 3-

J

L

K
K

d

^

`

N

P

O
O

n

h

j

*v lim
x

x
x

x
1

3
1

3
x

2 2

-
-

+" 3-

c m = 6

1. Subtract the fractions using the LCD of (x – 1)(x + 1) = x2 – 1.

lim
x

x x x x

1

3 1 3 1
x

2

2 2

-

+ - -

"3

^ ^h h

2. Simplify.

lim

lim

x
x x x x

x
x

1
3 3 3 3

1
6

x

x

2

3 2 3 2

2

2

-

+ - +

-

"

"

3

3

3. Your answer is the quotient of the coefficients of x2 in the numerator and the denominator
(see Case 2 in the “Into the Great Beyond” section).

= 6

Note that had you plugged in 3 in the original problem, you would have 

?

1
3

1
3

0

2 2

3

3

3

3

3 3

-
-

+

= -

=

It may seem strange, but infinity minus infinity does not equal 0.
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Part III

Differentiation



In this part . . .

In this part, you begin calculus in earnest. Differentiation
is the first of the two big ideas in calculus (integration

is the second). With all the mystique surrounding calculus,
you may think that differentiation is as difficult a subject
as string theory or ancient Sanskrit. But differentiation is
simply the fancy calculus term for slope, which, as you
remember from algebra I, is just the steepness of a line.
Whenever possible, remind yourself that every problem
involving differentiation is really just a slope problem. In
Part III, you get differentiation basics, differentiation rules,
techniques for using the derivative to analyze the shape of
curves, and methods for solving practical problems with
the derivative.



Chapter 5

Getting the Big Picture: 
Differentiation Basics 

In This Chapter
� The ups and downs of finding slope and rate

� The difference quotient: the other DQ

Differentiation is the process of finding derivatives. The derivative is one of the most
important inventions in the history of mathematics and one of mathematics’ most

powerful tools. I’m sure you will feel both a deep privilege as you do the practice problems
below — and a keen sense of indebtedness to the great mathematicians of the past. Yeah,
yeah, yeah.

The Derivative: A Fancy Calculus 
Word for Slope and Rate

A derivative of a function tells you how fast the output variable (like y) is changing compared
to the input variable (like x). For example, if y is increasing 3 times as fast as x — like with the
line y x3 5= + — then you say that the derivative of y with respect to x equals 3, and you 

write 
dx
dy

3= . This, of course, is the same as 
dx
dy

1
3

= , and that means nothing more than 

saying that the rate of change of y compared to x is 3-to-1, or that the line has a slope of 
1
3 . 

The following problems emphasize the fact that a derivative is basically just a rate or a slope.
So to solve these problems, all you have to do is answer the questions as if they had asked
you to determine a rate or a slope instead of a derivative.

Q. What’s the derivative of y = 4x – 5?

A. The answer is 4. You know, of course, that
the slope of y = 4x – 5 is 4, right? No? Egad!
Any line of the form y = mx + b has a slope
equal to m. I hope that rings a bell. The
derivative of a line or curve is the same
thing as its slope, so the derivative of this
line is 4.

You can think of the derivative 
dx
dy

as basically run
rise .
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1. If you leave your home at time = 0, and 

go 
hour
miles60 in your car, what’s 

dt
dp

, the 

derivative of your position with respect
to time? 

Solve It

2. Using the information from problem 1,
write a function that gives your position
as a function of time.

Solve It

3. What’s the slope of the parabola 

y x x
3
1

3
23

3
852

= - + - at the point (7, 9) 

in the following figure?

Solve It

y = 3x - 12

y

x1

1-1-5 5 10 15 20

5

10

15

20

-15

-10

-5

25

30

25 30

-1
3

y =    x2 +     x -23
3

85
3

4. What’s the derivative of the parabola
y x 52
= - + at the point (0, 5)? Hint: Look

at its graph.

Solve It
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5. With your graphing calculator, graph both
the line y x4 9= - + and the parabola
y x5 2
= - . You’ll see that they’re tangent at

the point (2, 1). 

a. What is the derivative of y x5 2
= - when

x = 2?

b. On the parabola, how fast is y changing
compared to x when x = 2?

Solve It

6. Draw a function containing three points
where — for three different reasons — you
would not be able to determine the slope
and, thus, where you would not be able to
find a derivative.

Solve It

The Handy-Dandy Difference Quotient 
The difference quotient is the almost magical tool that gives us the slope of a curve at a
single point. To make a long story short, here’s what happens when you use the differ-
ence quotient. (If you want an excellent version of the long story, check out Calculus
For Dummies.) Look again at the figure in problem 3. You can’t get the slope of the 

parabola at (7,9) with the algebra slope formula, m x x
y y

2 1

2 1
= -

-d n, because no matter 

what other point on the parabola you use with (7,9) in the formula, you’ll get a slope
that’s steeper or less steep than the precise slope at (7,9).

But if your second point on the parabola is extremely close to (7,9) — like 

. , .7 001 9 0029996` j — your line would be almost exactly as steep as the tangent line. 

The difference quotient gives the precise slope of the tangent line by sliding the
second point closer and closer to (7,9) until its distance from (7,9) is infinitely small.

Enough of this mumbo jumbo; now for the math. Here’s the definition of the derivative
based on the difference quotient:

limf x
h

f x h f x
h 0

=
+ -

"

l ^ ^ ^h h h

Like with most limit problems, plugging the arrow-number in at the beginning of a 

difference quotient problem won’t help because that gives you 
0
0 . You have to do a 

little algebraic mojo so that you can cancel the h and then plug in. (The techniques
from Chapter 4 also work here.) 

Now for a difference quotient problem.
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7. Use the difference quotient to determine
the derivative of the line y x4 3= - .

Solve It

8. Use the difference quotient to find the
derivative of the parabola f x x3 2

=^ h .

Solve It

Q. What’s the slope of the parabola
f x x10 2

= -^ h at x = 3? 

A. The slope is –6.

1. Because f x x10 2
= -^ h , then 

f x h x h10
2

+ = - +^ ^h h , and so the 

derivative is

limf x
h

x h x10 10

h 0

2 2

=
- + - -

"

l ^ ^ _h h i

2. Simplify.

lim

lim

lim

h

x xh h x

h
x xh h x

h
xh h

10 2 10

10 2 10

2

h

h

h

0

2 2 2

0

2 2 2

0

2

=
- + + - +

=
- - - - +

=
- -

"

"

"

_ i

3. Factor out h.

lim
h

h x h2
h 0

=
- -

"

^ h

4. Cancel.

lim x h2
h 0

= - -
"

^ h
5. Plug in the arrow-number.

x

f x x

2 0

2

= - -

= -l ^ h
6. You want the slope or derivative at 

x = 3, so plug in 3.

f 3 2 3

6

= -

= -

$l ^ h
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9. Use the difference quotient to find the
derivative of the parabola from problem 4,
y x 52
= - + .

Solve It

10. Figure the derivative of g x x4 5= +^ h
using the difference quotient.

Solve It

11. Use the parabola from problem 8, but make
it a position function, s t t3 2

=^ h , where t is
in hours and s(t) is in miles. 

a. What’s the average velocity from t = 4 to 
t = 5?

b. What’s the average velocity from t = 4 to 
t = 4.1?

c. What’s the average velocity from t = 4 to 
t = 4.01?

Solve It

12. For the position function in problem 11,
what’s the instantaneous velocity at t = 4?
Hint: Use the derivative.

Solve It
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Solutions for Differentiation Basics
a If you leave your home at time = 0, and go 

hour
miles60 in your car, what’s 

dt
dp

, the derivative of 

your position with respect to time? The answer is 
dt
dp

60= . A derivative is always a rate, and  

a rate is always a derivative (assuming we’re talking about instantaneous rates). So, if your 

speed, or rate, is 
hour
miles60 , the derivative, 

dt
dp

, is also 60. One way to think about a derivative 

like 
dt
dp

is that it tells you (in this case) how much your position (p) changes when the time (t) 

increases by one hour. A rate of 
hour
miles60 means that your position changes 60 miles each time 

the number of hours of your trip goes up by 1.

b Using the information from problem 1, write a function that gives your position as a function
of time. p t t60=^ h or p t60= , where t is in hours and p is in miles. If you plug 1 into t, your
position is 60 miles; plug 2 into t and your position is 120 miles. p t60= is a line, of course, in
the form y mx b= + (where b = 0). So the slope is 60 and the derivative is thus 60. And again
you see that a derivative is a slope and a rate.

c What’s the slope of the parabola y x x
3
1

3
23

3
852

= - + - at the point (7, 9)? The slope is 3.

You can see that the line, y x3 12= - , is tangent to the parabola, y x x
3
1

3
23

3
852

= - + - , at the 

point (7, 9). You know from y mx b= + that the slope of y x3 12= - is 3. At the point (7, 9),
the parabola is exactly as steep as the line, so the derivative (that’s the slope) of the parabola
at (7, 9) is also 3.

Although the slope of the line stays constant, the slope of the parabola changes as you climb
up from (7, 9), getting less and less steep. Even if you go to the right just 0.001 to x = 7.001, the
slope will no longer be exactly 3. 

d What’s the derivative of the parabola y x 52
= - + at the point (0, 5)? The answer is 0.

The point (0, 5) is the very top of the parabola, y x 52
= - + . At the top, the parabola is neither

going up nor down — just like you’re neither going up nor down when you’re walking on top
of a hill. The top of the parabola is flat or level in this sense, and thus the slope and derivative
both equal zero.

The fact that the derivative is zero at the top of a hill — and at the bottom of a valley — is a
critically important point which we’ll return to time and time again.

e With your graphing calculator, graph both the line y x4 9= - + and the parabola y x5 2
= - .

You’ll see that they’re tangent at the point (2, 1). 

a. What is the derivative of y x5 2
= - when x = 2? The answer is –4. The derivative of a curve

tells you its slope or steepness. Because the line and the parabola are equally steep at (2, 1),
and because you know the slope of the line is –4, the slope of the parabola at (2, 1) is also –4
and so is its derivative. 

b. On the parabola, how fast is y changing compared to x when x = 2? It’s decreasing 4 times as
fast as x increases. A derivative is a rate as well as a slope. Because the derivative of the
parabola is –4 at (2, 1), that tells you that y is changing 4 times as fast as x, but because the 4
is negative, y decreases 4 times as fast as x increases. This is the rate of y compared to x only
for the one instant at (2, 1) — and thus it’s called an instantaneous rate. A split second later —
say at x = 2.000001 — y will be decreasing a bit faster. 
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f Draw a function containing three points where — for three different reasons — you would not
be able to determine the slope and thus where you would not be able to find a derivative.

Your sketch should contain (1) Any type of gap or discontinuity. There’s no slope and thus no
derivative at a gap because you can’t draw a tangent line at a gap (try it). (2) A sharp point or
cusp. It’s impossible to draw a tangent line at a cusp because a line touching the function at
such a sharp point could rock back and forth. So there’s no slope and no derivative at a cusp.
(3) A vertical inflection point. Although you can draw a tangent line at a vertical inflection
point, since it’s vertical, its slope — and therefore its derivative — is undefined.

g Use the difference quotient to determine the derivative of the line y x4 3= - . y’ = 4.

lim

lim

lim

lim

y
h

x h x

h
x h x

h
h

y

4 3 4 3

4 4 3 4 3

4

4

4

h

h

h

h

0

0

0

0

=
+ - - -

=
+ - - +

=

=

=

"

"

"

"

l

l

^ ^h h

You can also figure this out because the slope of y x4 3= - is 4.

h Use the difference quotient to find the derivative of the parabola f x x3 2
=^ h . f'(x) = 6x

lim

lim

lim

lim

lim

lim

f x
h

x h x

h

x xh h x

h
x xh h x

h
xh h

h

h x h
h

x h

x

f x x

3 3

3 2 3

3 6 3 3

6 3

6 3

6 3 0

6 3 0

6

Now, factor out the

Cancel the

Now plug in

h

h

h

h

h

h

h

0

2 2

0

2 2 2

0

2 2 2

0

2

0

0

=
+ -

=
+ + -

=
+ + -

=
+

=
+

= +

= +

=

"

"

"

"

"

"

$

l

l

^ ^
_

_
^ ^

^ _

^

h h
i

i
h h

h i

h
i Use the difference quotient to find the derivative of the parabola from problem 4, y x 52

= - + .
y' = –2x. 

lim

lim

lim

lim

lim

lim

y
h

x h x

h

x xh h x

h
x xh h x

h
xh h

h

h x h

x h

y x

5 5

2 5 5

2 5 5

2

2

2

2

Now factor

And cancel

h

h

h

h

h

h

0

2 2

0

2 2 2

0

2 2 2

0

2

0

0

=
- + + - - +

=
- + + + + -

=
- - - + + -

=
- -

=
- -

= - -

= -

"

"

"

"

"

"

l

l

^ _
_

^
^ ^

^

h i
i

h
h h

h
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In problem 4, you see that the top of this parabola ( y x 52
= - + ) is at the point (0,5) and that

the derivative is zero there because the parabola is neither going up nor down at its peak. That
explanation was based on common sense. But now, with the result given by the difference quo-
tient, namely y x2= -l , you have a rigorous confirmation of the derivative’s value at (0,5). Just
plug 0 in for x in y x2= -l , and you get y 0=l .

j Figure the derivative of g x x4 5= +^ h using the difference quotient. g x
x4 5

2
=

+
l ^ h

If you got this one, give yourself a pat on the back. It’s a bit tricky.

g x x4 5= +^ h

,

lim

lim

lim

lim

lim

lim

g x
h

x h x

h
x h x

h

x h x

x h x

x h x

h x h x

x h x
a b a b a b

h x h x

h

x h x

x x

x

g x
x

4 5 4 5

4 4 5 4 5

4 4 5 4 5

4 4 5 4 5

4 4 5 4 5

4 4 5 4 5

4 4 5 4 5

4 4 5 4 5

4

4 4 5 4 5

4

4 4 0 5 4 5

4

2 4 5

4

4 5

2

Conjugate multiplication

Because of course

Now you can plug in

h

h

h

h

h

h

0

0

0

0

2 2

0

0

=
+ + - +

=
+ + - +

=

+ + - +

+ + + +

+ + + +

=
+ + + +

+ + - +
- + = -

=
+ + + +

=
+ + + +

=
+ + + +

=
+

=
+

"

"

"

"

"

"

$

$

l

l

^ ^

`
`
` _

`
^ ^ ^ ^`

`
_

^

h h

j
j
j i

j
h h h h j

j
i

h

k Use the parabola from problem 8, but make it a position function, s t t3 2
=^ h , where t is in hours

and s(t) is in miles.

Average velocity equals 
total time

total distance.

a. What’s the average velocity from t = 4 to t = 5? The answer is 27 miles/hour.

Average Velocity
s s

hour
miles

5 4

5 4

1
3 5 3 4

27

4 5

2 2

to =
-

-

=
-

=

$ $

^ ^h h

b. What’s the average velocity from t = 4 to t = 4.1? The answer is 24.3 miles/hour.

.

.

.
.

.

Average Velocity
s s

hour
miles

4 1 4

4 1 4

0 1
3 4 1 3 4

24 3

.4 4 1

2 2

to =
-

-

=
-

=

$ $

^ ^h h



c. What’s the average velocity from t = 4 to t = 4.01? The answer is 24.03 miles/hour.

.

.

.
.

.

Average Velocity
s s

hour
miles

4 01 4

4 01 4

0 01
3 4 01 3 4

24 03

.4 4 01

2 2

to =
-

-

=
-

=

$ $

^ ^h h

l For the position function in problem 11, what’s the instantaneous velocity at t = 4? The answer
is 24 miles/hour. Problem 8 gives you the derivative of this parabola, f x x6=l ^ h . The position
function in this problem is the same except for different variables, so its derivative is s t t6=l ^ h . 

Plug in 4, and you get s
hour
miles4 24=l ^ h . Notice how the average velocities get closer and closer 

to 
hour
miles24 as the total travel time gets less and less and the ending time hones in on t = 4. 

That’s precisely how the difference quotient works as h shrinks to zero.
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Chapter 6

Rules, Rules, Rules:
The Differentiation Handbook

In This Chapter
� Boning up on basic derivative rules

� Producing your quota of product and quotient problems 

� Joining the chain rule gang

� Achieving higher order differentiation

Chapter 5 gives you the meaning of the derivative. In this chapter, you practice rules for
finding derivatives. But before you practice the following rules, you may want to go

back to the Cheat Sheet in Calculus For Dummies or to your calc text to review the basic
derivatives. For example, you need to know that the derivative of sine is cosine.

Rules for Beginners
Okay, now that you’ve got the memorization stuff taken care, you now begin some rules that
involve more than just memorizing the answer.

First there’s the derivative of a constant rule: The derivative of a constant is zero. Alright —
this one’s also just memorization.

And then there’s the power rule: To find the derivative of a variable raised to a power, bring
the power in front — multiplying it by the coefficient, if there is one — then reduce the
power by one.

Q. What’s the derivative of 5x3?

A. 15x2

1. Bring the power in front, multiplying it
by the coefficient.

So far you’ve got 15x3. Note that this
does not equal 5x3 and so you should
not put an equal sign in front of it. 

In fact, there’s no reason to write this
interim step down at all. I do it simply to
make the process clear.

2. Reduce the power by one.

This gives you the final answer of 15x2.
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1. What’s the derivative of f(x) = 8?

Solve It

2. What’s the derivative of g x π
3

=^ h ?

Solve It

3. What’s the derivative of 

sin cosg x k π
π

2
2=^ h , where k is 

a constant?

Solve It

4. For f x x5 4
=^ h , ?f x =l ^ h

Solve It
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5. For g x x
10

3

=
-^ h , what’s g xl ^ h?

Solve It

6. Find yl if y x x 05
$=

- ^ h
Solve It

7. What’s the derivative of s t t t7 106
= + +^ h ?

Solve It

8. Find the derivative for y x 63
2

= -_ i .

Solve It



Giving It Up for the Product 
and Quotient Rules

Now that you’ve got the easy stuff down, I’m sure you’re dying to get some practice
with advanced differentiation rules. The product rule and the quotient rule give you the
derivatives for the product of two functions and the quotient of two functions, respec-
tively and obviously.

The product rule is a snap. The derivative of a product of two functions, (first)(second),
equals first second first second+l l^ ^ ^ ^h h h h .

The quotient rule is also a piece of cake. The derivative of a quotient of two functions, 

second

first

^
^

h
h

, equals 
second

first second first second
2

-l l

^
^ ^ ^ ^

h
h h h h

.

Here’s a good way to remember the quotient rule. Notice that the numerator of the
quotient rule looks exactly like the product rule, except that there’s a minus sign
instead of a plus sign. And note that when you read a product, you read from left to
right, and when you read a quotient, you read from top to bottom. So just remember
that the quotient rule, like the product rule, works in the natural order in which you
read, beginning with the derivative of the first thing you read.

For some mysterious reason, many textbooks give the quotient rule in a different form
that’s harder to remember. Learn it the way I’ve written it above, beginning with first l^ h .
That’s the easiest way to remember it.
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Q. ?sin
dx
d x x2

=_ i

A.
sin cos

sin sin sin

x x x x

dx
d x x x x x x

2 2

2 2 2
= +

= +

l l_ _ ^ _ ^i i h i h
Q. ?

sindx
d

x
x 2

=^ h

A. sin sin

sin sin

sin
sin cos

dx
d

x
x

x

x x x x

x
x x x x2

2

2

2 2

2

2

=
-

=
-

l l

^ ^
_ ^ _ ^

h h
i h i h

One more thing: I’ve purposely designed
this example to resemble the product rule
example, so you can see the similarity
between the quotient rule numerator and
the product rule.
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9. ?cos
dx
d x x3

=_ i
Solve It

10. sin tan
dx
d x x =^ h ?

Solve It

11. ?ln
dx
d x x5 3

=_ i
Solve It

*12. ?ln
dx
d x e xx2

=_ i
Solve It



74 Part III: Differentiation 

13. cosdx
d

x
x 3

=?

Solve It

14. cos
dx
d

e
x

x =?

Solve It

15. arctandx
d

x
x3 32

+
=?

Solve It

*16.
ln

sin
dx
d

x x
x

3 =?

Solve It



Linking Up with the Chain Rule
The chain rule is probably the trickiest among the advanced rules, but it’s really not
that bad at all if you focus clearly on what’s going on — I promise! Most of the basic
derivative rules have a plain old x as the argument (or input variable) of the function.
For example, f x x=^ h , sin x, and y e x

= all have just x as the argument. 

When the argument of a function is anything other than a plain old x, such as siny x 2
=

or ln10 x , you’ve got a chain rule problem.

Here’s what you do. You simply apply the derivative rule that’s appropriate to the
outer function, temporarily ignoring the not-a-plain-old-x argument. Then multiply that
result by the derivative of the argument. That’s all there is to it.
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Q. What’s the derivative of siny x 3
= ?

A. cosy x x3 2 3
=l

1. Temporarily think of the argument, x3,
as a glob. 

So, you’ve got y = sin(glob).

2. Use the regular derivative rule.

,sin

cos

y glob

y glob

so=

=l

_
_

i
i

(This is only a provisional answer, so the
“=” sign is false — egad! The math police
are going to pull me over.)

3. Multiply this by the derivative of the
argument.

cosy glob glob= $l l_ i
4. Get rid of the glob.

The glob equals x3 so globl equals 3x2.

cos

cos

y x x

x x

3

3

3 2

2 3

=

=

$l _ i

Q. What’s the derivative of sin x4 3? You’ve got
to use the chain rule twice for this one.

A. The answer is sin cosx x x12 2 3 3 3
$

1. Rewrite sin x4 3 to show what it really
means: sin x 3

4_ i
2. The outermost function is the 4th power,

so use the derivative rule for stuff 4 —
that’s stuff4 3; then multiply that by the
derivative of the inside stuff, sin x 3.

sin sinx x4 3
3

3
$ l_ _i i

With chain rule problems, always work
from the outside, in.

3. To get the derivative of sin x 3 , use the
derivative rule for sin glob_ i, and then
multiply that by globl.

sin cosx x x4 3
3

3 3
$ $ l_ _ _i i i

4. The derivative of x3 is 3x2, so you’ve got

sin cosx x x4 33
3

3 2
$ $_ _i i

5. To simplify, rewrite the sin power and
move the 3x2 to the front.

sin cosx x x12 2 3 3 3
= $

Can you remember when you’ve had so
much fun?

With chain rule problems, never use
more than one derivative rule per step. In
other words, when you do the derivative
rule for the outermost function, don’t
touch the inside stuff! Only in the next
step do you multiply the outside deriva-
tive by the derivative of the inside stuff.
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17.
?

sinf x x

f x

2
=

=l

^
^

h
h

Solve It

18.
?

sing x x

g x

3
=

=l

^
^

h
h

Solve It

19.
?

tan lns t t

s t

=

=l

^ ^
^
h h
h

Solve It

20.
?

y e

y

x4 3

=

=l

Solve It
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*21.
?

sinf x x x

f x

4 3
=

=l

^
^

h
h

Solve It

*22.
?

ln
g x

x

x

g x
5 4

2

=
-

=l

^ ^
^

h h
h

Solve It

*23.
?

cosy x

y

43 2
=

=l

Solve It

*24. ?tan
dx
d e x3 2

=` j
Solve It



What to Do with Ys: Implicit Differentiation
You use implicit differentiation when your equation isn’t in “y =” form, such as
siny x y52 3 3

= + , and it’s impossible to solve for y. If you can solve for y, implicit differ-
entiation will still work, but it’s not necessary.

Implicit differentiation problems are chain rule problems in disguise. Here’s what I
mean. You know that the derivative of sinx is cosx , and that according to the chain
rule, the derivative of sinx 3 is cos x x3 3

$ l_ _i i . You would finish that problem by doing
the derivative of x3, but I have a reason for leaving the problem unfinished.

To do implicit differentiation, all you do (sort of) is every time you see a “y” in a prob-
lem, you treat it as if it were x 3. Thus, because the derivative of sinx 3 is cos x x3 3

$ l_ _i i ,
the derivative of siny is cosy y$ l. Then, after doing the differentiation, you just
rearrange terms so that you get yl = something.

By the way, I used “y” in the explanation above, but that’s not the whole story. 

Consider that y x20 3
=l is the same as 

dx
dy

x20 3
= . It’s the variable on the top that you 

apply implicit differentiation to. This is typically y, but it could be any other variable.
And it’s the variable on the bottom that you treat the ordinary way. This is typically x,
but it could also be any other variable.
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Q. If sin siny x y x3 3
+ = + , find 

dx
dy

.

A.
cos

cosy
y y

x x
3

3
2

2

=
-

-
l

1. Take the derivative of all four terms,
using the chain rule for terms contain-
ing y and using the ordinary method
for terms containing x.

cos cosy y x y y x3 32 2
+ = +$ $l l

2. Move all terms containing yl to the left
side and all other terms to the right
side.

cos cosy y y y x x3 32 2
- = -$ $l l

3. Factor out yl.

cos cosy y y x x3 32 2
- = -l _ i

4. Divide.

cos
cosy
y y

x x
3

3
2

2

=
-

-
l

That’s your answer. Note that this 
derivative — unlike ordinary 
derivatives — contains ys as well as xs.
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25. If y x x y3 2
- = + , find 

dx
dy

by implicit 
differentiation. 

Solve It

26. If lny y e3 4 x
+ = , find yl.

Solve It

27. For x y y x y x52 3
= + + , find 

dx
dy

by implicit
differentiation. 

Solve It

*28. If cos siny y x52 3 2
+ = , find the slope of 

the curve at ,π

10
0d n. 

Solve It
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29. For y = x4, find the 1st through 6th 
derivatives.

Solve It

30. For y = x5 + 10x3, find the 1st, 2nd, 3rd, and
4th derivatives.

Solve It

Getting High on Calculus: 
Higher Order Derivatives

You often need to take the derivative of a derivative, or the derivative of a derivative 
of a derivative, and so on. In the next two chapters, you see a few applications. For
example, a second derivative will tell you the acceleration of a moving body. To find a
higher order derivative, you just treat the first derivative as a new function and take its
derivative in the ordinary way. You can keep doing this indefinitely.
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31. For y = sin x + cos x, find the 1st through
6th derivatives.

Solve It

32. For y = cos x 2, find the 1st, 2nd, and 3rd
derivatives.

Solve It



Solutions for Differentiation Problems
a ; f xf x 08= =l^ ^h h

The derivative of any constant is zero.

b ; g xg x π 03
= =l^ ^h h

Don’t forget that even though π sort of looks like a variable (and even though other Greek let-
ters like , , andi a ~ are variables), π is a number (roughly 3.14) and behaves like any other
number. The same is true of .e 2 718. . And when doing derivatives, constants like c and k also
behave like ordinary numbers.

c sin cosg x k π
π

2
2=^ h (where k is a constant); g x 0=l ^ h

If you feel bored because this first page of problems was so easy, just enjoy it; it won’t last.

d ; f x xf x x 205 34
= =l^ ^h h

Bring the 4 in front and multiply it by the 5, and at the same time reduce the power by 1, from 4
to 3: f x x20 3

=l ^ h . Notice that the coefficient 5 has no effect on the derivative in the following
sense: You can ignore the 5 temporarily, do the derivative of x4 (which is 4x3), and then put the
5 back where it was and multiply it by 4.

e ; g x xg x x
10

3
10

2
3

=
-

=
-

l^ ^h h
You can just write the derivative without any work: x

10
3 2

- . But if you want to do it more method-
ically, it works like this:

1. Rewrite x
10

3
- so you can see an ordinary coefficient: x

10
1 3

- .

2. Bring the 3 in front, multiply, and reduce the power by 1.

g x x
10

3 2
=
-

l ^ h (which is the same, of course, as x
10
3 2

- .)

f ; y xy x x
2
50 /7 25

$= =-
- -

l^ h
Rewrite with an exponent and finish like problem 5 .x x /5 5 2

=
- -` j

To write your answer without a negative power, you write y
x x2
5

2
5or/ /7 2 7 2= -

-
l . Or you can write 

your answer without a fraction power, to wit: y
x x x x2

5

2

5

2

5

2

5or or or
7 7 7 7= -

-
-

-
l ` `j j .

You say “po-tay-to,” I say “po-tah-to.”

g ; s t ts t t t 42 17 10 56
= + + = +l^ ^h h

Note that the derivative of plain old t or plain old x (or any other variable) is simply 1. In a
sense, this is the simplest of all derivative rules, not counting the derivative of a constant. Yet
for some reason, many people get it wrong. This is simply an example of the power rule: x is the
same as x1, so you bring the 1 in front and reduce the power by 1, from 1 to 0. That gives you
1x0. But because anything to the 0 power equals 1, you’ve got 1 times 1, which of course is 1.

h ; y x xy x 6 366 5 23
2

= - = -l_ i
FOIL and then take the derivative.

x x

x x

y x x

6 6

12 36

6 36

3 3

6 3

5 2

= - -

= - +

= -l

_ _i i
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i cos sincos x x x x
dx
d x x 3 2 33

= -_ i
Remember that cos sin

dx
d x x= - . For a great mnemonic to remember the derivatives of trig 

functions, check out Chapter 15.

cos cos cos

cos sin

cos sin

dx
d x x x x x x

x x x x

x x x x

3

3

3 3 3

2 3

2 3

= +

= + -

= -

l l_ _ ^ _ ^
^

i i h i h
h

j cos tan sec tansin tan x x x x
dx
d x x = +^ h

A helpful rule: tan sec
dx
d x x2

= .

sin tan sin tan sin tan

cos tan sin sec

cos tan sec tan

dx
d x x x x x x

x x x x

x x x x

2

= +

= +

= +

l l^ ^ ^ ^ ^h h h h h

k lnln x x
dx
d x x 5 3 15 23

= +^ h
Another helpful rule: ln

dx
d x x

1
= . As for the 5, you can deal with it in two ways. First, you can 

ignore it temporarily (because coefficients have no effect on differentiation), and put it back
when you’re done differentiating. If you do it this way, don’t forget that the “5” multiplies the
entire derivative, not just the first term. The second way is probably easier and better: just
make the “5” part of the first function. To wit:

;

ln ln ln

ln

ln

ln

dx
d x x x x x x

x x x x

x x x

x x

5 5 5

15 5 1

15 5

5 3 1

or

take your pick.

3 3 3

2 3

2 2

2

= +

= +

= +

= +

$

l l_ _ ^ _ ^

^

i i h i h

h
*l lnln e x x x xe

dx
d x e x 2x xx 22

= + +_ i
This is a challenge problem because, as you’ve probably noticed, there are three functions
in this product instead of two. But it’s a piece o’ cake. Just make it two functions: either

ln lnx e x x e xorx x2 2_ ^ _ _i h i i. Take your pick.

A handy rule: 
dx
d e ex x

= (Note that ex and its multiples (like 4ex) are the only functions that are 

their own derivatives.)

1. Rewrite this “triple function” as the product of two functions. 

ln
dx
d x e xx2

= _ ^i h
2. Apply the product rule. 

ln ln ln
dx
d x e x x e x x e xx x x2 2 2

= +l l_ ^ _ ^ _ ^i h i h i h
3. Apply the product rule separately to x e x2 l_ i , then substitute the answer back where it

belongs.

x e x e x e

xe x e2

x x x

x x

2 2 2

2

= +

= +

l l l_ _ _ _ _i i i i i
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4. Complete the problem as shown in Step 2.

ln ln ln

ln ln

ln ln

ln ln

ln

x e x x e x xe x e x x e x

xe x x e x xe

x e x xe x xe

xe x x x

e x x x xe

2 1

2

2

2 1

2

or

or

or

x x x x x

x x x

x x x

x

x x

2 2 2 2

2

2

2

+ = + +

= + +

= + +

= + +

= + +

$l l_ ^ _ ^ _ ^

^
_

i h i h i h

h
i

You say “pa-ja-mas,” I say “po-jah-mas.”

m
cos

cos sin
cos x

x x x x
dx
d

x
x 3

2

2 33

=
+

cos
cos

cos cos

cos

cos sin

cos
cos sin

dx
d

x
x

x

x x x x

x

x x x x

x
x x x x

3

3

3

2

3 3

2

2 3

2

2 3

=
-

=
- -

=
+

l l

^
_ ^ _ ^

^
h

i h i h

h

n
sin coscos

e
x x

dx
d

e
x

xx =
- -

cos cos cos

sin cos

sin cos

dx
d

e
x

e

x e x e

e
e x e x

e
x x

x
x

x x

x

x x

x

2

2

=
-

=
- -

=
- -

l l

_
^ _ ^ _

i
h i h i

o
arctan
arctan

arctan x
x x

dx
d

x
x 6 33 3

2

2
+

=
-

A handy-dandy rule: arctan
dx
d x

x1
1

2=
+

.

arctan arctan

arctan arctan

arctan

arctan

arctan
arctan

dx
d

x
x

x

x x x x

x

x x x
x

x
x x

3 3 3 3 3 3

6 3 3
1

1

6 3

2

2

2 2

2

2

2

2

+
=

+ - +

=

- +
+

=
-

l l

^
_ ^ _ ^

_ d
h

i h i h

i n

To remember the derivatives of the inverse trig functions, notice that the derivative of each co-
function (arccosine, arccotangent, and arccosecant) is the negative of its corresponding function.
So, you really only need to memorize the derivatives of arcsin, arctan, and arcsec. These three
have a 1 in the numerator. The two that contain the letter “s,” arcsin and arcsec, contain a
square root in the denominator. Arctan has no “s” and no square root.
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*p
ln

cos ln sin ln sin
ln

sin

x x

x x x x x x
dx
d

x x
x 3

4 23 =
- -

^ h

ln
sin

ln

sin ln sin ln

ln

cos ln sin ln ln

ln

cos ln sin ln

ln

cos ln sin ln sin

ln

cos ln sin ln sin

dx
d

x x
x

x x

x x x x x x

x x

x x x x x x x x

x x

x x x x x x x x

x x

x x x x x x x x

x x

x x x x x x

3 1

3

3

3
3

2

3 3

6 2

3 3 3

6 2

3 2 3

6 2

3 2 2

4 2

Product Rule

=
-

=

- +

=

- +

=
- -

=
- -

l l

l l

_
^ _ ^ _

^
^ _ ^ _ ^ _ ^a

^
^ _ ce

^
^

i
h i h i

h
h i h i h i h k

h
h i mo

h
h

6 7 84444444 4444444

q ; cossin f x x xf x x 2 22
= =l^ ^h h

Because the argument of the sine function is something other than a plain old x, this is a chain
rule problem. Just use the rule for the derivative of sine, not touching the inside stuff (x2), then
multiply your result by the derivative of x2.

cos

cos

f x x x

x x

2

2

2

2

=

=

$l ^ _h i

r ;sin g x x xg x x 3sin cos23
= =l^ ^h h

Rewrite sin x3 as sinx
3^ h so that it’s clear that the outermost function is the cubing function.

By the chain rule, the derivative of stuff 3 is stuff3 2
$ stuff '. The stuff here is sin x and thus stuff ' is

cos x. So your final answer is sin cosx x3
2

$^ h , or sin cosx x3 2 . 

s ; sec lntan ln s t t ts t t 12
= = $l^ ^ ^ ^h h h h

The derivative of tan is sec2, so the derivative of tan(lump) is sec lump lump2
$ l_ i . You better 

know by now that the derivative of ln t is t
1, so your final result is sec ln t t

12
$^ h .

t ; y x ey e 12 xx 2 44 33

= =l

The derivative of ex is ex, so by the chain rule, the derivative of e glob is e globglob
$ l.

So y e x12x4 23

= $l , or x e12 x2 4 3

. 

*u ; sin sin cossin f x x x x x xf x x x 4 33 3 4 24 3
= = +l^ ^h h

This problem involves both the product rule and the chain rule. Which do you do first? Note
that the chain rule part of this problem, sin3 x, is one of the two things being multiplied, so it is
part of — or sort of inside — the product. And, like with pure chain rule problems, with prob-
lems involving more than one rule, you work from outside, in. So here you begin with the prod-
uct rule. Here’s another way to look at it:

If you’re not sure about the order of the rules in a complicated derivative problem, imagine that
you plugged a number into x in the original function and had to compute the answer. Your last
computation tells you where to start. If, for example, you plugged 2 into sinx x4 3 , you would
compute 24, then sin 2, then you’d cube that to get sin3 2, and, finally, you’d multiply 24 by sin3 2.
Because your final step was multiplication, you begin with the product rule.
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sin

sin

sin sin

f x x x

x x

f x x x x x product rule

4 3

4 3

4 3 4 3

=

=

= +l l l

^
_ _

^ _ _ _ _ _

h
i i

h i i i i i
Use the chain rule to solve sin x3 l_ i , then go back and finish the problem. sin x3 means sinx

3^ h
and that’s stuff 3 . The derivative of stuff 3 is stuff3 2

$ stuff ', so the derivative of sinx
3^ h is

sin cosx x3
2

$^ h . Now continue the solution.

sin sin

sin sin cos

sin sin cos

f x x x x x

x x x x x

x x x x x

4 3

4 3

4 3 4 3

3 3 4 2

3 3 4 2

= +

= +

= +

$

l l l^ _ _ _ _
^

h i i i i
h

*v ; ln lnln
g x

x x
x

x

x
g x

x

x

5 4
2

5 4

5

5 4 2

22

=
-

=
-

-
-

l^ ^ ^ ^ ^
^h h h h h

h
Here you’ve got the chain rule inside the quotient rule. Start with the quotient rule:

ln ln
g x

x

x x x x

5 4

5 4 5 4
2

2 2

=
-

- - -

l

l l^ ^
^a ^ ^ ^h h

h k h h h

Next, take care of the chain rule solution for lnx
2 l^a h k . You want the derivative of glob2 — that’s 

glob glob2 $ l. So the derivative of lnx
2^ h is lnx x2 1^ ch m. Now you can finish:

ln ln

ln ln

ln ln

g x
x

x x x x

x x

x x x x

x x
x

x

x

5 4

2 1 5 4 5

5 4

10 8 5

5 4
2

5 4

5

2

2

2

2

2

2

=
-

- -

=
-

- -

=
-

-
-

l ^ ^
^ c ^ ^ ^

^
^ ^

^ ^
^

h h
h m h h h

h
h h

h h
h

*w ; cos sincos y x x xy x 24 4 44 2 2 23 2
= = -l

Triply nested!

cosy x4 2
3

= _ i
The derivative of stuff 3 is stuff3 2

$ stuff ', so, you’ve got, 

cos cosy x x3 4 42
2

2
= $l l_ _i i

Now you do the derivative of cos glob_ i, which is sin glob glob- $ l_ i . Two down, one to go:

cos sin

cos sin

cos sin

y x x x

x x x

x x x

3 4 4 4

3 4 4 8

24 4 4

2
2

2 2

2 2 2

2 2 2

= -

= -

= -

$

$

l l_ _ _
_
i i i

i
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*x tan sectan xe e e
dx
d e 6 x x xx 2 23 2 2 22

=

Holy quadrupely nested quadruple nestedness, Batman! This is one for the Riddler. 

tan

tan tan

tan sec tan sec

tan sec

tan sec

tan sec

dx
d e

e e because
dx
d stuff stuff stuff

e e e because
dx
d glob glob glob

e e e x because
dx
d e e lump

e e e x

xe e e

3 3

3

3

3 2

6

x

x x

x x x

x x x lump lump

x x x

x x x

3

2
3 2

2 2 2

2 2 2

2 2

2 2

2

2 2

2 2 2

2 2 2

2 2 2

2 2 2

=

= =

= =

= =

=

=

$ $

$ $

$ $ $

$ $

l l

l l

l l

`
` ` c

` _ _c
_ c

j
j j m

j i i m
i m

y If , y
y
xy x x y

3 1
2 1

2

3 2
- = + =

-

+
l

1. Take the derivative of all four terms, using the chain rule (sort of) for all terms containing a y.

y y x y3 2 12
- = +l l

2. Move all terms containing y’ to the left, all other terms to the right, and factor out y’.

y y y x

y y x

3 1 2

3 1 1 2

2

2

- = +

- = +

l l

l _ i
3. Divide and voilà!

y
y
x

3 1
2 1

2=
-

+
l

A If ,ln y
y

ye
y y e

3 1
4

3 4
x

x
+ = =

+
l

Follow steps for problem 25.

y y y e

y y e

y

y

e

y
ye

3 1 4

3 1 4

3 1
4

3 1
4

x

x

x

x

+ =

+ =

=

+

=
+

l l

l

l

c m

POW!!

CRUNCH!

BAM!!!
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C For x y y x y x52 3
= + + , find 

dx
dy

by implicit differentiation. y
y x x

y xy

3 5

2 1
2 2

3

=
- + -

- +
l

This time you’ve got two products to deal with, so use the product rule for the two products and
the regular rules for the other two terms. 

x y x y y x y x y

xy x y y y x y y

x y y y x y y xy

y x y x y xy

y
y x x

y xy

5 1

2 3 5 1

3 5 1 2

3 5 2 1

3 5

2 1

2 2 3 3

2 2 3

2 2 3

2 2 3

2 2

3

+ = + + +

+ = + + +

- - = + -

- - = - +

=
- + -

- +

l l l l l

l l l

l l l

l

l

_ _

_

i i

i

*C If cos siny y x52 3 2
+ = , find the slope of the curve at ,π

10
0d n. The slope is zero.

You need a slope, so you need the derivative. 

cos sin cos

cos sin cos

cos sin cos

cos sin
cos

y y y y x x

y y y y y x x

y y y y x x

y
y y y

x x

2 5 10

2 3 10 5

1 6 10 5

1 6
10 5

3 3 3 2

3 3 2 2

2 3 3 2

2 3 3

2

Implicit

Differentiation
Chain Rule

twice nested

Chain Rule

Implicit

Differentiation

+ - =

+ - =

- =

=
-

$l l

l l

l

l

_ _
]

_ ^

_ _

_

i i
g

i h

i i

i

1 2 3444444 444444 1 2 3444 444\

\

You need the slope at x π

10
= , y = 0, so plug those numbers in to the derivative. Actually, you 

can save yourself a lot of work if you notice that the numerator will equal zero (because 

cos π5
10

0
2

=e o ) and the denominator will equal 1 (because y = 0). And thus the slope of the 

curve at this point is zero. A tangent line with a zero slope is horizontal, and because this 
tangent line touches the curve where y = 0, the tangent line is the x-axis.

D For y = x4, find the 1st through 6th derivatives.

y x

y x

y x

y

y

y

4

12

24

24

0

0

( )

( )

( )

3

2

4

5

6

=

=

=

=

=

=

l

ll

lll

Extra credit: y 0( )2005
=

E For y x x105 3
= + find the 1st, 2nd, 3rd, and 4th derivatives. 

y x x

y x x

y x

y x

5 30

20 60

60 60

120( )

4 2

3

2

4

= +

= +

= +

=

l

ll

lll

88 Part III: Differentiation 



F For sin cosy x x= + , find the 1st through 6th derivatives.

cos sin

sin cos

cos sin

sin cos

cos sin

sin cos

y x x

y x x

y x x

y x x

y x x

y x x

( )

( )

( )

4

5

6

= -

= - -

= - +

= +

= -

= - -

l

ll

lll

Notice that the 4th derivative equals the original function; that the 5th derivative equals the
1st, and so on. This cycle of four functions repeats ad infinitum.

G For cosy x 2
= , find the 1st, 2nd, and 3rd derivatives.

sin

sin cos

sin cos

cos

sin sin

sin cos

cos cos cos

cos cos sin

cos cos sin

y x x

x x x

x x x x

y x

y x x x x

x x x x

y x x x x x x

x x x x x x x

x x x x x x

2

2 4

8 12

2 2

2 2 2

2 2 4 4

4 8 4 2

4 8 8

chain rule

product rule

chain rule

2

2 2 2

3 2 2

2

2 2

2 2

2 2 2 2 2

2 2 2 2

2 2 3 2

=

=-

= - + -

= - -

= - -

= - - +

= - - + -

= - - +

= -

l

ll l l

lll l l

^
^ _ ^ _ _

_ ^

_ _ _ _ _
_a

h
h i h i i

i h

i i i i i
i k

9
;

C
E
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Chapter 7

Analyzing Those Shapely Curves 
with the Derivative

In This Chapter
� Mum’s the word: Minimum, maximum, extremum

� Concavity and inflection points

� The nasty mean value theorem

This chapter gives you lots of practice using the derivative to analyze the shape of
curves and their significant features and points. Don’t forget: The derivative tells you

the slope of a curve, so any problem involving anything about the slope or steepness of a
curve is a derivative problem.

The First Derivative Test and Local Extrema
One of the most common applications of the derivative employs the simple idea that at the
top of a hill or at the bottom of a valley, you’re neither going up nor down; in other words,
there’s no steepness and the slope — and thus the derivative — equals zero. You can there-
fore use the derivative to locate the top of “hills” and the bottom of “valleys,” called local
extrema, on just about any function by setting the derivative of the function equal to zero
and solving.
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Q. Use the first derivative test to determine
the location of the local extrema of
g x x x15 3 5

= -^ h . See the following figure.

A. The local min is at (–3, –162), and the
local max is at (3, 162).

1. Find the first derivative of g using the
power rule.

g x x x

g x x x

15

45 5

3 5

2 4

= -

= -l

^
^

h
h

2. Set the derivative equal to zero and
solve for x to get the critical numbers 
of g. 

, ,

x x

x x

x x x

x x x

x

45 5 0

5 9 0

5 3 3 0

5 0 3 0 3 0

0 3 3

or or

or

2 4

2 2

2

2

- =

- =

- + =

= - = + =

= -

_
^ ^

i
h h

If the first derivative were undefined for
some x-values in the domain of g, there
could be more critical numbers, but
because g x x x45 52 4

= -l ^ h is defined for
all real numbers, 0, 3, –3 is the complete
list of critical numbers of g.

Remember: If f is defined at a number c
and the derivative at x = c is either zero
or undefined, then c is a critical number
of f.

3. Plot the three critical numbers on a
number line, noting that they create
four regions (see the figure in Step 5).

5

200

200

-5

x

y

4. Test a number from each of the four
regions, noting whether the results are
positive or negative.

Note that if you use round numbers like
0, –10, or 10, you can often do the arith-
metic in your head. 

,

,

g

g

g

g

10 45 10 5 10 45 500

1 45 1 5 1 40

1 45 1 5 1 40

10 45 10 5 10 45 500

2 4

2 4

2 4

2 4

- = - - - = -

- = - - - =

= - =

= - = -

l

l

l

l

^ ^ ^
^ ^ ^
^ ^ ^

^ ^ ^

h h h
h h h
h h h
h h h

5. Draw a “sign graph.” Take your number
line and label each region — based on
your results from Step 4 — positive
(increasing) or negative (decreasing).
See the following figure. 

This sign graph tells you where the func-
tion is rising or increasing and where it is
falling or decreasing.

6. Use the sign graph to determine
whether there’s a local minimum, local
maximum, or neither at each critical
number.

Because g goes down on its way to x = –3
and up after x = –3, it must bottom out
at x = –3, so there’s a local min there.
Conversely, g peaks at x = 3 because it
rises until x = 3, then falls. There is thus a
local max at x = 3. And because g climbs
on its way to x = 0 and then climbs fur-
ther, there is neither a min nor a max at
x = 0. 

7. Determine the y-values of the local
extrema by plugging the x-values into
the original function.

g 3 15 3 3

162

3 5

- = - - -

= -

^ ^ ^h h h

g 3 15 3 3

162

3 5

= -

=

^ ^ ^h h h

So the local min is at (–3, –162), and the
local max is at (3, 162).

0 3-3

decreasing
–

increasing
+

increasing
+

decreasing
–
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1. Use the first derivative to find the local
extrema of f x x x6 4 1/2 3

= - +^ h . Tip: You
better write small if you want to do this
problem on half a page. 

Solve It

2. Find the local extrema of 

cosh x x x
2 2

2
= + -^ h in the interval 

, π0 2_ i with the first derivative test.

Solve It
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3. Locate the local extrema of y x 8
/

2
2 3

= -_ i
with the first derivative test. 

Solve It

4. Using the first derivative test, determine 

the local extrema of s
t

t
2

4
2

4

=
-

+ .

Solve It



The Second Derivative Test and Local Extrema
With the second derivative test, you use — can you guess? — the second derivative to
test for local extrema. The second derivative test is based on the absolutely brilliant
idea that the crest of a hill has a hump shape (+) and the bottom of a valley has a
trough shape (,). 

After you find a function’s critical numbers, you’ve got to decide whether to use the
first or the second derivative test to find the extrema. For some functions, the second
derivative test is the easier of the two because 1) The second derivative is usually 
easy to get, 2) You can often plug the critical numbers into the second derivative and
do a quick computation, and 3) you will often get non-zero results and thus get your
answers without having to do a sign graph and test regions. On the other hand, testing
regions on a sign graph (the first derivative test) is also fairly quick and easy, and if the
second derivative test fails (see the warning), you’ll have to do that anyway. As you do
practice problems, you’ll get a feel for when to use each test.

When the second derivative equals zero, the second derivative test fails and you learn
nothing about local extrema. You’ve then got to use the first derivative test to deter-
mine whether there’s a local extremum (the singular of extrema) there.
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Q. Take the function from the example in the
previous section, g x x x15 3 5

= -^ h , but this
time find its local extrema using the second
derivative test. 

A. The local min is at x = –3 and the local
max is at x = 3.

You’ve probably figured out that to use
the second derivative test you need the
second derivative:

g x x x

g x x x

g x x x

15

45 5

90 20

3 5

2 4

3

= -

= -

= -

l

m

^
^
^

h
h
h

Now all you do is plug in the critical
numbers of g from the example in the
last section:

g

g

g

3 270

0 0

3 270

- =

=

= -

m

m

m

^
^
^

h
h
h

The fact that g 3-m ^ h is positive tells you
that g is concave up (,) there, and thus
that there’s a local min. And the fact that
g 3m ^ h is negative tells you that g is con-
cave down (+) at x = 3, and, therefore,
that there’s a local max there. And, while
it may seem that g 0 0=m ^ h confirms what
you figured out previously (that there’s
neither a min nor a max there), you actu-
ally learn nothing when the second deriv-
ative is zero; you have to use the first
derivative test.

Tip: If you only have one critical point between
a local min and a local max (and no discon-
tinuities), it has to be an inflection point,
and if you have a single critical number
between two known maxes (see problem
7), the only possibility for the middle criti-
cal number is a local min (and vice-versa).
So in these cases, it really doesn’t matter 
if the second derivative test fails with the
middle critical number. If this not-by-the-
book reasoning doesn’t work for your calc
teacher, you might say (with just a touch 
of sarcasm in your voice), “Oh, so in other
words, you’ve got something against logic
and common sense.” 
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5. Use the second derivative test to analyze
the critical numbers of the function from 

problem 2, cosh x x x
2 2

2
= + -^ h . 

Solve It

6. Find the local extrema of
f x x x2 6 13 2

= - + +^ h with the 
second derivative test. 

Solve It
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7. Find the local extrema of y x x2
3
14 6

= -

with the second derivative test.

Solve It

8. Consider the function from problem 3,
y x 8

/
2

2 3

= -_ i , and the function 

s t t8
4

21
4

7 3

= + - . Which of the two func-

tions is easier to analyze with the second
derivative test, and why? For the function
you pick, use the second derivative test to
find its local extrema. 

Solve It



Finding Mount Everest: Absolute Extrema
The basic idea in this section is quite simple. Instead of finding all local extrema like in
the previous sections (all the peaks and all the valleys), you just want to determine the
single highest point and single lowest point along a continuous function in some closed
interval. These absolute extrema can occur at a peak or valley or at an edge(s) of the
interval. (Note: You could have, say, two peaks at the same height so there’d be a tie
for the absolute max; but there would still be exactly one y-value that’s the absolute
maximum value on the interval.) 

Before you practice with some problems, look at Figure 7-1 to see two standard
absolute extrema problems (continuous functions on a closed interval) and at Figure 7-2
for four strange functions that don’t have the standard single absolute max and single
absolute min.

x

y

x

y
no abs min

closed interval open interval

no abs max or min

hole

abs

max

1 2 3 4 1 2 3 4

Figure 7-2:

Four non-

standard

absolute

extrema

functions.

x

y

x

yno abs max

abs

min
abs

min

open interval closed interval

no abs max

asymptote
1 2 3 4 1 2 3 4

1 2 3 4

x

y

1 2 3 4

x

y

abs

max

abs

min
abs

min

abs

max

1. 2.

open interval closed interval

Figure 7-1:

Two 

standard

absolute

extrema

functions.
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Q. Determine the absolute min and absolute
max of f x x x= -^ h in the interval 
[–1, 1⁄2].

A. The absolute max is 2 and the absolute
min is 0.

1. Get all the critical numbers: 

First, set the derivative equal to zero
(note, first split this function in two to
get rid of the absolute value bars):

f x x x x

f x
x

x

x

x

0

2

1 1

0
2

1 1

2 1

4
1

$= -

= -

= -

=

=

l

^ ^
^

h h
h

<f x x x x

f x
x

x

x

0

2

1 1

0
2

1 1

2 1

No solution

= - -

=
-

-
-

=
-

-
-

- =-

l

^ ^
^

h h
h

Now, determine whether the derivative is
undefined anywhere:

The derivative is undefined at x = 0
because the denominator of the deriva-
tive can’t equal zero. (If you graph this
function (always a good idea) you’ll also
see the cusp at x = 0 and thus know
immediately that there’s no derivative
there.)

The critical numbers are therefore 0
and 1⁄4.

2. Compute the function values (the
heights) at all the critical numbers.

f f
4
1

4
1 0 0= =c ^m h

It’s just a coincidence, by the way, that in
both cases the argument equals the
answer.

3. Compute the function values at the two
edges of the interval. 

.f f1 2
2
1

2
2 1

0 207.- = =
-

J

L

KK^ c
N

P

OOh m
4. The highest of all the function values

from Steps 2 and 3 is the absolute max;
the lowest of all the values from Steps 2
and 3 is the absolute min.

Thus, 2 is the absolute max and 0 is the
absolute min.

Note that finding absolute extrema
involves less work than finding local
extrema because you don’t have to use
the first or second derivative tests — do
you see why? 
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9. Find the absolute extrema of
sin cosf x x x= +^ h on the interval , π0 27 A. 

Solve It

10. Find the absolute extrema of
g x x x2 3 53 2

= - -^ h on the interval . , .5 5-7 A.
Solve It
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11. Find the absolute extrema of
.p x x x1 5

/4 5

= + -^ ^h h on the interval 

,2 31-7 A.
Solve It

12. Find the absolute extrema of
cos sinq x x x2 4= +^ h on the interval 

,π π

2 4
5

-; E.

Solve It



Smiles and Frowns: Concavity 
and Inflection Points

Another purpose of the second derivative is to analyze concavity and points of inflec-
tion. (For a refresher, look at Figure 7-3: The area between A and B is concave down —
like an upside-down spoon or a frown; the areas on the outsides of A and B are con-
cave up — right-side up spoon or a smile; and A and B are inflection points.) A positive
second derivative means concave up; a negative second derivative means concave
down. Where the concavity switches from up to down or down to up, you’ve got an
inflection point, and the second derivative there will be zero (or sometimes undefined).

All inflection points have a second derivative of zero (if the second derivative exists),
but not all points with a second derivative of zero are inflection points. This is no dif-
ferent from “all ships are boats but not all boats are ships.” 

However, you can have an inflection point where the second derivative is undefined.
This occurs when the inflection point has a vertical tangent and in some bizarre
curves that you shouldn’t worry about that have a weird discontinuity in the second
derivative. 

A

B
Figure 7-3:

Concavity

and points

of inflection.
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Q. Find the intervals of concavity and the
inflection points of f x x x3 5 105 3

= - +^ h .
Note that the following solution is analo-
gous to the solution for finding local
extrema with the first derivative.

A. f is concave down from 3- to the inflec-

tion point at , .
2
2

11 24+-

J

L

KK

N

P

OO; concave 

up from there to the inflection point at 
(0, 10); concave down from there to the 

third inflection point at , .
2
2

8 76+

J

L

KK

N

P

OO; 

and concave up from there to 3.

1. Find the second derivative of f.

f x x x

f x x x

f x x x

3 5 10

15 15

60 30

5 3

4 2

3

= - +

= -

= -

l

m

^
^
^

h
h
h

2. Set the second derivative equal to zero
and solve.

x x

x x

60 30 0

30 2 1 0

3

2

- =

- =_ i

x

x

30 0

0

=

=
or    

x

x

x

x

2 1 0

2 1

2
1

2
2

2

2

2

!

- =

=

=

=

3. Check whether there are any x-values
where the second derivative is 
undefined. 

There are none, so 
2
2

- , 0, and 
2
2

are 

the three second derivative “critical
numbers.” (Technically these aren’t
called critical numbers, but they could
be because they work just like first 
derivative critical numbers.) 

4. Plot these “critical numbers” on a
number line and test the regions.

You can use –1, –.5, .5, and 1 as test 
numbers. The following figure shows
the second derivative sign graph.

. .

. .

f x x x

f

f

f

f

60 30

1 30

5 7 5

5 7 5

1 30

3
= -

- = -

- =

= -

=

m

m

m

m

m

^

^
^
^
^

h

h
h
h
h

Because the concavity switches at all
these “critical numbers” and because 
the second derivative exists at those
numbers (from Steps 2 and 3), there are
inflection points at those three x-values.
(If the concavity switches at a point
where the second derivative is unde-
fined, you have to check one more thing
before concluding that you’ve got an
inflection point: whether you can draw a
tangent line there. This is the case when
the first derivative is defined or if there’s
a vertical tangent.) In a nutshell, if the
concavity switches at a point where the
curve is smooth, you’ve got an inflection
point.

5. Determine the location of the three
inflection points.

.

.

f x x x

f

f

f

3 5 10

2
2

11 24

0 10

2
2

8 76

5 3

.

.

= - +

-

=

J

L

KK

J

L

KK

^

^

N

P

OO

N

P

OO

h

h

So f is concave down from 3- to the 

inflection point at , .
2
2

11 24+-

J

L

KK

N

P

OO, con-

cave up from there to the inflection point
at (0, 10), concave down from there to 

the third inflection point at , .
2
2

8 76+

J

L

KK

N

P

OO, 

and, finally, concave up from there to 3.

0

concave
down

–

2

concave
up
+

concave
up
+

concave
down

–

2
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13. Find the intervals of concavity 
and the inflection points of
f x x x x2 6 10 53 2

= - + - +^ h .

Solve It

14. Find the intervals of concavity and the
inflection points of g x x x124 2

= -^ h . 

Solve It
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15. Find the intervals of concavity and the 

inflection points of p x
x

x
92=

+
^ h .

Solve It

16. Find the intervals of concavity and the 

inflection points of q x x x5 3= -^ h .

Solve It



The Mean Value Theorem: 
Go Ahead, Make My Day

The Mean Value Theorem is based on an incredibly simple idea. Say you go for a one
hour drive and travel 50 miles. Your average speed, of course, would be 50 mph. The
Mean Value Theorem says that there must be at least one point during your trip when
your speed was exactly 50 mph. But you don’t need a fancy-pants calculus theorem to
tell you that. It’s just common sense. If you went slower than 50 mph the whole way,
you couldn’t average 50. And if you went faster than 50 the whole way (this assumes
you’re going faster than 50 at your starting point), your average speed would be
greater than 50. The only way to average 50 is to go exactly 50 the whole way or to
go slower than 50 some times and faster than 50 at other times. And when you speed
up or slow down, you have to pass exactly 50 at some point.

With the Mean Value Theorem, you figure an average rate or slope over an interval and
then use the first derivative to find one or more points in the interval where the instan-
taneous rate or slope equals the average rate or slope. Here’s an example:
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Q. Given f x x x x4 53 2
= - -^ h , find all numbers

c in the open interval (2, 4) where the
instantaneous rate equals the average rate
over the interval.

A. The only answer is 
3

4 2 7+
.

Basically, you’re finding the points along
the curve in the interval where the slope
is the same as the slope from , f2 2^` hj
to , f4 4^` hj. Mathematically speaking, 

find all numbers c where 

f c
f f

4 2

4 2
=

-

-
l ^ ^ ^h h h

.

1. Get the first derivative.

f x x x x

f x x x

4 5

3 8 5

3 2

2

= - -

= - -l

^
^

h
h

2. Using the slope formula, m x x
y y

2 1

2 1
= -

-
, 

figure the slope from , f2 2^` hj to 

, f4 4^` hj.
f 4 4 4 4 5 4

20

3 2
$= - -

= -

$^ h

f 2 2 4 2 5 2

18

3 2
= - -

= -

$ $^ h

m
f f

4 2

4 2

2

20 18

1

=
-

-

=
- - -

= -

^ ^
^

h h
h

3. Set the derivative equal to this slope
and solve.

. .

x x

x x

x

3 8 5 1

3 8 4 0

6

8 8 4 3 4

6
8 4 7

3
4 2 7

3
4 2 7

3 10 43

or

or

2

2

2

!

!

. .

- - = -

- - =

=
- - -

=

=
+ -

-

^ ^ ^h h h

Because .43- is outside the interval 

(2, 4), your only answer is 
3

4 2 7+
.

By the way, the Mean Value Theorem
only works for functions that are differ-
entiable over the open interval in ques-
tion and continuous over the open
interval and its endpoints.
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17. For g x x x x3 2
= + -^ h , find all the values c

in the interval (–2, 1) that satisfy the Mean
Value Theorem. 

Solve It

18. For s t t t3/ /4 3 1 3
= -^ h , find all the values c in

the interval (0, 3) that satisfy the Mean
Value Theorem.

Solve It



Solutions for Derivatives and Shapes of Curves
a Use the first derivative to find the local extrema of f x x x6 4 1/2 3

= - +^ h . Local min at (0, 1);
local max at (1, 3).

1. Find the first derivative using the power rule.

f x x x

f x x

6 4 1

4 4

/

/

2 3

1 3

= - +

= -
-

l

^
^

h
h

2. Find the critical numbers of f.

a. Set the derivative equal to zero and solve.

x

x

x

4 4 0

1

1

/

/

1 3

1 3

- =

=

=

-

-

b. Determine the x-values where the derivative is undefined: f x x
x

4 4 4 4/1 3

3
= - = -

-
l ^ h

Because the denominator is not allowed to equal zero, f xl ^ h is undefined at x = 0. Thus the
critical numbers of f are 0 and 1.

3. Plot the critical numbers on a number line.

I’m going to skip the figure this time because I assume you can imagine a number line with
dots at 0 and 1. Don’t disappoint me! 

4. Plug a number from each of the three regions into the derivative. 

f

f positive

f

1 4 1 4 4 4 8

2
1 4

2
1 4 4 2 4

8 4 8 4 2 4 2

/

/
/

/

1 3

1 3
1 3

1 3

- = - - = - - = -

= - = - =

= - = - = -

-

-

-

l

l

l

^ ^
c c ^
^ ^

h h
m m h
h h

Note, again, how the numbers I picked for the first and third computations made the math easy.
With the second computation, you can save a little time and skip the final calculation because
all you care about is whether the result is positive or negative — this assumes that you know
that the cube root of 2 is more than 1 (you better!).

5. Draw your sign graph (see the following figure).

6. Determine whether there’s a local min or max or neither at each critical number.

f goes down to x = 0 and then up, so there’s a local min at x = 0, and f goes up to x = 1 and then
down, so there’s a local max at x = 1.

7. Figure the y-value of the two local extrema.

f

f

0 6 0 4 0 1 1

1 6 1 4 1 1 3

/

/

2 3

2 3

= - + =

= - + =

^ ^ ^
^ ^ ^
h h h
h h h

Thus, there’s a local min at (0, 1) and a local max at (1, 3). Check this answer by looking at a
graph of f on your graphing calculator.

0 1

decreasing

–

decreasing

–

increasing

+
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b Find the local extrema of cosh x x x
2 2

2
= + -^ h in the interval , π0 2_ i with the first derivative 

test. Local max at ,π π

4 8
2J

L

KK

N

P

OO; local min at ,π π

4
3

8
3 2

2-

J

L

KK

N

P

OO.

1. Find the first derivative.

cos

sin

h x x x

h x x

2 2
2

2

1

= + -

= -l

^

^

h

h

2. Find the critical numbers of h.

a. Set the derivative equal to zero and solve:

.

sin

sin

intThese are the solutions in the given erval

x

x

x π π

2

1 0

2
2

4 4
3or

- =

=

= _ i
b. Determine the x-values where the derivative is undefined.

The derivative isn’t undefined anywhere, so the critical numbers of h are π

4
and π

4
3 .

3. Test numbers from each region on your number line.

sinh

positive

π π

6 2

1
6

2
2

2
1

= -

= -

=

l c m sinh

negative

π π

2 2
2

2

2
2

1

= -

= -

=

l c m sinh

positive

π π
2
2

2
2

0

= -

= -

=

l ^ h

4. Draw a sign graph (see the following figure).

5. Decide whether there’s a local min, max, or neither at each of the two critical numbers. 

Going from left to right along the function, you go up until x π

4
= and then down, so there’s a 

local max at x π

4
= . It’s vice-versa for x π

4
3

= , so there’s a local min there.

6. Compute the y-values of these two extrema.

cosh π

π

π

π

π

4 2

4
4 2

2

4 2 2
2

2
2

8
2

= + -

= + -

=

c m cosh π

π

π

π

π

4
3

2

4
3

4
3

2
2

8
3 2

2
2

2
2

8
3 2

2

= + -

= - -

= -

c m

So you’ve got a max at ,π π

4 8
2J

L

KK

N

P

OO and a min at ,π π

4
3

8
3 2

2-

J

L

KK

N

P

OO.

π0 3π

increasing
+

increasing
+

decreasing
–

2π
4 4
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c Locate the local extrema of y x 8
/

2
2 3

= -_ i with the first derivative test. Local mins at ,2 2 0-` j
and ,2 2 0` j; a local max at ,0 4_ i.
Same basic steps as problems 1 and 2, but abbreviated a bit. 

1. Find the derivative.

y x

y x x
x

x

8

3
2 8 2

3 8

4

/

/

2
2 3

2
1 3

23

= -

= - =
-

-

l

_
_ ^

i
i h

2. Find the critical numbers.

a. x

x

x

3 8

4 0

0

23 -
=

=

b. The first derivative will be undefined when the denominator is zero, so 

x

x

x

x

x

3 8 0

8 0

8 0

8

2 2

23

23

2

2

!

- =

- =

- =

=

=

The critical numbers are 2 2- , 0, and 2 2.

3. Test the values.

y

positive negative

positive negative

negative

y negative y positive

10
3
2 10 8 2 10

3
2

3
2

1 10and

/

/

2
1 3

1 3

- = - - -

=

=

=

= =

-

-

$

$

$

l

l l

^ ^a ^`
_

^ ^

h h k hj
i

h h

y

negative negative

negative negative

positive

1
3
2 1 8 2 1

3
2

3
2

What? I should do all your work?

/

/

2
1 3

1 3

- = - - -

=

=

=

-

-

$

$ $

$ $

l ^ ^a ^`
_

_

h h k hj
i

i
4. Make a sign graph (see the following figure).

5. Find the y-values.

y 2 2 8 0
/

2
2 3

= - - =`c j m There’s a local min at ,2 2 0-` j.

y 0 8 8 4
/ /2

2 3 2 3

= - = - =_ ^i h There’s a local max at (0, 4).

y 2 2 8 0
/

2
2 3

= - =`c j m There’s another local min at ,2 2 0` j. Check out this interesting curve

on your graphing calculator. 

0

decreasing
–

increasing
+

increasing
+

decreasing
–
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d Using the first derivative test, determine the local extrema of s
t

t
2

4
2

4

=
-

+ . Local maxes at 

,2 2- -` j and ,2 2-` j.
1. Do the differentiation thing.

s
t

t

s
t

t t t t

t

t t t t

t
t

2
4

2

4 2 4 2

4

4 2 4 4 4

2

4

2
2

4 2 4 2

4

3 2 4

3

4

=
-

+

=

-

+ - - + -
=

- - + -
=
- +

l

l l

_
_ _ _ _ _ _ _ ^

i
i i i i i i i h

2. Find the critical numbers.

t
t

t

t t

t t t

t

4 0

4 0

2 2 0

2 2 2 0

2 2or

3

4

4

2 2

2

- +
=

- =

- + =

- + + =

= -

_ _
` ` _

i i
j j i

So 2- and 2 are two critical numbers of s.

t = 0 is a third important number because t = 0 makes the derivative’s denominator equal zero,
and so you need to include zero on your sign graph in order to define test regions. Note, how-
ever, that t = 0 is not a critical number of s because s is undefined at t = 0. And because there is
no point on s at t = 0, there cannot be a local extremum at t = 0. 

3. Test values: You’re on your own.

4. Make a sign graph (see the following figure).

She loves me; she loves me not; she loves me; she loves me not.

5. Find the y-values.

s 2
2 2

2 4

4
4 4 22

4

- =

- -

- +

=
-

+
= -`

`
`j

j
j

You climb up the hill to ,2 2- -` j, then down, so there’s a 

local max there. 

s undefined0
2 0

0 4
2

4

=
-

+
=^ ^h h (which you already knew). Therefore, there’s no local extremum 

at t = 0. Remember that if a problem asks you to identify only the x-values and not the 
y-values of the local extrema, and you only consider the sign graph, you would incorrectly
conclude — using the current problem as an example — that there’s a local min at t = 0.
So you should always check where your function is undefined.

s 2
2 2

2 4
22

4

=

-

+
= -` j . Up then down again, so there’s another local max at ,2 2-` j. 

As always, you should check out this function on your graphing calculator.

0

increasing
+

decreasing
_

decreasing
–

increasing
+
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e Use the second derivative test to analyze the critical numbers of the function from problem 2, 

cosh x x x
2 2

2
= + -^ h . Local max at x

2
2

= - ; local min at x
2
2

= .

1. Find the second derivative.

cos

sin

cos

h x x x

h x x

h x x

2 2
2

2

1

= + -

= -

= -

l

m

^

^
^

h

h
h

2. Plug in the critical numbers (from problem 2).

cosh π π

4 4

2
2

= -

= -

m c m cosh π π

4
3

4
3

2
2

= -

=

m c m

You’re done. h is concave down at x
2
2

= - , so there’s a local max there, and h is concave up 

at x
2
2

= , so there’s a local min at that x-value. 

(In problem 2, you already determined the y-values for these extrema.) h is an example of a
function where the second derivative test is quick and easy.

f Find the local extrema of f x x x2 6 13 2
= - + +^ h with the second derivative test. Local min at 

(0, 1); local max at (2, 9).

1. Find the critical numbers.

,

f x x x

f x x x

x x

x x

x

2 6 1

6 12

0 6 12

0 6 2

0 2

3 2

2

2

= - + +

= - +

= - +

= - -

=

l

^
^

^

h
h

h

2. Find the second derivative.

f x x x

f x x

6 12

12 12

2
= - +

= - +

l

m

^
^

h
h

3. Plug in the critical numbers.

: minconcave up

f 0 12 0 12

12

= - +

=

m ^ ^
_

h h
i

f 2 12 2 12

12 concave down: max

= - +

= -

m ^ ^
^

h h
h

4. Determine the y-coordinates for the extrema.

f 0 2 0 6 0 1

1

3 2

= - + +

=

^ ^ ^h h h f 2 2 2 6 2 1

9

3 2

= - + +

=

^ ^ ^h h h

So there’s a min at (0, 1) and a max at (2, 9). f is another function where the second derivative
test works like a charm.
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g Find the local extrema of y x x2
3
14 6

= - with the second derivative test. You find local maxes at 

x = –2 and x = 2 with the second derivative test; you find a local min at x = 0 with street
smarts. 

1. Find the critical numbers.

, ,

y x x

y x x

x x

x x

x x x

x

2
3
1

8 2

8 2 0

2 4 0

2 2 2 0

0 2 2

4 6

3 5

3 5

3 2

3

= -

= -

- =

- =

- + =

= -

l

_
^ ^

i
h h

2. Get the second derivative.

y x x

y x x

8 2

24 10

3 5

2 4

= -

= -

l

m

3. Plug in.

maxthus a

y

negative

2 24 2 10 2

96 160

2 4

- = - - -

= -

=

m ^ ^ ^h h h
thus inconclusive

y 0 24 0 10 0

0

2 4

= -

=

m ^ ^ ^h h h
same as

y

y

negative

2 24 2 10 2

2

thus a max

2 4

= -

= -

=

m

m

^ ^ ^
^

h h h
h

The second derivative test fails at x = 0, so you’ve got to use the first derivative test for that
critical number. And this means, basically, that the second derivative test was a waste of time
for this function.

If — as in the function for this problem — one of the critical numbers is x = 0, and you can see
that the second derivative will equal zero at x = 0 (because, for example, all the terms of the
second derivative will be simple powers of x), then the second derivative test will fail for x = 0
and thus, will likely be a waste of time. Use the first derivative test instead.

However, because this is a continuous function and because there’s only one critical number
between the two maxes you found, the only possibility is that there’s a min at x = 0. Try this
streetwise logic out on your teacher and let me know if it works.

h Consider the function from problem 3, y x 8
/

2
2 3

= -_ i , and the function s t t8
4

21
4

7 3

= + - . Which is 

easier to analyze with the second derivative test and why? For the function you pick, use the 

second derivative test to find its local extrema. s t t8
4

21
4

7 3

= + - ; local min at (–1, 4.5) and a
local max at (–1, 11.5).

The second derivative test fails where the second derivative is undefined (in addition to failing
where the second derivative equals zero). 

To pick, look at the first derivative of each function:

y x

y x x

x

x

8

3
2 8 2

3 8

4

/

/

/

2
2 3

2
1 3

2
1 3

= -

= -

=

-

-

l

_
_ ^

_

i
i h

i

s t t

s t

8
4

21
4

7

4
21

4
21

3

2

= + -

= -l
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Do you see the trouble you’re going to run into with y(x)? The first derivative is undefined at
x 2 2!= . And the second derivative will also be undefined at those x-values, because when
you take the second derivative with the quotient rule, squaring the bottom, the denominator
will contain that same factor, x 82

-_ i. The second derivative test will thus fail at 2 2! , and
you’ll have to use the first derivative test. In contrast to y(x), the second derivative test works
great with s(t):

1. Get the critical numbers.

s t

t

t

t

4
21

4
21

0
4
21

4
21

4
21

4
21

1

2

2

2

!

= -

= -

=

=

l

sl is not undefined anywhere, so –1 and 1 are the only critical numbers. 

2. Do the second derivative.

s t

s t

4
21

4
21

2
21

2
= -

= -

l

m

3. Plug in the critical numbers.

:

:

min

max

concave up

concave down

s

s

1
2
21

1
2
21

- =

= -

m

m

^ _
^ ^
h i
h h

4. Get the heights of the extrema.

.

.

s

s

1 8
4

21 1

4

7 1
4 5

1 8
4

21 1

4

7 1
11 5

3

3

- = +
-

-
-

=

= + - =

^ ^ ^

^ ^ ^
h h h

h h h

You’re done. s has a local min at (–1, 4.5) and a local max at (–1, 11.5).

i Find the absolute extrema of sin cosf x x x= +^ h on the interval , π0 27 A. Absolute max at 

,π

4
2c m; absolute min at ,π

4
5 2-c m.

1. Find critical numbers.

,

sin cos

cos sin

cos sin

sin cos cos

tan

int

divide both sides by

the solutions in the given erval

f x x x

f x x x

x x

x x x

x

x π π

0

1

4 4
5

= +

= -

= -

=

=

=

l

^
^

_

_

h
h

i

i
The derivative is never undefined, so these are the only critical numbers. 
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If you divide both sides of an equation by something that can equal zero at one or more x-values
(like you do above when dividing both sides by cosx), you may miss one or more solutions. You 

have to check whether any of those x-values is a solution. In this problem, cosx 0= at π

2
and π

2
3 , 

and it’s easy to check (in line 4 above) that sinx does not equal cosx at either of those values. If
it did, you’d have one or two more solutions and one or two more critical numbers. Note that you
have to check these values before dividing out the “dividing thing” (cosx here).

2. Evaluate the function at the critical numbers.

sin cosf π π π

4 4 4

2
2

2
2

2

= +

= +

=

c m sin cosf π π π

4
5

4
5

4
5

2
2

2
2

2

= +

= - -

= -

c m

3. Evaluate the function at the endpoints of the interval.

sin cos

sin cos

f

f π π π

0 0 0 1

2 2 2 1

= + =

= + =

^
^

h
h

4. The largest of the four answers from Steps 2 and 3 is the absolute max; the smallest is the
absolute min.

The absolute max is at ,π

4
2c m. The absolute min is at ,π

4
5 2-c m.

j Find the absolute extrema of g x x x2 3 53 2
= - -^ h on the interval . , .5 5-7 A. Absolute min at 

(–.5, –6); absolute max at (0, –5).

1. Find critical numbers.

,

g x x x

g x x x

x x

x x

x

2 3 5

6 6

0 6 6

0 6 1

0 1

3 2

2

2

= - -

= -

= -

= -

=

l

^
^

^

h
h

h

x = 1 is neglected because it’s outside the given interval; x = 0 is your only critical number. 

2. Evaluate the function at x = 0.

g 0 2 0 3 0 5 5
3 2

= - - = -^ ^ ^h h h
3. Do the endpoint thing.

. . .

. .

g 5 2 5 3 5 5

2 125 3 25 5

6

3 2

- = - - - -

= - - -

= -

$ $

^ ^ ^
^

h h h
h

. . .

. .

.

g 5 2 5 3 5 5

2 125 3 25 5

5 5

3 2
= - -

= - -

= -

$ $

$ $

^ h

4. Pick the smallest and largest answers from Steps 2 and 3.

The absolute min is at the left endpoint, (–.5, –6). The absolute max is smack dab in the
middle, (0, –5). 
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k Find the absolute extrema of .p x x x1 5
/4 5

= + -^ ^h h on the interval ,2 31-7 A. Absolute max at
(–2, 2); absolute mins at (–1, .5) and (31, .5).

I think you know the steps by now.

.

.

.

.

.

.

.

p x x x

p x x

x

x

x

x

x

x

x

1 5

5
4 1 5

5 1

4 5

0
5 1

4 5

5
5 1

4

2 5 1 4

1
5
8

1
5
8

9 48576

/

/

/

/

/

/

/

4 5

1 5

1 5

1 5

1 5

1 5

1 5

5

= + -

= + -

=
+

-

=
+

-

=
+

+ =

+ =

+ =

=

-

l

^ ^
^ ^

^

^

^
^
^
^ c

h h
h h

h

h

h
h
h
h m

That’s one critical number, but x = –1 is also one because it produces an undefined derivative.

.

.

. . . .

.

p

p

1 1 1 5 1

5

9 48576 9 48576 1 5 9 48576

1 81072

/

/

4 5

4 5

.

- = - + - -

=

= + -

^ ^ ^

^ ^ ^

h h h

h h h

Left endpoint: .p 2 2 1 5 2 2
/4 5

- = - + - - =^ ^ ^h h h
Right endpoint: . . .p 31 31 1 5 31 16 15 5 5

/4 5

= + - = - =^ ^ ^h h h
Your absolute max is at the left endpoint: (–2, 2). There’s a tie for the absolute min: At the cusp:
(–1, .5) and at the right endpoint: (31, .5).

l Find the absolute extrema of cos sinq x x x2 2 4= +^ h on the interval ,π π

2 4
5

-; E. Absolute min at 

,π

2
6- -c m; absolute maxes at ,π

6
3c m and ,π

6
5 3c m.

cos sin

sin cos

sin cos

sin cos

sin cos cos

cos sin

dividing by

trig identity

q x x x

q x x x

x x

x x

x x x

x x

2 2 4

2 2 2 4

0 4 2 4

0 2 4

0 2

0 2 1

= +

= - +

= - +

= - -

= -

= -

$l

^
^

_
_

^

h
h

i
i

h

,

cosx

x π π

0

2 2

=

=
- or     

,

sin

sin

x

x

x π π

2 1 0

2
1

6 6
5

- =

=

=
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Technically x π

2
=
- is not one of the critical numbers; being at an endpoint, it is refused mem-

bership in the critical number club. It’s a moot point though, because you have to evaluate the
endpoints anyway. 

cos sin

cos sin

cos sin

q

q

q

π π π

π π π

π π π

6
2 2

6
4

6

2
2
1 4

2
1 3

2
2 2

2
4

2

2 4 2

6
5 2 2

6
5 4

6
5

2
2
1 4

2
1 3

= +

= + =

= +

= - + =

= +

= + =

$

$ $

$

$

$ $

c c

c c

c c

m m

m m

m m

Left endpoint: cos sinq π π π

2
2 2

2
4

2
2 4 1 6- = - + - = - + - = -$c c c ^m m m h

Right endpoint: .cos sinq π π π

4
5 2 2

4
5 4

4
5 2 0 4

2
2

2 828.= + = + - -$ $

J

L

KKc c
N

P

OOm m
Pick your winners: Absolute min at left endpoint: ,π

2
6- -c m and a tie for absolute max: ,π

6
3c m

and ,π

6
5 3c m.

m Find the intervals of concavity and the inflection points of f x x x x2 6 10 53 2
= - + - +^ h . f is con-

cave up from 3- to the inflection point at (1, –1), then concave down from there to 3.

1. Get the second derivative.

f x x x x

f x x x

f x x

2 6 10 5

6 12 10

12 12

3 2

2

= - + - +

= - + -

= - +

l

m

^
^
^

h
h
h

2. Set equal to 0 and solve.

x

x

12 12 0

1

- + =

=

3. Check for x-values where the second derivative is undefined. None.

4. Test your two regions — to the left and to the right of x 1= — and make your sign graph (see
the following figure).

f x x

f

f

12 12

0 12

2 12

= - +

=

= -

m

m

m

^

^
^

h

h
h

Because the concavity switches at x = 1 and because f m equals zero there, there’s an inflection
point at x = 1. 

1

concave up

+

concave down

–
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5. Find the height of the inflection point.

f x x x x

f

2 6 10 5

1 1

3 2
= - + - +

= -

^
^
h
h

Thus f is concave up from 3- to the inflection point at (1, –1), then concave down from there
to 3. As always, you should check your result on your graphing calculator. Hint: To get a good
feel for the look of this function, you’ll need a fairly odd graphing window — try something
like xmin = –2, xmax = 4, ymin = –20, ymax = 20. 

n Find the intervals of concavity and the inflection points of g x x x124 2
= -^ h . g is concave up 

from 3- to the inflection point at ,2 20- -` j; then concave down to an inflection point at 

,2 20-` j; then concave up again to 3.

1. Find the second derivative.

g x x x

g x x x

g x x

12

4 24

12 24

4 2

3

2

= -

= -

= -

l

m

^
^
^

h
h
h

2. Set to 0 and solve.

x

x

x

12 24 0

2

2

2

2

!

- =

=

=

3. Is the second derivative undefined anywhere? No.

4. Test the three regions and make a sign graph. See the following figure.

g x x

g

g

g

12 24

2 24

0 24

2 24

2
= -

- =

= -

=

m

m

m

m

^

^
^
^

h

h
h
h

Because the concavity switched signs at the two zeros of g m, there are inflection points at
these two x-values. 

5. Find the heights of the inflection points.

g x x x

g

g

12

2 20

2 20

4 2
= -

- = -

= -

^

`
`

h

j
j

g is concave up from 3- to the inflection point at ,2 20- -` j, concave down from there to
another inflection point at ,2 20-` j, then concave up again from there to 3. 

concave

up

+

concave

up

+

concave

down

–

118 Part III: Differentiation 



o Find the intervals of concavity and the inflection points of p x
x

x
92=

+
^ h . Concave down from 

3 to an inflection point at ,3 3
12

3
- -

J

L

KK

N

P

OO, then concave up till the inflection point at ,0 0_ i,  
then concave down again till the third inflection point at ,3 3

12
3J

L

KK

N

P

OO, and, finally, concave
up to 3.

1. Get the second derivative. 

p x
x

x x x x

x

x x

x

x

9

9 9

9

9 2

9

9

2
2

2 2

2
2

2 2

2
2

2

=

+

+ - +

=

+

+ -

=

+

-

l

l l

^ _
^ _ ^ _

_

_

h i
h i h i

i

i

p x
x

x x x x

x

x x x x x

x

x x x x x

x

x x x x

x

x x

9

9 9 9 9

9

2 9 9 2 9 2

9

9 2 9 4 9

9

2 18 36 4

9

2 27

2
4

2 2
2

2 2
2

2
4

2
2

2 2

2
4

2 2 2

2
3

3 3

2
3

2

=

+

- + - - +

=

+

- + - - +

=

+

+ - + - -

=

+

- - - +

=

+

-

m

l l

^ _
_ _ _ _a

_
_ _ _

_
_ _ _

_

_
_

h i
i i i i k

i
i i i

i
i i i

i

i
i

9 C

2. Set equal to 0 and solve.

x

x x

x x

9

2 27
0

2 27 0

2
3

2

2

+

-
=

- =

_
_

_
i
i

i

x

x

2 0

0

=

=
or    

x

x

27 0

3 3

2

!

- =

3. Check for undefined points of the second derivative. None.

4. Test four regions with the second derivative. You can skip the sign graph. Tip: You can do all
of this in your head because all that matters is whether the answers are positive or negative.

p x
x

x x

p

P

N P

P
N

N

p

P

P N

P
N

N

9

2 27

10
10 9

2 10 10 27

2

1
1 9

2 1 1 27

2

2
3

2

2
3

2

3

2
3

2

3

=

+

-

- =

- +

- - -

=

=

=

=

+

-

=

=

=

m

m

m

^ _
_

^
^a

^ ^a

^ ^

^
^a

^ ^a

^ ^

h i
i

h
h k

h h k

h h

h
h k

h h k

h h

p

P

N N

P
P

P

p

P

P P

P
P

P

1
1 9

2 1 1 27

2

10
10 9

2 10 10 27

2

2
3

2

3

2
3

2

3

- =

- +

- - -

=

=

=

=

+

-

=

=

=

m

m

^
^a

^ ^a

^ ^

^
^a

^ ^a

^ ^

h
h k

h h k

h h

h
h k

h h k

h h

The concavity goes N, P, N, P so there’s an inflection point at each of the three zeros of pm.
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5. Find the heights of the inflection points.

p x
x

x

p

9

3 3
3 3 9

3 3

27 9
3 3

12
3

2

2

=
+

- =

- +

-

=
+

-

=
-

^

`
`

h

j
j

p 0 0=^ h p 3 3
3 3 9

3 3

12
3

2=

+

=

`
`

j
j

Taking a drive on highway p, you’ll be turning right from negative 3 to ,3 3
12

3
- -

J

L

KK

N

P

OO, where 

you’ll point straight ahead for an infinitesimal moment, then you’ll be turning left till (0, 0), 

then right again till ,3 3
12

3J

L

KK

N

P

OO, and on your final leg to 3, you’ll round a very long bend to
the left. 

p Find the intervals of concavity and the inflection points of q x x x5 3= -^ h . Concave down from
3- till an inflection point at about (–.085, –.171), then concave up till a vertical inflection point

at (0, 0), then concave down till a third inflection point at about (.085, .171), then concave up
out to 3.

You know the routine.

q x x x

q x x x

q x x x

x x

5
1

3
1

25
4

9
2

25
4

9
2 0

/ /

/ /

/ /

5 3

4 5 2 3

9 5 5 3

9 5 5 3

= -

= -

= - +

-
+ =

- -

- -

l

m

^
^
^

h
h
h

Whoops, I guess this algebra’s kind of messy. Let’s get the zeros on our calculators: just graph

y
x x25
4

9
2

/ /9 5 5 3=
-

+ and find the x-intercepts. There are two: .x 0 085. - and .x 0 085. .

So you’ve got two “critical numbers,” right? Wrong! Don’t forget to check for undefined points

of the second derivative. Because q x x x
25
4

9
2/ /9 5 5 3

= - +
- -

m ^ h , qm is undefined at x = 0. Since q(x) 

is defined at x = 0, 0 is another critical number. So you have three critical numbers and four
regions. You can test them with –1, –.01, .01, and 1:

. .

q x x x

q q q q

25
4

9
2

1
225
14 01 158 01 158 1

225
14

/ /9 5 5 3

. .

= - +

- = - - - =

- -
m

m m m m

^
^ ^ ^ ^

h
h h h h

Thus the concavity goes: down, up, down, up. Because the second derivative is zero at –0.085
and 0.085 and because the concavity switches there, you can conclude that there are inflection
points at those two x-values. But because both the first and second derivatives are undefined 
at x = 0, you have to check whether there’s a vertical tangent there. You can see that there is 
by just looking at the graph, but if want to be rigorous about it, you figure the limit of the first
derivative as x approaches zero. Since that equals infinity, you’ve got a vertical tangent at x = 0,
and thus there’s an inflection point there. 

Now plug in –0.085, 0, and 0.085 into q to get the y-values and you’re done. 
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q For g x x x x3 2
= + -^ h , find all the values c in the interval ,2 1-_ i that satisfy the Mean Value 

Theorem. The values of c are and
3

1 7
3

1 7- - - +
.

1. Find the first derivative.

g x x x x

g x x x3 2 1

3 2

2

= + -

= + -l

^
^

h
h

2. Figure the slope between the endpoints of the interval.

g

g

2 2 2 2

2

1 1

3 2

- = - + - - -

= -

=

^ ^ ^ ^

^

h h h h

h

m
g g

2 1

2 1

2 1
2 1

1

=
- -

- -

=
- -

- -

=

^ ^h h

3. Set the derivative equal to this slope and solve. 

x x

x x

3 2 1 1

3 2 2 0

2

2

+ - =

+ - =

or

x
6

2 4 24

6
2 2 7

3
1 7

3
1 7

!

!

=
- - -

=
-

=
- - - +

^ h

Both are inside the given interval, so you’ve got two answers.

r For s t t t3/ /4 3 1 3
= -^ h , find all the values c in the interval (0, 3) that satisfy the Mean Value

Theorem. The value of c is 3⁄4.

1. Find the first derivative.

s t t t

s t t t

3

3
4

/ /

/ /

4 3 1 3

1 3 2 3

= -

= -
-

l

^
^
h
h

2. Figure the slope between the endpoints of the interval.

s

s

0 0

3 3 3 3

0

/ /4 3 1 3

=

= -

=

$

^
^

h
h

m
s s

3 0

3 0

3
0 0

0

=
-

-

=
-

=

^ ^h h

3. Set the derivative equal to the result from Step 2 and solve.

t t

t t

t t

t

3
4 0

3
4 1 0

0
3
4 1 0

4
3

or

or

/ /

/

/

1 3 2 3

2 3 1

2 3 1

Q

- =

- =

= - =

=

-

-

-

c m

Graph s and check that its slope at t
4
3

= is zero. 
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Chapter 8

Using Differentiation to Solve 
Practical Problems

In This Chapter
� Optimizing space 

� Relating rates

� Getting up to speed with position, velocity, and acceleration

� Going off on a tangent

� Doing 37 in your head

Now that you’re an expert at finding derivatives, I’m sure you can’t wait to put your
expertise to use solving some practical problems. In this section, you find problems

that actually come up in the real world — problems like how should a cat rancher use 200
feet of fencing to build a three-sided corral next to a river (he only needs three sides
because the river makes the fourth side and cats hate water) to maximize the grazing area
for his cats? 

Optimization Problems: From Soup to Nuts
Optimization problems are one of the most practical types of calculus problems. You use
the techniques shown below whenever you want to maximize or minimize something: like
maximizing profit or area or volume or minimizing cost or energy consumption, and so on.
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Q. A rancher has 400 feet of fencing and wants
to build a corral that’s divided into three
equal rectangles. See the following figure.
What length and width will maximize the
area?

A. 100 feet by 50 feet with an area of 5000
square feet.

1. Draw a diagram and label with 
variables.

2. a. Express the thing you want maxi-
mized, the area, as a function of the
variables.

Area Length Width

A x y3

#=

= $

b. Use the given information to relate
the two variables to each other.

x y

x y

6 4 400

3 2 200

+ =

+ =

c. Solve for one variable and substitute
into the equation from Step 2a to
create a function of a single variable.

.

.

.

y x

y x

A x y

A x x x

x x

2 200 3

100 1 5

3

3 100 1 5

300 4 5 2

= -

= -

=

= -

= -

$

^ ^h h

y y y

x xx

x x x

y

3. Determine the domain of the function.

You can’t have a negative length of fence,
so x can’t be negative. And if you build
the ridiculous corral with no width, all
400 feet of fencing would equal 6x. So

andx x

x

0 6 400

3
200

$ #

#

4. Find the critical numbers of A x^ h.
.A x x x

A x x

x

x

x

300 4 5

300 9

0 300 9

9 300

3
100

2
= -

= -

= -

=

=

l

^
^

h
h

A xl ^ h is defined everywhere, so 
3

100 is
the only critical number.

5. Evaluate A x^ h at the critical number
and at the endpoints of the domain.

.

A

A

A

0 0

3
100 300

3
100 4 5

3
100

5000

3
200 0

2

=

= -

=

=

^
c c c

c

h
m m m

m
The first and third results above should
be obvious because they represent cor-
rals with zero length and zero width. 

You’re done. x
3

100
= will maximize the 

area. Plug that into .y x100 1 5= - and
you get y = 50. So the largest corral is 

3
3

100
$ , or 100 feet long, 50 feet wide, 

and has an area of 5000 square feet. 
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1. What are the dimensions of the soup can of
greatest volume that can be made with 50
square inches of tin? (The entire can,
including the top and bottom, are made
of tin.) And what’s its volume?

Solve It

2. A Norman window is in the shape of a
semicircle above a rectangle. If the straight
edges of the frame cost $20 per linear foot
and the circular frame costs $25 per linear
foot and you want a window with an area of
20 square feet, what dimensions will mini-
mize the cost of the frame? 

Solve It
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3. A right triangle is placed in the first quad-
rant with its legs on the x and y axes. Given
that its hypotenuse must pass through the
point (2, 5), what are the dimensions and
area of the smallest such triangle?

Solve It

4. You’re designing an open-top cardboard
box for a purveyor of nuts. The top will be
made of clear plastic, but the plastic-box-
top designer is handling that. The box
must have a square base and two card-
board pieces that divide the box into four
sections for the almonds, cashews, pecans,
and walnuts. See the following figure. Given
that you want a box with a volume of 72
cubic inches, what dimensions will mini-
mize the total cardboard area and thus
minimize the cost of the cardboard? What’s
the total area of cardboard?

Solve It



Problematic Relationships: Related Rates
Related rates problems are the Waterloo for many a calculus student. But they’re not
that bad after you get the basic technique down. The best way to learn them is by
working through examples, so get started!

After working each problem, ask yourself whether the answer makes sense. Asking this
question is one of the best things you can do to increase your success in mathematics
and science. And while it’s not always possible to decide whether a math answer is
reasonable, when it’s possible, this inquiry should be a quick, extra step of every prob-
lem you do.
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Q. A homeowner decides to paint his home. He
picks up a home improvement book, which
recommends that a ladder should be placed
against a wall such that the distance from
the foot of the ladder to the bottom of the
wall is one third the length of the ladder. Not
being the sharpest tool in the shed, the
homeowner gets mixed up and thinks that
it’s the distance from the top of the ladder to
the base of the wall that should be a third of
the ladder’s length. He sets up his 18 foot
ladder accordingly, and — despite this
unstable ladder placement — he manages to
climb the ladder and start painting.
(Perhaps the foot of the ladder is caught on
a tree root or something.) His luck doesn’t
last long, and the ladder begins to slide rap-
idly down the wall. One foot before the top
of the ladder hits the ground, it’s falling at a
rate of 20 feet/second. At this moment, how
fast is the foot of the ladder moving away
from the wall?

A. Roughly 1.11 feet/second.

1. Draw a diagram, labeling it with any
unchanging measurements and assign-
ing variables to any changing things.
See the following figure.

You don’t have to draw the house — the
basic triangle is enough. But I’ve sketched
a fuller picture of this scenario to make
clear what a bonehead this guy is.

2. List all given rates and the rate you’re
asked to figure out. Write these rates as
derivates with respect to time.

You’re told that the ladder is falling at a
rate of 20 ft / sec. Going down is negative,
so 

?
dt
dh

dt
db20= - =

(h is for the distance from the top of the
ladder to the bottom of the wall; b is for
the distance from the base of the ladder
to the wall.)

3. Write down the formula that connects
the variables in the problem, h and b.

That’s the Pythagorean Theorem, of
course:

,a b c

h b 18

thus2 2 2

2 2 2

+ =

+ =

h

b

18 ft.

continued
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4. Differentiate with respect to time.

This is a lot like implicit differentiation
because you’re differentiating with
respect to t but the equation is in terms
of h and b.

h b

h
dt
dh b

dt
db

18

2 2 0

2 2 2
+ =

+ =

5. Substitute known values for the rates
and variables in the equation from
Step 4, and then solve for the thing
you’re asked to determine.

You’re trying to determine 
dt
db , so you 

have to plug numbers into everything else.
But, as often happens, you don’t have a
number for b, so use a formula to get the
number you need. This will usually be the
same formula you already used. 

.

h b

b

b

18

1 18

323 17 97 feet

2 2 2

2 2 2

! !.

+ =

+ =

=

(Obviously, you can reject the negative
answer.)

Now you’ve got what you need to finish
the problem.

.

.
.

h
dt
dh b

dt
db

dt
db

dt
db feet/sec

2 2 0

2 1 20 2 17 97 0

35 94
40 1 11.

+ =

- + =

=

^ ^ ^h h h

6. Ask yourself whether your answer is
reasonable.

Yes, it does make sense. Lean a yardstick
against a wall so the bottom of it is about
4 or 5 inches from the wall. Then push
the bottom of the yardstick the 4 or 5
inches to the wall. You’ll see that the top
would barely move up. Right triangles
with a fixed hypotenuse like this one
always work like that. If one leg is much
shorter than the other, the short leg can
change a lot while the long leg barely
changes. It’s a by-product of the
Pythagorean Theorem.
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5. A farmer’s hog trough is 10 feet long, and
its cross-section is an isosceles triangle
with a base of 2 feet and a height of 2 feet 6
inches (with the vertex at the bottom, nat-
urally). The farmer is pouring swill into the
trough at a rate of 1 cubic foot per minute.
Just as the swill reaches the brim, her
three hogs start violently sucking down the
swill at a rate of 1⁄2 cubic foot per minute for
each hog. They’re going at it so vigorously
that another 1⁄2 cubic foot of swill is being
splashed out of the trough each minute.
The farmer keeps pouring in swill, but
she’s no match for his hogs. When the
depth of the swill falls to 1 foot 8 inches,
how fast is the swill level falling?

Solve It

6. A pitcher delivers a fastball, which the
batter pops up — it goes straight up above
home plate. When it reaches a height of 60
feet, it’s moving up at a rate of 50 ft/sec.
At this point, how fast is the distance from
the ball to 2nd base growing? Note: The 
distance between the bases of a baseball
diamond is 90 feet. 

Solve It
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7. A six-foot tall man looking over his 
shoulder sees his shadow that’s cast by a
15-foot tall lamp post in front of him. The
shadow frightens him so he starts running
away from it — toward the lamp post.
Unfortunately, this only makes matters
worse, as it causes the frightening head of
the shadow to gain on him. He starts to
panic and runs even faster. Five feet before
he crashes into the lamp post, he’s running
at a speed of 15 miles/hour. At this point,
how fast is the tip of the shadow moving?

Solve It

8. Salt is being unloaded onto a conical pile at
a rate of 200 cubic feet per minute. If the
height of the cone-shaped pile is always
equal to the radius of the cone’s base, how
fast is the height of the pile increasing
when it’s 18 feet tall?

Solve It



A Day at the Races: Position, 
Velocity, and Acceleration

The most important thing to know about this type of problem is that velocity is the
derivative of position and acceleration is the derivative of velocity. The following
points about position, velocity, and acceleration with regard to the chariot race in
Figure 8-1 provide some keys to approaching these problems.

� The finish is 100 palameters from the start as the crow flies, so 100 palameters is
the total displacement. (A palameter is a little-known unit of distance used in
ancient Rome equal to the length of Julius Caesar’s palace — roughly 380 feet.)
Say the start is at (0, 0) on a coordinate system and the finish is at (100, 0). It’s
100 from 0 to 100, of course, so 100 is the total displacement.

� Distance is different. You can see that the charioteers backtrack 50 palameters in
the middle of the race. Because there are two extra 50-palameter legs, the total
length of the race is 200 palameters — that’s the distance. Distance is always
positive or zero.

� Displacement to the left is negative (in other problems, down would be negative).
When, say, Maximus passes Atlas, his position is 75 palameters from the start.
At Aphrodite, he’s back to only 25 palameters from the start as the crow flies.
Displacement equals final position minus initial position, so from Atlas to
Aphrodite is a displacement of 25 75- , or –50 palameters.

� Velocity is related to displacement, not distance traveled. Velocity has a special
meaning in calculus and physics so forget the everyday meaning of it. Like dis-
placement, if you’re going left (or down), that’s a negative velocity. And here’s a
critical point: When you switch directions, your velocity is zero. Think of a ball
thrown straight up. At its peak, for an infinitesimal moment, it is motionless, so
its velocity is zero. 

50

25

25

100

Start

Finish

Figure 8-1:

A 200-

palameter

chariot

race. 
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9. For problems 9, 10, and 11, a duck-billed
platypus is swimming back and forth along
the side of your boat, blithely unaware that
he’s the subject for calculus problems in
rectilinear motion. The back of your boat is
at the zero position, and the front of your
boat is in the positive direction (see the fol-
lowing figure). s(t) gives his position (in
feet) as a function of time (seconds). Find
his a) position, b) velocity, c) speed, and d)
acceleration, at t = 2 seconds.

Solve It

s t t5 42
= +^ h

0 +

� Average velocity is defined as total displacement divided by total time. Say Glutius
completes the race in 1 hour. Because he traveled 200 palameters, his average
speed would be 200 palameters per hour. But because the total displacement is
only 100, his average velocity would be a mere 100 palameters per hour (roughly
7 miles per hour). 

� Speed is regular old speed, and, unlike velocity, it’s always positive (or zero). If
Maximus picks up speed to make the jump over the lion pit, his speed, naturally,
would be increasing. Note: His velocity would be decreasing — even though we
would see him speeding up — because his velocity would be negative and would
be becoming a larger and larger negative.

� The meaning of acceleration, like velocity, (in calculus and physics) agrees with
the way we use it in everyday life only for movement to the right (or up). But,
going left (or down), it’s strange. When Glutius speeds up to jump over the lion
pit, we would say that he’s accelerating. But because his velocity is becoming a
larger and larger negative and is thus decreasing, he is technically decelerating. 
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10. s t t t t3 5 64 3
= - + -^ h

Solve It

11. s t t t
1 8 33= + -^ h

Solve It

12. For problems 12, 13, and 14, a three-toed
sloth is hanging onto a tree branch and
moving right and left along the branch.
(The tree trunk is at zero and the positive
direction goes out from the trunk.) s(t)
gives his position (in feet) as a function of
time (seconds). Between t = 0 and t = 5, for
each problem, find a) the intervals when
he’s moving away from the trunk, the inter-
vals when he’s moving toward the trunk,
and when and where he turns around; b)
his total distance moved and his average
speed; and c) his total displacement and
his average velocity.

s t t t t2 8 53 2
= - + -^ h

Solve It
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13. s t t t t4 2
= + -^ h

Solve It

14. s t
t
t

4
1

2=
+

+^ h
Solve It

Make Sure You Know Your Lines: 
Tangents and Normals

In everyday life, it’s perfectly normal to go off on a tangent now and then. In calculus,
on the other hand, there is nothing at all normal about a tangent. You need only note a
couple points before you’re ready to try some problems:

� At its point of tangency, a tangent line has the same slope as the curve it’s tan-
gent to. In calculus, whenever a problem involves slope, you should immediately
think derivative. The derivative is the key to all tangent line problems.

� At its point of intersection to a curve, a normal line is perpendicular to the tangent
line drawn at that same point. When any problem involves perpendicular lines,
you use the rule that perpendicular lines have slopes that are opposite recipro-
cals. So all you do is use the derivative to get the slope of the tangent line, and
then the opposite reciprocal of that gives you the slope of the normal line.

Ready to try a few problems? Say, that reminds me. I once had this problem with my
carburetor. I took my car into the shop, and the mechanic told me the problem would
be easy to fix, but when I went back to pick up my car . . . Wait a minute. Where was I?
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Q. Find all lines through (1, –4) either tangent
to or normal to y x 3

= . For each tangent
line, give the point of tangency and the
equation of the line; for the normal lines,
give only the points of normalcy.

A. Point of tangency is (2, 8); equation of
tangent line is y x12 16= - . Points of nor-
malcy are approximately (–1.539, –3.645),
(–.335, –.038), and (.250, .016).

1. Find the derivative.

y x

y x3

3

2

=

=l

2. For the tangent lines, set the slope from
the general point ,x x 3_ i to (1, –4)
equal to the derivative and solve.

x
x x

x x x

x x

x

1
4 3

4 3 3

2 3 4 0

2 I used my calculator.

3
2

3 2 3

3 2

-

- -
=

- - = -

- - =

= _ i
3. Plug this solution into the original func-

tion to find the point of tangency.

The point is (2, 8).

4. Get your algebra fix by finding the
equation of the tangent line that passes
through (1, –4) and (2, 8).

You can use either the point-slope form
or the two-point form to arrive at
y x12 16= - .

5. For the normal lines, set the slope from
the general point ,x x 3_ i to (1, –4)
equal to the opposite reciprocal of the
derivative and solve.

. , . ,

. (

.)

or Use your

calculator

x
x

x

x x x

x x x

x

1
4

3
1

12 3 1

3 12 1 0

1 539 335

250

3

2

2 5

5 2

.

-

- -
=

-

- - = -

+ + - =

- -

6. Plug these solutions into the original
function to find the points of normalcy.

Plugging the points into y x 3
= gives you

the three points: (–1.539, –3.645), (–.335,
–.038), and (.250, .016).
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15. Two lines through the point (1, –3) are tan-
gent to the parabola y x 2

= . Determine the
points of tangency.

Solve It

16. The Earth has a radius of 4,000 miles. Say
you’re standing on the shore and your eyes
are 5’ 3.36” above the surface of the water.
How far out can you see to the horizon
before the Earth’s curvature makes the
water dip below the horizon? See the fol-
lowing figure.

Solve It

Your line of site to horizonYou

Horizon

x2 + y2 = 40002

Earth

Note: not drawn to
scale — you would
be way smaller.
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17. Find all lines through (0, 1) normal to the
curve y x 4

= . The results may surprise you.
Before you begin solving this, graph y x 4

=

and put the cursor at (0, 1). Now guess
where normal lines will be and whether
they represent shortest paths or longest
paths from (0, 1) to y x 4

= . Note: Do
ZoomSqr to get the distances on the graph
to appear in their proper proportion.

Solve It

18. An ill-prepared adventurer has run out of
water on a hot sunny day in the desert.
He’s 30 miles due north and 7 miles due
east of his camp. His map shows a winding
river — that by some odd coincidence 
happens to flow according to the function 

sin cosy x x x10
10

10
5

= + + (where his 

camp lies at the origin). See the following
figure. What point along the river is closest
to him? He figures that he and his camel can
just barely make it another 15 miles or so.

Solve It

10

10

20

30

40

50

y

x20 30

Camp

40 50



Looking Smart with Linear Approximation
Linear approximation is easy to do, and once you get the hang of it, you can impress
your friends by approximating things like 703 in your head — like this: Bingo! 4.125.
How did I do it? Look at Figure 8-2 and then at the example to see how I did it.

-10 10

y

x

1

3

4

5

2

20 30 40 50 60 70 80 90 100 110 120

-2
64

3
y = √x

Figure 8-2:

The line 

tangent to

the curve at

(64, 4) can

be used to

approximate

cube roots

of numbers

near 64.
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Q. Use linear approximation to estimate 703 .

A. 4.125

1. Find a perfect cube root near 703 .

You notice that 703 is near a no-brainer,
643 . That gives you the point (64, 4) on

the graph of y x3= .

2. Find the slope of y x3= at x = 64.

y x
3
1 /2 3

=
-

l so the slope at 64 is 1⁄48.

This tells you that you add (or subtract)
1⁄48 to 4 for each increase (decrease) of
one from 64. For example, the cube root
of 65 is 41⁄48 and the cube root of 66 is 42⁄48,
or 41⁄24.

3. Use the point-slope form to write the
equation of the tangent line at (64, 4).

y x

y x

4
48
1 64

48
1 64 4

- = -

= - +

^
^

h
h

4. Because this tangent line runs so close
to the function y x3= near x = 64, use
it to estimate cube roots of numbers
near 64, namely at x = 70.

y
48
1 70 64 4

4
8
1

= - +

=

^ h

By the way, in your calc text, the above
simple point-slope form from algebra
is probably rewritten in highfalutin 
calculus terms — like this:

l x f x f x x x0 0 0= + -l^ _ _ _h i i i
Don’t be intimidated by this equation.
It’s just your friendly old algebra equa-
tion in disguise! Look carefully at it
term by term and you’ll see that it’s
mathematically identical to the point-
slope equation tweaked like this:
y y m x x0 0= + -_ i
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19. Estimate the 4th root of 17.

Solve It

20. Approximate .3 015. 

Solve It

21. Estimate sin π
180

, that’s one degree of
course.

Solve It

22. Approximate ln e 510
+_ i. 

Solve It



Solutions to Differentiation Problem Solving
a What are the dimensions of the soup can of greatest volume that can be made with 50 square

inches of tin? What’s its volume? The dimensions are 31⁄4 inches wide and 31⁄4 inches tall. The
volume is 27.14 cubic inches.

1. Draw your diagram (see the following figure).

2. a. Write a formula for the thing you want to maximize, the volume: V r hπ 2
=

b. Use the given information to relate r and h. 

Surface Area r rh

r rh

r rh

π π

π π

π π

2 2

50 2 2

25

top and bottom lateral area

2

2

2

= +

= +

= +

6 7 844 44 H

c. Solve for h and substitute to create a function of one variable.

rh r

h r r

π π

π

25

25

2
= -

= -

V r h

V r r r r

r r

π

π π

π

25

25

2

2

3

=

= -

= -

^ ch m

3. Figure the domain.

>

>

is obvious

is also obvious

r

h

0

0

And because r rhπ π25 2
= + (from Step 2b), when h = 0, r π

25
= so r must be less than π

25 , or
about 2.82 inches. 

4. Find the critical numbers of V r^ h.

. ’ .inches You can reject the negative answer because its outside the

V r r r

V r r

r

r

r

π

π

π

π

π

25

25 3

0 25 3

3
25

3
25

1 63 domain

3

2

2

2

!

.

= -

= -

= -

=

=

l

^
^

_

h
h

i
5. Evaluate the volume at the critical number. 

. . .

. cubic inches

V π1 63 25 1 63 1 63

27 14

3

.

= -$^ ^h h

h

r

Soup For
Dummies

140 Part III: Differentiation 



That’s about 15 ounces. The can will be .2 1 63$ or about 31⁄4 inches wide and 
.

.
π 1 63

25 1 63-
$

or 

about 31⁄4 inches tall. Isn’t that nice? The largest can has the same width and height and would
thus fit perfectly into a cube. Geometric optimization problems frequently have results where
the dimensions have some nice, simple mathematical relation to each other.

b . . . What dimensions will minimize the cost of the frame? The dimensions are 4’3’’ wide and
5’1’’ high. The minimum cost is $373.

1. Draw a diagram with variables (see the following figure).

2. a. Express the thing you want to minimize, the cost. 

Cost length of curved frame cost per linear foot

length of straight frame cost per linear foot

x x y

x x y

π

π

25 2 2 20

25 40 40

= +

= + +

= + +

$

$

_ _
_ _
^ ^ _ ^

i i
i i

h h i h

b. Relate the two variables to each other.

Area = Semicircle + Rectangle

x xyπ20
2

2
2

= +

c. Solve for y and substitute.

xy x

y
x x

x

x
x

π

π

π

2 20
2

2
20

4
10

4

2

2

= -

= -

= -

cost x x y

C x x x x
x

x x x x

x x x

π

π π

π π

π

25 40 40

25 40 40 10
4

25 40 400 10

15 40 400

= + +

= + + -

= + + -

= + +

^ ch m

3. Find the domain.

x > 0 is obvious. And when x gets large enough, the entire window of 20 square feet in area
will be one big semicircle, so 

.

x

x

x

x

π

π

π

π

20
2

40

40

40

3 57

2

2

2

.

=

=

=

=

Thus, x must be less than or equal to 3.57.

2x

y
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4. Find the critical numbers of C x^ h.

.

C x x x x

C x x

x

x

x

x

x

π

π

π

π

π

π

15 40 400

15 40 400

0 15 40 400

400 15 40

15 40
400

15 40
400

2 143

2

2

2

2

!

!.

= + +

= + + -

= + -

= +

=
+

=
+

-

-

-

l

^
^ ^

h
h h

Omit –2.143 because it’s outside the domain. So 2.143 is the only critical number. 

5. Evaluate the cost at the critical number and at the endpoints.

. $

. $

C x x x x
C

C

C

π15 40 400

0

2 143 373

3 57 423

undefined

.

.

= + +

=

^
^

^
^

h
h
h
h

So, the least expensive frame for a 20-square-foot window will cost about $373 and will be 

2 × 2.143, or about 4.286 feet or 4’3’’ wide at the base. Because y x
xπ10
4

= - , the height of the 

rectangular lower part of the window will be 2.98, or about 3’ tall. The total height will thus
be 2.98 plus 2.14, or about 5’1’’.

c . . . Given that a right triangle’s hypotenuse must pass through the point (2, 5), what are the
dimensions and area of the smallest such triangle? The hypotenuse meets the y-axis at (0, 10)
and the x-axis at (4, 0) and the triangle’s area is 20.

1. Draw a diagram (see the following figure).

2. a. Write a formula for the thing you want to minimize, the area: A bh
2
1

=

b. Use the given constraints to relate b and h. 

This is a bit tricky — Hint: consider similar triangles. If you draw a horizontal line from (0, 5)
to (2, 5), you create a little triangle in the upper-left corner that’s similar to the whole triangle.
(You can prove their similarity with AA — remember your geometry? — both triangles have a
right angle and both share the top angle.)

Because the triangles are similar, their sides are proportional:

base

height

base

height

b
h h

2
5

big triangle

big triangle

small triangle

small triangle
=

=
-

1

1 3

b

x

y

h

52

(2,5)

4

2

3

4

5
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c. Solve for one variable in terms of the other — take your pick — and substitute into your
formula to create a function of a single variable.

h b h

h bh b

h b b

h
b

b

2 5

2 5

2 5

2
5

= -

= -

- = -

=
-

^

^

h

h

A bh

A b b
b

b

b
b

2
1

2
1

2
5

2 4
5 2

=

=
-

=
-

$^ ch m

3. Find the domain.

b must be greater than 2 — do you see why? And there’s no maximum value for b.

4. Find the critical numbers.

A b
b

b

A b
b

b b b b

b

b b b

b

b b

2 4
5

2 4

5 2 4 5 2 4

2 4

10 2 4 10

2 4

10 40

2

2

2 2

2

2

2

2

=
-

=
-

- - -

=
-

- -

=
-

-

l

l l

^
^ ^

_ ^ _ ^

^
^

^

h
h h

i h i h

h
h

h

b

b b

b b

b b

b

2 4

10 40 0

10 40 0

10 4 0

0 4or

2

2

2

-

-
=

- =

- =

=

^

^

h

h

Zero is outside the domain, so 4 is the only critical number. The smallest triangle must occur
at b = 4 because near the endpoints you get triangles with astronomical areas.

5. Finish.

;

’ .

so

And the triangles area is thus

b

h
b

b

h

4

2
5

4 2
5 4 10

20

=

=
-

=
-

=
$

d . . . Given that you want a box with a volume of 72 cubic inches, what dimensions will mini-
mize the total cardboard area and thus minimize the cost of the cardboard? The minimizing
dimensions are 6-by-6-by-2, made with 108 square inches of cardboard.

1. Draw a diagram and label with variables (see the following figure).

2. a. Express the thing you want to minimize, the cardboard area, as a function of the variables.

Cardboard area x xy xy

A x xy

4 2

6

square base four sides two dividers

2

2

= + +

= +

H F H

x

x

y

Mixed Nuts
For Dummies
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b. Use the given constraint to relate x to y.

Vol l w h

x x y72

=

=

$ $

$ $

c. Solve for y and substitute in equation from Step 2a to create a function of one variable. 

y
x

A x xy

A x x x
x

x x

72

6

6 72

432

2

2

2

2

2

=

= +

= +

= +

^ dh n

3. Find the domain.

>

>

x

y

0

0

is obvious

is also obvious

And if you make y small enough, say the height of a proton — great box, eh? — x would have
to be astronomically big to make the volume 72 cubic inches. Technically, there is no maxi-
mum value for x.

4. Find the critical numbers.

A x x x

A x x x

x
x

x
x

x

432

2 432

0 2 432

432 2

216

6

2

2

2

2

3

= +

= -

= -

=

=

=

-
l

^
^

h
h

You know this number has to be a minimum because near the endpoints, say when x = .0001
or y = .0001, you get absurd boxes — either thin and tall like a mile-high toothpick or short
and flat like a square piece of cardboard as big as a city block with a microscopic lip. Both of
these would have enormous area and would be of interest only to calculus professors.

5. Finish.

x 6= , so the total area is

A 6 6
6

432

36 72

108

2
= +

= +

=

^ h y
x

y

72

2

Because 2=

=

That’s it — a 6-by-6-by-2 box made with 108 square inches of cardboard. 
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e . . . When the depth of the swill falls to 1 foot 8 inches, how fast is the swill level falling? It’s
falling at a rate of 9⁄10 inches per minute.

1. Draw a diagram, labeling the diagram with any unchanging measurements and assigning 
variables to any changing things. See the following figure.

Note that the figure shows the unchanging dimensions of the trough, 2 feet by 2 feet 6 inches
by 10 feet, and these dimensions are not labeled with variable names like l (for length), w (for
width), or h (for height). Also note that the changing things — the height (or depth) of the
swill and the width of the surface of the swill (which gets narrower as the swill level falls) —
do have variable names, h for height and b for base (I realize it’s at the top, but it’s the base
of the upside-down triangle shape made by the swill). Finally note that the height of 1’8” —
which is the height only at one particular point in time — is in parentheses to distinguish it
from the other unchanging dimensions.

2. List all given rates and the rate you’re asked to figure out. Express these rates as derivatives
with respect to time. Give yourself a high-five if you realized that the thing that matters about
the changing volume of swill is the net rate of change of volume.

Swill is coming in at 1 cubic foot per minute and is going out at 3
2
1
$ cubic feet per minute (for 

the three hogs) plus another 1⁄2 cubic feet per minute (the splashing). So the net is 1 cubic foot
per minute going out — that’s a negative rate of change. In calculus language, you write:

dt
dv 1= - cubic foot per minute. 

You’re asked to determine how fast the height is changing, so write:

?
dt
dh

=

3. a. Write down a formula that involves the variables in the problem — V, h, and b.

The technical name for the shape of the trough is a right prism. And the shape of the swill in
the trough — what you care about here — has the same shape. Imagine tipping this up so it
stands vertically. Any shape that has a flat base and a flat top and that goes straight up
from base to top has the same volume formula: Volume area heightbase= $

Note that this “base” is the entire swill triangle and totally different from b in the figure;
also this “height” is totally different from the swill height, h.

The area of the triangular base equals bh
2
1 and the height of the prism is 10 feet, so here’s 

your formula: V bh bh
2
1 10 5= =$

Because b doesn’t appear in your list of derivatives in Step 2, you want to get rid of it.

10 ft.
h(1' 8")

2' 6"

2'

b
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b. Find an equation that relates your unwanted variable, b, to some other variable in the prob-
lem so you can make a substitution and be left with an equation involving only V and h. 
The triangular face of the swill is the same shape of the triangular side of the trough. If you
remember geometry, you know that such similar shapes have proportional sides. So,

.
.

.

b h

b h

b h

2 2 5
2 5 2

8

=

=

=

Similar triangles often come up in related rate problems involving triangles, triangular prisms,
and cones. 

Now substitute .8h for b in the formula from Step 3a: 

.

V bh

h h

h

5

5 8

4 2

=

=

=

$ $

4. Differentiate with respect to t.

dt
dv h

dt
dh8=

In all related rates problems, make sure you differentiate (like you do here in Step 4) before you
substitute the values of the variables into the equation (like you do below when you plug 1’8”
into h in Step 5).

5. Substitute all known quantities into this equation and solve for 
dt
dh .

You were given that h = 1’8’’ (you must convert this to feet) and you figured out in Step 2 

that
dt
dv 1= - , so 

dt
dh

dt
dh

ft/min

inches/min

1 8 1
3
2

3
40

1

40
3

10
9

- =

=
-

=
-

=
-

$ $

Thus, when the swill level drops to a depth of 1’8’’, it’s falling at a rate of 9⁄10 inches per minute.
Mmm, mmm, good!

6. Ask whether this answer makes sense.

Unlike the example problem, it’s not easy to come up with a common-sense explanation of
why this answer is or is not reasonable. But there’s another type of check that works here and
in many other related rates problems. 

Take a very small increment of time — something much less than the time unit of the rates
used in the problem. This problem involves rates per minute, so use 1 second for your time
increment. Now ask yourself what happens in this problem in 1 second. The swill is leaving
the trough at 1 cubic foot / minute; so in 1 second, 1⁄60 cubic foot will leave the trough. What
does that do to the swill height? Because of the similar triangles mentioned in Step 3b, when
the swill falls to a depth of 1’8’’, which is 2⁄3 of the height of the trough, the width of the surface
of the swill must be 2⁄3 of the width of the trough — and that comes to 11⁄3 feet. So the surface 

area of the swill is feet1
3
1 10# . 

Assuming the trough walls are straight (this type of simplification always works in this type of
checking process), the swill that leaves the trough would form the shape of a very, very short
box (“box” sounds funny because this shape is so thin; maybe “thin piece of plywood” is a
better image).
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The volume of a box equals length width height$ $ , thus 

.

height

height
60
1 10 1

3
1

00125

=

=

$ $

This tells you that in 1 second, the height should fall .00125 feet or something very close to it.
(This process sometimes produces an exact answer and sometimes an answer with a very
small error.) Now, finally, see whether this number agrees with the answer. Your answer was
–9⁄10 inches/minute. Convert this to feet/second: 

. .
10
9 12 60 00125' '- = - It checks. 

f . . . When it reaches a height of 60 feet, it’s moving up at a rate of 50 ft/sec. At this point,
how fast is the distance from 2nd base to the ball growing? The distance is growing 21.3
feet/second.

1. Draw your diagram and label it. See the following figure.

2. List all given rates and the rate you’re asked to figure out.

?

dt
dh ft/sec

dt
dd

50=

=

3. Write a formula that involves the variables: h d90 22
2

2
+ =` j

4. Differentiate with respect to time: h
dt
dh d

dt
dd2 2=

Like in the example, you’re missing a needed value, d. So use the Pythagorean Theorem to 
get it:

.

h d

d

d

90 2

60 90 2

140 7 feet You can reject the negative answer.

2
2

2

2
2

2

!.

+ =

+ =

`
`

_

j
j

i
Now do the substitutions:

.

.
.

h
dt
dh d

dt
dd

dt
dd

dt
dd

ft/sec

2 2

2 60 50 2 140 7

2 140 7
2 60 50

21 3.

=

=

=

$ $ $

$
$ $

1st
2nd

3rd

d

h(60)

Vertical
right triangle

Hypotenuse

home

90 2

147Chapter 8: Using Differentiation to Solve Your Problems



5. Check whether this answer makes sense.

For this one, you’re on your own. Hint: Use the Pythagorean Theorem to calculate d 1⁄50 second
after the critical moment. Do you see why I picked this time increment?

g . . . Five feet before the man crashes into the lamp post, he’s running at a speed of
15 miles/hour. At this point, how fast is the tip of the shadow moving? It’s moving at
25 miles/hour.

1. The diagram thing: See the following figure.

2. List the known and unknown rates.

dt
dc miles/hour15= - (This is negative because c is shrinking.) ?

dt
db

=

3. Write a formula that connects the variables.

This is another similar triangle situation, so —

height

height

base

base

b c
b

b c b

b c

b c

6
15

15 15 6

9 15

3 5

little triangle

big triangle

little triangle

big triangle
=

=
-

- =

=

=

4. Differentiate with respect to t: 
dt
db

dt
dc3 5=

5. Substitute known values.

dt
db

dt
db miles/hour

3 5 15

25

= -

= -

^ h

Thus, the top of the shadow is moving toward the lamp post at 25 miles/hour — and is thus
gaining on the man at a rate of 10 miles/hour.

A somewhat unusual twist in this problem is that you never had to plug in the given distance of
5 ft. This is because the speed of the shadow is independent of the man’s position.

h . . . If the height of the cone-shaped pile is always equal to the radius of the cone’s base, how
fast is the height of the pile increasing when it’s 18 feet tall? It’s increasing at 21⁄3 inches/min.

1. Draw your diagram: See the following figure.

15 ft.

b

c

6 ft.

b

c

Initial Position

Egad!

Heís after
me!

Critical Position

15 ft.

Closer
and

Closer!!
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2. List the rates: ?
dt
dv cubic ft/min

dt
dh200= =

3. a. The formula thing: V r hπ
3
1

cone
2

=

b. Write an equation relating r and h so that you can get rid of r: r h=

What could be simpler? Now get rid of r: V h h hπ π
3
1

3
12 3

= =

4. Differentiate: 
dt
dV h

dt
dhπ 2

=

5. Substitute and solve for 
dt
dh .

.

dt
dh

dt
dh ft/min inches/min

π200 18

196 2
3
1

2

. .

= $

6. Check whether this answer makes sense.

Calculate the increase in the height of the cone from the critical moment (h = 18) to 1⁄200 minute 

after the critical moment. When h = 18, V π
3
1 18

3

= ^ h , or about 6107.256 cubic feet. 1⁄200 minute 

later, the volume (which grows at a rate of 200 cubic feet per minute) will increase by 1 cubic
foot to about 6108.256 cubic feet. Now solve for h:

.

.

.

h

h

π

π

6108 256
3
1

3
1

6108 256

18 000982

3

3

.

=

=

Thus, in 1⁄200 minute, the height would grow from 18 feet to 18.000982 feet. That’s a change of
.000982 feet. Multiply that by 200 to get the change in 1 minute: . .000982 200 196.$

It checks.

i s t t5 42
= +^ h

a. At t = 2, the platypus’s position is s t 24=^ h feet from the back of your boat.

b. v t s t t10= =l^ ^h h , so at t = 2, the platypus’s velocity is s 2 20=l ^ h feet/second (20 is positive
so that’s toward the front of the boat).

c. Speed is the absolute value of velocity, so the speed is also 20 ft/sec.

d. Acceleration, a t^ h, equals v t s t 10= =l m^ ^h h . That’s a constant, so the platypus’s acceleration 

is 
/

sec
sec
ond

feet ond
10 at all times.

h(18)

r
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j s t t t t3 5 64 3
= - + -^ h

a. s 2^ h gives the platypus’s position at t = 2; that’s 3 2 5 2 2 64 3
- + -$ $ , or 4 feet, from the

back of the boat.

b. v t s t t t12 15 13 2
= = - +l^ ^h h . At t = 2, the velocity is thus 37 feet per second.

c. Speed is also 37 feet per second.

d. a t v t s t t t36 302
= = = -l m^ ^ ^h h h . a 2^ h equals 

/
sec

sec
ond

feet ond
84 .

k s t t t
1 8 33= + -^ h

a. At t = 2, s 2^ h equals 
2
1 1 3+ - , or –11⁄2 feet. This means that the platypus is 11⁄2 feet behind

the back of the boat.

b.

/ sec

v s

feet ond

2 2 2 24 2

4
1

16
24

1
4
3

2 4

= = - + -

= - -

= -

-
-

l^ ^ ^ah h h k

A negative velocity means that the platypus is swimming “backwards,” in other words away
from the back of the boat. 

c. Speed Velocity= , so the platypus’s speed is 1
4
3 feet/second.

d. a t v t s t t t
t t

2 96 2 96or3 5

3 5= = = + +
- -

l m^ ^ ^h h h . a 2^ h is therefore ,
8
2

32
96

+

/
sec

sec
ond

feet ond
or 3

4
1 .

Give yourself a pat on the back if you figured out that this positive acceleration with a negative
velocity means the platypus is actually slowing down. 

l s t t t t2 8 53 2
= - + -^ h

a. Find the zeros of the velocity: 

v t s t t t

t t

t t

6 2 8

0 6 2 8

3 4

2

2

2

= = - +

= - +

= - +

l^ ^h h

No solutions because the discriminant is negative. 

The discriminant equals b ac42
- .

The fact that the velocity is never zero means that the sloth never turns around. At t 0= ,
/ secv t ft8=^ h which is positive, so the sloth moves away from the trunk for the entire

interval t = 0 to t = 5. 

b. and c. Because there are no turnaround points and because the motion is in the positive
direction, the total distance and total displacement are the same: 265 feet.

s s5 0 260 5 265- = - - =^ ^ ^h h h
Whenever the total displacement equals the total distance, average velocity also equals
average speed: 53 ft/sec.

total time
total displacement s s

5 0

5 0

5
265 53=

-

-
= =

^ ^h h
ft/sec. 
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m s t t t t4 2
= + -^ h

a. Find the zeros of v t^ h: v t s t t t4 2 13
= = + -l^ ^h h

You’ll need your calculator for this:

Graph y x x4 2 13
= + - and locate the x-intercepts. There’s just one: .x 385. . That’s the only

zero of s t v t=l ^ ^h h. 
Don’t forget that a zero of a derivative can be a horizontal inflection as well as a local
extremum. You get a turnaround point only at the local extrema. 

Because v 0 1= -^ h (a leftward velocity) and v 1 5=^ h (a rightward velocity), .s 385^ h must be 
a turnaround point (and it’s also a local min on the position graph). Does the first derivative
test ring a bell?

Thus, the sloth is going left from t = 0 sec to t = .385 sec and right from .385 to 5 sec. He
turns around, obviously, at .385 sec when he is at . . . .s 385 385 385 3854 2

= + -^ h or –.215
meters — that’s .215 meters to the left of the trunk. I presume you figured out that there
must be another branch on the tree on the other side of the trunk to allow the sloth to go left
to a negative position.

b. There are two legs of the sloth’s trip. He goes left from t = 0 till t = .385, then right from t = .385
till t = 5. Just add up the positive lengths of the two legs. 

.

.

. meters

length s s385 0

215 0

215

leg 1= -

= - -

=

^ ^h h

.

.

. meters

length s s5 385

5 5 5 215

645 215

leg 2

4 2

= -

= + - - -

=

^ ^
^

h h
h

The total distance is thus .215 + 645.215, or 645.43 meters. That’s one big tree! The branch
is over 2000 feet long.

His average speed is 645.43 / 5, or about 129.1 meters/second. That’s one fast sloth!
Almost 300 miles/hour!

c. Total displacement is s s5 0-^ ^h h, that’s 645 – 0 = 645 meters. Lastly, his average velocity 
is simply total displacement divided by total time — that’s 645/5, or 129 meters/second. 

n s t
t
t

4
1

2=
+

+^ h
a. Find the zeros of v t^ h:

s t v t
t

t t t t

t

t t t

t

t t

4

1 4 1 4

4

4 2 2

4

2 4

2
2

2 2

2
2

2 2

2
2

2

= =

+

+ + - + +

=

+

+ - +

=

+

- - +

l

l l^ ^ _
^ _ ^ _

_
_

_

h h i
h i h i

i
i

i
Set this equal to zero and solve:

. .

t

t t

t t

t

4

2 4 0

2 4 0

2

2 4 16

3 236 1 236or

2
2

2

2

!

.

+

- - +
=

+ - =

=
- - -

-

_

^

i

h
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Reject the negative solution because it’s outside the interval of interest: t = 0 to t = 5. So, the
only zero velocity occurs at t = 1.236 seconds. 

Because .v meters/second0 25=^ h and .v 5 037. -^ h , the first derivative test tells you that
.s 1 236^ h must be a local max and therefore a turnaround point. 

The sloth thus goes right from t = 0 till t = 1.236 seconds, then turns around at .s 1 236^ h, or
about .406 meters to the right of the trunk, and goes left till t = 5. 

b. His total distance is the sum of the lengths of the two legs:

.

. .

.

going right s s1 236 0

405 25

155.

= -

= -

^ ^h h

.

.

going left s s5 1 236

198.

= -^ ^h h

Total distance is therefore .155 + .198 = .353 meters. His average speed is thus .353/5, or
.071 meters/second. That’s roughly a sixth of a mile/hour — much more like it for a sloth.
That’s pretty darn slow, but how quick do you think you’d be with only three toes?

c. Total displacement is defined as final position minus initial position, so that’s 

. meters

s s5 0
29
6

4
1

043.

- = -

-

^ ^h h

And thus his average velocity is . /043 5- , or . / secmeters ond0086- . You’re done. 

o Two lines through the point (1, –3) are tangent to the parabola y x 2
= . Determine the points of

tangency. The points of tangency are (–1, 1) and (3, 9).

1. Express a point on the parabola in terms of x. 

The equation of the parabola is y x 2
= , so you can take a general point on the parabola ,x y_ i

and substitute x 2 for y. So your point is ,x x 2_ i.
2. Take the derivative of the parabola.

y x

y x2

2
=

=l

3. Using the slope formula, m x x
y y

2 1

2 1
= -

-
, set the slope of the tangent line from ,1 3-_ i to 

,x x 2_ i equal to the derivative. Then solve for x.

x

x
x

x x x

x x

x x

x

1
3

2

3 2 2

2 3 0

1 3 0

1 3or

2

2 2

2

-

- -
=

+ = -

- - =

+ - =

= -

^

^ ^

h

h h

4. Plug these x-coordinates into y x 2
= to get the y-coordinates.

y

y

1 1

3 9

2

2

= - =

= =

^ h

So there’s one line through (1, –3) that’s tangent to the parabola at (–1, 1) and another
through (1, –3) that’s tangent at (3, 9). You may want to confirm these answers by graphing
the parabola and your two tangent lines:

y x

y x

2 1 1

6 3 9

= - + =

= - +

^
^

h
h
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p . . . How far out can you see to the horizon before the Earth’s curvature makes the water dip
below the horizon? You can see out 2.83 miles.

1. Write the equation of the Earth’s circumference as a function of y (see the figure in the 
problem).

x y

y x

4000

4000

2 2 2

2 2
!

+ =

= -

You can disregard the negative half of this circle because your line of sight will obviously be
tangent to the upper half of the Earth.

2. Express a point on the circle in terms of x: ,x x40002 2
-` j.

3. Take the derivative of the circle.

Chain Rule

y x

y x x

x

x

4000

2
1 4000 2

4000

/

2 2

2 2
1 2

2 2

= -

= - -

=
-

-

-

l _ ^ ^i h h

4. Using the slope formula, set the slope of the tangent line from your eyes to ,x x40002 2
-` j

equal to the derivative and then solve for x.

Your eyes are 5' 3.36" above the top of the Earth at the point (0, 4000) on the circle. Convert
your height to miles, that’s exactly .001 miles (What an amazing coincidence!). So the coordi-
nates of your eyes are (0, 4000.001).

.

.

. ,

.

.

Cross multiplication

Use your calculator of course

Now square both sides

miles

x x
y y

m

x
x

x

x

x x x

x

x

x

x

x

0
4000 4000 001

4000

4000 4000 001 4000

4000 4000 001 4000

3999 999 4000

15999992 4000

8

2 2 2 83

2 1

2 1

2 2

2 2

2 2 2 2 2

2 2 2

2 2

2 2

2

.

-

-
=

-

- -
=

-

-

- = - - -

- = - -

= -

= -

=

=

_ _
_

_

i i
i

i

Many people are surprised that the horizon is so close. What do you think?

q Find all lines through (0, 1) normal to the curve y x 4
= . Five normal lines can be drawn to

y x 4
= from (0, 1). The points of normalcy are (–.915, .702), (–.519, .073), (0, 0), (.519, .073),

and (.915, .702).

1. Express a point on the curve in terms of x: A general point is ,x x 4_ i.
2. Take the derivative.

y x

y x4

4

3

=

=l

3. Set the slope from ,0 1_ i to ,x x 4_ i equal to the opposite reciprocal of the derivative and
solve.

or

x
x

x

x x x

x x x x x x

0
1

4
1

4 4 0

4 4 1 0 0 4 4 1 0

4

3

7 3

6 2 6 2

-

-
=

-

- + =

- + = = - + =_ i
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Unless you have a special gift for solving 6th degree equations, you better use your
calculator — just graph y x x4 4 16 2

= - + and find all of the x-intercepts. There are x-intercepts
at ~–.915, ~–.519, ~.519, and ~.915. Dig those palindromic numbers!

4. Plug these four solutions into y x 4
= to get the y-coordinates. And there’s also the x = 0 

no-brainer.

. . .

. . .

519 519 073

915 915 702

4 4

4 4

+

+

- = =

- = =

^ ^
^ ^

h h
h h

You’re done. Five normal lines can be drawn to y x 4
= from (0, 1). The points of normalcy are

(–.915, .702), (–.519, .073), (0, 0), (.519, .073), and (.915, .702).

I find this result interesting. First, because there are so many normal lines, and second,
because the normal lines from (0, 1) to (–.915, .702), (0, 0), and (.915, .702) are all shortest
paths (compared to other points in their respective vicinities). The other two normals are
longest paths. This is curious because y x 4

= is everywhere concave toward (0, 1). When a
curve is concave away from a point, a normal to the curve can only be a local shortest path.
But when a curve is concave toward a point, you can get either a local shortest or a local
longest path.

I played slightly fast and loose with the math for the x = 0 solution. Did you notice that x = 0 

doesn’t work if you plug it back into the equation, 
x
x

x0
1

4
14

3
-

-
=

- because both denominators 

become zero? However — promise not to leak this to your calculus teacher — this is okay here 

because both sides of the equation become zero
Non zero number- . (Actually, they’re both 

0
1- ,  

but something like 
0
5

0
2

= would also work.) Non-zero over zero means a vertical line with  

undefined slope. So the 
0
1

0
1-

=
- tells you that you’ve got a vertical normal line at x = 0.

r . . . What point along the river is closest to the adventurer? The closest point is (6.11, 15.26),
which is 14.77 miles away.

1. Express a point on the curve in terms of x: , sin cosx x x x10
10

10
5

+ +c m
2. Take the derivative.

sin cos

cos sin

cos sin

y x x x

y x x

x x

10
10

10
5

10
10 10

1 10
5 5

1 1

10
2

5
1

= + +

= - +

= - +

$ $l c cm m

3. Set the slope from (7, 30) to the general point equal to the opposite reciprocal of the deriva-
tive and solve.

sin cos

cos sinx

x x x

x x7

30 10
10

10
5

10
2

5
1

1
-

- + +

=
- +

-
c m

Unless you wear a pocket protector, don’t even think about solving this equation without a 
calculator.

Solve on your calculator by graphing the following equation and finding the x-intercepts — 

sin cos

cos sin
y

x

x x x

x x7

30 10
10

10
5

10
2

5
1

1
=

-

- + +

-
- +

-
c m
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It’s a bit tricky to find the x-intercepts for this hairy function. You have to play around with the
window settings a bit. And don’t forget that your calculator will draw vertical asymptotes that
look like zeros of the function, but are not. To see the first zero, set xmin = –1, xmax = 10,
xscl = 1, ymin = –5, ymax = 25, and yscl = 5. To see the other two zeros, set xmin = 10, xmax = 30,
xscl = 1, ymin = –2, ymax = 10, and yscl = 1. The zeros are at roughly 6.11, 13.75, and 20.58.

4. Plug the zeros into the original function to obtain the y-coordinates. You get the following
points of normalcy: (6.11, 15.26), (13.75, 14.32), (20.58, 23.80).

5. Use the distance formula, D x x y y2 1

2

2 1

2

= - + -_ _i i , to find the distance from our parched 

adventurer to the three points of normalcy. 

The distances are 14.77 miles to (6.11, 15.26), 17.07 miles to (13.75, 14.32), and 14.93 miles
to (20.58, 23.80). Using his trusty compass, he heads mostly south and a little east to 
(6.11, 15.26). An added benefit of this route is that it’s in the direction of his camp.

s Estimate the 4th root of 17. The approximation is 2.03125.

1. Write a function based on the thing you’re trying to estimate: f x x4=^ h
2. Find a “round” number near 17 where the 4th root is very easy to get: that’s 16, of course.

And you know 16 24 = . So (16, 2) is on f.

3. Determine the slope at your point.

f x x

f x x

f

4
1

16
32
1

/

4

3 4

=

=

=

-
l

l

^
^
^

h
h
h

4. Use the point-slope form of a line to write the equation of the tangent line at (16, 2). 

y x2
32
1 16- = -^ h

5. Plug your number into the tangent line and you’ve got your approximation.

.or

y
32
1 17 16 2

2
32
1 2 03125

= - +

=

^ h

The exact answer is about 2.03054. Your estimate is only 3⁄100 of 1 percent too big! Not too shabby.
Extra credit question (solve this or we may have to vote you off the island): No matter what 4th
root you estimate with linear approximation, your answer will be too big. Do you see why?

t Approximate .3 015. The approximation is 247.05.

1. Write your function: g x x 5
=^ h

2. Find your round number. That’s 3, well duhh. So your point is (3, 243). 

3. Find the slope at your point.

g x x

g

5

3 405

4
=

=

l

l

^
^

h
h

4. Tangent line equation.

y y m x x

y x243 405 3

1 1- = -

- = -

_
^

i
h

5. Get your approximation: . .y 405 3 01 3 243 247 05= - + =^ h
Only 1⁄100 of a percent off.
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u Estimate sin π
180

, that’s one degree of course. The approximation is π

180
.

You know the routine

,

sin

int

cos

is the po

is the slope

p x x

p

p x x

p

0 0 0 0

0 1 1

"

"

=

=

=

=

l

l

^
^ _
^
^

h
h i
h
h

y y m x x

y x

y x

0 1 0

1 1- = -

- = -

=

_
^

i
h

Your number is π
180

, so you get y π
180

= .

Which shows that for very small angles, the sine of the angle and the angle itself are approxi-

mately equal. (The same is true of the tangent of an angle, by the way.) π
180

is only 1⁄200% too big!

v Approximate ln e 510
+_ i. The approximation is 

e
10 5

10+ .

Just imagine all the situations where such an approximation will come in handy!

,

ln

intis the po

is the slope

q x x

q e e

q x x

q e
e e

10 10

1

1 1

10 10

10

10 10

"

"

=

=

=

=

l

l

^ ^
_ _
^
_

h h
i i
h
i

tanthe gent line

y y m x x

y
e

x e

y
e

e e

e

10 1

1 5 10

10 5

1 1

10

10

10

10 10

10

"

- = -

- = -

= + - +

= +

_
_
_a

i
i
i k

Hold on to your hat. This answer is a mere 0.00000026% too big.
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Part IV

Integration and Infinite
Series



In this part . . .

Integration, like differentiation, is a highfalutin calculus
word for a simple idea: addition. Every integration

problem involves addition in one way or another. What
makes integration such a powerful tool is that it sort of
cuts up something (the weight of a large dome, the length
of a power cable, the pressure on the walls of a pipe, and
so on) into infinitely small chunks and then adds up the
infinite number of chunks to arrive at a precise total.
Without integration, many such problems can only be
approximated. Part IV gives you practice with integration
basics, techniques for finding integrals, and problem solv-
ing with integration.

Infinite series is a topic full of bizarre, counter-intuitive
results that have fascinated thinkers for over 2,000 years.
Zeno of Elea (5th century B.C.) gave us his famous para-
dox about the race between Achilles and the tortoise (the
resolution of the paradox involves limits — see Calculus
For Dummies). Your task with infinite series problems is 
to decide whether the sum of an infinitely long list of num-
bers diverges (adds up to infinity — usually) or converges
(adds up to an ordinary, finite number).



Chapter 9

Getting into Integration

In This Chapter
� Reconnoitering rectangles

� Trying trapezoids

� Summing sigma sums

� Defining definite integration

In this chapter, you begin the second major topic in calculus: integration. With integration
you can find the total area or volume of weird shapes that, unlike triangles, spheres,

cones, and other basic shapes, don’t have simple area or volume formulas. You can use inte-
gration to total up other things as well. The basic idea is that — with the magic of limits —
the thing you want the total of is cut up into infinitesimal pieces and then the infinite
number of pieces are added up. But before moving on to integration, you warm up with
some easy stuff: pre-pre-pre-calc — the area of rectangles.

By the way, despite the “kid stuff” quip, much of the material in this chapter and the first sec-
tion of Chapter 10 is both more difficult and less useful than what follows it. If ever there was
a time for the perennial complaint — “What is the point of learning this stuff?” — this is it.
Now, some calculus teachers would give you all sorts of fancy arguments and pedagogical
justifications for why this material is taught, but, let’s be honest, the sole purpose of teaching
these topics is to inflict maximum pain on calculus students. Well, you’re stuck with it, so
deal with it. The good news is that this material will make everything that comes later seem
easy by comparison.

Adding Up the Area of Rectangles: Kid Stuff
The material in this section — using rectangles to approximate the area of strange shapes —
is part of every calculus course because integration rests on this foundation. But, in a sense,
this material doesn’t involve calculus at all. You could do everything in this section without
calculus, and if calculus had never been invented, you could still approximate area with the
methods described here.
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Q. Using 10 right rectangles, estimate the area
under lnf x x=^ h from 1 to 6. 

A. The approximate area is 6.181.

1. Sketch lnf x x=^ h and divide the inter-
val from 1 to 6 into ten equal incre-
ments. Each increment will have a
length of 1⁄2, of course. See the figure in
Step 2. 

2. Draw a right rectangle for each of the
ten increments.

You’re doing right rectangles, so put your
pen on the right end of the base of the
first rectangle (that’s at x = 1.5), draw
straight up till you hit the curve, and
then straight left till you’re directly
above the left end of the base (x = 1).
Finally, going straight down, draw the left
side of the first rectangle. See the follow-
ing figure. I’ve indicated with arrows how
you draw the first rectangle. Draw the
rest the same way.

3. Use your calculator to calculate the
heights of each rectangle. 

The heights are given by .f 1 5^ h, f 2^ h,
.f 2 5^ h, and so on, which are ln1.5, ln2,

and so on again. 

4. Because you multiply each height by
the same base of 1⁄2, you can save some
time by doing the computation like this:

( . . .

. . )

(. . . . .

. . . . . )

.

.

ln ln ln ln ln

ln ln ln ln ln
2
1 1 5 2 2 5 3 3 5

4 4 5 5 5 5 6

2
1 405 693 916 1 099 1 253

1 386 1 504 1 609 1 705 1 792

2
1 12 363

6 181

.

.

.

+ + + + +

+ + + +

+ + + + +

+ + + +

^ h

(6, ~1.8)

3 1

2

y

x

1

2

1 2 3 4 5 6
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1. a. Estimate the area under lnf x x=^ h from
1 to 6 (as in the example), but this time
with 10 left rectangles.

b. How is this approximation related to the
area obtained with 10 right rectangles?
Hint: Compare individual rectangles
from both estimates. 

Solve It

2. Approximate the same area again with 10
midpoint rectangles.

Solve It

3. Rank the approximations from the example
and problems 1 and 2 from best to worst
and defend your ranking. Obviously, you’re
not allowed to cheat by first finding the
exact area with your calculator.

Solve It

4. Use 8 left, right, and midpoint rectangles to
approximate the area under sinx from

to π0 .

Solve It



Sigma Notation and Reimann 
Sums: Geek Stuff

Now that you’re warmed up, let’s segue into summing some sophisticated sigma sums.
Sigma notation may look difficult, but it’s really just a shorthand way of writing a
long sum.

In a sigma sum problem, you can pull anything through the sigma symbol to the out-
side except for a function of the index of summation (the i in the following example).
Note that you can use any letter you like for the index of summation, though i and k
are customary.
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Q. Evaluate i5
i

2

4

12

=

! .

A. The sum is 3180.

1. Pull the 5 through the sigma symbol.

i5
i

2

4

12

=

!

2. Plug 4 into i, then 5, then 6, and so on
up to 12, adding up all the terms.

5 4 5 6 7 8 9 10 11 122 2 2 2 2 2 2 2 2
= + + + + + + + +_ i

3. Finish on your calculator. 

5 636 3180= =^ h
Q. Express . . .50 60 70 80 1503 3 3 3 3

+ + + + + with
sigma notation. 

A. i1000 4
i

3

1

11

+
=

!^ h
1. Create the argument of the sigma 

function.

The jump amount between terms in a long
sum will become the coefficient of the
index of summation in a sigma sum, so
you know that 10i is the basic term of your
argument. You want to cube each term, so
that gives you the following argument.

i10
3!^ h

2. Set the range of the sum.

Ask yourself what i must be to make the
first term equal 503 — that’s 5, of course.
And ask the same question about the last
term of 1503 — that gives you i = 15:

i10
i

3

5

15

=

!^ h
3. Simplify.

i

i

10

1000

i

i

3 3

5

15

3

5

15

=

=

=

=

!

!

4. (Optional) Set the i to begin at zero or
one. 

It’s often desirable to have i begin at 0
or 1. To turn the 5 into a 1, you subtract
4. Then subtract 4 from the 15 as well.
To compensate for this subtraction, you
add 4 to the i in the argument:

i1000 4
i

3

1

11

= +
=

!^ h
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Q. Estimate the area under f x x x32
= +^ h from

0 to 5 using 20 right rectangles. Use sigma
notation where appropriate. Then use
sigma notation to express the area approxi-
mation when you use n rectangles. 

A. For 20 rectangles: ≈ 84.2; for n rectangles:

n
n n

6
475 600 125

2

2
+ +

1. Sketch the function and the first few
and the last right rectangles. See the 
following figure.

2. Add up the area of 20 rectangles. Each
has an area of base times height. So for
starters you’ve got

base height
20 rectangles

$! _ i
3. Plug in the base and height information

to get your sigma summation.

The base of each rectangle is 
20

5 0-^ h
, or 

4
1 .

So you’ve got height height
4
1

4
1

2020

= !! .

The height of the first rectangle is f
4
1c m, 

the second is f
4
2c m, the third is f

4
3c m, 

and so on until the last rectangle, which
has a height of f 5^ h. This is where the
index, i, comes in. You can see that the 

jump amount from term to term is 
4
1 , 

so the argument will contain a i
4
1 : 

f i
4
1

4
1

20

! c m.

4. Create the sum range.

i has to equal 1 to make the first term 

f
4
1c m. And because you’ve got to add 

up 20 rectangles, i has to run through 

20 numbers, so it goes from 1 to 20: 

f i
4
1

4
1

i 1

20

=

! c m.

y

x
10

-10

20

30

40

50

60

1 2 3 4 5 6

f(x) = x 2 + 3x

5. Replace the general function expres-
sion with your specific function,
f x x x32

= +^ h .

i i
4
1

4
1 3

4
1

i

2

1

20

+
=

! c cm m> H
6. Simplify, pulling everything to the out-

side, except functions of i.

i i

i i

i i

4
1

4
1

4
1 3

4
1

4
1

16
1

4
1

4
3

64
1

16
3

ii

i i

ii

2

1

20

1

20

2

1

20

1

20

2

1

20

1

20

= +

= +

= +

==

= =

==

!!

! !

!!

c cm m

7. Compute the area, using the following
rules for summing consecutive integers
and consecutive squares of integers.

The sum of the first n integers equals 
n n

2

1+^ h
, and the sum of the squares  

of the first n integers equals 
n n n

6

1 2 1+ +^ ^h h
.

So now you’ve got:

.

64
1

6

20 20 1 2 20 1

16
3

2

20 20 1

64
1

6
20 21 41

16
3 10 21

384
17220

16
630

84 2.

+ +
+

+

= +

= +

$

$ $ $ $

^ ^f ^f
c

h h p h p
m

8. Express the sum of n rectangles instead
of 20 rectangles. 

Look back at Step 5. The 
4
1 outside and 

the two s
4
1 inside come from the width 

of the rectangles that you got by dividing
5 (the span) by 20. So the width of each 

rectangle could have been written as 
20
5 .

To add n rectangles instead of 20, just 

replace the 20 with an n — that’s n
5 . So 

the three s
4
1 become n

5 . At the same 

time, replace the 20 on top of the !
with an n:

n n i n i5 5 3 5
i

n 2

1

+
=

! c cm m> H

continued
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5. Evaluate 4
i 1

10

=

! .

Solve It

6. Evaluate i1 1
i

i

2

0

9

- +
=

!^ ^h h .

Solve It

9. Simplify as in Step 6.

n n i n n i

n n
i n n i

n
i

n
i

5 5 5 3 5

5 25 5 15

125 75

i

n

i

n

i

n

i

n

i

n

i

n

2

11

2

2

1 1

3

2

1
2

1

= +

= +

= +

==

= =

= =

!!

! !

! !

c cm m

10. Now replace the sigma sums with the
expressions for the sums of integers
and squares of integers like you did in
Step 7.

n

n n n

n

n n

n
n n

n
n n

n
n n

125
6

1 2 1 75
2

1

6
250 375 125

2
75 75

6
475 600 125

3 2

2

2

2

2

2

2

=
+ +

+
+

=
+ +

+
+

=
+ +

^ ^e ^eh h o h o

Done! Finally! That’s the formula for
approximating the area under
f x x x32

= +^ h from 0 to 5 with n 
rectangles — the more you use, the
better your estimate. I bet you can’t
wait to do one of these problems on
your own. 

Check this result by plugging 20 into n to
see whether you get the same answer as
with the 20-rectangle version of this
problem.

.
6 20

475 20 600 20 125
84 22

2

.=
+ +

^
^ ^

h
h h

It checks. 
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7. Evaluate i i3 2
i

2

1

50

+
=

!_ i.
Solve It

8. Express the following sum with sigma 
notation: 30 35 40 45 50 55 60+ + + + + + .

Solve It

9. Express the following sum with sigma 
notation: 8 27 64 125 216+ + + + .

Solve It

10. Use sigma notation to express the 
following: 

2 4 8 16 32 64 128 256

512 1024

- + - + - + - + -

+
.

Solve It
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*11. Use sigma notation to express an 8-right-
rectangle approximation of the area
under g x x2 52

= +^ h from 0 to 4. Then
compute the approximation. 

Solve It

*12. Using your result from problem 11, write
a formula for approximating the area
under g from 0 to 5 with n rectangles. 

Solve It

Close Isn’t Good Enough: The Definite
Integral and Exact Area

Now, finally, the first calculus in this chapter. Why settle for approximate areas when
you can use the definite integral to get exact areas?

The exact area under a curve between a and b is given by the definite integral, which is
defined as follows:

limf x dx f x n
b a

n
a

b

i
i

n

1

=
-

"3
=

$# !^ _ ch i m= G
In plain English, this simply means that you can calculate the exact area under a curve
between two points by using the kind of formula you got in Step 10 of the previous
example and then taking the limit of that formula as n approaches infinity. (Okay, so
maybe that wasn’t plain, but at least it was English.)

The function inside the definite integral is called the integrand.
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13. In problem 11, you estimate the area under
g x x2 55

= +^ h from 0 to 4 with 8 rectangles.
The result is 71 square units. 

a. Use your result from problem 12 to
approximate the area under g with 50,
100, 1000, and 10,000 rectangles. 

b. Now use your result from problem 12
and the definition of the definite integral
to determine the exact area under

x2 52
+ from 0 to 4. 

Solve It

14. a. Given the following formulas for n left,
right, and midpoint rectangles for the
area under x 12

+ from 0 to 3, approxi-
mate the area with 50, 100, 1000, and
10,000 rectangles with each of the three
formulas:

L
n

n n

R
n

n n

M
n

n

2
24 27 9

2
24 27 9

4
48 9

nR

nR

nR

2

2

2

2

2

2

=
- +

=
+ +

=
-

b. Use the definition of the definite integral
with each of three formulas from the
first part of the problem to determine
the exact area under x 12

+ from 0 to 3.

Solve It

Q. The answer for the example in the last 
section gives the approximate area under
f x x x32

= +^ h from 0 to 5 given by n 

rectangles as 
n

n n
6

475 600 125
2

2
+ + . For 

20 rectangles, you found the approximate
area of ~84.2. With this formula and your
calculator, compute the approximate area
given by 50, 100, 1000, and 10,000 rectan-
gles, then use the definition of the definite
integral to compute the exact area.

A. The exact area is . .79 16

.

.

.

.

Area

Area

Area

Area

6 50
475 50 600 50 125

81 175

80 169

79 267

79 177

R

R

R

R

50 2

2

100

1000

10000

.

.

.

=
+ +

=

$

$ $

These estimates are getting better and
better; they appear to be headed toward
something near 79. Now for the magic of

calculus — actually (sort of) adding up
an infinite number of rectangles. 

.

lim

lim

or

f x dx f x n
b a

x x dx
n

n n3
6

475 600 125

6
475

79 16 79
6
1

n
a

b

i
i

n

n

1

2

0

5

2

2

=
-

+ =
+ +

=

=

"

"

3

3

=

$#

#

!^ _ c
_ d

h i m
i n

= G

The answer of 
6

475 follows immediately 

from the horizontal asymptote rule (see
Chapter 4). You can also break the frac-
tion in line two above into three pieces
and do the limit the long way:

lim

lim lim lim

n
n

n
n

n

n n

6
475

6
600

6
125

6
475 100

6
125

6
475 0 0

6
475

x

x x x

2

2

2 2

2

= + +

= + +

= + +

=

"

" " "

3

3 3 3

d n



Finding Area with the Trapezoid 
Rule and Simpson’s Rule

To close this chapter, I give you two more ways to approximate an area. You can use
these methods when finding the exact area is impossible. (Just take my word for it that
there are functions that can’t be handled with ordinary integration.) With the trape-
zoid rule, you draw trapezoids under the curve instead of rectangles. See Figure 9-1,
which is the same function I used for the first example in this chapter. 

Note: You can’t actually see the trapezoids, because their tops mesh with the curve, 
y = ln x. But between each pair of points, such as A and B, there’s a straight trapezoid
top in addition to the curved piece of y = ln x. 

The Trapezoid Rule: You can approximate the exact area under a curve between a and 

b, f x dx
a

b

# ^ h , with a sum of trapezoids given by the following formula. In general, the 

more trapezoids, the better the estimate. 

. . .T
n

b a f x f x f x f x f x f x
2

2 2 2 2n n n0 1 2 3 1=
-

+ + + + + +-_ _ _ _ _ _i i i i i i9 C
where n is the number of trapezoids, x 0 equals a, and x 1 through x n are the equally-
spaced x-coordinates of the right edges of trapezoids 1 through n. 

Simpson’s Rule also uses trapezoid-like shapes, except that the top of each
“trapezoid” — instead of being a straight-slanting segment, as “shown” in Figure 9-1 —
is a curve (actually a small piece of a parabola) that very closely hugs the function.
Because these little parabola pieces are so close to the function, Simpson’s rule gives
the best area approximation of any of the methods. If you’re wondering why you
should learn the trapezoid rule when you can just as easily use Simpson’s rule and get
a more accurate estimate, chalk it up to just one more instance of the sadism of calcu-
lus teachers.

Simpson’s Rule: You can approximate the exact area under a curve between a and b, 

f x dx
a

b

# ^ h , with a sum of parabola-topped “trapezoids,” given by the following 

formula. In general, the more “trapezoids,” the better the estimate. 

. . .S
n

b a f x f x f x f x f x f x f x
3

4 2 4 2 4n n n0 1 2 3 4 1=
-

+ + + + + + +-_ _ _ _ _ _ _i i i i i i i9 C
where n is twice the number of “trapezoids” and x 0 through x n are the n 1+ evenly
spaced x-coordinates from a to b.

y

x

1

2

1 2 3 4 5 6

lnx

A B

Figure 9-1:

Ten trape-

zoids (actu-

ally, one’s a

triangle, but

it works

exactly like

a trapezoid).
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Q. Estimate the area under lnf x x=^ h from 1
to 6 with 10 trapezoids. Then compute the
percent error.

A. The approximate area is 5.733. The error
is about 0.31%.

1. Sketch the function and the 
10 trapezoids. 

Already done — Figure 9-1. 

2. List the values for a, b, and n, and
determine the 11 x-values, x 0

through x 10 (the left edge of the first
trapezoid plus the 10 right edges of
the 10 trapezoids). 

Note that in this and all similar problems,
a equals x 0 and b equals x n (x 10 here).

, . , , . , . . .

a

b

n

x x x x x

1

6

10

1 1 5 2 2 5 60 1 2 3 10

=

=

=

= = = = =

3. Plug these values into the trapezoid
rule formula and solve.

( . .

. .

. )

( . . . .

. . . .

. . )

.

ln ln ln ln

ln ln ln ln

ln ln ln

T
2 10
6 1 1 2 1 5 2 2 2 2 5

2 3 2 3 5 2 4 2 4 5

2 5 2 5 5 6

20
5 0 811 1 386 1 833 2 197

2 506 2 773 3 008 3 219

3 409 1 792

5 733

10

.

.

=
-

+ + + +

+ + + +

+ +

+ + + + +

+ + + +

+

$

4. Compute the percent error.

My TI-89 tells me that the exact area is
5.7505568153635 . . . For this problem,
round that off to 5.751. The percent error
is given by the error divided by the exact
area. So that gives you:

.
. . . . %percent error

5 751
5 751 5 733 0031 31. .

-
=

Compare this to the 10-midpoint-rectangle
error we compute in the solution to
problem 2: 0.14%. In general, the error
with a trapezoid estimate is roughly
twice the corresponding midpoint-
rectangle error. 

Q. Estimate the area under lnf x x=^ h from 1
to 6 with 10 Simpson rule “trapezoids.”
Then compute the percent error. 

A. The approximate area is 5.751. The error
is a mere 0.00069%.

1. List the values for a, b, and n, and
determine the 21 x-values x 0 through
x 20, the 11 edges and the 10 base 
midpoints of the 10 curvy-topped
“trapezoids.”

, . , . , . , . . .

a

b

n

x x x x x

1

6

20

1 1 25 1 5 1 75 60 1 2 3 20

=

=

=

= = = = =

2. Plug these values into the formula.

( . . .

. . . . )

.

.

ln ln ln ln

ln ln ln

S
3 20
6 1 1 4 1 25 2 1 5 4 1 75

2 2 4 5 75 6

60
5 69 006202893232

5 7505169

20

.

.

=
-

+ + + +

+ + +

$

^ h

3. Figure the percent error.

The exact answer, again, is
5.7505568153635. Round that off to
5.7505568.

.
. .

. . %

percent error
5 7505568

5 7505568 5 7505169

0000069 00069

. .
-

=

— way better than either the midpoint or
trapezoid estimate. Impressed?
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15. Continuing with problem 4, estimate the
area under siny x= from 0 to π with 8
trapezoids, and compute the percent error.

Solve It

16. Estimate the same area as problem 15 with
16 and 24 trapezoids and compute the per-
cent errors. 

Solve It

17. Approximate the same area as problem 15
with 8 Simpson’s rule “trapezoids” and
compute the percent error.

Solve It

18. Use the following shortcut to figure S 20 for
the area under lnx from 1 to 6. (Use the
results from problem 2 and the first exam-
ple in this section.) 

Shortcut: If you know the midpoint and
trapezoid estimates for n rectangles, you
can easily compute the Simpson’s rule esti-
mates for n curvy-topped “trapezoids” with
the following formula:

S
M M T

3n
n n n

2 =
+ +

Solve It



Solutions to Getting into Integration
a a. Estimate the area under lnf x x=^ h from 1 to 6, but this time with 10 left rectangles. The area

is 5.285.

1. Sketch a graph and divide the intervals into 10 subintervals.

2. a. Draw the first left rectangle by putting your pen at the left end of the first base (that’s at
x = 1) and going straight up till you hit the function. 

Whoops. You’re already on the function at x = 1, right? So, guess what? There is no first 
rectangle — or you could say it’s a rectangle with a height of zero and an area of zero. 

b. Draw the “second” rectangle by putting your pen at x = 1.5, going straight up till you hit
lnf x x=^ h , then go right till you’re directly above x = 2, then down to the x-axis. See the

following figure. 

3. Draw the rest of the rectangles. See the following figure. 

4. Compute your approximation.

. . . . .

. . . . . . . . .

.

.

ln ln ln ln ln ln ln ln ln lnArea
2
1 1 1 5 2 2 5 3 3 5 4 4 5 5 5 5

2
1 0 405 693 916 1 099 1 253 1 386 1 504 1 609 1 705

2
1 10 57

5 285

LRs10 = + + + + + + + + +

= + + + + + + + + +

=

=

^
^
^

h
h

h

b. How is this approximation related to the area obtained with 10 right rectangles? Look at the
second line in the computation in Step 4. Note that the sum of the 10 numbers inside the
parentheses includes the first 9 numbers in the same line in the computation for right rectan-
gles (see the example). The only difference is that the sum for left rectangles has a 0 at the
left end and the sum for right rectangles has a 1.792 at the right end.

f(x) = ln(x)

ìRectangle ” 1

y

x

1

2

1 2 3 4 5 6
R2 R3 R4 R5 R6 R7 R8 R9 R10

1 3

f(x) = ln(x)

R2

y

x

1

2

1 2 3 4 5 6

2
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If you look at the figure in Step 2 of the example and at the figure in Step 3 of the solution to
1(a), you’ll see why this works out this way. The first rectangle in the example figure is identical
to the second rectangle in the solution 1(a) figure. The second rectangle in the example figure
is identical to the third rectangle in the solution 1(a) figure, and so on. The only difference is
that the solution 1(a) figure contains the left-most “rectangle” (the invisible one) and the exam-
ple figure contains the tall, right-most rectangle. 

A left-rectangle sum and a right-rectangle sum will always differ by an amount equal to the dif-
ference in area of the left-most left rectangle and the right-most right rectangle. (Memorize this
paragraph and recite it in class — with your right index finger pointed upward for effect. You’ll
instantly become a babe (dude) magnet.)

b Approximate the same area again with 10 midpoint rectangles. The approximate area is 5.759.

1. Sketch your curve and the 10 subintervals again. 

2. Compute the midpoints of the bases of all rectangles. This should be a no-brainer: 1.25, 1.75,
2.25 . . . 5.75.

3. Draw the first rectangle. Start on the point on lnf x x=^ h directly above x = 1.25, then go left
till you’re above x = 1 and right till you’re above x = 1.5, then down from both these points to
make the two sides.

4. Draw the other nine rectangles. See the following figure. 

5. Compute your estimate.

. . . . . . . . . .

. . . . . . . . . .

.

ln ln ln ln ln ln ln ln ln lnArea
2
1 1 25 1 75 2 25 2 75 3 25 3 75 4 25 4 75 5 25 5 75

2
1 223 560 811 1 011 1 179 1 322 1 447 1 558 1 658 1 749

5 759

MRs10 = + + + + + + + + +

= + + + + + + + + +

=

^
^

h
h

c Rank the approximations from the example and problems 1 and 2 from best to worst and
defend your ranking. The midpoint rectangles give the best estimate because each rectangle
goes above the curve (in this sense, it’s too big) and also leaves an uncounted gap below the
curve (in this sense, it’s too small). These two errors cancel each other out to some extent.
By the way, the exact area is about 5.751. The approximate area with 10 midpoint rectangles
of 5.759 is only about 0.14% off.

It’s harder to rank the left versus the right rectangle estimates. Kudos if you noticed that
because of the shape of lnf x x=^ h (technically because it’s concave down and increasing),
right rectangles will give a slightly better estimate. It turns out that the right-rectangle
approximation is off by 7.48% and the left-rectangle estimate is off by 8.10%. If you missed this
question, don’t sweat it. It’s basically an extra-credit type question.

y

x

1

2

1 2 3 4 5 6

f(x) = ln(x)
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d Use 8 left, right, and midpoint rectangles to approximate the area under sinx from to π0 . 

Let’s cut to the chase. Here are the computations for 8 left rectangles, 8 right rectangles, and 8
midpoint rectangles: 

.. . . . . . .

sin sin sin sin sin sin sin sinArea π π π π π π π π

π π 1 974

8
0

8 8 8
3

8
4

8
5

8
6

8
7

8
0 383 707 924 1 924 707 383

8
5 027

2
LR8 = + + + + + + +

= + + + + + + + = =

c
^ ^

m
h h

.. . . . . . .

sin sin sin sin sin sin sin sinArea π π π π π π π π
π

π π 1 974

8 8 8 8
3

8
4

8
5

8
6

8
7

8
383 707 924 1 924 707 383 0

8
5 027

2
RR8 = + + + + + + +

= + + + + + + + = =

c
^ ^

m
h h

.. . . . . . . . .

sin sin sin sin sin sin sin sinArea π π π π π π π π π

π π 2 013

8 16 16
3

16
5

16
7

16
9

16
11

16
13

16
15

8
195 556 831 981 981 831 556 195

8
5 126

MR8 = + + + + + + +

= + + + + + + + = =

c
^ ^

m
h h

The exact area under sinx from to π0 has the wonderfully simple answer of 2. The error of
the midpoint rectangle estimate is 0.65%, and the other two have an error of 1.3%. The left
and right rectangle estimates are the same, by the way, because of the symmetry of the sine
wave. 

e 404
i 1

10

=
=

!

As often happens with many types of problems in mathematics, this very simple version of a
sigma sum problem is surprisingly tricky. Here, there’s no place to plug in the i, so all the i does
is work as a counter:

4 4 4 4 4 4 4 4 4 4 4 10 4 40
i 1

10

= + + + + + + + + + = =
=

$!

f i 551 1
i

i

2

0

9

- + = -
=

!^ ^h h
. . .1 0 1 1 1 1 1 2 1

1 2 3 4 5 6 7 8 9 10

55

0 2 1 2 2 2

2 2 2 2 2 2 2 2 2 2

= - + + - + + - + +

= - + - + - + - + -

= -

^ ^ ^ ^ ^ ^h h h h h h

g ,i i 131 3253 2
i

2

1

50

+ =
=

!_ i

,

i i i i3 2 3 2

3
6

50 50 1 2 50 1
2

2

50 50 1
131 325

i iii

2

1

50
2

1

50

1

50

1

50

= + = +

=
+ +

+
+

=

= ===

$

! !!!
^ ^e ^eh h o h o

h k k k5 5 5 5 2530 35 40 45 50 55 60 or or
kk k1

7

6

12

1

7

+ + + + + + = + +
== =

!! !^ ^h h
i ork k 18 27 64 125 216

k k

3

2

6
3

1

5

+ + + + = +
= =

! !^ h Did you recognize this pattern?

j or1 2 22 4 8 16 32 64 128 256 512 1024
i i

i

i

i1

10

1

10

- + - + - + - + - + = - -
= =

! !^ ^h h
To make the terms in a sigma sum alternate between positive and negative, use a –1 raised to a
power in the argument. The power will usually be i or i + 1. 
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*k Use sigma notation to express an 8-right-rectangle approximation of the area under 
g x x2 52

= +^ h from 0 to 4. Then compute the approximation. The notation and approximation 

are i
4
1 20 71

i

2

1

8

+ =
=

! .

1. Sketch g x^ h. You’re on your own. 

2. Express the basic idea of your sum: base height
8 rectangles

$! _ i.
3. Figure the base and plug in.

base

height height

8
4 0

2
1

2
1

2
1

8 8

=
-

=

=$! !c m
4. Express the height as a function of the index of summation, and add the limits of summation: 

f i
2
1

2
1

i 1

8

=

! c m
5. Plug in your function, g x x2 52

= +^ h .

i
2
1 2

2
1 5

i

2

1

8

= +
=

! c m> H

6. Simplify: i i i
2
1 2

2
1

2
1 5

2
1

2
1 40

4
1 20

iiii

2 2

2 2

1

8

1

8

1

8

1

8

= + = + = +
====

$ !!!! c cm m
7. Use the sum of squares rule to finish: 

4
1

6

8 8 1 2 8 1
20 51 20 71=

+ +
+ = + =

$^ ^e h h o
*l Using your result from problem 11, write a formula for approximating the area under g from 

0 to 5 with n rectangles. The formula is 
n

n n
3

188 192 64
2

2
+ + .

1. Convert the sigma formula for summing 8 rectangles to one for summing n rectangles.

Look at Step 5 from the previous solution. The number 
2
1 appears twice. You got 

2
1 when you 

computed the width of the base of each rectangle. That’s 
8

4 0- , or 
8
4 . You want a formula for 

n rectangles instead of 8, so use n
4 instead of 

2
1 and replace the 8 on top of ! with an n.

n n i4 2 4 5
i

n 2

1

+
=

! c m> H
2. Simplify: n n i n n n

i n n
n

i4 2 4 4 5 4 2 16 4 5 128 20
i

n

i

n

i

n

i

n 2

2

2

3

2

1111

= + = + = +
====

$ $ $ !!!! c dm n
3. Use the sum of squares formula.

n

n n n

n
n n

n
n n128

6

1 2 1
20

3
128 192 64 20

3
188 192 64

3 2

2

2

2

=
+ +

+ =
+ +

+ =
+ +^ ^e h h o

m a. Use your result from problem 12 to approximate the area with 50, 100, 1000 and 10,000 
rectangles. 

.

Area
n

n n

Area

63 956

3
188 192 64

3 50
188 50 192 50 64

nR

R

2

2

50 2

2

.

=
+ +

=
+ +

$

$ $
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Because all right-rectangle estimates with this curve will be over-estimates, this result shows
how far off the approximation of 71 square units was. The answers for the rest of the approxi-
mations are 

.

.

.

Area

Area

Area

63 309

62 731

62 673,

R

R

R

100

1000

10 000

.

.

.

b. Now use your result from problem 12 and the definition of the definite integral to determine
the exact area under x2 52

+ from 0 to 4. The area is 62.666 . . . or 622⁄3.

.

lim

lim

or

f x dx f x n
b a

x dx
n

n n2 5
3

188 192 64

3
188

62 6 62
3
2

n
i

i

n

a

b

n

0 1

2

2

2

0

4

=
-

+ =
+ +

=

=

"

"3

=

#

#

!^ _ c
_

h i m
i

= G

n a. Given the following formulas for left, right, and midpoint rectangles for the area under x 12
+

from 0 to 3, approximate the area with 50, 100, 1000, and 10,000 rectangles with each of the
three formulas.

.

.

.

.

L

L

L

L

11 732

11 866

11 987

11 999,

R

R

R

R

50

100

1000

10 000

.

.

.

.

.

.

.

.

R

R

R

R

12 272

12 135

12 014

12 001,

R

R

R

R

50

100

1000

10 000

.

.

.

.

.

.

.

.

M

M

M

M

11 9991

11 999775

11 99999775

11 9999999775,

R

R

R

R

50

100

1000

10 000

.

.

.

.

You can see from the results how much better the midpoint-rectangle estimates are than the
other two. 

b. Use the definition of the definite integral with each of three formulas from the first part of
the problem to determine the exact area under x 12

+ from 0 to 3. 

For left rectangles, limx dx
n

n n 121
2

24 27 9
2

24
n

2

0

3

2

2

+ =
- +

= =
"3

# _ i
For right rectangles, limx dx

n
n n 121

2
24 27 9

2
24

n

2

0

3

2

2

+ =
+ +

= =
"3

# _ i
And for midpoint rectangles, limx dx

n
n 121
4

48 9
4
48

n

2

0

3

2

2

+ =
-

= =
"3

# _ i
Big surprise — they all equal 12. They better all come out the same since you’re computing
the exact area. 

o Continuing with problem 4, estimate the area under siny x= from 0 to π with eight trapezoids,
and compute the percent error. The approximate area is 1.974 and the error is 1.3%.

1. List the values for a, b, and n, and determine the x-values x 0 through x 8 .

, , , , . . .

a

b

n

x x x x x

π

π π π
π

0

8

0
8 8

2
8

3
0 1 2 3 8

=

=

=

= = = = =
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2. Plug these values into the formula.

. . .

. . . . . . .

sin sin sin sin sin sinT π π π π π
π

π

2 8
0 0 2

8
2

8
2 2

8
3 2

8
7

16
0 765 1 414 1 848 0 1 974

8

. .

=
-

+ + + + + +

+ + + +

$
c

^
m

h
The percent error is 1.3%.

p Estimate the same area with 16 and 24 trapezoids and compute the percent error. 

.

. . .

. . . . .

sin sin sin sin sin sinT π π π π π
π

π 1 994

2 16
0 0 2

16
2

16
2 2

16
3 2

16
15

32
0 390 765 0

16

. .

=
-

+ + + + + +

+ + + +

$
c

^
m

h
The percent error for 16 trapezoids is 0.321%.

.

. . .

. . . . .

sin sin sin sin sin sinT π π π π π
π

π 1 997

2 24
0 0 2

24
2

24
2 2

24
3 2

24
23

48
0 261 518 0

24

. .

=
-

+ + + + + +

+ + + +

$
c

^
m

h
The percent error for 24 trapezoids is 0.143%.

q Approximate the same area with eight Simpson’s rule “trapezoids” and compute the percent
error. The area for 8 “trapezoids” is 2.00001659 and the error is 0.000830%.

For 8 Simpson’s “trapezoids”:

1. List the values for a, b, and n, and determine the x-values x 0 through x 16, the 9 edges and the
8 base midpoints of the 8 curvy-topped “trapezoids.”

, , , , . . .

a

b

n

x x x x x

π

π π π
π

0

16

0
16 16

2
16
3

0 1 2 3 16

=

=

=

= = = = =

2. Plug these values into the formula.

. . .

. . . . . . . . .

sin sin sin sin sin sin sinS π π π π π π
π

π

3 16
0 0 4

16
2

16
2 4

16
3 2

16
4 4

16
15

48
0 7804 7654 2 2223 1 4142 0 7804 0 2 00001659

16

. .

=
-

+ + + + + + +

+ + + + + + +

$
c

^
m

h
The percent error for eight Simpson “trapezoids” is 0.000830%.

r Use the following shortcut to figure S 20 for the area under lnx from 1 to 6. 

Using the formula in the problem, you get:

. . .

.

S
M M T

S
M M T

3

3

3
5 759 5 759 5 733

5 750

n
n n n

2

20
10 10 10

.

.

=
+ +

=
+ +

+ +

This agrees (except for a small round-off error) with the result obtained the hard way in the
Simpson’s rule example problem.
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Chapter 10

Integration: Reverse Differentiation

In This Chapter
� Analyzing the area function

� Getting off your fundament (butt) to study the Fundamental Theorem

� Guessing and checking

� Pulling the switcheroo

In this chapter, you really get into integration in full swing. First you look at the annoying
area function, then the Fundamental Theorem of Calculus, and then two beginner integra-

tion methods. 

The Absolutely Atrocious and 
Annoying Area Function

The area function is both more difficult and less useful than the material that follows it. With
any luck, your calc teacher will skip it or just give you a cursory introduction to it. Once 
you get to the following section on the Fundamental Theorem of Calculus, you’ll have no
more use for the area function. It’s taught because it’s the foundation for the all-important
Fundamental Theorem.

The area function is an odd duck and doesn’t look like any function you’ve ever seen before. 

A x f t dtf

s

x

= #^ ^h h
The input of the function (its argument) is the x on top of the integral symbol. Note that f t^ h
is not the argument. The output, A xf ^ h, tells you how much area has been swept out under
the curve, f t^ h, between some starting point, x = s, and the input value. For example, con-

sider the simple horizontal line g t 10=^ h and the area function based on it, A x dt10g

x

3

= #^ h . 

This area function tells you how much area is under the horizontal line between 3 and the
input value. When x = 4, the area is 10 because you’ve got a rectangle with a base of one —
from 3 to 4 — and a height of 10. When x = 5, the output of the function is 20; when x = 6, the
output is 30, and so on. (For an excellent and thorough explanation of the area function and
how it relates to the Fundamental Theorem, check out Calculus For Dummies.) The best way
to get a handle on this weird function is to see it in action, so here goes.

Don’t forget that when using an area function (or a definite integral — stay tuned), area
below the x-axis counts as negative area. 
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1. For problems 1 through 4, use the area 

function A x g t dt
/

g

x

1 2

= #^ ^h h and the follow-

ing figure. Most answers will be approxima-
tions. Where (from 0 to 8) does A g equal 0?

Solve It

y

x

1

2

3

4

5

1 2 3 4 5 6 7 8

x = 6

g (t)

x = 1
2

2. Where (from x 0= to x 8= ) does A g reach 

a. its maximum value?

b. its minimum value?

Solve It

Q. Consider f t^ h, shown in the following
figure. Given the area function 

A x f t dtf

x

2

= #^ ^h h , approximate A 4f ^ h, 
A 5f ^ h, A 2f ^ h, and A 0f ^ h. Is A f increasing
or decreasing between x 5= and x 6= ?
Between x 8= and x 9= ? 

A. A 4f ^ h is the area under f t^ h between 2
and 4. That’s roughly a rectangle with a
base of 2 and a height of 3, so the area
is about 6. (See the shaded area in the
figure.)

x = 2

y

x

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

x = 4 x = 5

f (t)

A 5f ^ h adds a bit to A 4f ^ h — roughly a
trapezoid with “height” of 1 and “bases” 2
and 3 (along the dotted lines at x = 4 and
x = 5) that thus has an area of 2.5, so A 5f ^ h
is roughly 6 plus 2.5, or 8.5. 

A 2f ^ h is the area between 2 and 2, which is
zero.

A 0f ^ h is another area roughly in the shape of
a trapezoid. Its height is 2 and its bases are 2
and 3, so its area is 5. But because you go
backwards from 2 to zero, A 0f ^ h equals –5. 

Between x = 5 and x = 6, A f is increasing. Be
careful here: f t^ h is decreasing between 5
and 6, but as you go from 5 to 6, A f sweeps
out more and more area so it’s increasing. 

Between x = 8 and x = 9, while f t^ h is
increasing A f is decreasing. Area below the
x-axis counts as negative area, so in moving
from 8 to 9, A f sweeps out more and more
negative area, thus growing more and more
negative, and thus A f is decreasing. 
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3. In what intervals between 0 and 8 is A g

a. increasing?

b. decreasing?

Solve It

4. Approximate A 1g^ h, A 3g^ h, and A 5g^ h.
Solve It

Sound the Trumpets: The Fundamental
Theorem of Calculus

The absolutely incredibly fantastic Fundamental Theorem of Calculus — some say one
of or perhaps the greatest theorem in the history of mathematics — gives you a neat
shortcut for finding area so you don’t have to deal with the annoying area function or
that rectangle mumbo jumbo from Chapter 9. The basic idea is that you use the anti-
derivative of a function to find the area under it.

Let me jog your memory on antiderivatives: Because x3 2 is the derivative of x 3, x 3 is an
antiderivative of x3 2. But so is x 53

+ because its derivative is also x3 2. So anything of the
form x C3

+ (C is a constant) is an antiderivative of x3 2. Technically, you say that x C3
+

is the indefinite integral of x3 2 and that x C3
+ is the family of antiderivatives of x3 2.

The Fundamental Theorem comes in two versions: useless and useful. You learn the
useless version for basically the same reason you studied geometry proofs in high
school, namely, “just because.”



The Fundamental Theorem of Calculus (the difficult, mostly useless version): Given an 

area function A f that sweeps out area under f t^ h, A x f t dtf

s

x

= #^ ^h h , the rate at 

which area is being swept out is equal to the height of the original function. So, because
the rate is the derivative, the derivative of the area function equals the original function: 

dx
d A x f xf =^ ^h h. Because A x f t dtf

s

x

= #^ ^h h , you can also write the previous equation 

as follows: 
dx
d f t dt f x

s

x

=# ^ ^h h.
The Fundamental Theorem of Calculus (the easy, useful version): Let F be any anti-
derivative of the function f ; then

f x dx F b F a
a

b

= -# ^ ^ ^h h h
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Q. a. For the area function 

A x t t dt5f

x

2

10

= -#^ _h i , what’s 
dx
d A xf ^ h?

b. For the area function, sinB x t dtf

x

4

3 2

=

-

#^ h , 

what’s 
dx
d B xf ^ h?

A. a. No work needed here. The answer is
simply x x52

-

b. sinx x6 3 2

The argument of an area function is the
expression at the top of the integral
symbol — not the integrand. Because
the argument of this area function, x3 2,
is something other than a plain old x,
this is a chain rule problem. Thus, 

,sin
dx
d B x x x3 6f

2
= $^ h or .sinx x6 3 2

Q. What’s the area under x2 52
+ from 0 to 4?

Note this is the same question you worked
on in Chapter 9 with the difficult, sigma-
sum-rectangle method.

A.
3

188

Using the second version of the
Fundamental Theorem, 

x dx F F2 5 4 02

0

4

+ = -# _ ^ ^i h h where F

is any antiderivative of x2 52
+ .

By trial and error, you can find that the 

derivative of x x
3
2 53

+ is an antiderivative 

of x2 52
+ . Thus, 

x dx x x2 5
3
2 5

3
2 4 5 4

3
2 0 5 0

3
188

2 3

0

4

0

4

3 3

+ = +

= + - +

=

$ $ $

# _

c c

i

m m

V

X

W
WW

The same answer with much less work than
adding up all those rectangles!
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5. a. If sinA x t dtf

x

0

= #^ h , what’s 
dx
d A xf ^ h?

b. If sinA x t dt
/

g

x

π 4

= #^ h , what’s 
dx
d A xg^ h?

Solve It

*6. Given that sinA x t dt
/

cos

f

x

π 4

=

-

#^ h , find 

dx
d A xf ^ h.

Solve It

7. For A xf ^ h from problem 5a, where does 

dx
d A f equal zero?

Solve It

*8. For A xf ^ h from problem 6, evaluate Af'
π

4
c m.

Solve It



182 Part IV: Integration and Infinite Series 

9. What’s the area under siny x= from 0 to π? 

Solve It

10. Evaluate sinx dx
π

0

2

# . 

Solve It

11. Evaluate x x x dx4 5 103 2

2

3

- + -# _ i .

Solve It

12. Evaluate e dxx

1

2

-

# .

Solve It
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13. Determine x dx4 1
3

-# ^ h .

Solve It

14. What’s sec x dx62# ?

Solve It

Finding Antiderivatives: The 
Guess and Check Method

Your textbook, as well as the Cheat Sheet in Calculus For Dummies, lists a set of 

antiderivatives that you should memorize, such as sinx , x
1 , or 

x1
1

2
+

. (Most of them 

are simply the basic derivative rules you know written in reverse.) When you face
a problem that’s similar to one of these — like finding the antiderivative of sin x5

or
x8
1 — you can use the guess and check method: just guess your answer, check it by 

differentiating, then if it’s wrong, tweak it till it works.

Q. What’s sin x dx3# ?

A. cos x
3
1 3-

You’ve memorized that cosx- is the anti-
derivative of sinx — because, of course,
sinx is the derivative of cosx- . So a good
guess for this antiderivative would be

cos x3- . When you check that guess by

taking its derivative with the chain rule,
you get sin x3 3 , which is what you want
except for that first 3. To compensate
for that, simply divide your guess by 3: 

cos x
3

3- . That’s it. If you have any doubts 

about this second guess, take its derivate
and you’ll see that it gives you the desired
integrand, sin x3 .
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15. Determine cos x dx
2

1-# .

Solve It

16. What’s 
t
dt

2 5
3
+

# ?

Solve It

17. Compute the definite integral, 

sec tant t dtπ π π
5 5 5

π

0

- -# ^ ^h h .

Solve It

18. Antidifferentiate .
x

dx
1 9

4 5
2

+
# .

Solve It



The Substitution Method: 
Pulling the Switcheroo

The group of guess-and-check problems in the last section involve integrands that differ
from the standard integrand of a memorized antiderivative rule by a numerical amount.
The next set of problems involves integrands where the extra thing they contain
includes a variable expression. For these problems, you can still use the guess-and-check
method, but the traditional way of doing such problems is with the substitution method.
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Q. Antidifferentiate sinx x dx2 3# with the sub-
stitution method.

A. cos x C
3
1 3

- +

1. If a function in the integrand has some-
thing other than a plain old x for its
argument, set u equal to that argument.

u x 3
=

2. Take the derivative of u with respect to
x, then throw the dx to the right side.

dx
du x

du x dx

3

3

2

2

=

=

3. Tweak your integrand so it contains the
result from Step 2 ( x dx3 2 ); and com-
pensate for this tweak amount by multi-
plying the integral by the reciprocal of
the tweak number.

sinx x dx2 3#
You need a 3 in the integrand, so put in a 

3 and compensate with a 
3
1 .

sin

sin

x x dx

x x dx

3
1 3

3
1 3

u du

2 3

3 2

=

=

#
# S \

4. Pull the switcheroo.

sinu du
3
1

= #
5. Antidifferentiate by using the deriva-

tive of cos x- in reverse.

cosu C
3
1

= - +

6. Get rid of the u by switching back to
the original expression.

cosx C
3
1 3

= - +

Q. Evaluate sinx x dx

π

2 3

0

3

# .

A.
3
2

1. This is the same as the previous Step 1
except that at the same time as setting u
equal to x 3 , you take the two x-indices
of integration and turn them into 
u-indices of integration.

Like this:

,

,

when

when

u x

x u

x uπ π π

0 0

3

3 3
3

=

= =

= = =

So 0 and π are the two u-indices of 
integration.

2.–3. Steps 2-3 are identical to 2-3 in the pre-
vious example except that you happen
to be dealing with a definite integral in
this problem.

4. Pull the switcheroo. This time in addi-
tion to replacing the x 3 and the x dx3 2

with their u-equivalents, you also
replace the x-indices with the u-indices:

sinu du
3
1

π

0

= #

5. Evaluate.

cosu
3
1

3
1 1 1

3
2

π

0

= -

= - - - =^ h
E

If you prefer, you can skip determining
the u-indices of integration; just replace
the u with x 3 like you did above in Step 6,
and then evaluate the definite integral
with the original indices of integration.
(Your calc teacher may not like this, how-
ever, because it’s not the book method.)

cos

cos cos

x

π

3
1

3
1 0

3
1 1 1

3
2

π

3

0

3
3

3

3

= -

= - -

= - - - =

c
^

m
h

E
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19. Find the antiderivative 
cos

sin

x

x dx# with 

the substitution method.

Solve It

20. Find the antiderivative x x dx2 64 53 +#
with the substitution method.

Solve It

21. Use substitution to determine x e dx5 x3 4# .

Solve It

22. Use substitution to antidifferentiate 

sec

x

x
dx

2

# .

Solve It
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23. Evaluate 
t

tdt

52
4

0

2

+
# _ i . Change the indices of 

integration.

Solve It

24. Evaluate 
s

s
ds

5/

3

2 3
3

1

8
+# _ i

without changing 

the indices of integration.

Solve It



Solutions to Reverse Differentiation Problems
a Where (from 0 to 8) does A g equal zero? At about x = 2 or 21⁄2 and about x = 6.

A g equals zero twice between 0 and 8. First at about x = 2 or 21⁄2 where the negative area begin-
ning at x = 1 cancels out the positive area between x = 1⁄2 and x = 1. The second zero of A g is
roughly at 6 (see the dotted line in the figure). After the first zero at about 2, negative area is
added between 2 and 4. The positive area from 4 to 6 roughly cancels that out, so A g returns
to zero at about 6.

b Where (from x 0= to x 8= ) does A g reach 

a. its maximum value? A g reaches its max at x = 8. After the zero at x = 6, A g grows by about
4 or 41⁄2 square units by the time it gets to 8.

b. its minimum value? The minimum value of A g is at x = 4 where it equals something like –2.

c In what intervals between 0 and 8 is A g

a. increasing? A g is increasing from 0 to 1 and from 4 to 8.

b. decreasing? A g is decreasing from 1 to 4.

d Approximate A 1g^ h, A 3g^ h, and A 5g^ h.
A 1g^ h is maybe a bit bigger than the right triangle with base from x = 1⁄2 to x = 1 on the x-axis and
vertex at , 41

2_ i. So that area is about 1 or 11⁄4.

There’s a zero at about x = 2 or 21⁄2. Between there and x = 3 there’s very roughly an area of –1,
so A 3g^ h is about –1.

In problem 2b, you estimate A 4g^ h to be about –2. Between 4 and 5, there’s sort of a triangular
shape with a rough area of 1⁄2. Thus A 5g^ h equals about –2 + 1⁄2 or –11⁄2. 

e a. If sinA x t dtf

x

0

= #^ h , sin
dx
d A x xf =^ h . 

b. If sinA x t dt
/

g

x

π 4

= #^ h , sin
dx
d A x xg =^ h .

*f Given that sinA x t dt
/

cos

f

x

π 4

=

-

#^ h , find 
dx
d A xf ^ h. The answer is sin sin cosx x- $ ^ h.

This is a chain rule problem. Because the derivative of sint dt
/

x

π 4-

# is sinx , the 

derivative of sint dt
/

stuff

π 4-

# is sin stuff $^ h stuff '. Thus the derivative of sint dt
/

cos x

π 4-

# is 

sin cos cos sin sin cosx x x x= -$ $l^ ^ ^h h h.
g For A xf ^ h from problem 5a, where does 

dx
d A f equal zero? sin

dx
d A xf = , so 

dx
d A f is zero at 

all the zeros of sin x , namely at all multiples of π: kπ (for any integer, k). 

*h For A xf ^ h from problem 6, evaluate Af'
π

4
c m. In problem 6, you found that 

Af' sin sin cosx x x= - $^ ^h h, so Af' .sin sin cos sinπ π π

4 4 4 2
2

2
2

459.= - = - -$ $c cm m .

i What’s the area under siny x= from 0 to π? The area is 2. The derivative of cosx-

is sinx , so cosx- is an antiderivative of sinx . Thus, by the Fundamental Theorem, 

sin cosx dx x 1 1 2 2
π

π

0

0

= - = - - - = - - =# ^ ^h h@ .
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j sin cosx dx x 1 1 0
π

π

0

2

0

2

= - = - - =# ^ h@ Do you see why the answer is zero?

k x x x dx4 5 103 2

2

3

- + -# _ i = –6.58.

.

x x x dx

x x x x

4 5 10

4
1

3
4

2
5 10

4
1 81

3
4 27

2
5 9 30

4
1 16

3
4 8

2
5 4 20

6 58

3 2

2

3

4 3 2

2

3

.

- + -

= - + -

= - + - - - + -

-

$ $ $ $ $ $

# _

c c

i

m m

E

l .e dx 7 02x

1

2

.

-

#

e ex x
=l_ i , so e x is its own antiderivative as well as its own derivative. Thus, 

.e dx e e e 7 02x x

1

2

1

2

2 1
.= = -

-

-

-# A .

m x Cx dx
16
1 4 14 1

43

- = - +# ^ ^h h
1. Guess your answer: x

4
1 4 1

4

-^ h
2. Differentiate: x4 1 4

3

- $^ h (by the chain rule). It’s 4 times too much.

3. Tweak guess: x
16
1 4 1

4

-^ h
4. Differentiate to check: x x

4
1 4 1 4 4 1

3 3

- = -$^ ^h h . Bingo.

n tansec x Cx dx
6
1 662

= +#
Your guess at the antiderivative, tan x6 , gives you tan secx x6 6 62

= $l^ h . Tweak the guess 

to tan x
6
1 6 . Check: tan sec secx x x

6
1 6

6
1 6 6 62 2

= =$
lc m .

o sincos x Cx dx 2
2

1
2

1-
=

-
+#

Your guess is sin x
2

1- . Differentiating that gives you cos x
2

1
2
1-
$c m . 

Tweaked guess is sin x2
2

1- . That’s it.

p ln t C
t
dt

2
3 2 5

2 5
3
+

= + +#

ln t2 5+ is your guess. Differentiating gives you: 
t2 5
1 2
+

$ . 

You wanted a 3, but you got a 2, so tweak your guess by 3 over 2. (I’m a poet!)

This “poem” always works. Try it for the other problems. Often what you want is a 1. For 
example, for problem 15, you’d have “You wanted a 1 but you got a 1⁄2, so tweak your guess by
1 over 1⁄2.” That’s 2, of course. It works!

Back to problem 16. Your tweaked guess is ln t
2
3 2 5+ . That’s it. 
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q sec tant t dtπ π π
π

25 5 5
π

0

- - =# ^ ^h h
Don’t let all those 5s and sπ distract you — they’re just a smoke screen.

Guess: sec t π5 -^ h. Diff: sec tant tπ π5 5 5- - $^ ^h h . 

Tweak: sec tπ π
1 5 -^ h. Diff: sec tant tπ π π

1 5 5 5- - $^ ^h h . Bingo. So now —

sec sec sectπ π π π π π
1 5 1 4 2

π

0

- = - - =^ ^ ^h h h8E B
r

. tan x C
x

dx
2
3 3

1 9
4 5 1

2
+

= +
-#

I bet you’ve got the method down by now: Guess, diff, tweak, diff; Guess, diff, tweak, diff. . . .

Guess: tan x31- . Diff: 
x1 3

1 32

+
$^ h .

Tweak: tan x
2
3 31- . Diff: 

x2
3

1 3

1 32

+
$ $^ h . That’s it.

s cos
cos

sin x C
x

x dx 2= - +#

1. It’s not plain old x , so substitute cosu x= .

2. Differentiate and solve for du.

sin

sin
dx
du x

du xdx

= -

= -

3. Tweak inside and outside of integral: 
cos

sin

x

x dx-
-#

4. Pull the switch: 
u

du
= - #

5. Antidifferentiate with reverse power rule: u du u C2/ /1 2 1 2
= - = - +

-#
6. Get rid of u: cos cosx C x C2 2

/1 2

- + = - +^ h

t
x x

Cx x dx
20

3 3 2 6
2 6

5 53

4 53 + =
+ +

+# _ i

1. It’s not plain old x , so substitute u x2 65
= + .

2. Differentiate and solve for du.

dx
du x

du x dx

10

10

4

4

=

=

3. Tweak inside and outside: x x dx
10
1 10 2 64 53 +#

4. Flip the switch: u du
10
1 3= #

5. Apply the power rule in reverse: u C
u u

C
10
1

4
3

40
3/4 3

3

= + = +$

6. Switch back: 
x x

C
x x

C
40

3 2 6 2 6

20

3 3 2 65 53 5 53+ +
+ =

+ +
+

_ _i i
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u e Cx e dx
4
55 xx3 44

= +#
1. It’s not eplain old x , so u x 4

= .

2. You know the drill: du x dx4 3
=

3. Tweak: x e dx
4
5 4 x3 4#

4. Switch: e du
4
5 u

= #
5. Antidifferentiate: e C

4
5 u

= +

6. Switch back: e C
4
5 x 4

= +

v tan
sec

x C
x

x
dx 2

2

= +#
1. It’s not sec plain old x2_ i, so u x= .

2. Differentiate: du x dx
x

dx
2
1

2

1/1 2
= =

-

3. Tweak: 
sec

x

x
dx2

2

2

#

4. Switch: sec u du2 2
= #

5. Antidifferentiate: tanu C2= +

6. Switch back: tan x C2= +

w .
t

tdt 0011
52

4

0

2

.

+
# _ i
1. Do the U and Diff (it’s sweeping the nation!), and find the u-indices of integration.

u t

du tdt

5

2

2
= +

=

,

,

when

when

t u

t u

0 5

2 9

= =

= =

2. Two tweaks: 
t

tdt
2
1

5

2
2

4

0

2

=

+
# _ i

3. The switch: 
u
du

2
1

4

5

9

= #
4. Antidifferentiate and evaluate: .u

2
1

3
1

6
1 9 5 00113

5

9

3 3
.= - = - -

- - -

$ c _m iG
x .

s

s
ds 1974 375

5/

3

2 3
3

1

8
+

=# _ i

You know the drill: ;u s du s ds
s

ds5
3
2

3

2/ /2 3 1 3

3
= + = =

-

s

s
ds

s

s
ds

u du

5

2
3

3

2 5

2
3

/ /

3

2 3
3

3

2 3
3

1

8

1

8

3

1

8

+
=

+##

#

_ _i i
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You’ll get a math ticket if you put an equal sign in front of the last line because it is not equal to
the line before it. When you don’t change the limits of integration, you get this mixed-up inte-
gral with an integrand in terms of u, but with limits of integration in terms of x (s in this prob-
lem). This may be one reason why the preferred, book method includes switching the limits of
integration — it’s mathematically cleaner. 

Now just antidifferentiate, switch back, and evaluate:

.

u

s

2
3

4
1

2
3

4
1 5

8
3 9 6 1974 375/

4

2 3
4

1

8

4 4
+ = - =

$

$ _ _i iE
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Chapter 11

Integration Rules for Calculus
Connoisseurs

In This Chapter
� Imbibing integration

� Transfixing on trigonometric integrals

� Partaking of partial fractions

In this chapter, you work on some  complex and challenging integration techniques. The
methods may seem quite difficult at first, but, like with anything, they’re not that bad at

all after some practice.

Integration by Parts: Here’s How u du It
Integration by parts is the counterpart of the product rule for differentiation (see Chapter 6)
because the integrand in question is the product of two functions (usually). Here’s the
method in a nutshell. You split up the two functions in the integrand, differentiate one, inte-
grate the other, then apply the integration-by-parts formula. This process converts the origi-
nal integrand — which you can’t integrate — into an integrand you can integrate. Clear as
mud, right? You’ll catch on to the technique real quick if you use the following LIATE
acronym and the box method in the example. First, here’s the formula:

For integration by parts, here’s what u du: udv uv vdu= - ## .

Don’t try to understand that until you work through an example problem. Your first chal-
lenge in an integration by parts problem is to decide what function in your original integrand
will play the role of the u in the formula. Here’s how you do it.

To select your u function, just go down this list; the first function type from this list that’s in
your integrand is your u. Here’s a great acronym to help you pick your u function: LIATE, for 

� Logarithmic (like lnx)

� Inverse trigonometric (like arcsin x )

� Algebraic (like x4 103
- )

� Trigonometric (like sinx )

� Exponential (like 5 x )

I wish I could take credit for this acronym, but credit goes to Herbert Kasube (see his article in
American Mathematical Monthly 90, 1983). I can, however, take credit for the following brilliant
mnemonic devise to help you remember the acronym: Lilliputians In Africa Tackle Elephants. 
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Q. Integrate lnx x dx2# . 

A. lnx x C
3
1

3
13

- +c m
1. Pick your u function.

The integrand contains a logarithmic
function (first on the LIATE list), so 
ln x is your u. Everything else in the 
integrand — namely x dx2 — is 
automatically your dv.

2. Use a box like the one in the following
figure to organize the four elements of
the problem. 

Put your u and your dv in the appropri-
ate cells, as the following figure shows.

3. Differentiate u and integrate dv, as the
arrows in the figure show. 

ln(x) x 3

diff int

dx1
x x 2dx

1
3

ln(x)

x2dx

u v

du dv

4. Follow the arrows in the following box
to help you remember how to use the
integration by parts formula.

Your original integral equals the product
of the two cells along the top minus the
integral of the product of the cells on the
diagonal. (Think of drawing a “7” —
that’s your order.)

ln lnx x dx x x x x dx
3
1

3
1 12 3 3

= -$ $## c m
5. Simplify and integrate.

ln

ln

ln

x x x dx

x x x C

x x C

3
1

3
1

3
1

3
1

3
1

3
1

3
1

3 2

3 3

3

= -

= - +

= - +

$

#

c m
You’re done.
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1. What’s cosx x dx5 2-# ^ h ?

Solve It

2. Integrate arctanx dx# . Tip: Sometimes
integration by parts works when the inte-
grand contains only a single function.

Solve It

3. Evaluate arctanx x dx
π

0

# .

Solve It

4. Evaluate x dx10 x

1

1

-

# .

Solve It
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*5. What’s x e dxx2 -# ? Tip: Sometimes you 

have to do integration by parts more
than once.

Solve It

*6. Integrate sine x dxx# . Tip: Sometimes you 

circle back to where you started from —
that’s a good thing!

Solve It

Transfiguring Trigonometric Integrals
Don’t you just love trig? I’ll bet you didn’t realize that studying calculus was going to
give you the opportunity to do so much more trig. Remember this next Thanksgiving
when everyone around the dinner table is invited to mention something that they’re
thankful for. 

This section lets you practice integrating expressions containing trigonometric func-
tions. The basic idea is to fiddle with the integrand until you’re able to finish with a 
u-substitution (see Chapter 10). In the next section, you use some fancy trigonometric
substitutions to solve integrals that don’t contain trig functions.

Q. Integrate sin cos d3 6
i i i# .

A. cos cos C
7
1

9
17 9

- + +i i

1. Split up the sin3
i into sin sin2

i i$
and rewrite as follows:

sin cos sin d2 6
= i i i i#

2. Use the Pythagorean Identity to convert
the even number of sines (the ones on
the left) into cosines. 

The Pythagorean Identity tells you that
sin cosx x 12 2

+ = for any angle x. If you
divide both sides of this identity by

sin x2 , you get another form of the iden-
tity: cot cscx x1 2 2

+ = . If you divide by
cos x2 , you get tan secx x12 2

+ = .

cos cos sin

cos sin cos sin

d

d d

1 2 6

6 8

= -

= -

i i i i

i i i i i i

#
##

_ i

3. Integrate with u-substitution with
cosu = i for both integrals.

cos cos

u du u du

u du u du u u C

C

7
1

9
1

7
1

9
1

6 8

6 8 7 9

7 9

= - - - =

- + = - + +

= - + +i i

##
##

^ ^h h
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7. sin cosx x dx3 3#

Solve It

*8. Evaluate cos sint t dt

/π

4 2

0

6

# . Hint: When the 

powers of both sine and cosine are even,
you convert all sines and cosines into odd
powers of cosine with these handy trig
identities:

sin cosx x
2

1 22
=

- and cos cosx x
2

1 22
=

+

*9. sec tanx x dx3 3# Hints: 1) This works
pretty much like the example in this 
section. 2) Convert into secants.

Solve It

*10. Evaluate tan sec d
/

/

π

π

2 4

4

3

i i i# . Hint: After 

the split-up, you convert into tangents. 

Solve It
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*11. tan t dt8#

Solve It

12. csc cotx x dx3#

Solve It

Trigonometric Substitution: 
It’s Your Lucky Day!

In this section, you tackle integrals containing radicals of the following three forms: 

, , andu a u a a u2 2 2 2 2 2
+ - - , as well as powers of these roots. To solve these prob-

lems, you use a SohCahToa right triangle, the Pythagorean Theorem, and some fancy
trigonometric substitutions. I’m sure you’ll have no trouble with this technique — it’s
even easier than string theory.
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Q. Find 
x

dx

4 252
+

# .

A. ln x x C
2
1 4 25 22

+ + +

1. Rewrite the function to fit the form
u a2 2

+ .

x

dx

2 5
2 2

=

+

# ^ h
2. Draw a SohCahToa right triangle 

where tani equals a
u , namely x

5
2 . 

Note that when you make the opposite
side equal to x2 and the adjacent side
equal to 5, the hypotenuse automatically
becomes your radical, x4 252

+ . (This
follows from the Pythagorean Theorem.)
See the following figure. 

3. Solve tan x
5

2
=i for x, differentiate, 

and solve for dx. 

tan

tan

sec

sec

x

x

d
dx

dx d

5
2

2
5

2
5

2
5

2

2

=

=

=

=

i

i

i
i

i i

√4x 2
 + 25

θ

2x

5

4. Determine which trig function is repre-
sented by the radical over the a, then
solve for the radical.

In the figure in Step 2, the radical is on
the Hypotenuse and the a, namely 5, is the 

Adjacent side. 
A
H is secant so you’ve got 

sec

sec

x

x

5
4 25

4 25 5

2

2

+
=

+ =

i

i

5. Use the results from Steps 3 and 4
to make substitutions in the original
integral and then integrate.

sec

sec

sec

ln sec tan

from Step
from Step

x

dx

d

d

C

4 25

5
2
5

4
3

2
1

2
1

2

2

!

!

+

=

=

= + +

i

i i

i i

i i

#

#

#

Get this last integral from your textbook,
the Calculus For Dummies cheat sheet, or
from memory.

6. Use Steps 2 and 4 or the triangle to get
rid of the seci and tani. 

(

,

.)

ln

ln ln

ln ln is

just another

so you

can replace it by

x x
C

x x C

x x C C

C

2
1

5

4 25

5
2

2
1 4 25 2

2
1 5

2
1 4 25 2

2
1 5

constant

2

2

2

=
+

+ +

= + + - +

= + + + +

Tip: Remember that Step 2 always 

involves a
u , and Step 4 always involves 

a . How about U Are Radically 

Awesome?
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*13. Integrate x x x dx9 16 2
+# .

Solve It

14. Integrate 
x x

dx

9 4 9 42 2
+ +

# _ i .

Solve It

15. What’s 
x

x dx

25 2
-

# ? Hint: This is a a u2 2
-

problem where sina
u
= i .

Solve It

16. What’s x x dx9 25 2
-# ? Same hint as in 

problem 15.

Solve It



201Chapter 11: Integration Rules for Calculus Connoisseurs

17. Integrate 
x

dx

625 1212
-

# . Hint: This is a 

u a2 2
- problem where seca

u
= i .

Solve It

18. Last one: x
x

dx
4 12

-# . Same hint as in 

problem 17. 

Solve It

Partaking of Partial Fractions
The basic idea behind the partial fractions technique is what I call “unaddition” of 

fractions. Because 
2
1

6
1

3
2

+ = , had you started with 
3
2 , you could have taken it apart — 

or “unadded” it — and arrived at 
2
1

6
1

+ . You do the same thing in this section except 

that you do the unadding with rational functions instead of simple fractions.

Q. Integrate 
x x

x dx
3 4
3

2
- -

#

A. ln lnx x C
5
3 1

5
12 4+ + - +

1. Factor the denominator.

x x
x dx

1 4
3

=
+ -

# ^ ^h h
2. Break up the fraction.

x x
x

x
A

x
B

1 4
3

1 4+ -
=

+
+

-^ ^h h
3. Multiply both sides by the denominator

of the fraction on the left.

x A x B x3 4 1= - + +^ ^h h

4. Plug the roots of the linear factors into
x one at a time.

:

:

Plug in

Plug in

B B

A A

4 3 4 4 1
5

12

1 3 5
5
3

= + =

- - = - =

$ ^ h

5. Split up the integral and integrate.

ln ln

x x
xdx

x
dx

x
dx

x x C

3 4
3

5
3

1 5
12

4

5
3 1

5
12 4

2
- -

=
+

+
-

= + + - +

# ##



202 Part IV: Integration and Infinite Series 

Q. Integrate 
x x

x dx
1

2 1
3 2

2

+

+# _ i .

A. ln arctan
x

x
x

x
x

x x C

1 3

2 1
2 1

2
1 2

2

2

2 2

+
- -

+

+
- - +_ i

1. Factor the denominator. I did this step
for you — a random act of kindness.
Note that x 12

+ can’t be factored. 

2. Break up the fraction into a sum of 
fractions.

x x

x
x
A

x
B

x
C

x

Dx E

x

Fx G

1

2 1

1 13 2
2 2 3 2 2

2

+

+
= + + +

+

+
+

+

+

_ _ _i i i
Note the difference between the numera-
tors of fractions with x in their denomi-
nator and those with x 12

+_ i — an
irreducible quadractic — in their denom-
inator. Also note there is a fraction for
each power of each different factor of 
the original fraction.

3. Multiply both sides of this equation by
the left-side denominator.

x Ax x Bx x

C x Dx E x x

Fx G x

2 1 1 1

1 1

2 2
2

2
2

2
2

3 2

3

+ = + + + +

+ + + + +

+

_ _
_ ^ _

^

i i
i h i
h

4. Plug the roots of the linear factors into
x (0 is the only root). 

Plugging 0 into x eliminates every term
but the “C” term. One down, six to go.

C

C

0 1 0 1

1

2
2

+ = +

=

_ i

5. Equate coefficients of like terms.

Because Step 4 only gave you one term,
take a different tack. If you multiply (FOIL)
everything out in the Step 3 equation,
the right side of the equation will
contain a constant term and terms in

, , , , ,x x x x x xand2 3 4 5 6. This equation is
an identity, so the coefficient of, say, the
x 5 term on the right has to equal the co-
efficient of the x 5 term on the left (which
is 0 in this problem). So set the coefficient
of each term on the right equal to the
coefficient of its corresponding term on
the left. Here’s your final result:

1) Constant term: 1 = C

2) x term: 2 = B

3) x 2 term: 0 = A + 2C

4) x 3 term: 0 = 2B + E + G

5) x 4 term: 0 = 2A + C + D + F

6) x 5 term: 0 = B + E

7) x 6 term: 0= A + D

You can quickly obtain the values of all
seven unknowns from these seven equa-
tions, and thus you could have skipped
Step 4. But plugging in roots is so easy,
and the values you get may help you
finish the problem faster, so it’s always a
good thing to do.

And there’s a third way to solve for the
unknowns. You can obtain a system of
equations like the one in this step by
plugging non-root values into x. (Use
small numbers that are easy to calculate
with.) After doing several partial fraction
problems, you’ll get a feel for what com-
bination of the three techniques works
best for each problem. 

From this system of equations, you get
the following values: 

A = –2, B = 2, C = 1, D = 2, E = –2, F = 1, G = –2

6. Split up your integral and integrate.

x x

x dx x dx

x
dx

x
dx

x
x dx

x

x dx

1

2 1 2

2 1
1

2 2

1

2

3 2
2

2 3 2

2
2

+

+
=

-
+

+ +
+

-
+

+

-

##

## #

#

_

_

i

i
The first three are easy: 

ln x x x
2 2

2
1

2- +
-

+
- . Split up the last two.

x
x dx

x
dx

x

x dx
x

dx

1
2 2

1
1

1
2

1

1

2 2

2
2

2
2

+
+

-
+

+

+

-

+

##

# #_ _i i
The first and third above can be done
with a simple u-substitution; the second
is arctangent; and the fourth is very
tricky, so I’m just going to give it to you:

ln arctan

arctan

x x
x

x
x
x

1 2
2 1

1

2
2 2 1

2

2

2

+ + - -
+

-

+
+

J

L

K
K

_ _

_
N

P

O
O

i i

i
Finally, here’s the whole enchilada:

ln

arctan

x x

x dx
x

x

x
x
x

x x C

1

2 1 1

3
2 1

2 1
2
1 2

3 2
2 2

2

2 2

+

+
=

+
-

-
+

-
- - +

# _
_

i
i

Take five. 



203Chapter 11: Integration Rules for Calculus Connoisseurs

19. Integrate 
x x

dx
2 7 4

5
2
+ -

# .

Solve It

20. Integrate 
x x x

x
3 1 4 5

2 3
- + +

-# ^ ^ ^h h h .

Solve It

21. What’s 
x x x

x x dx
3 3 1

1
3 2

2

- + -

+ +# ?

Solve It

22. Integrate 
x x

dx
6 54 2

+ +
# .

Solve It
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*23. Integrate 
x

x x x dx
1

4 3 2 1
4

3 2

-

+ + +# .

Solve It

*24. What’s 
x x x

x x dx
1 1 22 2

2

+ + +

-# ^ _ _h i i ?

Solve It



Solutions for Integration Rules
a sin coscos x x x Cx x dx

5
1 5 2

25
1 5 25 2- = - + - +# ^ ^ ^h h h

1. Pick x as your u, because the algebraic function x is the first on the LIATE list.

2. Fill in your box.

3. Use the “7” rule: cos sin sinx x dx x x x dx5 2
5
1 5 2

5
1 5 2- = - - -## ^ ^ ^h h h

4. Finish by integrating: sin cosx x x C
5
1 5 2

25
1 5 2= - + - +^ ^h h

b arctan lnarctan x x x Cx dx
2
1 1 2

= - + +# _ i
1. Pick arctan x as your u. You’ve got no choice.

2. Do the box thing.

3. Apply the “7” rule: arctan arctan arctan lnx dx x x
x

xdx x x x C
1 2

1 12

2
= -

+
= - + +# # _ i

c arctan arctanarctan x x x x Cx x dx
2
1

2
1

2
1

π

2

0

= - + +#

1. Pick arctan x as your u.

2. Do the box.

arctan  x x 2

diff int

dx xdx
1 + x 2

1
2

arctan x x

diff int

dx
1 + x 2

dx

x sin(5x–2)

diff int

dx cos(5x–2)dx

1
5
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3. Apply the “7” rule.

arctan arctan

arctan

arctan

arctan arctan arctanor

x x dx x x
x

x dx

x x
x

x dx

x x dx
x

dx

x x x x C x x x C

2
1

2
1

1

2
1

2
1

1
1 1

2
1

2
1

2
1

1

2
1

2
1

2
1

2
1

2

2

2

2

2

2

2

2

2

2
2

= -
+

= -
+

+ -

= - +
+

= - + +
+

- +

# #

#

##

d
ln

lnx dx
10 10

101 10 9910 x

2

1

1

=
-

-

# ^ h
1. Pick the algebraic x as your u.

2. Box it.

3. Do the “7”.

ln ln

ln ln ln ln

ln ln ln ln

ln

ln

x dx x dx10
10

10
10
1 10

10
10

10 10
1

10
1

10
10

10
10

10 10
1

10

10

10 10

1

10 10

101 10 99

x
x

x

x

1

1

1

1

1

1

1

1

2 2

2

= -

= + -

= + - +

=
-

- - -

-

$

# #

^ ^

^

h h

h

F

F

*e e x x Cx e dx 2 2xx 22
=- + + +

- -# _ i
1. Pick x 2 as your u.

2. Box it.

3. “7” it: x e dx x e xe dx2x x x2 2
= - +

- - -# #
In the second integral, the power of x is reduced by 1, so you’re making progress. 

x 2 –e–x

diff int

2xdx e–xdx

x

diff int

dx 10 
x
dx

10
x

ln10
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4. Repeat the process for the second integral: Pick it and box it.

5. “7” rule for the second integral: xe dx xe e dx xe e Cx x x x x
= - + = - - +

- - - - -# #
6. Take this result and plug it into the second integral from Step 3.

x e dx x e xe e C

x e xe e C e x x C

2

2 2 2 2

x x x x

x x x x

2 2

2 2

= - + - - +

= - - - + = - + + +

- - - -

- - - -

# _
_

i
i

*f
sin cossin e x e x

Ce x dx
2 2

x x
x

= - +#
1. Pick sin x as your u — it’s a T from LIATE.

2. Box it.

3. “7” it: sin sin cose x dx e x e x dxx x x
= -# #

Doesn’t look like progress, but it is. Repeat this process for cose x dxx# .

4. Pick cos x as your u and box it.

5. “7” it: cos cos sine x dx e x e x dxx x x
= + ##

The prodigal son returns home and is rewarded. 

6. Plug this result into the second integral from Step 3.

sin sin cos sine x dx e x e x e x dxx x x x
= - -# #

cosx e x

diff int

–sinxdx e xdx

sinx e x

diff int

cosxdx e xdx

x –e–x

diff int

dx e–xdx
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7. You want to solve for sine x dxx# , so bring them both to the left side and solve.

sin sin cos

sin sin cos

e x dx e x e x C

e x dx e x e x C

2

2 2

x x x

x
x x

= - +

= - +

#

#

g sin sinsin cos x x Cx x dx
4
3

10
3/ /4 3 10 33 3

= - +#
1. Split off one cos x : sin cos cosx x x dx3 2#
2. Convert the even number of cosines into sines with the Pythagorean Identity. 

sin sin cos sin cos sin cosx x x dx x x dx x x dx1 /3 2 3 7 3
= - = -# # #_ i

3. Integrate with u-substitution with sinu x= : sin sinx x C
4
3

10
3/ /4 3 10 3

= - +

*h cos sint t dt π

96

/π

4 2

0

6

=#

1. Convert to odd powers of cosine with trig identities cos cosx x
2

1 22
=

+ and sin cosx x
2

1 22
=

- .

cos cost t dt
2

1 2
2

1 2
/π 2

0

6

=
+ -# c m

2. Simplify and FOIL.

cos cos cos cos cost t dt dt tdt tdt tdt
8
1 1 2 1 2

8
1 1

8
1 2

8
1 2

8
1 2

/ / / //π π π ππ

2

0

6

0

6

2

0

6

3

0

6

0

6

= - + = + - -# # # ##_ ^i h

3. Integrate. The first and second are simple; for the third, you use the same trig identity again;
the fourth is handled like you handled problem 7. Here’s what you should get:

cos cos cos sin cos

cos sin cos

sin sin

dt tdt dt tdt tdt t tdt

dt tdt t tdt

t t t

π

π

8
1 1

8
1 2

16
1 1

16
1 4

8
1 2

8
1 2 2

16
1

16
1 4

8
1 2 2

16
1

64
1 4

48
1 2

96 128
3

128
3

96

//////

// /

/ / /

ππππππ

ππ π

π π π

2

0

6

0

6

0

6

0

6

0

6

0

6

0

6

0

6

2

0

6

0

6

0

6

3

0

6

= + - - - +

= - +

= - +

= - +

=

######

## #

E E E

*i sec secsec tan x x Cx x dx
5
1

3
15 33 3

= - +#
1. Split off sec tanx x : sec tan sec tanx x x x dx2 2

= #
2. Use the Pythagorean Identity to convert the even number of tangents into secants.

sec sec sec tan

sec sec tan sec sec tan

x x x x dx

x x x dx x x x dx

12 2

4 2

= -

= -

#
##

_ i

3. Integrate with u-substitution: sec secx x C
5
1

3
15 3

= - +
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*j tan sec d
5

14 3
15
8

/

/

π

π

2 4

4

3

= -i i i#

1. Split off a sec2
i : tan sec sec d

/

/

π

π

2 2 2

4

3

= i i i i#

2. Convert to tangents: tan tan sec tan sec tan secd d d1
/

/

/

/

/

/

π

π

π

π

π

π

2 2 2 4 2 2 2

4

3

4

3

4

3

= + = +i i i i i i i i i i### _ i
3. Do u-substitution with tanu = i .

tan tan
5
1

3
1

5
1 3

5
1 1

3
1 3

3
1 1

5
14 3

15
8

/

/

/

/

π

π

π

π
5

4

3

3

4

3

5
5

3
3

= +

= - + -

= -

i i

$ $

E A

*k tan tan tan tantan t t t t t Ct dt
7
1

5
1

3
17 5 38

= - + - + +#
1. Split off a tan t2 and convert it to secants: 

tan sec tan sec tant t dt t t dt t dt16 2 6 2 6
= - = - ### _ _ _i i i

2. Do the first integral with a u-substitution and repeat Step 1 with the second, then keep repeat-
ing until you get rid of all the tangents in the second integral.

tan tan sec

tan tan tan sec

tan tan tan sec

tan tan tan tan

t t t dt

t t t t dt

t t t t dt

t t t t t C

7
1 1

7
1

5
1 1

7
1

5
1

3
1 1

7
1

5
1

3
1

7 4 2

7 5 2 2

7 5 3 2

7 5 3

= - -

= - + -

= - + - -

= - + - + +

#
#

#

_
_

_

i
i

i

l csc csccsc cot x x Cx x dx
5
2 2/ /5 2 1 23

= - + +#
1. Split off csc cotx x : csc cot csc cotx x x x dx/1 2 2

=
-# .

2. Convert the even number of cotangents to cosecants with the Pythagorean Identity.

csc csc csc cotx x x x dx1/1 2 2
= -

-# _ i
3. Finish with a u-substitution.

csc csc cot csc csc cot

csc csc

x x x dx x x x dx

u du u du

u u C

x x C

5
2 2

5
2 2

/ /

/ /

/ /

/ /

3 2 1 2

3 2 1 2

5 2 1 2

5 2 1 2

= -

= - - -

= - + +

= - + +

-

-

##
## ^ ^h h

*m x Cx x dx
48
1 9 169 16

/
2

3 2
2

+ = + +# _ i
1. Rewrite as x x dx4 3

2 2
+# ^ h .

2. Draw your SohCahToa triangle where tan a
u

=i . See the following figure.
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3. Solve tan x
3

4
=i for x, differentiate, and solve for dx.

tan

tan

x

x

4 3

4
3

=

=

i

i

sec

sec

d
dx

dx d

4
3

4
3

2

2

=

=

i
i

i i

4. Do the a thing.

sec sec
x

x
3

9 16
9 16 3

2

2+
= + =i i

5. Substitute. Hint: There are three substitutions here, not just two like in the example.

tan sec sec

tan sec

x x dx

d

d

9 16

4
3 3

4
3

16
27

2

2

3

+

=

=

i i i i

i i i

#
#

#

c ^ cm h m

6. Now you’re back in trigonometric integral territory. Split off a sec tani i factor.

sec sec tan d
16
27 2

= i i i i# ^ h
7. Integrate. This is in u du2# form, so sec secC C

16
27

3
1

16
93 3

= + = +i ic m .

8. Switch back to x:
x

C x C
16
9

3
9 16

48
1 9 16

/
2

3

2
3 2

=
+

+ = + +

J

L
KK _

N

P
OO i .

n
x

x
C

x x

dx

4 9 49 4 9 4 22 2
+ +

=
+

+# _ i .

1. Rewrite as 

x

dx

3 2
2 2

3

+

#
^ h

.

2. Draw your triangle, remembering that tan a
u

=i . See the following figure. 

3. Solve tan x
2

3
=i for x, differentiate, and solve for dx.

tan tan secx x dx d3 2
3
2

3
2 2

= = =i i i i

√9x 2
 + 4

θ

3x

2

√9
 + 16x 2

θ

4x

3
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4. Do the a thing.

sec sec
x

x
2

9 4
9 4 2

2

2+
= + =i i

5. Substitute.

sec

sec

sec
cos

x

dx

d
d d

9 4

2

3
2

12
1

12
1

2
3

3

2

+

= = =
i

i i

i

i
i i

#

# # #^ h
6. Integrate to get sin C

12
1

= +i .

7. Switch back to x (use the triangle).

x

x C
x

x C
12
1

9 4

3

4 9 42 2
=

+
+ =

+
+

J

L

K
K

N

P

O
O

o x C
x

xdx 25
25

2

2
-

= - - +#

1. Rewrite as 
x

xdx

52 2
-

# .

2. Draw your triangle. For this problem, sin a
u

=i . See the following figure. 

3. Solve sin x
5

=i for x, and then get dx.

sin cosx dx d5 5= =i i i

4. Do the a thing.

cos cos
x

x
5

25
25 5

2

2-
= - =i i

5. Substitute.

cos

sin cos
sin

x

xdx

d
d

25

5

5 5
5

2
-

= =
i

i i i
i i

#

# #^ ^h h

6. Integrate to get cos C5- +i .

7. Switch back to x (look at Step 4): 
x

C x C5
5

25
25

2

2
= -

-
+ = - - +

J

L
KK

N

P
OO

√25 − x 2

θ

x
5
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p x Cx x dx
75
1 9 259 25

/
2

3 2
2

- = - - +# _ i
1. Rewrite as x x dx3 52 2

-# ^ h .

2. Do the triangle thing. See the following figure. 

3. Solve sin x
3

5
=i for x then get dx.

sin cosx dx d
5
3

5
3

= =i i i

4. Do the Radically Awesome thing. 

cos cos
x

x
3

9 25
9 25 3

2

2-
= - =i i

5. Substitute.

sin cos cos cos sin

x x dx

d d

9 25

5
3 3

5
3

25
27

2

2

-

= =i i i i i i i

#

## c ^ cm h m
6. Integrate: cos cosC C

25
27

3
1

25
93 3

= - + = - +i ic m .

7. Switch back to x (look at Step 4): 
x

C x C
25
9

3
9 25

75
1 9 25

/
2

3

2
3 2

= -
-

+ = - - +

J

L
KK _

N

P
OO i .

q ln x x C
d

x

x
25
1 25 625 121

625 121

2

2
-

= + - +#

1. Rewrite as 
x

dx

25 11
2 2
-

# ^ h
.

2. Do the triangle thing. For this problem, sec a
u

=i . See the following figure. 

3. Solve sec x
11

25
=i for x and find dx.

sec sec tanx dx d
25
11

25
11

= =i i i i

√625x 2 − 121

θ

11

25x

√9 − 25x 2

θ

5x
3
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4. The a thing. 

tan tan
x

x
11

625 121
625 121 11

2

2-
= - =i i

5. Substitute.

tan

sec tan
sec

x

dx

d
d

625 121

11
25
11

25
1

2
-

= =
i

i i i
i i

#

##

6. Integrate: ln sec tan C
25
1

= + +i i .

7. Switch back to x (look at Steps 3 and 4): 

ln

ln ln

ln

x x
C

x x C

x x C

25
1

11
25

11
625 121

25
1 25 625 121

25
1 11

25
1 25 625 121

2

2

2

= +
-

+

= + - - +

= + - +

r arctanx x Cx
x

dx 4 1 4 1
4 1 2 2

2
-

= - - - +#

1. Rewrite as x
x

dx
2 1

2 2

=
-# ^ h

.

2. Draw your triangle. See the following figure. 

3. Solve sec x
1

2
=i for x; get dx.

sec sec tanx dx d
2
1

2
1

= =i i i i

4. Do the a thing. 

tanx4 12
- = i

5. Substitute.

sec

tan sec tan tan

x
x

dx

d d

4 1

2
1 2

1

2

2

-

= =

i

i
i i i i i$

#
# #

√4x 2 − 1

θ

1

2x
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6. Integrate: sec tand C12
= - = - +i i i i# _ i .

7. Switch back to x (look at Step 4).

arctan

arcsec

or

x x C

x x C

4 1 4 1

4 1 2

2 2

2

= - - - +

= - - +

s ln
x
x

C
x x

dx
9
5

4
2 1

2 7 4
5

2
+ -

=
+

-
+#

1. Factor the denominator: 
x x

dx
2 1 4

5
=

- +
# ^ ^h h .

2. Break up the fraction into a sum of partial fractions: 
x x x

A
x

B
2 1 4

5
2 1 4- +

=
-

+
+^ ^h h .

3. Multiply both sides by the least common denominator: A x B x5 4 2 1= + + -^ ^h h.
4. Plug the roots of the factors into x one at a time.

x 4= - gives you

B

B

5 9

9
5

= -

= -

gives youx

A

A

2
1

5
2
9

9
10

=

=

=

5. Split up your integral and integrate.

ln ln ln
x x

dx
x
dx

x
dx x x C

x
x C

2 7 4
5

9
10

2 1 9
5

4 9
5 2 1

9
5 4

9
5

4
2 1

2
+ -

=
-

+
-

+
= - - + + =

+

-
+# ##

t ln ln lnx x x C
x x x

x
208

7 3 1
13
11 4

16
13 5

3 1 4 5
2 3

- + +

-
=

-
- + + - + +# ^ ^ ^h h h .

1. The denominator is already factored, so go ahead and write your sum of partial fractions.

x x x
x

x
A

x
B

x
C

3 1 4 5
2 3

3 1 4 5- + +

-
=

-
+

+
+

+^ ^ ^h h h
2. Multiply both sides by the LCD.

x A x x B x x C x x2 3 4 5 3 1 5 3 1 4- = + + + - + + - +^ ^ ^ ^ ^ ^h h h h h h
3. Plug the roots of the factors into x one at a time.

: ;

" " " : ;

" " " :

gives youx A A

x B B

x C C

3
1

3
7

9
208

208
21

4 11 13
13
11

5 13 16
16
13

= - = = -

= - - = - =

= - - = = -

4. Split up and integrate.

ln ln ln

x x x
x dx

x
dx

x
dx

x
dx

x x x C

3 1 4 5
2 3

208
21

3 1 13
11

4 16
13

5

208
7 3 1

13
11 4

16
13 5

- + +

-
=
-

-
+

+
+
-

+

=
-

- + + - + +

# ## #^ ^ ^h h h
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u ln x
x

x
C

x x x
x x dx 1

2 1

3 2 1

3 3 1
1

23 2

2

- + -

+ +
= - -

-

-
+# ^

^
h
h

1. Factor the denominator: 
x

x x dx
1

1
3

2

=
-

+ +# ^ h .

2. Write the partial fractions: 
x

x x
x

A

x

B

x

C

1

1
1 1 1

3

2

2 3

-

+ +
=

-
+

-
+

-^ ^ ^h h h .

3. Multiply by the LCD: x x A x B x C1 1 12 2

+ + = - + - +^ ^h h .

4. Plug in the single root, which is 1, giving you C = 3.

5. Equate coefficients of like terms.

Without multiplying out the entire right side in Step 3, you can see that the x 2 term on the
right will be Ax 2. Because the coefficient of x 2 on the left is 1, A must equal 1. 

6. Plug in 0 for x, giving you 1 = A – B + C.

Because you know A is 1 and C is 3, B must be 3.

Note: You can solve for A, B, and C in many ways, but the way I did it is probably the quickest. 

7. Split up and integrate.

ln
x x x

x x dx
x
dx

x

dx

x

dx x
x x

C
3 3 1

1
1

3
1

3
1

1
1

3

2 1

3
3 2

2

2 3 2
- + -

+ +
=

-
+

-
+

-
= - -

-
-

-
+#### ^ ^ ^h h h

v arctan arctanx
x

C
x x

dx
4
1

20
5

5
5

6 54 2
+ +

= - +#

1. Factor: 
x x

dx
5 12 2=

+ +
# _ _i i .

2. Write the partial fractions: 
x x x

Ax B
x

Cx D
5 1

1
5 12 2 2 2

+ +
=

+

+
+

+

+

_ _i i .

3. Multiply by LCD: Ax B x Cx D x1 1 52 2
= + + + + +^ _ ^ _h i h i.

4. Plug in the easiest numbers to work with, 0 and 1, to effortlessly get two equations.

:x B D0 1 5= = +

:x A B C D1 1 2 2 6 6= = + + +

5. After FOILing out the equation in Step 3, equate coefficients of like terms to come up with two
more equations.

The x 2 term gives you  B D0 = +

This equation plus the first one in Step 4 give you B
4
1

= - , D
4
1

=

The x 3 term gives you  A C0 = +

Now this equation plus the second one in Step 4 plus the known values of B and D give you
A = 0 and C = 0.

6. Split up and integrate.

arctan arctan

x x
dx

x

dx

x

dx

x
dx

x
dx

x x C

6 5 5
4
1

1
4
1

4
1

5 4
1

1

4 5

1

5 4
1

4 2 2 2

2 2

+ +
=

+

-

+
+

= -
+

+
+

= - + +

# # #

# #
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*w ln arctanx x x x C
x

x x x dx
2
1 1 1 1

1
4 3 2 1 2 5

4

3 2

-

+ + +
= + - + + +# _ i9 C

1. Factor: 
x x x

x x x dx
1 1 1

4 3 2 1
2

3 2

=
- + +

+ + +# ^ ^ _h h i .

2. Write the partial fractions: 
x x x

x x x
x

A
x

B
x

Cx D
1 1 1

4 3 2 1
1 1 12

3 2

2
- + +

+ + +
=

-
+

+
+

+

+

^ ^ _h h i .

3. Multiply by the LCD:

x x x A x x B x x Cx D x x4 3 2 1 1 1 1 1 1 13 2 2 2
+ + + = + + + - + + + - +^ _ ^ _ ^ ^ ^h i h i h h h

4. Plug in roots.

: .

: .

x A A

x B B

1 10 4 2 5

1 2 4 0 5

= = =

= - - = - =

5. Equating the coefficients of the x 3 term gives you C.

. , . , so

A B C

A B C

4

2 5 5 1

= + +

= = =

6. Plugging in zero and the known values of A, B, and C gets you D.

. . D

D

1 2 5 0 5

1

= - -

=

7. Integrate.

. .

. . .ln ln ln arctan

ln arctan

x
x x x dx

x
dx

x
dx

x
x dx

x x x x C

x x x x C

1
4 3 2 1 2 5

1
5

1 1
1

2 5 1 5 1 5 1

2
1 1 1 1

4

3 2

2

2

2 5

-

+ + +
=

-
+

+
+

+

+

= - + + + + + +

= + - + + +

# ###

_ i9 C

*x ln arctan arctan
x

x
x

x
C

x x x
x x dx

6
1

2

1

3
2 2

2
2

1 1 2
2

2

2 2

2

+ + +

-
=

+

+
- + +# ^ _ _

^
h i i

h

1. Break the already factored function into partial fractions.

x x x
x x

x
A

x
Bx C

x
Dx E

1 1 2 1 1 22 2

2

2 2
+ + +

-
=

+
+

+

+
+

+

+

^ _ _h i i
2. Multiply by LCD.

x x A x x Bx C x x Dx E x x1 2 1 2 1 12 2 2 2 2
- = + + + + + + + + + +_ _ ^ ^ _ ^ ^ _i i h h i h h i

3. Plug in single root (–1).

A A2 6
3
1

= =

4. Plug 0, 1, and –2 into x and 
3
1 into A.

:

:

:

x

x

x

0

1

2

=

=

=

C E

B C D E

B C D E

0
3
2 2

0 2 6 6 4 4

6 10 12 6 10 5

= + +

= + + + +

= + - + -

5. Equate coefficients of the x 4 terms (with A
3
1

= ): B D0
3
1

= + + .
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6. Solve the system of four equations from Steps 4 and 5. You get the following: 

B C D E0 1
3
1

3
4

= = - = - =

If you find an easier way to solve for A through E, go to my Web site and send me an e-mail. 

7. Integrate.

ln arctan ln arctan

ln arctan arctan

x x x
x x

x
dx

x
dx

x
x dx

x x x
x

C

x

x
x

x
C

1 1 2 3
1

1 1 3
1

2
4

3
1 1

6
1 2

3
2 2

2
2

6
1

2

1

3
2 2

2
2

2 2

2

2 2

2

2

2

+ + +

-
=

+
-

+
-

+

-

= + - - + + +

=
+

+
- + +

# # ##^ _ _
_

^

h i i
i

h
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Chapter 12

Who Needs Freud? Using the 
Integral to Solve Your Problems

In This Chapter
� Weird areas, surfaces, and volumes

� L’Hôpital’s Rule

� Misbehaving integrals

� Other stuff you’ll never use

Now that you’re an expert at integrating, it’s time to put that awesome power to use to
solve some . . . ahem . . . real-world problems. All right, I admit it — the problems you

see in this chapter won’t seem to bear much connection to reality. But, in fact, integration is
a powerful and practical mathematical tool. Engineers, scientists, and economists, among
others, do important, practical work with integration that they couldn’t do without it. 

Finding a Function’s Average Value
With differentiation, you can determine the maximum and minimum heights of a function, its
steepest points, its inflection points, its concavity, and so on. But there’s a simple question
about a function that differentiation cannot answer: What’s the function’s average height?
To answer that, you need integration. 

Q. What’s the average value of sinx between
0 and π?

A. Piece o’ cake. This is a one-step problem:

sin

cos

average value
base

total area
x dx

x

π

π

π

π

2

0

1 1 1

π

π

0

0

= =
-

=
-

=
- - -

=

#

^ h
@
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1. What’s the average value of f x
x

x

12
3=

+

^ _h ifrom 1 to 3?

Solve It

2. A car’s speed in feet per second is given
by f t t t6 80.1 7

= - +^ h . What’s its average
speed from t = 5 seconds to t = 15 seconds?
What’s that in miles per hour? 

Solve It

Finding the Area between Curves
In elementary school and high school geometry, you learned area formulas for all sorts
of shapes like rectangles, circles, triangles, parallelograms, kites, and so on. Big deal.
With integration, you can determine things like the area between f x x 2

=^ h and
arctang x x=^ h — now that is something. 

Q. What’s the area between sinx and cosx
from 0 to π? 

A. The area is 2 2.

1. Graph the two functions to get a feel for
the size of the area in question and
where the functions intersect.

2. Find the point of intersection.

sin cos

cos
sin

tan

x x

x
x

x

x π

1

1

4

=

=

=

=

3. Figure the area from 0 to π

4
.

Between 0 and π
4

, cosine is on top so you
want cosine minus sine:

cos sin

sin cos

Area x x dx

x x

2
2

2
2

0 1

2 1

/

/

π

π

0

4

0

4

= -

= +

= + - +

= -

# ^

^

h

h
@

4. Figure the area between π

4
and π.

This time sine’s on top:

sin cos

cos sin

Area x x dx

x x

1 0
2
2

2
2

1 2

/

/

π

π

π

π

4

4

= -

= - -

=- - - - - -

= +

#

J

L
KK

^

^ N

P
OO

h

h
@

5. Add the two areas for your final answer.

2 1 1 2 2 2- + + =
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3. What’s the area enclosed by f x x 2
=^ h and

g x x=^ h ?

Solve It

4. What’s the total area enclosed by f t t 3
=^ h

and g t t 5
=^ h ?

Solve It

*5. The lines y x= , y x2 5= - , and y x2 3= - +

form a triangle in the first and second
quadrants. What’s the area of this triangle?

Solve It

6. What’s the area of the triangular shape in
the first quadrant enclosed by sinx , cosx , 

and the line y
2
1

= ?

Solve It



Volumes of Weird Solids: No, You’re 
Never Going to Need This

Integration works by cutting something up into an infinite number of infinitesimal
pieces and then adding the pieces up to compute the total. In this way, integration is
able to determine the volume of bizarre shapes: It cuts the shapes up into thin pieces
that have ordinary shapes which can then be handled by ordinary geometry. This sec-
tion shows you three different methods:

� The meat slicer method: This works just like a deli meat slicer — you cut a
shape into flat, thin slices. You then add up the volume of the slices. This
method is used for odd, sometimes asymmetrical shapes.

� The disk/washer method: With this method, you cut up the given shape into
thin, flat disks or washers (you know — like pancakes or squashed donuts). Used
for shapes with circular cross-sections.

� The cylindrical shell method: Here, you cut your volume up into thin nested
shells. Each one fits snugly inside the next widest one, like telescoping tubes or
nested Russian dolls. Also used for shapes with circular cross-sections.
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Q. What’s the volume of the shape shown in
the following figure? Its base is formed by
the functions f x x=^ h and g x x= -^ h .
Its cross-sections are isosceles triangles
whose heights grow linearly from zero at
the origin to 1 when x = 1.

(1, –1)

(1, 0)

(1, 1)

h=1

g(x) = –√x

y

x

f(x) = √x

A. The volume is 2⁄5 cubic units.

1. Always try to sketch the figure first (of
course, I’ve done it for you here).

2. Indicate on your sketch a representative
thin slice of the volume in question. 

This slice should always be perpendicu-
lar to the axis or direction along which
you are integrating. In other words, if
your integrand contains, say, a dx, your
slice should be perpendicular to the 
x-axis. Also, the slice should not be at
either end of the 3-dimensional figure
or at any other special place. Rather, it
should be “in the middle of nowhere.”

3. Express the volume of this slice.

It’s easy to show — trust me — that the
height of each triangle is the same as its
x-coordinate. Its base goes from x- up
to x and is thus x2 . And its thickness
is dx.

Therefore,
Volume x x dx x x dx

2
1 2slice= =$` j

4. Add up the slices from 0 to 1 by 
integrating.

x x dx x cubic units
5
2

5
2/

0

1

5 2

0

1

= =# E
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Q. Using the disk/washer method, what’s the
volume of the glass that makes up the vase
shown in the following figure?

A. The volume is π

2
45 .

First, here’s how the vase is “created.”
The light gray shaded area shown in the
figure lies between x and . x75 1-

from x = 0 to x = 9. The three-dimensional
vase shape is generated by revolving the
shaded area about the x-axis. 

1. Sketch the 3-D shape (already done for
you).

2. Indicate a representative slice (see the
dark gray shaded area in the figure).

3. Express the volume of the representa-
tive slice.

A representative slice in a washer prob-
lem looks like — can you guess? — a
washer. See the following figure.

r

R

(0, 0)
x

y

(9, 0)

(9, 3)

f(x) = √x

g(x) = .75√x − 1

(1, 0)

The large circle has an area of Rπ 2, and
the hole an area of rπ 2. So a washer’s
cross-sectional area is R rπ π2 2

- , or
R rπ 2 2

-_ i. It’s thickness is dx, so its
volume is R r dxπ 2 2

-_ i .

Back to our problem. Big R in the vase
problem is x and little r is . x75 1- ,
so the volume of a representative washer 

is .x x dxπ 75 1
2 2

- -` `c j j m
4. Add up the washers by integrating from

0 to 9. 

But wait; did you notice the slight snag in
this problem? The “washers” from x = 0
to x = 1 have no holes so there’s no little-
r circle to subtract from the big-R circle.
A washer without a hole is called a disk,
but you treat it the same as a washer
except you don’t subtract a hole.

5. Add up the disks from 0 to 1 and
the washers from 1 to 9 for the total
volume. 

.Volume x dx x x dx

x dx x x dx

x dx x dx x dx

x dx x dx

x x

π π

π π

π π
π

π
π

π π

π
π

π

75 1

16
9

1

16
9

1

16
9

1

2 32
9

1

2
81

18

2
45

vase

2 2 2

1

9

0

1

0

1

1

9

0

1

1

9

1

9

0

9

1

9

2

0

9
2

1

9

= + - -

= + - -

= + - -

= - -

= - -

= -

=

##

# #

# # #

# #

ad

^d

^
^

^

k n

hn
h

h
hF F
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Q. Now tip the same glass vase up vertically.
This time find the volume of its glass with
the cylindrical shells method. See the 
following figure. (Did you notice that the
shape of the vase is now somewhat differ-
ent? Sorry about that.)

A. The volume is π

2
45 .

Again, this is the same vase as in the
disk/washer example, but this time
it’s represented by different functions.
In a random act of kindness, I figured
the new functions for you. 

1. Express the volume of your representa-
tive shell.

To figure the volume of a representative
shell, imagine taking the label off a can of
soup — it’s a rectangle, right? The area is
base height$ and the base is the circum-
ference of the can. So the area is rhπ2 .
(r equals x and h depends on the given
functions.) The thickness of the shell is
dx, so its volume is rhdxπ2 . 

3√2, 9

(3, 9)

(0, 1)

(0, 0)

y

f(x) = x2

g(x) =     x2 + 1

x

)) 2

16
9

Wait! Another snag — similar to but unre-
lated to the one in the last example. The
smaller shells, with right edges at x = 0 

up to x
2

3 2
= , have heights that meas-

ure from f x^ h up to g x^ h. But the larger 

shells, with right edges at x
2

3 2
= to 

x = 3, have heights that measure from
f x^ h up to 9. So you’ve got to integrate
the two batches of shells separately.

Volume rhdx

x x x dx

Volume rhdx

x x dx

π

π

π

π

2

2
9

16 1

2

2 9

smaller shells

top g x
bottom f x

2 2

2

larger shells

= =

+ -

= =

-

J

L

K
K
K
K
KK ]` ]`

_

N

P

O
O
O
O
OOgj gj

i

1 2 344 44 1 2 344 44

2. Add up all the shells by integrating.

With the cylindrical shells method, you
integrate from the center to the outer
edge.

x x x dx x x dx

x x dx x dx

x x x x

π π

π π

π π

π π

π

2
9

16 1 2 9

2
9
7 2 9

2
36
7

2
1 2

4
1

2
9

2
16
63

4
9 2

4
81

2
81

16
81

4
81

2
45

/

/

/

/

/

/

2 2

0

3 2 2

2

3 2 2

3

3 3

3 2 2

3

0

3 2 2

4 2

0

3 2 2

4 2

3 2 2

3

- + + -

= + + - +

= + + - +

= + + - + - - +

=

# #

##

c _

c _

c ce

m i

m i

m mo
; ;E E

Amazing! This actually agrees (which, of
course, it should) with the result from
the washer method. By the way, I got a
bit carried away with these example
problems. Your practice problems won’t
be this tough. 



225Chapter 12: Who Needs Freud? Using the Integral to Solve Your Problems

*7. Use the meat slicer method to derive the
formula for the volume of a pyramid with
a square base (see the following figure).
Integrate from 0 to h along the positive side
of the upside-down y-axis. (I set the prob-
lem up this way because it simplifies it.
You can draw the y-axis the regular way if
you like, but then you get an upside-down
pyramid.)

Solve It

x

(0, y)

(0, 0)

(0, h)

h

l

s

y−

y+

8. Use the washer method to find the volume
of the solid that results when the area
enclosed by f x x=^ h and g x x=^ h is
revolved around the x-axis. 

Solve It
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9. Same as problem 8, but with f x x 2
=^ h and

g x x4=^ h .

Solve It

*10. Use the disk method to derive the formula
for the volume of a cone. Hint: What’s
your function? See the following figure.

Solve It

y

(h, r)

h

(h, 0)
(0, 0)

r

x

11. Use the cylindrical shells method to find
the volume of the solid that results when
the area enclosed by f x x 2

=^ h and
g x x 3

=^ h is revolved about the y-axis. 

Solve It

*12. Use the cylindrical shells method to find
the volume of the solid that results when
the area enclosed by sinx , cosx , and the
x-axis is revolved about the y-axis.

Solve It



Arc Length and Surfaces of Revolution
Integration determines the length of a curve by cutting it up into an infinite number of
infinitesimal segments, each of which is sort of the hypotenuse of a tiny right triangle.
Then your pedestrian Pythagorean Theorem does the rest. The same basic idea applies
to surfaces of revolution. Here are two handy formulas for solving these problems:

� Arc length: The length along a function, f x^ h, from a to b is given by

Arc Length f x dx1
a

b

= +
2# l ^` hj

� Surface of revolution: The surface area generated by revolving the portion of a
function, f x^ h, between x = a and x = b about the x-axis is given by

Surface Area f x f x dxπ2 1
a

b
2

= +# l^ ^`h hj
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Q. What’s the arc length along f x x /2 3
=^ h from

x 8= to x 27= ? 

A. The arc length is about 19.65.

1. Find f xl ^ h.
f x x f x x

3
2/ /2 3 1 3

= =
-

l^ ^h h
2. Plug into the arc length formula.

Arc Length x dx1
9
4 /

to8 27
2 3

8

27

= +
-#

3. Integrate.

These arc length problems tend to pro-
duce tricky integrals; I’m not going to
show all the work here. 

x dx

x x dx

3
1 9 4

3
1 9 4

/

/ /

2 3

8

27

1 3 2 3

8

27

= +

= +

-

-

#

#

You finish this with a u-substitution,
where u x9 4/2 3

= + .

.

u du

u

3
1

6
1

18
1

3
2

27
85 85 80 10

19 65

/

/

1 2

40

85

3 2

40

85

.

=

=

=
-

#

; E

An eminently sensible answer, because
from x = 8 to x = 27, x /2 3 is very similar to
a straight line of length 27 – 8, which
equals 19. 

Q. Find the surface area generated by revolving 

f x x x
3
1 0 23

# #=^ ^h h about the x-axis. 

A. The area is π

9
17 17 1-` j.

1. Find the function’s derivative.

f x x f x x
3
1 3 2

= =l^ ^h h
2. Plug into the surface area formula.

Surface Area x x dx

x x dx

π

π

2
3
1 1

3
2 1

3 2
2

0

2

3 4

0

2

= +

= +

#

#

_ i

You can do this integral with 
u-substitution.

,

,

u x x u

du x dx x u

1 0 1

4 2 17

when

when

4

3

= + = =

= = =

x x dx

u du

u

π

π

π

π

3
2

4
1 4 1

6

6 3
2

9
17 17 1

/

/

3 4

0

2

1 2

1

17

3 2

1

17

= +

=

=

= -

$ #

#

` j
; E
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13. Find the distance from (2, 1) to (5, 10) with
the arc length formula.

Solve It

14. What’s the surface area generated by 

revolving f x x
4
3

=^ h from x = 0 to x = 4 

about the x-axis?

Solve It

15. a. Confirm your answer to problem 13
with the distance formula.

b. Confirm your answer to problem 14
with the formula for the lateral area of 
a cone, LA rπ ,= , where , is the slant
height of the cone. 

Solve It

16. What’s the surface area generated by
revolving f x x=^ h from x = 0 to x = 9
about the x-axis?

Solve It



Getting Your Hopes Up with L’Hôpital’s Rule
This powerful little rule enables you to easily compute limits that are either difficult or
impossible without it. 

L’Hôpital’s Rule: When plugging the arrow-number into a limit expression gives you 0/0
or /3 3, you replace the numerator and denominator with their respective derivatives
and do the limit problem again — repeating this process if necessary — until you
arrive at a limit you can solve.

If you’re wondering why this limit rule is in the middle of this chapter about integra-
tion, it’s because you need L’Hôpital’s Rule for the next section and the next chapter.
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Q. What’s lim
logx

x
x "3

?

A. The limit is 3.

1. Plug 3 into x:

You get 3
3 . Not an answer, but just what

you want for L’Hôpital’s Rule. 

2. Replace the numerator and denominator
of the limit fraction with their respective
derivatives. 

lim

ln

lim ln

x

x

10
1
1 10

x x
= =

" "3 3

^ h
3. Now you can plug in.

ln103 3= =$

Remember: If substituting the 
arrow-number into x gives you

, , , ,0 1 0 or0 0
! !3 3 3 3-

!3

$ — the 
so-called unacceptable forms — instead 

of one of the acceptable forms, 
0
0 or 

!

!

3

3 , 

you have to manipulate the limit problem
to convert it into one of the acceptable
forms.

Q. What’s lim x e
x

x2

"3

-_ i?
A. The limit is 0.

1. Plug 3 into x.

You get 03 $ , one of the unacceptable
forms.

2. Rewrite e x- as 
e
1

x to produce an 

acceptable form: lim
e
x

x
x

2

"3

.

Plugging in now gives you what you 

need, 3
3 .

3. Replace numerator and denominator
with their derivatives.

lim
e
x2

x
x=

"3

4. Plugging in gives you 3
3 again, so you

use L’Hôpital’s Rule a second time.

lim
e e
2 2 2 0

x
x 3= = = =

"3

3
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17. What’s lim cos

x

x
π
2

/x π 2 -"

?

Solve It

18. ?lim cos
x

x1
x 0

2

-
=

"

Solve It

19. Evaluate lim tan secx x1 6
/x π 4

-
"

^` h j.

Solve It

20. What’s lim
cosx x

1
1

1
x 0

+
-"

+

c m?

Solve It
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21. Evaluate lim csc logx x
x 0

-
"

+
_ i.

Solve It

*22. What’s lim x1
/

x

x

0

1

+
"

^ h ? Tip: When plugging
in gives you one of the exponential forms,

, ,0 1or0 0
3

!3, set the limit equal to y, take
the natural log of both sides, use the log
of a power rule, and take it from there. 

Solve It

Disciplining Those Improper Integrals
In this section, you bring some discipline to integrals that misbehave by going up,
down, left, or right to infinity. You handle infinity, as usual, with limits. Here’s an inte-
gral that goes up to infinity:

Q. Evaluate 
x

dx1
2

1

2

-

# .

A. The area is infinite.

1. Check whether the function is defined
everywhere between and at the limits
of integration. 

You note that when x = 0, the function
shoots up to infinity. So you’ve got an
improper integral. In a minute, you’ll see
what happens if you fail to note this.

2. Break the integral in two at the critical
x-value.

x
dx

x
dx

x
dx1 1 1

2

1

2

2

1

0

2

0

2

= +

- -

# # #

3. Replace the critical x-value with con-
stants and turn each integral into a limit.

lim lim
x

dx
x

dx1 1
a

a

b
b

0
2

1
0

2

2

= +
" "

-

- +
# #

4. Integrate.

lim lim

lim lim

x x

a b

1 1

1
1

1
2
1 1

a

a

b
b

a b

0
1

0

2

0 0

3 3 3

= - + -

= - - -
-

+ - - -

= + =

" "

" "

-

- +

- +

ce cemo mo
; ;E E

Therefore, this limit does not exist (DNE).

Warning: If you split up an integral in
two and one piece equals 3 and the
other equals 3- , you cannot add the two
to obtain an answer of zero. When this
happens, the limit DNE. 

Now, watch what happens if you fail to
notice that this function is undefined at
x = 0.

x
dx x

1 1
2
1

1
1

2
3

2

1

2

1

2

= - = - - -
-

= -

-
-

# c mE
Wrong! (And absurd, because the func-
tion is positive everywhere from x = –1
to x = 2.)
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23. Evaluate 
x

dx
5

32

1

-

# .

Solve It

24. Compute lnx x dx
0

6

# .

Solve It

Q. Evaluate 
x

dx1
2

1

3

# .

A. The area is 1.

1. Replace 3 with c, and turn the integral
into a limit.

lim
x

dx1
c

c

2

1
"3
#

2. Integrate.

lim limx c
1 1 1 1 1 1

c

c

c
1

3= - = - - - = - + =
" "3 3

^c hm; E
Amazing! This infinitely long sliver of
area has an area of 1 square unit. 
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25. ?
x x

dx

12

1
-

=

3

# Hint: Split up at x = 2.

Solve It

26. What’s x dx1

1

3

# ?

Solve It

*27. arctanx x dx1

1

3

# = ? Hint: Use 

problem 26.

Solve It

*28. x dx1

3

3

-

# = ? Hint: Break into four parts.

Solve It



Solutions to Integration Application Problems
a What’s the average value of f x

x

x

12
3=

+

^ _h i from 1 to 3? The average value is 0.03.

Ave value
base

total area x

x

3 1

12
3

1

3

= =
-

+
# _ i

Do this with a u-substitution. 

,

,

u x x u

du x dx x u

1 1 2

2 3 10

when

when

2
= + = =

= = =

.

x

x dx

u
du

u

2

2
1

1

2

4
1

8
1

8
1 10 2

0 03

2
3

1

3

3

2

10

2

2

10

2 2

=
+

=

= -

= - -

=

-

- -

#

#

_

_

i

i
7 A

b A car’s speed in feet per second is given by f t t t6 80.1 7
= - +^ h . What’s its average speed from

t = 5 seconds to t = 15 seconds? What’s that in miles per hour? . miles per hour49 51. .

.

. .

.

.

Ave speed
total time

total distance
t t dt

t t t

feet per second

miles per hour

15 5

6 80

10

2 7
1 3 80

10

554 73 675 1200 28 57 75 400

72 616

49 51

.

.

1 7

5

15

2 7 2

5

15

.

.

.

= =
-

- +

=

- +

- + - - +

# _

^

i

h
E

c What’s the area enclosed by f x x 2
=^ h and g x x=^ h ? The area is 1⁄3.

1. Graph the functions.

2. Find the points of intersection. I presume you had no trouble finding them: (0, 0) and (1, 1).

3. Find the area. Remember: top minus bottom.

Area x x dx x x
3
2

3
1

3
2

3
1

3
1/2

0

1

3 2 3

0

1

= - = - = - =# ` j E
d What’s the total area enclosed by f t t 3

=^ h and g t t 5
=^ h ? The area is 1⁄6.

1. Graph the functions. You should see three points of intersection.

2. Find the points: (–1, –1), (0, 0), and (1, 1).

3. Find the area on the left.

t 5 is on top, so 

Area t t dt t t
6
1

4
1 0

6
1

4
1

12
15 3

1

0

6 4

1

0

= - = - = - - =

-
-

# _ ci mE
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4. Find the area on the right — t 3 is on top — then add that to 
12
1 . 

Area t t t t
4
1

6
1

4
1

6
1

12
13 5

0

1

4 6

0

1

= - = - = - =# _ i E
Therefore, the total area is 

12
1

12
1

+ , or 
6
1 .

Note that had you observed that both t 3 and t 5 are odd functions, you could have reasoned
that the two areas are the same, and then calculated just one of them and doubled the result. 

*e The lines y = x, y = 2x – 5, and y = –2x + 3 form a triangle in the first and second quadrants.
What’s the area of this triangle? The area is 6.

1. Graph the three lines.

2. Find the three points of intersection.

a. y = x intersects b. y = x intersects c. y = 2x – 5 intersects

y = 2x – 5 at x = 2x – 5 y = –2x + 3 at x = –2x + 3 y = –2x + 3 at 2x – 5 = –2x + 3

x = 5 and, thus, y = 5 x = 1 and, thus, y = 1 x = 2 and, thus, y = –1

3. Integrate to find the area from x = 1 to x = 2; y = x is on the top and y = –2x + 3 is on the
bottom, so

Area x x dx

x dx

x x

2 3

3 1

3
2
1

3 2 2
2
1 1

2
3

1

2

1

2

2

1

2

= - - +

= -

= -

= - - - =

#

#

^`

^

^ c

hj
h

h m
;
=

E
G

4. Integrate to find the area from x = 2 to x = 5; y = x is on the top again, but y = 2x – 5 is on the
bottom, thus

Area x x dx

x dx

x x

2 5

5

2
1 5

2
25 25 2 10

2
9

2

5

2

5

2

2

5

= - -

= - +

= - +

= - + - - + =

#

#

^`

^

^

hj
h

h
E

Grand total from Steps 3 and 4 equals 6.

Granted, using calculus for this problem is loads of fun, but it’s totally unnecessary. If you cut
the triangle into two triangles — corresponding to Steps 3 and 4 above — you can get the total
area with simple coordinate geometry. 
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f What’s the area of the triangular shape in the first quadrant enclosed by sinx , cosx , and the 

line y
2
1

= ? The area is π3 2
12

- - .

1. Do the graph and find the intersections.

a. From the example, you know that sinx and cosx intersect at x π
4

= .

b. y
2
1

= intersects sinx at sin sox x π
2
1

6
= = .

c. y
2
1

= intersects cosx at cos sox x π
2
1

3
= = .

2. Integrate to find the area between π
6

to π
4

and between π
4

to π
3

.

, ?

sin cos

cos sin

Cool answer eh

Area x dx x dx

x x x x

π π π π

π

2
1

2
1

2
1

2
1

2
2

8 2
3

12 2
3

6 2
2

8

3 2
12

/

/

/

/

/ /

//

π

π

π

π

π

π

π

π

6

4

4

3

6

4

4

3

= - + -

= - - + -

= - - - - - + - - -

= - -

# #

J

L
KK

J

L
KK

c c

N

P
OO

N

P
OO

m m

E E

*g Use the meat slicer method to derive the formula for the volume of a pyramid with a square 

base. The formula is s h
3
1 2 .

Using similar triangles, you can establish the following proportion: 
h
y

s
l

= .

You want to express the side of your representative slice as a function of y (and the constants, 

s and h), so that’s l
h
ys

= . 

The volume of your representative square slice equals its cross-sectional area times its thick-
ness, dy, so now you’ve got

Volume
h
ys

dyslice

2

= d n
Don’t forget that when integrating, constants behave just like ordinary numbers.

Volume
h
ys

dy
h
s y dy

h
s y

h
s h s h

3
1

3
1

3
1

pyramid

h h h2

0

2

2
2

0

2

2
3

0

2

2
3 2

= = = = =$ $# #d n F
That’s the old familiar pyramid formula: base height

3
1
$ $ — the hard way.

h Use the washer method to find the volume of the solid that results when the area enclosed by 

f x x=^ h and g x x=^ h is revolved about the x-axis. The volume is π

6
.

1. Sketch the solid, including a representative slice. See the following figure.

(1, 1)

Revolve shaded
area about
the x-axis

f(x) = x

x

y

(0, 0)

g(x) = √x

(1, 0)
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2. Express the volume of your representative slice.

Volume R r dx x x dx x x dxπ π πwasher
2 2

2
2 2

= - = - = -_ c _i m i
3. Add up the infinite number of infinitely thin washers from 0 to 1 by integrating. 

Volume x x dx x xπ π π π
2
1

3
1

2
1

3
1

6solid
2

0

1

2 3

0

1

= - = - = - =# _ ci m; E
Note that the infinite number of washers you just added contain an infinite number of
holes — way more than the number of holes it takes to fill the Albert Hall. For extra credit:
What “holes” were the Beatles referring to? Hint: Remember the charioteer Glutius from
Chapter 8?

i Same as problem 8, but with f x x 2
=^ h and g x x4=^ h . The volume is cubic units

π

15
2048 .

1. Sketch the solid and a representative slice. See the following figure.

2. Determine where the functions intersect.

and thus

x x

x y

4

4 16

2
=

= =

3. Express the volume of a representative washer.

Volume R r dx x x dx x x dxπ π π4 16washer
2 2 2 2

2
2 4

= - = - = -_ ^ _a _i h i k i
4. Add up the washers from 0 to 4 by integrating.

Volume x x dx x xπ π π π16
3

16
5
1

3
1024

5
1024

15
2048

solid
2 4 3 5

0

4

0

4

= - = - = - =# _ ci m; E
*j Use the disk method to derive the formula for the volume of a cone. The formula is r hπ

3
1 2 .

1. Find the function that revolves about the x-axis to generate the cone. 

The function is the line that goes through (0, 0) and (h, r). Its slope is 
h
r and thus its equation 

is f x
h
r x=^ h .

2. Express the volume of a representative disk. The radius of your representative disk is f x^ h
and its thickness is dx. Its volume is therefore

V f x dx
h
r x dxπ πdisk

2
2

= =^` chj m
3. Add up the disks from x = 0 to x = h by integrating. Don’t forget that r and h are simple 

constants.

V
h
r x dx

h
r x dx

h
r x

h
r h r hπ π π π π

3
1

3
1

3
1

cone

h h h2

0

2

2
2

0

2

2
3

0

2

2
3 2

= = = = =$# #c m ; E

(0, 0)

(4, 0)

(4, 16)

x

y
f(x) = x2

g(x) = 4x
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k Use the cylindrical shells method to find the volume of the solid that results when the area
enclosed by f x x 2

=^ h and g x x 3
=^ h is revolved about the y-axis. The volume is π

10
.

1. Sketch your solid. See the following figure.

2. Express the volume of your representative shell. The height of the shell equals top minus
bottom, or x x2 3

- . Its radius is x, and its thickness is dx. Its volume is thus

Volume rhdx x x x dxπ π2 2 2 3
shell= = -_ i

3. Add up the shells from x = 0 to x = 1 (center to right end) by integrating. 

Volume x x dx x xπ π π2 2
4
1

5
1

10bowl
3 4

0

1

4 5

0

1

= - = - =# _ i ; E
*l Use the cylindrical shells method to find the volume of the solid that results when the area 

enclosed by sinx , cosx , and the x-axis is revolved about the y-axis. The volume is π
π

2
22

2

- .

1. Sketch the dog bowl. See the following figure.

2. Determine where the two functions cross. You should obtain ,π
4 2

2J

L
KK

N

P
OO.

3. Express the volume of your representative shell. I’m sure you noticed that the shells with a 

radius less than π
4

have a height of sinx , while the larger shells have a height of cosx . So you

have to add up two batches of shells:

sin

cos

Volume rhdx

x x dx

Volume x x dx

π

π

π

2

2

2arg

smaller shell

l er shell

=

=

=

4. Add up the two batches of shells. 

sin cosVolume x x dx x x dxπ π2 2
/

//

dog bowl

π

ππ

4

2

0

4

= + ##

(0, 1)

y = cosxy

x

y = sinx

π
2

(0, 1)

y

(0, 0)

(1, 1)

f(x) = x2

g(x) = x3

(1, 0)

Revolve shaded area between
x2 and x3 about the y-axis to
create a bowl-like shape.
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Both of these integrals are easy to do with the integration by parts method with u = x in both
cases. I’ll leave it up to you. You should obtain the following:

cos sin sin cosx x x x x xπ π

π π π π π

π
π

2 2

2
4 2

2
2
2

2
2 4 2

2
2
2

2
2

/

/

/π

π

π

0

4

4

2

2

2

= - + + +

= - + + - -

= -

$ $

J

L
KK

J

L
KK

N

P
OO

N

P
OO

6 6@ @

m Find the distance from (2, 1) to (5, 10) with the arc length formula. The distance is 3 10.

1. Find a function for the “arc” — it’s really a line, of course — that connects the two points. I’m
sure you remember the point slope formula from your algebra days:

y y m x x

y x

y x

1 3 2

3 5

1 1- = -

- = -

= -

_
^

i
h

2. “Find” yl — I hope you don’t have to look very far: y 3=l .

3. Plug into the formula: Arc Length dx x1 3 10 3 102

2

5

2

5

= + = =# B . 

n What’s the surface area generated by revolving f x x
4
3

=^ h from x = 0 to x = 4 about the x-axis?
The surface area is π15 .

1. Sketch the function and the surface. 

2. Plug the function and its derivative into the formula.

SA x dx x dx xπ π π π2
4
3 1

4
3

2
3

16
25

8
15

2
1 15

2

0

4

2

0

4

0

4

= + = = =# #c m ; E
o a. Confirm your answer to problem 13 with the distance formula.

d x x y y 3 105 2 10 12 1

2

2 1

2 2 2

= - + - = - + - =_ _ ^ ^i i h h
b. Confirm your answer to problem 14 with the formula for the lateral area of a cone, LA rπ ,= ,

where , is the slant height of the cone. 

1. Determine the radius and slant height of the cone.

From your sketch and the function, you can easily determine that the function goes
through (4, 3), and that, therefore, the radius is 3 and the slant height is 5 (it’s the
hypotenuse of a 3-4-5 triangle). 

2. Plug into the formula.

Lateral Area rπ π15,= = It checks.

p What’s the surface area generated by revolving f x x=^ h from x = 0 to x = 9 about the x-axis? 

The surface area is π

6
37 37 1-` j.

1. Plug the formula and its derivative into the formula.

f x x f x
x2

1
= =l^ ^h h

Surface Area x
x

dx x
x

dx x dxπ π π2 1
2

1 2 1
4
1 2

4
1

0

9
2

0

9

0

9

= + = + = +# # #
J

L

K
K

N

P

O
O

2. Integrate. xπ π π2
3
2

4
1

3
4

4
37

4
1

6
37 37 1

/ / /3 2

0

9
3 2 3 2

= + = - = -c c ce `m m m o j> H
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q lim cos

x

x
π 1

2
/x π 2 -

= -
"

1. Plug in: 
0
0 — onward!

2. Replace numerator and denominator with their derivatives: lim sinx
1/x π 2

=
-

"

.

3. Plug in again: 
sin π

1
2 1=

-

= - .

r lim cos
x

x
2
11

x 0
2

-
=

"

1. Plug in: 
0
0 ; no worries.

2. Replace with derivatives: lim sin
x
x

2x 0
=

"

.

3. Plug in: 
0
0 again, so repeat.

4. Replace with derivatives again: lim cosx
2x 0

=
"

.

5. Finish: 
2
1

= .

s lim tan secx x
3
11 6

/x π 4
- =

"

^` h j
1. Plugging in gives you 0 3$ , so on to Step 2.

2. Rewrite: : .lim
cos

tan copasetic
x

x
6

1
0
0

/x π 4
=

-
=

"

.

3. Replace with derivatives: lim
sin

sec
x

x
6 6/x π 4

2

=
-"

.

4. Plug in to finish: 
sin

sec

π

π

6
2

3
4

6
2

3
1

2

=

-

= = .

t lim
cosx x

1
1

1
x 0

3+
-

= -
"

+

c m
1. Plugging in gives you 3 3- ; no good. 

2. Rewrite by adding the fractions: lim
cos

cos
x x

x x
1

1
x 0

=
-

- +

"
+ ^ h . That’s a good bingo: 

0
0 .

3. Replace with derivatives: lim
cos sin

sin
x x x

x
1

1
x 0

=
- -

- +

"
+ ^ h .

4. Plug in to finish: 
" "0

1
3=

-
= - .

This 0 is “negative” because the denominator in the line just above is negative when x is
approaching zero from the right. By the way, don’t use “–0” in class — your teacher will call
a technical on you. 

u lim csc logx x
x 0

3- =
"

+
_ i

1. This limit equals 3 3- -^ h, which equals 3 3 3+ = . 

2. You’re done! L’Hôpital’s Rule isn’t needed. You gotta be on your toes. 

*v lim ex1
/

x

x

0

1

+ =
"

^ h
1. This is a 13 case — time for a new technique.

2. Set your limit equal to y and take the natural log of both sides.

lim

ln ln lim

y x

y x

1

1

/

/

x

x

x

x

0

1

0

1

= +

= +

"

"

^
^b

h
h l
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3. I give you permission to pull the limit to the outside: ln lim lny x1
/

x

x

0

1

= +
"

^a h k.
4. Use the log of a power rule: ln lim lny x x1 1

x 0
= +

"

^c hm.
5. You’ve got a 03 $ case so rewrite: ln lim

ln
y x

x1
x 0

=
+

"

^ h
.

6. You get 
0
0 — I’m down with it. 

7. Replace with derivatives: ln limy x
1

1
1

1
x 0

=
+

=
"

.

8. Your original limit equals y, so you’ve got to solve for y. 

lny

y e

1=

=

w Evaluate .
x

dx 18 75
5

32

1

= -

-

# .

1. Undefined at x = 0, so break in two: 
x

dx

x

dx

x

dx
5

32

1

5
32

0

5
0

1

= +

- -

# # # .

2. Turn into limits: lim lim
x

dx

x

dx
a

a

b
b

0 5
32

0 5

1

= +
" "

-

- +
# # .

3. Integrate: .lim limx x
4
5

4
5 0

4
5 16

4
5 0 18 75/ /

a

a

b
b

0

4 5

32
0

4 5

1

= + = - + - = -
" "

-

- +
$; ;E E .

x lnlnx x dx 18 6 9
0

6

= -#

1. The integral is improper because it’s undefined at x = 0, so turn it into a limit: 

lim lnx x dx
c

c
0

6

=
"

+
#

2. Integrate by parts. Hint: lnx is L from LIATE. You should obtain:

lim ln

lim ln ln

ln lim ln

x x x

c c c

c c

2
1

4
1

2
1 36 6 9

2
1

4
1

18 6 9
2
1

c
c

c

c

0

2 2

6

0

2 2

0

2

= -

= - - +

= - -

"

"

"

+

+

+

$c
_

m
i

; E

3. Time to practice L’Hôpital’s Rule. This is a 0 3-$ ^ h limit, so turn it into a 3
3- one:

ln lim ln

c

c18 6 9
2
1

1c 0

2

= - -
"

+

4. Replace numerator and denominator with derivatives and finish: 

ln lim ln lim ln

c

c c18 6 9
2
1

2

1

18 6 9
2
1

2
18 6 9

c c0

3

0

2

= - -

-

= - - - = -
" "

+ +
c m

y
x x

dx π

212

1
-

=

3

#

This is a doubly improper integral because it goes up and right to infinity. You’ve got to split it
up and tackle each infinite impropriety separately. 

1. It doesn’t matter where you split it up; how about 2, a nice, easy-to-deal-with number. 

x x

dx

x x

dx

1 12

1

2

2

2

=
-

+
-

3

# #
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2. Turn into limits.

lim lim
x x

dx

x x

dx

1 1a
a

b

b

1 2

2

2

2

=
-

+
-" "3+

# #

3. Integrate.

lim sec lim sec

lim sec sec lim sec sec

sec sec

arc arc

arc arc arc arc

arc arc

x x

a b

π

π

2 2

2 0
2

2

2

a a b

b

a b

1

2

2

1

= +

= - + -

= - + -

=

" "

" "

3

3

+

+
^ ^h h
6 6@ @

A x dx1

1

3=

3

#

1. Turn into a limit: lim x dx1
c

c

1
"3
# .

2. Integrate and finish: lim ln lim ln lnx c 1
c

c

c1
3= = - =

" "3 3

^ h6 @ .

*B arctanx x dx1

1

3

# = 3

No work is required for this one, “just” logic. You know from problem 26 that x dx1

1

3=

3

# . 

Now, compare arctanx x dx1

1

3

# to x dx1

1

3

# . But first note that because x dx1

1

3

# equals infinity, 

so will x dx1

10

3

# , x dx1

100

3

# , or x dx1

, ,1 000 000

3

# , because the area under x
1 from 1 to any other number 

must be finite. 

From 3 to 3, arctanx 1$ , and therefore arctanx 1$ , and thus arctanx x x
1 1

$ . Finally, 

because x dx1

3

3=

3

# and because between 3 and 3, arctanx x1 is always equal to or  

greater than x
1 , arctanx x dx1

3

3

# must also equal 3 and so, therefore, does arctanx x dx1

1

3

# .

Aren’t you glad no work was required for this problem?

*C x dx
1

3

3

-

# is undefined.

Quadrupely improper! 

1. Split into four parts: x dx x dx x dx x dx x dx1 1 1 1 1
1

1

0

0

1

1

= + + +

3

3

3

3

- -

-

-

# # # # # .

2. Turn into limits: lim lim lim limx
dx

x
dx

x
dx

x
dx

a
a

b

b

c d
c

d1

0
1

0

1

1

= + + +
" " " "3 3-

-

-

- +
# # # # .

3. Integrate: 

lim ln lim ln lim ln lim ln

lim ln ln lim ln ln lim ln ln lim ln ln

x x x x

a b c d1 1 1 1

a a b

b

c c d

d

a b c d

1

0 1 0

1

1

0 0

= + + +

= - + - + - + -

" " " "

" " " "

3 3

3 3

-

-

-
- +

- +
` ` ` `j j j j
8 8 8 8B B B B

4. Finish: 3 3 3 3= - + - + +^ h . Therefore, the limit doesn’t exist, and the definite integral is
thus undefined.

If you look at the graph of y x
1

= , its perfect symmetry may make you think that 

x dx1

3

3

-

# would equal zero. But — strange as it seems — it doesn’t work that way. 
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Chapter 13

Infinite Series: 
Welcome to the Outer Limits

In This Chapter
� Twilight zone stuff

� Serious series

� Tests, tests, and more tests

In this chapter, you look at something that’s really quite amazing if you stop to think about
it: sums of numbers that never end. Seriously, the sums of numbers in this chapter — if

written out completely — would not fit in our universe. But despite the never-ending nature
of these sums, some of them add up to a finite number! These are called convergent series.
The rest are called divergent. Your task in this chapter is to decide which are which.

The Nifty nth Term Test 
Because the mere beginning terms of any given sequence would completely fill the universe,
and because the nth term is way beyond that, where is it? Does it really exist or is it only a
figment of your imagination? If a tree falls in a forest and no one’s there to hear it, does it
make a sound?

First, a couple definitions. A sequence is a finite or infinite list of numbers (we will be dealing
only with infinite sequences). When you add up the terms of a sequence, the sequence
becomes a series. For example, 

1,  2,  4,  8,  16,  32,  64, . . . is a sequence, and

1 + 2 + 4 + 8 + 16 + 32 + 64 + . . . is the related series.

If lim a 0
n

n!
"3

, then a n! diverges. In English, this says that if a series’ underlying sequence 

does not converge to zero, then the series must diverge. 

It does not follow that if a series’ underlying sequence converges to zero then the series will
definitely converge. It may converge, but there’s no guarantee.
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1. Does 
n n
n n

5 20 12
2 9 8

n
2

2

1 + +

- -
3

=

! converge or 

diverge?

Solve It

2. Does n
1

n 1

3

=

! converge or diverge?

Solve It

Q. Does n1 1
n

n 1

-

3

=

! converge or diverge?

A. It diverges.

You can answer this question with
common sense if your calc teacher
allows such a thing. As n gets larger and 

larger, n1 1
- increases and gets closer 

and closer to one. And when you take
any root of a number like 0.9, it gets
bigger — and the higher the root index, 

the bigger the answer is. So n1 1
n - has 

to get larger as n increases and thus 

lim n1 1
n

n -
"3

cannot possibly equal zero. 

The series, therefore, diverges by the nth
term test.

If your teacher is a stickler for rigor, you
can do the following: Plugging in 3

produces 1 1
/1

3-

3c m , which is 10 , and that 

equals 1 — you’re done. (Note that 10

is not one of the forms that gives you a
L’Hôpital’s Rule problem — see Chapter 

12.) Because lim n1 1 1
n

n - =
"3

, n1 1
n

n 1

-

3

=

!
diverges. 



Testing Three Basic Series 
In this section, you figure out whether geometric series, p-series, and telescoping
series are convergent or divergent. 

� Geometric series: If < <r0 1, the geometric series ar n

n 0

3

=

! converges to 
r

a
1 -

. 

If r 1$ , the series diverges. Have you heard the riddle about walking halfway to
the wall, then halfway again, then half the remaining distance, and so on? Those
steps make up a geometric series.

� p-series: The p-series 
n
1

p! converges if >p 1 and diverges if p 1# . 

� Telescoping series: The telescoping series, written as h h h h1 2 2 3- + - +_ _i i
. . .h h h hn n3 4 1- + + - +_ _i i, converges if hn 1+ converges. In that case, the series

converges to limh h
n

n1 1-
"3

+ . If hn 1+ diverges, so does the series. This series is very 

rare, so I won’t make you practice any problems. 

When analyzing the series in this section and the rest of the chapter, remember that
multiplying a series by a constant never affects whether it converges or diverges. For 

example, if u n
n 1

3

=

! converges, then so will u1000 n
n 1

3

=

$! . Disregarding any number of initial 

terms also has no affect on convergence or divergence: If u n
n 1

3

=

! diverges, so will u n
n 982

3

=

! .
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Q. Does . . .1
2
1

4
1

8
1

16
1

+ + + + + converge or 

diverge? And if it converges, what does it
converge to?

A. Each term is the preceding one multiplied 

by 
2
1 . This is, therefore, a geometric 

series with r
2
1

= . The first term, a,

equals one, so the series converges to 

r
a

1 1
2
1

1 2
-

=

-

= .

Q. Does 
n

1! converge or diverge?

A.
n

1! is the p-series 
n
1

/1 2! where p
2
1

= . 

Because <p 1, the series diverges.
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3. Does . . . .

. . . . . . .

008 006 0045 003375

00253125

- + - +

-

converge or diverge? If it converges,
what’s the infinite sum?

Solve It

4. Does . . .
2
1

4
1

8
1

12
1

16
1

20
1

+ + + + + +

converge or diverge?

Solve It

5. Does n
1

n 1

3

=

! converge or diverge?

Solve It

6. Does . . . n
n

1
2
2

3
3

4
44 4 4 4

+ + + + +

converge or diverge?

Solve It



Apples and Oranges . . . and Guavas:
Three Comparison Tests 

With the three comparison tests, you compare the series in question to a benchmark
series. If the benchmark converges, so does the given series; if the benchmark
diverges, the given series does as well.

� The direct comparison test: Given that a b0 n n# # for all n, if b n! converges, so 

does a n! , and if a n! diverges, so does b n! .

This could be called the well, duhh test. All it says is that a series with terms
equal to or greater than the terms of a divergent series must also diverge, and
that a series with terms equal to or less than the terms of a convergent series
must also converge.

� The limit comparison test: For two series a n! and b n! , if >a 0n , >b 0n and 

lim
b
a

L
n n

n
=

"3

, where L is finite and positive, then either both series converge or 

both diverge.

� The integral comparison test: If f x^ h is positive, continuous, and decreasing for 

all x 1$ and if a f nn= ^ h, then a n
n 1

3

=

! and f x dx
1

3

# ^ h either both converge or both 

diverge. Note that for some strange reason, other books don’t refer to this as a
comparison test, despite the fact that the logic of the three tests in this section is
the same.

Use one or more of the three comparison tests to determine the convergence or diver-
gence of the series in the practice problems. Note that you can often solve these 
problems in more than one way.
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Q. Does 
lnn
1

n 2

3

=

! converge or diverge? A. It diverges.

Note that the nth term test is no help 

because lim
lnn
1 0

n
=

"3

. You know from the 

p-series rule that n
1

n 1

3

=

! diverges. n
1

n 2

3

=

! , of 

course, also diverges. The direct compar-

ison test now tells you that 
lnn
1

n 2

3

=

! must 

diverge as well because each term of 

lnn
1

n 2

3

=

! is greater than the corresponding 

term of n
1

n 2

3

=

! . 
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Q. Does 
n n

1
n

2
2 -

3

=

! converge or diverge?

A. It converges.

1. Try the nth term test. 

No good: lim
n n

1 0
n

2
-

=
"3

2. Try the direct comparison test.

n n
1

n
2

2 -

3

=

! resembles 
n
1

n
2

2

3

=

! , which you 

know converges by the p-series rule. But
the direct comparison test is no help 

because each term of 
n n

1
n

2
2 -

3

=

! is greater

than your known convergent series. 

3. Try the limit comparison test with 
n
1

n
2

2

3

=

! .
Piece o’ cake.

It’s best to put your known, benchmark
series in the denominator. 

lim

lim

By the horizontal asymptote rule

n

n n

n n
n

1

1

1

n

n

2

2

2

2

-

=
-

=

"

"

3

3

_ i
Because the limit is finite and positive 

and because 
n
1

n
2

2

3

=

! converges, 
n n

1
n

2
2 -

3

=

!
also converges. 

Q. Does 
lnn n

1
n 2

3

=

! converge or diverge?

A. It diverges.

Tip: If you can see that you’ll be able 
to integrate the series expression, 
you’re home free. So always ask yourself
whether you can use the integral com-
parison test.

1. Ask yourself whether you know how to
integrate this expression.

Sure. It’s an easy u-substitution.

2. Do the integration.

ln

lim
ln

x x
dx

x x
dx

1

1
c

c

2

2

=
"

3

3

#

#

,

,

ln ln

ln

when

when

u x x u

du x dx x c u c

2 2

1

= = =

= = =

lim

lim

lim ln ln

u du

u

c

2

2 2 2

/

/

ln

ln

ln

ln

c

c

c

c

c

1 2

2

1 2

2

3

=

=

= -

=

"

"

"

3

3

3

-#

` j
7 A

Because this improper integral diverges,
so does the companion series. 
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7. .

n

10 9
n

n 1

3

=

! ^ h

Solve It

8. .
n10

1 1n

n 1

3

=

!

Solve It

9. . . .
1001

1
2001

1
3001

1
4001

1
+ + + +

Solve It

10.
lnn n n

1
n 1 + +

3

=

!

Solve It
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*11.
lnn n

1
n

3 3
2 -

3

=

! ^ h
Solve It

*12.
ln sinn n n

1
n 2 +

3

=

!

Solve It

13.
e

n
n

n

2

1

3

3

=

!

Solve It

*14.
!n

n
n

3

1

3

=

! (Given that 
!n

1! converges.)

Solve It



Ratiocinating the Two “R” Tests
Here you practice the ratio test and the root test. With both tests, a result less than 1
means that the series in question converges; a result greater than 1 means that the
series diverges; and a result of 1 tells you nothing.

� The ratio test: Given a series u n! , consider the limit of the ratio of a term to the 

previous term, lim u
u

n n

n 1

"3

+ . If this limit is less than 1, the series converges. If it’s 

greater than 1 (this includes 3), the series diverges. And if it equals 1, the ratio
test tells you nothing.

� The root test: Note its similarity to the ratio test. Given a series u n! , consider 

the limit of the nth root of the nth term, lim u
n

n
n

"3

. If this limit is less than 1, the 

series converges. If it’s greater (including 3), the series diverges. And if it equals
1, the root test says nothing.

The ratio test is a good test to try if the series involves factorials like !n or where n is
in the power like 2n. The root test also works well when the series contains nth
powers. If you’re not sure which test to try first, start with the ratio test — it’s often
the easier to use.

Sometimes it’s useful to have an idea about the convergence or divergence of a series
before using one of the tests to prove convergence or divergence.
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Q. Does n
2n

n 1

3

=

! converge or diverge?

A. Try the ratio test. 

lim lim limn

n

n

n

n
n

2

2
1

2

2 1

2
1

2
1( )

n
n

n

n
n

n

n

1

1
:

+

=
+

=
+

=
" " "3 3 3

+

+

^ h

Because this is less than 1, the series 
converges. 

Q. Does 
n

5
n

n

n
3

3 4

1

3 +

=

! converge or diverge? 

A. Consider the limit of the nth root of the nth
term:

lim lim lim
n n n

5 5 5 0

/
/

n
n

n

n
n

n

n
n

n

n

3

3 4

3

3 4
1

3

3 4

= = =
" " "3 3 3

+ + +d n
Because this limit is less than 1, the
series converges. 
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15.
ln n 2

1
n

n 1 +

3

=

! ^` hj
Solve It

16.
n

n
n

n

n 1

3

=

!

Solve It

*17. !
n
n

n

n 1

3

=

!

Solve It

*18. n
4
3

n

n 1

3

=

! c m
Solve It
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19.
!n

n n

n 1

3

=

!

Solve It

20. !n
4 n

n 1

3

=

!

Solve It

He Loves Me, He Loves Me Not:
Alternating Series

Alternating series look just like any other series except that they contain an extra 1
n

-^ h
or 1

n 1

-
+^ h . This extra term causes the terms of the series to alternate between positive

and negative.

An alternating series converges if two conditions are met:

1. Its nth term converges to zero.

2. Its terms are non-increasing — in other words, each term is either smaller than
or the same as its predecessor (ignoring the minus sign). 

For the problems in this section, determine whether the series converges or diverges.
If it converges, determine whether the convergence is absolute or conditional.

If you take a convergent alternating series and make all the terms positive and it still
converges, then the alternating series is said to converge absolutely. If, on the other
hand, the series of positive terms diverges, then the alternating series converges 
conditionally.
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21.
n
n1
3 1

1n

n

1

1

-
+

+
3

+

=

!^ h
Solve It

*22.
n
n1

2
1n

n
2

3

-
-

+
3

=

!^ h
Solve It

Q.
n

1 1n

n 1

-

3

=

!^ h
A. The series is conditionally convergent.

If you make this a series of positive
terms, it becomes a p-series with p

2
1

= ,
which you know diverges. Thus, the
above alternating series is not absolutely
convergent. It is, however, conditionally
convergent because it obviously satisfies
the two conditions of the alternating
series test: 

1. The nth term converges to zero.

lim
n

1 0
n

=
"3

2. The terms are non-increasing.

The series is thus conditionally 
convergent. 



Solutions to Infinite Series
a

n n
n n

5 20 12
2 9 8

n
2

2

1 + +

- -
3

=

! diverges. You know (vaguely remember?) from Chapter 4 on limits that 

lim
n n
n n

5 20 12
2 9 8

5
2

n
2

2

+ +

- -
=

"3

by the horizontal asymptote rule. Because the limit doesn’t converge 

to zero, the nth term test tells you that the series diverges. 

b n
1

n 1

3

=

! converges to zero . . . NOT. It should be obvious that lim n
1 0

n
=

"3

. If you conclude that the 

series, n
1

n 1

3

=

! , must therefore converge by the nth term test, I’ve got some bad news and some 

good news for you. The bad news is that you’re wrong — you have to use the p-series test to
find out whether this converges or not (check out the solution to problem 5). The good news is
that you made this mistake here instead of on a test. 

Don’t forget that the nth term test is no help in determining the convergence or divergence of a
series when the underlying sequence converges to zero. 

c . . . . . . . . . .008 006 0045 003375 00253125- + - + - converges to 
875
4 .

1. Determine the ratio of the second term to the first term: 
.
.
008
006

4
3-

= - .

2. Check to see whether all the other ratios of the other pairs of consecutive terms equal 
4
3- .

.
. ? .

.
. ? .

.
. ? .check check check

006
0045

4
3

0045
003375

4
3

003375
00253125

4
3

-
= -

-
= -

-
= -

Voila! A geometric series with r
4
3

= - . 

3. Apply the geometric series rule.

Because < <r1 1- , the series converges to 

.
r

a
1

1
4
3

008
875
4

-
=

- -

=c m
“r” is for ratio, but you may prefer, as I do, to think of r (

4
3

- in this problem) as a multiplier

because it’s the number you multiply each term by to obtain the next. 

d . . .
2
1

4
1

8
1

12
1

16
1

20
1

+ + + + + + ?

1. Find the first ratio.

2
1
4
1

2
1

=

2. Test the other pairs.

? . ? .check no

4
1
8
1

2
1

8
1

12
1

2
1

= =

Thus, this is not a geometric series, and the geometric series rule does not apply. Can you
guess whether this series converges or not (assuming the pattern 8, 12, 16, 20 continues)? You
can prove that this series diverges by using the limit comparison test (see problem 10) with the
harmonic series (see problem 5).
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e n
1

n 1

3

=

! diverges.

With the p-series rule, you can now solve problem 2. n
1! , called the harmonic series

( . . . n1
2
1

3
1

4
1

5
1 1

+ + + + + + ), is probably the most important p-series. Because p = 1, the 

p-series rule tells you that the harmonic series diverges.

f . . . n
n

1
2
2

3
3

4
44 4 4 4

+ + + + + diverges.

This may not look like a p-series, but you can’t always judge a book by its cover.

1. Rewrite the terms with exponents instead of roots: . . . n
n1

2
2

3
3

4
4/ / / /1 4 1 4 1 4 1 4

= + + + + + .

2. Use ordinary laws of exponents to move each numerator to the denominator.

. . .
n

1
2
1

3
1

4
1 1

/ / / /3 4 3 4 3 4 3 4= + + + + +

3. Apply the p-series rule. You’ve got a p-series with p
4
3

= , so this series diverges.

g
.

n

10 9
n

n 1

3

=

! ^ h
converges.

1. Look in the summation expression for a series you recognize that can be used for your bench-
mark series. You should recognize .9 n! as a convergent geometric series, because r, namely
0.9, is between 0 and 1.

2. Use the direct comparison test to compare 
.

n

10 9
n

n 1

3

=

! ^ h
to .9 n

n 1

3

=

! . First, you can pull the 10 out 

and ignore it because multiplying a series by a constant has no effect on its convergence or 

divergence, giving you .

n

9 n

n 1

3

=

! .

Now, because each term of .

n

9 n

n 1

3

=

! is less than or equal to the corresponding term of the 

convergent series .9 n

n 1

3

=

! , .

n

9 n

n 1

3

=

! has to converge as well. Finally, because .

n

9 n

n 1

3

=

! converges, 

so does 
.

n

10 9
n

n 1

3

=

! ^ h
.

h
.
n10

1 1n

n 1

3

=

! diverges.

1. Find an appropriate benchmark series. Like in problem 7, there is a geometric series in the 

numerator, .1 1n

n 1

3

=

! . By the geometric series rule, it diverges. But unlike problem 7, this doesn’t 

help you, because the given series is less than this divergent geometric series. Use the series
in the denominator instead. 

. .
n n10

1 1
10
1 1 1n

n

n

n1 1

=

3 3

= =

! ! . The denominator of .
n

1 1n

n 1

3

=

! is the divergent p-series n
1

n 1

3

=

! .

2. Apply the direct comparison test. Because each term of .
n

1 1n

n 1

3

=

! is greater than the 

corresponding term of the divergent series n
1

n 1

3

=

! , .
n

1 1n

n 1

3

=

! diverges as well — and therefore 

so does .
n10

1 1n

n 1

3

=

! . 

i . . .
1001

1
2001

1
3001

1
4001

1
+ + + + diverges.

1. Ask yourself what this series resembles: It’s the divergent harmonic series: . . .
1
1

2
1

3
1

4
1

+ + + + .

2. Multiply the given series by 1001 so that you can compare it to the harmonic series.

. . . . . .1001
1001

1
2001

1
3001

1
4001

1
1001
1001

2001
1001

3001
1001

4001
1001

+ + + + = + + + +c m
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3. Use the direct comparison test. It’s easy to show that the terms of the series in Step 2 are
greater than or equal to the terms of the divergent p-series, so it, and thus your given series,
diverges as well.

j
lnn n n

1
n 1 + +

3

=

! diverges.

Try the limit comparison test: Use the divergent harmonic series n
1

n 1

3

=

! , as your benchmark. 

lim
ln

lim
ln

lim

n

n n n

n n n

n

n n

1

1

1
2

1 1
1

1

n

n

n

+ +

=
+ +

=

+ +

=

"

"

"

3

3

3

(By L’Hôpital’s Rule)

Because the limit is finite and positive, the limit comparison test tells you that 
lnn n n

1
n 1 + +

3

=

!
diverges with the benchmark series. By the way, you could do this problem with the direct
comparison test as well. Do you see how? Hint: You can use the harmonic series as your bench-
mark, but you have to tweak it first.

*k
lnn n

1
n

3 3
1 -

3

=

! ^ h converges.

1. Do a quick check to see whether the direct comparison test will give you an immediate
answer. 

It doesn’t because 
lnn n

1
n

3 3
1 -

3

=

! ^ h is larger than the known convergent p-series 
n
1

n
3

1

3

=

! .

2. Try the limit comparison test with 
n
1

n
3

1

3

=

! as your benchmark.

lim
ln

lim
ln

lim
ln

lim
ln

lim ln

lim ln

lim

n

n n

n n

n

n

n

n
n

n
n

n
n

n

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

n

n

n

n

n

n

n

3

3 3

3 3

3

3

3

3

3

3

3

-

=
-

=

-

=

-

=

-

=

-

=

-

=

"

"

"

"

"

"

"

3

3

3

3

3

3

3

J

L

K
KK

^

^
^

c

c

c

N

P

O
OO

h

h
h

m

m

m

(Just take my word for it.)

(Just take my word for it.)

(L’Hôpital’s Rule from Chapter 12)

Because this is finite and positive, the limit comparison test tells you that 
lnn n

1
n

3 3
1 -

3

=

! ^ hconverges with the benchmark series. 
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*l ln sinn n n
1

n 2 +

3

=

! diverges.

1. You know you can integrate 
lnx x
1# with a simple u-substitution, so do it, and then you’ll be 

able to use the integral comparison test. 

ln

lim
ln

x x
dx

x x
dx

c

c

2

2

=
"

3

3

#

#

,

,

ln ln

ln

when

when

u x x u

du x
dx x c u c

2 2= = =

= = =

lim

lim ln

lim ln ln ln ln

u
du

u

c 2

ln

ln

ln

ln

c

c

c

c

c

2

2

3

=

=

= -

=

"

"

"

3

3

3

#

^ ^` h hj
6 @

By the integral comparison test, 
lnn n
1

n 2

3

=

! diverges with its companion improper integral, 

lnx x
dx

2

3

# .

2. Try the direct comparison test. Won’t work yet because 
ln sinn n n

1
+

is sometimes less than

lnn n
1 .

3. Try multiplication by a constant (always easy to do and always a good thing to try).

lnn n
1

n 2

3

=

! diverges, thus so does 
ln lnn n n n2

1 1
2

1
n n2 2

=

3 3

= =

! ! .

4. Now try the direct comparison test again. It’s easy to show that 
ln sinn n n

1
+

is always greater 

than 
lnn n

n
2

1 2$^ h, and thus the direct comparison test tells you that 
ln sinn n n

1
n 2 +

3

=

! must 

diverge with 
lnn n2
1

n 2

3

=

! .

m
e

n
n

n

2

1

3

3

=

! converges.

This is ready-made for the integral test:

lim lim lim lim
e

x dx
e

x dx
e
du e

e e e3
1

3
1

3
1 1 1

3
1

x c x c
u

c

u
c

c c

cc
2

1

2

1
11

3 3

3

3

3

= = = - = - - =
" " " "3

3

3 3 3

-# ## e o7 A

Because the integral converges, so does the series. 

*n !n
n

n

3

1

3

=

! converges.

1. Try the limit comparison test with the convergent series, 
!n

1
n 1

3

=

! , as the benchmark. 

!

!
!

!lim lim

n

n
n

n
n n

1n n

3

3

3= =
" "3 3

No good. This result tells you nothing. 
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2. Try the following nifty trick. Ignore the first three terms of 
!n

n
n

3

1

3

=

! , which doesn’t affect 

the convergence or divergence of the series. The series is now 
! ! !

. . .
4
4

5
5

6
63 3 3

+ + + , which can 

be written as 
!n

n

3

3

n

3

1 +

+3

=

!^
^

h
h

.

3. Try the limit comparison test again.

!

!

!

!

lim

lim

lim

lim
lesser powers of

lesser powers of

by the horizontal asymptote rule

n

n

n

n

n n

n n n

n

n n

n n

1

3

3

3

3

3 2 1

3

1

n

n

n

n

3

3

3

3

3

+

+

=
+

+

=
+ + +

+

=
+

+

=

"

"

"

"

3

3

3

3

^
^

^
^

^ ^ ^
^

_

h
h

h
h

h h h
h

i
Thus, 

!n

n

3

3

n

3

1 +

+3

=

!^
^

h
h

converges by the limit comparison test. And because 
!n

n
n

3

1

3

=

! is the same 

series except for its first three terms, it converges as well. 

o
ln n 2

1
n

n 1 +

3

=

! ^` hj converges.

Try the root test:         
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This is less than 1, so the series converges. 
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Try the root test again:
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Thus the series converges.
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There’s a factorial, so try the ratio test:
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(L’Hôpital’s Rule)

Finish in the right 
column with 
logarithmic 
differentiation.

Because this is less than 1, 
the series converges.
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Rewrite this so it’s one big nth power: n
4
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$!c m . Now look at the limit of the nth root.
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Thus the limit of the nth root is 
4
3 and so the series converges.
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Try the ratio test:
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By the ratio test, the series converges.
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Thus the series diverges. 
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!^ h diverges. This one is a no-brainer, because lim
n
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+
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, the first condition of 

the alternating series test is not satisfied, which means that both the alternating series and the
series of positive terms are divergent. 
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Check the two conditions of the alternating series test:
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(L’Hôpital’s Rule)

Check.

2. Are the terms non-increasing?
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Thus the series is at least conditionally convergent. And it is easy to show that it is only 
conditionally convergent and not absolutely convergent by the direct comparison test. Each 

term of 
n
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n
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! has a larger numerator and a smaller denominator — and is thus greater than 
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therefore 
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! is also divergent. 
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Part V

The Part of Tens



In this part . . .

Here I give you ten things you should know about
limits and infinite series, ten things you should know

about differentiation, and ten things you should know
about integration. Remember these 30 things or your
name is Mudd.



Chapter 14

Ten Things about Limits, Continuity,
and Infinite Series 

In This Chapter
� When limits, continuity, and derivatives don’t exist

� Ten tests for convergence

In this very short chapter, I give you two great mnemonics for memorizing a great deal
about limits, continuity, derivatives, and infinite series. If I do say so myself, you’re get-

ting a lot of bang for your buck here. 

The 33333 Mnemonic
This mnemonic is a memory aid for limits, continuity, and derivatives. First, note that I’ve put
the word “limil” under the five threes. That’s “limit” with the t changed to an l. Also note the
nice parallel between “limil” and the second mnemonic in this chapter, the 13231 mnemonic —
in both cases, you’ve got two pairs surrounding a single letter or number in the center. 

3 3 3 3 3

l i m i l

First 3 over the “l”: 3 parts to the definition 
of a limit
You can find the formal definition of a limit in Chapter 3. This mnemonic helps you remember
that it’s got three parts. And — take my word for it — just that is usually enough to help you
remember what the three parts are. Try it.



Fifth 3 over the “l”: 3 cases 
where a limit fails to exist
The three cases are 

� At a vertical asymptote. This is an infinite discontinuity.

� At a jump discontinuity.

� With the limit at infinity or negative infinity of an oscillating function like lim
x "3

cos x

where the function keeps oscillating up and down forever, never honing in on a
single y-value.

Second 3 over the “i”: 3 parts to 
the definition of continuity
First notice the oh-so-clever fact that the letter i can’t be drawn without taking your
pen off the paper and thus that it’s not continuous. This will help you remember that
the second and fourth 3s concern continuity.

The three-part, formal definition of continuity is in Chapter 3. The mnemonic will help
you remember that it’s got three parts. And — just like with the definition of a limit —
that’s enough to help you remember what the three parts are.

Fourth 3 over the “i”: 3 cases where 
continuity fails to exist
The three cases are

� A removable discontinuity — the highfalutin calculus term for a hole.

� An infinite discontinuity.

� A jump discontinuity.

Third 3 over the “m”: 3 cases where 
a derivative fails to exist
Note that m often stands for slope, right? And the slope is the same thing as the 
derivative. The three cases where it fails are

� At any type of discontinuity.

� At a cusp: a sharp point or corner along a function (this only occurs in weird
functions).

� At a vertical tangent. (A vertical line has an undefined slope and thus an undefined
derivative.)
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The 13231 Mnemonic
This mnemonic helps you remember the ten tests for the convergence or divergence
of an infinite series covered in Chapter 13. 1 + 3 + 2 + 3 + 1 = 10. Got it?

First 1: The nth term test of divergence
For any series, if the nth term doesn’t converge to zero, the series diverges.

Second 1: The nth term test of convergence
for alternating series
The real name of this test is the alternating series test. But I’m referring to it as the nth
term test of convergence because that’s a pretty good way to think about it, because it
has a lot in common with the nth term test of divergence, because these two tests make
nice bookends for the other eight tests, and, last but not least, because it’s my book.

An alternating series will converge if 1) its nth term converges to 0, and 2) each term is
less than or equal to the preceding term (ignoring the negative signs).

Note the following very nice parallel between the two nth term tests: with the nth term
test of divergence, if the nth term fails to converge to zero, then the series fails to con-
verge, but it is not true that if the nth term succeeds in converging to zero, then the
series must succeed in converging.

With the alternating series nth term test, it’s the other way around (sort of). If the test
succeeds, then the series succeeds in converging, but it is not true that if the test fails,
then the series must fail to converge.

First 3: The three tests with names
This “3” helps you remember the three types of series that have names: geometric series
(which converge if <r 1), p-series (which converge if p > 1), and telescoping series.

Second 3: The three comparison tests
The direct comparison test, the limit comparison test, and the integral comparison test
all work the same way. You compare a given series to a known benchmark series. If the
benchmark converges, so does the given series, and ditto for divergence.

The 2 in the middle: The two R tests
The ratio test and the root test make a coherent pair because for both tests, if the limit
is less than 1, the series converges; if the limit is greater than 1, the series diverges;
and if the limit equals 1, the test tells you nothing.
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Chapter 15

Ten Things You Better Remember
about Differentiation

In This Chapter
� Psst, over here

� The difference quotient

� Extrema, concavity, and inflection points

� The product and quotient rules

In this chapter, I give you ten important things you should know about differentiation.
Refer to these pages often. When you get these ten things down cold, you’ll have taken a

not-insignificant step toward becoming a differentiation expert.

The Difference Quotient
The formal definition of a derivative is based on the difference quotient:

limf x
h

f x h f x
h o

=
+ -

"

l ^ ^ ^h h h
; this says basically the same thing as slope run

rise
= .

The First Derivative Is a Rate
A first derivative tells you how much y changes per unit change in x. For example, if y is in
miles and x is in hours, and if at some point along the function, y goes up 3 when x goes over 1,
you’ve got 3 mph. That’s the rate and that’s the derivative.

The First Derivative Is a Slope
In the previous example, when y goes up 3 (the rise) as x goes over 1 (the run), the slope
(rise/run) at that point of the function would be 3 of course. That’s the slope and that’s the
derivative.



Extrema, Sign Changes, 
and the First Derivative

When the sign of the first derivative changes from positive to negative or vice-versa,
that means that you went up then down (and thus passed over the top of a hill, a local
max), or you went down then up (and thus passed through the bottom of a valley, a
local min). In both of these cases of local extrema, the first derivative usually will equal
zero, though it may be undefined (if the local extremum is at a cusp). Also, note that if
the first derivative equals zero, you may have a horizontal inflection point rather than a
local extremum.

The Second Derivative and Concavity
A positive second derivative tells you that a function is concave up (like a spoon holding
water or like a smile). A negative second derivative means concave down (like a spoon
spilling water or like a frown).

Inflection Points and Sign Changes in 
the Second Derivative

Note the very nice parallels between second derivative sign changes and first derivative
sign changes described in the section above.

When the sign of the second derivative changes from positive to negative or vice-versa,
that means that the concavity of the function changed from up to down or down to up.
In either case, you’re likely at an inflection point (though you could be at a cusp). At an
inflection point, the second derivative will usually equal zero, though it may be unde-
fined if there’s a vertical tangent at the inflection point. Also, if the second derivative
equals zero, that does not guarantee that you’re at an inflection point. The second
derivative can equal zero at a point where the function is concave up or down (like, for
example, at x = 0 on the curve y = x4).

The Product Rule
The derivative of a product of two functions equals the derivative of the first times the 

second plus the first times the derivative of the second. In symbols, 
dx
d uv u v uv= +l l^ h .

The Quotient Rule
The derivative of a quotient of two functions equals the derivative of the top times the
bottom minus the top times the derivative of the bottom, all over the bottom squared. 

In symbols, 
dx
d

v
u

v
u v uv

2=
-l lc m .
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Note that the numerator of the quotient rule is identical to the product rule except for
the subtraction. For both rules, you begin by taking the derivative of the first thing you
read: the left function in a product and the top function in a quotient.

Linear Approximation
Here’s the fancy calculus formula for a linear approximation: l x f x 1= +^ _h i
f x x x1 1-l _ _i i. If trying to memorize this leaves you feeling frustrated, flabbergasted,
feebleminded, or flummoxed, or fit to be tied, consider this: It’s just an equation of a
line, and its meaning is identical to the point-slope form for the equation of a line you
learned in algebra I (tweaked a bit): y y m x x1 1= + -_ i.

“PSST,” Here’s a Good Way to Remember
the Derivatives of Trig Functions

Take the last three letters in PSST and write down the trig functions that begin with
those letters: secant, secant, tangent. Below these write their co-functions, cosecant,
cosecant, cotangent (add a negative sign). Then add arrows. The arrows point to the
derivatives, for example, the arrow after secant points to its derivative, sec tan$ ; and
the arrow next to tangent points backwards to its derivative, sec2. Here you go:

sec → sec ← tan

csc → –csc ← cot
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Chapter 16

Ten Things to Remember
about Integration If You Know

What’s Good for You

In This Chapter
� Three approximation rules

� The Fundamental Theorem of Calculus 

� Definite and indefinite integrals and antiderivatives

In this chapter, I give you ten things you should know about integration. If you want to
become a fully integrated person (as opposed to a derivative one), integrate these inte-

gration rules and make them an integral part of your being.

The Trapezoid Rule
The trapezoid rule will give you a fairly good approximation of the area under a curve in the
event that you’re unable to — or you choose not to — obtain the exact area with integration.

. . .T
n

b a f x f x f x f x f x f x
2

2 2 2 2n n n0 1 2 3 1=
-

+ + + + + +-_ _ _ _ _ _i i i i i i9 C

The Midpoint Rule
An even better area approximation is given by the midpoint rule — it uses rectangles.

. . . . . . . . . .M n
b a f

x x
f

x x
f

x x
f

x x
2 2 2 2n

n n0 1 1 2 2 3 1
=

- +
+

+
+

+
+ +

+-d d d dn n n n> H

Simpson’s Rule
The best area estimate is given by Simpson’s Rule — it uses trapezoid-like shapes that have
parabolic tops.

. . .S
n

b a f x f x f x f x f x f x f x
3

4 2 4 2 4n n n0 1 2 3 4 1=
-

+ + + + + + +-_ _ _ _ _ _ _i i i i i i i9 C



If you already have, say, the midpoint approximation for ten rectangles and the trape-
zoid approximation for ten trapezoids, you can effortlessly compute the Simpson’s
Rule approximation for ten curvy-topped “trapezoids” with the following shortcut: 

S
M M T

3n
n n n

2 =
+ +

. This gives you an extraordinarily good approximation.

The Indefinite Integral
The indefinite integral, f x dx# ^ h , is the family of all antiderivatives of f x^ h. That’s 

why your answer has to end with “+ C.” For example, xdx2# is the family of all 

parabolas of the form x C2
+ like x 12

- , x 32
+ , x 102

+ , and so on. All these are vertical
translations of y x 2

= .

The Fundamental Theorem of Calculus, Take 1
Given an area function A f that sweeps out area under f t^ h, 
A x f t dtf

s

x

= #^ ^h h ,

the rate at which area is being swept out is equal to the height of the original function.
So, because the rate is the derivative, the derivative of the area function equals the
original function:

.
dx
d A x f xf =^ ^h h

The Fundamental Theorem of Calculus, Take 2
Let F be any antiderivative of the function f ; then

f x dx F b F b
a

b

= -# ^ ^ ^h h h.

The Definite Integral
In essence, what all definite integrals, f x dx

a

b

# ^ h , do is to add up an infinite number of 

infinitesimally small pieces of something to get the total amount of the thing between
a and b. The expression after the integral symbol, f x dx^ h (the integrand), is always a
mathematical expression of a representative piece of the stuff you’re adding up.

A Rectangle’s Height Equals
Top Minus Bottom

If you’re adding up rectangles with a definite integral to get the total area between two
curves, you need an expression for the height of a representative rectangle. This should
be a no-brainer: it’s just the rectangle’s top y-coordinate minus its bottom y-coordinate.
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Area Below the x-Axis Is Negative
If you want, say, the area below the x-axis and above y = sin x between π- and 0, the top
of a representative rectangle is on the x-axis (the function y = 0) and its bottom is on
sin x. Thus, the height of the rectangle is 0 – sin x, and you use the following definite 

integral to get the area: sinx dx0
π

0

-

-

# ^ h , which equals, of course, sinx dx
π

0

-

-

# . So this 

negative integral gives you the ordinary positive area. And that’s why an ordinary posi-
tive integral gives you a negative area for the parts of a curve that are below the x-axis.

Integrate in Chunks
When you want the total area between two curves and the “top” function changes
because the curves cross each other, you have to use more than one definite integral.
Each place the curves cross defines the edge of an area you must integrate separately.
(If a function crosses the x-axis, you have to consider y = 0 as the second function and
the x-intercepts as the crossing points.)
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Numbers
13231 mnemonic, 267

33333 mnemonic, 265–266

• A •
absolute convergence, 253–254

absolute extrema, 98–101

acceleration, 131–134

algebra

review

problems, 9–11

solutions, 15–18

solving limit problems, 39–43

alternating series, 253–254

antiderivatives. See also integration

area function, 177–179

definition, 179

finding, 183–187

Fundamental Theorem of Calculus, 

179–182, 274

guess and check method, 183–184

negative area, 177–179, 275

problems, 178–187

solutions, 188–191

substitution method, 185–187

approximating

area under curves, 159–161, 168–170

linear approximation, 138–139, 271

arc length, 227–228

area, calculating. See integration

area function, 177–179

average velocity, 132–134

• C •
calculator, solving limit problems, 44–45

Calculus For Dummies, 61

canceling method, 40–43

chain rule, 75–77

change, calculating speed of. See derivatives

chunking integration areas, 275

comparison tests, 247–250

concavity

curves, 102–105

second derivative test, 270

conditional convergence, 253–254

conjugate multiplication method, 40–43

constants, derivatives of, 69

continuity

13231 mnemonic, 267

33333 mnemonic, 265–266

definition, 31–32

problems, 33–36

solutions, 37–38

convergence/divergence, testing for, 245–254

curves. See also derivatives; difference 

quotient

approximating area under, 159–161, 168–170

definite integral, 166–167

exact areas, 166

graphs of

identifying as a function, 19

review, 20–21

vertical line test, 19

index of summation, 162

integrands, 166

irregular shapes, 159–161

long sums, shorthand for, 162–166

problems, 160–170

rectangles, 159–161

Reimann sums, 162–166

shape analysis

absolute extrema, 98–101

concavity, 102–105

first derivative test, 91–94, 269

highest/lowest points, 98–101

hills and valleys, 91–97

inflections points, 102–105

local extrema, 91–97

Mean Value Theorem, 105–107

problems, 92–107

rate, calculating average, 105–107

second derivative test, 95–97, 102

slope, calculating average, 105–107

smiles and frowns, 102–105

solutions, 108–121

sigma notation, 162–166

Simpson’s rule, 168–170

solutions, 171–176

Trapezoid rule, 168–170

cylindrical shell method, 222–226

Index



• D •
definite integral, 166–167, 274

degree/radian conversions, 23

derivative-of-a-constant rule, 69

derivatives. See also curves; functions; rates;

slope

absolute extrema, 98–101

compositions of functions, 75–77

concavity of curves, 102–105

of constants, 69

definition, 59

of derivatives, 80–81

difference quotient

definition, 61, 269

problems, 62–63

solutions, 64–67

first derivative test

curves, shape analysis, 269

local extrema, 91–94, 270

rates, 269

sign changes, 270

slopes, 269

highest/lowest points in curves, 98–101

hills and valleys in curves, 91–97

inflections points in curves, 102–105

local extrema, 91–97

Mean Value Theorem, 105–107

problems, 59–61, 92–107

product of two functions, 72–74

quotient of two functions, 72–74

rate, calculating average, 105–107

rules for

chain, 75–77. See also implicit differentiation

derivative of a constant, 69

high order derivatives, 80–81

implicit differentiation, 78–79. See also chain

rule

power, 69

problems, 70–81

product, 72–74

quotient, 72–74, 270–271

solutions, 82–89

second derivative test

concavity, 102, 270

inflection points, 102, 270

local extrema, 95–97

slope, calculating average, 105–107

smiles and frowns, curve shape, 102–105

solutions, 64–67, 108–121

symbol for, 7

unable to solve for y, 78–79

of variables raised to a power, 69

difference quotient

definition, 61, 269

problems, 62–63

solutions, 64–67

differentiation. See also antiderivatives

acceleration, 131–134

average velocity, 132–134

displacement, 131

distance, 131–134

linear approximation, 138–139

lines, 134–137

negative displacement, 131–134

negative velocity, 131–134

normals, 134–137

optimization, 124–126

position, 131–134

problems, 124–139

related rates, 127–130

rules for

chain, 75–77. See also implicit differentiation

derivative of a constant, 69

high order derivatives, 80–81

implicit differentiation, 78–79. See also chain

rule

power, 69

problems, 70–81

product, 72–74

quotient, 72–74

solutions, 82–89

solutions, 140–156

speed, 132–134

speed and distance traveled, 131–134

tangents, 134–137

velocity, 131–134

direct comparison test, 247–250

disk/washer method, 222–226

displacement, 131

distance, 131–134

divergence/convergence, testing for, 245–254

• E •
estimation

area under curves, 159–161, 168–170

linear approximation, 138–139, 271

exact areas, 166

expressions with trigonometric functions,

196–198
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• F •
factoring method, 40–43

first derivative test

curves, shape analysis, 269

local extrema, 91–94, 270

rates, 269

sign changes, 270

slopes, 269

FOILing method, 40–43

fractions

difference quotient, 7

partial, 201–204

review

problems, 7–8

solutions, 15–18

frowns and smiles, curve shapes, 102–105

functions. See also derivatives; graphs

average value of, 219–220

compositions of, 75–77

continuity

definition, 31–32

problems, 33–36

solutions, 37–38

definition, 19

identifying, 19

length along, 227–228

limits

definition, 31–32

problems, 33–36

solutions, 37–38

product of two, 72–74

quotient of two, 72–74

review

problems, 20–21

solutions, 25–28

selecting, 193–196

vertical line test, 19

Fundamental Theorem of Calculus, 

179–182, 274

• G •
geometric series, convergence/divergence 

testing, 245–246

geometry review

problems, 12–14

solutions, 15–18

graphs. See also functions

continuity

definition, 31–32

problems, 33–36

solutions, 37–38

of curves

identifying as a function, 19

review, 20–21

vertical line test, 19

limits

definition, 31–32

problems, 33–36

solutions, 37–38

guess and check method, 183–184

• H •
highest/lowest points, curves, 98–101

high-order-derivatives rule, 80–81

hills and valleys, curves, 91–97

horizontal asymptote, 47

hypotenuse, length calculation, 12

• I •
implicit differentiation rule, 78–79

improper integrals, 231–233

indefinite integrals, 179–182, 274

index of summation, 162

infinite limits of integration, 231–233

infinite series

13231 mnemonic, 267

33333 mnemonic, 265–266

absolute convergence, 253–254

alternating series, 253–254

comparison tests, 247–250

conditional convergence, 253–254

definition, 243

direct comparison test, 247–250

geometric series, 245–246

integral comparison test, 247–250

limit comparison test, 247–250

problems, 244–254

p-series, 245–246

ratio test, 251–254

root test, 251–254

sequences, 243

solutions, 255–261

telescoping series, 245–246

testing for divergence/convergence, 245–254
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inflection points

curves, 102–105

second derivative test, 270

integral comparison test, 247–250

integrals

arc length, 227–228

area calculation, 227–228

areas between curves, 220–221, 274

average value of functions, 219–220

cylindrical shell method, 222–226

definite, 166–167, 274

disk/washer method, 222–226

improper, 231–233

indefinite, 179–182, 274

infinite limit of, 231–233

irregular solids, 222–226

length along a function, 227–228

meat slicer method, 222–226

problems, 220–233

solutions, 234–242

surface of revolution, 227–228

volume calculation, 222–226

integrands, 166

integration

arc length, 227–228

areas. See also antiderivatives

approximating, 159–161, 168–170

below the x-axis, 275

chunking, 275

under a curve, 159–161, 168–170, 274–275

definite integral, 166–167

exact areas, 166

index of summation, 162

infinite limits of, 231–233

integrands, 166

irregular shapes, 159–161

length along a function, 227–228

long sums, shorthand for, 162–166

midpoint rule, 273

problems, 160–170, 220–233

rectangles, 159–161

Reimann sums, 162–166

sigma notation, 162–166

Simpson’s rule, 168–170, 273–274

solutions, 171–176, 234–242

surface of revolution, 227–228

Trapezoid rule, 168–170, 273

triangles, 12

between curves, 220–221, 274

cylindrical shell method, 222–226

disk/washer method, 222–226

functions, average value of, 219–220

irregular solids, 222–226

meat slicer method, 222–226

by parts. See also product rule

definition, 193

expressions with trigonometric functions,

196–198

LIATE mnemonic, 193

partial fractions, 201–204

problems, 194–204

Pythagorean Theorem, 198–201

selecting a function, 193–196

SohCahToa right triangle, 198–201

solutions, 205–216

trigonometric substitution, 198–201

problems, 220–233

solutions, 234–242

volumes, 222–226

• K •
Kasube, Herbert, 193

• L •
least-common-denominator method, 40–43

L’Hôpital’s rule, 229–231

LIATE mnemonic, 193

limit comparison test, 247–250

limit problems

horizontal asymptote, 47

limits at infinity, 47–49

rational functions, 47

solutions, 50–56

solving with

algebra, 39–43

calculator, 44–45

canceling method, 40–43

conjugate multiplication method, 40–43

factoring method, 40–43

FOILing method, 40–43

least common denominator method, 40–43

L’Hôpital’s rule, 229–231

sandwich method, 46–47

simplification method, 40–43

squeeze method, 46–47

types of expressions, 48–49

limits

13231 mnemonic, 267

33333 mnemonic, 265–266

definition, 31–32
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problems, 33–36

solutions, 37–38

linear approximation, 138–139, 271

lines, 134–137

local extrema, 91–97, 270

long sums, shorthand for, 162–166

lowest/highest points, curves, 98–101

• M •
Mean Value Theorem, 106–107

meat slicer method, 222–226

midpoint rule, 273

mnemonics

13231, 267

33333, 265–266

continuity, 265–267

derivatives of trigonometry functions, 271

infinite series, 265–267

limits, 265–267

PSST, 271

• N •
negative area, 177–179, 275

negative displacement, 131–134

negative velocity, 131–134

normals, 134–137

• O •
13231 mnemonic, 267

optimization, 124–126

• P •
parallelogram, area calculation, 13

partial fractions, 201–204

position, 131–134

power rule, 69

product rule, 72–74, 270. See also integration,

by parts

p-series, convergence/divergence testing,

245–246

PSST mnemonic, 271

Pythagorean Theorem, 198–201

• Q •
quotient rule, 72–74, 270–271

• R •
radian/degree conversions, 23

rates. See also derivatives

calculating average, 105–107

first derivative test, 269

related, 127–130

ratio test, 251–254

rational functions, 47

rectangles, area under a curve, 159–161,

274–275

Reimann sums, 162–166

related rates, 127–130

reverse differentiation. See antiderivatives

right triangles, 198–201

root test, 251–254

rules

for derivatives

chain, 75–77. See also implicit differentiation

derivative of a constant, 69

high order derivatives, 80–81

implicit differentiation, 78–79. See also chain

rule

power, 69

problems, 70–81

product, 72–74

quotient, 72–74, 270–271

solutions, 82–89

for differentiation

chain, 75–77. See also implicit differentiation

derivative of a constant, 69

high order derivatives, 80–81

implicit differentiation, 78–79. See also chain

rule

power, 69

problems, 70–81

product, 72–74

quotient, 72–74

solutions, 82–89

L’Hôpital’s, 229–231

Simpson’s, 168–170, 273–274

Trapezoid, 168–170, 273

• S •
sandwich method, 46–47

second derivative test

concavity, 102, 270

inflection points, 102, 270

local extrema, 95–97
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sequences, definition, 243

sigma notation, 162–166

sign changes, first derivative test, 270

simplification method, 40–43

Simpson’s rule, 168–170, 273–274

slope. See also derivatives; difference quotient

calculating, 13–14

calculating average, 105–107

first derivative test, 269

smiles and frowns, curve shapes, 102–105

SohCahToa right triangle, 198–201

speed, 132–134

speed of change, calculating. See derivatives

squeeze method, 46–47

substitution method, 185–187

surface of revolution, 227–228

• T •
tangents, 134–137

telescoping series, convergence/divergence

testing, 245–246

33333 mnemonic, 265–266

Trapezoid rule, 168–170, 273

triangles

area, 12

geometry review, 12–14

hypotenuse, 12

Pythagorean Theorem, 198–201

right, 198–201

trigonometric functions, in expressions,

196–198

trigonometric substitution, 198–201

trigonometry review

problems, 22–24

solutions, 25–28

• V •
valleys and hills, curves, 91–97

velocity, 131–134

vertical tangents, 270

volume, calculating. See integration
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