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Preface

In 1999, when we started teaching this course at the Department of Physics in Oslo, Compu-
tational Physics and Computational Science in general werestill perceived by the majority of
physicists and scientists as topics dealing with just mere tools and number crunching, and not as
subjects of their own. The computational background of moststudents enlisting for the course
on computational physics could span from dedicated hackersand computer freaks to people who
basically had never used a PC. The majority of graduate students had a very rudimentary knowl-
edge of computational techniques and methods. Four years later most students have had a fairly
uniform introduction to computers, basic programming skills and use of numerical exercises in
undergraduate courses. Practically every undergraduate student in physics has now made a Mat-
lab or Maple simulation of e.g., the pendulum, with or without chaotic motion. These exercises
underscore the importance of simulations as a means to gain novel insights into physical sys-
tems, especially for those cases where no analytical solutions can be found or an experiment
is to complicated or expensive to carry out. Thus, computer simulations are nowadays an inte-
gral part of contemporary basic and applied research in the physical sciences. Computation is
becoming as important as theory and experiment. We could even strengthen this statement by
saying that computational physics, theoretical physics and experimental are all equally important
in our daily research and studies of physical systems. Physics is nowadays the unity of theory,
experiment and computation. The ability "to compute" is nowpart of the essential repertoire of
research scientists. Several new fields have emerged and strengthened their positions in the last
years, such as computational materials science, bioinformatics, computational mathematics and
mechanics, computational chemistry and physics and so forth, just to mention a few. To be able
to e.g., simulate quantal systems will be of great importance for future directions in fields like
materials science and nanotechonology.

This ability combines knowledge from many different subjects, in our case essentially from
the physical sciences, numerical analysis, computing languages and some knowledge of comput-
ers. These topics are, almost as a rule of thumb, taught in different, and we would like to add,
disconnected courses. Only at the level of thesis work is thestudent confronted with the synthesis
of all these subjects, and then in a bewildering and disparate manner, trying to e.g., understand
old Fortran 77 codes inherited from his/her supervisor backin the good old ages, or even more
archaic, programs. Hours may have elapsed in front of a screen which just says ’Underflow’, or
’Bus error’, etc etc, without fully understanding what goeson. Porting the program to another
machine could even result in totally different results!

The first aim of this course is therefore to bridge the gap between undergraduate courses
in the physical sciences and the applications of the aquiredknowledge to a given project, be it
either a thesis work or an industrial project. We expect you to have some basic knowledge in the
physical sciences, especially within mathematics and physics through e.g., sophomore courses
in basic calculus, linear algebraand general physics. Furthermore, having taken an introductory
course on programming is something we recommend. As such, anoptimal timing for taking this
course, would be when you are close to embark on a thesis work,or if you’ve just started with a
thesis. But obviously, you should feel free to choose your own timing.

We have several other aims as well in addition to prepare you for a thesis work, namely



iv � We would like to give you an opportunity to gain a deeper understanding of the physics
you have learned in other courses. In most courses one is normally confronted with simple
systems which provide exact solutions and mimic to a certainextent the realistic cases.
Many are however the comments like ’why can’t we do somethingelse than the box po-
tential?’. In several of the projects we hope to present somemore ’realistic’ cases to solve
by various numerical methods. This also means that we wish togive examples of how
physics can be applied in a much broader context than it is discussed in the traditional
physics undergraduate curriculum.� To encourage you to "discover" physics in a way similar to howresearchers learn in the
context of research.� Hopefully also to introduce numerical methods and new areasof physics that can be stud-
ied with the methods discussed.� To teach structured programming in the context of doing science.� The projects we propose are meant to mimic to a certain extentthe situation encountered
during a thesis or project work. You will tipically have at your disposal 1-2 weeks to solve
numerically a given project. In so doing you may need to do a literature study as well.
Finally, we would like you to write a report for every project.� The exam reflects this project-like philosophy. The exam itself is a project which lasts one
month. You have to hand in a report on a specific problem, and your report forms the basis
for an oral examination with a final grading.

Our overall goal is to encourage you to learn about science through experience and by asking
questions. Our objective is always understanding, not the generation of numbers. The purpose
of computing is further insight, not mere numbers! Moreover, and this is our personal bias, to
device an algorithm and thereafter write a code for solving physics problems is a marvelous way
of gaining insight into complicated physical systems. The algorithm you end up writing reflects
in essentially all cases your own understanding of the physics of the problem.

Most of you are by now familiar, through various undergraduate courses in physics and math-
ematics, with interpreted languages such as Maple, Mathlaband Mathematica. In addition, the
interest in scripting languages such as Python or Perl has increased considerably in recent years.
The modern programmer would typically combine several tools, computing environments and
programming languages. A typical example is the following.Suppose you are working on a
project which demands extensive visualizations of the results. To obtain these results you need
however a programme which is fairly fast when computationalspeed matters. In this case you
would most likely write a high-performance computing programme in languages which are tay-
lored for that. These are represented by programming languages like Fortran 90/95 and C/C++.
However, to visualize the results you would find interpretedlanguages like e.g., Matlab or script-
ing languages like Python extremely suitable for your tasks. You will therefore end up writing
e.g., a script in Matlab which calls a Fortran 90/95 ot C/C++ programme where the number
crunching is done and then visualize the results of say a waveequation solver via Matlab’s large
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library of visualization tools. Alternatively, you could organize everything into a Python or Perl
script which does everything for you, calls the Fortran 90/95 or C/C++ programs and performs
the visualization in Matlab as well.

Being multilingual is thus a feature which not only applies to modern society but to comput-
ing environments as well.

However, there is more to the picture than meets the eye. Thiscourse emphasizes the use of
programming languages like Fortran 90/95 and C/C++ insteadof interpreted ones like Matlab or
Maple. Computational speed is not the only reason for this choice of programming languages.
The main reason is that we feel at a certain stage one needs to have some insights into the algo-
rithm used, its stability conditions, possible pitfalls like loss of precision, ranges of applicability
etc. Although we will at various stages recommend the use of library routines for say linear
algebra1, our belief is that one should understand what the given function does, at least to have
a mere idea. From such a starting point we do further believe that it can be easier to develope
more complicated programs, on your own. We do therefore devote some space to the algorithms
behind various functions presented in the text. Especially, insight into how errors propagate and
how to avoid them is a topic we’d like you to pay special attention to. Only then can you avoid
problems like underflow, overflow and loss of precision. Sucha control is not always achievable
with interpreted languages and canned functions where the underlying algorithm

Needless to say, these lecture notes are upgraded continuously, from typos to new input. And
we do always benifit from your comments, suggestions and ideas for making these notes better.
It’s through the scientific discourse and critics we advance.

1Such library functions are often taylored to a given machine’s architecture and should accordingly run faster
than user provided ones.
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Chapter 1

Introduction

In the physical sciences we often encounter problems of evaluating various properties of a given
functionf(x). Typical operations are differentiation, integration andfinding the roots off(x).
In most cases we do not have an analytical expression for the functionf(x) and we cannot derive
explicit formulae for derivatives etc. Even if an analytical expression is available, the evaluation
of certain operations onf(x) are so difficult that we need to resort to a numerical evaluation.
More frequently,f(x) is the result of complicated numerical operations and is thus known only
at a set of discrete points and needs to be approximated by some numerical methods in order to
obtain derivatives, etc etc.

The aim of these lecture notes is to give you an introduction to selected numerical meth-
ods which are encountered in the physical sciences. Severalexamples, with varying degrees of
complexity, will be used in order to illustrate the application of these methods.

The text gives a survey over some of the most used methods in Computational Physics and
each chapter ends with one or more applications to realisticsystems, from the structure of a neu-
tron star to the description of few-body systems through Monte-Carlo methods. Several minor
exercises of a more numerical character are scattered throughout the main text.

The topics we cover start with an introduction to C/C++ and Fortran 90/95 programming
combining it with a discussion on numerical precision, a point we feel is often neglected in com-
putational science. This chapter serves also as input to ourdiscussion on numerical derivation in
chapter 3. In that chapter we introduce several programmingconcepts such as dynamical mem-
ory allocation and call by reference and value. Several program examples are presented in this
chapter. For those who choose to program in C/C++ we give alsoan introduction to the auxiliary
library Blitz++, which contains several useful classes fornumerical operations on vectors and
matrices. The link to Blitz++, matrices and selected algorithms for linear algebra problems are
dealt with in chapter 5. Chapters 6 and 7 deal with the solution of non-linear equations and the
finding of roots of polynomials and numerical interpolation, extrapolation and data fitting.

Therafter we switch to numerical integration for integralswith few dimensions, typically less
than 3, in chapter 8. The numerical integration chapter serves also to justify the introduction
of Monte-Carlo methods discussed in chapters 9 and 10. There, a variety of applications are
presented, from integration of multidimensional integrals to problems in statistical Physics such
as random walks and the derivation of the diffusion equationfrom Brownian motion. Chapter

3
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11 continues this discussion by extending to studies of phase transitions in statistical physics.
Chapter 12 deals with Monte-Carlo studies of quantal systems, with an emphasis on variational
Monte Carlo methods and diffusion Monte Carlo methods. In chapter 13 we deal with eigen-
systems and applications to e.g., the Schrödinger equationrewritten as a matrix diagonalization
problem. Problems from scattering theory are also discussed, together with the most used solu-
tion methods for systems of linear equations. Finally, we discuss various methods for solving
differential equations and partial differential equations in chapters 14-16 with examples ranging
from harmonic oscillations, equations for heat conductionand the time dependent Schrödinger
equation. The emphasis is on various finite difference methods.

We assume that you have taken an introductory course in programming and have some famil-
iarity with high-level and modern languages such as Java, C/C++, Fortran 77/90/95, etc. Fortran1

and C/C++ are examples of compiled high-level languages, incontrast to interpreted ones like
Maple or Matlab. In such compiled languages the computer translates an entire subprogram into
basic machine instructions all at one time. In an interpreted language the translation is done one
statement at a time. This clearly increases the computational time expenditure. More detailed
aspects of the above two programming languages will be discussed in the lab classes and various
chapters of this text.

There are several texts on computational physics on the market, see for example Refs. [8, 4,
?, ?, 6, 9, 7, 10], ranging from introductory ones to more advanced ones. Most of these texts treat
however in a rather cavalier way the mathematics behind the various numerical methods. We’ve
also succumbed to this approach, mainly due to the followingreasons: several of the methods
discussed are rather involved, and would thus require at least a two-semester course for an intro-
duction. In so doing, little time would be left for problems and computation. This course is a
compromise between three disciplines, numerical methods,problems from the physical sciences
and computation. To achieve such a synthesis, we will have torelax our presentation in order to
avoid lengthy and gory mathematical expositions. You should also keep in mind that Computa-
tional Physics and Science in more general terms consist of the combination of several fields and
crafts with the aim of finding solution strategies for complicated problems. However, where we
do indulge in presenting more formalism, we have borrowed heavily from the text of Stoer and
Bulirsch [?], a text we really recommend if you’d like to have more math tochew on.

1.1 Choice of programming language

As programming language we have ended up with preferring C/C++, but every chapter, except
for the next, contains also in an appendix the correspondingFortran 90/95 programs. Fortran
(FORmula TRANslation) was introduced in 1957 and remains inmany scientific computing
environments the language of choice. The latest standard, Fortran 95 [?, 11, ?], includes ex-
tensions that are familiar to users of C/C++. Some of the mostimportant features of Fortran
90/95 include recursive subroutines, dynamic storage allocation and pointers, user defined data
structures, modules, and the ability to manipulate entire arrays. However, there are several good

1With Fortran we will consistently mean Fortran 90/95. Thereare no programming examples in Fortran 77 in
this text.
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reasons for choosing C/C++ as programming language for scientific and engineering problems.
Here are some:� C/C++ is now the dominating language in Unix and Windows environments. It is widely

available and is the language of choice for system programmers.� The C/C++ syntax has inspired lots of popular languages, such as Perl, Python and Java.� It is an extremely portable language, all Linux and Unix operated machines have a C/C++
compiler.� In the last years there has been an enormous effort towards developing numerical libraries
for C/C++. Numerous tools (numerical libraries such as MPI[?]) are written in C/C++ and
interfacing them requires knowledge of C/C++. Most C/C++ and Fortran 90/95 compilers
compare fairly well when it comes to speed and numerical efficiency. Although Fortran 77
and C are regarded as slightly faster than C++ or Fortran 90/95, compiler improvements
during the last few years have diminshed such differences. The Java numerics project
has lost some of its steam recently, and Java is therefore normally slower than C/C++ or
F90/95, see however the article by Junget al. for a discussion on numerical aspects of Java
[?].� Complex variables, one of Fortran 77 and 90/95 strongholds,can also be defined in the
new ANSI C/C++ standard.� C/C++ is a language which catches most of the errors as early as possible, typically at
compilation time. Fortran 90/95 has some of these features if one omits implicit variable
declarations.� C++ is also an object-oriented language, to be contrasted with C and Fortran 90/95. This
means that it supports three fundamental ideas, namely objects, class hierarchies and poly-
morphism. Fortran 90/95 has, through theMODULE declaration the capability of defining
classes, but lacks inheritance, although polymorphism is possible. Fortran 90/95 is then
considered as an object-based programming language, to be contrasted with C/C++ which
has the capability of relating classes to each other in a hierarchical way.

C/C++ is however a difficult language to learn. Grasping the basics is rather straightforward,
but takes time to master. A specific problem which often causes unwanted or odd error is dynamic
memory management.

1.2 Designing programs

Before we proceed with a discussion of numerical methods, wewould like to remind you of
some aspects of program writing.

In writing a program for a specific algorithm (a set of rules for doing mathematics or a
precise description of how to solve a problem), it is obviousthat different programmers will apply
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different styles, ranging from barely readable2 (even for the programmer) to well documented
codes which can be used and extended upon by others in e.g., a project. The lack of readability of
a program leads in many cases to credibility problems, difficulty in letting others extend the codes
or remembering oneself what a certain statement means, problems in spotting errors, not always
easy to implement on other machines, and so forth. Although you should feel free to follow
your own rules, we would like to focus certain suggestions which may improve a program. What
follows here is a list of our recommendations (or biases/prejudices). First about designing a
program.� Before writing a single line, have the algorithm clarified and understood. It is crucial to

have a logical structure of e.g., the flow and organization ofdata before one starts writing.� Always try to choose the simplest algorithm. Computationalspeed can be improved upon
later.� Try to write a as clear program as possible. Such programs areeasier to debug, and al-
though it may take more time, in the long run it may save you time. If you collaborate
with other people, it reduces spending time on debuging and trying to understand what the
codes do. A clear program will also allow you to remember better what the program really
does!� The planning of the program should be from top down to bottom,trying to keep the flow as
linear as possible. Avoid jumping back and forth in the program. First you need to arrange
the major tasks to be achieved. Then try to break the major tasks into subtasks. These can
be represented by functions or subprograms. They should accomplish limited tasks and
as far as possible be independent of each other. That will allow you to use them in other
programs as well.� Try always to find some cases where an analytical solution exists or where simple test cases
can be applied. If possible, devise different algorithms for solving the same problem. If
you get the same answers, you may have coded things correctlyor made the same error
twice.

Secondly, here are some of our favoured approaches for writing a code.� Use always the standard ANSI version of the programming language. Avoid local dialects
if you wish to port your code to other machines.� Add always comments to describe what a program or subprogramdoes. Comment lines
help you remember what you did e.g., one month ago.� Declare all variables. Avoid totally theIMPLICIT statement in Fortran. The program will
be more readable and help you find errors when compiling.

2As an example, a bad habit is to use variables with no specific meaning, like x1, x2 etc, or names for subpro-
grams which go like routine1, routine2 etc.



1.2. DESIGNING PROGRAMS 7� Do not use GOTO structures in Fortran. Although all varieties of spaghettiare great culi-
naric temptations, spaghetti-like Fortran with manyGOTO statements is to be avoided.
Extensive amounts of time may be wasted on decoding other authors programs.� When you name variables, use easily understandable names. Avoid v1 when you can
use speed_of_light . Associatives names make it easier to understand what a specific
subprogram does.� Use compiler options to test program details and if possiblealso different compilers. They
make errors too. Also, the use of debuggers likegdb is something we highly recommend
during the development of a program.





Chapter 2

Introduction to C/C++ and Fortran 90/95

2.1 Getting started

In all programming languages we encounter data entities such as constants, variables, results of
evaluations of functions etc. Common to these objects is that they can be represented through
the type concept. There are intrinsic types and derived types. Intrinsic types are provided by
the programming language whereas derived types are provided by the programmer. If one speci-
fies the type to be e.g.,INTEGER (KIND=2) for Fortran 90/951 or short int/int in C/C++,
the programmer selects a particular date type with 2 bytes (16 bits) for every item of the classINTEGER (KIND=2) or int. Intrinsic types come in two classes, numerical (like integer, real
or complex) and non-numeric (as logical and character). Thegeneral form for declaring variables
isdata type name of variable
and the following table lists the standard variable declarations of C/C++ and Fortran 90/95 (note
well that there may compiler and machine differences from the table below) An important aspect
when declaring variables is their region of validity. Inside a function we define a a variable
through the expressionint var or INTEGER :: var . The question is whether this variable is
available in other functions as well, moreover where isvar initialized and finally, if we call the
function where it is declared, is the value conserved from one call to the other?

Both C/C++ and Fortran 90/95 operate with several types of variables and the answers to
these questions depend on how we have definedint var. The following list may help in clari-
fying the above points:

1Our favoured display mode for Fortran statements will be capital letters for language statements and low key
letters for user-defined statements. Note that Fortran doesnot distinguish between capital and low key letters while
C/C++ does.

9
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type in C/C++ and Fortran 90/95 bits range

char/CHARACTER 8 �128 to 127
unsigned char 8 0 to 255
signed char 8 �128 to 127
int/INTEGER (2) 16 �32768 to 32767
unsigned int 16 0 to 65535
signed int 16 �32768 to 32767
short int 16 �32768 to 32767
unsigned short int 16 0 to 65535
signed short int 16 �32768 to 32767
int/long int/INTEGER(4) 32 �2147483648 to 2147483647
signed long int 32 �2147483648 to 2147483647
float/REAL(4) 32 3:4e�38 to 3:4e+38
double/REAL(8) 64 1:7e�308 to 1:7e+308
long double 64 1:7e�308 to 1:7e+308

Table 2.1: Examples of variable declarations for C/C++ and Fortran 90/95. We reserve capital
letters for Fortran 90/95 declaration statements throughout this text, although Fortran 90/95 is
not sensitive to upper or lowercase letters.

type of variable validity

local variables defined within a function, only available within the scope
of the function.

formal parameter If it is defined within a function it is only available within
that specific function.

global variables Defined outside a given function, available for all func-
tions from the point where it is defined.

In Table 2.1 we show a list of some of the most used language statements in Fortran and C/C++.
In addition, both C++ and Fortran 90/95 allow for complex variables. In Fortran 90/95 we would
declare a complex variable asCOMPLEX (KIND=16):: x, y which refers to a double with
word length of 16 bytes. In C/C++ we would need to include a complex library through the
statements

# inc lude < complex>
complex<double > x , y ;

We will come back to these topics in later chapter.
Our first programming encounter is the ’classical’ one, found in almost every textbook on

computer languages, the ’hello world’ code, here in a scientific disguise. We present first the C
version.
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Fortran 90/95 C/C++
Program structure

PROGRAM something main ()
FUNCTION something(input) double (int) something(input)
SUBROUTINE something(inout)

Data type declarations
REAL (4) x, y float x, y;
DOUBLE PRECISION :: (or REAL (8)) x, y double x, y;
INTEGER :: x, y int x,y;
CHARACTER :: name char name;
DOUBLE PRECISION, DIMENSION(dim1,dim2) :: x double x[dim1][dim2];
INTEGER, DIMENSION(dim1,dim2) :: x int x[dim1][dim2];
LOGICAL :: x
TYPE name struct name {
declarations declarations;
END TYPE name }
POINTER :: a double (int) *a;
ALLOCATE new;
DEALLOCATE delete;

Logical statements and control structure
IF ( a == b) THEN if ( a == b)
b=0 { b=0;
ENDIF }
DO WHILE (logical statement) while (logical statement)
do something {do something
ENDDO }
IF ( a>= b ) THEN if ( a>= b)
b=0 { b=0;
ELSE else
a=0 a=0; }
ENDIF
SELECT CASE (variable) switch(variable)
CASE (variable=value1) {
do something case 1:
CASE (: : : ) variable=value1;: : : do something;

break;
END SELECT case 2:

do something; break;: : :
}

DO i=0, end, 1 for( i=0; i<= end; i++)
do something { do something ;
ENDDO }

Table 2.2: Elements of programming syntax.
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programs/chap2/program1.cpp

/� comments i n C beg in l i k e t h i s and end w i th� /
# inc lude < s t d l i b . h > /� a t o f f u n c t i o n � /
# inc lude < math . h > /� s i n e f u n c t i o n � /
# inc lude < s t d i o . h > /� p r i n t f f u n c t i o n � /

i n t main ( i n t argc , char � argv [ ] )
{

double r , s ; /� d e c l a r e v a r i a b l e s � /
r = a t o f ( argv [ 1 ] ) ; /� c o n v e r t t he t e x t argv [ 1 ] t o doub le� /
s = s i n ( r ) ;
p r i n t f ( "Hello , World! sin(%g)=%g\n" , r , s ) ;
re tu rn 0 ; /� s u c c e s s e x e c u t i o n o f t he program� /

}

The compiler must see a declaration of a function before you can call it (the compiler checks the
argument and return types). The declaration of library functions appears in so-called header files
that must be included in the program, e.g.,#include < stdlib .h>We call three functionsatof , sin
, printf and these are declared in three different header files. The main program is a function
called main with a return value set to an integer, int (0 if success). The operating system stores
the return value, and other programs/utilities can check whether the execution was successful
or not. The command-line arguments are transferred to the main function throughint main (int
argc , char� argv []) The integerargc is the no of command-line arguments, set to one in our

case, while argv is a vector of strings containing the command-line arguments with argv [0]
containing the name of the program andargv [1], argv [2], ... are the command-line args, i.e.,
the number of lines of input to the program. Here we define floating points, see also below,
through the keywordsfloat for single precision real numbers anddouble for double precision.
The function atof transforms a text(argv [1]) to a float. The sine function is declared in math.h, a
library which is not automatically included and needs to be linked when computing an executable
file.

With the commandprintf we obtain a formatted printout. Theprintf syntax is used for
formatting output in many C-inspired languages (Perl, Python, awk, partly C++).

In C++ this program can be written as

/ / A comment l i n e be g i ns l i k e t h i s i n C++ programs
us ing namespace s t d ;
# inc lude < ios t ream >
i n t main ( i n t argc , char � argv [ ] )
{
/ / c o n v e r t t he t e x t argv [ 1 ] t o doub le us i ng a t o f :

double r = a t o f ( argv [ 1 ] ) ;
double s = s i n ( r ) ;
cou t < < "Hello , World! sin(" < < r < < ")=" < < s < < '\n' ;

/ / s u c c e s s
re tu rn 0 ;
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}

We have replaced the call toprintf with the standard C++ functioncout. The header fileiostream
is then needed. In addition, we don’t need to declare variables liker ands at the beginning of

the program. I personally prefer however to declare all variables at the beginning of a function,
as this gives me a feeling of greater readability.

To run these programs, you need first to compile and link it in order to obtain an executable
file under operating systems like e.g., UNIX or Linux. Beforewe proceed we give therefore
examples on how to obtain an executable file under Linux/Unix.

In order to obtain an executable file for a C++ program, the following instructions under
Linux/Unix can be used
++ -
 -Wall myprogram.

++ -o myprogram myprogram.o
where the compiler is called through the command
++. The compiler option -Wall means
that a warning is issued in case of non-standard language. The executable file is in this casemyprogram The option-
 is for compilation only, where the program is translated into ma-
chine code, while the-o option links the produced object filemyprogram.o and produces the
executablemyprogram .

The corresponding Fortran 90/95 code is

programs/chap2/program1.f90

PROGRAM shw
IMPLICIT NONE
REAL ( KIND = 8 ) : : r ! I npu t number
REAL ( KIND =8) : : s ! R e s u l t

! Get a number from user
WRITE ( � ,� ) ’ I npu t a number : ’
READ ( � ,� ) r

! C a l c u l a t e t he s i n e o f t he number
s = SIN ( r )

! Wr i te r e s u l t t o s c r e e n
WRITE ( � ,� ) ’ He l l o World ! SINE o f ’ , r , ’ = ’ , s

END PROGRAM shw

The first statement must be a program statement; the last statement must have a corresponding
end program statement. Integer numerical variables and floating point numerical variables are
distinguished. The names of all variables must be between 1 and 31 alphanumeric characters of
which the first must be a letter and the last must not be an underscore. Comments begin with
a ! and can be included anywhere in the program. Statements are written on lines which may
contain up to 132 characters. The asterisks (*,*) followingWRITE represent the default format
for output, i.e., the output is e.g., written on the screen. Similarly, the READ(*,*) statement
means that the program is expecting a line input. Note also the IMPLICIT NONE statement
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which we strongly recommend the use of. In many Fortran 77 onecan see statements like
IMPLICIT REAL*8(a-h,o-z), meaning that all variables beginning with any of the above letters
are by deafult floating numbers. However, such a usage makes it hard to spot eventual errors due
to misspelling of variable names. With IMPLICIT NONE you have to declare all variables and
therefore detect possible errors already while compiling.

We call the Fortran compiler (using free format) throughf90 -
 -free myprogram.f90f90 -o myprogram.x myprogram.o
Under Linux/Unix it is often convenient to create a so-called makefile, which is a script which
includes possible compiling commands, in order to avoid retyping the above lines every once and
then we have made modifcations to our program. A typical makefile for the above

 compiling
options is listed below# General makefile for 
 - 
hoose PROG = name of given program# Here we define 
ompiler option, libraries and the targetCC= 
++ -WallPROG= myprogram# Here we make the exe
utable file${PROG} : ${PROG}.o${CC} ${PROG}.o -o ${PROG}# whereas here we 
reate the obje
t file${PROG}.o : ${PROG}.
pp${CC} -
 ${PROG}.
pp
If you name your file for ’makefile’, simply type the commandmake and Linux/Unix executes
all of the statements in the above makefile. Note that C++ fileshave the extension .cpp

For Fortran, a similar makefile is# General makefile for F90 - 
hoose PROG = name of given program# Here we define 
ompiler options, libraries and the targetF90= f90PROG= myprogram# Here we make the exe
utable file${PROG} : ${PROG}.o${F90} ${PROG}.o -o ${PROG}
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reate the obje
t file${PROG}.o : ${PROG}.f90${F90} -
 ${PROG}.f
2.1.1 Representation of integer numbers

In Fortran a keyword for declaration of an integer isINTEGER (KIND =n) , n = 2 reserves 2
bytes (16 bits) of memory to store the integer variable wheras n = 4 reserves 4 bytes (32 bits). In
Fortran, although it may be compiler dependent, just declaring a variable asINTEGER , reserves
4 bytes in memory as default.

In C/C++ keywords areshort int , int , long int , long long int. The byte-length is compiler
dependent within some limits. The GNU C/C++-compilers (called by gcc or g++) assign 4 bytes
(32 bits) to variables declared byint and long int. Typical byte-lengths are 2, 4, 4 and 8 bytes,
for the types given above. To see how many bytes are reserved for a specific variable, C/C++ has
a library function calledsizeof (type) which returns the number of bytes fortype .

An example of program declaration is

Fortran: INTEGER (KIND=2) :: age_of_participant
C/C++: short int age_of_participant;

Note that the(KIND =2) can be written as (2). Normally however, we will for Fortran programs
just use the 4 bytes default assignmentINTEGER .

In the above examples one bit is used to store the sign of the variable age_of_participant and
the other 15 bits are used to store the number, which then may range from zero to215�1 = 32767.
This should definitely suffice for human lifespans. On the other hand, if we were to classify
known fossiles by age we may need

Fortran: INTEGER (4) :: age_of_fossile
C/C++: int age_of_fossile;

Again one bit is used to store the sign of the variable age_of_fossile and the other 31 bits are used
to store the number which then may range from zero to231 � 1 = 2:147:483:647. In order to
give you a feeling how integer numbers are represented in thecomputer, think first of the decimal
representation of the number417417 = 4� 102 + 1� 101 + 7� 100; (2.1)

which in binary representation becomes417 = 1� an2n + an�12n�1 + an�22n�2 + � � �+ a020; (2.2)

where theak with k = 0; : : : ; n are zero or one. They can be calculated through successive
division by 2 and using the remainder in each division to determine the numbersan to a0. A
given integer in binary notation is then written asan2n + an�12n�1 + an�22n�2 + � � �+ a020: (2.3)



16 CHAPTER 2. INTRODUCTION TO C/C++ AND FORTRAN 90/95

In binary notation we have thus(417)10 = (110100001)2 =; (2.4)

since we have(110100001)2 = 1�28+1�27+0�26+1�25+0�24+0�23+0�22+0�22+0�21+1�20:
To see this, we have performed the following divisions by 2

417/2=208 remainder 1 coefficient of20 is 1
208/2=104 remainder 0 coefficient of21 is 0
104/2=52 remainder 1 coefficient of22 is 0
52/2=27 remainder 1 coefficient of23 is 0
26/2=13 remainder 1 coefficient of24 is 0
13/2= 6 remainder 1 coefficient of25 is 1
6/2= 3 remainder 1 coefficient of26 is 0
3/2= 1 remainder 1 coefficient of27 is 1
1/2= 0 remainder 1 coefficient of28 is 1

A simple program which performs these operations is listed below. Here we employ the modulus
operation, which in C/C++ is given by the a%2 operator. In Fortran 90/95 the difference is that
we call the function MOD(a,2).

programs/chap2/program2.cpp
us ing namespace s t d ;
# inc lude < ios t ream >

i n t main ( i n t argc , char � argv [ ] )
{

i n t i ;
i n t t e rms [ 3 2 ] ; / / s t o r a g e o f a0 , a1 , e tc , up t o 3 2 b i t s
i n t number = a t o i ( argv [ 1 ] ) ;

/ / i n i t i a l i s e t he term a0 , a1 e t c
f o r ( i = 0 ; i < 3 2 ; i ++) { te rms [ i ] = 0 ; }
f o r ( i = 0 ; i < 3 2 ; i ++) {

te rms [ i ] = number %2;
number / = 2 ;

}
/ / w r i t e ou t r e s u l t s

cou t < < ‘ ‘ Number of by t e s used ='' < < s i z e o f( number ) < < end l ;
f o r ( i = 0 ; i < 3 2 ; i ++) {

cou t < < ‘ ‘ Term nr : ‘ ‘ < < i < < ‘ ‘ Value = ‘ ‘ < < te rms [ i ] ;
cou t < < end l ;

}
re tu rn 0 ;

}
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The C/C++ functionsizeof yields the number of bytes reserved for a specific variable. Note also
the for construct. We have reserved a fixed array which contains the values ofai being0 or 1,
the remainder of a division by two. Another example, the number 3 is given in an 8 bits word as3 = 0000011: (2.5)

Note that for417we need 9 bits in order to represent the number wheras3 needs only 2 significant
bits.

With these prerequesites in mind, it is rather obvious that if a given integer variable is beyond
the range assigned by the declaration statement we may encounter problems.

If we multiply two large integersn1�n2 and the product is too large for the bit size allocated
for that specific integer assignement, we run into an overflowproblem. The most significant bits
are lost and the least significant kept. Using 4 bytes for integer variables the result becomes220 � 220 = 0: (2.6)

However, there are compilers or compiler options that preprocess the program in such a way that
an error message like ’integer overflow’ is produced when running the program. Here is a small
program which may cause overflow problems when running (try to test your own compiler in
order to be sure how such problems need to be handled).

programs/chap2/program3.cpp

/ / Program t o c a l c u l a t e 2�� n
us ing namespace s t d ;
# inc lude < ios t ream >

i n t main ( )
{

i n t i n t 1 , i n t 2 , i n t 3 ;
/ / p r i n t t o s c r e e n

cou t < < "Read in the exponential N for 2^N =\n" ;
/ / read from s c r e e n

c i n > > i n t 2 ;
i n t 1 = ( i n t ) pow ( 2 . , (double ) i n t 2 ) ;
cou t < < " 2^N * 2^N = " < < i n t 1� i n t 1 < < "\n" ;
i n t 3 = i n t 1 � 1 ;
cou t < < " 2^N*(2^N - 1) = " < < i n t 1 � i n t 3 < < "\n" ;
cou t < < " 2^N- 1 = " < < i n t 3 < < "\n" ;
re tu rn 0 ;

}
/ / End : program main ( )

The corresponding Fortran 90/95 example is

programs/chap2/program2.f90
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PROGRAM i n t e g e r _ e x p
IMPLICIT NONE
INTEGER ( KIND =4) : : i n t 1 , i n t 2 , i n t 3

! Th is i s t he beg in o f a comment l i n e i n For t ran 90
! Now we read from s c r e e n t he v a r i a b l e i n t 2

WRITE ( � ,� ) ’ Read in t he number to be e xpone n t i a t e d ’
READ ( � ,� ) i n t 2
i n t 1 = i n t 2��30
WRITE ( � ,� ) ’ i n t 2 ��30+ i n t 2��30 ’ , i n t 1 + i n t 1
i n t 3 = i n t 1�1
WRITE ( � ,� ) ’ i n t 2 ��30+ i n t 2��30�1 ’ , i n t 1 + i n t 3
WRITE ( � ,� ) ’ i n t 2 ��31�1 ’ , 2� i n t 1�1

END PROGRAM i n t e g e r _ e x p

2.2 Real numbers and numerical precision

An important aspect of computational physics is the numerical precision involved. To design
a good algorithm, one needs to have a basic understanding of propagation of inaccuracies and
errors involved in calculations. There is no magic recipe for dealing with underflow, overflow,
accumulation of errors and loss of precision, and only a careful analysis of the functions involved
can save one from serious problems.

Since we are interested in the precision of the numerical calculus, we need to understand
how computers represent real and integer numbers. Most computers deal with real numbers in
the binary system, or octal and hexadecimal, in contrast to the decimal system that we humans
prefer to use. The binary system uses 2 as the base, in much thesame way that the decimal system
uses 10. Since the typical computer communicates with us in the decimal system, but works
internally in e.g., the binary system, conversion procedures must be executed by the computer,
and these conversions involve hopefully only small roundoff errors

Computers are also not able to operate using real numbers expressed with more than a fixed
number of digits, and the set of values possible is only a subset of the mathematical integers or
real numbers. The so-called word length we reserve for a given number places a restriction on
the precision with which a given number is represented. Thismeans in turn, that e.g., floating
numbers are always rounded to a machine dependent precision, typically with 6-15 leading digits
to the right of the decimal point. Furthermore, each such setof values has a processor-dependent
smallest negative and a largest positive value.

Why do we at all care about rounding and machine precision? The best way is to consider
a simple example first. You should always keep in mind that themachine can only represent
a floating number to a given precision. Let us in the followingexample assume that we can
represent a floating number with a precision of 5 digits only to the right of the decimal point.
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This is nothing but a mere choice of ours, but mimicks the way numbers are represented in the
machine.

Suppose we wish to evaluate the functionf(x) = 1� 
os(x)sin(x) ; (2.7)

for small values ofx. If we multiply the denominator and numerator with1 + 
os(x) we obtain
the equivalent expression f(x) = sin(x)1 + 
os(x) : (2.8)

If we now choosex = 0:007 (in radians) our choice of precision results insin(0:007) � 0:69999� 10�2;
and 
os(0:007) � 0:99998:
The first expression forf(x) results inf(x) = 1� 0:999980:69999� 10�2 = 0:2� 10�40:69999� 10�2 = 0:28572� 10�2; (2.9)

while the second expression results inf(x) = 0:69999� 10�21 + 0:99998 = 0:69999� 10�21:99998 = 0:35000� 10�2; (2.10)

which is also the exact result. In the first expression, due toour choice of precision, we have only
one relevant digit in the numerator, after the subtraction.This leads to a loss of precision and a
wrong result due to a cancellation of two nearly equal numbers. If we had chosen a precision of
six leading digits, both expressions yield the same answer.If we were to evaluatex � �, then
the second expression forf(x) can lead to potential losses of precision due to cancellations of
nearly equal numbers.

This simple example demonstrates the loss of numerical precision due to roundoff errors,
where the number of leading digits is lost in a subtraction oftwo near equal numbers. The lesson
to be drawn is that we cannot blindly compute a function. We will always need to carefully
analyze our algorithm in the search for potential pitfalls.There is no magic recipe however,
the only guideline is an understanding of the fact that a machine cannot represent correctlyall
numbers.

2.2.1 Representation of real numbers

Real numbers are stored with a decimal precision (or mantissa) and the decimal exponent range.
The mantissa contains the significant figures of the number (and thereby the precision of the
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number). In the decimal system we would write a number like6:7894 in what is called the nor-
malized scientific notation. This means simply that the decimal point is shifted and appropriate
powers of 10 are supplied. Our number could then be written as6:7894 = 0:67894� 101;
and a real non-zero number could be generalized asx = �r � 10n; (2.11)

with a r a number in the range1=10 � r < 1. In a similar way we can use represent a binary
number in scientific notation as x = �q � 2m; (2.12)

with a q a number in the range1=2 � q < 1.
In a typical computer, floating-point numbers are represented in the way described above, but

with certain restrictions onq andm imposed by the available word length. In the machine, our
numberx is represented as x = (�1)s �mantissa� 2exponent; (2.13)

wheres is the sign bit, and the exponent gives the available range. With a single-precision word,
32 bits, 8 bits would typically be reserved for the exponent,1 bit for the sign and 23 for the
mantissa. This means that if we define a variable as A modification of the scientific notation for
binary numbers is to require that the leading binary digit 1 appears to the left of the binary point.
In this case the representation of the mantissaq would be(1:f)2 and1 � q < 2. This form is
rather useful when storing binary numbers in a computer word, since we can always assume that
the leading bit 1 is there. One bit of space can then be saved meaning that a 23 bits mantissa has
actually 24 bits.

Fortran: REAL (4) :: size_of_fossile
C/C++: float size_of_fossile;

we are reserving 4 bytes in memory, with 8 bits for the exponent, 1 for the sign and and 23
bits for the mantissa, implying a numerical precision to thesixth or seventh digit, since the
least significant digit is given by1=223 � 10�7. The range of the exponent goes from2�128 =2:9� 10�39 to 2127 = 3:4 � 1038, where 128 stems from the fact that 8 bits are reserved for the
exponent.

If our numberx can be exactly represented in the machine, we callx a machine number.
Unfortunately, most numbers cannot are thereby only approximated in the machine. When such
a number occurs as the result of reading some input data or of acomputation, an inevitable error
will arise in representing it as accurately as possible by a machine number. This means in turn
that for real numbers, we may have to deal with essentially four types of problems2 . Let us list
them and discuss how to discover these problems and their eventual cures.

2There are others, like errors made by the programmer, or problems with compilers.
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1. Overflow : When the positive exponent exceeds the max value, e.g., 308 for DOUBLE
PRECISION (64 bits). Under such circumstances the program will terminate and some
compilers may give you the warning ’OVERFLOW’.

2. Underflow : When the negative exponent becomes smaller than the min value, e.g., -308
for DOUBLE PRECISION. Normally, the variable is then set to zero and the program
continues. Other compilers (or compiler options) may warn you with the ’UNDERFLOW’
message and the program terminates.

3. Roundoff errors A floating point number likex = 1:234567891112131468 = 0:1234567891112131468� 101 (2.14)

may be stored in the following way. The exponent is small and is stored in full precision.
However, the mantissa is not stored fully. In double precision (64 bits), digits beyond the
15th are lost since the mantissa is normally stored in two words, one which is the most
significant one representing 123456 and the least significant one containing 789111213.
The digits beyond 3 are lost. Clearly, if we are summing alternating series with large
numbers, subtractions between two large numbers may lead toroundoff errors, since not
all relevant digits are kept. This leads eventually to the next problem, namely

4. Loss of precisionOverflow and underflow are normally among the easiest problems to
deal with. When one has to e.g., multiply two large numbers where one suspects that
the outcome may be beyond the bonds imposed by the variable declaration, one could
represent the numbers by logarithms, or rewrite the equations to be solved in terms of
dimensionless variables. When dealing with problems in e.g., particle physics or nuclear
physics where distance is measured in fm (10�15m), it can be quite convenient to redefine
the variables for distance in terms of a dimensionless variable of the order of unity. To
give an example, suppose you work with single precision and wish to perform the addition1 + 10�8. In this case, the information containing in10�8 is simply lost in the addition.
Typically, when performing the addition, the computer equates first the exponents of the
two numbers to be added. For10�8 this has however catastrophic consequences since in
order to obtain an exponent equal to100, bits in the mantissa are shifted to the right. At
the end, all bits in the mantissa are zeros.

However, the loss of precision and significance due to the waynumbers are represented in
the computer and the way mathematical operations are performed, can at the end lead to
totally wrong results.

Other cases which may cause problems are singularities of the type0=0 which may arise from
functions likesin(x)=x asx! 0. Such problems may need the restructuring of the algorithm.

In order to illustrate the above problems, we consider in this section three possible algorithms
for computinge�x:
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1. by simply coding exp (�x) = 1Xn=0(�1)nxnn!
2. or to employ a recursion relation forexp (�x) = 1Xn=0 sn = 1Xn=0(�1)nxnn!

using sn = �sn�1xn;
3. or to first calculate exp (x) = 1Xn=0 sn

and thereafter taking the inverseexp (�x) = 1exp (x)
Below we have included a small program which calculatesexp (�x) = 1Xn=0(�1)nxnn! ; (2.15)

for x-values ranging from0 to 100 in steps of 10. When doing the summation, we can always
define a desired precision, given below by the fixed value for the variable TRUNCATION=1:0E � 10, so that for a certain value ofx > 0, there is always a value ofn = N for which the
loss of precision in terminating the series atn = N is always smaller than the next term in the
seriesxNN ! . The latter is implemented through the while{: : : } statement.

programs/chap2/program4.cpp

/ / Program t o c a l c u l a t e f u n c t i o n exp (�x )
/ / us i ng s t r a i g h t f o r w a r d summation w i th d i f f e r i n g p r e c i s io n
us ing namespace s t d ;
# inc lude < ios t ream >
/ / t y pe f l o a t : 32 b i t s p r e c i s i o n
/ / t y pe double : 6 4 b i t s p r e c i s i o n
# d e f i n e TYPE double
# d e f i n e PHASE( a ) ( 1 � 2 � ( abs ( a ) % 2) )
# d e f i n e TRUNCATION 1 . 0E�10
/ / f u n c t i o n d e c l a r a t i o n
TYPE f a c t o r i a l (i n t ) ;
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i n t main ( )
{

i n t n ;
TYPE x , term , sum ;
f o r ( x = 0 . 0 ; x < 1 0 0 . 0 ; x + = 1 0 . 0 ) {

sum = 0 . 0 ; / / i n i t i a l i z a t i o n
n = 0 ;
term = 1 ;
whi le ( f a bs ( term ) > TRUNCATION) {

term = PHASE( n ) � ( TYPE) pow ( ( TYPE) x , ( TYPE) n ) / f a c t o r i a l (
n ) ;

sum + = term ;
n ++;

} / / end o f w h i l e ( ) loop
cou t < < ‘ ‘ x = '' < < x < < ‘ ‘ exp = ‘ ‘ < < exp(�x ) < < ‘ ‘ s e r i e s

= ‘ ‘ < < sum ;
cou t < < ‘ ‘ number of te rms =" << n << endl;} // end of for() loopreturn 0;} // End: fun
tion main()// The fun
tion fa
torial()// 
al
ulates and returns n!TYPE fa
torial(int n){ int loop;TYPE fa
;for(loop = 1, fa
 = 1.0; loop <= n; loop++) {fa
 *= loop;}return fa
;} // End: fun
tion fa
torial()

There are several features to be noted3. First, for low values ofx, the agreement is good, however
for largerx values, we see a significant loss of precision. Secondly, forx = 70 we have an
overflow problem, represented (from this specific compiler)by NaN (not a number). The latter
is easy to understand, since the calculation of a factorial of the size171! is beyond the limit set
for the double precision variable factorial. The message NaN appears since the computer sets the
factorial of171 equal to zero and we end up having a division by zero in our expression fore�x.
In Fortran 90/95 Real numbers are written as 2.0 rather than 2and declared as REAL (KIND=8)
or REAL (KIND=4) for double or single precision, respectively. In general we discorauge the use
of single precision in scientific computing, the achieved precision is in general not good enough.

3Note that different compilers may give different messages and deal with overflow problems in different ways.



24 CHAPTER 2. INTRODUCTION TO C/C++ AND FORTRAN 90/95x exp (�x) Series Number of terms in series
0.0 0.100000E+01 0.100000E+01 1

10.0 0.453999E-04 0.453999E-04 44
20.0 0.206115E-08 0.487460E-08 72
30.0 0.935762E-13 -0.342134E-04 100
40.0 0.424835E-17 -0.221033E+01 127
50.0 0.192875E-21 -0.833851E+05 155
60.0 0.875651E-26 -0.850381E+09 171
70.0 0.397545E-30 NaN 171
80.0 0.180485E-34 NaN 171
90.0 0.819401E-39 NaN 171

100.0 0.372008E-43 NaN 171

Table 2.3: Result from the brute force algorithm forexp (�x).
Fortran 90/95 uses a do construct to have the computer execute the same statements more than
once. Note also that Fortran 90/95 does not allow floating numbers as loop variables. In the
example below we use both a do construct for the loop overx and aDO WHILE construction for
the truncation test, as in the C/C++ program. One could altrenatively use theEXIT statement
inside a do loop. Fortran 90/95 has also if statements as in C/C++. The IF construct allows the
execution of a sequence of statements (a block) to depend on acondition. The if construct is
a compound statement and begins with IF ... THEN and ends withENDIF. Examples of more
general IF constructs using ELSE and ELSEIF statements are given in other program examples.
Another feature to observe is the CYCLE command, which allows a loop variable to start at a
new value.

Subprograms are called from the main program or other subprograms. In the example be-
low we compute the factorials using the functionfactorial . This function receives a dummy
argumentn. INTENT(IN) means that the dummy argument cannot be changedwithin the subpro-
gram. INTENT(OUT) means that the dummy argument cannot be used within the subprogram
until it is given a value with the intent of passing a value back to the calling program. The state-
ment INTENT(INOUT) means that the dummy argument has an initial value which is changed
and passed back to the calling program. We recommend that youuse these options when calling
subprograms. This allows better control when transfering variables from one function to another.
In chapter 3 we discuss call by value and by reference in C/C++. Call by value does not allow a
called function to change the value of a given variable in thecalling function. This is important
in order to avoid unintentional changes of variables when transfering data from one function to
another. TheINTENT construct in Fortran 90/95 allows such a control. Furthermore, it increases
the readability of the program.

programs/chap2/program3.f90

PROGRAM exp_prog
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IMPLICIT NONE
REAL ( KIND =8) : : x , term , f i na l_sum , &

f a c t o r i a l , t r u n c a t i o n
INTEGER : : n , l oop_over_x
t r u n c a t i o n =1.0E�10

! loop over x�v a l u e s
DO l oop_over_x = 0 , 100 , 10

x= loop_over_x
! i n i t i a l i z e t he EXP sum

f i na l _s um = 1 . 0 ; sum_term = 1 . 0 ; exponent =0
DO WHILE ( ABS( sum_term ) > t r u n c a t i o n )

n=n+1
term = ( (�1 . )��n ) � ( x��n ) / f a c t o r i a l ( n )
f i na l _s um = f i na l _s um +term

ENDDO
! w r i t e t he argument x , t he e x ac t va lue , t he computed v a l ue and n

WRITE ( � ,� ) argument , EXP(�x ) , f i na l_sum , n
ENDDO

END PROGRAM exp_prog

DOUBLE PRECISION FUNCTION f a c t o r i a l ( n )
INTEGER ( KIND =2) , INTENT ( IN ) : : n
INTEGER ( KIND = 2 ) : : loop

f a c t o r i a l = 1 .
IF ( n > 1 ) THEN

DO l oop = 2 , n
f a c t o r i a l = f a c t o r i a l� l oop

ENDDO
ENDIF

END FUNCTION f a c t o r i a l

The overflow problem can be dealt with by using a recurrence formula4 for the terms in the sum,
so that we avoid calculating factorials. A simple recurrence formula for our equationexp (�x) = 1Xn=0 sn = 1Xn=0(�1)nxnn! ; (2.16)

is to note that sn = �sn�1xn; (2.17)

4Recurrence formulae, in various disguises, either as ways to represent series or continued fractions, form among
the most commonly used forms for function approximation. Examples are Bessel functions, Hermite and Laguerre
polynomials.
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so that instead of computing factorials, we need only to compute products. This is exemplified
through the next program.

programs/chap2/program5.cpp

/ / program t o compute exp (�x ) w i t h o u t f a c t o r i a l s
us ing namespace s t d ;
# inc lude < ios t ream >
# d e f i n e TRUNCATION 1 . 0E�10

i n t main ( )
{

i n t loop , n ;
double x , term , sum ;

f o r ( loop = 0 ; loop < = 1 0 0 ; loop + = 1 0 ) {
x = ( double ) loop ; / / i n i t i a l i z a t i o n
sum = 1 . 0 ;
term = 1 ;
n = 1 ;
whi le ( f a bs ( term ) > TRUNCATION) {

term �= �x / ( ( double ) n ) ;
sum += term ;
n ++;

} / / end w h i l e loop
cou t < < ‘ ‘ x = '' < < x < < ‘ ‘ exp = ‘ ‘ < < exp(�x ) < < ‘ ‘ s e r i e s

= ‘ ‘ < < sum ;
cou t < < ‘ ‘ number of te rms =" << n << endl;} // end of for loop} // End: fun
tion main()

In this case, we do not get the overflow problem, as can be seen from the large number of terms.
Our results do however not make much sense for largerx. Decreasing the truncation test will not
help! (try it). This is a much more serious problem.

In order better to understand this problem, let us consider the case ofx = 20, which already
differs largely from the exact result. Writing out each termin the summation, we obtain the
largest term in the sum appears atn = 19 and equals�43099804. However, forn = 20 we have
almost the same value, but with an interchanged sign. It means that we have an error relative
to the largest term in the summation of the order of43099804 � 10�10 � 4 � 10�2. This is
much larger than the exact value of0:21 � 10�8. The large contributions which may appear at
a given order in the sum, lead to strong roundoff errors, which in turn is reflected in the loss of
precision. m. We can rephrase the above in the following way:Sinceexp (�20) is a very small
number and each term in the series can be rather large (of the order of108, it is clear that other
terms as large as108, but negative, must cancel the figures in front of the decimalpoint and some
behind as well. Since a computer can only hold a fixed number ofsignificant figures, all those
in front of the decimal point are not only useless, they are crowding out needed figures at the
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0.000000 0.10000000E+01 0.10000000E+01 1

10.000000 0.45399900E-04 0.45399900E-04 44
20.000000 0.20611536E-08 0.56385075E-08 72
30.000000 0.93576230E-13 -0.30668111E-04 100
40.000000 0.42483543E-17 -0.31657319E+01 127
50.000000 0.19287498E-21 0.11072933E+05 155
60.000000 0.87565108E-26 -0.33516811E+09 182
70.000000 0.39754497E-30 -0.32979605E+14 209
80.000000 0.18048514E-34 0.91805682E+17 237
90.000000 0.81940126E-39 -0.50516254E+22 264

100.000000 0.37200760E-43 -0.29137556E+26 291

Table 2.4: Result from the improved algorithm forexp (�x).
right end of the number. Unless we are very careful we will findourselves adding up series that
finally consists entirely of roundoff errors! To this specific case there is a simple cure. Noting
thatexp (x) is the reciprocal ofexp (�x), we may use the series forexp (x) in dealing with the
problem of alternating signs, and simply take the inverse. One has however to beware of the fact
thatexp (x) may quickly exceed the range of a double variable.

The Fortran 90/95 program is rather similar in structure to the C/C++ progra

programs/chap2/program4.f90

PROGRAM improved
IMPLICIT NONE
REAL ( KIND =8) : : x , term , f i na l_sum , t r u n c a t i o n _ t e s t
INTEGER ( KIND =4) } : : n , l oop_over_x
t r u n c a t i o n _ t e s t =1.0E�10

! loop over x�va lues , no f l o a t s as loop v a r i a b l e s
DO l oop_over_x = 0 , 100 , 10

x= loop_over_x
! i n i t i a l i z e t he EXP sum

f i na l _s um = 1 . 0 ; sum_term = 1 . 0 ; exponent =0
DO WHILE ( ABS( sum_term ) > t r u n c a t i o n _ t e s t )

n=n+1
term = � term�x /FLOAT( n )
f i na l _s um = f i na l _s um +term

ENDDO
! w r i t e t he argument x , t he e x ac t va lue , t he computed v a l ue and n

WRITE ( � ,� ) argument , EXP(�x ) , f i na l_sum , n
ENDDO
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END PROGRAM improved

2.2.2 Further examples

Summing 1=n
Let us look at another roundoff example which may surprise you more. Consider the seriess1 = NXn=1 1n; (2.18)

which is finite whenN is finite. Then consider the alternative way of writing this sums2 = 1Xn=N 1n; (2.19)

which when summed analytically should gives2 = s1. Because of roundoff errors, numerically
we will get s2 6= s1! Computing these sums with single precision forN = 1:000:000 results
in s1 = 14:35736 while s2 = 14:39265! Note that these numbers are machine and compiler
dependent. With double precision, the results agree exactly, however, for larger values ofN ,
differences may appear even for double precision. If we chooseN = 108 and employ double
precision, we gets1 = 18:9978964829915355 while s2 = 18:9978964794618506, and one notes
a difference even with double precision.

This example demonstrates two important topics. First we notice that the chosen precision is
important, and we will always recommend that you employ double precision in all calculations
with real numbers. Secondly, the choice of an appropriate algorithm, as also seen fore�x, can be
of paramount importance for the outcome.

The standard algorithm for the standard deviation

Yet another example is the calculation of the standard deviation � when� is small compared to
the average valuex. Below we illustrate how one of most frequently used algorithms can go
wrong when single precision is employed.

However, before we proceed, let us define� andx. Suppose we have a set ofN data points,
represented by the one-dimensional arrayx(i), for i = 1; N . The average value is thenx = PNi=1 x(i)N ; (2.20)

while � =rPi x(i)2 � xPi x(i)N � 1 : (2.21)

Let us now assume that x(i) = i+ 105;
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and thatN = 127, just as a mere example which illustrates the kind of problems which can
arise when the standard deviation is small compared withx. Using single precision results in a
standard deviation of� = 40:05720139 for the most used algorithm, while the exact answer is� = 36:80579758, a number which also results from the above two-step algorithm. With double
precision, the two algorithms result in the same answer.

The reason for such a difference resides in the fact that the first algorithm includes the sub-
traction of two large numbers which are squared. Since the average value for this example isx = 100063:00, it is easy to see that computing

Pi x(i)2 � xPi x(i) can give rise to very large
numbers with possible loss of precision when we perform the subtraction. To see this, consider
the case wherei = 64. Then we have5x264 � xx64 = 100352;
while the exact answer is x264 � xx64 = 100064!
You can even check this by calculating it by hand.

The second algorithm computes first the difference betweenx(i) and the average value. The
difference gets thereafter squared. For the second algorithm we have fori = 64x64 � x = 1;
and we have no potential for loss of precision.

The standard text book algorithm is expressed through the following program

programs/chap2/program6.cpp

/ / program t o c a l c u l a t e t he mean and s t anda r d d e v i a t i o n o f
/ / a user c r e a t e d data s e t s t o r e d i n a r ray x [ ]
us ing namespace s t d ;
# inc lude < ios t ream >
i n t main ( )
{

i n t i ;
f l o a t sum , sumsq2 , xbar , sigma1 , sigma2 ;
/ / a r ray d e c l a r a t i o n w i th f i x e d d imens ion
f l o a t x [ 1 2 7 ] ;
/ / i n i t i a l i s e t he data s e t
f o r ( i = 0 ; i < 1 2 7 ; i ++) {

x [ i ] = i + 1 0 0 0 0 0 . ;
}
/ / The v a r i a b l e sum i s j u s t t he sum over a l l e l e m e n t s
/ / The v a r i a b l e sumsq2 i s t he sum over x ^2
sum = 0 . ;
sumsq2 = 0 . ;

5Note that this number may be compiler and machine dependent.
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/ / Now we use t he t e x t book a l go r i t hm
f o r ( i = 0 ; i < 1 2 7 ; i ++) {

sum + = x [ i ] ;
sumsq2 + = pow ( (double ) x [ i ] , 2 . ) ;

}
/ / c a l c u l a t e t he average and sigma
xbar =sum / 1 2 7 . ;
sigma1 = s q r t ( ( sumsq2�sum� xbar ) / 1 2 6 . ) ;
/��� Here comes t he c ruder a l go r i t hm where we e v a l u a t e�� s e p a r a t e l y f i r s t t he average and t h e r e a f t e r t he�� sum which d e f i n e s t he s t anda r d d e v i a t i o n . The average�� has a l r e ady been e v a l u a t e d th rough xbar� /
sumsq2 = 0 . ;
f o r ( i = 0 ; i < 1 2 7 ; i ++) {

sumsq2 + = pow ( (double ) ( x [ i ]� xbar ) , 2 . ) ;
}
sigma2 = s q r t ( sumsq2 / 1 2 6 . ) ;
cou t < < "xbar = `` << xbar << ``sigma1 = `` << sigma1 << ``sigma2= `` << sigma2;
out << endl;return 0;}// End: fun
tion main()

The corresponding Fortran 90/95 program is given below.

programs/chap2/program5.f90

PROGRAM s t a n d a r d _ d e v i a t i o n
IMPLICIT NONE
REAL � 4 : : sum , sumsq2 , xbar
REAL � 4 : : sigma1 , sigma2
REAL �4 , DIMENSION ( 1 2 7 ) : : x
INTEGER : : i

x =0;
DO i =1 , 127

x ( i ) = i + 1 0 0 0 0 0 .
ENDDO
sum = 0 . ; sumsq2 =0.

! s t anda r d d e v i a t i o n c a l c u l a t e d w i th t e x t book a l go r i t hm
DO i =1 , 127

sum = sum + x ( i )
sumsq2 = sumsq2+x ( i )��2

ENDDO
! average
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xbar =sum / 1 2 7 .
sigma1 =SQRT( ( sumsq2�sum� xbar ) / 1 2 6 . )

! second method t o e v a l u a t e t he s t anda r d d e v i a t i o n
sumsq2 =0.
DO i =1 , 127

sumsq2=sumsq2 +( x ( i )�xbar )��2
ENDDO
sigma2 =SQRT( sumsq2 / 1 2 6 . )
WRITE ( � ,� ) xbar , sigma1 , sigma2

END PROGRAM s t a n d a r d _ d e v i a t i o n

2.3 Loss of precision

2.3.1 Machine numbers

How can we understand the above mentioned problems? First let us note that a real numberx
has a machine representationfl(x) fl(x) = x(1 + �) (2.22)

wherej�j � �M and� is given by the specified precision,10�7 for single and10�16 for double
precision, respectively.�M is the given precision. Suppose that we are dealing with a 32-bit word
and deal with single precision real number. This means that the precision is at the 6-7 decimal
places. Thus, we cannot represent all decimal numbers with an exact binary representation in
a computer. A typical example is0:1, whereas9:90625 has an exact binary representation even
with single precision.

In case of a subtractiona = b� 
, we havefl(a) = fl(b)� fl(
) = a(1 + �a); (2.23)

or fl(a) = b(1 + �b)� 
(1 + �
); (2.24)

meaning that fl(a)=a = 1 + �b ba � �
 
a; (2.25)

and if b � 
 we see that there is a potential for an increased error inaM . This is because we are
subtracting two numbers of equal size and what remains is only the least significant part of these
numbers. This part is prone to roundoff errors and ifa is small we see that (withb � 
)�a � ba(�b � �
); (2.26)
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can become very large. The latter equation represents the relative error of this calculation. To
see this, we define first the absolute error asjfl(a)� aj; (2.27)

whereas the relative error is jfl(a)� aja � �a: (2.28)

The above subraction is thusjfl(a)� aja = jfl(b)� f(
)� (b� 
)ja ; (2.29)

yielding jfl(a)� aja = jb�b � 
�
ja : (2.30)

The relative error is the quantity of interest in scientific work. Information about the absolute
error is normally of little use in the absence of the magnitude of the quantity being measured.
If we go back to the algorithm with the alternating sum for computingexp�x of program ex-
ample 3, we do happen to know the final answer, but an analysis of the contribution to the sum
from various terms shows that the relative error made can be huge. This results in an unstable
computation, since small errors made at one stage are magnified in subsequent stages.

2.3.2 Floating-point error analysis

To understand roundoff errors in general, it is customary toregard it as a random process. One
can represent these errors by a semi-empirical expression if the roundoff errors come in randomly
up or down �ro � pN�M ; (2.31)

whereN is e.g., the number of terms in the summation overn for the exponential. Note well that
this estimate can be wrong especially if the roundoff errorsaccumulate in one specific direction.
One special case is that of subtraction of two almost equal numbers.

The total error will then be the sum of a roundoff error and an approximation error of the
algorithm. The latter would correspond to the truncation test of examples 2 and 3. Let us assume
that the approximation error goes like�approx = �N� ; (2.32)

with the obvious limit�approx ! 0 whenN !1. The total error reads then�tot = �N� +pN�M (2.33)

We are now in a position where we can make an empirical error analysis. Let us assume that
we have an exact answer with which we can compare the outcome of our algorithm with. We
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label these results asYexa
t andYalg for the exact and algorithmic results, respectively. Suppose
thereafter that our algorithm depends on the number of stepsused in each iteration. An example
of this is found in Examples 2 and 3 forexp (�x). The outcome of our algorithm is then a
function ofN , Yalg = Yalg(N).

We assume now that the approximation error is the most important one for small values ofN . This means that Yalg(N) = Yexa
t + �N� : (2.34)

If we now double the number of steps and still have a result which does not vary too much from
the exact one, we have Yalg(N)� Yalg(2N) � �N� : (2.35)

If we plot log10(jYalg(N)�Yalg(2N)j) versuslog10(N), the part which is a straight line indicates
the region in which our approximation for the error is valid.The slope of the line is then��.
When we increaseN , we are most likely to enter into a region where roundoff errors start to
dominate. If we then obtain a straight line again, the slope will most likely, if �ro � pN�M , be
close to1=2.

In examples forexp (�x), we saw forx = 20 thatYexa
t andYalg differ quite a lot. Even if
we were to improve our truncation test, we will not be able to improve the agreement with the
exact result. This means that we are essentially in the region where roundoff errors take place.
A straight line will then give us the empirical behavior of the roundoff errors for the specific
function under study.

2.4 Additional features of C/C++ and Fortran 90/95

2.4.1 Operators in C/C++

In the previous program examples we have seen several types of operators. In the tables below
we summarize the most important ones. Note that the modulus in C/C++ is represented by the
operator % whereas in Fortran 90/95 we employ the intrinsic functionMOD. Note also that the
increment operator ++ and the decrement operator�� is not available in Fortran 90/95. In
C/C++ these operators have the following meaning

++x; or x++; has the same meaning asx = x + 1;��x; or x��; has the same meaning asx = x � 1;

C/C++ offers also interesting possibilities for combined operators. These are collected in the
next table.

Finally, we show some special operators pertinent to C/C++ only. The first one is the?
operator. Its action can be described through the followingexampleA = expression1 ? expression2 : expression3;
Hereexpression1 is computed first. If this is"true" (6= 0), thenexpression2 is computed and
assigned A. Ifexpression1 is "false", thenexpression3 is computed and assigned A.
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arithmetic operators relation operators
operator effect operator effect� Subtraction > Greater than+ Addition >= Greater or equal� Multiplication < Less than= Division <= Less or equal% or MOD Modulus division == Equal�� Decrement ! = Not equal++ Increment

Table 2.5: Relational and arithmetic operators. The relation operators act between two operands.
Note that the increment and decrement operators++ and�� are not available in Fortran 90/95.

Logical operators
C/C++ Effect Fortran 90/95

0 False value .FALSE.
1 True value .TRUE.
!x Logical negation .NOT.x

x&& y Logical AND x.AND.y
x||y Logical inclusive x.OR.y

Table 2.6: List of logical operators in C/C++ and Fortran 90/95.

Bitwise operations
C/C++ Effect Fortran 90/95

~i Bitwise complement NOT(j)
i&j Bitwise and IAND(i,j)
i^j Bitwise exclusive or IEOR(i,j)
i | j Bitwise inclusive or IOR(i,j)
i<<j Bitwise shift left ISHFT(i,j)
i>>n Bitwise shift right ISHFT(i,-j

Table 2.7: List of bitwise operations.
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Expression meaning expression meaninga += b; a = a + b; a -= b; a = a - b;a *= b; a = a * b; a /= b; a = a / b;a %= b; a = a % b; a �= b; a = a � b;a �= b; a = a � b; a &= b; a = a & b;a |= b; a = a | b; a ^= b; a = a ^ b;
Table 2.8: C/C++ specific expressions.

2.4.2 Pointers and arrays in C/C++.

In addition to constants and variables C/C++ contain important types such as pointers and arrays
(vectors and matrices). These are widely used in most C/C++ program. C/C++ allows also
for pointer algebra, a feature not included in Fortran 90/95. Pointers and arrays are important
elements in C/C++. To shed light on these types, consider thefollowing setupint name defines an integer variable calledname. It is given an address in

memory where we can store an integer number.&name is the address of a specific place in memory where the integername
is stored. Placing the operator & in front of a variable yields its
address in memory.int *pointer defines and an integer pointer and reserves a location in memory
for this specific variable The content of this location is viewed as
the address of another place in memory where we have stored an
integer.

Note that in C++ it is common to writeint � pointer while in C one usually writesint �pointer.
Here are some examples of legal C/C++ expressions.name = 0x56; /* name gets the hexadecimal value hex 56. */pointer = &name; /* pointer points to name. */printf("Address of name = %p",pointer); /* writes out the address of name. */printf("Value of name= %d",*pointer); /* writes out the value of name. */

Here’s a program which illustrates some of these topics.

programs/chap2/program7.cpp

1 us ing namespace s t d ;
2 main ( )
3 {
4 i n t var ;
5 i n t � p o i n t e r ;
6
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7 p o i n t e r = & var ;
8 va r = 421 ;
9 p r i n t f ("Address of the integer variable var : %p\n" ,& var ) ;

10 p r i n t f ("Value of var : %d\n" , va r ) ;
11 p r i n t f ("Value of the integer pointer variable: %p\n" , p o i n t e r )

;
12 p r i n t f ("Value whi
h pointer is pointing at : %d\n" ,� p o i n t e r )

;
13 p r i n t f ("Address of the pointer variable : %p\n" ,& p o i n t e r ) ;
14 }

Line Comments

4 � Defines an integer variable var.
5 � Define an integer pointer – reserves space in memory.
7 � The content of the adddress of pointer is the address of var.
8 � The value of var is 421.
9 � Writes the address of var in hexadecimal notation for pointers %p.
10 � Writes the value of var in decimal notation%d.

The ouput of this program, compiled with g++, readsAddress of the integer variable var : 0xbfffeb74Value of var: 421Value of integer pointer variable : 0xbfffeb74The value whi
h pointer is pointing at : 421Address of the pointer variable : 0xbfffeb70
In the next example we consider the link between arrays and pointers.int matr[2℄ defines a matrix with two integer members –matr[0℄ ogmatr[1℄.matr is a pointer tomatr[0℄.(matr + 1) is a pointer tomatr[1℄.

programs/chap2/program8.cpp

1 us ing namespace s t d ;
2 # i n c l u d e d < ios t ream >
3 i n t main ( )
4 {
5 i n t matr [ 2 ] ;
6 i n t � p o i n t e r ;
7 p o i n t e r = & matr [ 0 ] ;
8 matr [ 0 ] = 3 2 1 ;
9 matr [ 1 ] = 3 2 2 ;
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10 p r i n t f ("\nAddress of the matrix element matr[1℄: %p" ,& matr
[ 0 ] ) ;

11 p r i n t f ("\nValue of the matrix element matr[1℄; %d" , matr [ 0 ] )
;

12 p r i n t f ("\nAddress of the matrix element matr[2℄: %p" ,& matr
[ 1 ] ) ;

13 p r i n t f ("\nValue of the matrix element matr[2℄: %d\n" , matr
[ 1 ] ) ;

14 p r i n t f ("\nValue of the pointer : %p" , p o i n t e r ) ;
15 p r i n t f ("\nValue whi
h pointer points at : %d" ,� p o i n t e r ) ;
16 p r i n t f ("\nValue whi
h (pointer+1) points at: %d\n" ,� (

p o i n t e r +1) ) ;
17 p r i n t f ("\nAddress of the pointer variable: %p\n" ,& p o i n t e r ) ;
18 }

You should especially pay attention to the following

Line

5 � Declaration of an integer array matr with two elements
6 � Declaration of an integer pointer
7 � The pointer is initialized to point at the first element of thearray matr.
8–9 � Values are assigned to the array matr.

The ouput of this example, compiled again with g++, isAddress of the matrix element matr[1℄: 0xbfffef70Value of the matrix element matr[1℄; 321Address of the matrix element matr[2℄: 0xbfffef74Value of the matrix element matr[2℄: 322Value of the pointer: 0xbfffef70The value pointer points at: 321The value that (pointer+1) points at: 322Address of the pointer variable : 0xbfffef6

2.4.3 Macros in C/C++

In C we can define macros, typically global constants or functions through thedefinestatements
shown in the simple C-example below for

1 . # d e f i n e ONE 1
2 . # d e f i n e TWO ONE + ONE
3 . # d e f i n e THREE ONE + TWO
4 .
5 . main ( )
6 . {
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7 . p r i n t f ("ONE=%d, TWO=%d, THREE=%d" ,ONE,TWO, THREE) ;
8 . }

In C++ the usage of macros is discouraged and you should rather use the declaration for con-
stant variables. You would then replace a statement like#define ONE 1with const int ONE = 1;.
There is typically much less use of macros in C++ than in C. Similarly, In C we could define
macros for functions as well, as seen below.

1 . # d e f i n e MIN( a , b ) ( ( ( a ) < ( b ) ) ? ( a ) : ( b ) )
2 . # d e f i n e MAX( a , b ) ( ( ( a ) > ( b ) ) ? ( a ) : ( b ) )
3 . # d e f i n e ABS( a ) ( ( ( a ) < 0 ) ?�( a ) : ( a ) )
4 . # d e f i n e EVEN( a ) ( ( a ) % 2 = = 0 ? 1 : 0 )
5 . # d e f i n e TOASCII ( a ) ( ( a ) & 0 x7f )

In C++ we would replace such function definition by employingso-calledinline functions. Three
of the above functions could then read

i n l i n e double MIN( double a , double b ) ( re tu rn ( ( ( a ) < ( b ) ) ? ( a
) : ( b ) ) ; )

i n l i n e double MAX( double a , double b ) ( re tu rn ( ( ( a ) > ( b ) ) ? ( a
) : ( b ) ) ; )

i n l i n e double ABS( double a ) ( re tu rn ( ( ( a ) < 0 ) ? �( a ) : ( a )
) ; )

where we have defined the transferred variables to be of typedouble. The functions also return a
double type. These functions could easily be generalized through the use of classes and templates,
see chapter 5, to return whather types of real, complex or integer variables.

Inline functions are very useful, especially if the overhead for calling a function implies a
significant fraction of the total function call cost. When such function call overhead is significant,
a function definition can be preceded by the keywordinline . When this function is called, we
expect the compiler to generate inline code without function call overhead. However, although
inline functions eliminate function call overhead, they can introduce other overheads. When a
function is inlined, its code is duplicated for each call. Excessive use ofinline may thus generate
large programs. Large programs can cause excessive paging in virtual memory systems. Too
many inline functions can also lengthen compile and link times, on the other hand not inlining
small functions like the above that do small computations, can make programs bigger and slower.
However, most modern compilers know better than programmerwhich functions to inline or not.
When doing this, you should also test various compiler options. With the compiler option�O3
inlining is done automatically by basically all modern compilers.

A good strategy, recommended in many C++ textbooks, is to write a code without inline
functions first. As we also suggested in the introductory chapter, you should first write a as simple
and clear as possible program, without a strong emphasis on computational speed. Thereafter,
when profiling the program one can spot small functions whichare called many times. These
functions can then be candidates for inlining. If the overall time comsumption is reduced due
to inlining specific functions, we can proceed to other sections of the program which could be
speeded up.
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Another problem with inlined functions is that on some systems debugging an inline function
is difficult because the function does not exist at runtime.

2.4.4 Structures in C/C++ and TYPE in Fortran 90/95

A very important part of a program is the way we organize our data and the flow of data when
running the code. This is often a neglected aspect especially during the development of an
algorithm. A clear understanding of how data are represented makes the program more readable
and easier to maintain and extend upon by other users. Till now we have studied elementary
variable declarations through keywords likeint or INTEGER, double or REAL(KIND(8) andchar
or its Fortran 90 equivalentCHARACTER. These declarations could also be extended to general
multi-dimensional arrays.

However, C/C++ and Fortran 90/95 offer other ways as well by which we can organize our
data in a more transparent and reusable way. One of these options is through thestruct declara-
tion of C/C++, or the correspondingly similarTYPE in Fortran 90/95. The latter data type will
also be discussed in chapter 5 in connection with classes andobject-based programming using
Fortran 90/95.

The following example illustrates how we could make a general variable which can be reused
in defining other variables as well.

Suppose you would like to make a general program which treatsquantum mechanical prob-
lems from both atomic physics and nuclear physics. In atomicand nuclear physics the single-
particle degrees are represented by quantum numbers such orbital angular momentum, total
angular momentum, spin and energy. An independent particlemodel is often assumed as the
starting point for building up more complicated many-body correlations in systems with many
interacting particles. In atomic physics the effective degrees of freedom are often reduced to
electrons interacting with each other, while in nuclear physics the system is described by neu-
trons and protons. The structuresingle_particle_descriptcontains a list over different quantum
numbers through various pointers which are initialized by acalling function.

s t r u c t s i n g l e _ p a r t i c l e _ d e s c r i p t {
i n t t o t a l _ o r b i t s ;
i n t � n ;
i n t � l o r b ;
i n t � m_l ;
i n t � j ang ;
i n t � s p i n ;
double� energy ;
char � o r b i t _ s t a t u s

} ;

To describe an atom like Neon we would need three single-particle orbits to describe the ground
state wave function if we use a single-particle picture, i.e., the1s, 2s and2p single-particle orbits.
These orbits have a degeneray of2(2l + 1), where the first number stems from the possible spin
projections and the second from the possible projections ofthe orbital momentum. In total there
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are 10 possible single-particle orbits when we account for spin and orbital momentum projec-
tions. In this case we would thus need to allocate memory for arrays containing 10 elements.

The above structure is written in a generic way and it can be used to define other variables
as well. For electrons we could writestruct single_particle_descript electrons; and is a new
variable with the nameele
trons containing all the elements ofsingle_parti
le_des
ript.

The following program segment illustrates how we access these elements To access these
elements we could e.g., read from a given device the various quantum numbers:

f o r ( i n t i = 0 ; i < e l e c t r o n s . t o t a l _ o r b i t s ; i ++) {
cou t < < ‘ ‘ Read i n t he quantum numbersf o r e l e c t r o n i : ‘ ‘ < < i

< < end l ;
c i n > > e l e c t r o n s . n [ i ] ;
c i n > e l e c t r o n s . l o r b [ i ] ;
c i n > > e l e c t r o n s . m_l [ i ] ;
c i n > > e l e c t r o n s . jang [ i ] ;
c i n > > e l e c t r o n s . s p i n [ i ] ;

}

The structuresingle_parti
le_des
ript can also be used for defining quantum numbers of
other particles as well, such as neutrons and protons throughthe new variablesstruct single_particle_descript
protonsandstruct single_particle_descript neutrons

The corresponding declaration in Fortran is given by theTYPE construct, seen in the following
example.

TYPE , PUBLIC : : s i n g l e _ p a r t i c l e _ d e s c r i p t
INTEGER : : t o t a l _ o r b i t s
INTEGER , DIMENSION ( : ) , POINTER : : n , l o rb , jang , sp in , m_l
CHARACTER ( LEN=10) , DIMENSION ( : ) , POINTER : : o r b i t _ s t a t u s
DOUBLE PRECISION , DIMENSION ( : ) , POINTER : : energy

END TYPE s i n g l e _ p a r t i c l e _ d e s c r i p t

This structure can again be used to define variables likeele
trons, protons andneutrons
through the statementTYPE ( single_particle_descript ) :: electrons , protons , neutrons. More
detailed examples on the use of these variable declarationswill be given later.



Chapter 3

Numerical differentiation

3.1 Introduction

Numerical integration and differentiation are some of the most frequently needed methods in
computational physics. Quite often we are confronted with the need of evaluating eitherf 0
or an integral

R f(x)dx. The aim of this chapter is to introduce some of these methodswith
a critical eye on numerical accuracy, following the discussion in the previous chapter. More
refined methods such as Richardson’s deferred extrapolation will also be discussed at the end of
this chapter.

The next section deals essentially with topics from numerical differentiation. There we
present also the most commonly used formulae for computing first and second derivatives, for-
mulae which in turn find their most important applications inthe numerical solution of ordinary
and partial differential equations. This section serves also the scope of introducing some more
advanced C/C++-programming concepts, such as call by reference and value, reading and writing
to a file and the use of dynamic memory allocation.

3.2 Numerical differentiation

The mathematical definition of the derivative of a functionf(x) isdf(x)dx = limh!0 f(x+ h)� f(x)h (3.1)

whereh is the step size. If we use a Taylor expansion forf(x) we can writef(x+ h) = f(x) + hf 0(x) + h2f 00(x)2 + : : : (3.2)

We can then set the computed derivativef 0
(x) asf 0
(x) � f(x+ h)� f(x)h � f 0(x) + hf 00(x)2 + : : : (3.3)

41
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Assume now that we will employ two points to represent the functionf by way of a straight line
betweenx andx + h. Fig. 3.1 illustrates this subdivision.

This means that we could represent the derivative withf 02(x) = f(x+ h)� f(x)h +O(h); (3.4)

where the suffix2 refers to the fact that we are using two points to define the derivative and the
dominating error goes likeO(h). This is the forward derivative formula. Alternatively, wecould
use the backward derivative formulaf 02(x) = f(x)� f(x� h)h +O(h): (3.5)

If the second derivative is close to zero, this simple two point formula can be used to approximate
the derivative. If we however have a function likef(x) = a+ bx2, we see that the approximated
derivative becomes f 02(x) = 2bx + bh; (3.6)

while the exact answer is2bx. Unlessh is made very small, andb is not too large, we could
approach the exact answer by choosing smaller and smaller and values forh. However, in this
case, the subtraction in the numerator,f(x+ h)� f(x) can give rise to roundoff errors.

A better approach in case of a quadratic expression forf(x) is to use a 3-step formula where
we evaluate the derivative on both sides of a chosen pointx0 using the above forward and back-
ward two-step formulae and taking the average afterward. Weperform again a Taylor expansion
but now aroundx0 � h, namelyf(x = x0 � h) = f(x0)� hf 0 + h2f 002 � h3f 0006 +O(h4); (3.7)

which we rewrite as f�h = f0 � hf 0 + h2f 002 � h3f 0006 +O(h4): (3.8)

Calculating bothf�h and subtracting we obtain thatf 03 = fh � f�h2h � h2f 0006 +O(h3); (3.9)

and we see now that the dominating error goes likeh2 if we truncate at the scond derivative.
We call the termh2f 000=6 the truncation error. It is the error that arises because at some stage in
the derivation, a Taylor series has been truncated. As we will see below, truncation errors and
roundoff errors play an equally important role in the numerical determination of derivatives.

For our expression with a quadratic functionf(x) = a + bx2 we see that the three-point
formulaf 03 for the derivative gives the exact answer2bx. Thus, if our function has a quadratic
behavior inx in a certain region of space, the three-point formula will result in reliable first
derivatives in the interval[�h; h℄. Using the relationfh � 2f0 + f�h = h2f 00 +O(h4); (3.10)
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x0 x0+hx0-hx0-2h x0+2h

f(x0) f(x0+h)f(x0-h)

Figure 3.1: Demonstration of the subdivision of thex-axis into small stepsh. See text for
discussion.

we can also define higher derivatives like e.g.,f 00 = fh � 2f0 + f�hh2 +O(h2): (3.11)

We could also define five-points formulae by expanding to two steps on each side ofx0.
Using a Taylor expansion aroundx0 in a region[�2h; 2h℄ we havef�2h = f0 � 2hf 0 + 2h2f 00 � 4h3f 0003 +O(h4); (3.12)

with a first derivative given byf 05
 = f�2h � 8f�h + 8fh � f2h12h +O(h4); (3.13)

with a dominating error of the order ofh4. This formula can be useful in case our function is
represented by a fourth-order polynomial inx in the region[�2h; 2h℄.

It is possible to show that the widely used formulae for the first and second derivatives of a
function can be written as fh � f�h2h = f 00 + 1Xj=1 f (2j+1)0(2j + 1)!h2j; (3.14)
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and fh � 2f0 + f�hh2 = f 000 + 2 1Xj=1 f (2j+2)0(2j + 2)!h2j; (3.15)

and we note that in both cases the error goes likeO(h2j). These expressions will also be used
when we evaluate integrals.

To show this for the first and second derivatives starting with the three pointsf�h = f(x0�h),f0 = f(x0) andfh = f(x0 + h), we have that the Taylor expansion aroundx = x0 givesa�hf�h + a0f0 + ahfh = a�h 1Xj=0 f (j)0j! (�h)j + a0f0 + ah 1Xj=0 f (j)0j! (h)j; (3.16)

wherea�h, a0 andah are unknown constants to be chosen so thata�hf�h + a0f0 + ahfh is the
best possible approximation forf 00 andf 000 . Eq. (3.16) can be rewritten asa�hf�h + a0f0 + ahfh = [a�h + a0 + ah℄ f0+ [ah � a�h℄ hf 00 + [a�h + ah℄ h2f 0002 + 1Xj=3 f (j)0j! (h)j �(�1)ja�h + ah� : (3.17)

To determinef 00, we require in the last equation thata�h + a0 + ah = 0; (3.18)�a�h + ah = 1h; (3.19)

and a�h + ah = 0: (3.20)

These equations have the solutiona�h = �ah = � 12h; (3.21)

and a0 = 0; (3.22)

yielding fh � f�h2h = f 00 + 1Xj=1 f (2j+1)0(2j + 1)!h2j:
To determinef 000 , we require in the last equation thata�h + a0 + ah = 0; (3.23)�a�h + ah = 0; (3.24)
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and a�h + ah = 2h2 : (3.25)

These equations have the solutiona�h = �ah = � 1h2 ; (3.26)

and a0 = � 2h2 ; (3.27)

yielding fh � 2f0 + f�hh2 = f 000 + 2 1Xj=1 f (2j+2)0(2j + 2)!h2j:
3.2.1 The second derivative ofex
As an example, let us calculate the second derivatives ofexp (x) for various values ofx. Fur-
thermore, we will use this section to introduce three important C/C++-programming features,
namely reading and writing to a file, call by reference and call by value, and dynamic memory
allocation. We are also going to split the tasks performed bythe program into subtasks. We
define one function which reads in the input data, one which calculates the second derivative and
a final function which writes the results to file.

Let us look at a simple case first, the use ofprintf andscanf. If we wish to print a variable
defined asdoublespeed_of_sound;we could write e.g.,

p r i n t f ( ‘ ‘ speed_o f_sound = % l f \ n ’ ’ , speed_o f_sound ) ;

In this case we say that we transfer the value of this specific variable to the functionprintf .
The functionprintf can however not change the value of this variable(there is no need to do so
in this case). Such a call of a specific function is calledcall by value. The crucial aspect to keep
in mind is that the value of this specific variable does not change in the called function.

When do we use call by value? And why care at all? We do actuallycare, because if a called
function has the possibility to change the value of a variable when this is not desired, calling
another function with this variable may lead to totally wrong results. In the worst cases you may
even not be able to spot where the program goes wrong.

We do however use call by value when a called function simply receives the value of the
given variable without changing it.

If we however wish to update the value of say an array in a called function, we refer to this
call ascall by reference. What is transferred then is the address of the first element of the array,
and the called function has now access to where that specific variable ’lives’ and can thereafter
change its value.

The functionscanf is then an example of a function which receives the address ofa variable
and is allowed to modify it. Afterall, when callingscanf we are expecting a new value for a
variable. A typical call could bescanf(‘‘% lf \n ’’, &speed_of_sound);.

Consider now the following program



46 CHAPTER 3. NUMERICAL DIFFERENTIATION==== This program module== demonstrates memory allocation and data transfer in== between functions in C++==#in
lude <stdio.h> == Standard ANSI-C++ include files#in
lude <stdlib.h>
int main(int argc,char �argv[])
{

int a: == line 1
int �b; == line 2

a = 10; == line 3
b = new int[10]; /= line 4
for (i = 0; i < 10; i++) {

b[i] = i; == line 5
}
func( a,b); == line 6

return 0;
} == End: function main()

void func( int x, int �y) == line 7
{

x += 7; == line 8�y += 10; == line 9
y[6] += 10; == line 10
return ; == line 11

} == End: function func()

There are several features to be noted.� Lines 1,2: Declaration of two variables a and b. The compilerreserves two locations in
memory. The size of the location depends on the type of variable. Two properties are
important for these locations – the address in memory and thecontent in the location.

The value of a: a. The address of a: &a
The value of b: *b. The address of b: &b.� Line 3: The value of a is now 10.� Line 4: Memory to store 10 integers is reserved. The address to the first location is stored
in b. Address to element number 6 is given by the expression (b+ 6).� Line 5: All 10 elements of b are given values: b[0] = 0, b[1] = 1,....., b[9] = 9;
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to the first statement in func(). With respect to data the following happens. The content
of a (= 10) and the content of b (a memory address) are copied toa stack (new memory
location) associated with the function func()� Line 7: The variable x and y are local variables in func(). They have the values – x = 10, y
= address of the first element in b in the main().� Line 8: The local variable x stored in the stack memory is changed to 17. Nothing happens
with the value a in main().� Line 9: The value of y is an address and the symbol *y means the position in memory
which has this address. The value in this location is now increased by 10. This means that
the value of b[0] in the main program is equal to 10. Thus func() has modified a value in
main().� Line 10: This statement has the same effect as line 9 except that it modifies the element
b[6] in main() by adding a value of 10 to what was there originally, namely 5.� Line 11: The program counter returns to main(), the next expression afterfunc(a,b);. All
data on the stack associated with func() are destroyed.� The value of a is transferred to func() and stored in a new memory location called x. Any
modification of x in func() does not affect in any way the valueof a in main(). This is called
transfer of data by value. On the other hand the next argument in func() is an address
which is transferred to func(). This address can be used to modify the corresponding value
in main(). In the C language it is expressed as a modification of the value which y points
to, namely the first element of b. This is calledtransfer of data by referenceand is a
method to transfer data back to the calling function, in thiscase main().

C++ allows however the programmer to use solely call by reference (note that call by ref-
erence is implemented as pointers). To see the difference between C and C++, consider the
following simple examples. In C we would write

i n t n ; n = 8 ;
func (&n ) ; /� &n i s a p o i n t e r t o n � /
. . . .
void func ( i n t � i )
{ � i = 1 0 ; /� n i s changed t o 1 0� /

. . . .
}

whereas in C++ we would write

i n t n ; n = 8 ;
func ( n ) ; / / j u s t t r a n s f e r n i t s e l f
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. . . .
void func ( i n t & i )
{

i = 1 0 ; / / n i s changed t o 10
. . . .

}

The reason why we emphasize the difference between call by value and call by reference is that
it allows the programmer to avoid pitfalls like unwanted changes of variables. However, many
people feel that this reduces the readability of the code.

Initialisations and main program

In every program we have to define the functions employed. Thestyle chosen here is to declare
these functions at the beginning, followed thereafter by the main program and the detailed task
performed by each function. Another possibility is to include these functions and their statements
before the main program, viz., the main program appears at the very end. I find this programming
style less readable however. A further option, specially inconnection with larger projects, is to
include these function definitions in a user defined header file.

/��� Program t o compute t he second d e r i v a t i v e o f exp ( x ) .�� Three c a l l i n g f u n c t i o n s are i n c l u d e d�� i n t h i s v e r s i o n . In one f u n c t i o n we read i n t he data from
screen ,�� t he ne x t f u n c t i o n computes t he second d e r i v a t i v e�� w h i l e t he l a s t f u n c t i o n p r i n t s ou t data t o s c r e e n .� /

us ing namespace s t d ;
# inc lude < ios t ream >

void i n i t i a l i s e ( double � , double � , i n t � ) ;
void s e c o n d _ d e r i v a t i v e (i n t , double , double , double � , double � ) ;
void o u t p u t ( double � , double � , double , i n t ) ;

i n t main ( )
{

/ / d e c l a r a t i o n s o f v a r i a b l e s
i n t number_o f_s teps ;
double x , i n i t i a l _ s t e p ;
double � h_step , � c om pu t e d_ d e r i v a t i v e ;
/ / read i n i n p u t data from s c r e e n
i n i t i a l i s e (& i n i t i a l _ s t e p , & x , & number_o f_s teps ) ;
/ / a l l o c a t e space i n memory f o r t he one�d i m e ns i ona l a r r ay s
/ / h_s t e p and c o m p u t e d _ d e r i v a t i v e
h_s t e p = new double[ number_o f_s teps ] ;
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c om pu t e d_ d e r i v a t i v e =new double[ number_o f_s teps ] ;
/ / compute t he second d e r i v a t i v e o f exp ( x )
s e c o n d _ d e r i v a t i v e ( number_of_s teps , x , i n i t i a l _ s t e p , h_step ,

c om pu t e d_ d e r i v a t i v e ) ;
/ / Then we p r i n t t he r e s u l t s t o f i l e
o u t p u t ( h_step , c om pu t e d_de r i va t i ve , x , number_o f_s teps) ;
/ / f r e e memory
d e l e t e [ ] h_s t e p ;
d e l e t e [ ] c om pu t e d_ d e r i v a t i v e ;
re tu rn 0 ;

} / / end main program

We have defined three additional functions, one which reads in from screen the value ofx, the
initial step lengthh and the number of divisions by 2 ofh. This function is called initialise .
To calculate the second derivatives we define the functionsecond_derivative. Finally, we have a
function which writes our results together with a comparison with the exact value to a given file.
The results are stored in two arrays, one which contains the given step lengthh and another one
which contains the computed derivative.

These arrays are defined as pointers through the statementdouble�h_step ,� computed_derivative
; A call in the main function to the functionsecond_derivativelooks then like thissecond_derivative
( number_of_steps , x , h_step , computed_derivative ) ;while the called function is declared in the
following wayvoid second_derivative (int number_of_steps ,doublex , double�h_step ,double�computed_derivati
) ; indicating thatdouble�h_step ,double�computed_derivative ;are pointers and that we transfer
the address of the first elements. The other variablesint number_of_steps ,double x; are trans-
ferred by value and are not changed in the called function.

Another aspect to observe is the possibility of dynamical allocation of memory through the
new function. In the included program we reserve space in memoryfor these three arrays in
the following wayh_step =new double[number_of_steps];and computed_derivative =new double
[number_of_steps];When we no longer need the space occupied by these arrays, we free memory
through the declarationsdelete [] h_step ;anddelete [] computed_derivative ;

The function initialise

/ / Read i n from s c r e e n t he i n i t i a l s tep , t he number o f s t e p s
/ / and t he v a l ue o f x

void i n i t i a l i s e ( double � i n i t i a l _ s t e p , double � x , i n t �
number_o f_s teps )

{
p r i n t f ( "Read in from s
reen initial step , x and number of steps\n" )

;
s c a n f ("%lf %lf %d" , i n i t i a l _ s t e p , x , number_o f_s teps ) ;
re tu rn ;

} / / end o f f u n c t i o n i n i t i a l i s e
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This function receives the addresses of the three variablesdouble� initial_step , double�x
, int �number_of_steps;and returns updated values by reading from screen.

The function second_derivative

/ / Th is f u n c t i o n computes t he second d e r i v a t i v e

void s e c o n d _ d e r i v a t i v e (i n t number_of_s teps ,double x ,
double i n i t i a l _ s t e p , double � h_step ,
double � c om pu t e d_ d e r i v a t i v e )

{
i n t c o u n t e r ;
double y , d e r i v a t i v e , h ;
/ / c a l c u l a t e t he s t e p s i z e
/ / i n i t i a l i s e t he d e r i v a t i v e , y and x ( i n m inu tes )
/ / and i t e r a t i o n c oun t e r
h = i n i t i a l _ s t e p ;
/ / s t a r t comput ing f o r d i f f e r e n t s t e p s i z e s
f o r ( c o u n t e r = 0 ; c o u n t e r < number_o f_s teps ; c o u n t e r + + )
{

/ / s e t up a r r ay s w i th d e r i v a t i v e s and s t e p s i z e s
h_s t e p [ c o u n t e r ] = h ;
c om pu t e d_ d e r i v a t i v e [ c o u n t e r ] =

( exp ( x+h )�2.�exp ( x ) +exp ( x�h ) ) / ( h�h ) ;
h = h�0 . 5 ;

} / / end o f do loop
re tu rn ;

} / / end o f f u n c t i o n second d e r i v a t i v e

The loop over the number of steps serves to compute the secondderivative for different values
of h. In this function the step is halved for every iteration. Thestep values and the derivatives
are stored in the arraysh_stepanddouble computed_derivative.

The output function

This function computes the relative error and writes to a chosen file the results.

/ / f u n c t i o n t o w r i t e ou t t he f i n a l r e s u l t s
void o u t p u t (double � h_step , double � c om pu t e d_de r i va t i ve ,double x ,

i n t number_o f_s teps )
{

i n t i ;
FILE � o u t p u t _ f i l e ;
o u t p u t _ f i l e = fopen ("out.dat" , "w" ) ;
f o r ( i = 0 ; i < number_o f_s teps ; i ++)

{
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f p r i n t f ( o u t p u t _ f i l e , "%12.5E %12.5E \n" ,
log10 ( h_s t e p [ i ] ) ,
log10 ( f a bs ( c om pu t e d_ d e r i v a t i v e [ i ]�exp ( x ) ) / exp ( x ) ) ) ;

}
f c l o s e ( o u t p u t _ f i l e ) ;

} / / end o f f u n c t i o n o u t p u t

The last function here illustrates how to open a file, write and read possible data and then close it.
In this case we have fixed the name of file. Another possibilityis obviously to read the name of
this file together with other input parameters. The way the program is presented here is slightly
unpractical since we need to recompile the program if we wishto change the name of the output
file.

An alternative is represented by the following program. This program reads from screen the
names of the input and output files.

1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3 i n t c o l :
4
5 i n t main ( i n t argc , char � argv [ ] )
6 {
7 FILE � in , � ou t ;
8 i n t c ;
9 i f ( a rgc < 3 ) {
10 p r i n t f ("You have to read in :\n" ) ;
11 p r i n t f ("in_file and out_file \n" ) ;
12 e x i t ( 0 ) ;
13 i n = fopen ( argv [ 1 ] , "r" ) ; } / / r e t u r n s p o i n t e r t o t he i n _ f i l e
14 i f ( i nn = = NULL ) { / / can ’ t f i n d i n _ f i l e
15 p r i n t f ("Can't find the input file %s\n" , a rgv [ 1 ] ) ;
16 e x i t ( 0 ) ;
17 }
18 ou t = fopen ( argv [ 2 ] ,"w" ) ; / / r e t u r n s a p o i n t e r t o t he

o u t _ f i l e
19 i f ( u t = = NULL ) { / / can ’ t f i n d o u t _ f i l e
20 p r i n t f ("Can't find the output file %s\n" , a rgv [ 2 ] ) ;
21 e x i t ( 0 ) ;
22 }

. . . program s t a t e m e n t s

23 f c l o s e ( i n ) ;
24 f c l o s e ( ou t ) ;
25 re tu rn 0 ;
}

This program has several interesting features.
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Line Program comments

5 � main() takes three arguments, given by argc. argv points to the fol-
lowing: the name of the program, the first and second arguments, in
this case file names to be read from screen. kommandoen.

7 � C/C++ has adata type calledFILE. The pointersin andout point
to specific files. They must be of the typeFILE.

10 � The command line has to contain 2 filenames as parameters.
13–17 � The input files has to exit, else the pointer returns NULL. It has only

read permission.
18–22 � Same for the output file, but now with write permission only.
23–24 � Both files are closed before the main program ends.

The above represents a standard procedure in C for reading file names. C++ has its own class
for such operations. We will come back to such features later.

Results

In Table 3.1 we present the results of anumerical evaluationfor various step sizes for the second
derivative ofexp (x) using the approximationf 000 = fh�2f0+f�hh2 . The results are compared with
the exact ones for variousx values. Note well that as the step is decreased we get closer to thex h = 0:1 h = 0:01 h = 0:001 h = 0:0001 h = 0:0000001 Exact

0.0 1.000834 1.000008 1.000000 1.000000 1.010303 1.000000
1.0 2.720548 2.718304 2.718282 2.718282 2.753353 2.718282
2.0 7.395216 7.389118 7.389057 7.389056 7.283063 7.389056
3.0 20.102280 20.085704 20.085539 20.085537 20.250467 20.085537
4.0 54.643664 54.598605 54.598155 54.598151 54.711789 54.598150
5.0 148.536878 148.414396 148.413172 148.413161 150.635056 148.413159

Table 3.1: Result for numerically calculated second derivatives of exp (x). A comparison is
made with the exact value. The step size is also listed.

exact value. However, if it is further decreased, we run intoproblems of loss of precision. This
is clearly seen forh = 0:0000001. This means that even though we could let the computer run
with smaller and smaller values of the step, there is a limit for how small the step can be made
before we loose precision.

3.2.2 Error analysis

Let us analyze these results in order to see whether we can finda minimal step length which does
not lead to loss of precision. Furthermore In Fig. 3.2 we haveplotted� = log10�����f 00
omputed � f 00exa
tf 00exa
t ����� ; (3.28)
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Figure 3.2: Log-log plot of the relative error of the second derivative ofex as function of decreas-
ing step lengthsh. The second derivative was computed forx = 10 in the program discussed
above. See text for further details

as function oflog10(h). We used an intial step length ofh = 0:01 and fixedx = 10. For large
values ofh, that is�4 < log10(h) < �2 we see a straight line with a slope close to 2. Close tolog10(h) � �4 the relative error starts increasing and our computed derivative with a step sizelog10(h) < �4, may no longer be reliable.

Can we understand this behavior in terms of the discussion from the previous chapter? In
chapter 2 we assumed that the total error could be approximated with one term arising from the
loss of numerical precision and another due to the truncation or approximation made, that is�tot = �approx + �ro: (3.29)

For the computed second derivative, Eq. (3.15), we havef 000 = fh � 2f0 + f�hh2 � 2 1Xj=1 f (2j+2)0(2j + 2)!h2j;
and the truncation or approximation error goes like�approx � f (4)012 h2:
If we were not to worry about loss of precision, we could in principle makeh as small as possible.
However, due to the computed expression in the above programexamplef 000 = fh � 2f0 + f�hh2 = (fh � f0) + (f�h � f0)h2 ;
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we reach fairly quickly a limit for where loss of precision due to the subtraction of two nearly
equal numbers becomes crucial. If(f�h � f0) are very close, we have(f�h � f0) � �M , wherej�M j � 10�7 for single andj�M j � 10�15 for double precision, respectively.

We have then jf 000 j = ����(fh � f0) + (f�h � f0)h2 ���� � 2�Mh2 :
Our total error becomes j�totj � 2�Mh2 + f (4)012 h2: (3.30)

It is then natural to ask which value ofh yields the smallest total error. Taking the derivative ofj�totj with respect toh results in h =  24�Mf (4)0 !1=4 : (3.31)

With double precision andx = 10 we obtainh � 10�4: (3.32)

Beyond this value, it is essentially the loss of numerical precision which takes over. We note
also that the above qualitative argument agrees seemingly well with the results plotted in Fig.
3.2 and Table 3.1. The turning point for the relative error atapproximatelyh � �10�4 reflects
most likely the point where roundoff errors take over. If we had used single precision, we would
geth � 10�2. Due to the subtractive cancellation in the expression forf 00 there is a pronounced
detoriation in accuracy ash is made smaller and smaller.

It is instructive in this analysis to rewrite the numerator of the computed derivative as(fh � f0) + (f�h � f0) = (ex+h � ex) + (ex�h � ex);
as (fh � f0) + (f�h � f0) = ex(eh + e�h � 2);
since it is the difference(eh + e�h � 2) which causes the loss of precision. The results, still
for x = 10 are shown in the Table 3.2. We note from this table that ath � �10�8 we have
essentially lost all leading digits.

From Fig. 3.2 we can read off the slope of the curve and therebydetermine empirically how
truncation errors and roundoff errors propagate. We saw that for�4 < log10(h) < �2, we could
extract a slope close to2, in agreement with the mathematical expression for the truncation error.

We can repeat this for�10 < log10(h) < �4 and extract a slope� �2. This agrees again
with our simple expression in Eq. (3.30).

3.2.3 How to make figures with Gnuplot

Gnuplot is a simple plotting program which follows the Linux/Unix operating system. It is easy
to use and allows also to generate figure files which can be included in aLATEX document. Here



3.2. NUMERICAL DIFFERENTIATION 55h eh + e�h eh + e�h � 210�1 2.0100083361116070 1.0008336111607230�10�210�2 2.0001000008333358 1.0000083333605581�10�410�3 2.0000010000000836 1.0000000834065048�10�610�5 2.0000000099999999 1.0000000050247593�10�810�5 2.0000000001000000 9.9999897251734637�10�1110�6 2.0000000000010001 9.9997787827987850�10�1310�7 2.0000000000000098 9.9920072216264089�10�1510�8 2.0000000000000000 0.0000000000000000�10010�9 2.0000000000000000 1.1102230246251565�10�1610�10 2.0000000000000000 0.0000000000000000�100
Table 3.2: Result for the numerically calculated numeratorof the second derivative as function
of the step sizeh. The calculations have been made with double precision.

we show how to make simple plots online and how to make postscript versions of the plot or
even a figure file which can be included in aLATEX document. There are other plotting programs
such asxmgraceas well which follow Linux or Unix as operating systems.

In order to check if gnuplot is present typewhi
h gnuplot
If gnuplot is available, simply writegnuplot
to start the program. You will then see the following promptgnuplot>
and type help for a list of various commands and help options.Suppose you wish to plot data
points stored in the filemydata.dat. This file contains two columns of data points, where the
first column refers to the argumentx while the second one refers to a computed function valuef(x).

If we wish to plot these sets of points with gnuplot we just to need to writegnuplot>plot 'mydata.dat' using 1:2 w l
or gnuplot>plot 'mydata.dat' w l
since gnuplot assigns as default the first column as thex-axis. The abbreviationsw l stand for
’with lines’. If you prefer to plot the data points only, write
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For more plotting options, how to make axis labels etc, type help and chooseplot as topic.

Gnuplot will typically display a graph on the screen. If we wish to save this graph as a
postscript file, we can proceed as followsgnuplot>set terminal posts
riptgnuplot>set output 'mydata.ps'gnuplot>plot 'mydata.dat' w l
and you will be the owner of a postscript file calledmydata.ps, which you can display with
ghostviewthrough the callgv mydata.ps

The other alternative is to generate a figure file for the document handling programLATEX.
The advantage here is that the text of your figure now has the same fonts as the remainingLATEX
document. Fig. 3.2 was generated following the steps below.You need to edit a file which ends
with .gnu. The file used to generate Fig. 3.2 is calledderivative.gnu and contains the following
statements, which are a mix ofLATEX andGnuplot statements. It generates a filederivative.tex
which can be included in aLATEX document.set terminal pslatexset output "derivative.tex"set xrange [-15:0℄set yrange [-10:8℄set xlabel "log$_{10}(h)$"set ylabel "$\epsilon$"plot "out.dat" title "Relative error" w l
To generate the filederivative.tex, you need to callGnuplot as followsgnuplot>load 'derivative.gnu'

You can then include this file in aLATEX document as shown here\begin{figure}\begin{
enter}\input{derivative}\end{
enter}\
aption{Log-log plot of the relative error of the se
ondderivative of $e^x$ as fun
tion of de
reasing steplengths $h$. The se
ond derivative was 
omputed for$x=10$ in the program dis
ussed above. See text forfurther details\label{fig:lossofpre
ision}}\end{figure}
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3.3 Richardson’s deferred extrapolation method

Here we will show how one can use the polynomial representation discussed above in order to im-
prove calculational results. We will again study the evaluation of the first and second derivatives
of exp (x) at a given pointx = �. In Eqs. (3.14) and (3.15) for the first and second derivatives,
we noted that the truncation error goes likeO(h2j).

Employing the mid-point approximation to the derivative, the various derivativesD of a given
functionf(x) can then be written asD(h) = D(0) + a1h2 + a2h4 + a3h6 + : : : ; (3.33)

whereD(h) is the calculated derivative,D(0) the exact value in the limith ! 0 andai are
independent ofh. By choosing smaller and smaller values forh, we should in principle be
able to approach the exact value. However, since the derivatives involve differences, we may
easily loose numerical precision as shown in the previous sections. A possible cure is to apply
Richardson’s deferred approach, i.e., we perform calculations with several values of the steph
and extrapolate toh = 0. The philososphy is to combine different values ofh so that the terms
in the above equation involve only large exponents forh. To see this, assume that we mount a
calculation for two values of the steph, one withh and the other withh=2. Then we haveD(h) = D(0) + a1h2 + a2h4 + a3h6 + : : : ; (3.34)

and D(h=2) = D(0) + a1h24 + a2h416 + a3h664 + : : : ; (3.35)

and we can eliminate the term witha1 by combiningD(h=2) + D(h=2)�D(h)3 = D(0)� a2h44 � 5a3h616 : (3.36)

We see that this approximation toD(0) is better than the two previous ones since the error now
goes likeO(h4). As an example, let us evaluate the first derivative of a function f using a step
with lengthsh andh=2. We have thenfh � f�h2h = f 00 +O(h2); (3.37)fh=2 � f�h=2h = f 00 +O(h2=4); (3.38)

which can be combined, using Eq. (3.36) to yield�fh + 8fh=2 � 8f�h=2 + f�h6h = f 00 � h4480f (5): (3.39)
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In practice, what happens is that our approximations toD(0) goes through a series of stepsD(0)0D(1)0 D(0)1D(2)0 D(1)1 D(0)2D(3)0 D(2)1 D(1)2 D(0)3: : : : : : : : : : : : ; (3.40)

where the elements in the first column represent the given approximationsD(k)0 = D(h=2k): (3.41)

This means thatD(0)1 in the second column and row is the result of the extrapolating based onD(0)0 andD(1)0 . An elementD(k)m in the table is then given byD(k)m = D(k)m�1 + D(k+1)m�1 �D(k)m�14m � 1 (3.42)

with m > 0. I.e., it is a linear combination of the element to the left ofit and the element right
over the latter.

In Table 3.1 we presented the results for various step sizes for the second derivative ofexp (x)
usingf 000 = fh�2f0+f�hh2 . The results were compared with the exact ones for variousx values.
Note well that as the step is decreased we get closer to the exact value. However, if it is further
increased, we run into problems of loss of precision. This isclearly seen forh = 0000001. This
means that even though we could let the computer run with smaller and smaller values of the
step, there is a limit for how small the step can be made beforewe loose precision. Consider
now the results in Table 3.3 where we choose to employ Richardson’s extrapolation scheme. In
this calculation we have computed our function with only three possible values for the step size,
namelyh, h=2 andh=4 with h = 0:1. The agreement with the exact value is amazing! The
extrapolated result is based upon the use of Eq. (3.42).



x h = 0:1 h = 0:05 h = 0:025 Extrapolat Error
0.0 1.00083361 1.00020835 1.00005208 1.00000000 0.00000000
1.0 2.72054782 2.71884818 2.71842341 2.71828183 0.00000001
2.0 7.39521570 7.39059561 7.38944095 7.38905610 0.00000003
3.0 20.10228045 20.08972176 20.08658307 20.08553692 0.00000009
4.0 54.64366366 54.60952560 54.60099375 54.59815003 0.00000024
5.0 148.53687797 148.44408109 148.42088912 148.413159100.00000064

Table 3.3: Result for numerically calculated second derivatives of exp (x) using extrapolation.
The first three values are those calculated with three different step sizes,h, h=2 andh=4 withh = 0:1. The extrapolated result toh = 0 should then be compared with the exact ones from
Table 3.1.





Chapter 4

Classes, templates and modules

in preparation (not finished as of 11/26/03)

4.1 Introduction

C++’ strength over C and F77 is the possibility to define new data types, tailored to some prob-
lem.� A user-defined data type contains data (variables) and functions operating on the data� Example: a point in 2D

– data: x and y coordinates of the point

– functions: print, distance to another point, ...� Classes into structures� Pass arguments to methods� Allocate storage for objects� Implement associations� Encapsulate internal details into classes� Implement inheritance in data structures

Classes contain a new data type and the procedures that can beperformed by the class. The
elements (or components) of the data type are the class data members, and the procedures are the
class member functions.
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4.2 A first encounter, the vector class� Class MyVector: a vector� Data: plain C array� Functions: subscripting, change length, assignment to another vector, inner product with
another vector, ...� This examples demonstrates many aspects of C++ programming� Create vectors of a specified length: MyVector v(n);� Create a vector with zero length: MyVector v;� Redimension a vector to length n: v.redim(n);� Create a vector as a copy of another vector w: MyVector v(w);� Extract the length of the vector: const int n = v.size();� Extract an entry: double e = v(i);� Assign a number to an entry: v(j) = e;� Set two vectors equal to each other: w = v;� Take the inner product of two vectors: double a = w.inner(v);� or alternatively a = inner(w,v);� Write a vector to the screen: v.print(cout);

c l a s s MyVector
{
p r i va t e :

double� A ; / / v e c t o r e n t r i e s ( C�ar ray )
i n t l e n g t h ;
void a l l o c a t e (i n t n ) ; / / a l l o c a t e memory , l e n g t h =n
void d e a l l o c a t e ( ) ; / / f r e e memory

pub l i c :
MyVector ( ) ; / / MyVector v ;
MyVector ( i n t n ) ; / / MyVector v ( n ) ;
MyVector ( cons t MyVector & w) ; / / MyVector v (w) ;

~MyVector ( ) ; / / c l e an up dynamic memory

bool redim ( i n t n ) ; / / v . redim (m) ;
MyVector & operator = ( cons t MyVector & w) ; / / v = w;
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double operator ( ) ( i n t i ) cons t ; / / a = v ( i ) ;
double& operator ( ) ( i n t i ) ; / / v ( i ) = a ;

void p r i n t ( s t d : : os t ream & o ) cons t ; / / v . p r i n t ( cou t ) ;
double i n n e r ( cons t MyVector & w) cons t ; / / a = v . i nne r (w) ;
i n t s i z e ( ) cons t { re tu rn l e n g t h ; } / / n = v . s i z e ( ) ;

} ;
\ end { l i s t i n g }
C o n s t r u c t o r s t e l l how we d e c l a r e a v a r i a b l e of t ype MyVectorand how

t h i s v a r i a b l e i s i n i t i a l i z e d
\ beg in { l s t l i s t i n g }

MyVector v ; / / d e c l a r e a v e c t o r o f l e n g t h 0

/ / t h i s a c t u a l l y means c a l l i n g t he f u n c t i o n

MyVector : : MyVector ( )
{ A = NULL ; l e n g t h = 0 ; }

MyVector v ( n ) ; / / d e c l a r e a v e c t o r o f l e n g t h n

/ / means c a l l i n g t he f u n c t i o n

MyVector : : MyVector ( i n t n )
{ a l l o c a t e ( n ) ; }

void MyVector : : a l l o c a t e (i n t n )
{

l e n g t h = n ;
A = new double[ n ] ; / / c r e a t e n doub les i n memory

}

A MyVector object is created (dynamically) at run time, but must also be destroyed when it
is no longer in use. The destructor specifies how to destroy the object:

MyVector : : ~ MyVector ( )
{

d e a l l o c a t e ( ) ;
}

/ / f r e e dynamic memory :
void MyVector : : d e a l l o c a t e ( )
{

d e l e t e [ ] A;
}
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/ / v and w are MyVector o b j e c t s
v = w;
/ / means c a l l i n g
MyVector & MyVector : : operator = ( cons t MyVector & w)
/ / f o r s e t t i n g v = w;
{

redim ( w. s i z e ( ) ) ; / / make v as long as w
i n t i ;
f o r ( i = 0 ; i < l e n g t h ; i ++) { / / ( C a r r ay s s t a r t a t 0 )

A[ i ] = w.A[ i ] ;
}
re tu rn � t h i s ;

}
/ / r e t u r n o f � t h i s , i . e . a MyVector & , a l l ow s n e s t e d
u = v = u_vec = v_vec ;

v . redim ( n ) ; / / make a v o f l e n g t h n

bool MyVector : : redim ( i n t n )
{

i f ( l e n g t h = = n )
re tu rn f a l s e ; / / no need t o a l l o c a t e any t h i ng

e l s e {
i f ( A ! = NULL) {

/ / " t h i s " o b j e c t has a l r e ady a l l o c a t e d memory
d e a l l o c a t e ( ) ;

}
a l l o c a t e ( n ) ;
re tu rn t rue ; / / t he l e n g t h was changed

}
}

MyVector v (w) ; / / t a k e a copy o f w

MyVector : : MyVector (cons t MyVector & w)
{

a l l o c a t e ( w. s i z e ( ) ) ; / / " t h i s " o b j e c t g e t s w ’ s l e n g t h� t h i s = w ; / / c a l l ope r a t o r =
}

/ / a and v are MyVector o b j e c t s ; want t o s e t

a ( j ) = v ( i +1) ;
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/ / t he meaning o f a ( j ) i s d e f i n e d by

i n l i n e double& MyVector : : operator ( ) ( i n t i )
{

re tu rn A[ i �1];
/ / base i nde x i s 1 ( no t 0 as i n C/C++)

}� Inline functions: function body is copied to calling code, no overhead of function call!� Note: inline is just a hint to the compiler; there is no guarantee that the compiler really
inlines the function� Why return a double reference?

double& MyVector : : operator ( ) ( i n t i ) { re tu rn A[ i �1 ] ; }
/ / r e t u r n s a r e f e r e n c e ( ‘ ‘ p o i n t e r ’ ’ ) d i r e c t l y t o A[ i�1]
/ / such t h a t t he c a l l i n g code can change A[ i�1]

/ / g i v e n MyVector a ( n ) , b ( n ) , c ( n ) ;
f o r ( i n t i = 1 ; i <= n ; i ++)

c ( i ) = a ( i )�b ( i ) ;

/ / c om p i l e r i n l i n i n g t r a n s l a t e s t h i s t o :
f o r ( i n t i = 1 ; i <= n ; i ++)

c .A[ i �1 ] = a .A[ i �1]�b .A[ i �1];
/ / or perhaps
f o r ( i n t i = 0 ; i < n ; i ++)

c .A[ i ] = a .A[ i ] � b .A[ i ] ;

/ / more o p t i m i z a t i o n s by a smar t c om p i l e r :
double � ap = & a .A [ 0 ] ; / / s t a r t o f a
double � bp = & b .A [ 0 ] ; / / s t a r t o f b
double � cp = & c .A [ 0 ] ; / / s t a r t o f c
f o r ( i n t i = 0 ; i < n ; i ++)

cp [ i ] = ap [ i ] � bp [ i ] ; / / pure C!

Inlining and the programmer’s complete control with the definition of subscripting allow

void MyVector : : p r i n t ( s t d : : os t ream & o )cons t
{

i n t i ;
f o r ( i = 1 ; i <= l e n g t h ; i ++)

o < < "(" < < i < < ")=" < < (� t h i s ) ( i ) < < '\n' ;
}
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double a = v . i n n e r (w) ;
double MyVector : : i n n e r (cons t MyVector & w) cons t
{

i n t i ; double sum = 0 ;
f o r ( i = 0 ; i < l e n g t h ; i ++)

sum + = A[ i ]�w.A[ i ] ;
/ / a l t e r n a t i v e :
/ / f o r ( i = 1 ; i <= l e n g t h ; i ++) sum += ( � t h i s ) ( i )�w( i ) ;
re tu rn sum ;

}

/ / MyVector v
cou t < < v ;

os t ream & operator < < ( os t ream & o , cons t MyVector & v )
{ v . p r i n t ( o ) ; re tu rn o ; }

/ / must r e t u r n ost ream & f o r n e s t e d o u t p u t o p e r a t o r s :
cou t < < "some text..." < < w;

/ / t h i s i s r e a l i z e d by t h e s e c a l l s :
operator < < ( cout , "some text..." ) ;
operator < < ( cout , w) ;

We can redefine the multiplication operator to mean the innerproduct of two vectors:

double a = v�w ; / / example on a t t r a c t i v e s y n t a x

c l a s s MyVector
{

. . .
/ / compute (� t h i s ) � w
double operator � ( cons t MyVector & w) cons t ;
. . .

} ;

double MyVector : : operator � ( cons t MyVector & w) cons t
{

re tu rn i n n e r (w) ;
}

/ / have some MyVector u , v , w ; doub le a ;
u = v + a�w;
/ / g l o b a l f u n c t i o n ope r a t o r +
MyVector operator + ( cons t MyVector & a , cons t MyVector & b )
{
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MyVector tmp ( a . s i z e ( ) ) ;
f o r ( i n t i = 1 ; i <=a . s i z e ( ) ; i ++)

tmp ( i ) = a ( i ) + b ( i ) ;
re tu rn tmp ;

}
/ / g l o b a l f u n c t i o n ope r a t o r�
MyVector operator � ( cons t MyVector & a , double r )
{

MyVector tmp ( a . s i z e ( ) ) ;
f o r ( i n t i = 1 ; i <=a . s i z e ( ) ; i ++)

tmp ( i ) = a ( i )� r ;
re tu rn tmp ;

}
/ / symmet r i c ope r a t o r : r�a
MyVector operator � ( double r , cons t MyVector & a )
{ re tu rn operator � ( a , r ) ; }

4.3 Classes and templates in C++� Class MyVector is a vector of doubles� What about a vector of floats or ints?� Copy and edit code...?� No, this can be done automatically by use of macros or templates!!

Templates are the native C++ constructs for parameterizingparts of classes

template<typename Type >
c l a s s MyVector
{

Type� A;
i n t l e n g t h ;

pub l i c :
. . .
Type & operator ( ) ( i n t i ) { re tu rn A[ i �1 ] ; }
. . .

} ;

Declarations in user code:

MyVector <double > a ( 10 ) ;
MyVector <i n t > c o u n t e r s ;

Much simpler to use than macros for parameterization.



68 CHAPTER 4. CLASSES, TEMPLATES AND MODULES� It is easy to use class MyVector� Lots of details visible in C and Fortran 77 codes are hidden inside the class� It is not easy to write class MyVector� Thus: rely on ready-made classes in C++ libraries unless youreally want to write develop
your own code and you know what are doing� C++ programming is effective when you build your own high-level classes out of well-
tested lower-level classes

4.4 Using Blitz++ with vectors and matrices

4.5 Building new classes

4.6 MODULE and TYPE declarations in Fortran 90/95

4.7 Object orienting in Fortran 90/95

4.8 An example of use of classes in C++ and Modules in For-
tran 90/95



Chapter 5

Linear algebra

5.1 Introduction

In this chapter we deal with basic matrix operations, such asthe solution of linear equations,
calculate the inverse of a matrix, its determinant etc. Thischapter serves also the purpose of
introducing important programming details such as handling memory allocation for matrices,
introducing the concept of classes and templates and the auxiliary library Blitz++ [?].

The matrices we will deal with are primarily symmetric or hermitian. Thus, before we pro-
ceed with the more detailed description of algorithms, a brief summary of matrix properties may
be appropriate.

For the sake of simplicity, let us look at a (4 � 4) matrixA and a corresponding identity
matrix I A = 0BB� a11 a12 a13 a14a21 a22 a23 a24a31 a32 a33 a34a41 a42 a43 a44 1CCA I = 0BB� 1 0 0 00 1 0 00 0 1 00 0 0 1 1CCA (5.1)

The inverse of a matrix is defined by A�1 �A = I
Other essential features are given in table 5.1.

Finally, an important property of hermitian and symmetric matrices is that they have real
eigenvalues.

5.2 Programming details

In the following discussion, matrices are always two-dimensional arrays while vectors are one-
dimensional arrays. Many programming problems arise from improper treatment of arrays. In
this section we will discuss some important points such as array declaration, memory allocation
and array transfer between functions. We distinguish between two cases: (a) array declarations
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Table 5.1: Matrix properties

Relations Name matrix elementsA = AT symmetric aij = ajiA = �AT ��1 real orthogonal
Pk aikajk =Pk akiakj = ÆijA = A� real matrix aij = a�ijA = Ay hermitian aij = a�jiA = �Ay��1 unitary
Pk aika�jk =Pk a�kiakj = Æij

where the array size is given at compilation time, and (b) where the array size is determined
during the execution of the program, so-called dymanic memory allocation.

5.2.1 Declaration of fixed-sized vectors and matrices

Table 5.2 presents a small program which treats essential features of vector and matrix handling
where the dimensions are declared in the program code.

In line a we have a standard C++ declaration of a vector. The compiler reserves memory
to store five integers. The elements are vec[0], vec[1],....,vec[4]. Note that the numbering of
elements starts with zero. Declarations of other data typesare similar, including structure data.

The symbol vec is an element in memory containing the addressto the first element vec[0]
and is a pointer to a vector of five integer elements.

In line b we have a standard fixed-size C++ declaration of a matrix. Again the elements start
with zero, matr[0][0], matr[0][1], ....., matr[0][4], matr[1][0],.... . This sequence of elements also
shows how data are stored in memory. For example, the elementmatr[1][0] follows matr[0][4].
This is important in order to produce an efficient code.

There is one further important point concerning matrix declaration. In a similar way as for
the symbolvec, matr is an element in memory which contains an address to a vector of three
elements, but now these elements are not integers. Each element is a vector of five integers. This
is the correct way to understand the declaration inline b. With respect to pointers this means
that matr ispointer-to-a-pointer-to-an-integerwhich we can write��matr. Furthermore�matr is
a-pointer-to-a-pointerof five integers. This interpretation is important when we want to transfer
vectors and matrices to a function.

In line c we transfer vec[] and matr[][] to the function sub_1(). To bespecific, we transfer
the addresses of vect[] and matr[][] to sub_1().

In line d we have the function definition of sub_1(). Theint vec[] is a pointer to an integer.
Alternatively we could writeint �vec. The first version is better. It shows that it is a vector of
several integers, but not how many. The second version couldequally well be used to transfer
the address to a single integer element. Such a declaration does not distinguish between the two
cases.

The next definition isint matr[][5]. This is a pointer to a vector of five elements and the
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Table 5.2: Matrix handling program where arrays are defined at compilation time

int main()
{

int k,m, row = 3, col = 5;
int vec[5]; // line a
int matr[3][5]; // line b

for (k = 0; k< col; k++) vec[k] = k; // data into vector[]
for (m = 0; m< row; m++) { // data into matr[][]

for (k = 0; k< col ; k++) matr[m][k] = m + 10� k;
}
printf("nnnnVe
tor data in main():nn"); // print vector data
for (k = 0; k< col; k++) printf("ve
tor[%d℄ = %d ",k, vec[k]);
printf("nnnnMatrix data in main():");

for (m = 0; m< row; m++) {
printf("nn");
for (k = 0; k< col; k++)

printf("matr[%d℄[[%d℄ = %d ",m,k,matr[m][k]);
}

}
printf("nn");
sub_1(row, col, vec, matr); // line c
return 0;

} // End: function main()

void sub_1(int row, int col, int vec[], int matr[][5]) // line d
{

int k,m;

printf("nnnnVe
tor data in sub_1():nn"); // print vector data
for (k = 0; k< col; k++) printf("ve
tor[%d℄ = %d ",k, vec[k]);
printf("nnnnMatrix data in sub_1():");

for (m = 0; m< row; m++) {
printf("nn");
for (k = 0; k< col; k++) {

printf("matr[%d℄[[%d℄ = %d ",m, k, matr[m][k]);
}

}
printf("nn");

} // End: function sub_1()
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compiler must be told that each vector element contains five integers. Here an alternative version
could be int (�matr)[5] which clearly specifies that matr is a pointer to a vector of five integers.

There is at least one drawback with such a matrix declaration. If we want to change the
dimension of the matrix and replace 5 by something else we have to do the same change in all
functions where this matrix occurs.

There is another point to note regarding the declaration of variables in a function which
includes vectors and matrices. When the execution of a function terminates, the memory required
for the variables is released. In the present case memory forall variables in main() are reserved
during the whole program execution, but variables which ar declared in sub_1() are released
when the execution returns to main().

5.2.2 Runtime declarations of vectors and matrices

As mentioned in the previous subsection a fixed size declaration of vectors and matrices before
compilation is in many cases bad. You may not know beforehandthe actually needed sizes of
vectors and matrices. In large projects where memory is a limited factor it could be important to
reduce memory requirement for matrices which are not used any more. In C an C++ it is possible
and common to postpone size declarations of arrays untill you really know what you need and
also release memory reservations when it is not needed any more. The details are shown in Table
5.3.

line a declares a pointer to an integer which later will be used to store an address to the first
element of a vector. Similarily,line b declares a pointer-to-a-pointer which will contain the ad-
dress to a pointer of row vectors, each with col integers. This will then become a matrix[col][col]

In line c we read in the size of vec[] and matr[][] through the numbers row and col.
Next we reserve memory for the vector inline d. The library function malloc reserves mem-

ory to store row integers and return the address to the reserved region in memory. This address
is stored in vec. Note, none of the integers in vec[] have beenassigned any specific values.

In line e we use a user-defined function to reserve necessary memory for matrix[row][col]
and again matr contains the address to the reserved memory location.

The remaining part of the function main() are as in the previous case down toline f. Here we
have a call to a user-defined function which releases the reserved memory of the matrix. In this
case this is not done automatically.

In line g the same procedure is performed for vec[]. In this case the standard C++ library has
the necessary function.

Next, in line h an important difference from the previous case occurs. First, the vector
declaration is the same, but the matr declaration is quite different. The corresponding parameter
in the call to sub_1[] inline g is a double pointer. Consequently, matr inline h must be a double
pointer.

Except for this difference sub_1() is the same as before. Thenew feature in Table 5.3 is the
call to the user-defined functionsmatrix and free_matrix. These functions are defined in the
library file lib.cpp. The code is given below.

/�
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Table 5.3: Matrix handling program with dynamic array allocation.

int main()
{

int �vec; // line a
int ��matr; // line b
int m, k, row, col, total = 0;

printf("nnnnRead in number of rows = "); // line c
scanf("%d",&row);
printf("nnnnRead in number of 
olumn = ");
scanf("%d", &col);

vec =new int [col]; // line d
matr = (int ��)matrix(row, col,sizeof(int )); // line e
for (k = 0; k< col; k++) vec[k] = k; // store data in vector[]
for (m = 0; m< row; m++) { // store data in array[][]

for (k = 0; k< col; k++) matr[m][k] = m + 10� k;
}
printf("nnnnVe
tor data in main():nn"); // print vector data
for (k = 0; k< col; k++) printf("ve
tor[%d℄ = %d ",k,vec[k]);
printf("nnnnArray data in main():");
for (m = 0; m< row; m++) {

printf("nn");
for (k = 0; k< col; k++) {

printf("matrix[%d℄[[%d℄ = %d ",m, k, matr[m][k]);
}

}
printf("nn");
for (m = 0; m< row; m++) { // access the array

for (k = 0; k< col; k++) total += matr[m][k];
}
printf("nnnnTotal = %dnn",total);
sub_1(row, col, vec, matr);
free_matrix((void ��)matr); // line f
delete[] vec; // line g
return 0;

} // End: function main()

void sub_1(int row, int col, int vec[], int ��matr) // line h
{

int k,m;

printf("nnnnVe
tor data in sub_1():nn"); // print vector data
for (k = 0; k< col; k++) printf("ve
tor[%d℄ = %d ",k, vec[k]);
printf("nnnnMatrix data in sub_1():");
for (m = 0; m< row; m++) {

printf("nn");
for (k = 0; k< col; k++) {

printf("matrix[%d℄[[%d℄ = %d ",m,k,matr[m][k]);
}

}
printf("nn");

} // End: function sub_1()



74 CHAPTER 5. LINEAR ALGEBRA� The f u n c t i o n� vo id �� m at r i x ( )� r e s e r v e s dynamic memory f o r a two�d i m e ns i ona l m a t r i x� us i ng t he C++ command new . No i n i t i a l i z a t i o n o f t he e l e m e n t s.� I npu t data :� i n t row � number o f rows� i n t c o l � number o f columns� i n t num_bytes� number o f b y t e s f o r each� e lement� Retu rns a vo id �� p o i n t e r t o t he r e s e r v e d memory l o c a t i o n .� /

void �� m a t r i x ( i n t row , i n t co l , i n t num_bytes )
{
i n t i , num ;
char �� p o i n t e r , � p t r ;

p o i n t e r = new( nothrow ) char � [ row ] ;
i f ( ! p o i n t e r ) {

cou t < < "Ex
eption handling: Memory allo
ation failed" ;
cou t < < " for " < < row < < "row addresses !" < < end l ;
re tu rn NULL;

}
i = ( row � c o l � num_bytes ) /s i z e o f( char ) ;
p o i n t e r [ 0 ] = new( nothrow ) char [ i ] ;
i f ( ! p o i n t e r [ 0 ] ) {

cou t < < "Ex
eption handling: Memory allo
ation failed" ;
cou t < < " for address to " < < i < < " 
hara
ters !" < < end l ;
re tu rn NULL;

}
p t r = p o i n t e r [ 0 ] ;
num = c o l � num_bytes ;
f o r ( i = 0 ; i < row ; i ++ , p t r + = num ) {

p o i n t e r [ i ] = p t r ;
}
re tu rn ( void � � ) p o i n t e r ;
} / / end : f u n c t i o n vo id �� m at r i x ( )

/�� The f u n c t i o n� vo id f r e e _ m a t r i x ( )� r e l e a s e s t he memory r e s e r v e d by t he f u n c t i o n m a t r i x ( )� f o r t he two�d i m e ns i ona l m a t r i x [ ] [ ]� I npu t data :� vo id f a r �� matr � p o i n t e r t o t he m a t r i x
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void f r e e _ m a t r i x (void �� matr )
{

d e l e t e [ ] ( char � ) matr [ 0 ] ;
} / / End : f u n c t i o n f r e e _ m a t r i x ( )

5.2.3 Fortran features of matrix handling

Many program libraries for scientific computing are writtenin Fortran. When using functions
from such program libraries, there are some differences between C++ and Fortran encoding of
matrices and vectors worth noticing. Here are some simple guidelines in order to avoid some of
the most common pitfalls.

First of all, when we think of anN�N matrix in Fortran and C/C++, we typically would have
a mental picture of a two-dimensional block of stored numbers. The computer stores them how-
ever as sequential strings of numbers. The latter could be stored as row-major order or column-
major order. What do we mean by that? Recalling that for our matrix elementsaij, i refers to rows
andj to columns, we could store a matrix in the sequencea11a12 : : : a1Na21a22 : : : a2N : : : aNN if
it is row-major order (we go along a given rowi and pick up all column elementsj) or it could
be stored in column-major ordera11a21 : : : aN1a12a22 : : : aN2 : : : aNN .

Fortran stores matrices in the latter way, ie., by column-major, while C/C++ stores them by
row-major. It is crucial to keep this in mind when we are dealing with matrices, because if we
were to organize the matrix elements in the wrong way, important properties like the transpose of
a real matrix or the inverse can be wrong, and obviously yieldwrong physics. Fortran subscripts
begin typically with1, although it is no problem in starting with zero, while C/C++start with0
for the first element. That isA(1; 1) in Fortran is equivalent toA[0℄[0℄ in C/C++. Moreover, since
the sequential storage in memory means that nearby matrix elements are close to each other in the
memory locations (and thereby easier to fetch) , operationsinvolving e.g., additions of matrices
may take more time if we do not respect the given ordering.

To see this, consider the following coding of matrix addition in C/C++ and old Fortran 77
(can obviously also be done in Fortran 90/95). We haveN�N matrices A, B and C and we wish
to evaluateA = B + C. In C/C++ this would be coded like

f o r ( i = 0 ; i < N ; i ++) {
f o r ( j = 0 ; j < N ; j ++) {

a [ i ] [ j ]= b [ i ] [ j ]+ c [ i ] [ j ]
}

}

while in Fortran 77 we would have

DO 1 0 j = 1 , N
DO 2 0 i = 1 , N

a ( i , j ) =b ( i , j ) +c ( i , j )
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20 CONTINUE
10 CONTINUE

Interchanging the order ofi andj can lead to a considerable enhancement in process time. For-
tran 90 writes the above statements in a much simpler way

a=b+c

However, the addition still involvesN2 operations. Operations like matrix multiplication or
taking the invers involveN3. Matrix multiplicationA = BC could then take the following form
in C/C++

f o r ( i = 0 ; i < N ; i ++) {
f o r ( j = 0 ; j < N ; j ++) {

f o r ( k = 0 ; j < N ; j ++) {
a [ i ] [ j ]+=b [ i ] [ k ]+ c [ k ] [ j ]

}
}

}

while Fortran 90 has an intrisic function called MATMUL, so that the above three loops are
coded in one single statement

a=MATMUL( b , c )

Fortran 90 contains several array manipulation statements, such as dot product of vectors, the
transpose of a matrix etc etc.

It is also important to keep in mind that computers are finite,we can thus not store infinitely
large matrices. To calculate the space needed in memory for an N � N matrix with double
precision, 64 bits or 8 bytes for every matrix element, one needs simply computeN � N � 8
bytes . Thus, ifN = 10000, we will need close to 1GB of storage. Decreasing the precision to
single precision, only halves our needs.

A further point we would like to stress, is that one should in general avoid fixed (at com-
pilation time) dimensions of matrices. That is, one could always specify that a given matrixA should have sizeA[100℄[100℄, while in the actual execution one may use onlyA[10℄[10℄. If
one has several such matrices, one may run out of memory, while the actual processing of the
program does not imply that. Thus, we will always recommend you to use a dynamic memory
allocation and deallocation of arrays when they are no longer needed. In Fortran 90/95 one uses
the intrisic functionsALLOCATE andDEALLOCATE , while C++ employs the functionnew.

Fortran 90 allocate statement and mathematical operationson arrays

An array is declared in the declaration section of a program,module, or procedure using the
dimension attribute. Examples include

DOUBLE PRECISION , DIMENSION ( 1 0 ) : : x , y
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REAL , DIMENSION ( 1 : 1 0 ) : : x , y
INTEGER , DIMENSION ( �10 :10) : : prob
INTEGER , DIMENSION ( 1 0 , 1 0 ) : : s p i n

The default value of the lower bound of an array is 1. For this reason the first two statements are
equivalent to the first. The lower bound of an array can be negative. The last two statements are
examples of two-dimensional arrays.

Rather than assigning each array element explicitly, we canuse an array constructor to give
an array a set of values. An array constructor is a one-dimensional list of values, separated by
commas, and delimited by "(/" and "/)". An example is

a ( 1 : 3 ) = ( / 2 . 0 , � 3 . 0 , � 4 . 0 / )

is equivalent to the separate assignments

a ( 1 ) = 2 . 0
a ( 2 ) = �3.0
a ( 3 ) = �4.0

One of the better features of Fortran 90 is dynamic storage allocation. That is, the size of an
array can be changed during the execution of the program. To see how the dynamic allocation
works in Fortran 90, consider the following simple example where we set up a4�4 unity matrix.

. . . . . .
IMPLICIT NONE

! The d e f i n i t i o n o f t he mat r ix , us i ng dynamic a l l o c a t i o n
DOUBLE PRECISION , ALLOCATABLE , DIMENSION ( : , : ) : : u n i t y

! The s i z e o f t he m a t r i x
INTEGER : : n

! Here we s e t t he dim n=4
n=4

! A l l o c a t e now p l ac e i n memory f o r t he m a t r i x
ALLOCATE ( u n i t y ( n , n ) )

! a l l e l e m e n t s are s e t equa l ze ro
u n i t y =0.

! s e t up i d e n t i t y m a t r i x
DO i =1 , n

u n i t y ( i , i ) =1.
ENDDO
DEALLOCATE ( u n i t y )
. . . . . . .

We always recommend to use the deallocation statement, since this frees space in memory. If the
matrix is transferred to a function from a calling program, one can transfer the dimensionalityn
of that matrix with the call. Another possibility is to determine the dimensionality with theSIZE
function
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n=SIZE ( un i t y ,DIM=1)

will give the size of the rows, while using DIM=2 gives that ofthe columns.

5.3 LU decomposition of a matrix

In this section we describe how one can decompose a matrixA in terms of a matrixB with el-
ements only below the diagonal (and thereby the naming lower) and a matrixC which contains
both the diagonal and matrix elements above the diagonal (leading to the labelling upper). Con-
sider again the matrixA given in eq. (5.1). The LU decomposition method means that wecan
rewrite this matrix as the product of two matricesB andC whereA = BC = 0BB� a11 a12 a13 a14a21 a22 a23 a24a31 a32 a33 a34a41 a42 a43 a44 1CCA = 0BB� 1 0 0 0b21 1 0 0b31 b32 1 0b41 b42 b43 1 1CCA0BB� 
11 
12 
13 
140 
22 
23 
240 0 
33 
340 0 0 
44 1CCA

(5.2)
The algorithm for obtainingB andC is actually quite simple. We start always with the first

column. In our simple (4� 4) case we have equations for the first columna11 = 
11a21 = b21
11a31 = b31
11a41 = b41
11; (5.3)

which determine the elements
11, b21, b31 andb41 in B andC. Writing out the equations for the
second column we get a12 = 
12a22 = b21
12 + 
22a32 = b31
12 + b32
22a42 = b41
12 + b42
22: (5.4)

Here the unknowns are
12, 
22, b32 andb42 which all can be evaluated by means of the results
from the first column and the elements ofA. Note an important feature. When going from the
first to the second column we do not need any further information from the matrix elementsai1.
This is a general property throughout the whole algorithm. Thus the memory locations for the
matrixA can be used to store the calculated matrix elements ofB andC. This saves memory.

We can generalize this procedure into three equationsi < j : bi1
1j + bi2
2j + � � �+ bii
ij = aiji = j : bi1
1j + bi2
2j + � � �+ bii
jj = aiji > j : bi1
1j + bi2
2j + � � �+ 
ij
jj = aij (5.5)
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which gives the following algorithm:
Calculate the elements inB andC columnwise starting with column one. For each column(j):� Compute the first element
1j by 
1j = a1j: (5.6)� Next, Calculate all elements
ij; i = 2; : : : ; j � 1
ij = aij � i�1Xk=1 bik
kj: (5.7)� Then calculate the diagonal element
jj
jj = ajj � j�1Xk=1 bjk
kj: (5.8)� Finally, calculate the elementsbij; i > jbij = 1
jj  aij � i�1Xk=1 bik
kj! ; (5.9)

The algorithm is known as Crout’s algoithm. A crucial point is obviously the case where
jj is
close or equals to zero which can lead to significant loss of precision. The solution is pivoting
(interchanging rows ) around the largest element in a columnj. Then we are actually decom-
posing a rowwise permutation of the original matrixA. The key point to notice is that eqs. (5.8,
5.9) are equal except for the case that we divide by
jj in the latter one. The upper limits are
always the samek = j � 1(= i � 1). This means that we do not have to choose the diagonal
element
jj as the one which happens to fall along the diagonal in the firstinstance. Rather, we
could promote one of the undividedbij ’s in the columni = j + 1; : : :N to become the diagonal
of C. The partial pivoting in Crout’s method means then that we choose the largest value for
jj
(the pivot element) and then do the divisions by that element. Then we need to keep track of all
permutations performed.

The programs which performs the above described LU decomposition

C: void ludcmp(double��a, int n, int�indx, double�d)
Fortran: CALL lu_decompose(a, n, indx, d)

are listed in the program libraries:lib.c, f90lib.f.
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5.4 Solution of linear systems of equations

With the LU decomposition it is rather simple to solve a system of linear equationsa11x1 + a12x2 + a13x3 + a14x4 = w1a21x1 + a22x2 + a23x3 + a24x4 = w2a31x1 + a32x2 + a33x3 + a34x4 = w3a41x1 + a42x2 + a43x3 + a44x4 = w4:
This can be written in matrix form as Ax = w:
whereA andw are known and we have to solve forx. Using the LU dcomposition we writeAx � BCx = w: (5.10)

This equation can be calculated in two stepsBy = w; Cx = y: (5.11)

To show that this is correct we use to the LU decomposition to rewrite our system of linear
equations as BCx = w; (5.12)

and since the determinat ofB is equal to 1 (by construction since the diagonals ofB equal 1) we
can use the inverse ofB to obtain Cx = B�1w = y; (5.13)

which yields the intermediate step B�1w = y (5.14)

and multiplying withB on both sides we reobtain Eq. (5.11). As soon as we havey we can
obtainx throughCx = y.

For our four-dimentional example this takes the formy1 = w1b21y1 + y2 = w2b31y1 + b32y2 + y3 = w3b41y1 + b42y2 + b43y3 + y4 = w4: (5.15)

and 
11x1 + 
12x2 + 
13x3 + 
14x4 = y1
22x2 + 
23x3 + 
24x4 = y2
33x3 + 
34x4 = y3
44x4 = y4 (5.16)

This example shows the basis for the algorithm needed to solve the set ofn linear equations. The
algorithm goes as follows
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determines the dimensionality of the unknown vectorx.� Then LU decompose the matrixA through a call to the function

C: void ludcmp(double��a, int n, int�indx, double�d)
Fortran: CALL lu_decompose(a, n, indx, d)

This functions returns the LU decomposed matrixA, its determinant and the
vector indx which keeps track of the number of interchanges of rows. If the
determinant is zero, the solution is malconditioned.� Thereafter you call the function

C: lubksb(double��a, int n, int�indx, double�w
Fortran: CALL lu_linear_equation(a, n, indx, w)

which uses the LU decomposed matrixA and the vectorw and returnsx in
the same place asw. Upon exit the original content inw is destroyed. If you
wish to keep this information, you should make a backup of it in your calling
function.

The codes are listed in the program libraries:lib.c, f90lib.f.

5.5 Inverse of a matrix and the determinant

The basic definition of the determinant ofA isdetfAg =Xp (�)pa1p1 � a2p2 � � �anpn;
where the sum runs over all permutationsp of the indices1; 2; : : : ; n, altogethern! terms. Also
to calculate the inverse ofA is a formidable task. Here we have to calculatethe complementary
cofactoraij of each elementaij which is the(n � 1)determinant obtained by striking out the
row i and columnj in which the elementaij appears. The inverse ofA is the constructed as the
transpose a matrix with the elements(�)i+jaij. This involves a calculation ofn2 determinants
using the formula above. Thus a simplified method is highly needed.

With the LU decomposed matrixA in eq. (5.2) it is rather easy to find the determinantdetfAg = detfBg � detfCg = detfCg; (5.17)
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since the diagonal elements ofB equal 1. Thus the determinant can be writtendetfAg = NYk=1 
kk: (5.18)

The inverse is slightly more difficult to obtain from the LU decomposition. It is formally
defined as A�1 = C�1B�1: (5.19)

We use this form since the computation of the inverse goes through the inverse of the matricesB
andC. The reason is that the inverse of a lower (upper) triangularmatrix is also a lower (upper)
triangular matrix. If we callD for the inverse ofB, we can determine the matrix elements ofD
through the equation0BB� 1 0 0 0b21 1 0 0b31 b32 1 0b41 b42 b43 1 1CCA0BB� 1 0 0 0d21 1 0 0d31 d32 1 0d41 d42 d43 1 1CCA = 0BB� 1 0 0 00 1 0 00 0 1 00 0 0 1 1CCA ; (5.20)

which gives the following general algorithmdij = �bij � i�1Xk=j+1 bikdkj; (5.21)

which is valid fori > j. The diagonal is 1 and the upper matrix elements are zero. We solve this
equation column by column (increasing order ofj). In a similar way we can define an equation
which gives us the inverse of the matrixC, labelledE in the equation below. This contains only
non-zero matrix elements in the upper part of the matrix (plus the diagonal ones)0BB� e11 e12 e13 e140 e22 e23 e240 0 e33 e340 0 0 e44 1CCA0BB� 
11 
12 
13 
140 
22 
23 
240 0 
33 
340 0 0 
44 1CCA = 0BB� 1 0 0 00 1 0 00 0 1 00 0 0 1 1CCA ; (5.22)

with the following general equationeij = � 1
jj j�1Xk=1 eik
kj: (5.23)

for i � j.
A calculation of the inverse of a matrix could then be implemented in the following way:
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5.6 Project: Matrix operations

The aim of this exercise is to get familiar with various matrix operations, from dynamic memory
allocation to the usage of programs in the library package ofthe course. For Fortran users
memory handling and most matrix and vector operations are included in the ANSI standard of
Fortran 90/95. For C++ user however, there are three possible options

1. Make your own functions for dynamic memory allocation of avector and a matrix. Use
then the library package lib.cpp with its header file lib.hppfor obtaining LU-decomposed
matrices, solve linear equations etc.

2. Use the library package lib.cpp with its header file lib.hpp which includes a functionmatrix for dynamic memory allocation. This program package includes all the other
functions discussed during the lectures for solving systems of linear equations, obatining
the determinant, getting the inverse etc.

3. Finally, we provide on the web-page of the course a librarypackage which uses Blitz++’s
classes for array handling. You could then, since Blitz++ isinstalled on all machines at the
lab, use these classes for handling arrays.

Your program, whether it is written in C++ or Fortran 90/95, should include dynamic memory
handling of matrices and vectors.

(a) Consider the linear system of equationsa11x1 + a12x2 + a13x3 = w1a21x1 + a22x2 + a23x3 = w2a31x1 + a32x2 + a33x3 = w3:
This can be written in matrix form asAx = w:
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Use the included programs to solve the system of equations�x1 + x2 � 4x3 = 02x1 + 2x2 = 13x1 + 3x2 + 2x3 = 12 :
Use first standard Gaussian elimination and compute the result analytically. Compare
thereafter your analytical results with the numerical onesobatined using the programs
in the program library.

(b) Consider now the4� 4 linear system of equationsa11x1 + a12x2 + a13x3 + a14x4 = w1a21x1 + a22x2 + a23x3 + a24x4 = w2a31x1 + a32x2 + a33x3 + a34x4 = w3a41x1 + a42x2 + a43x3 + a44x4 = w4:
with x1 + 2x3 + x4 = 24x1 � 9x2 + 2x3 + x4 = 148x1 + 16x2 + 6x3 + 5x4 = �32x1 + 3x2 + 2x3 + x4 = 0:
Use again standard Gaussian elimination and compute the result analytically. Compare
thereafter your analytical results with the numerical onesobtained using the programs in
the program library.

(c) If the matrixA is real, symmetric and positive definite, then it has a uniquefactorization
(called Cholesky factorization) A = LU = LLT
whereLT is the upper matrix, implying thatLTij = Lji:
. The algorithm for the Cholesky decomposition is a special case of the general LU-
decomposition algorithm. The algorithm of this decomposition is as follows� Calculate the diagonal elementLii by setting up a loop fori = 0 to i = n� 1 (C++

indexing of matrices and vectors)Lii =  Aii � i�1Xk=0 L2ik!1=2 : (5.24)
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calculate Lji = 1Lii  Aij � i�1Xk=0 Likljk! : (5.25)

For the Cholesky algorithm we have always thatLii > 0 and the problem with exceedingly
large matrix elements does not appear and hence there is no need for pivoting. Write
a function which performs the Cholesky decomposition. Testyour program against the
standard LU decomposition by using the matrixA = 0� 6 3 23 2 12 1 1 1A (5.26)

Are the matrices in exercises a) and b) positive definite? If so, employ your function for
Cholesky decomposition and compare your results with thosefrom LU-decomposition.





Chapter 6

Non-linear equations and roots of
polynomials

6.1 Introduction

In Physics we often encounter the problem of determining theroot of a functionf(x). Espe-
cially, we may need to solve non-linear equations of one variable. Such equations are usually
divided into two classes, algebraic equations involving roots of polynomials and transcendental
equations. When there is only one independent variable, theproblem is one-dimensional, namely
to find the root or roots of a function. Except in linear problems, root finding invariably proceeds
by iteration, and this is equally true in one or in many dimensions. This means that we cannot
solve exactly the equations at hand. Rather, we start with some approximate trial solution. The
chosen algorithm will in turn improve the solution until some predetermined convergence cri-
terion is satisfied. The algoritms we discuss below attempt to implement this strategy. We will
deal mainly with one-dimensional problems. The methods

You may have encountered examples of so-called transcendental equations when solving the
Schrödinger equation (SE) for a particle in a box potential.The one-dimensional SE for a particle
with massm is � �h22m d2udrx2 + V (x)u(x) = Eu(x); (6.1)

and our potential is defined asV (r) = � �V0 0 � x < a0 x > a (6.2)

Bound states correspond to negative energyE and scattering states are given by positive energies.
The SE takes the form (without specifying the sign ofE)d2u(x)dx2 + 2m�h2 (V0 + E) u(x) = 0 x < a; (6.3)

and d2u(x)dx2 + 2m�h2 Eu(x) = 0 x > a: (6.4)

87
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Figure 6.1: Plot off(E) Eq. (6.8) as function of energy |E| in MeV.f(E) has dimension MeV.
Note well that the energyE is for bound states.

If we specialize to bound statesE < 0 and implement the boundary conditions on the wave
function we obtain u(r) = Asin(p2m(V0 � jEj)r=�h) r < a; (6.5)

and u(r) = B exp (�p2mjEjr=�h) r > a; (6.6)

whereA andB are constants. Using the continuity requirement on the wavefunction atr = a
one obtains the transcendental equationp2m(V0 � jEj)
ot(p2ma2(V0 � jEj)=�h) = �p2mjEj: (6.7)

This equation is an example of the kind of equations which could be solved by some of the
methods discussed below. The algorithms we discuss are the bisection method, the secant, false
position and Brent’s methods and Newton-Raphson’s method.Moreover, we will also discuss
how to find roots of polynomials in section 6.6.

In order to find the solution for Eq. (6.7), a simple procedureis to define a functionf(E) =p2m(V0 � jEj)
ot(p2ma2(V0 � jEj)=�h)p2mjEj: (6.8)

and with chosen or given values fora andV0 make a plot of this function and find the approximate
region along theE � axis wheref(E) = 0. We show this in Fig. 6.1 forV0 = 20 MeV, a = 2
fm andm = 938 MeV. Fig. 6.1 tells us that the solution is close tojEj � 2:2 (the binding energy
of the deuteron). The methods we discuss below are then meantto give us a numerical solution
for E wheref(E) = 0 is satisfied and withE determined by a given numerical precision.
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6.2 Iteration methods

To solve an equation of the typef(x) = 0 means mathematically to find all numberss1 so thatf(s) = 0. In all actual calculations we are always limited by a given precision when doing
numerics. Through an iterative search of the solution, the hope is that we can approach, within a
given tolerance�, a valuex0 which is a solution tof(s) = 0 ifjx0 � sj < �; (6.9)

andf(s) = 0. We could use other criteria as well like����x0 � ss ���� < �; (6.10)

and jf(x0)j < � or a combination of these. However, it is not given that the iterative process
will converge and we would like to have some conditions onf which ensures a solution. This
condition is provided by the so-called Lipschitz criterion. If the functionf , defined on the
interval[a; b℄ satisfies for allx1 andx2 in the chosen interval the following conditionjf(x1)� f(x2)j � k jx1 � x2j ; (6.11)

with k a constant, thenf is continuous in the interval[a; b℄. If f is continuous in the interval[a; b℄, then the secant condition givesf(x1)� f(x2) = f 0(�)(x1 � x2); (6.12)

with x1; x2 within [a; b℄ and� within [x1; x2℄. We have thenjf(x1)� f(x2)j � jf 0(�)jj jx1 � x2j : (6.13)

The derivative can be used as the constantk. We can now formulate the sufficient conditions for
the convergence of the iterative search for solutions tof(s) = 0.

1. We assume thatf is defined in the interval[a; b℄.
2. f satisfies the Lipschitz condition withk < 1.

With these conditions, the equationf(x) = 0 has only one solution in the interval[a; b℄ and it
coverges aftern iterations towards the solutions irrespective of choice forx0 in the interval[a; b℄.
If we let xn be the value ofx aftern iterations, we have the conditionjs� xnj �= k1� k jx1 � x2j : (6.14)

The proof can be found in the text of Bulirsch and Stoer. Sinceit is difficult numerically to find
exactly the point wheref(s) = 0, in the actual numerical solution one implements three tests of
the type

1In the following discussion, the variables is reserved for the value ofx where we have a solution.
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1. jxn � sj < �; (6.15)

and

2. jf(s)j < Æ; (6.16)

3. and a maximum number of iterationsNmaxiter in actual calculations.

6.3 Bisection method

This is an extremely simple method to code. The philosophy can best be explained by choosing
a region in e.g., Fig. 6.1 which is close to wheref(E) = 0. In our casejEj � 2:2. Choose a
region[a; b℄ so thata = 1:5 andb = 3. This should encompass the point wheref = 0. Define
then the point 
 = a+ b2 ; (6.17)

and calculatef(
). If f(a)f(
) < 0, the solution lies in the region[a; 
℄ = [a; (a + b)=2℄.
Change thenb  
 and calculate a new value for
. If f(a)f(
) > 0, the new interval is in[
; b℄ = [(a + b)=2; b℄. Now you need to changea  
 and evaluate then a new value for
. We
can continue to halve the interval till we have reached a value for 
 which fulfils f(
) = 0 to a
given numerical precision. The algorithm can be simply expressed in the following program

. . . . . .
f a = f ( a ) ;
fb = f ( b ) ;

/ / check i f your i n t e r v a l i s c o r r e c t , i f no t r e t u r n t o main
i f ( f a� fb > 0 ) {

cou t < < ‘ ‘ \ n E r ro r , r o o t not i n i n t e r v a l'' < < end l ;
re tu rn ;

}
f o r ( j = 1 ; j <= i t e r _m a x ; j ++) {

c =( a+b ) / 2 ;
f c = f ( c )

/ / i f t h i s t e s t i s s a t i s f i e d , we have t he r oo t c
i f ( ( abs ( a�b ) < e p s i l o n ) | | f c < d e l t a ) ; re tu rn t o main
i f ( f a� f c < 0 ) {

b=c ; fb = f c ;
}
e l s e{

a=c ; f a = f c ;
}

}
. . . . . .
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Note that one needs to define the values ofÆ, � anditer_max when calling this function.
The bisection method is an almost foolproof method, although it may converge slowly to-

wards the solution due to the fact that it halves the intervals. Aftern divisions by2 we have a
possible solution in the interval with length12n jb� aj ; (6.18)

and if we setx0 = (a + b)=2 and letxn be the midpoints in the intervals we obtain aftern
iterations that Eq. (6.14) results injs� xnj �= 12n+1 jb� aj ; (6.19)

since the nth interval has lengthjb�aj=2n. Note that this convergence criterion is independent of
the actual functionf(x) as long as this function fulfils the conditions discussed in the conditions
discussed in the previous subsection.

As an example, suppose we wish to find how many iteration stepsare needed in order to
obtain a relative precision of10�12 for xn in the interval[50; 63℄, that isjs� xnjjsj � 10�12: (6.20)

It suffices in our case to studys � 50, which results injs� xnj50 � 10�12; (6.21)

and with Eq. (6.19) we obtain 132n+150 � 10�12; (6.22)

meaningn � 37.

6.4 Newton-Raphson’s method

Perhaps the most celebrated of all one-dimensional root-finding routines is Newton’s method,
also called the Newton-Raphson method. This method is distinguished from the previously dis-
cussed methods by the fact that it requires the evaluation ofboth the functionf and its derivativef 0 at arbitrary points. In this sense, it is taylored to cases with e.g., transcendental equations of
the type shown in Eq. (6.8) where it is rather easy to evaluatethe derivative. If you can only cal-
culate the derivative numerically and/or your function is not of the smooth type, we discourage
the use of this method.

The Newton-Raphson formula consists geometrically of extending the tangent line at a cur-
rent point until it crosses zero, then setting the next guessto the abscissa of that zero-crossing.
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The mathematics behind this method is rather simple. Employing a Taylor expansion forx suf-
ficiently close to the solutions, we havef(s) = 0 = f(x) + (s� x)f 0(x) + (s� x)22 f 00(x) + : : : : (6.23)

For small enough values of the function and for well-behavedfunctions, the terms beyond linear
are unimportant, hence we obtainf(x) + (s� x)f 0(x) � 0; (6.24)

yielding s � x� f(x)f 0(x) : (6.25)

Having in mind an iterative procedure, it is natural to startiterating withxn+1 = xn � f(xn)f 0(xn) : (6.26)

This is Newton-Raphson’s method. It has a simple geometric interpretation, namelyxn+1 is the
point where the tangent from(xn; f(xn)) crosses thex�axis. Close to the solution, Newton-
Raphson converges fast to the desired result. However, if weare far from a root, where the
higher-order terms in the series are important, the Newton-Raphson formula can give grossly
inaccurate results. For instance, the initial guess for theroot might be so far from the true root
as to let the search interval include a local maximum or minimum of the function. If an iteration
places a trial guess near such a local extremum, so that the first derivative nearly vanishes, then
Newton-Raphson may fail totally. An example is shown in Fig.6.2

It is also possible to extract the convergence behavior of this method. Assume that the func-
tion f has a continuous second derivative around the solutions. If we defineen+1 = xn+1 � s = xn � f(xn)f 0(xn) � s; (6.27)

and using Eq. (6.23) we haveen+1 = en + �enf 0(xn) + e2n=2f 00(�)f 0(xn) = e2n=2f 00(�)f 0(xn) : (6.28)

This gives jen+1jjenj2 = 12 jf 00(�)jjf 0(xn)j2 = 12 jf 00(s)jjf 0(s)j2 (6.29)

whenxn ! s. Our error constantk is then proportional tojf 00(s)j=jf 0(s)j2 if the second deriva-
tive is different from zero. Clearly, if the first derivativeis small, the convergence is slower. In
general, if we are able to start the iterative procedure neara root and we can easily evaluate the
derivative, this is the method of choice. In cases where we may need to evaluate the deriva-
tive numerically, the previously described methods are easier and most likely safer to implement
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Figure 6.2: Example of a case where Newton-Raphson’s methoddoes not converge. For the
functionf(x) = x � 2
os(x), we see that if we start atx = 7, the first iteration gives us that
the first point where we cross thex�axis is given byx1. However, usingx1 as a starting point
for the next iteration results in a pointx2 which is close to a local minimum. The tangent here is
close to zero and we will never approach the point wheref(x) = 0.

with respect to loss of numerical precision. Recall that thenumerical evaluation of derivatives
involves differences between function values at differentxn.

We can rewrite the last equation asjen+1j = Cjenj2; (6.30)

with C a constant. If we assume thatC � 1 and leten � 10�8, this results inen+1 � 10�16,
and demonstrates clearly why Newton-Raphson’s method may converge faster than the bisection
method.

Summarizing, this method has a solution whenf 00 is continuous ands is a simple zero off .
Then there is a neighborhood ofs and a constantC such that if Newton-Raphson’s method is
started in that neighborhood, the successive points becomesteadily closer tos and satisfyjs� xn+1j � Cjs� xnj2;
with n � 0. In some situations, the method guarantees to converge to a desired solution from an
arbitrary starting point. In order for this to take place, the functionf has to belong toC2(R), be
increasing, convex and having a zero. Then this zero is unique and Newton’s method converges
to it from any starting point.

As a mere curiosity, suppose we wish to compute the square root of a numberR, i.e.,
pR.

LetR > 0 and define a function f(x) = x2 �R:
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Teh variablex is a root iff(x) = 0. Newton-Raphson’s method yields then the following iterative
approach to the root xn+1 = 12 �xn + Rxn� ; (6.31)

a formula credited to Heron, a Greek engineer and architect who lived sometime between 100
B.C. and A.D. 100.

Suppose we wish to compute
p13 = 3:6055513 and start withx0 = 5. The first iteration

givesx1 = 3:8, x2 = 3:6105263, x3 = 3:6055547 andx4 = 3:6055513. With just four iterations
and a not too optimal choice ofx0 we obtain the exact root to a precision of 8 digits. The above
equation, together with range reduction , is used in the intrisic computational function which
computes square roots.

Newton’s method can be generalized to sustems of several non-linear equations and variables.
Consider the case with two equationsf1(x1; x2) = 0f2(x1; x2) = 0 ; (6.32)

which we Taylor expand to obtain0 = f1(x1 + h1; x2 + h2) = f1(x1; x2) + h1�f1=�x1 + h2�f1=�x2 + : : :0 = f2(x1 + h1; x2 + h2) = f2(x1; x2) + h1�f2=�x1 + h2�f2=�x2 + : : : : (6.33)

Defining the Jacobian matrix̂J we haveĴ = � �f1=�x1 �f1=�x2�f2=�x1 �f2=�x2 � ; (6.34)

we can rephrase Newton’s method as� xn+11xn+12 � = � xn1xn2 �+ � hn1hn2 � ; (6.35)

where we have defined � hn1hn2 � = �Ĵ�1� f1(xn1 ; xn2 )f2(xn1 ; xn2 ) � : (6.36)

We need thus to compute the inverse of the Jacobian matrix andit is to understand that difficulties
may arise in casêJ is nearly singular.

It is rather straightforward to extend the above scheme to systems of more than two non-linear
equations.

6.5 The secant method and other methods

For functions that are smooth near a root, the methods known respectively as false position (or
regula falsi) and secant method generally converge faster than bisection but slower than Newton-
Raphson. In both of these methods the function is assumed to be approximately linear in the
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Figure 6.3: Plot off(E) Eq. (6.8) as function of energy |E|. The point
 is determined by where
the straight line from(a; f(a)) to (b; f(b)) crosses thex� axis.
local region of interest, and the next improvement in the root is taken as the point where the
approximating line crosses the axis.

The algorithm for obtaining the solution for the secant method is rather simple. We start with
the definition of the derivative f 0(xn) = f(xn)� f(xn�1)xn � xn�1
and combine it with the iterative expression of Newton-Raphson’sxn+1 = xn � f(xn)f 0(xn) ;
to obtain xn+1 = xn � f(xn)� xn � xn�1f(xn)� f(xn�1)� ; (6.37)

which we rewrite to xn+1 = f(xn)xn�1 � f(xn�1xn)f(xn)� f(xn�1) : (6.38)

This is the secant formula, implying that we are drawing a straight line from the point(xn�1; f(xn�1))
to (xn; f(xn)). Where it crosses thex � axis we have the new pointxn+1. This is illustrated in
Fig. 6.3.

In the numerical implementation found in the program library, the quantitiesxn�1; xn; xn+1
are changed toa, b and
 respectively, i.e., we determine
 by the point where a straight line from
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Figure 6.4: Plot off(x) = 25x4 � x2=2 � 2. The various straight lines correspond to the
determination of the point
 after each iteration.
 is determined by where the straight line from(a; f(a)) to (b; f(b)) crosses thex� axis. Here we have chosen three values for
, x1, x2 andx3
which refer to the first, second and third iterations respectively.

the point(a; f(a)) to (b; f(b)) crosses thex� axis, that is
 = f(b)a� f(a)bf(b)� f(a) : (6.39)

We then see clearly the difference between the bisection method and the secant method. The
convergence criterion for the secant method isjen+1j � Ajenj�; (6.40)

with � � 1:62. The convergence is better than linear, but not as good as Newton-Raphson’s
method which converges quadratically.

While the secant method formally converges faster than bisection, one finds in practice patho-
logical functions for which bisection converges more rapidly. These can be choppy, discontinu-
ous functions, or even smooth functions if the second derivative changes sharply near the root.
Bisection always halves the interval, while the secant method can sometimes spend many cycles
slowly pulling distant bounds closer to a root. We illustrate the weakness of this method in Fig.
6.4 where we show the results of the first three iterations, i.e., the first point is
 = x1, the next
iteration gives
 = x2 while the third iterations ends with
 = x3. We may risk that one of the
endpoints is kept fixed while the other one only slowly converges to the desired solution.

The search for the solutions proceeds in much of the same fashion as for the bisection
method, namely after each iteration one of the previous boundary points is discarded in favor of
the latest estimate of the root. A variation of the secant method is the so-called false position
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method (regula falsi from Latin) where the interval [a,b] ischosen so thatf(a)f(b) < 0, else
there is no solution. This is rather similar to the bisectionmethod. Another possibility is to
determine the starting point for the iterative search usingthree points(a; f(a)), (b; f(b)) and(
; f(
)). One can use Lagrange’s interpolation formula for a polynomial, see the discussion in
next chapter. This procedure leads to Brent’s method. You will find a function in the program
library which computes the zeros according to the latter method as well.

6.5.1 Calling the various functions

In the program library you will find the following functions

r t b i s (double ( � func ) (double ) , double x1 , double x2 , double xacc )
r t s e c (double ( � func ) (double ) , double x1 , double x2 , double xacc )
r t n e w t (void ( � funcd ) (double , double � , double � ) , double x1 ,

double x2 , double xacc )
z b r e n t (double ( � func ) (double ) , double x1 , double x2 , double xacc )

In all of these functions we transfer the lower and upper limit of the interval where we seek
the solution,[x1; x2℄. The variablexa

 is the precision we opt for. Note that in these function,
not in any case is the testf(s) < Æ implemented. Rather, the test is done throughf(s) = 0,
which not necessarily is a good option.

Note also that these functions transfer a pointer to the nameof the given function through e.g.,
double (*func)(double). For Newton-Raphson’s method we need a function which returns both
the function and its derivative at a pointx. This is then done by transferringvoid (*fun
d)(double, double *, double *)
6.6 Roots of polynomials

in preparation

6.6.1 Polynomials division

in preparation

6.6.2 Root finding by Newton-Raphson’s method

in preparation

6.6.3 Root finding by deflation

in preparation

6.6.4 Bairstow’s method





Chapter 7

Numerical interpolation, extrapolation and
fitting of data

7.1 Introduction

Numerical interpolation and extrapolation is perhaps one of the most used tools in numerical
applications to physics. The often encountered situation is that of a functionf at a set of pointsx1 : : : xn where an analytic form is missing. The functionf may represent some data points
from experiment or the result of a lengthy large-scale computation of some physical quantity
that cannot be cast into a simple analytical form.

We may then need to evaluate the functionf at some pointx within the data setx1 : : : xn, but
wherex differs from the tabulated values. In this case we are dealing with interpolation. Ifx is
outside we are left with the more troublesome problem of numerical extrapolation. Below we will
concentrate on two methods for interpolation and extrapolation, namely polynomial interpolation
and extrapolation and the qubic spline interpolation approach.

7.2 Interpolation and extrapolation

7.2.1 Polynomial interpolation and extrapolation

Let us assume that we have a set ofN + 1 pointsy0 = f(x0); y1 = f(x1); : : : ; yN = f(xN)
where none of thexi values are equal. We wish to determine a polynomial of degreen so thatPN(xi) = f(xi) = yi; i = 0; 1; : : : ; N (7.1)

for our data points. If we then writePn on the formPN(x) = a0 + a1(x� x0) + a2(x� x0)(x� x1) + � � �+ aN (x� x0) : : : (x� xN�1); (7.2)

99
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then Eq. (7.1) results in a triangular system of equationsa0 = f(x0)a0+ a1(x1 � x0) = f(x1)a0+ a1(x2 � x0)+ a2(x2 � x0)(x2 � x1) = f(x2): : : : : : : : : : : : : (7.3)

The coefficientsa0; : : : ; aN are then determined in a recursive way, starting witha0; a1; : : : .
The classic of interpolation formulae was created by Lagrange and is given byPN(x) = NXi=0 Yk 6=i x� xkxi � xk yi: (7.4)

If we have just two points (a straight line) we getP1(x) = x� x0x1 � x0 y1 + x� x1x0 � x1 y0; (7.5)

and with three points (a parabolic approximation) we haveP3(x) = (x� x0)(x� x1)(x2 � x0)(x2 � x1)y2 + (x� x0)(x� x2)(x1 � x0)(x1 � x2)y1 + (x� x1)(x� x2)(x0 � x1)(x0 � x2)y0 (7.6)

and so forth. It is easy to see from the above equations that whenx = xi we have thatf(x) =f(xi) It is also possible to show that the approximation error (or rest term) is given by the second
term on the right hand side off(x) = PN(x) + !N+1(x)f (N+1)(�)(N + 1)! : (7.7)

The function!N+1(x) is given by!N+1(x) = aN (x� x0) : : : (x� xN); (7.8)

and� = �(x) is a point in the smallest interval containing all interpolation pointsxj andx. The
algorithm we provide however (the code POLINT in the programlibrary) is based on divided
differences. The recipe is quite simple. If we takex = x0 in Eq. (7.2), we then have obviously
thata0 = f(x0) = y0. Movinga0 over to the left-hand side and dividing byx� x0 we havef(x)� f(x0)x� x0 = a1 + a2(x� x1) + � � �+ aN(x� x1)(x� x2) : : : (x� xN�1); (7.9)

where we hereafter omit the rest termf (N+1)(�)(N + 1)! (x� x1)(x� x2) : : : (x� xN ): (7.10)
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The quantity f0x = f(x)� f(x0)x� x0 ; (7.11)

is a divided difference of first order. If we then takex = x1, we have thata1 = f01. Moving a1
to the left again and dividing byx� x1 we obtainf0x � f01x� x1 = a2 + � � �+ aN(x� x2) : : : (x� xN�1): (7.12)

and the quantity f01x = f0x � f01x� x1 ; (7.13)

is a divided difference of second order. We note that the coefficienta1 = f01; (7.14)

is determined fromf0x by settingx = x1. We can continue along this line and define the divided
difference of orderk + 1 as f01:::kx = f01:::(k�1)x � f01:::(k�1)kx� xk ; (7.15)

meaning that the corresponding coefficientak is given byak = f01:::(k�1)k: (7.16)

With these definitions we see that Eq. (7.7) can be rewritten asf(x) = a0 +Xk=1Nf01:::k(x� x0) : : : (x� xk�1) + !N+1(x)f (N+1)(�)(N + 1)! : (7.17)

If we replacex0; x1; : : : ; xk in Eq. (7.15) withxi+1; xi+2; : : : ; xk, that is we count fromi + 1 tok instead of counting from0 to k and replacex with xi, we can then construct the following
recursive algorithm for the calculation of divided differencesfxixi+1:::xk = fxi+1:::xk � fxixi+1:::xk�1xk � xi : (7.18)

Assuming that we have a table with function values(xj; f(xj) = yj) and need to construct the
coefficients for the polynomialPN(x). We can then view the last equation by constructing the
following table for the case whereN = 3.x0 y0 fx0x1x1 y1 fx0x1x2fx1x2 fx0x1x2x3x2 y2 fx1x2x3fx2x3x3 y3 : (7.19)
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The coefficients we are searching for will then be the elements along the main diagonal. We
can understand this algorithm by considering the following. First we construct the unique poly-
nomial of order zero which passes through the pointx0; y0. This is justa0 discussed above.
Therafter we construct the unique polynomial of order one which passes through bothx0y0 andx1y1. This corresponds to the coefficienta1 and the tabulated valuefx0x1 and together witha0
results in the polynomial for a straight line. Likewise we define polynomial coefficients for all
other couples of points such asfx1x2 andfx2x3. Furthermore, a coefficient likea2 = fx0x1x2
spans now three points, and adding togetherfx0x1 we obtain a polynomial which represents three
points, a parabola. In this fashion we can continue till we have all coefficients. The function
POLINT included in the library is based on an extension of this algorithm, knowns as Neville’s
algorithm. It is based on equidistant interpolation points. The error provided by the call to the
function POLINT is based on the truncation error in Eq. (7.7).

Exercise 6.1
Use the functionf(x) = x3 to generate function values at four pointsx0 = 0,x1 = 1, x2 = 5 andx3 = 6. Use the above described method to show that the
interpolating polynomial becomesP3(x) = x + 6x(x � 1) + x(x � 1)(x � 5).
Compare the exact answer with the polynomialP3 and estimate the rest term.

7.3 Qubic spline interpolation

Qubic spline interpolation is among one of the mostly used methods for interpolating between
data points where the arguments are organized as ascending series. In the library program we
supply such a function, based on the so-called qubic spline method to be described below.

A spline function consists of polynomial pieces defined on subintervals. The different subin-
tervals are connected via various continuity relations.

Assume we have at our disposaln + 1 pointsx0; x1; : : : xn arranged so thatx0 < x1 < x2 <: : : xn�1 < xn (such points are called knots). A spline functions of degreek with n+ 1 knots is
defined as follows� On every subinterval[xi�1; xi) s is a polynomial of degree� k.� s hask � 1 continuous derivatives in the whole interval[x0; xn℄.

As an example, consider a spline function of degreek = 1 defined as followss(x) = 8>><>>: s0(x) = a0x+ b0 x 2 [x0; x1)s1(x) = a1x+ b1 x 2 [x1; x2): : : : : :sn�1(x) = an�1x + bn�1 x 2 [xn�1; xn℄ (7.20)

In this case the polynomial consists of series of straight lines connected to each other at every
endpoint. The number of continuous derivatives is thenk � 1 = 0, as expected when we deal
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with straight lines. Such a polynomial is quite easy to construct givenn+ 1 pointsx0; x1; : : : xn
and their corresponding function values.

The most commonly used spline function is the one withk = 3, the so-called qubic spline
function. Assume that we have in adddition to then + 1 knots a series of functions valuesy0 = f(x0); y1 = f(x1); : : : yn = f(xn). By definition, the polynomialssi�1 andsi are thence
supposed to interpolate the same pointi, i.e.,si�1(xi) = yi = si(xi); (7.21)

with 1 � i � n� 1. In total we haven polynomials of the typesi(x) = ai0 + ai1x+ ai2x2 + ai2x3; (7.22)

yielding4n coefficients to determine. Every subinterval provides in addition the2n conditionsyi = s(xi); (7.23)

and s(xi+1) = yi+1; (7.24)

to be fulfilled. If we also assume thats0 ands00 are continuous, thens0i�1(xi) = s0i(xi); (7.25)

yieldsn� 1 conditions. Similarly, s00i�1(xi) = s00i (xi); (7.26)

results in additionaln � 1 conditions. In total we have4n coefficients and4n � 2 equations to
determine them, leaving us with2 degrees of freedom to be determined.

Using the last equation we define two values for the second derivative, namelys00i (xi) = fi; (7.27)

and s00i (xi+1) = fi+1; (7.28)

and setting up a straight line betweenfi andfi+1 we haves00i (x) = fixi+1 � xi (xi+1 � x) + fi+1xi+1 � xi (x� xi); (7.29)

and integrating twice one obtainssi(x) = fi6(xi+1 � xi)(xi+1 � x)3 + fi+16(xi+1 � xi)(x� xi)3 + 
(x� xi) + d(xi+1 � x): (7.30)
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Using the conditionssi(xi) = yi andsi(xi+1) = yi+1 we can in turn determine the constants

andd resulting insi(x) = fi6(xi+1�xi)(xi+1 � x)3 + fi+16(xi+1�xi)(x� xi)3+ ( yi+1xi+1�xi � fi+1(xi+1�xi)6 )(x� xi) + ( yixi+1�xi � fi(xi+1�xi)6 )(xi+1 � x): (7.31)

How to determine the values of the second derivativesfi andfi+1? We use the continuity
assumption of the first derivatives s0i�1(xi) = s0i(xi); (7.32)

and setx = xi. Defininghi = xi+1 � xi we obtain finally the following expressionhi�1fi�1 + 2(hi + hi�1)fi + hifi+1 = 6hi (yi+1 � yi)� 6hi�1 (yi � yi�1); (7.33)

and introducing the shorthandsui = 2(hi + hi�1), vi = 6hi (yi+1 � yi) � 6hi�1 (yi � yi�1), we
can reformulate the problem as a set of linear equations to besolved through e.g., Gaussian
elemination, namely26666664 u1 h1 0 : : :h1 u2 h2 0 : : :0 h2 u3 h3 0 : : :: : : : : : : : : : : : : : : : : :: : : 0 hn�3 un�2 hn�20 hn�2 un�1

37777775
26666664 f1f2f3: : :fn�2fn�1

37777775 = 26666664 v1v2v3: : :vn�2vn�1
37777775 : (7.34)

Note that this is a set of tridiagonal equations and can be solved through onlyO(n) operations.
The functions supplied in the program library arespline andsplint. In order to use qubic spline
interpolation you need first to call

s p l i n e (double x [ ] , double y [ ] , i n t n , double yp1 , double yp2 , double
y2 [ ] )

This function takes as inputx[0; ::; n � 1℄ andy[0; ::; n� 1℄ containing a tabulationyi = f(xi)
with x0 < x1 < :: < xn�1 together with the first derivatives off(x) atx0 andxn�1, respectively.
Then the function returnsy2[0; ::; n� 1℄ which contanin the second derivatives off(xi) at each
pointxi. n is the number of points. This function provides the qubic spline interpolation for all
subintervals and is called only once. Thereafter, if you wish to make various interpolations, you
need to call the function

s p l i n t (double x [ ] , double y [ ] , double y2a [ ] , i n t n , double x , double �
y )

which takes as input the tabulated valuesx[0; ::; n�1℄ andy[0; ::; n�1℄ and the output y2a[0,..,n
- 1] from spline. It returns the valuey corresponding to the pointx.



Chapter 8

Numerical integration

8.1 Introduction

In this chapter we discuss some of the classic formulae such as the trapezoidal rule and Simpson’s
rule for equally spaced abscissas and formulae based on Gaussian quadrature. The latter are more
suitable for the case where the abscissas are not equally spaced. The emphasis is on methods for
evaluating one-dimensional integrals. In chapter 9 we showhow Monte Carlo methods can be
used to compute multi-dimensional integrals. We end this chapter with a discussion on singular
integrals and the construction of a class for integration methods.

The integral I = Z ba f(x)dx (8.1)

has a very simple meaning. If we consider Fig. 8.1 the integral I simply represents the area
enscribed by the functionf(x) starting fromx = a and ending atx = b. Two main methods will
be discussed below, the first one being based on equal (or allowing for slight modifications) steps
and the other on more adaptive steps, namely so-called Gaussian quadrature methods. Both main
methods encompass a plethora of approximations and only some of them will be discussed here.

8.2 Equal step methods

In considering equal step methods, our basic tool is the Taylor expansion of the functionf(x)
around a pointx and a set of surrounding neighbouring points. The algorithmis rather simple,
and the number of approximations unlimited!� Choose a step size h = b� aN

whereN is the number of steps anda andb the lower and upper limits of integration.
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a a+h a+2h a+3h a+4h b

Figure 8.1: Area enscribed by the functionf(x) starting fromx = a to x = b. It is subdivided in
several smaller areas whose evaluation is to be approximated by the techniques discussed in the
text.� Choose then to stop the Taylor expansion of the functionf(x) at a certain derivative. You

should also choose how many points aroundx are to be included in the evaluation of the
derivatives.� With these approximations tof(x) perform the integration.

Such a small measure may seemingly allow for the derivation of various integrals. To see this,
let us briefly recall the discussion in the previous section and especially Fig. 3.1. First, we can
rewrite the desired integral asZ ba f(x)dx = Z a+2ha f(x)dx + Z a+4ha+2h f(x)dx + : : :Z bb�2h f(x)dx: (8.2)

The strategy then is to find a reliable Taylor expansion forf(x) in the smaller sub intervals.
Consider e.g., evaluating Z +h�h f(x)dx (8.3)

where we will Taylor expandf(x) around a pointx0, see Fig. 3.1. The general form for the
Taylor expansion aroundx0 goes likef(x = x0 � h) = f(x0)� hf 0 + h2f 002 � h3f 0006 +O(h4):
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Let us now suppose that we split the integral in Eq. (8.3) in two parts, one from�h to x0 and
the other fromx0 to h. Next we assume that we can use the two-point formula for the derivative,
that is we can approximatef(x) in these two regions by a straight line, as indicated in the
figure. This means that every small element under the function f(x) looks like a trapezoid, and
as you may expect, the pertinent numerical approach to the integral bears the predictable name
’trapezoidal rule’. It means also that we are trying to approximate our functionf(x) with a first
order polynomial, that isf(x) = a+ bx. The constantb is the slope given by first derivativef 0(x0 � h) = �f(x0 � h)� f(x0)h +O(h);
and if we stop the Taylor expansion at that point our functionbecomes,f(x) = f0 + fh � f0h x+O(x2); (8.4)

for x = x0 to x = x0 + h and f(x) = f0 + f0 � f�hh x +O(x2); (8.5)

for x = x0 � h to x = x0. The error goes likeO(x2). If we then evaluate the integral we obtainZ +h�h f(x)dx = h2 (fh + 2f0 + f�h) +O(h3); (8.6)

which is the well-known trapezoidal rule. Concerning the error in the approximation made,O(h3) = O((b � a)3=N3), you should note the following.This is the local error! Since we
are splitting the integral froma to b in N pieces, we will have to perform approximatelyN
such operations. This means that theglobal error goes like� O(h2). To see that, we use the
trapezoidal rule to compute the integral of Eq. (8.1),I = Z ba f(x)dx = h (f(a)=2 + f(a+ h) + f(a+ 2h) + � � �+ f(b� h) + fb=2) ; (8.7)

with a global error which goes likeO(h2). It can easily be implemented numerically through the
following simple algorithm� Choose the number of mesh points and fix the step.� calculatef(a) andf(b) and multiply withh=2� Perform a loop overn = 1 to n � 1 (f(a) andf(b) are known) and sum up

the termsf(a+ h) + f(a+ 2h) + f(a+ 3h) + � � �+ f(b� h). Each step in
the loop corresponds to a given valuea + nh.� Multiply the final result byh and addhf(a)=2 andhf(b)=2.
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A simple function which implements this algorithm is as follows

double t r a p e z o i d a l _ r u l e (double a , double b , i n t n , double ( � func ) (
double ) )

{
double t rapez_sum ;
double fa , fb , x , s t e p ;
i n t j ;
s t e p =( b�a ) / ( ( double ) n ) ;
f a =(� func ) ( a ) / 2 . ;
fb =(� func ) ( b ) / 2 . ;
t rapez_sum = 0 . ;
f o r ( j = 1 ; j <= n�1; j ++) {

x= j � s t e p +a ;
t rapez_sum +=(� func ) ( x ) ;

}
t rapez_sum =( t rapez_sum + fb + f a )� s t e p ;
re tu rn t rapez_sum ;

} / / end t r a p e z o i d a l _ r u l e

The function returns a new value for the specific integral through the variabletrapez_sum. There
is one new feature to note here, namely the transfer of a user defined function calledfunc in the
definition

void t r a p e z o i d a l _ r u l e (double a , double b , i n t n , double � t rapez_sum ,
double ( � func ) (double ) )

What happens here is that we are transferring a pointer to thename of a user defined function,
which has as input a double precision variable and returns a double precision number. The
functiontrapezoidal_rule is called as

t r a p e z o i d a l _ r u l e ( a , b , n , & t rapez_sum , & myfunct ion )

in the calling function. We note thata, b andn are called by value, whiletrapez_sumand the
user defined functionmy_function are called by reference.

Instead of using the above linear two-point approximation for f , we could use the three-point
formula for the derivatives. This means that we will choose formulae based on function values
which lie symmetrically around the point where we preform the Taylor expansion. It means also
that we are approximating our function with a second-order polynomialf(x) = a + bx + 
x2.
The first and second derivatives are given byfh � f�h2h = f 00 + 1Xj=1 f (2j+1)0(2j + 1)!h2j; (8.8)

and fh � 2f0 + f�hh2 = f 000 + 2 1Xj=1 f (2j+2)0(2j + 2)!h2j; (8.9)
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and we note that in both cases the error goes likeO(h2j). With the latter two expressions we can
now approximate the functionf asf(x) = f0 + fh � f�h2h x+ fh � 2f0 + f�hh2 x2 +O(x3): (8.10)

Inserting this formula in the integral of Eq. (8.3) we obtainZ +h�h f(x)dx = h3 (fh + 4f0 + f�h) +O(h5); (8.11)

which is Simpson’s rule. Note that the improved accuracy in the evaluation of the derivatives
gives a better error approximation,O(h5) vs.O(h3) . But this is just thelocal error approxima-
tion. Using Simpson’s rule we can easily compute the integral of Eq. (8.1) to beI = Z ba f(x)dx = h3 (f(a) + 4f(a+ h) + 2f(a+ 2h) + � � �+ 4f(b� h) + fb) ; (8.12)

with a global error which goes likeO(h4). It can easily be implemented numerically through the
following simple algorithm� Choose the number of mesh points and fix the step.� calculatef(a) andf(b)� Perform a loop overn = 1 to n � 1 (f(a) andf(b) are known) and sum up

the terms4f(a + h) + 2f(a + 2h) + 4f(a + 3h) + � � � + 4f(b � h). Each
step in the loop corresponds to a given valuea + nh. Odd values ofn give4
as factor while even values yield2 as factor.� Multiply the final result byh3 .

A critical evaluation of these methods will be given after the discussion on Guassian quadra-
ture.

8.3 Gaussian quadrature

The methods we have presented hitherto are taylored to problems where the mesh pointsxi are
equidistantly spaced,xi differing fromxi+1 by the steph. These methods are well suited to cases
where the integrand may vary strongly over a certain region or if we integrate over the solution
of a differential equation.



110 CHAPTER 8. NUMERICAL INTEGRATION

If however our integrand varies only slowly over a large interval, then the methods we have
discussed may only slowly converge towards a chosen precision1. As an example,I = Z b1 x�2f(x)dx; (8.13)

may converge very slowly to a given precision ifb is large and/orf(x) varies slowly as function
of x at large values. One can obviously rewrite such an integral by changing variables tot = 1=x
resulting in I = Z 1b�1 f(t�1)dt; (8.14)

which has a small integration range and hopefully the numberof mesh points needed is not that
large.

However there are cases where no trick may help, and where thetime expenditure in evaluat-
ing an integral is of importance. For such cases, we would like to recommend methods based on
Gaussian quadrature. Here one can catch at least two birds with a stone, namely, increased preci-
sion and fewer (less time) mesh points. But it is important that the integrand varies smoothly over
the interval, else we have to revert to splitting the interval into many small subintervals and the
gain achieved may be lost. The mathematical details behind the theory for Gaussian quadrature
formulae is quite terse. If you however are interested in thederivation, we advice you to consult
the text of Stoer and Bulirsch [3], see especially section 3.6. Here we limit ourselves to merely
delineate the philosophy and show examples of practical applications.

The basic idea behind all integration methods is to approximate the integralI = Z ba f(x)dx � NXi=1 !if(xi); (8.15)

where! andx are the weights and the chosen mesh points, respectively. Inour previous discus-
sion, these mesh points were fixed at the beginning, by choosing a given number of pointsN .
The weigths! resulted then from the integration method we applied. Simpson’s rule, see Eq.
(8.12) would give ! : fh=3; 4h=3; 2h=3; 4h=3; : : : ; 4h=3; h=3g ; (8.16)

for the weights, while the trapezoidal rule resulted in! : fh=2; h; h; : : : ; h; h=2g : (8.17)

In general, an integration formula which is based on a Taylorseries usingN points, will integrate
exactly a polynomialP of degreeN � 1. That is, theN weights!n can be chosen to satisfyN
linear equations, see chapter 3 of Ref. [3]. A greater precision for a given amount of numerical
work can be achieved if we are willing to give up the requirement of equally spaced integration
points. In Gaussian quadrature (hereafter GQ), both the mesh points and the weights are to

1You could e.g., impose that the integral should not change asfunction of increasing mesh points beyond the
sixth digit.
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be determined. The points will not be equally spaced2. The theory behind GQ is to obtain an
arbitrary weight! through the use of so-called orthogonal polynomials. Thesepolynomials are
orthogonal in some interval say e.g., [-1,1]. Our pointsxi are chosen in some optimal sense
subject only to the constraint that they should lie in this interval. Together with the weights we
have then2N (N the number of points) parameters at our disposal.

Even though the integrand is not smooth, we could render it smooth by extracting from it the
weight function of an orthogonal polynomial, i.e., we are rewritingI = Z ba f(x)dx = Z ba W (x)g(x)dx � NXi=1 !if(xi); (8.18)

whereg is smooth andW is the weight function, which is to be associated with a givenorthogonal
polynomial.

The weight functionW is non-negative in the integration intervalx 2 [a; b℄ such that for
anyn � 0 R ba jxjnW (x)dx is integrable. The naming weight function arises from the fact that it
may be used to give more emphasis to one part of the interval than another. In physics there are
several important orthogonal polynomials which arise fromthe solution of differential equations.
These are Legendre, Hermite, Laguerre and Chebyshev polynomials. They have the following
weight functions

Weight function Interval PolynomialW (x) = 1 x 2 [a; b℄ LegendreW (x) = e�x2 �1 � x � 1 HermiteW (x) = e�x2 0 � x � 1 LaguerreW (x) = 1=(p1� x2) �1 � x � 1 Chebyshev

The importance of the use of orthogonal polynomials in the evaluation of integrals can be
summarized as follows.� As stated above, methods based on Taylor series usingN points will integrate exactly a

polynomialP of degreeN � 1. If a functionf(x) can be approximated with a polynomial
of degreeN � 1 f(x) � PN�1(x);
with N mesh points we should be able to integrate exactly the polynomialPN�1.� Gaussian quadrature methods promise more than this. We can get a better polynomial
approximation with order greater thanN to f(x) and still get away with onlyN mesh
points. More precisely, we approximatef(x) � P2N�1(x);

2Typically, most points will be located near the origin, while few points are needed for largex values since the
integrand is supposed to vary smoothly there. See below for an example.
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and with onlyN mesh points these methods promise thatZ f(x)dx � Z P2N�1(x)dx = N�1Xi=0 P2N�1(xi)!i; (8.19)

The reason why we can represent a functionf(x) with a polynomial of degree2N � 1 is
due to the fact that we have2N equations,N for the mesh points andN for the weights.

The mesh points are the zeros of the chosen orthogonal polynomial of orderN , and the weights
are determined from the inverse of a matrix. An orthogonal polynomials of degreeN defined in
an interval[a; b℄ has preciselyN distinct zeros on the open interval(a; b).

Before we detail how to obtain mesh points and weights with orthogonal polynomials, let
us revisit some features of orthogonal polynomials by specializing to Legendre polynomials. In
the text below, we reserve hereafter the labellingLN for a Legendre polynomial of orderN ,
while PN is an arbitrary polynomial of orderN . These polynomials form then the basis for the
Gauss-Legendre method.

8.3.1 Orthogonal polynomials, Legendre

The Legendre polynomials are the solutions of an important differential equation in physics,
namely C(1� x2)P �m2l P + (1� x2) ddx �(1� x2)dPdx� = 0: (8.20)C is a constant. Forml = 0 we obtain the Legendre polynomials as solutions, whereasml 6= 0
yields the so-called associated Legendre polynomials. This differential equation arises in e.g.,
the solution of the angular dependence of Schrödinger’s equation with spherically symmetric
potentials such as the Coulomb potential.

The corresponding polynomialsP areLk(x) = 12kk! dkdxk (x2 � 1)k k = 0; 1; 2; : : : ; (8.21)

which, up to a factor, are the Legendre polynomialsLk. The latter fulfil the orthorgonality
relation Z 1�1 Li(x)Lj(x)dx = 22i + 1Æij; (8.22)

and the recursion relation(j + 1)Lj+1(x) + jLj�1(x)� (2j + 1)xLj(x) = 0: (8.23)

It is common to choose the normalization conditionLN(1) = 1: (8.24)



8.3. GAUSSIAN QUADRATURE 113

With these equations we can determine a Legendre polynomialof arbitrary order with input
polynomials of orderN � 1 andN � 2.

As an example, consider the determination ofL0, L1 andL2. We have thatL0(x) = 
; (8.25)

with 
 a constant. Using the normalization equationL0(1) = 1 we get thatL0(x) = 1: (8.26)

ForL1(x) we have the general expressionL1(x) = a+ bx; (8.27)

and using the orthorgonality relationZ 1�1 L0(x)L1(x)dx = 0; (8.28)

we obtaina = 0 and with the conditionL1(1) = 1, we obtainb = 1, yieldingL1(x) = x: (8.29)

We can proceed in a similar fashion in order to determine the coefficients ofL2L2(x) = a + bx + 
x2; (8.30)

using the orthorgonality relationsZ 1�1 L0(x)L2(x)dx = 0; (8.31)

and Z 1�1 L1(x)L2(x)dx = 0; (8.32)

and the conditionL2(1) = 1 we would getL2(x) = 12 �3x2 � 1� : (8.33)

We note that we have three equations to determine the three coefficientsa, b and
.
Alternatively, we could have employed the recursion relation of Eq. (8.23), resulting in2L2(x) = 3xL1(x)� L0; (8.34)

which leads to Eq. (8.33).
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The orthogonality relation above is important in our discussion of how to obtain the weights
and mesh points. Suppose we have an arbitrary polynomialQN�1 of orderN�1 and a Legendre
polynomialLN(x) of orderN . We could representQN�1 by the Legendre polynomials throughQN�1(x) = N�1Xk=0 �kLk(x); (8.35)

where�k’s are constants.
Using the orthogonality relation of Eq. (8.22) we see thatZ 1�1 LN(x)QN�1(x)dx = N�1Xk=0 Z 1�1 LN (x)�kLk(x)dx = 0: (8.36)

We will use this result in our construction of mesh points andweights in the next subsection In
summary, the first few Legendre polynomials areL0(x) = 1; (8.37)L1(x) = x; (8.38)L2(x) = (3x2 � 1)=2; (8.39)L3(x) = (5x3 � 3x)=2; (8.40)

and L4(x) = (35x4 � 30x2 + 3)=8: (8.41)

The following simple function implements the above recursion relation of Eq. (8.23). for com-
puting Legendre polynomials of orderN .

/ / Th is f u n c t i o n computes t he Legendre po lynom ia l o f degreeN

double l e g e n d r e ( i n t n , double x )
{

double r , s , t ;
i n t m;
r = 0 ; s = 1 . ;
/ / Use r e c u r s i o n r e l a t i o n t o ge ne r a t e p1 and p2
f o r (m= 0 ; m < n ; m+ + )
{

t = r ; r = s ;
s = ( 2�m+1)�x� r � m� t ;

} / / end o f do loop
re tu rn s ;

} / / end o f f u n c t i o n l e ge nd r e

The variables representsLj+1(x), while r holdsLj(x) andt the valueLj�1(x).
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8.3.2 Mesh points and weights with orthogonal polynomials

To understand how the weights and the mesh points are generated, we define first a polynomial of
degree2N � 1 (since we have2N variables at hand, the mesh points and weights forN points).
This polynomial can be represented through polynomial division byP2N�1(x) = LN(x)PN�1(x) +QN�1(x); (8.42)

wherePN�1(x) andQN�1(x) are some polynomials of degreeN�1 or less. The functionLN (x)
is a Legendre polynomial of orderN .

Recall that we wanted to approximate an arbitrary functionf(x) with a polynomialP2N�1 in
order to evaluate Z 1�1 f(x)dx � Z 1�1 P2N�1(x)dx;
we can use Eq. (8.36) to rewrite the above integral asZ 1�1 P2N�1(x)dx = Z 1�1(LN(x)PN�1(x) +QN�1(x))dx = Z 1�1QN�1(x)dx; (8.43)

due to the orthogonality properties of the Legendre polynomials. We see that it suffices to eval-
uate the integral over

R 1�1QN�1(x)dx in order to evaluate
R 1�1 P2N�1(x)dx. In addition, at the

pointsxi whereLN is zero, we haveP2N�1(xi) = QN�1(xi) i = 1; 2; : : : ; N; (8.44)

and we see that through theseN points we can fully defineQN�1(x) and thereby the integral.
We develope thenQN�1(x) in terms of Legendre polynomials, as done in Eq. (8.35),QN�1(x) = N�1Xi=0 �iLi(x): (8.45)

Using the orthogonality property of the Legendre polynomials we haveZ 1�1QN�1(x)dx = N�1Xi=0 �i Z 1�1 L0(x)Li(x)dx = 2�0; (8.46)

where we have just insertedL0(x) = 1! Instead of an integration problem we need now to define
the coefficient�0. Since we know the values ofQN�1 at the zeros ofLN , we may rewrite Eq.
(8.45) as QN�1(xk) = N�1Xi=0 �iLi(xk) = N�1Xi=0 �iLik k = 1; 2; : : : ; N: (8.47)

Since the Legendre polynomials are linearly independent ofeach other, none of the columns in
the matrixLik are linear combinations of the others. We can then invert thelatter equation and
have N�1Xi=0 (L�1)kiQN�1(xi) = �k; (8.48)
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and since Z 1�1 P2N�1(x)dx = Z 1�1QN�1(x)dx = 2�0 = 2 N�1Xi=0 (L�1)0iP2N�1(xi); (8.49)

we see that if we identify the weights with2(L�1)0i, where the pointsxi are the zeros ofL, we
have an integration formula of the typeZ 1�1 P2N�1(x)dx = N�1Xi=0 !iP2N�1(xi) (8.50)

and if our functionf(x) can be approximated by a polynomialP of degree2N � 1, we have
finally that Z 1�1 f(x)dx � Z 1�1 P2N�1(x)dx = N�1Xi=0 !iP2N�1(xi): (8.51)

In summary, the mesh pointsxi are defined by the zeros ofL while the weights are given by2(L�1)0i.
8.3.3 Application to the caseN = 2
Let us visualize the above formal results for the caseN = 2. This means that we can approximate
a functionf(x) with a polynomialP3(x) of order2N � 1 = 3.

The mesh points are the zeros ofL2(x) = 1=2(3x2 � 1). These points arex0 = �1=p3 andx1 = 1=p3.
Specializing Eq. (8.47)QN�1(xk) = N�1Xi=0 �iLi(xk) k = 1; 2; : : : ; N:

toN = 2 yields Q1(x0) = �0 � �1 1p3 ; (8.52)

and Q1(x1) = �0 + �1 1p3 ; (8.53)

sinceL0(x = �1=p3) = 1 andL1(x = �1=p3) = �1=p3.
The matrixLik defined in Eq. (8.47) is thenLik =  1 � 1p31 1p3 ! ; (8.54)
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with an inverse given by (Lik)�1 = p32 � 1p3 1p3�1 1 � : (8.55)

The weights are given by the matrix elements2(L0k)�1. We have thence!0 = 1 and!1 = 1.
Summarizing, for Legendre polynomials withN = 2 we have weights! : f1; 1g ; (8.56)

and mesh points x : �� 1p3 ; 1p3� : (8.57)

If we wish to integrate Z 1�1 f(x)dx;
with f(x) = x2, we approximateI = Z 1�1 x2dx � N�1Xi=0 !ix2i : (8.58)

The exact answer is2=3. UsingN = 2 with the above two weights and mesh points we getI = Z 1�1 x2dx = 1Xi=0 !ix2i = 13 + 13 = 23 ; (8.59)

the exact answer!
If we were to emply the trapezoidal rule we would getI = Z 1�1 x2dx = b� a2 �(a)2 + (b)2� =2 = 1� (�1)2 �(�1)2 + (1)2� =2 = 1! (8.60)

With just two points we can calculate exactly the integral for a second-order polynomial since
our methods approximates the exact function with higher order polynomial. How many points
do you need with the trapezoidal rule in order to achieve a similar accuracy?

8.3.4 General integration intervals for Gauss-Legendre

Note that the Gauss-Legendre method is not limited to an interval [-1,1], since we can always
through a change of variable t = �1 + 2x� ab� a ; (8.61)

rewrite the integral for an interval [a,b]Z ba f(t)dt = b� a2 Z 1�1 f �(b� a)x2 + b� a2 � dx: (8.62)
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If we have an integral on the form Z 10 f(t)dt; (8.63)

we can choose new mesh points and weights by using the mapping~xi = tann�4 (1 + xi)o ; (8.64)

and ~!i = �4 !i
os2 ��4 (1 + xi)� ; (8.65)

wherexi and!i are the original mesh points and weights in the interval[�1; 1℄, while ~xi and~!i
are the new mesh points and weights for the interval[0;1℄.

To see that this is correct by inserting the the value ofxi = �1 (the lower end of the interval[�1; 1℄) into the expression for~xi. That gives~xi = 0, the lower end of the interval[0;1℄. Forxi = 1, we obtain~xi = 1. To check that the new weights are correct, recall that the weights
should correspond to the derivative of the mesh points. Try to convince yourself that the above
expression fulfils this condition.

8.3.5 Other orthogonal polynomials

Laguerre polynomials

If we are able to rewrite our integral of Eq. (8.18) with a weight functionW (x) = x�e�x with
integration limits[0;1℄, we could then use the Laguerre polynomials. The polynomials form
then the basis for the Gauss-Laguerre method which can be applied to integrals of the formI = Z 10 f(x)dx = Z 10 x�e�xg(x)dx: (8.66)

These polynomials arise from the solution of the differential equation� d2dx2 � ddx + �x � l(l + 1)x2 �L(x) = 0; (8.67)

wherel is an integerl � 0 and� a constant. This equation arises e.g., from the solution of the
radial Schrödinger equation with a centrally symmetric potential such as the Coulomb potential.
The first few polynomials are L0(x) = 1; (8.68)L1(x) = 1� x; (8.69)L2(x) = 2� 4x+ x2; (8.70)L3(x) = 6� 18x+ 9x2 � x3; (8.71)
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and L4(x) = x4 � 16x3 + 72x2 � 96x+ 24: (8.72)

They fulfil the orthorgonality relationZ 1�1 e�xLn(x)2dx = 1; (8.73)

and the recursion relation(n+ 1)Ln+1(x) = (2n+ 1� x)Ln(x)� nLn�1(x): (8.74)

Hermite polynomials

In a similar way, for an integral which goes likeI = Z 1�1 f(x)dx = Z 1�1 e�x2g(x)dx: (8.75)

we could use the Hermite polynomials in order to extract weights and mesh points. The Hermite
polynomials are the solutions of the following differential equationd2H(x)dx2 � 2xdH(x)dx + (�� 1)H(x) = 0: (8.76)

A typical example is again the solution of Schrödinger’s equation, but this time with a harmonic
oscillator potential. The first few polynomials areH0(x) = 1; (8.77)H1(x) = 2x; (8.78)H2(x) = 4x2 � 2; (8.79)H3(x) = 8x3 � 12; (8.80)

and H4(x) = 16x4 � 48x2 + 12: (8.81)

They fulfil the orthorgonality relationZ 1�1 e�x2Hn(x)2dx = 2nn!p�; (8.82)

and the recursion relation Hn+1(x) = 2xHn(x)� 2nHn�1(x): (8.83)
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Table 8.1: Mesh points and weights for the integration interval [0,100] withN = 10 using the
Gauss-Legendre method. i xi !i

1 1.305 3.334
2 6.747 7.473
3 16.030 10.954
4 28.330 13.463
5 42.556 14.776
6 57.444 14.776
7 71.670 13.463
8 83.970 10.954
9 93.253 7.473

10 98.695 3.334

8.3.6 Applications to selected integrals

Before we proceed with some selected applications, it is important to keep in mind that since
the mesh points are not evenly distributed, a careful analysis of the behavior of the integrand as
function ofx and the location of mesh points is mandatory. To give you an example, in the Table
below we show the mesh points and weights for the integrationinterval [0,100] forN = 10
points obtained by the Gauss-Legendre method. Clearly, if your function oscillates strongly in
any subinterval, this approach needs to be refined, either bychoosing more points or by choosing
other integration methods. Note also that for integration intervals like e.g.,x 2 [0;1℄, the
Gauss-Legendre method places more points at the beginning of the integration interval. If your
integrand varies slowly for large values ofx, then this method may be appropriate.

Let us here compare three methods for integrating, namely the trapezoidal rule, Simpson’s
method and the Gauss-Legendre approach. We choose two functions to integrate, namelyZ 1001 exp (�x)x dx;
and Z 30 12 + x2dx:
A program example which uses the trapezoidal rule, Simpson’s rule and the Gauss-Legendre
method is included here.

# inc lude < ios t ream >
# inc lude "lib.h"
us ing namespace s t d ;
/ / Here we d e f i n e v a r i o u s f u n c t i o n s c a l l e d by t he main program
/ / t h i s f u n c t i o n d e f i n e s t he f u n c t i o n t o i n t e g r a t e
double i n t _ f u n c t i o n (double x ) ;
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/ / Main f u n c t i o n be g i ns here
i n t main ( )
{

i n t n ;
double a , b ;
cou t < < "Read in the number of integration points" < < end l ;
c i n > > n ;
cou t < < "Read in integration limits" < < end l ;
c i n > > a > > b ;

/ / r e s e r v e space i n memory f o r v e c t o r s c o n t a i n i n g t he mesh p oi n t s
/ / w e i gh t s and f u n c t i o n v a l u e s f o r t he use o f t he gauss�l e ge nd r e
/ / method

double � x = new double [ n ] ;
double �w = new double [ n ] ;

/ / s e t up t he mesh p o i n t s and w e i gh t s
gau leg ( a , b , x ,w , n ) ;

/ / e v a l u a t e t he i n t e g r a l w i th t he Gauss�Legendre method
double i n t _ g a u s s = 0 . ;
f o r ( i n t i = 0 ; i < n ; i ++) {

i n t _ g a u s s +=w[ i ]� i n t _ f u n c t i o n ( x [ i ] ) ;
}

/ / f i n a l o u t p u t
cou t < < "Trapez-rule = " < < t r a p e z o i d a l _ r u l e ( a , b , n ,

i n t _ f u n c t i o n )
< < end l ;

cou t < < "Simpson's rule = " < < simpson ( a , b , n , i n t _ f u n c t i o n )
< < end l ;

cou t < < "Gaussian quad = " < < i n t _ g a u s s < < end l ;
d e l e t e [ ] x ;
d e l e t e [ ] w;
re tu rn 0 ;

} / / end o f main program
/ / t h i s f u n c t i o n d e f i n e s t he f u n c t i o n t o i n t e g r a t e
double i n t _ f u n c t i o n (double x )
{

double va l ue = 4 . / ( 1 . + x�x ) ;
re tu rn va l ue ;

} / / end o f f u n c t i o n t o e v a l u a t e

In Table 8.2 we show the results for the first integral using various mesh points, while Table
8.3 displays the corresponding results obtained with the second integral. We note here that, since
the area over where we integrate is rather large and the integrand goes slowly to zero for large
values ofx, both the trapezoidal rule and Simpson’s method need quite many points in order to
approach the Gauss-Legendre method. This integrand demonstrates clearly the strength of the
Gauss-Legendre method (and other GQ methods as well), viz.,few points are needed in order to
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Table 8.2: Results for
R 1001 exp (�x)=xdx using three different methods as functions of the num-

ber of mesh pointsN . N Trapez Simpson Gauss-Legendre
10 1.821020 1.214025 0.1460448
20 0.912678 0.609897 0.2178091
40 0.478456 0.333714 0.2193834

100 0.273724 0.231290 0.2193839
1000 0.219984 0.219387 0.2193839

achieve a very high precision.
The second Table however shows that for smaller integrationintervals, both the trapezoidal

rule and Simpson’s method compare well with the results obtained with the Gauss-Legendre
approach.

Table 8.3: Results for
R 30 1=(2 + x2)dx using three different methods as functions of the number

of mesh pointsN . N Trapez Simpson Gauss-Legendre
10 0.798861 0.799231 0.799233
20 0.799140 0.799233 0.799233
40 0.799209 0.799233 0.799233

100 0.799229 0.799233 0.799233
1000 0.799233 0.799233 0.799233

8.4 Treatment of singular Integrals

So-called principal value (PV) integrals are often employed in physics, from Green’s functions
for scattering to dispersion relations. Dispersion relations are often related to measurable quan-
tities and provide important consistency checks in atomic,nuclear and particle physics. A PV
integral is defined asI(x) = P Z ba dt f(t)t� x = lim�!0+ �Z x��a dt f(t)t� x + Z bx+� dt f(t)t� x� ; (8.84)

and arises in applications of Cauchy’s residue theorem whenthe polex lies on the real axis
within the interval of integration[a; b℄.

An important assumption is that the functionf(t) is continuous on the interval of integration.
In casef(t) is an analytic expression or it has an analytic continuationin the complex plane,

it may be possible to obtain an expression on closed form for the above integral.
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However, the situation which we are often confronted with isthatf(t) is only known at some
pointsti with corresponding valuesf(ti). In order to obtainI(x) we need to resort to a numerical
evaluation.

To evaluate such an integral, let us first rewrite it asP Z ba dt f(t)t� x = Z x��a dt f(t)t� x + Z bx+� dt f(t)t� x + P Z x+�x�� dt f(t)t� x; (8.85)

where we have isolated the principal value part in the last integral.
Defining a new variableu = t� x, we can rewrite the principal value integral asI�(x) = P Z +��� duf(u+ x)u : (8.86)

One possibility is to Taylor expandf(u+ x) aroundu = 0, and compute derivatives to a certain
order as we did for the Trapezoidal rule or Simpson’s rule. Since all terms with even powers ofu in the Taylor expansion dissapear, we have thatI�(x) � NmaxXn=0 f (2n+1)(x) �2n+1(2n+ 1)(2n+ 1)! : (8.87)

To evaluate higher-order derivatives may be both time consuming and delicate from a numer-
ical point of view, since there is always the risk of loosing precision when calculating derivatives
numerically. Unless we have an analytic expression forf(u+x) and can evaluate the derivatives
in a closed form, the above approach is not the preferred one.

Rather, we show here how to use the Gauss-Legendre method to compute Eq. (8.86). Let us
first introduce a new variables = u=� and rewrite Eq. (8.86) asI�(x) = P Z +1�1 dsf(�s+ x)s : (8.88)

The integration limits are now from�1 to 1, as for the Legendre polynomials. The principal
value in Eq. (8.88) is however rather tricky to evaluate numerically, mainly since computers have
limited precision. We will here use a subtraction trick often used when dealing with singular
integrals in numerical calculations. We introduce first thecalculus relationZ +1�1 dss = 0: (8.89)

It means that the curve1=(s) has equal and opposite areas on both sides of the singular points = 0.
If we then note thatf(x) is just a constant, we have alsof(x) Z +1�1 dss = Z +1�1 f(x)dss = 0: (8.90)
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Subtracting this equation from Eq. (8.88) yieldsI�(x) = P Z +1�1 dsf(�s+ x)s = Z +1�1 dsf(�s+ x)� f(x)s ; (8.91)

and the integrand is now longer singular since we have thatlims!x(f(s + x) � f(x)) = 0 and
for the particular cases = 0 the integrand is now finite.

Eq. (8.91) is now rewritten using the Gauss-Legendre methodresulting inZ +1�1 dsf(�s+ x)� f(x)s = NXi=1 !if(�si + x)� f(x)si ; (8.92)

wheresi are the mesh points (N in total) and!i are the weights.
In the selection of mesh points for a PV integral, it is important to use an even number of

points, since an odd number of mesh points always pickssi = 0 as one of the mesh points. The
sum in Eq. (8.92) will then diverge.

Let us apply this method to the integralI(x) = P Z +1�1 dtett : (8.93)

The integrand diverges atx = t = 0. We rewrite it using Eq. (8.91) asP Z +1�1 dtett = Z +1�1 et � 1t ; (8.94)

sinceex = e0 = 1. With Eq. (8.92) we have thenZ +1�1 et � 1t � NXi=1 !i eti � 1ti : (8.95)

The exact results is2:11450175075::::. With just two mesh points we recall from the previous
subsection that!1 = !2 = 1 and that the mesh points are the zeros ofL2(x), namelyx1 =�1=p3 andx2 = 1=p3. SettingN = 2 and inserting these values in the last equation givesI2(x = 0) = p3�e1=p3 � e�1=p3� = 2:1129772845:
With six mesh points we get even the exact result to the tenth digitI6(x = 0) = 2:11450175075!

We can repeat the above subtraction trick for more complicated integrands. First we modify
the integration limits to�1 and use the fact thatZ 1�1 dkk � k0 = 0: (8.96)
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It means that the curve1=(k � k0) has equal and opposite areas on both sides of the singular
point k0. If we break the integral into one over positivek and one over negativek, a change of
variablek ! �k allows us to rewrite the last equation asZ 10 dkk2 � k20 = 0: (8.97)

We can use this to express a principal values integral asP Z 10 f(k)dkk2 � k20 = Z 10 (f(k)� f(k0))dkk2 � k20 ; (8.98)

where the right-hand side is no longer singular atk = k0, it is proportional to the derivativedf=dk, and can be evaluated numerically as any other integral.
Such a trick is often used when evaluating scattering equations in momentum space, which

are nothing but mere rewriting, for the non-relativistic case, of the Schrödinger equation from
coordinate space to momentum space. We are going to solve numerically the scattering equation
in momentum space in the chapter on eigenvalue equations, see Chapter 13.





Chapter 9

Outline of the Monte-Carlo strategy

9.1 Introduction

Monte Carlo methods are widely used, from the integration ofmulti-dimensional integrals to
problems in chemistry, physics, medicine, biology, or Dow-Jones forecasting!

Numerical methods that are known as Monte Carlo methods can be loosely described as
statistical simulation methods, where statistical simulation is defined in quite general terms to be
any method that utilizes sequences of random numbers to perform the simulation.

Statistical simulation methods may be contrasted to conventional numerical discretization
methods, which typically are applied to ordinary or partialdifferential equations that describe
some underlying physical or mathematical system. In many applications of Monte Carlo, the
physical process is simulated directly, and there is no needto even write down the differential
equations that describe the behavior of the system. The onlyrequirement is that the physical
(or mathematical) system be described by probability distribution functions (PDF’s). Once the
PDF’s are known, the Monte Carlo simulation can proceed by random sampling from the PDF’s.
Many simulations are then performed (multiple “trials” or “histories”) and the desired result is
taken as an average over the number of observations (which may be a single observation or
perhaps millions of observations). In many practical applications, one can predict the statistical
error (the “variance”) in this average result, and hence an estimate of the number of Monte Carlo
trials that are needed to achieve a given error. If we assume that the physical system can be
described by a given probability density function, then theMonte Carlo simulation can proceed
by sampling from these PDF’s, which necessitates a fast and effective way to generate random
numbers uniformly distributed on the interval [0,1]. The outcomes of these random samplings,
or trials, must be accumulated or tallied in an appropriate manner to produce the desired result,
but the essential characteristic of Monte Carlo is the use ofrandom sampling techniques (and
perhaps other algebra to manipulate the outcomes) to arriveat a solution of the physical problem.
In contrast, a conventional numerical solution approach would start with the mathematical model
of the physical system, discretizing the differential equations and then solving a set of algebraic
equations for the unknown state of the system. It should be kept in mind though that this general
description of Monte Carlo methods may not directly apply tosome applications. It is natural
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to think that Monte Carlo methods are used to simulate random, or stochastic, processes, since
these can be described by PDF’s. However, this coupling is actually too restrictive because
many Monte Carlo applications have no apparent stochastic content, such as the evaluation of
a definite integral or the inversion of a system of linear equations. However, in these cases and
others, one can pose the desired solution in terms of PDF’s, and while this transformation may
seem artificial, this step allows the system to be treated as astochastic process for the purpose of
simulation and hence Monte Carlo methods can be applied to simulate the system.

There are, at least four ingredients which are crucial in order to understand the basic Monte-
Carlo strategy. These are

1. Random variables,

2. probability distribution functions (PDF),

3. moments of a PDF

4. and its pertinent variance�.

All these topics will be discussed at length below. We feel however that a brief explanation may
be appropriate in order to convey the strategy behind a Monte-Carlo calculation. Let us first
demistify the somewhat obscure concept of a random variable. The example we choose is the
classic one, the tossing of two dice, its outcome and the corresponding probability. In principle,
we could imagine being able to exactly determining the motion of the two dice, and with given
initial conditions determine the outcome of the tossing. Alas, we are not capable of pursuing
this ideal scheme. However, it does not mean that we do not have a certain knowledge of the
outcome. This partial knowledge is given by the probablity of obtaining a certain number when
tossing the dice. To be more precise, the tossing of the dice yields the following possible values[2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12℄: (9.1)

These values are called thedomain. To this domain we have the correspondingprobabilities[1=36; 2=36=3=36; 4=36; 5=36; 6=36; 5=36; 4=36; 3=36; 2=36; 1=36℄: (9.2)

The numbers in the domain are the outcomes of the physical process tossing the dice.We cannot
tell beforehand whether the outcome is 3 or 5 or any other number in this domain. This defines
the randomness of the outcome, or unexpectedness or any other synonimous word which encom-
passes the uncertitude of the final outcome.The only thing we can tell beforehand is that say
the outcome 2 has a certain probability. If our favorite hobby is to spend an hour every evening
throwing dice and registering the sequence of outcomes, we will note that the numbers in the
above domain [2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12℄; (9.3)

appear in a random order. After 11 throws the results may looklike[10; 8; 6; 3; 6; 9; 11; 8; 12; 4; 5℄: (9.4)
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Eleven new attempts may results in a totally different sequence of numbers and so forth. Repeat-
ing this exercise the next evening, will most likely never give you the same sequences. Thus, we
say that the outcome of this hobby of ours is truly random.

Random variables are hence characterized by a domain which contains all possible values
that the random value may take. This domain has a corresponding PDF.

To give you another example of possible random number spare time activities, consider the
radioactive decay of an�-particle from a certain nucleus. Assume that you have at your disposal
a Geiger-counter which registers every say 10ms whether an�-particle reaches the counter or
not. If we record a hit as 1 and no observation as zero, and repeat this experiment for a long time,
the outcome of the experiment is also truly random. We cannotform a specific pattern from the
above observations. The only possibility to say something about the outcome is given by the
PDF, which in this case the well-known exponential function� exp�(�x); (9.5)

with � being proportional with the half-life.

9.1.1 First illustration of the use of Monte-Carlo methods,crude integra-
tion

With this definition of a random variable and its associated PDF, we attempt now a clarification
of the Monte-Carlo strategy by using the evaluation of an integral as our example.

In the previous chapter we discussed standard methods for evaluating an integral likeI = Z 10 f(x)dx � NXi=1 !if(xi); (9.6)

where!i are the weights determined by the specific integration method (like Simpson’s or Tay-
lor’s methods) withxi the given mesh points. To give you a feeling of how we are to evaluate the
above integral using Monte-Carlo, we employ here the crudest possible approach. Later on we
will present slightly more refined approaches. This crude approach consists in setting all weights
equal 1,!i = 1. Recall also thatdx = h = (b � a)=N whereb = 1, a = 0 in our case andh is
the step size. We can then rewrite the above integral asI = Z 10 f(x)dx � 1N NXi=1 f(xi); (9.7)

but this is nothing but the average off over the interval [0,1], i.e.,I = Z 10 f(x)dx � hfi: (9.8)

In addition to the average valuehfi the other important quantity in a Monte-Carlo calculation
is the variance�2 or the standard deviation�. We define first the variance of the integral withf
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to be �2f = 1N NXi=1 f(xi)2 � 1N NXi=1 f(xi)!2 ; (9.9)

or �2f = �hf 2i � hfi2� : (9.10)

which is nothing but a measure of the extent to whichf deviates from its average over the region
of integration.

If we consider the results for a fixed value ofN as a measurement, we could however re-
calculate the above average and variance for a series of different measurements. If each such
measumerent produces a set of averages for the integralI denotedhfil, we have forM mea-
sumerements that the integral is given byhIiM = 1M MXl=1 hfil: (9.11)

The variance for these series of measurements is then forM = N�2N = 1N 24h 1N NXi=1 f(xi)!2i � h 1N NXi=1 f(xi)i!235 : (9.12)

Splitting the sum in the first term on the right hand side into asum withi = j and one withi 6= j
we assume that in the limit of a large number of measurements only terms withi = j survive,
yielding �2N � 1N �hf 2i � hfi2� = �2fN : (9.13)

We note that �N � 1pN : (9.14)

The aim is to have�N as small as possible afterN samples. The results from one sample
represents, since we are using concepts from statistics, a ’measurement’.

The scaling in the previous equation is clearly unfavorablecompared even with the trape-
zoidal rule. In the previous chapter we saw that the trapezoidal rule carries a truncation errorO(h2), with h the step length. In general, methods based on a Taylor expansion such as the
trapezoidal rule or Simpson’s rule have a truncation error which goes like� O(hk), with k � 1.
Recalling that the step size is defined ash = (b�a)=N , we have an error which goes like� N�k.

However, Monte Carlo integration is more efficient in higherdimensions. To see this, let
us assume that our integration volume is a hypercube with sideL and dimensiond. This cube
contains henceN = (L=h)d points and therefore the error in the result scales asN�k=d for the
traditional methods. The error in the Monte carlo integration is however independent ofd and
scales as� � 1=pN , always! Comparing this error with that of the traditional methods, shows
that Monte Carlo integration is more efficient than an order-k algorithm whend > 2k.
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Below we list a program which integratesZ 10 dx 11 + x2 = �4 ; (9.15)

where the input is the desired number of Monte Carlo samples.Note that we transfer the variableidum in order to initialize the random number generator from the functionran0. The variableidum gets changed for every sampling. This variable is called theseed.
What we are doing is to employ a random number generator to obtain numbersxi in the in-

terval[0; 1℄ through e.g., a call to one of the library functionsran0, ran1, ran2. These functions
will be discussed in the next section. Here we simply employ these functions in order to generate
a random variable. All random number generators produce in apseudo-random form numbers in
the interval[0; 1℄ using the so-called uniform probability distributionp(x) defined asp(x) = 1b� a�(x� a)�(b� x); (9.16)

with a = 0 og b = 1. If we have a general interval[a; b℄, we can still use these random number
generators through a variable changez = a+ (b� a)x; (9.17)

with x in the interval[0; 1℄.
The present approach to the above integral is often called ’crude’ or ’Brute-Force’ Monte-

Carlo. Later on in this chapter we will study refinements to this simple approach. The reason for
doing so is that a random generator produces points that are distributed in a homogenous way in
the interval[0; 1℄. If our function is peaked around certain values ofx, we may end up sampling
function values wheref(x) is small or near zero. Better schemes which reflect the properties of
the function to be integrated are thence needed.

The algorithm is as follows� Choose the number of Monte Carlo samplesN .� Perform a loop overN and for each step generate a a random numberxi in the interval[0; 1℄ trough a call to a random number generator.� Use this number to evaluatef(xi).� Evaluate the contributions to the mean value and the standard deviation for each loop.� After N samples calculate the final mean value and the standard deviation.

The following program implements the above algorithm usingthe library functionran0. Note
the inclusion of thelib:h file.
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# inc lude < ios t ream >
# inc lude "lib.h"
us ing namespace s t d ;

/ / Here we d e f i n e v a r i o u s f u n c t i o n s c a l l e d by t he main program
/ / t h i s f u n c t i o n d e f i n e s t he f u n c t i o n t o i n t e g r a t e

double func (double x ) ;

/ / Main f u n c t i o n be g i ns here
i n t main ( )
{

i n t i , n ;
long idum ;
double crude_mc , x , sum_sigma , fx , v a r i a n c e ;

cou t < < "Read in the number of Monte -Carlo samples" < < end l ;
c i n > > n ;
crude_mc = sum_sigma = 0 . ; idum =�1 ;

/ / e v a l u a t e t he i n t e g r a l w i th t he a crude Monte�Carlo method
f o r ( i = 1 ; i <= n ; i ++) {

x= ran0 (&idum ) ;
fx = func ( x ) ;
crude_mc + = fx ;
sum_sigma + = fx� f x ;

}
crude_mc = crude_mc / ( (double ) n ) ;
sum_sigma = sum_sigma / ( (double ) n ) ;
v a r i a n c e =sum_sigma�crude_mc�crude_mc ;

/ / f i n a l o u t p u t
cou t < < " varian
e= " < < v a r i a n c e < <" Integral = "

< < crude_mc < <" Exa
t= " < < M_PI / 4 . < < end l ;
} / / end o f main program

/ / t h i s f u n c t i o n d e f i n e s t he f u n c t i o n t o i n t e g r a t e

double func (double x )
{

double va l ue ;
va l ue = 1 . / ( 1 . + x�x ) ;
re tu rn va l ue ;

} / / end o f f u n c t i o n t o e v a l u a t e
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The following table list the results from the above program as function of the number of Monte
Carlo samples.

Table 9.1: Results forI = R 10 dx1=(1 + x2) as function of number of Monte Carlo samplesN .
The exact answer is7:85398E � 01 with 6 digits.N I �N

10 7.75656E-01 4.99251E-02
100 7.57333E-01 1.59064E-02

1000 7.83486E-01 5.14102E-03
10000 7.85488E-01 1.60311E-03

100000 7.85009E-01 5.08745E-04
1000000 7.85533E-01 1.60826E-04

10000000 7.85443E-01 5.08381E-05

We note that asN increases, the standard deviation decreases, however the integral itself
never reaches more than an agreement to the third or fourth digit. Improvements to this crude
Monte Carlo approach will be discussed.

As an alternative, we could have used the random number generator provided by the compiler
through the functionsrand, as shown in the next example.

/ / c rude mc f u n c t i o n t o c a l c u l a t e p i
# inc lude < ios t ream >

us ing namespace s t d ;

i n t main ( )
{

cons t i n t n = 1000000 ;
double x , fx , p i , i n v e r s _ p e r i o d , p i2 ;
i n t i ;

i n v e r s _ p e r i o d = 1 . /RAND_MAX;
s r a nd ( t ime (NULL) ) ;
p i = p i2 = 0 . ;
f o r ( i = 0 ; i <n ; i ++)

{
x = double ( rand ( ) )� i n v e r s _ p e r i o d ;
fx = 4 . / ( 1 + x�x ) ;
p i + = fx ;
p i2 + = fx� f x ;

}
p i / = n ; p i2 = p i2 / n � p i � p i ;
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cou t < < "pi=" < < p i < < " sigma^2=" < < p i2 < < end l ;
re tu rn 0 ;

}

9.1.2 Second illustration, particles in a box

We give here an example of how a system evolves towards a well defined equilibrium state.
Consider a box divided into two equal halves separated by a wall. At the beginning, timet = 0, there areN particles on the left side. A small hole in the wall is then opened and one

particle can pass through the hole per unit time.
After some time the system reaches its equilibrium state with equally many particles in both

halves,N=2. Instead of determining complicated initial conditions for a system ofN particles,
we model the system by a simple statistical model. In order tosimulate this system, which may
consist ofN � 1 particles, we assume that all particles in the left half haveequal probabilities
of going to the right half. We introduce the labelnl to denote the number of particles at every
time on the left side, andnr = N � nl for those on the right side. The probability for a move
to the right during a time step�t is nl=N . The algorithm for simulating this problem may then
look like as follows� Choose the number of particlesN .� Make a loop over time, where the maximum time should be largerthan the number of

particlesN .� For every time step�t there is a probabilitynl=N for a move to the right. Compare this
probability with a random numberx.� If x � nl=N , decrease the number of particles in the left half by one, i.e., nl = nl � 1.
Else, move a particle from the right half to the left, i.e.,nl = nl + 1.� Increase the time by one unit (the external loop).

In this case, a Monte Carlo sample corresponds to one time unit �t.
The following simple C-program illustrates this model.

/ / P a r t i c l e s i n a box
# inc lude < ios t ream >
# inc lude < fs t ream >
# inc lude < iomanip >
# inc lude "lib.h"
us ing namespace s t d ;

o f s t r e a m o f i l e ;
i n t main ( i n t argc , char � argv [ ] )
{
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char � o u t f i l e n a m e ;
i n t i n i t i a l _ n _ p a r t i c l e s , max_time , t ime , random_n , n l e f t ;
long idum ;
/ / Read i n o u t p u t f i l e , abo r t i f t h e r e are too few command� l i n e

arguments
i f ( a rgc < = 1 ) {

cou t < < "Bad Usage: " < < argv [0 ] < <" read also output file on same line" < < end l ;
e x i t ( 1 ) ;

}
e l s e{

o u t f i l e n a m e = argv [ 1 ] ;
}
o f i l e . open ( o u t f i l e n a m e ) ;
/ / Read i n data
cou t < < "Initial number of parti
les = " < < end l ;
c i n > > i n i t i a l _ n _ p a r t i c l e s ;
/ / s e t up o f i n i t i a l c o n d i t i o n s
n l e f t = i n i t i a l _ n _ p a r t i c l e s ;
max_time = 10� i n i t i a l _ n _ p a r t i c l e s ;
idum = �1;
/ / sampl ing over number o f p a r t i c l e s
f o r ( t ime = 0 ; t ime <= max_time ; t ime ++) {

random_n = ( (i n t ) i n i t i a l _ n _ p a r t i c l e s� ran0 (&idum ) ) ;
i f ( random_n <= n l e f t ) {

n l e f t �= 1;
}
e l s e{

n l e f t + = 1 ;
}
o f i l e < < s e t i o s f l a g s ( i o s : : showpoin t | i o s : : uppe r c a s e ) ;
o f i l e < < setw ( 15 ) < < t ime ;
o f i l e < < setw ( 15 ) < < n l e f t < < end l ;

}
re tu rn 0 ;

} / / end main f u n c t i o n

The enclosed figure shows the development of this system as function of time steps. We note
that forN = 1000 after roughly2000 time steps, the system has reached the equilibrium state.
There are however noteworthy fluctuations around equilibrium.

If we denotehnli as the number of particles in the left half as a time average afterequilibrium
is reached, we can define the standard deviation as� =qhn2l i � hnli2: (9.18)

This problem has also an analytic solution to which we can compare our numerical simula-
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Figure 9.1: Number of particles in the left half of the container as function of the number of time
steps. The solution is compared with the analytic expression.N = 1000.

tion. If nl(t) are the number of particles in the left half aftert moves, the change innl(t) in the
time interval�t is �n = �N � nl(t)N � nl(t)N ��t; (9.19)

and assuming thatnl andt are continuous variables we arrive atdnl(t)dt = 1� 2nl(t)N ; (9.20)

whose solution is nl(t) = N2 �1 + e�2t=N� ; (9.21)

with the initial conditionnl(t = 0) = N .

9.1.3 Radioactive decay

Radioactive decay is among one of the classical examples on use of Monte-Carlo simulations.
Assume that a the timet = 0 we haveN(0) nuclei of typeX which can decay radioactively. At
a timet > 0 we are left withN(t) nuclei. With a transition probability!, which expresses the
probability that the system will make a transition to another state during oen second, we have the
following first-order differential equationdN(t) = �!N(t)dt; (9.22)
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whose solution is N(t) = N(0)e�!t; (9.23)

where we have defined the mean lifetime� of X as� = 1!: (9.24)

If a nucleusX decays to a daugther nucleusY which also can decay, we get the following
coupled equations dNX(t)dt = �!XNX(t); (9.25)

and dNY (t)dt = �!YNY (t)� !XNX(t): (9.26)

The program example in the next subsection illustrates how we can simulate such a decay process
through a Monte Carlo sampling procedure.

9.1.4 Program example for radioactive decay of one type of nucleus

The program is split in four tasks, a main program with various declarations,

/ / R a d i o a c t i v e decay o f n u c l e i
# inc lude < ios t ream >
# inc lude < fs t ream >
# inc lude < iomanip >
# inc lude "lib.h"
us ing namespace s t d ;

o f s t r e a m o f i l e ;

/ / Func t ion t o read i n data from s c r e e n
void i n i t i a l i s e ( i n t & , i n t & , i n t & , double& ) ;
/ / The Mc sampl ing f o r nuc l e a r decay
void mc_sampling (i n t , i n t , i n t , double , i n t � ) ;
/ / p r i n t s t o s c r e e n t he r e s u l t s o f t he c a l c u l a t i o n s
void o u t p u t (i n t , i n t , i n t � ) ;
i n t main ( i n t argc , char � argv [ ] )
{

char � o u t f i l e n a m e ;
i n t i n i t i a l _ n _ p a r t i c l e s , max_time , number_cyc les ;
double d e c a y _ p r o b a b i l i t y ;
i n t � nc um u l a t i ve ;
/ / Read i n o u t p u t f i l e , abo r t i f t h e r e are too few command� l i n e

arguments
i f ( a rgc < = 1 ) {

cou t < < "Bad Usage: " < < argv [0 ] < <



138 CHAPTER 9. OUTLINE OF THE MONTE-CARLO STRATEGY" read also output file on same line" < < end l ;
e x i t ( 1 ) ;

}
e l s e{

o u t f i l e n a m e = argv [ 1 ] ;
}
o f i l e . open ( o u t f i l e n a m e ) ;
/ / Read i n data
i n i t i a l i s e ( i n i t i a l _ n _ p a r t i c l e s , max_time , number_cyc les ,

d e c a y _ p r o b a b i l i t y ) ;
nc um u l a t i ve = new i n t [ max_time + 1 ] ;
/ / Do t he mc sampl ing
mc_sampling ( i n i t i a l _ n _ p a r t i c l e s , max_time , number_cycles ,

d e c a y _ p r o b a b i l i t y , nc um u l a t i ve ) ;
/ / P r i n t ou t r e s u l t s
o u t p u t ( max_time , number_cyc les , nc um u l a t i ve ) ;
d e l e t e [ ] n c um u l a t i ve ;
re tu rn 0 ;

} / / end o f main f u n c t i o n

the part which performs the Monte Carlo sampling

void mc_sampling (i n t i n i t i a l _ n _ p a r t i c l e s , i n t max_time ,
i n t number_cyc les ,double d e c a y _ p r o b a b i l i t y ,
i n t � nc um u l a t i ve )

{
i n t c yc l e s , t ime , np , n_uns t a b l e , p a r t i c l e _ l i m i t ;
long idum ;

idum =�1; / / i n i t i a l i s e random number ge ne r a t o r
/ / loop over monte c a r l o c y c l e s
/ / One monte c a r l o loop i s one sample
f o r ( c y c l e s = 1 ; c y c l e s <= number_cyc les ; c y c l e s ++) {

n _ u n s t a b l e = i n i t i a l _ n _ p a r t i c l e s ;
/ / accumula te t he number o f p a r t i c l e s per t ime s t e p per t r i a l
nc um u l a t i ve [ 0 ] + = i n i t i a l _ n _ p a r t i c l e s ;
/ / loop over each t ime s t e p
f o r ( t ime = 1 ; t ime <= max_time ; t ime ++) {

/ / f o r each t ime s tep , we check each p a r t i c l e
p a r t i c l e _ l i m i t = n _ u n s t a b l e ;
f o r ( np = 1 ; np <= p a r t i c l e _ l i m i t ; np ++) {

i f ( ran0 (&idum ) <= d e c a y _ p r o b a b i l i t y ) {
n _ u n s t a b l e = n_uns t a b l e�1;

}
} / / end o f loop over p a r t i c l e s
nc um u l a t i ve [ t ime ] + = n _ u n s t a b l e ;
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} / / end o f loop over t ime s t e p s
} / / end o f loop over MC t r i a l s

} / / end mc_sampl ing f u n c t i o n

and finally functions for reading input and writing output data

void i n i t i a l i s e ( i n t & i n i t i a l _ n _ p a r t i c l e s , i n t & max_time ,
i n t & number_cyc les , double& d e c a y _ p r o b a b i l i t y )

{
cou t < < "Initial number of parti
les = " < < end l ;
c i n > > i n i t i a l _ n _ p a r t i c l e s ;
cou t < < "maximum time = " < < end l ;
c i n > > max_time ;
cou t < < "# MC steps= " < < end l ;
c i n > > number_cyc les ;
cou t < < "# De
ay probability= " < < end l ;
c i n > > d e c a y _ p r o b a b i l i t y ;

} / / end o f f u n c t i o n i n i t i a l i s e

void o u t p u t ( i n t max_time , i n t number_cyc les , i n t � nc um u l a t i ve )
{

i n t i ;
f o r ( i = 0 ; i <= max_time ; i ++) {

o f i l e < < s e t i o s f l a g s ( i o s : : showpoin t | i o s : : uppe r c a s e ) ;
o f i l e < < setw ( 15 ) < < i ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) ;
o f i l e < < nc um u l a t i ve [ i ] / ( (double ) number_cyc les ) < < end l ;

}
} / / end o f f u n c t i o n o u t p u t

9.1.5 Brief summary

In essence the Monte Carlo method contains the following ingredients� A PDF which characterizes the system� Random numbers which are generated so as to cover in a as uniform as possible way on
the unity interval [0,1].� A sampling rule� An error estimation� Techniques for improving the errors
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Before we discuss various PDF’s which may be of relevance here, we need to present some
details about the way random numbers are generated. This is done in the next section. Thereafter
we present some typical PDF’s. Sections 5.4 and 5.5 discuss Monte Carlo integration in general,
how to choose the correct weighting function and how to evaluate integrals with dimensionsd > 1.

9.2 Physics Project: Decay of210Bi and 210Po

In this project we are going to simulate the radioactive decay of these nuclei using sampling
through random numbers. We assume that att = 0 we haveNX(0) nuclei of the typeX which
can decay radioactively. At a given timet we are left withNX(t) nuclei. With a transition
rate!X , which is the probability that the system will make a transition to another state during a
second, we get the following differential equationdNX(t) = �!XNX(t)dt; (9.27)

whose solution is NX(t) = NX(0)e�!Xt; (9.28)

and where the mean lifetime of the nucleusX is� = 1!X : (9.29)

If the nucleusX decays toY , which can also decay, we get the following coupled equationsdNX(t)dt = �!XNX(t); (9.30)

and dNY (t)dt = �!YNY (t) + !XNX(t): (9.31)

We assume that att = 0 we haveNY (0) = 0. In the beginning we will have an increase ofNY nuclei, however, they will decay thereafter. In this project we let the nucleus210Bi representX. It decays through�-decay to210Po, which is theY nucleus in our case. The latter decays
through emision of an�-particle to206Pb, which is a stable nucleus.210Bi has a mean lifetime of
7.2 days while210Po has a mean lifetime of 200 days.

a) Find analytic solutions for the above equations assumingcontinuous variables and setting
the number of210Po nuclei equal zero att = 0.

b) Make a program which solves the above equations. What is a reasonable choice of timestep�t? You could use the program on radioactive decay from the web-page of the course as
an example and make your own for the decay of two nuclei. Compare the results from
your program with the exact answer as function ofNX(0) = 10, 100 and1000. Make plots
of your results.
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c) When210Po decays it produces an� particle. At what time does the production of�
particles reach its maximum? Compare your results with the analytic ones forNX(0) = 10,100 and1000.

9.3 Random numbers

Uniform deviates are just random numbers that lie within a specified range (typically 0 to 1),
with any one number in the range just as likely as any other. They are, in other words, what
you probably think random numbers are. However, we want to distinguish uniform deviates
from other sorts of random numbers, for example numbers drawn from a normal (Gaussian)
distribution of specified mean and standard deviation. These other sorts of deviates are almost
always generated by performing appropriate operations on one or more uniform deviates, as we
will see in subsequent sections. So, a reliable source of random uniform deviates, the subject
of this section, is an essential building block for any sort of stochastic modeling or Monte Carlo
computer work. A disclaimer is however appropriate. It should be fairly obvious that something
as deterministic as a computer cannot generate purely random numbers.

Numbers generated by any of the standard algorithm are in reality pseudo random numbers,
hopefully abiding to the following criteria:

1. they produce a uniform distribution in the interval [0,1].

2. correlations between random numbers are negligible

3. the period before the same sequence of random numbers is repeated is as large as possible
and finally

4. the algorithm should be fast.

That correlations, see below for more details, should be as small as possible resides in the
fact that every event should be independent of the other ones. As an example, a particular simple
system that exhibits a seemingly random behavior can be obtained from the iterative processxi+1 = 
xi(1� xi); (9.32)

which is often used as an example of a chaotic system.
 is constant and for certain values of
 andx0 the system can settle down quickly into a regular periodic sequence of valuesx1; x2; x3; : : : .
For x0 = 0:1 and
 = 3:2 we obtain a periodic pattern as shown in Fig. 5.2. Changing
 to
 = 3:98 yields a sequence which does not converge to any specific pattern. The values ofxi
seem purely random. Although the latter choice of
 yields a seemingly random sequence of
values, the various values ofx harbor subtle correlations that a truly random number sequence
would not possess.

The most common random number generators are based on so-called Linear congruential
relations of the type Ni = (aNi�1 + 
)MOD(M); (9.33)
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Figure 9.2: Plot of the logistic mappingxi+1 = 
xi(1 � xi) for x0 = 0:1 and 
 = 3:2 and
 = 3:98.

which yield a number in the interval [0,1] throughxi = Ni=M (9.34)

The numberM is called the period and it should be as large as possible andN0 is the start-
ing value, or seed. The functionMOD means the remainder, that is if we were to evaluate(13)MOD(9), the outcome is the remainder of the division13=9, namely4.

The problem with such generators is that their outputs are periodic; they will start to repeat
themselves with a period that is at mostM . If however the parametersa and
 are badly chosen,
the period may be even shorter.

Consider the following exampleNi = (6Ni�1 + 7)MOD(5); (9.35)

with a seedN0 = 2. These generator produces the sequence4; 1; 3; 0; 2; 4; 1; 3; 0; 2; ::: : : : , i.e.,
a sequence with period5. However, increasingM may not guarantee a larger period as the
following example shows Ni = (27Ni�1 + 11)MOD(54); (9.36)

which still withN0 = 2 results in11; 38; 11; 38; 11; 38; : : : , a period of just2.
Typical periods for the random generators provided in the program library are of the order of� 109. Other random number generators which have become increasingly popular are so-called

shift-register generators. In these generators each successive number depends on many preceding
values (rather than the last values as in the linear congruential generator). For example, you could
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make a shift register generator whoselth number is the sum of thel� ith andl� jth values with
moduloM , Nl = (aNl�i + 
Nl�j)MOD(M): (9.37)

Such a generator again produces a sequence of pseudorandom numbers but this time with a period
much larger thanM . It is also possible to construct more elaborate algorithmsby including more
than two past terms in teh sum of each iteration. One example is the generator of Marsaglia and
Zaman (Computers in Physics8 (1994) 117) which consists of two congurential relationsNl = (Nl�3 �Nl�1)MOD(231 � 69); (9.38)

followed by Nl = (69069Nl�1 + 1013904243)MOD(232); (9.39)

which according to the authors has a period larger than294.
Moreover, rather than using modular addition, we could use the bitwise exclusive-OR (�)

operation so that Nl = (Nl�i)� (Nl�j) (9.40)

where the bitwise action of� means that ifNl�i = Nl�j the result is0 whereas ifNl�i 6= Nl�j
the result is1. As an example, consider the case whereNl�i = 6 andNl�j = 11. The first one
has a bit representation (using 4 bits only) which reads0110 whereas the second number is1011.
Employing the� operator yields1101, or 23 + 22 + 20 = 13.

In Fortran90, the bitwise� operation is coded through the intrinsic functionIEOR(m;n)
wherem andn are the input numbers, while inC it is given bymn. The program below (from
Numerical Recipes, chapter 7.1) shows the functionran0 which implementsNi = (aNi�1)MOD(M); (9.41)

through Schrage’s algorithm which approximates the multiplication of large integers through the
factorization M = aq + r;
or q = [M=a℄;
where the brackets denote integer division andr = (M)MOD(a).

Note that the program uses the bitwise� operator to generate the starting point for each
generation of a random number. The period ofran0 is � 2:1 � 109. A special feature of this
algorithm is that is should never be called with the initial seed set to0.

/��� The f u n c t i o n�� ran0 ( )�� i s an " Minimal " random number ge ne r a t o r o f Park and M i l l e r� � ( see Numer ica l r e c i p e page 2 7 9 ) . Se t or r e s e t t he i n p u t v a l ue�� idum t o any i n t e g e r v a l ue ( e x c e p t t he u n l i k e l y v a l ue MASK)
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double ran0 (long &idum )
{

cons t i n t a = 1 6 8 0 7 , m = 2147483647 , q = 1 2 7 7 7 3 ;
cons t i n t r = 2 8 3 6 , MASK = 123459876 ;
cons t double am = 1 . /m;
long k ;
double ans ;

idum ^ = MASK;
k = ( � idum ) / q ;
idum = a� ( idum � k�q ) � r �k ;
i f ( idum < 0 ) idum + = m;
ans =am� ( idum ) ;
idum ^ = MASK;
re tu rn ans ;

} / / End : f u n c t i o n ran0 ( )

The other random number generatorsran1, ran2 andran3 are described in detail in chapter 7.1
of Numerical Recipes.

Here we limit ourselves to study selected properties of these generators.

9.3.1 Properties of selected random number generators

As mentioned previously, the underlying PDF for the generation of random numbers is the uni-
form distribution, meaning that the probability for findinga numberx in the interval [0,1] isp(x) = 1.

A random number generator should produce numbers which uniformly distributed in this
interval. Table 5.2 shows the distribution ofN = 10000 random numbers generated by the
functions in the program library. We note in this table that the number of points in the various
intervals0:0� 0:1, 0:1� 0:2 etc are fairly close to1000, with some minor deviations.

Two additional measures are the standard deviation� and the mean� = hxi.
For the uniform distribution withN points we have that the averagehxki ishxki = 1N NXi=1 xki p(xi); (9.42)

and taking the limitN !1 we havehxki = Z 10 dxp(x)xk = Z 10 dxxk = 1k + 1 ; (9.43)
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sincep(x) = 1. The mean value� is then� = hxi = 12 (9.44)

while the standard deviation is� =phx2i � �2 = 1p12 = 0:2886: (9.45)

The various random number generators produce results whichagree rather well with these
limiting values. In the next section, in our discussion of probability distribution functions and
the central limit theorem, we are to going to see that the uniform distribution evolves towards a
normal distribution in the limitN !1.

Table 9.2: Number ofx-values for various intervals generated by 4 random number generators,
their corresponding mean values and standard deviations. All calculations have been initialized
with the variableidum = �1.x-bin ran0 ran1 ran2 ran3

0.0-0.1 1013 991 938 1047
0.1-0.2 1002 1009 1040 1030
0.2-0.3 989 999 1030 993
0.3-0.4 939 960 1023 937
0.4-0.5 1038 1001 1002 992
0.5-0.6 1037 1047 1009 1009
0.6-0.7 1005 989 1003 989
0.7-0.8 986 962 985 954
0.8-0.9 1000 1027 1009 1023
0.9-1.0 991 1015 961 1026� 0.4997 0.5018 0.4992 0.4990� 0.2882 0.2892 0.2861 0.2915

There are many other tests which can be performed. Often a picture of the numbers generated
may reveal possible patterns. Another important test is thecalculation of the auto-correlation
functionCk Ck = hxi+kxii � hxii2hx2i i � hxii2 ; (9.46)

with C0 = 1. Recall that�2 = hx2i i � hxii2. The non-vanishing ofCk for k 6= 0 means that
the random numbers are not independent. The independence ofthe random numbers is crucial
in the evaluation of other expectation values. If they are not independent, our assumption for
approximating�N in Eq. (9.13) is no longer valid.

The expectation values which enter the definition ofCk are given byhxi+kxii = 1N � k N�kXi=1 xixi+k: (9.47)
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Figure 9.3: Plot of the auto-correlation functionCk for variousk-values forN = 10000 using
the random number generatorsran0 andran1.

Fig. 5.3 compares the auto-correlation function calculated from ran0 andran1. As can be
seen, the correlations are non-zero, but small. The fact that correlations are present is expected,
since all random numbers do depend in same way on the previousnumbers.

Exercise 9.1
Make a program which computes random numbers according to the algorithm of
Marsaglia and Zaman, Eqs. (9.38) and (9.39). Compute the correlation functionCk
and compare with the auto-correlation function from the functionran0.

9.4 Probability distribution functions

Hitherto, we have tacitly used properties of probability distribution functions in our computation
of expectation values. Here and there we have referred to theuniform PDF. It is now time to
present some general features of PDFs which we may encounterwhen doing physics and how
we define various expectation values. In addition, we derivethe central limit theorem and discuss
its meaning in the light of properties of various PDFs.

The following table collects properties of probability distribution functions. In our notation
we reserve the labelp(x) for the probability of a certain event, whileP (x) is the cumulative
probability.
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Table 9.3: Important properties of PDFs.
Discrete PDF Continuous PDF

Domain fx1; x2; x3; : : : ; xNg [a; b℄
Probability p(xi) p(x)dx
Cumulative Pi =Pil=1 p(xl) P (x) = R xa p(t)dt
Positivity 0 � p(xi) � 1 p(x) � 0
Positivity 0 � Pi � 1 0 � P (x) � 1
Monotonic Pi � Pj if xi � xj P (xi) � P (xj) if xi � xj
Normalization PN = 1 P (b) = 1

With a PDF we can compute expectation values of selected quantities such ashxki = 1N NXi=1 xki p(xi); (9.48)

if we have a discrete PDF or hxki = Z ba xkp(x)dx; (9.49)

in the case of a continuous PDF. We have already defined the mean value� and the variance�2.
The expectation value of a quantityf(x) is then given by e.g.,hfi = Z ba f(x)p(x)dx: (9.50)

We have already seen the use of the last equation when we applied the crude Monte Carlo ap-
proach to the evaluation of an integral.

There are at least three PDFs which one may encounter. These are the

1. uniform distribution p(x) = 1b� a�(x� a)�(b� x); (9.51)

yielding probabilities different from zero in the interval[a; b℄,
2. the exponential distribution p(x) = �e��x; (9.52)

yielding probabilities different from zero in the interval[0;1℄,
3. and the normal distributionp(x) = 1p2��2 exp��(x� �)22�2 �

(9.53)

with probabilities different from zero in the interval[�1;1℄,
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The exponential and uniform distribution have simple cumulative functions, whereas the normal
distribution does not, being proportional to the so-callederror functionerf(x).

Exercise 9.2
Calculate the cumulative functionP (x) for the above three PDFs. Calculate also
the corresponding mean values and standard deviations and give an interpretation
of the latter.

9.4.1 The central limit theorem

subsec:centrallimit Suppose we have a PDFp(x) from which we generate a seriesN of averageshxii. Each mean valuehxii is viewed as the average of a specific measurement, e.g., throwing
dice 100 times and then taking the average value, or producing a certain amount of random
numbers. For notational ease, we sethxii = xi in the discussion which follows.

If we compute the meanz of N such mean valuesxiz = x1 + x2 + � � �+ xNN ; (9.54)

the question we pose is which is the PDF of the new variablez.
The probability of obtaining an average valuez is the product of the probabilities of obtaining

arbitrary individual mean valuesxi, but with the constraint that the average isz. We can express
this through the following expression~p(z) = Z dx1p(x1) Z dx2p(x2) : : :Z dxNp(xN)Æ(z � x1 + x2 + � � �+ xNN ); (9.55)

where theÆ-function enbodies the constraint that the mean isz. All measurements that lead to
each individualxi are expected to be independent, which in turn means that we can express~p as
the product of individualp(xi).

If we use the integral expression for theÆ-functionÆ(z � x1 + x2 + � � �+ xNN ) = 12� Z 1�1 dqe(iq(z�x1+x2+���+xNN )); (9.56)

and insertingei�q�i�q where� is the mean value we arrive at~p(z) = Z 1�1 dqe(iq(z��)) �Z 1�1 dxp(x)e(iq(��x)=N)�N ; (9.57)

with the integral overx resulting inZ 1�1 dxp(x) exp (iq(�� x)=N) = Z 1�1 dxp(x) �1 + iq(�� x)N � q2(�� x)22N2 + : : : � : (9.58)
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The second term on the rhs disappears since this is just the mean and employing the definition of�2 we have Z 1�1 dxp(x)e(iq(��x)=N) = 1� q2�22N2 + : : : ; (9.59)

resulting in �Z 1�1 dxp(x) exp (iq(�� x)=N)�N � �1� q2�22N2 + : : : �N ; (9.60)

and in the limitN !1 we obtain~p(z) = 1p2�(�=pN) exp�� (z � �)22(�=pN)2�; (9.61)

which is the normal distribution with variance�2N = �2=N , where� is the variance of the PDFp(x) and� is also the mean of the PDFp(x).
Thus, the central limit theorem states that the PDF~p(z) of the average ofN random values

corresponding to a PDFp(x) is a normal distribution whose mean is the mean value of the PDFp(x) and whose variance is the variance of the PDFp(x) divided byN , the number of values
used to computez.

The theorem is satisfied by a large class of PDFs. Note howeverthat for a finiteN , it is not
always possible to find a closed expression for~p(x).
9.5 Improved Monte Carlo integration

In section 5.1 we presented a simple brute force approach to integration with the Monte Carlo
method. There we sampled over a given number of points distributed uniformly in the interval[0; 1℄ I = Z 10 f(x)dx � NXi=1 !if(xi) = NXi=1 f(xi) = hfi;
with the weights!i = 1 .

Here we introduce two important topics which in most cases improve upon the above simple
brute force approach with the uniform distributionp(x) = 1 for x 2 [0; 1℄. With improvements
we think of a smaller variance and the need for fewer Monte Carlo samples, although each new
Monte Carlo sample will most likely be more times consuming than corresponding ones of the
brute force method.� The first topic deals with change of variables, and is linked to the cumulative functionP (x)

of a PDFp(x). Obviously, not all integration limits go fromx = 0 to x = 1, rather, in
physics we are often confronted with integration domains likex 2 [0;1℄ or x 2 [�1;1℄
etc. Since all random number generators give numbers in the intervalx 2 [0; 1℄, we need a
mapping from this integration interval to the explicit one under consideration.
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just assume that the integration domain is again fromx = 0 to x = 1. If the function to
be integratedf(x) has sharp peaks and is zero or small for many values ofx 2 [0; 1℄, most
samples off(x) give contributions to the integralI which are negligible. As a consequence
we need manyN samples to have a sufficient accuracy in the region wheref(x) is peaked.
What do we do then? We try to find a new PDFp(x) chosen so as to matchf(x) in order
to render the integrand smooth. The new PDFp(x) has in turn anx domain which most
likely has to be mapped from the domain of the uniform distribution.

Why care at all and not be content with just a change of variables in cases where that is
needed? Below we show several examples of how to improve a Monte Carlo integration through
smarter choices of PDFs which render the integrand smoother. However one classic example
from quantum mechanics illustrates the need for a good sampling function.

In quantum mechanics, the probability distribution function is given byp(x) = 	(x)�	(x),
where	(x) is the eigenfunction arising from the solution of e.g., the time-independent Schrödinger
equation. If	(x) is an eigenfunction, the corresponding energy eigenvalue is given byH(x)	(x) = E	(x); (9.62)

whereH(x) is the hamiltonian under consideration. The expectation value ofH, assuming that
the quantum mechanical PDF is normalized, is given byhHi = Z dx	(x)�H(x)	(x): (9.63)

We could insert	(x)=	(x) right to the left ofH and rewrite the last equation ashHi = Z dx	(x)�	(x)H(x)	(x)	(x); (9.64)

or hHi = Z dxp(x) ~H(x); (9.65)

which is on the form of an expectation value with~H(x) = H(x)	(x)	(x): (9.66)

The crucial point to note is that if	(x) is the exact eigenfunction itself with eigenvalueE,
then ~H(x) reduces just to the constantE and we havehHi = Z dxp(x)E = E; (9.67)

sincep(x) is normalized.
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However,in most cases of interest we do not have the exact	. But if we have made a clever
choice for	(x), the expression~H(x) exhibits a smooth behavior in the neighbourhood of the
exact solution.

This means in turn that when do our Monte Carlo sampling, we will hopefully pick only
relevant values for~H.

The above example encompasses the main essence of the Monte Carlo philosophy. It is a
trial approach, where intelligent guesses lead to hopefully better results.

9.5.1 Change of variables

The starting point is always the uniform distributionp(x)dx = � dx 0 � x � 10 else (9.68)

with p(x) = 1 and satisfying Z 1�1 p(x)dx = 1: (9.69)

All random number generators provided in the program library generate numbers in this domain.
When we attempt a transformation to a new variablex ! y we have to conserve the proba-

bility p(y)dy = p(x)dx; (9.70)

which for the uniform distribution impliesp(y)dy = dx: (9.71)

Let us assume thatp(y) is a PDF different from the uniform PDFp(x) = 1 with x 2 [0; 1℄. If we
integrate the last expression we arrive atx(y) = Z y0 p(y0)dy0; (9.72)

which is nothing but the cumulative distribution ofp(y), i.e.,x(y) = P (y) = Z y0 p(y0)dy0: (9.73)

This is an important result which has consequences for eventual improvements over the brute
force Monte Carlo.

To illustrate this approach, let us look at some examples.
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Example 1

Suppose we have the general uniform distributionp(y)dy = � dyb�a a � y � b0 else (9.74)

If we wish to relate this distribution to the one in the interval x 2 [0; 1℄ we havep(y)dy = dyb� a = dx; (9.75)

and integrating we obtain the cumulative functionx(y) = Z ya dy0b� a; (9.76)

yielding y = a+ (b� a)x; (9.77)

a well-known result!

Example 2, the exponential distribution

Assume that p(y) = e�y; (9.78)

which is the exponential distribution, important for the analysis of e.g., radioactive decay. Again,p(x) is given by the uniform distribution withx 2 [0; 1℄, and with the assumption that the proba-
bility is conserved we have p(y)dy = e�ydy = dx; (9.79)

which yields after integrationx(y) = P (y) = Z y0 exp (�y0)dy0 = 1� exp (�y); (9.80)

or y(x) = �ln(1� x): (9.81)

This gives us the new random variabley in the domainy 2 [0;1℄ determined through the random
variablex 2 [0; 1℄ generated by functions likeran0.

This means that if we can factor outexp�(y) from an integrand we may haveI = Z 10 F (y)dy = Z 10 exp�(y)G(y)dy (9.82)

which we rewrite asZ 10 exp (�y)G(y)dy = Z 10 dxdyG(y)dy � 1N NXi=1 G(y(xi)); (9.83)
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wherexi is a random number in the interval [0,1].
The algorithm for the last example is rather simple. In the function which sets up the integral,

we simply need to call one of the random number generators like ran0, ran1, ran2 or ran3 in
order to obtain numbers in the interval [0,1]. We obtainy by the taking the logarithm of(1� x).
Our calling function which sets up the new random variabley may then include statements like.....idum=-1;x=ran0(&idum);y=-log(1.-x);.....

Exercise 9.4
Make a functionexp_randomwhich computes random numbers for the exponential
distributionp(y) = e��y based on random numbers generated from the functionran0.

Example 3

Another function which provides an example for a PDF isp(y)dy = dy(a+ by)n ; (9.84)

with n > 1. It is normalizable, positive definite, analytically integrable and the integral is invert-
ible, allowing thereby the expression of a new variable in terms of the old one. The integralZ 10 dy(a+ by)n = 1(n� 1)ban�1 ; (9.85)

gives p(y)dy = (n� 1)ban�1(a+ by)n dy; (9.86)

which in turn gives the cumulative functionx(y) = P (y) = Z y0 (n� 1)ban�1(a+ bx)n dy0 =; (9.87)

resulting in x(y) = 1� 1(1 + b=ay)n�1 ; (9.88)

or y = ab �x�1=(n�1) � 1� : (9.89)

With the random variablex 2 [0; 1℄ generated by functions likeran0, we have again the appro-
priate random variabley for a new PDF.
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Example 4, the normal distribution

For the normal distribution, expressed here asg(x; y) = exp (�(x2 + y2)=2)dxdy: (9.90)

it is rather difficult to find an inverse since the cumulative distribution is given by the error
functionerf(x).

If we however switch to polar coordinates, we have forx andyr = �x2 + y2�1=2 � = tan�1xy ; (9.91)

resulting in g(r; �) = r exp (�r2=2)drd�; (9.92)

where the angle� could be given by a uniform distribution in the region[0; 2�℄. Following
example 1 above, this implies simply multiplying random numbersx 2 [0; 1℄ by 2�. The variabler, defined forr 2 [0;1℄ needs to be related to to random numbersx0 2 [0; 1℄. To achieve that,
we introduce a new variable u = 12r2; (9.93)

and define a PDF exp (�u)du; (9.94)

with u 2 [0;1℄. Using the results from example 2, we have thatu = �ln(1� x0); (9.95)

wherex0 is a random number generated forx0 2 [0; 1℄. Withx = r
os(�) = p2u
os(�); (9.96)

and y = rsin(�) = p2usin(�); (9.97)

we can obtain new random numbersx; y throughx =p�2ln(1� x0)
os(�); (9.98)

and y =p�2ln(1� x0)sin(�); (9.99)

with x0 2 [0; 1℄ and� 2 2�[0; 1℄.
A function which yields such random numbers for the normal distribution would include

statements like



9.5. IMPROVED MONTE CARLO INTEGRATION 155.....idum=-1;radius=sqrt(-2*ln(1.-ran0(idum)));theta=2*pi*ran0(idum);x=radius*
os(theta);y=radius*sin(theta);.....
Exercise 9.4
Make a functionnormal_randomwhich computes random numbers for the normal
distribution based on random numbers generated from the functionran0.

9.5.2 Importance sampling

With the aid of the above variable transformations we address now one of the most widely used
approaches to Monte Carlo integration, namely importance sampling.

Let us assume thatp(y) is a PDF whose behavior resembles that of a functionF defined in a
certain interval[a; b℄. The normalization condition isZ ba p(y)dy = 1: (9.100)

We can rewrite our integral asI = Z ba F (y)dy = Z ba p(y)F (y)p(y) dy: (9.101)

This integral resembles our discussion on the evaluation ofthe energy for a quantum mechanical
system in Eq. (9.64).

Since random numbers are generated for the uniform distribution p(x) with x 2 [0; 1℄, we
need to perform a change of variablesx! y throughx(y) = Z ya p(y0)dy0; (9.102)

where we used p(x)dx = dx = p(y)dy: (9.103)

If we can invertx(y), we findy(x) as well.
With this change of variables we can express the integral of Eq. (9.101) asI = Z ba p(y)F (y)p(y) dy = Z ba F (y(x))p(y(x)) dx; (9.104)



156 CHAPTER 9. OUTLINE OF THE MONTE-CARLO STRATEGY

meaning that a Monte Carlo evalutaion of the above integral givesZ ba F (y(x))p(y(x)) dx = 1N NXi=1 F (y(xi))p(y(xi)) : (9.105)

The advantage of such a change of variables in casep(y) follows closelyF is that the integrand
becomes smooth and we can sample over relevant values for theintegrand. It is however not triv-
ial to find such a functionp. The conditions onpwhich allow us to perform these transformations
are

1. p is normalizable and positive definite,

2. it is analytically integrable and

3. the integral is invertible, allowing us thereby to express a new variable in terms of the old
one.

The standard deviation is now with the definition~F = F (y(x))p(y(x)) ; (9.106)�2 = 1N NXi=1 � ~F�2 � 1N NXi=1 ~F!2 : (9.107)

The algorithm for this procedure is� Use the uniform distribution to find the random variabley in the interval [0,1]. p(x) is
auser provided PDF.� Evaluate thereafter I = Z ba F (x)dx = Z ba p(x)F (x)p(x) dx; (9.108)

by rewriting Z ba p(x)F (x)p(x) dx = Z ba F (x(y))p(x(y)) dy; (9.109)

since dydx = p(x): (9.110)� Perform then a Monte Carlo sampling forZ ba F (x(y))p(x(y)) dy;� 1N NXi=1 F (x(yi))p(x(yi)) ; (9.111)

with yi 2 [0; 1℄,
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Exercise 9.5

(a) Calculate the integral I = Z 10 e�x2dx;
using brute force Monte Carlo withp(x) = 1 and importance sampling withp(x) = ae�x wherea is a constant.

(b) Calculate the integral I = Z �0 1x2 + 
os2(x)dx;
with p(x) = ae�x wherea is a constant. Determine the value ofa which
minimizes the variance.

9.5.3 Acceptance-Rejection method

This is rather simple and appealing method after von Neumann. Assume that we are looking at
an intervalx 2 [a; b℄, this being the domain of the PDFp(x). Suppose also that the largest value
our distribution function takes in this interval isM , that isp(x) �M x 2 [a; b℄: (9.112)

Then we generate a random numberx from the uniform distribution forx 2 [a; b℄ and a corre-
sponding numbers for the uniform distribution between[0;M ℄. Ifp(x) � s; (9.113)

we accept the new value ofx, else we generate again two new random numbersx ands and
perform the test in the latter equation again.

9.6 Monte Carlo integration of multidimensional integrals

When we deal with multidimensional integrals of the formI = Z 10 dx1 Z 10 dx2 : : : Z 10 dxdg(x1; : : : ; xd); (9.114)
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with xi defined in the interval[ai; bi℄ we would typically need a transformation of variables of
the form xi = ai + (bi � ai)ti;
if we were to use the uniform distribution on the interval[0; 1℄. In this case, we need a Jacobi
determinant dYi=1(bi � ai);
and to convert the functiong(x1; : : : ; xd) tog(x1; : : : ; xd)! g(a1 + (b1 � a1)t1; : : : ; ad + (bd � ad)td):

As an example, consider the following sixth-dimensional integralZ 1�1 dxdyg(x;y); (9.115)

where g(x;y) = exp (�x2 � y2 � (x� y)2=2); (9.116)

with d = 6.
We can solve this integral by employing our brute scheme, or using importance sampling and

random variables distributed according to a gaussian PDF. For the latter, if we set the mean value� = 0 and the standard deviation� = 1=p2, we have1p� exp (�x2); (9.117)

and through �3 Z 6Yi=1 � 1p� exp (�x2i )� exp (�(x� y)2=2)dx1: : : : dx6; (9.118)

we can rewrite our integral asZ f(x1; : : : ; xd)F (x1; : : : ; xd) 6Yi=1 dxi; (9.119)

wheref is the gaussian distribution.
Below we list two codes, one for the brute force integration and the other employing impor-

tance sampling with a gaussian distribution.
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9.6.1 Brute force integration

# inc lude < ios t ream >
# inc lude < fs t ream >
# inc lude < iomanip >
# inc lude "lib.h"
us ing namespace s t d ;

double brute_force_MC (double � ) ;
/ / Main f u n c t i o n be g i ns here
i n t main ( )
{

i n t n ;
double x [ 6 ] , y , fx ;
double i n t_mc = 0 . ; double v a r i a n c e = 0 . ;
double sum_sigma = 0 . ; long idum =�1 ;
double l e n g t h = 5 . ; / / we f i x t he max s i z e o f t he box t o L=5
double volume=pow ( ( 2� l e n g t h ) , 6 ) ;
cou t < < "Read in the number of Monte -Carlo samples" < < end l ;
c i n > > n ;

/ / e v a l u a t e t he i n t e g r a l w i th impor tance sampl ing
f o r ( i n t i = 1 ; i <= n ; i ++) {

/ / x [ ] c o n t a i n s t he random numbers f o r a l l d imens ions
f o r ( i n t j = 0 ; j < 6 ; j ++) {

x [ j ]=� l e n g t h +2� l e n g t h� ran0 (&idum ) ;
}
fx =bru te_force_MC ( x ) ;
in t_mc + = fx ;
sum_sigma + = fx� f x ;

}
in t_mc = in t_mc / ( (double ) n ) ;
sum_sigma = sum_sigma / ( (double ) n ) ;
v a r i a n c e =sum_sigma�i n t_mc� i n t_mc ;

/ / f i n a l o u t p u t
cou t < < s e t i o s f l a g s ( i o s : : showpoin t | i o s : : uppe r c a s e ) ;
cou t < < " Monte 
arlo result= " < < setw ( 10 ) < < s e t p r e c i s i o n ( 8 )

< < volume� i n t_mc ;
cou t < < " Sigma= " < < setw ( 10 ) < < s e t p r e c i s i o n ( 8 ) < < volume� s q r t

( v a r i a n c e / ( (double ) n ) ) < < end l ;
re tu rn 0 ;

} / / end o f main program

/ / t h i s f u n c t i o n d e f i n e s t he i n t e g r a n d t o i n t e g r a t e

double brute_force_MC (double � x )
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{
double a = 1 . ; double b = 0 . 5 ;

/ / e v a l u a t e t he d i f f e r e n t te rms o f t he e x p o n e n t i a l
double xx=x [ 0 ] � x [0 ]+ x [ 1 ] � x [1 ]+ x [ 2 ] � x [ 2 ] ;
double yy=x [ 3 ] � x [3 ]+ x [ 4 ] � x [4 ]+ x [ 5 ] � x [ 5 ] ;
double xy=pow ( ( x [0]�x [ 3 ] ) , 2 ) +pow ( ( x [1]�x [ 4 ] ) , 2 ) +pow ( ( x [2]�x [ 5 ] ) , 2 ) ;
re tu rn exp(�a�xx�a�yy�b�xy ) ;

} / / end f u n c t i o n f o r t he i n t e g r a n d

9.6.2 Importance sampling

This code includes a call to the functionnormal_random, which produces random numbers
from a gaussian distribution. .

/ / impor tance sampl ing w i th gaus s i an d e v i a t e s
# inc lude < ios t ream >
# inc lude < fs t ream >
# inc lude < iomanip >
# inc lude "lib.h"
us ing namespace s t d ;

double gaussian_MC (double � ) ;
double g a u s s i a n _ d e v i a t e (long � ) ;
/ / Main f u n c t i o n be g i ns here
i n t main ( )
{

i n t n ;
double x [ 6 ] , y , fx ;
cou t < < "Read in the number of Monte -Carlo samples" < < end l ;
c i n > > n ;
double i n t_mc = 0 . ; double v a r i a n c e = 0 . ;
double sum_sigma = 0 . ; long idum =�1 ;
double l e n g t h = 5 . ; / / we f i x t he max s i z e o f t he box t o L=5
double volume=pow ( acos (�1. ) , 3 . ) ;
double s q r t 2 = 1 . / s q r t ( 2 . ) ;

/ / e v a l u a t e t he i n t e g r a l w i th impor tance sampl ing
f o r ( i n t i = 1 ; i <= n ; i ++) {

/ / x [ ] c o n t a i n s t he random numbers f o r a l l d imens ions
f o r ( i n t j = 0 ; j < 6 ; j ++) {

x [ j ] = g a u s s i a n _ d e v i a t e (&idum )� s q r t 2 ;
}
fx =gaussian_MC ( x ) ;
in t_mc + = fx ;
sum_sigma + = fx� f x ;

}
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i n t_mc = in t_mc / ( (double ) n ) ;
sum_sigma = sum_sigma / ( (double ) n ) ;
v a r i a n c e =sum_sigma�i n t_mc� i n t_mc ;

/ / f i n a l o u t p u t
cou t < < s e t i o s f l a g s ( i o s : : showpoin t | i o s : : uppe r c a s e ) ;
cou t < < " Monte 
arlo result= " < < setw ( 10 ) < < s e t p r e c i s i o n ( 8 )

< < volume� i n t_mc ;
cou t < < " Sigma= " < < setw ( 10 ) < < s e t p r e c i s i o n ( 8 ) < < volume� s q r t

( v a r i a n c e / ( (double ) n ) ) < < end l ;
re tu rn 0 ;

} / / end o f main program

/ / t h i s f u n c t i o n d e f i n e s t he i n t e g r a n d t o i n t e g r a t e

double gaussian_MC (double � x )
{

double a = 0 . 5 ;
/ / e v a l u a t e t he d i f f e r e n t te rms o f t he e x p o n e n t i a l

double xy=pow ( ( x [0]�x [ 3 ] ) , 2 ) +pow ( ( x [1]�x [ 4 ] ) , 2 ) +pow ( ( x [2]�x [ 5 ] ) , 2 ) ;
re tu rn exp(�a�xy ) ;

} / / end f u n c t i o n f o r t he i n t e g r a n d

/ / random numbers w i th gaus s i an d i s t r i b u t i o n
double g a u s s i a n _ d e v i a t e (long � idum )
{

s t a t i c i n t i s e t = 0 ;
s t a t i c double g s e t ;
double fac , rsq , v1 , v2 ;

i f ( idum < 0 ) i s e t = 0 ;
i f ( i s e t = = 0 ) {

do {
v1 = 2 .� ran0 ( idum ) �1 .0 ;
v2 = 2 .� ran0 ( idum ) �1 .0 ;
r s q = v1�v1+v2�v2 ;

} whi le ( r s q > = 1 . 0 | | r s q = = 0 . ) ;
f a c = s q r t (�2.� l og ( r s q ) / r s q ) ;
g s e t = v1� f a c ;
i s e t = 1 ;
re tu rn v2� f a c ;

} e l s e {
i s e t = 0 ;
re tu rn g s e t ;

}
} / / end f u n c t i o n f o r gaus s i an d e v i a t e s





Chapter 10

Random walks and the Metropolis
algorithm

10.1 Motivation

In the previous chapter we discussed technical aspects of Monte Carlo integration such as algo-
rithms for generating random numbers and integration of multidimensional integrals. The latter
topic served to illustrate two key topics in Monte Carlo simulations, namely a proper selection
of variables and importance sampling. An intelligent selection of variables, good sampling tech-
niques and guiding functions can be crucial for the outcome of our Monte Carlo simulations.
Examples of this will be demonstrated in the chapters on statistical and quantum physics appli-
cations. Here we make a detour however from this main area of applications. The focus is on
diffusion and random walks. The rationale for this is that the tricky part of an actual Monte Carlo
simulation resides in the appropriate selection of random states, and thereby numbers, according
to the probability distribution (PDF) at hand. With appropriate there is however much more to
the picture than meets the eye.

Suppose our PDF is given by the well-known normal distribution. Think of for example the
velocity distribution of an ideal gas in a container. In our simulations we could then accept or
reject new moves with a probability proportional to the normal distribution. This would parallel
our example on the sixth dimensional integral in the previous chapter. However, in this case
we would end up rejecting basically all moves since the probabilities are exponentially small in
most cases. The result would be that we barely moved from the initial position. Our statistical
averages would then be significantly biased and most likely not very reliable.

Instead, all Monte Carlo schemes used are based on Markov processes in order to generate
new random states. A Markov process is a random walk with a selected probability for making a
move. The new move is independent of the previous history of the system. The Markov process
is used repeatedly in Monte Carlo simulations in order to generate new random states. The
reason for choosing a Markov process is that when it is run fora long enough time starting with
a random state, we will eventually reach the most likely state of the system. In thermodynamics,
this means that after a certain number of Markov processes wereach an equilibrium distribution.

163
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This mimicks the way a real system reaches its most likely state at a given temperature of the
surroundings.

To reach this distribution, the Markov process needs to obeytwo important conditions, that
of ergodicity and detailed balance. These conditions impose then constraints on our algorithms
for accepting or rejecting new random states. The Metropolis algorithm discussed here abides to
both these constraints and is discussed in more detail in Section 10.4. The Metropolis algorithm
is widely used in Monte Carlo simulations of physical systems and the understanding of it rests
within the interpretation of random walks and Markov processes. However, before we do that we
discuss the intimate link between random walks, Markov processes and the diffusion equation. In
section 10.3 we show that a Markov process is nothing but the discretized version of the diffusion
equation. Diffusion and random walks are discussed from a more experimental point of view in
the next section. There we show also a simple algorithm for random walks and discuss eventual
physical implications.

10.2 Diffusion equation and random walks

Physical systems subject to random influences from the ambient have a long history, dating
back to the famous experiments by the British Botanist R. Brown on pollen of different plants
dispersed in water. This lead to the famous concept of Brownian motion. In general, small
fractions of any system exhibit the same behavior when exposed to random fluctuations of the
medium. Although apparently non-deterministic, the rulesobeyed by such Brownian systems
are laid out within the framework of diffusion and Markov chains. The fundamental works on
Brownian motion were developed by A. Einstein at the turn of the last century.

Diffusion and the diffusion equation are central topics in both Physics and Mathematics, and
their ranges of applicability span from stellar dynamics tothe diffusion of particles governed by
Schrödinger’s equation. The latter is, for a free particle,nothing but the diffusion equation in
complex time!

Let us consider the one-dimensional diffusion equation. Westudy a large ensemble of parti-
cles performing Brownian motion along thex-axis. There is no interaction between the particles.

We definew(x; t)dx as the probability of finding a given number of particles in aninterval
of lengthdx in x 2 [x; x + dx℄ at a timet. This quantity is our probability distribution function
(PDF). The quantum physics equivalent ofw(x; t) is the wave function itself. This diffusion
interpretation of Schrödinger’s equation forms the starting point for diffusion Monte Carlo tech-
niques in quantum physics.

10.2.1 Diffusion equation

From experiment there are strong indications that the flux ofparticlesj(x; t), viz., the number of
particles passingx at a timet is proportional to the gradient ofw(x; t). This proportionality is
expressed mathematically throughj(x; t) = �D�w(x; t)�x ; (10.1)
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whereD is the so-called diffusion constant, with dimensionality length2 per time. If the number
of particles is conserved, we have the continuity equation�j(x; t)�x = ��w(x; t)�t ; (10.2)

which leads to �w(x; t)�t = D�2w(x; t)�x2 ; (10.3)

which is the diffusion equation in one dimension.
With the probability distribution functionw(x; t)dx we can use the results from the previous

chapter to compute expectation values such as the mean distancehx(t)i = Z 1�1 xw(x; t)dx; (10.4)

or hx2(t)i = Z 1�1 x2w(x; t)dx; (10.5)

which allows for the computation of the variance�2 = hx2(t)i � hx(t)i2. Note well that these
expectation values are time-dependent. In a similar way we can also define expectation values of
functionsf(x; t) as hf(x; t)i = Z 1�1 f(x; t)w(x; t)dx: (10.6)

Sincew(x; t) is now treated as a PDF, it needs to obey the same criteria as discussed in the
previous chapter. However, the normalization conditionZ 1�1w(x; t)dx = 1 (10.7)

imposes significant constraints onw(x; t). These arew(x = �1; t) = 0 �nw(x; t)�xn jx=�1 = 0; (10.8)

implying that when we study the time-derivative�hx(t)i=�t, we obtain after integration by parts
and using Eq. (10.3)�hxi�t = Z 1�1 x�w(x; t)�t dx = D Z 1�1 x�2w(x; t)�x2 dx; (10.9)

leading to �hxi�t = Dx�w(x; t)�x jx=�1 �D Z 1�1 �w(x; t)�x dx; (10.10)

implying that �hxi�t = 0: (10.11)
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This means in turn thathxi is independent of time. If we choose the initial positionx(t = 0) = 0,
the average displacementhxi = 0. If we link this discussion to a random walk in one dimension
with equal probability of jumping to the left or right and with an initial positionx = 0, then
our probability distribution remains centered aroundhxi = 0 as function of time. However, the
variance is not necessarily 0. Consider first�hx2i�t = Dx2�w(x; t)�x jx=�1 � 2D Z 1�1 x�w(x; t)�x dx; (10.12)

where we have performed an integration by parts as we did for�hxi�t . A further integration by
parts results in �hx2i�t = �Dxw(x; t)jx=�1 + 2D Z 1�1w(x; t)dx = 2D; (10.13)

leading to hx2i = 2Dt; (10.14)

and the variance as hx2i � hxi2 = 2Dt: (10.15)

The root mean square displacement after a timet is thenphx2i � hxi2 = p2Dt: (10.16)

This should be contrasted to the displacement of a free particle with initial velocityv0. In that
case the distance from the initial position after a timet is x(t) = vt whereas for a diffusion
process the root mean square value is

phx2i � hxi2 / pt. Since diffusion is strongly linked
with random walks, we could say that a random walker escapes much more slowly from the
starting point than would a free particle. We can vizualize the above in the following figure. In
Fig. 10.1 we have assumed that our distribution is given by a normal distribution with variance�2 = 2Dt, centered atx = 0. The distribution readsw(x; t)dx = 1p4�Dt exp (� x24Dt)dx: (10.17)

At a time t = 2s the new variance is�2 = 4Ds, implying that the root mean square value isphx2i � hxi2 = 2pD. At a further timet = 8 we have
phx2i � hxi2 = 4pD. While time

has elapsed by a factor of4, the root mean square has only changed by a factor of 2. Fig. 10.1
demonstrates the spreadout of the distribution as time elapses. A typical example can be the
diffusion of gas molecules in a container or the distribution of cream in a cup of coffee. In both
cases we can assume that the the initial distribution is represented by a normal distribution.
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Figure 10.1: Time development of a normal distribution withvariance�2 = 2Dt and withD = 1m2/s. The solid line represents the distribution att = 2s while the dotted line stands fort = 8s.
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Figure 10.2: One-dimensional walker which can jump either to the left or to the right. Every step
has length�x = l.
10.2.2 Random walks

Consider now a random walker in one dimension, with probability R of moving to the right andL for moving to the left. Att = 0 we place the walker atx = 0, as indicated in Fig. 10.2.
The walker can then jump, with the above probabilities, either to the left or to the right for each
time step. Note that in principle we could also have the possibility that the walker remains in the
same position. This is not implemented in this example. Every step has length�x = l. Time
is discretized and we have a jump either to the left or to the right at every time step. Let us now
assume that we have equal probabilities for jumping to the left or to the right, i.e.,L = R = 1=2.
The average displacement aftern time steps ishx(n)i = nXi �xi = 0 �xi = �l; (10.18)
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since we have an equal probability of jumping either to the left or to right. The value ofhx(n)2i
is hx(n)2i =  nXi �xi!2 = nXi �x2i + NXi6=j �xi�xj = l2N: (10.19)

For many enough steps the non-diagonal contribution isNXi6=j �xi�xj = 0; (10.20)

since�xi;j = �l. The variance is thenhx(n)2i � hx(n)i2 = l2n: (10.21)

It is also rather straightforward to compute the variance for L 6= R. The result ishx(n)2i � hx(n)i2 = 4LRl2n: (10.22)

In Eq. (10.21) the variablen represents the number of time steps. If we definen = t=�t, we can
then couple the variance result from a random walk in one dimension with the variance from the
diffusion equation of Eq. (10.15) by defining the diffusion constant asD = l2�t : (10.23)

In the next section we show in detail that this is the case.
The program below demonstrates the simplicity of the one-dimensional random walk algo-

rithm. It is straightforward to extend this program to two orthree dimensions as well. The input
is the number of time steps, the probability for a move to the left or to the right and the total
number of Monte Carlo samples. It computes the average displacement and the variance for one
random walker for a given number of Monte Carlo samples. Eachsample is thus to be consid-
ered as one experiment with a given number of walks. The interesting part of the algorithm is
described in the functionmc_sampling. The other functions read or write the results from screen
or file and are similar in structure to programs discussed previously. The main program reads the
name of the output file from screen and sets up the arrays containing the walker’s position after
a given number of steps.

programs/chap10/program1.cpp

/�
1�dim random walk program .
A walker makes s e v e r a l t r i a l s s t e p s w i th
a g i v e n number o f walks per t r i a l� /

# inc lude < ios t ream >
# inc lude < fs t ream >
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# inc lude < iomanip >
# inc lude "lib.h"
us ing namespace s t d ;

/ / Func t ion t o read i n data from screen , no te c a l l by r e f e r e n ce
void i n i t i a l i s e ( i n t & , i n t & , double&) ;
/ / The Mc sampl ing f o r random walks
void mc_sampling (i n t , i n t , double , i n t � , i n t � ) ;
/ / p r i n t s t o s c r e e n t he r e s u l t s o f t he c a l c u l a t i o n s
void o u t p u t (i n t , i n t , i n t � , i n t � ) ;

i n t main ( )
{

i n t m a x_ t r i a l s , number_walks ;
double m ove _p r oba b i l i t y ;
/ / Read i n data
i n i t i a l i s e ( m a x_ t r i a l s , number_walks , m ove _p r oba b i l i t y) ;
i n t � walk_cumu la t i ve = new i n t [ number_walks + 1 ] ;
i n t � walk2_cumu la t i ve =new i n t [ number_walks + 1 ] ;
f o r ( i n t walks = 1 ; walks <= number_walks ; walks ++) {

wa lk_cumu la t i ve [ walks ] = wa lk2_cumu la t i ve [ walks ] = 0 ;
} / / end i n i t i a l i z a t i o n o f v e c t o r s
/ / Do t he mc sampl ing
mc_sampling ( m a x_ t r i a l s , number_walks , m ove _p r oba b i l i ty ,

wa lk_cumula t ive , wa lk2_cumu la t i ve ) ;
/ / P r i n t ou t r e s u l t s
o u t p u t ( m a x_ t r i a l s , number_walks , wa lk_cumula t i ve ,

wa lk2_cumu la t i ve ) ;
d e l e t e [ ] wa lk_cumu la t i ve ; / / f r e e memory
d e l e t e [ ] wa lk2_cumu la t i ve ;
re tu rn 0 ;

} / / end main f u n c t i o n

The input and output functions are

void i n i t i a l i s e ( i n t & m a x_ t r i a l s , i n t & number_walks , double&
m ove _p r oba b i l i t y )

{
cou t < < "Number of Monte Carlo trials =" ;
c i n > > m a x _ t r i a l s ;
cou t < < "Number of attempted walks=" ;
c i n > > number_walks ;
cou t < < "Move probability=" ;
c i n > > m ove _p r oba b i l i t y ;

} / / end o f f u n c t i o n i n i t i a l i s e
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void o u t p u t ( i n t m a x_ t r i a l s , i n t number_walks ,
i n t � walk_cumula t i ve , i n t � walk2_cumu la t i ve )

{
o f s t r e a m o f i l e ("testwalkers.dat" ) ;
f o r ( i n t i = 1 ; i <= number_walks ; i ++) {

double xaverage = wa lk_cumu la t i ve [ i ] / ( (double ) m a x _ t r i a l s ) ;
double x2average = wa lk2_cumu la t i ve [ i ] / ( (double ) m a x _ t r i a l s ) ;
double v a r i a n c e = x2average� xaverage� xaverage ;
o f i l e < < s e t i o s f l a g s ( i o s : : showpoin t | i o s : : uppe r c a s e ) ;
o f i l e < < setw ( 6 ) < < i ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < xaverage ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < v a r i a n c e < < end l ;

}
o f i l e . c l o s e ( ) ;

} / / end o f f u n c t i o n o u t p u t

The algorithm is in the functionmc_samplingand tests the probability of moving to the left or to
the right by generating a random number.

void mc_sampling (i n t m a x_ t r i a l s , i n t number_walks ,
double m ove _p r oba b i l i t y , i n t � walk_cumula t ive ,
i n t � walk2_cumu la t i ve )

{
long idum ;
idum =�1; / / i n i t i a l i s e random number ge ne r a t o r
f o r ( i n t t r i a l = 1 ; t r i a l <= m a x _ t r i a l s ; t r i a l ++) {

i n t p o s i t i o n = 0 ;
f o r ( i n t walks = 1 ; walks <= number_walks ; walks ++) {

i f ( ran0 (&idum ) <= m ove _p r oba b i l i t y ) {
p o s i t i o n + = 1 ;

}
e l s e {

p o s i t i o n �= 1;
}
wa lk_cumu la t i ve [ walks ] + = p o s i t i o n ;
wa lk2_cumu la t i ve [ walks ] + = p o s i t i o n� p o s i t i o n ;

} / / end o f loop over walks
} / / end o f loop over t r i a l s

} / / end mc_sampl ing f u n c t i o n

Fig. 10.3 shows that the variance increases linearly as function of the number of time steps, as ex-
pected from the analytic results. Similarly, the mean displacement in Fig. 10.4 oscillates around
zero.
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Figure 10.3: Time development of�2 for a random walker. 100000 Monte Carlo samples were
used with the function ran1 and a seed set to�1.
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Figure 10.4: Time development ofhx(t)i for a random walker. 100000 Monte Carlo samples
were used with the function ran1 and a seed set to�1.
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Exercise 10.1
Extend the above program to a two-dimensional random walk with probability1=4
for a move to the right, left, up or down. Compute the variancefor both thex andy
directions and the total variance.

10.3 Microscopic derivation of the diffusion equation

When solving partial differential equations such as the diffusion equation numerically, the deriva-
tives are always discretized. Recalling our discussions from Chapter 3, we can rewrite the time
derivative as �w(x; t)�t � w(i; n+ 1) + w(i; n)�t ; (10.24)

whereas the gradient is approximated asD�2w(x; t)�x2 � Dw(i+ 1; n) + w(i� 1; n)� w(i; n)(�x)2 ; (10.25)

resulting in the discretized diffusion equationw(i; n+ 1) + w(i; n)�t = Dw(i+ 1; n) + w(i� 1; n)� w(i; n)(�x)2 ; (10.26)

wheren represents a given time step andi a step in thex-direction. We will come back to
the solution of such equations in our chapter on partial differential equations, see Chapter 16.
The aim here is to show that we can derive the discretized diffusion equation from a Markov
process and thereby demonstrate the close connection between the important physical process
diffusion and random walks. Random walks allow for an intuitive way of picturing the process
of diffusion. In addition, as demonstrated in the previous section, it is easy to simulate a random
walk.

10.3.1 Discretized diffusion equation and Markov chains

A Markov process allows in principle for a microscopic description of Brownian motion. As with
the random walk studied in the previous section, we considera particle which moves along thex-axis in the form of a series of jumps with step length�x = l. Time and space are discretized
and the subsequent moves are statistically indenpendent, i.e., the new move depends only on the
previous step and not on the results from earlier trials. We start at a positionx = jl = j�x and
move to a new positionx = i�x during a step�t = �, wherei � 0 andj � 0 are integers. The
original probability distribution function (PDF) of the particles is given bywi(t = 0) wherei
refers to a specific position on the grid in Fig. 10.2, withi = 0 representingx = 0. The functionwi(t = 0) is now the discretized version ofw(x; t). We can regard the discretized PDF as a
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vector. For the Markov process we have a transition probability from a positionx = jl to a
positionx = il given by Wij(�) =W (il � jl; �) = � 12 ji� jj = 10 else (10.27)

We callWij for the transition probability and we can represent it, see below, as a matrix. Our
new PDFwi(t = �) is now related to the PDF att = 0 through the relationwi(t = �) = W (j ! i)wj(t = 0): (10.28)

This equation represents the discretized time-development of an original PDF. It is a microscopic
way of representing the process shown in Fig. 10.1. Since bothW andw represent probabilities,
they have to be normalized, i.e., we require that at each timestep we haveXi wi(t) = 1; (10.29)

and Xj W (j ! i) = 1: (10.30)

The further constraints are0 � Wij � 1 and0 � wj � 1. Note that the probability for remaining
at the same place is in general not necessarily equal zero. Inour Markov process we allow only
for jumps to the left or to the right.

The time development of our initial PDF can now be represented through the action of the
transition probability matrix appliedn times. At a timetn = n� our initial distribution has
developed into wi(tn) =Xj Wij(tn)wj(0); (10.31)

and defining W (il � jl; n�) = (W n(�))ij (10.32)

we obtain wi(n�) =Xj (W n(�))ijwj(0); (10.33)

or in matrix form ^w(n�) = Ŵ n(�)ŵ(0): (10.34)

The matrixŴ can be written in terms of two matricesŴ = 12 �L̂+ R̂� ; (10.35)

whereL̂ andR̂ represent the transition probabilities for a jump to the left or the right, respectively.
For a4� 4 case we could write these matrices asR̂ = 0BB� 0 0 0 01 0 0 00 1 0 00 0 1 0 1CCA ; (10.36)
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and L̂ = 0BB� 0 1 0 00 0 1 00 0 0 10 0 0 0 1CCA : (10.37)

However, in principle these are infinite dimensional matrices since the number of time steps
are very large or infinite. For the infinite case we can write these matricesRij = Æi;(j+1) andLij = Æ(i+1);j , implying that L̂R̂ = R̂L̂ = 1; (10.38)

and L̂ = R̂�1 (10.39)

To see that̂LR̂ = R̂L̂ = 1, perform e.g., the matrix multiplicationL̂R̂ =Xk L̂ikR̂kj =Xk Æ(i+1);kÆk;(j+1) = Æi+1;j+1 = Æi;j; (10.40)

and only the diagonal matrix elements are different from zero.
For the first time step we have thusŴ = 12 �L̂+ R̂� ; (10.41)

and using the properties in Eqs. (10.38) and (10.39) we have after two time stepsŴ 2(2�) = 14 �L̂2 + R̂2 + 2R̂L̂� ; (10.42)

and similarly after three time stepsŴ 3(3�) = 18 �L̂3 + R̂3 + 3R̂L̂2 + 3R̂2L̂� : (10.43)

Using the binomial formula nXk=0 � nk � âkb̂n�k = (a+ b)n; (10.44)

we have that the transition matrix aftern time steps can be written asŴ n(n�)) = 12n nXk=0 � nk � R̂kL̂n�k; (10.45)

or Ŵ n(n�)) = 12n nXk=0 � nk � L̂n�2k = 12n nXk=0 � nk � R̂2k�n; (10.46)
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and usingRmij = Æi;(j+m) andLmij = Æ(i+m);j we arrive atW (il � jl; n�) = 8<: 12n � n12(n+ i� j) � ji� jj � n0 else ; (10.47)

andn+ i� j has to be an even number. We note that the transition matrix for a Markov process
has three important properties:� It depends only on the difference in spacei� j, it is thus homogenous in space.� It is also isotropic in space since it is unchanged when we go from (i; j) to (�i;�j).� It is homogenous in time since it depends only the differencebetween the initial time and

final time.

If we place the walker atx = 0 at t = 0 we can represent the initial PDF withwi(0) = Æi;0.
Using Eq. (10.34) we havewi(n�) =Xj (W n(�))ijwj(0) =Xj 12n � n12(n+ i� j) � Æj;0; (10.48)

resulting in wi(n�) = 12n � n12(n+ i) � jij � n (10.49)

Using the recursion relation for the binomials� n+ 112(n+ 1 + i)) � = � n12(n+ i+ 1) �+ � n12(n+ i)� 1 � (10.50)

we obtain, definingx = il, t = n� and settingw(x; t) = w(il; n�) = wi(n�); (10.51)w(x; t+ �) = 12w(x+ l; t) + 12w(x� l; t); (10.52)

and adding and subtractingw(x; t) and multiplying both sides withl2=� we havew(x; t+ �)� w(x; t)� = l22� w(x+ l; t)� 2w(x; t) + w(x� l; t)l2 ; (10.53)

and identifyingD = l2=2� and lettingl = �x and� = �t we see that this is nothing but the
discretized version of the diffusion equation. Taking the limits�x! 0 and�t! 0 we recover�w(x; t)�t = D�2w(x; t)�x2 ;
the diffusion equation.
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10.3.2 Continuous equations

Hitherto we have considered discretized versions of all equations. Our initial probability distri-
bution function was then given by wi(0) = Æi;0;
and its time-development after a given time step�t = � iswi(t) =Xj W (j ! i)wj(t = 0):
The continuous analog towi(0) is w(x)! Æ(x); (10.54)

where we now have generalized the one-dimensional positionx to a generic-dimensional vectorx. The KroeneckerÆ function is replaced by theÆ distribution functionÆ(x) at t = 0.
The transition from a statej to a statei is now replaced by a transition to a state with positiony from a state with positionx. The discrete sum of transition probabilities can then be replaced

by an integral and we obtain the new distribution at a timet +�t asw(y; t+�t) = Z W (y;x;�t)w(x; t)dx; (10.55)

and afterm time steps we havew(y; t+m�t) = Z W (y;x; m�t)w(x; t)dx: (10.56)

When equilibrium is reached we havew(y) = Z W (y;x; t)w(x)dx: (10.57)

We can solve the equation forw(y; t) by making a Fourier transform to momentum space. The
PDFw(x; t) is related to its Fourier transform~w(k; t) throughw(x; t) = Z 1�1 dk exp (ikx) ~w(k; t); (10.58)

and using the definition of theÆ-functionÆ(x) = 12� Z 1�1 dk exp (ikx); (10.59)

we see that ~w(k; 0) = 1=2�: (10.60)

We can then use the Fourier-transformed diffusion equation� ~w(k; t)�t = �Dk2 ~w(k; t); (10.61)
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with the obvious solution~w(k; t) = ~w(k; 0) exp ��(Dk2t)� = 12� exp ��(Dk2t)�: (10.62)

Using Eq. (10.58) we obtainw(x; t) = Z 1�1 dk exp [ikx℄ 12� exp ��(Dk2t)� = 1p4�Dt exp ��(x2=4Dt)�; (10.63)

with the normalization condition Z 1�1 w(x; t)dx = 1: (10.64)

It is rather easy to verify by insertion that Eq. (10.63) is a solution of the diffusion equation. The
solution represents the probability of finding our random walker at positionx at time t if the
initial distribution was placed atx = 0 at t = 0.

There is another interesting feature worth observing. The discrete transition probabilityW
itself is given by a binomial distribution, see Eq. (10.47).The results from the central limit
theorem, see Sect.??, state that transition probability in the limitn ! 1 converges to the
normal distribution. It is then possible to show thatW (il � jl; n�)!W (y;x;�t) = 1p4�D�t exp ��((y � x)2=4D�t)�; (10.65)

and that it satisfies the normalization condition and is itself a solution to the diffusion equation.

10.3.3 Numerical simulation

In the two previous subsections we have given evidence that aMarkov process actually yields
in the limit of infinitely many steps the diffusion equation.It links therefore in a physical in-
tuitive way the fundamental process of diffusion with random walks. It could therefore be of
interest to visualize this connection through a numerical experiment. We saw in the previous
subsection that one possible solution to the diffusion equation is given by a normal distribution.
In addition, the transition rate for a given number of steps develops from a binomial distribution
into a normal distribution in the limit of infinitely many steps. To achieve this we construct in
addition a histogram which contains the number of times the walker was in a particular positionx. This is given by the variableprobability , which is normalized in the output function. We have
omitted the initialization function, since this identicalto program1.cpp of this chapter. The array
probability extends from�number_walksto +number_walks

programs/chap10/program2.cpp

/�
1�dim random walk program .
A walker makes s e v e r a l t r i a l s s t e p s w i th
a g i v e n number o f walks per t r i a l� /
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# inc lude < ios t ream >
# inc lude < fs t ream >
# inc lude < iomanip >
# inc lude "lib.h"
us ing namespace s t d ;

/ / Func t ion t o read i n data from screen , no te c a l l by r e f e r e n ce
void i n i t i a l i s e ( i n t & , i n t & , double&) ;
/ / The Mc sampl ing f o r random walks
void mc_sampling (i n t , i n t , double , i n t � , i n t � , i n t � ) ;
/ / p r i n t s t o s c r e e n t he r e s u l t s o f t he c a l c u l a t i o n s
void o u t p u t (i n t , i n t , i n t � , i n t � , i n t � ) ;

i n t main ( )
{

i n t m a x_ t r i a l s , number_walks ;
double m ove _p r oba b i l i t y ;
/ / Read i n data
i n i t i a l i s e ( m a x_ t r i a l s , number_walks , m ove _p r oba b i l i t y) ;
i n t � walk_cumu la t i ve = new i n t [ number_walks + 1 ] ;
i n t � walk2_cumu la t i ve =new i n t [ number_walks + 1 ] ;
i n t � p r o b a b i l i t y = new i n t [ 2 � ( number_walks +1) ] ;
f o r ( i n t walks = 1 ; walks <= number_walks ; walks ++) {

wa lk_cumu la t i ve [ walks ] = wa lk2_cumu la t i ve [ walks ] = 0 ;
}
f o r ( i n t walks = 0 ; walks <= 2� number_walks ; walks ++) {

p r o b a b i l i t y [ walks ] = 0 ;
} / / end i n i t i a l i z a t i o n o f v e c t o r s
/ / Do t he mc sampl ing
mc_sampling ( m a x_ t r i a l s , number_walks , m ove _p r oba b i l i ty ,

wa lk_cumula t ive , wa lk2_cumula t ive , p r o b a b i l i t y ) ;
/ / P r i n t ou t r e s u l t s
o u t p u t ( m a x_ t r i a l s , number_walks , wa lk_cumula t i ve ,

wa lk2_cumula t ive , p r o b a b i l i t y ) ;
d e l e t e [ ] wa lk_cumu la t i ve ; / / f r e e memory
d e l e t e [ ] wa lk2_cumu la t i ve ; d e l e t e [ ] p r o b a b i l i t y ;
re tu rn 0 ;

} / / end main f u n c t i o n

The output function contains now the normalization of the probability as well and writes this to
its own file.

void o u t p u t ( i n t m a x_ t r i a l s , i n t number_walks ,
i n t � walk_cumula t i ve , i n t � walk2_cumula t i ve , i n t �

p r o b a b i l i t y )
{



10.3. MICROSCOPIC DERIVATION OF THE DIFFUSION EQUATION 179

o f s t r e a m o f i l e ("testwalkers.dat" ) ;
o f s t r e a m p r o b f i l e ("probability.dat" ) ;
f o r ( i n t i = 1 ; i <= number_walks ; i ++) {

double xaverage = wa lk_cumu la t i ve [ i ] / ( (double ) m a x _ t r i a l s ) ;
double x2average = wa lk2_cumu la t i ve [ i ] / ( (double ) m a x _ t r i a l s ) ;
double v a r i a n c e = x2average� xaverage� xaverage ;
o f i l e < < s e t i o s f l a g s ( i o s : : showpoin t | i o s : : uppe r c a s e ) ;
o f i l e < < setw ( 6 ) < < i ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < xaverage ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < v a r i a n c e < < end l ;

}
o f i l e . c l o s e ( ) ;
/ / f i n d norm o f p r o b a b i l i t y
double norm = 0 . ;
f o r ( i n t i = � number_walks ; i <= number_walks ; i ++) {

norm + = (double ) p r o b a b i l i t y [ i +number_walks ] ;
}
/ / w r i t e p r o b a b i l i t y
f o r ( i n t i = � number_walks ; i <= number_walks ; i ++) {

double h i s t og r a m = p r o b a b i l i t y [ i +number_walks ] / norm ;
p r o b f i l e < < s e t i o s f l a g s ( i o s : : showpoin t | i o s : : uppe r c a s e) ;
p r o b f i l e < < setw ( 6 ) < < i ;
p r o b f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < h i s t og r a m < < endl ;

}
p r o b f i l e . c l o s e ( ) ;

} / / end o f f u n c t i o n o u t p u t

The sampling part is still done in the same function, but contains now the setup of a histogram
containing the number of times the walker visited a given position x.

void mc_sampling (i n t m a x_ t r i a l s , i n t number_walks ,
double m ove _p r oba b i l i t y , i n t � walk_cumula t ive ,
i n t � walk2_cumula t ive , i n t � p r o b a b i l i t y )

{
long idum ;
idum =�1; / / i n i t i a l i s e random number ge ne r a t o r
f o r ( i n t t r i a l = 1 ; t r i a l <= m a x _ t r i a l s ; t r i a l ++) {

i n t p o s i t i o n = 0 ;
f o r ( i n t walks = 1 ; walks <= number_walks ; walks ++) {

i f ( ran0 (&idum ) <= m ove _p r oba b i l i t y ) {
p o s i t i o n + = 1 ;

}
e l s e {

p o s i t i o n �= 1;
}
wa lk_cumu la t i ve [ walks ] + = p o s i t i o n ;
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walk2_cumu la t i ve [ walks ] + = p o s i t i o n� p o s i t i o n ;
p r o b a b i l i t y [ p o s i t i o n +number_walks ] + = 1 ;

} / / end o f loop over walks
} / / end o f loop over t r i a l s

} / / end mc_sampl ing f u n c t i o n

Fig. 10.5 shows the resulting probability distribution aftern steps We see from Fig. 10.5 that the
probability distribution function resembles a normal distribution.

Exercise 10.2
Use the above program and try to fit the computed probability distribution with a
normal distribution using your calculated values of�2 andhxi.

10.4 The Metropolis algorithm and detailed balance

An important condition we require that our Markov chain should satisfy is that of detailed bal-
ance. In statistical physics this condition ensures that itis e.g., the Boltzmann distribution which
is generated when equilibrium is reached. The definition forbeing in equilibrium is that the rates
at which a system makes a transition to or from a given statei have to be equal, that isXj W (j ! i)wj =Xi W (i! j)wi: (10.66)

Another way of stating that a Markow process has reached equilibrium isw(t =1) =Ww(t =1): (10.67)

However, the condition that the rates should equal each other is in general not sufficient to guar-
antee that we, after many simulations, generate the correctdistribution. We therefore introduce
an additional condition, namely that of detailed balanceW (j ! i)wj = W (i! j)wi: (10.68)

Satisfies the detailed balance condition. At equilibrium detailed balance gives thusW (j ! i)W (i! j) = wiwj : (10.69)

We introduce the Boltzmann distributionwi = exp (��(Ei)Z ; (10.70)

which states that probability of finding the system in a statei with energyEi at an inverse
temperature� = 1=kBT is wi / exp (��(Ei). The denominatorZ is a normalization constant
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Figure 10.5: Probability distribution for one walker after10, 100 and 1000 steps.
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which ensures that the sum of all probabilities is normalized to one. It is defined as the sum of
probabilities over all microstatesj of the systemZ =Xj exp (��(Ei): (10.71)

From the partition function we can in principle generate allinteresting quantities for a given
system in equilibrium with its surroundings at a temperatureT . This is demonstrated in the next
chapter.

With the probability distribution given by the Boltzmann distribution we are now in the posi-
tion where we can generate expectation values for a given variableA through the definitionhAi =Xj Ajwj = Pj Aj exp (��(Ej)Z : (10.72)

In general, most systems have an infinity of microstates making thereby the computation ofZ
practically impossible and a brute force Monte Carlo calculation over a given number of ran-
domly selected microstates may therefore not yield those microstates which are important at
equilibrium. To select the most important contributions weneed to use the condition for detailed
balance. Since this is just given by the ratios of probabilities, we never need to evaluate the
partition functionZ. For the Boltzmann distribution, detailed balance resultsinwiwj = exp (��(Ei � Ej)): (10.73)

Let us now specialize to a system whose energy is defined by theorientation of single spins.
Consider the statei, with given energyEi represented by the followingN spins" " " : : : " # " : : : " #1 2 3 : : : k � 1 k k + 1 : : : N � 1 N
We are interested in the transition with one single spinflip to a new statej with energyEj" " " : : : " " " : : : " #1 2 3 : : : k � 1 k k + 1 : : : N � 1 N
This change from one microstatei (or spin configuration) to another microstatej is the con-
figuration space analogue to a random walk on a lattice. Instead of jumping from one place to
another in space, we ’jump’ from one microstate to another.

However, the selection of states has to generate a final distribution which is the Boltzmann
distribution. This is again the same we saw for a random walker, for the discrete case we had al-
ways a binomial distribution, whereas for the continuous case we had a normal distribution. The
way we sample configurations should result in, when equilibrium is established, in the Boltz-
mann distribution. Else, our algorithm for selecting microstates has to be wrong.

Since we do not know the analytic form of the transition rate,we are free to model it asW (i! j) = g(i! j)A(i! j); (10.74)
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whereg is a selection probability whileA is the probability for accepting a move. It is also called
the acceptance ratio. The selection probability should be same for all possible spin orientations,
namely g(i! j) = 1N : (10.75)

With detailed balance this givesg(j ! i)A(j ! i)g(i! j)A(i! j) = exp (��(Ei � Ej)); (10.76)

but since the selection ratio is the same for both transitions, we haveA(j ! i)A(i! j) = exp (��(Ei � Ej)) (10.77)

In general, we are looking for those spin orientations whichcorrespond to the average energy at
equilibrium.

We are in this case interested in a new stateEj whose energy is lower thanEi, viz., �E =Ej � Ei � 0. A simple test would then be to accept only those microstateswhich lower the
energy. Suppose we have ten microstates with energyE0 � E1 � E2 � E3 � � � � � E9. Our
desired energy isE0. At a given temperatureT we start our simulation by randomly choosing
stateE9. Flipping spins we may then find a path fromE9 ! E8 ! E7 � � � ! E1 ! E0. This
would however lead to biased statistical averages since it would violate the ergodic hypothesis
which states that it should be possible for any Markov process to reach every possible state of
the system from any starting point if the simulations is carried out for a long enough time.

Any state in a Boltzmann distribution has a probability different from zero and if such a state
cannot be reached from a given starting point, then the system is not ergodic. This means that
another possible path toE0 could beE9 ! E7 ! E8 � � � ! E9 ! E5 ! E0 and so forth. Even
though such a path could have a negligible probability it is still a possibility, and if we simulate
long enough it should be included in our computation of an expectation value.

Thus, we require that our algorithm should satisfy the principle of detailed balance and be
ergodic. One possible way is the Metropolis algorithm, which readsA(j ! i) = � exp (��(Ei � Ej)) Ei � Ej > 01 else (10.78)

This algorithm satisfies the condition for detailed balanceand ergodicity. It is implemented as
follows:� Establish an initial energyEb� Do a random change of this initial state by e.g., flipping an individual spin. This new state

has energyEt. Compute then�E = Et � Eb� If �E � 0 accept the new configuration.



184 CHAPTER 10. RANDOM WALKS AND THE METROPOLIS ALGORITHM� If �E > 0, computew = e�(��E).� Comparew with a random numberr. If r � w accept, else keep the old configuration.� Compute the terms in the sums
PAsPs.� Repeat the above steps in order to have a large enough number of microstates� For a given number of MC cycles, compute then expectation values.

The application of this algorithm will be discussed in detail in the next two chapters.

10.5 Physics project: simulation of the Boltzmann distribu-
tion

In this project the aim is to show that the Metropolis algorithm generates the Boltzmann distri-
bution P (�) = e��EZ ; (10.79)

with � = 1=kT being the inverse temperature,E is the energy of the system andZ is the partition
function. The only functions you will need are those to generate random numbers.

We are going to study one single particle in equilibrium withits surroundings, the latter
modeled via a large heat bath with temperatureT .

The model used to describe this particle is that of an ideal gas in one dimension and with
velocity �v or v. We are interested in findingP (v)dv, which expresses the probability for
finding the system with a given velocityv 2 [v; v + dv℄. The energy for this one-dimensional
system is E = 12kT = 12v2; (10.80)

with massm = 1. In order to simulate the Boltzmann distribution, your program should contain
the following ingredients:� Reads in the temperatureT , the number of Monte Carlo cycles, and the initial velocity.

You should also read in the change in velocityÆv used in every Monte Carlo step. Let the
temperature have dimension energy.� Thereafter you choose a maximum velocity given by e.g.,vmax � 10pT . Then you con-
struct a velocity interval defined byvmax and divided it in small intervals throughvmax=N ,
with N � 100� 1000. For each of these intervals your task is to find out how many times
a given velocity during the Monte Carlo sampling appears in each specific interval.� The number of times a given velocity appears in a specific interval is used to construct a
histogram representingP (v)dv. To achieve this you should construct a vectorP [N ℄ which
contains the number of times a given velocity appears in the subintervalv; v + dv.
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In order to find the number of velocities appearing in each interval we will employ the
Metropolis algorithm. A pseudocode for this is

f o r ( m o n t e c a r l o _ c y c l e s = 1 ; Max_cycles ; m o n t e c a r l o _ c y c l e s ++) {
. . .
/ / change speed as f u n c t i o n o f d e l t a v
v_change = ( 2� ran1 (&idum ) �1 ) � d e l t a _ v ;
v_new = v_old +v_change ;
/ / energy change
de l t a _E = 0 . 5� ( v_new�v_new � v_o ld� v_o ld ) ;
. . . . . .
/ / M e t r opo l i s a l go r i t hm be g i ns here

i f ( ran1 (&idum ) <= exp(�be t a� de l t a _E ) ) {
a c c e p t _ s t e p = a c c e p t _ s t e p + 1 ;
v_o ld = v_new ;
. . . . .

}
/ / t h e r e a f t e r we must f i l l i n P[N ] as a f u n c t i o n o f
/ / t he new speed

P [ ? ] = . . .

/ / upgrade mean v e l o c i t y , energy and v a r i anc e
. . .

}

a) Make your own algorithm which sets up the histogramP (v)dv, find mean velocity, energy,
energy variance and the number of accepted steps for a given temperature. Study the
change of the number of accepted moves as a function ofÆv. Compare the final energy
with the analytic resultE = kT=2 for one dimension. UseT = 4 and set the intial velocity
to zero, i.e.,v0 = 0. Try different values ofÆv. A possible start value isÆv = 4. Check the
final result for the energy as a function of the number of MonteCarlo cycles.

b) Make thereafter a plot ofln(P (v)) as function ofE and see if you get a straight line.
Comment the result.





Chapter 11

Monte Carlo methods in statistical physics

The aim of this chapter is to present examples from the physical sciences where Monte Carlo
methods are widely applied. Here we focus on examples from statistical physics. and discuss
one of the most studied systems, the Ising model for the interaction among classical spins. This
model exhibits both first and second order phase transitionsand is perhaps one of the most studied
cases in statistical physics and discussions of simulations of phase transitions.

11.1 Phase transitions in magnetic systems

11.1.1 Theoretical background

The model we will employ in our studies of phase transitions at finite temperature for magnetic
systems is the so-called Ising model. In its simplest form the energy is expressed asE = �J NX<kl> sksl �B NXk sk; (11.1)

with sk = �1, N is the total number of spins,J is a coupling constant expressing the strength
of the interaction between neighboring spins andB is an external magnetic field interacting with
the magnetic moment set up by the spins. The symbol< kl > indicates that we sum over nearest
neighbors only. Notice that forJ > 0 it is energetically favorable for neighboring spins to be
aligned. This feature leads to, at low enough temperatures,to a cooperative phenomenon called
spontaneous magnetization. That is, through interactionsbetween nearest neighbors, a given
magnetic moment can influence the alignment of spins that areseparated from the given spin
by a macroscopic distance. These long range correlations between spins are associated with a
long-range order in which the lattice has a net magnetization in the absence of a magnetic field.
In our further studies of the Ising model, we will limit the attention to cases withB = 0 only.

In order to calculate expectation values such as the mean energy hEi or magnetizationhMi
in statistical physics at a given temperature, we need a probability distributionPi(�) = e��EiZ (11.2)
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with � = 1=kT being the inverse temperature,k the Boltzmann constant,Ei is the energy of a
statei whileZ is the partition function for the canonical ensemble definedasZ = MXi=1 e��Ei; (11.3)

where the sum extends over all statesM . Pi expresses the probability of finding the system in a
given configurationi.

The energy for a specific configurationi is given byEi = �J NX<kl> sksl: (11.4)

To better understand what is meant with a configuration, consider first the case of the one-
dimensional Ising model withB = 0. In general, a given configuration ofN spins in one
dimension may look like" " " : : : " # " : : : " #1 2 3 : : : i� 1 i i+ 1 : : : N � 1 N
In order to illustrate these features let us further specialize to just two spins.

With two spins, since each spin takes two values only, it means that in total we have22 = 4
possible arrangements of the two spins. These four possibilities are1 ="" 2 ="# 3 =#" 4 =##

What is the energy of each of these configurations?
For small systems, the way we treat the ends matters. Two cases are often used

1. In the first case we employ what is called free ends. For the one-dimensional case, the
energy is then written as a sum over a single indexEi = �J N�1Xj=1 sjsj+1; (11.5)

If we label the first spin ass1 and the second ass2 we obtain the following expression for
the energy E = �Js1s2: (11.6)

The calculation of the energy for the one-dimensional lattice with free ends for one specific
spin-configuration can easily be implemented in the following lines

f o r ( j = 1 ; j < N ; j ++) {
energy + = s p i n [ j ]� s p i n [ j + 1 ] ;

}
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where the vectorspin[℄ contains the spin valuesk = �1. For the specific stateE1, we have
chosen all spins up. The energy of this configuration becomesthenE1 = E"" = �J:
The other configurations give E2 = E"# = +J;E3 = E#" = +J;
and E4 = E## = �J:

2. We can also choose so-called periodic boundary conditions. This means that ifi = N , we
set the spin number toi = 1. In this case the energy for the one-dimensional lattice readsEi = �J NXj=1 sjsj+1; (11.7)

and we obtain the following expression for the two-spin caseE = �J(s1s2 + s2s1): (11.8)

In this case the energy forE1 is different, we obtain namelyE1 = E"" = �2J:
The other cases do also differ and we haveE2 = E"# = +2J;E3 = E#" = +2J;
and E4 = E## = �2J:
If we choose to use periodic boundary conditions we can code the above expression as

jm=N;
f o r ( j = 1 ; j <=N ; j ++) {

energy + = s p i n [ j ]� s p i n [ jm ] ;
jm = j ;

}
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Table 11.1: Energy and magnetization for the one-dimensional Ising model withN = 2 spins
with free ends (FE) and periodic boundary conditions (PBC).

State Energy (FE) Energy (PBC) Magnetization1 ="" �J �2J 22 ="# J 2J 03 =#" J 2J 04 =## �J �2J -2

Table 11.2: Degeneracy, energy and magnetization for the one-dimensional Ising model withN = 2 spins with free ends (FE) and periodic boundary conditions (PBC).

Number spins up Degeneracy Energy (FE) Energy (PBC) Magnetization
2 1 �J �2J 2
1 2 J 2J 0
0 1 �J �2J -2

The magnetization is however the same, defined asMi = NXj=1 sj; (11.9)

where we sum over all spins for a given configurationi.
Table 11.1 lists the energy and magnetization for both free ends and periodic boundary con-

ditions.
We can reorganize Table 11.1 according to the number of spinspointing up, as shown in Table

11.2. It is worth noting that for small dimensions of the lattice, the energy differs depending on
whether we use periodic boundary conditions or fri ends. This means also that the partition
functions will be different, as discussed below. In the thermodynamic limit however,N ! 1,
the final results do not depend on the kind of boundary conditions we choose.

For a one-dimensional lattice with periodic boundary conditions, each spin sees two neigh-
bors. For a two-dimensional lattice each spin sees four neighboring spins. How many neighbors
does a spin see in three dimensions?

In a similar way, we could enumerate the number of states for atwo-dimensional system
consisting of two spins, i.e., a2 � 2 Ising model on a square lattice withperiodic boundary
conditions. In this case we have a total of24 = 16 states. Some examples of configurations with
their respective energies are listed hereE = �8J " "" " E = 0 " "" # E = 0 # #" # E = �8J # ## #
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In the Table 11.3 we group these configurations according to their total energy and magneti-
zation.

Table 11.3: Energy and magnetization for the two-dimensional Ising model withN = 2 � 2
spins with periodic boundary conditions.

Number spins up Degeneracy Energy Magnetization
4 1 �8J 4
3 4 0 2
2 4 0 0
2 2 8J 0
1 4 0 -2
0 1 �8J -4

Exercise 11.1
Convince yourself that the values listed in Table 11.3 are correct.

For a system described by the canonical ensemble, the energyis an expectation value since
we allow energy to be exchanged with the surroundings (a heatbath with temperatureT ). This
expectation value, the mean energy, can be calculated usingthe probability distributionPi ashEi = MXi=1 EiPi(�) = 1Z MXi=1 Eie��Ei; (11.10)

with a corresponding variance defined as�2E = hE2i � hEi2 = 1Z MXi=1 E2i e��Ei � 1Z MXi=1 Eie��Ei!2 : (11.11)

If we divide the latter quantity withkT 2 we obtain the specific heat at constant volumeCV = 1kT 2 �hE2i � hEi2� : (11.12)

Using the same prescription, we can also evaluate the mean magnetization throughhMi = MXi MiPi(�) = 1Z MXi Mie��Ei ; (11.13)

and the corresponding variance�2M = hM2i � hMi2 = 1Z MXi=1M2i e��Ei � 1Z MXi=1Mie��Ei!2 : (11.14)
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This quantity defines also the susceptibility�� = 1kT �hM2i � hMi2� : (11.15)

It is also possible to show that the partition function for the one-dimensional case forN spins
with free ends is ZN = [2
osh(�J)℄N�1 : (11.16)

If we use periodic boundary conditions it becomesZN = 2N �[
osh(�J)℄N + [sinh(�J)℄N� : (11.17)

In the limitN !1 the two results agree.
We can then calculate the mean energy with fri ends from the above formula or usinghEi = ��lnZ�� = �(N � 1)Jtanh(�J): (11.18)

If we take our simple system with just two spins in one-dimension, we see immediately that
the above expression for the partition function is correct.Using the definition of the partition
function we have Z2 = 2Xi=1 e��Ei = 2e��J + 2e�J = 2
osh(�J) (11.19)

If we take the limitT ! 0 (� !1) and setN = 2, we obtainlim�!1hEi = �eJ� � e�J�eJ� + e�J� = �J; (11.20)

which is the energy where all spins point in the same direction. At low T , the system tends
towards a state with the highest possible degree of order.

The specific heat in one-dimension with free ends isCV = 1kT 2 �2��2 lnZN = (N � 1)k� �J
osh(�J)�2 : (11.21)

Exercise 11.2
Calculate the exact partition function for a system of threespins with the one-
dimensional Ising model using both free ends and periodic boundary conditions.

For our two-dimensional2� 2 lattice we obtain the following partition functionZ = 2e�8J� + 2e8J� + 12; (11.22)

and mean energy hEi = � 1Z �16e8J� � 16e�8J�� : (11.23)
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The analytical expression for the Ising model in two dimensions was obtained in 1944 by the
Norwegian chemist Lars Onsager (Nobel prize in chemistry).The exact partition function forN
spins is given by ZN = �2
osh(�J)eI�N ; (11.24)

with I = 12� Z �0 d�ln �12 �1 + (1� �2sin2�)1=2�� ; (11.25)

and � = 2sinh(2�J)=
osh2(2�J): (11.26)

Exercise 11.3
Calculate the heat capacity and the mean magnetization per spin for the2� 2 ising
model.

11.1.2 The Metropolis algorithm

The algorithm of choice for solving the Ising model is the approach proposed by Metropoliset
al. in 1953. As discussed in chapter??, new configurations are generated from a previous one
using a transition probability which depends on the energy difference between the initial and
final states.

In our case we have as the Monte Carlo sampling function the probability for finding the
system in a states given by Ps = e�(�Es)Z ;
with energyEs, � = 1=kT andZ is a normalization constant which defines the partition function
in the canonical ensemble. As discussed aboveZ(�) =Xs e�(�Es)
is difficult to compute since we need all states. In a calculation of the Ising model in two di-
mensions, the number of configurations is given by2N with N = L � L the number of spins
for a lattice of lengthL. Fortunately, the Metropolis algorithm considers only ratios between
probabilities and we do not need to compute the partition function at all. The algorithm goes as
follows

1. Establish an initial state with energyEb by positioning yourself at a random position in the
lattice

2. Change the initial configuration by flipping e.g., one spinonly. Compute the energy of this
trial stateEt.

3. Calculate�E = Et �Eb. The number of values�E is limited to five for the Ising model
in two dimensions, see the discussion below.
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4. If �E � 0 we accept the new configuration, meaning that the energy is lowered and we
are hopefully moving towards the energy minimum at a given temperature. Go to step 7.

5. If �E > 0, calculatew = e�(��E).
6. Comparew with a random numberr. If r � w;

then accept the new configuration, else we keep the old configuration.

7. The next step is to update various expectations values.

8. The steps (2)-(7) are then repeated in order to obtain a sufficently good representation of
states.

9. Each time you sweep through the lattice, i.e., when you have summed over all spins, con-
stitutes what is called a Monte Carlo cyclus. You could thinkof one such cyclus as a
measurement. At the end, you should divide the various expectation values with the total
number of cycles. You can choose whether you wish to divide bythe number of spins or
not. If you divide with the number of spins as well, your result for e.g., the energy is now
the energy per spin.

The implementation of this algorithm is given in the next section. In the calculation of the
energy difference from one spin configuration to the other, we will limit the change to the flipping
of one spin only. For the Ising model in two dimensions it means that there will only be a limited
set of values for�E. Actually, there are only five possible values. To see this, select first a
random spin positionx; y and assume that this spin and its nearest neighbors are all pointing
up. The energy for this configuration isE = �4J . Now we flip this spin as shown below. The
energy of the new configuration isE = 4J , yielding�E = 8J .E = �4J "" " "" =) E = 4J "" # ""
The four other possibilities are as followsE = �2J "# " "" =) E = 2J "# # ""
with �E = 4J , E = 0 "# " "# =) E = 0 "# # "#
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with �E = 0,E = 2J ## " "# =) E = �2J ## # "#
with �E = �4J and finallyE = 4J ## " ## =) E = �4J ## # ##
with �E = �8J . This means in turn that we could construct an array which contains all values
of e��E before doing the Metropolis sampling. Else, we would have toevaluate the exponential
at each Monte Carlo sampling.

11.2 Program example

We list here an example of a C/C++-program which computes various thermodynamical prop-
erties of the Ising model in two dimensions You should especially pay attention to the function
Metropolis which implements the algorithm described in theprevious subsection and the func-
tionDeltaE which calculates the energy difference between the previous state and the trial state
by flipping one spin.

The program is set up with dynamic memory allocation for the matrix which contains the
spin values at a position(x; y). One could alternatively have used a fixed size for the matrices to
be used. But then one would need to recompile the program whenlarger systems are considered.

11.2.1 Program for the two-dimensional Ising Model

programs/chap11/program1.cpp

/�
Program t o s o l v e t he two�d i m e ns i ona l I s i n g model
The c oup l i ng c o n s t a n t J = 1
Bol tzmann ’ s c o n s t a n t = 1 , t e m pe r a t u r e has t hus d imens ion energy
M e t r opo l i s sampl ing i s used . P e r i o d i c boundary c o n d i t i o n s.� /

# inc lude < ios t ream >
# inc lude < fs t ream >
# inc lude < iomanip >
# inc lude "lib.h"
us ing namespace s t d ;
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o f s t r e a m o f i l e ;

/ / i n l i n e f u n c t i o n f o r p e r i o d i c boundary c o n d i t i o n s
i n l i n e i n t p e r i o d i c (i n t i , i n t l i m i t , i n t add ) {

re tu rn ( i + l i m i t +add ) % ( l i m i t ) ;
}
/ / Func t ion t o read i n data from s c r e e n
void r e a d _ i n p u t (i n t & , i n t & , double& , double& , double&) ;
/ / Func t ion t o i n i t i a l i s e energy and m a g n e t i z a t i o n
void i n i t i a l i z e ( i n t , double , i n t � � , double& , double&) ;
/ / The m e t r o p o l i s a l go r i t hm
void M e t r opo l i s (i n t , long & , i n t � � , double& , double& , double � ) ;
/ / p r i n t s t o f i l e t he r e s u l t s o f t he c a l c u l a t i o n s
void o u t p u t (i n t , i n t , double , double � ) ;

i n t main ( i n t argc , char � argv [ ] )
{

char � o u t f i l e n a m e ;
long idum ;
i n t �� s p i n_m a t r i x , n_sp ins , mcs ;
double w[ 1 7 ] , ave rage [ 5 ] , i n i t i a l _ t e m p , f i na l _ t e m p , E , M, temp_step ;

/ / Read i n o u t p u t f i l e , abo r t i f t h e r e are too few command� l i n e
arguments

i f ( a rgc < = 1 ) {
cou t < < "Bad Usage: " < < argv [0 ] < <" read also output file on same line" < < end l ;
e x i t ( 1 ) ;

}
e l s e{

o u t f i l e n a m e = argv [ 1 ] ;
}
o f i l e . open ( o u t f i l e n a m e ) ;
/ / Read i n i n i t i a l v a l u e s such as s i z e o f l a t t i c e , temp and

c y c l e s
r e a d _ i n p u t ( n_sp ins , mcs , i n i t i a l _ t e m p , f i na l _ t e m p , temp_s tep ) ;
s p i n _ m a t r i x = (i n t �� ) m a t r i x ( n_sp ins , n_sp ins ,s i z e o f( i n t ) ) ;
idum = �1 ; / / random s t a r t i n g p o i n t
f o r ( double temp = i n i t i a l _ t e m p ; temp <= f i n a l _ t e m p ; temp+=

temp_s tep ) {
/ / i n i t i a l i s e energy and m a g n e t i z a t i o n
E = M = 0 . ;
/ / s e t up ar ray f o r p o s s i b l e energy changes
f o r ( i n t de =�8; de < = 8 ; de ++) w[ de ] = 0 ;
f o r ( i n t de =�8; de < = 8 ; de +=4) w[ de + 8 ] = exp(�de / temp ) ;
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/ / i n i t i a l i s e a r ray f o r e x p e c t a t i o n v a l u e s
f o r ( i n t i = 0 ; i < 5 ; i ++) average [ i ] = 0 . ;
i n i t i a l i z e ( n_sp ins , temp , s p i n_m a t r i x , E , M) ;
/ / s t a r t Monte Car lo computa t ion
f o r ( i n t c y c l e s = 1 ; c y c l e s <= mcs ; c y c l e s ++) {

M e t r opo l i s ( n_sp ins , idum , s p i n_m a t r i x , E , M, w) ;
/ / update e x p e c t a t i o n v a l u e s
average [ 0 ] + = E ; average [ 1 ] + = E�E ;
average [ 2 ] + = M; average [ 3 ] + = M�M; average [ 4 ] + = f a bs (M) ;

}
/ / p r i n t r e s u l t s
o u t p u t ( n_sp ins , mcs , temp , average ) ;

}
f r e e _ m a t r i x ( (void � � ) s p i n _ m a t r i x ) ; / / f r e e memory
o f i l e . c l o s e ( ) ; / / c l o s e o u t p u t f i l e
re tu rn 0 ;

}

/ / read i n i n p u t data
void r e a d _ i n p u t (i n t & n_sp ins , i n t & mcs , double& i n i t i a l _ t e m p ,

double& f i na l _ t e m p , double& temp_s tep )
{

cou t < < "Number of Monte Carlo trials =" ;
c i n > > mcs ;
cou t < < "Latti
e size or number of spins (x and y equal) =" ;
c i n > > n_s p i ns ;
cou t < < "Initial temperature with dimension energy=" ;
c i n > > i n i t i a l _ t e m p ;
cou t < < "Final temperature with dimension energy=" ;
c i n > > f i n a l _ t e m p ;
cou t < < "Temperature step with dimension energy=" ;
c i n > > temp_s tep ;

} / / end o f f u n c t i o n r e ad_ i np u t

/ / f u n c t i o n t o i n i t i a l i s e energy , s p i n m a t r i x and m a g n e t i z at i o n
void i n i t i a l i z e ( i n t n_sp ins , double temp , i n t �� s p i n_m a t r i x ,

double& E , double& M)
{

/ / s e t up s p i n m a t r i x and i n t i a l m a g n e t i z a t i o n
f o r ( i n t y = 0 ; y < n_s p i ns ; y++) {

f o r ( i n t x = 0 ; x < n_s p i ns ; x++) {
s p i n _ m a t r i x [ y ] [ x ] = 1 ; / / s p i n o r i e n t a t i o n f o r t he ground s t a t e

M + = ( double ) s p i n _ m a t r i x [ y ] [ x ] ;
}

}
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/ / s e t up i n i t i a l energy
f o r ( i n t y = 0 ; y < n_s p i ns ; y++) {

f o r ( i n t x = 0 ; x < n_s p i ns ; x++) {
E �= ( double ) s p i n _ m a t r i x [ y ] [ x ]�

( s p i n _ m a t r i x [ p e r i o d i c ( y , n_sp ins ,�1) ] [ x ] +
s p i n _ m a t r i x [ y ] [ p e r i o d i c ( x , n_sp ins ,�1) ] ) ;

}
}

} / / end f u n c t i o n i n i t i a l i s e

void M e t r opo l i s ( i n t n_sp ins , long& idum , i n t �� s p i n_m a t r i x , double& E
, double&M, double �w)

{
/ / loop over a l l s p i n s
f o r ( i n t y = 0 ; y < n_s p i ns ; y++) {

f o r ( i n t x = 0 ; x < n_s p i ns ; x++) {
i n t i x = ( i n t ) ( ran1 (&idum )� ( double ) n_s p i ns ) ;
i n t i y = ( i n t ) ( ran1 (&idum )� ( double ) n_s p i ns ) ;
i n t d e l t a E = 2� s p i n _ m a t r i x [ i y ] [ i x ]�

( s p i n _ m a t r i x [ i y ] [ p e r i o d i c ( ix , n_sp ins ,�1) ]+
s p i n _ m a t r i x [ p e r i o d i c ( iy , n_sp ins ,�1) ] [ i x ] +
s p i n _ m a t r i x [ i y ] [ p e r i o d i c ( ix , n_sp ins , 1 ) ] +
s p i n _ m a t r i x [ p e r i o d i c ( iy , n_sp ins , 1 ) ] [ i x ] ) ;

i f ( ran1 (&idum ) <= w[ d e l t a E + 8 ] ) {
s p i n _ m a t r i x [ i y ] [ i x ] �= �1 ; / / f l i p one s p i n and ac c e p t new

s p i n c o n f i g
M + = ( double ) 2� s p i n _ m a t r i x [ i y ] [ i x ] ;
E + = ( double ) d e l t a E ;

}
}

}
} / / end o f M e t r opo l i s sampl ing over s p i n s

void o u t p u t ( i n t n_sp ins , i n t mcs , double temp , double � average )
{

double norm = 1 / ( (double ) ( mcs ) ) ; / / d i v i d e d by t o t a l number o f
c y c l e s

double Eaverage = average [ 0 ]� norm ;
double E2average = average [ 1 ]� norm ;
double Maverage = average [ 2 ]� norm ;
double M2average = average [ 3 ]� norm ;
double Mabsaverage = average [ 4 ]� norm ;
/ / a l l e x p e c t a t i o n v a l u e s are per sp in , d i v i d e by 1 / n_s p i ns /n_s p i ns
double E va r i a nc e = ( E2average� Eaverage�Eaverage ) / n_s p i ns / n_s p i ns ;
double Mvar iance = ( M2average� Mabsaverage�Mabsaverage ) / n_s p i ns /
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n_s p i ns ;
o f i l e < < s e t i o s f l a g s ( i o s : : showpoin t | i o s : : uppe r c a s e ) ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < temp ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < Eaverage / n_s p i ns /n_s p i ns ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < E va r i a nc e / temp / temp ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < Maverage / n_s p i ns /n_s p i ns ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < Mvar iance / temp ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < Mabsaverage / n_s p ins / n_s p i ns

< < end l ;
} / / end o u t p u t f u n c t i o n

11.3 Selected results for the Ising model

11.3.1 Phase transitions

The Ising model in two dimensions and withB = 0 undergoes a phase transition of second
order. What it actually means is that below a given critical temperatureTC , the Ising model ex-
hibits a spontaneous magnetization withhMi 6= 0. AboveTC the average magnetization is zero.
The one-dimensional Ising model does not predict any spontaneous magnetization at any finite
temperature. The physical reason for this can be understoodfrom the following simple consid-
eration. Assume that the ground state for anN -spin system in one dimension is characterized by
the following configuration" " " : : : " " " : : : " "1 2 3 : : : i� 1 i i+ 1 : : : N � 1 N
which has a total energy�NJ and magnetizationN . If we flip half of the spins we arrive at a
configuration " # " : : : " # " : : : " #1 2 3 : : : i� 1 i i+ 1 : : : N � 1 N
with energy(�N + 4)J and net magnetization zero. This state is an example of a disordered
state. The change in energy is however too small to stabilizethe disordered state. In two di-
mensions however the excitation energy to a disordered state is much higher, and this difference
can be sufficient to stabilize the system. In fact, the Ising model exhibits a phase transition to a
disordered phase both in two and three dimensions.

For the two-dimensional case, we move from a phase with finitemagnetizationhMi 6= 0 to
a paramagnetic phase withhMi = 0 at a critical temperatureTC . At the critical temperature,
quantities like the heat capacityCV and the susceptibility� diverge in the thermodynamic limit,
i.e., with an infinitely large lattice. This means that the variance in energy and magnetization
diverge. For a finite lattice however, the variance will always scale as� 1=pM , M being e.g.,
the number of configurations which in our case is proportional with L. Since our lattices will
always be of a finite dimensions, the calculatedCV or � will not exhibit a diverging behavior.
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We will however notice a broad maximum in e.g.,CV nearTC . This maximum, as discussed
below, becomes sharper and sharper asL is increased.

NearTC we can characterize the behavior of many physical quantities by a power law behav-
ior. As an example, the mean magnetization is given byhM(T )i � (T � TC)� ; (11.27)

where� is a so-called critical exponent. A similar relation applies to the heat capacityCV (T ) � jTC � T j�
 ; (11.28)

and the susceptibility �(T ) � jTC � T j�� : (11.29)

Another important quantity is the correlation length, which is expected to be of the order of
the lattice spacing forT >> TC . Because the spins become more and more correlated asT
approachesTC , the correlation length increases as we get closer to the critical temperature. The
divergent behavior of� nearTC is �(T ) � jTC � T j�� : (11.30)

A second-order phase transition is characterized by a correlation length which spans the whole
system. Since we are always limited to a finite lattice,� will be proportional with the size of the
lattice.

Through finite size scaling relations it is possible to relate the behavior at finite lattices with
the results for an infinitely large lattice. The critical temperature scales then asTC(L)� TC(L =1) � aL�1=� ; (11.31)

with a a constant and� is defined in Eq. (11.30). The correlation length is given by�(T ) � L � jTC � T j�� : (11.32)

and if we setT = TC one obtainshM(T )i � (T � TC)� ! L��=� ; (11.33)CV (T ) � jTC � T j�
 ! L�=� ; (11.34)

and �(T ) � jTC � T j�� ! L
=� : (11.35)

11.3.2 Heat capacity and susceptibility as functions of number of spins

in preparation
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11.3.3 Thermalization

in preparation

11.4 Other spin models

11.4.1 Potts model

11.4.2 XY-model

11.5 Physics project: simulation of the Ising model

In this project we will use the Metropolis algorithm to generate states according to the Boltzmann
distribution. Each new configuration is given by the change of only one spin at the time, that issk ! �sk. Use periodic boundary conditions and set the magnetic fieldB = 0.

a) Write a program which simulates the one-dimensional Ising model. ChooseJ > 0, the
number of spinsN = 20, temperatureT = 3 and the number of Monte Carlo samplesm
s = 100. Let the initial configuration consist of all spins pointingup, i.e.,sk = 1.
Compute the mean energy and magnetization for each cycle andfind the number of cycles
needed where the fluctuation of these variables is negligible. What kind of criterium would
you use in order to determine when the fluctuations are negligible?

Change thereafter the initial condition by letting the spins take random values, either�1 or1. Compute again the mean energy and magnetization for each cycle and find the number
of cycles needed where the fluctuation of these variables is negligible.

Explain your results.

b) Letm
s � 1000 and computehEi, hE2i andCV as functions ofT for 0:1 � T � 5. Plot
the results and compare with the exact ones for periodic boundary conditions.

c) Using the Metropolis sampling method you should now find the number of accepted con-
figurations as function of the total number of Monte Carlo samplings. How does the num-
ber of accepted configurations behave as function of temperatureT? Explain the results.

d) Compute thereafter the probabilityP (E) for a system withN = 50 at T = 1. Choosem
s � 1000 and plotP (E) as function ofE. Count the number of times a specific energy
appears and build thereafter up a histogram. What does the histogram mean?





Chapter 12

Quantum Monte Carlo methods

12.1 Introduction

The aim of this chapter is to present examples of applications of Monte Carlo methods in studies
of quantum mechanical systems. We study systems such as the harmonic oscillator, the hydrogen
atom, the hydrogen molecule, the helium atom and the nucleus4He.

The first section deals with variational methods, or what is commonly denoted as variational
Monte Carlo (VMC). The required Monte Carlo techniques for VMC are conceptually simple,
but the practical application may turn out to be rather tedious and complex, relying on a good
starting point for the variational wave functions. These wave functions should include as much as
possible of the inherent physics to the problem, since they form the starting point for a variational
calculation of the expectation value of the hamiltonianH. Given a hamiltonianH and a trial wave
function	T , the variational principle states that the expectation value ofhHi, defined throughhHi = R dR	�T (R)H(R)	T (R)R dR	�T (R)	T (R) ; (12.1)

is an upper bound to the ground state energyE0 of the hamiltonianH, that isE0 � hHi: (12.2)

To show this, we note first that the trial wave function can be expanded in the eigenstates of the
hamiltonian since they form a complete set, viz.,	T (R) =Xi ai	i(R); (12.3)

and assuming the set of eigenfunctions to be normalized, insertion of the latter equation in
Eq. (12.1) results inhHi = Pmn a�man R dR	�m(R)H(R)	n(R)Pmn a�man R dR	�m(R)	n(R) = Pmn a�man R dR	�m(R)En(R)	n(R)Pn a2n ;

(12.4)

203
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which can be rewritten as Pn a2nEnPn a2n � E0: (12.5)

In general, the integrals involved in the calculation of various expectation values are multi-
dimensional ones. Traditional integration methods such asthe Gauss-Legendre will not be ad-
equate for say the computation of the energy of a many-body system. The fact that we need to
sample over a multi-dimensional density and that the probability density is to be normalized by
the division of the norm of the wave function, suggests that e.g., the Metropolis algorithm may
be appropriate.

We could briefly summarize the above variational procedure in the following three steps.

1. Construct first a trial wave function �T (R), for say a many-body system consisting ofN
particles located at positionsR = (R1; : : : ;RN). The trial wave function depends on�
variational parameters� = (�1; : : : ; �N).

2. Then we evaluate the expectation value of the hamiltonianHhHi = R dR	�T�(R)H(R)	T�(R)R dR	�T�(R)	T�(R) :
3. Thereafter we vary� according to some minimization algorithm and return to the first step.

The above loop stops when we reach the minimum of the energy according to some specified
criterion. In most cases, a wave function has only small values in large parts of configuration
space, and a straightforward procedure which uses homogenously distributed random points in
configuration space will most likely lead to poor results. This may suggest that some kind of
importance sampling combined with e.g., the Metropolis algorithm may be a more efficient way
of obtaining the ground state energy. The hope is then that those regions of configurations space
where the wave function assumes appreciable values are sampled more efficiently.

The tedious part in a VMC calculation is the search for the variational minimum. A good
knowledge of the system is required in order to carry out reasonable VMC calculations. This is
not always the case, and often VMC calculations serve ratheras the starting point for so-called
diffusion Monte Carlo calculations (DMC). DMC is a way of solving exactly the many-body
Schrödinger equation by means of a stochastic procedure. A good guess on the binding energy
and its wave function is however necessary. A carefully performed VMC calculation can aid in
this context.

12.2 Variational Monte Carlo for quantum mechanical sys-
tems

The variational quantum Monte Carlo (VMC) has been widely applied to studies of quantal
systems. Here we expose its philosophy and present applications and critical discussions.
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The recipe, as discussed in chapter 4 as well, consists in choosing a trial wave function T (R)
which we assume to be as realistic as possible. The variableR stands for the spatial coordinates,
in total3N if we haveN particles present. The trial wave function serves then, following closely
the discussion on importance sampling in section 9.5, as a mean to define the quantal probability
distribution P (R) = j T (R)j2R j T (R)j2 dR : (12.6)

This is our new probability distribution function (PDF).
The expectation value of the energyE is given byhEi = R dR	�(R)H(R)	(R)R dR	�(R)	(R) ; (12.7)

where	 is the exact eigenfunction. Using our trial wave function wedefine a new operator, the
so-called local energy, EL(R) = 1 T (R)H T (R); (12.8)

which, together with our trial PDF allows us to rewrite the expression for the energy ashHi = Z P (R)EL(R)dR: (12.9)

This equation expresses the variational Monte Carlo approach. For most hamiltonians,H is a
sum of kinetic energy, involving a second derivative, and a momentum independent potential.
The contribution from the potential term is hence just the numerical value of the potential.

At this stage, we should note the similarity between Eq. (12.9) and the concept of importance
sampling introduced in chapter 4, in connection with numerical integration and Monte Carlo
methods.

In our discussion below, we base our numerical Monte Carlo solution on the Metropolis
algorithm. The implementation is rather similar to the one discussed in connection with the Ising
model, the main difference residing in the form of the PDF. The main test to be performed is
a ratio of probabilities. Suppose we are attempting to move from positionR to R0. Then we
perform the following two tests.

1. If P (R0)P (R) > 1;
whereR0 is the new position, the new step is accepted, or

2. r � P (R0)P (R) ;
wherer is random number generated with uniform PDF such thatr 2 [0; 1℄, the step is
also accepted.
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In the Ising model we were flipping one spin at the time. Here wechange the position of say a
given particle to a trial positionR0, and then evaluate the ratio between two probabilities. We
note again that we do not need to evaluate the norm1

R j T (R)j2 dR (an in general impossible
task), since we are only computing ratios.

When writing a VMC program, one should always prepare in advance the required formulae
for the local energyEL in Eq. (12.9) and the wave function needed in order to computethe ratios
of probabilities in the Metropolis algorithm. These two functions are almost called as often as a
random number generator, and care should therefore be exercised in order to prepare an efficient
code.

If we now focus on the Metropolis algorithm and the Monte Carlo evaluation of Eq. (12.9), a
more detailed algorithm is as follows� Initialisation: Fix the number of Monte Carlo steps and thermalization steps. Choose an

initial R and variational parameters� and calculatej �T (R)j2. Define also the value of the
stepsize to be used when moving from one value ofR to a new one.� Initialise the energy and the variance.� Start the Monte Carlo calculation

1. Thermalise first.

2. Thereafter start your Monte carlo sampling.

3. Calculate a trial positionRp = R+ r � step wherer is a random variabler 2 [0; 1℄.
4. Use then the Metropolis algorithm to accept or reject thismove by calculating the

ratio w = P (Rp)=P (R):
If w � s, wheres is a random numbers 2 [0; 1℄, the new position is accepted, else
we stay at the same place.

5. If the step is accepted, then we setR = Rp.
6. Update the local energy and the variance.� When the Monte Carlo sampling is finished, we calculate the mean energy and the standard

deviation. Finally, we may print our results to a specified file.

The best way however to understand a specific method is however to study selected examples.

12.2.1 First illustration of VMC methods, the one-dimensional harmonic
oscillator

The harmonic oscillator in one dimension lends itself nicely for illustrative purposes. The hamil-
tonian is H = � �h22m d2dx2 + 12kx2; (12.10)

1This corresponds to the partition functionZ in statistical physics.
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wherem is the mass of the particle andk is the force constant, e.g., the spring tension for a
classical oscillator. In this example we will make life simple and choosem = �h = k = 1. We
can rewrite the above equation as H = � d2dx2 + x2; (12.11)

The energy of the ground state is thenE0 = 1. The exact wave function for the ground state is	0(x) = 1�1=4 e�x2=2; (12.12)

but since we wish to illustrate the use of Monte Carlo methods, we choose the trial function	T (x) = p��1=4 e�x2�2=2: (12.13)

Inserting this function in the expression for the local energy in Eq. (12.8), we obtain the following
expression for the local energy EL(x) = �2 + x2(1� �4); (12.14)

with the expectation value for the hamiltonian of Eq. (12.9)given byhHi = Z 1�1 j T (x)j2EL(x)dx; (12.15)

which reads with the above trial wave functionhHi = R1�1 dxe�x2�2�2 + x2(1� �4)R1�1 dxe�x2�2 : (12.16)

Using the fact that Z 1�1 dxe�x2�2 =r ��2 ;
we obtain hHi = �22 + 12�2 : (12.17)

and the variance �2 = (�4 � 1)22�4 : (12.18)

In solving this problem we can choose whether we wish to use the Metropolis algorithm
and sample over relevant configurations, or just use random numbers generated from a normal
distribution, since the harmonic oscillator wave functions follow closely such a distribution. The
latter approach is easily implemented in few lines, namely
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. . . i n i t i a l i s a t i o n s , d e c l a r a t i o n s of v a r i a b l e s

. . . mcs = number of Monte Car lo samp l ings
/ / loop over Monte Car lo samples

f o r ( i = 0 ; i < mcs ; i ++) {
/ / ge ne r a t e random v a r i a b l e s from gaus s i an d i s t r i b u t i o n

x = normal_random (&idum ) / s q r t 2 / a l pha ;
l o c a l _ e n e r g y = a l pha� a l pha + x�x�(1�pow ( a lpha , 4 ) ) ;
energy + = l o c a l _ e n e r g y ;
energy2 + = l o c a l _ e n e r g y� l o c a l _ e n e r g y ;

/ / end o f sampl ing
}

/ / w r i t e ou t t he mean energy and t he s t anda r d d e v i a t i o n
cou t < < energy / mcs < < s q r t ( ( energy2 / mcs�( energy / mcs )��2) / mcs ) ) ;

This VMC calculation is rather simple, we just generate a large numberN of random numbers
corresponding to the gaussian PDF� j	T j2 and for each random number we compute the local
energy according to the approximationhHi = Z P (R)EL(R)dR � 1N NXi=1 EL(xi); (12.19)

and the energy squared throughhH2i = Z P (R)E2L(R)dR � 1N NXi=1 E2L(xi): (12.20)

In a certain sense, this is nothing but the importance Monte Carlo sampling discussed in chapter
4. Before we proceed however, there is an important aside which is worth keeping in mind when
computing the local energy. We could think of splitting the computation of the expectation value
of the local energy into a kinetic energy part and a potentialenergy part. If we are dealing with
a three-dimensional system, the expectation value of the kinetic energy is�R dR	�T (R)r2	T (R)R dR	�T (R)	T (R) ; (12.21)

and we could be tempted to compute, if the wave function obeysspherical symmetry, just the
second derivative with respect to one coordinate axis and then multiply by three. This will
most likely increase the variance, and should be avoided, even if the final expectation values are
similar. Recall that one of the subgoals of a Monte Carlo computation is to decrease the variance.

Another shortcut we could think of is to transform the numerator in the latter equation toZ dR	�T (R)r2	T (R) = � Z dR(r	�T (R))(r	T (R)); (12.22)
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using integration by parts and the relationZ dRr(	�T (R)r	T (R)) = 0; (12.23)

where we have used the fact that the wave function is zero atR = �1. This relation can in turn
be rewritten through integration by parts toZ dR(r	�T (R))(r	T (R)) + Z dR	�T (R)r2	T (R)) = 0: (12.24)

The rhs of Eq. (12.22) is easier and quicker to compute. However, in case the wave function is the
exact one, or rather close to the exact one, the lhs yields just a constant times the wave function
squared, implying zero variance. The rhs does not and may therefore increase the variance.

If we use integration by part for the harmonic oscillator case, the new local energy isEL(x) = x2(1 + �4); (12.25)

and the variance �2 = (�4 + 1)22�4 ; (12.26)

which is larger than the variance of Eq. (12.18).
We defer the study of the harmonic oscillator using the Metropolis algorithm till the after the

discussion of the hydrogen atom.

12.2.2 The hydrogen atom

The radial Schrödinger equation for the hydrogen atom can bewritten as� �h22m�2u(r)�r2 � �ke2r � �h2l(l + 1)2mr2 � u(r) = Eu(r); (12.27)

wherem is the mass of the electron,l its orbital momentum taking valuesl = 0; 1; 2; : : : , and the
termke2=r is the Coulomb potential. The first terms is the kinetic energy. The full wave function
will also depend on the other variables� and� as well. The energy, with no external magnetic
field is however determined by the above equation . We can thenthink of the radial Schrödinger
equation to be equivalent to a one-dimensional movement conditioned by an effective potentialVe�(r) = �ke2r + �h2l(l + 1)2mr2 : (12.28)

When solving equations numerically, it is often convenientto rewrite the equation in terms of
dimensionless variables. One reason is the fact that several of the constants may be differ largely
in value, and hence result in potential losses of numerical precision. The other main reason for
doing this is that the equation in dimensionless form is easier to code, sparing one for eventual
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typographic errors. In order to do so, we introduce first the dimensionless variable� = r=�,
where� is a constant we can choose. Schrödinger’s equation is then rewritten as�12 �2u(�)��2 � mke2��h2� u(�) + l(l + 1)2�2 u(�) = m�2�h2 Eu(�): (12.29)

We can determine� by simply requiring2mke2��h2 = 1 (12.30)

With this choice, the constant� becomes the famous Bohr radiusa0 = 0:05 nma0 = � = �h2mke2 :
We introduce thereafter the variable� � = m�2�h2 E; (12.31)

and inserting� and the exact energyE = E0=n2, withE0 = 13:6 eV, we have that� = � 12n2 ; (12.32)n being the principal quantum number. The equation we are thengoing to solve numerically is
now �12 �2u(�)��2 � u(�)� + l(l + 1)2�2 u(�)� �u(�) = 0; (12.33)

with the hamiltonian H = �12 �2��2 � 1� + l(l + 1)2�2 : (12.34)

The ground state of the hydrogen atom has the energy� = �1=2, or E = �13:6 eV. The
exact wave function obtained from Eq. (12.33) isu(�) = �e��; (12.35)

which yields the energy� = �1=2. Sticking to our variational philosophy, we could now intro-
duce a variational parameter� resulting in a trial wave functionu�T (�) = ��e���: (12.36)

Inserting this wave function into the expression for the local energyEL of Eq. (12.8) yields
(check it!) EL(�) = �1� � �2 ��� 2�� : (12.37)

2Remember that we are free to choose�.
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For the hydrogen atom, we could perform the variational calculation along the same lines as
we did for the harmonic oscillator. The only difference is that Eq. (12.9) now readshHi = Z P (R)EL(R)dR = Z 10 �2�2e�2��EL(�)�2d�; (12.38)

since� 2 [0;1℄. In this case we would use the exponential distribution instead of the normal
distrubution, and our code would contain the following elements

. . . i n i t i a l i s a t i o n s , d e c l a r a t i o n s of v a r i a b l e s

. . . mcs = number of Monte Car lo samp l ings

/ / loop over Monte Car lo samples
f o r ( i = 0 ; i < mcs ; i ++) {

/ / ge ne r a t e random v a r i a b l e s from t he e x p o n e n t i a l
/ / d i s t r i b u t i o n us i ng ran1 and t r a n s f o r m i n g t o
/ / t o an e x p o n e n t i a l mapping y =� l n (1�x )

x= ran1 (&idum ) ;
y=� l og (1.�x ) ;

/ / i n our case y = rho� alpha�2
rho = y / a l pha / 2 ;
l o c a l _ e n e r g y =�1/ rho �0.5� a l pha� ( a lpha�2/ rho ) ;
energy + = ( l o c a l _ e n e r g y ) ;
energy2 + = l o c a l _ e n e r g y� l o c a l _ e n e r g y ;

/ / end o f sampl ing
}

/ / w r i t e ou t t he mean energy and t he s t anda r d d e v i a t i o n
cou t < < energy / mcs < < s q r t ( ( energy2 / mcs�( energy / mcs )��2) / mcs ) ) ;

As for the harmonic oscillator case we just need to generate alarge numberN of random numbers
corresponding to the exponential PDF�2�2e�2�� and for each random number we compute the
local energy and variance.

12.2.3 Metropolis sampling for the hydrogen atom and the harmonic os-
cillator

We present in this subsection results for the ground states of the hydrogen atom and harmonic
oscillator using a variational Monte Carlo procedure. For the hydrogen atom, the trial wave
function u�T (�) = ��e���;
depends only on the dimensionless radius�. It is the solution of a one-dimensional differential
equation, as is the case for the harmonic oscillator as well.The latter has the trial wave function	T (x) = p��1=4 e�x2�2=2:
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However, for the hydrogen atom we have� 2 [0;1℄, while for the harmonic oscillator we havex 2 [�1;1℄.
This has important consequences for the way we generate random positions. For the hydro-

gen atom we have a random position given by e.g.,r_old = step_length*(ran1(&idum))/alpha;
which ensures that� � 0, while for the harmonic oscillator we haver_old = step_length*(ran1(&idum)-0.5)/alpha;
in order to havex 2 [�1;1℄. This is however not implemented in the program below. There,
importance sampling is not included. We simulate points in the x, y and z directions using
random numbers generated by the uniform distribution and multiplied by the step length. Note
that we have to define a step length in our calculations. Here one has to play around with different
values for the step and as a rule of thumb (one of the golden Monte Carlo rules), the step length
should be chosen so that roughly 50% of all new moves are accepted. In the program at the end
of this section we have also scaled the random position with the variational parameter�. The
reason for this particular choice is that we have an externalloop over the variational parameter.
Different variational parameters will obviously yield different acceptance rates if we use the
same step length. An alternative to the code below is to perform the Monte Carlo sampling with
just one variational parameter, and play around with different step lengths in order to achieve a
reasonable acceptance ratio. Another possibility is to include a more advanced test which restarts
the Monte Carlo sampling with a new step length if the specificvariational parameter and chosen
step length lead to a too low acceptance ratio.

In Figs. 12.1 and 12.2 we plot the ground state energies for the one-dimensional harmonic
oscillator and the hydrogen atom, respectively, as functions of the variational parameter�. These
results are also displayed in Tables 12.1 and 12.2. In these tables we list the variance and the
standard deviation as well. We note that at� we obtain the exact result, and the variance is
zero, as it should. The reason is that we then have the exact wave function, and the action of the
hamiltionan on the wave function H = 
onstant �  ;
yields just a constant. The integral which defines various expectation values involving moments
of the hamiltonian becomes thenhHni = R dR	�T (R)Hn(R)	T (R)R dR	�T (R)	T (R) = 
onstant � R dR	�T (R)	T (R)R dR	�T (R)	T (R) = 
onstant: (12.39)

This explains why the variance is zero for� = 1. However, the hydrogen atom and the harmonic
oscillator are some of the few cases where we can use a trial wave function proportional to the
exact one. These two systems are also some of the few examplesof cases where we can find
an exact solution to the problem. In most cases of interest, we do not know a priori the exact
wave function, or how to make a good trial wave function. In essentially all real problems a large
amount of CPU time and numerical experimenting is needed in order to ascertain the validity of
a Monte Carlo estimate. The next examples deal with such problems.
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Figure 12.1: Result for ground state energy of the harmonic oscillator as function of the varia-
tional parameter�. The exact result is for� = 1 with an energyE = 1. See text for further
details

Table 12.1: Result for ground state energy of the harmonic oscillator as function of the variational
parameter�. The exact result is for� = 1 with an energyE = 1. The energy variance�2 and the
standard deviation�=pN are also listed. The variableN is the number of Monte Carlo samples.
In this calculation we setN = 100000 and a step length of 2 was used in order to obtain an
acceptance of� 50%. � hHi �2 �=pN

5.00000E-01 2.06479E+00 5.78739E+00 7.60749E-03
6.00000E-01 1.50495E+00 2.32782E+00 4.82475E-03
7.00000E-01 1.23264E+00 9.82479E-01 3.13445E-03
8.00000E-01 1.08007E+00 3.44857E-01 1.85703E-03
9.00000E-01 1.01111E+00 7.24827E-02 8.51368E-04
1.00000E-00 1.00000E+00 0.00000E+00 0.00000E+00
1.10000E+00 1.02621E+00 5.95716E-02 7.71826E-04
1.20000E+00 1.08667E+00 2.23389E-01 1.49462E-03
1.30000E+00 1.17168E+00 4.78446E-01 2.18734E-03
1.40000E+00 1.26374E+00 8.55524E-01 2.92493E-03
1.50000E+00 1.38897E+00 1.30720E+00 3.61553E-03
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Figure 12.2: Result for ground state energy of the hydrogen atom as function of the variational
parameter�. The exact result is for� = 1 with an energyE = �1=2. See text for further details

Table 12.2: Result for ground state energy of the hydrogen atom as function of the variational
parameter�. The exact result is for� = 1 with an energyE = �1=2. The energy variance�2
and the standard deviation�=pN are also listed. The variableN is the number of Monte Carlo
samples. In this calculation we fixedN = 100000 and a step length of 4 Bohr radii was used in
order to obtain an acceptance of� 50%.� hHi �2 �=pN

5.00000E-01 -3.76740E-01 6.10503E-02 7.81347E-04
6.00000E-01 -4.21744E-01 5.22322E-02 7.22718E-04
7.00000E-01 -4.57759E-01 4.51201E-02 6.71715E-04
8.00000E-01 -4.81461E-01 3.05736E-02 5.52934E-04
9.00000E-01 -4.95899E-01 8.20497E-03 2.86443E-04
1.00000E-00 -5.00000E-01 0.00000E+00 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02 3.42036E-04
1.20000E+00 -4.75563E-01 8.85899E-02 9.41222E-04
1.30000E+00 -4.54341E-01 1.45171E-01 1.20487E-03
1.40000E+00 -4.13220E-01 3.14113E-01 1.77232E-03
1.50000E+00 -3.72241E-01 5.45568E-01 2.33574E-03
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12.2.4 A nucleon in a gaussian potential

This problem is a slight extension of the harmonic oscillator problem, since we are going to use
an harmonic oscillator trial wave function.

The problem is that of a nucleon, a proton or neutron, in a nuclear medium, say a finite
nucleus. The nuclear interaction is of an extreme short range compared to the more familiar
Coulomb potential. Typically, a nucleon-nucleon interaction has a range of some few fermis,
one fermi being10�15 m (or just fm). Here we approximate the interaction between our lonely
nucleon and the remaining nucleus with a gaussian potentialV (r) = V0e�r2=a2 ; (12.40)

whereV0 is a constant (fixed toV0 = �45 MeV here) and the constanta represents the range of
the potential. We seta = 2 fm. The mass of the nucleon is938:926 MeV=
2, with 
 the speed
of light. This mass is the average of the proton and neutron masses. The constant in front of the
kinetic energy operator is hence�h2m = �h2
2m
2 = 197:3152938:926 MeVfm2 = 41:466 MeVfm2: (12.41)

We assume that the nucleon is in the1s state and approximate the wave function of that a
harmonic oscillator in the ground state, namely	T (r) = �3=2�3=4 e�r2�2=2: (12.42)

This trial wave function results in the following local energyEL(r) = �h22m(3�2 � r2�4) + V (r): (12.43)

With the wave function and the local energy we can obviously compute the variational energy
from hHi = Z P (R)EL(R)dR;
which yields a theoretical variational energyhHi = 3�h24m�2 + V0� (a�)21 + (a�)2�3=2 : (12.44)

Note well that this is not the exact energy from the above hamiltonian. The exact eigenvalue
which follows from diagonalization of the Schrödinger equation isE0 = �16:3824 MeV, which
should be compared with the approximately� �9:2 MeV from Fig.??. The results are plotted
as functions of the variational parameter� and compared them with the exact variational result
of Eq. (12.44). The agreement is equally good as in the previous cases. However, the variance
at the point where the energy reaches its minimum is different from zero, clearly indicating that
the wave function we have chosen is not the exact one.
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Figure 12.3: Results for the ground state energy of a nucleonin a gaussian potential as function
of the variational parameter�. The exact variational result is also plotted.

12.2.5 The helium atom

Most physical problems of interest in atomic, molecular andsolid state physics consist of a num-
ber of interacting electrons and ions. The total number of particlesN is usually sufficiently large
that an exact solution cannot be found. Typically, the expectation value for a chosen hamiltonian
for a system ofN particles ishHi = R dR1dR2 : : : dRN	�(R1;R2; : : : ;RN)H(R1;R2; : : : ;RN)	(R1;R2; : : : ;RN)R dR1dR2 : : : dRN	�(R1;R2; : : : ;RN)	(R1;R2; : : : ;RN) ;

(12.45)
an in general intractable problem. Controlled and well understood approximations are sought
to reduce the complexity to a tractable level. Once the equations are solved, a large number of
properties may be calculated from the wave function. Errorsor approximations made in obtaining
the wave function will be manifest in any property derived from the wave function. Where high
accuracy is required, considerable attention must be paid to the derivation of the wave function
and any approximations made.

The helium atom consists of two electrons and a nucleus with chargeZ = 2. In setting up
the hamiltonian of this system, we need to account for the repulsion between the two electrons
as well.

A common and very reasonable approximation used in the solution of equation of the Schrödinger
equation for systems of interacting electrons and ions is the Born-Oppenheimer approximation.
In a system of interacting electrons and nuclei there will usually be little momentum transfer
between the two types of particles due to their greatly differing masses. The forces between the
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particles are of similar magnitude due to their similar charge. If one then assumes that the mo-
menta of the particles are also similar, then the nuclei musthave much smaller velocities than the
electrons due to their far greater mass. On the time-scale ofnuclear motion, one can therefore
consider the electrons to relax to a ground-state with the nuclei at fixed locations. This separation
of the electronic and nuclear degrees of freedom is known as the Born-Oppenheimer approxima-
tion. But even this simplified electronic Hamiltonian remains very difficult to solve. No analytic
solutions exist for general systems with more than one electron.

If we label the distance between electron 1 and the nucleus asr1. Similarly we haver2 for
electron 2. The contribution to the potential energy due to the attraction from the nucleus is�2ke2r1 � 2ke2r2 ; (12.46)

and if we add the repulsion arising from the two interacting electrons, we obtain the potential
energy V (r1; r2) = �2ke2r1 � 2ke2r2 + ke2r12 ; (12.47)

with the electrons separated at a distancer12 = jr1 � r2j. The hamiltonian becomes thenbH = ��h2r212m � �h2r222m � 2ke2r1 � 2ke2r2 + ke2r12 ; (12.48)

and Schrödingers equation reads bH = E : (12.49)

Note that this equation has been written in atomic unitsa:u: which are more convenient for
quantum mechanical problems. This means that the final energy has to be multiplied by a2�E0,
whereE0 = 13:6 eV, the binding energy of the hydrogen atom.

A very simple first approximation to this system is to omit therepulsion between the two
electrons. The potential energy becomes thenV (r1; r2) � �Zke2r1 � Zke2r2 : (12.50)

The advantage of this approximation is that each electron can be treated as being independent of
each other, implying that each electron sees just a centrally symmetric potential, or central field.

To see whether this gives a meaningful result, we setZ = 2 and neglect totally the repulsion
between the two electrons. Electron 1 has the following hamiltonianbh1 = ��h2r212m � 2ke2r1 ; (12.51)

with pertinent wave function and eigenvaluebh1 a = Ea a; (12.52)
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wherea = fnalamlag, are its quantum numbers. The energyEa isEa = �Z2E0n2a ; (12.53)

medE0 = 13:6 eV, being the ground state energy of the hydrogen atom. In a similar way, we
obatin for electron 2 bh2 = ��h2r222m � 2ke2r2 ; (12.54)

with wave function bh2 b = Eb b; (12.55)

andb = fnblbmlbg, and energy Eb = Z2E0n2b : (12.56)

Since the electrons do not interact, we can assume that the ground state wave function of the
helium atom is given by  =  a b; (12.57)

resulting in the following approximation to Schrödinger’sequation�bh1 + bh2� = �bh1 + bh2� a(r1) b(r2) = Eab a(r1) b(r2): (12.58)

The energy becomes then�bh1 a(r1)� b(r2) + �bh2 b(r2)� a(r1) = (Ea + Eb) a(r1) b(r2); (12.59)

yielding Eab = Z2E0� 1n2a + 1n2b� : (12.60)

If we insertZ = 2 and assume that the ground state is determined by two electrons in the lowest-
lying hydrogen orbit withna = nb = 1, the energy becomesEab = 8E0 = �108:8 eV; (12.61)

while the experimental value is�78:8 eV. Clearly, this discrepancy is essentially due to our
omission of the repulsion arising from the interaction of two electrons.

Choice of trial wave function

The choice of trial wave function is critical in VMC calculations. How to choose it is however a
highly non-trivial task. All observables are evaluated with respect to the probability distributionP (R) = j T (R)j2R j T (R)j2 dR : (12.62)
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generated by the trial wave function. The trial wave function must approximate an exact eigen-
state in order that accurate results are to be obtained. Improved trial wave functions also improve
the importance sampling, reducing the cost of obtaining a certain statistical accuracy.

Quantum Monte Carlo methods are able to exploit trial wave functions of arbitrary forms.
Any wave function that is physical and for which the value, gradient and laplacian of the wave
function may be efficiently computed can be used. The power ofQuantum Monte Carlo methods
lies in the flexibility of the form of the trial wave function.

It is important that the trial wave function satisfies as manyknown properties of the exact
wave function as possible. A good trial wave function shouldexhibit much of the same features as
does the exact wave function. Especially, it should be well-defined at the origin, that is	(jRj =0) 6= 0, and its derivative at the origin should also be well-defined. One possible guideline in
choosing the trial wave function is the use of constraints about the behavior of the wave function
when the distance between one electron and the nucleus or twoelectrons approaches zero. These
constraints are the so-called “cusp conditions” and are related to the derivatives of the wave
function.

To see this, let us single out one of the electrons in the helium atom and assume that this
electron is close to the nucleus, i.e.,r1 ! 0. We assume also that the two electrons are far from
each other and thatr2 6= 0. The local energy can then be written asEL(R) = 1 T (R)H T (R) = 1 T (R) ��12r21 � Zr1� T (R) + �nite terms: (12.63)

Writing out the kinetic energy term in the spherical coordinates of electron1, we arrive at the
following expression for the local energyEL(R) = 1RT (r1) ��12 d2dr21 � 1r1 ddr1 � Zr1�RT (r1) + �nite terms; (12.64)

whereRT (r1) is the radial part of the wave function for electron1. We have also used that the
orbital momentum of electron 1 isl = 0. For small values ofr1, the terms which dominate arelimr1!0EL(R) = 1RT (r1) �� 1r1 ddr1 � Zr1�RT (r1); (12.65)

since the second derivative does not diverge due to the finiteness of	 at the origin. The latter
implies that in order for the kinetic energy term to balance the divergence in the potential term,
we must have 1RT (r1) dRT (r1)dr1 = �Z; (12.66)

implying that RT (r1) / e�Zr1: (12.67)

A similar condition applies to electron 2 as well. For orbital momental > 0 we have (show this!)1RT (r) dRT (r)dr = � Zl + 1 : (12.68)
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Another constraint on the wave function is found for two electrons approaching each other. In
this case it is the dependence on the separationr12 between the two electrons which has to reflect
the correct behavior in the limitr12 ! 0. The resulting radial equation for ther12 dependence
is the same for the electron-nucleus case, except that the attractive Coulomb interaction between
the nucleus and the electron is replaced by a repulsive interaction and the kinetic energy term is
twice as large. We obtain thenlimr12!0EL(R) = 1RT (r12) �� 4r12 ddr12 + 2r12�RT (r12); (12.69)

with still l = 0. This yields the so-called ’cusp’-condition1RT (r12) dRT (r12)dr12 = 12 ; (12.70)

while for l > 0 we have 1RT (r12) dRT (r12)dr12 = 12(l + 1) : (12.71)

For general systems containing more than two electrons, we have this condition for each electron
pair ij.

Based on these consideration, a possible trial wave function which ignores the ’cusp’-condition
between the two electrons is  T (R) = e��(r1+r2); (12.72)

wherer1;2 are dimensionless radii and� is a variational parameter which is to be interpreted as
an effective charge.

A possible trial wave function which also reflects the ’cusp’-condition between the two elec-
trons is  T (R) = e��(r1+r2)er12=2: (12.73)

The last equation can be generalized to T (R) = �(r1)�(r2) : : : �(rN)Yi<j f(rij); (12.74)

for a system withN electrons or particles. The wave function�(ri) is the single-particle wave
function for particlei, whilef(rij) account for more complicated two-body correlations. For the
helium atom, we placed both electrons in the hydrogenic orbit 1s. We know that the ground state
for the helium atom has a symmetric spatial part, while the spin wave function is anti-symmetric
in order to obey the Pauli principle. In the present case we need not to deal with spin degrees
of freedom, since we are mainly trying to reproduce the ground state of the system. However,
adopting such a single-particle representation for the individual electrons means that for atoms
beyond helium, we cannot continue to place electrons in the lowest hydrogenic orbit. This is
a consenquence of the Pauli principle, which states that thetotal wave function for a system of
identical particles such as fermions, has to be anti-symmetric. The program we include below
can use either Eq. (12.72) or Eq. (12.73) for the trial wave function. One or two electrons can be
placed in the lowest hydrogen orbit, implying that the program can only be used for studies of
the ground state of hydrogen or helium.
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12.2.6 Program example for atomic systems

The VMC algorithm consists of two distinct phases. In the first a walker, a single electron in
our case, consisting of an initially random set of electron positions is propagated according to
the Metropolis algorithm, in order to equilibrate it and begin sampling . In the second phase, the
walker continues to be moved, but energies and other observables are also accumulated for later
averaging and statistical analysis. In the program below, the electrons are moved individually and
not as a whole configuration. This improves the efficiency of the algorithm in larger systems,
where configuration moves require increasingly small stepsto maintain the acceptance ratio.

programs/chap12/program1.cpp
/ / V a r i a t i o n a l Monte Car lo f o r atoms w i th up t o two e l e c t r o n s
# inc lude < ios t ream >
# inc lude < fs t ream >
# inc lude < iomanip >
# inc lude "lib.h"
us ing namespace s t d ;
/ / o u t p u t f i l e as g l o b a l v a r i a b l e
o f s t r e a m o f i l e ;
/ / t he s t e p l e n g t h and i t s squared i n v e r s e f o r t he second d e r iv a t i v e
# d e f i n e h 0 . 0 0 1
# d e f i n e h2 1000000

/ / d e c l a r a t o n o f f u n c t i o n s

/ / Func t ion t o read i n data from screen , no te c a l l by r e f e r e n ce
void i n i t i a l i s e ( i n t & , i n t & , i n t & , i n t & , i n t & , i n t & , double&) ;

/ / The Mc sampl ing f o r t he v a r i a t i o n a l Monte Car lo
void mc_sampling (i n t , i n t , i n t , i n t , i n t , i n t , double , double � ,

double � ) ;

/ / The v a r i a t i o n a l wave f u n c t i o n
double wave_ func t ion (double � � , double , i n t , i n t ) ;

/ / The l o c a l energy
double l o c a l _ e n e r g y (double � � , double , double , i n t , i n t , i n t ) ;

/ / p r i n t s t o s c r e e n t he r e s u l t s o f t he c a l c u l a t i o n s
void o u t p u t (i n t , i n t , i n t , double � , double � ) ;

/ / Begin o f main program

/ / i n t main ( )
i n t main ( i n t argc , char � argv [ ] )
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{
char � o u t f i l e n a m e ;
i n t number_cyc les , m a x_va r i a t i ons , t h e r m a l i z a t i o n , charge ;
i n t dimension , n u m b e r _ p a r t i c l e s ;
double s t e p _ l e n g t h ;
double � cumu la t i ve_e ,� cumu la t i ve _e 2 ;

/ / Read i n o u t p u t f i l e , abo r t i f t h e r e are too few command� l i n e
arguments

i f ( a rgc < = 1 ) {
cou t < < "Bad Usage: " < < argv [0 ] < <" read also output file on same line" < < end l ;
e x i t ( 1 ) ;

}
e l s e{

o u t f i l e n a m e = argv [ 1 ] ;
}
o f i l e . open ( o u t f i l e n a m e ) ;
/ / Read i n data
i n i t i a l i s e ( dimension , num be r _pa r t i c l e s , charge ,

m a x_va r i a t i ons , number_cyc les ,
t h e r m a l i z a t i o n , s t e p _ l e n g t h ) ;

c um u l a t i ve _e =new double[ m a x _ v a r i a t i o n s + 1 ] ;
cumu la t i ve _e2 =new double[ m a x _ v a r i a t i o n s + 1 ] ;

/ / Do t he mc sampl ing
mc_sampling ( dimension , num be r _pa r t i c l e s , charge ,

m a x_va r i a t i ons , t h e r m a l i z a t i o n ,
number_cyc les , s t e p _ l e n g t h , cumu la t i ve_e , cumu la t i ve _e2 )

;
/ / P r i n t ou t r e s u l t s
o u t p u t ( m a x_va r i a t i ons , number_cyc les , charge , cumu la t ive_e ,

cumu la t i ve _e2 ) ;
d e l e t e [ ] c um u l a t i ve _e ; d e l e t e [ ] c um u l a t i ve _e ;
o f i l e . c l o s e ( ) ; / / c l o s e o u t p u t f i l e
re tu rn 0 ;

}

/ / Monte Car lo sampl ing w i th t he M e t r opo l i s a l go r i t hm

void mc_sampling (i n t dimension , i n t num be r _pa r t i c l e s , i n t charge ,
i n t m a x_va r i a t i ons ,
i n t t h e r m a l i z a t i o n , i n t number_cyc les ,double

s t e p _ l e n g t h ,
double � cumu la t i ve_e , double � cumu la t i ve _e 2 )
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{
i n t c yc l e s , v a r i a t e , accep t , dim , i , j ;
long idum ;
double wfnew , wfold , a lpha , energy , energy2 , d e l t a _ e ;
double �� r_o ld , � � r_new ;
a l pha = 0 . 5� charge ;
idum =�1;
/ / a l l o c a t e m a t r i c e s which c o n t a i n t he p o s i t i o n o f t he p a r t ic l e s
r _o l d = ( double � � ) m a t r i x ( num be r _pa r t i c l e s , d imension ,s i z e o f(

double ) ) ;
r_new = (double � � ) m a t r i x ( num be r _pa r t i c l e s , d imension ,s i z e o f(

double ) ) ;
f o r ( i = 0 ; i < n u m b e r _ p a r t i c l e s ; i ++) {

f o r ( j = 0 ; j < d imens ion ; j ++) {
r _o l d [ i ] [ j ] = r_new [ i ] [ j ] = 0 ;

}
}
/ / loop over v a r i a t i o n a l pa ramete rs
f o r ( v a r i a t e = 1 ; v a r i a t e <= m a x _ v a r i a t i o n s ; v a r i a t e ++) {

/ / i n i t i a l i s a t i o n s o f v a r i a t i o n a l pa ramete rs and e n e r g i e s
a l pha + = 0 . 1 ;
energy = energy2 = 0 ; a c c e p t = 0 ; d e l t a _ e =0;
/ / i n i t i a l t r i a l p o s i t i o n , no te c a l l i n g w i th a lpha
/ / and i n t h r e e d imens ions
f o r ( i = 0 ; i < n u m b e r _ p a r t i c l e s ; i ++) {

f o r ( j = 0 ; j < d imens ion ; j ++) {
r _o l d [ i ] [ j ] = s t e p _ l e n g t h� ( ran1 (&idum )�0.5) ;

}
}
wfold = wave_ func t ion ( r_o ld , a lpha , dimension , n u m b e r _ p ar t i c l e s ) ;
/ / loop over monte c a r l o c y c l e s
f o r ( c y c l e s = 1 ; c y c l e s <= number_cyc les + t h e r m a l i z a t i o n ; c y c le s ++)

{
/ / new p o s i t i o n
f o r ( i = 0 ; i < n u m b e r _ p a r t i c l e s ; i ++) {

f o r ( j = 0 ; j < d imens ion ; j ++) {
r_new [ i ] [ j ] = r _o l d [ i ] [ j ]+ s t e p _ l e n g t h� ( ran1 (&idum )�0.5) ;

}
}
wfnew = wave_ func t ion ( r_new , a lpha , dimension , n u m b e r _ p ar t i c l e s )

;
/ / M e t r opo l i s t e s t
i f ( ran1 (&idum ) <= wfnew�wfnew / wfold / wfold ) {

f o r ( i = 0 ; i < n u m b e r _ p a r t i c l e s ; i ++) {
f o r ( j = 0 ; j < d imens ion ; j ++) {
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r _o l d [ i ] [ j ]= r_new [ i ] [ j ] ;
}

}
wfold = wfnew ;
a c c e p t = a c c e p t +1;

}
/ / compute l o c a l energy
i f ( c y c l e s > t h e r m a l i z a t i o n ) {

d e l t a _ e = l o c a l _ e n e r g y ( r_o ld , a lpha , wfold , d imension ,
num be r _pa r t i c l e s , charge ) ;

/ / update e n e r g i e s
energy + = d e l t a _ e ;
energy2 + = d e l t a _ e� d e l t a _ e ;

}
} / / end o f loop over MC t r i a l s
cou t < < "variational parameter= " < < a l pha

< < " a

epted steps= " < < a c c e p t < < end l ;
/ / update t he energy average and i t s squared
c um u l a t i ve _e [ v a r i a t e ] = energy / number_cyc les ;
cumu la t i ve _e2 [ v a r i a t e ] = energy2 / number_cyc les ;

} / / end o f loop over v a r i a t i o n a l s t e p s
f r e e _ m a t r i x ( (void � � ) r _o l d ) ; / / f r e e memory
f r e e _ m a t r i x ( (void � � ) r_new ) ; / / f r e e memory

} / / end mc_sampl ing f u n c t i o n

/ / Func t ion t o compute t he squared wave f u n c t i o n , s i m p l e s t form

double wave_ func t ion (double �� r , double a lpha ,i n t dimension , i n t
n u m b e r _ p a r t i c l e s )

{
i n t i , j , k ;
double wf , argument , r _ s i n g l e _ p a r t i c l e , r_12 ;

argument = wf = 0 ;
f o r ( i = 0 ; i < n u m b e r _ p a r t i c l e s ; i ++) {

r _ s i n g l e _ p a r t i c l e = 0 ;
f o r ( j = 0 ; j < d imens ion ; j ++) {

r _ s i n g l e _ p a r t i c l e += r [ i ] [ j ]� r [ i ] [ j ] ;
}
argument + = s q r t ( r _ s i n g l e _ p a r t i c l e ) ;

}
wf = exp(�argument� a l pha ) ;
re tu rn wf ;

}
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/ / Func t ion t o c a l c u l a t e t he l o c a l energy w i th num d e r i v a t i ve

double l o c a l _ e n e r g y (double �� r , double a lpha , double wfold , i n t
dimension ,

i n t num be r _pa r t i c l e s , i n t charge )
{

i n t i , j , k ;
double e _ l oc a l , wfminus , wfplus , e _ k i n e t i c , e _ p o t e n t i a l , r_12 ,

r _ s i n g l e _ p a r t i c l e ;
double �� r _p l us , � � r_minus ;

/ / a l l o c a t e m a t r i c e s which c o n t a i n t he p o s i t i o n o f t he p a r t ic l e s
/ / t he f u n c t i o n m a t r i x i s d e f i n e d i n t he progam l i b r a r y
r _ p l u s = (double � � ) m a t r i x ( num be r _pa r t i c l e s , d imension ,s i z e o f(

double ) ) ;
r_minus = (double � � ) m a t r i x ( num be r _pa r t i c l e s , d imension ,s i z e o f(

double ) ) ;
f o r ( i = 0 ; i < n u m b e r _ p a r t i c l e s ; i ++) {

f o r ( j = 0 ; j < d imens ion ; j ++) {
r _ p l u s [ i ] [ j ] = r_minus [ i ] [ j ] = r [ i ] [ j ] ;

}
}
/ / compute t he k i n e t i c energy
e _ k i n e t i c = 0 ;
f o r ( i = 0 ; i < n u m b e r _ p a r t i c l e s ; i ++) {

f o r ( j = 0 ; j < d imens ion ; j ++) {
r _ p l u s [ i ] [ j ] = r [ i ] [ j ]+ h ;
r_minus [ i ] [ j ] = r [ i ] [ j ] �h ;
wfminus = wave_ func t ion ( r_minus , a lpha , dimension ,

n u m b e r _ p a r t i c l e s ) ;
w fp lus = wave_ func t ion ( r _p l us , a lpha , dimension ,

n u m b e r _ p a r t i c l e s ) ;
e _ k i n e t i c �= ( wfminus+wfplus�2�wfold ) ;
r _ p l u s [ i ] [ j ] = r [ i ] [ j ] ;
r_minus [ i ] [ j ] = r [ i ] [ j ] ;

}
}
/ / i n c l u d e e l e c t r o n mass and hbar squared and d i v i d e by wave

f u n c t i o n
e _ k i n e t i c = 0 . 5� h2� e _ k i n e t i c / wfold ;
/ / compute t he p o t e n t i a l energy
e _ p o t e n t i a l = 0 ;
/ / c o n t r i b u t i o n from e l e c t r o n�pro ton p o t e n t i a l
f o r ( i = 0 ; i < n u m b e r _ p a r t i c l e s ; i ++) {

r _ s i n g l e _ p a r t i c l e = 0 ;
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f o r ( j = 0 ; j < d imens ion ; j ++) {
r _ s i n g l e _ p a r t i c l e + = r [ i ] [ j ]� r [ i ] [ j ] ;

}
e _ p o t e n t i a l �= charge / s q r t ( r _ s i n g l e _ p a r t i c l e ) ;

}
/ / c o n t r i b u t i o n from e l e c t r o n�e l e c t r o n p o t e n t i a l
f o r ( i = 0 ; i < num be r _pa r t i c l e s�1; i ++) {

f o r ( j = i + 1 ; j < n u m b e r _ p a r t i c l e s ; j ++) {
r_12 = 0 ;
f o r ( k = 0 ; k < d imens ion ; k++) {

r_12 + = ( r [ i ] [ k]� r [ j ] [ k ] ) � ( r [ i ] [ k] � r [ j ] [ k ] ) ;
}
e _ p o t e n t i a l + = 1 / s q r t ( r_12 ) ;

}
}
f r e e _ m a t r i x ( (void � � ) r _ p l u s ) ; / / f r e e memory
f r e e _ m a t r i x ( (void � � ) r_minus ) ;
e _ l o c a l = e _ p o t e n t i a l + e _ k i n e t i c ;
re tu rn e _ l o c a l ;

}

void i n i t i a l i s e ( i n t & dimension , i n t & num be r _pa r t i c l e s , i n t & charge ,
i n t & m a x_va r i a t i ons , i n t & number_cyc les ,
i n t & t h e r m a l i z a t i o n , double& s t e p _ l e n g t h )

{
cou t < < "number of parti
les = " ;
c i n > > n u m b e r _ p a r t i c l e s ;
cou t < < "
harge of nu
leus = " ;
c i n > > charge ;
cou t < < "dimensionality = " ;
c i n > > dimens ion ;
cou t < < "maximum variational parameters = " ;
c i n > > m a x _ v a r i a t i o n s ;
cou t < < "# Thermalization steps= " ;
c i n > > t h e r m a l i z a t i o n ;
cou t < < "# MC steps= " ;
c i n > > number_cyc les ;
cou t < < "# step length= " ;
c i n > > s t e p _ l e n g t h ;

} / / end o f f u n c t i o n i n i t i a l i s e

void o u t p u t ( i n t m a x_va r i a t i ons , i n t number_cyc les , i n t charge ,
double � cumu la t i ve_e , double � cumu la t i ve _e 2 )

{
i n t i ;
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double a lpha , va r i a nc e , e r r o r ;
a l pha = 0 . 5� charge ;
f o r ( i = 1 ; i <= m a x _ v a r i a t i o n s ; i ++) {

a l pha + = 0 . 1 ;
v a r i a n c e = cumu la t i ve _e2 [ i ]� c um u l a t i ve _e [ i ]� c um u l a t i ve _e [ i ] ;
e r r o r = s q r t ( v a r i a n c e / number_cyc les ) ;
o f i l e < < s e t i o s f l a g s ( i o s : : showpoin t | i o s : : uppe r c a s e ) ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < a l pha ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < c um u l a t i ve _e [ i ] ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < v a r i a n c e ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < e r r o r < < end l ;

}
/ / f c l o s e ( o u t p u t _ f i l e ) ;
} / / end o f f u n c t i o n o u t p u t

In the program above one has to the possibility to study both the hydrogen atom and the
helium atom by setting the number of particles to either 1 or 2. In addition, we have not used the
analytic expression for the kinetic energy in the evaluation of the local energy. Rather, we have
used the numerical expression of Eq. (3.15), i.e.,f 000 = fh � 2f0 + f�hh2 ;
in order to compute � 12 T (R)r2 T (R): (12.75)

The variableh is a chosen step length. For helium, since it is rather easy toevaluate the local
energy, the above is an unnecessary complication. However,for many-electron or other many-
particle systems, the derivation of an analytic expressionfor the kinetic energy can be quite
involved, and the numerical evaluation of the kinetic energy using Eq. (3.15) may result in a
simpler code and/or even a faster one. The way we have rewritten Schrödinger’s equation results
in energies given by atomic units. If we wish to convert theseenergies into more familiar units
like electronvolt (eV), we have to multiply our reults with2E0 whereE0 = 13:6 eV, the binding
energy of the hydrogen atom. Using Eq. (12.72) for the trial wave function, we obtain an energy
minimum at� � 1:75. The ground state isE = �2:85 in atomic units orE = �77:5 eV. The
experimental value is�78:8 eV. Obviously, improvements to the wave function such as including
the ’cusp’-condition for the two electrons as well, see Eq. (12.73), could improve our agreement
with experiment. We note that the effective charge is less than the charge of the nucleus. We
can interpret this reduction as an effective way of incorporating the repulsive electron-electron
interaction. Finally, since we do not have the exact wave function, we see from Fig. 12.4 that the
variance is not zero at the energy minimum.
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Figure 12.4: Result for ground state energy of the helium atom using Eq. (12.72) for the trial
wave function. The variance is also plotted. A total of 100000 Monte Carlo moves were used
with a step length of 2 Bohr radii.

12.3 Simulation of molecular systems

12.3.1 The H+2 molecule

The H+2 molecule consists of two protons and one electron, with binding energyEB = �2:8 eV
and an equilibrium positionr0 = 0:106 nm between the two protons.

We define our system through the following variables. The electron is at a distancer from a
chosen origo, one of the protons is at the distance�R=2 while the other one is placed atR=2
from origo, resulting in a distance to the electron ofr�R=2 andr+R=2, respectively.

In our solution of Schrödinger’s equation for this system weare going to neglect the kinetic
energies of the protons, since they are 2000 times heavier than the electron. We assume thus
that their velocities are negligible compared to the velocity of the electron. In addition we omit
contributions from nuclear forces, since they act at distances of several orders of magnitude
smaller than the equilibrium position.

We can then write Schrödinger’s equation as follows���h2r2r2me � ke2jr�R=2j � ke2jr+R=2j + ke2R � (r;R) = E (r;R); (12.76)

where the first term is the kinetic energy of the electron, thesecond term is the potential energy
the electron feels from the proton at�R=2 while the third term arises from the potential energy
contribution from the proton atR=2. The last term arises due to the repulsion between the two
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protons. In Fig. 12.5 we show a plot of the potential energyV (r;R) = � ke2jr�R=2j � ke2jr+R=2j + ke2R : (12.77)

Here we have fixedjRj = 2a0 og jRj = 8a0, being 2 and 8 Bohr radii, respectively. Note
that in the region betweenjrj = �jRj=2 (units arer=a0 in this figure, witha0 = 0:0529) andjrj = jRj=2 the electron can tunnel through the potential barrier. Recall that �R=2 ogR=2
correspond to the positions of the two protons. We note also that ifR is increased, the potential
becomes less attractive. This has consequences for the binding energy of the molecule. The
binding energy decreases as the distanceR increases. Since the potential is symmetric with

R = 0:4 nm
" = �13:6 eV
R = 0:1 nm

r=a0
V(r;R)[eV

]

86420-2-4-6-8

0

-10

-20

-30

-40

-50

-60

Figure 12.5: Plot ofV (r; R) for jRj=0.1 and 0.4 nm. Units along thex-axis arer=a0 . The
straight line is the binding energy of the hydrogen atom," = �13:6 eV.

respect to the interchange ofR! �R andr! �r it means that the probability for the electron
to move from one proton to the other must be equal in both directions. We can say that the
electron shares it’s time between both protons.

With this caveat, we can now construct a model for simulatingthis molecule. Since we have
only one elctron, we could assume that in the limitR!1, i.e., when the distance between the
two protons is large, the electron is essentially bound to only one of the protons. This should
correspond to a hydrogen atom. As a trial wave function, we could therefore use the electronic
wave function for the ground state of hydrogen, namely 100(r) = � 1�a30�1=2 e�r=a0 : (12.78)
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Since we do not know exactly where the electron is, we have to allow for the possibility that
the electron can be coupled to one of the two protons. This form includes the ’cusp’-condition
discussed in the previous section. We define thence two hydrogen wave functions 1(r;R) = � 1�a30�1=2 e�jr�R=2j=a0 ; (12.79)

and  2(r;R) = � 1�a30�1=2 e�jr+R=2j=a0 : (12.80)

Based on these two wave functions, which represent where theelectron can be, we attempt at the
following linear combination �(r;R) = C� ( 1(r;R)�  2(r;R)) ; (12.81)

with C� a constant.

12.3.2 Physics project: the H2 molecule

in preparation

12.4 Many-body systems

12.4.1 Liquid 4He

Liquid 4He is an example of a so-called extended system, with an infinite number of particles.
The density of the system varies from dilute to extremely dense. It is fairly obvious that we
cannot attempt a simulation with such degrees of freedom. There are however ways to circum-
vent this problem. The usual way of dealing with such systems, using concepts from statistical
Physics, consists in representing the system in a simulation cell with e.g., periodic boundary
conditions, as we did for the Ising model. If the cell has length L, the density of the system is
determined by putting a given number of particlesN in a simulation cell with volumeL3. The
density becomes then� = N=L3.

In general, when dealing with such systems of many interacting particles, the interaction it-
self is not known analytically. Rather, we will have to rely on parametrizations based on e.g.,
scattering experiments in order to determine a parametrization of the potential energy. The in-
teraction between atoms and/or molecules can be either repulsive or attractive, depending on the
distanceR between two atoms or molecules. One can approximate this interaction asV (R) = � ARm � BRn ; (12.82)

wherem;n are some integers andA;B constans with dimension energy and length, and with
units in e.g., eVnm. The constantsA;B and the integersm;n are determined by the constraints
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Figure 12.6: Plot for the Van der Waals interaction between helium atoms. The equilibrium
position isr0 = 0:287 nm.

that we wish to reproduce both scattering data and the binding energy of say a given molecule.
It is thus an example of a parametrized interaction, and doesnot enjoy the status of being a
fundamental interaction such as the Coulomb interaction does.

A well-known parametrization is the so-called Lennard-Jones potentialVLJ(R) = 4��� �R�12 � � �R�6� ; (12.83)

where� = 8:79�10�4 eV and� = 0:256 nm for helium atoms. Fig. 12.6 displays this interaction
model. The interaction is both attractive and repulsive andexhibits a minimum atr0. The reason
why we have repulsion at small distances is that the electrons in two different helium atoms start
repelling each other. In addition, the Pauli exclusion principle forbids two electrons to have the
same set of quantum numbers.

Let us now assume that we have a simple trial wave function of the form T (R) = NYi<j f(rij); (12.84)

where we assume that the correlation functionf(rij) can be written asf(rij) = e� 12 (b=rij)n ; (12.85)

with b being the only variational parameter. Can we fix the value ofn using the ’cusp’-conditions
discussed in connection with the helium atom? We see from theform of the potential, that it
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diverges at small interparticle distances. Since the energy is finite, it means that the kinetic
energy term has to cancel this divergence at smallr. Let us assume that electronsi andj are very
close to each other. For the sake of convenience, we replacerij = r. At smallr we require then
that � 1f(r)r2f(r) + V (r) = 0: (12.86)

In the limit r! 0 we have � n2bn4r2n+2 + ��r �12 = 0; (12.87)

resulting inn = 5 and thus f(rij) = e� 12 (b=rij)5 ; (12.88)

with  T (R) = NYi<j e� 12 (b=rij)5 ; (12.89)

as trial wave function. We can rewrite the above equation as T (R) = e� 12 PNi<j(b=rij)5 = e� 12 PNi<j u(rij); (12.90)

with u(rij) = (b=rij)5 :
For this variational wave function, the analytical expression for the local energy is rather simple.
The tricky part comes again from the kinetic energy given by� 1 T (R)r2 T (R): (12.91)

It is possible to show, after some tedious algebra, that� 1 T (R)r2 T (R) = � NXk=1 1 T (R)r2k T (R) = �10b5 NXi<k 1r7ik : (12.92)

In actual calculations employing e.g., the Metropolis algorithm, all moves are recast into
the chosen simulation cell with periodic boundary conditions. To carry out consistently the
Metropolis moves, it has to be assumed that the correlation function has a range shorter thanL=2. Then, to decide if a move of a single particle is accepted or not, only the set of particles
contained in a sphere of radiusL=2 centered at the referred particle have to be considered.

12.4.2 Bose-Einstein condensation

in preparation
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12.4.3 Quantum dots

in preparation

12.4.4 Multi-electron atoms

in preparation





Chapter 13

Eigensystems

13.1 Introduction

In this chapter we discuss methods which are useful in solving eigenvalue problems in physics.

13.2 Eigenvalue problems

Let us consider the matrixA of dimension n. The eigenvalues ofA is defined through the matrix
equation Ax(�) = �(�)x(�); (13.1)

where�(�) are the eigenvalues andx(�) the corresponding eigenvectors. This is equivalent to a
set ofn equations withn unknownsxia11x1 + a12x2 + � � �+ a1nxn = �x1a21x1 + a22x2 + � � �+ a2nxn = �x2: : : : : :an1x1 + an2x2 + � � �+ annxn = �xn:
W can rewrite eq (13.1) as �A� �(�)I�x(�) = 0;
with I being the unity matrix. This equation provides a solution tothe problem if and only if the
determinant is zero, namely ��A� �(�)I�� = 0;
which in turn means that the determinant is a polynomial of degreen in � and in general we will
haven distinct zeros, viz., P� = nYi=1 (�i � �) :

235
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Procedures based on these ideas con be used if only a small fraction of all eigenvalues and
eigenvectors are required, but the standard approach to solve eq. (13.1) is to perform a given
number of similarity transformations so as to render the original matrixA in: 1) a diagonal form
or: 2) as a tri-diagonal matrix which then can be be diagonalized by computational very effective
procedures.

The first method leads us to e.g., Jacobi’s method whereas thesecond one is e.g., given by
Householder’s algorithm for tri-diagonal transformations. We will discuss both methods below.

13.2.1 Similarity transformations

In the present discussion we assume that our matrix is real and symmetric, although it is rather
straightforward to extend it to the case of a hermitian matrix. The matrixA hasn eigenvalues�1 : : : �n (distinct or not). LetD be the diagonal matrix with the eigenvalues on the diagonalD = 0BBBBBB� �1 0 0 0 : : : 0 00 �2 0 0 : : : 0 00 0 �3 0 0 : : : 0: : : : : : : : : : : : : : : : : : : : :0 : : : : : : : : : : : : �n�10 : : : : : : : : : : : : 0 �n

1CCCCCCA : (13.2)

The algorithm behind all current methods for obtaning eigenvalues is to perform a series of
similarity transformations on the original matrixA to reduce it either into a diagonal form as
above or into a tri-diagonal form.

We say that a matrixB is a similarity transform ofA ifB = STAS; where STS = S�1S = I: (13.3)

The importance of a similarity transformation lies in the fact that the resulting matrix has the
same eigenvalues, but the eigenvectors are in general different. To prove this, suppose thatAx = �x and B = STAS: (13.4)

Multiply the first equation on the left byST and insertSTS = I betweenA andx. Then we get(STAS)(STx) = �STx; (13.5)

which is the same as B �STx� = � �STx� : (13.6)

Thus� is an eigenvalue ofB as well, but with eigenvectorSTx.
Now the basic philosophy is to� either apply subsequent similarity transformations so thatSTN : : :ST1AS1 : : :SN = D; (13.7)� or apply subsequent similarity transformations so thatA becomes tri-diagonal. Thereafter,

techniques for obtaining eigenvalues from tri-diagonal matrices can be used.

Let us look at the first method, better known as Jacobi’s method.
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13.2.2 Jacobi’s method

Consider a (n� n) orthogonal transformation matrix

Q = 0BBBBBBBBBB�
1 0 : : : 0 0 : : : 0 00 1 : : : 0 0 : : : 0 0: : : : : : : : : : : : : : : : : : 0 : : :0 0 : : : 
os� 0 : : : 0 sin�0 0 : : : 0 1 : : : 0 0: : : : : : : : : : : : : : : : : : 0 : : :0 0 : : : 0 0 : : : 1 00 0 : : : �sin� : : : : : : 0 
os�

1CCCCCCCCCCA (13.8)

with propertyQT = Q�1. It performs a plane rotation around an angle� in the Euclideann�dimensional space. It means that its matrix elements different from zero are given byqkk = qll = 
os�; qkl = �qlk = �sin�; qii = �qii = 1 i 6= k i 6= l; (13.9)

A similarity transformation B = QTAQ; (13.10)

results in bik = aik
os� � ailsin�; i 6= k; i 6= l (13.11)bil = ail
os� + aiksin�; i 6= k; i 6= lbkk = akk
os2� � 2akl
os�sin� + allsin2�bll = all
os2� + 2akl
os�sin� + akksin2�bkl = (akk � all)
os�sin� + akl(
os2� � sin2�)
The angle� is arbitrary. Now the recipe is to choose� so that all non-diagonal matrix elementsbpq become zero which gives tan2� = 2aklakk � all : (13.12)

If the denominator is zero, we can choose� = ��=4. Having defined� throughz = tan2�, we
do not need to evaluate the other trigonometric functions, we can simply use relations like e.g.,
os2� = 12 �1 + 1p1 + z2� ; (13.13)

and sin2� = 12 �1� 1p1 + z2� : (13.14)

The algorithm is then quite simple. We perform a number of iterations untill the sum over the
squared non-diagonal matrix elements are less than a prefixed test (ideally equal zero). The
algorithm is more or less foolproof for all real symmetric matrices, but becomes much slower
than methods based on tri-diagonalization for large matrices. We do therefore not recommend
the use of this method for large scale problems. The philosophy however, performing a series of
similarity transformations pertains to all current modelsfor matrix diagonalization.
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13.2.3 Diagonalization through the Householder’s method for tri-diagonalization

In this case the energy diagonalization is performed in two steps: First, the matrix is transformed
into a tri-diagonal form by the Householder similarity transformation and second, the tri-diagonal
matrix is then diagonalized. The reason for this two-step process is that diagonalising a tri-
diagonal matrix is computational much faster then the corresponding diagonalization of a general
symmetric matrix. Let us discuss the two steps in more detail.

The Householder’s method for tri-diagonalization

The first step consists in finding an orthogonal matrixQ which is the product of(n� 2) orthog-
onal matrices Q = Q1Q2 : : :Qn�2; (13.15)

each of which successively transforms one row and one columnof A into the required tri-
diagonal form. Onlyn � 2 transformations are required, since the last two elements are al-
ready in tri-diagonal form. In order to determine eachQi let us see what happens after the first
multiplication, namely,QT1AQ1 = 0BBBB� a11 e1 0 0 : : : 0 0e1 a022 a022 : : : : : : : : : a02n0 a032 a033 : : : : : : : : : a03n0 : : : : : : : : : : : : : : :0 a0n2 a0n3 : : : : : : : : : a0nn

1CCCCA (13.16)

where the primed quantities represent a matrixA0 of dimensionn�1 which will subsequentely be
transformed byQ2. The factore1 is a possibly non-vanishing element. The next transformation
produced byQ2 has the same effect asQ1 but now on the submatirxA0

only(Q1Q2)T AQ1Q2 = 0BBBB� a11 e1 0 0 : : : 0 0e1 a022 e2 0 : : : : : : 00 e2 a0033 : : : : : : : : : a003n0 : : : : : : : : : : : : : : :0 0 a00n3 : : : : : : : : : a00nn
1CCCCA (13.17)

Note that the effective size of the matrix on which we apply the transformation reduces for every
new step. In the previous Jacobi method each similarity transformation is performed on the full
size of the original matrix.

After a series of such transformations, we end with a set of diagonal matrix elementsa11; a022; a0033 : : : an�1nn ; (13.18)

and off-diagonal matrix elements e1; e2; e3; : : : ; en�1: (13.19)
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The resulting matrix reads

QTAQ = 0BBBBBB� a11 e1 0 0 : : : 0 0e1 a022 e2 0 : : : 0 00 e2 a0033 e3 0 : : : 0: : : : : : : : : : : : : : : : : : : : :0 : : : : : : : : : : : : a(n�1)n�2 en�10 : : : : : : : : : : : : en�1 a(n�1)n�1
1CCCCCCA : (13.20)

Now it remains to find a recipe for determining the transformationQn all of which has basicly
the same form, but operating on a lower dimensional matrix. We illustrate the method forQ1
which we assume takes the form Q1 = � 1 0T0 P � ; (13.21)

with 0T being a zero row vector,0T = f0; 0; � � � g of dimension(n � 1). The matrixP is
symmetric with dimension ((n�1)� (n�1)) satisfyingP2 = I andPT = P. A possible choice
which fullfils the latter two requirements isP = I� 2uuT ; (13.22)

whereI is the(n�1) unity matrix andu is ann�1 column vector with normuTu(inner product.
Note thatuuT is an outer product giving a awith dimension ((n � 1) � (n � 1)). Each matrix
element ofP then reads Pij = Æij � 2uiuj; (13.23)

wherei andj range from1 to n� 1. Applying the transformationQ1 results inQT1AQ1 = � a11 (Pv)TPv A0 � ; (13.24)

wherevT = fa21; a31; � � � ; an1g andP must satisfy (Pv)T = fk; 0; 0; � � � g. ThenPv = v � 2u(uTv) = ke; (13.25)

with eT = f1; 0; 0; : : : 0g. Solving the latter equation gives usu and thus the needed transforma-
tionP. We do first however need to compute the scalark by taking the scalar product of the last
equation with its transpose and using the fact thatP2 = I. We get then(Pv)TPv = k2 = vTv = jvj2 = nXi=2 a2i1; (13.26)

which determines the constantk = �v. Nowwe can rewrite Eq. (13.25) asv � ke = 2u(uTv); (13.27)
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and taking the scalar product of this equation with itself and obtain2(uTv)2 = (v2 � a21v); (13.28)

which finally determines u = v � e2(uTv) : (13.29)

In solving Eq. (13.28) great care has to be exercised so as to choose those values which make
the right-hand largest in order to avoid loss of numerical precision. The above steps are then
repeated for every transformations till we have a tri-diagonal matrix suitable for obtaining the
eigenvalues.

Diagonalization of a tri-diagonal matrix

The matrix is now transformed into tri-diagonal form and thelast step is to transform it into a
diagonal matrix giving the eigenvalues on the diagonal. Theprograms which performs these
transformations are matrixA �! tri-diagonal matrix�! diagonal matrix

C: void trd2(double��a, int n, double d[], double e[])
void tqli(double d[], double[], int n, double��z)

Fortran: CALL tred2(a, n, d, e)
CALL tqli(d, e, n, z)

The last step through the functiontqli() involves several techniqcal details, but let us describe the
basic idea in a four-dimensional example. The current tri-diagonal matrix takes the formA = 0BB� d1 e1 0 0e1 d2 e2 00 e2 d3 e30 0 e3 d4 1CCA :
As a first observation, if any of the elementsei are zero the matrix can be separated into smaller
pieces before diagonalization. Specifically, ife1 = 0 thend1 is an eigenvalue. Thus, let us
introduce a transformationQ1 Q1 = 0BB� 
os � 0 0 sin �0 0 0 00 0 0 0� sin � 0 0 
os � 1CCA
Then the similarity transformationQT1AQ1 = A0 = 0BB� d01 e01 0 0e01 d2 e2 00 e2 d3 e030 0 e03 d04 1CCA
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produces a matrix where the primed elements inA0 has been changed by the transformation
whereas the unprimed elements are unchanged. If we now choose � to give the elementa021 =e0 = 0 then we have the first eigenvalue= a011 = d01.

This procedure can be continued on the remaining three-dimensional submatrix for the next
eigenvalue. Thus after four transformations we have the wanted diagonal form.

13.3 Schrödinger’s equation (SE) through diagonalization

Instead of solving the SE as a differential equation, we willsolve it through diagonalization of a
large matrix. However, in both cases we need to deal with a problem with boundary conditions,
viz., the wave function goes to zero at the endpoints.

To solve the SE as a matrix diagonalization problem, let us study the radial part of the SE.
The radial part of the wave function,R(r), is a solution to� �h22m � 1r2 ddrr2 ddr � l(l + 1)r2 �R(r) + V (r)R(r) = ER(r): (13.30)

Then we substituteR(r) = (1=r)u(r) and obtain� �h22m d2dr2u(r) + �V (r) + l(l + 1)r2 �h22m� u(r) = Eu(r): (13.31)

We introduce a dimensionless variable� = (1=�)r where� is a constant with dimension length
and get � �h22m�2 d2d�2u(r) + �V (�) + l(l + 1)�2 �h22m�2�u(�) = Eu(�): (13.32)

In the example below, we will replace the latter equation with that for the one-dimensional har-
monic oscillator. Note however that the procedure which we give below applies equally well to
the case of e.g., the hydrogen atom. We replace� with x, take away the centrifugal barrier term
and set the potential equal to V (x) = 12kx2; (13.33)

with k being a constant. In our solution we will use units so thatk = �h = m = � = 1 and the
SE for the one-dimensional harmonic oscillator becomes� d2dx2u(x) + x2u(x) = 2Eu(x): (13.34)

Let us now see how we can rewrite this equation as a matrix eigenvalue problem. First we need
to compute the second derivative. We use here the following expression for the second derivative
of a functionf f 00 = f(x+ h)� 2f(x) + f(x� h)h2 +O(h2); (13.35)
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whereh is our step. Next we define minimum and maximum values for the variablex, Rmin andRmax, respectively. With a given number of steps,Nstep, we then define the steph ash = Rmax �RminNstep : (13.36)

If we now define an arbitrary value ofx asxi = Rmin + ih i = 1; 2; : : : ; Nstep � 1 (13.37)

we can rewrite the SE forxi as�u(xk + h)� 2u(xk) + u(xk � h)h2 + x2ku(xk) = 2Eu(xk); (13.38)

or in a more compact way�uk+1 � 2uk + uk�1h2 + x2kuk = �uk+1 � 2uk + uk�1h2 + Vkuk = 2Euk; (13.39)

whereuk = u(xk), uk�1 = u(xk � h) andVk = x2k, the given potential. Let us see how this
recipe may lead to a matrix reformulation of the SE. Define first the diagonal matrix elementdk = 2h2 + Vk; (13.40)

and the non-diagonal matrix element ek = � 1h2 : (13.41)

In this case the non-diagonal matrix elements are given by a mere constant.All non-diagonal
matrix elements are equal. With these definitions the SE takes the following formdkuk + ek�1uk�1 + ek+1uk+1 = 2Euk; (13.42)

whereuk is unknown. Since we haveNstep � 1 values ofk we can write the latter equation as a
matrix eigenvalue problem0BBBBBB� d1 e1 0 0 : : : 0 0e1 d2 e2 0 : : : 0 00 e2 d3 e3 0 : : : 0: : : : : : : : : : : : : : : : : : : : :0 : : : : : : : : : : : : dNstep�2 eNstep�10 : : : : : : : : : : : : eNstep�1 dNstep�1

1CCCCCCA
0BBBBBB� u1u2: : :: : :: : :uNstep�1

1CCCCCCA = 2E0BBBBBB� u1u2: : :: : :: : :uNstep�1
1CCCCCCA

(13.43)
or if we wish to be more detailed, we can write the tri-diagonal matrix as0BBBBBB� 2h2 + V1 � 1h2 0 0 : : : 0 0� 1h2 2h2 + V2 � 1h2 0 : : : 0 00 � 1h2 2h2 + V3 � 1h2 0 : : : 0: : : : : : : : : : : : : : : : : : : : :0 : : : : : : : : : : : : 2h2 + VNstep�2 � 1h20 : : : : : : : : : : : : � 1h2 2h2 + VNstep�1

1CCCCCCA (13.44)
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This is a matrix problem with a tri-diagonal matrix of dimensionNstep � 1 � Nstep � 1 and
will thus yieldNstep � 1 eigenvalues. It is important to notice that we do not set up a matrix of
dimensionNstep �Nstep since we can fix the value of the wave function atk = Nstep. Similarly,
we know the wave function at the other end point, that is forx0.

The above equation represents an alternative to the numerical solution of the differential
equation for the SE.

The eigenvalues of the harmonic oscillator in one dimensionare well known. In our case,
with all constants set equal to1, we haveEn = n+ 12 ; (13.45)

with the ground state beingE0 = 1=2. Note however that we have rewritten the SE so that a
constant 2 stands in front of the energy. Our program will then yield twice the value, that is we
will obtain the eigenvalues1; 3; 5; 7:: : : : .

In the next subsection we will try to delineate how to solve the above equation. A program
listing is also included.

Numerical solution of the SL by diagonalization

The algorithm for solving Eq. (13.43) may take the followingform� Define values forNstep,Rmin andRmax. These values define in turn the step sizeh. Typical
values forRmax andRmin could be10 and�10 respectively for the lowest-lying states. The
number of mesh pointsNstep could be in the range 100 to some thousands. You can check
the stability of the results as functions ofNstep � 1 andRmax andRmin against the exact
solutions.� Construct then two one-dimensional arrays which contain all values ofxk and the potentialVk. For the latter it can be convenient to write a small functionwhich sets up the potential as
function ofxk. For the three-dimensional case you may also need to includethe centrifugal
potential. The dimension of these two arrays should go from0 up toNstep.� Construct thereafter the one-dimensional vectorsd ande, whered stands for the diagonal
matrix elements ande the non-diagonal ones. Note that the dimension of these two arrays
runs from1 up toNstep� 1, since we know the wave functionu at both ends of the chosen
grid.� We are now ready to obtain the eigenvalues by calling the function tqli which can be found
on the web page of the course. Callingtqli, you have to transfer the matricesd ande, their
dimensionn = Nstep� 1 and a matrixz of dimensionNstep� 1�Nstep� 1 which returns
the eigenfunctions. On return, the arrayd contains the eigenvalues. Ifz is given as the
unity matrix on input, it returns the eigenvectors. For a given eigenvaluek, the eigenvector
is given by the columnk in z, that is z[][k] in C, or z(:,k) in Fortran 90.
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to sort them as e.g., an ascending series of numbers. The program we provide includes a
sorting function as well.� Finally, you may perhaps need to plot the eigenfunctions as well, or calculate some other
expectation values. Or, you would like to compare the eigenfunctions with the analytical
answers for the harmonic oscillator or the hydrogen atom. Weprovide a functionplot
which has as input one eigenvalue chosen from the output oftqli. This function gives you
a normalized wave functionu where the norm is calculated asZ RmaxRmin ju(x)j2 dx! h NstepXi=0 u2i = 1;
and we have used the trapezoidal rule for integration discussed in chapter 4.

Program example and results for the one-dimensional harmonic oscillator

We present here a program example which encodes the above algorithm.

/�
S o l v e s t he one�p a r t i c l e Sc h r od i nge r e qua t i on
f o r a p o t e n t i a l s p e c i f i e d i n f u n c t i o n
p o t e n t i a l ( ) . Th is example i s f o r t he harmonic o s c i l l a t o r� /

# inc lude < cmath >
# inc lude < ios t ream >
# inc lude < fs t ream >
# inc lude < iomanip >
# inc lude "lib.h"
us ing namespace s t d ;
/ / o u t p u t f i l e as g l o b a l v a r i a b l e
o f s t r e a m o f i l e ;

/ / f u n c t i o n d e c l a r a t i o n s

void i n i t i a l i s e (double& , double& , i n t & , i n t &) ;
double p o t e n t i a l (double ) ;
i n t comp (cons t double � , cons t double � ) ;
void o u t p u t (double , double , i n t , double � ) ;

i n t main ( i n t argc , char � argv [ ] )
{

i n t i , j , max_step , o r b_ l ;
double r_min , r_max , s tep , const_1 , const_2 , o r b _ f a c t o r ,�e , � d , �w, � r , � � z ;
char � o u t f i l e n a m e ;
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/ / Read i n o u t p u t f i l e , abo r t i f t h e r e are too few command� l i n e
arguments

i f ( a rgc < = 1 ) {
cou t < < "Bad Usage: " < < argv [0 ] < <" read also output file on same line" < < end l ;
e x i t ( 1 ) ;

}
e l s e{

o u t f i l e n a m e = argv [ 1 ] ;
}
o f i l e . open ( o u t f i l e n a m e ) ;
/ / Read i n data
i n i t i a l i s e ( r_min , r_max , o rb_ l , max_step ) ;
/ / i n i t i a l i s e c o n s t a n t s
s t e p = ( r_max� r_min ) / max_step ;
cons t_2 = � 1 . 0 / ( s t e p � s t e p ) ;
cons t_1 = � 2 . 0 � cons t_2 ;
o r b _ f a c t o r = o r b_ l � ( o r b_ l + 1 ) ;

/ / l o c a l memory f o r r and t he p o t e n t i a l w[ r ]
r = new double[ max_step + 1 ] ;
w = new double[ max_step + 1 ] ;
f o r ( i = 0 ; i <= max_step ; i ++) {

r [ i ] = r_min + i � s t e p ;
w[ i ] = p o t e n t i a l ( r [ i ] ) + o r b _ f a c t o r / ( r [ i ] � r [ i ] ) ;

}
/ / l o c a l memory f o r t he d i a g o n a l i z a t i o n p r oc e s s
d = new double[ max_step ] ; / / d i agona l e l e m e n t s
e = new double[ max_step ] ; / / t r i �d i agona l o f f�d i agona l e l e m e n t s
z = ( double � � ) m a t r i x ( max_step , max_step ,s i z e o f( double ) ) ;
f o r ( i = 0 ; i < max_step ; i ++) {

d [ i ] = cons t_1 + w[ i + 1 ] ;
e [ i ] = cons t_2 ;
z [ i ] [ i ] = 1 . 0 ;
f o r ( j = i + 1 ; j < max_step ; j ++) {

z [ i ] [ j ] = 0 . 0 ;
}

}
/ / d i a g o n a l i z e and o b t a i n e i g e n v a l u e s
t q l i ( d , e , max_step� 1 , z ) ;
/ / So r t e i g e n v a l u e s as an ascend ing s e r i e s
q s o r t ( d , ( UL) max_step� 1 , s i z e o f( double ) ,

( i n t ( � ) ( cons t void � , cons t void � ) ) comp ) ;
/ / send r e s u l t s t o ouput f i l e
o u t p u t ( r_min , r_max , max_step , d ) ;
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d e l e t e [ ] r ; d e l e t e [ ] w ; d e l e t e [ ] e ; d e l e t e [ ] d ;
f r e e _ m a t r i x ( (void � � ) z ) ; / / f r e e memory
o f i l e . c l o s e ( ) ; / / c l o s e o u t p u t f i l e
re tu rn 0 ;

} / / End : f u n c t i o n main ( )

/�
The f u n c t i o n p o t e n t i a l ( )
c a l c u l a t e s and r e t u r n t he v a l ue o f t he
p o t e n t i a l f o r a g i v e n argument x .
The p o t e n t i a l here i s f o r t he 1�dim harmonic o s c i l l a t o r� /

double p o t e n t i a l (double x )
{

re tu rn x�x ;

} / / End : f u n c t i o n p o t e n t i a l ( )

/�
The f u n c t i o n i n t comp ( )
i s a u t i l i t y f u n c t i o n f o r t he l i b r a r y f u n c t i o n q s o r t ( )
t o s o r t doub le numbers a f t e r i n c r e a s i n g v a l u e s .� /

i n t comp (cons t double � val_1 , cons t double � va l_2 )
{

i f ( ( � va l_1 ) < = (� va l_2 ) ) re tu rn �1;
e l s e i f ( ( � va l_1 ) > (� va l_2 ) ) re tu rn + 1 ;
e l s e re tu rn 0 ;

} / / End : f u n c t i o n comp ( )

/ / read i n min and max rad ius , number o f mesh p o i n t s and l
void i n i t i a l i s e (double& r_min , double& r_max , i n t & orb_ l , i n t &

max_step )
{

cou t < < "Min vakues of R = " ;
c i n > > r_min ;
cou t < < "Max value of R = " ;
c i n > > r_max ;
cou t < < "Orbital momentum = " ;
c i n > > o r b_ l ;
cou t < < "Number of steps = " ;
c i n > > max_step ;

} / / end o f f u n c t i o n i n i t i a l i s e
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/ / o u t p u t o f r e s u l t s
void o u t p u t (double r_min , double r_max , i n t max_step , double � d )
{

i n t i ;
o f i l e < < "RESULTS:" < < end l ;
o f i l e < < s e t i o s f l a g s ( i o s : : showpoin t | i o s : : uppe r c a s e ) ;
o f i l e < <"R_min = " < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < r_min < < end l ;
o f i l e < <"R_max = " < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < r_max < < end l ;
o f i l e < <"Number of steps = " < < setw ( 15 ) < < max_step < < end l ;
o f i l e < < "Five lowest eigenvalues:" < < end l ;
f o r ( i = 0 ; i < 5 ; i ++) {

o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < d [ i ] < < end l ;
}

} / / end o f f u n c t i o n o u t p u t

There are several features to be noted in this program.
The main program calls the functioninitialise, which reads in the minimum and maximum

values ofr, the number of steps and the orbital angular momentuml. Thereafter we allocate place
for the vectors containingr and the potential, given by the variablesr[i℄ andw[i℄, respectively.
We also set up the vectorsd[i℄ ande[i℄ containing the diagonal and non-diagonal matrix elements.
Calling the functiontqli we obtain in turn the unsorted eigenvalues. The latter are sorted by the
intrinsic C-functionqsort.

The calculaton of the wave function for the lowest eigenvalue is done in the functionplot,
while all output of the calculations is directed to the fuctionoutput.

The included table exhibits the precision achieved as function of the number of mesh pointsN . The exact values are1; 3; 5; 7; 9.

Table 13.1: Five lowest eigenvalues as functions of the number of mesh pointsN with rmin =�10 andrmax = 10.N E0 E1 E2 E3 E4
50 9.898985E-01 2.949052E+00 4.866223E+00 6.739916E+00 8.568442E+00

100 9.974893E-01 2.987442E+00 4.967277E+00 6.936913E+008.896282E+00
200 9.993715E-01 2.996864E+00 4.991877E+00 6.984335E+008.974301E+00
400 9.998464E-01 2.999219E+00 4.997976E+00 6.996094E+008.993599E+00

1000 1.000053E+00 2.999917E+00 4.999723E+00 6.999353E+00 8.999016E+00

The agreement with the exact solution improves with increasing numbers of mesh points.
However, the agreement for the excited states is by no means impressive. Moreover, as the
dimensionality increases, the time consumption increasesdramatically. Matrix diagonalization
scales typically as� N3. In addition, there is a maximum size of a matrix which can be stored
in RAM.

The obvious question which then arises is whether this scheme is nothing but a mere example
of matrix diagonalization, with few practical applications of interest.
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13.4 Physics projects: Bound states in momentum space

In this problem we will solve the Schrödinger equation (SE) in momentum space for the deuteron.
The deuteron has only one bound state at an energy of�2:223 MeV. The ground state is given by
the quantum numbersl = 0, S = 1 andJ = 1, with l, S, andJ the relative orbital momentum,
the total spin and the total angular momentum, respectively. These quantum numbers are the
sum of the single-particle quantum numbers. The deuteron consists of a proton and neutron,
with mass (average) of938 MeV. The electron is not included in the solution of the SE since
its mass is much smaller than those of the proton and the neutron. We can neglect it here. This
means that e.g., the total spinS is the sum of the spin of the neutron and the proton. The above
three quantum numbers can be summarized in the spectroscopic notation2S+1lJ =3 S1, whereS
representsl = 0 here. It is a spin triplet state. The spin wave function is thus symmetric. This
also applies to the spatial part, sincel = 0. To obtain a totally anti-symmetric wave function we
need to introduce another quantum number, namely isospin. The deuteron has isospinT = 0,
which gives a final wave function which is anti-symmetric.

We are going to use a simplified model for the interaction between the neutron and the proton.
We will assume that it goes like V (r) = V0 exp (��r)r ; (13.46)

where� has units m�1 and serves to screen the potential for large values ofr. The variabler is the
distance between the proton and the neutron. It is the relative coordinate, the centre of mass is not
needed in this problem. The nucleon-nucleon interaction has a finite and small range, typically
of some few fm1. We will in this exercise set� = 0:7 fm�1. It is then proportional to the mass
of the pion. The pion is the lightest meson, and sets therefore the range of the nucleon-nucleon
interaction. For low-energy problems we can describe the nucleon-nucleon interaction through
meson-exchange models, and the pion is the lightest known meson, with mass of approximately
138 MeV.

Since we are going to solve the SE in momentum, we need the Fourier transform ofV (r). In
a partial wave basis forl = 0 it becomesV (k0; k) = V04k0k ln� (k0 + k)2 + �2(k0 � k)2 + �2� ; (13.47)

wherek0 andk are the relative momenta for the proton and neutron system.
For relative coordinates, the SE in momentum space becomesk2m (k) + 2� Z 10 dpp2V (k; p) (p) = E (k): (13.48)

Here we have used units�h = 
 = 1. This means thatk has dimension energy. This is the equation
we are going to solve, with eigenvalueE and eigenfunction (k). The approach to solve this
equations goes then as follows.

11 fm = 10�15 m.
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First we need to evaluate the integral overp using e.g., gaussian quadrature. This means that
we rewrite an integral like Z ba f(x)dx � NXi=1 !if(xi);
where we have fixedN lattice points through the corresponding weights!i and pointsxi. The
integral in Eq. (13.48) is rewritten as2� Z 10 dpp2V (k; p) (p) � 2� NXi=1 !ip2iV (k; pi) (pi): (13.49)

We can then rewrite the SE ask2m (k) + 2� NXj=1 !jp2jV (k; pj) (pj) = E (k): (13.50)

Using the same mesh points fork as we did forp in the integral evaluation, we getp2im (pi) + 2� NXj=1 !jp2jV (pi; pj) (pj) = E (pi); (13.51)

with i; j = 1; 2; : : : ; N . This is a matrix eigenvalue equation and if we define anN � N matrixH to be Hij = p2imÆij + 2�!jp2jV (pi; pj); (13.52)

whereÆij is the Kronecker delta, and anN � 1 vector	 = 0BBBB�  (p1) (p2): : :: : : (pN)
1CCCCA ; (13.53)

we have the eigenvalue problem H	 = E	: (13.54)

The algorithm for solving the last equation may take the following form� Fix the number of mesh pointsN .� Use the functiongauleg in the program library to set up the weights!i and the pointspi. Before you go on you need to recall thatgauleg uses the Legendre polynomials to fix
the mesh points and weights. This means that the integral is for the interval [-1,1]. Your
integral is for the interval [0,1]. You will need to map the weights fromgauleg to your
interval. To do this, call firstgauleg, with a = �1, b = 1. It returns the mesh points and
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weights. You then map these points over to the limits in your integral. You can then use
the following mapping pi = 
onst� tann�4 (1 + xi)o ;
and !i = 
onst�4 wi
os2 ��4 (1 + xi)� :
onst is a constant which we discuss below.� Construct thereafter the matrixH withV (pi; pj) = V04pipj ln�(pj + pi)2 + �2(pj � pi)2 + �2� :� We are now ready to obtain the eigenvalues. We need first to rewrite the matrixH in
tri-diagonal form. Do this by calling the library functiontred2. This function returns
the vectord with the diagonal matrix elements of the tri-diagonal matrix while e are the
non-diagonal ones. To obtain the eigenvalues we call the function tqli. On return, the
arrayd contains the eigenvalues. Ifz is given as the unity matrix on input, it returns the
eigenvectors. For a given eigenvaluek, the eigenvector is given by the columnk in z, that
is z[][k] in C, or z(:,k) in Fortran 90.

The problem to solve

1. Before you write the main program for the above algorithm make a dimensional analysis
of Eq. (13.48)! You can choose units so thatpi and!i are in fm�1. This is the standard
unit for the wave vector. Recall then to insert�h
 in the appropriate places. For this case
you can set the value of
onst = 1. You could also choose units so that the units ofpi and!i are in MeV. (we have previously used so-called natural units�h = 
 = 1). You will then
need to multiply� with �h
 = 197 MeVfm to obtain the same units in the expression for
the potential. Why? Show thatV (pi; pj) must have units MeV�2. What is the unit ofV0?
If you choose these units you should also multiply the mesh points and the weights with�h
 = 197. That means, set the constant
onst = 197.

2. Write your own program so that you can solve the SE in momentum space.

3. Adjust the value ofV0 so that you get close to the experimental value of the bindingenergy
of the deuteron,�2:223 MeV. Which sign shouldV0 have?

4. Try increasing the number of mesh points in steps of 8, for example 16, 24, etc and see
how the energy changes. Your program returns equally many eigenvalues as mesh pointsN . Only the true ground state will be at negative energy.
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13.5 Physics projects: Quantum mechanical scattering

We are now going to solve the SE for the neutron-proton systemin momentum space for positive
energiesE in order to obtain the phase shifts. In the previous physics project on bound states
in momentum space, we obtained the SE in momentum space by Eq.(13.48).k was the relative
momentum between the two particles. A partial wave expansion was used in order to reduce the
problem to an integral over the magnitude of momentum only. The subscriptl referred therefore
to a partial wave with a given orbital momentuml. To obtain the potential in momentum space
we used the Fourier-Bessel transform (Hankel transform)Vl(k; k0) = Z jl(kr)V (r)jl(k0r)r2dr; (13.55)

wherejl is the spherical Bessel function. We will just study the casel = 0, which means thatj0(kr) = sin(kr)=kr.
For scattering states,E > 0, the corresponding equation to solve is the so-called Lippman-

Schwinger equation. This is an integral equation where we have to deal with the amplitudeR(k; k0) (reaction matrix) defined through the integral equationRl(k; k0) = Vl(k; k0) + 2�P Z 10 dqq2Vl(k; q) 1E � q2=mRl(q; k0); (13.56)

where the total kinetic energy of the two incoming particlesin the center-of-mass system isE = k20m: (13.57)

The symbolP indicates that Cauchy’s principal-value prescription is used in order to avoid the
singularity arising from the zero of the denominator. We will discuss below how to solve this
problem. Eq. (13.56) represents then the problem you will have to solve numerically.

The matrixRl(k; k0) relates to the the phase shifts through its diagonal elements asRl(k0; k0) = �tanÆlmk0 : (13.58)

The principal value in Eq. (13.56) is rather tricky to evaluate numerically, mainly since com-
puters have limited precision. We will here use a subtraction trick often used when dealing with
singular integrals in numerical calculations. We introduce first the calculus relationZ 1�1 dkk � k0 = 0: (13.59)

It means that the curve1=(k � k0) has equal and opposite areas on both sides of the singular
point k0. If we break the integral into one over positivek and one over negativek, a change of
variablek ! �k allows us to rewrite the last equation asZ 10 dkk2 � k20 = 0: (13.60)
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We can use this to express a principal values integral asP Z 10 f(k)dkk2 � k20 = Z 10 (f(k)� f(k0))dkk2 � k20 ; (13.61)

where the right-hand side is no longer singular atk = k0, it is proportional to the derivativedf=dk, and can be evaluated numerically as any other integral.
We can then use the trick in Eq. (13.61) to rewrite Eq. (13.56)asR(k; k0) = V (k; k0) + 2� Z 10 dq q2V (k; q)R(q; k0)� k20V (k; k0)R(k0; k0)(k20 � q2)=m : (13.62)

Using the mesh pointskj and the weights!j, we can rewrite Eq. (13.62) asR(k; k0) = V (k; k0) + 2� NXj=1 !jk2jV (k; kj)R(kj; k0)(k20 � k2j )=m � 2�k20V (k; k0)R(k0; k0) NXn=1 !n(k20 � k2n)=m:
(13.63)

This equation contains now the unknownsR(ki; kj) (with dimensionN �N ) andR(k0; k0). We
can turn Eq. (13.63) into an equation with dimension(N + 1) � (N + 1) with a mesh which
contains the original mesh pointskj for j = 1; N and the point which corresponds to the energyk0. Consider the latter as the ’observable’ point. The mesh points become thenkj for j = 1; n
andkN+1 = k0. With these new mesh points we define the matrixAi;j = Æi;j + V (ki; kj)uj; (13.64)

whereÆ is the KroneckerÆ anduj = 2� !jk2j(k20 � k2j )=m j = 1; N (13.65)

and uN+1 = � 2� NXj=1 k20!j(k20 � k2j )=m: (13.66)

With the matrixA we can rewrite Eq. (13.63) as a matrix problem of dimension(N + 1) �(N + 1). All matricesR, A andV have this dimension and we getAi;lRl;j = Vi;j; (13.67)

or just AR = V: (13.68)

Since we already have definedA andV (these are stored as(N + 1) � (N + 1) matrices) Eq.
(13.68) involves only the unknownR. We obtain it by matrix inversion, i.e.,R = A�1V: (13.69)
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Thus, to obtainR, we need to set up the matricesA andV and invert the matrixA. To do that one
can use the functionmatinvin the program library. With the inverseA�1, performing a matrix
multiplication withV results inR.

With R we obtain subsequently the phaseshifts using the relationR(kN+1; kN+1) = R(k0; k0) = �tanÆmk0 : (13.70)





Chapter 14

Differential equations

14.1 Introduction

Historically, differential equations have originated in chemistry, physics and engineering. More
recently they have also been used widely in medicine, biology etc. In this chapter we restrict
the attention to ordinary differential equations. We focuson initial value and boundary value
problems and present some of the more commonly used methods for solving such problems
numerically.

The physical systems which are discussed range from a simplecooling problem to the physics
of a neutron star.

14.2 Ordinary differential equations (ODE)

In this section we will mainly deal with ordinary differential equations and numerical methods
suitable for dealing with them. However, before we proceed,a brief remainder on differential
equations may be appropriate.� The order of the ODE refers to the order of the derivative on the left-hand side in the

equation dydt = f(t; y): (14.1)

This equation is of first order andf is an arbitrary function. A second-order equation goes
typically like d2ydt2 = f(t; dydt ; y): (14.2)

A well-known second-order equation is Newton’s second lawmd2xdt2 = �kx; (14.3)

wherek is the force constant. ODE depend only on one variable, whereas

255



256 CHAPTER 14. DIFFERENTIAL EQUATIONS� partial differential equations like the time-dependent Schrödinger equationi�h� (x; t)�t = �h22m ��2 (r; t)�x2 + �2 (r; t)�y2 + �2 (r; t)�z2 � + V (x) (x; t); (14.4)

may depend on several variables. In certain cases, like the above equation, the wave func-
tion can be factorized in functions of the separate variables, so that the Schrödinger equa-
tion can be rewritten in terms of sets of ordinary differential equations.� We distinguish also between linear and non-linear differential equation where e.g.,dydt = g3(t)y(t); (14.5)

is an example of a linear equation, whiledydt = g3(t)y(t)� g(t)y2(t); (14.6)

is a non-linear ODE. Another concept which dictates the numerical method chosen for
solving an ODE, is that of initial and boundary conditions. To give an example, in our
study of neutron stars below, we will need to solve two coupled first-order differential
equations, one for the total massm and one for the pressureP as functions of�dmdr = 4�r2�(r)=
2;
and dPdr = �Gm(r)r2 �(r)=
2:
where� is the mass-energy density. The initial conditions are dictated by the mass being
zero at the center of the star, i.e., whenr = 0, yieldingm(r = 0) = 0. The other condition
is that the pressure vanishes at the surface of the star. Thismeans that at the point where
we haveP = 0 in the solution of the integral equations, we have the total radiusR of
the star and the total massm(r = R). These two conditions dictate the solution of the
equations. Since the differential equations are solved by stepping the radius fromr = 0
to r = R, so-called one-step methods (see the next section) or Runge-Kutta methods may
yield stable solutions.

In the solution of the Schrödinger equation for a particle ina potential, we may need to
apply boundary conditions as well, such as demanding continuity of the wave function and
its derivative.� In many cases it is possible to rewrite a second-order differential equation in terms of two
first-order differential equations. Consider again the case of Newton’s second law in Eq.
(14.3). If we define the positionx(t) = y(1)(t) and the velocityv(t) = y(2)(t) as its
derivative dy(1)(t)dt = dx(t)dt = y(2)(t); (14.7)
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we can rewrite Newton’s second law as two coupled first-orderdifferential equationsmdy(2)(t)dt = �kx(t) = �ky(1)(t); (14.8)

and dy(1)(t)dt = y(2)(t): (14.9)

14.3 Finite difference methods

These methods fall under the general class of one-step methods. The algoritm is rather simple.
Suppose we have an initial value for the functiony(t) given byy0 = y(t = t0): (14.10)

We are interested in solving a differential equation in a region in space [a,b]. We define a steph
by splitting the interval inN sub intervals, so that we haveh = b� aN : (14.11)

With this step and the derivative ofy we can construct the next value of the functiony aty1 = y(t1 = t0 + h); (14.12)

and so forth. If the function is rather well-behaved in the domain [a,b], we can use a fixed step
size. If not, adaptive steps may be needed. Here we concentrate on fixed-step methods only. Let
us try to generalize the above procedure by writing the stepyi+1 in terms of the previous stepyiyi+1 = y(t = ti + h) = y(ti) + h�(ti; yi(ti)) +O(hp+1); (14.13)

whereO(hp+1) represents the truncation error. To determine�, we Taylor expand our functiony yi+1 = y(t = ti + h) = y(ti) + h(y0(ti) + � � �+ y(p)(ti)hp�1p! ) +O(hp+1); (14.14)

where we will associate the derivatives in the parenthesis with�(ti; yi(ti)) = (y0(ti) + � � �+ y(p)(ti)hp�1p! ): (14.15)

We define y0(ti) = f(ti; yi) (14.16)

and if we truncate� at the first derivative, we haveyi+1 = y(ti) + hf(ti; yi) +O(h2); (14.17)
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which when complemented withti+1 = ti + h forms the algorithm for the well-known Euler
method. Note that at every step we make an approximation error of the order ofO(h2), however
the total error is the sum over all stepsN = (b�a)=h, yielding thus a global error which goes likeNO(h2) � O(h). To make Euler’s method more precise we can obviously decreaseh (increaseN ). However, if we are computing the derivativef numerically by e.g., the two-steps formulaf 02
(x) = f(x + h)� f(x)h +O(h);
we can enter into roundoff error problems when we subtract two almost equal numbersf(x +h) � f(x) � 0. Euler’s method is not recommended for precision calculation, although it is
handy to use in order to get a first view on how a solution may look like. As an example,
consider Newton’s equation rewritten in Eqs. (14.8) and (14.9). We definey0 = y(1)(t = 0) anv0 = y(2)(t = 0). The first steps in Newton’s equations are theny(1)1 = y0 + hv0 + O(h2) (14.18)

and y(2)1 = v0 � hy0k=m+O(h2): (14.19)

The Euler method is asymmetric in time, since it uses information about the derivative at the
beginning of the time interval. This means that we evaluate the position aty(1)1 using the velocity
at y(2)0 = v0. A simple variation is to determiney(1)n+1 using the velocity aty(2)n+1, that is (in a
slightly more generalized form)y(1)n+1 = y(1)n + hy(2)n+1 +O(h2) (14.20)

and y(2)n+1 = y(2)n + han +O(h2): (14.21)

The accelerationan is a function ofan(y(1)n ; y(2)n ; t) and needs to be evaluated as well. This is the
Euler-Cromer method.

Let us then include the second derivative in our Taylor expansion. We have then�(ti; yi(ti)) = f(ti) + h2 df(ti; yi)dt +O(h3): (14.22)

The second derivative can be rewritten asy00 = f 0 = dfdt = �f�t + �f�y �y�t = �f�t + �f�y f (14.23)

and we can rewrite Eq. (14.14) asyi+1 = y(t = ti + h) = y(ti) + hf(ti) + h22 ��f�t + �f�y f�+O(h3); (14.24)
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which has a local approximation errorO(h3) and a global errorO(h2). These approximations
can be generalized by using the derivativef to arbitrary order so that we haveyi+1 = y(t = ti + h) = y(ti) + h(f(ti; yi) + : : : f (p�1)(ti; yi)hp�1p! ) +O(hp+1): (14.25)

These methods, based on higher-order derivatives, are in general not used in numerical computa-
tion, since they rely on evaluating derivatives several times. Unless one has analytical expressions
for these, the risk of roundoff errors is large.

14.3.1 Improvements to Euler’s algorithm, higher-order methods

The most obvious improvements to Euler’s and Euler-Cromer’s algorithms, avoiding in addition
the need for computing a second derivative, is the so-calledmidpoint method. We have theny(1)n+1 = y(1)n + h2 �y(2)n+1 + y(2)n � +O(h2) (14.26)

and y(2)n+1 = y(2)n + han +O(h2); (14.27)

yielding y(1)n+1 = y(1)n + hy(2)n + h22 an +O(h3) (14.28)

implying that the local truncation error in the position is nowO(h3), whereas Euler’s or Euler-
Cromer’s methods have a local error ofO(h2). Thus, the midpoint method yields a global error
with second-order accuracy for the position and first-orderaccuracy for the velocity. However,
although these methods yield exact results for constant accelerations, the error increases in gen-
eral with each time step.

One method that avoids this is the so-called half-step method. Here we definey(2)n+1=2 = y(2)n�1=2 + han +O(h2); (14.29)

and y(1)n+1 = y(1)n + hy(2)n+1=2 +O(h2): (14.30)

Note that this method needs the calculation ofy(2)1=2. This is done using e.g., Euler’s methody(2)1=2 = y(2)0 + ha0 +O(h2): (14.31)

As this method is numerically stable, it is often used instead of Euler’s method. Another method
which one may encounter is the Euler-Richardson method withy(2)n+1 = y(2)n + han+1=2 +O(h2); (14.32)

and y(1)n+1 = y(1)n + hy(2)n+1=2 +O(h2): (14.33)
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14.4 More on finite difference methods, Runge-Kutta meth-
ods

Runge-Kutta (RK) methods are based on Taylor expansion formulae, but yield in general better
algorithms for solutions of an ODE. The basic philosophy is that it provides an intermediate step
in the computation ofyi+1.

To see this, consider first the following definitionsdydt = f(t; y); (14.34)

and y(t) = Z f(t; y)dt; (14.35)

and yi+1 = yi + Z ti+1ti f(t; y)dt: (14.36)

To demonstrate the philosophy behind RK methods, let us consider the second-order RK method,
RK2. The first approximation consists in Taylor expandingf(t; y) around the center of the
integration intervalti to ti+1, i.e., atti + h=2, h being the step. Using the midpoint formula for
an integral, definingy(ti + h=2) = yi+1=2 andti + h=2 = ti+1=2, we obtainZ ti+1ti f(t; y)dt � hf(ti+1=2; yi+1=2) +O(h3): (14.37)

This means in turn that we haveyi+1 = yi + hf(ti+1=2; yi+1=2) +O(h3): (14.38)

However, we do not know the value ofyi+1=2. Here comes thus the next approximation, namely,
we use Euler’s method to approximateyi+1=2. We have theny(i+1=2) = yi + h2 dydt = y(ti) + h2f(ti; yi): (14.39)

This means that we can define the following algorithm for the second-order Runge-Kutta method,
RK2. k1 = hf(ti; yi); (14.40)k2 = hf(ti+1=2; yi + k1=2); (14.41)

with the final value yi+i � yi + k2 +O(h3): (14.42)

The difference between the previous one-step methods is that we now need an intermediate
step in our evaluation, namelyti + h=2 = t(i+1=2) where we evaluate the derivativef . This
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involves more operations, but the gain is a better stabilityin the solution. The fourth-order
Runge-Kutta, RK4, which we will employ in the solution of various differential equations below,
has the following algorithm k1 = hf(ti; yi); (14.43)k2 = hf(ti + h=2; yi + k1=2); (14.44)k3 = hf(ti + h=2; yi + k2=2) (14.45)k4 = hf(ti + h; yi + k3) (14.46)

with the final value yi+1 = yi + 16 (k1 + 2k2 + 2k3 + k4) : (14.47)

Thus, the algorithm consists in first calculatingk1 with ti, y1 andf as inputs. Thereafter, we
increase the step size byh=2 and calculatek2, thenk3 and finallyk4. With this caveat, we can
then obtain the new value for the variabley.

14.5 Adaptive Runge-Kutta and multistep methods

in preparation

14.6 Physics examples

14.6.1 Ideal harmonic oscillations

Our first example is the classical case of simple harmonic oscillations, namely a block sliding
on a horizontal frictionless surface. The block is tied to a wall with a spring, portrayed in e.g.,
Fig. 14.1. If the spring is not compressed or stretched too far, the force on the block at a given
positionx is F = �kx: (14.48)

The negative sign means that the force acts to restore the object to an equilibrium position.
Newton’s equation of motion for this idealized system is thenmd2xdt2 = �kx; (14.49)

or we could rephrase it as d2xdt2 = � kmx = �!20x; (14.50)

with the angular frequency!20 = k=m.
The above differential equation has the advantage that it can be solved analytically with

solutions on the form x(t) = A
os(!0t+ �);
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x
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Figure 14.1: Block tied to a wall with a spring tension actingon it.

whereA is the amplitude and� the phase constant. This provides in turn an important test for the
numerical solution and the development of a program for morecomplicated cases which cannot
be solved analytically.

As mentioned earlier, in certain cases it is possible to rewrite a second-order differential
equation as two coupled first-order differential equations. With the positionx(t) and the velocityv(t) = dx=dt we can reformulate Newton’s equation in the following waydx(t)dt = v(t); (14.51)

and dv(t)dt = �!20x(t): (14.52)

We are now going to solve these equations using the Runge-Kutta method to fourth order
discussed previously. Before proceeding however, it is important to note that in addition to the
exact solution, we have at least two further tests which can be used to check our solution.

Since functions like
os are periodic with a period2�, then the solutionx(t) has also to be
periodic. This means that x(t + T ) = x(t); (14.53)

with T the period defined as T = 2�!0 = 2�pk=m: (14.54)

Observe thatT depends only onk=m and not on the amplitude of the solution or the constant�.
In addition to the periodicity test, the total energy has also to be conserved.
Suppose we choose the initial conditionsx(t = 0) = 1 m v(t = 0) = 0 m=s; (14.55)
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meaning that block is at rest att = 0 but with a potential energyE0 = 12kx(t = 0)2 = 12k: (14.56)

The total energy at any timet has however to be conserved, meaning that our solution has to
fulfil the condition E0 = 12kx(t)2 + 12mv(t)2: (14.57)

An algorithm which implements these equations is included below.

1. Choose the initial position and speed, with the most common choicev(t = 0) = 0 and
some fixed value for the position. Since we are going to test our results against the peri-
odicity requirement, it is convenient to set the final time equal tf = 2�, where we choosek=m = 1. The initial time is set equal toti = 0. You could alternatively read in the ratiok=m.

2. Choose the method you wish to employ in solving the problem. In the enclosed program
we have chosen the fourth-order Runge-Kutta method. Subdivide the time interval[ti; tf ℄
into a grid with step size h = tf � tiN ;
whereN is the number of mesh points.

3. Calculate now the total energy given byE0 = 12kx(t = 0)2 = 12k:
and use this when checking the numerically calculated energy from the Runge-Kutta iter-
ations.

4. The Runge-Kutta method is used to obtainxi+1 andvi+1 starting from the previous valuesxi andvi..
5. When we have computedx(v)i+1 we upgradeti+1 = ti + h.

6. This iterative process continues till we reach the maximum timetf = 2�.

7. The results are checked against the exact solution. Furthermore, one has to check the
stability of the numerical solution against the chosen number of mesh pointsN .

Program to solve the differential equations for a sliding block

The program which implements the above algorithm is presented here.



264 CHAPTER 14. DIFFERENTIAL EQUATIONS

/� Th is program s o l v e s Newton ’ s e qua t i on f o r a b l oc k
s l i d i n g on a h o r i z o n t a l f r i c t i o n l e s s s u r f a c e . The b l oc k
i s t i e d t o a wa l l w i th a spr ing , and Newton ’ s e qua t i on
t a k e s t he form

m d^2 x / d t ^2 =� kx
w i th k t he s p r i n g t e n s i o n and m t he mass o f t he b l oc k .
The angu la r f r e que nc y i s omega ^ 2 = k /m and we s e t i t equa l
1 i n t h i s example program .

Newton ’ s e qua t i on i s r e w r i t t e n as two coup led d i f f e r e n t i a l
equa t ions , one f o r t he p o s i t i o n x and one f o r t he v e l o c i t y v

dx / d t = v and
dv / d t = � x when we s e t k /m=1

We use t h e r e f o r e a two�d i m e ns i ona l a r ray t o r e p r e s e n t x and v
as f u n c t i o n s o f t
y [0 ] == x
y [1 ] == v
dy [ 0 ] / d t = v
dy [ 1 ] / d t = � x

The d e r i v a t i v e s are c a l c u l a t e d by t he user d e f i n e d f u n c t i o n
d e r i v a t i v e s .

The user has t o s p e c i f y t he i n i t i a l v e l o c i t y ( u s u a l l y v_0 =0)
t he number o f s t e p s and t he i n i t i a l p o s i t i o n . In t he programme
below we f i x t he t ime i n t e r v a l [ a , b ] t o [ 0 , 2� p i ] .� /

# inc lude < cmath >
# inc lude < ios t ream >
# inc lude < fs t ream >
# inc lude < iomanip >
# inc lude "lib.h"
us ing namespace s t d ;
/ / o u t p u t f i l e as g l o b a l v a r i a b l e
o f s t r e a m o f i l e ;
/ / f u n c t i o n d e c l a r a t i o n s
void d e r i v a t i v e s (double , double � , double � ) ;
void i n i t i a l i s e ( double& , double& , i n t &) ;
void o u t p u t ( double , double � , double ) ;
void r unge _ku t t a _4 (double � , double � , i n t , double , double ,

double � , void ( � ) ( double , double � , double � ) ) ;

i n t main ( i n t argc , char � argv [ ] )
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{
/ / d e c l a r a t i o n s o f v a r i a b l e s

double � y , � dydt , � yout , t , h , tmax , E0 ;
double i n i t i a l _ x , i n i t i a l _ v ;
i n t i , number_of_s teps , n ;
char � o u t f i l e n a m e ;
/ / Read i n o u t p u t f i l e , abo r t i f t h e r e are too few command� l i n e

arguments
i f ( a rgc < = 1 ) {

cou t < < "Bad Usage: " < < argv [0 ] < <" read also output file on same line" < < end l ;
e x i t ( 1 ) ;

}
e l s e{

o u t f i l e n a m e = argv [ 1 ] ;
}
o f i l e . open ( o u t f i l e n a m e ) ;
/ / t h i s i s t he number o f d i f f e r e n t i a l e q u a t i o n s
n = 2 ;
/ / a l l o c a t e space i n memory f o r t he a r r ay s c o n t a i n i n g t he

d e r i v a t i v e s
dydt = new double[ n ] ;
y = new double[ n ] ;
yout = new double[ n ] ;
/ / read i n t he i n i t i a l p o s i t i o n , v e l o c i t y and number o f s t e p s
i n i t i a l i s e ( i n i t i a l _ x , i n i t i a l _ v , number_o f_s teps ) ;
/ / s e t t i n g i n i t i a l va lues , s t e p s i z e and max t ime tmax
h = 4 .� acos (�1. ) / ( ( double ) number_o f_s teps ) ; / / t he s t e p s i z e
tmax = h� number_o f_s teps ; / / t he f i n a l t ime
y [ 0 ] = i n i t i a l _ x ; / / i n i t i a l p o s i t i o n
y [ 1 ] = i n i t i a l _ v ; / / i n i t i a l v e l o c i t y
t = 0 . ; / / i n i t i a l t ime
E0 = 0 . 5� y [ 0 ] � y [ 0 ] + 0 . 5� y [ 1 ] � y [ 1 ] ; / / t he i n i t i a l t o t a l energy
/ / now we s t a r t s o l v i n g t he d i f f e r e n t i a l e q u a t i o n s us i ng t heRK4

method
whi le ( t <= tmax ) {

d e r i v a t i v e s ( t , y , dydt ) ; / / i n i t i a l d e r i v a t i v e s
r unge _ku t t a _ 4 ( y , dydt , n , t , h , yout , d e r i v a t i v e s ) ;
f o r ( i = 0 ; i < n ; i ++) {

y [ i ] = yout [ i ] ;
}
t + = h ;
o u t p u t ( t , y , E0 ) ; / / w r i t e t o f i l e

}
d e l e t e [ ] y ; d e l e t e [ ] dydt ; d e l e t e [ ] yout ;
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o f i l e . c l o s e ( ) ; / / c l o s e o u t p u t f i l e
re tu rn 0 ;

} / / End o f main f u n c t i o n

/ / Read i n from s c r e e n t he number o f s t e ps ,
/ / i n i t i a l p o s i t i o n and i n i t i a l speed
void i n i t i a l i s e ( double& i n i t i a l _ x , double& i n i t i a l _ v , i n t &

number_o f_s teps )
{

cou t < < "Initial position = " ;
c i n > > i n i t i a l _ x ;
cou t < < "Initial speed = " ;
c i n > > i n i t i a l _ v ;
cou t < < "Number of steps = " ;
c i n > > number_o f_s teps ;

} / / end o f f u n c t i o n i n i t i a l i s e

/ / t h i s f u n c t i o n s e t s up t he d e r i v a t i v e s f o r t h i s s p e c i a l case
void d e r i v a t i v e s (double t , double � y , double � dydt )
{

dydt [0 ]= y [ 1 ] ; / / d e r i v a t i v e o f x
dydt [1]=�y [ 0 ] ; / / d e r i v a t i v e o f v

} / / end o f f u n c t i o n d e r i v a t i v e s

/ / f u n c t i o n t o w r i t e ou t t he f i n a l r e s u l t s
void o u t p u t (double t , double � y , double E0 )
{

o f i l e < < s e t i o s f l a g s ( i o s : : showpoin t | i o s : : uppe r c a s e ) ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < t ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < y [ 0 ] ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < y [ 1 ] ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < < cos ( t ) ;
o f i l e < < setw ( 15 ) < < s e t p r e c i s i o n ( 8 ) < <

0 .5� y [ 0 ] � y [ 0 ] + 0 . 5� y [ 1 ] � y [1]�E0 < < end l ;
} / / end o f f u n c t i o n o u t p u t

/� Th is f u n c t i o n upgrades a f u n c t i o n y ( i n p u t as a p o i n t e r )
and r e t u r n s t he r e s u l t yout , a l s o as a p o i n t e r . Note t h a t
t h e s e v a r i a b l e s are de c l a r e d as a r r ay s . I t a l s o r e c e i v e s as
i n p u t t he s t a r t i n g v a l ue f o r t he d e r i v a t i v e s i n t he p o i n t e r
dydx . I t r e c e i v e s a l s o t he v a r i a b l e n which r e p r e s e n t s t he
number o f d i f f e r e n t i a l equa t ions , t he s t e p s i z e h and
t he i n i t i a l v a l ue o f x . I t r e c e i v e s a l s o t he name o f t he
f u n c t i o n � d e r i v s where t he g i v e n d e r i v a t i v e i s computed� /
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void r unge _ku t t a _4 (double � y , double � dydx , i n t n , double x , double h ,
double � yout , void ( � d e r i v s ) (double , double � ,

double � ) )
{

i n t i ;
double xh , hh , h6 ;
double �dym , � dyt , � y t ;
/ / a l l o c a t e space f o r l o c a l v e c t o r s
dym = new double [ n ] ;
dy t = new double [ n ] ;
y t = new double [ n ] ;
hh = h�0 . 5 ;
h6 = h / 6 . ;
xh = x+hh ;
f o r ( i = 0 ; i < n ; i ++) {

y t [ i ] = y [ i ]+ hh �dydx [ i ] ;
}
(� d e r i v s ) ( xh , yt , dy t ) ; / / computa t ion o f k2 , eq . 3 . 6 0
f o r ( i = 0 ; i < n ; i ++) {

y t [ i ] = y [ i ]+ hh � dy t [ i ] ;
}
(� d e r i v s ) ( xh , yt , dym ) ; / / computa t ion o f k3 , eq . 3 . 6 1
f o r ( i = 0 ; i < n ; i ++) {

y t [ i ] = y [ i ]+ h �dym[ i ] ;
dym[ i ] + = dy t [ i ] ;

}
(� d e r i v s ) ( x+h , yt , dy t ) ; / / computa t ion o f k4 , eq . 3 . 6 2
/ / now we upgrade y i n t he ar ray you t
f o r ( i = 0 ; i < n ; i ++) {

yout [ i ] = y [ i ]+ h6 � ( dydx [ i ]+ dy t [ i ]+2 .0� dym [ i ] ) ;
}
d e l e t e [ ] dym ;
d e l e t e [ ] dy t ;
d e l e t e [ ] y t ;

} / / end o f f u n c t i o n Runge�k u t t a 4

In Fig. 14.2 we exhibit the development of the difference between the calculated energy and the
exact energy att = 0 after two periods and withN = 1000 andN = 10000 mesh points. This
figure demonstrates clearly the need of developing tests forchecking the algorithm used. We see
that even forN = 1000 there is an increasing difference between the computed energy and the
exact energy after only two periods.
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Figure 14.2: Plot of�E(t) = E0 � E
omputed for N = 1000 andN = 10000 time steps up to
two periods. The initial positionx0 = 1 m and initial velocityv0 = 0 m/s. The mass and spring
tension are set tok = m = 1.
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Figure 14.3: Simple RLC circuit with a voltage sourceV .

14.6.2 Damping of harmonic oscillations and external forces

Most oscillatory motion in nature does decrease until the displacement becomes zero. We call
such a motion for damped and the system is said to be dissipative rather than conservative. Con-
sidering again the simple block sliding on a plane, we could try to implement such a dissipative
behavior through a drag force which is proportional to the first derivative ofx, i.e., the velocity.
We can then expand Eq. (14.50) tod2xdt2 = �!20x� � dxdt ; (14.58)

where� is the damping coefficient, being a measure of the magnitude of the drag term.
We could however counteract the dissipative mechanism by applying e.g., a periodic external

force F (t) = B
os(!t); (14.59)

and we rewrite Eq. (14.58) as d2xdt2 = �!20x� � dxdt + F (t): (14.60)

Although we have specialized to a block sliding on a surface,the above equations are rather
general for quite many physical systems.

If we replacex by the chargeQ, � with the resistanceR, the velocity with the currentI, the
inductanceL with the massm, the spring constant with the inverse capacitanceC and the forceF with the voltage dropV , we rewrite Eq. (14.60) asLd2Qdt2 + QC +RdQdt = V (t): (14.61)

The circuit is shown in Fig. 14.3.
How did we get there? We have defined an electric circuit whichconsists of a resistanceR with voltage dropIR, a capacitor with voltage dropQ=C and an inductorL with voltage
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Figure 14.4: A simple pendulum.

dropLdI=dt. The circuit is powered by an alternating voltage source andusing Kirchhoff’s law,
which is a consequence of energy conservation, we haveV (t) = IR + LdI=dt+Q=C; (14.62)

and using I = dQdt ; (14.63)

we arrive at Eq. (14.61).
This section was meant to give you a feeling of the wide range of applicability of the methods

we have discussed. However, before leaving this topic entirely, we’ll dwelve into the problems
of the pendulum, from almost harmonic oscillations to chaotic motion!

14.6.3 The pendulum, a nonlinear differential equation

Consider a pendulum with massm at the end of a rigid rod of lengthl attached to say a fixed
frictionless pivot which allows the pendulum to move freelyunder gravity in the vertical plane
as illustrated in Fig. 14.4.

The angular equation of motion of the pendulum is again givenby Newton’s equation, but
now as a nonlinear differential equationmld2�dt2 +mgsin(�) = 0; (14.64)
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with an angular velocity and acceleration given byv = l d�dt ; (14.65)

and a = l d2�dt2 : (14.66)

For small angles, we can use the approximationsin(�) � �:
and rewrite the above differential equation asd2�dt2 = �gl �; (14.67)

which is exactly of the same form as Eq. (14.50). We can thus check our solutions for small
values of� against an analytical solution. The period is nowT = 2�pl=g : (14.68)

We do however expect that the motion will gradually come to anend due a viscous drag
torque acting on the pendulum. In the presence of the drag, the above equation becomesmld2�dt2 + � d�dt +mgsin(�) = 0; (14.69)

where� is now a positive constant parameterizing the viscosity of the medium in question. In
order to maintain the motion against viscosity, it is necessary to add some external driving force.
We choose here, in analogy with the discussion about the electric circuit, a periodic driving force.
The last equation becomes thenmld2�dt2 + � d�dt +mgsin(�) = A
os(!t); (14.70)

with A and! two constants representing the amplitude and the angular frequency respectively.
The latter is called the driving frequency.

If we now define !0 =pg=l; (14.71)

the so-called natural frequency and the new dimensionless quantitiest̂ = !0t; (14.72)!̂ = !!0 ; (14.73)



272 CHAPTER 14. DIFFERENTIAL EQUATIONS

and introducing the quantityQ, called thequality factor,Q = mg!0� ; (14.74)

and the dimensionless amplitude Â = Amg (14.75)

we can rewrite Eq. (14.70) asd2�dt̂2 + 1Q d�dt̂ + sin(�) = Â
os(!̂t̂): (14.76)

This equation can in turn be recast in terms of two coupled first-order differential equations
as follows d�dt̂ = v̂; (14.77)

and dv̂dt̂ = � v̂Q � sin(�) + Â
os(!̂t̂): (14.78)

These are the equations to be solved. The factorQ represents the number of oscillations of
the undriven system that must occur before its energy is significantly reduced due to the viscous
drag. The amplitudêA is measured in units of the maximum possible gravitational torque while!̂ is the angular frequency of the external torque measured in units of the pendulum’s natural
frequency.

14.6.4 Spinning magnet

Another simple example is that of e.g., a compass needle thatis free to rotate in a periodically
reversing magnetic field perpendicular to the axis of the needle. The equation is thend2�dt2 = ��I B0
os(!t)sin(�); (14.79)

where� is the angle of the needle with respect to a fixed axis along thefield, � is the magnetic
moment of the needle,I its moment of inertia andB0 and! the amplitude and angular frequency
of the magnetic field respectively.

14.7 Physics Project: the pendulum

14.7.1 Analytic results for the pendulum

Although the solution to the equations for the pendulum can only be obtained through numerical
efforts, it is always useful to check our numerical code against analytic solutions. For small
angles�, we havesin� � � and our equations becomed�dt̂ = v̂; (14.80)
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and dv̂dt̂ = � v̂Q � � + Â
os(!̂t̂): (14.81)

These equations are linear in the angle� and are similar to those of the sliding block or the RLC
circuit. With given initial conditionŝv0 and�0 they can be solved analytically to yield�(t) = h�0 � Â(1�!̂2)(1�!̂2)2+!̂2=Q2i e��=2Q
os(q1� 14Q2 �) (14.82)+ hv̂0 + �02Q � Â(1�3!̂2)=2Q(1�!̂2)2+!̂2=Q2 i e��=2Qsin(q1� 14Q2 �) + Â(1�!̂2)
os(!̂�)+ !̂Q sin(!̂�)(1�!̂2)2+!̂2=Q2 ;
andv̂(t) = hv̂0 � Â!̂2=Q(1�!̂2)2+!̂2=Q2i e��=2Q
os(q1� 14Q2 �) (14.83)� h�0 + v̂02Q � Â[(1�!̂2)�!̂2=Q2℄(1�!̂2)2+!̂2=Q2 i e��=2Qsin(q1� 14Q2 �) + !̂Â[�(1�!̂2)sin(!̂�)+ !̂Q 
os(!̂�)℄(1�!̂2)2+!̂2=Q2 ;
with Q > 1=2. The first two terms depend on the initial conditions and decay exponentially in
time. If we wait long enough for these terms to vanish, the solutions become independent of the
initial conditions and the motion of the pendulum settles down to the following simple orbit in
phase space �(t) = Â(1� !̂2)
os(!̂�) + !̂Qsin(!̂�)(1� !̂2)2 + !̂2=Q2 ; (14.84)

and v̂(t) = !̂Â[�(1� !̂2)sin(!̂�) + !̂Q
os(!̂�)℄(1� !̂2)2 + !̂2=Q2 ; (14.85)

tracing the closed phase-space curve� �~A�2 + � v̂̂! ~A�2 = 1 (14.86)

with ~A = Âp(1� !̂2)2 + !̂2=Q2 : (14.87)

This curve forms an ellipse whose principal axes are� andv̂. This curve is closed, as we will see
from the examples below, implying that the motion is periodic in time, the solution repeats itself
exactly after each periodT = 2�=!̂. Before we discuss results for various frequencies, quality
factors and amplitudes, it is instructive to compare different numerical methods. In Fig. 14.5 we
show the angle� as function of time� for the case withQ = 2, !̂ = 2=3 andÂ = 0:5. The length
is set equal to1 m and mass of the pendulum is set equal to1 kg. The inital velocity iŝv0 = 0
and�0 = 0:01. Four different methods have been used to solve the equations, Euler’s method
from Eq. (14.17), Euler-Richardson’s method in Eqs. (14.32)-(14.33) and finally the fourth-order
Runge-Kutta scheme RK4. We note that after few time steps, weobtain the classical harmonic
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motion. We would have obtained a similar picture if we were toswitch off the external force,Â = 0 and set the frictional damping to zero, i.e.,Q = 0. Then, the qualitative picture is that
of an idealized harmonic oscillation without damping. However, we see that Euler’s method
performs poorly and after a few steps its algorithmic simplicity leads to results which deviate
considerably from the other methods. In the discussion hereafter we will thus limit ourselves to
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012
3

0 5 10 15 20 25 30 35
�

t=2�

RK4EulerHalfstepEuler-Ri
hardson

Figure 14.5: Plot of� as function of time� with Q = 2, !̂ = 2=3 andÂ = 0:5. The mass and
length of the pendulum are set equal to1. The initial velocity isv̂0 = 0 and�0 = 0:01. Four
different methods have been used to solve the equations, Euler’s method from Eq. (14.17), the
half-step method, Euler-Richardson’s method in Eqs. (14.32)-(14.33) and finally the fourth-order
Runge-Kutta scheme RK4. OnlyN = 100 integration points have been used for a time intervalt 2 [0; 10�℄.
present results obtained with the fourth-order Runge-Kutta method.

The corresponding phase space plot is shown in Fig. 14.6, forthe same parameters as in
Fig. ??. We observe here that the plot moves towards an ellipse with periodic motion. This
stable phase-space curve is called a periodic attractor. Itis called attractor because, irrespective
of the initial conditions, the trajectory in phase-space tends asymptotically to such a curve in the
limit � !1. It is called periodic, since it exhibits periodic motion intime, as seen from Fig.??.
In addition, we should note that this periodic motion shows what we call resonant behavior since
the the driving frequency of the force approaches the natural frequency of oscillation of the
pendulum. This is essentially due to the fact that we are studying a linear system, yielding the
well-known periodic motion. The non-linear system exhibits a much richer set of solutions and
these can only be studied numerically.

In order to go beyond the well-known linear approximation wechange the initial conditions
to say�0 = 0:3x but keep the other parameters equal to the previous case. Thecurve for� is
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Figure 14.6: Phase-space curve of a linear damped pendulum withQ = 2, !̂ = 2=3 andÂ = 0:5.
The inital velocity isv̂0 = 0 and�0 = 0:01.

shown in Fig. 14.7. This curve demonstrates that with the above given sets of parameters, after a
certain number of periods, the phase-space curve stabilizes to the same curve as in the previous
case, irrespective of initial conditions. However, it takes more time for the pendulum to establish
a periodic motion and when a stable orbit in phase-space is reached the pendulum moves in
accordance with the driving frequency of the force. The qualitative picture is much the same as
previously. The phase-space curve displays again a final periodic attractor.

If we now change the strength of the amplitude toÂ = 1:35 we see in Fig.?? that� as func-
tion of time exhibits a rather different behavior from Fig. 14.6, even though the initial contiditions
and all other parameters exceptÂ are the same.

If we then plot only the phase-space curve for the final orbit,we obtain the following figure
We will explore these topics in more detail in Section 14.8 where we extende our discussion to
the phenomena of period doubling and its link to chaotic motion.

14.7.2 The pendulum code

The program used to obtain the results discussed above is presented here. The program solves
the pendulum equations for any angle� with an external forceA
os(!t). It employes several
methods for solving the two coupled differential equations, from Euler’s method to adaptive size
methods coupled with fourth-order Runge-Kutta. It is straightforward to apply this program to
other systems which exhibit harmonic oscillations or change the functional form of the external
force.

# inc lude < s t d i o . h>
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Figure 14.7: Plot of� as function of time� with Q = 2, !̂ = 2=3 andÂ = 0:5. The mass of the
pendulum is set equal to1 kg and its length to 1 m. The inital velocity iŝv0 = 0 and�0 = 0:3.
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Figure 14.8: Phase-space curve withQ = 2, !̂ = 2=3 andÂ = 1:35. The mass of the pendulum
is set equal to1 kg and its lengthl = 1 m.. The inital velocity iŝv0 = 0 and�0 = 0:3.
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Figure 14.9: Phase-space curve for the attractor withQ = 2, !̂ = 2=3 andÂ = 1:35. The inital
velocity is v̂0 = 0 and�0 = 0:3.

# inc lude < i o s t r e a m . h>
# inc lude < math . h>
# inc lude < f s t r e a m . h>
/�
D i f f e r e n t methods f o r s o l v i n g ODEs are p r e s e n t e d
We are s o l v i n g t he f o l l o w i n g e q a t i o n :

m� l � ( ph i ) ’ ’ + v i s c o s i t y � ( ph i ) ’ + m�g� s i n ( ph i ) = A� cos ( omega� t )

I f you want t o s o l v e s i m i l a r e q u a t i o n s w i th o t he r v a l u e s you have t o
r e w r i t e t he methods ’ d e r i v a t i v e s ’ and ’ i n i t i a l i s e ’ and change t he

v a r i a b l e s i n t he p r i v a t e
pa r t o f t he c l a s s Pendulum

At f i r s t we r e w r i t e t he e qua t i on us i ng t he f o l l o w i n g d e f i n i ti o n s :

omega_0 = s q r t ( g� l )
t _ r o o f = omega_0� t
omega_roof = omega / omega_0
Q = (m�g ) / ( omega_0� r e i b )
A_roof = A / ( m�g )

and we ge t a d i m e n s i o n l e s s e qua t i on
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( ph i ) ’ ’ + 1 /Q � ( ph i ) ’ + s i n ( ph i ) = A_roof� cos ( omega_roof� t _ r o o f )

Th is e qua t i on can be w r i t t e n as two e q u a t i o n s o f f i r s t o rde r :

( ph i ) ’ = v
( v ) ’ = � v /Q � s i n ( ph i ) + A_roof� cos ( omega_roof� t _ r o o f )

A l l numer i ca l methods are a p p l i e d t o t he l a s t two e q u a t i o n s .
The a l g o r i t h m s are t ak e n from t he book " An i n t r o d u c t i o n t o computer

s i m u l a t i o n methods "� /

c l a s s pendelum
{
p r i va t e :

double Q , A_roof , omega_0 , omega_roof , g ;/ /
double y [ 2 ] ; / / f o r t he i n i t i a l �v a l u e s o f ph i and v
i n t n ; / / how many s t e p s
double d e l t a _ t , d e l t a _ t _ r o o f ;

pub l i c :
void d e r i v a t i v e s (double , double� , double� ) ;
void i n i t i a l i s e ( ) ;
void e u l e r ( ) ;
void e u l e r _c r om e r ( ) ;
void midpo in t ( ) ;
void e u l e r _ r i c h a r d s o n ( ) ;
void h a l f _ s t e p ( ) ;
void rk2 ( ) ; / / runge�k u t t a�second�order
void r k 4 _ s t e p (double , double� , double� , double ) ; / / we need i t i n

f u n c t i o n rk4 ( ) and asc ( )
void rk4 ( ) ; / / runge�k u t t a�f ou r t h�order
void asc ( ) ; / / runge�k u t t a�f ou r t h�order w i th a d a p t i v e s t e p s i z e

c o n t r o l
} ;

void pendelum : : d e r i v a t i v e s (double t , double� in , double� ou t )
{ /� Here we are c a l c u l a t i n g t he d e r i v a t i v e s a t ( d i m e n s i o n l e s s )t ime t

’ i n ’ a re t he v a l u e s o f ph i and v , which are used f o r t he
c a l c u l a t i o n

The r e s u l t s are g i v e n t o ’ ou t ’� /

ou t [0 ]= i n [ 1 ] ; / / ou t [ 0 ] = ( ph i ) ’ = v
i f (Q)

ou t [1]=� i n [ 1 ] / ( ( double )Q)�s i n ( i n [ 0 ] ) +A_roof� cos ( omega_roof� t ) ; / /
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ou t [ 1 ] = ( ph i ) ’ ’
e l s e

ou t [1]=� s i n ( i n [ 0 ] ) +A_roof� cos ( omega_roof� t ) ; / / ou t [ 1 ] = ( ph i ) ’ ’
}

void pendelum : : i n i t i a l i s e ( )
{

double m, l , omega ,A, v i s c o s i t y , phi_0 , v_0 , t_end ;
cout <<"Solving the differential eqation of the pendulum!\n" ;
cout <<"We have a pendulum with mass m, length l. Then we have aperiodi
 for
e with amplitude A and omega\n" ;
cout <<"Furthermore there is a vis
ous drag 
oeffi
ient.\n" ;
cout <<"The initial 
onditions at t=0 are phi_0 and v_0\n" ;
cout <<"Mass m: " ;
c in >>m;
cout <<"length l: " ;
c in >> l ;
cout <<"omega of the for
e: " ;
c in >>omega ;
cout <<"amplitude of the for
e: " ;
c in >>A;
cout <<"The value of the vis
ous drag 
onstant (vis
osity): " ;
c in >> v i s c o s i t y ;
cout <<"phi_0: " ;
c in >>y [ 0 ] ;
cout <<"v_0: " ;
c in >>y [ 1 ] ;
cout <<"Number of time steps or integration steps:" ;
c in >>n ;
cout <<"Final time steps as multiplum of pi:" ;
c in >> t_end ;
t_end � = acos (�1. ) ;
g = 9 . 81 ;
/ / We need t he f o l l o w i n g v a l u e s :
omega_0= s q r t ( g / ( (double ) l ) ) ; / / omega o f t he pendulum
i f ( v i s c o s i t y ) Q= m�g / ( ( double ) omega_0� v i s c o s i t y ) ;
e l s e Q= 0 ; / / c a l c u l a t i n g Q
A_roof =A / ( ( double )m�g ) ;
omega_roof=omega / ( (double ) omega_0 ) ;
d e l t a _ t _ r o o f =omega_0� t _end / ( (double ) n ) ; / / d e l t a _ t w i t h o u t

d imens ion
d e l t a _ t = t_end / ( (double ) n ) ;

}
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void pendelum : : e u l e r ( )
{ / / u s i ng s i m p l e eu le r�method

i n t i ;
double yout [ 2 ] , y_h [ 2 ] ;
double t _h ;

y_h [0 ]= y [ 0 ] ;
y_h [1 ]= y [ 1 ] ;
t _h =0;
o f s t r e a m f o u t ("euler.out" ) ;
f o u t . s e t f ( i o s : : s c i e n t i f i c ) ;
f o u t . p r e c i s i o n ( 20 ) ;
f o r ( i =1; i <=n ; i ++) {

d e r i v a t i v e s ( t_h , y_h , yout ) ;
yout [1 ]= y_h [1 ]+ yout [ 1 ]� d e l t a _ t _ r o o f ;
yout [0 ]= y_h [0 ]+ yout [ 0 ]� d e l t a _ t _ r o o f ;
/ / C a l c u l a t i o n w i th d i m e n s i o n l e s s v a l u e s
f ou t << i � d e l t a _ t <<"\t\t"<< yout [0] < <"\t\t"<<yout [1] < <"\n" ;
t _h += d e l t a _ t _ r o o f ;
y_h [1 ]= yout [ 1 ] ;
y_h [0 ]= yout [ 0 ] ;

}
f o u t . c l o s e ;

}

void pendelum : : e u l e r _c r om e r ( )
{

i n t i ;
double t _h ;
double yout [ 2 ] , y_h [ 2 ] ;

t _h =0;
y_h [0 ]= y [ 0 ] ; / / ph i
y_h [1 ]= y [ 1 ] ; / / v
o f s t r e a m f o u t ("e
.out" ) ;
f o u t . s e t f ( i o s : : s c i e n t i f i c ) ;
f o u t . p r e c i s i o n ( 20 ) ;
f o r ( i = 1 ; i <=n ; i ++) {

d e r i v a t i v e s ( t_h , y_h , yout ) ;
yout [1 ]= y_h [1 ]+ yout [ 1 ]� d e l t a _ t _ r o o f ;
yout [0 ]= y_h [0 ]+ yout [ 1 ]� d e l t a _ t _ r o o f ;
/ / The new c a l c u l a t e d v a l ue o f v i s used f o r c a l c u l a t i n g ph i
f ou t << i � d e l t a _ t <<"\t\t"<< yout [0] < <"\t\t"<<yout [1] < <"\n" ;
t _h += d e l t a _ t _ r o o f ;
y_h [0 ]= yout [ 0 ] ;
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y_h [1 ]= yout [ 1 ] ;
}
f o u t . c l o s e ;

}

void pendelum : : m idpo in t ( )
{

i n t i ;
double t _h ;
double yout [ 2 ] , y_h [ 2 ] ;

t _h =0;
y_h [0 ]= y [ 0 ] ; / / ph i
y_h [1 ]= y [ 1 ] ; / / v
o f s t r e a m f o u t ("midpoint.out" ) ;
f o u t . s e t f ( i o s : : s c i e n t i f i c ) ;
f o u t . p r e c i s i o n ( 20 ) ;
f o r ( i = 1 ; i <=n ; i ++) {

d e r i v a t i v e s ( t_h , y_h , yout ) ;
yout [1 ]= y_h [1 ]+ yout [ 1 ]� d e l t a _ t _ r o o f ;
yout [0 ]= y_h [ 0 ] + 0 . 5� ( yout [1 ]+ y_h [ 1 ] )� d e l t a _ t _ r o o f ;
fou t << i � d e l t a _ t <<"\t\t"<< yout [0] < <"\t\t"<<yout [1] < <"\n" ;
t _h += d e l t a _ t _ r o o f ;
y_h [0 ]= yout [ 0 ] ;
y_h [1 ]= yout [ 1 ] ;

}
f o u t . c l o s e ;

}

void pendelum : : e u l e r _ r i c h a r d s o n ( )
{

i n t i ;
double t_h , t_m ;
double yout [ 2 ] , y_h [ 2 ] , y_m [ 2 ] ;

t_h =0;
y_h [0 ]= y [ 0 ] ; / / ph i
y_h [1 ]= y [ 1 ] ; / / v
o f s t r e a m f o u t ("er.out" ) ;
f o u t . s e t f ( i o s : : s c i e n t i f i c ) ;
f o u t . p r e c i s i o n ( 20 ) ;
f o r ( i = 1 ; i <=n ; i ++) {

d e r i v a t i v e s ( t_h , y_h , yout ) ;
y_m[1 ]= y_h [ 1 ] + 0 . 5� yout [ 1 ]� d e l t a _ t _ r o o f ;
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y_m[0 ]= y_h [ 0 ] + 0 . 5� y_h [ 1 ]� d e l t a _ t _ r o o f ;
t_m= t_h +0.5� d e l t a _ t _ r o o f ;
d e r i v a t i v e s ( t_m , y_m , yout ) ;
yout [1 ]= y_h [1 ]+ yout [ 1 ]� d e l t a _ t _ r o o f ;
yout [0 ]= y_h [0 ]+ y_m [ 1 ]� d e l t a _ t _ r o o f ;
fou t << i � d e l t a _ t <<"\t\t"<< yout [0] < <"\t\t"<<yout [1] < <"\n" ;
t _h += d e l t a _ t _ r o o f ;
y_h [0 ]= yout [ 0 ] ;
y_h [1 ]= yout [ 1 ] ;

}
f o u t . c l o s e ;

}

void pendelum : : h a l f _ s t e p ( )
{

/�We are us i ng t he h a l f _ s t e p _ a l g o r i t h .
The a l go r i t hm i s no t s e l f�s t a r t i n g , so we c a l c u l a t e
v_1 / 2 by us i ng t he Eu le r a l go r i t hm .� /

i n t i ;
double t _h ;
double yout [ 2 ] , y_h [ 2 ] ;

t _h =0;
y_h [0 ]= y [ 0 ] ; / / ph i
y_h [1 ]= y [ 1 ] ; / / v
o f s t r e a m f o u t ("half_step.out" ) ;
f o u t . s e t f ( i o s : : s c i e n t i f i c ) ;
f o u t . p r e c i s i o n ( 20 ) ;
/� At f i r s t we have t o c a l c u l a t e v_1 / 2

For t h i s we use Eu le r ’ s method :
v_ ‘ 1 / 2 = v_0 + 1 / 2� a_0� d e l t a _ t _ r o o f
For c a l c u l a t i n g a_0 we have t o s t a r t d e r i v a t i v e s� /

d e r i v a t i v e s ( t_h , y_h , yout ) ;
yout [1 ]= y_h [ 1 ] + 0 . 5� yout [ 1 ]� d e l t a _ t _ r o o f ;
yout [0 ]= y_h [0 ]+ yout [ 1 ]� d e l t a _ t _ r o o f ;
fou t << d e l t a _ t <<"\t\t"<< yout [0] < <"\t\t"<< yout [1] < <"\n" ;
y_h [0 ]= yout [ 0 ] ;
y_h [1 ]= yout [ 1 ] ;
f o r ( i = 2 ; i <=n ; i ++) {

d e r i v a t i v e s ( t_h , y_h , yout ) ;
yout [1 ]= y_h [1 ]+ yout [ 1 ]� d e l t a _ t _ r o o f ;
yout [0 ]= y_h [0 ]+ yout [ 1 ]� d e l t a _ t _ r o o f ;
fou t << i � d e l t a _ t <<"\t\t"<< yout [0] < <"\t\t"<<yout [1] < <"\n" ;
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t _h += d e l t a _ t _ r o o f ;
y_h [0 ]= yout [ 0 ] ;
y_h [1 ]= yout [ 1 ] ;

}
f o u t . c l o s e ;

}

void pendelum : : rk2 ( )
{

/�We are us i ng t he second�order�Runge�Kutta�a l go r i t hm
We have t o c a l c u l a t e t he paramete rs k1 and k2 f o r v and phi ,
so we use t o a r r ay s k1 [ 2 ] and k2 [ 2 ] f o r t h i s
k1 [ 0 ] , k2 [ 0 ] are t he paramete rs f o r phi ,
k1 [ 1 ] , k2 [ 1 ] are t he paramete rs f o r v� /

i n t i ;
double t _h ;
double yout [ 2 ] , y_h [ 2 ] , k1 [ 2 ] , k2 [ 2 ] , y_k [ 2 ] ;

t _h =0;
y_h [0 ]= y [ 0 ] ; / / ph i
y_h [1 ]= y [ 1 ] ; / / v
o f s t r e a m f o u t ("rk2.out" ) ;
f o u t . s e t f ( i o s : : s c i e n t i f i c ) ;
f o u t . p r e c i s i o n ( 20 ) ;
f o r ( i = 1 ; i <=n ; i ++) {

/� C a l c u l a t i o n o f k1 � /
d e r i v a t i v e s ( t_h , y_h , yout ) ;
k1 [1 ]= yout [ 1 ]� d e l t a _ t _ r o o f ;
k1 [0 ]= yout [ 0 ]� d e l t a _ t _ r o o f ;
y_k [0 ]= y_h [0 ]+ k1 [ 0 ]� 0 . 5 ;
y_k [1 ]= y_h [1 ]+ k2 [ 1 ]� 0 . 5 ;
/� C a l c u l a t i o n o f k2 � /
d e r i v a t i v e s ( t_h + d e l t a _ t _ r o o f�0 . 5 , y_k , yout ) ;
k2 [1 ]= yout [ 1 ]� d e l t a _ t _ r o o f ;
k2 [0 ]= yout [ 0 ]� d e l t a _ t _ r o o f ;
yout [1 ]= y_h [1 ]+ k2 [ 1 ] ;
yout [0 ]= y_h [0 ]+ k2 [ 0 ] ;
f ou t << i � d e l t a _ t <<"\t\t"<< yout [0] < <"\t\t"<<yout [1] < <"\n" ;
t _h += d e l t a _ t _ r o o f ;
y_h [0 ]= yout [ 0 ] ;
y_h [1 ]= yout [ 1 ] ;

}
f o u t . c l o s e ;
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}

void pendelum : : r k 4 _ s t e p (double t , double � yin , double � yout ,double
d e l t a _ t )

{
/�

The f u n c t i o n c a l c u l a t e s one s t e p o f f ou r t h�order�runge�k u t t a�
method

We w i l l need i t f o r t he normal f ou r t h�order�Runge�Kutta�method and
f o r RK�method w i th a d a p t i v e s t e p s i z e c o n t r o l

The f u n c t i o n c a l c u l a t e s t he v a l ue o f y ( t + d e l t a _ t ) us i ng f our t h �
order�RK�method

I npu t : t ime t and t he s t e p s i z e d e l t a _ t , y i n ( v a l u e s o f ph i andv
a t t ime t )

Output : you t ( v a l u e s o f ph i and v a t t ime t+d e l t a _ t )� /
double k1 [ 2 ] , k2 [ 2 ] , k3 [ 2 ] , k4 [ 2 ] , y_k [ 2 ] ;
/ / C a l c u l a t i o n o f k1
d e r i v a t i v e s ( t , yin , yout ) ;
k1 [1 ]= yout [ 1 ]� d e l t a _ t ;
k1 [0 ]= yout [ 0 ]� d e l t a _ t ;
y_k [0 ]= y in [0 ]+ k1 [ 0 ] � 0 . 5 ;
y_k [1 ]= y in [1 ]+ k1 [ 1 ] � 0 . 5 ;
/� C a l c u l a t i o n o f k2 � /
d e r i v a t i v e s ( t + d e l t a _ t�0 . 5 , y_k , yout ) ;
k2 [1 ]= yout [ 1 ]� d e l t a _ t ;
k2 [0 ]= yout [ 0 ]� d e l t a _ t ;
y_k [0 ]= y in [0 ]+ k2 [ 0 ] � 0 . 5 ;
y_k [1 ]= y in [1 ]+ k2 [ 1 ] � 0 . 5 ;
/� C a l c u l a t i o n o f k3 � /
d e r i v a t i v e s ( t + d e l t a _ t�0 . 5 , y_k , yout ) ;
k3 [1 ]= yout [ 1 ]� d e l t a _ t ;
k3 [0 ]= yout [ 0 ]� d e l t a _ t ;
y_k [0 ]= y in [0 ]+ k3 [ 0 ] ;
y_k [1 ]= y in [1 ]+ k3 [ 1 ] ;
/� C a l c u l a t i o n o f k4 � /
d e r i v a t i v e s ( t + d e l t a _ t , y_k , yout ) ;
k4 [1 ]= yout [ 1 ]� d e l t a _ t ;
k4 [0 ]= yout [ 0 ]� d e l t a _ t ;
/� C a l c u l a t i o n o f new v a l u e s o f ph i and v� /
yout [0 ]= y in [ 0 ] + 1 . 0 / 6 . 0� ( k1 [0 ]+2� k2 [0 ]+2� k3 [0 ]+ k4 [ 0 ] ) ;
yout [1 ]= y in [ 1 ] + 1 . 0 / 6 . 0� ( k1 [1 ]+2� k2 [1 ]+2� k3 [1 ]+ k4 [ 1 ] ) ;

}
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void pendelum : : rk4 ( )
{

/�We are us i ng t he f ou r t h�order�Runge�Kutta�a l go r i t hm
We have t o c a l c u l a t e t he paramete rs k1 , k2 , k3 , k4 f o r v and phi,
so we use t o a r r ay s k1 [ 2 ] and k2 [ 2 ] f o r t h i s
k1 [ 0 ] , k2 [ 0 ] are t he paramete rs f o r phi ,
k1 [ 1 ] , k2 [ 1 ] are t he paramete rs f o r v� /

i n t i ;
double t _h ;
double yout [ 2 ] , y_h [ 2 ] ; / / k1 [ 2 ] , k2 [ 2 ] , k3 [ 2 ] , k4 [ 2 ] , y_k [ 2 ] ;

t _h =0;
y_h [0 ]= y [ 0 ] ; / / ph i
y_h [1 ]= y [ 1 ] ; / / v
o f s t r e a m f o u t ("rk4.out" ) ;
f o u t . s e t f ( i o s : : s c i e n t i f i c ) ;
f o u t . p r e c i s i o n ( 20 ) ;
f o r ( i = 1 ; i <=n ; i ++) {

r k 4 _ s t e p ( t_h , y_h , yout , d e l t a _ t _ r o o f ) ;
f ou t << i � d e l t a _ t <<"\t\t"<< yout [0] < <"\t\t"<<yout [1] < <"\n" ;
t _h += d e l t a _ t _ r o o f ;
y_h [0 ]= yout [ 0 ] ;
y_h [1 ]= yout [ 1 ] ;

}
f o u t . c l o s e ;

}

void pendelum : : asc ( )
{

/�
We are us i ng t he Runge�Kutta�a l go r i t hm w i th a d a p t i v e s t e p s i z e

c o n t r o l
accord ing t o " Numer ica l Rec ipes i n C " , S . 5 7 4 f f .

At f i r s t we c a l c u l a t e y ( x+h ) us i ng rk4�method => y1
Then we c a l c u l a t e y ( x+h ) us i ng two t i m e s rk4�method a t x+h / 2 and x

+h => y2

The d i f f e r e n c e between t h e s e v a l u e s i s c a l l e d " d e l t a " I f i t is
s m a l l e r than a g i v e n va lue ,
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we c a l c u l a t e y ( x+h ) by y2 + ( d e l t a ) / 1 5 ( page 5 7 5 , Numer ica l R. )

I f d e l t a i s no t s m a l l e r than . . . we c a l c u l a t e a new s t e p s i z e usi ng
h_new =( S a f e t y )�h_old � ( . . . / d e l t a ) ^ ( 0 . 2 5 ) where " S a f e t y " i s c o n s t a n t

( page 5 7 7 N . R . )
and s t a r t aga in w i th c a l c u l a t i n g y ( x+h ) . . .� /

i n t i ;
double t_h , h_a l t , h_neu , hh , errmax ;
double yout [ 2 ] , y_h [ 2 ] , y_m [ 2 ] , y1 [ 2 ] , y2 [ 2 ] , d e l t a [ 2 ] , y s c a l [ 2 ];

cons t double eps =1.0 e�6;
cons t double s a f e t y = 0 . 9 ;
cons t double e r r c o n =6.0 e�4;
cons t double t i n y =1.0 e�30;

t_h =0;
y_h [0 ]= y [ 0 ] ; / / ph i
y_h [1 ]= y [ 1 ] ; / / v
h_neu= d e l t a _ t _ r o o f ;
o f s t r e a m f o u t ("as
.out" ) ;
f o u t . s e t f ( i o s : : s c i e n t i f i c ) ;
f o u t . p r e c i s i o n ( 20 ) ;
f o r ( i =0; i <=n ; i ++) {

/� The e r r o r i s s c a l e d a g a i n s t y s c a l
We use a y s c a l o f t he form y s c a l = f abs ( y [ i ] ) + f abs ( h�

d e r i v a t i v e s [ i ] )
(N . R . page 5 6 7 )� /

d e r i v a t i v e s ( t_h , y_h , yout ) ;
y s c a l [0 ]= f a bs ( y [ 0 ] ) + f a bs ( h_neu� yout [ 0 ] ) + t i n y ;
y s c a l [1 ]= f a bs ( y [ 1 ] ) + f a bs ( h_neu� yout [ 1 ] ) + t i n y ;
/� t he do�whi le�l oop i s used u n t i l t he � /
do{

/� C a l c u l a t i n g y2 by two h a l f s t e p s� /
h _ a l t =h_neu ;
hh= h _ a l t�0 . 5 ;
r k 4 _ s t e p ( t_h , y_h , y_m , hh ) ;
r k 4 _ s t e p ( t_h +hh , y_m , y2 , hh ) ;
/� C a l c u l a t i n g y1 by one normal s t e p� /
r k 4 _ s t e p ( t_h , y_h , y1 , h _ a l t ) ;
/� Now we have two v a l u e s f o r ph i and v a t t he t ime t_h + h i n

y2 and y1
We can now c a l c u l a t e t he d e l t a f o r ph i and v� /
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d e l t a [0 ]= f a bs ( y1 [0]�y2 [ 0 ] ) ;
d e l t a [1 ]= f a bs ( y1 [1]�y2 [ 1 ] ) ;
errmax =( d e l t a [ 0 ] / y s c a l [ 0 ] > d e l t a [ 1 ] / y s c a l [ 1 ] ? d e l t a [ 0] / y s c a l

[ 0 ] : d e l t a [ 1 ] / y s c a l [ 1 ] ) ;

/�We s c a l e d e l t a a g a i n s t t he c o n s t a n t y s c a l
Then we t ak e t he b i g g e s t one and c a l l i t errmax� /

errmax =(double ) errmax / eps ;
/�We d i v i d e errmax by eps and have on ly � /
h_neu = s a f e t y� h _ a l t�exp (�0.25� l og ( errmax ) ) ;

} whi le ( errmax > 1 . 0 ) ;
/�Now we are o u t s i d e t he do�whi le�l oop and have a d e l t a which i s

s m a l l enough
So we can c a l c u l a t e t he new v a l u e s o f ph i and v� /

yout [0 ]= y_h [0 ]+ d e l t a [ 0 ] / 1 5 . 0 ;
yout [1 ]= y_h [1 ]+ d e l t a [ 1 ] / 1 5 . 0 ;
fou t <<(double ) ( t_h + h _ a l t ) / omega_0 <<"\t\t"<< yout [0] < <"\t\t"<< yout

[1] < <"\n" ;
/ / C a l c u l a t i n g o f t he new s t e p s i z e
h_neu =( errmax > e r r c o n ? s a f e t y� h _ a l t�exp (�0.20� l og ( errmax ) )

: 4 . 0� h _ a l t ) ;
y_h [0 ]= yout [ 0 ] ;
y_h [1 ]= yout [ 1 ] ;
t _h +=h_neu ;

}
}

i n t main ( )
{

pendelum t e s t c a s e ;
t e s t c a s e . i n i t i a l i s e ( ) ;
t e s t c a s e . e u l e r ( ) ;
t e s t c a s e . e u l e r _c r om e r ( ) ;
t e s t c a s e . m idpo in t ( ) ;
t e s t c a s e . e u l e r _ r i c h a r d s o n ( ) ;
t e s t c a s e . h a l f _ s t e p ( ) ;
t e s t c a s e . rk2 ( ) ;
t e s t c a s e . rk4 ( ) ;
re tu rn 0 ;

} / / end o f main f u n c t i o n
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14.8 Physics project: Period doubling and chaos

in preparation
In Fig. ?? we have kept the same constants as in the previous section except forÂ which we

-25-20-15-10-50
510
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�

t=2�
Figure 14.10: Phase-space curve withQ = 2, !̂ = 2=3 andÂ = 1:52. The mass of the pendulum
is set equal to1 kg and its lengthl = 1 m. The inital velocity iŝv0 = 0 and�0 = 0:3.

now set toÂ = 1:52.

14.9 Physics Project: studies of neutron stars

In the pendulum example we rewrote the equations as two differential equations in terms of so-
called dimensionless variables. One should always do that.There are at least two good reasons
for doing this.� By rewriting the equations as dimensionless ones, the program will most likely be easier to

read, with hopefully a better possibility of spotting eventual errors. In addtion, the various
constants which are pulled out of the equations in the process of rendering the equations
dimensionless, are reintroduced at the end of the calculation. If one of these constants is
not correctly defined, it is easier to spot an eventual error.� In many physics applications, variables which enter a differential equation, may differ by
orders of magnitude. If we were to insist on not using dimensionless quantities, such
differences can cause serious problems with respect to lossof numerical precision.
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An example which demonstrates these features is the set of equations for gravitational equi-
librium of a neutron star. We will not solve these equations numerically here, rather, we will
limit ourselves to merely rewriting these equations in a dimensionless form.

14.9.1 The equations for a neutron star

The discovery of the neutron by Chadwick in 1932 prompted Landau to predict the existence
of neutron stars. The birth of such stars in supernovae explosions was suggested by Baade
and Zwicky 1934. First theoretical neutron star calculations were performed by Tolman, Op-
penheimer and Volkoff in 1939 and Wheeler around 1960. Bell and Hewish were the first to
discover a neutron star in 1967 as aradio pulsar. The discovery of the rapidly rotating Crab pul-
sar ( rapidly rotating neutron star) in the remnant of the Crab supernova observed by the chinese
in 1054 A.D. confirmed the link to supernovae. Radio pulsars are rapidly rotating with periods
in the range0:033 s� P � 4:0 s. They are believed to be powered by rotational energy loss
and are rapidly spinning down with period derivatives of order _P � 10�12 � 10�16. Their high
magnetic fieldB leads to dipole magnetic braking radiation proportional tothe magnetic field
squared. One estimates magnetic fields of the order ofB � 1011 � 1013 G. The total number of
pulsars discovered so far has just exceeded 1000 before the turn of the millenium and the number
is increasing rapidly.

The physics of compact objects like neutron stars offers an intriguing interplay between nu-
clear processes and astrophysical observables. Neutron stars exhibit conditions far from those
encountered on earth; typically, expected densities� of a neutron star interior are of the order of103 or more times the density�d � 4 � 1011 g/cm3 at ’neutron drip’, the density at which nuclei
begin to dissolve and merge together. Thus, the determination of an equation of state (EoS) for
dense matter is essential to calculations of neutron star properties. The EoS determines prop-
erties such as the mass range, the mass-radius relationship, the crust thickness and the cooling
rate. The same EoS is also crucial in calculating the energy released in a supernova explosion.
Clearly, the relevant degrees of freedom will not be the samein the crust region of a neutron
star, where the density is much smaller than the saturation density of nuclear matter, and in the
center of the star, where density is so high that models basedsolely on interacting nucleons are
questionable. Neutron star models including various so-called realistic equations of state result
in the following general picture of the interior of a neutronstar. The surface region, with typical
densities� < 106 g/cm3, is a region in which temperatures and magnetic fields may affect the
equation of state. The outer crust for106 g/cm3 < � < 4 � 1011g/cm3 is a solid region where a
Coulomb lattice of heavy nuclei coexist in�-equilibrium with a relativistic degenerate electron
gas. The inner crust for4 � 1011 g/cm3 < � < 2 � 1014g/cm3 consists of a lattice of neutron-rich
nuclei together with a superfluid neutron gas and an electrongas. The neutron liquid for2 � 1014
g/cm3 < � < �1015g/cm3 contains mainly superfluid neutrons with a smaller concentration of
superconducting protons and normal electrons. At higher densities, typically2� 3 times nuclear
matter saturation density, interesting phase transitionsfrom a phase with just nucleonic degrees
of freedom to quark matter may take place. Furthermore, one may have a mixed phase of quark
and nuclear matter, kaon or pion condensates, hyperonic matter, strong magnetic fields in young
stars etc.



290 CHAPTER 14. DIFFERENTIAL EQUATIONS

14.9.2 Equilibrium equations

If the star is in thermal equilibrium, the gravitational force on every element of volume will be
balanced by a force due to the spacial variation of the pressureP . The pressure is defined by the
equation of state (EoS), recall e.g., the ideal gasP = NkBT . The gravitational force which acts
on an element of volume at a distancer is given byFGrav = �Gmr2 �=
2; (14.88)

whereG is the gravitational constant,�(r) is the mass density andm(r) is the total mass inside
a radiusr. The latter is given by m(r) = 4�
2 Z r0 �(r0)r02dr0 (14.89)

which gives rise to a differential equation for mass and densitydmdr = 4�r2�(r)=
2: (14.90)

When the star is in equilibrium we havedPdr = �Gm(r)r2 �(r)=
2: (14.91)

The last equations give us two coupled first-order differential equations which determine the
structure of a neutron star when the EoS is known.

The initial conditions are dictated by the mass being zero atthe center of the star, i.e., whenr = 0, we havem(r = 0) = 0. The other condition is that the pressure vanishes at the surface
of the star. This means that at the point where we haveP = 0 in the solution of the differential
equations, we get the total radiusR of the star and the total massm(r = R). The mass-energy
density whenr = 0 is called the central density�s. Since both the final massM and total radiusR will depend on�s, a variation of this quantity will allow us to study stars with different masses
and radii.

14.9.3 Dimensionless equations

When we now attempt the numerical solution, we need however to rescale the equations so
that we deal with dimensionless quantities only. To understand why, consider the value of the
gravitational constantG and the possible final massm(r = R) = MR. The latter is normally of
the order of some solar massesM�, with M� = 1:989 � 1030 Kg. If we wish to translate the
latter into units of MeV/c2, we will have thatMR � 1060 MeV/c2. The gravitational constant is
in units ofG = 6:67� 10�45� �h
 (MeV=
2)�2. It is then easy to see that including the relevant
values for these quantities in our equations will most likely yield large numerical roundoff errors
when we add a huge numberdPdr to a smaller numberP in order to obtain the new pressure. We
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Quantity Units[P ℄ MeVfm�3[�℄ MeVfm�3[n℄ fm�3[m℄ MeVc�2M� 1:989� 1030 Kg= 1:1157467� 1060 MeVc�2
1 Kg = 1030=1:78266270D0 MeVc�2[r℄ mG �h
6:67259� 10�45 MeV�2c�4�h
 197.327 MeVfm

list here the units of the various quantities and in case of physical constants, also their values. A
bracketed symbol like[P ℄ stands for the unit of the quantity inside the brackets.

We introduce therefore dimensionless quantities for the radiusr = r=R0, mass-energy den-
sity � = �=�s, pressureP = P=�s and massm = m=M0.

The constantsM0 andR0 can be determined from the requirements that the equations for dmdr
and dPdr should be dimensionless. This givesdM0mdR0r = 4�R20r2�s�; (14.92)

yielding dmdr = 4�R30r2�s�=M0: (14.93)

If these equations should be dimensionless we must demand that4�R30�s=M0 = 1: (14.94)

Correspondingly, we have for the pressure equationd�sPdR0r = �GM0m�s�R20r2 (14.95)

and since this equation should also be dimensionless, we will haveGM0=R0 = 1: (14.96)

This means that the constantsR0 andM0 which will render the equations dimensionless are
given by R0 = 1p�sG4� ; (14.97)
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and M0 = 4��s(p�sG4�)3 : (14.98)

However, since we would like to have the radius expressed in units of 10 km, we should multiplyR0 by 10�19, since 1 fm =10�15 m. Similarly,M0 will come in units of MeV=c2, and it is
convenient therefore to divide it by the mass of the sun and express the total mass in terms of
solar massesM�.

The differential equations read thendPdr = �m�r2 ; dmdr = r2�: (14.99)

14.9.4 Program and selected results

in preparation

14.10 Physics project: Systems of linear differential equations

in preparation



Chapter 15

Two point boundary value problems.

15.1 Introduction

This chapter serves as an intermediate step to the next chapter on partial differential equations.
Partial differential equations involve both boundary conditions and differential equations with
functions depending on more than one variable. Here we focuson the problem of boundary
conditions with just one variable. When diffential equations are required to satify boundary
conditions at more than one value of the independent variable, the resulting problem is called
a two point boundary value problem. As the terminology indicates, the most common case by
far is when boundary conditions are supposed to be satified attwo points - usually the starting
and ending values of the integration. The Schrödinger equation is an important example of such
a case. Here the eigenfunctions are restricted to be finite everywhere (in particular atr = 0)
and for bound states the functions must go to zero at infinity.In this chapter we will discuss the
solution of the one-particle Schödinger equation and applythe method to the hydrogen atom.

15.2 Schrödinger equation

We discuss the numerical solution of the Schrödinger equation for the case of a particle with
massm moving in a spherical symmetric potential.

The initial eigenvalue equation readsbH (~r) = (bT+ bV) (~r) = E (~r): (15.1)

In detail this gives �� �h22mr2 + V (r)� (~r) = E (~r): (15.2)

The eigenfunction in spherical coordinates takes the form (~r) = R(r)Y ml (�; �); (15.3)
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and the radial partR(r) is a solution to� �h22m � 1r2 ddrr2 ddr � l(l + 1)r2 �+ V (r)R(r) = ER(r): (15.4)

Then we substituteR(r) = (1=r)u(r) and obtain� �h22m d2dr2u(r) + �V (r) + l(l + 1)r2 �h22m� u(r) = Eu(r): (15.5)

We introduce a dimensionless variable� = (1=�)r where� is a constant with dimension length
and get � �h22m�2 d2d�2u(r) + �V (�) + l(l + 1)�2 �h22m�2�u(�) = Eu(�): (15.6)

In our case we are interested in attractive potentialsV (r) = �V0f(r); (15.7)

whereV0 > 0 and analyze bound states whereE < 0. The final equation can be written asd2d�2u(�) + k(�)u(�) = 0; (15.8)

where k(�) = 
 �f(�)� 1
 l(l + 1)�2 � ��
 = 2m�2V0�h2� = jEjV0 (15.9)

15.3 Numerov’s method

Eq. (15.8) is a second order differential equation without any first order derivatives. Numerov’s
method is designed to solve such an equation numerically, achieving an extra order of precision.

Let us start with the Taylor expansion of the wave functionu(�+ h) = u(�) + hu(1)(�) + h22! u(2)(�) + h33! u(3)(�) + h44! u(4)(�) + � � � (15.10)

whereu(n)(�) is a shorthand notation for the nth derivativedn=d�n. Because the corresponding
Taylor expansion ofu(�� h) has odd powers ofh appearing with negative signs, all odd powers
cancel when we addu(�+ h) andu(�� h)u(�+ h) + u(�� h) � 2u(�) + h2u(2)(�) + h412u(4)(�) +O(h6): (15.11)
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Then we obtainu(2)(�) � u(�+ h) + u(�� h)� 2u(�)h2 � h212u(4)(�) +O(h4): (15.12)

To eliminate the fourth-derivative term we apply the operator (1+ h212 d2d�2 ) to Eq. (15.8) and obtain
a modified equationh2u(2)(�) + h212u(4)(�) + k(�)u(�) + h212 d2d�2 (k(�)u(�)) � 0: (15.13)

In this expression theu(4) terms cancel. To treat the general� dependence ofk(�) we approxi-
mate the second derivative ofk(�)u(�) byd2(k(�)u(�))d�2 � (k(�+ h)u(�+ h) + k(�)u(�)) + (k(�� h)u(�� h) + k(�)u(�))h2 ; (15.14)

and the following numerical algorithm is obtainedu(i+2) � 2 �1� 512h2k(i+1)u(i+1)�� �1 + 512h2kiui�1 + h212k(i+2) (15.15)

where� = ih, ki = k(ih) andui = u(ih) etc.

15.4 Schrödinger equation for a spherical box potential

Let us now specify the spherical symmetric potential tof(r) = � 1�0 for
r � ar > a (15.16)

and choose� = a. Then k(�) = 
( 1� �� 1
 l(l+1)�2���� 1
 l(l+1)�2 for
r � ar > a (15.17)

The eigenfunctions in Eq. (15.2) are subject to conditions which limit the possible solutions. Of
importance for the present example is thatu(~r) must be finite everywhere and

R ju(~r)j2d� must
be finite. The last condition means thatrR(r) �! 0 for r �! 1. These conditions imply thatu(r) must be finite atr = 0 andu(r) �! 0 for r �!1.

15.4.1 Analysis ofu(�) at � = 0
For small� Eq. (15.8) reduces tod2d�2u(�)� l(l + 1)�2 u(�) = 0; (15.18)
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with solutionsu(�) = �l+1 or u(�) = ��l. Since the final solution must be finite everywhere we
get the condition for our numerical solutionu(�) = �l+1 for small� (15.19)

15.4.2 Analysis ofu(�) for � �!1
For large� Eq. (15.8) reduces tod2d�2u(�)� 
�u(�) = 0 
 > 0; (15.20)

with solutionsu(�) = exp(�
��) and the condition for large�means that our numerical solution
must satisfy u(�) = e�
�� for large� (15.21)

15.5 Numerical procedure

The eigenvalue problem in Eq. (15.8) can be solved by the so-called shooting methods. In order
to find a bound state we start integrating, with a trial negative value for the energy, from small
values of the variable�, usually zero, and up to some large value of�. As long as the potential
is significantly different from zero the function oscillates. Outside the range of the potential the
function will approach an exponential form. If we have chosen a correct eigenvalue the function
decreases exponetially asu(�) = e�
��. However, due to numerical inaccuracy the solution will
contain small admixtures of the undesireable exponential growing functionu(�) = e+
��. The
final solution will then become unstable. Therefore, it is better to generate two solutions, with
one starting from small values of� and integrate outwards to some matching point� = �m.
We call that functionu<(�). The next solutionu>(�) is then obtained by integrating from some
large value� where the potential is of no importance, and inwards to the same matching point�m. Due to the quantum mechanical requirements the logarithmic derivative at the matching
point�m should be well defined. We obtain the following conditiondd�u<(�)u<(�) = dd�u>(�)u>(�) at � = �m: (15.22)

We can modify this expression by normalizing the functionu<u<(�m) = Cu>u<(�m). Then
Eq. (15.22) becomes dd�u<(�) = dd�u>(�) at � = �m (15.23)

For an arbitary value of the eigenvalue Eq. (15.22) will not be satisfied. Thus the numerical
procedure will be to iterate for different eigenvalues until Eq. (15.23) is satisfied.
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We can calculate the first order derivatives bydd�u<(�m) � u<(�m)� u<(�m � h)hdd�u>(�m) � u>(�m + h)� u>(�m)h (15.24)

Thus the criterium for a proper eigenfunction will bef = u<(�m � h)� u>(�m + h) (15.25)

15.6 Algorithm for solving Schrödinger’s equation

of the solution. Here we outline the solution of Schrödinger’s equation as a common differential
equation but with boundary conditions. The method combinesshooting and matching. The
shooting part involves a guess on the exact eigenvalue. Thistrial value is then combined with a
standard method for root searching, e.g., the secant or bisection methods discussed in chapter 8.

The algorithm could then take the following form� Initialise the problem by choosing minimum and maximum values for the energy,Emin andEmax, the maximum number of iterationsmax_iter and the desired numerical precision.� Search then for the roots of the functionf(E), where the root(s) is(are) in the intervalE 2 [Emin; Emax℄ using e.g., the bisection method. The pseudocode for such anapproach
can be written as

do {
i ++;
e = ( e_min+e_max ) / 2 . ; /� b i s e c t i o n � /
i f ( f ( e )� f ( e_max ) > 0 ) {

e_max = e ; /� change search i n t e r v a l� /
}
e l s e {

e_min = e ;
}

} whi le ( ( f a bs ( f ( e ) > c o n v e r g e n c e _ t e s t ) ! ! ( i <=
m a x _ i t e r a t i o n s ) )

The use of a root-searching method forms the shooting part ofthe algorithm. We have
however not yet specified the matching part.� The matching part is given by the functionf(e) which receives as argument the present
value ofE. This function forms the core of the method and is based on an integration of
Schrödinger’s equation from� = 0 and� =1. If our choice ofE satisfies Eq. (15.25) we
have a solution. The matching code is given below.
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The functionf(E) above receives as input a guess for the energy. In the versionimplemented
below, we use the standard three-point formula for the second derivative, namelyf 000 � fh � 2f0 + f�hh2 :
We leave it as an exercise to the reader to implement Numerov’s algorithm.

/ /
/ / The f u n c t i o n
/ / f ( )
/ / c a l c u l a t e s t he wave f u n c t i o n a t f i x e d energy e i g e n v a l u e .
/ /

void f ( double s tep , i n t max_step , double energy , double �w , double �wf
)

{
i n t loop , loop_1 , match ;
double cons t s q r t _ p i = 1 . 7724538509 1 ;
double fac , wwf , norm ;

/ / add ing t he energy guess t o t he ar ray c o n t a i n i n g t he p o t e n ti a l
f o r ( loop = 0 ; loop <= max_step ; loop + + ) {

w[ loop ] = ( w[ loop ] � energy ) � s t e p � s t e p + 2 ;
}

/ / i n t e g r a t i n g from l a r ge r�v a l u e s
wf [ max_step ] = 0 . 0 ;
wf [ max_step � 1 ] = 0 . 5 � s t e p � s t e p ;

/ / search f o r match ing p o i n t
f o r ( loop = max_step � 2 ; loop > 0 ; loop��) {

wf [ loop ] = wf [ loop + 1 ] � w[ loop + 1 ] � wf [ loop + 2 ] ;
i f ( wf [ loop ] < = wf [ loop + 1 ] ) break ;

}
match = loop + 1 ;
wwf = wf [ match ] ;

/ / s t a r t i n t e g r a t i n g up t o match ing p o i n t from r =0
wf [ 0 ] = 0 . 0 ;
wf [ 1 ] = 0 . 5 � s t e p � s t e p ;
f o r ( loop = 2 ; loop <= match ; loop ++) {

wf [ loop ] = wf [ loop �1 ] � w[ loop � 1 ] � wf [ loop � 2 ] ;
i f ( f a bs ( wf [ loop ] ) > INFINITY ) {

f o r ( loop_1 = 0 ; loop_1 <= loop ; loop_1 ++) {
wf [ loop_1 ] / = INFINITY ;

}
}

}
/ / now implement t he t e s t o f Eq . ( 1 0 . 2 5 )

re tu rn f a bs ( wf [ match�1]�wf [ match +1 ] ) ;
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} / / End : f u n t i o n p l o t ( )





Chapter 16

Partial differential equations

16.1 Introduction

In the Natural Sciences we often encounter problems with many variables constrained by bound-
ary conditions and initial values. Many of these problems can be modelled as partial differential
equations. One case which arises in many situations is the so-called wave equation whose one-
dimensional form reads �2U�x2 = A�2U�t2 ; (16.1)

whereA is a constant. Familiar situations which this equation can model are waves on a string,
pressure waves, waves on the surface of a fjord or a lake, electromagnetic waves and sound waves
to mention a few. For e.g., electromagnetic waves the constantA = 
2, with 
 the speed of light.
It is rather straightforward to extend this equation to two or three dimension. In two dimensions
we have �2U�x2 + �2U�y2 = A�2U�t2 ; (16.2)

In Chapter 10 we saw another case of a partial differential equation widely used in the Nat-
ural Sciences, namely the diffusion equation whose one-dimensional version we derived from a
Markovian random walk. It reads �2U�x2 = A�U�t ; (16.3)

andA is in this case called the diffusion constant. It can be used to model a wide selection of
diffusion processes, from molecules to the diffusion of heat in a given material.

Another familiar equation from electrostatics is Laplace’s equation, which looks similar to
the wave equation in Eq. (16.1) except that we have setA = 0�2U�x2 + �2U�y2 = 0; (16.4)

or if we have a finite electric charge represented by a charge density�(x) we have the familiar
Poisson equation �2U�x2 + �2U�y2 = �4��(x): (16.5)
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However, although parts of these equation look similar, we will see below that different solu-
tion strategies apply. In this chapter we focus essentiallyon so-called finite difference schemes
and explicit and implicit methods. The more advanced topic of finite element methods is rele-
gated to the part on advanced topics.

A general partial differential equation in2 + 1-dimensions (with2 standing for the spatial
coordinatesx andy and1 for time) readsA(x; y)�2U�x2 +B(x; y) �2U�x�y + C(x; y)�2U�y2 = F (x; y; U; �U�x ; �U�y ); (16.6)

and if we set B = C = 0; (16.7)

we recover the1+1-dimensional diffusion equation which is an example of a so-called parabolic
partial differential equation. With B = 0; AC < 0 (16.8)

we get the2 + 1-dim wave equation which is an example of a so-called hyperolic PDE, where
more generally we haveB2 > AC. ForB2 < AC we obtain a so-called ellyptic PDE, with the
Laplace equation in Eq. (16.4) as one of the classical examples. These equations can all be easily
extended to non-linear partial differential equations and3 + 1 dimensional cases.

The aim of this chapter is to present some of the most familiardifference methods and their
eventual implementations.

16.2 Diffusion equation

The let us assume that the diffusion of heat through some material is proportional with the tem-
perature gradientT (x; t) and using conservation of energy we arrive at the diffusion equation�C�r2T (x; t) = �T (x; t)�t (16.9)

whereC is the specific heat and� the density of the material. Here we let the density be repre-
sented by a constant, but there is no problem introducing an explicit spatial dependence, viz.,�C�(x; t)r2T (x; t) = �T (x; t)�t : (16.10)

Setting all constants equal to the diffusion constantD, i.e.,D = C�� ; (16.11)

we arrive at r2T (x; t) = D�T (x; t)�t : (16.12)
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Specializing to the1 + 1-dimensional case we have�2T (x; t)�x2 = D�T (x; t)�t : (16.13)

We note that the dimension ofD is time/length2. Introducing the dimensional variables�x̂ = x
we get �2T (x; t)�2�x̂2 = D�T (x; t)�t ; (16.14)

and since� is just a constant we could define�2D = 1 or use the last expression to define a
dimensionless time-variablêt. This yields a simplified diffusion equation�2T (x̂; t̂)�x̂2 = �T (x̂; t̂)�t̂ : (16.15)

It is now a partial differential equation in terms of dimensionless variables. In the discussion
below, we will however, for the sake of notational simplicity replacêx! x andt̂! t. Moreover,
the solution to1 + 1-dimensional partial differential equation is replaced byT (x̂; t̂)! u(x; t).
16.2.1 Explicit scheme

In one dimension we have thus the following equationr2u(x; t) = �u(x; t)�t ; (16.16)

or uxx = ut; (16.17)

with initial conditions, i.e., the conditions att = 0,u(x; 0) = g(x) 0 � x � L (16.18)

with L = 1 the length of thex-region of interest. The boundary conditions areu(0; t) = a(t) t � 0; (16.19)

and u(L; t) = b(t) t � 0; (16.20)

wherea(t) andb(t) are two functions which depend on time only, whileg(x) depends only on
the positionx. Our next step is to find a numerical algorithm for solving this equation. Here
we recur to our familiar equal-step methods discussed in Chapter 3 and introduce different step
lengths for the space-variablex and timet through the step length forx�x = 1n+ 1 (16.21)
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and the time step length�t. The position afteri steps and time at time-stepj are now given by� tj = j�t j � 0xi = i�x 1 � i � n+ 1 (16.22)

If we then use standard approximations for the derivatives we obtainut � u(x; t+�t)� u(x; t)�t = u(xi; tj +�t)� u(xi; tj)�t (16.23)

with a local approximation errorO(�t) anduxx � u(x+�x; t)� 2u(x; t) + u(x��x; t)�x2 ; (16.24)

or uxx � u(xi +�x; tj)� 2u(xi; tj) + u(xi ��x; tj)�x2 ; (16.25)

with a local approximation errorO(�x2). Our approximation is to higher order in the coordi-
nate space. This can be justified since in most cases it is the spatial dependence which causes
numerical problems. These equations can be further simplified asut � ui;j+1 � ui;j�t ; (16.26)

and uxx � ui+i;j � 2ui;j + ui�1;j�x2 : (16.27)

The one-dimensional diffusion equation can then be rewritten in its discretized version asui;j+1 � ui;j�t = ui+i;j � 2ui;j + ui�1;j�x2 : (16.28)

Defining� = �t=�x2 results in the explicit schemeui;j+1 = �ui�1;j + (1� 2�)ui;j + �ui+1;j: (16.29)

Since all the discretized initial values ui;0 = g(xi); (16.30)

are known, then after one time-step the only unknown quantity is ui;1 which is given byui;1 = �ui�1;0 + (1� 2�)ui;0 + �ui+1;0 = �g(xi�1) + (1� 2�)g(xi) + �g(xi+1): (16.31)

We can then obtainui;2 using the previously calculated valuesui;1 and the boundary conditionsa(t) andb(t). This algorithm results in a so-called explicit scheme, since the next functionsui;j is
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a(t)
t

g(x)

b(t)

x
ui�1;j ui;jui;j+1 ui+1;j

-

6

Figure 16.1: Discretization of the integration area used inthe solution of the1 + 1-dimensional
diffusion equation.
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explicitely given by Eq. (16.29). The procedure is depictedin Fig. 16.2.1. The explicit scheme,
although being rather simple to implement has a very weak stability condition given by�t=�x2 � 1=2 (16.32)

We will now specialize to the casea(t) = b(t) = 0 which results inu0;j = un+1;j = 0. We
can then reformulate our partial differential equation through the vectorVj at the timetj = j�tVj = 0BB� u1;ju2;j: : :un;j 1CCA : (16.33)

This results in a matrix-vector multiplicationVj+1 = ÂVj (16.34)

with the matrixÂ given byÂ = 0BB� 1� 2� � 0 0 : : :� 1� 2� � 0 : : :: : : : : : : : : : : :0 : : : 0 : : : � 1� 2� 1CCA (16.35)

which means we can rewrite the original partial differential equation as a set of matrix-vector
multiplications Vj+1 = ÂVj = � � � = ÂjV0; (16.36)

whereV0 is the initial vector at timet = 0 defined by the initial valueg(x).
16.2.2 Implicit scheme

In deriving the equations for the explicit scheme we startedwith the so-called forward formula
for the first derivative, i.e., we used the discrete approximationut � u(xi; tj +�t)� u(xi; tj)�t : (16.37)

However, there is nothing which hinders us from using the backward formulaut � u(xi; tj)� u(xi; tj ��t)�t ; (16.38)

still with a truncation error which goes likeO(�t). We could also have used a midpoint approx-
imation for the first derivative, resulting inut � u(xi; tj +�t)� u(xi; tj ��t)2�t ; (16.39)
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with a truncation errorO(�t2). Here we will stick to the backward formula and come back to
the later below. For the second derivative we use howeveruxx � u(xi +�x; tj)� 2u(xi; tj) + u(xi ��x; tj)�x2 ; (16.40)

and define again� = �t=�x2. We obtain nowui;j�1 = ��ui�1;j + (1� 2�)ui;j � �ui+1;j: (16.41)

Hereui;j�1 is the only unknown quantity. Defining the matrix̂AÂ = 0BB� 1� 2� �� 0 0 : : :�� 1� 2� �� 0 : : :: : : : : : : : : : : :0 : : : 0 : : : �� 1� 2� 1CCA ; (16.42)

we can reformulate again the problem as a matrix-vector multiplicationÂVj = Vj�1 (16.43)

meaning that we can rewrite the problem asVj = Â�1Vj�1 = Â�1 �Â�1Vj�2� = � � � = Â�jV0: (16.44)

If � does not depend on timet, we need to invert a matrix only once. This is an implicit scheme
since it relies on determining the vectorui;j�1 instead ofui;j+1
16.2.3 Program example

Here we present a simple Fortran90 code which solves the following1+1-dimensional diffusion
problem withL = 1 8<: uxx = utu(x; 0) = sin(�x)u(0; t) = u(1; t) = 0 ; (16.45)

with the exact solutionu(x; t) = e��2tsin(�x).
programs/chap16/program1.f90

! Program t o s o l v e t he 1�dim hea t e qua t i on us i ng
! m a t r i x i n v e r s i o n . The i n i t i a l c o n d i t i o n s are g i v e n by
! u ( xmin , t )=u ( xmax , t ) =0 ang u ( x , 0 ) = f ( x ) ( use r p r ov i de d f un c t i o n )
! I n i t i a l c o n d i t i o n s are read i n by t he f u n c t i o n i n i t i a l i s e
! such as number o f s t e p s i n t he x�d i r e c t i o n , t�d i r e c t i o n ,
! xmin and xmax . For xmin = 0 and xmax = 1 , t he e x ac t s o l u t i o n
! i s u ( x , t ) = exp (�p i ��2� x ) s i n ( p i�x ) w i th f ( x ) = s i n ( p i�x )
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! Note t he s t r u c t u r e o f t h i s module , i t c o n t a i n s v a r i o u s
! s u b r o u t i n e s f o r i n i t i a l i s a t i o n o f t he problem and s o l u t i on
! o f t he PDE wi th a g i v e n i n i t i a l f u n c t i o n f o r u ( x , t )

MODULE one_d im_hea t _equa t i on
DOUBLE PRECISION , PRIVATE : : xmin , xmax , k
INTEGER , PRIVATE : : m , ndim

CONTAINS

SUBROUTINE i n i t i a l i s e
IMPLICIT NONE
WRITE ( � ,� ) ’ read in number of mesh p o i n t s i n x ’
READ ( � ,� ) ndim
WRITE ( � ,� ) ’ read in xmin and xmax ’
READ ( � ,� ) xmin , xmax
WRITE ( � ,� ) ’ read in number of t ime s t e ps ’
READ ( � ,� ) m
WRITE ( � ,� ) ’ read in s t e p s i z e i n t ’
READ ( � ,� ) k

END SUBROUTINE i n i t i a l i s e

SUBROUTINE s o l ve _1d i m _e qua t i on ( func )
DOUBLE PRECISION : : h , f a c t o r , de t , t , p i
INTEGER : : i , j , l
DOUBLE PRECISION , ALLOCATABLE , DIMENSION ( : , : ) : : a
DOUBLE PRECISION , ALLOCATABLE , DIMENSION ( : ) : : u , v
INTERFACE

DOUBLE PRECISION FUNCTION func ( x )
IMPLICIT NONE
DOUBLE PRECISION , INTENT ( IN ) : : x

END FUNCTION func
END INTERFACE

! d e f i n e t he s t e p s i z e
h = ( xmax�xmin ) /FLOAT( ndim +1)
f a c t o r = k / h / h

! a l l o c a t e space f o r t he v e c t o r s u and v and t he m a t r i x a
ALLOCATE ( a ( ndim , ndim ) )
ALLOCATE ( u ( ndim ) , v ( ndim ) )
p i = ACOS(�1. )
DO i = 1 , ndim

v ( i ) = func ( p i� i �h )
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ENDDO
! w r i t e ou t f o r t = 0

t = 0 .
DO i = 1 , ndim

WRITE ( 6 ,� ) t , i �h , v ( i )
ENDDO

! s e t up t he m a t r i x t o be i n v e r t e d
a = 0 . ; u =0.
DO i = 1 , ndim � 1

a ( i , i ) =1 .+2 .� f a c t o r
a ( i , i +1)=� f a c t o r
a ( i +1 , i )=� f a c t o r

ENDDO
a ( ndim , ndim ) = 1 . + 2 .� f a c t o r

! now i n v e r t t he m a t r i x
CALL mat inv ( a , ndim , de t )
DO i = 1 , m

DO l = 1 , ndim
u ( l ) = DOT_PRODUCT( a ( l , : ) , v ( : ) )

ENDDO
v = u
t = i �k
DO j = 1 , ndim

WRITE ( 6 ,� ) t , j �h , v ( j )
ENDDO

ENDDO
DEALLOCATE ( a ) ; DEALLOCATE ( u , v )

END SUBROUTINE s o l ve _1d i m _e qua t i on

END MODULE one_d im_he a t _equa t i on

PROGRAM heat_eq_1dm
USE one_d im_he a t _e qua t ion
IMPLICIT NONE

INTERFACE
DOUBLE PRECISION FUNCTION f u n c t i o n _ i n i t i a l ( x )
IMPLICIT NONE
DOUBLE PRECISION , INTENT ( IN ) : : x

END FUNCTION f u n c t i o n _ i n i t i a l
END INTERFACE

CALL i n i t i a l i s e
OPEN(UNIT = 6 , FILE = ’ he a t . dat ’ )
CALL s o l ve _1d i m _e qua t i on ( f u n c t i o n _ i n i t i a l )
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CLOSE( 6 )

END PROGRAM heat_eq_1dm

DOUBLE PRECISION FUNCTION f u n c t i o n _ i n i t i a l ( x )
IMPLICIT NONE
DOUBLE PRECISION , INTENT ( IN ) : : x

f u n c t i o n _ i n i t i a l = SIN ( x )

END FUNCTION f u n c t i o n _ i n i t i a l

16.2.4 Crank-Nicolson scheme

It is possible to combine the implicit and explicit methods in a slightly more general approach.
Introducing a parameter� (the so-called�-rule) we can set up an equation��x2 (ui�1;j � 2ui;j + ui+1;j) + 1� ��x2 (ui+1;j�1 � 2ui;j�1 + ui�1;j�1) = 1�t (ui;j � ui;j�1) ;

(16.46)
which for� = 0 yields the forward formula for the first derivative and the explicit scheme, while� = 1 yields the backward formula and the implicit scheme. These two schemes are called the
backward and forward Euler schemes, respectively. For� = 1=2 we obtain a new scheme after its
inventors, Crank and Nicolson. This scheme yields a truncation in time which goes likeO(�t2)
and it is stable for all possible combinations of�t and�x.

Using our previous definition of� = �t=�x2 we can rewrite the latter equation as��ui�1;j + (2 + 2�)ui;j � �ui+1;j = �ui�1;j�1 + (2� 2�)ui;j�1 + �ui+1;j�1; (16.47)

or in matrix-vector form as�2Î + 2�B̂�Vj = �2Î � 2�B̂�Vj�1; (16.48)

where the vectorVj is the same as defined in the implicit case while the matrixB̂ isB̂ = 0BB� 2 �1 0 0 : : :�1 2 �1 0 : : :: : : : : : : : : : : :0 : : : 0 : : : 2 1CCA (16.49)

16.2.5 Non-linear terms and implementation of the Crank-Nicoloson scheme

16.3 Laplace’s and Poisson’s equations

Laplace’s equation reads r2u(x) = uxx + uyy = 0: (16.50)
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with possible boundary conditionsu(x; y) = g(x; y) on the border. There is no time-dependence.
Choosing equally many steps in both directions we have a quadratic or rectangular grid, depend-
ing on whether we choose equal steps lengths or not in thex and they directions. Here we set�x = �y = h and obtain a discretized versionuxx � u(x+ h; y)� 2u(x; y) + u(x� h; y)h2 ; (16.51)

and uyy � u(x; y + h)� 2u(x; y) + u(x; y � h)h2 ; (16.52)

which we rewrite as uxx � ui+1;j � 2ui;j + ui�1;jh2 ; (16.53)

and uyy � ui;j+1 � 2ui;j + ui;j�1h2 ; (16.54)

which gives when inserted in Laplace’s equationui;j = 14 [ui;j+1 + ui;j�1 + ui+1;j + ui�1;j℄ : (16.55)

This is our final numerical scheme for solving Laplace’s equation. Poisson’s equation adds only
a minor complication to the above equation since in this casewe haveuxx + uyy = ��(x);
and we need only to add a discretized version of�(x) resulting inui;j = 14 [ui;j+1 + ui;j�1 + ui+1;j + ui�1;j℄ + �i;j: (16.56)

It is fairly straightforward to extend this equation to the three-dimensional case. Whether we
solve Eq. (16.55) or Eq. (16.56), the solution strategy remains the same. We know the values ofu at i = 0 or i = n + 1 and atj = 0 or j = n + 1 but we cannot start at one of the boundaries
and work our way into and across the system since Eq. (16.55) requires the knowledge ofu at all
of the neighbouring points in order to calculateu at any given point.

The way we solve these equations is based on an iterative scheme called the relaxation
method. Its steps are rather simple. We start with an initialguess foru(0)i;j where all values
are known. To obtain a new solution we solve Eq. (16.55) or Eq.(16.56) in order to obtain a
new solutionu(1)i;j . Most likely this solution will not be a solution to Eq. (16.55). This solution is

in turn used to obtain a new and improvedu(2)i;j . We continue this process till we obtain a result
which satisfies some specific convergence criterion.

A simple example may help in visualizing this method. We consider a condensator with
parallel plates separated at a distanceL resulting in e.g., the voltage differencesu(x; 0) =100sin(2�x=L) andu(x; 1) = �100sin(2�x=L). These are our boundary conditions and we
ask what is the voltageu between the plates? To solve this problem numerically we provide
below a Fortran 90/95 program which solves iteratively Eq. (16.55).
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programs/chap16/program2.f90

! Program t o s o l v e t he 2�dim Laplace e qua t i on us i ng i t e r a t i o n .
! No t ime�dependence .
! I n i t i a l c o n d i t i o n s are read i n by t he f u n c t i o n i n i t i a l i s e
! such as number o f s t e p s i n t he x�d i r e c t i o n , y�d i r e c t i o n ,
! xmin and xmax , ymin and ymax . Here we employ a square l a t t i c e
! w i th equa l number o f s t e p s i n x and y d i r e c t i o n s

! Note t he s t r u c t u r e o f t h i s module , i t c o n t a i n s v a r i o u s
! s u b r o u t i n e s f o r i n i t i a l i s a t i o n o f t he problem and s o l u t i on
! o f t he PDE wi th a g i v e n i n i t i a l f u n c t i o n f o r u ( x , y )

MODULE t w o_d i m _ l a p l a c e _e qua t i o n
DOUBLE PRECISION , PRIVATE : : xmin , xmax , ymin , ymax
INTEGER , PRIVATE : : ndim , i t e r a t i o n s
DOUBLE PRECISION , ALLOCATABLE , DIMENSION ( : , : ) , PRIVATE : : u ,

u_temp
CONTAINS

! t h i s f u n c t i o n reads i n t he s i z e o f l a t t i c e , xmin , xmax ,
! ymin and ymax and t he number o f i t e r a t i o n s

SUBROUTINE i n i t i a l i s e
IMPLICIT NONE

WRITE ( � ,� ) ’ read in number of mesh p o i n t s i n x and y d i r e c t i o n
’

READ ( � ,� ) ndim
WRITE ( � ,� ) ’ read in xmin and xmax ’
READ ( � ,� ) xmin , xmax
WRITE ( � ,� ) ’ read in ymin and ymax ’
READ ( � ,� ) ymin , ymax
WRITE ( � ,� ) ’ read in max number of i t e r a t i o n s ’
READ ( � ,� ) i t e r a t i o n s

END SUBROUTINE i n i t i a l i s e

SUBROUTINE s o l v e _ 2 d i m l a p l a c e _ e q u a t i o n ( func )
DOUBLE PRECISION : : h , x , y , p i , l e ng t h , d i f f
INTEGER : : i , j , l

INTERFACE
DOUBLE PRECISION FUNCTION func ( argument )
IMPLICIT NONE
DOUBLE PRECISION , INTENT ( IN ) : : argument
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END FUNCTION func
END INTERFACE

! d e f i n e t he s t e p s i z e
h = ( xmax�xmin ) /FLOAT( ndim +1)
l e n g t h = xmax�xmin

! a l l o c a t e space f o r t he v e c t o r u and t he temporary v e c t o r t o
! be upgraded i n e v e r y i t e r a t i o n

ALLOCATE ( u ( ndim , ndim ) )
ALLOCATE ( u_temp ( ndim , ndim ) )
p i = ACOS(�1. )

! s e t up o f i n i t i a l c o n d i t i o n s a t t = 0 and boundary c o n d i t i o n s
u = 0 .
DO i = 1 , ndim

x = i �h� p i / l e n g t h
u ( i , 1 ) = func ( x )
u ( i , ndim ) = � func ( x )

ENDDO
! i t e r a t i o n a l go r i t hm s t a r t s here

i t e r a t i o n s = 0
DO WHILE ( ( i t e r a t i o n s < = 20 ) . OR . ( d i f f > 0 . 0 0 0 0 1 ) )

u_temp = u ; d i f f = 0 .
DO j = 2 , ndim � 1

DO l = 2 , ndim �1
u ( j , l ) = 0 . 2 5� ( u_temp ( j +1 , l ) +u_temp ( j�1, l ) + &

u_temp ( j , l +1)+u_temp ( j , l�1) )
d i f f = d i f f + ABS( u_temp ( i , j )�u ( i , j ) )

ENDDO
ENDDO
i t e r a t i o n s = i t e r a t i o n s + 1
d i f f = d i f f / ( ndim +1) ��2

ENDDO
! w r i t e ou t r e s u l t s

DO j = 1 , ndim
DO l = 1 , ndim

WRITE ( 6 ,� ) j �h , l �h , u ( j , l )
ENDDO

ENDDO
DEALLOCATE ( u , u_temp )
END SUBROUTINE s o l v e _ 2 d i m l a p l a c e _ e q u a t i o n

END MODULE t w o_d i m _ l a p l a c e _e qua t i o n

PROGRAM l ap lace_eq_2d i m
USE t w o_d i m _ l a p l a c e _e qua t i on
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IMPLICIT NONE
INTERFACE

DOUBLE PRECISION FUNCTION f u n c t i o n _ i n i t i a l ( x )
IMPLICIT NONE
DOUBLE PRECISION , INTENT ( IN ) : : x

END FUNCTION f u n c t i o n _ i n i t i a l
END INTERFACE

CALL i n i t i a l i s e

OPEN(UNIT = 6 , FILE = ’ l a p l a c e . dat ’ )
CALL s o l v e _ 2 d i m l a p l a c e _ e q u a t i o n ( f u n c t i o n _ i n i t i a l )
CLOSE( 6 )

END PROGRAM l ap lace_eq_2d i m

DOUBLE PRECISION FUNCTION f u n c t i o n _ i n i t i a l ( x )
IMPLICIT NONE
DOUBLE PRECISION , INTENT ( IN ) : : x

f u n c t i o n _ i n i t i a l = 100� SIN ( x )

END FUNCTION f u n c t i o n _ i n i t i a l

The important part of the algorithm is applied in the function which sets up the two-dimensional
Laplace equation. There we have a do-while statement which tests the difference between the
temporary vector and the solutionui;j. Moreover, we have fixed the number of iterations to be at
most20. This is sufficient for the above problem, but for more general applications you need to
test the convergence of the algorithm.

16.4 Wave equation in two dimensions

The1 + 1-dimensional wave equation reads�2u�x2 = �2u�t2 ; (16.57)

with u = u(x; t) and we have assumed that we operate with dimensionless variables. Possible
boundary and initial conditions withL = 1 are8>><>>: uxx = utt x 2 [0; 1℄; t > 0u(x; 0) = g(x) x 2 [0; 1℄u(0; t) = u(1; t) = 0 t > 0�u=�tjt=0 = 0 x 2 [0; 1℄ : (16.58)
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We discretize again time and position,uxx � u(x+�x; t)� 2u(x; t) + u(x��x; t)�x2 ; (16.59)

and utt � u(x; t+�t)� 2u(x; t) + u(x; t��t)�t2 ; (16.60)

which we rewrite as uxx � ui+1;j � 2ui;j + ui�1;j�x2 ; (16.61)

and utt � ui;j+1 � 2ui;j + ui;j�1�t2 ; (16.62)

resulting in ui;j+1 = 2ui;j � ui;j�1 + �t�x2 (ui+1;j � 2ui;j + ui�1;j) : (16.63)

If we assume that all values at timest = j andt = j � 1 are known, the only unknown variable
is ui;j+1 and the last equation yields thus an explicit scheme for updating this quantity. Wehave
thus an explicit finite difference scheme for computing the wave functionu. The only additional
complication in our case is the initial condition given by the first derivative in time, namely�u=�tjt=0 = 0. The discretized version of this first derivative is given byut � u(xi; tj +�t)� u(xi; tj ��t)2�t ; (16.64)

and att = it reduces to ut � ui;+1 � ui;�12�t = 0; (16.65)

implying thatui;+1 = ui;�1. If we insert this condition in Eq. (16.63) we arrive at a special
formula for the first time stepui;1 = ui;0 + �t2�x2 (ui+1;0 � 2ui;0 + ui�1;0) : (16.66)

We need seemingly two different equations, one for the first time step given by Eq. (16.66) and
one for all other time-steps given by Eq. (16.63). However, it suffices to use Eq. (16.63) for all
times as long as we provideu(i;�1) usingui;�1 = ui;0 + �t2�x2 (ui+1;0 � 2ui;0 + ui�1;0) ; (16.67)

in our setup of the initial conditions.
The situation is rather similar for the2 + 1-dimensional case, except that we now need to

discretize the spatialy-coordinate as well. Our equations will now depend on three variables
whose discretized versions are now8<: tl = l�t l � 0xi = i�x 1 � i � nx + 1yj = j�y 1 � j � ny + 1 ; (16.68)
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and we will let�x = �y = h andnx = ny for the sake of simplicity. The equation with initial
and boundary conditions reads now8>><>>: uxx + uyy = utt x; y 2 [0; 1℄; t > 0u(x; y; 0) = g(x; y) x; y 2 [0; 1℄u(0; 0; t) = u(1; 1; t) = 0 t > 0�u=�tjt=0 = 0 x; y 2 [0; 1℄ : (16.69)

We have now the following discretized partial derivativesuxx � uli+1;j � 2uli;j + uli�1;jh2 ; (16.70)

and uyy � uli;j+1 � 2uli;j + uli;j�1h2 ; (16.71)

and utt � ul+1i;j � 2uli;j + ul�1i;j�t2 ; (16.72)

which we merge into the discretized2 + 1-dimensional wave equation asul+1i;j = 2uli;j � ul�1i;j + �th2 �uli+1;j � 4uli;j + uli�1;j + uli;j+1 + uli;j�1� ; (16.73)

where again we have an explicit scheme withul+1i;j as the only unknown quantity. It is easy to
account for different step lengths forx andy. The partial derivative is treated in much the same
way as for the one-dimensional case, except that we now have an additional index due to the
extra spatial dimension, viz., we need to computeu�1i;j throughu�1i;j = u0i;j + �t2h2 �u0i+1;j � 4u0i;0 + u0i�1;j + u0i;j+1 + u0i;j�1� ; (16.74)

in our setup of the initial conditions.

16.4.1 Program for the2 + 1 wave equation and applications

16.5 Inclusion of non-linear terms in the wave equation
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17.1 Methods to classify phase transition

17.1.1 The histogram method

17.1.2 Multi-histogram method

17.2 Renormalization group approach

319





Chapter 18

Hydrodynamic models

321





Chapter 19

Diffusion Monte Carlo methods

We discuss implementations and the underlying theory for diffusion Monte Carlo methods.

19.1 Diffusion Monte Carlo

The DMC method is based on rewriting the Schrödinger equation in imaginary time, by defining� = it. The imaginary time Schrödinger equation is then� �� = �bH ; (19.1)

where we have omitted the dependence on� and the spatial variables in . The wave function 
is again expanded in eigenstates of the Hamiltonian = 1Xi 
i�i; (19.2)

where bH�i = �i�i; (19.3)�i being an eigenstate ofbH. A formal solution of the imaginary time Schrödinger equation is (�1 + Æ�) = e� bHÆ� (�1) (19.4)

where the state (�1) evolves from an imaginary time�1 to a later time�1 + Æ. If the initial state (�1) is expanded in energy ordered eigenstates, following Eq. (19.2), then we obtain (Æ�) = 1Xi 
ie��iÆ��i: (19.5)

Hence any initial state, , that is not orthogonal to the ground state�0 will evolve to the
ground state in the long time limit, that islim�!1 (Æ�) = 
0e��0��0: (19.6)

323
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This derivation shares many formal similarities with that given for the variational principle dis-
cussed in the previous sections. However in the DMC method the imaginary time evolution
results in excited states decaying exponentially fast, whereas in the VMC method any excited
state contributions remain and contribute to the VMC energy.

The DMC method is a realisation of the above derivation in position space. Including the
spatial variables as well, the above equation readslim�!1 (R; Æ�) = 
0e��0��0(R): (19.7)

By introducing a constant offset to the energy,ET = �0, the long-time limit of Eq. (19.7)
can be kept finite. If the Hamiltonian is separated into the kinetic energy and potential terms, the
imaginary time Schrödinger equation, takes on a form similar to a diffusion equation, namely�� (R; �)�� = " NXi �12r2i (R; �)#+ (V (R)� ET ) (R; �): (19.8)

This equation is a diffusion equation where the wave function may be interpreted as the density
of diffusing particles (or “walkers”), and the termV (R)�ET is a rate term describing a potential-
dependent increase or decrease in the particle density. Theabove equation may be transformed
into a form suitable for Monte Carlo methods, but this leads to a very inefficient algorithm.
The potentialV (R) is unbounded in coulombic systems and hence the rate termV (R) � ET
can diverge. Large fluctuations in the particle density thenresult and give impractically large
statistical errors.

These fluctuations may be substantially reduced by the incorporation of importance sampling
in the algorithm. Importance sampling is essential for DMC methods, if the simulation is to
be efficient. A trial or guiding wave function T (R), which closely approximates the ground
state wave function is introduced. This is where typically the VMC result would enter, see also
discussion below A new distribution is defined asf(R; �) =  T (R) (R; �); (19.9)

which is also a solution of the Schrödinger equation when (R; �) is a solution. Eq. (19.8)
consequently modified to�f(R; �)�� = 12r [r� F (R)℄ f(R; �) + (EL(R)� ET )f(R; �): (19.10)

In this equation we have introduced the so-called force-term F , given byF (R) = 2r T (R) T (R) ; (19.11)

and is commonly referred to as the “quantum force”. The localenergyEL is defined as previouslyELR) = � 1 T (R)r2 T (R)2 + V (R) T (R); (19.12)
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and is computed, as in the VMC method, with respect to the trial wave function.
We can give the following interpretation to Eq. (19.10). Theright hand side of the impor-

tance sampled DMC equation consists, from left to right, of diffusion, drift and rate terms. The
problematic potential dependent rate term of the non-importance sampled method is replaced by
a term dependent on the difference between the local energy of the guiding wave function and the
trial energy. The trial energy is initially chosen to be the VMC energy of the trial wave function,
and is updated as the simulation progresses. Use of an optimised trial function minimises the
difference between the local and trial energies, and hence minimises fluctuations in the distribu-
tion f . A wave function optimised using VMC is ideal for this purpose, and in practice VMC
provides the best method for obtaining wave functions that accurately approximate ground state
wave functions locally. The trial wave function may be also constructed to minimise the number
of divergences in , unlike the non-importance sampled method where divergences in the coulomb
interactions are always present.

To be of use however, the importance sampled DMC method of Eq.(19.10) must be trans-
formed into a form suitable for Monte Carlo integration. Thetransformation is more complex
than for VMC, which simply required the insertion of the factorP (R) = j T (R)j2R j T (R)j2 dR :
into the conventional formulas for quantum mechanical expectation values.

A Green’s functionG(R0;R; �) that is a solution of Eq. (19.10) is desired, i.e., a spatial
representation of the imaginary time propagator,e��( bH�ET ). One can show that the Green’s
function of the diffusion equation, by factorising the propagator into branching and diffusion
parts, can be written as G(R0;R; �) � e�((R�R0��F (R0)2=2�): (19.13)

19.2 Other Quantum Monte Carlo techniques and systems

In our discussion, the emphasis has been on variational methods, since they are rather intuitive
and one can simulate physical systems with rather simple trial wave functions. We have also not
dealt with problems arising in many-fermion systems, whereboth the sign of the wave function
in the diffusion Monte Carlo is crucial and the evaluation ofthe Slater determinant is computa-
tionally involved. Furthermore, techniques to improve thevariance have also not been discussed.
We defer these topics, together with a discussion of other Monte Carlo methods such as Green’s
function Monte Carlo, path integral Monte Carlo and Latticemethods to a more advanced course
on computational Physics.
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