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Preface

In 1999, when we started teaching this course at the Depattaié’hysics in Oslo, Compu-
tational Physics and Computational Science in general wtgerceived by the majority of
physicists and scientists as topics dealing with just mavestand number crunching, and not as
subjects of their own. The computational background of nsasdents enlisting for the course
on computational physics could span from dedicated haeket€omputer freaks to people who
basically had never used a PC. The majority of graduate stsiti@d a very rudimentary knowl-
edge of computational techniques and methods. Four ydarahast students have had a fairly
uniform introduction to computers, basic programminglskahd use of numerical exercises in
undergraduate courses. Practically every undergradtuaters in physics has now made a Mat-
lab or Maple simulation of e.g., the pendulum, with or withobaotic motion. These exercises
underscore the importance of simulations as a means to gagl msights into physical sys-
tems, especially for those cases where no analytical solittan be found or an experiment
is to complicated or expensive to carry out. Thus, computeulgtions are nowadays an inte-
gral part of contemporary basic and applied research in llysipal sciences. Computation is
becoming as important as theory and experiment. We could stvengthen this statement by
saying that computational physics, theoretical physicsexperimental are all equally important
in our daily research and studies of physical systems. Bsysinowadays the unity of theory,
experiment and computation. The ability "to compute" is nmat of the essential repertoire of
research scientists. Several new fields have emerged amgjftened their positions in the last
years, such as computational materials science, bioirgtcs) computational mathematics and
mechanics, computational chemistry and physics and sl, fioigt to mention a few. To be able
to e.g., simulate quantal systems will be of great impordioc future directions in fields like
materials science and nanotechonology.

This ability combines knowledge from many different sulbgem our case essentially from
the physical sciences, numerical analysis, computinglaggs and some knowledge of comput-
ers. These topics are, almost as a rule of thumb, taughtfereliit, and we would like to add,
disconnected courses. Only at the level of thesis work istilngent confronted with the synthesis
of all these subjects, and then in a bewildering and disparanner, trying to e.g., understand
old Fortran 77 codes inherited from his/her supervisor badke good old ages, or even more
archaic, programs. Hours may have elapsed in front of asevbé&h just says 'Underflow’, or
'Bus error’, etc etc, without fully understanding what gaes Porting the program to another
machine could even result in totally different results!

The first aim of this course is therefore to bridge the gap betwundergraduate courses
in the physical sciences and the applications of the aqkinesvledge to a given project, be it
either a thesis work or an industrial project. We expect yoloietve some basic knowledge in the
physical sciences, especially within mathematics andipbyhrough e.g., sophomore courses
in basic calculus, linear algebraand general physics hEurtore, having taken an introductory
course on programming is something we recommend. As suadptanal timing for taking this
course, would be when you are close to embark on a thesis woifkyou've just started with a
thesis. But obviously, you should feel free to choose youn tming.

We have several other aims as well in addition to prepare goa thesis work, namely



e We would like to give you an opportunity to gain a deeper usterding of the physics
you have learned in other courses. In most courses one isatigrronfronted with simple
systems which provide exact solutions and mimic to a cegatent the realistic cases.
Many are however the comments like 'why can’t we do sometleisg than the box po-
tential?’. In several of the projects we hope to present smime 'realistic’ cases to solve
by various numerical methods. This also means that we wighivo examples of how
physics can be applied in a much broader context than it mudsed in the traditional
physics undergraduate curriculum.

e To encourage you to "discover” physics in a way similar to megearchers learn in the
context of research.

e Hopefully also to introduce numerical methods and new apépbysics that can be stud-
ied with the methods discussed.

e To teach structured programming in the context of doingrex@e

e The projects we propose are meant to mimic to a certain egtergituation encountered
during a thesis or project work. You will tipically have atyradisposal 1-2 weeks to solve
numerically a given project. In so doing you may need to ddeadture study as well.
Finally, we would like you to write a report for every project

e The exam reflects this project-like philosophy. The exaedlfiis a project which lasts one
month. You have to hand in a report on a specific problem, andngport forms the basis
for an oral examination with a final grading.

Our overall goal is to encourage you to learn about scien@mgfin experience and by asking
guestions. Our objective is always understanding, not @reation of numbers. The purpose
of computing is further insight, not mere numbers! Moreoeed this is our personal bias, to
device an algorithm and thereafter write a code for solvimgspcs problems is a marvelous way
of gaining insight into complicated physical systems. Tly@athm you end up writing reflects
in essentially all cases your own understanding of the @iy the problem.

Most of you are by now familiar, through various undergradwuaurses in physics and math-
ematics, with interpreted languages such as Maple, MatmabVathematica. In addition, the
interest in scripting languages such as Python or Perl ltasased considerably in recent years.
The modern programmer would typically combine severalsoobmputing environments and
programming languages. A typical example is the followir8uppose you are working on a
project which demands extensive visualizations of thelteslio obtain these results you need
however a programme which is fairly fast when computatiepeled matters. In this case you
would most likely write a high-performance computing pagme in languages which are tay-
lored for that. These are represented by programming layegulike Fortran 90/95 and C/C++.
However, to visualize the results you would find interprdgedjuages like e.g., Matlab or script-
ing languages like Python extremely suitable for your tasksu will therefore end up writing
e.g., a script in Matlab which calls a Fortran 90/95 ot C/C+egoamme where the number
crunching is done and then visualize the results of say a equation solver via Matlab’s large



library of visualization tools. Alternatively, you couldganize everything into a Python or Perl
script which does everything for you, calls the Fortran 9088 C/C++ programs and performs
the visualization in Matlab as well.

Being multilingual is thus a feature which not only appliesriodern society but to comput-
ing environments as well.

However, there is more to the picture than meets the eye.cbhisse emphasizes the use of
programming languages like Fortran 90/95 and C/C++ insbéauderpreted ones like Matlab or
Maple. Computational speed is not the only reason for thiscehof programming languages.
The main reason is that we feel at a certain stage one needsd¢sbme insights into the algo-
rithm used, its stability conditions, possible pitfalldiloss of precision, ranges of applicability
etc. Although we will at various stages recommend the usébcdry routines for say linear
algebra, our belief is that one should understand what the giventfonaloes, at least to have
a mere idea. From such a starting point we do further belieaeit can be easier to develope
more complicated programs, on your own. We do thereforetdesamme space to the algorithms
behind various functions presented in the text. Especiakyght into how errors propagate and
how to avoid them is a topic we'd like you to pay special aitamto. Only then can you avoid
problems like underflow, overflow and loss of precision. Sacontrol is not always achievable
with interpreted languages and canned functions whererterlying algorithm

Needless to say, these lecture notes are upgraded corglguoom typos to new input. And
we do always benifit from your comments, suggestions anditteganaking these notes better.
It's through the scientific discourse and critics we advance

1Such library functions are often taylored to a given machiaechitecture and should accordingly run faster
than user provided ones.
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Chapter 1

Introduction

In the physical sciences we often encounter problems otiatialy various properties of a given
function f (). Typical operations are differentiation, integration dimtling the roots off (z).

In most cases we do not have an analytical expression fouttetiébn f (z) and we cannot derive
explicit formulae for derivatives etc. Even if an analytieapression is available, the evaluation
of certain operations offi(x) are so difficult that we need to resort to a numerical evadnati
More frequently,f (z) is the result of complicated numerical operations and is #mown only
at a set of discrete points and needs to be approximated by somerical methods in order to
obtain derivatives, etc etc.

The aim of these lecture notes is to give you an introductioeetected numerical meth-
ods which are encountered in the physical sciences. Sesaiples, with varying degrees of
complexity, will be used in order to illustrate the applicatof these methods.

The text gives a survey over some of the most used methodsmp@ational Physics and
each chapter ends with one or more applications to reasigtems, from the structure of a neu-
tron star to the description of few-body systems through tddgbarlo methods. Several minor
exercises of a more numerical character are scatteredghootithe main text.

The topics we cover start with an introduction to C/C++ andtfaa 90/95 programming
combining it with a discussion on numerical precision, anpuie feel is often neglected in com-
putational science. This chapter serves also as input tdiscussion on numerical derivation in
chapter 3. In that chapter we introduce several programeongepts such as dynamical mem-
ory allocation and call by reference and value. Severalngaragexamples are presented in this
chapter. For those who choose to program in C/C++ we giveaaisotroduction to the auxiliary
library Blitz++, which contains several useful classesriamerical operations on vectors and
matrices. The link to Blitz++, matrices and selected alipons for linear algebra problems are
dealt with in chapter 5. Chapters 6 and 7 deal with the satutionon-linear equations and the
finding of roots of polynomials and numerical interpolatiertrapolation and data fitting.

Therafter we switch to numerical integration for integralth few dimensions, typically less
than 3, in chapter 8. The numerical integration chapteresealso to justify the introduction
of Monte-Carlo methods discussed in chapters 9 and 10. Thevariety of applications are
presented, from integration of multidimensional integtal problems in statistical Physics such
as random walks and the derivation of the diffusion equafiiom Brownian motion. Chapter

3



4 CHAPTER 1. INTRODUCTION

11 continues this discussion by extending to studies of @lrassitions in statistical physics.
Chapter 12 deals with Monte-Carlo studies of quantal systenth an emphasis on variational
Monte Carlo methods and diffusion Monte Carlo methods. laptér 13 we deal with eigen-
systems and applications to e.g., the Schrédinger equiawaritten as a matrix diagonalization
problem. Problems from scattering theory are also discljsegether with the most used solu-
tion methods for systems of linear equations. Finally, wseas various methods for solving
differential equations and partial differential equation chapters 14-16 with examples ranging
from harmonic oscillations, equations for heat conductiad the time dependent Schrddinger
equation. The emphasis is on various finite difference nustho

We assume that you have taken an introductory course ingmoging and have some famil-
iarity with high-level and modern languages such as Jav@+€/Fortran 77/90/95, etc. Fortran
and C/C++ are examples of compiled high-level languagesoitrast to interpreted ones like
Maple or Matlab. In such compiled languages the computaslaées an entire subprogram into
basic machine instructions all at one time. In an intergté&daguage the translation is done one
statement at a time. This clearly increases the computdtione expenditure. More detailed
aspects of the above two programming languages will be sissxlin the lab classes and various
chapters of this text.

There are several texts on computational physics on theahade for example Refs. [8, 4,
?,?,6,9,7, 10], ranging from introductory ones to more advdrarees. Most of these texts treat
however in a rather cavalier way the mathematics behindahews numerical methods. We've
also succumbed to this approach, mainly due to the followsagons: several of the methods
discussed are rather involved, and would thus require st &etavo-semester course for an intro-
duction. In so doing, little time would be left for problemsdacomputation. This course is a
compromise between three disciplines, numerical methmdbjems from the physical sciences
and computation. To achieve such a synthesis, we will havelaa our presentation in order to
avoid lengthy and gory mathematical expositions. You sthaldo keep in mind that Computa-
tional Physics and Science in more general terms consiseafdmbination of several fields and
crafts with the aim of finding solution strategies for coropted problems. However, where we
do indulge in presenting more formalism, we have borroweavityefrom the text of Stoer and
Bulirsch [?], a text we really recommend if you'd like to have more matichew on.

1.1 Choice of programming language

As programming language we have ended up with preferring-€/Gut every chapter, except
for the next, contains also in an appendix the corresponBorgran 90/95 programs. Fortran
(FORmula TRANSsIlation) was introduced in 1957 and remainsnamy scientific computing
environments the language of choice. The latest standartkah 95 [, 11, ?], includes ex-
tensions that are familiar to users of C/C++. Some of the rimopbrtant features of Fortran
90/95 include recursive subroutines, dynamic storageatiion and pointers, user defined data
structures, modules, and the ability to manipulate entii@ya. However, there are several good

Iwith Fortran we will consistently mean Fortran 90/95. Thare no programming examples in Fortran 77 in
this text.
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reasons for choosing C/C++ as programming language fontsateand engineering problems.
Here are some:

e C/C++ is now the dominating language in Unix and Windows emnents. It is widely
available and is the language of choice for system prograsime

e The C/C++ syntax has inspired lots of popular language$ asderl, Python and Java.

¢ Itis an extremely portable language, all Linux and Unix @ped machines have a C/C++
compiler.

¢ Inthe last years there has been an enormous effort towavetogéng numerical libraries
for C/C++. Numerous tools (numerical libraries such as Mpkre written in C/C++ and
interfacing them requires knowledge of C/C++. Most C/C+4 &ortran 90/95 compilers
compare fairly well when it comes to speed and numericalieffay. Although Fortran 77
and C are regarded as slightly faster than C++ or Fortran59@@mpiler improvements
during the last few years have diminshed such differencdse Java numerics project
has lost some of its steam recently, and Java is thereforeatiyrslower than C/C++ or
F90/95, see however the article by Jwat@l. for a discussion on numerical aspects of Java

[7].

e Complex variables, one of Fortran 77 and 90/95 stronghalais,also be defined in the
new ANSI C/C++ standard.

e C/C++ is a language which catches most of the errors as eanbossible, typically at
compilation time. Fortran 90/95 has some of these featfi@sa omits implicit variable
declarations.

e C++ is also an object-oriented language, to be contrastdd®@and Fortran 90/95. This
means that it supports three fundamental ideas, namelgtsbgass hierarchies and poly-
morphism. Fortran 90/95 has, through ttMDULE declaration the capability of defining
classes, but lacks inheritance, although polymorphisnossiple. Fortran 90/95 is then
considered as an object-based programming language, tmb@sted with C/C++ which
has the capability of relating classes to each other in atdbical way.

C/C++ is however a difficult language to learn. Grasping thgids is rather straightforward,
but takes time to master. A specific problem which often causevanted or odd error is dynamic
memory management.

1.2 Designing programs

Before we proceed with a discussion of numerical methodswaxald like to remind you of
some aspects of program writing.

In writing a program for a specific algorithm (a set of rules éming mathematics or a
precise description of how to solve a problem), it is obvithas different programmers will apply
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different styles, ranging from barely readaBléeven for the programmer) to well documented
codes which can be used and extended upon by others in ergjeatpThe lack of readability of
a program leads in many cases to credibility problems, diffyan letting others extend the codes
or remembering oneself what a certain statement meandgepnslin spotting errors, not always
easy to implement on other machines, and so forth. Althoughshould feel free to follow
your own rules, we would like to focus certain suggestiongtvimay improve a program. What
follows here is a list of our recommendations (or biasegfgiees). First about designing a
program.

¢ Before writing a single line, have the algorithm clarifieddamderstood. It is crucial to
have a logical structure of e.g., the flow and organizatiotiadf before one starts writing.

e Always try to choose the simplest algorithm. Computatiapeed can be improved upon
later.

e Try to write a as clear program as possible. Such programsasier to debug, and al-
though it may take more time, in the long run it may save yotetirtf you collaborate
with other people, it reduces spending time on debuging mabtto understand what the
codes do. A clear program will also allow you to rememberdyettat the program really
does!

¢ The planning of the program should be from top down to bottioyimg to keep the flow as
linear as possible. Avoid jumping back and forth in the pamgr First you need to arrange
the major tasks to be achieved. Then try to break the majks iato subtasks. These can
be represented by functions or subprograms. They shoutthgatsh limited tasks and
as far as possible be independent of each other. That wolivalbu to use them in other
programs as well.

e Try always to find some cases where an analytical solutist®&r where simple test cases
can be applied. If possible, devise different algorithnrssialving the same problem. If
you get the same answers, you may have coded things cormeattyade the same error
twice.

Secondly, here are some of our favoured approaches fongiatcode.

e Use always the standard ANSI version of the programmingdagg. Avoid local dialects
if you wish to port your code to other machines.

e Add always comments to describe what a program or subprogmas. Comment lines
help you remember what you did e.g., one month ago.

e Declare all variables. Avoid totally theIMPLICIT statement in Fortran. The program will
be more readable and help you find errors when compiling.

2As an example, a bad habit is to use variables with no specéaning, like x1, x2 etc, or names for subpro-
grams which go like routinel, routine2 etc.
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¢ Do not use GOTO structures in Fortran. Although all varieties of spaghet# great culi-
naric temptations, spaghetti-like Fortran with margdTO statements is to be avoided.
Extensive amounts of time may be wasted on decoding othkoeuprograms.

¢ When you name variables, use easily understandable nanvesd Av1 when you can
use speed_of_light . Associatives names make it easier to understand what #ispec
subprogram does.

e Use compiler options to test program details and if possilsle different compilers. They
make errors too. Also, the use of debuggers ¢klb is something we highly recommend
during the development of a program.






Chapter 2

Introduction to C/C++ and Fortran 90/95

2.1 Getting started

In all programming languages we encounter data entities asconstants, variables, results of
evaluations of functions etc. Common to these objects isttiey can be represented through
the type concept. There are intrinsic types and derivedstypetrinsic types are provided by
the programming language whereas derived types are pligithe programmer. If one speci-
fies the type to be e.gNTEGER (KIND=2) for Fortran 90/950r short int/int in C/C++,
the programmer selects a particular date type with 2 bytesiis) for every item of the class
INTEGER (KIND=2) or int. Intrinsic types come in two classes, numerical (like ietegeal
or complex) and non-numeric (as logical and character).gémeral form for declaring variables
is

data type name of variable

and the following table lists the standard variable detiana of C/C++ and Fortran 90/95 (note
well that there may compiler and machine differences froen#le below) An important aspect
when declaring variables is their region of validity. Insid function we define a a variable
through the expressiamt var or INTEGER :: var . The question is whether this variable is
available in other functions as well, moreover whereasinitialized and finally, if we call the
function where it is declared, is the value conserved from@all to the other?

Both C/C++ and Fortran 90/95 operate with several types délbbkes and the answers to
these questions depend on how we have defimedvar. The following list may help in clari-
fying the above points:

10ur favoured display mode for Fortran statements will beta&fetters for language statements and low key
letters for user-defined statements. Note that Fortran Woiedistinguish between capital and low key letters while
C/C++ does.
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type in C/C++ and Fortran 90/95  bits range
char/CHARACTER 8 —128t0127

unsigned char 8 0to255

signed char 8 —128to0127

int/INTEGER (2) 16 —32768to 32767

unsigned int 16 01to 65535

signed int 16 —32768to 32767

short int 16 —32768to 32767

unsigned short int 16 01065535

signed short int 16 —32768 to 32767

int/long int/INTEGER(4) 32 2147483648 to 2147483647
signed long int 32 —2147483648 to 2147483647
float/REAL(4) 32 3.4e % 103.4¢"38
double/REAL(8) 64 1.7¢73%t01.7¢+308

long double 64 1.7¢73% to1.7¢+308

Table 2.1: Examples of variable declarations for C/C++ aodr&n 90/95. We reserve capital
letters for Fortran 90/95 declaration statements througtias text, although Fortran 90/95 is
not sensitive to upper or lowercase letters.

type of variable validity

local variables defined within a function, only availablehin the scope
of the function.

formal parameter If it is defined within a function it is onlyaalable within
that specific function.

global variables  Defined outside a given function, avadabl all func-
tions from the point where it is defined.

In Table 2.1 we show a list of some of the most used languagenséants in Fortran and C/C++.
In addition, both C++ and Fortran 90/95 allow for complexiables. In Fortran 90/95 we would
declare a complex variable &VMPLEX (KIND=16):: x, y which refers to a double with
word length of 16 bytes. In C/C++ we would need to include a glemx library through the

statements

#include <complex>
complex<double> x, y;

We will come back to these topics in later chapter.

Our first programming encounter is the 'classical’ one, fbimalmost every textbook on
computer languages, the *hello world’ code, here in a sifiemtisguise. We present first the C
version.
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Fortran 90/95

C/C++

PROGRAM something
FUNCTION something(input)

SUBROUTINE something(inout)
Data type declarations

REAL (4) X,y

DOUBLE PRECISION :: (or REAL (8)) X, y

INTEGER :: X,y
CHARACTER :: name

Program structure

main ()
double (int) something(input)

float x, y;
double x, vy;
int x,y;
char name;

DOUBLE PRECISION, DIMENSION(dim1,dim2) :: x double x[dinf{tlim2];

INTEGER, DIMENSION(dim1,dim2) :: x

LOGICAL :: x
TYPE name
declarations
END TYPE name
POINTER :: a
ALLOCATE
DEALLOCATE

int x[dim1][dim2];

struct name {
declarations;

}
double (int) *a;
new;
delete;

Logical statements and control structure

IF (a==b) THEN

b=0

ENDIF

DO WHILE (logical statement)
do something

ENDDO

IF (a>=b) THEN

b=0

ELSE

a=0

ENDIF

SELECT CASE (variable)
CASE (variable=valuel)
do something

CASE (..)

END SELECT

DO i=0,end, 1
do something
ENDDO

if (a==b)
{b=0;
}
while (logical statement)
{do something
}
if(a>=D)
{b=0;
else
a=0; }

switch(variable)

{
case 1.
variable=valuel;
do something;
break;
case 2:
do something; break; .
}
for(i=0; i<= end; i++)
{ do something ;

}

Table 2.2: Elements of programming syntax.
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programs/chap2/programl.cpp

[+ comments in C begin like this and end with/
#include <stdlib.h>/« atof function %/
#include <math.h> [/« sine function %/

#include <stdio.h> /x printf function x/

int main (int argc, charx argv|[])
{
double r, s; /+ declare variables %/
r = atof(argv([l]); /% convert the text argv[l] to doublex/
s = sin(r);
printf ("Hello, World! sin(%g)=%g\n", r, s);
return O; [+ success execution of the program/

}

The compiler must see a declaration of a function before youcall it (the compiler checks the
argument and return types). The declaration of library fimms appears in so-called header files
that must be included in the program, e#fnclude < stdlib .h>We call three functionsatof , sin
, printf and these are declared in three different header files. The pnagram is a function
called main with a return value set to an integer, int (O ifcass). The operating system stores
the return value, and other programs/utilities can checkthdr the execution was successful
or not. The command-line arguments are transferred to thie fmaction throughint main (int
argc , charx argv[]) The integerargcis the no of command-line arguments, set to one in our
case, while argv is a vector of strings containing the command-line argusenth argv|[0]
containing the name of the program aadv[1], argv[2], ... are the command-line args, i.e.,
the number of lines of input to the program. Here we define ifigapoints, see also below,
through the keyworddloat for single precision real numbers adduble for double precision.
The function atof transforms a tex{argv [1]) to a float. The sine function is declared in math.h, a
library which is not automatically included and needs toibkedd when computing an executable
file.

With the commandprintf we obtain a formatted printout. Therintf syntax is used for
formatting output in many C-inspired languages (Perl, Bytlawk, partly C++).

In C++ this program can be written as

/I A comment line begins like this in C++ programs
using namespacestd;
#include <iostream >
int main (int argc, charx argv|[])
{
/I convert the text argv[1l] to double using atof:
double r = atof(argv][1]);
double s = sin(r);
cout << "Hello, World! sin(" << r << ")=" << § << ’\n’;
I/l success
return O;
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)

We have replaced the call torintf with the standard C++ functiortout The header fildostream
is then needed. In addition, we don’t need to declare vagaliker ands at the beginning of
the program. | personally prefer however to declare allaldes at the beginning of a function,

as this gives me a feeling of greater readability.

To run these programs, you need first to compile and link itrdeoto obtain an executable
file under operating systems like e.g., UNIX or Linux. Befave proceed we give therefore
examples on how to obtain an executable file under Linux/Unix

In order to obtain an executable file for a C++ program, th&owahg instructions under
Linux/Unix can be used

c++ -c -Wall myprogram.c
ct+ -0 myprogram myprogram.o

where the compiler is called through the command. The compiler option -Wall means
that a warning is issued in case of non-standard language.eXécutable file is in this case
myprogram The option-c is for compilation only, where the program is translatea inia-
chine code, while theo option links the produced object fitlgyprogram.o and produces the
executablenyprogram .

The corresponding Fortran 90/95 code is

programs/chap2/program1.f90

PROGRAM shw
IMPLICIT NONE
REAL (KIND =8) :: r ' Input number
REAL (KIND=8) :: s | Result

I Get a number from user
WRITE (% ,*) 'Input a number:

READ (% ,x) r
I Calculate the sine of the number
s = SIN(r)
I Write result to screen
WRITE (% ,+#) 'Hello World! SINE of ', r, " =", s

END PROGRAM shw

The first statement must be a program statement; the lastetat must have a corresponding
end program statement. Integer numerical variables antritppoint numerical variables are
distinguished. The names of all variables must be betweern B4 alphanumeric characters of
which the first must be a letter and the last must not be an godey. Comments begin with
a! and can be included anywhere in the program. Statementsréten on lines which may
contain up to 132 characters. The asterisks (*,*) followWiRITE represent the default format
for output, i.e., the output is e.g., written on the screemil&rly, the READ(*,*) statement
means that the program is expecting a line input. Note alsdMPLICIT NONE statement
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which we strongly recommend the use of. In many Fortran 77 caresee statements like
IMPLICIT REAL*8(a-h,0-z), meaning that all variables baging with any of the above letters
are by deafult floating numbers. However, such a usage melkaslito spot eventual errors due
to misspelling of variable names. With IMPLICIT NONE you leato declare all variables and
therefore detect possible errors already while compiling.

We call the Fortran compiler (using free format) through

f90 -c -free myprogram.f90
f90 -o myprogram.x myprogram.o

Under Linux/Unix it is often convenient to create a so-adlheakefile, which is a script which
includes possible compiling commands, in order to avoighieg the above lines every once and
then we have made modifcations to our program. A typical rilgkier the above:c compiling
options is listed below

# General makefile for ¢ - choose PROG = name of given program

# Here we define compiler option, libraries and the target
CC= c++ -Wall
PROG= myprogram

# Here we make the executable file
${PROG} : ${PR0OG}.0
${cc} ${PROG}.o -o ${PROG}

# whereas here we create the object file

${PROG}.0 : ${PROG}.cpp
${CC} -c ${PROG}.cpp

If you name your file for ‘'makefile’, simply type the commanhke and Linux/Unix executes
all of the statements in the above makefile. Note that C++ lide® the extension .cpp
For Fortran, a similar makefile is

# General makefile for F90 - choose PROG = name of given program

# Here we define compiler options, libraries and the target
F90= £90
PROG= myprogram

# Here we make the executable file
${PROG} : ${PR0OG}.0
${F90} ${PROG}.o -o ${PROG}
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# whereas here we create the object file

${PROG}.0 : ${PROG}.£f90
${F90} -c ${PROG}.f

2.1.1 Representation of integer numbers

In Fortran a keyword for declaration of an integernWrEGER (KIND =n) , n = 2 reserves 2
bytes (16 bits) of memory to store the integer variable whara 4 reserves 4 bytes (32 bits). In
Fortran, although it may be compiler dependent, just dexjar variable aSNTEGER , reserves
4 bytes in memory as default.

In C/C++ keywords arshort int, int, long int, long long int The byte-length is compiler
dependent within some limits. The GNU C/C++-compilerslézhby gcc or g++) assign 4 bytes
(32 bits) to variables declared byt and long int. Typical byte-lengths are 2, 4, 4 and 8 bytes,
for the types given above. To see how many bytes are resavvadspecific variable, C/C++ has
a library function calledsizeof type) which returns the number of bytes fompe .

An example of program declaration is

Fortran: INTEGER (KIND=2) :: age_of_patrticipant
C/C++: short int age_of_participant;

Note that the(KIND =2) can be written as (2). Normally however, we will for Fortrammgrams
just use the 4 bytes default assignmenNTEGER .

In the above examples one bit is used to store the sign of tiel@age_of participant and
the other 15 bits are used to store the number, which thenamagerfrom zero ta's —1 = 32767.
This should definitely suffice for human lifespans. On theeotmand, if we were to classify
known fossiles by age we may need

Fortran: INTEGER (4) :: age_of fossile
C/C++: int age_of fossile;

Again one bit is used to store the sign of the variable agdos$ile and the other 31 bits are used
to store the number which then may range from zer@*to- 1 = 2.147.483.647. In order to
give you a feeling how integer numbers are represented icamputer, think first of the decimal
representation of the numb&r7

417 =4 x 102 +1 x 10" +7 x 10, (2.1)
which in binary representation becomes
417 =1X ap2™ 4+ ap_ 12" '+ apo2" 2 4+ -+ + 02", (2.2)

where thea, with £ = 0,...,n are zero or one. They can be calculated through successive
division by 2 and using the remainder in each division to iheiiee the numbers,, to ag. A
given integer in binary notation is then written as

2" + ap 12" P4 a, 02" 4+ ag2°. (2.3)
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In binary notation we have thus

(417)1p = (110100001), =, (2.4)
since we have
(110100001)5 = 1 x 284 1x 2" +0x 26+ 1x2° +0x 2" +0x 23 +0x 22 +0x 22 +0x 2" +1x 2°.

To see this, we have performed the following divisions by 2

417/2=208 remainder1 coefficient?fis 1
208/2=104 remainder O coefficient®fis 0
104/2=52 remainder 1 coefficient ®fis O
52/2=27 remainder 1 coefficient &f is 0
26/2=13 remainder 1 coefficient f is 0
13/2=6 remainder 1 coefficient of is 1

6/2=3 remainder 1 coefficient @f is 0
3/2=1 remainder 1 coefficient af is 1
1/2=0 remainder 1 coefficient @f is 1

A simple program which performs these operations is liseddw. Here we employ the modulus
operation, which in C/C++ is given by the a%?2 operator. Intfaor 90/95 the difference is that

we call the function MOD(a,2)

programs/chap2/program?2.cpp

using namespacestd;
#include <iostream >

int main (int argc, charx argv|[])
{
int i;
int terms[32]; // storage of a0, al, etc, up to 32 bits
int number = atoi(argv[1]);
/!l initialise the term a0, al etc
for (i=0; 1 <32 ; i++){ terms[i] = 0;}
for (i=0; i < 32 ; i++){
terms[i] = number%?2;
number /= 2;
}
[/l write out results
cout << ‘* Number of bytes used=’> << sizeof(number) << endl;
for (i=0; i < 32 ; i++){
cout << ‘* Term nr: '' << | << ‘““Value= ‘' << termsJ[i];
cout << endl;

}

return O;

}
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The C/C++ functionsizeof yields the number of bytes reserved for a specific variabtge MIso
the for construct. We have reserved a fixed array which containsdhees ofa; being0 or 1,
the remainder of a division by two. Another example, the nendbis given in an 8 bits word as

3 = 0000011. (2.5)

Note that for417 we need 9 bits in order to represent the number whengeds only 2 significant
bits.

With these prerequesites in mind, it is rather obvious treagiven integer variable is beyond
the range assigned by the declaration statement we may r@ecquoblems.

If we multiply two large integers, x n, and the product is too large for the bit size allocated
for that specific integer assignement, we run into an ovenfimblem. The most significant bits
are lost and the least significant kept. Using 4 bytes fogeteariables the result becomes

220 % 220 = . (2.6)

However, there are compilers or compiler options that regss the program in such a way that
an error message like 'integer overflow’ is produced whemingthe program. Here is a small
program which may cause overflow problems when running @riest your own compiler in
order to be sure how such problems need to be handled).

programs/chap2/program3.cpp

/!l Program to calculate 2xn
using namespacestd;
#include <iostream >

int main ()
{
int intl, int2, int3;
/Il print to screen
cout << "Read in the exponential N for 2°N =\n",
// read from screen
cin >> int2;
intl = (int) pow(2., (double) int2);

cout <<"™ 2°N % 2°N = " << intlsintl << "\n";

int3 = intl — 1;

cout <<"™ 2°Nx*(2°N - 1) = " << intl x int3 <<"\n";
cout <<" 2°N- 1 = " << int3 <<"\n";

return O;

}

/1l End: program main ()

The corresponding Fortran 90/95 example is

programs/chap2/program2.f90
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PROGRAM integer_exp
IMPLICIT NONE
INTEGER (KIND =4) :: intl, int2, int3

I This is the begin of a comment line in Fortran 90
! Now we read from screen the variable int2

WRITE (* ,*) 'Read in the number to be exponentiated’
READ (% ,x) int2

intl=int2xx30

WRITE (* ,%) 'int2*x30+int2%x30", intl+intl
int3=intl1-1

WRITE (* ,%) 'int2*x30+int2x*x30—1", intl+int3

WRITE (% ,%) 'int2*x31-1", 2xintl -1

END PROGRAM integer_exp

2.2 Real numbers and numerical precision

An important aspect of computational physics is the nunaépececision involved. To design
a good algorithm, one needs to have a basic understandingegation of inaccuracies and
errors involved in calculations. There is no magic reciped®aling with underflow, overflow,
accumulation of errors and loss of precision, and only afabamalysis of the functions involved
can save one from serious problems.

Since we are interested in the precision of the numericalutad, we need to understand
how computers represent real and integer numbers. Mostuengpdeal with real numbers in
the binary system, or octal and hexadecimal, in contrastg@alecimal system that we humans
prefer to use. The binary system uses 2 as the base, in mushrtteeway that the decimal system
uses 10. Since the typical computer communicates with usardecimal system, but works
internally in e.g., the binary system, conversion procedunust be executed by the computer,
and these conversions involve hopefully only small rouhdobrs

Computers are also not able to operate using real numbersssqal with more than a fixed
number of digits, and the set of values possible is only aetutifthe mathematical integers or
real numbers. The so-called word length we reserve for angivenber places a restriction on
the precision with which a given number is represented. Tteans in turn, that e.g., floating
numbers are always rounded to a machine dependent predigpaally with 6-15 leading digits
to the right of the decimal point. Furthermore, each sucloedlues has a processor-dependent
smallest negative and a largest positive value.

Why do we at all care about rounding and machine precision® bHEst way is to consider
a simple example first. You should always keep in mind thatniaehine can only represent
a floating number to a given precision. Let us in the followaxg@mple assume that we can
represent a floating number with a precision of 5 digits onlyhe right of the decimal point.
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This is nothing but a mere choice of ours, but mimicks the waybers are represented in the
machine.
Suppose we wish to evaluate the function

_ 1 —cos(x)

flz) = (2.7)

sin(z)

for small values of:. If we multiply the denominator and numerator with- cos(x) we obtain
the equivalent expression

sin(z)
= . 2.8
/() 1 + cos(x) (2.:8)
If we now choose: = 0.007 (in radians) our choice of precision results in
5in(0.007) = 0.69999 x 1072,
and
c05(0.007) ~ 0.99998.
The first expression fof () results in
1 —0.99998 0.2 x 1074
— = = (0.28572 x 1072 2.9
/(@) 0.69999 x 10=2  0.69999 x 102 028572 % 107, (2.9)
while the second expression results in
0.69999 x 1072 0.69999 x 102
fla) = e X 0.35000 x 1072, (2.10)

14 0.99998 1.99998

which is also the exact result. In the first expression, dwaitahoice of precision, we have only
one relevant digit in the numerator, after the subtractifms leads to a loss of precision and a
wrong result due to a cancellation of two nearly equal nusibéwe had chosen a precision of
six leading digits, both expressions yield the same ansiere were to evaluate ~ 7, then
the second expression f@fz) can lead to potential losses of precision due to cancefigtid
nearly equal numbers.

This simple example demonstrates the loss of numericaigioacdue to roundoff errors,
where the number of leading digits is lost in a subtractiotwaf near equal numbers. The lesson
to be drawn is that we cannot blindly compute a function. Wk alWvays need to carefully
analyze our algorithm in the search for potential pitfallBhere is no magic recipe however,
the only guideline is an understanding of the fact that a nm&cbannot represent correctyl
numbers.

2.2.1 Representation of real numbers

Real numbers are stored with a decimal precision (or ma)tessd the decimal exponent range.
The mantissa contains the significant figures of the numbet {aereby the precision of the
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number). In the decimal system we would write a number 6ik&94 in what is called the nor-
malized scientific notation. This means simply that the m@tipoint is shifted and appropriate
powers of 10 are supplied. Our number could then be written as

6.7894 = 0.67894 x 10,
and a real non-zero number could be generalized as
x = =£r x 10", (2.11)

with ar a number in the range/10 < r < 1. In a similar way we can use represent a binary
number in scientific notation as
x =+q x 2™, (2.12)

with a¢ a number in the range/2 < ¢ < 1.

In a typical computer, floating-point numbers are repre=gint the way described above, but
with certain restrictions on andm imposed by the available word length. In the machine, our
numberz is represented as

x = (—1)° x mantissa x 2Pt (2.13)

wheres is the sign bit, and the exponent gives the available rangth &\single-precision word,
32 bits, 8 bits would typically be reserved for the exponénhit for the sign and 23 for the
mantissa. This means that if we define a variable as A moddicaf the scientific notation for
binary numbers is to require that the leading binary digipfiears to the left of the binary point.
In this case the representation of the mantigssauld be(1.f), and1 < ¢ < 2. This form is
rather useful when storing binary numbers in a computer weinte we can always assume that
the leading bit 1 is there. One bit of space can then be savadintgthat a 23 bits mantissa has
actually 24 bits.

Fortran: REAL (4) :: size_of_fossile
C/C++: float size_of_fossile;

we are reserving 4 bytes in memory, with 8 bits for the exptngror the sign and and 23
bits for the mantissa, implying a numerical precision to $in¢h or seventh digit, since the
least significant digit is given by/2%3 ~ 10~ 7. The range of the exponent goes fram?® =
2.9 x 107% t0 212" = 3.4 x 10%, where 128 stems from the fact that 8 bits are reserved for the
exponent.

If our numberz can be exactly represented in the machine, we calmachine number.
Unfortunately, most numbers cannot are thereby only apprated in the machine. When such
a number occurs as the result of reading some input data oczarh@utation, an inevitable error
will arise in representing it as accurately as possible byaalmme number. This means in turn
that for real numbers, we may have to deal with essentially figoes of problents. Let us list
them and discuss how to discover these problems and theittaleures.

°There are others, like errors made by the programmer, olgrabwith compilers.



2.2. REAL NUMBERS AND NUMERICAL PRECISION 21

1. Overflow : When the positive exponent exceeds the max value, e.g.,30BQUBLE
PRECISION (64 bits). Under such circumstances the prograhtesminate and some
compilers may give you the warning 'OVERFLOW’.

2. Underflow : When the negative exponent becomes smaller than the mie,\alg., -308
for DOUBLE PRECISION. Normally, the variable is then set &r@ and the program
continues. Other compilers (or compiler options) may wara with the 'UNDERFLOW’
message and the program terminates.

3. Roundoff errors A floating point number like
r = 1.234567891112131468 = 0.1234567891112131468 x 10* (2.14)

may be stored in the following way. The exponent is small astared in full precision.
However, the mantissa is not stored fully. In double precigb4 bits), digits beyond the
15th are lost since the mantissa is normally stored in twadgioone which is the most
significant one representing 123456 and the least signifma® containing 789111213.
The digits beyond 3 are lost. Clearly, if we are summing afieng series with large
numbers, subtractions between two large numbers may leanhitaoff errors, since not
all relevant digits are kept. This leads eventually to thet peoblem, namely

4. Loss of precisionOverflow and underflow are normally among the easiest prablem
deal with. When one has to e.g., multiply two large numbergn&lone suspects that
the outcome may be beyond the bonds imposed by the variablardigon, one could
represent the numbers by logarithms, or rewrite the equsiio be solved in terms of
dimensionless variables. When dealing with problems in eayticle physics or nuclear
physics where distance is measured in fitr¢°m), it can be quite convenient to redefine
the variables for distance in terms of a dimensionless bkriaf the order of unity. To
give an example, suppose you work with single precision astl /@ perform the addition
1 + 1078, In this case, the information containingifn—* is simply lost in the addition.
Typically, when performing the addition, the computer dqadirst the exponents of the
two numbers to be added. Fob—® this has however catastrophic consequences since in
order to obtain an exponent equallt@, bits in the mantissa are shifted to the right. At
the end, all bits in the mantissa are zeros.

However, the loss of precision and significance due to themsybers are represented in
the computer and the way mathematical operations are peefrcan at the end lead to
totally wrong results.

Other cases which may cause problems are singularitieedf/ge0/0 which may arise from
functions likesin(x)/z asx — 0. Such problems may need the restructuring of the algorithm.

In order to illustrate the above problems, we consider imsbction three possible algorithms
for computinge™*:
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1. by simply coding

exp (<2) = 3 (-1

2. or to employ a recursion relation for

exp () = 3 s = S (-1

n=0 n=0
using

s
Sp = —Sp—1—,
n

3. or to first calculate

xp () = 35,

=0

S

and thereafter taking the inverse

1
exp (z)

exp (—x) =

Below we have included a small program which calculates

o

exp (—z) = Z(—l)”i—?, (2.15)

n=0

for xz-values ranging fron to 100 in steps of 10. When doing the summation, we can always
define a desired precision, given below by the fixed value tiervariable TRUNCATION-
1.0F — 10, so that for a certain value af > 0, there is always a value af = N for which the
loss of precision in terminating the seriesnat= N is always smaller than the next term in the
series”%. The latter is implemented through the while{} statement.

programs/chap2/program4.cpp

I/l Program to calculate function exp{x)

/!l using straightforward summation with differing precisn
using namespacestd;

#include <iostream >

/Il type float: 32 bits precision

/Il type double: 64 bits precision

#define TYPE double

#define PHASE(a) (1 - 2 % (abs(a) % 2))
#define TRUNCATION 1.0E-10

/Il function declaration

TYPE factorial(int);
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int main ()

{
int n;

TYPE x, term, sum;

for (x 0.0; x <100.0; x +=10.0) {
sum = 0.0; /linitialization
n =0;
term = 1;

while (fabs (term) > TRUNCATION) {
term = PHASE(n) « (TYPE) pow((TYPE) x,(TYPE) n) / factorial

n);

sum += term;
n++;

} // end of while() loop

cout << ' x =7’ << x << ‘‘exp = ‘" << exp(—=x) << ‘' series
= ‘" << sum;

cout << ‘‘ number of terms =" << n << endl;

} // end of for() loop

return O;
} // End: function main ()

// The function factorial()
// calculates and returns n!

TYPE factorial(int n)
{
int 1loop;
TYPE fac;
for(loop = 1, fac = 1.0; loop <= n; loop++) {
fac *x= loop;
}
return fac;
} // End: function factorial()

There are several features to be nétdrst, for low values of, the agreement is good, however
for largerz values, we see a significant loss of precision. Secondlygzfer 70 we have an
overflow problem, represented (from this specific compitgrNaN (not a number). The latter
is easy to understand, since the calculation of a factofidiesizel 71! is beyond the limit set

for the double precision variable factorial. The messagd Alapears since the computer sets the

factorial of 171 equal to zero and we end up having a division by zero in ouresgmon fore .

In Fortran 90/95 Real numbers are written as 2.0 rather treard2leclared as REAL (KIND=8)
or REAL (KIND=4) for double or single precision, respectivdn general we discorauge the use
of single precision in scientific computing, the achieveegmsion is in general not good enough.

3Note that different compilers may give different messagesdeal with overflow problems in different ways.
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r exp(—x) Series Number of terms in series
0.0 0.100000E+01 0.100000E+01 1
10.0 0.453999E-04 0.453999E-04 44
20.0 0.206115E-08 0.487460E-08 72
30.0 0.935762E-13 -0.342134E-04 100
40.0 0.424835E-17 -0.221033E+01 127
50.0 0.192875E-21 -0.833851E+05 155
60.0 0.875651E-26 -0.850381E+09 171
70.0 0.397545E-30 NaN 171
80.0 0.180485E-34 NaN 171
90.0 0.819401E-39 NaN 171
100.0 0.372008E-43 NaN 171

Table 2.3: Result from the brute force algorithm éap (—xz).

Fortran 90/95 uses a do construct to have the computer exdwisame statements more than
once. Note also that Fortran 90/95 does not allow floatingbbemnhas loop variables. In the
example below we use both a do construct for the loop oserd aDO WHILE construction for
the truncation test, as in the C/C++ program. One couldratieely use theEXIT statement
inside a do loop. Fortran 90/95 has also if statements as@r-€/ The IF construct allows the
execution of a sequence of statements (a block) to dependcondition. The if construct is
a compound statement and begins with IF ... THEN and endsENtDIF. Examples of more
general IF constructs using ELSE and ELSEIF statementsi\aea o other program examples.
Another feature to observe is the CYCLE command, which alawoop variable to start at a
new value.

Subprograms are called from the main program or other sgbgnus. In the example be-
low we compute the factorials using the functidactorial . This function receives a dummy
argument.. INTENT(IN) means that the dummy argument cannot be changthah the subpro-
gram. INTENT(OUT) means that the dummy argument cannot bd usthin the subprogram
until it is given a value with the intent of passing a valuekbarxthe calling program. The state-
ment INTENT(INOUT) means that the dummy argument has aralnilue which is changed
and passed back to the calling program. We recommend thaisethese options when calling
subprograms. This allows better control when transferargables from one function to another.
In chapter 3 we discuss call by value and by reference in C/CeH by value does not allow a
called function to change the value of a given variable inddléng function. This is important
in order to avoid unintentional changes of variables whandfering data from one function to
another. TheNTENT construct in Fortran 90/95 allows such a control. Furtheemibincreases
the readability of the program.

programs/chap2/program3.f90

PROGRAM exp_prog
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IMPLICIT NONE
REAL (KIND=8) :: x, term, final _sum, &
factorial , truncation
INTEGER :: n, loop_over_xX
truncation=1.0E10
I loop over xvalues
DO loop_over_x=0, 100, 10
x=loop_over_x
I initialize the EXP sum
final_sum=1.0 ; sum_term=1.0 ; exponent=0
DO WHILE ( ABS(sum_term) > truncation)
n=n+1
term = ((—=1.)x*n)*(xxxn)/ factorial(n)
final_sum=final_sum+term
ENDDO
I write the argument x, the exact value, the computed valuea an
WRITE (% ,+x) argument ,EXP£x) , final _sum , n
ENDDO

END PROGRAM exp_prog

DOUBLE PRECISION FUNCTION factorial (n)
INTEGER (KIND =2) , INTENT (IN) :: n
INTEGER (KIND =2 ) :: loop

factorial = 1.
IF ( n >1) THEN
DO loop = 2, n
factorial=factorialkloop
ENDDO
ENDIF

END FUNCTION factorial

The overflow problem can be dealt with by using a recurrenoaditef for the terms in the sum,
so that we avoid calculating factorials. A simple recureefarmula for our equation

(o0} (o] nxn
exp(=2) =) su =D (-1)" . (2.16)
n=0 n=0 ’
is to note that .
Sp = —Sp_1—, (2.17)
n

4Recurrence formulae, in various disguises, either as vaagpresent series or continued fractions, form among

the most commonly used forms for function approximationarples are Bessel functions, Hermite and Laguerre
polynomials.
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so that instead of computing factorials, we need only to ageproducts. This is exemplified
through the next program.

programs/chap2/program5.cpp

/Il program to compute exp{x) without factorials
using namespacestd;
#include <iostream >

#define TRUNCATION 1.0E-10
int main ()
{
int loop, n;
double X, term, sum;
for (loop = 0; loop <= 100; loop += 10){
X = (double) loop; [l initialization
sum = 1.0;
term = 1;
n =1;

while (fabs (term) > TRUNCATION){
term x= —x/((double) n);
sum += term;

n++;
} /1 end while loop
cout << ''x =’ << x << ‘“‘exp = ‘' << exp(—Xx) << ‘‘series
= ‘" << sum;
cout << ‘‘number of terms =" << n << endl;
} // end of for loop
¥y // End: function main ()

In this case, we do not get the overflow problem, as can be semrtiie large number of terms.
Our results do however not make much sense for largBrecreasing the truncation test will not
help! (try it). This is a much more serious problem.

In order better to understand this problem, let us constliecase of = 20, which already
differs largely from the exact result. Writing out each teimthe summation, we obtain the
largest term in the sum appearsiat 19 and equals-43099804. However, forn = 20 we have
almost the same value, but with an interchanged sign. It sid@t we have an error relative
to the largest term in the summation of the order®99804 x 1071° ~ 4 x 1072, This is
much larger than the exact value®®1 x 10~8. The large contributions which may appear at
a given order in the sum, lead to strong roundoff errors, Wwincturn is reflected in the loss of
precision. m. We can rephrase the above in the following @&yceexp (—20) is a very small
number and each term in the series can be rather large (ofdlee of 103, it is clear that other
terms as large a)®, but negative, must cancel the figures in front of the decjpoait and some
behind as well. Since a computer can only hold a fixed numbsigmificant figures, all those
in front of the decimal point are not only useless, they amvding out needed figures at the
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x exp(—x) Series Number of terms in series
0.000000 0.10000000E+01 0.10000000E+01 1
10.000000 0.45399900E-04 0.45399900E-04 44
20.000000 0.20611536E-08 0.56385075E-08 72
30.000000 0.93576230E-13 -0.30668111E-04 100
40.000000 0.42483543E-17 -0.31657319E+01 127
50.000000 0.19287498E-21 0.11072933E+05 155
60.000000 0.87565108E-26 -0.33516811E+09 182
70.000000 0.39754497E-30 -0.32979605E+14 209
80.000000 0.18048514E-34 0.91805682E+17 237
90.000000 0.81940126E-39 -0.50516254E+22 264
100.000000 0.37200760E-43 -0.29137556E+26 291

Table 2.4: Result from the improved algorithm foip (—z).

right end of the number. Unless we are very careful we will fiodselves adding up series that
finally consists entirely of roundoff errors! To this specifiase there is a simple cure. Noting
thatexp () is the reciprocal oéxp (—x), we may use the series fexp (z) in dealing with the
problem of alternating signs, and simply take the inversge as however to beware of the fact
thatexp () may quickly exceed the range of a double variable.

The Fortran 90/95 program is rather similar in structurene@/C++ progra

programs/chap2/program4.f90

PROGRAM improved
IMPLICIT NONE
REAL (KIND =8) :: x, term, final_sum , truncation_test
INTEGER (KIND=4)} :: n, loop_over_x
truncation_test=1.0E10
' loop over xvalues, no floats as loop variables
DO loop_over_x=0, 100, 10
x=loop_over_x
I' initialize the EXP sum
final_sum=1.0 ; sum_term=1.0 ; exponent=0
DO WHILE ( ABS(sum_term) > truncation_test )
n=n+1
term = —termx«Xx/FLOAT(n)
final_sum=final_sum+term
ENDDO
I write the argument x, the exact value, the computed valuea an
WRITE (% ,+) argument ,EXP{x) , final_sum , n
ENDDO
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END PROGRAM improved

2.2.2 Further examples
Summing 1/n

Let us look at another roundoff example which may surpriseypore. Consider the series

N g
$1 = g e (2.18)
n=1

which is finite whenV is finite. Then consider the alternative way of writing thisrs

1
1
S5=)_ e (2.19)
n=N

which when summed analytically should gise= s;. Because of roundoff errors, numerically
we will get s, # s;! Computing these sums with single precision fér= 1.000.000 results

in s; = 14.35736 while s, = 14.39265! Note that these numbers are machine and compiler
dependent. With double precision, the results agree gxdwivever, for larger values aV,
differences may appear even for double precision. If we sBdd = 10® and employ double
precision, we get; = 18.9978964829915355 while s, = 18.9978964794618506, and one notes

a difference even with double precision.

This example demonstrates two important topics. First vieaohat the chosen precision is
important, and we will always recommend that you employ dewbecision in all calculations
with real numbers. Secondly, the choice of an approprigiersthm, as also seen fer?, can be
of paramount importance for the outcome.

The standard algorithm for the standard deviation

Yet another example is the calculation of the standard tlemia whenes is small compared to
the average valug. Below we illustrate how one of most frequently used aldnis can go
wrong when single precision is employed.

However, before we proceed, let us definandz. Suppose we have a setdfdata points,
represented by the one-dimensional arréy, fori = 1, N. The average value is then

7= 7Z£V]{[x(i), (2.20)
while
_ ZZ:E(Z)Q —TZM(Z)
o= \/ N1 . (2.21)

Let us now assume that
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and thatV = 127, just as a mere example which illustrates the kind of proklevhich can
arise when the standard deviation is small compared witsing single precision results in a
standard deviation of = 40.05720139 for the most used algorithm, while the exact answer is
o = 36.80579758, a number which also results from the above two-step alyoriwith double
precision, the two algorithms result in the same answer.

The reason for such a difference resides in the fact thattsteafgorithm includes the sub-

traction of two large numbers which are squared. Since tleeage value for this example is
T = 100063.00, it is easy to see that computiig, z(i)*> — T Y, z(i) can give rise to very large
numbers with possible loss of precision when we perform theraction. To see this, consider

the case wherg= 64. Then we have
rhy — Twgy = 100352,

while the exact answer is
13, — Taes = 100064!

You can even check this by calculating it by hand.

The second algorithm computes first the difference betw¢grand the average value. The

difference gets thereafter squared. For the second digorite have foi = 64

$64—f:1,

and we have no potential for loss of precision.

The standard text book algorithm is expressed through fhenwimg program

programs/chap2/program6.cpp

/!l program to calculate the mean and standard deviation of

/l a user created data set stored in array Xx[]
using namespacestd;
#include <iostream >
int main ()
{
int i
float sum, sumsg2, xbar, sigmal, sigmaZ2;
/Il array declaration with fixed dimension
float x[127];
/I initialise the data set
for ( 1=0; 1 <127 ; i++){
x[i] =i +100000.;
}
/I The variable sum is just the sum over all
[/l The variable sumsqg2 is the sum over x”"2
sum=0.;
sumsqg2=0.;

SNote that this number may be compiler and machine dependent.

elements
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/I Now we use the text book algorithm
for ( i=0; i <127; i++){
sum += x[i];
sumsqg2 += pow (fouble) x[i],2.);
}
/I  calculate the average and sigma
xbar=sum/127.;
sigmal=sqrt ((sumsgxsunxxbar)/126.) ;
[
x* Here comes the cruder algorithm where we evaluate
x*x separately first the average and thereafter the
x* sum which defines the standard deviation. The average
** has already been evaluated through xbar
*/
sumsg2 =0.;
for ( 1=0; 1 <127; i++){
sumsq2 += pow( @ouble) (x[i]—xbar) ,2.);

}
sigma2=sqrt(sumsq2/126.) ;
cout <<'"xbar = ¢‘ << xbar << ‘‘sigmal = ‘¢ << sigmal << ‘‘sigma2

= ‘¢ << sigma?2;
cout << endl;
return O;
}// End: function main ()

The corresponding Fortran 90/95 program is given below.

programs/chap2/program5.f90

PROGRAM standard_deviation
IMPLICIT NONE

REAL x4 :: sum, sumsq2, xbar
REAL x4 :: sigmal, sigma2
REAL x4 , DIMENSION (127) :: X
INTEGER :: i

x=0;
DO i=1, 127
x(i) =i + 100000.
ENDDO
sum=0.; sumsqg2=0.
! standard deviation calculated with text book algorithm
DO i=1, 127
sum = sum +x(i)
sumsg2 = sumsq2+x(i®x2
ENDDO
! average




2.3. LOSS OF PRECISION 31

xbar=sum/127.
sigmal=SQRT ((sumsgxunm«xbar)/126.)
! second method to evaluate the standard deviation
sumsg2=0.
DO i=1, 127
sumsqg2=sumsq2 +(x( Dxbar )xx2
ENDDO
sigma2=SQRT(sumsq2/126.)
WRITE (% ,+) xbar , sigmal, sigma2

END PROGRAM standard_deviation

2.3 Loss of precision

2.3.1 Machine numbers

How can we understand the above mentioned problems? Hinss$ lgote that a real number
has a machine representatifiiz)

fl(z) =z(1+¢) (2.22)

where|¢| <€) ande is given by the specified precision)~" for single andl0~'¢ for double
precision, respectively,, is the given precision. Suppose that we are dealing with lhiB&erd
and deal with single precision real number. This means Heaptecision is at the 6-7 decimal
places. Thus, we cannot represent all decimal numbers wittxact binary representation in
a computer. A typical example {51, wherea$).90625 has an exact binary representation even
with single precision.

In case of a subtraction= b — ¢, we have

fl(a) = fL(b) = fl(c) = a(l + €), (2.23)
or
flla) =b(1+€)—c(l+e), (2.24)
meaning that
fl(a))a=1+ ebg - ecg, (2.25)

and ifb ~ ¢ we see that there is a potential for an increased errey,AnThis is because we are
subtracting two numbers of equal size and what remains jsthaelleast significant part of these
numbers. This part is prone to roundoff errors andig small we see that (with~ ¢)

€a N

ISHIS

(en — €c), (2.26)
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can become very large. The latter equation represents lgé/ecerror of this calculation. To
see this, we define first the absolute error as

| fl(a) — al, (2.27)
whereas the relative error is l
M < e, (2.28)
a
The above subraction is thus
i) —al _ |fU0) = J(e) = (b= )] (2.20)
a a

yielding

|fl(a) —a|]  |bey — ce|

a N a .

The relative error is the quantity of interest in scientifiorkt Information about the absolute
error is normally of little use in the absence of the magretofithe quantity being measured.
If we go back to the algorithm with the alternating sum for g@utingexp —z of program ex-
ample 3, we do happen to know the final answer, but an analj/#ie @ontribution to the sum
from various terms shows that the relative error made carulge.hThis results in an unstable
computation, since small errors made at one stage are nejmfsubsequent stages.

(2.30)

2.3.2 Floating-point error analysis

To understand roundoff errors in general, it is customamggard it as a random process. One
can represent these errors by a semi-empirical expregsiaroundoff errors come in randomly
up or down

€0 ~ VNeu, (2.31)

whereN is e.g., the number of terms in the summation ovéar the exponential. Note well that
this estimate can be wrong especially if the roundoff eramsumulate in one specific direction.
One special case is that of subtraction of two almost equabreus.

The total error will then be the sum of a roundoff error and ppraximation error of the
algorithm. The latter would correspond to the truncaticst ¢¢ examples 2 and 3. Let us assume
that the approximation error goes like

«
€approxr = Wa (232)
with the obvious limite,,,.., — 0 when N — oc. The total error reads then
(6]
€ot = 7B +VNew (2.33)

We are now in a position where we can make an empirical erralysis. Let us assume that
we have an exact answer with which we can compare the outcomer algorithm with. We
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label these results as,,.: andYj,, for the exact and algorithmic results, respectively. Sisgpo
thereafter that our algorithm depends on the number of stepd in each iteration. An example
of this is found in Examples 2 and 3 fexp (—z). The outcome of our algorithm is then a
function of N, Y, = Yau, (N).

We assume now that the approximation error is the most irmapbdne for small values of

N. This means that o

N&
If we now double the number of steps and still have a resultiwbbes not vary too much from
the exact one, we have

Yzzlg(N) = Y:exact + (234)

Yty (N) = Yy (2N) ~ % (2.35)
If we plotiogo(|Yaie (V) — Ya,(2N)|) versudogo(N), the part which is a straight line indicates
the region in which our approximation for the error is valithe slope of the line is ther 5.
When we increasé/, we are most likely to enter into a region where roundoff exrstart to
dominate. If we then obtain a straight line again, the sloplemost likely, if €., ~ v/Ney,, be
close tol /2.

In examples foexp (—z), we saw forz = 20 thatY,,, andY,,, differ quite a lot. Even if
we were to improve our truncation test, we will not be ablempiove the agreement with the
exact result. This means that we are essentially in the megieere roundoff errors take place.
A straight line will then give us the empirical behavior oethoundoff errors for the specific
function under study.

2.4 Additional features of C/C++ and Fortran 90/95

2.4.1 Operators in C/C++

In the previous program examples we have seen several typge@tors. In the tables below
we summarize the most important ones. Note that the modnl@$C++ is represented by the
operator % whereas in Fortran 90/95 we employ the intringicionMOD. Note also that the

increment operator ++ and the decrement operator-— is not available in Fortran 90/95. In
C/C++ these operators have the following meaning

++x; or x++; hasthe same meaning asx = x + 1;
——X; or x——; hasthe same meaning asx = x — 1;

C/C++ offers also interesting possibilities for combingeators. These are collected in the
next table.

Finally, we show some special operators pertinent to C/Caty.oThe first one is the
operator. Its action can be described through the followexample

A = expressionl ?  expression2 : expressiond;

Hereexpressionl is computed first. If this istrue” (# 0), thenexpression2 is computed and
assigned A. lexpressionl is "false”, thenexpression3d is computed and assigned A.
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arithmetic operators relation operators
operator  effect operator effect
— Subtraction > Greater than
+ Addition >= Greater or equal
* Multiplication < Less than
/ Division <= Less or equal
% or MOD Modulus division| == Equal
—— Decrement = Not equal
++ Increment

Table 2.5: Relational and arithmetic operators. The m@batiperators act between two operands.
Note that the increment and decrement operatoksand—— are not available in Fortran 90/95.

Logical operators
C/C++ Effect Fortran 90/95%
0 False value .FALSE.
1 True value .TRUE.
Ix Logical negation .NOT.x
x&&y Logical AND X.AND.y
X|ly  Logical inclusive x.OR.y

Table 2.6: List of logical operators in C/C++ and Fortran9®0/

Bitwise operations

C/C++ Effect

Fortran 90/9%

D

~i Bitwise complement NOT(j)

& Bitwise and IAND(i,))

in Bitwise exclusive or IEOR(i,))
i]] Bitwise inclusive or IOR(i,))

i<<j  Bitwise shift left ISHFT(i,))
i>>n  Bitwise shift right ISHFT(i,-j

Table 2.7: List of bitwise operations.
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Expression meaning | expression meaning
a += b; a=a+ b; a -= b; a=a - b;
a*=b; a=ax*xb;| a/=b; a=a/b;
a%=Db; a=a¥%b;| a«=b; a=ac«b;
a »= b; a=a»b; a &= b; a=aé& b;
al=b; a=alb;| aa=Db; a=anb;

2.4.2 Pointers and arrays in C/C++,

Table 2.8: C/C++ specific expressions.

In addition to constants and variables C/C++ contain ingrdrtypes such as pointers and arrays
(vectors and matrices). These are widely used in most C/Gogram. C/C++ allows also
for pointer algebra, a feature not included in Fortran 90/Bbinters and arrays are important
elements in C/C++. To shed light on these types, considdbtlusving setup

int name

&name

int *pointer

defines an integer variable calledme. It is given an address in
memory where we can store an integer number.

is the address of a specific place in memory where the integeyr
is stored. Placing the operator & in front of a variable ygelts
address in memory.

defines and an integer pointer and reserves a location in myemo
for this specific variable The content of this location isweel as

the address of another place in memory where we have stored an
integer.

Note that in C++ it is common to writént » pointer while in C one usually writesnt *pointer.
Here are some examples of legal C/C++ expressions.

name = 0x56;

/* name gets the hexadecimal value hex 56. */

pointer = &name; [* pointer points to name. */
printf ("Address of name = %p",pointer); /[*writes outthe address of name. */
printf ("Value of name= Jd",*pointer); /* writes out the value of name. */

Here’s a program which illustrates some of these topics.

programs/chap2/program?7.cpp

main ()

{

SO~ wN PR

int var;
int xpointer;

using namespacestd;
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pointer = &var;

var = 421;

printf ("Address of the integer variable var : %p\n",&var);
printf("value of var : %d\n", var);

printf("Value of the integer pointer variable: %p\n",pointer)

printf("Value which pointer is pointing at : %d\n",xpointer)

printf("Address of the pointer variable : Y%p\n",&pointer);

Line Comments

4 e Defines an integer variable var.

5 ¢ Define an integer pointer — reserves space in memory.

7 e The content of the adddress of pointer is the address of var.
8 e The value of var is 421.

9 e Writes the address of var in hexadecimal notation for posép.
10 e Writes the value of var in decimal notation%d.

The ouput of this program, compiled with g++, reads

Address of the integer variable var : Oxbfffeb74
Value of var: 421

Value of integer pointer variable : Oxbfffeb74
The value which pointer is pointing at : 421
Address of the pointer variable : Oxbfffeb70

In the next example we consider the link between arrays amdeys.

int matr[2] defines a matrix with two integer membergatr [0] ogmatr[1].

matr

is a pointer tanatr [0].

(matr + 1) is a pointer tanatr[1].

programs/chap2/program8.cpp

O©oOoO~NO UL WNPF

using namespacestd ;
#included <iostream >

int

{

main ()

int matr[2];
int xpointer;

pointer = &matr[0];
matr[0] = 321;
matr[1l] = 322;
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10 printf("\nAddress of the matrix element matr[1]: %p",&matr
[01);

11 printf("\nValue of the matrix element matr[1]; %d4d",matr[0])

12 printf("\nAddress of the matrix element matr[2]: %p",&matr
[1]);

13 printf("\nValue of the matrix element matr[2]: %d\n", matr
[11);

14 printf("\nValue of the pointer : %p",pointer);

15 printf("\nValue which pointer points at : %d",xpointer);

16 printf("\nValue which (pointer+1) points at: %d\n"  x(
pointer+1));

17 printf("\nAddress of the pointer variable: %p\n",&pointer);

18 }

You should especially pay attention to the following

Line
5 e Declaration of an integer array matr with two elements
6 ¢ Declaration of an integer pointer

7 e The pointer is initialized to point at the first element of Hreay matr.
8-9 e Values are assigned to the array matr.

The ouput of this example, compiled again with g++, is

Address of the matrix element matr[1]: Oxbfffef70
Value of the matrix element matr[1]; 321
Address of the matrix element matr[2]: Oxbfffef74
Value of the matrix element matr[2]: 322

Value of the pointer: Oxbfffef70

The value pointer points at: 321

The value that (pointer+1) points at: 322
Address of the pointer variable : Oxbfffef6c

2.4.3 Macrosin C/C++

In C we can define macros, typically global constants or fionstthrough thelefine statements
shown in the simple C-example below for

#define ONE 1
#define TWO ONE + ONE
#define THREE ONE + TWO

main ()

{

oo, wN e
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7. printf ("ONE=Y%d, TWO0=%d, THREE=%d" ,ONE,TWO, THREE):
8. }

In C++ the usage of macros is discouraged and you shouldrrasigethe declaration for con-
stant variables. You would then replace a statementfikéine ONE 1with const int ONE = 1;
There is typically much less use of macros in C++ than in C.il@ng, In C we could define
macros for functions as well, as seen below.

1. #define MIN(a,b) ( ((a) < (b)) ?2 (a) : (b))
2. #define MAX(a,b) ( ((a) > (b)) 2 (a) : (b))
3. #define ABS(a) ( ((a) <0) 2(a) : (a) )

4. #define EVEN(a) ( (a) %2 ==0 7 1 : 0 )
5. #define TOASCII(a) ( (a) &Ox7f)

In C++ we would replace such function definition by employsogcalledinline functions. Three
of the above functions could then read

inline double MIN(double a, double b) (return  ( ((a) < (b)) ? (4
) (b)) )3)

inline double MAX(double a, double b) (return  ( ((a) > (b)) ? (4
) (b)) )3)

inline double ABS(double a) (return ( ((a) < 0) ?—(a) : (a)
) )

where we have defined the transferred variables to be ofdypee. The functions also return a
doubletype. These functions could easily be generalized throughse of classes and templates,
see chapter 5, to return whather types of real, complex egeértvariables.

Inline functions are very useful, especially if the overthéar calling a function implies a
significant fraction of the total function call cost. Whertkdunction call overhead is significant,
a function definition can be preceded by the keywatithe . When this function is called, we
expect the compiler to generate inline code without fumctiall overhead. However, although
inline functions eliminate function call overhead, they ¢atroduce other overheads. When a
function is inlined, its code is duplicated for each callcEssive use oihline may thus generate
large programs. Large programs can cause excessive pagingual memory systems. Too
many inline functions can also lengthen compile and linkesmon the other hand not inlining
small functions like the above that do small computatioas,make programs bigger and slower.
However, most modern compilers know better than programvhéerh functions to inline or not.
When doing this, you should also test various compiler aygtioNith the compiler optior-O3
inlining is done automatically by basically all modern calers.

A good strategy, recommended in many C++ textbooks, is ttevericode without inline
functions first. As we also suggested in the introductorybfiayou should first write a as simple
and clear as possible program, without a strong emphasismputational speed. Thereafter,
when profiling the program one can spot small functions wiaich called many times. These
functions can then be candidates for inlining. If the oVeiisle comsumption is reduced due
to inlining specific functions, we can proceed to other sadiof the program which could be
speeded up.
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Another problem with inlined functions is that on some sg&elebugging an inline function
is difficult because the function does not exist at runtime.

2.4.4 Structures in C/C++ and TYPE in Fortran 90/95

A very important part of a program is the way we organize oua @amd the flow of data when
running the code. This is often a neglected aspect espedating the development of an
algorithm. A clear understanding of how data are represemigkes the program more readable
and easier to maintain and extend upon by other users. Tilwe have studied elementary
variable declarations through keywords likeé or INTEGER double or REAL(KIND(8) andchar

or its Fortran 90 equivale@HARACTER These declarations could also be extended to general
multi-dimensional arrays.

However, C/C++ and Fortran 90/95 offer other ways as well byctv we can organize our
data in a more transparent and reusable way. One of thesmsjithrough thetruct declara-
tion of C/C++, or the correspondingly similalyPE in Fortran 90/95. The latter data type will
also be discussed in chapter 5 in connection with classeslgjedt-based programming using
Fortran 90/95.

The following example illustrates how we could make a geinenaable which can be reused
in defining other variables as well.

Suppose you would like to make a general program which tgaasatum mechanical prob-
lems from both atomic physics and nuclear physics. In at@andt nuclear physics the single-
particle degrees are represented by quantum numbers shithl @angular momentum, total
angular momentum, spin and energy. An independent partioléel is often assumed as the
starting point for building up more complicated many-bodyrelations in systems with many
interacting particles. In atomic physics the effective réeg of freedom are often reduced to
electrons interacting with each other, while in nucleargty the system is described by neu-
trons and protons. The structursingle_particle_descriptcontains a list over different quantum
numbers through various pointers which are initialized loyaling function.

struct single_particle_descript{
int total _orbits;
int x n;
int x lorb;
intx m_|I;
int « jang;
int x spin;
doublex energy ;
charx orbit_status

* X ¥ %

};

To describe an atom like Neon we would need three singleepadrbits to describe the ground
state wave function if we use a single-particle picture, thee1s, 2s and2p single-particle orbits.
These orbits have a degeneray2@il + 1), where the first number stems from the possible spin
projections and the second from the possible projectiotiseobrbital momentum. In total there
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are 10 possible single-particle orbits when we account for and orbital momentum projec-
tions. In this case we would thus need to allocate memoryrfaya containing 10 elements.
The above structure is written in a generic way and it can leel i define other variables
as well. For electrons we could writgruct single_particle_descript  electrongind is a new
variable with the namelectrons containing all the elements efingle_particle_descript.
The following program segment illustrates how we accessetfe@ements To access these
elements we could e.g., read from a given device the varinastgm numbers:

for (int i = 0; i < electrons.total_orbits; i++){
cout << ‘* Read in the quantum numberfor electron i: '" << |
<< endl;

cin >> electrons.n[i];

cin > electrons.lorb[i];

cin >> electrons.m_I[i];

cin >> electrons.jang[i];

cin >> electrons.spin[i];

}

The structuresingle_particle_descript can also be used for defining quantum numbers of
other particles as well, such as neutrons and protons thtbagew variablestruct  single_particle_descript
protonsandstruct single_particle_descript neutrons
The corresponding declaration in Fortran is given byltfRE construct, seen in the following
example.

TYPE, PUBLIC :: single_particle_descript
INTEGER :: total_orbits
INTEGER , DIMENSION (:) , POINTER :: n, lorb, jang, spin, m_|
CHARACTER (LEN=10) , DIMENSION (:) , POINTER :: orbit_status
DOUBLE PRECISION, DIMENSION (:) , POINTER :: energy

END TYPE single_particle_descript

This structure can again be used to define variableseliketrons, protons andneutrons
through the statementYPE ( single_particle_descript ) :: electrons , protons, rengr More
detailed examples on the use of these variable declaratittiise given later.



Chapter 3

Numerical differentiation

3.1 Introduction

Numerical integration and differentiation are some of thestfrequently needed methods in
computational physics. Quite often we are confronted whin meed of evaluating eithegf

or an integral[ f(z)dz. The aim of this chapter is to introduce some of these methotts

a critical eye on numerical accuracy, following the disemssn the previous chapter. More
refined methods such as Richardson’s deferred extrapohailbalso be discussed at the end of
this chapter.

The next section deals essentially with topics from nunagritifferentiation. There we
present also the most commonly used formulae for computisgand second derivatives, for-
mulae which in turn find their most important applicationshe numerical solution of ordinary
and partial differential equations. This section serves #he scope of introducing some more
advanced C/C++-programming concepts, such as call byareferand value, reading and writing
to a file and the use of dynamic memory allocation.

3.2 Numerical differentiation
The mathematical definition of the derivative of a functjt(n) is

df(z) _ . fle+h) - fx) (3.1)

dzx h—0 h

whereh is the step size. If we use a Taylor expansionffor) we can write

flx+h) = f(z) +hf'(z) + th;(@ + (3.2)
We can then set the computed derivatier) as
fi) e L0 h,)l —I@) )+ th(x) Yo (3.3)

41
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Assume now that we will employ two points to represent thefiom f by way of a straight line
between: andx + h. Fig. 3.1 illustrates this subdivision.
This means that we could represent the derivative with

ity = TEHI 2T o, (3.4)

where the suffix refers to the fact that we are using two points to define thivalere and the
dominating error goes lik€ (k). This is the forward derivative formula. Alternatively, weuld
use the backward derivative formula

fiz) = /(@) _i(x_h) +O(h). (3.5)

If the second derivative is close to zero, this simple twapfairmula can be used to approximate
the derivative. If we however have a function likér) = a + bz?, we see that the approximated
derivative becomes

fi(x) = 2bx + bh, (3.6)

while the exact answer &bz. Unlessh is made very small, antlis not too large, we could
approach the exact answer by choosing smaller and smatlevadues forh. However, in this
case, the subtraction in the numerajfir; + h) — f(x) can give rise to roundoff errors.

A better approach in case of a quadratic expressiorf foy is to use a 3-step formula where
we evaluate the derivative on both sides of a chosen pgiosing the above forward and back-
ward two-step formulae and taking the average afterwardp&v®rm again a Taylor expansion
but now around:, + A, namely

h2 f// h3 fm

fla =m0 £ h) = f(w0) £ hf + =5+ =2—+ O(h"), (3.7)
which we rewrite as
, h2f” h3fm .
fin = fo£hf + 5+ ; + O(h"). (3.8)
Calculating bothf.;, and subtracting we obtain that
I e A 3

and we see now that the dominating error goes likéf we truncate at the scond derivative.
We call the termh? £’ /6 the truncation error. It is the error that arises becauseraesstage in
the derivation, a Taylor series has been truncated. As weseal below, truncation errors and
roundoff errors play an equally important role in the nuro@&rdetermination of derivatives.

For our expression with a quadratic functigiz) = a + bz we see that the three-point
formula f; for the derivative gives the exact ansv@ér. Thus, if our function has a quadratic
behavior inz in a certain region of space, the three-point formula wiiule in reliable first
derivatives in the intervdl-h, h|. Using the relation

fo=2fo+ fon =R "+ O(hY), (3.10)
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f(x0+h)

f(x0-h) f(x0)

x0-2h x0-h X0 x0+h x0+2h

Figure 3.1: Demonstration of the subdivision of thexis into small steps. See text for
discussion.

we can also define higher derivatives like e.g.,

Jn—=2fo+ fon

2 +O(h?). (3.11)

fll —

We could also define five-points formulae by expanding to ttéps on each side af;.
Using a Taylor expansion aroung in a region[—2h, 2h| we have

4h3 n
fion = fo £ 2hf' + 22 f" + Tf +O(h"), (3.12)

with a first derivative given by

o= foon —8f_n +8fn — fon
b 12h

+O(h"), (3.13)

with a dominating error of the order @f'. This formula can be useful in case our function is
represented by a fourth-order polynomialiim the region—2h, 2h].

It is possible to show that the widely used formulae for th&t fand second derivatives of a
function can be written as

o0 f52j+1)

=fo+ Y.

Jn— f-n
2 (2j 4 1)

2j 14
57 h, (3.14)
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and

fh_2f0+f—h e - f0(2j+2) 27
= = 0+2§:@715ﬂﬂ, (3.15)
j=1

and we note that in both cases the error goesdikg?). These expressions will also be used
when we evaluate integrals.

To show this for the first and second derivatives startin@ tie three pointg_;, = f(xo—h),
fo = f(xo) andf, = f(xo + h), we have that the Taylor expansion aroung z, gives

a—nf-n+ aofo+anfn =a- hzfo +a0f0+ahzfo_ h)’, (3.16)

wherea_;, ag anda;, are unknown constants to be chosen so éhatf_;, + aofo + axnfy is the
best possible approximation f@f and f;'. Eq. (3.16) can be rewritten as

a_nfn+ aofo+ anfn = [a—p + ao + as) fo
2 e o0 (7)

+ [ah — a_h] hf[l] + [a_h + ah] 9 0 + Z %(h)] [(—1)ja_h + ah} . (317)
j=3 7

To determinef/, we require in the last equation that

a_p + ag +ap =0, (3.18)
1
—a_p +ap = E, (319)
and
a_p +ap = 0. (3.20)

These equations have the solution

1
aQ_p = —ap = ﬁ, (321)
and
ag =0, (3.22)
yielding
fh - f h f02]+1) 2j
2h _h+§:244) '
To determinef}’, we require in the last equation that
a_p + ag +ap =0, (3.23)

—a_p+ap = 0, (324)
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and 5
a_p + ap = ﬁ (325)
These equations have the solution
1
aA_p = —ap = _ﬁ’ (326)
and 5
agp _ﬁ’ (327)
yielding

fn—2fo+ fn _ H+2§: féQj”) 2
h? 0 (27 +2)!

3.2.1 The second derivative of”

As an example, let us calculate the second derivativesfz) for various values of:. Fur-
thermore, we will use this section to introduce three imgairtC/C++-programming features,
namely reading and writing to a file, call by reference andllmalalue, and dynamic memory
allocation. We are also going to split the tasks performedheyprogram into subtasks. We
define one function which reads in the input data, one whittutates the second derivative and
a final function which writes the results to file.

Let us look at a simple case first, the usepintf andscanf If we wish to print a variable
defined aslouble speed_of soundye could write e.g.,

printf('‘speed_of_sound =% If\n’’, speed_of_sound);

In this case we say that we transfer the value of this speafi@ble to the functiorprintf .
The function printf can however not change the value of this varigiere is no need to do so
in this case). Such a call of a specific function is cattet by value The crucial aspect to keep
in mind is that the value of this specific variable does nonhgesan the called function.

When do we use call by value? And why care at all? We do actuallg, because if a called
function has the possibility to change the value of a vaeabhen this is not desired, calling
another function with this variable may lead to totally wgaesults. In the worst cases you may
even not be able to spot where the program goes wrong.

We do however use call by value when a called function simpbeives the value of the
given variable without changing it.

If we however wish to update the value of say an array in a ddilaction, we refer to this
call ascall by reference What is transferred then is the address of the first elenfehearray,
and the called function has now access to where that speatf@ble ’lives’ and can thereafter
change its value.

The functionscanfis then an example of a function which receives the addreasvafiable
and is allowed to modify it. Afterall, when callingcanfwe are expecting a new value for a
variable. A typical call could becanf(“%If\n", &speed_of_sound);

Consider now the following program
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//

// This program module
// demonstrates memory allocation and data transfer in
// between functions in C++

//

#include <stdio.h> // Standard ANSI-C++ include files
#include <stdlib.h>

int main(nt argc,char xargvf[])

{
int a: // line 1
int «b; // line 2
a=10; // line 3
b =new int[10]; // line 4
for(i=0;i < 10; i++) {

b[i] =1; // line 5

}
func( a,b); // line 6
return O;

} // End: function main()

void func(int x, int xy) // line 7

{
X+=7, // line 8
xy += 10; // line 9
y[6] +=10; // line 10
return; // line 11

} // End: function func()

There are several features to be noted.

e Lines 1,2: Declaration of two variables a and b. The comp#serves two locations in
memory. The size of the location depends on the type of arialbwo properties are
important for these locations — the address in memory anddhtent in the location.

The value of a: a. The address of a: &a
The value of b: *b. The address of b: &b.

e Line 3: The value of a is now 10.

e Line 4: Memory to store 10 integers is reserved. The addoeteetfirst location is stored
in b. Address to element number 6 is given by the expressiergb

e Line 5: All 10 elements of b are given values: b[0] =0, b[1] =.1,, b[9] = 9;
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e Line 6: The main() function calls the function func() and g@gram counter transfers
to the first statement in func(). With respect to data theofolhg happens. The content
of a (= 10) and the content of b (a memory address) are copiadstack (new memory
location) associated with the function func()

e Line 7: The variable x and y are local variables in func(). yhave the values —x = 10, y
= address of the first element in b in the main().

e Line 8: The local variable x stored in the stack memory is geato 17. Nothing happens
with the value a in main().

e Line 9: The value of y is an address and the symbol *y means ¢iséign in memory
which has this address. The value in this location is noweased by 10. This means that
the value of b[0] in the main program is equal to 10. Thus fuhaé modified a value in
main().

e Line 10: This statement has the same effect as line 9 excapittmodifies the element
b[6] in main() by adding a value of 10 to what was there orifjjpaamely 5.

e Line 11: The program counter returns to main(), the nextesgion afterfunc(a,b); All
data on the stack associated with func() are destroyed.

e The value of a is transferred to func() and stored in a new nmgihocation called x. Any
modification of x in func() does not affect in any way the vatdi@ in main(). This is called
transfer of data by value. On the other hand the next argument in func() is an address
which is transferred to func(). This address can be used thfynine corresponding value
in main(). In the C language it is expressed as a modificatidheovalue which y points
to, namely the first element of b. This is callednsfer of data by referenceand is a
method to transfer data back to the calling function, in taise main().

C++ allows however the programmer to use solely call by exfee (note that call by ref-
erence is implemented as pointers). To see the differenveeba C and C++, consider the
following simple examples. In C we would write

int n; n =8;
func(&n); /+ &n is a pointer to n %/

void func(int i)
{
x1 = 10; /« n is changed to 10x/

}

whereas in C++ we would write

int n; n =8;
func(n); // just transfer n itself
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void func(int& i)
{
i =10; // n is changed to 10

}

The reason why we emphasize the difference between calllbg @ad call by reference is that
it allows the programmer to avoid pitfalls like unwanted epas of variables. However, many

people feel that this reduces the readability of the code.

Initialisations and main program

In every program we have to define the functions employed.sityle chosen here is to declare
these functions at the beginning, followed thereafter lgyrttain program and the detailed task
performed by each function. Another possibility is to irddithese functions and their statements
before the main program, viz., the main program appeargataty end. | find this programming
style less readable however. A further option, speciallgannection with larger projects, is to

include these function definitions in a user defined header fil

[ x

* % Program to compute the second derivative of exp(x).

* % Three calling functions are included

* % in this version. In one function we read in the data from
screen ,

* % the next function computes the second derivative

* % while the last function prints out data to screen.

*/

using namespacestd;
# include <iostream >

void initialise (double *, double %, int x);
void second_derivative (int , double, double, double %, double x);
void output ( double x, double %, double, int);

int main ()
{
/!l declarations of variables
int number_of_steps;
double x, initial_step;
double xh_step ,* computed_derivative ;
/! read in input data from screen
initialise (&initial_step , &x, &number_of_steps);
/' allocate space in memory for the ondimensional arrays
/! h_step and computed_derivative
h_step = new double[number_of_steps];
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computed_derivative =new double[number_of_steps];
/! compute the second derivative of exp(x)
second_derivative ( number_of_steps , x, initial_step ,step,
computed _derivative);
/I Then we print the results to file
output(h_step , computed_derivative , x, number_of_steps
/I free memory
delete [] h_step;
delete [] computed_derivative ;
return O;
} /I end main program

We have defined three additional functions, one which readi®om screen the value af, the
initial step length”, and the number of divisions by 2 @éf This function is called initialise .
To calculate the second derivatives we define the functiexrond_derivative Finally, we have a
function which writes our results together with a companiggth the exact value to a given file.
The results are stored in two arrays, one which containsitles gtep lengtth and another one
which contains the computed derivative.

These arrays are defined as pointers through the statemexd «h_step # computed_derivative
; A call in the main function to the functiosecond_derivativdooks then like thissecond_derivative
( number_of_steps, x, h_step, computed_derivatiwehile the called function is declared in the
following wayvoid second_derivativeit number_of stepsdouble x, double xh_step¢double xcomputed_deri
); indicating thatdouble xh_step ,double xcomputed_derivativeare pointers and that we transfer
the address of the first elements. The other variablesiumber_of stepsdouble x; are trans-
ferred by value and are not changed in the called function.

Another aspect to observe is the possibility of dynamidalcaltion of memory through the
new function. In the included program we reserve space in merfmryhese three arrays in
the following wayh_step =new doublgnumber_of stepsjand computed_derivative :ew double
[number_of_stepsVhen we no longer need the space occupied by these arraysseveémory
through the declarationgelete [| h_step;anddelete [| computed_derivative ;

The function initialise

/1 Read in from screen the initial step, the number of steps
/1 and the value of x

void initialise (double xinitial_step , double xx, int =x
number_of_steps)

{

printf("Read in from screen initial step, x and number of steps\n")

scanf ("%41f %1f %d",initial_step , X, number_of_steps);
return ;
} I/ end of function initialise
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This function receives the addresses of the three variablése « initial_step , double xx
, int xnumber_of stepsand returns updated values by reading from screen.

The function second_derivative

/!l This function computes the second derivative

void second_derivative (int number_of_steps ,double x,
double initial_step , double xh_step,
double *x computed_derivative)

int counter;
double y, derivative , h;

/1 calculate the step size

/1 initialise the derivative , y and x (in minutes)
1/ and iteration counter

h = initial_step;

[/l start computing for different step sizes
for (counter=0; counter < number_of_steps; counter++)

{
/I setup arrays with derivatives and step sizes
h_step[counter] = h;
computed_derivative [counter] =
(exp (x+h)—2.xexp (x)+exp(xh))/(h«h);
h = h«0.5;
} /!l end of do loop
return ;

} /!l end of function second derivative

The loop over the number of steps serves to compute the selarivative for different values
of A. In this function the step is halved for every iteration. Btep values and the derivatives
are stored in the arrays stepanddouble computed_derivative

The output function

This function computes the relative error and writes to asehdile the results.

/1l function to write out the final results
void output(double xh_step , double x computed_derivative ,double x,
int number_of_steps )
{ . .
int i;
FILE * output_file;
output_file = fopen(out.dat", "w") ;
for ( i=0; i < number_of_steps; i++)

{
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fprintf (output_file , "%12.5E %12.5E \n",
logl0(h_step[i]),
logl0 (fabs(computed_derivative [+lexp (X)) /exp(X)));
}
fclose (output_file);
} // end of function output

The last function here illustrates how to open a file, writd sead possible data and then close it.
In this case we have fixed the name of file. Another possilgitybviously to read the name of
this file together with other input parameters. The way tlogmm is presented here is slightly
unpractical since we need to recompile the program if we wasthange the name of the output
file.

An alternative is represented by the following program.sigriogram reads from screen the
names of the input and output files.

1 #include <stdio.h>
2 #include <stdlib.h>
3 int col:
4
5 int main(int argc, char xargv[])
6 {
7 FILE xin, % out;
8 int c;
9 if ( argc < 3) {
10 printf ("You have to read in :\n");
11 printf("in_file and out_file \n");
12 exit(0);
13 in = fopen( argv[1l],"r");} /!l returns pointer to the in_fileg
14 if ( inn == NULL ) { /I can’t find in_file
15 printf("Can’t find the input file %s\n", argv][l]);
16 exit (0);
17 }
18 out = fopen( argv[2],"w"); /1l returns a pointer to the
out_file
19 if ( ut == NULL ) { // can’t find out_file
20 printf("Can’t find the output file %s\n", argv[2]);
21 exit(0);
22 }
program statements
23 fclose (in);
24 fclose (out);
25 return O;
}

This program has several interesting features.



52 CHAPTER 3. NUMERICAL DIFFERENTIATION

Line Program comments

5 e main() takes three arguments, given by argc. argv points to the fol-
lowing: the name of the program, the first and second argusnant
this case file names to be read from screen. kommandoen.

7 e C/C++ has alata type calledFILE. The pointersin andout point
to specific files. They must be of the typeLE.
10 e The command line has to contain 2 filenames as parameters.

13-17 e The input files has to exit, else the pointer returns NULL as lonly
read permission.

18-22 e Same for the output file, but now with write permission only.

23-24 e Both files are closed before the main program ends.

The above represents a standard procedure in C for readingafihes. C++ has its own class
for such operations. We will come back to such features.later

Results

In Table 3.1 we present the results afamerical evaluatiorfor various step sizes for the second

derivative ofexp () using the approximatiofy = =25/~ The results are compared with

the exact ones for variousvalues. Note well that as the step is decreased we get clodiee t

x h=0.1 h=001 h=0.001 h=20.0001 h=0.0000001 Exact
0.0 1.000834 1.000008 1.000000 1.000000 1.010303 1.000000
1.0 2.720548 2.718304 2.718282 2.718282 2.753353 2.718282
2.0 7.395216 7.389118 7.389057 7.389056 7.283063 7.389056
3.0 20.102280 20.085704 20.085539 20.085537 20.250467 082887
4.0 54.643664 54.598605 54.598155 54.598151 54.711789 598450

5.0 148.536878 148.414396 148.413172 148.413161 1506635048.413159

Table 3.1: Result for numerically calculated second déxiea of exp (z). A comparison is
made with the exact value. The step size is also listed.

exact value. However, if it is further decreased, we run prablems of loss of precision. This
is clearly seen foh = 0.0000001. This means that even though we could let the computer run

with smaller and smaller values of the step, there is a liorithiow small the step can be made
before we loose precision.

3.2.2 Error analysis

Let us analyze these results in order to see whether we caa fmdimal step length which does
not lead to loss of precision. Furthermore In Fig. 3.2 we haoéed

" "

computed ~ Jexact

n
exact

) , (3.28)
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Figure 3.2: Log-log plot of the relative error of the secomrdivhative ofe” as function of decreas-
ing step lengthg.. The second derivative was computed for= 10 in the program discussed
above. See text for further details

as function oflog,o(h). We used an intial step length 6f= 0.01 and fixedz = 10. For large
values ofh, that is—4 < logio(h) < —2 we see a straight line with a slope close to 2. Close to
logio(h) ~ —4 the relative error starts increasing and our computed aéve&/ with a step size
logio(h) < —4, may no longer be reliable.

Can we understand this behavior in terms of the discuss@mn the previous chapter? In
chapter 2 we assumed that the total error could be approatweith one term arising from the
loss of numerical precision and another due to the truncati@pproximation made, that is

€tot = €approx + €r0- (329)

For the computed second derivative, Eq. (3.15), we have

//:fh_2f0+fh_2i f(§2j+2) th
0 h? (27 +2)!

i=1

and the truncation or approximation error goes like

If we were not to worry about loss of precision, we could impiple makée: as small as possible.
However, due to the computed expression in the above progxample

v Sn=2fo+fon  (fa—fo) + (f-n — fo)

0 — h2 h2 3
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we reach fairly quickly a limit for where loss of precisionalto the subtraction of two nearly
equal numbers becomes crucial( ff., — fo) are very close, we havg'y, — fo) = €\, Where
leas| < 1077 for single ande,,| < 1015 for double precision, respectively.

We have then

|f”‘_ (fh_f0)+(ffh_f0) < 2enr
0ol h2 - h2 -
Our total error becomes
2€nm f(§4) 2
|€tot| < T + ﬁh . (3.30)
It is then natural to ask which value bfyields the smallest total error. Taking the derivative of
€t | With respect tadr results in
24e i
_ M
h = (—f(§4) ) . (3.32)
With double precision and = 10 we obtain
h~ 107" (3.32)

Beyond this value, it is essentially the loss of numericacion which takes over. We note
also that the above qualitative argument agrees seemirgjlywith the results plotted in Fig.
3.2 and Table 3.1. The turning point for the relative errcaggroximatelyh ~ x10~* reflects
most likely the point where roundoff errors take over. If vaglused single precision, we would
geth ~ 10~2. Due to the subtractive cancellation in the expressiorffahere is a pronounced
detoriation in accuracy dsis made smaller and smaller.

It is instructive in this analysis to rewrite the numeratbthee computed derivative as

(fu = fo) + (fon — fo) = (e"" —€") + (" " — "),

as
(fu— fo) + (fon — fo) = " (" + " = 2),

since it is the differencée” + ¢ " — 2) which causes the loss of precision. The results, still
for x = 10 are shown in the Table 3.2. We note from this table thdt at x10~® we have
essentially lost all leading digits.

From Fig. 3.2 we can read off the slope of the curve and thedebgrmine empirically how
truncation errors and roundoff errors propagate. We satfdha-4 < logio(h) < —2, we could
extract a slope close &) in agreement with the mathematical expression for thecation error.

We can repeat this for 10 < logio(h) < —4 and extract a sloper —2. This agrees again
with our simple expression in Eq. (3.30).

3.2.3 How to make figures with Gnuplot

Gnuplot is a simple plotting program which follows the Linux/Unixenating system. It is easy
to use and allows also to generate figure files which can baded in alATEX document. Here
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h el +eh e +eh—2

10~!  2.0100083361116070 1.0008336111607280
10~2  2.0001000008333358 1.0000083333605581*
1072  2.0000010000000836 1.000000083406504@ ¢
107° 2.0000000099999999 1.0000000050247693 &
107> 2.0000000001000000 9.9999897251734687 !
10-5  2.0000000000010001 9.9997787827987880 '3
10-7  2.0000000000000098 9.9920072216264089 '°
10~%  2.0000000000000000 0.0000000000000000
1072  2.0000000000000000 1.110223024625166% 6
10710 2.0000000000000000 0.0000000000000900

Table 3.2: Result for the numerically calculated numeratdhe second derivative as function
of the step sizé. The calculations have been made with double precision.

we show how to make simple plots online and how to make paptseggrsions of the plot or
even a figure file which can be included it*deX document. There are other plotting programs
such asxmgraceas well which follow Linux or Unix as operating systems.

In order to check if gnuplot is present type

which gnuplot

If gnuplot is available, simply write
gnuplot

to start the program. You will then see the following prompt
gnuplot>

and type help for a list of various commands and help optiGgpose you wish to plot data
points stored in the filenydata.dat This file contains two columns of data points, where the
first column refers to the argumentwhile the second one refers to a computed function value

f(z).

If we wish to plot these sets of points with gnuplot we just é2d to write
gnuplot>plot ’mydata.dat’ using 1:2 w 1

or
gnuplot>plot ’mydata.dat’ w 1

since gnuplot assigns as default the first column ascthgis. The abbreviations | stand for
'with lines’. If you prefer to plot the data points only, weit
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gnuplot>plot ’mydata.dat’ w p

For more plotting options, how to make axis labels etc, tyge hnd choosplot as topic.
Gnuplot will typically display a graph on the screen. If we wish to sdhis graph as a
postscript file, we can proceed as follows

gnuplot>set terminal postscript
gnuplot>set output ’mydata.ps’
gnuplot>plot ’mydata.dat’ w 1

and you will be the owner of a postscript file called/data.ps which you can display with
ghostviewthrough the call

gv mydata.ps

The other alternative is to generate a figure file for the damtrhandling progrant*TgX.
The advantage here is that the text of your figure now has the $ants as the remainingTgX
document. Fig. 3.2 was generated following the steps beYow.need to edit a file which ends
with .gnu. The file used to generate Fig. 3.2 is caltgtivative.gnu and contains the following
statements, which are a mix BTEX andGnuplot statements. It generates a filerivative.tex
which can be included in BTEX document.

set terminal pslatex

set output "derivative.tex"

set xrange [-15:0]

set yrange [-10:8]

set xlabel "log$_{10}(h)$"

set ylabel "$\epsilon$"

plot "out.dat" title "Relative error" w 1

To generate the filderivative.tex, you need to callGnuplot as follows
gnuplot>load ’derivative.gnu’
You can then include this file inIATEX document as shown here

\begin{figure}

\begin{center}

\input{derivative}

\end{center}

\caption{Log-log plot of the relative error of the second
derivative of $e~x$ as function of decreasing step
lengths $h$. The second derivative was computed for
$x=10$ in the program discussed above. See text for
further details\label{fig:lossofprecision}}

\end{figure}
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3.3 Richardson’s deferred extrapolation method

Here we will show how one can use the polynomial represamtaliscussed above in order to im-
prove calculational results. We will again study the evaareof the first and second derivatives
of exp (z) at a given point: = £. In Egs. (3.14) and (3.15) for the first and second derivative
we noted that the truncation error goes liRén*).

Employing the mid-point approximation to the derivativeg arious derivativeB of a given
function f(x) can then be written as

D(h) = D(0) + arh® + agh" + agh® + .. ., (3.33)

where D(h) is the calculated derivativd)(0) the exact value in the limit — 0 anda, are
independent of.. By choosing smaller and smaller values fgrwe should in principle be
able to approach the exact value. However, since the deegainvolve differences, we may
easily loose numerical precision as shown in the previoosmses. A possible cure is to apply
Richardson’s deferred approach, i.e., we perform calamatwith several values of the stép
and extrapolate td = 0. The philososphy is to combine different valueshago that the terms
in the above equation involve only large exponents/foiTo see this, assume that we mount a
calculation for two values of the stép one withh and the other witth /2. Then we have

D(h) = D(0) + arh® + agh" + agh® + .. ., (3.34)

and
a1h2 a2h4 a3h6

D(h/2) = D(0) + Lt 16 + y +..., (3.35)
and we can eliminate the term with by combining
D(h/2) — D 4 6
phj2)+ 20 >3 ") _ by - “24” - 5‘113611 (3.36)

We see that this approximation 19(0) is better than the two previous ones since the error now
goes likeO(h'). As an example, let us evaluate the first derivative of a fonct using a step
with lengthsh andh /2. We have then

fh ;hf—h _ f[l) —|—O(h2), (337)

fh/2 —hf—h/Q _ f(') 4 O(h2/4), (3.38)

which can be combined, using Eq. (3.36) to yield

—fn +8fn2 = 8f-nj2 + fon

h4
- = fo— 1. (3.39)

480
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In practice, what happens is that our approximation®(0) goes through a series of steps

Dy
D(()l) Dgo)
Dy p" DY : (3.40)

D(()S) D?) Dél) Déo)

where the elements in the first column represent the giverogppations
D = D(h/2Y). (3.41)

This means thaD§0> in the second column and row is the result of the extrapajaiissed on
D andD{". An elementD}’ in the table is then given by
k+1 k

D) ol

D& — pk) m—
m m—1 + 4m _ 1

(3.42)

with m > 0. lL.e., itis a linear combination of the element to the lefttand the element right
over the latter.

In Table 3.1 we presented the results for various step sizelsé second derivative ekp (x)
using f = "’1’2{1702”*’1 The results were compared with the exact ones for varioualues.
Note well that as the step is decreased we get closer to tlot eedae. However, if it is further
increased, we run into problems of loss of precision. Thadaarly seen fof. = 0000001. This
means that even though we could let the computer run withlsmahd smaller values of the
step, there is a limit for how small the step can be made beferéoose precision. Consider
now the results in Table 3.3 where we choose to employ Ricloard extrapolation scheme. In
this calculation we have computed our function with onlyethpossible values for the step size,
namelyh, h/2 andh/4 with h = 0.1. The agreement with the exact value is amazing! The
extrapolated result is based upon the use of Eq. (3.42).



x h=0.1 h = 0.05 h =0.025 Extrapolat Error
0.0 1.00083361 1.00020835 1.00005208 1.00000000 0.000000
1.0 2.72054782 2.71884818 2.71842341 2.71828183 0.000000
2.0 7.39521570 7.39059561 7.38944095 7.38905610 0.00B000
3.0 20.10228045 20.08972176 20.08658307 20.08553692 0@O009
4.0 54.64366366 54.60952560 54.60099375 54.59815003 0@0O0Q4
5.0 148.53687797 148.44408109 148.42088912 148.4131591®000064

Table 3.3: Result for numerically calculated second dériea of exp () using extrapolation.
The first three values are those calculated with three éiffiestep sizes), h/2 andh/4 with

h = 0.1. The extrapolated result to = 0 should then be compared with the exact ones from
Table 3.1.






Chapter 4

Classes, templates and modules

in preparation (not finished as of 11/26/03)

4.1 Introduction

C++’ strength over C and F77 is the possibility to define netadgpes, tailored to some prob-
lem.

e A user-defined data type contains data (variables) andibngcoperating on the data
e Example: a pointin 2D

— data: x and y coordinates of the point

— functions: print, distance to another point, ...

¢ Classes into structures

e Pass arguments to methods

e Allocate storage for objects

e Implement associations

¢ Encapsulate internal details into classes

¢ Implement inheritance in data structures

Classes contain a new data type and the procedures that gemfbemed by the class. The
elements (or components) of the data type are the class @atdens, and the procedures are the
class member functions.

61
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4.2 A first encounter, the vector class

e Class MyVector: a vector
e Data: plain C array

e Functions: subscripting, change length, assignment tthaneector, inner product with
another vector, ...

e This examples demonstrates many aspects of C++ programming

e Create vectors of a specified length: MyVector v(n);

¢ Create a vector with zero length: MyVector v;

¢ Redimension a vector to length n: v.redim(n);

e Create a vector as a copy of another vector w: MyVector v(w);
¢ Extract the length of the vector: const int n = v.size();

e Extract an entry: double e = v(i);

e Assign a number to an entry: v(j) = €;

e Set two vectors equal to each other: w =v;

e Take the inner product of two vectors: double a = w.inner(v);
¢ or alternatively a = inner(w,v);

e Write a vector to the screen: v.print(cout);

class MyVector

{ .

private :
doublex A; /Il vector entries (€array)
int length ;
void allocate (int n); I/l allocate memory, length=n
void deallocate () ; I/l free memory

public:
MyVector () ; /I MyVector v;
MyVector (int n); /I MyVector v(n);
MyVector (const MyVector&w); [/ MyVector v(w);

~MyVector () ; [/l clean up dynamic memory
bool redim (int n); /1 v.redim(m);
MyVector& operator= (const MyVector&w) ;// v = w;




4.2. AFIRST ENCOUNTER, THE VECTOR CLASS 63

double operator() (int i) const; [l a=v(i);
double& operator() (int i); Il v(i) = a;

void print (std::ostream& o)const; [/l v.print(cout);
double inner (const MyVector& w) const; // a = v.inner (w);
int size () const { return length; } [l n=v.size();

|3
\end{listing}
Constructors tell how we declare a variable of type MyVectand how
this variable is initialized
\begin{lIstlisting}
MyVector v; /!l declare a vector of length O

[/l this actually means calling the function

MyVector :: MyVector ()
{ A = NULL; length = 0; }

MyVector v(n); [// declare a vector of length n
/I means calling the function

MyVector :: MyVector (int n)
{ allocate (n); }

void MyVector:: allocate (int n)

{
length = n;
A = new double[n]; [// create n doubles in memory

}

A MyVector object is created (dynamically) at run time, buitshalso be destroyed when it

is no longer in use. The destructor specifies how to dest®wpltiject:

MyVector::~MyVector ()
{

}

deallocate () ;

/I free dynamic memory:
void MyVector:: deallocate ()

{
}

delete [] A;
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/I v and w are MyVector objects

vV = w;

/I means calling

MyVector& MyVector ::operator= (const MyVector& w)
[l for setting v = w;

{
redim (w.size());// make v as long as w
int i;
for (i = 0; i < length; i++) { // (C arrays start at 0)
Ali] = w.A[i];
}
return xthis;
}
[l return of xthis, i.e. a MyVector&, allows nested

U=V = UuVvec = V_VecC;

v.redim(n); // make a v of length n

bool MyVector::redim (int n)
{
if (length == n)
return false; [/ no need to allocate anything
else {
if (A !'= NULL) {
/1l "this" object has already allocated memory
deallocate () ;
}
allocate (n);
return true ; /!l the length was changed

MyVector v(w); [// take a copy of w

MyVector :: MyVector (const MyVector& w)
{

allocate (w.size()); // "this" object gets w’s length
xthis = w; /1l call operator=

}

/l a and v are MyVector objects; want to set

a(j) = v(i+l);




4.2. AFIRST ENCOUNTER, THE VECTOR CLASS 65

/!l the meaning of a(j) is defined by

inline double& MyVector::operator() (int i)
{

return A[i —1];

/!l base index is 1 (not 0 as in C/C++)

¢ Inline functions: function body is copied to calling code, averhead of function call!

e Note: inline is just a hint to the compiler; there is no guaearnthat the compiler really
inlines the function

¢ Why return a double reference?

double& MyVector:: operator() (int i) { return A[i —1];}
/Il returns a reference (‘‘pointer’’) directly to A[i1]
/Il such that the calling code can change A{fl]

/1l given MyVector a(n), b(n), c(n);
for (int i = 1; i <=n; i++)

c(i) = a(i)sb(i);

[/l compiler inlining translates this to:
for (int i = 1; i <=n; i++)
c.A[i —1] = a.A[i—-1]«xb.A[i —1];
[/l or perhaps
for (int i = 0; i <n; i++4)
C.A[i] = a.Ali]*b.A[i];

/I more optimizations by a smart compiler:
doublex ap = &a.A[0]; // start of a

doublex bp = &b.A[0]; // start of b
doublex cp = &c.A[0]; /I start of c
for (int i = 0; i <n; i++4)

cp[i] = ap[i]«bp[i]; /!l pure C!

Inlining and the programmer’s complete control with the wigbn of subscripting allow

void MyVector:: print (std::ostreamé& o)const

{
int i;
for (i = 1; i <= length; i++)
0 << "(" << i << M™)=" << (xthis)(i) << ’\n’;
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double a = v.inner (w);
double MyVector::inner (const MyVector&w) const
{
int i; double sum = 0;
for (i = 0; i < length; i++)
sum += Af[i]xw.A[i];
[/l alternative:
/[l for (i = 1; i <=length; i++) sum += ( xthis) (i)*w(i);
return sum;

/I MyVector v
cout << v;

ostream&operator << (ostream& o, const MyVector& v)
{ v.print(o); return o; }

/l must return ostreamé& for nested output operators:
cout <<"some text..." << W,

/Il this is realized by these calls:
operator<< (cout, "some text...");
operator<< (cout, w);

We can redefine the multiplication operator to mean the ipneduct of two vectors:

double a = vxw; // example on attractive syntax

class MyVector

{
/./“compute kthis) x w
double operators (const MyVector& w) const;
.
double MyVector::operator* (const MyVector& w) const
{ return inner (w);
}

/!l have some MyVector u, v, w; double a;

u= v + axw;

/I global function operator+

MyVector operator+ (const MyVector& a, const MyVector& b)

{
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MyVector tmp(a.size());
for (int i=1; i<=a.size(); i++)
tmp(i) = a(i) + b(i);
return tmp;
}
/!l global function operatok
MyVector operator x (const MyVector& a, double r)

{
MyVector tmp(a.size());
for (int i=1; i<=a.size(); i++)
tmp(i) = a(i)*r;
return tmp;
}

/Il symmetric operator: %a
MyVector operator = (double r, const MyVector& a)
{ return operator x(a,r); }

4.3 Classes and templates in C++

Class MyVector is a vector of doubles

What about a vector of floats or ints?

Copy and edit code...?

¢ No, this can be done automatically by use of macros or teeglat

Templates are the native C++ constructs for parameterpantg of classes

template<typename Type>
class MyVector

{
Typex A;
int length;
public:

'Il'y./be& operator () (int i) { return A[i —1];}

Declarations in user code:

MyVector<double> a(10);
MyVector<int > counters;

Much simpler to use than macros for parameterization.
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e Itis easy to use class MyVector
e Lots of details visible in C and Fortran 77 codes are hiddsidathe class
e Itis not easy to write class MyVector

e Thus: rely on ready-made classes in C++ libraries unlessegally want to write develop
your own code and you know what are doing

e C++ programming is effective when you build your own highdeclasses out of well-
tested lower-level classes

4.4 Using Blitz++ with vectors and matrices

4.5 Building new classes

4.6 MODULE and TYPE declarations in Fortran 90/95
4.7 Object orienting in Fortran 90/95

4.8 An example of use of classes in C++ and Modules in For-
tran 90/95



Chapter 5

Linear algebra

5.1 Introduction

In this chapter we deal with basic matrix operations, sucthassolution of linear equations,
calculate the inverse of a matrix, its determinant etc. Thiapter serves also the purpose of
introducing important programming details such as hagdimvemory allocation for matrices,
introducing the concept of classes and templates and thigsayXibrary Blitz++ [?].

The matrices we will deal with are primarily symmetric or iméiian. Thus, before we pro-
ceed with the more detailed description of algorithms, efsummary of matrix properties may
be appropriate.

For the sake of simplicity, let us look at 4 & 4) matrix A and a corresponding identity
matrix I

a1 G2 Q13 A1y 1 0 0 0

| G21 ax a3z G 10100
A= a31 (32 033 034 1= 0010 (5.1)

41 Q42 Q43 (44 0 0 01

The inverse of a matrix is defined by
A1 A=T

Other essential features are given in table 5.1.
Finally, an important property of hermitian and symmetriatrnices is that they have real
eigenvalues.

5.2 Programming details
In the following discussion, matrices are always two-disienal arrays while vectors are one-
dimensional arrays. Many programming problems arise fnmproper treatment of arrays. In

this section we will discuss some important points such esyateclaration, memory allocation
and array transfer between functions. We distinguish betveo cases: (a) array declarations

69



70 CHAPTER 5. LINEAR ALGEBRA

Table 5.1: Matrix properties

Relations Name matrix elements

A =AT symmetric Qi = Qj;

A= (1&11)71 real Orthogona Zk ik Qi = Zk QkiQk; — 61‘]’
A = A* real matrix aij = aj

A=At hermitian a;; = aj;

A = (AT)_l Unitary Zk aika;‘-k = Zk a,’;iakj = 61‘]‘

where the array size is given at compilation time, and (b)r@tibe array size is determined
during the execution of the program, so-called dymanic nrgratbocation.

5.2.1 Declaration of fixed-sized vectors and matrices

Table 5.2 presents a small program which treats esseri@iréss of vector and matrix handling
where the dimensions are declared in the program code.

In line a we have a standard C++ declaration of a vector. The compmksrves memory
to store five integers. The elements are vec[0], vec[INec[4]. Note that the numbering of
elements starts with zero. Declarations of other data tgpesimilar, including structure data.

The symbol vec is an element in memory containing the addeee first element vec[0]
and is a pointer to a vector of five integer elements.

In line b we have a standard fixed-size C++ declaration of a matrixirAilpe elements start
with zero, matr[0][0], matr[O][1], ....., matr[0][4], mdL][O],.... . This sequence of elements also
shows how data are stored in memory. For example, the elemenfl ][0] follows matr[0][4].
This is important in order to produce an efficient code.

There is one further important point concerning matrix deation. In a similar way as for
the symbolvec matr is an element in memory which contains an address to a vettoraee
elements, but now these elements are not integers. Eackmiema vector of five integers. This
is the correct way to understand the declaratiohrnia b. With respect to pointers this means
that matr ispointer-to-a-pointer-to-an-integesich we can writesxmatr. Furthermorematr is
a-pointer-to-a-pointeof five integers. This interpretation is important when weniva transfer
vectors and matrices to a function.

In line ¢ we transfer vec[] and matr[][] to the function sub_1(). Todpecific, we transfer
the addresses of vect[] and matr[][] to sub_1().

In line d we have the function definition of sub_1(). Tim vec[] is a pointer to an integer.
Alternatively we could writant xvec. The first version is better. It shows that it is a vector of
several integers, but not how many. The second version cmudlly well be used to transfer
the address to a single integer element. Such a declarai@srebt distinguish between the two
cases.

The next definition ignt matr[][5]. This is a pointer to a vector of five elements and th
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Table 5.2: Matrix handling program where arrays are definedmpilation time

int main()

{

int k,m, row =3, col=5;

int vec[5]; /Il 'line a

int matr[3][5]; /I line b

for (k = 0; k < col; k++) vec[k] = k; /I data into vector]]

for(m = 0; m< row; m++) { /I data into matr[][]
for(k = 0; k < col ; k++) matr[m][k] = m + 10« k;

}

printf("\n\nVector data in main():\n"); /I print vector data

for(k = 0; k < col; k++) printf("vector [%d] = %d "k, veclK]);
printf("\n\nMatrix data in main():");
for(m = 0; m< row; m++) {
printf("\n");
for(k = 0; k < col; k++)
printf("matr [%d] [[%d] = %d ",m,k,matr[m][K]);

}

}

printf("\n");

sub_1(row, col, vec, matr); /Il line ¢

return O;
} /I End: function main()
void sub_1{nt row, int col, int vec[], int matr[][5]) Il line d
{

int k,m;

printf("\n\nVector data in sub_1():\n"); /I print vector data

}

for(k = 0; k < col; k++) printf("vector [%d] = %d "k, veclk]);
printf("\n\nMatrix data in sub_1():");
for(m = 0; m< row; m++) {
printf("\n");
for(k = 0; k < col; k++) {
printf("matr [%d] [[%d] = %d ",m, k, matr[m][K]);
}

}
printf("\n");
/I End: function sub_1()
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compiler must be told that each vector element containsrikegers. Here an alternative version
could be int ¢ématr)[5] which clearly specifies that matr is a pointer to atee of five integers.

There is at least one drawback with such a matrix declaratlbmwe want to change the
dimension of the matrix and replace 5 by something else we t@ado the same change in all
functions where this matrix occurs.

There is another point to note regarding the declarationaofables in a function which
includes vectors and matrices. When the execution of aifumtgrminates, the memory required
for the variables is released. In the present case memoastifeariables in main() are reserved
during the whole program execution, but variables whichexlated in sub_1() are released
when the execution returns to main().

5.2.2 Runtime declarations of vectors and matrices

As mentioned in the previous subsection a fixed size deataraf vectors and matrices before
compilation is in many cases bad. You may not know beforetthadctually needed sizes of
vectors and matrices. In large projects where memory is igedriactor it could be important to
reduce memory requirement for matrices which are not usgdane. In C an C++ itis possible
and common to postpone size declarations of arrays untillrgally know what you need and
also release memory reservations when it is not needed arg/ ioe details are shown in Table
5.3.

line a declares a pointer to an integer which later will be useddecesan address to the first
element of a vector. Similarilyine b declares a pointer-to-a-pointer which will contain the ad-
dress to a pointer of row vectors, each with col integerss Whll then become a matrix[col][col]

In line c we read in the size of vec[] and matr[][] through the numberg and col.

Next we reserve memory for the vectorline d. The library function malloc reserves mem-
ory to store row integers and return the address to the redeegion in memory. This address
is stored in vec. Note, none of the integers in vec[] have lassigned any specific values.

In line e we use a user-defined function to reserve necessary menonyafiix[row][col]
and again matr contains the address to the reserved menoaitjolo.

The remaining part of the function main() are as in the presicase down thne f. Here we
have a call to a user-defined function which releases thevegenemory of the matrix. In this
case this is not done automatically.

In line g the same procedure is performed for vec|]. In this case dredsird C++ library has
the necessary function.

Next, inline h an important difference from the previous case occurs. t,Ring vector
declaration is the same, but the matr declaration is quiterdnt. The corresponding parameter
in the call to sub_1[] idine g is a double pointer. Consequently, mattime h must be a double
pointer.

Except for this difference sub_1() is the same as before.nEefeature in Table 5.3 is the
call to the user-defined functiomsatrix andfree_matrix. These functions are defined in the
library file lib.cpp. The code is given below.

[ x
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Table 5.3: Matrix handling program with dynamic array adton.

int main()

{
int xvec; /I line a
int xxmatr; /I line b

int m, k, row, col, total = 0;

printf("\n\nRead in number of rows = "); /Il 'line c
scanf('%,d",&row);

printf("\n\nRead in number of column = ");

scanf('%d", &col);

vec =new int [col]; Il line d

matr = (nt ««)matrix(row, col,sizeofint)); /Il line e

for(k = 0; k < col; k++) vec[k] = k; /I store data in vector[]

for(m = 0; m< row; m++) { /I store data in array[][]
for (k = 0; k < col; k++) matr[m][K] = m + 10x k;

}

printf("\n\nVector data in main():\n"); /I print vector data

for (k = 0; k < col; k++) printf("vector [%d] = %d ",k,vec[K]);
printf("\n\nArray data in main():");
for(m = 0; m< row; m++) {
printf("\n");
for(k = 0; k < col; k++) {
printf("matrix [%d] [[%d] = %d ",m, k, matr[m][K]);
}

}

printf("\n");

for(m = 0; m< row; m++) { /I access the array
for(k = 0; k < col; k++) total += matr[m][K];

}

printf("\n\nTotal = %d\n",total);

sub_1(row, col, vec, matr);

free_matrix(¢oid **)matr); /Il line f
delete]] vec; /Il line g
return O;
} /I End: function main()
void sub_1{nt row, int col, int vec(],int xxmatr) /I 'line h
{
int k,m;
printf("\n\nVector data in sub_1():\n"); /I print vector data

}

for(k = 0; k < col; k++) printf("vector [%d] = %d "k, veclK]);
printf("\n\nMatrix data in sub_1():");
for(m = 0; m< row; m++) {

printf("\n");

for(k =0; k < col; k++) {

printf("matrix [%d] [[%d] = %d ",m,k,matr[m][K]);

}
}
printf("\n");
/I End: function sub_1()
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x The function
* void ssxmatrix ()
x reserves dynamic memory for a twdimensional matrix
x using the C++command new . No initialization of the elements
x Input data:
x int row — number of rows
x int col — number of columns
x int num_bytes- number of bytes for each
* element
* Returns a void xxpointer to the reserved memory location.
*/
void s+ matrix (int row, int col, int num_bytes)
¢ |
int i, num;
char xxpointer , x ptr;

pointer = new(nothrow) charx [row];

if (!pointer) {
cout << "Exception handling: Memory allocation failed";
cout <<" for "<< row << "row addresses !" << endl;
return NULL;

}

i = (row x col x num_bytes) kizeof(char);

pointer[0] = new(nothrow) char [i];

if (!pointer[0]) {
cout << "Exception handling: Memory allocation failed";
cout <<" for address to " << | << " characters !" << endl;
return NULL;

}

ptr = pointer[0];

num = col x num_bytes;

for(i = 0; i <row; i++, ptr += num ) {
pointer[i] = ptr;

}

return (void xx)pointer;

} // end: function voidxxmatrix ()

[ %
x The function
* void free_matrix ()

x releases the memory reserved by the function matrix ()
xfor the two-dimensional matrix[][]

* Input data:

x void far xxmatr — pointer to the matrix
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x/

void free_matrix (void % matr)

{
delete [] (char %) matr[0];

} // End: function free_matrix ()

5.2.3 Fortran features of matrix handling

Many program libraries for scientific computing are writt@nFortran. When using functions
from such program libraries, there are some differencesdsst C++ and Fortran encoding of
matrices and vectors worth noticing. Here are some simpbtéeines in order to avoid some of
the most common pitfalls.

First of all, when we think of afv x N matrix in Fortran and C/C++, we typically would have
a mental picture of a two-dimensional block of stored nureb&he computer stores them how-
ever as sequential strings of numbers. The latter coulddredsts row-major order or column-
major order. What do we mean by that? Recalling that for ourimelements;;, « refers to rows
andj to columns, we could store a matrix in the sequenge;, . .. anaz1a . .. asy - .. ayy if
it is row-major order (we go along a given ravand pick up all column elemen§3 or it could
be stored in column-major ordef as; ... ay1a12G93 ... ANg ... ANN-

Fortran stores matrices in the latter way, ie., by columpemavhile C/C++ stores them by
row-major. It is crucial to keep this in mind when we are deghwith matrices, because if we
were to organize the matrix elements in the wrong way, ingranproperties like the transpose of
a real matrix or the inverse can be wrong, and obviously ywetshg physics. Fortran subscripts
begin typically with1, although it is no problem in starting with zero, while C/Cstart with0
for the first element. Thatid(1, 1) in Fortran is equivalent td[0][0] in C/C++. Moreover, since
the sequential storage in memory means that nearby matrxegits are close to each other in the
memory locations (and thereby easier to fetch) , operativmdving e.g., additions of matrices
may take more time if we do not respect the given ordering.

To see this, consider the following coding of matrix additio C/C++ and old Fortran 77
(can obviously also be done in Fortran 90/95). We h&lve N matrices A, B and C and we wish
to evaluated = B + C'. In C/C++ this would be coded like

for(i=0; i <N ; i++) {
for (j=0; j <N ; j++) {
afi][jl=bli][jl+c[i]lj]
}
}

while in Fortran 77 we would have

DO 10 j=1, N
DO 20 i=1, N
a(i,j)=b(i,j)+c(i,j)
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20 CONTINUE
10 CONTINUE

Interchanging the order afand; can lead to a considerable enhancement in process time. For-
tran 90 writes the above statements in a much simpler way

a=b+c

However, the addition still involve®V? operations. Operations like matrix multiplication or
taking the invers involveéV3. Matrix multiplicationA = BC could then take the following form
in C/C++

for(i=0; i <N ; i++) {
for(j=0; j <N j++){
for (k=0 ; j <N ; j++) {
\ afi][jl+=b[i][k]+c[k][]]
}
}

while Fortran 90 has an intrisic function called MATMUL, sloat the above three loops are
coded in one single statement

a=MATMUL(b, c)

Fortran 90 contains several array manipulation statementh as dot product of vectors, the
transpose of a matrix etc etc.

It is also important to keep in mind that computers are fimite can thus not store infinitely
large matrices. To calculate the space needed in memorynfe¥ & N matrix with double
precision, 64 bits or 8 bytes for every matrix element, onedsesimply computéV x N x 8
bytes . Thus, ifV = 10000, we will need close to 1GB of storage. Decreasing the pratitd
single precision, only halves our needs.

A further point we would like to stress, is that one should eaneral avoid fixed (at com-
pilation time) dimensions of matrices. That is, one couldagls specify that a given matrix
A should have sizel[100][100], while in the actual execution one may use odlp0][10]. If
one has several such matrices, one may run out of memorye Wiglactual processing of the
program does not imply that. Thus, we will always recommeaod % use a dynamic memory
allocation and deallocation of arrays when they are no Iongeded. In Fortran 90/95 one uses
the intrisic functiondALLOCATE andDEALLOCATE , while C++ employs the functionew.

Fortran 90 allocate statement and mathematical operationsn arrays

An array is declared in the declaration section of a prognanogule, or procedure using the
dimension attribute. Examples include

DOUBLE PRECISION, DIMENSION (10) :: x,y
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REAL, DIMENSION (1:10) :: X,y
INTEGER , DIMENSION (—10:10) :: prob
INTEGER , DIMENSION (10,10) :: spin

The default value of the lower bound of an array is 1. For teéson the first two statements are
equivalent to the first. The lower bound of an array can bethagal he last two statements are

examples of two-dimensional arrays.

Rather than assigning each array element explicitly, weusanan array constructor to give
an array a set of values. An array constructor is a one-difoealslist of values, separated by

commas, and delimited by "(/" and "/)". An example is

a(1:3) = (/ 2.0, -3.0, —4.0 /)

is equivalent to the separate assignments

a(l) = 2.0
a(2) = -3.0
a(3) =-4.0

One of the better features of Fortran 90 is dynamic stordgeadlon. That is, the size of an
array can be changed during the execution of the programed&dsw the dynamic allocation
works in Fortran 90, consider the following simple exampheve we set up &x 4 unity matrix.

IMPLICIT NONE

DOUBLE PRECISION , ALLOCATABLE , DIMENSION (: ,:)
! The size of the matrix

INTEGER :: n
! Here we set the dim n=4
n=4

I Allocate now place in memory for the matrix
ALLOCATE ( unity (n,n) )
I all elements are set equal zero
unity =0.
! setup identity matrix
DO i=1,n
unity (i,i)=1.
ENDDO
DEALLOCATE ( unity)

! The definition of the matrix , using dynamic allocation

unity

We always recommend to use the deallocation statemeng tirscfrees space in memory. If the
matrix is transferred to a function from a calling programeaan transfer the dimensionality
of that matrix with the call. Another possibility is to det@ne the dimensionality with th&IZE

function
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n=SIZE (unity ,DIM=1)

will give the size of the rows, while using DIM=2 gives thattbe columns.

5.3 LU decomposition of a matrix

In this section we describe how one can decompose a matinxterms of a matrix3 with el-
ements only below the diagonal (and thereby the naming losret a matrixC' which contains
both the diagonal and matrix elements above the diagoradi(ig to the labelling upper). Con-
sider again the matriA given in eq. (5.1). The LU decomposition method means thatave
rewrite this matrix as the product of two matridsandC where

a1 a2 a13 A4 1 0 0 0 Ci1 Ci2 Ci3 Cug
A= BC = Qg1 G2 (23 (24 _ byy 1 0 0 0 o o3 Co4
31 (32 (33 (434 bsi b3 1 0 0 0 ¢33 ¢34
a41 Qg2 43 Q44 byr baz bsg 1 0 0 0 cu4

(5.2)
The algorithm for obtaining3 andC is actually quite simple. We start always with the first
column. In our simple4 x 4) case we have equations for the first column

ay;; = C11

ag; = boeny (5 3)
as; = baien
ay; = by C11,

which determine the elements, b1, b3; andb,; in B andC. Writing out the equations for the
second column we get

aip = C12

ag = bacia+ e (5.4)
azp = Db31c12 + baaca '
agy = byrcig + baacon.

Here the unknowns akgs, cs9, b3, andby, which all can be evaluated by means of the results
from the first column and the elements/Af Note an important feature. When going from the
first to the second column we do not need any further informnetiom the matrix elements; .
This is a general property throughout the whole algorithrhus'the memory locations for the
matrix A can be used to store the calculated matrix elemenBsafdC. This saves memory.

We can generalize this procedure into three equations

1<t bacij+bipcy + -+ bici; = ayj
i=7:  biciy+ bicoy + -+ ey = ayg

1> 7 bilClj + biQCQj + o FGci = Qg (55)
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which gives the following algorithm:
Calculate the elements BrandC columnwise starting with column one. For each colufyn

e Compute the first element; by
C1j = Q5. (56)

o Next, Calculate all elements;,i =2,...,5 — 1
i—1
Cij = Qjj — Zbikckj. (57)
k=1
e Then calculate the diagonal element
7j—1
Cjj = Qjj — ijkckj- (5.8)
k=1
¢ Finally, calculate the elements, i > j
1 i—1
bij = — | Gy — sz’kckj ; (5.9)
Cjj 1

The algorithm is known as Crout’s algoithm. A crucial poisitobviously the case wherg; is
close or equals to zero which can lead to significant loss @fipion. The solution is pivoting
(interchanging rows ) around the largest element in a colymnhen we are actually decom-
posing a rowwise permutation of the original matAx The key point to notice is that egs. (5.8,
5.9) are equal except for the case that we divide:pyn the latter one. The upper limits are
always the samé = j — 1(= ¢ — 1). This means that we do not have to choose the diagonal
elementc;; as the one which happens to fall along the diagonal in theifissaince. Rather, we
could promote one of the undividég’s in the columni = 5 + 1, ... N to become the diagonal
of C. The partial pivoting in Crout’s method means then that weosie the largest value foy;
(the pivot element) and then do the divisions by that elem&nnén we need to keep track of all
permutations performed.

The programs which performs the above described LU decoitiguos

C: void ludcmp(doublexa, int n, intxindx, doublexd)
Fortran: CALL lu_decompose(a, n, indx, d)

are listed in the program librariesb.c, f90lib.f.
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5.4 Solution of linear systems of equations

With the LU decomposition it is rather simple to solve a sgst# linear equations

(1171 + Q19T + A13T3 + A14T4 = Wy
(2171 + A22T9 + A93T3 + A4Tg = Wo
(3171 + A32%2 + A337T3 + A34T4 = W3
(4101 + Qg9 + Qy3T3 + AgaTy = Wy4.

This can be written in matrix form as
Ax =w.

whereA andw are known and we have to solve for Using the LU dcomposition we write

Ax=BCx =w. (5.10)
This equation can be calculated in two steps
By = w; Cx=y. (5.11)

To show that this is correct we use to the LU decompositioreterite our system of linear
equations as
BCx =w, (5.12)

and since the determinat Bf is equal to 1 (by construction since the diagonalBafqual 1) we
can use the inverse @& to obtain
Cx=B'w=y, (5.13)
which yields the intermediate step
B'w=y (5.14)

and multiplying withB on both sides we reobtain Eq. (5.11). As soon as we lyawe can
obtainx throughCx = y.
For our four-dimentional example this takes the form

Y= w
boryr +y2 = wy
b31yr + baayo +y3 =  ws

byry1 + baoYo + bazys + ys = wy. (5.15)
and
Cl1T1 + C1aTe + C13T3 + C1aTa = Y1
C2oT2 + C23T3 + Coay = Yo
C33%3 + C34T4 = Y3
C44Ty = Y4 (5.16)

This example shows the basis for the algorithm needed te slév/set of, linear equations. The
algorithm goes as follows
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e Set up the matriXA and the vectow with their correct dimensions. Thi
determines the dimensionality of the unknown vestor

e Then LU decompose the matixthrough a call to the function

C: void ludcmp(doublesxa, int n, intxindx, doublexd)
Fortran: CALL lu_decompose(a, n, indx, d)

This functions returns the LU decomposed makixts determinant and th
vector indx which keeps track of the number of interchandgesws. If the
determinant is zero, the solution is malconditioned.

e Thereafter you call the function

C: lubksb(double:xa, int n, intxindx, doublexw
Fortran: CALL lu_linear_equation(a, n, indx, w)

which uses the LU decomposed matAixand the vectow and returns in
the same place ag. Upon exit the original content iw is destroyed. If you
wish to keep this information, you should make a backup aof ytaur calling
function.

The codes are listed in the program librarigs.c, f90lib.f.

5.5 Inverse of a matrix and the determinant

The basic definition of the determinantAfis

det{A} = Z(_)palm “2py *t Unpy, s
p

where the sum runs over all permutatignef the indicesl, 2, . .., n, altogethem! terms. Also
to calculate the inverse & is a formidable task. Here we have to calcultte complementary
cofactora® of each element;j which is the(n — 1)determinant obtained by striking out the
row ¢ and columry in which the element;; appears. The inverse #fis the constructed as the
transpose a matrix with the elemeitts)i*/a*. This involves a calculation of? determinants
using the formula above. Thus a simplified method is highkoiesl.

With the LU decomposed matrik in eq. (5.2) it is rather easy to find the determinant

det{A} = det{B} x det{C} = det{C}, (5.17)
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since the diagonal elementsB®fequal 1. Thus the determinant can be written

N

det{A} =[] cu- (5.18)

k=1

The inverse is slightly more difficult to obtain from the LUadenposition. It is formally
defined as

A'=Cc'B L (5.19)

We use this form since the computation of the inverse goesititr the inverse of the matricBs
andC. The reason is that the inverse of a lower (upper) triangukrix is also a lower (upper)
triangular matrix. If we calD for the inverse oB, we can determine the matrix elementof
through the equation

1 0 0 0 1 0 0 0 1000
by 1 0 O dgy 1 0 0] [01O00
b3y b3 1 0 dzy; d3 1 0] {0010 ]’ (5.20)
bar bap bsg 1 dyr dyp dyz 1 00 01
which gives the following general algorithm
= —bjj — Z birdi;, (5.21)

k=j+1

which is valid fori > j. The diagonal is 1 and the upper matrix elements are zero.oWe this
equation column by column (increasing orderjdf In a similar way we can define an equation
which gives us the inverse of the matfx labelledE in the equation below. This contains only
non-zero matrix elements in the upper part of the matrixqpie diagonal ones)

€11 €12 €13 €14 Ci1 Ci2 €13 Ci4 1000
0 e e3 ey 0 coo o3 o4 . 01 00
0 0 €33 €34 0 0 C33 C34 o 0 010 ’ (522)
0 0 0 €44 0 0 0 Cq4 0 0 01
with the following general equation
- Z ezkck]- (523)

Cii k=

fori < j.
A calculation of the inverse of a matrix could then be implatee in the following way:
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Set up the matrix to be inverted.

Call the LU decomposition function.

Check whether the determinant is zero or not.

Then solve column by column egs. (5.21, 5.23).

5.6 Project. Matrix operations

The aim of this exercise is to get familiar with various matperations, from dynamic memory
allocation to the usage of programs in the library packagéhefcourse. For Fortran users
memory handling and most matrix and vector operations aieded in the ANSI standard of
Fortran 90/95. For C++ user however, there are three pesstions

1. Make your own functions for dynamic memory allocation ofeztor and a matrix. Use
then the library package lib.cpp with its header file lib.Hppobtaining LU-decomposed
matrices, solve linear equations etc.

2. Use the library package lib.cpp with its header file liphphich includes a function
matrix for dynamic memory allocation. This program package inetudll the other
functions discussed during the lectures for solving systefilinear equations, obatining
the determinant, getting the inverse etc.

3. Finally, we provide on the web-page of the course a libpagkage which uses Blitz++'s
classes for array handling. You could then, since Blitz+ifssalled on all machines at the
lab, use these classes for handling arrays.

Your program, whether it is written in C++ or Fortran 90/9%80sld include dynamic memory
handling of matrices and vectors.

(a) Consider the linear system of equations

1171 + a12T2 + 4133 = Wy
Q21T1 + A22T9 + G373 =  Wa
a31T1 + a3oT9o + a33rz = Ws.

This can be written in matrix form as

Ax =w.
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Use the included programs to solve the system of equations
—T1 + X9 — 4ZE3 = 0
21'1 + 2252 = 1
311 4+ 3z2 4+ 225 = 3
Use first standard Gaussian elimination and compute thdt rasalytically. Compare

thereafter your analytical results with the numerical oobatined using the programs
in the program library.

(b) Consider now the x 4 linear system of equations

(1171 + Q19T + A13T3 + A14T4 = Wy
(2171 + A22%9 + A23T3 + A24T4 = W2
(3171 + A32T9 + A33T3 + A34T4 = W3
(4101 + Qg9 + Qy3T3 + AgaTqy = Wy4.

with
T1 + 2%3 + x4 = 2
41‘1 — 9%2 + 2%3 + x4 = 14
81‘1 + 161‘2 + 61‘3 + 51‘4 = -3
2£E1 + SZEQ + 2%3 + x4 = 0.
Use again standard Gaussian elimination and compute thé esglytically. Compare

thereafter your analytical results with the numerical oolesined using the programs in
the program library.

(c) If the matrix A is real, symmetric and positive definite, then it has a unfqo#orization
(called Cholesky factorization)
A=LU=LL"

whereL” is the upper matrix, implying that

The algorithm for the Cholesky decomposition is a specasecof the general LU-
decomposition algorithm. The algorithm of this decomposits as follows

e Calculate the diagonal elemehy; by setting up a loop fof = 0toi = n — 1 (C++
indexing of matrices and vectors)

i-1 1/2
L= (Aii - Z Li) : (5.24)
k=0



5.6. PROJECT: MATRIX OPERATIONS 85

¢ within the loop ovet, introduce a new loop which goes from=i + 1 ton — 1 and

calculate -
1 <
Lj = I (Al-j - ;—0 Likljk) . (5.25)

For the Cholesky algorithm we have always that> 0 and the problem with exceedingly
large matrix elements does not appear and hence there isatbfoe pivoting. Write
a function which performs the Cholesky decomposition. T@sir program against the
standard LU decomposition by using the matrix
3 2
A= 2 1 (5.26)
2 11

Are the matrices in exercises a) and b) positive definited,lesploy your function for
Cholesky decomposition and compare your results with those LU-decomposition.






Chapter 6

Non-linear equations and roots of
polynomials

6.1 Introduction

In Physics we often encounter the problem of determiningdio¢ of a functionf(z). Espe-
cially, we may need to solve non-linear equations of oneadei Such equations are usually
divided into two classes, algebraic equations involvingtsmf polynomials and transcendental
equations. When there is only one independent variablg@rtitdem is one-dimensional, namely
to find the root or roots of a function. Except in linear prab root finding invariably proceeds
by iteration, and this is equally true in one or in many dimens. This means that we cannot
solve exactly the equations at hand. Rather, we start withtesapproximate trial solution. The
chosen algorithm will in turn improve the solution until serpredetermined convergence cri-
terion is satisfied. The algoritms we discuss below attempnplement this strategy. We will
deal mainly with one-dimensional problems. The methods

You may have encountered examples of so-called transcai@guations when solving the
Schrddinger equation (SE) for a particle in a box poteniibke one-dimensional SE for a particle
with massm is

B d*u
- = A
5 dr? V(z)u(x) u(z), (6.1)
and our potential is defined as
) W 0<z<a
V(r)= { 0 e (6.2)

Bound states correspond to negative endfrgynd scattering states are given by positive energies.
The SE takes the form (without specifying the signFOf

d*u(x 2m,
dx(2)+?(V0+E)u(:c):O z < a, (6.3)
and Pu(s) 2
u(zx m
002 + ?Eu(x) =0 z>a. (6.4)

87
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100 |
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Figure 6.1: Plot off (E) Eq. (6.8) as function of energy |E| in MeX{ E) has dimension MeV.
Note well that the energ¥ is for bound states.

If we specialize to bound statds < 0 and implement the boundary conditions on the wave

function we obtain
= Asin(\/2m(Vy — |E|)r/h) r<a, (6.5)

u(r) = Bexp (—v/2m|E|r/h) r>a, (6.6)

where A and B are constants. Using the continuity requirement on the i@avetion atr = a
one obtains the transcendental equation

V2m(Vs — [Bl)cot(/2ma®(Vy — [E) /1) = —/2m]E]. 6.7)

This equation is an example of the kind of equations whicHdcbe solved by some of the
methods discussed below. The algorithms we discuss aragbetion method, the secant, false
position and Brent's methods and Newton-Raphson’s methvwateover, we will also discuss
how to find roots of polynomials in section 6.6.

In order to find the solution for Eq. (6.7), a simple procedsr® define a function

= \/2m(Vy — |B))cot(\/2ma(Vy — |EN)/h)/2m]E]. (6.8)

and with chosen or given values foandl;; make a plot of this function and find the approximate
region along the® — axis wheref(FE) = 0. We show this in Fig. 6.1 foty, = 20 MeV, a = 2

fm andm = 938 MeV. Fig. 6.1 tells us that the solution is clos€ g ~ 2.2 (the binding energy
of the deuteron). The methods we discuss below are then rteegivie us a numerical solution
for E wheref(E) = 0 is satisfied and witlE' determined by a given numerical precision.

and
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6.2 Iteration methods

To solve an equation of the tyg&z) = 0 means mathematically to find all numbetsso that
f(s) = 0. In all actual calculations we are always limited by a giveagsion when doing
numerics. Through an iterative search of the solution, thgehs that we can approach, within a
given tolerance, a valuer, which is a solution tgf (s) = 0 if

70 — 5| <, (6.9)
andf(s) = 0. We could use other criteria as well like

To— S

< €, (6.10)
s

and|f(zo)| < e or a combination of these. However, it is not given that tleeaitive process

will converge and we would like to have some conditionsfowhich ensures a solution. This
condition is provided by the so-called Lipschitz criterioif the function f, defined on the

interval[a, b] satisfies for alk;; andz, in the chosen interval the following condition

f(z1) = flz2)] < K far — s, (6.11)

with k£ a constant, therf is continuous in the intervak, b]. If f is continuous in the interval
[a, b], then the secant condition gives

f@r) = flza) = f1(€) (21 — x2), (6.12)
with 1, 25 within [a, b] and within [z, 25]. We have then
|f(z1) = fla)| < [F (O] o1 — 2] (6.13)

The derivative can be used as the constaiwe can now formulate the sufficient conditions for
the convergence of the iterative search for solution§tg = 0.

1. We assume thatis defined in the intervak, b].
2. f satisfies the Lipschitz condition with< 1.

With these conditions, the equatigitz) = 0 has only one solution in the intervgl, b] and it
coverges aften iterations towards the solutierirrespective of choice far, in the intervala, b].
If we let z,, be the value of aftern iterations, we have the condition

_ <=
|s — x,] < T
The proof can be found in the text of Bulirsch and Stoer. Sithedifficult numerically to find
exactly the point wherég(s) = 0, in the actual numerical solution one implements threes tefst
the type

LIn the following discussion, the variabids reserved for the value afwhere we have a solution.
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T, — 8| <€, (6.15)

and

[f(s)] <9, (6.16)

3. and a maximum number of iteratioNs,..i.r IN actual calculations.

6.3 Bisection method

This is an extremely simple method to code. The philosophybest be explained by choosing
aregion in e.g., Fig. 6.1 which is close to whegZ) = 0. In our casdE| ~ 2.2. Choose a
region|a, b] so thate = 1.5 andb = 3. This should encompass the point whé¢re- 0. Define

then the point
b
c:“;, (6.17)
and calculatef(c). If f(a)f(c) < 0, the solution lies in the regiofu, c] = [a, (a + b)/2].
Change ther «+ ¢ and calculate a new value for If f(a)f(c) > 0, the new interval is in
[e,b] = [(a + b)/2,b]. Now you need to change <« ¢ and evaluate then a new value forWe
can continue to halve the interval till we have reached aevéduc which fulfils f(¢) = 0 to a

given numerical precision. The algorithm can be simply egped in the following program

fa = f(a);
fb = f(b);
I/ check if your interval is correct, if not return to main

if ( faxfb > 0) {
cout << ‘‘\n Error, root not in interval’’ << endl;

return ;

}

for (j=1; ] <= iter_max; j++) {
c=(a+h)/2;
fc=f(c)

/1l if this test is satisfied , we have the root ¢
if ( (abs(ab) < epsilon ) || fc < delta ) ;return to main
if ( faxfc < 0){
b=c ; fb=fc;

}
elsef

a=c ; fa=fc;
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Note that one needs to define the values,efanditer_max when calling this function.

The bisection method is an almost foolproof method, althoiignay converge slowly to-
wards the solution due to the fact that it halves the intstvalfter n divisions by2 we have a
possible solution in the interval with length

1

and if we setry, = (a + b)/2 and letz,, be the midpoints in the intervals we obtain after
iterations that Eq. (6.14) results in

1
5=l <= 5 o —al, (6.19)

since the nth interval has length- a|/2". Note that this convergence criterion is independent of
the actual functiorf (x) as long as this function fulfils the conditions discussedhenconditions
discussed in the previous subsection.

As an example, suppose we wish to find how many iteration sispsieeded in order to
obtain a relative precision af)~'? for z,, in the interval[50, 63], that is

|s — 2y

5]

<10*2. (6.20)

It suffices in our case to study> 50, which results in

|s — 2]

= < 107", (6.21)
and with Eqg. (6.19) we obtain
13 -
s <107, (6.22)

meaningn > 37.

6.4 Newton-Raphson’s method

Perhaps the most celebrated of all one-dimensional rodirfjnroutines is Newton’s method,
also called the Newton-Raphson method. This method isdisished from the previously dis-
cussed methods by the fact that it requires the evaluatibotbfthe functionf and its derivative
f' at arbitrary points. In this sense, it is taylored to casdh wig., transcendental equations of
the type shown in Eq. (6.8) where it is rather easy to evalinaelerivative. If you can only cal-
culate the derivative numerically and/or your function @& of the smooth type, we discourage
the use of this method.

The Newton-Raphson formula consists geometrically ofreiteg the tangent line at a cur-
rent point until it crosses zero, then setting the next gtes$ise abscissa of that zero-crossing.
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The mathematics behind this method is rather simple. Enmpdoy Taylor expansion far suf-

ficiently close to the solutior, we have

(s —z)?
2

For small enough values of the function and for well-behduedtions, the terms beyond linear
are unimportant, hence we obtain

f(s)=0= (@) + (s — 2)f'(x) + @)+ (6.23)

f(@)+ (s — ) f'(z) = 0, (6.24)
yielding
f(z)
ST — ) 6.25
F) (625
Having in mind an iterative procedure, it is natural to sii@mating with

Tyl = Tp Filan) (6.26)
This is Newton-Raphson’s method. It has a simple geomett&rpretation, namely,, . is the
point where the tangent frorx.,,, f(x,)) crosses the:—axis. Close to the solution, Newton-
Raphson converges fast to the desired result. However, idnedar from a root, where the
higher-order terms in the series are important, the NewRaphson formula can give grossly
inaccurate results. For instance, the initial guess fordo¢ might be so far from the true root
as to let the search interval include a local maximum or mummof the function. If an iteration
places a trial guess near such a local extremum, so that shelérvative nearly vanishes, then
Newton-Raphson may falil totally. An example is shown in [Big.

It is also possible to extract the convergence behaviorisfriitethod. Assume that the func-
tion f has a continuous second derivative around the solutitiwe define

f(zn)

€ntl = Tpt1 — S = Tn — f’(x )
n

— s, (6.27)

and using Eq. (6.23) we have

—enf!@n) + €/2"(€) _ €h/21"(€)

() = Flan) (6.28)

€nt+1 = €n +

This gives

en1l 1 [f"(E1 1 [f"(s)]

lenl? 20" (@n)[? 2[f'(s)]?
whenz,, — s. Our error constant is then proportional tof”(s)|/| f'(s)|? if the second deriva-
tive is different from zero. Clearly, if the first derivativ@ small, the convergence is slower. In
general, if we are able to start the iterative procedure agaot and we can easily evaluate the
derivative, this is the method of choice. In cases where wg need to evaluate the deriva-
tive numerically, the previously described methods areeeasid most likely safer to implement

(6.29)



6.4. NEWTON-RAPHSON'S METHOD 93

f(z) =z — 2cos(x)
C =T
C = T9
15 -

0 2 4 6 8 10

Figure 6.2: Example of a case where Newton-Raphson’s medbed not converge. For the
function f(z) = = — 2cos(z), we see that if we start at = 7, the first iteration gives us that
the first point where we cross the-axis is given byz,. However, using:; as a starting point
for the next iteration results in a poimnt which is close to a local minimum. The tangent here is
close to zero and we will never approach the point whfgre = 0.

with respect to loss of numerical precision. Recall thatrthmerical evaluation of derivatives
involves differences between function values at differgnt
We can rewrite the last equation as

ens1| = Clea/”, (6.30)

with C' a constant. If we assume th@t~ 1 and lete, ~ 1078, this results ire,,.; ~ 10716,
and demonstrates clearly why Newton-Raphson’s method wrayecge faster than the bisection
method.

Summarizing, this method has a solution whé&ris continuous and is a simple zero of .
Then there is a neighborhood efand a constant’ such that if Newton-Raphson’s method is
started in that neighborhood, the successive points besteadily closer ta and satisfy

|S - xn+1| S C‘S - xn‘Q:

with n > 0. In some situations, the method guarantees to convergesdsiged solution from an
arbitrary starting point. In order for this to take placeg fhinctionf has to belong te'?(R), be
increasing, convex and having a zero. Then this zero is eraa Newton’s method converges
to it from any starting point.
As a mere curiosity, suppose we wish to compute the squatef@numberR, i.e., VR.
Let R > 0 and define a function
f(z) =2 - R.
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Teh variabler isarootif f(z) = 0. Newton-Raphson’s method yields then the following iteeat
approach to the root

2 Tn
a formula credited to Heron, a Greek engineer and architbot lwed sometime between 100
B.C. and A.D. 100.

Suppose we wish to computél3 = 3.6055513 and start withz, = 5. The first iteration
givesz; = 3.8, x5 = 3.6105263, x3 = 3.6055547 andxz, = 3.6055513. With just four iterations
and a not too optimal choice af, we obtain the exact root to a precision of 8 digits. The above
equation, together with range reduction , is used in thesiotcomputational function which
computes square roots.

Newton’s method can be generalized to sustems of severdimear equations and variables.
Consider the case with two equations

fl(«Tl,fUQ) =0
6.32
folwrzs) =0 (6:32)
which we Taylor expand to obtain
0= fl(l'l + hl, X9 + h2) = fl(xl, 1'2) + hlafl/al'l + h28f1/8x2 + ... (6 33)
0= fQ(l'l + hl,xQ + h2) = fg(xl,l'Q) + hlan/axl + h28f2/6x2 + ... ) )
Defining the Jacobian matrik we have
Y afl/al'l afl/al'Q >
J= 6.34
< 8f2/8x1 8f2/3x2 ’ ( )
we can rephrase Newton’s method as
n+1 n n
L1 R | hi
()= ()= (i), 635
where we have defined : )
thl A1<f1 xrlz’l‘g >
=-J . 6.36
< & ) ol 43) (6.36)

We need thus to compute the inverse of the Jacobian matriit ertd understand that difficulties
may arise in casé is nearly singular.

It is rather straightforward to extend the above schemedtegsys of more than two non-linear
equations.

6.5 The secant method and other methods

For functions that are smooth near a root, the methods knegpectively as false position (or
regula falsi) and secant method generally converge fdsaertiisection but slower than Newton-
Raphson. In both of these methods the function is assumed &pproximately linear in the
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Figure 6.3: Plot off (F) Eg. (6.8) as function of energy |E|. The pairis determined by where
the straight line froma, f(a)) to (b, f(b)) crosses the — axis.

local region of interest, and the next improvement in the isdaken as the point where the
approximating line crosses the axis.

The algorithm for obtaining the solution for the secant rodtls rather simple. We start with
the definition of the derivative

f(l‘n) - f(zn—l)

Tp — Tp—1

fl(xn) =

and combine it with the iterative expression of Newton-Rats

n

to obtain

Tp — Tp—1

which we rewrite to
x _ f(xn)xnfl - f(xnflxn)
e f@n) = f@a)

This is the secant formula, implying that we are drawingaight line from the pointz,, 1, f(z, 1))
to (z,, f(z,)). Where it crosses the — axzis we have the new point, ;. This is illustrated in
Fig. 6.3.

In the numerical implementation found in the program ligréine quantities:,, 1, z,, ,41
are changed to, b andc respectively, i.e., we determirdoy the point where a straight line from

(6.38)
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140

I I |
f(z) =252 —22/2 —2 ——
B LT
C = T9

100_ C:$3-""_

-20 - | ! ! ! ! | |

Figure 6.4: Plot off(z) = 252" — 2?/2 — 2. The various straight lines correspond to the
determination of the point after each iteratione is determined by where the straight line from
(a, f(a)) to (b, f(b)) crosses the — axis. Here we have chosen three valuesdor,, x5, andx;
which refer to the first, second and third iterations regpelgt

the point(a, f(a)) to (b, f(b)) crosses the — axis, that is
_ f(b)a— f(a)b
f(b) = f(a) -

We then see clearly the difference between the bisectiohodetnd the secant method. The
convergence criterion for the secant method is

(6.39)

lent1| &~ Alen|®, (6.40)

with a ~ 1.62. The convergence is better than linear, but not as good asdieRaphson’s
method which converges quadratically.

While the secant method formally converges faster tharcb@e one finds in practice patho-
logical functions for which bisection converges more répidhese can be choppy, discontinu-
ous functions, or even smooth functions if the second diever@hanges sharply near the root.
Bisection always halves the interval, while the secant oettan sometimes spend many cycles
slowly pulling distant bounds closer to a root. We illustréite weakness of this method in Fig.
6.4 where we show the results of the first three iteratioms, the first point is: = z;, the next
iteration gives: = x5 while the third iterations ends with= z3. We may risk that one of the
endpoints is kept fixed while the other one only slowly cogesrto the desired solution.

The search for the solution proceeds in much of the same fashion as for the bisection
method, namely after each iteration one of the previous thaynpoints is discarded in favor of
the latest estimate of the root. A variation of the secanthoetis the so-called false position
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method (regula falsi from Latin) where the interval [a,bklsosen so thaf(a)f(b) < 0, else
there is no solution. This is rather similar to the bisectmethod. Another possibility is to
determine the starting point for the iterative search usimge points(a, f(a)), (b, f(b)) and
(¢, f(¢)). One can use Lagrange’s interpolation formula for a polyiabrsee the discussion in
next chapter. This procedure leads to Brent's method. Ydlufiwil a function in the program
library which computes the zeros according to the lattelhoetas well.

6.5.1 Calling the various functions

In the program library you will find the following functions

rtbis (double (*func)(double) , double x1, double x2, double xacc)

rtsec (double (*xfunc)(double) , double x1, double x2, double xacc)

rtnewt (void (xfuncd) (double, double %, double x) , double x1,
double x2, double xacc)

zbrent (double (xfunc)(double) , double x1, double x2, double xacc)

In all of these functions we transfer the lower and uppertlmhthe interval where we seek
the solution[z, x5|. The variablexacc is the precision we opt for. Note that in these function,
not in any case is the tegi(s) < ¢ implemented. Rather, the test is done throygh) = 0,
which not necessarily is a good option.
Note also that these functions transfer a pointer to the rednie given function through e.g.,
double (*func)(double)For Newton-Raphson’s method we need a function which methoth
the function and its derivative at a pointThis is then done by transferringid (*funcd) (double, double

6.6 Roots of polynomials
in preparation

6.6.1 Polynomials division

in preparation

6.6.2 Root finding by Newton-Raphson’s method

in preparation

6.6.3 Root finding by deflation

in preparation

6.6.4 Bairstow’s method






Chapter 7

Numerical interpolation, extrapolation and
fitting of data

7.1 Introduction

Numerical interpolation and extrapolation is perhaps ohthe most used tools in numerical
applications to physics. The often encountered situatidhat of a functiory at a set of points
x1...x, Where an analytic form is missing. The functignmay represent some data points
from experiment or the result of a lengthy large-scale camatmn of some physical quantity
that cannot be cast into a simple analytical form.

We may then need to evaluate the functjoat some point within the data set; . .. z,, but
wherez differs from the tabulated values. In this case we are dgalith interpolation. Ifz is
outside we are left with the more troublesome problem of mizakextrapolation. Below we will
concentrate on two methods for interpolation and extramsianamely polynomial interpolation
and extrapolation and the qubic spline interpolation appino

7.2 Interpolation and extrapolation

7.2.1 Polynomial interpolation and extrapolation

Let us assume that we have a set\of+ 1 pointsyy = f(zo),y1 = f(z1),...,yny = f(zn)
where none of the; values are equal. We wish to determine a polynomial of degisethat

for our data points. If we then writ8, on the form
Py(x) =ap+ a1(x — x9) + as(x — zp)(x — 1) + -+ an(x —29) ... (r — 2N 1), (7.2)

99



CHAPTER 7. NUMERICAL INTERPOLATION, EXTRAPOLATION AND FIT  TING
100 OF DATA

then Eq. (7.1) results in a triangular system of equations

ag = f(wo)
aot+ a1z — x0) = f(x1) (7.3)
ag+ al(:vQ — ZL'())‘F CZQ(ZL'Q — xg)(l'Q — ZL‘l) = f(ZL'Q) ) )
The coefficients, . . ., ay are then determined in a recursive way, starting withu, . . ..
The classic of interpolation formulae was created by Laggezand is given by
ol r— T
Py(z) = 5y 7.4
) =3 15— (7.4)

i=0 k#i
If we have just two points (a straight line) we get

xrx— X A
Py(z) = Cou + 4o, (7.5)

1 — Zo Tog — 1

and with three points (a parabolic approximation) we have

(x — x0) (2 — 29) N (x — x0)(x — x9) N (x — x1)(x — x9)

i) = (12— 20)(ws — 1) (w1 —z0) (w1 — 12) " (w0 — @1)(T0 — )

Yo (7.6)

and so forth. It is easy to see from the above equations thabwh= z; we have thaff (z) =
f(z;) Itis also possible to show that the approximation error ést term) is given by the second
term on the right hand side of

UJN+1(5U)f(N+1>(§)

f(z) = Py(x) + N+ 1! (7.7)
The functionwy, () is given by
wn+1(2) = an(z — o) ... (z — zN), (7.8)

and¢ = &(z) is a point in the smallest interval containing all intergima pointsz; andz. The
algorithm we provide however (the code POLINT in the progtdrary) is based on divided
differences. The recipe is quite simple. If we take- x, in Eq. (7.2), we then have obviously
thatag = f(x¢) = yo. Moving a, over to the left-hand side and dividing bry— z, we have

fz) = f(zo)

r — X =ar+ag(z — 1)+ +an(z —z) (v —22) ... (T —TN), (7.9)

where we hereafter omit the rest term

FD(E)
m(x—xl)(x—xg)...(x—x]v). (7.10)
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The quantity

xr) — s
fon = 1@ =T (0) (7.11)
r — Iy
is a divided difference of first order. If we then take= z,, we have that, = f;;. Moving a,

to the left again and dividing by — x; we obtain

M:a2+"'+GN(.I—I2>...(1‘_ZEN_1). (712)
xr — T
and the quantity
Joie = fos — Ju fo1’ (7.13)
xr — T
is a divided difference of second order. We note that thefiooefit
ayp = f01, (7-14)

is determined frony,, by settingr = x;. We can continue along this line and define the divided
difference of ordek + 1 as

ot = Joto.(k—1)a — fUl...(kfl)k, (7.15)

T — T

meaning that the corresponding coefficiepis given by

ar = fol...(kq)k- (7.16)
With these definitions we see that Eq. (7.7) can be rewritten a

OJN+1(«T)f(N+1) (€)

B (7.17)

flz) =ao+ ZNf01...k($ —xg) ... (T — Tp_1) +

If we replacery, z1, ...,z in EQ. (7.15) withz; .1, x; 4, ..., x4, that is we count from + 1 to
k instead of counting frond to £ and replace: with x;, we can then construct the following
recursive algorithm for the calculation of divided diffaces

_ f:EH,l...:Ek - fIifEi+1---Ik—1 (7 18)

iLi4+1 k l‘k _ 1‘2

Assuming that we have a table with function valges, f(z;) = y;) and need to construct the
coefficients for the polynomiaPy (z). We can then view the last equation by constructing the
following table for the case wher® = 3.

Zo Yo

faoms
T1 U fmomlmg

fores Jrowizaas - (7.19)
T Y2 fxlacgacg

f12153

T3 Y3
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The coefficients we are searching for will then be the elemaiing the main diagonal. We
can understand this algorithm by considering the followilRigst we construct the unique poly-
nomial of order zero which passes through the paeit),. This is justa, discussed above.
Therafter we construct the unique polynomial of order on&tvipasses through bothy, and
x1y;. This corresponds to the coefficient and the tabulated valug,,., and together wittu,
results in the polynomial for a straight line. Likewise wdide polynomial coefficients for all
other couples of points such &s,,, and f,,,,. Furthermore, a coefficient like, = f, 2,2,
spans now three points, and adding togefher, we obtain a polynomial which represents three
points, a parabola. In this fashion we can continue till weehall coefficients. The function
POLINT included in the library is based on an extension a$ #igorithm, knowns as Neville’s
algorithm. It is based on equidistant interpolation pairitke error provided by the call to the
function POLINT is based on the truncation error in Eq. (7.7)

Exercise 6.1

Use the functionf(z) = 2*® to generate function values at four points = 0,

r1 = 1, 2o = 5 andx; = 6. Use the above described method to show that ghe
interpolating polynomial becomeB;(z) = = + 6z(z — 1) + z(x — 1)(z — 5).
Compare the exact answer with the polynonftabind estimate the rest term.

7.3 Qubic spline interpolation

Qubic spline interpolation is among one of the mostly usethods for interpolating between
data points where the arguments are organized as ascemdliag. sin the library program we
supply such a function, based on the so-called qubic spletboad to be described below.

A spline function consists of polynomial pieces defined dnistervals. The different subin-
tervals are connected via various continuity relations.

Assume we have at our disposal 1 pointszg, x1, ...z, arranged so thaty < z; < x5 <
...z, 1 < x, (such points are called knots). A spline functioaf degreet with n + 1 knots is
defined as follows

e On every subintervdly; i, z;) s is a polynomial of degre€ .
e s hask — 1 continuous derivatives in the whole intervay, z,,].
As an example, consider a spline function of degree 1 defined as follows

so(x) = agx + by x € [xg,21)
s(z) = s1(z) = a1 + by x € [11, 1) (7.20)
Sn-1(T) = an 17 + by 1 T € [Tn 1, Ty

In this case the polynomial consists of series of straigigdiconnected to each other at every
endpoint. The number of continuous derivatives is then1 = 0, as expected when we deal
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with straight lines. Such a polynomial is quite easy to cartdtgivenn + 1 pointszg, x1, ...z,
and their corresponding function values.

The most commonly used spline function is the one witk 3, the so-called qubic spline
function. Assume that we have in adddition to the- 1 knots a series of functions values
vo = f(xo),y1 = f(x1),...yn = f(x,). By definition, the polynomials; ; ands; are thence
supposed to interpolate the same pajnte.,

sic1(z) = yi = si(xy), (7.22)
with 1 < ¢ < n — 1. In total we have: polynomials of the type
s:(2) = ajo + an® + apr® + apa®, (7.22)
yielding 4n coefficients to determine. Every subinterval provides idithon the2n conditions
yi = s(x;), (7.23)

and
3($z‘+1) = Yi+1, (7.24)
to be fulfilled. If we also assume thsltands” are continuous, then

s 1 (23) = sp(w3), (7.25)
yieldsn — 1 conditions. Similarly,
siq(w5) = 87 (24), (7.26)

results in additionak — 1 conditions. In total we havén coefficients andin — 2 equations to
determine them, leaving us withdegrees of freedom to be determined.
Using the last equation we define two values for the secondadiee, namely

si (zi) = fi, (7.27)
and
s; (Tiy1) = fir1, (7.28)
and setting up a straight line betwegrand f; ., we have
" fz fi-l—l
si (1) = PR—— (Tip1 — ) + Pa— (v — ), (7.29)
and integrating twice one obtains
_ Ji 3 fit1 3
si(7) = —————(@ip1 — )" + (# —2)" + (2 — @) + d(zi41 — x). (7.30)

6(zi1 — x;) 6(zip1 — ;)
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Using the conditions;(z;) = y; ands;(z;11) = y;+1 We can in turn determine the constants
andd resulting in

si(z) = m(%ﬂ — )’ + ﬁ(ﬁ - z;)°
+ (acj.?—lxl _ fi+1(CCi6+1—$i>>(l, — ;) + (xifii—xi _ fi(fCi-%l-CCi))(Ii_*_l — ). (7.31)

How to determine the values of the second derivatiffeand f; . ;? We use the continuity
assumption of the first derivatives

si_1 (i) = si(w), (7.32)
and setr = z;. Definingh; = x;,1 — x; we obtain finally the following expression
6 6
hi—ifi +2(hi + hiy) fi + hifizn = E(%g — i) — I (Vi — Yi1), (7.33)

and introducing the shorthands = 2(h; + k1), v; = = (Yis1 — ¥i) — h%(yi — Y1), We
can reformulate the problem as a set of linear equations teohed through e.g., Gaussian
elemination, namely

[ Uy hl 0 Ce 17T f1 i I U1 i
hi wuy, hy 0 ... fo Vg
0 h2 Uus h3 0 A f3 _ V3 (7 34)
0 hn—S Up—2 hn—? fn—2 Up—2
| 0 hn—? Up—1 1 L fn—l | L Up—1 |

Note that this is a set of tridiagonal equations and can besddhrough onlyO(n) operations.
The functions supplied in the program library agéine andsplint. In order to use qubic spline
interpolation you need first to call

spline (double x[], double y[], int n, double ypl, double yp2, double
y2[])

This function takes as input0, ..,n — 1] andy|0, .., » — 1] containing a tabulatiop;, = f(z;)
with zy < z; < .. < x,_; together with the first derivatives ¢fx) atz, andz,,_, respectively.
Then the function returng2(0, .., » — 1] which contanin the second derivativesfdf:;) at each
pointz;. n is the number of points. This function provides the qubidcrgpinterpolation for all
subintervals and is called only once. Thereatfter, if youwvtitsmake various interpolations, you
need to call the function

splint(double x[], double y[], double y2a[], int n, double x, double x
y)

which takes as input the tabulated valugs .., n — 1] andy|0, .., n — 1] and the output y2a[0,..,n
- 1] from spline. It returns the valug corresponding to the point



Chapter 8

Numerical integration

8.1 Introduction

In this chapter we discuss some of the classic formulae sittedrapezoidal rule and Simpson’s
rule for equally spaced abscissas and formulae based orsi@aggiadrature. The latter are more
suitable for the case where the abscissas are not equatlgdpBhe emphasis is on methods for
evaluating one-dimensional integrals. In chapter 9 we show Monte Carlo methods can be
used to compute multi-dimensional integrals. We end theptdr with a discussion on singular
integrals and the construction of a class for integratiothods.

The integral

b
]:/ f(x)dx (8.1)

has a very simple meaning. If we consider Fig. 8.1 the intefmply represents the area
enscribed by the functiofi(z) starting fromx: = « and ending at = b. Two main methods will
be discussed below, the first one being based on equal (wiagjdor slight modifications) steps
and the other on more adaptive steps, namely so-called @augsadrature methods. Both main
methods encompass a plethora of approximations and onlg sbthem will be discussed here.

8.2 Equal step methods

In considering equal step methods, our basic tool is theofappansion of the functioffi(x)
around a point: and a set of surrounding neighbouring points. The algorighmather simple,
and the number of approximations unlimited!

e Choose a step size
_b-a
N

whereN is the number of steps andandb the lower and upper limits of integration.

h

105
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a a+h a+2h a+3h a+dh b

Figure 8.1: Area enscribed by the functiffx) starting fromz = a to x = b. It is subdivided in
several smaller areas whose evaluation is to be approxinbgtéhe techniques discussed in the
text.

e Choose then to stop the Taylor expansion of the funcfi@r) at a certain derivative. You
should also choose how many points arounakre to be included in the evaluation of the
derivatives.

¢ With these approximations tf(x) perform the integration.

Such a small measure may seemingly allow for the derivatioranous integrals. To see this,
let us briefly recall the discussion in the previous sectioth @specially Fig. 3.1. First, we can
rewrite the desired integral as

b a+2h a+4h b
/f@mz/ f@m+/ f@ydr+. [ f@)dr (8.2)

+2h b—2h

The strategy then is to find a reliable Taylor expansionffar) in the smaller sub intervals.

Consider e.g., evaluating
+h

f(z)dx (8.3)
—h
where we will Taylor expand (z) around a point;y, see Fig. 3.1. The general form for the
Taylor expansion aroung}, goes like

2.£n 3 £m
W RS

flx =29+t h) = f(xo) L hf + 5 5

+O(h").
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Let us now suppose that we split the integral in Eg. (8.3) ia parts, one from-h to z, and

the other fromz, to h. Next we assume that we can use the two-point formula for ¢neative,
that is we can approximatg(z) in these two regions by a straight line, as indicated in the
figure. This means that every small element under the fumgtio) looks like a trapezoid, and
as you may expect, the pertinent numerical approach to tegril bears the predictable name
‘trapezoidal rule’. It means also that we are trying to apprate our functionf (z) with a first
order polynomial, that ig(x) = a + bxz. The constank is the slope given by first derivative

~ Fflzo £ h) £ f(z)

f(zo+h) = . + O(h),
and if we stop the Taylor expansion at that point our funcienomes,
f@) = fo+ 200 4 o), 8.4)
fore = xptox = 2y + h and
f@) = fo+ 2T 0@, 85)
for x = xy — htox = x,. The error goes lik®(z?). If we then evaluate the integral we obtain
+h h
flx)de = §(fh+2f0+f—h)+0(h3)a (8.6)
—h

which is the well-known trapezoidal rule. Concerning theoein the approximation made,
O(h*) = O((b — a)®/N?), you should note the followingThis is the local error! Since we
are splitting the integral froma to b in N pieces, we will have to perform approximately
such operations. This means that giebal error goes likexx O(h?). To see that, we use the
trapezoidal rule to compute the integral of Eq. (8.1),

]:/f(:v)dz:h(f(a)/2+f(a+h)+f(a+2h)+---+f(b—h)+fb/2), (8.7)

with a global error which goes lik@ (%?). It can easily be implemented numerically through the
following simple algorithm

e Choose the number of mesh points and fix the step.
e calculatef(a) and f(b) and multiply with/ /2

e Perform aloop oven = 1ton — 1 (f(a) and f(b) are known) and sum u
the termsf(a + h) + f(a + 2h) + f(a+3h) +---+ f(b— h). Each stepin
the loop corresponds to a given value- nh.

e Multiply the final result byh and addh f(a)/2 andhf(b)/2.
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A simple function which implements this algorithm is as dolis

double trapezoidal_rule@ouble a, double b, int n, double (*func)(
double))
{
double trapez_sum;
double fa, fb, x, step;
int i
step=(b-a)/((double) n);
fa=(xfunc)(a)/2. ;
fb=(xfunc)(b)/2. ;
trapez_sum =0.;
for (j=1; ] <=n-1; j++){
X=jxStep+a;
trapez_sum +=(func) (x);
}
trapez_sum=(trapez_sum+fb+fagtep;
return trapez_sum;
} [/l end trapezoidal_rule

The function returns a new value for the specific integraddigh the variablérapez_sum There
is one new feature to note here, namely the transfer of a efered function calledunc in the
definition

void trapezoidal_rule@ouble a, double b, int n, double xtrapez_sum
double (*func) (double) )

What happens here is that we are transferring a pointer toetime of a user defined function,
which has as input a double precision variable and returnsudld precision number. The
functiontrapezoidal_rule is called as

trapezoidal _rule(a, b, n, &trapez_sum, &myfunction )

in the calling function. We note that b andn are called by value, whileapez_sumand the
user defined functiomy_function are called by reference.

Instead of using the above linear two-point approximat@mryf we could use the three-point
formula for the derivatives. This means that we will choaserfulae based on function values
which lie symmetrically around the point where we preform Tlaylor expansion. It means also
that we are approximating our function with a second-oradymomial f(z) = a + bz + cz?.
The first and second derivatives are given by

fh_f h / - f(ngJrl) 27
— = ———h* 8.8
2h f°+;(2j+1)! ’ (8.:8)
and i)
fh_2f0+f—h e EOO: fUJ 27
h2 — 0+2 mh], (89)

j=1
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and we note that in both cases the error goesdike®’ ). With the latter two expressions we can
now approximate the functiofias

f(x) = fo+ fn _ffthr fh_2f0+f7hx2+0(x3). (8.10)
2h h?
Inserting this formula in the integral of Eg. (8.3) we obtain
+h h
f(@)de = 2 (fu+4fo+ f-n) + O(R°), (8.11)
—h

which is Simpson’s rule. Note that the improved accuracyhm évaluation of the derivatives
gives a better error approximatiof{°) vs.O(h?) . But this is just thdocal error approxima-
tion. Using Simpson’s rule we can easily compute the integralpf(&1) to be

b
I:/f(x)dx:g(f(a)+4f(a+h)+2f(a+2h)+---+4f(b—h)+fb), (8.12)

with a global error which goes lik@ (h*). It can easily be implemented numerically through the
following simple algorithm

e Choose the number of mesh points and fix the step.
e calculatef(a) andf(b)

e Perform aloop oven = 1ton — 1 (f(a) and f(b) are known) and sum u
the termstf(a + h) + 2f(a + 2h) + 4f(a + 3h) + --- + 4f(b— h). Each
step in the loop corresponds to a given value nh. Odd values of. give 4
as factor while even values yieldas factor.

e Multiply the final result by .

A critical evaluation of these methods will be given aftes thscussion on Guassian quadra-
ture.

8.3 Gaussian quadrature

The methods we have presented hitherto are taylored togimsblvhere the mesh pointsare
equidistantly spaced, differing fromz; . ; by the stegh. These methods are well suited to cases
where the integrand may vary strongly over a certain regrahwe integrate over the solution
of a differential equation.
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If however our integrand varies only slowly over a large &, then the methods we have
discussed may only slowly converge towards a chosen poetighs an example,

I:/bx—Q (z)d, (8.13)

may converge very slowly to a given precisiomn i large and/oyf (x) varies slowly as function
of = at large values. One can obviously rewrite such an integrahlinging variables to= 1/«
resulting in )
I= f(th)dt, (8.14)
b_l
which has a small integration range and hopefully the nurobaresh points needed is not that
large.

However there are cases where no trick may help, and whetertb@xpenditure in evaluat-
ing an integral is of importance. For such cases, we wouldtikrecommend methods based on
Gaussian quadrature. Here one can catch at least two bitlia wione, namely, increased preci-
sion and fewer (less time) mesh points. But it is importaat the integrand varies smoothly over
the interval, else we have to revert to splitting the intemt many small subintervals and the
gain achieved may be lost. The mathematical details behmthieory for Gaussian quadrature
formulae is quite terse. If you however are interested irdémévation, we advice you to consult
the text of Stoer and Bulirsch [3], see especially secti@n Blere we limit ourselves to merely
delineate the philosophy and show examples of practicdicgions.

The basic idea behind all integration methods is to appraterthe integral

b N
I :/ f(z)de ~ szf(%), (8.15)

wherew andz are the weights and the chosen mesh points, respectivedyriprevious discus-
sion, these mesh points were fixed at the beginning, by chg@sgiven number of pointd'.
The weigthsu resulted then from the integration method we applied. Sanjssrule, see Eqg.
(8.12) would give

w:{h/3,4h/3,2h/3,4h/3,...,4h/3 h/3}, (8.16)

for the weights, while the trapezoidal rule resulted in
w:{h/2,h h,... h,h/2}. (8.17)

In general, an integration formula which is based on a Tegdoies usingV points, will integrate
exactly a polynomiaP of degreeN — 1. That is, theN weightsw,, can be chosen to satisfy
linear equations, see chapter 3 of Ref. [3]. A greater pi@ti®r a given amount of numerical
work can be achieved if we are willing to give up the requiraetr equally spaced integration
points. In Gaussian quadrature (hereafter GQ), both thénrpemts and the weights are to

LYou could e.g., impose that the integral should not chandertion of increasing mesh points beyond the
sixth digit.
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be determined. The points will not be equally sp&cethe theory behind GQ is to obtain an
arbitrary weightv through the use of so-called orthogonal polynomials. Tipedgnomials are
orthogonal in some interval say e.g., [-1,1]. Our pointsaare chosen in some optimal sense
subject only to the constraint that they should lie in thieiaal. Together with the weights we
have ther2 NV (/V the number of points) parameters at our disposal.

Even though the integrand is not smooth, we could renderaosimby extracting from it the
weight function of an orthogonal polynomial, i.e., we are/miéng

I:/ f(z)dx :/ W(x)g(z)dx ~ szf(%), (8.18)

whereg is smooth andlV is the weight function, which is to be associated with a gimeéhogonal
polynomial.

The weight functioni¥ is non-negative in the integration intervale [a, b] such that for
anyn >0 fab |z|"W (z)dx is integrable. The naming weight function arises from that faat it
may be used to give more emphasis to one part of the interaaldhother. In physics there are
several important orthogonal polynomials which arise ftmsolution of differential equations.
These are Legendre, Hermite, Laguerre and Chebyshev puolgtso They have the following
weight functions

Weight function Interval Polynomial
Wi(z)=1 z € [a,b] Legendre
W(z)=e* —oo<z<o Hermite

W(z) = e 0<z<oc Laguerre

Wi(z) =1/(v1—2?) -1 <2z <1 Chebyshev

The importance of the use of orthogonal polynomials in thedweation of integrals can be
summarized as follows.

e As stated above, methods based on Taylor series usipgints will integrate exactly a
polynomial P of degreeNV — 1. If a function f(x) can be approximated with a polynomial
of degreeN — 1

f(z) = Py_i(z),
with NV mesh points we should be able to integrate exactly the patyaid®y ;.

e Gaussian quadrature methods promise more than this. Weetaa lgetter polynomial
approximation with order greater thavi to f(x) and still get away with onlyV mesh
points. More precisely, we approximate

f(z) = Py 1(x),

2Typically, most points will be located near the origin, veniew points are needed for largevalues since the
integrand is supposed to vary smoothly there. See belownfexample.
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and with only N mesh points these methods promise that

N—-1
/f(l‘)dl‘ ~ /PQN_l(l‘)dl‘ = Z PQN_l(xi)wi, (819)

The reason why we can represent a functidn) with a polynomial of degree N — 1 is
due to the fact that we haweV equations/NV for the mesh points and¥ for the weights.

The mesh points are the zeros of the chosen orthogonal palghof order V, and the weights
are determined from the inverse of a matrix. An orthogonéfipamials of degreéV defined in
an intervala, b] has preciselyV distinct zeros on the open interv@al, b).

Before we detail how to obtain mesh points and weights withagonal polynomials, let
us revisit some features of orthogonal polynomials by speang to Legendre polynomials. In
the text below, we reserve hereafter the labelling for a Legendre polynomial of orde¥,
while Py is an arbitrary polynomial of orde¥. These polynomials form then the basis for the
Gauss-Legendre method.

8.3.1 Orthogonal polynomials, Legendre

The Legendre polynomials are the solutions of an import#ferdntial equation in physics,
namely
d
C(l—aH )P -miP+(1—2*)— (1 —-2%)— | =0. 8.20
(1=2)P=miP+(1-a%)— ((1-2")— (8.20)
C'is a constant. Fom; = 0 we obtain the Legendre polynomials as solutions, whergag 0
yields the so-called associated Legendre polynomialss difierential equation arises in e.g.,
the solution of the angular dependence of Schrodinger'sitemuwith spherically symmetric
potentials such as the Coulomb potential.
The corresponding polynomial3 are

1 d

Li(r) = S (@

—1)* k=0,1,2,..., (8.21)

which, up to a factor, are the Legendre polynomia)s The latter fulfil the orthorgonality
relation

1
2
L.(x)L, = —90.; .22
| n@ads = 56 ®22)
and the recursion relation
(U +1)Ljsa(x) +jLj-1(z) — (2) + 1)xL;(x) = 0. (8.23)

It is common to choose the normalization condition

Ly(1) =1. (8.24)
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With these equations we can determine a Legendre polynarhiatbitrary order with input
polynomials of ordetV — 1 and N — 2.
As an example, consider the determinatiorlgf L; and L,. We have that

Lo(z) = ¢, (8.25)
with ¢ a constant. Using the normalization equationil) = 1 we get that
Lo(z) = 1. (8.26)
For L, (x) we have the general expression
Li(z) = a+ bz, (8.27)

and using the orthorgonality relation

/ ' Lo() L (2)dx = 0, (8.28)

1

we obtaina = 0 and with the conditiorL, (1) = 1, we obtainb = 1, yielding
Li(z) =x. (8.29)
We can proceed in a similar fashion in order to determine tiedficients ofL,
Ly(7) = a + bx + c2?, (8.30)

using the orthorgonality relations

/1 Lo(z) Ly(x)dx = 0, (8.31)

1

and .
/ Lo(2) L (2)dz = 0, (8.32)

1
and the conditiorLy (1) = 1 we would get

Ly(z) = % (32° —1). (8.33)

We note that we have three equations to determine the thefotentsa, b andc.
Alternatively, we could have employed the recursion relabf Eq. (8.23), resulting in

QLQ(IE) = 31‘L1(IE) - Lo, (834)

which leads to Eq. (8.33).
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The orthogonality relation above is important in our distos of how to obtain the weights
and mesh points. Suppose we have an arbitrary polynapijal of order N —1 and a Legendre
polynomial L v (x) of order N. We could represer y_; by the Legendre polynomials through

Qn-1(z) = ) apLi(z), (8.35)

wherea;’s are constants.
Using the orthogonality relation of Eq. (8.22) we see that

/ Ly(2)Qn_1(z)dx = Z_/ Ly (z)oy Ly (x)dx = 0. (8.36)
-1 k=0 /1

We will use this result in our construction of mesh points amdghts in the next subsection In
summary, the first few Legendre polynomials are

Lo(z) =1, (8.37)
Li(z) =z, (8.38)
Ly(x) = (32* — 1)/2, (8.39)
Ls(z) = (52° — 32)/2, (8.40)
and
Ly(z) = (352" — 3022 + 3)/8. (8.41)

The following simple function implements the above recamsielation of Eq. (8.23). for com-
puting Legendre polynomials of ordé.

[/l This function computes the Legendre polynomial of degite

double legendre (int n, double x)
{
double r, s, t;
int m;
r =0; s =1.;
/I Use recursion relation to generate pl and p2
for (m=0; m < n; m++)
{
t rir=-s;
S (2¢+m+L1)xx*xr — mxt;
} // end of do loop
return s;
} /I end of function legendre

The variables represents.;  (x), while r holdsL;(z) andt the valueL,_;(x).
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8.3.2 Mesh points and weights with orthogonal polynomials

To understand how the weights and the mesh points are gedevat define first a polynomial of
degre€ N — 1 (since we havéN variables at hand, the mesh points and weights\igoints).
This polynomial can be represented through polynomiakdivi by

PQN,l(l') = LN(Z')PN,l(l') + QN,1($), (842)

wherePy_;(z) and@y_; (z) are some polynomials of degrde— 1 or less. The functioi ()
is a Legendre polynomial of ordey.

Recall that we wanted to approximate an arbitrary funcfiorn) with a polynomialP,y ; in
order to evaluate

/_11 f(z)dz ~ /_11 Pay—i(z)dz,

we can use Eg. (8.36) to rewrite the above integral as

/ 1 Pyy_y(z)dr = / z(LN(a:)PN_l(x) + Qn_i(z))dr = / 11 Qn_1(z)dz, (8.43)

1 —

due to the orthogonality properties of the Legendre polyiatsn\We see that it suffices to eval-
uate the integral ovef_l1 Qn_1(z)dz in order to evaluatq_l1 P,y 1(x)dz. In addition, at the
pointsx; whereLy is zero, we have

Pon_i(z;) = Qn-1(z;) i=1,2,...,N, (8.44)

and we see that through thedepoints we can fully defin€)y_;(z) and thereby the integral.
We develope the®) y_;(x) in terms of Legendre polynomials, as done in Eq. (8.35),

Qn-1(z) =D oiLi(z). (8.45)
=0

Using the orthogonality property of the Legendre polyndawee have

1 N—-1 1
/ Qn-1(2)dr = Z ozl-/ Lo(x)Li(z)dx = 2, (8.46)

where we have just insertdg (x) = 1! Instead of an integration problem we need now to define
the coefficientny. Since we know the values @fy_, at the zeros of.y, we may rewrite Eq.
(8.45) as

N-1 N-1
Qn-1(mr) = Y oiLi(me) = > oLy k=1,2,...,N. (8.47)
=0 =0

Since the Legendre polynomials are linearly independeertioh other, none of the columns in
the matrixL;, are linear combinations of the others. We can then invertatier equation and
have

=

-1

(L™ eiQn—-1 (%) = ou, (8.48)

-
Il
o
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and since
1 N—1
/ Pyn_ 1( d$ = / Qn- 1 dr =20y = 2 Z OzPQN 1 iEz) (8-49)
-1 1=0

we see that if we identify the weights wit{L~"),;, where the points; are the zeros of, we
have an integration formula of the type

N-1

/1 Poy_1(z)dr = Zwip2N71(xi) (8.50)

1=0

and if our functionf(z) can be approximated by a polynomi@lof degree2N — 1, we have
finally that

1 1 N-1
/1 f(l‘)dl‘ ~ /1 PQN_l(l‘)dl‘ = ZwiPQN_l(xi). (851)

In summary, the mesh points are defined by the zeros @f while the weights are given by
2(L™")g;.

8.3.3 Application to the caseV = 2

Let us visualize the above formal results for the cdse 2. This means that we can approximate
a functionf (z) with a polynomialP;(z) of order2N — 1 = 3.
The mesh points are the zeroslof(z) = 1/2(32z> — 1). These points are, = —1/+/3 and
Specializing Eq. (8.47)

N-1
QNfl(xk):ZaiLi(xk) k=1,2,...,N.
i=0
to N = 2 yields
1
To) = g — a1 ——, 8.52
Ql( 0) 0 1\/3 ( )
and
1

Qi(71) = ap+ (8.53)

ﬁ:
sinceLy(r = +1/v/3) = landL,(x = +1//3) = £1//3.
The matrixL;, defined in Eq. (8.47) is then

Lip = ( 1 a ) : (8.54)

§|H§|H
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with an inverse given by

(L)t = ? ( % ) . (8.55)

The weights are given by the matrix elemets,;)~'. We have thence, = 1 andw, = 1.
Summarizing, for Legendre polynomials with = 2 we have weights

L5
—t O

w: {11}, (8.56)
and mesh points
1 1
T ——, — . 8.57
755 (8:57)
If we wish to integrate
1
| twys
-1
with f(x) = 2%, we approximate
1 N—-1
I= / v~ Y wial, (8.58)
-1 i=0
The exact answer i&/3. Using N = 2 with the above two weights and mesh points we get
1 1 2
I= [ 2%dz= = 4= 8.59
/ = Zw —s+z=1, (8.59)

the exact answer!
If we were to emply the trapezoidal rule we would get

! 2 b—a 2 2 1-(=1) 2 2

I= xodr = - ((a)?+ (b)) /2 = —y (-1 +(1)*) /2=1! (8.60)
—1

With just two points we can calculate exactly the integraldsecond-order polynomial since

our methods approximates the exact function with higheeopsblynomial. How many points

do you need with the trapezoidal rule in order to achieve @airaccuracy?

8.3.4 General integration intervals for Gauss-Legendre

Note that the Gauss-Legendre method is not limited to amviak¢-1,1], since we can always
through a change of variable
xr —a

t=—1+2
+ b—a’

(8.61)

rewrite the integral for an interval [a,b]

/ (1) b_a/1f<(b_2“)x+b;“>dx. (8.62)
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If we have an integral on the form

/ ()t (8.63)
0
we can choose new mesh points and weights by using the mapping

- ™

T; = tan {Z(l + $Z)} : (8.64)

and
™ Ww;

Wi = 4 cos? (%(1 + xl))’

wherex; andw; are the original mesh points and weights in the intefvdl, 1], while z; andw;
are the new mesh points and weights for the intejfyako].

To see that this is correct by inserting the the value;cf —1 (the lower end of the interval
[—1, 1]) into the expression fat;. That givest; = 0, the lower end of the interval, oc]. For
x; = 1, we obtainz; = oo. To check that the new weights are correct, recall that thghte
should correspond to the derivative of the mesh points. digonvince yourself that the above
expression fulfils this condition.

(8.65)

8.3.5 Other orthogonal polynomials
Laguerre polynomials

If we are able to rewrite our integral of Eq. (8.18) with a wifunctionWW (z) = z®e~* with
integration limits[0, oc|, we could then use the Laguerre polynomials. The polynaniaim
then the basis for the Gauss-Laguerre method which can biedppintegrals of the form

I= / f(z)dx = / x%e Tg(x)d. (8.66)
0 0
These polynomials arise from the solution of the differairdiguation
d? d N I(l+1)
- _ T, 2 T A = .67
(de o + . p ) L(z) =0, (8.67)

wherel is an integei > 0 and )\ a constant. This equation arises e.g., from the solutiohef t
radial Schrédinger equation with a centrally symmetriceptial such as the Coulomb potential.
The first few polynomials are

Lo(z) =1, (8.68)
Li(x)=1-ux, (8.69)
Lo(z) =2 — 4z + 22, (8.70)

L3(z) =6 — 18z + 92* — 2°, (8.71)
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and
Li(z) = 2* — 162 + 7227 — 96z + 24. (8.72)

They fulfil the orthorgonality relation

/Oo e "Ly(r)dx =1, (8.73)

oo

and the recursion relation

(m+1)Lyi(z) =2n+1—2)L,(2) —nly_1(x). (8.74)

Hermite polynomials

In a similar way, for an integral which goes like

I= /00 f(z)dz = /00 e’”“zg(x)dx. (8.75)

we could use the Hermite polynomials in order to extract Weig@nd mesh points. The Hermite
polynomials are the solutions of the following differethgguation

d’H(r) o dH (x)

P S+ (A= DH (@) = 0. (8.76)

A typical example is again the solution of Schrédinger'saton, but this time with a harmonic
oscillator potential. The first few polynomials are

Hy(z) =1, (8.77)
Hi(x) = 2z, (8.78)
Hy(z) = 42* — 2, (8.79)
Hs(z) = 82* — 12, (8.80)
and

Hy(v) = 162" — 482% + 12. (8.81)

They fulfil the orthorgonality relation
/ e~ H,(z)%dx = 2"nl\/T, (8.82)

and the recursion relation

H, () =2xH,(x) — 2nH, 1 (x). (8.83)
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Table 8.1: Mesh points and weights for the integration w&kf0,100] with N = 10 using the
Gauss-Legendre method.

ZT; Ww;
1.305 3.334
6.747 7.473

16.030 10.954
28.330 13.463
42.556 14.776
57.444 14.776
71.670 13.463
83.970 10.954
93.253 7.473
98.695 3.334

QO OWOO~NOOUITEWN PR =
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8.3.6 Applications to selected integrals

Before we proceed with some selected applications, it iomant to keep in mind that since
the mesh points are not evenly distributed, a careful arsabfghe behavior of the integrand as
function ofz and the location of mesh points is mandatory. To give you amgte, in the Table
below we show the mesh points and weights for the integratiterval [0,100] forN = 10
points obtained by the Gauss-Legendre method. Clearlyuf yunction oscillates strongly in
any subinterval, this approach needs to be refined, eithelndysing more points or by choosing
other integration methods. Note also that for integratitterivals like e.g..x € [0, oo}, the
Gauss-Legendre method places more points at the beginhthg otegration interval. If your
integrand varies slowly for large valuesgfthen this method may be appropriate.

Let us here compare three methods for integrating, namelyrépezoidal rule, Simpson’s
method and the Gauss-Legendre approach. We choose twehsti integrate, namely

100 _
/ exp (—x) iz,
1 T

3
1
/ dzx.
0 2+ZU2

A program example which uses the trapezoidal rule, Simgsané and the Gauss-Legendre
method is included here.

and

#include <iostream >

#include "1lib.h"

using namespacestd;

/1l Here we define various functions called by the main progra
/1 this function defines the function to integrate

double int_function (double x);
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/1 Main function begins here

int main ()

{ .

int n;

double a, b;

cout <<"Read in the number of integration points" << endl;
cin >> n;

cout <<"Read in integration limits" << endl;

cin >> a >> b;

/1 reserve space in memory for vectors containing the meshnp®

/1 weights and function values for the use of the gaubsgendre

/1 method

double *x = new double [n];
double *w = new double [n];
/1 set up the mesh points and weights
gauleg(a, b,x,w, n);
/1 evaluate the integral with the Gaus&egendre method
double int_gauss = 0.;
for (int i = 0; i <n; i++){
int_gauss+=w[ikint_function (x[i]);
}
1/ final output
cout <<"Trapez-rule = " << trapezoidal_rule(a, b,n,
int_function)
<< endl;
cout <<"Simpson’s rule = " << simpson(a, b,n, int_function)
<< endl;
cout << "Gaussian quad = " << int_gauss << endl;
delete [] x;
delete [] w;
return O;

} /1l end of main program

/I this function defines the function to integrate

double int_function (double x)

{
double value = 4./(1.+x%Xx);
return value;

} /I end of function to evaluate

In Table 8.2 we show the results for the first integral usingows mesh points, while Table
8.3 displays the corresponding results obtained with thersgintegral. We note here that, since
the area over where we integrate is rather large and theramtdgoes slowly to zero for large
values ofz, both the trapezoidal rule and Simpson’s method need quateyrpoints in order to
approach the Gauss-Legendre method. This integrand démaimssclearly the strength of the
Gauss-Legendre method (and other GQ methods as well)faxwzpoints are needed in order to
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Table 8.2: Results fofl100 exp (—z)/zdz using three different methods as functions of the num-

ber of mesh pointsy.

N

Trapez

Simpson

Gauss-Legendre

10
20
40
100
1000

1.821020
0.912678
0.478456
0.273724
0.219984

1.214025
0.609897
0.333714
0.231290
0.219387

0.1460448
0.2178091
0.2193834
0.2193839
0.2193839

achieve a very high precision.

The second Table however shows that for smaller integrati@nvals, both the trapezoidal

rule and Simpson’s method compare well with the resultsinbthwith the Gauss-Legendre
approach.

Table 8.3: Results fof03 1/(2 + z?)dx using three different methods as functions of the number
of mesh pointsV.

N

Trapez

Simpson

Gauss-Legendre

10
20
40
100
1000

0.798861
0.799140
0.799209
0.799229
0.799233

0.799231
0.799233
0.799233
0.799233
0.799233

0.799233
0.799233
0.799233
0.799233
0.799233

8.4 Treatment of singular Integrals

So-called principal value (PV) integrals are often emptbyrephysics, from Green’s functions
for scattering to dispersion relations. Dispersion reladiare often related to measurable quan-
tities and provide important consistency checks in atomiclear and particle physics. A PV

integral is defined as
T—€ b
U 0 . dtf(t)},
a t—x rie t—X

and arises in applications of Cauchy’s residue theorem vtherpolex lies on the real axis
within the interval of integratioffu, b].
An important assumption is that the functipft) is continuous on the interval of integration.
In casef (¢) is an analytic expression or it has an analytic continudtidghe complex plane,
it may be possible to obtain an expression on closed formhiabove integral.

I() :P/bdttf(t) = lim

— T

(8.84)
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However, the situation which we are often confronted witthét f(¢) is only known at some
pointst; with corresponding valueg(t;). In order to obtairf () we need to resort to a numerical
evaluation.

To evaluate such an integral, let us first rewrite it as

N (O S 10 b () A ()
P/a dtm_/a dtm+/x+Adtm+P/x_A dt——, (8.85)

where we have isolated the principal value part in the lasgiral.
Defining a new variable = ¢ — x, we can rewrite the principal value integral as

In(z) = P/:A duw. (8.86)

One possibility is to Taylor expanf{u + ) aroundu = 0, and compute derivatives to a certain
order as we did for the Trapezoidal rule or Simpson’s rulac8&iall terms with even powers of
u in the Taylor expansion dissapear, we have that

PRATIR o e At 8.87
ale) 2_% ) G e Ty (8.87)

To evaluate higher-order derivatives may be both time comsg and delicate from a numer-
ical point of view, since there is always the risk of loosinggsion when calculating derivatives
numerically. Unless we have an analytic expressiorffar+ x) and can evaluate the derivatives
in a closed form, the above approach is not the preferred one.

Rather, we show here how to use the Gauss-Legendre methocthfmute Eq. (8.86). Let us
first introduce a new variable= «/A and rewrite Eq. (8.86) as

In(z) = P/+1 g1 B5+ ) (8.88)

1 S

The integration limits are now from1 to 1, as for the Legendre polynomials. The principal
value in Eqg. (8.88) is however rather tricky to evaluate nucadly, mainly since computers have
limited precision. We will here use a subtraction trick oftesed when dealing with singular
integrals in numerical calculations. We introduce first¢h&ulus relation

/H s _y (8.89)

1 S

It means that the curvé/(s) has equal and opposite areas on both sides of the singular poi
s = 0.
If we then note thaf () is just a constant, we have also

+1 +1
f(2) / 1 & 1 f@% =0 (8.90)
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Subtracting this equation from Eq. (8.88) yields
+1 +1 .
Ta(z) = P/ g5 125+ ) :/ g5 25+ 2) = Jl@) (8.91)

1 S 1 S

and the integrand is now longer singular since we havelthat.,.(f(s + =) — f(z)) = 0 and
for the particular case = 0 the integrand is now finite.
Eqg. (8.91) is now rewritten using the Gauss-Legendre metbsulting in

N

JIRCC S L SRS RS U (8.92)

s Si
1 i=1 :

wheres; are the mesh points\ in total) andw; are the weights.

In the selection of mesh points for a PV integral, it is impaitto use an even number of
points, since an odd number of mesh points always picks 0 as one of the mesh points. The
sum in Eqg. (8.92) will then diverge.

Let us apply this method to the integral

+1 6t
I(2) = P / i (8.93)
-1
The integrand diverges at= ¢t = 0. We rewrite it using Eq. (8.91) as
+1 t +1 t
-1
P/ dt% - / S (8.94)

1 1 3

sincee” = ¢ = 1. With Eq. (8.92) we have then

N
/H - > -
~ Ww;
t
-1 i=1

The exact results 8.11450175075..... With just two mesh points we recall from the previous
subsection thaty, = wy, = 1 and that the mesh points are the zerod.efr), namelyz; =
—1/V/3 andz, = 1/4/3. SettingN = 2 and inserting these values in the last equation gives

ti

(8.95)

-1
ti

I(z=0) = V3 (/5 — 7Y = 21120772845
With six mesh points we get even the exact result to the teigih d
Is(z = 0) = 2.11450175075!

We can repeat the above subtraction trick for more comgctattegrands. First we modify
the integration limits tatoc and use the fact that

> dk
= 0. 8.96
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It means that the curve/(k — k) has equal and opposite areas on both sides of the singular
point kq. If we break the integral into one over positiveand one over negativie a change of
variablek — —Fk allows us to rewrite the last equation as

< dk
- =0. 8.97
We can use this to express a principal values integral as
* f(k)dk /°° (f (k) — f(ko))dk
= 8.98
P /0 il A (8.98)

where the right-hand side is no longer singulakat kg, it is proportional to the derivative
df /dk, and can be evaluated numerically as any other integral.

Such a trick is often used when evaluating scattering egisiin momentum space, which
are nothing but mere rewriting, for the non-relativisticeaof the Schrédinger equation from
coordinate space to momentum space. We are going to solveriuathy the scattering equation
in momentum space in the chapter on eigenvalue equation§isspter 13.






Chapter 9

Outline of the Monte-Carlo strategy

9.1 Introduction

Monte Carlo methods are widely used, from the integratiomafti-dimensional integrals to
problems in chemistry, physics, medicine, biology, or Ddewes forecasting!

Numerical methods that are known as Monte Carlo methods eadondsely described as
statistical simulation methods, where statistical siriaiais defined in quite general terms to be
any method that utilizes sequences of random numbers torpethe simulation.

Statistical simulation methods may be contrasted to cdiweasl numerical discretization
methods, which typically are applied to ordinary or partidferential equations that describe
some underlying physical or mathematical system. In mampjications of Monte Carlo, the
physical process is simulated directly, and there is no neeyen write down the differential
equations that describe the behavior of the system. Therenlyirement is that the physical
(or mathematical) system be described by probability ithstion functions (PDF’s). Once the
PDF’s are known, the Monte Carlo simulation can proceed bgioen sampling from the PDF's.
Many simulations are then performed (multiple “trials” dristories”) and the desired result is
taken as an average over the number of observations (whighbea single observation or
perhaps millions of observations). In many practical aygiions, one can predict the statistical
error (the “variance”) in this average result, and hencestimate of the number of Monte Carlo
trials that are needed to achieve a given error. If we asshatethe physical system can be
described by a given probability density function, thenMuante Carlo simulation can proceed
by sampling from these PDF’s, which necessitates a fast tiactige way to generate random
numbers uniformly distributed on the interval [0,1]. Theaames of these random samplings,
or trials, must be accumulated or tallied in an appropriaé@mer to produce the desired result,
but the essential characteristic of Monte Carlo is the useiodom sampling techniques (and
perhaps other algebra to manipulate the outcomes) to atravsolution of the physical problem.
In contrast, a conventional numerical solution approactldsstart with the mathematical model
of the physical system, discretizing the differential egures and then solving a set of algebraic
equations for the unknown state of the system. It should peikenind though that this general
description of Monte Carlo methods may not directly applpdme applications. It is natural

127
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to think that Monte Carlo methods are used to simulate randworstochastic, processes, since
these can be described by PDF's. However, this couplingtisadg too restrictive because
many Monte Carlo applications have no apparent stochastitent, such as the evaluation of
a definite integral or the inversion of a system of linear ¢éigna. However, in these cases and
others, one can pose the desired solution in terms of PDiRtswile this transformation may
seem artificial, this step allows the system to be treatedséscaastic process for the purpose of
simulation and hence Monte Carlo methods can be appliedolate the system.

There are, at least four ingredients which are crucial ireptd understand the basic Monte-
Carlo strategy. These are

1. Random variables,

2. probability distribution functions (PDF),
3. moments of a PDF

4. and its pertinent varianee

All these topics will be discussed at length below. We feavéer that a brief explanation may
be appropriate in order to convey the strategy behind a MGaréo calculation. Let us first
demistify the somewhat obscure concept of a random varidkile example we choose is the
classic one, the tossing of two dice, its outcome and theespanding probability. In principle,
we could imagine being able to exactly determining the nmotibthe two dice, and with given
initial conditions determine the outcome of the tossingasilwe are not capable of pursuing
this ideal scheme. However, it does not mean that we do na aaertain knowledge of the
outcome. This partial knowledge is given by the probablitglataining a certain number when
tossing the dice. To be more precise, the tossing of the datdsythe following possible values

(2,3,4,5,6,7,8,9,10,11,12]. (9.1)
These values are called tHemain To this domain we have the correspondprgbabilities
[1/36,2/36/3/36,4/36,5/36,6/36,5/36,4/36,3/36,2/36,1/36]. (9.2)

The numbers in the domain are the outcomes of the physice¢psdossing the dic®Ve cannot
tell beforehand whether the outcome is 3 or 5 or any other rarritbthis domain. This defines
the randomness of the outcome, or unexpectedness or amsgtimimous word which encom-
passes the uncertitude of the final outcoriée only thing we can tell beforehand is that say
the outcome 2 has a certain probability. If our favorite holshbto spend an hour every evening
throwing dice and registering the sequence of outcomes, M@&aete that the numbers in the
above domain

2,3,4,5,6,7,8,9,10,11,12], (9.3)

appear in a random order. After 11 throws the results may likek

[10,8,6,3,6,9,11,8,12, 4, 5. (9.4)
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Eleven new attempts may results in a totally different sagaef numbers and so forth. Repeat-
ing this exercise the next evening, will most likely nevarggyou the same sequences. Thus, we
say that the outcome of this hobby of ours is truly random.

Random variables are hence characterized by a domain wluokams all possible values
that the random value may take. This domain has a correspgrfelDF.

To give you another example of possible random number spageedctivities, consider the
radioactive decay of an-particle from a certain nucleus. Assume that you have at gisposal
a Geiger-counter which registers every say 10ms whetherjparticle reaches the counter or
not. If we record a hit as 1 and no observation as zero, an@tréps experiment for a long time,
the outcome of the experiment is also truly random. We cafumot a specific pattern from the
above observations. The only possibility to say somethlmguaithe outcome is given by the
PDF, which in this case the well-known exponential function

Aexp —(Ax), (9.5)

with \ being proportional with the half-life.

9.1.1 Firstillustration of the use of Monte-Carlo methods,crude integra-
tion
With this definition of a random variable and its associatBéRve attempt now a clarification

of the Monte-Carlo strategy by using the evaluation of aagrdl as our example.
In the previous chapter we discussed standard methodsdbraging an integral like

I= [ f@ydox 3w (9.6)
0 i=1

wherew; are the weights determined by the specific integration nakeflke Simpson’s or Tay-
lor's methods) withe; the given mesh points. To give you a feeling of how we are téuewa the
above integral using Monte-Carlo, we employ here the cruygessible approach. Later on we
will present slightly more refined approaches. This crugeagch consists in setting all weights
equal 1w; = 1. Recall also thatlx = h = (b — a)/N whereb = 1, a = 0 in our case and is
the step size. We can then rewrite the above integral as
1 1 N
I= /0 f(z)dr ~ NZf(zz), (9.7)
1

1=

but this is nothing but the average pbver the interval [0,1], i.e.,

I:/O f(z)dx =~ (f). (9.8)

In addition to the average valy¢) the other important quantity in a Monte-Carlo calculation
is the variancer? or the standard deviation We define first the variance of the integral with
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to be

o = % Z flai)? = (% Z f(xz)) ; (9.9)
or . .
ot = ((fH - (H)?). (9.10)

which is nothing but a measure of the extent to whiatheviates from its average over the region
of integration.

If we consider the results for a fixed value df as a measurement, we could however re-
calculate the above average and variance for a series efdaliff measurements. If each such
measumerent produces a set of averages for the integlahotedf);, we have forM mea-
sumerements that the integral is given by

(I)wr = % > (. (9.11)

The variance for these series of measurements is thew fer N

A=y [<<}V§N;f<xi>> ) - (%fjmm) } 9.12)

Splitting the sum in the first term on the right hand side insu with: = j and one withi #
we assume that in the limit of a large number of measurementysterms with: = j survive,
yielding

2
Am - =L 913)
We note that .
ON ~ ﬁ (9.14)

The aim is to havery as small as possible afte¥ samples. The results from one sample
represents, since we are using concepts from statistiosgasurement’.

The scaling in the previous equation is clearly unfavorafompared even with the trape-
zoidal rule. In the previous chapter we saw that the tragietaoule carries a truncation error
O(h?), with h the step length. In general, methods based on a Taylor eipassch as the
trapezoidal rule or Simpson'’s rule have a truncation ertaictvgoes like~ O(h*), with k& > 1.
Recalling that the step size is definedhas (b—a)/N, we have an error which goes like N *.

However, Monte Carlo integration is more efficient in higldémensions. To see this, let
us assume that our integration volume is a hypercube with/sidnd dimensionl. This cube
contains henc&V = (L/h)? points and therefore the error in the result scaled’a¥'? for the
traditional methods. The error in the Monte carlo integnatis however independent dfand
scales ag ~ 1/v/N, always! Comparing this error with that of the traditiona¢timods, shows
that Monte Carlo integration is more efficient than an orklafgorithm whend > 2k.
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Below we list a program which integrates

! 1 s

where the inputis the desired number of Monte Carlo samplete that we transfer the variable
idum in order to initialize the random number generator from tinectionran0. The variable
idum gets changed for every sampling. This variable is callecéwsel

What we are doing is to employ a random number generator @robtimbers;; in the in-
terval|0, 1] through e.g., a call to one of the library functions:0, ranl, ran2. These functions
will be discussed in the next section. Here we simply empl@gé functions in order to generate
arandom variable. All random number generators produc@seado-random form numbers in
the intervall0, 1] using the so-called uniform probability distributipfi:) defined as

p(x) = bi@@(z—a)@(b—x), (9.16)

with @ = 0 ogb = 1. If we have a general intervédt, b], we can still use these random number
generators through a variable change

z=a+ (b—a)x, (9.17)

with z in the intervall0, 1].

The present approach to the above integral is often calledlé&: or ‘Brute-Force’ Monte-
Carlo. Later on in this chapter we will study refinements is #imple approach. The reason for
doing so is that a random generator produces points thaisréddted in a homogenous way in
the intervall0, 1]. If our function is peaked around certain values:pfve may end up sampling
function values wher¢ () is small or near zero. Better schemes which reflect the ptiegarf
the function to be integrated are thence needed.

The algorithm is as follows

e Choose the number of Monte Carlo sampiés

Perform a loop oveV and for each step generate a a random number the interval
[0, 1] trough a call to a random number generator.

Use this number to evaluaféz;).

Evaluate the contributions to the mean value and the stdmbsiation for each loop.

After N samples calculate the final mean value and the standardidevia

The following program implements the above algorithm ughmglibrary functionran0. Note
the inclusion of thé:b.h file.
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#include <iostream >
#include "lib.h"
using namespacestd;

/1 Here we define various functions called by the main progra
/1l this function defines the function to integrate

double func (double x);

/1 Main function begins here
int main ()
{

int i, n;

long idum;

double crude_mc, x, sum_sigma, fx, variance;

cout <<"Read in the number of Monte-Carlo samples" << endl;

cin >>n;
crude_mc = sum_sigma=0. ; idum=l ;

/1 evaluate the integral with the a crude Monrt€arlo method
for (i =1; i <=n; i++){

x=ran0 (&idum) ;

fx=func (x);

crude_mc += fx;

sum_sigma += fxfx;
}
crude_mc = crude_mc/(double) n );
sum_sigma = sum_sigma/¢@puble) n );
variance=sum_sigmacrude_mecrude_mc;

/1 final output
cout <<" variance= " << variance <<" Integral = "
<< crude_mc <<" Exact= " << M_PIl/4. << endl;

} /1l end of main program
/l this function defines the function to integrate

double func (double x)
{
double value;
value = 1./(1.+x%x);
return value;

} // end of function to evaluate




9.1. INTRODUCTION 133

The following table list the results from the above prograsriuanction of the number of Monte
Carlo samples.

Table 9.1: Results fof = fol dz1/(1 + z?) as function of number of Monte Carlo sampl¥s
The exact answer 885398 E — 01 with 6 digits.

N T ON
10 7.75656E-01 4.99251E-02
100 7.57333E-01 1.59064E-02
1000 7.83486E-01 5.14102E-03
10000 7.85488E-01 1.60311E-03
100000 7.85009E-01 5.08745E-04
1000000 7.85533E-01 1.60826E-04
10000000 7.85443E-01 5.08381E-05

We note that asV increases, the standard deviation decreases, howeventdggal itself
never reaches more than an agreement to the third or fowgith dinprovements to this crude
Monte Carlo approach will be discussed.

As an alternative, we could have used the random numberaengrovided by the compiler
through the functionrand, as shown in the next example.

/Il crude mc function to calculate pi
#include <iostream >

using namespacestd;

int main ()

{
const int n =1000000;
double x, fx, pi, invers_period , pi2;
int i;

invers_period = 1./RAND MAX;
srand (time (NULL) ) ;
pi = pi2 = 0.;
for (i=0; i<n;i++)
{
x = double(rand () )xinvers_period;
fx = 4./(1+xxx);
pi += fx;
pi2 += fxxfx;
}

pi /= n; pi2 = pi2/n— pixpi;
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cout <<'"pi=" << pi << " gigma~2=" << pi2 << endl;
return 0O;

}

9.1.2 Second illustration, particles in a box

We give here an example of how a system evolves towards a efatledl equilibrium state.

Consider a box divided into two equal halves separated bylla i&the beginning, time
t = 0, there areN particles on the left side. A small hole in the wall is then op@ and one
particle can pass through the hole per unit time.

After some time the system reaches its equilibrium statk agually many particles in both
halves,N/2. Instead of determining complicated initial conditions &system ofV particles,
we model the system by a simple statistical model. In ordsimwlate this system, which may
consist of NV >> 1 particles, we assume that all particles in the left half hegpeal probabilities
of going to the right half. We introduce the labglto denote the number of particles at every
time on the left side, and, = N — n, for those on the right side. The probability for a move
to the right during a time stept is n;/N. The algorithm for simulating this problem may then
look like as follows

e Choose the number of particl@é

e Make a loop over time, where the maximum time should be latigen the number of
particlesN.

e For every time step\¢ there is a probability;; /N for a move to the right. Compare this
probability with a random numbar.

e If x < n;/N, decrease the number of particles in the left half by one,ne= n; — 1.
Else, move a particle from the right half to the left, ix.= n; + 1.

e Increase the time by one unit (the external loop).

In this case, a Monte Carlo sample corresponds to one timie\ni
The following simple C-program illustrates this model.

/!l Particles in a box
#include <iostream >
#include <fstream >
#include <iomanip >
#include "l1lib.h"
using namespace std;

ofstream ofile;
int main(int argc, char* argv][])

{
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char *xoutfilename;
int initial_n_particles , max_time, time, random_n, nleft;
long idum;
[/l Read in output file , abort if there are too few commatidne
arguments
if ( argc <=1 ){
cout <<"Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1l);
}
elsef
outfilename=argv [1];
}
ofile .open(outfilename);
/!l Read in data
cout <<"Initial number of particles = " << endl
cin >> initial_n_particles;
/I setup of initial conditions

’

nleft = initial_n_particles;
max_time = 1& initial_n_particles;
idum = —1;

/!l sampling over number of particles

for ( time=0; time <= max_time; time++){
random_n = ((nt) initial_n_particleskran0(&idum));
if ( random_n <= nleft){

nleft —= 1_;
}
elsef
nleft += 1;
}
ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile << setw (15) << time;
ofile << setw(15) << nleft << endl;
}
return 0O;
} /I end main function

The enclosed figure shows the development of this systemrmatidua of time steps. We note
that for vV = 1000 after roughly2000 time steps, the system has reached the equilibrium state.
There are however noteworthy fluctuations around equiliri

If we denote(n;) as the number of particles in the left half as a time averageeduilibrium
is reachedwe can define the standard deviation as

o =/(n?) — (n)?. (9.18)

This problem has also an analytic solution to which we canp=me our numerical simula-
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Figure 9.1: Number of particles in the left half of the con&ias function of the number of time
steps. The solution is compared with the analytic exprassio= 1000.

tion. If n,(¢) are the number of particles in the left half aftenoves, the change im(¢) in the
time intervalAt is

. N — nl(t) n (t)
An = ( N N At, (9.19)
and assuming that, andt are continuous variables we arrive at
dnl (t) in (t)
=1- 9.20
o N (9.20)
whose solution is N
m(t) = (1+ e 2N (9.21)

with the initial conditionn; (¢t = 0) = N.

9.1.3 Radioactive decay

Radioactive decay is among one of the classical examples@mfuMonte-Carlo simulations.
Assume that a the time= 0 we haveN (0) nuclei of typeX which can decay radioactively. At
a timet > 0 we are left withNV(¢) nuclei. With a transition probability, which expresses the
probability that the system will make a transition to anottate during oen second, we have the
following first-order differential equation

dN(t) = —wN(#)dt, (9.22)
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whose solution is

N(t) = N(0)e ", (9.23)
where we have defined the mean lifetimef X as
T = l (9.24)
w

If a nucleusX decays to a daugther nucleliswhich also can decay, we get the following
coupled equations
dNx(t)
dt

and
dNy (t)
dt

The program example in the next subsection illustrates hewam simulate such a decay process
through a Monte Carlo sampling procedure.

= —wy Ny (t) — wx Ny (t). (9.26)

9.1.4 Program example for radioactive decay of one type of raleus

The program is split in four tasks, a main program with vasideclarations,

/!l Radioactive decay of nuclei
#include <iostream >

#include <fstream >

#include <iomanip >

#include "lib.h"

using namespace std;

ofstream ofile;

/!l Function to read in data from screen
void initialise (int&, int&, int&, double&)
/l The Mc sampling for nuclear decay
void mc_sampling(nt , int, int, double, intx);
/l prints to screen the results of the calculations
void output(int, int, int x);
int main(int argc , charx* argv][])
{
char *xoutfilename;
int initial_n_particles , max_time, number_cycles;
double decay_probability;
int *x ncumulative;
/l Read in output file , abort if there are too few commafndne
arguments
if ( argc <=1 ){
cout <<"Bad Usage: " << argv[0] <<
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" read also output file on same line" << endl;
exit(1l);
}
elsef
outfilename=argv|[1l];
}
ofile .open(outfilename);
/l Read in data
initialise (initial_n_particles , max_time, number_ced,
decay_probability) ;
ncumulative =new int [max_time+1];
/I Do the mc sampling
mc_sampling (initial_n_particles , max_time, number_bgyx,
decay_probability , ncumulative);
/Il Print out results
output(max_time , number_cycles, ncumulative);
delete [] ncumulative;
return O;
} // end of main function

the part which performs the Monte Carlo sampling

void mc_sampling (nt initial_n_particles ,int max_time,
int number_cycles ,double decay_probability ,
int xncumulative)
{
int cycles, time, np, n_unstable, particle_limit;
long idum;

idum=—1; // initialise random number generator
/!l loop over monte carlo cycles
/I One monte carlo loop is one sample
for (cycles = 1; cycles <= number_cycles; cycles++){
n_unstable = initial_n_particles;
/' accumulate the number of particles per time step per trial
ncumulative[0] += initial_n_particles;
I/l loop over each time step
for (time=1; time <= max_time; time++){
I/l for each time step, we check each particle
particle _limit = n_unstable;
for ( np = 1; np <= particle_limit; np++) {
if ( ran0(&idum) <= decay_probability) {
n_unstable=n_unstablel;
}
} // end of loop over particles
ncumulative[time] += n_unstable;
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} // end of loop over time steps
} /I end of loop over MC trials
} /I end mc_sampling function

and finally functions for reading input and writing outputala

void initialise (int& initial_n_particles , int & max_time
int& number_cycles ,double& decay_probability)

{
cout <<"Initial number of particles = " << endl| ;
cin >> initial_n_particles;
cout << "maximum time = " << endl;
cin >> max_time;
cout <<'"# MC steps= " << endl;
cin >> number_cycles;
cout <<"# Decay probability= " << endl;

cin >> decay_probability ;
} // end of function initialise

void output(int max_time , int number_cycles ,int * ncumulative)

{

int i;
for ( 1=0; i <= max_time; i++){
ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile << setw (15) << i;
ofile << setw(1l5) << setprecision(8);
ofile << ncumulative[i]/((double) number_cycles) << endl;

}

} [/l end of function output

9.1.5 Brief summary

In essence the Monte Carlo method contains the followingeaignts
e A PDF which characterizes the system

¢ Random numbers which are generated so as to cover in a asmrafopossible way on
the unity interval [0,1].

A sampling rule

An error estimation

Techniques for improving the errors
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Before we discuss various PDF’s which may be of relevance, veg need to present some
details about the way random numbers are generated. Thosésid the next section. Thereafter
we present some typical PDF’s. Sections 5.4 and 5.5 discosgeMCarlo integration in general,
how to choose the correct weighting function and how to emaluntegrals with dimensions
d>1.

9.2 Physics Project: Decay of'’Bi and ?'°Po

In this project we are going to simulate the radioactive gleafathese nuclei using sampling
through random numbers. We assume that-at0 we haveNx (0) nuclei of the typeX which
can decay radioactively. At a given timiewe are left withNx(¢) nuclei. With a transition
ratewy, which is the probability that the system will make a traiosito another state during a
second, we get the following differential equation

de(t) = —wax(t)dt, (927)
whose solution is
Nx(t) = Nx(0)e™x", (9.28)
and where the mean lifetime of the nuclexigs
1
T=— (9.29)
Wx

If the nucleusX decays td’, which can also decay, we get the following coupled equation

dNx(t)
dt

— —wxNx(t) (9.30)

and
dNy (t)

dt
We assume that at= 0 we haveNy (0) = 0. In the beginning we will have an increase of
Ny nuclei, however, they will decay thereafter. In this projee let the nucleus!’Bi represent
X. It decays througtB-decay to?'°Po, which is thel” nucleus in our case. The latter decays
through emision of an-particle to>*°Pb, which is a stable nucleu8’Bi has a mean lifetime of
7.2 days whilé'°Po has a mean lifetime of 200 days.

= —wy Ny (t) + wx Ny (¢). (9.31)

a) Find analytic solutions for the above equations assumngnuous variables and setting
the number of'°Po nuclei equal zero at= 0.

b) Make a program which solves the above equations. Whate&sonable choice of timestep
At? You could use the program on radioactive decay from the pegje of the course as
an example and make your own for the decay of two nuclei. Coengee results from
your program with the exact answer as functiod\af(0) = 10, 100 and1000. Make plots
of your results.
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c) When?!°Po decays it produces an particle. At what time does the production of
particles reach its maximum? Compare your results withiadyéic ones foiVy (0) = 10,
100 and1000.

9.3 Random numbers

Uniform deviates are just random numbers that lie within ecefed range (typically O to 1),
with any one number in the range just as likely as any otheeyTdre, in other words, what
you probably think random numbers are. However, we want stirdgjuish uniform deviates
from other sorts of random numbers, for example numbers mifa@m a normal (Gaussian)
distribution of specified mean and standard deviation. &@lotéker sorts of deviates are almost
always generated by performing appropriate operationsneroo more uniform deviates, as we
will see in subsequent sections. So, a reliable source araruniform deviates, the subject
of this section, is an essential building block for any séidtochastic modeling or Monte Carlo
computer work. A disclaimer is however appropriate. It dtddae fairly obvious that something
as deterministic as a computer cannot generate purely nandabers.

Numbers generated by any of the standard algorithm are lityrpaeudo random numbers,
hopefully abiding to the following criteria:

1. they produce a uniform distribution in the interval [0,1]
2. correlations between random numbers are negligible

3. the period before the same sequence of random numbepested is as large as possible
and finally

4. the algorithm should be fast.

That correlations, see below for more details, should beresl @s possible resides in the
fact that every event should be independent of the other. dxeean example, a particular simple
system that exhibits a seemingly random behavior can béngatérom the iterative process

Tip = cxi(1 — x;), (9.32)

which is often used as an example of a chaotic systaaronstant and for certain values«aind
xo the system can settle down quickly into a regular periodigisace of values,, zs, z3, . . ..
Forzy = 0.1 andc = 3.2 we obtain a periodic pattern as shown in Fig. 5.2. Changitg
¢ = 3.98 yields a sequence which does not converge to any specifierpatthe values of;
seem purely random. Although the latter choicecgfields a seemingly random sequence of
values, the various values ofharbor subtle correlations that a truly random number secpie
would not possess.

The most common random number generators are based onlad-calear congruential
relations of the type

N; = (aN;_ 1 + ¢)MOD(M), (9.33)
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Figure 9.2: Plot of the logistic mapping,; = cz;(1 — z;) for z, = 0.1 andc¢ = 3.2 and
c=3.98.

which yield a number in the interval [0,1] through

The numberV is called the period and it should be as large as possible\gnsl the start-
ing value, or seed. The functiodOD means the remainder, that is if we were to evaluate
(13)MOD(9), the outcome is the remainder of the divisigiy9, namely4.

The problem with such generators is that their outputs aredte; they will start to repeat
themselves with a period that is at madgt If however the parametersandc are badly chosen,
the period may be even shorter.

Consider the following example

N; = (6N;_1 + 7)MOD(5), (9.35)

with a seedV, = 2. These generator produces the sequente3, 0,2,4,1,3,0,2,......,i.e.,
a sequence with period. However, increasing/ may not guarantee a larger period as the

following example shows
N; = (27N;_1 + 11)MOD(54), (9.36)

which still with Ny = 2 results inl11, 38,11, 38,11, 38, ..., a period of jusg.

Typical periods for the random generators provided in tlog@m library are of the order of
~ 10°. Other random number generators which have become innggpgiopular are so-called
shift-register generators. In these generators eachssigesmumber depends on many preceding
values (rather than the last values as in the linear congalgenerator). For example, you could
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make a shift register generator whagenumber is the sum of thle- ;th and/ — jth values with
modulo M,
Nl = (CZN[,Z' + CNZ,])MOD(M) (937)

Such a generator again produces a sequence of pseudoranohdoens but this time with a period
much larger thad/. It is also possible to construct more elaborate algorithynscluding more
than two past terms in teh sum of each iteration. One exarapleigenerator of Marsaglia and
Zaman (Computers in Physi841994) 117) which consists of two congurential relations

N; = (Ni_3 — Ni_1)MOD(2*" — 69), (9.38)

followed by
N; = (69069N,_; + 1013904243)MOD(2°?), (9.39)

which according to the authors has a period larger #{an
Moreover, rather than using modular addition, we could heebitwise exclusive-ORX)
operation so that
Ny = (N,_;) @ (N,—) (9.40)

where the bitwise action @b means that ifV,_; = N,_; the result i9) whereas ifN,_; # N,_;
the resultisl. As an example, consider the case wh&fe; = 6 andN,_; = 11. The first one
has a bit representation (using 4 bits only) which redd$® whereas the second numbet s 1.
Employing thed operator yieldd101, or 2% + 22 4 2% = 13.

In Fortran90, the bitwise> operation is coded through the intrinsic functidttOR (m, n)
wherem andn are the input numbers, while i it is given bym™. The program below (from
Numerical Recipes, chapter 7.1) shows the functiom) which implements

N; = (aN;_1)MOD(M), (9.41)

through Schrage’s algorithm which approximates the miidagion of large integers through the
factorization
M =aq+r,

or
q = [M/al,

where the brackets denote integer division ard (M )MOD(a).

Note that the program uses the bitwiseoperator to generate the starting point for each
generation of a random number. The period-@f0 is ~ 2.1 x 10°. A special feature of this
algorithm is that is should never be called with the inities¢d set t@.

[

xx The function

* ok ran0 ()

x*% 1S an "Minimal" random number generator of Park and Miller
x+x (see Numerical recipe page 279). Set or reset the input value
x* idum to any integer value (except the unlikely value MASK)




144 CHAPTER 9. OUTLINE OF THE MONTE-CARLO STRATEGY

x* to initialize the sequence ; idum must not be altered betweegn
xx calls for sucessive deviates in a sequence.

x* The function returns a uniform deviate between 0.0 and 1.0.
%/

double ranO (long &idum)

{
const int a = 16807, m= 2147483647, q = 127773;
const int r = 2836, MASK = 123459876
const double am = 1./m;
long k:
double ans;

idum ~= MASK;
k = (xidum)/q;
idum = ax(idum — kxq) — rxk;
if (idum < 0) idum +=m;
ans=am(idum) ;
idum A= MASK;
return ans;
} /1 End: function ranO ()

The other random number generatoas 1, ran2 andran3 are described in detail in chapter 7.1
of Numerical Recipes.
Here we limit ourselves to study selected properties ofdlyemerators.

9.3.1 Properties of selected random number generators

As mentioned previously, the underlying PDF for the genenadf random numbers is the uni-
form distribution, meaning that the probability for findi@gnumberz in the interval [0,1] is
p(z) =1.

A random number generator should produce numbers whiclommliy distributed in this
interval. Table 5.2 shows the distribution 6f = 10000 random numbers generated by the
functions in the program library. We note in this table thee humber of points in the various
intervals0.0 — 0.1, 0.1 — 0.2 etc are fairly close ta000, with some minor deviations.

Two additional measures are the standard deviatiand the meap = (z).

For the uniform distribution withV points we have that the average’) is

(o) = = > albpla), (9.42)
and taking the limitV. — oo we have

1 1
1
(z*) :/0 drp(z)z* :/0 drz® = PR (9.43)
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sincep(z) = 1. The mean valug is then

1
while the standard deviation is
1
o (22) — B (9.45)

The various random number generators produce results velgide rather well with these
limiting values. In the next section, in our discussion adlpability distribution functions and
the central limit theorem, we are to going to see that theoumfdistribution evolves towards a
normal distribution in the limitvV. — oc.

Table 9.2: Number of-values for various intervals generated by 4 random numéeegtors,
their corresponding mean values and standard deviatiolhsalsulations have been initialized
with the variabledum = —1.

x-bin ran0 ranl ran2 ran3

0.0-0.1 1013 991 938 1047
0.1-0.2 1002 1009 1040 1030
0.2-0.3 989 999 1030 993
0.3-0.4 939 960 1023 937
0.4-0.5 1038 1001 1002 992
0.5-0.6 1037 1047 1009 1009
0.6-0.7 1005 989 1003 989
0.7-0.8 986 962 985 954
0.8-09 1000 1027 1009 1023
0.9-1.0 991 1015 961 1026

L 0.4997 0.5018 0.4992 0.4990

o 0.2882 0.2892 0.2861 0.2915

There are many other tests which can be performed. Oftenaiaf the numbers generated
may reveal possible patterns. Another important test icgieulation of the auto-correlation
functionCj, ,

C, = (Tiprti) — (2:) ,
(@7) — (z:)?
with Cy = 1. Recall thato? = (2?) — (x;)2. The non-vanishing of;, for & # 0 means that
the random numbers are not independent. The independetice cindom numbers is crucial
in the evaluation of other expectation values. If they areindependent, our assumption for
approximatingry in EQ. (9.13) is no longer valid.
The expectation values which enter the definitioipfare given by

(9.46)

(Tipnti) = Nk Z TiTiqk (9.47)
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Figure 9.3: Plot of the auto-correlation functiéh for variousk-values forN = 10000 using
the random number generatois:0 andranl.

Fig. 5.3 compares the auto-correlation function calcdldtem ran0 andranl. As can be
seen, the correlations are non-zero, but small. The fatttreelations are present is expected,
since all random numbers do depend in same way on the previsabers.

Exercise 9.1

Make a program which computes random numbers accordingetalgorithm of
Marsaglia and Zaman, Egs. (9.38) and (9.39). Compute threlation functionC';
and compare with the auto-correlation function from thecfion ran0.

9.4 Probability distribution functions

Hitherto, we have tacitly used properties of probabilitstdbution functions in our computation
of expectation values. Here and there we have referred tarttierm PDF. It is now time to
present some general features of PDFs which we may encouh&sr doing physics and how
we define various expectation values. In addition, we de¢heeentral limit theorem and discuss
its meaning in the light of properties of various PDFs.

The following table collects properties of probability wisution functions. In our notation
we reserve the label(x) for the probability of a certain event, whilB(z) is the cumulative
probability.
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Table 9.3: Important properties of PDFs.

Discrete PDF Continuous PDF
Domain {z1,29,23,..., 2N} la, b]
Probability p(x;) p(z)dx
Cumulative P =, p(w) (z) = [T p(t)d
Positivity 0<p(z;) <1 p(x > ()
Positivity 0< P <1 0<P(zx)<1
Monotonic P, > Pjifx; >z; P(x;) > P(x;) if ; > x;
Normalization Py =1 Pb)=1

With a PDF we can compute expectation values of selecteditjearsuch as

N
1
k\ _ k
(%) = N ;xlp(xz), (9.48)
if we have a discrete PDF or \
(z*) = / z*p(x)da, (9.49)

in the case of a continuous PDF. We have already defined the vaéize;, and the variance?.
The expectation value of a quantifyx) is then given by e.g.,

= / f(z)p(x)dx. (9.50)

We have already seen the use of the last equation when wesdppé crude Monte Carlo ap-
proach to the evaluation of an integral.

There are at least three PDFs which one may encounter. Treetigea

1. uniform distribution .
b—a
yielding probabilities different from zero in the interval b],

p(x) = O(r —a)O(b— 1), (9.51)

2. the exponential distribution
p(r) = ae™®, (9.52)
yielding probabilities different from zero in the interél oc],

3. and the normal distribution

_ 1 (z —p)?
p(zr) = Noroe exp <— 572 ) (9.53)

with probabilities different from zero in the interviat oo, oc,
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The exponential and uniform distribution have simple cuativé functions, whereas the normal
distribution does not, being proportional to the so-caéledr functioner f(x).

Exercise 9.2
Calculate the cumulative functioR(x) for the above three PDFs. Calculate al
the corresponding mean values and standard deviationsiem@g interpretation
of the latter.

9.4.1 The central limit theorem

subsec:centrallimit Suppose we have a RRE from which we generate a seridsof averages
(x;). Each mean valuér;) is viewed as the average of a specific measurement, e.gwittyyo
dice 100 times and then taking the average value, or produioertain amount of random
numbers. For notational ease, we &} = x; in the discussion which follows.
If we compute the meanof N such mean values
T+ T+ +2oN

= 54
z N , (9.54)

the question we pose is which is the PDF of the new variable

The probability of obtaining an average valuis the product of the probabilities of obtaining
arbitrary individual mean values, but with the constraint that the average id\e can express
this through the following expression

_ZL‘1+SC2+"'+SCN

B(z) = / darp(a) / daop(as) .. / dnp()8 (2 - ), (9.55)

where thej-function enbodies the constraint that the mean ié&\ll measurements that lead to
each individuak:; are expected to be independent, which in turn means that wexgaesg as
the product of individuap(z;).

If we use the integral expression for thdunction

d(z

1+ T+ -+ TN . 1 o (iq(z_w1+12+---+$N ))
N ) = 27r/ dge N , (9.56)

—0o0

and inserting:*#¢=*4 wherey is the mean value we arrive at

00 N
/ d:vp(:v)e(i‘I(”I)/N)] : (9.57)

oo

oo

with the integral over resulting in

°° ig(p—x)  ¢*(p—x)°
dxp(z) [1 + N e +.. ] . (9.58)

/oo dzp(x) exp (ig(p — ) /N) = /

o0 — 00
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The second term on the rhs disappears since this is just the amel employing the definition of
o? we have

o0 ) q20.2
/ drp(x)elan=2/N) =1 e +..., (9.59)
resulting in
%) N q202 N
[/ dxp(z) exp (iq(p — SI?)/N):| R~ [1 oz T } , (9.60)
and in the limitN' — oo we obtain
_ 1 (z — p)? )
— -2 Bl 9.61

which is the normal distribution with varianed, = ¢%/N, whereo is the variance of the PDF
p(x) andy is also the mean of the POKx).

Thus, the central limit theorem states that the BIDH of the average oV random values
corresponding to a PDF{x) is a normal distribution whose mean is the mean value of the PD
p(z) and whose variance is the variance of the RDF) divided by N, the number of values
used to compute.

The theorem is satisfied by a large class of PDFs. Note hovileatfor a finite/V, it is not
always possible to find a closed expressiongfar).

9.5 Improved Monte Carlo integration

In section 5.1 we presented a simple brute force approaatitégration with the Monte Carlo
method. There we sampled over a given number of points loligé&d uniformly in the interval
[0,1]
1 N N
1= [t = Y ) = 3 fa) = (6,
i=1 =1
with the weightsv; = 1.

Here we introduce two important topics which in most casgeave upon the above simple
brute force approach with the uniform distributipfx) = 1 for x € [0, 1]. With improvements
we think of a smaller variance and the need for fewer MontéodGamples, although each new
Monte Carlo sample will most likely be more times consumingrt corresponding ones of the
brute force method.

e The first topic deals with change of variables, and is linketthée cumulative functiof® ()
of a PDFp(x). Obviously, not all integration limits go from = 0 to = 1, rather, in
physics we are often confronted with integration domaikesdi € [0, oc] or z € [—o0, 00|
etc. Since all random number generators give numbers imtee/alz € [0, 1], we need a
mapping from this integration interval to the explicit oneder consideration.
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e The next topic deals with the shape of the integrand itself.us for the sake of simplicity
just assume that the integration domain is again fiom 0 to x = 1. If the function to
be integrated () has sharp peaks and is zero or small for many values®f0, 1], most
samples off () give contributions to the integralwhich are negligible. As a consequence
we need manyV samples to have a sufficient accuracy in the region wiiergis peaked.
What do we do then? We try to find a new Ppfz) chosen so as to matgh{z) in order
to render the integrand smooth. The new PF) has in turn anc domain which most
likely has to be mapped from the domain of the uniform disttidm.

Why care at all and not be content with just a change of vagabl cases where that is
needed? Below we show several examples of how to improve aéMoarlo integration through
smarter choices of PDFs which render the integrand smaoothewever one classic example
from quantum mechanics illustrates the need for a good sagifuinction.

In quantum mechanics, the probability distribution fuantis given byp(x) = ¥ (z)* ¥ (z),
whereV (x) is the eigenfunction arising from the solution of e.g., ihestindependent Schrodinger
equation. If¥(x) is an eigenfunction, the corresponding energy eigenvalge/en by

H(z)¥(x) = EV(x), (9.62)

whereH (z) is the hamiltonian under consideration. The expectatidumevaf H, assuming that
the quantum mechanical PDF is normalized, is given by

(H) = / Ao (2)" H (2) (x). (9.63)

We could insertl(z) /¥ (z) right to the left of H and rewrite the last equation as

= VU (x)*U(x A(z) T
(1) = [ dwvtay (@) Gl v, (9.64)
or
(H) = / dap(a) H (1), (9.65)

which is on the form of an expectation value with

(9.66)

The crucial point to note is that i¥(z) is the exact eigenfunction itself with eigenvaltie
then H (z) reduces just to the constafitand we have

(H) = / dap(2)E = . (9.67)

sincep(z) is normalized.
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However,in most cases of interest we do not have the evadut if we have made a clever
choice for¥(z), the expressioti () exhibits a smooth behavior in the neighbourhood of the
exact solution.

This means in turn that when do our Monte Carlo sampling, wkheipefully pick only
relevant values foff.

The above example encompasses the main essence of the Matdep@ilosophy. It is a
trial approach, where intelligent guesses lead to hopeldtiter results.

9.5.1 Change of variables

The starting point is always the uniform distribution

dr 0<zx<1
p(z)dx = { 0 olse (9.68)
with p(x) = 1 and satisfying
/ p(z)dr = 1. (9.69)

All random number generators provided in the program lipgemerate numbers in this domain.
When we attempt a transformation to a new variable> y we have to conserve the proba-
bility
p(y)dy = p(z)dz, (9.70)
which for the uniform distribution implies

p(y)dy = dx. (9.71)

Let us assume tha(y) is a PDF different from the uniform PDi{z) = 1 with = € [0, 1]. If we
integrate the last expression we arrive at

z(y) = /pr(y’)dy’, (9.72)

which is nothing but the cumulative distributionefy), i.e.,

z(y) = P(y) = /pr(y’)dy’- (9.73)

This is an important result which has consequences for gakimiprovements over the brute
force Monte Carlo.
To illustrate this approach, let us look at some examples.
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Example 1

Suppose we have the general uniform distribution

Wy <y<b
— b—a — —
p(y)dy { 0 e (9.74)
If we wish to relate this distribution to the one in the int@rv € [0, 1] we have
d
ply)dy = ;= = da. (9.75)
—a
and integrating we obtain the cumulative function
Vo dy'
= 9.76
o) = [ 2 (9.76)
yielding
y=a+ (b—a)r, (9.77)
a well-known result!
Example 2, the exponential distribution
Assume that
ply) =e, (9.78)

which is the exponential distribution, important for thebysis of e.g., radioactive decay. Again,
p(x) is given by the uniform distribution with € [0, 1], and with the assumption that the proba-
bility is conserved we have

p(y)dy = e Vdy = da, (9.79)
which yields after integration
Y
z(y) = P(y) = / exp (—y')dy' =1 — exp (—y), (9.80)
0
or
y(x) = —In(l — x). (9.81)

This gives us the new random variablan the domainy € [0, co] determined through the random
variablez € [0, 1] generated by functions likein0.
This means that if we can factor oatp —(y) from an integrand we may have

T=/OmF(y)dyz/oooeXp—(y)G(y)dy (9.82)

which we rewrite as

| e G = [5G~ 53 Gt 083
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wherez; is a random number in the interval [0,1].

The algorithm for the last example is rather simple. In theefion which sets up the integral,
we simply need to call one of the random number generatags dik0, ranl, ran2 or ran3 in
order to obtain numbers in the interval [0,1]. We obtaioy the taking the logarithm dfl — z).
Our calling function which sets up the new random variapteay then include statements like

idum=-1;
x=ran0 (&idum) ;
y=-log(1l.-x);

Exercise 9.4

Make a functiorezp_random which computes random numbers for the exponengal
distributionp(y) = e~*¥ based on random numbers generated from the funcfon
ran0.

Example 3

Another function which provides an example for a PDF is

)y = ¢ dy

A 9.84
a+ by)n’ (9-84)

with n > 1. It is normalizable, positive definite, analytically intaple and the integral is invert-
ible, allowing thereby the expression of a new variable imteof the old one. The integral

* o dy 1
/0 (a + by)" - (n — 1)ban71’ (985)

gives
(n — 1)ba"!
dy = ——————d 9.86
p(y)dy RNk (9.86)
which in turn gives the cumulative function
Y (n—1)ba™!
= P(y) = ~ Ty = 9.87
z(y) = P(y) /0 RS (9.87)
resulting in
1
=1-— 9.88
or ;
=7 (x—l/(n—l) —1). (9.89)

With the random variable € [0, 1] generated by functions likexn0, we have again the appro-
priate random variablg for a new PDF.
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Example 4, the normal distribution

For the normal distribution, expressed here as
g(w,y) = exp (= (2% +y)/2)dudy. (9.90)

it is rather difficult to find an inverse since the cumulativstdbution is given by the error
functioner f (z).
If we however switch to polar coordinates, we haveid@ndy

1/2

r= (:EQ + yg) 6= tan_lg, (9.91)

resulting in
g(r,0) = rexp (—r*/2)drdd, (9.92)

where the anglé@ could be given by a uniform distribution in the regi¢h 2=]. Following
example 1 above, this implies simply multiplying random to@wsz € [0, 1] by 27. The variable
r, defined forr € [0, oc] needs to be related to to random numbérs [0, 1]. To achieve that,
we introduce a new variable

u= %TQ, (9.93)

and define a PDF
exp (—u)du, (9.94)

with u € [0, oc|. Using the results from example 2, we have that
u=—In(l—2a'), (9.95)

wherez’ is a random number generated #dre [0, 1]. With

x = rcos(f) = V2ucos(), (9.96)
and
y = rsin(0) = V2usin(6), (9.97)

we can obtain new random numbers, through
x = +/=2In(1 — z')cos(0), (9.98)
and

y =+/—2In(1 — z')sin(h), (9.99)

with 2’ € [0, 1] andf € 270, 1].
A function which yields such random numbers for the normatrdution would include
statements like
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idum=-1;
radius=sqrt(-2*1n(1.-ran0(idum))) ;
theta=2*pi*ran0(idum) ;
x=radius*cos (theta);
y=radius*sin(theta) ;

Exercise 9.4
Make a functiomormal_random which computes random numbers for the nor

distribution based on random numbers generated from thatiumran0.

9.5.2 Importance sampling

With the aid of the above variable transformations we addnesv one of the most widely used
approaches to Monte Carlo integration, namely importaaogpéing.

Let us assume tha{y) is a PDF whose behavior resembles that of a funcliatefined in a
certain intervala, b]. The normalization condition is

b
/ p(y)dy = 1. (9.100)
We can rewrite our integral as

b b
I= / F(y)dy = / p(y)wdy- (9.101)
o o p(y)
This integral resembles our discussion on the evaluatidineoénergy for a quantum mechanical
system in EqQ. (9.64).
Since random numbers are generated for the uniform disioibp(z) with z € [0, 1], we
need to perform a change of variables+ y through

Yy
o) = [ o)y (9.102)
where we used
p(x)dr = dx = p(y)dy. (9.103)

If we can invertz(y), we findy(z) as well.
With this change of variables we can express the integratjo{®101) as

I = /bp(dey = /bwdx, (9.104)

p(y) p(y(z))
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meaning that a Monte Carlo evalutaion of the above integvalsg

N

"Fy(r) 1 Fly(n)
/a @) TN z; p(y(z:)) (9.105)

The advantage of such a change of variables in pagefollows closelyF' is that the integrand
becomes smooth and we can sample over relevant values fiotégeand. It is however not triv-
ial to find such a functiop. The conditions op which allow us to perform these transformations
are

1. p is normalizable and positive definite,
2. itis analytically integrable and

3. the integral is invertible, allowing us thereby to exjgrasew variable in terms of the old
one.

The standard deviation is now with the definition

BSE

(9.106)

1 e (1LY
2 - _ _
ot =~ }1: (F) ( < ;1: F) . (9.107)
The algorithm for this procedure is

e Use the uniform distribution to find the random variaplén the interval [0,1]. p(x) is
auser provided PDF.

e Evaluate thereafter

1:/ F(x)dx:/ p(x)};((z;dx, (9.108)
by rewriting
b F@) [P F(x(y)
[ o= [ e (9:109)
since y
ﬁ = p(a). (9.110)

¢ Perform then a Monte Carlo sampling for

" F(x(y)) 1 & (z(
dy, ~ — 9.111
/a p(z(y)) N z; (x(y:) (.110)

with Yi € [O, 1],
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¢ and evaluate the variance as well according to Eq. (9.107).

Exercise 9.5

(a) Calculate the integral

! 2
I:/ e " dx,
0

using brute force Monte Carlo with(x) = 1 and importance sampling wit
p(z) = ae~* wherea is a constant.

(b) Calculate the integral

T 1
=) —— 4
/0 z? + cos?(x) .

with p(z) = ae * wherea is a constant. Determine the value @fwvhich
minimizes the variance.

9.5.3 Acceptance-Rejection method

This is rather simple and appealing method after von NeumAssume that we are looking at
an intervalr € [a, b], this being the domain of the POKx). Suppose also that the largest value
our distribution function takes in this interval ig, that is

plr) <M x € |a,b]. (9.112)

Then we generate a random numberom the uniform distribution for: € [a, b] and a corre-
sponding numbes for the uniform distribution betweeld, A/]. If

p(z) > s, (9.113)
we accept the new value af else we generate again two new random numbeaiad s and
perform the test in the latter equation again.

9.6 Monte Carlo integration of multidimensional integrals

When we deal with multidimensional integrals of the form

1 1 1
I = / dl’l/ dl’g/ dSEdg(l'l,...,ZEd>, (9114)
0 0 0
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with z; defined in the intervala;, b;] we would typically need a transformation of variables of
the form

xr, = a; + (bz — ai)ti,

if we were to use the uniform distribution on the inter{@l1]. In this case, we need a Jacobi

determinant
d

H(bl - ai)a
and to convert the functiog(x, . .., z4) to
g(xy, .. xq) = glar + (b —ay)ty, ... ag + (bg — aq)ty).

As an example, consider the following sixth-dimensionsgnal

/ dxdyg(x,y), (9.115)
where
9(x,y) = exp (—x* — y* — (x = ¥)*/2), (9.116)
with d = 6.

We can solve this integral by employing our brute schemesimrguimportance sampling and
random variables distributed according to a gaussian P@QFhE latter, if we set the mean value
1 = 0 and the standard deviatian= 1/\/5, we have

1

——exp (—a?), (9.117)
VT
and through
3 - 1 2 2
s H NG exp (—xz;) | exp (—(x —y)*/2)dxy. ... dxg, (9.118)
=1
we can rewrite our integral as
6
/f(xl,...,a:d)F(xl,...,xd)dei, (9.119)
=1

wheref is the gaussian distribution.
Below we list two codes, one for the brute force integratiod the other employing impor-
tance sampling with a gaussian distribution.



9.6. MONTE CARLO INTEGRATION OF MULTIDIMENSIONAL INTEGRAL S 159

9.6.1 Brute force integration

#include <iostream >
#include <fstream >
#include <iomanip >
#include "1lib.h"
using namespacestd;

double brute_force_MC fouble x);

/] Main function begins here
int main ()
{

int n;

double x[6], vy, fx;

double int_mc = 0.; double variance = 0.;
double sum_sigma= 0. ;long idum=-1;

double length=5.;// we fix the max size of the box to L=5
double volume=pow((2 length) ,6);

cout <<"Read in the number of Monte-Carlo samples" << endl;

cin >>n:
/1 evaluate the integral with importance sampling
for (int i = 1; i <=n; i++){

/1l x[] contains the random numbers for all dimensions
for (int j = 0; j< 6; j++) {
x[j]l=—length+Zlengthxran0 (&idum);
}
fx=brute_force_MC(x);
int_ mc += fx;
sum_sigma += fxfx;
}
int_mc = int_mc/((double) n );
sum_sigma = sum_sigma/¢@puble) n );
variance=sum_sigmaint_mcxint_mc;
/1l final output

cout << setiosflags(ios::showpoint | ios::uppercase);

cout <<" Monte carlo result= " << setw(10) << setprecision(8)
<< volumexint_mc;

cout <<" Sigma= " << setw(10) << setprecision(8) << volumeqrt
(variance /((double) n )) << endl;

return O;

} [// end of main program
/1 this function defines the integrand to integrate

double brute_force_MC@ouble xx)
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double a = 1.; double b = 0.5;
I/l evaluate the different terms of the exponential
double xx=x[0]*X[0]+x[1]*«x[1]+x[2]*x[2];
double yy=x[3]*x[3]+x[4]*x[4]+Xx[5]*X[5];
double xy=pow ((x[0]=x[3]) ,2)+pow ((x[1]-x[4]) ,2)+pow ((x[2]-x[5]) ,2);
return exp(—asxx—asxyy—bs*xy);
} // end function for the integrand

9.6.2 Importance sampling

This code includes a call to the functiermal_random, which produces random numbers
from a gaussian distribution. .

/I importance sampling with gaussian deviates
#include <iostream >

#include <fstream >

#include <iomanip >

#include "1lib.h"

using namespacestd;

double gaussian_MC (louble x);
double gaussian_deviatel¢ng x*);

/1 Main function begins here
int main ()
{

int n;

double x[6], vy, fx;
cout <<"Read in the number of Monte-Carlo samples" << endl;
cin >>n;
double int_mc = 0.; double variance = 0.;
double sum_sigma= 0. ;long idum=-1;
double length=5.;// we fix the max size of the box to L=5
double volume=pow(acos{1.),3.);
double sqrt2 = 1./sqrt(2.);
/1 evaluate the integral with importance sampling
for (int i = 1; i <=n; i++){
/1l x[] contains the random numbers for all dimensions
for (int j =0; j < 6; j++) {
X[j] = gaussian_deviate (&idumysqrt2;
}
fx=gaussian_MC (x);
int_ mc += fx;
sum_sigma += fxfx;
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int_mc = int_mc/((double) n );
sum_sigma = sum_sigma/€@uble) n );
variance=sum_sigmaint_mecxint_mc;

/1 final output

cout << setiosflags(ios::showpoint | ios::uppercase);

cout <<" Monte carlo result= " << setw(10) << setprecision (8)
<< volumexint_mc;

cout <<" Sigma= " << setw(10) << setprecision(8) << volumeqrt
(variance /((double) n )) << endl;

return O;

} [// end of main program
/Il this function defines the integrand to integrate
double gaussian_MC @ouble xx)

{
double a = 0.5;

I/l evaluate the different terms of the exponential
double xy=pow ((x[0]=x[3]) ,2)+pow ((x[1]-x[4]) ,2)+pow ((x[2]-x[5]) ,2);
return exp(—axxy);

} // end function for the integrand

/! random numbers with gaussian distribution

double gaussian_deviatelong * idum)

{
static int iset = 0;
static double gset;
double fac, rsq, vl, v2;

if ( idum < 0) iset =0;
if (iset == 0) {

do {
vl = 2.xran0 (idum) —1.0;
v2 = 2.xran0 (idum) —1.0;

rsq = vlxvl+v2xv2;
} while (rsq >= 1.0 || rsq == 0.);
fac = sqrt(-2.xlog(rsq)/rsq);
gset = vikfac;
iset = 1;
return v2sxfac;
} else{
iset =0;
return gset;

}

} /I end function for gaussian deviates







Chapter 10

Random walks and the Metropolis
algorithm

10.1 Motivation

In the previous chapter we discussed technical aspects nféMoarlo integration such as algo-
rithms for generating random numbers and integration otidiaiensional integrals. The latter
topic served to illustrate two key topics in Monte Carlo slations, namely a proper selection
of variables and importance sampling. An intelligent siecof variables, good sampling tech-
nigues and guiding functions can be crucial for the outcofmeuo Monte Carlo simulations.
Examples of this will be demonstrated in the chapters omssital and quantum physics appli-
cations. Here we make a detour however from this main aregpications. The focus is on
diffusion and random walks. The rationale for this is thattiticky part of an actual Monte Carlo
simulation resides in the appropriate selection of rand@tes, and thereby numbers, according
to the probability distribution (PDF) at hand. With appriagpe there is however much more to
the picture than meets the eye.

Suppose our PDF is given by the well-known normal distridnutiThink of for example the
velocity distribution of an ideal gas in a container. In oimglations we could then accept or
reject new moves with a probability proportional to the nahatistribution. This would parallel
our example on the sixth dimensional integral in the previobapter. However, in this case
we would end up rejecting basically all moves since the podit@s are exponentially small in
most cases. The result would be that we barely moved fromrmihaliposition. Our statistical
averages would then be significantly biased and most liketyery reliable.

Instead, all Monte Carlo schemes used are based on Markoegses in order to generate
new random states. A Markov process is a random walk witheectsd probability for making a
move. The new move is independent of the previous historg@tystem. The Markov process
is used repeatedly in Monte Carlo simulations in order toegate new random states. The
reason for choosing a Markov process is that when it is ruaiong enough time starting with
a random state, we will eventually reach the most likelyestdithe system. In thermodynamics,
this means that after a certain number of Markov processeesaah an equilibrium distribution.

163
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This mimicks the way a real system reaches its most likeliestha given temperature of the
surroundings.

To reach this distribution, the Markov process needs to tweyimportant conditions, that
of ergodicity and detailed balance. These conditions iraghsen constraints on our algorithms
for accepting or rejecting new random states. The Metrs@dorithm discussed here abides to
both these constraints and is discussed in more detail imo&elD.4. The Metropolis algorithm
is widely used in Monte Carlo simulations of physical systeand the understanding of it rests
within the interpretation of random walks and Markov prasess However, before we do that we
discuss the intimate link between random walks, Markov @sses and the diffusion equation. In
section 10.3 we show that a Markov process is nothing butidueatized version of the diffusion
equation. Diffusion and random walks are discussed from i@ rexperimental point of view in
the next section. There we show also a simple algorithm fad@en walks and discuss eventual
physical implications.

10.2 Diffusion equation and random walks

Physical systems subject to random influences from the arnhbi@ve a long history, dating
back to the famous experiments by the British Botanist RwBron pollen of different plants
dispersed in water. This lead to the famous concept of Brammnotion. In general, small
fractions of any system exhibit the same behavior when eegpts random fluctuations of the
medium. Although apparently non-deterministic, the ruidesyed by such Brownian systems
are laid out within the framework of diffusion and Markov @i The fundamental works on
Brownian motion were developed by A. Einstein at the turrheflast century.

Diffusion and the diffusion equation are central topics aPhysics and Mathematics, and
their ranges of applicability span from stellar dynamic#te diffusion of particles governed by
Schrédinger’s equation. The latter is, for a free partidething but the diffusion equation in
complex time!

Let us consider the one-dimensional diffusion equation.stMey a large ensemble of parti-
cles performing Brownian motion along theaxis. There is no interaction between the particles.
We definew(z, t)dx as the probability of finding a given number of particles inirterval
of lengthdz in x € [z, x 4+ dz] at a timet. This quantity is our probability distribution function
(PDF). The quantum physics equivalentwofz, t) is the wave function itself. This diffusion
interpretation of Schrodinger’s equation forms the stgrpoint for diffusion Monte Carlo tech-

niques in quantum physics.

10.2.1 Diffusion equation

From experiment there are strong indications that the flipadficlesj(z, ¢), viz., the number of
particles passing at a timet is proportional to the gradient @f(x, ). This proportionality is
expressed mathematically through

ow(x,t)
ox

jlz,t) = —D (10.1)
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whereD is the so-called diffusion constant, with dimensionalégdgttt per time. If the number
of particles is conserved, we have the continuity equation
dj(z,t) _  Ow(z,t)

ox ot '

(10.2)

which leads to Due. ) (a1
w(x,t w(x,t
~—~ =D ’ 10.
ot dzr? (10.3)
which is the diffusion equation in one dimension.
With the probability distribution functiom (x, t)dx we can use the results from the previous

chapter to compute expectation values such as the meanahsta

(1)) = / " vwle ), (10.4)
or -
(x*(t)) :/_ z?w(z, t)dz, (10.5)

which allows for the computation of the varianeg = (z%(¢)) — (x(t))?. Note well that these
expectation values are time-dependent. In a similar wayameatso define expectation values of
functionsf(z,t) as

) = /Oo F (@, w(e, £)da. (10.6)

Sincew(z,t) is now treated as a PDF, it needs to obey the same criteriasassdied in the
previous chapter. However, the normalization condition

/ w(z, t)dr =1 (10.7)
imposes significant constraints erfx, t). These are
" t
w(x = +o0,t) =0 agiwuzioo =0, (10.8)
xn

implying that when we study the time-derivati®é:(¢)) /0t, we obtain after integration by parts
and using Eqg. (10.3)

Nxy [ Ow(z,t), > 0*w(x,t)
leading to
o) . Ow(x,t) © ow(z,t)
implying that
M =0. (10.11)
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This means in turn thdt:) is independent of time. If we choose the initial positidih = 0) = 0,

the average displacemeft) = 0. If we link this discussion to a random walk in one dimension
with equal probability of jumping to the left or right and Wwitan initial positionz = 0, then
our probability distribution remains centered aroymtl = 0 as function of time. However, the
variance is not necessarily 0. Consider first

o(x?y ,0w(z,t) * Qw(z,t)
o= Dats |Iioo—2D/_oox L, (10.12)

where we have performed an integration by parts as we di(%fér A further integration by
parts results in

a<x2> 00
5 = —Dzw(z,t)|y—s00 + 2D w(x,t)dr = 2D, (10.13)
leading to
(z%) = 2Dt, (10.14)
and the variance as
(x%) — (x)* = 2Dt. (10.15)

The root mean square displacement after a timsehen

V(x2) — (x)2 = V2Dt. (10.16)

This should be contrasted to the displacement of a freegpastiith initial velocity vy. In that
case the distance from the initial position after a titme =(¢) = vt whereas for a diffusion
process the root mean square valug/igr2) — ()2 o« +/t. Since diffusion is strongly linked
with random walks, we could say that a random walker escapemimore slowly from the
starting point than would a free particle. We can vizuallze above in the following figure. In
Fig. 10.1 we have assumed that our distribution is given bgranal distribution with variance
o? = 2Dt, centered at = 0. The distribution reads

1 x?

ex _——
750 P 1

At a timet = 2s the new variance is?> = 4Ds, implying that the root mean square value is
(x2) — ()2 = 2¢/D. At a further timet = 8 we have,/(z2) — (z)2 = 4v/D. While time
has elapsed by a factor ¢f the root mean square has only changed by a factor of 2. Fig. 10
demonstrates the spreadout of the distribution as timesetapA typical example can be the
diffusion of gas molecules in a container or the distribatd cream in a cup of coffee. In both
cases we can assume that the the initial distribution isesgmted by a normal distribution.

w(x,t)de = )dz. (10.17)
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Figure 10.1: Time development of a normal distribution witiriances? = 2Dt and with
D = 1m?/s. The solid line represents the distributiort at 2s while the dotted line stands for
t = 8s.

=3l -2 -1 x=0 [ 2l 3l

Figure 10.2: One-dimensional walker which can jump eitbehe left or to the right. Every step
has lengthAz = [.

10.2.2 Random walks

Consider now a random walker in one dimension, with prolgghit of moving to the right and
L for moving to the left. Att = 0 we place the walker at = 0, as indicated in Fig. 10.2.
The walker can then jump, with the above probabilities,ezitih the left or to the right for each
time step. Note that in principle we could also have the flgtyithat the walker remains in the
same position. This is not implemented in this example. ¥g&p has lengtihz = [. Time

is discretized and we have a jump either to the left or to thletrat every time step. Let us now
assume that we have equal probabilities for jumping to thetdo the right, i.e.L = R = 1/2.
The average displacement aftetime steps is

(z(n)) = z": Ax; =0 Ax; =+, (10.18)
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since we have an equal probability of jumping either to tliedeto right. The value ofz(n)?)

is
n 2 n N
(x(n)?) = (Z Azi) = Z Ax? + Z Ax;Az; = I*N. (10.19)
i i i#j
For many enough steps the non-diagonal contribution is

N
> AzAz; =0, (10.20)
i#]

sinceAwx; ; = £1. The variance is then
(x(n)?) — (z(n))?* = I*n. (10.21)
It is also rather straightforward to compute the varianecefe R. The result is
(x(n)?) — (x(n))* = ALRI*n. (10.22)

In Eq. (10.21) the variable represents the number of time steps. If we define ¢t/ At, we can
then couple the variance result from a random walk in one dgio& with the variance from the
diffusion equation of Eq. (10.15) by defining the diffusiamstant as

12

In the next section we show in detail that this is the case.

The program below demonstrates the simplicity of the omeedisional random walk algo-
rithm. It is straightforward to extend this program to twatlaree dimensions as well. The input
is the number of time steps, the probability for a move to #fedr to the right and the total
number of Monte Carlo samples. It computes the averageadiepient and the variance for one
random walker for a given number of Monte Carlo samples. Eachple is thus to be consid-
ered as one experiment with a given number of walks. Theasterg part of the algorithm is
described in the functiomc_sampling The other functions read or write the results from screen
or file and are similar in structure to programs discussed@usly. The main program reads the
name of the output file from screen and sets up the arraysinorgdhe walker’s position after
a given number of steps.

D (10.23)

programs/chapl0/programl.cpp

[ %
1-dim random walk program.
A walker makes several trials steps with
a given number of walks per trial

*/

#include <iostream >

#include <fstream >
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#include <iomanip >
#include "lib.h"
using namespace std;

// Function to read in data from screen, note call by referenc
void initialise (int&, int&, double&) ;

/I The Mc sampling for random walks

void mc_sampling {(nt , int, double, int *, int x);

/l prints to screen the results of the calculations

void output(int , int, int %, int x);

int main ()
{
int max_trials , number_walks;
double move_probability ;
/l Read in data
initialise (max_trials , number_walks, move_probability;
int xwalk_cumulative =new int [number_walks +1];
int xwalk2 _cumulative =new int [number_walks +1];
for (int walks = 1; walks <= number_walks ; walks++){
walk_cumulative [walks] = walk2_cumulative [walks] = 0;
} // end initialization of vectors
/I Do the mc sampling
mc_sampling (max_trials , number_walks, move_probabjilit
walk _cumulative , walk2_ cumulative);
/Il Print out results
output(max_trials , number_walks, walk_cumulative ,
walk2 cumulative);
delete [] walk_cumulative ; // free memory
delete [] walk2_ cumulative;
return O;
} /I end main function

The input and output functions are

void initialise (int& max_trials , int & number_walks , double&
move_probability)

cout << "Number of Monte Carlo trials =";
cin >> max_trials;
cout << "Number of attempted walks=";
cin >> number_walks;
cout << "Move probability=";
cin >> move_probability ;
} [/l end of function initialise
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void output(int max_trials , int number_walks,
int xwalk_cumulative , int *walk2_cumulative)
{
ofstream ofile ("testwalkers.dat");
for ( int i = 1; i <= number_walks ; i++){
double xaverage = walk_cumulative[i]/(double) max_trials);
double x2average = walk2 cumulative[i]/(double) max_trials);
double variance = x2average- xaveragexaverage;
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(6) << i;
ofile << setw (15) << setprecision(8) << xaverage;
ofile << setw (1l5) << setprecision(8) << variance << endl;
}
ofile .close ();
} /1l end of function output

The algorithm is in the functiomc_samplingand tests the probability of moving to the left or to
the right by generating a random number.

void mc_sampling (nt max_trials , int number_walks,
double move_probability ,int xwalk_cumulative ,
int xwalk2_cumulative)
{
long idum;
idum=—=1; // initialise random number generator
for (int trial=1; trial <= max_trials; trial++){
int position = 0;
for (int walks = 1; walks <= number_walks ; walks++){
if (ran0(&idum) <= move_probability) {
position += 1;
}
else {
position —= 1;
}
walk_cumulative [walks] += position;
walk2 cumulative [walks] += positiorposition;
} /1 end of loop over walks
} // end of loop over trials
} /I end mc_sampling function

Fig. 10.3 shows that the variance increases linearly agitumof the number of time steps, as ex-
pected from the analytic results. Similarly, the mean @dispient in Fig. 10.4 oscillates around
zero.



10.2. DIFFUSION EQUATION AND RANDOM WALKS

171

100

80

60 - e

40 - 7

20 - 7

0L | | |

40 60
Time steps ¢

Figure 10.3: Time development of for a random walker.
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Figure 10.4: Time development ¢t(¢)) for a random walker. 100000 Monte Carlo samples

were used with the function ranl and a seed setlto
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Exercise 10.1

Extend the above program to a two-dimensional random wetlk priobability1 /4
for a move to the right, left, up or down. Compute the variaiocdooth ther andy
directions and the total variance.

10.3 Microscopic derivation of the diffusion equation

When solving partial differential equations such as thidibn equation numerically, the deriva-
tives are always discretized. Recalling our discussiom® fChapter 3, we can rewrite the time

derivative as
ow(z,t) w(i,n+1)+w(in)

~ 10.24
ot At ’ ( )
whereas the gradient is approximated as
O*w(x,t) w(i+1,n) +w(i —1,n) —w(i,n)

D ~D 10.25
dx? (Ar)? ’ ( )

resulting in the discretized diffusion equation

w(i,n+ 1) +w(i,n) w(i+1,n)+w(E—1,n) —w(i,n)

=D 10.26
At (Az)? ’ ( )

wheren represents a given time step and step in ther-direction. We will come back to
the solution of such equations in our chapter on partiabdiffitial equations, see Chapter 16.
The aim here is to show that we can derive the discretizedsidh equation from a Markov
process and thereby demonstrate the close connectiondietive important physical process
diffusion and random walks. Random walks allow for an intitvay of picturing the process
of diffusion. In addition, as demonstrated in the previcei®on, it is easy to simulate a random
walk.

10.3.1 Discretized diffusion equation and Markov chains

A Markov process allows in principle for a microscopic dgsioon of Brownian motion. As with
the random walk studied in the previous section, we considaarticle which moves along the
x-axis in the form of a series of jumps with step lendth = [. Time and space are discretized
and the subsequent moves are statistically indenpendanthie new move depends only on the
previous step and not on the results from earlier trials. ¥4 at a position: = j/ = jAz and
move to a new positiom = :Az during a stepA\t = ¢, wherei > 0 andj > 0 are integers. The
original probability distribution function (PDF) of the giles is given byw;(t = 0) wherei
refers to a specific position on the grid in Fig. 10.2, with 0 representing: = 0. The function
w;(t = 0) is now the discretized version af(z,t). We can regard the discretized PDF as a
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vector. For the Markov process we have a transition proitaliibm a positionz = jl to a
positionz = il given by
1

Wi (e) :W(il—jl,e):{ ; - =1 (10.27)

0 else

We call IV;; for the transition probability and we can represent it, selew, as a matrix. Our
new PDFuw;(t = ¢) is now related to the PDF at= 0 through the relation

wi(t =€) =W(j — 1)w,;(t =0). (10.28)

This equation represents the discretized time-developaiem original PDF. Itis a microscopic
way of representing the process shown in Fig. 10.1. Sindelboandw represent probabilities,
they have to be normalized, i.e., we require that at eachsteyewe have

Z wi(t) =1, (10.29)

and
Wi =1 (10.30)

The further constraints afe< W;; < 1 and0 < w; < 1. Note that the probability for remaining
at the same place is in general not necessarily equal zeourIMarkov process we allow only
for jumps to the left or to the right.

The time development of our initial PDF can now be represktiieough the action of the
transition probability matrix applied times. At a timet, = ne our initial distribution has
developed into

and defining
W (il — jl,ne) = (W"(€)); (10.32)
we obtain
wi(ne) = Z(Wﬂ(e))ijwj(()), (10.33)
or in matrix form X X
w(ne) = W"(e)w(0). (10.34)

The matrix/¥ can be written in terms of two matrices
. 1 /. .
W= (L n R) , (10.35)

whereL andR represent the transition probabilities for a jump to thedethe right, respectively.
For a4 x 4 case we could write these matrices as
0 00

R= (10.36)

o O =
o O OO

0 0
10
01
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and
01 00
A 00 10
L=140 01 (10.37)
0 0 00

However, in principle these are infinite dimensional maicince the number of time steps
are very large or infinite. For the infinite case we can writesthmatriced?;; = 9J; ;1) and
L;; = é(i41),5, implying that

LR =RL =1, (10.38)

and X A
L=R" (10.39)

To see thal. kR = RL = 1, perform e.g., the matrix multiplication
LR = Z LixRy; = Z 0(i+1),k0k,(j41) = Oit1+1 = O3, (10.40)
k k

and only the diagonal matrix elements are different fronozer
For the first time step we have thus

1/ 4
W= (L + R) , (10.41)
and using the properties in Egs. (10.38) and (10.39) we hiteetavo time steps
772 1 2 P2 DT
W2(26) = 5 (L + R+ 2RL) , (10.42)
and similarly after three time steps
W3(36) = <L3 + R+ 3RL? + 3R2L) . (10.43)

Using the binomial formula

( Z ) ok = (a + b)", (10.44)
k=0

we have that the transition matrix aftetime steps can be written as

jn _ 1 - N\ ASkin—k
W (ne))—Q—nZ<k>RL : (10.45)
k=0
or
n _i - n rn—2k __ i - n H2k—n
W (ne)) = o <k>L _an<k>R , (10.46)
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and usingR}} = 0 (j1m) @Nd L]} = 0(;1m),; We arrive at

o ! =gl <n
Wil —jl,ne) =< 2" \ 2(n+i—j) = (10.47)
0 else

andn + ¢ — j has to be an even number. We note that the transition matrexfféarkov process
has three important properties:

¢ It depends only on the difference in spdce j, it is thus homogenous in space.
e Itis also isotropic in space since it is unchanged when we@u i, j) to (—i, —j).

¢ Itis homogenous in time since it depends only the differdretgveen the initial time and
final time.

If we place the walker at = 0 att = 0 we can represent the initial PDF with,(0) = ¢; 0.
Using Eqg. (10.34) we have

wi(ne) = 3 (7 (€))yus(0) = ZQL ( ‘o o ; > 50, (10.48)
resulting in
1 n .
w;(ne) = o < o > il <n (10.49)

Using the recursion relation for the binomials

(%(”+1+i))>_<%(n+i+1)>+<%(n+i)_1> (10.50)
we obtain, defining: = il, ¢ = ne and setting

w(z,t) = w(il,ne) = w;(ne), (10.51)

w(z,t+¢€) = %w(x+l,t)+%w(x—l,t), (10.52)
and adding and subtracting z, t) and multiplying both sides witt /¢ we have

wizt+e —w@t) Pwl@+lt)—2w(t)+w@—11) (10.53)

€ 2¢ [2

and identifyingD = [%/2¢ and lettingl = Az ande = At we see that this is nothing but the
discretized version of the diffusion equation. Taking tingts Ax — 0 andAt — 0 we recover
ow(z,t) D82w(x,t)
ot ox? '

the diffusion equation.
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10.3.2 Continuous equations

Hitherto we have considered discretized versions of alagquos. Our initial probability distri-
bution function was then given by
w; (0) = 65,0,

and its time-development after a given time stefp= ¢ is
wit) =Y W(j — i)w;(t =0).
j

The continuous analog to;(0) is
w(x) = 6(x), (10.54)

where we now have generalized the one-dimensional posittora generic-dimensional vector
x. The Kroenecked function is replaced by thédistribution functionj(x) at¢ = 0.

The transition from a statgto a state is now replaced by a transition to a state with position
y from a state with positiom. The discrete sum of transition probabilities can then Ipéaced
by an integral and we obtain the new distribution at a timeAt as

w(y,t+ At) = /W(y,x, At)w(x, t)dx, (10.55)
and aftenn time steps we have
w(y,t+mAt) = /W(y,x, mAt)w(x, t)dx. (10.56)
When equilibrium is reached we have
w(y) = /W(y, X, t)w(x)dx. (10.57)

We can solve the equation far(y, ¢) by making a Fourier transform to momentum space. The
PDFw(x, ) is related to its Fourier transform(k, ¢) through

w(x, 1) = /_ "k exp (ikx) i (k, ), (10.58)

oo

and using the definition of th&function

1 oo
i(x) = 2—/ dk exp (ikx), (10.59)
™ —0o0
we see that
w(k,0) =1/27. (10.60)
We can then use the Fourier-transformed diffusion equation
ow(k,t
ik, ) _ DK%k, t), (10.61)

ot



10.3. MICROSCOPIC DERIVATION OF THE DIFFUSION EQUATION 177

with the obvious solution

ik, 1) = i (k, 0) exp [~ (DK’)) = 2i exp [~ (DK1)]. (10.62)

™

Using Eq. (10.58) we obtain

o 1 1
w(x,t) = dk exp [ikx]— exp [—(Dk?t)| = exp [—(x?/4Dt)], 10.63
ot) = [ dicesp k- exp (D) = = exp [~(¢/4D1]. (10,69
with the normalization condition
w(x, t)dx = 1. (10.64)

It is rather easy to verify by insertion that Eq. (10.63) iohison of the diffusion equation. The
solution represents the probability of finding our randomkerat positionx at timet if the
initial distribution was placed at = 0 att = 0.

There is another interesting feature worth observing. Tikerete transition probabilitj}’
itself is given by a binomial distribution, see Eq. (10.47he results from the central limit
theorem, see Sec??, state that transition probability in the limit — oo converges to the
normal distribution. It is then possible to show that

W (il — jl,ne) - W(y,x, At) = exp [—((y — x)?/4DAt)], (10.65)

1
VAr DAt

and that it satisfies the normalization condition and idfisssolution to the diffusion equation.

10.3.3 Numerical simulation

In the two previous subsections we have given evidence tMdraov process actually yields
in the limit of infinitely many steps the diffusion equatioht.links therefore in a physical in-
tuitive way the fundamental process of diffusion with randwalks. It could therefore be of
interest to visualize this connection through a numeriggleement. We saw in the previous
subsection that one possible solution to the diffusion g#quoas given by a normal distribution.
In addition, the transition rate for a given number of stepgatbps from a binomial distribution
into a normal distribution in the limit of infinitely many gie. To achieve this we construct in
addition a histogram which contains the number of times takkev was in a particular position
x. This is given by the variabl@robability, which is normalized in the output function. We have
omitted the initialization function, since this identi¢alprogram1.cpp of this chapter. The array
probability extends from-number_walk4o +number_walks

programs/chap10/program2.cpp

[ %
1-dim random walk program.
A walker makes several trials steps with
a given number of walks per trial

*/
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#include <iostream >
#include <fstream >
#include <iomanip >
#include "lib.h"
using namespace std;

// Function to read in data from screen, note call by referenc
void initialise (int&, int&, double&) ;

/I The Mc sampling for random walks

void mc_sampling {nt , int, double, int %, int %, int x);

/Il prints to screen the results of the calculations

void output(int, int, int %, int %, int x);

int main ()
{
int max_trials , number_walks;
double move_probability ;
/l Read in data
initialise (max_trials , number_walks, move_probability;
int xwalk_cumulative =new int [number_walks +1];
int xwalk2_cumulative =new int [number_walks +1];
int xprobability = new int [2x(number_walks +1)];
for (int walks = 1; walks <= number_walks ; walks++){
walk_cumulative [walks] = walk2_cumulative [walks] = 0O;
}
for (int walks = 0; walks <= 2number_walks ; walks++){
probability[walks] = 0;
} // end initialization of vectors
/I Do the mc sampling
mc_sampling (max_trials , number_walks, move_probabjilit
walk_cumulative , walk2_ cumulative , probability);
/I Print out results
output(max_trials , number_walks, walk _cumulative ,
walk2 cumulative , probability);
delete [] walk_cumulative ; // free memory
delete [] walk2_ cumulative ; delete [] probability;
return 0O;
} /I end main function

The output function contains now the normalization of thebability as well and writes this to
its own file.

void output(int max_trials , int number_walks,
int «walk_cumulative , int xwalk2_cumulative ,int x
probability)
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ofstream ofile ("testwalkers.dat");
ofstream probfile (probability.dat");
for ( int i = 1; i <= number_walks; i++){
double xaverage = walk_cumulative[i]/(double) max_trials);
double x2average = walk2_ cumulative[i]/(double) max_trials);
double variance = x2average- xaverage xaverage;
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(6) << i;
ofile << setw (15) << setprecision(8) << xaverage;
ofile << setw (15) << setprecision(8) << variance << endl;
}
ofile .close ();
[/l find norm of probability
double norm = 0.;
for ( int i = —number_walks; i <= number_walks ; i++){
norm += (double) probability [i+number_walks];

}
/I write probability
for ( int i = —number_walks; i <= number_walks ; i++){
double histogram = probability[i+number_walks ]/norm;
probfile << setiosflags (ios::showpoint | ios::uppercagse
probfile << setw(6) << i;
probfile << setw(15) << setprecision(8) << histogram << énd
}

probfile.close ();
} [/l end of function output

The sampling part is still done in the same function, but amst now the setup of a histogram
containing the number of times the walker visited a giventpmsz.

void mc_sampling (nt max_trials , int number_walks,
double move_probability , int xwalk_cumulative ,
int xwalk2_cumulative ,int xprobability)
{
long idum;
idum=—=1; // initialise random number generator
for (int trial=1; trial <= max_trials; trial++){
int position = 0;
for (int walks = 1; walks <= number_walks ; walks++){
if (ran0(&idum) <= move_probability) {
position += 1;
}
else {
position —= 1;
}

walk_cumulative [walks] += position;
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walk2_cumulative [walks] += positiosposition;
probability[position+number_walks] += 1;
} // end of loop over walks
} // end of loop over trials
} /I end mc_sampling function

Fig. 10.5 shows the resulting probability distributioreaft steps We see from Fig. 10.5 that the
probability distribution function resembles a normal dizition.

Exercise 10.2
Use the above program and try to fit the computed probabil#iridution with a

normal distribution using your calculated valuesséfand(z).

10.4 The Metropolis algorithm and detailed balance

An important condition we require that our Markov chain dldagatisfy is that of detailed bal-
ance. In statistical physics this condition ensures thatdtg., the Boltzmann distribution which
is generated when equilibrium is reached. The definitiol®&ng in equilibrium is that the rates
at which a system makes a transition to or from a given sthée to be equal, that is

ZW(]‘ — i)w; = ZW(Z' — Jw;. (10.66)

Another way of stating that a Markow process has reachedilequim is
w(t =o00) = Ww(t = o). (10.67)

However, the condition that the rates should equal eachr atle general not sufficient to guar-
antee that we, after many simulations, generate the catigitibution. We therefore introduce
an additional condition, namely that of detailed balance

Satisfies the detailed balance condition. At equilibriurtaded balance gives thus

—_— = 10.69
We introduce the Boltzmann distribution
w; = exp (—4(£:) (10.70)

Z 3
which states that probability of finding the system in a stawth energy F; at an inverse
temperatured = 1/kgT is w; x exp (—5(F;). The denominatof is a normalization constant
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Figure 10.5: Probability distribution for one walker affigy, 100 and 1000 steps.
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which ensures that the sum of all probabilities is normalitteone. It is defined as the sum of
probabilities over all microstatgsof the system

7 = Zexp (—B(F;). (10.71)

From the partition function we can in principle generateiéresting quantities for a given
system in equilibrium with its surroundings at a tempemfitir This is demonstrated in the next
chapter.

With the probability distribution given by the Boltzmanrsttibution we are now in the posi-
tion where we can generate expectation values for a giveablard through the definition

(A) =" Ajw; = 254 exg(_ﬁ(Ej). (10.72)

In general, most systems have an infinity of microstates ngathiereby the computation ¢f
practically impossible and a brute force Monte Carlo catiah over a given number of ran-
domly selected microstates may therefore not yield thoszasiates which are important at
equilibrium. To select the most important contributionsiveed to use the condition for detailed
balance. Since this is just given by the ratios of probaédijtwe never need to evaluate the
partition functionZ. For the Boltzmann distribution, detailed balance regults

Wi
o = exp (—=B(E; — Ej)). (20.73)
J
Let us now specialize to a system whose energy is defined loritietation of single spins.
Consider the statge with given energyy; represented by the followind spins

L St L T
123 ... k=1 Fk k+1 ... N-1 N

We are interested in the transition with one single spinflip hew statg with energyF;

LIt L A
123 ... k=1 %k k+1 ... N-1 N

This change from one microstatgor spin configuration) to another microstgtes the con-
figuration space analogue to a random walk on a lattice. ddsté jumping from one place to
another in space, we 'jump’ from one microstate to another.

However, the selection of states has to generate a finaldistn which is the Boltzmann
distribution. This is again the same we saw for a random wgal&ethe discrete case we had al-
ways a binomial distribution, whereas for the continuoisecae had a normal distribution. The
way we sample configurations should result in, when equuiibris established, in the Boltz-
mann distribution. Else, our algorithm for selecting matades has to be wrong.

Since we do not know the analytic form of the transition rate are free to model it as

Wi —j)=g9(— j)A(l — j), (10.74)
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whereg is a selection probability whild is the probability for accepting a move. Itis also called
the acceptance ratio. The selection probability shouldabeesfor all possible spin orientations,
namely

. . 1
g(i — j) = N (10.75)
With detailed balance this gives
9(j = )A(J — i)
- - - ~ =exp (—p(F;, — E;)), 10.76
but since the selection ratio is the same for both transtiae have
A(j — i)
o _ . _E. A7

In general, we are looking for those spin orientations witiehrespond to the average energy at
equilibrium.

We are in this case interested in a new stétavhose energy is lower thah;, viz., AE =
E; — E; < 0. A simple test would then be to accept only those microstatesh lower the
energy. Suppose we have ten microstates with enBsg¥. F; < Ey < E3 < --- < Eg. Our
desired energy i#,. At a given temperaturé we start our simulation by randomly choosing
stateEy. Flipping spins we may then find a path fraly — Eg — E;--- — E; — FEy. This
would however lead to biased statistical averages sinceuldwiolate the ergodic hypothesis
which states that it should be possible for any Markov pred¢eseach every possible state of
the system from any starting point if the simulations isie@rout for a long enough time.

Any state in a Boltzmann distribution has a probability eiéint from zero and if such a state
cannot be reached from a given starting point, then the syseot ergodic. This means that
another possible path i, could beFy — E; — Eg--- — Eq — E5 — Ey and so forth. Even
though such a path could have a negligible probability itilsa possibility, and if we simulate
long enough it should be included in our computation of areeigtion value.

Thus, we require that our algorithm should satisfy the ppilecof detailed balance and be
ergodic. One possible way is the Metropolis algorithm, Wirieads

A — i) = { X g (10.78)

This algorithm satisfies the condition for detailed balaand ergodicity. It is implemented as
follows:

e Establish an initial energy,

e Do arandom change of this initial state by e.g., flipping atnvidual spin. This new state
has energys;. Compute thel\E = E;, — F,,

e If AE < 0 accept the new configuration.
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o If AE > 0, computew = e~ (FAF),

Comparew with a random numbert. If » < w accept, else keep the old configuration.

Compute the terms in the surhs A, P;.

Repeat the above steps in order to have a large enough nuimh@&rostates

For a given number of MC cycles, compute then expectatiomegal

The application of this algorithm will be discussed in detaithe next two chapters.

10.5 Physics project: simulation of the Boltzmann distribu
tion

In this project the aim is to show that the Metropolis alguritgenerates the Boltzmann distri-
bution

P(p) = , (10.79)

with 5 = 1/kT being the inverse temperaturg js the energy of the system aids the partition
function. The only functions you will need are those to gateerandom numbers.

We are going to study one single particle in equilibrium wiih surroundings, the latter
modeled via a large heat bath with temperafiire

The model used to describe this particle is that of an idesligane dimension and with
velocity —v or v. We are interested in findin@(v)dv, which expresses the probability for
finding the system with a given velocity € [v, v + dv|. The energy for this one-dimensional
system is

E = 1M’ = lqﬂ, (10.80)
2 2

with massm = 1. In order to simulate the Boltzmann distribution, your parg should contain
the following ingredients:

¢ Reads in the temperatuife, the number of Monte Carlo cycles, and the initial velocity.
You should also read in the change in velodityused in every Monte Carlo step. Let the
temperature have dimension energy.

¢ Thereafter you choose a maximum velocity given by eig,. ~ 10v/T. Then you con-
struct a velocity interval defined hy,,, and divided it in small intervals through,,.. /N,
with V ~ 100 — 1000. For each of these intervals your task is to find out how mangsi
a given velocity during the Monte Carlo sampling appearsichespecific interval.

e The number of times a given velocity appears in a specificvatés used to construct a
histogram representing(v)dv. To achieve this you should construct a vedeiN| which
contains the number of times a given velocity appears indbengervaly, v + dv.
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In order to find the number of velocities appearing in eackeri@l we will employ the
Metropolis algorithm. A pseudocode for this is

for ( montecarlo_cycles=1; Max_cycles; montecarlo_cycle} £+

/!l change speed as function of delta v

v_change = (2ranl(&idum) —1 )« delta_v;

v_new = v_old+v_change;

/!l energy change

delta_ E = 0.%(v_newxv_new — v_oldxv_old) ;

/I Metropolis algorithm begins here

if ( ranl(&idum) <= expfbetaxdelta_E) ) {

accept_step = accept_step + 1 ;
v_old = v_new ;

I/l thereafter we must fill in P[N] as a function of
/I the new speed
P[?] = ...

/!l upgrade mean velocity , energy and variance

}

a) Make your own algorithm which sets up the histografa)dv, find mean velocity, energy,
energy variance and the number of accepted steps for a gaveperature. Study the
change of the number of accepted moves as a functiom.oCompare the final energy
with the analytic resulEy = £7'/2 for one dimension. US€ = 4 and set the intial velocity
to zero, i.e.py = 0. Try different values obv. A possible start value & = 4. Check the
final result for the energy as a function of the number of Md@aelo cycles.

b) Make thereafter a plot dfz(P(v)) as function of £ and see if you get a straight line.
Comment the result.






Chapter 11

Monte Carlo methods in statistical physics

The aim of this chapter is to present examples from the phlsiwences where Monte Carlo

methods are widely applied. Here we focus on examples fratisstal physics. and discuss

one of the most studied systems, the Ising model for theantem among classical spins. This

model exhibits both first and second order phase transi#éiodss perhaps one of the most studied
cases in statistical physics and discussions of simulsdphase transitions.

11.1 Phase transitions in magnetic systems

11.1.1 Theoretical background

The model we will employ in our studies of phase transitionfsngte temperature for magnetic
systems is the so-called Ising model. In its simplest forenghergy is expressed as

N N
E=-]) sisi—BY s, (11.1)

<kl> k

with s, = £1, N is the total number of sping, is a coupling constant expressing the strength
of the interaction between neighboring spins & an external magnetic field interacting with
the magnetic moment set up by the spins. The symbhbl > indicates that we sum over nearest
neighbors only. Notice that fof > 0 it is energetically favorable for neighboring spins to be
aligned. This feature leads to, at low enough temperattwescooperative phenomenon called
spontaneous magnetization. That is, through interacti@t&een nearest neighbors, a given
magnetic moment can influence the alignment of spins thaseparated from the given spin
by a macroscopic distance. These long range correlatiamgeba spins are associated with a
long-range order in which the lattice has a net magnetiratiadhe absence of a magnetic field.
In our further studies of the Ising model, we will limit theextion to cases witlB = 0 only.

In order to calculate expectation values such as the meagye(®) or magnetizatioq M)
in statistical physics at a given temperature, we need aghibty distribution

e~ Pl

P(f) = — (11.2)
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with 5 = 1/kT being the inverse temperatudethe Boltzmann constank; is the energy of a
state; while Z is the partition function for the canonical ensemble defiagd

M
Z=> et (11.3)
i=1

where the sum extends over all stalds P; expresses the probability of finding the system in a
given configuration.
The energy for a specific configuratiors given by

Ei=—1) sisi (11.4)

To better understand what is meant with a configuration, idendirst the case of the one-
dimensional Ising model wittB = 0. In general, a given configuration éf spins in one
dimension may look like

LI R T
123 ... i-14i i+1 ... N-1 N

In order to illustrate these features let us further spexadb just two spins.
With two spins, since each spin takes two values only, it rmdhat in total we have? = 4
possible arrangements of the two spins. These four posigibire

L=11 2= 3=I1 4=l

What is the energy of each of these configurations?
For small systems, the way we treat the ends matters. Tws eas®ften used

1. In the first case we employ what is called free ends. For tleedimensional case, the
energy is then written as a sum over a single index

N-1
Ei =—J Z S§5Sj+1; (115)
j=1

If we label the first spin as; and the second as we obtain the following expression for
the energy
E = —J3182. (116)

The calculation of the energy for the one-dimensionaldatiith free ends for one specific
spin-configuration can easily be implemented in the folfaylines
for (j=1; ] <N; j++) {
energy += spin[jkspin[j+1];

}
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where the vectospin|] contains the spin valug, = +1. For the specific statg;, we have
chosen all spins up. The energy of this configuration becdhess

Ey=FEy =—J.
The other configurations give

EQ — ETl — +J,

Es =E; =+,
and

E,=FE, =—-J

2. We can also choose so-called periodic boundary conditibhis means that if = N, we
set the spin number to= 1. In this case the energy for the one-dimensional latticdgea

N
Ei = _stjsj+l, (117)
j=1

and we obtain the following expression for the two-spin case
E = —J(s152 + 8951). (11.8)
In this case the energy fdr; is different, we obtain namely
Ey = By = 2.
The other cases do also differ and we have
Ey = E; = +2J,

E3 = ElT = +2J,

and
Ey=FE =-2J.

If we choose to use periodic boundary conditions we can doglalbove expression as

jm=N;

for ( j=1; ] <=N; j++) {
energy += spin[jkspin[jm];
jm = j ;
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Table 11.1: Energy and magnetization for the one-dimemsilsng model withN = 2 spins
with free ends (FE) and periodic boundary conditions (PBC).

State Energy (FE) Energy (PBC) Magnetization

1=17 iy 97 2
9 =1 J 2] 0
3=/t J 2] 0
4= —J —2J -2

Table 11.2: Degeneracy, energy and magnetization for tleedomensional Ising model with
N = 2 spins with free ends (FE) and periodic boundary conditi®&(X).

Number spinsup Degeneracy Energy (FE) Energy (PBC) Mazatain

2 1 —J -2J 2
1 2 J 2J 0
0 1 —J -2J -2

The magnetization is however the same, defined as
N
M;=>"s;, (11.9)
j=1

where we sum over all spins for a given configuration

Table 11.1 lists the energy and magnetization for both frels @nd periodic boundary con-
ditions.

We can reorganize Table 11.1 according to the number of ppinsing up, as shown in Table
11.2. It is worth noting that for small dimensions of theita the energy differs depending on
whether we use periodic boundary conditions or fri ends.sTheans also that the partition
functions will be different, as discussed below. In the thedynamic limit howeverN — oc,
the final results do not depend on the kind of boundary camtstive choose.

For a one-dimensional lattice with periodic boundary ctinds, each spin sees two neigh-
bors. For a two-dimensional lattice each spin sees fouhbeigng spins. How many neighbors
does a spin see in three dimensions?

In a similar way, we could enumerate the number of states ftwroadimensional system
consisting of two spins, i.e., 2 x 2 Ising model on a square lattice wifferiodic boundary
conditions In this case we have a total of = 16 states. Some examples of configurations with
their respective energies are listed here

_ T _ T _ o _
E=-8J +op E=0 +p E=0 ] E=-8d

— <
<
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In the Table 11.3 we group these configurations accordinigeio total energy and magneti-
zation.

Table 11.3: Energy and magnetization for the two-dimeraditsing model withNV = 2 x 2
spins with periodic boundary conditions.

Number spinsup Degeneracy Energy Magnetization

4 1 —-8J 4
3 4 0 2
2 4 0 0
2 2 8J 0
1 4 0 -2
0 1 —-8J -4

Exercise 11.1

Convince yourself that the values listed in Table 11.3 aresct.

For a system described by the canonical ensemble, the ereragy expectation value since
we allow energy to be exchanged with the surroundings (albeatwith temperaturé’). This
expectation value, the mean energy, can be calculated thg@rmyobability distributionP; as

(B) = i)&a(ﬁ) = % i)EeﬁE (11.10)
with a corresponding variance defined as
1 & 1 & i
op = (%) —(E) = - ;Efe—ﬁEi _ <Z ;Ew_m) . (11.11)
If we divide the latter quantity with7? we obtain the specific heat at constant volume
Cy = % ((E?) — (E)?). (11.12)

Using the same prescription, we can also evaluate the megnatization through

(M) = Z M;Pi() = % Z M;e 7B, (11.13)

and the corresponding variance

M M 2
1 1
O = (M) = (M) = = Y MEemPPi - (5 ZMie‘ﬁEi) . (11.14)
=1 =1
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This quantity defines also the susceptibilty
_ L
XTkT

It is also possible to show that the partition function fa ime-dimensional case fof spins
with free ends is

((M?) = (M)?). (11.15)

Zy = [2cosh(B)V . (11.16)
If we use periodic boundary conditions it becomes
Zy = 2N ([cosh(ﬁJ)]N + [sinh(ﬁj)]N> . (11.17)
In the limit N — oc the two results agree.
We can then calculate the mean energy with fri ends from tbegeaformula or using

—agf = (N — 1)Jtanh(B.J). (11.18)

If we take our simple system with just two spins in one-dim@nswe see immediately that
the above expression for the partition function is corrédsing the definition of the partition
function we have

(F) =

2
Zy =Y e PP =2e"P7 1 2¢%7 = 2cosh(5]) (11.19)
i=1

If we take the limitlI" — 0 (8 — oo) and setV = 2, we obtain

lim (E) = —J, (11.20)

5300 TelB e I8
which is the energy where all spins point in the same diractidt low 7', the system tends
towards a state with the highest possible degree of order.

The specific heat in one-dimension with free ends is

1 02

J 2

Exercise 11.2
Calculate the exact partition function for a system of thspens with the one-

dimensional Ising model using both free ends and periodimtary conditions.

For our two-dimensional x 2 lattice we obtain the following partition function
7 = 2e780 26878 412, (11.22)

and mean energy
1
(E) = — (16¢%77 — 16¢*77) . (11.23)



11.1. PHASE TRANSITIONS IN MAGNETIC SYSTEMS 193

The analytical expression for the Ising model in two dimensiwas obtained in 1944 by the
Norwegian chemist Lars Onsager (Nobel prize in chemisiriig exact partition function fav
spins is given by

Zn = [2cosh(BT)e!]" (11.24)
with -
I= % 0 doln E (1+ (1 - &%sin’¢)/?) |, (11.25)
and
Kk = 2sinh(2B.J)/cosh*(2B.). (11.26)

Exercise 11.3
Calculate the heat capacity and the mean magnetizatiomppefos the2 x 2 ising

model.

11.1.2 The Metropolis algorithm

The algorithm of choice for solving the Ising model is the m@zh proposed by Metropolet
al. in 1953. As discussed in chapt®?, new configurations are generated from a previous one
using a transition probability which depends on the eneiffgrénce between the initial and
final states.
In our case we have as the Monte Carlo sampling function thbatility for finding the

system in a state given by
e—(BEs)

Z 3
with energyE;, § = 1/kT andZ is a normalization constant which defines the partition fiomc
in the canonical ensemble. As discussed above

2(8) =3 e

S

P, =

is difficult to compute since we need all states. In a calcutadf the Ising model in two di-
mensions, the number of configurations is giver2Bywith N = L x L the number of spins
for a lattice of lengthZ.. Fortunately, the Metropolis algorithm considers onlyasitbetween
probabilities and we do not need to compute the partitioction at all. The algorithm goes as
follows

1. Establish an initial state with enerdyy by positioning yourself at a random position in the
lattice

2. Change the initial configuration by flipping e.g., one smify. Compute the energy of this
trial stateF;.

3. CalculateAE = E, — E,. The number of valueA FE is limited to five for the Ising model
in two dimensions, see the discussion below.
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4. If AE < 0 we accept the new configuration, meaning that the energyvertd and we
are hopefully moving towards the energy minimum at a givemperature. Go to step 7.

5. If AE > 0, calculatew = e~(A2F),

6. Comparev with a random number. If

r < w,

then accept the new configuration, else we keep the old caafign.

7. The next step is to update various expectations values.

8. The steps (2)-(7) are then repeated in order to obtainfeenily good representation of
states.

9. Each time you sweep through the lattice, i.e., when yoe sammed over all spins, con-

stitutes what is called a Monte Carlo cyclus. You could thaflkone such cyclus as a
measurement. At the end, you should divide the various e¢apec values with the total
number of cycles. You can choose whether you wish to dividehbynumber of spins or
not. If you divide with the number of spins as well, your redat e.g., the energy is now
the energy per spin.

The implementation of this algorithm is given in the nexttsst In the calculation of the
energy difference from one spin configuration to the otheryw¥l limit the change to the flipping
of one spin only. For the Ising model in two dimensions it neetirat there will only be a limited
set of values forAE. Actually, there are only five possible values. To see theged first a
random spin positior, y and assume that this spin and its nearest neighbors areiafingo
up. The energy for this configuration s = —4.J. Now we flip this spin as shown below. The
energy of the new configuration s = 4.J, yieldingAFE = 8.J.

) )
E=—4] ) — E=4] + 11
) )

The four other possibilities are as follows
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with AF =0,
\J \J
E=2J] I T 1 == E=-2J P17
\J \J
with AE = —4.J and finally
\J \J
E=4J I 1T == E=-4J 1
\J \J

with AEF = —8.J. This means in turn that we could construct an array whichaions all values
of e#2F pefore doing the Metropolis sampling. Else, we would havevialuate the exponential
at each Monte Carlo sampling.

11.2 Program example

We list here an example of a C/C++-program which compute®wysaithermodynamical prop-
erties of the Ising model in two dimensions You should esglcpay attention to the function
Metropolis which implements the algorithm described in phevious subsection and the func-
tion Delta E which calculates the energy difference between the prestate and the trial state
by flipping one spin.

The program is set up with dynamic memory allocation for thegrir which contains the
spin values at a positiofx, y). One could alternatively have used a fixed size for the nesric
be used. But then one would need to recompile the program lahger systems are considered.

11.2.1 Program for the two-dimensional Ising Model

programs/chapll/programl.cpp

[ %
Program to solve the twedimensional
The coupling constant J =1
Boltzmann’'s constant = 1, temperature has thus dimensiorergygy
Metropolis sampling is used. Periodic boundary conditions

Ising model

%/

#include
#include
#include
#include

<jostream >
<fstream >

<iomanip >

"1ib.h"

using namespace std;
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ofstream ofile;

/l inline function for periodic boundary conditions

inline int periodic(int i, int limit, int add) {
return (i+limit+add) % (limit);

}

// Function to read in data from screen

void read_input(nté&, int&, double&, double&, double&);

// Function to initialise energy and magnetization

void initialize (int , double, int %%, double&, double&);

/I The metropolis algorithm

void Metropolis (int , long&, int *%, double&, double&, double x);

/Il prints to file the results of the calculations

void output(int , int , double, double *);

int main(int argc , charx* argv][])
{
char *xoutfilename;
long idum;
int «xspin_matrix , n_spins, mcs;
double w[17], average [5], initial _temp , final _temp, E, M, temptep;

/l Read in output file , abort if there are too few commafndne

arguments
if ( argc <=1 ){
cout <<"Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1l);
}
elsef
outfilename=argv[1];
}
ofile .open(outfilename);
/1 Read in initial values such as size of lattice , temp and

cycles
read_input(n_spins, mcs, initial_temp , final _temp , tenspep);
spin_matrix = (int*x) matrix(n_spins, n_spins ,sizeof(int));

idum = —1; // random starting point

for ( double temp = initial _temp; temp <= final _temp; temp+=
temp_step){
/1 initialise energy and magnetization
E=M=0.;

I/l setup array for possible energy changes
for ( int de =—8; de <= 8; de++) w[de] = 0;
for ( int de =—8; de <= 8; de+=4) w[de +8] = exp{(de/temp);
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/I initialise array for expectation values

for ( int i = 0; i <5; i++) average[i] = 0.;

initialize (n_spins , temp, spin_matrix , E, M);

/I start Monte Carlo computation

for (int cycles = 1; cycles <= mcs; cycles++){
Metropolis (n_spins , idum, spin_matrix , E, M, w);
/l update expectation values
average [0] += E; average [1] +=«E;

average [2] += M; average [3] +=M; average[4] += fabs(M);

}

/Il print results
output(n_spins, mcs, temp, average);
}
free_matrix ((void *x) spin_matrix); // free memory
ofile.close(); // close output file
return 0O;

/!l read in input data
void read_input(nt& n_spins, int & mcs, double& initial_temp ,
double& final _temp , double& temp_step)

cout << "Number of Monte Carlo trials =";
cin >> mcs;
cout << "Lattice size or number of spins (x and y equal) =",
cin >> n_spins;
cout <<"Initial temperature with dimension energy=";
cin >> initial_temp;
cout << "Final temperature with dimension energy=";
cin >> final_temp;
cout <<"Temperature step with dimension energy=";
cin >> temp_step;

} // end of function read_input

/I function to initialise energy, spin matrix and magnettian
void initialize (int n_spins , double temp, int xxspin_matrix ,
double& E, double& M)
{
[/l setup spin matrix and intial magnetization
for (int y =0; y < n_spins; y++) {
for (int x= 0; x < n_spins; x++){
spin_matrix[y][x] = 1; // spin orientation for the ground
M += (double) spin_matrix[y][x];

state
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/Il setup initial energy
for (int 'y =0; y < n_spins; y++) {
for (int x= 0; x < n_spins; x++){
E —= (double) spin_matrix[y][x]*
(spin_matrix[periodic(y,n_spins5s1)][x] +
spin_matrix[y][periodic (x,n_spins=1)]);
}
}

}// end function initialise

void Metropolis (int n_spins , long& idum, int sxxspin_matrix , double& E
, double&M, double xw)
{
/l loop over all spins
for (int y =0; y < n_spins; y++) {
for (int x= 0; x < n_spins; x++){
int ix = (int) (ranl(&idum)x(double)n_spins);
int iy = (int) (ranl(&idum)«(double)n_spins);
int deltaE = 2Zspin_matrix[iy][ix]x
(spin_matrix[iy][ periodic (ix,n_spins+1)]+
spin_matrix[periodic (iy ,n_spinss1)][ix] +
spin_matrix[iy][ periodic (ix,n_spins ,1)] +
spin_matrix[periodic (iy ,n_spins ,1)][ix]);
if ( ranl(&idum) <= w[deltaE+8] ) {
spin_matrix[iy][ix] == —1; // flip one spin and accept new
spin config
M += (double) 2« spin_matrix[iy][ix];
E += (double) deltaE;
}
}
}

} // end of Metropolis sampling over spins

void output(int n_spins,int mcs, double temp, double xaverage)
{
double norm = 1/((double) (mcs)); [// divided by total number of
cycles
double Eaverage = average [@horm;
double E2average = average [ihorm;
double Maverage = average [Z]norm;
double M2average = average [3]Jnorm;
double Mabsaverage = average [Ahorm;
/1 all expectation values are per spin, divide by 1/n_spimskpins
double Evariance = (E2average EaverageEaverage)/n_spins/n_spins;
double Mvariance = (MZ2average- MabsaverageMabsaverage)/n_spins/
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n_spins;

ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile << setw (15) << setprecision(8) << temp;

ofile << setw(1l5) << setprecision(8) << Eaverage/n_spinssépins;

ofile << setw (15) << setprecision(8) << Evariance/tempmtzg;

ofile << setw(1l5) << setprecision(8) << Maverage/n_spims kpins;

ofile << setw (15) << setprecision (8) << Mvariance/temp;

ofile << setw (1l5) << setprecision(8) << Mabsaverage/n rspin_spins
<< endl;

} // end output function

11.3 Selected results for the Ising model

11.3.1 Phase transitions

The Ising model in two dimensions and with = 0 undergoes a phase transition of second
order. What it actually means is that below a given critieahperaturd -, the Ising model ex-
hibits a spontaneous magnetization witht) # 0. AboveT the average magnetization is zero.
The one-dimensional Ising model does not predict any speotzgs magnetization at any finite
temperature. The physical reason for this can be under$tootthe following simple consid-
eration. Assume that the ground state for&spin system in one dimension is characterized by
the following configuration

ST S R PP N
123 ... 1—1 ¢ i4+1 ... N—-1 N

which has a total energy N.J and magnetizatiov. If we flip half of the spins we arrive at a
configuration

£ R e
123 ... i-1i i+l ... N-1 N

with energy(—N + 4).J and net magnetization zero. This state is an example of adg#ised
state. The change in energy is however too small to stalitieedisordered state. In two di-
mensions however the excitation energy to a disordered istatuch higher, and this difference
can be sufficient to stabilize the system. In fact, the Isirugieh exhibits a phase transition to a
disordered phase both in two and three dimensions.

For the two-dimensional case, we move from a phase with findgnetizationf M) # 0 to
a paramagnetic phase wiftM) = 0 at a critical temperaturé.. At the critical temperature,
guantities like the heat capacity, and the susceptibility diverge in the thermodynamic limit,
i.e., with an infinitely large lattice. This means that theiaace in energy and magnetization
diverge. For a finite lattice however, the variance will ajwacale as- 1/v/M, M being e.g.,
the number of configurations which in our case is proporliovith .. Since our lattices will
always be of a finite dimensions, the calculatéd or x will not exhibit a diverging behavior.
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We will however notice a broad maximum in e.gy nearT.. This maximum, as discussed
below, becomes sharper and sharpek &sincreased.

NearT: we can characterize the behavior of many physical quasitiffea power law behav-
ior. As an example, the mean magnetization is given by

(M(T)) ~ (T =To)", (11.27)
wheref is a so-called critical exponent. A similar relation applie the heat capacity
Cy(T) ~ [T = T| 7, (11.28)

and the susceptibility
X(T) ~|Te =T . (11.29)

Another important quantity is the correlation length, whis expected to be of the order of
the lattice spacing fol" >> T.. Because the spins become more and more correlatéd as
approache§, the correlation length increases as we get closer to theatiemperature. The
divergent behavior of near7 is

ET) ~ T —T|". (11.30)

A second-order phase transition is characterized by alatioe length which spans the whole
system. Since we are always limited to a finite latticeyill be proportional with the size of the
lattice.

Through finite size scaling relations it is possible to reldte behavior at finite lattices with
the results for an infinitely large lattice. The critical teenature scales then as

Te(L) — Te(L = 00) ~ aL ™", (11.31)
with ¢ a constant and is defined in Eq. (11.30). The correlation length is given by
E§T)~L~ |Te —T|7". (11.32)

and if we sefl’ = T~ one obtains

(M(T)) ~ (T = T¢)? — L/, (11.33)
Cv(T) ~ |Te — T — Lo/, (11.34)

and
X(T) ~ |Te =T = L. (11.35)

11.3.2 Heat capacity and susceptibility as functions of nutrer of spins

in preparation
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11.3.3 Thermalization

in preparation

11.4 Other spin models

11.4.1 Potts model
11.4.2 XY-model

11.5 Physics project: simulation of the Ising model

In this project we will use the Metropolis algorithm to geaiter states according to the Boltzmann
distribution. Each new configuration is given by the chanbendy one spin at the time, that is
s — —sy. Use periodic boundary conditions and set the magnetic Bete 0.

a) Write a program which simulates the one-dimensionaglsiodel. Choosg > 0, the
number of spinsV = 20, temperaturd’ = 3 and the number of Monte Carlo samples
mes = 100. Let the initial configuration consist of all spins pointing, i.e.,s, = 1.
Compute the mean energy and magnetization for each cycliérahthe number of cycles
needed where the fluctuation of these variables is negiigihat kind of criterium would
you use in order to determine when the fluctuations are nbtgie)

Change thereafter the initial condition by letting the sgeke random values, eithed or
1. Compute again the mean energy and magnetization for eatd ayd find the number
of cycles needed where the fluctuation of these variablesgBgible.

Explain your results.

b) Letmcs > 1000 and computé E), (E?) andCy as functions of" for 0.1 < 7' < 5. Plot
the results and compare with the exact ones for periodic denyrconditions.

c) Using the Metropolis sampling method you should now fireinbhbmber of accepted con-
figurations as function of the total number of Monte Carlo plangs. How does the num-
ber of accepted configurations behave as function of tertyrerfi? Explain the results.

d) Compute thereafter the probabiliB( E) for a system withV = 50 at7 = 1. Choose
mes > 1000 and plotP(E) as function ofE. Count the number of times a specific energy
appears and build thereafter up a histogram. What does shagham mean?






Chapter 12

Quantum Monte Carlo methods

12.1 Introduction

The aim of this chapter is to present examples of applicatidMonte Carlo methods in studies
of quantum mechanical systems. We study systems such aartheiic oscillator, the hydrogen
atom, the hydrogen molecule, the helium atom and the nuélées

The first section deals with variational methods, or whabimmonly denoted as variational
Monte Carlo (VMC). The required Monte Carlo techniques faM®& are conceptually simple,
but the practical application may turn out to be rather tegiand complex, relying on a good
starting point for the variational wave functions. These@fnctions should include as much as
possible of the inherent physics to the problem, since they the starting point for a variational
calculation of the expectation value of the hamiltontanGiven a hamiltoniai/ and a trial wave
function ¥, the variational principle states that the expectationeaif (), defined through

J ARV} (R)H(R)¥7(R)
H) = : 12.1
= TR R ®) (121
is an upper bound to the ground state endrgyf the hamiltoniand, that is
Ey < (H). (12.2)

To show this, we note first that the trial wave function can Xxga@ded in the eigenstates of the
hamiltonian since they form a complete set, viz.,

Ur(R) =) aWi(R), (12.3)
and assuming the set of eigenfunctions to be normalize@rtioa of the latter equation in
Eq. (12.1) results in

2 Gnn [ ARV, (R) W, (R) 2 Uy (1’2 5
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which can be rewritten as ,
Lon U Fn > E,. (12.5)
>
In general, the integrals involved in the calculation ofiwas expectation values are multi-
dimensional ones. Traditional integration methods sucth@ssauss-Legendre will not be ad-
equate for say the computation of the energy of a many-bostgsy. The fact that we need to
sample over a multi-dimensional density and that the prtibabensity is to be normalized by
the division of the norm of the wave function, suggests that ¢he Metropolis algorithm may
be appropriate.
We could briefly summarize the above variational procedutbe following three steps.

1. Construct first a trial wave function?(R), for say a many-body system consisting/6f
particles located at positio®® = (R;, ..., Rx). The trial wave function depends an
variational parameters = (aq, ..., an).

2. Then we evaluate the expectation value of the hamiltoAian

[ dRW;. (R)H(R)¥r, (R)
) =T R, R0y, (R)

3. Thereafter we vary according to some minimization algorithm and return to trs ftep.

The above loop stops when we reach the minimum of the energyr@diaog to some specified
criterion. In most cases, a wave function has only smallesin large parts of configuration
space, and a straightforward procedure which uses homaggndistributed random points in
configuration space will most likely lead to poor results.isTimay suggest that some kind of
importance sampling combined with e.g., the Metropoli®atgm may be a more efficient way
of obtaining the ground state energy. The hope is then thaethegions of configurations space
where the wave function assumes appreciable values ardeshmpre efficiently.

The tedious part in a VMC calculation is the search for theat@nal minimum. A good
knowledge of the system is required in order to carry outaeakle VMC calculations. This is
not always the case, and often VMC calculations serve rahéne starting point for so-called
diffusion Monte Carlo calculations (DMC). DMC is a way of swlg exactly the many-body
Schrédinger equation by means of a stochastic proceduremod guess on the binding energy
and its wave function is however necessary. A carefullygrered VMC calculation can aid in
this context.

12.2 Variational Monte Carlo for quantum mechanical sys-
tems

The variational quantum Monte Carlo (VMC) has been widelplisggl to studies of quantal
systems. Here we expose its philosophy and present appfisatnd critical discussions.
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The recipe, as discussed in chapter 4 as well, consists osaiga trial wave functiogr (R)
which we assume to be as realistic as possible. The vafalktands for the spatial coordinates,
in total 3NV if we haveN patrticles present. The trial wave function serves thegiohg closely
the discussion on importance sampling in section 9.5, asaatoedefine the quantal probability

distribution e )|2
Yr(R
P(R) = .
) [ r(R))? dR

This is our new probability distribution function (PDF).
The expectation value of the ener@\is given by

(12.6)

B = [ dRY¥*(R)H(R)¥(R)
(E) = [dRU*(R)¥(R)

(12.7)

whereV is the exact eigenfunction. Using our trial wave functiondedine a new operator, the

so-called local energy,

EL(R) = mﬂw(m, (12.8)

which, together with our trial PDF allows us to rewrite thgeession for the energy as
(H) = / P(R)E;(R)dR. (12.9)

This equation expresses the variational Monte Carlo agpro&or most hamiltoniandy is a
sum of kinetic energy, involving a second derivative, andamantum independent potential.
The contribution from the potential term is hence just theatical value of the potential.

At this stage, we should note the similarity between Eq.9)Ll&nd the concept of importance
sampling introduced in chapter 4, in connection with nucarintegration and Monte Carlo
methods.

In our discussion below, we base our numerical Monte Carlotism on the Metropolis
algorithm. The implementation is rather similar to the orsedssed in connection with the Ising
model, the main difference residing in the form of the PDFe Tihain test to be performed is
a ratio of probabilities. Suppose we are attempting to mosm fpositionR to R’. Then we
perform the following two tests.

1. If P(R))
—>1
PR) "
whereR’ is the new position, the new step is accepted, or
2.
P(R/)
r < ,
~ P(R)

wherer is random number generated with uniform PDF such that [0, 1], the step is
also accepted.
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In the Ising model we were flipping one spin at the time. Herechenge the position of say a
given particle to a trial positioRR’, and then evaluate the ratio between two probabilities. We
note again that we do not need to evaluate the Adfi’r(R)|* dR (an in general impossible
task), since we are only computing ratios.

When writing a VMC program, one should always prepare in adedhe required formulae
for the local energy?;, in EqQ. (12.9) and the wave function needed in order to comiheteatios
of probabilities in the Metropolis algorithm. These two ¢tions are almost called as often as a
random number generator, and care should therefore beseein order to prepare an efficient
code.

If we now focus on the Metropolis algorithm and the Monte Gaaluation of Eq. (12.9), a
more detailed algorithm is as follows

¢ Initialisation: Fix the number of Monte Carlo steps and thalization steps. Choose an
initial R and variational parametersand calculaté)$ (R)|*. Define also the value of the
stepsize to be used when moving from one valuR @b a new one.

¢ Initialise the energy and the variance.
e Start the Monte Carlo calculation

1. Thermalise first.

2. Thereafter start your Monte carlo sampling.

3. Calculate a trial positioR, = R + r * step wherer is a random variable € [0, 1].
4

. Use then the Metropolis algorithm to accept or reject thas’e by calculating the
ratio
w = P(R,)/P(R).

If w > s, wheres is a random number € [0, 1], the new position is accepted, else
we stay at the same place.

5. If the step is accepted, then we Bet= R,,.

6. Update the local energy and the variance.

¢ When the Monte Carlo sampling is finished, we calculate thememergy and the standard
deviation. Finally, we may print our results to a specifieé. fil

The best way however to understand a specific method is howestidy selected examples.

12.2.1 First illustration of VMC methods, the one-dimensimal harmonic
oscillator

The harmonic oscillator in one dimension lends itself njdet illustrative purposes. The hamil-
tonian is )
h* d 1
H= — + 5/@332, (12.10)

~ 2m da?

1This corresponds to the partition functidnin statistical physics.
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wherem is the mass of the particle aridis the force constant, e.g., the spring tension for a
classical oscillator. In this example we will make life siim@and choosen = 7 = k = 1. We

can rewrite the above equation as
dQ
H=—— +2° (12.11)
dz?

The energy of the ground state is thEn= 1. The exact wave function for the ground state is
]. 7:1:2/2
Uo(z) = —=e : (12.12)
but since we wish to illustrate the use of Monte Carlo methagschoose the trial function

Up(n) = YO a2 (12.13)

T1/4

Inserting this function in the expression for the local gyen Eq. (12.8), we obtain the following
expression for the local energy

Er(z) = o + 2%(1 — o), (12.14)

with the expectation value for the hamiltonian of Eq. (1Z®gn by

i) - | " r (@) Bu(a)d, (12.15)

which reads with the above trial wave function

B 2 dre """ a2 + 22(1 — o)

(H) f°° yP—— (12.16)
Using the fact that
> —z2a? ™
/Oo dxe =\
we obtain
a? 1
(H) = 7+@. (12.17)
and the variance
4 1 2

In solving this problem we can choose whether we wish to useMbtropolis algorithm
and sample over relevant configurations, or just use randombars generated from a normal
distribution, since the harmonic oscillator wave functidollow closely such a distribution. The
latter approach is easily implemented in few lines, namely
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initialisations , declarations of variables
... mcs = number of Monte Carlo samplings
/1 loop over Monte Carlo samples
for ( 1=0; i < mcs; i++) {
/1 generate random variables from gaussian distribution
X = normal_random (&idum)/sqrt2/alpha;
local _energy = alphaalpha + xxx(1—pow(alpha ,4));
energy += local_energy;
energy2 += local_energylocal _energy ;
/1 end of sampling
}
1/ write out the mean energy and the standard deviation
cout << energy/mcs << sqrt((energy2/megenergy/mcsk*2)/mcs));

This VMC calculation is rather simple, we just generate gdanumberV of random numbers
corresponding to the gaussian PBF¥+|* and for each random number we compute the local
energy according to the approximation

(HY = /P(R)EL(R)dR ~ %Z Er(z), (12.19)

and the energy squared through

(H2) = /P(R)E%(R)dR ~ %Z B2 (x,). (12.20)

In a certain sense, this is nothing but the importance MoaroGampling discussed in chapter
4. Before we proceed however, there is an important asidehnwiworth keeping in mind when
computing the local energy. We could think of splitting tleerputation of the expectation value
of the local energy into a kinetic energy part and a poteeti@rgy part. If we are dealing with
a three-dimensional system, the expectation value of thetikienergy is

J dRU;(R)V*U7(R)
~ [dRU;(R)T4(R)

(12.21)

and we could be tempted to compute, if the wave function obpherical symmetry, just the
second derivative with respect to one coordinate axis aad thultiply by three. This will
most likely increase the variance, and should be avoidesh #the final expectation values are
similar. Recall that one of the subgoals of a Monte Carlo aatajon is to decrease the variance.
Another shortcut we could think of is to transform the nunt@ran the latter equation to

/ IRV (R)V 0 (R) = — / JR(VT(R))(VIx(R)), (12.22)
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using integration by parts and the relation
/ IRV (U (R)V(R)) = 0, (12.23)

where we have used the fact that the wave function is zéRo-at+oc. This relation can in turn
be rewritten through integration by parts to

/ dR(VUL(R))(VIr(R)) + / dRV%(R)V*Ur(R)) = 0. (12.24)

The rhs of Eq. (12.22) is easier and quicker to compute. Heweévcase the wave function is the
exact one, or rather close to the exact one, the Ihs yields jognstant times the wave function
squared, implying zero variance. The rhs does not and magftite increase the variance.

If we use integration by part for the harmonic oscillatoresabe new local energy is

Er(z) = 2*(1 + o), (12.25)
and the variance ) ,
1
g = M, (12.26)
204

which is larger than the variance of Eq. (12.18).
We defer the study of the harmonic oscillator using the Maiiis algorithm till the after the
discussion of the hydrogen atom.

12.2.2 The hydrogen atom

The radial Schrodinger equation for the hydrogen atom camrligen as

om Or2 r 2mr?

B QPulr) <’f_€2 _ M) u(r) = Bu(r), (12.27)

wherem is the mass of the electrohits orbital momentum taking valués= 0, 1,2, ..., and the
termke? /r is the Coulomb potential. The first terms is the kinetic epefdne full wave function
will also depend on the other variablésnd¢ as well. The energy, with no external magnetic
field is however determined by the above equation . We cantttiek of the radial Schrodinger
equation to be equivalent to a one-dimensional movememitoned by an effective potential

2 2
Va(r) = —F- I+ D) (12.28)
r 2mr?

When solving equations numerically, it is often conventerrewrite the equation in terms of
dimensionless variables. One reason is the fact that d@fehee constants may be differ largely
in value, and hence result in potential losses of numeriedipion. The other main reason for
doing this is that the equation in dimensionless form isexasi code, sparing one for eventual
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typographic errors. In order to do so, we introduce first timeethsionless variablg = /4,
wheref is a constant we can choose. Schrddinger’s equation is dvaitten as

10%u(p) mke?p I(1+1) m3?
—— — - = E ) 12.29
We can determing by simply requiring
mke?B
=1 (12.30)
With this choice, the constaptbecomes the famous Bohr radius= 0.05 nm
hQ
G =0 = mke?’
We introduce thereafter the variable
mf3?
and inserting3 and the exact energy = FE,/n?, with E; = 13.6 eV, we have that
1
A=—— 12.32
5 (12.32)

n being the principal quantum number. The equation we aredbarg to solve numerically is

o 19%u(p) ulp) UI+1)
2u(p u(p + _
o + 2 u(p) — Au(p) =0, (12.33)

with the hamiltonian | o2 T
+
H= —————— . 12.34
20p*  p - 2p° ( )

The ground state of the hydrogen atom has the engrgy —1/2, or E = —13.6 eV. The
exact wave function obtained from Eq. (12.33) is

u(p) = pe~?, (12.35)

which yields the energy = —1/2. Sticking to our variational philosophy, we could now intro
duce a variational parameteresulting in a trial wave function

ug(p) = ape . (12.36)
Inserting this wave function into the expression for thealanergyFE;, of Eq. (12.8) yields
(checkiit!)
Ei(p) = —~-¢ (a . g) . (12.37)
p 2 p

2Remember that we are free to chodgse
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For the hydrogen atom, we could perform the variationaludaton along the same lines as
we did for the harmonic oscillator. The only difference iattkq. (12.9) now reads

() = [ PRIE(RIR = [ a%pe 0By (o) (12.38)

sincep € [0,o¢]. In this case we would use the exponential distributioneiagdtof the normal
distrubution, and our code would contain the following ederts

initialisations , declarations of variables
mcs = number of Monte Carlo samplings

/1 loop over Monte Carlo samples
for ( i=0; i <mcs; i++) {

/1 generate random variables from the exponential
/1l distribution using ranl and transforming to
/1 to an exponential mapping y =In(1—x)
x=ranl(&idum);
y=—log(1.—-x);
/1 in our case y = rhoralphax2
rho = y/alphal/2;
local _energy =—1/rho —0.5«alphax(alpha—2/rho);
energy += (local_energy);
energy2 += local_energylocal _energy ;
/1 end of sampling
}
/1l write out the mean energy and the standard deviation
cout << energy/mcs << sqrt((energy2/mexnergy/mcs¥«2)/mcs));

As for the harmonic oscillator case we just need to generairga numberV of random numbers
corresponding to the exponential PFs?e 227 and for each random number we compute the
local energy and variance.

12.2.3 Metropolis sampling for the hydrogen atom and the hamonic os-
cillator

We present in this subsection results for the ground stdtdeediydrogen atom and harmonic
oscillator using a variational Monte Carlo procedure. Fw hydrogen atom, the trial wave
function

uz(p) = ape”,
depends only on the dimensionless ragiugt is the solution of a one-dimensional differential
equation, as is the case for the harmonic oscillator as Wié#.latter has the trial wave function

\I’T(ZL') _ \/a67152a2/2.

Topl/4
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However, for the hydrogen atom we hgve [0, oo, while for the harmonic oscillator we have
x € [—00, 0.

This has important consequences for the way we generatemapdsitions. For the hydro-
gen atom we have a random position given by e.g.,

r_old = step_length*(ranl(&idum))/alpha;
which ensures that > 0, while for the harmonic oscillator we have
r_old = step_length*(ranl(&idum)-0.5)/alpha;

in order to haver € [—oc, oc]. This is however not implemented in the program below. There
importance sampling is not included. We simulate pointshmit, y and z directions using
random numbers generated by the uniform distribution anlfiphad by the step length. Note
that we have to define a step length in our calculations. Heeédas to play around with different
values for the step and as a rule of thumb (one of the golderté/@arlo rules), the step length
should be chosen so that roughly 50% of all new moves are textelm the program at the end
of this section we have also scaled the random position \Wethvariational parameter. The
reason for this particular choice is that we have an extdoogl over the variational parameter.
Different variational parameters will obviously yield fifent acceptance rates if we use the
same step length. An alternative to the code below is to parfbe Monte Carlo sampling with
just one variational parameter, and play around with dffieistep lengths in order to achieve a
reasonable acceptance ratio. Another possibility is tludea more advanced test which restarts
the Monte Carlo sampling with a new step length if the speeditational parameter and chosen
step length lead to a too low acceptance ratio.

In Figs. 12.1 and 12.2 we plot the ground state energies ®pitte-dimensional harmonic
oscillator and the hydrogen atom, respectively, as funstad the variational parameter These
results are also displayed in Tables 12.1 and 12.2. In tteddest we list the variance and the
standard deviation as well. We note thatratve obtain the exact result, and the variance is
zero, as it should. The reason is that we then have the exaetfwaction, and the action of the
hamiltionan on the wave function

H1) = constant x 1,

yields just a constant. The integral which defines varioyeetation values involving moments
of the hamiltonian becomes then

(H") = de\D;}(R)Hn(R)\IJT(R) = constant X de\IJ*T(R)\IJT(R)

[ dRV;(R) V7 (R) [ R (R)¥7(R)

This explains why the variance is zero tore= 1. However, the hydrogen atom and the harmonic
oscillator are some of the few cases where we can use a tna fuaction proportional to the
exact one. These two systems are also some of the few exaofptases where we can find
an exact solution to the problem. In most cases of interestgdevnot know a priori the exact
wave function, or how to make a good trial wave function. Isesggtially all real problems a large
amount of CPU time and numerical experimenting is neededdardo ascertain the validity of

a Monte Carlo estimate. The next examples deal with suchHemrah

= constant. (12.39)
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I I I I
MO simulation with N=100000 ——
Exact result - - - -

Figure 12.1: Result for ground state energy of the harmosadlator as function of the varia-
tional parametetv. The exact result is forx = 1 with an energyE = 1. See text for further
details

Table 12.1: Result for ground state energy of the harmormidlar as function of the variational
parametet.. The exact resultis far = 1 with an energy” = 1. The energy variance® and the
standard deviation/+/NN are also listed. The variablé is the number of Monte Carlo samples.
In this calculation we selv = 100000 and a step length of 2 was used in order to obtain an
acceptance of 50%.

«

(H)

0.2

a/m

5.00000E-01
6.00000E-01
7.00000E-01
8.00000E-01
9.00000E-01
1.00000E-00
1.10000E+00
1.20000E+00
1.30000E+00
1.40000E+00
1.50000E+00

2.06479E+00
1.50495E+00
1.23264E+00
1.08007E+00
1.01111E+00
1.00000E+00
1.02621E+00
1.08667E+00
1.17168E+00
1.26374E+00
1.38897E+00

5.78739E+00
2.32782E+00
9.82479E-01
3.44857E-01
7.24827E-02
0.00000E+00
5.95716E-02
2.23389E-01
4.78446E-01
8.55524E-01
1.30720E+00

7.60749E-03
4.82475E-03
3.13445E-03
1.85703E-03
8.51368E-04
0.00000E+00
7.71826E-04
1.49462E-03
2.18734E-03
2.92493E-03
3.61553E-03
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I I I
MC simulation with N=100000 ——
Exact result -~ -
-0.2 _
-04 - ]
//

EO T T
-0.6 - -
-0.8 - -

-1 | | | | | |
0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 12.2: Result for ground state energy of the hydrogem as function of the variational
parametetyv. The exact resultis far = 1 with an energyF = —1/2. See text for further details

Table 12.2: Result for ground state energy of the hydrogem ats function of the variational
parameterv. The exact result is forr = 1 with an energyF = —1/2. The energy variance?
and the standard deviatiar/\/N are also listed. The variabl¥ is the number of Monte Carlo
samples. In this calculation we fixed = 100000 and a step length of 4 Bohr radii was used in
order to obtain an acceptance~0f0%.

« (H) o? o/V'N
5.00000E-01 -3.76740E-01 6.10503E-02 7.81347E-04
6.00000E-01 -4.21744E-01 5.22322E-02 7.22718E-04
7.00000E-01 -4.57759E-01 4.51201E-02 6.71715E-04
8.00000E-01 -4.81461E-01 3.05736E-02 5.52934E-04
9.00000E-01 -4.95899E-01 8.20497E-03 2.86443E-04
1.00000E-00 -5.00000E-01 0.00000E+00 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02 3.42036E-04
1.20000E+00 -4.75563E-01 8.85899E-02 9.41222E-04
1.30000E+00 -4.54341E-01 1.45171E-01 1.20487E-03
1.40000E+00 -4.13220E-01 3.14113E-01 1.77232E-03
1.50000E+00 -3.72241E-01 5.45568E-01 2.33574E-03
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12.2.4 A nucleon in a gaussian potential

This problem is a slight extension of the harmonic oscill@imblem, since we are going to use
an harmonic oscillator trial wave function.

The problem is that of a nucleon, a proton or neutron, in agarcinedium, say a finite
nucleus. The nuclear interaction is of an extreme shortagamgnpared to the more familiar
Coulomb potential. Typically, a nucleon-nucleon intel@tthas a range of some few fermis,
one fermi beingl0~'® m (or just fm). Here we approximate the interaction betweanlanely
nucleon and the remaining nucleus with a gaussian potential

V(r) = Voe "1, (12.40)

whereVj is a constant (fixed td, = —45 MeV here) and the constaatrepresents the range of
the potential. We set = 2 fm. The mass of the nucleon 988.926 MeV/c?, with ¢ the speed
of light. This mass is the average of the proton and neutrassasa The constant in front of the
kinetic energy operator is hence

h* _ m*¢®  197.3157
m  mc2  938.926

We assume that the nucleon is in thestate and approximate the wave function of that a
harmonic oscillator in the ground state, namely

MeVfm? = 41.466 MeVfm? (12.41)

2 b b
\I’T(T) = —7T3/4 677“20‘2/2. (1242)

This trial wave function results in the following local eggr

h2
Ep(r) = 2—(3042 —r2at) + V(r). (12.43)
m
With the wave function and the local energy we can obviousiyngute the variational energy
from

(H) = / P(R)EL(R)dR.

which yields a theoretical variational energy

307 (ac)? 3/2
(H) = am + W <1 n (m)2> . (12.44)
Note well that this is not the exact energy from the above haman. The exact eigenvalue
which follows from diagonalization of the Schrodinger etjoiis £y, = —16.3824 MeV, which
should be compared with the approximately—9.2 MeV from Fig. ??. The results are plotted
as functions of the variational parameteand compared them with the exact variational result
of Eq. (12.44). The agreement is equally good as in the pusviases. However, the variance
at the point where the energy reaches its minimum is difterem zero, clearly indicating that
the wave function we have chosen is not the exact one.
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20 T | I T
MC simulation with N=100000 ——
15 L Exact result -~ -
Errorbars —f—
10 + _

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 12.3: Results for the ground state energy of a nudgleargaussian potential as function
of the variational parameter. The exact variational result is also plotted.

12.2.5 The helium atom

Most physical problems of interest in atomic, molecular solid state physics consist of a num-
ber of interacting electrons and ions. The total number gigdas NV is usually sufficiently large
that an exact solution cannot be found. Typically, the etgiem value for a chosen hamiltonian
for a system ofV patrticles is

_ [dRydR;,...dRyU*(Ry,Ry,...,Ry)H(Ry, Ry, ...,Ry)¥(Ry,Ry,...,Ry)
N [dRidR;...dRyV*(Ry, Ry, ..., Ry)¥(Ry, Ry, ..., Ry) ’
(12.45)

an in general intractable problem. Controlled and well ust®d approximations are sought
to reduce the complexity to a tractable level. Once the égpusare solved, a large number of
properties may be calculated from the wave function. Emwoepproximations made in obtaining
the wave function will be manifest in any property deriveohirthe wave function. Where high
accuracy is required, considerable attention must be pdiaet derivation of the wave function
and any approximations made.

The helium atom consists of two electrons and a nucleus Vhidinge”Z = 2. In setting up
the hamiltonian of this system, we need to account for thalsggn between the two electrons
as well.

A common and very reasonable approximation used in theisolat equation of the Schrédinger
equation for systems of interacting electrons and ionsdBibrn-Oppenheimer approximation.
In a system of interacting electrons and nuclei there willally be little momentum transfer
between the two types of particles due to their greatly diftemasses. The forces between the

(H)



12.2. VARIATIONAL MONTE CARLO FOR QUANTUM MECHANICAL SYSTE M317

particles are of similar magnitude due to their similar gearlf one then assumes that the mo-
menta of the particles are also similar, then the nuclei iagt much smaller velocities than the
electrons due to their far greater mass. On the time-scale@&ar motion, one can therefore
consider the electrons to relax to a ground-state with ticéenat fixed locations. This separation
of the electronic and nuclear degrees of freedom is knowheBorn-Oppenheimer approxima-
tion. But even this simplified electronic Hamiltonian remsavery difficult to solve. No analytic
solutions exist for general systems with more than onerelect

If we label the distance between electron 1 and the nucleus. &imilarly we haver, for
electron 2. The contribution to the potential energy dudodttraction from the nucleus is

2ke?  2ke?

3

(12.46)

T Ty

and if we add the repulsion arising from the two interactitgctons, we obtain the potential
energy

2ke?  2ke?  ke?

i + N

r1 ) T12

with the electrons separated at a distange= |r; — ry|. The hamiltonian becomes then

V(’I“l, TQ) = — (1247)

Y

22 202 9k Ok 2
_WVE RSV 2ke” 2ke +ki’ (12.48)

H =
2m 2m r1 T9 T19

and Schrodingers equation reads R
Hy = Ev. (12.49)

Note that this equation has been written in atomic units which are more convenient for
guantum mechanical problems. This means that the final ghagto be multiplied by 2 x Ej,
whereE, = 13.6 eV, the binding energy of the hydrogen atom.

A very simple first approximation to this system is to omit tepulsion between the two
electrons. The potential energy becomes then

Zke?  Zke>
V() ~ — 200 200 (12.50)

r ro

The advantage of this approximation is that each electraorbedreated as being independent of
each other, implying that each electron sees just a cengythmetric potential, or central field.

To see whether this gives a meaningful result, we/set 2 and neglect totally the repulsion
between the two electrons. Electron 1 has the following haman

- R’V 2ke?

(12.51)

Y

2m r1

with pertinent wave function and eigenvalue

hyty = Eyiba, (12.52)
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wherea = {n,l,m, }, are its quantum numbers. The enefgyis

Z*Ejy

2
ng

E, =

, (12.53)

med E, = 13.6 eV, being the ground state energy of the hydrogen atom. Imadasiway, we

obatin for electron 2
~ h’V3  2ke?

h, = : (12.54)
2m Ty
with wave function R
hyyy = Eyiby, (12.55)
andb = {n,lym,, }, and energy
7°E,
By =" (12.56)
T,

Since the electrons do not interact, we can assume that tumdystate wave function of the
helium atom is given by

Y = Yay, (12.57)
resulting in the following approximation to Schrédingezguation
(By + 1) ¢ = (B + Bo ) (1)) = Eapthu(re)n(r2). (12.58)
The energy becomes then
(Biva(rn)) (ra) + (Batu(r2) ) (1) = (o + Ep) ta(ra)ein(x2), (12.59)
yielding
Eu = Z°E, (ig + %) . (12.60)
ng ny,

If we insertZ = 2 and assume that the ground state is determined by two aledtrohe lowest-
lying hydrogen orbit witm, = n, = 1, the energy becomes

E. = 8E, = —108.8 eV, (12.61)

while the experimental value is78.8 eV. Clearly, this discrepancy is essentially due to our
omission of the repulsion arising from the interaction obt@ectrons.
Choice of trial wave function

The choice of trial wave function is critical in VMC calcuilahs. How to choose it is however a
highly non-trivial task. All observables are evaluatedhwigspect to the probability distribution

R
P = R PR

(12.62)
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generated by the trial wave function. The trial wave funtioust approximate an exact eigen-
state in order that accurate results are to be obtainedolragrtrial wave functions also improve
the importance sampling, reducing the cost of obtainingtaitestatistical accuracy.

Quantum Monte Carlo methods are able to exploit trial wavetions of arbitrary forms.
Any wave function that is physical and for which the valugdjent and laplacian of the wave
function may be efficiently computed can be used. The pow&uaintum Monte Carlo methods
lies in the flexibility of the form of the trial wave function.

It is important that the trial wave function satisfies as mingwn properties of the exact
wave function as possible. A good trial wave function shaxldibit much of the same features as
does the exact wave function. Especially, it should be deflned at the origin, that (/R | =
0) # 0, and its derivative at the origin should also be well-defing€dne possible guideline in
choosing the trial wave function is the use of constraintiathe behavior of the wave function
when the distance between one electron and the nucleus eléatoons approaches zero. These
constraints are the so-called “cusp conditions” and aratedl|to the derivatives of the wave
function.

To see this, let us single out one of the electrons in the eltom and assume that this
electron is close to the nucleus, i.e.,— 0. We assume also that the two electrons are far from
each other and that # 0. The local energy can then be written as

1 1 1 Z
E (R) = ——=Hyr(R) = ——Vi - = R) + finite terms. 12.63
(R) 6rlR) = e (<398 2 ) v (R) + fnie s, (12:69
Writing out the kinetic energy term in the spherical cooedes of electrori, we arrive at the
following expression for the local energy

1 1 d? 1 d A
EFfRR=—————-———+ "R finite t 12.64
whereRr(ry) is the radial part of the wave function for electronWe have also used that the
orbital momentum of electron 1 is= 0. For small values of,, the terms which dominate are
1 1 d 7

lmFE(R)=— | ————— | R 12.65

r11£>n0 L( ) RT(Tl) ( 1 d?“l 7'1) T(Tl), ( )
since the second derivative does not diverge due to therfasteofl at the origin. The latter
implies that in order for the kinetic energy term to balartoe divergence in the potential term,
we must have

1 dRT(Tl)
= -7, 12.66
RT(Tl) dTl ( )
implying that
Rr(ry) oc e” ", (12.67)
A similar condition applies to electron 2 as well. For orbiteomenta > 0 we have (show this!)
1 dRT(’I“) Z

=——. 12.68
Rr(r) dr [+1 ( )
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Another constraint on the wave function is found for two &lees approaching each other. In
this case it is the dependence on the separatiolbetween the two electrons which has to reflect
the correct behavior in the limit, — 0. The resulting radial equation for the, dependence
is the same for the electron-nucleus case, except thattthetate Coulomb interaction between
the nucleus and the electron is replaced by a repulsivesiction and the kinetic energy term is
twice as large. We obtain then

1 4 d 2
lim Fp(R)=——|——+— | R 12.69
rérE)lO L( ) RT(TH) < T12 dTlg + 7'12) T(TIQ); ( )

with still [ = 0. This yields the so-called 'cusp’-condition
1 dRT(Tlg) . 1

. 12.70
RT(T12) dT12 2 ( )

while for [ > 0 we have
1 dRT(Tlg) - 1
RT(’I“lg) dT12 2(l + ].) ’
For general systems containing more than two electronsawe this condition for each electron
pairij.
Based on these consideration, a possible trial wave fumatioch ignores the 'cusp’-condition
between the two electrons is

(12.71)

Yr(R) = e 172, (12.72)

wherer; , are dimensionless radii andis a variational parameter which is to be interpreted as
an effective charge.

A possible trial wave function which also reflects the 'cusphdition between the two elec-
trons is

Ur(R) = emolmiralenz/2, (12.73)
The last equation can be generalized to
Yr(R) = ¢(r1)d(r2) ... o(rw) [ ] £(ris), (12.74)

i<j
for a system withV electrons or particles. The wave functiofr;) is the single-particle wave

function for particlei, while f(r;;) account for more complicated two-body correlations. Fer th
helium atom, we placed both electrons in the hydrogenid debiWe know that the ground state
for the helium atom has a symmetric spatial part, while the s@ve function is anti-symmetric

in order to obey the Pauli principle. In the present case vesl mot to deal with spin degrees
of freedom, since we are mainly trying to reproduce the gdostate of the system. However,
adopting such a single-particle representation for theviddal electrons means that for atoms
beyond helium, we cannot continue to place electrons inahest hydrogenic orbit. This is

a consenqguence of the Pauli principle, which states thabthéwave function for a system of

identical particles such as fermions, has to be anti-symmeéefhe program we include below

can use either Eq. (12.72) or Eqg. (12.73) for the trial wavefion. One or two electrons can be
placed in the lowest hydrogen orbit, implying that the peogrcan only be used for studies of
the ground state of hydrogen or helium.
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12.2.6 Program example for atomic systems

The VMC algorithm consists of two distinct phases. In thet firsvalker, a single electron in
our case, consisting of an initially random set of electrosifions is propagated according to
the Metropolis algorithm, in order to equilibrate it and begampling . In the second phase, the
walker continues to be moved, but energies and other oldslessare also accumulated for later
averaging and statistical analysis. In the program belwmswtectrons are moved individually and
not as a whole configuration. This improves the efficiencyhef @algorithm in larger systems,
where configuration moves require increasingly small stepsaintain the acceptance ratio.

programs/chapl2/programl.cpp

/!l Variational Monte Carlo for atoms with up to two electrons
#include <iostream >

#include <fstream >

#include <iomanip >

#include "1lib.h"

using namespace std;

/Il output file as global variable

ofstream ofile;

/I the step length and its squared inverse for the second dative
#define h 0.001

#define h2 1000000

/! declaraton of functions

// Function to read in data from screen, note call by referenc
void initialise (int&, int&, int&, int&, int&, int&, double&) ;

/I The Mc sampling for the variational Monte Carlo
void mc_sampling {nt , int, int, int, int, int, double, double x,
double x);

/! The variational wave function
double wave_ function @ouble xx, double, int, int);

/I The local energy
double local_energy fouble xx, double, double, int, int, int);

/l prints to screen the results of the calculations
void output(int, int, int, double %, double x);
// Begin of main program

/l'int main ()
int main(int argc, charx argv[])
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char *outfilename ;

int number_cycles, max_variations , thermalization , charge;
int dimension, number_particles;

double step_length;

double xcumulative_e ,x cumulative_e2;

[/l Read in output file , abort if there are too few commatidne

arguments
if ( argc <=1 ){
cout <<"Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1);
}
elsef
outfilename=argv[1];
}

ofile .open(outfilename);

/1 Read in data

initialise (dimension , number_particles , charge,
max_variations , number_cycles,
thermalization , step_length) ;

cumulative_e =new double[max_variations +1];

cumulative_e2 =new double[max_variations +1];

/[l Do the mc sampling
mc_sampling (dimension , number_particles , charge,
max_variations , thermalization ,

number_cycles , step_length , cumulative_e , cumulativ)

/I Print out results

output(max_variations , number_cycles, charge , cumulatie ,
cumulative_e2);

delete [] cumulative_e ; delete [] cumulative_e;

ofile.close(); // close output file

return O;

[}

/I Monte Carlo sampling with the Metropolis algorithm

void mc_sampling {(nt dimension , int number_particles ,int charge,
int max_variations ,
int thermalization ,int number_cycles ,double
step_length ,
double xcumulative_e ,double xcumulative_e2)




12.2. VARIATIONAL MONTE CARLO FOR QUANTUM MECHANICAL SYSTE M323

{

int cycles, variate , accept, dim, i, j;

long idum;

double wfnew, wfold, alpha, energy, energy2, delta_e;

double xxr_old , xxr_new;

alpha = 0.5 charge;

idum=—1;

/!l allocate matrices which contain the position of the pactes
r_old = (double x*x) matrix ( number_particles , dimension sizeof(

double));

r new = (double xx) matrix ( number_particles , dimension sizeof(
double));

for (i = 0; i < number_particles; i++) {

for ( j=0; j < dimension; j++) {
r_old[i][j] = r_new[i][j] = O;
}
}

/1 loop over variational parameters
for (variate =1; variate <= max_variations; variate ++){
/l initialisations of variational parameters and energies
alpha += 0.1;
energy = energy2 = 0; accept =0; delta_e =0;
/l initial trial position , note calling with alpha
[/ and in three dimensions
for (i = 0; i < number_particles; i++) {
for ( j=0; j < dimension; j++) {
r_old[i][j] = step_lengthx(ranl(&idum)—0.5);
}
}

wfold = wave_function(r_old , alpha, dimension, numberrpales);
// loop over monte carlo cycles
for (cycles = 1; cycles <= number_cycles+thermalization; cgsi+)

{
I/l new position
for (i = 0; i < number_particles; i++) {

for ( j=0; j < dimension; j++) {
r newl[i][j] = r_old[i][j]+step_lengthx(ranl(&idum)—0.5);
}
}

wfnew = wave_function (r_new, alpha, dimension, numberrtpales)

/I Metropolis test
if (ranl(&idum) <= wfnewwfnew/wfold/wfold ) {
for (i = 0; i < number_particles; i++) {
for ( j=0; j < dimension; j++) {
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}

r old[i][jl=r_new[i][]j];
}
}

wfold = wfnew;
accept = accept+1;
}
I/l compute local energy
if ( cycles > thermalization ) {
delta_e = local_energy (r_old, alpha, wfold, dimension,
number_particles , charge);
/!l update energies
energy += delta_e;
energy2 += delta_edelta_e;
}
} /! end of loop over MC trials
cout <<"variational parameter= " << alpha
<< " accepted steps= " << accept << endl;
/l update the energy average and its squared
cumulative_e[variate] = energy/number_cycles;
cumulative_e2[variate] = energy2/number_cycles;

} /I end of loop over variational steps

free_matrix ((void %) r_old); // free memory

free_matrix ((void *x) r_new); // free memory
/l end mc_sampling function

{

/!l Function to compute the squared wave function , simplestmf

double wave_function @ouble xxr, double alpha ,int dimension , int

number_particles)

int i, j, k;
double wf, argument, r_single_ particle , r_12;

argument = wf = 0;
i

for (i = 0; < number_particles ; i++) {
r_single_particle = 0;
for (j = 0; j < dimension; j++) {
r single_particle +=r[i][jkr[i]ll]i];
}
argument += sqrt(r_single_particle);
}
wf = exp(-argumentalpha) ;
return wf;

CHAPTER 12. QUANTUM MONTE CARLO METHODS
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/!l Function to calculate the local energy with num derivagiv

double local_energy @louble xxr, double alpha , double wfold, int

dimension ,
int number_particles ,int charge)
{
int i, j , k;
double e_local , wfminus, wfplus, e_kinetic , e_potential , r_12,
r_single_particle;
double xxr_plus , xxr_minus;
/!l allocate matrices which contain the position of the pactes
I/l the function matrix is defined in the progam library
r plus = (double xx) matrix ( number_particles , dimension sizeof(
double));
r_ minus = (double %) matrix ( number_particles , dimension sizeof(
double));
for (i = 0; i < number_particles; i++) {
for ( j=0; j < dimension; j++) {
r_plus[i][j] = r_minus[i][j] = r[i][]];
}
}

[/l compute the kinetic energy

e_kinetic = 0;

for (i = 0; i < number_particles; i++) {

for (j = 0; j < dimension; j++) {
r_plus[i][j] = r[i]ljl+h;
r_minus[i][j] = r[i][j] —h;
wfminus = wave_function (r_minus , alpha, dimension ,
number_particles);

wfplus = wave_function(r_plus , alpha, dimension ,
number_particles);
e_kinetic —= (wfminus+wfplus—2«wfold) ;
r_plus[illil = r[i10IT;
r_minus[i][j] = r[i][j];
}
}
/I include electron mass and hbar squared and divide by wave
function

e _kinetic = 0.5 h2xe_kinetic/wfold;
/I compute the potential energy

e _potential = 0;
/!l contribution from electron-proton potential
for (i = 0; i < number_particles; i++) {

r_single_particle = 0;
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for (j = 0; j < dimension; j++) {
r_single_particle += r[i][jkr[illil;

}
e_potential—= charge/sqrt(r_single_particle);
}
/!l contribution from electror-electron potential
for (i = 0; i < number_particles-1; i++) {
for (j = i+1; ] < number_particles; j++) {
r_12 = 0;
for (k = 0; k < dimension; k++) {
\ r_12 += (r[iJ[KI=r[i10k]) *«(r[P]0K] =r[i10K]) ;
e _potential += 1/sqrt(r_12);
}
}

free_matrix ((void *x) r_plus); // free memory
free_matrix ((void *x) r_minus);

e _local = e_potential+e_kinetic;

return e _local;

void initialise (int& dimension , int& number_particles ,int & charge,
int& max_variations ,int& number_cycles,
int& thermalization , double& step_length)

cout << "number of particles = ";
cin >> number_particles;
cout <<'"charge of nucleus = ";
cin >> charge;
cout <<"dimensionality = ";
cin >> dimension;
cout << "maximum variational parameters = ";
cin >> max_variations;
cout <<"# Thermalization steps= ";
cin >> thermalization;
cout <<"# MC steps= ";
cin >> number_cycles;
cout <<"# step length= ";
cin >> step_length;
} // end of function initialise

void output(int max_variations ,int number_cycles ,int charge,
double x cumulative_e ,double xcumulative_e2)

{

int i;




12.2. VARIATIONAL MONTE CARLO FOR QUANTUM MECHANICAL SYSTE M327

double alpha, variance , error;
alpha = 0.5 charge;
for ( i=1; i <= max_variations; i++){
alpha += 0.1;
variance = cumulative_e2[Hcumulative_e[ikcumulative_e[i];
error=sqrt(variance /number_cycles);
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(1l5) << setprecision(8) << alpha;
ofile << setw (1l5) << setprecision(8) << cumulative_e[i];
ofile << setw(15) << setprecision(8) << variance;
ofile << setw(15) << setprecision(8) << error << endl;
}
/I fclose (output_file);
} // end of function output

In the program above one has to the possibility to study bo¢hhtydrogen atom and the
helium atom by setting the number of particles to either 1.dnaddition, we have not used the
analytic expression for the kinetic energy in the evaluatbthe local energy. Rather, we have
used the numerical expression of Eqg. (3.15), i.e.,

no__ fh - 2f0+f—h
0o — h2 )
in order to compute
1
— V3 (R). 12.75

The variableh is a chosen step length. For helium, since it is rather eagyatuate the local
energy, the above is an unnecessary complication. Howranany-electron or other many-
particle systems, the derivation of an analytic expres$morthe kinetic energy can be quite
involved, and the numerical evaluation of the kinetic eganging Eq. (3.15) may result in a
simpler code and/or even a faster one. The way we have rewBithrodinger’s equation results
in energies given by atomic units. If we wish to convert thesergies into more familiar units
like electronvolt (eV), we have to multiply our reults wittk, whereE, = 13.6 eV, the binding
energy of the hydrogen atom. Using Eq. (12.72) for the tria&function, we obtain an energy
minimum ata &~ 1.75. The ground state i§ = —2.85 in atomic units orfE = —77.5 eV. The
experimental value is 78.8 eV. Obviously, improvements to the wave function such akiging
the "cusp’-condition for the two electrons as well, see HG.T3), could improve our agreement
with experiment. We note that the effective charge is leas tihe charge of the nucleus. We
can interpret this reduction as an effective way of incoatiag the repulsive electron-electron
interaction. Finally, since we do not have the exact wavetion, we see from Fig. 12.4 that the
variance is not zero at the energy minimum.
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Figure 12.4: Result for ground state energy of the heliummatising Eq. (12.72) for the trial
wave function. The variance is also plotted. A total of 10D0@onte Carlo moves were used
with a step length of 2 Bohr radii.

12.3 Simulation of molecular systems

12.3.1 The H molecule

The H molecule consists of two protons and one electron, withinopeénergyEz = —2.8 eV
and an equilibrium position, = 0.106 nm between the two protons.

We define our system through the following variables. Theteda is at a distancefrom a
chosen origo, one of the protons is at the distan®e/2 while the other one is placed R/2
from origo, resulting in a distance to the electrorof R/2 andr + R/2, respectively.

In our solution of Schrddinger’s equation for this systemase going to neglect the kinetic
energies of the protons, since they are 2000 times heawerttie electron. We assume thus
that their velocities are negligible compared to the vejoaf the electron. In addition we omit
contributions from nuclear forces, since they act at distanof several orders of magnitude
smaller than the equilibrium position.

We can then write Schrodinger’s equation as follows

Y ke ke ke?

— L — — — R)=F R 12.76
(- e - iw g YR = BUER), (12.76)
where the first term is the kinetic energy of the electron séaeond term is the potential energy
the electron feels from the proton-aR /2 while the third term arises from the potential energy
contribution from the proton @& /2. The last term arises due to the repulsion between the two
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protons. In Fig. 12.5 we show a plot of the potential energy

B ke? B ke? +k_62
r—R/2| |r+R/2| R

V(r,R) = (12.77)

Here we have fixedR| = 2a, og |R| = 8ag, being 2 and 8 Bohr radii, respectively. Note
that in the region betweejr| = —|R|/2 (units arer/ay in this figure, witha, = 0.0529) and

lr] = |R|/2 the electron can tunnel through the potential barrier. Rélcat —R/2 og R/2
correspond to the positions of the two protons. We note alabit 12 is increased, the potential
becomes less attractive. This has consequences for thndpiadergy of the molecule. The
binding energy decreases as the distaRcacreases. Since the potential is symmetric with

0 T

e g

) [eV]

V(r,
A
o

T

r/ag

Figure 12.5: Plot of’(r, R) for |R|=0.1 and 0.4 nm. Units along theaxis arer/a, . The
straight line is the binding energy of the hydrogen aterm, —13.6 eV.

respect to the interchange Bf -+ —R andr — —r it means that the probability for the electron
to move from one proton to the other must be equal in both times. We can say that the
electron shares it's time between both protons.

With this caveat, we can now construct a model for simulatiigymolecule. Since we have
only one elctron, we could assume that in the liRit> o, i.e., when the distance between the
two protons is large, the electron is essentially bound 1y one of the protons. This should
correspond to a hydrogen atom. As a trial wave function, wedctherefore use the electronic
wave function for the ground state of hydrogen, namely

1 1/2
'(7/}100 (’I“) = (—3> e—r/a(). (1278)

Tag
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Since we do not know exactly where the electron is, we havéldw dor the possibility that
the electron can be coupled to one of the two protons. This facludes the 'cusp’-condition
discussed in the previous section. We define thence two bgdravave functions

1 1/2
Uy (r,R) = (ﬁ) e~ Ir—R/2|/a0, (12.79)
0
and
1 1/2
o(r,R) = (ﬁ) e~Ir+R/2l/a0, (12.80)
0

Based on these two wave functions, which represent whemdeb&on can be, we attempt at the
following linear combination

pi(r,R) = Cy (¢ (r,R) £ 4o(r, R)) (12.81)

with C. a constant.

12.3.2 Physics project: the H molecule

in preparation

12.4 Many-body systems

12.4.1 Liquid “He

Liquid “He is an example of a so-called extended system, with ant@afmimber of particles.
The density of the system varies from dilute to extremelyséenit is fairly obvious that we
cannot attempt a simulation with such degrees of freedonererare however ways to circum-
vent this problem. The usual way of dealing with such systerssg concepts from statistical
Physics, consists in representing the system in a simalagd with e.g., periodic boundary
conditions, as we did for the Ising model. If the cell has t&nb, the density of the system is
determined by putting a given number of particlésn a simulation cell with volumé.?. The
density becomes then= N/L3.

In general, when dealing with such systems of many interggiarticles, the interaction it-
self is not known analytically. Rather, we will have to relg parametrizations based on e.g.,
scattering experiments in order to determine a paramatizaf the potential energy. The in-
teraction between atoms and/or molecules can be eithelsrepor attractive, depending on the
distancel between two atoms or molecules. One can approximate tlesaiction as

A B
VIR) = —— — — 12.82
wherem, n are some integers andl, B constans with dimension energy and length, and with
units in e.g., evVnm. The constards B and the integers:, n are determined by the constraints
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Figure 12.6: Plot for the Van der Waals interaction betweelium atoms. The equilibrium
position isrg = 0.287 nm.

that we wish to reproduce both scattering data and the kgreliergy of say a given molecule.
It is thus an example of a parametrized interaction, and doé€njoy the status of being a
fundamental interaction such as the Coulomb interacti@sdo

A well-known parametrization is the so-called Lennardekpotential

Vis(R) = de { (%)12 - (%)6} , (12.83)

wheree = 8.79x 10~* eV ando = 0.256 nm for helium atoms. Fig. 12.6 displays this interaction
model. The interaction is both attractive and repulsiveextdbits a minimum at,. The reason
why we have repulsion at small distances is that the elegirotwo different helium atoms start
repelling each other. In addition, the Pauli exclusion @pte forbids two electrons to have the
same set of quantum numbers.

Let us now assume that we have a simple trial wave functiohefdrm

N
Yr(R) =[] £(riy), (12.84)
i<j
where we assume that the correlation functign;;) can be written as
Flry) = ema /)" (12.85)

with b being the only variational parameter. Can we fix the value a$ing the 'cusp’-conditions
discussed in connection with the helium atom? We see froniaime of the potential, that it
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diverges at small interparticle distances. Since the gnisrdinite, it means that the kinetic
energy term has to cancel this divergence at smdlet us assume that electroiand; are very
close to each other. For the sake of convenience, we replaeer. At smallr we require then

that
1

G Vif(r)+V(r)=0. (12.86)

In the limitr — 0 we have )
n-b" o\ 12

—mrs + (;) — 0, (12.87)

resulting inn = 5 and thus
f(ry) = e 20/, (12.88)
with
N 1 5
Yr(R) = [Je=®m), (12.89)

as trial wave function. We can rewrite the above equation as
Yr(R) = e 2 Zicit/rig)” = =3 iy ulriy), (12.90)

with

u(ris) = (b/rij)”.
For this variational wave function, the analytical expressor the local energy is rather simple.
The tricky part comes again from the kinetic energy given by

_szR) V2 (R). (12.91)
It is possible to show, after some tedious algebra, that
1, AN S 1
_wT(R)V vr(R) = — ; mV,CwT(R) = —10b ; ~x (12.92)

In actual calculations employing e.g., the Metropolis allpmn, all moves are recast into
the chosen simulation cell with periodic boundary condisio To carry out consistently the
Metropolis moves, it has to be assumed that the correlationtion has a range shorter than
L/2. Then, to decide if a move of a single particle is acceptedody anly the set of particles
contained in a sphere of radilig2 centered at the referred particle have to be considered.

12.4.2 Bose-Einstein condensation

in preparation
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12.4.3 Quantum dots

in preparation

12.4.4 Multi-electron atoms

in preparation






Chapter 13

Eigensystems

13.1 Introduction

In this chapter we discuss methods which are useful in sgpleigenvalue problems in physics.

13.2 Eigenvalue problems

Let us consider the matrik of dimension n. The eigenvaluesAfis defined through the matrix
equation
Ax¥) = \Wx), (13.1)

where)\*) are the eigenvalues and”) the corresponding eigenvectors. This is equivalent to a
set ofn equations withh unknownsr;

A11T1 + A12%9 + *+ + + ATy = )\ZL‘l

)\[L‘Q

a91X1 + Q9o + -+ - + Gop Xy,

A1 T1 + Ao + -+ ATy = ATy,
W can rewrite eq (13.1) as

(A - \"T1)x") =0,

with I being the unity matrix. This equation provides a solutiotheproblem if and only if the
determinant is zero, namely
|A — 21| =0,

which in turn means that the determinant is a polynomial gféler in A and in general we will
haven distinct zeros, viz.,

n

Po=T] =)

i=1

235
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Procedures based on these ideas con be used if only a snuibriraf all eigenvalues and
eigenvectors are required, but the standard approachve sgl (13.1) is to perform a given
number of similarity transformations so as to render thgioal matrixA in: 1) a diagonal form
or: 2) as a tri-diagonal matrix which then can be be diagaedlby computational very effective
procedures.

The first method leads us to e.g., Jacobi's method whereasettend one is e.g., given by
Householder’s algorithm for tri-diagonal transformasohiVe will discuss both methods below.

13.2.1 Similarity transformations

In the present discussion we assume that our matrix is reesammetric, although it is rather
straightforward to extend it to the case of a hermitian matfihe matrixA hasn eigenvalues
A1... A, (distinct or not). LefD be the diagonal matrix with the eigenvalues on the diagonal

M 0 0 0 ... 0 0
0 X O 0 ... 0 0
b_| 0 0 X 0 0 .. 0 (13.2)
0 o el A
0 oo el 0N,

The algorithm behind all current methods for obtaning eigéres is to perform a series of
similarity transformations on the original matrix to reduce it either into a diagonal form as
above or into a tri-diagonal form.

We say that a matriB is a similarity transform ofA if

B =S"AS, where S’S=8"'S=1. (13.3)

The importance of a similarity transformation lies in thetféhat the resulting matrix has the
same eigenvalues, but the eigenvectors are in generaleditfeTo prove this, suppose that

Ax = )x and B = STAS. (13.4)
Multiply the first equation on the left b§” and inserS8”S = I betweenA andx. Then we get
(STAS)(STx) = ASTx, (13.5)

which is the same as
B (STx) = A (STx). (13.6)

Thus) is an eigenvalue dB as well, but with eigenvect@Tx.
Now the basic philosophy is to

¢ either apply subsequent similarity transformations sb tha
SN ---STAS;...Sx =D, (13.7)
e or apply subsequent similarity transformations so théecomes tri-diagonal. Thereatfter,
techniques for obtaining eigenvalues from tri-diagonalrioas can be used.
Let us look at the first method, better known as Jacobi’s ntetho
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13.2.2 Jacobhi’s method

Consider ax{ x n) orthogonal transformation matrix

1 0o ... 0 0 0 O
0 1 ... 0 0 0 0
0 0 ... cost 0 0 sind
Q= o 0 ... 0 1 0 0 (13.8)
0o 0 ... 0 0o ... 1 0
0 0 ... —smf ... ... 0 cosb

with propertyQT = Q~1. It performs a plane rotation around an anglen the Euclidean
n—dimensional space. It means that its matrix elements diftdfrom zero are given by

Gk = qu = cost, qu = —qy = —sinb, q;; = —qi =1 i Fk i #l, (13.9)
A similarity transformation

B =QTAQ, (13.10)
results in
bir = ajpcosl — aysinb, i #k,i #1 (13.11)
by = ajcosh + ajsinb,i # k,i # 1
b = aprpcos’l — 2agcoslsind + aysin’6
by = aycos?0+ 2acos0sind + agsin?o
b = (g — ay)cosfsing + ay(cos’d — sin6)

The angld) is arbitrary. Now the recipe is to choogeso that all non-diagonal matrix elements

b,, become zero which gives

Qakl

tan26 = (13.12)

kk — Ay
If the denominator is zero, we can chodse +r/4. Having defined throughz = tan26, we
do not need to evaluate the other trigonometric functiorescan simply use relations like e.g.,

1 1
29 = = (1 + k> : 13.13
cOoS 5 1 T 22 ( )
and
sin?0 = & (1 S > (13.14)
2 Vit 2) '

The algorithm is then quite simple. We perform a number ohtiens untill the sum over the

squared non-diagonal matrix elements are less than a ptakse (ideally equal zero). The

algorithm is more or less foolproof for all real symmetrictni@es, but becomes much slower
than methods based on tri-diagonalization for large medridVe do therefore not recommend
the use of this method for large scale problems. The philogbpwever, performing a series of
similarity transformations pertains to all current modelsmatrix diagonalization.
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13.2.3 Diagonalization through the Householder’'s methodbir tri-diagonalization

In this case the energy diagonalization is performed in t@ps First, the matrix is transformed
into a tri-diagonal form by the Householder similarity tséormation and second, the tri-diagonal
matrix is then diagonalized. The reason for this two-stegress is that diagonalising a tri-
diagonal matrix is computational much faster then the apwading diagonalization of a general
symmetric matrix. Let us discuss the two steps in more detail

The Householder's method for tri-diagonalization

The first step consists in finding an orthogonal ma®ixvhich is the product ofn — 2) orthog-
onal matrices

Q=QiQ;2...Qu, (13.15)

each of which successively transforms one row and one coloimA into the required tri-
diagonal form. Onlyn — 2 transformations are required, since the last two elemeetala
ready in tri-diagonal form. In order to determine edghlet us see what happens after the first
multiplication, namely,

app € 0 0 R 0 0
€1 by Ay v e ... Y,
QTAQ, = 0 afyy aby ... ... ... ah, (13.16)
0
0 aly g oo oo o..oan,

where the primed quantities represent a mairixf dimensiom —1 which will subsequentely be
transformed byQ,. The factore; is a possibly non-vanishing element. The next transfoirnati
produced byQ, has the same effect &, but now on the submatirA’ only

app €1 0 0 ce 0 0

. ey ahy e 0 ... ... 0
(QlQQ) AQlQQ = 0 €9 a'3'3 e e e Clgn (1317)

0 0 aly ... ... ... an.

Note that the effective size of the matrix on which we appltiilansformation reduces for every
new step. In the previous Jacobi method each similaritystcamation is performed on the full
size of the original matrix.
After a series of such transformations, we end with a setagahal matrix elements
11, Ao, Gy oo al >t (13.18)
and off-diagonal matrix elements
€1,€2,€3,...,€n 1. (13.19)
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The resulting matrix reads

ai €1 0 0 0 0
€1 Gy e 0 0 0
0 ey a¥, e 0 0
QaQ=| T M (13.20)
0 a;n:gl) €n1
0 en 1 a7

Now it remains to find a recipe for determining the transfaioraQ,, all of which has basicly
the same form, but operating on a lower dimensional matrie. iNM/strate the method fo®,
which we assume takes the form

T
Q1 = ( (1) (i) ) , (13.21)

with 0T being a zero row vectoQT = {0,0,---} of dimension(n — 1). The matrixP is
symmetric with dimension¢ — 1) x (n — 1)) satisfyingP? = TandP” = P. A possible choice
which fullfils the latter two requirements is

P=1-2uu’, (13.22)

wherel is the(n — 1) unity matrix andu is ann — 1 column vector with nornm” u(inner product.
Note thatuu’ is an outer product giving a awith dimensidm (— 1) x (n — 1)). Each matrix
element ofP then reads

F)ij = 51']' — QUZ'UJ', (1323)

where: andj range froml ton — 1. Applying the transformatio; results in
a Pv)"
araa-( gy ). (13.24)

wherevT = {ay, a3, -+ ,a, } andP must satisfyPv)” = {£,0,0,---}. Then
Pv =v —2u(u’v) = ke, (13.25)

with eT = {1,0,0,...0}. Solving the latter equation gives usand thus the needed transforma-
tion P. We do first however need to compute the scéalby taking the scalar product of the last
equation with its transpose and using the fact #at= 1. We get then

(Pv)'Pv =k =viv == Z aZ, (13.26)

=2
which determines the constant= +v. Nowwe can rewrite Eq. (13.25) as

T

v — ke =2u(u’v), (13.27)
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and taking the scalar product of this equation with itsetf abtain

2(u”"v)? = (v* £ ayv), (13.28)
which finally determines
vV —e
= —. 13.2
u ST (13.29)

In solving Eq. (13.28) great care has to be exercised so dsowse those values which make
the right-hand largest in order to avoid loss of numericakcigion. The above steps are then
repeated for every transformations till we have a tri-dreganatrix suitable for obtaining the
eigenvalues.

Diagonalization of a tri-diagonal matrix

The matrix is now transformed into tri-diagonal form and thst step is to transform it into a
diagonal matrix giving the eigenvalues on the diagonal. pregrams which performs these
transformations are matrix A — tri-diagonal matrix— diagonal matrix

C: void trd2(doublexxa, int n, double d[], double €[])
void tgli(double d[], double[], int n, doublexz)
Fortran: CALL tred2(a, n, d, e)
CALL tqli(d, e, n, 2)

The last step through the functiagii() involves several technigcal details, but let us describe th
basic idea in a four-dimensional example. The currentigganal matrix takes the form

d1 €1 0 0
€1 dQ €9 0
0 €9 d3 €3
0 0 €3 d4

A —

As a first observation, if any of the elememisare zero the matrix can be separated into smaller
pieces before diagonalization. Specificallyeif = 0 thend, is an eigenvalue. Thus, let us
introduce a transformatio®

cosf@ 0 0 sinf
a=| o g0 g
—sinff 0 0 cosf
Then the similarity transformation
di e, 0 0
Qfaq=a=| 02 L

0 0 e d
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produces a matrix where the primed elements\inhas been changed by the transformation
whereas the unprimed elements are unchanged. If we now eldosgive the element,, =
¢ = 0 then we have the first eigenvaleea,, = d,.

This procedure can be continued on the remaining threerdimmeal submatrix for the next
eigenvalue. Thus after four transformations we have thaeudatiagonal form.

13.3 Schrodinger’s equation (SE) through diagonalization

Instead of solving the SE as a differential equation, we salle it through diagonalization of a
large matrix. However, in both cases we need to deal with bleno with boundary conditions,
viz., the wave function goes to zero at the endpoints.

To solve the SE as a matrix diagonalization problem, let udysthe radial part of the SE.
The radial part of the wave functioR(r), is a solution to

r2dr dr r2

W (1d,d i+
2m "

_ 7> R(r) + V(r)R(r) = ER(r). (13.30)

Then we substitut&(r) = (1/r)u(r) and obtain

(l+1) n*

r2  2m

———u(r) + (V(r) + ) u(r) = Eu(r). (13.31)
We introduce a dimensionless variable= (1/a)r wherea is a constant with dimension length
and get
n o d?
" 2ma? dp?

I(1+1) b
P> 2ma?

u(r) + <V(p) + > u(p) = Eu(p). (13.32)

In the example below, we will replace the latter equatiorhwiiat for the one-dimensional har-
monic oscillator. Note however that the procedure which we gelow applies equally well to
the case of e.g., the hydrogen atom. We replaadth z, take away the centrifugal barrier term
and set the potential equal to

1
Vi(z) = §k$2’ (13.33)

with k£ being a constant. In our solution we will use units so that » = m = o = 1 and the
SE for the one-dimensional harmonic oscillator becomes

d2

—Wu(x) + 2%u(z) = 2Bu(x). (13.34)

X
Let us now see how we can rewrite this equation as a matrixieédee problem. First we need
to compute the second derivative. We use here the followipgession for the second derivative
of a functionf
fl@+h) —2f(z)+ f(z —h)

> +O(h?), (13.35)

fll —
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whereh is our step. Next we define minimum and maximum values for tr@blez, R.,;, and
Rumax, respectively. With a given number of step§,.,, we then define the stépas

Riax — R
h =2 TR 13.36
Nstep ( )

If we now define an arbitrary value afas
2; = Rmin + ih i=1,2,..., Nyep — 1 (13.37)
we can rewrite the SE for; as

u(zy + h) — 2u(zy) +ulzg — h)
12

+ ziu(zy) = 2Bu(zy,), (13.38)

or in a more compact way

U1 = 2up + Up—y 4P, = M T 2uy + up_q

whereu, = u(xy), ups1 = u(xy £ h) andVy, = 22, the given potential. Let us see how this
recipe may lead to a matrix reformulation of the SE. Define five diagonal matrix element

+ Viuy, = 2Buy, (13.39)

2
d, = t Vi, (13.40)
and the non-diagonal matrix element
1
ek =73 (13.41)

In this case the non-diagonal matrix elements are given byi@ monstantAll non-diagonal
matrix elements are equalVith these definitions the SE takes the following form

dpug + ep_1Up—1 + epp1Upp1 = 2Fuy, (13.42)

whereuy, is unknown. Since we hawl., — 1 values oft we can write the latter equation as a
matrix eigenvalue problem

dl €1 0 0 ce 0 0 U1 Uy
€1 dQ €9 0 e 0 0 U9 U9
0 €9 d3 €3 0 B 0 —9F
0 sttep*Q €Nstep,1
0 R R e e eNstep_l sttep_l uNstep_l uNstep_l
(13.43)
or if we wish to be more detailed, we can write the tri-diagaonatrix as
EtVi - 0 0 ... 0 0
1 2 1
-+ 2 4_1V2 T O1 e 0 0
0 % + VNstep*Q _h%
0 _h_12 112_2 + VNstep*1



13.3. SCHRODINGER'’S EQUATION (SE) THROUGH DIAGONALIZATIO N 243

This is a matrix problem with a tri-diagonal matrix of dimés Ny, — 1 x Ngep, — 1 and
will thus yield Ny, — 1 eigenvalues. It is important to notice that we do not set umaimnof
dimensionNg., x Ng.ep Since we can fix the value of the wave functiorkat Nge,. Similarly,
we know the wave function at the other end point, that istfor

The above equation represents an alternative to the nusheotution of the differential
equation for the SE.

The eigenvalues of the harmonic oscillator in one dimenai@nwell known. In our case,
with all constants set equal 1o we have

1
Bi=n+ 3, (13.45)

with the ground state beinf, = 1/2. Note however that we have rewritten the SE so that a
constant 2 stands in front of the energy. Our program wilhthield twice the value, that is we
will obtain the eigenvalues, 3,5,7......

In the next subsection we will try to delineate how to solve #foove equation. A program
listing is also included.

Numerical solution of the SL by diagonalization

The algorithm for solving Eq. (13.43) may take the followiogm

e Define values folNye,, Rmin andR,,,«. These values define in turn the step siz&ypical
values forRR .., andR,,;, could bel() and—10 respectively for the lowest-lying states. The
number of mesh point¥., could be in the range 100 to some thousands. You can check
the stability of the results as functions &%;., — 1 and R,,,x and R.,;» against the exact
solutions.

¢ Construct then two one-dimensional arrays which contawvedlies ofz, and the potential
V. For the latter it can be convenient to write a small functidrich sets up the potential as
function ofz;.. For the three-dimensional case you may also need to inthedeentrifugal
potential. The dimension of these two arrays should go féam to Nep,.

¢ Construct thereafter the one-dimensional vectbasde, whered stands for the diagonal
matrix elements andthe non-diagonal ones. Note that the dimension of these Itaysa
runs from1 up to Ny, — 1, since we know the wave functionat both ends of the chosen
grid.

¢ We are now ready to obtain the eigenvalues by calling thetfomtgli which can be found
on the web page of the course. Calliogj, you have to transfer the matricésnde, their
dimensiom = Ny, — 1 and a matrix: of dimensionNge, — 1 X Ny, — 1 Which returns
the eigenfunctions. On return, the arrdygontains the eigenvalues. 4fis given as the
unity matrix on input, it returns the eigenvectors. For agieigenvalué, the eigenvector
is given by the columr in z, that is z[][K] in C, or z(:,k) in Fortran 90.
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e TQLI does however not return an ordered sequence of eigggsalYou may then need
to sort them as e.g., an ascending series of numbers. Theaprage provide includes a

sorting function as well.

¢ Finally, you may perhaps need to plot the eigenfunctionselg or calculate some other
expectation values. Or, you would like to compare the eigrections with the analytical
answers for the harmonic oscillator or the hydrogen atom. pvédeide a functionplot
which has as input one eigenvalue chosen from the outpigliofThis function gives you

a normalized wave functionm where the norm is calculated as

R]]]ax NStep
/ \u(a:)|2da:—>h2u?:1,
i=0

Rm in

and we have used the trapezoidal rule for integration desmlisn chapter 4.

Program example and results for the one-dimensional harmoie oscillator

We present here a program example which encodes the abarélaig

[ %
Solves the oneparticle Schrodinger equation
for a potential specified in function
potential (). This example is for the harmonic oscillator

*/

#include <cmath>

#include <iostream >

#include <fstream >

#include <iomanip >

#include "1lib.h"

using namespace std;

/Il output file as global variable

ofstream ofile;

/! function declarations

void initialise (double&, double&, int&, int&) ;
double potential (double);

int comp(const double x, const double x);

void output(double, double, int , double x);

int main(int argc , charx* argv][])
{
int i, j, max_step, orb_I;
double r_ min, r_max, step, const_1, const 2, orb_factor,
x€, xd, *xW, *xI, x%xZ;
char *xoutfilename;
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/l Read in output file , abort if there are too few commandne

arguments
if ( argc <=1 ){
cout <<"Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1l);
}
else{
outfilename=argv[1];
}

ofile .open(outfilename);
/1 Read in data

initialise (r_min, r_max, orb_I|, max_step);
/l initialise constants

step = (r_max— r_min) / max_step;
const_2 —1.0/ (step * step);

const_1 = — 2.0x% const_2;
orb_factor = orb_Ix (orb_|I + 1);

/1 local memory for r and the potential w[r]
r = new double[max_step + 1];
w = new double[max_step + 1];
for (i = 0; i <= max_step; i++) {
rii] rmin + i x step;
wii] potential (r[i]) + orb_factor / (r[i]* r[i]);

}
/Il local memory for the diagonalization process
d = new double[max_step]; /1 diagonal elements
e = new double[max_step]; /1 tri —diagonal off-diagonal elements
z = (double xx) matrix(max_step, max_step sizeof(double));
for (i = 0; i < max_step; i++) {

dfi] = const_1 + w[i + 1];

efi] = const_2;

z[i][i] = 1.0;

for(j =i + 1; j < max_step; j++) {

z[i][j] = 0.0

}

}

/!l diagonalize and obtain eigenvalues

tqli(d, e, max_step— 1, z);

[/l Sort eigenvalues as an ascending series

gsort(d,(UL) max_step— 1,sizeof(double),
(int (x) (const void *,const void x))comp);

I/l send results to ouput file

output(r_min , r_max, max_step, d);
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delete [] r; delete [] w; delete [] e; delete [] d;
free_matrix ((void xx) z); // free memory
ofile.close(); [// close output file
return O;

} // End: function main ()

[

The function potential ()

calculates and return the value of the

potential for a given argument Xx.

The potential here is for the-4dim harmonic oscillator
*/

double potential (double x)

{

return Xsx;

} // End: function potential ()

[ x
The function int comp ()
is a utility function for the library function gsort ()
to sort double numbers after increasing values.

*/

int comp(const double xval 1, const double xval_2)

{
if ((xval_1) <= (xval_2)) return —1;
else if((xval_1) > (xval_2)) return +1;
else return O;

} 1/ End: function comp ()

/Il read in min and max radius , number of mesh points and |

void initialise (double& r_min, double& r_max, int& orb_I|, int&

max_step)

{
cout << "Min vakues of R = ";
cin >> r_min;
cout << "Max value of R = ";
cin >> r_max;
cout << "Orbital momentum = ";
cin >> orb_|I;
cout << "Number of steps = ";
cin >> max_step;

} // end of function initialise
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/l output of results
void output(double r_min , double r_max, int max_step ,double xd)

{

int i;

ofile << "RESULTS:" << endl;

ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile <<"R_min = " << setw (15) << setprecision(8) << r_min << endl}
ofile <<"R_max = " << setw(1l5) << setprecision(8) << r_max << endlj
ofile <<"Number of steps = " << setw(1l5) << max_step << endl;

ofile << "Five lowest eigenvalues:" << endl;
for(i = 0; i < 5; i++){

ofile << setw (15) << setprecision(8) << d[i] << endl;
}

} // end of function output

There are several features to be noted in this program.

The main program calls the functionitialise, which reads in the minimum and maximum
values ofr, the number of steps and the orbital angular momeriturnereafter we allocate place
for the vectors containing and the potential, given by the variablgg] andw|i], respectively.
We also set up the vectod§| ande[i] containing the diagonal and non-diagonal matrix elements.
Calling the functiontql: we obtain in turn the unsorted eigenvalues. The latter atedby the
intrinsic C-functiongsort.

The calculaton of the wave function for the lowest eigengatidone in the functioplot,
while all output of the calculations is directed to the foatbutput.

The included table exhibits the precision achieved as fanaf the number of mesh points
N. The exact values are 3,5, 7, 9.

Table 13.1: Five lowest eigenvalues as functions of the rarrobmesh pointsV with r.,;;, =
—10 andrpy.x = 10.

N E, E, E, E, E,

50 9.898985E-01 2.949052E+00 4.866223E+00 6.739916E+(E68842E+00

100 9.974893E-01 2.987442E+00 4.967277E+00 6.936913E8XD6282E+00

200 9.993715E-01 2.996864E+00 4.991877E+00 6.984335E80074301E+00

400 9.998464E-01 2.999219E+00 4.997976E+00 6.996094E80803599E+00

1000 1.000053E+00 2.999917E+00 4.999723E+00 6.999353BE8M99016E+00

The agreement with the exact solution improves with inégrepaumbers of mesh points.
However, the agreement for the excited states is by no meapessive. Moreover, as the
dimensionality increases, the time consumption incredsa®atically. Matrix diagonalization
scales typically asz N3. In addition, there is a maximum size of a matrix which can toeesl
in RAM.

The obvious question which then arises is whether this sehemothing but a mere example
of matrix diagonalization, with few practical applicateaf interest.
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13.4 Physics projects: Bound states in momentum space

In this problem we will solve the Schrodinger equation (SEnomentum space for the deuteron.
The deuteron has only one bound state at an energ @23 MeV. The ground state is given by
the quantum numbers= 0, S = 1 and.J = 1, with [, S, and.J the relative orbital momentum,
the total spin and the total angular momentum, respectivEhese quantum numbers are the
sum of the single-particle quantum numbers. The deuterosists of a proton and neutron,
with mass (average) ¢f38 MeV. The electron is not included in the solution of the SEcein
its mass is much smaller than those of the proton and theoreuive can neglect it here. This
means that e.g., the total spthis the sum of the spin of the neutron and the proton. The above
three quantum numbers can be summarized in the spectroseatption?+/; =3 S, whereS
representg = 0 here. It is a spin triplet state. The spin wave function issteymmetric. This
also applies to the spatial part, sifce 0. To obtain a totally anti-symmetric wave function we
need to introduce another quantum number, namely isosgie.d€uteron has isospinh = 0,
which gives a final wave function which is anti-symmetric.

We are going to use a simplified model for the interaction leetwthe neutron and the proton.
We will assume that it goes like

v%r)zzvﬁgfgé;ffj, (13.46)

wherey has units m! and serves to screen the potential for large values ®he variable is the
distance between the proton and the neutron. Itis thevelatiordinate, the centre of mass is not
needed in this problem. The nucleon-nucleon interacti@aahfnite and small range, typically
of some few fm. We will in this exercise set = 0.7 fm~!. It is then proportional to the mass
of the pion. The pion is the lightest meson, and sets thexdfeg range of the nucleon-nucleon
interaction. For low-energy problems we can describe tlaeom-nucleon interaction through
meson-exchange models, and the pion is the lightest knovgomaevith mass of approximately
138 MeV.

Since we are going to solve the SE in momentum, we need thégFdamsform ofi’(r). In
a partial wave basis fdr= 0 it becomes

Vo (K" + k)% +
V(K k) = 4k’kln ((k’ e ) (13.47)

wherek’ andk are the relative momenta for the proton and neutron system.
For relative coordinates, the SE in momentum space becomes

o)+ 2 [ VD) = Bolh) (13.48)

Here we have used units= ¢ = 1. This means thdt has dimension energy. This is the equation
we are going to solve, with eigenvaldeand eigenfunction)(k). The approach to solve this
equations goes then as follows.

1 fm=10""m.
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First we need to evaluate the integral oparsing e.g., gaussian quadrature. This means that

we rewrite an integral like
b N
/ f(z)dz ~ Zwif(xi):
a i=1

where we have fixedV lattice points through the corresponding weightsand pointse;. The
integral in Eq. (13.48) is rewritten as

2
;/ dpp’V (k. p)¢ szpz (k. i) (pi)- (13.49)
0
We can then rewrite the SE as
9 N
T > wipiV(k,p)v(p;) = Ev(k). (13.50)
j=1

Using the same mesh points foas we did forp in the integral evaluation, we get

N
2
T > winiV(pspy)v(p;) = Ed(ps), (13.51)
7=1
with¢,7 =1,2,..., N. This is a matrix eigenvalue equation and if we definé\asm N matrix
H to be
P 2 2
Hyj =" 01 + —wip;V(pi, pj), (13.52)

whered;; is the Kronecker delta, and an x 1 vector

¥(p1)
¥ (p2)
U= . , (13.53)
¥(pN)
we have the eigenvalue problem
HU = EV. (13.54)

The algorithm for solving the last equation may take theofwlhg form
e Fix the number of mesh poinfs.

e Use the functiomauleg in the program library to set up the weights and the points
p;. Before you go on you need to recall thatuleg uses the Legendre polynomials to fix
the mesh points and weights. This means that the integral ihé interval [-1,1]. Your
integral is for the interval [@c]. You will need to map the weights fromuuleg to your
interval. To do this, call firsgauleg, witha = —1, b = 1. It returns the mesh points and
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weights. You then map these points over to the limits in yotegral. You can then use
the following mapping
p; = const X tan {%(1 +xz)} :

and

t71' w;
w; = const— :
4 cos? (Z(1 + z;))

const is a constant which we discuss below.

e Construct thereafter the mat®X with

Vo . ((pj +pi)? +M2>
4pip; (pj — pi)? + 12

V(pi,pj) =

e We are now ready to obtain the eigenvalues. We need first tateethhe matrixH in
tri-diagonal form. Do this by calling the library functiamed2 This function returns
the vectord with the diagonal matrix elements of the tri-diagonal mawhile e are the
non-diagonal ones. To obtain the eigenvalues we call thetitumzqli. On return, the
arrayd contains the eigenvalues. 4fis given as the unity matrix on input, it returns the
eigenvectors. For a given eigenvalughe eigenvector is given by the colurhnn z, that
is z[][k] in C, or z(:,k) in Fortran 90.

The problem to solve

1. Before you write the main program for the above algorithekena dimensional analysis
of Eq. (13.48)! You can choose units so thatndw; are in fm-1. This is the standard
unit for the wave vector. Recall then to insértin the appropriate places. For this case
you can set the value ebnst = 1. You could also choose units so that the unitg,adnd
w; are in MeV. (we have previously used so-called natural unisc = 1). You will then
need to multiply. with Ac = 197 MeVfm to obtain the same units in the expression for
the potential. Why? Show th&t(p;, p;) must have units MeV?. What is the unit ofi;?

If you choose these units you should also multiply the meshtp@nd the weights with
he = 197. That means, set the constant.st = 197.

2. Write your own program so that you can solve the SE in mourersipace.

3. Adjust the value of} so that you get close to the experimental value of the bindegygy
of the deuteron;-2.223 MeV. Which sign should/, have?

4. Try increasing the number of mesh points in steps of 8, fangle 16, 24, etc and see
how the energy changes. Your program returns equally maygnealues as mesh points
N. Only the true ground state will be at negative energy.
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13.5 Physics projects: Quantum mechanical scattering

We are now going to solve the SE for the neutron-proton sygtanmomentum space for positive
energiesE in order to obtain the phase shifts. In the previous physiogept on bound states
in momentum space, we obtained the SE in momentum space {§¥E48). %k was the relative
momentum between the two particles. A partial wave expanses used in order to reduce the
problem to an integral over the magnitude of momentum oriiye Jubscript referred therefore
to a partial wave with a given orbital momentumTo obtain the potential in momentum space
we used the Fourier-Bessel transform (Hankel transform)

Vil ) = / (kY () (), (13.55)

wherej; is the spherical Bessel function. We will just study the clase 0, which means that
Jo(kr) = sin(kr)/kr.

For scattering state#; > 0, the corresponding equation to solve is the so-called Lgpm
Schwinger equation. This is an integral equation where we ha deal with the amplitude
R(k, k") (reaction matrix) defined through the integral equation

2 o 1
kK'Y =Vi(k, k') + = dqq*Vi(k, Q) ———— k' 13.56
Rk, ) = Vil K)+ =P [ digVith ) g Rl k), (1356)
where the total kinetic energy of the two incoming partigtethe center-of-mass system is
kg
E=—. (13.57)
m

The symbolP indicates that Cauchy'’s principal-value prescriptionssdiin order to avoid the
singularity arising from the zero of the denominator. Wel @iscuss below how to solve this
problem. Eq. (13.56) represents then the problem you wikehia solve numerically.

The matrixR,(k, k') relates to the the phase shifts through its diagonal elesraent

tand;

Ry(ko, ko) = — (13.58)

mkg ’

The principal value in Eq. (13.56) is rather tricky to evakiaumerically, mainly since com-
puters have limited precision. We will here use a subtradtick often used when dealing with
singular integrals in numerical calculations. We introelficst the calculus relation

< dk
=0. 13.59
/oo PRy (13.59)

It means that the curve/(k — k) has equal and opposite areas on both sides of the singular
point k. If we break the integral into one over positiveand one over negativie a change of
variablek — —Fk allows us to rewrite the last equation as

— =0. 13.60
/0 k2 — kg ( )



252 CHAPTER 13. EIGENSYSTEMS

We can use this to express a principal values integral as

> (f(k) — f(ko))dk
’p/ i k2 _/0 ey (13.61)

where the right-hand side is no longer singulakat kg, it is proportional to the derivative
df /dk, and can be evaluated numerically as any other integral.
We can then use the trick in Eq. (13.61) to rewrite Eq. (13a56)

2 [ ¢*V(k k" — k2V (k, k ko, k'
Rk, K :V(k,k’)+—/ dq LY B R0 K) = KoV Ok ko) Rlko K) 15 g
T Jo (k§ —q*)/m
Using the mesh points; and the weights);, we can rewrite Eq. (13.62) as
N N
2 wik?V (k, k) R(k;, k') 2
bk =V (kE)+ = T TRV (e, ko)
R( ’ ) V( ) >+7TZ (k(Q)_kQ)/m T OV 0 k()) Z kQ_kQ /m
j=1 J n=1
(13.63)

This equation contains now the unknowi;, k;) (with dimensionV x N) andR(kq, k). We
can turn Eqg. (13.63) into an equation with dimensi@n+ 1) x (N + 1) with a mesh which
contains the original mesh points for j = 1, N and the point which corresponds to the energy
ko. Consider the latter as the 'observable’ point. The meshtpdiecome theh; for j = 1,n
andky 1 = ko. With these new mesh points we define the matrix

Aij = 61+ Vkis kj)uy, (13.64)
where/ is the Kronecker and
2 U}jk]? .
= 772 o =1,N 13.65
TR Rm T (1365)
and .
2 kgw]'
== T ININE 13.66

With the matrixA we can rewrite Eq. (13.63) as a matrix problem of dimengsn+ 1) x
(N + 1). AllmatricesR, A andV have this dimension and we get

ARy = Vi, (13.67)

or just
AR =1V. (13.68)

Since we already have definedand 1’ (these are stored &8V + 1) x (/N + 1) matrices) Eq.
(13.68) involves only the unknowR. We obtain it by matrix inversion, i.e.,

R=A"'V (13.69)
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Thus, to obtaink, we need to set up the matricasand!” and invert the matrixi. To do that one
can use the functiomatinvin the program library. With the inversé—!, performing a matrix
multiplication withV' results inR.

With R we obtain subsequently the phaseshifts using the relation

tand
mkg ’

R(kN-Ha kN-H) = R(k()a kO) = = (1370)






Chapter 14

Differential equations

14.1 Introduction

Historically, differential equations have originated imemnistry, physics and engineering. More
recently they have also been used widely in medicine, bioktg. In this chapter we restrict
the attention to ordinary differential equations. We foowmsinitial value and boundary value
problems and present some of the more commonly used metbodsling such problems
numerically.

The physical systems which are discussed range from a seopleg problem to the physics
of a neutron star.

14.2 Ordinary differential equations (ODE)

In this section we will mainly deal with ordinary differeatiequations and numerical methods
suitable for dealing with them. However, before we proceetrief remainder on differential
eguations may be appropriate.

e The order of the ODE refers to the order of the derivative an ldft-hand side in the

equation
dy
— = f(t,y). 14.1
o = J(ty) (14.1)
This equation is of first order anflis an arbitrary function. A second-order equation goes
typically like
d*y dy
27— £t =2 ). 14.2
e = S0 y) (14.2)
A well-known second-order equation is Newton’s second law
d*x

wherek is the force constant. ODE depend only on one variable, velsere

255
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¢ partial differential equations like the time-dependertir®dinger equation

ih

op(x,t) B’ <62w(r,t) N 0% (r, t) N 0% (r, t)

2m 0x? 0y? 072

may depend on several variables. In certain cases, likedhneaequation, the wave func-
tion can be factorized in functions of the separate varglde that the Schrodinger equa-
tion can be rewritten in terms of sets of ordinary differahéiquations.

We distinguish also between linear and non-linear diffea¢equation where e.g.,

dy 3
— =g°(t)y(t 14.5
= g W), (145)
is an example of a linear equation, while
d
= =g ty() - 9y, (14.6)

is a non-linear ODE. Another concept which dictates the meakemethod chosen for
solving an ODE, is that of initial and boundary condition® Jive an example, in our
study of neutron stars below, we will need to solve two codglest-order differential
equations, one for the total massand one for the pressufeas functions op

dm

am-_ 2 2
= 4 p(r)
and dP Gm(r)
ar mir 2
— =T ) e

wherep is the mass-energy density. The initial conditions areatgct by the mass being
zero at the center of the star, i.e., whes 0, yieldingm(r = 0) = 0. The other condition
is that the pressure vanishes at the surface of the star.nTéass that at the point where
we haveP = 0 in the solution of the integral equations, we have the tadlus R of
the star and the total mass(r = R). These two conditions dictate the solution of the
equations. Since the differential equations are solveddyppsng the radius from = 0
tor = R, so-called one-step methods (see the next section) or Rkuige methods may
yield stable solutions.

In the solution of the Schrédinger equation for a particlaipotential, we may need to
apply boundary conditions as well, such as demanding aaityiof the wave function and
its derivative.

In many cases it is possible to rewrite a second-order éifiigal equation in terms of two
first-order differential equations. Consider again theeaaflsNewton’s second law in Eq.
(14.3). If we define the position(t) = y()(t) and the velocityv(t) = y?(t) as its
derivative

dy'V(t) _ da(t)

= y®@ 14.7
7 o = v, (14.7)
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we can rewrite Newton’s second law as two coupled first-odifégrential equations

dy@ (¢
o (t)

o = —ka(t) = —ky (1), (14.8)

and

=y (). (14.9)

14.3 Finite difference methods

These methods fall under the general class of one-step ngetfide algoritm is rather simple.
Suppose we have an initial value for the functign) given by

Yo = y(t = to). (14.10)

We are interested in solving a differential equation in aocegn space [a,b]. We define a stép
by splitting the interval inV sub intervals, so that we have

b—a
h = ) 14.11
= (14.11)

With this step and the derivative gfwe can construct the next value of the functipat

y1 =yt =to + h), (14.12)

and so forth. If the function is rather well-behaved in thendin [a,b], we can use a fixed step
size. If not, adaptive steps may be needed. Here we conteptrdixed-step methods only. Let
us try to generalize the above procedure by writing the gtepin terms of the previous step

Yirr = y(t =t + h) = y(t;) + hA(ti, yi(t;)) + O(RPTY), (14.13)

whereO (h?*!) represents the truncation error. To determineve Taylor expand our function
Y

hP=1
yirn = y(t =t +h) = y(t;) + h(y'(t:) + - + y @ (t;) ol )+ O(hPh), (14.14)
where we will associate the derivatives in the parenthegfs w
/ o) (3.0 P
Ati, yi(ts) = (v'(t) + -+ yP (L) ol ). (14.15)
We define
y'(t:) = f(ti, yi) (14.16)

and if we truncate\ at the first derivative, we have

Yisr = y(t:) + hf(ti, y;) + O(h?), (14.17)
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which when complemented with,; = ¢; + h forms the algorithm for the well-known Euler
method. Note that at every step we make an approximationefthe order ofO(h?), however
the total error is the sum over all steNs= (b—a)/h, yielding thus a global error which goes like
NO(h?) =~ O(h). To make Euler's method more precise we can obviously deefeéincrease
N). However, if we are computing the derivatifenumerically by e.g., the two-steps formula

oty = TEXD I )

we can enter into roundoff error problems when we subtraotdimost equal number§(z +
h) — f(z) ~ 0. Euler's method is not recommended for precision calootatalthough it is
handy to use in order to get a first view on how a solution max llde. As an example,
consider Newton’s equation rewritten in Egs. (14.8) andq)L4We defingy, = y(V(t = 0) an
vy =y (t = 0). The first steps in Newton’s equations are then

g = yo + hvg + O(h2) (14.18)

and
P =g — hyok /m + O(Rh?). (14.19)

The Euler method is asymmetric in time, since it uses infoionaabout the derivative at the
beginning of the time interval. This means that we evaluatgbsition ayg1> using the velocity
at yéQ) = vg. A simple variation is to determing,(fj1 using the velocity ayffjl, that is (in a
slightly more generalized form)

yM = o0 + hy®) + O(h?) (14.20)

and
y2h = y@ + ha, + O(h?), (14.21)

n

The acceleration,, is a function ofan(yﬁf), yT(lQ), t) and needs to be evaluated as well. This is the
Euler-Cromer method.
Let us then include the second derivative in our Taylor esgan We have then

hdf (ti, yi)

5 + O(R?). (14.22)

Aty yi(ti) = f(t:) +

The second derivative can be rewritten as

_ﬁ_ﬁ+ﬂ@_ﬂ+%f (14.23)

T T M T

and we can rewrite Eq. (14.14) as

270 0
r = (0 = 14 B) = y(t) + hF(1) + (a—{f ¥ 8—£f> ) (14.24)
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which has a local approximation err6¢(%*) and a global erro©(h?). These approximations
can be generalized by using the derivatjvt® arbitrary order so that we have
p—1

yis1 = y(t = ti +h) = y(t:) + h(f(ti ) + ... OV (B, yz)hT) +O(R*). (14.25)

These methods, based on higher-order derivatives, arengrgenot used in numerical computa-
tion, since they rely on evaluating derivatives severagsniJnless one has analytical expressions
for these, the risk of roundoff errors is large.

14.3.1 Improvements to Euler’s algorithm, higher-order mehods

The most obvious improvements to Euler’s and Euler-Crosredgorithms, avoiding in addition
the need for computing a second derivative, is the so-caliégoint method. We have then

h
i =+ 5 (W2 ) o) (14.26)
and
o = 42 + ha, + O(h?), (14.27)
yielding
2
W =y + by + an + O (14.28)

implying that the local truncation error in the position ®nO(h?), whereas Euler’s or Euler-
Cromer’s methods have a local error@th?). Thus, the midpoint method yields a global error
with second-order accuracy for the position and first-oet®uracy for the velocity. However,
although these methods yield exact results for constaele@tions, the error increases in gen-
eral with each time step.

One method that avoids this is the so-called half-step ntetHere we define

U2 =0y + han + O(R?), (14.29)
and
1 2
=yl + ), + 02 (14.30)

Note that this method needs the calculatior@@. This is done using e.g., Euler’s method

3= )+ oo+ 00) @431

As this method is numerically stable, it is often used indtefeEuler's method. Another method
which one may encounter is the Euler-Richardson method with

U = P + hangaje + O(h?), (14.32)
and
1 2
it = o0+ )+ O, (14.33)



260 CHAPTER 14. DIFFERENTIAL EQUATIONS

14.4 More on finite difference methods, Runge-Kutta meth-
ods

Runge-Kutta (RK) methods are based on Taylor expansionuiaem but yield in general better
algorithms for solutions of an ODE. The basic philosophyé&t it provides an intermediate step
in the computation of; , ;.

To see this, consider first the following definitions

% — f(ty), (14.34)
and
y(t) :/f(t,y)dt, (14.35)
and .
e =ui+ [ ftyt (14.36)

t;
To demonstrate the philosophy behind RK methods, let usdenthe second-order RK method,
RK2. The first approximation consists in Taylor expandif{g, y) around the center of the
integration intervat; to ¢;, 4, i.e., att; + h/2, h being the step. Using the midpoint formula for
an integral, defining(t; + h/2) = yiy1/, andt; + h/2 = t,,4,5, we obtain

tita
| i bt a) + O0) (14.37)
t;
This means in turn that we have

Yis1 = Yi + hf (tis1j2, Yir12) + O(h%). (14.38)

However, we do not know the value gf,, ,. Here comes thus the next approximation, namely,
we use Euler’'s method to approximate, .. We have then

h dy h
Y2 = Yi+ 5o = y(t) + 5 f (i v) ( )
This means that we can define the following algorithm for #esd-order Runge-Kutta method,

RK2.

kv = hf(ti,yi), (14.40)
ky = hf(tiz12, yi + k1/2), (14.41)

with the final value
Yiri & Yi + ko + O(R?). (14.42)

The difference between the previous one-step methodstisvethaow need an intermediate
step in our evaluation, namety + h/2 = t.1/9) where we evaluate the derivatie This
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involves more operations, but the gain is a better stabifitthe solution. The fourth-order
Runge-Kutta, RK4, which we will employ in the solution of w@us differential equations below,
has the following algorithm

kv = hf(ti,yi), (14.43)
ky = hf(ti+h/2,y; + k1/2), (14.44)
ks = hf(ti + h/2,y; + k2 /2) (14.45)
ky = hf(ti+ h,y; + ks) (14.46)
with the final value .
Yir1 = Vi + 6 (k1 4 2ko + 2ks + ky) . (14.47)

Thus, the algorithm consists in first calculatihngwith ¢;, y; and f as inputs. Thereafter, we
increase the step size Idy2 and calculaté:,, thenk; and finallyk,. With this caveat, we can
then obtain the new value for the variable

14.5 Adaptive Runge-Kutta and multistep methods

in preparation

14.6 Physics examples

14.6.1 Ideal harmonic oscillations

Our first example is the classical case of simple harmonidlasons, namely a block sliding
on a horizontal frictionless surface. The block is tied toalwith a spring, portrayed in e.g.,
Fig. 14.1. If the spring is not compressed or stretched todlia force on the block at a given
positionz is

F = —kx. (14.48)

The negative sign means that the force acts to restore tleetdbjan equilibrium position.
Newton’s equation of motion for this idealized system igithe

d’x

or we could rephrase it as
d*z k
G =-—a= —wl, (14.50)
with the angular frequency? = k/m.
The above differential equation has the advantage thatnitbeasolved analytically with
solutions on the form

z(t) = Acos(wot + v),
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Figure 14.1: Block tied to a wall with a spring tension actomjit.

whereA is the amplitude and the phase constant. This provides in turn an importantoeshé
numerical solution and the development of a program for nsoraplicated cases which cannot
be solved analytically.

As mentioned earlier, in certain cases it is possible to itevar second-order differential
equation as two coupled first-order differential equatiohigh the positionz(t) and the velocity
v(t) = dx/dt we can reformulate Newton’s equation in the following way

dz(t)
prai v(t), (14.51)
and o)
v 2
e —wiz(t). (14.52)

We are now going to solve these equations using the Rungexkutthod to fourth order
discussed previously. Before proceeding however, it isoirigmt to note that in addition to the
exact solution, we have at least two further tests which eanded to check our solution.

Since functions like-os are periodic with a periodr, then the solution:(¢) has also to be
periodic. This means that

z(t+T) = z(t), (14.53)
with 7" the period defined as
27 27

= (14.54)

wo  k/m

Observe thal” depends only ok /m and not on the amplitude of the solution or the constant

In addition to the periodicity test, the total energy hae atsbe conserved.
Suppose we choose the initial conditions

z(t=0)=1m v(t=0)=0m/s, (14.55)
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meaning that block is at restat 0 but with a potential energy

1 1
Ey = 5lm(t =0)? = Ek. (14.56)

The total energy at any timehas however to be conserved, meaning that our solution has to
fulfil the condition

1 1
Ey = 5/m(t)? + imv(t)? (14.57)

An algorithm which implements these equations is includeldw.

1. Choose the initial position and speed, with the most comoiwicev(t = 0) = 0 and
some fixed value for the position. Since we are going to testesults against the peri-
odicity requirement, it is convenient to set the final time&d; = 27, where we choose
k/m = 1. The initial time is set equal t = 0. You could alternatively read in the ratio

2. Choose the method you wish to employ in solving the problienthe enclosed program
we have chosen the fourth-order Runge-Kutta method. Sidatifie time intervalt;, /]
into a grid with step size

ty —1;
h=-"——
N Y
whereN is the number of mesh points.

3. Calculate now the total energy given by
1 1
Ey = ~kx(t = 0)? = =k.
0= Ghelt=07=3

and use this when checking the numerically calculated grfeogn the Runge-Kutta iter-
ations.

4. The Runge-Kutta method is used to obtain, andv; ., starting from the previous values
x; andw;..

5. When we have computedv);,; we upgrade;,; = t; + h.
6. This iterative process continues till we reach the maxmiime?,; = 2.

7. The results are checked against the exact solution. émunthre, one has to check the
stability of the numerical solution against the chosen nemnab mesh pointsv.

Program to solve the differential equations for a sliding bbck

The program which implements the above algorithm is presehnéere.
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[ % This program solves Newton’s equation for a block
sliding on a horizontal frictionless surface. The block
is tied to a wall with a spring, and Newton’s equation
takes the form

m d"2x/dt"2 =—kx

with k the spring tension and m the mass of the block.
The angular frequency is omega”2 = k/m and we set it equal
1 in this example program.

Newton’'s equation is rewritten as two coupled differential
equations , one for the position x and one for the velocity v
dx/dt = v and
dv/dt = —x when we set k/m=1

We use therefore a twoedimensional array to represent x and v
as functions of t

y[0] == x
y[i] ==v
dy[0]/dt = v

dy[1]/dt = —x

The derivatives are calculated by the user defined function
derivatives.

The user has to specify the initial velocity (usually v_0=0)
the number of steps and the initial position. In the prograenm
below we fix the time interval [a,b] to [0,2pi].

*/

#include <cmath>

#include <iostream >

#include <fstream >

#include <iomanip >

#include "lib.h"

using namespace std;

/Il output file as global variable

ofstream ofile;

/!l function declarations

void derivatives double, double %, double x);

void initialise ( double&, double&, int&);

void output( double, double %, double);

void runge_ kutta_ 4 double %, double *x, int , double, double,
double %, void (%) (double, double %, double x));

int main(int argc, char* argv][])
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{

[/l declarations of variables
double xy, xdydt, xyout, t, h, tmax, EO;
double initial_x , initial_v;
int i, number_of_steps, n;
char *outfilename ;
/l Read in output file , abort if there are too few commandne

arguments
if ( argc <=1 ){
cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1);
}
else{
outfilename=argv[1];
}

ofile .open(outfilename);

I/l this is the number of differential equations

n = 2;

/I allocate space in memory for the arrays containing the
derivatives

dydt = new double[n];

y = new double[n];

yout = new double[n];

/l read in the initial position , velocity and number of steps

initialise (initial_x , initial_v , number_of_ steps);

/I setting initial values , step size and max time tmax

h = 4.xacos(—1.)/( (double) number_of_steps); // the step size

tmax = hkknumber_of_steps; /1l the final time

y[0] = initial_x; /! initial position

y[1] = initial_v; Il initial velocity

t=0.; [/l initial time

EO = 0.5«y[0]*y[0]+0.5xy[1]*y[1]; /!l the initial total energy

/I now we start solving the differential equations using tiK4
method

while (t <= tmax){
derivatives(t, y, dydt); // initial derivatives
runge_kutta_4(y, dydt, n, t, h, yout, derivatives);

for (i = 0; i <n; i++) {
y[i] = yout[i];

}

t += h;

output(t, y, EO); [/ write to file

}
delete [] y; delete [] dydt; delete [] yout;




266 CHAPTER 14. DIFFERENTIAL EQUATIONS

ofile.close(); [// close output file
return 0O;
} // End of main function

/1l Read in from screen the number of steps,

/1 initial position and initial speed
void initialise (double& initial_x , double& initial_v , int&

number_of_steps)

{
cout <<"Initial position = ";
cin >> initial_x;
cout <<"Initial speed = ";
cin >> initial_v;
cout << "Number of steps = ";
cin >> number_of_steps;

} I/ end of function initialise

/1l this function sets up the derivatives for this special eas

void derivatives double t, double xy, double xdydt)

{
dydt[O]=y[1]; /Il derivative of x
dydt[1l]=—y[0]; // derivative of v

} /I end of function derivatives

/] function to write out the final results
void output(double t, double xy, double EO)
{
ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile << setw (15) << setprecision(8) << t;
ofile << setw(1l5) << setprecision(8) << y[0];
ofile << setw (15) << setprecision(8) << yJ[1l];
ofile << setw (15) << setprecision(8) << cos(t);
ofile << setw(1l5) << setprecision(8) <<
0.5xy[0]*y[0]+0.5xy[1]*y[1] —EO << endl;
} [/l end of function output

[ % This function upgrades a function y (input as a pointer)
and returns the result yout, also as a pointer. Note that
these variables are declared as arrays. It also receives as
input the starting value for the derivatives in the pointer
dydx . It receives also the variable n which represents the
number of differential equations , the step size h and
the initial value of x. It receives also the name of the
function xderivs where the given derivative is computed

*/
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void runge_kutta_4 ouble xy, double xdydx, int n, double x, double h,
double xyout, void (xderivs) (double, double x,
double %))

int i;

double xh,hh, h6;

double xdym, % dyt, xyt;

/1 allocate space for local vectors

dym = new double [n];

dyt = new double [n];

yt = new double [n];

hh = hx0.5;

h6é = h/6.;

xh = x+hh;

for (i = 0; i <n; i++) {
yt[i] = y[i]+hh xdydx[i];

}

(xderivs) (xh,yt,dyt); /l computation of k2, eq. 3.60

for (i = 0; i <n; i++) {
yt[i] = y[i]+hh«dyt[i];

}

(xderivs)(xh,yt ,dym);// computation of k3, eq. 3.61
for (i=0; i <n; i++) {

yt[i] = y[i]+h«dym[i];

dym[i] += dyt[i];

}
(xderivs) (x+h,yt,dyt); /l computation of k4, eq. 3.62
/1 now we upgrade y in the array yout
for (i = 0; i <n; i++){
yout[i] = y[i]+h6 x(dydx[i]+dyt[i]+2.0xdym][i]);
}

delete []dym;
delete [] dyt;
delete [] yt;
} /! end of function Rungekutta 4

In Fig. 14.2 we exhibit the development of the differencensstn the calculated energy and the
exact energy at = 0 after two periods and witlv = 1000 and N = 10000 mesh points. This
figure demonstrates clearly the need of developing testhieeking the algorithm used. We see
that even forN = 1000 there is an increasing difference between the computedyged the
exact energy after only two periods.
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Figure 14.2: Plot oAE(t) = Ey — Ecomputed fOr N = 1000 and N = 10000 time steps up to
two periods. The initial positiom, = 1 m and initial velocityv, = 0 m/s. The mass and spring
tension are settbh =m = 1.
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Figure 14.3: Simple RLC circuit with a voltage sourice

14.6.2 Damping of harmonic oscillations and external force

Most oscillatory motion in nature does decrease until tispldcement becomes zero. We call
such a motion for damped and the system is said to be disspather than conservative. Con-
sidering again the simple block sliding on a plane, we cogldd implement such a dissipative
behavior through a drag force which is proportional to th&t filerivative ofz, i.e., the velocity.
We can then expand Eq. (14.50) to

d’z ) dx

ﬁ = —UJOIE - VE, (1458)
wherev is the damping coefficient, being a measure of the magnittitteealrag term.

We could however counteract the dissipative mechanism plyimg e.g., a periodic external

force

F(t) = Bceos(wt), (14.59)
and we rewrite Eq. (14.58) as
d’z ) dx
o T T v + F(t). (14.60)

Although we have specialized to a block sliding on a surfédoe above equations are rather
general for quite many physical systems.

If we replacer by the charge), v with the resistanc#, the velocity with the current, the
inductancel with the massn, the spring constant with the inverse capacitaficand the force
F with the voltage drop/, we rewrite Eq. (14.60) as

’Q  Q  ,dQ
L—+ = — = V(). 14.61
e Tty =V (14.61)
The circuit is shown in Fig. 14.3.

How did we get there? We have defined an electric circuit wiimhsists of a resistance

R with voltage drop/ R, a capacitor with voltage dro@/C' and an inductor, with voltage
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pivot

length |

mass

mg

Figure 14.4: A simple pendulum.

drop LdI/dt. The circuit is powered by an alternating voltage sourcetesiiglg Kirchhoff’s law,
which is a consequence of energy conservation, we have

V(t)=IR+ LdI/dt+ Q/C, (14.62)
and using
_dQ
I=-—= (14.63)

we arrive at Eq. (14.61).

This section was meant to give you a feeling of the wide rarigg@plicability of the methods
we have discussed. However, before leaving this topicatiwe’ll dwelve into the problems
of the pendulum, from almost harmonic oscillations to cltamiotion!

14.6.3 The pendulum, a nonlinear differential equation

Consider a pendulum with mass at the end of a rigid rod of lengthattached to say a fixed
frictionless pivot which allows the pendulum to move frealyder gravity in the vertical plane
as illustrated in Fig. 14.4.
The angular equation of motion of the pendulum is again glweiNewton’s equation, but
now as a nonlinear differential equation
d*0

mlw + mgsin(f) = 0, (14.64)
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with an angular velocity and acceleration given by

=|— 14.65
v=1, (14.65)
and 20

For small angles, we can use the approximation
sin(f) =~ 0.
and rewrite the above differential equation as

d*0 g

- —_Zp

dt? [
which is exactly of the same form as Eq. (14.50). We can theslclour solutions for small
values offf against an analytical solution. The period is now

(14.67)

A (14.68)

/g

We do however expect that the motion will gradually come tcead due a viscous drag
torque acting on the pendulum. In the presence of the draglibve equation becomes

d*0 do
mlw + v + mgsin(f) = 0, (14.69)
wherev is now a positive constant parameterizing the viscosityhefrnedium in question. In
order to maintain the motion against viscosity, it is neagsfo add some external driving force.
We choose here, in analogy with the discussion about th&ieletcuit, a periodic driving force.
The last equation becomes then
d*6 de

mlw + v + mgsin(f) = Acos(wt), (14.70)
with A andw two constants representing the amplitude and the ange@quéncy respectively.
The latter is called the driving frequency.

If we now define
wo =V g/l (14.71)

the so-called natural frequency and the new dimensionlesstigies

t = wot, (14.72)

o=, (14.73)
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and introducing the quantit, called thequality factor,
mg

Q=—, (14.74)
WolV
and the dimensionless amplitude
" (14.75)
mg
we can rewrite Eg. (14.70) as
2
1 N .
le—ff + QZ—z + sin(f) = Acos(wt). (14.76)

This equation can in turn be recast in terms of two couplettdirder differential equations
as follows

do
@ _, 14.77
ikl ( )
and i .
d_qti = —% — sin(f) + Acos(wt). (14.78)

These are the equations to be solved. The fa@toepresents the number of oscillations of
the undriven system that must occur before its energy isfgigntly reduced due to the viscous
drag. The amplitudel is measured in units of the maximum possible gravitatiomjtte while
w is the angular frequency of the external torque measuredits of the pendulum’s natural
frequency.

14.6.4 Spinning magnet

Another simple example is that of e.g., a compass needlesliiage to rotate in a periodically
reversing magnetic field perpendicular to the axis of thelleeélhe equation is then

d*0 u .
= —TBocos(wt)sm(G), (14.79)
whered is the angle of the needle with respect to a fixed axis alondietek ;. is the magnetic

moment of the needld,its moment of inertia and, andw the amplitude and angular frequency
of the magnetic field respectively.

14.7 Physics Project: the pendulum

14.7.1 Analytic results for the pendulum

Although the solution to the equations for the pendulum aay be obtained through numerical
efforts, it is always useful to check our numerical code asgfaanalytic solutions. For small
angles), we havesinfl ~ # and our equations become

do

Y, 14.80
=1 ( )
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and i .
v v ~ ~
— = —— — 0 + Acos(wt). 14.81
=5 (@) (14.81)
These equations are linear in the angjnd are similar to those of the sliding block or the RLC
circuit. With given initial conditiong, andf, they can be solved analytically to yield

a(t) [90 ) } 705 (, 1 — 1457 (14.82)

~ 0 A(1—3a2)/2Q —/9 / 1 A(1—®2)cos(w7')+%sin(&n')
+ [UU + % T 1_o2 +w2/Q°] e T/ QSZTL WT) + =077 +57/07 ,

N N Ap? _r
o) = |00 ~ et ge | 7/ cos (/1 — ) (14.83)
B Al1-a2)-6%/Q?] - ) 1 GA[—(1=02)sin(&7)+ 2 cos(&7)]
_ [90 + % T =02 437/Q7 } e /2QSZTL(1 /1 — WT) + (17@2)24»&)2/@% ,

with @ > 1/2. The first two terms depend on the initial conditions and geogonentially in
time. If we wait long enough for these terms to vanish, thetsmhs become independent of the
initial conditions and the motion of the pendulum settles/ddo the following simple orbit in
phase space

A1 — &?)cos(@T) + %sin(dﬂ)

0(t) = (DYoL , (14.84)
and o o A A
5(t) = wA[=(1 = &?)sin(@7) + Geos(wT)] (14.85)

(1—w?)?+w%/Q? ’
tracing the closed phase-space curve

9 2 'l} 2
<Z> +<(M> _ (14.86)

A=

with

(14.87)

V(=022 +a2/Q%
This curve forms an ellipse whose principal axestaadv. This curve is closed, as we will see
from the examples below, implying that the motion is peraditime, the solution repeats itself
exactly after each perio@l = 27 /%. Before we discuss results for various frequencies, gualit
factors and amplitudes, it is instructive to compare défgmumerical methods. In Fig. 14.5 we
show the anglé as function of time- for the case with) = 2, v = 2/3 andA = 0.5. The length
is set equal td m and mass of the pendulum is set equal t@. The inital velocity isj, = 0
andf, = 0.01. Four different methods have been used to solve the eqsattarier's method
from EqQ. (14.17), Euler-Richardson’s method in Egs. (1%#32.33) and finally the fourth-order
Runge-Kutta scheme RK4. We note that after few time stepylmeain the classical harmonic
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motion. We would have obtained a similar picture if we werewotch off the external force,
A = 0 and set the frictional damping to zero, i.€),= 0. Then, the qualitative picture is that
of an idealized harmonic oscillation without damping. Heewl we see that Euler's method
performs poorly and after a few steps its algorithmic sigiplileads to results which deviate
considerably from the other methods. In the discussiondiierewe will thus limit ourselves to

3 I
RK4 ——
o o Euler -
2 - : : o Halfstep ——

. EUIEY-Ri_chafdson'-_- e

-3 l l l l l l
0 5 10 15 20 25 30 35

t/2m

Figure 14.5: Plot of) as function of timer with Q = 2, & = 2/3 andA = 0.5. The mass and
length of the pendulum are set equalltoThe initial velocity iso, = 0 andf, = 0.01. Four
different methods have been used to solve the equationsy’&uatethod from Eq. (14.17), the
half-step method, Euler-Richardson’s method in Eqgs. @)4(84.33) and finally the fourth-order
Runge-Kutta scheme RK4. Only = 100 integration points have been used for a time interval
t € [0,107].

present results obtained with the fourth-order Runge&unigthod.

The corresponding phase space plot is shown in Fig. 14.8hosame parameters as in
Fig. ??. We observe here that the plot moves towards an ellipse vetlogic motion. This
stable phase-space curve is called a periodic attractisrcétlled attractor because, irrespective
of the initial conditions, the trajectory in phase-spaceiteasymptotically to such a curve in the
limit 7 — oc. Itis called periodic, since it exhibits periodic motiontime, as seen from Fi§.

In addition, we should note that this periodic motion showsitwve call resonant behavior since
the the driving frequency of the force approaches the naftequency of oscillation of the
pendulum. This is essentially due to the fact that we areystgda linear system, yielding the
well-known periodic motion. The non-linear system extslatmuch richer set of solutions and
these can only be studied numerically.

In order to go beyond the well-known linear approximationekange the initial conditions
to sayf, = 0.3z but keep the other parameters equal to the previous casecure forf is
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Figure 14.6: Phase-space curve of a linear damped penduthnjw= 2, & = 2/3 andA = 0.5.
The inital velocity iso, = 0 andf, = 0.01.

shown in Fig. 14.7. This curve demonstrates that with the@lgoven sets of parameters, after a
certain number of periods, the phase-space curve stabibizine same curve as in the previous
case, irrespective of initial conditions. However, it takeore time for the pendulum to establish
a periodic motion and when a stable orbit in phase-spaceashesl the pendulum moves in

accordance with the driving frequency of the force. The itaiale picture is much the same as

previously. The phase-space curve displays again a fin@dieattractor.

If we now change the strength of the amplitudedte= 1.35 we see in Fig??thaté as func-
tion of time exhibits a rather different behavior from Fig.@, even though the initial contiditions
and all other parameters excepare the same.

If we then plot only the phase-space curve for the final ovist,0btain the following figure
We will explore these topics in more detail in Section 14.&vehwe extende our discussion to
the phenomena of period doubling and its link to chaotic oroti

14.7.2 The pendulum code

The program used to obtain the results discussed abovessriesl here. The program solves
the pendulum equations for any anglevith an external forcedcos(wt). It employes several
methods for solving the two coupled differential equatidram Euler's method to adaptive size
methods coupled with fourth-order Runge-Kutta. It is gfinfiorward to apply this program to
other systems which exhibit harmonic oscillations or cleating functional form of the external
force.

#include <stdio .h>
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Figure 14.7: Plot ofl as function of timer with Q = 2, & = 2/3 andA = 0.5. The mass of the
pendulum is set equal tokg and its length to 1 m. The inital velocity ig = 0 andf, = 0.3.
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Figure 14.8: Phase-space curve wilh= 2, © = 2/3 andA = 1.35. The mass of the pendulum
is set equal td kg and its lengthh = 1 m.. The inital velocity i) = 0 andf, = 0.3.
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Figure 14.9: Phase-space curve for the attractor @ith 2, > = 2/3 and A = 1.35. The inital
velocity isty = 0 andf, = 0.3.

#include <iostream .h>

#include <math.h>

#include <fstream.h>

[

Different methods for solving ODEs are presented
We are solving the following egation:

m«l x(phi) '’ + viscosity*(phi)’ + mxg*xsin(phi) = Axcos(omegat)

If you want to solve similar equations with other values yoavh to

rewrite the methods ’'derivatives ' and 'initialise ' and chge the
variables in the private

part of the class Pendulum

At first we rewrite the equation using the following definons:

omega_0 = sqrt(gl)

t roof = omega Gt
omega_roof = omega/omega_0
Q = (mxg)/(omega_@Breib)
A_roof = A/(mkQg)

and we get a dimensionless equation
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(phi) " + 1/Qx(phi)’ + sin(phi) = A_roofxcos(omega_rooft_roof)
This equation can be written as two equations of first order:

(phi) ' =v
(v)'= —v/Q — sin(phi) +A_roofxcos(omega_rooft_roof)

All numerical methods are applied to the last two equations.

The algorithms are taken from the book "An introduction tongouter
simulation methods™

*/

class pendelum

{ -
private :
double Q, A_roof, omega_0, omega_roof,hgk/
double y[2]; [l for the initial—values of phi and v

int n; /!l how many steps
double delta_t ,delta_t roof;

public:

void derivatives double,doublex,doublex);

void initialise ();

void euler ();

void euler_cromer () ;

void midpoint () ;

void euler_richardson ();

void half_step ();

void rk2(); //runge—kutta—second-order

void rk4 step double,doublex,doublex,double); // we need it in
function rk4 () and asc()

void rk4(); //runge—kutta—fourth—order

void asc () ; //runge—kutta—fourth—order with adaptive stepsize
control

void pendelum:: derivativesdouble t, doublex in, doublex out)
{ I+ Here we are calculating the derivatives at (dimensionlessijne t
in’ are the values of phi and v, which are used for the
calculation
The results are given to ’'out s/

out[0]=in[1]; /lout[0] = (phi)’ =V
it (Q)
out[l]l=—in[1]/((double)Q)—sin(in[0])+A_roofscos(omega_roodft); //
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out[1l] = (phi)"’
else
out[l]=—sin(in[0])+A_roofxcos(omega_rooft); [//out[l] = (phi)"”’

void pendelum::initialise ()

{

double m,|,omega,A, viscosity ,phi_O0,v_0,t_end;

cout<<'Solving the differential eqation of the pendulum!\n";

cout<<'We have a pendulum with mass m, length 1. Then we have a
periodic force with amplitude A and omegal\n",

cout<<"Furthermore there is a viscous drag coefficient.\n",

Cout<<'The initial conditions at t=0 are phi_O and v_O\n",;

cout<<'Mass m: ";

cin>>m:;

cout<<'length 1: ";

cin>>1;

cout<<'omega of the force: ";

cin>>omega;

cout<<"amplitude of the force: ";

cin>>A;

cout<<'The value of the viscous drag constant (viscosity): ";

cin>>viscosity;

cout<<'phi_0: ";

cin>>y[0];

cout<<"v_0: ";

cin>>y[1];

cout<<'Number of time steps or integration steps:";

cin>>n;

COUut<<"Final time steps as multiplum of pi:";

cin>>t_end;

t_end x= acos(-1.);

g=9.81;
/[l We need the following values:
omega_0=sqrt(g/(double)l)); /l omega of the pendulum

if (viscosity) Q=mg/((double)omega_Gviscosity);

else Q=0; // calculating Q

A _roof=A/((double)mxg) ;

omega_roof=omega/(double)omega_0);

delta_t _roof=omega_ 6t _end/((double)n) ; /ldelta_t without
dimension

delta_t=t _end/(@ouble)n);
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void pendelum::euler ()

{ //using simple eulermethod
int i;
double yout[2],y_h[2];
double t_h;

y_h[0]=y[O];
y_h[1l]=y[1];
t_h=0;
ofstream fout('euler.out");
fout.setf(ios:: scientific);
fout.precision (20);
for (i=1;i<=n;i++){
derivatives(t_h,y h,yout);
yout[l]=y h[1l]+yout[l}x delta_t roof;
yout[O]=y_h[O]+yout[O}x delta_t_roof;
[/l Calculation with dimensionless values
fout<<ixdelta_t <<'\t\t"<<yout[0]<<"\t\t"<<yout[l]<<"\n";
t h+=delta_t_roof;
y_h[1l]=yout[1];
y_h[0]=yout[O];
}

fout.close;

}

void pendelum:: euler_cromer ()
{ . .

int i;

double t_h;

double yout[2],y_h[2];

t_h=0;

y_h[0]=y[O]; //phi

y_h[1]=y[1]; [/lv

ofstream fout{ec.out");

fout.setf(ios:: scientific);

fout. precision (20);

for (i=1; i<=n; i++){
derivatives(t_h,y h,yout);
yout[l]=y_h[l]+yout[l}x delta_t _roof;
yout[0]=y_h[0]+yout[l}x delta_t roof;
/I The new calculated value of v is used for calculating phi
fout<<ixdelta_t <<'\t\t"<<yout[0]<<"\t\t"<<yout[l]<<"\n";
t h+=delta_t_roof;
y_h[0]=yout[O];
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y_h[1]=yout[1];
}

fout.close;

}

void pendelum :: midpoint ()
{ . .

int i;

double t_h;

double yout[2],y_h[2];

t_h=0;

y_h[0]=y[O]; //phi

y_h[1]=y[1]; [/lv

ofstream fout('midpoint.out");

fout.setf(ios:: scientific);

fout. precision (20);

for (i=1; i<=n; i++){
derivatives(t_h,y h,yout);

yout[l]=y_h[l]+yout[l}x delta_t _roof;
yout[O0]=y_h[0]+0.5(yout[1l]+y_h[1l])xdelta_t_roof;
fout<<ixdelta_ t<<\t\t"<<yout[0]<<"\t\t"<<yout[l]<<"\n";

t h+=delta_t_roof;
y_h[0]=yout[O];
y_h[1]=yout[1];

}

fout.close;

void pendelum:: euler_richardson ()
{ - .

int i;

double t_h,t m;

double yout[2],y_h[2],y_ m[2];

t _ h=0;

y_h[0]=y[O]; //phi

y_h[1l]=y[1]; [/lv

ofstream fout('er.out");

fout.setf(ios:: scientific);

fout.precision (20);

for (i=1; i<=n; i++){
derivatives(t_h,y h,yout);

y_ m[l]=y_h[1]+0.5«yout[l]«delta_t_roof;
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y m[0]=y_h[0]+0.5«y h[1l]xdelta_t roof;
t m=t h+0.5% delta_t _roof;
derivatives (t_m,y m,yout);
yout[l]=y h[1l]+yout[l}x delta_t roof;
yout[O]=y_h[O]+y m[l]x delta_t_roof;
fout<<ixdelta_ t<<\t\t"<<yout[0]<<"\t\t"<<yout[l]<<"\n";
t h+=delta_t_roof;
y_h[0]=yout[O];
y_h[1l]=yout[1];
}

fout.close;

}

void pendelum:: half_step ()

{
/x*We are using the half_step_algorith.

The algorithm is not selfstarting , so we calculate
v_1/2 by using the Euler algorithm x/

int i;
double t_h;
double yout[2],y_h[2]:

t _h=0;
y_h[0]=y[O]; //phi
y_h[1l]=y[1]; [/lv
ofstream fout(‘half_step.out");
fout.setf(ios:: scientific);
fout.precision (20);
/+At first we have to calculate v_1/2
For this we use Euler’s method:
v_‘1/2 = v _0 + 1/2«a_0Oxdelta_t_roof
For calculating a_0 we have to start derivatives
x/
derivatives(t_h,y h,yout);
yout[l]=y_h[1]+0.5yout[l]« delta_t _roof;
yout[0]=y_h[O]+yout[l}x delta_t roof;
fout<<delta_t << \t\t"<<yout[0]<<"\t\t"<<yout[l]<<"\n";
y_h[0]=yout[0];
y_h[1]=yout[1];
for (i=2; i<=n; i++){
derivatives(t_h,y h,yout);
yout[l]=y_h[l]+yout[l}x delta_t _roof;
yout[0]=y_h[0]+yout[l}x delta_t roof;
fout<<ixdelta_t <<'\t\t"<<yout[0]<<"\t\t"<<yout[l]<<"\n";
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}

t h+=delta_t_roof;
y_h[0]=yout[O];
y_h[1l]=yout[1];

}

fout.close;

void pendelum::rk2()

{

/«We are using the seconébrder—Runge-Kutta—algorithm
We have to calculate the parameters k1 and k2 for v and phi,
so we use to arrays k1[2] and k2[2] for this
k1[0], k2[0] are the parameters for phi,
k1[1], k2[1] are the parameters for v
*/

int i;
double t_h;
double yout[2],y_h[2],k1[2],k2[2],y_k[2];

t_h=0;

y_h[0]=y[O]; //phi

y_h[1]=y[1]; [/lv

ofstream fout{rk2.out");

fout.setf(ios:: scientific);

fout. precision (20);

for (i=1; i<=n; i++){
I« Calculation of k1 %/
derivatives(t_h,y h,yout);
kl[1]=yout[l]+xdelta_t roof;
k1[0]=yout[O]«xdelta_t_ roof;
y _k[0]=y_h[0]+k1[0]x0.5;
y k[1]=y_h[1]+k2[1]*x0.5;
I+« Calculation of k2 */
derivatives (t_h+delta_t roodf0.5,y k,yout);
k2[1l]=yout[1l]x delta_t_roof;
k2[0]=yout[0]+x delta_t roof;
yout[1l]=y_h[1]+k2[1];
yout[O]=y_h[0]+k2[0];
fout<<ixdelta_t <<'\t\t"<<yout[0]<<"\t\t"<<yout[l]<<"\n";
t h+=delta_t_roof;
y_h[0]=yout[O];
y_h[1l]=yout[1];

}

fout.close;
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}

void pendelum ::rk4_stepdouble t,double xyin,double xyout ,double
delta_t)

{
[
The function calculates one step of fourtbrder—runge—kutta—
method
We will need it for the normal fourthorder—Runge-Kutta—method and
for RK-method with adaptive stepsize control
The function calculates the value of y(t + delta_t) using folu—
order—RK-method
Input: time t and the stepsize delta_t, yin (values of phi awnd
at time t)
Output: yout (values of phi and v at time t+delta_t)
x/

double k1[2],k2[2],k3[2],k4[2],y_k[2];

/1 Calculation of k1

derivatives (t,yin,yout);

kl1[l]=yout[1l]x delta_t;
k1[0]=yout[O]xdelta_t;
y_k[0]=yin[0]+k1[0]*0.5;
y_k[1]=yin[1]+k1[1]*0.5;

[/« Calculation of k2 x/

derivatives (t+delta_%0.5,y k,yout);
k2[1l]=yout[1l]x delta_t;

k2[0]=yout[O]x delta_t;
y_k[0]=yin[0]+k2[0]%0.5;
y_k[1]=yin[1]+k2[1]*0.5;

/x Calculation of k3 x/

derivatives (t+delta_#0.5,y k,yout);
k3[1l]=yout[1l]xdelta_t;

k3[0]=yout[0]« delta_t;
y_k[0]=yin[0]+k3[0];

y_k[1]=yin[1]+k3[1];

[/« Calculation of k4 x/

derivatives (t+delta_t ,y k,yout);
k4[1l]=yout[1l]xdelta_t;

k4[0]=yout[O]x delta_t;

/x Calculation of new values of phi and w/
yout[0]=yin[0]+1.0/6.0«(k1[0]+2xk2[0]+2«k3[0]+k4[0]);
yout[1l]=yin[1]+1.0/6.0«(k1[1]+2xk2[1]+2+xk3[1]+k4[1]);
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void pendelum ::rk4 ()

{

void pendelum::asc ()

{

/*We are using the fourthorder—Runge-Kutta—algorithm
We have to calculate the parameters k1, k2, k3, k4 for v and,ph
so we use to arrays k1[2] and k2[2] for this
k1[0], k2[0] are the parameters for phi,
ki[1], k2[1] are the parameters for v

x/

int i;
double t_h;
double yout[2],y_h[2]; //k1[2],k2[2],k3[2],k4[2],y_k[2];

t _h=0;
y_h[0]=y[O]; //phi
y_h[1l]=y[1]; [/lv
ofstream fout('rk4.out");
fout.setf(ios:: scientific);
fout.precision (20);
for (i=1; i<=n; i++){
rkd4 _step(t_h,y h,yout,delta_t roof);
fout<<ixdelta_t <<'\t\t"<<yout[0]<<"\t\t"<<yout[l]<<"\n";
t h+=delta_t_roof;
y_h[0]=yout[O];
y_h[1l]=yout[1];
}

fout.close;

[ x
We are using the Rung&Kutta—algorithm with adaptive stepsize
control
according to "Numerical Recipes in C", S. 574 ff.

At first we calculate y(x+h) using rkdmethod =>yl
Then we calculate y(x+h) using two times rkmethod at x+h/2 and
+h =>y2

The difference between these values is called "delta" If id i

smaller than a given value,
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we calculate y(x+h) by y2 + (delta)/15 (page 575, Numerical)R

If delta is not smaller than ... we calculate a new stepsizeings
h _new=(Safety}h _oldx(.../delta)”~(0.25) where " Safety" is consta

(page 577 N.R.)
and start again with calculating y(x+h) ...
*/
int i;
double t_h,h_alt ,h_neu,hh,errmax;
double yout[2],y_h[2],y_ m[2],y1[2],y2][2], delta[2], yscal[2]

const double eps=1.0e-6;
const double safety =0.9;
const double errcon=6.0e-4;
const double tiny=1.0e—-30;

t _ h=0;
y_h[0]=y[O]; //phi
y_h[1l]=y[1]; [/lv
h _neu=delta_t_roof;
ofstream fout('asc.out");
fout.setf(ios:: scientific);
fout.precision (20);
for (i=0;i<=n;i++){
/[« The error is scaled against yscal
We use a yscal of the form yscal = fabs(y[i]) + fabs«h
derivatives]Ji])
(N.R. page 567)
*/
derivatives(t_h,y h,yout);
yscal[0]=fabs (y[0])+fabs (h_neuyout[0])+tiny;
yscal[l]=fabs (y[1])+fabs (h_neuyout[1])+tiny;
[+ the do-while—loop is used until the=x/
do{
/+ Calculating y2 by two half stepsx/
h_alt=h_neu;
hh=h_alt«0.5;
rk4_step(t_h, y h, y m, hh);
rk4 _step(t_h+hh,y m,y2,hh);
/[« Calculating yl1l by one normal step«/
rk4 _step(t_h,y h,yl,h _alt);

/x Now we have two values for phi and v at the time t_h + h

y2 and yl
We can now calculate the delta for phi and v
x/

nt

in
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delta[0]=fabs (y1[0}y2[0]);

delta[l]=fabs (y1[1}y2[1]);

errmax=(delta[0]/yscal[0] > delta[1]/yscal[1] ? deltaJOyscal
[0] : delta[1]/yscal[l]);

/*We scale delta against the constant yscal
Then we take the biggest one and call it errmax
errmax=(double)errmax/eps;
/«We divide errmax by eps and have only x/
h_neu=safetyh_altxexp(—0.25<log (errmax));
}while (errmax >1.0) ;
/«*Now we are outside the davhile—loop and have a delta which is
small enough
So we can calculate the new values of phi and v
*/
yout[O]=y_h[O]+delta[0]/15.0;
yout[1]=y_h[1]+delta[1]/15.0;
fout <<(double) (t_h+h_alt)/omega_0<t\t"<<yout[0]<<"\t\t"<<yout
[1]<<"\n";
/I Calculating of the new stepsize
h_neu=(errmax > errcon ? safeth altxexp(—0.20«log (errmax))
. 4.0« h_alt);
y_h[0]=yout[O];
y_h[1l]=yout[1];
t_h+=h_neu;

int main ()

{
pendelum testcase;
testcase.initialise ();
testcase .euler();
testcase.euler_cromer();
testcase . midpoint();
testcase.euler_richardson () ;
testcase . half_step ();
testcase.rk2();
testcase .rk4();
return 0O;

} // end of main function
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14.8 Physics project: Period doubling and chaos

in preparation
In Fig. ??we have kept the same constants as in the previous sectieptdrc A which we
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Figure 14.10: Phase-space curve vétk= 2, 0 = 2/3 andA = 1.52. The mass of the pendulum
is set equal td kg and its lengthi = 1 m. The inital velocity is), = 0 andf, = 0.3.

now set tod = 1.52.

14.9 Physics Project: studies of neutron stars

In the pendulum example we rewrote the equations as twardiffal equations in terms of so-
called dimensionless variables. One should always do Tiedre are at least two good reasons
for doing this.

e By rewriting the equations as dimensionless ones, the anogvill most likely be easier to
read, with hopefully a better possibility of spotting ewgadterrors. In addtion, the various
constants which are pulled out of the equations in the psoogsendering the equations
dimensionless, are reintroduced at the end of the caloulatf one of these constants is
not correctly defined, it is easier to spot an eventual error.

¢ In many physics applications, variables which enter a défigal equation, may differ by
orders of magnitude. If we were to insist on not using dimemisiss quantities, such
differences can cause serious problems with respect t@fagsnerical precision.
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An example which demonstrates these features is the setiafiegs for gravitational equi-
librium of a neutron star. We will not solve these equationmarically here, rather, we will
limit ourselves to merely rewriting these equations in aehsionless form.

14.9.1 The equations for a neutron star

The discovery of the neutron by Chadwick in 1932 prompteddaanto predict the existence
of neutron stars. The birth of such stars in supernovae sipie was suggested by Baade
and Zwicky 1934. First theoretical neutron star calculaiovere performed by Tolman, Op-
penheimer and Volkoff in 1939 and Wheeler around 1960. Bail Hewish were the first to
discover a neutron star in 1967 asagio pulsar. The discovery of the rapidly rotating Crab pul-
sar ( rapidly rotating neutron star) in the remnant of thebGapernova observed by the chinese
in 1054 A.D. confirmed the link to supernovae. Radio pulseesrapidly rotating with periods
in the range).033 s < P < 4.0 s. They are believed to be powered by rotational energy loss
and are rapidly spinning down with period derivatives ofer® ~ 10-'2 — 10 6. Their high
magnetic fieldB leads to dipole magnetic braking radiation proportionahi® magnetic field
squared. One estimates magnetic fields of the ordé& ef 10!' — 10'* G. The total number of
pulsars discovered so far has just exceeded 1000 befonertheftthe millenium and the number
is increasing rapidly.

The physics of compact objects like neutron stars offersyaiguing interplay between nu-
clear processes and astrophysical observables. Neuammesthibit conditions far from those
encountered on earth; typically, expected densjtieta neutron star interior are of the order of
103 or more times the density; ~ 4 - 10'! g/cn? at 'neutron drip’, the density at which nuclei
begin to dissolve and merge together. Thus, the deterromafian equation of state (EoS) for
dense matter is essential to calculations of neutron stgrepties. The EoS determines prop-
erties such as the mass range, the mass-radius relatipttshigrust thickness and the cooling
rate. The same EoS is also crucial in calculating the eneigased in a supernova explosion.
Clearly, the relevant degrees of freedom will not be the samtbe crust region of a neutron
star, where the density is much smaller than the saturagosity of nuclear matter, and in the
center of the star, where density is so high that models bealet on interacting nucleons are
guestionable. Neutron star models including various dlea¢taealistic equations of state result
in the following general picture of the interior of a neutrstar. The surface region, with typical
densitiesp < 10° g/cn?, is a region in which temperatures and magnetic fields macathe
equation of state. The outer crust fal® g/lcm® < p < 4 - 10''g/cm® is a solid region where a
Coulomb lattice of heavy nuclei coexist iirequilibrium with a relativistic degenerate electron
gas. The inner crust fof - 10! g/cn?® < p < 2 - 10'*g/cn? consists of a lattice of neutron-rich
nuclei together with a superfluid neutron gas and an elegtasn The neutron liquid far - 10
glem® < p < -10'%g/en? contains mainly superfluid neutrons with a smaller conediuin of
superconducting protons and normal electrons. At highesitles, typically2 — 3 times nuclear
matter saturation density, interesting phase transifimm a phase with just nucleonic degrees
of freedom to quark matter may take place. Furthermore, cnehlave a mixed phase of quark
and nuclear matter, kaon or pion condensates, hyperontemstrong magnetic fields in young
stars etc.
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14.9.2 Equilibrium equations

If the star is in thermal equilibrium, the gravitational éeron every element of volume will be
balanced by a force due to the spacial variation of the preg3uThe pressure is defined by the
equation of state (EoS), recall e.g., the ideal as NkgT. The gravitational force which acts
on an element of volume at a distancis given by

Gm
FGrav = —T—Qp/CQ, (1488)

whereG is the gravitational constant(r) is the mass density and(r) is the total mass inside
aradius. The latter is given by

4 T
m(r) = C—;r/o p(r)rdr’ (14.89)

which gives rise to a differential equation for mass and dgns

dm

o= dnr®p(r)/c. (14.90)
When the star is in equilibrium we have
dP _ Gm(r) 5
= =3 p(r)/c”. (14.91)

The last equations give us two coupled first-order diffaeteiguations which determine the
structure of a neutron star when the EoS is known.

The initial conditions are dictated by the mass being zetbeatenter of the star, i.e., when
r = 0, we havem(r = 0) = 0. The other condition is that the pressure vanishes at tHacsur
of the star. This means that at the point where we Have 0 in the solution of the differential
equations, we get the total radiéisof the star and the total mass(r = R). The mass-energy
density when = 0 is called the central densipy. Since both the final masy and total radius
R will depend orp,, a variation of this quantity will allow us to study stars different masses
and radii.

14.9.3 Dimensionless equations

When we now attempt the numerical solution, we need howeveedcale the equations so
that we deal with dimensionless quantities only. To undestwhy, consider the value of the
gravitational constan® and the possible final mass(r = R) = Mpg. The latter is normally of
the order of some solar massk&,, with M, = 1.989 x 10%° Kg. If we wish to translate the
latter into units of MeV/¢, we will have thatM, ~ 10%° MeV/c?. The gravitational constant is
in units of G = 6.67 x 107% x hic (MeV/c?) 2. Itis then easy to see that including the relevant
values for these quantities in our equations will most {ikeeld large numerical roundoff errors
when we add a huge numbé¥ to a smaller numbeP in order to obtain the new pressure. We
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Quantity Units

[P] MeVfm—3

o] MeVfm—3

[n] fm—3

[m)] MeVc2

M, 1.989 x 1030 Kg=1.1157467 x 10% MeVc2
1Kg =10%/1.78266270 D0 MeVc 2

[r] m

G he6.67259 x 10-% MeV2¢c 4

he 197.327 MeVfm

list here the units of the various quantities and in case g§jgial constants, also their values. A

bracketed symbol likéP] stands for the unit of the quantity inside the brackets.

We introduce therefore dimensionless quantities for tdeusxr = /Ry, mass-energy den-

sity p = p/ps, pressuré’ = P/p, and massn = m/M,.

The constantd/, and R, can be determined from the requirements that the equaﬁmﬂgf

and“Z should be dimensionless. This gives

dMym
= 4w R{T psp
dRUT ™ OT p p:
yielding
dm
- = 4m Ry72 psp/ M.

If these equations should be dimensionless we must demand th
AT R3ps /My = 1.

Correspondingly, we have for the pressure equation

dps P mpsp
= —GM,—=
dRoT " R27?

and since this equation should also be dimensionless, Wwaavié

GM()/RO == 1

(14.92)

(14.93)

(14.94)

(14.95)

(14.96)

This means that the constan®g and M, which will render the equations dimensionless are

given by
R 1
O /p,Gar’

(14.97)
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and
Admps

(VpsGim)>

However, since we would like to have the radius expressediis of 10 km, we should multiply
Ry by 107", since 1 fm =10~"> m. Similarly, M, will come in units of MeV/c?, and it is
convenient therefore to divide it by the mass of the sun amless the total mass in terms of
solar masses/,.

The differential equations read then

M, = (14.98)

dpP mp dm
=" —— =7 14.
dr 2 g P (14.99)

14.9.4 Program and selected results

in preparation

14.10 Physics project: Systems of linear differential equ#ons

in preparation



Chapter 15

Two point boundary value problems.

15.1 Introduction

This chapter serves as an intermediate step to the nextech@mppartial differential equations.
Partial differential equations involve both boundary dtinds and differential equations with
functions depending on more than one variable. Here we foouthe problem of boundary
conditions with just one variable. When diffential equascare required to satify boundary
conditions at more than one value of the independent vaidbé resulting problem is called
a two point boundary value problenfs the terminology indicates, the most common case by
far is when boundary conditions are supposed to be satifiegloapoints - usually the starting
and ending values of the integration. The Schrodinger émuet an important example of such
a case. Here the eigenfunctions are restricted to be fingeyetere (in particular at = 0)
and for bound states the functions must go to zero at infitntghis chapter we will discuss the
solution of the one-particle Schddinger equation and affpgymethod to the hydrogen atom.

15.2 Schrodinger equation
We discuss the numerical solution of the Schrédinger eqondtr the case of a particle with

massm moving in a spherical symmetric potential.
The initial eigenvalue equation reads

Hy (7) = (T + V)y () = Ey (7). (15.1)
In detail this gives
(—Qh—mVQ + V(r)) U(7) = B (7). (15.2)

The eigenfunction in spherical coordinates takes the form
Y(r) = R(r)Y,™ (0, ¢), (15.3)

293
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and the radial parR(r) is a solution to

_;L_m <ri2di7“r2di7” B l(l; 1)) 4 V(r)R(r) = ER(r). (15.4)
Then we substitut&(r) = (1/r)u(r) and obtain
et + (v + Y ) = Bt (155)

We introduce a dimensionless variable= (1/a)r wherea is a constant with dimension length
and get

h? d? I(1+1) b
- =F : 15.6
)+ (Vo) + ) uie) = ut) (15.6
In our case we are interested in attractive potentials
Vi(r) = =Vof(r), (15.7)
whereV, > 0 and analyze bound states whéfe< 0. The final equation can be written as
d2
d—pQU(p) + k(p)u(p) =0, (15.8)
where
LI(l+1)
k(p) = <f p) — = - 6)
(p) (p) I
2ma?V,
T T
B
= = 15.9
€ T (15.9)

15.3 Numerov’'s method

Eqg. (15.8) is a second order differential equation withawt first order derivatives. Numerov’'s
method is designed to solve such an equation numericalygwaag an extra order of precision.
Let us start with the Taylor expansion of the wave function

h2 h? ht
u(p+h) = u(p) + hu'(p) + Zu® (p) + ru® () + Jru®(p) + - (15.10)

whereu™(p) is a shorthand notation for the nth derivatiVe/dp". Because the corresponding
Taylor expansion ofi(p — h) has odd powers df appearing with negative signs, all odd powers
cancel when we add(p + h) andu(p — h)

4

u(p+ h) +u(p — h) =~ 2u(p) + h*u?(p) + %u(4)(p) + O(h%). (15.11)
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Then we obtain

u®(p) o ML) “(h’;_ h) = 2ulp) _ %u(4)(p) o). (15.12)

To eliminate the fourth-derivative term we apply the operét + ’f—;%) to Eq. (15.8) and obtain
a modified equation
h? h? d?

7700 () + E(p)u(p) + 157 (k(p)u(p)) ~ 0. (15.13)

hQ (2)

In this expression the*) terms cancel. To treat the genepadiependence of(p) we approxi-
mate the second derivative bfp)u(p) by

d*(k(p)u(p)) _ (k(p+ h)ulp+h) + k(p)u(p)) + (k(p — h)u(p — h) + k(p)u(p))

PR e . (15.14)
and the following numerical algorithm is obtained
2 (1 — Zh2k ; — (1 + Zh%ku;
u(i—|—2) ~ ( 12 ('*’1)“(,;1)) ( + 12 U) (1515)
1+ Ek(i+2)
wherep = ih, k; = k(ih) andu; = u(ih) etc.
15.4 Schrodinger equation for a spherical box potential
Let us now specify the spherical symmetric potential to
1 r<a
f(r)= { 0 for r e g (15.16)
and chooser = a. Then
| —e—1uD <
k(p) = v{ by for 20 (15.17)
v p?

The eigenfunctions in Eq. (15.2) are subject to conditiohgtvlimit the possible solutions. Of
importance for the present example is that) must be finite everywhere anfd|u () |*dr must
be finite. The last condition means thdt(r) — 0 for r — oc. These conditions imply that
u(r) must be finite at = 0 andu(r) — 0 for r — co.

15.4.1 Analysis ofu(p) atp =0
For smallp Eq. (15.8) reduces to

d? I(1+1) _
d—pQU(p)— e u(p) =0, (15.18)
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with solutionsu(p) = p!*! oru(p) = p~.. Since the final solution must be finite everywhere we
get the condition for our numerical solution

u(p) = p'*t for smallp (15.19)

15.4.2 Analysis ofu(p) for p —
For largep Eqg. (15.8) reduces to

d2
d—p2u(p) —yeu(p) =0 7 >0, (15.20)
with solutionsu(p) = exp(+yep) and the condition for large means that our numerical solution
must satisfy

u(p) =e 7 forlargep (15.21)

15.5 Numerical procedure

The eigenvalue problem in Eq. (15.8) can be solved by thealeecshooting methods. In order
to find a bound state we start integrating, with a trial negatialue for the energy, from small
values of the variable, usually zero, and up to some large valugpofAs long as the potential
is significantly different from zero the function oscillateOutside the range of the potential the
function will approach an exponential form. If we have choaeorrect eigenvalue the function
decreases exponetially agp) = e 7*. However, due to numerical inaccuracy the solution will
contain small admixtures of the undesireable exponent@ligg functionu(p) = e™“. The
final solution will then become unstable. Therefore, it itdreto generate two solutions, with
one starting from small values @f and integrate outwards to some matching peint p,,.
We call that function:<(p). The next solution.”(p) is then obtained by integrating from some
large valuep where the potential is of no importance, and inwards to timeesanatching point
pm- Due to the quantum mechanical requirements the logarithimiivative at the matching
point p,,, should be well defined. We obtain the following condition

su(p)  u”(p)
u<(p)  u(p)

We can modify this expression by normalizing the function:<(p,,) = Cu”u~(pm,). Then
Eqg. (15.22) becomes

at p= pm. (15.22)

d
—u<(p) = —u> = 15.2

For an arbitary value of the eigenvalue Eq. (15.22) will netdatisfied. Thus the numerical
procedure will be to iterate for different eigenvalues Ua¢. (15.23) is satisfied.
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We can calculate the first order derivatives by

d u=(pm) — u=(pm — h)
d > u” (pm + h) —u” (pm)
" (o) ~ . (15.24)

Thus the criterium for a proper eigenfunction will be

f=u"(pm —h) —u”(pm + h) (15.25)

15.6 Algorithm for solving Schrddinger’s equation

of the solution. Here we outline the solution of Schrddirgjequation as a common differential

equation but with boundary conditions. The method combstemting and matching. The

shooting part involves a guess on the exact eigenvalue.tialivalue is then combined with a

standard method for root searching, e.g., the secant atlmaenethods discussed in chapter 8.
The algorithm could then take the following form

¢ Initialise the problem by choosing minimum and maximum ealtor the energy,,;, and
Erax, the maximum number of iteratiomsax_iter and the desired numerical precision.

e Search then for the roots of the functigZ), where the root(s) is(are) in the interval
E € [Enin, Fmax] USINg €.9., the bisection method. The pseudocode for suepmach
can be written as

do {
i ++;
e = (e_min+te_max)/2.; [+« bisection x/
if ( f(e)xf(e_max) > 0) {
e _max = e; /+ change search intervalx/
}
else {
e _min = e;
}
} while ( (fabs(f(e) > convergence _test) !l (i <=
max_iterations))

The use of a root-searching method forms the shooting patieolgorithm. We have
however not yet specified the matching part.

e The matching part is given by the functigite) which receives as argument the present
value of E. This function forms the core of the method and is based omtagiation of
Schrédinger’s equation from= 0 andp = oc. If our choice ofF satisfies Eq. (15.25) we
have a solution. The matching code is given below.
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The functionf (E) above receives as input a guess for the energy. In the veénsglemented
below, we use the standard three-point formula for the stdenivative, namely

"o fh - 2f0 +ffh
0o~ h2 '
We leave it as an exercise to the reader to implement Nunseabgorithm.

/1

/I The function

/1 f()

/I calculates the wave function at fixed energy eigenvalue.
/1

void f(double step, int max_step ,double energy , double xw, double *wf

)
{

int loop, loop_1,match;
double const sqrt_pi = 1.77245385091;
double fac , wwf, norm;
/!l adding the energy guess to the array containing the potiaht
for (loop = 0; loop <= max_step; loop ++) {
w[loop] = (w[loop] — energy) x step x step + 2;
}
/l integrating from large rvalues
wf[ max_step] =0.0;
wf[max_step — 1] = 0.5 % step x step;
/Il search for matching point
for (loop = max_step— 2; loop > 0; loop—) {
wf[loop] = wf[loop + 1] * w[loop + 1] — wf[loop + 2];
if (wf[loop] <= wf[loop + 1]) break;

}
match = loop + 1;
wwf = wf[match ];
/Il start integrating up to matching point from r =0
wf[0] = 0.0;

wf[1l] = 0.5 x step * step;
for (loop = 2; loop <= match; loop++) {
wf[loop] = wf[loop —1] * w[loop — 1] — wf[loop - 2];
if (fabs (wf[loop]) > INFINITY) {
for (loop_1 = 0; loop_1 <= loop; loop_1++) {
wf[loop_1] /= INFINITY;
}
}

}
/I now implement the test of Eq. (10.25)

return fabs (wf[match-1]—-wf[match +1]) ;
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\} /l End: funtion plot()







Chapter 16

Partial differential equations

16.1 Introduction

In the Natural Sciences we often encounter problems withynaanables constrained by bound-
ary conditions and initial values. Many of these problemsloa modelled as partial differential
equations. One case which arises in many situations is tealksl wave equation whose one-
dimensional form reads o 2U
97 A 52 (16.1)
whereA is a constant. Familiar situations which this equation caad@hare waves on a string,
pressure waves, waves on the surface of a fjord or a laker@eagnetic waves and sound waves
to mention a few. For e.g., electromagnetic waves the conhdta- ¢?, with c the speed of light.
It is rather straightforward to extend this equation to twohvee dimension. In two dimensions
we have 0*U  0°U 0*U
-+ 7 = A TR (16.2)
In Chapter 10 we saw another case of a partial differentiahggn widely used in the Nat-
ural Sciences, namely the diffusion equation whose onexdgional version we derived from a

Markovian random walk. It reads

0*U ou
o A 5 (16.3)
and A is in this case called the diffusion constant. It can be usadddel a wide selection of
diffusion processes, from molecules to the diffusion ofthea given material.
Another familiar equation from electrostatics is Laplacequation, which looks similar to
the wave equation in EqQ. (16.1) except that we haveliset(
0*U  0°U
—_— — =
ox?  0y?
or if we have a finite electric charge represented by a chaegsity p(x) we have the familiar
Poisson equation

0, (16.4)

0’U  0*U
W + 6—y2 = —471'/)(}(). (165)

301



302 CHAPTER 16. PARTIAL DIFFERENTIAL EQUATIONS

However, although parts of these equation look similar, Wiesee below that different solu-
tion strategies apply. In this chapter we focus essentallgo-called finite difference schemes
and explicit and implicit methods. The more advanced topiinite element methods is rele-
gated to the part on advanced topics.

A general partial differential equation ih+ 1-dimensions (with2 standing for the spatial
coordinates: andy and1 for time) reads

U U U ou U

Az, y)—=— + B(x,y)az—ay + C(x’y)é?—gﬂ = F(z,y,U, 9 Iy ), (16.6)

ox?
and if we set
B=C=0, (16.7)

we recover thé + 1-dimensional diffusion equation which is an example of aalbed parabolic
partial differential equation. With

B=0, AC <0 (16.8)

we get the2 + 1-dim wave equation which is an example of a so-called hype=RIDE, where
more generally we havB? > AC. For B?> < AC we obtain a so-called ellyptic PDE, with the
Laplace equation in Eq. (16.4) as one of the classical exasnplhese equations can all be easily
extended to non-linear partial differential equations and1 dimensional cases.

The aim of this chapter is to present some of the most fandifégrence methods and their
eventual implementations.

16.2 Diffusion equation

The let us assume that the diffusion of heat through somermakiteproportional with the tem-
perature gradierif'(x, ¢) and using conservation of energy we arrive at the diffusguragon

_ 0T (x,t)

R VP _
oV T(x,1) o (16.9)

where(C' is the specific heat andthe density of the material. Here we let the density be repre-
sented by a constant, but there is no problem introducinglicé spatial dependence, viz.,

K 0T (x,t)
VT (x,t) = — . 16.10
Cp(X, t) (Xa ) ot ( )
Setting all constants equal to the diffusion constant.e.,
D = @, (16.11)
K
we arrive at o7
ver(x, £) = p2L 0. (16.12)

ot
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Specializing to thé + 1-dimensional case we have

T (x,t) DaT(x,t)
or? ot

(16.13)

We note that the dimension @f is time/lengtR. Introducing the dimensional variables = «
we get
T (x,t) D@T(z,t)
Q202 ot
and sincen is just a constant we could defia€ D = 1 or use the last expression to define a
dimensionless time-variabfe This yields a simplified diffusion equation

(16.14)

T (z,t)  0T(2,1)
02 ot

(16.15)

It is now a partial differential equation in terms of dimemdess variables. In the discussion
below, we will however, for the sake of notational simplagieplace: — = andi — t. Moreover,
the solution tal + 1-dimensional partial differential equation is replacedty, t) — u(z, t).

16.2.1 Explicit scheme

In one dimension we have thus the following equation

0 t
V2u(z,t) = u(@, ) (16.16)
ot
or
Upy = Uy, (16.17)
with initial conditions, i.e., the conditions &t 0,
u(z,0) =g(z) 0<z<L (16.18)
with . = 1 the length of ther-region of interest. The boundary conditions are
u(0,t) =a(t) t>0, (16.19)
and
u(L,t) =b(t) t>0, (16.20)

wherea(t) andb(t) are two functions which depend on time only, whijle:) depends only on
the positionz. Our next step is to find a numerical algorithm for solvingsteguation. Here
we recur to our familiar equal-step methods discussed iptén& and introduce different step
lengths for the space-variabteand timet through the step length far

(16.21)
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and the time step length¢. The position aftef steps and time at time-stgmare now given by

tj =jAt ji>0
{xi:mx 1<i<n+1 (16.22)

If we then use standard approximations for the derivative®btain

w(x,t+ At) —u(z,t)  w(x,t;+ At) —u(x;, t))
R~ = 16.2
. At At (16.23)

with a local approximation errap(At) and

u(z + Ax,t) — 2u(z, t) + u(x — Ax, t)
Az? ’

(16.24)

~
sz ~

o uw(w; + Az, t;) — 2u(z;, t;) + u(z; — Az, t;)

Ax? ’
with a local approximation erra®(Az?). Our approximation is to higher order in the coordi-
nate space. This can be justified since in most cases it igtteaksdependence which causes
numerical problems. These equations can be further siegkfs

(16.25)

~
uIZE ~

v (16.26)

and

(16.27)
The one-dimensional diffusion equation can then be resvriit its discretized version as

i1 — Ui _ Wigij — 2Uij + Ui,

A7 = A2 (16.28)
Defininga = At/Az? results in the explicit scheme
Ui 11 = aui1j+ (1 — 20)u;; + auig j. (16.29)
Since all the discretized initial values
uip = g(;), (16.30)

are known, then after one time-step the only unknown quaistit; ; which is given by
Ui = aui-10 + (1 = 20)ui0 + auipro = ag(rvi-1) + (1 — 2a)g(7:) + ag(rip).  (16.31)

We can then obtain; , using the previously calculated values and the boundary conditions
a(t) andb(t). This algorithm results in a so-called explicit schemegsithe next functions, ; is
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t
Ui j41
t b(t
&( ) ,Ui—l,.‘g“z‘,j ,“Hl,j ( )
g(z) x

Figure 16.1: Discretization of the integration area useithésolution of the + 1-dimensional
diffusion equation.
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explicitely given by Eq. (16.29). The procedure is depidgte#iig. 16.2.1. The explicit scheme,
although being rather simple to implement has a very wedklgyacondition given by

At/Az* < 1/2 (16.32)

We will now specialize to the casdt) = b(t) = 0 which results inug ; = u,41,; = 0. We
can then reformulate our partial differential equatiorotigh the vectol; at the timet; = jAt

ul,j
V i U/Q’j
= . (16.33)
un,j
This results in a matrix-vector multiplication
Vig = AV (16.34)
with the matrixA given by

1 -2« Q 0 0...
«Q 1—-2a « 0...

s
I

(16.35)
0... 0... a 1-2«a
which means we can rewrite the original partial differeln¢iquation as a set of matrix-vector

multiplications R -
Vigo= AV = ... = A, (16.36)

wherel} is the initial vector at time = 0 defined by the initial valug(x).

16.2.2 Implicit scheme

In deriving the equations for the explicit scheme we stavi@l the so-called forward formula
for the first derivative, i.e., we used the discrete appratiom

Lt AL — u(x, t
oy o Uity Ati ul@i 1) (16.37)

However, there is nothing which hinders us from using thekbvacd formula

U(IEZ', t]) — U(l‘i, tj — At)
~ 16.38
still with a truncation error which goes like(At). We could also have used a midpoint approx-

imation for the first derivative, resulting in

"y u(:vz-, tj + At) — U(ZL'Z', tj - At)
Uy~ N : (16.39)
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with a truncation errof)(A¢?). Here we will stick to the backward formula and come back to
the later below. For the second derivative we use however

oulx + Awyty) = 2u(wg, t;) +ule; — Aw, t)

Uy A N , (16.40)
and define again = At/Az?%. We obtain now
Uijo1 = —oui_1; + (1 —2a)u; j — auii j. (16.41)
Hereu, ;_, is the only unknown quantity. Defining the matrix
1-2a -« 0 0...
A —a 1-2a —a O0... , (16.42)
0... 0. -a 1-2
we can reformulate again the problem as a matrix-vectoripigtition
AV, =V, (16.43)
meaning that we can rewrite the problem as
V= AW, = A (A*lvj,Q) — = AT, (16.44)

If o does not depend on tintewe need to invert a matrix only once. This is an implicit Stlee
since it relies on determining the vectar;_, instead ofu; ;11

16.2.3 Program example

Here we present a simple Fortran90 code which solves thafimity 1 + 1-dimensional diffusion
problem withL = 1
Ugg = Ut
u(z,0) = sin(rz) (16.45)
u(0,t) = u(l,t) =0

with the exact solutiom(z, t) = e~ sin(rz).

programs/chapl6/programl.f90

Program to solve the £dim heat equation using

matrix inversion. The initial conditions are given by
u(xmin,t)=u(xmax,t)=0 ang u(x,0) = f(x) (user provided magtion)
Initial conditions are read in by the function initialise

such as number of steps in the—direction , t-direction ,

xmin and xmax. For xmin = 0 and xmax = 1, the exact solution
IS U(x,t)= expEpi*x2xx)sin(pixx) with f(x) = sin(pixXx)
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! Note the structure of this module, it contains various
! subroutines for initialisation of the problem and solutio
! of the PDE with a given initial function for u(x,t)

MODULE one_dim_heat_equation
DOUBLE PRECISION, PRIVATE :: xmin, xmax, k
INTEGER , PRIVATE :: m , ndim

CONTAINS

SUBROUTINE initialise

IMPLICIT NONE

WRITE (% ,+x) ' read in number of mesh pointsin x’
READ (* ,+) ndim

WRITE (% ,+x) ' read in xmin and xmax’

READ (* ,*) xmin, Xmax

WRITE (% ,+x) ' read in number of time steps’
READ (* ,+) m

WRITE (% ,+x) ' read in stepsizein t’

READ (x ,x) k

END SUBROUTINE initialise

SUBROUTINE solve_1dim_equation(func)
DOUBLE PRECISION :: h, factor , det, t, pi
INTEGER :: i, j, |
DOUBLE PRECISION , ALLOCATABLE , DIMENSION (:,:) :: a
DOUBLE PRECISION , ALLOCATABLE , DIMENSION (:) :: u, Vv
INTERFACE

DOUBLE PRECISION FUNCTION  func (x)

IMPLICIT NONE

DOUBLE PRECISION, INTENT (IN) :: X

END FUNCTION func
END INTERFACE
I define the step size
h = (xmax-xmin) /FLOAT(ndim+1)
factor = k/h/h
I allocate space for the vectors u and v and the matrix a
ALLOCATE ( a( ndim, ndim) )
ALLOCATE (u (ndim) , v(ndim) )
pi = ACOS(-1.)
DO i=1, ndim
v(i) = func(pixixh)
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ENDDO
I write out for t =0
t = 0.
DO i=1, ndim
WRITE (6 ,%) t, ixh, v(i)

ENDDO
I setup the matrix to be inverted
a = 0.  u=0.

DO i=1, ndim — 1
a(i,i)=1.+2«factor
a(i,i+l)=factor
a(i+l,i)="factor

ENDDO

a(ndim, ndim) = 1.+2xfactor

I now invert the matrix

CALL matinv ( a, ndim, det)

DOi =1, m
DO =1, ndim

u(l) = DOT_PRODUCT(a(l,:) ,v(:))

ENDDO
vV = U
t = ixk

DO j=1, ndim
WRITE (6 ,%) t, jxh, v(j)
ENDDO
ENDDO
DEALLOCATE ( a); DEALLOCATE (u, V)

END SUBROUTINE solve_1dim_equation
END MODULE one_dim_heat_equation

PROGRAM heat _eq_1dm
USE one_dim_heat_equation
IMPLICIT NONE
INTERFACE
DOUBLE PRECISION FUNCTION function_initial (x)
IMPLICIT NONE
DOUBLE PRECISION , INTENT (IN) :: x

END FUNCTION function_initial
END INTERFACE
CALL initialise
OPEN(UNIT =6, FILE ="heat . dat’)
CALL solve_1dim_equation(function_initial)
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CLOSE(6)

END PROGRAM heat_eq_1dm

DOUBLE PRECISION FUNCTION function_initial (x)
IMPLICIT NONE

DOUBLE PRECISION, INTENT (IN) :: x

function_initial = SIN (x)

END FUNCTION function_initial

16.2.4 Crank-Nicolson scheme

It is possible to combine the implicit and explicit methodsai slightly more general approach.
Introducing a parametér(the so-called-rule) we can set up an equation
& (Uim1j — 2Uij + Uig15) + IA—xf (Uigrj-1 — U1+ Ui1j1) = é (wij — wij-1),

(16.46)

which forf = 0 yields the forward formula for the first derivative and th@koit scheme, while

f = 1 yields the backward formula and the implicit scheme. Thagedchemes are called the

backward and forward Euler schemes, respectivelyfFerl /2 we obtain a new scheme after its

inventors, Crank and Nicolson. This scheme yields a triocan time which goes like) (At?)

and it is stable for all possible combinations/of andAzx.

Using our previous definition of = A¢/Az? we can rewrite the latter equation as

—QU;—1,j + (2 + 204) Ujj — QUjq1,5 = QUj—1 51 + (2 - 204) Ug,j—1 + QUjq1,5—1, (1647)

or in matrix-vector form as

<2f n zaé) v, = (Qf . 2041%) Vi, (16.48)
where the vectoV is the same as defined in the implicit case while the matris
2 -1 0 0...
B— —1 2 =1 0... (16.49)

16.2.5 Non-linear terms and implementation of the Crank-Ncoloson scheme

16.3 Laplace’s and Poisson’s equations

Laplace’s equation reads
V2u(X) = Uy + 1y, = 0. (16.50)
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with possible boundary conditiongz, y) = ¢(z, y) on the border. There is no time-dependence.
Choosing equally many steps in both directions we have argtiadr rectangular grid, depend-
ing on whether we choose equal steps lengths or not in tred they directions. Here we set
Ax = Ay = h and obtain a discretized version

U(ZL‘ + h’ﬂy) _ QU(SU: y) + U(l‘ - hay)

Uy R 3 : (16.51)
and
1y ~ u(@,y+h) - 2u(th, y) +ulz,y — h), (16.52)
which we rewrite as Wions — Ui+ i1
Ugy N ’ h27 =, (16.53)
and
Uy A LT 2;‘;?' i1 (16.54)
which gives when inserted in Laplace’s equation
Ujj = 1 [ 541 + Wi g1 + Uit1j + Ui1 5] - (16.55)

4

This is our final numerical scheme for solving Laplace’s g¢igua Poisson’s equation adds only
a minor complication to the above equation since in this easbave

Ugy + Uyy = _p(x)a
and we need only to add a discretized versiop(af) resulting in

1
Uj 5 = 1 (Wi j1 + Wi jo1 + Wigrj + Uim1 ] + i (16.56)

It is fairly straightforward to extend this equation to thede-dimensional case. Whether we

solve Eqg. (16.55) or Eq. (16.56), the solution strategy temthe same. We know the values of

vati =00ri=n+1landatj = 0orj = n + 1 but we cannot start at one of the boundaries
and work our way into and across the system since Eq. (16egb)jnes the knowledge afat all

of the neighbouring points in order to calculatat any given point.

The way we solve these equations is based on an iterativengchballed the relaxation
method. Its steps are rather simple. We start with an ingiedss foruz(.f)j) where all values
are known. To obtain a new solution we solve Eq. (16.55) or(E6.56) in order to obtain a
new solutionuz(}j). Most likely this solution will not be a solution to Eq. (1&)6 This solution is

in turn used to obtain a new and improv&@. We continue this process till we obtain a result
which satisfies some specific convergence criterion.

A simple example may help in visualizing this method. We ad&sa condensator with
parallel plates separated at a distardceesulting in e.g., the voltage difference$z,0) =
100sin(27z/L) andu(z,1) = —100sin(27x/L). These are our boundary conditions and we
ask what is the voltage between the plates? To solve this problem numerically weigeo
below a Fortran 90/95 program which solves iteratively H§.%5).



312

CHAPTER 16. PARTIAL DIFFERENTIAL EQUATIONS

programs/chapl6/program2.f90

Program to solve the 2dim Laplace equation using iteration.
No time—dependence.

Initial conditions are read in by the function initialise

such as number of steps in the—direction , y-direction,
xmin and xmax, ymin and ymax. Here we employ a square lattice
with equal number of steps in x and y directions

Note the structure of this module, it contains various
subroutines for initialisation of the problem and solutno
of the PDE with a given initial function for u(x,y)

MODULE two_dim_laplace_equation
DOUBLE PRECISION, PRIVATE :: xmin, xmax, ymin, ymax
INTEGER , PRIVATE :: ndim, iterations
DOUBLE PRECISION , ALLOCATABLE , DIMENSION (: ,:) , PRIVATE :: u,
u_temp
CONTAINS

this function reads in the size of lattice , xmin, xmax,
ymin and ymax and the number of iterations

SUBROUTINE initialise
IMPLICIT NONE

WRITE (% ,*) ' read in number of mesh pointsin x and y direction

READ (* ,+) ndim

WRITE (% ,+x) ' read in xmin and xmax’

READ (* ,*) xmin, Xmax

WRITE (% ,+x) ' read in ymin and ymax’

READ (% ,*) ymin, ymax

WRITE (% ,*) ' read in max number of iterations’
READ(* ,+) iterations

END SUBROUTINE initialise

SUBROUTINE solve_2dimlaplace_equation (func)
DOUBLE PRECISION :: h, x, vy, pi, length, diff
INTEGER :: i, j, |

INTERFACE
DOUBLE PRECISION FUNCTION  func (argument)
IMPLICIT NONE
DOUBLE PRECISION, INTENT (IN) :: argument
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END FUNCTION func
END INTERFACE
I define the step size
h = (xmax-xmin) /FLOAT(ndim+1)
length = xmaxxmin
the vector u and the temporary vector

I allocate space for
I be upgraded in every iteration

ALLOCATE ( u( ndim, ndim) )
ALLOCATE ( u_temp( ndim, ndim) )
pi = ACOS(-1.)
' set up of initial conditions at t = 0 and boundary conditions
u = 0.
DO i=1, ndim

X = ixhxpi/length

u(i,1) = func(x)

to

u(i,ndim) = —func (x)
ENDDO
I iteration algorithm starts here
iterations =0
.OR. ( diff >0.00001) )

DO WHILE ( (iterations <= 20)
u_temp = u; diff = 0.
DO j =2, ndim — 1

DO | =2, ndim -1
u(j,!) =0.25«(u_temp(j+1,1)+u_temp(}1,1)+ &

u temp(j,l+1)+u_temp(j,+1))

diff = diff + ABS(u_temp(i,j)-u(i,j))

ENDDO
ENDDO
iterations = iterations + 1
diff = diff/(ndim+1)xx2
ENDDO

! write out results
DO j = 1, ndim
DO | = 1, ndim
WRITE (6 ,%)
ENDDO

ENDDO

DEALLOCATE (u, u_temp)
END SUBROUTINE solve_2dimlaplace_equation

jxh, 1xh, u(j,1)

END MODULE two_dim_laplace_equation

PROGRAM laplace_eq_2dim
USE two_dim_laplace_equation
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IMPLICIT NONE
INTERFACE
DOUBLE PRECISION FUNCTION  function_initial (x)
IMPLICIT NONE
DOUBLE PRECISION, INTENT (IN) :: x

END FUNCTION function_initial
END INTERFACE

CALL initialise

OPEN(UNIT =6, FILE ="laplace .dat’)

CALL solve_2dimlaplace_equation (function_initial)
CLOSE(6)

END PROGRAM laplace_eq_2dim

DOUBLE PRECISION FUNCTION  function_initial (x)
IMPLICIT NONE

DOUBLE PRECISION, INTENT (IN) :: x

function_initial = 100SIN (x)

END FUNCTION function_initial

The important part of the algorithm is applied in the funotihich sets up the two-dimensional
Laplace equation. There we have a do-while statement weslls the difference between the
temporary vector and the solutian;. Moreover, we have fixed the number of iterations to be at
most20. This is sufficient for the above problem, but for more gehapplications you need to
test the convergence of the algorithm.

16.4 Wave equation in two dimensions

The1l + 1-dimensional wave equation reads

0?u  0*u

— == 16.57

ox2 o2’ ( )
with v = u(z, t) and we have assumed that we operate with dimensionles®hesridPossible
boundary and initial conditions with = 1 are

Upr = Ut S [0,1},t>0
u(r,0) = g(x) z €10, 1]
w(O0,0) =u(l.) =0  t>0 (16.58)

3u/8t|t:0 =0 x € [0, 1]
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We discretize again time and position,
w(z + Az, t) — 2u(x, t) + u(x — Az, t)

s A S , (16.59)
and
u(z, t + At) — 2u(z, t) + u(x,t — At)
U =~ AtQ s (1660)
which we rewrite as o
o Wikl — 2Uij+ Ui
U A v , (16.61)
and
Uijp1 — 25 + Uij
U = NG , (1662)
resulting in
At
Wijp1 = 2Uj5 — Ujj1 + Nl (Wis1; — U5 + uio1j) . (16.63)

If we assume that all values at times- j andt = j — 1 are known, the only unknown variable
is u; j+1 and the last equation yields thus an explicit scheme for tipgléhis quantity. Wehave
thus an explicit finite difference scheme for computing tleefunctionu. The only additional
complication in our case is the initial condition given byetfirst derivative in time, namely
Odu/0t|;—o = 0. The discretized version of this first derivative is given by

u(xi, t; + At) — u(w;, t; — At)
TS
' 2At ’

(16.64)

and att = it reduces to
Uj+1 — Uj—1

2At
implying thatu; .1 = u; 4. If we insert this condition in Eq. (16.63) we arrive at a Spkc
formula for the first time step

=0, (16.65)

Uy =

At
Ui1 = Ui + AL (Uit1,0 — 2ui0 + Uiz1) - (16.66)

We need seemingly two different equations, one for the fins¢ step given by Eq. (16.66) and
one for all other time-steps given by Eq. (16.63). Howeuesuffices to use Eq. (16.63) for all
times as long as we providéi, —1) using

At

U1 = U + IAL2 (tip1,0 = 2ui0 + Ui—1,0) (16.67)

in our setup of the initial conditions.

The situation is rather similar for the+ 1-dimensional case, except that we now need to
discretize the spatia}-coordinate as well. Our equations will now depend on thiagables
whose discretized versions are now

t = IAt >0
r=iAr 1<i<ng+1 , (16.68)
yi=JAy 1<j<n,+1
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and we will letAz = Ay = h andn, = n, for the sake of simplicity. The equation with initial
and boundary conditions reads now

U:r:r"’uyyzutt x,y6[071]7t>0
u(z,y,0) = g(z,y) z,y € [0,1]
w(0,0,t) = u(1,1,¢) =0 £ 0 : (16.69)
Ou/0t[— = 0 z,y € [0,1]

We have now the following discretized partial derivatives

Uz+1] 2u —f-uZ 14

Ugpy R h2 , (16.70)
and
2u it ul
z j+1 [ 1
Uy ~ —2 h2 J-L (16.71)
and l+1
2u it u
~ S 16.72
Uy =~ At2 ) ( )
which we merge into the discretiz€d+ 1-dimensional wave equation as
I+1 At
U —2u +ﬁ(z+lg 4u —|—uz 13+U”+1+U” " (16.73)

where again we have an explicit scheme th@ as the only unknown quantity. It is easy to
account for different step lengths forandy. The partial derivative is treated in much the same
way as for the one-dimensional case, except that we now haaelditional index due to the
extra spatial dimension, viz., we need to commﬁ’]é through

t
i i T 9p2 (“?ﬂ J 4Uz 0+ U s Uy g1 T uy ij— 1) (16.74)

in our setup of the initial conditions.

16.4.1 Program for the2 + 1 wave equation and applications

16.5 Inclusion of non-linear terms in the wave equation
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Chapter 17

Modelling phase transitions

17.1 Methods to classify phase transition

17.1.1 The histogram method
17.1.2 Multi-histogram method

17.2 Renormalization group approach
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Chapter 18

Hydrodynamic models

321






Chapter 19

Diffusion Monte Carlo methods

We discuss implementations and the underlying theory filugion Monte Carlo methods.

19.1 Diffusion Monte Carlo

The DMC method is based on rewriting the Schrodinger egnatiamaginary time, by defining
7 = it. The imaginary time Schrodinger equation is then

% _ —Hyp, (19.1)
or

where we have omitted the dependence @md the spatial variables in. The wave function)
is again expanded in eigenstates of the Hamiltonian

Y= Zci¢i: (19.2)
where R
Ho; = €9, (19.3)
¢; being an eigenstate ®1. A formal solution of the imaginary time Schrodinger eqaatis
(1 +07) = e BTy (ry) (19.4)

where the staté(7;) evolves from an imaginary timg to a later timer; + 6. If the initial state
() is expanded in energy ordered eigenstates, following Bg2j1then we obtain

Y(Or) = cie ;. (19.5)
Hence any initial statey, that is not orthogonal to the ground statewill evolve to the

ground state in the long time limit, that is

lim ¢(d7) = coe” 7 ¢y. (19.6)

T—00
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This derivation shares many formal similarities with thateg for the variational principle dis-
cussed in the previous sections. However in the DMC methedrttaginary time evolution
results in excited states decaying exponentially fast,redsein the VMC method any excited
state contributions remain and contribute to the VMC energy

The DMC method is a realisation of the above derivation initgosspace. Including the
spatial variables as well, the above equation reads

lim (R, 67) = coe™ "¢ (R). (19.7)
T—r00
By introducing a constant offset to the ener@y;, = ¢, the long-time limit of Eq. (19.7)

can be kept finite. If the Hamiltonian is separated into tme#ic energy and potential terms, the
imaginary time Schrédinger equation, takes on a form smhila diffusion equation, namely

_WR. ) _ [Z—%V?w(R, )| + (V(R) — Er)v(R, 7). (19.8)

or

This equation is a diffusion equation where the wave fumctionay be interpreted as the density
of diffusing particles (or “walkers”), and the terii R) — £ is a rate term describing a potential-
dependent increase or decrease in the particle densityaddwee equation may be transformed
into a form suitable for Monte Carlo methods, but this leanls tvery inefficient algorithm.
The potentiall’(R) is unbounded in coulombic systems and hence the rate W&iR) — Er
can diverge. Large fluctuations in the particle density tresult and give impractically large
statistical errors.

These fluctuations may be substantially reduced by thepacation of importance sampling
in the algorithm. Importance sampling is essential for DMEtinods, if the simulation is to
be efficient. A trial or guiding wave functiotir(R), which closely approximates the ground
state wave function is introduced. This is where typicaiy ¥YMC result would enter, see also
discussion below A new distribution is defined as

f(R,7) =¢vr(R)Y(R, 7), (19.9)

which is also a solution of the Schrddinger equation whi€R, 7) is a solution. Eq. (19.8)
consequently modified to

Iof(R,7) 1

S = 5VIV - F(R) f(R.7) + (Bu(R) - En)f(R.7).  (19.10)
In this equation we have introduced the so-called forcertEr given by
2Vyr(R)
FR)= """ 19.11
B) Yr(R) ( )
and is commonly referred to as the “quantum force”. The lecargyE is defined as previously
1 V%r(R
ErR) = — ¥r(R) + V(R)Yr(R), (19.12)

Yr(R) 2
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and is computed, as in the VMC method, with respect to theviiage function.

We can give the following interpretation to Eq. (19.10). Tight hand side of the impor-
tance sampled DMC equation consists, from left to right,iftision, drift and rate terms. The
problematic potential dependent rate term of the non-itapae sampled method is replaced by
a term dependent on the difference between the local enétgyg guiding wave function and the
trial energy. The trial energy is initially chosen to be thel®& energy of the trial wave function,
and is updated as the simulation progresses. Use of an gptiniial function minimises the
difference between the local and trial energies, and hemaignmises fluctuations in the distribu-
tion f . A wave function optimised using VMC is ideal for this purppgand in practice VMC
provides the best method for obtaining wave functions thetietely approximate ground state
wave functions locally. The trial wave function may be alsastructed to minimise the number
of divergences in, unlike the non-importance sampled ntbivitere divergences in the coulomb
interactions are always present.

To be of use however, the importance sampled DMC method of{Ig10) must be trans-
formed into a form suitable for Monte Carlo integration. Tthensformation is more complex
than for VMC, which simply required the insertion of the fact

@)
PR = TR PR

into the conventional formulas for quantum mechanical etgi®n values.

A Green's functionG(R/, R, 7) that is a solution of Eq. (19.10) is desired, i.e., a spatial
representation of the imaginary time propagawr,(ﬁ*ET). One can show that the Green’s
function of the diffusion equation, by factorising the pag@ator into branching and diffusion
parts, can be written as

GR,R,7) ~ e (R-R—7F®)/or) (19.13)

19.2 Other Quantum Monte Carlo techniques and systems

In our discussion, the emphasis has been on variationalaugtisince they are rather intuitive
and one can simulate physical systems with rather simplesave functions. We have also not
dealt with problems arising in many-fermion systems, whmi the sign of the wave function
in the diffusion Monte Carlo is crucial and the evaluatioritod Slater determinant is computa-
tionally involved. Furthermore, techniques to improveagance have also not been discussed.
We defer these topics, together with a discussion of othart®Garlo methods such as Green’s
function Monte Carlo, path integral Monte Carlo and Latticethods to a more advanced course
on computational Physics.
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