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I am the Lorax, I speak for the trees.., t 

F o r  the ones  we love. . .  

tFrom The Lorax, Dr. Seuss 
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Internal  References .  

References within the text are made in a hierarchical fashion. For example, 
equation (4) in Section 2.6 of Chapter 1 would be referred to as (I, (2.6)(4)) 

outside of Chapter 1, as (2.6)(4:) within Chapter I and as (4) within Section 

(2.6) of Chapter I. Similarly, Section (2.6) of Chapter I is referred to as (I, (2.6)) 

outside of Chapter I and (2.6) within Chapter I. 



Chapter 0 

I n t r o d u c t i o n  

The motivation behind this monograph derives from a relation between renor- 

malizability of certain dynamical systems on the unit interval and group actions 

on rooted trees. Certain classes of maps of the unit interval, when restricted 

to invariant Cantor sets, have the form of such automorphisms and better un- 

derstanding the structure of such automorphism groups contributes to a fuller 

understanding of the types of maps which have these sorts of restrictions. While 

a priori these two subjects have quite different audiences, it is our hope that  

the link we draw between the two may persuade others to investigate similar 

potential bridges between algebra and dynamics. 

Some of renormalization group theory can be traced to connections made 

between the classes of maps f ( x )  = Rx(1 - x) and g(x) = Ssin(Trx), for varying 

parameters R and S. For particular parameter values (at the so-called "accu- 

mulation of period doubling" or "boundary of chaos") these maps have infinitely 

many periodic orbits and the periods of these orbits are all of the form 2 ~. It 

is well known that  these two maps share many "smooth characteristics". For 

example, both maps have invariant Cantor sets of the same Hausdorff dimen- 

sion; the bifurcation structures of the two parametrized families also have similar 

metric properties near the two maps f (x )  and g(x), properties which are shared 

by all maps and families in the same so-called universality class. 

These characteristics were first observed numerically in the physics commu- 

nity [CT, Fel, TC1]. It was conjectured that an analogous phenomenon played 

a role in the transition to chaos in certain experiments in fluid dynamics [CT]. 

Physicists described this phenomenon in terms of a class of techniques which 

in the areas of quantum field theory and statistical mechanics has come to be 

called called renormalization group theory. 

Much of this monograph can be viewed as part of the ongoing effort directed 

towards the mathematical  development of renormalization group theory. Recent 

work (cf. [Su, Mcl, Me2]) has made great strides in this direction, but many 

open questions remain. 

As stated at the opening, the connection with group theory comes from con- 

sidering the dynamical systems at the accumulation of period doubling when re- 
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str icted to their  invar iant  Cantor  sets. These Cantor  sets are na tura l ly  viewed as 

the ends of a rooted tree with corresponding action given by a par t icular  e lement  

of  the a u t o m o r p h i s m  group of the tree. The  s t ructure  of  the full a u t o m o r p h i s m  

group sheds light on the possible dynamica l  sys tems obta ined in this fashion and 

conversely, dynamica l  considerat ions indicate possible directions for be t te r  un- 

ders tanding the group structure.  To say things a bit more  precisely, recall t ha t  

dynamica l  sys tems  are often studied in te rms  of periodic structure.  The  basic 

periodic sys tems  are Z~ := ( Z / n Z ,  +1) ,  where + l  sends r to r +  1 for r E Z/nZ. 
For a dynamica l  sys tem (K,  f )  ( K  a topological  space and f : K , K a con- 

t inuous map) ,  an orbi t  of period n is an embedding  E~ , (K,  I ) .  Here we 

s tudy  the dual  not ion of a (necessarily surjective) morph i sm  R : (K,  f )  ~ Z~, 

which we call an n-renormalization of (K,  f ) .  Thus  K is the disjoint union of 

the (open and closed) fibers Kr  = R - l ( r )  and f sends I i r  to K~+I for r C E/nE. 
Let Per(If, I) (resp., Ren(K, f)) denote the set of integers n for which (If ,  f )  

adm i t s  an orbit  of period n (resp. an n- renormal iza t ion) .  

Suppose  tha t  ( I ,  f )  is a dynamica l  sys tem on a compac t  real interval I .  The  

linear order of I influences the above notions as follows. An orbi t  of  period n 

is ordered,  xl  < x2 < . . .  < x~, and the action of f defines a p e r m u t a t i o n  ~r 

of the indices; cr belongs to the set C~ of n-cycles in the symmet r i c  group S,~. 

Let C,~(f) denote the set of n-cycles tha t  so occur, and C(I) the union of the 

C,~(I), contained in the union C of the C~. Define a "forcing" relation, =~, on 

the na tu ra l  numbers ,  and on the set C,  as follows: Let n, m E I~, and (r, r E C. 

Then  n =~ rn, (resp., c~ :=~ r) ,  means  that ,  for all f as above, n E Per(f) implies 

tha t  m C Per(I), (resp., c~ C C(I) implies r C C(f)). A remarkab le  theorem of 

Sharkowskii  says tha t  =~ is an (explicit) total  order on the na tura l  numbers .  (See 

II, (11.2) below.) Thus  Per(f) is always a te rminal  segment  for the Sharkowskii  

order;  f has ent ropy zero iff Per(f) consists of a sequence (finite or infinite) 

1, 2, 4, 8 , . . .  of consecutive powers of  2. On the set C of cycles, => can some t imes  

go oppos i te  to the Sharkowskii  order. 

For renormal iza t ions ,  suppose now tha t  K is a m in ima l  closed invariant  sub- 

set of  I ,  and tha t  R : (K,  f )  , E~ is an n- renormal iza t ion ,  as above. We call 

R an interval n-renormalization if each of the fibers Kr  is an interval  of  K, and 

write IRen(K, f) for the set of integers n for which (K,  f )  admi t s  an interval n- 

renormal iza t ion .  A simple,  but  fundamenta l ,  result (I, (2.6)) is tha t  IRen(K, f) 
is to ta l ly  ordered by divisibility. This  permi t s  us to coherently organize the 

interval  renormal iza t ions  of  (K,  f )  into an inverse sequence 

(*) . . . .  ( g / n i g , + l )  , (~/ni_,Z,+l) . . . . .  ( Z / n 0 Z , + l )  

where {no = 1 < nl  < n2 < . .} = IRen(K, f). In turn this defines a (surjective) 

m o r p h i s m  r f rom (K, f) to the inverse l imit  (Z, +1)  of (*), somet imes  called a 

"q-adic  adding machine ."  When  IRen(K, f) is infinite ( f  is "infinitely interval  

renormal izab le" )  then we show tha t  both  r and f are injective, except  perhaps  

for countab ly  m a n y  2-point  fibers (which actual ly  occur in given examples) .  

Moreover  each n in Ren(K, f) divides some m in IRen(K, f). (See I, (4.1).) We 

also show tha t  every set of na tura l  numbers  to ta l ly  ordered by divisibil i ty can 
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be realized as some IRen(K, f). It can happen that  IRen(K, f) is finite even 

when Ren(K, f) is infinite. 

Interval renormalization has some relation to periodic structure. For example 

IRen(K, f) is contained in Per(I, f) ;  in fact the indicated periodic orbits occur 

in the convex hull of K in I ,  and K is contained in the closure of their union. 

Further, the complement of the union of the periodic orbits in its closure is 

sometimes the place to find a minitnal closed invariant set K as above. 

Chapter  II interprets interval renormalizations for unimodal maps in terms 

of a . -product  on "itineraries", in the sense of Milnor-Thurston. This permits 

us to invoke theorems about the itinerary behavior of quadratic maps to deduce 

analogous results about  the interval renormalization structure of such maps.  

In Chapter  III  we take the point of view that  the inverse sequence (*) can be 

interpreted as a rooted tree X, which is "spherically homogeneous," on which +1 

acts as a "spherically transitive" automorphism. We show that,  in G = Aut(X), 
the spherically transitive automorphisms form a single conjugacy class. Given an 

interval n-renormalization R : (K, f )  , Z,~, we obtain new dynamical systems 

from f~ restricted to the fibers Kr of R. The latter may or may not be interval 

equivalent to the original (K, f ) .  In Chapter  III,  Section 6, we study a group 

theoretic analogue of this problem. 

Finally, in Chapter  IV we investigate the normal subgroup structure of 

G = Aut(X), using a description of G as an infinite iterated wreath product 

of symmetr ic  groups. In the course of this we construct certain abelian char- 

acters (multi-signatures in the case of the dyadic tree) in terms of which one 

can characterize the spherically transitive automorphisms. The kernels of re- 

strictions of G to finite radius balls centered at the root of X define natural  

normal subgroups of G, which are somewhat analogous to principal congruence 

subgroups in p-adic algebraic groups. These and certain abelian characters de- 

fined on them afford a general description of the normal subgroups of G. This 

analysis applies as well to certain subgroups of G also constructed as iterated 

wreath products. 

It  is natural  to ask if the ideas in this paper extend to higher dimensions. 

It  appears  that  one of the fundamental  facts which allow group theory to play 

a role in the combinatorial  discussion of interval maps is that  periodic orbits 

of such maps  are naturally described by permutations,  as determined by the 

linear order of the orbit in the real line. Furthermore, continuity of the map 

implies that  the permutat ion representing a periodic orbit in one dimension 

yields some information about the map as it provides some information about 

the way in which the intervals between points are mapped.  In general, in higher 

dimensions we appear  to lose the natural ordering as well as strong influence of 

finite orbits on the large scale structure of the map.  In two dimensions though, 

the latter aspect does seem to have a natural  counterpart in the form of the 

mapping  class of the map restricted to the punctured manifold obtained by 

removing the periodic orbit. After selecting a suspension on the map,  there 

is an associated braid, and the braid group in dimension two in some sense 

replaces the symmetr ic  group used in the one-dimensional dynamics discussed 
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here. These sorts of ideas may be found in [GST] and the references therein 

where analogous considerations permit  the definition and investigation of two- 

dimensional infinitely renormalizable dynamical systems. Despite this remark it 

remains unclear as to what sorts of objects would assume that  role that  trees 

play in the one-dimensional case. 

R e m a r k .  Our bibliography is far from exhaustive and we apologize for any 

instances in which we may not have given proper credit. For a fairly comprehen- 

sive bibliography for one-dimensional dynamics see [MS]. Those interested in 

the more group theoretic aspects of actions on trees might start  with [Se]. The 

book [Rot] is an excellent group theory resource. A classic text for permutat ion 

groups is [Wie] while the paper [We] serves as a nice introduction to wreath 

products and contains many early references to the origins of the subject. 
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O v e r v i e w  o f  C h a p t e r  I 

Let (K, f )  be a dynamical system, consisting of a topological space K and a 

continuous map f : K , K. R e n o r m a l i z a t i o n  procedures generally involve 

a choice of some subspace H C K and an appropriate "first return" map of 

f-orbits,  starting in H, back to H. The resulting dynamical system on H is 

then called a r e n o r m a l i z a t i o n  o f  (K, f ) .  In general, the time of first return 

varies with the point of departure, and the f- transforms of H need not cover 

If .  (See, for example, [MS] for interval dynamics, [LyMil] for interval dynamics 

with non-uniform return times, and [BRTT] for renormalization on n-tort.) 

The "cyclic renormalizations" that we study here correspond to a fixed 

time of return, given by some integral power f'~ of f .  More precisely, an n- 

r e n o r m a l i z a t i o n  of (K, f )  is, for us, a morphism of dynamical systems 

(1) r  : (K, f )  , (Z /nZ,  +1). 

Thus the fibers Kr = r (r E E/nE) are open-closed sets partitioning 

If ,  and f(Kr) C Kr+I for all r. Then each (K~,fr) where fr = f "  IKr is 

a renormalization of (K, f )  in the sense described above. The fiber K0 here 

corresponds to the H above, and its f- transforms cover K. 

If (K, f )  is m i n i m a l ,  i.e. if each f-orbit  is dense in K,  then the K,  are just 

the f~-orbi t  closures, and each (K~, f~) is again minimal. Moreover r in (1) 

above is determined by n, up to a translation of E/nE. We put 

(2) Ren(K, f) : {n ~_ I I ( K  , f) admits an n-renormalization}. 

Then (cf. (1.5)) the set Ren(K, f) is stable under divisors and LCM~s (least 

common multiples). It is convenient to introduce (cf. (1.6)) the s u p e r n a t u r a l  

n u m b e r s  

(3) 

Then 

Q = Q(K, f) = LCM(Ren(K, f)). 

(4) Ren(K, f) = Div(Q) = {integral divisors of Q}. 

Assume that  some x0 E K has a dense f-orbit .  Choosing our n-renormalization 

Cn (n E Ren(If, f)) so that r = 0, they form an inverse system (with re- 

spect to divisibility) and we obtain a morphism 

(5) Cq:  (K, f) ~ (Zq, +1), 

where ~ q  = li_mZ/nE, and (~Q, +1) is called the Q-adic  a d d i n g  m a c h i n e .  

Now suppose that (K, f )  arises from a dynamical system g : I , I on 

a closed real interval I = [a,b], a < b, with K a minimal closed g-invariant 

t A s u p e r n a t u r a l  n u m b e r  Q is a formal  product ,  Q = l i p  pep, p varying over all primes,  

and  0 ~_ ep <_ oo for each p. It is clear what  it means  for one such n u m b e r  to divide another .  
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subset and f = gIK. Then K inherits a (linear) order structure from I,  so we 

may speak of K-intervals. Moreover the topology on K is the order topology. 

An n-renormalization r of (K, f) as in (1) above is called an i n t e r v a l  n- 

r e n o r I n a l i z a t i o n  if its fibers K~ are all K-intervals. These form a parti t ion of 

K by intervals, so they occur in a definite order in K.  This defines a unique 

linear order on Z/nZ  so that  r is weak order preserving (i.e. r preserves _< ). 

We put 

(6) 
1Ren(K, f) = {n ~ 1 I (K, f) admits a n  interval n-renormalization} 

C Ren(K, f). 

The fundamental  observation about this (Theorem (2.6)) is: 

(7) IRen(K, f) is totally ordered by divisibility. 

Thus we can write: 

(s) 

Put 

71 i 
(9) qi -- 

hi-1 

IRen(K, f )  = {no(= l) < T/1 < ~2 < '  '}, with ni [ni+l. 

so  t h a t  

(10) n h  = q l  " q 2  " " " q h .  

(11) 

Of course IRen(K, f) may be finite or infinite. We put 

q = q(K,  f )  = (ql,q2, q3, . . . )  

and call this the i n t e r v a l  r e n o r m a l i z a t i o n  i n d e x  of (K, f). As above, we 

obtain a natural  morphism 

(12) (~q: (K, f) , ( ~ q , + l ) ,  

where 2 q  = li._m~/nh~ , and (Eq, +1) is called the q-adic adding machine. In 
h 

terms of supernatural  numbers, we have 

(13) 

where 

(14) 

~q  = ~Q(q), 

Q(q)  = LCM(IRen(K, f))  = 1-I qh. 
h 

The K-induced order on each Z/nhE gives, in the limit, a linear order on ~q  so 

that  Cq is weak order preserving. 
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If  K = {1, 2 , . . . ,  N}, with its natural  order, then f is just  a transitive per- 

muta t ion  of K,  and I R e n ( K , f )  = {no = 1 < nl < n2 < . . .  < nm = N} 

with hi-1 I ni (i = 1 , . . . , m ) .  In the special case that  N = 2 M we have 

IRen(K, f )  = {1, 2, 4, 8 , . . . ,  2 M } if and only if f is a simple permutat ion in the 

sense of [B1]. 

We can summarize many  of our results in Chapter I as follows. Suppose that  
we are given 

(15) 

and 

(16) 

Q : a supernatural  number 

q = (q*,q2,q3,.. .)  a sequence, finite or infinite, of 
integers qi >_ 2, such that Q(q) := 1-[i qi divides Q. 

Then the results of Sections 1, 3, and 4 give the following. 

T h e o r e m .  (a) There is a compact real ordered minimal dynamical system ( K, f )  

such that Q( K, f )  = Q and q(K,  f )  = q iff either q is finite, or q is infinite and 
Q(q) = Q. 

(b) Suppose that (K, f )  is a compact real dynamical system with a dense 

orbit, and that (K, f )  is infinitely interval renormalizable, i.e. that q = q(K,  f )  

is infinite. Then 

(~q: (K, f )  ~ (~q, +1) 

is surjective, and injective except perhaps for countably many 2-point fibers. 

Moreover f : K ) K is surjective, and injeclive, except perhaps, for countably 
many 2-point fibers. Further, K is a Cantor set and (K, f )  is minimal. 

In (4.6) we construct, using a "Denjoy expansion technique", examples where 

the 2-point fibers of t q  and f do in fact occur. 

In Section 4 we anticipate examples (constructed in Ch. II, Section 3) of 

(K, f )  where K is a minimal closed invariant set for a unimodal dynamical  sys- 

tem f on a real interval I ,  and with IRen(K, f )  prescribed in advance. In Section 

5 we relate IRen(K, f )  to periodic points of (I,  f ) .  Self-similarity operators are 

defined in Section 6. 

Overview of Chapter II 

Let (J, f )  be a unimodal map on a real interval J = [a, b], with max imum 

M = f ( C ) ,  increasing on L = [a, C), and decreasing on R = (C, b]. Then each 

x E d has an "address" A(x)  e { L , C , R }  such that  x e A(x).  The f-orbi t  

f*(i~) = (x, f ( x ) ,  f 2 ( x ) , . . . )  then has an address 

A f * ( x )  = (A(x),  A f ( x ) ,  A f 2 ( x ) , . . . ) ,  

called the "itinerary" of x. The itinerary 

K ( f )  = A f * ( M )  
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of the "postcritical orbit" is called the k n e a d i n g  s e q u e n c e  of f [MilTh] (see also 

[MSS, My]). It symbolically encodes much of the dynamics of (J, f ) ,  especially 

on the f-orbi t  closure O] (M) of M. 

Consider the monoid G = Go 0 GoC, where Go is freely generated by {L, R}, 
and subject to the relations C X  = C for all X C G. We interpret itineraries as 

either finite words in GoC, or as infinite words, in (~0, with letters L and R. 

The central aim of Chapter III is to show how an interval n renormalization of 

( K, f) ,  where K = Of(x), is reflected in a ",-product" factorization, A f t ( x )  = 
c~, ~ where a e Go has length n - 1 (cf. Theorem (7.1)). In fact IRen(K, f )  
can be intrinsically recovered from the itinerary Af*(x) (cf. (9.4)). By iterated 

star products, we construct in Section 8, elements n E Go with prescribed initial 

renormalization. Then in Section 9 we quote results of [MilTh] (see also [CEc]) 

affirming that  all such n can be realized in the form A f* (x), x E J, where (J, f )  

is a quadratic unimodal map. 

Sections 10 and 11 relate the previous discussion to periodic orbits, and cyclic 

permutations. 

O v e r v i e w  of  C h a p t e r  I I I  

Chapters III and IV are essentially group theoretic. They are partly moti- 

vated by Chapters I and II, but are mathematically independent of them. 

First the motivation. Let (K, f )  be a minimal ordered dynamical system 

that is infinitely interval renormalizable. Put 

(1) IRen(K, f )  = {no = 1 < nl < n~. . .}  

and 

(2) q =  q ( K , f )  = (ql,q2, a3 , . . )  

with qi = ni/ni-1. 
Then we have the inverse sequence of sets 

(s) X o 2 - X 1  P~-X2 ~v 

where 

(4) Xm =  /.mZ 

and p is the natural projection. The interval renormalizations 

(s) (K, f )  - - *  (Xm, gin) = (Z/n,~Z, +1) 

induce 

(6) 3-  (K, f) , (2q, +1) = lim(Xm, gin). 
m 
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An inverse sequence of (finite) sets, as in (3), can be interpreted as a (locally 

finite) rooted tree, X, with vertex set 

VX = H X,~, 
m > 0  

its root being the single vertex x0 E X0 and with edges joining x to p(x) for 

all x ~ x0. Then X,~ is the sphere of radius m centered at x0. In our case, 

each p : Xm ~ Xm-1 is a surjective homomorphism with kernel of order q,~. 

Hence, each fiber of p : Xm , Xm-x has qm elements, so X is what we call 

a s p h e r i c a l l y  h o m o g e n e o u s  r o o t e d  t r e e  o f  i n d e x  q. Moreover, the maps 

g m :  Xm ' Xm assemble to define an automorphism g of the rooted tree 

X which acts transitively on each of the spheres X,~; i.e. g is what we call a 

s p h e r i c a l l y  t r a n s i t i v e  a u t o m o r p h i s m  o f  t h e  r o o t e d  t r e e  X.  

In Chapter  III  we study rooted trees X defined by any inverse sequence of 

finite sets 

(7) X0 = {x0} , Xl ~ X2 ~ - - . . .  

and their automorphism groups 

(8) G = Aut(X). 

Then X admits  spherically transitive automorphisms iff X is spherically homo- 

geneous, say of index 

(9) q = q(X)  = (qx,q2, q3,--.), 

where qm is the cardinal of each fiber of p : Xm , Xm-1.  In this case, q 

determines X up to isomorphism so we can write 

(10) X = X(q)  and G = G(q) = Aut(X(q)). 

In Theorem (4.6) we show that  the spherically transitive automorphisms of 

X(q)  are all conjugate in G(q). Moreover, if g is one of them, then Za(q)(g) = 

(g) ~ Zq, where (g) denotes the closure of the cyclic group (g) in the profinite 

group G(q),  and 7Zq denotes, as above, the q-adic integers. 

In the course of this discussion we obtain a description of G(q) as an infinite 

i terated wreath product. This structure is used in Section 6 to analyze some 

group theoretic "renormalization operators".  

O v e r v i e w  o f  C h a p t e r  I V  

This chapter gives a fairly detailed analysis of the normal subgroups of 

(1) G(q)  = Aut(X(q)), 

where 

(2) q = (q l ,q2 ,a3 , . . . ) ,  
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and of certain of its other subgroups, defined as follows. Let 

(3) Y = (Y1, Y2, Y3,.. .)  

be a sequence of sets with 

(4) lYre I= qm. 

Then we can define X(q)  by the inverse sequence 

( 5 )  X 0 ( p X 1 ~ 2 2 ( p . . ,  

where X,~ = Y1 x ]I2 x .-- x Ym and p : Xm ~ Xm-1 is a projection away from 

the last factor. Let 

(6) Q = (Q1,Q2, Qa, . . . )  

be a sequence of groups with Qm a group of permutations of Ym. Then we can 

inductively construct the wreath products 

(7) Q(m) = QXm_, :~ Q(m - 1), 

with a natural action of Q(m) on Xm, starting with Q(1) = Q1 acting as given 

on x1  = I/1. Then 

(8) G((Q, Y)) = li_mQ(m) 
m 

is naturally a closed subgroup of G(q) = G((S, Y)),  where Sm is taken to be the 

full symmetric group on Ym. We can write G((Q, Y)) explicitly as an infinite 

iterated wreath product, 

(9) G ( ( Q , Y ) )  . . . .  )~ QX,,_~ ) ~ . . . ~  QX~ ~ Q1. 

There is a canonical homomorphism compatible with (9), 

(10) 3 : G ( ( Q , Y ) )  , . - . x Q a b x . . . x Q a b x Q a b ,  e ( g ) = ( a , ~ ( g ) ) m > l ,  

where Qab denotes the abelianization of Qm, and 

(11) Ker(e) contains the closure of the 
commutator subgroup oI a((Q, Y)). 

If each Q~ is transitive on Ym then each Q(m) is transitive on Xm, and the 

inclusion (11) is an equality. 

Suppose that  each Qm is cyclic (hence abelian), generated by a qm-cyele on 

Y,~. Then we have 

~ :  G ( ( Q , Y ) )  ' I -[  Qm. 
r n > l  
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In this case (cf. (4.4) and (4.5)), G((Q,Y))  contains spherically transitive 

elements; g E G((Q, Y)) is spherically transitive iff ~rm(g) generates Qm for all 

rn _> 1; and two spherically transitive elements g, g' are conjugate in G((Q, Y)) 

iff ~(g) = ~(g'). 

Note that,  in the case of the dyadic tree, q = (2 ,2 ,2 , . . . ) ,  the previous 
paragraph applies to the full group G(q). 

Finally, in Theorem (5.4), under the assumption that Qm acts primitively on 

Ym for each m (e.g. when Qm is the full symmetric group) we give an analysis 

of all the normal subgroups of G((Q, Y)). The result is too technical to state 
here. 

If H is a rank 1 simple algebraic group (e.g. H = PSL2) over a p-adic field 

F,  then its Bruhat-Tits building X (cf. [Se]) is a tree on which H(F) acts, with 

quotient H(F)\X = o--o. The maximal compact subgroups of H(F) are vertex 

stabilizers in X. If x0 E X then H(F)~ o ~- H(A) where A is the ring of integral 

elements of F.  Thus we have H(A) ~_ Aut(X, xo), the automorphism group of 

the spherically homogeneous rooted tree (X, x0). The congruence subgroups, 

Ker(H(A) , H(A/Mm)), 

where M is the maximal ideal of A, coincide with the groups 

Ker(H(A) re~Aut(Bm (x0)), 

where Bm(xo) denotes the ball of radius m about x0 in X. 

In this light, we can think of the description of normal subgroup of G(q) as a 

combinatorial analogue of the local congruence subgroup problem for the groups 
H(A) (see e.g. [BMS]). 
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Chapter I 

Cyclic Renormalization 

0. I n t r o d u c t i o n .  

This chapter introduces the notions of renormalization and interval renormal- 

ization of dynamical systems, which are central to what follows. For a detailed 

synopsis, see the "Overview of Chapter I" in the main introduction above. 

1. R e n o r m a l i z a t i o n .  

(1.1) Let (K, f) be a d y n a m i c a l  s y s t e m ,  i.e., K is a nonempty topological 

space and f : K ~ K is a continuous map. We call (K, f )  m i n i m a l  if K is 

the only closed nonempty f-invariant subset of K. Equivalently, for each x E K, 

the f - o r b i t  {f~(x)  In  > 0} of x is dense in K [Bi]. 

A m o r p h i s m  r : (K, f )  ~ (K' ,  f ' )  of dynamical systems is a continuous 

map r : K , K '  such that f ' o r  = r  I f ( K , f )  is minimal then two 

morphisms on (K, f )  that agree at a single point must coincide. When r is onto 

it is often called a s e m i - c o n j u g a c y  of dynamical systems. "Note that if (K I, i f)  

is minimal then this is necessarily the case. If furthermore r is injective as well, 

then r is called a c o n j u g a c y .  

(1.2) n - r e n o r m a l i z a t i o n .  For an integer n > 1, an n - r e n o r m a l i z a t i o n  of a 

dynamical system (K, f)  is a morphism r  (K, f)  , (E/nE, +1), where E/nY~ 
is given the discrete topology and +1 denotes the map x ~-~ x +  1 (mod n) . For 

r C Z/nY~ put Kr = r  Then K is the disjoint union of the open-closed sets 

Kr and f(K~) C K~+I (r G E/nZ). In particular, each K~ is invariant under 

fn. We say that (K, f )  is r e n o r m a l i z a b l e  if it admits an n-renormalization for 

some n > 1. 

If r : (K', f ')  ~ (K, f) is a morphism of dynamical systems then r o r is 

an n-renormalization of (K', f'). 
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R e m a r k .  Various related ideas in mathematical physics and dynamical sys- 

tems have made use of techniques which have been called "renormalization". 

Renormalization ideas from statistical mechanics were first explicitly adapted to 

dynamical systems theory in [CT, TC1, TC2] (see also [Eel, Fe2] for similar ma- 

terial). Among other applications, renormalization techniques have been used 

extensively for the study of continuous maps acting on an interval or subinterval. 

An excellent and fairly comprehensive review of this point of view can be found 

in [MS]. As will be indicated below, this possibly more familiar approach corre- 

sponds to what we will call "interval renormalizability" below. Our framework 

is designed for applying combinatorial analysis to restrictions of a map on the 

interval to invariant finite sets or Cantor sets (cf. (B.1) below). 

(1.3) P r o p o s i t i o n .  Let r : (K, f )  ----* (E/hE,  +1) be an n-renormalization of a 

minimal dynamical system. 

(a) For each r E E/nE,  f~ restricted to Kr = r is minimal. Thus, the 

various Kr are just the orbit closures of f'~. 

(b) For each r E Z / n Z ,  f defines morphisms 

(1(~, f'~ [KT) ~ (I(r+X, f'~ [g~+l) 

with dense image (r E Z/nZ) .  

(c) / f  r : (K, f )  , (Z /nZ ,  +1) zs an n-renormalization then, for some 

a E Z / n Z ,  r = r + a for all x C K. 

Proof .  Clearly f : Kr , K r + l  is f~-equivariant. If L C Kr is fn-invariant 

then n + = U f i ( L ) i s  f-invariant, and L + A K~+i = f i (n ) .  By minimality of 

O<i<n 

(K, f ) ,  f i (L)  must be dense in K~+i for each i. Now (a) follows from the case 

i = 0, and (b) from the case i = 1. 

Let x0 E K0. If r is another n-renormalization and r = a then r and 

r + a agree at x0 and hence coincide, by the minimality of (K, f) .  

R e m a r k .  To simplify matters we sometimes identify the integer j E [0, n] with 

its residue class (mod n). Similarly, if n G Z /pZ  and m E Z/qZ,  then we may 

write nm E Y~/pq2~ and so forth. In general, the context will always clarify these 

sorts of distinctions. 

(1.4) P r o p o s i t i o n .  Let (K, f )  be a minimal dynamical system and n an integer 

> 1. The following conditions are equivalent. 

(a) (K, f )  admits an n-renormalization r  (K, f )  , (Z /nZ ,  +1). 
(b) For some x E K the fn-orbit closures of f i ( x )  (0 <_ i < n) are pairwise 

disjoint. 



(c) (i) For x, y �9 K the fn-orbit closures of x and y are either equal or 

disjoint 

and 
(it) The resulting partition of K by fn orbit closures has at least n classes. 

P r o o f .  Assume (a). Then (b) follows immediately and (c) follows from (1.3). 

Assume (b). Let K~ denote the f~-orbit  closure of i f (x )  (0 < r < n). 
Then clearly f (Kr)  C I(~+1 (r �9 Z/nZ) ,  so K o H ' "  " H K ~ - I  is closed and f -  

invariant, hence equals K by minimality. Now we have the desired 

n-renormalization defined by r = r, whence (b) implies (a). 

Assume (c). Let x �9 K. Define K~ as above. Again by minimality the 

f-invariant set K0 U . . .  U Kn-1 must equal K. Each K~ is one of the equivalence 

classes defined by (c)(i), and there are at least n such classes by (c)(ii). It follows 

that  K 0 , . . . ,  K~- I  must be distinct, hence pairwise disjoint. Thus (c) implies 

(b). 

(1.5) For a dynamical system (K, f )  we define the set 

Ren(K, f )  = {n > 1 I (K,  f )  admits an n-renormalization}. 

P r o p o s i t i o n .  (a) Ren(K,f)  contains 1 and is stable under divisors: 

n E Ren(K, f)  and d I n implies that d �9 Ren(K, f).  

(b) Ren(K, f)  is stable under least common multiples" n, m �9 hen(K, I) 
implies that LCM(n, m) �9 Ren(K, f).  

P r o o f .  Clearly 1 �9 Ren(K,f) .  If en : (IS, f )  ~ (Z /nE ,  + I )  is an n- 

renormalization, d ] n, and p : E/nY~ , E/dY~ is the natural projection, 

then p o en : (K, f)  ~ (E/dE, +1) is a d-renormalization. 

Suppose further that em:  (IS, f )  , (E/nE, +1 ) i s  an m-renormalization. 

Choose x0 �9 r After modifying em by a translation of E / m Z  if necessary, 

we can arrange that r = 0 also. Put  M = LCM(n, m) and d = gcd(n, m). 

Then the natural diagram 

Z / M E  q_~ E/nE 

qm 1 1 
E/mE pm E/dE 

is cartesian (i.e., a fiber product). Moreover Pm oem and Pn or agree at x0 and 

hence are equal, by minimality. Thus theuniversal  property of fiber products 

gives us a map eM : K , E /ME such that qs �9 eM = es for s = n, m. Then 

eM is the desired M-renormalization. 
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(1.6) S u p e r n a t u r a l  n u m b e r s .  The prime factorization of an integer n _> 1 

takes the form 

(1) n =  H P%(")' 
p prime 

where vp(n) >_ 0 and vp(n) > 0 for only finitely many p. By a s u p e r n a t u r a l  

n u m b e r  we mean an expression of the form 

(2) Q = H p% (0 < e v <_ oo for all p). 

P 

We say that  n d iv ides  Q, written n [ Q, if Vp(n) <_ ep for all p. The set 

(3) Div(Q) = {n >_ 1 n [Q} 

of divisors of Q contains 1 and is stable under divisors and LCM~s. Conversely 

any set R of integers _> 1 containing 1 and stable under divisors and LCM's is 

of the form R = Div(Q) for a unique supernatural number Q defined by 

Q = LCM(R) := I-IvPeP where 

ep = s u p . ~ n v p ( n ) .  
(4) 

This applies, in particular, to the sets Ren(K, f)  in (1.5). We have 

(5) 
Ren(K, f)  = Div(Q), where 
Q = Q(K, f )  := LCM(Ren(K, f)). 

(1.7) E x a m p l e .  Given a supernatural number Q as in (1.6)(2), we can define 
the r i ng  o f  Q-adic  in t ege r s  

~Q = liL_mZ/qZ= H Z / p ~ Z  
qlQ p 

where the inverse limit is taken over divisors q of Q, ordered by divisibility, and 
when ev = ~ ,  2~/p~2~ denotes the p-adic integers, li_m Z/p~Z. The inverse limit 

of the discrete topologies on each Z/qZ  gives ZQ a topological ring structure for 

which it is compact and totally disconnected. The dynamical system 

(~Q, +1), 

called the Q-adic  a d d i n g  mach ine ,  is minimal (this follows from (2.8) and 

(III,(4.5)) and it admits q-renormalizations for each q C niv(Q). In fact 

Ren(~Q, +1) = Div(Q). 



For suppose that r  (~Q, +1) , ( Z l n Z ,  +1) is an n-renormalization. We must 

show that n I Q- After a translation of Z / n Z  we can assume that r = 0. It 

follows then that r  = m for all m E 2~, where in the lefthand side m E ~Q 

and in the righthand side m E Z / n Z  and consequently that r Ii,~(a--+~,Q) is a 

ring homomorphism. Since Im(Z , ZQ) is dense in ~Q, it follows that r is 

a ring homomorphism. Thus, Ker(r  is an ideal of index n in ~.Q. It is easily 
seen that any such index must divide Q. 

H i s t o r i c a l  R e m a r k .  The relevance of adding machines to renormalization was 
apparently first noticed by Sullivan (unpublished). See also [JR2, Ni, Misl, 
Mis3]. 

(1.8) Let (K, f )  be a dynamical system, having a point x0 E K with a dense 
f-orbit .  Let 

Ren(K, f )  = Div(Q) 

where Q = LCM(Ren (K , I ) ) ,  as in (1.6)(5). For each divisor q of Q let 

Cq : (h', f )  ~ ( Z / q ~ , + l )  be the q-renormalization with Cq(X0) = 0. Then 
the collection of Cq define a map 

CQ : K , "~Q : liL_mZ/qZ 
qlQ 

and Cq is a morphism (K, f )  , (ZQ, +1). The image of CQ is dense, so CQ is 
surjective if K is compact. 

We call (K, f )  f a i t h fu l ly  r e n o r m a l i z a b l e  if CQ injective; equivalently, if 

whenever x # y in /s Cq(x) # Cq(Y) for some q. 

If CQ is a homeomorphism then K must be compact and totally disconnected 

and f must be a homeomorphism such that (K, f )  is minimal. On the other hand 

these conditions do not suffice to make CQ a homeomorphism. In (4.6) we give 

an example with Q infinite yet CQ is not injective. 

(1.9) P r o p o s i t i o n .  Let (K, f )  be a dynamical system, r  (K, f )  - -+  (Z/n%, +1) 
an n-renormalization, and for r E Z/n7Z. put Kr = r  and 

f , . : f n  i/~ :/t- r ,K~. 

(a) The se** Ren(K,, L) are the ~ame fo," aU ," ~ Z/nZ. 

(b) Fo," an integer., >_ i, ~ E Re,,(K~,L) if and only if rim E Ren( :r<, f). 

Thus, in the notation of (1.6)(5), 

Q(K,  f )  = n .  O(Kr,  f , ) .  
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P r o o f .  The morphisms f : ( I ( r , f~)  , (Is entail inclusions 

Ren(K,+l, f r + l )  C Ren(i;r, fr), whence (a). 

To prove (b) put N = ran. For r, M E 2,  let r M denote the residue class of 

r 6 Z / M Z .  We can write elements of Z / N Z  uniquely in the form 

r N + n . s  ( r = O , 1 , . . . , n - - 1 ; s 6 ~ / m ~ ) .  

If  eN : (/2", f )  , ( X / N Z ,  + l ) i s  an N-renormalizat ion that  reduces modulo n to 

r then for 0 < r < n and x E Iir, we can write e y ( x )  = r N + n  . r  as above, 

and it is readily checked that  r : (Kr,  fr)  ,7L/mE is an m-renormalization. 

Suppose, conversely, that  m G Ren(Kr , f~) .  Choose an m-renormalizat ion 

er ,  : ( K n - l , f ~ - l )  , ( X / m Z , + l ) .  Define r : K -----+ X / m Z  on x E I(r  by 

r  = e m ( f n - l - r ( x ) )  for 0 _< r < n. Then define eN o n  2 C I(r by eN(X) 

r g  + n" r  A straightforward calculation shows that  eN( f (x ) )  = eN (x) = 1N 

as required. The only subtle case is r = n - 1, when we have f ( x )  E No. Then 

e N ( f ( x ) )  : ON : nOr n ( f n - l ( f ( x ) ) )  : n . r  : n .  (era(X) : lm), 

because em is an m-renormalization, whereas 

CN(X) = 1m = (n -- 1)N + 1N + n .  era(X) = n - ( e r a ( x )  + l m ) .  

R e m a r k .  The analogous restatement of (1.9) for interval renormalization is n o t  

true. 

(1.10) E x a m p l e  o f  a n o n r e n o r m a l i z a b l e  m i n i m a l  (K, f ) .  Consider the circle 

S = { z 6 C [  I z l=  1} 

and let f be an irrational rotation of S. Thus, for some o~ ~ Q and writing 

e(x) = e 2~rix for x 6 I~, we have 

f (e(x))  : e(x + ~) : e(z)e(~).  

Then the cyclic group (f)  acts freely on S, and for each N ~ O, f N  acts minimally 

on S. More precisely, given z, w C S, we can find sequences ni, m i  ~ oo such 

that  
fNm,  (z) T w and fN,~i (z) i w. 

Here the notat ion y ]" w denotes that  in the counterclockwise orientation of 

S, y increases to the limit w. Similarly, y I w signifies that  y decreases to the 

limit w. 

Of  course (S, f )  is not renormalizable, but this follows already for the trivial 

reason that  S is connected. We now propose to modify (S, f )  to a nonrenor- 

malizable system, (K, g) with K totally disconnected. We shall use the Denjoy 

expansion construction described in Appendix A below. 



Let C be an orbi t  of  ( f )  not containing 1: For some z0 = e(z0) �9 S, C = 

{f '~(z0) = e(zo +no~) I n �9 Z}, and x0 q~ No.  Define 6s : S , ]~ by 

6s(zo) = 1/2, 6s(f '~(zo))  = 1/21'q+2 for n 7~ 0, and 6s(z )  = 0 for z ~ C; note  

t ha t  ~ z  6s(z )  = 1. As in (A.3), use 6s to construct  a Denjoy expansion of S. 

Th is  furnishes a cont inuous surjection 7r : S , S such tha t ,  for each z �9 S, 

Jz 

is a counterclockwise oriented interval of length 6s(z)  . 7r. Further  f lifts to a 

locally increasing (i. e., or ienta t ion preserving) h o m e o m o r p h i s m  g : S , S such 

t ha t  r ro  g = f o 7r (cf. (A.6)).  

T h e  set 

K = o'o(S) U g,(S)  C S 

is closed and (g}-invariant.  K looks like a rescaled version of S with each z E C 

spli t  into a pair  {c~0(z),gl(z)}. Since f is locally increasing everywhere (eft 

(A.4)) we have g(cri(z)) = g i ( f ( z ) )  (i = 0, 1) for all z ((A.4)(8)),  and hence the 

orbi t  C has been split  into two orbits  g0(C)  and g l ( C ) .  Since C is dense in S, 

we see t ha t  K is to ta l ly  disconnected. To show tha t  (K,  g It<) is min ima l  and 

has  no non-t r iv ia l  renormal iza t ions  we mus t  show tha t  for N r 0, each gN-orbi t  

in K is dense in K .  

Let z, w E S. We mus t  show tha t  the g~V-orbit closures of  g0(z) and o' l(z) 

each contain  bo th  g0(w) and g l (w) .  We t rea t  only the case of g0(z) as the case 

of  g l ( z )  is s imilar .  

Choose sequences hi, mi , ec so tha t  fN~,  ( z ) T w and fNm,  ( z ) ~ w. Since 

f is locally increasing, we have 

gN"'(g0(z)) = T go(w) 

and 
gNmi (g0(z)) = g0 ( f  Nmi (Z)) ]. gl(W) 

(cf. (A.3)(6)).  

S u m m a r y .  K is compac t  and to ta l ly  disconnected, g Ig is a h o m e o m o r p h i s m ,  

and gY acts  min imal ly  on K for all N r 0. Hence 

R e n ( K ,  g IK) = {1}. 

Note  t ha t  by picking a base point  x0 G S interior to some interval  Jz ~= 

[g0(z), g l (z)] ,  and using x0 to convert  the cyclic order on S to a l inear order 

wi th  init ial  point  x0, we obta in  a linear order on K defining the same  topology 

on K .  Then  K ,  with this linear order and topology,  can be (order preserving) 

e m b e d d e d  in ~ .  
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A p p e n d i x  A. D e n j o y  expans ion .  

(A.0) S u m m a r y .  We describe here a construction that  modifies certain one- 

dimensional dynamical  systems by equivariantly "blowing up" a countable set 

of points to intervals of positive length. It is the basis for various examples that  

we construct (cf. (1.10), (4.6)). 

Variations of this type of construction can be found in the literature and go 

back to [Bob, De, Po]. 

(A.1) & e x p a n s i o n  o f  ~ .  Let 

5 : ~  ~I~ + 

be a (not necessarily continuous) function such that  

5(x) _> 0 for all x, and 
(1) 

It  follows that  

is countable. Define 

by 

c =  Supp(6):= {~ I~(~) > o} 

r = x + E y < ~ 6 ( y ) ,  
(2) ffl(X ) = X+Ey~x~(y ) = ffo(x)q_6(x). 

Then each c~i is a strictly increasing function of x. 

We shall write y ~" x (resp. y ~ x) to denote that  y strictly increases (resp. 

decreases) to the limit x. It  is easily seen that  

y ~ x  

(3) and 
y l x  

ai(Y) T a0(x) (i = 0,1) 

ffi(Y) ~ if1(x) ( i = 0 , 1 ) .  

For x E ~,  put 

J~ = [Oo(x), o l (x ) ] ,  

a closed interval of length 5(x) > O. We have Ii~ = Hx Jx, and x < y implies 

x I < yl for all x '  E d~ and y' C dy. Define 

7r:I~ ~ 

by 
~-~(~) = j .  for aU x. 

Then 7r is surjective, continuous, nondecreasing, and 7r ocr i : Id ( i  = O, 1). 



(A.2) T h e  se t s  K(6)  a n d  K'(6) .  

Then r : K ( 6 )  

Then 

has fibers 

For K C ]R we put 

K(a) = ~-1(i<) : I I  : *  
x E K  

K has sections a0, al ,  and we put 

K ' (6)  = a0(K) U a l ( K ) .  

rr' : K ' ( a )  ~ K 

= ' - l ( x )  = {~0(x),  ~1(~)} 

of cardinal < 2. 

Suppose that  K is an interval. Then K(6) is an interval of the same type, 

and there is an affine isomorphism 

c~ : I((6) - )  I (  

of the f o r m ~ ( x ) = a x + b , a > O .  U s i n g # = ~ r o ~ - l a n d # i = ~ o ~ i  ( i = 0 , 1 )  

we get maps  K ~ K with properties like those of rr and cri. 

(A.3) & e x p a n s i o n  o f  t h e  c i rc le  S. Let 

S={z~C Izl= 1} 

oriented counterclockwise. For z, w E S, [z, w] denotes the closed interval going 

counterclockwise from z to w. ([z, w] = {z} if z = w.) 

We have the exponential map 

e :IR , S ,  e ( x )  = e >~i'~ 

Suppose that  we are given a function 

as :S  ,IR + 

such that  

f as(z) > o /or  aU z, 
(1) 

t ~ z e S 6 S ( z )  = 1. 

Thus as has countable support  

Cs = {z ~ s as(z) > 0}. 

6s(1) = O, and 
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P u t  

and define 

by 

(2) 

L =  [0, 1) C F~ 

6 : ~ ---* 1~ 

x ~ L .  

Note then  tha t ,  with (To, ch, 7v : ~ ---+ ~ defined as in (A.1), we have 

O o ( / )  = O'l(X) = x forx ~ O, and 
(3) ~r0(x) ---- Cr l (X ) ---- X "-}- 1 for x >_ 1. 

Further ,  we have for i = 0, 1, 

n(5) = [0, 2) 

(4)  7r iT ai 
L - [0,1) 

Define e2(x) = e(x /2 ) .  Then  e2 : L(5) , S is bijective, so we can define 7rs 

and O'is (i = 0, 1) on S by c o m m u t a t i v i t y  of the d iagrams 

L(5) *2 S L(6) e2 S 

(5) ~ I I ~s , o-~ T T % 

L --* S L - -  S 
s e 

Then  ~rs is continuous,  surjective and weak order preserving; its fibers are inter- 

vals. 

On S we write z T w (resp. z l w ) to denote tha t  z increases (resp. decreases) 

to the l imit  w in some S-interval  [u, w] (resp. [w, v]). Wi th  this no ta t ion  we 

h ave 

z T w  

(6) and 

z ~ w  

For K C S we define 

.~s(Z) T ~o~(~) (i = o, 1) 

Cris(Z ) ~ Crls(W ) (i = O, 1). 

K'(6~) c K ( ~ )  c s 

by K(6s )  = 7r~X(K) and K'(6s)  = aos(K)  O chs(K) .  

(A.4) E x p a n s i o n  o f  d y n a m i c s .  Let T denote either a real interval,  or else the 

circle S (with counterclockwise or ientat ion) .  Let 

~ ' : T  , T  
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be a continuous weak order preserving surjection such tha t  for all x C T, 

J~ := 7r- l (x)  is a closed interval [c%(x), ~l(x)] ,  (1) 

of length 

(2) 

Let f : T 

s u m p t i o n :  

(3) 

~(~) = tength(J~) >_ O. 

T be a continuous map.  We make the following b a s i c  as-  

I f  x E T and 5( f (x ) )  > O, then 6(x) > O, and f is locally strictly 
monotone on each side of x: i.e., there are intervals Iv, x] and [~, z] 
of positive length such that on each of [y, x] and [x, z], f is either 
increasing or decreasing. 

In the sett ing of (3), there are four possible types of behavior  of f near x, denoted 

type(f ,x) ,  

characterized and denoted as follows: 

(4) 

{ type // : increasing on [y,x] and ix, z] 
type \ : decreasing on [y, x] and ix, z] 
type n : increasing on [y, x], decreasing on [~, z] 
type [2 : decreasing on [y, x], increasing ix, z]. 

Given real intervals [a, b], [c, at], a < b, c < d, we choose surjective maps  

g.  ( .  = / ,  \ ,  N, U) from in, b] to [c, d] with the indicated type at the midpoin t  of 

in, b]. For example  we can take, for 0 < t < 1: 

g / ( a + t ( b - a ) )  = c + t ( d - c )  

(5) 9 \ ( a + t ( b - a ) )  = d - t ( d - c )  
g ~ ( a + t ( b - a ) )  = c + 4 . t ( 1 - t ) ( d - c )  

g u ( a + t ( b - a ) )  = d - 4 . t ( 1 - t ) ( d - c )  

Now we propose to lift f to a continuous map g making the following diagram 

commute .  

(6) 

T g~ T 

T f T 

We construct  g such tha t  for each x E T, g must  restrict  to a continuous map 

gx : Jx ---- [o'0(x), Crl(X)] ' J](x) = [Cro(f(x)),Crl(f(x))]" 
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There  are two possibilities. 

C a s e  1: 5( f (x ) )  = 0. Then  g~ mus t  be the constant  m a p  with value cro(f(x)) = 

crl ( f ( x ) ) .  
C a s e  2: 6( f (x ) )  > 0. Then  by assumpt ion  (3), 6(x) > 0 also, and the type  of 

( f ,  x) is well-defined. We then define 

(7), g ~ = g  .... (j,~):J~ ,J](~), 

where g ,~(s ,~)  is defined as in (5). 

The  following propert ies  are immedia te  f rom the construction.  

For each x E T, g~ : J~ 
(8) type( f ,x)  

, Jy(~) is continuous, and according to 

(g(~0(~)),~(~(~))) = { 

( a o ( f ( x ) ) , ~ l ( f ( x ) ) )  type / 

(~ l ( f ( x ) ) ,~o ( f ( x ) ) )  type \ 

(~o( f ( x ) ) ,ao( f ( x ) ) )  type n 
( a l ( f ( x ) ) , e l ( f ( x ) ) )  type U 

(9) 

I f  J C T is any interval then 7r-l(J) is an interval. I f  f is increas- 
ing (resp. decreasing) on J then g is increasing (resp. decreasing) 
o n  71"- l ( J ) .  

(io) I f  K C T is f-invariant 
then ~r-l(K) and K '  :-- ~0(K)  U cq (K)  are g-invariant. 

(A.5) Lemma. g is continuous. 

P r o o f .  Since each g~ : J~ - - +  J/(~) is continuous, it remains  only to show that ,  

for x E T,  

zT~0(~) ~ g(z) ,g(~0(~)) 
and 

W i l l ( X )  ~ g(w) , g(~l(X)).  

As z passes through infinitely m a n y  intervals Jy, the lengths of Jy and Jr(y) = 

g(Jy) tend to 0. Thus  it suffices to t rea t  the case when z is say the initial point  

cb(y)  of  Jy.  The  condit ion z T c%(x) is then equivalent  to the condit ion y 1" x. 

Similar ly  it suffices to t rea t  the case when w = a0(u),  and u I x. Thus,  it suffices 

to show tha t  

and 
yT~ ~ g(~o(y)) ,g(~o(~)) ( i=o ,  1) 

u I x ~ g(~0(n)) , g(~l(x)). 

C a s e  O: 6 ( f (x ) )  = O, i.e., Cro(f(x)) = tTl(f(x)) is the constant  value of g on 

J~. 
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Since f is continuous,  y T x implies f (y )  , f ( x ) ,  and so, by (A.1)(3) 

and (A.3)(6),  (ri(f(y)) , g(o'i(x)) (i = 0, 1) (since g(o'i(x)) = ~ro(f(x)) = 
~rl( f (x)) ,  i = 0, 1). Since g((ro(y)) = cro(f(y)) or ~q(f(y)) ,  it follows tha t  

g((ro(y)) ~ g(~ro(z)), as required. Similarly, one concludes f rom u I x tha t  

g(~o(u)) , g(~(x)).  

C a s e  1: 5( f (x ) )  > 0. Then,  by (3), 6(x) > 0 and t ype( f ,x )  E { / , \ , N , U } .  

We t rea t  each type  separately.  

T y p e  / :  By (A.4)(S), g((ri(y)) = ~ri(f(y)) for y near  x. Also near  x we have 

y T x  ~ f ( y ) T f ( x )  ~ ~ro(f(y)) T ~ro(f(x)) 

II tl 
g(~o(~)) ~(~o(~)). 

Similarly,  u ~ x implies g(o'o(U)) I g(oh(x)),  as required. 

T y p e  \ :  In this case, by (A.4)(8), g(o'i(y)) = ~r l - i ( f (y ) )  for y near  x. Also 

near  x we have 

~Tx ~ f (y ) t  f(*) ~ ~l(f(y)) I ~ ( f (*) )  
II H 

g(~o(y)) g(~o(~)). 

Similarly,  

u ~  ~ f(u) Tf(~) O'1 (f(u))  T ~ro(f(x)) 

II II 
g(~o(u)) g(~l(x)). 

T y p e  fl: The  a rgumen t  in the case y T x is like tha t  for type / ,  and in the 

case u ~ x like tha t  for type \ .  

T y p e  U: T h e  a rgumen t  in the case y T x is like tha t  for type  \ ,  and in the 

case u ~ x like t ha t  for t y p e / .  

(A.6) T e r m i n o l o g y .  Let ~" : T 

7r a D e n j o y  e x p a n s i o n  o f  T a l o n g  (the countable  set) 

(1) c = {x ~ T I ~(x) > 0}. 

We call g : T ~ T the corresponding D e n j o y  e x p a n s i o n  o f  f .  

a s sumpt ion  (A.4)(3) implies t ha t  

(2) f - l ( c )  < c .  

T and f : T ) T be as in (A.4). We call 

Note tha t  
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(3) 

We summarize some of the basic properties. 

T g T - - - .+ 

The diagram ~ ~ 1 ~ commutes. 
T ---* T ] 

(4) 

I f  J C T is an interval then 7r-l(J) is an interval. I f  f is increasing 

(resp. decreasing) on J then g is increasing (resp. decreasing) on 

(5) g(T) = 7r- l ( f (T)) ;  thus g is surjective if  and only if  f is surjective. 

(6) 
g is injective if  and only if f is injective 

and [x �9 C if and only if f ( x )  �9 C]. 

For since g is surjective on ~'-fibers, we see that g is injective if and only if f 

is injective and each gx : Jx ~ J](~) is injective. In particular, we must have 

6(x) > 0 if and only if 5(f(x))  > 0, i.e., x �9 C if and only if f (x )  �9 C. Further, 

when 6(x) > 0, f must have type / or \ at x, and this is automatic when f is 

injective. 

Finally, we recall the basic assumption (A.4)(3) about C and f:  

(7) f - l ( C )  C C, and near each x �9 C, f is of type/,\ ,0, orU. 

(A.7) M i n i m a l i t y .  Let ~r : (T, g) ~ (T, f )  be a Denjoy expansion as in 

(A.6). Let K C T be an infinite closed f-invariant subset containing C, and 

put K '  = c,0(K) U a l (K) .  Then K '  is closed and g-invariant, and ~r induces a 

surjection 

(K' ,g)  , (If, f ) .  

Cla im.  (KI,g) is minimal if and only if 

(i) (K, f )  is minimal, and 

(ii) For all c 6 C, e is a monotone limit from both directions in If  - {c}. 

P r o o f .  First assume that (If ' ,  g) is minimal. Then clearly (If, f )  is also min- 

imal. If c 6 C is say a limit in K from the left, but not from the right, then 

al(c)  is an isolated point of K ' ,  so it cannot be in the closure of a g-orbit not 

containing Crl(C), contradicting minimality. 

To prove, conversely, that (i) and (it) imply that (If ' ,  g) is minimal, it suffices 

to show, assuming (it), that  if H' C K'  and H = 7r(H') is dense in K then H' 

is dense in K ' .  (We apply this with H '  a g-orbit in K' . )  

Let y �9 K. We must show that (r0(y) and ch(y) are limits of elements of H'. 

Let (hn) be a sequence in H. For each n we have cr/,(h,~) �9 g '  for some in -- 0 
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or 1. Consequently, the following two cases are possible: 

(L) IJ:h,~ T Y then c~i.(h,~) "[ (to(y) 
((R) I Ih .  t Y then ~o(h . )  I ~I(Y) 

Since by assumption, H is dense in K,  we can find a sequence (h~) in H so 

that  either h ,  t Y or h .  ~ y. If ao(y) = al(y) then c~0(y) (= c~l(y)) lies in the 

closure of H' .  If ~r0(y) # ~I(Y), i.e., y �9 C, then by assumption (ii), we can find 

sequences (ha) and (k.)  in H so that  h~ T Y and k,  ~ y. Then from (L) and (R) 

we see that  both c~0(y) and ~l(y) belong to the closure of H' .  

(A.8) R e m a r k .  When (T, f )  is given with certain smoothness properties, it is 

natural to see how much of these can be preserved for (T, g). This issue must 

be addressed; in the choice of the local interpolating functions g. of (A.4)(5), so 

that  they are sufficiently smoothly adapted to the local behaviors of f at the 

cut points of the Denjoy expansions. The smoothness properties of f would be 

formulated in a suitable enhancement of hypothesis (A.4)(3). For a celebrated 

example of the smoothness problem for Denjoy expansion of irrational rotations 

see [Boh, De]. 

2. In terva l  r e n o r m a l i z a t i o n .  

(2.1) L i n e a r  o r d e r s  a n d  in te rva l s .  Let K be a linearly (i.e., totally) ordered 

set. For x , y  �9 K we have the usual notion of intervals: [x, eo) = {z �9 K I 

x <_ z], (x,<x))= { z � 9  If  Ix  < z } , a n d s i m i l a r l y ( - c o ,  x], ( -oo,  x), [x ,y]= 
[x, eo )N( - oo ,  y] (which is 0 unless x < y), and (x, y) = (x, oo, )N ( -o % y). When 

there is need to be precise we put a subscript K, as in [x, Y]K, etc. 

For L C K,  the K - s u p p o r t  o f  L, denoted [L]K is defined to be 

[L]K := U [x,y] 
x,y6L 

We call L a K - i n t e r v a l  if L = [L]K (or simply an i n t e r v a l  if the choice of K is 

clear). 

If K '  is another linearly ordered set then a map r : K ) K '  is said to be 

w eak  o r d e r  p r e s e r v i n g  if x _< y implies r _< r In this case the inverse 

image of an interval is an interval. 

The open intervals (x, y) (x 6 K O { - e o } ,  y �9 KO{oo}),  form a base for the 

o r d e r  t o p o l o g y  on K. For K C 11~ the order and euclidean topologies need not 

coincide; for example, K = [0, 1) O {2} is order isomorphic to [0, 1]. Nonetheless: 

C la im:  For a closed K C I~, the order and euclidean topologies coincide. 
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P r o o f .  It suffices to show that  a euclidean open interval in K is order-open. 

Say 

L = ( A , B ) ~ M K # O  (-oo < A < B < oo). 

Put a = infL,  b = sup L. Since K is closed we have a E K U { - ~ } ,  b E K U { ~ } .  

Put  a = sup(-:xD, A]~ N K and /3 = inf[B, oz) l  M K. (Note that  sup 0 = -:xD 

and inf0 = oo.) Then again since K is closed we have a E K U { -oo}  and 

/3 E K U {oo} (see Figure 1). 

Moreover (a, a )g  = 0 and (b, 13)n = 0. Put 

{ a i f a ~ L  and b 0 = {  b i f b ~ L  
a i f a E L  13 i f b E L .  

a 0 ~ -  

Then we have 

as is easily checked. 

L = (ao,bo)K, 

A B [3 
. . . . . . . . . . . . . . . . . . . . .  , !  , , i , , , l , , , m  . . . . . . . .  : : : :  

L 

F i g u r e  1. Showing that  the euclidean open interval L in K is also order open. 

(2.2) A cyc l ic  o r d e r i n g  on a set K is defined by a family of subsets called 

o r i e n t e d  c losed  i n t e r v a l s  

y] c K E K) 

which are defined as satisfying (1), (2) and (3) below, for all x, y, z E K: 

(1) [x, y] N [y, x] -- {x, y} 
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(2) 

and 

(3) 

(i) 

{[~,y]u[y,z] : [~,z] 
u ~ [ x , z ] ~  [~ ,y ]n [y , z ]  : {y} 

ei ther  y �9 Ix, z] or z �9 [x, y]. 

We have the  following consequences (i)-(xi): First 

[~, d = {~}. 

(ii) [~, ~] = [~, z] ~ y = z. 

P r o o f  (of (i) and (ii)). (i) follows immedia te ly  from (1). For (ii), [x, y] = [x, z] = 
[z, y] U [y, z], by (1) and (2), whence [y, z] C Ix, y] so z �9 [x, y] fl [y, z] = {y}, by 
(2). 

(iii) 

P r o o f  (of (iii)). Suppose that  z ~ [x, y] so that  y �9 Ix, z] U [y, z] by (3). We must  
show that  z �9 [y, x]. If not, then by (3), x �9 [y, z], and so x �9 [z, y] 61 [y, z] = {y}, 
contrary to the assumption that  x :~ y. 

(iv) Ei ther  y �9 [~, z] or �9 �9 [y, z]. 

P r o o f  (of (iv)). 

y 6 [x, z]. By (2), z �9 Ix, y] = [x, z] U [z, y], 
so by (iii), z �9 [y, z]. 

By (1) we may assume tha t  z =~ x r y 5~ z. Suppose tha t  
[x, z] n [z, y] = {z}. Thus x ~ [z, y] 

(v) The following conditions are equivalent: 

(a) y � 9  (b) [x, y] C [x, z]; (c) E i t h e r x = y  orx~[y,z] .  

P r o o f  (of (v)). First, (a) ~ (b) by (2), and (b) ~ (a) by (1). 

(a) ~ (c): Assuming x 5~ y we must show that  x q~ [y, z]. If on the contrary, 
e [ y ,  z] = [~, ~] u Ix, z], f rom (8) we have V �9 [y, ~] n [~, z] = {~}, so ~ = ~, 

contrary to assumption.  

(c) ~ (a): Clearly y �9 [x, z] i fx  =- y, so assume that  z r y, and so z ~ [y, z] 
, by (c). Then  y �9 [z, z] by (iv). 
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(vi) Let y <_~ z signify the equivalent conditions of  (v). Then <_~ is a 

linear order on K with least element x. 

P r o o f  (of (vi)). This  is immedia te  from (i), (ii), and (v). 

(vii) I f  x ~ [y,z] then y <_~ z and [y,z] = {w E K i Y <~ W <_~ z}.  

P r o o f  (of (vii)). By (iv), y E [x,z] = [x, y] U [y, z], so y_<~ z, and w E [y,z] 

implies w _<~ z. If, moreover,  w r y, then w ~ [x, y], so y E [x, w] by (3), hence 

y _<~ w. Suppose, conversely, tha t  y <x w _<~ z. Then  w E [x, z] = [x, y] U [y, z], 

and either w = y E [y, z] or else w ~ [x, y], so again w E [y, z]. 

Let L C K and x E K - L be such that L is an interval relative 

(viii) to <_x. Then for  all x '  E K - L, <_x, coincides with <_x on L, and 

L is an interval relative to <_x. 

P r o o f  (of (viii)). In view of (vii), it suffices to show that  if y, z E L and y <~ z 

, then y <~, z. By (vii) we have [y,z] C L, hence x'  ~ [y,z], and so, by (iv), 

y E [x', z], as claimed. 

A subset L C K is called an i n t e r v a l  if either L = K or else L satisfies the 

condit ion of (viii) for some (hence every) x E K - L. T h e  open intervals form a 

base for the o r d e r  t o p o l o g y  on K.  

Any subset L C K inherits an i n d u c e d  cyc l i c  o r d e r i n g ,  with oriented 

closed intervals defined by: 

Ix, y ] L : =  Ix, y] M L 

Suppose that K is partitioned into a disjoint union of intervals 

(ix) L0,L1,...,Ln-1. Choose xi E Li and give X = { x 0 , x l , . . . x , - 1 }  
the induced cyclic ordering. The corresponding cyclic order of  

{L0, L 1 , . . . , L n - 1 }  is independent of  the choice of  the xi 's .  

P r o o f  (of (ix)). It suffices to observe tha t  in the linearly ordered set 

(K  - L0, _<xo), the linear order is independent  of x0 E L0, and the linear order 

induced on { x l , . . . ,  i n - l }  and on the disjoint intervals { L 1 , . . . ,  L ~ - I )  corre- 
spond. 

(x) I f  L and L ~ are K-intervals  then either L M L' is a K- in terva l  or 

L U L I = K .  
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P r o o f  (of (x)). In fact if x E K - (L U L') then L and L' are both intervals 

relative to <~ (cf. (12)) and hence so also is L M n' .  

If K '  is another cyclically ordered set then a map r : K 

weak order preserving if 

Y <_x z in K implies r <r r in K ' .  

It is then obvious that  

(xi) 

, K '  is said to be 

I r e  : K , K '  is weak order preserving then the inverse image of  

a K%inlerva l  is a K- interval .  

(2.3) E x a m p l e s .  1. A linear order < on a set K defines a cyclic order on K,  

with 

{ z [ x < _ z  a n d z < y }  i f x < y  

[x,y] = {z l x <_ z or z <_-y } i f  y < x. 

If K has a least element x then < coincides with <~, defined relative to the 

above cyclic ordering. 

2. Let S 1 denote the unit circle, 

S 1 - -~  {exp(i0) I 0 E ~}.  

If z0 ,x l  E S t, x j  = exp(iOj),  with 0 < 01 - 00 < 27r, then we put 

[xo, xl] = {exp(i0) ]0o _< 0 < 0a}. 

This defines the c o u n t e r c l o c k w i s e  cycl ic  o r d e r  on S 1. The intervals in S 1 

are precisely the connected subsets. 

(2.4) I n t e r v a l  r e n o r m a l i z a t i o n .  By an o r d e r e d  d y n a m i c a l  s y s t e m  we un- 

derstand a dynamical system (K, f )  where K is equipped with a linear or cyclic 

order, and K is given the corresponding order topology. Let 

(1) r  (K, f )  > (X/nX, +1) 

be an n-renormalization, with fibers 

(2) K,  = r  (r E Z /n ~ ) .  

We call r an i n t e r v a l  n - r e n o r m a l i z a t i o n  if each K~ is a K-interval. In this 

case there is an induced order (linear or cyclic) on the set of Kr's,  and so also, 

by transport  of structure, on E / n Z .  
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In the linearly ordered case we have x _~ y implies r _< r In the 

cyclically ordered case, we have, for any r C Y~/nZ and xr E K~, x -<~r Y implies 

r _<, r Thus in both cases, r is weak order preserving (in the sense of 

(2.1) and (2.2)(xi)). 

C la im .  If  K is linearly ordered then r is uniquely determined by n, up to a 
translation of Z/nZ.  

P r o o f .  Let r r be two interval n-renormalizations, giving rise to intervals 

I~_', = r  and Kr = r  (r E Z/nZ).  After translation of Z/nZ  we can 

assume that  K0 is left-most among K 0 , . . . ,  K,~_I, and similarly for K~ among 

K ~ , . . . ,  K~_ 1. Then one of the left-most intervals K0, K~ contains the other, 

say K0 C K~. Taking successive inverse images under f ,  we find that K~ C Kr 

for all r E Z/nZ.  Hence Kr = Kr i.e., r = r as claimed. 

E x a m p l e .  The above uniqueness-up-to-translation property can fail when K 

is cyclically ordered. For example let K = Z/6Z,  with its natural cyclic order, 

and f (x)  = x + 2. Define r r : (K, f )  , (Z/3Z,  +1) with fibers Ifr = r  

and I(r = r  defined by K0 = {0,1},IQ = {2, 3},Ii2 = {4, 5},K~ = 

{5,0},K~ = {1,2},K~ = {3,4}. 

The following remains true, even in the 

point x0 E K. Up to translation of ~/nZ,  
(E/nZ, +1) can be made to satisfy r = 

cyclically ordered case. Pick a base 

any renormalization r : (K, f )  , 

0. 

C la im .  All interval n-renormalizations r of ( K, f)  such that r = 0 induce 
the same order (linear or cyclic) on E/nE. 

Indeed, the order on Z / n Z  is such that r is an order preserving bijection on 

the partial orbit 

{xo, f ( xo ) , . . . , f " - l ( xo ) } ,  

the latter being given the order induced from K. 

We put 

(3) IRen(K, f)  = {n I (K, f)  admits an interval n-renormalization}. 

Note that  when (K, f )  is minimal, 

IRen(K, f)  = {n [ the orbit closures of fn from n disjoint It-intervals}. 

Let (K' ,  f ' )  be another ordered dynamical system, and let 

(4) ~ : (K', f ' )  --~ (If, f)  

be a topological morphism. If r : (It, f)  , (E/nZ, +1) is a (not necessarily 

interval) n-renormalization of (It, f ) ,  then r o a is one of (If ' f ' ) .  We call c~ an 

I R - m o r p h i s m  if whenever r is an interval renormalization, so also is r o ~. 

(This happens, for example, if a is weak order preserving.) Thus: 
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c~ is an IR-morphism if and only if ~ is a topological morphism, 

(5) and IRen(K, f )  C IRen(K',  f ' ) .  

We call ~ an I R - i s o m o r p h i s m  (of minimal ordered dynamical systems) if 

is a topological isomorphism and both c~ and a - 1  are IR-morphisms.  Equiv- 

alently: 

o~ is an IR-isomorphism if and only if ~ is a topological isomor- 

(6) phism, and IRen(K, f )  = IRen(K',  f ' ) .  

(2.5) E x a m p l e .  We claim that,  with the natural  cyclic order on E / m E ,  

I R e n ( Z / m Z ,  +1) = {1, m}. 

Indeed, let r  ( Z / m E ,  +1) ~ ( Z / n Z ,  +1) be an interval n-renormalization, 

say with r = 0. Then clearly r must be a surjective group homomorphism,  

so n ] m, say m = nq. However the fiber 

r  = {0, n , 2 n , . . . , ( q -  1)n) 

clearly cannot be an interval of Z / r n Z  unless n = 1 (q = m) or n = m (q = 1). 

(2.6) T h e o r e m .  Let (K, f )  be an ordered dynamical system (cf. (2.4)). Then 
IRen( K, f )  is totally ordered by divisibility; i.e., given n, m E IRen( K, f ) ,  either 

nlmormln .  
P r o o f .  We assume, without loss of generality, that  n, m >_ 2. For h = n or m, 

let th  : (If,  f )  ) (Z /hE ,  +1) be an interval h-renormalization. For r C Z / n Z  

and s E Z / m Z  we put 

N r = r  and M~ = r 

Define 

=ltm(Nr)l= the number of tin-fibers that Nr meets, 

and 

#(s) =iOn(Ms)I  = the number of tn-fibers that Ms meets. 

If  x E Nr M M, then f ( z )  E Nr+l Yl M~+I. It  follows that  u(r) <_ u(r  + 1) and 

#(s) _< # ( s + l ) .  Thus, u(r) = u is independent of r, and #(s) = # is independent 

o f  8. 

C a s e  1. Some Nr M Ms is not an interval. 

It  follows then from (2.2)(15) that  Nr U M~ = K. Then for r '  r r and 

s '  r s we have N~, C M~ and M~, C N~. It follows that  u = u(r t) = 1 and 

# = #(s ' )  = 1, whence n = m, clearly. 
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Case 2. # = u = 2 .  

For each r, the two nonempty intervals of the form N~ M M, parti t ion N~ 

into a left interval L(N~) and a right interval/~(N~). We similarly define L(M~) 
and R(M~) for each s. Now define 

L 

g / n g  Z / m g  
4------- 

R 

by L(N~) = NrNML(~) and R(M~) = MsANRo). Then it is clear that  LoR = Id 
and R o  L = Id so n = m. 

C a s e  3. # >  3 o r  t~_> 3. 

Say # > 3. Then M0 meets at least 3 r say N~,, Nr~, N~  among 

them, with rl  < r2 < r3 in the induced cyclic ordering. Then for x E N~ N M0 

and y E N ~  M M0 we have N~  C [x,y] C M0 and s o ,  = v(r2) = 1. Similarly 

> 3 implies that  # = 1. Thus it remains only to treat: 

C a s e  4. # =  l o t  v =  1. 

It  suffices by symmet ry  to show that: 

# = l ~ n l m .  

Define p : Z/mE , Z /nZ  by Ms C Np(s). Modifying Cn by a translation, 

we can arrange that  p(O) = O. Further the commutat ive diagram 

K ~" g / m g  
"" l p  
r 

g / n Z  

shows tha t  p is equivariant for the map +1. Hence p is a surjective homomor-  

phism, and so n I m as claimed. 

R e m a r k :  Theorem (2.6) should be contrasted with Proposition (t .5) which tells 

us that  Rcn(K, f) = Div(Q), the set of divisors of some supernatural  number  

O = Q(K,  f )  (cf. (1.6)). 

(2.7) I n t e r v a l  r e n o r m a l i z a t i o n  index .  Let (K, f )  be an ordered dynamical  

system, in the sense of (2.4). 

C a s e  1. IRen(K, f) is infinite; i.e., (K, f) is i n f i n i t e ly  i n t e r v a l  r e n o r -  

m a l i z a b l e .  We then list IRen(K, f) as an infinite increasing sequence: 

(1) 1Ren(K, f )  = (no, nl, n~,...) 
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with  no = 1 < nl  < n2 < " ". By (2.6) hi-1 divides ni and we put  

qi = ni /n i -1  (i > 1). (2) 

T h e  sequence 

(3) q ( =  q ( K ,  f ) )  := (q l ,q2 ,q3 , . - . )  

is then called the I R - i n d e x  of (K,  f ) .  Clearly 

(4) nh = q[h] :__ qlq2"' 'qh (h >_ 0). 

C a s e  2. IRen(K, f )  is finite. Then  we list IRen(K, f )  as a finite sequence 

(5) IRen(K, f )  = (no, n l , . . . ,  nm) 

with no = 1 < nl  < . . .  < n,~. Again by (2.6) we have the integers 

(6) qi = ni /n i -1  > 1 (1 < i < m).  

T h e  IR- index this t ime  is the infinite sequence 

q = (q (K,  f ) )  = (ql, q2, q3 . . . ) ,  

where we agree to put  

(7) qh = O for h > m. 

I f  we define nh = q[h] as in (4) we then have nh = 0 for h > m. 

In case IRen(K, f )  = {1} (i.e., m = 0 above) then we say tha t  (K,  f )  is n o n  

i n t e r v a l - r e n o r m a l i z a b l e .  In all cases, it is clear tha t  

(8) 

IRen(K, f )  is the ascending union of IRen(Z /nZ ,  +1)  where n in- 
creases in IRen(K, f )  and Z / n Z  is given the order induced by mak- 

ing an interval renormalization r : (K, f )  ~ ( Z / n Z ,  +1)  weak 

order preserving. 

We shall describe in (III ,  Section 5) below a na tura l  rooted tree dynamics  

associated to the interval  renormal iza t ions  of (K,  f ) .  

(2.8) T h e  i n t e r v a l  r e n o r m a l i z a b l e  q u o t i e n t  r  (K,  f )  ) (Zq, +1) .  Let 

(K,  f )  be an ordered dynamica l  sys tem and as in (2.7); write 

(1) IRen(K, f )  = (no, nl,  n2, . . . )  (finite or infinite) 

and 

(2) q = q(K, f )  = (ql, q2, q3. . . ) .  
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Here n 0 =  1 < n l  < n 2  < . . . ,  nh-l[nh, q h = n h / n h - l ,  and 

(3) nh : q[h] : _  qlq~'" "qh. 

Assume either that the I-orbit of x0 is dense, or that K is linearly ordered. 

Then (cf. (2.4)), there is, for each h, a unique interval nh-renormalization 

(4) Ch : (K, f )  , (Xh, +1), Xh = E/nhE 

such that  Ch(x0) = 0. Let 

(5) p : Xh , Xh-1 

be the canonical projection E/nhZ ~ Z / n h - l Z ,  which is a surjective ring 

homomorphism. Then the diagrams 

K r 

(6) \ 

Xh 

lp 

X h - 1  

commute, because of uniqueness. 
We give each Xh the (linear or cyclic) ordering induced from K, as in (2.4), 

so that r is weak order preserving. Then the eommutativity of (6) and the 

surjectivity of r implies that p also is weak order preserving. 

Case  1. IRen(K, f)  = (no, n l , . . . ,  nm) is finite. 

Then we put 

f Z/nmZ (= Xm), and (7) [ r (= r = Cm : (K, f)  ' (~(K,]), +1). 

This r is a surjectiv 2 morphism, and it is weak order preserving for the K- 

induced ordering on Y~(K,:)" 
It follows from Proposition(3.1) below that given any integer N > 1, for at 

least one fiber Kr = r  of r (Kr, f'~"~ [Kr) is non-interval N-renormalizable. 

Case  2. IRen(K, f )  is infinite. Then we put 

A 

(8) = lim /nh  = limXh. 
h h 

The commutative diagrams (6) furnish the morphisms 

g = <~(K,/) : (I'(, f) ' (Z(K,f), +i) 

which has dense image. Moreover r is weak order preserving for the given order 

on K and the inverse limit of the K-induced orderings on each Xh = ~ / n h ~ .  
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In both cases we call (K, f )  f a i t h f u l l y  i n t e r v a l  r e n o r m a l i z a b l e  if r is 

injective. 
A 

We sometimes (cf. (III, (3.4)) below) call the ring Z(K,/), the q -ad ic  in- 

t ege r s ,  and denote it ~q and call (Eq, +1) the q-ad ic  a d d i n g  m a c h i n e  (cf. 

(III, (3.4))). Note that  ~q = EQ (cf. (1.7)), where Q denotes the supernatural 

number Q(q) = I-[h>l qh. 

(2.9) P r o p o s i t i o n .  Let (K, f) be a compact ordered dynamical system which is 
faithfully interval venovmalizable. Then (K, f) is minimal, and is determined, 

:R-isomorphism of ordered dynamical sy tem  (el. (2.#) by Inert(K, f). 

P r o o f .  The hypotheses imply that (K, f) is /R-isomorphic to (Eq, +1), which 

is minimal, and is determined by q = q(K, f), hence by IRen(K, f). 
Minimality of (K, f )  follows from that of the adding machine. Let (K', f ') 

be another dynamical system with IRen(K', f ') = IRen(K, f). By (2.4)(6) we 

need only show that (K' ,  f ' )  and (K, f )  are topologically isomorphic. But in 

view of the compactness and faithful interval renormalizable hypotheses, both 

systems are topologically isomorphic to the q-adic adding machine ( Z q , + l ) ,  

where q = q(K, f)  = q(K', f'). 

[] 

(2.10) R e m a r k .  Suppose that K is a finite totally ordered set, say 

K = {z~ < x2 < -..  < x,~}. Then a minimal dynamical system ( K , f )  is 

just a transitive permutation f ,  corresponding to an n-cycle ~r E S,~ defined by 

We define 

f(xi) : xa(i) (1 < i < n). 

IRen(~r) = IRen(K,f) 
= 

Here m0 = 1 < ml < ..- < mr = n, and mi-1 ] mi. From (3.5) below it follows 

that  any such sequence of divisors of n can occur this way for suitable c~. 

Suppose that  n = 2 TM. Then it is easily seen that a is a s im p le  p e r m u -  

t a t i o n  in the sense of [B1] if and only if IRen(cr) = (1, 2, 4, 8 , . . . ,  2m). Equiva- 

lently, for each r = 0, 1 , . . . ,  m -  1, the orbits of a 2r form 2 ~ disjoint intervals in 

{1, 2, 3, . . . ,  2 TM} on each of which cr 2r switches the left and right halves. 

If n = r - 2 m with r > 1 and odd, and r is "simple" in the sense of ([Be], 

Definition 1.12), then IRen(a) = (1, 2, 4, 8 , . . . 2  m, r.2m). However, this property 

does not suffice to make a simple in general. 
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3. Systems with prescribed renormalizations. 

(3.1) P r o p o s i t i o n .  Let (K, f )  be an ordered dynamical system and 

r  (K,I) , (~ /nZ ,+ l )  

an interval n-renormalization with fibers K~ = r  

(a) For each integer m > 1, 

n m E I n e n ( K , f )  r m E I R e n ( K r , f f l g . )  V r E ~ / n E .  

(b) Putting J = N IRen(Kr, f= [g.), we have 

rE~/n~ 

IRen(K, f )  -- IRen(Z/nZ,-I-1) U n. J, 

where E/nY~ is given the order induced from K via r 

P r o o f .  Put  N = rim. We know from (1.9) that N E Ren(K,  f )  if and only if 

m E Ren(Kr,  fn IKr) for each r. In this case, both conditions in (a) amount to 

saying that  each of the fibers of an N-renormalization of (K, f )  is a K-intervM, 

whence (a). Part (b) follows immediately from (a). 

(3.2) P r o p o s i t i o n .  Suppose in (3.1) that K is finite of cardinal M > n and 

that f is transitive. Then M = nq for some integer q > 1, and each fiber 
I~'~ = r  is a (proper) linearly ordered K-interval and an f~-orbit. Assume 

that Kr is ordered so that, if x~ is its least element, 

(1) xr < fn(xr) < f2'~(xr) < "'" < f(q-')'~(xr). 

Then 

SRen(K, Z) = {M}  U SRen(ZlnZ, +l) ,  

where ~ / n ~  is given the order that makes r weak order preserving. 

P r o o f .  Let r : ( K , f )  , ( Z / d % , + l )  be an interval d-renormalization. By 

(2.6) either d i n  or n I d. 

I fd  ] n then, after modifying r by a translation so that r  = 0, we obtain 

a commutative diagram 

(K, f)  

r 
r ... 

(Zln~.,+l) 7 (~.ldZ, +1) 
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where p is the natural projection. It is easily seen then that  p is weak order pre- 

serving, and hence an interval d-renormalization for the order on G / n Z  induced 

from K, whence d C IRen(Z /nZ ,  +1). 

Suppose finally that n I d, say d = ne. It follows then from (3.1) that  

e E IRen(K~, f~ IK r) for each r. By our assumption (cf. (1)), (Kr, f~ Ig ~) is 
isomorphic to (Z /qZ ,+ I ) ,  with the linear order 0 < 1 < --. < (q - 1), which 

is compatible with the natural cyclic order on G/qZ. It follows then from (2.5) 

that  IRen(IG, f~ IK ~) = {1, q}. Thus, e = 1 or q so d = n or M, as was to be 

shown. 

(3.3) Cycl ic  i n d u c e d  ac t ions .  Let n be an integer _> 1. For any dynamical 

system (H, h) we define the (n-fold) induced system 

by defining 

(1) 

and 

(K, f )  = Ind , (H,  h) 

K = ( Z / n Z )  • H 

( r + l , x )  for 0 < r < n - 1 ;  
(2) f(r ,  x) = (0, h(x)) f o r  ~ = n - 1.  

Here K is given the product topology, with the discrete topology on Z / n Z .  The 

first coordinate projection 

r  ( K , f )  ) ( Z I n Z , + I )  

is an n-renormalization, with fibers 

(3) IG = r = (r, H). 

Moreover it follows from (2) above that 

(4) i f ( r ,  x) = (r, h(x)) 

and so 

(5) (K,, f= I~) ~ (H, h) 

It follows that if (H, h) is minimal then (Ix', f )  is as well. 

homeomorphism if and only if h is a homeomorphism. 

for all r E Z / n Z .  

Moreover, f is a 
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(3.4) O r d e r e d  i n d u c t i o n .  Suppose that (H, h) is a linearly ordered dynamical 

system and that we give E/nE  an order (linear or cyclic). Then we can give 

I< = • H 

the lexicographic order (linear or cyclic, as the case may be), and then 

r  , Z / n Z  

is an interval n-renormalization of Indn(H, h ) =  (K, f ) .  We write 

Ind~ 

when it is understood that K is given the lexicographic order as above. It follows 

then from (3.1) that 

IRen(Ind~d(H, h)) = IRen(E/nE, +1) tO n . IRen(H, h). 

Note that Ind ~ is a functor on linearly ordered dynamical systems and 

morphisms preserving 5.  

(3.5) T h e  s y s t e m s  H(ql ,q2 , . . . ,  q,~). For any integer q > 1 define the ordered 

dynamical systems 

(1) H(q) = ( E / q Z , + I ) ,  ordered by 0 < 1 < 2 < . . .  < q -  1. 

Given a sequence (q l ,q2 , . . . ,qn)  of integers (qi 

H(ql,  q2 , . . . ,  qn) inductively by 

> 2 for all i) we define 

(2 )  , �9  Tnd~ H(ql q2, a n ) = 1  ql ( ( q 2 , . . . , q ~ ) ) .  

It follows then by induction from (3.1)(b), using (2.5) for n = l, that  

(3) IRen(H(ql ,q2 , . . . ,qn))  = {1, m l , . . . , r a n } ,  where m k = ql "q2"" "qk. 

Thus we have constructed finite minimal ordered systems (K, f )  with IRen(K, f )  

any prescribed finite set {1 < ml < -..  < m,~}, where mi-1 [ mi for all i. 

Note that  H(ql, q2, . . . ,  q~) ~- (Z/m,~E, +1), relative to a certain ordering on 

Z / m , E .  Writing elements of Z/m~E in the form 

vo + ql(vl + q2(r2 + ' "  + qn-2(r~-2 + q ~ - l r ~ - l ) "  ")) 

with 0 < ri-1 < qi (i = 1 , . . . , n )  the ordering is lexicographic on n-tuples 

(r0, r l , . . . ,  r,~-l). In particular the natural projection homomorphism 

p : H(ql ,q2 , . . . ,q~)  ~ H(q l ,q2 , . . . ,qn-1)  

is weak order preserving. 
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(3.6) A n  inf in i te ,  f in i t e ly  r e n o r m a l i z a b l e  sy s t e m.  Suppose that  (H, h) is a 

minimal linearly ordered dynamical system that is non interval renormalizable, 

i.e., IRen(H, h) = {1}. (cf. (1.10) for such an example.) Form 

(K, f)  = Ind~d(H, h), 

where Z/mnZ is ordered as in H(ql, q2,. . . ,  q,~) above. Then it follows from (3.1) 
that  

IRen(K, f)  = IRen(H(ql, q2 . . . .  , qn)) = {1, rex , . . . ,  ran}. 

(3.7) E x a m p l e s  o f  ( f in i te ly)  r e n o r m a l i z a b l e  s y s t e ms  which  are  no t  in- 

t e rva l  r e n o r m a l i z a b l e .  Given an integer Q >_ 1, we shall produce a linearly 

ordered minimal dynamical system (K, f )  with K compact and totally discon- 
nected such that  

(i)  Ren(K, I) = Div(Q) 

and 

(2) IRen(K, f)  = {1}. 

First take (H, h) a minimal linearly ordered compact totally disconnected 

system which is infinite yet nonrenormalizable: Ren(H, h) = {1}. Such an 

example is constructed (e.g. in (1.10)) using Denjoy expansion of an irrational 

rotation on the circle, and h is then a homeomorphism. 

Next give 2~/Q2~ any linear order. We form the induced system 

but where 

is linearly ordered as follows. 

Decompose H as 

(K, f )  = [ndQ(H, h), 

I ;  = ( Z / Q Z )  • U 

H = H o H H 1  

where each Hi is an open and closed (nonempty) H-interval with x0 < xl when- 

ever x i E H i  ( i = 0 , 1 ) .  Then we have 

where each 

K = Ko I_IKi 

Ki = (Z/QZ) x Hi 

is given the lexicographic order, and K0 precedes K1 in the ordering of K.  

We claim that  (K, f)  satisfies (1) and (2) above. Clearly 

eQ: (K,f) (Z/QZ,+I) 
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is a Q-renormalization (we are not saying "interval"), with fibers topologically 

isomorphic to (H, h). Since (H, h) is not renormalizable (non-trivially) it follows 
from (1.9) that  

Q(K, f )  = Q.  Q(H, h) = Q, 

and so (1) follows (cf. (1.8)). 

It remains to establish (2). Let n E IRen(K, f) .  Then n I Q, and if 

r  : ( K , f )  ~ (E/n;~,+l)  

is an interval n-renormalization, the fibers of r will be unions of fibers of CQ. 

To show, as required, that n = 1, it thus suffices to show that a nonempty union 

U of CQ-fibers, if not all of K, is not a K-interval. 

Now U must be of the form CQI(j) for some nonempty J C E/QE,  and we 

have U = UoLIU1 with Ui = UfqK~ = J x Hi ( i = 0 , 1 ) .  Choose j  E g, and 

r E  ( E / Q E ) - J .  Either r < j o r  r > j .  S a y r < j .  Choose x i E H i  ( i = 0 , 1 ) .  
Then 

(j, x0) < (r, xl) < (j < xl) 

with (j, xi) E U (i = 0, 1), and (r, xl) ~ U. Similarly, when r > j ,  

(j, xo) < (r, x0) < (j, x l )  

shows that  U is not an interval. 

Combining examples (3.5), (3.6) and (3.7), we obtain the following: 

(3.8) P r o p o s i t i o n .  Let 

m o = l < m I < m 2 < ... < m n 

be a sequence of integers such that mi-1 I mi (i = 1 , . . . , n ) .  Let q be any 

integer >_ 1 and Q = m ,  �9 q. Then there is a minimal linearly ordered dynamical 

system (K, f )  with K compact totally disconnected and infinite, f a homeomor- 
phism, and such that 

Ren(K, f )  = Div(Q) 

and 

IRen(K, f )  = {1, tD.1,... ,tnn}. 

We next consider infinite interval renormalizability. 

(3.9) T h e o r e m .  Let 

q = (ql,q2, q3.-.) 

be a sequence of integers qn >_ 2. For n > 0 put 

mn =q[ 'q  = q l . q 2 . . . % .  
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Let H(ql ,q2, . . . ,q ,~)  = (Z /m,~Z,+ l ) ,  ordered as in (3.5), and let 

p : H(ql ,  q2, . . . ,  q,~) ~. H(qm,. . . ,  q,~-m) be the natural projection (which is weak 

order preserving by (3.5)). Put 

(K, f )  = H(q)  := li_mH(ql, q2, . . . ,  qn) = (kq ,  +1), 
n 

with the inverse limit ordering. Then (K, f )  is faithfully interval renormalizable, 

IRen(K, f )  = { 1, ml,  m2, m3 , . . . }  

and 

Ren(K, f)  = { m m  I for some n}. 

P r o o f .  The last assertion follows from (1.7), and it reduces the assertion 

concerning IRen(K, f )  to showing that, for each n, IRe//(H(ql, q~, . . . ,  q~)) = 

{1, ml ,  m 2 , . . . ,  m~}; the latter follows from (3.5). 

(3.10) We next extend Proposition (3.8) to the case where IRen(K, f )  is finite, 

but Ren(K,  f )  is allowed to be infinite. 

T h e o r e m .  Let Q be an infinite supernatural number. Let mo = 1 < m t  < " "  < 

mn be integers such that mi_l  I mi ( l < i < n )  andre ,  I Q, say Q = rnn .Q' .  
Then there is a minimal compact ordered dynamical system (K, f )  which is faith- 

fully renormalizable with Q( K, f )  = Q and IRen( K, f )  = {m0, m l , . . . ,  ran}. 

P r o o f .  We first show that it suffices to establish the case n = 0. For assuming 

this we can find a system (g ,  h) as in the theorem with" Q(H, h) = Q' and 

IRen(g ,  h) = {1}. This done, we take (K, f )  = Ind~d(H,  h), where 7A/m~Z is 

ordered so as to make ( E / m ~ E , + I )  = H(q l , . . . , am)  with qi = m i / m i - 1 ,  as in 

(3.5). Then it follows from (1.9) that Q(K, f )  = m~ . Q(H,  h) = m ,  . Q' = Q, 
and it follows from (3.6) that  IRen(K, f )  = {m0, m l , . . . ,  ran}. 

It remains to treat the case n = 0. We seek a (K, f )  topologically isomorphic 

to (EQ, +1) and ordered so that IRe//(K, f )  = {1}. 

Let 

( i) 
q = the least prime divisor of Q; and 
Q = q . Q ' .  

Choose sequences of integers 

A/I = { m 0 =  l < m l < m 2  < m 3 < - " }  
( 2 )  J ~  ---- { n  o ---- 1 < n 1 < //2 < 1/3 < "" "} 
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such that  

(3) 
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mi-1 I mi and ni-1 I ni for all i, 

(4) 

and 

(5) 

(6) 

such that  

(7) 

Now take 

(s) 

LCM(A4) = Q' = LCM(Af), 

M n H =  {1}. 

Now as in Theorem (3.9), we form systems 

(Hi, hi) (i = O, 1), topologically isomorphic to (ZQ,, +1) 

IRen(Ho, ho) =A/[ and IRen(H1, hi) = Af. 

A 

K = (Z/qZ) • Zq,, 

with the product topology and assuming the discrete topology on E/qY~. We 

order K as follows. On 

(9) K~ = (r, ~Q,) (~ ~ Z/qZ) 

the induced order is that corresponding to H0, for r = 0, 1 , . . . q  - 2, and that 

corresponding to H1 for r = q -  1. For the order on K, we first split K0 and 

Kq_l each into two nonempty open intervals, 

(10) K0 = K0,0 I.I Ko,1, K0,0 < K0,1 
Kq-i  = Kq-l,o ]__[ Kq-l,1, Kq-l,o < /(q-l,1 

and so that  neither K0,0 nor Kq-l,1 corresponds to a coset of ~Q, rood 3~Q,. 

Finally, we order K as follows: 

(11) Ko,o < Kq-l,o .~ K1 "( ".. <: Kq-2 < K0,1 < I(q-l,1 

where each term in the sequence is a K-interval, with the internal order of each 

term determined by the order of the K~ which contains it. 

Next define 

f : K  ~K 

by 

( r + l , x )  ( r C q - 1 )  
(12) f (r ,  x) = (0, x + 1) (r -- q - 1). 
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(13) 

Putt ing 

f~ = fq IK,.: Kr "--"+ I~(~ 

we see that ,  as ordered dynamical systems, 

The first coordinate projection then defines a renormalization 

r  (K, f )  ~ ( E / q Z , + l ) ,  

r  = K~. 

(14) ( K r , f r ) ~  { (H0, h0) ( r # q - 1 )  
( H i , h i )  ( r = q - 1 ) .  

It  follows from (1.9) that  

(15) Q(K, f )  = q . Q(Hi,hi)  = q " Q' = Q, 

and in fact, (K, f )  is topologically isomorphic to (~Q, +1). 

It remains to show that  

(16) IRen(K, f )  = {1). 

We must  show that ,  if N is a divisor of Q and N > 1 then some orbit closure 

of fN  is not an interval. 

C a s e  N = q. Then (11) shows that,  for example, K0 = K0,0 L[ K0,x is not 

a K-interval.  

C a s e  N = qM, M > 1. Then, by (14) each fN  (= (fq)M)_orbi t closure 

of a point in K~ corresponds to an hy-orbit closure in H0 (for r # q - 1) or 

to an hM-orbit closure in H1 (for r = q - 1). In view of condition (5), for each 

M > 1, either h0 M in H0 or h M in H1 has an orbit closure that  is not an interval. 

C a s e  q ~ N. Then, q being prime, N is relatively prime to q. Let L be any 

fN-orb i t  closure. It  corresponds to a coset of ~Q rood N~Q. Since N and q are 

relatively prime, L meets every K~ (r E Y~/qZ). Suppose that  every fN-orb i t  

closure is a K interval; we shall derive a contradiction. Since L meets K1 and 

Kq-2 it follows from (11) that  the interval L contains K~ for 1 < r < q -  2. But 

a coset rood N can contain a coset rood q only if N I q. Since q was chosen to 

be the least prime divisor of Q this can happen only for N = 1. Thus, we are 

reduced to the case in which no r satisfies 1 < r < q - 2, i.e. q _~ 4, and hence 

q = 2 , 3 .  
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Case  q = 3. 

K O 
0 

K <K < K < K <K 
0,0 1,0 1 0, I 1,1 

Figure 2. 

Let L be the fN-orbi t  closure containing the left end point of K, and R the 

f g - o r b i t  closure containing the right end point of K. Both L and R meet K1 

and are intervals. Hence L contains K0,0UK2,0 and R contains K0,1 UK2,1. The 

complement of L U R is contained in K1, so there can't be any other fN-orbi t  

closure, since it could not meet K0 or K2. Thus N = 2. But this contradicts 

the minimality of q. 

Case  q -- 2. 

K I 
0 

K < K < K < K 
0,0 1,0 0,1 1,1 

F i g u r e  3. 

Let L and R be as above, that is, the fN-orbi t  closures containing the left 

and right end points of K respectively. Since L meets Ka and R meets K0 we 

must have K0,0 C L and K1,1 C R Since N r 2 there must be a third fN-orbi t  

closure S, which is an interval meeting K1,0 and K0,1, as indicated in Figure 4. 

K K K K 
0,0 1,0 0,1 1,1 

,- L S _ , , -  R 

Figure 4. 

But then clearly any interval in the complement of L U S U R is contained 
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in either K1,0 C /s or in /s C /s Hence we must have N = 3. Further 

K0,0 = L N/s is a EQ-coset rood 6EQ, or a EQ, coset mod 3~O, (identifying K0 

with EQ,). Similarly/s = R N/s corresponds to a ZQ,-coset mod 3EQ,. But 

this contradicts the choice of the decompositions Kr = Kr,o I_I/s for r = 0 

and q -  1 in (10) above. This concludes the proof of Theorem (3.10). 

(3.11) P o s s i b l e  r e n o r m a l i z a t i o n  t ypes .  

dynamical system, with 

Q = 
q = 

Q(q) = 

Let (K, f )  be a minimal ordered 

Q( /s f ) ,  
q( / s  = (ql,q2, qa.. .) ,  and 

YIn>l q n  . 

Here, Q and Q(q) are supernatural numbers as in (1.6), 

Ren(/s f )  = Div(Q) (4 (1 .7 ) )  

and 

Q(q) divides Q. 

We can ask whether conversely, given supernatural numbers Q, QI, with Qt 

dividing Q can we find a (/s f )  as above with Q(/s f )  = Q and Q(q) = Q', 

where q = q ( K , f ) ?  We have affirmed this, even with K compact and f a 

homeomorphism, in the following cases. 

1. Q' and Q are finite. (Proposition (3.8)) 

2. Q' is infinite and Q' = Q, (Theorem (3.9)) 

3. Q' is finite and Q is infinite. (Theorem (3.10)) 

It will be shown in Theorem (4.1) that these exhaust all cases; namely, if Q' 

is infinite then we must have Q~ = Q, at least for compact K contained in Ii~ or 

in the circle S 1. 

4. I n f i n i t e  i n t e r v a l  r e n o r m a l i z a b i l i t y .  

(4.1) T h e o r e m .  Lel /s be a compact subsel of l~ or S 1 and let ( / s  be a 

dynamical system wiih dense orbi~ and which is infinitely inlerval renormalizable. 

Let 

= (/s f )  ' + 1 )  

be the interval renormalizable quolient, as in (2.8). 
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(a) r is surjective, and r is injecZive except perhaps, for a countable set of 

2-point-interval fibers. 

(b) f is surjective, and f is injecZive except, perhaps, for a countable set of 
2-point-interval fibers. Moreover (K, f )  is minimal, and K is a Cantor set. 

(c) I f  n G Ren(K, f )  then n I m for some m G IRen(K, f ) ;  

i.e., 

Q ( K , f )  = Q(q), where q = q ( K , f ) .  

= LCM(IRen(K,  f ) ) .  

We give examples in (4.6) below showing that the 2-point fibers can in fact 

occur, either for both r and f ,  or for r alone. 

P r o o f  o f  (a). Since r and f have dense images and K is compact, r and f are 

surjective. 
A 

For r E E(K,/) put K~ = r  The K~ are closed and pairwise disjoint. 

Since r and f are surjective and r is equivariant it follows that 

(i) f(Kr) = Kr+1 and f-1(If,.+1) = Kr. 

Further, r is compatible with the order (linear or cyclic) on K, and the induced 

order on ~(g,]). It follows that each K~ is a K-interval. Since ~ or S 1 cannot 

contain uncountably many pairwise disjoint intervals of length > 0, it follows 

that  all but countably many of the K~ consist in a single point. It remains to 

see that  no K~ can contain 3 points. 

Say x E I f  has a dense f-orbit  f*(x)  = {f~(x)  I n > 0}, and x E Kr0. If 
some Kr has at least 3 points, then so also does K~-I ,  by (1). Thus, we can then 

choose r with IK~I > 3 and r r r0 + n  for any integer n _> 0. Choose u < v < w 

in K~ (where "<" denotes "<~" in the circle case). For n > O, f n ( x )  E Kr0+n, 

and the K-interval K~0+~ is, by choice of r, disjoint from the interval K~. Hence 

either f ~ ( z )  < u or f '~(x) > w. Thus, f* (x )  never enters the neighborhood 

(u, w) of v, contradicting denseness of f* (x). This proves (a). 

P r o o f  o f  (b). If f ( x )  = f (y )  then r + 1 = r  = r  = r + i, so 

r = r Thus the f-fibers are contained in C-fibers so f is injective, except 

perhaps for countably many 2-point fibers. As already observed, f is surjective~ 

We next show that (K, f )  is minimal. Let y E K have f-orbi t  closure L C K. 

The minimality of (~(g,j) ,  +1) and compactness of L imply that e l l  is surjective, 

and hence L contains all 1-point fibers of K, and K - L is a countable open 

subset of K.  For z C K - L, there is a unique z ~ C L defined by K$(~) = {z, z~}. 

Say z < z~; then since {z ~,z} is a K-interval, z must be a limit from above 

of points of the orbit f* (x) which, when sufficiently near z, lie in the open set 

K - L .  Thus, we can find z < u < v w i t h ( z , v )  MK C K - L .  But then the 

/g-interval {u, u'} must lie in (z, v), thus forcing the contradiction u' ~ L. 
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The minimality of (K, f) ,  just  proved, shows that K has no isolated points. 

Since Z(K,]) is totally disconnected and r has discrete K-interval fibers, it follows 

that K is totally disconnected. Hence K is a Cantor set (cf. (B.9)), thus 
concluding the proof of (b). 

P r o o f  o f  (c). Choose xo E Ko. For each n E Ren(K, f ) ,  let 

r : (If, f )  , (Z/nZ,  +1) 

be the renormalization such that r = O. Passing to the inverse limit over 

n E Ren(K,  f ) ,  ordered by divisibility, we obtain, as in (1.8), 

f Q :  (If, f )  , (ZQ, +1) = li__m ( Z / n Z , + l ) ,  
nEPam(K,]) 

where Q = LCM(Ren(K,  f))) ,  a supernatural number, as in (1.6), and ZO de- 
notes the Q-adic integers (of. (1.7)). 

Since m e n ( K ,  f )  C Ren(K, y) we have a natural commutative diagram 

(If, f )  fQ, (2Q, +1) 

\ 

+1). 

Since c~ is continuous and equivariant, and ~(0) = 0, it follows easily that 

is a (surjective) homomorphism. Moreover tQ is surjective (because it has dense 

image and K is compact). It follows therefore from (a) that all but countably 

many fibers of ~ have 1 point. But the fibers of c~ are the (uncountably many, 

since 2(K,j) is uncountable) cosets of K er f s ) .  It follows that K e r f s )  = 0, so c~ 
is an isomorphism, whence (c). 

(4.2) Coro l l a ry .  Let (K, f )  be an ordered dynamical system with a topological 

isomorphism 

r  (K, f )  , (ZQ,+I )  

for some supernatural number Q. Assume that ( K, f )  is infinitely interval renor- 

malizable; let q = q(K, f ) .  Then the natural projection p : "~Q , "~q is an 

isomorphism, and 

r = PO r : ( K , f )  " , (Zq, +l) .  

In particular, r is an isomorphism. 
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P r o o f .  r makes K compact and totally disconnected with a countable base 

for its topology. Then the order structure permits us to construct an order 

preserving topological embedding of K as a Cantor set in I~. (See (B.6) below.) 

Then it follows from (4.1)(c) that p is an isomorphism, whence the corollary. 

(4.3) C o r o l l a r y .  If in f4.1), (K, f)  is faithfully interval renormalizable (i.e., 

if r is injeclive), then r defines a topological isomorphism of ( K, f) with the 

q-adic adding machine ( ~ q , + l ) ;  where q -- q ( K , f )  (cf. (2.9) and (2.10)). In 
particular f is a homeomorphism, and the group (f) generated by f acts freely 
on If. Moreover (cf. (2.11)) (K , f )  is determined, up to IR-isomorphism of 
ordered dynamical systems, by q(K, f ) .  

(4.4) R e m a r k s .  1. In (4.3) we see that q which determines (~q,-}-1), encodes 

the topological dynamics of (K, f ) .  It does not, however, record the order struc- 

ture on K (in terms of which q was defined, via interval renormalizations). We 

shall see in (III, (5.3)) below how q further determines a rooted tree X = X(q) ,  

with an automorphism c~, so that  (Eq, +1) appears as the action induced by 

c~ on the space of ends of X. In this setting, the order structure on K then 

corresponds essentially to a planar embedding of X (cf. (III, (2.4))). 

2. It is well known (see for example [BOT]) that the 2-point fibers of ~ and f in 

Theorem (4.1) can occur. In fact we give examples in" (4.6) below where either 

and f have 2-point fibers, or else ~ does, while f does not have them. 

(4.5) Coro l l a ry .  Let c~ : (If', f ')  , (K, f) be an IR-morphism (cf. (2.4)) 
of minimal compact real (el. (t?.8)) dynamical systems. Assume that (If, f)  is 
infinitely interval renormalizable. 

(a) Q(K', f ')  = Q(K, f). 

(b) c~ is surjeclive, and injective except perhaps for countably many 2-point 

fibers. 

(c) If ce is weak order preserving then IRen(K', f ') = IRen(K, f). 

P r o o f .  By definition (2.4) of IR-morphism, a entails an inclusion, IRen(If, f)  C 
IRen(K', f~). Since IRen(K, f)  is infinite, so also is IRen([f'f'). Both sets are 

totally ordered by divisibility (Theorem (2.6)). Hence IRen(K, f)  is a cofinal 

subsequence of IRen(K', fl). Since (cf. Theorem (4.1)) 

Q(K, f) = LCM(IRen(K, f)) 
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and 

Q(K',  f ' )  = LCM(IRen(K',  f ' ))  

it follows that Q(K',  f ' )  = Q(K, f) ;  denote this common value by Q. Then we 

have a commutative diagram 

( K ' , f ' )  ~ ( I ( , f )  

(~O, +1) 

in which (cf. Theorem (4.1)) r and r are surjective and injective except perhaps 

for countably many 2-point fibers. It follows that c~ has the same properties. 

It remains to prove (c), so assume that ~ is weak order preserving. For 

n E IRen(K, f ) ,  put (K , ,  f~) = (E/n2~, +1), with the ordering on I f ,  = 2~/n2~ 
induced from K by an interval n-renormalization r : (K, f )  ----* (Z /nE,  +1). 

Then it follows easily from Proposition (3.1) that  

= the ascending union of IRen(K,~, fn) 
(n C IRen(K, f)).  

( .)  IRen(K, f )  

Similarly we have 

(.,) IRen( K', f ' )  = the ascending union of I R e n ( K . , , f ' , )  

(n' E IRen(K',  f ')).  

Now if n E IRen(K, f )  C IRen(K',  f ' ) ,  then the fact that a is weak order 

preserving implies that (K~, f~) = K~, f~). Since IRen(K, f )  is a cofinal sub- 

sequence of IRen(K',  f ' )  it follows from (*) and ( . ' )  above that IRen(K',  f ' )  = 
IRen(K, f) ,  as claimed. 

[] 

(4.6) E x a m p l e s  w i t h  2 -po in t  f ibers .  Let 

T = [a,b], a < b, 

be a real closed interval. Consider a map 

(1) g : T , T that is continuous and piecewise monotone, 

i.e., g is monotone on each of a finite set of closed intervals whose union is T. 

Let 

(2) K C T be a minimal closed g-invariant subset. 

Then with f = gIK : K , K, the minimal ordered dynamical system (K, f )  

has an interval renormalization index 

(3) q = q(K,  f )  = (ql, q2, q3,-..) 
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and a canonical map 

(4) r  (K,  f )  ~ (~q, +1), 

unique up to a translation in ~q. In fact (cf. (II,(9.9)) below) every possible q 

can occur this way for suitable choice of g and K, even with g unimodal. 

We shall be interested in the cases when q is infinite, i.e., when ( K , f )  is 

infinitely interval renormalizable. It follows then from Theorem (4.1) that r and 

f : K , K are each surjective and also injective except perhaps for countably 
many 2-point fibers. Plainly, if r is injective, then so also is f .  We propose 
now to show, using the Denjoy expansion construction of Appendix Aabove ,  

that the 2-point fibers can indeed occur either for both Cand  f ,  or for r alone; 

see (15) and (20) below. Examples with / injective but r not injective cannot 
arise when (T, g) is C2-unimodal; this follows from [BOT], using deep results of 

Sullivan [Su]. 
We start by choosing 

(5) C C K,  a countable subset, 

such that 

(6) f - I ( c )  C C, 

and 

(7) each c E C is a monotone limit f rom both directions in I (  - {c}. 

Now, as in (A.4)-(A.6), let 

(8) (T,h)  , (T,g) 

be a Denjoy expansion of (T, 9) along C. Our assumptions (1), (5), and (6) 
furnish the conditions (A.4)(3) required for this construction. Moreover it follows 

easily from (A.6)(4) that: 

(9) 
h is piecewise monotone with the same number of  intervals of 

monotonic i ty  as g. 

Next we take 

(lO) K' = u  I(K) c T 

(cf. (A.4)(1)) .  Then K' is h-invariant (A.6)(4); putting f '  = hlK, : K' 

we have 

Kt~ 

(11) 

7r : (K ' ,  f ' )  ~ (K,  f )  is a weak order preserving surjection with 

fiber over x E K the set {cr0(x), oh(x)}, which has two points pre- 

cisely when x E C. 
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It follows further from (7) above and (A.7) that: 

(12) (K ' ,  f ' )  is minimal.  

Now it follows from (4.5)(c) that 

(13) q = q(K, f )  = q(K' ,  f ' ) ,  

and we have a commutative diagram 

(K',/ ') 

\ 
(14) r 

(K,  f )  

( Z q , + l )  

We know from Theorem (4.1) that r  and r are both surjective and 

injective except perhaps for countably many 2-point fibers. It follows therefore 

that: 

(15) For each x e C, {a0(x), ~h(x)} is a 2-point fiber ore(K, ,] , ) .  

We next address the question of whether f~ : K '  ~ K ' is a homeomorphism. 

By minimality and compactness, both f and ff are surjective. A s s u m e  now that: 

(16) f is locally monotone near each x E C, and f : K ~ K is a 

homeomorphism.  

The local monotonicity assumption plus (A.4)(8) implies that 

(17) f ' :  {o0(x),O'l(X)} ~ {C~o( f (x ) ) , ch( f (x ) ) }  is surjective for  all 

x E T,  hence f~ is surjective on the fibers of 7r : K t ~ K .  

Further, since f : K ) K is a homeomorphism (and C C K), we see from (17) 

that 

(18) f '  : K '  ~ K is a homeomorphism i f  and only i f  f ( C )  = C. 

Recall from (6) that we have had to choose C so that f - I ( C )  C C. Thus: 

Choosing C so that f - I ( C )  = C (with f :  K ) K a homeomor-  

(19) phism),  we obtain (K ' ,  f ' )  with f '  a homeomorphism,  but ~(Kt , f t )  

not injective. 

For example, C could be an f-orbit  in K consisting of points where f is locally 
monotone. (The latter condition excludes, in view of (1), only finitely many 

orbits.) 

(20) Choosing C so that f - . l ( C )  C C, we obtain ( K ' , f ' )  with f '  not a 

" homeomorphism and r not injective. 
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A p p e n d i x  B .  E m b e d d i n g  o r d e r e d  C a n t o r - l i k e  s e t s  

in r e a l  i n t e r v a l s .  

(B.1) P r o f i n i t e  sp ace s  and partitions. A profinite space is a compact  

totally disconnected space K.  Examples include finite spaces, and also Cantor 

se ts ,  where K is further required to be without isolated points, and have a 

countable base for its topology. 

By a p a r t i t i o n  of a topological space K we mean a continuous surjective map  

r : K ) X where X is finite and discrete. Thus each fiber Kr = r  (r C 

X) is open-closed, and K = L[rex Kr.  Let r : K ) X ~ be another partition. 

We write r _< r if there is a (necessarily surjective) map p : X ~ ) X such that  

r = p o e ' .  

In general we can define 

C A r  , Y  

to be induced by (r r  K , X x X ' ,  with Y = Im( ( r  r  Then the two 

projections of X x X '  show that  r _< r A r and r _< r A r Thus, the parti t ions 

(r X)  of K form an inverse system, and we have a canonical continuous map.  

r  K - - - - * ) ( =  lim X 
(~,x) 

with dense image. If K is totally disconnected, r is injective. If K is compact,  

it is surjective. Thus r is a homeomorphism when K is profinite. 

Conversely, any inverse limit of finite sets is a profinite space. 

(B.2) C o u n t a b l e  base .  Let K be a profinite space. Suppose that  K has a 

countable base B for its topology. Each open-closed set of K is, being open and 

compact ,  a finite union of elements of B. Since B is countable there are then only 

countably many  open-closed sets, hence also only countably many  partitions. In 

this case we can choose a cofinal sequence ( r  Cn _< r of parti t ions 

of K,  and then we have the homeomorphism 

: K , li_rn X , .  
n 

Thus K is the space of ends of a locally finite tree, as in (III,  (2.2)) below. 

(B.3) Ordered profinite spaces .  By an ordered profinite space we mean 

a profinite space K with a linear order whose topology is the order topology, 

having open intervals as a base. For x E K put 

x) = {yly < x} 
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and 

= { y l y  < x} 

and similarly (x,--+) and [x,--+). If C C K is closed and nonempty then 

C has a least element min(C),  which is the intersection of the compact  sets 

C N (~--, z] (x 6 C). Similarly C has a greatest element max(C).  It  follows 

that  an interval C # @ of K which is topologically closed must be a closed 

order-interval, [a, b] (a < b), and conversely. 

If C is open-closed set in K then C is a finite union of open intervals and 

hence a union of pairwise disjoint closed intervals (amalgamate  all subsets of 

the covering whose union is again an interval). The latter intervals must  be 

open-closed. It  follows that  

the open-closed intervals of K form a base for the topology. 

(B.4) I n t e r v a l  p a r t i t i o n s .  Let K be an ordered profinite space. A parti t ion 

r : K , X is called an i n t e r v a l  p a r t i t i o n  if its fibers I<~ = r  (r 6 X)  

are intervals. These intervals occur in a certain order in K,  and this defines a 

unique linear order on X so that  r is weak order preserving. For such an interval 

part i t ion we shall understand X to be given this order structure. 

If r  : K , X '  is another interval parti t ion and r < r  then it is readily 

seen that  p : X '  : X is also weak order preserving. It follows that  X = li__m 
(,~,x) 

inherits an inverse limit order, and r : K , X is an isomorphism of ordered 

sets. 

In case K has a countable base for its topology then as in (B.2), it follows 

that  we have an isomorphism 

where 

= li_m X,~, 
r~ 

P P 
X 0 = { z 0 } ~ X l r  p . . . ,  p X ~ - I ,  X = ,  . - - ,  

the Xn are fn i t e  ordered sets, each p i s  surjective and weak order preserving, .~ 

is given the inverse limit order, and r is an order preserving homeomorphism. 

(B.5) Q u e s t i o n .  Let K be an ordered profinite space. Must K have a countable 

base for its topology? 

It  seems plausible that  this is the case, but we have neither been able to 

verify it, nor obtain a counterexample. 
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(B.6) I n t e r v a l  e m b e d d i n g s .  Let K be an ordered profinite space with a count- 

able base for its topology. Then  as in (B.4), we can identify 

K = li._mX~, 
n 

where Xn is a sequence of finite ordered sets and weak order preserving surjec- 

tions p : X~ , X~_I ,  and X0 is a single point. 

We inductively construct  a commuta t ive  diagram 

J0 ( j J1 ~ J2 ( j J J J �9 �9 �9 ~ J ~ -  1 ~ - -  Jn 

(*) q0 ~ ql I q2 I "'" q , -1  I q- 1 

X o  P X1 P X2  P �9 �9 �9 P X n -  1 P X n  P 

with the following properties: 

(a) J0 is the unit  interval I = [0, 1]. 

(b) Each j : J~ ' J n - 1  is the inclusion of a closed subset. 

(c) Each qn : J,~ ~ X,~ is surjective, weak order preserving, and each fiber 

.l,~(x) = q~l (x)  (x E X~) is a closed real interval with 

1 

0 < length (J ,~(x))  < - .  
n 

Suppose that ,  for i = 0, 1 , . . . ,  n -  1, qi : Ji ~ X i  has been constructed with 

the above properties. Say 

X ~ - I  = {xl < x2 < . . .  < x,~} 

- 1  X Put  i , ,  -- J n - l ( x , . )  -- q , ~ - l ( ~ )  (r  = 1 , . . . ,  m). Then  L,, is a closed real interval 

and 0 < length(L, . )  <_ 1 / ( n  - 1). Say 

p - l ( x r )  = < < ' "  < y r s .  } ,  

an interval in X~. In the interval L~, choose 

al < bl < a2 < b2 < . . .  < amr ~ b,~r 

with bi - ai < 1 / n .  Put  

Jn,7- 

m r  

= U [ a h , b h ]  C L r = J n - l ( X r )  

h----1 

and define qn,r : Jn r p - l ( x , . )  so tha t  -1 , , q , , , , (y~)  = [ah,bh]. Now put  Jn = 

Jn,1 U. - �9 U Jn,m and let q,~ : Jn , Xn be defined by q,~,~ on Jn,,,. Then  clearly 

J~ C J ~ - i  and q,  : J~ , X~ satisfies the required conditions. 

Now the commuta t ive  d iagram (*) defines, on passage to inverse limits, a 

weak order preserving continuous m a p  

~ : J - - A J n  ) K = l i _ m X n  
n 
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which is surjective since for each n, Jn is compact and qn is surjective. Each 

fiber of ~" is an intersection of intervals of length 1/n, going to 0. Thus ~" is 

injective. Thus: 

~ ' : J  , K  

is an order preserving homeomorphism. The inverse of ~" gives the promised 

order preserving embedding of K into I. 

(B.7) E x t e n d i n g  c o n t i n u o u s  maps .  Let K C I~ be a real ordered profinite 

space, say K C [a, hi, with a, b 6 K. Let f : K ---+ ~ be a continuous function. 

Then f extends to a continuous function F : ~ ~ ~ (in many ways). Since 

[a, b] - K is a (countable) union of open intervals [c, d] with c, d 6 K, c < d, 

we can define F on [c, d] to be any continuous function (e.g. linear), taking the 

prescribed values f (c)  and f (d)  at c and d respectively. Similarly, on ( -oo ,  a], 

F can be any continuous function sending a to f (a) ,  and analogously for [b, oo). 

Note that  F above can be chosen so that F([a, b]) is contained in the interval 

spanned by F ( K ) .  In particular, if f ( K )  C K then F([a, b]) C [a, b]. 

(B.8) R e a l  d y n a m i c a l  s y s t e m s .  We shall call an ordered dynamical system 

(K, f )  r e a l  if there is an order preserving topological embedding 

(K, f )  , (IR, F)  

for some continuous map F.  When K is an ordered profinite space, we have seen 

(see (B.6) and (8.7)) that this condition is equivalent to K having a countable 

base for its topology. 

(B.9) T h e o r e m  Let (K, f )  be a minimal dynamical system. 

(a) I f  K has an isolated point then K is finite. 

(b) I f  K is profinite and has a countable base (e.g. if K is a subspace of ~ 
or S 1) then K is either finite or a Cantor set. 

P r o o f .  Let x be an isolated point of K. Since every orbit is dense, and x 

is isolated, x belongs to every orbit. Thus, x belongs to the orbit of f ( x ) ,  so 

f~ = x for some n, and the orbit of x is fni te ,  hence K is finite. This proves 
(a). 

For (b), i fx  is not finite, then by (a), it has no isolated points. By assumption, 

it has a countable base, so K is a Cantor set. 
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5. Interval renormalization and periodic points.  

(5.1) T h e o r e m .  Let (I, f )  be a dynamical system on a compact real interval 

I. Let K C I be a minimal closed f-invariant subset. Let 

r  ( K , I )  , (Z /n%,+l )  

be an interval n-renormalization, with fibers Kr = r  Then there exist 

points Xr E [Kr]l such that f ( x r )  = xr+l (r E Z /nZ) .  Thus xo is a periodic 

point of period n with f f  (xo) = xr E [Is 

P r o o f .  Let Jr  = [Kr]l. Since K is compact  and (K, f )  is minimal  it follows 

tha t  f ( K r )  = Kr+ l ,  Jr  is closed, and f ( J r )  D J r+ l .  Moreover since the Kr are 

disjoint K-intervals ,  the Jr are disjoint /- intervals.  Now the Theorem follows 

from L e m m a  (5.2) below. 

(5.2) L e m m a .  Let Jr (r E Z / n Z )  be closed subintervals of I such that f (Jr )  D 

Jr+l for all r. There exists an xo such that f'~(xo) = xo and fr(xo) E Jr for all 

r E Z /nE .  If  the Jr are pairwise disjoint then xo has period n (for f ) .  

P r o o f .  If [a, b] and [e, d] are closed intervals in I such tha t  f([a, b]) D [c, d] then 

we can find [a0, bo] C [a, b] such tha t  f([a0,  bo]) = [c, d]. In fact first choose a' E 

f - l ( c )  N [a, b] and b' E f - l ( d )  N [a, b]. Suppose tha t  a' _< b'; the proof  is similar 

in the other  case. Let ao = s u p ( f - l ( c )  ~ [a', b']) and bo = i n f ( f - l ( d ) r  [a', bq). 

Then  it is easily checked tha t  f([a0,  b0]) = [c, d], as required. 

Using this we can choose closed intervals J~ C Jr such tha t  f (J[ )  = ' Jr+l  for 

r = 0, 1 , . . . ,  n - 2, and f ( J ' - l )  = Jo. We star t  by construct ing J ~ - i  as above, 

and then proceed inductively backward to successively construct  

J~-2 ,  J ~ - 3 , - . . ,  J~. Since f~(J~) = Jo D J~ it follows tha t  f~  has a fixed point  

x0 E J~. Then  xr :-- f f (xo)  E J'~ C Jr for all r. If the Jr  are pairwise disjoint 

then the xr are all distinct,  so x0 has period n for f .  

(5.3) R e m a r k .  Figure 5 represents the graph of a counterexample to the analog 

of Theo rem 5.1 for circle maps: the second i terate of this map,  restricted to I0 

or I1, has a restr ict ion which is a Denjoy expansion over an irrat ional  rota t ion 

(see (1.10)), and no fur ther  invariant set. In part icular,  I0 U I] does not  contain 

any periodic point  of period 2. 
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I 
1 

I 
0 

I I 
0 1 

F i g u r e  5. Graph of counterexample the analogue for Theorem 5.1 for the circle. 

6. Self-s imilarity operators .  

(6.0) Given a dynamical system (K, f )  and a renormalization r : (If, f )  , 
(Z/nZ, +1) with fiber I~-'r = r  we consider here the question of whether 

there are isomorphisms pr : (K, f )  , (K~, f~ Igr)- When this is the case, the 
p~ are called se l f - s imi la r i ty  o p e r a t o r s .  They are analyzed group theoretically 

in Chapter III, section 6 below, notably Theorem (III, (6.12)). 

(6.1) T h e  c o n t e x t .  Consider a minimal ordered compact dynamical system 

(K, f )  which is faithfully interval renormalizable, i.e., 

(i) r (K, f) -------+ (~q, +i), 

as in (2.8), is a topological isomorphism, where 

(2) q = q(K, f )  = (ql,q2, q3.. .)  
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We can also write 

(3) ~q = ~Q, where 

Q = Q(Ii,  f )  = 1-In>l qn, 

with Q understood as a supernatural number (cf. (1.6)). 

Let n E IRen(K, f ) ,  and let 

(4) 
r = p o r  (K, f )  , (X /nZ ,  +1) where 

p : ~Q , Y, /nZ is the natural projection. 

For r E Z / n Z  we put 

(5) K~ = r  and fr : f'~ IK~: K~ , K~. 

If ~ E r  then r induces a topological isomorphism 

(6) ~: (K~, f~) , (~ + n2,?, +n) U (2Q/,~, +l) .  

It follows then from Corollary (4.2) that 

(7) (K~, f~ ) is faithfully interval renormalizable, 

and Q(Kr, fr) -= Q/n,  for each r C Z/n27~. 

It follows further from Proposition (3.1) that 

(8) 
IRen(K, f )  = IRen(Z/nZ,  +1) U n.  J, where 

J= N IRen( Kr, fr ), 
rEZ/n~ 

and Z / n Z  is given the order induced from K via r 

Assume now that K,  and hence q and Q, are infinite. Then it follows from 

(8) that  each (Is Jr) is also infinitely interval renormalizable, and so J in (8) 

is a cofinal subsequence of IRen(Kr, Jr) (ordered by divisibility) for each r. 

Write n = qlq2""qt  = q[t]. Then it follows that each q(K~, j r )  is obtained 

from (qt+l, qt+2, at+z,.. .) by replacing each qt+m by a sequence (am1,..., qrnh,~) 
(depending on r, with each qmj > 2 and qt+,~ = qml""qmhm" It is further 

necessary (by (8)) that  the only initial products common to all of the q(K~, f~) 

are the products qt+l �9 qt+2 " " " qt+m for m _> 0. 

(6.2) P r o p o s i t i o n .  The following conditions are equivalent. 

(a) ( K, f )  is topologically isomorphic to ( Kr, fr ) for some (hence every) r E 

ElnY~. 

(b) The powers of n, n e (e > O) belong to and are cofinal (with respect to 
divisibility) in Ran(K, f )  = Piv(Q); i.e., Q = "n cr 
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(c) ZQ = H ~P~' where p ranges over the prime divisors of n, and ~p~ 

Pin 
denotes the p-adic integers. 

P r o o f .  We have topological isomorphism (K, f )  ~- ('~Q, +1) and (K~, fr) ~ 

(~Q/,~,+I).  Here Q = H p  e',  ep = Z v p ( q i ) ,  with vp being the p-adic valu- 

p i > 1  

ation, and ZQ = 1 - I Z / P " Z  where Z/p~176 = ~poo denotes the p-adic integers. 

P 

We have Q/n  = HPeP-vP('~) Now we see that  all three conditions (a), (b), (c) 

P 

are equivalent to the condition: Q/n = Q. 

Next we consider whether (K, f)  is IR-isomorphic, not just  topologically isomor- 
phic, to the (K~, f~). 

(6.3) P r o p o s i t i o n .  The following conditions are equivalent. 

(a) For each r E ~ / n ~ ,  there is an IR-isomorphism Pr : (K, f )  ~ (Kr, fr) 
of ordered dynamical systems. (In fact, once Po is chosen, we can then take 
p~ : f~ opo for r = O, 1 , . . . , n -  1.) 

(b) IRen(K, f )  = IRen(K~, f~) for each r E Z /nZ .  

(c) (i) IRen(Kr,f~)  is independent of r. 

(iO ! f  n = qt l = qlq2.. .qt ,  then q = (ql, q2, q3.. .)  is periodic of period t: 

qi+t = qi for all i >_ 1. 

P r o o f .  Clearly (a) implies (b). Conversely, (b) implies that  Q(K, f )  = Q(K~, f~), 

so that  (K, f)  and (Kr, f r ) a r e  topologically isomorphic by (6.1)(1), (3), and (6). 
Hence, by (2.4), (b) implies (a). 

In view of (5.1)(8) we see that  (b) is equivalent to: 

(1) q(K, f)  = (ql, q2, q3. . .)  = q(Kr,  fr) = (qt+l, qt+2, qt+3,...) 

for each r, and clearly (1) is equivalent to (c). 

R e m a r k .  Under the conditions of (6.3), any topological isomorphism 

pr : (K, f)  , (Kr, fr) is an IR-isomorphism, by (2.4). In view of the (Zq, +1) 
model  of these systems, pr is determined by its value p~(x) at a single x C K, 
and pr(x) may be any element of Kr. 
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(6.4) F i x e d  p o i n t s  o f  se l f -s imi lar i ty .  Fix a system p = (Pr), Pr : (K, f )  , 

(I(~, fr) ,  of "self-similarity" IR-isomorphisms, as in (6.3). It follows that,  for 

each e > 0, Pr maps the fibers of an interval ne-renormalization of (K, f )  to 

those of (Kr, f~) (the latter being fibers of an interval n~+l-renormalization of 

(K,f)). 
Fixing p = (p~)rez/~z, consider dynamical systems (K, g) such that g-  1 (K~) = 

t(~-1 (i.e., r  (K,g) , (Z /nZ,  + I )  is an interval n-renormalization) and each 

Pr is also an IR-isomorphism pr : (K, g) ----+ (K~,g~), where g, = g'~lKr. We 

call such a g a s i m u l t a n e o u s  f ixed  p o i n t  of p = (pr), and denote the set of 

them by 

(1) FP(p). 

For example, consider the closure (f)  of the cyclic group (f) generated by f ,  

which is isomorphic to ~q. Its set of topological generators is 

(2) Topae.(/) = {/~ l u c 2 ~ }  
= the closure of {f~ ] u C Z ,gcd (u ,n )  = 1}. 

It is easily seen that 

(3) TopGen(f) C FP(p). 

In Chapter III, Theorem (6.10)(c), it is shown by group theoretic methods that 

(3) is an equality iff n = 2, in which case q = (2, 2, 2 , . . . ) .  For related results 

see also [GLOT, OT]. 

(6.5) A class ical  e x a m p l e .  Consider a unimodal map f on J = [-1,  1] with 

f ( - 1 )  -- - 1  -- f (1)  and maximum f(0) = M > 0. Then f has a unique fixed 

point z0 E (0,1) and we define x_ E [ -1 ,x0)  and z+ E (x0, 1] by f ( z _ )  = x0 

and f ( z + )  -- x_. This is illustrated in Figure 6. 
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1 

M 

-1 x_ x 

I ~  
0 1 

X 
+ l  

F i g u r e  6. Unimodal  map  with unique fixed point.  

Defining I0 = [x0, x+] and I1 = [z_, x0], it is easy to check tha t  f(Io) = [1, 
f21/0 is (+) -un imoda l ,  and f21i 1 is ( - ) - un imoda l .  Assume tha t  M = f (0)  <_ x+,  

so tha t  f(I1) C Io. 
Let K denote  the postcrit ical orbit  closure of f ,  i.e., the closure of the orbit  

of M = f (0 ) ,  

O](M) = {M, f(M),  f2(M), . . .} .  

Put  Kr  = I fNIr and f~ = f 2 lK  r, r = 0, 1. Then  r  = r (mod 2) defines an 

interval 2-renormalizat ion of (If,  f ) .  In case q (K,  f )  = (2, 2, 2 , . . . )  and (If ,  f )  

is fai thful ly renormalizable,  there will exist IR-isomorphisms p~ : (K,  f )  , 

(K~, f~) ( r  = 0, 1). Then  if (If, g)is a s imultaneous fixed point  of p = (p0, Pt),  

i.e., g E FP(p), we must  have g = f~ for some 2-adic unit  u C E~.  





Chapter II 

Itinerary Calculus and 

Renormalizat ion 

0. Introduct ion.  

Consider a unimodal map f on an interval J = [a, b], with max imum at C, 

increasing on L = [a, C), and decreasing on R = (C, b]. Each x E J then has an 

"address" A(x) e {L, C, R}, and the orbit f*(x) = (a, f (x ) ,  f 2 ( x ) , . . . )  has the 

"itinerary" A f* (x) = (A(x), Af(x) ,  A f  2 (x),. . .) .  
If  K C J is a minimal closed f- invariant  subset then K is the closure of an 

orbit  f* (x), where we can take x to be the max imum element of K, for example. 

It  is known then that  the itinerary A f* (x) encodes much of the combinatorial  

dynamics of (K, f). The aim of this chapter is to show how one can read the 

interval renormalizations Ren(K, f)  from A f* (x). Among the applications, we 

show (Corollary (9.9)) that  all possibilities for IRen(K, f)  occur already when 

f i s a q u a d r a t i c m a p f ( x )  = 1 - t x  2 on J = [ - 1 , 1 ]  ( 0 < t _ < 2 )  a n d K i s t h e  

critical orbit  closure f* (1). 

Much of the material  in this Chapter  is well known (cf. [My, MSS, MilTh, 

DGP1,  DGP2,  CEc]). However, several results are presented with full proofs for 

the first time. 

For describing itineraries symbolically, we think of them as infinite words 

O~ - -  O ~ 1 0 " 2 0 ' 3  . . . in the alphabet  {L, C, R}, which we agree to truncate at an if, 

and when, a,~ = C. In the latter case a = c/C where a t = c~1. . .a ,~-i  belongs 

to the free monoid Go with basis {L,R} and we put tal = n, the length of 

a.  Otherwise a belongs to the set do of infinite words in {L, R} and we put 

]a I = oe. Thus, itineraries define a map 

(1) A f t :  J , d 0 U G o C .  

In (1.6) and (1.7) we define a linear order on GoUGoC so that  Af* is weak order 

preserving. 
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The shift operator c~ on Go tO GoC is defined on oL = alc~2a3.. ,  by a = 

alc~(a). We put 

(2) o (~ )  = {~i(a)[0 _< i < I~1} 

and call a "maximal" if a is the maximal element of O(~). Define 

~ :  O(a)  , O(a)  (3) 

by 

(4) ~.(~i(~))  = ~i+1(~), 

unless i = I~1-  i < ~ ,  in which case r = a ( =  cr0(a)). Thus, when 

I~1 < ~ ,  ~ is a transitive (cyclic) permutation of O(a). In all cases, giving 

O(~) the order topology, (O(a), c%) is an ordered dynamical system, and O(a) 

is the c%-orbit of a. In particular we have the interval renormalizations 

(~) 

We also put 

(6) 

IRon(a) :-- IR~n(O(~), ~o). 

q(a) := q(O(a),  ~ra). 

To construct a with prescribed IRen(a), we make use of a ,-product,  

(7) 9 * 3 " ~ G o U a o C  ( / 3 C G o , 3 ' ~ G o U a o C ) ,  

with [/3,71 = (I/31 + 1)171 (cf. (4.1)). The basic result (Theorem (7.1)) asserts 

that,  if/3C is maximal and non-quadratic (in the sense of (2.6)) then 

(8) IRen(/3 * 7) = IRen(/3C) U n . IRen(3") 

Moreover/3*3' is maximal if 3' is maximal. (The proof of this result is regrettably 

technical, and requires the analysis of Sections 2 - 5.) 
For an integer q _> 2, put a(q) = a'(q)C with a'(q) = RLq-2; then 

IRen(o~(q)) = {1, q) (cf. (8.1)). Let q = (ql, q2, q3,.. .) be a sequence of integers 

qi _> 2, and define a ( q l , . . . ,  q,~) = cd(q l , . . . ,  q,~)C inductively, by a ( q l , . . . ,  qn) = 

a '(ql)  * a ( q 2 , . . . ,  q,). It follows from (8) that 

(9) q (a (q l , . . . , qn ) )  = (q l , . . . , qn) .  

Further, there is a well defined limit 

c~(q) = lira o~(ql,.. ,an) 
T t ~ O o  

and it follows from (9) that 

(10) q(a(q)) = q. 
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We thus ob ta in  m a x i m a l  e lements  a with arbi t rar i ly  prescribed IRen(a) (cf. 

(8.2)). 

To relate these results to interval dynamics ,  consider a un imoda l  m a p  f on 

J = [ - 1 ,  1] with m a x i m u m  f (0 )  = 1. Then  we have the "kneading sequence" 

(11) K(f )  = A f t ( l )  E O0 U GoC. 

Define 

{ K(f)Lo ~ if K ( f )  E G0 
(12) ~ ( f )  = ~ ' *  if K(f )  = ~'C E GoC. 

Suppose  t ha t  a E G0 satisfies 

A f t ( - 1 )  _< a and cJ(ct) < ~(f) for all i >_ O. 

Then  it follows f rom [CEc], T h e o r e m  II.3.8, t ha t  

(13) ~ = A f t ( x )  for some x E J. 

Let x E J have f -o rb i t  closure K = f* (x), and put  a = A f t ( z )  E G0 U GoC. 
Assume tha t  IRen(~) is infinite. Then  (cf. (9.4)) K is a min ima l  f - inva r i an t  

Can to r  set, and 

(14) IRen(K, f) = IRen(~). 

Define f t ( x )  = 1 - t x  2 (0 < t <_ 2). Given any m a x i m a l a  E G o U G o C ,  

a # L ~176 it follows f rom (9.8) tha t  a = K(ft)  for some t, 0 < t _< 2. Tak ing  

a = a ( q )  as in (10) above it follows tha t  all possible interval renormal iza t ion  

sets can be realized on the critical orbi t  closures ft* (1) for some quadra t ic  m a p  

1. P r e l i m i n a r i e s .  

(1.0) U n i m o d a l  m a p s .  Consider the interval  

J = [-1,11 = t I I c l I •  

where 

L = [ - 1 , 0 ) ,  

Define the a d d r e s s  funct ion 

A : J  

by x E A(x). 

c = {0}, R = (0, 1]. 

, {L ,C ,R}  

T h e  u n i m o d a l  m a p s  we consider are continuous funct ions f : J ~ J such 

t ha t  
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and 
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(a) f is increasing on L, 

(b) f is decreasing on R, 

(c) f(0) > 0. 

1 

-1 L 0 R 1 

F i g u r e  7. A unimodal map. 

The point C = {0} is often called the t u r n i n g  po in t  of f .  For x E J we 

denote its f - o r b i t  as a sequence 

i f (x)  = (x, f(x) ,  f2(x), . . . ) .  

The corresponding address list of the orbit, 

Af t (x )  = (A(x), Af(x),  Af2(x) , . . . )  

is called the i t i n e r a r y  of x. The itinerary of M = f(O) (= f(C)), 

I f( f)  = A f* (M) 

is called the k n e a d i n g  sequence  of f .  Much of the dynamics of (J, f )  is encoded 

in /X" (f).  
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Let x E J have f -o rb i t  closure K.  We would like to determine all interval 

renormal izat ions  

r : (K, f IK  ) , (Z /nTZ,+l ) .  

Such a Cn, if it exists, is determined by r Our aim is to determine from 

Af*(x) ,  those n for which Cn exists. We shall do this in the case in which x is 

the max imal  element in K.  

(1.1) The monoid G = Go I_[ GoC is presented by 

L , C , R ,  (1) generators: 

subject  to, 

(2) relations: 

It  follows f rom (2) tha t  

(2') 

C X  = C  f o r X  = L , C , R .  

C X  = C for alI X E G. 

Note tha t  G contains 

(3) Go :=  the free monoid based on {L, R}. 

By definition, each a E Go has a unique expression a = a l a 2 " - ' a .  with 

each ai = L or R. We define I a I = n. When  n = 0, a = 1, the neutral  element 

of  G. By (2), for a , /?  E Go we have a C  = t i c  if and only if a = ft. Thus  

(4) c = Co H CoG 

and each a E G has a unique expression a = a l a 2 . . . a , ~ ,  with 

ai E { L , C , R }  and (~) 
a i r  C f o r i <  n :=1~1 �9 

We also write 

f I~l if~ e Go (6) I~lo-- 
lev i -1  if a E GoC. 

(1.2) R - p a r i t y  refers to the map  

p :  G , {+1} 

defined by 

p(L) = p(C) = l, p(R) = - l ,  
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and 

p(~13) = p(~)p(13) for ~ c Go, ~ E a .  

Thus, p(~) measures the parity of the number of R's in ~, and p(o~C) = p(v O. 

(1.3) T h e  G-set  0 = Go ]_I 
(sequences) of the form: 

(1) 

We put 

(2) 

and define 

(3) 

Go I_[ GoC. Let Go denote the set of infinite words 

fl = fl1132"" "13n--113n''" with each 13,~ E { L , R } .  

1131 = <~ for  13 E Go, 

a =  CUao = collaoLIcoC. 

The monoid G acts on the left on G, using the obvious left multiplication by 

Go, and with the rule 

(4) C X  = C for all X E G. 

Each 13 E G has a n o r m a l  f o r m  

( 5 )  13 = 131132133  " " " w i t h 1 3 i E { L , C , R } a n d 1 3 i # C f o r i < l f 3 1 .  

We define t r u n c a t i o n s  of 13 as follows. For i _> O, 

13_<i = 131" "13i (= 1 / f i  = O) (6) 

and 

(7) 13i< = 13i+113i+2 " "  (=/3 if  i = 0 and = 1 i f  i >1/3[)- 

Thus, for any nonnegative i, t3 = 13<i13i<. 

We define d iv is ib i l i ty  in G as follows. For ~,/3 E G, define a I 13 (read 

c~ divides 13) by 

(8) c~ 113 ~ ~ E G and 13 E o~0. 

That  is, ~ I/3 if and only i f ~  = 13<~ for some finite n _<1/31. 

(1.4) T h e  invo lu t ion /3  ~-+ fl on G is defined by 

(1) L = R ,  C = C ,  / ~ = L ,  



and for/3 =/31/32/33 �9 �9 " E G,/3i E {L, C, R}, 

(2) ~ = j , s 1 6 3  

Thus, 

(3) 

and 

(4) ~ = / 3 ,  1#1=1/31, 

For a E G it is easily checked that 

(5) 

(Cf. (1.1)(6).) 

7 a  = ~ fo,~ . E a,/3 E 0 

131o=1/31o. 

p(&) = p(a) .  ( -1)  Ho . 
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(1.5) T h e  e x p o n e n t i a l  n o t a t i o n / 3 ~  is defined for a E G and/3 E G, and is 

defined by 

(1) /3~ = { /3 

Exponentiation has the properties: 

{ (-~/3)~ = -y~# ~, 
(2 )  #~.~ = ( /3~)~ = # ~  

From (1) and (1.4)(5) we obtain: 

(3) For a, 7 E G, 

In particular, 

(3)0 p(7 a) = p(7)p(a) for 7 E {L, R}. 

Note finally that 

(4) X x = n for X E {L ,R} .  

i f  p(~)  = 1 

i f  p(a)  = - 1 .  

for 7 E G and 

i r a , 7  E Go. 

(1.6) T h e  o r d e r  r e l a t i ons  < a n d  <~. We adopt the following notational 

conventions. For a E G and for/3, 7 in any ordered set, define 

<.~<=~f # < ~  ifp(~)=l (1) [ 7 < fl i f p ( a )  = - 1 .  
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(2) 

Note then tha t  

(3) 

C H A P T E R  II. I T I N E R A R Y  C A L C U L U S  A N D  R E N O R M A L I Z A T I O N  

Now we define < on G as follows. First, 

L < C < R .  

X <c, y r X c< < yc~ 

f o r X ,  Y E  {L, C, R} and a E G. 

Now let fl = fllf12133 " "  and 7 = 717273 ' "  be distinct elements of G neither 

of which divides the other (el. (1.3)(8)). Then,  for some index m >_ 1, we have 

fl,~ r 7-~, whereas fli = 7i for i < m. Put  0 = fll ""-tim-1 = 71 ' "  " T r n - 1  E G o .  

Then  we define 

(4) 

Note that: 

(5) ( / 3 < 7  and T < 5) ~ 1 3  < 6. 

We summar ize  the most  impor tan t  properties of <:  

(2) L < C < R, 

(6) fl, 7 E G are related by < 

and for fl, 7 E G and o E Go, 

(7) 

In part icular ,  

(8) 

(9) 

 nless 9 I 7 or 7 1 9  (cf.(1.3)(8)), 

fl < 7 if  and only i f  af t  <4 a7  . 

Go H Go �9 C is linearly ordered by < . 

If  0 = 0~C with 0 '  E Go then we define 0 -  and 0 + by 

0 - : = a ' L  ~ < 0 < a + : = c d R  a. 

For purposes of  generalization to the mul t imodal  case (cf. Appendix  C below) 

it is convenient to give the following alternative definition of 0 4-. First define 

C (1) :=  R, 

C (-1) :=  L, 

C (~) :=  C(P(~)) = R ~, and 

C (-~) := C(-p(~)) = L ~. 

Then  we can write, for 0 = 0 ' C  as above 

(10) a + = a ' C  (~), a -  = o 'C (-~), 
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This  formula t ion  adapts  better  to the mul t imodal  case, in which there are 

several critical points  instead of  one (cf. Appendix  C.). 

(i) 

defined by 

(2) 

(1.7) The Real meaning of the ordering. As in (1.0), let 

f : J  , J ,  Y = [ -1 ,  1], 

be a un imoda l  map.  We have the i t i n e r a r y  m a p  

Af t  : J - - - §  

A f t ( x )  = A(x)A(f(x))A(f2(x)) . . . .  

Note tha t  if fn(x) = 0 and fi(x) ~ 0 for i < n then 

A f t ( x )  = A(x ) . . .A ( f~ - l (x ) )C  E Go. C. 

If  fn(x) r 0 for all n then A f t ( z )  E G0- Thus  

(3) Aft(J) c a0 1_I a0- C. 

The  order s t ructure  on G [ I  GoC has been constructed precisely so tha t  

(4) A f t :  J ~ Go H GoC is weak order preserving. 

This  can be seen as follows. (cf. [MilTh], L e m m a 3 . 1  or [CEc], II.1.2 and II.1.3.) 

Suppose tha t  x < y in J ,  and 

a :=  A f t ( x )  = a 0 a l a 2 " "  (o~i=Afi(x)) 
f := Af t (y)  = f 0 f l f 2 - . -  (f~=Af~(y)). 

Say c~0.. " a ~ - i  = 7 = f0 "' ' f ~ - l ,  and a~ r fn .  We must  show tha t  a ,  <7 f . .  

For 0 < i < n, f i(x) and fi(y) lie in an interval a~ = f~ on which f is monotone .  

Let r denote the number  of such intervals on which f is decreasing, i.e., order- 

reversing, i.e., for which ai  = R. Then  fn(x) < fn(y) if r is even and fn(y) < 
f'~(x) and r is odd. Since P(7) = ( - 1 )  r, these two cases are summar ized  by the 

condit ion a,~ <7 fin. 

On  the other  hand,  we can define 

(5) v : a  , J 

as follows: Pu t  

(6) r = - 1 ,  r  = 0, ~(R) = 1, 
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and for a = 0 / l C k 2 ~ 3 .  �9 �9 E ( ~ ,  

(7) v ( . ) :  
l_<n_<la[ 

e ( ~  ) 
2~ 

The following properties are readily verified. 

(s) 

{ v ( a ) = 0  < :, a =  1 o r C  o r X R L  ~ ,  

v ( a ) = - i  ~ a =  L ~ .  

v ( a ) =  1 ~ a =  R L  ~ .  

X E { L , R } .  

(9) 
I f  a E Go and [a[=  n > 0 then v (a)  is rational with denominator  

2 '~, so ~. _<lv(a) l< 1. 

For 5 E Go and/3 E G, with n = [(~[, we have 

v(~Z) = v(SZlZ~Z~.. .)  = v(6) + : ) 
2 ~ 

For X E {L, C, R}, we have e(X 6) = p(5)e(X) .  Thus: 

(10) F o r 6 E G 0  and /3EG,  v(6fl) = v ( 6 ) + - -  
p(5)v(9) 

2161 

Next observe, using (8), that since p(5) = +1, 

p(6)v(~) = 1 ~ v(~) = p(6) 

R L  ~ 
/3 = L ~  

3 = R 6 L ~ .  

p(6) = 1 

p(6) = - 1  

So that  in summary, 

(11) p(6)v(/3) = 1 ~ /3= R~L ~ .  

We now show that v is weak order preserving. 

(12) Cla im.  Let a,/3 E G. I f  e~ < j3 then v (a)  <_ v(/3), with strict inequality 

except in the following cases: For some 5 E Go, 

a = 6L6RL  ~176 /3 = 5C 

o~ = 6L6RL  ~ ,  /3 = 5 R 6 R L  ~ 

a = 5C, /3 = 5R~RL  ~176 

R e m a r k .  These exceptional cases will not arise in the setting that concerns us 

here. 
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P r o o f .  Since a < / 3  we can write 

c~ = 6 X o/ ,  /3 = 6Y/3 ' ,  

where 6 E Go, X , Y  E { L , C , R } ,  X 6 < Y6, and al,/31 E G. 

Pu t t i ng  d =] 6 1 + 1  , we have, in view of (10), 

c ( @  P(6x)v(~1) 
v(~) = v(6) + + 2~ 

and 

Thus,  

where 

p(6Y)v(~') 
v(/3) = v(6) + + 2~ 

2d(v(/3)  - v(o~)) = E + D 

E = r  _ c ( x d ) ,  and 

D = p (hY)v ( /3 ' )  - p ( 6 X ) v ( e / ) .  

We want  to show tha t  E + D > 0, and to determine when this inequal i ty  is 

strict .  Since X ~ < y6 ,  there are three cases to consider: 

(a) X '5 = L,  y 6  = C ,  hence 

c~ = 6L~c~ ', / 3 = 6 C .  

(b) X ~ = L,  Y~ = R,  hence 

a = 6L6c / ,  /3 = 6R~/3 '. 

(a) X ~ =-C,  Y6  = R,  hence 

= 5C, /3 = 6R6/3 '. 

C a s e  (a). We have E = ( ( C ) - e ( L )  = 0 - ( - 1 )  = 1, v(/3') = v(1) = 0, 

p ( h X )  = p (hL  ~) = 1, and so 

D = p ( 6 Y ) v ( / 3 ' )  - p(6X)v(d)  = -v(~') .  

Thus  E + D = 1 - v(c~') > 0,with equali ty precisely when v(cd) = 1, i .e.,  

o / =  R L  ~ (cf. (8)). Hence v (a )  _< v(/3), with equali ty precisely when 

o~ = 6 L ~ R L  ~ ,  t3 = 6C. 

C a s e  (b). We have E = e(R) - ~(L) = 1 - ( - 1 )  = 2, p ( 6 X )  = p (6L  ~) = 1, 

p ( 6 Y )  = p ( 6 R  6) = - 1 ,  and so 

D = ( -1 )v ( /3 ' )  - 1. v ( a ' )  = - ( v ( / 3 ' )  + v ( a ' ) ) .  

Thus  E + D -- (1 - v ( a ' ) )  + (1 - v(/3')) _> 0, with equal i ty iff v ( a ' )  = 1 = v(/3') 

iff a '  = R L  ~ = / 3 ' .  Hence v (a )  < v(/3), with equali ty precisely when 

= 6 L 6 R L  ~176 /3 = 5 R 6 R L  ~176 
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C a s e  (c). We have E = e ( R ) -  e(C) = 1 - 0  = 1, v (a ' )  = v(1) = 0, 

p(~Y) = p(~R ~) = - 1 ,  and so 

D : -~(~'). 

Thus  E + D : 1 - v(/9') > 0, with equali ty iff v09' ) : 1 iff/9' : R L  ~ .  Hence 

v (a )  < v(;9), with equali ty precisely when 

a = 6C, j9 : 6R~RL  ~ .  

A p p e n d i x  C .  T h e  m u l t i m o d a l  c a s e .  

This  refers to a continuous map f : J ~ J ,  where J = [a, b] is a closed interval, 

f has a finite number  of turning points, Ci, 

(1) a < C1 < C2 < . . .C1-1 < b 

and f is str ict ly monotone  (with al ternat ing directions) on the intervals Ji de- 

fined by 

(2) J1 = [a, c1),  J2 = (C1, c 2 ) , . . . ,  Jz-1 = (cz-2,  Cz-1), & = (C~_1, b], 

We indicate here a notat ional  scheme for this setting which generalizes what  

we have used above in the unimodal  case (l = 2). (We shall not deal with the 

mul t i -modal  case outside of this appendix.)  

Let G denote the monoid presented by generators 

(3) , ] l , . . . J I ,C1, . . .Cl-1 

subject  to relations 

(4) C i X  = Ci for  i = 1, . . .l - 1 and all X .  

Note tha t  G contains 

(5) Go = the free monoid on J 1 , . . . J l ,  

and thus has the decomposi t ion 

G = G o H G o C 1  H H G o C , - 1 .  (6) 

For ~ 6 Go we put  

(7) 
[a l  = length ofo~, 

I~C~l = I~1 +1, and 

1410 = I ~ C i l 0 = l ~ l  
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b 

v 

a C 1 C 2 C 3 C 4 C 5 C 6 C 7 b 

Jm J2 J3 J4 J5 J6 J7 J8 

F i g u r e  8. A function with 7 turning points. 

by 

Define the parity map 

p : G ----~ {1, -1} 

p(C,) = ! ( i = l , . . . , l - 1 )  

(8) p(Ji) = ( 1 if f is increasing on di, and 
- 1  if f is decreasing on Ji .  

p(o~fl) = p(c~)p(/3) for c~ E G0,[3 E G. 

Thus p(c 0 measures the parity of the number of Ji E O~ on which f is decreasing. 

Note that p(Ji)p(Ji+l) = - 1  for i = 1 , . . . , l -  1. 

Define an involution o~ ~-* & on G by 

(9) { Ci=~(__i/-1)-/ ( i = l , . . . l - i )  
s = (i = 1 , . . . t )  

and a--~ = &/). 

For a E G we have 

f p(~) = p(oO l i t  i, odd 
(lO) p(a) p(~)(-1)Ho i l l  is e~e.. 
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Let G0 denote the set of infinite words a = 4 1 a 2 4 3 . . .  with each 4 i E 

{ J 1 , . . .  Jl}. The  involut ion extends to 

(11) 8 = G U G0 

by ~ = a l a 2 a a ' -  �9 for 4 E Go. 

For /3  E 8 and 4 E G we define the exponential 

t i c .=  ~ /3 / f p ( 4 ) =  1 (12) 
4p(4) = -1. [ 

(13) 

(14) 

We define an order on G with the following properties.  

where 

J1 < C1 < J2 < C2 < ""  < Jl-1 < Cl-1 < Jl. 

Let 4,/3, 7 E G. Assume tha t  4 < /3 .  Then  

4 E G  ~ 4 7 < / 3  

~ c a  ~ 4</37 
7 E G  ~ 7 4 < 7 7 / 3 ,  

< 7 =  f < if p(7 ) = 1 
(15) 

[ > if P(7) = - 1. 

Explicit ly,  if 4 7~/3 then they are comparab le  unless one is an initial subword 

of the other .  I f  this is not the case then we can write 

a = 7Xa '  and 
(16) /3 = 7Yfl '  

where 7 E Go,a', f l '  E 8 and X , Y  E {J1 , . . .  , J 1 , C 1 , . . . C l - 1 }  with X ~ !/. Then  

we have 

(17) 4 < / 3  r X < T Y ,  

and the condit ion on the right is determined by (13). 
Define, for i = 1 , . . . , 1 -  1 and a C G 

(is) 

C~ 1) = Ji+l 

C~ - 1 ) J i  

C~ ~) c~P(~)) 

c -o) c?,(o)) 

For a = 4'Ci, 4' E Go , we put  

f 4+ = 4'c} 
(19) / C~- -~ oztC~ - a )  . 



T h e n  it is easily checked tha t  

(20) c~- < c ~ < c ~  +. 
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2. M a x i m a l  e l ements ;  the  quadrat i c  case .  

(2.1) A m a x i m a l  e l e m e n t  a E G is defined to be one such tha t  

(1) ai< <_ ~, f o r O < i <  [c~[. 

Pu t  n =[ a [_< co, and write ct = a : c ~ 2 a 3 "  in normal  form ((1.3)(8)): 

a i  E { L , C , R } ,  and c~i r C for i < n. Then  

O~i< ~ Ol i+lOG+20l i+3 ' '  

Note t ha t  if n < co, then the inequali ty (1) mus t  be strict.  A s s u m e  that c~ is 

maximal .  Since there is no i sat isfying 0 < i < 1 we have, for n _< 1: 

(2) Each element  o f  {1, L, C, R}  is maximal.  

Suppose now that n >_ 2; then a :  r C, and (1) implies tha t  ai  _< ~1 for each 

i >_ 1. I t  follows tha t ,  if c~1 = L, then a = L ~. For m < n, L m is not less than  

or equal  to L n (of. (1.6)(6)). Thus,  

(3) a :  = L ~ a = L  ~176 

(4) ~1 = R,====~(~ = L o r C  i f n  < oo. 

T h e  last  assert ion follows, since ~ = c ~ - l < ,  f rom (1) and (1.6)(6). Also: 

{ R L  ~-1 (1 < n < :xD) or 
(5) ~ con ta ins  only  one R ~ ~ = R L n - 2 C  (2 < n < ~). 

Thus:  

(6) ~ contains only one R and n = 2 :====> c~ = R L  or RC.  

Suppose now that n > 3 and ~ contains at least two R 's .  This  means  tha t  

has  one of the following forms (7) or (8). 

= R L a ' R L  a2 . . . R L a s - : R / 3 ,  where 0 < ai < oo (1 < i < s), and 

(7) J" f l = L a ~ - : C  (O < as < o o ) ,  or 

/3 = L a~ (0 _< as _< oc); 
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o r  

(s) 

We have 

Thus, 

(9) 

= R L a ~ R L  ~ . . . R L a . - x R L  ~ . . . .  with 0 < ai < co, (i >_ 1). 

R L  ~ ' . .  < R L ~ I R  "." =:~ ai < al,  and 

R L a ' - ~ C  <_ RLa~ R " " " ~ as < al,  

ai < al for  all relevant i. 

Since, by assumption, ai > 0 for some i, we have 

(10) al > 0. 

The exact conditions for a as in  (7) or (8 ) to  be maximal are, in addition to (9) 

and (10) 

I f  j >  1 a n d a j + i = - a i  ( l < i < r )  
(11) 

and aj+r ~ ar then ar < R~ aj+r. 

This is easily checked. 

In summary: 

The max imal  elements  are those of the following forms: 

(12) 

I s E { 1 , L , C , R , L ~ , R ~ } ,  or 

c~ = RLal  R L  a2 . . . R L a ' - I  R L a ' - I C  or 

c~ = R L a x R L  a~ . . . R L a ' - I R L ~ ' R L a ' +  . . . .  , with 

O < al < c r  0<_ ai < a] for  all i, and 

i f  aj+i = ai (1 < i < r) and aj+r # a t ,  then 

ar < Rr a j + r  

In the case in which q is an integer greater than 1 and a = R L q - ~ C  we shall 

make use below of the following observations: 

(13) 

I F o r O < _ i < q p u t  

X i  ~ O i l <  ---- ( ~ i + 1  " " " Olq .  

Thus xo = c~, and xi --= L (q -2 ) - ( i -1 )C  for  

0 < i < q - 1, and Xq-1 --~ C. We have 

xo > x l  > x2 > . . . >  Xq-1. 

In particular, c~ is maximal.  

The rest of this section and Section 3 describe properties of maximal elements, 

in preparation for the discussion of the , -product  in Section 4 and of the main 

result, the ~-product Theorem in Section 5. 
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(2.2) T h e  e l e m e n t s  a i ( X ) .  Consider an element 

{ a = a ' C  = a I a 2 . ' . a , ~  E GoC, 

(1) a '  = a l " "  "an-1 e Go, an = C. 

For 0 < i < n and X E { L , C , R }  we put 

' X (2) a ~ ( x )  = a~< a_<~ 
= a i +  1 . . . a n _ l X a  1 . . . a i .  

Thus, for example, 

(3) 

Note that  for X ~ C, 

(4) 

Thus, for X E {L, R}, 

(5) 

Clearly we have 

(6) 

I , ~ l = n  

ao(X)  = a ' X ,  

a n - l ( X )  = X a ' ,  and 

ai(C) = a~<C= ~<~. 

p ( a , ( x ) )  = p(a)p(x). 

p(a i (x ) )  determines  X ,  independent ly  of  i. Moreover 

I~ X)  I = n for X ~s C, and 

I ~ ( C )  l = ~ - i .  

c, t err " a " R  < i .  
a i ( L - < ' )  < a i (C)  < ~ ( - ) .  

(2.3) P r o p o s i t i o n .  Let a = a ' C  as in (2.2) be maximal. 

some X ,  Y E { L , C , R }  and O < i < j < n we have 

Put  m = j - i 

such that 

and 

Suppose that, for  

a~(x) = as(Y). 

(i > o). Then n -- 2m,  and there is a 7 E C0, 171 = ,n - 1, 

a = 7R~7C,  

7 C  is maximal, 

X = Y = L  ~ - R  ~ (P(7) = - p ( a ) ) .  

In particular, a ' L  a = (7R7) 2. 

P r o o f .  Since i < j we cannot have X = Y = C (see (2.2)(5)). Similarly we 

cannot have one of X or Y equal to C without the other. Thus, X, Y E {L, R}. 

From (2.2)(4) we conclude that  X = Y, so we now have 

a i ( X ) = a j ( X ) ,  X G { L , R } ,  O < i < j < n .  
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' X o~<i is an /-fold cyclic pe rmu ta t i on  of the word a 0 ( X )  = Now, a i ( X )  = ai< 

a ' X  in the free monoid  Go, and similar ly for aN(X ). It  follows tha t  

o / X = o ~ o ( X )  = a , ~ ( X ) ,  O <  m = j - i < n .  

Now we use the following e lementary  fact. 

(2.4) L e m m a .  Let H be a free monoid with basis B ,  and let a = alc~2 - - - a,~ E 

H,  each ai E B.  Suppose, f o r  some m,  0 < m < n, that 

(~ : ( ~ r n + l  ""  " a n a l  ""  "OCrn. 

Put  d = g c d ( n , m ) < n  and N = n / d >  1. Then 

a = 6 N, where 6 = a l  " "C~d. 

P r o o f .  Each fl # 1 in H has a "pr imi t ive  root" .  T h a t  is, there exists a 

7 := rad(~) 6 H such t h a t / 3  = 7 ~ for some r _> 1, and the centralizer of fl in 

H is {7 s ] s >_ 0}. It  follows tha t  fl and fl' :/: 1 in H c o m m u t e  if and only if 

rad(fl) = rad(fl'). 

Now put  fl = a l . . . a , ~  # 1 and 7 = am+l  . . a n  # 1. Our  hypothesis  says 

tha t  f17 = 7ft. Thus  rad(fl) = 6o = rad(7), do =]60  [ divides I f l ] =  n and 

z(d/do) is as required. ] 7 ]=  n -  rn and so do divides d. Then  6 = ~0 

Cont inu ing  the p roof  of  (2.3), L e m m a  (2.4) tells us "that a o ( X )  = a ' X  = 6 N, 
where N = n~ gcd(rn, n) > 1. Clearly 6 = 7X,  so 

{ a = ( , ) , x )N-I*[C,  and 

(1) p(a)  : p(7)N p ( X )  g - 1 .  

If  N >_ 3 then,  since a is max ima l ,  

(2) 7 X 7 C  < a = 7 X T X  . . .  

Since p ( T X T )  = p ( X ) ,  (2) means  tha t  

C < x  X, 

or equivalently (cf. (1.5)(4)) 

c=cX <xX=L 

which is a contradict ion.  Thus,  

N = 2, hence m = n /2 ,  and ( from (1))  
(3) p (x )  = p(a). 
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Now a = 7 X 7  C and we have 

whence 

It follows tha t  

C <'~ X ,  

7 C  < 7 X 7 C  

i.e., C = C  7 < X  7. 

(4) 

Hence 

X = R  7, ~ = 7 R ~ 7 C .  

= p ( x )  = p(R ) 

= p ( 7 ) p ( R )  

= - p ( 7 ) ,  

where the last equali ty comes from (1.5)(3)0. So 

(5) P(7) = - P ( a )  and X = L ~. 

It  remains only to observe tha t  5 = 7 C i s  maximal .  For 0 < i < m =15] ,  

we must  show tha t  5i< < 6. Now 5~< = 7i<C = (~(i+m)< < a = 7 R 7 7 C .  Since 

[5i< [ < 16]  = 17R ~ [ the condition 5i< < a implies tha t  5i< < 7, and so 

6i< < 7 C  = 6. 

We record for reference some consequences of (2.3). 

(2.5) C o r o l l a r y .  I f  c~ = (~'C is maximal, X E {L, R} and (~'X = 6 N for  some 

N > 0 then N = 2, 5 = 7 R  7 = 7L ~, and 7 C  is maximal. 

P r o o f .  This is the case X = Y, i = 0, and j = m := n /2  of (2.3). 

(2.6) T e r m i n o l o g y .  we call an element ~ -- cdC q u a d r a t i c ,  if c~ = 7R'r7C,  as 

in (2.5). Note then tha t  p((~) = -P (7 ) -  

(2.7) C o r o l l a r y .  I f  c~ = o / C  is maximal  and non-quadratic then o~i(X) ~s o~j(Y) 

whenever  0 < i < j < n and X , Y  C { L , C , R } .  
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3. M a x i m a l  e l e m e n t s ;  t h e  n o n - q u a d r a t i c  c a s e .  

(3.1) P r o p o s i t i o n .  Let c~ = odC, Io~ l= n, be maximal, 0 <_ i , j  < n, and 
X , Y  E { L , C , R } .  Assume that 

Oli< ~. Olj<. (1) 

We have (cf. (2.2)(6)) 

and either 

(2) 

or 

(3) 

cq(X)  << c~i(R ~<') and c~j(L a<-j) < c~j(Y), 

cq(R ~<') < c~j(L~-<J), and hence cti(X) < c~j(Y), 

a = 7R77C is quadratic , 

7C is maximal, 

I TCI = m = n / 2 ,  I J - i l  = m ,  and 
p(,~_<i) = p (7)  = - p ( , ~ )  = -p(,~_<~). 

Proo f .  If a i ( X )  = c~j (Y)  then we have (3), in view of (2.3). It suffices therefore 
to show that (1) implies (2) when 

(4) a i ( X )  7 ~ cu(Y) .  

To economize on notation we shall assume that 

(5) O < _ i < j < n .  

Then assuming (4) and (5), we must show that (1) implies (2), and also that 

(1 t) ~j< < ~i< 

implies 

(2') ~j(Y) < ,~(x).  

We can write 

{ c U(Y) = 6 Y 7 aj_i  e and 
(6) ,~(x)  = 6' o~,_i+~ 7' x e', 

where 

(7) = ~ < '  7' = ~' 171=17'1, 7 = Ol<_(j-i-1), ( n - j + i ) < '  

~ - i + l  ~ ,  e '  Icl=lgl = �9 �9 �9 ----  O c _ < i ,  
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= ct'. Y 'Y= ~<(j-1) (Zj-1 E 
{Xj J< I , 

( Y )  j+ ,  n-,  , j- i- ,  j - i+,  j 

5 '  (:tn_j+ i y = t~n_j+i)< X E' = t~. 

~i(X) ' , , , , ' ,  i+l n-j+i-1 n-j+i+l n-1 1 , 

F i g u r e  9. The factorization (6). 

We then have 

(8) { ~j< ---- ~ j ( C ) = 6 C ,  and 
~ i <  = o . ( C ) = 5 ' c ~  - P '  n - j + i l ~ ,  . 

C ~ If cti< < ~j< then we have either 6' < 5, or 5' = 5 and Oln_ j+  i < = C ,  

whence a,~_j+i = L ~. Thus, we can restate (1) as: 

(1) Either 6 ' < 5 ,  o r 6 ' = 5  and a~_j+i = L ~. 

Similarly we can restate (11 ) as: 

(1') Either 6' > 5, or 5' = 6 and a~- j+i  = R 6. 

Now it follows from (6) that: 

(9) I f  5 # 5' then (1) ~ (2), and (1') ~ (2'). 

Assume henceforth that: 

(9') 5 = 5'. 

Then (1) and (1') become, respectively, 

(1+) Oln_j+ i = L ~, 

and 

(12) ~n-j+i ---- R ~. 

Suppose that 

(10) Y # a,~-j+i. 
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Then 
y6 7~ 6 { L case (1+) 

a'~-J+i = - R case (1%) 

so, in case (1+), an_j+ i < Y6, whence a i (X )  < a j ( Y ) ,  and, in case (1~_), 
6 Y~ < %~-j+i, whence a j ( Y )  < a i (X) .  Thus: assuming (9') and (10), we have 

(1) implies (2) and (1') implies (2'). 
So now assume (9') and 

(10') Y = a,~-j+i = R ~ case (1')). 

Then 

{1 
(11) p(SY) = p(5)p(Y) = - 1  

Consider the case: 

( case (1)) 
( case (1')). 

(12) 7 :~ 7'. 

Note that (12) implies that 7' < 7 since a is maximal. In view of (11) we then 
have o~i(X) < a j ( Y )  in case (1) and a j ( Y )  < a i (X )  in case (1'). Thus, assuming 
(9'), (10') and (12), we have (1) implies (2) and (1') implies (2'). 

So now assume (9'), (10') and 

(12') 7 = 7'. 

7 whence From (12') and the maximality of a we conclude that C = C ~ < aj_ i, 

(13) ~ = R, and so 6y-r = R6y { R I case (1)) 
~ c~J-i = L case (1')), 

using (11). 
Thus, in case 

(14) X r ~j - i  

_ 6 Y 7  we have X 6r'r < cYj_i, hence a i (X)  < a j ( r )  in case (1). Similarly, a j ( Y )  < 

~ i ( x )  in case (1'). 

Now assume (9'), (10'), (12') and 

(14') x = ~j_,  (= R ~, by (13)), he,~ce e(vX) = - 1 .  

Then in view of (4), we must have 

(15) ~ r d,  h e n c e  e , (  et~ 

by maximality of a. We have, in view of (11) and (14'), 

f - 1  ( case (1)) 
(16) p(SYTX)  

1 ( case (1')). 
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In view of (6), (15) and (16) we have hi(X) < aj(Y) in case (1), and aj(Y)  < 
hi(X) in case (1'). Now, (1) implies (2) and (1') implies (2') have been estab- 

lished in all cases, thus concluding the proof of (3.1). 

4. T h e  . - p r o d u c t .  

(4.1) T h e  p r o d u c t  ~*/3. Let 

(1) (~ = O Q ' '  . C [n_  1 E Go, 

For 

(2) /3 =/~/32~3... �9 &, 

we define (following [DGP1]) 

(3) 

Note that  ~ ,  1 -- 1, 

(4) 

and, for h > 0, 

(5) 

For 7 E G, 

(6) 

For 7 E {L,C,R} ,  

(7) 

Note that: 

loc i=n-  1. 

~ E {L,C,R} 

*/3 = (0/]31)(~/32 )(~/33 ) ' ' ' .  

1~*/31 = n I~1 = (1~1 +1) [~1, 

(~*/3)h.< = ~*/3h<. 

a*  7 = a7 c~, and 

P(Cr7 ~) = P(7) i fT~s 

(8) ~ , L  < ~ * C <  ~ * R .  

From (6) and (7) we obtain: 

(9) p(~ . /3)  = p(/3) for c~,/3 E Go. 

The ~-product is not associative, but we do have the following identity. For 

~,/3 E Go and 3' E G, we have: 

(10) ~ . ( / 3 . ~ )  = ( ~ . / 3 ) ~ . ~ .  
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In fact, since/3 * 7 =/371/372/373 " " ", 

* ( / 3 - 7 )  : 

and since p( (~ , /3)~)  = p(/3)p(a), by (9), the right side of the displayed equation 

equals ( c ~ , / 3 ) a ,  7. 
Suppose tha t  ~ C  : 7/{~7C is quadratic (see (2.6)). Then ~ : 7R~7 = 

(7 */{)7, so it follows from (10) that  c~,/3 : 7 "  (R*/3): In view of (2.3) we thus 

have: 

{ c~C=TR'YTC is quadratic ~ o ~ * / 3 = 7 . ( / { * / 3 ) .  

c~C is maximal ~ 7C is max~imal. 

Let ~',/3'  E Go, c~ = a ' C , / 3  = /3 'C .  Then: 

(12) c~' , /3 is quadratic 
/3 is quadratic, or 

[/31= 2b + 1 is odd, 
a is quadratic and/3 = L2bC. 

P r o o f  (of (12)). I f /3  = 6R~6C is quadratic then a ' . / 3  = /XR6~'AC, where 

A = (a' *6)a' ,  and p(A) = p(6)p(a') (cf. (9) above), so a '  . / 3  is quadratic.  

If a = 7R'YTC is quadratic and j3 = L2bC then, using (11), 

~' ./3 = 

= 

= A R ~ A C  

where A = (7R'Y)267, and p(A) = P(7), so R ~ = R " .  Thus c~' . / 3  is quadratic.  

Suppose, conversely, tha t  ~ ' . / 3  = A R A A C  is quadratic. Put  B/ = /3~. If 

[/3 ]= 2b we have 

/k = OJ B l  O~ I ...o~lBb_lO~ I 

= o ~ l B b + l  C~ I �9 . .oJB2b_lO~ I, 

Bb = R z~, so/3b = R z~'.  

and 

It follows tha t  ~i =/3b+i (1 < i < b), so 

(~ :~-: / 3 1 " '  " / 3 b - 1  : /3bJ-1 "" ' / 3 2 b - 1 ,  

A = (o / .6)c~ '  and 

/3' = 6R A~'& 

Now p(A) = p ( ~ ' *  6)p(~') = p(6)p(~') ((9) above), so R A~' = R 6, whence 

fl = 6R~6C is quadratic.  

Suppose, finally, tha t  1t9 I= 2b -4- 1 is odd. Since I ~ ' *  t9 I= 2(I A I -4-1) =1 ~ II/31 

(cf. (4)), I c~ I must  be even, say Is  J= 2a. Write ~ = ~ X # C  with 12 I=1 # I= a -  1 
and X -= c~a. We have 

~'  */9 = ( ~ ' B 1 - ' '  ~ ' B b ) ~ ' ( B b + z ~ ' ' ' '  B2b~')C. 
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It follows that  

A = o/B1 ...o~'Bb)t --= )~XpB1 . . . ) tX#Bb) t  

= #Bb+la  ~ . . .B2ba ~ = pBb+I)~X. . .pB2b)~X# 

and so A = #; denote this by 7. Then 

R A = X = Bi : ~ '  (1 < i < 2b). 

Hence (~' = 7R~7,  /~ = (R/"~')2bc, and A -- (TRA)257, hence p/A) =- p(7). 

Thus,  c~ = 7R77 C is quadratic, hence P(7) = -p((x), and fl~ = R "~ = L, hence 

= L~bC. 

(4.2) L e m m a .  Let o~ E Go, and ~, 7 E G. 

(a) ~ < 7 .~--~ o~ * ~ < c~ . 7. 

(b) 7 I~ r ( ~ - 7 )  I (~*~)-  
P r o o f .  Part  (b) follows easily from (4.1)(6). For part  (a), write ~ = 5X~'  

and 7 = 5Y7'  with 5 E Go and X # Y in {L ,C ,R} .  Then ~ < 7 if and only 

X ~ < y6.  We have 

c ~ . ~  ---- ( c~*5) (aX~) (~* /Y) ,  and 

o~. 7 = ( a . 5 ) ( a Y ~ ) ( a . 7 ' ) .  

Therefore a . / ?  < a * 7 if and only if 

(x~)(~*~) ~ < (y-)(~*~)~. 

Thus it suffices to show that  p ( . ( a .  5)a) = p(5). We have p ( a ( a  * 5)a) = 

p(a)p(a)p(o~ . 5 )  = p(c~ . 5 )  = p(5), by (4.1)(9). 

(4.3) T h e  , - p r o d u c t  as a s u b s t i t u t i o n .  For (~ E Go of length n -  1 as in 

(4.1)(1), the map  

can be viewed as a "substitution homomorphism," replacing X by a X  ~ for 

X E {L, C ,R} .  (Cf. (4.1)(3)). This point of view was originally presented in 

[PTT]. 

For an integer N > 0, denote the N-fold iterate of the operator (1) by 

~.N = (~.)N; 
(2) ~.N(~) = ~ . ( ~ . . . . ( ~ . ~ ) ) . . . )  
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Claim. 

(3) 

(4) 

and 

(5) 

There is an element a(N)  E Go such that 

0~*N(13) = a(N)  * t3 for all 13 G G. 

I f  N = p + q, p, q >_ O, then 

a(N)  = (oe(p),a(q))a(p), i.e., 

~(N)C = ~ (p ) .~ (q )C  

I~(N)I = n N - 1, and p(a(N))  = p(a) N. 

P r o o f .  We have c~(0) = 1 and a(1)  = a.  Arguing inductively, we have, for 

N = p + q , p , q >  0, 

ol*N(~)  = o~*P(Ol*q(/~)) = o~(p) * (co(q) * fl) 

= (~ (p)*~(q) )~ (p)*~  (by (10)), 

whence (3) and (4). For (5), put  E(N)  = la(N)]  + 1. From (4) and (4.1)(4) we 

h ave 
E(N)  = E ( p ) ( E ( q ) -  l ) + ( E ( p ) - l ) +  l 

= E(p)E(q) 

whence E(N) : E(1) N = n N. Similarly, from (4) and (4.1)(9) we have p(~(N)) = 
p(a(q))p(a(p)), whence p(a(N))  = p(a(1))  N = p(a)N. 

From (4) we see that ,  for any/3  6 G, 

(6) a*N(/3)<_p = oe(p) = a ( N ) < p  

for any p _< N.  Fixing p and letting N ~ c~, we see tha t  the initial segments 

of o~*g(~) stabilize at a value independent  of/3. Hence we have a well defined 

limit 

4 *00 :=  lim a ( N )  = lim oL*N(fl) for all f3 6 8 
(7) N - - o o  N - - o o  

= the unique fixed point of a *  in G. 

E x a m p l e s .  Let X = L or R. Then  from (4) and (5) we have X ( N +  1) : 

( X ( N )  , X ) X ( N )  = X ( N ) x X N  x ( N ) .  Thus L(N + 1) = L(N)LL(N) ,  whence, 

by induction,  

L(N)  = L 2N-l, and L *~176 = L r 

On the other  hand  

R(N + 1) = R(N)RRNR(N)  = (R . R(N))R,  

SO 

R(1) - -  R 

R(2) = RLR 
R(3) - -  (RLR)R(RLR) 
R(4) = (RLRRRLR)L(RLRRRLR) 
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We conclude now with a L e m m a  needed in Section 5 below. 

(4.4) L e m m a .  Let/~, 6 E G, 

=~1~2~3 ' ' ' ,  

and 6o E {L ,R} .  Put  

6---- 616263"" 

B = R * ~  and D = & ( R * 6 ) .  

(a) R c~ < B,  unless ~ = L ~, 0 < r < oo, when B = R 2r. 

(b) D < R ~176 unless 606 = L ~, 0 < r < 0% when D = R 2r-1. 

(c) D < B,  unless either fl = 6o6 = L ~ ,  or else lhe shorter of  ~ 

and 6o6 is a power of  L and divides the other. 

Proof .  Put Bi  = fli and Di  = ~i. Then 

B = R B I R B 2 . . . R B ~ _ I R B ~ R B r + I  . . .  

D = D o R D I R . . . D ~ _ 2 R D ~ _ I R D r R . . . .  

I f /3  is not  a power of L then we can write fl = LrR/~ I with 0 < r < oe and 

/~' E G o r /3  = L~C. Then  B = ( R , L r ) ( R , R ) ( R , ~  ') = R 2 ~ + I L ( R * ~  ') or 

B = R2~+1C, respectively. Since R < R~r+l X for X = L or C, we have R ~ < B, 

and  RN3 " < B for any N > 2r + 1, 7 E G. 

If 6o6 is not  a power of L then we can write 6o6 = LSR6 ~ with 0 < s < oe, 

6 ~ E G or 6o6 = LsC.  Then  D = R 2 S L ( R ,  6 ~) or R2~C, respectively. Since 

X < R~' R f o r  X = L or C, we have D < R ~ and D < R N 7  for any N > 2s 

and  7 E G. 

The  assert ions of the L e m m a  follow easily from these observations.  

5. T h e  , - p r o d u c t  t h e o r e m  

(5.0) Let a = a'C be maximal, where a' E Go and Is I= n. Recall from (2.6) 
t ha t  a is called quadra t ic  if 

a = 7R~7C,  
(1) 7 C  is maximal,  

I ~ C I  - -  m = , - , /2 .  

we make  the following assumption: 

(2) O~i< < O~j< for some i , j  0 <_ i , j  < n. 
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We would like to conclude that ,  for/3 C G, 

< ( d * Z b , <  

�9 j ,  whenever i' - i m o d n ,  j '  - j m o d n ,  and 0 _< z', < I s ' * a l l .  The  next  

theorem implies tha t  this is so, but  for certain explicit exceptional cases when 

c~ is quadrat ic .  

(5.1) T h e o r e m .  Keep the notation,  and assumpt ion  (5 .0) (2) .  Let  /~ E G, 

0 <_ ( k -  1), (k '  - 1) < [/~l, and put  

i' = i + (k - 1)n and j '  = j § (k '  - 1)n. 

We have in the notat ion of  (2.2),  

(3) ( a ' . / 3 ) i , <  _< ai(R~<- ') < aj(L~<-J) < ( a ' , / ~ ) j , < ,  

unless c~ is quadratic (c f . (1 ) )  and IJ - il = m.  In the latter case we have 

(4)  = -r * ( R .  

Moreover,  put t ing  h : rain(i, j ) ,  ~ = ~fh<, and A : 5R'~(7 * R ~ ) ,  we have 

(5i) (~ ' * / ) ) i ,<  < A unless /~k<_ is a power  of  L 

and 

(5j) A < ( ~ ' . / ~ ) j , <  unless /~k'< is a power  of  L. 

(Note tha t  i f /?  terminates  with L r, 0 < r _< co, then R */~ in (4) terminates  

with R *  L ~ = R~r.) In part icular  we have 

(*) < 

unless c~ is quadratic,  [j - i I = m, and the shorter  of/~k< and/~k,< is a power of 

L and divides the other.  

P r o o f  o f  (5 .1) .  Pu t t ing  Bi =/5~ : f~ '  we have 

o~' :~ ~ : OJ B l  OJ B2ol I �9 �9 �9 

and so 

I = c~i<Bko~ Bk+lo~ . . .  (6) I : :  ( ~ ' *  Z)i '< ' ' ' 
J := ( ~ ' * f l ) j , <  = (~'.<Bk,(~'B~:,+lc~'.. 

.7 " "  

Note that ,  with the nota t ion of (2.2), 

I<_n : cq(B~) ,  and J<n : (~j(Bk,) .  



81 

It  follows therefore f rom (3.1) tha t  (2) implies (3), unless c~ is quadrat ic ,  as 

in (1), and IJ - il = m = n/2 ,  which we henceforth assume. Then  we have 

Bi = fl~ = fii "~ and fi~ = fl/R, so 

cd.fl = 7R ' rTB17R ' rTB27 .  �9 

= .rR,  vfi~_~.rg, .rf i~' .r . . .  
= 7 .  (afl ,  R & a . . . )  
= 7 .  (R*/~) ,  

whence (4). 

To  economize on notat ion,  let us now assume tha t  

(7) 0 < i <  j = i + m .  

Then  we have 6 = 71< and we mus t  show tha t  (2) implies (5i) and (5j) and also 

t h a t  the condit ion 

(2')  ~ j<  < ~i< 

implies,  with A = 6 R ~ ( 7 .  R~~ 

(5'i) A < (cd*f l ) i ,<  unlessfl~:< is a p o w e r o f L  

and 

(5'j)  ( a ' , f l ) j , <  < A unless flk,<_ is a power of L. 

From (7) and (4) we see tha t  

(8) 

I = 6 R ' r T B k 7 R ' r T B k + 1 7 . . .  

= 6 R ' r ( 7 * f i k ( R * f l k < ) ) ,  and 

J = 6 B k , v R V T B k , + 1 7 . . .  
= ~ s  

Moreover  we have 

oq< = 6 R v T C  and ogj< : 6C. 

Thus ,  c~i< < c~j< if and only if R "r6 < C 6 = C, if and only if p(76) = - 1 .  

Similarly,  c~j< < c~i< if and only i fp (76  ) = 1. Thus,  we can rewrite (2) and (2') 

a s :  

(2) p ( 7 6 ) = - 1  

and 

(2 ')  p(76) = 1. 

Now we see tha t ,  

r<k not a power of L ~ k ( R * / ~ < )  < R ~176 (by (4.4)(b)) 

=~ 7*/~k(R*flk<)  < 7*-R ~176 (by (4.2)(a)) 
I = 6R~(7*f lk(R*flk<))  <~R~ 6R.r(7.ROO) = A. 
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Since p(~R "y) = - p ( 7 6 ) ,  the relation ,,<~R*,, is "<" in case (2), and ">"  in case 

(2'). Whence  (2) implies (5i) and (2') implies (5'i). 

Next  suppose that /3k,< is not a power of L. If/3k' # L then ~ ,  < R. Thus,  
- 6 ~ - ~ t  

the condit ion (2), p(76) = - 1 ,  implies tha t  /iR "r < ~,k , which fur ther  implies 

tha t  

~x = 6 R ~ ( ~ .  R ~ )  < 6 ~ , ~ ( ~ . ( R . / 3 ~ , < ) )  = J. 

Similarly, p(7f)  = 1 implies that  3/3~, v < f R  "~, which further implies 

J < 6 R ~ ( 7 ,  R ~ )  = A. Thus,  (2) implies (hj) and (20 implies (5'j) when 

/3k' : ~n .  

Suppose now that /3k '  = L , so  tha t  J = f R ' ~ ( 7 ,  (R*/3k '<))  (see (8)). Then  

13k,< not a power of  L ~ R ~ < R * flk,< ( by (4.4)(a)) 

7 . R  ~176 < 7 .  (R./3,~,<) ( by (4.2)(a)).  

/x = ~ R ~ ( 7 ,  R ~ )  <~R~ j .  

Thus,  since p(6R  "y) = -p (76 ) ,  we have A < J if p(76) -- - 1 ,  and J < A if 

p(76) = 1. This  concludes the proof  tha t  (2) implies (hj) and (2') implies (5'j), 

and so also the proof  of Theorem (5.1). 

(5.2) C o r o l l a r y .  Let a = c~'C E GoC be maximal  and fl E G be as in (5.1). 

Then a'  , /3 is maximal  i f  and only if/3 is maximal. In particular (ee+) ~ and 

(~r-) ~176 are maximal  where a + = a'  , R and a -  = c/ * L. 

P r o o f :  The  last assertion follows from the first since (c~ + ) ~  = cd*R ~ ,  ( a - ) ~  = 

a '  * L ~ and R ~ and L ~ are maximal .  

For 0 < h <1/31, (c~'*/3)h,~< = a ' * /3h<  ((4.1)(5)), and a '* /3h<  _< a ' * / 3  iff 

/3h< _< /3 ((4.2)(a)).  Thus,  /3 is maximal  iff (a '  */3)h,~< _< a '  */3 for 0 < h <[r 

and this is the case if a ' , / 3  is maximal .  

It remains to show that ,  if i' = i + ( k -  1)n with 0 < i < n and 

0 < ( k -  1) <[/31,  and if /3 is maximal ,  then ( a ' , / 3 ) i , <  < a ' , / 3 .  I f n  = 1 

then 0 < i < n does not occur, so the proof  is complete now for n = 1, and we 

can argue by induction on n =l a ] .  

Since a is maximal  we have hi< < a = a0<. Pu t  j = 0 = j '  and k' = 1, so 

j '  = j + (k' - 1)n. Then  (5.1) implies tha t  (a '  , /3) , ,<  < (a '  , /3) j ,<  = a '  */3, as 

desired, unless we are in the exceptional case (5.1)( .) .  In tha t  case cr = 7R'~7C 

is quadrat ic ,  7C  is maximal ,  and a~ , /3  = 7 - ( R * / 3 ) .  By the case n = 1, R* /3  is 

maximal ,  and so, by induction on n, 7 * (R*/3)  is maximal .  This  proves (5.2). 

R e m a r k .  Corollary (5.2) is well known to experts,  but  we were not able to 

locate a short  direct proof. An al ternative proof  is given in (10.5) below. 
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6. S h i f t  d y n a m i c s  o n  Go U GoC. 

(6.1) T h e  shi f t  m a p s  c~ a n d  cry. We define c~ : , G b y  

(1) ~(a) = -2~3 . . . .  -1< 

where 

O~ ~- Oll C~2Ol 3 �9 �9 �9 

in normal form, i.e., cti �9 { L , R }  for i < [ a [ ,  and, if [ a [ <  oo, al,~ I �9 { L , C , R }  

and ai = 1, and for i >[a[ .  Thus 

(2) 
{ ~(o~) = 1 < > I~1_< 1, 

Ct' = Ct'lO'(O~ ) and I ~ ( a ) l = l ~ l - 1  i f (~# 1, and 

~ri(a) = cq< for i > O. 

For j3, 7 �9 G we define the open interval 

(3) (Z,~)= { - � 9  

We claim that  

(4) 

This follows since 

< aa < 7 ~ L~ < Lc, a < L 7 

R7 < Ro'a < RI3, 

and a = L(r(~ or R~ra unless a �9 {1, C}, in which case c ra=  1 ~ (1~, 7). It follows 

from (4) that  

c, : Go U GoC ' Go ~ GoC is continuous for the topology defined 

(5) by the linear order on Go U GoC. 

Another consequence of (4) is the following. For a �9 U C G we write 

a = Min U (resp., ~ = Max U) 

if 
a < ~ (resp. ,~  < a) for  all ~ �9 U. 

I f U C G ,  a E G ,  I a l > 2 , t h e n  

Min a - I ( U )  
aa = Min U ~ a =  { Max c , - l (U)  

and 
Max 0"-  1 ( U )  

qa = Max U ~ a = Min o ' - l ( v )  

(6) 

Z fOg I - - - - i  

i fO l  I ---- ~ 

zfct '  1 ---- f 

/ f ~ i  = R. 
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Let s E G0 U GoC and I s I = N < oo. The cr-orbit  of s is, 

(7) O(s)  = {si< l0 < i < N}. 

This linearly ordered set is finite of cardinal N i f s  E GoC. If a E G0 then 

O(s )  is finite iff s is eventually periodic of period p, i.e., there exists no >_ 0 

such that  sr~+p = s,~ for all n > no. If no and p are taken to be minimal then 

I O ( s )  I = no + p. 

We give O(a)  the topology induced by the order topology on G0 U GoC. 
Define .... 

~ :  O(a)  ---~ O(a),  

by ~ra = (r if s E Go; if s E GoC then, 

cra(si<) ---- Cr(Si<)  ---- S ( i + l ) <  for 0 <_ i < N - 1, and 
(8) O'c~(S(N-i)< (-- C)) -- s0< (~- s). 

Thus, in view of (5), 

(9) (O(s) ,  ~c~) is an ordered dynamical system. 

When N < oe we put an order <~ (or <~,N) on Z / N Z  so that,  with 

(10) g ( a )  := ( Z I N g ,  +1 , <~,N) 

we can conclude the following: 

The map si< ~ i ( mod N),  forO < i < N = l s l ,  defines an order 
(11) preserving isomorphism O(a),~r~) , g ( s )  of ordered dynamical 

systems. 

(6.2) R e n o r m a l i z a t i o n  o f  (O(s) ,  ~ ) .  As above let s E do U GoC and Is  l= 

N _< oo. Let n be an integer, with 0 < n_< N. Define a l inear  order <~ (or 

<~,n) on %/ng, by 

(1) r < ~ s  r s t<  < a ,<  f o r O < r , s < n , r # s .  

Suppose further that  

(2) n I N ( by convention, n [ oo for all n >_ 1). 

Then we have an equivariant map 

{ en = r : (O(a ) , a s )  ~ ( g / n g , + l )  
(3) r  = (i mod n). 

If Cn is continuous then (by definition) Cn is an n-renormalization. 

For r E Z i n g  we put 

(4)  o ( s ) r  = = I 0 _< i < N ,  (i mod n) = r}. 

The following conditions are clearly equivalent: 
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(a) r  : O(a)  , (Z /nZ ,  ordered by <~, . )  is weak order preserving. 

(Hence each fiber O(a)r  is an O(a)-interval.) 

(b) If r ,s  E Z / n Z  then r <~,n s implies at< < a j<  whenever 

(i mod n) = r and (j ,nod u) = s. 

If r is continuous, then (a) and (b) just say that 

(c) r is an interval n-renormalizat ion.  

In (6.3) below we show that,  in the presence of conditions (a) and (b), continuity 

of r can fail only in very special circumstances. 

We define 

m e n ( a )  = m e n ( O ( a ) ,  

(5) = {n >_ 1: n I1 1 and On: , ( Z / n Z , + l )  

is an interval renormalization }. 

It follows from Theorem (I, (2.6)) that: 

(6) IRen(a) is totally ordered by divisibility. 

When la  l< oo we have IRen(a) = IRen(Z(a)) (cf. (6.1)(11)). 

(6.3)  R e m a r k s  on  t h e  c o n t i n u i t y  o f  r  First, suppose that en is not con- 

tinuous. Then O(a) must be infinite, so a E G0 and ~r~ = rr Io(~). The fibers 

O(a)r (r E Z/nTZ) of r form a finite partition of O(a) ,  and c~-l(O(a)~) = 

O(a )~- l .  It follows that  each O(a)~ is neither open nor closed. Now further, 

suppose (a) and (b) of(6.2), so that each O(a)~ is an O(a)-interval. The only way 

for an interval to be neither open nor closed is for it to have a Min or a Max but 

not both. Thus each O(a) r  has a unique extreme (Min or Max) element a i ,<,  

0 < i~, (i~ mod n) = r. Suppose that i~ > 0, so rr(a(ir_l)< ) -- a~r<. It follows 

from (6.1)(6) that  a(i ,-1)< is an extreme element of ~ t ( O ( a ) ~ )  = O(a)~-l .  

Thus: 

For i~ > 0, i~_1 = i ~ -  1. 

Since there are exactly n such extreme elements it follows that  ir = r, i.e., 

at< is the extreme element of O(a)(,. mod n) for 0 < r < n. 

Write 
]" 1 i /  = 

#(r)  
- 1 i f  O~r< 

Then it is easily seen that 

Max O(a)( r rood ~) 

Min O(a)( r mod n)' 

, ( r )  = . 
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O ( O r  0 (Or  

A 
w 

F i g u r e  10. 

Let us list Z / n Z  according to <~: 

r l  Kc~ r2 Kce ' ' '  < a  r n - 1  < ~  rn .  

We cannot have p(r , )  = 1 and # ( r ,+ l )  = -1 .  (See Figure 10.) 

For in this case O(a) r .  would be open in the order topology on O(c~), contrary 

to assumption. Hence we must have 

#( r , )  . . . . .  p ( r , )  = -1  

f l ( r s + x )  : . . . .  #(rn)  = 1 

for somes ,  O < s < n .  

7. T h e  . - p r o d u c t  renormal izat ion  theorem.  

(7.1) T h e o r e m .  Let a = a 'C be maximal, a' E Go, ]a [= n, and let fl E G. 

Put 
zX = a ' . f l .  

Then 

( I )  I a C n ( a )  = Iaen(~ )  U ~ .  I R r  

unless c~ = 7R'rTC is quadratic and fl terminates with LM,o < M < ~ .  In the 

latter case we have 

(2) ~ = v*(R*Z) 

with 7C maximal , IvC]= m = n/2, and 

(3) IRen(A) = Iaen(TC ) U m .  IRen(a * fl). 

P r o o f  o f  (7.1). We have a commutative diagram, 

(4) 

(o(a), ~ )  

(o(~),~) ( Z / n Z , + I )  
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where r ) = c r r <  when 0 < r < n a n d i = r m o d n .  Here r is an order 
preserving isomorphism, using <, ,~ on g / n g  (cf. (6.1)(11)). 

For 0 _< r < n put 

and 

Define 

O ( A ) , .  - '  = r = {A(,.+kn)< I0  _< k < l f l l }  

o-,. = o-,~ Io (a ) . :  0 ( / ' % .  , o ( a ) , . ,  
o-,.(A~<) = /,,(,+,,)< for 0 < i < n ( l f l l  - 1 ) .  

r (o(z) ,r  . (o (a )~ .r  

byes(i lk<) , 4' , = , _ = a , < f l  k ( a * f l k < ) = A ( ~ + ( k _ l ) ~ ) < f o r O < k K l f i l .  Put t ing6 at< 
we have 

A(~+(k-1)~)< < A(~+(k,-1),~)< f l~ '~ ' * f l k< )  <~ ~' ' ~ ~ ilk, (~ * & ' < )  
r (~' .&<)<~'  (~,.&,<) 

where the last equivalence follows from ((4.2)(a)). Thus r is an isomorphism of 

dynamical systems that  either preserves or reverses order (according to whether 

p(6cd) = 1 or - 1, respectively). It follows that 

(5) IRen(O(a)r .  ~ )  = IRen(O(Z). ~ )  = IRon(Z) for 0 < r < n. 

Consider the conditions, 

(6) 

and 

r  O(A) ~ 0 ( ~ )  is weak order preserving, 

(7) Each fiber O(A)r = r ) is an open-closed interval of O(A), 
hence r is continuous. 

These conditions imply that, in diagram (4), 

(8) CA,n iS an interval n-renormalization. 

In view of (5), it follows from (I, (3.1)) that (8) implies condition (1). Now it 

follows from Theorem (5.1) that we have conditions (6) and (7), and hence also 

(1), except in the case when c~ is quadratic in the sense of (2.6), i.e., 

(9) 
a = 7R~7C, 7C is maximal ,  

17CI = m = n/2,  and further 

fl terminates with LM,o  < M < oo. 

In this case it further follows from (5.1) that  (2) holds true and R*f l  terminates 
with R *  L M = R TM. Thus we can apply the discussion for the non-quadratic 

case to 7C and R*f l  in place of c~ and fl, and conclude that  Ch,m is an interval 
m-renormalization, and hence (3). 
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This  concludes the proof  of  (7.1). 

The  following result is a sort of dynamical  converse to Theorem (7.1). 

(7.2) T h e o r e m .  Let (J, f )  be a unimodal map on J = [ -1 ,  1], as in (1.0), with 

maximum M = f(O) = f (C) .  Let [( =- O s ( M ) ,  the f-orbit  closure of M,  and 

let 

the kneading sequence of M.  

(1. ~)(4)) and 

A = A f * ( M ) ,  

Then A is a maximal element of Go U GoC (cf. 

(1) 

; f  n e I R e n ( K ,  y) ,  ~ > 1, the.  

IRen(K, f )  = IRen( A ). 

for some ~' E Go, Icd I = n - 1. 

P r o o f .  The  relation (1) is proved in Proposi t ion (9.4) below. 

Let r : (K, f )  ~ (2~/n~, +1)  be an interval n-renormalizat ion,  with fibers 

h 'r  =- r  (r  E ~/n2~), and normalized so tha t  r  -- 1. The  I~'r are 

K-intervals  and f - l ( K r )  -- Kr+ l .  Let Jr denote the J- interval  spanned by Kr .  

C a s e  1. C ~ U Jr .  In this case each Jr is contained in either L or R, 

rEZ/n~ 
say 

Jr C (~r E { L , R } .  

It follows then tha t  A : A f* (M)  is periodic, 

A : ( ~ 1 ~ 2 " " ~ n )  ~176 

where  ~'  = ~1~2"" ' ~ . - 1  and 9 = (~')r162 

C a s e  2. C E U J~. Then,  since f (C)  = M E K1 C J1, it follows tha t  

rEZ/n~ 

C E Jn �9 On the other  hand, for the same reason as above, we have 

Jr C ~r E { L , R }  f o r r  = l , . . . , n - 1 .  

This t ime, pu t t ing  ~ -- (~1~2"" " ( ~ - 1  we have A -- ~71~ '72~ '73  "" �9 for some 

71,72,73 . . . .  Pu t t ing  tip -- 7~' ,  we then have A ---- o /~ f l ,  where fl -- fllfl2fl3 �9 " ". 
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8.  I t e r a t e d  . - p r o d u c t s .  

(8.1) T h e  e l e m e n t s  a(q) .  For each integer q > 1 we put  

(1) a ' (q)  = RL q-2, and a(q) = o/(q)C. 

The  linear order <~(q) on E/qE is given (cf. (2.1)(12)) by 

(2) q - 1 <c4q) q -  2 <~(q) . . .<~ (q )  1 <a(q) 0, 

which is the reverse of the natura l  order. It follows therefore f rom Example  (I, 

(2.5)) tha t  

f a(q) is maximal and 
(3) 

IRen(a(q)) = {1, q}. 

Moreover it is easy to see tha t  a(q)  is not quadratic,  i.e., not of the form 

7R'~7C (cf. (2.6)). Hence it follows from (6.1) tha t  

(4) IRen( a ' ( q) . /3) -- { I }  U q" IRen(fl) 

for all/3 �9 G. Moreover, from (6.1), (6.2) and (4.1)(12) we have: 

fl '*a(q) �9 GoC is maximal, 

l Y .  o4q) I--I,6'1 q, 
(5) ~ = y c  �9 aoC is maximal~ IRen(y*o4q)) = :Ren(~') U { IZl  q}. 

13' * a(q) is not quadratic. 

(8.2) T h e  e l e m e n t s  a(ql,q2, q3,...). For a �9 GoC we define a '  �9 Go by 

= a ' C .  For /3  �9 GoC we have 

~ ' . ~ =  (~'.y)(~'.c)= ( ~ ' . Y ) ~ ' c ,  

a n d  so 

(1) (o/ .  ~')' = (~ ' .  y)o/. 

Let 7 �9 GoC. Then  from (4.1)(10) and (1) we have 

o ~ ' . ( y . ~ )  = (.~'.~")o~'.~ 
(2) = ( ~ , .  ~ ) , .  ~. 

Let 

q = (q l ,q~ ,q3 , . . . )  

be a sequence of integers qi > 2. For n > 1 put  

f q<_n = (q l , q2 , . - . , qn ) ;  
(3) \ mn = q[n] :_-- qlq2...qn. 
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We define 

(~(q l , . . . , qn)  ---- c / ( q l , . . . , q n ) C  E GoC 

inductively,  start ing,  for n = 1, with (~(q~) as in (8.1): 

(4) 

For n >  1 we put  

(5) 

(~(qi) = R L q i - 2 C .  

c~(ql, q2 , . . . ,  q,~) = el(q1) *c~(q2, . . . ,  qn). 

We claim that ,  for 1 < i < n, 

(6) (~(q l ,q2 , . . . , qn)  = ~ ' ( q i , . . . q i ) * c ~ ( q i + l , . . . , q n ) -  

For i = 1 this follows from the definition (5). Suppose tha t  we want to verify 

(6) for i > 1, assuming inductively the analogue for indices < i. Then  

o~(ql, . . . ,q,~) = o / ( q l , . . . , q i - a ) * ~ ( q i , . . . , q n )  (by induction) 

= c / ( q l , . . . , q i - 1 ) * ( ( ~ ' ( q i ) * c ~ ( q i + l , . . . , q , ~ ) )  (by (5 ) )  

= (c / (q l , . . . , q i -1 )*c~(q i ) ) ' *c~ (q i+ l , . . . , q ,~ )  (by (2 ) )  

= a ' ( q l , . . . , q i ) * ~ ( q i + a , . . . , q n )  (by induction). 

In par t icular ,  

(7) ~(ql ,  q2 , . . . ,  q,)  = ~ ' ( q l , . . . q ~ - l )  * ~(q~)- 

It follows inductively from (7) and (8.1)(5) tha t  

ol(ql, q 2 , . . . ,  qn) C GoC is maximal  and nonquadratic, 

(8) I o~(qx, q2 , . . ,  qn)]= rnn, and 

IRen(o~(ql, q2,.. .q,~)) = {1, ml ,  m 2 , . . . r a n } .  

To consolidate notat ion,  let us now write 

(9) A(n)  = ol(q<,~) = o l (q l , . . . , qn )  
: 

For n < N it follows from (6) tha t  

= 

(10) A(n ,  N] = 

In par t icular ,  

A ' (n)  * A(n,  N], where 

c~( q,~+ l , . . . qN ). 

(11) A ( N ) < m ,  = A ' (n)  = A(n )<m, .  

Suppose now tha t  the sequence q is infinite. Then  it follows from (11) tha t  

there is a l imit 

(12) A = li_mA(n) = a (q ) ,  
n 
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defined by 

A<m. = A'(n) for all n >_ 1. 

It follows further from (10) that for n _> 1, 

(13) A = A'(n) . l i m A ( n ,  N]. 
N 

We can rewrite (13) more explicitly as: 

(14) c~(q) = a'(q_<n) *c~(qn<), 

where q .<  = (q,~+l, q ,+2, . . . ) .  It follows from (14) and Theorem (7.1) that  

IRen(o~(q)) = IRen(a(q<_n)) U mn " IRen(a(q<n)) 

From this it follows that the elements less than or equal to m,~ in IRen(a(q)) 
are just IRen(a(q<_n)) = {1, ml,  m2 , . . .mn} .  Therefore: 

(15) Inen(c~(q)) = {1, ml, m2, . . .  , mn , . . . } .  

Equivalently, with the notation of (I, (2.7)), 

(16) q(O(o~(q)),  O'a(q) ) : q. 

9. Real izat ion  by unimodal  maps.  

(9.1) K n e a d i n g  sequences .  As in section 1, let f be a unimodal map on 

J = [-1, 1], with maximum M = f(0), and with kneading sequence 

K ( f )  = Af*(M) E Go U GoC. 

Define 

n(f)  = { x ' , L  c~K( f )  = (n'L~') ~176 

For 4,/3 E G write 

A 

if K ( f )  E Go 

if K ( f )  = ~'C E aoC. 

< < / 3  .::: 3. cti< < 13 for all i >_ O. 

(9.2) T h e o r e m .  (([CEc], Theorem II.3.8) Let f be a unimodal map on J = 

[-1,  1] and let c~ E Go U GoC satisfy 

Aft(-1) _< << 
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Then o~ = Af t (x)  for some x E J. 

(9.3) I n t e r v a l  r e n o r m a l i z a t i o n ,  s y m b o l i c  a n d  real .  Let f as above be a 

unimodal map on J = [-1,  1], and x C J, with f-orbit  

Of(x)  = {x, f (x) ,  f2 (x ) , . . . } ,  

and itinerary 
A 

c~ = Af t (x)  e Go U GoC. 

Then (cf. (1.7)(4)) we have a weak order preserving map Af t  : Of(x)  , 

Go U GoC. 

C a s e :  c~ E Go. 

Then 

A f t :  ( O : ( x ) , f )  , (O(~), ~) 

is a weak order preserving surjection of ordered dynamical systems where (r is the 

shift operator, c~(c~i<) = c~(i+l)<. If O((r) is infinite, i.e., if c~ is not eventually 

periodic, then Af t  above is bijective. Consequently (cf. (I, (2.4)(5) and (6)), 

(1) IRen(a) C IRen(Of(x) ,  f ) ,  with equality ifO(c~) is infinite. 

Case:  e~ = edC E GoC. 

If [~1 = n, this implies that f '~- l (x)  = O, hence f'~(x) = M.  Assume further 

that,  

(2) x is maximal in Of(x) ,  hence ce is maximal. 

From (2) and the condition f'~(x) = M we conclude that x = M, hence Of(x)  = 

O f ( M )  = 0 : ( 0 )  is the critical orbit, which is periodic of period n. Further 

= K ( f ) ,  the kneading sequence, and 

A f t :  (O j (M) ,  f )  --+ (O(K( f ) ) ,  q~(y)) 

is an order preserving isomorphism of finite ordered dynamical systems. In 

particular IRen(K( f ) )  = I R e n ( O j ( i ) ,  f )  in this case. 

(9.4) P r o p o s i t i o n .  Let f be a unimodal map on J = [-1,  1], x E J, Of (x )  the 

f-orbit  of x, K = Of(x)  its closure, and a = Aft (x)  E Go UGoC. Assume that 

(1) IRen(a) is infinite. 

Then K is a minimal f-invariant Cantor set, and 

(2) IRes(K,  f )  =- IRen(~). 
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P r o o f .  Assumption (1) implies that O(c~) is infinite, and 

A f t :  (O](x), f) , (0((~), c~) 

is an order preserving isomorphism of dynamical systems, whence 

IRen(~)=IRen(Os(x) , f  ) D IRen(K,f)  

(cf. (I, (2.4)(6)). To show that the latter is an equality we must show that an 

interval n-renormMization 

r  (Of(x) , f )  , ( Z / n Z , + I )  

extends to (It',f). Put  L = Of(x) and Lr = r  for r ~ Z/n•.  The various 

Lr are disjoint closed L-intervals, and f(L~) C Lr+~ for all r E Z/nZ.  Put 

K~ = L--~. The Kr are closed K-intervals whose union is K and f(K~) C Kr+l 
for all r E Z/n2L If we show that the K~ are pairwise disjoint, then r extends 

to an interval n-renormalization of K, defined by r  = Kr.  Say r 5~ s and 

Kr M Ks ~ 0. Since L~ and L~ are disjoint L-intervals, K~ M Ks can contain 

at most one point, say y. Since K~ M Ks is f'~-invariant, f~(y) = y, so y is 

f-periodic. 
Since, by assumption, IRen(a) is infinite, (Of(x), f)  = (L, f )  admits an 

interval nm-renormalization for some m > 1. The fibers of the latter partit ion 

L~ in to m intervals, which are cyclically permuted by f'~. But then the one of 

these intervals whose closure contains y (K~ M I~'~ = {y}) is mapped by fn to 

an interval at positive distance from the fixed point y of f'~. This violates the 

continuity of f on J.  
We have now established (2), so (K, f )  is infinitely interval renormalizable 

with the dense orbit O](x). It follows therefore from Theorem (I, (4.1)) that 

(K, f )  is minimal, and K is a Cantor set (cf. (B.9)). 

(9.5) C l - f a mi l i e s  o f  u n i m o d a l  maps .  A unimodal map f on J = [ -1 ,  1] is 

called C l - u n i m o d a l  if it is C 1 and f '(x) ~ 0 for x r 0. The CLmetr ic  on the 

space of such maps is given by 

If - g lc l  = supx j ( I f ( x )  - g(x)l  + I f ( x )  - g ' (x ) l ) .  

Let t H ft be a curve in the space of Cl-unimodal  maps. We quote the following 

"intermediate value theorem for kneading sequences" from [MilTh] (see also 

[CEc], Theorem III,1.) 

(9.6) T h e o r e m .  Say to<t1 and a E G~'oUGoC is maximal and K(fto) < c~ < 
K(f ,1 ) .  Vh n, = g ( I , )  for some t e [t0,tl]. 
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(9.7) C o r o l l a r y .  A s s u m e  fur ther  that 

(1) IRen(c  0 is infinite. 

Then i f  K = 0/~(1)  is the critical orbit closure, K is a min imal  f t - invar ian t  

Cantor  set, and I R e n ( K ,  I t )  = IRen(a) .  

This  follows f rom (9.6) and (9.4). 

(9.8) T h e  q u a d r a t i c  f a m i l y  is defined by 

(1) f t ( x )  = 1 - t x  2 (0 < t <_ 2). 

We have, for 0 < t < 1, 

(2) K ( f t )  = R ~ < K ( f 2 )  = R L  ~ .  

If  a E Go is m a x i m a l  and a r L ~176 R ~ or R L  ~176 then it follows f rom (2.1)(12) 

tha t  a = R L a R  . . .  for some a > 0, and hence R ~ < a < R L  ~ Thus,  in view 

of  (2) 

(~ E Go is maximal  and a ~ L ~176 

(3) 0 < t o < l ,  K ( f t o ) < a < K ( f 2 ) ,  ==V 

= K ( I , )  for some t E [to, 2]. 

(9.9) C o r o l l a r y .  Let q = (ql, q2, q3,...) be an infinite sequence of  integers 

qi >_ 2, and let cr = a ( q )  = a(ql ,q2,  q3 , . . . )  be as in (8.2)(12).  For some 

tq E [1,2] and f t q (x )  = 1 - tqX 2, the critical orbit closure K = Oftq(1)  is a 

min ima l  f tq- invar iant  Cantor set, and 

q ( K ,  f tq) = q. 

P r o o f .  By (8.2)(8) and (16), a is m a x i m a l  and q(a)  = q. From (9.8)(3) we get 

tq E [1, 2] with K ( f t , )  = a .  Now (9.9) follows f rom (9.7). 

10. A permutation formulation. 

(10.0) A p e r m u t a t i o n  s E Sn can be extended using linear in terpolat ion,  to a 

piecewise linear m a p  f~ f rom [0, n § 1] to itself. Assume tha t  s is an n-cycle, 
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and put  C = s - l (n ) .  Then  [n] = { 1 , 2 , . . . , n }  is an orbi t  of s (or f , ) .  Assume 

fur ther  t ha t  s (i.e., fs) is (+ ) -un imoda l .  Then  we have the kneading sequence 

K(s)  := K(ys)  = Af t (n )  = h e ,  

where 

a : a 1 . . . a n _  1 ~ G o .  

I t  is easily shown (cf. (10.4)) t ha t  s ~ K(s)  defines a bijection f rom the set of  

( + ) - u n i m o d a l  n-cycles to the set of m a x i m a l  e lements  of  length n in GoC. 

This  pe rmi t s  us to re formula te  some of the preceding theory in t e rms  of 

pe rmuta t ions .  In par t icular  we give new proofs, f rom this perspect ive,  t ha t  if 

a C E  GoC is max ima l ,  and fl = a M ,  with M = L or R, t h e n / ~ o  is max ima l .  

Fur ther ,  if/~ = 7 k with k > l, then k = 2 and this can happen  for at  mos t  one 

choice of  M = L or R. 

(10.1) I n t e r p o l a t i o n .  Let A = {al < a2 < . - -  < an} be a finite subset  of a real 

interval  J = [a0, an+l], and s : A ) J a map .  The  m i n i m a l  i n t e r p o l a t i o n  

of s is the m a p  f~ : J ~ J such tha t  f ,  lA = s, fsl[a,_l,~,] is atfine linear 

(0 < i < n +  1), and fs(a0) ,  fs(an+l) E {ao,an+l} are chosen so tha t  e l  and an 

are not  turn ing  points  of f~. We call s (and f~) m - m o d a l  if f~ has m turn ing  

points  (which necessarily belong to { a 2 , . . . ,  a ~ - l } ,  so m < n - 2). 

Consider  the s y m m e t r i c  group S~ of pe rmuta t ions  of  

[n] = { 1 , 2 , . . . , n } .  

Each s E S,~ then has a min ima l  in terpolat ion 

f s : J ~ = [ O , n + l ]  ,J,~, 

as above,  and s is m - m o d a l  for some m, 0 < m _< n - 2. 

(10.2) K n e a d i n g  s e q u e n c e s .  Let s G S~ be an n-cycle which is un imodal ,  and 

whose turn ing  point  C E [n] is the m a x i m u m ,  fs (C)  = s(C) = n. We say briefly, 

t h a t  s is ( + ) - u n i m o d a l .  Then  we have the kneading sequence (cf. (1.0)) 

(1) K(s)  := K( f s )  = A f ; (n )  = aC where 
a = a l . . . a , ~ - i  = K'(s)  E Go 

T h e  following construct ion shifts the turning point  C slightly to the left 

(denoted  - )  + or right (denoted +) :  Pu t  C = C + 1 ,  define s+(C +) = n +  1 5, 

and then  let f ,~  be the min ima l  in terpolat ion of s + : [n] U {C +} ~ J~; here 

we m a k e  one choice (not  bo th)  of + or - .  (See Figure 11.) Then  it is clear tha t  

the i t ineraries of  n for f , ,  take the forms,  

K(s  ) := A f * + ( n ) = ( a L )  ~ ,  
(2) K ( s - )  := Af~_(n)* = (aR) ~176 
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/\ / 

I/ \ 
i/ \ 
l~ 

f s  C 
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~, J .,, J 
/'X / . / \ J  

/ :/X I /~ 
/ / "  ~X / /  / \ 

/ /  / \ 
y \ Y ~ 
fs- ~-~ fs§ ~+ 

F i g u r e  11. Construction of maps with specified kneading sequence, according 

to (10.2). Here the permutation is s = (12435). 

(10.3) T h e  ( + ) - u n i m o d a l  n-cyc le  s C Sn can b e  r e c o v e r e d  f r o m  K(s) = 
aC.  In fact, for 1 < i < n, put 

{ ~ = (~c)_>~ = ~ . . - ~ n _ ~ c  (=  c i l l  = n) 

(1) O(c~C) = {xl , . . . ,x ,~},  and 

Cr = O'c~C : O ( o l C )  ) O ( o l C ) ,  def ined by cr(x,i) = xi+ 1 (mod n), 

as in (6.1)(7) and (8). By (1.7)(4), the map Af* : J,~ , GoL[GoC is weak 

order preserving, and so it induces an order preserving equivariant bijection 

(2) ( N ,  s) , (O(~C), u). 

Thus, if we use the total order on GoC to make an order preserving identification 

of {x l , . . . , x ,~}  with In], then the n-cycle c, = (x i , . . . , x ,~ )  is converted to the 

n-cycle s = ( n , . . . , C ) .  

Conversely, given any maximal element o~C C GoC of length n, we can define 

(O(aC), ~) as above, and use the total order on GoC to identify O(c~C) with 
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[n], and a = ( X l , . . .  , Xn) with some s = ( n , . , . ,  C) E S,~. Using the proper t ies  

of  the order  on GoC, one can verify tha t  this n-cycle s is (+ ) -un imoda l ,  and 

then,  evidently,  tha t  K(s)  = aC. 

In s u m m a r y ,  then: 

(10.4) P r o p o s i t i o n .  The map s ~-* K(s)  defines a bijeclion from the set of 

(+)-unimodal n-cycles s E S,~ to the set of maximal elements o~C of length n in 

GoC. 

(10.5) T h e o r e m .  Let aC E GoC be maximal, and fl = aM,  M E {L ,R} .  

(a) t3 ~ is maximal. 

(b) I f  fl = 7 k, k > 1, then k = 2. 

(c) c~L and a R  cannot both be squares. 

R e m a r k .  Pa r t  (a) follows f rom (5.2), and par ts  (b) and (c) f rom (2.3). We 

shall give direct proofs here. 

P r o o f  o f  (a) Let s E S~ be the ( + ) - u n i m o d a l  n-cycle with K(s)  = aC (10.4). 

Let f = f ~  ( +  if M = L, and - if M = R), and I = A f*. Then,  by (10.2)(2), 

I(n) = (aM)  ~ = r ~ Since n is m a x i m a l  in In] (=  the f -o rb i t  of n), and since 

I is weak order preserving,  it follows t h a t / 3  ~ is max ima l .  

P r o o f  o f  (b). Wri te  n = kr. Then  I(n) = I(m) for the k values of  m in the s r- 

orbi t  of n. Since I is weak order preserving, I is constant  on the interval  spanned 

by the s~-orbit  of  n, hence I is constant  on the interval H = In - k + 1, hi. I t  

follows tha t  sq is mono tone  on H for all q. But  then the turning point  C = s - l ( n )  

could never be an interior point  of sqH. Hence k _< 2. 

P r o o f  o f  (c). If  k = 2, then I ( n -  1) = I(n). Choose m so . tha t  sr~(n-  1) = C. 

T h e n  C and sin(n) must  lie on the same side of  the critical point  C • o f f  = fs~ ,  

and this can happen  for only one choice of + or - ,  hence a M  can be a square 

for at  mos t  one choice of M E {L, R}. 

(10.6) T h e  * - p r o d u c t  o f  p e r m u t a t i o n s .  Let s E S,, be a ( + ) - u n i m o d a l  n- 

cycle wi th  K(s)  = a C ,  with C = s - l (n ) .  We shall write Cs in place of  C in 

wha t  follows. 

Let  t E S,~ and let r E Sm be the f l ip ,  r(b) = m + 1 - b for b E [m]. We 

define the p e r m u t a t i o n  s ,  t of In] • [m] by 

(1) (s . t ) (a ,  b) = (s(a), ua(b)) 
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where 

Id 

(2) uo= t~ "-c" 

r 

The projection defines an equivariant map 

(3) (In] x [m], ~ . t )  

On the fibers we have 

(4) 

where, if a = sq(C~), for 0 _< q < n, then 

l < _ a < C ~  

a -'--Cs 

C s < a ~ n  

, ([n],~). 

(s * t)'~(a, b) = (a, rKa)tr'(a)(b)), 

. K( t )  = K ' ( ~ ) .  K( t ) .  

(5) p(a) = # { i l O  < i < q, s~(C.) > C.} .  

We linearly order [n] x [m] by the lexicographic order, and so identify [n] x [m] 

with Into], the correspondence being 

(6) (a, b) ~-+ (a - 1)m + b. 

This permits us to view s , t  E S,,~, with formula (2) then taking the form, 

(7) ( s , t ) ( ( a -  1)m + b)--  ( s ( a ) -  1)m + u~(b), 

where u~ is given by (3). 

Suppose that t is (+)-unimodal with K(t)  = flC~, Ct E [m]. Then s *  t is 

(+)-unimodal with critical point 

(8) C .  = (C, - 1)m-I- rn-C'(C,) E Into], 

and it can be deduced from (5) and (6) that 

(9) K ( s . t )  = ~ . ~ C ,  

11 .  T h e  c y c l e  s t r u c t u r e  o f  i n t e r v a l  s e l f - m a p s .  

(11.1) T h e  cyc les  o f  (J, f ) .  For an integer n _> 1, Sn denotes the symmetric 

group of permutation of [n] = {1, 2 , . . . ,  n}, and 

(1) cn c s~ 

the set of n-cycles. 
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Let (J, f )  be a dynamical  system on a compact  real interval J .  The  n - c y c l e s  

o f  f fo rm the set 

(2) c . (y )  c c .  

of dr E Cn such tha t  there exist xl < x2 < . . .  < xn in J with f (x i )  = xo(i) 

( l < i < n ) .  We put  

(3) c(s) := U cn(s) c c := U c~. 
n > l  n > l  

The p e r i o d s  of  f form the set 

(4 )  Per(f) = {n I Cn(f) r $}. 

In the following discussion, we quote f rom the l i terature some remarkable 

results concerning the above objects. 

(11.2) T h e  S h a r k o w s k i i  ( t o t a l )  o r d e r ,  which we denote as = > ,  on the positive 

integers is defined as follows. Each integer n >_ 1 can be uniquely wri t ten as 

(1) n = 2e(n)O(n) 

with O(n) odd. The  non powers-of-2 are lexicographically ordered by (e(n), O(n)), 

and all precede the powers-of-2, the latter ordered by decreasing size. More con- 

cretely, say 0 < e < E,  and 1 < r < R are odd. 

(2) 
3 = >  5 = >  7 = >  . . .  

�9 .. = >  2er = >  2~R = >  , . .  = >  2Br = >  2ER = >  . . .  

�9 "" =:> 2 E =:> 2 e ~--> ' ' '  = >  4 = >  2 = >  1. 

(11.3) S h a r k o w s k i i ' s  T h e o r e m  [Sa]. Let (J, f )  be a dynamical  sys tem on a 

compac t  real interval J .  Then  

[n = >  m] ~ [n E Per(f) implies m E Per(f).] 

(11.4) F o r c i n g  is a relation, denoted = > ,  on C = U~Cn, with which to express 

some refinements of  Sharkowskii 's  Theorem.  For dr, v E C we define, 

(1) 
{dr �9 c(I)  implies r �9 c(Y) 

dr : >  r ~ for all f as in (11.1) above. 
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We put 

{ Cm(~) = {T E CmI~ = >  T}, and 
(2)  : 

It is known (see for example [Ju] and references therein) that = >  is a partial 

order on C. 

For ~ E C~ Sharkowskii's Theorem says that C,~(e) r O whenever n = >  m. 

We call cr p r i m a r y  if Cn(~) = {~}, and define 

(3) P~ -- {~ E Cni(r is primary}.  

The following discussion leads to a direct characterization of P,~, in (11.7). 

C o n v e n t i o n .  Let a be a transitive cycle on an n-element totally ordered set 

X. Let T : [n] ~ X be the unique order preserving bijection, n property (e.g. 

"primary")  of elements of C,~ will be said to hold for ~ if it holds for r ~ r -  1 E C,~. 

(11.5) P r o p o s i t i o n .  Suppose that n = 2 e �9 r and ~r E Cn. The following 

conditions are equivalent: 

(a) For 0 <_ d < e, (72~ exchanges the left and right halves of  each of  its 

orbits. 

(b) For 0 < d < e, the orbits of ~ 2~ are subintervals of In]. 
(c) {1, 2, 2-2,..., 2 e} C Iaen([n], or). 

P r o o f .  The equivalence of (b) and (c) follows from (I, 2.4), in the remark after 

(3). Tha t  ~ exchanges the left and right halves, L and R, of [n], is clearly 

equivalent to the condition that L and R form the two orbits of ~2  Now the 

equivalence (a) and (b) follows from this remark, by induction on e. 

Under the conditions of (11.5), we shall say that r sat isf ies  t h e  B lo ck  

c o n d i t i o n  o f  level  2 e. (cf. [B1]). 

(11.6) S t e f a n  cycles .  For odd n = 2m - 1 (m  > 1), we define the Stefan cycles 

to be 
0", T O ' T  - 1  

where v is the flip of [n] given by v(h) = n + 1 - h, and where a is the sp i ra l  

cyc le  illustrated in Figure 12 in the case in which n = 8, 

It is easily seen that  

IRen([n], (r) -- {1, n} .  

(For example, an interval containing ~ ( { 2 m -  2, 2m - 1}) -- {1, m} must have 

length > m > n/2 ,  and hence cannot be a fiber of an interval q-renormalization 

unless q -- n.) 
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F i g u r e  12. Stefan cycles for n = 8. 

(11.7) T h e o r e m  (cf. [ALS], Theorem 1.1). Let n = 2% with r odd, and let 

c~ E Cn. The following conditions are equivalent 

(a) c~ e Pn, i.e., C,~(~r) = {c~}. 

(b) There is an interval self-map f such that C ( f )  = {cr}. (Hence C(c 0 = 
{o}.) 

(c) c~ satisfies the Block condition (11.4) of level 2 ~, and, on the (r-element) 

orbits of cr 2~, c ~2~ is a Stefan cycle (11.6) on each of ihem, and cr is monotone 

on all but one of them. 

Under the above conditions, even without the monotonicity condition in (c), 

we have 

(1) IRen([n],cr) = {1 ,2 ,22 , . . . ,2  e,n}. 

(11.8) C o m m e n t s .  For non-primary cycles, forcing can sometimes move con- 

trary to the Sharkowskii ordering. For example Block [B1] showed that,  for 

e > 2 ,  

E (62- - P2~) ===:> C2~-~.3(~) r O. 

Moreover, Jungreis [Ju] has given an algorithm, in terms of itineraries, for de- 

ciding whether ~ = >  r for c~, r E C (of. [BCMM] as well). 





Chapter III 

Spherically Transitive 

Automorphisms of Rooted 

Trees 

O. M o t i v a t i o n .  

Let (If ,  f )  be a linearly ordered dynamical  system, as in (I, (2.4)), with 

interval renormal izat ion index 

(1) q : q (K ,  f )  = (ql, q2, q3 , . . . )  (finite or infinite), 

as in (I, (2.9)). Pu t  m ,  = q[n] = qlq2""qn and X,~ = Z/mnZ .  Then  we have 

the inverse sequence of group homomorphisms  

(2) x0 = {x0) ~' x l  ' ~ -  - . .  ~ p x~_ l  '~ -  x~  ' ~ -  . . .  

Let k0 �9 K have a dense f -orb i t .  Then  there is a unique interval m~-re- 

normal iza t ion  

(3) r : (K,  f )  ~ (X~, ~ )  := ( Z / m n Z ,  +1) ,  

such tha t  Cn(k0) = 0. Then  we have p o r = Cn-1 and so the interval renor- 

mal iza t ion  quotient  

(4) r : (K,  f )  , (X,  ~) := (Zq, +1) ,  

where )~ = Zq  is the inverse limit of (2). 

In this chapter  we take the point  of view tha t  (2) defines a "rooted tree" 

X,  with ver tex set I_In>0X,~, root  x0, and for n > 0, x E Xn is a neighbor of 

p(x) �9 Xn-1. Then  we can identify 2 = l imXn with Ends(X) ,  the space of ends 

of X (or leaves of X if X is finite). Furth~er the an in (3) assemble to define an 
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automorphism a of the rooted tree X, inducing the adding machine +1 on ~q, 

identified in (4) with )( .  

So far this identification accounts only for the topological dynamics of (K, f )  

and not the order structure. The linear order on K defines one on each X,~ so 

that  r : K , X ,  is weak order preserving, and then each p : X,~ ~ X,~-I 

is likewise. This order structure defines (and is almost equivalent to) a planar 

embedding of X, up to isotopy (cf. (2.4) below). For example, we may take an 

order preserving embedding of X,~ into the horizontal line y = - n ,  and then join 

z E X,~ to p(x) E Xn-1  by a euclidean line segment (See Figure 13). 

0 

0 1 2 3 4 5 6 7 8 9 10 11 

F i g u r e  13. The rooted tree with q = (2, 2, 3) (see (3.1)). 

Let a be an automorphism of the rooted tree X. Then a is equivalent to a 

sequence of permutations a,~ of X,~ such that 

(5) p o a n = a n _ l o p  f o r n > O .  

For N > 0, if a permutation aN of XN is given, then we can (uniquely) define 

cr, 6 Xn satisfying (5) for 0 < n < N,  iff 

(6) aN permutes the (interval) fibers of p N-~ : X N  , Xn for 0 < n < N. 

If aN is transitive on X N  then the an on X ,  (0 < n < N) will be likewise, and 
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then the condition (6) is clearly equivalent to the condition 

(7) {ml, m2,. . . ,  ran} C Iae~(XN, O'N). 

Thus an automorphism ~r of X which is "spherically transitive", i. % transitive on 

each Xn, defines a homeomorphism ~ of the linearly ordered space X = Ends(X) 
such tha t  

(8) { 1 , m l , m 2 , . . . , m n , . . . }  C IRen(X.,~). 

This motivates our group theoretic study, in this and the following chapter, 

of spherically transitive automorphisms of rooted trees, and of the structure of 

the  au tomorphism groups of such trees. 

1. R e l a t i v e  a u t o m o r p h i s m  g r o u p s  o f  t r e e s .  

(1.1) G r a p h s  a n d  t r e e s .  Our graphs are simplicial. Thus a g r a p h  X consists 

of a set, also denoted X,  of v e r t i c e s  and a set E X  of two-element subsets of X, 

called edges .  Two vertices x, y E X are said to be a d j a c e n t  if {x, y} E EX.  A 
p a t h  (of l e n g t h  n from x0 to x~) in X is a sequence of vertices (x0, x l , . . . ,  x~) 

such tha t  xi and Xi+l are adjacent for each i. The path is r e d u c e d  (or non- 

reversing) if xi-1 ~ xi+l for 0 < i < n. The path  is c losed  if x0 = x . .  Infinite 

paths are defined similarly. For a good general graph theory reference see [Boll. 

We call X c o n n e c t e d  if X r 0 and any two vertices x, y are joined 

by a path; then the shortest length, d(x,y), of such a path defines a met-  

ric on X. A graph X is a t r e e  if X is connected and contains no reduced 

closed paths of length > 0. In this case, for any x, y E X, there is a unique 

reduced path  from x to y, of length d(x, y); the underlying (linear) graph of this 

pa th  will be denoted [x, y]: 

X:X 0 X 1 X 2 Xn. 1 X:Yn ' n:d(x,y). 
[y] X~ . (7 C) C~ , , ,  - - 0  0 

F i g u r e  14. A reduced path [x, y] of length n = d(x, y). 

(1.2) R e l a t i v e  a u t o m o r p h i s m  g r o u p s .  Let X be a graph. Then an auto-  

m o r p h i s m  of X is a bijection from X to itself which preserves edges. The 

automorphisms of X form a group which will be denoted G(X). 
Let Y C X be a subgraph. Thus, Y is a graph whose vertex and edge sets 

are subsets of those of X. The s t a b i l i z e r  o f  Y in G(X), denoted G(X, Y), is 
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defined by  

G(X,Y) = {g ~ G(X) I gY = Y}. 

There  is a na tu r a l l y  defined res t r ic t ion  h o m o m o r p h i s m  

x 

rm~ : c ( x ,  Y) , c (Y) .  

I ts  image  and kernel  are denoted  

G(x I .)= Im(res~), ~nd 

c ' ( x , y )  = Ker(r~s:) 

= { g c C ( X )  l g y = y  for all ~ e Y } .  

W h a t  follows is an analys is  of these groups in the  case in which X and  Y are 

trees.  

(1.3) N o r m a l  t r e e s  t o  a s u b t r e e .  Let X be a tree and Y C_ X a subtree .  For  

x E X there  is a unique y = p(x) E Y nearest  to x, i.e., , a unique y E Y such 

t h a t  Ix, y] N Y = {y}. Th is  defines a re t rac t ion  p : X ) Y of ver tex  sets. For  

y E Y,  p - l (y )  is the  ver tex  set of a sub t ree  Ny of  X such t h a t  Ny r Y = {y}. 

We view Ny as a r o o t e d  t r e e ,  (cf. (2.1)) wi th  root  y, and  call i t  the  n o r m a l  

t r e e  t o  Y i n  X a t  y. 

qy. 

F i g u r e  15.  Normal  subtrees.  

(1.4) T h e  " w r e a t h  p r o d u c t "  s t r u c t u r e  o f  G(X, Y). Let X be a t ree and  Y 

a subt ree .  Then  there  is (cf. (1.2)) an exact  sequence 

(1) 1 ~ G I ( X , Y )  ) G ( X , Y )  ~ , Q  ,1 

x 

where  r = resy, and Q = I r a ( r )  = G(X IY) < G(Y). We shall  show t h a t  (1) 

sp l i t s  as a k ind  of  mu l t i p l e  wrea th  p roduc t .  
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First note that,  with the notation of (1.3), we evidently have 

(2) GI(x 'Y) : YI G(Ny,y). 
yEY 

Let YQ denote a set of representatives of the Q-orbits on (the vertices of) Y; 

so that,  YQ ~ Q \ Y.  Thus 

Y = H Q . y .  
yEYQ 

Using (2) this gives rise to an initial factorization, 

(3) GI(x'Y)-- I I  I I  C ( g z , z ) .  

yEYQ zEQ.y 

Now 
Q. y = G(X ,Y ) .  y ~- G(X,Y) /G(X,Y)u  

where G(X, Y)y denotes the stabilizer of y in G(X, Y). 
Let Sy C G(X,Y)  denote a set of cosets representatives for 

G(X,Y) /G(X ,Y)y  which contains 1. For z E Q "y there is a unique Sz E Sy 
such that  z = szy. Thus, sz furnishes an isomorphism of rooted trees 

sz:N  ,Nz. 

Let g E G(X,Y) ,  y E YQ, and z E Q . y .  We have the (not necessarily 

commutative) diagram of isomorphisms 

(4)g,; 

Nz g ) 
% F 

Sz 8gz 

Let 

= {g E G(X,Y)]  all diagrams (4)g,z commute }. 

We have the following properties: 

(i) Q is a subgroup of G(X,Y),  

(ii) Q A G  I ( X , Y ) = I ,  

(iii) r((~) = Q. 

Properties (i) and (ii) are immediate. For (iii), suppose that  we are given q E 

Q < G(Y). We must extend q to an automorphism ~ E Q of X. For y E YQ and 

z E Q - y define ~ on Nz to make 

N~ ) Nqz 
% F 
8z 8qz 
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commute. This clearly defines ~ satisfying our requirements. 

The above properties show that r : Q , Q is an isomorphism, and so 

(5) G(X,Y) = GI(X,Y) * O '~ GI(x, Y) * Q 

where x is the usual semidirect product notation. 

The isomorphisms s, : Ny , N, define conjugation isomorphisms 

ad(sz): G(Ny, y) , G(N,, z), and these assemble to give an isomorphism 

(6) ~(Ny, v) ~~ ' 1-I G(N~, z). 
zEQ.y  

The isomorphism (6) is Q-equivariant for the conjugation action on the right, 

and the action by permutations of Q .  y = r y on the left. Combining (3), (5), 

and (6), we obtain an isomorphism 

(7) G(X'Y) -~ ( HyeQ\YG(Ny'y)Qy) x Q 

where Q = G(X Iv) = Im(G(X, Y) ~% G(Y)) acts on G(Nu, y)qU via its per- 

mutat ion action on Q.y. The isomorphism carries Ga(X, Y) to H G(Nu' y)QU. 
y E Q \ Y  

2.  R o o t e d  t r e e s  a n d  t h e i r  e n d s .  

(2.1) R o o t e d  t r e e s ,  ends ,  a n d  o r d e r  s t r u c t u r e s .  A r o o t e d  t r e e  (X, x0) 

consists of a tree X and a designated vertex x0. Let d denote the edge path 

distance on X. Then let X~ denote the n - sphe re ,  

X,~ = {x �9 X ld (xo , x )  = n} 

and denote by B~ the n-bal l ,  

B~ = {x �9 x I ~(xo, x) < n} = Xo I I  Xl I I  . . . I I  x , .  

We view Bn as (the vertices of) a subtree of X. 

For x �9 Xn, n > O, [x0, x] NXn-1 is a single vertex, which we denote p(x). Thus 

we have an inverse sequence 

(1) X o = { x o } ( P  X a , P  X 2 ~  . . . .  X , _ I ~ X , ~ - - . - .  

associated to (X, x0). Conversely (1) determines (X, x0):  X = I I ,  X , ,  and the 

edges are all the sets {x,p(x)}, x �9 X,~, n > O. 
If (X' ,  x~) is another rooted tree, with inverse sequence 

pl pl p~ 
(1') X~ : {x~}, X ~  ( R E ( . . . .  X n _  1 +""- X n ( " ' "  
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1 ~(2 '~3 

0 1 2 3 4 5 6 7 8 9 10 11 

F i g u r e  16. n-bMls for the rooted tree X(2, 2, 3) (see (3.1)). 

Then a m o r p h i s m  f :  (X, x0) , (X' ,  x~) o f  r o o t e d  t r e e s  is just a sequence 

of maps 

A : x ~  , X ' ( n > 0 )  

such that  pJf,~ = f,~-lP for all n > 0. In particular an automorphism g E 

G(X, xo) is a sequence of permutations gn of Xn such that pgn = gn-lP for all 

n > 0. The restriction monomorphisms G(X, xo) , G(B,~, Xo) define a map 

(2) G(X, xo) , li_m G(B,~, xo), 
n 

which is evidently an isomorphism. If X is locally finite (all vertices have a finite 

number of adjacent vertices) then each B~ and G(B,~, xo) is finite, and so (2) 

shows that  G(X, xo) is naturally a profinite group. 

(2.2) E n d s  a n d  leaves  o f  (X, x0). By an z0-ray  in X we mean a maximal 

non-reversing path L in X starting from x0. Thus, L = (x0, xl,  x2 , . . . )  with 

xn E Xn and p(xn) = xn-1. Either the sequence is infinite, and so represents 

an e n d  (a cofinal set of paths), or else it is finite, L = (x0, X l , . . . ,  xn), and, by 

the maximality of L, p-l(xn) = O. In the latter case x .  is called an e n d p o i n t  
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(or leaf)  of (X, xo), and x~ determines the xo-ray: L = [Xo, x~]. We put 

and 

Ends(X) = {infinite xo-rays in X)  

= li__m Xr~ 
n 

r(X, x0) = {x0-rays in X} 

= Ends(X)m{endpoints o/(X, x0)}. 

While g(X,  x0) depends on x0, it is easily shown that Ends(X) does not, up 

to canonical isomorphism. 

(2.3) T h e  m e t r i c  on  g(X, x0) is defined by 

d(L,L') = i n f { 1  [ n A B ,  = L ' N B , , n  >_ 0}. 

This makes g(X,  x0) a compact totally disconnected metric space with Ends(X) 
a closed subspace, and the end points a discrete subspaee. The group G(X, xo) 
acts faithfully and continuously on g(X, x0) as a group of isometries. The above 

metric on Ends(X) depends on x0, but the corresponding topology does not. 

(2.4) P l a n a r  e m b e d d i n g s  a n d  o r d e r  s t r u c t u r e s .  Let X be a graph. For 

x E X,  let E0(x) denote the set of oriented edges e = (z, y) with initial vertex 

Oo(e) = x. The map e ~-* 01(e) = y is a bijection by which we sometimes identify 

E0(x) with the set of neighbors of x. 

Suppose that X is embedded, as a simplicial 1-complex, in the plane. Then 

by intersecting each edge e E E0(x) with a small circle centered at x we obtain a 

cyclic (counterclockwise) ordering on E0(x). This set of cyclic orderings on the 

various E0(x) depends only on the isotopy class of the planar embedding. 

Suppose that X is a tree. Then if, conversely, we are given a cyclic ordering 

on each E0(x), there is a planar embedding, unique up to isotopy, inducing them. 

To see this, first fix a base point x0 E X, so that (X, x0) is a rooted tree, 

with inverse sequence 

(1 )  X 0  : { x 0 }  , p X1 (p . . .  (P X n _ l  (p Xn  (p . . .  

Then X1 ---- p - l ( x 0 )  --~ Eo(xo) has a given cyclic order. On the other hand, 

i f x  E X . ,  n > 0, then E0(x) = p - l ( x )  ]_I {P(X) }, so relative to the base 

point p(x), the cyclic order on E0(x) induces a linear order on p-l(x). Indeed, 

it is thus clear that  giving a cyclic order on each Eo(x) is equivalent to giving a 

cyclic order on X1 = p - l (x0)  and a linear order on each p - l ( x )  for x r x0. 
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Now fix a linear order on X1 consistent with the given cyclic ordering,  e.g. 

use <~ for some x E X1 (cf. (I,2.2)(9)).  Then  there are unique linear orders 

on each X,~ (n > 0) such tha t  p : X ,  ~ X , - 1  is weak order preserving 

(x < y ~ p(x) < p(y)), and the ordering on X~ induces the given linear 

order  on p - l ( z )  for each x E X , _  1. These are constructed by a s t ra ight forward  

induct ion.  

We shall call such a s t ructure  an o r d e r  s t r u c t u r e  on the rooted tree (X,  x0). 

It  consists in a l inear order on each X~ so tha t  x < y in X~ implies p(x) < p(y) 
in X ~ _ I .  The  discussion above shows tha t  such a s t ruc ture  is equivalent  to a 

l inear order  on Eo(xo) and a cyclic order on Eo(x) for all z # z0. 

Given an order s t ruc ture  on (X, x0) we can embed  X in the plane as follows. 

For n > 0 let Ln denote the horizontal  line (y = - n )  at  distance n below 

the x-axis,  ordered by its x-coordinate .  For each n, choose an order preserving 

embedd ing  of X,~ into L,~. (We assume,  say, tha t  X is countable.)  For an edge 

e = (x,p(z)) ,  with z E X~,  n > 0, embed  it using the euclidean segment  f rom 

x E L ,  t o p ( x )  E L , -1 .  Since x < y i m p l i e s p ( z )  < p(y), the fibers o f p  are 

intervals  relat ive to the given orderings, so the above euclidean segments  never 

mee t  outside their  endpoints ,  and so furnish the desired p lanar  embeddings  of  X.  

T h e  cyclic (counterclockwise) order on Eo(x) defined by this embedding  agrees 

with the one with which we s tar ted.  

(2.5) Ends (X)  as  a l i n e a r  p r o f i n i t e  s p a c e :  Let (X,  x0) be a locally finite 

rooted  tree wi th  inverse sequence 

X 0 _-- { x 0 }  ,P X1 (P . . . X n _ l  P-v-~---Xn (P . . .  

For x E X  we put  

(1) q(x) = I p - l ( x ) ] ,  

a nonnegat ive  integer. Suppose tha t  we are fur ther  given an order slructure on 

(X, x0) (cf. (2.4)). This  then defines a linear order on the profinite space 

Ends (X)  = l i m X ,  
n 

so t h a t  the project ions  Ends (X)  ) X,~ are weak order preserving.  

We propose  to relate Ends (X)  to a profinite space K C [0, 1]. For this we 

use C a n t o r  d i s s e c t i o n s  defined as follows. 

Let  q be a posi t ive integer. Given a real closed interval J = [a, b], a < b, of  

length 

(2) l([a, b]) = b - a, 

we fo rm q evenly spaced subintervals  

(3) J(q,j) = [aj, bj] (j = 1 , . . . ,  q), 
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each of length 

(4) bj - aj = ( b -  a ) / ( 2 q -  1) 

with 

(5) a =  al  < b l <  a2 < b2 < . . - <  aq <bq = b, 

and the separa t ing  intervals each also of  length 

(6) aj+l - bj =- (b - a) / (2q - 1). 

We put  

(7) K q ( J )  = (J(q,1) H""  H J ( q , q ) )  C J .  

Now we inductively define a c o m m u t a t i v e  d iag ram 

C H A P T E R  III. S P H E R I C A L L Y  T R A N S I T I V E  A U T O M O R P H I S M S  

( . . .  , K,~_I ( Kn ( " "  

7rl 

by the following conditions: K0 = [0, 1]; the m a p s  Kn , Kr,-1 are inclusions 

of  the  subsets; the m a p s  7r : K ,  ~ X~ weak order preserving; the fibers 

I t ( x )  = 7r - l (x )  are closed real intervals; and for x E X , - I  with q(z)  > 0, 

(9) 7 r - l ( p - l ( x ) )  = Kq(~) (K(x) ) ,  

with the no ta t ion  of (7) above. Explicitly, if p - l ( x )  = {Xl < x2 < . . .  < Xq}, 

q = q(x),  in the given linear order on X,~, then 

(10) K ( x j )  = K(x)(q , j )  ( j  = 1 , . . . , q ) ,  

as in (3) above.  

From (4) above we see tha t  l ( K ( x j ) )  = t(K(,)) for xj E p - l ( x ) .  Adjust ing (2q(~)-1) 
nota t ion ,  we see t ha t  for x E X,~, 

f K ( x )  C K ( p ( x ) )  and 
(11) 

l ( K ( x ) )  = l(K(p(~))) , 1 
( 2 q ( p ( x ) ) - l )  : I'Ii=l ( 2 q ( p ' ( x ) ) - - l ) "  

Now passing to inverse l imits in (8), we obta in  a surjective continuous m a p  

(12) ~ :  K ( X ,  x o ) : =  N Kn , E n d s ( X )  = li_mX.. 
n 

An element  L E E n d s ( X )  corresponds to an infinite ray 

(13) i = ( X O ,  X l , . . .  , X n , . . . ) ,  X n  E X n ,  p ( W n )  = X n - 1 .  

K 0 +---- /i" I 

Xo = {xo} p Xl 
m v v 

�9 " " A n - -  1 A n  " " " 
P P P P 
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We have 

(14) ~ - I ( L )  = N K ( x , ) .  
n > 0  

In view of (11) this is an interval of length 

(15) l (9-1(r ) )  = l - I ( 2 q ( x , ) -  1) -1, 

n > 0  

which equals zero unless, for some no q(x,)  = 1 for all n > no. This means that 

L is an isolated ray of X,  i.e., an isolated point of Ends(X) .  

We now summarize part of the above discussion. 

(2.6) P r o p o s i t i o n .  Let (X, xo) be a locally finite tree with an order structure 

(cf. (2.4)). Then there is a closed subset 

K = K ( X ,  x0) C [0, 1] 

and a map 

: K --~ Ends (X)  

which is weak order preserving in the sense of (2.5)(12). g Ends(X) has no 

isolated points then K is a Cantor set and "~ is a homeomorphism. 

(2.7) L i f t i n g  a u t o m o r p h i s m s  to  K = K ( X ,  Xo). Keep the assumptions and 

notation of (2.5). Let g E G(X,  Xo) be an automorphism of (X, x0). For each 

n > 0, g induces a permutation of X~, which we lift to a homeomorphism g,  of 

K. = I I  K(x) 
xEX,,  

so that  g~ : K(x)  , K(g(x))  is the unique increasing affine linear homeomor- 

phism. 

If n > 0 and y = p(x) then g(y) = g(p(x)) = p(g(x)) and we have K(x )  C 

K(y) ,  and g~(K(x))  = K(g(x))  C K(g(y))  = g~- l (K(y) ) .  However g,  and g , -1  

do not agree on I f (x)  (unless g(y) = 1). If 

L = ( x o , x l , . . . , x , , . . . )  E Ends(X)  

then it follows that,  on 7r-l(L) = N K ( x , ) ,  the gn converge to a well-defined 

n:>0 

function 9K : 7r-l(L) ~ r - l ( g ( L ) )  which, when 7r-X(L) is not a point, is an 

increasing affine linear homeomorphism. 

If h E G(X,  xo) is another automorphism then it is easily seen that  (hog) ,  = 

h,~ o g,  for all n, and so (h o g)K = hK o gK. Thus, g ~-* gK defines an action of 

G(X,  xo) by homeomorphisms on K so that r :  K , Ends (X)  is equivariant. 
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3. Spherically homogeneous rooted trees, X(q). 

(3.1) S p h e r i c a l  h o m o g e n e i t y .  Let (X,  x0) be a rooted tree with inverse 

sequence as in (2.1). Assume tha t  each Xn is finite. For x E X we put  

q(x) = l p - l ( x ) [  as in (2.5). We call (X, x0) s p h e r i c a l l y  h o m o g e n e o u s  if, for 

each n > 0, q(x) takes a constant  value, which we denote qn, for all x E X n - 1 .  

We then  put  

q = (ql,q2, q3 , . . . )  

and call q the s p h e r i c a l  i n d e x  of (X, x0). 

Note tha t ,  for each n, qn is an integer ~ 0, and qn = 0 implies tha t  qm = 0 

for all rn > n. We say q is f i n i t e  if some qn = 0, and i n f i n i t e  otherwise.  

(3.2) q d e t e r m i n e s  (X, x0). Indeed let (X, x0) and ( X ' ,  x~) be spherical ly 

homogeneous  with the same index q = (ql, q2, q3, . . . ) .  Then  we can construct  

an i somorph i sm 

f = (f,~),~>0 : (X, x0) , (X~, x~) 

/ A s s u m e  by induct ion on n, s ta r t ing  with fo(zo)  = Xo. 

Xo (P X l  ~ ( P Xn-1 ~ Xn (v 

(1) fo I f l  I f ~ - i  I fn 1 
PJ PJ P~ I PJ PJ 

Xo I ( X l  ~ ~ ( X n - i  *--- Xn  ~ c 

where we have bijections f0, . . . ,  f ~ - i  mak ing  (1) commute .  For y E X ~ - l , p - l ( y )  

and p~- l ( f ,~_l (y) )  both  have cardinal i ty  q~, so we can define fn in such a way 

as to induce a hijection p - l ( y )  ) P'(J '~-I(Y))  for each y E X,~-I .  

This  observat ion pe rmi t s  us to denote (X,  x0) by X ( q )  or X(q l ,  q2, q3 , . . . ) .  I t  

is a spherical ly homogeneous  rooted tree defined up to (non-unique) i somorph i sm 

by q. 

(3.3) T h e  p r o d u c t  m o d e l  o f  X ( q ) .  For an integer m > 0, put  

E/mZ ifm>O 
(1) C m =  0 i f m = O  

so t ha t  [ C,~ I= m. Let q = (ql q2, q3,..-) be a s p h e r i c a l  i n d e x ,  i.e., , for 

each n, q,  is a nonnegat ive  integer, such tha t  q,  = 0 implies tha t  q,n = 0 for all 

m > n. Set t ing q0 = 1, we put  

(2) X ,  = Cqo • Cq, • . . .  x Cq~ (n k O) 

and, for n > O, let 

p : Xn ) X~_ 1 
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denote projection away from the last factor. Clearly, 

X0 : {x0} ~ Xl ~ --- ~ X n - 1  ( p 

is a model of X(q) .  

Note that  

(3) I X~ I = q[n] := qo "ql""qn 

and 

(4) 

P 
Z n  ~ " ' '  

Ends(X(q)) = H Cq 
n>O 

If q is finite, say that  q~ > 0 and qm -- 0 for m > n, then E(X(q))  = X,~ = 

{endpoints of X(q)}.  If q is infinite then X~ ,X~-I  is surjective for all n, so 

that S(X(q) )  -- Ends(X(q)),  and the natural projection Ends(X(q)) > Xn 

is surjective for all n. 

(3.4) T h e  cycl ic  m o d e l  o f  X(q) .  Keep the notation q -- (q~,q2, q3,. . .) ,  

q0 = 1,qM = q0 " q l " " q ~ ,  etc. of(3.3).  Put  

Yn = Cqt,,l. 

Define 

p:Y~ 'Y,~-I ( n > O )  

to be the natural projection 

Z/q[n]Z , 2~/q[~- 1] 77, 

if q~ > 0, and otherwise the unique map from Yn = 0 (cf. (3.3)(1)). 

Clearly 

Y 0 = { y 0 } ,  p Y1 ,  p Y2 . . . .  , Y ~ - I  p Y . ,  . - -  

is a model of X(q)  which we shall here denote as Y(q). 

If q is finite, say q~ > 0 and qm -- 0 for m > n then 

E(Y, Yo) = {endpoints or (Y, Y0)} -- Y~ = Z / q  Mz .  

If q is infinite then 

(Y, Yo) = Ends(Y) = li_mZ/q[~]Z. 
n 

We shall denote this ring Zq, and call it the r ing  o f  q-ad ic  i n t ege r s .  
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(3.5) T h e  q-ad ic  a d d i n g  m a c h i n e .  With Y(q) as in (3.4) we define an 

automorphism o~ of Y(q) by c~,~(y) = y + 1 for y E Y,~ = ~/q["]E when q,~ > 0; 

otherwise Yn = 0. Since, for Yn # 0, p : Y,~ ~ Y,~-I is a ring homomorphism, 

we h a v e  

VO~,~(y) = p(y + 1) = p(y) + 1 = c~,~_l(p(y)), 

so a = (c~,~) defines an automorphism of Y(q), which we call the q-ad ic  a d d i n g  

machine .  Note that  o~ on Y,~ is a cyclic permutation of order q['q. 

(3.6) P r o p o s i t i o n .  Let (X, xo) be a locally finite rooted tree, with automor- 

phisra group G = G(X,  xo). The following conditions are equivalent. 

(a) (X,  xo) is spherically homogeneous, 

(b) G acts transitively on X~ for all n >_ O, 

(c) a acts transitively on g (X ,  xo). 

P r o o f .  If g E G and x E X then q(gx) = q(x). Thus, if G acts transitively 

on X,~ then q is constant on Xn, whence (b) implies (a). For the converse, if 

(X, x0) has spherical index q, we can use the q-adic adding machine on Y(q) 

(cf. (3.5)) to show transitivity on each X,~. To show that (b) implies (c), if 

q is finite then g(X,  x0) = X,~ for some n, whence (c). If q is infinite and 

E C_ E n d s ( X )  = $ (X ,  xo) is a G-orbit then, by (b), E projects onto Xn for all 

n. It follows that E is dense in Ends (X) .  But, since G is compact, E is closed, 

whence E = Ends (X) .  Finally, to prove (c) implies (b), we simply observe that 

each nonempty X,~ is a G-equivariant quotient of (X, x0). 

4. Spherically transitive automorphisms. 

(4.1) N o t a t i o n .  We fix a spherically homogeneous rooted tree (X, x0) of spher- 

ical index q = (ql ,q2,q3. . . ) .  For n > 0 put 

q[_< n] = ( q l , q 2 , . . . , q , , 0 , 0 , 0 , . . . )  

q [ > n ]  = (qn,qn+l , . . . )  

Analogously, we write q[> n] for q[> n + 1], and q[< n] for q[< n - 1] (when 

n > l ) .  
For x E X,~ let N~ denote the normal tree to Bn in X at x (cf. (1.3)). Thus 

N~ is defined by the inverse sequence: 

N~ : {x} ~ - - p - l ( x )  ~--  p-~(x) . . . . .  p - r e ( x ) ,  . . .  

Clearly 

(Bn, xo) ~- X(q[< n]) 
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and 

(Nx, x) ~ X(q[> n]). 

Note that  the latter isomorphism depends only on n, not on x E Xn. 

Thus, writing A(q) for G(X, xo) we 

G(B, ,  xo) ~- A(q[_< n]) and G(Nx, x) ~- A(q[> n]). 

Put  
G(n) = Ker(G(X, xo) res G(Bn ,xO))" 

Then 

h ave 

a(n) = 1 - Ia (Nx ,x )  
x E X ~  

~- G(N,  ) A( [ ]) - -  , x  x "  ~-  q > n  x .  

for any x E X , .  Furthermore, we claim that G(X, xo) ) G(B,~, xo) is sur- 

jective. In fact, to extend go E G(Bn, xo) to g E G(X, xo) we require, for each 

x E Xn, an isomorphism 

Such g. exist since all of the rooted trees (N~, x) with x E X~ are isomorphic 

(to X(q[> n])). 

We can calculate the finite group order 

T(n) =l G(B,~, Xo)t=l A(q[>_ n]) I 

as follows, starting with T(0) = 1. For n > 0 we have 

A(q[_> n]) ~- ( S q . ) X ~ - I  :~ A(q[> n - 1]) 

T(n) = ( q n ! ) ~ " - ' l . T ( n - 1 )  

= (qn ! )q t " -q .T (n -1 )  

= I~(qi!)q I'-ll . 
i=1 

and so 

Now, from (1.4)(7) we obtain: 

(4.2) P r o p o s i t i o n .  For each n > O, G = G(X, xo) admits the wreath product 
decomposition, 

G = a (n )  ~ a (Bn,  xo) 

~- a (Nx ,  x )x .  ~ a ( B . , . o )  

- A(q[> n]) x" )~ A(q[< n]). 

(for any x E Xn) 
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Moreover, the order of A(q[>_ n]) is 

r t  

IA(q[> n])[= I-~(qi!) q['-l] . 

i = 1  

(4.3) P r o p o s i t i o n .  Let g E G(X,  xo) generate the cyclic group (g). The 

following conditions are equivalent. 

(a) The cyclic group (g) acts transitively on X,~ for all n > O. 

(a I) For all nonempty X~, g Ix .  has order 

IX,~ I = q['q = qoqlq2"" "q,~ (q0 = 1). 

(b) For all nonempty Xn the cyclic group (gqE.-ll) acts trivially on Xn-1  and 

transitively on each fiber of p : Xn , X~- I .  
(c) Every (g)-orbit on s  xo) is dense. 

(c') The cyclic group (g) acts on E(X, x0) with a dense orbit. 

Under these equivalent conditions we call g spher i ca l ly  t r ans i t i ve .  

P roof .  Suppose that  X~ ~ O and put q =] X~ ]= qM. Then (g) is transitive 

on X~ iff g ]x~ is a q-cycle iff g Ix, has order q, whence (a) ~ (a'). Write 
q = q~ �9 q,~ where q~ = q[n-1] =] Xn-1 I, and observe that p : X,~ ) X,~-I is 

(g)-equivariant with each fiber of cardinal q~. Assuming (a), then gq' is trivial 

on X~-I  and on X~ is a product of q~ disjoint q~-cycles. Since gq' leaves each 

(cardinal %) fiber of X~ -----+ X~-I  invariant it must be transitive on each such 

fiber, whence (a) :=~ (b). 

Assume (b) and put m,~ = order of g Ix. .  Then m o =  1 and we prove 

(b) ~ (a') by showing inductively that m,~ = q['~]. Assuming that m,~-I = 

q[~-l] = q~, it follows from (b) and the discussion above that  gq' Ix.  has order 

qn, whence mn = q~qn = q[n], as claimed. 

For (a) ==~ (c), consider a (g)-orbit E C s x0). For every nonempty X,~, 

s  x0) ~ X,~ is defined and (g)-equivariant, so E maps onto X,~ by (a). 

Since s x0) is the inverse limit of such X~, it follows that E is dense. 

Trivially (c) ~ (c'). For (c') ~ (a) let E C s  xo) be a dense orbit. If 

X,~ r 0 then E maps (g)-equivariantly onto X~, hence X,~ is a (g)-orbit. 

(4.4) P r o p o s i t i o n .  Let g E G = G(X,  xo) and for each n > 0 let (c,~) denote 

the condition 

(cn) I f  Xn ~s ~ then (g) acts transitively on Xn,  and, for all x E Xn,  gqN is 

spherically transitive on ( Nz, x). 
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The following conditions are equivalent: 

(a) g is spherically transitive. 

(b) The condition (c~) holds for all n >_ O. 
(b') The condition (c~) holds for some ~ for which X~ r ~ >_ O. 

Proof .  Note that  (a) = (co). We first show (co) ~ (cl): Say X1 r 0. Then g is 

transitive on X1 and if X~ ~ O then g is transitive on X .  and p~-1 : X~ ---* X1 
is (g)-equivariant. It follows that gql is trivial on X1 and transitive on the fibers 

of X~ ) X1. (See the proof of (a) r (b) in (4.3).) It follows that  for each 

x E X1, gql is transitive on the ( n -  1)-sphere of (Nx, x). This shows, by (4.3) 

(a), that  gqi is spherically transitive on (Nx, x) for x E X1, hence (cl). 

(c~-1) ~ (cn): Say X~ ~ O. Put q = q[~] = qlqn with q~ = q[,~-l]. By 

(cn-1), g is transitive on Xn-1 and gq' is transitive on each fiber of Xn ) Xn-1,  

so g is transitive on X~. Further, for x E X~, applying (co) ~ (Cl) to gq' on 

(Np(~), p(x)), we see that gq = (gq')q" on (N~, x) is spherically transitive, whence 

(c,-1)  ~ (c,) (if X~ r 0): By ((4.3) (a)) it suffices to show that  g acts 

transitively on each nonempty Xm. For m = n this is part of our hypothesis. 

For m < n, Xrn is a g-equivariant quotient of Xn. If m > n then Xm ~ Xn is 

g-equivariant, g is transitive on Xn and by (cn), gqH is transitive on each fiber 

of Xm ) Xn,  whence g is transitive on Xrn. 
Clearly the proposition follows from the implications proved above. 

(4.5) P r o p o s i t i o n .  (Existence.) The q-adic adding machine (3.5) defines a 

spherically transitive element g E G(X,  xo) and (g} acts freely (with dense orbits) 

on E(X, x0). 

Proof .  In the cyclic model Y = Y(q) of (3.4), Y~ = 25/q[~]Z for q~ > 0 and 

g(y) = y + l  for y E Yn. Clearly g is transitive on Y,~, so g is spherically transitive. 

If q~ > 0 for all n then 

E(Y, yo) = Ends(Y)  -- limZ/q[n]Z ---- ~q,  
n 

where ~q denotes the ring of q-adic integers (3.4). The action of g on ~q is 

translation by 1, so (g) acts freely with dense orbits. 

(4.6) T h e o r e m .  Let g E G = G(X, xo) be spherically transitive. 
(a) (Conjugacy) I f  g' C G is also spherically transitive then gl is G-conjugate 

to g. 
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(b) The centralizer Za(g) is the closure (g) of the cyclic group (g) generated 
by g. 

P r o o f  o f  ( b ) .  Let Z = Za(g) and H = (g). Clearly H _< Z and bo th  are closed 

subgroups  of G. To show their  equal i ty it suffices to show tha t  they have the same  

restr ic t ion to Bn, or equivalently,  to X,~, for each n _> 0. But  on Xn, gn -:- gix~ 

is a ( t ransi t ive)  qM-cycle ,  so (gn) (= r e s x . ( H ) )  is a l ready the centralizer of  g~ 

in the full s y m m e t r i c  group on X~. Thus  resx ,  (Z) < resx~ (H), whence (b). 

P r o o f  o f  (a): Since G is compac t  its conjugacy classes are closed. Thus  it 

suffices to show tha t  g'  can be app rox ima ted  by conjugates  of  g. For this it 

suffices to show tha t  for each n > 0, g and g' have conjugates  t ha t  agree on Bn. 

Since G , G(B,~, xo) is surjective (4.2) we can reduce to the case X = B~. 

Then ,  by induct ion,  g lB ._ land  g' lB._, are conjugate  in G '  = G(B,_~,xo) .  

Since G , G 1 is surjective we can replace g' by a G-conjuga te  and reduce to 

the case in which g' IBm_,= g IS~_~ �9 If  X~ = 0 we are done; thus assume tha t  

X ,  r 0. Consider  

p : T = X ~  ) S = X ~ - I .  

Pu t  q = q[ '~-q =[ S I. Then  g and g'  induce the same q-cycle on S and gq and 

g'q each act t ransi t ively  on all fibers o f p  : T ) S. For s E S put  T~ = p- l (s ) .  

Then  

G(n - 1) = Ker(G ~ C') = H Aut(T,). 
sES 

We conclude the p roof  by showing tha t  g' = hgh -1 for some h E G ( n -  1). This  

results f rom the next  l emma.  

(4.7) L e m m a  
s E S ,  

and 

Let p : T , S be a map of finite sets. Put T, = p - l ( s )  for 

G = Ant (p) := {g = (gr,gs) E Ant(T)  • Aut(S)  lpgr = gsP}, 

G 1 = Ker(G , Ant(S))  = H Aut(T,) .  

8ES 

Lel q =IS I. Let g,g' E G induce the same q-cycle on S and assume thai for 

some so E S, ga IT.0 and g'q IT.o are conjugate in Aut(Tso). Then g' = hgh -1 

for some b E G  1. 

P r o o f .  Ident i fy  S with ~ / q ~  so t ha t  g(s) = g'(s) = s + 1 for s E S and so = 0. 

Then  T = ]--[ses, g and g'  on T consist of bijections gs, g'8 : Ts ~ Ts+l and we 

seek h = (h , )~r  hs E Ant(T,) ,  such tha t  the d iagrams  

T, g', T,+I 
(1), h, I I h,+l 

gl 
T, , T,+I 



commute for all s E S. 

For integers s, 0 < s < q, define g[~] : To 

g~-I " gs-2 ""go  
(2) g[s] = identity 

Similarly, define 9' H. Then we have 

9 q ITo= g[q] and g 'q ]To= 9'[@. 

By hypothesis there is a k E Aut(To)  such that 

(3) 

Now define hs : T~ 

I kg[q] k-1  = g [q]" 

>T, ( f o r 0 < s < q )  by 

hs = g ' [ s l k - l g ' ~ .  

)T~ by 

if  s > O; 

i f s = O  

(4) 

We complete the proof by showing that (1), commutes for 0 _< s < q. 

Case  1: s # q -  1. Then 

t ) t - - i  
hs+lgs -= g [s+l]xg [s+l] g, 

, , . , - 1  , h 
= gsg[~lxg[,]  = g ,  ,. 

Case  2: s = q - 1. Then (1)q-1 takes the form 

Yq-1 gq-x To 
hq-a = gt[q_l]kg[-ql_l] 1 ~ ho = k 

Tq-1 g'~----: To 

We require that  

, k - 1  , (= g [q] g[q-l? 

(= kg[q]k-1), 

, , k - 1  kgq-1 ~- g q - lg  [q-X] g[q-1] 

i.e., that  
gt[q] -: kgq_lg[q_l]k -1 

which is just (3). 
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(4.8) Coro l l a ry .  The number of spherically transitive automorphisms of 

(Bn ,  x0) = X(q[>  n]) is 
n 

i : l  

P r o o f .  Let g E G ( B , , x o )  be spherically transitive. From (4.6) we conclude 
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that  the number of spherically transitive elements is IG(B~,xo)l/l(g)l,  so the 

corollary follows from (4.2). 

(4.9) S u b g r o u p s .  Let H and C be closed subsets of G. Since the subgroups 

C(r,) = g e 4 C  - -~  C(Br,, xo)) 

form a base for neighborhoods of 1 in G, it follows that 

H = N H ' G ( n ) ,  
r t  

and similarly for C. Hence, 

H A C = N ( H .  G(n) N C .  G(n)). 
~t 

These sets are all compact. Hence 

H n C  :/:~ 

if and only if 

if and only if 

where r : G  

H . G(n) A C . G(n) 7s 0 for all n >_ 1, 

r(H) A r(C) # 0 for aU ~ >_ 1, 

, G(B~, xo) is the restriction homomorphism. 

Taking H to be a closed subgroup of G and C the (closed) conjugacy class 

of spherically transitive elements (Theorem (4.6)) we obtain, using (4.3): 

(4.10) P r o p o s i t i o n .  For a closed subgroup H C_ G, the following conditions are 

equivalent. 

(a) H contains a spherically transitive element. 

(b) For each n >_ 1, H contains an element that acts transitively on X,~. 

5. D y n a m i c s  o n  t h e  e n d s  o f  X a n d  in terva l  renor-  
m a l i z a t i o n .  

(5.1)  D y n a m i c s  o n  g(X, xo). Assume that q~ > 2 for all n > 0. We shall use 

the product model X(q) (cf. (3.3)) for (X, x0). Thus, 

Xn ~- Cqo x Cql • . . .  • Cq,~ 
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where q0 = 1 and C,~ = Z / m E ,  and p : X,~ , X,~-t is projection away from 

the last factor. Order Cm so that 0 < 1 < . . .  < m - l ,  and then order each 

X,~ lexicographically, so that X,~ ~ X,~-I preserves the relation <. Relative 

to this order structure (cf. (2.4)) we have, as in (2.6), a homeomorphism 

K = K(q)  , s  = E n d s ( X ( q ) )  

from the "q-adic Cantor set" K C [0, 1]. The action of G(X(q))  on E(X(q))  

thus transports to a continuous action on K(q) .  

(5.2) T h e o r e m .  For g E G(X(q))  the following conditions are equivalent. 

(a) The subgroup (g) has a dense orbit in K(q) .  

(b) The subgroup (g) acts freely on K(q)  and all orbits are dense. 
(c) The action of g on K(q)  is topologically conjugate to the q-adic adding 

machine, a acting on ~q : li___mZ/q[n]Z by a(a) = a + 1. 
I I  

P r o o f .  That  (a) implies (c) follows from (4.6) and (4.5), noting that by (4.3)(c'), 

(a) is equivalent to g being spherically transitive on X(q) .  Clearly (e) ==a 

(b) ~ (a). 

(5.3) Let (K, f )  be a minimal ordered dynamical system, as in (I, (2.4)), with 

interval renormalization index 

(1) q = q(K,  f )  = (ql,q2, q3, . . . )  

as in (I, (2.9)). For n > 0 we put 

(2) mn -- q[n] = qlq2"' 'qn 

and 

{ Z /rnn~ f fmn  > O; 
(3)  x .  = 0 i f  m .  = o. 

Then, as in (3.4), we have the rooted tree X = X(q)  with inverse sequence 

(4) X0 = {x0} cp X1 ~ " " (  X n - 1  (P X n  ~ " - - ' ' "  

Fix a base point k0 E K. For each n >_ 0 with m~ > 0, let 

(5) r  : (K, f )  , (X, ,  a)  := (Z/m~Z,  +1) 
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be the interval m-renormalization such that  r = 0. Then as in (I, (2.10)), 

K 

the diagrams 

(6) 

r Xn 

\ l p  
Cn-1 

X n -  1 

commute.  Thus, the tree dynamical system (X, a)  models the "interval renor- 

malizable quotient" of (K, f). 
The order structure (linear or cyclic) on K induces a similar structure on 

each X~ so that  the maps r and p are weak order preserving. 

Suppose that  (I(,  f )  is infinitely interval renormalizable, so that  q~ > 0 for 

all n. Passing to the inverse limit in (4) we obtain a morphism 

r  (K, f )  ~ (2q, +1) = (Ends(X), o~) 

which is weak order preserving for the inverse limit order structure on Ends(X). 

If K is a compact  subset of ~ or S 1 then (cf. (I, (2.12))) r is surjective, and 

injective except perhaps for eountably many 2-point interval fibers. 

6. S o m e  g r o u p  t h e o r e t i c  r e n o r m a l i z a t i o n  o p e r a -  
t o r s .  

(6.1) A w r e a t h  p r o d u c t  c o n s t r u c t i o n .  Let X be a finite set with q elements, 

and Q a group of permutat ions of X such that  

(1) QC := the set of q-cycles in Q 7s O. 

Let H be a group and consider the wreath product 

G = H X  >~Q. 

For h E H x and x E X, we write h(~) C H for its x-component.  We identify 

h with its image (h, 1) in G. For g E Q we have (1,g)(h, 1)(1,g) -1 = (g(h), 1), 

where 

(2) 

Let 7r : G 

(3) 

Let 

g(h)(~) = h(g_l~) 

Q be the natural  projection, and put 

G~ = ~-I(Q 0 

g = (h, gl) E G r (h E H X,gl E Qr 



Then  

gq = ( h .  g l (h )  . . . . .  g~q-U(h) ,  1) E H X 

and  

(4) 

Thus,  for i = O , . . . , q -  1 

(5) g~gc% ) " q -1  = u~g(x)U i , 

where 

ui = h(~) . h (g ;%)  �9 - - h(g~-(,_~)~). 

gq (~) = h(~) �9 h(d-%) �9 �9 �9 h(g~-(~_~)~) E H.  
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(6.2) R e n o r m a l i z a t i o n  o p e r a t o r s .  Suppose  t ha t  we are given a f ami ly  p = 

( p x ) x e x  of group i somorph i sms  

(i)  : c H (x e X).  

Then  for g = (h, g i )  E G c as above,  we can define r e n o r m a l i z i n g  o p e r a t o r s  

R~ : G c , G by 

(2) R~(g)  = p-~l(g~))  E G. 

We call g a s i m u l t a n e o u s  f i x e d  p o i n t  o f  p if 

(3) RPx(g) = g, i.e., Px(g)  = g~x), f o r  all x E X .  

T h e  set of these fixed po in t s  is deno ted  

(4) F P ( p )  = {g E G ~ I P~(g) = gq for  all x E X } .  (~), 

Suppose  t ha t  g E G c and for some base po in t  x E X,  we are given an 

i s o m o r p h i s m  P0 : G ~ H such t ha t  Po(g) = g~x)" Then ,  wi th  the  n o t a t i o n  of 

(6.1)(5) ,  we can define pg:,~: = a d ( u i ) o  Po (for i = 0 , . . . ,  q -  1), and  it follows 

then  f rom (6.1)(5) t ha t  g E E P ( p ) .  

(6.3) U n i q u e n e s s  o f  p, g i v e n  g. Suppose  t ha t  g E G c is a s imul t aneous  fixed 
! 

po in t  for bo th  p = (P~)~ex  and  p' = (P~)~:ex, i.e., for x E X,  

! 

(1) p~(g) = gq = p~(g).  (~) 

P u t  

- 1 ,  A u t ( G ) .  ~x = Px Px E 
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Then 

(2) 
! 

P~: = Px o a= and ax(g)  = g. 

Conversely, given any family a~ �9 Aut (G)  such that  a~(g) = g then g is a si- 

multaneous fixed point of pl defined by (2). In case o~x is an inner automorphism 

ad(z~:) then the condition ax(g) = g becomes 

z~ �9 z~(g). 

(6.4) R e n o r m a l i z a t i o n  o p e r a t o r s  a n d  c o n j u g a t i o n .  Let p = (P~)~Ex be a 

family of isomorphisms p~ : G ) H.  Let 

(1) u ---- (V, r  �9 G ,  v �9 H X, U 1 �9 Q. 

Define u(p) = (u(p):~):~Ex by: 

w~,,~ = v(~) .p , ,Tx~(u)- i  �9 H 

(2) and 
u(p)x ---- ad(w~,, ,)o PuT,~: : G , H. 

P r o p o s i t i o n .  ad(u) defines a bijection F P ( p )  - - ~  F P ( u ( p ) ) .  

P r o o f .  Let g = (h, gl) �9 G c- Then 

u(p),(ugu -1) 

On the other hand 

Thus we see that  

if and only if 

---- Wx,uPu-[,x(Ug'a-1)Wx, 1 

= ( " ~ , , , p ~ : , A U ) ) p . : , A g ) ( W ~ , . p , , : , A U ) )  -1 

= v(~)p.r,~(g)~(~ (el. (2)) .  

( u g ~ t -  1)~x) ---- (V,algqlt-~lv-1)(x) 

v -q V - I  

= (~)y(~T~) (~)" 

~(p)~(~g~-~) - ~  = (ugu )(~:) 

q 

whence the proposition, since ul is a permutat ion of X.  
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(6.5) Al l  p = (p~)~ex a re  e q u i v a l e n t .  The isomorphisms p~ : G - -~  H define 

an isomorphism 
p : G x ~ H x 

by 

;(k)(~) = p~(k(~)) (x �9 x ) .  

This extends to an isomorphism of wreath products 

p : G X > ~ Q  , G = H X > ~ Q ,  

defined by 

p(k, gl) = (p(k), g~). 

Let g �9 G c and ~ = p- l (g) .  Then 

SO 

= ( g ( ~ ) )  = 

Thus, p induces a bijection 

p : F P  ~ FP(p )  

where 

F P  = {g �9 G X )~ Q I ~(g) �9 QC and g~) = p(g) Vx �9 X } .  

We now propose to analyze this set FP, which as we have just observed, 

models all of the FP(p) .  

(6.6) T h e  i t e r a t e d  w r e a t h  p r o d u c t .  Inductively define Q(n) acting on X "  

starting with 

(1) Q(1) = Q, with its given action on X ,  

F o r n ~  1, 

(2) Q(n) = Q Xn-~ >~ Q(n - 1), 

where (h,g)  e Q(n) acts on (y,x)  E X ~ = X • X '~-1 by 

(3) (h, g)(~, x) = (h(g~)y, gx) 

(cf. (III, (2.4))). This action is faithful (Ill, (2.6)). Thus, we have decomposi- 

tions 

~ ~ Q  (4) Q(n) = Q x  ~-~ QX ~-2 . . . Q X  

= Q ( n -  m) X"~ >~ Q(m)  (m = 1 , 2 , . . . , n -  1). 
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The latter defines a projection 

(5) ~ m :  Q(n)  , Q(m),  with k e r n d  Q(,~ - m)  X"~. 

Writ ing 7r = ,~7r~_1 : Q(n)  ~ Q ( n -  1), and p :  X '~ 

away f rom the first factor, we have the inverse system 

(6) X ,  p X ~ ,  p . J Z - X " - I , P  X ~ ,  p . . .  

which is equivariant  for 

Q(1),  ~ O(2),  ~ (~ Q(n  ~ (~ �9 - 1)~-Q(n) . . .  (7) 

Put  

(8) 

) X n - 1  fo r  projection 

It follows tha t  

(11) - n ( F P )  C r P ( n ) : =  {g �9 Q(n)  I g~,) = , ~ - l ( g )  f o r  aU x �9 X}.  

and similarly it is clear tha t  7r(FP(n) )  C F P ( n  - 1). Moreover it is clear tha t  

(12) F P  = l i_mFP(n) .  
n 

G = l jLmQ(n),  
n 

a profinite group. From the decomposit ions Q(n)  = Q(n  - 1) x >~ Q we obtain,  

on lett ing n , ec, an isomorphism 

(9) G "~ G x :~ Q, 

which we view as an identification. We thus have 

{ T r : O  , Q ,  

(10) a c = ~r-l(Qc), and 

r P ( =  r P ( e ,  x ) )  = {g �9 o c g~x) = g io~ all x �9 X } .  

We further  write 

~. : C O(~) 

for the natura l  projection. Relative to the decomposit ions 

rn : O = G x )~ Q , Q(n)  = Q ( n - 1 )  X x Q  

we have 

7rn(h, gl) = (h ' , g l )  

where hi , x ,, = ~'n-1 (h) is defined by 

! 
h(x ) = 7rn_l(h(x)). 
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(6.7) L e m m a .  Let g E FP .  

(a) ,~(g)  is a #-c___ycle in X ~. 

(b) The closure (g) of the cyclic group generated by g is isomorphic to 

"2q := X/q  x 
u 

(c) The set 

TopCen(<g)) 

of topological generators of (g) consists therefore of elements of the form "g~ ", 

U E Zq.  We have 

TopGen((g))  C Ft ' .  

P r o o f .  Both  (a) and (b) follow once we show by induct ion on n, tha t  7r=(g) 

has order  q~. For n = 1 this follows since ~rl(g) E Q*. For n > 1 we have 

f rom (6.6)(11) tha t  ~r,~(g)~x) = ,~rn- l (~n(g) )  = 7rn_l(g) for all x E X,  so, by 

induct ion,  7rn(g) q has order qn-1, whence the claim. 

If u E Z then (gU)(z) q = (gq)~x() = g=. By continuity this applies to all u E ~q. 
^ • g~ 

If u E Zq ,  i.e., if E TopGen( (g) ), then clearly g" E G ~ and so g= E F P ,  
whence (c). 

Note tha t  the proof  of (a) shows tha t  each element of F P ( n )  has order q~. 

(6.8) L e m m a .  Let n > 2. Let g E Q(n), g' = ~r(g) E Q ( n - 1 ) ,  and write 

g = (k, gl) E Q(n) = Q(n - 1) X )~ Q. 

The following conditions are equivalent. 

(a) g E F P ( n ) .  

(b) g' E F P ( n -  1), and there exist e(x) E X/q '~-1 X such that ~ x e x  e(x) = 

1 and k(~:) = g,e(x) for all x E X .  

P r o o f .  Assuming g~ E F P ( n  - 1) and tha t  k(x) E (g') we can then write 

k(~) = g'~(~) for a unique e(x) E E/q '~-1 Z, by (6.7). Then  we have 

gq . = gte, (x) = k(x)k(g:%) "" k(a~(q-')x ) 

where e = E0<i<q e(gl  ix) = E .  EX e(y). Thus g E F P ( n )  if and only if e = 1. 

This  shows tha-t (b) implies (a). ~Assuming (a), we have g' E F P ( n  - 1). By the 

above discussion, it suffices to show tha t  k(~) E (g') for all x. Since g' is a q,~-I 

cycle on X '~-1, the centralizer of g' is 

Z (1)  ) = (g') .  
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Thus  it suffices to show tha t  each k(,) centralizes g~. This  follows from (a) 

since 

g~ = g~) = k(~)k(f{lx)'"k(e~(q-~)x) 
q 

= g(e-[~) = k(gT~)...k(e~(q-~)~)k(,~ ). 

R e m a r k .  The  l emma remains true for n = 1 if we define Q(0) = FP(O) = {1}. 

(6.9) L e m m a .  For n >_ 2, each fiber of 

7r : FP(n )  , F P ( n -  1) 

has cardinal qq-1. 

P r o o f .  Let g' E F P ( n - 1 ) ,  g ' =  (k',gl) E Q ( n - 2 )  x >~Q. By (6.8) we have 

e'(x) E ~ / q , - 2  ~ such tha t  

k~) = ~(g')e'(~) for all �9 e X (19 

and 

(29 e'(x) = 1 in Z/q n-2 ~. 

xEX 

An element  g E Q(n) with ~r(g ) = g' must  have the form g = (k, gl) E 

Q ( n -  1) x ~ Q. with 

(3) ~(k(~)) : k~) (~ e x) .  

For g to belong to FP(n)  it is necessary and sufficient, by (6.8), tha t  there exist 

e(x) ~ Z/qn-1 Z such tha t  

(1) k(,) = g,e(,) 

and 

(2) 

Let p : Z/q '~-1 

for all x E X 

E e(x) = 1 in ~/qn-1 ~. 

xEX 

~/qn-2 Z be the natural  projection.  Then  (1) and 

(3) are satisfied by any choices of 

(4) e(x )  E p-l(e/(x)). 

There  are q possible choices for each e(x). It then follows from (2') tha t  

for any such choices of (e(x)) ,ex  , we have P(~-~,ex e(x)) = Y'~,ex e'(x) = 1. 
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Thus, we can freely choose all but one of the e(x) E p- l (e ' (x ) ) ,  and then the 

one remaining choice is determined by (2), whence qq-1 choices, as claimed. 

The following theorem now summarizes some of the conclusions that we have 

drawn. 

(6.10) T h e o r e m .  Let G ~ G x )~ Q be as in (5.6)(9), and 

F P  = {g e G c I gg ) = g for all x e X} .  

As in (6.6)(11), put 

F P ( n )  = {g E Q(n) IgOr) = n~,~-l(g) for all x E X} .  

(a) FP(1)  = Qc, and, for each n >_ 2, each fiber of re: F P ( n )  , F P ( n -  1) 

has qq-1 elements. 

(b) ~rn(FP) = F P ( n ) ,  which has cardinal lQ  ~ I .(qq-1) ~-1. 

(c) I f  g E F P  then rc,~(g) is a q'~-cycle on X '~, (g) ~- Y~q, and TopGen((g))  C 

F P ,  with equality if and only if q = 2. 

Proof .  The final assertion follows by comparing I rc,~(FP) I=1 F P ( n )  I, given 

by (b), with 

I  =(Topaen((g )) I= r = r  qn-1, 

where r is the Euler t-function. 

(6.11) R e n o r m a l i z a t i o n  o p e r a t o r s  on  sphe r i ca l ly  h o m o g e n e o u s  t rees .  

Let 

X = X(q) 

be a spherically homogeneous tree of index 

(1) q = (ql,q2, q3,.-.) 

which is pe r i od i c  o f  p e r i o d  r: 

(2) 

Put 

(3) 

(all qn >_ 2) 

q . + r  = q .  ( I0 r  all n > 1). 

q ---- q[r] = qlq2""qr  
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and 

(4) X = Xr = the r-sphere in X. 

For x E X the normal tree N(x) (denoted N~ in (1.3)) has index 

(qr+l, qr+2,...), which equals q in view of (2). Thus 

(5) N(x) ~- X for all x E X. 

Consider the automorphism group 

(6) G = Aut(X) = A(q). 

As in (4.1) we can write 

(7) 
G = H x ~Q, where 

Q = A(q[_< r]), and 
H = A(q[> r]) ~ A(q) = G. 

Here we identify H with Aut(N(x)) for each x E X, via some choice of 

isomorphisms N(x) ~ X (cf. (5)). Clearly G is isomorphic to the iterated 

wreath product constructed from (Q, X) as in (6.6). 

Recall from (4.8) that  

(8) 

has size 

Qc = the set of q-cycles on X 

r 

(9) ] QC I = (1-I(qi!)qt'-q)/q. 
i----1 

For g E G and x E X we write g(x) for the restriction of g to the normal tree 

N(x) :  

(10) g(x): N(x) , N(g(x)). 

If g is spherically transitive on X then g on X is a q-cycle, and 

(11) g~) E H = Aut(N(x)). 

Moreover (cf. (4.4)) gq is spherically transitive on N(x). It follows therefore (x) 
from the Conjugacy Theorem (4.6)(a) that  there is an isomorphism 

(12) t~ : ( X , g )  

giving a commutat ive  diagram 

X 

(13) t~ 

N(x) 

, (N(x), g~x)), 

g~ X 
tx. 

w ~  

gq N(x) (x) 
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Pu t t ing  

(14) p~ = ad(t~): G = Au t (X)  , H = Au t (N(x ) )  

we see then tha t  

(15) p~(g) = gq (~)" 

Thus,  with p = (P~)~Ex, we have 

(16) g E FP(p).  

It follows from Theorem (4.6)(6) tha t  

(17) t~ is unique up to right multiplication by z~ E ZG(g) = (g), 
the closed cyclic group generated by g. 

Now combining this with (6.5), (6.6), and (6.10) we obtain:  

(6.12) T h e o r e m .  Keep the notation and assumptions of (5.11). 

(a) Let g E G be spherically transitive on X .  Then there exist rooted tree 

isomorphisms t~ : X , N(x) ,  (x E X),  unique up to right composition with 

an element of (g) ~ Zq, such that g E FP(p),  where p = (P~)~EX is defined by 

p~ = ad(t~). 
(b) Let p = (P~)~Ex be any family of isomorphisms p~ : G ) Aut (N(x) ) .  

Let 

~ : G ) G ( B ~ , x o )  

denote restriction to the n-ball B~ in X.  We have the following. 

(i) ~ , r ( r P ( p ) )  has cardinal 

i = 1  

(it) I f  g E FP(p)  then g is spherically transitive on X and 

TopGen( (g) ) C E P(p), 

with equality if and only if  q = 2, i.e., if  and only if q = ( 2 , 2 , 2 , . . . )  and r = 1. 





Chapter IV 

Closed Normal Subgroups 

of Aut(X(q)) 

0. In troduct ion  and notat ion .  

Let X(q)  denote the spherically homogeneous rooted tree of index 

q = (ql, q2, q3. . . ) ,  and G(q) = Aut(X(q)). Our aim is to describe all closed 

normal subgroups N of G(q). Each such N # {1} has a "level", the largest 

n > 0 such that  N acts trivially on the n-ball centered at the root, and the 

N's  at a given level can be described essentially in terms of abelian data; see 

Theorem (5.4) for a precise statement. 

The method used is to present G(q) as an infinite iterated wreath product 

of symmetric groups. Our analysis applies more generally, to infinite iterated 

wreath products of appropriate subgroups of symmetric groups. (see Section 4.) 

The chapter begins with a general review of normal subgroups of simple 

wreath products. 

1. T h e  s y m m e t r i c  group Sq. 

(1.0) We assemble here for reference some familiar facts about the symmetric 

group Sq of permutations on the set {1 , . . . ,  q}. (The reference [Rot] is a good 

basic group theory resource.) 

(1.1) T h e  alternating group Aq. The group Aq is the kernel of the signa- 

ture homomorphism sgn : Sq , Z /2Z,  the latter being identified with the 
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abelianization of Sq, denoted S~ tb, for q >_ 2. In fact, 

Aq = (Sq, Sq) = (Sq, Aq). 

(1.2) Smal l  q. When q is small, there will be "degenerate" behavior. We take 

care of these special cases in this section. 

First, $1 = {1}, A2 = {1}, and IA31= 3. For q = 4, A~ = (A4, A4), is a Klein 
4-group and A4 = A~ n (t}, where t = (123) is a 3-cycle, cyclically permuting the 

non-trivial elements of A~. Clearly then A~ is the only proper normal subgroup 

of A4 and ($4, A~) = (A4, A~) = A~. Moreover, 

$4/A'4 ~- $3, 

the only non-abelian subgroup of order 6. 

For q > 5, Aq is a simple group (cf. [Rot]). 

From the above observations we can deduce, 

(1.3) P r o p o s i t i o n .  Let H <1 Sq. 

(a) Either H = {1}, Aq, or Sq or else, q = 4 and H = A' 4. 

(b) If  g ~k Sq, then H = (Sq, H). 
(c) I f  H r {1} then the actzon of H on {1 ,2 , . . . , q}  is transitive and even 

primitive if  H ~ A' 4. 

(1.4) P r o p o s i t i o n .  Suppose that {1) # P <1 Q <_ Sq. Let Y = {1 ,2 , . . . , q ) .  

(a) I f  Q acts transitively on Y ,  then P has no fixed points in Y.  

(b) I f  Q acts primitively on Y,  then P acts transitively on Y .  

Proo f .  Since P ~ Q and Q acts transitively, the orbits of P on Y are permuted 

transitively by Q, whence both (a) and (b). 

2. Wreath products. 

(2.1) S e m i d i r e c t  p r o d u c t s .  Given groups H, Q and a homomorphism 

(~ : Q , Aut(H) ,  we have the semi-direct product G = H x ~ Q  (cf. [Rot]). 

It is the set H x Q with a multiplication defined by 

(h, q)(h', q') = (h . (~(q)(h'), qq'). 
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Identifying H = (H, 1) _< G and Q = (1, Q) _< G, we have 

(h, q) = (h, 1)(1, q) = hq 

and 
qhq -1 = a(q)(h) 

i nG .  Thus, G = H . Q ,  H N Q = { 1 } , H < 3 G a n d G / H = Q .  

The commutator  subgroup of G is 

(G, G) = (G, H)  )4 (Q, Q). 

This yields 

G ab = H / ( G , H )  x Q a b  

= Hab / (Q ,H  ab) x Qab. 

Here, H ab is a Q-module, and Hab/ (Q,  H ab) is the quotient obtained by 

trivializing the Q-action. We shall write 

o'Q : H , Hab/ (Q,  H a b ) ( =  H/(Q,  H))  

for the natural projection. 

(2.2) W r e a t h  p r o d u c t s  S x >~ Q. Let S and Q be groups and X a Q-set. Then 

we can form the product 

S X = { f : X  ) S}. 

Then Q also acts on S x by translation, 

(qf)(x)  = f ( q - l x ) .  

The resulting semidirect product 

G = S  x x Q  

is called the w r e a t h  p r o d u c t  associated to (S, Q, X).  (Cf. [We] for historical 

remarks regarding these constructions and extensive bibliography.) 

(2.3) C o m m u t a t o r s  in G = S x )~ Q. Assume that X is finite. Then we have 

( s  x , s x )  = (s, s )  x 

Hence, 
( sx )  ab = (sab) x 
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(Note that  this also holds when X is infinite, provided that  for some n _> O, each 

element of (S, S) is a product of at most n commutators.) The quotient obtained 

by trivializing the action of Q on this (permutation) Q-module is clearly just 

s X  / ( G , S  X) = ( sab)X  / ( Q , ( s a b )  x)  

= (sab)Q\ x .  

Hence, 
Gab = ( sX  >~ Q)ab = ( sab )Q\x  x Qab. 

As in (2.1), we shall write 

aQ : S x ~ ( sab)  q \ x  = s X  /(G, S X) 

for the natural projection. 

(rQ is defined by 

The kernel 

For any s E S, let ~ denote its image in S ab. Then 

( ~ q f ) ( Q . x )  = r I  f (y ) .  
yEQ'x 

KQ = = (a ,  s x )  

is generated by (S  x ,  S X) together with all elements 

(q , f )  = q f q - l  f - 1  = q ( f ) f - 1  

for all q E Q, f E S x . 

(2.4) T h e  (S  X )~ Q)-set  X x Y. Suppose that we are further given an S-set 

Y. Then the wreath product G = S x )~ Q acts on X • Y by: 

(f ,  q)(x, y) = (qx, f (qx)y) .  

This is easily checked to be a group action. Moreover, the projection 

X x Y ) Y is equivariant for the projection G ~ Q. 

(2.5) Transitivity. A quick computation shows that 

G \ ( X  • Y) = (Q\X) • ( S \ Y ) .  

Hence: 

P r o p o s i t i o n .  The action of S x )~ Q on X x Y is transitive iff the actions of 
Q on X and S on Y are bolh transitive. 
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(2.6) F ide l i t y .  Let G(~0,yo) denote the stabilizer in G of any point (x0, Y0) E 
X • Y. Then 

G(x0,~o) = H(xo, Yo) >~ Qxo 

where 

H(xo, Yo) = { f  E S x I f (xo)  E Syo }. 

Consequently another quick computation shows, 

(2.7) P r o p o s i t i o n .  The action of S x )~ Q on X • Y is faithful iff the actions 

of Q on X and S on Y are both faithful. 

(2.8) E l e m e n t s  o f  f in i t e  o r d e r .  Consider a semidirect product G = H ~ Q, 

where the a c t i o n o f q E Q o n h E H i s d e n o t e d q ( h )  (=q h q  -1 inG) .  F o r n > 0  

we have, in G, 

(hq)" = hq(h ) . . . q~- l (h )q~ .  

Say q has finite order n. then we put 

and we see that 

(1). 

Nq(h) = h q ( h ) . . . q ~ - l ( h )  E H, 

order( hq) = order(q),  order( Nq ( h ) ) 

Now, suppose that H = S x , so that G -- S x ~ Q is a wreath product, q E Q 

has order n, and h E S x .  Then, for x E X, 

(2) gq(h) (x )  = h (x )h (q - l x )  . . .  h (q- (~- l )x ) .  

Moving x in its (q)-orbit, {q-ix [ 0 < i < n - 1}, only affects (2) by a cyclic 

permutat ion of factors, hence by a conjugation. Thus, 

(3) order(Ng(h)) = LCM{x E (q ) \X  I order(Nq(h)(x))}. 

Suppose now that  

Q =  (q) and I Q l = n .  

For s E S, let ~ denote its image in S ab. For h E S x we see from (2) that 

Nq(h)(x)  is constant on Q-orbits. The resulting Nq(h)(x) E (sab)  Q\x is clearly 

just eQ(h), using the notation of (2.3). 

Suppose further that  S is abelian. Then Nq(h) is constant on Q-orb i t s ,  and 

order(Nq(h)) = order(aQ(h)). 

Since crQ : S x ~ s Q \ x  is surjective, we can choose h E S x to make Nq(h) 

have any order that  occurs in S Q\X. 
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(2.9) E x a m p l e .  Let Q -- (q) where q is a transitive n-cycle on X (so IX [-- n), 

In addition, let S -- (s} where s is a transitive m-cycle on the set Y ([Y [-- m). 

For h E S x ,  write h(x) = s ex where ex E ~ / m g .  Then our map  o'Q : S x , 

S o \X  = S is given by 

h h(x)= 
xEX 

where 

Consequently, 

where 

e ~  ~ e  x . 

xEX  

order(hq) = n .  mh 

mh = order(crQ(h))= order(e) 

for e considered as an element of g / m Z .  In particular, 

order(hq) = nm ~ order(crQ(h)) = m ~ e E ( Z / m Z )  x 

where ( g / r a g )  x denotes the group of units in g / m g .  Thus, in this case hq 

defines a transitive cycle on X • Y (cf. (2.4)). For example, defining h0 by 

ho(xo) = s (for some x0 E X) and ho(x) = 1 for x ~ x0, we have aQ(ho) = s, so 

order( hoq) = nm. 

(2.10) C o n j u g a c y .  Let G = H x Q (semi-direct), q E Q, and h, h' E H.  We 

shall determine when hq and h'q are conjugate in G. Say f E H , r  E Q, and 

( f r ) (hq) ( f r )  -1 = h'q. We have 

f r h q r - l f  -1 = f r ( h ) r q r - l f  -1 

= [ f r (h ) ( rqr -1) ( f ) - l ] ( rqr  -1) 

= h'q. 

It  follows that  

and 

E ZQ(q) 

h' = f r (h )q ( f )  -1. 

Now suppose further that  H is abelian. Then 

h' = r (h ) fq ( f )  -1 

and the elements f q ( f ) - I  form the group ( (q) ,H)  < H .  Thus, we conclude: 

(2.11) P r o p o s i t i o n .  Let G = H x Q wilh H abelian. Let q E Q, h ,h '  E H. 

Then hq and hl q are conjugale in G if and only if  lhe images of h and h' in 

H/((q) ,  H) lie in the same ZQ(q)-orbil. 
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3. Normal  subgroups of wreath products. 

(3.1) N o t a t i o n .  We fix a wreath product G = S X )~ Q where X is a finite Q-set. 

For s E S, x E X, define st E S X by s~(x) = s and s~(x') = 1 for x :~ x'. Thus, 

s x  = l-ix S t ,  where St = {sx ] s E S} is the copy of S in the x-coordinate of 
S X. Note that  for q E Q, q(sx) (or qs~q -1 in G) = Sqx. 

If N <_ S x then let Nt  denote the image of N under the projection into St .  

Clearly N _< 1-Ix N~. Moreover (S~, N) = (S~, N~) < S~. Hence: 

(3.2) L e m m a .  I f  N <3 S X, lhen 

( S X , N )  = H(S~: ,N~)  < N < H Nx. 

(3.3) P r o p o s i t i o n .  Suppose that the action of Q on X is transitive. Let N <3 G 

and N < S X. Then there exists a subgroup M <~ S such that Nt  = M r  for all 

X, and 

(S ,M)  x <_N <_M x .  

P r o o f .  If q E Q, then 
qA�89 -1 = Nqx.  

Since Q acts transitively on X, it follows that the subgroups Nx all define a 

common subgroup M with M <3 S. Thus, the proposition follows from (3.2). 

(3.4) T h e  g r o u p s  Gp, Kp,  Np.  For P < Q, put 

Gp = S x )4 P < G = GQ. 

O'p : S  X ) ( sab)  P\X, 

where 

o 'p( f ) (P  . x) = 1-I f(Y) E S ab. 
y@P.x 

If Kp denotes the kernel of Crp, then 

Kp = (Gp, S X) 

Then as in (2.3) we have 
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and is generated by the subgroup (S, S) x together with all elements of the form 

( p , s ~ )  = ps ,p - l s~  -~ = sp~s~ -1 (p ~ p , s  ~ S,x ~ x ) .  

Define 

Note that  

(Gp, Gp) = I~p ~ (P, P)  

(C, Gp) = Kr ~ (O, P)  

Np = Kp )~ (Q, P).  

Thus, 

(Gp, Gp) <_ Np <_ (G, Gp). 

Note that  O'p and Kp depend not on P,  but only on the quotient P \ X  of 

X. For example, suppose that P \ X  = Q \ X .  Then [~[p = KQ = (G, s x ) ,  and 

so, (G, Gp) = Np.  

(3.5) P r o p o s i t i o n .  Let N <1 G have projection P <1 Q into Q. Thus, N < 
Gp = S x )4 P. Assume that P has no fixed points in X .  Then 

(i) (N, S x )  = ( ap ,  S x )  --- Kp ,  

(ii) (U, Gp)  = (ap ,  Gp)  = Kp ~ (P, P) <_ N, and 

(iii) N / ( G p ,  Gp)  <_ (Gp)  ab = (sab)  P\x  x pab is a G-submodule. 

Suppose that in addition P \ X  = Q \ X .  Then, 

(iv) ( G , N )  = (G, Gp)  = Np = KQ m ( Q , P )  < N, and 

(v) i / i p  <_ G p / ( G ,  Gp) = (sab)  Q\x • (P / (Q,  P)),  where G acts trivially. 

P r o o f .  Put  L = ( N , S  x )  <<_ S x .  Thus, L <1 G. Let s C S and x E X .  As P 

has no fixed points in X, we can choose f p  E N, f E S x and p E P such that  

px = y # x. Note that  L contains (fp, s~). Rewriting, we get 

(fp,  sx) = f p s z p - l f - l s x  -1 = f s y f - l s x  -1 = ( f ( y ) s f ( y ) - l ) y s z  -1. 

From this it follows that  the projection L~ of L into S,  is all of S~ (ie. L~ = S~). 

It then follows from (3.2) that (S, S) X <_ L. Modulo (S, S) X we have 

( f ( v ) s / ( u ) - l ) ~ s ~  -1  - s ~ s ~ - '  = sp~s~ -~ .  

Such elements, together with (S, S) X , generate Kp = (Gp, S X) >_ (N, S X)  = L, 

so that  L = Kp.  
Furthermore, 

N'  = N / K p  <1 G p / K p  = (sab)  P\X • P, 
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so that  N'  projects onto P. From this it follows that (N', P)  = (P, P) in G p / K p .  

As Kp <_ N,  it follows that  (N, Gp) contains Kp x (P, P) = (Gp, Gp), so that 

(N, Gp) = (Gp, Gp). 

This proves ( i)-  (iii). 
To prove (iv) and (v) suppose in addition that P \ X  = Q \ X .  Then (cf. (3.4)) 

we have 

Kp = KQ 

and 

(G, Gp) = g p  = Kp >~ (Q, P). 

Moreover, with N'  = N / K p  as above, we have 

N'  <~ G p / K p  = (sab) Q\X • P <1 G / K p  = (sab) Q\X x Q. 

Thus, (Q, N') = (Q, P)  _< g '  in G / K p ,  so that it follows from above that  

g p  = Kp n ( Q , P ) = ( N , G ) < N .  

This completes the proof. 

(3.6) R e m a r k .  (cf. (1.4)) In the setting of (3.5) suppose that Q acts faithfully 

and transitively on X. Then if 1 r P <1 Q, P has no fixed points in X. If 

further Q acts primitively on X then P acts transitively on X; in particular 

P \ X  = Q \ X .  In this case (3.5) tells us that 

Np : KQ >~ (Q, P) _< N 

and 

N / N p  < G p / N p  = S ab x (P/(Q,  P)) <_ Z(G/Np) .  

(3.7) Coro l la ry .  Assume that Q acts faithfully and primitively on X .  Let 
N <~ G = S x >4 Q, N ~ S x .  Then there is a unique minimal P <l Q such that, 

with Gp = S x >~ P, we have 

(G, Gp) = (G ,N)  <_ N <_ Gp 

and 

Gp/(G,  Gp) = S ab x (P/(Q,  P)).  

Proof .  Let P denote the projection of N into Q. Then 1 # P <1 Q. The 

assumptions imply (cf. (3.6)) that P acts transitively on X, and I X I_> 2 since 

P :fi 1 acts faithfully. Thus, P has no fixed points so that the corollary follows 
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f rom (iv) and (v) of  (3.5) 

4. I t e r a t e d  w r e a t h  p r o d u c t s  a n d  r o o t e d  t r e e s .  

(4.1) T h e  r o o t e d  t r e e  X = X ( Y ) .  Let 

Y = (Y~,Y2, . . . ,Y ,~ , . . . )  

be a sequence of n o n e m p t y  sets. We shall assume tha t  each Y,~ is finite, say of 

cardinal i ty  q,~ > 0. Pu t  

q = ( q l , q 2 , . . - , q n , . . . ) .  

Define sets X~ (n > 0) by X0 = {x0} (a one point set) and for n > 0, 

X , ~ = Y l x - . . x Y , ~ .  

Let p : X,~ , X,~-I  denote the na tura l  projection.  Then  the inverse sequence 

(1) X 0 = { x 0 } ~ X l  ~ ' " ~ X n - 1  ' p Xn (P "'" 

defines as in (I, (2.1)), the spherically homogeneous  rooted tree 

X = X ( Y )  = X ( q )  

(of. (II ,(3.1) and (3.3))). 

(4.2) T h e  g r o u p  G = G( (Q ,  Y) ) .  Let 

q = ( Q 1 , Q 2 , . . . , Q ~ , . . . )  

be a sequence of finite groups such tha t  for each n _> 1, Y~ is a Q , - se t .  Given 

these initial  data ,  we shall define (inductively) a sequence a groups Q(n) (n >_ 0), 

Q(n) act ing on the set X ,  and, for n > 0, a project ion Q(n) , Q(n - 1) for 

which p : X ,  , X,~_I is equivariant .  

Let Q(0) = {1}, and Q(1) = Q1 acting as given on X1 = Y1. For n > 1, 

(1) Q(n) = Qx,_~ x Q(n - 1) 

(wrea th  p roduc t  as in (2.2)), which acts on X ,  = X n -  1 x Yn as in (2.4). 

Now we put  

(2) G = G( (Q ,  Y) )  = l im(n).  
Q 
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Then G((Q, Y)) is a profinite group acting on the tree X(Y) defined by (1). 

For a subset H of G let H denote its closure. If H < G is a closed subgroup 

then we put 

H ab = H I ( H ,  H),  

its topological abelianization. 

From (2.5) we conclude inductively that 

(3)  G\x ,~  = Q ( n ) \ x ,  = (Qx\Y1)  •  • (Q,~\Y,~). 

Hence (of. (2.5)): 

(4.3) P r o p o s i t i o n .  G acts transitively on each Xn  iff Qn acts transitively on 

Y,~ for  each n. Furthermore, G acts faithfully on X iff Q,~ acts faithfully on Y,~ 

for  each n. 

(4.4) From (2.3) we inductively obtain isomorphisms 

(1) Q(n)ab e (Qab)Q( ,~- l ) \x ._ ,  x . . .  x (Qab)Q(1)\x,  x Qab 

which on QX.-1  <_ Q(n) ,  induces the homomorphism 

o x . _ ,  b Q(n-1)XX,~_l (2 )  ~ . - ~  = ~ q ( . - 1 )  : ~ .  , ( Q . ~ )  

of (2.3). Passing to the inverse limit then gives an isomorphism 

(3) G -g-g ~- , 1-I (Qab) Q(" - l ) \X" - I  

n > l  

Thus: 

Proposition. I f  Qn acts transitively on Yn for all n then 

(4) G7 ~-' II Q"J 
n > l  

is an isomorphism. 

To make the isomorphism (4) explicit, we can express G as the infinite wreath 

product 

(5) G . . . .  , Qx._,  x ...QX* x Q1. 

Write g E G as its corresponding infinite product, 

g = " " g n  �9 "'g= �9 gl, 
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where g~ E QX._l.  Then we see that 

(6) ~ :  G , G ab = y i (Qab)  Q(~-I)\X"-I 

n > 1  

sends g to (c~n-l(g,))n_>l. Here (cf. (2.3)), O'n_l is the homomorphism in (2) 

above defined by 

(7) cr~_l(g~)(Q(n - 1). x) = I I  g,(y) �9 Qab, 

where, for s E Q,~, ~ denotes its image in Qab. 

(4.5) E x a m p l e s .  1. Suppose that, for each n >_ 1, 

Q~ = Sq. := the permutation group of Y~. 

Then a straightforward inductive argument shows that 

G = G((Q, Y)) = Aut(X, xo), 

the full automorphism group of the rooted tree (X, x0). In this case G acts 

transitively on each Xn and we have an isomorphism 

cab H = 
n > l  n > l  

2. Suppose that  each Qn acts faithfully on Yn, so that Qn <_ Sq.. Putt ing 

q["] =lX~ I = ql "q~'"q,~ 

as in (I, (3.a), example 3) we see that 

IQ(n)J=iQlt " IQ:i q . . . .  iQnlq ['-11 " 

Moreover, G -- li_mQ(n) acts faithfully on X, so G <_ Aut(X,  xo) is a closed 

subgroup. It is no~ clear how to characterize which closed subgroups one obtains 

in this fashion. 

3. Consider the case in which all Yu are the same finite set Y, of cardinality 

q and all the Q~ are the same subgroup Q <_ Sq. Then we have, qM _- q~, so 

that  

I Q(n) I=1 Q 1 l+q+'q'-' =1 Q I (q"-l)/(q-i)" 

A particular case of interest is when q is prime and Q is generated by a single 

q-cycle. Then Q(n) is of order q(q~-t)/(q-1) and thus is a Sylow-q subgroup of the 
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group Sqt,l of permutations of Xn = Y~. Then for each n, Q(n)  acts transitively 

on X .  and Q,~ acts primitively on Y,. 

4. Suppose that  for each n >_> 1, Q~ ~_ Sq, is cyclic, generated by some 

q~-cycle, c~. Then it follows by induction, from (2.7), that for each n > 1, Q(n)  

contains a transitive cycle on X~ (of order qM). Furthermore, this transitivity 

for each n then implies (from II, (4.10)) that G((Q, Y ) ) =  limQ(n) contains 

spherically transitive elements on X(Y). In fact (2.7) provides an inductive 

construction of such elements. Indeed, we can give the following method for 

detecting them. 

As in (4.4)(5), write G in as an infinite wreath product, 

and g E G as 

o X , , - x  a . . . .  :~ "~n ~ . . . Q X 1  :~ Q1.  

g = "" "gn "" "g2 "gl, 

where gn E Q X . _ l .  Since each Q(n)  acts transitively on Xn and each (cyclic) 

Qn is abelian, we have the following simplification of the "abelianization" ho- 

momorphism 0", 

: G  ' G a b =  I - I Q n  
n > l  

given by 

Here (cf. (4.5)(7)), 

"~(g) : ( O ' n _ l ( g n ) ) n ~ _ l .  

1-I g.(x) 
xEX,~- I  

is an element in Qn. 

It follows inductively from the discussion in (2.9) that the following are equiv- 

alent: 

(1) g n ' " g 2  'g l  E Q(n)  has order q[nl = ql "q2 . . . .  qn =]Xn ] 

(2) ~ri-l(gi) E Qi has order qi for each i < n. 

(3) cri-l(gi) generates Qi for each i _< n. 

Thus, from (I, (4.3)), we obtain: 

(4.6) P r o p o s i t i o n .  For all n >_ 1 let Q,~ = (s,~) be generated by a q,~-cycle s~. 

Let g E G have the expansion 

where g~ E QX. -1  

ex E Z / q  n 7/. and 

g = "" "gn "" "g2 " g l ,  

as in (,~.3), example 4. For x E X n - 1  put gn(X) = e~ 8 r~ 

= 1 ]  g.(x) = 4( ' )  
x E X . - ~  
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where e(n) = ~-~ex . - ,  e~ E E/q~ E. Thus, ~ : G ' Gab = I],~ Q~ sends g to 

(O'n-l(gn))n>l. Then the following conditions are equivalent. 

(a) g is a spherically transitive automorphism of X .  

(b) For each n, a ~ - l ( g , )  generates Q,~. 

(c) For each n, e(n) ~ ( Z/q ~ ~)• the group of units of ~/qn ~. 

(4.7) P r o p o s i t i o n .  Let all hypotheses be as in (4.5) Let g,g~ E G be spherically 

transitive elements. Then g and g~ are conjugate in G iff they have the same 

image under ~ : G ) Gab = I-In>l Qn. 

P r o o f .  Assume first that ~(g) = ~(g'). As conjugacy classes in the profinite 

group are closed, it suffices to show that  the images g(n) and g'(n) of g and g' 

in Q(n) are conjugate, for each n > 1. For n = 1, Q(1) = Q1 is abelian and the 

hypothesis implies that g(1) = g'(1). Assume now that n > 1. Write g as 

g = gng(n -- 1) 

and 

g' = g~g'(n - 1) 

with g,~,g~ E QX.-1. By induction, g(n - 1) and g ' ( n -  1) are conjugate. 

Replacing g'(n) by a conjugate in Q(n), we can then reduce to the case of 

g'(n - 1) = g(n - 1) = q E Q(n - 1). By (2.11), g(n) = gnq and g'(n) = g~q are 

conjugate in Q(n) iffthe images ofg,~ and g~ in QX._~/((q), QX~_,) = Q(q)\x.- i  

lie in the same ZQ(,~_l)(q)-orbit. But, q acts transitively on X . - 1  so that  

X 1 X ~  Q~o- /((q),Q~ - ) =  Q~, 

with trivial Q(n - 1)-action. Moreover, the above images of g,~ and g; in Q~ 

are just cr,~_l(g,) and a,~-l(g') respectively. The hypothesis that ~(g) = ~(g') 

implies tha t  these are equal. Hence, g(n) and g~(n) are conjugate. 

Conversely, if g and g' are conjugate then clearly 6r(g) = 5r(g'). 

5. C l o s e d  n o r m a l  s u b g r o u p s  o f  G = G ( ( Q ,  Y ) ) .  

(5.1) T h e  " c o n g r u e n c e  g r o u p s " .  For all n :> 1 define G~ by 

(1) G ,  = Ker(G ~ Q(n)). 

It is clear from the construction of G = G((Q, Y))  = l im~- Q(n) that 

G = G,, ~ Q(n) 
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and that furthermore 

(2) Gn = G((Q, y)>,~)x._, 

where we write 

(3) (q ,Y)>n  = (q,Y)_>~+l = ((Q,~+I,Y,~+I), Q~+2, Y,~+2),...). 

In this way we produce the wreath product decomposition 

(4) G((Q, Y)) = G((Q, y ) > ~ ) x ,  )~ Q(n), 

which corresponds to the decomposition of G(X, xo) given in (I, (4.2)). We shall 

use the abbreviation G(> n) (or G(___ n + 1)) for 

(5) G(> n) = G((Q, y)>n).  

Note that G = G(> 1) = G((Q, Y)). 

Thus, we have for n > 1, 

G = G,~-I :~ Q ( n -  1) 

= G(>_ n) x=-' ~ Q ( n -  1) 

= (G(> n) Y~ )~ Q,~)x~_, )4 Q(n - 1) 

= G(> n)X~>a (9 X~-I >a Q ( n -  1) 
Y (*n 

as Q'(,~ ) 

(5.2) The  groups  Gp(> n) . Let P < Q~. We put 

n) = G(> p 

_< G(> n)  Y'~ x Q,~ = G(>_ n) .  

Define 

by 

ap : G(> n) Y" , (G(> n)-a-b) P\Y= 

" v) = 1-I  f ( v ) ,  
xEP.y 

where for g E G(> n), g denotes its image in G(> n) ab. The kernel of ~-~, Kp 

is clearly just the closure of the kernel Kp of the homomorphism ap of (3.4). 

Moreover, we conclude from (3.4) that 

(Gp(>_ n), Gp(> n)) = Kp )~ (P, P) 

and 
(G(>_ n), Gp(>_ n)) = I'iQ,, x (Q,~, P). 

(5.3) Closed normal  subg roups  of  G = G((Q, Y)). Assume now that: 
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(1) For all n > 1, Qn acts both faithfully and transitively on ]1.,,. 

Note that by (4.3), this implies that the action of Q(n) on X ,  is also faithful 

and transitive. 
Let N be a nontrivial closed normal subgroup of G. Thus, 

(2) 1 • N = g <3 G. 

Since NG,~ = {1}, it follows that for some n > 1, "N has level n - 1." That  is 

to say, 

(3) (a) g <_ Gn-1 = G(>_ n) x~-~ , and 

(b) N ~ Gn. 

We have G = G(> n) x " - '  x Q(n - 1), so it follows from (1), (2), (3a) and 

(3.3) that: 

(4) There is an M = M = M ( N )  <3 G(>_ n), which is the projection of 

N into each factor ofGn-1 = G(> n) x " - l ,  and 

(G(_> n), M )  x" - '  < g < M x" - l .  

Writing G(_> n) = G(>  n) y" ~ Q, ,  we put 

(5) P = P ( g )  = the projection of M into Q,~. 

From (4) and (3)(b) we have 

(6) 1 r P <3 Q, .  

Therefore, it follows from (1) and (1.4)(a) that: 

(7) P has no fixed points on Y. .  

Let Gp = G(> n) r" >~ P _< G(_> n) as in (5.2). Then it follows from (4) and 

(3.5)(a) that: 

(8) (a) (Gp(~ n), Gp(~  n)) = (Gp(~ n), M)  < M < Gp(~  n), 

(b) M/(Gp(>_ n), M)  <_ Gp(>_ n) ~--~ = (G(> n)ab---~ P\r"  • p a b  

is a (Q,~/P)-submodule. 

Moreover, it follows from (1) and (4.4)(5) that: 

(9) v(> n)ab: 1-[ 
r n ~ n  

Now suppose further that: 

(10) P acts transitively on yn. 

Note that this is automatic if Q,, acts primitively on Y,~ (cf. (1.4)(5)). In this 

case, it follows from (4) and (3.5)(b) that: 
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(11) (a) (G(> n), M) = (G(>_ n), Gp(>__ n)) = KQ. >4 (Q,~, P) ~_ M, and 

(b) M/(a(>_ n)_.2 M) <_ ap(>_ n)/(a(> n), Gp(> n)) 

= G(> n) ab x (P/(Q, ,  P)) = (1-[m>~ Qab) x (P/(Qn, P)). 

Combining (4) and (11) we conclude that: 

(G(>_ n), M) x"-'  <_ N <_ M x ' - '  

and, 

(12) 

N 
(G(>_n) ,M)  ' x " - I  

) X,~-I 
< M , 
- (a(>_n),M) 

\x ._~  
< 
- (a(>n),ap(>n))] 

= ( G ( > n ) ~ - ~ x ( p / ( Q n , p ) ) )  x"-~ 

= ((1-Im>,~ o a b ) •  (p / (o ,~ ,p)) )x ._~.  

The last term is a Q(n - 1)-module via the permutation action o n  Xr~_ 1 and the 
first term is an arbitrary closed submodule. 

The following theorem summarizes some of these conclusions. 

(5.4) T h e o r e m .  Assume that for all n ) 1, Qn acts faithfully and primitively 
on Yn. Let N be a non-trivial closed subgroup of G of level n - 1. Let P = 
P(N) <1 Qn be as defined in (5.3) and Gp()_ n) = G(> n) Y" :~ P ~_ G(> n). 
Put 

G~p(> n) : (G(>_ n), ap(>__ n)). 

Moreover, 

Then, 

Vp := ap(> n)/a',,(> n) 

= G(> n) ab • (P/(Q,~,P)) 

= ( H  Qab) x (P/(Q~,P)).  
rn>n  

Cp(>_ n) x"- '  <_ N <_ Gp(>_ n) x"-~, 

and 
N/G'p(>_ n) ~ l /x"- '  

is a closed Q(n - 1)-submodule where Q(n - 1) acts via the permutation action 
o n  X n _  1 . 
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(5.5) R e m a r k .  Suppose that G = Aut (X ,  xo), i.e., that Q,~ = Sq. for all n. 

Then we distinguish two cases for P, 

Case 1: P = Sq,,. Then (Qn, P) = Aq . Thus, 

vp : II  : C(> n)ab: [ I  Z/2Z 
rn>n m > n  

Case 2: P r Sqn. Then (cf. (1.3)(b)) we have (Q~, P)  = P.  Thus, 

Vp = H Qamb : G(> n ) a b =  H Z/2Z. 

m > n  rn>n 

(5.6) R e m a r k .  From Theorem (5.4) we see that a closed normal subgroup N 

of G determines an n and a P <1 Q,  so that 

G~ _< N < Gp 

and 
N/G'p < Vp X ' - I  

is any closed submodule of the G-module Vp X'~-I , where G acts via its permu- 

tation action on X,~-I. To complete the analysis we would like to determine all 

of the closed G-modules of V x ~ - I  . This appears to be too complicated a task. 

Instead, we shall answer an approximation to this question, when we replace Vp 

by a field F. In this case we can describe all F[G]-submodules of F x ' -~  . This 

is done in the following section. 

6. T h e  G - m o d u l e  V xn. 

(6.1) N o t a t i o n .  Let V be an additive group, and p : X 

Then we have a group homomorphism 

7p " V Y  ~ v X ,  

> Y a map of sets. 

defined by 

(Tp)f(x)  ---- f (px) .  

the image consists of functions constant on the fibers of p, and if p is surjective 

then 7p is injeetive. 

Suppose that the fibers of p are finite. Then we have a homomorphism 

Crp : V x i V Y , 



defined by 

= s ( x )  
p(~)=y 

For h E V Y we thus have 

(crpTph)(y) =l p-l(y) I .h(y). 
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(6.2) R o o t e d  T r e e s .  Let (X, x0) be a locally finite rooted tree defined by the 

inverse sys tem 

X 0 = { z 0 } ~ X l  P P P P " ' "  ~ X n - 1  ( X n  ~ " ' ' '  

We put  G = Aut(X, Zo). 
Let V be an addit ive group and put  

for n > O. 

For 0 < rn < n the map  

Vn = V x "  

pn-m : Xn ~ Xm 

defines as in (6.1) homomorph i sms  

7#~ :v,~ 

and 

Define 

for n > 0 and 

K~ = Ker(am). 

These are G-modules  and G-homomorphisms .  

Define 

v-  = 

V_ 1 = g_r l  ~ O. 

We also put  7n_1 = 0 and a~ 1 = 0. 

I f  all p : Xn ----+ X n - 1  are sur]ective (i. e., if X has no terminal  vertices) then 

m surjective. Suppose further  tha t  (X, x0) is all 7 n are injective, and all a n are 

spherically homogeneous  of degree 

q = (q l , q2 , . . . )  

Then  

m 12 (1) an " %n = multiplication by qm+l "''qn = q[n]/q[m] = ,,q[n]-lm] ,, 

m 
an :Y. 'Ym. 
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(6.3) T h e  m o d u l e s  V(~;., ..... mr) < V~. Given a decreasing sequence of integers 

(1) n > n l  > n 2  > . . . > n r  > - 1 ,  

we put 

(2)  V( . ;  . . . . . . . .  ) = ~/~l w l  ~-~ V~, 

where W1, W2, . . . ,  W~ are G-modules, 

(3) v/~, = K~: -1 _ < w i  _ < v . ,  

for i = 1 , . . . ,  r, defined by reverse induction as follows: 

First, 

w ~ : v ' .  

Suppose now that  Wi+I , . . . ,  W~ have been defined satisfying (3). Put  

and 

Then we put 

rti--1 
7 = 7,,,+, : V~+, , V,~,-1 

rti--1 
er = crn l : Vn l ~ Vni-1- 

(4) w{ : ~ - 1 ( 7 w { + 1 ) .  

Then (3) follows for W/ from the diagram 

Vn l ~/rn i--1 

I I 
] 7V.,+~ 
I I 

W i  ~-- o~l(") 'Wi+l)  " f W i + l  

I I 
v ' ,  = K e ~ ( ~ )  {0}  

It is easy to see, inductively, that distinct sequences (n; n l , . . . ,  n~) produce 

distinct submodules V(,;, ........ ). 

Note that  

Wi = V(~,;~, . . . . . . .  ), 

and thus, is characterized by 

= 7~1W V(n;,u ..... ,~) n , 

(5) v - ,  < w ' <  v~,  

~ " , - l ( W ' )  = ~ - , - l W  , = In2  (rt2;n2,...,nr) Y(nt-1;rt2, . . . ,nr)  nl  

We shall show in (6.5) that under special conditions, these are the only G- 

submodules of V,. 
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(6.4) I r r e d u c i b l e  Q-se t s .  Let Q be a group and Y a finite Q-set. Let F 

be a field and V = F Y the corresponding (permutation) F[Q]-module. Then 

V has two natural  submodules: the constant functions Y ) F; and V / = 

K e r ( V  a ~F) where 

q ( f )  = ~ I (Y) .  
yEY 

We call the Q-set Y irreducible (over F)  if the above are the only 

F[G]-submodules of V other than 0 and V. Clearly irreduciblity implies primi- 

tivity and thus transitivity. 

The full symmetr ic  group S on Y acts irreducibly on Y. It suffices to show 

that  if f E V is not constant, then the FS-module  W generated by f contains 

V/. (In characteristic 0 this just says that  the permutat ion representation of 

S~ on {1 , . . . ,  n} splits as two components, trivial representation and its direct 

summand. )  Say f ( x )  • f ( y ) .  Let s E S be the transposition (x,y).  Then 

h = s ( f )  - f E W and with a = f ( x )  - f ( y )  • O, we have h(x)  = - a ,  h(y) = a, 

and h(z)  -- 0 for z r x, y. Clearly the F[S]-module generated by h is V'. 

(6.5) N o t a t i o n .  Let 

(Q, Y)  : ((Q1, Y~), (Q2, Y2), . . .)  

be a sequence as in (4.2): Q,~ is a finite group and Yn is a finite Q,~-set of 

cardinality q,~ > 0. Put  X = X ( Y )  as in (4.1) and G = G ( Q , Y )  as in (4.2). 

(6.6) T h e o r e m .  Let all notation be as in (6.3). As sume  that for  each n, Qn 

acts irreducibly on Y,~ (cf. (6.4)), for  example that G = G ( ( Q , Y ) )  is the ful l  

au tomorphism group A u t ( X ,  xo). Let V = F,  a field, and V~ = F X" as in (6.2). 

I f  W < Vn is an F[G]-submodule then there is a unique sequence 

n _ > n l  > n 2 > - - - > n ~  >_-1  

such that (in the notation of (6.3))  W -- V(n;,~t ..... n,). 

P r o o f .  Uniqueness was already noted in (6.3). For existence we argue by 

induction on n. Choose nl _< n minimal so that  W < 7~lVn~. If  nl = - 1  then 

_ 7m W with we have W = 0 = V(n;-1). Say nl > 0 and put m = nl.  Then W = n 

W ~ < V,~ and the minimali ty of nl implies that  W ~ ~ 7~_lVm_t .  

C l a i m .  V~ ~ W'. 
rn--1  We first show that  the Claim implies the Theorem. Put  cr = c%~ : Vm 

V,~-I, with kernel V~, so that,  if U -- a ( W ' ) ,  then we have W'  -- ~ - I ( U )  by 

the claim. By induction, there is a sequence 

m -  l > n~ > . . .  > nr > - 1  
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such that  U = V(,~-l;n~ ..... n.) Thus, using (6.3), equation (5), 

w = 

= . . . . . . .  )))  ( m =  

= V(~;~,~ ..... ~.). 

P r o o f .  (of Claim) The conditions that W _< Vm and W ~ 7~- lVm-1 means 

that  some f C W <_ F x"~ = Vm is not constant on some fiber p - l ( y )  of 

p : Xm , Xm-1. In QX.~-I _< G let H denote the copy of Qm in the y- 

coordinate. Then H acts trivially on all fibers of Xm , Xm-1 other than 

p - t ( y )  while by hypothesis, H acts irreducibly on p-X(y). For h C g and 

f '  = h ( f )  - f r W,  f '  vanishes on all fibers of Xm ~ Xm-1 except p - l ( y )  

where it takes values f ' ( x )  = f ( h - X x )  - f ( x ) .  Since H on p - l ( y )  is transitive 

and f is non-constant on p - l ( y )  we see that f '  is neither constant nor zero (for 

suitable h r H).  Now, by irreducibility of H on p - l (y ) ,  the F[H]-module gen- 

erated by f '  contains (V ' )y  = ! / I  0 (V,~)y where (V,~)y denotes the functions 

X,~ , F with support in p - l (y ) .  Now 

' ( m ) z  V/~= 1-I V.' 
zEX~_~ 

and G acts transitively on Xm-1. Thus, the F[G]-module generated by (V~)y 

is all of V~. Thus, V~ < W as claimed. 
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I n d e x  

address, 55 
adjacent, 105 105 
alternating group, 135 
automorphism (of graph), 105 
Block condition, 100 
Cantor dissection, 111 
Cantor set, 42 
closed path, 105 
conjugacy of dynamical systems, 1 
connected graph, 105 
counterclockwise cyclic ordering, 19 
cycles (of a map f), 99 
cyclic model of X(q), 115 
cyclic order topology, 18 
cyclic ordering, 16 
Cl-unimodal, 93 
5-expansion, 8 
Denjoy expansion, 13 

divisibility (for G), 58 
divisibility (for supernatural numbers), 
dynamical system, 1 
edges, 105 
end (of tree), 109 
endpoint (of tree), 109 

exponentiation (for G), 59, 66 
f-orbit, 1, 56 
faithfully interval renormalizable, 25 
faithfully renormalizable, 5 
flip, 97 
forcing, 99 
graph, 105 
induced cyclic ordering , 18 
infinitely interval renormalizable, 22 
interval, 15, 18 
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interval n-renormalization, 19 
interval partition, 43 
interval renormalization index, 22 

involution (for G), 58, 65 
IR-index, 23 
IR-isomorphism, 21 
IR-morphism, 20 
itinerary, 56 
itinerary map, 61 
kneading sequence, 56 
K-interval, 15 
K-support, 15 
leaf (of tree), 110 
length (of path), 105 
m-modal, 95 

maximal element (for G), 67 
metric (on graph), 105 
metric (s x0)), 110 
minimal interpolation, 95 
minimal dynamical system, 1 
morphism (of dynamical systems), 1 
morphism (of rooted trees), 109 
n-ball (of graph), 108 
n-renormalization, 1 
n-sphere (of graph), 108 
non interval renormalizable, 23 

normal form (for G), 58 
normal tree (to subtree), 106 
orbit, 1 

order (for G), 59, 66 
order structure (of rooted tree), 111 
order topology, 15 
ordered dynamical system, 19 
ordered profinite space, 42 
oriented closed intervals, 16 
parity (multimodal case), 65 
partition, 42 
path, 105 
period (of spherical index), 131 
periodic (spherical index), 131 
periods (of a map f), 99 
(+)-unimodal, 95 
primary cycle, 100 
product model of X(q), 114 
profinite space, 42 
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q-adic adding machine, 25, 116 
q-adic integers, 25, 116 
quadratic, 71 
quadratic family, 94 
Q-adic adding maching, 4 
Q-adic integers, 4 
ray (of tree), 109 
real dynamical system, 45 
real interval renormalization, 92 
reduced, 105 
renormalizable, 1 

renormalization (for G), 84 
renormalization operator, 125 
rooted tree, 106, 108 
R-parity, 57 
self-similarity operator, 47 
semi-conjugacy of dynamical systems, 
semidirect products, 136 
Sharkowskii order, 99 
shift map, 83 
simple permutation, 25 
simultaneous fixed point, 50, 125 
a-orbit, 84 
spherically homogeneous (rooted tree), 
spherical index, 114 
spherical index (finite), 114 
spherical index (infinite), 114 
spherically transitive, 118 
spiral cycle, 163 
stabilizer (of a subgraph), 105 

,-product (for G), 75 
*-product (for permutations), 92 
Stefan cycle, 100 
supernatural number, 4 
symbolic interval renormalization, 
tree, 105 
truncations (for G), 58 
turning point, 56 
unimodal map, 55 
vertices, 105 
weak order preserving, 15, 19 
wreath products, 137 
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