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IX

Internal References.

References within the text are made in a hierarchical fashion. For example,
equation (4) in Section 2.6 of Chapter 1 would be referred to as (I, (2.6)(4))
outside of Chapter 1, as (2.6)(4) within Chapter I and as (4) within Section
(2.6) of Chapter I. Similarly, Section (2.6) of Chapter I is referred to as (I, (2.6))
outside of Chapter I and (2.6) within Chapter I.



Chapter 0

Introduction

The motivation behind this monograph derives from a relation between renor-
malizability of certain dynamical systems on the unit interval and group actions
on rooted trees. Certain classes of maps of the unit interval, when restricted
to invariant Cantor sets, have the form of such automorphisms and better un-
derstanding the structure of such automorphism groups contributes to a fuller
understanding of the types of maps which have these sorts of restrictions. While
a priori these two subjects have quite different audiences, it is our hope that
the link we draw between the two may persuade others to investigate similar
potential bridges between algebra and dynamics.

Some of renormalization group theory can be traced to connections made
between the classes of maps f(z) = Rz(1 — z) and g(z) = Ssin(wz), for varying
parameters R and S. For particular parameter values (at the so-called “accu-
mulation of period doubling” or “boundary of chaos”) these maps have infinitely
many periodic orbits and the periods of these orbits are all of the form 2™. It
is well known that these two maps share many “smooth characteristics”. For
example, both maps have invariant Cantor sets of the same Hausdorff dimen-
sion; the bifurcation structures of the two parametrized families also have similar
metric properties near the two maps f(z) and g(z), properties which are shared
by all maps and families in the same so-called universality class.

These characteristics were first observed numerically in the physics commu-
nity [CT, Fel, TC1]. It was conjectured that an analogous phenomenon played
a role in the transition to chaos in certain experiments in fluid dynamics [CT].
Physicists described this phenomenon in terms of a class of techniques which
in the areas of quantum field theory and statistical mechanics has come to be
called called renormalization group theory.

Much of this monograph can be viewed as part of the ongoing effort directed
towards the mathematical development of renormalization group theory. Recent
work (cf. [Su, Mcl, Mc2]) has made great strides in this direction, but many
open questions remain.

As stated at the opening, the connection with group theory comes from con-
sidering the dynamical systems at the accumulation of period doubling when re-
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stricted to their invariant Cantor sets. These Cantor sets are naturally viewed as
the ends of a rooted tree with corresponding action given by a particular element
of the automorphism group of the tree. The structure of the full automorphism
group sheds light on the possible dynamical systems obtained in this fashion and
conversely, dynamical considerations indicate possible directions for better un-
derstanding the group structure. To say things a bit more precisely, recall that
dynamical systems are often studied in terms of periodic structure. The basic
periodic systems are Z,, := (Z/nZ,+1), where +1 sends r tor+ 1 for r € Z/nZ.
For a dynamical system (X, f) (K a topological space and f: K — K a con-
tinuous map), an orbit of period n is an embedding Z, — (K, f). Here we
study the dual notion of a (necessarily surjective) morphism R : (K, f) — Zn,
which we call an n-renormalization of (K, f). Thus K is the disjoint union of
the (open and closed) fibers K, = R™1(r) and f sends K, to K41 for r € Z/nZ.
Let Per(K, f) (resp., Ren(K, f)) denote the set of integers n for which (K| f)
admits an orbit of period n (resp. an n-renormalization).

Suppose that (I, f) is a dynamical system on a compact real interval I. The
linear order of I influences the above notions as follows. An orbit of period n
is ordered, 21 < z3 < ... < z,, and the action of f defines a permutation &
of the indices; o belongs to the set C,, of n-cycles in the symmetric group Si.
Let Cn(f) denote the set of n-cycles that so occur, and C(f) the union of the
Cr(f), contained in the union C of the C,,. Define a “forcing” relation, =, on
the natural numbers, and on the set C, as follows: Let n,m € N, and o, 7 € C.
Then n = m, (resp., o = 7), means that, for all f as above, n € Per(f) implies
that m € Per(f), (resp., ¢ € C(f) implies 7 € C(f)). A remarkable theorem of
Sharkowskii says that = is an (explicit) total order on the natural numbers. (See
I1, (11.2) below.) Thus Per(f) is always a terminal segment for the Sharkowskii
order; f has entropy zero iff Per(f) consists of a sequence (finite or infinite)
1,2,4,8, ... of consecutive powers of 2. On the set C of cycles, = can sometimes
go opposite to the Sharkowskii order.

For renormalizations, suppose now that K is a minimal closed invariant sub-
set of I, and that R : (K, f) — Zp, is an n-renormalization, as above. We call
R an nterval n-renormalization if each of the fibers K, is an interval of K, and
write IRen(K, f) for the set of integers n for which (K, f) admits an interval n-
renormalization. A simple, but fundamental, result (I, (2.6)) is that IRen(K, f)
1s totally ordered by divisibility. This permits us to coherently organize the
interval renormalizations of (K, f) into an inverse sequence

(*)... — (Z/nZ,41) — (Z /012, +1) —> ... — (Z/noZ, +1)

where {ng =1 < ny < ny < ...} = IRen(H, f). In turn this defines a (surjective)
morphism ¢ from (K, f) to the inverse limit (Z, +1) of (*), sometimes called a
“g-adic adding machine.” When [Ren(K, f) is infinite (f is “infinitely interval
renormalizable”) then we show that both ¢ and f are injective, except perhaps
for countably many 2-point fibers (which actually occur in given examples).
Moreover each n in Ren(K, f) divides some m in [Ren(K, f). (See I, (4.1).) We
also show that every set of natural numbers totally ordered by divisibility can
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be realized as some IRen(K, f). It can happen that IRen(K, f) is finite even
when Ren(K, f) is infinite.

Interval renormalization has some relation to periodic structure. For example
IRen(K, f) is contained in Per(I, f); in fact the indicated periodic orbits occur
in the convex hull of K in I, and K is contained in the closure of their union.
Further, the complement of the union of the periodic orbits in its closure is
sometimes the place to find a minirnal closed invariant set K as above.

Chapter II interprets interval renormalizations for unimodal maps in terms
of a *-product on “itineraries”, in the sense of Milnor-Thurston. This permits
us to invoke theorems about the itinerary behavior of quadratic maps to deduce
analogous results about the interval renormalization structure of such maps.

In Chapter III we take the point of view that the inverse sequence (*) can be
interpreted as a rooted tree X, which is “spherically homogeneous,” on which 41
acts as a “spherically transitive” automorphism. We show that, in G = Aut(X),
the spherically transitive automorphisms form a single conjugacy class. Given an
interval n-renormalization R : (K, f) — Z,, we obtain new dynamical systems
from f" restricted to the fibers K, of R. The latter may or may not be interval
equivalent to the original (K, f). In Chapter III, Section 6, we study a group
theoretic analogue of this problem.

Finally, in Chapter IV we investigate the normal subgroup structure of
G = Aut(X), using a description of G as an infinite iterated wreath product
of symmetric groups. In the course of this we construct certain abelian char-
acters (multi-signatures in the case of the dyadic tree) in terms of which one
can characterize the spherically transitive automorphisms. The kernels of re-
strictions of G to finite radius balls centered at the root of X define natural
normal subgroups of GG, which are somewhat analogous to principal congruence
subgroups in p-adic algebraic groups. These and certain abelian characters de-
fined on them afford a general description of the normal subgroups of G. This
analysis applies as well to certain subgroups of G also constructed as iterated
wreath products.

It is natural to ask if the ideas in this paper extend to higher dimensions.
It appears that one of the fundamental facts which allow group theory to play
a role in the combinatorial discussion of interval maps is that periodic orbits
of such maps are naturally described by permutations, as determined by the
linear order of the orbit in the real line. Furthermore, continuity of the map
implies that the permutation representing a periodic orbit in one dimension
yields some information about the map as it provides some information about
the way in which the intervals between peints are mapped. In general, in higher
dimensions we appear to lose the natural ordering as well as strong influence of
finite orbits on the large scale structure of the map. In two dimensions though,
the latter aspect does seem to have a natural counterpart in the form of the
mapping class of the map restricted to the punctured manifold obtained by
removing the periodic orbit. After selecting a suspension on the map, there
is an associated braid, and the braid group in dimension two in some sense
replaces the symmetric group used in the one-dimensional dynamics discussed
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here. These sorts of ideas may be found in [GST] and the references therein
where analogous considerations permit the definition and investigation of two-
dimensional infinitely renormalizable dynamical systems. Despite this remark it
remains unclear as to what sorts of objects would assume that role that trees
play in the one-dimensional case.

Remark. Our bibliography is far from exhaustive and we apologize for any
instances in which we may not have given proper credit. For a fairly comprehen-
sive bibliography for one-dimensional dynamics see [MS]. Those interested in
the more group theoretic aspects of actions on trees might start with [Se]. The
book [Rot] is an excellent group theory resource. A classic text for permutation
groups is [Wie] while the paper [We] serves as a nice introduction to wreath
products and contains many early references to the origins of the subject.
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Overview of Chapter I

Let (K, f) be a dynamical system, consisting of a topological space K and a
continuous map f : K — K. Renormalization procedures generally involve
a choice of some subspace H C K and an appropriate “first return” map of
f-orbits, starting in H, back to H. The resulting dynamical system on H is
then called a renormalization of (K, f). In general, the time of first return
varies with the point of departure, and the f-transforms of H need not cover
K. (See, for example, [MS] for interval dynamics, [LyMil] for interval dynamics
with non-uniform return times, and [BRTT] for renormalization on n-tori.)

The “cyclic renormalizations” that we study here correspond to a fixed
time of return, given by some integral power f™ of f. More precisely, an n-
renormalization of (K, f) is, for us, a morphism of dynamical systems

(1) én : (K, f) — (Z/nZ,+1).

Thus the fibers K, = ¢;1(r) (r € Z/nZ) are open-closed sets partitioning
K, and f(K,) C Kr41 for all ». Then each (K,, f;) where f, = f* |k, is
a renormalization of (K, f) in the sense described above. The fiber Ky here
corresponds to the H above, and its f-transforms cover K.

If (K, f) is minimal, i.e. if each f-orbit is dense in K, then the K, are just
the f™-orbit closures, and each (K, f,) is again minimal. Moreover ¢, in (1)
above is determined by n, up to a translation of Z/nZ. We put

(2) Ren(K, f) = {n > 1| (K, f) admits an n-renormalization}.

Then (cf. (1.5)) the set Ren(K, f) is stable under divisors and LCM’s (least
common multiples). It is convenient to introduce (cf. (1.6)) the supernatural
numbert

(3) Q = Q(K, f) = LCM(Ren(K, ).
Then
(4) Ren(K, f) = Div(Q) = {integral divisors of Q}.

Assume that some zg € K has a dense f-orbit. Choosing our n-renormalization
én (n € Ren(K, f)) so that ¢,(zo) = 0, they form an inverse system (with re-
spect to divisibility) and we obtain a morphism

(5) 0q : (K, ) — (Zg,+1),
where iQ = limZ/nZ, and (iQ, +1) is called the Q-adic adding machine.
riQ

Now suppose that (K, f) arises from a dynamical system g : I — [ on
a closed real interval I = [a,b], @ < b, with K a minimal closed g-invariant

tA supernatural number Q is a formal product, Q = I-[p p®P, p varying over all primes,
and 0 < ep < oo for each p. It is clear what it means for one such number to divide another.
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subset and f = g|k. Then K inherits a (linear) order structure from I, so we
may speak of K-intervals. Moreover the topology on K is the order topology.
An n-renormalization ¢, of (K, f) as in (1) above is called an interval n-
renormalization if its fibers K, are all K-intervals. These form a partition of
K by intervals, so they occur in a definite order in K. This defines a unique
linear order on Z/nZ so that ¢, is weak order preserving (i.e. ¢, preserves < ).
We put

IRen(R,f) ={n>1](K,[) admits an interval n-renormalization}
(6) .
C Ren(K, f).

The fundamental observation about this (Theorem (2.6)) is:
(7 IRen(K, f) is totally ordered by divistbility.

Thus we can write:

(8) IRen(K, f) ={no(=1) <ny < np <---}, withn; | niy1.
Put
(9) gi=—
ni-1
so that
(10) Nhp=4q1-492" " qh-

Of course IRen(K, f) may be finite or infinite. We put

(11) q=q(K,f) = (91,9293 )

and call this the interval renormalization index of (K, f). As above, we
obtain a natural morphism

(12) bq: (K, f) — Zq,+1),

where iq: lim Z /npZ, and (2q,+1) is called the g-adic adding machine. In

h
terms of supernatural numbers, we have

(13) z01 = iQ(Q)’

where

(14) Q(q) = LCM(IRen(K, f)) = [] an-
h

The K-induced order on each Z /npZ gives, in the limit, a linear order on iq S0
that ¢q is weak order preserving.
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If K ={1,2,..., N}, with its natural order, then f is just a transitive per-
mutation of K, and IRen(K,f) = {ng = 1 < ny < ny < --- < n, = N}
with n;_y | n; (¢ = 1,...,m). In the special case that N = 2 we have
IRen(K, f) = {1,2,4,8,...,2M} if and only if f is a simple permutation in the
sense of [Bl].

We can summarize many of our results in Chapter I as follows. Suppose that
we are given

(15) @ = a supernatural number
and
(16) q=1(91,92,93,-..) a sequence, finile or infinite, of

integers q; > 2, such that Q(q) :=[]; ¢ divides Q.
Then the results of Sections 1, 3, and 4 give the following.

Theorem. (a) There is a compact real ordered minimal dynamical system (K, f)
such that Q(K, f) = Q and q(K, f) = q iff either q is finite, or q s infinite and
Q(q) = Q.

(b) Suppose that (K, f) is a compact real dynamical system with a dense
orbit, and that (K, f) is infinitely interval renormalizable, i.e. that q = q(K, f)
1s infintte. Then R R

¢q: (1{9 fl— (qu +1)
s surjective, and injective except perhaps for countably many 2-point fibers.
Moreover f : K — K is surjective, and injective, except perhaps, for countably
many 2-point fibers. Further, K is a Cantor set and (K, f) is minimal.

In (4.6) we construct, using a “Denjoy expansion technique”, examples where
the 2-point fibers of $q and f do in fact occur.

In Section 4 we anticipate examples (constructed in Ch. II, Section 3) of
(K, f) where K is a minimal closed invariant set for a unimodal dynamical sys-
tem f on areal interval I, and with IRen(K, f) prescribed in advance. In Section
5 we relate IRen(K, f) to periodic points of (I, f). Self-similarity operators are
defined in Section 6.

Overview of Chapter II
Let (J, f) be a unimodal map on a real interval J = [e, ], with maximum
M = f(C), increasing on L = [a,C), and decreasing on R = (C,b]. Then each

z € J has an “address” A(z) € {L,C, R} such that £ € A(z). The f-orbit
f*(z) = (=, f(z), fA(z),...) then has an address

Af*(2) = (A(z), Af(z), Af* (=), .. ),
called the “itinerary” of z. The itinerary

K(f) = Af*(M)
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of the “postcritical orbit” is called the kneading sequence of f [MilTh] (see also
[MSS, My]). It symbolically encodes much of the dynamics of (J, f), especially
on the f-orbit closure Oy (M) of M.

Consider the monoid G = GoUGC, where Gy is freely generated by {L, R},
and subject to the relations CX = C for all X € G. We interpret itineraries as
either finite words in GoC, or as infinite words, in Gg, with letters L and R.

The central aim of Chapter III is to show how an interval n renormalization of
(K, f), where K = Oy(z), is reflected in a “4x-product” factorization, Af*(z) =
a * B where a € Gy has length n — 1 (cf. Theorem (7.1)). In fact IRen(K, f)
can be intrinsically recovered from the itinerary Af*(z) (cf. (9.4)). By iterated
star products, we construct in Section 8, elements k € G with prescribed initial
renormalization. Then in Section 9 we quote results of [MilTh] (see also [CEc])
affirming that all such & can be realized in the form Af*(z), x € J, where (J, f)
1s a quadratic unimodal map.

Sections 10 and 11 relate the previous discussion to periodic orbits, and cyclic
permutations.

Overview of Chapter II1

Chapters III and IV are essentially group theoretic. They are partly moti-
vated by Chapters I and II, but are mathematically independent of them.

First the motivation. Let (K, f) be a minimal ordered dynamical system
that is infinitely interval renormalizable. Put

(1) IRen(K,f)={no=1<ny <ng--}
and
(2) q= q(I()f) = (91,42,03»~~-)

with q; = ni/n,;_l.
Then we have the inverse sequence of sets

(3) Xo &= X7 £ X E
where
@) Xm =Z[nn 2

and p is the natural projection. The interval renormalizations
(5) ([{yf) — (megm) = (Z/an>+1)

induce

~

(6) 6 (K, f) — (L, +1) = im(Xom, gm).
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An inverse sequence of (finite) sets, as in (3), can be interpreted as a (locally
finite) rooted tree, X, with vertex set

vX =] Xm,

m>0

its root being the single vertex o € Xy and with edges joining z to p(z) for
all z # zo. Then X,, is the sphere of radius m centered at zo. In our case,
each p : X, — X,,_1 1s a surjective homomorphism with kernel of order ¢y,.
Hence, each fiber of p : X,, — X,,_1 has ¢,, elements, so X is what we call
a spherically homogeneous rooted tree of index q. Moreover, the maps
dm : Xm — Xm assemble to define an automorphism g of the rooted tree
X which acts transitively on each of the spheres X,,; i.e. g is what we call a
spherically transitive automorphism of the rooted tree X.

In Chapter IIT we study rooted trees X defined by any inverse sequence of
finite sets

() Xo=A{zo} — X1 — Xg — -+
and their automorphism groups
(8) G = Aul(X).

Then X admits spherically transitive automorphisms iff X is spherically homo-
geneous, say of index

9) qa=q(X) =(q1,92,93 - ),

where ¢, is the cardinal of each fiber of p : X,, — X,_1. In this case, q
determines X up to isomorphism so we can write

(10) X = X(q) and G = G(q) = Aut(X(q)).

In Theorem (4.6) we show that the spherically transitive automorphisms of
X(q) are all conjugate in G(q). Moreover, if g is one of them, then Zg(q)(9) =
{g) = iq, where (g) denotes the closure of the cyclic group (g) in the profinite
group G(q), and Zq denotes, as above, the g-adic integers.

In the course of this discussion we obtain a description of G(q) as an infinite
iterated wreath product. This structure is used in Section 6 to analyze some
group theoretic “renormalization operators”.

Overview of Chapter IV
This chapter gives a fairly detailed analysis of the normal subgroups of
(1) Glq) = Aul(X(0)),
where

(2) q:(ql)QZ)a3)"'):
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and of certain of its other subgroups, defined as follows. Let
(3) Y =(V",Y,,Y5,..)

be a sequence of sets with

(4) | Y |= gm.

Then we can define X(q) by the inverse sequence

(5) Xo o2 X, £ X, L2

where X, = Y1 XYy x---xY,, and p: X, — X,,_1 18 a projection away from
the last factor. Let

(6) Q=(Q1,Q2,Qs,..)

be a sequence of groups with (), a group of permutations of Y,,,. Then we can
inductively construct the wreath products

(7) Q(m) = Q7' x Q(m — 1),

with a natural action of Q(m) on X,,, starting with Q(1) = @, acting as given
on X1 = Yj. Then

(8) G((Q,Y)) = imQ(m)

is naturally a closed subgroup of G(q) = G((S,Y)), where S,, is taken to be the
full symmetric group on Y,,. We can write G((Q,Y)) explicitly as an infinite
iterated wreath product,

9) GQ,Y)) = - xQXm=1 % % QX 3 Q1.

There is a canonical homomorphism compatible with (9),
(10) &:G((QY)) — - x Q& x - x QF° x @, 5(g) = (m(9))m21,
where Qf;lb denotes the abelianization of @,,, and

(11) Ker(c) contains the closure of the
commautator subgroup of G((Q,Y)).

If each @,y is transitive on Y}, then each @Q(m) is transitive on X,,, and the
inclusion (11) is an equality.
Suppose that each @, is cyclic (hence abelian), generated by a g,,-cycle on
Y... Then we have
7:G((Q,Y)) — [] @m-

m>1
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In this case (cf. (4.4) and (4.5)), G((Q,Y)) contains spherically transitive
elements; g € G((Q,Y)) is spherically transitive iff o,,(g) generates Q,, for all
m > 1; and two spherically transitive elements g, ¢’ are conjugate in G((Q,Y))
iff 5(g) = ().

Note that, in the case of the dyadic tree, ¢ = (2,2,2,...), the previous
paragraph applies to the full group G(q).

Finally, in Theorem (5.4), under the assumption that @,, acts primitively on
Yy, for each m (e.g. when @, is the full symmetric group) we give an analysis
of all the normal subgroups of G((Q,Y)). The result is too technical to state
here.

If H is a rank 1 simple algebraic group (e.g. H = PSLy) over a p-adic field
F, then its Bruhat-Tits building X (cf. [Se]) is a tree on which H(F') acts, with
quotient H(F')\X = o—o. The maximal compact subgroups of H(F') are vertex
stabilizers in X. If 29 € X then H(F),, = H(A) where A is the ring of integral
elements of ['. Thus we have H(A4) < Aut(X, zg), the automorphism group of
the spherically homogeneous rooted tree (X, zg). The congruence subgroups,

Ker(H(4) — H(A/M™)),
where M is the maximal ideal of A, coincide with the groups
Ker(H(A)ﬁiAut(Bm (zo)> ,

where Bp,(zp) denotes the ball of radius m about zy in X.
In this light, we can think of the description of normal subgroup of G(q) as a

combinatorial analogue of the local congruence subgroup problem for the groups
H(A) (see e.g. [BMS]).
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Chapter I

Cyclic Renormalization

0. Introduction.

This chapter introduces the notions of renormalization and interval renormal-
ization of dynamical systems, which are central to what follows. For a detailed
synopsis, see the “Overview of Chapter I” in the main Introduction above.

1. Renormalization.

(1.1) Let (K, f) be a dynamical system, i.e., K is a nonempty topological
space and f : K — K is a continuous map. We call (K, f) minimal if K is
the only closed nonempty f-invariant subset of K. Equivalently, for each z € K,
the f-orbit {f"(z) | n > 0} of z is dense in K [Bi].

A morphism ¢ : (K, f) — (K’, f') of dynamical systems is a continuous
map ¢ : K — K’ such that f'o¢ = ¢o f. If (K, f) is minimal then two
morphisms on (K, f) that agree at a single point must coincide. When ¢ is onto
it is often called a semi-conjugacy of dynamical systems. Note that if (K’, f')
is minimal then this is necessarily the case. If furthermore ¢ is injective as well,
then ¢ is called a conjugacy.

(1.2) n-renormalization. For an integer n > 1, an n-renormalization of a
dynamical system (K, f) is a morphism ¢ : (K, f) — (Z/nZ, +1), where Z /nZ
is given the discrete topology and +1 denotes the map  — z+1 (mod n) . For
r € Z/nZput K, = ¢~1(r). Then K is the disjoint union of the open-closed sets
K, and f(K,) C K41 (r € Z/nZ). In particular, each K, is invariant under
f™. We say that (K, f) is renormalizable if it admits an n-renormalization for
some n > 1.

If ¥ : (K, f') — (K, f) is a morphism of dynamical systems then ¢ o ¢ is
an n-renormalization of (K, f').
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Remark. Various related ideas in mathematical physics and dynamical sys-
tems have made use of techniques which have been called “renormalization”.
Renormalization ideas from statistical mechanics were first explicitly adapted to
dynamical systems theory in [CT, TC1, TC2] (see also [Fel, Fe2] for similar ma-
tertal). Among other applications, renormalization techniques have been used
extensively for the study of continuous maps acting on an interval or subinterval.
An excellent and fairly comprehensive review of this point of view can be found
in [MS]. As will be indicated below, this possibly more familiar approach corre-
sponds to what we will call “interval renormalizability” below. Our framework
is designed for applying combinatorial analysis to restrictions of a map on the
interval to invariant finite sets or Cantor sets (cf. (B.1) below).

(1.3) Proposition. Let ¢ : (K, f) — (Z/nZ,+1) be an n-renormalization of a
minimal dynamical system.

(a) For each v € Z/nZ, f™ restricted to K, = ¢~1(r) is minimal. Thus, the
various K, are just the orbit closures of f".

(b) For each r € Z/nZ, f defines morphisms

(Afm fn |K") I ([(r+1» fn IKr+1)
with dense image (r € Z/nZ).

(¢) If ¢ : (K, f) — (Z/nZ,+1) is an n-renormalization then, for some
a€Z/nZ, ¢ (z)=¢(z)+a forallz € K.
Proof. Cleatly f : K, — K41 is f?-equivariant. If L C K, is f™-invariant
then Lt = U f(L)is f-invariant, and L* N K,; = f*(L). By minimality of

0<i<n

(K, f), f*(L) must be dense in K,4; for each i. Now (a) follows from the case
i =0, and (b) from the case { = 1.

Let zq € Kg. If ¢’ is another n-renormalization and ¢’(z¢) = @ then ¢’ and
¢ + a agree at zo and hence coincide, by the minimality of (K, f).

Remark. To simplify matters we sometimes identify the integer j € [0, n] with
its residue class (mod n). Similarly, if n € Z/pZ and m € Z/qZ, then we may
write nm € Z/pqZ and so forth. In general, the context will always clarify these
sorts of distinctions.

(1.4) Proposition. Let (K, f) be a minimal dynamical system and n an integer
> 1. The following conditions are equivalent.

(a) (K, f) admits an n-renormalization ¢ : (K, f) — (Z[nZ,+1).
(b) For some ¢ € K the f™-orbit closures of f'(z) (0 <1i< n) are parrwise
disjoint.



(c) (i) For z,y € K the f*-orbit closures of x and y are either equal or
disjoint
and
(%) The resulting partition of K by f™ orbit closures has at least n classes.

Proof. Assume (a). Then (b) follows immediately and (c) follows from (1.3).

Assume (b). Let K, denote the f”-orbit closure of f"(x) (0 < r < n).
Then clearly f(K,) C Kr41 (r € Z/nZ),s0 Ko[] - ][ Kn=1 is closed and f-
invariant, hence equals K by mimmality. Now we have the desired
n-renormalization defined by ¢(K,) = r, whence (b) implies (a).

Assume (c). Let ¢ € K. Define K, as above. Again by minimality the
f-invariant set KqU---UK,_; must equal K. Each K, is one of the equivalence
classes defined by (c)(i), and there are at least n such classes by (c)(ii). It follows
that Kg,..., K,_, must be distinct, hence pairwise disjoint. Thus (c) implies

(b).
n

(1.5) For a dynamical system (K, f) we define the set
Ren(K,f)={n>1 ] (K, f) admils an n-renormalization}.

Proposition. (a) Ren(K,f) contains 1 and is stable under divisors:
n € Ren(K, f) and d | n implies that d € Ren(K, f).

(b) Ren(K, f) is stable under least common multiples: n,m € Ren(K, f)
implies that LCM(n, m) € Ren(K, f).

Proof. Clearly 1 € Ren(K,f). If ¢, : (K,f) — (Z/nZ,+1) is an n-
renormalization, d | n, and p : Z/nZ — Z/dZ is the natural projection,
then po ¢, : (K, f) — (Z/dZ,+1) is a d-renormalization.

Suppose further that ¢, : (K, f) — (Z/nZ,+1) is an m-renormalization.
Choose zg € ¢;;1(0). After modifying ¢,, by a translation of Z /mZ if necessary,
we can arrange that ¢,,(zo) = 0 also. Put M = LCM(n,m) and d = ged(n, m).
Then the natural diagram

Z/MZ i~ Z/nZ
Im | . L pn
Z[mZ o Z/dZ
is cartesian (i.c., a fiber product). Moreover pp, © ¢ and p, o ¢, agree at zg and
hence are equal, by minimality. Thus the universal property of fiber products
gives us a map ¢p : K — Z/MZ such that ¢, - p = ¢5 for s = n,m. Then
¢n 1s the desired M-renormalization.
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(1.6) Supernatural numbers. The prime factorization of an integer n > 1
takes the form

(1) n=J] »*",

p prime

where vp(n) > 0 and vy(n) > 0 for only finitely many p. By a supernatural
number we mean an expression of the form

(2) Q=]]r" (0<e <o forallp).
p
We say that n divides Q, written n | @, if vp(n) < e, for all p. The set

(3) Div(@ =1{n>1|n|Q)

of divisors of @) contains 1 and is stable under divisors and LCM’s. Conversely
any set R of integers > 1 containing 1 and stable under divisors and LCM’s is
of the form R = Div(Q) for a unique supernatural number @ defined by

Q LCM(R) :=1]], p¢’  where
€p = SUp,cgUp(n).

(4)

This applies, in particular, to the sets Ren(K, f) in (1.5). We have

(5) Ren(K, f) = Div(Q), where
Q = Q(K, f) := LCM(Ren(K, f)).

(1.7) Example. Given a supernatural number @ as in (1.6)(2), we can define
the ring of @-adic integers

Zo=lmZ/qZ=[]2/p"Z
q|Q P

where the inverse limit is taken over divisors ¢ of @, ordered by divisibility, and
when e, = 00, Z/p™Z denotes the p-adic integers, lim Z/p"Z. The inverse limit

n>1
of the discrete topologies on each Z /qZ gives ZQ a topological ring structure for
which it is compact and totally disconnected. The dynamical system

(iQ: +1)’

called the @Q-adic adding machine, is minimal (this follows from (2.8) and
(I11,(4.5)) and it admits g-renormalizations for each ¢ € Div(Q). In fact

Ren(Zg, +1) = Div(Q).



5

For suppose that ¢ : (iQ, +1) — (Z/nZ,+1) is an n-renormalization. We must
show that n | Q. After a translation of Z/nZ we can assume that ¢(a) = 0. It
follows then that ¢(m) = m for all m € Z, where in the lefthand side m € Zg
and in the righthand side m € Z/nZ and consequently that ¢ |Im(Z—-»iQ) is a
ring homomorphism. Since Im(Z — iq) is dense in iq, it follows that ¢ is

a ring homomorphism. Thus, Ker(¢) is an ideal of index n in ZQ. It is easily
seen that any such index must divide Q.

Historical Remark. The relevance of adding machines to renormalization was
apparently first noticed by Sullivan (unpublished). See also [JR2, Ni, Misl,
Mis3].

(1.8) Let (K, f) be a dynamical system, having a point zo € K with a dense
f-orbit. Let
Ren(K, f) = Div(Q)

where Q = LCM(Ren(K, f)), as in (1.6)(5). For each divisor ¢ of Q let
¢y : (K,f) — (Z/qZ,+1) be the g-renormalization with ¢,(xo) = 0. Then
the collection of ¢, define a map

$Q K — iQ =limZ/qZ

q1Q

and $Q is a morphism (X, f) — (iQ, +1). The image of $Q is dense, so $Q is
surjective if K is compact. R

We call (K, f) faithfully renormalizable if ¢¢ injective; equivalently, if
whenever ¢ # yin K, ¢,(z) # ¢4(y) for some g.

If aQ 1s a homeomorphism then K must be compact and totally disconnected
and f must be a homeomorphism such that (K, f) is minimal. On the other hand
these conditions do not suffice to make $Q a homeomorphism. In (4.6) we give
an example with @ infinite yet $Q is not injective.

(1.9) Proposition. Let (K, f) be a dynamical system, ¢ : (K, f) — (Z/nZ,+1)
an n-renormalization, and for r € Z/nZ put K, = ¢~1(r) and

fr = fn IKr: K, — K,.

(a) The sels Ren(K,, f,) are the same for all v € Z/nZ.

(b) For an integer m > 1, m € Ren(K,, f,) if and only if nm € Ren(K, f).
Thus, in the notation of (1.6)(5),

QK f) =n-Q(Kr, fr).
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Proof. The morphisms f : (K., f;) — (K:41,fr+1) entail inclusions
Ren(Kry1, fr41) C Ren(K,, fr), whence (a).

To prove (b) put N = mn. For r, M € Z, let rpsr denote the residue class of
r € Z/MZ. We can write elements of Z /NZ uniquely in the form

rN+n-s (r=0,1,...,n—1;s € Z/mZ).

If¢n : (K, f) — (Z/NZ,+1)is an N-renormalization that reduces modulon to
¢, then for 0 < r < nand z € K,, we can write ¢n(z) = ry +n-9¥(z), as above,
and it is readily checked that ¢ : (K,, f,) — Z/mZ is an m-renormalization.
Suppose, conversely, that m € Ren(K,, f.). Choose an m-renormalization
ém  (Kn-1, fn~1) — (Z/mZ,+1). Define ¢ : K — Z/mZ on z € K, by
Y(z) = dm(f"~17"(z)) for 0 < r < n. Then define ¢x on = € K, by ¢n(z) =
rn+n-¢(x). A straightforward calculation shows that ¢ n(f(z)) = én(z) = 1
as required. The only subtle case is » = n — 1, when we have f(z) € K¢. Then
n(f(2)) = O = 1n(F (f(2)) = 1 bm(fazi(2)) = 7 - (Sm(2) = Lm),

because ¢, is an m-renormalization, whereas
dn(E)=1In=(n=1Nn+ 1IN+ 70 dm(z) =n - (dm(z) + 1)
[ ]

Remark. The analogous restatement of (1.9) for interval renormalization is not
true.

(1.10) Example of a nonrenormalizable minimal (X, f). Consider the circle
S={2eC||z|=1}

and let f be an irrational rotation of S. Thus, for some o ¢ Q and writing
e(z) = 2™ for z € R, we have

f(efz)) = e(z + @) = e(z)e(a).

Then the cyclic group {f) acts freely on S, and for each N # 0, fV acts minimally
on S. More precisely, given z,w € S, we can find sequences n;, m; — 00 such
that

™ () 1w and FY™(2) | w.

Here the notation y T w denotes that in the counterclockwise orientation of
S, y increases to the limit w. Similarly, y | w signifies that y decreases to the
limit w.

Of course (S, f) is not renormalizable, but this follows already for the trivial
reason that S is connected. We now propose to modify (S, f) to a nonrenor-
malizable system, (K, g) with K totally disconnected. We shall use the Denjoy
expansion construction described in Appendix A below.



Let C be an orbit of (f) not containing 1: For some zy = e(zp) € S, C =
{f*(z0) = e(zo + na) | n € Z}, and 7o ¢ Za. Define és : S — R by
b6s(z0) = 1/2, 6s(f*(20)) = 1/2!"142 for n # 0, and 65(z) = 0 for z ¢ C; note
that 3, 6s(z) = 1. As in (A.3), use s to construct a Denjoy expansion of S.
This furnishes a continuous surjection 7 : $ — S such that, for each z € S,

J. = 77Y(2) = [00(2), 01(2)]

is a counterclockwise oriented interval of length é5(2) - 7. Further f lifts to a
locally increasing (i.e., orientation preserving) homeomorphism g : S — S such
that rog = fox (cf. (A.6)).
The set
K=00(S) U a(S)CS

is closed and (g)-invariant. K looks like a rescaled version of S with each z € C
split into a pair {oo(z),01(z)}. Since f is locally increasing everywhere (cf.
(A.4)) we have g(0;(2)) = 0i(f(2)) (i = 0,1) for all z ((A.4)(8)), and hence the
orbit C has been split into two orbits a¢(C') and ¢1(C). Since C is dense in S,
we see that K is totally disconnected. To show that (X, g |k) is minimal and
has no non-trivial renormalizations we must show that for N # 0, each g™ -orbit
in K is dense in K.

Let z,w € S. We must show that the gV-orbit closures of oo(z) and o1(2)
each contain both ao(w) and o1(w). We treat only the case of g¢(z) as the case
of o1(z) is similar.

Choose sequences n;, m; — oo so that f¥(z) T w and fN™(z) | w. Since
f is locally increasing, we have

9" (00(2)) = ao(FV™ (2)) 1 00(w)

and
gV (00(2)) = oo (SN (2)) | o1 (w)
(cf. (A.3)(6)).

Summary. K is compact and totally disconnected, g |k is a homeomorphism,
and ¢V acts minimally on K for all N # 0. Hence

Ren(K,g|k) = {1}.

Note that by picking a base point o € S interior to some interval J, =
[00(2), 01(2)], and using zo to convert the cyclic order on S to a linear order
with initial point xg, we obtain a linear order on K defining the same topology
on K. Then K, with this linear order and topology, can be (order preserving)
embedded in R.
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Appendix A. Denjoy expansion.

(A.0) Summary. We describe here a construction that modifies certain one-
dimensional dynamical systems by equivariantly “blowing up” a countable set
of points to intervals of positive length. It is the basis for various examples that
we construct (cf. (1.10), (4.6)).

Variations of this type of construction can be found in the literature and go
back to [Boh, De, Po.

(A.1) é-expansion of R. Let
§:R-—RF
be a (not necessarily continuous) function such that

{ 8(z) >0 forallz, and
)

(1) Y. 0(z) <oo.

It follows that
C = Supp(8) := {z | §(z) > 0}

is countable. Define
0o, 01 R— R
by

@) oo(z) = T+, 0(),
o1(x) = T+, 6(y) = 0o(z) + ().

Then each o; is a strictly increasing function of z.
We shall write y T z (resp. y | z) to denote that y strictly increases (resp.
decreases) to the limit z. It is easily seen that

ylez = oi(y) 1 oo(z) (i=0,1)
(3) and
ylez = oi(y) | o1(x) (i=0,1).

For z € R, put
Jz = [00($)>0’1(1")]v

a closed interval of length §(2) > 0. We have R = [], J;, and & < y implies
2’ <y forall 2’ € J, and ¢ € Jy. Define

7m:R— R

by
) = Jp for all .

Then 7 is surjective, continuous, nondecreasing, and mroo; = Id (i = 0,1).



(A.2) The sets K(6) and K'(6). For K C R we put
K@) =r(K)=[] /=
reK
Then 7 : K(§) — K has sections og, 01, and we put
K'(8) = oo(K) Uo1(K).

Then
' K'(§) — K
has fibers
7' (z) = {oo(z), 01(2)}

of cardinal < 2.
Suppose that K is an interval. Then K(§) is an interval of the same type,
and there is an affine isomorphism

a:K() =K
of the form a(z) = ax+b,a > 0. Using7#=nwoaland 6 =aoad; (1=0,1)

we get maps K ; K with properties like those of 7 and o;.

L

(A.3) 6-expansion of the circle S. Let
S={zeCl|z|=1}

oriented counterclockwise. For z,w € S, [z, w] denotes the closed interval going
counterclockwise from z to w. ([z,w] = {z} if z = w.)
We have the exponential map

e:R— 5| e(z) = 2T,
Suppose that we are given a function
65 : S — R*
such that

(1) { 65(2) > 0 for all z, 65(1) =0, and

ZZES 65(2) =1

Thus é5 has countable support

Cs={z€8|és(z) >0}
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Put
L=[0,1)CR
and define
6. R—DR
by
_J ts(e(z)) ze€l
@ o(2) = { 0 z¢ L.

Note then that, with o¢, 01,7 : R — R defined as in (A.1), we have

z forxz <0, and
z+1 forx>1.

(3) {00(23) = o1(z)

oo(z) o1(z)

Further, we have for i = 0, 1,

L(é)
(4) ™ |1 o
L

[0,2)

Define eg(2) = e(z/2). Then ey : L(§) — S is bijective, so we can define 7g
and 6;; (i =0,1) on S by commutativity of the diagrams

L(§) = S L(§) 2 S
(5) T | L ms , o 1 T oois
L TS L TS

Then 75 is continuous, surjective and weak order preserving; its fibers are inter-
vals.

On S we write z T w (resp. z | w ) to denote that z increases (resp. decreases)
to the limit w in some S-interval [u,w] (resp. [w,v]). With this notation we
have

zlw == 05,(2) Toos(w) (:=0,1)
(6) and
zlw = 054(2) | o15(w) (:=0,1).

For K C S we define
K'(6s) C K(6s)C S

by K(6s) = 75" (K) and K'(65) = 00(K) Ui 4(K).

(A.4) Expansion of dynamiecs. Let T denote either a real interval, or else the
circle S (with counterclockwise orientation). Let

m: T — T
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be a continuous weak order preserving surjection such that for all z € T,

() Jz =77 1(z) is a closed interval [oo(z), o1(2)],
of length
(2) 6(z) = length(J;) > 0.

Let f : T'— T be a continuous map. We make the following basic as-
sumption:

If € T and 6(f(z)) > 0, then §(x) > 0, and [ is locally strictly

3) monotone on each side of z; t.e., there are intervals [y, 2| and [z, z]
of postitive length such that on each of [y, z| and [z,z], f is either
increasing or decreasing.

In the setting of (3), there are four possible types of behavior of f near z, denoted
type(f, z),

characterized and denoted as follows:

type / . increasing on [y, z] and [z, z]

(4) type \ : decreasing on [y, z] and [z, 2]
type N . increasing on [y, x|, decreasing on [z, 2]
type U : decreasing on [y, z|, increasing [z, z].

Given real intervals [e,b], [¢,d], @ < b, ¢ < d, we choose surjective maps
g« (x*=/,\,N,U) from la, b] to [c, d] with the indicated type at the midpoint of
[a,b]. For example we can take, for 0 <¢ < 1:

g,(a+tlb—a)) = c+t(d—c)

5 g(a+t(b-a)) = d-td-¢)

(5) gola+t(b—a)) = c+4-t(1-t)(d—¢)
gla+tb—a)) = d—4-t(1—-t)(d-¢)

Now we propose to lift f to a continuous map g making the following diagram
commute.

T 4, T
6) Tl Lo
T OF T

We construct g such that for each z € T, g must restrict to a continuous map

9o : Iz = [o0(2), 01(2)] — J5(2) = [00(f(2)), o1 (f(2))]-
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There are two possibilities.
Case 1: 6(f(z)) = 0. Then g, must be the constant map with value oo(f(z)) =

o1 (f(z))-
Case 2: 6(f(z)) > 0. Then by assumption (3), é(z) > 0 also, and the type of
(f, z) is well-defined. We then define

(7)> 9z = glyre (f,x) : JI" - Jf(x),

where g, .., ., is defined as in (5).
The following properties are immediate from the construction.

For each x € T, g5 : J» — Jj(z) ts continuous, and according to

®) type(f, )

oo =
- oi{J1Z)),00(J(Z type
(g(oo(z)), 9(o1(2))) = (Jo(f(x)), oo(f(z))) type N
(o1(f(z)),; 01(f(2))) type U
IfJ C T is any interval then n~1(J) 1s an interval. If f is increas-
9) ing (reis(p.) decreasing) on J then g is increasing (resp. decreasing)
on m~(J).

If K C T s f-invariant

(10) then n~1(K) and K' := 0o(K) U o1(K) are g-invariant.

(A.5) Lemma. g is continuous.

Proof. Since each g, : J; — Jy(,) is continuous, it remains only to show that,
forz eT,

zloo(z) = ¢(2) — g(o0(2))
and
wlo(z) = g(w) — g(o1(z)).
As z passes through infinitely many intervals Jy, the lengths of J, and Jy () =
g(Jy) tend to 0. Thus it suffices to treat the case when z is say the initial point
oo(y) of Jy. The condition z 1 ao(x) is then equivalent to the condition y T .

Similarly it suffices to treat the case when w = og(u), and u | x. Thus, it suffices
to show that

; ytz = g(oo(y)) — 9(oo(z)) (i=0,1)

ulz = g(oo(u)) — g(o1(z)).

Case 0: 6(f(z)) =0, i.c., oo(f(z)) = o1(f(z)) is the constant value of g on
Jo.
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Since f is continuous, y 1 z implies f(y) — f(z), and so, by (A.1)(3)
and (A3)(6), 0i(f(¥) — 6(0s(2)) (i = 0,1) (since g(os(x)) = oo f(z)) =
o1(f(z)), ¢ = 0,1). Since g(oo(y)) = oo(f(y)) or o1(f(y)), it follows that
g(oo(y)) — g(oo(z)), as required. Similarly, one concludes from u | z that

g(oo(u)) — g(o1(z)).
Case 1: §(f(z)) > 0. Then, by (3), é(z) > 0 and type(f,z) € {/,\,N,U}.
We treat each type separately.

Type /: By (A.4)(8), g(0i(y)) = 0i(f(y)) for y near z. Also near  we have
yle = f@1fz) = UO(chl(y)) ! 00(1{1(93))
9(oo(¥))  9(oo(y))-

Similarly, u | 2 implies g(oo(u)) | g(o1(x)), as required.
Type \: In this case, by (A.4)(8), ¢(0:(y)) = o1-i(f(y)) for y near z. Also

near x we have

ylz = fylflz) = 01(J|‘|(y)) | 01(J|‘|($))
g(og(y)) g(ao(y)).

Similarly,

ulz = f(u)1flz) = 01(J|‘|(U)) 1 00(1;|($))
9(o0(u)) g9(o1(z)).

Type N: The argument in the case y T x is like that for type /, and in the
case u | « like that for type \.

Type U: The argument in the case y T z is likc that for type \, and in the
case u | « like that for type /.

(A.6) Terminology. Let 7 : 7" — T and f : T — T be as in (A.4). We call
7 a Denjoy expansion of 7" along (the countable set)

(1) C={zeT|éz) >0}

We call g : T — T the corresponding Denjoy expansion of f. Note that
assumption (A.4)(3) implies that

(2) f~Ye)cc.



14 CHAPTER I. CYCLIC RENORMALIZATION

We summarize some of the basic properties.

T 9T
(3) The diagram © | T commautes.
T _F T

IfJ C T s an interval then 7=1(J) is an interval. If f is increasing

(4) (resp. decreasing) on J then g is increasing (resp. decreasing) on
7~ 1(J).
(5) 9(T) = 7= X(f(T)); thus g is surjective if and only if f is surjective.

g 15 injective if and only if f is injective

(6) and [¢ € C if and only +f f(z) € C).

For since g is surjective on 7-fibers, we see that ¢ is injective if and only if f
1s injective and each g, : J; — Jj(4) is injective. In particular, we must have
6(z) > 0 if and only if 6(f(z)) > 0, i.e., « € C if and only if f(z) € C. Further,
when §(x) > 0, f must have type / or \ at z, and this is automatic when f is
injective.

Finally, we recall the basic assumption (A.4)(3) about C and f:

(M f~YC) C C, and near each ¢ € C, f is of type /,\,N, or U.

(A.7) Minimality. Let = : (T,9) — (7, f) be a Denjoy expansion as in
(A.6). Let K C T be an infinite closed f-invariant subset containing C, and
put K’ = oo(K)U 01(K). Then K’ is closed and g-invariant, and 7 induces a
surjection

(K’ g) — (K, f).

Claim. (K',g) is minimal if and only if
(i) (K, f) is minimal, and
(ii) For all c € C, c is a monotone limit from both directions in K — {c}.

Proof. First assume that (K’,g) is minimal. Then clearly (K, f) is also min-
imal. If ¢ € C is say a limit in K from the left, but not from the right, then
o1(c) is an isolated point of K'’, so it cannot be in the closure of a g-orbit not
containing o1(c), contradicting minimality.

To prove, conversely, that (1) and (ii) imply that (K’, g) is minimal, it suffices
to show, assuming (i), that if H' € K’ and H = n(H’) is dense in K then H’
is dense in K’'. (We apply this with H’ a g-orbit in K'.)

Let y € K. We must show that og(y) and o1(y) are limits of elements of H'.
Let (hy) be a sequence in H. For each n we have o;, (h,) € H’' for some i, =0
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or 1. Consequently, the following two cases are possible:

(LY Ifhyly then o, (ha) 1 00(y)
(R) Ifhaly then o4, (hn) | o1(y)

Since by assumption, H is dense in K, we can find a sequence (hy,) in H so
that either h, Ty or hy, | y. If 0o(y) = 01(y) then o9(y) (= o1(y)) lies in the
closure of H'. If og(y) # 01(y), t.e., y € C, then by assumption (ii), we can find
sequences (hy,) and (k) in H so that h, | y and k, | y. Then from (L) and (R)
we see that both oo(y) and o1(y) belong to the closure of H'.

(A.8) Remark. When (7, f) is given with certain smoothness properties, it is
natural to see how much of these can be preserved for (T, g). This issue must
be addressed in the choice of the local interpolating functions g. of (A.4)(5), so
that they are sufficiently smoothly adapted to the local behaviors of f at the
cut points of the Denjoy expansions. The smoothness properties of f would be
formulated in a suitable enhancement of hypothesis (A.4)(3). For a celebrated
example of the smoothness problem for Denjoy expansion of irrational rotations
see [Boh, Dej.

2. Interval renormalization.

(2.1) Linear orders and intervals. Let K be a linearly (i.e., totally) ordered
set. For z,y € K we have the usual notion of intervals: [z,00) = {z € K |
z <z}, (z,0) = {2 € K|z < z}, and similarly (—o0,z}, (—o0,z), [z,y]=
[z, 00)N(—00, y] (which is @ unless z < y), and (z,y) = (z, 00, )N(—00,y). When
there is need to be precise we put a subscript K, as in [z, y]k, etc.

For L C K, the K-support of L, denoted [L]x is defined to be

[L]K = U [.’L‘,y]

z,yeL

We call L a K-interval if L = [L]k (or simply an interval if the choice of K is
clear).

If K’ is another linearly ordered set then a map ¢ : K — K’ is said to be
weak order preserving if ¢ < y implies ¢(z) < ¢(y). In this case the inverse
image of an interval is an interval.

The open intervals (z,y) (¢ € KU{~},y € KU{oo}), form a base for the
order topology on K. For K C R the order and euclidean topologies need not
coincide; for example, K = [0,1) U {2} is order isomorphic to [0, 1]. Nonetheless:

Claim: For a closed K C R, the order and euclidean topologies coincide.
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Proof. It suffices to show that a euclidean open interval in K is order-open.
Say
L=(ABpNK#0 (—c0o<A<B<o).
Put a = inf L, b = sup L. Since K is closed we have a € KU{—o0},b e KU{o0}.
Put o« = sup(—o00, Alg " K and 8 = inf[B,c0)g N K. (Note that sup® = —co
and inf@ = o00.) Then again since K is closed we have o € K U {~o0} and
B € KU {oo} (see Figure 1).
Moreover («,a)x = 0 and (b, 8)x = 0. Put

| a ifaé¢l b ifb¢lL
“0'{a ifaer ™ b‘)—{ﬂ fbel.

Then we have

L = (ao,bo)x,
as is easily checked.
|
nleleluialeluiulaiel e ieieiminlninininjje ujulelaluiujjelululll i ilijujeiuininjsjjuinjm

Figure 1. Showing that the euclidean open interval L in K is also order open.

(2.2) A cyclic ordering on a set K is defined by a family of subsets called
oriented closed intervals

[,y C K (z,y € K)
which are defined as satisfying (1), (2) and (3) below, for all z,y,z € K:

(1) [z,9]N [y, z] = {z, y}
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[z,9]U{y,2] = [z,2]
@ vea={ LU0 2 6
and
(3) etthery € [z, 2] or z € [z, y].

We have the following consequences (i)-(xi): First

(©) [z, 2] = {z}.

(“) 2y =[z,]=y=2

Proof (of (i) and (i1)). (i) follows immediately from (1). For (ii), [z,y] = [z, 2] =
[z, 4] U[y, 2], by (1) and (2), whence [y, 2] C [z, 9] s0 2 € [z,y] N[y, z] = {y}, by

(2)-
N

(iit) r#y=[z,y]Uly,z] = K.

Proof (of (iii)). Suppose that z ¢ [z, y] so that y € [z, z2]U[y, 2] by (3). We must
show that z € [y, z]. If not, then by (3), z € [y, 2], and so z € [z, y]N[y, 2] = {v},
contrary to the assumption that z # y.

(iv) Either y € [z,2] or z € [y, 2].

Proof (of (iv)). By (1) we may assume that z # ¢ # y # z. Suppose that
y¢[z,2]. By (2), z € [z,9] = [z,2)Ulz, 0], [z,2)N[z,9) = {z}. Thus z ¢ [2,y]
so by (iii), z € [y, 2].

(v) The following conditions are equivalent:
(a) ye(z,2]; (b) [z,y]C[z,2]; (c) Eitherz =y orz ¢ [y,z].

Proof (of (v)). First, (a) = (b) by (2), and (b) = (a) by (1).

(a) = (c): Assuming z # y we must show that z ¢ [y, z]. If on the contrary,
¢ € [y, 2] = [y,z] U [z, 2], from (a) we have y € [y,z] N[z, 2] = {z},s0 y = =,
contrary to assumption.

(c) = (a): Clearly y € [z, z] if z = y, so assume that = # y, and so z ¢ [y, 2]
, by (¢). Then y € [z, z] by (iv).
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n
(vi) Let y <c z signify the equivalent conditions of (v). Then <, is a
linear order on K with least element z.
Proof (of (vi)). This is immediate from (1), (ii), and (v).
a

(i) Iy theny <oz and[y,2) = {we K |y <, w<s 2).
Proof (of (vii)). By (iv), y € [z,2] = [z, y] U [y,2], so ¥y <z z, and w € [y, 2]
implies w <; 2. If, moreover, w # y, then w ¢ [z, y], so y € [z, w] by (3), hence
y <z w. Suppose, conversely, that y <, w <; z. Then w € [z, z] = [z, y] Uy, 2],
and either w = y € [y, z] or else w ¢ [z, y], so again w € [y, 2].

Let L C K and 2 € K — L be such that L is an inierval relative
(viii) to <g. Then for all ' € K — L, <, coincides with <, on L, and

L s an interval relative to <.
Proof (of (viii)). In view of (vii), it suffices to show that if y,2 € L and y <, z
,then y <z z. By (vii) we have [y, z] C L, hence 2’ ¢ [y, z], and so, by (iv),
y € [z', z], as claimed.

A subset L C K is called an interval if either L = K or else L satisfies the
condition of (viii) for some (hence every) z € K — L. The open intervals form a
base for the order topology on K.

Any subset L C K inherits an induced cyclic ordering, with oriented
closed intervals defined by:

[z,y]L :=[z,y]NL

Suppose that K 1is partitioned into a disjoint union of intervals
(ix) Lg,Ll, . ..,Ln_l.' Choose_ z; € L; and give X = {xo,m'l, e Zn-1}
the induced cyclic ordering. The corresponding cyclic order of
{Lo,L1,...,Ln_1} is independent of the choice of the z;’s.
Proof (of (ix)). It suffices to observe that in the linearly ordered set
(K — Lg, <4z,), the linear order is independent of 9 € Lo, and the linear order

induced on {1,...,2z,-1} and on the disjoint intervals {L;,..., L,_1} corre-
spond.

|
(x) If L and L' are K-intervals then either LN L' is a K -interval or

LULl' =K.
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Proof (of (x)). In fact if # € K — (LU L’) then L and L’ are both intervals
relative to <; (cf. (12)) and hence so alsois LN L'.

]

If K’ is another cyclically ordered set then a map ¢ : K — K’ is said to be
weak order preserving if

y <z z in K implies ¢(y) <y(c) #(2) in K'.
It is then obvious that

(xi) If ¢ : K — K' is weak order preserving then the inverse image of
a K'-interval is a K -interval.

(2.3) Examples. 1. A linear order < on a set K defines a cyclic order on K,
with

oy Fleszamdz<y) Ty
nyl= {zle<zorz<y} ify<e.

If K has a least element = then < coincides with <, defined relative to the
above cyclic ordering.

2. Let S! denote the unit circle,
S = {exp(if) | 6 € R}.
If zg,z1 € S, z; = exp(i6;), with 0 < 6; — 6y < 27, then we put
[wo, z1] = {exp(if) | 6 < 6 < 61}

This defines the counterclockwise cyclic order on S'. The intervals in S!
are precisely the connected subsets.

(2.4) Interval renormalization. By an ordered dynamical system we un-
derstand a dynamical system (K, f) where K is equipped with a linear or cyclic
order, and K is given the corresponding order topology. Let

(1) ¢ : (I{af) _+(Z/nZ’+1)
be an n-renormalization, with fibers
(@) K. =¢7'(r)  (reZ/nD).

We call ¢ an interval n-renormalization if each K, is a K-interval. In this
case there is an induced order (linear or cyclic) on the set of K,’s, and so also,
by transport of structure, on Z /nZ.
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In the linearly ordered case we have z < y implies ¢(z) < ¢(y). In the
cyclically ordered case, we have, for any r € Z/nZ and z, € K,, z <;, y implies
é(z) <, ¢(y). Thus in both cases, ¢ is weak order preserving (in the sense of
(2.1) and (2.2)(x1)).

Claim. If K is linearly ordered then ¢ 1s uniquely determined by n, up to a
translation of ZZ/nZ.

Proof. Let ¢,¢’ be two interval n-renormalizations, giving rise to intervals
K, =¢~(r)and K| = ¢'"1(r) (r € Z/nZ). After translation of Z/nZ we can
assume that K is left-most among Ko, ..., K,_1, and similarly for K} among

{4,..., K] _{. Then one of the left-most intervals K, K} contains the other,
say Ky C K}. Taking successive inverse images under f, we find that K, C K]
for all » € Z/nZ. Hence K, = K}, i.e., ¢ = ¢’, as claimed.

Example. The above uniqueness-up-to-translation property can fail when K
is cyclically ordered. For example let K — Z/6Z, with its natural cyclic order,
and f(z) = z + 2. Define ¢,¢' : (K, f) — (Z/37Z,+1) with fibers K, = ¢~ 1(r)
and K. = ¢'~!(r) defined by K, = {0,1}, K1 = {2,3}, K2 = {4,5},K{ =
{5,0}, K = {1,2}, K} = {3,4}.

The following remains true, even in the cyclically ordered case. Pick a base
point o € K. Up to translation of Z/nZ, any renormalization ¢ : (K, f) —
(Z/nZ,+1) can be made to satisfy ¢(zo) = 0.

Claim. All interval n-renormalizations ¢ of (K, f) such that ¢(zg) = 0 induce
the same order (linear or cyclic) on Z /nZ.

Indeed, the order on Z /nZ is such that ¢ is an order preserving bijection on
the partial orbit

{zo, f(z0), ..., f”—l(.ro)},

the latter being given the order induced from K.
We put

(3) IRen(K, fy = {n| (K, f) admits an interval n-renormalization}.
Note that when (K, f) is minimal,
IRen(K, f) = {n | the orbit closures of f* from n disjoint K -intervals}.
Let (K', f') be another ordered dynamical system, and let
(4) a: (K’ f) — (K, f)
be a topological morphism. If ¢ : (K, f) — (Z/nZ,+1) is a (not necessarily
interval) n-renormalization of (K, f), then ¢ o a is one of (K'f’). We call a an

IR-morphism if whenever ¢ is an interval renormalization, so also is ¢ o a.
(This happens, for example, if « is weak order preserving.) Thus:
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) a is an IR-morphism if and only if « is a topological morphism,
and IRen(K, f) C IRen(K', f').

We call a an IR-isomorphism (of minimal ordered dynamical systems) if
o is a topological isomorphism and both ¢ and a~! are IR-morphisms. Equiv-
alently:

(6) a ts an IR-isomorphism if and only if « is a topological isomor-
phism, and IRen(K, f) = IRen(K', f’).

(2.5) Example. We claim that, with the natural cyclic order on Z /mZ,
IRen(Z /mZ,+1) = {1,m}.

Indeed, let ¢ : (Z/mZ,+1) — (Z/nZ,+1) be an interval n-renormalization,
say with ¢(0) = 0. Then clearly ¢ must be a surjective group homomorphism,
so n | m, say m = nq. However the fiber

¢~ 1(0) = {0,n,2n,..., (¢ — 1)n}

clearly cannot be an interval of Z/mZ unless n =1 (g=m)orn=m (¢ =1).

(2.6) Theorem. Let (K, f) be an ordered dynamical system (cf. (2.4)). Then
IRen(K, f) is totally ordered by divistbility; i.e., given n,m € IRen(K, f), either
n|morm|n.

Proof. We assume, without loss of generality, that n,m > 2. For h = n or m,
let ¢p : (K, f) — (Z/hZ,+1) be an interval h-renormalization. For r € Z/nZ
and s € Z/mZ we put

Ny =¢71(r) and M, = ¢;}(s).
Define
v(r) =|¢m(Ny)|= the number of ¢n-fibers that N, meets,

and
p(s) =|9n(M,)|= the number of ¢n-fibers that M, meets.

If ¢ € N, N M, then f(z) € Nyy1 N M,y1. It follows that v(r) < v(r+1) and
p(s) < p(s+1). Thus, v(r) = v is independent of 7, and p(s) = p is independent
of s.

Case 1. Some N, N M, is not an interval.

It follows then from (2.2)(15) that N, U M, = K. Then for ' # r and
s' # s we have N.. C M, and My C N,. It follows that v = v(r') = 1 and
pu = p(s") =1, whence n = m, clearly.
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Case 2. p=v=2.

For each r, the two nonempty intervals of the form N, N M; partition N,
into a left interval L(N,) and a right interval R(N, ). We similarly define L{M,)
and R(M;) for each s. Now define

L
Z/nz _ Z/mL
R
by L(N,) = NN\ Mp(y and R(M,) = M;NNp(,). Then it is clear that Lo R = Id
and RoL =Idson=m.

Case 3. u>3o0rv>3.

Say p > 3. Then M, meets at least 3 ¢,-fibers, say N, , N,,, N,, among
them, with ry < r3 < r3 in the induced cyclic ordering. Then for z € N, N My
and y € N, N My we have N, C [z,y] C My and so v = v(ry) = 1. Similarly
v > 3 implies that x = 1. Thus it remains only to treat:

Case 4. p=1lorv=1,

It suffices by symmetry to show that:

p=1=n|m

Define p : Z/mZ — Z/nZ by M, C Np,). Modifying ¢, by a translation,
we can arrange that p(0) = 0. Further the commutative diagram

K % z/mZ
o e
Z/nZ

shows that p is equivariant for the map +1. Hence p is a surjective homomor-
phism, and so n | m as claimed.

Remark: Theorem (2.6) should be contrasted with Proposition {(1.5) which tells
us that Ren(K, f) = Div(Q), the set of divisors of some supernatural number

Q = Q(K, ) (cf. (1.6)).

(2.7) Interval renormalization index. Let (K, f) be an ordered dynamical
system, in the sense of (2.4).

Case 1. IRen(K, f) is infinite; i.e., (K, f) is infinitely interval renor-
malizable. We then list JRen(K,, f) as an infinite increasing sequence:

(1) IRen(K, f) = (ng,n1,n2,...)
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with ng =1 < n; <ng < ---. By (2.6) n;_; divides n; and we put

(2) qi = ni/ni_l (’L 2 1)
The sequence
(3) q (: q([{, f)) = (qu 92,93, - - )

is then called the IR-index of (K, f). Clearly
(4) n=a" =g (R20)

Case 2. [Ren(K, f) is finite. Then we list IRen(K, f) as a finite sequence
(5) IRen(K, f) = (no,n1,...,0m)
with ng = 1 < nj3 < -+ < ny,. Again by (2.6) we have the integers
(6) ¢i=ni/ni-1>1 (1<i<m)

The IR-index this time is the infinite sequence

q= (a(K,f))= (11,9293 ),

where we agree to put
(7 gn =0 for h > m.

If we define nj, = q) as in (4) we then have ny =0 for h > m.
In case IRen(K, f) = {1} (i.e., m = 0 above) then we say that (K, f) is non
interval-renormalizable. In all cases, it is clear that

IRen(K, f) is the ascending union of IRen(Z /nZ,+1) where n in-

8) creases in [Ren(K, f) and Z/nZ is given the order induced by mak-
ing an interval renormalization ¢, : (K, f) — (Z/nZ,+1) weak
order preserving.

We shall describe in (III, Section 5) below a natural rooted tree dynamics
associated to the interval renormalizations of (K, f).

(2.8) The interval renormalizable quotient ¢ (K, f) — (iq,+1). Let
(K, f) be an ordered dynamical system and as in (2.7); write

(1) IRen(K, f) = (no,n1,ns,...) (finite or infinite)
and

(2) qa=q(K,f)=(q1,92,93-- )
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Hereng=l<ny <ng<---, nh—1|nh, qn = np/np_1, and

(3) Np = q[h] = 4192 4h-

Assume either that the f-orbit of zg is dense, or that K is linearly ordered.
Then (cf. (2.4)), there is, for each h, a unique interval ny-renormalization

(4) ¢h : (I(af) - (Xh)+1)7 Xp = Z/TLhZ
such that ¢p(z¢) = 0. Let
(5) P Xy — Xnoa

be the canonical projection Z/nyZ — Z/np_17Z, which is a surjective ring
homomorphism. Then the diagrams

K 2 X,

N
(6) bn-1 lp
Xp-1

commute, because of uniqueness.

We give each X}, the (linear or cyclic) ordering induced from K, as in (2.4),
so that ¢, is weak order preserving. Then the commutativity of (6) and the
surjectivity of ¢ implies that p also is weak order preserving.

Case 1. IRen(K, f) = (ng,n1, ..., nn) is finite.
Then we put

(7) { Loy = Lfnnl (= Xn), and _
¢ (= dk.p) = ¢m : (K, f) — (Z(x,5), +1).

This $ is a surjective morphism, and it is weak order preserving for the K-
induced ordering on Z g j).
It follows from Proposition (3.1) below that given any integer N > 1, for at

least one fiber K, = ¢~ 1(r) of o, (K,, f* |k,) is non-interval N-renormalizable.

Case 2. IRen(K, f) is infinite. Then we put
(8) Zx gy = imZ/npZ = lim Xp,.
h h
The commutative diagrams (6) furnish the morphisms

¢ = $(K,f) (K, f) — (i(K,f)ﬂLl)

which has dense image. Moreover qAS is weak order preserving for the given order
on K and the inverse limit of the K-induced orderings on each X, = Z/n4Z.
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In both cases we call (&, f) faithfully interval renormalizable if $ is
injective.

We sometimes (cf. (III (3.4)) below) call the ring i(K ) the q-adic in-
tegers, and denote it Z and call (Zq,—}—l) the q-adic adding machine (cf.
(I1I, (3.4))). Note that Zq = ZQ (cf. (1.7)), where Q) denotes the supernatural
number Q(q) = Hh>1 qn.

(2.9) Proposition. Let (K, f) be a compact ordered dynamical system which is
Jasthfully interval renormalizable. Then (K, f) s minimal, and is determined,
up to IR-isomorphism of ordered dynamical systems (cf. (2.4)) by IRen(K, f).

Proof. The hypotheses imply that (K, f) is IR-isomorphic to (iq, +1), which
is minimal, and is determined by q = q(X, f), hence by IRen(K, f).
Minimality of (K, f) follows from that of the adding machine. Let (K’, f’)
be another dynamical system with IRen(K’, f') = IRen(K, f). By (2.4)(6) we
need only show that (K', f') and (K, f) are topologically isomorphic. But in
view of the compactness and faithful interval renormalizable hypotheses, both
systems are topologically isomorphic to the g-adic adding machine (Zq,+1)

where q = q(K, f) = q(K', f').
[ |

(2.10) Remark. Suppose that K is a finite totally ordered set, say
K = {z;1 < #3 < -+ < zp}. Then a minimal dynamical system (K, f) is
just a transitive permutation f, corresponding to an n-cycle o € S, defined by

f(zi) = 250 (1<i<n).

We define
IRen(o6) = IRen(K,f)
= (mo,ml,u.,m,‘).

Here mo =1<my < ---<m, =n, and m;_; | m;. From (3.5) below it follows
that any such sequence of divisors of n can occur this way for suitable o.

Suppose that n = 2. Then it is easily seen that ¢ is a simple permu-
tation in the sense of [B] if and only if IRen(c) = (1,2,4,8,...,2™). Equiva-
lently, for each r = 0,1,...,m— 1, the orbits of 2" form 2" disjoint intervals in
{1,2,3,...,2™} on each of which ¢?" switches the left and right halves.

If n = r-2™ with r > 1 and odd, and o is “simple” in the sense of ([Be],
Definition 1.12), then IRen(o) = (1,2,4,8,...2™,7-2™). However, this property
does not suffice to make o simple in general.
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3. Systems with prescribed renormalizations.
(3.1) Proposition. Let (K, f) be an ordered dynamical system and
¢: (K, ) — (Z/nZ,+1)

an interval n-renormalization with fibers K, = ¢~ 1(r).

(a) For each integer m > 1,

nm € IRen(K,f) <= me€ IRen(K,,"|k-) VrE€Z/nZ.

(b) Putting J = ﬂ IRen(K,, f™ |k~), we have

r€Z[nk
IRen(K, f) = IRen(Z[nZ,+1)| Jn - J,

where Z./nZ is given the order induced from K via ¢.

Proof. Put N = nm. We know from (1.9) that N € Ren(XK, f) if and only if
m € Ren(K,, f* |kr) for each r. In this case, both conditions in (a) amount to
saying that each of the fibers of an N-renormalization of (K, f) is a K-interval,
whence (a). Part (b) follows immediately from (a).

(3.2) Proposition. Suppose in (3.1) that K is finite of cardinal M > n and
that f is transitive. Then M = nq for some inleger ¢ > 1, and each fiber
K, = ¢~ 1(r) is a (proper) linearly ordered K -interval and an f™-orbit. Assume
that K, is ordered so that, if x, is its least element,

(1) 2, < fM(2r) < [ (p) <o < SOz,

Then
IRen(K, f) = {M} U IRen(Z /nZ,+1),
where Z./nZ is given the order that makes ¢ weak order preserving.

Proof. Let ¢ : (K, f) — (Z/dZ,+1) be an interval d-renormalization. By
(2.6) either d|nornid.

If d | n then, after modifying ¢ by a translation so that %(K,) = 0, we obtain
a commutative diagram

(K, f)
¢l g

@/nZ,+1) T (Z/dZ,+1)
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where p is the natural projection. It is easily seen then that p is weak order pre-
serving, and hence an interval d-renormalization for the order on Z/nZ induced
from K, whence d € IRen(Z /nZ, +1).

Suppose finally that n | d, say d = ne. It follows then from (3.1) that
e € IRen(K,, f* |k-) for each r. By our assumption (cf. (1)), (K-, f* |k-) is
isomorphic to (Z/gZ,+1), with the linear order 0 < 1 < --- < (g — 1), which
is compatible with the natural cyclic order on Z/¢Z. It follows then from (2.5)
that IRen(K,, f" |k-) = {1,q}. Thus,e =1 orgsod =n or M, as was to be
shown.

(3.3) Cyclic induced actions. Let n be an integer > 1. For any dynamical
system (H, h) we define the (n-fold) induced system

(K, f) = Ind,(H,h)

by defining
(1) K = (Z/nZ)x H
and
_J r+1,x) for 0<r<n-—1;
® e ={ Gy o r2alh

Here K is given the product topology, with the discrete topology on Z /nZ. The
first coordinate projection

¢ :(K,f) — (Z/nZ,+1)
Is an n-renormalization, with fibers
3) K, =¢7'(r) = (r, H).
Moreover it follows from (2) above that
(4) f(r,z) = (r, k()
and so
(5) (Kr, ¥ |&kr) = (H,R) Jor all 7 € Z/nZ.

It follows that if (H,h) is minimal then (K, f) is as well. Moreover, f is a
homeomorphism if and only if  is a homeomorphism.
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(3.4) Ordered induction. Suppose that (H, h) is a linearly ordered dynamical
system and that we give Z/nZ an order (linear or cyclic). Then we can give

K=(Z/nZ)x H
the lexicographic order (linear or cyclic, as the case may be), and then
¢$: K — Z/nZ
is an interval n-renormalization of Ind,(H,h) = (K, f). We write
Ind°™®(H  h)

when 1t is understood that K is given the lexicographic order as above. It follows
then from (3.1) that

IRen(Ind?*(H, b)) = IRen(Z/nZ,4+1)Un - [Ren(H, h).

Note that Indffd is a functor on linearly ordered dynamical systems and
morphisms preserving <.

(3.5) The systems H(qi,42,...,¢). For any integer ¢ > 1 define the ordered
dynamical systems

€] H(q) = (Z/qZ,+1), ordered by 0 <1 <2< ---<g—1.

Given a sequence (qi1,42,...,qn) of integers (¢; > 2 for all i) we define
H(q,q2,...,9n) inductively by

(2) H(qhq?a)qﬂ): ]nd;:d(H(qz,,qn))

It follows then by induction from (3.1)(b), using (2.5) for n = 1, that

(3) IRen(H(q1,92,---,9n)) = {1,mq,...,my}, where mg = q1-q2-- - qk-

Thus we have constructed finite minimal ordered systems (K, f) with IRen(K, f)
any prescribed finite set {1 < m; < --- < m,}, where m;_; | m; for all <.

Note that H{q1,4q2,-.-,qn) = (Z/muZ,+1), relative to a certain ordering on
Z/m,Z. Writing elements of Z/m,Z in the form

ro+qi{ri +q2(ra+ -+ gno2(Pac2 + ¢ao1Tn-1) )

with 0 < rj—1 < ¢; (i = 1,...,n) the ordering is lexicographic on n-tuples
(rg,71,...,n—1). In particular the natural projection homomorphism

p:H(q1,92,..,qn) — H(q1,92,...,qn-1)

is weak order preserving.
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(3.6) An infinite, finitely renormalizable system. Suppose that (H, k) is a
minimal linearly ordered dynamical system that is non interval renormalizable,
i.e., IRen(H,h) = {1}. (cf. (1.10) for such an example.) Form

(K, f) = Ind%%(H, h),

where Z /m,Z is ordered as in H(q1,q2, . . ., ¢n) above. Then it follows from (3.1)
that
IRen(K, f) = IRen(H(q1,92,.--,4n)) = {1,m1,...,mn}.

(3.7) Examples of (finitely) renormalizable systems which are not in-
terval renormalizable. Given an integer @ > 1, we shall produce a linearly
ordered minimal dynamical system (K, f) with K compact and totally discon-
nected such that

(1) Ren(K, f) = Div(Q)
and
(2) IRen(K, f) = {1}.

First take (H,h) a minimal linearly ordered compact totally disconnected
system which is infinite yet nonrenormalizable: Ren(H,h) = {1}. Such an
example is constructed (e.g. in (1.10)) using Denjoy expansion of an irrational
rotation on the circle, and h is then a homeomorphism.

Next give Z/QZ any linear order. We form the induced system

(K, f) = Indg(H,h),

but where
K=(Z/QZ)x H

is linearly ordered as follows.
Decompose H as

H:HOHH1

where each H; is an open and closed {(nonempty) H-interval with ¢ < z; when-
ever x; € H; (i =0,1). Then we have

K = Kq H Ky

where each
K; =(Z/QZ) x H;

is given the lexicographic order, and Ky precedes K; in the ordering of K.
We claim that (K, f) satisfies (1) and (2) above. Clearly

¢q : (K, f) — (Z/QZ,+1)
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is a @)-renormalization (we are not saying “interval”), with fibers topologically
isomorphic to (H, h). Since (H, h) is not renormalizable (non-trivially) it follows
from (1.9) that

QK f) = Q Q(H, h)=0Q,
and so (1) follows (cf. (1.8)).
It remains to establish (2). Let n € IRen(K, f). Then n | Q, and if

¢n (K, f) — (Z/nZ,+1)

1s an interval n-renormalization, the fibers of ¢, will be unions of fibers of ¢¢.
To show, as required, that n = 1, it thus suffices to show that a nonempty union
U of ¢g-fibers, if not all of K, is not a K-interval.

Now U must be of the form ¢51(J) for some nonempty J C Z/QZ, and we
have U = Ug [[Uy with U; = UNK; = J x H; (i =0,1). Choose j € J, and
r € (Z/QZ)—J. Either r < j or r > j. Say r < j. Choose z; € H; (i=0,1).
Then

(j,z0) < (ryz1) < (5 < z1)

with (j,z;) € U (i =0,1), and (r,z1) ¢ U. Similarly, when r > j,

(j,iCO) < (T’,.’L‘o) < (]'71:1)

shows that U is not an interval.
Combining examples (3.5), (3.6) and (3.7), we obtain the following:

(3.8) Proposition. Let
mo=1l<m <me<---<my,

be a sequence of integers such that my_y | m;y (i = 1,...,n). Let q be any
integer > 1 and QQ = my, -q. Then there is a minimal linearly ordered dynamical
system (K, f) with K compact totally disconnected and infinite, f a homeomor-
phism, and such that

Ren(K, f) = Div(Q)

and
IRen(K,f)={1,my,...,m,}.

We next consider infinite interval renormalizability.

(3.9) Theorem. Let
q= (quqQaq3"')
be a sequence of integers q, > 2. For n > 0 put

mn =q™ = g1 92 qn.
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Let H(q1,92,---yqn) = (Z/mnZ,+1), ordered as in (3.5), and let
p:H(q1,92,---,qn) — H(q1,...,qn_1) be the natural projection (which is weak
order preserving by (3.5)). Put

(K, f) = H(q) == imH(q1, 42, - - 4n) = (Zq, +1),

n

with the inverse limit ordering. Then (K, f) is faithfully interval renormalizable,
IRen(K, f) = {1,my, ma, ma, ...}

and
Ren(K, f) = {m | m | m, for some n}.

Proof. The last assertion follows from (1.7), and it reduces the assertion
concerning IRen(K, f) to showing that, for each n, IRen(H(q1,q2,...,qn)) =
{1, m1,my,...,m,}; the latter follows from (3.5).

(3.10)  We next extend Proposition (3.8) to the case where IRen(K, f) is finite,
but Ren(K, f) is allowed to be infinite.

Theorem. Let Q) be an infinite supernatural number. Letmg=1<my <---<
my be integers such that m;_y |m; (1<i<n)andm,|Q, say Q =m, - Q"
Then there is a minimal compact ordered dynamical system (K, f) which is farth-
fully renormalizable with Q(K, f) = Q and IRen(K, f) = {mo,m1,...,ms}.

Proof. We first show that it suffices to establish the case n = 0. For assuming
this we can find a system (H,h) as in the theorem with' Q(H,h) = Q' and
IRen(H,h) = {1}. This done, we take (K, f) = Ind%;¢(H, k), where Z/m,Z is
ordered so as to make (Z/m,Z,+1) = H(q1,. .., ¢n) with ¢ = m;/m;_;, as in
(3.5). Then it follows from (1.9) that Q(K, f) = ms - Q(H,h) = m, - Q' = Q,
and it follows from (3.6) that JRen(K, f) = {mqo, m1,...,mys}.

It remains to treat the case n = 0. We seek a (K, f) topologically isomorphic
to (iq,—kl) and ordered so that IRen(K, f) = {1}.

Let

0 { q = the least prime divisor of @; and
Q=q¢-Q"

Choose sequences of integers

(2) M = {m0:1<m1<m2<m3<-~}
N = {np=1<n <nyg<ng<--}
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such that

(3) m;_y | m; and n;_y | n; for all 4,

(4) LOMM) = Q' = LCM(N),

and

(5) MNN ={1}.
Now as in Theorem (3.9), we form systems

(6) (Hi,hi) (i=0,1), topologically isomorphic to (ZQI, +1)

such that

(7) IRen(Hy, ho) = M and IRen(Hy, h1) = N.
Now take

(8) K =(Z/qZ)x L,

with the product topology and assuming the discrete topology on Z/qZ. We
order K as follows. On

(9) K, =(rZg) (r€Z/qZ)

the induced order is that corresponding to Hg, for r = 0,1,...¢ — 2, and that
corresponding to Hy for » = ¢ — 1. For the order on K, we first split Ky and
K,_, each into two nonempty open intervals,

(10) Ky = I{O’(] H ]{0,1; [\’0)0 < [(()’1
1{4_1 = Iﬁrq-l’o Hl{q—l,lv ]{q—l,O < I{q—l,l
and so that neither Ky nor K, corresponds to a coset of in mod 32@.
Finally, we order K as follows:

(11) Koo < Kg10< K1 < - < Ky_g < Ko1 < Kg_11

where each term in the sequence is a K-interval, with the internal order of each
term determined by the order of the K, which contains it.
Next define
f:K—K

by

r+ 1,z r#qg—1)
(12) f<’“”f>:{§o,z+1§ gr:(é—l).
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The first coordinate projection then defines a renormalization

(13) 2_:1((12’))2;\,:’(Z/q2»+1):

Putting
fr=ft IK,: K, — K,

we see that, as ordered dynamical systems,

1 o= { G (2300
It follows from (1.9) that
(15) QK f)=q Q(Hi, ki) =¢-Q =Q,

and in fact, (K, f) is topologically isomorphic to (2Q, +1).
It remains to show that

(16) IRen(K, f) = {1}.

We must show that, if N is a divisor of @) and N > 1 then some orbit closure
of fV is not an interval.

Case N = g¢. Then (11) shows that, for example, Ko = Ko, [] Ko,1 is not
a K-interval.

Case N =qM, M > 1. Then, by (14) each fN (= (f?)™)-orbit closure
of a point in K, corresponds to an h}M-orbit closure in Hy (for r # ¢ — 1) or
to an hM-orbit closure in H; (for r = ¢ — 1). In view of condition (5), for each
M > 1, either R} in Hy or AM in H, has an orbit closure that is not an interval.

Case ¢{N. Then, q being prime, N is relatlvely prlme to q. Let L be any
fN -orbit closure. It corresponds to a coset of ZQ mod NZQ Since N and g are
relatively prime, L meets every K, (r € Z/qZ). Suppose that every f¥-orbit
closure is a K interval; we shall derive a contradiction. Since L meets K, and
K4_2 it follows from (11) that the interval L contains K, for 1 < r < ¢—2. But
a coset mod N can contain a coset mod ¢ only if N | ¢. Since ¢ was chosen to
be the least prime divisor of @ this can happen only for N = 1. Thus, we are
reduced to the case in which no r satisfies 1 < r < ¢ — 2, 1.e. ¢ < 4, and hence
q=2,3.
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K <K0 < Kl < K0,1<K1,1

Figure 2.

Let L be the f¥-orbit closure containing the left end point of K, and R the
fN-orbit closure containing the right end point of K. Both L and R meet K;
and are intervals. Hence L contains Ko gU K3 o and R contains Ko 1 UK3 1. The
complement of L U R is contained in K1, so there can’t be any other fV-orbit
closure, since 1t could not meet Kq or K3. Thus N = 2. But this contradicts
the minimality of q.

Case ¢=2.

Figure 3.

Let L and R be as above, that is, the fV-orbit closures containing the left
and right end points of K respectively. Since L meets K; and R meets K we
must have Koo C L and K;; C R Since N # 2 there must be a third f%-orbit
closure S, which is an interval meeting K o and Ky, as indicated in Figure 4.

K K K K
0,0 1,0 0,1 1,1

Figure 4.

But then clearly any interval in the complement of L US U R is contained
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in either K19 C K1 orin Ko1 C ng Hence we must have N = 3. Further
Koo=LNKjpisa ZQ—coset mod GZQ, or a ZQ: coset mod 3ZQI (1dent1fy1ng Ky

with ZQ +). Similarly K ; = RN K; corresponds to a ZQl-coset mod 3ZQ: But
this contradicts the ch01ce of the decompositions K, = K,o[[ K1 for r =0
and ¢ — 1 in (10) above. This concludes the proof of Theorem (3.10).

(3.11) Possible renormalization types. Let (K, f) be a minimal ordered
dynamical system, with

Q = QK,f),
a = q(K,f)=(q1,92,93...), and
Q(q) = HnZlq"'

Here, Q and Q(q) are supernatural numbers as in (1.6),

Ren(K, f) = Div(@) (cf.(1.7))

and

Q(q) divides Q.

We can ask whether conversely, given supernatural numbers @, @', with Q’
dividing @ can we find a (K, f) as above with Q(K, f) = Q and Q(q) = @',
where q = q(K, f)? We have affirmed this, even with K compact and f a
homeomorphism, in the following cases.

1. @’ and Q@ are finite. (Proposition (3.8))
2. @' is infinite and Q' = @, (Theorem (3.9))
3. @ is finite and @ is infinite. (Theorem (3.10))

It will be shown in Theorem (4.1) that these exhaust all cases; namely, if Q’
is infinite then we must have Q' = @, at least for compact K contained in R or
in the circle S'.

4. Infinite interval renormalizability.

(4.1) Theorem. Let K be a compact subset of R or St and let (K, f) be a
dynamical system with dense orbit and which s infinitely interval renormalizable.
Let

é= $(K,f) (K, f) — (Zx 5y, +1)

be the interval renormalizable quotient, as in (2.8).
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(a) $ s surjective, and $ s tnjective except perhaps, for a countable set of
2-point-interval fibers.

(b) f is surjective, and f is injective except, perhaps, for a countable set of
2-point-interval fibers. Moreover (K, f) is minimal, and K is a Canior set.

(c) If n € Ren(K, f) then n | m for some m € IRen(K, f);

i.e.,

QK,f) = Q(a), where q=q(K, f).
LCM(IRen(K,f)).

We give examples in (4.6) below showing that the 2-point fibers can in fact
occur, either for both qS and f, or for ¢ alone.

Proof of (a). Since ¢ and f have dense images and K is compact, $ and f are
surjective.
For r € Z(K 7 put K, = ¢~ (r) The K, are closed and pairwise disjoint.

Since ¢ and f are surjective and ¢ is equivariant it follows that
(1) f(K.) =K, 41 and f 1 (Krqy) = K.

Further, $ is compatible with the order (linear or cyclic) on K, and the induced
order on 2(,”). It follows that each K, is a K-interval. Since R or S! cannot
contain uncountably many pairwise disjoint intervals of length > 0, it follows
that all but countably many of the K, consist in a single point. It remains to
see that no K, can contain 3 points.

Say ¢ € K has a dense f-orbit f*(z) = {f"(z) | n > 0}, and =z € K,,. If
some K, has at least 3 points, then so also does K,_1, by (1). Thus, we can then
choose r with |K,| > 3 and r # ro + n for any integer n > 0. Choose u < v < w
in K, (where “<” denotes “<,” in the circle case). For n > 0, f*(z) € K;y4n,
and the K-interval K, i, is, by choice of r, disjoint from the interval K,. Hence
either f?(2) < w or f*(x) > w. Thus, f*(z) never enters the neighborhood
(u, w) of v, contradicting denseness of f*(z). This proves (a).

E’roof (lf (b). If f(x) = f(y) then ¢(zx)+ 1= ¢(j(z)) =¢(f(y)) =o(y) + 1,80
#(z) = ¢(y). Thus the f-fibers are contained in ¢-fibers so f is injective, except
perhaps for countably many 2-point fibers. As already observed, f is surjective.
We next show that (K, f) is minimal. Let y € K have f-orbit closure L C K.
The minimality of (i(K,f), +1) and compactness of L imply that $|L is surjective,
and hence L contains all 1-point fibers of K, and K — L is a countable open
subset of K. For z € K — L, there is a unique 2’ € L defined by K$(Z) ={z,2'}.
Say z < z’; then since {z/,z} is a K-interval, z must be a limit from above
of points of the orbit f*(z) which, when sufficiently near z, lie in the open set
K — L. Thus, we can find z < u < v with (z,v) N K C K — L. But then the
K-interval {u,u’} must lie in (z,v), thus forcing the contradiction u’ ¢ L.
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The minimality of (K, f), just proved, shows that K has no isolated points.

Since i( K,f) 1s totally disconnected and $ has discrete K-interval fibers, it follows
that K is totally disconnected. Hence K is a Cantor set (cf. (B.9)), thus
concluding the proof of (b).

Proof of (c). Choose zo € K. For each n € Ren(K, f), let
¢n (K, f) — (Z/nZ,+1)

be the renormalization such that ¢,(z¢) = 0. Passing to the inverse limit over
n € Ren(K, f), ordered by divisibility, we obtain, as in (1.8),

60 (K,f) — (Zo,+1)= lim (Z/nZ,+1),

n€Ren(K,f)

where @ = LCM(Ren(K, f))), a supernatural number, as in (1.6), and ZQ de-
notes the @-adic integers (cf. (1.7)).
Since IRen(K, f) C Ren(K, f) we have a natural commutative diagram

(K,f) = (Zq,+1)
T

(Z x5, +1)-

Since « is continuous and equivariant, and «(0) = 0, it follows easily that «
is a (surjective) homomorphism. Moreover ¢¢ is surjective (because it has dense
image and K is compact). It follows therefore from (a) that all but countably
many fibers of a have 1 point. But the fibers of o are the (uncountably many,

since Z(g,s) is uncountable) cosets of Ker(a). It follows that Ker(a) =0, so @
is an isomorphism, whence (c).

(4.2) Corollary. Let (K, f) be an ordered dynamical system with a topological
isomorphism R

b (K, f) — (Zq,+1)
for some supernatural number Q. Assume that (K, f) is infinitely interval renor-
malizable; let q = q(K, f). Then the natural projection p : iQ — 2q is an
isomorphism, and

$(K,j) =potp: (K,f) — (Zq+1).

In particular, $(K,f) 1s an tsomorphism.
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Proof. 1 makes K compact and totally disconnected with a countable base
for its topology. Then the order structure permits us to construct an order
preserving topological embedding of K as a Cantor set in R. (See (B.6) below.)

Then it follows from (4.1)(¢c) that p is an isomorphism, whence the corollary.

(4.3) Corollary. If in (4.1), (K, f) s faithfully interval renormalizable (i.e.,
zf(;; is injective), then $ defines a topological isomorphism of (K, f) with the
q-adic adding machine (iq,-H); where q = q(K, f) (c¢f. (2.9) and (2.10)). In
particular f is a homeomorphism, and the group {f) generated by f acts freely
on K. Moreover (cf. (2.11})} (K, f) 1s determined, up to IR-isomorphism of
ordered dynamical systems, by q(K, f).

(4.4) Remarks. 1. In (4.3) we see that q which determines (iq,—H), encodes
the topological dynamics of (K, f). It does not, however, record the order struc-
ture on K (in terms of which q was defined, via interval renormalizations). We
shall see in (III, (5.3)) below how q further determines a rooted tree X = X(q),

with an automorphism «, so that (Zg,+1) appears as the action induced by
« on the space of ends of X. In this setting, the order structure on K then
corresponds essentially to a planar embedding of X (cf. (I1I, (2.4))).

2. It is well known (see for example [BOT]) that the 2-point fibers of ¢ and f in
Theorem (4.1) can occur. In fact we give examples in"(4.6) below where either

qAS and f have 2-point fibers, or else $ does, while f does not have them.

(4.5) Corollary. Let o : (K',f') — (K, f) be an IR-morphism (cf. (2.4))
of minimal compact real (cf. (B.8)) dynamical systems. Assume that (K, f) is
infinttely interval renormalizable.

(a) QK', f') = Q(K, f).

(b) « is surjective, and injective except perhaps for countably many 2-point
fibers.

(c) If a 15 weak order preserving then IRen(K’, f') = IRen(K, f).

Proof. By definition (2.4) of IR-morphism, « entails an inclusion, IRen(K, f) C
IRen(K', f'). Since IRen(K, f) is infinite, so also is IRen(K'f’). Both sets are
totally ordered by divisibility (Theorem (2.6)). Hence IRen(K, f) is a cofinal
subsequence of IRen(K', f'). Since (cf. Theorem (4.1))

Q(K, f) = LCM(IRen(K, f))
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and
Q(K’, f') = LCM({Ren(K', ')
it follows that Q(K', f') = Q(K, f); denote this common value by Q. Then we
have a commutative diagram
(K1Y 2 (K f)
N R
> 1d
(Zq,+1)
in which (¢f. Theorem (4.1)) $ and $’ are surjective and injective except perhaps
for countably many 2-point fibers. It follows that o has the same properties.
It remains to prove (c), so assume that « is weak order preserving. For

n € IRen(K, f), put (K,, fn) = (Z/nZ,+1), with the ordering on K, = Z/nZ

induced from K by an interval n-renormalization ¢ : (K, f) — (Z/nZ,+1).
Then it follows easily from Proposition (3.1) that

(+) IRen(K, f) = the ascending union of IRen(K,, fy)
(n € IRen(K, f)).

Similarly we have

(+) IRen(K', f') = the ascending union of IRen(K!,, f!))
(n' € IRen(K', f'})).

Now if n € IRen(K, f) C IRen(K’, f'), then the fact that « is weak order
preserving implies that (K, f.) = Ky, fn). Since IRen(X, f} is a cofinal sub-
sequence of IRen(K’, f') it follows from (*) and (') above that IRen(K’, f') =
IRen(K, f), as claimed.

(4.6) Examples with 2-point fibers. Let
T =[a, b}, a<b,
be a real closed interval. Consider a map
(1) g :T —— T that is continuous and piecewise monotone,

i.e., g is monotone on each of a finite set of closed intervals whose union is T.
Let

(2) K CT be a minimal closed g-invariant subset.

Then with f = g|g : K — K, the minimal ordered dynamical system (K, f)
has an interval renormalization index

(3) a=q(K,f)=(91,92,93,--)
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and a canonical map
©) ¢ (K, ) — (Za,+),

unique up to a translation in iq. In fact (cf. (I1,(9.9)) below) every possible g
can occur this way for suitable choice of ¢ and K, even with g unimodal.

We shall be interested in the cases when q is infinite, i.e., when (K, f) is
infinitely interval renormalizable. It follows then from Theorem (4.1) that ¢ and
f 1 K — K are each surjective and also injective except perhaps for countably
many 2-point fibers. Plainly, if ¢ is injective, then so also is f. We propose
now to show, using the Denjoy expansion construction of Appendix A above,
that the 2-point fibers can indeed occur either for both ¢ and f, or for ¢ alone;
see (15) and (20) below. Examples with f injective but ¢ not injective cannot
arise when (7', ) is C2-unimodal; this follows from [BOT], using deep results of
Sullivan [Su].

We start by choosing

(5) C C K, a countable subset,

such that

(6) o) cc,

and

(7) each ¢ € C is a monotone limit from both directions in K — {c}.

Now, as in (A.4)-(A.6), let
(8) T (T, h) —(T\g)

be a Denjoy expansion of (T, ¢) along C. Our assumptions (1), (5), and (6)
furnish the conditions (A.4)(3) required for this construction. Moreover it follows
easily from (A.6)(4) that:

h s piecewise monotone with the same number of intervals of
monotonicily as g.

(9)
Next we take

(10) K'=oo(K)Uo(K)C T

(cf. (A.4)(1)). Then K’ is h-invariant (A.6)(4); putting f’ = h|g' : K’ — K’,
we have

7 (K, f') — (K, f) is a weak order preserving surjection with
(11) fiber over @ € K the set {oo(z),01(x)}, which has two points pre-
cisely when z € C.
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It follows further from (7) above and (A.7) that:
(12) (K', f') is minimal.
Now it follows from (4.5)(c) that

(13) qa=q(K, f)=q(K' f),
and we have a commutative diagram
(XK', f) - (K, f)
—~ \ y
(14) ducr gy L OED
(Zq+1)

We know from Theorem (4.1) that $(K,f) and $(K,’f:) are both surjective and
injective except perhaps for countably many 2-point fibers. It follows therefore
that:

(15) For each z € C,{oo(x),01(x)} is a 2-point fiber of :z’;(K:,f:).

We next address the question of whether f/ : K/ — K’ is a homeomorphism.
By minimality and compactness, both f and f’ are surjective. Assume now that:

(16) f is locally monotone near each x € C, and f : K — K 5 a
homeomorphism.

The local monotonicity assumption plus (A.4)(8) implies that

(17) I A{oo(z),01(2)} — {oo(f(2)),01(f(2))} is surjective for all

z €T, hence f' is surjective on the fibers of # : K' — K.

Further, since f : K — K is a homeomorphism (and C C K), we see from (17)
that

(18) f i K’ — K is a homeomorphism if and only if f(C)=C.
Recall from (6) that we have had to choose C so that f~!(C) C C. Thus:

Choosing C so that f~1(C) = C (with f : K — K a homeomor-
(19) phism), we obtain (K', f') with f' a homeomorphism, but ¢k ;1
not injective.

For example, C could be an f-orbit in K consisting of points where f is locally
monotone. (The latter condition excludes, in view of (1), only finitely many
orbits.)

Choosing C so that f~1(C) G C, we obtain (K', f') with f' not a
homeomorphism and ¢ ;1) not injective.

(20)



42 CHAPTER I. CYCLIC RENORMALIZATION

Appendix B. Embedding ordered Cantor-like sets
in real intervals.

(B.1) Profinite spaces and partitions. A profinite space is a compact
totally disconnected space K. Examples include finite spaces, and also Cantor
sets, where K is further required to be without isolated points, and have a
countable base for its topology.

By a partition of a topological space K we mean a continuous surjective map
¢ : K — X where X is finite and discrete. Thus each fiber K, = ¢71(r) (r €
X) is open-closed, and K =[], x K;. Let ¢’ : K — X' be another partition.
We write ¢ < ¢’ if there is a (necessarily surjective) map p : X’ — X such that
¢p=pod.

In general we can define
dANY K —Y

to be induced by (¢,¢') : K — X x X', with Y = Im((¢, ¢')). Then the two
projections of X x X' show that ¢ < ¢ A¢’ and ¢’ < ¢ A¢’. Thus, the partitions
(¢, X) of K form an inverse system, and we have a canonical continuous map.

¢6: K — X=lim X

(%)

with dense image. If K is totally disconnected, $ is injective. If K is compact,
it is surjective. Thus ¢ is a homeomorphism when K is profinite.
Conversely, any inverse limit of finite sets is a profinite space.

(B.2) Countable base. Let K be a profinite space. Suppose that K has a
countable base B for its topology. Each open-closed set of K is, being open and
compact, a finite union of elements of B. Since B is countable there are then only
countably many open-closed sets, hence also only countably many partitions. In
this case we can choose a cofinal sequence (¢n,Xn), ¢n < ¢n41, of partitions
of K, and then we have the homeomorphism

¢: K — lim X,.
Thus K is the space of ends of a locally finite tree, as in (ITI, (2.2)) below.
(B.3) Ordered profinite spaces. By an ordered profinite space we mean

a profinite space K with a linear order whose topology is the order topology,
having open intervals as a base. For ¢ € K put

(—z)={yly <z}
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and
(—z]={y|ly <z}

and similarly (z,—) and [z,—). If C C K is closed and nonempty then
C has a least element min(C), which is the intersection of the compact sets
CN(—,z] (z € C). Similarly C has a greatest element max(C). It follows
that an interval C # @ of K which is topologically closed must be a closed
order-interval, [a,b] (a < b), and conversely.

If C is open-closed set in K then C is a finite union of open intervals and
hence a union of pairwise disjoint closed intervals (amalgamate all subsets of
the covering whose union is again an interval). The latter intervals must be
open-closed. It follows that

the open-closed intervals of K form a base for the topology.

(B.4) Interval partitions. Let K be an ordered profinite space. A partition
# : K — X is called an interval partition if its fibers K, = ¢~1(r) (r € X)
are intervals. These intervals occur in a certain order in K, and this defines a
unique linear order on X so that ¢ is weak order preserving. For such an interval
partition we shall understand X to be given this order structure.

If ¢’ : K — X' is another interval partition and ¢ < ¢’ then it is readily

seen that p: X’ — X is also weak order preserving. It follows that X = lim
(¢, X)

inherits an inverse limit order, and $ : K — X is an isomorphism of ordered
sets.

In case K has a countable base for its topology then as in (B.2), it follows
that we have an isomorphism

$: K — X =lim X,

where
P p
XO_{%}L X; & o X X,

-~

the X,, are finite ordered sets, each p is surjective and weak order preserving, X
is given the inverse limit order, and ¢ is an order preserving homeomorphism.

(B.5) Question. Let K be an ordered profinite space. Must K have a countable
base for its topology?

It seems plausible that this is the case, but we have neither been able to
verify it, nor obtain a counterexample.
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(B.6) Interval embeddings. Let K be an ordered profinite space with a count-
able base for its topology. Then as in (B.4), we can identify

K =limX,,
where X, is a sequence of finite ordered sets and weak order preserving surjec-
tions p: X,, — Xp,_1, and X 1s a single point.
We inductively construct a commutative diagram

Jo - n g A g Ly L
(*) ql qul q2 | gn-1 _ In l
Xo P Xi p X P -+ P Xpon P X4 0P

with the following properties:
(a) Jo is the unit interval I = [0, 1].
(b) Each j : J, — Jn—1 is the inclusion of a closed subset.

(¢) Each ¢, : J, — X, is surjective, weak order preserving, and each fiber
Ju(z) = g7} (z) (z € X,) is a closed real interval with

0 < length (Jo(z)) <

=

Suppose that, fori = 0,1,...,n—1, ¢; : J; — X; has been constructed with
the above properties. Say

Xn_1:{$1<$2<"'<l‘m}

Put L, = Jo_1(z,) = ¢;1,(z,) (r=1,...,m). Then L, is a closed real interval
and 0 < length(L,) < 1/(n—1). Say

p—l(xr) = {yrl <Yr, << yrm,}a
an interval in X,,. In the interval L,, choose
a1 < by <ag <by < - -<ap, <bnp,

with b; —a; <1/n. Put

Jn,r = U [ah,bh] Cc L, = Jn—l(xr)
h=1

and define gn, : Jo, — p~(2,) so that ¢ :(y-,) = [an,bs). Now put J, =
Ja1U---UJp m and let ¢, : J, — X, be defined by gn,r on J, . Then clearly
Jn C Jp_1 and ¢, : J, — X, satisfies the required conditions.

Now the commutative diagram () defines, on passage to inverse limits, a
weak order preserving continuous map

§:7=()In — K =limX,
n n
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which is surjective since for each n, J, is compact and g, is surjective. Each
fiber of ¢ is an intersection of intervals of length 1/n, going to 0. Thus ¢ is
injective. Thus: R

qg:J — K
is an order preserving homeomorphism. The inverse of ¢ gives the promised
order preserving embedding of K into I.

(B.7) Extending continuous maps. Let K C R be a real ordered profinite
space, say K C [a,b], with a,b € K. Let f : K — R be a continuous function.
Then f extends to a continuous function F' : R — R (in many ways). Since
[a,b] — K is a (countable) union of open intervals [c,d] with ¢,d € K, ¢ < d,
we can define F' on [c,d] to be any continuous function (e.g. linear), taking the
prescribed values f(¢) and f(d) at ¢ and d respectively. Similarly, on (—o0, a],
F' can be any continuous function sending a to f(a), and analogously for [, o).

Note that F' above can be chosen so that F([a, b]} is contained in the interval
spanned by F(K). In particular, if f(K) C K then F([a,b]) C [a,]].

(B.8) Real dynamical systems. We shall call an ordered dynamical system
(K, f) real if there is an order preserving topological embedding

(K, f) — (R, F)

for some continuous map F'. When K is an ordered profinite space, we have seen
(see (B.6) and (B.7)) that this condition is equivalent to K having a countable
base for its topology.

(B.9) Theorem Let (K, f) be a minimal dynamical system.

(a) If K has an isolated point then K is finite.

(b) If K is profinite and has a countable base (e.g. if K is a subspace of R
or S') then K is either finite or a Cantor set.

Proof. Let z be an isolated point of K. Since every orbit is dense, and z
is isolated, = belongs to every orbit. Thus, z belongs to the orbit of f(xz), so
f°™(z) = « for some n, and the orbit of z is finite, hence K is finite. This proves
(a).

For (b), if z is not finite, then by (a), it has no isolated points. By assumption,
it has a countable base, so K is a Cantor set.
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5. Interval renormalization and periodic points.

(5.1) Theorem. Let (I, f) be a dynamical system on a compact real interval
I. Let K C I be a minimal closed f-invariant subset. Let

¢ (K, f) — (Z/nZ,+1)

be an interval n-renormalization, with fibers K, = ¢~1(r). Then there exist
points ¢, € [K,]; such that f(z,) = zr41 (r € Z/nZ). Thus xy is a periodic
point of period n with f"(zo) = ©, € [K/]1.

Proof. Let J, = [K,];. Since K is compact and (K, f) is minimal it follows
that f(K,) = Kr41, J- 1s closed, and f(J,) D Jr41. Moreover since the K, are
disjoint K-intervals, the J, are disjoint I-intervals. Now the Theorem follows
from Lemma (5.2) below.

(5.2) Lemma. Let J, (r € Z/nZ) be closed subintervals of I such that f(J,) D
Jrg1 for all r. There ezists an xg such that f*(zq) = zo and f"(zo) € J; for all
r € Z/nZ. If the J, are pairwise disjoini then zo has period n (for f).

Proof. If [a,b] and [c, d] are closed intervals in I such that f([a,b]) D [c, d] then
we can find [ag, bo] C [a, b] such that f([ao,bo]) = [¢,d]. In fact first choose o’ €
f~Yc)N[a,b] and b’ € f~1(d) N [a,d]. Suppose that a’ < b’; the proof is similar
in the other case. Let ag = sup(f~!(c) N [a’,b]) and by = inf(f~1(d) N [, ]).
Then it is easily checked that f([ao, bo]) = [c, d], as required.

Using this we can choose closed intervals J. C J, such that f(J/) = J/,, for
r=0,1,...,n—2,and f(J),_;) = Jo. We start by constructing J,,_, as above,
and then proceed inductively backward to successively construct

oyl g, .. J§. Since fP(J)) = Jo D J§ it follows that f* has a fixed point
zo € J§. Then z, := f"(zo) € J. C J, for all r. If the J, are pairwise disjoint
then the z, are all distinct, so xy has period n for f.

(5.3) Remark. Figure 5 represents the graph of a counterexample to the analog
of Theorem 5.1 for circle maps: the second iterate of this map, restricted to I
or I, has a restriction which is a Denjoy expansion over an irrational rotation
(see (1.10)), and no further invariant set. In particular, Iy Ul; does not contain
any periodic point of period 2.



Figure 5. Graph of counterexample the analogue for Theorem 5.1 for the circle.

6. Self-similarity operators.

(6.0) Given a dynamical system (K, f) and a renormalization ¢ : (K, f) —
(Z/nZ,+1) with fiber K, = ¢~(r), we consider here the question of whether
there are isomorphisms p, : (K, f) — (K., f* |k,). When this is the case, the
pr are called self-similarity operators. They are analyzed group theoretically
in Chapter III, section 6 below, notably Theorem (III, (6.12)).

(6.1) The context. Consider a minimal ordered compact dynamical system
(K, f) which is faithfully interval renormalizable, i.e.,

(M) ¢ (K, f) — (Za,+1),
as in (2.8), is a topological isomorphism, where

(2) q=‘1(K1f)=(lI1,Q2,q3~-)
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We can also write

Zq

ZQ where
3 ’

Q(K, f) = anl an,

with @ understood as a supernatural number (cf. (1.6)).
Let n € IRen(K, f), and let

$=pos: (K, f) — (Z/nZ,+1) where
p: Lo — Z/nZ is the natural projection.

(4)

For r € Z/nZ we put

(5) K, =¢7Y(r) and f, = f* |k, Ky — K.
If # € $71(r) then $ induces a topological isomorphism

(6) ¢ (K, fr) — (F+nZg,+n) = (Zgym, +1).
It follows then from Corollary (4.2) that

() (Kr, fr) is faithfully interval renormalizable,
and Q(K,, f;) = Q/n, for each r € Z/nZ.

It follows further from Proposition (3.1) that

IRen(K, f) = IRen(Z [nZ,+1)Un - J, where
(8) J= () IRen(K,, f),

r€Z[nl

and Z/nZ is given the order induced from K via ¢.

Assume now that K, and hence q and @, are infinite. Then it follows from
(8) that each (K., f;) is also infinitely interval renormalizable, and so J in (8)
is a cofinal subsequence of IRen(K,, f.) (ordered by divisibility) for each r.

Write n = q193 - - - ¢; = q[*). Then it follows that each a(K,, fr) is obtained
from (gt+1,gt+2, ¢¢+3, - - -) by replacing each gi4.m by a sequence (gm,, . .., qma,, )
(depending on r, with each ¢, > 2 and ¢1+m = @m, ***qm,,, . It is further
necessary (by (8)) that the only initial products common to all of the q(K,, f)
are the products qy41 - ge42- - ge4m for m > 0.

(6.2) Proposition. The following conditions are equivalent.

(a) (K, f) is topologically isomorphic to (K,, f;) for some (hence every) r €
Z/nZ.

(b) The powers of n, n® (e > 0) belong to and are cofinal (with respect to
divisibility) in Ren(K, f) = Div(Q); i.e., Q = "n%”.
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(c) ZQ = Hipoo, where p ranges over the prime divisors of n, and 219""

pin
denotes the p-adic integers.

Proof. We have topological isomorphism (K, f) = (iq,+1) and (K,, fr) =

(iq/m+1). Here Q = Hpep, ep = Z'vp(q,-), with v, being the p-adic valu-
P i>1

ation, and iq = HZ/pe”Z where Z /p®7Z = ipoo denotes the p-adic integers.

P
We have @/n = Hpe"_””(”) Now we see that all three conditions (a), (b), (¢)
]
are equivalent to the condition: Q/n = Q.
]

Next we consider whether (K, f) is IR-isomorphic, not just topologically isomor-
phic, to the (K., f,).

(6.3) Proposition. The following conditions are equivalent.

(a) For each r € Z/nZ, there is an IR-isomorphism p, : (K, f} — (K, f7)
of ordered dynamical systems. (In fact, once p, is chosen, we can then take
pr=fropy forr=0,1,...,n—1.)

(b) IRen(K, f) = IRen(K,, f,) for each r € Z/nZ.

(¢) (i) IRen(K,, f,) is independent of r.

(i) If n = q = q1q2- - - q1, then q = (q1,92,93...) is periodic of period t:

Qi+t = g foralli> 1.

Proof. Clearly (a) implies (b). Conversely, (b) implies that Q(K, f) = Q(K, fr),
so that (K, f) and (K., f.) are topologically isomorphic by (6.1)(1), (3), and (6).
Hence, by (2.4), (b) implies (a).

In view of (5.1)(8) we see that (b) is equivalent to:

(1) oK, f) =(01,92,83-- ) = a(Kr, fr) = (41, @42, 443, - - )
for each r, and clearly (1) is equivalent to (c).
n

Remark. Under the conditions of (6.3), any topological isomc,\\rphism
pr : (K, f) — (K,, f) is an IR-isomorphism, by (2.4). In view of the (Zq,+1)
model of these systems, p, is determined by its value p,(z) at a single x € K,
and p,(2) may be any element of K,.
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(6.4) Fixed points of self-similarity. Fix a system p = (p), pr : (K, f) —
(Kr, fr), of “self-similarity” IR-isomorphisms, as in (6.3). It follows that, for
each e > 0, p, maps the fibers of an interval n®-renormalization of (K, f) to
those of (K., f,) (the latter being fibers of an interval n®*!-renormalization of
(K, 1))

Fixing p = (pr )rez /nz, consider dynamical systems (K, g) such that g YK, =
Kr_1 (te., ¢ : (K,g9) — (Z/nZ,+1) is an interval n-renormalization) and each
pr is also an IR-isomorphism p, : (K,g) — (K,,¢r), where g, = g"|k,. We
call such a ¢ a simultaneous fixed point of p = (p,), and denote the set of
them by

(1) EP(p).

For example, consider the closure (f) of the cyclic group (f) generated by f,
which is isomorphic to Zq4. Its set of topological generators is

TopGenﬁ = {f*lue i;}

2
2 the closure of {f* |u € Z,ged(u,n) = 1}.

I

It is easily seen that

(3) TopGen(f) C FP(p).

In Chapter III, Theorem (6.10)(c), it is shown by group theoretic methods that
(3) is an equality iff n = 2, in which case q = (2,2,2,...). For related results
see also [GLOT, OT].

(6.5) A classical example. Consider a unimodal map f on J = [-1, 1] with
f(-1) = =1 = f(1) and maximum f(0) = M > 0. Then f has a unique fixed
point zg € (0,1) and we define z_ € [-1,20) and x4 € (xo,1] by f(z-) = 2o
and f(z4+) = z_. This is illustrated in Figure 6.
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— .

I 0 I X+ 1
Figure 6. Unimodal map with unique fixed point.

Defining Iy = [zg,z4] and I; = [z_, zg], it is easy to check that f(Iy) = I1,
f21, is (+)-unimodal, and f2|;, is (~)-unimodal. Assume that M = f(0) < z4,
so that f(I1) C Io.

Let K denote the postcritical orbit closure of f, t.¢., the closure of the orbit
of M = £(0),

O5(M) = {M, (M), f*(M),.. }.
Put K, = KNI, and f, = f%|g,,r=0,1. Then ¢(K,) =7 (mod 2) defines an
interval 2-renormalization of (K, f). In case q(K, f) = (2,2,2,...) and (K, f)
is faithfully renormalizable, there will exist IR-isomorphisms p, : (K, f) —
(K,, fr) (r = 0,1). Then if (K, g) is a simultaneous fixed point of p = (po, p1),
i.e., g € FP(p), we must have g = f* for some 2-adic unit u € i;






Chapter II

Itinerary Calculus and
Renormalization

0. Introduction.

Consider a unimodal map f on an interval J = [a, b], with maximum at C,
increasing on L = [a,C), and decreasing on R = (C,b]. Each £ € J then has an
“address” A(z) € {L,C, R}, and the orbit f*(z) = (a, f(z), f*(2),...) has the
“itinerary” Af*(z) = (A(z), Af(z), Af%(z),...).

If K C J is a minimal closed f-invariant subset then K is the closure of an
orbit f*(z), where we can take z to be the maximum element of K, for example.
It is known then that the itinerary Af*(z) encodes much of the combinatorial
dynamics of (K, f). The aim of this chapter is to show how one can read the
interval renormalizations Ren(K, f) from Af*(z). Among the applications, we
show (Corollary (9.9)) that all possibilities for IRen(K, f) occur already when
f is a quadratic map f(z) =1 —tz? on J = [-1,1] (0 <t <2) and K is the
critical orbit closure f*(1).

Much of the material in this Chapter is well known (cf. [My, MSS, MilTh,
DGP1, DGP2, CEc]). However, several results are presented with full proofs for
the first time.

For describing itineraries symbolically, we think of them as infinite words
@ = aiasas. .. in the alphabet {L,C, R}, which we agree to truncate at o, if,
and when, a, = C. In the latter case « = o’C where &' = @ ...a,_1 belongs
to the free monoid Gy with basis {L, R} and we put |a| = n, the length of
a. Otherwise a belongs to the set Gy of infinite words in {L, R} and we put
|| = co. Thus, itineraries define a map

In (1.6) and (1.7) we define a linear order on GoUGC so that Af* is weak order
preserving.
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The shift operator o on Go U GoC is defined on o = ajasas... by a =
a10(a). We put

(2) O(a) = {o* ()]0 < i < |al}

and call ¢ “maximal” if « is the maximal element of O(«). Define

(3) 0o : O(a) — O(e)

by

4) 0a(0* (@) = o' (a),

unless i = |a| — 1 < 0o, in which case 04(0'(a)) = a(= ¢°(a)). Thus, when

|a| < o0, 04 is a transitive (cyclic) permutation of O(«). In all cases, giving
O(c) the order topology, (O(a), 04) is an ordered dynamical system, and O(«)
is the o4-orbit of . In particular we have the interval renormalizations

(5) IRen(a) := IRen(O(a), 04).
We also put
(6) q(a@) := q(0(a), 0q).

To construct o with prescribed IRen(w), we make use of a x-product,
(M) Brv€GoUGC (B € Goy€ GoUGC),

with |8 x| = (I8) + 1)}y (cf. (4.1)). The basic result (Theorem (7.1)) asserts
that, if BC is maximal and non-quadratic (in the sense of (2.6)) then

(8) IRen(B x7v) = IRen(BC) U n - IRen(y)

Moreover 87 is maximal if ¥ is maximal. (The proof of this result is regrettably
technical, and requires the analysis of Sections 2 — 5.)

For an integer ¢ > 2, put a(g) = '(¢)C with o'(q) = RL172: then
IRen(a(q)) = {1,4¢} (cf. (8.1)). Let q = (q1,92,¢3, - - -) be a sequence of integers
¢ > 2, and define a(q1, ..., qn) = @'(q1, . - ., ¢n)C inductively, by a(q1, ..., ¢s) =
o'(q1) *xa(qz, - .., qn)- It follows from (8) that

9) a(e(qt, -, q0) = (q1,-- -, qn)-

Further, there is a well defined limit
o(@) = lm_o(g,-- )
and it follows from (9) that

(10) q(«(q)) = a.
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We thus obtain maximal elements o with arbitrarily prescribed IRen(«a) (cf.
(8.2)).

To relate these results to interval dynamics, consider a unimodal map f on
J = [-1,1] with maximum f(0) = 1. Then we have the “kneading sequence”

(11) K(f)=Af(1) € GoUG.C.
Define

_ [ K@) if K(f) e G
(12) ~(/f) = { ' xL* I K(f)= fc’OC € GoC.

Suppose that a € Gy satisfies

Af (1) < @ and o' (@) < &(f) for alli>0.
Then it follows from [CEc], Theorem 11.3.8, that
(13) a = Aff(z) for somex € J.

Let 2 € J have f-orbit closure K = f*(z), and put o = Af*(z) € GoUGoC.
Assume that IRen(a) is infinite. Then (cf. (9.4)) K is a minimal f-invariant
Cantor set, and

(14) IRen(K, f) = IRen(a).

Define fy(z) = 1 —tz? (0 < t < 2). Given any maximal & € Go U GoC,
a # L%, it follows from (9.8) that « = K(f;) for some ¢, 0 < ¢t < 2. Taking
a = ofq) as in (10) above it follows that all possible interval renormalization
sets can be realized on the critical orbit closures f;(1) for some quadratic map

ft.

1. Preliminaries.

(1.0) Unimodal maps. Consider the interval
J=[-1,1=L]]c][r

L=[-1,0, C={0}, R=(1]

Define the address function

where

A:J —{L,C, R}

by z € A(z).
The unimodal maps we consider are continuous functions f : J — J such
that
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(a) f is increasing on L,
(b) f is decreasing on R,

and

(c) £(0) > 0.

Y

-1 L 0 R 1

Figure 7. A unimodal map.

The point C = {0} is often called the turning point of f. For 2 € J we
denote its f-orbit as a sequence

(@) = (@, f(2), (@),..).
The corresponding address list of the orbit,
Af*(2) = (Ale), Af(2), Af (=), ..
is called the itinerary of z. The itinerary of M = £(0) (= f(C)),
K(f) = Af* (M)

is called the kneading sequence of f. Much of the dynamics of (J, f) is encoded
in K(f).
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Let € J have f-orbit closure K. We would like to determine all interval
renormalizations

én : (K, flg) — (Z/nZ,+1).

Such a ¢,, if it exists, is determined by ¢,(z). Our aim is to determine from
Af*(z), those n for which @, exists. We shall do this in the case in which z is
the maximal element in K.

(1.1) The monoid G = Go ][] GoC is presented by

(1) generators: L,C R,
subject to,
(2) relations: CX=CforX=LC,R.

It follows from (2) that
(2" CX=C forall X €G.
Note that G contains
(3) G := the free monoid based on {L, R}.

By definition, each @ € Gy has a unique expression @ = ajaz-- @, with
each a; = L or R. We define |a|=n. When n =0, o = 1, the neutral element
of G. By (2), for a, f € Go we have aC = BC if and only if « = 8. Thus

(4) G=Go[[GoC

and each & € G has a unique expression a = a0y - - - ¢y, With

) a; € {L,C, R} and
a; ZC fori<n:=|al.

We also write

el ifaedG
(6) |orlo= { ol =1 ifae CoC.

(1.2) R-parity refers to the map
p:G— {1}

defined by
p(L) =p(C)=1, p(R)= -1,
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and
p(aB) = p(a)p(B) for o € Go, BEG.

Thus, p(a) measures the parity of the number of R’s in «, and p(aC) = p(«).

(1.3) The G-set G = Gy 1] Go ] GoC. Let Gy denote the set of infinite words
(sequences) of the form:

(1) B="5P2Pn1fn--- with each B, € {L, R}.
We put

(2) |B|= oo for 8 € Go,

and define

(3) G=G|JGo=G JIGo ] GoC.

The monoid G acts on the left on G, using the obvious left multiplication by
Go, and with the rule

(4) CX =C foral X €G.
Each g € G has a normal form
(5) B=P01520s-- withB; € {L,C,R} and B; # C for i <|fF].

We define truncations of J as follows. For ¢ > 0,

(6) B<i=p1-- 5 (=14fi=0)
and
(7) Bic = Bit1Biv2 - (=B ifi=0and =1 fi>|p]).

Thus, for any nonnegative i, 8 = f<;Bi<.
We define divisibility in G as follows. For o, € G, define o | 8 (read
a divides ) by

(8) a|f<=a€G and B € aG.

That is, « | 8 if and only if & = <, for some finite n <|3|.

(1.4) The involution § — B on G is defined by

(1) L=R, C=C, R=1L,
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and for 8= B1fefs--- € G, i € {L,C, R},

2) B=FBafs .
Thus,

(3) af=ap foraeG,BeC
and

©) B=8 |BI=I8], 18lo=I8lo.
For o € (G it 1s easily checked that

(5) p(a) = pla) - (=1)Fbo.

(CE. (1.1) (6).)

(1.5) The exponential notation 3% is defined for « € G and § € G, and is
defined by

«_[ B ifpla)=1

(1) B —{ B ifpla) = —1.
Exponentiation has the properties:
o) { (B> = B, for v € G and

gy = (B =p"" fa,y€Go.
From (1) and (1.4)(5) we obtain:
(3) Fora,y€G, p(v*) = p(y) - p(e)7o.
In particular,
(3)o p(v*) = p(V)ple) for v € {L, R}.

Note finally that

(4) XX =L for X € {L,R}.

(1.6) The order relations < and <*. We adopt the following notational
conventions. For & € G and for 3,v in any ordered set, define

o B<y ifple)=1
(1) ﬁ< 7c:{7<ﬂ ifp(a):—l.
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Now we define < on ( as follows. First,
(2) L<C<R.
Note then that
(3) X <Y &= X2<Y*®

for X,Y € {L,C,R}and a € G.

Now let § = 3182833 --- and v = y1v273 - - - be distinct elements of G neither
of which divides the other (cf. (1.3)(8)). Then, for some index m > 1, we have
Bm # Ym, whereas §; = v, fori <m. Put @« = 31 - f_1 =711+ - Ym-1 € Go.
Then we define

(4) B<y < Bmn < Tm <= By < Tm-
Note that:
(5) (B<yandy <b)=p <6

We summarize the most important properties of <:

(2) L<C<R,

(6) B,y € G are related by < unless 8|y ory|B (cf.(1.3)(8)),
and for 3,7 € G and a € Gy,
(M B < v if and only if af <% ay.
In particular,
(8) Go H Gy - C is linearly ordered by < .
If « = &’C with o/ € Gy then we define = and a* by
(9 a” :=dL* < a < at:=d'R°.

For purposes of generalization to the multimodal case (cf. Appendix C below)
it is convenient to give the following alternative definition of a*. First define

c .= R,

c-v = [,

cl@ = @) = R* and
Cc-0 = (Cl-ra) = [

Then we can write, for o = a/C as above

(10) at =a'C(®, o~ =a'Clm.
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This formulation adapts better to the multimodal case, in which there are

several critical points instead of one (cf. Appendix C.).

(1.7) The Real meaning of the ordering. As in (1.0), let
f:J'_>Ja J:[—l,l],

be a unimodal map. We have the itinerary map

(1) AfF T — G
defined by
@) AR (@) = A@A(@)AS (@) .

Note that if f?(z) = 0 and fi(z) # 0 for i < n then
Af(z) = A(z)---A(f"Hz))C €G- C.
If f*(z) # 0 for all n then Af*(z) € Go. Thus
(3) A1) CGo[]Go-C.
The order structure on G ][] GoC has been constructed precisely so that

(4) Af ] — Gy HGOC is weak order preserving.

This can be seen as follows. (cf. MilTh], Lemma 3.1 or [CEc], I1.1.2 and I1.1.3.)

Suppose that £ < y in J, and

Af(z) = apmoz--- (a; = Afi(z))

# B Af*(y) Bob1By - - - (Bi = Afi(y)).

Say ag---an—1=7= 00 Pn-1, and o, # B,. We must show that o, <7 G,.
For 0 < i < n, fi(z) and f*(y) lie in an interval a; = B; on which f is monotone.
Let r denote the number of such intervals on which f is decreasing, i.e., order-
reversing, i.e., for which a; = R. Then f*(z) < f™(y) if r is even and f"(y) <
f*(z) and r is odd. Since p(y) = (—1)", these two cases are summarized by the

condition ay, < G,.
On the other hand, we can define

(5) v:G—J
as follows: Put

(6) eL)=-1, €C)=0, &[R)=1,
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and for o = qjazaz--- € G,

7 o(a) = Z G(Cf:"),

1<n<]ol

The following properties are readily verified.

va)=-1 < ao=L>.

v@)=0 <= a=1lorCor XRL*®, Xec{l, R}
(8)
v(a):l = a=RL*®.

(9) Ifa € Gy and |a|=n > 0 then v(a) s rational with denominator
2", s0 5= <|v(e)|< 1.

For § € Go and B € G, with n = |§|, we have

8B«
o(68) :v(éﬁlﬁzﬂam):vwngin( 3 6(52—)) |

1<i<)gl

For X € {L,C, R}, we have ¢(X?) = p(6)e(X). Thus:

(10) For6€Go and B€G, v(68) =v(6)+ &2);;,@.
Next observe, using (8), that since p(8) = +1,
pOV(B) =1 <= o(B)=p(6)
SR H

& fB=RIL™.
So that in summary,
(11) p(8)v(B) =1 < B=R'L™.

We now show that v is weak order preserving.

(12) Claim. Leta,f € G. Ifa < B then v(a) < v(f), with strict inequality
ezcept in the following cases: For some § € Gy,

a = 6L'RL>®, B = §C
a = SLRL®, B = &R'RL™
a = 6C, B = SRRL™.

Remark. These exceptional cases will not arise in the setting that concerns us
here.
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Proof. Since a < § we can write
a=6Xd, B=6Y8,

where § € Go, X,Y € {L,C,R}, X} < Y? and «’, 8’ € G.
Putting d ={ 8| +1, we have, in view of (10),

v(a) = v(8) + 5(;6) +£ (6)2: ()
and ) /
o(8) = o(6) + 6(;; ) 4 p(5Y2):(ﬂ )
Thus,
24 <v(ﬁ) - v(a)) =E+D
where

E =¢(Y%) —¢g(X?), and
D = p(8Y)o(8) — p(6X)u(a’).
We want to show that '+ D > 0, and to determine when this inequality is
strict. Since X% < Y4, there are three cases to consider:

(¢) X°=1L, Y®=C, hence
a=6L%" B=46C.

(b)) X°=1L, Y®=R, hence
a=6L%", B=6RP.

(@) X®=C, Y5 =R, hence
a=06C, B=6RP.

Case (a). We have E = ¢(C) — (L) = 0= (=1) = 1, (') = v(1) = 0,
p(6X) = p(6L%) = 1, and so

D = p(8Y)o() = p(6X)0(a’) = —v(a’).

Thus E4+ D = 1 — v(a’) > 0,with equality precisely when v(a’) = 1, i.e.,
o' = RL% (cf. (8)). Hence v(a) < v(8), with equality precisely when

o =68L°RL™, g=éC.

Case (b). We have E = ¢(R) —¢(L) = 1 — (=1) = 2, p(6X) = p(6L%) =1,
p(8Y) = p(6R%) = —1, and so

D = (=1)p(8) = 1-v(a’) = =(v(8) + v(")).

Thus E+ D = (1 — v(a')) + (1 — v(8')) > 0, with equality iff v(a) = 1 = v(8)
iff o’ = RL*® = . Hence v(a) < v(B), with equality precisely when

a=68L°RL®, B =6R'RL™.
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Case (c). We have £ = ¢(R) — ¢(C) = 1 -0 = 1, v(e) = v(1) = 0,
p(8Y) = p(6R%) = —1, and so

D = —v(#).

Thus E+ D =1—u(f') > 0, with equality iff v(8') = 1 iff f/ = RL*. Hence
v(a) < v(F), with equality precisely when

a=6C, B=6RRL™.

Appendix C. The multimodal case.

This refers to a continuous map f : J — J, where J = [a, b] is a closed interval,
f has a finite number of turning points, Cj,

(1) a<Cl<C2<---Cz-1<b

and f is strictly monotone (with alternating directions) on the intervals J; de-
fined by

(2)  J1=[a,C1),J2 =(C1,Ca),..., Ji-1 = (Ci—2,Ci-1), 1 = (Ci1, b],

We indicate here a notational scheme for this setting which generalizes what
we have used above in the unimodal case (I = 2). (We shall not deal with the
multi-modal case outside of this appendix.)

Let G denote the monoid presented by generators

(3) Ji,... 1, Ch, . .Gy

subject to relations

4) CiX=C; fori=1,...1-1 and all X.
Note that G contains

(5) Go = the free monoid on Jy,...Ji,
and thus has the decomposition

(6) G=Go[[GoCr [ -] GoCi-1.

For o € Gy we put

o]
(7) { |aC; |

leo

length of «,
|a| +1, and
[aCilo = || .
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Figure 8. A function with 7 turning points.

Define the parity map
p:G—{1,-1}

p(Ci) 1 (i=1,...,01=-1)
: 1 if f 1s increasing on J;,
® P —1  of f is decreasing on J;.
p(ap)

pla)p(B) for a € Gy, €QG.
Thus p(a) measures the parity of the number of J; € o on which f is decreasing.
Note that p(J;)p(Jip1) = —1fori=1,...,1—-1.
Define an involutton o + & on G by

C_'i:C(—l_i ’L—l l—i)
(9) { ji = JI(_,: ) E l)

n

and

i

and off = ag.
For a € G we have

p(@) = p(e) if | is odd
10 Lo 2t it s con
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Let Go denote the set of infinite words @ = aqagas--- with each a; €
{J1,...Ji}. The involution extends to

(11) G=GUGy

by & = &160a3 - - for a € Go.
For § € G and o € G we define the exponential

B ifpla)=1
12 C=q =
2 7={5 Hath
We define an order on G with the following properties.
(13) Ji<Ci << Co< < Jiu1 < Coy < .

Let o, 8,7 € G. Assume that a < 3. Then

a€G = ay<p
(14) BeEG = a<By

YyEG = va<79pb,
where

y_ < dfplv)=1
(15) < —{ > i ply) = -1

Explicitly, if @ # 8 then they are comparable unless one is an initial subword
of the other. If this is not the case then we can write

a = yXo' and
(19) {5205

where v € Gg, o/, 3 € Gand X,Y € {J1,...,J1,C1,...Ci—1} with X #Y. Then

we have
(17) a<f <= XY,

and the condition on the right is determined by (13).
Define, fori=1,....l-land a € G

eV = i
ciV o=
(18) e e

c-®) ol

For a = &/C;, o’ € Gy , we put
p

+

o
19 :
(19) {a“ = a’CZ-(_OO.

1

Q\

Q.
2
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Then it is easily checked that

(20) a” <a<at

2. Maximal elements; the quadratic case.
(2.1) A maximal element o € G is defined to be one such that
(1) aic < a, for0<i< |af.

Put n =| « |< 0o, and write @« = ajesasz- - in normal form ((1.3)(8)):
a; € {L,C, R}, and o; # C for i < n. Then

Ui = Q410542043 " .

Note that if n < oo, then the inequality (1) must be strict. Assume that o« is
mazimal. Since there is no ¢ satisfying 0 < i < 1 we have, for n < 1:

2) Each element of {1, L, C, R} is mazimal.

Suppose now that n > 2; then a1 # C, and (1) implies that «; < a; for each
i > 1. It follows that, if @) = L, then o = L™. For m < n, L™ is not less than
or equal to L™ (cf. (1.6)(6)). Thus,

(3) oy =L = a=L>.

4) ay=R = an=L orC ifn <oco.

The last assertion follows, since ay,, = a,_1<, from (1) and (1.6)(6). Also:

, [ RL*™!'  (1<n<o0)or
(5) o contains only one R == o = { RL*2C (2<n< ).
Thus:
(6) a contains only one R and n =2 = a = RL or RC.

Suppose now that n > 3 and o contains at least two R’s. This means that o
has one of the following forms (7) or (8).

o = RL®*RL%...RL*Rp3, where(0<a;<oco (1<i<s), and
(7) g=L*"1C (0<a, <), or
B = Lo (0 < a; < o0);
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or

(8) a = RL™RL*...RL*-'RL% ... with0<a; <oo, (i>1).

We have
RL% ... < RL%R.--- = a;<ai, and
RL%-'C < RL“R... = a,<a,
Thus,
(9) a; < ay for all relevant 1.

Since, by assumption, a; > 0 for some ¢, we have
(10) a; > 0.

The exact conditions for « as in (7) or (8) to be maximal are, in addition to (9)
and (10)

(11) {If]>landa]-+,-:a,~ (1<i<r)

and aj 1, # a, then a, <F ajy4,.

This is easily checked.
In summary:
The mazrimal elements are those of the following forms:

a« € {1,L,C,R,L® R*®}, or
RL#'RL% ... RL%-*RL*~1C or

(84 =
(12) o = RL®“RL% ...RL%-tRL%* RL%+ ... with
0<ay <00, 0<a;<ay foralli, and
ifajpi=a; (1<i<r)andajyr # ap, then
ar <Rr Qj4r

In the case in which ¢ is an integer greater than 1 and & = RLI~?C we shall
make use below of the following observations:

For 0 <i< q put
T = g = Q441
Thus zg = «, and z; = L(q 2)-G-1¢ for
0<z<q—1, and 41 = C. We have
o> XL >T2> > Tg-1-
In particular, o is mazimal

(13)

The rest of this section and Section 3 describe properties of maximal elements,
in preparation for the discussion of the x-product in Section 4 and of the main
result, the *-product Theorem in Section 5.
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(2.2) The elements o;(X). Consider an element

M {a

For 0 <i<nand X € {L,C, R} we put

a'C = ajas - o € GoC, |a|=n
a1 ron_y €EGy, an=C.

(2) ai(X) = o X ag
= aé_*_l‘..an_lXal...ai‘
Thus, for example,
ao(X) = odX,
(3) an_1(X) = Xd, and
a,;(C) = Ot:~<C = Qgj-

Note that for X # C,

(4) plai(X) = pla)p(X).

Thus, for X € {L, R}, p(a;(X)) determines X, independently of i. Moreover

5 les(X)| = nfor X#£C, and
(5) la(C)] = n—i.

Clearly we have

(6) a(L¥) < m(C) < w(RS).

(2.3) Proposition. Let o = o'C as in (2.2) be mazimal. Suppose that, for
some X, Y € {L,C,R} and 0 < i < j < n we have

a;(X) = a;(Y).

Putm=j—1i (i>0). Then n = 2m, and there is a vy € Gy, |y|=m — 1,

such that
a =yR"~C,

vC is mazimal,
and
X=Y=L*"=R" (p(y) = —ple))
In particular, o' L* = (yRY)?.
Proof. Since i < j we cannot have X = Y = C (see (2.2)(5)). Similarly we

cannot have one of X or Y equal to C without the other. Thus, X,Y € {L, R}.
From (2.2)(4) we conclude that X =Y, so we now have

ai(X)=a;j(X), Xe{L,R}, 0<i<j<n.
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Now, a;(X) = oj . X ac; is an i-fold cyclic permutation of the word ao(X) =
o’X in the free monoid Gy, and similarly for o;(X). It follows that

X =ag(X)=an(X), O<m=j—i<n.

Now we use the following elementary fact.

{2.4) Lemma. Let H be a free monoid with basis B, and lel @« = g - -, €
H, each «; € B. Suppose, for some m, 0 < m < n, that

a:am+1...ana1..,am.

Put d = ged(n,m) <n and N =n/d > 1. Then

a=6", whereb=ay --oq.

Proof. Each # # 1 in H has a “primitive root”. That is, there exists a
v = rad(B) € H such that 8 = 4" for some r > 1, and the centralizer of § in
His {y* | s » 0}. It follows that # and #' # 1 in H commute if and only if

rad(f) = rad(f).

Now put 8 = a1 - am # 1 and ¥ = ams1 - - @y # 1. Our hypothesis says
that 8y = vB8. Thus rad(8) = 8y = rad(y), do =| éo | divides | 8 |= n and
|7|=n — m and so dy divides d. Then é = 6éd/d°) is as required.

Continuing the proof of (2.3), Lemma (2.4) tells us that ao(X) = o’ X = 6V,
where N = n/ged(m,n) > 1. Clearly § = vX, so

(YXO)N-14C,  and

) PN PN,

—
R
i

pla)
If N > 3 then, since « is maximal,
(2) 1XvC < a = yXyX - --.
Since p(yX7v) = p(X), (2) means that
C <X X,

or equivalently (cf. (1.5)(4))

C=CX<Xx¥=1L
which is a contradiction. Thus,

{ N =2, hence m = n/2, and (from (1))

(3) p(X) = pla).
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Now a = vX~C and we have
vC < vX~C

whence
C<X, te,C=C"<X".

It follows that

(4) X=R", a=vR"yC.
Hence
pla) =p(X) = p(R")
= p(m)p(R)
= —p(7),
where the last equality comes from (1.5)(3)o. So
(5) p(7) = —p(a) and X = L°.

It remains only to observe that § = ¥C is maximal. For 0 < i < m =|§|,
we must show that ;< < 8. Now é;« = 7:<C = a(34m)< < @ = yRYyC. Since
| 8i< | < 16| = | YR | the condition &< < « implies that ;< < 7, and so
5i< < ’)/C =4.

We record for reference some consequences of (2.3).

(2.5) Corollary. If a = o'C is mazimal, X € {L, R} and o’X = 6V for some
N >0then N =2,8 =4RY =+L%, and vC is mazimal.
Proof. Thisis the case X =Y, =10, and j = m :=n/2 of (2.3).

(2.6) Terminology. we call an element o = o/C quadratic, if « = yRYyC, as

in (2.5). Note then that p(a) = —p(7).

(2.7) Corollary. If @ = o/C is mazimal and non-quadratic then a;(X) # o;(Y)
whenever 0 < i< j<nand X,Y € {L,C,R}.
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3. Maximal elements; the non-quadratic case.

(3.1) Proposition. Let &« = &'C,| o |= n, be mazimal, 0 < i,j < n, and
X,Y € {L,C, R}. Assume that

(1) dic < aj<.
We have (cf. (2.2)(6))
ai(X) < ai(R*s7) and o (L°<9) < (YY),
and either
2) ai(R*$) < a;(L%S7),  and hence ai(X) < a;(Y),
or

a = yRYyC is quadratic ,

(3) ¥C' is mazrimal,
|[YyCl=m=n/2, |j—i|l=m, and
placi) = p(v) = —ple) = —plag;).

Proof. If a;(X) = «;(Y) then we have (3), in view of (2.3). It suffices therefore
to show that (1) implies (2) when

4) ai(X) # o (Y).
To economize on notation we shall assume that
(5) 0<i1<j<n

Then assuming (4) and (5), we must show that (1) implies (2), and also that

(1) i < g
implies
(2) a;(Y) < ai(X).

We can write

(6) a;j(Y)y = 6 - Y -y - oy - € and
ai(X) = ¢ Qp_j4i ’)/l . X . 6’,
where
6 = a;-<, § = Q41 Un_j4i—1, |5|=|5l|,
(7 Y = ag@-i-1y T = iy v I=1"1,
€ = oj_iy1---qj, € = agi, lel=[&'] .



d=a. Y = . o,
oY) . = | Y <¢-D | 1, 1
i j+1 n-1 1 el il ]
o o .. yY=ao .. X €
a(X) . N (n-j+i)< : ; ;
i i+1 n-j+i-1  n-j+i+1 n-1 1

Figure 9. The factorization (6).

We then have

(8) { i<

Qi<

a;(C) = 6C, and
a,-(C’) = 6’an_j+i-yC'.

If ojc < aj< then we have either §' < §, or ¢ = § and o
whence ay,_;4; = L®. Thus, we can restate (1) as:

(1) Either 8’ < 6, or 8’ =6 and an_j4i = L°.

Similarly we can restate (1') as:

(1) Either ' > 6, or 6 =6 and ap—_j4; = R°.

Now it follows from (6) that:

(9) If6 # 6 then (1) = (2), and (1) = (2').
Assume henceforth that:

(9 §=2¢".

Then (1) and (1’) become, respectively,

(14) Cnojyi = L°,
and
(1{0-) Op—jyi = RS,

Suppose that

(10) Y #£an_jp-
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8 <C*=C,

n—j+i



74 CHAPTER II. ITINERARY CALCULUS AND RENORMALIZATION

Then (1)
5 5 L case (14
YO F oo = { R case (1))
so, in case (14), afb_j_H- < Y% whence a;(X) < a;(Y), and, in case (1}),
Ye < ai_Hi, whence a;(Y) < o;(X). Thus: assuming (9') and (10), we have

(1) implies (2) and (1’) implies (2').
So now assume (9’) and

) V=onsni={ p (ol
Then
(1) pev) = perpr) = { | Lol

Consider the case:

(12) T# .

Note that (12) implies that v' < 7 since « is maximal. In view of (11) we then
have a;(X) < a;(Y) in case (1) and «;(Y) < a;(X) in case (1’). Thus, assuming
(9", (10') and (12), we have (1) implies (2) and (1’) implies (2').

So now assume (9'), (10’) and
(12) _—

From (12) and the maximality of o we conclude that C' = C” < a]_;, whence

1)

v svy _ sy | R (case (1))
(13) a/ ;=R, andsoa;_ ] = R"" = { I E case (1)),
using (11).
Thus, in case
(14) X # oo

8Y vy

i

we have X%Y7 <
a;(X) in case (1').
Now assume (9'), (10"), (12') and

hence a;(X) < «;(Y) in case (1). Similarly, o;(Y) <

(14) X = a5 (= R”, by (13)), hence p(vX) = —1.
Then in view of (4), we must have
(15) e#¢€,  hencee<é,

by maximality of a. We have, in view of (11) and (14’),

o ooy ={ 71 (e )



75

In view of (6), (15) and (16) we have a;(X) < a;(Y) in case (1), and a;(Y) <
@;(X) in case (1’). Now, (1) implies (2) and (1’) implies (2) have been estab-
lished in all cases, thus concluding the proof of (3.1).

4. The *product.

(4.1) The product a x 3. Let

(1) a=ay e, €Go, |al=n-1.
For
(2) B=p1Pafs---€G, i€ {L,C, R}
we define (following [DGP1})
() axf = (aff ) (af3)(afs) -
Note that aax1 =1,
4) laxBl=n|B]=(la|+1) 8],
and, for h > 0,
(5) (a*ﬂ)hn< =ax <.
For v € G,
(6) axyB = (axy)(axpf).
For y € {L,C, R},
(7 { axy = ay®, and
play®) = p(y) fy#C.
Note that:
(8) axL <axC <axR.

From (6) and (7) we obtain:
(9) plaxf)=p(B) fora,fEGo.

The *-product is not associative, but we do have the following identity. For
o, € Gg and v € G, we have:

(10) ax(Bxy)=(a*xB)axry.
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In fact, since Bxvy = By By 815 - -,

ax(B%7) = (a*Bavy)*(axBavs” (o * Bars™ -,

and since p((axB)a) = p(B)p(a), by (9), the right side of the displayed equation
equals (a * B)a +7.

Suppose that a«C = yRYyC is quadratic (see (2.6)). Then o = YRy =
(v * R)7y, so it follows from (10) that a %3 = yx (R« 8): In view of (2.3) we thus
have:

aC = yRYyC is quadratic —> a*f =y x(R*xf).
(11) . , . .
aC s mazimal = vC is mazimal.

Let o/, 3 € Gy, a =a'C, § = 'C. Then:

B is quadratic, or
(12) o x B is quadratic <= { |B|=2b+1 is odd,
a is quadratic and 8 = L¥C.

Proof (of (12)). If 8 = §R%6C is quadratic then o » 8 = AR*® AC, where
A = (o' x6)a’, and p(A) = p(§)p(a’) (cf. (9) above), so o' x 8 is quadratic.
If « = yRyC is quadratic and § = L?*C then, using (11),
o *f3 % (R*B) = v* (R**1C)
(YR)P(yRV)(yR')* (+C)
ARAC

where A = (yR”)?"y, and p(A) = p(7), so R = R®. Thus o’ x 4 is quadratic.
Suppose, conversely, that o' x § = AR®AC is quadratic. Put B; = §¢. If
| B|= 2b we have

A = o&'Bia---o/By_1a’
= o'Byp1’ - a’Byy_10/,  and
!
Bb = RA, S0 ﬂb:RAa.

It follows that 3; = Bp4: (1 <1< b), s0

6 = Pr-Poo1=Ps1 P,
A = (a'%é8) and
g = 6RO

Now p(A) = p(o * 8)p(a’) = p(8)p(a’) ((9) above), so RA® = RS whence
B = §R%6C is quadratic.

Suppose, finally, that | #|= 2b+1 is odd. Since [/ * B|= 2(]A| +1) =|« || £]
(cf. (4)), || must be even, say |a|= 2a. Write & = AXpC with |A|=|pu|=a—1
and X = ag. We have

o %= (o'By---o'By)o’ (B’ - - Bypad')C.
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It follows that

A a'By o' Byd = AXuBy - - AX By A

pBb+1a’ . -Bzz,a/ = ,LLBb.H)\X R ~;LBZb/\X/L

i

and so A = y; denote this by 4. Then
RA=X=B; =" (1<i<2b).

Hence o/ = vR%y, f = (RAO")%C, and A = (yR?)?y, hence p‘(A) = p(y).
Thus, & = vyRY7C is quadratic, hence p(7) = —p(a), and §; = R** = L, hence
B =L%C.

(4.2) Lemma. Lel o € Gy, and 3,7 € G.

() B<y<=a*xf <axy.

() 7|8 <= (a*7) [ (axp).
Proof. Part (b) follows easily from (4.1)(6). For part (a), write § = 6X§'
and v = 6Yy' with § € Go and X # Y in {L,C,R}. Then 8 < 7 if and only
X3 < Y% We have

axf

axy

(e x8)(@X*)axf), and
(ax8)(aY ") a*xv').

Therefore a x # < « *v if and only if
(Xa)(a*é)a < (Ya)(a*b)a.

Thus it suffices to show that p(a(a x §)a) = p(§). We have p(a(a * §)a) =
pla)p(a)p(a * 8) = p(a * 8) = p(6), by (4.1)(9).

(4.3) The x-product as a substitution. For o € Gp of length n — 1 as in
(4.1)(1), the map

(1) ax: G — G, B— axf,

can be viewed as a “substitution homomorphism,” replacing X by aX® for
X € {L,C,R}. (Cf. (4.1)(3)). This point of view was originally presented in
[PTT].

For an integer N > 0, denote the N-fold iterate of the operator (1) by

(!*N

(2) a*N ( ,B)

(CORE

ax(ax---(axf)) )
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Claim. There is an element o(N) € Gy such that

(3) oN(B) = a(N)xB foral eq.
If N =p+gq, p,g>0, then
(4) a(N) = (alp)*a(q)alp), i,
a(N)C = a(p)xa(q)C
and
(5) (V)= 1, and p(a(N)) = pla)".

Proof. We have a(0) = 1 and «(1) = a. Arguing inductively, we have, for
N=p+¢,pq¢>0,

) o*P(a*(f)) = a(p)* (a(q) * B)

(a(p) x a(g))ex(p) * (by (10)),
Khence (3) and (4). For (5), put E(N) = |a(N)|+ 1. From (4) and (4.1)(4) we
o E()(E() 1) + (B(p) ~1) +1
E(p)E(q)
whence E(N) = E(1)N = n". Similarly, from (4) and (4.1)(9) we have p(a(N))
p(a())p(a(p)), whence p(a(N)) = p(e(1))Y = p(a).
From (4) we see that, for any 8 € G,
(6) o*(B)<p = a(p) = &(N)<p

for any p < N. Fixing p and letting N — oo, we see that the initial segments
of o*N () stabilize at a value independent of 3. Hence we have a well defined
limit

i

E(N)

a*® = Nlim a(N) = Nlirn o*N(B) forallBeG
= the unique fized point of a x in G.
Examples. Let X = L or R. Then from (4) and (5) we have X(N + 1) =

(X(NY*X)X(N) = X(N)XXNX(N). Thus L(N + 1) = L(N)LL(N), whence,
by induction,

(7

L(NY=L*"'  and L*° =L
On the other hand
R(N +1) = R(N)R® R(N) = (R« R(N))R,

S50

R(1) = R

R(2) = RLR

R(3) = (RLR)R(RLR)

R(4) = (RLRRRLR)L(RLRRRLR)
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We conclude now with a Lemma needed in Section 5 below.

(4.4) Lemma. Let 3,6 € G,

B =p1B208s--, 6= 016263
and 6o € {L, R}. Put

B =Rx*f and D = 6y(R % ).

(a) R® < B, unless3=1L", 0<r<oco, when B= R,

(b) D < R®, unless 66 = L, 0<r < oo, when D = R?"~1.

(c) D < B, unless either 3 = 696 = L, or else the shorter of 3
and 806 is a power of L and divides the other.

Proof. Put B; = 3; and D; = §;. Then

B = RBiRBy---RB,_1RB,RB,{1 -
D = DyRD\R---D,_3RD,_1RD.R.---

If 8 is not a power of L then we can write 3 = L"R# with 0 < r < oo and
B €GorB=L"C. Then B= (R*L)R*R)(R+8)=R¥L(R*f) or
B = R¥+1(, respectively. Since R <F™ X for X = Lor C, we have R® < B,
and RN7<BforanyN>2r+1,'yEC-’.

If 806 is not a power of L then we can write 656 = L* R§’ with 0 < 5 < o0,
8 € G or §6 = L*C. Then D = R* (R % &) or R**C, respectively. Since
X <R” Rfor X =L or C, we have D < R*® and D < RN« for any N > 2s
and ¥ € G.

The assertions of the Lemma follow easily from these observations.

5. The *x-product theorem

(5.0) Let @ = &’C be maximal, where ¢/ € G and | |= n. Recall from (2.6)
that «a is called quadratic if

(1)

¥C 15 mazimal,

o =4vR"yC,
[yC| =m=n/2.

we make the following assumption:

(2) ai¢ < ajc forsomei,j 0<i,j<n.
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We would like to conclude that, for g € G,

(/% Birc < (& % B)jr<
whenever ¢/ = i modn, 7 = j modn, and 0 < ¢,5 < |a’ x f|. The next

theorem implies that this is so, but for certain explicit exceptional cases when
« 1s quadratic.

(5.1) Theorem. Keep the notation, and assumption (5.0)(2). Let 8 € G,
0< (k= 1), (K — 1) < |8, and pu

V=i+k—-1n andj =5+ —n.
We have in the notation of (2.2),
(3) (@ Buc < @(RS) < a(I%9) < (a'*Bye,
unless o 1s quadratic (cf.(1)) and |j —i| = m. In the latter case we have
() o %8 =7 % (R*f)

Moreover, putting h = min(i, j), 6§ = yh<, and A = RY(y x R™), we have

(51) (@' *B)irc < A unless Pr< is a power of L
and
(53) A < (o %B)ji« wunless Pri< is a power of L.

(Note that if 8 terminates with L™, 0 < r < oo, then R x 3 in (4) terminates
with Rx L™ = R?".) In particular we have

(*) (o xBlirc < (o' % B)jic

unless o is quadratic,|j —i| = m, and the shorter of fy< and fy:< is a power of
L and divides the other.

Proof of (5.1). Putting B; = 8* = 8~ we have

o xB=a Ba'Bya’ ---

and so
(o' * Bir<

(©) { 5 (o % B)jr<

Note that, with the notation of (2.2),

! ! i
ai<Bka Bk+1a

/ [ !
aj<Bk:a Bk1+1a

i

i i

I<n = ai(By), and J<n = o;(Byr).
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It follows therefore from (3.1) that (2) implies (3), unless « is quadratic, as

in (1), and |j — i] = m = n/2, which we henceforth assume. Then we have
B; = f7 = 3" and §; = f, so
o'xB = yR'YBiyR"yBay---
= YR'B YR 9By -
= 7% (RﬁlRﬂgR . )
= yx(R=xp),
whence (4).

To economize on notation, let us now assume that
(M 0<i<j=t4+m.

Then we have § = 7;< and we must show that (2) implies (5i) and (5)) and also
that the condition

(2') ¢ < g

implies, with A = §RY(y x R™),

(6'1) A < (o' %B)irc  unless Pr< is a power of L
and
(5'3) (@' *B)jic < A unless Brr< 1s a power of L.

From (7) and (4) we see that

I = ORYyByyR yBry17-
(8) = ORY(y*fe(R * Pr<)), and
J = 6Bk/7R7’YBk/+17- ..

8 (7 % (Rx Brr<))-
Moreover we have
a;c =6R"yC and aj = 6C.
Thus, @;c < aj¢ if and only if RY® < C® = C, if and only if p(y§) = ~1.

Similarly, &j < < aj< if and only if p(y8) = 1. Thus, we can rewrite (2) and (2’)
as:

(2) py6) = -1
and
(2) p(78) = 1.

Now we see that,

B<x not a power of L = Bk(l_%*ﬂK) < R* (by (4.4)(b))
= Y*Pe(R*Prc) <yxR™ (by (4.2)(a))
= I =8R(v%Be(R*fr<)) <*F" SR'(y*R™) = A.
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Since p(6RY) = —p(y8), the relation “<*f7” is “<” in case (2), and “>” in case
(2'). Whence (2) implies (51) and (2') implies (5'1). .

Next suppose that B4/« is not a power of L. If 8y # L then B < R. Thus,
the condition (2), p(v8) = —1, implies that §R” < 664", which further implies
that

A=6R"(y*xR®) < 66 (v % (R PBric)) = J.

Similarly, p(y8) = 1 implies that 88,7 < &R, which further implies
J < 6RY(y » R®) = A. Thus, (2) implies (5j) and (2’) implies (5'j) when
B # L.

Suppose now that Gy = L | so that J = R (v x (R * Br'<)) (see (8)). Then

By not @ power of L = R® < R* < ( by (4.4)(a))
= YxR® < 7*(R*Bk/<2 ( by (4.2)(a)),
= A=68R'(yxR®) < J.

Thus, since p(6RY) = —~p(76), we have A < J if p(y6) = -1, and J < A if
p(78) = 1. This concludes the proof that (2) implies (5)) and (2’) implies (5'}),
and so also the proof of Theorem (5.1).

(5.2) Corollary. Let o = o’C € GoC be mazimal and f € G be as in (5.1).
Then o x 8 s mazimal if and only if B is mazimal. In particular (a*)> and
(@7)® are mazimal where at¥ =o' * R and «™ = o' % L.

Proof: The last assertion follows from the first since (at)® = o/*R®, (™) =
a' % L, and R® and L* are maximal.

For 0 < h <[B], (&' * Brnc = & * Bre ((4.1)(5)), and &' x Bre < &' % G iff
Br< < B ((4.2)(a)). Thus, 8 is maximal iff (@’ * B)pne < o %3 for 0 < A <[],
and this is the case if o’ * 8 is maximal.

It remains to show that, if ¢/ = i+ (k — 1)n with 0 < ¢ < n and
0 < (k—1) <|B], and if 8 is maximal, then (¢’ x f)i<c < &' xB. If n = 1
then 0 < ¢ < n does not occur, so the proof is complete now for n = 1, and we
can argue by induction on n =|a| .

Since « is maximal we have a;c < @ = age. Put j =0=j5 and ¥’ = 1, so
7 =j+ (k' = 1)n. Then (5.1) implies that (&’ * §)ic < (&' xB)ji<« = &' % 3, as
desired, unless we are in the exceptional case (5.1)(*). In that case « = yRYyC
is quadratic, yC is maximal, and o/ *f = yx (R 3). By the case n = 1, R is
maximal, and so, by induction on n, ¥ « (R * §) is maximal. This proves (5.2).

Remark. Corollary (5.2) is well known to experts, but we were not able to
locate a short direct proof. An alternative proof is given in (10.5) below.
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6. Shift dynamics on Gy U G(C.
(6.1) The shift maps ¢ and o,. We define o : G — G by
(1) o(a) = agaz--- = aic

where
O = Yy xgxg * -+ -

in normal form, i.e., a; € {L, R} for i <|e|, and, if |o|[< 00,014 € {L,C, R}
and o; = 1, and for ¢ >|a|. Thus

ol@) =1 <= |a|<],
(2) { a=ao0(a) and |o(o)|=|a|-1ifa#1, and

ot(a) = aic fori> 0.

For 3, € G we define the open interval

(3) (B,7)={e€G|B<a<n}
We claim that
(4) o= ((8,7) = (L8, L7) U (R, RP).

This follows since

B<oa<y <= LB<Loa<Lly
<= Ry < Roa < Rj,

and a@ = Loa or Roa unless a € {1,C}, in which case ca = 1 ¢ (8, 7). It follows
from (4) that

(5) o:Go UGeC — Go JGoC is continuous for the topology defined
by the linear order on Go|JGoC.

Another consequence of (4) is the following. For a € U C G we write
a=MinU (resp.,a = Maz U)
if
a<fB (resp,B<a) forallBel.
fUCG, aeG,|al>2, then

Mino~(U) ifar=1L

ca=MnlU — o :{ Maz O_—I(U) ifa, = R,
(6) and
Ua:MaxUﬁa:{MaIU (U) for=1

Min o=Y(U) ifa;=R.
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Let a € Go|UGoC and  |a|= N < co. The c-orbit of « is,
) O(a) = {auc |0 < < NY.

This linearly ordered set is finite of cardinal N if a € GoC. If @ € Gy then
O(«) is finite iff « is eventually periodic of period p, i.e., there exists ng > 0
such that any, = @y, for all n > ng. If np and p are taken to be minimal then
|O(a) = no + p. .
We give O(a) the topology induced by the order topology on Go|JGoC.
Define ‘
0o : O(a) — O(a),

by 0o = ¢ if a € Gy; if & € GoC then,

(8) { ga(tic) = o(aic) = QAi+1)< for0<i< N -1, and
O'a(CY(N-1)< (= C)) = aoc (= ).

Thus, in view of (5),
(9) (O(a), 04) ts an ordered dynamical system.
When N < oo we put an order <4 (or <q,n) on Z/NZ so that, with
(10) Z(a):=(Z/NZ, +1 ,<q,N)
we can conclude the following:

The map a;c — i ( mod N), for0 < i < N =|«a/|, defines an order
(11) preserving isomorphism O(«),0,) — Z(a) of ordered dynamical
systems.

(6.2) Renormalization of (O(a),04). As above let o € Go|JGoC and |a|=
N < co. Let n be an integer, with 0 < n < N. Define a linear order <, (or
<amn) on Z/nZ, by

(1) T<as§ & arc < a5¢ for0<r;s<n,r#£s.

Suppose further that

(2) n|N ( by convention, n | oo for alln > 1).

Then we have an equivariant map

3) { On = ¢a,n_1 (O(a),aa) — (Z/nZ,+1)

édn(aic) = (i mod n).

If ¢, is continuous then (by definition) ¢, is an n-renormalization.
For r € Z/nZ we put

(4) O(a)r = ¢;1(r) = {@ic |0 < i< N,(i mod n)=r}.

The following conditions are clearly equivalent:
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(a) &n:0(a) — (Z/nZ, ordered by <, ) is weak order preserving.
(Hence each fiber O(«a), is an O(«)-interval.)

(b) Ifr,s € Z/nZthen r <, n s implies o;« < o< whenever
(i mod n) = r and (j mod n) = s.

If ¢, is continuous, then (a) and (b} just say that
(¢) ¢n is an interval n—renormalization.

In (6.3) below we show that, in the presence of conditions (a) and (b), continuity
of ¢, can fail only in very special circumstances.

We define

ITRen(«) IRen(O(a), 04)
{n>1: n|la| and ¢, : (0(a),00) — (Z/nZ,+1)

is an interval renormalization }.

0o

(5)

It follows from Theorem (I, (2.6)) that:
(6) IRen(r) is tolally ordered by divisibility.

When |« |< oo we have [Ren(a) = IRen(Z(e)) (cf. (6.1)(11)).

(6.3) Remarks on the continuity of ¢,. First, suppose that ¢,, is not con-
tinuous. Then O(a) must be infinite, so & € Gy and ¢4 = 0 [o(a). The fibers
O(a)r (r € Z/nZ) of ¢, form a finite partition of O(a), and ¢=1(O(a),) =
O(a)r-1- It follows that each O(a), is neither open nor closed. Now further,
suppose (a) and (b) of (6.2), so that each O(«), is an O(«a)-interval. The only way
for an interval to be neither open nor closed is for it to have a Min or a Max but
not both. Thus each O(a), has a unique extreme (Min or Max) element o;, <,
0 <i,, (i modn)=r. Suppose that i, > 0, so U(a(ir_12<) = o, <. It follows
from (6.1)(6) that c(;,_1)< is an extreme element of o' (O(a)r) = O(@)r-1.
Thus:
Fori, >0,ip_1 =t — 1.

Since there are exactly n such extreme elements it follows that i, = r, z.¢.,

tr< 15 the extreme element of O(a)(r mod n) for0<r<n.

Write .
(r) = 1 i a¢« = Maz O(a)(r mod )
# —1 if are = Min O(@), mod ny

Then it is easily seen that

pu(r) = plagr) - #(0)-
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O (o), O (o),

Figure 10.

Let us list Z/nZ according to <4:
" <aT2<q " <aTn-1<a Tn-

We cannot have p(r,) =1 and p(ry41) = —1. (See Figure 10.)
For in this case O(a),, would be open in the order topology on O(a), contrary
to assumption. Hence we must have

p(ri) == p(rs) -1

prsr) = - = plrn)

i

for some s, 0 < s < mn.

7. The x-product renormalization theorem.

(7.1) Theorem. Let a = o’C be mazimal, &’ € Gy, |a|=n, and let § € G.
Put
A=ao xp.
Then
(1) IRen(A) = IRen(a) U n - IRen(B),

unless a = YRYYC is quadratic and 8 terminates with LM 0 < M < oo. In the
latter case we have

(2) A=v*x{(Rxp)
with yC mazimal | |yCl=m =n/2, and
(3) IRen(A) = IRen(yC) U m - IRen(R x f3).

Proof of {7.1). We have a commutative diagram,

(0(A),04)
(4) 1/) J' \ ¢A,n
(O(a),00) — (Z/nZ,+1)

(}Sa,n
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where ¥(A;<) = ¢ when 0 < r < n and ¢ = » mod n. Here $an is an order
preserving isomorphism, using <4, on Z/nZ (cf. (6.1)(11)).
For 0 < r < n put

O(A)r = $amn(r) = {A(rskny< |0 < k <| 8]}

and
Or

or(Ai<)

oA |O(A)r3 0(A), - 0(A)y,
AGnyc for 0 <i<n(|B] -1).

i

Define
¥r < (0(8),08) — (O(A)r, 0v)

by ¥, (Br<) = a'r<,6’,‘c"(a’*ﬁk<) = A(r4(k-1)n)< for 0 < k& <|B|. Putting § = o, .
we have
Aptr-nmy< < Bptra-myc == BF (/% fre) <° B/ (o * fri<)
R (O/*,Bks') <6a (a'*,@kls)
= 'BkS <6a ,Bk’g
where the last equivalence follows from ((4.2)(a)). Thus ¥, is an isomorphism of

dynamical systems that either preserves or reverses order (according to whether
p(6a’) = 1 or — 1, respectively). It follows that

(5) IRen(O(A),, 0,) = IRen(O(B),05) = IRen(B) for 0 < r < n.

Consider the conditions,

(6) ¥ : O(A) — O(e) is weak order preserving,
and

Each fiber O(A), = ¥~ ar<) is an open-closed interval of O(A),
(7)

hence 1 1is continuous.
These conditions imply that, in diagram (4),

(8) éan is an interval n-renormalization.

In view of (5), it follows from (I, (3.1)) that (8) implies condition (1). Now it
follows from Theorem (5.1) that we have conditions (6) and (7), and hence also
(1), except in the case when « is quadratic in the sense of (2.6), i.e.,

(9) |¥C'l= m = n/2, and further

a=yR"vyC,vC is mazimal
B terminates with LM 0 < M < 0.

In this case it further follows from (5.1) that (2) holds true and R« 3 terminates
with Rx LM = R?M_ Thus we can apply the discussion for the non-quadratic
case to yC' and R f in place of o and 3, and conclude that ¢a r, is an interval
m-renormalization, and hence (3).
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This concludes the proof of (7.1).

The following result is a sort of dynamical converse to Theorem (7.1).

(7.2) Theorem. Let (J, f) be a unimodal map on J =[—1,1], as in (1.0), with
mazimum M = f(0) = f(C). Let K = Oy(M), the f-orbit closure of M, and
let

A=Af(M),
the kneading sequence of M. Then A is a mazimal element of Go U GoC (cf.
(1.7)(4)) and
(1) IRen(K, f) = IRen(A).
Ifn € IRen(K, f), n > 1, then
A=do'xg

for some o/ € Gy, || =n—1.

Proof. The relation (1) is proved in Proposition (9.4) below.

Let ¢ : (K, f) — (Z/nZ,+1) be an interval n-renormalization, with fibers
K, = ¢~ Y(r) (r € Z/nZ), and normalized so that ¢(M) = 1. The K, are
K-intervals and f~!(K,) = K,41. Let J, denote the J-interval spanned by K.

Casel. C¢ U Jr. In this case each J, is contained in either L or R,

r€L/nk
say

Jr C ar € {L, R}.
It follows then that A = Af*(M) is periodic,

A = (ajog--an)®
= o' *xf

where o/ = ey - -ay_1 and § = (af{’)w~

Case 2. C¢ U Jy. Then, since f(C) = M € Ky C Jy, it follows that
r€L[nk
C € J, . On the other hand, for the same reason as above, we have

Jr Car € {L,R} forr=1,...,n—1

This time, putting &’ = ajas---a,_1 we have A = ¢’y1a’'ya'y3 - - - for some
Y1,72,73 - - -- Putting B, = 75", we then have A = o %3, where § = 315283 --.
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8. Iterated x-products.

(8.1) The elements a(q). For each integer ¢ > 1 we put

(1) a'(g) = RL*™?, and a(q) = /(¢)C.
The linear order <44y on Z/qZ is given (cf. (2.1)(12)) by

(2) 9~ 1 <a(q) 1= 2 <a(g) " <a(e) 1 <a(e) 0,

which is the reverse of the natural order. It follows therefore from Example (I,

(2.5)) that

a(q) is mazimel and
(3) { IRen(a(q)) = {1,4}.

Moreover it is easy to see that «(q) is not quadratic, i.e., not of the form
YRYyC (cf. (2.6)). Hence it follows from (6.1) that

(4) IRen(’(g) x B) = {1}| Jg - IRen(8)
for all 8 € G. Moreover, from (6.1), (6.2) and (4.1)(12) we have:

B xa(q) € GoC is mazimal,
_g : : 18" a(q)|=|8] q,
(5) B=p0'C e GyC ts mazimal — IRen(8' * a(q)) = IRen(8) U {| 8] a}.

B' x a{q) is not quadratic.

(8.2) The elements «(q1,q2,¢3,...). For @ € GoC we define o’ € Gy by
a = o'C. For B € GyC we have

a'xf= (' xf)a"*xC)= (o' x5")C,

and so
(1) (o % B) = (o' x ')
Let ¥ € GoC. Then from (4.1)(10) and (1) we have
) o % (B x7) - Ezjzg’)goi’:'r
Let

a=(q1,92,93-.)

be a sequence of integers ¢; > 2. For n > 1 put

(3) {qgn = (q1,92,-- -+ qn);
m, = q["]::qlqz...qn.
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We define
alqr, -, qn) = a'(q1,..-,40)C € GoC

inductively, starting, for n = 1, with a(q;) as in (8.1):
(4) a(g;) = RLY2C.

For n > 1 we put

(5) a(q1,92, .-, qn) = &' (q1) x (g2, - - -, qn)-

We claim that, for 1 < i< n,

(6) 0‘(‘11»‘12, sy ‘In) = a/(‘h, .. ql) *Q(Qi+1, C) Qn)

For 7 = 1 this follows from the definition (5). Suppose that we want to verify
(6) for 7 > 1, assuming inductively the analogue for indices < i. Then

o' (q1, .y gim1) *a(gi, . qn) (by induction)
a'(qr, ., gio1) x(@'(g5) * a(gig1, - -+, n))  (by (5))
(a'(q1,- -, qim1) x (@) *a(git1, -, 0)  (by (2))
& (g1, qi) *a(qig1, -, qn)  (by induction).

a(ql)"'7er)

i

I

Il

In particular,

(7) a(q1,92,---,9n) = @(q1, - -qn-1) ¥ (gn)-
It follows inductively from (7) and (8.1)(5) that

(8)

|a’((11a4127 .. Qn) l: My, and

{ a(q1,92, - - -, qn) € GoC is mazimal and nonquadratic,
IRen(a(q1,q2, - -qn)) = {1,m1,m2,...mp}.

To consolidate notation, let us now write
A(n) a(q<n) = o(q1, - -, qn)

©) A'(n)C.

For n < N it follows from (6) that

A(N) = A'(n)xA(n, N], where
(10) A(n,N] = oalgnt1,---qN)-
In particular,
(11) A(N)<m, = A'(n) = A(n)<m,-

Suppose now that the sequence q is infinite. Then it follows from (11) that
there is a limit

(12) A =lim A(n) = a(a),

n
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defined by
Acm, = A'(n) for alln > 1.

It follows further from (10) that for n > 1,

(13) A = A'(n) xlim A(n, N].

We can rewrite (13) more explicitly as:
(14) a(q) = a'(an) *a(qn<),
where qn< = (¢n+1,4n+2, - - .). It follows from (14) and Theorem (7.1) that

IRen(a(q)) = IRen(a(q<n)) U my, - IRen(a(q<n))

From this it follows that the elements less than or equal to m, in IRen(a(q))
are just JRen(o(q<n)) = {1,m1,my,...m,}. Therefore:

(15) IRen(a(q)) = {1,m1,ma,...,myu,...}.
Equivalently, with the notation of (I, (2.7)),

(16) q(0(a(q)), 0a(q)) = q-

9. Realization by unimodal maps.

(9.1) Kneading sequences. As in section 1, let f be a unimodal map on
J = [-1,1], with maximum M = f(0), and with kneading sequence

K(f) = AfS(M) € GoUG,C.

Define

w(h =1 KO if K(f) € Go
T K *L® = (K'LF)® if K(f) = K'C € GoC.

For a, B € G write

<< B> aic < B foralli>0.

(9.2) Theorem. ([CEc], Theorem I1.3.8) Let f be a unimodal map on J =
[—1,1] and let « € Go U GoC satisfy

AP (-1) < o << K(f).
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Then a = Af*(z) for some z € J.

(9.3) Interval renormalization, symbolic and real. Let f as above be a
unimodal map on J = [~1,1], and z € J, with f-orbit

O4(z) = {z, f(=), f*(2),.. .},

and itinerary .
a = Afk(l') € GoU GoC.

Then (cf. (1.7)(4)) we have a weak order preserving map Af* : O;(z) —
Go U GoC.
Case: a € é\o.

Then
Af: (O4(2), f) — (O(a), o)

is a weak order preserving surjection of ordered dynamical systems where o is the
shift operator, o(wic) = ait1)<. If O(e) is infinite, i.e., if o is not eventually
periodic, then Af* above is bijective. Consequently (cf. (I, (2.4)(5) and (6)),

(1) IRen(a) C IRen(Oy (), f), with equality if O(«) is infinite.

Case: a = a'C € GoC.

If |o| = n, this implies that f*~1(z) = 0, hence f*(z) = M. Assume further
that,

I 1S martmai tn I ence & s marimadt.
2 ; imal in O(z), h : imal

From (2) and the condition f*(z) = M we conclude that = M, hence O{z) =
Of(M) = 0;(0) is the critical orbit, which is periodic of period n. Further
a = K(f), the kneading sequence, and

Af* (05 (M), ) — (O(K(f)), ox(s))

1s an order preserving isomorphism of finite ordered dynamical systems. In
particular IRen(K(f)) = IRen(Os(M), f) in this case.

(9.4) Proposition. Let f be a unimodal map on J =[-1,1], z € J, Of(z) the
f-orbit of 2, K = Oy(z) its closure, and « = Af*(z) € Go U GoC. Assume that

(1) IRen(«) is infinite.
Then K is a minimal f-invariant Cantor set, and

(2) IRen(K, f) = IRen(a).
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Proof. Assumption (1) implies that O(«) is infinite, and
AF : (0;(2), ) — (0(a), )
is an order preserving isomorphism of dynamical systems, whence
IRen(a) = IRen(Of(2),f) D IRen(K,f)

(cf. (I, (2.4)(6)). To show that the latter is an equality we must show that an
interval n-renormalization

extends to (K, f). Put L = O(z) and L, = ¢~!(r) for r € Z/nZ. The various
L, are disjoint closed L-intervals, and f(L,) C L,41 for all r € Z/nZ. Put
K, = L,. The K, are closed K-intervals whose union is K and f(Kr) C Kra
for all » € Z/nZ. If we show that the K, are pairwise disjoint, then ¢ extends
to an interval n-renormalization of K, defined by ¢71(r) = K,. Say r # s and
K, NK, # 0. Since L, and L, are disjoint L-intervals, K, N K, can contain
at most one point, say y. Since K, N K, is f™-invariant, f*(y) = y, so y is
f-periodic.

Since, by assumption, [Ren(c) is infinite, (Of(z), f) = (L, f) admits an
interval nm-renormalization for some m > 1. The fibers of the latter partition
L, in to m intervals, which are cyclically permuted by f”. But then the one of
these intervals whose closure contains y (K, N K, = {y}) is mapped by f" to
an interval at positive distance from the fixed point y of f. This violates the
continuity of f on J.

We have now established (2), so (K, f) is infinitely interval renormalizable
with the dense orbit O(z). It follows therefore from Theorem (I, (4.1)) that
(K, f) is minimal, and K is a Cantor set (cf. (B.9)).

(9.5) C'-families of unimodal maps. A unimodal map f on J = [-1,1] is
called C'-unimodal if it is C! and f'(z) # 0 for  # 0. The C'-metric on the
space of such maps is given by

| ~glor = Supees (If(2) - 9(@)| +11'(2) - ¢ ()]

Let t — f; be a curve in the space of Cl-unimodal maps. We quote the following
“ntermediate value theorem for kneading sequences” from [MilTh] (see also
[CEc], Theorem II11.)

(9.6) Theorem. Sayty<t; and a € é\o UGyC is mazimal and K(fi,) < a <
K(f:,)- Then a = K(f;) for some t € [to,11].
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(9.7) Corollary. Assume further that
(1) IRen(a) is infinite.

Then if K = Oy,(1) is the critical orbit closure, K is a minimal f;-invariant
Cantor set, and IRen(K, f;) = IRen(a).

This follows from (9.6) and (9.4).

(9.8) The quadratic family is defined by

(1) file)=1-tz> (0<t<2).
We have, for 0 < t < 1,

(2) K(fi) = R® < K(f2) = RL*™.

If o € Gy is maximal and a # L, R or RL™ then it follows from (2.1)(12)
that « = RL*R - -- for some a > 0, and hence R® < a < RL*®. Thus, in view
of (2)

)

0<to<l, K(fy,) <a<K(f), =

a € é\o 1s mazimal and o £ L™ =
a = K(f;) for somet € [to,2].

(9.9) Corollary. Let q = (q1,92,93,...) be an infinite sequence of integers
gi > 2, and let « = a(q) = a(q1,92,93,-..) be as in (8.2)(12). For some
tq € [1,2] and fi (z) = 1 — tqx?, the critical orbit closure K = Oy, (1) is a
minimal f; -invarient Cantor set, and

a(K, fi,) = a.

Proof. By (8.2)(8) and (16), « is maximal and q(a) = q. From (9.8)(3) we get
tq € [1,2] with K(f;,) = . Now (9.9) follows from (9.7).

10. A permutation formulation.

(10.0) A permutation s € S, can be extended using linear interpolation, to a
piecewise linear map f, from [0,n + 1] to itself. Assume that s is an n-cycle,
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and put C = s~(n). Then [n] = {1,2,...,n} is an orbit of s (or f,). Assume
further that s (i.e., f,) is (+)-unimodal. Then we have the kneading sequence

K(s) := K(f,) = Af*(n) = aC,

where
a=aj--ap_1 € Gyp.

It is easily shown (cf. (10.4)) that s — K(s) defines a bijection from the set of
(4)-unimodal n-cycles to the set of maximal elements of length n in GoC.

This permits us to reformulate some of the preceding theory in terms of
permutations. In particular we give new proofs, from this perspective, that if
aC € GoC is maximal, and f = oM, with M = L or R, then 3% is maximal.
Further, if # = 4* with &£ > 1, then k£ = 2 and this can happen for at most one
choice of M = L or R.

(10.1) Interpolation. Let A = {a; < az < -+ < an} be a finite subset of a real
interval J = [ag,@n41], and s : A — J a map. The minimal interpolation
of s is the map f, : J — J such that f,|4 = s, fs|{a;_,,qs;] 15 affine linear
(0 <i<n+1),and f,(ao), fs(ant1) € {ao, ant+1} are chosen so that a; and a,
are not turning points of f;. We call s (and f,) m-modal if f, has m turning
points (which necessarily belong to {az,...,an-1},s0 m <n—2).

Consider the symmetric group S, of permutations of

[n] ={L,2,...,n}.
Each s € S, then has a minimal interpolation
fs :Jn=[0,n+1] — Jy,

as above, and s 1s m-modal for some m, 0 < m <n - 2.

(10.2) Kneading sequences. Let s € Sy, be an n-cycle which is unimodal, and
whose turning point C' € [n] is the maximum, f,(C) = s(C') = n. We say briefly,
that s is (+)-unimodal. Then we have the kneading sequence (cf. (1.0))

1 K(s) = K(fs) = Af}(n) =aC  where
) a=ai-an=K(s) € Go

The following construction shifts the turning point C slightly to the left
(denoted —) or right (denoted +): Put C* = C & i, define sT(CE) =nZ3,
and then let f,+ be the minimal interpolation of s* : [n] U {C%} — Jy; here
we make one choice (not both) of + or —. (See Figure 11.) Then it is clear that
the itineraries of n for f,+ take the forms,

K(5+) = Af:+(")
@) { K(s™) Af*_ (n)

(«L)>,
(aR)>.
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Cc C cct
f.- f,+

Figure 11. Construction of maps with specified kneading sequence, according
to (10.2). Here the permutation is s = (12435).

(10.3) The (4)-unimodal n-cycle s € S, can be recovered from K(s) =
aC'. In fact, for 1 < ¢ < n, put

2; = (aC)si=a;---a,,C (=C ifi=n)
(1) O(aC) =A{z1,...,2n}, and
0 =04c:0(aC) — O(aC), defined by o0(2:) = Tit1 (mod n)

as in (6.1)(7) and (8). By (1.7)(4), the map AfF : J, — Go[] GoC is weak
order preserving, and so it induces an order preserving equivariant bijection

() ([n], 8) — (O(aC), 0).

Thus, if we use the total order on Gy C to make an order preserving identification
of {#1,...,2,} with [n], then the n-cycle ¢ = (z1,...,2,) is converted to the
n-cycle s = (n,...,C).

Conversely, given any maximal element aC € GoC of length n, we can define
(O(aC), o) as above, and use the total order on GoC to identify O(aC) with
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[n], and ¢ = (21,...,2,) with some s = (n,...,C) € S,. Using the properties
of the order on GyC, one can verify that this n-cycle s is (+)-unimodal, and
then, evidently, that K(s) = «C.

In summary, then:

(10.4) Proposition. The map s — K(s) defines a bijeclion from the set of
(+)-unimodal n-cycles s € S, to the set of mazimal elements aC' of length n in

GoC.

(10.5) Theorem. Let aC € GoC be mazimal, and 8 = aM, M € {L, R}.

(a) 5% is mazimal.
) IfB=7 k> 1, then k=2.
(c) aL and aR cannot both be squares.

Remark. Part (a) follows from (5.2), and parts (b) and (c) from (2.3). We
shall give direct proofs here.

Proof of (a) Let s € S, be the (+)-unimodal n-cycle with K(s) = aC (10.4).
Let f=fx (+if M =L,and ~if M = R), and [ = Af*. Then, by (10.2)(2),
I(n) = (aM)™ = B*. Since n is maximal in [n] (= the f-orbit of n), and since
I is weak order preserving, it follows that £ is maximal.

Proof of (b). Write n = kr. Then I(n) = I(m) for the k values of m in the s"-
orbit of n. Since I is weak order preserving, I is constant on the interval spanned
by the s"-orbit of n, hence I is constant on the interval H = [n — k + 1,n]. It
follows that s? is monotone on H for all ¢. But then the turning point C = s~1(n)
could never be an interior point of s?H. Hence k < 2.

Proof of (c). If £ = 2, then I(n — 1) = I(n). Choose m so that s™(n—1)=C.
Then C and s™(n) must lie on the same side of the critical point Crof f=f,s,
and this can happen for only one choice of + or —, hence aM can be a square
for at most one choice of M € {L, R}.

(10.6) The *-product of permutations. Let s € S, be a (+)-unimodal n-
cycle with K(s) = aC, with C = s71(n). We shall write C, in place of C in
what follows.

Let t € Syy and let r € S, be the flip, r(b) = m+ 1 — b for b € [m]. We
define the permutation s xt of [n] x [m] by

1) (s xt)(a,b) = (s(a), ua (b))
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where

Id 1<a<Cy
(2) g =14 tr"=C a=C,

r Ci<a<n

The projection defines an equivariant map

3) ([n] x [m], s xt) — ([n], 5)-

On the fibers we have

(4) (s%t)*(a,b) = (a, " Dtrr (b)),
where, if a = s2(Cy), for 0 < ¢ < n, then

(5) pla) =#{i|0<i<q,5(C,) > G}

We linearly order [n} x [m] by the lexicographic order, and so identify [n] x [m]
with [nm], the correspondence being

(6) (a,b) — (a—1)m +b.
This permits us to view s *t € Sy, with formula (2) then taking the form,
(7) (s*xt)((a — 1)m + b) = (s(a) — 1)m + uqa(b),

where u, is given by (3).
Suppose that t is (+)-unimodal with K(t) = BCy, C; € [m]. Then st is
(+)-unimodal with critical point

(8) Ce=(Cs —)m+r""%(C) € [nm],
and it can be deduced from (5) and (6) that

K(s %t) axBC,

) ax K(t) = K'(s) % K(t).

(|

11. The cycle structure of interval self-maps.

(11.1) The cycles of (J, f). For an integer n > 1, S, denotes the symmetric
group of permutation of [n] = {1,2,...,n}, and

(1) Cn C S,

the set of n-cycles.
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Let (J, f) be a dynamical system on a compact real interval J. The n-cycles
of f form the set

(2) Cu(f) C Cn

of 0 € C, such that there exist z; < 23 < --- < z, in J with f(z;) = z,(;)
(1 <i<n). We put

3) c(f):=Jau(n c c:=1]JCn
n>1 n>1

The periods of f form the set

(4) Per(f) = {n| Cu(f) # 0}.

In the following discussion, we quote from the literature some remarkable
results concerning the above objects.

(11.2) The Sharkowskii (total) order, which we denote as =>, on the positive
integers is defined as follows. Each integer n > 1 can be uniquely written as

(1) n = 2(MO(n)

with O(n) odd. The non powers-of-2 are lexicographically ordered by (e(n), O(n)),
and all precede the powers-of-2, the latter ordered by decreasing size. More con-
cretely, say 0 < e < E,and 1 < r < R are odd.

3=>5=>T7=>---
2) e => 9, =5 28R => ...=> 2B —5 9BERp 5 ...
e=>2E =520 =5 . =5 4=>2=>1.

(11.3) Sharkowskii’s Theorem [Sa]. Let (J, f) be a dynamical system on a
compact real interval J. Then

[n=>m] = [n € Per(f) implies m € Per(f).]

(11.4) Forcing is a relation, denoted =>, on C = U, Cy,, with which to express
some refinements of Sharkowskii’s Theorem. For o, € C' we define,

o € C(f) implies T € C(f)

(1) o=>T7T { for all f as in (11.1) above.
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We put

Cm(o) = {7€Cnlo=>r1}, and
® { %D Z Gsa

It is known (see for example [Ju] and references therein) that => is a partial
order on C.

For ¢ € C,, Sharkowskii’s Theorem says that C,,(0) # 0 whenever n => m.
We call ¢ primary if C,.(0) = {¢}, and define

(3) P, = {0 € Cyplo is primary}.

The following discussion leads to a direct characterization of P,, in (11.7).

Convention. Let o be a transitive cycle on an n-element totally ordered set
X. Let 7: [n] — X be the unique order preserving bijection. A property (e.g.
“primary”) of elements of C,, will be said to hold for ¢ if it holds for ro7~1 € C,,.

(11.5) Proposition. Suppose that n = 2¢-r and ¢ € C,. The following
conditions are equivalent:

(a) For 0 < d < e, o exchanges the left and right halves of each of its
orbits.

(b) For 0 < d < e, the orbits of 0% are subintervals of [n].

(c) {1,2,22,...,2°} C IRen([n], o).
Proof. The equivalence of (b) and (c) follows from (I, 2.4), in the remark after
(3). That o exchanges the left and right halves, L and R, of [n], is clearly
equivalent to the condition that L and R form the two orbits of 0?. Now the
equivalence (a) and (b) follows from this remark, by induction on e.

Under the conditions of (11.5), we shall say that o satisfies the Block
condition of level 2¢. (cf. [Bl]).

(11.6) Stefan cycles. For odd n = 2m — 1 (m > 1), we define the Stefan cycles
to be

o, ror™!

where 7 is the flip of [n] given by 7(h) = n + 1 — h, and where o is the spiral
cycle illustrated in Figure 12 in the case in which n = 8§,
It is easily seen that
IRen([n],o) = {1,n}.
(For example, an interval containing o({2m — 2,2m — 1}) = {1, m} must have
length > m > n/2, and hence cannot be a fiber of an interval g-renormalization
unless ¢ = n.)
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Figure 12. Stefan cycles for n = 8.

(11.7) Theorem (cf. [ALS], Theorem 1.1). Let n = 2°r with r odd, and let
o € Cy,. The following conditions are equivalent

(a) 0 € Py, t.e., Cp(o) = {o}.

(b) There is an interval self-map f such that C(f) = {c}. (Hence C(0) =
fo}.)

(c) o satisfies the Block condition (11.4) of level 2¢, and, on the (r-element)
orbits of 02", 02° is a Stefan cycle (11.6) on each of them, and o is monotone
on all but one of them.

Under the above conditions, even without the monotonicity condition in (c),
we have

(1) IRen([n],0) = {1,2,27,...,2° n}.

(11.8) Comments. For non-primary cycles, forcing can sometimes move con-
trary to the Sharkowskii ordering. For example Block [Bl] showed that, for
e>2,

[ S (Cze - Pge) - C2c-243(0') # 0

Moreover, Jungreis [Ju] has given an algorithm, in terms of itineraries, for de-
ciding whether ¢ => 1 for o, 7 € C (cf. [BCMM] as well).






Chapter 111

Spherically Transitive

Automorphisms of Rooted
Trees

0. Motivation.

Let (K, f) be a linearly ordered dynamical system, as in (I, (2.4)), with
interval renormalization index

(1) q= q(I{) f) = (QI,QZ» q3, .. ) (ﬁnlte or znﬁnZte)y

as in (I, (2.9)). Put m, = q™ = q1¢2-- ¢, and X, = Z/m,Z. Then we have
the inverse sequence of group homomorphisms

(2) Xo={zo} &= Xx; & ... 2 X, 2 X, & ...

Let kg € K have a dense f-orbit. Then there is a unique interval m,-re-
normalization

(3) én (K, f) — (Xn,an) :=(Z/m,Z,+1),

such that ¢, (ko) = 0. Then we have po ¢, = ¢,-1 and so the interval renor-
malization quotient

(4) bk gy (K, f) — (X,Q) := (Zq, +1),

where X = iq is the inverse limit of (2).
In this chapter we take the point of view that (2) defines a “rooted tree”
X, with vertex set [], 5, Xn, root zq, and for n > 0, £ € X, is a neighbor of

p(z) € Xp1. Then we can identify X = lim X, with Ends(X), the space of ends
of X (or leaves of X if X is finite). Further the ay, in (3) assemble to define an
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automorphism « of the rooted tree X, inducing the adding machine +1 on iq,
identified in (4) with X .

So far this identification accounts only for the topological dynamics of (K, f)
and not the order structure. The linear order on K defines one on each X, so
that ¢, : K — X,, is weak order preserving, and then each p: X,, — Xp_3
is likewise. This order structure defines (and is almost equivalent to) a planar
embedding of X, up to isotopy (cf. (2.4) below). For example, we may take an
order preserving embedding of X, into the horizontal line y = —n, and then join
z € X,, to p(z) € X,_1 by a euclidean line segment (See Figure 13).

0

9]

6 7 8 9 10 11

Figure 13. The rooted tree with q = (2,2, 3) (see (3.1)).

Let & be an automorphism of the rooted tree X. Then ¢ is equivalent to a
sequence of permutations o, of X, such that

(5) poop =0n_10p forn>0.

For N > 0, if a permutation o of Xy is given, then we can (uniquely) define
on € X, satisfying (5) for 0 <n < N, iff

(6) on permutes the (interval) fibers of p¥ =" : Xy — Xn for 0<n < N.

If o is transitive on Xy then the o, on X, (0 < n < N) will be likewise, and
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then the condition (6) is clearly equivalent to the condition
) {my,ma,...,m,} C IRen(Xn,0onN).

Thus an automorphism o of X which is “spherically transitive”, i.e., transitive on
each X,,, defines a homeomorphism & of the linearly ordered space X = Ends(X)
such that

(8) {1,my,ma,...,my,..} C IRen(X, ).

This motivates our group theoretic study, in this and the following chapter,
of spherically transitive automorphisms of rooted trees, and of the structure of
the automorphism groups of such trees.

1. Relative automorphism groups of trees.

(1.1) Graphs and trees. Our graphs are simplicial. Thus a graph X consists
of a set, also denoted X, of vertices and a set EX of two-element subsets of X,
called edges. Two vertices =,y € X are said to be adjacent if {z,y} € FX. A
path (of length n from z, to z,) in X is a sequence of vertices (2o, Z1,...,%n)
such that z; and z;4; are adjacent for each 7. The path is reduced (or non-
reversing) if z;—1 # z;41 for 0 < 1 < n. The path is closed if g = z,,. Infinite
paths are defined similarly. For a good general graph theory reference see [Bol].

We call X connected if X # @ and any two vertices z, y are joined
by a path; then the shortest length, d(z,y), of such a path defines a met-
ric on X. A graph X is a tree if X is connected and contains no reduced
closed paths of length > 0. In this case, for any z,y € X, there is a unique
reduced path from z to y, of length d(z, y); the underlying (linear) graph of this
path will be denoted [z, y|:

X=X x  x=y , n=d(xy).
0 Xl X2 1| ny’ (Y)

[xy]: (el w01 0

Figure 14. A reduced path [z, y] of length n = d(z,y).

(1.2) Relative automorphism groups. Let X be a graph. Then an auto-
morphism of X is a bijection from X to itself which preserves edges. The
automorphisms of X form a group which will be denoted G(X).

Let Y C X be a subgraph. Thus, Y is a graph whose vertex and edge sets
are subsets of those of X. The stabilizer of Y in G(X), denoted G(X,Y), is
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defined by
GX,)Y)={9eGX)|gY =Y}

There is a naturally defined restriction homomorphism
resj :G(X,Y) — G(Y).
Its image and kernel are denoted

GX ly)= Im(res: ), and

GYX,Y) = Ker(resj)
{9€G(X)|gy=y forall yeY}.

What follows is an analysis of these groups in the case in which X and Y are
trees.

(1.3) Normal trees to a subtree. Let X be a tree and Y C X a subtree. For
z € X there is a unique y = p(z) € Y nearest to z, i.e., , a unique y € Y such
that [z,y] VY = {y}. This defines a retraction p : X — Y of vertex sets. For
y €Y, p~1(y) is the vertex set of a subtree Ny of X such that N, N Y = {y}.
We view Ny as a rooted tree, (cf. (2.1)) with root y, and call it the normal
tree to Y in X at y.

Figure 15. Normal subtrees.

(1.4) The “wreath product” structure of G(X,Y). Let X be a tree and YV’
a subtree. Then there is (cf. (1.2)) an exact sequence

(1) 1 —GYX,Y) —G(X,Y)—>Q—1

where r = res:, and Q = Im(r) = G(X |y) < G(Y). We shall show that (1)
splits as a kind of multiple wreath product.
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First note that, with the notation of (1.3), we evidently have

(2) G (X,Y) =[] G(Ny, ).

yeyY

Let Y denote a set of representatives of the Q-orbits on (the vertices of) Y';
so that, Yo ~ Q\ Y. Thus

Using (2) this gives rise to an initial factorization,

(3) Gx,v)=I] [I 6. 2.

yeYq 2€Qy
Now

where G(X,Y), denotes the stabilizer of y in G(X,Y).

Let Sy, C G(X,Y) denote a set of cosets representatives for
G(X,Y)/G(X,Y), which contains 1. For z € Q -y there is a unique s, € S,
such that z = s,y. Thus, s, furnishes an isomorphism of rooted trees

s, : Ny — N,.

Let g € G(X,Y), y € Yg, and z € Q - y. We have the (not necessarily
commutative) diagram of isomorphisms

N, 2, Ny,
(4),.: N <

Let
Q=1{g€G(X,Y)| all diagrams (4),, commaute }.

We have the following properties:
1) 6:2 is a subgroup of G(X,Y),
(i1) QOGI(X,Y) =1,
(i) Q)= Q.
Properties (i) and (ii) are immediate. For (iii), suppose that we are given ¢ €

Q < G(Y). We must extend ¢ to an automorphism § € Q of X. For y € Y and
z € ) - y define § on N, to make

N, 4, N,
AN /
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commute. This clearly defines ¢ satisfying our requirements.
The above properties show that r :  — @ is an isomorphism, and so

(5) G(X,Y) = GHX,Y)xQ = GYX,Y)xQ
where x is the usual semidirect product notation.
The isomorphisms s, : N, — N, define conjugation isomorphisms
ad(s;) : G(Ny,y) — G(N., z), and these assemble to give an isomorphism
(6) G(Ny,y)?¥ — [ 6., 2).
z€Qy

The isomorphism (6) is Q-equivariant for the conjugation action on the right,

and the action by permutations of Q -y = @ - y on the left. Combining (3), (5),
and (6), we obtain an isomorphism

(7) G(X,Y) = ( [T 6N,9)% | xQ

YEQ\Y

where Q = G(X |y) = Im(G(X,Y) 5 G(Y)) acts on G(Ny,y)?? via its per-
mutation action on @-y. The isomorphism carries G1(X,Y) to H G(Ny, y)9v.
yeQ\Y

2. Rooted trees and their ends.

(2.1) Rooted trees, ends, and order structures. A rooted tree (X, zo)
consists of a tree X and a designated vertex zo. Let d denote the edge path
distance on X. Then let X,, denote the n-sphere,

X, ={z € X | d(zg,2) = n}
and denote by B, the n-ball,

By ={z € X |d(zo,z) <n}=Xo [[ X2 [T [ Xn-

We view By, as (the vertices of) a subtree of X.
For z € X,,, n > 0, [zg, 2] N X1 is a single vertex, which we denote p(x). Thus
we have an inverse sequence

(1) XO:{:CO}(LXI‘_p"'XZ“““""_‘Xn—l‘p_Xn‘_“"'

associated to (X, zp). Conversely (1) determines (X, zo) : X =[], X», and the
edges are all the sets {z,p(x)},z € Xn,n > 0.
If (X', 2p) is another rooted tree, with inverse sequence

(1) Xp={ep} X X — X X
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6o 1 2 3 4 5 6 7 8 9 10 11

Figure 16. n-balls for the rooted tree X(2,2,3) (see (3.1)).

Then a morphism f: (X, z9) — (X', z;) of rooted trees is just a sequence
of maps
fo: Xn — X (n>0)

such that p'f, = f.-1p for all » > 0. In particular an automorphism ¢ €
G(X, zp) is a sequence of permutations g, of X, such that pgn = gn—1p for all
n > 0. The restriction monomorphisms G(X, o) — G(By, zo) define a map

(2) G(X, .’L'()) e lEl G(Bn, CED),

which is evidently an isomorphism. If X is locally finite (all vertices have a finite
number of adjacent vertices) then each B, and G(B,,zo) is finite, and so (2)
shows that G(X, zo) is naturally a profinite group.

(2.2) Ends and leaves of (X,zo). By an zo-ray in X we mean a maximal
non-reversing path L in X starting from zo. Thus, L = (zg,%1,22,...) with
z, € X, and p(z,) = z,-1. Either the sequence is infinite, and so represents
an end (a cofinal set of paths), or else it is finite, L = (2o, 21, ..., a), and, by
the maximality of L, p~1(z,) = 0. In the latter case , is called an endpoint
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(or leaf) of (X, o), and z, determines the zo-ray: L = [zo,z,]. We put

Ends(X) = {infinite zo-rays in X}
= limX,
and
E(X,xo) = {zo-raysin X}

= FEnds(X) H{endpoints of (X,z0)}.

While £(X, zo) depends on zg, it is easily shown that Ends(X) does not, up
to canonical isomorphism.

(2.3) The metric on £(X, zg) is defined by
1
d(L,L') = inf{z | L0 By = L' 0 Ba,n > 0},

This makes £(X, o) a compact totally disconnected metric space with Ends(X)
a closed subspace, and the end points a discrete subspace. The group G(X, z¢)
acts faithfully and continuously on £(X, zy) as a group of isometries. The above
metric on Ends(X) depends on zg, but the corresponding topology does not.

(2.4) Planar embeddings and order structures. Let X be a graph. For
z € X, let Eo(x) denote the set of oriented edges e = (z,y) with initial vertex
0.(e) = . The map e — 9;(e) = y is a bijection by which we sometimes identify
Ey(x) with the set of neighbors of z.

Suppose that X is embedded, as a simplicial 1-complex, in the plane. Then
by intersecting each edge e € Ey(z) with a small circle centered at z we obtain a
cyclic (counterclockwise) ordering on Ey(z). This set of cyclic orderings on the
various Fy(z) depends only on the isotopy class of the planar embedding.

Suppose that X is a tree. Then if, conversely, we are given a cyclic ordering
on each Eg(z), there is a planar embedding, unique up to isotopy, inducing them.

To see this, first fix a base point ¢ € X, so that (X,zq) is a rooted tree,
with inverse sequence

(1) Xo = {0} P Xy B oo B Xy L Xy e

Then X; = p~!(z0) = Eo(zo) has a given cyclic order. On the other hand,
if £ € X;, n >0, then Eo(z) = p~'(z) ][] { p(z) }, so relative to the base
point p(z), the cyclic order on Eo(z) induces a linear order on p~!(z). Indeed,
it is thus clear that giving a cyclic order on each Eg(z) is equivalent to giving a
cyclic order on X; = p~!(z¢) and a linear order on each p~1(z) for z # zo.
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Now fix a linear order on X consistent with the given cyclic ordering, e.g.
use <, for some z € X; (cf. (I,2.2)(9)). Then there are unique linear orders
on each X, (n > 0) such that p : X, — X,_; is weak order preserving
(x < y => p(z) < p(y)), and the ordering on X, induces the given linear
order on p~!(z) for each z € X,,_;. These are constructed by a straightforward
induction.

We shall call such a structure an order structureon the rooted tree (X, o).
It consists in a linear order on each X,, so that z < y in X,, implies p(z) < p(y)
in X,,_1. The discussion above shows that such a structure is equivalent to a
linear order on Ey(x¢) and a cyclic order on Ey(z) for all z # zo.

Given an order structure on (X, zg) we can embed X in the plane as follows.
For n > 0 let L, denote the horizontal line (y = —n) at distance n below
the z-axis, ordered by its z-coordinate. For each n, choose an order preserving
embedding of X, into L,. (We assume, say, that X is countable.) For an edge
e = (z,p(z)), with € X,,, n > 0, embed it using the euclidean segment from
z € L, to p(z) € Lno_1. Since z < y implies p(z) < p(y), the fibers of p are
intervals relative to the given orderings, so the above euclidean segments never
meet outside their endpoints, and so furnish the desired planar embeddings of X.
The cyclic (counterclockwise) order on Eo(z) defined by this embedding agrees
with the one with which we started.

(2.5) EFnds(X) as a linear profinite space. Let (X, zg) be a locally finite
rooted tree with inverse sequence

Xo={zo} & X1 & Xp_y & X &
For z € X we put
1) g(z) = 1p7(2) |,

a nonnegative integer. Suppose that we are further given an order structure on
(X, zo) (cf. (2.4)). This then defines a linear order on the profinite space

Ends(X) = lim X,

so that the projections Ends(X) — X,, are weak order preserving.

We propose to relate Ends(X) to a profinite space K C [0,1]. For this we
use Cantor dissections defined as follows.

Let ¢ be a positive integer. Given a real closed interval J = [a,b], a < b, of
length

(2) I([a,8)) = b—a,

we form ¢ evenly spaced subintervals

(3) Jgi=la, b1 (G=1,...,9),
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each of length

(4) bj —a; = (b—a)/(2¢ - 1)
with
(5) a=a;<b<ay<by<---<a;<b,=b,

and the separating intervals each also of length

(6) aj+1—b; = (b—a)/(2¢ - 1).

We put

(7) Ko(7)=en ]I IT7w@a) € /-

Now we inductively define a commutative diagram

Ky — Ky — v — K, 4 — K, —
(8) 7| ™| L ™|
Xo = {ZO} 7 X1 ;— 7 Xn-1 ;— Xn 7

by the following conditions: Ko = [0, 1]; the maps K, — K,_; are inclusions
of the subsets; the maps 7 : K,, — X, weak order preserving; the fibers
K(z) = n~ () are closed real intervals; and for € X,,_; with ¢(z) > 0,

(9) T (p7H(2) = Ko@) (K (2)),

with the notation of (7) above. Explicitly, if p~}(z) = {z1 < z2 < --- < 24},
¢ = g¢(z), in the given linear order on X,,, then

(10) I{((L']): I{(:I:)(q“’) (]: 1,...,(]),

as in (3) above.
From (4) above we see that {(K(z;))
notation, we see that for z € X,,,

K(z) C K(p(z)) and
(K@) = gty = izt groter=n-

(K (z

= Za=T) for z; € p~!(z). Adjusting

(1)

Now passing to inverse limits in (8), we obtain a surjective continuous map

(12) 1 K(X,20) :=[ | Kn — Ends(X) = lim X,,.

An element L € Ends(X) corresponds to an infinite ray

(13) L=(z0,21,...,2n,...}, Zn € Xp, p(Tn) = Tp-1.
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We have
(14) L) = (] K(zn).

n>0

In view of (11) this is an interval of length

(15) 1@ (L) = [T Qa(en) - )7,

n>0

which equals zero unless, for some ng ¢(z,) = 1 for all n > ng. This means that
L is an isolated ray of X, i.e., an isolated point of Ends(X).
We now summarize part of the above discussion.

(2.6) Proposition. Let (X,zo) be a locally finite tree with an order structure
(cf. (2.4)). Then there is a closed subset

K = K(X,z0) C [0,1]

and a map
7: K — Ends(X)

which is weak order preserving in the sense of (2.5)(12). If Ends(X) has no
isolated points then K is a Cantor sel and T is a homeomorphism.

(2.7) Lifting automorphisms to K = K(X,zy). Keep the assumptions and
notation of (2.5). Let g € G(X,z0) be an automorphism of (X, zo). For each
n > 0, g induces a permutation of X,,, which we lift to a homeomorphism g,, of

E.= [ K=

T€EX,

so that g, : K(x) — K(g(z)) is the unique increasing affine linear homeomor-
phism.

If n > 0 and y = p(z) then ¢g(y) = g9(p(z)) = p(g(x)) and we have K(z) C
K(y), and gn(K(z)) = K(g9(z)) C K(g(y)) = gn-1(K(y)). However g, and gn_1
do not agree on K(z) (unless g(y) = 1). If

L= (xo,21,...,2n,...) € Ends(X)

then it follows that, on 7= (L) = ﬂ K (), the gn converge to a well-defined
n2>0
function gk : #7(L) ~— 7~ 1(g(L)) which, when 7~!(L) is not a point, is an
increasing affine linear homeomorphism.
If h € G(X, o) is another automorphism then it is easily seen that (hog), =
hy o gy, for all n, and so (ho g)k = hg o gi. Thus, g — gk defines an action of
G(X, zo) by homeomorphisms on K so that = : K — Ends(X) is equivariant.
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3. Spherically homogeneous rooted trees, X(q).

(3.1) Spherical homogeneity. Let (X, z0) be a rooted tree with inverse
sequence as in (2.1). Assume that each X, is finite. For £ € X we put
g(z) =|p~!(z)| as in (2.5). We call (X, ;) spherically homogeneous if, for
each n > 0, ¢(z) takes a constant value, which we denote ¢y, for all z € X,,_;.
We then put

a=(q1,92,93,-- )
and call q the spherical index of (X, zg).

Note that, for each n, ¢, is an integer > 0, and ¢, = 0 implies that ¢,, = 0
for all m > n. We say q is finite if some ¢, = 0, and infinite otherwise.

(3.2) q determines (X,zq). Indeed let (X, o) and (X', z;) be spherically
homogeneous with the same index q = (g1, ¢2,¢3,...). Then we can construct
an isomorphism

f={)nzo: (X, z0) — (X9, 25)

by induction on n, starting with fo(zq) = zf,. Assume

X, <& x;, £ 2 o x,., £ ox, &
1) fol il far | fal
Xo ran X, X2 x K A A
where we have bijections fy, ..., fo—1 making (1) commute. For y € X,_1,p~}(y)

and p'~!(fn-1(y)) both have cardinality ¢,, so we can define f, in such a way
as to induce a bijection p~1(y) — p/'(fn_1(y)) for each y € X,,_1.

This observation permits us to denote (X, zg) by X(q) or X(g1,92,¢3,...). It
is a spherically homogeneous rooted tree defined up to (non-unique) isomorphism

by q.

(3.3) The product model of X(q). For an integer m > 0, put

[ Z/mZ ifm>0
(@) Cm_{@ fm=0

so that | Cp |= m. Let q = (q1,92,¢3,...) be a spherical index, t.c., , for
each n, ¢, is a nonnegative integer, such that ¢, = 0 implies that ¢,, = 0 for all
m > n. Setting ¢p = 1, we put

(2) Xn=Cqy x Cq, x -+ x Cy, (n>0)

and, for n > 0, let
D Xn — Xn_1
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denote projection away from the last factor. Clearly,
Xo={-’b‘o}<—p—X1 Lo X, X,

is a model of X(q).

Note that
(3) | Xn |= q[n] =qo-q1 " 4qn
and
(4) Ends(X(q)) = [] C.-

n>0

If q is finite, say that g, > 0 and ¢, = 0 for m > n, then £(X(q)) = X,, =
{endpoints of X(q)}. If q is infinite then X, —X,_; is surjective for all n, so
that £(X(q)) = Ends(X(q)), and the natural projection Ends(X(q)) — Xn
is surjective for all n.

(3.4) The cyclic model of X(q). Keep the notation q = (q1,92,¢3,.-.),
go=1,q™ =qo-q1---qn, ete. of (3.3). Put '

Y, = Cq[n] .

Define
p:Yy — Yo (’Il>0)

to be the natural projection
z/qd"z — z/q" "z

if ¢, > 0, and otherwise the unique map from Y, = 0 (cf. (3.3)(1)).
Clearly

Yo={p} V1 Vo — . e— Yoo &V —

is a model of X(q) which we shall here denote as Y(q).
If q is finite, say ¢, > 0 and ¢, = 0 for m > n then

(Y, y0) = {endpoints of (Y,y0)} = Yo = Z/q"IZ.
If q is infinite then

(Y,y0) = Ends(Y) = limZ /q"/Z.

We shall denote this ring iq, and call it the ring of g-adic integers.
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(3.5) The g-adic adding machine.  With Y(q) as in (3.4) we define an
automorphism a of Y(q) by an(y) =y + 1 for y € Y, = Z/q™Z when ¢, > 0;
otherwise Y,, = @. Since, for ¥, # 8, p: Y, — Y,,-; is a ring homomorphism,
we have

pan(y) = p(y +1) = p(y) + 1 = an-1(p(v)),

50 a = (o) defines an automorphism of Y (q), which we call the q-adic adding
machine. Note that o on Y}, is a cyclic permutation of order q™.

(3.6) Proposition. Let (X,zq) be a locally finite rooted tree, with automor-
phism group G = G(X, zg). The following conditions are equivalent.

(a) (X, o) is spherically homogeneous,
(b) G acts transitively on X,, for alln >0,
(¢) G acts transitively on £(X, zo).

Proof. If g € G and z € X then ¢(gz) = ¢(z). Thus, if G acts transitively
on X, then q is constant on X,, whence (b) implies (a). For the converse, if
(X, zo) has spherical index q, we can use the g-adic adding machine on Y (q)
(cf. (3.5)) to show transitivity on each X,. To show that (b) implies (c), if
q is finite then £(X,zo) = X, for some n, whence (¢). If q is infinite and
E C Ends(X) = £(X,z0) i1s a G-orbit then, by (b), E projects onto X, for all
n. It follows that E is dense in Ends(X). But, since G is compact, E is closed,
whence F = Ends(X). Finally, to prove (¢) implies (b), we simply observe that
each nonempty X, is a G-equivariant quotient of (X, zq).

4. Spherically transitive automorphisms.

(4.1) Notation. We fix a spherically homogeneous rooted tree (X, zo) of spher-
ical index q = (¢1,¢2,93...). For n > 0 put

Q[S Tl] = ((11»(12;-”,‘17;»0,0,0,“-)
a>n] = (¢n,gns1,--)

Analogously, we write q[> n] for q[> n + 1], and q[< n] for q[< n — 1] (when
n > 1).

For £ € X,, let N, denote the normal tree to By in X at z (cf. (1.3)). Thus
N is defined by the inverse sequence:

N i {z} —p7 () —p7%2) — - —p (@) — -

Clearly
(Bn, z0) = X(q[< n])



and
(Ne, ) = X(q[> n]).

Note that the latter isomorphism depends only on n, not on z € X,,.

Thus, writing A(q) for G(X,zo) we
G(Bn, o) = A(q[< n]) and G(N,, z) = A(q[> n]).
Put

G(n) = Ker(G(X,20) = G(By, z0)).
Then

G(n) 1 6(¥.,=)

r€Xn -
o G(Nx,x)x" = A(q[> n])X"

117

have

for any ¢ € X,. Furthermore, we claim that G(X,zq) — G(Bn,zq) is sur-
jective. In fact, to extend go € G(By, o) to g € G(X, zg) we require, for each

z € X,,, an isomorphism

gz - (Nihx) — (Ngol"gox)‘

Such g, exist since all of the rooted trees (N, z) with £ € X,, are isomorphic

(to X(q[> n])).
We can calculate the finite group order

T(n) =|G(Bn, z0)|=| A(a[z n})|
as follows, starting with 7°(0) = 1. For n > 0 we have
A(q[> n)) = (S;,) " % A(a[> n - 1])
and so

T(n)

(g1l T(n = 1)
(¢)®" 7 T(n - 1)

n .
= T@ne ™
i=1

Now, from (1.4)(7) we obtain:

(4.2) Proposition. For each n > 0, G = G(X, zo) admits the wreath product

decomposition,

G G(n) X G(Bn,.’lto)
G(Ng, )% x G(B, zo) (for any ¢ € X,,)

A(q[> n])* x A(q[< n]).

e

1R
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Moreover, the order of A(q[> n]) is

|A(a[> nl) = JT(a)3" ™"
1=1

(4.3) Proposition. Let ¢ € G(X,zo) generate the cyclic group (g). The
following conditions are equivalent.

(a) The cyclic group (g) acts transitively on X, for alln > 0.
(d') For all nonempty X,, g | x, has order

| Xn|= a™ = goq192- - - ¢n (g0 =1).

(b) For all nonempty X,, the cyclic group (gq["_ll) acts trivially on X,_1 and
transttively on each fiber of p 1 Xy, — Xn—1.

(c) Every (g)-orbit on E(X, zo) ts dense.

(¢ ) The cyclic group (g) acts on (X, xo) with a dense orbit.

Under these equivalent conditions we call g spherically transitive.

Proof. Suppose that X,, # § and put ¢ =| X,, |= qi®). Then (g) is transitive
on Xn iff g |x, is a g-cycle iff g |x, has order ¢, whence (a) <= (a'). Write
g =4q - qn where ¢ = q®~11 =| X,,_1 |, and observe that p : X, — Xp_1 is
(g)-equivariant with each fiber of cardinal ¢,. Assuming (a), then gq is trivial
on X,_; and on X,, is a product of ¢’ disjoint ¢g,-cycles. Since gq leaves each
(cardinal g,,) fiber of X,, — X,,_; invariant it must be transitive on each such
fiber, whence (a) = (b). e

Assume (b) and put m, = order of ¢ |x,. Then mp = 1 and we prove
(b) = (a') by showing 1nduct1vely that m, = ql"l. Assumlng that m,_, =
ql"~1 = ¢', it follows from (b) and the discussion above that 97 |x, has order
qn, Whence m,, = ¢'q, = q™, as claimed.

For (a) = (c), consider a (g)-orbit E C £(X, o). For every nonempty X,
E(X,z9) — X, is defined and (g)-equivariant, so £ maps onto X, by (a).
Since £(X, zo) is the inverse limit of such Xy, it follows that E' is dense.

Trivially (¢) = (¢). For (/) = (a) let E C £(X,xg) be a dense orbit. If
X, # 0 then E maps (g)-equivariantly onto X,, hence Xy, is a (g)-orbit.

(4.4) Proposition. Let g € G = G(X,zo) and for each n > 0 let (c,) denote
the condition

(cn) If Xn # 0 then (g) acts transitively on X,,, and, for allz € X,,, gq["] 18

spherically transitive on (Ny, z).
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The following conditions are equivalent:

(a) g is spherically transitive.
(b) The condition (¢, ) holds for alln > 0.
(Y ) The condition (c, ) holds for some n for which X, # 0 > 0.

Proof. Note that (a) = (co). We first show (cg) => (c1): Say X1 # 8. Then gis
transitive on X; and if X,, # @ then g is transitive on X, and Pl X, — X,
is (g)-equivariant. It follows that g% is trivial on X; and transitive on the fibers
of X, — X;. (See the proof of (a) <= (b) in (4.3).) It follows that for each
z € X;, g% is transitive on the (n—1)-sphere of (N, z). This shows, by (4.3)
(a), that g? is spherically transitive on (N, z) for ¢ € X1, hence (c1).

(cn1) = (cp): Say X, # 0. Put ¢ = ™ = ¢'q,, with ¢’ = q"~t. By
(¢n—1), g is transitive on X, _1 and g?' is transitive on each fiber of X, — X,,_1,
so g is transitive on X,,. Further, for ¢ € X,,, applying (co) = (c1) to g¢ on
(Np(c), (%)), we see that g7 = (99 )4 on (N, x) is spherically transitive, whence
(cn)-

(en—1) = (¢n) (if X, # 0): By ((4.3) (a)) it suffices to show that g acts
transitively on each nonempty X,,. For m = n this is part of our hypothesis.
For m < n, X,, is a g-equivariant quotient of X,,. If m > n then X,, — X, is
g-equivariant, g is transitive on X, and by (cy), gq[n] is transitive on each fiber
of X,, — X,,, whence g is transitive on X,,.

Clearly the proposition follows from the implications proved above.

(4.5) Proposition. (Eristence.) The q-adic adding machine (3.5) defines a

spherically transitive element g € G(X,zo) and (g) acts freely (with dense orbits)

on g(X, 1,‘0).

Proof. In the cyclic model Y = Y(q) of (3.4), Y, = Z/q["Z for ¢, > 0 and

g(y) = y+1fory € Y,,. Clearly g is transitive on Yy, so g is spherically transitive.
If ¢, > 0 for all n then

S(Y, yO) = EndS(Y) = lgnZ/q[n]Z — zq,

where iq denotes the ring of q-adic integers (3.4). The action of g on iq is
translation by 1, so (g) acts freely with dense orbits.

(4.6) Theorem. Let g € G = G(X, o) be spherically transitive.
(a) (Conjugacy) If g’ € G is also spherically transitive then g’ is G-conjugate
tog.
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(b) The centralizer Zg(g) is the closure {g) of the cyclic group (g) generated
by g.
Proof of (b). Let Z = Zg(g) and H = (g). Clearly H < Z and both are closed
subgroups of G. To show their equality it suffices to show that they have the same
restriction to By, or equivalently, to X,,, for each n > 0. But on X,, g» = ¢|x,
is a (transitive) q™l-cycle, so {(gn) (= resx,(H)) is already the centralizer of g,
in the full symmetric group on X,,. Thus resx (Z) < resx, (H), whence (b).
Proof of (a): Since G is compact its conjugacy classes are closed. Thus it
suffices to show that ¢’ can be approximated by conjugates of g. For this it
suffices to show that for each n > 0, g and ¢’ have conjugates that agree on B,,.
Since G — G(By, ) is surjective (4.2) we can reduce to the case X = B,.
Then, by induction, ¢ |p,_,and ¢’ |p,_, are conjugate in G' = G(Bn-1, zo).
Since G — G’ is surjective we can replace g’ by a G-conjugate and reduce to
the case in which ¢’ |p,_,= ¢ |B,_, - If X, = § we are done; thus assume that
Xy # 0. Consider

p:T =X, —S=X,_1.
Put ¢ = qi*~1 =| 8 |. Then g and ¢’ induce the same g-cycle on S and g? and
g'? each act transitively on all fibers of p: T — S. For s € S put T, = p~1(s).
Then
G(n—1)= Ker(G — G') = [] Aut(T3).
3€ES

We conclude the proof by showing that ¢’ = hgh~?! for some h € G(n —1). This
results from the next lemma.

(4.7) Lemma Let p: T — S be a map of finite sets. Put T, = p~1(s) for
sES,

G = Auit(p) :=={g = (9, 95) € Aut(T) x Aut(S) | pgr = g5p},
and
G' = Ker(G — Aut(S)) = [ Aut(Ty).
SES
Let ¢ =|S|. Let g,¢' € G induce the same q-cycle on S and assume that for
some so € S, g7 |r,, and ¢'* |1, are conjugate in Aut(Ty,). Then ¢’ = hgh~1
for some h € GL.

Proof. Identify S with Z/qZ so that g(s) = ¢'(s) = s+ 1 for s € S and s¢ = 0.
Then T =]],c, 9 and ¢’ on T consist of bijections g5, ¢', : Ty — Ts41 and we
seek h = (hs)ses, hs € Aut(T}), such that the diagrams

T, 2 Ty
(1), hsl lhs+1

yl
T.s — Ts+1
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commute for all s € S.
For integers s, 0 < s < g, define gp,) : To — T, by

_ ) 9s-1-9s—2---g90 fs>0;
(2) i1 = { identity ifs=0

Similarly, define g'[S]. Then we have

gq ‘To: g[q] and glq |To‘_' gl[q]'
By hypothesis there is a k € Aut(Tp) such that

(3) kgik™" = g'tq)-
Now define hy : Ty — T (for 0 < s < q) by

_1 -1
(4) hs = gtk 0t -

We complete the proof by showing that (1), commutes for 0 < s < ¢.
Case 1: s # ¢— 1. Then

-1
hs+lgs = g’[,+1]k!]/[,+1] 9s
-1
= 9 1qkd' ) = 9 ks
Case 2: s = ¢ — 1. Then (1),_1 takes the form

Tpn 22 T
hq—l = g/[q—l]kg[;ll] l l hO =k
T,., == T
We require that
kgg-1 =010 -nkely (=0 gkegty)
i.e., that
gl[q] = kgq—lg[q—l]k_l (= kg[q]k_l)»
which is just (3).

(4.8) Corollary. The number of spherically transitive automorphisms of

(Buywo) = X(alzn)) is
(TT@h™™") /e,

Proof. Let g € G(Bp,z0) be spherically transitive. From (4.6) we conclude
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that the number of spherically transitive elements is |G(By, zo)|/|(g)], so the
corollary follows from (4.2).

(4.9) Subgroups. Let H and C be closed subsets of G. Since the subgroups
G(n) = Ken(G — G(Bn, 20))
form a base for neighborhoods of 1 in G, it follows that
H={)H G(n),
and similarly for C'. Hence,
H()C=((H Gn)nC-G(n)).

These sets are all compact. Hence
HNC#0

if and only if
H-G(n)NC-G(n)#0 for alln > 1,
if and only if
r(H) ﬂ r(C)#0 foraln>1,

where r : G — G(By, z¢) is the restriction homomorphism.
Taking H to be a closed subgroup of G and C' the (closed) conjugacy class
of spherically transitive elements (Theorem (4.6)) we obtain, using (4.3):

(4.10) Proposition. For a closed subgroup H C G, the following conditions are
equivalent.

(a) H contains a spherically transitive element.
(b) For each n > 1, H contains an element that acts transitively on X,,.

5. Dynamics on the ends of X and interval renor-
malization.

(5.1) Dynamics on £(X,zo). Assume that ¢, > 2 for all n > 0. We shall use
the product model X(q) (cf. (3.3)) for (X, z¢). Thus,

Xn=Cgy x Cgy x ---xCy,
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where g0 = 1 and C,, = Z/mZ, and p : X,, — X,_1 Is projection away from
the last factor. Order C,, so that 0 < 1 < --- < m — 1, and then order each
X, lexicographically, so that X,, — X,,_1 preserves the relation <. Relative
to this order structure (cf. (2.4)) we have, as in (2.6), a homeomorphism

K = K(q) — £(X(q)) = Ends(X(q))

from the “q-adic Cantor set” K C [0,1]. The action of G(X(q)) on £(X(q))
thus transports to a continuous action on K(q).

(5.2) Theorem. For g € G(X(q)) the following conditions are equivalent.

(a) The subgroup (g) has a dense orbit in K(q).
(b) The subgroup (g} acts freely on K(q) and all orbits are dense.
(c) The action ofg on K(q) is topologically conjugate to the q-adic adding

machine, & acting on Z llmZ/q[”]Z by a(ay=a+ 1.

Proof. That (a) implies (c) follows from (4.6) and (4.5), noting that by (4.3)(c'),
(a) is equivalent to g being spherically transitive on X(q). Clearly (¢) =

(56.3) Let (K, f) be a minimal ordered dynamical system, as in (I, (2.4)), with
interval renormalization index

(1) q= Q(K,f) = (‘Z1,Q2a‘13,-~~)

as in (I, (2.9)). For n > 0 we put

(2) ma=q™ =102 tn
and
[ Z[/m,Z  if my >0

Then, as in (3.4), we have the rooted tree X = X(q) with inverse sequence
(4) XO:{xO}(P_XIQ_...(__.X Xy —
Fix a base point kg € K. For each n > 0 with m,, > 0, let

(5) én (K, f) — (Xn,@) = (Z/mpZ,+1)
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be the interval m-renormalization such that ¢, (ko) = 0. Then as in (I, (2.10)),
the diagrams

K * X,
(6) (bn\—‘l lp
Xn—l

commute. Thus, the tree dynamical system (X, «) models the “interval renor-
malizable quotient” of (K, f).

The order structure (linear or cyclic) on K induces a similar structure on
each X,, so that the maps ¢,, and p are weak order preserving.

Suppose that (K, f) is infinitely interval renormalizable, so that ¢, > 0 for
all n. Passing to the inverse limit in (4) we obtain a morphism

¢: (K, f) — (Zq,-l-l) = (Ends(X), «)

which is weak order preserving for the inverse limit order structure on Ends(X).

~

If K is a compact subset of R or S then (cf. (I, (2.12))) ¢ is surjective, and
injective except perhaps for countably many 2-point interval fibers.

?. Some group theoretic renormalization opera-
ors.

(6.1) A wreath product construction. Let X be a finite set with ¢ elements,
and @ a group of permutations of X such that

(1) Q° := the set of g-cycles in Q # 0.
Let H be a group and consider the wreath product
G=H* xQ.

For h € HX and z € X, we write h(zy € H for its z-component. We identify
h with its image (h,1) in G. For g € @ we have (1,¢)(h,1)(1,9)7* = (g(h), 1),
where

(2) g(h’)(x) = h(g—‘:v)

Let 7 : G — @ be the natural projection, and put
) G =1"4Q").
Let

g=(h,g1)€G° (he HX g1 €Q").
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Then
g* = (h-gi(h) -+ gV (h), 1) € HX
and
9 _
(4) g(z‘) - h(x) : h(gl—lz) T h(g;(q_l)x) € H

Thus, for i =0,...,¢—1
(5) ggyl"z) = Uiggz)ui—l>

where

Ui = hay higrigy hmeon ).

(6.2) Renormalization operators. Suppose that we are given a family p =
(pz)wex of group isomorphisms

(1) pr:G=H (z€X).

Then for ¢ = (h,g1) € G as above, we can define renormalizing operators
Rf :G° — G by

(2) Ri(9) = p7 ' (9(,) €G.
We call ¢ a simultaneous fixed point of p if
(3) R(g) = g, ie., pp(g) = gé’x), forallz € X.
The set of these fixed points is denoted
(4) FP(p) = {9 € G° | p=(9) = g{,), for allz € X}.

Suppose that ¢ € G° and for some base point * € X, we are given an
isomorphism pg : G — H such that po(g) = ggx). Then, with the notation of

(6.1)(5), we can define p i, = ad(u;) o po (for i =0,...,9— 1), and it follows
then from (6.1)(5) that g € FP(p).

(6.3) Uniqueness of p, given g. Suppose that g € G° is a simultaneous fixed
point for both p = (pz)rex and p' = (p))sex, i.e., for z € X,

(1) po(9) = 9(z) = Fe(9)-

Put
ar = p; ol € Aut(G).
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Then

(2) Py = proay and az(g9) = g.

Conversely, given any family a; € Aut(G) such that a;(g) = ¢ then g is asi-
multaneous fixed point of p’ defined by (2). In case «  is an inner automorphism
ad(z;) then the condition a.(g) = g becomes

2 € Za(g).

(6.4) Renormalization operators and conjugation. Let p = (p;)zex be a
family of isomorphisms p, : G — H. Let

(1) U:(’U,Ul)EG, UEHX,UleQ.

Define u(p) = (u(p)z)sex by:

Wou = U)o pyrig(w)T € H
(2) and
wp)e = ad(wyu)op,-r, G — H.

Proposition. ad(u) defines a bijection F P{p) — F P(u(p)).
Proof. Let g = (h,g1) € G°. Then

“(P)x(‘m“—l) = wz)upul-xz(ugu_l)w;,}‘
= ("’x,upul‘lx(“))/’ul—lx(g)(ww,upu;lx(u))_1
= Yo)Pusta(9)V0) (¢f (2)).

On the other hand

—1\¢

(ugu () (vulgqul_lv_l)(x)

-1
U(z)g(ququ)v(x)o
Thus we see that
u(p)a(ugu™) = (ugu™t){,,

if and only if

Pusic(9) = 91y

whence the proposition, since u; is a permutation of X.
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(6.5) All p = (pg)zex are equivalent. The isomorphisms p, : G — H define
an isomorphism
p:GX — HX

by
p(k) @) = po(k(z)  (z € X).

This extends to an isomorphism of wreath products
p:GXxQ —G=HX xQ,

defined by
p(k, 91) = (p(k), 91)-
Let g € G° and § = p~!(g). Then

gg,;) = p(gq)(z) = Px(ﬁg,)),

SO
3y = Pz ' (90)) = RE(9).

Thus, p induces a bijection
p: FP — FP(p)

where
FP={geG* xQ|n(9) € Q° and ggx) =p(g) Yz € X}.

We now propose to analyze this set FP, which as we have just observed,
models all of the F P(p).

(6.6) The iterated wreath product. Inductively define Q(n) acting on X"
starting with

(1) Q(1) = Q, with its given action on X,
Forn> 1,

(2) Q) =Q*" xQ(n-1),
where (h, g) € Q(n) acts on (y,z) € X" = X x X*~! by
(3) (h,9)(y, =) = (hge)y, 92)

(cf. (IIL, (2.4))). This action is faithful (III, (2.6)). Thus, we have decomposi-
tions

(4) Q) = Q¥ % Q¥ T x- Q¥ xQ

Q(n—m)meQ(m) (m=1,2,...,n—-1).

imu



128 CHAPTER 1II. SPHERICALLY TRANSITIVE AUTOMORPHISMS

The latter defines a projection
(5) aTm : Q(n) — Q(m), with kernel Q(n — m)X " .

Writing 7 = ,7n-1 : Q(n) — Q(n—1), and p : X™ — X"~! for projection
away from the first factor, we have the inverse system

(6) X x2 2 2 xn1 2 oxn P

which is equivariant for

(7) Q) Q(2)— - =Q(n — 1)—Q(n)"— - --
Put
(8) G =1mQ(n),

n

a profinite group. From the decompositions Q(n) = Q(n — 1)* x Q we obtain,

on letting n — o0, an isomorphism

9) G=GX xqQ,

which we view as an identification. We thus have
T G — (Q,

(10) G = = 1Q°), and
FP(=FP(Q,X)={9€G"|g{,y=g foralze X}

We further write
Tt G — Q(n)

for the natural projection. Relative to the decompositions
T :G=GXxQ —Qn)=Q(n-1)*xQ

we have
7l’n(h, gl) = (h,agl)
where b’ = “xX_,”(h) is defined by

(@) = mn-1(h(z))-
It follows that
(1) mu(FP)C FP(n):={g € Q(n) | g%, = nra-1(g) for allz € X}.
and similarly it is clear that #(F P(n)) C FP(n — 1). Moreover it is clear that

(12) FP =limFP(n).

n
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(6.7) Lemma. Letge FP.
(a) ma(g) is a ¢"-cycle in X™.

(b) The closure {(g) of the cyclic group generated by g is isomorphic to

Zy:= im Z/q" Z

(c¢) The set

TopGen({(g))

of topological generators of (g) comnsists therefore of elements of the form “g“”,
u€Zy. We have

TopGen({g)) C FP.

Proof. Both (a) and (b) follow once we show by induction on n, that 7,(g)
has order ¢". For n = 1 this follows since m(g) € Q°. For n > 1 we have
from (6.6)(11) that ﬂn(g)?x) = nTn-1(mn(9)) = mn_1(g) for all z € X, so, by
induction, 7,(g)? has order ¢"~!, whence the claim.

If uf Z then (g“)?x) = (99 :—g“. By continuity this applies to all u € Z,.
IfueZf, ve, if g € TopGen({g}), then clearly g* € G° and so ¢* € FP,
whence (¢).

]

Note that the proof of (a) shows that each element of F P(n) has order ¢".

(6.8) Lemma. Letn >2. Let g € Q(n), ¢’ = n(g) € Q(n— 1), and write

g=(k,g1) €Q(n) = Q(n-1)* x Q.
The following conditions are equivalent.
(a¢) g € FP(n).
(b) ¢ € FP(n—1), and there ezist e(z) € Z/q"" Z such that y . x e(z) =
1 and k()= g"*®) forallz € X

Proof. Assuming ¢’ € FP(n — 1) and that k) € (¢') we can then write
k) = g for a unique e(z) € Z/q"~! Z, by (6.7). Then we have

—_— — . te
90y = k@k(grrny Fgramngy = 97

where e =37, . e(g7iz) = 2 _yex €(y). Thus g € FP(n) if and only if e = 1.
This shows that (b) implies (a). Assuming (a), we have ¢’ € FP(n—1). By the
above discussion, it suffices to show that k) € (¢’) for all z. Since ¢’ is a !
cycle on X*~ ! the centralizer of ¢’ is

(1) Zo(n-1(9") = {¢")-
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Thus it suffices to show that each k(,y centralizes g’. This follows from (a)
since

! a9 _
g — g(:c) - k(z)k(gl‘lz-) e k(g;(q—l)z‘)
q — .
g(gl'lrc) - k(.‘h_l":) . k(yl‘(q_l)z’)k(z)'

]
Remark. The lemma remains true for n = 1 if we define Q(0) = FP(0) = {1}.

(6.9) Lemma. Forn > 2, each fiber of
7:FP(n)— FP(n—1)

has cardinal ¢2~1.
Proof. Let ¢ € FP(n—1), ¢' = (k',91) € Q(n — 2)X x Q. By (6.8) we have
¢'(z) € Z/q"~? Z such that

(1) kpy=m(g)¥ ™) forallze X

and

2" Y €z)=1 in Z/¢" L.
zeX

An element g € Q(n) with 7(g) = ¢’ must have the form g = (k,g;) €
Q(n—1)X x Q. with

(3) m(key) = k(2 € X).

For g to belong to F P(n) it is necessary and sufficient, by (6.8), that there exist
e(z) € Z/q"~! Z such that

(1) k) =g¢°®)  forallze X

and

(2) de(x)=1 in Z/¢"' L
ze€X

Let p: Z/q"~'Z — 7Z/q"~? Z be the natural projection. Then (1) and
(3) are satisfied by any choices of

(4) e(z) € p~'(€'(2))-

There are ¢ possible choices for each e(z). It then follows from (2’) that
for any such choices of (e(x))zex, we have p(3_,cx €(z)) = Y ex€'(2) = 1.
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Thus, we can freely choose all but one of the e(z) € p~1(¢(z)), and then the
one remaining choice is determined by (2), whence ¢?=! choices, as claimed.

The following theorem now summarizes some of the conclusions that we have
drawn.

(6.10) Theorem. Let G = G* x Q be as in (6.6)(9), and
FP={g€G" |ggx):g for allz € X}.
Asin (6.6)(11), put
FP(n)={g9€Q(n) | g(q,) = nTnoi(g)  forallz € X}.

(a) FP(1) = Q°, and, for each n > 2, each fiber of 7 : FP(n) — FP(n—1)
has ¢?~! elements.

(b) 7 (F P) = FP(n), which has cardinal | Q° | -(¢?~1)*~L.

(c) If g € FP then ma(g) is a q"-cycle on X", {g) = Z,, and TopGen({g)) C
FP, with equality if and only if ¢ = 2.

Proof. The final assertion follows by comparing | 7,(FP) |=| FP(n) |, given
by (b), with L
| 7 (TopGen({g))) |= #(¢") = #(q) - 4",

where ¢ is the Euler ¢-function.

(6.11) Renormalization operators on spherically homogeneous trees.
Let
X = X(q)

be a spherically homogeneous tree of index

(1) a=(91,92,93,--.) (allgn >2)
which is periodic of period r:

) Gntr =qa  (oralln>1).
Put

(3) g=d" =qigz- g,
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and
(4) X = X, = the r-sphere in X.

For # € X the normal tree N(z) (denoted N, in (1.3)) has index
(4r+1,9r+2,--.), which equals q in view of (2). Thus

(5) N(z)=X forallze X.
Consider the automorphism group
(6) G = Aut(X) = A(q).

As in (4.1) we can write

G = HXxqQ, where
() { Q = A1), and
H = A(q[>r))=A(q)=G.

Here we identify H with Aut(N(z)) for each z € X, via some choice of
isomorphisms N(z) — X (cf. (5)). Clearly G is isomorphic to the iterated
wreath product constructed from (@, X) as in (6.6).

Recall from (4.8) that

(8) Q° = the set of q-cycles on X
has size
. : (=1
9) 1Q° 1= ([J(aH* /e
=1

For ¢ € G and z € X we write g(;) for the restriction of g to the normal tree
N(z):

(10) 9y - N(z) — N(g()).
If ¢ 1s spherically transitive on X then ¢ on X is a ¢-cycle, and
(11) 9t € H = Aut(N(2)).

Moreover (cf. (4.4)) ggx) is spherically transitive on N(z). It follows therefore
from the Conjugacy Theorem (4.6)(a) that there is an isomorphism

(12) s (X,9) — (N(2),g%,),
giving a commutative diagram
x L X
(13) . Lt
N@) g N)
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Putting
(149) pe = ad(ty): G = Aut(X) — H = Aut(N(x))
we see then that
(15) p=(9) = 9z
Thus, with p = (pz)zex, we have

(16) g € FP(p).

It follows from Theorem (4.6)(6) that

t is unique up to right multiplication by z, € Zg(g) = {9),
(17) .
the closed cyclic group generated by g.

Now combining this with (6.5), (6.6), and (6.10) we obtain:

(6.12) Theorem. Keep the notation and assumptions of (6.11).

(a) Let g € G be spherically transitive on X. Then there exist rooted iree
isomorphisms t, : X — N(z), (z € X), unique up to right composition with
an element of (g) = iq, such that g € FP(p), where p = (pz)sex 15 defined by
pz = ad(tz).

(b) Let p = (ps)eex be any family of isomorphisms p, : G — Aut(N(z)).
Let

7p : G — G(Bp, z0)

denote restriction to the n-ball B, in X. We have the following.
(i) mnr (F P(p)) has cardinal

[]_:I(qz‘!)q['_”} g D(r=1-1
i1

(i1) If g € FP(p) then g is spherically transitive on X and

TopGen({g)) C FP(p),

with equality if and only if ¢ = 2, i.e., if and only if q=(2,2,2,...) and r = 1.






Chapter IV

Closed Normal Subgroups
of Aut(X(q))

0. Introduction and notation.

Let X(q) denote the spherically homogeneous rooted tree of index
q = (¢1,92,93---), and G(q) = Aut(X(q)). Our aim is to describe all closed
normal subgroups N of G(q). Each such N # {1} has a “level”, the largest
n > 0 such that N acts trivially on the n-ball centered at the root, and the
N’s at a given level can be described essentially in terms of abelian data; see
Theorem (5.4) for a precise statement.

The method used is to present G(q) as an infinite iterated wreath product
of symmetric groups. Our analysis applies more generally, to infinite iterated
wreath products of appropriate subgroups of symmetric groups. (see Section 4.)

The chapter begins with a general review of normal subgroups of simple
wreath products.

1. The symmetric group S,.

(1.0) We assemble here for reference some familiar facts about the symmetric
group S, of permutations on the set {1,...,q}. (The reference [Rot] is a good
basic group theory resource.)

(1.1) The alternating group A,. The group A, is the kernel of the signa-
ture homomorphism sgn : S; — Z/2Z, the latter being identified with the
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abelianization of S;, denoted S?b, for ¢ > 2. In fact,

Aq = (Sq’Sq) = (Sq’Aq)v

(1.2) Small g. When g is small, there will be “degenerate” behavior. We take
care of these special cases in this section.

First, S1 = {1}, A2 = {1}, and | A3|= 3. For ¢ = 4, A} = (A4, A4), 1s a Klein
4-group and A4 = A} x (t), where ¢t = (123) is a 3-cycle, cyclically permuting the
non-trivial elements of A}. Clearly then A/ is the only proper normal subgroup
of A4 and (Sy, A}) = (A4, A}) = A},. Moreover,

S4/A/ =~ S,

the only non-abelian subgroup of order 6.
For ¢ > 5, A, is a simple group (cf. [Rot]).
From the above observations we can deduce,

(1.3) Proposition. Let H < 5,.

(a) Either H = {1}, A;, or S, or else, g =4 and H = A},

(b) If H #S,, then H = (S,, H).

(c) If H# {1} then the action of H on {1,2,...,q} is transitive and even
primitive if H # A},

(1.4) Proposition. Suppose that {1} # P Q< S,. LetY ={1,2,...,q}.

(a) If Q acts transitively on Y, then P has no fized poinis in Y.
(6) If Q acts primitively on Y, then P acts transitively on Y.

Proof. Since P <1 ) and @ acts transitively, the orbits of P on Y are permuted
transitively by @, whence both (a) and (b).

2. Wreath products.

(2.1) Semidirect products. Given groups H, @ and a homomorphism
a : Q — Aut(H), we have the semi-direct product G = HxoQ (cf. [Rot]).
It is the set H x @) with a multiplication defined by

(b, (W', q') = (h - alg)(R'), 47)-
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Identifying H = (H,1) < G and Q = (1,Q) < G, we have

(h,q) = (h,1)(1,9) = hq

and
ghg™" = a(g)(h)
inG. Thus, G=H-Q,HNQ = {1}, H< G and G/H = Q.
The commutator subgroup of G is

(G,G)=(G,H)= (Q,Q).
This yields
H/(G, H) x Q%
H®/(Q, H™) x @2,

Gab

Here, H3b is a @-module, and Hab/(Q, Hab) is the quotient obtained by
trivializing the Q-action. We shall write

0 H — H* (@, H)(= H/(Q, H))

for the natural projection.

(2.2) Wreath products S* x Q. Let S and Q be groups and X a @-set. Then
we can form the product

SX ={f: X — S}
Then Q also acts on SX by translation,
(af)(z) = f(a™ ).
The resulting semidirect product
G=58"xQ

is called the wreath product associated to (S, @, X). (Cf. [We] for historical
remarks regarding these constructions and extensive bibliography.)

(2.3) Commutators in G = S x Q. Assume that X is finite. Then we have
(S%,5%) = (5, 9)*.

Hence,

(SX)a,b — (Sa,b)X'
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(Note that this also holds when X is infinite, provided that for some n > 0, each
element of (S, S) is a product of at most n commutators.) The quotient obtained
by trivializing the action of @ on this (permutation) @-module is clearly just

(52P)X /(Q, (520)%)
(Sab)Q\X.

SX/(G, %)

Hence,
Gab — (SX X Q)ab — (Sab)Q\X % Qab
As in (2.1), we shall write

oQ ISX N (Sa-b)Q\X — SX/(G,SX)

for the natural projection. For any s € S, let § denote its image in 53D Then
oq is defined by

(eeN@-x) = [[ f)

yeQz

The kernel
Kq = Ke(og) = (G, 5%)

is generated by (5%, SX) together with all elements
(. /) =afa” fH = a(N)f!
forallqg e Q, f € SX.

(2.4) The (SX x Q)-set X x Y. Suppose that we are further given an S-set
Y. Then the wreath product G = SX x @Q acts on X x Y by:

(f, (=, y) = (g=, f(gz)y).

This is easily checked to be a group action. Moreover, the projection
X xY — Y is equivariant for the projection G — Q.

(2.5) Transitivity. A quick computation shows that
G\(X xY) = (Q\X) x (5\Y).

Hence:

Proposition. The action of SX x Q on X x Y is transitive iff the actions of
Q on X and S on Y are both transitive.
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(2.6) Fidelity. Let G(4,y,) denote the stabilizer in G of any point (zo,yo) €
X x Y. Then

Gzoy0) = H(20,%0) % Qu,
where

H(zo,v0) = {f € S* | f(z0) € Sy, }-

Consequently another quick computation shows,

(2.7) Proposition. The action of SX x Q on X x Y is faithful iff the actions
of @ on X and S on'Y are both faithful.

(2.8) Elements of finite order. Consider a semidirect product G = H % Q,
where the action of ¢ € Q on h € H is denoted ¢(h) (= ghg™! in G). Forn >0
we have, in G,

(hq)™ = hq(h)---¢" " (h)g".
Say ¢ has finite order n. then we put
Ny(h) = hq(h)---¢""'(h) € H,
and we see that

(1). order(hq) = order(q) - order(N,(h))

Now, suppose that H = SX | so that G = SX % @ is a wreath product, ¢ € Q
has order n, and h € SX. Then, for z € X,

(2) N,(h)(z) = h(z)h(g™'z) - --h(g" " Va).

Moving z in its (g)-orbit, {g~*2 | 0 < i < n — 1}, only affects (2) by a cyclic
permutation of factors, hence by a conjugation. Thus,

(3) order(Ny(h)) = LCM{z € (g)\X | order(N,(h)(x))}.
Suppose now that
Q= (q) and Q|=n.

For s € S, let 5 denote its image in S3b  For h € SX we see from (2) that

Ng(h)(z) is constant on Q-orbits. The resulting Ny(h)(z) € (Sab)Q\X is clearly
just og(h), using the notation of (2.3).
Suppose further that S is abelian. Then N,(h) is constant on Q—orbits, and

order(Ny(h)) = order(og(h)).

Since o : SX — SO\X is surjective, we can choose h € S¥ to make Ny(h)
have any order that occurs in S9\X .
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(2.9) Example. Let Q = (q) where ¢ is a transitive n-cycle on X (so | X |= n).
In addition, let S = {s) where s is a transitive m-cycle on the set Y (|Y |= m).
For h € SX, write h(z) = s° where ¢, € Z/mZ. Then our map og : S¥ —
S@\X — S is given by

h — H h(z) = s°
zeX
where
e = Z €z.
z€X

Consequently,

order(hq) = n - my
where

my, = order(gg(h)) = order(e)

for e considered as an element of Z/mZ. In particular,
order(hq) = nm = order(og(h)) = m = e € (Z/mZ)*

where (Z/mZ)* denotes the group of units in Z/mZ. Thus, in this case hq
defines a transitive cycle on X x Y (cf. (2.4)). For example, defining hy by
ho(zo) = s (for some zo € X) and ho(z) = 1 for z # 2o, we have og(ho) = s, so
order(hog) = nm.

(2.10) Conjugacy. Let G = H x Q (semi-direct), ¢ € @, and h,h' € H. We
shall determine when hg and h’g are conjugate in G. Say f € H,r € Q, and
(j"r)(hq)(fr)"1 = h'q. We have

frhgr=lf=1 = fr(h)rgr-1f1
[Fr(R)(rar™)(£) ™ )(rar™")
= hy.

It follows that
r € Zglq)

and
W = fr(h)g(f)~"
Now suppose further that H is abelian. Then
W =r(h)fe(f)™
and the elements fq(f)_1 form the group ((g), H) < H. Thus, we conclude:

(2.11) Proposition. Let G = H x @ with H abelian. Let ¢ € Q, h,h' € H.
Then hq and h'q are conjugate in G if and only if the images of h and h' in
H/((q), H) lie in the same Zg(q)-orbit.
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3. Normal subgroups of wreath products.

(3.1) Notation. We fix a wreath product G = S* xQ where X is a finite Q-set.
For s € S, z € X, define s, € SX by s,(z) = s and s,(2') = 1 for ¢ # z’. Thus,
= [1, Sz, where Sz = {s; | s € S} is the copy of S in the z-coordinate of
SX . Note that for ¢ € Q, ¢(sz) (or ¢s,q ! in G) = Sz
If N < SX then let N, denote the image of N under the projection into S,.
Clearly N <[], Nz. Moreover (S;, N) = (S, N;) < S;. Hence:

(3.2) Lemma. If N 5%, then

(SX’N):H(SxyNz) SNSHN

(3.3) Proposition. Suppose that the action of Q on X is transitive. Let N < G
and N < SX. Then there exists a subgroup M < S such that N, = M, for all
z, and

(S,M)* <N < M%X.

Proof. If ¢ € @, then

quq—l = Nq:z:~

Since () acts transitively on X, it follows that the subgroups N, all define a
common subgroup M with M < S. Thus, the proposition follows from (3.2).

(3.4) The groups Gp, Kp, Np. For P < Q, put
Gp=5% xP<G=0Gqg.
Then as in (2.3) we have
op:SX — (Sab)P\X’
where

p(NP 2)= [] Tw) es®.

yePz
If K, denotes the kernel of op, then

K, = (Gp,S*)



142 CHAPTER IV. CLOSED NORMAL SUBGROUPS OF Aut(X(q))

and is generated by the subgroup (S, S)* together with all elements of the form

(P, 85) = psep~tsp, 7t = spgcs,,_1 (pe PseS,zeX).

Note that
(GP,GP) = ]&’p A (P, P)
(G,Gp) = IX'Q X (Q, P).
Define
Np = [{p X (Q,P).
Thus,

(Gp,Gp) < Np < (G,Gp).

Note that op and Kp depend not on P, but only on the quotient P\X of
X. For example, suppose that P\X = Q\X. Then Kp = Kg = (G,S%X), and
so, (G,Gp) = Np.

(3.5) Proposition. Let N < G have projection P < Q into Q. Thus, N <
Gp = 8X x P. Assume that P has no fized points in X. Then

(i) (N,S*)=(Gp,5%)=Kp,
(ii) (N,Gp) = (Gp,Gp)=Kp x (P,P)< N, and
(iii) N/(Gp,Gp) < (Gp)®t = (S20)P\X x pab is 4 G-submodule.

Suppose that in addition P\X = Q\X. Then,
(iv) (G,N)= (G,Gp)=Np = Kg x(Q,P)<N, and
(v) N/Np<Gp/(G,Gp) = (Sab)Q\X x (P/(Q, P)), where G acts trivially.

Proof. Put L = (N,SX) < SX. Thus, L G. Let s€ Sandz € X. As P
has no fixed points in X, we can choose fp € N, f € SX and p € P such that
pz = y # z. Note that L contains (fp, s;). Rewriting, we get

(fp; Sa:) = fpsa:p_lf_lsx—l = fsyf—lsx—l = (f(y)sf(y)_l)ysa:_l'

From this it follows that the projection L, of L into S; is all of S, (ie. Ly = S;).
It then follows from (3.2) that (S, S)X < L. Modulo (S, S)* we have

(f(y)sf(y)_l)ysf_l = Sysl‘_l = spxsz_l-

Such elements, together with (S, S)X, generate Kp = (Gp,SX) > (N,5%) = L,
so that L = Kp.
Furthermore,

N’:N/I\’P QGP/I\"P :(Sab)P\X x P,
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so that N’ projects onto P. From this it follows that (N’, P)
As Kp < N, it follows that (N, Gp) contains Kp x (P, P)

(N,Gp) = (Gp,Gp).

(P, P) in GP/I{P.
(Gp,Gp), so that

This proves (i) - (iil).
To prove (iv) and (v) suppose in addition that P\X = Q\X. Then (cf. (3.4))
we have

Kp = Kq
and
(G,Gp) =Np=Kpx (Q,P).
Moreover, with N’ = N/Kp as above, we have
N' @ Gp/Kp = (52P)\X « p 4 G/Kp = (S2P)Q\X & @.
Thus, (@, N') =(Q, P) < N' in G/Kp, so that it follows from above that
Np=Kpx(Q,P)=(N,G)<N.
This completes the proof.

(3.6) Remark. (cf. (1.4)) In the setting of (3.5) suppose that @ acts faithfully
and transitively on X. Then if 1 # P « @, P has no fixed points in X. If

further @ acts primitively on X then P acts transitively on X; in particular
P\X = Q\X. In this case (3.5) tells us that

Np=Kgx(QP)<N

and

N/Np < Gp/Np = 5% x (P/(Q, P)) < Z(G/Np).

(3.7) Corollary.  Assume that Q acts faithfully and primitively on X. Let
NaG=58%xQ, N f SX . Then there is a unique minimal P 4 Q such that,
with Gp = SX x P, we have

(G,Gp)=(G,N)< N < Gp

and

Gp/(G,Gp) = 5% x (P/(Q, P)).

Proof. Let P denote the projection of N into . Then 1 # P « . The
assumptions imply (cf. (3.6)) that P acts transitively on X, and | X |> 2 since
P #£ 1 acts faithfully. Thus, P has no fixed points so that the corollary follows
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from (iv) and (v) of (3.5)

4. Iterated wreath products and rooted trees.
(4.1) The rooted tree X = X(Y). Let
Y = (Yl,YQ,...,Yn,...)

be a sequence of nonempty sets. We shall assume that each Y, is finite, say of
cardinality ¢, > 0. Put
q:(ql)qZ)"'5qn"")‘

Define sets X, (n > 0) by Xo = {z¢} (a one point set) and for n > 0,
Xn=Yix- - -xY,.
Let p: X, — X,,_1 denote the natural projection. Then the inverse sequence
(1) on{zo}LxlL...an_lenL...
defines as in (I, (2.1)), the spherically homogeneous rooted tree
X = X(Y) = X(q)

(cf. (I1,(3.1) and (3.3))).

(4.2) The group G = G((Q,Y)). Let

Q:(Q17Q2a""Qn)"')

be a sequence of finite groups such that for each n > 1, Y, is a QQ-set. Given
these initial data, we shall define (inductively) a sequence a groups Q(n) (n > 0),
Q(n) acting on the set X, and, for n > 0, a projection Q(n) — Q(n — 1) for
which p: X,, — X,,_ is equivariant.

Let Q(0) = {1}, and Q(1) = Q; acting as given on X; = Y7. Forn > 1,

(1) Q(n) = Q" 1 Q(n—1)

(wreath product as in (2.2)), which acts on X,, = Xn_1 x Y, asin (2.4).
Now we put

) G =6((Q,Y)) = lim(n).

Q
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Then G((Q,Y)) is a profinite group acting on the tree X(Y) defined by (1).
For a subset H of G let H denote its closure. If H < G is a closed subgroup
then we put

7o = m/E D,

its topological abelianization.
From (2.5) we conclude inductively that

(3) G\Xn = Q(n)\ X, = (Q1\Y1) X - - x (@n\Yn).
Hence (cf. (2.5)):

(4.3) Proposition. G acts transitively on each X, iff Qn acts trensitively on
Y, for each n. Furthermore, G acts faithfully on X 1ff Q, acts faithfully on Yy,
for each n.

(4.4) From (2.3) we inductively obtain isomorphisms
(1) Q)PP =5 (@EP)A=Dnmt s (D)2 o g
which on Qf"" < Q(n), induces the homomorphism
2) Cno1 = 0q(a-1) : QX — (QAP)A DV
of (2.3). Passing to the inverse limit then gives an isomorphism
(3) GE =, H(ng)Q(n—l)\Xn_l'
n>1
Thus:

Proposition. If Q, acis transitively on Y, for all n then
(4) G = T Qs

n>1
ts an isomorphism,

To make the isomorphism (4) explicit, we can express G as the infinite wreath
product

(5) G=-xQXx...QF % Q.

Write g € G as its corresponding infinite product,

g=-gn-9g2 01,
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where g,, € fo""‘. Then we see that
(6) 7:6— G = H(Qf{b)Q(n-1)\Xn—1
n>1

sends g to (0n—1(gn))n>1. Here (cf. (2.3)), on_1 is the homomorphism in (2)
above defined by

(7) ta1()@n~1)-2)= [ () € Q2P

yeQ(n-1)r

where, for s € @, 5 denotes its image in Qf}bA

(4.5) Examples. 1. Suppose that, for each n > 1,
Qn = S,, = the permutation group of Y.
Then a straightforward inductive argument shows that
G=G((Q,Y)) = Aut(X, zo),

the full automorphism group of the rooted tree (X, zo). In this case G acts
transitively on each X, and we have an isomorphism

G2 = ] s2b = [[ z/22).

n>1 n>1
2. Suppose that each @, acts faithfully on Y;,, so that @, < S,,. Putting

q[n] lenlz q1 92" "qn

as in (I, (3.3), example 3) we see that

[n—1]

1Q(n) [=1@1] - 1Q2] -+ [@n T .
Moreover, G = limQ(n) acts faithfully on X, so G < Aut(X, o) is a closed

subgroup. It is not clear how to characterize which closed subgroups one obtains
in this fashion.

3. Consider the case in which all Y,, are the same finite set Y, of cardinality
g and all the @, are the same subgroup @ < S,. Then we have, q"! = ¢, so
that
|Q(n)|=|Q[1++ 4" =|Q (" -1/ (a-1) |

A particular case of interest is when ¢ is prime and @ is generated by a single
g-cycle. Then Q(n) is of order ¢(¢" ~1)/(¢=1) and thus is a Sylow-¢ subgroup of the
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group Si» of permutations of X,, = Y™. Then for each n, Q(n) acts transitively
on X, and @), acts primitively on Y,,.

4. Suppose that for each n > 1, Q, < §,, is cyclic, generated by some
gn-cycle, c,. Then it follows by induction, from (2.7), that for each n > 1, Q(n)

contains a transitive cycle on X, (of order q[”]). Furthermore, this transitivity
for each n then implies (from II, (4.10)) that G((Q,Y)) =limQ(n) contains

spherically transitive elements on X(Y). In fact (2.7) provides an inductive
construction of such elements. Indeed, we can give the following method for
detecting them.

As in (4.4)(5), write G in as an infinite wreath product,

G:...)qu)L("—lx... ;(lel_

and g € G as
g=""9n" 9291,
where g, € @7 ""'. Since each Q(n) acts transitively on X,, and each (cyclic)

Q. is abelian, we have the following simplification of the “abelianization” ho-
momorphism 7,

E:G—»G—a—gz HQ"
n>1

given by

Qf

(g) = (Uﬂ—l(gn))nZI-
Here (cf. (4.5)(7)),
tnslan) =[] 0a@)

TEX o1

is an element in Q.
It follows inductively from the discussion in (2.9) that the following are equiv-
alent:

(1) gn---g2- 91 € Q(n) has order g™ = g1 -3 - - -gn =[ Xn |
(2) 0i-1(g9:) € Q; has order ¢; for each ¢ < n.
(3) oi—1(gi) generates @; for each ¢ < n.

Thus, from (I, (4.3)), we obtain:

(4.6) Proposition. For alln > 1 let Q, = (sp) be generated by a g,-cycle sn.
Let g € G have the expansion

g=""gn---92-91,

where g, € QnX"'l as in (4.3), example 4. For x € Xn_1 put ga(z) = 577,
ez € Z/q" Z and
on1(gn)= [l on(2) =5t

T€EXn-1
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where e(n) =3 cx,_ €z € L/q" Z. Thus, 0 : G — Geb = I1,. @n sends g to
(0n=1(gn))n>1. Then the following conditions are equivalent.

(a) g is a spherically transitive automorphism of X.
(b) For each n, 6,_1(gn) generates Q.
(¢) For each n, e(n) € (Z/q™ Z)*, the group of units of Z/q" Z.

(4.7) Proposition. Let all hypotheses be as in (4.6) Let g, g' € G be spherically
transitive elements. Then g and g’ are conjugate in G iff they have the same
image under ¢ : G — Gab = Il,>1@n-

Proof. Assume first that d(g) = &(¢’). As conjugacy classes in the profinite
group are closed, it suffices to show that the images g(n) and ¢'(n) of g and ¢’
in Q(n) are conjugate, for each n > 1. For n =1, Q(1) = Q1 is abelian and the
hypothesis implies that g(1) = ¢’(1). Assume now that n > 1. Write g as

g =gng(n—1)

and
9 =gng'(n-1)
with gn,g,, € Qn""'. By induction, g(n — 1) and g¢’(n — 1) are conjugate.
Replacing ¢'(n) by a conjugate in @Q(n), we can then reduce to the case of
g'(n—1)=g(n—1)=g€ Q(n—1). By (2.11), g(n) = gnq and g'(n) = g,,q are
conjugate in Q(n) iff the images of ¢,, and ¢/, in QX' J((q), @u") = QX
lie in the same Zg(n_1)(g)-orbit. But, ¢ acts transitively on X,,_; so that
QX1 /((9), @n*) = Qn,

with trivial Q(n — 1)-action. Moreover, the above images of g, and g;, in @,
are just 0,_1(gs) and o,-1(g5,) respectively. The hypothesis that #(g) = &(g’)
implies that these are equal. Hence, g(n) and ¢'(n) are conjugate.

Conversely, if ¢ and ¢’ are conjugate then clearly a(g) = a(¢’).

5. Closed normal subgroups of G = G((Q,Y)).

(5.1) The “congruence groups”. For all n > 1 define G, by

(1 Gn = Ker(G — Q(n)).

It is clear from the construction of G = G((Q,Y)) = lim— Q(n) that
G = G, x Q(n)
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and that furthermore
(2) Gn = G((Q) Yv)>ﬂ)xn_l )

where we write

(3) (Q; Y)>n = (Q’Y)ZYH‘I = ((Qn+1’yﬂ+1)’ (Qn+2a Yn+2)’ . )

In this way we produce the wreath product decomposition

(4) G((QY)) = G((Q,Y)>n)*" % Q(n),
which corresponds to the decomposition of G(X, o) given in (I, (4.2)). We shall
use the abbreviation G(> n) (or G(> n + 1)) for
(5) G(>n) =G(Q,Y)>n):
Note that G = G(> 1) = G((Q,Y)).
Thus, we have for n > 1,
G = Gno1xQ(n—-1)
= GEn)* xQ(n-1)
= (G n)" % Q) ' xQ(n-1)
= G>n) " xQf -1 xQ(n-1)
Ga Q(»)

(5.2) The groups Gp(> n) . Let P < Q,. We put
Gp(>n) = G>n)»xP
< G )" xQ,=G(>n).
Define —
75 : G(> )’ — (G(> n)2P)P\Y
by

@FHP -y =[] fW),

z€P-y

where for ¢ € G(> n), g denotes its image in G(> n)ab. The kernel of 55, Kp
is clearly just the closure of the kernel Kp of the homomorphism op of (3.4).
Moreover, we conclude from (3.4) that

(Gp(2n),Gp(> n)) = Kp x (P, P)

and

(G(>n),Gp(> n)) = Kq, @ (@n, P).

(5.3) Closed normal subgroups of G = G((Q,Y)). Assume now that:
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(1) Foralln>1, Q, acts both fatthfully and transitively on Y,,.

Note that by (4.3), this implies that the action of @(n) on X, is also faithful
and transitive.
Let N be a nontrivial closed normal subgroup of G. Thus,

(2) 1#N=N«G.

Since NG, = {1}, it follows that for some n > 1, “N has level n — 1.” That is
to say,

(3) (a) N < Gpo1 = G(> n)X~-1 and
(b) N £ G,.

We have G = G(> n)%»-1 x Q(n — 1), so it follows from (1), (2), (3a) and
(3.3) that:

(4) There is an M = M = M(N) 9 G(> n), which is the projection of
N into each factor of G,_1 = G(> n)Xn—l, and

Xn-1

(G n), M) <N <M¥.

Writing G(> n) = G(> n)¥» x @, we put
(5) P = P(N) = the projection of M into Q..
From (4) and (3)(b) we have
(6) 1#P<QQn.
Therefore, it follows from (1) and (1.4)(a) that:
(M P has no fized points on Yy.

Let Gp = G(> n)Y» x P < G(> n) as in (5.2). Then it follows from (4) and
(3.5)(a) that:

(8) (a) (Gp(2n),Gp(2n)) = (Gp(zn),M) < M_< Gp(2n),

(b) M/CrG M) <Gp(2n)® = (G(>n)aP)P\¥s x pab
is a (Qn/P)-submodule.

Moreover, it follows from (1) and (4.4)(5) that:
) G =TT @i
m>n

Now suppose further that:
(10) P acts transitively on Yy,.

Note that this is automatic if Q,, acts primitively on Y, (cf. (1.4)(b)). In this
case, it follows from (4) and (3.5)(b) that:
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(11) (a) (GG n), M) = (G(>n),Gp(> n)) = Kg, % (Qn, P) <M, and
(b) M/(G(zn),M) <  Gp(2n)/(G(>n),Gp(> n))

= G(> 1) x (P/(@n, P)) = (Tnsn @2) x (P/(@n, P).
Combining (4) and (11) we conclude that:

@), M) " <N < M¥eo

and,
Xn-1
—N < <_M.=)
(G(zn),M) =1 — (G(2n),M)
Xn-1
< GP!>n!
(12) - (G(>2n),Gr(2n))

— Xn'_l
G % x (P/(Q,P)) )
Xn-1
(o @50 < (P/(@n D)

{l
TN TN

The last term is a Q(n — 1)-module via the permutation action on X,,_1 and the
first term is an arbitrary closed submodule.
The following theorem summarizes some of these conclusions.

(5.4) Theorem. Assume that for alln > 1, Q, acts faithfully and primitively
on Y,. Let N be a non-trivial closed subgroup of G of level n — 1. Let P =
P(N) < Qy be as defined in (5.3) and Gp(> n) = G(> n)¥» x P < G(> n).
Put

Gp(2 n) = [@(> m), Go(= m).

Then,
Vb = Gp(> n)/G >n)
= G(>n)® x (P/(Qn, P))
= (T @) x (P/(@n, P)).
m>n
Moreover,
Gp(> n)*»=* <N < Gp(z n)¥»,
and

N/Gp(2 n) < V™

is a closed Q(n — 1)-submodule where Q(n — 1) acts via the permutation action
on Xn—l-
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(5.5) Remark. Suppose that G = Aut(X, zg), i.e., that @, = S, for all n.
Then we distinguish two cases for P,

Case 1: P = S,,. Then (Qn, P) = A,,. Thus,

= [ @2 =cn? = ] z/2z.

ma2n m>n

Case 2: P # S,,. Then (cf. (1.3)(b)) we have (Qn, P) = P. Thus,

= II 9% = ¢(>n)?® = ] z/22.

m>n m>n

(5.6) Remark. From Theorem (5.4) we see that a closed normal subgroup N
of G determines an n and a P < @, so that

Gp <N <Gp

and
N/Gh < v

n—1

1s any closed submodule of the G-module Vg , where GG acts via its permu-
tation action on X,,_;. To complete the analysis we would like to determine all

of the closed G-modules of Vlf"‘l. This appears to be too complicated a task.

Instead, we shall answer an approximation to this question, when we replace Vp
by a field F. In this case we can describe all F[G]-submodules of FX»-1. This
is done in the following section.

6. The G-module V*»,

(6.1) Notation. Let V be an additive group, and p: X — Y a map of sets.
Then we have a group homomorphism

7p:VY—~>VX,

defined by
(1p)f(z) = f(pz).
the image consists of functions constant on the fibers of p, and if p is surjective
then 7, is injective.
Suppose that the fibers of p are finite. Then we have a homomorphism

ap:VX—>VY,
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defined by
(e)fW) = Y f(=).

p(x)=y
For h € VY we thus have

(op1 b)) =] p™'(¥) | -B(w).

(6.2) Rooted Trees. Let (X, zo) be a locally finite rooted tree defined by the
inverse system

on{xo}«LXlL--.LXn_lLX,NP_...

We put G = Aut(X, zo).
Let V be an additive group and put

V, =vX
for n > 0.
For 0 < m < n the map

n—m

P Xy — X
defines as in (6.1) homomorphisms
TV — Vy
and
ont Vi — Vi
Define
K = Ker(o)').

These are G-modules and G-homomorphisms.

Define

Vi=Kp!
for n > 0 and
Vi= Vil = 0.

We also put 4, = 0 and ;! = 0.

Ifallp : X, — X,,_ are surjective (i.e., if X has no terminal vertices) then
all 47, are injective, and all ™ are surjective. Suppose further that (X, z¢) is
spherically homogeneous of degree

a=(q1,92,...)
Then

(1) o747 = maltiplication by gmy1 - --gn = q"1/ql™ = “lrI-m17,
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(6.3) The modules V(,n, .. n,) < Va. Given a decreasing sequence of integers

(1) n2n1>n2>...>nr2—1,
we put
(2) Vv(n;nl,.“,nr) = 721 Wy < Va,

where Wy, Wa, ..., W, are G-modules,

3) Vi, = KT S W<V,
fori=1,...,r, defined by reverse induction as follows:
First,
W, =V, .

Suppose now that W;;1, ..., W, have been defined satisfying (3). Put

— ami—l
Y= 7n:+1 . Vn.‘+1 Vn,—l

and

o= oﬁj‘l Vo, — Voot
Then we put
(4) Wi = o~ (yWis)-

Then (3) follows for W; from the diagram

: 7V7|li+1

Wi =o '(YWiy1) — Wi
| |

Va, = Ker(o) — {0}

It is easy to see, inductively, that distinct sequences (n;ny,...,n,) produce
distinct submodules Vin.n,, . n,)-
Note that

W/i = ‘/(nt;nn“*x”r)’
and thus, is characterized by
{ Vinini,..ne) = T, W'

V,{l <W <V,
02:_1(W/) = 711:21_1‘/(77»2;712,»»»,77'r) - V(m—l;nz,m,nr)

()

We shall show in (6.5) that under special conditions, these are the only G-
submodules of V,,.
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(6.4) Irreducible Q-sets. Let @ be a group and Y a finite Q-set. Let F
be a field and V = FY the corresponding (permutation) F[Q]-module. Then

V has two natural submodules: the constant functions ¥ — F; and V' =
Ker(V-Z5F) where

o(f) =Y f(v).
yey
We call the @Q-set Y irreducible (over F) if the above are the only
F[G]-submodules of V other than 0 and V. Clearly irreduciblity implies primi-
tivity and thus transitivity.

The full symmetric group S on Y acts irreducibly on Y. It suffices to show
that if f € V is not constant, then the FS-module W generated by f contains
V’'. (In characteristic 0 this just says that the permutation representation of
Sp on {1,...,n} splits as two components, trivial representation and its direct
summand.) Say f(z) # f(y). Let s € S be the transposition (z,y). Then
h=s(f) — f € W and with a = f(z) — f(y) # 0, we have h(z) = —a, h(y) = a,
and h(z) = 0 for z # ¢, y. Clearly the F[S]-module generated by h is V.

(6.5) Notation. Let

(QaY) = ((Qlyyl)) (Q2>Y2)J .. )

be a sequence as in (4.2): @, is a finite group and Y, is a finite @Q,-set of
cardinality ¢, > 0. Put X = X(Y) asin (4.1) and G = G(Q,Y) as in (4.2).

(6.6) Theorem. Let all notation be as in (6.3). Assume that for each n, @,
acts irreducibly on Y, (cf. (6.4)), for example that G = G((Q,Y)) is the full
automorphism group Aut(X,zo). Let V = F, a field, and V,, = FX» as in (6.2).
If W <V, is an F[G]-submodule then there is a unique sequence

n>ng>ne>--->n, > —1

such that (in the notation of (6.3)) W = Viuin,,...n.)-
Proof. Uniqueness was already noted in (6.3). For existence we argue by
induction on n. Choose n; < n minimal so that W < 4} V;,. If ny = —1 then
we have W = 0 = V(,;_y). Say n; > 0 and put m = ny. Then W = 4], W’ with
W' < Vi and the minimality of n; implies that W’ £ ¥, Vin—1.

Claim. V| < W'.

We first show that the Claim implies the Theorem. Put 0 = 07271 : V,, —
Vin—-1, with kernel V/,, so that, if U = o(W'), then we have W' = o=1(U) by
the claim. By induction, there is a sequence

m—1>ny>--->n, > -1
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such that U = Vi;u_1;n,,...,n,) Thus, using (6.3), equation (5),

Ym(o™H(U))
731(0’_1(‘/(”1_1;”2,--«»”1-))) (m: nl)

V(n;'ﬂl,"z,w,nr)'

w

i

Proof. (of Claim) The conditions that W < V;, and W £ v7_ Vin—1 means
that some f € W < F¥Xm = V,, is not constant on some fiber p~(y) of
Pp:Xm — Xm-1- In Q,},(,"‘“ < G let H denote the copy of @, in the y-
coordinate. Then H acts trivially on all fibers of X,, — X,,_1 other than
p~!(y) while by hypothesis, H acts irreducibly on p~!(y). For h € H and
f' = h(f) — f € W, f' vanishes on all fibers of X,, — X,,_1 except p~1(y)
where it takes values f'(z) = f(h~!z) — f(z). Since H on p~!(y) is transitive
and f is non-constant on p~!(y) we see that f’ is neither constant nor zero (for
suitable h € H). Now, by irreducibility of H on p~!(y), the F[H]-module gen-
erated by f’ contains (V,})y = Vi, N (Vin)y where (Vj,), denotes the functions
X,;n — F with support in p~!(y). Now

Vo= II W
26X m_1

and G acts transitively on X,,_;. Thus, the F[G]-module generated by (V)
is all of V.. Thus, V,, < W as claimed.
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address, 55

adjacent, 105 105

alternating group, 135
automorphism (of graph), 105
Block condition, 100

Cantor dissection, 111

Cantor set, 42

closed path, 105

conjugacy of dynamical systems, 1
connected graph, 105
counterclockwise cyclic ordering, 19

cycles (of amap f), 99

cyclic model of X(q), 115
cyclic order topology, 18
cyclic ordering, 16
C'-unimodal, 93

§-expansion, 8

Denjoy expansion, 13
divisibility (for G), 58
divisibility (for supernatural numbers),
dynamical system, 1

edges, 105

end (of tree), 109

endpoint (of tree), 109
exponentiation (for é), 59, 66
f-orbit, 1, 56

faithfully interval renormalizable, 25
faithfully renormalizable, 5

flip, 97

forcing, 99

graph, 105

induced cyclic ordering , 18
infinitely interval renormalizable, 22

interval, 15, 18
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interval n-renormalization, 19
interval partition, 43

interval renormalization index, 22
involution (for G), 58, 65
IR-index, 23

IR-isomorphism, 21
IR-morphism, 20

itinerary, 56

itinerary map, 61

kneading sequence, 56
K-interval, 15

K-support, 15

leaf (of tree), 110

length (of path), 105
m-modal, 95

maximal element (for G), 67
metric (on graph), 105

metric (£(X,20)), 110
minimal interpolation, 95
minimal dynamical system, 1
morphism (of dynamical systems), 1
morphism (of rooted trees), 109
n-ball (of graph), 108
n-renormalization, 1

n-sphere (of graph), 108

non interval renormalizable, 23
normal form (for G), 58
normal tree (to subtree), 106
orbit, 1

order (for G), 59, 66

order structure (of rooted tree), 111
order topology, 15

ordered dynamical system, 19
ordered profinite space, 42
oriented closed intervals, 16
parity (multimodal case), 65
partition, 42

path, 105

period (of spherical index), 131
periodic (spherical index), 131
periods (of a map f), 99
(4+)-unimodal, 95

primary cycle, 100

product model of X(q), 114
profinite space, 42

INDEX
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g-adic adding machine, 25, 116
q-adic integers, 25, 116
quadratic, 71

quadratic family, 94

@-adic adding maching, 4
Q-adic integers, 4

ray (of tree), 109

real dynamical system, 45

real interval renormalization, 92
reduced, 105

renormalizable, 1
renormalization (for G), 84
renormalization operator, 125
rooted tree, 106, 108

R-parity, 57

self-similarity operator, 47
semi-conjugacy of dynamical systems, 1
semidirect products, 136

Sharkowskii order, 99
shift map, 83

simple permutation, 25

simultaneous fixed point, 50, 125

o-orbit, 84

spherically homogeneous (rooted tree), 114

spherical index, 114

spherical index (finite), 114
spherical index (infinite), 114
spherically transitive, 118

spiral cycle, 163

stabilizer (of a subgraph), 105
+-product (for G), 75

*-product (for permutations), 92
Stefan cycle, 100

supernatural number, 4
symbolic interval renormalization, 92
tree, 105

truncations (for G), 58

turning point, 56

unimodal map, 55
vertices, 105
weak order preserving, 15, 19

wreath products, 137



