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Preface

This book is intended as a text for a first-year graduate sequence in engineering electro-
magnetics. Ideally such a sequence provides a transition period during which a student
can solidify his or her understanding of fundamental concepts before proceeding to spe-
cialized areas of research.

The assumed background of the reader is limited to standard undergraduate topics
in physics and mathematics. Worthy of explicit mention are complex arithmetic, vec-
tor analysis, ordinary differential equations, and certain topics normally covered in a
“signals and systems” course (e.g., convolution and the Fourier transform). Further an-
alytical tools, such as contour integration, dyadic analysis, and separation of variables,
are covered in a self-contained mathematical appendix.

The organization of the book is in six chapters. In Chapter 1 we present essential
background on the field concept, as well as information related specifically to the electro-
magnetic field and its sources. Chapter 2 is concerned with a presentation of Maxwell’s
theory of electromagnetism. Here attention is given to several useful forms of Maxwell’s
equations, the nature of the four field quantities and of the postulate in general, some
fundamental theorems, and the wave nature of the time-varying field. The electrostatic
and magnetostatic cases are treated in Chapter 3. In Chapter 4 we cover the representa-
tion of the field in the frequency domains: both temporal and spatial. Here the behavior
of common engineering materials is also given some attention. The use of potential
functions is discussed in Chapter 5, along with other field decompositions including the
solenoidal-lamellar, transverse—longitudinal, and TE-TM types. Finally, in Chapter 6
we present the powerful integral solution to Maxwell’s equations by the method of Strat-
ton and Chu. A main mathematical appendix near the end of the book contains brief but
sufficient treatments of Fourier analysis, vector transport theorems, complex-plane inte-
gration, dyadic analysis, and boundary value problems. Several subsidiary appendices
provide useful tables of identities, transforms, and so on.

We would like to express our deep gratitude to those persons who contributed to the
development of the book. The reciprocity-based derivation of the Stratton—Chu formula
was provided by Prof. Dennis Nyquist, as was the material on wave reflection from
multiple layers. The groundwork for our discussion of the Kronig—Kramers relations was
provided by Michael Havrilla, and material on the time-domain reflection coefficient was
developed by Jungwook Suk. We owe thanks to Prof. Leo Kempel, Dr. David Infante,
and Dr. Ahmet Kizilay for carefully reading large portions of the manuscript during its
preparation, and to Christopher Coleman for helping to prepare the figures. We are
indebted to Dr. John E. Ross for kindly permitting us to employ one of his computer
programs for scattering from a sphere and another for numerical Fourier transformation.
Helpful comments and suggestions on the figures were provided by Beth Lannon—Cloud.



Thanks to Dr. C. L. Tondo of T & T Techworks, Inc., for assistance with the LaTeX
macros that were responsible for the layout of the book. Finally, we would like to thank
the staff members of CRC Press — Evelyn Meany, Sara Seltzer, Elena Meyers, Helena
Redshaw, Jonathan Pennell, Joette Lynch, and Nora Konopka — for their guidance and
support.
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Chapter 1

Introductory concepts

1.1 Notation, conventions, and symbology

Any book that covers a broad range of topics will likely harbor some problems with
notation and symbology. This results from having the same symbol used in different areas
to represent different quantities, and also from having too many quantities to represent.
Rather than invent new symbols, we choose to stay close to the standards and warn the
reader about any symbol used to represent more than one distinct quantity.

The basic nature of a physical quantity is indicated by typeface or by the use of a
diacritical mark. Scalars are shown in ordinary typeface: ¢, ®, for example. Vectors
are shown in boldface: E,II. Dyadics are shown in boldface with an overbar: g, A.
Frequency dependent quantities are indicated by a tilde, whereas time dependent quan-
tities are written without additional indication; thus we write E(r, w) and E(r, t). (Some
quantities, such as impedance, are used in the frequency domain to interrelate Fourier
spectra; although these quantities are frequency dependent they are seldom written in
the time domain, and hence we do not attach tildes to their symbols.) We often combine
diacritical marks: for example, € denotes a frequency domain dyadic. We distinguish
carefully between phasor and frequency domain quantities. The variable @ is used for
the frequency variable of the Fourier spectrum, while & is used to indicate the constant
frequency of a time harmonic signal. We thus further separate the notion of a phasor
field from a frequency domain field by using a check to indicate a phasor field: E(r).
However, there is often a simple relationship between the two, such as E = E().

We designate the field and source point position vectors by r and r’, respectively, and
the corresponding relative displacement or distance vector by R:

R=r-r.

A hat designates a vector as a unit vector (e.g., X). The sets of coordinate variables in
rectangular, cylindrical, and spherical coordinates are denoted by

(x,y,2), (p,9,2), (r,0,9¢),

respectively. (In the spherical system ¢ is the azimuthal angle and 6 is the polar angle.)
We freely use the “del” operator notation V for gradient, curl, divergence, Laplacian,
and so on.

The SI (MKS) system of units is employed throughout the book.



1.2 The field concept of electromagnetics

Introductory treatments of electromagnetics often stress the role of the field in force
transmission: the individual fields E and B are defined via the mechanical force on a
small test charge. This is certainly acceptable, but does not tell the whole story. We
might, for example, be left with the impression that the EM field always arises from
an interaction between charged objects. Often coupled with this is the notion that the
field concept is meant merely as an aid to the calculation of force, a kind of notational
convenience not placed on the same physical footing as force itself. In fact, fields are
more than useful — they are fundamental. Before discussing electromagnetic fields in
more detail, let us attempt to gain a better perspective on the field concept and its role
in modern physical theory. Fields play a central role in any attempt to describe physical
reality. They are as real as the physical substances we ascribe to everyday experience.
In the words of Einstein [63],

“It seems impossible to give an obvious qualitative criterion for distinguishing between
matter and field or charge and field.”

We must therefore put fields and particles of matter on the same footing: both carry
energy and momentum, and both interact with the observable world.

1.2.1 Historical perspective

Early nineteenth century physical thought was dominated by the action at a distance
concept, formulated by Newton more than 100 years earlier in his immensely successful
theory of gravitation. In this view the influence of individual bodies extends across space,
instantaneously affects other bodies, and remains completely unaffected by the presence
of an intervening medium. Such an idea was revolutionary; until then action by contact, in
which objects are thought to affect each other through physical contact or by contact with
the intervening medium, seemed the obvious and only means for mechanical interaction.
Priestly’s experiments in 1766 and Coulomb’s torsion-bar experiments in 1785 seemed to
indicate that the force between two electrically charged objects behaves in strict analogy
with gravitation: both forces obey inverse square laws and act along a line joining the
objects. Oersted, Ampere, Biot, and Savart soon showed that the magnetic force on
segments of current-carrying wires also obeys an inverse square law.

The experiments of Faraday in the 1830s placed doubt on whether action at a distance
really describes electric and magnetic phenomena. When a material (such as a dielec-
tric) is placed between two charged objects, the force of interaction decreases; thus, the
intervening medium does play a role in conveying the force from one object to the other.
To explain this, Faraday visualized “lines of force” extending from one charged object to
another. The manner in which these lines were thought to interact with materials they
intercepted along their path was crucial in understanding the forces on the objects. This
also held for magnetic effects. Of particular importance was the number of lines passing
through a certain area (the fluz), which was thought to determine the amplitude of the
effect observed in Faraday’s experiments on electromagnetic induction.

Faraday’s ideas presented a new world view: electromagnetic phenomena occur in the
region surrounding charged bodies, and can be described in terms of the laws governing
the “field” of his lines of force. Analogies were made to the stresses and strains in material
objects, and it appeared that Faraday’s force lines created equivalent electromagnetic



stresses and strains in media surrounding charged objects. His law of induction was
formulated not in terms of positions of bodies, but in terms of lines of magnetic force.
Inspired by Faraday’s ideas, Gauss restated Coulomb’s law in terms of flux lines, and
Maxwell extended the idea to time changing fields through his concept of displacement
current.

In the 1860s Maxwell created what Einstein called “the most important invention
since Newton’s time”— a set of equations describing an entirely field-based theory of
electromagnetism. These equations do not model the forces acting between bodies, as do
Newton’s law of gravitation and Coulomb’s law, but rather describe only the dynamic,
time-evolving structure of the electromagnetic field. Thus bodies are not seen to inter-
act with each other, but rather with the (very real) electromagnetic field they create,
an interaction described by a supplementary equation (the Lorentz force law). To bet-
ter understand the interactions in terms of mechanical concepts, Maxwell also assigned
properties of stress and energy to the field.

Using constructs that we now call the electric and magnetic fields and potentials,
Maxwell synthesized all known electromagnetic laws and presented them as a system of
differential and algebraic equations. By the end of the nineteenth century, Hertz had
devised equations involving only the electric and magnetic fields, and had derived the
laws of circuit theory (Ohm’s law and Kirchoff’s laws) from the field expressions. His
experiments with high-frequency fields verified Maxwell’s predictions of the existence of
electromagnetic waves propagating at finite velocity, and helped solidify the link between
electromagnetism and optics. But one problem remained: if the electromagnetic fields
propagated by stresses and strains on a medium, how could they propagate through a
vacuum? A substance called the luminiferous aether, long thought to support the trans-
verse waves of light, was put to the task of carrying the vibrations of the electromagnetic
field as well. However, the pivotal experiments of Michelson and Morely showed that the
aether was fictitious, and the physical existence of the field was firmly established.

The essence of the field concept can be conveyed through a simple thought experiment.
Consider two stationary charged particles in free space. Since the charges are stationary,
we know that (1) another force is present to balance the Coulomb force between the
charges, and (2) the momentum and kinetic energy of the system are zero. Now suppose
one charge is quickly moved and returned to rest at its original position. Action at a
distance would require the second charge to react immediately (Newton’s third law),
but by Hertz’s experiments it does not. There appears to be no change in energy of
the system: both particles are again at rest in their original positions. However, after a
time (given by the distance between the charges divided by the speed of light) we find
that the second charge does experience a change in electrical force and begins to move
away from its state of equilibrium. But by doing so it has gained net kinetic energy
and momentum, and the energy and momentum of the system seem larger than at the
start. This can only be reconciled through field theory. If we regard the field as a
physical entity, then the nonzero work required to initiate the motion of the first charge
and return it to its initial state can be seen as increasing the energy of the field. A
disturbance propagates at finite speed and, upon reaching the second charge, transfers
energy into kinetic energy of the charge. Upon its acceleration this charge also sends out
a wave of field disturbance, carrying energy with it, eventually reaching the first charge
and creating a second reaction. At any given time, the net energy and momentum of the
system, composed of both the bodies and the field, remain constant. We thus come to
regard the electromagnetic field as a true physical entity: an entity capable of carrying
energy and momentum.



1.2.2 Formalization of field theory

Before we can invoke physical laws, we must find a way to describe the state of the
system we intend to study. We generally begin by identifying a set of state variables
that can depict the physical nature of the system. In a mechanical theory such as
Newton’s law of gravitation, the state of a system of point masses is expressed in terms
of the instantaneous positions and momenta of the individual particles. Hence 6N state
variables are needed to describe the state of a system of N particles, each particle having
three position coordinates and three momentum components. The time evolution of
the system state is determined by a supplementary force function (e.g., gravitational
attraction), the initial state (initial conditions), and Newton’s second law F = dP/dz.

Descriptions using finite sets of state variables are appropriate for action-at-a-distance
interpretations of physical laws such as Newton’s law of gravitation or the interaction
of charged particles. If Coulomb’s law were taken as the force law in a mechanical
description of electromagnetics, the state of a system of particles could be described
completely in terms of their positions, momenta, and charges. Of course, charged particle
interaction is not this simple. An attempt to augment Coulomb’s force law with Ampere’s
force law would not account for kinetic energy loss via radiation. Hence we abandon'
the mechanical viewpoint in favor of the field viewpoint, selecting a different set of
state variables. The essence of field theory is to regard electromagnetic phenomena as
affecting all of space. We shall find that we can describe the field in terms of the four
vector quantities E; D, B, and H. Because these fields exist by definition at each point
in space and each time ¢, a finite set of state variables cannot describe the system.

Here then is an important distinction between field theories and mechanical theories:
the state of a field at any instant can only be described by an infinite number of state
variables. Mathematically we describe fields in terms of functions of continuous variables;
however, we must be careful not to confuse all quantities described as “fields” with those
fields innate to a scientific field theory. For instance, we may refer to a temperature
“field” in the sense that we can describe temperature as a function of space and time.
However, we do not mean by this that temperature obeys a set of physical laws analogous
to those obeyed by the electromagnetic field.

What special character, then, can we ascribe to the electromagnetic field that has
meaning beyond that given by its mathematical implications? In this book, E, D, B,
and H are integral parts of a field-theory description of electromagnetics. In any field
theory we need two types of fields: a mediating field generated by a source, and a field
describing the source itself. In free-space electromagnetics the mediating field consists
of E and B, while the source field is the distribution of charge or current. An important
consideration is that the source field must be independent of the mediating field that
it “sources.” Additionally, fields are generally regarded as unobservable: they can only
be measured indirectly through interactions with observable quantities. We need a link
to mechanics to observe E and B: we might measure the change in kinetic energy of
a particle as it interacts with the field through the Lorentz force. The Lorentz force
becomes the force function in the mechanical interaction that uniquely determines the
(observable) mechanical state of the particle.

A field is associated with a set of field equations and a set of constitutive relations. The
field equations describe, through partial derivative operations, both the spatial distribu-
tion and temporal evolution of the field. The constitutive relations describe the effect

TAttempts have been made to formulate electromagnetic theory purely in action-at-a-distance terms,
but this viewpoint has not been generally adopted [69].



of the supporting medium on the fields and are dependent upon the physical state of
the medium. The state may include macroscopic effects, such as mechanical stress and
thermodynamic temperature, as well as the microscopic, quantum-mechanical properties
of matter.

The value of the field at any position and time in a bounded region V is then determined
uniquely by specifying the sources within V| the initial state of the fields within V| and
the value of the field or finitely many of its derivatives on the surface bounding V. If
the boundary surface also defines a surface of discontinuity between adjacent regions of
differing physical characteristics, or across discontinuous sources, then jump conditions
may be used to relate the fields on either side of the surface.

The variety of forms of field equations is restricted by many physical principles in-
cluding reference-frame invariance, conservation, causality, symmetry, and simplicity.
Causality prevents the field at time ¢+ = 0 from being influenced by events occurring at
subsequent times ¢ > 0. Of course, we prefer that a field equation be mathematically
robust and well-posed to permit solutions that are unique and stable.

Many of these ideas are well illustrated by a consideration of electrostatics. We can
describe the electrostatic field through a mediating scalar field ®(x, y, z) known as the
electrostatic potential. The spatial distribution of the field is governed by Poisson’s
equation

?d P 9o 0
ottty =0
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where p = p(x, y, z) is the source charge density. No temporal derivatives appear, and the
spatial derivatives determine the spatial behavior of the field. The function p represents
the spatially-averaged distribution of charge that acts as the source term for the field ®.
Note that p incorporates no information about ®. To uniquely specify the field at any
point, we must still specify its behavior over a boundary surface. We could, for instance,
specify @ on five of the six faces of a cube and the normal derivative d®/dn on the
remaining face. Finally, we cannot directly observe the static potential field, but we can
observe its interaction with a particle. We relate the static potential field theory to the
realm of mechanics via the electrostatic force F = gE acting on a particle of charge g.

In future chapters we shall present a classical field theory for macroscopic electromag-
netics. In that case the mediating field quantities are E, D, B, and H, and the source
field is the current density J.

1.3 The sources of the electromagnetic field

Electric charge is an intriguing natural entity. Human awareness of charge and its
effects dates back to at least 600 BC, when the Greek philosopher Thales of Miletus
observed that rubbing a piece of amber could enable the amber to attract bits of straw.
Although charging by friction is probably still the most common and familiar manifes-
tation of electric charge, systematic experimentation has revealed much more about the
behavior of charge and its role in the physical universe. There are two kinds of charge, to
which Benjamin Franklin assigned the respective names positive and negative. Franklin
observed that charges of opposite kind attract and charges of the same kind repel. He
also found that an increase in one kind of charge is accompanied by an increase in the



other, and so first described the principle of charge conservation. Twentieth century
physics has added dramatically to the understanding of charge:

1. Electric charge is a fundamental property of matter, as is mass or dimension.

2. Charge is quantized: there exists a smallest quantity (quantum) of charge that
can be associated with matter. No smaller amount has been observed, and larger
amounts always occur in integral multiples of this quantity.

3. The charge quantum is associated with the smallest subatomic particles, and these
particles interact through electrical forces. In fact, matter is organized and arranged
through electrical interactions; for example, our perception of physical contact is
merely the macroscopic manifestation of countless charges in our fingertips pushing
against charges in the things we touch.

4. Electric charge is an invariant: the value of charge on a particle does not depend on
the speed of the particle. In contrast, the mass of a particle increases with speed.

5. Charge acts as the source of an electromagnetic field; the field is an entity that can
carry energy and momentum away from the charge via propagating waves.

We begin our investigation of the properties of the electromagnetic field with a detailed
examination of its source.

1.3.1 Macroscopic electromagnetics

We are interested primarily in those electromagnetic effects that can be predicted by
classical techniques using continuous sources (charge and current densities). Although
macroscopic electromagnetics is limited in scope, it is useful in many situations en-
countered by engineers. These include, for example, the determination of currents and
voltages in lumped circuits, torques exerted by electrical machines, and fields radiated by
antennas. Macroscopic predictions can fall short in cases where quantum effects are im-
portant: e.g., with devices such as tunnel diodes. Even so, quantum mechanics can often
be coupled with classical electromagnetics to determine the macroscopic electromagnetic
properties of important materials.

Electric charge is not of a continuous nature. The quantization of atomic charge —
e for electrons and protons, +e¢/3 and +2¢/3 for quarks — is one of the most precisely
established principles in physics (verified to 1 part in 10*'). The value of e itself is known
to great accuracy:

e = 1.60217733 x 107" Coulombs (C).

However, the discrete nature of charge is not easily incorporated into everyday engineer-
ing concerns. The strange world of the individual charge — characterized by particle
spin, molecular moments, and thermal vibrations — is well described only by quantum
theory. There is little hope that we can learn to describe electrical machines using such
concepts. Must we therefore retreat to the macroscopic idea and ignore the discretization
of charge completely? A viable alternative is to use atomic theories of matter to estimate
the useful scope of macroscopic electromagnetics.

Remember, we are completely free to postulate a theory of nature whose scope may
be limited. Like continuum mechanics, which treats distributions of matter as if they
were continuous, macroscopic electromagnetics is regarded as valid because it is verified
by experiment over a certain range of conditions. This applicability range generally
corresponds to dimensions on a laboratory scale, implying a very wide range of validity
for engineers.



Macroscopic effects as averaged microscopic effects. Macroscopic electromag-
netics can hold in a world of discrete charges because applications usually occur over
physical scales that include vast numbers of charges. Common devices, generally much
larger than individual particles, “average” the rapidly varying fields that exist in the
spaces between charges, and this allows us to view a source as a continuous “smear” of
charge. To determine the range of scales over which the macroscopic viewpoint is valid,
we must compare averaged values of microscopic fields to the macroscopic fields we mea-
sure in the lab. But if the effects of the individual charges are describable only in terms
of quantum notions, this task will be daunting at best. A simple compromise, which
produces useful results, is to extend the macroscopic theory right down to the micro-
scopic level and regard discrete charges as “point” entities that produce electromagnetic
fields according to Maxwell’s equations. Then, in terms of scales much larger than the
classical radius of an electron (&~ 107'* m), the expected rapid fluctuations of the fields
in the spaces between charges is predicted. Finally, we ask: over what spatial scale must
we average the effects of the fields and the sources in order to obtain agreement with the
macroscopic equations?

In the spatial averaging approach a convenient weighting function f(r) is chosen, and
is normalized so that [ f(r)dV = 1.

An example is the Gaussian distribution

f(r) — (7'[(12)73/26’7"2/[‘2’

where a is the approximate radial extent of averaging. The spatial average of a micro-
scopic quantity F(r,t) is given by

(F(r, 1)) :/F(r—r/,t)f(r/)dV/. (1.1)

The scale of validity of the macroscopic model can be found by determining the averaging
radius a that produces good agreement between the averaged microscopic fields and the
macroscopic fields.

The macroscopic volume charge density. At this point we do not distinguish
between the “free” charge that is unattached to a molecular structure and the charge
found near the surface of a conductor. Nor do we consider the dipole nature of polarizable
materials or the microscopic motion associated with molecular magnetic moment or the
magnetic moment of free charge. For the consideration of free-space electromagnetics,
we assume charge exhibits either three degrees of freedom (volume charge), two degrees
of freedom (surface charge), or one degree of freedom (line charge).

In typical matter, the microscopic fields vary spatially over dimensions of 1070 m
or less, and temporally over periods (determined by atomic motion) of 107" s or less.
At the surface of a material such as a good conductor where charge often concentrates,
averaging with a radius on the order of 107'° m may be required to resolve the rapid
variation in the distribution of individual charged particles. However, within a solid or
liquid material, or within a free-charge distribution characteristic of a dense gas or an
electron beam, a radius of 107® m proves useful, containing typically 10° particles. A
diffuse gas, on the other hand, may have a particle density so low that the averaging
radius takes on laboratory dimensions, and in such a case the microscopic theory must
be employed even at macroscopic dimensions.

Once the averaging radius has been determined, the value of the charge density may
be found via (1.1). The volume density of charge for an assortment of point sources can



be written in terms of the three-dimensional Dirac delta as

PO, 1) =) qid(r —ri(1)),

where r;(#) is the position of the charge ¢; at time 7. Substitution into (1.1) gives

p(r, 1) = (p°(r, 1)) = Zq;f(r — (1)) (1.2)

as the averaged charge density appropriate for use in a macroscopic field theory. Because
the oscillations of the atomic particles are statistically uncorrelated over the distances
used in spatial averaging, the time variations of microscopic fields are not present in the
macroscopic fields and temporal averaging is unnecessary. In (1.2) the time dependence
of the spatially-averaged charge density is due entirely to bulk motion of the charge
aggregate (macroscopic charge motion).

With the definition of macroscopic charge density given by (1.2), we can determine
the total charge Q(f) in any macroscopic volume region V using

Q(t):/,o(r, ndv. (1.3)
4

We have
Q(r>=2q,-/ fe—r@)dv =Y g
i v r;(1)ev

Here we ignore the small discrepancy produced by charges lying within distance a of
the boundary of V. It is common to employ a box B having volume AV:

f(r)=1/AV, reB,
0, r¢ B.

In this case
1
r,t) = — i
P =20 D 4
r—r;(t)eB

The size of B is chosen with the same considerations as to atomic scale as was the
averaging radius a. Discontinuities at the edges of the box introduce some difficulties
concerning charges that move in and out of the box because of molecular motion.

The macroscopic volume current density. Electric charge in motion is referred
to as electric current. Charge motion can be associated with external forces and with
microscopic fluctuations in position. Assuming charge ¢; has velocity v;(t) = dr;(¢t)/dt,
the charge aggregate has volume current density

Jr, 0= qvit) s —ri ().

Spatial averaging gives the macroscopic volume current density

Je,0) = (J°(e,0) = Y qivi(0) f(r — 1 (1)). (1.4)



Figure 1.1: Intersection of the averaging function of a point charge with a surface S, as
the charge crosses S with velocity v: (a) at some time ¢t = #;, and (b) at t =, > #;. The
averaging function is represented by a sphere of radius a.

Spatial averaging at time ¢ eliminates currents associated with microscopic motions that
are uncorrelated at the scale of the averaging radius (again, we do not consider the
magnetic moments of particles). The assumption of a sufficiently large averaging radius
leads to

J@, 1) = p(r, 1) v(r, t). (1.5)

The total flux I(¢) of current through a surface S is given by
I1(t) = /J(r, t)-ndS
s

where fi is the unit normal to S. Hence, using (4), we have
1(t) = Z ‘i(l"(l) ﬁ)ff(r—r-(t))dS
= i qi dt i s i

if fi stays approximately constant over the extent of the averaging function and S is not in
motion. We see that the integral effectively intersects S with the averaging function sur-
rounding each moving point charge (Figure 1.1). The time derivative of r; - fi represents
the velocity at which the averaging function is “carried across” the surface.

Electric current takes a variety of forms, each described by the relation J = pv. Isolated
charged particles (positive and negative) and charged insulated bodies moving through
space comprise convection currents. Negatively-charged electrons moving through the
positive background lattice within a conductor comprise a conduction current. Empirical
evidence suggests that conduction currents are also described by the relation J = oE
known as Ohm’s law. A third type of current, called electrolytic current, results from the
flow of positive or negative ions through a fluid.

1.3.2 Impressed vs. secondary sources

In addition to the simple classification given above we may classify currents as primary
or secondary, depending on the action that sets the charge in motion.



It is helpful to separate primary or “impressed” sources, which are independent of the
fields they source, from secondary sources which result from interactions between the
sourced fields and the medium in which the fields exist. Most familiar is the conduc-
tion current set up in a conducting medium by an externally applied electric field. The
impressed source concept is particularly important in circuit theory, where independent
voltage sources are modeled as providing primary voltage excitations that are indepen-
dent of applied load. In this way they differ from the secondary or “dependent” sources
that react to the effect produced by the application of primary sources.

In applied electromagnetics the primary source may be so distant that return effects
resulting from local interaction of its impressed fields can be ignored. Other examples of
primary sources include the applied voltage at the input of an antenna, the current on a
probe inserted into a waveguide, and the currents producing a power-line field in which
a biological body is immersed.

1.3.3 Surface and line source densities

Because they are spatially averaged effects, macroscopic sources and the fields they
source cannot have true spatial discontinuities. However, it is often convenient to work
with sources in one or two dimensions. Surface and line source densities are idealizations
of actual, continuous macroscopic densities.

The entity we describe as a surface charge is a continuous volume charge distributed
in a thin layer across some surface S. If the thickness of the layer is small compared to
laboratory dimensions, it is useful to assign to each point r on the surface a quantity
describing the amount of charge contained within a cylinder oriented normal to the
surface and having infinitesimal cross section dS. We call this quantity the surface
charge density p;(r, t), and write the volume charge density as

pr,w, 1) = ps(r, 1) f(w, A),

where w is distance from S in the normal direction and A in some way parameterizes the
“thickness” of the charge layer at r. The continuous density function f(x, A) satisfies

foo fx,A)ydx =1
and
iiir})f(x, A) = §(x).

For instance, we might have
efxz/A2
AJT

With this definition the total charge contained in a cylinder normal to the surface at r
and having cross-sectional area dS is

fx,A)= (1.6)

dQ) = /oo [os(r, 1) dS] f(w, A)dw = py(r,1)dS,

oo

and the total charge contained within any cylinder oriented normal to S is

o) = /S py(r, 1) dS. (1.7)



We may describe a line charge as a thin “tube” of volume charge distributed along
some contour I'. The amount of charge contained between two planes normal to the
contour and separated by a distance dl is described by the line charge density p;(r,t).
The volume charge density associated with the contour is then

o, p,t) = pi(r, 1) fi(p, A),

where p is the radial distance from the contour in the plane normal to I and f;(p, A) is
a density function with the properties

/ fs(p, A)2rpdp =1
0

and
. 3(p)
lim fi(p, A) = —.
lim fi(p, &) 2p
For example, we might have
_pZ/AZ
(0, A) = ) 1.8
filp B) = —— (1.8)

Then the total charge contained between planes separated by a distance dl is

d@D=A[MLWMﬁmAww@=mmﬂﬂ

and the total charge contained between planes placed at the ends of a contour I is

(1) = f pi(r, 1) dl. (1.9)
r

We may define surface and line currents similarly. A surface current is merely a
volume current confined to the vicinity of a surface S. The volume current density may
be represented using a surface current density function J;(r, t), defined at each point r
on the surface so that

Jr,w, 1) = J;(r, 1) f(w, A).

Here f(w, A) is some appropriate density function such as (1.6), and the surface current
vector obeys fi - J; = 0 where fi is normal to S. The total current flowing through a strip
of width dI arranged perpendicular to S at r is

dI(r) = foo Js(x, 2) -0y (r) di] f(w, A) dw = J(r, 1) - iy (r) di

where fy; is normal to the strip at r (and thus also tangential to S at r). The total current
passing through a strip intersecting with S along a contour IT" is thus

1@=/meﬁmML
T

We may describe a line current as a thin “tube” of volume current distributed about
some contour I' and flowing parallel to it. The amount of current passing through a
plane normal to the contour is described by the line current density J;(r, t). The volume
current density associated with the contour may be written as

J(r, p, 1) =) Ji(r, 1) fi(p, A),



where @ is a unit vector along I', p is the radial distance from the contour in the plane
normal to I, and f;(p, A) is a density function such as (1.8). The total current passing
through any plane normal to I' at r is

1) = / Ly (e. DG - 6] £, (p, A)27pdp = Ji(r. ).
0

It is often convenient to employ singular models for continuous source densities. For
instance, it is mathematically simpler to regard a surface charge as residing only in the
surface S than to regard it as being distributed about the surface. Of course, the source
is then discontinuous since it is zero everywhere outside the surface. We may obtain a
representation of such a charge distribution by letting the thickness parameter A in the
density functions recede to zero, thus concentrating the source into a plane or a line. We
describe the limit of the density function in terms of the §-function. For instance, the
volume charge distribution for a surface charge located about the xy-plane is

px,y,z,t) = ps(x,y, 1) f(z, A).

As A — 0 we have
,O(x, yv Z’t) = ps(xa yﬂt) ilir})f(z’ A) = ps(-xv yat)(s(z)

It is a simple matter to represent singular source densities in this way as long as the
surface or line is easily parameterized in terms of constant values of coordinate variables.
However, care must be taken to represent the §-function properly. For instance, the
density of charge on the surface of a cone at 6 = 6y may be described using the distance
normal to this surface, which is given by r6 — réy:

p(r’ 07 ¢’ t) = pS(r’ ¢a t)S (r[e - 90]) .
Using the property §(ax) = §(x)/a, we can also write this as

86 —6
p(r197¢7t) zps(rvqs’t)%'

1.3.4 Charge conservation

There are four fundamental conservation laws in physics: conservation of energy, mo-
mentum, angular momentum, and charge. These laws are said to be absolute; they have
never been observed to fail. In that sense they are true empirical laws of physics.

However, in modern physics the fundamental conservation laws have come to represent
more than just observed facts. Each law is now associated with a fundamental symme-
try of the universe; conversely, each known symmetry is associated with a conservation
principle. For example, energy conservation can be shown to arise from the observation
that the universe is symmetric with respect to time; the laws of physics do not depend
on choice of time origin r = 0. Similarly, momentum conservation arises from the obser-
vation that the laws of physics are invariant under translation, while angular momentum
conservation arises from invariance under rotation.

The law of conservation of charge also arises from a symmetry principle. But instead
of being spatial or temporal in character, it is related to the invariance of electrostatic
potential. Experiments show that there is no absolute potential, only potential difference.
The laws of nature are invariant with respect to what we choose as the “reference”



potential. This in turn is related to the invariance of Maxwell’s equations under gauge
transforms; the values of the electric and magnetic fields do not depend on which gauge
transformation we use to relate the scalar potential ® to the vector potential A.

We may state the conservation of charge as follows:

The net charge in any closed system remains constant with time.

This does not mean that individual charges cannot be created or destroyed, only that
the total charge in any isolated system must remain constant. Thus it is possible for a
positron with charge e to annihilate an electron with charge —e without changing the
net charge of the system. Only if a system is not closed can its net charge be altered;
since moving charge constitutes current, we can say that the total charge within a system
depends on the current passing through the surface enclosing the system. This is the
essence of the continuity equation. To derive this important result we consider a closed
system within which the charge remains constant, and apply the Reynolds transport
theorem (see § A.2).

The continuity equation. Consider a region of space occupied by a distribution of
charge whose velocity is given by the vector field v. We surround a portion of charge
by a surface S and let S deform as necessary to “follow” the charge as it moves. Since
S always contains precisely the same charged particles, we have an isolated system for
which the time rate of change of total charge must vanish. An expression for the time
rate of change is given by the Reynolds transport theorem (A.66); we have?

D D d
_Qz_/ pdV:/ —'Odv+f pv-dS =0.
Dt Dt V() V() at S(t)

The “D/Dt” notation indicates that the volume region V(¢) moves with its enclosed
particles. Since pv represents current density, we can write

dp(r. 1
/ POD gy v ) das=o. (1.10)
v 0t S0)

In this large-scale form of the continuity equation, the partial derivative term describes
the time rate of change of the charge density for a fixed spatial position r. At any time ¢,
the time rate of change of charge density integrated over a volume is exactly compensated
by the total current exiting through the surrounding surface.

We can obtain the continuity equation in point form by applying the divergence the-
orem to the second term of (1.10) to get

/ [Mw.m,,)} av =0,
V() dt

Since V(¢) is arbitrary we can set the integrand to zero to obtain

dp(r, 1)
ot

+V-J@r, 1) =0. (1.11)

ZNote that in Appendix A we use the symbol u to represent the velocity of a material and v to represent
the velocity of an artificial surface.



This expression involves the time derivative of p with r fixed. We can also find an
expression in terms of the material derivative by using the transport equation (A.67).
Enforcing conservation of charge by setting that expression to zero, we have
Dp(r,1) t)
- Dt
Here Dp/Dt is the time rate of change of the charge density experienced by an observer
moving with the current.
We can state the large-scale form of the continuity equation in terms of a stationary
volume. Integrating (1.11) over a stationary volume region V and using the divergence

theorem, we find that
ad t
/ plr, )dvz—fJ(r,r)-ds.
v ot s

Since V is not changing with time we have
do(t
Q() / p(r,1)dV = fJ(r t) - dS. (1.13)

Hence any increase of total charge within V must be produced by current entering V
through S.

o, V- -v(r,t)=0. (1.12)

Use of the continuity equation. As an example, suppose that in a bounded region
of space we have

Bt

p(r, 1) = pore”

We wish to find J and v, and to verify both versions of the continuity equation in point
form. The spherical symmetry of p requires that J = £J,. Application of (1.13) over a
sphere of radius a gives

d a
47r—f pore Prtdr = —4n J,(a)a’.
dr Jo

Hence
2

A r —
J= rﬂpoze Pt

and therefore
1La , —Bt
V= —5—0"J)=Bpore ™.
r? or
The velocity is
J

Aﬂr
v=—=18-,
0 4

and we have V - v = 38/4. To verify the continuity equations, we compute the time
derivatives

dp
o _ _ —pt
” Bpore "',
Dp ap
— =—4v-V
Dt at + P

= —Bpore P + (,3 ) (Rooe™"")

Bt

3
= —Zﬂporf



Note that the charge density decreases with time less rapidly for a moving observer than
for a stationary one (3/4 as fast): the moving observer is following the charge outward,
and p oc r. Now we can check the continuity equations. First we see

Dp 3

3
Dr +pV-v= —Zﬁpore_ﬁ’ + (pore=?" (Zﬂ> =0,

as required for a moving observer; second we see

0
8_1(; +V-J=—Bpore” ™ + ppoe ™ =0,

as required for a stationary observer.

The continuity equation in fewer dimensions. The continuity equation can also
be used to relate current and charge on a surface or along a line. By conservation of
charge we can write

i / os(r,1)dS = — % Js(r, 1) -mdl (1.14)
dt Jg r

where 1 is the vector normal to the curve I' and tangential to the surface S. By the
surface divergence theorem (B.20), the corresponding point form is

dps(r, 1)
ot

Here V; - J; is the surface divergence of the vector field J;. For instance, in rectangular
coordinates in the z = 0 plane we have

+V, - I, 1) =0. (1.15)

0Jsx + a-]sy

Vs' s = .
J ax dy

In cylindrical coordinates on the cylinder p = a, we would have
19J; 9Js
Ve Jo=— a4 4 =
a 0¢ 0z
A detailed description of vector operations on a surface may be found in Tai [190], while
many identities may be found in Van Bladel [202].

The equation of continuity for a line is easily established by reference to Figure 1.2.
Here the net charge exiting the surface during time At is given by

At[I(up, t) — I(uy, t)].

Thus, the rate of net increase of charge within the system is

do(t) d
g; = Efp,(r, 0dl = —[I(uy, 1) — I (uy, 1)]. (1.16)

The corresponding point form is found by letting the length of the curve approach zero:
aI(l, 1) n Il 1) _
al ot

where [ is arc length along the curve. As an example, suppose the line current on a
circular loop antenna is approximately

0, (1.17)

wa
c

I(p,t) = Iocos< qb) cos wt,
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Figure 1.2: Linear form of the continuityequation.

where a is the radius of the loop, w is the frequency of operation, and c¢ is the speed of
light. We wish to find the line charge density on the loop. Since [ = a¢, we can write

wl
I(l,t) = Iycos (—) cos wt.
c

Thus

al(l,t) w . (ol api(l, 1)
= —[lp—sin| — Jcoswt = — .
ol c c ot

Integrating with respect to time and ignoring any constant (static) charge, we have
Iy . (ol .
p(l,t) = —sin| — ) sinwt
c c
or
Iy . jwa )
p(p,t) = —sin (—QS) sin wt.
c c
Note that we could have used the chain rule

o1, _al@,ndp D _ [al ]‘1 _ 1

= an = | — -
al ap ol al [ ag a

to calculate the spatial derivative.

We can apply the volume density continuity equation (1.11) directly to surface and
line distributions written in singular notation. For the loop of the previous example, we
write the volume current density corresponding to the line current as

J@. 1) =¢8(p—a)s@)1(.1).
Substitution into (1.11) then gives

dp(r, 1)

V- [@8(p — a)d()I (¢, )] = — o

The divergence formula for cylindrical coordinates gives

A (p.1)  dp(.1)

8(p —a)é(2) 00 a7




Next we substitute for 1 (¢, t) to get

Iywa . jwa . _Bp(r, 1)
n <T¢) 8(p — () cos wr = — -,

Finally, integrating with respect to time and ignoring any constant term, we have

p(r, 1) = é(S(,o — a)é(z) sin (%qb) sin wt,
c c

where we have set p = a because of the presence of the factor §(p — a).

1.3.5 Magnetic charge

We take for granted that electric fields are produced by electric charges, whether
stationary or in motion. The smallest element of electric charge is the electric monopole:
a single discretely charged particle from which the electric field diverges. In contrast,
experiments show that magnetic fields are created only by currents or by time changing
electric fields; hence, magnetic fields have moving electric charge as their source. The
elemental source of magnetic field is the magnetic dipole, representing a tiny loop of
electric current (or a spinning electric particle). The observation made in 1269 by Pierre
De Maricourt, that even the smallest magnet has two poles, still holds today.

In a world filled with symmetry at the fundamental level, we find it hard to understand
why there should not be a source from which the magnetic field diverges. We would call
such a source magnetic charge, and the most fundamental quantity of magnetic charge
would be exhibited by a magnetic monopole. In 1931 Paul Dirac invigorated the search for
magnetic monopoles by making the first strong theoretical argument for their existence.
Dirac showed that the existence of magnetic monopoles would imply the quantization
of electric charge, and would thus provide an explanation for one of the great puzzles
of science. Since that time magnetic monopoles have become important players in the
“Grand Unified Theories” of modern physics, and in cosmological theories of the origin
of the universe.

If magnetic monopoles are ever found to exist, there will be both positive and negatively
charged particles whose motions will constitute currents. We can define a macroscopic
magnetic charge density p,, and current density J,, exactly as we did with electric charge,
and use conservation of magnetic charge to provide a continuity equation:

VI, t)+w =0. (1.18)

With these new sources Maxwell’s equations become appealingly symmetric. Despite
uncertainties about the existence and physical nature of magnetic monopoles, magnetic
charge and current have become an integral part of electromagnetic theory. We often use
the concept of fictitious magnetic sources to make Maxwell’s equations symmetric, and
then derive various equivalence theorems for use in the solution of important problems.
Thus we can put the idea of magnetic sources to use regardless of whether these sources
actually exist.



1.4 Problems

1.1 Write the volume charge density for a singular surface charge located on the sphere
r = ry, entirely in terms of spherical coordinates. Find the total charge on the sphere.

1.2 Repeat Problem 1.1 for a charged half plane ¢ = ¢.

1.3 Write the volume charge density for a singular surface charge located on the cylin-
der p = pp, entirely in terms of cylindrical coordinates. Find the total charge on the
cylinder.

1.4 Repeat Problem 1.3 for a charged half plane ¢ = ¢y.



Chapter 2

Maxwell’s theory of electromagnetism

2.1 The postulate

In 1864, James Clerk Maxwell proposed one of the most successful theories in the
history of science. In a famous memoir to the Royal Society [125] he presented nine
equations summarizing all known laws on electricity and magnetism. This was more
than a mere cataloging of the laws of nature. By postulating the need for an additional
term to make the set of equations self-consistent, Maxwell was able to put forth what
is still considered a complete theory of macroscopic electromagnetism. The beauty of
Maxwell’s equations led Boltzmann to ask, “Was it a god who wrote these lines ...?7”
[185].

Since that time authors have struggled to find the best way to present Maxwell’s
theory. Although it is possible to study electromagnetics from an “empirical-inductive”
viewpoint (roughly following the historical order of development beginning with static
fields), it is only by postulating the complete theory that we can do justice to Maxwell’s
vision. His concept of the existence of an electromagnetic “field” (as introduced by
Faraday) is fundamental to this theory, and has become one of the most significant
principles of modern science.

We find controversy even over the best way to present Maxwell’s equations. Maxwell
worked at a time before vector notation was completely in place, and thus chose to
use scalar variables and equations to represent the fields. Certainly the true beauty
of Maxwell’s equations emerges when they are written in vector form, and the use of
tensors reduces the equations to their underlying physical simplicity. We shall use vector
notation in this book because of its wide acceptance by engineers, but we still must
decide whether it is more appropriate to present the vector equations in integral or point
form.

On one side of this debate, the brilliant mathematician David Hilbert felt that the
fundamental natural laws should be posited as axioms, each best described in terms
of integral equations [154]. This idea has been championed by Truesdell and Toupin
[199]. On the other side, we may quote from the great physicist Arnold Sommerfeld:
“The general development of Maxwell’s theory must proceed from its differential form,;
for special problems the integral form may, however, be more advantageous” ([185], p.
23). Special relativity flows naturally from the point forms, with fields easily converted
between moving reference frames. For stationary media, it seems to us that the only
difference between the two approaches arises in how we handle discontinuities in sources
and materials. If we choose to use the point forms of Maxwell’s equations, then we must
also postulate the boundary conditions at surfaces of discontinuity. This is pointed out



clearly by Tai [192], who also notes that if the integral forms are used, then their validity
across regions of discontinuity should be stated as part of the postulate.

We have decided to use the point form in this text. In doing so we follow a long
history begun by Hertz in 1890 [85] when he wrote down Maxwell’s differential equations
as a set of axioms, recognizing the equations as the launching point for the theory of
electromagnetism. Also, by postulating Maxwell’s equations in point form we can take
full advantage of modern developments in the theory of partial differential equations; in
particular, the idea of a “well-posed” theory determines what sort of information must
be specified to make the postulate useful.

We must also decide which form of Maxwell’s differential equations to use as the basis
of our postulate. There are several competing forms, each differing on the manner in
which materials are considered. The oldest and most widely used form was suggested
by Minkowski in 1908 [130]. In the Minkowski form the differential equations contain
no mention of the materials supporting the fields; all information about material media
is relegated to the constitutive relationships. This places simplicity of the differential
equations above intuitive understanding of the behavior of fields in materials. We choose
the Maxwell-Minkowski form as the basis of our postulate, primarily for ease of ma-
nipulation. But we also recognize the value of other versions of Maxwell’s equations.
We shall present the basic ideas behind the Boffi form, which places some information
about materials into the differential equations (although constitutive relationships are
still required). Missing, however, is any information regarding the velocity of a moving
medium. By using the polarization and magnetization vectors P and M rather than the
fields D and H, it is sometimes easier to visualize the meaning of the field vectors and
to understand (or predict) the nature of the constitutive relations.

The Chu and Amperian forms of Maxwell’s equations have been promoted as useful
alternatives to the Minkowski and Boffi forms. These include explicit information about
the velocity of a moving material, and differ somewhat from the Boffi form in the physical
interpretation of the electric and magnetic properties of matter. Although each of these
models matter in terms of charged particles immersed in free space, magnetization in the
Boffi and Amperian forms arises from electric current loops, while the Chu form employs
magnetic dipoles. In all three forms polarization is modeled using electric dipoles. For a
detailed discussion of the Chu and Amperian forms, the reader should consult the work
of Kong [101], Tai [193], Penfield and Haus [145], or Fano, Chu and Adler [70].

Importantly, all of these various forms of Maxwell’s equations produce the same values
of the physical fields (at least external to the material where the fields are measurable).

We must include several other constituents, besides the field equations, to make the
postulate complete. To form a complete field theory we need a source field, a mediating
field, and a set of field differential equations. This allows us to mathematically describe
the relationship between effect (the mediating field) and cause (the source field). In
a well-posed postulate we must also include a set of constitutive relationships and a
specification of some field relationship over a bounding surface and at an initial time. If
the electromagnetic field is to have physical meaning, we must link it to some observable
quantity such as force. Finally, to allow the solution of problems involving mathematical
discontinuities we must specify certain boundary, or “jump,” conditions.

2.1.1 The Maxwell-Minkowski equations

In Maxwell’s macroscopic theory of electromagnetics, the source field consists of the
vector field J(r, 7) (the current density) and the scalar field p(r, ) (the charge density).



In Minkowski’s form of Maxwell’s equations, the mediating field is the electromagnetic
field consisting of the set of four vector fields E(r, t), D(r, t), B(r, t), and H(r, ). The field
equations are the four partial differential equations referred to as the Mazwell-Minkowski
equations

3
VX E(r.0) =~ B(r.1), (2.1)
V x H(r, 1) = J(r, ) + %D(r, 0, (2.2)
V.D(r, 1) = p(r, 1), (2.3)
V.B(,1) =0, (2.4)

along with the continuity equation
ad
VI, t) = —Ep(r, 1). (2.5)

Here (2.1) is called Faraday’s law, (2.2) is called Ampere’s law, (2.3) is called Gauss’s
law, and (2.4) is called the magnetic Gauss’s law. For brevity we shall often leave the
dependence on r and ¢ implicit, and refer to the Maxwell-Minkowski equations as simply
the “Maxwell equations,” or “Maxwell’s equations.”

Equations (2.1)—(2.5), the point forms of the field equations, describe the relation-
ships between the fields and their sources at each point in space where the fields are
continuously differentiable (i.e., the derivatives exist and are continuous). Such points
are called ordinary points. We shall not attempt to define the fields at other points,
but instead seek conditions relating the fields across surfaces containing these points.
Normally this is necessary on surfaces across which either sources or material parameters
are discontinuous.

The electromagnetic fields carry SI units as follows: E is measured in Volts per meter
(V/m), B is measured in Teslas (T), H is measured in Amperes per meter (A/m), and
D is measured in Coulombs per square meter (C/m?). In older texts we find the units of
B given as Webers per square meter (Wh/m?) to reflect the role of B as a flux vector; in
that case the Weber (Wb = T-m?) is regarded as a unit of magnetic flux.

The interdependence of Maxwell’s equations. It is often claimed that the diver-
gence equations (2.3) and (2.4) may be derived from the curl equations (2.1) and (2.2).
While this is true, it is not proper to say that only the two curl equations are required
to describe Maxwell’s theory. This is because an additional physical assumption, not
present in the two curl equations, is required to complete the derivation. Either the
divergence equations must be specified, or the values of certain constants that fix the
initial conditions on the fields must be specified. It is customary to specify the divergence
equations and include them with the curl equations to form the complete set we now call
“Maxwell’s equations.”
To identify the interdependence we take the divergence of (2.1) to get

V- (VXE)=V 9B
-(VxE) = '<—§),

hence

d
—(V-B)=0
5 VB



by (B.49). This requires that V - B be constant with time, say V - B(r,t) = Cg(r).
The constant Cp must be specified as part of the postulate of Maxwell’s theory, and
the choice we make is subject to experimental validation. We postulate that Cp(r) = 0,
which leads us to (2.4). Note that if we can identify a time prior to which B(r,t) = 0,
then Cg(r) must vanish. For this reason, Cp(r) = 0 and (2.4) are often called the “initial
conditions” for Faraday’s law [159]. Next we take the divergence of (2.2) to find that

d
V- (VxH) =V-J+ (VD).
Using (2.5) and (B.49), we obtain
9 ( V-D)=0
TR B

and thus p — V - D must be some temporal constant Cp(r). Again, we must postulate
the value of Cp as part of the Maxwell theory. We choose Cp(r) = 0 and thus obtain
Gauss’s law (2.3). If we can identify a time prior to which both D and p are everywhere
equal to zero, then Cp(r) must vanish. Hence Cp(r) = 0 and (2.3) may be regarded
as “initial conditions” for Ampere’s law. Combining the two sets of initial conditions,
we find that the curl equations imply the divergence equations as long as we can find a
time prior to which all of the fields E, D, B, H and the sources J and p are equal to zero
(since all the fields are related through the curl equations, and the charge and current are
related through the continuity equation). Conversely, the empirical evidence supporting
the two divergence equations implies that such a time should exist.

Throughout this book we shall refer to the two curl equations as the “fundamental”
Maxwell equations, and to the two divergence equations as the “auxiliary” equations.
The fundamental equations describe the relationships between the fields while, as we
have seen, the auxiliary equations provide a sort of initial condition. This does not
imply that the auxiliary equations are of lesser importance; indeed, they are required
to establish uniqueness of the fields, to derive the wave equations for the fields, and to
properly describe static fields.

Field vector terminology. Various terms are used for the field vectors, sometimes
harkening back to the descriptions used by Maxwell himself, and often based on the
physical nature of the fields. We are attracted to Sommerfeld’s separation of the fields
into entities of intensity (E, B) and entities of quantity (D, H). In this system E is called
the electric field strength, B the magnetic field strength, D the electric excitation, and H
the magnetic excitation [185]. Maxwell separated the fields into a set (E, H) of vectors
that appear within line integrals to give work-related quantities, and a set (B, D) of
vectors that appear within surface integrals to give flux-related quantities; we shall see
this clearly when considering the integral forms of Maxwell’s equations. By this system,
authors such as Jones [97] and Ramo, Whinnery, and Van Duzer [153] call E the electric
intensity, H the magnetic intensity, B the magnetic flux density, and D the electric fluzx
density.

Maxwell himself designated names for each of the vector quantities. In his classic
paper “A Dynamical Theory of the Electromagnetic Field,” [178] Maxwell referred to
the quantity we now designate E as the electromotive force, the quantity D as the elec-
tric displacement (with a time rate of change given by his now famous “displacement
current”), the quantity H as the magnetic force, and the quantity B as the magnetic



induction (although he described B as a density of lines of magnetic force). Maxwell
also included a quantity designated electromagnetic momentum as an integral part of his
theory. We now know this as the vector potential A which is not generally included as a
part of the electromagnetics postulate.

Many authors follow the original terminology of Maxwell, with some slight modifica-
tions. For instance, Stratton [187] calls E the electric field intensity, H the magnetic
field intensity, D the electric displacement, and B the magnetic induction. Jackson [91]
calls E the electric field, H the magnetic field, D the displacement, and B the magnetic
induction.

Other authors choose freely among combinations of these terms. For instance, Kong
[101] calls E the electric field strength, H the magnetic field strength, B the magnetic flux
density, and D the electric displacement. We do not wish to inject further confusion into
the issue of nomenclature; still, we find it helpful to use as simple a naming system as
possible. We shall refer to E as the electric field, H as the magnetic field, D as the electric
flux density and B as the magnetic flur density. When we use the term electromagnetic
field we imply the entire set of field vectors (E, D, B, H) used in Maxwell’s theory.

Invariance of Maxwell’s equations. Maxwell’s differential equations are valid for
any system in uniform relative motion with respect to the laboratory frame of reference in
which we normally do our measurements. The field equations describe the relationships
between the source and mediating fields within that frame of reference. This property
was first proposed for moving material media by Minkowski in 1908 (using the term
covariance) [130]. For this reason, Maxwell’s equations expressed in the form (2.1)—(2.2)
are referred to as the Minkowski form.

2.1.2 Connection to mechanics

Our postulate must include a connection between the abstract quantities of charge and
field and a measurable physical quantity. A convenient means of linking electromagnetics
to other classical theories is through mechanics. We postulate that charges experience
mechanical forces given by the Lorentz force equation. If a small volume element dV
contains a total charge p dV, then the force experienced by that charge when moving at
velocity v in an electromagnetic field is

dF = pdVE+ pvdV x B. (2.6)
As with any postulate, we verify this equation through experiment. Note that we write
the Lorentz force in terms of charge p dV, rather than charge density p, since charge is
an invariant quantity under a Lorentz transformation.

The important links between the electromagnetic fields and energy and momentum
must also be postulated. We postulate that the quantity

Sen =E xH (2.7)
represents the transport density of electromagnetic power, and that the quantity
g =D xB (2.8)

represents the transport density of electromagnetic momentum.



2.2 The well-posed nature of the postulate

It is important to investigate whether Maxwell’s equations, along with the point form
of the continuity equation, suffice as a useful theory of electromagnetics. Certainly we
must agree that a theory is “useful” as long as it is defined as such by the scientists and
engineers who employ it. In practice a theory is considered useful if it predicts accurately
the behavior of nature under given circumstances, and even a theory that often fails may
be useful if it is the best available. We choose here to take a more narrow view and
investigate whether the theory is “well-posed.”

A mathematical model for a physical problem is said to be well-posed, or correctly set,
if three conditions hold:

1. the model has at least one solution (existence);
2. the model has at most one solution (uniqueness);
3. the solution is continuously dependent on the data supplied.

The importance of the first condition is obvious: if the electromagnetic model has no
solution, it will be of little use to scientists and engineers. The importance of the second
condition is equally obvious: if we apply two different solution methods to the same
model and get two different answers, the model will not be very helpful in analysis or
design work. The third point is more subtle; it is often extended in a practical sense to
the following statement:

3’. Small changes in the data supplied produce equally small changes in the solution.

That is, the solution is not sensitive to errors in the data. To make sense of this we
must decide which quantity is specified (the independent quantity) and which remains
to be calculated (the dependent quantity). Commonly the source field (charge) is taken
as the independent quantity, and the mediating (electromagnetic) field is computed from
it; in such cases it can be shown that Maxwell’s equations are well-posed. Taking the
electromagnetic field to be the independent quantity, we can produce situations in which
the computed quantity (charge or current) changes wildly with small changes in the
specified fields. These situations (called inverse problems) are of great importance in
remote sensing, where the field is measured and the properties of the object probed are
thereby deduced.

At this point we shall concentrate on the “forward” problem of specifying the source
field (charge) and computing the mediating field (the electromagnetic field). In this case
we may question whether the first of the three conditions (existence) holds. We have
twelve unknown quantities (the scalar components of the four vector fields), but only
eight equations to describe them (from the scalar components of the two fundamental
Maxwell equations and the two scalar auxiliary equations). With fewer equations than
unknowns we cannot be sure that a solution exists, and we refer to Maxwell’s equations
as being indefinite. To overcome this problem we must specify more information in
the form of constitutive relations among the field quantities E, B, D, H, and J. When
these are properly formulated, the number of unknowns and the number of equations
are equal and Maxwell’s equations are in definite form. If we provide more equations
than unknowns, the solution may be non-unique. When we model the electromagnetic
properties of materials we must supply precisely the right amount of information in the
constitutive relations, or our postulate will not be well-posed.



Once Maxwell’s equations are in definite form, standard methods for partial differential
equations can be used to determine whether the electromagnetic model is well-posed. In
a nutshell, the system (2.1)—(2.2) of hyperbolic differential equations is well-posed if and
only if we specify E and H throughout a volume region V at some time instant and also
specify, at all subsequent times,

1. the tangential component of E over all of the boundary surface S, or

2. the tangential component of H over all of S, or

3. the tangential component of E over part of S, and the tangential component of H
over the remainder of S.

Proof of all three of the conditions of well-posedness is quite tedious, but a simplified
uniqueness proof is often given in textbooks on electromagnetics. The procedure used
by Stratton [187] is reproduced below. The interested reader should refer to Hansen [81]
for a discussion of the existence of solutions to Maxwell’s equations.

2.2.1 Uniqueness of solutions to Maxwell’sequations

Consider a simply connected region of space V bounded by a surface S, where both
V and S contain only ordinary points. The fields within V are associated with a current
distribution J, which may be internal to V (entirely or in part). By the initial conditions
that imply the auxiliary Maxwell’s equations, we know there is a time, say ¢ = 0, prior
to which the current is zero for all time, and thus by causality the fields throughout V
are identically zero for all times t < 0. We next assume that the fields are specified
throughout V at some time #y > 0, and seek conditions under which they are determined
uniquely for all ¢ > fg.

Let the field set (E;,D;,B;,H;) be a solution to Maxwell’s equations (2.1)—(2.2)
associated with the current J (along with an appropriate set of constitutive relations),
and let (E,, D,, B,, Hy) be a second solution associated with J. To determine the con-

ditions for uniqueness of the fields, we look for a situation that results in E; = E,,
B; = B;, and so on. The electromagnetic fields must obey
oB
V x E1 = ——1,
ot
aD
VxH =J+—,
at
B,
VxE,=——7,
at
aD,
VxH,=J+—.
ot
Subtracting, we have
B, —B
V x (B — Ey) = —%, (2.9)
a(D; —D
Vx (H, —Hy) = (D1 =D o ) (2.10)
hence defining Eg = E; — E;, B) = B; — B;, and so on, we have
aD
Eo - (V x Hy) =E0-a—t0, (2.11)
By
Hy- (VxEg) =-Hy- — (2.12)

ar



Subtracting again, we have

3B, D,
Eo-(VxHy) —Hy-(VxE)=Hy- — +Eo- —,
dat ot
hence
oD B
—V - (g x Hy) =Ey- — +Hy- —
at Jt

by (B.44). Integrating both sides throughout V and using the divergence theorem on the
left-hand side, we get

D, 9B
—f(onHO)-dszf <E0 24 H,- °> dv.
K 1% ot ot

Breaking S into two arbitrary portions and using (B.6), we obtain

aD, 9B
/Eo-(ﬁxHo)dS—/Ho-(ﬁxEo)dS=/<E0 +H,- 0) av.
S S5 8t ot

Now if i x Eg = 0 or i x Hy = 0 over all of §, or some combination of these conditions

holds over all of S, then
/ Ot AL IR (2.13)
U0 " or o '

This expression implies a relationship between Eg, Dy, By, and Hy. Since V is arbitrary,
we see that one possibility is simply to have Dy and By constant with time. However,
since the fields are identically zero for ¢t < 0, if they are constant for all time then those
constant values must be zero. Another possibility is to have one of each pair (Eg, D)
and (Ho, Bg) equal to zero. Then, by (2.9) and (2.10), Eo = 0 implies By = 0, and
Dy = 0 implies Hy = 0. Thus E; = E;, B; = B;, and so on, and the solution is unique
throughout V. However, we cannot in general rule out more complicated relationships.
The number of possibilities depends on the additional constraints on the relationship
between Ey, Dy, By, and Hy that we must supply to describe the material supporting
the field — i.e., the constitutive relationships. For a simple medium described by the
time-constant permittivity € and permeability u, (13) becomes

9K 9H
/ Eo-e—2 +Hy - u—2) dv =0,
v ot ot

or

%32 (eEog-Eo+ uHp - Hp)dV = 0.

Since the integrand is always positive or zero (and not constant with time, as mentioned
above), the only possible conclusion is that Ey and Hy must both be zero, and thus the
fields are unique.

When establishing more complicated constitutive relations, we must be careful to en-
sure that they lead to a unique solution, and that the condition for uniqueness is un-
derstood. In the case above, the assumption fi x E0|s = 0 implies that the tangential
components of E; and E; are identical over § — that is, we must give specific values of
these quantities on S to ensure uniqueness. A similar statement holds for the condition
i X H0| s = 0. Requiring that constitutive relations lead to a unique solution is known



as just setting, and is one of several factors that must be considered, as discussed in the
next section.

Uniqueness implies that the electromagnetic state of an isolated region of space may
be determined without the knowledge of conditions outside the region. If we wish to
solve Maxwell’s equations for that region, we need know only the source density within
the region and the values of the tangential fields over the bounding surface. The effects
of a complicated external world are thus reduced to the specification of surface fields.
This concept has numerous applications to problems in antennas, diffraction, and guided
waves.

2.2.2 Constitutive relations

We now supply a set of constitutive relations to complete the conditions for well-
posedness. We generally split these relations into two sets. The first describes the
relationships between the electromagnetic field quantities, and the second describes me-
chanical interaction between the fields and resulting secondary sources. All of these
relations depend on the properties of the medium supporting the electromagnetic field.
Material phenomena are quite diverse, and it is remarkable that the Maxwell-Minkowski
equations hold for all phenomena yet discovered. All material effects, from nonlinearity
to chirality to temporal dispersion, are described by the constitutive relations.

The specification of constitutive relationships is required in many areas of physical
science to describe the behavior of “ideal materials”: mathematical models of actual
materials encountered in nature. For instance, in continuum mechanics the constitutive
equations describe the relationship between material motions and stress tensors [209].
Truesdell and Toupin [199] give an interesting set of “guiding principles” for the con-
cerned scientist to use when constructing constitutive relations. These include consider-
ation of consistency (with the basic conservation laws of nature), coordinate invariance
(independence of coordinate system), isotropy and aeolotropy (dependence on, or inde-
pendence of, orientation), just setting (constitutive parameters should lead to a unique
solution), dimensional invariance (similarity), material indifference (non-dependence on
the observer), and equipresence (inclusion of all relevant physical phenomena in all of
the constitutive relations across disciplines).

The constitutive relations generally involve a set of constitutive parameters and a set
of constitutive operators. The constitutive parameters may be as simple as constants
of proportionality between the fields or they may be components in a dyadic relation-
ship. The constitutive operators may be linear and integro-differential in nature, or may
imply some nonlinear operation on the fields. If the constitutive parameters are spa-
tially constant within a certain region, we term the medium homogeneous within that
region. If the constitutive parameters vary spatially, the medium is inhomogeneous. If
the constitutive parameters are constants with time, we term the medium stationary;
if they are time-changing, the medium is nonstationary. If the constitutive operators
involve time derivatives or integrals, the medium is said to be temporally dispersive; if
space derivatives or integrals are involved, the medium is spatially dispersive. Examples
of all these effects can be found in common materials. It is important to note that the
constitutive parameters may depend on other physical properties of the material, such
as temperature, mechanical stress, and isomeric state, just as the mechanical constitu-
tive parameters of a material may depend on the electromagnetic properties (principle
of equipresence).

Many effects produced by linear constitutive operators, such as those associated with



temporal dispersion, have been studied primarily in the frequency domain. In this case
temporal derivative and integral operations produce complex constitutive parameters. It
is becoming equally important to characterize these effects directly in the time domain
for use with direct time-domain field solving techniques such as the finite-difference time-
domain (FDTD) method. We shall cover the very basic properties of dispersive media
in this section. A detailed description of frequency-domain fields (and a discussion of
complex constitutive parameters) is deferred until later in this book.

It is difficult to find a simple and consistent means for classifying materials by their
electromagnetic effects. One way is to separate linear and nonlinear materials, then cate-
gorize linear materials by the way in which the fields are coupled through the constitutive
relations:

1. Isotropic materials are those in which D is related to E, B is related to H, and
the secondary source current J is related to E, with the field direction in each pair
aligned.

2. In anisotropic materials the pairings are the same, but the fields in each pair are
generally not aligned.

3. In biisotropic materials (such as chiral media) the fields D and B depend on both
E and H, but with no realignment of E or H; for instance, D is given by the
addition of a scalar times E plus a second scalar times H. Thus the contributions
to D involve no changes to the directions of E and H.

4. Bianisotropic materials exhibit the most general behavior: D and H depend on both
E and B, with an arbitrary realignment of either or both of these fields.

In 1888, Roentgen showed experimentally that a material isotropic in its own station-
ary reference frame exhibits bianisotropic properties when observed from a moving frame.
Only recently have materials bianisotropic in their own rest frame been discovered. In
1894 Curie predicted that in a stationary material, based on symmetry, an electric field
might produce magnetic effects and a magnetic field might produce electric effects. These
effects, coined magnetoelectric by Landau and Lifshitz in 1957, were sought unsuccess-
fully by many experimentalists during the first half of the twentieth century. In 1959 the
Soviet scientist I.E. Dzyaloshinskii predicted that, theoretically, the antiferromagnetic
material chromium oxide (Cr,O3) should display magnetoelectric effects. The magneto-
electric effect was finally observed soon after by D.N. Astrov in a single crystal of Cr,O;
using a 10 kHz electric field. Since then the effect has been observed in many different
materials. Recently, highly exotic materials with useful electromagnetic properties have
been proposed and studied in depth, including chiroplasmas and chiroferrites [211]. As
the technology of materials synthesis advances, a host of new and intriguing media will
certainly be created.

The most general forms of the constitutive relations between the fields may be written
in symbolic form as

D = D[E, B], (2.14)
H = H[E, B]. (2.15)

That is, D and H have some mathematically descriptive relationship to E and B. The
specific forms of the relationships may be written in terms of dyadics as [102]

cD=P-E+L-(cB), (2.16)
H=M-E+ Q- (cB), (2.17)



where each of the quantities P, L, M, Q may be dyadics in the usual sense, or dyadic
operators containing space or time derivatives or integrals, or some nonlinear operations
on the fields. We may write these expressions as a single matrix equation

[Cll{)] —[C] [i} (2.18)

= P L
[C] = |:1\_/[ Qi| .
This most general relationship between fields is the property of a bianisotropic material.

We may wonder why D is not related to (E, B, H), E to (D, B), etc. The reason is
that since the field pairs (E, B) and (D, H) convert identically under a Lorentz transfor-
mation, a constitutive relation that maps fields as in (2.18) is form invariant, as are the
Maxwell-Minkowski equations. That is, although the constitutive parameters may vary
numerically between observers moving at different velocities, the form of the relationship
given by (2.18) is maintained.

Many authors choose to relate (D, B) to (E, H), often because the expressions are
simpler and can be more easily applied to specific problems. For instance, in a linear,
isotropic material (as shown below) D is directly proportional to E and B is directly
proportional to H. To provide the appropriate expression for the constitutive relations,
we need only remap (2.18). This gives

where the 6 x 6 matrix

D= ‘H, (2.19)
B = H,

E+
‘E+ - (2.20)
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where the new constitutive parameters €, E , é’ , it can be easily found from the original
constitutive parameters P, L, M, Q. We do note, however, that in the form (2.19)-(2.20)
the Lorentz invariance of the constitutive equations is not obvious.

In the following paragraphs we shall characterize some of the most common materials
according to these classifications. With this approach effects such as temporal or spatial
dispersion are not part of the classification process, but arise from the nature of the
constitutive parameters. Hence we shall not dwell on the particulars of the constitutive
parameters, but shall concentrate on the form of the constitutive relations.

N

or

Constitutive relations for fields in free space. In a vacuum the fields are related
by the simple constitutive equations

D = ¢E, (2.22)
1

H=—B. (2.23)
Ho

The quantities wo and €y are, respectively, the free-space permeability and permittivity
constants. It is convenient to use three numerical quantities to describe the electromag-
netic properties of free space — g, €, and the speed of light ¢ — and interrelate them
through the equation

¢ = 1/(noeo)'?.



Historically it has been the practice to define g, measure ¢, and compute €y. In SI units

wo =4m x 1077 H/m,
c=2998 x 10° m/s,
€0 = 8.854 x 10712 F/m.
With the two constitutive equations we have enough information to put Maxwell’s

equations into definite form. Traditionally (2.22) and (2.23) are substituted into (2.1)—
(2.2) to give

B
VXE=——, (2.24)
ot
oE
V xB = uyJ + noeo—. (225)

ot

These are two vector equations in two vector unknowns (equivalently, six scalar equations
in six scalar unknowns).

In terms of the general constitutive relation (2.18), we find that free space is isotropic
with

_ _ 1.
P=Q=—1I, L=M=0,
No

where 19 = (uo/€0)"/? is called the intrinsic impedance of free space. This emphasizes

the fact that free space has, along with ¢, only a single empirical constant associated
with it (i.e., € or 19). Since no derivative or integral operators appear in the constitutive
relations, free space is nondispersive.

Constitutive relations in a linear isotropic material. In a linear isotropic mate-
rial there is proportionality between D and E and between B and H. The constants of
proportionality are the permittivity € and the permeability w. If the material is nondis-
persive, the constitutive relations take the form

D=¢E,  B=uH,

where € and © may depend on position for inhomogeneous materials. Often the permit-
tivity and permeability are referenced to the permittivity and permeability of free space
according to

€ = €€, W= Krlo.

Here the dimensionless quantities €, and u, are called, respectively, the relative permit-
tivity and relative permeability.

When dealing with the Maxwell-Boffi equations (§ 2.4) the difference between the
material and free space values of D and H becomes important. Thus for linear isotropic
materials we often write the constitutive relations as

D= EOE + GOXeE’ (226)
B = uoH + wox.H, (2.27)

where the dimensionless quantities x, = €, — 1 and x,, = u, — 1 are called, respectively,
the electric and magnetic susceptibilities of the material. In terms of (2.18) we have

| - _

€ I L=M=o.

P = —ri, Q =
1o noMr




Generally a material will have either its electric or magnetic properties dominant. If
ur = 1 and €, # 1 then the material is generally called a perfect dielectric or a perfect
insulator, and is said to be an electric material. If €, = 1 and u, # 1, the material is
said to be a magnetic material.

A linear isotropic material may also have conduction properties. In a conducting
material, a constitutive relation is generally used to describe the mechanical interaction
of field and charge by relating the electric field to a secondary electric current. For
a nondispersive isotropic material, the current is aligned with, and proportional to, the
electric field; there are no temporal operators in the constitutive relation, which is simply

J=0E. (2.28)

This is known as Ohm’s law. Here o is the conductivity of the material.

If u, = 1 and o is very small, the material is generally called a good dielectric. If
o is very large, the material is generally called a good conductor. The conditions by
which we say the conductivity is “small” or “large” are usually established using the
frequency response of the material. Materials that are good dielectrics over broad ranges
of frequency include various glasses and plastics such as fused quartz, polyethylene,
and teflon. Materials that are good conductors over broad ranges of frequency include
common metals such as gold, silver, and copper.

For dispersive linear isotropic materials, the constitutive parameters become nonsta-
tionary (time dependent), and the constitutive relations involve time operators. (Note
that the name dispersive describes the tendency for pulsed electromagnetic waves to
spread out, or disperse, in materials of this type.) If we assume that the relationships
given by (2.26), (2.27), and (2.28) retain their product form in the frequency domain,
then by the convolution theorem we have in the time domain the constitutive relations

D(r, 1) = € (E(r, 1) +/ Xxe(r, 1 —tHE(r, 1) dt’) , (2.29)
B(r,1) = wo (H(r, 1)+ / Xm(x, t —tHH(r, t) dt’) , (2.30)
J@, 1) = / o(r,t —t)E(,t)dt. (2.31)

These expressions were first introduced by Volterra in 1912 [199]. We see that for a linear
dispersive material of this type the constitutive operators are time integrals, and that
the behavior of D(z) depends not only on the value of E at time ¢, but on its values at
all past times. Thus, in dispersive materials there is a “time lag” between the effect of
the applied field and the polarization or magnetization that results. In the frequency
domain, temporal dispersion is associated with complex values of the constitutive pa-
rameters, which, to describe a causal relationship, cannot be constant with frequency.
The nonzero imaginary component is identified with the dissipation of electromagnetic
energy as heat. Causality is implied by the upper limit being ¢ in the convolution inte-
grals, which indicates that D(f) cannot depend on future values of E(¢). This assumption
leads to a relationship between the real and imaginary parts of the frequency domain
constitutive parameters as described through the Kronig—Kramers equations.

Constitutive relations for fields in perfect conductors. In a perfect electric con-
ductor (PEC) or a perfect magnetic conductor (PMC) the fields are exactly specified as



the null field:

By Ampere’s and Faraday’s laws we must also have J = J,, = 0; hence, by the continuity
equation, p = p,, = 0.

In addition to the null field, we have the condition that the tangential electric field
on the surface of a PEC must be zero. Similarly, the tangential magnetic field on the
surface of a PMC must be zero. This implies (§ 2.8.3) that an electric surface current
may exist on the surface of a PEC but not on the surface of a PMC, while a magnetic
surface current may exist on the surface of a PMC but not on the surface of a PEC.

A PEC may be regarded as the limit of a conducting material as ¢ — co. In many
practical cases, good conductors such as gold and copper can be assumed to be perfect
electric conductors, which greatly simplifies the application of boundary conditions. No
physical material is known to behave as a PMC, but the concept is mathematically
useful for applying symmetry conditions (in which a PMC is sometimes referred to as a
“magnetic wall”) and for use in developing equivalence theorems.

Constitutive relations in a linear anisotropic material. In a linear anisotropic
material there are relationships between B and H and between D and E, but the field
vectors are not aligned as in the isotropic case. We can thus write

D=¢-E, B=pn-H, J=20"E,

where € is called the permittivity dyadic, i is the permeability dyadic, and & is the
conductivity dyadic. In terms of the general constitutive relation (2.18) we have

-—1

P:CE, Q:—N s I::M:O
c
Many different types of materials demonstrate anisotropic behavior, including opti-

cal crystals, magnetized plasmas, and ferrites. Plasmas and ferrites are examples of
gyrotropic media. With the proper choice of coordinate system, the frequency-domain
permittivity or permeability can be written in matrix form as

) €l €2 0 3 mir pi2 0
[e]l=| —€npenn 0 |, [l =| —pmi2 pir 0 . (2.32)
0 0 €33 0 0 M33

Each of the matrix entries may be complex. For the special case of a lossless gyrotropic
material, the matrices become hermitian:

€ —j§ 0 uw —jk 0
[@l=[js ¢ 0|, [@al=|jc n 0], (2.33)
0 0 e 0 0 pus3

where €, €3, 8, u, i3, and k are real numbers.

Crystals have received particular attention because of their birefringent properties. A
birefringent crystal can be characterized by a symmetric permittivity dyadic that has real
permittivity parameters in the frequency domain; equivalently, the constitutive relations
do not involve constitutive operators. A coordinate system called the principal system,
with axes called the principal azes, can always be found so that the permittivity dyadic
in that system is diagonal:

e 00

[El=] 0¢ O
0 0e



The geometrical structure of a crystal determines the relationship between e, €,, and
;. If €, = €, < €, then the crystal is positive uniazial (e.g., quartz). If €, = €, > €,
the crystal is negative uniazial (e.g., calcite). If €, # €, # €,, the crystal is biazial (e.g.,
mica). In uniaxial crystals the z-axis is called the optical axis.

If the anisotropic material is dispersive, we can generalize the convolutional form of
the isotropic dispersive media to obtain the constitutive relations

D(r,t) = ¢ (E(r, 1) +/ Xe(r,t —1') - E(r, 1) dﬂ) , (2.34)
B(r,t) = o <H(r, 1)+ / Xm(r, t — 1) -H(r, t) d[’) , (2.35)
J(r,1) =/ o(r,t —1")-E(r,t)drt. (2.36)

Constitutive relations for biisotropic materials. A biisotropic material is an
isotropic magnetoelectric material. Here we have D related to E and B, and H related to
E and B, but with no realignment of the fields as in anisotropic (or bianisotropic) mate-
rials. Perhaps the simplest example is the Tellegen medium devised by B.D.H. Tellegen
in 1948 [196], having

D = ¢E + £H, (2.37)
B = £E + yuH. (2.38)

Tellegen proposed that his hypothetical material be composed of small (but macroscopic)
ferromagnetic particles suspended in a liquid. This is an example of a synthetic mate-
rial, constructed from ordinary materials to have an exotic electromagnetic behavior.
Other examples include artificial dielectrics made from metallic particles imbedded in
lightweight foams [66], and chiral materials made from small metallic helices suspended
in resins [112].

Chiral materials are also biisotropic, and have the constitutive relations

D=eE— 0 (2.39)
=€eE — y—, )
X5t
OE
B=uH+ X (2.40)

where the constitutive parameter x is called the chirality parameter. Note the presence
of temporal derivative operators. Alternatively,

D = ¢(E + 8V x E), (2.41)
B = u(H+ BV x H), (2.42)

by Faraday’s and Ampere’s laws. Chirality is a natural state of symmetry; many natural
substances are chiral materials, including DNA and many sugars. The time derivatives
in (2.39)—(2.40) produce rotation of the polarization of time harmonic electromagnetic
waves propagating in chiral media.

Constitutive relations in nonlinear media. Nonlinear electromagnetic effects have
been studied by scientists and engineers since the beginning of the era of electrical tech-
nology. Familiar examples include saturation and hysteresis in ferromagnetic materials



and the behavior of p-n junctions in solid-state rectifiers. The invention of the laser
extended interest in nonlinear effects to the realm of optics, where phenomena such as
parametric amplification and oscillation, harmonic generation, and magneto-optic inter-
actions have found applications in modern devices [174].

Provided that the external field applied to a nonlinear electric material is small com-
pared to the internal molecular fields, the relationship between E and D can be expanded
in a Taylor series of the electric field. For an anisotropic material exhibiting no hysteresis
effects, the constitutive relation is [131]

3 3
Di(r, 1) = 6Ei(r,0) + Y xS E;j(r,0)+ Y xS Ej(r, D Ex(r, 1) +

= k=1

3
+ Z Xi(jslzlEj(n DE(x, )E/(r,t) +--- (2.43)
k=1

where the index i = 1,2, 3 refers to the three components of the fields D and E. The
first sum in (2.43) is identical to the constitutive relation for linear anisotropic materi-
als. Thus, Xi(j]) is identical to the susceptibility dyadic of a linear anisotropic medium
considered earlier. The quantity Xi(jzk) is called the second-order susceptibility, and is a
three-dimensional matrix (or third rank tensor) describing the nonlinear electric effects
quadratic in E. Similarly Xﬁk)l is called the third-order susceptibility, and is a four-
dimensional matrix (or fourth rank tensor) describing the nonlinear electric effects cubic

in E. Numerical values of Xl.(jzz and Xi?,gl are given in Shen [174] for a variety of crystals.

When the material shows hysteresis effects, D at any point r and time ¢ is due not only
to the value of E at that point and at that time, but to the values of E at all points and
times. That is, the material displays both temporal and spatial dispersion.

2.3 Maxwell’s equations in moving frames

The essence of special relativity is that the mathematical forms of Maxwell’s equa-
tions are identical in all inertial reference frames: frames moving with uniform velocities
relative to the laboratory frame of reference in which we perform our measurements.
This form invariance of Maxwell’s equations is a specific example of the general physical
principle of covariance. In the laboratory frame we write the differential equations of
Maxwell’s theory as

V x E(r, 1) = _Br.0 t),
ot
V x H(r,t) = J(, 1) + %,
V.-D(r,t) = p(r, 1),
V- -B(r,1) =0,
VI, 1) = et t)-

Jt



x

Figure 2.1: Primed coordinate system moving with velocity v relative to laboratory
(unprimed) coordinate system.

Similarly, in an inertial frame having four-dimensional coordinates (r’, ") we have
oB'(r', t)
ar
VxHE,!)y=J,t)+
VD', 1) =p' (1),
vV .B'{,t)=0,
0p' (X', 1)
ar
The primed fields measured in the moving system do not have the same numerical values

as the unprimed fields measured in the laboratory. To convert between E and E’, B and
B’, and so on, we must find a way to convert between the coordinates (r, t) and (r/, ¢').

V' xE@,t) =
D (¥, 1)
o

V/ . J/(I'/, l/) —

2.3.1 Field conversions under Galilean transformation

We shall assume that the primed coordinate system moves with constant velocity v
relative to the laboratory frame (Figure 2.1). Prior to the early part of the twentieth
century, converting between the primed and unprimed coordinate variables was intuitive
and obvious: it was thought that time must be measured identically in each coordinate
system, and that the relationship between the space variables can be determined simply
by the displacement of the moving system at time ¢ = ¢'. Under these assumptions, and
under the further assumption that the two systems coincide at time t = 0, we can write

t =t, X' =x —u,t, y =y -, 7 =z—v.t,
or simply
' =t, r=r—vt.

This is called a Galilean transformation. We can use the chain rule to describe the
manner in which differential operations transform, i.e., to relate derivatives with respect
to the laboratory coordinates to derivatives with respect to the inertial coordinates. We
have, for instance,

a a9 ax’ d ay’ d a7’ o

o " arar | arox T aray | 9197



0 0 il 0

:g—l}x@—l}ya—-y,—vza—zl
i (v-V)
=— —(v-V).
ot’
Similarly
— — a —
ax  x’’ dy 9y’ 9z 97’

from which

VxAm 1) =V x A, 1), V-Ar 1) =V - Ac,1),

for each vector field A.

(2.44)

(2.45)

Newton was aware that the laws of mechanics are invariant with respect to Galilean
transformations. Do Maxwell’s equations also behave in this way? Let us use the Galilean
transformation to determine which relationship between the primed and unprimed fields
results in form invariance of Maxwell’s equations. We first examine V' x E, the spatial rate
of change of the laboratory field with respect to the inertial frame spatial coordinates:

, JB B ,
\Y xE:VxE:—E:—W—i—(V-V)B

by (2.45) and (2.44). Rewriting the last term by (B.45) we have
(v-V)B=-V' x(vxB)

since v is constant and V' -B =V - B = 0, hence

V/><(E—+—V><B)——E
ot
Similarly
, aD oD , ,
\Y xH:VXH:J—}—E:J—I-W—I-V X (vxD)—v(V' -D)

where V- D =V - D = p so that

, oD
VxH-vxD)=— —pv+].

at’
Also
’ ap dp ,
J J ” oy +(v-V)p

and we may use (B.42) to write
v-Vip=v-(Vp)=V"(pv),

obtaining

, d
V- pv) ==

(2.46)

(2.47)

(2.48)



Equations (2.46), (2.47), and (2.48) show that the forms of Maxwell’s equations in the
inertial and laboratory frames are identical provided that

E' =E+v x B, (2.49)
D =D, (2.50)
H =H-vxD, (2.51)
B =B, (2.52)
J =J-pv, (2.53)
o = p. (2.54)

That is, (2.49)—(2.54) result in form invariance of Faraday’s law, Ampere’s law, and the
continuity equation under a Galilean transformation. These equations express the fields
measured by a moving observer in terms of those measured in the laboratory frame. To
convert the opposite way, we need only use the principle of relativity. Neither observer
can tell whether he or she is stationary — only that the other observer is moving relative
to him or her. To obtain the fields in the laboratory frame we simply change the sign on
v and swap primed with unprimed fields in (2.49)—(2.54):

E=E —vxB, (2.55)
D=D, (2.56)
H=H +vxD, (2.57)
B=B, (2.58)
J=J+pv, (2.59)
p=r. (2.60)

According to (2.53), a moving observer interprets charge stationary in the laboratory
frame as an additional current moving opposite the direction of his or her motion. This
seems reasonable. However, while E depends on both E’ and B’, the field B is unchanged
under the transformation. Why should B have this special status? In fact, we may

uncover an inconsistency among the transformations by considering free space where
(2.22) and (2.23) hold: in this case (2.49) gives

D'/eg =D/ey + v x noH
or
D' =D+ v x H/?
rather than (2.50). Similarly, from (2.51) we get
B =B-vxE/?
instead of (2.52). Using these, the set of transformations becomes

E =E+vxB, (2.61)
D' =D +vxH/?, (2.62)
H =H-vxD, (2.63)
B'=B-vxE/? (2.64)
J=J-pv, ( )
o = p. (2.66)



These can also be written using dyadic notation as

E =1-E+3-(cB), (2.67)
B =—B-E+1-(cB), (2.68)
and
D =1-(D)+73-H, (2.69)
H =-3-(D)+1-H, (2.70)
where
_ 0 _.Bz IBy
[ﬁ] == IBZ O _,Bx
_ﬂy ,Bx 0

with 3 = v/c. This set of equations is self-consistent among Maxwell’s equations. How-
ever, the equations are not consistent with the assumption of a Galilean transformation
of the coordinates, and thus Maxwell’s equations are not covariant under a Galilean
transformation. Maxwell’s equations are only covariant under a Lorentz transforma-
tion as described in the next section. Expressions (2.61)—(2.64) turn out to be accurate
to order v/c, hence are the results of a first-order Lorentz transformation. Only when
v is an appreciable fraction of ¢ do the field conversions resulting from the first-order
Lorentz transformation differ markedly from those resulting from a Galilean transforma-
tion; those resulting from the true Lorentz transformation require even higher velocities
to differ markedly from the first-order expressions. Engineering accuracy is often accom-
plished using the Galilean transformation. This pragmatic observation leads to quite a
bit of confusion when considering the large-scale forms of Maxwell’s equations, as we
shall soon see.

2.3.2 Field conversions under Lorentz transformation

To find the proper transformation under which Maxwell’s equations are covariant,
we must discard our notion that time progresses the same in the primed and the un-
primed frames. The proper transformation of coordinates that guarantees covariance of
Maxwell’s equations is the Lorentz transformation

ct' = yct —yB-r, (2.71)
r=a-r— yfet, (2.72)
where
1 _— BB
=, == I - 1 = = .
== a=lro-n =

This is obviously more complicated than the Galilean transformation; only as 3 — 0 are
the Lorentz and Galilean transformations equivalent.

Not surprisingly, field conversions between inertial reference frames are more com-
plicated with the Lorentz transformation than with the Galilean transformation. For
simplicity we assume that the velocity of the moving frame has only an x-component:
v = %v. Later we can generalize this to any direction. Equations (2.71) and (2.72)
become

X' =x+ @y —Dx—yut, (2.73)



Y=y, (2.74)

7=z (2.75)
v
ct' = yct —y—x, (2.76)
c
and the chain rule gives
d ad v 0
2,2 _rt2 2.77
ax Toax Var (2.77)
9_2 (2.78)
dy — dy" '
ad d
o _9 (2.79)
dz 97
ad a a
= —yy— _. 2.80
ar = Vo TVar (2.80)

We begin by examining Faraday’s law in the laboratory frame. In component form we
have
0E, OE, 0B,

- =X (2.81)
dy 0z ot
0E, OE, 0B,
-—==-2, (2.82)
0z ox at
8& 3 0E, _8Bz (2.83)
dx dy ar '
These become
oE oE 0B 0B
o =yy— —y—, (2.84)
dy 0z ox ot
0E, 0E, v OF, 9B, 9B,
_ — = - , 2.85
oz o V@ %r TV TV ar (2:85)
dE, vdE, OE, 0B, 0B,
— — = —y—, (2.86)

— - = yv

Vo V@ Ty TV TV

after we use (2.77)—(2.80) to convert the derivatives in the laboratory frame to derivatives

with respect to the moving frame coordinates. To simplify (2.84) we consider
B B 0B
~+ L+ ——==0

ox dy 9z

Converting the laboratory frame coordinates to the moving frame coordinates, we have

0B, vdB, 0B, 0B, _0

V.B=

Vox ~ Ve ar ay’ 97

or
3By v 9B, 9B, 3B,
v =—y—=—+v v .
ox’ ¢ ar dy’ 07

Substituting this into (2.84) and rearranging (2.85) and (2.86), we obtain

-V

9 9 9B,
a_y/y(Ez + UBy) - B_Z,V(Ey - UBZ) = _Wy
0E, 0 0 v
T ooV (Es+vB) =~y (B + SE).
0

d 0E, v
QV(E’V — UBZ) — a—y/ = -V <BZ — EE},) .



Comparison with (2.81)—(2.83) shows that form invariance of Faraday’s law under the
Lorentz transformation requires

E; =E,, E; =y(Ey, —vB,), E; =y(E; +vBy),
and
7 ! v 7 v
B, = B, Byzy(By+c—2Ez>, BZ=y<BZ—§E_\,).

To generalize v to any direction, we simply note that the components of the fields parallel
to the velocity direction are identical in the moving and laboratory frames, while the
components perpendicular to the velocity direction convert according to a simple cross
product rule. After similar analyses with Ampere’s and Gauss’s laws (see Problem 2.2),
we find that

E =E. B=B, D/=D., H=H,

E| = y(E, 48 x cB)), (2.87)

B, =y(B.— B xE)), (2.88)

cD| =y(D, + B x H)), (2.89)

H| =yH, -8 x D)), (2.90)

and

Jy=vJy—pv), (2.91)

Jo=1Ju, (2.92)

o' =yp—0B-J), (2.93)

where the symbols || and L designate the components of the field parallel and perpen-
dicular to v, respectively.

These conversions are self-consistent, and the Lorentz transformation is the transfor-
mation under which Maxwell’s equations are covariant. If v> <« ¢2, then ¥ ~ 1 and to
first order (2.87)—(2.93) reduce to (2.61)-(2.66). If v/c < 1, then the first-order fields
reduce to the Galilean fields (2.49)—(2.54).

To convert in the opposite direction, we can swap primed and unprimed fields and
change the sign on v:

E, = y([E| —8xcB)), (
B, =y(B| +BxE)), (2.95
D, =y(D| — B xH)), (

(

H =yl +8xcD)), 2.97
and
Ji=yJ, +0'v), (2.98)
J.=7J, (2.99)
cp=yp +8-J). (2.100)
The conversion formulas can be written much more succinctly in dyadic notation:
E =ya ' -E+yB-(cB), (2.101)

B =-yB-E+ya' (cB), (2.102)



cD =ya' (D) +yB-H, (2.103)
H =—-y3 - (cD)+ya' -H, (2.104)
and
cp'=y(po—0B-), (2.105)
J=a J—yBep, (2.106)

where &' - & =1, and thus &~ ! = & — y 8.

Maxwell’s equations are covariant under a Lorentz transformation but not under a
Galilean transformation; the laws of mechanics are invariant under a Galilean transfor-
mation but not under a Lorentz transformation. How then should we analyze interactions
between electromagnetic fields and particles or materials? Einstein realized that the laws
of mechanics needed revision to make them Lorentz covariant: in fact, under his theory of
special relativity all physical laws should demonstrate Lorentz covariance. Interestingly,
charge is then Lorentz invariant, whereas mass is not (recall that invariance refers to a
quantity, whereas covariance refers to the form of a natural law). We shall not attempt
to describe all the ramifications of special relativity, but instead refer the reader to any
of the excellent and readable texts on the subject, including those by Bohm [14], Einstein
[62], and Born [18], and to the nice historical account by Miller [130]. However, we shall
examine the importance of Lorentz invariants in electromagnetic theory.

Lorentz invariants. Although the electromagnetic fields are not Lorentz invariant
(e.g., the numerical value of E measured by one observer differs from that measured by
another observer in uniform relative motion), several quantities do give identical values
regardless of the velocity of motion. Most fundamental are the speed of light and the
quantity of electric charge which, unlike mass, is the same in all frames of reference.
Other important Lorentz invariants include E - B, H - D, and the quantities

B-B—E.-E/¢%,
H-H- DD,
B-H—E.D,

cB-D+E-H/c.

(See Problem 2.3.) To see the importance of these quantities, consider the special case
of fields in empty space. If E-B = 0 in one reference frame, then it is zero in all reference
frames. Then if B-B — E-E/c> = 0 in any reference frame, the ratio of E to B is
always c? regardless of the reference frame in which the fields are measured. This is the
characteristic of a plane wave in free space.

IfE-B =0 and ¢?B? > E?, then we can find a reference frame using the conversion
formulas (2.101)—(2.106) (see Problem 2.5) in which the electric field is zero but the
magnetic field is nonzero. In this case we call the fields purely magnetic in any reference
frame, even if both E and B are nonzero. Similarly, if E-B = 0 and ¢?B? < E? then
we can find a reference frame in which the magnetic field is zero but the electric field is
nonzero. We call fields of this type purely electric.

The Lorentz force is not Lorentz invariant. Consider a point charge at rest in the
laboratory frame. While we measure only an electric field in the laboratory frame, an
inertial observer measures both electric and magnetic fields. A test charge Q in the



laboratory frame experiences the Lorentz force F = QE; in an inertial frame the same
charge experiences F' = QE'+ Qv x B (see Problem 2.6). The conversion formulas show
that F and F" are not identical.

We see that both E and B are integral components of the electromagnetic field: the
separation of the field into electric and magnetic components depends on the motion
of the reference frame in which measurements are made. This has obvious implications
when considering static electric and magnetic fields.

Derivation of Maxwell’s equations from Coulomb’s law. Consider a point charge
at rest in the laboratory frame. If the magnetic component of force on this charge arises
naturally through motion of an inertial reference frame, and if this force can be expressed
in terms of Coulomb’s law in the laboratory frame, then perhaps the magnetic field can be
derived directly from Coulomb’s and the Lorentz transformation. Perhaps it is possible
to derive all of Maxwell’s theory with Coulomb’s law and Lorentz invariance as the only
postulates.

Several authors, notably Purcell [152] and Elliott [65], have used this approach. How-
ever, Jackson [91] has pointed out that many additional assumptions are required to
deduce Maxwell’s equations beginning with Coulomb’s law. Feynman [73] is critical of
the approach, pointing out that we must introduce a vector potential which adds to the
scalar potential from electrostatics in order to produce an entity that transforms accord-
ing to the laws of special relativity. In addition, the assumption of Lorentz invariance
seems to involve circular reasoning since the Lorentz transformation was originally in-
troduced to make Maxwell’s equations covariant. But Lucas and Hodgson [117] point
out that the Lorentz transformation can be deduced from other fundamental principles
(such as causality and the isotropy of space), and that the postulate of a vector potential
is reasonable. Schwartz [170] gives a detailed derivation of Maxwell’s equations from
Coulomb’s law, outlining the necessary assumptions.

Transformation of constitutive relations. Minkowski’s interest in the covariance of
Maxwell’s equations was aimed not merely at the relationship between fields in different
moving frames of reference, but at an understanding of the electrodynamics of moving
media. He wished to ascertain the effect of a moving material body on the electromagnetic
fields in some region of space. By proposing the covariance of Maxwell’s equations in
materials as well as in free space, he extended Maxwell’s theory to moving material
bodies.

We have seen in (2.101)—(2.104) that (E, ¢B) and (c¢D, H) convert identically under a
Lorentz transformation. Since the most general form of the constitutive relations relate
¢D and H to the field pair (E, ¢B) (see § 2.2.2) as

|-l

this form of the constitutive relations must be Lorentz covariant. That is, in the reference
frame of a moving material we have

[#)-e15]

and should be able to convert [C'] to [C]. We should be able to find the constitutive
matrix describing the relationships among the fields observed in the laboratory frame.



It is somewhat laborious to obtain the constitutive matrix [C] for an arbitrary moving
medium. Detailed expressions for isotropic, bianisotropic, gyrotropic, and uniaxial media
are given by Kong [101]. The rather complicated expressions can be written in a more
compact form if we consider the expressions for B and D in terms of the pair (E, H).
For a linear isotropic material such that D’ = ¢'E’ and B’ = w/H’ in the moving frame,
the relationships in the laboratory frame are [101]

B=y//A H-QxE, (2.107)
D=c¢A-E+QxH, (2.108)
where

S S N |

A= , 2.109
T |1 ) 2100
n—-1 p

Q=—-— 2.110
1 —n2B82c¢ ( )

and where n = c(u'€’)'/? is the optical index of the medium. A moving material that
is isotropic in its own moving reference frame is bianisotropic in the laboratory frame.
If, for instance, we tried to measure the relationship between the fields of a moving
isotropic fluid, but used instruments that were stationary in our laboratory (e.g., attached
to our measurement bench) we would find that D depends not only on E but also on
H, and that D aligns with neither E nor H. That a moving material isotropic in its
own frame of reference is bianisotropic in the laboratory frame was known long ago.
Roentgen showed experimentally in 1888 that a dielectric moving through an electric
field becomes magnetically polarized, while H.A. Wilson showed in 1905 that a dielectric
moving through a magnetic field becomes electrically polarized [139].

If v2/c? « 1, we can consider the form of the constitutive equations for a first-order
Lorentz transformation. Ignoring terms to order v?/c? in (2.109) and (2.110), we obtain

A =Tand © = v(n? —1)/c?. Then, by (2.107) and (2.108),

, 2 vxE
B=uH-0n" —1)—7—, (2.111)
c
, 2 vxH
D=¢E+@n —1)—5—. (2.112)
c

We can also derive these from the first-order field conversion equations (2.61)—(2.64).
From (2.61) and (2.62) we have

D =D+vxH/c?=€¢E =€¢(E+vxB).
Eliminating B via (2.64), we have
D+vxH/?=E+evx (VXE/?) +evxB =¢E+¢evxB

where we have neglected terms of order v?/c?. Since B’ = f/'H = p/(H — v x D), we
have

D+vxH/?=¢E+eu'vxH—epu'vxvxD.

Using n? = ¢?i’€’ and neglecting the last term since it is of order v?/c?, we obtain

vx H

D=¢E+@n —1)—,
C




which is identical to the expression (2.112) obtained by approximating the exact result

to first order. Similar steps produce (2.111). In a Galilean frame where v/c <« 1, the

expressions reduce to D = ¢’E and B = /H, and the isotropy of the fields is preserved.
For a conducting medium having

J =0'F
in a moving reference frame, Cullwick [48] shows that in the laboratory frame
J=0'yI-pBB1-E+0c'ycB x B.
For v <« ¢ we can set y = 1 and see that
J=0'(E+vxB)

to first order.

Constitutive relations in deforming or rotating media. The transformations
discussed in the previous paragraphs hold for media in uniform relative motion. When
a material body undergoes deformation or rotation, the concepts of special relativity are
not directly applicable. However, authors such as Pauli [144] and Sommerfeld [185] have
maintained that Minkowski’s theory is approximately valid for deforming or rotating
media if v is taken to be the instantaneous velocity at each point within the body.
The reasoning is that at any instant in time each point within the body has a velocity
v that may be associated with some inertial reference frame (generally different for
each point). Thus the constitutive relations for the material at that point, within some
small time interval taken about the observation time, may be assumed to be those of
a stationary material, and the relations measured by an observer within the laboratory
frame may be computed using the inertial frame for that point. This instantaneous rest-
frame theory is most accurate at small accelerations dv/dr. Van Bladel [201] outlines
its shortcomings. See also Anderson [3] and Mo [132] for detailed discussions of the
electromagnetic properties of material media in accelerating frames of reference.

2.4 The Maxwell-Bofti equations

In any version of Maxwell’s theory, the mediating field is the electromagnetic field
described by four field vectors. In Minkowski’s form of Maxwell’s equations we use E,
D, B, and H. As an alternative consider the electromagnetic field as represented by the
vector fields E, B, P, and M, and described by

oB

VxE=--" (2.113)

V x (B/io — M) =J+%(EOE+P), (2.114)
V. (eE+P) =p, (2.115)
V.B=0. (2.116)

These Mazwell-Boffi equations are named after L. Boffi, who formalized them for moving
media [13]. The quantity P is the polarization vector, and M is the magnetization vector.



The use of P and M in place of D and H is sometimes called an application of the principle
of Ampere and Lorentz [199].

Let us examine the ramification of using (2.113)—(2.116) as the basis for a postulate
of electromagnetics. These equations are similar to the Maxwell-Minkowski equations
used earlier; must we rebuild all the underpinning of a new postulate, or can we use
our original arguments based on the Minkowski form? For instance, how do we invoke
uniqueness if we no longer have the field H? What represents the flux of energy, formerly
found using E x H? And, importantly, are (2.113)—(2.114) form invariant under a Lorentz
transformation?

It turns out that the set of vector fields (E, B, P, M) is merely a linear mapping of
the set (E,D, B, H). As pointed out by Tai [193], any linear mapping of the four field
vectors from Minkowski’s form onto any other set of four field vectors will preserve the
covariance of Maxwell’s equations. Boffi chose to keep E and B intact and to introduce
only two new fields; he could have kept H and D instead, or used a mapping that
introduced four completely new fields (as did Chu). Many authors retain E and H.
This is somewhat more cumbersome since these vectors do not convert as a pair under
a Lorentz transformation. A discussion of the idea of field vector “pairing” appears in
§ 2.6.

The usefulness of the Boffi form lies in the specific mapping chosen. Comparison of
(2.113)—(2.116) to (2.1)—(2.4) quickly reveals that

P=D — ¢k, (2.117)
M =B/u, — H. (2.118)

We see that P is the difference between D in a material and D in free space, while M is
the difference between H in free space and H in a material. In free space, P =M = 0.

Equivalent polarization and magnetization sources. The Boffi formulation pro-
vides a new way to regard E and B. Maxwell grouped (E, H) as a pair of “force vectors” to
be associated with line integrals (or curl operations in the point forms of his equations),
and (D,B) as a pair of “flux vectors” associated with surface integrals (or divergence
operations). That is, E is interpreted as belonging to the computation of “emf” as a line
integral, while B is interpreted as a density of magnetic “flux” passing through a surface.
Similarly, H yields the “mmf{” about some closed path and D the electric flux through
a surface. The introduction of P and M allows us to also regard E as a flux vector and
B as a force vector — in essence, allowing the two fields E and B to take on the duties
that required four fields in Minkowski’s form. To see this, we rewrite the Maxwell-Boffi
equations as

B
VXE:——,
ot
VXx —= J—i—VxM—{—E BGOE,
Mo at at
V-(eE) = (p —V-P),
V-B =0,

and compare them to the Maxwell-Minkowski equations for sources in free space:

oB
VXE=——,
ot



B deoE
Vx—= ,
Ho ot
V- (eFE) = p,
V.-B=0.

The forms are preserved if we identify dP/9¢t and V x M as new types of current density,
and V - P as a new type of charge density. We define

P

JPZE

(2.119)
as an equivalent polarization current density, and
JM =VxM

as an equivalent magnetization current density (sometimes called the equivalent Amperian
currents of magnetized matter [199]). We define

pp=—V-P

as an equivalent polarization charge density (sometimes called the Poisson—Kelvin equiv-
alent charge distribution [199]). Then the Maxwell-Boffi equations become simply

B
VXxE=——, (2.120)
at
B deoE
Vx —=J+Iu+Jp)+——. (2.121)
Ho ot
V- (&E) = (p + pp), (2.122)
V-B=0. (2.123)

Here is the new view. A material can be viewed as composed of charged particles of
matter immersed in free space. When these charges are properly considered as “equiv-
alent” polarization and magnetization charges, all field effects (describable through flux
and force vectors) can be handled by the two fields E and B. Whereas in Minkowski’s
form D diverges from p, in Boffi’s form E diverges from a total charge density consisting
of p and pp. Whereas in the Minkowski form H curls around J, in the Boffi form B curls
around the total current density consisting of J, J, and Jp.

This view was pioneered by Lorentz, who by 1892 considered matter as consisting of
bulk molecules in a vacuum that would respond to an applied electromagnetic field [130].
The resulting motion of the charged particles of matter then became another source
term for the “fundamental” fields E and B. Using this reasoning he was able to reduce
the fundamental Maxwell equations to two equations in two unknowns, demonstrating a
simplicity appealing to many (including Einstein). Of course, to apply this concept we
must be able to describe how the charged particles respond to an applied field. Simple
microscopic models of the constituents of matter are generally used: some combination
of electric and magnetic dipoles, or of loops of electric and magnetic current.

The Boffi equations are mathematically appealing since they now specify both the curl
and divergence of the two field quantities E and B. By the Helmholtz theorem we know
that a field vector is uniquely specified when both its curl and divergence are given. But
this assumes that the equivalent sources produced by P and M are true source fields in
the same sense as J. We have precluded this by insisting in Chapter 1 that the source
field must be independent of the mediating field it sources. If we view P and M as



merely a mapping from the original vector fields of Minkowski’s form, we still have four
vector fields with which to contend. And with these must also be a mapping of the
constitutive relationships, which now link the fields E, B, P, and M. Rather than argue
the actual physical existence of the equivalent sources, we note that a real benefit of
the new view is that under certain circumstances the equivalent source quantities can be
determined through physical reasoning, hence we can create physical models of P and M
and deduce their links to E and B. We may then find it easier to understand and deduce
the constitutive relationships. However we do not in general consider E and B to be in
any way more “fundamental” than D and H.

Covariance of the Boffi form. Because of the linear relationships (2.117) and (2.118),
covariance of the Maxwell-Minkowski equations carries over to the Maxwell-Boffi equa-
tions. However, the conversion between fields in different moving reference frames will
now involve P and M. Since Faraday’s law is unchanged in the Boffi form, we still have

E =E (2.124)
B| =B, (2.125)
E| = y(E, 48 x cB)), (2.126)
B, =y(B, —BxE)). (2.127)

To see how P and M convert, we note that in the laboratory frame D = ¢E + P and
H = B/uo — M, while in the moving frame D' = ¢gE' + P’ and H' = B’/uy — M. Thus

P| =Dj —«E); =D —&E; =P,
and
M| =B /o — Hj =By /o — H; =M.
For the perpendicular components
D) =y +BxHi/c)=€E| +P| =clyEL+BxcB)]+P;
substitution of H; = B, /g — M then gives
P =yD. —&EL) —yeo x cBL+yB xBi/(cuo) —yB xM_/c

or
P =y(P. — B xM)).
Similarly,
M =y (M, + 8 x cP)).
Hence
Eh =E;, Bh =B, Pil =Py, Mh =M, J, =17, (2.128)
and

E| =y(EL+ 8 xcBy), ( )
B, =y(BL - B xE)), ( )
P =y(P.—BxM)), (2.131)
M| =yMyL+ 8 xcPy), ( )

Jy=vdy—pv). ( )



In the case of the first-order Lorentz transformation we can set y ~ 1 to obtain

E =E+vxB, (2.134)
, vxE
B' =B - ER (2.135)
vxM
P=P-——. (2.136)
M =M+vxP, (2.137)
J=J-pv. (2.138)

To convert from the moving frame to the laboratory frame we simply swap primed with
unprimed fields and let v — —v.
As a simple example, consider a linear isotropic medium having

D = Eoé;E/, B = ,LL(),LL:,H/,
in a moving reference frame. From (117) we have
P = ¢yl E — ¢oE' = ¢y E

where x, = €, — 1 is the electric susceptibility of the moving material. Similarly (2.118)
yields
B B/ B/ _ B/Xr/n

M -
Mo oMy oMy

where x,, = u, — 1 is the magnetic susceptibility of the moving material. How are P and
M related to E and B in the laboratory frame? For simplicity, we consider the first-order
expressions. From (2.136) we have

vxM v x By,

! !
=eox E + .
c? ¢ pop).c?

P=P +

Substituting for E' and B’ from (2.134) and (2.135), and using uoc® = 1/€p, we have

, X vx E
P=¢x,E+vxB)+e=—vx|B- 5 .
7 c

Neglecting the last term since it varies as v?/c?, we get

P=coxE+c (X;+X—’7>vx13. (2.139)
"
Similarly,
/ /
M= XL’/B—GO <Xé+X—r7>VXE. (2.140)
oML, i
L]

2.5 Large-scale form of Maxwell’s equations

We can write Maxwell’s equations in a form that incorporates the spatial variation of
the field in a certain region of space. To do this, we integrate the point form of Maxwell’s
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Figure 2.2: Open surface having velocity v relative to laboratory (unprimed) coordinate
system. Surface is non-deforming.

equations over a region of space, then perform some succession of manipulations until
we arrive at a form that provides us some benefit in our work with electromagnetic
fields. The results are particularly useful for understanding the properties of electric and
magnetic circuits, and for predicting the behavior of electrical machinery.

We shall consider two important situations: a mathematical surface that moves with
constant velocity v and with constant shape, and a surface that moves and deforms
arbitrarily.

2.5.1 Surface moving with constant velocity

Consider an open surface S moving with constant velocity v relative to the laboratory
frame (Figure 2.2). Assume every point on the surface is an ordinary point. At any
instant ¢ we can express the relationship between the fields at points on § in either
frame. In the laboratory frame we have

B aD
VXE=——, VxH=—+],
ot at
while in the moving frame
oB’ oD’
V xXE =——, VxH=—4+17T.
at’ at’

If we integrate over S and use Stokes’s theorem, we get for the laboratory frame
oB
ygE-dlz— — - dS, (2.141)
K ot

r
oD

H-dl:/—~dS+/J-dS, (2.142)

T s 01 s



and for the moving frame

oB’
ff E-dl' = —/ -ds’, (2.143)
/ s ot

! !/ aD/ / !/ !/
H .-dI' = -dS"+ [ J -dS. (2.144)
T g ot 5

Here boundary contour I' has sense determined by the right-hand rule. We use the
notation I'’, ', etc., to indicate that all integrations for the moving frame are computed
using space and time variables in that frame. Equation (2.141) is the integral form of
Faraday’s law, while (2.142) is the integral form of Ampere’s law.

Faraday’s law states that the net circulation of E about a contour I' (sometimes called
the electromotive force or emf) is determined by the flux of the time-rate of change of the
flux vector B passing through the surface bounded by I'. Ampere’s law states that the
circulation of H (sometimes called the magnetomotive force or mmf) is determined by
the flux of the current J plus the flux of the time-rate of change of the flux vector D. It is
the term containing dD/d¢ that Maxwell recognized as necessary to make his equations
consistent; since it has units of current, it is often referred to as the displacement current
term.

Equations (2.141)—(2.142) are the large-scale or integral forms of Maxwell’s equations.
They are the integral-form equivalents of the point forms, and are form invariant under
Lorentz transformation. If we express the fields in terms of the moving reference frame,
we can write

d
7§ E.dl = ——f B -dS, (2.145)
r dt Js
d

% H.dl'=— [ D.dS+ [ J-dS. (2.146)
T dt Jg s
These hold for a stationary surface, since the surface would be stationary to an observer
who moves with it. We are therefore justified in removing the partial derivative from the
integral. Although the surfaces and contours considered here are purely mathematical,
they often coincide with actual physical boundaries. The surface may surround a moving
material medium, for instance, or the contour may conform to a wire moving in an
electrical machine.

We can also convert the auxiliary equations to large-scale form. Consider a volume
region V surrounded by a surface S that moves with velocity v relative to the laboratory
frame (Figure 2.3). Integrating the point form of Gauss’s law over V we have

fv-l)dvz/pdv.
14 v

Using the divergence theorem and recognizing that the integral of charge density is total
charge, we obtain

%D-dS:/pdV:Q(r) (2.147)
s v
where Q(¢) is the total charge contained within V at time ¢. This large-scale form of

Gauss’s law states that the total flux of D passing through a closed surface is identical
to the electric charge Q contained within. Similarly,

?éB .dS=0 (2.148)
S
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Figure 2.3: Non-deforming volume region having velocity v relative to laboratory (un-
primed) coordinate system.

is the large-scale magnetic field Gauss’s law. It states that the total flux of B passing
through a closed surface is zero, since there are no magnetic charges contained within
(i.e., magnetic charge does not exist).

Since charge is an invariant quantity, the large-scale forms of the auxiliary equations
take the same form in a moving reference frame:

% D' - dS :/ o' dV' = Q() (2.149)
and
‘(ﬁ B -dS =0. (2.150)

The large-scale forms of the auxiliary equations may be derived from the large-scale
forms of Faraday’s and Ampere’s laws. To obtain Gauss’s law, we let the open surface
in Ampere’s law become a closed surface. Then § H - dl vanishes, and application of
the large-scale form of the continuity equation (1.10) produces (2.147). The magnetic
Gauss’s law (2.148) is found from Faraday’s law (2.141) by a similar transition from an
open surface to a closed surface.

The values obtained from the expressions (2.141)—(2.142) will not match those ob-
tained from (2.143)—(2.144), and we can use the Lorentz transformation field conversions
to study how they differ. That is, we can write either side of the laboratory equations in
terms of the moving reference frame fields, or vice versa. For most engineering applica-
tions where v/c <« 1 this is not done via the Lorentz transformation field relations, but
rather via the Galilean approximations to these relations (see Tai [194] for details on us-
ing the Lorentz transformation field relations). We consider the most common situation
in the next section.

Kinematic form of the large-scale Maxwell equations. Confusion can result from
the fact that the large-scale forms of Maxwell’s equations can be written in a number of
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Figure 2.4: Non-deforming closed contour moving with velocity v through a magnetic
field B given in the laboratory (unprimed) coordinate system.

ways. A popular formulation of Faraday’s law, the emf formulation, revolves around the
concept of electromotive force. Unfortunately, various authors offer different definitions
of emf in a moving circuit.

Consider a non-deforming contour in space, moving with constant velocity v relative
to the laboratory frame (Figure 2.4). In terms of the laboratory fields we have the large-
scale form of Faraday’s law (2.141). The flux term on the right-hand side of this equation
can be written differently by employing the Helmholtz transport theorem (A.63). If a
non-deforming surface S moves with uniform velocity v relative to the laboratory frame,
and a vector field A(r, t) is expressed in the stationary frame, then the time derivative
of the flux of A through S is

d A
——/AdSz/{—+NWuM—Vxme]dS (2.151)
dt Js s | ot

Using this with (2.141) we have

d
fE-dl:——/B~dS+/V(V-B)-dS—/VX(va)~dS.
r dt Js s s

Remembering that V - B = 0 and using Stokes’s theorem on the last term, we obtain

d AW (1)
E B .d=-2 [B.das=_ 2.152
ﬁ( +vxB)-d dt/s ds o (2.152)

where the magnetic flux
/ B-dS=v()
s
represents the flux of B through S. Following Sommerfeld [185], we may set

E*=E+vxB

to obtain the kinematic form of Faraday’s law

d dwy (1)
Ef.dl=—— | B-dS=— . 2.153
f; dt/s dt ( )




(The asterisk should not be confused with the notation for complex conjugate.)

Much confusion arises from the similarity between (2.153) and (2.145). In fact, these
expressions are different and give different results. This is because B’ in (2.145) is
measured in the frame of the moving circuit, while B in (2.153) is measured in the frame
of the laboratory. Further confusion arises from various definitions of emf. Many authors
(e.g., Hermann Weyl [213]) define emf to be the circulation of E*. In that case the emf
is equal to the negative time rate of change of the flux of the laboratory frame magnetic
field B through S. Since the Lorentz force experienced by a charge ¢ moving with the
contour is given by gE* = g(E + v x B), this emf is the circulation of Lorentz force
per unit charge along the contour. If the contour is aligned with a conducting circuit,
then in some cases this emf can be given physical interpretation as the work required
to move a charge around the entire circuit through the conductor against the Lorentz
force. Unfortunately the usefulness of this definition of emf is lost if the time or space
rate of change of the fields is so large that no true loop current can be established
(hence Kirchoff’s law cannot be employed). Such a problem must be treated as an
electromagnetic “scattering” problem with consideration given to retardation effects.
Detailed discussions of the physical interpretation of E* in the definition of emf are given
by Scanlon [165] and Cullwick [48].

Other authors choose to define emf as the circulation of the electric field in the frame
of the moving contour. In this case the circulation of E’ in (2.145) is the emf, and is
related to the flux of the magnetic field in the frame of the moving circuit. As pointed
out above, the result differs from that based on the Lorentz force. If we wish, we can
also write this emf in terms of the fields expressed in the laboratory frame. To do this we
must convert dB’/9t’ to the laboratory fields using the rules for a Lorentz transformation.
The result, given by Tai [194], is quite complicated and involves both the magnetic and
electric laboratory-frame fields.

The moving-frame emf as computed from the Lorentz transformation is rarely used as
a working definition of emf, mostly because circuits moving at relativistic velocities are
seldom used by engineers. Unfortunately, more confusion arises for the case v « ¢, since
for a Galilean frame the Lorentz-force and moving-frame emfs become identical. This
is apparent if we use (2.52) to replace B’ with the laboratory frame field B, and (2.49)
to replace E' with the combination of laboratory frame fields E + v x B. Then (2.145)

becomes
d
%E’dl:%(E—l—va)-dl:——/B-dS,
r r dt Jg

which is identical to (2.153). For circuits moving with low velocity then, the circulation
of E' can be interpreted as work per unit charge. As an added bit of confusion, the term

f(va)dl:fo(va)-dS
r s

is sometimes called motional emf, since it is the component of the circulation of E* that
is directly attributable to the motion of the circuit.

Although less commonly done, we can also rewrite Ampere’s law (2.142) using (2.151).
This gives

fH~dl=/.J‘dS—i—i/D-dS—/(VV-D)-dS—F/Vx(VxD)-dS.
r S dt Js s s

Using V - D = p and using Stokes’s theorem on the last term, we obtain

%(H—VXD)-dl:i/D'dS‘l—/(J—pV)'ds.
r dr Js s



Finally, letting H* = H—v x D and J* = J — pv we can write the kinematic form of
Ampere’s law:

d
jﬁﬂ*.dlz—/n.dSJrfJ*.ds. (2.154)
r dt Js s
In a Galilean frame where we use (2.49)—(2.54), we see that (2.154) is identical to
4 d / !
ng.dlz—/D-dS+fJ-dS (2.155)
r dt Js s

where the primed fields are measured in the frame of the moving contour. This equiv-
alence does not hold when the Lorentz transformation is used to represent the primed
fields.

Alternative form of the large-scale Maxwell equations. We can write Maxwell’s
equations in an alternative large-scale form involving only surface and volume integrals.
This will be useful later for establishing the field jump conditions across a material or
source discontinuity. Again we begin with Maxwell’s equations in point form, but instead
of integrating them over an open surface we integrate over a volume region V moving
with velocity v (Figure 2.3). In the laboratory frame this gives

/(VxE)dV— /—dV
/(VXH)dV /<—+J> dv
v\ ar

An application of curl theorem (B.24) then gives
f(an)ds— /—dV (2.156)

f(n x H)dS = / (5 +J> dv. (2.157)

Similar results are obtained for the fields in the moving frame:
oB’
- [ S av
V/ at/
oD’
%(ﬁ’xH/)dS’z'/ ( +J/> dv’.
s v \or

These large-scale forms are an alternative to (2.141)—(2.144). They are also form-
invariant under a Lorentz transformation.

An alternative to the kinematic formulation of (2.153) and (2.154) can be achieved
by applying a kinematic identity for a moving volume region. If V is surrounded by a
surface S that moves with velocity v relative to the laboratory frame, and if a vector field
A is measured in the laboratory frame, then the vector form of the general transport
theorem (A.68) states that

@ x E)dS
o

- AdV f—dv+7§A(v ) ds. (2.158)



Applying this to (2.156) and (2.157) we have

?g[ﬁxE—(v-ﬁ)B] ds:-i/ BdV, (2.159)
s dt Jy

?{[ﬁxH+(v-ﬁ)D] dS=/JdV+i/DdV. (2.160)
S Vv dt \%

We can also apply (2.158) to the large-scale form of the continuity equation (2.10) and
obtain the expression for a volume region moving with velocity v:

d
fé(J—PV)'dS:—E/VpdV.

2.5.2 Moving, deforming surfaces

Because (2.151) holds for arbitrarily moving surfaces, the kinematic versions (2.153)
and (2.154) hold when v is interpreted as an instantaneous velocity. However, if the
surface and contour lie within a material body that moves relative to the laboratory
frame, the constitutive equations relating E, D, B, H, and J in the laboratory frame
differ from those relating the fields in the stationary frame of the body (if the body is
not accelerating), and thus the concepts of § 2.3.2 must be employed. This is important
when boundary conditions at a moving surface are needed. Particular care must be taken
when the body accelerates, since the constitutive relations are then only approximate.

The representation (2.145)—(2.146) is also generally valid, provided we define the
primed fields as those converted from laboratory fields using the Lorentz transforma-
tion with instantaneous velocity v. Here we should use a different inertial frame for each
point in the integration, and align the frame with the velocity vector v at the instant
t. We certainly may do this since we can choose to integrate any function we wish.
However, this representation may not find wide application.

We thus choose the following expressions, valid for arbitrarily moving surfaces con-
taining only regular points, as our general forms of the large-scale Maxwell equations:

d dw(t
% E*-dl=—— B-dS=- (),
r'(t) dt Jsw dt

d
H .- dl = — D-dS + J* - dS,
I I Jsw 5(1)

where
E* =E + v x B,
H*=H-vxD,
J=J—-pv,

and where all fields are taken to be measured in the laboratory frame with v the in-
stantaneous velocity of points on the surface and contour relative to that frame. The
constitutive parameters must be considered carefully if the contours and surfaces lie in
a moving material medium.

Kinematic identity (2.158) is also valid for arbitrarily moving surfaces. Thus we have
the following, valid for arbitrarily moving surfaces and volumes containing only regular



points:
. . d
% [Ax E—(v-n)B]dS = ——/ B4V,
S(0) dt Jyq

d
75 MxH+v- D dS= [ Jav+ S| Dav.
S 40) dt Jyq

We also find that the two Gauss’s law expressions,

?§ D-dS= | pdv,
S(t) V()

% B-dS=0,
S@t)

remain valid.

2.5.3 Large-scale form of the Boffi equations

The Maxwell-Boffi equations can be written in large-scale form using the same ap-
proach as with the Maxwell-Minkowski equations. Integrating (2.120) and (2.121) over
an open surface S and applying Stokes’s theorem, we have

oB
fE-dl:—/—.ds, (2.161)
r s 0f

860E
%B'dl:/f%/(JJFJM"FJP"‘ )-dS, (2.162)
r s at

for fields in the laboratory frame, and

! / aB/ ’
E.-dl =— -ds,
, s o'

degE’
y{ B’-dl’=uo/ (J’+J§W+J’P+%> -ds’,

for fields in a moving frame. We see that Faraday’s law is unmodified by the introduction
of polarization and magnetization, hence our prior discussion of emf for moving contours
remains valid. However, Ampere’s law must be interpreted somewhat differently. The
flux vector B also acts as a force vector, and its circulation is proportional to the out-
flux of total current, consisting of J plus the equivalent magnetization and polarization
currents plus the displacement current in free space, through the surface bounded by the
circulation contour.

The large-scale forms of the auxiliary equations can be found by integrating (2.122)
and (2.123) over a volume region and applying the divergence theorem. This gives

1
fE~dS=—/<p+pp)dv,
S € Jv

fBas =0,
s

for the laboratory frame fields, and

/ / ] / ’ !
fE-dsz— (0 +pp)dV',
5 o Jv

fB’~dS’=O,



for the moving frame fields. Here we find the force vector E also acting as a flux vector,
with the outflux of E over a closed surface proportional to the sum of the electric and
polarization charges enclosed by the surface.

To provide the alternative representation, we integrate the point forms over V and use
the curl theorem to obtain

oB
?g(ﬁxE)dSz—/ = av, (2.163)
s v 01

A aEOE
f(an)dS:;LO/ (J+JM+JP+ )dV, (2.164)
N \%

at

for the laboratory frame fields, and

3B/
f @ x E))dS' = / v,
s/ v ot

A/ / ! 8EOE, /
(n XB)dS Mo J+JM+JP dV,
s 1 or’

for the moving frame fields.

The large-scale forms of the Boffi equations can also be put into kinematic form using
either (2.151) or (2.158). Using (2.151) on (2.161) and (2.162) we have

d
fl E-dl=—— B -dS, (2.165)
ING) S(1)
t t 1d
B'-dl = woJ' -dS + —— E - dS, (2.166)
r'(t) S(t) c* dt S(t)
where
E*=E+vxB,

; 1
B :B——zvxE,
C
J =J+Ju+Jp—(p+pp)v.

Here B is equivalent to the first-order Lorentz transformation representation of the field
in the moving frame (2.64). (The dagger  should not be confused with the symbol for
the hermitian operation.) Using (2.158) on (2.163) and (2.164) we have

d
f AxE—(v-aBldS=—> | Bav, (2.167)
() dt Jy

and

1 1d
% |:ﬁ><B+—2(V~ﬁ)Ei| dsS = o J+JIu +JP)dV+—— EdV.
S(t) c V(1) 2 dt V(1)

(2.168)

In each case the fields are measured in the laboratory frame, and v is measured with
respect to the laboratory frame and may vary arbitrarily over the surface or contour.



2.6 The nature of the four field quantities

Since the very inception of Maxwell’s theory, its students have been distressed by the
fact that while there are four electromagnetic fields (E, D, B, H), there are only two funda-
mental equations (the curl equations) to describe their interrelationship. The relegation
of additional required information to constitutive equations that vary widely between
classes of materials seems to lessen the elegance of the theory. While some may find
elegant the separation of equations into a set expressing the basic wave nature of electro-
magnetism and a set describing how the fields interact with materials, the history of the
discipline is one of categorizing and pairing fields as “fundamental” and “supplemental”
in hopes of reducing the model to two equations in two unknowns.

Lorentz led the way in this area. With his electrical theory of matter, all material ef-
fects could be interpreted in terms of atomic charge and current immersed in free space.
We have seen how the Maxwell-Boffi equations seem to eliminate the need for D and H,
and indeed for simple media where there is a linear relation between the remaining “fun-
damental” fields and the induced polarization and magnetization, it appears that only
E and B are required. However, for more complicated materials that display nonlinear
and bianisotropic effects we are only able to supplant D and H with two other fields P
and M, along with (possibly complicated) constitutive relations relating them to E and
B.

Even those authors who do not wish to eliminate two of the fields tend to categorize
the fields into pairs based on physical arguments, implying that one or the other pair
is in some way “more fundamental.” Maxwell himself separated the fields into the pair
(E, H) that appears within line integrals to give work and the pair (B, D) that appears
within surface integrals to give flux. In what other ways might we pair the four vectors?

Most prevalent is the splitting of the fields into electric and magnetic pairs: (E, D) and
(B,H). In Poynting’s theorem E - D describes one component of stored energy (called
“electric energy”) and B - H describes another component (called “magnetic energy”).
These pairs also occur in Maxwell’s stress tensor. In statics, the fields decouple into
electric and magnetic sets. But biisotropic and bianisotropic materials demonstrate how
separation into electric and magnetic effects can become problematic.

In the study of electromagnetic waves, the ratio of E to H appears to be an important
quantity, called the “intrinsic impedance.” The pair (E, H) also determines the Poynting
flux of power, and is required to establish the uniqueness of the electromagnetic field.
In addition, constitutive relations for simple materials usually express (D, B) in terms
of (E,H). Models for these materials are often conceived by viewing the fields (E, H)
as interacting with the atomic structure in such a way as to produce secondary effects
describable by (D, B). These considerations, along with Maxwell’s categorization into
a pair of work vectors and a pair of flux vectors, lead many authors to formulate elec-
tromagnetics with E and H as the “fundamental” quantities. But the pair (B, D) gives
rise to electromagnetic momentum and is also perpendicular to the direction of wave
propagation in an anisotropic material; in these senses, we might argue that these fields
must be equally “fundamental.”

Perhaps the best motivation for grouping fields comes from relativistic considerations.
We have found that (E, B) transform together under a Lorentz transformation, as do
(D, H). In each of these pairs we have one polar vector (E or D) and one axial vector (B
or H). A polar vector retains its meaning under a change in handedness of the coordinate
system, while an axial vector does not. The Lorentz force involves one polar vector (E)



and one axial vector (B) that we also call “electric” and “magnetic.” If we follow the
lead of some authors and choose to define E and B through measurements of the Lorentz
force, then we recognize that B must be axial since it is not measured directly, but as
part of the cross product v x B that changes its meaning if we switch from a right-hand
to a left-hand coordinate system. The other polar vector (D) and axial vector (H) arise
through the “secondary” constitutive relations. Following this reasoning we might claim
that E and B are “fundamental.”

Sommerfeld also associates E with B and D with H. The vectors E and B are
called entities of intensity, describing “how strong,” while D and H are called entities
of quantity, describing “how much.” This is in direct analogy with stress (intensity) and
strain (quantity) in materials. We might also say that the entities of intensity describe
a “cause” while the entities of quantity describe an “effect.” In this view E “induces”
(causes) a polarization P, and the field D = ¢yE + P is the result. Similarly B creates
M, and H = B/up — M is the result. Interestingly, each of the terms describing energy
and momentum in the electromagnetic field (D -E, B-H, E x H, D x B) involves the
interaction of an entity of intensity with an entity of quantity.

Although there is a natural tendency to group things together based on conceptual
similarity, there appears to be little reason to believe that any of the four field vectors are
more “fundamental” than the rest. Perhaps we are fortunate that we can apply Maxwell’s
theory without worrying too much about such questions of underlying philosophy.

2.7 Maxwell’s equations with magnetic sources

Researchers have yet to discover the “magnetic monopole”: a magnetic source from
which magnetic field would diverge. This has not stopped speculation on the form that
Maxwell’s equations might take if such a discovery were made. Arguments based on
fundamental principles of physics (such as symmetry and conservation laws) indicate
that in the presence of magnetic sources Maxwell’s equations would assume the forms

9B

VxE=-J, - (2.169)
aD

VxH=J+ " (2.170)

VB =p,. (2.171)

V.D=p, (2.172)

where J,, is a volume magnetic current density describing the flow of magnetic charge in
exactly the same manner as J describes the flow of electric charge. The density of this
magnetic charge is given by p,, and should, by analogy with electric charge density, obey
a conservation law

9Pm
Voeldn+ 5 = 0.
This is the magnetic source continuity equation.

It is interesting to inquire as to the units of J,, and p,,. From (2.169) we see that if B
has units of Wh/m?, then J,, has units of (Wb/s)/m?. Similarly, (2.171) shows that p,
must have units of Wh/m?. Hence magnetic charge is measured in Wb, magnetic current
in Wb/s. This gives a nice symmetry with electric sources where charge is measured in



C and current in C/s.> The physical symmetry is equally appealing: magnetic flux lines
diverge from magnetic charge, and the total flux passing through a surface is given by the
total magnetic charge contained within the surface. This is best seen by considering the
large-scale forms of Maxwell’s equations for stationary surfaces. We need only modify
(2.145) to include the magnetic current term; this gives

d
fE-dl:-/Jm-dS——/B-ds, (2.173)
r S dt K

fH-dl:/J-ds+ifD-ds. (2.174)
r s dr Js

If we modify (2.148) to include magnetic charge, we get the auxiliary equations

%D-dS:/,odV,
s 4
fB~dS=/pde.
s v

Any of the large-scale forms of Maxwell’s equations can be similarly modified to include
magnetic current and charge. For arbitrarily moving surfaces we have

d
f E‘-dl=—— [ B.-dS— | J -dS,
T'(t) S(t) S(t)

d
H-dl = — D-dS + J* - ds,
() L Jsa) S()

where
E*=E+v x B,
H " =H-vxD,
J=J—pv,
J:;LZJm_pmVa

and all fields are taken to be measured in the laboratory frame with v the instantaneous
velocity of points on the surface and contour relative to the laboratory frame. We also
have the alternative forms

JB
%(ﬁ x E)dS = / (—— - J,,,) av, (2.175)
s v\ 01

aD
f(ﬁXH)dS =/ <—+J> dv, (2.176)
s v \ 01

d
% MxE—(v-AB]dS=— | J.dv—<1[ Bav, (2.177)
S 40) v

and

d
f [ x H+ (v-n)D] dS:/ JdVv + — D4V, (2.178)
S@t) V() v

3We note that if the modern unit of T is used to describe B, then p,, is described using the more
cumbersome units of T/m, while J,, is given in terms of T/s. Thus, magnetic charge is measured in Tm?
and magnetic current in (Tm?)/s.



and the two Gauss’s law expressions

?g D~ﬁdS=/ pdV,
S(t) V()

7§ B~ﬁdS=/ omdV.
S(t) V()

Magnetic sources also allow us to develop equivalence theorems in which difficult prob-
lems involving boundaries are replaced by simpler problems involving magnetic sources.
Although these sources may not physically exist, the mathematical solutions are com-
pletely valid.

2.8 Boundary (jump) conditions

If we restrict ourselves to regions of space without spatial (jump) discontinuities in
either the sources or the constitutive relations, we can find meaningful solutions to the
Maxwell differential equations. We also know that for given sources, if the fields are
specified on a closed boundary and at an initial time the solutions are unique. The
standard approach to treating regions that do contain spatial discontinuities is to isolate
the discontinuities on surfaces. That is, we introduce surfaces that serve to separate space
into regions in which the differential equations are solvable and the fields are well defined.
To make the solutions in adjoining regions unique, we must specify the tangential fields
on each side of the adjoining surface. If we can relate the fields across the boundary, we
can propagate the solution from one region to the next; in this way, information about
the source in one region is effectively passed on to the solution in an adjacent region. For
uniqueness, only relations between the tangential components need be specified.

We shall determine the appropriate boundary conditions (BC’s) via two distinct ap-
proaches. We first model a thin source layer and consider a discontinuous surface source
layer as a limiting case of the continuous thin layer. With no true discontinuity, Maxwell’s
differential equations hold everywhere. We then consider a true spatial discontinuity be-
tween material surfaces (with possible surface sources lying along the discontinuity). We
must then isolate the region containing the discontinuity and postulate a field relationship
that is both physically meaningful and experimentally verifiable.

We shall also consider both stationary and moving boundary surfaces, and surfaces
containing magnetic as well as electric sources.

2.8.1 Boundary conditions across a stationary, thin source layer

In § 1.3.3 we discussed how in the macroscopic sense a surface source is actually a
volume distribution concentrated near a surface S. We write the charge and current in
terms of the point r on the surface and the normal distance x from the surface at r as

p(r.x, 1) = py(r, ) f(x, A), (2.179)
I, x, 1) = J(r, 0 f(x, D), (2.180)

where f(x, A) is the source density function obeying

/00 fx,A)dx = 1. (2.181)
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Figure 2.5: Derivation of the electromagnetic boundary conditions across a thin contin-
uous source layer.

The parameter A describes the “width” of the source layer normal to the reference
surface.

We use (2.156)—(2.157) to study field behavior across the source layer. Consider a
volume region V that intersects the source layer as shown in Figure 2.5. Let the top and
bottom surfaces be parallel to the reference surface, and label the fields on the top and
bottom surfaces with subscripts 1 and 2, respectively. Since points on and within V are
all regular, (2.157) yields

oD
/ﬁIXHldS+/ﬁszzdS~|—/ﬁ3XHdS=/<J+—>dV.
s A S5 v ot

We now choose § = kA (k > 1) so that most of the source lies within V. As A — 0
the thin source layer recedes to a surface layer, and the volume integral of displacement
current and the integral of tangential H over S3 both approach zero by continuity of
the fields. By symmetry §; = S, and iy = —f; = fi;, where fij; is the surface normal
directed into region 1 from region 2. Thus

/ np x (H —Hy)dS = / JdVv. (2.182)
Sy 1%
Note that

5/2 5/2
/JdV:/ JdSdx = fx,A)ydx | Js(r,t)dS.
v Sy

—5/2 —5/2 5

Since we assume that the majority of the source current lies within V, the integral can
be evaluated using (2.181) to give

/ [ x (Hy —Hy) — J5]1dS =0,
Si

hence

fjp x (H — Hp) = Ji.



The tangential magnetic field across a thin source distribution is discontinuous by an
amount equal to the surface current density.
Similar steps with Faraday’s law give

np x (E; —Ey) =0.

The tangential electric field is continuous across a thin source.

We can also derive conditions on the normal components of the fields, although these
are not required for uniqueness. Gauss’s law (2.147) applied to the volume V in Figure
2.5 gives

/D1~ﬁ1d5+/Dz-ﬁzdS—i-/D-ﬁ3dS:/pdV.
M S S3 Vv

As A — 0, the thin source layer recedes to a surface layer. The integral of normal D over
S5 tends to zero by continuity of the fields. By symmetry §; = S, and fi; = —f; = fij;.
Thus

Dy —D,) -2 dS = / pdV. (2.183)
S 14

The volume integral is

5/2 5/2
/pdV:// pdSdx = f(x,A)dx/ ps(r,1)dS.
1% 51 J =52 —5/2 Sy

Since 8 = kA has been chosen so that most of the source charge lies within V, (2.181)
gives

/ [(D; —Dy) -2 — ps] dS =0,
Si

hence
(D; —Dy) - fiz = py.

The normal component of D is discontinuous across a thin source distribution by an
amount equal to the surface charge density. Similar steps with the magnetic Gauss’s law
yield

(B; —By) -fip =0.

The normal component of B is continuous across a thin source layer.

We can follow similar steps when a thin magnetic source layer is present. When
evaluating Faraday’s law we must include magnetic surface current and when evaluating
the magnetic Gauss’s law we must include magnetic charge. However, since such sources
are not physical we postpone their consideration until the next section, where appropriate
boundary conditions are postulated rather than derived.

2.8.2 Boundary conditions across a stationary layer of field disconti-
nuity

Provided that we model a surface source as a limiting case of a very thin but continuous
volume source, we can derive boundary conditions across a surface layer. We might ask
whether we can extend this idea to surfaces of materials where the constitutive parameters
change from one region to another. Indeed, if we take Lorentz’ viewpoint and visualize a
material as a conglomerate of atomic charge, we should be able to apply this same idea.
After all, a material should demonstrate a continuous transition (in the macroscopic



Figure 2.6: Derivation of the electromagnetic boundary conditions across a discontinuous
source layer.

sense) across its boundary, and we can employ the Maxwell-Boffi equations to describe
the relationship between the “equivalent” sources and the electromagnetic fields.

We should note, however, that the limiting concept is not without its critics. Stokes
suggested as early as 1848 that jump conditions should never be derived from smooth
solutions [199]. Let us therefore pursue the boundary conditions for a surface of true
field discontinuity. This will also allow us to treat a material modeled as having a true
discontinuity in its material parameters (which we can always take as a mathematical
model of a more gradual transition) before we have studied in a deeper sense the physical
properties of materials. This approach, taken by many textbooks, must be done carefully.

There is a logical difficulty with this approach, lying in the application of the large-
scale forms of Maxwell’s equations. Many authors postulate Maxwell’s equations in point
form, integrate to obtain the large-scale forms, then apply the large-scale forms to regions
of discontinuity. Unfortunately, the large-scale forms thus obtained are only valid in the
same regions where their point form antecedents were valid — discontinuities must be
excluded. Schelkunoff [167] has criticized this approach, calling it a “swindle” rather
than a proof, and has suggested that the proper way to handle true discontinuities
is to postulate the large-scale forms of Maxwell’s equations, and to include as part
of the postulate the assumption that the large-scale forms are valid at points of field
discontinuity. Does this mean we must reject our postulate of the point form Maxwell
equations and reformulate everything in terms of the large-scale forms? Fortunately, no.
Tai [192] has pointed out that it is still possible to postulate the point forms, as long
as we also postulate appropriate boundary conditions that make the large-scale forms,
as derived from the point forms, valid at surfaces of discontinuity. In essence, both
approaches require an additional postulate for surfaces of discontinuity: the large scale
forms require a postulate of applicability to discontinuous surfaces, and from there the
boundary conditions can be derived; the point forms require a postulate of the boundary
conditions that result in the large-scale forms being valid on surfaces of discontinuity.
Let us examine how the latter approach works.

Consider a surface across which the constitutive relations are discontinuous, containing
electric and magnetic surface currents and charges J, o5, Jus, and p,s (Figure 2.6).
We locate a volume region V; above the surface of discontinuity; this volume is bounded
by a surface S; and another surface Sjy which is parallel to, and a small distance §/2
above, the surface of discontinuity. A second volume region V, is similarly situated below
the surface of discontinuity. Because these regions exclude the surface of discontinuity



we can use (2.176) to get

/ﬁXHdS—I-/ ﬁXHdSZ/(J-l-@)dV,
N Sio Vi ot

oD
/ﬁXHdS—I-/ ﬁXHdS=/<J+—>dV.
5 S0 v, ot

Adding these we obtain

oD
/ ﬁXHdS—/ (J—i——)dV—
S1+52 Vi+V, ot

—/ ﬁlO X H1 das —/ ﬁz() X szS = 0, (2184)
SlU 52[)

where we have used subscripts to delineate the fields on each side of the discontinuity
surface.

If § is very small (but nonzero), then fijp = —fyy = fi;p and S;p = Sy. Letting
Si+ S =S and Vi + Vo, =V, we can write (184) as

oD
/(ﬁXH)dS—/ <J+—> dV:/ np x (H —Hy)dS. (2.185)
s v ot Sio

Now suppose we use the same volume region V, but let it intersect the surface of
discontinuity (Figure 2.6), and suppose that the large-scale form of Ampere’s law holds
even if V contains points of field discontinuity. We must include the surface current in
the computation. Since fv JdV becomes fs J; dS on the surface, we have

oD
/(ﬁ x H)dS — / (J + —) av = | J,ds. (2.186)
s v ot Sio

We wish to have this give the same value for the integrals over V and S as (2.185), which
included in its derivation no points of discontinuity. This is true provided that

fpp x (Hy — Hp) = Js. (2.187)

Thus, under the condition (2.187) we may interpret the large-scale form of Ampere’s law
(as derived from the point form) as being valid for regions containing discontinuities.
Note that this condition is not “derived,” but must be regarded as a postulate that
results in the large-scale form holding for surfaces of discontinuous field.

Similar reasoning can be used to determine the appropriate boundary condition on
tangential E from Faraday’s law. Corresponding to (2.185) we obtain

/(ﬁ < E)dS —/ (—J,,, _ @) dv = / Ay x (B — Ey)dS. (2.188)
s v ot Sio

Employing (2.175) over the region containing the field discontinuity surface we get

/(ﬁxE)dS—/ <—Jm—E> dV = — JusdS. (2.189)
S 1% ot Sto

To have (2.188) and (2.189) produce identical results, we postulate

i X (Ey —Ez) = —Js (2.190)



as the boundary condition appropriate to a surface of field discontinuity containing a
magnetic surface current.

We can also postulate boundary conditions on the normal fields to make Gauss’s laws
valid for surfaces of discontinuous fields. Integrating (2.147) over the regions V; and V,
and adding, we obtain

/ DﬁdS—/ D1~fl1()dS—/ Dg‘ﬁzodS=/ ,OdV.
NE N1 S Vi+V,

As § — 0 this becomes
/D-ﬁdS—/ pdV = D; —Dy) -fipdS. (2.191)
S 14 Sio

If we integrate Gauss’s law over the entire region V, including the surface of discontinuity,
we get

%D-ﬁdS:/pdV—}-/ psdS. (2.192)
N 14 Sio

In order to get identical answers from (2.191) and (2.192), we must have
Dy —Dy) -y = ps

as the boundary condition appropriate to a surface of field discontinuity containing an
electric surface charge. Similarly, we must postulate

By — By) - fijy = oy

as the condition appropriate to a surface of field discontinuity containing a magnetic
surface charge.

We can determine an appropriate boundary condition on current by using the large-
scale form of the continuity equation. Applying (2.10) over each of the volume regions
of Figure 2.6 and adding the results, we have

a
/ J-hndS — Ji-hydS — Jz‘ﬁzodSZ—/ —pdV.
Si+52 Sio S20 Vi+Vs at
As § — 0 we have
a
/J~ﬁdS— Ji—J) -, dS = —/ P av. (2.193)
N S1o 174 ot

Applying the continuity equation over the entire region V and allowing it to intersect
the discontinuity surface, we get

9 9p,
/J-ﬁdS—Ir/Js-ﬁldl:—/—pdV—/ Ps gs.
K r V8t Sio Jat

By the two-dimensional divergence theorem (B.20) we can write this as

9 p,
/J~ﬁdS+/ vx-Jst=—f—pdV—/ Ps gs.
Ky Sio V8t S1o ot

In order for this expression to produce the same values of the integrals over S and V as
in (2.193) we require

Y, J =~ (= Jp) — 22
s s — 12 1 2 81‘,




which we take as our postulate of the boundary condition on current across a surface
containing discontinuities. A similar set of steps carried out using the continuity equation
for magnetic sources yields

3Pums
ar
In summary, we have the following boundary conditions for fields across a surface
containing discontinuities:

Vs - Jms = _ﬁl2 ' (Jml - Jm2) -

np x (Hy —H) =, (2.194)
fip X (E1 —Ep) = —Jus, (2.195)
fi; - (D1 — D) = py, (2.196)
i - By — B2) = oy, (2.197)
and
aps
- (i —J) =—-V, - Js — Bpt , (2.198)
9om
A 1 —Jm2) = =V - Js — I;[s ’ (2199)

where fij, points into region 1 from region 2.

2.8.3 Boundary conditions at the surface of a perfect conductor

We can easily specialize the results of the previous section to the case of perfect electric
or magnetic conductors. In § 2.2.2 we saw that the constitutive relations for perfect
conductors requires the null field within the material. In addition, a PEC requires zero
tangential electric field, while a PMC requires zero tangential magnetic field. Using
(2.194)—(2.199), we find that the boundary conditions for a perfect electric conductor
are

i xH=J, (2.200)
fixE =0, (2.201)
a-D = p,, (2.202)
fi-B =0, (2.203)

and
ﬁ-J=—VS~JS—aa'°;, fi-J, =0. (2.204)

For a PMC the conditions are

AxH=0, (2.205)
i xE=—J,,. (2.206)
fi-D=0, (2.207)
f-B =, (2.208)

and

9Pms

ﬁ'Jm = _Vs 'Jms - , ﬁJ:O (2209)

ot
We note that the normal vector fi points out of the conductor and into the adjacent
region of nonzero fields.



2.8.4 Boundary conditions across a stationary layer of field disconti-
nuity using equivalent sources

So far we have avoided using the physical interpretation of the equivalent sources in the
Maxwell-Boffi equations so that we might investigate the behavior of fields across true
discontinuities. Now that we have the appropriate boundary conditions, it is interesting
to interpret them in terms of the equivalent sources.

If we put H=B/po — M into (2.194) and rearrange, we get

np x By —By) = poJs +hypp x My —hypp x Mp). (2.210)

The terms on the right involving fi;; x M have the units of surface current and are called
equivalent magnetization surface currents. Defining

Jus = —AxM (2.211)

where 1 is directed normally outward from the material region of interest, we can rewrite
(2.210) as

fip X (Br —Bo) = o + Jmst + Jus2).- (2.212)

We note that Jy;, replaces atomic charge moving along the surface of a material with an
equivalent surface current in free space.
If we substitute D = ¢E + P into (2.196) and rearrange, we get

. 1 . .
f - (B —Ey) = G—(Ps — - Py + iy - Po). (2.213)
0

The terms on the right involving fij; - P have the units of surface charge and are called
equivalent polarization surface charges. Defining

pps =h - P, (2.214)

we can rewrite (2.213) as

1
np - (B —Ey) = 6_(,0s + pps1 + Pps2)- (2.215)
0

We note that pp; replaces atomic charge adjacent to a surface of a material with an
equivalent surface charge in free space.

In summary, the boundary conditions at a stationary surface of discontinuity written
in terms of equivalent sources are

np x B —Ba) = wolJs + Jmst + Jus2), (
iy X (B — Ep) = —Jus, (2.217
. 1
np- (B —Ey) = E—(Ps + ppst + Pps2), (
0
IA112 . (Bl - BZ) = Pms- (

2.8.5 Boundary conditions across a moving layer of field discontinuity

With a moving material body it is often necessary to apply boundary conditions de-
scribing the behavior of the fields across the surface of the body. If a surface of discon-
tinuity moves with constant velocity v, the boundary conditions (2.194)-(2.199) hold as



long as all fields are expressed in the frame of the moving surface. We can also derive
boundary conditions for a deforming surface moving with arbitrary velocity by using
equations (2.177)—(2.178). In this case all fields are expressed in the laboratory frame.
Proceeding through the same set of steps that gave us (2.194)—(2.197), we find

fi; x (H; — Hp) + (fip - v)(Dy — Do) = J, ( )
npp x (E; — Eo) — (i - v)(By — Bo) = —J s, (2.221)
i - (D —Dy) = py, ( )
fpp - (Br —B2) = o ( )

Note that when fij; - v = 0 these boundary conditions reduce to those for a stationary
surface. This occurs not only when v = 0 but also when the velocity is parallel to the
surface.

The reader must be wary when employing (2.220)—(2.223). Since the fields are mea-
sured in the laboratory frame, if the constitutive relations are substituted into the bound-
ary conditions they must also be represented in the laboratory frame. It is probable that
the material parameters would be known in the rest frame of the material, in which case
a conversion to the laboratory frame would be necessary.

2.9 Fundamental theorems

In this section we shall consider some of the important theorems of electromagnetics
that pertain directly to Maxwell’s equations. They may be derived without reference to
the solutions of Maxwell’s equations, and are not connected with any specialization of
the equations or any specific application or geometrical configuration. In this sense these
theorems are fundamental to the study of electromagnetics.

2.9.1 Linearity
Recall that a mathematical operator L is linear if
Loy fi + oz f2) = a1 L(f1) + a2 L(f2)

holds for any two functions fj, in the domain of L and any two scalar constants o; ;. A
standard observation regarding the equation

L(f) =s, (2.224)

where L is a linear operator and s is a given forcing function, is that if f; and f, are
solutions to

L(f1) = s1, L(f2) = 52, (2.225)
respectively, and
s =51 +8, (2.226)
then

f=h+r (2.227)



is a solution to (2.224). This is the principle of superposition; if convenient, we can
decompose s in equation (2.224) as a sum (2.226) and solve the two resulting equations
(2.225) independently. The solution to (2.224) is then (2.227), “by superposition.” Of
course, we are free to split the right side of (2.224) into more than two terms — the
method extends directly to any finite number of terms.

Because the operators V-, Vx, and d/d¢ are all linear, Maxwell’s equations can be
treated by this method. If, for instance,

8B1 BBZ
VxE =——, VxE=-——7,
at at
then
B
VxE=——
ot

where E = E; + E; and B = B; + B;. The motivation for decomposing terms in a
particular way is often based on physical considerations; we give one example here and
defer others to later sections of the book. We saw earlier that Maxwell’s equations can
be written in terms of both electric and (fictitious) magnetic sources as in equations
(2.169)—(2.172). Let E = E, + E,, where E, is produced by electric-type sources and E,,
is produced by magnetic-type sources, and decompose the other fields similarly. Then

9B, oD,
) \4 H = )
ar xHe=J+ ar

VxE,=-— VD, =p, V-B, =0,

with a similar equation set for the magnetic sources. We may, if desired, solve these
two equation sets independently for E., D., B., H, and E,,, D,,, E,,, H,,, and then use
superposition to obtain the total fields E, D, B, H.

2.9.2 Duality

The intriguing symmetry of Maxwell’s equations leads us to an observation that can
reduce the effort required to compute solutions. Consider a closed surface S enclosing a
region of space that includes an electric source current J and a magnetic source current
Ju.  The fields (E;,D;,B;,H;) within the region (which may also contain arbitrary
media) are described by

B

R T (2.228)
D

VxH =]+ 8—; (2.229)

V.D; =p, (2.230)

VB, = py. (2.231)

Suppose we have been given a mathematical description of the sources (J, J,,) and have
solved for the field vectors (Eq, Dy, By, H;). Of course, we must also have been supplied
with a set of boundary values and constitutive relations in order to make the solution
unique. We note that if we replace the formula for J with the formula for J,, in (2.229)
(and p with p, in (2.230)) and also replace J,, with —J in (2.228) (and p, with —p
in (2.231)) we get a new problem to solve, with a different solution. However, the
symmetry of the equations allows us to specify the solution immediately. The new set of



curl equations requires

9B
VxE=J- 3—,2 (2.232)
9D
VxHy=J,+ a_r2 (2.233)

As long as we can resolve the question of how the constitutive parameters must be altered
to reflect these replacements, we can conclude by comparing (2.232) with (2.229) and
(2.233) with (2.228) that the solution to these equations is merely

E, = H;,
B, = -Dy,
D, =By,
H, = -E;

That is, if we have solved the original problem, we can use those solutions to find the
new ones. This is an application of the general principle of duality.

Unfortunately, this approach is a little awkward since the units of the sources and
fields in the two problems are different. We can make the procedure more convenient by

multiplying Ampere’s law by 19 = (tto/€0)'/>. Then we have
B
VxE=-]J,— 3 (2.234)
d(noD)
V x (0H) = (70J) + a(; . (2.235)

Thus if the original problem has solution (Ei, noDi, By, noH;), then the dual problem
with J replaced by J,,/no and J,, replaced by —noJ has solution

E, = noHj, (2.236)
B, = —noDy, (2.237)
noD2 = By, (2.238)
noHy = —E;. (2.239)

The units on the quantities in the two problems are now identical.

Of course, the constitutive parameters for the dual problem must be altered from
those of the original problem to reflect the change in field quantities. From (2.19) and
(2.20) we know that the most general forms of the constitutive relations (those for linear,
bianisotropic media) are

D, =& -H +¢-E, (2.240)
B =i -H +¢ -Ey, (2.241)
for the original problem, and
D,=¢& H)+é&-E, (2.242)
B, =j1, Hy+ & - Ey, (2.243)
for the dual problem. Substitution of (2.236)—(2.239) into (2.240) and (2.241) gives
D, = (-&) Hy + (5—%) By, (2.244)

B, = (n5&1) - Ha + (=&)1) - Ea. (2.245)



Comparing (2.244) with (2.242) and (2.245) with (2.243), we conclude that

!

p P e _ _ _ 1
G =&, & =—C, N2=77§€1, € =

=
(ST}

As an important special case, we see that for a linear, isotropic medium specified by a
permittivity € and permeability i, the dual problem is obtained by replacing €, with u,
and u, with €,. The solution to the dual problem is then given by

E; = noHy, noH; = —Eq,

as before. We thus see that the medium in the dual problem must have electric properties
numerically equal to the magnetic properties of the medium in the original problem, and
magnetic properties numerically equal to the electric properties of the medium in the
original problem. This is rather inconvenient for most applications. Alternatively, we
may divide Ampere’s law by n = (u/€)'/? instead of 9. Then the dual problem has
J replaced by J,,/n, and J,, replaced by —nJ, and the solution to the dual problem is
given by

E, = nH,, nHy; = —E;.

In this case there is no need to swap €, and u,, since information about these parameters
is incorporated into the replacement sources.

We must also remember that to obtain a unique solution we need to specify the bound-
ary values of the fields. In a true dual problem, the boundary values of the fields used
in the original problem are used on the swapped fields in the dual problem. A typical
example of this is when the condition of zero tangential electric field on a perfect electric
conductor is replaced by the condition of zero tangential magnetic field on the surface of
a perfect magnetic conductor. However, duality can also be used to obtain the mathe-
matical form of the field expressions, often in a homogeneous (source-free) situation, and
boundary values can be applied later to specify the solution appropriate to the problem
geometry. This approach is often used to compute waveguide modal fields and the elec-
tromagnetic fields scattered from objects. In these cases a TE/TM field decomposition
is employed, and duality is used to find one part of the decomposition once the other is
known.

Duality of electric and magnetic point source fields. By duality, we can some-
times use the known solution to one problem to solve a related problem by merely sub-
stituting different variables into the known mathematical expression. An example of this
is the case in which we have solved for the fields produced by a certain distribution of
electric sources and wish to determine the fields when the same distribution is used to
describe magnetic sources.

Let us consider the case when the source distribution is that of a point current, or
Hertzian dipole, immersed in free space. As we shall see in Chapter 5, the fields for a
general source may be found by using the fields produced by these point sources. We
begin by finding the fields produced by an electric dipole source at the origin aligned
along the z-axis,

J =121é(r),
then use duality to find the fields produced by a magnetic current source J,, = 21,08 (r).

The fields produced by the electric source must obey

d
V x E, =~ uoH.. (2.246)



0
V xH, = 21y6(r) + EéoEe, (2.247)
V- &K, = p, (2.248)

V-H, =0, (2.249)

while those produced by the magnetic source must obey

d
V x By, = ~ilu03() = o poH,, (2.250)
0
VxH, = EeoEm, (2.251)
V.E, =0, (2.252)
V- woH,, = pp. (2.253)

We see immediately that the second set of equations is the dual of the first, as long
as we scale the sources appropriately. Multiplying (2.250) by —Iy/I0 and (2.251) by
Ion3/ Ino, we have the curl equations

IQ d IO
Vx|——E, | =12 + — —H, ), 2.254
< ImO > ° ( ) ot <M01m0 ) ( )
Iond 9 Iond
v (2og, )= -2 (Mg, ). (2.255)
ImO ot Im()
Comparing (2.255) with (2.246) and (2.254) with (2.247) we see that
Im Im Ee
Em:__OHes Hm: 0_2-
Iy Iy ng

We note that it is impossible to have a point current source without accompanying
point charge sources terminating each end of the dipole current. The point charges are
required to satisfy the continuity equation, and vary in time as the moving charge that
establishes the current accumulates at the ends of the dipole. From (2.247) we see that
the magnetic field curls around the combination of the electric field and electric current
source, while from (2.246) the electric field curls around the magnetic field, and from
(2.248) diverges from the charges located at the ends of the dipole. From (2.250) we
see that the electric field must curl around the combination of the magnetic field and
magnetic current source, while (2.251) and (2.253) show that the magnetic field curls
around the electric field and diverges from the magnetic charge.

Duality in a source-free region. Consider a closed surface S enclosing a source-free
region of space. For simplicity, assume that the medium within § is linear, isotropic, and
homogeneous. The fields within S are described by Maxwell’s equations

d
VxE = —E[,LHI, (2.256)
ad
V x nH; = aenEl, (2.257)
V.€E; =0, (2.258)
V. uH; = 0. (2.259)

Under these conditions the concept of duality takes on a different face. The symmetry
of the equations is such that the mathematical form of the solution for E is the same as



that for nH. That is, the fields

E2 = )7H1, (2260)
H, = —E/n, (2.261)

are also a solution to Maxwell’s equations, and thus the dual problem merely involves
replacing E by nH and H by —E/n. However, the final forms of E and H will not be
identical after appropriate boundary values are imposed.

This form of duality is very important for the solution of fields within waveguides or
the fields scattered by objects where the sources are located outside the region where the
fields are evaluated.

2.9.3 Reciprocity

The reciprocity theorem, also called the Lorentz reciprocity theorem, describes a spe-
cific and often useful relationship between sources and the electromagnetic fields they
produce. Under certain special circumstances we find that an interaction between inde-
pendent source and mediating fields called “reaction” is a spatially symmetric quantity.
The reciprocity theorem is used in the study of guided waves to establish the orthogonal-
ity of guided wave modes, in microwave network theory to obtain relationships between
terminal characteristics, and in antenna theory to demonstrate the equivalence of trans-
mission and reception patterns.

Consider a closed surface S enclosing a volume V. Assume that the fields within and
on S are produced by two independent source fields. The source (J,, Ja) produces the
field (E,, D,, B;, H,) as described by Maxwell’s equations

B,

V X Ea - _Jma - W, (2262)
oD,

VxH,=J,+ o (2.263)

while the source field (Jp, J..») produces the field (E;, Dy, By, Hp) as described by
oB

VX Ep = —Jup — a_tb (2.264)
oD,

VxH,=J,+ e (2.265)

The sources may be distributed in any way relative to S: they may lie completely inside,
completely outside, or partially inside and partially outside. Material media may lie
within §, and their properties may depend on position.

Let us examine the quantity

R=V.(E, x Hy—E, x H,).
By (B.44) we have
R=H,-VXE,—-E,-VxH,—-H, -VXE,+E, -V xH,

so that by Maxwell’s curl equations

B, 3B, D, D,
R=|H, —2 —H,- —|E,- =2 —E,. +
at at at at

+ [Ja‘Eb_Jb'Eu_Jma'Hb+me'Ha]‘




The useful relationships we seek occur when the first two bracketed quantities on the
right-hand side of the above expression are zero. Whether this is true depends not only
on the behavior of the fields, but on the properties of the medium at the point in question.
Though we have assumed that the sources of the field sets are independent, it is apparent
that they must share a similar time dependence in order for the terms within each of the
bracketed quantities to cancel. Of special interest is the case where the two sources are
both sinusoidal in time with identical frequencies, but with differing spatial distributions.
We shall consider this case in detail in § 4.10.2 after we have discussed the properties of
the time harmonic field. Importantly, we will find that only certain characteristics of the
constitutive parameters allow cancellation of the bracketed terms; materials with these
characteristics are called reciprocal, and the fields they support are said to display the
property of reciprocity. To see what this property entails, we set the bracketed terms to
zero and integrate over a volume V to obtain

f(Ea be—EbxHa>~dS=/(Ju-Eb—Jb-Ea—Jma-Hb+me~Ha>dv,
S 1%

which is the time-domain version of the Lorentz reciprocity theorem.
Two special cases of this theorem are important to us. If all sources lie outside S, we
have Lorentz’s lemma

yg(Eabe—beHa)-dS=0.
S

This remarkable expression shows that a relationship exists between the fields produced
by completely independent sources, and is useful for establishing waveguide mode or-
thogonality for time harmonic fields. If sources reside within S but the surface integral
is equal to zero, we have

/(Ja'Eb_Jb'Ea_Jma'Hb+me'Ha)dV:0.
14

This occurs when the surface is bounded by a special material (such as an impedance
sheet or a perfect conductor), or when the surface recedes to infinity; the expression is
useful for establishing the reciprocity conditions for networks and antennas. We shall
interpret it for time harmonic fields in § 4.10.2.

2.9.4 Similitude

A common approach in physical science involves the introduction of normalized vari-
ables to provide for scaling of problems along with a chance to identify certain physically
significant parameters. Similarity as a general principle can be traced back to the earliest
attempts to describe physical effects with mathematical equations, with serious study un-
dertaken by Galileo. Helmholtz introduced the first systematic investigation in 1873, and
the concept was rigorized by Reynolds ten years later [216]. Similitude is now considered
a fundamental guiding principle in the modeling of materials [199].

The process often begins with a consideration of the fundamental differential equations.
In electromagnetics we may introduce a set of dimensionless field and source variables

E D B H J o (2.266)
by setting

E =Ekz;, B=Bky, D=Dkp,
H=Hky, J=Jk;, p=pk, (2.267)



Here we regard the quantities kg, kp,... as base units for the discussion, while the

dimensionless quantities (2.266) serve to express the actual fields E, B, ... in terms of
these base units. Of course, the time and space variables can also be scaled: we can write
t = tky, 1 =1k, (2.268)

if [ is any length of interest. Again, the quantities ¢ and [ are dimensionless measure
numbers used to express the actual quantities ¢t and [ relative to the chosen base amounts
k; and k;. With (2.267) and (2.268), Maxwell’s curl equations become
kik kp k; oD

VxE=_-88°92 xH= My A2 2.269
X ET Tk o kn 3k ko 01 (2:269)

J=—, (2.270)

where V has been normalized by k;. These are examples of field equations cast into
dimensionless form — it is easily verified that the similarity parameters
kg ki kjki kp ki ky ki
kek,  ky ' knk'® o ky k.’
are dimensionless. The idea behind electromagnetic similitude is that a given set of
normalized values E, B, ... can satisfy equations (2.269) and (2.270) for many different
physical situations, provided that the numerical values of the coefficients (2.271) are all
fixed across those situations. Indeed, the differential equations would be identical.

To make this discussion a bit more concrete, let us assume a conducting linear medium
where

(2.271)

and use
Ezgkfv :u':ﬁk/u ngkcv

to express the material parameters in terms of dimensionless values €, 4, and o. Then

kekg E kyky H J= kokg

D= ,
= kp ks — ky

O— 9

and equations (2.269) become

vup= - (hbr), B

k ke ) B
ki kk; kg\ OE
VxH=(kko)oE+ |~ E)e=.
Defining
Ol:kuklk_H’ )/=kak1k—E, lg:kéklk_E7
ki kg ku ki kg

we see that under the current assumptions similarity holds between two electromagnetics
problems only if apt, yo, and Be are numerically the same in both problems. A necessary
condition for similitude, then, is that the products

k2

k 2
(ap)(Be) = kyke <k> HE, (ap)(yo) = kuko — k



(which do not involve kg or ky) stay constant between problems. We see, for example,
that we may compensate for a halving of the length scale k; by (a) a quadrupling of the
permeability w, or (b) a simultaneous halving of the time scale k;, and doubling of the
conductivity o. A much less subtle special case is that for which ¢ = 0, k. = €, k, = o,
and € = u = 1; we then have free space and must simply maintain

k;/k; = constant

so that the time and length scales stay proportional. In the sinusoidal steady state, for
instance, the frequency would be made to vary inversely with the length scale.

2.9.5 Conservation theorems

The misconception that Poynting’s theorem can be “derived” from Maxwell’s equations
is widespread and ingrained. We must, in fact, postulate the idea that the electromagnetic
field can be associated with an energy flux propagating at the speed of light. Since
the form of the postulate is patterned after the well-understood laws of mechanics, we
begin by developing the basic equations of momentum and energy balance in mechanical
systems. Then we shall see whether it is sensible to ascribe these principles to the
electromagnetic field.

Maxwell’s theory allows us to describe, using Maxwell’s equations, the behavior of
the electromagnetic fields within a (possibly) finite region V of space. The presence of
any sources or material objects outside V are made known through the specification of
tangential fields over the boundary of V, as required for uniqueness. Thus, the influence
of external effects can always be viewed as being transported across the boundary. This
is true of mechanical as well as electromagnetic effects. A charged material body can
be acted on by physical contact with another body, by gravitational forces, and by the
Lorentz force, each effect resulting in momentum exchange across the boundary of the
object. These effects must all be taken into consideration if we are to invoke momentum
conservation, resulting in a very complicated situation. This suggests that we try to
decompose the problem into simpler “systems” based on physical effects.

The system concept in the physical sciences. The idea of decomposing a com-
plicated system into simpler, self-contained systems is quite common in the physical
sciences. Penfield and Haus [145] invoke this concept by introducing an electromagnetic
system where the effects of the Lorentz force equation are considered to accompany a
mechanical system where effects of pressure, stress, and strain are considered, and a
thermodynamic system where the effects of heat exchange are considered. These systems
can all be interrelated in a variety of ways. For instance, as a material heats up it can
expand, and the resulting mechanical forces can alter the electrical properties of the
material. We will follow Penfield and Haus by considering separate electromagnetic and
mechanical subsystems; other systems may be added analogously.

If we separate the various systems by physical effect, we will need to know how to
“reassemble the information.” Two conservation theorems are very helpful in this re-
gard: conservation of energy, and conservation of momentum. Engineers often employ
these theorems to make tacit use of the system idea. For instance, when studying elec-
tromagnetic waves propagating in a waveguide, it is common practice to compute wave
attenuation by calculating the Poynting flux of power into the walls of the guide. The
power lost from the wave is said to “heat up the waveguide walls,” which indeed it does.
This is an admission that the electromagnetic system is not “closed”: it requires the



inclusion of a thermodynamic system in order that energy be conserved. Of course, the
detailed workings of the thermodynamic system are often ignored, indicating that any
thermodynamic “feedback” mechanism is weak. In the waveguide example, for instance,
the heating of the metallic walls does not alter their electromagnetic properties enough
to couple back into an effect on the fields in the walls or in the guide. If such effects were
important, they would have to be included in the conservation theorem via the bound-
ary fields; it is therefore reasonable to associate with these fields a “flow” of energy or
momentum into V. Thus, we wish to develop conservation laws that include not only the
Lorentz force effects within V, but a flow of external effects into V through its boundary
surface.

To understand how external influences may effect the electromagnetic subsystem, we
look to the behavior of the mechanical subsystem as an analogue. In the electromagnetic
system, effects are felt both internally to a region (because of the Lorentz force effect) and
through the system boundary (by the dependence of the internal fields on the boundary
fields). In the mechanical and thermodynamic systems, a region of mass is affected both
internally (through transfer of heat and gravitational forces) and through interactions
occurring across its surface (through transfers of energy and momentum, by pressure
and stress). One beauty of electromagnetic theory is that we can find a mathematical
symmetry between electromagnetic and mechanical effects which parallels the above con-
ceptual symmetry. This makes applying conservation of energy and momentum to the
total system (electromagnetic, thermodynamic, and mechanical) very convenient.

Conservation of momentum and energy in mechanical systems. We begin by
reviewing the interactions of material bodies in a mechanical system. For simplicity we
concentrate on fluids (analogous to charge in space); the extension of these concepts to
solid bodies is straightforward.

Consider a fluid with mass density p,,. The momentum of a small subvolume of the
fluid is given by p,,vdV, where v is the velocity of the subvolume. So the momentum
density is p,,v. Newton’s second law states that a force acting throughout the subvolume
results in a change in its momentum given by

D
o (PnvdV) =1dv. (2.272)

where f is the volume force density and the D/Dt notation shows that we are interested
in the rate of change of the momentum as observed by the moving fluid element (see
§ A.2). Here f could be the weight force, for instance. Addition of the results for all
elements of the fluid body gives

D
— wVdV = fdv 2.273
thvp v f (2.273)

as the change in momentum for the entire body. If on the other hand the force exerted
on the body is through contact with its surface, the change in momentum is

D
—/ puvdV = ?gtdS (2.274)
Dt Jy s

where t is the “surface traction.”
We can write the time-rate of change of momentum in a more useful form by applying
the Reynolds transport theorem (A.66):

D 3
— | puvdV = | —(puv)dV V)V - dS. 2.275
thvpnv fvat(p v) +7§S(p V)V ( )



Superposing (2.273) and (2.274) and substituting into (2.275) we have

ad
/ —(pmv)dV+j£(pmv)v-dS: / de—i—jgtdS. (2.276)
il s v s

If we define the dyadic quantity
Tk = PmVV

then (2.276) can be written as

0 _
/ oy dV + f f-T,dS = / tav +7§tds. (2.277)
v ot s v s

This principle of linear momentum [214] can be interpreted as a large-scale form of
conservation of kinetic linear momentum. Here fi - Ty represents the flow of kinetic mo-
mentum across S, and the sum of this momentum transfer and the change of momentum
within V stands equal to the forces acting internal to V and upon S.

The surface traction may be related to the surface normal fi through a dyadic quantity
T,, called the mechanical stress tensor:

t=n-T,.

With this we may write (2.277) as

0 _ _
/—(,OmV)dV—G—%fLdeS:'/de-l—%ﬁ'deS
y 0f s v s

and apply the dyadic form of the divergence theorem (B.19) to get
d -
/ —(pmv)dV +/ V- (pnvv)dV = / fdv +/ V-T,dV. (2.278)
y 0t v 14 v
Combining the volume integrals and setting the integrand to zero we have
0 -
5(pmv) + V. (PmVV) =f+V. va
which is the point-form equivalent of (2.277). Note that the second term on the right-

hand side is nonzero only for points residing on the surface of the body. Finally, letting
g denote momentum density we obtain the simple expression

- d
VT, 4+ 2B g, (2.279)
ot
where
gk = PmV
is the density of kinetic momentum and
f,=f+V-T, (2.280)

is the total force density.

Equation (2.279) is somewhat analogous to the electric charge continuity equation
(1.11). For each point of the body, the total outflux of kinetic momentum plus the time
rate of change of kinetic momentum equals the total force. The resemblance to (1.11)
is strong, except for the nonzero term on the right-hand side. The charge continuity



equation represents a closed system: charge cannot spontaneously appear and add an
extra term to the right-hand side of (1.11). On the other hand, the change in total
momentum at a point can exceed that given by the momentum flowing out of the point
if there is another “source” (e.g., gravity for an internal point, or pressure on a boundary
point).

To obtain a momentum conservation expression that resembles the continuity equa-
tion, we must consider a “subsystem” with terms that exactly counterbalance the extra
expressions on the right-hand side of (2.279). For a fluid acted on only by external
pressure the sole effect enters through the traction term, and [145]

V-T,=-Vp (2.281)
where p is the pressure exerted on the fluid body. Now, using (B.63), we can write
—Vp=-V-T, (2.282)
where
T, = pl
and I is the unit dyad. Finally, using (2.282), (2.281), and (2.280) in (2.279), we obtain
V-(Tk+Tp)+%gk=0

and we have an expression for a closed system including all possible effects. Now, note
that we can form the above expression as

- 0 - a
(V - Ty + ggk) + (V -T, + 5g,,> =0 (2.283)

where g, = 0 since there are no volume effects associated with pressure. This can be
viewed as the sum of two closed subsystems

- el

- d
V. Tp + agp =0.

We now have the desired viewpoint. The conservation formula for the complete closed
system can be viewed as a sum of formulas for open subsystems, each having the form
of a conservation law for a closed system. In case we must include the effects of gravity,
for instance, we need only determine Tg and g, such that

VT, 4+ 2 0
T + Egg =
and add this new conservation equation to (2.283). If we can find a conservation ex-
pression of form similar to (2.284) for an “electromagnetic subsystem,” we can include
its effects along with the mechanical effects by merely adding together the conservation
laws. We shall find just such an expression later in this section.

We stated in § 1.3 that there are four fundamental conservation principles. We have
now discussed linear momentum; the principle of angular momentum follows similarly.
Our next goal is to find an expression similar to (2.283) for conservation of energy. We
may expect the conservation of energy expression to obey a similar law of superposition.



We begin with the fundamental definition of work: for a particle moving with velocity v
under the influence of a force f; the work is given by f; - v. Dot multiplying (2.272) by v
and replacing f by f; (to represent both volume and surface forces), we get
D
V- E(pmv)dv =v-fidV
or equivalently

b (1 dV =v-£f,dV
Ds 2,omvv =v-fidV.

Integration over a volume and application of the Reynolds transport theorem (A.66) then

gives
a (1 1
/— — ppv? dv+7§ﬁ- V=ppuv? dS:/fk-vdV.
vy 0t \ 2 s 2 v

Hence the sum of the time rate of change in energy internal to the body and the flow
of kinetic energy across the boundary must equal the work done by internal and surface
forces acting on the body. In point form,

0
V‘Sk'i‘gwk =f,-v (2.285)
where
S, = vz,omv2

is the density of the flow of kinetic energy and

We = L pot?
k= Epmv
is the kinetic energy density. Again, the system is not closed (the right-hand side of
(2.285) is not zero) because the balancing forces are not included. As was done with the
momentum equation, the effect of the work done by the pressure forces can be described
in a closed-system-type equation

9
VS, 4o W, =0, (2.286)

Combining (2.285) and (2.286) we have
0
V- (Se+S,) + E(Wk +W,) =0,
the energy conservation equation for the closed system.

Conservation in the electromagnetic subsystem. We would now like to achieve
closed-system conservation theorems for the electromagnetic subsystem so that we can
add in the effects of electromagnetism. For the momentum equation, we can proceed
exactly as we did with the mechanical system. We begin with

f., = pE+J xB.

This force term should appear on one side of the point form of the momentum conserva-
tion equation. The term on the other side must involve the electromagnetic fields, since



they are the mechanism for exerting force on the charge distribution. Substituting for J
from (2.2) and for p from (2.3) we have

oD
fesz(V-D)—Bx(VxH)—i—BxE.
Using
B oD B(D B) 4D B
X —=——MDx X —
ot ot ot

and substituting from Faraday’s law for 0B/dt we have
d
—[E(V-D)—Dx(VXE)+H(V-B)—B x (VxH)]+ E(D x B) = —f,,. (2.287)

Here we have also added the null term H(V - B).

The forms of (2.287) and (2.279) would be identical if the bracketed term could be
written as the divergence of a dyadic function T,,. This is indeed possible for linear,
homogeneous, bianisotropic media, provided that the constitutive matrix [Cgg] in (2.21)
is symmetric [101]. In that case

_ 1 -
Tom = §(D~E+B~H)I—DE—BH, (2.288)

which is called the Maxwell stress tensor. Let us demonstrate this equivalence for a
linear, isotropic, homogeneous material. Putting D = ¢E and H = B/u into (2.287) we
obtain

V- T, = —€E(V-E)+ iB x (VxB)+€E x (VxE)— iB(V -B). (2.289)
Now (B.46) gives
V(A-A) =2A x (VX A) +2(A - V)A
so that
E(V-E)—E x (VxE)=E(V~E)—|—(E~V)E—%V(E2).

Finally, (B.55) and (B.63) give

E(V-E)—Ex (VxE)=V. <EE—%IEE)
Substituting this expression and a similar one for B into (2.289) we have

vV.-T,, =V. [%(D-E—}—B-H)i—DE—BH],

which matches (2.288). )
Replacing the term in brackets in (2.287) by V - T, we get
x Ogem

V- T = Lo 2.290
+ = (2.290)

where

gemZDXB.



Equation (2.290) is the point form of the electromagnetic conservation of momentum
theorem. It is mathematically identical in form to the mechanical theorem (2.279).
Integration over a volume gives the large-scale form

T a em
fTe,,, .ds+/ OBem gy = —/ £ dV. (2.201)
s y 0t v

If we interpret this as we interpreted the conservation theorems from mechanics, the first
term on the left-hand side represents the flow of electromagnetic momentum across the
boundary of V, while the second term represents the change in momentum within V. The
sum of these two quantities is exactly compensated by the total Lorentz force acting on
the charges within V. Thus we identify g,,, as the transport density of electromagnetic
momentum.

Because (2.290) is not zero on the right-hand side, it does not represent a closed system.
If the Lorentz force is the only force acting on the charges within V, then the mechanical
reaction to the Lorentz force should be described by Newton’s third law. Thus we have
the kinematic momentum conservation formula

ok

V'Tk—i_W:fk:_fem'

Subtracting this expression from (2.290) we obtain
- - a
V. (Tem - Tk) + E(gem - gk) = O, (2292)

which describes momentum conservation for the closed system.

It is also possible to derive a conservation theorem for electromagnetic energy that
resembles the corresponding theorem for mechanical energy. Earlier we noted that v - f
represents the volume density of work produced by moving an object at velocity v under
the action of a force f. For the electromagnetic subsystem the work is produced by
charges moving against the Lorentz force. So the volume density of work delivered to
the currents is

Wen =V Lo =V- (PE+J xB) = (pv) -E+ pv- (v x B). (2.293)
Using (B.6) on the second term in (2.293) we get
Wem = (V) - E+ pB - (v x V).

The second term vanishes by definition of the cross product. This is the familiar property
that the magnetic field does no work on moving charge. Hence

Wem = J - E. (2.294)

This important relation says that charge moving in an electric field experiences a force
which results in energy transfer to (or from) the charge. We wish to write this energy
transfer in terms of an energy flux vector, as we did with the mechanical subsystem.

As with our derivation of the conservation of electromagnetic momentum, we wish to
relate the energy transfer to the electromagnetic fields. Substitution of J from (2.2) into
(2.294) gives

aD
won = (V x H)-E~ = -E,



hence

3D
Wey =~V (ExH) +H- (VxE) — = -E

by (B.44). Substituting for V x E from (2.1) we have

V.(ExH) - |E Dy B
Wem = — . X — - —_ c— .
at at

This is not quite of the form (2.285) since a single term representing the time rate of
change of energy density is not present. However, for a linear isotropic medium in which
€ and p do not depend on time (i.e., a nondispersive medium) we have

E b E oE _ 1.9 (E-E) L9 D-E) (2.295)
. — =€ — = —€— . [ J— . s .
at ot 2 ot 2 ot
HBB—HBH—l 8(HH)—la(HB) (2.296)
ar M e T2t T 2% ' '
Using this we obtain
0
V. Sem + EWem = _fem V= _J -E (2297>
where
1
Wem = 5(D-E+B-H)
and
S., =E x H. (2.298)

Equation (2.297) is the point form of the energy conservation theorem, also called Poynt-
ing’s theorem after J.H. Poynting who first proposed it. The quantity S, given in
(2.298) is known as the Poynting vector. Integrating (2.297) over a volume and using the
divergence theorem, we obtain the large-scale form

—/J-EdV:/li(D~E+B-H)dV+%(ExH)~dS. (2.299)
v v 20t s

This also holds for a nondispersive, linear, bianisotropic medium with a symmetric con-
stitutive matrix [101, 185].

We see that the electromagnetic energy conservation theorem (2.297) is identical in
form to the mechanical energy conservation theorem (2.285). Thus, if the system is com-
posed of just the kinetic and electromagnetic subsystems, the mechanical force exactly
balances the Lorentz force, and (2.297) and (2.285) add to give

d
V- (Sem +8k) + 7 Wen + Wi) = 0, (2.300)

showing that energy is conserved for the entire system.

As in the mechanical system, we identify W,,, as the volume electromagnetic energy
density in V, and S,,, as the density of electromagnetic energy flowing across the bound-
ary of V. This interpretation is somewhat controversial, as discussed below.



Interpretation of the energy and momentum conservation theorems. There
has been some controversy regarding Poynting’s theorem (and, equally, the momentum
conservation theorem). While there is no question that Poynting’s theorem is mathe-
matically correct, we may wonder whether we are justified in associating W,,, with W;
and S,, with S; merely because of the similarities in their mathematical expressions.
Certainly there is some justification for associating W;, the kinetic energy of particles,
with W,,,, since we shall show that for static fields the term %(D -E 4+ B - H) represents
the energy required to assemble the charges and currents into a certain configuration.
However, the term S,,, is more problematic. In a mechanical system, S; represents the
flow of kinetic energy associated with moving particles — does that imply that S,,, rep-
resents the flow of electromagnetic energy? That is the position generally taken, and it is
widely supported by experimental evidence. However, the interpretation is not clear-cut.

If we associate S,,, with the flow of electromagnetic energy at a point in space, then
we must define what a flow of electromagnetic energy is. We naturally associate the
flow of kinetic energy with moving particles; with what do we associate the flow of
electromagnetic energy? Maxwell felt that electromagnetic energy must flow through
space as a result of the mechanical stresses and strains associated with an unobserved
substance called the “aether.” A more modern interpretation is that the electromagnetic
fields propagate as a wave through space at finite velocity; when those fields encounter a
charged particle a force is exerted, work is done, and energy is “transferred” from the field
to the particle. Hence the energy flow is associated with the “flow” of the electromagnetic
wave.

Unfortunately, it is uncertain whether E x H is the appropriate quantity to associate
with this flow, since only its divergence appears in Poynting’s theorem. We could add
any other term S’ that satisfies V-S" =0 to S,,, in (2.297), and the conservation theorem
would be unchanged. (Equivalently, we could add to (2.299) any term that integrates to
zero over S.) There is no such ambiguity in the mechanical case because kinetic energy
is rigorously defined. We are left, then, to postulate that E x H represents the density
of energy flow associated with an electromagnetic wave (based on the symmetry with
mechanics), and to look to experimental evidence as justification. In fact, experimental
evidence does point to the correctness of this hypothesis, and the quantity E x H is widely
and accurately used to compute the energy radiated by antennas, carried by waveguides,
etc.

Confusion also arises regarding the interpretation of W,,. Since this term is so con-
veniently paired with the mechanical volume kinetic energy density in (2.300) it would
seem that we should interpret it as an electromagnetic energy density. As such, we can
think of this energy as “localized” in certain regions of space. This viewpoint has been
criticized [187, 145, 69] since the large-scale form of energy conservation for a space re-
gion only requires that the total energy in the region be specified, and the integrand
(energy density) giving this energy is not unique. It is also felt that energy should be
associated with a “configuration” of objects (such as charged particles) and not with an
arbitrary point in space. However, we retain the concept of localized energy because it
is convenient and produces results consistent with experiment.

The validity of extending the static field interpretation of

1
3 (D-E+B-H)
as the energy “stored” by a charge and a current arrangement to the time-varying case

has also been questioned. If we do extend this view to the time-varying case, Poynting’s
theorem suggests that every point in space somehow has an energy density associated



with it, and the flow of energy from that point (via S,,) must be accompanied by a
change in the stored energy at that point. This again gives a very useful and intuitively
satisfying point of view. Since we can associate the flow of energy with the propagation
of the electromagnetic fields, we can view the fields in any region of space as having the
potential to do work on charged particles in that region. If there are charged particles in
that region then work is done, accompanied by a transfer of energy to the particles and
a reduction in the amplitudes of the fields.

We must also remember that the association of stored electromagnetic energy density
W, with the mechanical energy density Wy is only possible if the medium is nondisper-
sive. If we cannot make the assumptions that justify (2.295) and (2.296), then Poynting’s
theorem must take the form

oD oB
—/J-EdV:/[E-—+H~—i|dV—|—y§(ExH)~dS. (2.301)
v v at ot S

For dispersive media, the volume term on the right-hand side describes not only the stored
electromagnetic energy, but also the energy dissipated within the material produced by
a time lag between the field applied to the medium and the resulting polarization or
magnetization of the atoms. This is clearly seen in (2.29), which shows that D(¢) depends
on the value of E at time ¢ and at all past times. The stored energy and dissipative terms
are hard to separate, but we can see that there must always be a stored energy term by
substituting D = ¢)E + P and H=B/u — M into (2.301) to obtain

_/[(J+JP)'E+JH‘H]dV=
%

10
~ 2 [ (E-E+ uoH-H)dV + f(E x H) - dS. (2.302)
2 ot Vv S

Here Jp is the equivalent polarization current (2.119) and Jg is an analogous magnetic
polarization current given by

I, = oM
H—Moat-

In this form we easily identify the quantity
1
E(GOE -E+ pnoH - H)

as the electromagnetic energy density for the fields E and H in free space. Any dissipa-
tion produced by polarization and magnetization lag is now handled by the interaction
between the fields and equivalent current, just as J - E describes the interaction of the
electric current (source and secondary) with the electric field. Unfortunately, the equiv-
alent current interaction terms also include the additional stored energy that results
from polarizing and magnetizing the material atoms, and again the effects are hard to
separate.

Finally, let us consider the case of static fields. Setting the time derivative to zero in
(2.299), we have

—/J~EdV=f(ExH)~dS.
v s

This shows that energy flux is required to maintain steady current flow. For instance,
we need both an electromagnetic and a thermodynamic subsystem to account for energy
conservation in the case of steady current flow through a resistor. The Poynting flux



describes the electromagnetic energy entering the resistor and the thermodynamic flux
describes the heat dissipation. For the sum of the two subsystems conservation of energy
requires

V'(Sein+sth) = _JE+P111 =0.
To compute the heat dissipation we can use
Pz‘h :J’E:_V'Sem

and thus either use the boundary fields or the fields and current internal to the resistor
to find the dissipated heat.

Boundary conditions on the Poynting vector. The large-scale form of Poynting’s
theorem may be used to determine the behavior of the Poynting vector on either side
of a boundary surface. We proceed exactly as in § 2.8.2. Consider a surface S across
which the electromagnetic sources and constitutive parameters are discontinuous (Figure
2.6). As before, let fi;; be the unit normal directed into region 1. We now simplify the
notation and write S instead of S,,,. If we apply Poynting’s theorem

aD oB
/ J-E+E. —+H - — dV—l—fﬁS-ndS:O
v ot at s
to the two separate surfaces shown in Figure 2.6, we obtain
oD oB R
/ J-E+E.-—+H - — dV—i—/S-ndS:/ fij; - (S; —S,)dS. (2.303)
v ot ot s Sio

If on the other hand we apply Poynting’s theorem to the entire volume region including
the surface of discontinuity and include the contribution produced by surface current, we
get

aD B
/(J-E+E-—+H.—)dv+/s-ndsz— J, Eds. (2.304)
Vv 8t 3[ S Sio

Since we are uncertain whether to use E; or E; in the surface term on the right-hand side,
if we wish to have the integrals over V and § in (2.303) and (2.304) produce identical
results we must postulate the two conditions

np x (Ej—Ey) =0
and
i - (81 —82) =—J; - E. (2.305)

The first condition is merely the continuity of tangential electric field as originally postu-
lated in § 2.8.2; it allows us to be nonspecific as to which value of E we use in the second
condition, which is the desired boundary condition on S.

It is interesting to note that (2.305) may also be derived directly from the two pos-
tulated boundary conditions on tangential E and H. Here we write with the help of
(B.6)

A - (S —8) =hp - (B xH —Ey xHp) =Hy - (A x E) — Hy - (iy x E»).
Since fij; x E; = fijp x E; = fij; x E, we have

Np - (S —S) =M, —Hy) - (A x E) =[—hpp x (H —Hy)]-E.



Finally, using fi;; x (H; — Hy) = J; we arrive at (2.305).

The arguments above suggest an interesting way to look at the boundary conditions.
Once we identify S with the flow of electromagnetic energy, we may consider the condition
on normal S as a fundamental statement of the conservation of energy. This statement
implies continuity of tangential E in order to have an unambiguous interpretation for the
meaning of the term J; - E. Then, with continuity of tangential E established, we can
derive the condition on tangential H directly.

An alternative formulation of the conservation theorems. As we saw in the
paragraphs above, our derivation of the conservation theorems lacks strong motivation.
We manipulated Maxwell’s equations until we found expressions that resembled those
for mechanical momentum and energy, but in the process found that the validity of the
expressions is somewhat limiting. For instance, we needed to assume a linear, homoge-
neous, bianisotropic medium in order to identify the Maxwell stress tensor (2.288) and
the energy densities in Poynting’s theorem (2.299). In the end, we were reduced to pos-
tulating the meaning of the individual terms in the conservation theorems in order for
the whole to have meaning.

An alternative approach is popular in physics. It involves postulating a single La-
grangian density function for the electromagnetic field, and then applying the stationary
property of the action integral. The results are precisely the same conservation expres-
sions for linear momentum and energy as obtained from manipulating Maxwell’s equa-
tions (plus the equation for conservation of angular momentum), obtained with fewer
restrictions regarding the constitutive relations. This process also separates the stored
energy, Maxwell stress tensor, momentum density, and Poynting vector as natural com-
ponents of a tensor equation, allowing a better motivated interpretation of the meaning
of these components. Since this approach is also a powerful tool in mechanics, its ap-
plication is more strongly motivated than merely manipulating Maxwell’s equations. Of
course, some knowledge of the structure of the electromagnetic field is required to provide
an appropriate postulate of the Lagrangian density. Interested readers should consult
Kong [101], Jackson [91], Doughty [57], or Tolstoy [198].

2.10 The wave nature of the electromagnetic field

Throughout this chapter our goal has been a fundamental understanding of Maxwell’s
theory of electromagnetics. We have concentrated on developing and understanding the
equations relating the field quantities, but have done little to understand the nature of
the field itself. We would now like to investigate, in a very general way, the behavior
of the field. We shall not attempt to solve a vast array of esoteric problems, but shall
instead concentrate on a few illuminating examples.

The electromagnetic field can take on a wide variety of characteristics. Static fields
differ qualitatively from those which undergo rapid time variations. Time-varying fields
exhibit wave behavior and carry energy away from their sources. In the case of slow
time variation this wave nature may often be neglected in favor of the nearby coupling
of sources we know as the inductance effect, hence circuit theory may suffice to describe
the field-source interaction. In the case of extremely rapid oscillations, particle concepts
may be needed to describe the field.



The dynamic coupling between the various field vectors in Maxwell’s equations provides
a means of characterizing the field. Static fields are characterized by decoupling of the
electric and magnetic fields. Quasistatic fields exhibit some coupling, but the wave
characteristic of the field is ignored. Tightly coupled fields are dominated by the wave
effect, but may still show a static-like spatial distribution near the source. Any such
“near-zone” effects are generally ignored for fields at light-wave frequencies, and the
particle nature of light must often be considered.

2.10.1 Electromagnetic waves

An early result of Maxwell’s theory was the prediction and later verification by Heinrich
Hertz of the existence of electromagnetic waves. We now know that nearly any time-
varying source produces waves, and that these waves have certain important properties.
An electromagnetic wave is a propagating electromagnetic field that travels with finite
velocity as a disturbance through a medium. The field itself is the disturbance, rather
than merely representing a physical displacement or other effect on the medium. This fact
is fundamental for understanding how electromagnetic waves can travel through a true
vacuum. Many specific characteristics of the wave, such as velocity and polarization,
depend on the properties of the medium through which it propagates. The evolution
of the disturbance also depends on these properties: we say that a material exhibits
“dispersion” if the disturbance undergoes a change in its temporal behavior as the wave
progresses. As waves travel they carry energy and momentum away from their source.
This energy may be later returned to the source or delivered to some distant location.
Waves are also capable of transferring energy to, or withdrawing energy from, the medium
through which they propagate. When energy is carried outward from the source never
to return, we refer to the process as “electromagnetic radiation.” The effects of radiated
fields can be far-reaching; indeed, radio astronomers observe waves that originated at the
very edges of the universe.

Light is an electromagnetic phenomenon, and many of the familiar characteristics of
light that we recognize from our everyday experience may be applied to all electromag-
netic waves. For instance, radio waves bend (or “refract”) in the ionosphere much as
light waves bend while passing through a prism. Microwaves reflect from conducting sur-
faces in the same way that light waves reflect from a mirror; detecting these reflections
forms the basis of radar. Electromagnetic waves may also be “confined” by reflecting
boundaries to form waves standing in one or more directions. With this concept we can
use waveguides or transmission lines to guide electromagnetic energy from spot to spot,
or to concentrate it in the cavity of a microwave oven.

The manifestations of electromagnetic waves are so diverse that no one book can
possibly describe the entire range of phenomena or application. In this section we shall
merely introduce the reader to some of the most fundamental concepts of electromagnetic
wave behavior. In the process we shall also introduce the three most often studied types
of traveling electromagnetic waves: plane waves, spherical waves, and cylindrical waves.
In later sections we shall study some of the complicated interactions of these waves with
objects and boundaries, in the form of guided waves and scattering problems.

Mathematically, electromagnetic waves arise as a subset of solutions to Maxwell’s equa-
tions. These solutions obey the electromagnetic “wave equation,” which may be derived
from Maxwell’s equations under certain circumstances. Not all electromagnetic fields
satisfy the wave equation. Obviously, time-invariant fields cannot represent evolving
wave disturbances, and must obey the static field equations. Time-varying fields in cer-



tain metals may obey the diffusion equation rather than the wave equation, and must
thereby exhibit different behavior. In the study of quasistatic fields we often ignore the
displacement current term in Maxwell’s equations, producing solutions that are most
important near the sources of the fields and having little associated radiation. When the
displacement term is significant we produce solutions with the properties of waves.

2.10.2 Wave equation for bianisotropic materials

In deriving electromagnetic wave equations we transform the first-order coupled par-
tial differential equations we know as Maxwell’s equations into uncoupled second-order
equations. That is, we perform a set of operations (and make appropriate assumptions)
to reduce the set of four differential equations in the four unknown fields E, D, B, and
H, into a set of differential equations each involving a single unknown (usually E or
H). Tt is possible to derive wave equations for E and H even for the most general cases
of inhomogeneous, bianisotropic media, as long as the constitutive parameters g and
€ are constant with time. Substituting the constitutive relations (2.19)-(2.20) into the
Maxwell-Minkowski curl equations (2.169)—(2.170) we get

VxE= —%(é-E—i—ﬂ-H)—J,ﬂ, (2.306)
VxH:%(E-E—i—éH)—i—J. (2.307)

Separate equations for E and H are facilitated by introducing a new dyadic operator V,
which when dotted with a vector field V gives the curl:

V-V=VxV. (2.308)
It is easy to verify that in rectangular coordinates V is

0 —8/0z 9/dy
[VlI=| 9/0z 0 —d/ox
—a/dy 3/ax 0

With this notation, Maxwell’s curl equations (2.306)—(2.307) become simply

R I a _
(v_ig) H—i‘ E+J (2.310)
at TN ' '

Obtaining separate equations for E and H is straightforward. Defining the inverse
dyadic ="' through

popl=p"p=1,
we can write (2.309) as

d

_ 0 -
—H=—g ' (V+—=C)-E-g"'-J, 2.311
Py P ( +BIC) TR | (2.311)

where we have assumed that f is independent of time. Assuming that £ is also indepen-
dent of time, we can differentiate (2.310) with respect to time to obtain

- 9.\ oH @? aJ
Vo —¢) - —=—(-E)+—.
( 8t> a2 C )+8t



Substituting dH/d¢ from (2.311) and rearranging, we get

o 9z 4 (e, 05), ] w. (o 9z\ - aJ
[(V‘Eﬁ)'“ '(VWC)*F]E—‘(V‘&E)'“ BT
(2.312)

This is the general wave equation for E. Using an analogous set of steps, and assuming
€ and ¢ are independent of time, we can find

9\ ., (= - 9% _ N N 0Jn
[<V+EC>‘€1-(V—§§>+ﬁu]'H=<V+EC>'€l'J—W.

This is the wave equation for H. The case in which the constitutive parameters are
time-dependent will be handled using frequency domain techniques in later chapters.
Wave equations for anisotropic, isotropic, and homogeneous media are easily obtained
from (2.312) and (2.313) as special cases. For example, the wave equations for a homo-
geneous, isotropic medium can be found by setting { = € =0, 1 = ul, and & = €I:

(2.313)

1- - 92E | 0
—V~(V-E)+e—=——V-Jm——J,
m or? " ot
L | DU IS
€ Hor ¢ ar

Returning to standard curl notation we find that these become

V x (VxE)+ 7B VxJ 0J (2.314)
X X €e—=-VxJ,—n—, .
H ot? “at
3’H 0Jm
Vv V xH — =V —€e—. 2.315
X (Vo H) + pe ot? xJ—e ot ( )

In each of the wave equations it appears that operations on the electromagnetic fields
have been separated from operations on the source terms. However, we have not yet
invoked any coupling between the fields and sources associated with secondary interac-
tions. That is, we need to separate the impressed sources, which are independent of
the fields they source, with secondary sources resulting from interactions between the
sourced fields and the medium in which the fields exist. The simple case of an isotropic
conducting medium will be discussed below.

Wave equation using equivalent sources. An alternative approach for studying
wave behavior in general media is to use the Maxwell-Boffi form of the field equations

B
VxE= —8—, (2.316)
ot
B degE
Vx —=J+Iu+Ip)+ —, (2.317)
Ho ot
V- (€F) = (o + pp). (2.318)
V-B=0. (2.319)

Taking the curl of (2.316) we have

ad
Vx(VxE):—§VxB.



Substituting for V x B from (2.317) we then obtain

0’E d
Vx (VxE)+ MOGOW = _MOE(J +Ju +Jp), (2.320)
which is the wave equation for E. Taking the curl of (2.317) and substituting from (2.316)
we obtain the wave equation

2

V x (V x B) + poeg—
( ) Ho€o3

=poV x J+JIu+Jp) (2.321)
for B. Solution of the wave equations is often facilitated by writing the curl-curl operation
in terms of the vector Laplacian. Using (B.47), and substituting for the divergence from
(2.318) and (2.319), we can write the wave equations as

5 PE 1 9
VE — poco— = — V(o + pp) + o= T +Ju + Jp), (2.322)
ot? € ot
32
V’B — Moo = —woV x J+Tu+Jp). (2.323)

The simplicity of these equations relative to (2.312) and (2.313) is misleading. We have
not considered the constitutive equations relating the polarization P and magnetization
M to the fields, nor have we considered interactions leading to secondary sources.

2.10.3 Wave equation in a conducting medium

As an example of the type of wave equation that arises when secondary sources are
included, consider a homogeneous isotropic conducting medium described by permittivity
€, permeability u, and conductivity o. In a conducting medium we must separate the
source field into a causative impressed term J' that is independent of the fields it sources,
and a secondary term J* that is an effect of the sourced fields. In an isotropic conducting
medium the effect is described by Ohm’s law J* = oE. Writing the total current as
J=1J +J°, and assuming that J,, = 0, we write the wave equation (2.314) as
3’E 3(J' + oE)

V x (VxE =
x (V x )Jrueat2 % Y

(2.324)

Using (B.47) and substituting V - E = p/e, we can write the wave equation for E as

9E 9%E aJ N 1V (2.325)
€— =pu—+—-Vp. .
ot a2 H ot € P

Substituting J = J' 4+ oE into (2.315) and using (B.47), we obtain
2 O’H i
V(V-H) -V H—l—ueﬁ =VxJ +0oV xE.

Since Vx E= —0B/dt and V-H=V -B/u = 0, we have

oH 3’H ,
V*H — po—— — ez ==V x J. (2.326)

This is the wave equation for H.



2.10.4 Scalar wave equation for a conducting medium

In many applications, particularly those involving planar boundary surfaces, it is
convenient to decompose the vector wave equation into cartesian components. Using
V2V = &V2V, + §V2V, +2V?V, in (2.325) and in (2.326), we find that the rectangular
components of E and H must obey the scalar wave equation

Y (r, 1) Y (r, 1)
o Mo = s(r, 1). (2.327)

For the electric field wave equation we have

ViU (r, 1) — po

3J;
ot

1
¥ = Eq, s=pu +gd-Vp,

where @ = x, y, z. For the magnetic field wave equations we have

WV = H,, s=a&-(=V x J).

2.10.5 Fields determined by Maxwell’s equations vs. fields deter-
mined by the wave equation

Although we derive the wave equations directly from Maxwell’s equations, we may
wonder whether the solutions to second-order differential equations such as (2.314)-
(2.315) are necessarily the same as the solutions to the first-order Maxwell equations.
Hansen and Yaghjian [81] show that if all information about the fields is supplied by the
sources J(r, t) and p(r, t), rather than by specification of field values on boundaries, the
solutions to Maxwell’s equations and the wave equations are equivalent as long as the
second derivatives of the quantities

V-E(r,t) — p(r, 1) /e, V- -H(r, 1),

are continuous functions of r and ¢. If boundary values are supplied in an attempt to
guarantee uniqueness, then solutions to the wave equation and to Maxwell’s equations
may differ. This is particularly important when comparing numerical solutions obtained
directly from Maxwell’s equations (using the FDTD method, say) to solutions obtained
from the wave equation. “Spurious” solutions having no physical significance are a con-
tinual plague for engineers who employ numerical techniques. The interested reader
should see Jiang [94].

We note that these conclusions do not hold for static fields. The conditions for equiv-
alence of the first-order and second-order static field equations are considered in § 3.2.4.

2.10.6 Transient uniform plane waves in a conducting medium

We can learn a great deal about the wave nature of the electromagnetic field by solving
the wave equation (2.325) under simple circumstances. In Chapter 5 we shall solve for
the field produced by an arbitrary distribution of impressed sources, but here we seek a
simple solution to the homogeneous form of the equation. This allows us to study the
phenomenology of wave propagation without worrying about the consequences of specific
source functions. We shall also assume a high degree of symmetry so that we are not
bogged down in details about the vector directions of the field components.

We seek a solution of the wave equation in which the fields are invariant over a chosen
planar surface. The resulting fields are said to comprise a uniform plane wave. Although



we can envision a uniform plane wave as being created by a uniform surface source of
doubly-infinite extent, plane waves are also useful as models for spherical waves over
localized regions of the wavefront.

We choose the plane of field invariance to be the xy-plane and later generalize the
resulting solution to any planar surface by a simple rotation of the coordinate axes. Since
the fields vary with z only we choose to write the wave equation (2.325) in rectangular
coordinates, giving for a source-free region of space*

L0?E.(z,1)  ,3*Ey(z,1) L *E.(z,1) oE(z, 1) 9%E(z, 1)
Py +y 972 2 02 M M T T
If we return to Maxwell’s equations, we soon find that not all components of E are
present in the plane-wave solution. Faraday’s law states that
0E,(z,t) ,0E.(z,t) . 0E(z,1) 0H(z, t)
PR FE O e T
We see that 0H,/dt = 0, hence H, must be constant with respect to time. Because
a nonzero constant field component would not exhibit wave-like behavior, we can only
have H, = 0 in our wave solution. Similarly, Ampere’s law in a homogeneous conducting
region free from impressed sources states that

0. (2.328)

V x E(z,1) = —%

(2.329)

aD(z,t JE(z, t
VxHEn=J+ E(; )=0E(z,t)+6£
or
0H,(z,t 0H,(z,t . 0H(z,t 0E(z, ¢t
_gdh@n | EG D, G o4 BED (2.330)

0z 0z 9z at
This implies that
BEZ (Zv t) _
ar
which is a differential equation for E, with solution

E.(z,t) = Eo(z) e <.

oE (z,t)+ € 0,

Since we are interested only in wave-type solutions, we choose E, = 0.
Hence E; = H, = 0, and thus both E and H are perpendicular to the z-direction.
Using (2.329) and (2.330), we also see that

0 oH oE
_(E-H=E-—1+H.=
Bt( ) 8t+ ot

1 9E o 1 oH
—_—E-(2x & —H~<—E)+—H- 7x
w 0z € € 0z

a o 1, JE 1, oH
—+—)JE-H=—-2-{Ex —)—-2-(Hx — ).
or € 7 0z € 0z

We seek solutions of the type E(z,1) = PE(z,t) and H(z, t) = qH(z, t), where p and {q are
constant unit vectors. Under this condition we have E x dE/dz =0 and H x 0H/dz = 0,

giving
a o
( +—) (E-H)=0.
€

or

a1

*The term “source free” applied to a conducting region implies that the region is devoid of impressed
sources and, because of the relaxation effect, has no free charge. See the discussion in Jones [97].



Thus we also have E - H = 0, and find that E must be perpendicular to H. So E, H,
and Z comprise a mutually orthogonal triplet of vectors. A wave having this property is
said to be TEM to the z-direction or simply TEM,. Here “TEM” stands for transverse
electromagnetic, indicating the orthogonal relationship between the field vectors and the
z-direction. Note that

pxq==t2

The constant direction described by p is called the polarization of the plane wave.
We are now ready to solve the source-free wave equation (2.328). If we dot both sides
of the homogeneous expression by p we obtain

. AazEerA LO’E, (P -E) 3°(p-E) 0
-X . — — O — € =0.
P 972 Py 072 H ot AR YS)
Noting that
3’E, ’E, 9* 32
P> +P Y5 —azz(p XE.+p-VE,) —8Z2(p )

we have the wave equation

02E(z,1) AE(z,1) 3?E(z, 1)
— uo —pue———=20

2.331
022 ot 012 ( )
Similarly, dotting both sides of (2.326) with § and setting J' = 0 we obtain
39%H(z,t dH (z,t 9%H (z,t
@n _ no @n _ Me& =0. (2.332)

972 ot at?

In a source-free homogeneous conducting region E and H satisfy identical wave equations.

Solutions are considered in § A.1. There we solve for the total field for all z, ¢t given
the value of the field and its derivative over the z = 0 plane. This solution can be
directly applied to find the total field of a plane wave reflected by a perfect conductor.
Let us begin by considering the lossless case where o = 0, and assuming the region z < 0
contains a perfect electric conductor. The conditions on the field in the z = 0 plane are
determined by the required boundary condition on a perfect conductor: the tangential
electric field must vanish. From (2.330) we see that since E L Z, requiring

dH(z,t)

=0 2.333
9z ( )

z=0

gives E(0, 1) = 0 and thus satisfies the boundary condition. Writing

dH(z,t)

H(0,1) = Hof (1), PP

= Hog(r) =0, (2.334)
z=0

and setting € = 0 in (A.41) we obtain the solution to (2.332):

H(z,z):%f(t—%)+%f(z+%), (2.335)

1/2

where v = 1/(ue)/*. Since we designate the vector direction of H as {, the vector field

1S

H(z, 1) = q%f (z - %) Faf (r + ;) : (2.336)
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Figure 2.7: Propagation of a transient plane wave in a lossless medium.

From (2.329) we also have the solution for E(z, t):

A v Hy Z . VuwHy <
EG.0) = b5 f(t—;)—p : f(t+;>, (2.337)
where
Pxq=12

The boundary conditions E(0,t) = 0 and H (0, t) = Hy f(¢) are easily verified by substi-
tution.

This solution displays the quintessential behavior of electromagnetic waves. We may
interpret the term f(z+z/v) as a wave field disturbance, propagating at velocity v in the
—z-direction, incident from z > 0 upon the conductor. The term f (¢t — z/v) represents
a wave field disturbance propagating in the +z-direction with velocity v, reflected from
the conductor. By “propagating” we mean that if we increment time, the disturbance
will occupy a spatial position determined by incrementing z by vt. For free space where
v = 1/(uoep) /%, the velocity of propagation is the speed of light c.

A specific example should serve to clarify our interpretation of the wave solution.
Taking u = up and € = 81¢y, representing typical constitutive values for fresh water, we
can plot (2.335) as a function of position for fixed values of time. The result is shown in
Figure 2.7, where we have chosen

f(t) = rect(t/1) (2.338)

with t = 1 us. We see that the disturbance is spatially distributed as a rectangular
pulse of extent L = 2vt = 66.6 m, where v = 3.33 x 10’ m/s is the wave velocity,



and where 2t is the temporal duration of the pulse. At r = —8 us the leading edge of
the pulse is at z = 233 m, while at —4 us the pulse has traveled a distance z = vt =
(3.33 x 107) x (4 x 107%) = 133 m in the —z-direction, and the leading edge is thus at
100 m. At t = —1 us the leading edge strikes the conductor and begins to induce a
current in the conductor surface. This current sets up the reflected wave, which begins
to travel in the opposite (+z) direction. At r = —0.5 us a portion of the wave has begun
to travel in the 4z-direction while the trailing portion of the disturbance continues to
travel in the —z-direction. At ¢t = 1 us the wave has been completely reflected from
the surface, and thus consists only of the component traveling in the +z-direction. Note
that if we plot the total field in the z = 0 plane, the sum of the forward and backward
traveling waves produces the pulse waveform (2.338) as expected.

Using the expressions for E and H we can determine many interesting characteristics
of the wave. We see that the terms f(¢ & z/v) represent the components of the waves
traveling in the Fz-directions, respectively. If we were to isolate these waves from each
other (by, for instance, measuring them as functions of time at a position where they do
not overlap) we would find from (2.336) and (2.337) that the ratio of E to H for a wave
traveling in either direction is

' e v = (n/e)'’?,

H(z, 1)

independent of the time and position of the measurement. This ratio, denoted by n and
carrying units of ohms, is called the intrinsic impedance of the medium through which
the wave propagates. Thus, if we let Ey = nHj we can write

E@z 1) = f)%f (z - %) - f)%f (r n %) . (2.339)

We can easily determine the current induced in the conductor by applying the boundary
condition (2.200):

J, = i x Hl.co = 2 x [Ho@f ()] = —pHo f (1). (2.340)

We can also determine the pressure exerted on the conductor due to the Lorentz force
interaction between the fields and the induced current. The total force on the conductor
can be computed by integrating the Maxwell stress tensor (2.288) over the xy-plane’:

F., = —/Tem -dS.
N

The surface traction is

1 )
t:Tem~ﬁ=[§(D~E+B-H)I—DE—BH]2.

Since E and H are both normal to Z, the last two terms in this expression are zero. Also,
the boundary condition on E implies that it vanishes in the xy-plane. Thus

1 T
t=-B-HzZ=2—-H ().
2( )Z 27 )

SWe may neglect the momentum term in (2.291), which is small compared to the stress tensor term. See
Problem 2.20.



With Hy = Ey/n we have
2
t= —Ouf @). (2.341)

As a numerical example, consider a high—altltude nuclear electromagnetic pulse (HEMP)
generated by the explosion of a large nuclear weapon in the upper atmosphere. Such
an explosion could generate a transient electromagnetic wave of short (sub-microsecond)
duration with an electric field amplitude of 50,000 V/m in air [200]. Using (2.341),
we find that the wave would exert a peak pressure of P = |t| = .011 Pa = 1.6 x 10~
1b/in? if reflected from a perfect conductor at normal incidence. Obviously, even for this
extreme field level the pressure produced by a transient electromagnetic wave is quite
small. However, from (2.340) we find that the current induced in the conductor would
have a peak value of 133 A/m. Even a small portion of this current could destroy a
sensitive electronic circuit if it were to leak through an opening in the conductor. This is
an important concern for engineers designing circuitry to be used in high-field environ-
ments, and demonstrates why the concepts of current and voltage can often supersede
the concept of force in terms of importance.

Finally, let us see how the terms in the Poynting power balance theorem relate. Con-
sider a cubic region V bounded by the planes z = z; and z = 7z, z2 > z;. We choose
the field waveform f(f) and locate the planes so that we can isolate either the forward
or backward traveling wave. Since there is no current in V, Poynting’s theorem (2.299)
becomes

19
——/(eE-E—i—MH-H)dV=—?€(ExH)-dS.
2 ot Vv S

Consider the wave traveling in the —z-direction. Substitution from (2.336) and (2.337)
gives the time-rate of change of stored energy as

139
Seube(® = 2 o [eE2(z, 1)+ pH*(z,1)] dV

_ //dd/ [(v/t)2 ofg(H_ >+MHTOZf2(f+§)}dZ
;;t H; //dxdy/ dz

Integration over x and y gives the area A of the cube face. Putting u =t 4+ z/v we see

that
H2 9 t+z22/v
S = A,u——/ Frw)vdu.
4 ot t+z1/v

Leibnitz’ rule for differentiation (A.30) then gives

wvH? 22 21
Seube® = AL [ (14 2) = 12 (142 | (2.342)
Again substituting for E(t + z/v) and H(t 4+ z/v) we can write

Seube(®) = — f(E x H) - dS
N

H2
_/)C‘K%Tofz <t+%) (=P x @) - (=2)dxdy —

vHg 2 R
_/x/ny (t+;)(—P><q)-(z)dxdy.
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Figure 2.8: Propagation of a transient plane wave in a dissipative medium.

The second term represents the energy change in V produced by the backward traveling
wave entering the cube by passing through the plane at z = z,, while the first term
represents the energy change in V produced by the wave exiting the cube by passing
through the plane z = z;. Contributions from the sides, top, and bottom are zero since
E x H is perpendicular to fi over those surfaces. Since p x § = Z, we get

St = 2 [0 2) (2]

which matches (2.342) and thus verifies Poynting’s theorem. We may interpret this result
as follows. The propagating electromagnetic disturbance carries energy through space.
The energy within any region is associated with the field in that region, and can change
with time as the propagating wave carries a flux of energy across the boundary of the
region. The energy continues to propagate even if the source is changed or is extinguished
altogether. That is, the behavior of the leading edge of the disturbance is determined
by causality — it is affected by obstacles it encounters, but not by changes in the source
that occur after the leading edge has been established.

When propagating through a dissipative region a plane wave takes on a somewhat
different character. Again applying the conditions (2.333) and (2.334), we obtain from
(2.991) the solution to the wave equation (2.332):

H H
H(z, 1) = 706—%Zf (t - %) + TOe%Zf (t + %) ~



du (2.343)

. e /2 2.2
Q2H 142 Ji (;\/z —(t —u)’v )
— < Oe—Ql‘/ f(u)eQu
2v = % /72 — (t — u)20?

where Q = o/2¢. The first two terms resemble those for the lossless case, modified
by an exponential damping factor. This accounts for the loss in amplitude that must
accompany the transfer of energy from the propagating wave to joule loss (heat) within
the conducting medium. The remaining term appears only when the medium is lossy, and
results in an extension of the disturbance through the medium because of the currents
induced by the passing wavefront. This “wake” follows the leading edge of the disturbance
as is shown clearly in Figure 2.8. Here we have repeated the calculation of Figure 2.7,
but with ¢ = 2 x 107, approximating the conductivity of fresh water. As the wave
travels to the left it attenuates and leaves a trailing remnant behind. Upon reaching
the conductor it reflects much as in the lossless case, resulting in a time dependence at
z = 0 given by the finite-duration rectangular pulse (2.338). In order for the pulse to
be of finite duration, the wake left by the reflected pulse must exactly cancel the wake
associated with the incident pulse that continues to arrive after the reflection. As the
reflected pulse sweeps forward, the wake is obliterated everywhere behind.

If we were to verify the Poynting theorem for a dissipative medium (which we shall
not attempt because of the complexity of the computation), we would need to include
the E-J term. Here J is the induced conduction current and the integral of E - J accounts
for the joule loss within a region V balanced by the difference in Poynting energy flux
carried into and out of V.

Once we have the fields for a wave propagating along the z-direction, it is a simple
matter to generalize these results to any propagation direction. Assume that @ is normal
to the surface of a plane over which the fields are invariant. Then u = @ - r describes the
distance from the origin along the direction @. We need only replace z by @ - r in any
of the expressions obtained above to determine the fields of a plane wave propagating in
the u-direction. We must also replace the orthogonality condition p x § = 2 with

pxq=n.

For instance, the fields associated with a wave propagating through a lossless medium in
the positive u-direction are, from (2.336)—(2.337),

H a-r H, a-r
H(r 1) =4 f (r—“T), E(r,z)zfo”“z °f<r—“—>.

2.10.7 Propagation of cylindrical waves in a lossless medium

Much as we envisioned a uniform plane wave arising from a uniform planar source, we
can imagine a uniform cylindrical wave arising from a uniform line source. Although this
line source must be infinite in extent, uniform cylindrical waves (unlike plane waves) dis-
play the physical behavior of diverging from their source while carrying energy outwards
to infinity.

A uniform cylindrical wave has fields that are invariant over a cylindrical surface:
E(r,t) = E(p, 1), H(r,t) = H(p, t). For simplicity, we shall assume that waves propagate
in a homogeneous, isotropic, linear, and lossless medium described by permittivity e
and permeability u. From Maxwell’s equations we find that requiring the fields to be
independent of ¢ and z puts restrictions on the remaining vector components. Faraday’s



law states

0E. JH(p,
VXE<p,r>=—¢ﬂ+z;—[pE¢<p L

2.344
» (2.344)

Equating components we see that dH,/dt = 0, and because our interest lies in wave
solutions we take H, = 0. Ampere’s law in a homogeneous lossless region free from
impressed sources states in a similar manner

OH.(p, t) 3E(,0,t)
V xH(p,t) = —¢p—— ——I[pH, n] = . 2.345

(0, 1) =—¢ % 223 [p p(p. D] = e—— (2.345)
Equating components we find that £, = 0. Since E, = H, = 0, both E and H are
perpendicular to the p-direction. Note that if there is only a z-component of E then

there is only a ¢-component of H. This case, termed electric polarization, results in

ap ar

Similarly, if there is only a z-component of H then there is only a ¢-component of E.
This case, termed magnetic polarization, results in

_aHZ(p7 t) — €8E¢(IO’ t)
ap ar

Since E = &E,p + 2E, and H = <AbH¢ + 2H,, we can always decompose a cylindrical
electromagnetic wave into cases of electric and magnetic polarization. In each case the
resulting field is TEM,, since the vectors E, H, p are mutually orthogonal.

Wave equations for E; in the electric polarization case and for H, in the magnetic
polarization case can be found in the usual manner. Taking the curl of (2.344) and
substituting from (2.345) we find

19 [ IEN .9 (1
V x (V x E) —z——( ) ¢8_<__['0 ¢]>
0

p dp dp

1 9’E 1 [ 9%E. ,3*E
__1¥B_ 1k p—2

v2 92 v2 ot? ot?

where v = 1/(ue)'/?. Noting that E4 = 0 for the electric polarization case we obtain the
wave equation for E,. A similar set of steps beginning with the curl of (2.345) gives an
identical equation for H,. Thus

19 3 [E. 1 0 [E.
——(p— =0. 2.346
p dp (pap[HzD vzatz[H} (2346)

We can obtain a solution for (2.346) in much the same way as we do for the wave
equations in § A.1. We begin by substituting for E,(p, t) in terms of its temporal Fourier
representation

1 © .
E.(p,1) = —/ E.(p, w)e!” do
27 J_wo
to obtain

1 10 J - 2 .
— p—E.(p.0) ) + = E.(p, ) | /™ dow = 0.
2 pap \"ap v?



The Fourier integral theorem implies that the integrand is zero. Then, expanding out
the p derivatives, we find that E,(p, ®) obeys the ordinary differential equation
d’E. 1dE.
dp* ~ p dp

E =0

where k = w/v. This is merely Bessel’s differential equation (A.124). Tt is a second-order
equation with two independent solutions chosen from the list

Jotk),  Yo(kp), Hy"(kp),  Hy” (kp).

We find that Jy(kp) and Yy(kp) are useful for describing standing waves between bound-
aries while Hél)(kp) and Héz) (kp) are useful for describing waves propagating in the
p-direction. Of these, HO(I)(k,o) represents waves traveling inward while H(;Z) (kp) repre-
sents waves traveling outward. Concentrating on the outward traveling wave we find
that

E(p.w) = A@) = TH (p) | = A3 (5. 0.

Here A(f) < A(w) is the disturbance waveform, assumed to be a real, causal function.
To make E,(p,t) real we require that the inverse transform of g(p, w) be real. This
requires the inclusion of the —jm/2 factor in g(p, ). Inverting we have

E.(p,1) = A@t) * g(p, 1) (2.347)

where g(p,1) < (—jn/2)H (kp).
The inverse transform needed to obtain g(p, t) may be found in Campbell [26]:

g(p,t)z}‘—l{_ <z>( )}_ \/%

where U(¢) is the unit step function defined in (A.5). Substituting this into (2.347) and
writing the convolution in integral form we have

*© U —p/v)
E(p,t):/ At — t)——=dt’
. o /17 = p2 /2
The change of variable x =t — p/v then gives
XAt —x — p/v)

0 /xZ+2xp/v

Those interested in the details of the inverse transform should see Chew [33].
As an example, consider a lossless medium with u, = 1, ¢, = 81, and a waveform

E.(p, 1) = (2.348)

A(r) = EolU@) — U@ —1)]

where T = 2 us. This situation is the same as that in the plane wave example above,
except that the pulse waveform begins at # = 0. Substituting for A(#) into (2.348) and
using the integral

dx
/m = 2In[VT +VxTa]
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Figure 2.9: Propagation of a transient cylindrical wave in a lossless medium.

we can write the electric field in closed form as

\/)C_2+«/X2+2p/v:| (2.349)
VX + X+ 2p/v]] ’

where x, = max[0, r — p/v] and x; = max[0,t — p/v — t]. The field is plotted in Figure
2.9 for various values of time. Note that the leading edge of the disturbance propagates
outward at a velocity v and a wake trails behind the disturbance. This wake is similar to
that for a plane wave in a dissipative medium, but it exists in this case even though the
medium is lossless. We can think of the wave as being created by a line source of infinite
extent, pulsed by the disturbance waveform. Although current changes simultaneously
everywhere along the line, it takes the disturbance longer to propagate to an observation
point in the z = 0 plane from source points z # 0 than from the source point at z = 0.
Thus, the field at an arbitrary observation point p arrives from different source points at
different times. If we look at Figure 2.9 we note that there is always a nonzero field near
p = 0 (or any value of p < vt) regardless of the time, since at any given ¢ the disturbance
is arriving from some point along the line source.

E.(p,1) = 2E, 1n[

We also see in Figure 2.9 that as p becomes large the peak value of the propagating
disturbance approaches a certain value. This value occurs at t,, = p/v+7t or, equivalently,
pm = v(t — 7). If we substitute this value into (2.349) we find that

T T
E.(p,ty) =2EgIn |:\/2,0/v —l—\/l + 2070 i|




For large values of p/v,

E.(p, ) ~2EoIn |14+ |—— |.
2p/v

Using In(1 4+ x) &~ x when x < 1, we find that

2TV
E.(p,tn) = Ep 7

Thus, as p — oo we have ExH ~ 1/p and the flux of energy passing through a cylindrical
surface of area p d¢ dz is independent of p. This result is similar to that seen for spherical
waves where E x H~ 1/r2.

2.10.8 Propagation of spherical waves in a lossless medium

In the previous section we found solutions that describe uniform cylindrical waves
dependent only on the radial variable p. It turns out that similar solutions are not
possible in spherical coordinates; fields that only depend on r cannot satisfy Maxwell’s
equations since, as shown in § 2.10.9, a source having the appropriate symmetry for the
production of uniform spherical waves in fact produces no field at all external to the region
it occupies. As we shall see in Chapter 5, the fields produced by localized sources are in
general quite complex. However, certain solutions that are only slightly nonuniform may
be found, and these allow us to investigate the most important properties of spherical
waves. We shall find that spherical waves diverge from a localized point source and
expand outward with finite velocity, carrying energy away from the source.

Consider a homogeneous, lossless, source-free region of space characterized by permit-
tivity € and permeability u. We seek solutions to the wave equation that are TEM, in
spherical coordinates (H, = E, = 0), and independent of the azimuthal angle ¢. Thus
we may write

E(r,1) = OE,(r,0,1) + QE4(r, 0, 1),
H(r, 1) = OHy(r,0,1) + QHy(r, 6, 1).
Maxwell’s equations show that not all of these vector components are required. Faraday’s

law states that

0 10 ~1 0
VxEQm0,t) =t————[sinOE4(r,0,t)] —0——[rEs, 0,1t ——[rEo(r, 0,1t
x E(r ) rrsmeae[sm o (r )] rar[r o (r )]+¢rar[r o(r )]

dH(r, 0, 1)
"

Since we require H, = 0 we must have

(2.350)

0
%[sinQEd,(r, 0,1)] =0.

This implies that either E4 ~ 1/sinf or E4 = 0. We shall choose E4 = 0 and investigate
whether the resulting fields satisfy the remaining Maxwell equations.

In a source-free region of space we have V-D = ¢V -E = 0. Since we now have only a
6-component of the electric field, this requires

190 cotf
——Ey(r,0,t) + —Es(r,0,1) = 0.
r 06 r



From this we see that when E4 = 0 the component Ey must obey

fE(r»t)

sin 6

Eo(r,0,1) =

By (2.350) there is only a ¢-component of magnetic field, and it must obey Hy(r, 0, 1) =
fu(r,t)/sin® where

3 139
—po fu(rt) = 2o lrfe(r D). (2.351)

Thus the spherical wave has the property E L H | r; and is TEM to the r-direction.

We can obtain a wave equation for Ey by taking the curl of (2.350) and substituting
from Ampere’s law:

L d 0 d
\Y VXxE)=—-60-—[rE)]=V —u—H|=—-u—|0cE —E|.
x(VxE) ;g1 Eel X[“at] M8t|:a +€at]
This gives
92 d 92

ﬁ[’"fE(ra ] — MUE[FfE(r, n]— Méﬁ[rfE(h N]=0, (2.352)

which is the desired wave equation for E. Proceeding similarly we find that Hy obeys

2 2
U 0) = w i 0) = e rfn 0] = 0. (2.353)
r ot ot

We see that the wave equation for rfg is identical to that for the plane wave field E,
(2.331). Thus, we can use the solution obtained in § A.1, as we did with the plane wave,
with a few subtle differences. First, we cannot have r < 0. Second, we do not anticipate
a solution representing a wave traveling in the —r-direction — i.e., a wave converging
toward the origin. (In other situations we might need such a solution in order to form a
standing wave between two spherical boundary surfaces, but here we are only interested
in the basic propagating behavior of spherical waves.) Thus, we choose as our solution
the term (A.45) and find for a lossless medium where Q =0

Eo(r,0,0) = ——A(r=-). (2.354)
rsin6 v
From (2.351) we see that
1 1 r
Hy=— A (r - —) : (2.355)
v rsinf v
Since pv = (u/€)'/? = n, we can also write this as
txE
H= .
n

We note that our solution is not appropriate for unbounded space since the fields have
a singularity at & = 0. Thus we must exclude the z-axis. This can be accomplished
by using PEC cones of angles 6; and 0,, 6, > ;. Because the electric field E = éE@ is
normal to these cones, the boundary condition that tangential E vanishes is satisfied.

It is informative to see how the terms in the Poynting power balance theorem relate for
a spherical wave. Consider the region between the spherical surfaces r = r; and r = r,
r, > ry. Since there is no current within the volume region, Poynting’s theorem (2.299)
becomes

10
——/(EE-E+MH~H)dV=—?g(ExH)-dS. (2.356)
2 0t Vv S



From (2.354) and (2.355), the time-rate of change of stored energy is

1o
Psphere(®) = 2 3 JEEY 0.0 + pH(r 6,01V

27r 6
il oo [ [ [ (- D (- D)

:2neF— A2 t——) dr
at J, v

where
Fen tan(6,/2) .
tan(0;/2)
Putting u =t — r/v we see that
t—ry/v

d 2
Psphere(t) = —27T6F§ o A (um)vdu.

An application of Leibnitz’ rule for differentiation (A.30) gives

Pyphere(?) = _Z%F [A2 (f - %2) - A? (l - r_1>] . (2.357)

Next we find the Poynting flux term:

Psphere(®) = — jé(ExH)-dS
2 & 1 r A 11 r A dQ
- d —A(t——)0 ——A(t—— (=) — —
/o ¢ o [Vl ( U> ]X |:f’1 Qv ( v)¢] Drigne
m 0 1 n\ - 1 1 r A~ d@
- d —Alt——)80 ——A(t——= 2 .
/0 ¢ 6 |:”2 ( U) 1|X |:”2MU ( v>¢:| rrzsine

The first term represents the power carried by the traveling wave into the volume region
by passing through the spherical surface at r = ry, while the second term represents

the power carried by the wave out of the region by passing through the surface r = r;.
Integration gives

2 ) r 2 T
Paphere() ==~ F [42(1=2) - a2 (-] (2.358)
which matches (2.357), thus verifying Poynting’s theorem.
It is also interesting to compute the total energy passing through a surface of radius
ro. From (2.358) we see that the flux of energy (power density) passing outward through

the surface r = ry is
2 ) ro
Paphere($) = -~ FA (r-=)-
The total energy associated with this flux can be computed by integrating over all time:

we have
2 e o 2 R
E="F| & (t——)dt:—F AX(u) du
n —00 v n —00

after making the substitution u = ¢t — rg/v. The total energy passing through a spherical
surface is independent of the radius of the sphere. This is an important property of
spherical waves. The 1/r dependence of the electric and magnetic fields produces a
power density that decays with distance in precisely the right proportion to compensate
for the r2-type increase in the surface area through which the power flux passes.



2.10.9 Nonradiating sources

Not all time-dependent sources produce electromagnetic waves. In fact, certain local-
ized source distributions produce no fields external to the region containing the sources.
Such distributions are said to be nonradiating, and the fields they produce (within their
source regions) lack wave characteristics.

Let us consider a specific example involving two concentric spheres. The inner sphere,
carrying a uniformly distributed total charge —Q, is rigid and has a fixed radius a; the
outer sphere, carrying uniform charge +Q, is a flexible balloon that can be stretched to
any radius b = b(t). The two surfaces are initially stationary, some external force being
required to hold them in place. Now suppose we apply a time-varying force that results
in b(t) changing from b(t;) = by to b(t;) = b, > b;. This creates a radially directed
time-varying current #J,(r,?). By symmetry J, depends only on r and produces a field
E that depends only on r and is directed radially. An application of Gauss’s law over a
sphere of radius rg > by, which contains zero total charge, gives

47rr§E,.(ro, 1) =0,

hence E(r, t) = 0 for r > rg and all time ¢. So E = 0 external to the current distribution
and no outward traveling wave is produced. Gauss’s law also shows that E = 0 inside
the rigid sphere, while between the spheres

E(, 1) = —f'L.

4regr?
Now work is certainly required to stretch the balloon and overcome the Lorentz force
between the two charged surfaces. But an application of Poynting’s theorem over a
surface enclosing both spheres shows that no energy is carried away by an electromagnetic
wave. Where does the expended energy go? The presence of only two nonzero terms in
Poynting’s theorem clearly indicates that the power term fv E - JdV corresponding to
the external work must be balanced exactly by a change in stored energy. As the radius
of the balloon increases, so does the region of nonzero field as well as the stored energy.

In free space any current source expressible in the form

oY (r, t))

2.359
o (2.359)

J(r, 1) =V<

and localized to a volume region V, such as the current in the example above, is nonra-
diating. Indeed, Ampere’s law states that

9E I (r, 1)
VxH=e+v (YD 2.360
xH=cog T ( ot ) (2:360)

for r € V; taking the curl we have

aV x E oY (r, t)
Vx(VxH) =¢ +V xV )
But the second term on the right is zero, so
dV x E
at

and this equation holds for all r. By Faraday’s law we can rewrite it as

Vx (VxH)=¢

2

10
((V x VX) + ——> H(r,?) =0.

c? 012



So H obeys the homogeneous wave equation everywhere, and H = 0 follows from causality.
The laws of Ampere and Faraday may also be combined with (2.359) to show that

1 82 1
<(V x Vx) + ——) |:E(r, 1)+ E—le(r, t)] =0
0

c? 9t

for all r. By causality
1
E(r,t) = ——Vy(r,t) (2.361)
€0

everywhere. But since ¥ (r,t) = 0 external to V, we must also have E = 0 there.
Note that E = —V//¢q is consistent with Ampere’s law (2.360) provided that H = 0
everywhere.

We see that sources having spherical symmetry such that

oY (r, t)) _ IA_Bzw(r, t)

Ja,t)y=1tJ.(r,t) =V ( o Ty

obey (2.359) and are therefore nonradiating. Hence the fields associated with any outward
traveling spherical wave must possess some angular variation. This holds, for example,
for the fields far removed from a time-varying source of finite extent.

As pointed out by Lindell [113], nonradiating sources are not merely hypothetical.
The outflowing currents produced by a highly symmetric nuclear explosion in outer
space or in a homogeneous atmosphere would produce no electromagnetic field outside
the source region. The large electromagnetic-pulse effects discussed in § 2.10.6 are due
to inhomogeneities in the earth’s atmosphere. We also note that the fields produced
by a radiating source J'(r, ) do not change external to the source if we superpose a
nonradiating component J" (r, t) to create a new source J = J" 4+ J". We say that the
two sources J and J are equivalent for the region V external to the sources. This presents
difficulties in remote sensing where investigators are often interested in reconstructing an
unknown source by probing the fields external to (and usually far away from) the source
region. Unique reconstruction is possible only if the fields within the source region are
also measured.

For the time harmonic case, Devaney and Wolf [54] provide the most general possible
form for a nonradiating source. See § 4.11.9 for details.

2.11 Problems

2.1 Consider the constitutive equations (2.16)—(2.17) relating E, D, B, and H in a
bianisotropic medium. Using the definition for P and M, show that the constitutive
equations relating E, B, P, and M are

1. . _
P= (—P—eol>-E+L-B,
C

_ _ 1-
M:—M.E—(CQ——I)-B.
Ho

Also find the constitutive equations relating E, H, P, and M.



2.2 Consider Ampere’s law and Gauss’s law written in terms of rectangular compo-
nents in the laboratory frame of reference. Assume that an inertial frame moves with
velocity v = Xv with respect to the laboratory frame. Using the Lorentz transformation
given by (2.73)—(2.76), show that

cD'| = y(cDL + 8 x Hy),
H, =yMH. -8 xcDy),
Jy=rdJ;—ov),
=14
o' =yp—pB-J),

where “1” means perpendicular to the direction of the velocity and “||”

to the direction of the velocity.

means parallel

2.3 Show that the following quantities are invariant under Lorentz transformation:

(a) EBv
(c) B-B—E-E/c?,
(d) H-H-D.D,
)JB-H—E-D
)

2.4 Show that if ¢?B? > E? holds in one reference frame, then it holds in all other
reference frames. Repeat for the inequality ¢?B? < E2.

2.5 Show that if E-B = 0 and ¢>B? > E? holds in one reference frame, then a reference
frame may be found such that E = 0. Show that if E-B = 0 and ¢?B? < E? holds in one
reference frame, then a reference frame may be found such that B = 0.

2.6 A test charge Q at rest in the laboratory frame experiences a force F = QE as
measured by an observer in the laboratory frame. An observer in an inertial frame
measures a force on the charge given by F' = QE' + Qv x B’. Show that F # F" and find
the formula for converting between F and F’.

2.7 Consider a material moving with velocity v with respect to the laboratory frame of
reference. When the fields are measured in the moving frame, the material is found to be
isotropic with D’ = ¢'E’ and B’ = u/H’. Show that the fields measured in the laboratory
frame are given by (2.107) and (2.108), indicating that the material is bianisotropic when
measured in the laboratory frame.

2.8 Show that by assuming v?/c?> <« 1 in (2.61)—(2.64) we may obtain (2.111).

2.9 Derive the following expressions that allow us to convert the value of the magneti-
zation measured in the laboratory frame of reference to the value measured in a moving
frame:

M| =yM_ + B x cPy), M| =M.



2.10 Beginning with the expressions (2.61)—(2.64) for the field conversions under a
first-order Lorentz transformation, show that

vxM

P =P =

, M =M+vxP.

2.11 Consider a simple isotropic material moving through space with velocity v relative
to the laboratory frame. The relative permittivity and permeability of the material
measured in the moving frame are €, and w,, respectively. Show that the magnetization
as measured in the laboratory frame is related to the laboratory frame electric field and
magnetic flux density as

/ /
M= "’/B—eo(xe’+x—’7)vxE
ok, I,

when a first-order Lorentz transformation is used. Here x, =€, — 1 and x,, = u, — 1.

2.12 Consider a simple isotropic material moving through space with velocity v relative
to the laboratory frame. The relative permittivity and permeability of the material
measured in the moving frame are €, and u,, respectively. Derive the formulas for the
magnetization and polarization in the laboratory frame in terms of E and B measured in
the laboratory frame by using the Lorentz transformations (2.128) and (2.129)—(2.132).
Show that these expressions reduce to (2.139) and (2.140) under the assumption of a
first-order Lorentz transformation (v?/c* < 1).

2.13 Derive the kinematic form of the large-scale Maxwell-Boffi equations (2.165) and
(2.166). Derive the alternative form of the large-scale Maxwell-Boffi equations (2.167)
and (2.168).

2.14 Modify the kinematic form of the Maxwell-Boffi equations (2.165)—(2.166) to
account for the presence of magnetic sources. Repeat for the alternative forms (2.167)—
(2.168).

2.15 Consider a thin magnetic source distribution concentrated near a surface S. The
magnetic charge and current densities are given by

,Om(r, X, t) = pms(rv t)f(x’ A), Jm(rv X, t) =Jms(r’ t)f(x, A),

where f(x, A) satisfies

/OO fx,A)dx =1.

Let A — 0 and derive the boundary conditions on (E, D, B, H) across S.

2.16 Beginning with the kinematic forms of Maxwell’s equations (2.177)—(2.178), de-
rive the boundary conditions for a moving surface

n; x (H) — Hp) + (- v)(D; — Do) =],
iy X (E; — Ep) — (2 - v)(B1 — B2) = —Jous.
2.17 Beginning with Maxwell’s equations and the constitutive relationships for a bian-

isotropic medium (2.19)—(2.20), derive the wave equation for H (2.313). Specialize the
result for the case of an anisotropic medium.



2.18 Consider an isotropic but inhomogeneous material, so that
D(r, 1) = e(E(r, 1), B(r, 1) = pu(r)H(r, 1).

Show that the wave equations for the fields within this material may be written as

9°E Ve Vi 3 P
2 — R . PR — - — . —_
V2E M68t2+V|:E (€>] (VxE)x<M> “at+v<e)’

et v [ () (%) (%)
VH-—pue—+VH- | — || -(VXH) x|—)=-VXxJ=-Jx|—].
ot? m € €

2.19 Consider a homogeneous, isotropic material in which D = €¢E and B = yH. Using
the definitions of the equivalent sources, show that the wave equations (2.322)—-(2.323)
are equivalent to (2.314)-(2.315).

2.20 When we calculate the force on a conductor produced by an incident plane wave,
we often neglect the momentum term

0
—(D x B).
5, P *xB)

Compute this term for the plane wave field (2.336) in free space at the surface of the
conductor and compare to the term obtained from the Maxwell stress tensor (2.341).
What is the relative difference in amplitude?

2.21 When a material is only slightly conducting, and thus € is very small, we often
neglect the third term in the plane wave solution (2.343). Reproduce the plot of Figure
2.8 with this term omitted and compare. Discuss how the omitted term affects the shape
of the propagating waveform.

2.22 A total charge Q is evenly distributed over a spherical surface. The surface
expands outward at constant velocity so that the radius of the surface is b = vt at time
t. (a) Use Gauss’s law to find E everywhere as a function of time. (b) Show that E may
be found from a potential function

Y(r, 1) = g(r —v)U(r — vt)
4y

according to (2.361). Here U(¢) is the unit step function. (c) Write down the form of
J for the expanding sphere and show that since it may be found from (2.359) it is a
nonradiating source.



Chapter 3

The static electromagnetic field

3.1 Static fields and steady currents

Perhaps the most carefully studied area of electromagnetics is that in which the fields
are time-invariant. This area, known generally as statics, offers (1) the most direct op-
portunities for solution of the governing equations, and (2) the clearest physical pictures
of the electromagnetic field. We therefore devote the present chapter to a treatment
of static fields. We begin to seek and examine specific solutions to the field equations;
however, our selection of examples is shaped by a search for insight into the behavior of
the field itself, rather than a desire to catalog the solutions of numerous statics problems.

We note at the outset that a static field is physically sensible only as a limiting case
of a time-varying field as the latter approaches a time-invariant equilibrium, and then
only in local regions. The static field equations we shall study thus represent an idealized
model of the physical fields.

If we examine the Maxwell-Minkowski equations (2.1)—(2.4) and set the time deriva-
tives to zero, we obtain the static field Maxwell equations

V x E(r) = 0, (3.1)
V-D(@) = p(r), (3.2)
V x H(r) = J(r), (3.3)
V.-B(r) = 0. (3.4)

We note that if the fields are to be everywhere time-invariant, then the sources J and
p must also be everywhere time-invariant. Under this condition the dynamic coupling
between the fields described by Maxwell’s equations disappears; any connection between
E, D, B, and H imposed by the time-varying nature of the field is gone. For static fields
we also require that any dynamic coupling between fields in the constitutive relations
vanish. In this static field limit we cannot derive the divergence equations from the curl
equations, since we can no longer use the initial condition argument that the fields were
identically zero prior to some time.

The static field equations are useful for approximating many physical situations in
which the fields rapidly settle to a local, macroscopically-static state. This may occur
so rapidly and so completely that, in a practical sense, the static equations describe the
fields within our ability to measure and to compute. Such is the case when a capacitor
is rapidly charged using a battery in series with a resistor; for example, a 1 pF capacitor
charging through a 1  resistor reaches 99.99% of its total charge static limit within
10 ps.



3.1.1 Decoupling of the electric and magnetic fields

For the remainder of this chapter we shall assume that there is no coupling between
E and H or between D and B in the constitutive relations. Then the static equations
decouple into two independent sets of equations in terms of two independent sets of fields.
The static electric field set (E,D) is described by the equations

V x E(r) =0, (3.5)
V- D(r) = p(r). (3.6)

Integrating these over a stationary contour and surface, respectively, we have the large-
scale forms

?gE Ldl =0, (3.7)

féDdS - /Vpdv. (3.9)

The static magnetic field set (B,H) is described by

V x H(r) = J(r), (3.9)
V-B(r) =0, (3.10)
or, in large-scale form,
%H-dl:fJ-dS, (3.11)
r s
ygB -dS =0. (3.12)
s

We can also specialize the Maxwell-Boffi equations to static form. Assuming that the
fields, sources, and equivalent sources are time-invariant, the electrostatic field E(r) is
described by the point-form equations

V xE =0, (3.13)
1
V-E=—(p—-V-P), (3.14)
€0
or the equivalent large-scale equations
y{E -dl =0, (3.15)
r
1
%EdS:—/(p—V'P)dV. (3.16)
s € Jv
Similarly, the magnetostatic field B is described by
VXB=puJ+VxM), (3.17)
V-B=0, (3.18)
or
fB-dlzuo/(J—i—VxM)-dS, (3.19)
r s

%B -dS = 0. (3.20)
N



Figure 3.1: Positive point charge in the vicinity of an insulated, uncharged conductor.

It is important to note that any separation of the electromagnetic field into independent
static electric and magnetic portions is illusory. As we mentioned in § 2.3.2, the electric
and magnetic components of the EM field depend on the motion of the observer. An
observer stationary with respect to a single charge measures only a static electric field,
while an observer in uniform motion with respect to the charge measures both electric
and magnetic fields.

3.1.2 Static field equilibrium and conductors

Suppose we could arrange a group of electric charges into a static configuration in free
space. The charges would produce an electric field, resulting in a force on the distribution
via the Lorentz force law, and hence would begin to move. Regardless of how we arrange
the charges they cannot maintain their original static configuration without the help
of some mechanical force to counterbalance the electrical force. This is a statement of
Earnshaw’s theorem, discussed in detail in § 3.4.2.

The situation is similar for charges within and on electric conductors. A conductor
is a material having many charges free to move under external influences, both electric
and non-electric. In a metallic conductor, electrons move against a background lattice
of positive charges. An uncharged conductor is neutral: the amount of negative charge
carried by the electrons is equal to the positive charge in the background lattice. The
distribution of charges in an uncharged conductor is such that the macroscopic electric
field is zero inside and outside the conductor. When the conductor is exposed to an addi-
tional electric field, the electrons move under the influence of the Lorentz force, creating
a conduction current. Rather than accelerating indefinitely, conduction electrons experi-
ence collisions with the lattice, thereby giving up their kinetic energy. Macroscopically,
the charge motion can be described in terms of a time-average velocity, hence a macro-
scopic current density can be assigned to the density of moving charge. The relationship
between the applied, or “impressed,” field and the resulting current density is given by
Ohm’s law; in a linear, isotropic, nondispersive material this is

Jax, ) = o (E, 1). (3.21)

The conductivity o describes the impediment to charge motion through the lattice: the



Figure 3.2: Positive point charge near a grounded conductor.

higher the conductivity, the farther an electron may move on average before undergoing
a collision.

Let us examine how a state of equilibrium is established in a conductor. We shall con-
sider several important situations. First, suppose we bring a positively charged particle
into the vicinity of a neutral, insulated conductor (we say that a conductor is “insulated”
if no means exists for depositing excess charge onto the conductor). The Lorentz force
on the free electrons in the conductor results in their motion toward the particle (Figure
3.1). A reaction force F attracts the particle to the conductor. If the particle and the
conductor are both held rigidly in space by an external mechanical force, the electrons
within the conductor continue to move toward the surface. In a metal, when these elec-
trons reach the surface and try to continue further they experience a rapid reversal in the
direction of the Lorentz force, drawing them back toward the surface. A sufficiently large
force (described by the work function of the metal) will be able to draw these charges
from the surface, but anything less will permit the establishment of a stable equilibrium
at the surface. If o is large then equilibrium is established quickly, and a nonuniform
static charge distribution appears on the conductor surface. The electric field within the
conductor must settle to zero at equilibrium, since a nonzero field would be associated
with a current J = o E. In addition, the component of the field tangential to the surface
must be zero or the charge would be forced to move along the surface. At equilibrium,
the field within and tangential to a conductor must be zero. Note also that equilibrium
cannot be established without external forces to hold the conductor and particle in place.

Next, suppose we bring a positively charged particle into the vicinity of a grounded
(rather than insulated) conductor as in Figure 3.2. Use of the term “grounded” means
that the conductor is attached via a filamentary conductor to a remote reservoir of charge
known as ground; in practical applications the earth acts as this charge reservoir. Charges
are drawn from or returned to the reservoir, without requiring any work, in response to
the Lorentz force on the charge within the conducting body. As the particle approaches,
negative charge is drawn to the body and then along the surface until a static equilibrium
is re-established. Unlike the insulated body, the grounded conductor in equilibrium has
excess negative charge, the amount of which depends on the proximity of the particle.
Again, both particle and conductor must be held in place by external mechanical forces,
and the total field produced by both the static charge on the conductor and the particle
must be zero at points interior to the conductor.

Finally, consider the process whereby excess charge placed inside a conducting body
redistributes as equilibrium is established. We assume an isotropic, homogeneous con-
ducting body with permittivity € and conductivity o. An initially static charge with



density po(r) is introduced at time t = 0. The charge density must obey the continuity
equation

dp(r, 1)
V. J@,t)=— ;
Jr, 1) »
since J = oE, we have
ap(r,t
oV E(r.1) = —PE D
ot
By Gauss’s law, V - E can be eliminated:
o dp(r, 1)
—p(r, 1) =— .
crm D a7
Solving this differential equation for the unknown p(r,t) we have
p(r, 1) = po(r)e 7'/e. (3.22)

The charge density within a homogeneous, isotropic conducting body decreases exponen-
tially with time, regardless of the original charge distribution and shape of the body. Of
course, the total charge must be constant, and thus charge within the body travels to
the surface where it distributes itself in such a way that the field internal to the body
approaches zero at equilibrium. The rate at which the volume charge dissipates is deter-
mined by the relazation time €/o; for copper (a good conductor) this is an astonishingly
small 107! s. Even distilled water, a relatively poor conductor, has €/o = 107¢ s. Thus
we see how rapidly static equilibrium can be approached.

3.1.3 Steady current

Since time-invariant fields must arise from time-invariant sources, we have from the
continuity equation

v.-J@r) =0. (3.23)

In large-scale form this is

fJ .dS = 0. (3.24)
N

A current with the property (3.23) is said to be a steady current. By (3.24), a steady
current must be completely lineal (and infinite in extent) or must form closed loops.
However, if a current forms loops then the individual moving charges must undergo
acceleration (from the change in direction of velocity). Since a single accelerating particle
radiates energy in the form of an electromagnetic wave, we might expect a large steady
loop current to produce a great deal of radiation. In fact, if we superpose the fields
produced by the many particles comprising a steady current, we find that a steady current
produces no radiation [91]. Remarkably, to obtain this result we must consider the exact
relativistic fields, and thus our finding is precise within the limits of our macroscopic
assumptions.

If we try to create a steady current in free space, the flowing charges will tend to
disperse because of the Lorentz force from the field set up by the charges, and the
resulting current will not form closed loops. A beam of electrons or ions will produce
both an electric field (because of the nonzero net charge of the beam) and a magnetic field
(because of the current). At nonrelativistic particle speeds, the electric field produces
an outward force on the charges that is much greater than the inward (or pinch) force
produced by the magnetic field. Application of an additional, external force will allow



the creation of a collimated beam of charge, as occurs in an electron tube where a series
of permanent magnets can be used to create a beam of steady current.

More typically, steady currents are created using wire conductors to guide the moving
charge. When an external force, such as the electric field created by a battery, is applied
to an uncharged conductor, the free electrons will begin to move through the positive
lattice, forming a current. Each electron moves only a short distance before colliding with
the positive lattice, and if the wire is bent into a loop the resulting macroscopic current
will be steady in the sense that the temporally and spatially averaged microscopic current
will obey V -J = 0. We note from the examples above that any charges attempting to
leave the surface of the wire are drawn back by the electrostatic force produced by the
resulting imbalance in electrical charge. For conductors, the “drift” velocity associated
with the moving electrons is proportional to the applied field:

u =—ukE

where 1, is the electron mobility. The mobility of copper (3.2 x 107*m?/V - s) is such
that an applied field of 1 V/m results in a drift velocity of only a third of a centimeter
per second.

Integral properties of a steady current. Steady currents obey several useful inte-
gral properties. To develop these properties we need an integral identity. Let f(r) and
g(r) be scalar functions, continuous and with continuous derivatives in a volume region
V. Let J represent a steady current field of finite extent, completely contained within
V. We begin by using (B.42) to expand

V- (fgh)=fevV-D+J -V(fg).
Noting that V- J = 0 and using (B.41), we get

V-(fe) =D -Veg+ (@D -V
Now let us integrate over V and employ the divergence theorem:
fror-as= [ 1D Ve+ap-vriav.
Since J is contained entirely within S, we must have i - J = 0 everywhere on S. Hence
[ 1D e s @p-vrav o (3.25)

We can obtain a useful relation by letting f = 1 and g = x; in (3.25), where (x, y, z) =
(x1, x2, x3). This gives

/ J;(r)dV =0, (3.26)
\%4

where J; = J, and so on. Hence the volume integral of any rectangular component of J
is zero. Similarly, letting f = g = x; we find that

/ xiJi(r)dV = 0. (3.27)
\%4

With f =x; and g = x; we obtain

/ [x:J;(x) +x;J;(r)] dV = 0. (3.28)
|4



3.2 Electrostatics
3.2.1 The electrostatic potential and work

The equation

fE Adl =0 (3.29)

satisfied by the electrostatic field E(r) is particularly interesting. A field with zero
circulation is said to be conservative. To see why, let us examine the work required to
move a particle of charge Q around a closed path in the presence of E(r). Since work is
the line integral of force and B = 0, the work expended by the external system moving
the charge against the Lorentz force is

W:—?{(QE+QVXB)-dl=—Q%E~dl=0.
r r

This property is analogous to the conservation property for a classical gravitational field:
any potential energy gained by raising a point mass is lost when the mass is lowered.

Direct experimental verification of the electrostatic conservative property is difficult,
aside from the fact that the motion of Q may alter E by interacting with the sources of
E. By moving Q with nonuniform velocity (i.e., with acceleration at the beginning of the
loop, direction changes in transit, and deceleration at the end) we observe a radiative
loss of energy, and this energy cannot be regained by the mechanical system providing
the motion. To avoid this problem we may assume that the charge is moved so slowly,
or in such small increments, that it does not radiate. We shall use this concept later to
determine the “assembly energy” in a charge distribution.

The electrostatic potential. By the point form of (3.29),
V x E(r) =0,
we can introduce a scalar field ® = ®(r) such that
E(r) = —Vo(r). (3.30)

The function @ carries units of volts and is known as the electrostatic potential. Let us
consider the work expended by an external agent in moving a charge between points P,
at ry and P2 at rp:

P, Py

Wa =-0 —Vo(r)-dl=Q d®(r) = Q[P(r2) — P(r)].
Py Py
The work Wy is clearly independent of the path taken between P; and P,; the quantity

Wai P
V=2 = e —ow) = [ Eal (3.31)
Q Py

called the potential difference, has an obvious physical meaning as work per unit charge
required to move a particle against an electric field between two points.
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Figure 3.3: Demonstration of path independence of the electric field line integral.

Of course, the large-scale form (3.29) also implies the path-independence of work in
the electrostatic field. Indeed, we may pass an arbitrary closed contour I' through P,
and P, and then split it into two pieces I'y and I'; as shown in Figure 3.3. Since

-0 E-dl=- E-dl+ Q E-dl=0,
r-r, Ty I

we have
-0 E~dl:—Q/E-dl
F] FZ

as desired.

We sometimes refer to @ (r) as the absolute electrostatic potential. Choosing a suitable
reference point Py at location ry and writing the potential difference as

Vor = [@(r2) — @ (rp)] — [@(r)) — P(xo)],

we can justify calling ®(r) the absolute potential referred to Py. Note that Py might
describe a locus of points, rather than a single point, since many points can be at the same
potential. Although we can choose any reference point without changing the resulting
value of E found from (3.30), for simplicity we often choose ry such that ®(ry) = 0.

Several properties of the electrostatic potential make it convenient for describing static
electric fields. We know that, at equilibrium, the electrostatic field within a conducting
body must vanish. By (3.30) the potential at all points within the body must therefore
have the same constant value. It follows that the surface of a conductor is an equipotential
surface: a surface for which ®(r) is constant.

As an infinite reservoir of charge that can be tapped through a filamentary conductor,
the entity we call “ground” must also be an equipotential object. If we connect a con-
ductor to ground, we have seen that charge may flow freely onto the conductor. Since no
work is expended, “grounding” a conductor obviously places the conductor at the same
absolute potential as ground. For this reason, ground is often assigned the role as the
potential reference with an absolute potential of zero volts. Later we shall see that for
sources of finite extent ground must be located at infinity.



3.2.2 Boundary conditions

Boundary conditions for the electrostatic field. The boundary conditions found
for the dynamic electric field remain valid in the electrostatic case. Thus

ﬁlz X (E1 — Ez) =0 (332)
and
fijz - (D) — D2) = py. (3.33)

Here fij; points into region 1 from region 2. Because the static curl and divergence
equations are independent, so are the boundary conditions (3.32) and (3.33).
For a linear and isotropic dielectric where D = €E, equation (3.33) becomes

np - (€ E; — eEy) = py. (3.34)
Alternatively, using D = ¢)E + P we can write (3.33) as
. 1
- (B —Ey) = - (os + prs1 + pprs2) (3.35)
0
where
Pps = n-p

is the polarization surface charge with fi pointing outward from the material body.
We can also write the boundary conditions in terms of the electrostatic potential. With
E = —V®, equation (3.32) becomes

@, (r) = Pa(r) (3.36)

for all points r on the surface. Actually ®; and ®, may differ by a constant; because
this constant is eliminated when the gradient is taken to find E, it is generally ignored.
We can write (3.35) as

o, 0P,
€| —=——— ) =—ps—prsi — Prs2
on on
where the normal derivative is taken in the fij; direction. For a linear, isotropic dielectric
(3.33) becomes

(— — 62 = —p,. (3.37)
Again, we note that (3.36) and (3.37) are independent.

Boundary conditions for steady electric current. The boundary condition on the
normal component of current found in § 2.8.2 remains valid in the steady current case.
Assume that the boundary exists between two linear, isotropic conducting regions having
constitutive parameters (€1,01) and (€2,07), respectively. By (2.198) we have

ﬁlZ : (Jl - JZ) = _vs . Js (338)

where fj; points into region 1 from region 2. A surface current will not appear on the
boundary between two regions having finite conductivity, although a surface charge may
accumulate there during the transient period when the currents are established [31]. If
charge is influenced to move from the surface, it will move into the adjacent regions,



Figure 3.4: Refraction of steady current at a material interface.

rather than along the surface, and a new charge will replace it, supplied by the current.
Thus, for finite conducting regions (3.38) becomes

np - (J;—Jo) =0. (3.39)

A boundary condition on the tangential component of current can also be found.
Substituting E = J/o into (3.32) we have

We can also write this as

J J
a2 (3.40)
[on] (op)
where
Jir =1hp x Jy, Jor = hip x Jo.

We may combine the boundary conditions for the normal components of current and
electric field to better understand the behavior of current at a material boundary. Sub-
stituting E = J/o into (3.34) we have

€ €
_lJln - _2J2n = Ps (341)
o1 (o))

where Ji, = fiy - J; and Jo, = i3 - Jo. Combining (3.41) with (3.39), we have

€] €r o1 €1 € 02
ps=Ju|———|=Enlaa——ea|=du|———|=En|le——e
(ep1 02 02 (o5 (o) [e51

where
Ey, =hp - Ef, Ey, =hy - Es.

Unless €,0, — g16; = 0, a surface charge will exist on the interface between dissimilar
current-carrying conductors.

We may also combine the vector components of current on each side of the boundary
to determine the effects of the boundary on current direction (Figure 3.4). Let 6, , denote
the angle between J;, and fi;; so that

J]nzjl COS@], J]zIJl sin91

Jzn = J2 COoS 92, Jz; = J2 sin 92.



Then J] Ccos 91 = J2 COS 92 by (339), while 0‘2.]1 sin 91 = 0] Jz Sil’l92 by (340) Hence
oy tanf; = oy tan 6. (3.42)

It is interesting to consider the case of current incident from a conducting material onto
an insulating material. If region 2 is an insulator, then J,, = Jo; = 0; by (3.39) we have
Jin = 0. But (3.40) does not require J;; = 0; with o, = 0 the right-hand side of (3.40)
is indeterminate and thus Jj; may be nonzero. In other words, when current moving
through a conductor approaches an insulating surface, it bends and flows tangential to
the surface. This concept is useful in explaining how wires guide current.

Interestingly, (3.42) shows that when 0, « o1 we have 6, — 0; current passing from a
conducting region into a slightly-conducting region does so normally.

3.2.3 Uniqueness of the electrostatic field

In § 2.2.1 we found that the electromagnetic field is unique within a region V when
the tangential component of E is specified over the surrounding surface. Unfortunately,
this condition is not appropriate in the electrostatic case. We should remember that
an additional requirement for uniqueness of solution to Maxwell’s equations is that the
field be specified throughout V at some time 3. For a static field this would completely
determine E without need for the surface field!

Let us determine conditions for uniqueness beginning with the static field equations.
Consider a region V surrounded by a surface S. Static charge may be located entirely
or partially within V, or entirely outside V, and produces a field within V. The region
may also contain any arrangement of conductors or other materials. Suppose (Dy, E;)
and (D,, E;) represent solutions to the static field equations within V with source p(r).
We wish to find conditions that guarantee both E; = E; and D; = D.

Since V-D; = p and V - D, = p, the difference field Dy = D, — D; obeys the
homogeneous equation

V.Dy =0. (3.43)
Consider the quantity
V- (Dg®g) = Po(V - Do) + Do - (VDo)

where Eg = E; — E; = —V®y = —V(®, — &;). We integrate over V and use the
divergence theorem and (3.43) to obtain

?€<D0 Do - A] dS = / Dy - (Vdy)dV = —/ Dy - EodV. (3.44)
S \%4 |4

Now suppose that &y = 0 everywhere on §, or that fi - Dy = 0 everywhere on S, or that
@y = 0 over part of § and i - Dy = 0 elsewhere on S. Then

/ Dy -EodV = 0. (3.45)
14

Since V is arbitrary, either Dy = 0 or Ey = 0. Assuming E and D are linked by the
constitutive relations, we have E; = E; and D; = D,.

Hence the fields within V are unique provided that either @, the normal component
of D, or some combination of the two, is specified over §. We often use a multiply-
connected surface to exclude conductors. By (3.33) we see that specification of the



normal component of D on a conductor is equivalent to specification of the surface
charge density. Thus we must specify the potential or surface charge density over all
conducting surfaces.

One other condition results in zero on the left-hand side of (3.44). If S recedes to
infinity and ®¢ and Dy decrease sufficiently fast, then (3.45) still holds and uniqueness
is guaranteed. If D, E ~ 1/r? as r — oo, then ® ~ 1/r and the surface integral in (3.44)
tends to zero since the area of an expanding sphere increases only as 2. We shall find
later in this section that for sources of finite extent the fields do indeed vary inversely
with distance squared from the source, hence we may allow S to expand and encompass
all space.

For the case in which conducting bodies are immersed in an infinite homogeneous
medium and the static fields must be determined throughout all space, a multiply-
connected surface is used with one part receding to infinity and the remaining parts
surrounding the conductors. Here uniqueness is guaranteed by specifying the potentials
or charges on the surfaces of the conducting bodies.

3.2.4 Poisson’s and Laplace’s equations

For computational purposes it is often convenient to deal with the differential versions

V x E(r) =0, (3.46)
V.D(r) = p(r). (3.47)

of the electrostatic field equations. We must supplement these with constitutive relations
between E and D; at this point we focus our attention on linear, isotropic materials for
which

D(r) = e(r)E(r).
Using this in (3.47) along with E = —V® (justified by (3.46)), we can write
V. [e(r)VO(r)] = —p(r). (3.48)
This is Poisson’s equation. The corresponding homogeneous equation
V. [e(r)VP(r)] =0, (3.49)

holding at points r where p(r) = 0, is Laplace’s equation. Equations (3.48) and (3.49)
are valid for inhomogeneous media. By (B.42) we can write

Vo(r) - -Velr)+ eV -[VO()] = —p(r).
For a homogeneous medium, Ve = 0; since V - (V®) = V>®, we have
V2O(r) = —p(r) /e (3.50)
in such a medium. Correspondingly,
Vo (r) =0

at points where p(r) = 0.

Poisson’s and Laplace’s equations can be solved by separation of variables, Fourier
transformation, conformal mapping, and numerical techniques such as the finite difference
and moment methods. In Appendix A we consider the separation of variables solution



to Laplace’s equation in three major coordinate systems for a variety of problems. For
an introduction to numerical techniques the reader is referred to the books by Sadiku
[162], Harrington [82], and Peterson et al. [146]. Solution to Poisson’s equation is often
undertaken using the method of Green’s functions, which we shall address later in this
section. We shall also consider the solution to Laplace’s equation for bodies immersed in
an applied, or “impressed,” field.

Uniqueness of solution to Poisson’s equation. Before attempting any solutions,
we must ask two very important questions. How do we know that solving the second-order
differential equation produces the same values for E = —V® as solving the first-order
equations directly for E? And, if these solutions are the same, what are the conditions
for uniqueness of solution to Poisson’s and Laplace’s equations? To answer the first
question, a sufficient condition is to have ® twice differentiable. We shall not attempt to
prove this, but shall instead show that the condition for uniqueness of the second-order
equations is the same as that for the first-order equations.

Consider a region of space V surrounded by a surface S. Static charge may be located
entirely or partially within V, or entirely outside V, and produces a field within V. This
region may also contain any arrangement of conductors or other materials. Now, assume
that ®; and @, represent solutions to the static field equations within V with source
p(r). We wish to find conditions under which ®; = &,.

Since we have

V- [em)VP(r)] = —p(r), V- [e(m)VIy(r)] = —p(r),
the difference field ®y = ®, — ®; obeys
V- [e(r)Vdy(r)] = 0. (3.51)
That is, &y obeys Laplace’s equation. Now consider the quantity
V- (eDgVDg) = €|VDg|> + DoV - (e VD).

Integration over V and use of the divergence theorem and (3.51) gives

f%(r) [e(r)Vo(r)] - dS = / €(0)| V(D)2 dV.
S 1%

As with the first order equations, we see that specifying either ®(r) or e(r)V®(r) - ii over
S results in ©((r) = 0 throughout V, hence ®; = ®,. As before, specifying e(r)V®e(r) - i
for a conducting surface is equivalent to specifying the surface charge on S.

Integral solution to Poisson’s equation: the static Green’s function. The
method of Green’s functions is one of the most useful techniques for solving Poisson’s
equation. We seek a solution for a single point source, then use Green’s second identity
to write the solution for an arbitrary charge distribution in terms of a superposition
integral.

We seek the solution to Poisson’s equation for a region of space V as shown in Figure
3.5. The region is assumed homogeneous with permittivity €, and its surface is multiply-
connected, consisting of a bounding surface S and any number of closed surfaces internal
to V. We denote by S the composite surface consisting of Sg and the N internal surfaces
S,,n=1,..., N. The internal surfaces are used to exclude material bodies, such as the



Figure 3.5: Computation of potential from known sources and values on bounding sur-
faces.

plates of a capacitor, which may be charged and on which the potential is assumed
to be known. To solve for ®(r) within V we must know the potential produced by a
point source. This potential, called the Green’s function, is denoted G(r|r’); it has two
arguments because it satisfies Poisson’s equation at r when the source is located at r’:

VG (r|r) = —=8(r — r). (3.52)

Later we shall demonstrate that in all cases of interest to us the Green’s function is
symmetric in its arguments:

G({'|r) = G(r|r). (3.53)

This property of G is known as reciprocity.
Our development rests on the mathematical result (B.30) known as Green’s second
identity. We can derive this by subtracting the identities

V- (@VY) = ¢V - (Vi) + (Ve) - (V),
V-(yVe) =4V - (Vo) + (V) - (V9),

to obtain
V- (@VY — Y V) = ¢V — V2.

Integrating this over a volume region V with respect to the dummy variable r’ and using
the divergence theorem, we obtain

/ [p(®)Vy () — Y (X)Vp)]dV' = — yi [p(X)V'y (') — Y ()V'$(r)] - dS'.
\%4

The negative sign on the right-hand side occurs because h is an inward normal to V.
Finally, since ay (r')/on’ = @' - V¢ (r), we have

0 / 0 /
fv [ ()Y () — Y )V @)V = —fs [¢(r/> AL "’(r)} as’

on’ on’



as desired.
To solve for ® in V we shall make some seemingly unmotivated substitutions into this
identity. First note that by (3.52) and (3.53) we can write

V2G(r|r) = —8(r — ). (3.54)

We now set ¢ (r') = ®(r') and ¥ (') = G(r|r’) to obtain

f [®(F)VG(x|r) — Gr|r) VD) dV =

ﬂ‘b( 20t ) G 2® (/)]dS’, (3.55)
N

hence
/ |:<I>(r/)8(r’ — = Gy /)}dv’ = ?§ [@( )aG(rlr/) — G(rlr )8@(1")] ds’.
14

By the sifting property of the Dirac delta

q>(r):/<;(r|r>p( P 4y +?§ [cb( )w Grlr >a « ):|dS’+
Vv Sp

N LG (r|r) L AD(r) )
+Zy€ |:<I>(r) S G — }dS. (3.56)

With this we may compute the potential anywhere within V in terms of the charge
density within V and the values of the potential and its normal derivative over S. We
must simply determine G (r|r’) first.

Let us take a moment to specialize (3.56) to the case of unbounded space. Provided
that the sources are of finite extent, as Sp — 0o we shall find that

d>(r)=/G(r|r)p( /)dV +Zj£ [cb( )aG(rIr’)_G(| )8d>(r/)] Js’

A useful derivative identity. Many differential operations on the displacement vector
R =r —r’ occur in the study of electromagnetics. The identities

L 1 ! R
VR=-VR=R, V(=|=-V(=)=-—=, (3.57)
R R R?

for example, follow from direct differentiation of the rectangular coordinate representa-
tion

R=%(x—x)+30 -y) +2z—2).

The identity

V2 (%) = —4n8(r—7r), (3.58)

crucial to potential theory, is more difficult to establish. We shall prove the equivalent

version
1
v? <—) = 4780 —1)
R



Figure 3.6: Geometry for establishing the singular property of VZ(1/R).

by showing that

/f( )v”( )dV/— {;4”(”’ :Z “i (3.59)

holds for any continuous function f(r). By direct differentiation we have

1
\ (E) =0forr #r,

hence the second part of (3.59) is established. This also shows that if r € V then the
domain of integration in (3.59) can be restricted to a sphere of arbitrarily small radius
e centered at r (Figure 3.6). The result we seek is found in the limit as ¢ — 0. Thus we
are interested in computing

N2 1 AT N2 l ’
/Vf(r)V (E) dv _g%/vgf(r)v <R> dv'.

Since f is continuous at r' = r, we have by the mean value theorem

/f(r’)V’2< )dV’ f(r)llm/ v/2< )dV’
14

The integral over V, can be computed using V'*(1/R) = V' - V/(1/R) and the divergence

theorem:
1 1
/ v'? <—> dV’:/ AV <—> ds’,
v, R s, R

where S, bounds V,. Noting that i’ = —R, using (57), and writing the integral in
spherical coordinates (g, 0, ¢) centered at the point r, we have

2
/f(r)V’z( )dV = f(©) lim / ~R- ( )g sin@ df dp = —4n f (r).

Hence the first part of (3.59) is also established.

The Green’s function for unbounded space. In view of (3.58), one solution to
(3.52) is

, 1



This simple Green’s function is generally used to find the potential produced by charge
in unbounded space. Here N = 0 (no internal surfaces) and Sp — co. Thus
d G (r|r’ 9D (r
®(r) = / G(r|r )'0( Y av' 4+ lim [(D( y 2 ( | ) G(r|r’)#]
v Sp on

B—)OO

ds’.

We have seen that the Green’s function varies inversely with distance from the source,
and thus expect that, as a superposition of point-source potentials, ®(r) will also vary
inversely with distance from a source of finite extent as that distance becomes large with
respect to the size of the source. The normal derivatives then vary inversely with distance
squared. Thus, each term in the surface integrand will vary inversely with distance cubed,
while the surface area itself varies with distance squared. The result is that the surface
integral vanishes as the surface recedes to infinity, giving

@(r):/G(rh‘)p( L
By (3.60) we then have

1 /
o) = p(r') dv’
4me Jy [r — 1|

(3.61)

where the integration is performed over all of space. Since

lim &(r) =0,

r—o0

points at infinity are a convenient reference for the absolute potential.

Later we shall need to know the amount of work required to move a charge Q from
infinity to a point P located at r. If a potential field is produced by charge located in
unbounded space, moving an additional charge into position requires the work

P
Wy = —Q/ E-dl = Q[o(r) — ®(c0)] = QP (). (3.62)

Coulomb’s law. We can obtain E from (61) by direct differentiation. We have

1 / 1 1
E(r)=——Vf P8 av' = - L av’,
dre  Jy Ir— 1| dre [r—r|

E(r) = / o) s d (3.63)

hence

by (3. 7) So Coulomb’s law follows from the two fundamental postulates of electrostatics

(3.5) and (3.6).

Green’s function for unbounded space: two dimensions. We define the two-
dimensional Green’s function as the potential at a point r = p + Zz produced by a
z-directed line source of constant density located at r' = p’. Perhaps the simplest way
to compute this is to first find E produced by a line source on the z-axis. By (3.63) we
have

/

E(r) = —— / P& sl

r/|3




Then, since r = 2z + pp, ¥ = 27/, and dI’ = d7’, we have

o [ po+iz—12) ,
E(p) = 4—l p 3 42
TE J_ [pz +(z— Z/)2]

Carrying out the integration we find that E has only a p-component which varies only
with p:

01
2mep’

E(p) = p (3.64)

The absolute potential referred to a radius py can be found by computing the line integral
of E from p to pq:

opy= L [T o (P
2e J,, 0 2me o)

We may choose any reference point py except py = 0 or pg = co. This choice is equivalent
to the addition of an arbitrary constant, hence we can also write

2me

The potential for a general two-dimensional charge distribution in unbounded space is
by superposition

qmp)=-£LJn<%)-+c. (3.65)

pr(p) N
>(p) = / 2L G plp) (3.66)
St
where the Green’s function is the potential of a unit line source located at p':
1 00
G(plp) = — ln< ) . 3.67
2n lp—p'l (3.67)

Here Sy denotes the transverse (xy) plane, and pr denotes the two-dimensional charge
distribution (C/m?) within that plane.

We note that the potential field (3.66) of a two-dimensional source decreases logarith-
mically with distance. Only the potential produced by a source of finite extent decreases
inversely with distance.

Dirichlet and Neumann Green’s functions. The unbounded space Green’s func-
tion may be inconvenient for expressing the potential in a region having internal surfaces.
In fact, (3.56) shows that to use this function we would be forced to specify both ® and its
normal derivative over all surfaces. This, of course, would exceed the actual requirements
for uniqueness.
Many functions can satisfy (3.52). For instance,
, A B
G(r|r') = + (3.68)
r—r| |r—r

satisfies (3.52) if r; ¢ V. Evaluation of (3.55) with the Green’s function (3.68) repro-
duces the general formulation (3.56) since the Laplacian of the second term in (3.68) is
identically zero in V. In fact, we can add any function to the free-space Green’s function,
provided that the additional term obeys Laplace’s equation within V:

G(lr) =

A ’ 2 /
T + F(r|r), V“F(rlr') = 0. (3.69)



A good choice for G(r|r’) will minimize the effort required to evaluate ®(r). Examining
(3.56) we notice two possibilities. If we demand that

Galr)=0foralr €S (3.70)

then the surface integral terms in (3.56) involving d®/dn’ will vanish. The Green’s
function satisfying (3.70) is known as the Dirichlet Green’s function. Let us designate it
by Gp and use reciprocity to write (3.70) as

Gprlr)y=0forallreS.

The resulting specialization of (3.56),

<I>(r)=/GD(| Lo )dv/+7§ O(r )Mds/
N

+z% o(r )3GD(I‘|I') ds’. (3.71)

requires the specification of ® (but not its normal derivative) over the boundary surfaces.
In case Sp and S, surround and are adjacent to perfect conductors, the Dirichlet bound-
ary condition has an important physical meaning. The corresponding Green’s function is
the potential at point r produced by a point source at r’ in the presence of the conductors
when the conductors are grounded — i.e., held at zero potential. Then we must specify
the actual constant potentials on the conductors to determine ® everywhere within V
using (3.71). The additional term F(r|r') in (3.69) accounts for the potential produced
by surface charges on the grounded conductors.

By analogy with (3.70) it is tempting to try to define another electrostatic Green’s

function according to
G (r|r’
3GrIr) =0forallr €S. (3.72)
on’

But this choice is not permissible if V is a finite-sized region. Let us integrate (3.54) over
V and employ the divergence theorem and the sifting property to get

G (r|r
% 3G rir) ds' = —1; (3.73)
Ky on’
in conjunction with this, equation (3.72) would imply the false statement 0 = —1. Sup-

pose instead that we introduce a Green’s function according to

G / 1
ﬂ =——forallr €8S. (3.74)
on’ A

where A is the total area of S. This choice avoids a contradiction in (3.73); it does not
nullify any terms in (3.56), but does reduce the surface integral terms involving & to
constants. Taken together, these terms all comprise a single additive constant on the
right-hand side; although the corresponding potential ®(r) is thereby determined only
to within this additive constant, the value of E(r) = —V®(r) will be unaffected. By
reciprocity we can rewrite (3.74) as

dG y (r|r)

1
. = for allr € S. (3.75)



The Green’s function Gy so defined is known as the Neumann Green’s function. Observe
that if V is not finite-sized then A — oo and according to (3.74) the choice (3.72) becomes
allowable.

Finding the Green’s function that obeys one of the boundary conditions for a given
geometry is often a difficult task. Nevertheless, certain canonical geometries make the
Green’s function approach straightforward and simple. Such is the case in image theory,
when a charge is located near a simple conducting body such as a ground screen or
a sphere. In these cases the function F(r|r’) consists of a single correction term as in
(3.68). We shall consider these simple cases in examples to follow.

Reciprocity of the static Green’s function. It remains to show that
G(r|r')y = G(X'|r)

for any of the Green’s functions introduced above. The unbounded-space Green’s function
is reciprocal by inspection; |r — r’| is unaffected by interchanging r and r’. However, we
can give a more general treatment covering this case as well as the Dirichlet and Neumann
cases. We begin with

VG (r|r) = =8(r — r).
In Green’s second identity let
¢(r) = G(rry), Y (r) = G(r|rp),

where r, and r, are arbitrary points, and integrate over the unprimed coordinates. We
have

/ [G(r|r,)V>G(x|r,) — G(xr|ry) V2G (r|r,)]dV =
|4
?{[G( rir a)w Gmrb)@} ds.
N n

If G is the unbounded-space Green’s function, the surface integral must vanish since
Sp — o00o. It must also vanish under Dirichlet or Neumann boundary conditions. Since

V2G(r|r,) = =8(r — ry), V2G(r|rp) = —8(r — 1p),
we have
/V[G(r|ra)8(r —13) — G(r|ry)8(r — r,)]1dV =0,
hence
G(rplry) = G(r,lrp)

by the sifting property. By the arbitrariness of r, and r;, reciprocity is established.

Electrostatic shielding. The Dirichlet Green’s function can be used to explain elec-
trostatic shielding. We consider a closed, grounded, conducting shell with charge outside
but not inside (Figure 3.7). By (3.71) the potential at points inside the shell is

@(r)zﬁ o )M 7
Sp



Figure 3.7: Electrostatic shielding by a conducting shell.

where Sp is tangential to the inner surface of the shell and we have used p = 0 within
the shell. Because ® (') =0 for all ¥’ on Sg, we have

d(r) =0

everywhere in the region enclosed by the shell. This result is independent of the charge
outside the shell, and the interior region is “shielded” from the effects of that charge.

Conversely, consider a grounded conducting shell with charge contained inside. If we
surround the outside of the shell by a surface S; and let Sg recede to infinity, then (3.71)
becomes

o) = lim ¢ d(r )LD( ™) g5 4 ygcb( )LD(rlr/)

Sp—00 Sy Si

Again there is no charge in V (since the charge lies completely inside the shell). The
contribution from Sp vanishes. Since §; lies adjacent to the outer surface of the shell,
® (') =0 on ;. Thus ®(r) = 0 for all points outside the conducting shell.

Example solution to Poisson’s equation: planar layered media. For simple
geometries Poisson’s equation may be solved as part of a boundary value problem (§ A.4).
Occasionally such a solution has an appealing interpretation as the superposition of
potentials produced by the physical charge and its “images.” We shall consider here the
case of planar media and subsequently use the results to predict the potential produced
by charge near a conducting sphere.

Consider a layered dielectric medium where various regions of space are separated by
planes at constant values of z. Material region i occupies volume region V; and has
permittivity €;; it may or may not contain source charge. The solution to Poisson’s
equation is given by (3.56). The contribution

@P(r)=/c<| )p( )

produced by sources within V is known as the primary potential. The term

@‘Y(r):yg[cb( )8G(r|r’) Gl )8<I>(r/)} i




on the other hand, involves an integral over the surface fields and is known as the sec-
ondary potential. This term is linked to effects outside V. Since the “sources” of ®°
(i.e., the surface fields) lie on the boundary of V, ®* satisfies Laplace’s equation within
V. We may therefore use other, more convenient, representations of ®° provided they
satisfy Laplace’s equation. However, as solutions to a homogeneous equation they are of
indefinite form until linked to appropriate boundary values.

Since the geometry is invariant in the x and y directions, we represent each potential
function in terms of a 2-D Fourier transform over these variables. We leave the z depen-
dence intact so that we may apply boundary conditions directly in the spatial domain.
The transform representations of the Green’s functions for the primary and secondary
potentials are derived in Appendix A. From (A.55) we see that the primary potential
within region V; can be written as

/
@f(r)zf G”(r|r)’0( ) (3.76)
Vi
where
1 1 00 g=hpli=Zl ,
G’ (r|r) = = / e/ g2, (3.77)
drir—r|  (m)? 2k,

is the primary Green’s function with k, = &k, + §k,, k, = |k,|, and d*k, = dk, dk,.
We also find in (A.56) that a solution of Laplace’s equation can be written as

1 o0 )
¥ = (2n)? /;oo [A(kp)ekpz + B(kp)e_kpz] o d’k, (3.78)

where A(k,) and B(k,) must be found by the application of appropriate boundary con-
ditions.

As a simple example, consider a charge distribution p(r) in free space above a grounded
conducting plane located at z = 0. We wish to find the potential in the region z > 0
using the Fourier transform representation of the potentials. The total potential is a sum
of primary and secondary terms:

1 o0 e_kp|Z—Z|
P (x,y,2) =/ 2/ eIk 1) g2 p(r') ) V4
v @o? ) 2, .

1 * —k T
b o [ I8k,

where the integral is over the region z > 0. Here we have set A(k,) = 0 because e*
grows with increasing z. Since the plane is grounded we must have ®(x,y,0) =

Because z < 7/ when we apply this condition, we have |z — 7’| = 7/ — z and thus
1 °° p(r) e ? ,
d(x,y,0) = —— ——e T qV' + B(k,) | e/ d%k, = 0.

Invoking the Fourier integral theorem we find

N e—ked
B(kp) — _'/ p(r) e e_.lkp{- dV/,
v €0 ka
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Figure 3.8: Construction of electrostatic Green’s function for a ground plane.

hence the total potential is

1 00 ,—kolz=Z| _ ,—kp(z+z) , /
D(x,y,2) Z/ |: / € ¢ e.]k,,~(r—r)d2kp p(r') v’
\%4 _ -

(27)? 2k, €
/ Gy ™ p( )

where G(r|r’) is the Green’s function for the region above a grounded planar conductor.
We can interpret this Green’s function as a sum of the primary Green’s function (3.77)
and a secondary Green’s function

1 (a2 JjKky-(r—r") 52
G'(rlr') = — P dok . 3.79
() = = s /_ T ) (3.79)

For z > 0 the term z 47" can be replaced by |z +7'|. Then, comparing (3.79) with (3.77),
we see that
1

G‘Y(l'|x/,y/,z/) = —G”(r|x’,y/, -7 = —m (3.80)

where r} = %x'+§y’ —2z’. Because the Green’s function is the potential of a point charge,
we may interpret the secondary Green’s function as produced by a negative unit charge
placed in a position —z" immediately beneath the positive unit charge that produces G?
(Figure 3.8). This secondary charge is the “image” of the primary charge. That two such
charges would produce a null potential on the ground plane is easily verified.

As a more involved example, consider a charge distribution p(r) above a planar in-
terface separating two homogeneous dielectric media. Region 1 occupies z > 0 and has
permittivity €;, while region 2 occupies z < 0 and has permittivity €,. In region 1 we
can write the total potential as a sum of primary and secondary components, discarding
the term that grows with z:

1 o ,—kplz—=7'| ) ,
Di(x,y,2) =/ 2/ ¢ eJkp~(r—r)d2kp o) av' +
v @Qr)y ) 2k, )

1 (™ ‘
+ G /_Do [Bkp)e <] e/ ™ d’k,,. (3.81)

With no source in region 2, the potential there must obey Laplace’s equation and there-
fore consists of only a secondary component:

1 [ ‘
020 = G5 /_ [Ak,)e" <] e/ d?k,,. (3.82)



To determine A and B we impose (3.36) and (3.37). By (3.36) we have

1 00 N o—kpZ L i
/ |:/ p)e eIkt gy + B(kp) _ A(kp)] kT dzkp =0,
—00 1%

2m)? e 2k,

hence

p)e ™ e _
/‘; P We dv +B(kp)—A(kp) =0

by the Fourier integral theorem. Applying (3.37) at z = 0 with fi;; = Z, and noting that
there is no excess surface charge, we find

—k,z
fp(r)eZk T AV — € B(k,) — e2A(K,) = 0.
]

The solutions

— ik, 1
e ]kpl‘ dV/,

2 1N ,—kyZ
Alk,) = €1 / p(r)e
|4

€+ e e 2k,

N k7 ) ,
B(kp) f p(r) ¢ e*]kp‘l‘ dvl’
€1 + € Jy € ka

are then substituted into (3.81) and (3.82) to give

1 00 g TkilimTl 4 Gz ek (HD) / ,
®(r) :/ 2/ ete® ejk/y(rfr)dep p(r)dV’
\4 (27[) 2kp €1

/G (rlr )”( Lav',
~ 1 ® e, k@D Jhpr—t) g2 o) ,
¢2(r)_/\/|:(271)2/0061+62 2%, e’ d°k, 7dV
/G (r|r)p( )

Since 7z’ > z for all points in region 2, we can replace 77 — z by |z — Z/| in the formula for
®,.

As with the previous example, let us compare the result to the form of the primary
Green’s function (3.77). We see that

1 € — € 1

Gi(rlr)) =
drlr—r| e +ednr—r)|’

262 1

Gy(rlr) = ,
2(rir) €1+ e dn|r —r)|

where r] = Xx' + §y' — 2z’ and r), = Xx' + §y' + 2z’. So we can also write

1 1 - 1 '
(1) = —f caze 1120,y
dm Jy LIr—r'| e+ e |r—r]] €]

1 2 1 !
(1) = f < P gy,
e vie+elr—-rl] e




Figure 3.9: Green’s function for a grounded conducting sphere.

Note that ®, — ®; as €, — €.

There is an image interpretation for the secondary Green’s functions. The secondary
Green’s function for region 1 appears as a potential produced by an image of the primary
charge located at —z’ in an infinite medium of permittivity €;, and with an amplitude of
(€1 —€2)/ (€1 +€;) times the primary charge. The Green’s function in region 2 is produced
by an image charge located at 7’ (i.e., at the location of the primary charge) in an infinite
medium of permittivity €; with an amplitude of 2¢;/(€; + €;) times the primary charge.

Example solution to Poisson’s equation: conducting sphere. As an example
involving a nonplanar geometry, consider the potential produced by a source near a
grounded conducting sphere in free space (Figure 3.9). Based on our experience with
planar layered media, we hypothesize that the secondary potential will be produced by
an image charge; hence we try the simple Green’s function

A(r')

G'(rlr') = pr—

where the amplitude A and location r; of the image are to be determined. We further
assume, based on our experience with planar problems, that the image charge will reside
inside the sphere along a line joining the origin to the primary charge. Since r = at for
all points on the sphere, the total Green’s function must obey the Dirichlet condition

A(r)
req Admlr—r

1 A

G(I‘r/) —_g = = —~ = — = =
)= drr|at —r't|  4wlak — /¥

/
|

4r|r — 1| ;

r=a
in order to have the potential, given by (3.56), vanish on the sphere surface. Factoring a
from the first denominator and r/ from the second we obtain

1 A(r))

: —— =0.
dwalt — °F|  dur]|SE — 1
a r]

Now |k# — k'#'| = k*> + k”> — 2kk’ cos y where y is the angle between # and & and k, k’

are constants; this means that |kt — /| = |f — kt/|. Hence as long as we choose
r'a A 1
a rl’ r! a’

the total Green’s function vanishes everywhere on the surface of the sphere. The image
charge is therefore located within the sphere at r; = a’r'/r” and has amplitude A =



—a/r’. (Note that both the location and amplitude of the image depend on the location
of the primary charge.) With this Green’s function and (3.71), the potential of an
arbitrary source placed near a grounded conducting sphere is

J 1 1 /
d>(r)=/ pr) 1 7L )
v e ar |r—vl Jr—Zr]

The Green’s function may be used to compute the surface charge density induced on
the sphere by a unit point charge: it is merely necessary to find the normal component of
electric field from the gradient of ®(r). We leave this as an exercise for the reader, who
may then integrate the surface charge and thereby show that the total charge induced
on the sphere is equal to the image charge. So the total charge induced on a grounded
sphere by a point charge g at a point r =r’ is Q = —qa/r’.

It is possible to find the total charge induced on the sphere without finding the image
charge first. This is an application of Green’s reciprocation theorem (§ 3.4.4). According
to (3.211), if we can find the potential Vp at a point r produced by the sphere when it is
isolated and carrying a total charge Qq, then the total charge Q induced on the grounded
sphere in the vicinity of a point charge g placed at r is given by

0=-—qVp/ V1

where V) is the potential of the isolated sphere. We can apply this formula by noting that
an isolated sphere carrying charge Qg produces a field E(r) = #Qo/4mwer?. Integration
from a radius r to infinity gives the potential referred to infinity: ®(r) = Q¢/4mwer. So
the potential of the isolated sphere is V; = Q¢/4mea, while the potential at radius r’ is
Vp = Qo/4mer’. Substitution gives Q = —qga/r’ as before.

3.2.5 Force and energy

Maxwell’s stress tensor. The electrostatic version of Maxwell’s stress tensor can be
obtained from (2.288) by setting B=H = 0:

_ 1 -
T.=;® EI-DE. (3.83)

The total electric force on the charges in a region V bounded by the surface S is given

by the relation
Fe:—nge-dS=/fedV
s %

where f, = pE is the electric force volume density.

In particular, suppose that S is adjacent to a solid conducting body embedded in a
dielectric having permittivity €(r). Since all the charge is at the surface of the conductor,
the force within V acts directly on the surface. Thus, —T, - i is the surface force density
(traction) t. Using D = €E, and remembering that the fields are normal to the conductor,
we find that

N T R L . 1
T, -f= EfEn“ —€EE -fi = _EGE" = _EPSE'
The surface force density is perpendicular to the surface.

As a simple but interesting example, consider the force acting on a rigid conducting

sphere of radius a carrying total charge Q in a homogeneous medium. At equilibrium



the charge is distributed uniformly with surface density p, = Q/4mwa?, producing a field
E = #Q/4mer? external to the sphere. Hence a force density

1, Q2
t= o
2 e(4ma?)?

acts at each point on the surface. This would cause the sphere to expand outward if the
structural integrity of the material were to fail. Integration over the entire sphere yields

PO /f'dS—O
T 2e(dma?)? Js o

However, integration of t over the upper hemisphere yields

1 Q2 2
=——= fa®sin6 dO d¢
2 6(47T612)2 0 0 ’

Substitution of £ = Xsin6é cos ¢ + §siné sin ¢ + zZcos f leads immediately to F, = Fy, =0,
but the z-component is

1 2 Q2
F, = 7/ / a®cos0sinf do dg =
2 e(4mwa?)? J, 32ema?’

This result can also be obtained by integrating —T, - fi over the entire xy-plane with
fi = —2. Since —T, - (—2) = Z5E - E we have

1 /2” / rdr d¢> %
=7- =1 .
2 (47’[6)2 32emwa?

As a more challenging example, consider two identical line charges parallel to the z-
axis and located at x = +d/2, y = 0 in free space. We can find the force on one line
charge due to the other by integrating Maxwell’s stress tensor over the yz-plane. From
(3.64) we find that the total electric field on the yz-plane is

y Pl

B T @ e

where p; is the line charge density. The force density for either line charge is —T, - fi,
where we use fi = £X to obtain the force on the charge at x = Fd/2. The force density
for the charge at x = —d/2 is

_ 1 _ 2
T, Ai=-D EI-8—DE-3=2| 2 P |4
2 2 [ y24+(d/2)? e

and the total force is

00 0 2 2
- / / A Y _kdydz.
o0 J—oo 2T %€g [yz + (d/2)2]
On a per unit length basis the force is
. / > v’ .
oo Y2+ (d/2)*?

l T2,
Note that the force is repulsive as expected.




Figure 3.10: Computation of electrostatic stored energy via the assembly energy of a
charge distribution.

Electrostatic stored energy. In § 2.9.5 we considered the energy relations for the
electromagnetic field. Those relations remain valid in the static case. Since our interpre-
tation of the dynamic relations was guided in part by our knowledge of the energy stored
in a static field, we must, for completeness, carry out a study of that effect here.

The energy of a static configuration is taken to be the work required to assemble the
configuration from a chosen starting point. For a configuration of static charges, the
stored electric energy is the energy required to assemble the configuration, starting with
all charges removed to infinite distance (the assumed zero potential reference). If the
assembled charges are not held in place by an external mechanical force they will move,
thereby converting stored electric energy into other forms of energy (e.g., kinetic energy
and radiation).

By (3.62), the work required to move a point charge ¢ from a reservoir at infinity to
a point P at r in a potential field @ is

W = gd(r).

If instead we have a continuous charge density p present, and wish to increase this to
p + 8p by bringing in a small quantity of charge §p, a total work

SW= [ spm®)dVv (3.84)

Voo

is required, and the potential field is increased to ® 4+ §®. Here V4, denotes all of space.
(We could restrict the integral to the region containing the charge, but we shall find it
helpful to extend the domain of integration to all of space.)

Now consider the situation shown in Figure 3.10. Here we have charge in the form of
both volume densities and surface densities on conducting bodies. Also present may be
linear material bodies. We can think of assembling the charge in two distinctly different



ways. We could, for instance, bring small portions of charge (or point charges) together
to form the distribution p. Or, we could slowly build up p by adding infinitesimal, but
spatially identical, distributions. That is, we can create the distribution p from a zero
initial state by repeatedly adding a charge distribution

Sp(r) = p(r)/N,

where N is a large number. Whenever we add 8p we must perform the work given by
(3.84), but we also increase the potential proportionately (remembering that all materials
are assumed linear). At each step, more work is required. The total work is

N N
W= Z_;/ SpMI(n — DD @) dV = [Z(” _ 1)} /V POPO 1y (3.89)

N N
n=1

We must use an infinite number of steps so that no energy is lost to radiation at any step
(since the charge we add each time is infinitesimally small). Using

N
D (=1 =NWN =12,

n=1

(3.85) becomes

1
W= E/ p(X)®(r)dV (3.86)

as N — oo. Finally, since some assembled charge will be in the form of a volume density
and some in the form of the surface density on conductors, we can generalize (3.86) to

1 1<
W= E/V/,o(r)QD(r)dV-i-E;Qinw (3.87)

Here V' is the region outside the conductors, Q; is the total charge on the ith conductor
(i=1,...,1I),and V; is the absolute potential (referred to infinity) of the ith conductor.
An intriguing property of electrostatic energy is that the charges on the conductors
will arrange themselves, while seeking static equilibrium, into a minimum-energy config-
uration (Thomson’s theorem).
In keeping with our field-centered view of electromagnetics, we now wish to write the
energy (3.86) entirely in terms of the field vectors E and D. Since p = V - D we have

W= l/ [V-D@®)]P((@)dV.
2 Jv,
Then, by (B.42),

W= 1/ V. [®@DI)]dV — 1/ D(r) - [Vd(r)]dV.
2 Jy. 2 .

Use of the divergence theorem and (3.30) leads to

W= %% @(r)D(r)-dS—i—%/ D(r)-E@)dV



Figure 3.11: Multipole expansion.

where Sy, is the bounding surface that recedes toward infinity to encompass all of space.
Because ® ~ 1/r and D ~ 1/r? as r — 00, the integral over S, tends to zero and

W= %/ D) -Er)dV. (3.88)

Hence we may compute the assembly energy in terms of the fields supported by the
charge p.

It is significant that the assembly energy W is identical to the term within the time
derivative in Poynting’s theorem (2.299). Hence our earlier interpretation, that this term
represents the time-rate of change of energy “stored” in the electric field, has a firm basis.
Of course, the assembly energy is a static concept, and our generalization to dynamic
fields is purely intuitive. We also face similar questions regarding the meaning of energy
density, and whether energy can be “localized” in space. The discussions in § 2.9.5 still

apply.

3.2.6 Multipole expansion

Consider an arbitrary but spatially localized charge distribution of total charge Q
in an unbounded homogeneous medium (Figure 3.11). We have already obtained the
potential (3.61) of the source; as we move the observation point away, ® should decrease
in a manner roughly proportional to 1/r. The actual variation depends on the nature
of the charge distribution and can be complicated. Often this dependence is dominated
by a specific inverse power of distance for observation points far from the source, and we
can investigate it by expanding the potential in powers of 1/r. Although such multipole
expansions of the potential are rarely used to perform actual computations, they can
provide insight into both the behavior of static fields and the physical meaning of the
polarization vector P.

Let us place our origin of coordinates somewhere within the charge distribution, as
shown in Figure 3.11, and expand the Green’s function spatial dependence in a three-
dimensional Taylor series about the origin:

_! + V/)l + l(r/ v’)21 + (3.89)
B r R r=0 2 R r=0 ’ .

=N 1
- B v 2OV B
R ;n!(r "R

r'=0

where R = |r —r’|. Convergence occurs if [r| > |r/|. In the notation (r'- V')" we interpret
a power on a derivative operator as the order of the derivative. Substituting (3.89) into



(3.61) and writing the derivatives in Cartesian coordinates we obtain

1 NER!
q’(r):m/vp(r)[ﬁ

For the second term we can use (3.57) to write

J < U l ) / R
=r .|V — =r-|—
Y0 R) v R

The third term is complicated. Let us denote (x, y,z) by (x1, x2, x3) and perform an
expansion in rectangular coordinates:

1
+ —

1
+ @V~
r'=0 2

1
(r/ . V/)Z_
veo R R

4. } dv’'.  (3.90)
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It turns out [172] that this can be written as

1
(r/ . v/)z_

= if. Grr — D) -
R r3 '

r=0
Substitution into (3.90) gives

[0) P-p 1£-Q-#
dmwer  dmwer? 2 4mer?

D(r) = 4+, (3.92)
which is the multipole expansion for ®(r). It converges for all r > r,, where r,, is the
radius of the smallest sphere completely containing the charge centered at r' = 0 (Figure
3.11). In (3.92) the terms Q, p, Q, and so on are called the multipole moments of p(r).
The first moment is merely the total charge

0= / p()dv'.
4

The second moment is the electric dipole moment vector

p= / rp@)dv'.

v
The third moment is the electric quadrupole moment dyadic
Q= / Grr — rDHp)dv'.
v
The expansion (3.92) allows us to identify the dominant power of r for r > ry,.

The first nonzero term in (3.92) dominates the potential at points far from the source.
Interestingly, the first nonvanishing moment is independent of the location of the origin
of r’, while all subsequent higher moments depend on the location of the origin [91]. We
can see this most easily through a few simple examples.

For a single point charge ¢ located at ry we can write p(r) = ¢gé(r — rp). The first
moment of p is

Q=/q3(r’—ro)dV'=q-
\%4
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Figure 3.12: A dipole distribution.

Note that this is independent of ry. The second moment
p= fVl’,Cﬂs(r/ —r9)dV' =¢qr
depends on ry, as does the third moment
Q= fv @r'r — r)gs(r' — 1) dV' = q(3rory — r31).

If rp = 0 then only the first moment is nonzero; that this must be the case is obvious
from (3.61).
For the dipole of Figure 3.12 we can write

p) =—qé(r —ro+d/2) +q5(r —ro —d/2).
In this case
0=—-q+q=0, P = qd, Q = ¢[3(rod + drg) — 2(ro - DI].

Only the first nonzero moment, in this case p, is independent of ry. For ry = 0 the only
nonzero multipole moment would be the dipole moment p. If the dipole is aligned along
the z-axis with d = dZ and ry = 0, then the exact potential is

o) 1 pcosé
r)=—
4re 12

By (3.30) we have

1
Em)=—2

(2 cos 6 + O sin ), (3.93)
dme 13

which is the classic result for the electric field of a dipole.
Finally, consider the quadrupole shown in Figure 3.13. The charge density is

p(r) = —qé(r —rp) +qd(r —r9g—d;) +gd(r —ro —dp) —gé(r —ro —d; — dy).
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Figure 3.13: A quadrupole distribution.

Carrying through the details, we find that the first two moments of p vanish, while the
third is given by

Q = ¢[-3(did; + dody) + 2(d; - d)I].

As expected, it is independent of ry.

It is tedious to carry (3.92) beyond the quadrupole term using the Taylor expansion.
Another approach is to expand 1/R in spherical harmonics. Referring to Appendix E.3
we find that

1 o0 n 1 r/l’l
=4 — Y (0, )Y (O,
T T D S @80 Yn 0. 9)

(see Jackson [91] or Arfken [5] for a detailed derivation). This expansion converges for
Ir| > |r,,|. Substitution into (3.61) gives

00 n
o(r) = é ; r% [2”—:1 m; G Yo 6, ¢>} (3.94)
where

am = [ PE"Y @ ) aV
We can now identify any inverse power of r in the multipole expansion, but at the price

of dealing with a double summation. For a charge distribution with axial symmetry (no
¢-variation), only the coefficient g, is nonzero. The relation

2n+1
Yuo(0, ¢) = Py (cos )
47
allows us to simplify (3.94) and obtain
o=, posh) (3.95)
=— % ——q,Py(cos :
drre = rntl 1



where
gn =27 / / p(r', 0" P,(cos 0 )r'"*sin0’ do’ dr'.

As a simple example consider a spherical distribution of charge given by

3
p(r) = —Q30059, r<a.
Ta

This can be viewed as two adjacent hemispheres carrying total charges £Q. Since cosf =
Py (cos ), we compute

a T 3
gn = 271/ / —Q3P1 (cos0")r" P, (cos 0)r'"* sin®’ do’ dr’
0 o Tta

30 a7 e
=2r— Pi(cosB)P,(cosO)sinh db".
maln+3 )

Using the orthogonality relation (E.123) we find

3Q a3 2
T — Sp——.
maln+3 " 2n+1

qn =
Hence the only nonzero coefficient is g; = Qa and

11 0a
<I>(r) = Hr—zQaP](COSO) = WCOSO.

This is the potential of a dipole having moment p = ZQa. Thus we could replace the
sphere with point charges FQ at z = Fa/2 without changing the field for r > a.

Physical interpretation of the polarization vector in a dielectric. We have
used the Maxwell-Minkowski equations to determine the electrostatic potential of a
charge distribution in the presence of a dielectric medium. Alternatively, we can use
the Maxwell-Bofli equations

VxE=0, (3.96)
1

V.-E=—(p—-V-P). (3.97)
€0

Equation (3.96) allows us to define a scalar potential through (3.30). Substitution into
(3.97) gives

1
VIR () = ——[p(r) + pp(r)] (3.98)
0
where pp = —V - P. This has the form of Poisson’s equation (3.50), but with charge

density term p(r) + pp(r). Hence the solution is

1 -V P
O(r) = /,O(r) (r)dvl.
4meg Jy r—1|

To this we must add any potential produced by surface sources such as p;. If there is a
discontinuity in the dielectric region, there is also a surface polarization source pp; = fi-P




according to (3.35). Separating the volume into regions with bounding surfaces S; across
which the permittivity is discontinuous, we may write

o(r) = 1 / p(r) av' + 1 /ps(l’/) ds' +
\% N

" 47me r —r'| 4meg Js [r — 1|
1 —V'-P(r) 1 i’ - P(r')
dv’ ds'|, 3.99
+ Z |:47reo /V r—1r/| + dmey fg’. r —r'| ( )

where i points outward from region i. Using the divergence theorem on the fourth term
and employing (B.42), we obtain

1 / 1 s (1
o(r) = / P 4y f P oy
dmeg Jy r — 1| 4ey Jg Ir — 1|

1 / ! 1 /7
+,Z[4neo/wp(r)'v <|r—r'|> dv]'

Since V'(1/R) = R/R2, the third term is a sum of integrals of the form

1 . R
—_— P@) - —dV.
dme Jy. R2

Comparing this to the second term of (3.92), we see that this integral represents a volume
superposition of dipole terms where P is a volume density of dipole moments.

Thus, a dielectric with permittivity € is equivalent to a volume distribution of dipoles
in free space. No higher-order moments are required, and no zero-order moments are
needed since any net charge is included in p. Note that we have arrived at this conclusion
based only on Maxwell’s equations and the assumption of a linear, isotropic relationship
between D and E. Assuming our macroscopic theory is correct, we are tempted to make
assumptions about the behavior of matter on a microscopic level (e.g., atoms exposed to
fields are polarized and their electron clouds are displaced from their positively charged
nuclei), but this area of science is better studied from the viewpoints of particle physics
and quantum mechanics.

Potential of an azimuthally-symmetric charged spherical surface. In several
of our example problems we shall be interested in evaluating the potential of a charged
spherical surface. When the charge is azimuthally-symmetric, the potential is particularly
simple.

We will need the value of the integral

Fay = - / 1) g (3.100)
S

4 r —r'|

where r = rt describes an arbitrary observation point and r' = af’ identifies the source
point on the surface of the sphere of radius a. The integral is most easily done using the
expansion (E.200) for |r — r'|~! in spherical harmonics. We have

o - Y”m 9’ Z " i I\ vk N o ’ ’ ’
F(r):aZZ Z ﬁéﬂ /_ﬂ/o f©@)HY, (0", ¢")sind' do’ de

n=0 m=—n



where r. = min{r, a} and r. = max{r, a}. Using orthogonality of the exponentials we
find that only the m = 0 terms contribute:

= Vo@.9) [T .
P =2ma Y 20 [ @@, 0 sing de'
n=0 >

2n +1
Y0 =,/ —P,(cos )
Vi

r

nL/ f(O)P,(cosB')sinf db’. (3.101)
> 0

Finally, since

we have

1 oo
F(r) = Eaz ; P,(cos9) r

As an example, suppose f(0) = cosf = Pj(cos6). Then

n
r<

1 > T
F(r) = —a?® Z P, (cos6) / Pi(cos@")P,(cos8’)sin@’ db’.
2 n=0 0

it
The orthogonality of the Legendre polynomials can be used to show that
g I I . I I 2
Pi(cos@")P,(cosB’)sinf dO" = 561,,,
0

hence
Fr) @ o= (3.102)
r) = —COS0U—. .
3 r2

3.2.7 Field produced by a permanently polarized body

Certain materials, called electrets, exhibit polarization in the absence of an external
electric field. A permanently polarized material produces an electric field both internal
and external to the material, hence there must be a charge distribution to support the
fields. We can interpret this charge as being caused by the permanent separation of
atomic charge within the material, but if we are only interested in the macroscopic field
then we need not worry about the microscopic implications of such materials. Instead, we
can use the Maxwell-Boffi equations and find the potential produced by the material by
using (3.99). Thus, the field of an electret with known polarization P occupying volume
region V in free space is dipolar in nature and is given by

1 V' .PW) 1 A-P)
d(r) = / dv’' + jﬁ ——4ds§
\%4 N

4mey r—1r'| 4rey [r—1r'|

where fi points out of the volume region V.
As an example, consider a material sphere of radius a, permanently polarized along
its axis with uniform polarization P(r) = 2Py. We have the equivalent source densities

pp=—V-P=0, ppy=hH-P=F 2Py = Pycosh.

1 / 1 P, o'
@(r) — % IOPS(r) dS/ — %ﬂds/
dey Jg Ir — 1| dey Jg Ir—1'|

Then




The integral takes the form (3.100), hence by (3.102) the solution is

2

a re
®(r) = P03—60 cos@z. (3.103)

If we are interested only in the potential for r > a, we can use the multipole expansion
(3.95) to obtain

[e¢]

1
Z man,,(cosé), r>a
n=0

d(r) =

dmey

where
T
qn =21 / pps(0)a" P, (cos0)a’ sin @’ do’.
0
Substituting for pp; and remembering that cos6 = P;(cos#), we have
gn = 2na”+2Po/ P;(cos8")P,(cosf’)sin’ d6’.
0

Using the orthogonality relation (E.123) we find

2

qn = 27Tan+2P081n o+ 1 .

Therefore the only nonzero coefficient is
47‘[(13 P()
n=—7
and
1 1 4na’P Pya’
o) =—-—= Pi(cosf) = cos 9, r>a.
dregr? 3 3epr?

This is a dipole field, and matches (3.103) as expected.

3.2.8 Potential of a dipole layer

Surface charge layers sometimes occur in bipolar form, such as in the membrane sur-
rounding an animal cell. These can be modeled as a dipole layer consisting of parallel
surface charges of opposite sign.

Consider a surface S located in free space. Parallel to this surface, and a distance A /2
below, is located a surface charge layer of density p;(r) = P;(r). Also parallel to S, but
a distance A /2 above, is a surface charge layer of density p;(r) = —P,(r). We define the
surface dipole moment density Dy as

Dy(r) = A Py(r). (3.104)

Letting the position vector rj point to the surface S we can write the potential (3.61)
produced by the two charge layers as

1 1 1 1
v = / Py — 5 dS - / Pyt dS
deg Jg+ [r —ry — /3| 4ey Jg- [r —ry+ /3|




Figure 3.14: A dipole layer.

We are interested in the case in which the two charge layers collapse onto the surface S,
and wish to compute the potential produced by a given dipole moment density. When
A — 0 we have rj — r’ and may write

o) = I 1 / D,(r) 1 1 s
r) = lim — s
a~04me Js A [ IR—AS|  [R+#5|

where R = r — r’. By the binomial theorem, the limit of the term in brackets can be

written as
1
2 R* + = 2+2R a2
— — .n_
2 2

_ , (AN LA
lim R°+|—=—) —2R-f\ —
A—0 2 2
. 1 R-iA _4 R-f A ., R

= 1lim [ R — R 1 — = A - —.
AS0 R 2 R 2 R3

o) = — /D(r/) R s (3.105)
Cdwey Js R? '

1
2

Thus

where Dy = Dy is the surface vector dipole moment density. The potential of a dipole
layer decreases more rapidly (~ 1/r?) than that of a unipolar charge layer. We saw
similar behavior in the dipole term of the multipole expansion (3.92) for a general charge
distribution.

We can use (3.105) to study the behavior of the potential across a dipole layer. As
we approach the layer from above, the greatest contribution to ® comes from the charge
region immediately beneath the observation point. Assuming that the surface dipole
moment density is continuous beneath the point, we can compute the difference in the
fields across the layer at point r by replacing the arbitrary surface layer by a disk of
constant surface dipole moment density Dy = Dy(r). For simplicity we center the disk
at z = 0 in the xy-plane as shown in Figure 3.15 and compute the potential difference
AV across the layer; i.e., AV = ®(h) — ®(—h) on the disk axis as h — 0. Using (3.105)

/’\/

along with r' = +hZ — p’p’, we obtain
2
: zh—p'p
AV =1 D, —_p'dpd¢' —
Lim |:47_[60 / / [2Dy] - (" + p,2)3/2p p dp

2 —7h — A/ ’ ,
. o' dp' d¢’
47‘[60/ / ,0’2)3/2 prd¢
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Figure 3.15: Auxiliary disk for studying the potential distribution across a dipole layer.

where a is the disk radius. Integration yields

Dy . -2 Dy
AV = 2—%111}) — +2 | =—,
€ h— €0

1+ ()

independent of a. Generalizing this to an arbitrary surface dipole moment density, we
find that the boundary condition on the potential is given by

Dy (r)

€0

®y(r) — Py (r) = (3.106)

where “1” denotes the positive side of the dipole moments and “2” the negative side.
Physically, the potential difference in (3.106) is produced by the line integral of E “in-
ternal” to the dipole layer. Since there is no field internal to a unipolar surface layer, V
is continuous across a surface containing charge p, but having D; = 0.

3.2.9 Behavior of electric charge density near a conducting edge

Sharp corners are often encountered in the application of electrostatics to practical ge-
ometries. The behavior of the charge distribution near these corners must be understood
in order to develop numerical techniques for solving more complicated problems. We can
use a simple model of a corner if we restrict our interest to the region near the edge.
Consider the intersection of two planes as shown in Figure 3.16. The region near the in-
tersection represents the corner we wish to study. We assume that the planes are held at
zero potential and that the charge on the surface is induced by a two-dimensional charge
distribution p(r), or by a potential difference between the edge and another conductor
far removed from the edge.

We can find the potential in the region near the edge by solving Laplace’s equation in
cylindrical coordinates. This problem is studied in Appendix A where the separation of
variables solution is found to be either (A.127) or (A.128). Using (A.128) and enforcing
® =0 at both ¢ = 0 and ¢ = B, we obtain the null solution. Hence the solution must
take the form (A.127):

®(p, ¢) = [Ay sin(kyp) + By cos(ksp)lla,p ™ + b,p"]. (3.107)
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Figure 3.16: A conducting edge.

Since the origin is included we cannot have negative powers of p and must put a, = 0.
The boundary condition ®(p,0) = 0 requires By = 0. The condition ®(p, f) = 0 then
requires sin(kgf) = 0, which holds only if kg = nm/8, n =1,2,.... The general solution
for the potential near the edge is therefore

N
®(p,$) = ) Aysin <%¢> p"/ (3.108)
n=I

where the constants A, depend on the excitation source or system of conductors. (Note
that if the corner is held at potential Vy # 0, we must merely add Vy to the solution.)
The charge on the conducting surfaces can be computed from the boundary condition
on normal D. Using (3.30) we have

19 & (nn ) N nw nmw
Ej=———Y Aysin|—¢ ) p"F =—-) A,— cos (—q&) pT /A=
T pag o B ; B B

hence
N ni
ps(x) = —e ZAan(nn/ﬁ)*l
n=1

on the surface at ¢ = 0. Near the edge, at small values of x, the variation of p, is dom-
inated by the lowest power of x. (Here we ignore those special excitation arrangements
that produce Ay =0.) Thus

ps (x) ~ xTIOL

The behavior of the charge clearly depends on the wedge angle 8. For a sharp edge
(half plane) we put B = 27 and find that the field varies as x~!/2. This square-root edge
singularity is very common on thin plates, fins, etc., and means that charge tends to
accumulate near the edge of a flat conducting surface. For a right-angle corner where
B = 3m/2, there is the somewhat weaker singularity x~!/3. When B = m, the two
surfaces fold out into an infinite plane and the charge, not surprisingly, is invariant with
x to lowest order near the folding line. When B8 < 7 the corner becomes interior and we
find that the charge density varies with a positive power of distance from the edge. For
very sharp interior angles the power is large, meaning that little charge accumulates on
the inner surfaces near an interior corner.



3.2.10 Solution to Laplace’s equation for bodies immersed in an im-
pressed field

An important class of problems is based on the idea of placing a body into an existing
electric field, assuming that the field arises from sources so remote that the introduction
of the body does not alter the original field. The pre-existing field is often referred to as
the applied or impressed field, and the solution external to the body is usually formulated
as the sum of the applied field and a secondary or scattered field that satisfies Laplace’s
equation. This total field differs from the applied field, and must satisfy the appropriate
boundary condition on the body. If the body is a conductor then the total potential must
be constant everywhere on the boundary surface. If the body is a solid homogeneous
dielectric then the total potential field must be continuous across the boundary.

As an example, consider a dielectric sphere of permittivity € and radius a, centered at
the origin and immersed in a constant electric field Eq(r) = E¢Z. By (3.30) the applied
potential field is @¢(r) = —Eogz = —Eor cos0 (to within a constant). Outside the sphere
(r > a) we write the total potential field as

Dy (r) = Po(r) + P°(r)

where ®*(r) is the secondary or scattered potential. Since ®° must satisfy Laplace’s
equation, we can write it as a separation of variables solution (§ A.4). By azimuthal
symmetry the potential has an r-dependence as in (A.146), and a 6-dependence as in
(A.142) with By = 0 and m = 0. Thus ®° has a representation identical to (A.147),
except that we cannot use terms that are unbounded as r — 0o. We therefore use

o0
d(r, 0) = Z B,r~ "tV P, (cos 0). (3.109)
n=0
The potential inside the sphere also obeys Laplace’s equation, so we can use the same
form (A.147) while discarding terms unbounded at the origin. Thus

D1(r,0) = Y _ A,r" Py(cos ) (3.110)
n=0

for r < a. To find the constants A, and B, we apply (3.36) and (3.37) to the total field.
Application of (3.36) at r = a gives

o0 o0
—Egacost) + Y Bya~""VP,(cos) =Y A,a" P,(cos ).
n=0 n=0

Multiplying through by P,,(cos6)sin6, integrating from 6 = 0 to § = 7, and using the
orthogonality relationship (E.123), we obtain

—Eopa+a ’B) = Aja, (3.111)
B,a "tV = Aa", n#1, (3.112)
where we have used Pj(cos6) = cos6. Next, since p; = 0, equation (3.37) requires that

9P, (r) P, (r)
€1 =€)
ar ar




at r = a. This gives

o0 o0
—egEpcosf + € Z[—(n + 1)B,la " 2P,(cosH) = € Z[nAn]a”_1 P,(cos0).
n=0 n=0

By orthogonality of the Legendre functions we have
—€0Ey — 2¢0Bia~® = €A, (3.113)
—eo(n+ DB,a™" 2 =enA,d™', n#l. (3.114)

Equations (3.112) and (3.114) cannot hold simultaneously unless A, = B, =0 for n # 1.
Solving (3.111) and (3.113) we have

A] = —EO 360 s B| = E0(13 €= .
€ + 2¢ € + 2¢
Hence
®,(r) = —E, reosf = —Egg—0 (3.115)
€ + 2¢g € + 2¢g
a’ € — ¢
®,(r) = —Egrcost + Eor_2 <7 2e cos 6. (3.116)
Interestingly, the electric field
E/() = —V,(r) = 2Ey—
€ + 2¢p

inside the sphere is constant with position and is aligned with the applied external field.
However, it is weaker than the applied field since € > ¢p. To explain this, we compute
the polarization charge within and on the sphere. Using D = €E = ¢oE + P we have

360
€+2¢

The volume polarization charge density —V - P is zero, while the polarization surface
charge density is

Py =1i(e — €)Ey

(3.117)

360
€ + 2¢

pps =1-P= (e —¢€y)Ey cos .

Hence the secondary electric field can be attributed to an induced surface polarization
charge, and is in a direction opposing the applied field. According to the Maxwell-Boffi
viewpoint we should be able to replace the sphere by the surface polarization charge
immersed in free space, and use the formula (3.61) to reproduce (3.115) and (3.116).
This is left as an exercise for the reader.

3.3 Magnetostatics

The large-scale forms of the magnetostatic field equations are

%H-dl: /J-dS, (3.118)
r S

%B -dS =0, (3.119)
N



while the point forms are

V x H(r) = J(r), (3.120)
V-B(r) = 0. (3.121)

Note the interesting dichotomy between the electrostatic field equations and the magne-
tostatic field equations. Whereas the electrostatic field exhibits zero curl and a divergence
proportional to the source (charge), the magnetostatic field has zero divergence and a
curl proportional to the source (current). Because the vector relationship between the
magnetostatic field and its source is of a more complicated nature than the scalar rela-
tionship between the electrostatic field and its source, more effort is required to develop a
strong understanding of magnetic phenomena. Also, it must always be remembered that
although the equations describing the electrostatic and magnetostatic field sets decou-
ple, the phenomena themselves remain linked. Since current is moving charge, electrical
phenomena are associated with the establishment of the current that supports a magne-
tostatic field. We know, for example, that in order to have current in a wire an electric
field must be present to drive electrons through the wire.

The magnetic scalar potential. Under certain conditions the equations of magne-
tostatics have the same form as those of electrostatics. If J = 0 in a region V, the
magnetostatic equations are

V x H(r) = 0, (3.122)
V.B() = 0; (3.123)

compare with (3.5)—(3.6) when p = 0. Using (3.122) we can define a magnetic scalar
potential ®,,:

H=-Vo,,. (3.124)

The negative sign is chosen for consistency with (3.30). We can then define a magnetic
potential difference between two points as

P, Py Py
Vo =— [ H-dl= —f V(1) - dl = / AP, (1) = By (12) — By (7).
P P

Py |
Unlike the electrostatic potential difference, V,,5; is not unique. Consider Figure 3.17,
which shows a plane passing through the cross-section of a wire carrying total current I.
Although there is no current within the region V (external to the wire), equation (3.118)
still gives
H-dl—- | H-dl=1.
r, I
Thus
H-dl= | H-dl+1,
Iy s

and the integral fr H - dl is not path-independent. However,

H-dl= [ H-dl
r, I
since no current passes through the surface bounded by I' — I';. So we can artificially
impose uniqueness by demanding that no path cross a cut such as that indicated by the
line L in the figure.



Figure 3.17: Magnetic potential.

Because V,,5; is not unique, the field H is nonconservative. In point form this is
shown by the fact that V x H is not identically zero. We are not too concerned about
energy-related implications of the nonconservative nature of H; the electric point charge
has no magnetic analogue that might fail to conserve potential energy if moved around
in a magnetic field.

Assuming a linear, isotropic region where B(r) = u(r)H(r), we can substitute (3.124)
into (3.123) and expand to obtain

Vu(r) - Vo, (r) + n(r) V2o, (r) = 0.
For a homogeneous medium this reduces to Laplace’s equation
Vo, = 0.
We can also obtain an analogue to Poisson’s equation of electrostatics if we use
B=pH+M) =—uyV®o, + noM
in (3.123); we have
V2, = —py (3.125)
where
pm =—-V-M

is called the equivalent magnetization charge density. This form can be used to describe
fields of permanent magnets in the absence of J. Comparison with (3.98) shows that py
is analogous to the polarization charge pp.

Since ®,, obeys Poisson’s equation, the details regarding uniqueness and the construc-
tion of solutions follow from those of the electrostatic case. If we include the possibility of
a surface density of magnetization charge, then the integral solution for ®,, in unbounded
space is

1 / 1 /
/ Pu®) oy Pus) g (3.126)
|4

d, () =— —
n(©) 47 J, |r — 1| 4 Jg Ir — 1|
Here pys, the surface density of magnetization charge, is identified as fi - M in the

boundary condition (3.152).



3.3.1 The magnetic vector potential

Although the magnetic scalar potential is useful for describing fields of permanent
magnets and for solving certain boundary value problems, it does not include the effects of
source current. A second type of potential function, called the magnetic vector potential,
can be used with complete generality to describe the magnetostatic field. Because V-B =
0, we can write by (B.49)

B(r) = V x A(r) (3.127)

where A is the vector potential. Now A is not determined by (3.127) alone, since the
gradient of any scalar field can be added to A without changing the value of V x A.
Such “gauge transformations” are discussed in Chapter 5, where we find that V - A must
also be specified for uniqueness of A.

The vector potential can be used to develop a simple formula for the magnetic flux
passing through an open surface S:

\Ilm:/B~dS:/(VxA)~dS:y§A~dl, (3.128)
S S r

where T" is the contour bounding S.
In the linear isotropic case where B = uH we can find a partial differential equation
for A by substituting (3.127) into (3.120). Using (B.43) we have

V x [LV X A(r)] = J(r),
u(r)
hence

LV X [VxAM@M]—-[VXAI®]xV (L> = J(r).
w(r) u(r)

In a homogeneous region we have
Vx(VxA)=unJ (3.129)
or
V(V-A)— VA =ul (3.130)

by (B.47). As mentioned above we must eventually specify V -A. Although the choice is
arbitrary, certain selections make the computation of A both mathematically tractable
and physically meaningful. The “Coulomb gauge condition” V - A = 0 reduces (3.130)
to

VA = —pJ. (3.131)

The vector potential concept can also be applied to the Maxwell-Boffi magnetostatic
equations

VxB=uJ+V xM), (3.132)
V.B=0. (3.133)

By (3.133) we may still define A through (3.127). Substituting this into (3.132) we have,
under the Coulomb gauge,

V2A = —polJ + Jul (3.134)

where J) = V x M is the magnetization current density.



Figure 3.18: Circular loop of wire.

The differential equations (3.131) and (3.134) are vector versions of Poisson’s equation,
and may be solved quite easily for unbounded space by decomposing the vector source
into rectangular components. For instance, dotting (3.131) with % we find that

VA, = —pul,.

This scalar version of Poisson’s equation has solution

Ax(l‘) _ i/ Jx(r) dV/
4 Jy Ir — 1|

in unbounded space. Repeating this for each component and assembling the results, we
obtain the solution for the vector potential in an unbounded homogeneous medium:

/
Ar) =2 / Iy, (3.135)
47 v Ir—r|
Any surface sources can be easily included through a surface integral:
" J(I'/) ’ 125 Js (I'/) ’
A av' + — ds’. 3.136
) = 471,/V|r—r/| +471 slr—r| ( )

In unbounded free space containing materials represented by M, we have

A / J /
_ Mo / J(I‘)+JM(1‘) /Js(r)+JMs(r) v/ (3.137)
[r—1'| lr—1r'
where Jy; = —i x M is the surface density of magnetization current as described in

(3.153). It may be verified directly from (3.137) that V-A = 0.

Field of a circular loop. Consider a circular loop of line current of radius a in
unbounded space (Figure 3.18). Using J(r') = I1¢'8(z))d(p’ — a) and noting that r =
PP+ z2 and ¥ = ap/, we can write (3.136) as
2 /
a7 ad¢
A(r) = / g
4t Jo 7 [p2 +a? + 22 — 2ap cos(d — ¢)]




Because ¢ = —&cos ¢’ + §sin¢’ we find that

1 2 /
Ar) = qu/ cos ¢ g
[0? + a® + 22 — 2ap cos ¢'|

We put the integral into standard form by setting ¢’ = 7 — 2x:

1 /2 1 —25in’
A =22 a¢/ e 2 2dx.

4t " [02 +a® + 22+ 2ap(1 — 2sin* x)]

Letting
4ap
2 2, 2
=, = (a+p)* +2°
@+p7+2 e

we have

A()__,u,_laé5 /’ 1 —2sin®x

[1— [1 — k2 sin® x]1/2 2 x]1/2

Then, since

1 —2sin’x K2 -2 oy 5
= — ki 2y = 2 12,
(- Ksin2x]2 k2 [1—k*sin®x]™"/* + k2[ — K2sinx]
we have
pl 1, s 2
AW =7 o (1= 38 ) Ko — B |
Here
/2 du /2
K(kz) = f T E(kz) — / (11— 2 sin2 u]1/2 du.
o [1—k%sin”u]V/ )

are complete elliptic integrals of the first and second kinds, respectively.

(3.138)

We have k? < 1 when the observation point is far from the loop (r* = p* + z* > a?).

Using the expansions [47]
9

T 1
K (k%) = 3 [1 + Zk2+

64 4 64

in (3.138) and keeping the first nonzero term, we find that

Ar) ~ oL 2y sin6.

4rr?

Defining the magnetic dipole moment of the loop as

m = 2/ma?,
we can write (3.139) as
u mxf
A) = —
® 4 r?

_k4_|_...:|, E(k2)——[1—lk—ik4—---j|,

(3.139)

(3.140)

Generalization to an arbitrarily-oriented circular loop with center located at ry is accom-
plished by writing m = il A where A is the loop area and f is normal to the loop in the

right-hand sense. Then

W r—1Iy
Ar)=—mx ———.
® 47 Ir —ro|?



We shall find, upon investigating the general multipole expansion of A below, that this
holds for any planar loop.

The magnetic field of the loop can be found by direct application of (3.127). For the
case r2 > a® we take the curl of (3.139) and find that
*
4r
Comparison with (3.93) shows why we often refer to a small loop as a magnetic dipole.
But (3.141) is approximate, and since there are no magnetic monopoles we cannot con-
struct an exact magnetic analogue to the electric dipole. On the other hand, we shall
find below that the multipole expansion of a finite-extent steady current begins with the
dipole term (since the current must form closed loops). We may regard small loops as
the elemental units of steady current from which all other currents may be constructed.

m ~ L
B(r) = — (£2cos0 + 6 sin6). (3.141)
e

3.3.2 Multipole expansion

It is possible to derive a general multipole expansion for A analogous to (3.94). But
the vector nature of A requires that we use vector spherical harmonics, hence the result
is far more complicated than (3.94). A simpler approach yields the first few terms and
requires only the Taylor expansion of 1/R. Consider a steady current localized near the
origin and contained within a sphere of radius r,,. We substitute the expansion (3.89)
into (3.135) to obtain

1
A(r) = %/ J) [E
\%4

which we view as

1 1 1
/~V/— _ /.V/z_
+(r )R +2(r )R

4. ] dv',  (3.142)
r=0

r'=0 r'=0

AD®) =A@ +AD @) + AP @) + -

The first term is merely

3
A© :L/ Nay = P A,-/J,- NdV'
(®) drcr VJ(r) drr ;X v )
where (x, y, z) = (x1, X2, x3). However, by (3.26) each of the integrals is zero and we have
A(r) = 0;

the leading term in the multipole expansion of A for a general steady current distribution
vanishes.
Using (3.91) we can write the second term as

3 3
0 M / L T o . Iy ond ’
A (r)_m/‘/J(r);xlxidV = 4nr32x12x,fvxilj(r)dv. (3.143)

j=1 i=1

By adding the null relation (3.28) we can write

/xl/]jdV/=/xl/deV/—i-/[xl’Jj+x;J,]dV’=2/x;deV’+/x;J,dV/
Vv 14 Vv 14 14
or

I / 1 / ’ /7
31V’ =5 | [xid; = 2 51dv'. (3.144)
\4 Vv



Figure 3.19: A planar wire loop.

By this and (3.143) the second term in the multipole expansion is

3 3

l'l' l 2 ! 7 7 M 1 / / /

AV () = WE/V § %, § xi[x[J; — X} J;1dV =—4m3§/er[r x Ja)1dV'.
j=1 =l

Defining the dipole moment vector

1
m = —/ rx J(r)dv (3.145)
2 )y
we have
I 1
AV = ) Lmxv-. 3.146
® 47Tm>< r2 47th r ( )

This is the dipole moment potential for the steady current J. Since steady currents of
finite extent consist of loops, the dipole component is generally the first nonzero term
in the expansion of A. Higher-order components may be calculated, but extension of
(3.142) beyond the dipole term is quite tedious and will not be attempted.

As an example let us compute the dipole moment of the planar but otherwise arbitrary
loop shown in Figure 3.19. Specializing (3.145) for a line current we have

I
m:—frxdl.
2 Jr

Examining Figure 3.19, we see that
! dl=ndS
—rxdl=1
2

where dS is the area of the sector swept out by r as it moves along dl, and i is the
normal to the loop in the right-hand sense. Thus

m=hIA (3.147)

where A is the area of the loop.



Physical interpretation of M in a magnetic material. In (3.137) we presented
an expression for the vector potential produced by a magnetized material in terms of
equivalent magnetization surface and volume currents. Suppose a magnetized medium
is separated into volume regions with bounding surfaces across which the permeability

is discontinuous. With Jy; = V x M and Jy; = —fi x M we obtain
J/ /
A(r) = Mo/ IOy o [ 30 e
4 Jy Ir —1'| 4 Jg Ir — 1|
V' x M(r') _, —1' x M) |,
— —dV —=dSs' . 3.148
+,Z4n Uv r—r] +/si r—r] (3.148)

Here f points outward from region V;. Using the curl theorem on the fourth term and
employing the vector identity (B.43), we have

Mo/ J(r') av' + 2o J; ()
1%

47 r —r'| 471 S|r—r/|

[ /M( ) x v’<| — ’I> dV/:|. (3.149)

But V/(1/R) = R/R?, hence the third term is a sum of integrals of the form

R
ﬂ/ M) x — dV'.
T Vi R?

Comparison with (3.146) shows that this integral represents a volume superposition of
dipole moments where M is a volume density of magnetic dipole moments. Hence a
magnetic material with permeability u is equivalent to a volume distribution of magnetic
dipoles in free space. As with our interpretation of the polarization vector in a dielectric,
we base this conclusion only on Maxwell’s equations and the assumption of a linear,
isotropic relationship between B and H.

ds’ +

Ar) =

3.3.3 Boundary conditions for the magnetostatic field

The boundary conditions found for the dynamic magnetic field remain valid in the
magnetostatic case. Hence

0 x () —Hy) =J; (3.150)
and
fi; - (B —By) =0, (3.151)

where fij; points into region 1 from region 2. Since the magnetostatic curl and divergence
equations are independent, so are the boundary conditions (3.150) and (3.151). We can
also write (3.151) in terms of equivalent sources by (3.118):

i - (Hy — M) = puyst + pus2s (3.152)

where pyy = i - M is called the equivalent magnetization surface charge density. Here fi
points outward from the material body.
For a linear, isotropic material described by B = uH, equation (3.150) becomes



With (3.118) we can also write (3.150) as
fip X By —Bo) = po (Js + st + Jus2) (3.153)

where Jy; = —1i x M is the equivalent magnetization surface current density.
We may also write the boundary conditions in terms of the scalar or vector potential.
Using H= —V®,,, we can write (3.150) as

®,01(F) = Dy (1) (3.154)

provided that the surface current J, = 0. As was the case with (3.36), the possibility of
an additive constant here is generally ignored. To write (3.151) in terms of ®,, we first
note that B/pg — M = —V®,,; substitution into (3.151) gives

oD, 0D,

on on

where the normal derivative is taken in the direction of fij;. For a linear isotropic material
where B = uH we have

= —PMs1 — PMs2 (3155)

8cbml _ 8‘13,”2
231 an = M2 o

Note that (3.154) and (3.156) are independent.

Boundary conditions on A may be derived using the approach of § 2.8.2. Consider
Figure 2.6. Here the surface may carry either an electric surface current J; or an equiv-
alent magnetization current Jy, and thus may be a surface of discontinuity between
differing magnetic media. If we integrate V x A over the volume regions V; and V, and
add the results we find that

/VxAdV+/VxAdV:/ BdVv.
Vi V2 Vi+V,

(3.156)

By the curl theorem

/ ﬁXAdS—‘r/ —ﬁloXAldS—‘r/ —ﬁzoXAzdS:/ BdV
NE S0 S20 Vi+Va

where A is the field on the surface S;o and A, is the field on S>y. As § — 0 the surfaces S;
and S, combine to give §. Also Sj9 and S, coincide, as do the normals fijg = —fipg = fiys.
Thus

/(ﬁxA)dS—/BdV:/ npp x (A —Ay)dS. (3.157)
N 14 Sio

Now let us integrate over the entire volume region V including the surface of discontinuity.
This gives

/(ﬁxA)dS—deV:O,
s v

and for agreement with (3.157) we must have

i X (A —Ay) =0. (3.158)
A similar development shows that

iy - (A —Ap) =0. (3.159)

Therefore A is continuous across a surface carrying electric or magnetization current.



3.3.4 Uniqueness of the magnetostatic field

Because the uniqueness conditions established for the dynamic field do not apply to
magnetostatics, we begin with the magnetostatic field equations. Consider a region of
space V bounded by a surface S. There may be source currents and magnetic materials
both inside and outside V. Assume (B, H;) and (B,, H;) are solutions to the magne-
tostatic field equations with source J. We seek conditions under which B; = B, and
H, = H,.

The difference field Hy = H, — Hy obeys V x Hy = 0. Using (B.44) we examine the
quantity

V- (Ag x Hp) =Hp - (V x Ag) —Ap - (V x Hp) =Hp - (V x Ay)

where Ag is defined by B = B, — By = V x Ag = V x (A; — A;). Integrating over V
we obtain

%(AoXHo)dSZ/HO(VXAQ)dVZ/HoBodV
s 14 14
Then, since (Ag x Hp) - i = —Ag - (i x Hyp), we have
—%AO'(ﬁxHo)dSz'/H(yBodV. (3.160)
N 14

If Ag =0 or i x Hy = 0 everywhere on S, or Ag = 0 on part of S and fi x Hy = 0 on the
remainder, then

f Hy - BydS = 0. (3.161)
\%4

So Hy = 0 or By = 0 by arbitrariness of V. Assuming H and B are linked by the
constitutive relations, we have H; = H, and B; = B,. The fields within V are unique
provided that A, the tangential component of H, or some combination of the two, is
specified over the bounding surface S.

One other condition will cause the left-hand side of (3.160) to vanish. If S recedes to
infinity then, provided that the potential functions vanish sufficiently fast, the condition
(3.161) still holds and uniqueness is guaranteed. Equation (3.135) shows that A ~ 1/r
as r — oo, hence B,H ~ 1/r?. So uniqueness is ensured by the specification of J in
unbounded space.

3.3.5 Integral solution for the vector potential

We have used the scalar Green’s theorem to find a solution for the electrostatic poten-
tial within a region V in terms of the source charge in V and the values of the potential
and its normal derivative on the boundary surface S. Analogously, we may find A within
V in terms of the source current in V and the values of A and its derivatives on S. The
vector relationship between B and A complicates the derivation somewhat, requiring
Green’s second identity for vector fields.

Let P and Q be continuous with continuous first and second derivatives throughout
V and on S. The divergence theorem shows that

/V~[P><(VxQ)]dV:/[Px(VxQ)]-dS.
\4 S



By virtue of (B.44) we have
/V[(VXQ)-(VXP)—P~(V x{VxQ})]dV:/S[Px (V x Q)] - dS.
We now interchange P and Q and subtract the result from the above, obtaining
[V[Q~(V x{VxP}) —P-(Vx{VxQhldV =
/S[PX(VXQ)—QX(VXP)]~dS. (3.162)

Note that fi points outward from V. This is Green’s second identity for vector fields.
Now assume that V contains a magnetic material of uniform permeability © and set

P=A(), Q= %,

in (3.162) written in terms of primed coordinates. Here ¢ is a constant vector, nonzero
but otherwise arbitrary. We first examine the volume integral terms. Note that

V' x (V' xQ) =V x (v’ x %) = _v? (%) TV [v’ : (%)]
By (B.162) and (3.58) we have

1 1 1 1
v (%) - Ev/zc +ev? (E) 12 (V/E : v) c=cv? <E> — —c4nd(r — 1),

hence
4 !’ / 4 !/ C
P [V x (V x Q) =drc-AS(r—r) +A-V [v : (E>]'
Since V - A = 0 the second term on the right-hand side can be rewritten using (B.42):
V.-WA) =A-(VY)+yV A=A (V).
Thus

P-[V’x(V’xQ)]:4nc~A8(r—r’)+V/-[A{oV’(%)H,

where we have again used (B.42). The other volume integral term can be found by
substituting from (3.129):

1
Q- [V x(VxP)]= Hpe J).
Next we investigate the surface integral terms. Consider

ﬁ/-[Px(v/xQ)]zﬁ’.{Ax[vl’x(%)]} |
s ()
e ()]



This can be put in slightly different form by the use of (B.8). Note that

AxB)-(CxD)=A:[Bx (CxD)]
=(CxD)-(AxB)
=C-[D x (A x B)],

hence
1
ﬁ’-[Px (V’XQ)] =—c- [V’(E) X (ﬁ/xA)].
The other surface term is given by
ﬁ/.[Qx(v/xP)]:ﬁ/-[£ ><(V/><A)]=ﬁ’-(£ xB):—f-(ﬁ/xB)
R R R ’
We can now substitute each of the terms into (3.162) and obtain
J(r/) / / / I A/ / ! 1 /
uc - ——dV' —4nc- | A@PHS(r—r)dV' —c- P -AX)IV' | =) dS
v R v s R
! ] A/ / ’ 1 A/ / ’
=——c- OV |=)x xATX)]dS +c- P =i’ x Br')dS'.
s R s R
Since ¢ is arbitrary we can remove the dot products to obtain a vector equation. Then

17 J(r,) , 1 N / / 1
A(r):E/;/ R dV—Eﬁ{[l‘l XA(I‘)]XV(E)-F

1 A/ / A/ / ! l !
+ i X B() + A AV (§>} ds’. (3.163)

We have expressed A in a closed region in terms of the sources within the region and
the values of A and B on the surface. While uniqueness requires specification of either
A or i x B on S, the expression (3.163) includes both quantities. This is similar to (3.56)
for electrostatic fields, which required both the scalar potential and its normal derivative.

The reader may be troubled by the fact that we require P and Q to be somewhat well
behaved, then proceed to involve the singular function ¢/R and integrate over the singu-
larity. We choose this approach to simplify the presentation; a more rigorous approach
which excludes the singular point with a small sphere also gives (3.163). This approach
was used in § 3.2.4 to establish (3.58). The interested reader should see Stratton [187]
for details on the application of this technique to obtain (3.163).

It is interesting to note that as § — oo the surface integral vanishes since A ~ 1/r
and B ~ 1/r2, and we recover (3.135). Moreover, (3.163) returns the null result when
evaluated at points outside S (see Stratton [187]). We shall see this again when studying
the integral solutions for electrodynamic fields in § 6.1.3.

Finally, with
Q=V :
= — | xec
R

we can find an integral expression for B within an enclosed region, representing a gen-
eralization of the Biot—Savart law (Problem 3.20). However, this case will be covered in
the more general development of § 6.1.1.



The Biot—Savart law. We can obtain an expression for B in unbounded space by
performing the curl operation directly on the vector potential:

/ J
o[ ) dv’:i/vx [CONp
4 Jy v —1/| 4 Jy r —1r/|

Using (B.43) and V x J(r') = 0, we have

B(r) = V x

% 1 )
B(r)=——/JxV av'.
4 Jy r — 1|
The Biot-Savart law
n LR
B(r) = — —dV .164
™) 4n/VJ(r)x = (3.164)

follows from (3.57).
For the case of a line current we can replace JdV' by Idl' and obtain

n , R
Br)=71— [ dI' x —. 3.165
0 =14 [ arx g (3.165)
For an infinitely long line current on the z-axis we have

m OOA 2z—2)+pp ,oaoul
Br)=1— d7 = p—. 3.166
® 47 / 2 [(z — )% + p?)/? ¢ ¢2rr,o ( )

This same result follows from taking V x A after direct computation of A, or from direct
application of the large-scale form of Ampere’s law.

3.3.6 Force and energy

Ampere force on a system of currents. If a steady current J(r) occupying a region
V is exposed to a magnetic field, the force on the moving charge is given by the Lorentz
force law

dF(r) = J(r) x B(r). (3.167)

This can be integrated to give the total force on the current distribution:
F = / J(@) x B(r)dV. (3.168)
14

It is apparent that the charge flow comprising a steady current must be constrained in
some way, or the Lorentz force will accelerate the charge and destroy the steady nature
of the current. This constraint is often provided by a conducting wire.

As an example, consider an infinitely long wire of circular cross-section centered on
the z-axis in free space. If the wire carries a total current I uniformly distributed over
the cross-section, then within the wire J = 2I/(wa?) where a is the wire radius. The
resulting field can be found through direct integration using (3.164), or by the use of
symmetry and either (3.118) or (3.120). Since B(r) = ¢By(p), equation (3.118) shows
that

2 ol 2 <
/ B¢(p)pd¢={“”” h=
0

ol, o> a.



Thus

o 2
B(r) = {qbuolp/ZM . p=a, (3.169)

durol2np,  p=>a.

The force density within the wire,

ol?p
dF JXB__p2 2a4a

is directed inward and tends to compress the wire. Integration over the wire volume gives

F = 0 because
2
/ pdo =0;
0

however, a section of the wire may experience a net force. For instance, we can compute
the force on one half of the wire split down its axis by using p = Xcos¢ + §ysin¢g to

obtain F, = 0 and
wol?
Ry dz P dp smqbdgb—

The force per unit length

F /Lolz
oy 3.170
I~ Y3n2, (3.170)

is directed toward the other half as expected.
If the wire takes the form of a loop carrying current I, then (3.167) becomes

dF(r) = Idl(r) x B(r) (3.171)

and the total force acting is
F=1 % dl(r) x B(r).
r

We can write the force on J in terms of the current producing B. Assuming this latter
current J' occupies region V', the Biot—Savart law (3.164) yields

/

F= ifJ(r) x | Jar) x dv'dv. (3.172)
ar Jy v

| /|3
This can be specialized to describe the force between line currents. Assume current 1,

following a path I'y along the direction dl, carries current I, while current 2, following
path I'; along the direction dl, carries current I,. Then the force on current 1 is

, r—r
Fl_]l 2—%%dlx<dl /3>
rJr, Ir —r'|

This equation, known as Ampere’s force law, can be written in a better form for compu-
tational purposes. We use (B.7) and V(1/R) from (3.57):

1 _ /
F, =L dl’jﬁ d.v ( , ) j£ @y =2 (317)
4z Jr, r, Ir —r'| . Jr, 3

The first term involves an integral of a perfect differential about a closed path, producing
a null result. Thus

_r/
F,=—11 2— (@l di)—— . (3.174)
T Jr; [r —r|
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Ldl r’

dr2 dr2

Figure 3.20: Parallel, current carrying wires.

As a simple example, consider parallel wires separated by a distance d (Figure 3.20).
In this case

© ¥ —dX+ -z, w A/
Fi=-1L— d7' | dz=1L1L—— d
: P / |:/oo [d? + (z — )2 Z} LEARS Y]

so the force per unit length is
Fy 2
— =X L,—. 3.175
I 2 0nd (3.175)

The force is attractive if I}, > 0 (i.e., if the currents flow in the same direction).

Maxwell’s stress tensor. The magnetostatic version of the stress tensor can be ob-
tained from (2.288) by setting E=D = 0:

_ 1 _
T, = ;B HI-BH. (3.176)

The total magnetic force on the current in a region V surrounded by surface S is given

by
sz—?ng-dS=ffde
S 1%

where f,, = J x B is the magnetic force volume density.

Let us compute the force between two parallel wires carrying identical currents in free
space (let Iy = I, = I in Figure 3.20) and compare the result with (3.175). The force
on the wire at x = —d/2 can be computed by integrating T,, - i over the yz-plane with
i = X. Using (3.166) we see that in this plane the total magnetic field is

B = —supl— 2
= Thon y2+d?/4°
Therefore
B.. ._ B I? y? .



and by integration

F —IZA/d/miyz d 12—’““/[1
= X = X .
1= Hogne o+ a4ar Y T 2nd ¢

The resulting force per unit length agrees with (3.175) when I} = I, = I.

Torque in a magnetostatic field. The torque exerted on a current-carrying conduc-
tor immersed in a magnetic field plays an important role in many engineering applica-
tions. If a rigid body is exposed to a force field of volume density dF(r), the torque on
that body about a certain origin is given by
Tz/rxdFdV (3.177)
v

where integration is performed over the body and r extends from the origin of torque.
If the force arises from the interaction of a current with a magnetostatic field, then
dF =J x B and

T=/rx(JxB)dV. (3.178)
v
For a line current we can replace JdV with Idl to obtain
T:I/rx(dle).
r
If B is uniform then by (B.7) we have
T= / [J(r-B) —B(r-J)]dV.
14

The second term can be written as

3
/B(r-J)dV:BZ/x,J,-dV:O
v i=1 YV

where (x1, x2, x3) = (x, y, z), and where we have employed (3.27). Thus

3 3 3 3
TZ/J(TB)dVZZﬁ,/ J_,'inBidVZZB,‘Zﬁj/ ij,‘dv.
v j=1 Vo=t i=1 j=1 v

We can replace the integral using (3.144) to get

1 [, © 1
Tz—/ E X; E B,-[xiJj—ij,-]de——/ Bx(xJdV.
2 V=1 =1 2y

Since B is uniform we have, by (3.145),
T=mxB (3.179)
where m is the dipole moment. For a planar loop we can use (3.147) to obtain

T =171AfH x B.



Joule’s law. In § 2.9.5 we showed that when a moving charge interacts with an electric
field in a volume region V, energy is transferred between the field and the charge. If the
source of that energy is outside V, the energy is carried into V as an energy flux over the
boundary surface S. The energy balance described by Poynting’s theorem (3.299) also
holds for static fields supported by steady currents: we must simply recognize that we
have no time-rate of change of stored energy. Thus

—/J~EdV:¢(ExH)~dS. (3.180)
1% s
The term
P:—/J~EdV (3.181)
v

describes the rate at which energy is supplied to the fields by the current within V; we
have P > 0 if there are sources within V that result in energy transferred to the fields,
and P < 0 if there is energy transferred to the currents. The latter case occurs when
there are conducting materials in V. Within these conductors

P = —/ oE-EdV. (3.182)
\%4

Here P < 0; energy is transferred from the fields to the currents, and from the currents
into heat (i.e., into lattice vibrations via collisions). Equation (3.182) is called Joule’s
law, and the transfer of energy from the fields into heat is Joule heating. Joule’s law is
the power relationship for a conducting material.

An important example involves a straight section of conducting wire having circular
cross-section. Assume a total current I is uniformly distributed over the cross-section
of the wire, and that the wire is centered on the z-axis and extends between the planes
7 =0, L. Let the potential difference between the ends be V. Using (3.169) we see that
at the surface of the wire

| vV
H= ¢2na’ E=2 L’
The corresponding Poynting flux E x H is —p-directed, implying that energy flows into
wire volume through the curved side surface. We can verify (3.180):

L 2 a I Vv
—/J-EdV:f f / 21— -Z—pdpdpdz = -1V,
% o Jo Jo ma® L

2w L 1V
f(ExH)-dS:/ / <—p >~i)ad¢dz=—1V.
s 0 0 2mal

Stored magnetic energy. We have shown that the energy stored in a static charge
distribution may be regarded as the “assembly energy” required to bring charges from
infinity against the Coulomb force. By proceeding very slowly with this assembly, we are
able to avoid any complications resulting from the motion of the charges.

Similarly, we may equate the energy stored in a steady current distribution to the en-
ergy required for its assembly from current filaments® brought in from infinity. However,
the calculation of assembly energy is more complicated in this case: moving a current

%Recall that a flux tube of a vector field is bounded by streamlines of the field. A current filament is a
flux tube of current having vanishingly small, but nonzero, cross-section.
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Figure 3.21: Calculation of work to move a filamentary loop in an applied magnetic field.

filament into the vicinity of existing filaments changes the total magnetic flux passing
through the existing loops, regardless of how slowly we assemble the filaments. As de-
scribed by Faraday’s law, this change in flux must be associated with an induced emf,
which will tend to change the current flowing in the filament (and any existing filaments)
unless energy is expended to keep the current constant (by the application of a battery
emf in the opposite direction). We therefore regard the assembly energy as consisting
of two parts: (1) the energy required to bring a filament with constant current from
infinity against the Ampere force, and (2) the energy required to keep the current in this
filament, and any existing filaments, constant. We ignore the energy required to keep
the steady current flowing through an isolated loop (i.e., the energy needed to overcome
Joule losses).

We begin by computing the amount of energy required to bring a filament with current
I from infinity to a given position within an applied magnetostatic field B(r). In this
first step we assume that the field is supported by localized sources, hence vanishes at
infinity, and that it will not be altered by the motion of the filament. The force on each
small segment of the filament is given by Ampere’s force law (3.171), and the total force
is found by integration. Suppose an external agent displaces the filament incrementally
from a starting position 1 to an ending position 2 along a vector dr as shown in Figure
3.21. The work required is

SW = —(Idl x B) - 6r = (Idl x ér) - B

for each segment of the wire. Figure 3.21 shows that dl x dr describes a small patch of
surface area between the starting and ending positions of the filament, hence —(dl x ér)-B
is the outward flux of B through the patch. Integrating over all segments comprising the
filament, we obtain

AW:I%(dler)'Bz—I/ B-dS
r So

for the total work required to displace the entire filament through dr; here the surface Sy
is described by the superposition of all patches. If S; and S, are the surfaces bounded
by the filament in its initial and final positions, respectively, then S;, S;, and Sy taken



together form a closed surface. The outward flux of B through this surface is

B-dS=0
So+S1+S2
so that
AW:—]/B-dS:I / B -dS
So NER )

where fi is outward from the closed surface. Finally, let W, 5 be the flux of B through S,
in the direction determined by dl and the right-hand rule. Then

AW = —1(¥, — U)) = —[AW. (3.183)

Now suppose that the initial position of the filament is at infinity. We bring the filament
into a final position within the field B through a succession of small displacements,
each requiring work (3.183). By superposition over all displacements, the total work is
W = —I(V — W) where W, and ¥ are the fluxes through the filament in its initial and
final positions, respectively. However, since the source of the field is localized, we know
that B is zero at infinity. Therefore W, = 0 and

W:—I\IJ:—I/B~ﬁdS (3.184)
N

where i is determined from dl in the right-hand sense.

Now let us find the work required to position two current filaments in a field-free region
of space, starting with both filaments at infinity. Assume filament 1 carries current I
and filament 2 carries current I,, and that we hold these currents constant as we move
the filaments into position. We can think of assembling these filaments in two ways: by
placing filament 1 first, or by placing filament 2 first. In either case, placing the first
filament requires no work since (3.184) is zero. The work required to place the second
filament is W; = — I ¥, if filament 2 is placed first, where W; is the flux passing through
filament 1 in its final position, caused by the presence of filament 2. If filament 1 is

placed first, the work required is W, = —I,W,. Since the work cannot depend on which

loop is placed first, we have Wy = W, = W where we can use either W = —[;¥; or

W = —LW,. It is even more convenient, as we shall see, to average these values and use
1

W=—2 (¥ + L) (3.185)

We must determine the energy required to keep the currents constant as we move the
filaments into position. When moving the first filament into place there is no induced
emf, since no applied field is yet present. However, when moving the second filament
into place we will change the flux linked by both the first and second loops. This change
of flux will induce an emf in each of the loops, and this will change the current. To keep
the current constant we must supply an opposing emf. Let d W, ¢/dt be the rate of work
required to keep the current constant. Then by (3.153) and (3.181) we have

dw, aw

—emfz—fJ-Edvz—I/E-dlz—l—.
dt v dt

Integrating, we find the total work AW required to keep the current constant in either

loop as the flux through the loop is changed by an amount AW:

AW,pp = IAW.



So the total work required to keep I; constant as the loops are moved from infinity (where
the flux is zero) to their final positions is I ¥;. Similarly, a total work LW, is required
to keep I, constant during the same process. Adding these to (3.185), the work required
to position the loops, we obtain the complete assembly energy

1
W= 3 (L + LW,y)

for two filaments. The extension to N filaments is
|
W, == LY,. 3.186
5 Z_; (3.186)

Consequently, the energy of a single current filament is

1
W = S1W. (3.187)

We may interpret this as the “assembly energy” required to bring the single loop into
existence by bringing vanishingly small loops (magnetic dipoles) in from infinity. We
may also interpret it as the energy required to establish the current in this single filament
against the back emf. That is, if we establish I by slowly increasing the current from
zero in N small steps AI = [/N, an energy W, Al will be required at each step. Since
W, increases proportionally to I, we have

where W is the flux when the current is fully established. Since Z:’:l n—1)=N(N-1)/2
we obtain

1
W = 510 (3.188)

as N — oo.
A volume current J can be treated as though it were composed of N current filaments.
Equations (3.128) and (3.186) give

1 N
Wy == Ian-dl.

Since the total current is

N
I = J-dS:ZI,,

cs n=1

where CS denotes the cross-section of the steady current, we have as N — oo
1
W, = —/ A-Jdv. (3.189)
2 )y

Alternatively, using (3.135), we may write

szl/ MdVdV’.
vJv

2 r — /|



Note the similarity between (3.189) and (3.86). We now manipulate (3.189) into a
form involving only the electromagnetic fields. By Ampere’s law

1
W, = —/A~(V><H)dV.
2Jy
Using (B.44) and the divergence theorem we can write
Wy == %(HXA) ds + - fH (VxA)dV.

We now let S expand to infinity. This does not change the value of W,, since we do not
enclose any more current; however, since A ~ 1/r and H ~ 1/r2, the surface integral
vanishes. Thus, remembering that V x A = B, we have

1
W, == H-BdV (3.190)
2 )y,
where V,, denotes all of space.
Although we do not provide a derivation, (3.190) is also valid within linear materials.
For nonlinear materials, the total energy required to build up a magnetic field from B

to B, is

1 B2

W, = —/ |: H~dB:| dv. (3.191)
2 Jv, L8,

This accounts for the work required to drive a ferromagnetic material through its hystere-
sis loop. Readers interested in a complete derivation of (3.191) should consult Stratton
[187].

As an example, consider two thin-walled, coaxial, current-carrying cylinders having
radii a,b (b > a). The intervening region is a linear magnetic material having perme-
ability u. Assume that the inner and outer conductors carry total currents I in the £z
directions, respectively. From the large-scale form of Ampere’s law we find that

0, p =a,
H=1¢1/2np, a<p<bh, (3.192)
0, p>Db,
hence by (3.190)
1 2 b MIZ
= [dz / / pdpde,
2[ o Ja Qmp)?
and the stored energy is
Wo T (P (3.193)
l 'u4n a

per unit length.

Suppose instead that the inner cylinder is solid and that current is spread uniformly
throughout. Then the field between the cylinders is still given by (3.192) but within the
inner conductor we have

~ Ip
H=¢p——
¢27m2

by (3.169). Thus, to (3.193) we must add the energy

2 12
W,.inside 1n81de _ / / pdp ="
; (27Ta2)2 167




stored within the solid wire. The result is
Wm ,bL()Iz b 1
— =—— | u,In[ - -1.
I T an [“ 1 <a *y

3.3.7 Magnetic field of a permanently magnetized body

We now have the tools necessary to compute the magnetic field produced by a perma-
nent magnet (a body with permanent magnetization M). As an example, we shall find
the field due to a uniformly magnetized sphere in three different ways: by computing the
vector potential integral and taking the curl, by computing the scalar potential integral
and taking the gradient, and by finding the scalar potential using separation of variables
and applying the boundary condition across the surface of the sphere.

Consider a magnetized sphere of radius a, residing in free space and having permanent
magnetization

M(r) = Myi.

The equivalent magnetization current and charge densities are given by

Ju=VxM=0, (3.194)
Jus = =i x M = —f x Moz = My¢sin#, (3.195)
and
om=—-V-M=0, (3.196)
oms =0 -M=1F- Myz= Mycos9. (3.197)

The vector potential is produced by the equivalent magnetization surface current.
Using (3.137) we find that

Ju. ) T (T Mo sin€ | )
Ar) = X2 / Ms_ g = Ko Mo@'sin0 o a6’ g
47 s |r—r/| 4 J_2 Jo r —r/|
Since ¢ = —Ksin¢g’ + §cos ¢’, the rectangular components of A are
/
sm¢> , sin6’

{ * } / / 7 — — 4d’sin0'do’dg’. (3.198)
y I' — l'

The integrals are most easily computed via the spherical harmonic expansion (E.200) for
the inverse distance [r —r/|~':

nm 9’ Z * /
{ AA } ,LLOMOazZ Z 2n(+¢1i))r:+1/ / Smd’/ Sin0'Y" (0, ¢') d6’ d¢p'.

n=0 m=—n

Because the ¢’ variation is sin¢’ or cos¢’, all terms in the sum vanish except n = 1,
m = +1. Since

3 inge—i? 3 inge®
Y1..100,9) = gsmee- R Y1.10,9) =— gSlnGe ,



we have
2 T
—A, ar. 3 . 3
{ Ay } = MOMO?EQ SIHOA sin” 6" do’ -
g . / T . /
e [ SO e e sing’ g
[e /;n cos¢/e do¢' +e /771 cos¢>’e do'|.

Carrying out the integrals we find that

—A, alre . sin ¢
0] oo e {208

or
2
A= MOMOa—r—< sin 0 ¢.
3712
Finally, B=V x A gives
—2M%M°i7 r<a,
B ; 3.199
%(f'ZCos@—kesinQ), r>a. ( )

Hence B within the sphere is uniform and in the same direction as M, while B outside
the sphere has the form of the magnetic dipole field with moment

= 47[3 M
= - .
m 3a 0

We can also compute B by first finding the scalar potential through direct computation
of the integral (3.126). Substituting for py; from (3.197), we have

1 / oms (@) Js — 1 (™ (7 Mycos6’
s

b, (r) = — = —
n(©) 47 Js |r — 1| ar J . Jo Ir—r|

sin@' do’ de’.

This integral has the form of (3.100) with f(0) = Mycos6. Thus, from (3.102),

2

a T
@, (r) = Mo— cos—-. (3.200)
3 rz
The magnetic field H is then
—%i, r<a,
H=-V®, =1,/ . :
o (r200s9+0 s1n9), r>a.

Inside the sphere B is given by B = uo(H + M), while outside the sphere it is merely
B = poH. These observations lead us again to (3.199).

Since the scalar potential obeys Laplace’s equation both inside and outside the sphere,
as a last approach to the problem we shall write ®,, in terms of the separation of variables
solution discussed in § A.4. We can repeat our earlier arguments for the dielectric sphere
in an impressed electric field (§ 3.2.10). Copying equations (3.109) and (3.110), we can
write for r < a

o
@1 (r,0) = Y A,r" Py(cos), (3.201)
n=0



and for r > a
o0
®,2(r, 0) = Z B,r~ "tV P, (cosh). (3.202)
n=0
The boundary condition (3.154) at r = a requires that
> Ana"Py(cos®) =Y Bya~ "V P, (cos0):;
n=0 n=0

upon application of the orthogonality of the Legendre functions, this becomes

A,a" = B,a= "V, (3.203)
We can write (3.155) as
1Py DRy _
or ar pis

so that at r = a

o0 o0
- Z Ana" "' P,(cos ) — Z B,(n + Da~ "t P, (cos @) = —My cos 6.
n=0 n=0

After application of orthogonality this becomes

Ay +2Bja~? = My, (3.204)
na"'A, = —(n + 1)B,a~ "2, n#1. (3.205)

Solving (3.203) and (3.204) simultaneously for n = 1 we find that

M, M,
Al = —O, Bl = —0113.
3 3
We also see that (3.203) and (3.205) are inconsistent unless A, = B, = 0, n # 1.
Substituting these results into (3.201) and (3.202), we have

3
Mo—zcose, r>a,

%rcos@, r<a,
D, = B
3 r

which is (3.200).

3.3.8 Bodies immersed in an impressed magnetic field: magnetostatic
shielding

A highly permeable enclosure can provide partial shielding from external magnetostatic
fields. Consider a spherical shell of highly permeable material (Figure 3.22); assume it
is immersed in a uniform impressed field Hy = Hyz. We wish to determine the internal
field and the factor by which it is reduced from the external applied field. Because there
are no sources (the applied field is assumed to be created by sources far removed), we
may use magnetic scalar potentials to represent the fields everywhere. We may represent
the scalar potentials using a separation of variables solution to Laplace’s equation, with
a contribution only from the n = 1 term in the series. In region 1 we have both scattered



Figure 3.22: Spherical shell of magnetic material.

and applied potentials, where the applied potential is just &y = —Hyz = —Hyr cos9,
since Hy = —V®y = Hyz. We have
®(r) = Ayr % cos — Hyr cos®, (3.206)
Oy (r) = (B;r 24 Cyr) cos b, (3.207)
®3(r) = Dyrcosé. (3.208)

We choose (3.109) for the scattered potential in region 1 so that it decays as r — o0,
and (3.110) for the scattered potential in region 3 so that it remains finite at r = 0. In
region 2 we have no restrictions and therefore include both contributions. The coefficients
Ay, By, Cy, Dy are found by applying the appropriate boundary conditions at r = a and
r = b. By continuity of the scalar potential across each boundary we have

A1b™* — Hob = Bib™* + Cyb,
B]a_2 + Cya = Dja.
By (3.156), the quantity ud®/dr is also continuous at r = a and r = b; this gives two
more equations:
1o(=2A16° = Ho) = u(=2Bib~" + C),
1(=2B1a7> +C1) = poDi.

Simultaneous solution yields

Iptr
D, = ——"H,
1 K 0

where
K =@+ ) +2u) —2(a/b)’ (u, — 12
Substituting this into (3.208) and using H = —V®,,, we find that
H =« Hyz

within the enclosure, where k = 9u, /K. This field is uniform and, since ¥ < 1 for u, > 1,
it is weaker than the applied field. For u, > 1 we have K &~ 2u2[1 — (a/b)*]. Denoting



the shell thickness by A = b — a, we find that K ~ 6u?A /a when A/a < 1. Thus

31
2l

K

describes the coefficient of shielding for a highly permeable spherical enclosure, valid
when p, > 1 and A/a « 1. A shell for which u, = 10,000 and a/b = 0.99 can reduce
the enclosure field to 0.15% of the applied field.

3.4 Static field theorems
3.4.1 Mean value theorem of electrostatics

The average value of the electrostatic potential over a sphere is equal to the potential
at the center of the sphere, provided that the sphere encloses no electric charge. To see
this, write

1 o)y 1 R Vo) )
o) = — dv'+ — ¢ | —o@)— -ds’;
®) 4716/‘/ R +4n£|: (r)R2+ R :| 5

put p =0 in V, and use the obvious facts that if S is a sphere centered at point r then
(1) R is constant on S and (2) i = —R:

O(r) =

1
d(@)dS — — P E) - dS.
47[R2£ ) 4R Jg )

The last term vanishes by Gauss’s law, giving the desired result.

3.4.2 Earnshaw’s theorem

It is impossible for a charge to rest in stable equilibrium under the influence of elec-
trostatic forces alone. This is an easy consequence of the mean value theorem of electro-
statics, which precludes the existence of a point where ® can assume a maximum or a
minimum.

3.4.3 Thomson’s theorem

Static charge on a system of perfect conductors distributes itself so that the electric
stored energy is a minimum. Figure 3.23 shows a system of n conducting bodies held at
potentials @4, ..., ®,. Suppose the potential field associated with the actual distribution
of charge on these bodies is ®, giving

We:E/E~EdV:E/ Vo . VodV

2 Jy 2 Jy

for the actual stored energy. Now assume a slightly different charge distribution, resulting
in a new potential & = ® 4 §® that satisfies the same boundary conditions (i.e., assume
8@ = 0 on each conducting body). The stored energy associated with this hypothetical
situation is

W =W, +5W, = %/ V(® +8P) - V(D + 5D)dV
\%4



Figure 3.23: System of conductors used to derive Thomson’s theorem.

so that
SW, = erVcb VD)V + % /V V(D)2 dV:
Thomson’s theorem will be proved if we can show that
/pr V(D) dV =0, (3.209)
because then we shall have
SW, = %/V V(D)2 dV > 0.
To establish (3.209), we use Green’s first identity
/V(Vu Vv 4 uViv)dV = yguw -dS
with u = 6P and v = P:

f VO - V(ED)dV = ?§6<I>V<D~dS.
|4 S

Here S is composed of (1) the exterior surfaces Sy (k = 1,...,n) of the n bodies, (2)
the surfaces S, of the “cuts” that are introduced in order to keep V a simply-connected
region (a condition for the validity of Green’s identity), and (3) the sphere S, of very
large radius . Thus

/vawmmv:Z/ 6CI>V<I>-dS+/ 6¢Vc1>-ds+/ 5DV - dS.
14 k=1 Y Sk Se

00

The first term on the right vanishes because 6® = 0 on each S;. The second term
vanishes because the contributions from opposite sides of each cut cancel (note that fi
occurs in pairs that are oppositely directed). The third term vanishes because ® ~ 1/r,
V& ~ 1/r2, and dS ~ r? where r — oo for points on Su.



Figure 3.24: System of conductors used to derive Green’s reciprocation theorem.

3.4.4 Green’s reciprocation theorem

Consider a system of n conducting bodies as in Figure 3.24. An associated mathemat-
ical surface S, consists of the exterior surfaces Sy, ..., S, of the n bodies, taken together
with a surface S that enclosed all of the bodies. Suppose ® and &’ are electrostatic
potentials produced by two distinct distributions of stationary charge over the set of
conductors. Then V2® = 0 = V2®’ and Green’s second identity gives

or

n 9’ D’ n D 0D
Z/ <I>—dS+/d> dS:Z/ d>’—dS+/<I>’—dS.
=1 Sk Bn K 8}’1 =1 Sk Bn S 87’1

Now let S be a sphere of very large radius R so that at points on S we have

oo ] 09 99 I
’ R’ on’ on  R®

& 09’ 1 oD
E / o ds = E / ' —dSs.
— Js on = on

Furthermore, the conductors are equipotentials so that

9’
Z‘Dkf 545 = Zcbk S‘a—nds

dS ~ R%;

as R — oo then,

and we therefore have

Y@= a® (3.210)
k=1 k=1

where the kth conductor (k = 1,...,n) has potential ®; when it carries charge g,
and has potential ®; when it carries charge ¢;. This is Green’s reciprocation theorem.
A classic application is to determine the charge induced on a grounded conductor by
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@ (b)

Figure 3.25: Application of Green’s reciprocation theorem. (a) The “unprimed situation”
permits us to determine the potential Vp at point P produced by a charge g placed on
body 1. Here V; is the potential of body 1. (b) In the “primed situation” we ground
body 1 and induce a charge ¢’ by bringing a point charge ¢}, into proximity.

a nearby point charge. This is accomplished as follows. Let the conducting body of
interest be designated as body 1, and model the nearby point charge gp as a very small
conducting body designated as body 2 and located at point P in space. Take

q=q, g =0, P, =V, Py = Vp,
and
=4, a=qp P =0, D, =V,

giving the two situations shown in Figure 3.25. Substitution into Green’s reciprocation
theorem

q1P1 + g, P2 = 1P| + @2 P,
gives ¢'Vi + ¢qpVp = 0 so that
g9 =—qpVp/Vi. (3.211)

3.5 Problems

3.1 The z-axis carries a line charge of nonuniform density p;(z). Show that the electric
field in the plane z = 0 is given by

L. [ pE)dd L[ e d
Eo.9)=121pr| imn 2] i
me —o0 (P*+2%)% —o0 (P* +2%)%
Compute E when p; = pg sgn(z), where sgn(z) is the signum function (A.6).

3.2 Thering p = a, z = 0, carries a line charge of nonuniform density p;(¢). Show that
the electric field at an arbitrary point on the z-axis is given by

—a?

4re(a? + z2)3/2
+2 <
z—
4rre(a? + 72)3/2

2 2
E() = [x fo (@) cos ' d’ +§ fo p1<¢>’)sin¢’d¢l+

2
/0 pi(¢)dg'.
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Figure 3.26: Geometry for computing Green’s function for parallel plates.

Compute E when p;(¢) = posin¢. Repeat for p;(¢) = po cos? ¢.

3.3 The plane z = 0 carries a surface charge of nonuniform density p;(p, ¢). Show that
at an arbitrary point on the z-axis the rectangular components of E are given by

() = 7 o0, 9) p” cos ¢’ d¢' dp’
T T e (p"* + 2232 ’

Eo) — o ps(p', @) p’* sing’ dg’ dp’
vz 4th (p/2 + 72)3/2

E 2 ps(0', ¢') p’ ¢’ dp’
Z(Z) 5 .
47,€ (0% + 2232

s

Compute E when p,(p, ¢) = poU(p — a) where U(p) is the unit step function (A.5).
Repeat for ps(0, ¢) = po[l — U(p — a)].

3.4 The sphere r = a carries a surface charge of nonuniform density p;(6). Show that
the electric intensity at an arbitrary point on the z-axis is given by

E(o) = / ps(0)(z —acos®’)sinf’ do’
D=2 | Tt = 2azcos8)

Compute E(z) when p,(8) = py, a constant. Repeat for ps(0) = pgcos? 6.
3.5 Beginning with the postulates for the electrostatic field

VxE=0, V-D=p,
use the technique of § 2.8.2 to derive the boundary conditions (3.32)—(3.33).

3.6 A material half space of permittivity €; occupies the region z > 0, while a second
material half space of permittivity €, occupies z < 0. Find the polarization surface charge
densities and compute the total induced polarization charge for a point charge Q located
at z=nh.

3.7 Consider a point charge between two grounded conducting plates as shown in
Figure 3.26. Write the Green’s function as the sum of primary and secondary terms and
apply the boundary conditions to show that the secondary Green’s function is

L Ly I s
2r)? J 0o J oo sinhk,d sinh k,d 2k,

(3.212)




3.8 Use the expansion

1 o0
——— —cschk,d =2) e @nthkd
sinhk,d ’ ;
to show that the secondary Green’s function for parallel conducting plates (3.212) may
be written as an infinite sequence of images of the primary point charge. Identify the
geometrical meaning of each image term.

3.9 Find the Green’s functions for a dielectric slab of thickness d placed over a perfectly
conducting ground plane located at z = 0.

3.10 Find the Green’s functions for a dielectric slab of thickness 2d immersed in free
space and centered on the z = 0 plane. Compare to the Green’s function found in
Problem 3.9.

3.11 Referring to the system of Figure 3.9, find the charge density on the surface of
the sphere and integrate to show that the total charge is equal to the image charge.

3.12 Use the method of Green’s functions to find the potential inside a conducting
sphere for p inside the sphere.

3.13 Solve for the total potential and electric field of a grounded conducting sphere
centered at the origin within a uniform impressed electric field E = EyZ. Find total
charge induced on the sphere.

3.14 Consider a spherical cavity of radius a centered at the origin within a homogeneous
dielectric material of permittivity € = €pe,. Solve for total potential and electric field
inside the cavity in the presence of an impressed field E = EpZ. Show that the field in
the cavity is stronger than the applied field, and explain this using polarization surface
charge.

3.15 Find the field of a point charge Q located at z = d above a perfectly conducting
ground plane at z = 0. Use the boundary condition to find the charge density on the
plane and integrate to show that the total charge is —Q. Integrate Maxwell’s stress
tensor over the surface of the ground plane and show that the force on the ground plane
is the same as the force on the image charge found from Coulomb’s law.

3.16 Consider in free space a point charge —g at r = rp + d, a point charge —¢q at
r =ry —d, and a point charge 2¢g at ro. Find the first three multipole moments and the
resulting potential produced by this charge distribution.

3.17 A spherical charge distribution of radius a in free space has the density
p(r) = % cos 26.
ma

Compute the multipole moments for the charge distribution and find the resulting poten-
tial. Find a suitable arrangement of point charges that will produce the same potential
field for r > a as produced by the spherical charge.

3.18 Compute the magnetic flux density B for the circular wire loop of Figure 3.18 by
(a) using the Biot—Savart law (3.165), and (b) computing the curl of (3.138).
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Figure 3.27: Parallel plate capacitor.

3.19 Two circular current-carrying wires are arranged coaxially along the z-axis. Loop
1 has radius a,, carries current /;, and is centered in the z = 0 plane. Loop 2 has radius
a,, carries current I, and is centered in the z = d plane. Find the force between the
loops.

3.20 Choose Q =V’ (%) x ¢ in (3.162) and derive the following expression for B:
H Ny (L :
B(r)= — V= )dv' —
™) 4n/vJ(r)X <R)

1 A/ / ! ]‘ A/ / !/ 1 /
— Eﬁ |:[n x B(r)] x V <E> + A" - B(r)]V (E)} ds’,

where 1 is the normal vector outward from V. Compare to the Stratton—Chu formula
(6.8).

3.21 Compute the curl of (3.163) to obtain the integral expression for B given in Prob-
lem 3.20. Compare to the Stratton—Chu formula (6.8).

3.22 Obtain (3.170) by integration of Maxwell’s stress tensor over the xz-plane.

3.23 Consider two thin conducting parallel plates embedded in a region of permittivity
€ (Figure 3.27). The bottom plate is connected to ground, and we apply an excess charge
+0Q to the top plate (and thus —Q is drawn onto the bottom plate.) Neglecting fringing,
(a) solve Laplace’s equation to show that

Q

O(z) = —z.
@) Ae”
Use (3.87) to show that
2
d
w=24
2Ae

(b) Verify W using (3.88). (c) Use F = —2dW/dz to show that the force on the top plate

1S

2
F=—22
2Ae
(d) Verify F by integrating Maxwell’s stress tensor over a closed surface surrounding the

top plate.



3.24 Consider two thin conducting parallel plates embedded in a region of permittivity
¢ (Figure 3.27). The bottom plate is connected to ground, and we apply a potential V; to
the top plate using a battery. Neglecting fringing, (a) solve Laplace’s equation to show
that

® Yo
(Z) = ;Z.
Use (3.87) to show that
_ ViAe
=7
(b) Verify W using (3.88). (c) Use F = —2d W /dz to show that the force on the top plate
is
_;Vide
2d?
(d) Verify F by integrating Maxwell’s stress tensor over a closed surface surrounding the
top plate.

3.25 A group of N perfectly conducting bodies is arranged in free space. Body n is
held at potential V,, with respect to ground, and charge Q, is induced upon its surface.
By linearity we may write

N
Qm = Z Cnn Va

n=1
where the ¢, are called the capacitance coefficients. Using Green’s reciprocation the-
orem, demonstrate that ¢, = cun. Hint: Use (3.210). Choose one set of voltages so
that V, = 0, k # n, and place V, at some potential, say V,, = V,, producing the set of
charges {Qy}. For the second set choose V =0, k # m, and V,, = Vp, producing {Q;}.

3.26 For the set of conductors of Problem 3.25, show that we may write
O = CoumVin + Y Corc(Vin = Vi)
k#m

where
N

Cmn = —Cmn>» m 7£ n, Cmm = § Cmk-
k=1

Here C,,;,, called the self capacitance, describes the interaction between the mth con-
ductor and ground, while C,,,, called the mutual capacitance, describes the interaction
between the mth and nth conductors.

3.27 For the set of conductors of Problem 3.25, show that the stored electric energy is
given by

1 N N
W= chm,,vnvm.

m=1 n=1

3.28 A group of N wires is arranged in free space as shown in Figure 3.28. Wire n
carries a steady current I,, and a flux W, passes through the surface defined by its
contour I',,. By linearity we may write

N
\pm = Z Lmnln

n=1
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Figure 3.28: A system of current-carrying wires.

where the L,,, are called the coefficients of inductance. Derive Neumann’s formula

% f dl-dr
mn =
|r —r’
and thereby demonstrate the reciprocity relation L, = L,,.

3.29 For the group of wires shown in Figure 3.28, show that the stored magnetic energy
is given by

ZZLW,I L.

m=1 n=1

3.30 Prove the minimum heat generation theorem: steady electric currents distribute
themselves in a conductor in such a way that the dissipated power is a minimum. Hint:
Let J be the actual distribution of current in a conducting body, and let the power it
dissipates be P. Let J = J + 8J be any other current distribution, and let the power it
dissipates be P’ = P 4+ § P. Show that

11
§P = [ —[8JI7dV = 0.
2 v O



Chapter 4

Temporal and spatial frequency domain
representation

4.1 Interpretation of the temporal transform

When a field is represented by a continuous superposition of elemental components, the
resulting decomposition can simplify computation and provide physical insight. Such rep-
resentation is usually accomplished through the use of an integral transform. Although
several different transforms are used in electromagnetics, we shall concentrate on the
powerful and efficient Fourier transform.

Let us consider the Fourier transform of the electromagnetic field. The field depends
on x, y, z, t, and we can transform with respect to any or all of these variables. However,
a consideration of units leads us to consider a transform over ¢ separately. Let v (r, t)
represent any rectangular component of the electric or magnetic field. Then the temporal
transform will be designated by ¥ (r, w):

Y(r, 1) < ¥ ).

Here o is the transform variable. The transform field ¥ is calculated using (A.1):
I (r, w) = / W (r, 1) eI dt. (4.1)
—00
The inverse transform is, by (A.2),
I [>. ,
U(r, 1) = 2_/ T (r, ®) e’ dow. (4.2)
v —00

Since ¥ is complex it may be written in amplitude-phase form:
U, ) = §(r, )/,

where we take —7 < £¥(r, w) < 7.
Since ¥ (r, t) must be real, (4.1) shows that

U(r, —w) = ¥ (r, w). (4.3)

Furthermore, the transform of the derivative of ¥ may be found by differentiating (4.2).
We have

8 1 OO . T jwt
51//(1‘, 1) = —/ joy(r, w) e’ dw,

27 J_so



hence
0 -

By virtue of (4.2), any electromagnetic field component can be decomposed into a contin-
uous, weighted superposition of elemental temporal terms e/®*. Note that the weighting
factor ¥ (r, w), often called the frequency spectrum of ¥ (r,t), is not arbitrary because
¥ (r, t) must obey a scalar wave equation such as (2.327). For a source-free region of
space we have

]
2 w _
<V — MO o~ e 8t2> / U(r, w) e/ dw = 0.

Differentiating under the integral sign we have
1 [ . - o
3 [(V? = jouo + o’ ue) ¥(r, w)] e/ do = 0,
hence by the Fourier integral theorem
(V2 +E) ¥ (r,w) =0 (4.5)

where

k = w /e l—ji
we

is the wavenumber. Equation (4.5) is called the scalar Helmholtz equation, and represents
the wave equation in the temporal frequency domain.

4.2 The frequency-domain Maxwell equations

If the region of interest contains sources, we can return to Maxwell’s equations and
represent all quantities using the temporal inverse Fourier transform. We have, for ex-
ample,

1 © .
E(r,t) = E/ E, o) e/ dw

(o]

where
Er, 0) = ZI,E (r,w) = Zl,|E (r, w)|e’& ), (4.6)

All other field quantities will be written similarly with an appropriate superscript on the
phase. Substitution into Ampere’s law gives

o0

1 [ . o 0 1 - o 1 [~ o
V x — H(r,w) e/ do = — — D(r,w) e’ dw + — Jr, w)e! dw,
27 J_ o Jt 2m 27 J_ o

hence

% / [V x H(r, w) — joD(r, w) — J(r, w)]e!” dw =0



after we differentiate under the integral signs and combine terms. So
VxH=joD+]J (4.7)

by the Fourier integral theorem. This version of Ampere’s law involves only the frequency-
domain fields. By similar reasoning we have

VxE=—joB, (4.8)
V.-D=p, (4.9)
V- -B(r,0) =0, (4.10)

and
V.-J+ jop=0.

Equations (4.7)—(4.10) govern the temporal spectra of the electromagnetic fields. We may
manipulate them to obtain wave equations, and apply the boundary conditions from the
following section. After finding the frequency-domain fields we may find the temporal
fields by Fourier inversion. The frequency-domain equations involve one fewer derivative
(the time derivative has been replaced by multiplication by jw), hence may be easier to
solve. However, the inverse transform may be difficult to compute.

4.3 Boundary conditions on the frequency-domain fields

Several boundary conditions on the source and mediating fields were derived in § 2.8.2.
For example, we found that the tangential electric field must obey

A X Ei(r, 1) — fip X Ex(r, 1) = —Jus(r, ).
The technique of the previous section gives us
i x [Ei(r, 0) — Ex(r, 0)] = —J(r, )

as the condition satisfied by the frequency-domain electric field. The remaining boundary
conditions are treated similarly. Let us summarize the results, including the effects of
fictitious magnetic sources:
A, x (H — Hy) = J,,
I,\112 X (El - EZ) = —Jus,
iy - (D — Dy) = p,
iz - B — B2) = P,
and
i (Ji—J) ==V, J, — jop,.
ﬁlZ : (Jml - Jm2) - _v‘v : Jms - ja)pms~

Here fij; points into region 1 from region 2.



4.4 Constitutive relations in the frequency domain and the
Kronig—Kramers relations

All materials are to some extent dispersive. If a field applied to a material undergoes
a sufficiently rapid change, there is a time lag in the response of the polarization or
magnetization of the atoms. It has been found that such materials have constitutive
relations involving products in the frequency domain, and that the frequency-domain
constitutive parameters are complex, frequency-dependent quantities. We shall restrict
ourselves to the special case of anisotropic materials and refer the reader to Kong [101]
and Lindell [113] for the more general case. For anisotropic materials we write

P = ¢x, E, (4.11)
M=x,, -H (4.12)
D=¢-E=¢[l+x,]E (4.13)
B=j-H=pll+X,] H, (4.14)
J=6E (4.15)

By the convolution theorem and the assumption of causality we immediately obtain the
dyadic versions of (2.29)—(2.31):

t

—00
t

D(r,t) = ¢ (E(r, 1) +/ Xe(r,t — 1) -E(r, t) dt’) ,

B(r,t) = uo <H(r, 1)+ /

—0Q

Xm(rv r— t/) : H(r3 t/) dt/> )

Jx, 1) :/ or,t —1t) -E(,t)dt.

—00

These describe the essential behavior of a dispersive material. The susceptances and
conductivity, describing the response of the atomic structure to an applied field, depend
not only on the present value of the applied field but on all past values as well.

Now since D(r, ), B(r, ), and J(r,?) are all real, so are the entries in the dyadic
matrices &(r, 1), (r, t), and &(r, ). Thus, applying (4.3) to each entry we must have

X (r, —0) = X, (r, 0), X,(r, —0) =X, (r,0), &, -w) =35 (r, ), (4.16)
and hence
Er, —w) = €'(r, w), o, —w) = @' (r, ). (4.17)
If we write the constitutive parameters in terms of real and imaginary parts as
& =&, + j&, fij = iy + J i Gij =6 +j&i;,
these conditions become
&, (r, —ow) = &;(r, w), &(r, —w) = =& (r, w),

and so on. Therefore the real parts of the constitutive parameters are even functions of
frequency, and the imaginary parts are odd functions of frequency.



In most instances, the presence of an imaginary part in the constitutive parameters
implies that the material is either dissipative (lossy), transforming some of the electro-
magnetic energy in the fields into thermal energy, or active, transforming the chemical or
mechanical energy of the material into energy in the fields. We investigate this further
in § 4.5 and § 4.8.3.

We can also write the constitutive equations in amplitude—phase form. Letting

} e 3 — } o
&j = |&;le’, flij = |fiijle’i, &ij = 16j1e’%

and using the field notation (4.6), we can write (4.13)—(4.15) as

3
D = |Dile’" =" (&1 E el 40, (4.18)
j=1
3
By = |Bile/S" =) |y ||yl 500, (4.19)
j=1
3
Ji = Tl =) 16 1| E e/t 550, (4.20)
j=1

Here we remember that the amplitudes and phases may be functions of both r and w.
For isotropic materials these reduce to

Dy = Dile’ = [e||Eile! & 5, (4.21)
Bi = |Bile/*" = ||| H;le! &Y, (4.22)
T = 131’ = 16| Eiled €T, (4.23)

4.4.1 The complex permittivity

As mentioned above, dissipative effects may be associated with complex entries in the
permittivity matrix. Since conduction effects can also lead to dissipation, the permittivity
and conductivity matrices are often combined to form a complex permittivity. Writing
the current as a sum of impressed and secondary conduction terms (J = J' + J¢) and
substituting (4.13) and (4.15) into Ampere’s law, we find

VxH=J +&-E+ jowé - E.

Defining the complex permittivity

a(r, w)

Er, ) = + &, o), (4.24)

we have
VxH=J + jwé - E.

Using the complex permittivity we can include the effects of conduction current by merely
replacing the total current with the impressed current. Since Faraday’s law is unaffected,
any equation (such as the wave equation) derived previously using total current retains
its form with the same substitution.

By (4.16) and (4.17) the complex permittivity obeys

Er, —w) = €7 (r, w) (4.25)



or

~L//(

&i(r, —w) = &(r, w), r,—w) = —&(r, ).

For an isotropic material it takes the particularly simple form

. & &
€ ——+6——+Eo+eoxe, (4.26)
Jw Jw

and we have

~¢/

& (r, —w) = &/(r, w), e (r, —w) = —&“(r, w). (4.27)

4.4.2 High and low frequency behavior of constitutive parameters

At low frequencies the permittivity reduces to the electrostatic permittivity. Since &
is even in w and €” is odd, we have for small w

& ~ €€, & ~w.
If the material has some dc conductivity oy, then for low frequencies the complex per-
mittivity behaves as

g9 ~ gpe,, " ~ op/w. (4.28)

If E or H changes very rapidly, there may be no polarization or magnetization effect at
all. This occurs at frequencies so high that the atomic structure of the material cannot
respond to the rapidly oscillating applied field. Above some frequency then, we can
assume X, = 0 and %, = 0 so that

P=0, M=0,
and
ﬁ = 60E, E = M()I:I.
In our simple models of dielectric materials (§ 4.6) we find that as w becomes large
& —ey~ 1/0?, &~ 1/’ (4.29)

Our assumption of a macroscopic model of matter provides a fairly strict upper frequency
limit to the range of validity of the constitutive parameters. We must assume that the
wavelength of the electromagnetic field is large compared to the size of the atomic struc-
ture. This limit suggests that permittivity and permeability might remain meaningful
even at optical frequencies, and for dielectrics this is indeed the case since the values of
P remain significant. However, M becomes insignificant at much lower frequencies, and
at optical frequencies we may use B = poH [107].

4.4.3 The Kronig—Kramers relations

The principle of causality is clearly implicit in (2.29)-(2.31). We shall demonstrate
that causality leads to explicit relationships between the real and imaginary parts of the
frequency-domain constitutive parameters. For simplicity we concentrate on the isotropic
case and merely note that the present analysis may be applied to all the dyadic com-
ponents of an anisotropic constitutive parameter. We also concentrate on the complex
permittivity and extend the results to permeability by induction.



The implications of causality on the behavior of the constitutive parameters in the
time domain can be easily identified. Writing (2.29) and (2.31) after setting u = r — ¢’
and then u = ¢/, we have

WLD=QMRO+®/ xe(r,t)E(, 1 —1')dr’,
0
Jx, 1) =/ o(r,t)E(,t —t)dt'.

0

We see that there is no contribution from values of x.(r,t) or o (r, t) for times t < 0. So
we can write

o0

mnn=@an+@f Xe(r,tHE(r, 1 —t')dt’,

—00

Ja, ) = /OO o(r,)E(,t —t)dt,

[ee]

with the additional assumption
xe(r,1) =0, t <0, o t)=0, t<0O. (4.30)

By (4.30) we can write the frequency-domain complex permittivity (4.26) as
1 [ ot o ot
E(r,w) — e = —/ o(r, e /" dt’ —i—eof Xe(r, e 1*" dt'. (4.31)
J® Jo 0

In order to derive the Kronig—Kramers relations we must understand the behavior of
€°(r, w) — €y in the complex w-plane. Writing w = o, + jw;, we need to establish the
following two properties.

Property 1: The function &(r, w) — €y is analytic in the lower half-plane (w; < 0)
except at w = 0 where it has a simple pole.

We can establish the analyticity of 6 (r, w) by integrating over any closed contour in
the lower half-plane. We have

f 6(r,w)dw = f I:/ooa(r, e " dt/i| do = /ooa(r, ) I:f el da)i| dr’. (4.32)
r r LJo 0 r

Note that an exchange in the order of integration in the above expression is only valid
for w in the lower half-plane where lim, _, o, e ~/®* = 0. Since the function f(w) = e~/ is
analytic in the lower half-plane, its closed contour integral is zero by the Cauchy—Goursat
theorem. Thus, by (4.32) we have

y{ 6(r,w)dw = 0.
r

Then, since 6 may be assumed to be continuous in the lower half-plane for a physical
medium, and since its closed path integral is zero for all possible paths I', it is by Morera’s
theorem [110] analytic in the lower half-plane. By similar reasoning x.(r, w) is analytic
in the lower half-plane. Since the function 1/w has a simple pole at @ = 0, the composite
function €°(r, w) — €y given by (4.31) is analytic in the lower half-plane excluding w = 0
where it has a simple pole.
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Figure 4.1: Complex integration contour used to establish the Kronig—Kramers relations.

Property 2: We have

lim &°(r, w) — ¢y = 0.
w—+00
To establish this property we need the Riemann—Lebesgue lemma [142], which states that
if f(¢) is absolutely integrable on the interval (a, b) where a and b are finite or infinite
constants, then

b
lim / fe " dt = 0.
a

w—F00

From this we see that

5(r, | [ -
lim g(r, @) = lim —/ o(r,tN)e /" dt’ =0,
0

T 1)) w—+o0 ]a)

o0
lim e€px.(r,w) = lim 60/ Xe(r, e 1" dt’ =0,
w—Fo00 w—F00 0
and thus

lim &°(r, w) — ¢y = 0.
w— 100

To establish the Kronig—Kramers relations we examine the integral

fe (r,SZ)—eon
r Q—w

where I' is the contour shown in Figure 4.I. Since the points Q = 0, w are excluded,
the integrand is analytic everywhere within and on I', hence the integral vanishes by the
Cauchy—Goursat theorem. By Property 2 we have

&, Q) —e

lim T TR0 =0,
R—o0 Jo Q-ow



hence

~c Q) — 00 zc Q) —
/ -6 py. / EmD—€ 0o (4.33)
Co+c, NR—o e R —w

Here “P.V.” indicates that the integral is computed in the Cauchy principal value sense
(see Appendix A). To evaluate the integrals over Cy and C,, consider a function f(Z)
analytic in the lower half of the Z-plane (Z = Z, + jZ;). If the point z lies on the real
axis as shown in Figure 4.1, we can calculate the integral

[ f@D
F() = lim rZ—ZdZ

through the parameterization Z — z = 8e/?. Since dZ = je/? df we have
O f(z+8ei) A 0
T . 0 . .
F(2) —;1_1)1})/_71 T []Se’ ] df = jf(z) - do = jrf(2).
Replacing Z by Q and z by 0 we can compute

. €(r, ) — e
lim _—
A=0 Je, Q-—w

[% Jo o, e 7 dt' + Qe [ xe(r, t))e I dt/] ==

ds2

= lim a2

A=0 Je, Q
m o, t)dt

w

We recognize

/oo o(r,t")dt' = op(r)
0

as the dc conductivity and write

. €(r, Q) — €
lim _
A—0 Je, QL—w w

If we replace Z by Q and z by @ we get

E(r, Q) —
lim 9« dQ = jmé(r, w) — jmeg.
=0J)c, Q-

Substituting these into (4.33) we have

1 ® gr, Q) — r
E(r, ) — €p = —,—P.v./ Er9) —€ 0, 200
jm oo Q—-w jo

(4.34)

If we write &(r, w) = €9(r, w) + jé (r, w) and equate real and imaginary parts in (4.34)
we find that

1 oo Q
g’(r,w) — ey = —— P.V. w sz, (4.35)
b4 o QR —w
1 o0 ¢/ _
e rw) = ~pv. [ LD g 00O (4.36)
T oo QL—-w w



These are the Kronig—Kramers relations, named after R. de L. Kronig and H.A. Kramers
who derived them independently. The expressions show that causality requires the real
and imaginary parts of the permittivity to depend upon each other through the Hilbert
transform pair [142].

It is often more convenient to write the Kronig-Kramers relations in a form that
employs only positive frequencies. This can be accomplished using the even—odd behavior
of the real and imaginary parts of €. Breaking the integrals in (4.35)—(4.36) into the
ranges (—o0, 0) and (0, 00), and substituting from (4.27), we can show that

£ (r, ) 2py / TR Q) o (4.37)
é —€ =——P.V. ———=dQ, )
@ 0 T 0 Q2 — 602
2 o ¢/ Q
2 (r, ) = —wP.V./ €’ (r, Q) 19 — ao(r)_ (4.38)
T 0 2 —aw? 1)

The symbol P.V. in this case indicates that values of the integrand around both Q = 0
and Q = w must be excluded from the integration. The details of the derivation of
(4.37)—(4.38) are left as an exercise. We shall use (4.37) in § 4.6 to demonstrate the
Kronig-Kramers relationship for a model of complex permittivity of an actual material.

We cannot specify €% arbitrarily; for a passive medium €’ must be zero or negative at
all values of w, and (4.36) will not necessarily return these required values. However, if
we have a good measurement or physical model for €, as might come from studies of the
absorbing properties of the material, we can approximate the real part of the permittivity
using (4.35). We shall demonstrate this using simple models for permittivity in § 4.6.

The Kronig-Kramers properties hold for p as well. We must for practical reasons
consider the fact that magnetization becomes unimportant at a much lower frequency
than does polarization, so that the infinite integrals in the Kronig-Kramers relations
should be truncated at some upper frequency wmax. If we use a model or measured
values of ii” to determine fi’, the form of the relation (4.37) should be [107]

emax Q" (r, )

o 4

, 2
f(r, w) — o = ——P-V-/
T 0

where wmax is the frequency at which magnetization ceases to be important, and above
which it = ug.

4.5 Dissipated and stored energy in a dispersive medium

Let us write down Poynting’s power balance theorem for a dispersive medium. Writing
J =J +J¢ we have (§ 2.9.5)

+H- =

C— 4.39
ot ot (4.39)

. aD B
—J’~E=JC-E+V~[EXH]+[E :|

We cannot express this in terms of the time rate of change of a stored energy density
because of the difficulty in interpreting the term

aD oB

E-—+H - — 4.40
az+ ot ( )



when the constitutive parameters have the form (2.29)-(2.31). Physically, this term
describes both the energy stored in the electromagnetic field and the energy dissipated by
the material because of time lags between the application of E and H and the polarization
or magnetization of the atoms (and thus the response fields D and B). In principle this
term can also be used to describe active media that transfer mechanical or chemical
energy of the material into field energy.

Instead of attempting to interpret (4.40), we concentrate on the physical meaning of

-V -S(r,t) = -V . [E(r,t) x H(r, 1)].

We shall postulate that this term describes the net flow of electromagnetic energy into the
point r at time ¢. Then (4.39) shows that in the absence of impressed sources the energy
flow must act to (1) increase or decrease the stored energy density at r, (2) dissipate
energy in ohmic losses through the term involving J¢, or (3) dissipate (or provide) energy
through the term (40). Assuming linearity we may write

a d d
-V -S(r,t)= Ewe(r, 1)+ &w’" (r, 1) + ng(r, t), (4.41)

where the terms on the right-hand side represent the time rates of change of, respectively,
stored electric, stored magnetic, and dissipated energies.

4.5.1 Dissipation in a dispersive material

Although we may, in general, be unable to separate the individual terms in (4.41), we
can examine these terms under certain conditions. For example, consider a field that
builds from zero starting from time t = —oco and then decays back to zero at t = oo.
Then by direct integration'

— /Oo V- S(t) dt = Wep(t = 00) — Wep (t = —00) + wo(t = 00) — wo(t = —00)

where w,,, = w,+ w,, is the volume density of stored electromagnetic energy. This stored
energy is zero at t = o0 since the fields are zero at those times. Thus,

Awg = —/ V-S@)dt = wo(t = 00) —wg(t = —00)

represents the volume density of the net energy dissipated by a lossy medium (or supplied
by an active medium). We may thus classify materials according to the scheme

Awg =0, lossless,
Awg > 0, lossy,
Awg > 0, passive,
Awy < 0, active.

For an anisotropic material with the constitutive relations

D=¢E-E, B=/-H, J=6"E,

TNote that in this section we suppress the r-dependence of most quantities for clarity of presentation.



we find that dissipation is associated with negative imaginary parts of the constitutive
parameters. To see this we write

1 © . 1 * .-
E(, 1) = Z/ E(r, w)e’” dw, D, t) = —/ D(r, 0)e/*" do,

oo 27 J_ o
and thus find
oD 1

C.E4+E. —
J-E+E- 2n)?

/ / E(w) - &) - E@)e! " jo' do dw'
—0oQ —oQ
where € is the complex dyadic permittivity (4.24). Then

l *© g =c / I / ] = / r} /
AwQ=W/_OO/_OO[E(w)~E (@) - E(@) + H(0) - (o) - H@")] -

o0
: [/ el @Fet dt:| jo'dodw'. (4.42)

oo

Using (A.4) and integrating over w we obtain
1 (> . . g N 3 5
Awg = o= / [E(—0) - € () - E(0) + H(—0') - fi(e) - H(0)] jo' do'. (4.43)
—o0

Let us examine (4.43) more closely for the simple case of an isotropic material for
which

1 [ _ , . .
Awg = ﬁ/ {[je (@) — & ()] E(-o) - E()+
+ [ (@) - 1" ()] H(=0) - H()} o do.

Using the frequency symmetry property for complex permittivity (4.17) (which also holds
for permeability), we find that for isotropic materials

g’ (r, w) = &(r, —w), g (r,w) = —&(r, —w), (4.44)

ﬁ/(rv Cl)) = ﬂ/(r7 —(1)), [L”(rv (1)) = _ﬂ/,(r’ —Cl)) (445)

Thus, the products of ' and the real parts of the constitutive parameters are odd
functions, while for the imaginary parts these products are even. Since the dot products
of the vector fields are even functions, we find that the integrals of the terms containing
the real parts of the constitutive parameters vanish, leaving

Awg = 2$ /OOO [-e”E] — i |H*] o do. (4.46)

Here we have used (4.3) in the form
E(r, —0) = E*(r, »), H(r, —0) = H'(r, »). (4.47)
Equation (4.46) leads us to associate the imaginary parts of the constitutive parameters

with dissipation. Moreover, a lossy isotropic material for which Awg > 0 must have at
least one of € and u” less than zero over some range of positive frequencies, while an



active isotropic medium must have at least one of these greater than zero. In general,
we speak of a lossy material as having negative imaginary constitutive parameters:

e’ <0, i’ <0, w > 0. (4.48)

A lossless medium must have

1

g//

for all w.
Things are not as simple in the more general anisotropic case. An integration of (4.42)
over o' instead of w produces

[ =c = - - - .
Awg = _Z/, [E(a)) -€ (—w) -E(—w) + Hw) - p(—w) -H(—a))] jodo.

Adding half of this expression to half of (4.43) and using (4.25), (4.17), and (4.47), we
obtain

L
AwQ=E/ [B & E-E-& B +H - p-H-H. 3" 0] jodo.
Finally, using the dyadic identity (A.76), we have
1 e, (e =t &  oamx (= =1\ ol
AwQ=4— [E~<e—e)~E+H~<u—p)~H]1wda)
T J-—x

where the dagger () denotes the hermitian (conjugate-transpose) operation. The condi-
tion for a lossless anisotropic material is

E=&  p=p (4.49)

or

&j =& ij = [, 6ij = 6;. (4.50)
These relationships imply that in the lossless case the diagonal entries of the constitutive
dyadics are purely real.

Equations (4.50) show that complex entries in a permittivity or permeability matrix
do not necessarily imply loss. For example, we will show in § 4.6.2 that an electron
plasma exposed to a z-directed dc magnetic field has a permittivity of the form

€ —j6 0
[El=|j6 € O
0 0 ¢

where €, €,, and § are real functions of space and frequency. Since & is hermitian it
describes a lossless plasma. Similarly, a gyrotropic medium such as a ferrite exposed to
a z-directed magnetic field has a permeability dyadic

nw —jk 0
(Bl=|jx n 0|,
0 0 wo

which also describes a lossless material.



4.5.2 Energy stored in a dispersive material

In the previous section we were able to isolate the dissipative effects for a dispersive
material under special circumstances. It is not generally possible, however, to isolate
a term describing the stored energy. The Kronig-Kramers relations imply that if the
constitutive parameters of a material are frequency-dependent, they must have both real
and imaginary parts; such a material, if isotropic, must be lossy. So dispersive materials
are generally lossy and must have both dissipative and energy-storage characteristics.
However, many materials have frequency ranges called transparency ranges over which
€ and fi” are small compared to € and i’. If we restrict our interest to these ranges,
we may approximate the material as lossless and compute a stored energy. An important
special case involves a monochromatic field oscillating at a frequency within this range.

To study the energy stored by a monochromatic field in a dispersive material we
must consider the transient period during which energy accumulates in the fields. The
assumption of a purely sinusoidal field variation would not include the effects described
by the temporal constitutive relations (2.29)—(2.31), which show that as the field builds
the energy must be added with a time lag. Instead we shall assume fields with the
temporal variation

3
E(r,1) = £(t) ) k| Ei(r)| coslwot + & (r)] (4.51)
i=1

where f(t) is an appropriate function describing the build-up of the sinusoidal field. To
compute the stored energy of a sinusoidal wave we must parameterize f(¢) so that we
may drive it to unity as a limiting case of the parameter. A simple choice is

2,2 ~ T _ o
fO) =" & Flw)=,/ —e wl, (4.52)
o

Note that since f(¢) approaches unity as @ — 0, we have the generalized Fourier trans-
form relation

lim F(w) =218(w). (4.53)

Substituting (4.51) into the Fourier transform formula (4.1) we find that
" 1 Em % 1 Em 5
E(r,0) =3 ;ii|Ei ]SO F @ = wo) + 5 ;iiwi ®)]e 5 O F (0 + wp).
We can simplify this by defining
v 3 N . E
E@m) =) kIE @S ® (4.54)
i=1
as the phasor vector field to obtain

Er, 0) = % [E@)F (0 — wo) + E*(0) F (0 + a)] . (4.55)

We shall discuss the phasor concept in detail in § 4.7.

The field E(r, t) is shown in Figure 4.2 as a function of 7, while E(r, ) is shown in
Figure 4.2 as a function of w. As a becomes small the spectrum of E(r, t) concentrates
around w = F+wy. We assume the material is transparent for all values a of interest so
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Figure 4.2: Temporal (top) and spectral magnitude (bottom) dependences of E used to
compute energy stored in a dispersive material.

that we may treat € as real. Then, since there is no dissipation, we conclude that the
term (4.40) represents the time rate of change of stored energy at time ¢, including the
effects of field build-up. Hence the interpretation?

oD Bwe B 8wm
— H —

ot ot ot ot
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We shall concentrate on the electric field term and later obtain the magnetic field term
by induction.

Since for periodic signals it is more convenient to deal with the time-averaged stored
energy than with the instantaneous stored energy, we compute the time average of w,(r, t)
over the period of the sinusoid centered at the time origin. That is, we compute

1 T/2
(w,) = Tf w, (1) di (4.56)

T/2

where T = 27 /wy. With ¢ — 0, this time-average value is accurate for all periods of the
sinusoidal wave.

Because the most expedient approach to the computation of (4.56) is to employ the
Fourier spectrum of E, we use

— L * 5 jot _ i = S N —jo't 3,7
E,t) = E(r, w)e!” dw = E*(r,w)e do’,
21 J_w 27 J_so

oD(r, 1) _

1 o - . 1 o - .
—/ (jo)D(r, w)e!™ dw = —/ (—jo"D*(r, 0)e /" do'.
at 21 J_ o 27 J_oo

2Note that in this section we suppress the r-dependence of most quantities for clarity of presentation.



We have obtained the second form of each of these expressions using the property (4.3)

for the transform of a real function, and by using the change of variables ' = —w.
Multiplying the two forms of the expressions and adding half of each, we find that
dw, *® do’ . - . - o
w B / dow f w [ . N _ JC(),E(C()) . D*(C(),)] efj((z) 7(1))[. (457)
2w J_o 27

Now let us consider a dispersive isotropic medium described by the constitutive rela-
tions D = €E, B = fiH. Since the imaginary parts of € and fi are associated with power
dissipation in the medium, we shall approximate € and fi as purely real. Then (4.57)
becomes

Jw,
We _ / / E*(a)) E(w) [jwé(@) — jo'&(@)] e @,
Substitution from (4.55) now gives

f waOdw'[,~ — joE@))]-

F(Q) a)O)F((l) — wo) +E E*F(a)—l—a)o)F(a) + wp)+
+ EF (0 — w)F (0 + wp) + E* - E*F (0 + ) F (0 — wp)] e/~

Let w — —w wherever the term F(w + wy) appears, and o — —«' wherever the term
F(o' + wy) appears. Since F(—w) = F(w) and é(—w) = &(w), we find that

8we_ / w/oodw’~
2w J_ o 27

E-Ejoé(w) — jo'€@)]e! @ + E-E[jo/é(@) — joé(w)]e! " +

+ E-E[jwé(w) + jo'&@)]e! @t + B B[~ jwé (o) — jw’e(w’)]fﬂw*w’)f].
(4.58)
For small o the spectra are concentrated near w = wy or o = wy. For terms involving

the difference in the permittivities we can expand g(w) = wé€(w) in a Taylor series about
wo to obtain the approximation

wé(w) ~ wyé(wy) + (0 — wo)g' (wp)

where

d[wé(w)]

g (wo) = "

w=wy

This is not required for terms involving a sum of permittivities since these will not tend
to cancel. For such terms we merely substitute @ = wp or ' = wy. With these (4.58)

becomes
_1/"°da)/°°da)/~
T8 ) 2 ) o 27

: [E B g (o) (@ — )]/ + E - Eg (o) (0 — w)]e/ " +

+ E-Ee(wo)lj (@ + )]e T + B - K (wo)[—j (@ + w')]e’j(’”*“’/)’] .



By integration

() 1/00 d“’/m 29 (w0 — w0 F (@ — o)
We =3 - w— W w — wo) -
8) o) o 2n 0 0
+ E - E&(wp)e/ @t + E*. E*g(wo)e—j<w+w’>z] '

Our last step is to compute the time-average value of w, and let « — 0. Applying
(4.56) we find

1 [®do [*®do . =,
(we)=§/ 2—/ F(w — wo) F (0w — ay) -
o0 2 J_oo

2w
.. . T L L ) b4
) |:2E -E*g’(wp) sinc <[a) — a)/]w—) +{E*-E* + E - E} &(wp) sinc <[w + a)/]w—>}
0 0

where sinc(x) is defined in (A.9) and we note that sinc(—x) = sinc(x). Finally we let

o — 0 and use (4.53) to replace F(w) by a 8-function. Upon integration these 8-functions

set w = wp and @ = wy. Since sinc(0) = 1 and sinc(27) = 0, the time-average stored
electric energy density becomes simply

1 . ,0[wé]
= - |EP—— 4.59
(we) 4| | 20 |, (4.59)
Similarly,
1 0wl
(wn) = J[HP———
4 GION P
This approach can also be applied to anisotropic materials to give
1., O[wé .
(we) = SE*- Le] : (4.60)
w =y
1., Odlwit) .
m) = —H* - 4.61
(wn) = 7 i | (4.61)

See Collin [39] for details. For the case of a lossless, nondispersive material where the
constitutive parameters are frequency independent, we can use (4.49) and (A.76) to
simplify this and obtain

1. . .

) =-E".&-E=-E.D 4.62
(we) JE € i (4.62)
(W) Yoopon=law (4.63)
Wy) = — . . = - . s .

g H 4
in the anisotropic case and
1.

) = —€|E]> = —E - D", 4.64
(we) 4€| | 1 (4.64)
(W) = ulHP = 1B (4.65)
W) = — =-H-B", .

iy 4

in the isotropic case. Here E, D, B, H are all phasor fields as defined by (4.54).



4.5.3 The energy theorem

A convenient expression for the time-average stored energies (4.60) and (4.61) is found
by manipulating the frequency-domain Maxwell equations. Beginning with the complex
conjugates of the two frequency-domain curl equations for anisotropic media,

V xE* = jop" - H,
VxH =J — jwe - E,

we differentiate with respect to frequency:

) O Mol ~ ., OH*
V x = lop ] ‘H* + jop" - . (4.66)
ow Jw dw
oH* )" Awe"] .. OE*
_W dwe] g e OE (4.67)
Jw ow ow Jw
These terms also appear as a part of the expansion
SN ¢ GG D
V.- |E x + xH| =
ow dw
dH* o G) ¢ G- dE*  JE* 8
[VXE]—E- -V x +H- -V x - <[V x H]
W ow ow ow

where we have used (B.44). Substituting from (4.66)-(4.67) and eliminating V x E and
V x H by Maxwell’s equations we have

1 . oH* OE* .
-V.-|E x + xH)| =

4 Jw ow

1 £ e oE*  9E* _ & +_1 q. & oH*  9H* i) 4+
pa— .6 . —_— .6- —_ . . —_— . .

J4w ow ow J4w K ow ow K
(. wE) ., ~ dwp'] - 1 (. 3 . OE*
_|E. E*+H — - .1 --(E. . .

+J4( dw + ow 4 dw +J dw

Let us assume that the sources and fields are narrowband, centered on wy, and that wy
lies within a transparency range so that within the band the material may be considered
lossless. Invoking from (4.49) the facts that &€ = & and fi = fi', we find that the first two
terms on the right are zero. Integrating over a volume and taking the complex conjugate
of both sides we obtain

1 [ (& 0H 0E
—f B x — 4+ = xH")-dS=
4 J ow  dw

1 [ (e 0lwE]l o -~ Olof] ) )
—j—/ E*-E-E—}—H*-M-H dV——/ E*._J+J*._ dv.

4 Jy ow ow 4 Jy Jw ow
Evaluating each of the terms at w = wy and using (4.60)—(4.61) we have

-dS =

1 . 9H OME .
- E*x — + — x H
4 Js o Jdw w=aw0

1 . 3] . OE
—j[<We>+<Wm>]——f (E L )
\%

dv (4.68)

w=w

4 dw dw




where (W, ) + (W,,) is the total time-average electromagnetic energy stored in the volume
region V. This is known as the energy theorem. We shall use it in § 4.11.3 to determine
the velocity of energy transport for a plane wave.

4.6 Some simple models for constitutive parameters

Thus far our discussion of electromagnetic fields has been restricted to macroscopic
phenomena. Although we recognize that matter is composed of microscopic constituents,
we have chosen to describe materials using constitutive relationships whose parameters,
such as permittivity, conductivity, and permeability, are viewed in the macroscopic sense.
By performing experiments on the laboratory scale we can measure the constitutive
parameters to the precision required for engineering applications.

At some point it becomes useful to establish models of the macroscopic behavior of
materials based on microscopic considerations, formulating expressions for the consti-
tutive parameters using atomic descriptors such as number density, atomic charge, and
molecular dipole moment. These models allow us to predict the behavior of broad classes
of materials, such as dielectrics and conductors, over wide ranges of frequency and field
strength.

Accurate models for the behavior of materials under the influence of electromagnetic
fields must account for many complicated effects, including those best described by quan-
tum mechanics. However, many simple models can be obtained using classical mechanics
and field theory. We shall investigate several of the most useful of these, and in the
process try to gain a feeling for the relationship between the field applied to a material
and the resulting polarization or magnetization of the underlying atomic structure.

For simplicity we shall consider only homogeneous materials. The fundamental atomic
descriptor of “number density,” N, is thus taken to be independent of position and time.
The result may be more generally applicable since we may think of an inhomogeneous
material in terms of the spatial variation of constitutive parameters originally deter-
mined assuming homogeneity. However, we shall not attempt to study the microscopic
conditions that give rise to inhomogeneities.

4.6.1 Complex permittivity of a non-magnetized plasma

A plasma is an ionized gas in which the charged particles are free to move under
the influence of an applied field and through particle-particle interactions. A plasma
differs from other materials in that there is no atomic lattice restricting the motion of
the particles. However, even in a gas the interactions between the particles and the fields
give rise to a polarization effect, causing the permittivity of the gas to differ from that
of free space. In addition, exposing the gas to an external field will cause a secondary
current to flow as a result of the Lorentz force on the particles. As the moving particles
collide with one another they relinquish their momentum, an effect describable in terms
of a conductivity. In this section we shall perform a simple analysis to determine the
complex permittivity of a non-magnetized plasma.

To make our analysis tractable, we shall make several assumptions.

1. We assume that the plasma is neutral: i.e., that the free electrons and positive ions
are of equal number and distributed in like manner. If the particles are sufficiently



dense to be considered in the macroscopic sense, then there is no net field produced
by the gas and thus no electromagnetic interaction between the particles. We also
assume that the plasma is homogeneous and that the number density of the electrons
N (number of electrons per m?) is independent of time and position. In contrast to
this are electron beams, whose properties differ significantly from neutral plasmas
because of bunching of electrons by the applied field [148].

2. We ignore the motion of the positive ions in the computation of the secondary
current, since the ratio of the mass of an ion to that of an electron is at least as
large as the ratio of a proton to an electron (m,/m, = 1837) and thus the ions
accelerate much more slowly.

3. We assume that the applied field is that of an electromagnetic wave. In § 2.10.6
we found that for a wave in free space the ratio of magnetic to electric field is

[H|/|E| = +/€0/ 10, so that
B €0 1
7 = Mo,/ — = A/MH0o€0 = —.
|E| V 1o c

Thus, in the Lorentz force equation we may approximate the force on an electron
as

F= _qe(E+V XB) ~ _qu

as long as v « c¢. Here ¢, is the unsigned charge on an electron, ¢, = 1.6021 x
107! C. Note that when an external static magnetic field accompanies the field of
the wave, as is the case in the earth’s ionosphere for example, we cannot ignore the
magnetic component of the Lorentz force. This case will be considered in § 4.6.2.

4. We assume that the mechanical interactions between particles can be described
using a collision frequency v, which describes the rate at which a directed plasma
velocity becomes random in the absence of external forces.

With these assumptions we can write the equation of motion for the plasma medium.
Let v(r, 1) represent the macroscopic velocity of the plasma medium. Then, by Newton’s
second law, the force acting at each point on the medium is balanced by the time-rate of
change in momentum at that point. Because of collisions, the total change in momentum
density is described by

F@J):—N%E@J)zfg%il

p +vp(r, 1) (4.69)

where
@@, 1) = Nm,v(r,t)

is the volume density of momentum. Note that if there is no externally-applied electro-
magnetic force, then (4.69) becomes

d t
%+v5®(r,t)=0.

Hence

vt

o, 1) = gpo(r)e ",

and we see that v describes the rate at which the electron velocities move toward a
random state, producing a macroscopic plasma velocity v of zero.



The time derivative in (4.69) is the total derivative as defined in (A.58):

dp@,t) odp(,t)
dt 0t
The second term on the right accounts for the time-rate of change of momentum per-
ceived as the observer moves through regions of spatially-changing momentum. Since
the electron velocity is induced by the electromagnetic field, we anticipate that for a
sinusoidal wave the spatial variation will be on the order of the wavelength of the field:
A = 2mc/w. Thus, while the first term in (4.70) is proportional to w, the second term is
proportional to wv/c and can be neglected for non-relativistic particle velocities. Then,
writing E(r, 1) and v(r, 7) as inverse Fourier transforms, we see that (4.69) yields

+ (v-V)gp(r, o). (4.70)

—q.E = jom,V+ m,v¥v (4.71)
and thus
o f
v=——c . (4.72)
V+ jw

The secondary current associated with the moving electrons is (since g, is unsigned)
2

_ L w;, L
where
Ng?
2 e
= =< 4.74
@ €M, ( )

is called the plasma frequency.
The frequency-domain Ampere’s law for primary and secondary currents in free space
is merely

VxH=J +J + joeE.

Substitution from (4.73) gives

N < eoa)?,v N ) a)?, N
VxH=J 4+ Lot joe |1 - L |E.

We can determine the material properties of the plasma by realizing that the above
expression can be written as

VxH=J +JF + joD
with the constitutive relations

J=6E,  D=¢E
Here we identify the conductivity of the plasma as

G (w) = 2 (4.75)

and the permittivity as




We can also write Ampere’s law as
VxH=J + jweE

where €° is the complex permittivity

5 5 6’((1)) (,()?, . 6()(,()?71)
¢ = _— = 1 - - . 4
@ =@+ jo € |: o + v2i| / w(w? +1v?) (4.76)

If we wish to describe the plasma in terms of a polarization vector, we merely use D =
€oE + P = €E to obtain the polarization vector P = (¢ — €))E = ¢y X.E, where j. is the
electric susceptibility
2
w? +v?’

Xe (w) =

We note that P is directed opposite the applied field E, resulting in & < €.

The plasma is dispersive since both its permittivity and conductivity depend on w.
As @ — 0 we have &€¥ — €pe, where ¢, = 1 — wf,/vz, and also & ~ 1/w, as remarked
in (4.28). As @ — oo we have &’ — ¢y ~ 1/w? and & ~ 1/w?, as mentioned in (4.29).
When a transient plane wave propagates through a dispersive medium, the frequency
dependence of the constitutive parameters tends to cause spreading of the waveshape.

We see that the plasma conductivity (4.75) is proportional to the collision frequency v,
and that, since € < 0 by the arguments of § 4.5, the plasma must be lossy. Loss arises
from the transfer of electromagnetic energy into heat through electron collisions. If there
are no collisions (v = 0), there is no mechanism for the transfer of energy into heat, and
the conductivity of a lossless (or “collisionless”) plasma reduces to zero as expected.

In a lowloss plasma (v — 0) we may determine the time-average stored electromagnetic
energy for sinusoidal excitation at frequency @. We must be careful to use (4.59), which
holds for materials with dispersion. If we apply the simpler formula (4.64), we find that
forv— 0

. .
(we) = JeolEP — Sl 2S.
For those excitation frequencies obeying & < w, we have (w,) < 0, implying that the
material is active. Since there is no mechanism for the plasma to produce energy, this is
obviously not valid. But an application of (4.59) gives

1.,0 a)i
(we) = Z|E| % |:€060< - E)i|

which is always positive. In this expression the first term represents the time-average
energy stored in the vacuum, while the second term represents the energy stored in the
kinetic energy of the electrons. For harmonic excitation, the time-average electron kinetic
energy density is

1 . 1 . 0
= —l|El* + Z€0|E|2

1 w—g (4.77)

=00

v vk

1
(wy) = ZNmeV~v .

Substituting v from (4.72) with v = 0 we see that

1 1 Ng? w?
CNm v = e P
4 4 mo?

which matches the second term of (4.77).

. 1
2 2
B = jeolE’ =5



Figure 4.3: Integration contour used in Kronig—Kramers relations to find € from &<’

a non-magnetized plasma.

for

The complex permittivity of a plasma (4.76) obviously obeys the required frequency-
symmetry conditions (4.27). It also obeys the Kronig—Kramers relations required for
a causal material. From (4.76) we see that the imaginary part of the complex plasma
permittivity is

2
€0WV
(W) = ———5——= b -
w(w? + v?)

Substituting this into (4.37) we have

e 2 e eoa)iv Q
€ (w) — e = ——P.V./ — 3 3 3 2dQ'
T 0 QI +v?) | @ —w

We can evaluate the principal value integral and thus verify that it produces €< by
using the contour method of § A.1. Because the integrand is even we can extend the
domain of integration to (—oo, 00) and divide the result by two. Thus

e 1 o €y v dQ
é (w)—eoz—P.V.f - - .
T —oo (2= jV)(Q+ jv) (& — ) (2 + w)

We integrate around the closed contour shown in Figure 4.3. Since the integrand falls
off as 1/Q* the contribution from Cq, is zero. The contributions from the semicircles C,,
and C_,, are given by 7j times the residues of the integrand at Q2 = w and at Q = —w,
respectively, which are identical but of opposite sign. Thus, the semicircle contributions
cancel and leave only the contribution from the residue at the upper-half-plane pole
Q = jv. Evaluation of the residue gives

2 2
€ow, Vv 1 €ow),

Vv Gr—oGyte) v+

e (w) —eg = —2mj



and thus

w2
~c/ — 1— )4 ,
€ (w) = ¢ N

which matches (4.76) as expected.

4.6.2 Complex dyadic permittivity of a magnetized plasma

When an electron plasma is exposed to a magnetostatic field, as occurs in the earth’s
ionosphere, the behavior of the plasma is altered so that the secondary current is no longer
aligned with the electric field, requiring the constitutive relationships to be written in
terms of a complex dyadic permittivity. If the static field is By, the velocity field of the
plasma is determined by adding the magnetic component of the Lorentz force to (4.71),
giving

~qe[E+ ¥ x Bo] = ¥(jowm, + m.v)

or equivalently

~ . qe ~ . qe -
—j———V¥xBy=j——E. 4.78
]me(w—jv)vx 0 ]me(a)—jv) ( )
Writing this expression generically as
v+vxC=A, (4.79)

we can solve for v as follows. Dotting both sides of the equation with C we quickly
establish that C-v = C-A. Crossing both sides of the equation with C, using (B.7), and
substituting C - A for C - v, we have

vxC=AxC+v(C-C)—-CA-O).

Finally, substituting v x C back into (4.79) we obtain
A-AxC+(A-CC
V= :
1+C-C

Let us first consider a lossless plasma for which v = 0. We can solve (4.78) for ¥ by
setting

(4.80)

2

w €W,
C=—j—, A=j—"E
0] wNg,
where
W, = 2]30.
me

Here w, = q.By/m, = |w,| is called the electron cyclotron frequency. Substituting these
into (4.80) we have

2 2 2
Eg . (1% ~ w,. €Egw ~
(a)z—a)g)€’=j PE 4+ PwexE—j—=—Lw, -E
Ng. Ng. ® Ng,
Since the secondary current produced by the moving electrons is just J* = —Ng.V, we

have

~ 60)2 ~ E(Jl)2 ~ 66()2 ~
JS:jw[_ TP Bt we x Bt e P B (4.81)

w,
2 _ 2 2 _ 2 2.2 2 ¢
w w; w(a) a)c) w” W wg



Now, by the Ampere—Maxwell law we can write for currents in free space
VxH=J +J + jwekE. (4.82)

Considering the plasma to be a material implies that we can describe the gas in terms
of a complex permittivity dyadic € such that the Ampere-Maxwell law is

VxH=J + jwé - E.

Substituting (4.81) into (4.82), and defining the dyadic @, so that @, - E = w, x E, we
identify the dyadic permittivity

&) =|e—e A S . L S (4.83)
€ = - . W )
@ 00— w? J w(w? — w?) o (@* — w?)

Note that in rectangular coordinates

0 -, Wy
[Wl=]| w; 0 —we |. (4.84)
—wey wex 0

To examine the properties of the dyadic permittivity it is useful to write it in matrix
form. To do this we must choose a coordinate system. We shall assume that By is aligned
along the z-axis such that By = 2By and w. = Zw.. Then (4.84) becomes

0 —w:.0
[@l=|w 0 0 (4.85)
0 00

and we can write the permittivity dyadic (4.83) as

€ —js 0
Ew]l=|js € 0 (4.86)
0 0 e
where
w? w? 0w >
— P — P — <pr
6—60(1—m>, 62—6()(]—?), S—M

Note that the form of the permittivity dyadic is that for a lossless gyrotropic material
(2.33).

Since the plasma is lossless, equation (4.49) shows that the dyadic permittivity must
be hermitian. Equation (4.86) confirms this. We also note that since the sign of w, is
determined by the sign of By, the dyadic permittivity obeys the symmetry relation

&, (Bo) = &, (~By) (4.87)
as does the permittivity matrix of any material that has anisotropic properties dependent

on an externally applied magnetic field [141]. We will find later in this section that the
permeability matrix of a magnetized ferrite also obeys such a symmetry condition.



We can let ® — @ — jv in (4.81) to obtain the secondary current in a plasma with
collisions:

€0 (w — jv N
0w, (w — jv) B(r. )+

ol(® — jv)? — 7]

js(l', (1)) = ]a) |:—

€0’ (@ — jv)

+Jj . . w, x E(r, w) +
ot — )l — jv? — wd)]
€0w2(w — jv) .
+ wc. St - ! we-E(r,w) |.
(@ — jv)? ol(® — jv)? — o]
From this we find the dyadic permittivity
2 : 2
(- jv) 1. cow )
E@=e— —t T+ &,
ol(w — jv)* — o] ol(® — jv)* — w;)]
1 6()(,()2

P Wewe.
(@—jv) ol(@— jv)? -2l "

Assuming that By is aligned with the z-axis we can use (4.85) to find the components of
the dyadic permittivity matrix:

: : wy (@ — jv)
g;x(a)) = g;y(a)) = € <1 — w[(wp_ jv)Z — a)Z]) s (488)
£ (1) = £ () = — W) e 4.89
&y (@) = —€ (0) = I = v = T (4.89)

w(w— jv)

(,()2
&.(w) =€ (1 -—F— ) , (4.90)

and
&, =&, = €ch = %f,z =0. (4.91)

We see that [€¢] is not hermitian when v % 0. We expect this since the plasma is lossy
when collisions occur. However, we can decompose [€°] as a sum of two matrices:

= 181+ 2,
jo

where [€] and [&] are hermitian [141]. The details are left as an exercise. We also note
that, as in the case of the lossless plasma, the permittivity dyadic obeys the symmetry
condition &, (Bo) = &,(~By).

4.6.3 Simple models of dielectrics

We define an isotropic dielectric material (also called an insulator) as one that obeys
the macroscopic frequency-domain constitutive relationship

D(r, w) = &(r, 0)E(r, 0).

Since the polarization vector P was defined in Chapter 2 as P(r, t) = D(r, 1) — ¢E(r, 1),
an isotropic dielectric can also be described through

P(r, w) = E(r, w) — €)E(r, w) = %.(r, w)eE(r, o)



where %, is the dielectric susceptibility. In this section we shall model a homogeneous
dielectric consisting of a single, uniform material type.

We found in Chapter 3 that for a dielectric material immersed in a static electric field,
the polarization vector P can be viewed as a volume density of dipole moments. We
choose to retain this view as the fundamental link between microscopic dipole moments
and the macroscopic polarization vector. Within the framework of our model we thus
describe the polarization through the expression

1
P(r,t) = — ;. 4.92
(r, 1) AVF_,,.(ZMP (4.92)

Here p; is the dipole moment of the ith elementary microscopic constituent, and we form
the macroscopic density function as in § 1.3.1.
We may also write (4.92) as

N 1 Y
P(r,t) = |:A—€:| |:N—B Zpi:| = N(r,)p(r, 1) (4.93)
i=1

where Np is the number of constituent particles within AV. We identify

1 Qe
(rst)z_ i(ryt)
P N ;p

as the average dipole moment within AV, and

Np
N(r,t) = AV
as the dipole moment number density. In this model a dielectric material does not require
higher-order multipole moments to describe its behavior. Since we are only interested
in homogeneous materials in this section we shall assume that the number density is
constant: N(r,t) = N.

To understand how dipole moments arise, we choose to adopt the simple idea that mat-
ter consists of atomic particles, each of which has a positively charged nucleus surrounded
by a negatively charged electron cloud. Isolated, these particles have no net charge and
no net electric dipole moment. However, there are several ways in which individual par-
ticles, or aggregates of particles, may take on a dipole moment. When exposed to an
external electric field the electron cloud of an individual atom may be displaced, resulting
in an induced dipole moment which gives rise to electronic polarization. When groups
of atoms form a molecule, the individual electron clouds may combine to form an asym-
metric structure having a permanent dipole moment. In some materials these molecules
are randomly distributed and no net dipole moment results. However, upon application
of an external field the torque acting on the molecules may tend to align them, creating
an induced dipole moment and orientation, or dipole, polarization. In other materials,
the asymmetric structure of the molecules may be weak until an external field causes
the displacement of atoms within each molecule, resulting in an induced dipole moment
causing atomic, or molecular, polarization. If a material maintains a permanent polar-
ization without the application of an external field, it is called an electret (and is thus
similar in behavior to a permanently magnetized magnet).

To describe the constitutive relations, we must establish a link between P (now describ-
able in microscopic terms) and E. We do this by postulating that the average constituent



dipole moment is proportional to the local electric field strength E':
p =oE, (4.94)

where « is called the polarizability of the elementary constituent. Each of the polarization
effects listed above may have its own polarizability: «, for electronic polarization, «, for
atomic polarization, and «, for dipole polarization. The total polarizability is merely the
sum o = &, + a, + og.

In a rarefied gas the particles are so far apart that their interaction can be neglected.
Here the localized field E’ is the same as the applied field E. In liquids and solids where
particles are tightly packed, E’ depends on the manner in which the material is polarized
and may differ from E. We therefore proceed to determine a relationship between E
and P.

The Clausius—Mosotti equation. We seek the local field at an observation point
within a polarized material. Let us first assume that the fields are static. We surround
the observation point with an artificial spherical surface of radius a and write the field at
the observation point as a superposition of the field E applied, the field E; of the polarized
molecules external to the sphere, and the field E; of the polarized molecules within the
sphere. We take a large enough that we may describe the molecules outside the sphere in
terms of the macroscopic dipole moment density P, but small enough to assume that P
is uniform over the surface of the sphere. We also assume that the major contribution to
E, comes from the dipoles nearest the observation point. We then approximate E, using
the electrostatic potential produced by the equivalent polarization surface charge on the
sphere pp;, = i - P (where @ points toward the center of the sphere). Placing the origin
of coordinates at the observation point and orienting the z-axis with the polarization P
so that P = Pyz, we find that i- P = —cos6 and thus the electrostatic potential at any
point r within the sphere is merely

| P 0’
dr) = —— 7{ AT
4meg Js [r — 1|
This integral has been computed in § 3.2.7 with the result given by (3.103) Hence
Po Py
dr)=—— 0=——
(r) 360}" cos 3601
and therefore
P
E,=—. 4.95
2 360 ( )

Note that this is uniform and independent of a.

The assumption that the localized field varies spatially as the electrostatic field, even
when P may depend on frequency, is quite good. In Chapter 5 we will find that for a
frequency-dependent source (or, equivalently, a time-varying source), the fields very near
the source have a spatial dependence nearly identical to that of the electrostatic case.

We now have the seemingly more difficult task of determining the field E; produced
by the dipoles within the sphere. This would seem difficult since the field produced by
dipoles near the observation point should be highly-dependent on the particular dipole
arrangement. As mentioned above, there are various mechanisms for polarization, and
the distribution of charge near any particular point depends on the molecular arrange-
ment. However, Lorentz showed [115] that for crystalline solids with cubical symmetry,



or for a randomly-structured gas, the contribution from dipoles within the sphere is zero.
Indeed, it is convenient and reasonable to assume that for most dielectrics the effects of
the dipoles immediately surrounding the observation point cancel so that E; = 0. This
was first suggested by O.F. Mosotti in 1850 [52].

With E, approximated as (4.95) and E; assumed to be zero, we have the value of the
resulting local field:

E(r) = Er) + % (4.96)

This is called the Mosotti field. Substituting the Mosotti field into (4.94) and using
P = Np, we obtain

P(r) = NoE'(r) = (E( ) + Q)
36()
Solving for P we obtain

_ 360N0[ _
P(r) = <m> E(r) = xecoE(r).

So the electric susceptibility of a dielectric may be expressed as

3N
Xo= o (4.97)
3¢ — Na
Using x, = €, — 1 we can rewrite (4.97) as
3+2N
€ = €ye, = eo;a/eo, (4.98)
3— Na/e
which we can arrange to obtain
3¢pe, — 1

a=0o,+uo, +a; = 76, gy
This has been named the Clausius—Mosotti formula, after O.F. Mosotti who proposed it
in 1850 and R. Clausius who proposed it independently in 1879. When written in terms of
the index of refraction n (where n> = ¢,), it is also known as the Lorentz—Lorenz formula,
after H. Lorentz and L. Lorenz who proposed it independently for optical materials in
1880. The Clausius—Mosotti formula allows us to determine the dielectric constant from
the polarizability and number density of a material. It is reasonably accurate for certain
simple gases (with pressures up to 1000 atmospheres) but becomes less reliable for liquids
and solids, especially for those with large dielectric constants.

The response of the microscopic structure of matter to an applied field is not instanta-
neous. When exposed to a rapidly oscillating sinusoidal field, the induced dipole moments
may lag in time. This results in a loss mechanism that can be described macroscopically
by a complex permittivity. We can modify the Clausius—-Mosotti formula by assuming
that both the relative permittivity and polarizability are complex numbers, but this will
not model the dependence of these parameters on frequency. Instead we shall (in later
paragraphs) model the time response of the dipole moments to the applied field.

An interesting application of the Clausius—Mosotti formula is to determine the permit-
tivity of a mixture of dielectrics with different permittivities. Consider the simple case
in which many small spheres of permittivity €,, radius @, and volume V are embedded



within a dielectric matrix of permittivity €;. If we assume that a is much smaller than
the wavelength of the electromagnetic field, and that the spheres are sparsely distributed
within the matrix, then we may ignore any mutual interaction between the spheres. Since
the expression for the permittivity of a uniform dielectric given by (4.98) describes the
effect produced by dipoles in free space, we can use the Clausius—Mosotti formula to
define an effective permittivity €, for a material consisting of spheres in a background
dielectric by replacing €y with €; to obtain

34+ 2Na/e;
[ e
"3 Na/e

In this expression « is the polarizability of a single dielectric sphere embedded in the
background dielectric, and N is the number density of dielectric spheres. To find «
we use the static field solution for a dielectric sphere immersed in a field (§ 3.2.10).
Remembering that p = «E and that for a uniform region of volume V we have p = VP,
we can make the replacements €y — €; and € — €, in (3.117) to get

€, =

(4.99)

a=3V——1, (4.100)

Defining f = NV as the fractional volume occupied by the spheres, we can substitute
(4.100) into (4.99) to find that

14+2fy
€6 ———
L—fy

e =

where
€y) — €]
= €+ 2
This is known as the Mazwell-Garnett mizing formula. Rearranging we obtain
€ — €] €) — €]
€, + 2€; - €+ 2¢,’

which is known as the Rayleigh mizing formula. As expected, €, — €; as f — 0. Even
though as f — 1 the formula also reduces to €, = €;, our initial assumption that f < 1
(sparsely distributed spheres) is violated and the result is inaccurate for non-spherical
inhomogeneities [90]. For a discussion of more accurate mixing formulas, see Ishimaru
[90] or Sihvola [175].

The dispersion formula of classical physics. We may determine the frequency de-
pendence of the permittivity by modeling the time response of induced dipole moments.
This was done by H. Lorentz using the simple atomic model we introduced earlier. Con-
sider what happens when a molecule consisting of heavy particles (nuclei) surrounded by
clouds of electrons is exposed to a time-harmonic electromagnetic wave. Using the same
arguments we made when we studied the interactions of fields with a plasma in § 4.6.1,
we assume that each electron experiences a Lorentz force F, = —¢.E. We neglect the
magnetic component of the force for nonrelativistic charge velocities, and ignore the mo-
tion of the much heavier nuclei in favor of studying the motion of the electron cloud.
However, several important distinctions exist between the behavior of charges within a
plasma and those within a solid or liquid material. Because of the surrounding polarized
matter, any molecule responds to the local field E’ instead of the applied field E. Also,
as the electron cloud is displaced by the Lorentz force, the attraction from the positive



nuclei provides a restoring force F,. In the absence of loss the restoring force causes
the electron cloud (and thus the induced dipole moment) to oscillate in phase with the
applied field. In addition, there will be loss due to radiation by the oscillating molecules
and collisions between charges that can be modeled using a “frictional force” F; in the
same manner as for a mechanical harmonic oscillator.

We can express the restoring and frictional forces by the use of a mechanical analogue.
The restoring force acting on each electron is taken to be proportional to the displacement
from equilibrium I:

F(r,1) = —m.w}I(r, 1),

where m, is the mass of an electron and w, is a material constant that depends on the
molecular structure. The frictional force is similar to the collisional term in § 4.6.1 in
that it is assumed to be proportional to the electron momentum m,v:

F,(r,t) = —2Tm,v(r, 1)

where T is a material constant. With these we can apply Newton’s second law to obtain
dv(r,t)

dr
Using v = dl/dt we find that the equation of motion for the electron is

d?\(r, 1) di(r, 1)
2r
dt? + dt

We recognize this differential equation as the damped harmonic equation. When E' =0
we have the homogeneous solution

I(r, 1) = ly(r)e " cos (t,/a)f - Fz) .

Thus the electron position is a damped oscillation. The resonant frequency /w? — I'? is
usually only slightly reduced from w, since radiation damping is generally quite low.

Since the dipole moment for an electron displaced from equilibrium by 1 is p = —g.l,
and the polarization density is P = Np from (93), we can write

F(r,1) = —qE'(r, 1) — m,?I(r, 1) — 2m,v(r, 1) = m,

oA, ) = — L E (1), (4.101)
m,

P(r,t) = —Ng(r, t).

Multiplying (4.101) by —Ng, and substituting the above expression, we have a differential
equation for the polarization:

N q2
— +2I— + w’P = —<F
dt? dt " M,
To obtain a constitutive equation we must relate the polarization to the applied field E.
We can accomplish this by relating the local field E’ to the polarization using the Mosotti
field (4.96). Substitution gives

¢ (4.102)

where




is the resonance frequency of the dipole moments. We see that this frequency is reduced
from the resonance frequency of the electron oscillation because of the polarization of
the surrounding medium.

We can now obtain a dispersion equation for the electrical susceptibility by taking the
Fourier transform of (4.102). We have

_ _ . Ng?.
—*P + jo2I'P 4+ 2P = —° .
Thus we obtain the dispersion relation
p o)

el S 5 AN
Relw) = ) wg — w? + jw2l

where w, is the plasma frequency (4.74). Since & (w) = 1 + ¥.(w) we also have

w?

e(a)) =€y + EOT:_JCUZF (4103)

If more than one type of oscillating moment contributes to the permittivity, we may
extend (4.103) to

w?

Zw)=¢e + > € 2 4.104
(w) =€ Z "7~ + jwal; ( )

where w),; = Niqf/eomi is the plasma frequency of the ith resonance component, and
w; and TI'; are the oscillation frequency and damping coefficient, respectively, of this
component. This expression is the dispersion formula for classical physics, so called
because it neglects quantum effects. When losses are negligible, (4.104) reduces to the
Sellmeier equation

2

~ wpi
E(w) =€+ E €05
T @

ot (4.105)
1
Let us now study the frequency behavior of the dispersion relation (4.104). Splitting
the permittivity into real and imaginary parts we have

w; —(1)2

~/ _
(@) — € = € Zwm wz]z + 40T

ol’
~1 _ i
€ ((,()) = —¢€o prl +4(1)2F2
As w — 0 the permittivity reduces to

?,
=¢ |1+ 2 s
2
which is the static permittivity of the material. As @ — oo the permittivity behaves as

.a)2. 2 .a)z.Fi
&' (w) = € (1 — —Z;)z ) & (w) — —60721 3p’ )

This high frequency behavior is identical to that of a plasma as described by (4.76).
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Figure 4.4: Real and imaginary parts of permittivity for a single resonance model of a
dielectric with I'/wy = 0.2. Permittivity normalized by dividing by €p(w, Jwo)?.

The major characteristic of the dispersion relation (4.104) is the presence of one or
more resonances. Figure 4.4 shows a plot of a single resonance component, where we
have normalized the permittivity as

1 —&?

[1 - @] +4a2F2
26T
[1— @] + 422

(€ () — €0)/(e0®}) =

—&" W)/ (@) =

with @ = w/wy, @, = w,/wy, and T = I'Jwy. We see a distinct resonance centered at
w = wy. Approaching this resonance through frequencies less than wjy, we see that &’
increases slowly until peaking at wmax = wo+/1 — 2I'/wy where it attains a value of

@)
E’ =€)+ —€g=—"—.
max = 0T 4 OF T
After peaking, & undergoes a rapid decrease, passing through & = ¢, at w = wp, and
then continuing to decrease until reaching a minimum value of

1@
. — €) — — €=
min — "0 470F(q

=N

g/

)

+

at @i = ®@o/1+ 2T /wy. As @ continues to increase, € again increases slowly toward
a final value of & = €. The regions of slow variation of & are called regions of normal
dispersion, while the region where € decreases abruptly is called the region of anomalous
dispersion. Anomalous dispersion is unusual only in the sense that it occurs over a
narrower range of frequencies than normal dispersion.



The imaginary part of the permittivity peaks near the resonant frequency, dropping
off monotonically in each direction away from the peak. The width of the curve is an
important parameter that we can most easily determine by approximating the behavior
of & near wy. Letting Ad = (wg — w)/wy and using

w(z) —w? = (wy — w)(wy + w) ~ Zw(z)Ad),

we get

@ ~ LT

€ (W)~ ——€euw,————=>.
270 (A@)? + T2

This approximation has a maximum value of

1
~// v _ —2
€max = € (wp) = _Eeow”F
located at w = wy, and has half-amplitude points located at A@® = +I". Thus the width
of the resonance curve is

W =2r.

Note that for a material characterized by a low-loss resonance (I' < wy), the location of
€max can be approximated as

wmax = woy/ 1 — 2T Jwg ~ wy — T

while € . is located at
min

Omin = woy' 1 +2I/wo = wo + T,

The region of anomalous dispersion thus lies between the half amplitude points of €”:
wy—I'<w<wy+T.

As T' — 0 the resonance curve becomes narrower and taller. Thus, a material charac-
terized by a very low-loss resonance may be modeled very simply using €’ = A8(w — wy),
where A is a constant to be determined. We can find A by applying the Kronig-Kramers
formula (4.37):

2 7 QdQ 2
1)
d) —e= ——P.V./AS(Q W)y = —— A
i Q2 — w? T wy— w?
0
Since the material approaches the lossless case, this expression should match the Sellmeier
equation (4.105):

2 [0} w?
— _A 5 2 = € 5 P 3
T owy—w Wy —
giving A = —neoa)i /2wp. Hence the permittivity of a material characterized by a low-loss

resonance may be approximated as

2 2

e w . T @
& (w) = ¢ <1 + ﬁ) — ]60——p5(a) — wop).

w w 2 wy



60|

401
201
0 VPPTL L L L L e LT
7 8 9 10 11 12

l0g,4( 1)

Figure 4.5: Relaxation spectrum for water at 20° C found using Debye equation.

Debye relaxation and the Cole—Cole equation. In solids or liquids consisting of
polar molecules (those retaining a permanent dipole moment, e.g., water), the resonance
effect is replaced by relazation. We can view the molecule as attempting to rotate in
response to an applied field within a background medium dominated by the frictional
term in (4.101). The rotating molecule experiences many weak collisions which continu-
ously drain off energy, preventing it from accelerating under the force of the applied field.
J.W.P. Debye proposed that such materials are described by an exponential damping of
their polarization and a complete absence of oscillations. If we neglect the acceleration
term in (4.101) we have the equation of motion

2r

dl , 1 —
0 2w = — 2B, ),
dt me

which has homogeneous solution

o
I(r, 1) = ly(r)e o' = ly(r)e /"

where 7 is Debye’s relaxation time.

By neglecting the acceleration term in (4.102) we obtain from (4.103) the dispersion
equation, or relaxation spectrum

@) = 0+ g2
E(w)=¢€+eg———"——.
T+ jwlr
Debye proposed a relaxation spectrum a bit more general than this, now called the Debye
equation:

€y — €xo
(@) = € 4+ 252 4.106
E() = € + T jwr ( )
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Figure 4.6: Arc plots for Debye and Cole-Cole descriptions of a polar material.

Here ¢, is the real static permittivity obtained when w — 0, while €4, is the real “optical”
permittivity describing the high frequency behavior of €. If we split (4.106) into real and
imaginary parts we find that

€ — €x

wT (€5 — €x0)
1+ w212’

~11 _
€lw) = 1 4+ w?t?

E/(a)) — €0 =
For a passive material we must have €’ < 0, which requires €; > €. It is straightforward
to show that these expressions obey the Kronig—Kramers relationships. The details are
left as an exercise.

A plot of the Debye spectrum of water at T = 20° C is shown in Figure 4.5, where we
have used €; = 78.3€), €x = S€p, and T = 9.6 x 10712 s [49]. We see that & decreases
over the entire frequency range. The frequency dependence of the imaginary part of the
permittivity is similar to that found in the resonance model, forming a curve which peaks
at the critical frequency

wmax = 1/7

where it obtains a maximum value of

~l _ €5 — €x
“fmax = T 5 -

At this point & achieves the average value of €; and €y:

€ + €x
2

€ (wmax) =

Since the frequency label is logarithmic, we see that the peak is far broader than that
for the resonance model.

Interestingly, a plot of —&” versus & traces out a semicircle centered along the real axis
at (€5 + €x)/2 and with radius (¢; — €x)/2. Such a plot, shown in Figure 4.6, was first
described by K.S. Cole and R.H. Cole [38] and is thus called a Cole-Cole diagram or “arc
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Figure 4.7: Cole-Cole diagram for water at 20° C.

plot.” We can think of the vector extending from the origin to a point on the semicircle
as a phasor whose phase angle § is described by the loss tangent of the material:

tans = — & = @76 =€) (4.107)
& € + €qow?T?

The Cole-Cole plot shows that the maximum value of —&€” is (¢, — €)/2 and that
€ = (& + €x)/2 at this point.

A Cole-Cole plot for water, shown in Figure 4.7, displays the typical semicircular
nature of the arc plot. However, not all polar materials have a relaxation spectrum
that follows the Debye equation as closely as water. Cole and Cole found that for many
materials the arc plot traces a circular arc centered below the real axis, and that the line
through its center makes an angle of a(;r/2) with the real axis as shown in Figure 4.6.
This relaxation spectrum can be described in terms of a modified Debye equation

€ — €0

€(w) = €x + W,

called the Cole—Cole equation. A nonzero Cole—Cole parameter « tends to broaden the
relaxation spectrum, and results from a spread of relaxation times centered around t
[4]. For water the Cole—Cole parameter is only o = 0.02, suggesting that a Debye
description is sufficient, but for other materials « may be much higher. For instance,
consider a transformer oil with a measured Cole-Cole parameter of ¢ = 0.23, along with
a measured relaxation time of v = 2.3 x 107 s, a static permittivity of €, = 5.9¢y, and
an optical permittivity of €o, = 2.9¢ [4]. Figure 4.8 shows the Cole-Cole plot calculated
using both « = 0 and o = 0.23, demonstrating a significant divergence from the Debye
model. Figure 4.9 shows the relaxation spectrum for the transformer oil calculated with
these same two parameters.
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Figure 4.8: Cole—Cole diagram for transformer oil found using Debye equation and Cole—
Cole equation with o = 0.23.
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Figure 4.9: Relaxation spectrum for transformer oil found using Debye equation and
Cole—Cole equation with o = 0.23.



4.6.4 Permittivity and conductivity of a conductor

The free electrons within a conductor may be considered as an electron gas which is
free to move under the influence of an applied field. Since the electrons are not bound to
the atoms of the conductor, there is no restoring force acting on them. However, there
is a damping term associated with electron collisions. We therefore model a conductor
as a plasma, but with a very high collision frequency; in a good metallic conductor v is
typically in the range 10*-10'* Hz.

We therefore have the conductivity of a conductor from (4.75) as

and the permittivity as

~ o
€(w) = € 2|

Since v is so large, the conductivity is approximately

2 2
an)p _ qu

v mev

6(w) ~
and the permittivity is
é(w) ~ €

well past microwave frequencies and into the infrared. Hence the dc conductivity is often
employed by engineers throughout the communications bands. When approaching the
visible spectrum the permittivity and conductivity begin to show a strong frequency
dependence. In the violet and ultraviolet frequency ranges the free-charge conductivity
becomes proportional to 1/w and is driven toward zero. However, at these frequencies the
resonances of the bound electrons of the metal become important and the permittivity
behaves more like that of a dielectric. At these frequencies the permittivity is best
described using the resonance formula (4.104).

4.6.5 Permeability dyadic of a ferrite

The magnetic properties of materials are complicated and diverse. The formation
of accurate models based on atomic behavior requires an understanding of quantum
mechanics, but simple models may be constructed using classical mechanics along with
very simple quantum-mechanical assumptions, such as the existence of a spin moment.
For an excellent review of the magnetic properties of materials, see Elliott [65].

The magnetic properties of matter ultimately result from atomic currents. In our sim-
ple microscopic view these currents arise from the spin and orbital motion of negatively
charged electrons. These atomic currents potentially give each atom a magnetic moment
m. In diamagnetic materials the orbital and spin moments cancel unless the material is
exposed to an external magnetic field, in which case the orbital electron velocity changes
to produce a net moment opposite the applied field. In paramagnetic materials the spin
moments are greater than the orbital moments, leaving the atoms with a net permanent
magnetic moment. When exposed to an external magnetic field, these moments align in
the same direction as an applied field. In either case, the density of magnetic moments
M is zero in the absence of an applied field.



In most paramagnetic materials the alignment of the permanent moment of neigh-
boring atoms is random. However, in the subsets of paramagnetic materials known as
ferromagnetic, anti-ferromagnetic, and ferrimagnetic materials, there is a strong coupling
between the spin moments of neighboring atoms resulting in either parallel or antiparal-
lel alignment of moments. The most familiar case is the parallel alignment of moments
within the domains of ferromagnetic permanent magnets made of iron, nickel, and cobalt.
Anti-ferromagnetic materials, such as chromium and manganese, have strongly coupled
moments that alternate in direction between small domains, resulting in zero net mag-
netic moment. Ferrimagnetic materials also have alternating moments, but these are
unequal and thus do not cancel completely.

Ferrites form a particularly useful subgroup of ferrimagnetic materials. They were first
developed during the 1940s by researchers at the Phillips Laboratories as low-loss mag-
netic media for supporting electromagnetic waves [65]. Typically, ferrites have conduc-
tivities ranging from 107 to 10° S/m (compared to 107 for iron), relative permeabilities
in the thousands, and dielectric constants in the range 10-15. Their low loss makes them
useful for constructing transformer cores and for a variety of microwave applications.
Their chemical formula is XO - Fe;O3, where X is a divalent metal or mixture of metals,
such as cadmium, copper, iron, or zinc. When exposed to static magnetic fields, ferrites
exhibit gyrotropic magnetic (or gyromagnetic) properties and have permeability matrices
of the form (2.32). The properties of a wide variety of ferrites are given by von Aulock
[204].

To determine the permeability matrix of a ferrite we will model its electrons as simple
spinning tops and examine the torque exerted on the magnetic moment by the application
of an external field. Each electron has an angular momentum L and a magnetic dipole
moment m, with these two vectors anti-parallel:

m(r,t) = —yL(r, )

where

y =2 17592 x 10" C/kg

me
is called the gyromagnetic ratio.
Let us first consider a single spinning electron immersed in an applied static magnetic
field By. Any torque applied to the electron results in a change of angular momentum as
given by Newton’s second law

T(r.t) = %.

We found in (3.179) that a very small loop of current in a magnetic field experiences
a torque m x B. Thus, when first placed into a static magnetic field By an electron’s
angular momentum obeys the equation

dL(r, 1)
— . = YL@ ) x Bo® = wo(r) x L(r. 1) (4.108)

where wy = yBy. This equation of motion describes the precession of the electron spin
axis about the direction of the applied field, which is analogous to the precession of a
gyroscope [129]. The spin axis rotates at the Larmor precessional frequency wy = y By =
¥ o Ho.

We can use this to understand what happens when we insert a homogeneous ferrite
material into a uniform static magnetic field By = uoHy. The internal field H; experienced
by any magnetic dipole is not the same as the external field Hy, and need not even be in



the same direction. In general we write
Hy(r, ) — Hi(r, 1) = Hy(r, 1)

where H, is the demagnetizing field produced by the magnetic dipole moments of the
material. Each electron responds to the internal field by precessing as described above
until the precession damps out and the electron moments align with the magnetic field.
At this point the ferrite is saturated. Because the demagnetizing field depends strongly
on the shape of the material we choose to ignore it as a first approximation, and this
allows us to concentrate our study on the fundamental atomic properties of the ferrite.

For purposes of understanding its magnetic properties, we view the ferrite as a dense
collection of electrons and write

M(r,t) = Nm(r, 1)

where N is the number density of electrons. Since we are assuming the ferrite is homoge-
neous, we take N to be independent of time and position. Multiplying (4.108) by —Ny,
we obtain an equation describing the evolution of M:

% = —yM(r, 1) x B;(r, 7). (4.109)

To determine the temporal response of the ferrite we must include a time-dependent
component of the applied field. We now let

Ho(r, 1) = H;(r, 1) = Hr (r, 1) + Hgc

where Hr is the time-dependent component superimposed with the uniform static com-
ponent Hy.. Using B = po(H + M) we have from (4.109)

dM(r, t)
dt
With M = My(r,t) + My, and M x M = 0 this becomes

dM7y(r, 1) n dMy,
dt dt

= —yuoM(r, 1) x [Hy(r, ) + Hy. + M(r, 1)].

= —yuoMr(r, 1) x Hp(r, 1) + Mg (r, 1) x Hye +
+ My, x Hy(r, 1) + My, x Hy,. (4.110)

Let us assume that the ferrite is saturated. Then My, is aligned with H;. and their cross
product vanishes. Let us further assume that the spectrum of Hr is small compared
to Hy. at all frequencies: |Hr(r, w)| <« Hye. This small-signal assumption allows us to
neglect My x Hy. Using these and noting that the time derivative of M, is zero, we see
that (4.110) reduces to

dMr(r, t
% = —yuolMr(r, 1) x Hye + Mye x Hy (r, 1)]. (4.111)

To determine the frequency response we write (4.111) in terms of inverse Fourier
transforms and invoke the Fourier integral theorem to find that

JoMr(r, 0) = —y oMz (r, @) x Hye + My x Hy (r, w)].
Defining

Yy oMy = wyy,



where wy = |wy| is the saturation magnetization frequency, we find that

~ ~ Wy 1 ~
MT +MT X|—|=|—7T7wuy X HT , (4112)
Jw Jw
where wy = yuoHg. with @y now called the gyromagnetic response frequency. This has
the form v+ v x C = A, which has solution (4.80). Substituting into this expression and
remembering that wy is parallel to wy,, we find that

_L
~ 'w
My = —

wy x Hy + 2 {wuylwo - Hr] — (wo - wy)Hr }
- .
_ %

w?

If we define the dyadic @y such that @y, - Hy = wy x ﬁr, then we identify the dyadic
magnetic susceptibility

- jooy + wywy — oy wl
Xon (@) = — (4.113)

w —(,()0

with which we can write M(r, ) = %m(®) - H(r, w). In rectangular coordinates @y is
represented by

0 —WpMz; WMy
[(:)M] = DMz 0 —WMx . (4114)
—WpMy OMx 0

Finally, using B = puo(H 4+ M) = oI+ %,,) - H= fi - H we find that
(@) = poll + X, (@)].

To examine the properties of the dyadic permeability it is useful to write it in matrix
form. To do this we must choose a coordinate system. We shall assume that Hg. is
aligned with the z-axis so that Hy;. = Z2H,;. and thus wy = Zwy and wy = Zwy. Then
(4.114) becomes

0 —a)MO
[wul=| oy 0 0
0O 0 O

and we can write the susceptibility dyadic (4.113) as

oy —wy —jw 0
[Xn(@]=—=—— | jo —o0
W% 0 0 0

The permeability dyadic becomes

w —jk 0

[i@]=|jk u 0 (4.115)
0 0 pwo

where
wow

M:;L()(l— = M2>, (4.116)

w —C()O
ww
K = /’LOTAZ}' (4.117)



Because its permeability dyadic is that for a lossless gyrotropic material (2.33), we call
the ferrite gyromagnetic.

Since the ferrite is lossless, the dyadic permeability must be hermitian according to
(4.49). The specific form of (4.115) shows this explicitly. We also note that since the
sign of wy, is determined by that of Hy., the dyadic permittivity obeys the symmetry
relation

iij(Hge) = ;i (—Hgc),
which is the symmetry condition observed for a plasma in (4.87).

A lossy ferrite material can be modeled by adding a damping term to (4.111):

dM(r, 1) Mg dMr(r, 1)
D) o My (r, 1) % Hye + Mye x Hy(r, 0)] + a2 x D&,
o Yo [Mr(r, 1) x Hye + Mg x Hr (r )]+OfMdC X ar

where « is the damping parameter [40, 204]. This term tends to reduce the angle of
precession. Fourier transformation gives

~ ~ ~ w ~
ja)MT = Wy XMT — Wy X HT +Ol—M X ]a)MT
wpy

Remembering that wy and wy, are aligned we can write this as

5 5 wo (1+]Olwﬂo) 1 5
MT+MTX —_— =|:—_—(.UMXHTj|.
Jw Jw

This is identical to (4.112) with

L
w0—>w0<1+]a—>.

wo

Thus, we merely substitute this into (4.113) to find the susceptibility dyadic for a lossy
ferrite:

¥ (@) = Jjoy +wywo (1 + jaw/wo) — wywo (1 + jaw/wy) 1
Xm0) = (1 + a?) — &} — 2jawwy '

Making the same substitution into (4.115) we can write the dyadic permeability matrix
as

5 Mxx ﬂxy 0
[(w)] = [:Lyx ﬁyy 0 (4.118)
0 0 o

where
wo [w2(1 —a?) — a)(z)] + joo [w2(1 +ao?) + a)%]

[w2(1 +a?) — a)g]2 + 402w}

foxx = flyy = Jho — oWy (4.119)

and
2uoaw’wowy — Jowwy [w2(1 +a?) — w(z)]

[w2(1 + a?) — a)(z)]2 + 402w’ w}

Ray = —flyx = (4.120)

In the case of a lossy ferrite, the hermitian nature of the permeability dyadic is lost.



4.7 Monochromatic fields and the phasor domain

The Fourier transform is very efficient for representing the nearly sinusoidal signals
produced by electronic systems such as oscillators. However, we should realize that the
elemental term e/’ by itself cannot represent any physical quantity; only a continuous
superposition of such terms can have physical meaning, because no physical process can
be truly monochromatic. All events must have transient periods during which they are
established. Even “monochromatic” light appears in bundles called quanta, interpreted
as containing finite numbers of oscillations.

Arguments about whether “monochromatic” or “sinusoidal steady-state” fields can
actually exist may sound purely academic. After all, a microwave oscillator can create
a wave train of 10'° oscillations within the first second after being turned on. Such a
waveform is surely as close to monochromatic as we would care to measure. But as with
all mathematical models of physical systems, we can get into trouble by making non-
physical assumptions, in this instance by assuming a physical system has always been
in the steady state. Sinusoidal steady-state solutions to Maxwell’s equations can lead to
troublesome infinities linked to the infinite energy content of each elemental component.
For example, an attempt to compute the energy stored within a lossless microwave cavity
under steady-state conditions gives an infinite result since the cavity has been building up
energy since t = —oo. We handle this by considering time-averaged quantities, but even
then must be careful when materials are dispersive (§ 4.5). Nevertheless, the steady-
state concept is valuable because of its simplicity and finds widespread application in
electromagnetics.

Since the elemental term is complex, we may use its real part, its imaginary part, or
some combination of both to represent a monochromatic (or time-harmonic) field. We
choose the representation

Y (r, 1) = Yo(r) cos[ar + §(r)], (4.121)

where & is the temporal phase angle of the sinusoidal function. The Fourier transform is
¥ (r, w) = / Yo(r) cos[at + £(r)]e /" dt. (4.122)
—0oQ

Here we run into an immediate problem: the transform in (4.122) does not exist in the
ordinary sense since cos(wt + &) is not absolutely integrable on (—oo, 00). We should not
be surprised by this: the cosine function cannot describe an actual physical process (it
extends in time to £00), so it lacks a classical Fourier transform. One way out of this
predicament is to extend the meaning of the Fourier transform as we do in § A.1. Then
the monochromatic field (4.121) is viewed as having the generalized transform

¥ (r, ) = Yo [e/*PV8(w — @) + e T8(w + @)] . (4.123)
We can compute the inverse Fourier transform by substituting (123) into (2):

Y, 1) = % / Yo () [ejg(r)S(a) —®) + e FOs(w + d))] e/ dw. (4.124)

By our interpretation of the Dirac delta, we see that the decomposition of the cosine
function has only two discrete components, located at @ = +®. So we have realized our



initial intention of having only a single elemental function present. The sifting property
gives

J1 JE®) 4 gt g jE®
2

Y. 1) = o) = Yo(r) cos[or + £(1)]

as expected.

4.7.1 The time-harmonic EM fields and constitutive relations

The time-harmonic fields are described using the representation (4.121) for each field
component. The electric field is

3
E(r, 1) = Y H|E;(0)] cosleor + & (r)]
i=1

for example. Here |E;| is the complex magnitude of the ith vector component, and &F is

the phase angle (—7 < &F < x). Similar terminology is used for the remaining fields.
The frequency-domain constitutive relations (4.11)—(4.15) may be written for the time-

harmonic fields by employing (4.124). For instance, for an isotropic material where

D(r,w) =&, 0)E(r,0),  B(r,0) = ii(r, 0)H(r, o),
with
1 (r,w)’

Er,w) = [E(r, )| ™, a(r, ) = |, o)le

we can write

3
D(r,1) = ) _§iIDi(r)] cos[@r + £ ()]
i=1

| , . .
= [ Y e o) B [eﬁf“)b‘(a} o)+ e E 5w+ a))] e dw
T J—o0 i

1 Cne ek ek
= 3 Y HIE®I [e ) @O 4 e, —gpe 0],
i=1

Since (4.25) shows that &(r, —®) = €*(r, ®), we have

3
D(r, 1) = 1Zi»ua(r)Hg(r )| [ef<d’f+fff<r>+ff‘<w>> + e-f@fﬂfﬂﬂﬂf“r@»]
£ 2 : 1 1 £

i=1

3 ~

= Z i;|€(r, @) ||E; (r)| cos[ot + EF (r) + &°(r, @)]. (4.125)
i=1
Similarly

3
B(r,1) = ) k| Bi(r)| cos[eor + £° (r)]

i=1

3
= > kI, d)||H;(r)] cos[@r + & (r) + £ (x, @)].
i=1



4.7.2 The phasor fields and Maxwell’s equations

Sinusoidal steady-state computations using the forward and inverse transform formulas
are unnecessarily cumbersome. A much more efficient approach is to use the phasor
concept. If we define the complex function

U (r) = Yo(r)e®

as the phasor form of the monochromatic field ¥ (r, w), then the inverse Fourier transform
is easily computed by multiplying v/ (r) by ¢/®' and taking the real part. That is,

Y (r, 1) = Re {§(r)e/®} = yo(r) cos[or + £(r)]. (4.126)

Using the phasor representation of the fields, we can obtain a set of Maxwell equations
relating the phasor components. Let

represent the phasor monochromatic electric field, with similar formulas for the other
fields. Then

3
E(r, 1) = Re {E(r)e/™ | = Y 1| E;(r)| coslor + & (r)].
i=1
Substituting these expressions into Ampere’s law (2.2), we have
. .y 0 . .y “ .
V x Re {H(r)e/™} = > Re {D(r)e/®} + Re {J(r)e/*'} .

Since the real part of a sum of complex variables equals the sum of the real parts, we
can write

. . v J .. v ..
Re {V x H(r)e!*" — D(r)ae“‘” - J(r)e”‘”} =0. (4.127)
If we examine for an arbitrary complex function F = F, + jF; the quantity
Re {(F, + jF)e!™} = Re{(F, cosdt — F; sinodt) + j(F, sindt + Fj cosdr)},

we see that both F, and F; must be zero for the expression to vanish for all £. Thus
(4.127) requires that

V x H(r) = joD(r) + J(r), (4.128)

which is the phasor Ampere’s law. Similarly we have

V x E(r) = —joB(r), (4.129)
VD) = p(r), (4.130)
V.B@r) =0, (4.131)
and
V.- Jr) = —jopr). (4.132)

The constitutive relations may be easily incorporated into the phasor concept. If we
use

Di(r) = &(r, D) E;(r) = |&(r, D) |/ T |E; (r)|ejé,.5(r)’



then forming
Di(r, 1) = Re {Di(r)e’*}
we reproduce (4.125). Thus we may write
D(r) = &(r, ®)E(r).

Note that we never write € or refer to a “phasor permittivity” since the permittivity does
not vary sinusoidally in the time domain.

An obvious benefit of the phasor method is that we can manipulate field quantities
without involving the sinusoidal time dependence. When our manipulations are complete,
we return to the time domain using (4.126).

The phasor Maxwell equations (4.128)—(4.131) are identical in form to the temporal
frequency-domain Maxwell equations (4.7)—(4.10), except that @ = & in the phasor
equations. This is sensible, since the phasor fields represent a single component of the
complete frequency-domain spectrum of the arbitrary time-varying fields. Thus, if the
phasor fields are calculated for some @, we can make the replacements

o — o, E@r) — E(r, o), H(r) — H(r, 0), e

and obtain the general time-domain expressions by performing the inversion (4.2). Simi-
larly, if we evaluate the frequency-domain field E(r, ») at @ = &, we produce the phasor
field E(r) = E(r, ®) for this frequency. That is

3
Re {E(r, ®)e/™'} = Zi,- |E; (r, ®)| cos (of + EF(r, @)).
i=1

4.7.3 Boundary conditions on the phasor fields

The boundary conditions developed in § 4.3 for the frequency-domain fields may be
adapted for use with the phasor fields by selecting w = . Let us include the effects of
fictitious magnetic sources and write

iy x (H, —Hy) =, (4.133)
i x (B —Ey) = —Js, (4.134)
iy - (D) —Dy) = p. (4.135)
I,\112 : (Bl - BZ) - ;bis (4136)
and
fip - () —Jo) ==V, - J, — jop,. (4.137)
ﬁ12 ‘ (jml - ij) = _vs . jms - jd)bm;, (4138)

where fij; points into region 1 from region 2.

4.8 Poynting’s theorem for time-harmonic fields

We can specialize Poynting’s theorem to time-harmonic form by substituting the time-
harmonic field representations. The result depends on whether we use the general form



(2.301), which is valid for dispersive materials, or (2.299). For nondispersive materials
(2.299) allows us to interpret the volume integral term as the time rate of change of
stored energy. But if the operating frequency lies within the realm of material dispersion
and loss, then we can no longer identify an explicit stored energy term.

4.8.1 General form of Poynting’s theorem

We begin with (2.301). Substituting the time-harmonic representations we obtain the
term

3 3
E(r, 1) - 8DZ(;’ D _ [Z 1| E;| cos[or + sf]] : % [Zi-lDil cos[ot +sf’]}
i=1 i=1

|Ei||D;| cos[ar + §F]sin[or + £].

3
=—0

i=1

Since 2sin A cos B = sin(A + B) + sin(A — B) we have

ii

3 1g
E(r,0) - =D, 1) = == 3 dlE|IDIS7E @),
i=I

where
SPE(t) = sinQat + EP + &F) +sinEP — £F)

describes the temporal dependence of the field product. Separating the current into an
impressed term J' and a secondary term J¢ (assumed to be the conduction current) as
J = J' + J¢ and repeating the above steps with the other terms, we obtain

1 3 i ]iE 1 3 “ o A EH
—E/V;u,»nmcﬁ (t)dV=§y§Z \Ei||H;1G; < 1)) - aCE (1) dS +

i,j=1

1 [ < .
+5/ Y {—@IDIESLE (0) — @I Bil | HilSEY (0) + SN ENCT F ()} dV,  (4.139)
Vii=1

where

SEH (1) = sinQart + £F + &) + sin(&f — &),
CSH(I) = cosQot +&F + -§,H) + cos(&f — ‘ng)’

and so on.

We see that each power term has two temporal components: one oscillating at fre-
quency 2o, and one constant with time. The oscillating component describes power that
cycles through the various mechanisms of energy storage, dissipation, and transfer across
the boundary. Dissipation may be produced through conduction processes or through
polarization and magnetization phase lag, as described by the volume term on the right-
hand side of (4.139). Power may also be delivered to the fields either from the sources,
as described by the volume term on the left-hand side, or from an active medium, as
described by the volume term on the right-hand side. The time-average balance of power
supplied to the fields and extracted from the fields throughout each cycle, including that



transported across the surface S, is given by the constant terms in (4.139):

1 2 i Ji E 1 2 v . E D
—E/V;u,.nEncos@,- - >dV=5/V;{w|E,-||D,-|sm<a _ D)t
+&|Bi||H;| sin(E — €P) + IS ||Ei| cos(&/ — &F)} dV +

S s s
+§£ > EiH;|Gi x ) - AcosE” — &/ ds. (4.140)

ij=1

We associate one mechanism for time-average power loss with the phase lag between
applied field and resulting polarization or magnetization. We can see this more clearly
if we use the alternative form of the Poynting theorem (2.302) written in terms of the
polarization and magnetization vectors. Writing

3 3
P(r,t) = Y [P0l coslar + £F (0], M(r.0) = [M;(x)] coslorr + £ (1),
i=1 i=1
and substituting the time-harmonic fields, we see that

1 3 o 3
—5/ Z|Ji||Ei|C,{E<r)dV+5/ > IPNENSEE @) + ol Mi| | H; S (1)) @V
Via Vi=i

v 3

w
= ‘5/ > el EiPSEE@) + ol Hi*SH (1)] dV +
Vi=1
s s
+5§5 > IEH;|Gi x i) -aCS (1) dS. (4.141)
Sij=1

Selection of the constant part gives the balance of time-average power:

1 3
__/ Z|Ji||Ei|COS(‘§iJ—%‘iE)dV
2Jvis
y 3
1} . |
= E / Z [|E1||Pz| SIII(S,E — %'iP) —+ wolH; || M;| SIH(E,'H _ SiM)] dv +
V=1

VRS T
+3 ﬁ Z |Ei||Hj|(; x 1)) - hicos(E" — &/) dS. (4.142)

i,j=1

Here the power loss associated with the lag in alignment of the electric and magnetic
dipoles is easily identified as the volume term on the right-hand side, and is seen to arise
through the interaction of the fields with the equivalent sources as described through the
phase difference between E and P and between H and M. If these pairs are in phase, then

the time-average power balance reduces to that for a dispersionless material, equation
(4.146).

4.8.2 Poynting’s theorem for nondispersive materials

For nondispersive materials (2.299) is appropriate. We shall carry out the details here
so that we may examine the power-balance implications of nondispersive media. We



have, substituting the field expressions,

1 [ S ; 1 [ < )
——/ D INEICT @ dv = —/ D VFNEICT @ dV +
2y 2lvim
3 3 (1 1
— —|Di||E;|ICRE @) + ~|Bi || H;|ICEP (1) } dV
+3t/V;{4| IEACEE 0 + 1B IHICE O L av +

1 [ T
+5£ Z |Ei||H;|G; x i)) - ACE (1) dS. (4.143)

ij=1

Here we remember that the conductivity relating E to J¢ must also be nondispersive.
Note that the electric and magnetic energy densities w,(r, t) and w,,(r, t) have the time-
average values (w,(r, t)) and (w,(r, t)) given by

(we(r, 1)) = —

21 1Q E D
T/_m JE(0) DO, 0 dt = 3 3 IEIDilcos(e — &)

i=1

= %Re [E) - D*(n)} (4.144)

and

(W (r, 1)) ! /T/2 1B( 1) - H(r, 1) dt ! i:lB |[Hi| cos(&/" — &F)
w,, (T, = — =B(r, 1) - H(r, = - ill[H;[ COS(5; " — §;
T )12 e ! !

1 . .
=1 Re {H(r) -B*(r)} , (4.145)
where T = 27 /®. We have already identified the energy stored in a nondispersive material
(§ 4.5.2). If (4.144) is to match with (4.62), the phases of E and D must match: §F = £P.
We must also have éiH = éiB. Since in a dispersionless material o must be independent
of frequency, from J¢ = oE we also see that &’ ‘= EE.
Upon differentiation the time-average stored energy terms in (4.143) disappear, giving
1 [ ; 1
——f D NEICT () dV = —/ D VFNEICE 6y av —
2 v 2vim
(1 1
26 —|D||Ei|SEE @) + ~|B; || Hi|SEB (1) } aV
w/v,zl{‘*' IEASEE () + SIBIHISEP @)} dv +

[ I
+§f§ > EiH;|G: x ) - ACE! (1) dS.
ij=1
Equating the constant terms, we find the time-average power balance expression

1 [ S ; 1 [
5 | i s ~ eFyav =5 [ S 1uiEdav +
Vsl Vi=l

1 [Q £ ey o
+3 ?gs Z |Ei||Hj|(; x 1;) - hcos(E” — &/ dS. (4.146)

i,j=1



This can be written more compactly using phasor notation as
/p,(r)dV:/ pa(r)dV—i—%Sav(r)ﬁdS (4.147)
14 v s
where
1 . -
ps() = ) Re {E(r) - J*(r)}

is the time-average density of power delivered by the sources to the fields in V,
Pe(r) = %Em )
is the time-average density of power transferred to the conducting material as heat, and
Sav(r) - A = %Re [Er) x H*(n)} -
is the density of time-average power transferred across the boundary surface S. Here
S¢ = E(r) x H*(r)

is called the complexr Poynting vector and S, is called the time-average Poynting vector.
Comparison of (4.146) with (4.140) shows that nondispersive materials cannot manifest
the dissipative (or active) properties determined by the term

1 3 .
5/ Y AGIEN|D;|sin@F — £P) + ol Bi|| Hy| sinE/ — £7) + |JF|| Es| cos(&]” — &F)} dV.
\%4

i=1

This term can be used to classify materials as lossless, lossy, or active, as shown next.

4.8.3 Lossless, lossy, and active media

In § 4.5.1 we classified materials based on whether they dissipate (or provide) energy
over the period of a transient event. We can provide the same classification based on
their steady-state behavior.

We classify a material as lossless if the time-average flow of power entering a homoge-
neous body is zero when there are sources external to the body, but no sources internal
to the body. This implies that the mechanisms within the body either do not dissipate
power that enters, or that there is a mechanism that creates energy to exactly balance the
dissipation. If the time-average power entering is positive, then the material dissipates
power and is termed lossy. If the time-average power entering is negative, then power
must originate from within the body and the material is termed active. (Note that the
power associated with an active body is not described as arising from sources, but is
rather described through the constitutive relations.)

Since materials are generally inhomogeneous we may apply this concept to a vanish-
ingly small volume, thus invoking the point-form of Poynting’s theorem. From (4.140)
we see that the time-average influx of power density is given by

3

1
=V Sa(®) = pin(0) = 5 3 {GIENDil sin(Ef — &°) + oI Bi|| Hy | sin(&/" — £7)+
i=1

+ I INE cos(&” —£P)).



Materials are then classified as follows:

pin(r) =0, lossless,
pin(r) >0, lossy,
pin(r) =2 0, passive,

pin(r) <0, active.

We see that if §F = &P, £ = &P, and J° = 0, then the material is lossless. This implies
that (D,E) and (B,H) are exactly in phase and there is no conduction current. If the
material is isotropic, we may substitute from the constitutive relations (4.21)-(4.23) to
obtain
Rl T I 61 e
pin(r) = =5 Z {lEi| |:|€| sin(§€) — — COS(EU)] + |l Hil SIH(EM)} : (4.148)
>

i=1

The first two terms can be regarded as resulting from a single complex permittivity
(4.26). Then (4.148) simplifies to

v 3
Pin(®) = =3 D {IECIE sin(6) + |2l B[ sin(&") ) (4.149)

i=1

Now we can see that a lossless medium, which requires (4.149) to vanish, has &€ =
&" = 0 (or perhaps the unlikely condition that dissipative and active effects within the
electric and magnetic terms exactly cancel). To have &* = 0 we need B and H to be in
phase, hence we need fi(r, w) to be real. To have £ = 0 we need £ = 0 (&(r, ) real)
and 6 (r, w) = 0 (or perhaps the unlikely condition that the active and dissipative effects
of the permittivity and conductivity exactly cancel).

A lossy medium requires (4.149) to be positive. This occurs when £#* < 0 or £ < 0,
meaning that the imaginary part of the permeability or complex permittivity is negative.
The complex permittivity has a negative imaginary part if the imaginary part of € is
negative or if the real part of & is positive. Physically, £ < 0 means that £° < £F and
thus the phase of the response field D lags that of the excitation field E. This results
from a delay in the polarization alignment of the atoms, and leads to dissipation of power
within the material.

An active medium requires (4.149) to be negative. This occurs when &* > 0 or £ > 0,
meaning that the imaginary part of the permeability or complex permittivity is positive.
The complex permittivity has a positive imaginary part if the imaginary part of € is
positive or if the real part of & is negative.

In summary, a passive isotropic medium is lossless when the permittivity and perme-
ability are real and when the conductivity is zero. A passive isotropic medium is lossy
when one or more of the following holds: the permittivity is complex with negative imag-
inary part, the permeability is complex with negative imaginary part, or the conductivity
has a positive real part. Finally, a complex permittivity or permeability with positive
imaginary part or a conductivity with negative real part indicates an active medium.

For anisotropic materials the interpretation of p;, is not as simple. Here we find that
the permittivity or permeability dyadic may be complex, and yet the material may still
be lossless. To determine the condition for a lossless medium, let us recompute p;, using
the constitutive relations (4.18)—(4.20). With these we have

B[ gl 2B oS g - ey tsinr + £F 1 5y costor + £ +
] — — = i i — |€;i| SIn(w : ) COS(w P
dt dt = ! ! sy :



+ u cos(ar + EF + &) cos(ar + g,.E)} +

3

Z | Hil || [ =172y sinGor + &/ + 1) cos(@r + /1) |

Using the angle-sum formulas and discarding the time-varying quantities, we may obtain
the time-average input power density:

v 3 ~
__ @ 2 i s E E 16| E E | s0
pin®) === 3 IENIE;| [|ei,-|sm(s, FHE - — Eog +sl¢,->} —

=1

3
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i,j=1

l\.)|8<

The reader can easily verify that the conditions that make this quantity vanish, thus
describing a lossless material, are

€] = 1€;il, &5 =&, (4.150)
16ij1 = 16il, &7 =—§; +m, (4.151)
il = jl, & = —& (4.152)

Note that this requires &5 = &/ = £7 = 0.
The condition (4.152) is easily written in dyadic form as

e, o) = fr, ) (4.153)

where “” stands for the conjugate-transpose operation. The dyadic permeability ft is
hermitian. The set of conditions (4.150)—(4.151) can also be written quite simply using
the complex permittivity dyadic (4.24):

Em o) =&, o). (4.154)

Thus, an anisotropic material is lossless when the both the dyadic permeability and the
complex dyadic permittivity are hermitian. Since @ is arbitrary, these results are exactly
those obtained in § 4.5.1. Note that in the special case of an isotropic material the
conditions (4.153) and (4.154) can only hold if € and & are real and & is zero, agreeing
with our earlier conclusions.

4.9 The complex Poynting theorem

An equation having a striking resemblance to Poynting’s theorem can be obtained
by direct manipulation of the phasor-domain Maxwell equations. The result, although
certainly satisfied by the phasor fields, does not replace Poynting’s theorem as the power-
balance equation for time-harmonic fields. We shall be careful to contrast the interpre-
tation of the phasor expression with the actual time-harmonic Poynting theorem.

We begin by dotting both sides of the phasor-domain Faraday’s law with H* to obtain

v

H - (VxE)=—joH" - B.



Taking the complex conjugate of the phasor-domain Ampere’s law and dotting with E,
we have

E-(VxH)=E.J* - jok-D*.
We subtract these expressions and use (B.44) to write
—E.-J*=V.-ExH)— jo[E-D*—B-H.

Finally, integrating over the volume region V and dividing by two, we have
1 [ s, 1 L . 1. o, 1o o
—=— [ E-JdVv==@QExH)-dS-2jo -E-D*—-B-H*|dV. (4.155)
2 Jy 2 Js vI4 4

This is known as the complex Poynting theorem, and is an expression that must be obeyed
by the phasor fields.

As a power balance theorem, the complex Poynting theorem has meaning only for
dispersionless materials. If we let J = J' +J¢ and assume no dispersion, (4.155) becomes

L T B L O o
—E/VEJ dV_Z,/VEJ dV—I-zﬁ(ExH) ds
~2jw / [(we) — (wa)] dV (4.156)
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where (w,) and (w,,) are the time-average stored electric and magnetic energy densities
as described in (4.62)—(4.63). Selection of the real part now gives

1 N 1 [ . 1 L
- —f Re [E-J*} dV = —/ E-J*dV + —%Re{E x H*} - dS, (4.157)
2 )y 2Jy 2 Js
which is identical to (4.147). Thus the real part of the complex Poynting theorem gives
the balance of time-average power for a dispersionless material.

Selection of the imaginary part of (4.156) gives the balance of imaginary, or reactive
power:

—1/ Im{E.J*} dv = l%lm{l:}xlfl*} -dS—ZcY)/ [w,) — (w)] dV. (4.158)
2 4 2 S v

In general, the reactive power balance does not have a simple physical interpretation (it
is not the balance of the oscillating terms in (4.139)). However, an interesting concept
can be gleaned from it. If the source current and electric field are in phase, and there is
no reactive power leaving S, then the time-average stored electric energy is equal to the
time-average stored magnetic energy:

/(wg)dV=f(wm)dV.
\%4 v

This is the condition for “resonance.” An example is a series RLC circuit with the source
current and voltage in phase. Here the stored energy in the capacitor is equal to the
stored energy in the inductor and the input impedance (ratio of voltage to current) is
real. Such a resonance occurs at only one value of frequency. In more complicated
electromagnetic systems resonance may occur at many discrete eigenfrequencies.



4.9.1 Boundary condition for the time-average Poynting vector

In § 2.9.5 we developed a boundary condition for the normal component of the time-
domain Poynting vector. For time-harmonic fields we can derive a similar boundary
condition using the time-average Poynting vector. Consider a surface S across which
the electromagnetic sources and constitutive parameters are discontinuous, as shown in
Figure 2.6. Let fij; be the unit normal to the surface pointing into region 1 from region
2. If we apply the large-scale form of the complex Poynting theorem (4.155) to the two
separate surfaces shown in Figure 2.6, we obtain

1 Ly 1. o 1. o 1
— E-JF—2jo|-E-D*— -B-H* dV + - @ S°-hdS
2“ 1 ""(4 1 ﬂ +27€ "

1 .
_ _/ fi - (S — S5) dS (4.159)
2 Sio

where 8¢ = E x H* is the complex Poynting vector. If, on the other hand, we apply the
large-scale form of Poynting’s theorem to the entire volume region including the surface
of discontinuity, and include the surface current contribution, we have

1 Ly 1. o 1. o 1
— E-JF-—2ju -E-D*— -B-H* dV +—- @ S°-hdS
2/\/|: 1 ""/v<4 1 ﬂ +27€ "

1 v o~
= —— J:EdS (4.160)
S0

If we wish to have the integrals over V and § in (4.159) and (4.160) produce identical
results, then we must postulate the two conditions

fip x (B —Ey) =0
and
fip - (S5 -85 = —J - E. (4.161)

The first condition is merely the continuity of tangential electric field; it allows us to be
nonspecific as to which value of E we use in the second condition. If we take the real
part of the second condition we have

l"\112 : (Sau,l - Sav,Z) = PDJs, (4162)

where S,, = %Re{I:Z x H*} is the time-average Poynting power flow density and py. =
—% Re{J} - E} is the time-average density of power delivered by the surface sources. This
is the desired boundary condition on the time-average power flow density.

4.10 Fundamental theorems for time-harmonic fields
4.10.1 Uniqueness

If we think of a sinusoidal electromagnetic field as the steady-state culmination of a
transient event that has an identifiable starting time, then the conditions for uniqueness
established in § 2.2.1 are applicable. However, a true time-harmonic wave, which has
existed since t = —oo and thus has infinite energy, must be interpreted differently.



Our approach is similar to that of § 2.2.1. Consider a simply-connected region of
space V bounded by surface S, where both V and S contain only ordinary points. The
phasor-domain fields within V are associated with a phasor current distribution J, which
may be internal to V (entirely or in part). We seek conditions under which the phasor
electromagnetic fields are uniquely determined. Let the field set (E;, Dy, By, H;) satisfy
Maxwell’s equations (4.128) and (4.129) associated with the current J (along with an
appropriate set of constitutive relations), and let (E,, D2, B,, Hy) be a second solution.
To determine the conditions for uniqueness of the fields, we look for a situation that
results in El = Ez, ﬁl = 1:127 and so on. The electromagnetic fields must obey

V x Hy = joD; +1],

V xE; = —joB,,

VxH,=joD, +1J,

V x Ky = —joB,.
Subtracting these and defining the difference fields Eo=E, —E,, Hy = H, — H,, and so
on, we find that

V x Hy = joDy, (4.163)
V x By = —jdBy. (4.164)

Establishing the conditions under which the difference fields vanish throughout V, we
shall determine the conditions for uniqueness.
Dotting (4.164) by Hj; and dotting the complex conjugate of (4.163) by Eo, we have

I:I?; . (V X EQ) = —jd)ﬁo ﬁé,
Ey - (V x ) = —joDj - Ey.
Subtraction yields
which, by (B.44), can be written as
V(E() Xﬁ;’;) :]d)[EoﬁS—ﬁoﬁg]
Adding this expression to its complex conjugate, integrating over V., and using the di-
vergence theorem, we obtain

- '] . @ 'NESR b I )+ T¢I 'y " Ed
Reyg[Eo « E;] - dS = _15/ (g - Do — Eo-D3) + (F; - Bo — Hy - BY)] V.
s %
Breaking S into two arbitrary portions and using (?7?), we obtain

Re ﬁg.(ﬁxEQ)dS—Re}ﬁ Eo- (0 x Hj)dS =
S] S2

LD NER " 5 ¢ P 7 1

-i3 / [(E§ - Do — Eo - D) + (Hy - Bo — Ho - BY)] dV. (4.165)
1%

Now if i x Eg = 0 or ii x Hy = 0 over all of §, or some combination of these conditions

holds over all of S, then

f [( - Dy — By - BF) + (F; - By — Hy - BS)] dV = 0. (4.166)
Vv



This implies a relationship between Eo, ﬁo, ]v30, and I:IO Since V is arbitrary we see that
one possible relationship is simply to have one of each pair (Ko, Do) and (Hy, By) equal to
zero. Then, by (4.163) and (4.164), Eo = 0 implies By = 0, and Dy = 0 implies Hy = 0.
Thus E; = E,, etc., and the solution is unique throughout V. However, we cannot in
general rule out more complicated relationships. The number of possibilities depends on
the additional constraints on the relationship between Eo, lv)o, ]V30, and I:IO that we must
supply to describe the material supporting the field — i.e., the constitutive relationships.
For a simple medium described by fi(w) and €°(w), equation (4.166) becomes

f (IBol*[€° (@) — &*(@)] + [HoP[A() — 2*(@)]) dV =0
v
or
f [1Eo*&” (@) + HoPA"(@)] dV = 0.
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For a lossy medium, € < 0 and i” < 0 as shown in § 4.5.1. So both terms in the
integral must be negative. For the integral to be zero each term must vanish, requiring
Ey = Hy = 0, and uniqueness is guaranteed.

When establishing more complicated constitutive relations we must be careful to ensure
that they lead to a unique solution, and that the condition for uniqueness is understood.
In the case above, the assumption fi x Eo} ¢ = 0 implies that the tangential components of
E, and E, are identical over S — that is, we must give specific values of these quantities
on S to ensure uniqueness. A similar statement holds for the condition fi x Hj s=0.

In summary, the conditions for the fields within a region V containing lossy isotropic
materials to be unique are as follows:

1. the sources within V must be specified;

2. the tangential component of the electric field must be specified over all or part of
the bounding surface S;

3. the tangential component of the magnetic field must be specified over the remainder
of S.

We may question the requirement of a lossy medium to demonstrate uniqueness of the
phasor fields. Does this mean that within a vacuum the specification of tangential fields
is insufficient? FExperience shows that the fields in such a region are indeed properly
described by the surface fields, and it is just a case of the mathematical model being
slightly out of sync with the physics. As long as we recognize that the sinusoidal steady
state requires an initial transient period, we know that specification of the tangential
fields is sufficient. We must be careful, however, to understand the restrictions of the
mathematical model. Any attempt to describe the fields within a lossless cavity, for
instance, is fraught with difficulty if true time-harmonic fields are used to model the
actual physical fields. A helpful mathematical strategy is to think of free space as the
limit of a lossy medium as the loss recedes to zero. Of course this does not represent
the physical state of “empty” space. Although even interstellar space may have a few
particles for every cubic meter to interact with the electromagnetic field, the density of
these particles invalidates our initial macroscopic assumptions.

Another important concern is whether we can extend the uniqueness argument to all
of space. If we let S recede to infinity, must we continue to specify the fields over S, or
is it sufficient to merely specify the sources within S§? Since the boundary fields provide
information to the internal region about sources that exist outside S, it is sensible to



assume that as § — oo there are no sources external to S and thus no need for the
boundary fields. This is indeed the case. If all sources are localized, the fields they
produce behave in just the right manner for the surface integral in (4.165) to vanish, and
thus uniqueness is again guaranteed. Later we will find that the electric and magnetic
fields produced by a localized source at great distance have the form of a spherical wave:

efjkr

.

E~H~

r

If space is taken to be slightly lossy, then k is complex with negative imaginary part, and
thus the fields decrease exponentially with distance from the source. As we argued above,
it may not be physically meaningful to assume that space is lossy. Sommerfeld postulated
that even for lossless space the surface integral in (4.165) vanishes as § — oco. This has
been verified experimentally, and provides the following restrictions on the free-space
fields known as the Sommerfeld radiation condition:

lim r [nof x H(r) + E(r)] = 0, (4.167)
r—00
lim r [ x E(r) — noH(r)] = 0, (4.168)
r—00

where 179 = (uo/€0)'/?. Later we shall see how these expressions arise from the integral
solutions to Maxwell’s equations.

4.10.2 Reciprocity revisited

In § 2.9.3 we discussed the basic concept of reciprocity, but were unable to examine
its real potential since we had not yet developed the theory of time-harmonic fields. In
this section we shall apply the reciprocity concept to time-harmonic sources and fields,
and investigate the properties a material must display to be reciprocal.

The general form of the reciprocity theorem. Asin § 2.9.3, we consider a closed
surface S enclosing a volume V. Sources of an electromagnetic field are located either
inside or outside §. Material media may lie within §, and their properties are described
in terms of the constitutive relations. To obtain the time-harmonic (phasor) form of the
reciprocity theorem we proceed as in § 2.9.3 but begin with the phasor forms of Maxwell’s
equations. We find

V- (E, xH, —E, x H)) = jo[H, B, — H, -B,] — jo[E, - Dy — E, - D,] +
+ [Eb . ja - l::a : jb - Itlb ‘ jma + I\:Ia : jmb]v (4169>
where (Ea, ﬁa, ]VSG, ﬁu) are the fields produced by the phasor sources (ja, jma) and (Eb, ﬁb, fBb, ﬁb)
are the fields produced by an independent set of sources (Jp, Jup)-

As in § 2.9.3, we are interested in the case in which the first two terms on the right-
hand side of (4.169) are zero. To see the conditions under which this might occur, we
substitute the constitutive equations for a bianisotropic medium

D=¢ H+& E,

B=/j -H+ ¢ E,
into (4.169), where each of the constitutive parameters is evaluated at &. Setting the
two terms to zero gives

]d)[ﬁa(ﬁﬁh'f‘z.ﬁb)_ﬁb(ﬁﬁa"_zﬁa)]_



which holds if

ﬁa’ﬁ'Hb_Hb'ﬁ'ﬁazov
I:I &Eh“‘Eb E'ﬁaZO,
Va'é'ﬁb+Hb'a'Ea:0’
E,-é E,—E, -6 E, =0
These in turn hold if
~ ~ ~ - ~ =T ~ =T
e=¢", p=n", €=-C, C=-€. (4.170)

These are the conditions for a reciprocal medium. For example, an anisotropic dielectric
is a reciprocal medium if its permittivity dyadic is symmetric. An isotropic medium
described by scalar quantities u and € is certainly reciprocal. In contrast, lossless Gy—

rotropic media are nonremprocal since the constitutive parameters obey € = er or fi = u
rather than &é = & or = u .

For a reciprocal medium (4.169) reduces to
V. (Ea X ﬁb —Eb X I:Ia) = [Eb ‘ja _Ea 'jb —ﬁb 'jma +I:Ia jmb] (4171)

At points where the sources are zero, or are conduction currents described entirely by
Ohm’s law J = oE, we have

V. (E, xH,—E,xH,) =0, (4.172)

known as Lorentz’s lemma. If we integrate (4.171) over V and use the divergence theorem
we obtain

%[Ea Xﬁb—EbXﬁa]'dSZ/ [Eb'ja_Ea'jb_ﬁb'jma+ﬁa'jmb] dV
N 14
(4.173)

This is the general form of the Lorentz reciprocity theorem, and is valid when V contains
reciprocal media as defined in (4.170).

Note that by an identical set of steps we find that the frequency-domain fields obey
an identical Lorentz lemma and reciprocity theorem.

The condition for reciprocal systems. The quantity
(faa gb) = / [Ea : jb - ﬁa : me] dv
v

is called the reaction between the source fields g of set b and the mediating fields f of an
independent set a. Note that E, - J, is not quite a power density, since the current lacks

a complex conjugate. Using this reaction concept, first introduced by Rumsey [161], we
can write (4.173) as

v

<fb’ ga) - ( as gb) = % [Ea X I\:Ib - l:;‘b X ﬁll] -dS. (4174)
S



We see that if there are no sources within S then
yg [E, x H, —E, x H,] - dS = 0. (4.175)
s

Whenever (4.175) holds we say that the “system” within § is reciprocal. Thus, for
instance, a region of empty space is a reciprocal system.

A system need not be source-free in order for (4.175) to hold. Suppose the relationship
between E and H on § is given by the impedance boundary condition

E, = —Z@ x H), (4.176)

where E, is the component of E tangential to S so that i x E =i x E,, and the complex
wall impedance Z may depend on position. By (4.176) we can write

(B, xH, —E,xH,) -a=H, - hxE,)—H, - xE,)
= —ZH, - [ x (i x H,)] + ZH, - [A x (& x H,)].

Since i x (i x H) = (i - H) — H, the right-hand side vanishes. Hence (4.175) still holds
even though there are sources within S.

The reaction theorem. When sources lie within the surface S, and the fields on S
obey (4.176), we obtain an important corollary of the Lorentz reciprocity theorem. We
have from (4.174) the additional result

(For &) — (B, 8) = 0.
Hence a reciprocal system has
(fa. 85) = (B, 84) (4.177)

(which holds even if there are no sources within S, since then the reactions would be
identically zero). This condition for reciprocity is sometimes called the reaction theorem
and has an important physical meaning which we shall explore below in the form of
the Rayleigh—Carson reciprocity theorem. Note that in obtaining this relation we must
assume that the medium is reciprocal in order to eliminate the terms in (4.169). Thus,
in order for a system to be reciprocal, it must involve both a reciprocal medium and a
boundary over which (4.176) holds.

It is important to note that the impedance boundary condition (4.176) is widely appli-
cable. If Z — 0, then the boundary condition is that for a PEC: fi x E=0.IfZ—> o0, a
PMC is described: fi x H = 0. Suppose S represents a sphere of infinite radius. We know
from (4.168) that if the sources and material media within S are spatially finite, the fields
far removed from these sources are described by the Sommerfeld radiation condition

f'XEZnoI:I

where t is the radial unit vector of spherical coordinates. This condition is of the type
(4.176) since & = fi on S, hence the unbounded region that results from S receding to
infinity is also reciprocal.

Summary of reciprocity for reciprocal systems. We can summarize reciprocity
as follows. Unbounded space containing sources and materials of finite size is a reciprocal
system if the media are reciprocal; a bounded region of space is a reciprocal system only



if the materials within are reciprocal and the boundary fields obey (4.176), or if the
region is source-free. In each of these cases

7§ [E, xH, —E, xH,] - dS=0 (4.178)
N

and

(fa. &) — (. 82) = 0. (4.179)

Rayleigh—Carson reciprocity theorem. The physical meaning behind reciprocity
can be made clear with a simple example. Consider two electric Hertzian dipoles, each
oscillating with frequency @ and located within an empty box consisting of PEC walls.
These dipoles can be described in terms of volume current density as

J.() =1,8(r — 1)),
Iy =1,6(r —1}).

Since the fields on the surface obey (4.176) (specifically, ix E = 0), and since the medium
within the box is empty space (a reciprocal medium), the fields produced by the sources
must obey (4.179). We have

/ Ey(r) - [I.6r—1))] dV = / E,(r) - [L,sr—r))] dV,
\4 \%4
hence
I, -E,@) =1, E,(r). (4.180)

This is the Rayleigh—Carson reciprocity theorem. It also holds for two Hertzian dipoles
located in unbounded free space, because in that case the Sommerfeld radiation condition
satisfies (4.176).

As an important application of this principle, consider a closed PEC body located in
free space. Reciprocity holds in the region external to the body since we have i x E = 0
at the boundary of the perfect conductor and the Sommerfeld radiation condition on the
boundary at infinity. Now let us place dipole a somewhere external to the body, and
dipole b adjacent and tangential to the perfectly conducting body. We regard dipole a
as the source of an electromagnetic field and dipole b as “sampling” that field. Since the
tangential electric field is zero at the surface of the conductor, the reaction between the
two dipoles is zero. Now let us switch the roles of the dipoles so that b is regarded as
the source and a is regarded as the sampler. By reciprocity the reaction is again zero
and thus there is no field produced by b at the position of a. Now the position and
orientation of a are arbitrary, so we conclude that an impressed electric source current
placed tangentially to a perfectly conducting body produces no field external to the body.
This result is used in Chapter 6 to develop a field equivalence principle useful in the study
of antennas and scattering.

4.10.3 Duality

A duality principle analogous to that found for time-domain fields in § 2.9.2 may be
established for frequency-domain and time-harmonic fields. Consider a closed surface S
enclosing a region of space that includes a frequency-domain electric source current J



and a frequency-domain magnetic source current J.,.. The fields (El,f)l,ﬁl,fll) within
the region (which may also contain arbitrary media) are described by

VxE =-J,— joBy, (4.181)
VxH =J+ joD, (4.182)
V.-D, =p, (4.183)
V- B = pp. (4.184)

Suppose we have been given a mathematical description of the sources (J, J,,) and have
solved for the field vectors (E;, Dy, B;, H;). Of course, we must also have been supplied
with a set of boundary values and constitutive relations in order to make the solution
unique. We note that if we replace the formula for J with the formula for J,, in (4.182)
(and p with p,, in (4.183)) and also replace J,, with —J in (4.181) (and p,, with —p in
(4.184)) we get a new problem. However, the symmetry of the equations allows us to
specify the solution immediately. The new set of curl equations requires

VxE,=J— joB,, (4.185)
VxHy =J,+ joD,. (4.186)
If we can resolve the question of how the constitutive parameters must be altered to

reflect these replacements, then we can conclude by comparing (4.185) with (4.182) and
(4.186) with (4.181) that

EZZI:Ila B2=_D1, D2=B1, H2=—E1.

The discussion regarding units in § 2.9.2 carries over to the present case. Multiplying
Ampere’s law by 19 = (1o/€0)'/?, we have

VxE=-J,—joB,  Vx(@H =)+ jonD).

Thus if the or1g1nal problem has solution (E;, noDl, B, noH,), then the dual problem
with J replaced by J,./no and J,, replaced by —noJ has solution

E, = noHy, (4.187)
B, = —noD, (4.188)
noD, = By, (4.189)
noH, = —EK,. (4.190)

As with duality in the time domain, the constitutive parameters for the dual problem
must be altered from those of the original problem. For linear anisotropic media we have
from (4.13) and (4.14) the constitutive relationships

D, =§ -E, (4.191)

B, = ji, - H,, (4.192)
for the original problem, and

D, = & - E,, (4.193)

B, = i, H,, (4.194)



for the dual problem. Substitution of (4.187)—(4.190) into (4.191) and (4.192) gives

D, = (”—2‘) -E, (4.195)
B, = (njé1) - Ho. (4.196)
Comparing (4.195) with (4.193) and (4.196) with (4.194), we conclude that

B = 71(2)21, €& = l:1»1/77(2)- (4.197)

For a linear, isotropic medium specified by € and ji, the dual problem is obtained by
replacing & with fi, and fi, with &.. The solution to the dual problem is then

E, = noHy, nofy = —E;,

as before. The medium in the dual problem must have electric properties numerically
equal to the magnetic properties of the medium in the original problem, and magnetic
properties numerically equal to the electric properties of the medium in the original
problem. Alternatively we may divide Ampere’s law by n = (jt/€)"/? instead of 9. Then
the dual problem has J replaced by J,./n, and J,, replaced by —nJ, and the solution is

E2 = 7]H1, 7]H2 = —El. (4198)

There is no need to swap €, and ji, since information about these parameters is incor-
porated into the replacement sources.

We may also apply duality to a problem where we have separated the impressed and
secondary sources. In a homogeneous, isotropic, conducting medium we may let J =
J' + 6E. With this the curl equations become

V x nH = nJ' + joné°E,

VxE=-J,— jopH.
The solution to the dual problem is again given by (4.198), except that now n = (ji/&%)"/2.
As we did near the end of § 2.9.2, we can consider duality in a source-free region. We

let S enclose a source-free region of space and, for simplicity, assume that the medium
within § is linear, isotropic, and homogeneous. The fields within S are described by

VxE| = —joiH;,
V x nH| = jwénk,,
V.¢E, =0,
V.- aH, =0.

The symmetry of the equations is such that the mathematical form of the solution for E
is the same as that for nH. Since the fields

E, = nH,, H, = -E,/n,

also satisfy Maxwell’s equations, the dual problem merely involves replacing E by nH
and H by —E/n.



4.11 The wave nature of the time-harmonic EM field

Time-harmonic electromagnetic waves have been studied in great detail. Narrowband
waves are widely used for signal transmission, heating, power transfer, and radar. They
share many of the properties of more general transient waves, and the discussions of
§ 2.10.1 are applicable. Here we shall investigate some of the un