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Preface

This book is intended as a text for a first-year graduate sequence in engineering electro-
magnetics. Ideally such a sequence provides a transition period during which a student
can solidify his or her understanding of fundamental concepts before proceeding to spe-
cialized areas of research.

The assumed background of the reader is limited to standard undergraduate topics
in physics and mathematics. Worthy of explicit mention are complex arithmetic, vec-
tor analysis, ordinary differential equations, and certain topics normally covered in a
“signals and systems” course (e.g., convolution and the Fourier transform). Further an-
alytical tools, such as contour integration, dyadic analysis, and separation of variables,
are covered in a self-contained mathematical appendix.

The organization of the book is in six chapters. In Chapter 1 we present essential
background on the field concept, as well as information related specifically to the electro-
magnetic field and its sources. Chapter 2 is concerned with a presentation of Maxwell’s
theory of electromagnetism. Here attention is given to several useful forms of Maxwell’s
equations, the nature of the four field quantities and of the postulate in general, some
fundamental theorems, and the wave nature of the time-varying field. The electrostatic
and magnetostatic cases are treated in Chapter 3. In Chapter 4 we cover the representa-
tion of the field in the frequency domains: both temporal and spatial. Here the behavior
of common engineering materials is also given some attention. The use of potential
functions is discussed in Chapter 5, along with other field decompositions including the
solenoidal–lamellar, transverse–longitudinal, and TE–TM types. Finally, in Chapter 6
we present the powerful integral solution to Maxwell’s equations by the method of Strat-
ton and Chu. A main mathematical appendix near the end of the book contains brief but
sufficient treatments of Fourier analysis, vector transport theorems, complex-plane inte-
gration, dyadic analysis, and boundary value problems. Several subsidiary appendices
provide useful tables of identities, transforms, and so on.

We would like to express our deep gratitude to those persons who contributed to the
development of the book. The reciprocity-based derivation of the Stratton–Chu formula
was provided by Prof. Dennis Nyquist, as was the material on wave reflection from
multiple layers. The groundwork for our discussion of the Kronig–Kramers relations was
provided by Michael Havrilla, and material on the time-domain reflection coefficient was
developed by Jungwook Suk. We owe thanks to Prof. Leo Kempel, Dr. David Infante,
and Dr. Ahmet Kizilay for carefully reading large portions of the manuscript during its
preparation, and to Christopher Coleman for helping to prepare the figures. We are
indebted to Dr. John E. Ross for kindly permitting us to employ one of his computer
programs for scattering from a sphere and another for numerical Fourier transformation.
Helpful comments and suggestions on the figures were provided by Beth Lannon–Cloud.



Thanks to Dr. C. L. Tondo of T & T Techworks, Inc., for assistance with the LaTeX
macros that were responsible for the layout of the book. Finally, we would like to thank
the staff members of CRC Press — Evelyn Meany, Sara Seltzer, Elena Meyers, Helena
Redshaw, Jonathan Pennell, Joette Lynch, and Nora Konopka — for their guidance and
support.
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Chapter 1

Introductory concepts

1.1 Notation, conventions, and symbology

Any book that covers a broad range of topics will likely harbor some problems with
notation and symbology. This results from having the same symbol used in different areas
to represent different quantities, and also from having too many quantities to represent.
Rather than invent new symbols, we choose to stay close to the standards and warn the
reader about any symbol used to represent more than one distinct quantity.

The basic nature of a physical quantity is indicated by typeface or by the use of a
diacritical mark. Scalars are shown in ordinary typeface: q, �, for example. Vectors
are shown in boldface: E,Π. Dyadics are shown in boldface with an overbar: ε̄, Ā.
Frequency dependent quantities are indicated by a tilde, whereas time dependent quan-
tities are written without additional indication; thus we write Ẽ(r, ω) and E(r, t). (Some
quantities, such as impedance, are used in the frequency domain to interrelate Fourier
spectra; although these quantities are frequency dependent they are seldom written in
the time domain, and hence we do not attach tildes to their symbols.) We often combine
diacritical marks: for example, ˜̄ε denotes a frequency domain dyadic. We distinguish
carefully between phasor and frequency domain quantities. The variable ω is used for
the frequency variable of the Fourier spectrum, while ω̌ is used to indicate the constant
frequency of a time harmonic signal. We thus further separate the notion of a phasor
field from a frequency domain field by using a check to indicate a phasor field: Ě(r).
However, there is often a simple relationship between the two, such as Ě = Ẽ(ω̌).

We designate the field and source point position vectors by r and r′, respectively, and
the corresponding relative displacement or distance vector by R:

R = r − r′.

A hat designates a vector as a unit vector (e.g., x̂). The sets of coordinate variables in
rectangular, cylindrical, and spherical coordinates are denoted by

(x, y, z), (ρ, φ, z), (r, θ, φ),

respectively. (In the spherical system φ is the azimuthal angle and θ is the polar angle.)
We freely use the “del” operator notation ∇ for gradient, curl, divergence, Laplacian,
and so on.

The SI (MKS) system of units is employed throughout the book.



1.2 The field concept of electromagnetics

Introductory treatments of electromagnetics often stress the role of the field in force
transmission: the individual fields E and B are defined via the mechanical force on a
small test charge. This is certainly acceptable, but does not tell the whole story. We
might, for example, be left with the impression that the EM field always arises from
an interaction between charged objects. Often coupled with this is the notion that the
field concept is meant merely as an aid to the calculation of force, a kind of notational
convenience not placed on the same physical footing as force itself. In fact, fields are
more than useful — they are fundamental. Before discussing electromagnetic fields in
more detail, let us attempt to gain a better perspective on the field concept and its role
in modern physical theory. Fields play a central role in any attempt to describe physical
reality. They are as real as the physical substances we ascribe to everyday experience.
In the words of Einstein [63],

“It seems impossible to give an obvious qualitative criterion for distinguishing between
matter and field or charge and field.”

We must therefore put fields and particles of matter on the same footing: both carry
energy and momentum, and both interact with the observable world.

1.2.1 Historical perspective

Early nineteenth century physical thought was dominated by the action at a distance
concept, formulated by Newton more than 100 years earlier in his immensely successful
theory of gravitation. In this view the influence of individual bodies extends across space,
instantaneously affects other bodies, and remains completely unaffected by the presence
of an intervening medium. Such an idea was revolutionary; until then action by contact, in
which objects are thought to affect each other through physical contact or by contact with
the intervening medium, seemed the obvious and only means for mechanical interaction.
Priestly’s experiments in 1766 and Coulomb’s torsion-bar experiments in 1785 seemed to
indicate that the force between two electrically charged objects behaves in strict analogy
with gravitation: both forces obey inverse square laws and act along a line joining the
objects. Oersted, Ampere, Biot, and Savart soon showed that the magnetic force on
segments of current-carrying wires also obeys an inverse square law.

The experiments of Faraday in the 1830s placed doubt on whether action at a distance
really describes electric and magnetic phenomena. When a material (such as a dielec-
tric) is placed between two charged objects, the force of interaction decreases; thus, the
intervening medium does play a role in conveying the force from one object to the other.
To explain this, Faraday visualized “lines of force” extending from one charged object to
another. The manner in which these lines were thought to interact with materials they
intercepted along their path was crucial in understanding the forces on the objects. This
also held for magnetic effects. Of particular importance was the number of lines passing
through a certain area (the flux ), which was thought to determine the amplitude of the
effect observed in Faraday’s experiments on electromagnetic induction.

Faraday’s ideas presented a new world view: electromagnetic phenomena occur in the
region surrounding charged bodies, and can be described in terms of the laws governing
the “field” of his lines of force. Analogies were made to the stresses and strains in material
objects, and it appeared that Faraday’s force lines created equivalent electromagnetic



stresses and strains in media surrounding charged objects. His law of induction was
formulated not in terms of positions of bodies, but in terms of lines of magnetic force.
Inspired by Faraday’s ideas, Gauss restated Coulomb’s law in terms of flux lines, and
Maxwell extended the idea to time changing fields through his concept of displacement
current.

In the 1860s Maxwell created what Einstein called “the most important invention
since Newton’s time”— a set of equations describing an entirely field-based theory of
electromagnetism. These equations do not model the forces acting between bodies, as do
Newton’s law of gravitation and Coulomb’s law, but rather describe only the dynamic,
time-evolving structure of the electromagnetic field. Thus bodies are not seen to inter-
act with each other, but rather with the (very real) electromagnetic field they create,
an interaction described by a supplementary equation (the Lorentz force law). To bet-
ter understand the interactions in terms of mechanical concepts, Maxwell also assigned
properties of stress and energy to the field.

Using constructs that we now call the electric and magnetic fields and potentials,
Maxwell synthesized all known electromagnetic laws and presented them as a system of
differential and algebraic equations. By the end of the nineteenth century, Hertz had
devised equations involving only the electric and magnetic fields, and had derived the
laws of circuit theory (Ohm’s law and Kirchoff’s laws) from the field expressions. His
experiments with high-frequency fields verified Maxwell’s predictions of the existence of
electromagnetic waves propagating at finite velocity, and helped solidify the link between
electromagnetism and optics. But one problem remained: if the electromagnetic fields
propagated by stresses and strains on a medium, how could they propagate through a
vacuum? A substance called the luminiferous aether, long thought to support the trans-
verse waves of light, was put to the task of carrying the vibrations of the electromagnetic
field as well. However, the pivotal experiments of Michelson and Morely showed that the
aether was fictitious, and the physical existence of the field was firmly established.

The essence of the field concept can be conveyed through a simple thought experiment.
Consider two stationary charged particles in free space. Since the charges are stationary,
we know that (1) another force is present to balance the Coulomb force between the
charges, and (2) the momentum and kinetic energy of the system are zero. Now suppose
one charge is quickly moved and returned to rest at its original position. Action at a
distance would require the second charge to react immediately (Newton’s third law),
but by Hertz’s experiments it does not. There appears to be no change in energy of
the system: both particles are again at rest in their original positions. However, after a
time (given by the distance between the charges divided by the speed of light) we find
that the second charge does experience a change in electrical force and begins to move
away from its state of equilibrium. But by doing so it has gained net kinetic energy
and momentum, and the energy and momentum of the system seem larger than at the
start. This can only be reconciled through field theory. If we regard the field as a
physical entity, then the nonzero work required to initiate the motion of the first charge
and return it to its initial state can be seen as increasing the energy of the field. A
disturbance propagates at finite speed and, upon reaching the second charge, transfers
energy into kinetic energy of the charge. Upon its acceleration this charge also sends out
a wave of field disturbance, carrying energy with it, eventually reaching the first charge
and creating a second reaction. At any given time, the net energy and momentum of the
system, composed of both the bodies and the field, remain constant. We thus come to
regard the electromagnetic field as a true physical entity: an entity capable of carrying
energy and momentum.



1.2.2 Formalization of field theory

Before we can invoke physical laws, we must find a way to describe the state of the
system we intend to study. We generally begin by identifying a set of state variables
that can depict the physical nature of the system. In a mechanical theory such as
Newton’s law of gravitation, the state of a system of point masses is expressed in terms
of the instantaneous positions and momenta of the individual particles. Hence 6N state
variables are needed to describe the state of a system of N particles, each particle having
three position coordinates and three momentum components. The time evolution of
the system state is determined by a supplementary force function (e.g., gravitational
attraction), the initial state (initial conditions), and Newton’s second law F = dP/dt.

Descriptions using finite sets of state variables are appropriate for action-at-a-distance
interpretations of physical laws such as Newton’s law of gravitation or the interaction
of charged particles. If Coulomb’s law were taken as the force law in a mechanical
description of electromagnetics, the state of a system of particles could be described
completely in terms of their positions, momenta, and charges. Of course, charged particle
interaction is not this simple. An attempt to augment Coulomb’s force law with Ampere’s
force law would not account for kinetic energy loss via radiation. Hence we abandon1

the mechanical viewpoint in favor of the field viewpoint, selecting a different set of
state variables. The essence of field theory is to regard electromagnetic phenomena as
affecting all of space. We shall find that we can describe the field in terms of the four
vector quantities E, D, B, and H. Because these fields exist by definition at each point
in space and each time t , a finite set of state variables cannot describe the system.

Here then is an important distinction between field theories and mechanical theories:
the state of a field at any instant can only be described by an infinite number of state
variables. Mathematically we describe fields in terms of functions of continuous variables;
however, we must be careful not to confuse all quantities described as “fields” with those
fields innate to a scientific field theory. For instance, we may refer to a temperature
“field” in the sense that we can describe temperature as a function of space and time.
However, we do not mean by this that temperature obeys a set of physical laws analogous
to those obeyed by the electromagnetic field.

What special character, then, can we ascribe to the electromagnetic field that has
meaning beyond that given by its mathematical implications? In this book, E, D, B,
and H are integral parts of a field-theory description of electromagnetics. In any field
theory we need two types of fields: a mediating field generated by a source, and a field
describing the source itself. In free-space electromagnetics the mediating field consists
of E and B, while the source field is the distribution of charge or current. An important
consideration is that the source field must be independent of the mediating field that
it “sources.” Additionally, fields are generally regarded as unobservable: they can only
be measured indirectly through interactions with observable quantities. We need a link
to mechanics to observe E and B: we might measure the change in kinetic energy of
a particle as it interacts with the field through the Lorentz force. The Lorentz force
becomes the force function in the mechanical interaction that uniquely determines the
(observable) mechanical state of the particle.

A field is associated with a set of field equations and a set of constitutive relations. The
field equations describe, through partial derivative operations, both the spatial distribu-
tion and temporal evolution of the field. The constitutive relations describe the effect

1Attempts have been made to formulate electromagnetic theory purely in action-at-a-distance terms,
but this viewpoint has not been generally adopted [69].



of the supporting medium on the fields and are dependent upon the physical state of
the medium. The state may include macroscopic effects, such as mechanical stress and
thermodynamic temperature, as well as the microscopic, quantum-mechanical properties
of matter.

The value of the field at any position and time in a bounded region V is then determined
uniquely by specifying the sources within V , the initial state of the fields within V , and
the value of the field or finitely many of its derivatives on the surface bounding V . If
the boundary surface also defines a surface of discontinuity between adjacent regions of
differing physical characteristics, or across discontinuous sources, then jump conditions
may be used to relate the fields on either side of the surface.

The variety of forms of field equations is restricted by many physical principles in-
cluding reference-frame invariance, conservation, causality, symmetry, and simplicity.
Causality prevents the field at time t = 0 from being influenced by events occurring at
subsequent times t > 0. Of course, we prefer that a field equation be mathematically
robust and well-posed to permit solutions that are unique and stable.

Many of these ideas are well illustrated by a consideration of electrostatics. We can
describe the electrostatic field through a mediating scalar field �(x, y, z) known as the
electrostatic potential. The spatial distribution of the field is governed by Poisson’s
equation

∂2�

∂x2
+ ∂2�

∂y2
+ ∂2�

∂z2
= − ρ

ε0
,θ

where ρ = ρ(x, y, z) is the source charge density. No temporal derivatives appear, and the
spatial derivatives determine the spatial behavior of the field. The function ρ represents
the spatially-averaged distribution of charge that acts as the source term for the field �.
Note that ρ incorporates no information about �. To uniquely specify the field at any
point, we must still specify its behavior over a boundary surface. We could, for instance,
specify � on five of the six faces of a cube and the normal derivative ∂�/∂n on the
remaining face. Finally, we cannot directly observe the static potential field, but we can
observe its interaction with a particle. We relate the static potential field theory to the
realm of mechanics via the electrostatic force F = qE acting on a particle of charge q.

In future chapters we shall present a classical field theory for macroscopic electromag-
netics. In that case the mediating field quantities are E, D, B, and H, and the source
field is the current density J.

1.3 The sources of the electromagnetic field

Electric charge is an intriguing natural entity. Human awareness of charge and its
effects dates back to at least 600 BC, when the Greek philosopher Thales of Miletus
observed that rubbing a piece of amber could enable the amber to attract bits of straw.
Although charging by friction is probably still the most common and familiar manifes-
tation of electric charge, systematic experimentation has revealed much more about the
behavior of charge and its role in the physical universe. There are two kinds of charge, to
which Benjamin Franklin assigned the respective names positive and negative. Franklin
observed that charges of opposite kind attract and charges of the same kind repel. He
also found that an increase in one kind of charge is accompanied by an increase in the



other, and so first described the principle of charge conservation. Twentieth century
physics has added dramatically to the understanding of charge:

1. Electric charge is a fundamental property of matter, as is mass or dimension.
2. Charge is quantized : there exists a smallest quantity (quantum) of charge that

can be associated with matter. No smaller amount has been observed, and larger
amounts always occur in integral multiples of this quantity.

3. The charge quantum is associated with the smallest subatomic particles, and these
particles interact through electrical forces. In fact, matter is organized and arranged
through electrical interactions; for example, our perception of physical contact is
merely the macroscopic manifestation of countless charges in our fingertips pushing
against charges in the things we touch.

4. Electric charge is an invariant : the value of charge on a particle does not depend on
the speed of the particle. In contrast, the mass of a particle increases with speed.

5. Charge acts as the source of an electromagnetic field; the field is an entity that can
carry energy and momentum away from the charge via propagating waves.

We begin our investigation of the properties of the electromagnetic field with a detailed
examination of its source.

1.3.1 Macroscopic electromagnetics

We are interested primarily in those electromagnetic effects that can be predicted by
classical techniques using continuous sources (charge and current densities). Although
macroscopic electromagnetics is limited in scope, it is useful in many situations en-
countered by engineers. These include, for example, the determination of currents and
voltages in lumped circuits, torques exerted by electrical machines, and fields radiated by
antennas. Macroscopic predictions can fall short in cases where quantum effects are im-
portant: e.g., with devices such as tunnel diodes. Even so, quantum mechanics can often
be coupled with classical electromagnetics to determine the macroscopic electromagnetic
properties of important materials.

Electric charge is not of a continuous nature. The quantization of atomic charge —
±e for electrons and protons, ±e/3 and ±2e/3 for quarks — is one of the most precisely
established principles in physics (verified to 1 part in 1021). The value of e itself is known
to great accuracy:

e = 1.60217733 × 10−19 Coulombs (C).

However, the discrete nature of charge is not easily incorporated into everyday engineer-
ing concerns. The strange world of the individual charge — characterized by particle
spin, molecular moments, and thermal vibrations — is well described only by quantum
theory. There is little hope that we can learn to describe electrical machines using such
concepts. Must we therefore retreat to the macroscopic idea and ignore the discretization
of charge completely? A viable alternative is to use atomic theories of matter to estimate
the useful scope of macroscopic electromagnetics.

Remember, we are completely free to postulate a theory of nature whose scope may
be limited. Like continuum mechanics, which treats distributions of matter as if they
were continuous, macroscopic electromagnetics is regarded as valid because it is verified
by experiment over a certain range of conditions. This applicability range generally
corresponds to dimensions on a laboratory scale, implying a very wide range of validity
for engineers.



Macroscopic effects as averaged microscopic effects. Macroscopic electromag-
netics can hold in a world of discrete charges because applications usually occur over
physical scales that include vast numbers of charges. Common devices, generally much
larger than individual particles, “average” the rapidly varying fields that exist in the
spaces between charges, and this allows us to view a source as a continuous “smear” of
charge. To determine the range of scales over which the macroscopic viewpoint is valid,
we must compare averaged values of microscopic fields to the macroscopic fields we mea-
sure in the lab. But if the effects of the individual charges are describable only in terms
of quantum notions, this task will be daunting at best. A simple compromise, which
produces useful results, is to extend the macroscopic theory right down to the micro-
scopic level and regard discrete charges as “point” entities that produce electromagnetic
fields according to Maxwell’s equations. Then, in terms of scales much larger than the
classical radius of an electron (≈ 10−14 m), the expected rapid fluctuations of the fields
in the spaces between charges is predicted. Finally, we ask: over what spatial scale must
we average the effects of the fields and the sources in order to obtain agreement with the
macroscopic equations?

In the spatial averaging approach a convenient weighting function f (r) is chosen, and
is normalized so that

∫
f (r) dV = 1.

An example is the Gaussian distribution

f (r) = (πa2)−3/2e−r2/a2
,

where a is the approximate radial extent of averaging. The spatial average of a micro-
scopic quantity F(r, t) is given by

〈F(r, t)〉 =
∫

F(r − r′, t) f (r′) dV ′. (1.1)

The scale of validity of the macroscopic model can be found by determining the averaging
radius a that produces good agreement between the averaged microscopic fields and the
macroscopic fields.

The macroscopic volume charge density. At this point we do not distinguish
between the “free” charge that is unattached to a molecular structure and the charge
found near the surface of a conductor. Nor do we consider the dipole nature of polarizable
materials or the microscopic motion associated with molecular magnetic moment or the
magnetic moment of free charge. For the consideration of free-space electromagnetics,
we assume charge exhibits either three degrees of freedom (volume charge), two degrees
of freedom (surface charge), or one degree of freedom (line charge).

In typical matter, the microscopic fields vary spatially over dimensions of 10−10 m
or less, and temporally over periods (determined by atomic motion) of 10−13 s or less.
At the surface of a material such as a good conductor where charge often concentrates,
averaging with a radius on the order of 10−10 m may be required to resolve the rapid
variation in the distribution of individual charged particles. However, within a solid or
liquid material, or within a free-charge distribution characteristic of a dense gas or an
electron beam, a radius of 10−8 m proves useful, containing typically 106 particles. A
diffuse gas, on the other hand, may have a particle density so low that the averaging
radius takes on laboratory dimensions, and in such a case the microscopic theory must
be employed even at macroscopic dimensions.

Once the averaging radius has been determined, the value of the charge density may
be found via (1.1). The volume density of charge for an assortment of point sources can



be written in terms of the three-dimensional Dirac delta as

ρo(r, t) =
∑

i

qiδ(r − ri (t)),

where ri (t) is the position of the charge qi at time t . Substitution into (1.1) gives

ρ(r, t) = 〈ρo(r, t)〉 =
∑

i

qi f (r − ri (t)) (1.2)

as the averaged charge density appropriate for use in a macroscopic field theory. Because
the oscillations of the atomic particles are statistically uncorrelated over the distances
used in spatial averaging, the time variations of microscopic fields are not present in the
macroscopic fields and temporal averaging is unnecessary. In (1.2) the time dependence
of the spatially-averaged charge density is due entirely to bulk motion of the charge
aggregate (macroscopic charge motion).

With the definition of macroscopic charge density given by (1.2), we can determine
the total charge Q(t) in any macroscopic volume region V using

Q(t) =
∫

V
ρ(r, t) dV . (1.3)

We have

Q(t) =
∑

i

qi

∫
V

f (r − ri (t)) dV =
∑

ri (t)∈V

qi .

Here we ignore the small discrepancy produced by charges lying within distance a of
the boundary of V . It is common to employ a box B having volume �V :

{
f (r) = 1/�V, r ∈ B,

0, r /∈ B.

In this case

ρ(r, t) = 1

�V

∑
r−ri (t)∈B

qi .

The size of B is chosen with the same considerations as to atomic scale as was the
averaging radius a. Discontinuities at the edges of the box introduce some difficulties
concerning charges that move in and out of the box because of molecular motion.

The macroscopic volume current density. Electric charge in motion is referred
to as electric current. Charge motion can be associated with external forces and with
microscopic fluctuations in position. Assuming charge qi has velocity vi (t) = dri (t)/dt ,
the charge aggregate has volume current density

Jo(r, t) =
∑

i

qi vi (t) δ(r − ri (t)).

Spatial averaging gives the macroscopic volume current density

J(r, t) = 〈Jo(r, t)〉 =
∑

i

qi vi (t) f (r − ri (t)). (1.4)



Figure 1.1: Intersection of the averaging function of a point charge with a surface S, as
the charge crosses S with velocity v: (a) at some time t = t1, and (b) at t = t2 > t1. The
averaging function is represented by a sphere of radius a.

Spatial averaging at time t eliminates currents associated with microscopic motions that
are uncorrelated at the scale of the averaging radius (again, we do not consider the
magnetic moments of particles). The assumption of a sufficiently large averaging radius
leads to

J(r, t) = ρ(r, t) v(r, t). (1.5)

The total flux I (t) of current through a surface S is given by

I (t) =
∫

S
J(r, t) · n̂ d S

where n̂ is the unit normal to S. Hence, using (4), we have

I (t) =
∑

i

qi
d

dt
(ri (t) · n̂)

∫
S

f (r − ri (t)) d S

if n̂ stays approximately constant over the extent of the averaging function and S is not in
motion. We see that the integral effectively intersects S with the averaging function sur-
rounding each moving point charge  (Figure 1.1). The time derivative of r i · n̂ represents
the velocity at which the averaging function is “carried across” the surface.

Electric current takes a variety of forms, each described by the relation J = ρv. Isolated
charged particles (positive and negative) and charged insulated bodies moving through
space comprise convection currents. Negatively-charged electrons moving through the
positive background lattice within a conductor comprise a conduction current. Empirical
evidence suggests that conduction currents are also described by the relation J = σE
known as Ohm’s law. A third type of current, called electrolytic current, results from the
flow of positive or negative ions through a fluid.

1.3.2 Impressed vs. secondary sources

In addition to the simple classification given above we may classify currents as primary
or secondary, depending on the action that sets the charge in motion.



It is helpful to separate primary or “impressed” sources, which are independent of the
fields they source, from secondary sources which result from interactions between the
sourced fields and the medium in which the fields exist. Most familiar is the conduc-
tion current set up in a conducting medium by an externally applied electric field. The
impressed source concept is particularly important in circuit theory, where independent
voltage sources are modeled as providing primary voltage excitations that are indepen-
dent of applied load. In this way they differ from the secondary or “dependent” sources
that react to the effect produced by the application of primary sources.

In applied electromagnetics the primary source may be so distant that return effects
resulting from local interaction of its impressed fields can be ignored. Other examples of
primary sources include the applied voltage at the input of an antenna, the current on a
probe inserted into a waveguide, and the currents producing a power-line field in which
a biological body is immersed.

1.3.3 Surface and line source densities

Because they are spatially averaged effects, macroscopic sources and the fields they
source cannot have true spatial discontinuities. However, it is often convenient to work
with sources in one or two dimensions. Surface and line source densities are idealizations
of actual, continuous macroscopic densities.

The entity we describe as a surface charge is a continuous volume charge distributed
in a thin layer across some surface S. If the thickness of the layer is small compared to
laboratory dimensions, it is useful to assign to each point r on the surface a quantity
describing the amount of charge contained within a cylinder oriented normal to the
surface and having infinitesimal cross section d S. We call this quantity the surface
charge density ρs(r, t), and write the volume charge density as

ρ(r, w, t) = ρs(r, t) f (w, �),

where w is distance from S in the normal direction and � in some way parameterizes the
“thickness” of the charge layer at r. The continuous density function f (x, �) satisfies

∫ ∞

−∞
f (x, �) dx = 1

and

lim
�→0

f (x, �) = δ(x).

For instance, we might have

f (x, �) = e−x2/�2

�
√

π
. (1.6)

With this definition the total charge contained in a cylinder normal to the surface at r
and having cross-sectional area d S is

d Q(t) =
∫ ∞

−∞
[ρs(r, t) d S] f (w, �) dw = ρs(r, t) d S,

and the total charge contained within any cylinder oriented normal to S is

Q(t) =
∫

S
ρs(r, t) d S. (1.7)



We may describe a line charge as a thin “tube” of volume charge distributed along
some contour �. The amount of charge contained between two planes normal to the
contour and separated by a distance dl is described by the line charge density ρl(r, t).
The volume charge density associated with the contour is then

ρ(r, ρ, t) = ρl(r, t) fs(ρ, �),

where ρ is the radial distance from the contour in the plane normal to � and fs(ρ, �) is
a density function with the properties∫ ∞

0
fs(ρ, �)2πρ dρ = 1

and

lim
�→0

fs(ρ, �) = δ(ρ)

2πρ
.

For example, we might have

fs(ρ, �) = e−ρ2/�2

π�2
. (1.8)

Then the total charge contained between planes separated by a distance dl is

d Q(t) =
∫ ∞

0
[ρl(r, t) dl] fs(ρ, �)2πρ dρ = ρl(r, t) dl

and the total charge contained between planes placed at the ends of a contour � is

Q(t) =
∫

�

ρl(r, t) dl. (1.9)

We may define surface and line currents similarly. A surface current is merely a
volume current confined to the vicinity of a surface S. The volume current density may
be represented using a surface current density function Js(r, t), defined at each point r
on the surface so that

J(r, w, t) = Js(r, t) f (w, �).

Here f (w, �) is some appropriate density function such as (1.6), and the surface current
vector obeys n̂ · Js = 0 where n̂ is normal to S. The total current flowing through a strip
of width dl arranged perpendicular to S at r is

d I (t) =
∫ ∞

−∞
[Js(r, t) · n̂l(r) dl] f (w, �) dw = Js(r, t) · n̂l(r) dl

where n̂l is normal to the strip at r (and thus also tangential to S at r). The total current
passing through a strip intersecting with S along a contour � is thus

I (t) =
∫

�

Js(r, t) · n̂l(r) dl.

We may describe a line current as a thin “tube” of volume current distributed about
some contour � and flowing parallel to it. The amount of current passing through a
plane normal to the contour is described by the line current density Jl(r, t). The volume
current density associated with the contour may be written as

J(r, ρ, t) = û(r)Jl(r, t) fs(ρ, �),



where û is a unit vector along �, ρ is the radial distance from the contour in the plane
normal to �, and fs(ρ, �) is a density function such as (1.8). The total current passing
through any plane normal to � at r is

I (t) =
∫ ∞

0
[Jl(r, t)û(r) · û(r)] fs(ρ, �)2πρ dρ = Jl(r, t).

It is often convenient to employ singular models for continuous source densities. For
instance, it is mathematically simpler to regard a surface charge as residing only in the
surface S than to regard it as being distributed about the surface. Of course, the source
is then discontinuous since it is zero everywhere outside the surface. We may obtain a
representation of such a charge distribution by letting the thickness parameter � in the
density functions recede to zero, thus concentrating the source into a plane or a line. We
describe the limit of the density function in terms of the δ-function. For instance, the
volume charge distribution for a surface charge located about the xy-plane is

ρ(x, y, z, t) = ρs(x, y, t) f (z, �).

As � → 0 we have

ρ(x, y, z, t) = ρs(x, y, t) lim
�→0

f (z, �) = ρs(x, y, t)δ(z).

It is a simple matter to represent singular source densities in this way as long as the
surface or line is easily parameterized in terms of constant values of coordinate variables.
However, care must be taken to represent the δ-function properly. For instance, the
density of charge on the surface of a cone at θ = θ0 may be described using the distance
normal to this surface, which is given by rθ − rθ0:

ρ(r, θ, φ, t) = ρs(r, φ, t)δ (r [θ − θ0]) .

Using the property δ(ax) = δ(x)/a, we can also write this as

ρ(r, θ, φ, t) = ρs(r, φ, t)
δ(θ − θ0)

r
.

1.3.4 Charge conservation

There are four fundamental conservation laws in physics: conservation of energy, mo-
mentum, angular momentum, and charge. These laws are said to be absolute; they have
never been observed to fail. In that sense they are true empirical laws of physics.

However, in modern physics the fundamental conservation laws have come to represent
more than just observed facts. Each law is now associated with a fundamental symme-
try of the universe; conversely, each known symmetry is associated with a conservation
principle. For example, energy conservation can be shown to arise from the observation
that the universe is symmetric with respect to time; the laws of physics do not depend
on choice of time origin t = 0. Similarly, momentum conservation arises from the obser-
vation that the laws of physics are invariant under translation, while angular momentum
conservation arises from invariance under rotation.

The law of conservation of charge also arises from a symmetry principle. But instead
of being spatial or temporal in character, it is related to the invariance of electrostatic
potential. Experiments show that there is no absolute potential, only potential difference.
The laws of nature are invariant with respect to what we choose as the “reference”



potential. This in turn is related to the invariance of Maxwell’s equations under gauge
transforms; the values of the electric and magnetic fields do not depend on which gauge
transformation we use to relate the scalar potential � to the vector potential A.

We may state the conservation of charge as follows:

The net charge in any closed system remains constant with time.

This does not mean that individual charges cannot be created or destroyed, only that
the total charge in any isolated system must remain constant. Thus it is possible for a
positron with charge e to annihilate an electron with charge −e without changing the
net charge of the system. Only if a system is not closed can its net charge be altered;
since moving charge constitutes current, we can say that the total charge within a system
depends on the current passing through the surface enclosing the system. This is the
essence of the continuity equation. To derive this important result we consider a closed
system within which the charge remains constant, and apply the Reynolds transport
theorem (see § A.2).

The continuity equation. Consider a region of space occupied by a distribution of
charge whose velocity is given by the vector field v. We surround a portion of charge
by a surface S and let S deform as necessary to “follow” the charge as it moves. Since
S always contains precisely the same charged particles, we have an isolated system for
which the time rate of change of total charge must vanish. An expression for the time
rate of change is given by the Reynolds transport theorem (A.66); we have2

DQ

Dt
= D

Dt

∫
V (t)

ρ dV =
∫

V (t)

∂ρ

∂t
dV +

∮
S(t)

ρv · dS = 0.

The “D/Dt” notation indicates that the volume region V (t) moves with its enclosed
particles. Since ρv represents current density, we can write

∫
V (t)

∂ρ(r, t)

∂t
dV +

∮
S(t)

J(r, t) · dS = 0. (1.10)

In this large-scale form of the continuity equation, the partial derivative term describes
the time rate of change of the charge density for a fixed spatial position r. At any time t ,
the time rate of change of charge density integrated over a volume is exactly compensated
by the total current exiting through the surrounding surface.

We can obtain the continuity equation in point form by applying the divergence the-
orem to the second term of (1.10) to get

∫
V (t)

[
∂ρ(r, t)

∂t
+ ∇ · J(r, t)

]
dV = 0.

Since V (t) is arbitrary we can set the integrand to zero to obtain

∂ρ(r, t)

∂t
+ ∇ · J(r, t) = 0. (1.11)

2Note that in Appendix A we use the symbol u to represent the velocity of a material and v to represent
the velocity of an artificial surface.



This expression involves the time derivative of ρ with r fixed. We can also find an
expression in terms of the material derivative by using the transport equation (A.67).
Enforcing conservation of charge by setting that expression to zero, we have

Dρ(r, t)

Dt
+ ρ(r, t) ∇ · v(r, t) = 0. (1.12)

Here Dρ/Dt is the time rate of change of the charge density experienced by an observer
moving with the current.

We can state the large-scale form of the continuity equation in terms of a stationary
volume. Integrating (1.11) over a stationary volume region V and using the divergence
theorem, we find that ∫

V

∂ρ(r, t)

∂t
dV = −

∮
S

J(r, t) · dS.

Since V is not changing with time we have
d Q(t)

dt
= d

dt

∫
V

ρ(r, t) dV = −
∮

S
J(r, t) · dS. (1.13)

Hence any increase of total charge within V must be produced by current entering V
through S.

Use of the continuity equation. As an example, suppose that in a bounded region
of space we have

ρ(r, t) = ρ0re−βt .

We wish to find J and v, and to verify both versions of the continuity equation in point
form. The spherical symmetry of ρ requires that J = r̂Jr . Application of (1.13) over a
sphere of radius a gives

4π
d

dt

∫ a

0
ρ0re−βt r2 dr = −4π Jr (a)a2.

Hence

J = r̂βρ0
r2

4
e−βt

and therefore

∇ · J = 1

r2

∂

∂r
(r2 Jr ) = βρ0re−βt .

The velocity is

v = J
ρ

= r̂β
r

4
,

and we have ∇ · v = 3β/4. To verify the continuity equations, we compute the time
derivatives

∂ρ

∂t
= −βρ0re−βt ,

Dρ

Dt
= ∂ρ

∂t
+ v · ∇ρ

= −βρ0re−βt +
(

r̂β
r

4

)
· (

r̂ρ0e−βt
)

= −3

4
βρ0re−βt .



Note that the charge density decreases with time less rapidly for a moving observer than
for a stationary one (3/4 as fast): the moving observer is following the charge outward,
and ρ ∝ r . Now we can check the continuity equations. First we see

Dρ

Dt
+ ρ∇ · v = −3

4
βρ0re−βt + (ρ0re−βt )

(
3

4
β

)
= 0,

as required for a moving observer; second we see

∂ρ

∂t
+ ∇ · J = −βρ0re−βt + βρ0e−βt = 0,

as required for a stationary observer.

The continuity equation in fewer dimensions. The continuity equation can also
be used to relate current and charge on a surface or along a line. By conservation of
charge we can write

d

dt

∫
S
ρs(r, t) d S = −

∮
�

Js(r, t) · m̂ dl (1.14)

where m̂ is the vector normal to the curve � and tangential to the surface S. By the
surface divergence theorem (B.20), the corresponding point form is

∂ρs(r, t)

∂t
+ ∇s · Js(r, t) = 0. (1.15)

Here ∇s · Js is the surface divergence of the vector field Js . For instance, in rectangular
coordinates in the z = 0 plane we have

∇s · Js = ∂ Jsx

∂x
+ ∂ Jsy

∂y
.

In cylindrical coordinates on the cylinder ρ = a, we would have

∇s · Js = 1

a

∂ Jsφ

∂φ
+ ∂ Jsz

∂z
.

A detailed description of vector operations on a surface may be found in Tai [190], while
many identities may be found in Van Bladel [202].

The equation of continuity for a line is easily established by reference to Figure 1.2.
Here the net charge exiting the surface during time �t is given by

�t[I (u2, t) − I (u1, t)].

Thus, the rate of net increase of charge within the system is

d Q(t)

dt
= d

dt

∫
ρl(r, t) dl = −[I (u2, t) − I (u1, t)]. (1.16)

The corresponding point form is found by letting the length of the curve approach zero:

∂ I (l, t)

∂l
+ ∂ρl(l, t)

∂t
= 0, (1.17)

where l is arc length along the curve. As an example, suppose the line current on a
circular loop antenna is approximately

I (φ, t) = I0 cos
(ωa

c
φ
)

cos ωt,



Figure 1.2: Linear form of the continuityequation.

where a is the radius of the loop, ω is the frequency of operation, and c is the speed of
light. We wish to find the line charge density on the loop. Since l = aφ, we can write

I (l, t) = I0 cos

(
ωl

c

)
cos ωt.

Thus

∂ I (l, t)

∂l
= −I0

ω

c
sin

(
ωl

c

)
cos ωt = −∂ρl(l, t)

∂t
.

Integrating with respect to time and ignoring any constant (static) charge, we have

ρ(l, t) = I0

c
sin

(
ωl

c

)
sin ωt

or

ρ(φ, t) = I0

c
sin

(ωa

c
φ
)

sin ωt.

Note that we could have used the chain rule

∂ I (φ, t)

∂l
= ∂ I (φ, t)

∂φ

∂φ

∂l
and

∂φ

∂l
=

[
∂l

∂φ

]−1

= 1

a

to calculate the spatial derivative.
We can apply the volume density continuity equation (1.11) directly to surface and

line distributions written in singular notation. For the loop of the previous example, we
write the volume current density corresponding to the line current as

J(r, t) = φ̂ δ(ρ − a)δ(z)I (φ, t).

Substitution into (1.11) then gives

∇ · [φ̂δ(ρ − a)δ(z)I (φ, t)] = −∂ρ(r, t)

∂t
.

The divergence formula for cylindrical coordinates gives

δ(ρ − a)δ(z)
∂ I (φ, t)

ρ ∂φ
= −∂ρ(r, t)

∂t
.



Next we substitute for I (φ, t) to get

− I0

ρ

ωa

c
sin

(ωa

c
φ
)

δ(ρ − a)δ(z) cos ωt = −∂ρ(r, t)

∂t
.

Finally, integrating with respect to time and ignoring any constant term, we have

ρ(r, t) = I0

c
δ(ρ − a)δ(z) sin

(ωa

c
φ
)

sin ωt,

where we have set ρ = a because of the presence of the factor δ(ρ − a).

1.3.5 Magnetic charge

We take for granted that electric fields are produced by electric charges, whether
stationary or in motion. The smallest element of electric charge is the electric monopole:
a single discretely charged particle from which the electric field diverges. In contrast,
experiments show that magnetic fields are created only by currents or by time changing
electric fields; hence, magnetic fields have moving electric charge as their source. The
elemental source of magnetic field is the magnetic dipole, representing a tiny loop of
electric current (or a spinning electric particle). The observation made in 1269 by Pierre
De Maricourt, that even the smallest magnet has two poles, still holds today.

In a world filled with symmetry at the fundamental level, we find it hard to understand
why there should not be a source from which the magnetic field diverges. We would call
such a source magnetic charge, and the most fundamental quantity of magnetic charge
would be exhibited by a magnetic monopole. In 1931 Paul Dirac invigorated the search for
magnetic monopoles by making the first strong theoretical argument for their existence.
Dirac showed that the existence of magnetic monopoles would imply the quantization
of electric charge, and would thus provide an explanation for one of the great puzzles
of science. Since that time magnetic monopoles have become important players in the
“Grand Unified Theories” of modern physics, and in cosmological theories of the origin
of the universe.

If magnetic monopoles are ever found to exist, there will be both positive and negatively
charged particles whose motions will constitute currents. We can define a macroscopic
magnetic charge density ρm and current density Jm exactly as we did with electric charge,
and use conservation of magnetic charge to provide a continuity equation:

∇ · Jm(r, t) + ∂ρm(r, t)

∂t
= 0. (1.18)

With these new sources Maxwell’s equations become appealingly symmetric. Despite
uncertainties about the existence and physical nature of magnetic monopoles, magnetic
charge and current have become an integral part of electromagnetic theory. We often use
the concept of fictitious magnetic sources to make Maxwell’s equations symmetric, and
then derive various equivalence theorems for use in the solution of important problems.
Thus we can put the idea of magnetic sources to use regardless of whether these sources
actually exist.



1.4 Problems

1.1 Write the volume charge density for a singular surface charge located on the sphere
r = r0, entirely in terms of spherical coordinates. Find the total charge on the sphere.

1.2 Repeat Problem 1.1 for a charged half plane φ = φ0.

1.3 Write the volume charge density for a singular surface charge located on the cylin-
der ρ = ρ0, entirely in terms of cylindrical coordinates. Find the total charge on the
cylinder.

1.4 Repeat Problem 1.3 for a charged half plane φ = φ0.



Chapter 2

Maxwell’s theory of electromagnetism

2.1 The postulate

In 1864, James Clerk Maxwell proposed one of the most successful theories in the
history of science. In a famous memoir to the Royal Society [125] he presented nine
equations summarizing all known laws on electricity and magnetism. This was more
than a mere cataloging of the laws of nature. By postulating the need for an additional
term to make the set of equations self-consistent, Maxwell was able to put forth what
is still considered a complete theory of macroscopic electromagnetism. The beauty of
Maxwell’s equations led Boltzmann to ask, “Was it a god who wrote these lines . . . ?”
[185].

Since that time authors have struggled to find the best way to present Maxwell’s
theory. Although it is possible to study electromagnetics from an “empirical–inductive”
viewpoint (roughly following the historical order of development beginning with static
fields), it is only by postulating the complete theory that we can do justice to Maxwell’s
vision. His concept of the existence of an electromagnetic “field” (as introduced by
Faraday) is fundamental to this theory, and has become one of the most significant
principles of modern science.

We find controversy even over the best way to present Maxwell’s equations. Maxwell
worked at a time before vector notation was completely in place, and thus chose to
use scalar variables and equations to represent the fields. Certainly the true beauty
of Maxwell’s equations emerges when they are written in vector form, and the use of
tensors reduces the equations to their underlying physical simplicity. We shall use vector
notation in this book because of its wide acceptance by engineers, but we still must
decide whether it is more appropriate to present the vector equations in integral or point
form.

On one side of this debate, the brilliant mathematician David Hilbert felt that the
fundamental natural laws should be posited as axioms, each best described in terms
of integral equations [154]. This idea has been championed by Truesdell and Toupin
[199]. On the other side, we may quote from the great physicist Arnold Sommerfeld:
“The general development of Maxwell’s theory must proceed from its differential form;
for special problems the integral form may, however, be more advantageous” ([185], p.
23). Special relativity flows naturally from the point forms, with fields easily converted
between moving reference frames. For stationary media, it seems to us that the only
difference between the two approaches arises in how we handle discontinuities in sources
and materials. If we choose to use the point forms of Maxwell’s equations, then we must
also postulate the boundary conditions at surfaces of discontinuity. This is pointed out



clearly by Tai [192], who also notes that if the integral forms are used, then their validity
across regions of discontinuity should be stated as part of the postulate.

We have decided to use the point form in this text. In doing so we follow a long
history begun by Hertz in 1890 [85] when he wrote down Maxwell’s differential equations
as a set of axioms, recognizing the equations as the launching point for the theory of
electromagnetism. Also, by postulating Maxwell’s equations in point form we can take
full advantage of modern developments in the theory of partial differential equations; in
particular, the idea of a “well-posed” theory determines what sort of information must
be specified to make the postulate useful.

We must also decide which form of Maxwell’s differential equations to use as the basis
of our postulate. There are several competing forms, each differing on the manner in
which materials are considered. The oldest and most widely used form was suggested
by Minkowski in 1908 [130]. In the Minkowski form the differential equations contain
no mention of the materials supporting the fields; all information about material media
is relegated to the constitutive relationships. This places simplicity of the differential
equations above intuitive understanding of the behavior of fields in materials. We choose
the Maxwell–Minkowski form as the basis of our postulate, primarily for ease of ma-
nipulation. But we also recognize the value of other versions of Maxwell’s equations.
We shall present the basic ideas behind the Boffi form, which places some information
about materials into the differential equations (although constitutive relationships are
still required). Missing, however, is any information regarding the velocity of a moving
medium. By using the polarization and magnetization vectors P and M rather than the
fields D and H, it is sometimes easier to visualize the meaning of the field vectors and
to understand (or predict) the nature of the constitutive relations.

The Chu and Amperian forms of Maxwell’s equations have been promoted as useful
alternatives to the Minkowski and Boffi forms. These include explicit information about
the velocity of a moving material, and differ somewhat from the Boffi form in the physical
interpretation of the electric and magnetic properties of matter. Although each of these
models matter in terms of charged particles immersed in free space, magnetization in the
Boffi and Amperian forms arises from electric current loops, while the Chu form employs
magnetic dipoles. In all three forms polarization is modeled using electric dipoles. For a
detailed discussion of the Chu and Amperian forms, the reader should consult the work
of Kong [101], Tai [193], Penfield and Haus [145], or Fano, Chu and Adler [70].

Importantly, all of these various forms of Maxwell’s equations produce the same values
of the physical fields (at least external to the material where the fields are measurable).

We must include several other constituents, besides the field equations, to make the
postulate complete. To form a complete field theory we need a source field, a mediating
field, and a set of field differential equations. This allows us to mathematically describe
the relationship between effect (the mediating field) and cause (the source field). In
a well-posed postulate we must also include a set of constitutive relationships and a
specification of some field relationship over a bounding surface and at an initial time. If
the electromagnetic field is to have physical meaning, we must link it to some observable
quantity such as force. Finally, to allow the solution of problems involving mathematical
discontinuities we must specify certain boundary, or “jump,” conditions.

2.1.1 The Maxwell–Minkowski equations

In Maxwell’s macroscopic theory of electromagnetics, the source field consists of the
vector field J(r, t) (the current density) and the scalar field ρ(r, t) (the charge density).



In Minkowski’s form of Maxwell’s equations, the mediating field is the electromagnetic
field consisting of the set of four vector fields E(r, t), D(r, t), B(r, t), and H(r, t). The field
equations are the four partial differential equations referred to as the Maxwell–Minkowski
equations

∇ × E(r, t) = − ∂

∂t
B(r, t), (2.1)

∇ × H(r, t) = J(r, t) + ∂

∂t
D(r, t), (2.2)

∇ · D(r, t) = ρ(r, t), (2.3)
∇ · B(r, t) = 0, (2.4)

along with the continuity equation

∇ · J(r, t) = − ∂

∂t
ρ(r, t). (2.5)

Here (2.1) is called Faraday’s law, (2.2) is called Ampere’s law, (2.3) is called Gauss’s
law, and (2.4) is called the magnetic Gauss’s law. For brevity we shall often leave the
dependence on r and t implicit, and refer to the Maxwell–Minkowski equations as simply
the “Maxwell equations,” or “Maxwell’s equations.”

Equations (2.1)–(2.5), the point forms of the field equations, describe the relation-
ships between the fields and their sources at each point in space where the fields are
continuously differentiable (i.e., the derivatives exist and are continuous). Such points
are called ordinary points. We shall not attempt to define the fields at other points,
but instead seek conditions relating the fields across surfaces containing these points.
Normally this is necessary on surfaces across which either sources or material parameters
are discontinuous.

The electromagnetic fields carry SI units as follows: E is measured in Volts per meter
(V/m), B is measured in Teslas (T), H is measured in Amperes per meter (A/m), and
D is measured in Coulombs per square meter (C/m2). In older texts we find the units of
B given as Webers per square meter (Wb/m2) to reflect the role of B as a flux vector; in
that case the Weber (Wb = T·m2) is regarded as a unit of magnetic flux.

The interdependence of Maxwell’s equations. It is often claimed that the diver-
gence equations (2.3) and (2.4) may be derived from the curl equations (2.1) and (2.2).
While this is true, it is not proper to say that only the two curl equations are required
to describe Maxwell’s theory. This is because an additional physical assumption, not
present in the two curl equations, is required to complete the derivation. Either the
divergence equations must be specified, or the values of certain constants that fix the
initial conditions on the fields must be specified. It is customary to specify the divergence
equations and include them with the curl equations to form the complete set we now call
“Maxwell’s equations.”

To identify the interdependence we take the divergence of (2.1) to get

∇ · (∇ × E) = ∇ ·
(

−∂B
∂t

)
,

hence

∂

∂t
(∇ · B) = 0



by (B.49). This requires that ∇ · B be constant with time, say ∇ · B(r, t) = CB(r).
The constant CB must be specified as part of the postulate of Maxwell’s theory, and
the choice we make is subject to experimental validation. We postulate that CB(r) = 0,
which leads us to (2.4). Note that if we can identify a time prior to which B(r, t) ≡ 0,
then CB(r) must vanish. For this reason, CB(r) = 0 and (2.4) are often called the “initial
conditions” for Faraday’s law [159]. Next we take the divergence of (2.2) to find that

∇ · (∇ × H) = ∇ · J + ∂

∂t
(∇ · D).

Using (2.5) and (B.49), we obtain

∂

∂t
(ρ − ∇ · D) = 0

and thus ρ − ∇ · D must be some temporal constant CD(r). Again, we must postulate
the value of CD as part of the Maxwell theory. We choose CD(r) = 0 and thus obtain
Gauss’s law (2.3). If we can identify a time prior to which both D and ρ are everywhere
equal to zero, then CD(r) must vanish. Hence CD(r) = 0 and (2.3) may be regarded
as “initial conditions” for Ampere’s law. Combining the two sets of initial conditions,
we find that the curl equations imply the divergence equations as long as we can find a
time prior to which all of the fields E, D, B, H and the sources J and ρ are equal to zero
(since all the fields are related through the curl equations, and the charge and current are
related through the continuity equation). Conversely, the empirical evidence supporting
the two divergence equations implies that such a time should exist.

Throughout this book we shall refer to the two curl equations as the “fundamental”
Maxwell equations, and to the two divergence equations as the “auxiliary” equations.
The fundamental equations describe the relationships between the fields while, as we
have seen, the auxiliary equations provide a sort of initial condition. This does not
imply that the auxiliary equations are of lesser importance; indeed, they are required
to establish uniqueness of the fields, to derive the wave equations for the fields, and to
properly describe static fields.

Field vector terminology. Various terms are used for the field vectors, sometimes
harkening back to the descriptions used by Maxwell himself, and often based on the
physical nature of the fields. We are attracted to Sommerfeld’s separation of the fields
into entities of intensity (E, B) and entities of quantity (D, H). In this system E is called
the electric field strength, B the magnetic field strength, D the electric excitation, and H
the magnetic excitation [185]. Maxwell separated the fields into a set (E, H) of vectors
that appear within line integrals to give work-related quantities, and a set (B, D) of
vectors that appear within surface integrals to give flux-related quantities; we shall see
this clearly when considering the integral forms of Maxwell’s equations. By this system,
authors such as Jones [97] and Ramo, Whinnery, and Van Duzer [153] call E the electric
intensity, H the magnetic intensity, B the magnetic flux density, and D the electric flux
density.

Maxwell himself designated names for each of the vector quantities. In his classic
paper “A Dynamical Theory of the Electromagnetic Field,” [178] Maxwell referred to
the quantity we now designate E as the electromotive force, the quantity D as the elec-
tric displacement (with a time rate of change given by his now famous “displacement
current”), the quantity H as the magnetic force, and the quantity B as the magnetic



induction (although he described B as a density of lines of magnetic force). Maxwell
also included a quantity designated electromagnetic momentum as an integral part of his
theory. We now know this as the vector potential A which is not generally included as a
part of the electromagnetics postulate.

Many authors follow the original terminology of Maxwell, with some slight modifica-
tions. For instance, Stratton [187] calls E the electric field intensity, H the magnetic
field intensity, D the electric displacement, and B the magnetic induction. Jackson [91]
calls E the electric field, H the magnetic field, D the displacement, and B the magnetic
induction.

Other authors choose freely among combinations of these terms. For instance, Kong
[101] calls E the electric field strength, H the magnetic field strength, B the magnetic flux
density, and D the electric displacement. We do not wish to inject further confusion into
the issue of nomenclature; still, we find it helpful to use as simple a naming system as
possible. We shall refer to E as the electric field, H as the magnetic field, D as the electric
flux density and B as the magnetic flux density. When we use the term electromagnetic
field we imply the entire set of field vectors (E, D, B, H) used in Maxwell’s theory.

Invariance of Maxwell’s equations. Maxwell’s differential equations are valid for
any system in uniform relative motion with respect to the laboratory frame of reference in
which we normally do our measurements. The field equations describe the relationships
between the source and mediating fields within that frame of reference. This property
was first proposed for moving material media by Minkowski in 1908 (using the term
covariance) [130]. For this reason, Maxwell’s equations expressed in the form (2.1)–(2.2)
are referred to as the Minkowski form.

2.1.2 Connection to mechanics

Our postulate must include a connection between the abstract quantities of charge and
field and a measurable physical quantity. A convenient means of linking electromagnetics
to other classical theories is through mechanics. We postulate that charges experience
mechanical forces given by the Lorentz force equation. If a small volume element dV
contains a total charge ρ dV , then the force experienced by that charge when moving at
velocity v in an electromagnetic field is

dF = ρ dV E + ρv dV × B. (2.6)

As with any postulate, we verify this equation through experiment. Note that we write
the Lorentz force in terms of charge ρ dV , rather than charge density ρ, since charge is
an invariant quantity under a Lorentz transformation.

The important links between the electromagnetic fields and energy and momentum
must also be postulated. We postulate that the quantity

Sem = E × H (2.7)

represents the transport density of electromagnetic power, and that the quantity

gem = D × B (2.8)

represents the transport density of electromagnetic momentum.



2.2 The well-posed nature of the postulate

It is important to investigate whether Maxwell’s equations, along with the point form
of the continuity equation, suffice as a useful theory of electromagnetics. Certainly we
must agree that a theory is “useful” as long as it is defined as such by the scientists and
engineers who employ it. In practice a theory is considered useful if it predicts accurately
the behavior of nature under given circumstances, and even a theory that often fails may
be useful if it is the best available. We choose here to take a more narrow view and
investigate whether the theory is “well-posed.”

A mathematical model for a physical problem is said to be well-posed , or correctly set,
if three conditions hold:

1. the model has at least one solution (existence);
2. the model has at most one solution (uniqueness);
3. the solution is continuously dependent on the data supplied.

The importance of the first condition is obvious: if the electromagnetic model has no
solution, it will be of little use to scientists and engineers. The importance of the second
condition is equally obvious: if we apply two different solution methods to the same
model and get two different answers, the model will not be very helpful in analysis or
design work. The third point is more subtle; it is often extended in a practical sense to
the following statement:

3′. Small changes in the data supplied produce equally small changes in the solution.

That is, the solution is not sensitive to errors in the data. To make sense of this we
must decide which quantity is specified (the independent quantity) and which remains
to be calculated (the dependent quantity). Commonly the source field (charge) is taken
as the independent quantity, and the mediating (electromagnetic) field is computed from
it; in such cases it can be shown that Maxwell’s equations are well-posed. Taking the
electromagnetic field to be the independent quantity, we can produce situations in which
the computed quantity (charge or current) changes wildly with small changes in the
specified fields. These situations (called inverse problems) are of great importance in
remote sensing, where the field is measured and the properties of the object probed are
thereby deduced.

At this point we shall concentrate on the “forward” problem of specifying the source
field (charge) and computing the mediating field (the electromagnetic field). In this case
we may question whether the first of the three conditions (existence) holds. We have
twelve unknown quantities (the scalar components of the four vector fields), but only
eight equations to describe them (from the scalar components of the two fundamental
Maxwell equations and the two scalar auxiliary equations). With fewer equations than
unknowns we cannot be sure that a solution exists, and we refer to Maxwell’s equations
as being indefinite. To overcome this problem we must specify more information in
the form of constitutive relations among the field quantities E, B, D, H, and J. When
these are properly formulated, the number of unknowns and the number of equations
are equal and Maxwell’s equations are in definite form. If we provide more equations
than unknowns, the solution may be non-unique. When we model the electromagnetic
properties of materials we must supply precisely the right amount of information in the
constitutive relations, or our postulate will not be well-posed.



Once Maxwell’s equations are in definite form, standard methods for partial differential
equations can be used to determine whether the electromagnetic model is well-posed. In
a nutshell, the system (2.1)–(2.2) of hyperbolic differential equations is well-posed if and
only if we specify E and H throughout a volume region V at some time instant and also
specify, at all subsequent times,

1. the tangential component of E over all of the boundary surface S, or
2. the tangential component of H over all of S, or
3. the tangential component of E over part of S, and the tangential component of H

over the remainder of S.

Proof of all three of the conditions of well-posedness is quite tedious, but a simplified
uniqueness proof is often given in textbooks on electromagnetics. The procedure used
by Stratton [187] is reproduced below. The interested reader should refer to Hansen [81]
for a discussion of the existence of solutions to Maxwell’s equations.

2.2.1 Uniqueness of solutions to Maxwell’sequations

Consider a simply connected region of space V bounded by a surface S, where both
V and S contain only ordinary points. The fields within V are associated with a current
distribution J, which may be internal to V (entirely or in part). By the initial conditions
that imply the auxiliary Maxwell’s equations, we know there is a time, say t = 0, prior
to which the current is zero for all time, and thus by causality the fields throughout V
are identically zero for all times t < 0. We next assume that the fields are specified
throughout V at some time t0 > 0, and seek conditions under which they are determined
uniquely for all t > t0.

Let the field set (E1, D1, B1, H1) be a solution to Maxwell’s equations (2.1)–(2.2)
associated with the current J (along with an appropriate set of constitutive relations),
and let (E2, D2, B2, H2) be a second solution associated with J. To determine the con-
ditions for uniqueness of the fields, we look for a situation that results in E1 = E2,
B1 = B2, and so on. The electromagnetic fields must obey

∇ × E1 = −∂B1

∂t
,

∇ × H1 = J + ∂D1

∂t
,

∇ × E2 = −∂B2

∂t
,

∇ × H2 = J + ∂D2

∂t
.

Subtracting, we have

∇ × (E1 − E2) = −∂(B1 − B2)

∂t
, (2.9)

∇ × (H1 − H2) = ∂(D1 − D2)

∂t
, (2.10)

hence defining E0 = E1 − E2, B0 = B1 − B2, and so on, we have

E0 · (∇ × H0) = E0 · ∂D0

∂t
, (2.11)

H0 · (∇ × E0) = −H0 · ∂B0

∂t
. (2.12)



Subtracting again, we have

E0 · (∇ × H0) − H0 · (∇ × E0) = H0 · ∂B0

∂t
+ E0 · ∂D0

∂t
,

hence

−∇ · (E0 × H0) = E0 · ∂D0

∂t
+ H0 · ∂B0

∂t

by (B.44). Integrating both sides throughout V and using the divergence theorem on the
left-hand side, we get

−
∮

S
(E0 × H0) · dS =

∫
V

(
E0 · ∂D0

∂t
+ H0 · ∂B0

∂t

)
dV .

Breaking S into two arbitrary portions and using (B.6), we obtain
∫

S1

E0 · (n̂ × H0) d S −
∫

S2

H0 · (n̂ × E0) d S =
∫

V

(
E0 · ∂D0

∂t
+ H0 · ∂B0

∂t

)
dV .

Now if n̂ × E0 = 0 or n̂ × H0 = 0 over all of S, or some combination of these conditions
holds over all of S, then ∫

V

(
E0 · ∂D0

∂t
+ H0 · ∂B0

∂t

)
dV = 0. (2.13)

This expression implies a relationship between E0, D0, B0, and H0. Since V is arbitrary,
we see that one possibility is simply to have D0 and B0 constant with time. However,
since the fields are identically zero for t < 0, if they are constant for all time then those
constant values must be zero. Another possibility is to have one of each pair (E0, D0)

and (H0, B0) equal to zero. Then, by (2.9) and (2.10), E0 = 0 implies B0 = 0, and
D0 = 0 implies H0 = 0. Thus E1 = E2, B1 = B2, and so on, and the solution is unique
throughout V . However, we cannot in general rule out more complicated relationships.
The number of possibilities depends on the additional constraints on the relationship
between E0, D0, B0, and H0 that we must supply to describe the material supporting
the field — i.e., the constitutive relationships. For a simple medium described by the
time-constant permittivity ε and permeability µ, (13) becomes

∫
V

(
E0 · ε

∂E0

∂t
+ H0 · µ

∂H0

∂t

)
dV = 0,

or

1

2

∂

∂t

∫
V
(εE0 · E0 + µH0 · H0) dV = 0.

Since the integrand is always positive or zero (and not constant with time, as mentioned
above), the only possible conclusion is that E0 and H0 must both be zero, and thus the
fields are unique.

When establishing more complicated constitutive relations, we must be careful to en-
sure that they lead to a unique solution, and that the condition for uniqueness is un-
derstood. In the case above, the assumption n̂ × E0

∣∣
S

= 0 implies that the tangential
components of E1 and E2 are identical over S — that is, we must give specific values of
these quantities on S to ensure uniqueness. A similar statement holds for the condition
n̂ × H0

∣∣
S

= 0. Requiring that constitutive relations lead to a unique solution is known



as just setting, and is one of several factors that must be considered, as discussed in the
next section.

Uniqueness implies that the electromagnetic state of an isolated region of space may
be determined without the knowledge of conditions outside the region. If we wish to
solve Maxwell’s equations for that region, we need know only the source density within
the region and the values of the tangential fields over the bounding surface. The effects
of a complicated external world are thus reduced to the specification of surface fields.
This concept has numerous applications to problems in antennas, diffraction, and guided
waves.

2.2.2 Constitutive relations

We now supply a set of constitutive relations to complete the conditions for well-
posedness. We generally split these relations into two sets. The first describes the
relationships between the electromagnetic field quantities, and the second describes me-
chanical interaction between the fields and resulting secondary sources. All of these
relations depend on the properties of the medium supporting the electromagnetic field.
Material phenomena are quite diverse, and it is remarkable that the Maxwell–Minkowski
equations hold for all phenomena yet discovered. All material effects, from nonlinearity
to chirality to temporal dispersion, are described by the constitutive relations.

The specification of constitutive relationships is required in many areas of physical
science to describe the behavior of “ideal materials”: mathematical models of actual
materials encountered in nature. For instance, in continuum mechanics the constitutive
equations describe the relationship between material motions and stress tensors [209].
Truesdell and Toupin [199] give an interesting set of “guiding principles” for the con-
cerned scientist to use when constructing constitutive relations. These include consider-
ation of consistency (with the basic conservation laws of nature), coordinate invariance
(independence of coordinate system), isotropy and aeolotropy (dependence on, or inde-
pendence of, orientation), just setting (constitutive parameters should lead to a unique
solution), dimensional invariance (similarity), material indifference (non-dependence on
the observer), and equipresence (inclusion of all relevant physical phenomena in all of
the constitutive relations across disciplines).

The constitutive relations generally involve a set of constitutive parameters and a set
of constitutive operators. The constitutive parameters may be as simple as constants
of proportionality between the fields or they may be components in a dyadic relation-
ship. The constitutive operators may be linear and integro-differential in nature, or may
imply some nonlinear operation on the fields. If the constitutive parameters are spa-
tially constant within a certain region, we term the medium homogeneous within that
region. If the constitutive parameters vary spatially, the medium is inhomogeneous. If
the constitutive parameters are constants with time, we term the medium stationary ;
if they are time-changing, the medium is nonstationary. If the constitutive operators
involve time derivatives or integrals, the medium is said to be temporally dispersive; if
space derivatives or integrals are involved, the medium is spatially dispersive. Examples
of all these effects can be found in common materials. It is important to note that the
constitutive parameters may depend on other physical properties of the material, such
as temperature, mechanical stress, and isomeric state, just as the mechanical constitu-
tive parameters of a material may depend on the electromagnetic properties (principle
of equipresence).

Many effects produced by linear constitutive operators, such as those associated with



temporal dispersion, have been studied primarily in the frequency domain. In this case
temporal derivative and integral operations produce complex constitutive parameters. It
is becoming equally important to characterize these effects directly in the time domain
for use with direct time-domain field solving techniques such as the finite-difference time-
domain (FDTD) method. We shall cover the very basic properties of dispersive media
in this section. A detailed description of frequency-domain fields (and a discussion of
complex constitutive parameters) is deferred until later in this book.

It is difficult to find a simple and consistent means for classifying materials by their
electromagnetic effects. One way is to separate linear and nonlinear materials, then cate-
gorize linear materials by the way in which the fields are coupled through the constitutive
relations:

1. Isotropic materials are those in which D is related to E, B is related to H, and
the secondary source current J is related to E, with the field direction in each pair
aligned.

2. In anisotropic materials the pairings are the same, but the fields in each pair are
generally not aligned.

3. In biisotropic materials (such as chiral media) the fields D and B depend on both
E and H, but with no realignment of E or H; for instance, D is given by the
addition of a scalar times E plus a second scalar times H. Thus the contributions
to D involve no changes to the directions of E and H.

4. Bianisotropic materials exhibit the most general behavior: D and H depend on both
E and B, with an arbitrary realignment of either or both of these fields.

In 1888, Roentgen showed experimentally that a material isotropic in its own station-
ary reference frame exhibits bianisotropic properties when observed from a moving frame.
Only recently have materials bianisotropic in their own rest frame been discovered. In
1894 Curie predicted that in a stationary material, based on symmetry, an electric field
might produce magnetic effects and a magnetic field might produce electric effects. These
effects, coined magnetoelectric by Landau and Lifshitz in 1957, were sought unsuccess-
fully by many experimentalists during the first half of the twentieth century. In 1959 the
Soviet scientist I.E. Dzyaloshinskii predicted that, theoretically, the antiferromagnetic
material chromium oxide (Cr2O3) should display magnetoelectric effects. The magneto-
electric effect was finally observed soon after by D.N. Astrov in a single crystal of Cr2O3

using a 10 kHz electric field. Since then the effect has been observed in many different
materials. Recently, highly exotic materials with useful electromagnetic properties have
been proposed and studied in depth, including chiroplasmas and chiroferrites [211]. As
the technology of materials synthesis advances, a host of new and intriguing media will
certainly be created.

The most general forms of the constitutive relations between the fields may be written
in symbolic form as

D = D[E, B], (2.14)
H = H[E, B]. (2.15)

That is, D and H have some mathematically descriptive relationship to E and B. The
specific forms of the relationships may be written in terms of dyadics as [102]

cD = P̄ · E + L̄ · (cB), (2.16)
H = M̄ · E + Q̄ · (cB), (2.17)



where each of the quantities P̄, L̄, M̄, Q̄ may be dyadics in the usual sense, or dyadic
operators containing space or time derivatives or integrals, or some nonlinear operations
on the fields. We may write these expressions as a single matrix equation[

cD
H

]
= [C̄]

[
E
cB

]
(2.18)

where the 6 × 6 matrix

[C̄] =
[

P̄ L̄
M̄ Q̄

]
.

This most general relationship between fields is the property of a bianisotropic material.
We may wonder why D is not related to (E, B, H), E to (D, B), etc. The reason is

that since the field pairs (E, B) and (D, H) convert identically under a Lorentz transfor-
mation, a constitutive relation that maps fields as in (2.18) is form invariant, as are the
Maxwell–Minkowski equations. That is, although the constitutive parameters may vary
numerically between observers moving at different velocities, the form of the relationship
given by (2.18) is maintained.

Many authors choose to relate (D, B) to (E, H), often because the expressions are
simpler and can be more easily applied to specific problems. For instance, in a linear,
isotropic material (as shown below) D is directly proportional to E and B is directly
proportional to H. To provide the appropriate expression for the constitutive relations,
we need only remap (2.18). This gives

D = ε̄ · E + ξ̄ · H, (2.19)
B = ζ̄ · E + µ̄ · H, (2.20)

or [
D
B

]
= [

C̄E H
] [

E
H

]
, (2.21)

where the new constitutive parameters ε̄, ξ̄, ζ̄, µ̄ can be easily found from the original
constitutive parameters P̄, L̄, M̄, Q̄. We do note, however, that in the form (2.19)–(2.20)
the Lorentz invariance of the constitutive equations is not obvious.

In the following paragraphs we shall characterize some of the most common materials
according to these classifications. With this approach effects such as temporal or spatial
dispersion are not part of the classification process, but arise from the nature of the
constitutive parameters. Hence we shall not dwell on the particulars of the constitutive
parameters, but shall concentrate on the form of the constitutive relations.

Constitutive relations for fields in free space. In a vacuum the fields are related
by the simple constitutive equations

D = ε0E, (2.22)

H = 1

µ0
B. (2.23)

The quantities µ0 and ε0 are, respectively, the free-space permeability and permittivity
constants. It is convenient to use three numerical quantities to describe the electromag-
netic properties of free space — µ0, ε0, and the speed of light c — and interrelate them
through the equation

c = 1/(µ0ε0)
1/2.



Historically it has been the practice to define µ0, measure c, and compute ε0. In SI units

µ0 = 4π × 10−7 H/m,

c = 2.998 × 108 m/s,
ε0 = 8.854 × 10−12 F/m.

With the two constitutive equations we have enough information to put Maxwell’s
equations into definite form. Traditionally (2.22) and (2.23) are substituted into (2.1)–
(2.2) to give

∇ × E = −∂B
∂t

, (2.24)

∇ × B = µ0J + µ0ε0
∂E
∂t

. (2.25)

These are two vector equations in two vector unknowns (equivalently, six scalar equations
in six scalar unknowns).

In terms of the general constitutive relation (2.18), we find that free space is isotropic
with

P̄ = Q̄ = 1

η0
Ī, L̄ = M̄ = 0,

where η0 = (µ0/ε0)
1/2 is called the intrinsic impedance of free space. This emphasizes

the fact that free space has, along with c, only a single empirical constant associated
with it (i.e., ε0 or η0). Since no derivative or integral operators appear in the constitutive
relations, free space is nondispersive.

Constitutive relations in a linear isotropic material. In a linear isotropic mate-
rial there is proportionality between D and E and between B and H. The constants of
proportionality are the permittivity ε and the permeability µ. If the material is nondis-
persive, the constitutive relations take the form

D = εE, B = µH,

where ε and µ may depend on position for inhomogeneous materials. Often the permit-
tivity and permeability are referenced to the permittivity and permeability of free space
according to

ε = εrε0, µ = µrµ0.

Here the dimensionless quantities εr and µr are called, respectively, the relative permit-
tivity and relative permeability.

When dealing with the Maxwell–Boffi equations (§ 2.4) the difference between the
material and free space values of D and H becomes important. Thus for linear isotropic
materials we often write the constitutive relations as

D = ε0E + ε0χeE, (2.26)
B = µ0H + µ0χmH, (2.27)

where the dimensionless quantities χe = εr − 1 and χm = µr − 1 are called, respectively,
the electric and magnetic susceptibilities of the material. In terms of (2.18) we have

P̄ = εr

η0
Ī, Q̄ = 1

η0µr
Ī, L̄ = M̄ = 0.



Generally a material will have either its electric or magnetic properties dominant. If
µr = 1 and εr 
= 1 then the material is generally called a perfect dielectric or a perfect
insulator, and is said to be an electric material. If εr = 1 and µr 
= 1, the material is
said to be a magnetic material.

A linear isotropic material may also have conduction properties. In a conducting
material, a constitutive relation is generally used to describe the mechanical interaction
of field and charge by relating the electric field to a secondary electric current. For
a nondispersive isotropic material, the current is aligned with, and proportional to, the
electric field; there are no temporal operators in the constitutive relation, which is simply

J = σE. (2.28)

This is known as Ohm’s law. Here σ is the conductivity of the material.
If µr ≈ 1 and σ is very small, the material is generally called a good dielectric. If

σ is very large, the material is generally called a good conductor. The conditions by
which we say the conductivity is “small” or “large” are usually established using the
frequency response of the material. Materials that are good dielectrics over broad ranges
of frequency include various glasses and plastics such as fused quartz, polyethylene,
and teflon. Materials that are good conductors over broad ranges of frequency include
common metals such as gold, silver, and copper.

For dispersive linear isotropic materials, the constitutive parameters become nonsta-
tionary (time dependent), and the constitutive relations involve time operators. (Note
that the name dispersive describes the tendency for pulsed electromagnetic waves to
spread out, or disperse, in materials of this type.) If we assume that the relationships
given by (2.26), (2.27), and (2.28) retain their product form in the frequency domain,
then by the convolution theorem we have in the time domain the constitutive relations

D(r, t) = ε0

(
E(r, t) +

∫ t

−∞
χe(r, t − t ′)E(r, t ′) dt ′

)
, (2.29)

B(r, t) = µ0

(
H(r, t) +

∫ t

−∞
χm(r, t − t ′)H(r, t ′) dt ′

)
, (2.30)

J(r, t) =
∫ t

−∞
σ(r, t − t ′)E(r, t ′) dt ′. (2.31)

These expressions were first introduced by Volterra in 1912 [199]. We see that for a linear
dispersive material of this type the constitutive operators are time integrals, and that
the behavior of D(t) depends not only on the value of E at time t , but on its values at
all past times. Thus, in dispersive materials there is a “time lag” between the effect of
the applied field and the polarization or magnetization that results. In the frequency
domain, temporal dispersion is associated with complex values of the constitutive pa-
rameters, which, to describe a causal relationship, cannot be constant with frequency.
The nonzero imaginary component is identified with the dissipation of electromagnetic
energy as heat. Causality is implied by the upper limit being t in the convolution inte-
grals, which indicates that D(t) cannot depend on future values of E(t). This assumption
leads to a relationship between the real and imaginary parts of the frequency domain
constitutive parameters as described through the Kronig–Kramers equations.

Constitutive relations for fields in perfect conductors. In a perfect electric con-
ductor (PEC) or a perfect magnetic conductor (PMC) the fields are exactly specified as



the null field:

E = D = B = H = 0.

By Ampere’s and Faraday’s laws we must also have J = Jm = 0; hence, by the continuity
equation, ρ = ρm = 0.

In addition to the null field, we have the condition that the tangential electric field
on the surface of a PEC must be zero. Similarly, the tangential magnetic field on the
surface of a PMC must be zero. This implies (§ 2.8.3) that an electric surface current
may exist on the surface of a PEC but not on the surface of a PMC, while a magnetic
surface current may exist on the surface of a PMC but not on the surface of a PEC.

A PEC may be regarded as the limit of a conducting material as σ → ∞. In many
practical cases, good conductors such as gold and copper can be assumed to be perfect
electric conductors, which greatly simplifies the application of boundary conditions. No
physical material is known to behave as a PMC, but the concept is mathematically
useful for applying symmetry conditions (in which a PMC is sometimes referred to as a
“magnetic wall”) and for use in developing equivalence theorems.

Constitutive relations in a linear anisotropic material. In a linear anisotropic
material there are relationships between B and H and between D and E, but the field
vectors are not aligned as in the isotropic case. We can thus write

D = ε̄ · E, B = µ̄ · H, J = σ̄ · E,

where ε̄ is called the permittivity dyadic, µ̄ is the permeability dyadic, and σ̄ is the
conductivity dyadic. In terms of the general constitutive relation (2.18) we have

P̄ = cε̄, Q̄ = µ̄−1

c
, L̄ = M̄ = 0.

Many different types of materials demonstrate anisotropic behavior, including opti-
cal crystals, magnetized plasmas, and ferrites. Plasmas and ferrites are examples of
gyrotropic media. With the proper choice of coordinate system, the frequency-domain
permittivity or permeability can be written in matrix form as

[ ˜̄ε] =

 ε11 ε12 0

−ε12 ε11 0
0 0 ε33


 , [ ˜̄µ] =


 µ11 µ12 0

−µ12 µ11 0
0 0 µ33


 . (2.32)

Each of the matrix entries may be complex. For the special case of a lossless gyrotropic
material, the matrices become hermitian:

[ ˜̄ε] =

 ε − jδ 0

jδ ε 0
0 0 ε3


 , [ ˜̄µ] =


 µ − jκ 0

jκ µ 0
0 0 µ3


 , (2.33)

where ε, ε3, δ, µ, µ3, and κ are real numbers.
Crystals have received particular attention because of their birefringent properties. A

birefringent crystal can be characterized by a symmetric permittivity dyadic that has real
permittivity parameters in the frequency domain; equivalently, the constitutive relations
do not involve constitutive operators. A coordinate system called the principal system,
with axes called the principal axes, can always be found so that the permittivity dyadic
in that system is diagonal:

[ ˜̄ε] =

 εx 0 0

0 εy 0
0 0 εz


 .



The geometrical structure of a crystal determines the relationship between εx , εy , and
εz . If εx = εy < εz , then the crystal is positive uniaxial (e.g., quartz). If εx = εy > εz ,
the crystal is negative uniaxial (e.g., calcite). If εx 
= εy 
= εz , the crystal is biaxial (e.g.,
mica). In uniaxial crystals the z-axis is called the optical axis.

If the anisotropic material is dispersive, we can generalize the convolutional form of
the isotropic dispersive media to obtain the constitutive relations

D(r, t) = ε0

(
E(r, t) +

∫ t

−∞
χ̄e(r, t − t ′) · E(r, t ′) dt ′

)
, (2.34)

B(r, t) = µ0

(
H(r, t) +

∫ t

−∞
χ̄m(r, t − t ′) · H(r, t ′) dt ′

)
, (2.35)

J(r, t) =
∫ t

−∞
σ̄(r, t − t ′) · E(r, t ′) dt ′. (2.36)

Constitutive relations for biisotropic materials. A biisotropic material is an
isotropic magnetoelectric material. Here we have D related to E and B, and H related to
E and B, but with no realignment of the fields as in anisotropic (or bianisotropic) mate-
rials. Perhaps the simplest example is the Tellegen medium devised by B.D.H. Tellegen
in 1948 [196], having

D = εE + ξH, (2.37)
B = ξE + µH. (2.38)

Tellegen proposed that his hypothetical material be composed of small (but macroscopic)
ferromagnetic particles suspended in a liquid. This is an example of a synthetic mate-
rial, constructed from ordinary materials to have an exotic electromagnetic behavior.
Other examples include artificial dielectrics made from metallic particles imbedded in
lightweight foams [66], and chiral materials made from small metallic helices suspended
in resins [112].

Chiral materials are also biisotropic, and have the constitutive relations

D = εE − χ
∂H
∂t

, (2.39)

B = µH + χ
∂E
∂t

, (2.40)

where the constitutive parameter χ is called the chirality parameter. Note the presence
of temporal derivative operators. Alternatively,

D = ε(E + β∇ × E), (2.41)
B = µ(H + β∇ × H), (2.42)

by Faraday’s and Ampere’s laws. Chirality is a natural state of symmetry; many natural
substances are chiral materials, including DNA and many sugars. The time derivatives
in (2.39)–(2.40) produce rotation of the polarization of time harmonic electromagnetic
waves propagating in chiral media.

Constitutive relations in nonlinear media. Nonlinear electromagnetic effects have
been studied by scientists and engineers since the beginning of the era of electrical tech-
nology. Familiar examples include saturation and hysteresis in ferromagnetic materials



and the behavior of p-n junctions in solid-state rectifiers. The invention of the laser
extended interest in nonlinear effects to the realm of optics, where phenomena such as
parametric amplification and oscillation, harmonic generation, and magneto-optic inter-
actions have found applications in modern devices [174].

Provided that the external field applied to a nonlinear electric material is small com-
pared to the internal molecular fields, the relationship between E and D can be expanded
in a Taylor series of the electric field. For an anisotropic material exhibiting no hysteresis
effects, the constitutive relation is [131]

Di (r, t) = ε0 Ei (r, t) +
3∑

j=1

χ
(1)
i j E j (r, t) +

3∑
j,k=1

χ
(2)
i jk E j (r, t)Ek(r, t) +

+
3∑

j,k,l=1

χ
(3)
i jkl E j (r, t)Ek(r, t)El(r, t) + · · · (2.43)

where the index i = 1, 2, 3 refers to the three components of the fields D and E. The
first sum in (2.43) is identical to the constitutive relation for linear anisotropic materi-
als. Thus, χ

(1)
i j is identical to the susceptibility dyadic of a linear anisotropic medium

considered earlier. The quantity χ
(2)
i jk is called the second-order susceptibility, and is a

three-dimensional matrix (or third rank tensor) describing the nonlinear electric effects
quadratic in E. Similarly χ

(3)
i jkl is called the third-order susceptibility, and is a four-

dimensional matrix (or fourth rank tensor) describing the nonlinear electric effects cubic
in E. Numerical values of χ

(2)
i jk and χ

(3)
i jkl are given in Shen [174] for a variety of crystals.

When the material shows hysteresis effects, D at any point r and time t is due not only
to the value of E at that point and at that time, but to the values of E at all points and
times. That is, the material displays both temporal and spatial dispersion.

2.3 Maxwell’s equations in moving frames

The essence of special relativity is that the mathematical forms of Maxwell’s equa-
tions are identical in all inertial reference frames: frames moving with uniform velocities
relative to the laboratory frame of reference in which we perform our measurements.
This form invariance of Maxwell’s equations is a specific example of the general physical
principle of covariance. In the laboratory frame we write the differential equations of
Maxwell’s theory as

∇ × E(r, t) = −∂B(r, t)

∂t
,

∇ × H(r, t) = J(r, t) + ∂D(r, t)

∂t
,

∇ · D(r, t) = ρ(r, t),

∇ · B(r, t) = 0,

∇ · J(r, t) = −∂ρ(r, t)

∂t
.



Figure 2.1: Primed coordinate system moving with velocity v relative to laboratory
(unprimed) coordinate system.

Similarly, in an inertial frame having four-dimensional coordinates (r′, t ′) we have

∇′ × E′(r′, t ′) = −∂B′(r′, t ′)
∂t ′ ,

∇′ × H′(r′, t ′) = J′(r′, t ′) + ∂D′(r′, t ′)
∂t ′ ,

∇′ · D′(r′, t ′) = ρ ′(r′, t ′),
∇′ · B′(r′, t ′) = 0,

∇′ · J′(r′, t ′) = −∂ρ ′(r′, t ′)
∂t ′ .

The primed fields measured in the moving system do not have the same numerical values
as the unprimed fields measured in the laboratory. To convert between E and E′, B and
B′, and so on, we must find a way to convert between the coordinates (r, t) and (r′, t ′).

2.3.1 Field conversions under Galilean transformation

We shall assume that the primed coordinate system moves with constant velocity v
relative to the laboratory frame (Figure 2.1). Prior to the early part of the twentieth
century, converting between the primed and unprimed coordinate variables was intuitive
and obvious: it was thought that time must be measured identically in each coordinate
system, and that the relationship between the space variables can be determined simply
by the displacement of the moving system at time t = t ′. Under these assumptions, and
under the further assumption that the two systems coincide at time t = 0, we can write

t ′ = t, x ′ = x − vx t, y′ = y − vyt, z′ = z − vz t,

or simply

t ′ = t, r′ = r − vt.

This is called a Galilean transformation. We can use the chain rule to describe the
manner in which differential operations transform, i.e., to relate derivatives with respect
to the laboratory coordinates to derivatives with respect to the inertial coordinates. We
have, for instance,

∂

∂t
= ∂t ′

∂t

∂

∂t ′ + ∂x ′

∂t

∂

∂x ′ + ∂y′

∂t

∂

∂y′ + ∂z′

∂t

∂

∂z′



= ∂

∂t ′ − vx
∂

∂x ′ − vy
∂

∂y′ − vz
∂

∂z′

= ∂

∂t ′ − (v · ∇′). (2.44)

Similarly

∂

∂x
= ∂

∂x ′ ,
∂

∂y
= ∂

∂y′ ,
∂

∂z
= ∂

∂z′ ,

from which

∇ × A(r, t) = ∇′ × A(r, t), ∇ · A(r, t) = ∇′ · A(r, t), (2.45)

for each vector field A.
Newton was aware that the laws of mechanics are invariant with respect to Galilean

transformations. Do Maxwell’s equations also behave in this way? Let us use the Galilean
transformation to determine which relationship between the primed and unprimed fields
results in form invariance of Maxwell’s equations. We first examine ∇′×E, the spatial rate
of change of the laboratory field with respect to the inertial frame spatial coordinates:

∇′ × E = ∇ × E = −∂B
∂t

= −∂B
∂t ′ + (v · ∇′)B

by (2.45) and (2.44). Rewriting the last term by (B.45) we have

(v · ∇′)B = −∇′ × (v × B)

since v is constant and ∇′ · B = ∇ · B = 0, hence

∇′ × (E + v × B) = −∂B
∂t ′ . (2.46)

Similarly

∇′ × H = ∇ × H = J + ∂D
∂t

= J + ∂D
∂t ′ + ∇′ × (v × D) − v(∇′ · D)

where ∇′ · D = ∇ · D = ρ so that

∇′ × (H − v × D) = ∂D
∂t ′ − ρv + J. (2.47)

Also

∇′ · J = ∇ · J = −∂ρ

∂t
= − ∂ρ

∂t ′ + (v · ∇′)ρ

and we may use (B.42) to write

(v · ∇′)ρ = v · (∇′ρ) = ∇′ · (ρv),

obtaining

∇′ · (J − ρv) = − ∂ρ

∂t ′ . (2.48)



Equations (2.46), (2.47), and (2.48) show that the forms of Maxwell’s equations in the
inertial and laboratory frames are identical provided that

E′ = E + v × B, (2.49)
D′ = D, (2.50)
H′ = H − v × D, (2.51)
B′ = B, (2.52)
J′ = J − ρv, (2.53)
ρ ′ = ρ. (2.54)

That is, (2.49)–(2.54) result in form invariance of Faraday’s law, Ampere’s law, and the
continuity equation under a Galilean transformation. These equations express the fields
measured by a moving observer in terms of those measured in the laboratory frame. To
convert the opposite way, we need only use the principle of relativity. Neither observer
can tell whether he or she is stationary — only that the other observer is moving relative
to him or her. To obtain the fields in the laboratory frame we simply change the sign on
v and swap primed with unprimed fields in (2.49)–(2.54):

E = E′ − v × B′, (2.55)
D = D′, (2.56)
H = H′ + v × D′, (2.57)
B = B′, (2.58)
J = J′ + ρ ′v, (2.59)
ρ = ρ ′. (2.60)

According to (2.53), a moving observer interprets charge stationary in the laboratory
frame as an additional current moving opposite the direction of his or her motion. This
seems reasonable. However, while E depends on both E′ and B′, the field B is unchanged
under the transformation. Why should B have this special status? In fact, we may
uncover an inconsistency among the transformations by considering free space where
(2.22) and (2.23) hold: in this case (2.49) gives

D′/ε0 = D/ε0 + v × µ0H

or

D′ = D + v × H/c2

rather than (2.50). Similarly, from (2.51) we get

B′ = B − v × E/c2

instead of (2.52). Using these, the set of transformations becomes

E′ = E + v × B, (2.61)
D′ = D + v × H/c2, (2.62)
H′ = H − v × D, (2.63)
B′ = B − v × E/c2, (2.64)
J′ = J − ρv, (2.65)
ρ ′ = ρ. (2.66)



These can also be written using dyadic notation as

E′ = Ī · E + β̄ · (cB), (2.67)
cB′ = −β̄ · E + Ī · (cB), (2.68)

and

cD′ = Ī · (cD) + β̄ · H, (2.69)
H′ = −β̄ · (cD) + Ī · H, (2.70)

where

[β̄] =

 0 −βz βy

βz 0 −βx

−βy βx 0




with β = v/c. This set of equations is self-consistent among Maxwell’s equations. How-
ever, the equations are not consistent with the assumption of a Galilean transformation
of the coordinates, and thus Maxwell’s equations are not covariant under a Galilean
transformation. Maxwell’s equations are only covariant under a Lorentz transforma-
tion as described in the next section. Expressions (2.61)–(2.64) turn out to be accurate
to order v/c, hence are the results of a first-order Lorentz transformation. Only when
v is an appreciable fraction of c do the field conversions resulting from the first-order
Lorentz transformation differ markedly from those resulting from a Galilean transforma-
tion; those resulting from the true Lorentz transformation require even higher velocities
to differ markedly from the first-order expressions. Engineering accuracy is often accom-
plished using the Galilean transformation. This pragmatic observation leads to quite a
bit of confusion when considering the large-scale forms of Maxwell’s equations, as we
shall soon see.

2.3.2 Field conversions under Lorentz transformation

To find the proper transformation under which Maxwell’s equations are covariant,
we must discard our notion that time progresses the same in the primed and the un-
primed frames. The proper transformation of coordinates that guarantees covariance of
Maxwell’s equations is the Lorentz transformation

ct ′ = γ ct − γβ · r, (2.71)
r′ = ᾱ · r − γβct, (2.72)

where

γ = 1√
1 − β2

, ᾱ = Ī + (γ − 1)
ββ

β2
, β = |β|.

This is obviously more complicated than the Galilean transformation; only as β → 0 are
the Lorentz and Galilean transformations equivalent.

Not surprisingly, field conversions between inertial reference frames are more com-
plicated with the Lorentz transformation than with the Galilean transformation. For
simplicity we assume that the velocity of the moving frame has only an x-component:
v = x̂v. Later we can generalize this to any direction. Equations (2.71) and (2.72)
become

x ′ = x + (γ − 1)x − γ vt, (2.73)



y′ = y, (2.74)
z′ = z, (2.75)

ct ′ = γ ct − γ
v

c
x, (2.76)

and the chain rule gives
∂

∂x
= γ

∂

∂x ′ − γ
v

c2

∂

∂t ′ , (2.77)

∂

∂y
= ∂

∂y′ , (2.78)

∂

∂z
= ∂

∂z′ , (2.79)

∂

∂t
= −γ v

∂

∂x ′ + γ
∂

∂t ′ . (2.80)

We begin by examining Faraday’s law in the laboratory frame. In component form we
have

∂ Ez

∂y
− ∂ Ey

∂z
= −∂ Bx

∂t
, (2.81)

∂ Ex

∂z
− ∂ Ez

∂x
= −∂ By

∂t
, (2.82)

∂ Ey

∂x
− ∂ Ex

∂y
= −∂ Bz

∂t
. (2.83)

These become
∂ Ez

∂y′ − ∂ Ey

∂z′ = γ v
∂ Bx

∂x ′ − γ
∂ Bx

∂t ′ , (2.84)

∂ Ex

∂z′ − γ
∂ Ez

∂x ′ + γ
v

c2

∂ Ez

∂t ′ = γ v
∂ By

∂x ′ − γ
∂ By

∂t ′ , (2.85)

γ
∂ Ey

∂x ′ − γ
v

c2

∂ Ey

∂t ′ − ∂ Ex

∂y′ = γ v
∂ Bz

∂x ′ − γ
∂ Bz

∂t ′ , (2.86)

after we use (2.77)–(2.80) to convert the derivatives in the laboratory frame to derivatives
with respect to the moving frame coordinates. To simplify (2.84) we consider

∇ · B = ∂ Bx

∂x
+ ∂ By

∂y
+ ∂ Bz

∂z
= 0.

Converting the laboratory frame coordinates to the moving frame coordinates, we have

γ
∂ Bx

∂x ′ − γ
v

c2

∂ Bx

∂t ′ + ∂ By

∂y′ + ∂ Bz

∂z′ = 0

or

−γ v
∂ Bx

∂x ′ = −γ
v2

c2

∂ Bx

∂t ′ + v
∂ By

∂y′ + v
∂ Bz

∂z′ .

Substituting this into (2.84) and rearranging (2.85) and (2.86), we obtain

∂

∂y′ γ (Ez + vBy) − ∂

∂z′ γ (Ey − vBz) = −∂ Bx

∂t ′ ,

∂ Ex

∂z′ − ∂

∂x ′ γ (Ez + vBy) = − ∂

∂t ′ γ
(

By + v

c2
Ez

)
,

∂

∂x ′ γ (Ey − vBz) − ∂ Ex

∂y′ = − ∂

∂t ′ γ
(

Bz − v

c2
Ey

)
.



Comparison with (2.81)–(2.83) shows that form invariance of Faraday’s law under the
Lorentz transformation requires

E ′
x = Ex , E ′

y = γ (Ey − vBz), E ′
z = γ (Ez + vBy),

and

B ′
x = Bx , B ′

y = γ
(

By + v

c2
Ez

)
, B ′

z = γ
(

Bz − v

c2
Ey

)
.

To generalize v to any direction, we simply note that the components of the fields parallel
to the velocity direction are identical in the moving and laboratory frames, while the
components perpendicular to the velocity direction convert according to a simple cross
product rule. After similar analyses with Ampere’s and Gauss’s laws (see Problem 2.2),
we find that

E′
‖ = E‖, B′

‖ = B‖, D′
‖ = D‖, H′

‖ = H‖,

E′
⊥ = γ (E⊥ + β × cB⊥), (2.87)

cB′
⊥ = γ (cB⊥ − β × E⊥), (2.88)

cD′
⊥ = γ (cD⊥ + β × H⊥), (2.89)

H′
⊥ = γ (H⊥ − β × cD⊥), (2.90)

and

J′
‖ = γ (J‖ − ρv), (2.91)

J′
⊥ = J⊥, (2.92)

cρ ′ = γ (cρ − β · J), (2.93)

where the symbols ‖ and ⊥ designate the components of the field parallel and perpen-
dicular to v, respectively.

These conversions are self-consistent, and the Lorentz transformation is the transfor-
mation under which Maxwell’s equations are covariant. If v2 � c2, then γ ≈ 1 and to
first order (2.87)–(2.93) reduce to (2.61)–(2.66). If v/c � 1, then the first-order fields
reduce to the Galilean fields (2.49)–(2.54).

To convert in the opposite direction, we can swap primed and unprimed fields and
change the sign on v:

E⊥ = γ (E′
⊥ − β × cB′

⊥), (2.94)
cB⊥ = γ (cB′

⊥ + β × E′
⊥), (2.95)

cD⊥ = γ (cD′
⊥ − β × H′

⊥), (2.96)
H⊥ = γ (H′

⊥ + β × cD′
⊥), (2.97)

and

J‖ = γ (J′
‖ + ρ ′v), (2.98)

J⊥ = J′
⊥, (2.99)

cρ = γ (cρ ′ + β · J′). (2.100)

The conversion formulas can be written much more succinctly in dyadic notation:

E′ = γ ᾱ−1 · E + γ β̄ · (cB), (2.101)
cB′ = −γ β̄ · E + γ ᾱ−1 · (cB), (2.102)



cD′ = γ ᾱ−1 · (cD) + γ β̄ · H, (2.103)
H′ = −γ β̄ · (cD) + γ ᾱ−1 · H, (2.104)

and

cρ ′ = γ (cρ − β · J), (2.105)
J′ = ᾱ · J − γβcρ, (2.106)

where ᾱ−1 · ᾱ = Ī, and thus ᾱ−1 = ᾱ − γββ.
Maxwell’s equations are covariant under a Lorentz transformation but not under a

Galilean transformation; the laws of mechanics are invariant under a Galilean transfor-
mation but not under a Lorentz transformation. How then should we analyze interactions
between electromagnetic fields and particles or materials? Einstein realized that the laws
of mechanics needed revision to make them Lorentz covariant: in fact, under his theory of
special relativity all physical laws should demonstrate Lorentz covariance. Interestingly,
charge is then Lorentz invariant, whereas mass is not (recall that invariance refers to a
quantity, whereas covariance refers to the form of a natural law). We shall not attempt
to describe all the ramifications of special relativity, but instead refer the reader to any
of the excellent and readable texts on the subject, including those by Bohm [14], Einstein
[62], and Born [18], and to the nice historical account by Miller [130]. However, we shall
examine the importance of Lorentz invariants in electromagnetic theory.

Lorentz invariants. Although the electromagnetic fields are not Lorentz invariant
(e.g., the numerical value of E measured by one observer differs from that measured by
another observer in uniform relative motion), several quantities do give identical values
regardless of the velocity of motion. Most fundamental are the speed of light and the
quantity of electric charge which, unlike mass, is the same in all frames of reference.
Other important Lorentz invariants include E · B, H · D, and the quantities

B · B − E · E/c2,

H · H − c2D · D,

B · H − E · D,

cB · D + E · H/c.

(See Problem 2.3.) To see the importance of these quantities, consider the special case
of fields in empty space. If E ·B = 0 in one reference frame, then it is zero in all reference
frames. Then if B · B − E · E/c2 = 0 in any reference frame, the ratio of E to B is
always c2 regardless of the reference frame in which the fields are measured. This is the
characteristic of a plane wave in free space.

If E · B = 0 and c2 B2 > E2, then we can find a reference frame using the conversion
formulas (2.101)–(2.106) (see Problem 2.5) in which the electric field is zero but the
magnetic field is nonzero. In this case we call the fields purely magnetic in any reference
frame, even if both E and B are nonzero. Similarly, if E · B = 0 and c2 B2 < E2 then
we can find a reference frame in which the magnetic field is zero but the electric field is
nonzero. We call fields of this type purely electric.

The Lorentz force is not Lorentz invariant. Consider a point charge at rest in the
laboratory frame. While we measure only an electric field in the laboratory frame, an
inertial observer measures both electric and magnetic fields. A test charge Q in the



laboratory frame experiences the Lorentz force F = QE; in an inertial frame the same
charge experiences F′ = QE′ + Qv × B′ (see Problem 2.6). The conversion formulas show
that F and F′ are not identical.

We see that both E and B are integral components of the electromagnetic field: the
separation of the field into electric and magnetic components depends on the motion
of the reference frame in which measurements are made. This has obvious implications
when considering static electric and magnetic fields.

Derivation of Maxwell’s equations from Coulomb’s law. Consider a point charge
at rest in the laboratory frame. If the magnetic component of force on this charge arises
naturally through motion of an inertial reference frame, and if this force can be expressed
in terms of Coulomb’s law in the laboratory frame, then perhaps the magnetic field can be
derived directly from Coulomb’s and the Lorentz transformation. Perhaps it is possible
to derive all of Maxwell’s theory with Coulomb’s law and Lorentz invariance as the only
postulates.

Several authors, notably Purcell [152] and Elliott [65], have used this approach. How-
ever, Jackson [91] has pointed out that many additional assumptions are required to
deduce Maxwell’s equations beginning with Coulomb’s law. Feynman [73] is critical of
the approach, pointing out that we must introduce a vector potential which adds to the
scalar potential from electrostatics in order to produce an entity that transforms accord-
ing to the laws of special relativity. In addition, the assumption of Lorentz invariance
seems to involve circular reasoning since the Lorentz transformation was originally in-
troduced to make Maxwell’s equations covariant. But Lucas and Hodgson [117] point
out that the Lorentz transformation can be deduced from other fundamental principles
(such as causality and the isotropy of space), and that the postulate of a vector potential
is reasonable. Schwartz [170] gives a detailed derivation of Maxwell’s equations from
Coulomb’s law, outlining the necessary assumptions.

Transformation of constitutive relations. Minkowski’s interest in the covariance of
Maxwell’s equations was aimed not merely at the relationship between fields in different
moving frames of reference, but at an understanding of the electrodynamics of moving
media. He wished to ascertain the effect of a moving material body on the electromagnetic
fields in some region of space. By proposing the covariance of Maxwell’s equations in
materials as well as in free space, he extended Maxwell’s theory to moving material
bodies.

We have seen in (2.101)–(2.104) that (E, cB) and (cD, H) convert identically under a
Lorentz transformation. Since the most general form of the constitutive relations relate
cD and H to the field pair (E, cB) (see § 2.2.2) as

[
cD
H

]
= [

C̄
] [

E
cB

]
,

this form of the constitutive relations must be Lorentz covariant. That is, in the reference
frame of a moving material we have

[
cD′

H′

]
= [

C̄′] [
E′

cB′

]
,

and should be able to convert [C̄′] to [C̄]. We should be able to find the constitutive
matrix describing the relationships among the fields observed in the laboratory frame.



It is somewhat laborious to obtain the constitutive matrix [C̄] for an arbitrary moving
medium. Detailed expressions for isotropic, bianisotropic, gyrotropic, and uniaxial media
are given by Kong [101]. The rather complicated expressions can be written in a more
compact form if we consider the expressions for B and D in terms of the pair (E, H).
For a linear isotropic material such that D′ = ε′E′ and B′ = µ′H′ in the moving frame,
the relationships in the laboratory frame are [101]

B = µ′Ā · H − Ω × E, (2.107)
D = ε′Ā · E + Ω × H, (2.108)

where

Ā = 1 − β2

1 − n2β2

[
Ī − n2 − 1

1 − β2
ββ

]
, (2.109)

Ω = n2 − 1

1 − n2β2

β

c
, (2.110)

and where n = c(µ′ε′)1/2 is the optical index of the medium. A moving material that
is isotropic in its own moving reference frame is bianisotropic in the laboratory frame.
If, for instance, we tried to measure the relationship between the fields of a moving
isotropic fluid, but used instruments that were stationary in our laboratory (e.g., attached
to our measurement bench) we would find that D depends not only on E but also on
H, and that D aligns with neither E nor H. That a moving material isotropic in its
own frame of reference is bianisotropic in the laboratory frame was known long ago.
Roentgen showed experimentally in 1888 that a dielectric moving through an electric
field becomes magnetically polarized, while H.A. Wilson showed in 1905 that a dielectric
moving through a magnetic field becomes electrically polarized [139].

If v2/c2 � 1, we can consider the form of the constitutive equations for a first-order
Lorentz transformation. Ignoring terms to order v2/c2 in (2.109) and (2.110), we obtain
Ā = Ī and Ω = v(n2 − 1)/c2. Then, by (2.107) and (2.108),

B = µ′H − (n2 − 1)
v × E

c2
, (2.111)

D = ε′E + (n2 − 1)
v × H

c2
. (2.112)

We can also derive these from the first-order field conversion equations (2.61)–(2.64).
From (2.61) and (2.62) we have

D′ = D + v × H/c2 = ε′E′ = ε′(E + v × B).

Eliminating B via (2.64), we have

D + v × H/c2 = ε′E + ε′v × (v × E/c2) + ε′v × B′ = ε′E + ε′v × B′

where we have neglected terms of order v2/c2. Since B′ = µ′H′ = µ′(H − v × D), we
have

D + v × H/c2 = ε′E + ε′µ′v × H − ε′µ′v × v × D.

Using n2 = c2µ′ε′ and neglecting the last term since it is of order v2/c2, we obtain

D = ε′E + (n2 − 1)
v × H

c2
,



which is identical to the expression (2.112) obtained by approximating the exact result
to first order. Similar steps produce (2.111). In a Galilean frame where v/c � 1, the
expressions reduce to D = ε′E and B = µ′H, and the isotropy of the fields is preserved.

For a conducting medium having

J′ = σ ′E′

in a moving reference frame, Cullwick [48] shows that in the laboratory frame

J = σ ′γ [Ī − ββ] · E + σ ′γ cβ × B.

For v � c we can set γ ≈ 1 and see that

J = σ ′(E + v × B)

to first order.

Constitutive relations in deforming or rotating media. The transformations
discussed in the previous paragraphs hold for media in uniform relative motion. When
a material body undergoes deformation or rotation, the concepts of special relativity are
not directly applicable. However, authors such as Pauli [144] and Sommerfeld [185] have
maintained that Minkowski’s theory is approximately valid for deforming or rotating
media if v is taken to be the instantaneous velocity at each point within the body.
The reasoning is that at any instant in time each point within the body has a velocity
v that may be associated with some inertial reference frame (generally different for
each point). Thus the constitutive relations for the material at that point, within some
small time interval taken about the observation time, may be assumed to be those of
a stationary material, and the relations measured by an observer within the laboratory
frame may be computed using the inertial frame for that point. This instantaneous rest-
frame theory is most accurate at small accelerations dv/dt . Van Bladel [201] outlines
its shortcomings. See also Anderson [3] and Mo [132] for detailed discussions of the
electromagnetic properties of material media in accelerating frames of reference.

2.4 The Maxwell–Boffi equations

In any version of Maxwell’s theory, the mediating field is the electromagnetic field
described by four field vectors. In Minkowski’s form of Maxwell’s equations we use E,
D, B, and H. As an alternative consider the electromagnetic field as represented by the
vector fields E, B, P, and M, and described by

∇ × E = −∂B
∂t

, (2.113)

∇ × (B/µ0 − M) = J + ∂

∂t
(ε0E + P), (2.114)

∇ · (ε0E + P) = ρ, (2.115)
∇ · B = 0. (2.116)

These Maxwell–Boffi equations are named after L. Boffi, who formalized them for moving
media [13]. The quantity P is the polarization vector , and M is the magnetization vector .



The use of P and M in place of D and H is sometimes called an application of the principle
of Ampere and Lorentz [199].

Let us examine the ramification of using (2.113)–(2.116) as the basis for a postulate
of electromagnetics. These equations are similar to the Maxwell–Minkowski equations
used earlier; must we rebuild all the underpinning of a new postulate, or can we use
our original arguments based on the Minkowski form? For instance, how do we invoke
uniqueness if we no longer have the field H? What represents the flux of energy, formerly
found using E×H? And, importantly, are (2.113)–(2.114) form invariant under a Lorentz
transformation?

It turns out that the set of vector fields (E, B, P, M) is merely a linear mapping of
the set (E, D, B, H). As pointed out by Tai [193], any linear mapping of the four field
vectors from Minkowski’s form onto any other set of four field vectors will preserve the
covariance of Maxwell’s equations. Boffi chose to keep E and B intact and to introduce
only two new fields; he could have kept H and D instead, or used a mapping that
introduced four completely new fields (as did Chu). Many authors retain E and H.
This is somewhat more cumbersome since these vectors do not convert as a pair under
a Lorentz transformation. A discussion of the idea of field vector “pairing” appears in
§ 2.6.

The usefulness of the Boffi form lies in the specific mapping chosen. Comparison of
(2.113)–(2.116) to (2.1)–(2.4) quickly reveals that

P = D − ε0E, (2.117)
M = B/µ0 − H. (2.118)

We see that P is the difference between D in a material and D in free space, while M is
the difference between H in free space and H in a material. In free space, P = M = 0.

Equivalent polarization and magnetization sources. The Boffi formulation pro-
vides a new way to regard E and B. Maxwell grouped (E, H) as a pair of “force vectors” to
be associated with line integrals (or curl operations in the point forms of his equations),
and (D, B) as a pair of “flux vectors” associated with surface integrals (or divergence
operations). That is, E is interpreted as belonging to the computation of “emf” as a line
integral, while B is interpreted as a density of magnetic “flux” passing through a surface.
Similarly, H yields the “mmf” about some closed path and D the electric flux through
a surface. The introduction of P and M allows us to also regard E as a flux vector and
B as a force vector — in essence, allowing the two fields E and B to take on the duties
that required four fields in Minkowski’s form. To see this, we rewrite the Maxwell–Boffi
equations as

∇ × E = −∂B
∂t

,

∇ × B
µ0

=
(

J + ∇ × M + ∂P
∂t

)
+ ∂ε0E

∂t
,

∇ · (ε0E) = (ρ − ∇ · P),

∇ · B = 0,

and compare them to the Maxwell–Minkowski equations for sources in free space:

∇ × E = −∂B
∂t

,



∇ × B
µ0

= J + ∂ε0E
∂t

,

∇ · (ε0E) = ρ,

∇ · B = 0.

The forms are preserved if we identify ∂P/∂t and ∇ × M as new types of current density,
and ∇ · P as a new type of charge density. We define

JP = ∂P
∂t

(2.119)

as an equivalent polarization current density, and

JM = ∇ × M

as an equivalent magnetization current density (sometimes called the equivalent Amperian
currents of magnetized matter [199]). We define

ρP = −∇ · P

as an equivalent polarization charge density (sometimes called the Poisson–Kelvin equiv-
alent charge distribution [199]). Then the Maxwell–Boffi equations become simply

∇ × E = −∂B
∂t

, (2.120)

∇ × B
µ0

= (J + JM + JP) + ∂ε0E
∂t

, (2.121)

∇ · (ε0E) = (ρ + ρP), (2.122)
∇ · B = 0. (2.123)

Here is the new view. A material can be viewed as composed of charged particles of
matter immersed in free space. When these charges are properly considered as “equiv-
alent” polarization and magnetization charges, all field effects (describable through flux
and force vectors) can be handled by the two fields E and B. Whereas in Minkowski’s
form D diverges from ρ, in Boffi’s form E diverges from a total charge density consisting
of ρ and ρP . Whereas in the Minkowski form H curls around J, in the Boffi form B curls
around the total current density consisting of J, JM , and JP .

This view was pioneered by Lorentz, who by 1892 considered matter as consisting of
bulk molecules in a vacuum that would respond to an applied electromagnetic field [130].
The resulting motion of the charged particles of matter then became another source
term for the “fundamental” fields E and B. Using this reasoning he was able to reduce
the fundamental Maxwell equations to two equations in two unknowns, demonstrating a
simplicity appealing to many (including Einstein). Of course, to apply this concept we
must be able to describe how the charged particles respond to an applied field. Simple
microscopic models of the constituents of matter are generally used: some combination
of electric and magnetic dipoles, or of loops of electric and magnetic current.

The Boffi equations are mathematically appealing since they now specify both the curl
and divergence of the two field quantities E and B. By the Helmholtz theorem we know
that a field vector is uniquely specified when both its curl and divergence are given. But
this assumes that the equivalent sources produced by P and M are true source fields in
the same sense as J. We have precluded this by insisting in Chapter 1 that the source
field must be independent of the mediating field it sources. If we view P and M as



merely a mapping from the original vector fields of Minkowski’s form, we still have four
vector fields with which to contend. And with these must also be a mapping of the
constitutive relationships, which now link the fields E, B, P, and M. Rather than argue
the actual physical existence of the equivalent sources, we note that a real benefit of
the new view is that under certain circumstances the equivalent source quantities can be
determined through physical reasoning, hence we can create physical models of P and M
and deduce their links to E and B. We may then find it easier to understand and deduce
the constitutive relationships. However we do not in general consider E and B to be in
any way more “fundamental” than D and H.

Covariance of the Boffi form. Because of the linear relationships (2.117) and (2.118),
covariance of the Maxwell–Minkowski equations carries over to the Maxwell–Boffi equa-
tions. However, the conversion between fields in different moving reference frames will
now involve P and M. Since Faraday’s law is unchanged in the Boffi form, we still have

E′
‖ = E‖, (2.124)

B′
‖ = B‖, (2.125)

E′
⊥ = γ (E⊥ + β × cB⊥), (2.126)

cB′
⊥ = γ (cB⊥ − β × E⊥). (2.127)

To see how P and M convert, we note that in the laboratory frame D = ε0E + P and
H = B/µ0 − M, while in the moving frame D′ = ε0E′ + P′ and H′ = B′/µ0 − M′. Thus

P′
‖ = D′

‖ − ε0E′
‖ = D‖ − ε0E‖ = P‖

and

M′
‖ = B′

‖/µ0 − H′
‖ = B‖/µ0 − H‖ = M‖.

For the perpendicular components

D′
⊥ = γ (D⊥ + β × H⊥/c) = ε0E′

⊥ + P′
⊥ = ε0 [γ (E⊥ + β × cB⊥)] + P′

⊥;
substitution of H⊥ = B⊥/µ0 − M⊥ then gives

P′
⊥ = γ (D⊥ − ε0E⊥) − γ ε0β × cB⊥ + γβ × B⊥/(cµ0) − γβ × M⊥/c

or

cP′
⊥ = γ (cP⊥ − β × M⊥).

Similarly,

M′
⊥ = γ (M⊥ + β × cP⊥).

Hence

E′
‖ = E‖, B′

‖ = B‖, P′
‖ = P‖, M′

‖ = M‖, J′
⊥ = J⊥, (2.128)

and

E′
⊥ = γ (E⊥ + β × cB⊥), (2.129)

cB′
⊥ = γ (cB⊥ − β × E⊥), (2.130)

cP′
⊥ = γ (cP⊥ − β × M⊥), (2.131)

M′
⊥ = γ (M⊥ + β × cP⊥), (2.132)

J′
‖ = γ (J‖ − ρv). (2.133)



In the case of the first-order Lorentz transformation we can set γ ≈ 1 to obtain

E′ = E + v × B, (2.134)

B′ = B − v × E
c2

, (2.135)

P′ = P − v × M
c2

, (2.136)

M′ = M + v × P, (2.137)
J′ = J − ρv. (2.138)

To convert from the moving frame to the laboratory frame we simply swap primed with
unprimed fields and let v → −v.

As a simple example, consider a linear isotropic medium having

D′ = ε0ε
′
r E′, B′ = µ0µ

′
r H′,

in a moving reference frame. From (117) we have

P′ = ε0ε
′
r E′ − ε0E′ = ε0χ

′
eE′

where χ ′
e = ε′

r − 1 is the electric susceptibility of the moving material. Similarly (2.118)
yields

M′ = B′

µ0
− B′

µ0µ′
r

= B′χ ′
m

µ0µ′
r

where χ ′
m = µ′

r − 1 is the magnetic susceptibility of the moving material. How are P and
M related to E and B in the laboratory frame? For simplicity, we consider the first-order
expressions. From (2.136) we have

P = P′ + v × M′

c2
= ε0χ

′
eE′ + v × B′χ ′

m

µ0µ′
r c2

.

Substituting for E′ and B′ from (2.134) and (2.135), and using µ0c2 = 1/ε0, we have

P = ε0χ
′
e(E + v × B) + ε0

χ ′
m

µ′
r

v ×
(

B − v × E
c2

)
.

Neglecting the last term since it varies as v2/c2, we get

P = ε0χ
′
eE + ε0

(
χ ′

e + χ ′
m

µ′
r

)
v × B. (2.139)

Similarly,

M = χ ′
m

µ0µ′
r

B − ε0

(
χ ′

e + χ ′
m

µ′
r

)
v × E. (2.140)

2.5 Large-scale form of Maxwell’s equations

We can write Maxwell’s equations in a form that incorporates the spatial variation of
the field in a certain region of space. To do this, we integrate the point form of Maxwell’s



Figure 2.2: Open surface having velocity v relative to laboratory (unprimed) coordinate
system. Surface is non-deforming.

equations over a region of space, then perform some succession of manipulations until
we arrive at a form that provides us some benefit in our work with electromagnetic
fields. The results are particularly useful for understanding the properties of electric and
magnetic circuits, and for predicting the behavior of electrical machinery.

We shall consider two important situations: a mathematical surface that moves with
constant velocity v and with constant shape, and a surface that moves and deforms
arbitrarily.

2.5.1 Surface moving with constant velocity

Consider an open surface S moving with constant velocity v relative to the laboratory
frame (Figure 2.2). Assume every point on the surface is an ordinary point. At any
instant t we can express the relationship between the fields at points on S in either
frame. In the laboratory frame we have

∇ × E = −∂B
∂t

, ∇ × H = ∂D
∂t

+ J,

while in the moving frame

∇′ × E′ = −∂B′

∂t ′ , ∇′ × H′ = ∂D′

∂t ′ + J′.

If we integrate over S and use Stokes’s theorem, we get for the laboratory frame
∮

�

E · dl = −
∫

S

∂B
∂t

· dS, (2.141)
∮

�

H · dl =
∫

S

∂D
∂t

· dS +
∫

S
J · dS, (2.142)



and for the moving frame∮
�′

E′ · dl′ = −
∫

S′

∂B′

∂t ′ · dS′, (2.143)
∮

�′
H′ · dl′ =

∫
S′

∂D′

∂t ′ · dS′ +
∫

S′
J′ · dS′. (2.144)

Here boundary contour � has sense determined by the right-hand rule. We use the
notation �′, S′, etc., to indicate that all integrations for the moving frame are computed
using space and time variables in that frame. Equation (2.141) is the integral form of
Faraday’s law , while (2.142) is the integral form of Ampere’s law.

Faraday’s law states that the net circulation of E about a contour � (sometimes called
the electromotive force or emf ) is determined by the flux of the time-rate of change of the
flux vector B passing through the surface bounded by �. Ampere’s law states that the
circulation of H (sometimes called the magnetomotive force or mmf ) is determined by
the flux of the current J plus the flux of the time-rate of change of the flux vector D. It is
the term containing ∂D/∂t that Maxwell recognized as necessary to make his equations
consistent; since it has units of current, it is often referred to as the displacement current
term.

Equations (2.141)–(2.142) are the large-scale or integral forms of Maxwell’s equations.
They are the integral-form equivalents of the point forms, and are form invariant under
Lorentz transformation. If we express the fields in terms of the moving reference frame,
we can write ∮

�′
E′ · dl′ = − d

dt

∫
S′

B′ · dS′, (2.145)
∮

�′
H′ · dl′ = d

dt

∫
S′

D′ · dS′ +
∫

S′
J′ · dS′. (2.146)

These hold for a stationary surface, since the surface would be stationary to an observer
who moves with it. We are therefore justified in removing the partial derivative from the
integral. Although the surfaces and contours considered here are purely mathematical,
they often coincide with actual physical boundaries. The surface may surround a moving
material medium, for instance, or the contour may conform to a wire moving in an
electrical machine.

We can also convert the auxiliary equations to large-scale form. Consider a volume
region V surrounded by a surface S that moves with velocity v relative to the laboratory
frame (Figure 2.3). Integrating the point form of Gauss’s law over V we have∫

V
∇ · D dV =

∫
V

ρ dV .

Using the divergence theorem and recognizing that the integral of charge density is total
charge, we obtain ∮

S
D · dS =

∫
V

ρ dV = Q(t) (2.147)

where Q(t) is the total charge contained within V at time t . This large-scale form of
Gauss’s law states that the total flux of D passing through a closed surface is identical
to the electric charge Q contained within. Similarly,∮

S
B · dS = 0 (2.148)



Figure 2.3: Non-deforming volume region having velocity v relative to laboratory (un-
primed) coordinate system.

is the large-scale magnetic field Gauss’s law. It states that the total flux of B passing
through a closed surface is zero, since there are no magnetic charges contained within
(i.e., magnetic charge does not exist).

Since charge is an invariant quantity, the large-scale forms of the auxiliary equations
take the same form in a moving reference frame:∮

S′
D′ · dS′ =

∫
V ′

ρ ′ dV ′ = Q(t) (2.149)

and ∮
S′

B′ · dS′ = 0. (2.150)

The large-scale forms of the auxiliary equations may be derived from the large-scale
forms of Faraday’s and Ampere’s laws. To obtain Gauss’s law, we let the open surface
in Ampere’s law become a closed surface. Then

∮
H · dl vanishes, and application of

the large-scale form of the continuity equation (1.10) produces (2.147). The magnetic
Gauss’s law (2.148) is found from Faraday’s law (2.141) by a similar transition from an
open surface to a closed surface.

The values obtained from the expressions (2.141)–(2.142) will not match those ob-
tained from (2.143)–(2.144), and we can use the Lorentz transformation field conversions
to study how they differ. That is, we can write either side of the laboratory equations in
terms of the moving reference frame fields, or vice versa. For most engineering applica-
tions where v/c � 1 this is not done via the Lorentz transformation field relations, but
rather via the Galilean approximations to these relations (see Tai [194] for details on us-
ing the Lorentz transformation field relations). We consider the most common situation
in the next section.

Kinematic form of the large-scale Maxwell equations. Confusion can result from
the fact that the large-scale forms of Maxwell’s equations can be written in a number of



Figure 2.4: Non-deforming closed contour moving with velocity v through a magnetic
field B given in the laboratory (unprimed) coordinate system.

ways. A popular formulation of Faraday’s law, the emf formulation, revolves around the
concept of electromotive force. Unfortunately, various authors offer different definitions
of emf in a moving circuit.

Consider a non-deforming contour in space, moving with constant velocity v relative
to the laboratory frame (Figure 2.4). In terms of the laboratory fields we have the large-
scale form of Faraday’s law (2.141). The flux term on the right-hand side of this equation
can be written differently by employing the Helmholtz transport theorem (A.63). If a
non-deforming surface S moves with uniform velocity v relative to the laboratory frame,
and a vector field A(r, t) is expressed in the stationary frame, then the time derivative
of the flux of A through S is

d

dt

∫
S

A · dS =
∫

S

[
∂A
∂t

+ v(∇ · A) − ∇ × (v × A)

]
· dS. (2.151)

Using this with (2.141) we have
∮

�

E · dl = − d

dt

∫
S

B · dS +
∫

S
v(∇ · B) · dS −

∫
S
∇ × (v × B) · dS.

Remembering that ∇ · B = 0 and using Stokes’s theorem on the last term, we obtain
∮

�

(E + v × B) · dl = − d

dt

∫
S

B · dS = −d�(t)

dt
(2.152)

where the magnetic flux ∫
S

B · dS = �(t)

represents the flux of B through S. Following Sommerfeld [185], we may set

E∗ = E + v × B

to obtain the kinematic form of Faraday’s law
∮

�

E∗ · dl = − d

dt

∫
S

B · dS = −d�(t)

dt
. (2.153)



(The asterisk should not be confused with the notation for complex conjugate.)
Much confusion arises from the similarity between (2.153) and (2.145). In fact, these

expressions are different and give different results. This is because B′ in (2.145) is
measured in the frame of the moving circuit, while B in (2.153) is measured in the frame
of the laboratory. Further confusion arises from various definitions of emf. Many authors
(e.g., Hermann Weyl [213]) define emf to be the circulation of E∗. In that case the emf
is equal to the negative time rate of change of the flux of the laboratory frame magnetic
field B through S. Since the Lorentz force experienced by a charge q moving with the
contour is given by qE∗ = q(E + v × B), this emf is the circulation of Lorentz force
per unit charge along the contour. If the contour is aligned with a conducting circuit,
then in some cases this emf can be given physical interpretation as the work required
to move a charge around the entire circuit through the conductor against the Lorentz
force. Unfortunately the usefulness of this definition of emf is lost if the time or space
rate of change of the fields is so large that no true loop current can be established
(hence Kirchoff’s law cannot be employed). Such a problem must be treated as an
electromagnetic “scattering” problem with consideration given to retardation effects.
Detailed discussions of the physical interpretation of E∗ in the definition of emf are given
by Scanlon [165] and Cullwick [48].

Other authors choose to define emf as the circulation of the electric field in the frame
of the moving contour. In this case the circulation of E′ in (2.145) is the emf, and is
related to the flux of the magnetic field in the frame of the moving circuit. As pointed
out above, the result differs from that based on the Lorentz force. If we wish, we can
also write this emf in terms of the fields expressed in the laboratory frame. To do this we
must convert ∂B′/∂t ′ to the laboratory fields using the rules for a Lorentz transformation.
The result, given by Tai [194], is quite complicated and involves both the magnetic and
electric laboratory-frame fields.

The moving-frame emf as computed from the Lorentz transformation is rarely used as
a working definition of emf, mostly because circuits moving at relativistic velocities are
seldom used by engineers. Unfortunately, more confusion arises for the case v � c, since
for a Galilean frame the Lorentz-force and moving-frame emfs become identical. This
is apparent if we use (2.52) to replace B′ with the laboratory frame field B, and (2.49)
to replace E′ with the combination of laboratory frame fields E + v × B. Then (2.145)
becomes ∮

�

E′ · dl =
∮

�

(E + v × B) · dl = − d

dt

∫
S

B · dS,

which is identical to (2.153). For circuits moving with low velocity then, the circulation
of E′ can be interpreted as work per unit charge. As an added bit of confusion, the term∮

�

(v × B) · dl =
∫

S
∇ × (v × B) · dS

is sometimes called motional emf, since it is the component of the circulation of E∗ that
is directly attributable to the motion of the circuit.

Although less commonly done, we can also rewrite Ampere’s law (2.142) using (2.151).
This gives∮

�

H · dl =
∫

S
J · dS + d

dt

∫
S

D · dS −
∫

S
(v∇ · D) · dS +

∫
S
∇ × (v × D) · dS.

Using ∇ · D = ρ and using Stokes’s theorem on the last term, we obtain∮
�

(H − v × D) · dl = d

dt

∫
S

D · dS +
∫

S
(J − ρv) · dS.



Finally, letting H∗ = H − v × D and J∗ = J − ρv we can write the kinematic form of
Ampere’s law :

∮
�

H∗ · dl = d

dt

∫
S

D · dS +
∫

S
J∗ · dS. (2.154)

In a Galilean frame where we use (2.49)–(2.54), we see that (2.154) is identical to
∮

�

H′ · dl = d

dt

∫
S

D′ · dS +
∫

S
J′ · dS (2.155)

where the primed fields are measured in the frame of the moving contour. This equiv-
alence does not hold when the Lorentz transformation is used to represent the primed
fields.

Alternative form of the large-scale Maxwell equations. We can write Maxwell’s
equations in an alternative large-scale form involving only surface and volume integrals.
This will be useful later for establishing the field jump conditions across a material or
source discontinuity. Again we begin with Maxwell’s equations in point form, but instead
of integrating them over an open surface we integrate over a volume region V moving
with velocity v (Figure 2.3). In the laboratory frame this gives

∫
V
(∇ × E) dV = −

∫
V

∂B
∂t

dV,

∫
V
(∇ × H) dV =

∫
V

(
∂D
∂t

+ J
)

dV .

An application of curl theorem (B.24) then gives
∮

S
(n̂ × E) d S = −

∫
V

∂B
∂t

dV, (2.156)
∮

S
(n̂ × H) d S =

∫
V

(
∂D
∂t

+ J
)

dV . (2.157)

Similar results are obtained for the fields in the moving frame:
∮

S′
(n̂′ × E′) d S′ = −

∫
V ′

∂B′

∂t ′ dV ′,
∮

S′
(n̂′ × H′) d S′ =

∫
V ′

(
∂D′

∂t ′ + J′
)

dV ′.

These large-scale forms are an alternative to (2.141)–(2.144). They are also form-
invariant under a Lorentz transformation.

An alternative to the kinematic formulation of (2.153) and (2.154) can be achieved
by applying a kinematic identity for a moving volume region. If V is surrounded by a
surface S that moves with velocity v relative to the laboratory frame, and if a vector field
A is measured in the laboratory frame, then the vector form of the general transport
theorem (A.68) states that

d

dt

∫
V

A dV =
∫

V

∂A
∂t

dV +
∮

S
A(v · n̂) d S. (2.158)



Applying this to (2.156) and (2.157) we have
∮

S
[n̂ × E − (v · n̂)B] d S = − d

dt

∫
V

B dV, (2.159)
∮

S
[n̂ × H + (v · n̂)D] d S =

∫
V

J dV + d

dt

∫
V

D dV . (2.160)

We can also apply (2.158) to the large-scale form of the continuity equation (2.10) and
obtain the expression for a volume region moving with velocity v:

∮
S
(J − ρv) · dS = − d

dt

∫
V

ρ dV .

2.5.2 Moving, deforming surfaces

Because (2.151) holds for arbitrarily moving surfaces, the kinematic versions (2.153)
and (2.154) hold when v is interpreted as an instantaneous velocity. However, if the
surface and contour lie within a material body that moves relative to the laboratory
frame, the constitutive equations relating E, D, B, H, and J in the laboratory frame
differ from those relating the fields in the stationary frame of the body (if the body is
not accelerating), and thus the concepts of § 2.3.2 must be employed. This is important
when boundary conditions at a moving surface are needed. Particular care must be taken
when the body accelerates, since the constitutive relations are then only approximate.

The representation (2.145)–(2.146) is also generally valid, provided we define the
primed fields as those converted from laboratory fields using the Lorentz transforma-
tion with instantaneous velocity v. Here we should use a different inertial frame for each
point in the integration, and align the frame with the velocity vector v at the instant
t . We certainly may do this since we can choose to integrate any function we wish.
However, this representation may not find wide application.

We thus choose the following expressions, valid for arbitrarily moving surfaces con-
taining only regular points, as our general forms of the large-scale Maxwell equations:

∮
�(t)

E∗ · dl = − d

dt

∫
S(t)

B · dS = −d�(t)

dt
,

∮
�(t)

H∗ · dl = d

dt

∫
S(t)

D · dS +
∫

S(t)
J∗ · dS,

where

E∗ = E + v × B,

H∗ = H − v × D,

J∗ = J − ρv,

and where all fields are taken to be measured in the laboratory frame with v the in-
stantaneous velocity of points on the surface and contour relative to that frame. The
constitutive parameters must be considered carefully if the contours and surfaces lie in
a moving material medium.

Kinematic identity (2.158) is also valid for arbitrarily moving surfaces. Thus we have
the following, valid for arbitrarily moving surfaces and volumes containing only regular



points: ∮
S(t)

[n̂ × E − (v · n̂)B] d S = − d

dt

∫
V (t)

B dV,

∮
S(t)

[n̂ × H + (v · n̂)D] d S =
∫

V (t)
J dV + d

dt

∫
V (t)

D dV .

We also find that the two Gauss’s law expressions,∮
S(t)

D · dS =
∫

V (t)
ρ dV,

∮
S(t)

B · dS = 0,

remain valid.

2.5.3 Large-scale form of the Boffi equations

The Maxwell–Boffi equations can be written in large-scale form using the same ap-
proach as with the Maxwell–Minkowski equations. Integrating (2.120) and (2.121) over
an open surface S and applying Stokes’s theorem, we have∮

�

E · dl = −
∫

S

∂B
∂t

· dS, (2.161)
∮

�

B · dl = µ0

∫
S

(
J + JM + JP + ∂ε0E

∂t

)
· dS, (2.162)

for fields in the laboratory frame, and∮
�′

E′ · dl′ = −
∫

S′

∂B′

∂t ′ · dS′,
∮

�′
B′ · dl′ = µ0

∫
S′

(
J′ + J′

M + J′
P + ∂ε0E′

∂t ′

)
· dS′,

for fields in a moving frame. We see that Faraday’s law is unmodified by the introduction
of polarization and magnetization, hence our prior discussion of emf for moving contours
remains valid. However, Ampere’s law must be interpreted somewhat differently. The
flux vector B also acts as a force vector, and its circulation is proportional to the out-
flux of total current, consisting of J plus the equivalent magnetization and polarization
currents plus the displacement current in free space, through the surface bounded by the
circulation contour.

The large-scale forms of the auxiliary equations can be found by integrating (2.122)
and (2.123) over a volume region and applying the divergence theorem. This gives∮

S
E · dS = 1

ε0

∫
V
(ρ + ρP) dV,

∮
S

B · dS = 0,

for the laboratory frame fields, and∮
S′

E′ · dS′ = 1

ε0

∫
V ′

(ρ ′ + ρ ′
P) dV ′,

∮
S′

B′ · dS′ = 0,



for the moving frame fields. Here we find the force vector E also acting as a flux vector,
with the outflux of E over a closed surface proportional to the sum of the electric and
polarization charges enclosed by the surface.

To provide the alternative representation, we integrate the point forms over V and use
the curl theorem to obtain

∮
S
(n̂ × E) d S = −

∫
V

∂B
∂t

dV, (2.163)
∮

S
(n̂ × B) d S = µ0

∫
V

(
J + JM + JP + ∂ε0E

∂t

)
dV, (2.164)

for the laboratory frame fields, and
∮

S′
(n̂′ × E′) d S′ = −

∫
V ′

∂B′

∂t ′ dV ′,
∮

S′
(n̂′ × B′) d S′ = µ0

∫
V ′

(
J′ + J′

M + J′
P + ∂ε0E′

∂t ′

)
dV ′,

for the moving frame fields.

The large-scale forms of the Boffi equations can also be put into kinematic form using
either (2.151) or (2.158). Using (2.151) on (2.161) and (2.162) we have

∮
�(t)

E∗ · dl = − d

dt

∫
S(t)

B · dS, (2.165)
∮

�(t)
B† · dl =

∫
S(t)

µ0J† · dS + 1

c2

d

dt

∫
S(t)

E · dS, (2.166)

where

E∗ = E + v × B,

B† = B − 1

c2
v × E,

J† = J + JM + JP − (ρ + ρP)v.

Here B† is equivalent to the first-order Lorentz transformation representation of the field
in the moving frame (2.64). (The dagger † should not be confused with the symbol for
the hermitian operation.) Using (2.158) on (2.163) and (2.164) we have

∮
S(t)

[n̂ × E − (v · n̂)B] d S = − d

dt

∫
V (t)

B dV, (2.167)

and
∮

S(t)

[
n̂ × B + 1

c2
(v · n̂)E

]
d S = µ0

∫
V (t)

(J + JM + JP) dV + 1

c2

d

dt

∫
V (t)

E dV .

(2.168)

In each case the fields are measured in the laboratory frame, and v is measured with
respect to the laboratory frame and may vary arbitrarily over the surface or contour.



2.6 The nature of the four field quantities

Since the very inception of Maxwell’s theory, its students have been distressed by the
fact that while there are four electromagnetic fields (E, D, B, H), there are only two funda-
mental equations (the curl equations) to describe their interrelationship. The relegation
of additional required information to constitutive equations that vary widely between
classes of materials seems to lessen the elegance of the theory. While some may find
elegant the separation of equations into a set expressing the basic wave nature of electro-
magnetism and a set describing how the fields interact with materials, the history of the
discipline is one of categorizing and pairing fields as “fundamental” and “supplemental”
in hopes of reducing the model to two equations in two unknowns.

Lorentz led the way in this area. With his electrical theory of matter, all material ef-
fects could be interpreted in terms of atomic charge and current immersed in free space.
We have seen how the Maxwell–Boffi equations seem to eliminate the need for D and H,
and indeed for simple media where there is a linear relation between the remaining “fun-
damental” fields and the induced polarization and magnetization, it appears that only
E and B are required. However, for more complicated materials that display nonlinear
and bianisotropic effects we are only able to supplant D and H with two other fields P
and M, along with (possibly complicated) constitutive relations relating them to E and
B.

Even those authors who do not wish to eliminate two of the fields tend to categorize
the fields into pairs based on physical arguments, implying that one or the other pair
is in some way “more fundamental.” Maxwell himself separated the fields into the pair
(E, H) that appears within line integrals to give work and the pair (B, D) that appears
within surface integrals to give flux. In what other ways might we pair the four vectors?

Most prevalent is the splitting of the fields into electric and magnetic pairs: (E, D) and
(B, H). In Poynting’s theorem E · D describes one component of stored energy (called
“electric energy”) and B · H describes another component (called “magnetic energy”).
These pairs also occur in Maxwell’s stress tensor. In statics, the fields decouple into
electric and magnetic sets. But biisotropic and bianisotropic materials demonstrate how
separation into electric and magnetic effects can become problematic.

In the study of electromagnetic waves, the ratio of E to H appears to be an important
quantity, called the “intrinsic impedance.” The pair (E, H) also determines the Poynting
flux of power, and is required to establish the uniqueness of the electromagnetic field.
In addition, constitutive relations for simple materials usually express (D, B) in terms
of (E, H). Models for these materials are often conceived by viewing the fields (E, H)

as interacting with the atomic structure in such a way as to produce secondary effects
describable by (D, B). These considerations, along with Maxwell’s categorization into
a pair of work vectors and a pair of flux vectors, lead many authors to formulate elec-
tromagnetics with E and H as the “fundamental” quantities. But the pair (B, D) gives
rise to electromagnetic momentum and is also perpendicular to the direction of wave
propagation in an anisotropic material; in these senses, we might argue that these fields
must be equally “fundamental.”

Perhaps the best motivation for grouping fields comes from relativistic considerations.
We have found that (E, B) transform together under a Lorentz transformation, as do
(D, H). In each of these pairs we have one polar vector (E or D) and one axial vector (B
or H). A polar vector retains its meaning under a change in handedness of the coordinate
system, while an axial vector does not. The Lorentz force involves one polar vector (E)



and one axial vector (B) that we also call “electric” and “magnetic.” If we follow the
lead of some authors and choose to define E and B through measurements of the Lorentz
force, then we recognize that B must be axial since it is not measured directly, but as
part of the cross product v × B that changes its meaning if we switch from a right-hand
to a left-hand coordinate system. The other polar vector (D) and axial vector (H) arise
through the “secondary” constitutive relations. Following this reasoning we might claim
that E and B are “fundamental.”

Sommerfeld also associates E with B and D with H. The vectors E and B are
called entities of intensity, describing “how strong,” while D and H are called entities
of quantity, describing “how much.” This is in direct analogy with stress (intensity) and
strain (quantity) in materials. We might also say that the entities of intensity describe
a “cause” while the entities of quantity describe an “effect.” In this view E “induces”
(causes) a polarization P, and the field D = ε0E + P is the result. Similarly B creates
M, and H = B/µ0 − M is the result. Interestingly, each of the terms describing energy
and momentum in the electromagnetic field (D · E, B · H, E × H, D × B) involves the
interaction of an entity of intensity with an entity of quantity.

Although there is a natural tendency to group things together based on conceptual
similarity, there appears to be little reason to believe that any of the four field vectors are
more “fundamental” than the rest. Perhaps we are fortunate that we can apply Maxwell’s
theory without worrying too much about such questions of underlying philosophy.

2.7 Maxwell’s equations with magnetic sources

Researchers have yet to discover the “magnetic monopole”: a magnetic source from
which magnetic field would diverge. This has not stopped speculation on the form that
Maxwell’s equations might take if such a discovery were made. Arguments based on
fundamental principles of physics (such as symmetry and conservation laws) indicate
that in the presence of magnetic sources Maxwell’s equations would assume the forms

∇ × E = −Jm − ∂B
∂t

, (2.169)

∇ × H = J + ∂D
∂t

, (2.170)

∇ · B = ρm, (2.171)
∇ · D = ρ, (2.172)

where Jm is a volume magnetic current density describing the flow of magnetic charge in
exactly the same manner as J describes the flow of electric charge. The density of this
magnetic charge is given by ρm and should, by analogy with electric charge density, obey
a conservation law

∇ · Jm + ∂ρm

∂t
= 0.

This is the magnetic source continuity equation.
It is interesting to inquire as to the units of Jm and ρm . From (2.169) we see that if B

has units of Wb/m2, then Jm has units of (Wb/s)/m2. Similarly, (2.171) shows that ρm

must have units of Wb/m3. Hence magnetic charge is measured in Wb, magnetic current
in Wb/s. This gives a nice symmetry with electric sources where charge is measured in



C and current in C/s.3 The physical symmetry is equally appealing: magnetic flux lines
diverge from magnetic charge, and the total flux passing through a surface is given by the
total magnetic charge contained within the surface. This is best seen by considering the
large-scale forms of Maxwell’s equations for stationary surfaces. We need only modify
(2.145) to include the magnetic current term; this gives

∮
�

E · dl = −
∫

S
Jm · dS − d

dt

∫
S

B · dS, (2.173)
∮

�

H · dl =
∫

S
J · dS + d

dt

∫
S

D · dS. (2.174)

If we modify (2.148) to include magnetic charge, we get the auxiliary equations
∮

S
D · dS =

∫
V

ρ dV,

∮
S

B · dS =
∫

V
ρm dV .

Any of the large-scale forms of Maxwell’s equations can be similarly modified to include
magnetic current and charge. For arbitrarily moving surfaces we have∮

�(t)
E∗ · dl = − d

dt

∫
S(t)

B · dS −
∫

S(t)
J∗

m · dS,

∮
�(t)

H∗ · dl = d

dt

∫
S(t)

D · dS +
∫

S(t)
J∗ · dS,

where

E∗ = E + v × B,

H∗ = H − v × D,

J∗ = J − ρv,

J∗
m = Jm − ρmv,

and all fields are taken to be measured in the laboratory frame with v the instantaneous
velocity of points on the surface and contour relative to the laboratory frame. We also
have the alternative forms∮

S
(n̂ × E) d S =

∫
V

(
−∂B

∂t
− Jm

)
dV, (2.175)

∮
S
(n̂ × H) d S =

∫
V

(
∂D
∂t

+ J
)

dV, (2.176)

and ∮
S(t)

[n̂ × E − (v · n̂)B] d S = −
∫

V (t)
Jm dV − d

dt

∫
V (t)

B dV, (2.177)
∮

S(t)
[n̂ × H + (v · n̂)D] d S =

∫
V (t)

J dV + d

dt

∫
V (t)

D dV, (2.178)

3We note that if the modern unit of T is used to describe B, then ρm is described using the more
cumbersome units of T/m, while Jm is given in terms of T/s. Thus, magnetic charge is measured in Tm2

and magnetic current in (Tm2)/s.



and the two Gauss’s law expressions∮
S(t)

D · n̂ d S =
∫

V (t)
ρ dV,

∮
S(t)

B · n̂ d S =
∫

V (t)
ρm dV .

Magnetic sources also allow us to develop equivalence theorems in which difficult prob-
lems involving boundaries are replaced by simpler problems involving magnetic sources.
Although these sources may not physically exist, the mathematical solutions are com-
pletely valid.

2.8 Boundary (jump) conditions

If we restrict ourselves to regions of space without spatial (jump) discontinuities in
either the sources or the constitutive relations, we can find meaningful solutions to the
Maxwell differential equations. We also know that for given sources, if the fields are
specified on a closed boundary and at an initial time the solutions are unique. The
standard approach to treating regions that do contain spatial discontinuities is to isolate
the discontinuities on surfaces. That is, we introduce surfaces that serve to separate space
into regions in which the differential equations are solvable and the fields are well defined.
To make the solutions in adjoining regions unique, we must specify the tangential fields
on each side of the adjoining surface. If we can relate the fields across the boundary, we
can propagate the solution from one region to the next; in this way, information about
the source in one region is effectively passed on to the solution in an adjacent region. For
uniqueness, only relations between the tangential components need be specified.

We shall determine the appropriate boundary conditions (BC’s) via two distinct ap-
proaches. We first model a thin source layer and consider a discontinuous surface source
layer as a limiting case of the continuous thin layer. With no true discontinuity, Maxwell’s
differential equations hold everywhere. We then consider a true spatial discontinuity be-
tween material surfaces (with possible surface sources lying along the discontinuity). We
must then isolate the region containing the discontinuity and postulate a field relationship
that is both physically meaningful and experimentally verifiable.

We shall also consider both stationary and moving boundary surfaces, and surfaces
containing magnetic as well as electric sources.

2.8.1 Boundary conditions across a stationary, thin source layer

In § 1.3.3 we discussed how in the macroscopic sense a surface source is actually a
volume distribution concentrated near a surface S. We write the charge and current in
terms of the point r on the surface and the normal distance x from the surface at r as

ρ(r, x, t) = ρs(r, t) f (x, �), (2.179)
J(r, x, t) = Js(r, t) f (x, �), (2.180)

where f (x, �) is the source density function obeying∫ ∞

−∞
f (x, �) dx = 1. (2.181)



Figure 2.5: Derivation of the electromagnetic boundary conditions across a thin contin-
uous source layer.

The parameter � describes the “width” of the source layer normal to the reference
surface.

We use (2.156)–(2.157) to study field behavior across the source layer. Consider a
volume region V that intersects the source layer as shown in Figure 2.5. Let the top and
bottom surfaces be parallel to the reference surface, and label the fields on the top and
bottom surfaces with subscripts 1 and 2, respectively. Since points on and within V are
all regular, (2.157) yields

∫
S1

n̂1 × H1 d S +
∫

S2

n̂2 × H2 d S +
∫

S3

n̂3 × H d S =
∫

V

(
J + ∂D

∂t

)
dV .

We now choose δ = k� (k > 1) so that most of the source lies within V . As � → 0
the thin source layer recedes to a surface layer, and the volume integral of displacement
current and the integral of tangential H over S3 both approach zero by continuity of
the fields. By symmetry S1 = S2 and n̂1 = −n̂2 = n̂12, where n̂12 is the surface normal
directed into region 1 from region 2. Thus

∫
S1

n̂12 × (H1 − H2) d S =
∫

V
J dV . (2.182)

Note that
∫

V
J dV =

∫
S1

∫ δ/2

−δ/2
J d S dx =

∫ δ/2

−δ/2
f (x, �) dx

∫
S1

Js(r, t) d S.

Since we assume that the majority of the source current lies within V , the integral can
be evaluated using (2.181) to give

∫
S1

[n̂12 × (H1 − H2) − Js] d S = 0,

hence

n̂12 × (H1 − H2) = Js .



The tangential magnetic field across a thin source distribution is discontinuous by an
amount equal to the surface current density.

Similar steps with Faraday’s law give

n̂12 × (E1 − E2) = 0.

The tangential electric field is continuous across a thin source.
We can also derive conditions on the normal components of the fields, although these

are not required for uniqueness. Gauss’s law (2.147) applied to the volume V in Figure
2.5 gives ∫

S1

D1 · n̂1 d S +
∫

S2

D2 · n̂2 d S +
∫

S3

D · n̂3 d S =
∫

V
ρ dV .

As � → 0, the thin source layer recedes to a surface layer. The integral of normal D over
S3 tends to zero by continuity of the fields. By symmetry S1 = S2 and n̂1 = −n̂2 = n̂12.
Thus ∫

S1

(D1 − D2) · n̂12 d S =
∫

V
ρ dV . (2.183)

The volume integral is∫
V

ρ dV =
∫

S1

∫ δ/2

−δ/2
ρ d S dx =

∫ δ/2

−δ/2
f (x, �) dx

∫
S1

ρs(r, t) d S.

Since δ = k� has been chosen so that most of the source charge lies within V , (2.181)
gives ∫

S1

[(D1 − D2) · n̂12 − ρs] d S = 0,

hence

(D1 − D2) · n̂12 = ρs .

The normal component of D is discontinuous across a thin source distribution by an
amount equal to the surface charge density. Similar steps with the magnetic Gauss’s law
yield

(B1 − B2) · n̂12 = 0.

The normal component of B is continuous across a thin source layer.
We can follow similar steps when a thin magnetic source layer is present. When

evaluating Faraday’s law we must include magnetic surface current and when evaluating
the magnetic Gauss’s law we must include magnetic charge. However, since such sources
are not physical we postpone their consideration until the next section, where appropriate
boundary conditions are postulated rather than derived.

2.8.2 Boundary conditions across a stationary layer of field disconti-
nuity

Provided that we model a surface source as a limiting case of a very thin but continuous
volume source, we can derive boundary conditions across a surface layer. We might ask
whether we can extend this idea to surfaces of materials where the constitutive parameters
change from one region to another. Indeed, if we take Lorentz’ viewpoint and visualize a
material as a conglomerate of atomic charge, we should be able to apply this same idea.
After all, a material should demonstrate a continuous transition (in the macroscopic



Figure 2.6: Derivation of the electromagnetic boundary conditions across a discontinuous
source layer.

sense) across its boundary, and we can employ the Maxwell–Boffi equations to describe
the relationship between the “equivalent” sources and the electromagnetic fields.

We should note, however, that the limiting concept is not without its critics. Stokes
suggested as early as 1848 that jump conditions should never be derived from smooth
solutions [199]. Let us therefore pursue the boundary conditions for a surface of true
field discontinuity. This will also allow us to treat a material modeled as having a true
discontinuity in its material parameters (which we can always take as a mathematical
model of a more gradual transition) before we have studied in a deeper sense the physical
properties of materials. This approach, taken by many textbooks, must be done carefully.

There is a logical difficulty with this approach, lying in the application of the large-
scale forms of Maxwell’s equations. Many authors postulate Maxwell’s equations in point
form, integrate to obtain the large-scale forms, then apply the large-scale forms to regions
of discontinuity. Unfortunately, the large-scale forms thus obtained are only valid in the
same regions where their point form antecedents were valid — discontinuities must be
excluded. Schelkunoff [167] has criticized this approach, calling it a “swindle” rather
than a proof, and has suggested that the proper way to handle true discontinuities
is to postulate the large-scale forms of Maxwell’s equations, and to include as part
of the postulate the assumption that the large-scale forms are valid at points of field
discontinuity. Does this mean we must reject our postulate of the point form Maxwell
equations and reformulate everything in terms of the large-scale forms? Fortunately, no.
Tai [192] has pointed out that it is still possible to postulate the point forms, as long
as we also postulate appropriate boundary conditions that make the large-scale forms,
as derived from the point forms, valid at surfaces of discontinuity. In essence, both
approaches require an additional postulate for surfaces of discontinuity: the large scale
forms require a postulate of applicability to discontinuous surfaces, and from there the
boundary conditions can be derived; the point forms require a postulate of the boundary
conditions that result in the large-scale forms being valid on surfaces of discontinuity.
Let us examine how the latter approach works.

Consider a surface across which the constitutive relations are discontinuous, containing
electric and magnetic surface currents and charges Js , ρs , Jms , and ρms (Figure 2.6).
We locate a volume region V1 above the surface of discontinuity; this volume is bounded
by a surface S1 and another surface S10 which is parallel to, and a small distance δ/2
above, the surface of discontinuity. A second volume region V2 is similarly situated below
the surface of discontinuity. Because these regions exclude the surface of discontinuity



we can use (2.176) to get
∫

S1

n̂ × H d S +
∫

S10

n̂ × H d S =
∫

V1

(
J + ∂D

∂t

)
dV,

∫
S2

n̂ × H d S +
∫

S20

n̂ × H d S =
∫

V2

(
J + ∂D

∂t

)
dV .

Adding these we obtain
∫

S1+S2

n̂ × H d S −
∫

V1+V2

(
J + ∂D

∂t

)
dV −

−
∫

S10

n̂10 × H1 d S −
∫

S20

n̂20 × H2 d S = 0, (2.184)

where we have used subscripts to delineate the fields on each side of the discontinuity
surface.

If δ is very small (but nonzero), then n̂10 = −n̂20 = n̂12 and S10 = S20. Letting
S1 + S2 = S and V1 + V2 = V , we can write (184) as

∫
S
(n̂ × H) d S −

∫
V

(
J + ∂D

∂t

)
dV =

∫
S10

n̂12 × (H1 − H2) d S. (2.185)

Now suppose we use the same volume region V , but let it intersect the surface of
discontinuity (Figure 2.6), and suppose that the large-scale form of Ampere’s law holds
even if V contains points of field discontinuity. We must include the surface current in
the computation. Since

∫
V J dV becomes

∫
S Js d S on the surface, we have

∫
S
(n̂ × H) d S −

∫
V

(
J + ∂D

∂t

)
dV =

∫
S10

Js d S. (2.186)

We wish to have this give the same value for the integrals over V and S as (2.185), which
included in its derivation no points of discontinuity. This is true provided that

n̂12 × (H1 − H2) = Js . (2.187)

Thus, under the condition (2.187) we may interpret the large-scale form of Ampere’s law
(as derived from the point form) as being valid for regions containing discontinuities.
Note that this condition is not “derived,” but must be regarded as a postulate that
results in the large-scale form holding for surfaces of discontinuous field.

Similar reasoning can be used to determine the appropriate boundary condition on
tangential E from Faraday’s law. Corresponding to (2.185) we obtain

∫
S
(n̂ × E) d S −

∫
V

(
−Jm − ∂B

∂t

)
dV =

∫
S10

n̂12 × (E1 − E2) d S. (2.188)

Employing (2.175) over the region containing the field discontinuity surface we get
∫

S
(n̂ × E) d S −

∫
V

(
−Jm − ∂B

∂t

)
dV = −

∫
S10

Jms d S. (2.189)

To have (2.188) and (2.189) produce identical results, we postulate

n̂12 × (E1 − E2) = −Jms (2.190)



as the boundary condition appropriate to a surface of field discontinuity containing a
magnetic surface current.

We can also postulate boundary conditions on the normal fields to make Gauss’s laws
valid for surfaces of discontinuous fields. Integrating (2.147) over the regions V1 and V2

and adding, we obtain∫
S1+S2

D · n̂ d S −
∫

S10

D1 · n̂10 d S −
∫

S20

D2 · n̂20 d S =
∫

V1+V2

ρ dV .

As δ → 0 this becomes∫
S

D · n̂ d S −
∫

V
ρ dV =

∫
S10

(D1 − D2) · n̂12 d S. (2.191)

If we integrate Gauss’s law over the entire region V , including the surface of discontinuity,
we get ∮

S
D · n̂ d S =

∫
V

ρ dV +
∫

S10

ρs d S. (2.192)

In order to get identical answers from (2.191) and (2.192), we must have

(D1 − D2) · n̂12 = ρs

as the boundary condition appropriate to a surface of field discontinuity containing an
electric surface charge. Similarly, we must postulate

(B1 − B2) · n̂12 = ρms

as the condition appropriate to a surface of field discontinuity containing a magnetic
surface charge.

We can determine an appropriate boundary condition on current by using the large-
scale form of the continuity equation. Applying (2.10) over each of the volume regions
of Figure 2.6 and adding the results, we have∫

S1+S2

J · n̂ d S −
∫

S10

J1 · n̂10 d S −
∫

S20

J2 · n̂20 d S = −
∫

V1+V2

∂ρ

∂t
dV .

As δ → 0 we have ∫
S

J · n̂ d S −
∫

S10

(J1 − J2) · n̂12 d S = −
∫

V

∂ρ

∂t
dV . (2.193)

Applying the continuity equation over the entire region V and allowing it to intersect
the discontinuity surface, we get∫

S
J · n̂ d S +

∫
�

Js · m̂ dl = −
∫

V

∂ρ

∂t
dV −

∫
S10

∂ρs

∂t
d S.

By the two-dimensional divergence theorem (B.20) we can write this as∫
S

J · n̂ d S +
∫

S10

∇s · Js d S = −
∫

V

∂ρ

∂t
dV −

∫
S10

∂ρs

∂t
d S.

In order for this expression to produce the same values of the integrals over S and V as
in (2.193) we require

∇s · Js = −n̂12 · (J1 − J2) − ∂ρs

∂t
,



which we take as our postulate of the boundary condition on current across a surface
containing discontinuities. A similar set of steps carried out using the continuity equation
for magnetic sources yields

∇s · Jms = −n̂12 · (Jm1 − Jm2) − ∂ρms

∂t
.

In summary, we have the following boundary conditions for fields across a surface
containing discontinuities:

n̂12 × (H1 − H2) = Js, (2.194)
n̂12 × (E1 − E2) = −Jms, (2.195)
n̂12 · (D1 − D2) = ρs, (2.196)
n̂12 · (B1 − B2) = ρms, (2.197)

and

n̂12 · (J1 − J2) = −∇s · Js − ∂ρs

∂t
, (2.198)

n̂12 · (Jm1 − Jm2) = −∇s · Jms − ∂ρms

∂t
, (2.199)

where n̂12 points into region 1 from region 2.

2.8.3 Boundary conditions at the surface of a perfect conductor

We can easily specialize the results of the previous section to the case of perfect electric
or magnetic conductors. In § 2.2.2 we saw that the constitutive relations for perfect
conductors requires the null field within the material. In addition, a PEC requires zero
tangential electric field, while a PMC requires zero tangential magnetic field. Using
(2.194)–(2.199), we find that the boundary conditions for a perfect electric conductor
are

n̂ × H = Js, (2.200)
n̂ × E = 0, (2.201)
n̂ · D = ρs, (2.202)
n̂ · B = 0, (2.203)

and

n̂ · J = −∇s · Js − ∂ρs

∂t
, n̂ · Jm = 0. (2.204)

For a PMC the conditions are

n̂ × H = 0, (2.205)
n̂ × E = −Jms, (2.206)
n̂ · D = 0, (2.207)
n̂ · B = ρms, (2.208)

and

n̂ · Jm = −∇s · Jms − ∂ρms

∂t
, n̂ · J = 0. (2.209)

We note that the normal vector n̂ points out of the conductor and into the adjacent
region of nonzero fields.



2.8.4 Boundary conditions across a stationary layer of field disconti-
nuity using equivalent sources

So far we have avoided using the physical interpretation of the equivalent sources in the
Maxwell–Boffi equations so that we might investigate the behavior of fields across true
discontinuities. Now that we have the appropriate boundary conditions, it is interesting
to interpret them in terms of the equivalent sources.

If we put H = B/µ0 − M into (2.194) and rearrange, we get

n̂12 × (B1 − B2) = µ0(Js + n̂12 × M1 − n̂12 × M2). (2.210)

The terms on the right involving n̂12 × M have the units of surface current and are called
equivalent magnetization surface currents. Defining

JMs = −n̂ × M (2.211)

where n̂ is directed normally outward from the material region of interest, we can rewrite
(2.210) as

n̂12 × (B1 − B2) = µ0(Js + JMs1 + JMs2). (2.212)

We note that JMs replaces atomic charge moving along the surface of a material with an
equivalent surface current in free space.

If we substitute D = ε0E + P into (2.196) and rearrange, we get

n̂12 · (E1 − E2) = 1

ε0
(ρs − n̂12 · P1 + n̂12 · P2). (2.213)

The terms on the right involving n̂12 · P have the units of surface charge and are called
equivalent polarization surface charges. Defining

ρPs = n̂ · P, (2.214)

we can rewrite (2.213) as

n̂12 · (E1 − E2) = 1

ε0
(ρs + ρPs1 + ρPs2). (2.215)

We note that ρPs replaces atomic charge adjacent to a surface of a material with an
equivalent surface charge in free space.

In summary, the boundary conditions at a stationary surface of discontinuity written
in terms of equivalent sources are

n̂12 × (B1 − B2) = µ0(Js + JMs1 + JMs2), (2.216)
n̂12 × (E1 − E2) = −Jms, (2.217)

n̂12 · (E1 − E2) = 1

ε0
(ρs + ρPs1 + ρPs2), (2.218)

n̂12 · (B1 − B2) = ρms . (2.219)

2.8.5 Boundary conditions across a moving layer of field discontinuity

With a moving material body it is often necessary to apply boundary conditions de-
scribing the behavior of the fields across the surface of the body. If a surface of discon-
tinuity moves with constant velocity v, the boundary conditions (2.194)–(2.199) hold as



long as all fields are expressed in the frame of the moving surface. We can also derive
boundary conditions for a deforming surface moving with arbitrary velocity by using
equations (2.177)–(2.178). In this case all fields are expressed in the laboratory frame.
Proceeding through the same set of steps that gave us (2.194)–(2.197), we find

n̂12 × (H1 − H2) + (n̂12 · v)(D1 − D2) = Js, (2.220)
n̂12 × (E1 − E2) − (n̂12 · v)(B1 − B2) = −Jms, (2.221)

n̂12 · (D1 − D2) = ρs, (2.222)
n̂12 · (B1 − B2) = ρms . (2.223)

Note that when n̂12 · v = 0 these boundary conditions reduce to those for a stationary
surface. This occurs not only when v = 0 but also when the velocity is parallel to the
surface.

The reader must be wary when employing (2.220)–(2.223). Since the fields are mea-
sured in the laboratory frame, if the constitutive relations are substituted into the bound-
ary conditions they must also be represented in the laboratory frame. It is probable that
the material parameters would be known in the rest frame of the material, in which case
a conversion to the laboratory frame would be necessary.

2.9 Fundamental theorems

In this section we shall consider some of the important theorems of electromagnetics
that pertain directly to Maxwell’s equations. They may be derived without reference to
the solutions of Maxwell’s equations, and are not connected with any specialization of
the equations or any specific application or geometrical configuration. In this sense these
theorems are fundamental to the study of electromagnetics.

2.9.1 Linearity

Recall that a mathematical operator L is linear if

L(α1 f1 + α2 f2) = α1L( f1) + α2L( f2)

holds for any two functions f1,2 in the domain of L and any two scalar constants α1,2. A
standard observation regarding the equation

L( f ) = s, (2.224)

where L is a linear operator and s is a given forcing function, is that if f1 and f2 are
solutions to

L( f1) = s1, L( f2) = s2, (2.225)

respectively, and

s = s1 + s2, (2.226)

then

f = f1 + f2 (2.227)



is a solution to (2.224). This is the principle of superposition; if convenient, we can
decompose s in equation (2.224) as a sum (2.226) and solve the two resulting equations
(2.225) independently. The solution to (2.224) is then (2.227), “by superposition.” Of
course, we are free to split the right side of (2.224) into more than two terms — the
method extends directly to any finite number of terms.

Because the operators ∇·, ∇×, and ∂/∂t are all linear, Maxwell’s equations can be
treated by this method. If, for instance,

∇ × E1 = −∂B1

∂t
, ∇ × E2 = −∂B2

∂t
,

then

∇ × E = −∂B
∂t

where E = E1 + E2 and B = B1 + B2. The motivation for decomposing terms in a
particular way is often based on physical considerations; we give one example here and
defer others to later sections of the book. We saw earlier that Maxwell’s equations can
be written in terms of both electric and (fictitious) magnetic sources as in equations
(2.169)–(2.172). Let E = Ee + Em where Ee is produced by electric-type sources and Em

is produced by magnetic-type sources, and decompose the other fields similarly. Then

∇ × Ee = −∂Be

∂t
, ∇ × He = J + ∂De

∂t
, ∇ · De = ρ, ∇ · Be = 0,

with a similar equation set for the magnetic sources. We may, if desired, solve these
two equation sets independently for Ee, De, Be, He and Em , Dm , Em , Hm , and then use
superposition to obtain the total fields E, D, B, H.

2.9.2 Duality

The intriguing symmetry of Maxwell’s equations leads us to an observation that can
reduce the effort required to compute solutions. Consider a closed surface S enclosing a
region of space that includes an electric source current J and a magnetic source current
Jm . The fields (E1,D1,B1,H1) within the region (which may also contain arbitrary
media) are described by

∇ × E1 = −Jm − ∂B1

∂t
, (2.228)

∇ × H1 = J + ∂D1

∂t
, (2.229)

∇ · D1 = ρ, (2.230)
∇ · B1 = ρm . (2.231)

Suppose we have been given a mathematical description of the sources (J, Jm) and have
solved for the field vectors (E1, D1, B1, H1). Of course, we must also have been supplied
with a set of boundary values and constitutive relations in order to make the solution
unique. We note that if we replace the formula for J with the formula for Jm in (2.229)
(and ρ with ρm in (2.230)) and also replace Jm with −J in (2.228) (and ρm with −ρ

in (2.231)) we get a new problem to solve, with a different solution. However, the
symmetry of the equations allows us to specify the solution immediately. The new set of



curl equations requires

∇ × E2 = J − ∂B2

∂t
, (2.232)

∇ × H2 = Jm + ∂D2

∂t
. (2.233)

As long as we can resolve the question of how the constitutive parameters must be altered
to reflect these replacements, we can conclude by comparing (2.232) with (2.229) and
(2.233) with (2.228) that the solution to these equations is merely

E2 = H1,

B2 = −D1,

D2 = B1,

H2 = −E1.

That is, if we have solved the original problem, we can use those solutions to find the
new ones. This is an application of the general principle of duality .

Unfortunately, this approach is a little awkward since the units of the sources and
fields in the two problems are different. We can make the procedure more convenient by
multiplying Ampere’s law by η0 = (µ0/ε0)

1/2. Then we have

∇ × E = −Jm − ∂B
∂t

, (2.234)

∇ × (η0H) = (η0J) + ∂(η0D)

∂t
. (2.235)

Thus if the original problem has solution (E1, η0D1, B1, η0H1), then the dual problem
with J replaced by Jm/η0 and Jm replaced by −η0J has solution

E2 = η0H1, (2.236)
B2 = −η0D1, (2.237)

η0D2 = B1, (2.238)
η0H2 = −E1. (2.239)

The units on the quantities in the two problems are now identical.
Of course, the constitutive parameters for the dual problem must be altered from

those of the original problem to reflect the change in field quantities. From (2.19) and
(2.20) we know that the most general forms of the constitutive relations (those for linear,
bianisotropic media) are

D1 = ξ̄1 · H1 + ε̄1 · E1, (2.240)
B1 = µ̄1 · H1 + ζ̄1 · E1, (2.241)

for the original problem, and

D2 = ξ̄2 · H2 + ε̄2 · E2, (2.242)
B2 = µ̄2 · H2 + ζ̄2 · E2, (2.243)

for the dual problem. Substitution of (2.236)–(2.239) into (2.240) and (2.241) gives

D2 = (−ζ̄1) · H2 +
(
µ̄1

η2
0

)
· E2, (2.244)

B2 = (
η2

0ε̄1
) · H2 + (−ξ̄1) · E2. (2.245)



Comparing (2.244) with (2.242) and (2.245) with (2.243), we conclude that

ζ̄2 = −ξ̄1, ξ̄2 = −ζ̄1, µ̄2 = η2
0ε̄1, ε̄2 = µ̄1

η2
0

.

As an important special case, we see that for a linear, isotropic medium specified by a
permittivity ε and permeability µ, the dual problem is obtained by replacing εr with µr

and µr with εr . The solution to the dual problem is then given by

E2 = η0H1, η0H2 = −E1,

as before. We thus see that the medium in the dual problem must have electric properties
numerically equal to the magnetic properties of the medium in the original problem, and
magnetic properties numerically equal to the electric properties of the medium in the
original problem. This is rather inconvenient for most applications. Alternatively, we
may divide Ampere’s law by η = (µ/ε)1/2 instead of η0. Then the dual problem has
J replaced by Jm/η, and Jm replaced by −ηJ, and the solution to the dual problem is
given by

E2 = ηH1, ηH2 = −E1.

In this case there is no need to swap εr and µr , since information about these parameters
is incorporated into the replacement sources.

We must also remember that to obtain a unique solution we need to specify the bound-
ary values of the fields. In a true dual problem, the boundary values of the fields used
in the original problem are used on the swapped fields in the dual problem. A typical
example of this is when the condition of zero tangential electric field on a perfect electric
conductor is replaced by the condition of zero tangential magnetic field on the surface of
a perfect magnetic conductor. However, duality can also be used to obtain the mathe-
matical form of the field expressions, often in a homogeneous (source-free) situation, and
boundary values can be applied later to specify the solution appropriate to the problem
geometry. This approach is often used to compute waveguide modal fields and the elec-
tromagnetic fields scattered from objects. In these cases a TE/TM field decomposition
is employed, and duality is used to find one part of the decomposition once the other is
known.

Duality of electric and magnetic point source fields. By duality, we can some-
times use the known solution to one problem to solve a related problem by merely sub-
stituting different variables into the known mathematical expression. An example of this
is the case in which we have solved for the fields produced by a certain distribution of
electric sources and wish to determine the fields when the same distribution is used to
describe magnetic sources.

Let us consider the case when the source distribution is that of a point current, or
Hertzian dipole, immersed in free space. As we shall see in Chapter 5, the fields for a
general source may be found by using the fields produced by these point sources. We
begin by finding the fields produced by an electric dipole source at the origin aligned
along the z-axis,

J = ẑI0δ(r),

then use duality to find the fields produced by a magnetic current source Jm = ẑIm0δ(r).
The fields produced by the electric source must obey

∇ × Ee = − ∂

∂t
µ0He, (2.246)



∇ × He = ẑI0δ(r) + ∂

∂t
ε0Ee, (2.247)

∇ · ε0Ee = ρ, (2.248)
∇ · He = 0, (2.249)

while those produced by the magnetic source must obey

∇ × Em = −ẑIm0δ(r) − ∂

∂t
µ0Hm, (2.250)

∇ × Hm = ∂

∂t
ε0Em, (2.251)

∇ · Em = 0, (2.252)
∇ · µ0Hm = ρm . (2.253)

We see immediately that the second set of equations is the dual of the first, as long
as we scale the sources appropriately. Multiplying (2.250) by −I0/Im0 and (2.251) by
I0η

2
0/Im0, we have the curl equations

∇ ×
(

− I0

Im0
Em

)
= ẑI0δ(r) + ∂

∂t

(
µ0

I0

Im0
Hm

)
, (2.254)

∇ ×
(

I0η
2
0

Im0
Hm

)
= − ∂

∂t

(
−ε0

I0η
2
0

Im0
Em

)
. (2.255)

Comparing (2.255) with (2.246) and (2.254) with (2.247) we see that

Em = − Im0

I0
He, Hm = Im0

I0

Ee

η2
0

.

We note that it is impossible to have a point current source without accompanying
point charge sources terminating each end of the dipole current. The point charges are
required to satisfy the continuity equation, and vary in time as the moving charge that
establishes the current accumulates at the ends of the dipole. From (2.247) we see that
the magnetic field curls around the combination of the electric field and electric current
source, while from (2.246) the electric field curls around the magnetic field, and from
(2.248) diverges from the charges located at the ends of the dipole. From (2.250) we
see that the electric field must curl around the combination of the magnetic field and
magnetic current source, while (2.251) and (2.253) show that the magnetic field curls
around the electric field and diverges from the magnetic charge.

Duality in a source-free region. Consider a closed surface S enclosing a source-free
region of space. For simplicity, assume that the medium within S is linear, isotropic, and
homogeneous. The fields within S are described by Maxwell’s equations

∇ × E1 = − ∂

∂t
µH1, (2.256)

∇ × ηH1 = ∂

∂t
εηE1, (2.257)

∇ · εE1 = 0, (2.258)
∇ · µH1 = 0. (2.259)

Under these conditions the concept of duality takes on a different face. The symmetry
of the equations is such that the mathematical form of the solution for E is the same as



that for ηH. That is, the fields

E2 = ηH1, (2.260)
H2 = −E1/η, (2.261)

are also a solution to Maxwell’s equations, and thus the dual problem merely involves
replacing E by ηH and H by −E/η. However, the final forms of E and H will not be
identical after appropriate boundary values are imposed.

This form of duality is very important for the solution of fields within waveguides or
the fields scattered by objects where the sources are located outside the region where the
fields are evaluated.

2.9.3 Reciprocity

The reciprocity theorem, also called the Lorentz reciprocity theorem, describes a spe-
cific and often useful relationship between sources and the electromagnetic fields they
produce. Under certain special circumstances we find that an interaction between inde-
pendent source and mediating fields called “reaction” is a spatially symmetric quantity.
The reciprocity theorem is used in the study of guided waves to establish the orthogonal-
ity of guided wave modes, in microwave network theory to obtain relationships between
terminal characteristics, and in antenna theory to demonstrate the equivalence of trans-
mission and reception patterns.

Consider a closed surface S enclosing a volume V . Assume that the fields within and
on S are produced by two independent source fields. The source (Ja, Jma) produces the
field (Ea, Da, Ba, Ha) as described by Maxwell’s equations

∇ × Ea = −Jma − ∂Ba

∂t
, (2.262)

∇ × Ha = Ja + ∂Da

∂t
, (2.263)

while the source field (Jb, Jmb) produces the field (Eb, Db, Bb, Hb) as described by

∇ × Eb = −Jmb − ∂Bb

∂t
, (2.264)

∇ × Hb = Jb + ∂Db

∂t
. (2.265)

The sources may be distributed in any way relative to S: they may lie completely inside,
completely outside, or partially inside and partially outside. Material media may lie
within S, and their properties may depend on position.

Let us examine the quantity

R ≡ ∇ · (Ea × Hb − Eb × Ha).

By (B.44) we have

R = Hb · ∇ × Ea − Ea · ∇ × Hb − Ha · ∇ × Eb + Eb · ∇ × Ha

so that by Maxwell’s curl equations

R =
[

Ha · ∂Bb

∂t
− Hb · ∂Ba

∂t

]
−

[
Ea · ∂Db

∂t
− Eb · ∂Da

∂t

]
+

+ [Ja · Eb − Jb · Ea − Jma · Hb + Jmb · Ha] .



The useful relationships we seek occur when the first two bracketed quantities on the
right-hand side of the above expression are zero. Whether this is true depends not only
on the behavior of the fields, but on the properties of the medium at the point in question.
Though we have assumed that the sources of the field sets are independent, it is apparent
that they must share a similar time dependence in order for the terms within each of the
bracketed quantities to cancel. Of special interest is the case where the two sources are
both sinusoidal in time with identical frequencies, but with differing spatial distributions.
We shall consider this case in detail in § 4.10.2 after we have discussed the properties of
the time harmonic field. Importantly, we will find that only certain characteristics of the
constitutive parameters allow cancellation of the bracketed terms; materials with these
characteristics are called reciprocal, and the fields they support are said to display the
property of reciprocity. To see what this property entails, we set the bracketed terms to
zero and integrate over a volume V to obtain∮

S
(Ea × Hb − Eb × Ha) · dS =

∫
V
(Ja · Eb − Jb · Ea − Jma · Hb + Jmb · Ha) dV,

which is the time-domain version of the Lorentz reciprocity theorem.
Two special cases of this theorem are important to us. If all sources lie outside S, we

have Lorentz’s lemma ∮
S
(Ea × Hb − Eb × Ha) · dS = 0.

This remarkable expression shows that a relationship exists between the fields produced
by completely independent sources, and is useful for establishing waveguide mode or-
thogonality for time harmonic fields. If sources reside within S but the surface integral
is equal to zero, we have∫

V
(Ja · Eb − Jb · Ea − Jma · Hb + Jmb · Ha) dV = 0.

This occurs when the surface is bounded by a special material (such as an impedance
sheet or a perfect conductor), or when the surface recedes to infinity; the expression is
useful for establishing the reciprocity conditions for networks and antennas. We shall
interpret it for time harmonic fields in § 4.10.2.

2.9.4 Similitude

A common approach in physical science involves the introduction of normalized vari-
ables to provide for scaling of problems along with a chance to identify certain physically
significant parameters. Similarity as a general principle can be traced back to the earliest
attempts to describe physical effects with mathematical equations, with serious study un-
dertaken by Galileo. Helmholtz introduced the first systematic investigation in 1873, and
the concept was rigorized by Reynolds ten years later [216]. Similitude is now considered
a fundamental guiding principle in the modeling of materials [199].

The process often begins with a consideration of the fundamental differential equations.
In electromagnetics we may introduce a set of dimensionless field and source variables

E, D, B, H, J, ρ, (2.266)

by setting

E = EkE , B = BkB, D = DkD,

H = HkH , J = JkJ , ρ = ρkρ. (2.267)



Here we regard the quantities kE , kB, . . . as base units for the discussion, while the
dimensionless quantities (2.266) serve to express the actual fields E, B, . . . in terms of
these base units. Of course, the time and space variables can also be scaled: we can write

t = tkt , l = lkl , (2.268)

if l is any length of interest. Again, the quantities t and l are dimensionless measure
numbers used to express the actual quantities t and l relative to the chosen base amounts
kt and kl . With (2.267) and (2.268), Maxwell’s curl equations become

∇ × E = −kB

kE

kl

kt

∂B
∂t

, ∇ × H = kJ kl

kH
J + kD

kH

kl

kt

∂D
∂t

(2.269)

while the continuity equation becomes

∇ · J = − kρ

kJ

kl

kt

∂ρ

∂t
, (2.270)

where ∇ has been normalized by kl . These are examples of field equations cast into
dimensionless form — it is easily verified that the similarity parameters

kB

kE

kl

kt
,

kJ kl

kH
,

kD

kH

kl

kt
,

kρ

kJ

kl

kt
, (2.271)

are dimensionless. The idea behind electromagnetic similitude is that a given set of
normalized values E, B, . . . can satisfy equations (2.269) and (2.270) for many different
physical situations, provided that the numerical values of the coefficients (2.271) are all
fixed across those situations. Indeed, the differential equations would be identical.

To make this discussion a bit more concrete, let us assume a conducting linear medium
where

D = εE, B = µH, J = σE,

and use

ε = εkε, µ = µkµ, σ = σkσ ,

to express the material parameters in terms of dimensionless values ε, µ, and σ . Then

D = kεkE

kD
εE, B = kµkH

kB
µH, J = kσ kE

kJ
σE,

and equations (2.269) become

∇ × E = −
(

kµkl

kt

kH

kE

)
µ

∂H
∂t

,

∇ × H =
(

kσ kl
kE

kH

)
σE +

(
kεkl

kt

kE

kH

)
ε
∂E
∂t

.

Defining

α = kµkl

kt

kH

kE
, γ = kσ kl

kE

kH
, β = kεkl

kt

kE

kH
,

we see that under the current assumptions similarity holds between two electromagnetics
problems only if αµ, γ σ , and βε are numerically the same in both problems. A necessary
condition for similitude, then, is that the products

(αµ)(βε) = kµkε

(
kl

kt

)2

µε, (αµ)(γ σ) = kµkσ

k2
l

kt
µσ,



(which do not involve kE or kH ) stay constant between problems. We see, for example,
that we may compensate for a halving of the length scale kl by (a) a quadrupling of the
permeability µ, or (b) a simultaneous halving of the time scale kt and doubling of the
conductivity σ . A much less subtle special case is that for which σ = 0, kε = ε0, kµ = µ0,
and ε = µ = 1; we then have free space and must simply maintain

kl/kt = constant

so that the time and length scales stay proportional. In the sinusoidal steady state, for
instance, the frequency would be made to vary inversely with the length scale.

2.9.5 Conservation theorems

The misconception that Poynting’s theorem can be “derived” from Maxwell’s equations
is widespread and ingrained. We must, in fact, postulate the idea that the electromagnetic
field can be associated with an energy flux propagating at the speed of light. Since
the form of the postulate is patterned after the well-understood laws of mechanics, we
begin by developing the basic equations of momentum and energy balance in mechanical
systems. Then we shall see whether it is sensible to ascribe these principles to the
electromagnetic field.

Maxwell’s theory allows us to describe, using Maxwell’s equations, the behavior of
the electromagnetic fields within a (possibly) finite region V of space. The presence of
any sources or material objects outside V are made known through the specification of
tangential fields over the boundary of V , as required for uniqueness. Thus, the influence
of external effects can always be viewed as being transported across the boundary. This
is true of mechanical as well as electromagnetic effects. A charged material body can
be acted on by physical contact with another body, by gravitational forces, and by the
Lorentz force, each effect resulting in momentum exchange across the boundary of the
object. These effects must all be taken into consideration if we are to invoke momentum
conservation, resulting in a very complicated situation. This suggests that we try to
decompose the problem into simpler “systems” based on physical effects.

The system concept in the physical sciences. The idea of decomposing a com-
plicated system into simpler, self-contained systems is quite common in the physical
sciences. Penfield and Haus [145] invoke this concept by introducing an electromagnetic
system where the effects of the Lorentz force equation are considered to accompany a
mechanical system where effects of pressure, stress, and strain are considered, and a
thermodynamic system where the effects of heat exchange are considered. These systems
can all be interrelated in a variety of ways. For instance, as a material heats up it can
expand, and the resulting mechanical forces can alter the electrical properties of the
material. We will follow Penfield and Haus by considering separate electromagnetic and
mechanical subsystems; other systems may be added analogously.

If we separate the various systems by physical effect, we will need to know how to
“reassemble the information.” Two conservation theorems are very helpful in this re-
gard: conservation of energy, and conservation of momentum. Engineers often employ
these theorems to make tacit use of the system idea. For instance, when studying elec-
tromagnetic waves propagating in a waveguide, it is common practice to compute wave
attenuation by calculating the Poynting flux of power into the walls of the guide. The
power lost from the wave is said to “heat up the waveguide walls,” which indeed it does.
This is an admission that the electromagnetic system is not “closed”: it requires the



inclusion of a thermodynamic system in order that energy be conserved. Of course, the
detailed workings of the thermodynamic system are often ignored, indicating that any
thermodynamic “feedback” mechanism is weak. In the waveguide example, for instance,
the heating of the metallic walls does not alter their electromagnetic properties enough
to couple back into an effect on the fields in the walls or in the guide. If such effects were
important, they would have to be included in the conservation theorem via the bound-
ary fields; it is therefore reasonable to associate with these fields a “flow” of energy or
momentum into V . Thus, we wish to develop conservation laws that include not only the
Lorentz force effects within V , but a flow of external effects into V through its boundary
surface.

To understand how external influences may effect the electromagnetic subsystem, we
look to the behavior of the mechanical subsystem as an analogue. In the electromagnetic
system, effects are felt both internally to a region (because of the Lorentz force effect) and
through the system boundary (by the dependence of the internal fields on the boundary
fields). In the mechanical and thermodynamic systems, a region of mass is affected both
internally (through transfer of heat and gravitational forces) and through interactions
occurring across its surface (through transfers of energy and momentum, by pressure
and stress). One beauty of electromagnetic theory is that we can find a mathematical
symmetry between electromagnetic and mechanical effects which parallels the above con-
ceptual symmetry. This makes applying conservation of energy and momentum to the
total system (electromagnetic, thermodynamic, and mechanical) very convenient.

Conservation of momentum and energy in mechanical systems. We begin by
reviewing the interactions of material bodies in a mechanical system. For simplicity we
concentrate on fluids (analogous to charge in space); the extension of these concepts to
solid bodies is straightforward.

Consider a fluid with mass density ρm . The momentum of a small subvolume of the
fluid is given by ρmv dV , where v is the velocity of the subvolume. So the momentum
density is ρmv. Newton’s second law states that a force acting throughout the subvolume
results in a change in its momentum given by

D

Dt
(ρmv dV ) = f dV, (2.272)

where f is the volume force density and the D/Dt notation shows that we are interested
in the rate of change of the momentum as observed by the moving fluid element (see
§ A.2). Here f could be the weight force, for instance. Addition of the results for all
elements of the fluid body gives

D

Dt

∫
V

ρmv dV =
∫

V
f dV (2.273)

as the change in momentum for the entire body. If on the other hand the force exerted
on the body is through contact with its surface, the change in momentum is

D

Dt

∫
V

ρmv dV =
∮

S
t d S (2.274)

where t is the “surface traction.”
We can write the time-rate of change of momentum in a more useful form by applying

the Reynolds transport theorem (A.66):

D

Dt

∫
V

ρmv dV =
∫

V

∂

∂t
(ρmv) dV +

∮
S
(ρmv)v · dS. (2.275)



Superposing (2.273) and (2.274) and substituting into (2.275) we have∫
V

∂

∂t
(ρmv) dV +

∮
S
(ρmv)v · dS =

∫
V

f dV +
∮

S
t d S. (2.276)

If we define the dyadic quantity

T̄k = ρmvv

then (2.276) can be written as∫
V

∂

∂t
(ρmv) dV +

∮
S

n̂ · T̄k d S =
∫

V
f dV +

∮
S

t d S. (2.277)

This principle of linear momentum [214] can be interpreted as a large-scale form of
conservation of kinetic linear momentum. Here n̂ · T̄k represents the flow of kinetic mo-
mentum across S, and the sum of this momentum transfer and the change of momentum
within V stands equal to the forces acting internal to V and upon S.

The surface traction may be related to the surface normal n̂ through a dyadic quantity
T̄m called the mechanical stress tensor :

t = n̂ · T̄m .

With this we may write (2.277) as∫
V

∂

∂t
(ρmv) dV +

∮
S

n̂ · T̄k d S =
∫

V
f dV +

∮
S

n̂ · T̄m d S

and apply the dyadic form of the divergence theorem (B.19) to get∫
V

∂

∂t
(ρmv) dV +

∫
V

∇ · (ρmvv) dV =
∫

V
f dV +

∫
V

∇ · T̄m dV . (2.278)

Combining the volume integrals and setting the integrand to zero we have

∂

∂t
(ρmv) + ∇ · (ρmvv) = f + ∇ · T̄m,

which is the point-form equivalent of (2.277). Note that the second term on the right-
hand side is nonzero only for points residing on the surface of the body. Finally, letting
g denote momentum density we obtain the simple expression

∇ · T̄k + ∂gk

∂t
= fk, (2.279)

where

gk = ρmv

is the density of kinetic momentum and

fk = f + ∇ · T̄m (2.280)

is the total force density.
Equation (2.279) is somewhat analogous to the electric charge continuity equation

(1.11). For each point of the body, the total outflux of kinetic momentum plus the time
rate of change of kinetic momentum equals the total force. The resemblance to (1.11)
is strong, except for the nonzero term on the right-hand side. The charge continuity



equation represents a closed system: charge cannot spontaneously appear and add an
extra term to the right-hand side of (1.11). On the other hand, the change in total
momentum at a point can exceed that given by the momentum flowing out of the point
if there is another “source” (e.g., gravity for an internal point, or pressure on a boundary
point).

To obtain a momentum conservation expression that resembles the continuity equa-
tion, we must consider a “subsystem” with terms that exactly counterbalance the extra
expressions on the right-hand side of (2.279). For a fluid acted on only by external
pressure the sole effect enters through the traction term, and [145]

∇ · T̄m = −∇ p (2.281)

where p is the pressure exerted on the fluid body. Now, using (B.63), we can write

− ∇ p = −∇ · T̄p (2.282)

where

T̄p = pĪ

and Ī is the unit dyad. Finally, using (2.282), (2.281), and (2.280) in (2.279), we obtain

∇ · (T̄k + T̄p) + ∂

∂t
gk = 0

and we have an expression for a closed system including all possible effects. Now, note
that we can form the above expression as(

∇ · T̄k + ∂

∂t
gk

)
+

(
∇ · T̄p + ∂

∂t
gp

)
= 0 (2.283)

where gp = 0 since there are no volume effects associated with pressure. This can be
viewed as the sum of two closed subsystems

∇ · T̄k + ∂

∂t
gk = 0, (2.284)

∇ · T̄p + ∂

∂t
gp = 0.

We now have the desired viewpoint. The conservation formula for the complete closed
system can be viewed as a sum of formulas for open subsystems, each having the form
of a conservation law for a closed system. In case we must include the effects of gravity,
for instance, we need only determine T̄g and gg such that

∇ · T̄g + ∂

∂t
gg = 0

and add this new conservation equation to (2.283). If we can find a conservation ex-
pression of form similar to (2.284) for an “electromagnetic subsystem,” we can include
its effects along with the mechanical effects by merely adding together the conservation
laws. We shall find just such an expression later in this section.

We stated in § 1.3 that there are four fundamental conservation principles. We have
now discussed linear momentum; the principle of angular momentum follows similarly.
Our next goal is to find an expression similar to (2.283) for conservation of energy. We
may expect the conservation of energy expression to obey a similar law of superposition.



We begin with the fundamental definition of work: for a particle moving with velocity v
under the influence of a force fk the work is given by fk · v. Dot multiplying (2.272) by v
and replacing f by fk (to represent both volume and surface forces), we get

v · D

Dt
(ρmv) dV = v · fk dV

or equivalently

D

Dt

(
1

2
ρmv · v

)
dV = v · fk dV .

Integration over a volume and application of the Reynolds transport theorem (A.66) then
gives ∫

V

∂

∂t

(
1

2
ρmv2

)
dV +

∮
S

n̂ ·
(

v
1

2
ρmv2

)
d S =

∫
V

fk · v dV .

Hence the sum of the time rate of change in energy internal to the body and the flow
of kinetic energy across the boundary must equal the work done by internal and surface
forces acting on the body. In point form,

∇ · Sk + ∂

∂t
Wk = fk · v (2.285)

where

Sk = v
1

2
ρmv2

is the density of the flow of kinetic energy and

Wk = 1

2
ρmv2

is the kinetic energy density. Again, the system is not closed (the right-hand side of
(2.285) is not zero) because the balancing forces are not included. As was done with the
momentum equation, the effect of the work done by the pressure forces can be described
in a closed-system-type equation

∇ · Sp + ∂

∂t
Wp = 0. (2.286)

Combining (2.285) and (2.286) we have

∇ · (Sk + Sp) + ∂

∂t
(Wk + Wp) = 0,

the energy conservation equation for the closed system.

Conservation in the electromagnetic subsystem. We would now like to achieve
closed-system conservation theorems for the electromagnetic subsystem so that we can
add in the effects of electromagnetism. For the momentum equation, we can proceed
exactly as we did with the mechanical system. We begin with

fem = ρE + J × B.

This force term should appear on one side of the point form of the momentum conserva-
tion equation. The term on the other side must involve the electromagnetic fields, since



they are the mechanism for exerting force on the charge distribution. Substituting for J
from (2.2) and for ρ from (2.3) we have

fem = E(∇ · D) − B × (∇ × H) + B × ∂D
∂t

.

Using

B × ∂D
∂t

= − ∂

∂t
(D × B) + D × ∂B

∂t

and substituting from Faraday’s law for ∂B/∂t we have

− [E(∇ · D) − D × (∇ × E) + H(∇ · B) − B × (∇ × H)] + ∂

∂t
(D × B) = −fem . (2.287)

Here we have also added the null term H(∇ · B).
The forms of (2.287) and (2.279) would be identical if the bracketed term could be

written as the divergence of a dyadic function T̄em . This is indeed possible for linear,
homogeneous, bianisotropic media, provided that the constitutive matrix [C̄E H ] in (2.21)
is symmetric [101]. In that case

T̄em = 1

2
(D · E + B · H)Ī − DE − BH, (2.288)

which is called the Maxwell stress tensor. Let us demonstrate this equivalence for a
linear, isotropic, homogeneous material. Putting D = εE and H = B/µ into (2.287) we
obtain

∇ · Tem = −εE(∇ · E) + 1

µ
B × (∇ × B) + εE × (∇ × E) − 1

µ
B(∇ · B). (2.289)

Now (B.46) gives

∇(A · A) = 2A × (∇ × A) + 2(A · ∇)A

so that

E(∇ · E) − E × (∇ × E) = E(∇ · E) + (E · ∇)E − 1

2
∇(E2).

Finally, (B.55) and (B.63) give

E(∇ · E) − E × (∇ × E) = ∇ ·
(

EE − 1

2
ĪE · E

)
.

Substituting this expression and a similar one for B into (2.289) we have

∇ · T̄em = ∇ ·
[

1

2
(D · E + B · H) Ī − DE − BH

]
,

which matches (2.288).
Replacing the term in brackets in (2.287) by ∇ · T̄em , we get

∇ · T̄em + ∂gem

∂t
= −fem (2.290)

where

gem = D × B.



Equation (2.290) is the point form of the electromagnetic conservation of momentum
theorem. It is mathematically identical in form to the mechanical theorem (2.279).
Integration over a volume gives the large-scale form

∮
S

T̄em · dS +
∫

V

∂gem

∂t
dV = −

∫
V

fem dV . (2.291)

If we interpret this as we interpreted the conservation theorems from mechanics, the first
term on the left-hand side represents the flow of electromagnetic momentum across the
boundary of V , while the second term represents the change in momentum within V . The
sum of these two quantities is exactly compensated by the total Lorentz force acting on
the charges within V . Thus we identify gem as the transport density of electromagnetic
momentum.

Because (2.290) is not zero on the right-hand side, it does not represent a closed system.
If the Lorentz force is the only force acting on the charges within V , then the mechanical
reaction to the Lorentz force should be described by Newton’s third law. Thus we have
the kinematic momentum conservation formula

∇ · T̄k + ∂gk

∂t
= fk = −fem .

Subtracting this expression from (2.290) we obtain

∇ · (T̄em − T̄k) + ∂

∂t
(gem − gk) = 0, (2.292)

which describes momentum conservation for the closed system.
It is also possible to derive a conservation theorem for electromagnetic energy that

resembles the corresponding theorem for mechanical energy. Earlier we noted that v · f
represents the volume density of work produced by moving an object at velocity v under
the action of a force f. For the electromagnetic subsystem the work is produced by
charges moving against the Lorentz force. So the volume density of work delivered to
the currents is

wem = v · fem = v · (ρE + J × B) = (ρv) · E + ρv · (v × B). (2.293)

Using (B.6) on the second term in (2.293) we get

wem = (ρv) · E + ρB · (v × v).

The second term vanishes by definition of the cross product. This is the familiar property
that the magnetic field does no work on moving charge. Hence

wem = J · E. (2.294)

This important relation says that charge moving in an electric field experiences a force
which results in energy transfer to (or from) the charge. We wish to write this energy
transfer in terms of an energy flux vector, as we did with the mechanical subsystem.

As with our derivation of the conservation of electromagnetic momentum, we wish to
relate the energy transfer to the electromagnetic fields. Substitution of J from (2.2) into
(2.294) gives

wem = (∇ × H) · E − ∂D
∂t

· E,



hence

wem = −∇ · (E × H) + H · (∇ × E) − ∂D
∂t

· E

by (B.44). Substituting for ∇ × E from (2.1) we have

wem = −∇ · (E × H) −
[

E · ∂D
∂t

+ H · ∂B
∂t

]
.

This is not quite of the form (2.285) since a single term representing the time rate of
change of energy density is not present. However, for a linear isotropic medium in which
ε and µ do not depend on time (i.e., a nondispersive medium) we have

E · ∂D
∂t

= εE · ∂E
∂t

= 1

2
ε

∂

∂t
(E · E) = 1

2

∂

∂t
(D · E), (2.295)

H · ∂B
∂t

= µH · ∂H
∂t

= 1

2
µ

∂

∂t
(H · H) = 1

2

∂

∂t
(H · B). (2.296)

Using this we obtain

∇ · Sem + ∂

∂t
Wem = −fem · v = −J · E (2.297)

where

Wem = 1

2
(D · E + B · H)

and

Sem = E × H. (2.298)

Equation (2.297) is the point form of the energy conservation theorem, also called Poynt-
ing’s theorem after J.H. Poynting who first proposed it. The quantity Sem given in
(2.298) is known as the Poynting vector. Integrating (2.297) over a volume and using the
divergence theorem, we obtain the large-scale form

−
∫

V
J · E dV =

∫
V

1

2

∂

∂t
(D · E + B · H) dV +

∮
S
(E × H) · dS. (2.299)

This also holds for a nondispersive, linear, bianisotropic medium with a symmetric con-
stitutive matrix [101, 185].

We see that the electromagnetic energy conservation theorem (2.297) is identical in
form to the mechanical energy conservation theorem (2.285). Thus, if the system is com-
posed of just the kinetic and electromagnetic subsystems, the mechanical force exactly
balances the Lorentz force, and (2.297) and (2.285) add to give

∇ · (Sem + Sk) + ∂

∂t
(Wem + Wk) = 0, (2.300)

showing that energy is conserved for the entire system.
As in the mechanical system, we identify Wem as the volume electromagnetic energy

density in V , and Sem as the density of electromagnetic energy flowing across the bound-
ary of V . This interpretation is somewhat controversial, as discussed below.



Interpretation of the energy and momentum conservation theorems. There
has been some controversy regarding Poynting’s theorem (and, equally, the momentum
conservation theorem). While there is no question that Poynting’s theorem is mathe-
matically correct, we may wonder whether we are justified in associating Wem with Wk

and Sem with Sk merely because of the similarities in their mathematical expressions.
Certainly there is some justification for associating Wk , the kinetic energy of particles,
with Wem , since we shall show that for static fields the term 1

2 (D · E + B · H) represents
the energy required to assemble the charges and currents into a certain configuration.
However, the term Sem is more problematic. In a mechanical system, Sk represents the
flow of kinetic energy associated with moving particles — does that imply that Sem rep-
resents the flow of electromagnetic energy? That is the position generally taken, and it is
widely supported by experimental evidence. However, the interpretation is not clear-cut.

If we associate Sem with the flow of electromagnetic energy at a point in space, then
we must define what a flow of electromagnetic energy is. We naturally associate the
flow of kinetic energy with moving particles; with what do we associate the flow of
electromagnetic energy? Maxwell felt that electromagnetic energy must flow through
space as a result of the mechanical stresses and strains associated with an unobserved
substance called the “aether.” A more modern interpretation is that the electromagnetic
fields propagate as a wave through space at finite velocity; when those fields encounter a
charged particle a force is exerted, work is done, and energy is “transferred” from the field
to the particle. Hence the energy flow is associated with the “flow” of the electromagnetic
wave.

Unfortunately, it is uncertain whether E × H is the appropriate quantity to associate
with this flow, since only its divergence appears in Poynting’s theorem. We could add
any other term S′ that satisfies ∇ ·S′ = 0 to Sem in (2.297), and the conservation theorem
would be unchanged. (Equivalently, we could add to (2.299) any term that integrates to
zero over S.) There is no such ambiguity in the mechanical case because kinetic energy
is rigorously defined. We are left, then, to postulate that E × H represents the density
of energy flow associated with an electromagnetic wave (based on the symmetry with
mechanics), and to look to experimental evidence as justification. In fact, experimental
evidence does point to the correctness of this hypothesis, and the quantity E×H is widely
and accurately used to compute the energy radiated by antennas, carried by waveguides,
etc.

Confusion also arises regarding the interpretation of Wem . Since this term is so con-
veniently paired with the mechanical volume kinetic energy density in (2.300) it would
seem that we should interpret it as an electromagnetic energy density. As such, we can
think of this energy as “localized” in certain regions of space. This viewpoint has been
criticized [187, 145, 69] since the large-scale form of energy conservation for a space re-
gion only requires that the total energy in the region be specified, and the integrand
(energy density) giving this energy is not unique. It is also felt that energy should be
associated with a “configuration” of objects (such as charged particles) and not with an
arbitrary point in space. However, we retain the concept of localized energy because it
is convenient and produces results consistent with experiment.

The validity of extending the static field interpretation of

1

2
(D · E + B · H)

as the energy “stored” by a charge and a current arrangement to the time-varying case
has also been questioned. If we do extend this view to the time-varying case, Poynting’s
theorem suggests that every point in space somehow has an energy density associated



with it, and the flow of energy from that point (via Sem) must be accompanied by a
change in the stored energy at that point. This again gives a very useful and intuitively
satisfying point of view. Since we can associate the flow of energy with the propagation
of the electromagnetic fields, we can view the fields in any region of space as having the
potential to do work on charged particles in that region. If there are charged particles in
that region then work is done, accompanied by a transfer of energy to the particles and
a reduction in the amplitudes of the fields.

We must also remember that the association of stored electromagnetic energy density
Wem with the mechanical energy density Wk is only possible if the medium is nondisper-
sive. If we cannot make the assumptions that justify (2.295) and (2.296), then Poynting’s
theorem must take the form

−
∫

V
J · E dV =

∫
V

[
E · ∂D

∂t
+ H · ∂B

∂t

]
dV +

∮
S
(E × H) · dS. (2.301)

For dispersive media, the volume term on the right-hand side describes not only the stored
electromagnetic energy, but also the energy dissipated within the material produced by
a time lag between the field applied to the medium and the resulting polarization or
magnetization of the atoms. This is clearly seen in (2.29), which shows that D(t) depends
on the value of E at time t and at all past times. The stored energy and dissipative terms
are hard to separate, but we can see that there must always be a stored energy term by
substituting D = ε0E + P and H = B/µ0 − M into (2.301) to obtain

−
∫

V
[(J + JP) · E + JH · H] dV =

1

2

∂

∂t

∫
V
(ε0E · E + µ0H · H) dV +

∮
S
(E × H) · dS. (2.302)

Here JP is the equivalent polarization current (2.119) and JH is an analogous magnetic
polarization current given by

JH = µ0
∂M
∂t

.

In this form we easily identify the quantity

1

2
(ε0E · E + µ0H · H)

as the electromagnetic energy density for the fields E and H in free space. Any dissipa-
tion produced by polarization and magnetization lag is now handled by the interaction
between the fields and equivalent current, just as J · E describes the interaction of the
electric current (source and secondary) with the electric field. Unfortunately, the equiv-
alent current interaction terms also include the additional stored energy that results
from polarizing and magnetizing the material atoms, and again the effects are hard to
separate.

Finally, let us consider the case of static fields. Setting the time derivative to zero in
(2.299), we have

−
∫

V
J · E dV =

∮
S
(E × H) · dS.

This shows that energy flux is required to maintain steady current flow. For instance,
we need both an electromagnetic and a thermodynamic subsystem to account for energy
conservation in the case of steady current flow through a resistor. The Poynting flux



describes the electromagnetic energy entering the resistor and the thermodynamic flux
describes the heat dissipation. For the sum of the two subsystems conservation of energy
requires

∇ · (Sem + Sth) = −J · E + Pth = 0.

To compute the heat dissipation we can use

Pth = J · E = −∇ · Sem

and thus either use the boundary fields or the fields and current internal to the resistor
to find the dissipated heat.

Boundary conditions on the Poynting vector. The large-scale form of Poynting’s
theorem may be used to determine the behavior of the Poynting vector on either side
of a boundary surface. We proceed exactly as in § 2.8.2. Consider a surface S across
which the electromagnetic sources and constitutive parameters are discontinuous (Figure
2.6). As before, let n̂12 be the unit normal directed into region 1. We now simplify the
notation and write S instead of Sem . If we apply Poynting’s theorem∫

V

(
J · E + E · ∂D

∂t
+ H · ∂B

∂t

)
dV +

∮
S

S · n d S = 0

to the two separate surfaces shown in Figure 2.6, we obtain∫
V

(
J · E + E · ∂D

∂t
+ H · ∂B

∂t

)
dV +

∫
S

S · n d S =
∫

S10

n̂12 · (S1 − S2) d S. (2.303)

If on the other hand we apply Poynting’s theorem to the entire volume region including
the surface of discontinuity and include the contribution produced by surface current, we
get ∫

V

(
J · E + E · ∂D

∂t
+ H · ∂B

∂t

)
dV +

∫
S

S · n d S = −
∫

S10

Js · E d S. (2.304)

Since we are uncertain whether to use E1 or E2 in the surface term on the right-hand side,
if we wish to have the integrals over V and S in (2.303) and (2.304) produce identical
results we must postulate the two conditions

n̂12 × (E1 − E2) = 0

and

n̂12 · (S1 − S2) = −Js · E. (2.305)

The first condition is merely the continuity of tangential electric field as originally postu-
lated in § 2.8.2; it allows us to be nonspecific as to which value of E we use in the second
condition, which is the desired boundary condition on S.

It is interesting to note that (2.305) may also be derived directly from the two pos-
tulated boundary conditions on tangential E and H. Here we write with the help of
(B.6)

n̂12 · (S1 − S2) = n̂12 · (E1 × H1 − E2 × H2) = H1 · (n̂12 × E1) − H2 · (n̂12 × E2).

Since n̂12 × E1 = n̂12 × E2 = n̂12 × E, we have

n̂12 · (S1 − S2) = (H1 − H2) · (n̂12 × E) = [−n̂12 × (H1 − H2)] · E.



Finally, using n̂12 × (H1 − H2) = Js we arrive at (2.305).
The arguments above suggest an interesting way to look at the boundary conditions.

Once we identify S with the flow of electromagnetic energy, we may consider the condition
on normal S as a fundamental statement of the conservation of energy. This statement
implies continuity of tangential E in order to have an unambiguous interpretation for the
meaning of the term Js · E. Then, with continuity of tangential E established, we can
derive the condition on tangential H directly.

An alternative formulation of the conservation theorems. As we saw in the
paragraphs above, our derivation of the conservation theorems lacks strong motivation.
We manipulated Maxwell’s equations until we found expressions that resembled those
for mechanical momentum and energy, but in the process found that the validity of the
expressions is somewhat limiting. For instance, we needed to assume a linear, homoge-
neous, bianisotropic medium in order to identify the Maxwell stress tensor (2.288) and
the energy densities in Poynting’s theorem (2.299). In the end, we were reduced to pos-
tulating the meaning of the individual terms in the conservation theorems in order for
the whole to have meaning.

An alternative approach is popular in physics. It involves postulating a single La-
grangian density function for the electromagnetic field, and then applying the stationary
property of the action integral. The results are precisely the same conservation expres-
sions for linear momentum and energy as obtained from manipulating Maxwell’s equa-
tions (plus the equation for conservation of angular momentum), obtained with fewer
restrictions regarding the constitutive relations. This process also separates the stored
energy, Maxwell stress tensor, momentum density, and Poynting vector as natural com-
ponents of a tensor equation, allowing a better motivated interpretation of the meaning
of these components. Since this approach is also a powerful tool in mechanics, its ap-
plication is more strongly motivated than merely manipulating Maxwell’s equations. Of
course, some knowledge of the structure of the electromagnetic field is required to provide
an appropriate postulate of the Lagrangian density. Interested readers should consult
Kong [101], Jackson [91], Doughty [57], or Tolstoy [198].

2.10 The wave nature of the electromagnetic field

Throughout this chapter our goal has been a fundamental understanding of Maxwell’s
theory of electromagnetics. We have concentrated on developing and understanding the
equations relating the field quantities, but have done little to understand the nature of
the field itself. We would now like to investigate, in a very general way, the behavior
of the field. We shall not attempt to solve a vast array of esoteric problems, but shall
instead concentrate on a few illuminating examples.

The electromagnetic field can take on a wide variety of characteristics. Static fields
differ qualitatively from those which undergo rapid time variations. Time-varying fields
exhibit wave behavior and carry energy away from their sources. In the case of slow
time variation this wave nature may often be neglected in favor of the nearby coupling
of sources we know as the inductance effect, hence circuit theory may suffice to describe
the field-source interaction. In the case of extremely rapid oscillations, particle concepts
may be needed to describe the field.



The dynamic coupling between the various field vectors in Maxwell’s equations provides
a means of characterizing the field. Static fields are characterized by decoupling of the
electric and magnetic fields. Quasistatic fields exhibit some coupling, but the wave
characteristic of the field is ignored. Tightly coupled fields are dominated by the wave
effect, but may still show a static-like spatial distribution near the source. Any such
“near-zone” effects are generally ignored for fields at light-wave frequencies, and the
particle nature of light must often be considered.

2.10.1 Electromagnetic waves

An early result of Maxwell’s theory was the prediction and later verification by Heinrich
Hertz of the existence of electromagnetic waves. We now know that nearly any time-
varying source produces waves, and that these waves have certain important properties.
An electromagnetic wave is a propagating electromagnetic field that travels with finite
velocity as a disturbance through a medium. The field itself is the disturbance, rather
than merely representing a physical displacement or other effect on the medium. This fact
is fundamental for understanding how electromagnetic waves can travel through a true
vacuum. Many specific characteristics of the wave, such as velocity and polarization,
depend on the properties of the medium through which it propagates. The evolution
of the disturbance also depends on these properties: we say that a material exhibits
“dispersion” if the disturbance undergoes a change in its temporal behavior as the wave
progresses. As waves travel they carry energy and momentum away from their source.
This energy may be later returned to the source or delivered to some distant location.
Waves are also capable of transferring energy to, or withdrawing energy from, the medium
through which they propagate. When energy is carried outward from the source never
to return, we refer to the process as “electromagnetic radiation.” The effects of radiated
fields can be far-reaching; indeed, radio astronomers observe waves that originated at the
very edges of the universe.

Light is an electromagnetic phenomenon, and many of the familiar characteristics of
light that we recognize from our everyday experience may be applied to all electromag-
netic waves. For instance, radio waves bend (or “refract”) in the ionosphere much as
light waves bend while passing through a prism. Microwaves reflect from conducting sur-
faces in the same way that light waves reflect from a mirror; detecting these reflections
forms the basis of radar. Electromagnetic waves may also be “confined” by reflecting
boundaries to form waves standing in one or more directions. With this concept we can
use waveguides or transmission lines to guide electromagnetic energy from spot to spot,
or to concentrate it in the cavity of a microwave oven.

The manifestations of electromagnetic waves are so diverse that no one book can
possibly describe the entire range of phenomena or application. In this section we shall
merely introduce the reader to some of the most fundamental concepts of electromagnetic
wave behavior. In the process we shall also introduce the three most often studied types
of traveling electromagnetic waves: plane waves, spherical waves, and cylindrical waves.
In later sections we shall study some of the complicated interactions of these waves with
objects and boundaries, in the form of guided waves and scattering problems.

Mathematically, electromagnetic waves arise as a subset of solutions to Maxwell’s equa-
tions. These solutions obey the electromagnetic “wave equation,” which may be derived
from Maxwell’s equations under certain circumstances. Not all electromagnetic fields
satisfy the wave equation. Obviously, time-invariant fields cannot represent evolving
wave disturbances, and must obey the static field equations. Time-varying fields in cer-



tain metals may obey the diffusion equation rather than the wave equation, and must
thereby exhibit different behavior. In the study of quasistatic fields we often ignore the
displacement current term in Maxwell’s equations, producing solutions that are most
important near the sources of the fields and having little associated radiation. When the
displacement term is significant we produce solutions with the properties of waves.

2.10.2 Wave equation for bianisotropic materials

In deriving electromagnetic wave equations we transform the first-order coupled par-
tial differential equations we know as Maxwell’s equations into uncoupled second-order
equations. That is, we perform a set of operations (and make appropriate assumptions)
to reduce the set of four differential equations in the four unknown fields E, D, B, and
H, into a set of differential equations each involving a single unknown (usually E or
H). It is possible to derive wave equations for E and H even for the most general cases
of inhomogeneous, bianisotropic media, as long as the constitutive parameters µ̄ and
ξ̄ are constant with time. Substituting the constitutive relations (2.19)–(2.20) into the
Maxwell–Minkowski curl equations (2.169)–(2.170) we get

∇ × E = − ∂

∂t
(ζ̄ · E + µ̄ · H) − Jm, (2.306)

∇ × H = ∂

∂t
(ε̄ · E + ξ̄ · H) + J. (2.307)

Separate equations for E and H are facilitated by introducing a new dyadic operator ∇̄,
which when dotted with a vector field V gives the curl:

∇̄ · V = ∇ × V. (2.308)

It is easy to verify that in rectangular coordinates ∇̄ is

[∇̄] =

 0 −∂/∂z ∂/∂y

∂/∂z 0 −∂/∂x
−∂/∂y ∂/∂x 0


 .

With this notation, Maxwell’s curl equations (2.306)–(2.307) become simply(
∇̄ + ∂

∂t
ζ̄

)
· E = − ∂

∂t
µ̄ · H − Jm, (2.309)

(
∇̄ − ∂

∂t
ξ̄

)
· H = ∂

∂t
ε̄ · E + J. (2.310)

Obtaining separate equations for E and H is straightforward. Defining the inverse
dyadic µ̄−1 through

µ̄ · µ̄−1 = µ̄−1 · µ̄ = Ī,

we can write (2.309) as

∂

∂t
H = −µ̄−1 ·

(
∇̄ + ∂

∂t
ζ̄

)
· E − µ̄−1 · Jm (2.311)

where we have assumed that µ̄ is independent of time. Assuming that ξ̄ is also indepen-
dent of time, we can differentiate (2.310) with respect to time to obtain(

∇̄ − ∂

∂t
ξ̄

)
· ∂H

∂t
= ∂2

∂t2
(ε̄ · E) + ∂J

∂t
.



Substituting ∂H/∂t from (2.311) and rearranging, we get
[(

∇̄ − ∂

∂t
ξ̄

)
· µ̄−1 ·

(
∇̄ + ∂

∂t
ζ̄

)
+ ∂2

∂t2
ε̄

]
· E = −

(
∇̄ − ∂

∂t
ξ̄

)
· µ̄−1 · Jm − ∂J

∂t
.

(2.312)

This is the general wave equation for E. Using an analogous set of steps, and assuming
ε̄ and ζ̄ are independent of time, we can find[(

∇̄ + ∂

∂t
ζ̄

)
· ε̄−1 ·

(
∇̄ − ∂

∂t
ξ̄

)
+ ∂2

∂t2
µ̄

]
· H =

(
∇̄ + ∂

∂t
ζ̄

)
· ε̄−1 · J − ∂Jm

∂t
.

(2.313)

This is the wave equation for H. The case in which the constitutive parameters are
time-dependent will be handled using frequency domain techniques in later chapters.

Wave equations for anisotropic, isotropic, and homogeneous media are easily obtained
from (2.312) and (2.313) as special cases. For example, the wave equations for a homo-
geneous, isotropic medium can be found by setting ζ̄ = ξ̄ = 0, µ̄ = µĪ, and ε̄ = εĪ:

1

µ
∇̄ · (∇̄ · E) + ε

∂2E
∂t2

= − 1

µ
∇̄ · Jm − ∂J

∂t
,

1

ε
∇̄ · (∇̄ · H) + µ

∂2H
∂t2

= 1

ε
∇̄ · J − ∂Jm

∂t
.

Returning to standard curl notation we find that these become

∇ × (∇ × E) + µε
∂2E
∂t2

= −∇ × Jm − µ
∂J
∂t

, (2.314)

∇ × (∇ × H) + µε
∂2H
∂t2

= ∇ × J − ε
∂Jm

∂t
. (2.315)

In each of the wave equations it appears that operations on the electromagnetic fields
have been separated from operations on the source terms. However, we have not yet
invoked any coupling between the fields and sources associated with secondary interac-
tions. That is, we need to separate the impressed sources, which are independent of
the fields they source, with secondary sources resulting from interactions between the
sourced fields and the medium in which the fields exist. The simple case of an isotropic
conducting medium will be discussed below.

Wave equation using equivalent sources. An alternative approach for studying
wave behavior in general media is to use the Maxwell–Boffi form of the field equations

∇ × E = −∂B
∂t

, (2.316)

∇ × B
µ0

= (J + JM + JP) + ∂ε0E
∂t

, (2.317)

∇ · (ε0E) = (ρ + ρP), (2.318)
∇ · B = 0. (2.319)

Taking the curl of (2.316) we have

∇ × (∇ × E) = − ∂

∂t
∇ × B.



Substituting for ∇ × B from (2.317) we then obtain

∇ × (∇ × E) + µ0ε0
∂2E
∂t2

= −µ0
∂

∂t
(J + JM + JP), (2.320)

which is the wave equation for E. Taking the curl of (2.317) and substituting from (2.316)
we obtain the wave equation

∇ × (∇ × B) + µ0ε0
∂2B
∂t2

= µ0∇ × (J + JM + JP) (2.321)

for B. Solution of the wave equations is often facilitated by writing the curl-curl operation
in terms of the vector Laplacian. Using (B.47), and substituting for the divergence from
(2.318) and (2.319), we can write the wave equations as

∇2E − µ0ε0
∂2E
∂t2

= 1

ε0
∇(ρ + ρP) + µ0

∂

∂t
(J + JM + JP), (2.322)

∇2B − µ0ε0
∂2B
∂t2

= −µ0∇ × (J + JM + JP). (2.323)

The simplicity of these equations relative to (2.312) and (2.313) is misleading. We have
not considered the constitutive equations relating the polarization P and magnetization
M to the fields, nor have we considered interactions leading to secondary sources.

2.10.3 Wave equation in a conducting medium

As an example of the type of wave equation that arises when secondary sources are
included, consider a homogeneous isotropic conducting medium described by permittivity
ε, permeability µ, and conductivity σ . In a conducting medium we must separate the
source field into a causative impressed term Ji that is independent of the fields it sources,
and a secondary term Js that is an effect of the sourced fields. In an isotropic conducting
medium the effect is described by Ohm’s law Js = σE. Writing the total current as
J = Ji + Js , and assuming that Jm = 0, we write the wave equation (2.314) as

∇ × (∇ × E) + µε
∂2E
∂t2

= −µ
∂(Ji + σE)

∂t
. (2.324)

Using (B.47) and substituting ∇ · E = ρ/ε, we can write the wave equation for E as

∇2E − µσ
∂E
∂t

− µε
∂2E
∂t2

= µ
∂Ji

∂t
+ 1

ε
∇ρ. (2.325)

Substituting J = Ji + σE into (2.315) and using (B.47), we obtain

∇(∇ · H) − ∇2H + µε
∂2H
∂t2

= ∇ × Ji + σ∇ × E.

Since ∇ × E = −∂B/∂t and ∇ · H = ∇ · B/µ = 0, we have

∇2H − µσ
∂H
∂t

− µε
∂2H
∂t2

= −∇ × Ji . (2.326)

This is the wave equation for H.



2.10.4 Scalar wave equation for a conducting medium

In many applications, particularly those involving planar boundary surfaces, it is
convenient to decompose the vector wave equation into cartesian components. Using
∇2V = x̂∇2Vx + ŷ∇2Vy + ẑ∇2Vz in (2.325) and in (2.326), we find that the rectangular
components of E and H must obey the scalar wave equation

∇2ψ(r, t) − µσ
∂ψ(r, t)

∂t
− µε

∂2ψ(r, t)

∂t2
= s(r, t). (2.327)

For the electric field wave equation we have

ψ = Eα, s = µ
∂ J i

α

∂t
+ 1

ε
α̂ · ∇ρ,

where α = x, y, z. For the magnetic field wave equations we have

ψ = Hα, s = α̂ · (−∇ × Ji ).

2.10.5 Fields determined by Maxwell’s equations vs. fields deter-
mined by the wave equation

Although we derive the wave equations directly from Maxwell’s equations, we may
wonder whether the solutions to second-order differential equations such as (2.314)–
(2.315) are necessarily the same as the solutions to the first-order Maxwell equations.
Hansen and Yaghjian [81] show that if all information about the fields is supplied by the
sources J(r, t) and ρ(r, t), rather than by specification of field values on boundaries, the
solutions to Maxwell’s equations and the wave equations are equivalent as long as the
second derivatives of the quantities

∇ · E(r, t) − ρ(r, t)/ε, ∇ · H(r, t),

are continuous functions of r and t . If boundary values are supplied in an attempt to
guarantee uniqueness, then solutions to the wave equation and to Maxwell’s equations
may differ. This is particularly important when comparing numerical solutions obtained
directly from Maxwell’s equations (using the FDTD method, say) to solutions obtained
from the wave equation. “Spurious” solutions having no physical significance are a con-
tinual plague for engineers who employ numerical techniques. The interested reader
should see Jiang [94].

We note that these conclusions do not hold for static fields. The conditions for equiv-
alence of the first-order and second-order static field equations are considered in § 3.2.4.

2.10.6 Transient uniform plane waves in a conducting medium

We can learn a great deal about the wave nature of the electromagnetic field by solving
the wave equation (2.325) under simple circumstances. In Chapter 5 we shall solve for
the field produced by an arbitrary distribution of impressed sources, but here we seek a
simple solution to the homogeneous form of the equation. This allows us to study the
phenomenology of wave propagation without worrying about the consequences of specific
source functions. We shall also assume a high degree of symmetry so that we are not
bogged down in details about the vector directions of the field components.

We seek a solution of the wave equation in which the fields are invariant over a chosen
planar surface. The resulting fields are said to comprise a uniform plane wave. Although



we can envision a uniform plane wave as being created by a uniform surface source of
doubly-infinite extent, plane waves are also useful as models for spherical waves over
localized regions of the wavefront.

We choose the plane of field invariance to be the xy-plane and later generalize the
resulting solution to any planar surface by a simple rotation of the coordinate axes. Since
the fields vary with z only we choose to write the wave equation (2.325) in rectangular
coordinates, giving for a source-free region of space4

x̂
∂2 Ex (z, t)

∂z2
+ ŷ

∂2 Ey(z, t)

∂z2
+ ẑ

∂2 Ez(z, t)

∂z2
− µσ

∂E(z, t)

∂t
− µε

∂2E(z, t)

∂t2
= 0. (2.328)

If we return to Maxwell’s equations, we soon find that not all components of E are
present in the plane-wave solution. Faraday’s law states that

∇ × E(z, t) = −x̂
∂ Ey(z, t)

∂z
+ ŷ

∂ Ex (z, t)

∂z
= ẑ × ∂E(z, t)

∂z
= −µ

∂H(z, t)

∂t
. (2.329)

We see that ∂ Hz/∂t = 0, hence Hz must be constant with respect to time. Because
a nonzero constant field component would not exhibit wave-like behavior, we can only
have Hz = 0 in our wave solution. Similarly, Ampere’s law in a homogeneous conducting
region free from impressed sources states that

∇ × H(z, t) = J + ∂D(z, t)

∂t
= σE(z, t) + ε

∂E(z, t)

∂t
or

− x̂
∂ Hy(z, t)

∂z
+ ŷ

∂ Hx (z, t)

∂z
= ẑ × ∂H(z, t)

∂z
= σE(z, t) + ε

∂E(z, t)

∂t
. (2.330)

This implies that

σ Ez(z, t) + ε
∂ Ez(z, t)

∂t
= 0,

which is a differential equation for Ez with solution

Ez(z, t) = E0(z) e− σ
ε

t .

Since we are interested only in wave-type solutions, we choose Ez = 0.
Hence Ez = Hz = 0, and thus both E and H are perpendicular to the z-direction.

Using (2.329) and (2.330), we also see that

∂

∂t
(E · H) = E · ∂H

∂t
+ H · ∂E

∂t

= − 1

µ
E ·

(
ẑ × ∂E

∂z

)
− H ·

(σ

ε
E

)
+ 1

ε
H ·

(
ẑ × ∂H

∂z

)

or (
∂

∂t
+ σ

ε

)
(E · H) = 1

µ
ẑ ·

(
E × ∂E

∂z

)
− 1

ε
ẑ ·

(
H × ∂H

∂z

)
.

We seek solutions of the type E(z, t) = p̂E(z, t) and H(z, t) = q̂H(z, t), where p̂ and q̂ are
constant unit vectors. Under this condition we have E × ∂E/∂z = 0 and H × ∂H/∂z = 0,
giving (

∂

∂t
+ σ

ε

)
(E · H) = 0.

4The term “source free” applied to a conducting region implies that the region is devoid of impressed
sources and, because of the relaxation effect, has no free charge. See the discussion in Jones [97].



Thus we also have E · H = 0, and find that E must be perpendicular to H. So E, H,
and ẑ comprise a mutually orthogonal triplet of vectors. A wave having this property is
said to be TEM to the z-direction or simply TEMz . Here “TEM” stands for transverse
electromagnetic, indicating the orthogonal relationship between the field vectors and the
z-direction. Note that

p̂ × q̂ = ±ẑ.

The constant direction described by p̂ is called the polarization of the plane wave.
We are now ready to solve the source-free wave equation (2.328). If we dot both sides

of the homogeneous expression by p̂ we obtain

p̂ · x̂
∂2 Ex

∂z2
+ p̂ · ŷ

∂2 Ey

∂z2
− µσ

∂(p̂ · E)

∂t
− µε

∂2(p̂ · E)

∂t2
= 0.

Noting that

p̂ · x̂
∂2 Ex

∂z2
+ p̂ · ŷ

∂2 Ey

∂z2
= ∂2

∂z2
(p̂ · x̂Ex + p̂ · ŷEy) = ∂2

∂z2
(p̂ · E),

we have the wave equation

∂2 E(z, t)

∂z2
− µσ

∂ E(z, t)

∂t
− µε

∂2 E(z, t)

∂t2
= 0. (2.331)

Similarly, dotting both sides of (2.326) with q̂ and setting Ji = 0 we obtain

∂2 H(z, t)

∂z2
− µσ

∂ H(z, t)

∂t
− µε

∂2 H(z, t)

∂t2
= 0. (2.332)

In a source-free homogeneous conducting region E and H satisfy identical wave equations.
Solutions are considered in § A.1. There we solve for the total field for all z, t given

the value of the field and its derivative over the z = 0 plane. This solution can be
directly applied to find the total field of a plane wave reflected by a perfect conductor.
Let us begin by considering the lossless case where σ = 0, and assuming the region z < 0
contains a perfect electric conductor. The conditions on the field in the z = 0 plane are
determined by the required boundary condition on a perfect conductor: the tangential
electric field must vanish. From (2.330) we see that since E ⊥ ẑ, requiring

∂ H(z, t)

∂z

∣∣∣∣
z=0

= 0 (2.333)

gives E(0, t) = 0 and thus satisfies the boundary condition. Writing

H(0, t) = H0 f (t),
∂ H(z, t)

∂z

∣∣∣∣
z=0

= H0g(t) = 0, (2.334)

and setting � = 0 in (A.41) we obtain the solution to (2.332):

H(z, t) = H0

2
f
(

t − z

v

)
+ H0

2
f
(

t + z

v

)
, (2.335)

where v = 1/(µε)1/2. Since we designate the vector direction of H as q̂, the vector field
is

H(z, t) = q̂
H0

2
f
(

t − z

v

)
+ q̂

H0

2
f
(

t + z

v

)
. (2.336)



Figure 2.7: Propagation of a transient plane wave in a lossless medium.

From (2.329) we also have the solution for E(z, t):

E(z, t) = p̂
vµH0

2
f
(

t − z

v

)
− p̂

vµH0

2
f
(

t + z

v

)
, (2.337)

where

p̂ × q̂ = ẑ.

The boundary conditions E(0, t) = 0 and H(0, t) = H0 f (t) are easily verified by substi-
tution.

This solution displays the quintessential behavior of electromagnetic waves. We may
interpret the term f (t + z/v) as a wave field disturbance, propagating at velocity v in the
−z-direction, incident from z > 0 upon the conductor. The term f (t − z/v) represents
a wave field disturbance propagating in the +z-direction with velocity v, reflected from
the conductor. By “propagating” we mean that if we increment time, the disturbance
will occupy a spatial position determined by incrementing z by vt . For free space where
v = 1/(µ0ε0)

1/2, the velocity of propagation is the speed of light c.
A specific example should serve to clarify our interpretation of the wave solution.

Taking µ = µ0 and ε = 81ε0, representing typical constitutive values for fresh water, we
can plot (2.335) as a function of position for fixed values of time. The result is shown in
Figure 2.7, where we have chosen

f (t) = rect(t/τ) (2.338)

with τ = 1 µs. We see that the disturbance is spatially distributed as a rectangular
pulse of extent L = 2vτ = 66.6 m, where v = 3.33 × 107 m/s is the wave velocity,



and where 2τ is the temporal duration of the pulse. At t = −8 µs the leading edge of
the pulse is at z = 233 m, while at −4 µs the pulse has traveled a distance z = vt =
(3.33 × 107) × (4 × 10−6) = 133 m in the −z-direction, and the leading edge is thus at
100 m. At t = −1 µs the leading edge strikes the conductor and begins to induce a
current in the conductor surface. This current sets up the reflected wave, which begins
to travel in the opposite (+z) direction. At t = −0.5 µs a portion of the wave has begun
to travel in the +z-direction while the trailing portion of the disturbance continues to
travel in the −z-direction. At t = 1 µs the wave has been completely reflected from
the surface, and thus consists only of the component traveling in the +z-direction. Note
that if we plot the total field in the z = 0 plane, the sum of the forward and backward
traveling waves produces the pulse waveform (2.338) as expected.

Using the expressions for E and H we can determine many interesting characteristics
of the wave. We see that the terms f (t ± z/v) represent the components of the waves
traveling in the ∓z-directions, respectively. If we were to isolate these waves from each
other (by, for instance, measuring them as functions of time at a position where they do
not overlap) we would find from (2.336) and (2.337) that the ratio of E to H for a wave
traveling in either direction is

∣∣∣∣ E(z, t)

H(z, t)

∣∣∣∣ = vµ = (µ/ε)1/2,

independent of the time and position of the measurement. This ratio, denoted by η and
carrying units of ohms, is called the intrinsic impedance of the medium through which
the wave propagates. Thus, if we let E0 = ηH0 we can write

E(z, t) = p̂
E0

2
f
(

t − z

v

)
− p̂

E0

2
f
(

t + z

v

)
. (2.339)

We can easily determine the current induced in the conductor by applying the boundary
condition (2.200):

Js = n̂ × H|z=0 = ẑ × [H0q̂ f (t)] = −p̂H0 f (t). (2.340)

We can also determine the pressure exerted on the conductor due to the Lorentz force
interaction between the fields and the induced current. The total force on the conductor
can be computed by integrating the Maxwell stress tensor (2.288) over the xy-plane5:

Fem = −
∫

S
T̄em · dS.

The surface traction is

t = T̄em · n̂ =
[

1

2
(D · E + B · H)Ī − DE − BH

]
· ẑ.

Since E and H are both normal to ẑ, the last two terms in this expression are zero. Also,
the boundary condition on E implies that it vanishes in the xy-plane. Thus

t = 1

2
(B · H)ẑ = ẑ

µ

2
H 2(t).

5We may neglect the momentum term in (2.291), which is small compared to the stress tensor term. See
Problem 2.20.



With H0 = E0/η we have

t = ẑ
E2

0

2η2
µ f 2(t). (2.341)

As a numerical example, consider a high-altitude nuclear electromagnetic pulse (HEMP)
generated by the explosion of a large nuclear weapon in the upper atmosphere. Such
an explosion could generate a transient electromagnetic wave of short (sub-microsecond)
duration with an electric field amplitude of 50, 000 V/m in air [200]. Using (2.341),
we find that the wave would exert a peak pressure of P = |t| = .011 Pa = 1.6 × 10−6

lb/in2 if reflected from a perfect conductor at normal incidence. Obviously, even for this
extreme field level the pressure produced by a transient electromagnetic wave is quite
small. However, from (2.340) we find that the current induced in the conductor would
have a peak value of 133 A/m. Even a small portion of this current could destroy a
sensitive electronic circuit if it were to leak through an opening in the conductor. This is
an important concern for engineers designing circuitry to be used in high-field environ-
ments, and demonstrates why the concepts of current and voltage can often supersede
the concept of force in terms of importance.

Finally, let us see how the terms in the Poynting power balance theorem relate. Con-
sider a cubic region V bounded by the planes z = z1 and z = z2, z2 > z1. We choose
the field waveform f (t) and locate the planes so that we can isolate either the forward
or backward traveling wave. Since there is no current in V , Poynting’s theorem (2.299)
becomes

1

2

∂

∂t

∫
V
(εE · E + µH · H) dV = −

∮
S
(E × H) · dS.

Consider the wave traveling in the −z-direction. Substitution from (2.336) and (2.337)
gives the time-rate of change of stored energy as

Scube(t) = 1

2

∂

∂t

∫
V

[
εE2(z, t) + µH 2(z, t)

]
dV

= 1

2

∂

∂t

∫
x

∫
y

dx dy
∫ z2

z1

[
ε
(vµ)2 H 2

0

4
f 2

(
t + z

v

)
+ µ

H 2
0

4
f 2

(
t + z

v

)]
dz

= 1

2

∂

∂t
µ

H 2
0

2

∫
x

∫
y

dx dy
∫ z2

z1

f 2
(

t + z

v

)
dz.

Integration over x and y gives the area A of the cube face. Putting u = t + z/v we see
that

S = Aµ
H 2

0

4

∂

∂t

∫ t+z2/v

t+z1/v

f 2(u)v du.

Leibnitz’ rule for differentiation (A.30) then gives

Scube(t) = A
µvH 2

0

4

[
f 2

(
t + z2

v

)
− f 2

(
t + z1

v

)]
. (2.342)

Again substituting for E(t + z/v) and H(t + z/v) we can write

Scube(t) = −
∮

S
(E × H) · dS

= −
∫

x

∫
y

vµH 2
0

4
f 2

(
t + z1

v

)
(−p̂ × q̂) · (−ẑ) dx dy −

−
∫

x

∫
y

vµH 2
0

4
f 2

(
t + z2

v

)
(−p̂ × q̂) · (ẑ) dx dy.



Figure 2.8: Propagation of a transient plane wave in a dissipative medium.

The second term represents the energy change in V produced by the backward traveling
wave entering the cube by passing through the plane at z = z2, while the first term
represents the energy change in V produced by the wave exiting the cube by passing
through the plane z = z1. Contributions from the sides, top, and bottom are zero since
E × H is perpendicular to n̂ over those surfaces. Since p̂ × q̂ = ẑ, we get

Scube(t) = A
µvH 2

0

4

[
f 2

(
t + z2

v

)
− f 2

(
t + z1

v

)]
,

which matches (2.342) and thus verifies Poynting’s theorem. We may interpret this result
as follows. The propagating electromagnetic disturbance carries energy through space.
The energy within any region is associated with the field in that region, and can change
with time as the propagating wave carries a flux of energy across the boundary of the
region. The energy continues to propagate even if the source is changed or is extinguished
altogether. That is, the behavior of the leading edge of the disturbance is determined
by causality — it is affected by obstacles it encounters, but not by changes in the source
that occur after the leading edge has been established.

When propagating through a dissipative region a plane wave takes on a somewhat
different character. Again applying the conditions (2.333) and (2.334), we obtain from
(2.991) the solution to the wave equation (2.332):

H(z, t) = H0

2
e− �

v
z f

(
t − z

v

)
+ H0

2
e

�
v

z f
(

t + z

v

)
−



− z�2 H0

2v
e−�t

∫ t+ z
v

t− z
v

f (u)e�u
J1

(
�
v

√
z2 − (t − u)2v2

)
�
v

√
z2 − (t − u)2v2

du (2.343)

where � = σ/2ε. The first two terms resemble those for the lossless case, modified
by an exponential damping factor. This accounts for the loss in amplitude that must
accompany the transfer of energy from the propagating wave to joule loss (heat) within
the conducting medium. The remaining term appears only when the medium is lossy, and
results in an extension of the disturbance through the medium because of the currents
induced by the passing wavefront. This “wake” follows the leading edge of the disturbance
as is shown clearly in Figure 2.8. Here we have repeated the calculation of Figure 2.7,
but with σ = 2 × 10−4, approximating the conductivity of fresh water. As the wave
travels to the left it attenuates and leaves a trailing remnant behind. Upon reaching
the conductor it reflects much as in the lossless case, resulting in a time dependence at
z = 0 given by the finite-duration rectangular pulse (2.338). In order for the pulse to
be of finite duration, the wake left by the reflected pulse must exactly cancel the wake
associated with the incident pulse that continues to arrive after the reflection. As the
reflected pulse sweeps forward, the wake is obliterated everywhere behind.

If we were to verify the Poynting theorem for a dissipative medium (which we shall
not attempt because of the complexity of the computation), we would need to include
the E ·J term. Here J is the induced conduction current and the integral of E ·J accounts
for the joule loss within a region V balanced by the difference in Poynting energy flux
carried into and out of V .

Once we have the fields for a wave propagating along the z-direction, it is a simple
matter to generalize these results to any propagation direction. Assume that û is normal
to the surface of a plane over which the fields are invariant. Then u = û · r describes the
distance from the origin along the direction û. We need only replace z by û · r in any
of the expressions obtained above to determine the fields of a plane wave propagating in
the u-direction. We must also replace the orthogonality condition p̂ × q̂ = ẑ with

p̂ × q̂ = û.

For instance, the fields associated with a wave propagating through a lossless medium in
the positive u-direction are, from (2.336)–(2.337),

H(r, t) = q̂
H0

2
f

(
t − û · r

v

)
, E(r, t) = p̂

vµH0

2
f

(
t − û · r

v

)
.

2.10.7 Propagation of cylindrical waves in a lossless medium

Much as we envisioned a uniform plane wave arising from a uniform planar source, we
can imagine a uniform cylindrical wave arising from a uniform line source. Although this
line source must be infinite in extent, uniform cylindrical waves (unlike plane waves) dis-
play the physical behavior of diverging from their source while carrying energy outwards
to infinity.

A uniform cylindrical wave has fields that are invariant over a cylindrical surface:
E(r, t) = E(ρ, t), H(r, t) = H(ρ, t). For simplicity, we shall assume that waves propagate
in a homogeneous, isotropic, linear, and lossless medium described by permittivity ε

and permeability µ. From Maxwell’s equations we find that requiring the fields to be
independent of φ and z puts restrictions on the remaining vector components. Faraday’s



law states

∇ × E(ρ, t) = −φ̂
∂ Ez(ρ, t)

∂ρ
+ ẑ

1

ρ

∂

∂ρ
[ρEφ(ρ, t)] = −µ

∂H(ρ, t)

∂t
. (2.344)

Equating components we see that ∂ Hρ/∂t = 0, and because our interest lies in wave
solutions we take Hρ = 0. Ampere’s law in a homogeneous lossless region free from
impressed sources states in a similar manner

∇ × H(ρ, t) = −φ̂
∂ Hz(ρ, t)

∂ρ
+ ẑ

1

ρ

∂

∂ρ
[ρHφ(ρ, t)] = ε

∂E(ρ, t)

∂t
. (2.345)

Equating components we find that Eρ = 0. Since Eρ = Hρ = 0, both E and H are
perpendicular to the ρ-direction. Note that if there is only a z-component of E then
there is only a φ-component of H. This case, termed electric polarization, results in

∂ Ez(ρ, t)

∂ρ
= µ

∂ Hφ(ρ, t)

∂t
.

Similarly, if there is only a z-component of H then there is only a φ-component of E.
This case, termed magnetic polarization, results in

−∂ Hz(ρ, t)

∂ρ
= ε

∂ Eφ(ρ, t)

∂t
.

Since E = φ̂Eφ + ẑEz and H = φ̂Hφ + ẑHz , we can always decompose a cylindrical
electromagnetic wave into cases of electric and magnetic polarization. In each case the
resulting field is TEMρ since the vectors E, H, ρ̂ are mutually orthogonal.

Wave equations for Ez in the electric polarization case and for Hz in the magnetic
polarization case can be found in the usual manner. Taking the curl of (2.344) and
substituting from (2.345) we find

∇ × (∇ × E) = −ẑ
1

ρ

∂

∂ρ

(
ρ

∂ Ez

∂ρ

)
− φ̂

∂

∂ρ

(
1

ρ

∂

∂ρ
[ρEφ]

)

= − 1

v2

∂2E
∂t2

= − 1

v2

[
ẑ
∂2 Ez

∂t2
+ φ̂

∂2 Eφ

∂t2

]

where v = 1/(µε)1/2. Noting that Eφ = 0 for the electric polarization case we obtain the
wave equation for Ez . A similar set of steps beginning with the curl of (2.345) gives an
identical equation for Hz . Thus

1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

[
Ez

Hz

])
− 1

v2

∂2

∂t2

[
Ez

Hz

]
= 0. (2.346)

We can obtain a solution for (2.346) in much the same way as we do for the wave
equations in § A.1. We begin by substituting for Ez(ρ, t) in terms of its temporal Fourier
representation

Ez(ρ, t) = 1

2π

∫ ∞

−∞
Ẽz(ρ, ω)e jωt dω

to obtain

1

2π

∫ ∞

−∞

[
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ
Ẽz(ρ, ω)

)
+ ω2

v2
Ẽz(ρ, ω)

]
e jωt dω = 0.



The Fourier integral theorem implies that the integrand is zero. Then, expanding out
the ρ derivatives, we find that Ẽz(ρ, ω) obeys the ordinary differential equation

d2 Ẽz

dρ2
+ 1

ρ

d Ẽz

dρ
+ k2 Ẽz = 0

where k = ω/v. This is merely Bessel’s differential equation (A.124). It is a second-order
equation with two independent solutions chosen from the list

J0(kρ), Y0(kρ), H (1)
0 (kρ), H (2)

0 (kρ).

We find that J0(kρ) and Y0(kρ) are useful for describing standing waves between bound-
aries while H (1)

0 (kρ) and H (2)
0 (kρ) are useful for describing waves propagating in the

ρ-direction. Of these, H (1)
0 (kρ) represents waves traveling inward while H (2)

0 (kρ) repre-
sents waves traveling outward. Concentrating on the outward traveling wave we find
that

Ẽz(ρ, ω) = Ã(ω)
[
− j

π

2
H (2)

0 (kρ)
]

= Ã(ω)g̃(ρ, ω).

Here A(t) ↔ Ã(ω) is the disturbance waveform, assumed to be a real, causal function.
To make Ez(ρ, t) real we require that the inverse transform of g̃(ρ, ω) be real. This
requires the inclusion of the − jπ/2 factor in g̃(ρ, ω). Inverting we have

Ez(ρ, t) = A(t) ∗ g(ρ, t) (2.347)

where g(ρ, t) ↔ (− jπ/2)H (2)
0 (kρ).

The inverse transform needed to obtain g(ρ, t) may be found in Campbell [26]:

g(ρ, t) = F−1
{
− j

π

2
H (2)

0

(
ω

ρ

v

)}
= U

(
t − ρ

v

)
√

t2 − ρ2

v2

,

where U (t) is the unit step function defined in (A.5). Substituting this into (2.347) and
writing the convolution in integral form we have

Ez(ρ, t) =
∫ ∞

−∞
A(t − t ′)

U (t ′ − ρ/v)√
t ′2 − ρ2/v2

dt ′.

The change of variable x = t ′ − ρ/v then gives

Ez(ρ, t) =
∫ ∞

0

A(t − x − ρ/v)√
x2 + 2xρ/v

dx . (2.348)

Those interested in the details of the inverse transform should see Chew [33].
As an example, consider a lossless medium with µr = 1, εr = 81, and a waveform

A(t) = E0[U (t) − U (t − τ)]

where τ = 2 µs. This situation is the same as that in the plane wave example above,
except that the pulse waveform begins at t = 0. Substituting for A(t) into (2.348) and
using the integral ∫

dx√
x
√

x + a
= 2 ln

[√
x + √

x + a
]



Figure 2.9: Propagation of a transient cylindrical wave in a lossless medium.

we can write the electric field in closed form as

Ez(ρ, t) = 2E0 ln

[√
x2 + √

x2 + 2ρ/v√
x1 + √

x1 + 2ρ/v

]
, (2.349)

where x2 = max[0, t − ρ/v] and x1 = max[0, t − ρ/v − τ ]. The field is plotted in Figure
2.9 for various values of time. Note that the leading edge of the disturbance propagates
outward at a velocity v and a wake trails behind the disturbance. This wake is similar to
that for a plane wave in a dissipative medium, but it exists in this case even though the
medium is lossless. We can think of the wave as being created by a line source of infinite
extent, pulsed by the disturbance waveform. Although current changes simultaneously
everywhere along the line, it takes the disturbance longer to propagate to an observation
point in the z = 0 plane from source points z 
= 0 than from the source point at z = 0.
Thus, the field at an arbitrary observation point ρ arrives from different source points at
different times. If we look at Figure 2.9 we note that there is always a nonzero field near
ρ = 0 (or any value of ρ < vt) regardless of the time, since at any given t the disturbance
is arriving from some point along the line source.

We also see in Figure 2.9 that as ρ becomes large the peak value of the propagating
disturbance approaches a certain value. This value occurs at tm = ρ/v+τ or, equivalently,
ρm = v(t − τ). If we substitute this value into (2.349) we find that

Ez(ρ, tm) = 2E0 ln

[√
τ

2ρ/v
+

√
1 + τ

2ρ/v

]
.



For large values of ρ/v,

Ez(ρ, tm) ≈ 2E0 ln

[
1 +

√
τ

2ρ/v

]
.

Using ln(1 + x) ≈ x when x � 1, we find that

Ez(ρ, tm) ≈ E0

√
2τv

ρ
.

Thus, as ρ → ∞ we have E×H ∼ 1/ρ and the flux of energy passing through a cylindrical
surface of area ρ dφ dz is independent of ρ. This result is similar to that seen for spherical
waves where E × H ∼ 1/r2.

2.10.8 Propagation of spherical waves in a lossless medium

In the previous section we found solutions that describe uniform cylindrical waves
dependent only on the radial variable ρ. It turns out that similar solutions are not
possible in spherical coordinates; fields that only depend on r cannot satisfy Maxwell’s
equations since, as shown in § 2.10.9, a source having the appropriate symmetry for the
production of uniform spherical waves in fact produces no field at all external to the region
it occupies. As we shall see in Chapter 5, the fields produced by localized sources are in
general quite complex. However, certain solutions that are only slightly nonuniform may
be found, and these allow us to investigate the most important properties of spherical
waves. We shall find that spherical waves diverge from a localized point source and
expand outward with finite velocity, carrying energy away from the source.

Consider a homogeneous, lossless, source-free region of space characterized by permit-
tivity ε and permeability µ. We seek solutions to the wave equation that are TEMr in
spherical coordinates (Hr = Er = 0), and independent of the azimuthal angle φ. Thus
we may write

E(r, t) = θ̂Eθ (r, θ, t) + φ̂Eφ(r, θ, t),

H(r, t) = θ̂Hθ (r, θ, t) + φ̂Hφ(r, θ, t).

Maxwell’s equations show that not all of these vector components are required. Faraday’s
law states that

∇ × E(r, θ, t) = r̂
1

r sin θ

∂

∂θ
[sin θ Eφ(r, θ, t)] − θ̂

1

r

∂

∂r
[r Eφ(r, θ, t)] + φ̂

1

r

∂

∂r
[r Eθ (r, θ, t)]

= −µ
∂H(r, θ, t)

∂t
. (2.350)

Since we require Hr = 0 we must have

∂

∂θ
[sin θ Eφ(r, θ, t)] = 0.

This implies that either Eφ ∼ 1/ sin θ or Eφ = 0. We shall choose Eφ = 0 and investigate
whether the resulting fields satisfy the remaining Maxwell equations.

In a source-free region of space we have ∇ · D = ε∇ · E = 0. Since we now have only a
θ -component of the electric field, this requires

1

r

∂

∂θ
Eθ (r, θ, t) + cot θ

r
Eθ (r, θ, t) = 0.



From this we see that when Eφ = 0 the component Eθ must obey

Eθ (r, θ, t) = fE (r, t)

sin θ
.

By (2.350) there is only a φ-component of magnetic field, and it must obey Hφ(r, θ, t) =
fH (r, t)/ sin θ where

− µ
∂

∂t
fH (r, t) = 1

r

∂

∂r
[r fE (r, t)]. (2.351)

Thus the spherical wave has the property E ⊥ H ⊥ r, and is TEM to the r -direction.
We can obtain a wave equation for Eθ by taking the curl of (2.350) and substituting

from Ampere’s law:

∇ × (∇ × E) = −θ̂
1

r

∂2

∂r2
[r Eθ ] = ∇ ×

[
−µ

∂

∂t
H

]
= −µ

∂

∂t

[
σE + ε

∂

∂t
E

]
.

This gives

∂2

∂r2
[r fE (r, t)] − µσ

∂

∂t
[r fE (r, t)] − µε

∂2

∂t2
[r fE (r, t)] = 0, (2.352)

which is the desired wave equation for E. Proceeding similarly we find that Hφ obeys

∂2

∂r2
[r fH (r, t)] − µσ

∂

∂t
[r fH (r, t)] − µε

∂2

∂t2
[r fH (r, t)] = 0. (2.353)

We see that the wave equation for r fE is identical to that for the plane wave field Ez

(2.331). Thus, we can use the solution obtained in § A.1, as we did with the plane wave,
with a few subtle differences. First, we cannot have r < 0. Second, we do not anticipate
a solution representing a wave traveling in the −r -direction — i.e., a wave converging
toward the origin. (In other situations we might need such a solution in order to form a
standing wave between two spherical boundary surfaces, but here we are only interested
in the basic propagating behavior of spherical waves.) Thus, we choose as our solution
the term (A.45) and find for a lossless medium where � = 0

Eθ (r, θ, t) = 1

r sin θ
A

(
t − r

v

)
. (2.354)

From (2.351) we see that

Hφ = 1

µv

1

r sin θ
A

(
t − r

v

)
. (2.355)

Since µv = (µ/ε)1/2 = η, we can also write this as

H = r̂ × E
η

.

We note that our solution is not appropriate for unbounded space since the fields have
a singularity at θ = 0. Thus we must exclude the z-axis. This can be accomplished
by using PEC cones of angles θ1 and θ2, θ2 > θ1. Because the electric field E = θ̂Eθ is
normal to these cones, the boundary condition that tangential E vanishes is satisfied.

It is informative to see how the terms in the Poynting power balance theorem relate for
a spherical wave. Consider the region between the spherical surfaces r = r1 and r = r2,
r2 > r1. Since there is no current within the volume region, Poynting’s theorem (2.299)
becomes

1

2

∂

∂t

∫
V
(εE · E + µH · H) dV = −

∮
S
(E × H) · dS. (2.356)



From (2.354) and (2.355), the time-rate of change of stored energy is

Psphere(t) = 1

2

∂

∂t

∫
V

[εE2(r, θ, t) + µH 2(r, θ, t)] dV

= 1

2

∂

∂t

∫ 2π

0
dφ

∫ θ2

θ1

dθ

sin θ

∫ r2

r1

[
ε

1

r2
A2

(
t − r

v

)
+ µ

1

r2

1

(vµ)2
A2

(
t − r

v

)]
r2 dr

= 2πεF
∂

∂t

∫ r2

r1

A2
(

t − r

v

)
dr

where

F = ln

[
tan(θ2/2)

tan(θ1/2)

]
.

Putting u = t − r/v we see that

Psphere(t) = −2πεF
∂

∂t

∫ t−r2/v

t−r1/v

A2(u)v du.

An application of Leibnitz’ rule for differentiation (A.30) gives

Psphere(t) = −2π

η
F

[
A2

(
t − r2

v

)
− A2

(
t − r1

v

)]
. (2.357)

Next we find the Poynting flux term:

Psphere(t) = −
∮

S
(E × H) · dS

= −
∫ 2π

0
dφ

∫ θ2

θ1

[
1

r1
A

(
t − r1

v

)
θ̂

]
×

[
1

r1

1

µv
A

(
t − r1

v

)
φ̂

]
· (−r̂)r2

1
dθ

sin θ
−

−
∫ 2π

0
dφ

∫ θ2

θ1

[
1

r2
A

(
t − r2

v

)
θ̂

]
×

[
1

r2

1

µv
A

(
t − r2

v

)
φ̂

]
· r̂r2

2
dθ

sin θ
.

The first term represents the power carried by the traveling wave into the volume region
by passing through the spherical surface at r = r1, while the second term represents
the power carried by the wave out of the region by passing through the surface r = r2.
Integration gives

Psphere(t) = −2π

η
F

[
A2

(
t − r2

v

)
− A2

(
t − r1

v

)]
, (2.358)

which matches (2.357), thus verifying Poynting’s theorem.
It is also interesting to compute the total energy passing through a surface of radius

r0. From (2.358) we see that the flux of energy (power density) passing outward through
the surface r = r0 is

Psphere(t) = 2π

η
F A2

(
t − r0

v

)
.

The total energy associated with this flux can be computed by integrating over all time:
we have

E = 2π

η
F

∫ ∞

−∞
A2

(
t − r0

v

)
dt = 2π

η
F

∫ ∞

−∞
A2(u) du

after making the substitution u = t − r0/v. The total energy passing through a spherical
surface is independent of the radius of the sphere. This is an important property of
spherical waves. The 1/r dependence of the electric and magnetic fields produces a
power density that decays with distance in precisely the right proportion to compensate
for the r2-type increase in the surface area through which the power flux passes.



2.10.9 Nonradiating sources

Not all time-dependent sources produce electromagnetic waves. In fact, certain local-
ized source distributions produce no fields external to the region containing the sources.
Such distributions are said to be nonradiating, and the fields they produce (within their
source regions) lack wave characteristics.

Let us consider a specific example involving two concentric spheres. The inner sphere,
carrying a uniformly distributed total charge −Q, is rigid and has a fixed radius a; the
outer sphere, carrying uniform charge +Q, is a flexible balloon that can be stretched to
any radius b = b(t). The two surfaces are initially stationary, some external force being
required to hold them in place. Now suppose we apply a time-varying force that results
in b(t) changing from b(t1) = b1 to b(t2) = b2 > b1. This creates a radially directed
time-varying current r̂Jr (r, t). By symmetry Jr depends only on r and produces a field
E that depends only on r and is directed radially. An application of Gauss’s law over a
sphere of radius r0 > b2, which contains zero total charge, gives

4πr2
0 Er (r0, t) = 0,

hence E(r, t) = 0 for r > r0 and all time t . So E = 0 external to the current distribution
and no outward traveling wave is produced. Gauss’s law also shows that E = 0 inside
the rigid sphere, while between the spheres

E(r, t) = −r̂
Q

4πε0r2
.

Now work is certainly required to stretch the balloon and overcome the Lorentz force
between the two charged surfaces. But an application of Poynting’s theorem over a
surface enclosing both spheres shows that no energy is carried away by an electromagnetic
wave. Where does the expended energy go? The presence of only two nonzero terms in
Poynting’s theorem clearly indicates that the power term

∫
V E · J dV corresponding to

the external work must be balanced exactly by a change in stored energy. As the radius
of the balloon increases, so does the region of nonzero field as well as the stored energy.

In free space any current source expressible in the form

J(r, t) = ∇
(

∂ψ(r, t)

∂t

)
(2.359)

and localized to a volume region V , such as the current in the example above, is nonra-
diating. Indeed, Ampere’s law states that

∇ × H = ε0
∂E
∂t

+ ∇
(

∂ψ(r, t)

∂t

)
(2.360)

for r ∈ V ; taking the curl we have

∇ × (∇ × H) = ε0
∂∇ × E

∂t
+ ∇ × ∇

(
∂ψ(r, t)

∂t

)
.

But the second term on the right is zero, so

∇ × (∇ × H) = ε0
∂∇ × E

∂t

and this equation holds for all r. By Faraday’s law we can rewrite it as(
(∇ × ∇×) + 1

c2

∂2

∂t2

)
H(r, t) = 0.



So H obeys the homogeneous wave equation everywhere, and H = 0 follows from causality.
The laws of Ampere and Faraday may also be combined with (2.359) to show that

(
(∇ × ∇×) + 1

c2

∂2

∂t2

) [
E(r, t) + 1

ε0
∇ψ(r, t)

]
= 0

for all r. By causality

E(r, t) = − 1

ε0
∇ψ(r, t) (2.361)

everywhere. But since ψ(r, t) = 0 external to V , we must also have E = 0 there.
Note that E = −∇ψ/ε0 is consistent with Ampere’s law (2.360) provided that H = 0
everywhere.

We see that sources having spherical symmetry such that

J(r, t) = r̂Jr (r, t) = ∇
(

∂ψ(r, t)

∂t

)
= r̂

∂2ψ(r, t)

∂r∂t

obey (2.359) and are therefore nonradiating. Hence the fields associated with any outward
traveling spherical wave must possess some angular variation. This holds, for example,
for the fields far removed from a time-varying source of finite extent.

As pointed out by Lindell [113], nonradiating sources are not merely hypothetical.
The outflowing currents produced by a highly symmetric nuclear explosion in outer
space or in a homogeneous atmosphere would produce no electromagnetic field outside
the source region. The large electromagnetic-pulse effects discussed in § 2.10.6 are due
to inhomogeneities in the earth’s atmosphere. We also note that the fields produced
by a radiating source Jr (r, t) do not change external to the source if we superpose a
nonradiating component Jnr (r, t) to create a new source J = Jnr + Jr . We say that the
two sources J and Jr are equivalent for the region V external to the sources. This presents
difficulties in remote sensing where investigators are often interested in reconstructing an
unknown source by probing the fields external to (and usually far away from) the source
region. Unique reconstruction is possible only if the fields within the source region are
also measured.

For the time harmonic case, Devaney and Wolf [54] provide the most general possible
form for a nonradiating source. See § 4.11.9 for details.

2.11 Problems

2.1 Consider the constitutive equations (2.16)–(2.17) relating E, D, B, and H in a
bianisotropic medium. Using the definition for P and M, show that the constitutive
equations relating E, B, P, and M are

P =
(

1

c
P̄ − ε0Ī

)
· E + L̄ · B,

M = −M̄ · E −
(

cQ̄ − 1

µ0
Ī
)

· B.

Also find the constitutive equations relating E, H, P, and M.



2.2 Consider Ampere’s law and Gauss’s law written in terms of rectangular compo-
nents in the laboratory frame of reference. Assume that an inertial frame moves with
velocity v = x̂v with respect to the laboratory frame. Using the Lorentz transformation
given by (2.73)–(2.76), show that

cD′
⊥ = γ (cD⊥ + β × H⊥),

H′
⊥ = γ (H⊥ − β × cD⊥),

J′
‖ = γ (J‖ − ρv),

J′
⊥ = J⊥,

cρ ′ = γ (cρ − β · J),

where “⊥” means perpendicular to the direction of the velocity and “‖” means parallel
to the direction of the velocity.

2.3 Show that the following quantities are invariant under Lorentz transformation:

(a) E · B,
(b) H · D,
(c) B · B − E · E/c2,
(d) H · H − c2D · D,
(e) B · H − E · D,
(f) cB · D + E · H/c.

2.4 Show that if c2 B2 > E2 holds in one reference frame, then it holds in all other
reference frames. Repeat for the inequality c2 B2 < E2.

2.5 Show that if E ·B = 0 and c2 B2 > E2 holds in one reference frame, then a reference
frame may be found such that E = 0. Show that if E · B = 0 and c2 B2 < E2 holds in one
reference frame, then a reference frame may be found such that B = 0.

2.6 A test charge Q at rest in the laboratory frame experiences a force F = QE as
measured by an observer in the laboratory frame. An observer in an inertial frame
measures a force on the charge given by F′ = QE′ + Qv × B′. Show that F 
= F′ and find
the formula for converting between F and F′.

2.7 Consider a material moving with velocity v with respect to the laboratory frame of
reference. When the fields are measured in the moving frame, the material is found to be
isotropic with D′ = ε′E′ and B′ = µ′H′. Show that the fields measured in the laboratory
frame are given by (2.107) and (2.108), indicating that the material is bianisotropic when
measured in the laboratory frame.

2.8 Show that by assuming v2/c2 � 1 in (2.61)–(2.64) we may obtain (2.111).

2.9 Derive the following expressions that allow us to convert the value of the magneti-
zation measured in the laboratory frame of reference to the value measured in a moving
frame:

M′
⊥ = γ (M⊥ + β × cP⊥), M′

‖ = M‖.



2.10 Beginning with the expressions (2.61)–(2.64) for the field conversions under a
first-order Lorentz transformation, show that

P′ = P − v × M
c2

, M′ = M + v × P.

2.11 Consider a simple isotropic material moving through space with velocity v relative
to the laboratory frame. The relative permittivity and permeability of the material
measured in the moving frame are ε′

r and µ′
r , respectively. Show that the magnetization

as measured in the laboratory frame is related to the laboratory frame electric field and
magnetic flux density as

M = χ ′
m

µ0µ′
r

B − ε0

(
χ ′

e + χ ′
m

µ′
r

)
v × E

when a first-order Lorentz transformation is used. Here χ ′
e = ε′

r − 1 and χ ′
m = µ′

r − 1.

2.12 Consider a simple isotropic material moving through space with velocity v relative
to the laboratory frame. The relative permittivity and permeability of the material
measured in the moving frame are ε′

r and µ′
r , respectively. Derive the formulas for the

magnetization and polarization in the laboratory frame in terms of E and B measured in
the laboratory frame by using the Lorentz transformations (2.128) and (2.129)–(2.132).
Show that these expressions reduce to (2.139) and (2.140) under the assumption of a
first-order Lorentz transformation (v2/c2 � 1).

2.13 Derive the kinematic form of the large-scale Maxwell–Boffi equations (2.165) and
(2.166). Derive the alternative form of the large-scale Maxwell–Boffi equations (2.167)
and (2.168).

2.14 Modify the kinematic form of the Maxwell–Boffi equations (2.165)–(2.166) to
account for the presence of magnetic sources. Repeat for the alternative forms (2.167)–
(2.168).

2.15 Consider a thin magnetic source distribution concentrated near a surface S. The
magnetic charge and current densities are given by

ρm(r, x, t) = ρms(r, t) f (x, �), Jm(r, x, t) = Jms(r, t) f (x, �),

where f (x, �) satisfies
∫ ∞

−∞
f (x, �) dx = 1.

Let � → 0 and derive the boundary conditions on (E, D, B, H) across S.

2.16 Beginning with the kinematic forms of Maxwell’s equations (2.177)–(2.178), de-
rive the boundary conditions for a moving surface

n̂12 × (H1 − H2) + (n̂12 · v)(D1 − D2) = Js,

n̂12 × (E1 − E2) − (n̂12 · v)(B1 − B2) = −Jms .

2.17 Beginning with Maxwell’s equations and the constitutive relationships for a bian-
isotropic medium (2.19)–(2.20), derive the wave equation for H (2.313). Specialize the
result for the case of an anisotropic medium.



2.18 Consider an isotropic but inhomogeneous material, so that

D(r, t) = ε(r)E(r, t), B(r, t) = µ(r)H(r, t).

Show that the wave equations for the fields within this material may be written as

∇2E − µε
∂2E
∂t2

+ ∇
[

E ·
(∇ε

ε

)]
− (∇ × E) ×

(∇µ

µ

)
= µ

∂J
∂t

+ ∇
(ρ

ε

)
,

∇2H − µε
∂2H
∂t2

+ ∇
[

H ·
(∇µ

µ

)]
− (∇ × H) ×

(∇ε

ε

)
= −∇ × J − J ×

(∇ε

ε

)
.

2.19 Consider a homogeneous, isotropic material in which D = εE and B = µH. Using
the definitions of the equivalent sources, show that the wave equations (2.322)–(2.323)
are equivalent to (2.314)–(2.315).

2.20 When we calculate the force on a conductor produced by an incident plane wave,
we often neglect the momentum term

∂

∂t
(D × B).

Compute this term for the plane wave field (2.336) in free space at the surface of the
conductor and compare to the term obtained from the Maxwell stress tensor (2.341).
What is the relative difference in amplitude?

2.21 When a material is only slightly conducting, and thus � is very small, we often
neglect the third term in the plane wave solution (2.343). Reproduce the plot of Figure
2.8 with this term omitted and compare. Discuss how the omitted term affects the shape
of the propagating waveform.

2.22 A total charge Q is evenly distributed over a spherical surface. The surface
expands outward at constant velocity so that the radius of the surface is b = vt at time
t . (a) Use Gauss’s law to find E everywhere as a function of time. (b) Show that E may
be found from a potential function

ψ(r, t) = Q

4πr
(r − vt)U (r − vt)

according to (2.361). Here U (t) is the unit step function. (c) Write down the form of
J for the expanding sphere and show that since it may be found from (2.359) it is a
nonradiating source.



Chapter 3

The static electromagnetic field

3.1 Static fields and steady currents

Perhaps the most carefully studied area of electromagnetics is that in which the fields
are time-invariant. This area, known generally as statics, offers (1) the most direct op-
portunities for solution of the governing equations, and (2) the clearest physical pictures
of the electromagnetic field. We therefore devote the present chapter to a treatment
of static fields. We begin to seek and examine specific solutions to the field equations;
however, our selection of examples is shaped by a search for insight into the behavior of
the field itself, rather than a desire to catalog the solutions of numerous statics problems.

We note at the outset that a static field is physically sensible only as a limiting case
of a time-varying field as the latter approaches a time-invariant equilibrium, and then
only in local regions. The static field equations we shall study thus represent an idealized
model of the physical fields.

If we examine the Maxwell–Minkowski equations (2.1)–(2.4) and set the time deriva-
tives to zero, we obtain the static field Maxwell equations

∇ × E(r) = 0, (3.1)
∇ · D(r) = ρ(r), (3.2)

∇ × H(r) = J(r), (3.3)
∇ · B(r) = 0. (3.4)

We note that if the fields are to be everywhere time-invariant, then the sources J and
ρ must also be everywhere time-invariant. Under this condition the dynamic coupling
between the fields described by Maxwell’s equations disappears; any connection between
E, D, B, and H imposed by the time-varying nature of the field is gone. For static fields
we also require that any dynamic coupling between fields in the constitutive relations
vanish. In this static field limit we cannot derive the divergence equations from the curl
equations, since we can no longer use the initial condition argument that the fields were
identically zero prior to some time.

The static field equations are useful for approximating many physical situations in
which the fields rapidly settle to a local, macroscopically-static state. This may occur
so rapidly and so completely that, in a practical sense, the static equations describe the
fields within our ability to measure and to compute. Such is the case when a capacitor
is rapidly charged using a battery in series with a resistor; for example, a 1 pF capacitor
charging through a 1 � resistor reaches 99.99% of its total charge static limit within
10 ps.



3.1.1 Decoupling of the electric and magnetic fields

For the remainder of this chapter we shall assume that there is no coupling between
E and H or between D and B in the constitutive relations. Then the static equations
decouple into two independent sets of equations in terms of two independent sets of fields.
The static electric field set (E,D) is described by the equations

∇ × E(r) = 0, (3.5)
∇ · D(r) = ρ(r). (3.6)

Integrating these over a stationary contour and surface, respectively, we have the large-
scale forms ∮

�

E · dl = 0, (3.7)∮
S

D · dS =
∫

V
ρ dV . (3.8)

The static magnetic field set (B,H) is described by

∇ × H(r) = J(r), (3.9)
∇ · B(r) = 0, (3.10)

or, in large-scale form, ∮
�

H · dl =
∫

S
J · dS, (3.11)

∮
S

B · dS = 0. (3.12)

We can also specialize the Maxwell–Boffi equations to static form. Assuming that the
fields, sources, and equivalent sources are time-invariant, the electrostatic field E(r) is
described by the point-form equations

∇ × E = 0, (3.13)

∇ · E = 1

ε0
(ρ − ∇ · P) , (3.14)

or the equivalent large-scale equations∮
�

E · dl = 0, (3.15)
∮

S
E · dS = 1

ε0

∫
V

(ρ − ∇ · P) dV . (3.16)

Similarly, the magnetostatic field B is described by

∇ × B = µ0 (J + ∇ × M) , (3.17)
∇ · B = 0, (3.18)

or ∮
�

B · dl = µ0

∫
S
(J + ∇ × M) · dS, (3.19)

∮
S

B · dS = 0. (3.20)



Figure 3.1: Positive point charge in the vicinity of an insulated, uncharged conductor.

It is important to note that any separation of the electromagnetic field into independent
static electric and magnetic portions is illusory. As we mentioned in § 2.3.2, the electric
and magnetic components of the EM field depend on the motion of the observer. An
observer stationary with respect to a single charge measures only a static electric field,
while an observer in uniform motion with respect to the charge measures both electric
and magnetic fields.

3.1.2 Static field equilibrium and conductors

Suppose we could arrange a group of electric charges into a static configuration in free
space. The charges would produce an electric field, resulting in a force on the distribution
via the Lorentz force law, and hence would begin to move. Regardless of how we arrange
the charges they cannot maintain their original static configuration without the help
of some mechanical force to counterbalance the electrical force. This is a statement of
Earnshaw’s theorem, discussed in detail in § 3.4.2.

The situation is similar for charges within and on electric conductors. A conductor
is a material having many charges free to move under external influences, both electric
and non-electric. In a metallic conductor, electrons move against a background lattice
of positive charges. An uncharged conductor is neutral: the amount of negative charge
carried by the electrons is equal to the positive charge in the background lattice. The
distribution of charges in an uncharged conductor is such that the macroscopic electric
field is zero inside and outside the conductor. When the conductor is exposed to an addi-
tional electric field, the electrons move under the influence of the Lorentz force, creating
a conduction current. Rather than accelerating indefinitely, conduction electrons experi-
ence collisions with the lattice, thereby giving up their kinetic energy. Macroscopically,
the charge motion can be described in terms of a time-average velocity, hence a macro-
scopic current density can be assigned to the density of moving charge. The relationship
between the applied, or “impressed,” field and the resulting current density is given by
Ohm’s law ; in a linear, isotropic, nondispersive material this is

J(r, t) = σ(r)E(r, t). (3.21)

The conductivity σ describes the impediment to charge motion through the lattice: the



Figure 3.2: Positive point charge near a grounded conductor.

higher the conductivity, the farther an electron may move on average before undergoing
a collision.

Let us examine how a state of equilibrium is established in a conductor. We shall con-
sider several important situations. First, suppose we bring a positively charged particle
into the vicinity of a neutral, insulated conductor (we say that a conductor is “insulated”
if no means exists for depositing excess charge onto the conductor). The Lorentz force
on the free electrons in the conductor results in their motion toward the particle (Figure
3.1). A reaction force F attracts the particle to the conductor. If the particle and the
conductor are both held rigidly in space by an external mechanical force, the electrons
within the conductor continue to move toward the surface. In a metal, when these elec-
trons reach the surface and try to continue further they experience a rapid reversal in the
direction of the Lorentz force, drawing them back toward the surface. A sufficiently large
force (described by the work function of the metal) will be able to draw these charges
from the surface, but anything less will permit the establishment of a stable equilibrium
at the surface. If σ is large then equilibrium is established quickly, and a nonuniform
static charge distribution appears on the conductor surface. The electric field within the
conductor must settle to zero at equilibrium, since a nonzero field would be associated
with a current J = σE. In addition, the component of the field tangential to the surface
must be zero or the charge would be forced to move along the surface. At equilibrium,
the field within and tangential to a conductor must be zero. Note also that equilibrium
cannot be established without external forces to hold the conductor and particle in place.

Next, suppose we bring a positively charged particle into the vicinity of a grounded
(rather than insulated) conductor as in Figure 3.2. Use of the term “grounded” means
that the conductor is attached via a filamentary conductor to a remote reservoir of charge
known as ground ; in practical applications the earth acts as this charge reservoir. Charges
are drawn from or returned to the reservoir, without requiring any work, in response to
the Lorentz force on the charge within the conducting body. As the particle approaches,
negative charge is drawn to the body and then along the surface until a static equilibrium
is re-established. Unlike the insulated body, the grounded conductor in equilibrium has
excess negative charge, the amount of which depends on the proximity of the particle.
Again, both particle and conductor must be held in place by external mechanical forces,
and the total field produced by both the static charge on the conductor and the particle
must be zero at points interior to the conductor.

Finally, consider the process whereby excess charge placed inside a conducting body
redistributes as equilibrium is established. We assume an isotropic, homogeneous con-
ducting body with permittivity ε and conductivity σ . An initially static charge with



density ρ0(r) is introduced at time t = 0. The charge density must obey the continuity
equation

∇ · J(r, t) = −∂ρ(r, t)

∂t
;

since J = σE, we have

σ∇ · E(r, t) = −∂ρ(r, t)

∂t
.

By Gauss’s law, ∇ · E can be eliminated:

σ

ε
ρ(r, t) = −∂ρ(r, t)

∂t
.

Solving this differential equation for the unknown ρ(r, t) we have

ρ(r, t) = ρ0(r)e−σ t/ε. (3.22)

The charge density within a homogeneous, isotropic conducting body decreases exponen-
tially with time, regardless of the original charge distribution and shape of the body. Of
course, the total charge must be constant, and thus charge within the body travels to
the surface where it distributes itself in such a way that the field internal to the body
approaches zero at equilibrium. The rate at which the volume charge dissipates is deter-
mined by the relaxation time ε/σ ; for copper (a good conductor) this is an astonishingly
small 10−19 s. Even distilled water, a relatively poor conductor, has ε/σ = 10−6 s. Thus
we see how rapidly static equilibrium can be approached.

3.1.3 Steady current

Since time-invariant fields must arise from time-invariant sources, we have from the
continuity equation

∇ · J(r) = 0. (3.23)

In large-scale form this is ∮
S

J · dS = 0. (3.24)

A current with the property (3.23) is said to be a steady current. By (3.24), a steady
current must be completely lineal (and infinite in extent) or must form closed loops.
However, if a current forms loops then the individual moving charges must undergo
acceleration (from the change in direction of velocity). Since a single accelerating particle
radiates energy in the form of an electromagnetic wave, we might expect a large steady
loop current to produce a great deal of radiation. In fact, if we superpose the fields
produced by the many particles comprising a steady current, we find that a steady current
produces no radiation [91]. Remarkably, to obtain this result we must consider the exact
relativistic fields, and thus our finding is precise within the limits of our macroscopic
assumptions.

If we try to create a steady current in free space, the flowing charges will tend to
disperse because of the Lorentz force from the field set up by the charges, and the
resulting current will not form closed loops. A beam of electrons or ions will produce
both an electric field (because of the nonzero net charge of the beam) and a magnetic field
(because of the current). At nonrelativistic particle speeds, the electric field produces
an outward force on the charges that is much greater than the inward (or pinch) force
produced by the magnetic field. Application of an additional, external force will allow



the creation of a collimated beam of charge, as occurs in an electron tube where a series
of permanent magnets can be used to create a beam of steady current.

More typically, steady currents are created using wire conductors to guide the moving
charge. When an external force, such as the electric field created by a battery, is applied
to an uncharged conductor, the free electrons will begin to move through the positive
lattice, forming a current. Each electron moves only a short distance before colliding with
the positive lattice, and if the wire is bent into a loop the resulting macroscopic current
will be steady in the sense that the temporally and spatially averaged microscopic current
will obey ∇ · J = 0. We note from the examples above that any charges attempting to
leave the surface of the wire are drawn back by the electrostatic force produced by the
resulting imbalance in electrical charge. For conductors, the “drift” velocity associated
with the moving electrons is proportional to the applied field:

ud = −µeE

where µe is the electron mobility. The mobility of copper (3.2 × 10−3m2/V · s) is such
that an applied field of 1 V/m results in a drift velocity of only a third of a centimeter
per second.

Integral properties of a steady current. Steady currents obey several useful inte-
gral properties. To develop these properties we need an integral identity. Let f (r) and
g(r) be scalar functions, continuous and with continuous derivatives in a volume region
V . Let J represent a steady current field of finite extent, completely contained within
V . We begin by using (B.42) to expand

∇ · ( f gJ) = f g(∇ · J) + J · ∇( f g).

Noting that ∇ · J = 0 and using (B.41), we get

∇ · ( f gJ) = ( f J) · ∇g + (gJ) · ∇ f.

Now let us integrate over V and employ the divergence theorem:∮
S
( f g)J · dS =

∫
V

[( f J) · ∇g + (gJ) · ∇ f ] dV .

Since J is contained entirely within S, we must have n̂ · J = 0 everywhere on S. Hence∫
V

[( f J) · ∇g + (gJ) · ∇ f ] dV = 0. (3.25)

We can obtain a useful relation by letting f = 1 and g = xi in (3.25), where (x, y, z) =
(x1, x2, x3). This gives ∫

V
Ji (r) dV = 0, (3.26)

where J1 = Jx and so on. Hence the volume integral of any rectangular component of J
is zero. Similarly, letting f = g = xi we find that∫

V
xi Ji (r) dV = 0. (3.27)

With f = xi and g = x j we obtain∫
V

[
xi J j (r) + x j Ji (r)

]
dV = 0. (3.28)



3.2 Electrostatics

3.2.1 The electrostatic potential and work

The equation
∮

�

E · dl = 0 (3.29)

satisfied by the electrostatic field E(r) is particularly interesting. A field with zero
circulation is said to be conservative. To see why, let us examine the work required to
move a particle of charge Q around a closed path in the presence of E(r). Since work is
the line integral of force and B = 0, the work expended by the external system moving
the charge against the Lorentz force is

W = −
∮

�

(QE + Qv × B) · dl = −Q
∮

�

E · dl = 0.

This property is analogous to the conservation property for a classical gravitational field:
any potential energy gained by raising a point mass is lost when the mass is lowered.

Direct experimental verification of the electrostatic conservative property is difficult,
aside from the fact that the motion of Q may alter E by interacting with the sources of
E. By moving Q with nonuniform velocity (i.e., with acceleration at the beginning of the
loop, direction changes in transit, and deceleration at the end) we observe a radiative
loss of energy, and this energy cannot be regained by the mechanical system providing
the motion. To avoid this problem we may assume that the charge is moved so slowly,
or in such small increments, that it does not radiate. We shall use this concept later to
determine the “assembly energy” in a charge distribution.

The electrostatic potential. By the point form of (3.29),

∇ × E(r) = 0,

we can introduce a scalar field � = �(r) such that

E(r) = −∇�(r). (3.30)

The function � carries units of volts and is known as the electrostatic potential. Let us
consider the work expended by an external agent in moving a charge between points P1

at r1 and P2 at r2:

W21 = −Q
∫ P2

P1

−∇�(r) · dl = Q
∫ P2

P1

d�(r) = Q [�(r2) − �(r1)] .

The work W21 is clearly independent of the path taken between P1 and P2; the quantity

V21 = W21

Q
= �(r2) − �(r1) = −

∫ P2

P1

E · dl, (3.31)

called the potential difference, has an obvious physical meaning as work per unit charge
required to move a particle against an electric field between two points.



Figure 3.3: Demonstration of path independence of the electric field line integral.

Of course, the large-scale form (3.29) also implies the path-independence of work in
the electrostatic field. Indeed, we may pass an arbitrary closed contour � through P1

and P2 and then split it into two pieces �1 and �2 as shown in Figure 3.3. Since

−Q
∮

�1−�2

E · dl = −Q
∫

�1

E · dl + Q
∫

�2

E · dl = 0,

we have

−Q
∫

�1

E · dl = −Q
∫

�2

E · dl

as desired.

We sometimes refer to �(r) as the absolute electrostatic potential. Choosing a suitable
reference point P0 at location r0 and writing the potential difference as

V21 = [�(r2) − �(r0)] − [�(r1) − �(r0)],

we can justify calling �(r) the absolute potential referred to P0. Note that P0 might
describe a locus of points, rather than a single point, since many points can be at the same
potential. Although we can choose any reference point without changing the resulting
value of E found from (3.30), for simplicity we often choose r0 such that �(r0) = 0.

Several properties of the electrostatic potential make it convenient for describing static
electric fields. We know that, at equilibrium, the electrostatic field within a conducting
body must vanish. By (3.30) the potential at all points within the body must therefore
have the same constant value. It follows that the surface of a conductor is an equipotential
surface: a surface for which �(r) is constant.

As an infinite reservoir of charge that can be tapped through a filamentary conductor,
the entity we call “ground” must also be an equipotential object. If we connect a con-
ductor to ground, we have seen that charge may flow freely onto the conductor. Since no
work is expended, “grounding” a conductor obviously places the conductor at the same
absolute potential as ground. For this reason, ground is often assigned the role as the
potential reference with an absolute potential of zero volts. Later we shall see that for
sources of finite extent ground must be located at infinity.



3.2.2 Boundary conditions

Boundary conditions for the electrostatic field. The boundary conditions found
for the dynamic electric field remain valid in the electrostatic case. Thus

n̂12 × (E1 − E2) = 0 (3.32)

and

n̂12 · (D1 − D2) = ρs . (3.33)

Here n̂12 points into region 1 from region 2. Because the static curl and divergence
equations are independent, so are the boundary conditions (3.32) and (3.33).

For a linear and isotropic dielectric where D = εE, equation (3.33) becomes

n̂12 · (ε1E1 − ε2E2) = ρs . (3.34)

Alternatively, using D = ε0E + P we can write (3.33) as

n̂12 · (E1 − E2) = 1

ε0
(ρs + ρPs1 + ρPs2) (3.35)

where

ρPs = n̂ · P

is the polarization surface charge with n̂ pointing outward from the material body.
We can also write the boundary conditions in terms of the electrostatic potential. With

E = −∇�, equation (3.32) becomes

�1(r) = �2(r) (3.36)

for all points r on the surface. Actually �1 and �2 may differ by a constant; because
this constant is eliminated when the gradient is taken to find E, it is generally ignored.
We can write (3.35) as

ε0

(
∂�1

∂n
− ∂�2

∂n

)
= −ρs − ρPs1 − ρPs2

where the normal derivative is taken in the n̂12 direction. For a linear, isotropic dielectric
(3.33) becomes

ε1
∂�1

∂n
− ε2

∂�2

∂n
= −ρs . (3.37)

Again, we note that (3.36) and (3.37) are independent.

Boundary conditions for steady electric current. The boundary condition on the
normal component of current found in § 2.8.2 remains valid in the steady current case.
Assume that the boundary exists between two linear, isotropic conducting regions having
constitutive parameters (ε1,σ1) and (ε2,σ2), respectively. By (2.198) we have

n̂12 · (J1 − J2) = −∇s · Js (3.38)

where n̂12 points into region 1 from region 2. A surface current will not appear on the
boundary between two regions having finite conductivity, although a surface charge may
accumulate there during the transient period when the currents are established [31]. If
charge is influenced to move from the surface, it will move into the adjacent regions,



Figure 3.4: Refraction of steady current at a material interface.

rather than along the surface, and a new charge will replace it, supplied by the current.
Thus, for finite conducting regions (3.38) becomes

n̂12 · (J1 − J2) = 0. (3.39)

A boundary condition on the tangential component of current can also be found.
Substituting E = J/σ into (3.32) we have

n̂12 ×
(

J1

σ1
− J2

σ2

)
= 0.

We can also write this as

J1t

σ1
= J2t

σ2
(3.40)

where

J1t = n̂12 × J1, J2t = n̂12 × J2.

We may combine the boundary conditions for the normal components of current and
electric field to better understand the behavior of current at a material boundary. Sub-
stituting E = J/σ into (3.34) we have

ε1

σ1
J1n − ε2

σ2
J2n = ρs (3.41)

where J1n = n̂12 · J1 and J2n = n̂12 · J2. Combining (3.41) with (3.39), we have

ρs = J1n

(
ε1

σ1
− ε2

σ2

)
= E1n

(
ε1 − σ1

σ2
ε2

)
= J2n

(
ε1

σ1
− ε2

σ2

)
= E2n

(
ε1

σ2

σ1
− ε2

)

where

E1n = n̂12 · E1, E2n = n̂12 · E2.

Unless ε1σ2 − σ1ε2 = 0, a surface charge will exist on the interface between dissimilar
current-carrying conductors.

We may also combine the vector components of current on each side of the boundary
to determine the effects of the boundary on current direction (Figure 3.4). Let θ1,2 denote
the angle between J1,2 and n̂12 so that

J1n = J1 cos θ1, J1t = J1 sin θ1

J2n = J2 cos θ2, J2t = J2 sin θ2.



Then J1 cos θ1 = J2 cos θ2 by (3.39), while σ2 J1 sin θ1 = σ1 J2 sin θ2 by (3.40). Hence

σ2 tan θ1 = σ1 tan θ2. (3.42)

It is interesting to consider the case of current incident from a conducting material onto
an insulating material. If region 2 is an insulator, then J2n = J2t = 0; by (3.39) we have
J1n = 0. But (3.40) does not require J1t = 0; with σ2 = 0 the right-hand side of (3.40)
is indeterminate and thus J1t may be nonzero. In other words, when current moving
through a conductor approaches an insulating surface, it bends and flows tangential to
the surface. This concept is useful in explaining how wires guide current.

Interestingly, (3.42) shows that when σ2 	 σ1 we have θ2 → 0; current passing from a
conducting region into a slightly-conducting region does so normally.

3.2.3 Uniqueness of the electrostatic field

In § 2.2.1 we found that the electromagnetic field is unique within a region V when
the tangential component of E is specified over the surrounding surface. Unfortunately,
this condition is not appropriate in the electrostatic case. We should remember that
an additional requirement for uniqueness of solution to Maxwell’s equations is that the
field be specified throughout V at some time t0. For a static field this would completely
determine E without need for the surface field!

Let us determine conditions for uniqueness beginning with the static field equations.
Consider a region V surrounded by a surface S. Static charge may be located entirely
or partially within V , or entirely outside V , and produces a field within V . The region
may also contain any arrangement of conductors or other materials. Suppose (D1, E1)

and (D2, E2) represent solutions to the static field equations within V with source ρ(r).
We wish to find conditions that guarantee both E1 = E2 and D1 = D2.

Since ∇ · D1 = ρ and ∇ · D2 = ρ, the difference field D0 = D2 − D1 obeys the
homogeneous equation

∇ · D0 = 0. (3.43)

Consider the quantity

∇ · (D0�0) = �0(∇ · D0) + D0 · (∇�0)

where E0 = E2 − E1 = −∇�0 = −∇(�2 − �1). We integrate over V and use the
divergence theorem and (3.43) to obtain

∮
S
�0 [D0 · n̂] d S =

∫
V

D0 · (∇�0) dV = −
∫

V
D0 · E0 dV . (3.44)

Now suppose that �0 = 0 everywhere on S, or that n̂ · D0 = 0 everywhere on S, or that
�0 = 0 over part of S and n̂ · D0 = 0 elsewhere on S. Then∫

V
D0 · E0 dV = 0. (3.45)

Since V is arbitrary, either D0 = 0 or E0 = 0. Assuming E and D are linked by the
constitutive relations, we have E1 = E2 and D1 = D2.

Hence the fields within V are unique provided that either �, the normal component
of D, or some combination of the two, is specified over S. We often use a multiply-
connected surface to exclude conductors. By (3.33) we see that specification of the



normal component of D on a conductor is equivalent to specification of the surface
charge density. Thus we must specify the potential or surface charge density over all
conducting surfaces.

One other condition results in zero on the left-hand side of (3.44). If S recedes to
infinity and �0 and D0 decrease sufficiently fast, then (3.45) still holds and uniqueness
is guaranteed. If D, E ∼ 1/r2 as r → ∞, then � ∼ 1/r and the surface integral in (3.44)
tends to zero since the area of an expanding sphere increases only as r2. We shall find
later in this section that for sources of finite extent the fields do indeed vary inversely
with distance squared from the source, hence we may allow S to expand and encompass
all space.

For the case in which conducting bodies are immersed in an infinite homogeneous
medium and the static fields must be determined throughout all space, a multiply-
connected surface is used with one part receding to infinity and the remaining parts
surrounding the conductors. Here uniqueness is guaranteed by specifying the potentials
or charges on the surfaces of the conducting bodies.

3.2.4 Poisson’s and Laplace’s equations

For computational purposes it is often convenient to deal with the differential versions

∇ × E(r) = 0, (3.46)
∇ · D(r) = ρ(r), (3.47)

of the electrostatic field equations. We must supplement these with constitutive relations
between E and D; at this point we focus our attention on linear, isotropic materials for
which

D(r) = ε(r)E(r).

Using this in (3.47) along with E = −∇� (justified by (3.46)), we can write

∇ · [ε(r)∇�(r)] = −ρ(r). (3.48)

This is Poisson’s equation. The corresponding homogeneous equation

∇ · [ε(r)∇�(r)] = 0, (3.49)

holding at points r where ρ(r) = 0, is Laplace’s equation. Equations (3.48) and (3.49)
are valid for inhomogeneous media. By (B.42) we can write

∇�(r) · ∇ε(r) + ε(r)∇ · [∇�(r)] = −ρ(r).

For a homogeneous medium, ∇ε = 0; since ∇ · (∇�) ≡ ∇2�, we have

∇2�(r) = −ρ(r)/ε (3.50)

in such a medium. Correspondingly,

∇2�(r) = 0

at points where ρ(r) = 0.
Poisson’s and Laplace’s equations can be solved by separation of variables, Fourier

transformation, conformal mapping, and numerical techniques such as the finite difference
and moment methods. In Appendix A we consider the separation of variables solution



to Laplace’s equation in three major coordinate systems for a variety of problems. For
an introduction to numerical techniques the reader is referred to the books by Sadiku
[162], Harrington [82], and Peterson et al. [146]. Solution to Poisson’s equation is often
undertaken using the method of Green’s functions, which we shall address later in this
section. We shall also consider the solution to Laplace’s equation for bodies immersed in
an applied, or “impressed,” field.

Uniqueness of solution to Poisson’s equation. Before attempting any solutions,
we must ask two very important questions. How do we know that solving the second-order
differential equation produces the same values for E = −∇� as solving the first-order
equations directly for E? And, if these solutions are the same, what are the conditions
for uniqueness of solution to Poisson’s and Laplace’s equations? To answer the first
question, a sufficient condition is to have � twice differentiable. We shall not attempt to
prove this, but shall instead show that the condition for uniqueness of the second-order
equations is the same as that for the first-order equations.

Consider a region of space V surrounded by a surface S. Static charge may be located
entirely or partially within V , or entirely outside V , and produces a field within V . This
region may also contain any arrangement of conductors or other materials. Now, assume
that �1 and �2 represent solutions to the static field equations within V with source
ρ(r). We wish to find conditions under which �1 = �2.

Since we have

∇ · [ε(r)∇�1(r)] = −ρ(r), ∇ · [ε(r)∇�2(r)] = −ρ(r),

the difference field �0 = �2 − �1 obeys

∇ · [ε(r)∇�0(r)] = 0. (3.51)

That is, �0 obeys Laplace’s equation. Now consider the quantity

∇ · (ε�0∇�0) = ε|∇�0|2 + �0∇ · (ε∇�0).

Integration over V and use of the divergence theorem and (3.51) gives
∮

S
�0(r) [ε(r)∇�0(r)] · dS =

∫
V

ε(r)|∇�0(r)|2 dV .

As with the first order equations, we see that specifying either �(r) or ε(r)∇�(r) · n̂ over
S results in �0(r) = 0 throughout V , hence �1 = �2. As before, specifying ε(r)∇�(r) · n̂
for a conducting surface is equivalent to specifying the surface charge on S.

Integral solution to Poisson’s equation: the static Green’s function. The
method of Green’s functions is one of the most useful techniques for solving Poisson’s
equation. We seek a solution for a single point source, then use Green’s second identity
to write the solution for an arbitrary charge distribution in terms of a superposition
integral.

We seek the solution to Poisson’s equation for a region of space V as shown in Figure
3.5. The region is assumed homogeneous with permittivity ε, and its surface is multiply-
connected, consisting of a bounding surface SB and any number of closed surfaces internal
to V . We denote by S the composite surface consisting of SB and the N internal surfaces
Sn, n = 1, . . . , N . The internal surfaces are used to exclude material bodies, such as the



Figure 3.5: Computation of potential from known sources and values on bounding sur-
faces.

plates of a capacitor, which may be charged and on which the potential is assumed
to be known. To solve for �(r) within V we must know the potential produced by a
point source. This potential, called the Green’s function, is denoted G(r|r′); it has two
arguments because it satisfies Poisson’s equation at r when the source is located at r′:

∇2G(r|r′) = −δ(r − r′). (3.52)

Later we shall demonstrate that in all cases of interest to us the Green’s function is
symmetric in its arguments:

G(r′|r) = G(r|r′). (3.53)

This property of G is known as reciprocity.
Our development rests on the mathematical result (B.30) known as Green’s second

identity. We can derive this by subtracting the identities

∇ · (φ∇ψ) = φ∇ · (∇ψ) + (∇φ) · (∇ψ),

∇ · (ψ∇φ) = ψ∇ · (∇φ) + (∇ψ) · (∇φ),

to obtain

∇ · (φ∇ψ − ψ∇φ) = φ∇2ψ − ψ∇2φ.

Integrating this over a volume region V with respect to the dummy variable r′ and using
the divergence theorem, we obtain∫

V
[φ(r′)∇′2ψ(r′) − ψ(r′)∇′2φ(r′)] dV ′ = −

∮
S
[φ(r′)∇′ψ(r′) − ψ(r′)∇′φ(r′)] · dS′.

The negative sign on the right-hand side occurs because n̂ is an inward normal to V .
Finally, since ∂ψ(r′)/∂n′ = n̂′ · ∇′ψ(r′), we have∫

V
[φ(r′)∇′2ψ(r′) − ψ(r′)∇′2φ(r′)] dV ′ = −

∮
S

[
φ(r′)

∂ψ(r′)
∂n′ − ψ(r′)

∂φ(r′)
∂n′

]
d S′



as desired.
To solve for � in V we shall make some seemingly unmotivated substitutions into this

identity. First note that by (3.52) and (3.53) we can write

∇′2G(r|r′) = −δ(r′ − r). (3.54)

We now set φ(r′) = �(r′) and ψ(r′) = G(r|r′) to obtain∫
V

[�(r′)∇′2G(r|r′) − G(r|r′)∇′2�(r′)] dV ′ =

−
∮

S

[
�(r′)

∂G(r|r′)
∂n′ − G(r|r′)

∂�(r′)
∂n′

]
d S′, (3.55)

hence∫
V

[
�(r′)δ(r′ − r) − G(r|r′)

ρ(r′)
ε

]
dV ′ =

∮
S

[
�(r′)

∂G(r|r′)
∂n′ − G(r|r′)

∂�(r′)
∂n′

]
d S′.

By the sifting property of the Dirac delta

�(r) =
∫

V
G(r|r′)

ρ(r′)
ε

dV ′ +
∮

SB

[
�(r′)

∂G(r|r′)
∂n′ − G(r|r′)

∂�(r′)
∂n′

]
d S′ +

+
N∑

n=1

∮
Sn

[
�(r′)

∂G(r|r′)
∂n′ − G(r|r′)

∂�(r′)
∂n′

]
d S′. (3.56)

With this we may compute the potential anywhere within V in terms of the charge
density within V and the values of the potential and its normal derivative over S. We
must simply determine G(r|r′) first.

Let us take a moment to specialize (3.56) to the case of unbounded space. Provided
that the sources are of finite extent, as SB → ∞ we shall find that

�(r) =
∫

V
G(r|r′)

ρ(r′)
ε

dV ′ +
N∑

n=1

∮
Sn

[
�(r′)

∂G(r|r′)
∂n′ − G(r|r′)

∂�(r′)
∂n′

]
d S′.

A useful derivative identity. Many differential operations on the displacement vector
R = r − r′ occur in the study of electromagnetics. The identities

∇ R = −∇′ R = R̂, ∇
(

1

R

)
= −∇′

(
1

R

)
= − R̂

R2
, (3.57)

for example, follow from direct differentiation of the rectangular coordinate representa-
tion

R = x̂(x − x ′) + ŷ(y − y′) + ẑ(z − z′).

The identity

∇2

(
1

R

)
= −4πδ(r − r′), (3.58)

crucial to potential theory, is more difficult to establish. We shall prove the equivalent
version

∇′2
(

1

R

)
= −4πδ(r′ − r)



Figure 3.6: Geometry for establishing the singular property of ∇2(1/R).

by showing that
∫

V
f (r′)∇′2

(
1

R

)
dV ′ =

{
−4π f (r), r ∈ V,

0, r /∈ V,
(3.59)

holds for any continuous function f (r). By direct differentiation we have

∇′2
(

1

R

)
= 0 for r′ �= r,

hence the second part of (3.59) is established. This also shows that if r ∈ V then the
domain of integration in (3.59) can be restricted to a sphere of arbitrarily small radius
ε centered at r (Figure 3.6). The result we seek is found in the limit as ε → 0. Thus we
are interested in computing∫

V
f (r′)∇′2

(
1

R

)
dV ′ = lim

ε→0

∫
Vε

f (r′)∇′2
(

1

R

)
dV ′.

Since f is continuous at r′ = r, we have by the mean value theorem∫
V

f (r′)∇′2
(

1

R

)
dV ′ = f (r) lim

ε→0

∫
Vε

∇′2
(

1

R

)
dV ′.

The integral over Vε can be computed using ∇′2(1/R) = ∇′ · ∇′(1/R) and the divergence
theorem: ∫

Vε

∇′2
(

1

R

)
dV ′ =

∫
Sε

n̂′ · ∇′
(

1

R

)
d S′,

where Sε bounds Vε. Noting that n̂′ = −R̂, using (57), and writing the integral in
spherical coordinates (ε, θ, φ) centered at the point r, we have

∫
V

f (r′)∇′2
(

1

R

)
dV ′ = f (r) lim

ε→0

∫ 2π

0

∫ π

0
−R̂ ·

(
R̂
ε2

)
ε2 sin θ dθ dφ = −4π f (r).

Hence the first part of (3.59) is also established.

The Green’s function for unbounded space. In view of (3.58), one solution to
(3.52) is

G(r|r′) = 1

4π |r − r′| . (3.60)



This simple Green’s function is generally used to find the potential produced by charge
in unbounded space. Here N = 0 (no internal surfaces) and SB → ∞. Thus

�(r) =
∫

V
G(r|r′)

ρ(r′)
ε

dV ′ + lim
SB→∞

∮
SB

[
�(r′)

∂G(r|r′)
∂n′ − G(r|r′)

∂�(r′)
∂n′

]
d S′.

We have seen that the Green’s function varies inversely with distance from the source,
and thus expect that, as a superposition of point-source potentials, �(r) will also vary
inversely with distance from a source of finite extent as that distance becomes large with
respect to the size of the source. The normal derivatives then vary inversely with distance
squared. Thus, each term in the surface integrand will vary inversely with distance cubed,
while the surface area itself varies with distance squared. The result is that the surface
integral vanishes as the surface recedes to infinity, giving

�(r) =
∫

V
G(r|r′)

ρ(r′)
ε

dV ′.

By (3.60) we then have

�(r) = 1

4πε

∫
V

ρ(r′)
|r − r′| dV ′ (3.61)

where the integration is performed over all of space. Since

lim
r→∞ �(r) = 0,

points at infinity are a convenient reference for the absolute potential.
Later we shall need to know the amount of work required to move a charge Q from

infinity to a point P located at r. If a potential field is produced by charge located in
unbounded space, moving an additional charge into position requires the work

W21 = −Q
∫ P

∞
E · dl = Q[�(r) − �(∞)] = Q�(r). (3.62)

Coulomb’s law. We can obtain E from (61) by direct differentiation. We have

E(r) = − 1

4πε
∇

∫
V

ρ(r′)
|r − r′| dV ′ = − 1

4πε

∫
V

ρ(r′)∇
(

1

|r − r′|
)

dV ′,

hence

E(r) = 1

4πε

∫
V

ρ(r′)
r − r′

|r − r′|3 dV ′ (3.63)

by (3.57). So Coulomb’s law follows from the two fundamental postulates of electrostatics
(3.5) and (3.6).

Green’s function for unbounded space: two dimensions. We define the two-
dimensional Green’s function as the potential at a point r = ρ + ẑz produced by a
z-directed line source of constant density located at r′ = ρ′. Perhaps the simplest way
to compute this is to first find E produced by a line source on the z-axis. By (3.63) we
have

E(r) = 1

4πε

∫
�

ρl(z
′)

r − r′

|r − r′|3 dl ′.



Then, since r = ẑz + ρ̂ρ, r′ = ẑz′, and dl ′ = dz′, we have

E(ρ) = ρl

4πε

∫ ∞

−∞

ρ̂ρ + ẑ(z − z′)[
ρ2 + (z − z′)2

]3/2 dz′.

Carrying out the integration we find that E has only a ρ-component which varies only
with ρ:

E(ρ) = ρ̂
ρl

2περ
. (3.64)

The absolute potential referred to a radius ρ0 can be found by computing the line integral
of E from ρ to ρ0:

�(ρ) = − ρl

2πε

∫ ρ

ρ0

dρ ′

ρ ′ = ρl

2πε
ln

(
ρ0

ρ

)
.

We may choose any reference point ρ0 except ρ0 = 0 or ρ0 = ∞. This choice is equivalent
to the addition of an arbitrary constant, hence we can also write

�(ρ) = ρl

2πε
ln

(
1

ρ

)
+ C. (3.65)

The potential for a general two-dimensional charge distribution in unbounded space is
by superposition

�(ρ) =
∫

ST

ρT (ρ′)
ε

G(ρ|ρ′) d S′, (3.66)

where the Green’s function is the potential of a unit line source located at ρ′:

G(ρ|ρ′) = 1

2π
ln

(
ρ0

|ρ − ρ′|
)

. (3.67)

Here ST denotes the transverse (xy) plane, and ρT denotes the two-dimensional charge
distribution (C/m2) within that plane.

We note that the potential field (3.66) of a two-dimensional source decreases logarith-
mically with distance. Only the potential produced by a source of finite extent decreases
inversely with distance.

Dirichlet and Neumann Green’s functions. The unbounded space Green’s func-
tion may be inconvenient for expressing the potential in a region having internal surfaces.
In fact, (3.56) shows that to use this function we would be forced to specify both � and its
normal derivative over all surfaces. This, of course, would exceed the actual requirements
for uniqueness.

Many functions can satisfy (3.52). For instance,

G(r|r′) = A

|r − r′| + B

|r − ri | (3.68)

satisfies (3.52) if ri /∈ V . Evaluation of (3.55) with the Green’s function (3.68) repro-
duces the general formulation (3.56) since the Laplacian of the second term in (3.68) is
identically zero in V . In fact, we can add any function to the free-space Green’s function,
provided that the additional term obeys Laplace’s equation within V :

G(r|r′) = A

|r − r′| + F(r|r′), ∇′2 F(r|r′) = 0. (3.69)



A good choice for G(r|r′) will minimize the effort required to evaluate �(r). Examining
(3.56) we notice two possibilities. If we demand that

G(r|r′) = 0 for all r′ ∈ S (3.70)

then the surface integral terms in (3.56) involving ∂�/∂n′ will vanish. The Green’s
function satisfying (3.70) is known as the Dirichlet Green’s function. Let us designate it
by G D and use reciprocity to write (3.70) as

G D(r|r′) = 0 for all r ∈ S.

The resulting specialization of (3.56),

�(r) =
∫

V
G D(r|r′)

ρ(r′)
ε

dV ′ +
∮

SB

�(r′)
∂G D(r|r′)

∂n′ d S′ +

+
N∑

n=1

∮
Sn

�(r′)
∂G D(r|r′)

∂n′ d S′, (3.71)

requires the specification of � (but not its normal derivative) over the boundary surfaces.
In case SB and Sn surround and are adjacent to perfect conductors, the Dirichlet bound-
ary condition has an important physical meaning. The corresponding Green’s function is
the potential at point r produced by a point source at r′ in the presence of the conductors
when the conductors are grounded — i.e., held at zero potential. Then we must specify
the actual constant potentials on the conductors to determine � everywhere within V
using (3.71). The additional term F(r|r′) in (3.69) accounts for the potential produced
by surface charges on the grounded conductors.

By analogy with (3.70) it is tempting to try to define another electrostatic Green’s
function according to

∂G(r|r′)
∂n′ = 0 for all r′ ∈ S. (3.72)

But this choice is not permissible if V is a finite-sized region. Let us integrate (3.54) over
V and employ the divergence theorem and the sifting property to get

∮
S

∂G(r|r′)
∂n′ d S′ = −1; (3.73)

in conjunction with this, equation (3.72) would imply the false statement 0 = −1. Sup-
pose instead that we introduce a Green’s function according to

∂G(r|r′)
∂n′ = − 1

A
for all r′ ∈ S. (3.74)

where A is the total area of S. This choice avoids a contradiction in (3.73); it does not
nullify any terms in (3.56), but does reduce the surface integral terms involving � to
constants. Taken together, these terms all comprise a single additive constant on the
right-hand side; although the corresponding potential �(r) is thereby determined only
to within this additive constant, the value of E(r) = −∇�(r) will be unaffected. By
reciprocity we can rewrite (3.74) as

∂G N (r|r′)
∂n

= − 1

A
for all r ∈ S. (3.75)



The Green’s function G N so defined is known as the Neumann Green’s function. Observe
that if V is not finite-sized then A → ∞ and according to (3.74) the choice (3.72) becomes
allowable.

Finding the Green’s function that obeys one of the boundary conditions for a given
geometry is often a difficult task. Nevertheless, certain canonical geometries make the
Green’s function approach straightforward and simple. Such is the case in image theory,
when a charge is located near a simple conducting body such as a ground screen or
a sphere. In these cases the function F(r|r′) consists of a single correction term as in
(3.68). We shall consider these simple cases in examples to follow.

Reciprocity of the static Green’s function. It remains to show that

G(r|r′) = G(r′|r)
for any of the Green’s functions introduced above. The unbounded-space Green’s function
is reciprocal by inspection; |r − r′| is unaffected by interchanging r and r′. However, we
can give a more general treatment covering this case as well as the Dirichlet and Neumann
cases. We begin with

∇2G(r|r′) = −δ(r − r′).

In Green’s second identity let

φ(r) = G(r|ra), ψ(r) = G(r|rb),

where ra and rb are arbitrary points, and integrate over the unprimed coordinates. We
have ∫

V
[G(r|ra)∇2G(r|rb) − G(r|rb)∇2G(r|ra)] dV =

−
∮

S

[
G(r|ra)

∂G(r|rb)

∂n
− G(r|rb)

∂G(r|ra)

∂n

]
d S.

If G is the unbounded-space Green’s function, the surface integral must vanish since
SB → ∞. It must also vanish under Dirichlet or Neumann boundary conditions. Since

∇2G(r|ra) = −δ(r − ra), ∇2G(r|rb) = −δ(r − rb),

we have ∫
V

[G(r|ra)δ(r − rb) − G(r|rb)δ(r − ra)] dV = 0,

hence

G(rb|ra) = G(ra|rb)

by the sifting property. By the arbitrariness of ra and rb, reciprocity is established.

Electrostatic shielding. The Dirichlet Green’s function can be used to explain elec-
trostatic shielding. We consider a closed, grounded, conducting shell with charge outside
but not inside (Figure 3.7). By (3.71) the potential at points inside the shell is

�(r) =
∮

SB

�(r′)
∂G D(r|r′)

∂n′ d S′,



Figure 3.7: Electrostatic shielding by a conducting shell.

where SB is tangential to the inner surface of the shell and we have used ρ = 0 within
the shell. Because �(r′) = 0 for all r′ on SB , we have

�(r) = 0

everywhere in the region enclosed by the shell. This result is independent of the charge
outside the shell, and the interior region is “shielded” from the effects of that charge.

Conversely, consider a grounded conducting shell with charge contained inside. If we
surround the outside of the shell by a surface S1 and let SB recede to infinity, then (3.71)
becomes

�(r) = lim
SB→∞

∮
SB

�(r′)
∂G D(r|r′)

∂n′ d S′ +
∮

S1

�(r′)
∂G D(r|r′)

∂n′ d S′.

Again there is no charge in V (since the charge lies completely inside the shell). The
contribution from SB vanishes. Since S1 lies adjacent to the outer surface of the shell,
�(r′) ≡ 0 on S1. Thus �(r) = 0 for all points outside the conducting shell.

Example solution to Poisson’s equation: planar layered media. For simple
geometries Poisson’s equation may be solved as part of a boundary value problem (§ A.4).
Occasionally such a solution has an appealing interpretation as the superposition of
potentials produced by the physical charge and its “images.” We shall consider here the
case of planar media and subsequently use the results to predict the potential produced
by charge near a conducting sphere.

Consider a layered dielectric medium where various regions of space are separated by
planes at constant values of z. Material region i occupies volume region Vi and has
permittivity εi ; it may or may not contain source charge. The solution to Poisson’s
equation is given by (3.56). The contribution

�p(r) =
∫

V
G(r|r′)

ρ(r′)
ε

dV ′

produced by sources within V is known as the primary potential. The term

�s(r) =
∮

S

[
�(r′)

∂G(r|r′)
∂n′ − G(r|r′)

∂�(r′)
∂n′

]
d S′,



on the other hand, involves an integral over the surface fields and is known as the sec-
ondary potential . This term is linked to effects outside V . Since the “sources” of �s

(i.e., the surface fields) lie on the boundary of V , �s satisfies Laplace’s equation within
V . We may therefore use other, more convenient, representations of �s provided they
satisfy Laplace’s equation. However, as solutions to a homogeneous equation they are of
indefinite form until linked to appropriate boundary values.

Since the geometry is invariant in the x and y directions, we represent each potential
function in terms of a 2-D Fourier transform over these variables. We leave the z depen-
dence intact so that we may apply boundary conditions directly in the spatial domain.
The transform representations of the Green’s functions for the primary and secondary
potentials are derived in Appendix A. From (A.55) we see that the primary potential
within region Vi can be written as

�
p
i (r) =

∫
Vi

G p(r|r′)
ρ(r′)
εi

dV ′ (3.76)

where

G p(r|r′) = 1

4π |r − r′| = 1

(2π)2

∫ ∞

−∞

e−kρ |z−z′|

2kρ

e jkρ ·(r−r′) d2kρ (3.77)

is the primary Green’s function with kρ = x̂kx + ŷky , kρ = |kρ |, and d2kρ = dkx dky .
We also find in (A.56) that a solution of Laplace’s equation can be written as

�s(r) = 1

(2π)2

∫ ∞

−∞

[
A(kρ)e

kρ z + B(kρ)e
−kρ z

]
e jkρ ·r d2kρ (3.78)

where A(kρ) and B(kρ) must be found by the application of appropriate boundary con-
ditions.

As a simple example, consider a charge distribution ρ(r) in free space above a grounded
conducting plane located at z = 0. We wish to find the potential in the region z > 0
using the Fourier transform representation of the potentials. The total potential is a sum
of primary and secondary terms:

�(x, y, z) =
∫

V

[
1

(2π)2

∫ ∞

−∞

e−kρ |z−z′|

2kρ

e jkρ ·(r−r′) d2kρ

]
ρ(r′)
ε0

dV ′ +

+ 1

(2π)2

∫ ∞

−∞

[
B(kρ)e

−kρ z
]

e jkρ ·r d2kρ,

where the integral is over the region z > 0. Here we have set A(kρ) = 0 because ekρ z

grows with increasing z. Since the plane is grounded we must have �(x, y, 0) = 0.
Because z < z′ when we apply this condition, we have |z − z′| = z′ − z and thus

�(x, y, 0) = 1

(2π)2

∫ ∞

−∞

[∫
V

ρ(r′)
ε0

e−kρ z′

2kρ

e− jkρ ·r′
dV ′ + B(kρ)

]
e jkρ ·r d2kρ = 0.

Invoking the Fourier integral theorem we find

B(kρ) = −
∫

V

ρ(r′)
ε0

e−kρ z′

2kρ

e− jkρ ·r′
dV ′,



Figure 3.8: Construction of electrostatic Green’s function for a ground plane.

hence the total potential is

�(x, y, z) =
∫

V

[
1

(2π)2

∫ ∞

−∞

e−kρ |z−z′| − e−kρ(z+z′)

2kρ

e jkρ ·(r−r′) d2kρ

]
ρ(r′)
ε0

dV ′

=
∫

V
G(r|r′)

ρ(r′)
ε0

dV ′

where G(r|r′) is the Green’s function for the region above a grounded planar conductor.
We can interpret this Green’s function as a sum of the primary Green’s function (3.77)
and a secondary Green’s function

Gs(r|r′) = − 1

(2π)2

∫ ∞

−∞

e−kρ(z+z′)

2kρ

e jkρ ·(r−r′) d2kρ. (3.79)

For z > 0 the term z + z′ can be replaced by |z + z′|. Then, comparing (3.79) with (3.77),
we see that

Gs(r | x ′, y′, z′) = −G p(r | x ′, y′, −z′) = − 1

4π |r − r′
i |

(3.80)

where r′
i = x̂x ′ + ŷy′ − ẑz′. Because the Green’s function is the potential of a point charge,

we may interpret the secondary Green’s function as produced by a negative unit charge
placed in a position −z ′ immediately beneath the positive unit charge that produces G p

(Figure 3.8). This secondary charge is the “image” of the primary charge. That two such
charges would produce a null potential on the ground plane is easily verified.

As a more involved example, consider a charge distribution ρ(r) above a planar in-
terface separating two homogeneous dielectric media. Region 1 occupies z > 0 and has
permittivity ε1, while region 2 occupies z < 0 and has permittivity ε2. In region 1 we
can write the total potential as a sum of primary and secondary components, discarding
the term that grows with z:

�1(x, y, z) =
∫

V

[
1

(2π)2

∫ ∞

−∞

e−kρ |z−z′|

2kρ

e jkρ ·(r−r′) d2kρ

]
ρ(r′)
ε1

dV ′ +

+ 1

(2π)2

∫ ∞

−∞

[
B(kρ)e

−kρ z
]

e jkρ ·r d2kρ. (3.81)

With no source in region 2, the potential there must obey Laplace’s equation and there-
fore consists of only a secondary component:

�2(r) = 1

(2π)2

∫ ∞

−∞

[
A(kρ)e

kρ z
]

e jkρ ·r d2kρ. (3.82)



To determine A and B we impose (3.36) and (3.37). By (3.36) we have

1

(2π)2

∫ ∞

−∞

[∫
V

ρ(r′)
ε1

e−kρ z′

2kρ

e− jkρ ·r′
dV ′ + B(kρ) − A(kρ)

]
e jkρ ·r d2kρ = 0,

hence
∫

V

ρ(r′)
ε1

e−kρ z′

2kρ

e− jkρ ·r′
dV ′ + B(kρ) − A(kρ) = 0

by the Fourier integral theorem. Applying (3.37) at z = 0 with n̂12 = ẑ, and noting that
there is no excess surface charge, we find

∫
V

ρ(r′)
e−kρ z′

2kρ

e− jkρ ·r′
dV ′ − ε1 B(kρ) − ε2 A(kρ) = 0.

The solutions

A(kρ) = 2ε1

ε1 + ε2

∫
V

ρ(r′)
ε1

e−kρ z′

2kρ

e− jkρ ·r′
dV ′,

B(kρ) = ε1 − ε2

ε1 + ε2

∫
V

ρ(r′)
ε1

e−kρ z′

2kρ

e− jkρ ·r′
dV ′,

are then substituted into (3.81) and (3.82) to give

�1(r) =
∫

V

[
1

(2π)2

∫ ∞

−∞

e−kρ |z−z′| + ε1−ε2
ε1+ε2

e−kρ(z+z′)

2kρ

e jkρ ·(r−r′) d2kρ

]
ρ(r′)
ε1

dV ′

=
∫

V
G1(r|r′)

ρ(r′)
ε1

dV ′,

�2(r) =
∫

V

[
1

(2π)2

∫ ∞

−∞

2ε2

ε1 + ε2

e−kρ(z′−z)

2kρ

e jkρ ·(r−r′) d2kρ

]
ρ(r′)
ε2

dV ′

=
∫

V
G2(r|r′)

ρ(r′)
ε2

dV ′.

Since z′ > z for all points in region 2, we can replace z′ − z by |z − z′| in the formula for
�2.

As with the previous example, let us compare the result to the form of the primary
Green’s function (3.77). We see that

G1(r|r′) = 1

4π |r − r′| + ε1 − ε2

ε1 + ε2

1

4π |r − r′
1|

,

G2(r|r′) = 2ε2

ε1 + ε2

1

4π |r − r′
2|

,

where r′
1 = x̂x ′ + ŷy′ − ẑz′ and r′

2 = x̂x ′ + ŷy′ + ẑz′. So we can also write

�1(r) = 1

4π

∫
V

[
1

|r − r′| + ε1 − ε2

ε1 + ε2

1

|r − r′
1|

]
ρ(r′)
ε1

dV ′,

�2(r) = 1

4π

∫
V

[
2ε2

ε1 + ε2

1

|r − r′
2|

]
ρ(r′)
ε2

dV ′.



Figure 3.9: Green’s function for a grounded conducting sphere.

Note that �2 → �1 as ε2 → ε1.
There is an image interpretation for the secondary Green’s functions. The secondary

Green’s function for region 1 appears as a potential produced by an image of the primary
charge located at −z′ in an infinite medium of permittivity ε1, and with an amplitude of
(ε1 −ε2)/(ε1 +ε2) times the primary charge. The Green’s function in region 2 is produced
by an image charge located at z′ (i.e., at the location of the primary charge) in an infinite
medium of permittivity ε2 with an amplitude of 2ε2/(ε1 + ε2) times the primary charge.

Example solution to Poisson’s equation: conducting sphere. As an example
involving a nonplanar geometry, consider the potential produced by a source near a
grounded conducting sphere in free space (Figure 3.9). Based on our experience with
planar layered media, we hypothesize that the secondary potential will be produced by
an image charge; hence we try the simple Green’s function

Gs(r|r′) = A(r′)
4π |r − r′

i |
where the amplitude A and location r′

i of the image are to be determined. We further
assume, based on our experience with planar problems, that the image charge will reside
inside the sphere along a line joining the origin to the primary charge. Since r = ar̂ for
all points on the sphere, the total Green’s function must obey the Dirichlet condition

G(r|r′)|r=a = 1

4π |r − r′|
∣∣∣∣
r=a

+ A(r′)
4π |r − r′

i |
∣∣∣∣
r=a

= 1

4π |ar̂ − r ′r̂′| + A(r′)
4π |ar̂ − r ′

i r̂′| = 0

in order to have the potential, given by (3.56), vanish on the sphere surface. Factoring a
from the first denominator and r ′

i from the second we obtain

1

4πa|r̂ − r ′
a r̂′| + A(r′)

4πr ′
i | a

r ′
i
r̂ − r̂′| = 0.

Now |kr̂ − k ′r̂′| = k2 + k ′2 − 2kk ′ cos γ where γ is the angle between r̂ and r̂′ and k, k ′

are constants; this means that |kr̂ − r̂′| = |r̂ − kr̂′|. Hence as long as we choose

r ′

a
= a

r ′
i

,
A

r ′
i

= −1

a
,

the total Green’s function vanishes everywhere on the surface of the sphere. The image
charge is therefore located within the sphere at r′

i = a2r′/r ′2 and has amplitude A =



−a/r ′. (Note that both the location and amplitude of the image depend on the location
of the primary charge.) With this Green’s function and (3.71), the potential of an
arbitrary source placed near a grounded conducting sphere is

�(r) =
∫

V

ρ(r′)
ε

1

4π

[
1

|r − r′| − a/r ′

|r − a2

r ′2 r′|

]
dV ′.

The Green’s function may be used to compute the surface charge density induced on
the sphere by a unit point charge: it is merely necessary to find the normal component of
electric field from the gradient of �(r). We leave this as an exercise for the reader, who
may then integrate the surface charge and thereby show that the total charge induced
on the sphere is equal to the image charge. So the total charge induced on a grounded
sphere by a point charge q at a point r = r ′ is Q = −qa/r ′.

It is possible to find the total charge induced on the sphere without finding the image
charge first. This is an application of Green’s reciprocation theorem (§ 3.4.4). According
to (3.211), if we can find the potential VP at a point r produced by the sphere when it is
isolated and carrying a total charge Q0, then the total charge Q induced on the grounded
sphere in the vicinity of a point charge q placed at r is given by

Q = −qVP/V1

where V1 is the potential of the isolated sphere. We can apply this formula by noting that
an isolated sphere carrying charge Q0 produces a field E(r) = r̂Q0/4πεr2. Integration
from a radius r to infinity gives the potential referred to infinity: �(r) = Q0/4πεr. So
the potential of the isolated sphere is V1 = Q0/4πεa, while the potential at radius r ′ is
VP = Q0/4πεr ′. Substitution gives Q = −qa/r ′ as before.

3.2.5 Force and energy

Maxwell’s stress tensor. The electrostatic version of Maxwell’s stress tensor can be
obtained from (2.288) by setting B = H = 0:

T̄e = 1

2
(D · E)Ī − DE. (3.83)

The total electric force on the charges in a region V bounded by the surface S is given
by the relation

Fe = −
∮

S
T̄e · dS =

∫
V

fe dV

where fe = ρE is the electric force volume density.
In particular, suppose that S is adjacent to a solid conducting body embedded in a

dielectric having permittivity ε(r). Since all the charge is at the surface of the conductor,
the force within V acts directly on the surface. Thus, −T̄e · n̂ is the surface force density
(traction) t. Using D = εE, and remembering that the fields are normal to the conductor,
we find that

T̄e · n̂ = 1

2
εE2

n n̂ − εEE · n̂ = −1

2
εE2

n n̂ = −1

2
ρsE.

The surface force density is perpendicular to the surface.
As a simple but interesting example, consider the force acting on a rigid conducting

sphere of radius a carrying total charge Q in a homogeneous medium. At equilibrium



the charge is distributed uniformly with surface density ρs = Q/4πa2, producing a field
E = r̂Q/4πεr2 external to the sphere. Hence a force density

t = 1

2
r̂

Q2

ε(4πa2)2

acts at each point on the surface. This would cause the sphere to expand outward if the
structural integrity of the material were to fail. Integration over the entire sphere yields

F = 1

2

Q2

ε(4πa2)2

∫
S

r̂ d S = 0.

However, integration of t over the upper hemisphere yields

F = 1

2

Q2

ε(4πa2)2

∫ 2π

0

∫ π/2

0
r̂a2 sin θ dθ dφ.

Substitution of r̂ = x̂ sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ leads immediately to Fx = Fy = 0,
but the z-component is

Fz = 1

2

Q2

ε(4πa2)2

∫ 2π

0

∫ π/2

0
a2 cos θ sin θ dθ dφ = Q2

32επa2
.

This result can also be obtained by integrating −T̄e · n̂ over the entire xy-plane with
n̂ = −ẑ. Since −T̄e · (−ẑ) = ẑ ε

2 E · E we have

F = ẑ
1

2

Q2

(4πε)2

∫ 2π

0

∫ ∞

a

r dr dφ

r4
= ẑ

Q2

32επa2
.

As a more challenging example, consider two identical line charges parallel to the z-
axis and located at x = ±d/2, y = 0 in free space. We can find the force on one line
charge due to the other by integrating Maxwell’s stress tensor over the yz-plane. From
(3.64) we find that the total electric field on the yz-plane is

E(y, z) = y

y2 + (d/2)2

ρl

πε0
ŷ

where ρl is the line charge density. The force density for either line charge is −T̄e · n̂,
where we use n̂ = ±x̂ to obtain the force on the charge at x = ∓d/2. The force density
for the charge at x = −d/2 is

T̄e · n̂ = 1

2
(D · E)Ī · x̂ − DE · x̂ = ε0

2

[
y

y2 + (d/2)2

ρl

πε0

]2

x̂

and the total force is

F− = −
∫ ∞

−∞

∫ ∞

−∞

ρ2
l

2π2ε0

y2

[
y2 + (d/2)2

]2 x̂ dy dz.

On a per unit length basis the force is

F−
l

= −x̂
ρ2

l

2π2ε0

∫ ∞

−∞

y2

[y2 + (d/2)2]2
dy = −x̂

ρ2
l

2πdε0
.

Note that the force is repulsive as expected.



Figure 3.10: Computation of electrostatic stored energy via the assembly energy of a
charge distribution.

Electrostatic stored energy. In § 2.9.5 we considered the energy relations for the
electromagnetic field. Those relations remain valid in the static case. Since our interpre-
tation of the dynamic relations was guided in part by our knowledge of the energy stored
in a static field, we must, for completeness, carry out a study of that effect here.

The energy of a static configuration is taken to be the work required to assemble the
configuration from a chosen starting point. For a configuration of static charges, the
stored electric energy is the energy required to assemble the configuration, starting with
all charges removed to infinite distance (the assumed zero potential reference). If the
assembled charges are not held in place by an external mechanical force they will move,
thereby converting stored electric energy into other forms of energy (e.g., kinetic energy
and radiation).

By (3.62), the work required to move a point charge q from a reservoir at infinity to
a point P at r in a potential field � is

W = q�(r).

If instead we have a continuous charge density ρ present, and wish to increase this to
ρ + δρ by bringing in a small quantity of charge δρ, a total work

δW =
∫

V∞
δρ(r)�(r) dV (3.84)

is required, and the potential field is increased to � + δ�. Here V∞ denotes all of space.
(We could restrict the integral to the region containing the charge, but we shall find it
helpful to extend the domain of integration to all of space.)

Now consider the situation shown in Figure 3.10. Here we have charge in the form of
both volume densities and surface densities on conducting bodies. Also present may be
linear material bodies. We can think of assembling the charge in two distinctly different



ways. We could, for instance, bring small portions of charge (or point charges) together
to form the distribution ρ. Or, we could slowly build up ρ by adding infinitesimal, but
spatially identical, distributions. That is, we can create the distribution ρ from a zero
initial state by repeatedly adding a charge distribution

δρ(r) = ρ(r)/N ,

where N is a large number. Whenever we add δρ we must perform the work given by
(3.84), but we also increase the potential proportionately (remembering that all materials
are assumed linear). At each step, more work is required. The total work is

W =
N∑

n=1

∫
V∞

δρ(r)[(n − 1)δ�(r)] dV =
[

N∑
n=1

(n − 1)

] ∫
V∞

ρ(r)
N

�(r)
N

dV . (3.85)

We must use an infinite number of steps so that no energy is lost to radiation at any step
(since the charge we add each time is infinitesimally small). Using

N∑
n=1

(n − 1) = N (N − 1)/2,

(3.85) becomes

W = 1

2

∫
V∞

ρ(r)�(r) dV (3.86)

as N → ∞. Finally, since some assembled charge will be in the form of a volume density
and some in the form of the surface density on conductors, we can generalize (3.86) to

W = 1

2

∫
V ′

ρ(r)�(r) dV + 1

2

I∑
i=1

Qi Vi . (3.87)

Here V ′ is the region outside the conductors, Qi is the total charge on the ith conductor
(i = 1, . . . , I ), and Vi is the absolute potential (referred to infinity) of the ith conductor.

An intriguing property of electrostatic energy is that the charges on the conductors
will arrange themselves, while seeking static equilibrium, into a minimum-energy config-
uration (Thomson’s theorem).

In keeping with our field-centered view of electromagnetics, we now wish to write the
energy (3.86) entirely in terms of the field vectors E and D. Since ρ = ∇ · D we have

W = 1

2

∫
V∞

[∇ · D(r)]�(r) dV .

Then, by (B.42),

W = 1

2

∫
V∞

∇ · [�(r)D(r)] dV − 1

2

∫
V∞

D(r) · [∇�(r)] dV .

Use of the divergence theorem and (3.30) leads to

W = 1

2

∮
S∞

�(r)D(r) · dS + 1

2

∫
V∞

D(r) · E(r) dV



Figure 3.11: Multipole expansion.

where S∞ is the bounding surface that recedes toward infinity to encompass all of space.
Because � ∼ 1/r and D ∼ 1/r2 as r → ∞, the integral over S∞ tends to zero and

W = 1

2

∫
V∞

D(r) · E(r) dV . (3.88)

Hence we may compute the assembly energy in terms of the fields supported by the
charge ρ.

It is significant that the assembly energy W is identical to the term within the time
derivative in Poynting’s theorem (2.299). Hence our earlier interpretation, that this term
represents the time-rate of change of energy “stored” in the electric field, has a firm basis.
Of course, the assembly energy is a static concept, and our generalization to dynamic
fields is purely intuitive. We also face similar questions regarding the meaning of energy
density, and whether energy can be “localized” in space. The discussions in § 2.9.5 still
apply.

3.2.6 Multipole expansion

Consider an arbitrary but spatially localized charge distribution of total charge Q
in an unbounded homogeneous medium (Figure 3.11). We have already obtained the
potential (3.61) of the source; as we move the observation point away, � should decrease
in a manner roughly proportional to 1/r . The actual variation depends on the nature
of the charge distribution and can be complicated. Often this dependence is dominated
by a specific inverse power of distance for observation points far from the source, and we
can investigate it by expanding the potential in powers of 1/r . Although such multipole
expansions of the potential are rarely used to perform actual computations, they can
provide insight into both the behavior of static fields and the physical meaning of the
polarization vector P.

Let us place our origin of coordinates somewhere within the charge distribution, as
shown in Figure 3.11, and expand the Green’s function spatial dependence in a three-
dimensional Taylor series about the origin:

1

R
=

∞∑
n=0

1

n!
(r′ · ∇′)n 1

R

∣∣∣∣
r′=0

= 1

r
+ (r′ · ∇′)

1

R

∣∣∣∣
r′=0

+ 1

2
(r′ · ∇′)2 1

R

∣∣∣∣
r′=0

+ · · · , (3.89)

where R = |r − r′|. Convergence occurs if |r| > |r′|. In the notation (r′ · ∇′)n we interpret
a power on a derivative operator as the order of the derivative. Substituting (3.89) into



(3.61) and writing the derivatives in Cartesian coordinates we obtain

�(r) = 1

4πε

∫
V

ρ(r′)
[

1

R

∣∣∣∣
r′=0

+ (r′ · ∇′)
1

R

∣∣∣∣
r′=0

+ 1

2
(r′ · ∇′)2 1

R

∣∣∣∣
r′=0

+ · · ·
]

dV ′. (3.90)

For the second term we can use (3.57) to write

(r′ · ∇′)
1

R

∣∣∣∣
r′=0

= r′ ·
(

∇′ 1

R

) ∣∣∣∣
r′=0

= r′ ·
(

R̂
R2

) ∣∣∣∣
r′=0

= r′ · r̂
r2

. (3.91)

The third term is complicated. Let us denote (x, y, z) by (x1, x2, x3) and perform an
expansion in rectangular coordinates:

(r′ · ∇′)2 1

R

∣∣∣∣
r′=0

=
3∑

i=1

3∑
j=1

x ′
i x

′
j

∂2

∂x ′
i∂x ′

j

1

R

∣∣∣∣
r′=0

.

It turns out [172] that this can be written as

(r′ · ∇′)2 1

R

∣∣∣∣
r′=0

= 1

r3
r̂ · (3r′r′ − r ′2Ī) · r̂.

Substitution into (3.90) gives

�(r) = Q

4πεr
+ r̂ · p

4πεr2
+ 1

2

r̂ · Q̄ · r̂
4πεr3

+ · · · , (3.92)

which is the multipole expansion for �(r). It converges for all r > rm where rm is the
radius of the smallest sphere completely containing the charge centered at r′ = 0 (Figure
3.11). In (3.92) the terms Q, p, Q̄, and so on are called the multipole moments of ρ(r).
The first moment is merely the total charge

Q =
∫

V
ρ(r′) dV ′.

The second moment is the electric dipole moment vector

p =
∫

V
r′ρ(r′) dV ′.

The third moment is the electric quadrupole moment dyadic

Q̄ =
∫

V
(3r′r′ − r ′2Ī)ρ(r′) dV ′.

The expansion (3.92) allows us to identify the dominant power of r for r � rm .
The first nonzero term in (3.92) dominates the potential at points far from the source.
Interestingly, the first nonvanishing moment is independent of the location of the origin
of r′, while all subsequent higher moments depend on the location of the origin [91]. We
can see this most easily through a few simple examples.

For a single point charge q located at r0 we can write ρ(r) = qδ(r − r0). The first
moment of ρ is

Q =
∫

V
qδ(r′ − r0) dV ′ = q.



Figure 3.12: A dipole distribution.

Note that this is independent of r0. The second moment

p =
∫

V
r′qδ(r′ − r0) dV ′ = qr0

depends on r0, as does the third moment

Q̄ =
∫

V
(3r′r′ − r ′2Ī)qδ(r′ − r0) dV ′ = q(3r0r0 − r2

0 Ī).

If r0 = 0 then only the first moment is nonzero; that this must be the case is obvious
from (3.61).

For the dipole of Figure 3.12 we can write

ρ(r) = −qδ(r − r0 + d/2) + qδ(r − r0 − d/2).

In this case

Q = −q + q = 0, p = qd, Q̄ = q[3(r0d + dr0) − 2(r0 · d)Ī].

Only the first nonzero moment, in this case p, is independent of r0. For r0 = 0 the only
nonzero multipole moment would be the dipole moment p. If the dipole is aligned along
the z-axis with d = d ẑ and r0 = 0, then the exact potential is

�(r) = 1

4πε

p cos θ

r2
.

By (3.30) we have

E(r) = 1

4πε

p

r3
(r̂2 cos θ + θ̂ sin θ), (3.93)

which is the classic result for the electric field of a dipole.
Finally, consider the quadrupole shown in Figure 3.13. The charge density is

ρ(r) = −qδ(r − r0) + qδ(r − r0 − d1) + qδ(r − r0 − d2) − qδ(r − r0 − d1 − d2).



Figure 3.13: A quadrupole distribution.

Carrying through the details, we find that the first two moments of ρ vanish, while the
third is given by

Q̄ = q[−3(d1d2 + d2d1) + 2(d1 · d2)Ī].

As expected, it is independent of r0.
It is tedious to carry (3.92) beyond the quadrupole term using the Taylor expansion.

Another approach is to expand 1/R in spherical harmonics. Referring to Appendix E.3
we find that

1

|r − r′| = 4π

∞∑
n=0

n∑
m=−n

1

2n + 1

r ′n

rn+1
Y ∗

nm(θ ′, φ′)Ynm(θ, φ)

(see Jackson [91] or Arfken [5] for a detailed derivation). This expansion converges for
|r| > |rm |. Substitution into (3.61) gives

�(r) = 1

ε

∞∑
n=0

1

rn+1

[
1

2n + 1

n∑
m=−n

qnmYnm(θ, φ)

]
(3.94)

where

qnm =
∫

V
ρ(r′)r ′nY ∗

nm(θ ′, φ′) dV ′.

We can now identify any inverse power of r in the multipole expansion, but at the price
of dealing with a double summation. For a charge distribution with axial symmetry (no
φ-variation), only the coefficient qn0 is nonzero. The relation

Yn0(θ, φ) =
√

2n + 1

4π
Pn(cos θ)

allows us to simplify (3.94) and obtain

�(r) = 1

4πε

∞∑
n=0

1

rn+1
qn Pn(cos θ) (3.95)



where

qn = 2π

∫
r ′

∫
θ ′

ρ(r ′, θ ′)r ′n Pn(cos θ ′)r ′2 sin θ ′ dθ ′ dr ′.

As a simple example consider a spherical distribution of charge given by

ρ(r) = 3Q

πa3
cos θ, r ≤ a.

This can be viewed as two adjacent hemispheres carrying total charges ±Q. Since cos θ =
P1(cos θ), we compute

qn = 2π

∫ a

0

∫ π

0

3Q

πa3
P1(cos θ ′)r ′n Pn(cos θ ′)r ′2 sin θ ′ dθ ′ dr ′

= 2π
3Q

πa3

an+3

n + 3

∫ π

0
P1(cos θ)Pn(cos θ ′) sin θ ′ dθ ′.

Using the orthogonality relation (E.123) we find

qn = 2π
3Q

πa3

an+3

n + 3
δ1n

2

2n + 1
.

Hence the only nonzero coefficient is q1 = Qa and

�(r) = 1

4πε

1

r2
Qa P1(cos θ) = Qa

4πεr2
cos θ.

This is the potential of a dipole having moment p = ẑQa. Thus we could replace the
sphere with point charges ∓Q at z = ∓a/2 without changing the field for r > a.

Physical interpretation of the polarization vector in a dielectric. We have
used the Maxwell–Minkowski equations to determine the electrostatic potential of a
charge distribution in the presence of a dielectric medium. Alternatively, we can use
the Maxwell–Boffi equations

∇ × E = 0, (3.96)

∇ · E = 1

ε0
(ρ − ∇ · P). (3.97)

Equation (3.96) allows us to define a scalar potential through (3.30). Substitution into
(3.97) gives

∇2�(r) = − 1

ε0
[ρ(r) + ρP(r)] (3.98)

where ρP = −∇ · P. This has the form of Poisson’s equation (3.50), but with charge
density term ρ(r) + ρP(r). Hence the solution is

�(r) = 1

4πε0

∫
V

ρ(r′) − ∇′ · P(r′)
|r − r′| dV ′.

To this we must add any potential produced by surface sources such as ρs . If there is a
discontinuity in the dielectric region, there is also a surface polarization source ρPs = n̂ ·P



according to (3.35). Separating the volume into regions with bounding surfaces Si across
which the permittivity is discontinuous, we may write

�(r) = 1

4πε0

∫
V

ρ(r′)
|r − r′| dV ′ + 1

4πε0

∫
S

ρs(r′)
|r − r′| d S′ +

+
∑

i

[
1

4πε0

∫
Vi

−∇′ · P(r′)
|r − r′| dV ′ + 1

4πε0

∮
Si

n̂′ · P(r′)
|r − r′| d S′

]
, (3.99)

where n̂ points outward from region i . Using the divergence theorem on the fourth term
and employing (B.42), we obtain

�(r) = 1

4πε0

∫
V

ρ(r′)
|r − r′| dV ′ + 1

4πε0

∫
S

ρs(r′)
|r − r′| d S′ +

+
∑

i

[
1

4πε0

∫
Vi

P(r′) · ∇′
(

1

|r − r′|
)

dV ′
]

.

Since ∇′(1/R) = R̂/R2, the third term is a sum of integrals of the form

1

4πε

∫
Vi

P(r′) · R̂
R2

dV .

Comparing this to the second term of (3.92), we see that this integral represents a volume
superposition of dipole terms where P is a volume density of dipole moments.

Thus, a dielectric with permittivity ε is equivalent to a volume distribution of dipoles
in free space. No higher-order moments are required, and no zero-order moments are
needed since any net charge is included in ρ. Note that we have arrived at this conclusion
based only on Maxwell’s equations and the assumption of a linear, isotropic relationship
between D and E. Assuming our macroscopic theory is correct, we are tempted to make
assumptions about the behavior of matter on a microscopic level (e.g., atoms exposed to
fields are polarized and their electron clouds are displaced from their positively charged
nuclei), but this area of science is better studied from the viewpoints of particle physics
and quantum mechanics.

Potential of an azimuthally-symmetric charged spherical surface. In several
of our example problems we shall be interested in evaluating the potential of a charged
spherical surface. When the charge is azimuthally-symmetric, the potential is particularly
simple.

We will need the value of the integral

F(r) = 1

4π

∫
S

f (θ ′)
|r − r′| d S′ (3.100)

where r = r r̂ describes an arbitrary observation point and r′ = ar̂′ identifies the source
point on the surface of the sphere of radius a. The integral is most easily done using the
expansion (E.200) for |r − r′|−1 in spherical harmonics. We have

F(r) = a2
∞∑

n=0

n∑
m=−n

Ynm(θ, φ)

2n + 1

rn
<

rn+1
>

∫ π

−π

∫ π

0
f (θ ′)Y ∗

nm(θ ′, φ′) sin θ ′ dθ ′ dφ′



where r< = min{r, a} and r> = max{r, a}. Using orthogonality of the exponentials we
find that only the m = 0 terms contribute:

F(r) = 2πa2
∞∑

n=0

Yn0(θ, φ)

2n + 1

rn
<

rn+1
>

∫ π

0
f (θ ′)Y ∗

n0(θ
′, φ′) sin θ ′ dθ ′.

Finally, since

Yn0 =
√

2n + 1

4π
Pn(cos θ)

we have

F(r) = 1

2
a2

∞∑
n=0

Pn(cos θ)
rn
<

rn+1
>

∫ π

0
f (θ ′)Pn(cos θ ′) sin θ ′ dθ ′. (3.101)

As an example, suppose f (θ) = cos θ = P1(cos θ). Then

F(r) = 1

2
a2

∞∑
n=0

Pn(cos θ)
rn
<

rn+1
>

∫ π

0
P1(cos θ ′)Pn(cos θ ′) sin θ ′ dθ ′.

The orthogonality of the Legendre polynomials can be used to show that∫ π

0
P1(cos θ ′)Pn(cos θ ′) sin θ ′ dθ ′ = 2

3
δ1n,

hence

F(r) = a2

3
cos θ

r<

r2
>

. (3.102)

3.2.7 Field produced by a permanently polarized body

Certain materials, called electrets, exhibit polarization in the absence of an external
electric field. A permanently polarized material produces an electric field both internal
and external to the material, hence there must be a charge distribution to support the
fields. We can interpret this charge as being caused by the permanent separation of
atomic charge within the material, but if we are only interested in the macroscopic field
then we need not worry about the microscopic implications of such materials. Instead, we
can use the Maxwell–Boffi equations and find the potential produced by the material by
using (3.99). Thus, the field of an electret with known polarization P occupying volume
region V in free space is dipolar in nature and is given by

�(r) = 1

4πε0

∫
V

−∇′ · P(r′)
|r − r′| dV ′ + 1

4πε0

∮
S

n̂′ · P(r′)
|r − r′| d S′

where n̂ points out of the volume region V .
As an example, consider a material sphere of radius a, permanently polarized along

its axis with uniform polarization P(r) = ẑP0. We have the equivalent source densities

ρp = −∇ · P = 0, ρPs = n̂ · P = r̂ · ẑP0 = P0 cos θ.

Then

�(r) = 1

4πε0

∮
S

ρPs(r′)
|r − r′| d S′ = 1

4πε0

∮
S

P0 cos θ ′

|r − r′| d S′.



The integral takes the form (3.100), hence by (3.102) the solution is

�(r) = P0
a2

3ε0
cos θ

r<

r2
>

. (3.103)

If we are interested only in the potential for r > a, we can use the multipole expansion
(3.95) to obtain

�(r) = 1

4πε0

∞∑
n=0

1

rn+1
qn Pn(cos θ), r > a

where

qn = 2π

∫ π

0
ρPs(θ

′)an Pn(cos θ ′)a2 sin θ ′ dθ ′.

Substituting for ρPs and remembering that cos θ = P1(cos θ), we have

qn = 2πan+2 P0

∫ π

0
P1(cos θ ′)Pn(cos θ ′) sin θ ′ dθ ′.

Using the orthogonality relation (E.123) we find

qn = 2πan+2 P0δ1n
2

2n + 1
.

Therefore the only nonzero coefficient is

q1 = 4πa3 P0

3

and

�(r) = 1

4πε0

1

r2

4πa3 P0

3
P1(cos θ) = P0a3

3ε0r2
cos θ, r > a.

This is a dipole field, and matches (3.103) as expected.

3.2.8 Potential of a dipole layer

Surface charge layers sometimes occur in bipolar form, such as in the membrane sur-
rounding an animal cell. These can be modeled as a dipole layer consisting of parallel
surface charges of opposite sign.

Consider a surface S located in free space. Parallel to this surface, and a distance �/2
below, is located a surface charge layer of density ρs(r) = Ps(r). Also parallel to S, but
a distance �/2 above, is a surface charge layer of density ρs(r) = −Ps(r). We define the
surface dipole moment density Ds as

Ds(r) = � Ps(r). (3.104)

Letting the position vector r′
0 point to the surface S we can write the potential (3.61)

produced by the two charge layers as

�(r) = 1

4πε0

∫
S+

Ps(r′)
1

|r − r′
0 − n̂′ �

2 | d S′ − 1

4πε0

∫
S−

Ps(r′)
1

|r − r′
0 + n̂′ �

2 | d S′.



Figure 3.14: A dipole layer.

We are interested in the case in which the two charge layers collapse onto the surface S,
and wish to compute the potential produced by a given dipole moment density. When
� → 0 we have r′

0 → r′ and may write

�(r) = lim
�→0

1

4πε0

∫
S

Ds(r′)
�

[
1

|R − n̂′ �
2 | − 1

|R + n̂′ �
2 |

]
d S′,

where R = r − r′. By the binomial theorem, the limit of the term in brackets can be
written as

lim
�→0




[
R2 +

(
�

2

)2

− 2R · n̂′ �
2

]− 1
2

−
[

R2 +
(

�

2

)2

+ 2R · n̂′ �
2

]− 1
2




= lim
�→0

(
R−1

[
1 + R̂ · n̂′

R

�

2

]
− R−1

[
1 − R̂ · n̂′

R

�

2

])
= �n̂′ · R

R3
.

Thus

�(r) = 1

4πε0

∫
S

Ds(r′) · R
R3

d S′ (3.105)

where Ds = n̂Ds is the surface vector dipole moment density. The potential of a dipole
layer decreases more rapidly (∼ 1/r2) than that of a unipolar charge layer. We saw
similar behavior in the dipole term of the multipole expansion (3.92) for a general charge
distribution.

We can use (3.105) to study the behavior of the potential across a dipole layer. As
we approach the layer from above, the greatest contribution to � comes from the charge
region immediately beneath the observation point. Assuming that the surface dipole
moment density is continuous beneath the point, we can compute the difference in the
fields across the layer at point r by replacing the arbitrary surface layer by a disk of
constant surface dipole moment density D0 = Ds(r). For simplicity we center the disk
at z = 0 in the xy-plane as shown in Figure 3.15 and compute the potential difference
�V across the layer; i.e., �V = �(h) − �(−h) on the disk axis as h → 0. Using (3.105)
along with r′ = ±hẑ − ρ ′ρ̂′, we obtain

�V = lim
h→0

[
1

4πε0

∫ 2π

0

∫ a

0
[ẑD0] · ẑh − ρ̂′ρ ′

(
h2 + ρ ′2)3/2 ρ ′ dρ ′ dφ′−

− 1

4πε0

∫ 2π

0

∫ a

0
[ẑD0] · −ẑh − ρ̂′ρ ′

(
h2 + ρ ′2)3/2 ρ ′ dρ ′ dφ′

]



Figure 3.15: Auxiliary disk for studying the potential distribution across a dipole layer.

where a is the disk radius. Integration yields

�V = D0

2ε0
lim
h→0


 −2√

1 + (
a
h

)2
+ 2


 = D0

ε0
,

independent of a. Generalizing this to an arbitrary surface dipole moment density, we
find that the boundary condition on the potential is given by

�2(r) − �1(r) = Ds(r)
ε0

(3.106)

where “1” denotes the positive side of the dipole moments and “2” the negative side.
Physically, the potential difference in (3.106) is produced by the line integral of E “in-
ternal” to the dipole layer. Since there is no field internal to a unipolar surface layer, V
is continuous across a surface containing charge ρs but having Ds = 0.

3.2.9 Behavior of electric charge density near a conducting edge

Sharp corners are often encountered in the application of electrostatics to practical ge-
ometries. The behavior of the charge distribution near these corners must be understood
in order to develop numerical techniques for solving more complicated problems. We can
use a simple model of a corner if we restrict our interest to the region near the edge.
Consider the intersection of two planes as shown in Figure 3.16. The region near the in-
tersection represents the corner we wish to study. We assume that the planes are held at
zero potential and that the charge on the surface is induced by a two-dimensional charge
distribution ρ(r), or by a potential difference between the edge and another conductor
far removed from the edge.

We can find the potential in the region near the edge by solving Laplace’s equation in
cylindrical coordinates. This problem is studied in Appendix A where the separation of
variables solution is found to be either (A.127) or (A.128). Using (A.128) and enforcing
� = 0 at both φ = 0 and φ = β, we obtain the null solution. Hence the solution must
take the form (A.127):

�(ρ, φ) = [Aφ sin(kφφ) + Bφ cos(kφφ)][aρρ
−kφ + bρρ

kφ ]. (3.107)



Figure 3.16: A conducting edge.

Since the origin is included we cannot have negative powers of ρ and must put aρ = 0.
The boundary condition �(ρ, 0) = 0 requires Bφ = 0. The condition �(ρ, β) = 0 then
requires sin(kφβ) = 0, which holds only if kφ = nπ/β, n = 1, 2, . . .. The general solution
for the potential near the edge is therefore

�(ρ, φ) =
N∑

n=1

An sin

(
nπ

β
φ

)
ρnπ/β (3.108)

where the constants An depend on the excitation source or system of conductors. (Note
that if the corner is held at potential V0 �= 0, we must merely add V0 to the solution.)
The charge on the conducting surfaces can be computed from the boundary condition
on normal D. Using (3.30) we have

Eφ = − 1

ρ

∂

∂φ

N∑
n=1

An sin

(
nπ

β
φ

)
ρnπ/β = −

N∑
n=1

An
nπ

β
cos

(
nπ

β
φ

)
ρ(nπ/β)−1,

hence

ρs(x) = −ε

N∑
n=1

An
nπ

β
x (nπ/β)−1

on the surface at φ = 0. Near the edge, at small values of x , the variation of ρs is dom-
inated by the lowest power of x . (Here we ignore those special excitation arrangements
that produce A1 = 0.) Thus

ρs(x) ∼ x (π/β)−1.

The behavior of the charge clearly depends on the wedge angle β. For a sharp edge
(half plane) we put β = 2π and find that the field varies as x−1/2. This square-root edge
singularity is very common on thin plates, fins, etc., and means that charge tends to
accumulate near the edge of a flat conducting surface. For a right-angle corner where
β = 3π/2, there is the somewhat weaker singularity x−1/3. When β = π , the two
surfaces fold out into an infinite plane and the charge, not surprisingly, is invariant with
x to lowest order near the folding line. When β < π the corner becomes interior and we
find that the charge density varies with a positive power of distance from the edge. For
very sharp interior angles the power is large, meaning that little charge accumulates on
the inner surfaces near an interior corner.



3.2.10 Solution to Laplace’s equation for bodies immersed in an im-
pressed field

An important class of problems is based on the idea of placing a body into an existing
electric field, assuming that the field arises from sources so remote that the introduction
of the body does not alter the original field. The pre-existing field is often referred to as
the applied or impressed field, and the solution external to the body is usually formulated
as the sum of the applied field and a secondary or scattered field that satisfies Laplace’s
equation. This total field differs from the applied field, and must satisfy the appropriate
boundary condition on the body. If the body is a conductor then the total potential must
be constant everywhere on the boundary surface. If the body is a solid homogeneous
dielectric then the total potential field must be continuous across the boundary.

As an example, consider a dielectric sphere of permittivity ε and radius a, centered at
the origin and immersed in a constant electric field E0(r) = E0ẑ. By (3.30) the applied
potential field is �0(r) = −E0z = −E0r cos θ (to within a constant). Outside the sphere
(r > a) we write the total potential field as

�2(r) = �0(r) + �s(r)

where �s(r) is the secondary or scattered potential. Since �s must satisfy Laplace’s
equation, we can write it as a separation of variables solution (§ A.4). By azimuthal
symmetry the potential has an r -dependence as in (A.146), and a θ -dependence as in
(A.142) with Bθ = 0 and m = 0. Thus �s has a representation identical to (A.147),
except that we cannot use terms that are unbounded as r → ∞. We therefore use

�s(r, θ) =
∞∑

n=0

Bnr−(n+1) Pn(cos θ). (3.109)

The potential inside the sphere also obeys Laplace’s equation, so we can use the same
form (A.147) while discarding terms unbounded at the origin. Thus

�1(r, θ) =
∞∑

n=0

Anrn Pn(cos θ) (3.110)

for r < a. To find the constants An and Bn we apply (3.36) and (3.37) to the total field.
Application of (3.36) at r = a gives

−E0a cos θ +
∞∑

n=0

Bna−(n+1) Pn(cos θ) =
∞∑

n=0

Anan Pn(cos θ).

Multiplying through by Pm(cos θ) sin θ , integrating from θ = 0 to θ = π , and using the
orthogonality relationship (E.123), we obtain

−E0a + a−2 B1 = A1a, (3.111)
Bna−(n+1) = Anan, n �= 1, (3.112)

where we have used P1(cos θ) = cos θ . Next, since ρs = 0, equation (3.37) requires that

ε1
∂�1(r)

∂r
= ε2

∂�2(r)
∂r



at r = a. This gives

−ε0 E0 cos θ + ε0

∞∑
n=0

[−(n + 1)Bn]a−n−2 Pn(cos θ) = ε

∞∑
n=0

[n An]an−1 Pn(cos θ).

By orthogonality of the Legendre functions we have

−ε0 E0 − 2ε0 B1a−3 = ε A1, (3.113)
−ε0(n + 1)Bna−n−2 = εn Anan−1, n �= 1. (3.114)

Equations (3.112) and (3.114) cannot hold simultaneously unless An = Bn = 0 for n �= 1.
Solving (3.111) and (3.113) we have

A1 = −E0
3ε0

ε + 2ε0
, B1 = E0a3 ε − ε0

ε + 2ε0
.

Hence

�1(r) = −E0
3ε0

ε + 2ε0
r cos θ = −E0z

3ε0

ε + 2ε0
, (3.115)

�2(r) = −E0r cos θ + E0
a3

r2

ε − ε0

ε + 2ε0
cos θ. (3.116)

Interestingly, the electric field

E1(r) = −∇�1(r) = ẑE0
3ε0

ε + 2ε0

inside the sphere is constant with position and is aligned with the applied external field.
However, it is weaker than the applied field since ε > ε0. To explain this, we compute
the polarization charge within and on the sphere. Using D = εE = ε0E + P we have

P1 = ẑ(ε − ε0)E0
3ε0

ε + 2ε0
. (3.117)

The volume polarization charge density −∇ · P is zero, while the polarization surface
charge density is

ρPs = r̂ · P = (ε − ε0)E0
3ε0

ε + 2ε0
cos θ.

Hence the secondary electric field can be attributed to an induced surface polarization
charge, and is in a direction opposing the applied field. According to the Maxwell–Boffi
viewpoint we should be able to replace the sphere by the surface polarization charge
immersed in free space, and use the formula (3.61) to reproduce (3.115) and (3.116).
This is left as an exercise for the reader.

3.3 Magnetostatics

The large-scale forms of the magnetostatic field equations are∮
�

H · dl =
∫

S
J · dS, (3.118)

∮
S

B · dS = 0, (3.119)



while the point forms are

∇ × H(r) = J(r), (3.120)
∇ · B(r) = 0. (3.121)

Note the interesting dichotomy between the electrostatic field equations and the magne-
tostatic field equations. Whereas the electrostatic field exhibits zero curl and a divergence
proportional to the source (charge), the magnetostatic field has zero divergence and a
curl proportional to the source (current). Because the vector relationship between the
magnetostatic field and its source is of a more complicated nature than the scalar rela-
tionship between the electrostatic field and its source, more effort is required to develop a
strong understanding of magnetic phenomena. Also, it must always be remembered that
although the equations describing the electrostatic and magnetostatic field sets decou-
ple, the phenomena themselves remain linked. Since current is moving charge, electrical
phenomena are associated with the establishment of the current that supports a magne-
tostatic field. We know, for example, that in order to have current in a wire an electric
field must be present to drive electrons through the wire.

The magnetic scalar potential. Under certain conditions the equations of magne-
tostatics have the same form as those of electrostatics. If J = 0 in a region V , the
magnetostatic equations are

∇ × H(r) = 0, (3.122)
∇ · B(r) = 0; (3.123)

compare with (3.5)–(3.6) when ρ = 0. Using (3.122) we can define a magnetic scalar
potential �m :

H = −∇�m . (3.124)

The negative sign is chosen for consistency with (3.30). We can then define a magnetic
potential difference between two points as

Vm21 = −
∫ P2

P1

H · dl = −
∫ P2

P1

−∇�m(r) · dl =
∫ P2

P1

d�m(r) = �m(r2) − �m(r1).

Unlike the electrostatic potential difference, Vm21 is not unique. Consider Figure 3.17,
which shows a plane passing through the cross-section of a wire carrying total current I .
Although there is no current within the region V (external to the wire), equation (3.118)
still gives ∫

�2

H · dl −
∫

�3

H · dl = I.

Thus ∫
�2

H · dl =
∫

�3

H · dl + I,

and the integral
∫
�

H · dl is not path-independent. However,
∫

�1

H · dl =
∫

�2

H · dl

since no current passes through the surface bounded by �1 − �2. So we can artificially
impose uniqueness by demanding that no path cross a cut such as that indicated by the
line L in the figure.



Figure 3.17: Magnetic potential.

Because Vm21 is not unique, the field H is nonconservative. In point form this is
shown by the fact that ∇ × H is not identically zero. We are not too concerned about
energy-related implications of the nonconservative nature of H; the electric point charge
has no magnetic analogue that might fail to conserve potential energy if moved around
in a magnetic field.

Assuming a linear, isotropic region where B(r) = µ(r)H(r), we can substitute (3.124)
into (3.123) and expand to obtain

∇µ(r) · ∇�m(r) + µ(r)∇2�m(r) = 0.

For a homogeneous medium this reduces to Laplace’s equation

∇2�m = 0.

We can also obtain an analogue to Poisson’s equation of electrostatics if we use

B = µ0(H + M) = −µ0∇�m + µ0M

in (3.123); we have

∇2�m = −ρM (3.125)

where

ρM = −∇ · M

is called the equivalent magnetization charge density. This form can be used to describe
fields of permanent magnets in the absence of J. Comparison with (3.98) shows that ρM

is analogous to the polarization charge ρP .
Since �m obeys Poisson’s equation, the details regarding uniqueness and the construc-

tion of solutions follow from those of the electrostatic case. If we include the possibility of
a surface density of magnetization charge, then the integral solution for �m in unbounded
space is

�m(r) = 1

4π

∫
V

ρM(r′)
|r − r′| dV ′ + 1

4π

∫
S

ρMs(r′)
|r − r′| d S′. (3.126)

Here ρMs , the surface density of magnetization charge, is identified as n̂ · M in the
boundary condition (3.152).



3.3.1 The magnetic vector potential

Although the magnetic scalar potential is useful for describing fields of permanent
magnets and for solving certain boundary value problems, it does not include the effects of
source current. A second type of potential function, called the magnetic vector potential,
can be used with complete generality to describe the magnetostatic field. Because ∇ ·B =
0, we can write by (B.49)

B(r) = ∇ × A(r) (3.127)

where A is the vector potential. Now A is not determined by (3.127) alone, since the
gradient of any scalar field can be added to A without changing the value of ∇ × A.
Such “gauge transformations” are discussed in Chapter 5, where we find that ∇ · A must
also be specified for uniqueness of A.

The vector potential can be used to develop a simple formula for the magnetic flux
passing through an open surface S:

�m =
∫

S
B · dS =

∫
S
(∇ × A) · dS =

∮
�

A · dl, (3.128)

where � is the contour bounding S.
In the linear isotropic case where B = µH we can find a partial differential equation

for A by substituting (3.127) into (3.120). Using (B.43) we have

∇ ×
[

1

µ(r)
∇ × A(r)

]
= J(r),

hence
1

µ(r)
∇ × [∇ × A(r)] − [∇ × A(r)] × ∇

(
1

µ(r)

)
= J(r).

In a homogeneous region we have

∇ × (∇ × A) = µJ (3.129)

or

∇(∇ · A) − ∇2A = µJ (3.130)

by (B.47). As mentioned above we must eventually specify ∇ · A. Although the choice is
arbitrary, certain selections make the computation of A both mathematically tractable
and physically meaningful. The “Coulomb gauge condition” ∇ · A = 0 reduces (3.130)
to

∇2A = −µJ. (3.131)

The vector potential concept can also be applied to the Maxwell–Boffi magnetostatic
equations

∇ × B = µ0(J + ∇ × M), (3.132)
∇ · B = 0. (3.133)

By (3.133) we may still define A through (3.127). Substituting this into (3.132) we have,
under the Coulomb gauge,

∇2A = −µ0[J + JM ] (3.134)

where JM = ∇ × M is the magnetization current density.



Figure 3.18: Circular loop of wire.

The differential equations (3.131) and (3.134) are vector versions of Poisson’s equation,
and may be solved quite easily for unbounded space by decomposing the vector source
into rectangular components. For instance, dotting (3.131) with x̂ we find that

∇2 Ax = −µJx .

This scalar version of Poisson’s equation has solution

Ax (r) = µ

4π

∫
V

Jx (r′)
|r − r′| dV ′

in unbounded space. Repeating this for each component and assembling the results, we
obtain the solution for the vector potential in an unbounded homogeneous medium:

A(r) = µ

4π

∫
V

J(r′)
|r − r′| dV ′. (3.135)

Any surface sources can be easily included through a surface integral:

A(r) = µ

4π

∫
V

J(r′)
|r − r′| dV ′ + µ

4π

∫
S

Js(r′)
|r − r′| d S′. (3.136)

In unbounded free space containing materials represented by M, we have

A(r) = µ0

4π

∫
V

J(r′) + JM(r′)
|r − r′| dV ′ + µ0

4π

∫
S

Js(r′) + JMs(r′)
|r − r′| dV ′ (3.137)

where JMs = −n̂ × M is the surface density of magnetization current as described in
(3.153). It may be verified directly from (3.137) that ∇ · A = 0.

Field of a circular loop. Consider a circular loop of line current of radius a in
unbounded space (Figure 3.18). Using J(r′) = I φ̂′δ(z ′)δ(ρ ′ − a ) and noting that r =
ρρ̂ + zẑ and r′ = aρ̂′, we can write (3.136) as

A(r) = µI

4π

∫ 2π

0
φ̂′ a dφ′

[
ρ2 + a2 + z2 − 2aρ cos(φ − φ′)

]1/2 .



Because φ̂′ = −x̂ cos φ′ + ŷ sin φ′ we find that

A(r) = µI a

4π
φ̂

∫ 2π

0

cos φ′
[
ρ2 + a2 + z2 − 2aρ cos φ′]1/2 dφ′.

We put the integral into standard form by setting φ′ = π − 2x :

A(r) = −µI a

4π
φ̂

∫ π/2

−π/2

1 − 2 sin2 x[
ρ2 + a2 + z2 + 2aρ(1 − 2 sin2 x)

]1/2 2 dx .

Letting

k2 = 4aρ

(a + ρ)2 + z2
, F2 = (a + ρ)2 + z2,

we have

A(r) = −µI a

4π
φ̂

4

F

∫ π/2

0

1 − 2 sin2 x

[1 − k2 sin2 x]1/2
dx .

Then, since

1 − 2 sin2 x

[1 − k2 sin2 x]1/2
= k2 − 2

k2
[1 − k2 sin2 x]−1/2 + 2

k2
[1 − k2 sin2 x]1/2,

we have

A(r) = φ̂
µI

πk

√
a

ρ

[(
1 − 1

2
k2

)
K (k2) − E(k2)

]
. (3.138)

Here

K (k2) =
∫ π/2

0

du

[1 − k2 sin2 u]1/2
, E(k2) =

∫ π/2

0
[1 − k2 sin2 u]1/2 du,

are complete elliptic integrals of the first and second kinds, respectively.
We have k2 	 1 when the observation point is far from the loop (r2 = ρ2 + z2 � a2).

Using the expansions [47]

K (k2) = π

2

[
1 + 1

4
k2 + 9

64
k4 + · · ·

]
, E(k2) = π

2

[
1 − 1

4
k2 − 3

64
k4 − · · ·

]
,

in (3.138) and keeping the first nonzero term, we find that

A(r) ≈ φ̂
µI

4πr2
(πa2) sin θ. (3.139)

Defining the magnetic dipole moment of the loop as

m = ẑIπa2,

we can write (3.139) as

A(r) = µ

4π

m × r̂
r2

. (3.140)

Generalization to an arbitrarily-oriented circular loop with center located at r0 is accom-
plished by writing m = n̂I A where A is the loop area and n̂ is normal to the loop in the
right-hand sense. Then

A(r) = µ

4π
m × r − r0

|r − r0|3 .



We shall find, upon investigating the general multipole expansion of A below, that this
holds for any planar loop.

The magnetic field of the loop can be found by direct application of (3.127). For the
case r2 � a2 we take the curl of (3.139) and find that

B(r) = µ

4π

m

r3
(r̂ 2 cos θ + θ̂ sin θ). (3.141)

Comparison with (3.93) shows why we often refer to a small loop as a magnetic dipole.
But (3.141) is approximate, and since there are no magnetic monopoles we cannot con-
struct an exact magnetic analogue to the electric dipole. On the other hand, we shall
find below that the multipole expansion of a finite-extent steady current begins with the
dipole term (since the current must form closed loops). We may regard small loops as
the elemental units of steady current from which all other currents may be constructed.

3.3.2 Multipole expansion

It is possible to derive a general multipole expansion for A analogous to (3.94). But
the vector nature of A requires that we use vector spherical harmonics, hence the result
is far more complicated than (3.94). A simpler approach yields the first few terms and
requires only the Taylor expansion of 1/R. Consider a steady current localized near the
origin and contained within a sphere of radius rm . We substitute the expansion (3.89)
into (3.135) to obtain

A(r) = µ

4π

∫
V

J(r′)
[

1

R

∣∣∣∣
r′=0

+ (r′ · ∇′)
1

R

∣∣∣∣
r′=0

+ 1

2
(r′ · ∇′)2 1

R

∣∣∣∣
r′=0

+ · · ·
]

dV ′, (3.142)

which we view as

A(r) = A(0)(r) + A(1)(r) + A(2)(r) + · · · .
The first term is merely

A(0)(r) = µ

4πr

∫
V

J(r′) dV ′ = µ

4πr

3∑
i=1

x̂i

∫
V

Ji (r′) dV ′

where (x, y, z) = (x1, x2, x3). However, by (3.26) each of the integrals is zero and we have

A(0)(r) = 0;
the leading term in the multipole expansion of A for a general steady current distribution
vanishes.

Using (3.91) we can write the second term as

A(1)(r) = µ

4πr3

∫
V

J(r′)
3∑

i=1

xi x
′
i dV ′ = µ

4πr3

3∑
j=1

x̂ j

3∑
i=1

xi

∫
V

x ′
i J j (r′) dV ′. (3.143)

By adding the null relation (3.28) we can write∫
V

x ′
i J j dV ′ =

∫
V

x ′
i J j dV ′ +

∫
V

[x ′
i J j + x ′

j Ji ] dV ′ = 2
∫

V
x ′

i J j dV ′ +
∫

V
x ′

j Ji dV ′

or ∫
V

x ′
i J j dV ′ = 1

2

∫
V

[x ′
i J j − x ′

j Ji ] dV ′. (3.144)



Figure 3.19: A planar wire loop.

By this and (3.143) the second term in the multipole expansion is

A(1)(r) = µ

4πr3

1

2

∫
V

3∑
j=1

x̂ j

3∑
i=1

xi [x
′
i J j − x ′

j Ji ] dV ′ = − µ

4πr3

1

2

∫
V

r × [r′ × J(r′)] dV ′.

Defining the dipole moment vector

m = 1

2

∫
V

r × J(r) dV (3.145)

we have

A(1)(r) = µ

4π
m ×

(
r̂
r2

)
= − µ

4π
m × ∇ 1

r
. (3.146)

This is the dipole moment potential for the steady current J. Since steady currents of
finite extent consist of loops, the dipole component is generally the first nonzero term
in the expansion of A. Higher-order components may be calculated, but extension of
(3.142) beyond the dipole term is quite tedious and will not be attempted.

As an example let us compute the dipole moment of the planar but otherwise arbitrary
loop shown in Figure 3.19. Specializing (3.145) for a line current we have

m = I

2

∮
�

r × dl.

Examining Figure 3.19, we see that

1

2
r × dl = n̂ d S

where d S is the area of the sector swept out by r as it moves along dl, and n̂ is the
normal to the loop in the right-hand sense. Thus

m = n̂I A (3.147)

where A is the area of the loop.



Physical interpretation of M in a magnetic material. In (3.137) we presented
an expression for the vector potential produced by a magnetized material in terms of
equivalent magnetization surface and volume currents. Suppose a magnetized medium
is separated into volume regions with bounding surfaces across which the permeability
is discontinuous. With JM = ∇ × M and JMs = −n̂ × M we obtain

A(r) = µ0

4π

∫
V

J(r′)
|r − r′| dV ′ + µ0

4π

∫
S

Js(r′)
|r − r′| d S′ +

+
∑

i

µ0

4π

[∫
Vi

∇′ × M(r′)
|r − r′| dV ′ +

∫
Si

−n̂′ × M(r′)
|r − r′| d S′

]
. (3.148)

Here n̂ points outward from region Vi . Using the curl theorem on the fourth term and
employing the vector identity (B.43), we have

A(r) = µ0

4π

∫
V

J(r′)
|r − r′| dV ′ + µ0

4π

∫
S

Js(r′)
|r − r′| d S′ +

+
∑

i

[
µ0

4π

∫
Vi

M(r′) × ∇′
(

1

|r − r′|
)

dV ′
]

. (3.149)

But ∇′(1/R) = R̂/R2, hence the third term is a sum of integrals of the form

µ0

4π

∫
Vi

M(r′) × R̂
R2

dV ′.

Comparison with (3.146) shows that this integral represents a volume superposition of
dipole moments where M is a volume density of magnetic dipole moments. Hence a
magnetic material with permeability µ is equivalent to a volume distribution of magnetic
dipoles in free space. As with our interpretation of the polarization vector in a dielectric,
we base this conclusion only on Maxwell’s equations and the assumption of a linear,
isotropic relationship between B and H.

3.3.3 Boundary conditions for the magnetostatic field

The boundary conditions found for the dynamic magnetic field remain valid in the
magnetostatic case. Hence

n̂12 × (H1 − H2) = Js (3.150)

and

n̂12 · (B1 − B2) = 0, (3.151)

where n̂12 points into region 1 from region 2. Since the magnetostatic curl and divergence
equations are independent, so are the boundary conditions (3.150) and (3.151). We can
also write (3.151) in terms of equivalent sources by (3.118):

n̂12 · (H1 − H2) = ρMs1 + ρMs2, (3.152)

where ρMs = n̂ · M is called the equivalent magnetization surface charge density. Here n̂
points outward from the material body.

For a linear, isotropic material described by B = µH, equation (3.150) becomes

n̂12 ×
(

B1

µ1
− B2

µ2

)
= Js .



With (3.118) we can also write (3.150) as

n̂12 × (B1 − B2) = µ0 (Js + JMs1 + JMs2) (3.153)

where JMs = −n̂ × M is the equivalent magnetization surface current density.
We may also write the boundary conditions in terms of the scalar or vector potential.

Using H = −∇�m , we can write (3.150) as

�m1(r) = �m2(r) (3.154)

provided that the surface current Js = 0. As was the case with (3.36), the possibility of
an additive constant here is generally ignored. To write (3.151) in terms of �m we first
note that B/µ0 − M = −∇�m ; substitution into (3.151) gives

∂�m1

∂n
− ∂�m2

∂n
= −ρMs1 − ρMs2 (3.155)

where the normal derivative is taken in the direction of n̂12. For a linear isotropic material
where B = µH we have

µ1
∂�m1

∂n
= µ2

∂�m2

∂n
. (3.156)

Note that (3.154) and (3.156) are independent.
Boundary conditions on A may be derived using the approach of § 2.8.2. Consider

Figure 2.6. Here the surface may carry either an electric surface current Js or an equiv-
alent magnetization current JMs , and thus may be a surface of discontinuity between
differing magnetic media. If we integrate ∇ × A over the volume regions V1 and V2 and
add the results we find that∫

V1

∇ × A dV +
∫

V2

∇ × A dV =
∫

V1+V2

B dV .

By the curl theorem∫
S1+S2

n̂ × A d S +
∫

S10

−n̂10 × A1 d S +
∫

S20

−n̂20 × A2 d S =
∫

V1+V2

B dV

where A1 is the field on the surface S10 and A2 is the field on S20. As δ → 0 the surfaces S1

and S2 combine to give S. Also S10 and S20 coincide, as do the normals n̂10 = −n̂20 = n̂12.
Thus ∫

S
(n̂ × A) d S −

∫
V

B dV =
∫

S10

n̂12 × (A1 − A2) d S. (3.157)

Now let us integrate over the entire volume region V including the surface of discontinuity.
This gives ∫

S
(n̂ × A) d S −

∫
V

B dV = 0,

and for agreement with (3.157) we must have

n̂12 × (A1 − A2) = 0. (3.158)

A similar development shows that

n̂12 · (A1 − A2) = 0. (3.159)

Therefore A is continuous across a surface carrying electric or magnetization current.



3.3.4 Uniqueness of the magnetostatic field

Because the uniqueness conditions established for the dynamic field do not apply to
magnetostatics, we begin with the magnetostatic field equations. Consider a region of
space V bounded by a surface S. There may be source currents and magnetic materials
both inside and outside V . Assume (B1, H1) and (B2, H2) are solutions to the magne-
tostatic field equations with source J. We seek conditions under which B1 = B2 and
H1 = H2.

The difference field H0 = H2 − H1 obeys ∇ × H0 = 0. Using (B.44) we examine the
quantity

∇ · (A0 × H0) = H0 · (∇ × A0) − A0 · (∇ × H0) = H0 · (∇ × A0)

where A0 is defined by B0 = B2 − B1 = ∇ × A0 = ∇ × (A2 − A1). Integrating over V
we obtain ∮

S
(A0 × H0) · dS =

∫
V

H0 · (∇ × A0) dV =
∫

V
H0 · B0 dV .

Then, since (A0 × H0) · n̂ = −A0 · (n̂ × H0), we have

−
∮

S
A0 · (n̂ × H0)d S =

∫
V

H0 · B0 dV . (3.160)

If A0 = 0 or n̂ × H0 = 0 everywhere on S, or A0 = 0 on part of S and n̂ × H0 = 0 on the
remainder, then

∫
V

H0 · B0 d S = 0. (3.161)

So H0 = 0 or B0 = 0 by arbitrariness of V . Assuming H and B are linked by the
constitutive relations, we have H1 = H2 and B1 = B2. The fields within V are unique
provided that A, the tangential component of H, or some combination of the two, is
specified over the bounding surface S.

One other condition will cause the left-hand side of (3.160) to vanish. If S recedes to
infinity then, provided that the potential functions vanish sufficiently fast, the condition
(3.161) still holds and uniqueness is guaranteed. Equation (3.135) shows that A ∼ 1/r
as r → ∞, hence B, H ∼ 1/r2. So uniqueness is ensured by the specification of J in
unbounded space.

3.3.5 Integral solution for the vector potential

We have used the scalar Green’s theorem to find a solution for the electrostatic poten-
tial within a region V in terms of the source charge in V and the values of the potential
and its normal derivative on the boundary surface S. Analogously, we may find A within
V in terms of the source current in V and the values of A and its derivatives on S. The
vector relationship between B and A complicates the derivation somewhat, requiring
Green’s second identity for vector fields.

Let P and Q be continuous with continuous first and second derivatives throughout
V and on S. The divergence theorem shows that

∫
V

∇ · [P × (∇ × Q)] dV =
∫

S
[P × (∇ × Q)] · dS.



By virtue of (B.44) we have
∫

V
[(∇ × Q) · (∇ × P) − P · (∇ × {∇ × Q})] dV =

∫
S
[P × (∇ × Q)] · dS.

We now interchange P and Q and subtract the result from the above, obtaining∫
V

[Q · (∇ × {∇ × P}) − P · (∇ × {∇ × Q})] dV =
∫

S
[P × (∇ × Q) − Q × (∇ × P)] · dS. (3.162)

Note that n̂ points outward from V . This is Green’s second identity for vector fields.
Now assume that V contains a magnetic material of uniform permeability µ and set

P = A(r′), Q = c
R

,

in (3.162) written in terms of primed coordinates. Here c is a constant vector, nonzero
but otherwise arbitrary. We first examine the volume integral terms. Note that

∇′ × (∇′ × Q) = ∇′ ×
(
∇′ × c

R

)
= −∇′2

( c
R

)
+ ∇′

[
∇′ ·

( c
R

)]
.

By (B.162) and (3.58) we have

∇′2
( c

R

)
= 1

R
∇′2c + c∇′2

(
1

R

)
+ 2

(
∇′ 1

R
· ∇′

)
c = c∇′2

(
1

R

)
= −c4πδ(r − r′),

hence

P · [∇′ × (∇′ × Q)] = 4πc · Aδ(r − r′) + A · ∇′
[
∇′ ·

( c
R

)]
.

Since ∇ · A = 0 the second term on the right-hand side can be rewritten using (B.42):

∇′ · (ψA) = A · (∇′ψ) + ψ∇′ · A = A · (∇′ψ).

Thus

P · [∇′ × (∇′ × Q)] = 4πc · Aδ(r − r′) + ∇′ ·
[

A
{

c · ∇′
(

1

R

)}]
,

where we have again used (B.42). The other volume integral term can be found by
substituting from (3.129):

Q · [∇′ × (∇′ × P)] = µ
1

R
c · J(r′).

Next we investigate the surface integral terms. Consider

n̂′ · [
P × (∇′ × Q)

] = n̂′ ·
{

A ×
[
∇′ ×

( c
R

)]}

= n̂′ ·
{

A ×
[

1

R
∇′ × c − c × ∇′

(
1

R

)]}

= −n̂′ ·
{

A ×
[

c × ∇′
(

1

R

)]}
.



This can be put in slightly different form by the use of (B.8). Note that

(A × B) · (C × D) = A · [B × (C × D)]

= (C × D) · (A × B)

= C · [D × (A × B)],

hence

n̂′ · [
P × (∇′ × Q)

] = −c ·
[
∇′

(
1

R

)
× (n̂′ × A)

]
.

The other surface term is given by

n̂′ · [Q × (∇′ × P)] = n̂′ ·
[ c

R
× (∇′ × A)

]
= n̂′ ·

( c
R

× B
)

= − c
R

· (n̂′ × B).

We can now substitute each of the terms into (3.162) and obtain

µc ·
∫

V

J(r′)
R

dV ′ − 4πc ·
∫

V
A(r′)δ(r − r′) dV ′ − c ·

∮
S
[n̂′ · A(r′)]∇′

(
1

R

)
d S′

= −c ·
∮

S
∇′

(
1

R

)
× [n̂′ × A(r′)] d S′ + c ·

∮
S

1

R
n̂′ × B(r′) d S′.

Since c is arbitrary we can remove the dot products to obtain a vector equation. Then

A(r) = µ

4π

∫
V

J(r′)
R

dV ′ − 1

4π

∮
S

{
[n̂′ × A(r′)] × ∇′

(
1

R

)
+

+ 1

R
n̂′ × B(r′) + [n̂′ · A(r′)]∇′

(
1

R

)}
d S′. (3.163)

We have expressed A in a closed region in terms of the sources within the region and
the values of A and B on the surface. While uniqueness requires specification of either
A or n̂ × B on S, the expression (3.163) includes both quantities. This is similar to (3.56)
for electrostatic fields, which required both the scalar potential and its normal derivative.

The reader may be troubled by the fact that we require P and Q to be somewhat well
behaved, then proceed to involve the singular function c/R and integrate over the singu-
larity. We choose this approach to simplify the presentation; a more rigorous approach
which excludes the singular point with a small sphere also gives (3.163). This approach
was used in § 3.2.4 to establish (3.58). The interested reader should see Stratton [187]
for details on the application of this technique to obtain (3.163).

It is interesting to note that as S → ∞ the surface integral vanishes since A ∼ 1/r
and B ∼ 1/r2, and we recover (3.135). Moreover, (3.163) returns the null result when
evaluated at points outside S (see Stratton [187]). We shall see this again when studying
the integral solutions for electrodynamic fields in § 6.1.3.

Finally, with

Q = ∇′
(

1

R

)
× c

we can find an integral expression for B within an enclosed region, representing a gen-
eralization of the Biot–Savart law (Problem 3.20). However, this case will be covered in
the more general development of § 6.1.1.



The Biot–Savart law. We can obtain an expression for B in unbounded space by
performing the curl operation directly on the vector potential:

B(r) = ∇ × µ

4π

∫
V

J(r′)
|r − r′| dV ′ = µ

4π

∫
V

∇ × J(r′)
|r − r′| dV ′.

Using (B.43) and ∇ × J(r′) = 0, we have

B(r) = − µ

4π

∫
V

J × ∇ 1

|r − r′| dV ′.

The Biot–Savart law

B(r) = µ

4π

∫
V

J(r′) × R̂
R2

dV ′ (3.164)

follows from (3.57).
For the case of a line current we can replace J dV ′ by I dl′ and obtain

B(r) = I
µ

4π

∫
�

dl′ × R̂
R2

. (3.165)

For an infinitely long line current on the z-axis we have

B(r) = I
µ

4π

∞∫
−∞

ẑ × ẑ(z − z′) + ρ̂ρ

[(z − z′)2 + ρ2]3/2
dz′ = φ̂

µI

2πρ
. (3.166)

This same result follows from taking ∇ × A after direct computation of A, or from direct
application of the large-scale form of Ampere’s law.

3.3.6 Force and energy

Ampere force on a system of currents. If a steady current J(r) occupying a region
V is exposed to a magnetic field, the force on the moving charge is given by the Lorentz
force law

dF(r) = J(r) × B(r). (3.167)

This can be integrated to give the total force on the current distribution:

F =
∫

V
J(r) × B(r) dV . (3.168)

It is apparent that the charge flow comprising a steady current must be constrained in
some way, or the Lorentz force will accelerate the charge and destroy the steady nature
of the current. This constraint is often provided by a conducting wire.

As an example, consider an infinitely long wire of circular cross-section centered on
the z-axis in free space. If the wire carries a total current I uniformly distributed over
the cross-section, then within the wire J = ẑI/(πa2) where a is the wire radius. The
resulting field can be found through direct integration using (3.164), or by the use of
symmetry and either (3.118) or (3.120). Since B(r) = φ̂Bφ(ρ), equation (3.118) shows
that

∫ 2π

0
Bφ(ρ)ρ dφ =

{
µ0 I
a2 ρ2, ρ ≤ a

µ0 I, ρ ≥ a.



Thus

B(r) =
{
φ̂µ0 Iρ/2πa2, ρ ≤ a,

φ̂µ0 I/2πρ, ρ ≥ a.
(3.169)

The force density within the wire,

dF = J × B = −ρ̂
µ0 I 2ρ

2π2a4
,

is directed inward and tends to compress the wire. Integration over the wire volume gives
F = 0 because ∫ 2π

0
ρ̂ dφ = 0;

however, a section of the wire may experience a net force. For instance, we can compute
the force on one half of the wire split down its axis by using ρ̂ = x̂ cos φ + ŷ sin φ to
obtain Fx = 0 and

Fy = − µ0 I 2

2π2a4

∫
dz

∫ a

0
ρ2 dρ

∫ π

0
sin φ dφ = − µ0 I 2

3π2a

∫
dz.

The force per unit length

F
l

= −ŷ
µ0 I 2

3π2a
(3.170)

is directed toward the other half as expected.
If the wire takes the form of a loop carrying current I , then (3.167) becomes

dF(r) = I dl(r) × B(r) (3.171)

and the total force acting is

F = I
∮

�

dl(r) × B(r).

We can write the force on J in terms of the current producing B. Assuming this latter
current J′ occupies region V ′, the Biot–Savart law (3.164) yields

F = µ

4π

∫
V

J(r) ×
∫

V ′
J(r′) × r − r′

|r − r′|3 dV ′ dV . (3.172)

This can be specialized to describe the force between line currents. Assume current 1,
following a path �1 along the direction dl, carries current I1, while current 2, following
path �2 along the direction dl′, carries current I2. Then the force on current 1 is

F1 = I1 I2
µ

4π

∮
�1

∮
�2

dl ×
(

dl′ × r − r′

|r − r′|3
)

.

This equation, known as Ampere’s force law, can be written in a better form for compu-
tational purposes. We use (B.7) and ∇(1/R) from (3.57):

F1 = I1 I2
µ

4π

∮
�2

dl′
∮

�1

dl · ∇′
(

1

|r − r′|
)

− I1 I2
µ

4π

∮
�1

∮
�2

(dl · dl′)
r − r′

|r − r′|3 . (3.173)

The first term involves an integral of a perfect differential about a closed path, producing
a null result. Thus

F1 = −I1 I2
µ

4π

∮
�1

∮
�2

(dl · dl′)
r − r′

|r − r′|3 . (3.174)



Figure 3.20: Parallel, current carrying wires.

As a simple example, consider parallel wires separated by a distance d (Figure 3.20).
In this case

F1 = −I1 I2
µ

4π

∫ [∫ ∞

−∞

−dx̂ + (z − z′)ẑ
[d2 + (z − z′)2]3/2

dz′
]

dz = I1 I2
µ

2πd
x̂

∫
dz

so the force per unit length is

F1

l
= x̂I1 I2

µ

2πd
. (3.175)

The force is attractive if I1 I2 ≥ 0 (i.e., if the currents flow in the same direction).

Maxwell’s stress tensor. The magnetostatic version of the stress tensor can be ob-
tained from (2.288) by setting E = D = 0:

T̄m = 1

2
(B · H)Ī − BH. (3.176)

The total magnetic force on the current in a region V surrounded by surface S is given
by

Fm = −
∮

S
T̄m · dS =

∫
V

fm dV

where fm = J × B is the magnetic force volume density.
Let us compute the force between two parallel wires carrying identical currents in free

space (let I1 = I2 = I in Figure 3.20) and compare the result with (3.175). The force
on the wire at x = −d/2 can be computed by integrating T̄m · n̂ over the yz-plane with
n̂ = x̂. Using (3.166) we see that in this plane the total magnetic field is

B = −x̂µ0
I

π

y

y2 + d2/4
.

Therefore

T̄m · n̂ = 1

2
Bx

Bx

µ0
x̂ − x̂Bx

Bx

µ0
= −µ0

I 2

2π2

y2

[y2 + d2/4]2
x̂



and by integration

F1 = µ0
I 2

2π2
x̂

∫
dz

∫ ∞

−∞

y2

[y2 + d2/4]2
dy = I 2 µ0

2πd
x̂

∫
dz.

The resulting force per unit length agrees with (3.175) when I1 = I2 = I .

Torque in a magnetostatic field. The torque exerted on a current-carrying conduc-
tor immersed in a magnetic field plays an important role in many engineering applica-
tions. If a rigid body is exposed to a force field of volume density dF(r), the torque on
that body about a certain origin is given by

T =
∫

V
r × dF dV (3.177)

where integration is performed over the body and r extends from the origin of torque.
If the force arises from the interaction of a current with a magnetostatic field, then
dF = J × B and

T =
∫

V
r × (J × B) dV . (3.178)

For a line current we can replace J dV with I dl to obtain

T = I
∫

�

r × (dl × B).

If B is uniform then by (B.7) we have

T =
∫

V
[J(r · B) − B(r · J)] dV .

The second term can be written as
∫

V
B(r · J) dV = B

3∑
i=1

∫
V

xi Ji dV = 0

where (x1, x2, x3) = (x, y, z), and where we have employed (3.27). Thus

T =
∫

V
J(r · B) dV =

3∑
j=1

x̂ j

∫
V

J j

3∑
i=1

xi Bi dV =
3∑

i=1

Bi

3∑
j=1

x̂ j

∫
V

J j xi dV .

We can replace the integral using (3.144) to get

T = 1

2

∫
V

3∑
j=1

x̂ j

3∑
i=1

Bi [xi J j − x j Ji ] dV = −1

2

∫
V

B × (r × J) dV .

Since B is uniform we have, by (3.145),

T = m × B (3.179)

where m is the dipole moment. For a planar loop we can use (3.147) to obtain

T = I An̂ × B.



Joule’s law. In § 2.9.5 we showed that when a moving charge interacts with an electric
field in a volume region V , energy is transferred between the field and the charge. If the
source of that energy is outside V , the energy is carried into V as an energy flux over the
boundary surface S. The energy balance described by Poynting’s theorem (3.299) also
holds for static fields supported by steady currents: we must simply recognize that we
have no time-rate of change of stored energy. Thus

−
∫

V
J · E dV =

∮
S
(E × H) · dS. (3.180)

The term

P = −
∫

V
J · E dV (3.181)

describes the rate at which energy is supplied to the fields by the current within V ; we
have P > 0 if there are sources within V that result in energy transferred to the fields,
and P < 0 if there is energy transferred to the currents. The latter case occurs when
there are conducting materials in V . Within these conductors

P = −
∫

V
σE · E dV . (3.182)

Here P < 0; energy is transferred from the fields to the currents, and from the currents
into heat (i.e., into lattice vibrations via collisions). Equation (3.182) is called Joule’s
law, and the transfer of energy from the fields into heat is Joule heating. Joule’s law is
the power relationship for a conducting material.

An important example involves a straight section of conducting wire having circular
cross-section. Assume a total current I is uniformly distributed over the cross-section
of the wire, and that the wire is centered on the z-axis and extends between the planes
z = 0, L. Let the potential difference between the ends be V . Using (3.169) we see that
at the surface of the wire

H = φ̂
I

2πa
, E = ẑ

V

L
.

The corresponding Poynting flux E × H is −ρ̂-directed, implying that energy flows into
wire volume through the curved side surface. We can verify (3.180):

−
∫

V
J · E dV =

∫ L

0

∫ 2π

0

∫ a

0
ẑ

I

πa2
· ẑ

V

L
ρ dρ dφ dz = −I V,

∮
S
(E × H) · dS =

∫ 2π

0

∫ L

0

(
−ρ̂

I V

2πaL

)
· ρ̂a dφ dz = −I V .

Stored magnetic energy. We have shown that the energy stored in a static charge
distribution may be regarded as the “assembly energy” required to bring charges from
infinity against the Coulomb force. By proceeding very slowly with this assembly, we are
able to avoid any complications resulting from the motion of the charges.

Similarly, we may equate the energy stored in a steady current distribution to the en-
ergy required for its assembly from current filaments6 brought in from infinity. However,
the calculation of assembly energy is more complicated in this case: moving a current

6Recall that a flux tube of a vector field is bounded by streamlines of the field. A current filament is a
flux tube of current having vanishingly small, but nonzero, cross-section.



Figure 3.21: Calculation of work to move a filamentary loop in an applied magnetic field.

filament into the vicinity of existing filaments changes the total magnetic flux passing
through the existing loops, regardless of how slowly we assemble the filaments. As de-
scribed by Faraday’s law, this change in flux must be associated with an induced emf,
which will tend to change the current flowing in the filament (and any existing filaments)
unless energy is expended to keep the current constant (by the application of a battery
emf in the opposite direction). We therefore regard the assembly energy as consisting
of two parts: (1) the energy required to bring a filament with constant current from
infinity against the Ampere force, and (2) the energy required to keep the current in this
filament, and any existing filaments, constant. We ignore the energy required to keep
the steady current flowing through an isolated loop (i.e., the energy needed to overcome
Joule losses).

We begin by computing the amount of energy required to bring a filament with current
I from infinity to a given position within an applied magnetostatic field B(r). In this
first step we assume that the field is supported by localized sources, hence vanishes at
infinity, and that it will not be altered by the motion of the filament. The force on each
small segment of the filament is given by Ampere’s force law (3.171), and the total force
is found by integration. Suppose an external agent displaces the filament incrementally
from a starting position 1 to an ending position 2 along a vector δr as shown in Figure
3.21. The work required is

δW = −(I dl × B) · δr = (I dl × δr) · B

for each segment of the wire. Figure 3.21 shows that dl × δr describes a small patch of
surface area between the starting and ending positions of the filament, hence −(dl×δr)·B
is the outward flux of B through the patch. Integrating over all segments comprising the
filament, we obtain

�W = I
∮

�

(dl × δr) · B = −I
∫

S0

B · dS

for the total work required to displace the entire filament through δr; here the surface S0

is described by the superposition of all patches. If S1 and S2 are the surfaces bounded
by the filament in its initial and final positions, respectively, then S1, S2, and S0 taken



together form a closed surface. The outward flux of B through this surface is∮
S0+S1+S2

B · dS = 0

so that

�W = −I
∫
S0

B · dS = I
∫

S1+S2

B · dS

where n̂ is outward from the closed surface. Finally, let �1,2 be the flux of B through S1,2

in the direction determined by dl and the right-hand rule. Then

�W = −I (�2 − �1) = −I��. (3.183)

Now suppose that the initial position of the filament is at infinity. We bring the filament
into a final position within the field B through a succession of small displacements,
each requiring work (3.183). By superposition over all displacements, the total work is
W = −I (� − �∞) where �∞ and � are the fluxes through the filament in its initial and
final positions, respectively. However, since the source of the field is localized, we know
that B is zero at infinity. Therefore �∞ = 0 and

W = −I� = −I
∫

S
B · n̂ d S (3.184)

where n̂ is determined from dl in the right-hand sense.
Now let us find the work required to position two current filaments in a field-free region

of space, starting with both filaments at infinity. Assume filament 1 carries current I1

and filament 2 carries current I2, and that we hold these currents constant as we move
the filaments into position. We can think of assembling these filaments in two ways: by
placing filament 1 first, or by placing filament 2 first. In either case, placing the first
filament requires no work since (3.184) is zero. The work required to place the second
filament is W1 = −I1�1 if filament 2 is placed first, where �1 is the flux passing through
filament 1 in its final position, caused by the presence of filament 2. If filament 1 is
placed first, the work required is W2 = −I2�2. Since the work cannot depend on which
loop is placed first, we have W1 = W2 = W where we can use either W = −I1�1 or
W = −I2�2. It is even more convenient, as we shall see, to average these values and use

W = −1

2
(I1�1 + I2�2) . (3.185)

We must determine the energy required to keep the currents constant as we move the
filaments into position. When moving the first filament into place there is no induced
emf, since no applied field is yet present. However, when moving the second filament
into place we will change the flux linked by both the first and second loops. This change
of flux will induce an emf in each of the loops, and this will change the current. To keep
the current constant we must supply an opposing emf. Let dWemf/dt be the rate of work
required to keep the current constant. Then by (3.153) and (3.181) we have

dWemf
dt

= −
∫

V
J · E dV = −I

∫
E · dl = −I

d�

dt
.

Integrating, we find the total work �W required to keep the current constant in either
loop as the flux through the loop is changed by an amount ��:

�Wem f = I��.



So the total work required to keep I1 constant as the loops are moved from infinity (where
the flux is zero) to their final positions is I1�1. Similarly, a total work I2�2 is required
to keep I2 constant during the same process. Adding these to (3.185), the work required
to position the loops, we obtain the complete assembly energy

W = 1

2
(I1�1 + I2�2)

for two filaments. The extension to N filaments is

Wm = 1

2

N∑
n=1

In�n. (3.186)

Consequently, the energy of a single current filament is

Wm = 1

2
I�. (3.187)

We may interpret this as the “assembly energy” required to bring the single loop into
existence by bringing vanishingly small loops (magnetic dipoles) in from infinity. We
may also interpret it as the energy required to establish the current in this single filament
against the back emf. That is, if we establish I by slowly increasing the current from
zero in N small steps �I = I/N , an energy �n�I will be required at each step. Since
�n increases proportionally to I , we have

Wm =
N∑

n=1

I

N

[
(n − 1)

�

N

]

where � is the flux when the current is fully established. Since
∑N

n=1(n−1) = N (N −1)/2
we obtain

Wm = 1

2
I� (3.188)

as N → ∞.
A volume current J can be treated as though it were composed of N current filaments.

Equations (3.128) and (3.186) give

Wm = 1

2

N∑
n=1

In

∮
�n

A · dl.

Since the total current is

I =
∫

C S
J · dS =

N∑
n=1

In

where C S denotes the cross-section of the steady current, we have as N → ∞

Wm = 1

2

∫
V

A · J dV . (3.189)

Alternatively, using (3.135), we may write

Wm = 1

2

∫
V

∫
V

J(r) · J(r′)
|r − r′| dV dV ′.



Note the similarity between (3.189) and (3.86). We now manipulate (3.189) into a
form involving only the electromagnetic fields. By Ampere’s law

Wm = 1

2

∫
V

A · (∇ × H) dV .

Using (B.44) and the divergence theorem we can write

Wm = 1

2

∮
S
(H × A) · dS + 1

2

∫
V

H · (∇ × A) dV .

We now let S expand to infinity. This does not change the value of Wm since we do not
enclose any more current; however, since A ∼ 1/r and H ∼ 1/r2, the surface integral
vanishes. Thus, remembering that ∇ × A = B, we have

Wm = 1

2

∫
V∞

H · B dV (3.190)

where V∞ denotes all of space.
Although we do not provide a derivation, (3.190) is also valid within linear materials.

For nonlinear materials, the total energy required to build up a magnetic field from B1

to B2 is

Wm = 1

2

∫
V∞

[∫ B2

B1

H · dB
]

dV . (3.191)

This accounts for the work required to drive a ferromagnetic material through its hystere-
sis loop. Readers interested in a complete derivation of (3.191) should consult Stratton
[187].

As an example, consider two thin-walled, coaxial, current-carrying cylinders having
radii a, b (b > a). The intervening region is a linear magnetic material having perme-
ability µ. Assume that the inner and outer conductors carry total currents I in the ±z
directions, respectively. From the large-scale form of Ampere’s law we find that

H =




0, ρ ≤ a,

φ̂ I/2πρ, a ≤ ρ ≤ b,

0, ρ > b,

(3.192)

hence by (3.190)

Wm = 1

2

∫
dz

∫ 2π

0

∫ b

a

µI 2

(2πρ)2
ρ dρ dφ,

and the stored energy is

Wm

l
= µ

I 2

4π
ln

(
b

a

)
(3.193)

per unit length.
Suppose instead that the inner cylinder is solid and that current is spread uniformly

throughout. Then the field between the cylinders is still given by (3.192) but within the
inner conductor we have

H = φ̂
Iρ

2πa2

by (3.169). Thus, to (3.193) we must add the energy

Wm,inside
l

= 1

2

∫ 2π

0

∫ a

0

µ0 I 2ρ2

(2πa2)2
ρ dρ dφ = µ0 I 2

16π



stored within the solid wire. The result is

Wm

l
= µ0 I 2

4π

[
µr ln

(
b

a

)
+ 1

4

]
.

3.3.7 Magnetic field of a permanently magnetized body

We now have the tools necessary to compute the magnetic field produced by a perma-
nent magnet (a body with permanent magnetization M). As an example, we shall find
the field due to a uniformly magnetized sphere in three different ways: by computing the
vector potential integral and taking the curl, by computing the scalar potential integral
and taking the gradient, and by finding the scalar potential using separation of variables
and applying the boundary condition across the surface of the sphere.

Consider a magnetized sphere of radius a, residing in free space and having permanent
magnetization

M(r) = M0ẑ.

The equivalent magnetization current and charge densities are given by

JM = ∇ × M = 0, (3.194)
JMs = −n̂ × M = −r̂ × M0ẑ = M0φ̂ sin θ, (3.195)

and

ρM = −∇ · M = 0, (3.196)
ρMs = n̂ · M = r̂ · M0ẑ = M0 cos θ. (3.197)

The vector potential is produced by the equivalent magnetization surface current.
Using (3.137) we find that

A(r) = µ0

4π

∫
S

JMs

|r − r′| d S′ = µ0

4π

∫ π

−π

∫ π

0

M0φ̂
′ sin θ ′

|r − r′| sin θ ′ dθ ′ dφ′.

Since φ̂′ = −x̂ sin φ′ + ŷ cos φ′, the rectangular components of A are

{−Ax

Ay

}
= µ0

4π

∫ π

−π

∫ π

0

M0
sin φ′

cos φ′ sin θ ′

|r − r′| a2 sin θ ′ dθ ′ dφ′. (3.198)

The integrals are most easily computed via the spherical harmonic expansion (E.200) for
the inverse distance |r − r′|−1:

{−Ax

Ay

}
= µ0 M0a2

∞∑
n=0

n∑
m=−n

Ynm(θ, φ)

2n + 1

rn
<

rn+1
>

∫ π

−π

∫ π

0

sin φ′

cos φ′ sin2 θ ′Y ∗
nm(θ ′, φ′) dθ ′ dφ′.

Because the φ′ variation is sin φ′ or cos φ′, all terms in the sum vanish except n = 1,
m = ±1. Since

Y1,−1(θ, φ) =
√

3

8π
sin θe− jφ, Y1,1(θ, φ) = −

√
3

8π
sin θe jφ,



we have {−Ax

Ay

}
= µ0 M0

a2

3

r<

r2
>

3

8π
sin θ

∫ π

0
sin3 θ ′ dθ ′ ·

·
[

e− jφ
∫ π

−π

sin φ′

cos φ′ e jφ′
dφ′ + e jφ

∫ π

−π

sin φ′

cos φ′ e− jφ′
dφ′

]
.

Carrying out the integrals we find that
{−Ax

Ay

}
= µ0 M0

a2

3

r<

r2
>

sin θ

{
sin φ

cos φ

}

or

A = µ0 M0
a2

3

r<

r2
>

sin θφ̂.

Finally, B = ∇ × A gives

B =
{

2µ0 M0

3 ẑ, r < a,

µ0 M0a3

3r3

(
r̂ 2 cos θ + θ̂ sin θ

)
, r > a.

(3.199)

Hence B within the sphere is uniform and in the same direction as M, while B outside
the sphere has the form of the magnetic dipole field with moment

m =
(

4

3
πa3

)
M0.

We can also compute B by first finding the scalar potential through direct computation
of the integral (3.126). Substituting for ρMs from (3.197), we have

�m(r) = 1

4π

∫
S

ρMs(r′)
|r − r′| d S′ = 1

4π

∫ π

−π

∫ π

0

M0 cos θ ′

|r − r′| sin θ ′ dθ ′ dφ′.

This integral has the form of (3.100) with f (θ) = M0 cos θ . Thus, from (3.102),

�m(r) = M0
a2

3
cos θ

r<

r2
>

. (3.200)

The magnetic field H is then

H = −∇�m =
{− M0

3 ẑ, r < a,

M0a3

3r3

(
r̂ 2 cos θ + θ̂ sin θ

)
, r > a.

.

Inside the sphere B is given by B = µ0(H + M), while outside the sphere it is merely
B = µ0H. These observations lead us again to (3.199).

Since the scalar potential obeys Laplace’s equation both inside and outside the sphere,
as a last approach to the problem we shall write �m in terms of the separation of variables
solution discussed in § A.4. We can repeat our earlier arguments for the dielectric sphere
in an impressed electric field (§ 3.2.10). Copying equations (3.109) and (3.110), we can
write for r ≤ a

�m1(r, θ) =
∞∑

n=0

Anrn Pn(cos θ), (3.201)



and for r ≥ a

�m2(r, θ) =
∞∑

n=0

Bnr−(n+1) Pn(cos θ). (3.202)

The boundary condition (3.154) at r = a requires that

∞∑
n=0

Anan Pn(cos θ) =
∞∑

n=0

Bna−(n+1) Pn(cos θ);

upon application of the orthogonality of the Legendre functions, this becomes

Anan = Bna−(n+1). (3.203)

We can write (3.155) as

−∂�m1

∂r
+ ∂�m2

∂r
= −ρMs

so that at r = a

−
∞∑

n=0

Annan−1 Pn(cos θ) −
∞∑

n=0

Bn(n + 1)a−(n+2) Pn(cos θ) = −M0 cos θ.

After application of orthogonality this becomes

A1 + 2B1a−3 = M0, (3.204)
nan−1 An = −(n + 1)Bna−(n+2), n �= 1. (3.205)

Solving (3.203) and (3.204) simultaneously for n = 1 we find that

A1 = M0

3
, B1 = M0

3
a3.

We also see that (3.203) and (3.205) are inconsistent unless An = Bn = 0, n �= 1.
Substituting these results into (3.201) and (3.202), we have

�m =
{

M0
3 r cos θ, r ≤ a,

M0
3

a3

r2 cos θ, r ≥ a,

which is (3.200).

3.3.8 Bodies immersed in an impressed magnetic field: magnetostatic
shielding

A highly permeable enclosure can provide partial shielding from external magnetostatic
fields. Consider a spherical shell of highly permeable material (Figure 3.22); assume it
is immersed in a uniform impressed field H0 = H0ẑ. We wish to determine the internal
field and the factor by which it is reduced from the external applied field. Because there
are no sources (the applied field is assumed to be created by sources far removed), we
may use magnetic scalar potentials to represent the fields everywhere. We may represent
the scalar potentials using a separation of variables solution to Laplace’s equation, with
a contribution only from the n = 1 term in the series. In region 1 we have both scattered



Figure 3.22: Spherical shell of magnetic material.

and applied potentials, where the applied potential is just �0 = −H0z = −H0r cos θ ,
since H0 = −∇�0 = H0ẑ. We have

�1(r) = A1r−2 cos θ − H0r cos θ, (3.206)
�2(r) = (B1r−2 + C1r) cos θ, (3.207)
�3(r) = D1r cos θ. (3.208)

We choose (3.109) for the scattered potential in region 1 so that it decays as r → ∞,
and (3.110) for the scattered potential in region 3 so that it remains finite at r = 0. In
region 2 we have no restrictions and therefore include both contributions. The coefficients
A1, B1, C1, D1 are found by applying the appropriate boundary conditions at r = a and
r = b. By continuity of the scalar potential across each boundary we have

A1b−2 − H0b = B1b−2 + C1b,

B1a−2 + C1a = D1a.

By (3.156), the quantity µ∂�/∂r is also continuous at r = a and r = b; this gives two
more equations:

µ0(−2A1b−3 − H0) = µ(−2B1b−3 + C1),

µ(−2B1a−3 + C1) = µ0 D1.

Simultaneous solution yields

D1 = −9µr

K
H0

where

K = (2 + µr )(1 + 2µr ) − 2(a/b)3(µr − 1)2.

Substituting this into (3.208) and using H = −∇�m , we find that

H = κ H0ẑ

within the enclosure, where κ = 9µr/K . This field is uniform and, since κ < 1 for µr > 1,
it is weaker than the applied field. For µr � 1 we have K ≈ 2µ2

r [1 − (a/b)3]. Denoting



the shell thickness by � = b − a, we find that K ≈ 6µ2
r �/a when �/a 	 1. Thus

κ = 3

2

1

µr
�
a

describes the coefficient of shielding for a highly permeable spherical enclosure, valid
when µr � 1 and �/a 	 1. A shell for which µr = 10, 000 and a/b = 0.99 can reduce
the enclosure field to 0.15% of the applied field.

3.4 Static field theorems

3.4.1 Mean value theorem of electrostatics

The average value of the electrostatic potential over a sphere is equal to the potential
at the center of the sphere, provided that the sphere encloses no electric charge. To see
this, write

�(r) = 1

4πε

∫
V

ρ(r′)
R

dV ′ + 1

4π

∮
S

[
−�(r′)

R̂
R2

+ ∇′�(r′)
R

]
· dS′;

put ρ ≡ 0 in V , and use the obvious facts that if S is a sphere centered at point r then
(1) R is constant on S and (2) n̂′ = −R̂:

�(r) = 1

4π R2

∮
S
�(r′) d S′ − 1

4π R

∮
S

E(r′) · dS′.

The last term vanishes by Gauss’s law, giving the desired result.

3.4.2 Earnshaw’s theorem

It is impossible for a charge to rest in stable equilibrium under the influence of elec-
trostatic forces alone. This is an easy consequence of the mean value theorem of electro-
statics, which precludes the existence of a point where � can assume a maximum or a
minimum.

3.4.3 Thomson’s theorem

Static charge on a system of perfect conductors distributes itself so that the electric
stored energy is a minimum. Figure 3.23 shows a system of n conducting bodies held at
potentials �1, . . . , �n. Suppose the potential field associated with the actual distribution
of charge on these bodies is �, giving

We = ε

2

∫
V

E · E dV = ε

2

∫
V

∇� · ∇� dV

for the actual stored energy. Now assume a slightly different charge distribution, resulting
in a new potential �′ = �+ δ� that satisfies the same boundary conditions (i.e., assume
δ� = 0 on each conducting body). The stored energy associated with this hypothetical
situation is

W ′
e = We + δWe = ε

2

∫
V

∇(� + δ�) · ∇(� + δ�) dV



Figure 3.23: System of conductors used to derive Thomson’s theorem.

so that

δWe = ε

∫
V

∇� · ∇(δ�) dV + ε

2

∫
V

|∇(δ�)|2 dV ;

Thomson’s theorem will be proved if we can show that∫
V

∇� · ∇(δ�) dV = 0, (3.209)

because then we shall have

δWe = ε

2

∫
V

|∇(δ�)|2 dV ≥ 0.

To establish (3.209), we use Green’s first identity∫
V
(∇u · ∇v + u∇2v) dV =

∮
S

u∇v · dS

with u = δ� and v = �: ∫
V

∇� · ∇(δ�) dV =
∮

S
δ� ∇� · dS.

Here S is composed of (1) the exterior surfaces Sk (k = 1, . . . , n) of the n bodies, (2)
the surfaces Sc of the “cuts” that are introduced in order to keep V a simply-connected
region (a condition for the validity of Green’s identity), and (3) the sphere S∞ of very
large radius r . Thus

∫
V

∇� · ∇(δ�) dV =
n∑

k=1

∫
Sk

δ� ∇� · dS +
∫

Sc

δ� ∇� · dS +
∫

S∞
δ� ∇� · dS.

The first term on the right vanishes because δ� = 0 on each Sk . The second term
vanishes because the contributions from opposite sides of each cut cancel (note that n̂
occurs in pairs that are oppositely directed). The third term vanishes because � ∼ 1/r ,
∇� ∼ 1/r2, and d S ∼ r2 where r → ∞ for points on S∞.



Figure 3.24: System of conductors used to derive Green’s reciprocation theorem.

3.4.4 Green’s reciprocation theorem

Consider a system of n conducting bodies as in Figure 3.24. An associated mathemat-
ical surface St consists of the exterior surfaces S1, . . . , Sn of the n bodies, taken together
with a surface S that enclosed all of the bodies. Suppose � and �′ are electrostatic
potentials produced by two distinct distributions of stationary charge over the set of
conductors. Then ∇2� = 0 = ∇2�′ and Green’s second identity gives

∮
St

(
�

∂�′

∂n
− �′ ∂�

∂n

)
d S = 0

or
n∑

k=1

∫
Sk

�
∂�′

∂n
d S +

∫
S
�

∂�′

∂n
d S =

n∑
k=1

∫
Sk

�′ ∂�

∂n
d S +

∫
S
�′ ∂�

∂n
d S.

Now let S be a sphere of very large radius R so that at points on S we have

�, �′ ∼ 1

R
,

∂�

∂n
,
∂�′

∂n
∼ 1

R2
, d S ∼ R2;

as R → ∞ then,

n∑
k=1

∫
Sk

�
∂�′

∂n
d S =

n∑
k=1

∫
Sk

�′ ∂�

∂n
d S.

Furthermore, the conductors are equipotentials so that

n∑
k=1

�k

∫
Sk

∂�′

∂n
d S =

n∑
k=1

�′
k

∫
Sk

∂�

∂n
d S

and we therefore have
n∑

k=1

q ′
k�k =

n∑
k=1

qk�
′
k (3.210)

where the kth conductor (k = 1, . . . , n) has potential �k when it carries charge qk ,
and has potential �′

k when it carries charge q ′
k . This is Green’s reciprocation theorem.

A classic application is to determine the charge induced on a grounded conductor by



Figure 3.25: Application of Green’s reciprocation theorem. (a) The “unprimed situation”
permits us to determine the potential VP at point P produced by a charge q placed on
body 1. Here V1 is the potential of body 1. (b) In the “primed situation” we ground
body 1 and induce a charge q ′ by bringing a point charge q ′

P into proximity.

a nearby point charge. This is accomplished as follows. Let the conducting body of
interest be designated as body 1, and model the nearby point charge qP as a very small
conducting body designated as body 2 and located at point P in space. Take

q1 = q, q2 = 0, �1 = V1, �2 = VP ,

and

q ′
1 = q ′, q ′

2 = q ′
P , �′

1 = 0, �′
2 = V ′

P ,

giving the two situations shown in Figure 3.25. Substitution into Green’s reciprocation
theorem

q ′
1�1 + q ′

2�2 = q1�
′
1 + q2�

′
2

gives q ′V1 + q ′
P VP = 0 so that

q ′ = −q ′
P VP/V1. (3.211)

3.5 Problems

3.1 The z-axis carries a line charge of nonuniform density ρl(z). Show that the electric
field in the plane z = 0 is given by

E(ρ, φ) = 1

4πε

[
ρ̂ρ

∫ ∞

−∞

ρl(z′) dz′

(ρ2 + z′2)3/2
− ẑ

∫ ∞

−∞

ρl(z′)z′ dz′

(ρ2 + z′2)3/2

]
.

Compute E when ρl = ρ0 sgn(z), where sgn(z) is the signum function (A.6).

3.2 The ring ρ = a, z = 0, carries a line charge of nonuniform density ρl(φ). Show that
the electric field at an arbitrary point on the z-axis is given by

E(z) = −a2

4πε(a2 + z2)3/2

[
x̂

∫ 2π

0
ρl(φ

′) cos φ′ dφ′ + ŷ
∫ 2π

0
ρl(φ

′) sin φ′ dφ′
]

+

+ ẑ
az

4πε(a2 + z2)3/2

∫ 2π

0
ρl(φ

′) dφ′.



Figure 3.26: Geometry for computing Green’s function for parallel plates.

Compute E when ρl(φ) = ρ0 sin φ. Repeat for ρl(φ) = ρ0 cos2 φ.

3.3 The plane z = 0 carries a surface charge of nonuniform density ρs(ρ, φ). Show that
at an arbitrary point on the z-axis the rectangular components of E are given by

Ex (z) = − 1

4πε

∫ ∞

0

∫ 2π

0

ρs(ρ
′, φ′) ρ ′2 cos φ′ dφ′ dρ ′

(ρ ′2 + z2)3/2
,

Ey(z) = − 1

4πε

∫ ∞

0

∫ 2π

0

ρs(ρ
′, φ′) ρ ′2 sin φ′ dφ′ dρ ′

(ρ ′2 + z2)3/2
,

Ez(z) = z

4πε

∫ ∞

0

∫ 2π

0

ρs(ρ
′, φ′) ρ ′ dφ′ dρ ′

(ρ ′2 + z2)3/2
.

Compute E when ρs(ρ, φ) = ρ0U (ρ − a) where U (ρ) is the unit step function (A.5).
Repeat for ρs(ρ, φ) = ρ0[1 − U (ρ − a)].

3.4 The sphere r = a carries a surface charge of nonuniform density ρs(θ). Show that
the electric intensity at an arbitrary point on the z-axis is given by

E(z) = ẑ
a2

2ε

∫ π

0

ρs(θ
′)(z − a cos θ ′) sin θ ′ dθ ′

(a2 + z2 − 2az cos θ ′)3/2
.

Compute E(z) when ρs(θ) = ρ0, a constant. Repeat for ρs(θ) = ρ0 cos2 θ .

3.5 Beginning with the postulates for the electrostatic field

∇ × E = 0, ∇ · D = ρ,

use the technique of § 2.8.2 to derive the boundary conditions (3.32)–(3.33).

3.6 A material half space of permittivity ε1 occupies the region z > 0, while a second
material half space of permittivity ε2 occupies z < 0. Find the polarization surface charge
densities and compute the total induced polarization charge for a point charge Q located
at z = h.

3.7 Consider a point charge between two grounded conducting plates as shown in
Figure 3.26. Write the Green’s function as the sum of primary and secondary terms and
apply the boundary conditions to show that the secondary Green’s function is

Gs(r|r′) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

[
−e−kρ(d−z) sinh kρz′

sinh kρd
− e−kρ z sinh kρ(d − z′)

sinh kρd

]
e− jkρ ·r′

2kρ

d2kρ.

(3.212)



3.8 Use the expansion

1

sinh kρd
= csch kρd = 2

∞∑
n=0

e−(2n+1)kρd

to show that the secondary Green’s function for parallel conducting plates (3.212) may
be written as an infinite sequence of images of the primary point charge. Identify the
geometrical meaning of each image term.

3.9 Find the Green’s functions for a dielectric slab of thickness d placed over a perfectly
conducting ground plane located at z = 0.

3.10 Find the Green’s functions for a dielectric slab of thickness 2d immersed in free
space and centered on the z = 0 plane. Compare to the Green’s function found in
Problem 3.9.

3.11 Referring to the system of Figure 3.9, find the charge density on the surface of
the sphere and integrate to show that the total charge is equal to the image charge.

3.12 Use the method of Green’s functions to find the potential inside a conducting
sphere for ρ inside the sphere.

3.13 Solve for the total potential and electric field of a grounded conducting sphere
centered at the origin within a uniform impressed electric field E = E0ẑ. Find total
charge induced on the sphere.

3.14 Consider a spherical cavity of radius a centered at the origin within a homogeneous
dielectric material of permittivity ε = ε0εr . Solve for total potential and electric field
inside the cavity in the presence of an impressed field E = E0ẑ. Show that the field in
the cavity is stronger than the applied field, and explain this using polarization surface
charge.

3.15 Find the field of a point charge Q located at z = d above a perfectly conducting
ground plane at z = 0. Use the boundary condition to find the charge density on the
plane and integrate to show that the total charge is −Q. Integrate Maxwell’s stress
tensor over the surface of the ground plane and show that the force on the ground plane
is the same as the force on the image charge found from Coulomb’s law.

3.16 Consider in free space a point charge −q at r = r0 + d, a point charge −q at
r = r0 − d, and a point charge 2q at r0. Find the first three multipole moments and the
resulting potential produced by this charge distribution.

3.17 A spherical charge distribution of radius a in free space has the density

ρ(r) = Q

πa3
cos 2θ.

Compute the multipole moments for the charge distribution and find the resulting poten-
tial. Find a suitable arrangement of point charges that will produce the same potential
field for r > a as produced by the spherical charge.

3.18 Compute the magnetic flux density B for the circular wire loop of Figure 3.18 by
(a) using the Biot–Savart law (3.165), and (b) computing the curl of (3.138).



Figure 3.27: Parallel plate capacitor.

3.19 Two circular current-carrying wires are arranged coaxially along the z-axis. Loop
1 has radius a1, carries current I1, and is centered in the z = 0 plane. Loop 2 has radius
a2, carries current I2, and is centered in the z = d plane. Find the force between the
loops.

3.20 Choose Q = ∇′ ( 1
R

) × c in (3.162) and derive the following expression for B:

B(r) = µ

4π

∫
V

J(r′) × ∇′
(

1

R

)
dV ′ −

− 1

4π

∮
S

[
[n̂′ × B(r′)] × ∇′

(
1

R

)
+ [n̂′ · B(r′)]∇′

(
1

R

)]
d S′,

where n̂ is the normal vector outward from V . Compare to the Stratton–Chu formula
(6.8).

3.21 Compute the curl of (3.163) to obtain the integral expression for B given in Prob-
lem 3.20. Compare to the Stratton–Chu formula (6.8).

3.22 Obtain (3.170) by integration of Maxwell’s stress tensor over the xz-plane.

3.23 Consider two thin conducting parallel plates embedded in a region of permittivity
ε (Figure 3.27). The bottom plate is connected to ground, and we apply an excess charge
+Q to the top plate (and thus −Q is drawn onto the bottom plate.) Neglecting fringing,
(a) solve Laplace’s equation to show that

�(z) = Q

Aε
z.

Use (3.87) to show that

W = Q2d

2Aε
.

(b) Verify W using (3.88). (c) Use F = −ẑdW/dz to show that the force on the top plate
is

F = −ẑ
Q2

2Aε
.

(d) Verify F by integrating Maxwell’s stress tensor over a closed surface surrounding the
top plate.



3.24 Consider two thin conducting parallel plates embedded in a region of permittivity
ε (Figure 3.27). The bottom plate is connected to ground, and we apply a potential V0 to
the top plate using a battery. Neglecting fringing, (a) solve Laplace’s equation to show
that

�(z) = V0

d
z.

Use (3.87) to show that

W = V 2
0 Aε

2d
.

(b) Verify W using (3.88). (c) Use F = −ẑdW/dz to show that the force on the top plate
is

F = −ẑ
V 2

0 Aε

2d2
.

(d) Verify F by integrating Maxwell’s stress tensor over a closed surface surrounding the
top plate.

3.25 A group of N perfectly conducting bodies is arranged in free space. Body n is
held at potential Vn with respect to ground, and charge Qn is induced upon its surface.
By linearity we may write

Qm =
N∑

n=1

cmn Vn

where the cmn are called the capacitance coefficients. Using Green’s reciprocation the-
orem, demonstrate that cmn = cnm . Hint: Use (3.210). Choose one set of voltages so
that Vk = 0, k �= n, and place Vn at some potential, say Vn = V0, producing the set of
charges {Qk}. For the second set choose V ′

k = 0, k �= m, and Vm = V0, producing {Q′
k}.

3.26 For the set of conductors of Problem 3.25, show that we may write

Qm = Cmm Vm +
∑
k �=m

Cmk(Vm − Vk)

where

Cmn = −cmn, m �= n, Cmm =
N∑

k=1

cmk .

Here Cmm , called the self capacitance, describes the interaction between the mth con-
ductor and ground, while Cmn, called the mutual capacitance, describes the interaction
between the mth and nth conductors.

3.27 For the set of conductors of Problem 3.25, show that the stored electric energy is
given by

W = 1

2

N∑
m=1

N∑
n=1

cmn Vn Vm .

3.28 A group of N wires is arranged in free space as shown in Figure 3.28. Wire n
carries a steady current In, and a flux �n passes through the surface defined by its
contour �n. By linearity we may write

�m =
N∑

n=1

Lmn In



Figure 3.28: A system of current-carrying wires.

where the Lmn are called the coefficients of inductance. Derive Neumann’s formula

Lmn = µ0

4π

∮
�n

∮
�m

dl · dl′

|r − r′| ,

and thereby demonstrate the reciprocity relation Lmn = Lnm .

3.29 For the group of wires shown in Figure 3.28, show that the stored magnetic energy
is given by

W = 1

2

N∑
m=1

N∑
n=1

Lmn In Im .

3.30 Prove the minimum heat generation theorem: steady electric currents distribute
themselves in a conductor in such a way that the dissipated power is a minimum. Hint:
Let J be the actual distribution of current in a conducting body, and let the power it
dissipates be P. Let J′ = J + δJ be any other current distribution, and let the power it
dissipates be P ′ = P + δP. Show that

δP = 1

2

∫
V

1

σ
|δJ|2 dV ≥ 0.



Chapter 4

Temporal and spatial frequency domain
representation

4.1 Interpretation of the temporal transform

When a field is represented by a continuous superposition of elemental components, the
resulting decomposition can simplify computation and provide physical insight. Such rep-
resentation is usually accomplished through the use of an integral transform. Although
several different transforms are used in electromagnetics, we shall concentrate on the
powerful and efficient Fourier transform.

Let us consider the Fourier transform of the electromagnetic field. The field depends
on x, y, z, t , and we can transform with respect to any or all of these variables. However,
a consideration of units leads us to consider a transform over t separately. Let ψ(r, t)
represent any rectangular component of the electric or magnetic field. Then the temporal
transform will be designated by ψ̃(r, ω):

ψ(r, t) ↔ ψ̃(r, ω).

Here ω is the transform variable. The transform field ψ̃ is calculated using (A.1):

ψ̃(r, ω) =
∫ ∞

−∞
ψ(r, t) e− jωt dt. (4.1)

The inverse transform is, by (A.2),

ψ(r, t) = 1

2π

∫ ∞

−∞
ψ̃(r, ω) e jωt dω. (4.2)

Since ψ̃ is complex it may be written in amplitude–phase form:

ψ̃(r, ω) = |ψ̃(r, ω)|e jξψ (r,ω),

where we take −π < ξψ(r, ω) ≤ π .
Since ψ(r, t) must be real, (4.1) shows that

ψ̃(r, −ω) = ψ̃∗(r, ω). (4.3)

Furthermore, the transform of the derivative of ψ may be found by differentiating (4.2).
We have

∂

∂t
ψ(r, t) = 1

2π

∫ ∞

−∞
jωψ̃(r, ω) e jωt dω,



hence
∂

∂t
ψ(r, t) ↔ jωψ̃(r, ω). (4.4)

By virtue of (4.2), any electromagnetic field component can be decomposed into a contin-
uous, weighted superposition of elemental temporal terms e jωt . Note that the weighting
factor ψ̃(r, ω), often called the frequency spectrum of ψ(r, t), is not arbitrary because
ψ(r, t) must obey a scalar wave equation such as (2.327). For a source-free region of
space we have (

∇2 − µσ
∂

∂t
− µε

∂2

∂t2

)
1

2π

∫ ∞

−∞
ψ̃(r, ω) e jωt dω = 0.

Differentiating under the integral sign we have

1

2π

∫ ∞

−∞

[(∇2 − jωµσ + ω2µε
)
ψ̃(r, ω)

]
e jωt dω = 0,

hence by the Fourier integral theorem(∇2 + k2
)
ψ̃(r, ω) = 0 (4.5)

where

k = ω
√

µε

√
1 − j

σ

ωε

is the wavenumber . Equation (4.5) is called the scalar Helmholtz equation, and represents
the wave equation in the temporal frequency domain.

4.2 The frequency-domain Maxwell equations

If the region of interest contains sources, we can return to Maxwell’s equations and
represent all quantities using the temporal inverse Fourier transform. We have, for ex-
ample,

E(r, t) = 1

2π

∫ ∞

−∞
Ẽ(r, ω) e jωt dω

where

Ẽ(r, ω) =
3∑

i=1

îi Ẽi (r, ω) =
3∑

i=1

îi |Ẽi (r, ω)|e jξ E
i (r,ω). (4.6)

All other field quantities will be written similarly with an appropriate superscript on the
phase. Substitution into Ampere’s law gives

∇ × 1

2π

∫ ∞

−∞
H̃(r, ω) e jωt dω = ∂

∂t

1

2π

∫ ∞

−∞
D̃(r, ω) e jωt dω + 1

2π

∫ ∞

−∞
J̃(r, ω) e jωt dω,

hence

1

2π

∫ ∞

−∞
[∇ × H̃(r, ω) − jωD̃(r, ω) − J̃(r, ω)]e jωt dω = 0



after we differentiate under the integral signs and combine terms. So

∇ × H̃ = jωD̃ + J̃ (4.7)

by the Fourier integral theorem. This version of Ampere’s law involves only the frequency-
domain fields. By similar reasoning we have

∇ × Ẽ = − jωB̃, (4.8)
∇ · D̃ = ρ̃, (4.9)

∇ · B̃(r, ω) = 0, (4.10)

and

∇ · J̃ + jωρ̃ = 0.

Equations (4.7)–(4.10) govern the temporal spectra of the electromagnetic fields. We may
manipulate them to obtain wave equations, and apply the boundary conditions from the
following section. After finding the frequency-domain fields we may find the temporal
fields by Fourier inversion. The frequency-domain equations involve one fewer derivative
(the time derivative has been replaced by multiplication by jω), hence may be easier to
solve. However, the inverse transform may be difficult to compute.

4.3 Boundary conditions on the frequency-domain fields

Several boundary conditions on the source and mediating fields were derived in § 2.8.2.
For example, we found that the tangential electric field must obey

n̂12 × E1(r, t) − n̂12 × E2(r, t) = −Jms(r, t).

The technique of the previous section gives us

n̂12 × [Ẽ1(r, ω) − Ẽ2(r, ω)] = −J̃ms(r, ω)

as the condition satisfied by the frequency-domain electric field. The remaining boundary
conditions are treated similarly. Let us summarize the results, including the effects of
fictitious magnetic sources:

n̂12 × (H̃1 − H̃2) = J̃s,

n̂12 × (Ẽ1 − Ẽ2) = −J̃ms,

n̂12 · (D̃1 − D̃2) = ρ̃s,

n̂12 · (B̃1 − B̃2) = ρ̃ms,

and

n̂12 · (J̃1 − J̃2) = −∇s · J̃s − jωρ̃s,

n̂12 · (J̃m1 − J̃m2) = −∇s · J̃ms − jωρ̃ms .

Here n̂12 points into region 1 from region 2.



4.4 Constitutive relations in the frequency domain and the
Kronig–Kramers relations

All materials are to some extent dispersive. If a field applied to a material undergoes
a sufficiently rapid change, there is a time lag in the response of the polarization or
magnetization of the atoms. It has been found that such materials have constitutive
relations involving products in the frequency domain, and that the frequency-domain
constitutive parameters are complex, frequency-dependent quantities. We shall restrict
ourselves to the special case of anisotropic materials and refer the reader to Kong [101]
and Lindell [113] for the more general case. For anisotropic materials we write

P̃ = ε0 ˜̄χe · Ẽ, (4.11)
M̃ = ˜̄χm · H̃, (4.12)
D̃ = ˜̄ε · Ẽ = ε0[Ī + ˜̄χe] · Ẽ, (4.13)
B̃ = ˜̄µ · H̃ = µ0[Ī + ˜̄χm] · H̃, (4.14)
J̃ = ˜̄σ · Ẽ. (4.15)

By the convolution theorem and the assumption of causality we immediately obtain the
dyadic versions of (2.29)–(2.31):

D(r, t) = ε0

(
E(r, t) +

∫ t

−∞
χ̄e(r, t − t ′) · E(r, t ′) dt ′

)
,

B(r, t) = µ0

(
H(r, t) +

∫ t

−∞
χ̄m(r, t − t ′) · H(r, t ′) dt ′

)
,

J(r, t) =
∫ t

−∞
σ̄(r, t − t ′) · E(r, t ′) dt ′.

These describe the essential behavior of a dispersive material. The susceptances and
conductivity, describing the response of the atomic structure to an applied field, depend
not only on the present value of the applied field but on all past values as well.

Now since D(r, t), B(r, t), and J(r, t) are all real, so are the entries in the dyadic
matrices ε̄(r, t), µ̄(r, t), and σ̄(r, t). Thus, applying (4.3) to each entry we must have

˜̄χe(r, −ω) = ˜̄χ∗
e(r, ω), ˜̄χm(r, −ω) = ˜̄χ∗

m(r, ω), ˜̄σ(r, −ω) = ˜̄σ∗
(r, ω), (4.16)

and hence

˜̄ε(r, −ω) = ˜̄ε∗
(r, ω), ˜̄µ(r, −ω) = ˜̄µ∗

(r, ω). (4.17)

If we write the constitutive parameters in terms of real and imaginary parts as

ε̃i j = ε̃′
i j + j ε̃′′

i j , µ̃i j = µ̃′
i j + jµ̃′′

i j , σ̃i j = σ̃ ′
i j + j σ̃ ′′

i j ,

these conditions become

ε̃′
i j (r, −ω) = ε̃′

i j (r, ω), ε̃′′
i j (r, −ω) = −ε̃′′

i j (r, ω),

and so on. Therefore the real parts of the constitutive parameters are even functions of
frequency, and the imaginary parts are odd functions of frequency.



In most instances, the presence of an imaginary part in the constitutive parameters
implies that the material is either dissipative (lossy), transforming some of the electro-
magnetic energy in the fields into thermal energy, or active, transforming the chemical or
mechanical energy of the material into energy in the fields. We investigate this further
in § 4.5 and § 4.8.3.

We can also write the constitutive equations in amplitude–phase form. Letting

ε̃i j = |ε̃i j |e jξε
i j , µ̃i j = |µ̃i j |e jξµ

i j , σ̃i j = |σ̃i j |e jξσ
i j ,

and using the field notation (4.6), we can write (4.13)–(4.15) as

D̃i = |D̃i |e jξ D
i =

3∑
j=1

|ε̃i j ||Ẽ j |e j[ξ E
j +ξε

i j ], (4.18)

B̃i = |B̃i |e jξ B
i =

3∑
j=1

|µ̃i j ||H̃ j |e j[ξ H
j +ξ

µ

i j ], (4.19)

J̃i = | J̃i |e jξ J
i =

3∑
j=1

|σ̃i j ||Ẽ j |e j[ξ E
j +ξσ

i j ]. (4.20)

Here we remember that the amplitudes and phases may be functions of both r and ω.

For isotropic materials these reduce to

D̃i = |D̃i |e jξ D
i = |ε̃||Ẽi |e j (ξ E

i +ξε), (4.21)

B̃i = |B̃i |e jξ B
i = |µ̃||H̃i |e j (ξ H

i +ξµ), (4.22)

J̃i = | J̃i |e jξ J
i = |σ̃ ||Ẽi |e j (ξ E

i +ξσ ). (4.23)

4.4.1 The complex permittivity

As mentioned above, dissipative effects may be associated with complex entries in the
permittivity matrix. Since conduction effects can also lead to dissipation, the permittivity
and conductivity matrices are often combined to form a complex permittivity. Writing
the current as a sum of impressed and secondary conduction terms (J̃ = J̃i + J̃c) and
substituting (4.13) and (4.15) into Ampere’s law, we find

∇ × H̃ = J̃i + ˜̄σ · Ẽ + jω ˜̄ε · Ẽ.

Defining the complex permittivity

˜̄εc
(r, ω) = ˜̄σ(r, ω)

jω
+ ˜̄ε(r, ω), (4.24)

we have

∇ × H̃ = J̃i + jω ˜̄εc · Ẽ.

Using the complex permittivity we can include the effects of conduction current by merely
replacing the total current with the impressed current. Since Faraday’s law is unaffected,
any equation (such as the wave equation) derived previously using total current retains
its form with the same substitution.

By (4.16) and (4.17) the complex permittivity obeys

˜̄εc
(r, −ω) = ˜̄εc∗

(r, ω) (4.25)



or

ε̃c′
i j (r, −ω) = ε̃c′

i j (r, ω), ε̃c′′
i j (r, −ω) = −ε̃c′′

i j (r, ω).

For an isotropic material it takes the particularly simple form

ε̃c = σ̃

jω
+ ε̃ = σ̃

jω
+ ε0 + ε0χ̃e, (4.26)

and we have

ε̃c′(r, −ω) = ε̃c′(r, ω), ε̃c′′(r, −ω) = −ε̃c′′(r, ω). (4.27)

4.4.2 High and low frequency behavior of constitutive parameters

At low frequencies the permittivity reduces to the electrostatic permittivity. Since ε̃′

is even in ω and ε̃′′ is odd, we have for small ω

ε̃′ ∼ ε0εr , ε̃′′ ∼ ω.

If the material has some dc conductivity σ0, then for low frequencies the complex per-
mittivity behaves as

ε̃c′ ∼ ε0εr , ε̃c′′ ∼ σ0/ω. (4.28)

If E or H changes very rapidly, there may be no polarization or magnetization effect at
all. This occurs at frequencies so high that the atomic structure of the material cannot
respond to the rapidly oscillating applied field. Above some frequency then, we can
assume ˜̄χe = 0 and ˜̄χm = 0 so that

P̃ = 0, M̃ = 0,

and

D̃ = ε0Ẽ, B̃ = µ0H̃.

In our simple models of dielectric materials (§ 4.6) we find that as ω becomes large

ε̃′ − ε0 ∼ 1/ω2, ε̃′′ ∼ 1/ω3. (4.29)

Our assumption of a macroscopic model of matter provides a fairly strict upper frequency
limit to the range of validity of the constitutive parameters. We must assume that the
wavelength of the electromagnetic field is large compared to the size of the atomic struc-
ture. This limit suggests that permittivity and permeability might remain meaningful
even at optical frequencies, and for dielectrics this is indeed the case since the values of
P̃ remain significant. However, M̃ becomes insignificant at much lower frequencies, and
at optical frequencies we may use B̃ = µ0H̃ [107].

4.4.3 The Kronig–Kramers relations

The principle of causality is clearly implicit in (2.29)–(2.31). We shall demonstrate
that causality leads to explicit relationships between the real and imaginary parts of the
frequency-domain constitutive parameters. For simplicity we concentrate on the isotropic
case and merely note that the present analysis may be applied to all the dyadic com-
ponents of an anisotropic constitutive parameter. We also concentrate on the complex
permittivity and extend the results to permeability by induction.



The implications of causality on the behavior of the constitutive parameters in the
time domain can be easily identified. Writing (2.29) and (2.31) after setting u = t − t ′

and then u = t ′, we have

D(r, t) = ε0E(r, t) + ε0

∫ ∞

0
χe(r, t ′)E(r, t − t ′) dt ′,

J(r, t) =
∫ ∞

0
σ(r, t ′)E(r, t − t ′) dt ′.

We see that there is no contribution from values of χe(r, t) or σ(r, t) for times t < 0. So
we can write

D(r, t) = ε0E(r, t) + ε0

∫ ∞

−∞
χe(r, t ′)E(r, t − t ′) dt ′,

J(r, t) =
∫ ∞

−∞
σ(r, t ′)E(r, t − t ′) dt ′,

with the additional assumption

χe(r, t) = 0, t < 0, σ (r, t) = 0, t < 0. (4.30)

By (4.30) we can write the frequency-domain complex permittivity (4.26) as

ε̃c(r, ω) − ε0 = 1

jω

∫ ∞

0
σ(r, t ′)e− jωt ′

dt ′ + ε0

∫ ∞

0
χe(r, t ′)e− jωt ′

dt ′. (4.31)

In order to derive the Kronig–Kramers relations we must understand the behavior of
ε̃c(r, ω) − ε0 in the complex ω-plane. Writing ω = ωr + jωi , we need to establish the
following two properties.

Property 1: The function ε̃c(r, ω) − ε0 is analytic in the lower half-plane (ωi < 0)
except at ω = 0 where it has a simple pole.

We can establish the analyticity of σ̃ (r, ω) by integrating over any closed contour in
the lower half-plane. We have

∮
�

σ̃ (r, ω) dω =
∮

�

[∫ ∞

0
σ(r, t ′)e− jωt ′

dt ′
]

dω =
∫ ∞

0
σ(r, t ′)

[∮
�

e− jωt ′
dω

]
dt ′. (4.32)

Note that an exchange in the order of integration in the above expression is only valid
for ω in the lower half-plane where limt ′→∞ e− jωt ′ = 0. Since the function f (ω) = e− jωt ′

is
analytic in the lower half-plane, its closed contour integral is zero by the Cauchy–Goursat
theorem. Thus, by (4.32) we have

∮
�

σ̃ (r, ω) dω = 0.

Then, since σ̃ may be assumed to be continuous in the lower half-plane for a physical
medium, and since its closed path integral is zero for all possible paths �, it is by Morera’s
theorem [110] analytic in the lower half-plane. By similar reasoning χe(r, ω) is analytic
in the lower half-plane. Since the function 1/ω has a simple pole at ω = 0, the composite
function ε̃c(r, ω) − ε0 given by (4.31) is analytic in the lower half-plane excluding ω = 0
where it has a simple pole.



Figure 4.1: Complex integration contour used to establish the Kronig–Kramers relations.

Property 2: We have

lim
ω→±∞ ε̃c(r, ω) − ε0 = 0.

To establish this property we need the Riemann–Lebesgue lemma [142], which states that
if f (t) is absolutely integrable on the interval (a, b) where a and b are finite or infinite
constants, then

lim
ω→±∞

∫ b

a
f (t)e− jωt dt = 0.

From this we see that

lim
ω→±∞

σ̃ (r, ω)

jω
= lim

ω→±∞
1

jω

∫ ∞

0
σ(r, t ′)e− jωt ′

dt ′ = 0,

lim
ω→±∞ ε0χe(r, ω) = lim

ω→±∞ ε0

∫ ∞

0
χe(r, t ′)e− jωt ′

dt ′ = 0,

and thus

lim
ω→±∞ ε̃c(r, ω) − ε0 = 0.

To establish the Kronig–Kramers relations we examine the integral∮
�

ε̃c(r, �) − ε0

� − ω
d�

where � is the contour shown in Figure 4.l. Since the points � = 0, ω are excluded,
the integrand is analytic everywhere within and on �, hence the integral vanishes by the
Cauchy–Goursat theorem. By Property 2 we have

lim
R→∞

∫
C∞

ε̃c(r, �) − ε0

� − ω
d� = 0,



hence ∫
C0+Cω

ε̃c(r, �) − ε0

� − ω
d� + P.V.

∫ ∞

−∞

ε̃c(r, �) − ε0

� − ω
d� = 0. (4.33)

Here “P.V.” indicates that the integral is computed in the Cauchy principal value sense
(see Appendix A). To evaluate the integrals over C0 and Cω, consider a function f (Z)

analytic in the lower half of the Z -plane (Z = Zr + j Zi ). If the point z lies on the real
axis as shown in Figure 4.1, we can calculate the integral

F(z) = lim
δ→0

∫
�

f (Z)

Z − z
d Z

through the parameterization Z − z = δe jθ . Since d Z = jδe jθ dθ we have

F(z) = lim
δ→0

∫ 0

−π

f
(
z + δe jθ

)
δe jθ

[
jδe jθ

]
dθ = j f (z)

∫ 0

−π

dθ = jπ f (z).

Replacing Z by � and z by 0 we can compute

lim
�→0

∫
C0

ε̃c(r, �) − ε0

� − ω
d�

= lim
�→0

∫
C0

[
1
j

∫ ∞
0 σ(r, t ′)e− j�t ′

dt ′ + �ε0
∫ ∞

0 χe(r, t ′)e− j�t ′
dt ′

]
1

�−ω

�
d�

= −π
∫ ∞

0 σ(r, t ′) dt ′

ω
.

We recognize
∫ ∞

0
σ(r, t ′) dt ′ = σ0(r)

as the dc conductivity and write

lim
�→0

∫
C0

ε̃c(r, �) − ε0

� − ω
d� = −πσ0(r)

ω
.

If we replace Z by � and z by ω we get

lim
δ→0

∫
Cω

ε̃c(r, �) − ε0

� − ω
d� = jπε̃c(r, ω) − jπε0.

Substituting these into (4.33) we have

ε̃c(r, ω) − ε0 = − 1

jπ
P.V.

∫ ∞

−∞

ε̃c(r, �) − ε0

� − ω
d� + σ0(r)

jω
. (4.34)

If we write ε̃c(r, ω) = ε̃c′(r, ω) + j ε̃c′′(r, ω) and equate real and imaginary parts in (4.34)
we find that

ε̃c′(r, ω) − ε0 = − 1

π
P.V.

∫ ∞

−∞

ε̃c′′(r, �)

� − ω
d�, (4.35)

ε̃c′′(r, ω) = 1

π
P.V.

∫ ∞

−∞

ε̃c′(r, �) − ε0

� − ω
d� − σ0(r)

ω
. (4.36)



These are the Kronig–Kramers relations, named after R. de L. Kronig and H.A. Kramers
who derived them independently. The expressions show that causality requires the real
and imaginary parts of the permittivity to depend upon each other through the Hilbert
transform pair [142].

It is often more convenient to write the Kronig–Kramers relations in a form that
employs only positive frequencies. This can be accomplished using the even–odd behavior
of the real and imaginary parts of ε̃c. Breaking the integrals in (4.35)–(4.36) into the
ranges (−∞, 0) and (0, ∞), and substituting from (4.27), we can show that

ε̃c′(r, ω) − ε0 = − 2

π
P.V.

∫ ∞

0

�ε̃c′′(r, �)

�2 − ω2
d�, (4.37)

ε̃c′′(r, ω) = 2ω

π
P.V.

∫ ∞

0

ε̃c′(r, �)

�2 − ω2
d� − σ0(r)

ω
. (4.38)

The symbol P.V. in this case indicates that values of the integrand around both � = 0
and � = ω must be excluded from the integration. The details of the derivation of
(4.37)–(4.38) are left as an exercise. We shall use (4.37) in § 4.6 to demonstrate the
Kronig–Kramers relationship for a model of complex permittivity of an actual material.

We cannot specify ε̃c′ arbitrarily; for a passive medium ε̃c′′ must be zero or negative at
all values of ω, and (4.36) will not necessarily return these required values. However, if
we have a good measurement or physical model for ε̃c′′, as might come from studies of the
absorbing properties of the material, we can approximate the real part of the permittivity
using (4.35). We shall demonstrate this using simple models for permittivity in § 4.6.

The Kronig–Kramers properties hold for µ as well. We must for practical reasons
consider the fact that magnetization becomes unimportant at a much lower frequency
than does polarization, so that the infinite integrals in the Kronig–Kramers relations
should be truncated at some upper frequency ωmax. If we use a model or measured
values of µ̃′′ to determine µ̃′, the form of the relation (4.37) should be [107]

µ̃′(r, ω) − µ0 = − 2

π
P.V.

∫ ωmax

0

�µ̃′′(r, �)

�2 − ω2
d�,

where ωmax is the frequency at which magnetization ceases to be important, and above
which µ̃ = µ0.

4.5 Dissipated and stored energy in a dispersive medium

Let us write down Poynting’s power balance theorem for a dispersive medium. Writing
J = Ji + Jc we have (§ 2.9.5)

− Ji · E = Jc · E + ∇ · [E × H] +
[

E · ∂D
∂t

+ H · ∂B
∂t

]
. (4.39)

We cannot express this in terms of the time rate of change of a stored energy density
because of the difficulty in interpreting the term

E · ∂D
∂t

+ H · ∂B
∂t

(4.40)



when the constitutive parameters have the form (2.29)–(2.31). Physically, this term
describes both the energy stored in the electromagnetic field and the energy dissipated by
the material because of time lags between the application of E and H and the polarization
or magnetization of the atoms (and thus the response fields D and B). In principle this
term can also be used to describe active media that transfer mechanical or chemical
energy of the material into field energy.

Instead of attempting to interpret (4.40), we concentrate on the physical meaning of

−∇ · S(r, t) = −∇ · [E(r, t) × H(r, t)].

We shall postulate that this term describes the net flow of electromagnetic energy into the
point r at time t . Then (4.39) shows that in the absence of impressed sources the energy
flow must act to (1) increase or decrease the stored energy density at r, (2) dissipate
energy in ohmic losses through the term involving Jc, or (3) dissipate (or provide) energy
through the term (40). Assuming linearity we may write

− ∇ · S(r, t) = ∂

∂t
we(r, t) + ∂

∂t
wm(r, t) + ∂

∂t
wQ(r, t), (4.41)

where the terms on the right-hand side represent the time rates of change of, respectively,
stored electric, stored magnetic, and dissipated energies.

4.5.1 Dissipation in a dispersive material

Although we may, in general, be unable to separate the individual terms in (4.41), we
can examine these terms under certain conditions. For example, consider a field that
builds from zero starting from time t = −∞ and then decays back to zero at t = ∞.
Then by direct integration1

−
∫ ∞

−∞
∇ · S(t) dt = wem(t = ∞) − wem(t = −∞) + wQ(t = ∞) − wQ(t = −∞)

where wem = we +wm is the volume density of stored electromagnetic energy. This stored
energy is zero at t = ±∞ since the fields are zero at those times. Thus,

�wQ = −
∫ ∞

−∞
∇ · S(t) dt = wQ(t = ∞) − wQ(t = −∞)

represents the volume density of the net energy dissipated by a lossy medium (or supplied
by an active medium). We may thus classify materials according to the scheme

�wQ = 0, lossless,
�wQ > 0, lossy,

�wQ ≥ 0, passive,
�wQ < 0, active.

For an anisotropic material with the constitutive relations

D̃ = ˜̄ε · Ẽ, B̃ = ˜̄µ · H̃, J̃c = ˜̄σ · Ẽ,

1Note that in this section we suppress the r-dependence of most quantities for clarity of presentation.



we find that dissipation is associated with negative imaginary parts of the constitutive
parameters. To see this we write

E(r, t) = 1

2π

∫ ∞

−∞
Ẽ(r, ω)e jωt dω, D(r, t) = 1

2π

∫ ∞

−∞
D̃(r, ω′)e jω′t dω′,

and thus find

Jc · E + E · ∂D
∂t

= 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
Ẽ(ω) · ˜̄εc

(ω′) · Ẽ(ω′)e j (ω+ω′)t jω′ dω dω′

where ˜̄εc is the complex dyadic permittivity (4.24). Then

�wQ = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

[
Ẽ(ω) · ˜̄εc

(ω′) · Ẽ(ω′) + H̃(ω) · ˜̄µ(ω′) · H̃(ω′)
] ·

·
[∫ ∞

−∞
e j (ω+ω′)t dt

]
jω′ dω dω′. (4.42)

Using (A.4) and integrating over ω we obtain

�wQ = 1

2π

∫ ∞

−∞

[
Ẽ(−ω′) · ˜̄εc

(ω′) · Ẽ(ω′) + H̃(−ω′) · ˜̄µ(ω′) · H̃(ω′)
]

jω′ dω′. (4.43)

Let us examine (4.43) more closely for the simple case of an isotropic material for
which

�wQ = 1

2π

∫ ∞

−∞

{[
j ε̃c′(ω′) − ε̃c′′(ω′)

]
Ẽ(−ω′) · Ẽ(ω′)+

+ [
jµ̃′(ω′) − µ̃′′(ω′)

]
H̃(−ω′) · H̃(ω′)

}
ω′ dω′.

Using the frequency symmetry property for complex permittivity (4.17) (which also holds
for permeability), we find that for isotropic materials

ε̃c′(r, ω) = ε̃c′(r, −ω), ε̃c′′(r, ω) = −ε̃c′′(r, −ω), (4.44)
µ̃′(r, ω) = µ̃′(r, −ω), µ̃′′(r, ω) = −µ̃′′(r, −ω). (4.45)

Thus, the products of ω′ and the real parts of the constitutive parameters are odd
functions, while for the imaginary parts these products are even. Since the dot products
of the vector fields are even functions, we find that the integrals of the terms containing
the real parts of the constitutive parameters vanish, leaving

�wQ = 2
1

2π

∫ ∞

0

[−ε̃c′′|Ẽ|2 − µ̃′′|H̃|2] ω dω. (4.46)

Here we have used (4.3) in the form

Ẽ(r, −ω) = Ẽ∗(r, ω), H̃(r, −ω) = H̃∗(r, ω). (4.47)

Equation (4.46) leads us to associate the imaginary parts of the constitutive parameters
with dissipation. Moreover, a lossy isotropic material for which �wQ > 0 must have at
least one of εc′′ and µ′′ less than zero over some range of positive frequencies, while an



active isotropic medium must have at least one of these greater than zero. In general,
we speak of a lossy material as having negative imaginary constitutive parameters:

ε̃c′′ < 0, µ̃′′ < 0, ω > 0. (4.48)

A lossless medium must have

ε̃′′ = µ̃′′ = σ̃ = 0

for all ω.
Things are not as simple in the more general anisotropic case. An integration of (4.42)

over ω′ instead of ω produces

�wQ = − 1

2π

∫ ∞

−∞

[
Ẽ(ω) · ˜̄εc

(−ω) · Ẽ(−ω) + H̃(ω) · ˜̄µ(−ω) · H̃(−ω)
]

jω dω.

Adding half of this expression to half of (4.43) and using (4.25), (4.17), and (4.47), we
obtain

�wQ = 1

4π

∫ ∞

−∞

[
Ẽ∗ · ˜̄εc · Ẽ − Ẽ · ˜̄εc∗ · Ẽ∗ + H̃∗ · ˜̄µ · H̃ − H̃ · ˜̄µ∗ · H̃∗] jω dω.

Finally, using the dyadic identity (A.76), we have

�wQ = 1

4π

∫ ∞

−∞

[
Ẽ∗ ·

(
˜̄εc − ˜̄εc†

)
· Ẽ + H̃∗ ·

(
˜̄µ − ˜̄µ†

)
· H̃

]
jω dω

where the dagger (†) denotes the hermitian (conjugate-transpose) operation. The condi-
tion for a lossless anisotropic material is

˜̄εc = ˜̄εc†
, ˜̄µ = ˜̄µ†

, (4.49)

or

ε̃i j = ε̃∗
j i , µ̃i j = µ̃∗

j i , σ̃i j = σ̃ ∗
j i . (4.50)

These relationships imply that in the lossless case the diagonal entries of the constitutive
dyadics are purely real.

Equations (4.50) show that complex entries in a permittivity or permeability matrix
do not necessarily imply loss. For example, we will show in § 4.6.2 that an electron
plasma exposed to a z-directed dc magnetic field has a permittivity of the form

[ ˜̄ε] =

 ε − jδ 0

jδ ε 0
0 0 εz




where ε, εz , and δ are real functions of space and frequency. Since ˜̄ε is hermitian it
describes a lossless plasma. Similarly, a gyrotropic medium such as a ferrite exposed to
a z-directed magnetic field has a permeability dyadic

[ ˜̄µ] =

 µ − jκ 0

jκ µ 0
0 0 µ0


 ,

which also describes a lossless material.



4.5.2 Energy stored in a dispersive material

In the previous section we were able to isolate the dissipative effects for a dispersive
material under special circumstances. It is not generally possible, however, to isolate
a term describing the stored energy. The Kronig–Kramers relations imply that if the
constitutive parameters of a material are frequency-dependent, they must have both real
and imaginary parts; such a material, if isotropic, must be lossy. So dispersive materials
are generally lossy and must have both dissipative and energy-storage characteristics.
However, many materials have frequency ranges called transparency ranges over which
ε̃c′′ and µ̃′′ are small compared to ε̃c′ and µ̃′. If we restrict our interest to these ranges,
we may approximate the material as lossless and compute a stored energy. An important
special case involves a monochromatic field oscillating at a frequency within this range.

To study the energy stored by a monochromatic field in a dispersive material we
must consider the transient period during which energy accumulates in the fields. The
assumption of a purely sinusoidal field variation would not include the effects described
by the temporal constitutive relations (2.29)–(2.31), which show that as the field builds
the energy must be added with a time lag. Instead we shall assume fields with the
temporal variation

E(r, t) = f (t)
3∑

i=1

îi |Ei (r)| cos[ω0t + ξ E
i (r)] (4.51)

where f (t) is an appropriate function describing the build-up of the sinusoidal field. To
compute the stored energy of a sinusoidal wave we must parameterize f (t) so that we
may drive it to unity as a limiting case of the parameter. A simple choice is

f (t) = e−α2t2 ↔ F̃(ω) =
√

π

α2
e− ω2

4α2 . (4.52)

Note that since f (t) approaches unity as α → 0, we have the generalized Fourier trans-
form relation

lim
α→0

F̃(ω) = 2πδ(ω). (4.53)

Substituting (4.51) into the Fourier transform formula (4.1) we find that

Ẽ(r, ω) = 1

2

3∑
i=1

îi |Ei (r)|e jξ E
i (r) F̃(ω − ω0) + 1

2

3∑
i=1

îi |Ei (r)|e− jξ E
i (r) F̃(ω + ω0).

We can simplify this by defining

Ě(r) =
3∑

i=1

îi |Ei (r)|e jξ E
i (r) (4.54)

as the phasor vector field to obtain

Ẽ(r, ω) = 1

2

[
Ě(r)F̃(ω − ω0) + Ě∗(r)F̃(ω + ω0)

]
. (4.55)

We shall discuss the phasor concept in detail in § 4.7.
The field E(r, t) is shown in Figure 4.2 as a function of t , while Ẽ(r, ω) is shown in

Figure 4.2 as a function of ω. As α becomes small the spectrum of E(r, t) concentrates
around ω = ±ω0. We assume the material is transparent for all values α of interest so
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Figure 4.2: Temporal (top) and spectral magnitude (bottom) dependences of E used to
compute energy stored in a dispersive material.

that we may treat ε as real. Then, since there is no dissipation, we conclude that the
term (4.40) represents the time rate of change of stored energy at time t , including the
effects of field build-up. Hence the interpretation2

E · ∂D
∂t

= ∂we

∂t
, H · ∂B

∂t
= ∂wm

∂t
.

We shall concentrate on the electric field term and later obtain the magnetic field term
by induction.

Since for periodic signals it is more convenient to deal with the time-averaged stored
energy than with the instantaneous stored energy, we compute the time average of we(r, t)
over the period of the sinusoid centered at the time origin. That is, we compute

〈we〉 = 1

T

∫ T/2

−T/2
we(t) dt (4.56)

where T = 2π/ω0. With α → 0, this time-average value is accurate for all periods of the
sinusoidal wave.

Because the most expedient approach to the computation of (4.56) is to employ the
Fourier spectrum of E, we use

E(r, t) = 1

2π

∫ ∞

−∞
Ẽ(r, ω)e jωt dω = 1

2π

∫ ∞

−∞
Ẽ∗(r, ω′)e− jω′t dω′,

∂D(r, t)

∂t
= 1

2π

∫ ∞

−∞
( jω)D̃(r, ω)e jωt dω = 1

2π

∫ ∞

−∞
(− jω′)D̃∗(r, ω′)e− jω′t dω′.

2Note that in this section we suppress the r-dependence of most quantities for clarity of presentation.



We have obtained the second form of each of these expressions using the property (4.3)
for the transform of a real function, and by using the change of variables ω′ = −ω.
Multiplying the two forms of the expressions and adding half of each, we find that

∂we

∂t
= 1

2

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π

[
jωẼ∗(ω′) · D̃(ω) − jω′Ẽ(ω) · D̃∗(ω′)

]
e− j (ω′−ω)t . (4.57)

Now let us consider a dispersive isotropic medium described by the constitutive rela-
tions D̃ = ε̃Ẽ, B̃ = µ̃H̃. Since the imaginary parts of ε̃ and µ̃ are associated with power
dissipation in the medium, we shall approximate ε̃ and µ̃ as purely real. Then (4.57)
becomes

∂we

∂t
= 1

2

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
Ẽ∗(ω′) · Ẽ(ω)

[
jωε̃(ω) − jω′ε̃(ω′)

]
e− j (ω′−ω)t .

Substitution from (4.55) now gives

∂we

∂t
= 1

8

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π

[
jωε̃(ω) − jω′ε̃(ω′)

] ·
· [

Ě · Ě∗ F̃(ω − ω0)F̃(ω′ − ω0) + Ě · Ě∗ F̃(ω + ω0)F̃(ω′ + ω0)+
+ Ě · ĚF̃(ω − ω0)F̃(ω′ + ω0) + Ě∗ · Ě∗ F̃(ω + ω0)F̃(ω′ − ω0)

]
e− j (ω′−ω)t .

Let ω → −ω wherever the term F̃(ω + ω0) appears, and ω′ → −ω′ wherever the term
F̃(ω′ + ω0) appears. Since F̃(−ω) = F̃(ω) and ε̃(−ω) = ε̃(ω), we find that

∂we

∂t
= 1

8

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
F̃(ω − ω0)F̃(ω′ − ω0) ·

·
[
Ě · Ě∗[ jωε̃(ω) − jω′ε̃(ω′)]e j (ω−ω′)t + Ě · Ě∗[ jω′ε̃(ω′) − jωε̃(ω)]e j (ω′−ω)t+

+ Ě · Ě[ jωε̃(ω) + jω′ε̃(ω′)]e j (ω+ω′)t + Ě∗ · Ě∗[− jωε̃(ω) − jω′ε̃(ω′)]e− j (ω+ω′)t
]
.

(4.58)

For small α the spectra are concentrated near ω = ω0 or ω′ = ω0. For terms involving
the difference in the permittivities we can expand g(ω) = ωε̃(ω) in a Taylor series about
ω0 to obtain the approximation

ωε̃(ω) ≈ ω0ε̃(ω0) + (ω − ω0)g
′(ω0)

where

g′(ω0) = ∂[ωε̃(ω)]

∂ω

∣∣∣∣
ω=ω0

.

This is not required for terms involving a sum of permittivities since these will not tend
to cancel. For such terms we merely substitute ω = ω0 or ω′ = ω0. With these (4.58)
becomes

∂we

∂t
= 1

8

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
F̃(ω − ω0)F̃(ω′ − ω0) ·

·
[
Ě · Ě∗g′(ω0)[ j (ω − ω′)]e j (ω−ω′)t + Ě · Ě∗g′(ω0)[ j (ω′ − ω)]e j (ω′−ω)t+

+ Ě · Ěε̃(ω0)[ j (ω + ω′)]e j (ω+ω′)t + Ě∗ · Ě∗ε̃(ω0)[− j (ω + ω′)]e− j (ω+ω′)t
]
.



By integration

we(t) = 1

8

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
F̃(ω − ω0)F̃(ω′ − ω0) ·

·
[
Ě · Ě∗g′(ω0)e

j (ω−ω′)t + Ě · Ě∗g′(ω0)e
j (ω′−ω)t+

+ Ě · Ěε̃(ω0)e
j (ω+ω′)t + Ě∗ · Ě∗ε̃(ω0)e

− j (ω+ω′)t
]
.

Our last step is to compute the time-average value of we and let α → 0. Applying
(4.56) we find

〈we〉 = 1

8

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
F̃(ω − ω0)F̃(ω′ − ω0) ·

·
[

2Ě · Ě∗g′(ω0) sinc

(
[ω − ω′]

π

ω0

)
+ {

Ě∗ · Ě∗ + Ě · Ě
}
ε̃(ω0) sinc

(
[ω + ω′]

π

ω0

)]

where sinc(x) is defined in (A.9) and we note that sinc(−x) = sinc(x). Finally we let
α → 0 and use (4.53) to replace F̃(ω) by a δ-function. Upon integration these δ-functions
set ω = ω0 and ω′ = ω0. Since sinc(0) = 1 and sinc(2π) = 0, the time-average stored
electric energy density becomes simply

〈we〉 = 1

4
|Ě|2 ∂[ωε̃]

∂ω

∣∣∣∣
ω=ω0

. (4.59)

Similarly,

〈wm〉 = 1

4
|Ȟ|2 ∂[ωµ̃]

∂ω

∣∣∣∣
ω=ω0

.

This approach can also be applied to anisotropic materials to give

〈we〉 = 1

4
Ě∗ · ∂[ω ˜̄ε]

∂ω

∣∣∣∣
ω=ω0

· Ě, (4.60)

〈wm〉 = 1

4
Ȟ∗ · ∂[ω ˜̄µ]

∂ω

∣∣∣∣
ω=ω0

· Ȟ. (4.61)

See Collin [39] for details. For the case of a lossless, nondispersive material where the
constitutive parameters are frequency independent, we can use (4.49) and (A.76) to
simplify this and obtain

〈we〉 = 1

4
Ě∗ · ε̄ · Ě = 1

4
Ě · Ď∗, (4.62)

〈wm〉 = 1

4
Ȟ∗ · µ̄ · Ȟ = 1

4
Ȟ · B̌∗, (4.63)

in the anisotropic case and

〈we〉 = 1

4
ε|Ě|2 = 1

4
Ě · Ď∗, (4.64)

〈wm〉 = 1

4
µ|Ȟ|2 = 1

4
Ȟ · B̌∗, (4.65)

in the isotropic case. Here Ě, Ď, B̌, Ȟ are all phasor fields as defined by (4.54).



4.5.3 The energy theorem

A convenient expression for the time-average stored energies (4.60) and (4.61) is found
by manipulating the frequency-domain Maxwell equations. Beginning with the complex
conjugates of the two frequency-domain curl equations for anisotropic media,

∇ × Ẽ∗ = jω ˜̄µ∗ · H̃∗,

∇ × H̃∗ = J̃∗ − jω ˜̄ε∗ · Ẽ∗,

we differentiate with respect to frequency:

∇ × ∂Ẽ∗

∂ω
= j

∂[ω ˜̄µ∗]

∂ω
· H̃∗ + jω ˜̄µ∗ · ∂H̃∗

∂ω
, (4.66)

∇ × ∂H̃∗

∂ω
= ∂ J̃∗

∂ω
− j

∂[ω ˜̄ε∗]

∂ω
· Ẽ∗ − jω ˜̄ε∗ · ∂Ẽ∗

∂ω
. (4.67)

These terms also appear as a part of the expansion

∇ ·
[

Ẽ × ∂H̃∗

∂ω
+ ∂Ẽ∗

∂ω
× H̃

]
=

∂H̃∗

∂ω
· [∇ × Ẽ] − Ẽ · ∇ × ∂H̃∗

∂ω
+ H̃ · ∇ × ∂Ẽ∗

∂ω
− ∂Ẽ∗

∂ω
· [∇ × H̃]

where we have used (B.44). Substituting from (4.66)–(4.67) and eliminating ∇ × Ẽ and
∇ × H̃ by Maxwell’s equations we have

1

4
∇ ·

(
Ẽ × ∂H̃∗

∂ω
+ ∂Ẽ∗

∂ω
× H̃

)
=

j
1

4
ω

(
Ẽ · ˜̄ε∗ · ∂Ẽ∗

∂ω
− ∂Ẽ∗

∂ω
· ˜̄ε · Ẽ

)
+ j

1

4
ω

(
H̃ · ˜̄µ∗ · ∂H̃∗

∂ω
− ∂H̃∗

∂ω
· ˜̄µ · H̃

)
+

+ j
1

4

(
Ẽ · ∂[ω ˜̄ε∗]

∂ω
· Ẽ∗ + H̃ · ∂[ω ˜̄µ∗]

∂ω
· H̃∗

)
− 1

4

(
Ẽ · ∂ J̃∗

∂ω
+ J̃ · ∂Ẽ∗

∂ω

)
.

Let us assume that the sources and fields are narrowband, centered on ω0, and that ω0

lies within a transparency range so that within the band the material may be considered
lossless. Invoking from (4.49) the facts that ˜̄ε = ˜̄ε† and ˜̄µ = ˜̄µ†, we find that the first two
terms on the right are zero. Integrating over a volume and taking the complex conjugate
of both sides we obtain

1

4

∮
S

(
Ẽ∗ × ∂H̃

∂ω
+ ∂Ẽ

∂ω
× H̃∗

)
· dS =

− j
1

4

∫
V

(
Ẽ∗ · ∂[ω ˜̄ε]

∂ω
· Ẽ + H̃∗ · ∂[ω ˜̄µ]

∂ω
· H̃

)
dV − 1

4

∫
V

(
Ẽ∗ · ∂ J̃

∂ω
+ J̃∗ · ∂Ẽ

∂ω

)
dV .

Evaluating each of the terms at ω = ω0 and using (4.60)–(4.61) we have

1

4

∮
S

(
Ẽ∗ × ∂H̃

∂ω
+ ∂Ẽ

∂ω
× H̃∗

) ∣∣∣∣
ω=ω0

· dS =

− j [〈We〉 + 〈Wm〉] − 1

4

∫
V

(
Ẽ∗ · ∂ J̃

∂ω
+ J̃∗ · ∂Ẽ

∂ω

) ∣∣∣∣
ω=ω0

dV (4.68)



where 〈We〉+ 〈Wm〉 is the total time-average electromagnetic energy stored in the volume
region V . This is known as the energy theorem. We shall use it in § 4.11.3 to determine
the velocity of energy transport for a plane wave.

4.6 Some simple models for constitutive parameters

Thus far our discussion of electromagnetic fields has been restricted to macroscopic
phenomena. Although we recognize that matter is composed of microscopic constituents,
we have chosen to describe materials using constitutive relationships whose parameters,
such as permittivity, conductivity, and permeability, are viewed in the macroscopic sense.
By performing experiments on the laboratory scale we can measure the constitutive
parameters to the precision required for engineering applications.

At some point it becomes useful to establish models of the macroscopic behavior of
materials based on microscopic considerations, formulating expressions for the consti-
tutive parameters using atomic descriptors such as number density, atomic charge, and
molecular dipole moment. These models allow us to predict the behavior of broad classes
of materials, such as dielectrics and conductors, over wide ranges of frequency and field
strength.

Accurate models for the behavior of materials under the influence of electromagnetic
fields must account for many complicated effects, including those best described by quan-
tum mechanics. However, many simple models can be obtained using classical mechanics
and field theory. We shall investigate several of the most useful of these, and in the
process try to gain a feeling for the relationship between the field applied to a material
and the resulting polarization or magnetization of the underlying atomic structure.

For simplicity we shall consider only homogeneous materials. The fundamental atomic
descriptor of “number density,” N , is thus taken to be independent of position and time.
The result may be more generally applicable since we may think of an inhomogeneous
material in terms of the spatial variation of constitutive parameters originally deter-
mined assuming homogeneity. However, we shall not attempt to study the microscopic
conditions that give rise to inhomogeneities.

4.6.1 Complex permittivity of a non-magnetized plasma

A plasma is an ionized gas in which the charged particles are free to move under
the influence of an applied field and through particle-particle interactions. A plasma
differs from other materials in that there is no atomic lattice restricting the motion of
the particles. However, even in a gas the interactions between the particles and the fields
give rise to a polarization effect, causing the permittivity of the gas to differ from that
of free space. In addition, exposing the gas to an external field will cause a secondary
current to flow as a result of the Lorentz force on the particles. As the moving particles
collide with one another they relinquish their momentum, an effect describable in terms
of a conductivity. In this section we shall perform a simple analysis to determine the
complex permittivity of a non-magnetized plasma.

To make our analysis tractable, we shall make several assumptions.

1. We assume that the plasma is neutral : i.e., that the free electrons and positive ions
are of equal number and distributed in like manner. If the particles are sufficiently



dense to be considered in the macroscopic sense, then there is no net field produced
by the gas and thus no electromagnetic interaction between the particles. We also
assume that the plasma is homogeneous and that the number density of the electrons
N (number of electrons per m3) is independent of time and position. In contrast to
this are electron beams, whose properties differ significantly from neutral plasmas
because of bunching of electrons by the applied field [148].

2. We ignore the motion of the positive ions in the computation of the secondary
current, since the ratio of the mass of an ion to that of an electron is at least as
large as the ratio of a proton to an electron (m p/me = 1837) and thus the ions
accelerate much more slowly.

3. We assume that the applied field is that of an electromagnetic wave. In § 2.10.6
we found that for a wave in free space the ratio of magnetic to electric field is
|H|/|E| = √

ε0/µ0, so that

|B|
|E| = µ0

√
ε0

µ0
= √

µ0ε0 = 1

c
.

Thus, in the Lorentz force equation we may approximate the force on an electron
as

F = −qe(E + v × B) ≈ −qeE

as long as v � c. Here qe is the unsigned charge on an electron, qe = 1.6021 ×
10−19 C. Note that when an external static magnetic field accompanies the field of
the wave, as is the case in the earth’s ionosphere for example, we cannot ignore the
magnetic component of the Lorentz force. This case will be considered in § 4.6.2.

4. We assume that the mechanical interactions between particles can be described
using a collision frequency ν, which describes the rate at which a directed plasma
velocity becomes random in the absence of external forces.

With these assumptions we can write the equation of motion for the plasma medium.
Let v(r, t) represent the macroscopic velocity of the plasma medium. Then, by Newton’s
second law, the force acting at each point on the medium is balanced by the time-rate of
change in momentum at that point. Because of collisions, the total change in momentum
density is described by

F(r, t) = −NqeE(r, t) = d℘(r, t)

dt
+ ν℘ (r, t) (4.69)

where

℘(r, t) = Nmev(r, t)

is the volume density of momentum. Note that if there is no externally-applied electro-
magnetic force, then (4.69) becomes

d℘(r, t)

dt
+ ν℘ (r, t) = 0.

Hence

℘(r, t) = ℘0(r)e−νt ,

and we see that ν describes the rate at which the electron velocities move toward a
random state, producing a macroscopic plasma velocity v of zero.



The time derivative in (4.69) is the total derivative as defined in (A.58):

d℘(r, t)

dt
= ∂℘ (r, t)

∂t
+ (v · ∇)℘ (r, t). (4.70)

The second term on the right accounts for the time-rate of change of momentum per-
ceived as the observer moves through regions of spatially-changing momentum. Since
the electron velocity is induced by the electromagnetic field, we anticipate that for a
sinusoidal wave the spatial variation will be on the order of the wavelength of the field:
λ = 2πc/ω. Thus, while the first term in (4.70) is proportional to ω, the second term is
proportional to ωv/c and can be neglected for non-relativistic particle velocities. Then,
writing E(r, t) and v(r, t) as inverse Fourier transforms, we see that (4.69) yields

− qeẼ = jωmeṽ + meνṽ (4.71)

and thus

ṽ = −
qe

me
Ẽ

ν + jω
. (4.72)

The secondary current associated with the moving electrons is (since qe is unsigned)

J̃s = −Nqeṽ = ε0ω
2
p

ω2 + ν2
(ν − jω)Ẽ (4.73)

where

ω2
p = Nq2

e

ε0me
(4.74)

is called the plasma frequency.
The frequency-domain Ampere’s law for primary and secondary currents in free space

is merely

∇ × H̃ = J̃i + J̃s + jωε0Ẽ.

Substitution from (4.73) gives

∇ × H̃ = J̃i + ε0ω
2
pν

ω2 + ν2
Ẽ + jωε0

[
1 − ω2

p

ω2 + ν2

]
Ẽ.

We can determine the material properties of the plasma by realizing that the above
expression can be written as

∇ × H̃ = J̃i + J̃s + jωD̃

with the constitutive relations

J̃s = σ̃ Ẽ, D̃ = ε̃Ẽ.

Here we identify the conductivity of the plasma as

σ̃ (ω) = ε0ω
2
pν

ω2 + ν2
(4.75)

and the permittivity as

ε̃(ω) = ε0

[
1 − ω2

p

ω2 + ν2

]
.



We can also write Ampere’s law as

∇ × H̃ = J̃i + jωε̃cẼ

where ε̃c is the complex permittivity

ε̃c(ω) = ε̃(ω) + σ̃ (ω)

jω
= ε0

[
1 − ω2

p

ω2 + ν2

]
− j

ε0ω
2
pν

ω(ω2 + ν2)
. (4.76)

If we wish to describe the plasma in terms of a polarization vector, we merely use D̃ =
ε0Ẽ + P̃ = ε̃Ẽ to obtain the polarization vector P̃ = (ε̃ − ε0)Ẽ = ε0χ̃eẼ, where χ̃e is the
electric susceptibility

χ̃e(ω) = − ω2
p

ω2 + ν2
.

We note that P̃ is directed opposite the applied field Ẽ, resulting in ε̃ < ε0.
The plasma is dispersive since both its permittivity and conductivity depend on ω.

As ω → 0 we have ε̃c′ → ε0εr where εr = 1 − ω2
p/ν

2, and also ε̃c′′ ∼ 1/ω, as remarked
in (4.28). As ω → ∞ we have ε̃c′ − ε0 ∼ 1/ω2 and ε̃c′′ ∼ 1/ω3, as mentioned in (4.29).
When a transient plane wave propagates through a dispersive medium, the frequency
dependence of the constitutive parameters tends to cause spreading of the waveshape.

We see that the plasma conductivity (4.75) is proportional to the collision frequency ν,
and that, since ε̃c′′ < 0 by the arguments of § 4.5, the plasma must be lossy. Loss arises
from the transfer of electromagnetic energy into heat through electron collisions. If there
are no collisions (ν = 0), there is no mechanism for the transfer of energy into heat, and
the conductivity of a lossless (or “collisionless”) plasma reduces to zero as expected.

In a lowloss plasma (ν → 0) we may determine the time-average stored electromagnetic
energy for sinusoidal excitation at frequency ω̌. We must be careful to use (4.59), which
holds for materials with dispersion. If we apply the simpler formula (4.64), we find that
for ν → 0

〈we〉 = 1

4
ε0|Ě|2 − 1

4
ε0|Ě|2 ω2

p

ω̌2
.

For those excitation frequencies obeying ω̌ < ωp we have 〈we〉 < 0, implying that the
material is active. Since there is no mechanism for the plasma to produce energy, this is
obviously not valid. But an application of (4.59) gives

〈we〉 = 1

4
|Ě|2 ∂

∂ω

[
ε0ω

(
1 − ω2

p

ω2

)] ∣∣∣∣
ω=ω̌

= 1

4
ε0|Ě|2 + 1

4
ε0|Ě|2 ω2

p

ω̌2
, (4.77)

which is always positive. In this expression the first term represents the time-average
energy stored in the vacuum, while the second term represents the energy stored in the
kinetic energy of the electrons. For harmonic excitation, the time-average electron kinetic
energy density is

〈wq〉 = 1

4
Nmev̌ · v̌∗.

Substituting v̌ from (4.72) with ν = 0 we see that

1

4
Nmev̌ · v̌∗ = 1

4

Nq2
e

meω̌2
|Ě|2 = 1

4
ε0|Ě|2 ω2

p

ω̌2
,

which matches the second term of (4.77).



Figure 4.3: Integration contour used in Kronig–Kramers relations to find ε̃c′ from ε̃c′′ for
a non-magnetized plasma.

The complex permittivity of a plasma (4.76) obviously obeys the required frequency-
symmetry conditions (4.27). It also obeys the Kronig–Kramers relations required for
a causal material. From (4.76) we see that the imaginary part of the complex plasma
permittivity is

ε̃c′′(ω) = − ε0ω
2
pν

ω(ω2 + ν2)
.

Substituting this into (4.37) we have

ε̃c′(ω) − ε0 = − 2

π
P.V.

∫ ∞

0

[
− ε0ω

2
pν

�(�2 + ν2)

]
�

�2 − ω2
d�.

We can evaluate the principal value integral and thus verify that it produces ε̃c′ by
using the contour method of § A.1. Because the integrand is even we can extend the
domain of integration to (−∞, ∞) and divide the result by two. Thus

ε̃c′(ω) − ε0 = 1

π
P.V.

∫ ∞

−∞

ε0ω
2
pν

(� − jν)(� + jν)

d�

(� − ω)(� + ω)
.

We integrate around the closed contour shown in Figure 4.3. Since the integrand falls
off as 1/�4 the contribution from C∞ is zero. The contributions from the semicircles Cω

and C−ω are given by π j times the residues of the integrand at � = ω and at � = −ω,
respectively, which are identical but of opposite sign. Thus, the semicircle contributions
cancel and leave only the contribution from the residue at the upper-half-plane pole
� = jν. Evaluation of the residue gives

ε̃c′(ω) − ε0 = 1

π
2π j

ε0ω
2
pν

jν + jν

1

( jν − ω)( jν + ω)
= − ε0ω

2
p

ν2 + ω2



and thus

ε̃c′(ω) = ε0

(
1 − ω2

p

ν2 + ω2

)
,

which matches (4.76) as expected.

4.6.2 Complex dyadic permittivity of a magnetized plasma

When an electron plasma is exposed to a magnetostatic field, as occurs in the earth’s
ionosphere, the behavior of the plasma is altered so that the secondary current is no longer
aligned with the electric field, requiring the constitutive relationships to be written in
terms of a complex dyadic permittivity. If the static field is B0, the velocity field of the
plasma is determined by adding the magnetic component of the Lorentz force to (4.71),
giving

−qe[Ẽ + ṽ × B0] = ṽ( jωme + meν)

or equivalently

ṽ − j
qe

me(ω − jν)
ṽ × B0 = j

qe

me(ω − jν)
Ẽ. (4.78)

Writing this expression generically as

v + v × C = A, (4.79)

we can solve for v as follows. Dotting both sides of the equation with C we quickly
establish that C · v = C · A. Crossing both sides of the equation with C, using (B.7), and
substituting C · A for C · v, we have

v × C = A × C + v(C · C) − C(A · C).

Finally, substituting v × C back into (4.79) we obtain

v = A − A × C + (A · C)C
1 + C · C

. (4.80)

Let us first consider a lossless plasma for which ν = 0. We can solve (4.78) for ṽ by
setting

C = − j
ωc

ω
, A = j

ε0ω
2
p

ωNqe
Ẽ,

where

ωc = qe

me
B0.

Here ωc = qe B0/me = |ωc| is called the electron cyclotron frequency. Substituting these
into (4.80) we have

(
ω2 − ω2

c

)
ṽ = j

ε0ωω2
p

Nqe
Ẽ + ε0ω

2
p

Nqe
ωc × Ẽ − j

ωc

ω

ε0ω
2
p

Nqe
ωc · Ẽ.

Since the secondary current produced by the moving electrons is just J̃s = −Nqeṽ, we
have

J̃s = jω

[
− ε0ω

2
p

ω2 − ω2
c

Ẽ + j
ε0ω

2
p

ω(ω2 − ω2
c)
ωc × Ẽ + ωc

ω2

ε0ω
2
p

ω2 − ω2
c

ωc · Ẽ

]
. (4.81)



Now, by the Ampere–Maxwell law we can write for currents in free space

∇ × H̃ = J̃i + J̃s + jωε0Ẽ. (4.82)

Considering the plasma to be a material implies that we can describe the gas in terms
of a complex permittivity dyadic ˜̄εc such that the Ampere–Maxwell law is

∇ × H̃ = J̃i + jω ˜̄εc · Ẽ.

Substituting (4.81) into (4.82), and defining the dyadic ω̄c so that ω̄c · Ẽ = ωc × Ẽ, we
identify the dyadic permittivity

˜̄εc
(ω) =

[
ε0 − ε0

ω2
p

ω2 − ω2
c

]
Ī + j

ε0ω
2
p

ω(ω2 − ω2
c)
ω̄c + ε0ω

2
p

ω2(ω2 − ω2
c)
ωcωc. (4.83)

Note that in rectangular coordinates

[ω̄c] =

 0 −ωcz ωcy

ωcz 0 −ωcx

−ωcy ωcx 0


 . (4.84)

To examine the properties of the dyadic permittivity it is useful to write it in matrix
form. To do this we must choose a coordinate system. We shall assume that B0 is aligned
along the z-axis such that B0 = ẑB0 and ωc = ẑωc. Then (4.84) becomes

[ω̄c] =

 0 −ωc 0

ωc 0 0
0 0 0


 (4.85)

and we can write the permittivity dyadic (4.83) as

[ ˜̄ε(ω)] =

 ε − jδ 0

jδ ε 0
0 0 εz


 (4.86)

where

ε = ε0

(
1 − ω2

p

ω2 − ω2
c

)
, εz = ε0

(
1 − ω2

p

ω2

)
, δ = ε0ωcω

2
p

ω(ω2 − ω2
c)

.

Note that the form of the permittivity dyadic is that for a lossless gyrotropic material
(2.33).

Since the plasma is lossless, equation (4.49) shows that the dyadic permittivity must
be hermitian. Equation (4.86) confirms this. We also note that since the sign of ωc is
determined by the sign of B0, the dyadic permittivity obeys the symmetry relation

ε̃c
i j (B0) = ε̃c

ji (−B0) (4.87)

as does the permittivity matrix of any material that has anisotropic properties dependent
on an externally applied magnetic field [141]. We will find later in this section that the
permeability matrix of a magnetized ferrite also obeys such a symmetry condition.



We can let ω → ω − jν in (4.81) to obtain the secondary current in a plasma with
collisions:

J̃s(r, ω) = jω

[
− ε0ω

2
p(ω − jν)

ω[(ω − jν)2 − ω2
c ]

Ẽ(r, ω)+

+ j
ε0ω

2
p(ω − jν)

ω(ω − jν)[(ω − jν)2 − ω2
c)]

ωc × Ẽ(r, ω) +

+ ωc

(ω − jν)2

ε0ω
2
p(ω − jν)

ω[(ω − jν)2 − ω2
c ]
ωc · Ẽ(r, ω)

]
.

From this we find the dyadic permittivity

˜̄εc
(ω) =

[
ε0 − ε0ω

2
p(ω − jν)

ω[(ω − jν)2 − ω2
c ]

]
Ī + j

ε0ω
2
p

ω[(ω − jν)2 − ω2
c)]

ω̄c +

+ 1

(ω − jν)

ε0ω
2
p

ω[(ω − jν)2 − ω2
c ]
ωcωc.

Assuming that B0 is aligned with the z-axis we can use (4.85) to find the components of
the dyadic permittivity matrix:

ε̃c
xx (ω) = ε̃c

yy(ω) = ε0

(
1 − ω2

p(ω − jν)

ω[(ω − jν)2 − ω2
c ]

)
, (4.88)

ε̃c
xy(ω) = −ε̃c

yx (ω) = − jε0
ω2

pωc

ω[(ω − jν)2 − ω2
c)]

, (4.89)

ε̃c
zz(ω) = ε0

(
1 − ω2

p

ω(ω − jν)

)
, (4.90)

and

ε̃c
zx = ε̃c

xz = ε̃c
zy = ε̃c

yz = 0. (4.91)

We see that [ε̃c] is not hermitian when ν �= 0. We expect this since the plasma is lossy
when collisions occur. However, we can decompose [ ˜̄εc] as a sum of two matrices:

[ ˜̄εc] = [ ˜̄ε] + [ ˜̄σ]

jω
,

where [ ˜̄ε] and [ ˜̄σ] are hermitian [141]. The details are left as an exercise. We also note
that, as in the case of the lossless plasma, the permittivity dyadic obeys the symmetry
condition ε̃c

i j (B0) = ε̃c
ji (−B0).

4.6.3 Simple models of dielectrics

We define an isotropic dielectric material (also called an insulator) as one that obeys
the macroscopic frequency-domain constitutive relationship

D̃(r, ω) = ε̃(r, ω)Ẽ(r, ω).

Since the polarization vector P was defined in Chapter 2 as P(r, t) = D(r, t) − ε0E(r, t),
an isotropic dielectric can also be described through

P̃(r, ω) = (ε̃(r, ω) − ε0)Ẽ(r, ω) = χ̃e(r, ω)ε0Ẽ(r, ω)



where χ̃e is the dielectric susceptibility. In this section we shall model a homogeneous
dielectric consisting of a single, uniform material type.

We found in Chapter 3 that for a dielectric material immersed in a static electric field,
the polarization vector P can be viewed as a volume density of dipole moments. We
choose to retain this view as the fundamental link between microscopic dipole moments
and the macroscopic polarization vector. Within the framework of our model we thus
describe the polarization through the expression

P(r, t) = 1

�V

∑
r−ri (t)∈B

pi . (4.92)

Here pi is the dipole moment of the ith elementary microscopic constituent, and we form
the macroscopic density function as in § 1.3.1.

We may also write (4.92) as

P(r, t) =
[

NB

�V

] [
1

NB

NB∑
i=1

pi

]
= N (r, t)p(r, t) (4.93)

where NB is the number of constituent particles within �V . We identify

p(r, t) = 1

NB

NB∑
i=1

pi (r, t)

as the average dipole moment within �V , and

N (r, t) = NB

�V

as the dipole moment number density. In this model a dielectric material does not require
higher-order multipole moments to describe its behavior. Since we are only interested
in homogeneous materials in this section we shall assume that the number density is
constant: N (r, t) = N .

To understand how dipole moments arise, we choose to adopt the simple idea that mat-
ter consists of atomic particles, each of which has a positively charged nucleus surrounded
by a negatively charged electron cloud. Isolated, these particles have no net charge and
no net electric dipole moment. However, there are several ways in which individual par-
ticles, or aggregates of particles, may take on a dipole moment. When exposed to an
external electric field the electron cloud of an individual atom may be displaced, resulting
in an induced dipole moment which gives rise to electronic polarization. When groups
of atoms form a molecule, the individual electron clouds may combine to form an asym-
metric structure having a permanent dipole moment. In some materials these molecules
are randomly distributed and no net dipole moment results. However, upon application
of an external field the torque acting on the molecules may tend to align them, creating
an induced dipole moment and orientation, or dipole, polarization. In other materials,
the asymmetric structure of the molecules may be weak until an external field causes
the displacement of atoms within each molecule, resulting in an induced dipole moment
causing atomic, or molecular, polarization. If a material maintains a permanent polar-
ization without the application of an external field, it is called an electret (and is thus
similar in behavior to a permanently magnetized magnet).

To describe the constitutive relations, we must establish a link between P (now describ-
able in microscopic terms) and E. We do this by postulating that the average constituent



dipole moment is proportional to the local electric field strength E′:

p = αE′, (4.94)

where α is called the polarizability of the elementary constituent. Each of the polarization
effects listed above may have its own polarizability: αe for electronic polarization, αa for
atomic polarization, and αd for dipole polarization. The total polarizability is merely the
sum α = αe + αa + αd .

In a rarefied gas the particles are so far apart that their interaction can be neglected.
Here the localized field E′ is the same as the applied field E. In liquids and solids where
particles are tightly packed, E′ depends on the manner in which the material is polarized
and may differ from E. We therefore proceed to determine a relationship between E′

and P.

The Clausius–Mosotti equation. We seek the local field at an observation point
within a polarized material. Let us first assume that the fields are static. We surround
the observation point with an artificial spherical surface of radius a and write the field at
the observation point as a superposition of the field E applied, the field E2 of the polarized
molecules external to the sphere, and the field E3 of the polarized molecules within the
sphere. We take a large enough that we may describe the molecules outside the sphere in
terms of the macroscopic dipole moment density P, but small enough to assume that P
is uniform over the surface of the sphere. We also assume that the major contribution to
E2 comes from the dipoles nearest the observation point. We then approximate E2 using
the electrostatic potential produced by the equivalent polarization surface charge on the
sphere ρPs = n̂ · P (where n̂ points toward the center of the sphere). Placing the origin
of coordinates at the observation point and orienting the z-axis with the polarization P
so that P = P0ẑ, we find that n̂ · P = − cos θ and thus the electrostatic potential at any
point r within the sphere is merely

�(r) = − 1

4πε0

∮
S

P0 cos θ ′

|r − r′| d S′.

This integral has been computed in § 3.2.7 with the result given by (3.103) Hence

�(r) = − P0

3ε0
r cos θ = − P0

3ε0
z

and therefore

E2 = P
3ε0

. (4.95)

Note that this is uniform and independent of a.
The assumption that the localized field varies spatially as the electrostatic field, even

when P may depend on frequency, is quite good. In Chapter 5 we will find that for a
frequency-dependent source (or, equivalently, a time-varying source), the fields very near
the source have a spatial dependence nearly identical to that of the electrostatic case.

We now have the seemingly more difficult task of determining the field E3 produced
by the dipoles within the sphere. This would seem difficult since the field produced by
dipoles near the observation point should be highly-dependent on the particular dipole
arrangement. As mentioned above, there are various mechanisms for polarization, and
the distribution of charge near any particular point depends on the molecular arrange-
ment. However, Lorentz showed [115] that for crystalline solids with cubical symmetry,



or for a randomly-structured gas, the contribution from dipoles within the sphere is zero.
Indeed, it is convenient and reasonable to assume that for most dielectrics the effects of
the dipoles immediately surrounding the observation point cancel so that E3 = 0. This
was first suggested by O.F. Mosotti in 1850 [52].

With E2 approximated as (4.95) and E3 assumed to be zero, we have the value of the
resulting local field:

E′(r) = E(r) + P(r)
3ε0

. (4.96)

This is called the Mosotti field. Substituting the Mosotti field into (4.94) and using
P = Np, we obtain

P(r) = NαE′(r) = Nα

(
E(r) + P(r)

3ε0

)
.

Solving for P we obtain

P(r) =
(

3ε0 Nα

3ε0 − Nα

)
E(r) = χeε0E(r).

So the electric susceptibility of a dielectric may be expressed as

χe = 3Nα

3ε0 − Nα
. (4.97)

Using χe = εr − 1 we can rewrite (4.97) as

ε = ε0εr = ε0
3 + 2Nα/ε0

3 − Nα/ε0
, (4.98)

which we can arrange to obtain

α = αe + αa + αd = 3ε0

N

εr − 1

εr + 2
.

This has been named the Clausius–Mosotti formula, after O.F. Mosotti who proposed it
in 1850 and R. Clausius who proposed it independently in 1879. When written in terms of
the index of refraction n (where n2 = εr ), it is also known as the Lorentz–Lorenz formula,
after H. Lorentz and L. Lorenz who proposed it independently for optical materials in
1880. The Clausius–Mosotti formula allows us to determine the dielectric constant from
the polarizability and number density of a material. It is reasonably accurate for certain
simple gases (with pressures up to 1000 atmospheres) but becomes less reliable for liquids
and solids, especially for those with large dielectric constants.

The response of the microscopic structure of matter to an applied field is not instanta-
neous. When exposed to a rapidly oscillating sinusoidal field, the induced dipole moments
may lag in time. This results in a loss mechanism that can be described macroscopically
by a complex permittivity. We can modify the Clausius–Mosotti formula by assuming
that both the relative permittivity and polarizability are complex numbers, but this will
not model the dependence of these parameters on frequency. Instead we shall (in later
paragraphs) model the time response of the dipole moments to the applied field.

An interesting application of the Clausius–Mosotti formula is to determine the permit-
tivity of a mixture of dielectrics with different permittivities. Consider the simple case
in which many small spheres of permittivity ε2, radius a, and volume V are embedded



within a dielectric matrix of permittivity ε1. If we assume that a is much smaller than
the wavelength of the electromagnetic field, and that the spheres are sparsely distributed
within the matrix, then we may ignore any mutual interaction between the spheres. Since
the expression for the permittivity of a uniform dielectric given by (4.98) describes the
effect produced by dipoles in free space, we can use the Clausius–Mosotti formula to
define an effective permittivity εe for a material consisting of spheres in a background
dielectric by replacing ε0 with ε1 to obtain

εe = ε1
3 + 2Nα/ε1

3 − Nα/ε1
. (4.99)

In this expression α is the polarizability of a single dielectric sphere embedded in the
background dielectric, and N is the number density of dielectric spheres. To find α

we use the static field solution for a dielectric sphere immersed in a field (§ 3.2.10).
Remembering that p = αE and that for a uniform region of volume V we have p = V P,
we can make the replacements ε0 → ε1 and ε → ε2 in (3.117) to get

α = 3ε1V
ε2 − ε1

ε2 + 2ε1
. (4.100)

Defining f = N V as the fractional volume occupied by the spheres, we can substitute
(4.100) into (4.99) to find that

εe = ε1
1 + 2 f y

1 − f y

where

y = ε2 − ε1

ε2 + 2ε1
.

This is known as the Maxwell–Garnett mixing formula. Rearranging we obtain

εe − ε1

εe + 2ε1
= f

ε2 − ε1

ε2 + 2ε1
,

which is known as the Rayleigh mixing formula. As expected, εe → ε1 as f → 0. Even
though as f → 1 the formula also reduces to εe = ε2, our initial assumption that f � 1
(sparsely distributed spheres) is violated and the result is inaccurate for non-spherical
inhomogeneities [90]. For a discussion of more accurate mixing formulas, see Ishimaru
[90] or Sihvola [175].

The dispersion formula of classical physics. We may determine the frequency de-
pendence of the permittivity by modeling the time response of induced dipole moments.
This was done by H. Lorentz using the simple atomic model we introduced earlier. Con-
sider what happens when a molecule consisting of heavy particles (nuclei) surrounded by
clouds of electrons is exposed to a time-harmonic electromagnetic wave. Using the same
arguments we made when we studied the interactions of fields with a plasma in § 4.6.1,
we assume that each electron experiences a Lorentz force Fe = −qeE′. We neglect the
magnetic component of the force for nonrelativistic charge velocities, and ignore the mo-
tion of the much heavier nuclei in favor of studying the motion of the electron cloud.
However, several important distinctions exist between the behavior of charges within a
plasma and those within a solid or liquid material. Because of the surrounding polarized
matter, any molecule responds to the local field E′ instead of the applied field E. Also,
as the electron cloud is displaced by the Lorentz force, the attraction from the positive



nuclei provides a restoring force Fr . In the absence of loss the restoring force causes
the electron cloud (and thus the induced dipole moment) to oscillate in phase with the
applied field. In addition, there will be loss due to radiation by the oscillating molecules
and collisions between charges that can be modeled using a “frictional force” Fs in the
same manner as for a mechanical harmonic oscillator.

We can express the restoring and frictional forces by the use of a mechanical analogue.
The restoring force acting on each electron is taken to be proportional to the displacement
from equilibrium l:

Fr (r, t) = −meω
2
r l(r, t),

where me is the mass of an electron and ωr is a material constant that depends on the
molecular structure. The frictional force is similar to the collisional term in § 4.6.1 in
that it is assumed to be proportional to the electron momentum mev:

Fs(r, t) = −2�mev(r, t)

where � is a material constant. With these we can apply Newton’s second law to obtain

F(r, t) = −qeE′(r, t) − meω
2
r l(r, t) − 2�mev(r, t) = me

dv(r, t)

dt
.

Using v = dl/dt we find that the equation of motion for the electron is

d2l(r, t)

dt2
+ 2�

dl(r, t)

dt
+ ω2

r l(r, t) = − qe

me
E′(r, t). (4.101)

We recognize this differential equation as the damped harmonic equation. When E′ = 0
we have the homogeneous solution

l(r, t) = l0(r)e−�t cos

(
t
√

ω2
r − �2

)
.

Thus the electron position is a damped oscillation. The resonant frequency
√

ω2
r − �2 is

usually only slightly reduced from ωr since radiation damping is generally quite low.
Since the dipole moment for an electron displaced from equilibrium by l is p = −qel,

and the polarization density is P = Np from (93), we can write

P(r, t) = −Nqel(r, t).

Multiplying (4.101) by −Nqe and substituting the above expression, we have a differential
equation for the polarization:

d2P
dt2

+ 2�
dP
dt

+ ω2
r P = Nq2

e

me
E′.

To obtain a constitutive equation we must relate the polarization to the applied field E.
We can accomplish this by relating the local field E′ to the polarization using the Mosotti
field (4.96). Substitution gives

d2P
dt2

+ 2�
dP
dt

+ ω2
0P = Nq2

e

me
E (4.102)

where

ω0 =
√

ω2
r − Nq2

e

3meε0



is the resonance frequency of the dipole moments. We see that this frequency is reduced
from the resonance frequency of the electron oscillation because of the polarization of
the surrounding medium.

We can now obtain a dispersion equation for the electrical susceptibility by taking the
Fourier transform of (4.102). We have

−ω2P̃ + jω2�P̃ + ω2
0P̃ = Nq2

e

me
Ẽ.

Thus we obtain the dispersion relation

χ̃e(ω) = P̃

ε0Ẽ
= ω2

p

ω2
0 − ω2 + jω2�

where ωp is the plasma frequency (4.74). Since ε̃r (ω) = 1 + χ̃e(ω) we also have

ε̃(ω) = ε0 + ε0
ω2

p

ω2
0 − ω2 + jω2�

. (4.103)

If more than one type of oscillating moment contributes to the permittivity, we may
extend (4.103) to

ε̃(ω) = ε0 +
∑

i

ε0

ω2
pi

ω2
i − ω2 + jω2�i

(4.104)

where ωpi = Ni q2
e /ε0mi is the plasma frequency of the ith resonance component, and

ωi and �i are the oscillation frequency and damping coefficient, respectively, of this
component. This expression is the dispersion formula for classical physics, so called
because it neglects quantum effects. When losses are negligible, (4.104) reduces to the
Sellmeier equation

ε̃(ω) = ε0 +
∑

i

ε0

ω2
pi

ω2
i − ω2

. (4.105)

Let us now study the frequency behavior of the dispersion relation (4.104). Splitting
the permittivity into real and imaginary parts we have

ε̃′(ω) − ε0 = ε0

∑
i

ω2
pi

ω2
i − ω2

[ω2
i − ω2]2 + 4ω2�2

i

,

ε̃′′(ω) = −ε0

∑
i

ω2
pi

2ω�i

[ω2
i − ω2]2 + 4ω2�2

i

.

As ω → 0 the permittivity reduces to

ε = ε0

(
1 +

∑
i

ω2
pi

ω2
i

)
,

which is the static permittivity of the material. As ω → ∞ the permittivity behaves as

ε̃′(ω) → ε0

(
1 −

∑
i ω2

pi

ω2

)
, ε̃′′(ω) → −ε0

2
∑

i ω2
pi�i

ω3
.

This high frequency behavior is identical to that of a plasma as described by (4.76).
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Figure 4.4: Real and imaginary parts of permittivity for a single resonance model of a
dielectric with �/ω0 = 0.2. Permittivity normalized by dividing by ε0(ωp/ω0)

2.

The major characteristic of the dispersion relation (4.104) is the presence of one or
more resonances. Figure 4.4 shows a plot of a single resonance component, where we
have normalized the permittivity as

(ε̃′(ω) − ε0)/(ε0ω̄
2
p) = 1 − ω̄2

[
1 − ω̄2

]2 + 4ω̄2�̄2
,

−ε̃′′(ω)/(ε0ω̄
2
p) = 2ω̄�̄[

1 − ω̄2
]2 + 4ω̄2�̄2

,

with ω̄ = ω/ω0, ω̄p = ωp/ω0, and �̄ = �/ω0. We see a distinct resonance centered at
ω = ω0. Approaching this resonance through frequencies less than ω0, we see that ε̃′

increases slowly until peaking at ωmax = ω0
√

1 − 2�/ω0 where it attains a value of

ε̃′
max = ε0 + 1

4
ε0

ω̄2
p

�̄(1 − �̄)
.

After peaking, ε̃′ undergoes a rapid decrease, passing through ε̃′ = ε0 at ω = ω0, and
then continuing to decrease until reaching a minimum value of

ε̃′
min = ε0 − 1

4
ε0

ω̄2
p

�̄(1 + �̄)

at ωmin = ω0
√

1 + 2�/ω0. As ω continues to increase, ε̃′ again increases slowly toward
a final value of ε̃′ = ε0. The regions of slow variation of ε̃′ are called regions of normal
dispersion, while the region where ε̃′ decreases abruptly is called the region of anomalous
dispersion. Anomalous dispersion is unusual only in the sense that it occurs over a
narrower range of frequencies than normal dispersion.



The imaginary part of the permittivity peaks near the resonant frequency, dropping
off monotonically in each direction away from the peak. The width of the curve is an
important parameter that we can most easily determine by approximating the behavior
of ε̃′′ near ω0. Letting �ω̄ = (ω0 − ω)/ω0 and using

ω2
0 − ω2 = (ω0 − ω)(ω0 + ω) ≈ 2ω2

0�ω̄,

we get

ε̃′′(ω) ≈ −1

2
ε0ω̄

2
p

�̄

(�ω̄)2 + �̄2
.

This approximation has a maximum value of

ε̃′′
max = ε̃′′(ω0) = −1

2
ε0ω̄

2
p

1

�̄

located at ω = ω0, and has half-amplitude points located at �ω̄ = ±�̄. Thus the width
of the resonance curve is

W = 2�.

Note that for a material characterized by a low-loss resonance (� � ω0), the location of
ε̃′
max can be approximated as

ωmax = ω0

√
1 − 2�/ω0 ≈ ω0 − �

while ε̃′
min is located at

ωmin = ω0

√
1 + 2�/ω0 ≈ ω0 + �.

The region of anomalous dispersion thus lies between the half amplitude points of ε̃′′:
ω0 − � < ω < ω0 + �.

As � → 0 the resonance curve becomes narrower and taller. Thus, a material charac-
terized by a very low-loss resonance may be modeled very simply using ε̃′′ = Aδ(ω −ω0),
where A is a constant to be determined. We can find A by applying the Kronig–Kramers
formula (4.37):

ε̃′(ω) − ε0 = − 2

π
P.V.

∞∫
0

Aδ(� − ω0)
� d�

�2 − ω2
= − 2

π
A

ω0

ω2
0 − ω2

.

Since the material approaches the lossless case, this expression should match the Sellmeier
equation (4.105):

− 2

π
A

ω0

ω2
0 − ω2

= ε0
ω2

p

ω2
0 − ω2

,

giving A = −πε0ω
2
p/2ω0. Hence the permittivity of a material characterized by a low-loss

resonance may be approximated as

ε̃c(ω) = ε0

(
1 + ω2

p

ω2
0 − ω2

)
− jε0

π

2

ω2
p

ω0
δ(ω − ω0).
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Figure 4.5: Relaxation spectrum for water at 20◦ C found using Debye equation.

Debye relaxation and the Cole–Cole equation. In solids or liquids consisting of
polar molecules (those retaining a permanent dipole moment, e.g., water), the resonance
effect is replaced by relaxation. We can view the molecule as attempting to rotate in
response to an applied field within a background medium dominated by the frictional
term in (4.101). The rotating molecule experiences many weak collisions which continu-
ously drain off energy, preventing it from accelerating under the force of the applied field.
J.W.P. Debye proposed that such materials are described by an exponential damping of
their polarization and a complete absence of oscillations. If we neglect the acceleration
term in (4.101) we have the equation of motion

2�
dl(r, t)

dt
+ ω2

r l(r, t) = − qe

me
E′(r, t),

which has homogeneous solution

l(r, t) = l0(r)e− ω2
r

2�
t = l0(r)e−t/τ

where τ is Debye’s relaxation time.

By neglecting the acceleration term in (4.102) we obtain from (4.103) the dispersion
equation, or relaxation spectrum

ε̃(ω) = ε0 + ε0
ω2

p

ω2
0 + jω2�

.

Debye proposed a relaxation spectrum a bit more general than this, now called the Debye
equation:

ε̃(ω) = ε∞ + εs − ε∞
1 + jωτ

. (4.106)



Figure 4.6: Arc plots for Debye and Cole–Cole descriptions of a polar material.

Here εs is the real static permittivity obtained when ω → 0, while ε∞ is the real “optical”
permittivity describing the high frequency behavior of ε̃. If we split (4.106) into real and
imaginary parts we find that

ε̃′(ω) − ε∞ = εs − ε∞
1 + ω2τ 2

, ε̃′′(ω) = −ωτ(εs − ε∞)

1 + ω2τ 2
.

For a passive material we must have ε̃′′ < 0, which requires εs > ε∞. It is straightforward
to show that these expressions obey the Kronig–Kramers relationships. The details are
left as an exercise.

A plot of the Debye spectrum of water at T = 20◦ C is shown in Figure 4.5, where we
have used εs = 78.3ε0, ε∞ = 5ε0, and τ = 9.6 × 10−12 s [49]. We see that ε̃′ decreases
over the entire frequency range. The frequency dependence of the imaginary part of the
permittivity is similar to that found in the resonance model, forming a curve which peaks
at the critical frequency

ωmax = 1/τ

where it obtains a maximum value of

−ε̃′′
max = εs − ε∞

2
.

At this point ε̃′ achieves the average value of εs and ε∞:

ε′(ωmax) = εs + ε∞
2

.

Since the frequency label is logarithmic, we see that the peak is far broader than that
for the resonance model.

Interestingly, a plot of −ε̃′′ versus ε̃′ traces out a semicircle centered along the real axis
at (εs + ε∞)/2 and with radius (εs − ε∞)/2. Such a plot, shown in Figure 4.6, was first
described by K.S. Cole and R.H. Cole [38] and is thus called a Cole–Cole diagram or “arc
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Figure 4.7: Cole–Cole diagram for water at 20◦ C.

plot.” We can think of the vector extending from the origin to a point on the semicircle
as a phasor whose phase angle δ is described by the loss tangent of the material:

tan δ = − ε̃′′

ε̃′ = ωτ(εs − ε∞)

εs + ε∞ω2τ 2
. (4.107)

The Cole–Cole plot shows that the maximum value of −ε̃′′ is (εs − ε∞)/2 and that
ε̃′ = (εs + ε∞)/2 at this point.

A Cole–Cole plot for water, shown in Figure 4.7, displays the typical semicircular
nature of the arc plot. However, not all polar materials have a relaxation spectrum
that follows the Debye equation as closely as water. Cole and Cole found that for many
materials the arc plot traces a circular arc centered below the real axis, and that the line
through its center makes an angle of α(π/2) with the real axis as shown in Figure 4.6.
This relaxation spectrum can be described in terms of a modified Debye equation

ε̃(ω) = ε∞ + εs − ε∞
1 + ( jωτ)1−α

,

called the Cole–Cole equation. A nonzero Cole–Cole parameter α tends to broaden the
relaxation spectrum, and results from a spread of relaxation times centered around τ

[4]. For water the Cole–Cole parameter is only α = 0.02, suggesting that a Debye
description is sufficient, but for other materials α may be much higher. For instance,
consider a transformer oil with a measured Cole–Cole parameter of α = 0.23, along with
a measured relaxation time of τ = 2.3 × 10−9 s, a static permittivity of εs = 5.9ε0, and
an optical permittivity of ε∞ = 2.9ε0 [4]. Figure 4.8 shows the Cole–Cole plot calculated
using both α = 0 and α = 0.23, demonstrating a significant divergence from the Debye
model. Figure 4.9 shows the relaxation spectrum for the transformer oil calculated with
these same two parameters.
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Figure 4.9: Relaxation spectrum for transformer oil found using Debye equation and
Cole–Cole equation with α = 0.23.



4.6.4 Permittivity and conductivity of a conductor

The free electrons within a conductor may be considered as an electron gas which is
free to move under the influence of an applied field. Since the electrons are not bound to
the atoms of the conductor, there is no restoring force acting on them. However, there
is a damping term associated with electron collisions. We therefore model a conductor
as a plasma, but with a very high collision frequency; in a good metallic conductor ν is
typically in the range 1013–1014 Hz.

We therefore have the conductivity of a conductor from (4.75) as

σ̃ (ω) = ε0ω
2
pν

ω2 + ν2

and the permittivity as

ε̃(ω) = ε0

[
1 − ω2

p

ω2 + ν2

]
.

Since ν is so large, the conductivity is approximately

σ̃ (ω) ≈ ε0ω
2
p

ν
= Nq2

e

meν

and the permittivity is

ε̃(ω) ≈ ε0

well past microwave frequencies and into the infrared. Hence the dc conductivity is often
employed by engineers throughout the communications bands. When approaching the
visible spectrum the permittivity and conductivity begin to show a strong frequency
dependence. In the violet and ultraviolet frequency ranges the free-charge conductivity
becomes proportional to 1/ω and is driven toward zero. However, at these frequencies the
resonances of the bound electrons of the metal become important and the permittivity
behaves more like that of a dielectric. At these frequencies the permittivity is best
described using the resonance formula (4.104).

4.6.5 Permeability dyadic of a ferrite

The magnetic properties of materials are complicated and diverse. The formation
of accurate models based on atomic behavior requires an understanding of quantum
mechanics, but simple models may be constructed using classical mechanics along with
very simple quantum-mechanical assumptions, such as the existence of a spin moment.
For an excellent review of the magnetic properties of materials, see Elliott [65].

The magnetic properties of matter ultimately result from atomic currents. In our sim-
ple microscopic view these currents arise from the spin and orbital motion of negatively
charged electrons. These atomic currents potentially give each atom a magnetic moment
m. In diamagnetic materials the orbital and spin moments cancel unless the material is
exposed to an external magnetic field, in which case the orbital electron velocity changes
to produce a net moment opposite the applied field. In paramagnetic materials the spin
moments are greater than the orbital moments, leaving the atoms with a net permanent
magnetic moment. When exposed to an external magnetic field, these moments align in
the same direction as an applied field. In either case, the density of magnetic moments
M is zero in the absence of an applied field.



In most paramagnetic materials the alignment of the permanent moment of neigh-
boring atoms is random. However, in the subsets of paramagnetic materials known as
ferromagnetic, anti-ferromagnetic, and ferrimagnetic materials, there is a strong coupling
between the spin moments of neighboring atoms resulting in either parallel or antiparal-
lel alignment of moments. The most familiar case is the parallel alignment of moments
within the domains of ferromagnetic permanent magnets made of iron, nickel, and cobalt.
Anti-ferromagnetic materials, such as chromium and manganese, have strongly coupled
moments that alternate in direction between small domains, resulting in zero net mag-
netic moment. Ferrimagnetic materials also have alternating moments, but these are
unequal and thus do not cancel completely.

Ferrites form a particularly useful subgroup of ferrimagnetic materials. They were first
developed during the 1940s by researchers at the Phillips Laboratories as low-loss mag-
netic media for supporting electromagnetic waves [65]. Typically, ferrites have conduc-
tivities ranging from 10−4 to 100 S/m (compared to 107 for iron), relative permeabilities
in the thousands, and dielectric constants in the range 10–15. Their low loss makes them
useful for constructing transformer cores and for a variety of microwave applications.
Their chemical formula is XO · Fe2O3, where X is a divalent metal or mixture of metals,
such as cadmium, copper, iron, or zinc. When exposed to static magnetic fields, ferrites
exhibit gyrotropic magnetic (or gyromagnetic) properties and have permeability matrices
of the form (2.32). The properties of a wide variety of ferrites are given by von Aulock
[204].

To determine the permeability matrix of a ferrite we will model its electrons as simple
spinning tops and examine the torque exerted on the magnetic moment by the application
of an external field. Each electron has an angular momentum L and a magnetic dipole
moment m, with these two vectors anti-parallel:

m(r, t) = −γ L(r, t)

where

γ = qe

me
= 1.7592 × 1011 C/kg

is called the gyromagnetic ratio.
Let us first consider a single spinning electron immersed in an applied static magnetic

field B0. Any torque applied to the electron results in a change of angular momentum as
given by Newton’s second law

T(r, t) = dL(r, t)

dt
.

We found in (3.179) that a very small loop of current in a magnetic field experiences
a torque m × B. Thus, when first placed into a static magnetic field B0 an electron’s
angular momentum obeys the equation

dL(r, t)

dt
= −γ L(r, t) × B0(r) = ω0(r) × L(r, t) (4.108)

where ω0 = γ B0. This equation of motion describes the precession of the electron spin
axis about the direction of the applied field, which is analogous to the precession of a
gyroscope [129]. The spin axis rotates at the Larmor precessional frequency ω0 = γ B0 =
γµ0 H0.

We can use this to understand what happens when we insert a homogeneous ferrite
material into a uniform static magnetic field B0 = µ0H0. The internal field Hi experienced
by any magnetic dipole is not the same as the external field H0, and need not even be in



the same direction. In general we write

H0(r, t) − Hi (r, t) = Hd(r, t)

where Hd is the demagnetizing field produced by the magnetic dipole moments of the
material. Each electron responds to the internal field by precessing as described above
until the precession damps out and the electron moments align with the magnetic field.
At this point the ferrite is saturated. Because the demagnetizing field depends strongly
on the shape of the material we choose to ignore it as a first approximation, and this
allows us to concentrate our study on the fundamental atomic properties of the ferrite.

For purposes of understanding its magnetic properties, we view the ferrite as a dense
collection of electrons and write

M(r, t) = Nm(r, t)

where N is the number density of electrons. Since we are assuming the ferrite is homoge-
neous, we take N to be independent of time and position. Multiplying (4.108) by −Nγ ,
we obtain an equation describing the evolution of M:

dM(r, t)

dt
= −γ M(r, t) × Bi (r, t). (4.109)

To determine the temporal response of the ferrite we must include a time-dependent
component of the applied field. We now let

H0(r, t) = Hi (r, t) = HT (r, t) + Hdc

where HT is the time-dependent component superimposed with the uniform static com-
ponent Hdc. Using B = µ0(H + M) we have from (4.109)

dM(r, t)

dt
= −γµ0M(r, t) × [HT (r, t) + Hdc + M(r, t)].

With M = MT (r, t) + Mdc and M × M = 0 this becomes

dMT (r, t)

dt
+ dMdc

dt
= −γµ0[MT (r, t) × HT (r, t) + MT (r, t) × Hdc +
+ Mdc × HT (r, t) + Mdc × Hdc. (4.110)

Let us assume that the ferrite is saturated. Then Mdc is aligned with Hdc and their cross
product vanishes. Let us further assume that the spectrum of HT is small compared
to Hdc at all frequencies: |H̃T (r, ω)| � Hdc. This small-signal assumption allows us to
neglect MT × HT . Using these and noting that the time derivative of Mdc is zero, we see
that (4.110) reduces to

dMT (r, t)

dt
= −γµ0[MT (r, t) × Hdc + Mdc × HT (r, t)]. (4.111)

To determine the frequency response we write (4.111) in terms of inverse Fourier
transforms and invoke the Fourier integral theorem to find that

jωM̃T (r, ω) = −γµ0[M̃T (r, ω) × Hdc + Mdc × H̃T (r, ω)].

Defining

γµ0Mdc = ωM ,



where ωM = |ωM | is the saturation magnetization frequency, we find that

M̃T + M̃T ×
[
ω0

jω

]
=

[
− 1

jω
ωM × H̃T

]
, (4.112)

where ω0 = γµ0Hdc with ω0 now called the gyromagnetic response frequency . This has
the form v + v × C = A, which has solution (4.80). Substituting into this expression and
remembering that ω0 is parallel to ωM , we find that

M̃T =
− 1

jωωM × H̃T + 1
ω2

{
ωM [ω0 · H̃T ] − (ω0 · ωM)H̃T

}
1 − ω2

0
ω2

.

If we define the dyadic ω̄M such that ω̄M · H̃T = ωM × H̃T , then we identify the dyadic
magnetic susceptibility

˜̄χm(ω) = jωω̄M + ωMω0 − ωMω0Ī

ω2 − ω2
0

(4.113)

with which we can write M̃(r, ω) = χ̄m(ω) · H̃(r, ω). In rectangular coordinates ω̄M is
represented by

[ω̄M ] =

 0 −ωMz ωMy

ωMz 0 −ωMx

−ωMy ωMx 0


 . (4.114)

Finally, using B̃ = µ0(H̃ + M̃) = µ0(Ī + ˜̄χm) · H̃ = ˜̄µ · H̃ we find that

˜̄µ(ω) = µ0[Ī + ˜̄χm(ω)].

To examine the properties of the dyadic permeability it is useful to write it in matrix
form. To do this we must choose a coordinate system. We shall assume that Hdc is
aligned with the z-axis so that Hdc = ẑHdc and thus ωM = ẑωM and ω0 = ẑω0. Then
(4.114) becomes

[ω̄M ] =

 0 −ωM 0

ωM 0 0
0 0 0




and we can write the susceptibility dyadic (4.113) as

[ ˜̄χm(ω)] = ωM

ω2 − ω2
0


−ω0 − jω 0

jω −ω0 0
0 0 0


 .

The permeability dyadic becomes

[ ˜̄µ(ω)] =

 µ − jκ 0

jκ µ 0
0 0 µ0


 (4.115)

where

µ = µ0

(
1 − ω0ωM

ω2 − ω2
0

)
, (4.116)

κ = µ0
ωωM

ω2 − ω2
0

. (4.117)



Because its permeability dyadic is that for a lossless gyrotropic material (2.33), we call
the ferrite gyromagnetic.

Since the ferrite is lossless, the dyadic permeability must be hermitian according to
(4.49). The specific form of (4.115) shows this explicitly. We also note that since the
sign of ωM is determined by that of Hdc, the dyadic permittivity obeys the symmetry
relation

µ̃i j (Hdc) = µ̃ j i (−Hdc),

which is the symmetry condition observed for a plasma in (4.87).
A lossy ferrite material can be modeled by adding a damping term to (4.111):

dM(r, t)

dt
= −γµ0 [MT (r, t) × Hdc + Mdc × HT (r, t)] + α

Mdc

Mdc
× dMT (r, t)

dt
,

where α is the damping parameter [40, 204]. This term tends to reduce the angle of
precession. Fourier transformation gives

jωM̃T = ω0 × M̃T − ωM × H̃T + α
ωM

ωM
× jωM̃T .

Remembering that ω0 and ωM are aligned we can write this as

M̃T + M̃T ×

ω0

(
1 + jα ω

ω0

)
jω


 =

[
− 1

jω
ωM × H̃T

]
.

This is identical to (4.112) with

ω0 → ω0

(
1 + jα

ω

ω0

)
.

Thus, we merely substitute this into (4.113) to find the susceptibility dyadic for a lossy
ferrite:

˜̄χm(ω) = jωω̄M + ωMω0 (1 + jαω/ω0) − ωMω0 (1 + jαω/ω0) Ī

ω2(1 + α2) − ω2
0 − 2 jαωω0

.

Making the same substitution into (4.115) we can write the dyadic permeability matrix
as

[ ˜̄µ(ω)] =

 µ̃xx µ̃xy 0

µ̃yx µ̃yy 0
0 0 µ0


 (4.118)

where

µ̃xx = µ̃yy = µ0 − µ0ωM
ω0

[
ω2(1 − α2) − ω2

0

] + jωα
[
ω2(1 + α2) + ω2

0

]
[
ω2(1 + α2) − ω2

0

]2 + 4α2ω2ω2
0

(4.119)

and

µ̃xy = −µ̃yx = 2µ0αω2ω0ωM − jµ0ωωM
[
ω2(1 + α2) − ω2

0

]
[
ω2(1 + α2) − ω2

0

]2 + 4α2ω2ω2
0

. (4.120)

In the case of a lossy ferrite, the hermitian nature of the permeability dyadic is lost.



4.7 Monochromatic fields and the phasor domain

The Fourier transform is very efficient for representing the nearly sinusoidal signals
produced by electronic systems such as oscillators. However, we should realize that the
elemental term e jωt by itself cannot represent any physical quantity; only a continuous
superposition of such terms can have physical meaning, because no physical process can
be truly monochromatic. All events must have transient periods during which they are
established. Even “monochromatic” light appears in bundles called quanta, interpreted
as containing finite numbers of oscillations.

Arguments about whether “monochromatic” or “sinusoidal steady-state” fields can
actually exist may sound purely academic. After all, a microwave oscillator can create
a wave train of 1010 oscillations within the first second after being turned on. Such a
waveform is surely as close to monochromatic as we would care to measure. But as with
all mathematical models of physical systems, we can get into trouble by making non-
physical assumptions, in this instance by assuming a physical system has always been
in the steady state. Sinusoidal steady-state solutions to Maxwell’s equations can lead to
troublesome infinities linked to the infinite energy content of each elemental component.
For example, an attempt to compute the energy stored within a lossless microwave cavity
under steady-state conditions gives an infinite result since the cavity has been building up
energy since t = −∞. We handle this by considering time-averaged quantities, but even
then must be careful when materials are dispersive (§ 4.5). Nevertheless, the steady-
state concept is valuable because of its simplicity and finds widespread application in
electromagnetics.

Since the elemental term is complex, we may use its real part, its imaginary part, or
some combination of both to represent a monochromatic (or time-harmonic) field. We
choose the representation

ψ(r, t) = ψ0(r) cos[ω̌t + ξ(r)], (4.121)

where ξ is the temporal phase angle of the sinusoidal function. The Fourier transform is

ψ̃(r, ω) =
∫ ∞

−∞
ψ0(r) cos[ω̌t + ξ(r)]e− jωt dt. (4.122)

Here we run into an immediate problem: the transform in (4.122) does not exist in the
ordinary sense since cos(ω̌t + ξ) is not absolutely integrable on (−∞, ∞). We should not
be surprised by this: the cosine function cannot describe an actual physical process (it
extends in time to ±∞), so it lacks a classical Fourier transform. One way out of this
predicament is to extend the meaning of the Fourier transform as we do in § A.1. Then
the monochromatic field (4.121) is viewed as having the generalized transform

ψ̃(r, ω) = ψ0(r)π
[
e jξ(r)δ(ω − ω̌) + e− jξ(r)δ(ω + ω̌)

]
. (4.123)

We can compute the inverse Fourier transform by substituting (123) into (2):

ψ(r, t) = 1

2π

∫ ∞

−∞
ψ0(r)π

[
e jξ(r)δ(ω − ω̌) + e− jξ(r)δ(ω + ω̌)

]
e jωt dω. (4.124)

By our interpretation of the Dirac delta, we see that the decomposition of the cosine
function has only two discrete components, located at ω = ±ω̌. So we have realized our



initial intention of having only a single elemental function present. The sifting property
gives

ψ(r, t) = ψ0(r)
e jω̌t e jξ(r) + e− jω̌t e− jξ(r)

2
= ψ0(r) cos[ω̌t + ξ(r)]

as expected.

4.7.1 The time-harmonic EM fields and constitutive relations

The time-harmonic fields are described using the representation (4.121) for each field
component. The electric field is

E(r, t) =
3∑

i=1

îi |Ei (r)| cos[ω̌t + ξ E
i (r)]

for example. Here |Ei | is the complex magnitude of the ith vector component, and ξ E
i is

the phase angle (−π < ξ E
i ≤ π). Similar terminology is used for the remaining fields.

The frequency-domain constitutive relations (4.11)–(4.15) may be written for the time-
harmonic fields by employing (4.124). For instance, for an isotropic material where

D̃(r, ω) = ε̃(r, ω)Ẽ(r, ω), B̃(r, ω) = µ̃(r, ω)H̃(r, ω),

with

ε̃(r, ω) = |ε̃(r, ω)|eξε(r,ω), µ̃(r, ω) = |µ̃(r, ω)|eξµ(r,ω),

we can write

D(r, t) =
3∑

i=1

îi |Di (r)| cos[ω̌t + ξ D
i (r)]

= 1

2π

∫ ∞

−∞

3∑
i=1

îi ε̃(r, ω)|Ei (r)|π
[
e jξ E

i (r)δ(ω − ω̌) + e− jξ E
i (r)δ(ω + ω̌)

]
e jωt dω

= 1

2

3∑
i=1

îi |Ei (r)|
[
ε̃(r, ω̌)e j (ω̌t+ jξ E

i (r)) + ε̃(r, −ω̌)e− j (ω̌t+ jξ E
i (r))

]
.

Since (4.25) shows that ε̃(r, −ω̌) = ε̃∗(r, ω̌), we have

D(r, t) = 1

2

3∑
i=1

îi |Ei (r)||ε̃(r, ω̌)|
[
e j (ω̌t+ jξ E

i (r)+ jξε(r,ω̌)) + e− j (ω̌t+ jξ E
i (r)+ jξε(r,ω̌))

]

=
3∑

i=1

îi |ε̃(r, ω̌)||Ei (r)| cos[ω̌t + ξ E
i (r) + ξ ε(r, ω̌)]. (4.125)

Similarly

B(r, t) =
3∑

i=1

îi |Bi (r)| cos[ω̌t + ξ B
i (r)]

=
3∑

i=1

îi |µ̃(r, ω̌)||Hi (r)| cos[ω̌t + ξ H
i (r) + ξµ(r, ω̌)].



4.7.2 The phasor fields and Maxwell’s equations

Sinusoidal steady-state computations using the forward and inverse transform formulas
are unnecessarily cumbersome. A much more efficient approach is to use the phasor
concept. If we define the complex function

ψ̌(r) = ψ0(r)e jξ(r)

as the phasor form of the monochromatic field ψ̃(r, ω), then the inverse Fourier transform
is easily computed by multiplying ψ̌(r) by e jω̌t and taking the real part. That is,

ψ(r, t) = Re
{
ψ̌(r)e jω̌t

} = ψ0(r) cos[ω̌t + ξ(r)]. (4.126)

Using the phasor representation of the fields, we can obtain a set of Maxwell equations
relating the phasor components. Let

Ě(r) =
3∑

i=1

îi Ěi (r) =
3∑

i=1

îi |Ei (r)|e jξ E
i (r)

represent the phasor monochromatic electric field, with similar formulas for the other
fields. Then

E(r, t) = Re
{
Ě(r)e jω̌t

} =
3∑

i=1

îi |Ei (r)| cos[ω̌t + ξ E
i (r)].

Substituting these expressions into Ampere’s law (2.2), we have

∇ × Re
{
Ȟ(r)e jω̌t

} = ∂

∂t
Re

{
Ď(r)e jω̌t

} + Re
{
J̌(r)e jω̌t

}
.

Since the real part of a sum of complex variables equals the sum of the real parts, we
can write

Re

{
∇ × Ȟ(r)e jω̌t − Ď(r)

∂

∂t
e jω̌t − J̌(r)e jω̌t

}
= 0. (4.127)

If we examine for an arbitrary complex function F = Fr + j Fi the quantity

Re
{
(Fr + j Fi )e

jω̌t
} = Re {(Fr cos ω̌t − Fi sin ω̌t) + j (Fr sin ω̌t + Fi cos ω̌t)} ,

we see that both Fr and Fi must be zero for the expression to vanish for all t . Thus
(4.127) requires that

∇ × Ȟ(r) = jω̌Ď(r) + J̌(r), (4.128)

which is the phasor Ampere’s law. Similarly we have

∇ × Ě(r) = − jω̌B̌(r), (4.129)
∇ · Ď(r) = ρ̌(r), (4.130)
∇ · B̌(r) = 0, (4.131)

and

∇ · J̌(r) = − jω̌ρ̌(r). (4.132)

The constitutive relations may be easily incorporated into the phasor concept. If we
use

Ďi (r) = ε̃(r, ω̌)Ěi (r) = |ε̃(r, ω̌)|e jξε(r,ω̌)|Ei (r)|e jξ E
i (r),



then forming

Di (r, t) = Re
{

Ďi (r)e jω̌t
}

we reproduce (4.125). Thus we may write

Ď(r) = ε̃(r, ω̌)Ě(r).

Note that we never write ε̌ or refer to a “phasor permittivity” since the permittivity does
not vary sinusoidally in the time domain.

An obvious benefit of the phasor method is that we can manipulate field quantities
without involving the sinusoidal time dependence. When our manipulations are complete,
we return to the time domain using (4.126).

The phasor Maxwell equations (4.128)–(4.131) are identical in form to the temporal
frequency-domain Maxwell equations (4.7)–(4.10), except that ω = ω̌ in the phasor
equations. This is sensible, since the phasor fields represent a single component of the
complete frequency-domain spectrum of the arbitrary time-varying fields. Thus, if the
phasor fields are calculated for some ω̌, we can make the replacements

ω̌ → ω, Ě(r) → Ẽ(r, ω), Ȟ(r) → H̃(r, ω), . . . ,

and obtain the general time-domain expressions by performing the inversion (4.2). Simi-
larly, if we evaluate the frequency-domain field Ẽ(r, ω) at ω = ω̌, we produce the phasor
field Ě(r) = Ẽ(r, ω̌) for this frequency. That is

Re
{
Ẽ(r, ω̌)e jω̌t

} =
3∑

i=1

îi |Ẽi (r, ω̌)| cos
(
ω̌t + ξ E (r, ω̌)

)
.

4.7.3 Boundary conditions on the phasor fields

The boundary conditions developed in § 4.3 for the frequency-domain fields may be
adapted for use with the phasor fields by selecting ω = ω̌. Let us include the effects of
fictitious magnetic sources and write

n̂12 × (Ȟ1 − Ȟ2) = J̌s, (4.133)
n̂12 × (Ě1 − Ě2) = −J̌ms, (4.134)
n̂12 · (Ď1 − Ď2) = ρ̌s, (4.135)
n̂12 · (B̌1 − B̌2) = ρ̌ms, (4.136)

and

n̂12 · (J̌1 − J̌2) = −∇s · J̌s − jω̌ρ̌s, (4.137)
n̂12 · (J̌m1 − J̌m2) = −∇s · J̌ms − jω̌ρ̌ms, (4.138)

where n̂12 points into region 1 from region 2.

4.8 Poynting’s theorem for time-harmonic fields

We can specialize Poynting’s theorem to time-harmonic form by substituting the time-
harmonic field representations. The result depends on whether we use the general form



(2.301), which is valid for dispersive materials, or (2.299). For nondispersive materials
(2.299) allows us to interpret the volume integral term as the time rate of change of
stored energy. But if the operating frequency lies within the realm of material dispersion
and loss, then we can no longer identify an explicit stored energy term.

4.8.1 General form of Poynting’s theorem

We begin with (2.301). Substituting the time-harmonic representations we obtain the
term

E(r, t) · ∂D(r, t)

∂t
=

[
3∑

i=1

îi |Ei | cos[ω̌t + ξ E
i ]

]
· ∂

∂t

[
3∑

i=1

îi |Di | cos[ω̌t + ξ D
i ]

]

= −ω̌

3∑
i=1

|Ei ||Di | cos[ω̌t + ξ E
i ] sin[ω̌t + ξ D

i ].

Since 2 sin A cos B ≡ sin(A + B) + sin(A − B) we have

E(r, t) · ∂

∂t
D(r, t) = −1

2

3∑
i=1

ω̌|Ei ||Di |SDE
ii (t),

where

SDE
ii (t) = sin(2ω̌t + ξ D

i + ξ E
i ) + sin(ξ D

i − ξ E
i )

describes the temporal dependence of the field product. Separating the current into an
impressed term Ji and a secondary term Jc (assumed to be the conduction current) as
J = Ji + Jc and repeating the above steps with the other terms, we obtain

−1

2

∫
V

3∑
i=1

|J i
i ||Ei |C J i E

ii (t) dV = 1

2

∮
S

3∑
i, j=1

|Ei ||Hj |(îi × î j ) · n̂C E H
i j (t) d S +

+1

2

∫
V

3∑
i=1

{−ω̌|Di ||Ei |SDE
ii (t) − ω̌|Bi ||Hi |SB H

ii (t) + |J c
i ||Ei |C J c E

ii (t)
}

dV, (4.139)

where

SB H
ii (t) = sin(2ω̌t + ξ B

i + ξ H
i ) + sin(ξ B

i − ξ H
i ),

C E H
i j (t) = cos(2ω̌t + ξ E

i + ξ H
j ) + cos(ξ E

i − ξ H
j ),

and so on.
We see that each power term has two temporal components: one oscillating at fre-

quency 2ω̌, and one constant with time. The oscillating component describes power that
cycles through the various mechanisms of energy storage, dissipation, and transfer across
the boundary. Dissipation may be produced through conduction processes or through
polarization and magnetization phase lag, as described by the volume term on the right-
hand side of (4.139). Power may also be delivered to the fields either from the sources,
as described by the volume term on the left-hand side, or from an active medium, as
described by the volume term on the right-hand side. The time-average balance of power
supplied to the fields and extracted from the fields throughout each cycle, including that



transported across the surface S, is given by the constant terms in (4.139):

−1

2

∫
V

3∑
i=1

|J i
i ||Ei | cos(ξ J i

i − ξ E
i ) dV = 1

2

∫
V

3∑
i=1

{
ω̌|Ei ||Di | sin(ξ E

i − ξ D
i )+

+ω̌|Bi ||Hi | sin(ξ H
i − ξ B

i ) + |J c
i ||Ei | cos(ξ J c

i − ξ E
i )

}
dV +

+1

2

∮
S

3∑
i, j=1

|Ei ||Hj |(îi × î j ) · n̂ cos(ξ E
i − ξ H

j ) d S. (4.140)

We associate one mechanism for time-average power loss with the phase lag between
applied field and resulting polarization or magnetization. We can see this more clearly
if we use the alternative form of the Poynting theorem (2.302) written in terms of the
polarization and magnetization vectors. Writing

P(r, t) =
3∑

i=1

|Pi (r)| cos[ω̌t + ξ P
i (r)], M(r, t) =

3∑
i=1

|Mi (r)| cos[ω̌t + ξ M
i (r)],

and substituting the time-harmonic fields, we see that

−1

2

∫
V

3∑
i=1

|Ji ||Ei |C J E
ii (t) dV + ω̌

2

∫
V

3∑
i=1

[|Pi ||Ei |S P E
ii (t) + µ0|Mi ||Hi |SM H

ii (t)
]

dV

= − ω̌

2

∫
V

3∑
i=1

[
ε0|Ei |2SE E

ii (t) + µ0|Hi |2SH H
ii (t)

]
dV +

+1

2

∮
S

3∑
i, j=1

|Ei ||Hj |(îi × î j ) · n̂C E H
i j (t) d S. (4.141)

Selection of the constant part gives the balance of time-average power:

−1

2

∫
V

3∑
i=1

|Ji ||Ei | cos(ξ J
i − ξ E

i ) dV

= ω̌

2

∫
V

3∑
i=1

[|Ei ||Pi | sin(ξ E
i − ξ P

i ) + µ0|Hi ||Mi | sin(ξ H
i − ξ M

i )
]

dV +

+1

2

∮
S

3∑
i, j=1

|Ei ||Hj |(îi × î j ) · n̂ cos(ξ E
i − ξ H

j ) d S. (4.142)

Here the power loss associated with the lag in alignment of the electric and magnetic
dipoles is easily identified as the volume term on the right-hand side, and is seen to arise
through the interaction of the fields with the equivalent sources as described through the
phase difference between E and P and between H and M. If these pairs are in phase, then
the time-average power balance reduces to that for a dispersionless material, equation
(4.146).

4.8.2 Poynting’s theorem for nondispersive materials

For nondispersive materials (2.299) is appropriate. We shall carry out the details here
so that we may examine the power-balance implications of nondispersive media. We



have, substituting the field expressions,

−1

2

∫
V

3∑
i=1

|J i
i ||Ei |C J i E

ii (t) dV = 1

2

∫
V

3∑
i=1

|J c
i ||Ei |C J c E

ii (t) dV +

+ ∂

∂t

∫
V

3∑
i=1

{
1

4
|Di ||Ei |C DE

ii (t) + 1

4
|Bi ||Hi |C B H

ii (t)

}
dV +

+1

2

∮
S

3∑
i, j=1

|Ei ||Hj |(îi × î j ) · n̂C E H
i j (t) d S. (4.143)

Here we remember that the conductivity relating E to Jc must also be nondispersive.
Note that the electric and magnetic energy densities we(r, t) and wm(r, t) have the time-
average values 〈we(r, t)〉 and 〈wm(r, t)〉 given by

〈we(r, t)〉 = 1

T

∫ T/2

−T/2

1

2
E(r, t) · D(r, t) dt = 1

4

3∑
i=1

|Ei ||Di | cos(ξ E
i − ξ D

i )

= 1

4
Re

{
Ě(r) · Ď∗(r)

}
(4.144)

and

〈wm(r, t)〉 = 1

T

∫ T/2

−T/2

1

2
B(r, t) · H(r, t) dt = 1

4

3∑
i=1

|Bi ||Hi | cos(ξ H
i − ξ B

i )

= 1

4
Re

{
Ȟ(r) · B̌∗(r)

}
, (4.145)

where T = 2π/ω̌. We have already identified the energy stored in a nondispersive material
(§ 4.5.2). If (4.144) is to match with (4.62), the phases of Ě and Ď must match: ξ E

i = ξ D
i .

We must also have ξ H
i = ξ B

i . Since in a dispersionless material σ must be independent
of frequency, from J̌c = σ Ě we also see that ξ J c

i = ξ E
i .

Upon differentiation the time-average stored energy terms in (4.143) disappear, giving

−1

2

∫
V

3∑
i=1

|J i
i ||Ei |C J i E

ii (t) dV = 1

2

∫
V

3∑
i=1

|J c
i ||Ei |C E E

ii (t) dV −

−2ω̌

∫
V

3∑
i=1

{
1

4
|Di ||Ei |SE E

ii (t) + 1

4
|Bi ||Hi |SB B

ii (t)

}
dV +

+1

2

∮
S

3∑
i, j=1

|Ei ||Hj |(îi × î j ) · n̂C E H
i j (t) d S.

Equating the constant terms, we find the time-average power balance expression

−1

2

∫
V

3∑
i=1

|J i
i ||Ei | cos(ξ J i

i − ξ E
i ) dV = 1

2

∫
V

3∑
i=1

|J c
i ||Ei | dV +

+1

2

∮
S

3∑
i, j=1

|Ei ||Hj |(îi × î j ) · n̂ cos(ξ E
i − ξ H

j ) d S. (4.146)



This can be written more compactly using phasor notation as∫
V

pJ (r) dV =
∫

V
pσ (r) dV +

∮
S

Sav(r) · n̂ d S (4.147)

where

pJ (r) = −1

2
Re

{
Ě(r) · J̌i∗(r)

}

is the time-average density of power delivered by the sources to the fields in V ,

pσ (r) = 1

2
Ě(r) · J̌c∗(r)

is the time-average density of power transferred to the conducting material as heat, and

Sav(r) · n̂ = 1

2
Re

{
Ě(r) × Ȟ∗(r)

} · n̂

is the density of time-average power transferred across the boundary surface S. Here

Sc = Ě(r) × Ȟ∗(r)

is called the complex Poynting vector and Sav is called the time-average Poynting vector.
Comparison of (4.146) with (4.140) shows that nondispersive materials cannot manifest

the dissipative (or active) properties determined by the term

1

2

∫
V

3∑
i=1

{
ω̌|Ei ||Di | sin(ξ E

i − ξ D
i ) + ω̌|Bi ||Hi | sin(ξ H

i − ξ B
i ) + |J c

i ||Ei | cos(ξ J c

i − ξ E
i )

}
dV .

This term can be used to classify materials as lossless, lossy, or active, as shown next.

4.8.3 Lossless, lossy, and active media

In § 4.5.1 we classified materials based on whether they dissipate (or provide) energy
over the period of a transient event. We can provide the same classification based on
their steady-state behavior.

We classify a material as lossless if the time-average flow of power entering a homoge-
neous body is zero when there are sources external to the body, but no sources internal
to the body. This implies that the mechanisms within the body either do not dissipate
power that enters, or that there is a mechanism that creates energy to exactly balance the
dissipation. If the time-average power entering is positive, then the material dissipates
power and is termed lossy. If the time-average power entering is negative, then power
must originate from within the body and the material is termed active. (Note that the
power associated with an active body is not described as arising from sources, but is
rather described through the constitutive relations.)

Since materials are generally inhomogeneous we may apply this concept to a vanish-
ingly small volume, thus invoking the point-form of Poynting’s theorem. From (4.140)
we see that the time-average influx of power density is given by

−∇ · Sav(r) = pin(r) = 1

2

3∑
i=1

{
ω̌|Ei ||Di | sin(ξ E

i − ξ D
i ) + ω̌|Bi ||Hi | sin(ξ H

i − ξ B
i )+

+ |J c
i ||Ei | cos(ξ J c

i − ξ E
i )

}
.



Materials are then classified as follows:

pin(r) = 0, lossless,
pin(r) > 0, lossy,

pin(r) ≥ 0, passive,
pin(r) < 0, active.

We see that if ξ E
i = ξ D

i , ξ H
i = ξ B

i , and Jc = 0, then the material is lossless. This implies
that (D,E) and (B,H) are exactly in phase and there is no conduction current. If the
material is isotropic, we may substitute from the constitutive relations (4.21)–(4.23) to
obtain

pin(r) = − ω̌

2

3∑
i=1

{
|Ei |2

[
|ε̃| sin(ξ ε) − |σ̃ |

ω̌
cos(ξσ )

]
+ |µ̃||Hi |2 sin(ξµ)

}
. (4.148)

The first two terms can be regarded as resulting from a single complex permittivity
(4.26). Then (4.148) simplifies to

pin(r) = − ω̌

2

3∑
i=1

{|ε̃c||Ei |2 sin(ξ εc
) + |µ̃||Hi |2 sin(ξµ)

}
. (4.149)

Now we can see that a lossless medium, which requires (4.149) to vanish, has ξ εc =
ξµ = 0 (or perhaps the unlikely condition that dissipative and active effects within the
electric and magnetic terms exactly cancel). To have ξµ = 0 we need B and H to be in
phase, hence we need µ̃(r, ω) to be real. To have ξ εc = 0 we need ξ ε = 0 (ε̃(r, ω) real)
and σ̃ (r, ω) = 0 (or perhaps the unlikely condition that the active and dissipative effects
of the permittivity and conductivity exactly cancel).

A lossy medium requires (4.149) to be positive. This occurs when ξµ < 0 or ξ εc
< 0,

meaning that the imaginary part of the permeability or complex permittivity is negative.
The complex permittivity has a negative imaginary part if the imaginary part of ε̃ is
negative or if the real part of σ̃ is positive. Physically, ξ ε < 0 means that ξ D < ξ E and
thus the phase of the response field D lags that of the excitation field E. This results
from a delay in the polarization alignment of the atoms, and leads to dissipation of power
within the material.

An active medium requires (4.149) to be negative. This occurs when ξµ > 0 or ξ εc
> 0,

meaning that the imaginary part of the permeability or complex permittivity is positive.
The complex permittivity has a positive imaginary part if the imaginary part of ε̃ is
positive or if the real part of σ̃ is negative.

In summary, a passive isotropic medium is lossless when the permittivity and perme-
ability are real and when the conductivity is zero. A passive isotropic medium is lossy
when one or more of the following holds: the permittivity is complex with negative imag-
inary part, the permeability is complex with negative imaginary part, or the conductivity
has a positive real part. Finally, a complex permittivity or permeability with positive
imaginary part or a conductivity with negative real part indicates an active medium.

For anisotropic materials the interpretation of pin is not as simple. Here we find that
the permittivity or permeability dyadic may be complex, and yet the material may still
be lossless. To determine the condition for a lossless medium, let us recompute pin using
the constitutive relations (4.18)–(4.20). With these we have

E ·
[
∂D
∂t

+ Jc

]
+ H · ∂B

∂t
= ω̌

3∑
i, j=1

|Ei ||E j |
[

− |ε̃i j | sin(ω̌t + ξ E
j + ξ ε

i j ) cos(ω̌t + ξ E
i ) +



+ |σ̃i j |
ω̌

cos(ω̌t + ξ E
j + ξσ

i j ) cos(ω̌t + ξ E
i )

]
+

+ ω̌

3∑
i, j=1

|Hi ||Hj |
[
−|µ̃i j | sin(ω̌t + ξ H

j + ξ
µ

i j ) cos(ω̌t + ξ H
i )

]
.

Using the angle-sum formulas and discarding the time-varying quantities, we may obtain
the time-average input power density:

pin(r) = − ω̌

2

3∑
i, j=1

|Ei ||E j |
[
|ε̃i j | sin(ξ E

j − ξ E
i + ξ ε

i j ) − |σ̃i j |
ω̌

cos(ξ E
j − ξ E

i + ξσ
i j )

]
−

− ω̌

2

3∑
i, j=1

|Hi ||Hj ||µ̃i j | sin(ξ H
j − ξ H

i + ξ
µ

i j ).

The reader can easily verify that the conditions that make this quantity vanish, thus
describing a lossless material, are

|ε̃i j | = |ε̃ j i |, ξ ε
i j = −ξ ε

j i , (4.150)
|σ̃i j | = |σ̃ j i |, ξσ

i j = −ξσ
j i + π, (4.151)

|µ̃i j | = |µ̃ j i |, ξ
µ

i j = −ξ
µ

j i . (4.152)

Note that this requires ξ ε
i i = ξ

µ

i i = ξσ
i i = 0.

The condition (4.152) is easily written in dyadic form as

˜̄µ(r, ω̌)† = ˜̄µ(r, ω̌) (4.153)

where “†” stands for the conjugate-transpose operation. The dyadic permeability ˜̄µ is
hermitian. The set of conditions (4.150)–(4.151) can also be written quite simply using
the complex permittivity dyadic (4.24):

˜̄εc
(r, ω̌)† = ˜̄εc

(r, ω̌). (4.154)

Thus, an anisotropic material is lossless when the both the dyadic permeability and the
complex dyadic permittivity are hermitian. Since ω̌ is arbitrary, these results are exactly
those obtained in § 4.5.1. Note that in the special case of an isotropic material the
conditions (4.153) and (4.154) can only hold if ε̃ and µ̃ are real and σ̃ is zero, agreeing
with our earlier conclusions.

4.9 The complex Poynting theorem

An equation having a striking resemblance to Poynting’s theorem can be obtained
by direct manipulation of the phasor-domain Maxwell equations. The result, although
certainly satisfied by the phasor fields, does not replace Poynting’s theorem as the power-
balance equation for time-harmonic fields. We shall be careful to contrast the interpre-
tation of the phasor expression with the actual time-harmonic Poynting theorem.

We begin by dotting both sides of the phasor-domain Faraday’s law with Ȟ∗ to obtain

Ȟ∗ · (∇ × Ě) = − jω̌Ȟ∗ · B̌.



Taking the complex conjugate of the phasor-domain Ampere’s law and dotting with Ě,
we have

Ě · (∇ × Ȟ∗) = Ě · J̌∗ − jω̌Ě · Ď∗.

We subtract these expressions and use (B.44) to write

−Ě · J̌∗ = ∇ · (Ě × Ȟ∗) − jω̌[Ě · Ď∗ − B̌ · Ȟ∗].

Finally, integrating over the volume region V and dividing by two, we have

− 1

2

∫
V

Ě · J̌∗ dV = 1

2

∮
S
(Ě × Ȟ∗) · dS − 2 jω̌

∫
V

[
1

4
Ě · Ď∗ − 1

4
B̌ · Ȟ∗

]
dV . (4.155)

This is known as the complex Poynting theorem, and is an expression that must be obeyed
by the phasor fields.

As a power balance theorem, the complex Poynting theorem has meaning only for
dispersionless materials. If we let J = Ji +Jc and assume no dispersion, (4.155) becomes

−1

2

∫
V

Ě · J̌i∗ dV = 1

2

∫
V

Ě · J̌c∗ dV + 1

2

∮
S
(Ě × Ȟ∗) · dS −

− 2 jω
∫

V
[〈we〉 − 〈wm〉] dV (4.156)

where 〈we〉 and 〈wm〉 are the time-average stored electric and magnetic energy densities
as described in (4.62)–(4.63). Selection of the real part now gives

− 1

2

∫
V

Re
{
Ě · J̌i∗} dV = 1

2

∫
V

Ě · J̌c∗ dV + 1

2

∮
S

Re
{
Ě × Ȟ∗} · dS, (4.157)

which is identical to (4.147). Thus the real part of the complex Poynting theorem gives
the balance of time-average power for a dispersionless material.

Selection of the imaginary part of (4.156) gives the balance of imaginary, or reactive
power:

−1

2

∫
V

Im
{
Ě · J̌i∗} dV = 1

2

∮
S

Im
{
Ě × Ȟ∗} · dS − 2ω̌

∫
V

[〈we〉 − 〈wm〉] dV . (4.158)

In general, the reactive power balance does not have a simple physical interpretation (it
is not the balance of the oscillating terms in (4.139)). However, an interesting concept
can be gleaned from it. If the source current and electric field are in phase, and there is
no reactive power leaving S, then the time-average stored electric energy is equal to the
time-average stored magnetic energy:

∫
V
〈we〉 dV =

∫
V
〈wm〉 dV .

This is the condition for “resonance.” An example is a series RLC circuit with the source
current and voltage in phase. Here the stored energy in the capacitor is equal to the
stored energy in the inductor and the input impedance (ratio of voltage to current) is
real. Such a resonance occurs at only one value of frequency. In more complicated
electromagnetic systems resonance may occur at many discrete eigenfrequencies.



4.9.1 Boundary condition for the time-average Poynting vector

In § 2.9.5 we developed a boundary condition for the normal component of the time-
domain Poynting vector. For time-harmonic fields we can derive a similar boundary
condition using the time-average Poynting vector. Consider a surface S across which
the electromagnetic sources and constitutive parameters are discontinuous, as shown in
Figure 2.6. Let n̂12 be the unit normal to the surface pointing into region 1 from region
2. If we apply the large-scale form of the complex Poynting theorem (4.155) to the two
separate surfaces shown in Figure 2.6, we obtain

1

2

∫
V

[
Ě · J̌∗ − 2 jω̌

(
1

4
Ě · Ď∗ − 1

4
B̌ · Ȟ∗

)]
dV + 1

2

∮
S

Sc · n̂ d S

= 1

2

∫
S10

n̂12 · (Sc
1 − Sc

2) d S (4.159)

where Sc = Ě × Ȟ∗ is the complex Poynting vector. If, on the other hand, we apply the
large-scale form of Poynting’s theorem to the entire volume region including the surface
of discontinuity, and include the surface current contribution, we have

1

2

∫
V

[
Ě · J̌∗ − 2 jω̌

∫
V

(
1

4
Ě · Ď∗ − 1

4
B̌ · Ȟ∗

)]
dV + 1

2

∮
S

Sc · n̂ d S

= −1

2

∫
S10

J̌∗
s · Ě d S. (4.160)

If we wish to have the integrals over V and S in (4.159) and (4.160) produce identical
results, then we must postulate the two conditions

n̂12 × (Ě1 − Ě2) = 0

and

n̂12 · (Sc
1 − Sc

2) = −J̌∗
s · Ě. (4.161)

The first condition is merely the continuity of tangential electric field; it allows us to be
nonspecific as to which value of E we use in the second condition. If we take the real
part of the second condition we have

n̂12 · (Sav,1 − Sav,2) = pJ s , (4.162)

where Sav = 1
2 Re{Ě × Ȟ∗} is the time-average Poynting power flow density and pJ s =

− 1
2 Re{J̌∗

s · Ě} is the time-average density of power delivered by the surface sources. This
is the desired boundary condition on the time-average power flow density.

4.10 Fundamental theorems for time-harmonic fields

4.10.1 Uniqueness

If we think of a sinusoidal electromagnetic field as the steady-state culmination of a
transient event that has an identifiable starting time, then the conditions for uniqueness
established in § 2.2.1 are applicable. However, a true time-harmonic wave, which has
existed since t = −∞ and thus has infinite energy, must be interpreted differently.



Our approach is similar to that of § 2.2.1. Consider a simply-connected region of
space V bounded by surface S, where both V and S contain only ordinary points. The
phasor-domain fields within V are associated with a phasor current distribution J̌, which
may be internal to V (entirely or in part). We seek conditions under which the phasor
electromagnetic fields are uniquely determined. Let the field set (Ě1, Ď1, B̌1, Ȟ1) satisfy
Maxwell’s equations (4.128) and (4.129) associated with the current J̌ (along with an
appropriate set of constitutive relations), and let (Ě2, Ď2, B̌2, Ȟ2) be a second solution.
To determine the conditions for uniqueness of the fields, we look for a situation that
results in Ě1 = Ě2, Ȟ1 = Ȟ2, and so on. The electromagnetic fields must obey

∇ × Ȟ1 = jω̌Ď1 + J̌,

∇ × Ě1 = − jω̌B̌1,

∇ × Ȟ2 = jω̌Ď2 + J̌,

∇ × Ě2 = − jω̌B̌2.

Subtracting these and defining the difference fields Ě0 = Ě1 − Ě2, Ȟ0 = Ȟ1 − Ȟ2, and so
on, we find that

∇ × Ȟ0 = jω̌Ď0, (4.163)
∇ × Ě0 = − jω̌B̌0. (4.164)

Establishing the conditions under which the difference fields vanish throughout V , we
shall determine the conditions for uniqueness.

Dotting (4.164) by Ȟ∗
0 and dotting the complex conjugate of (4.163) by Ě0, we have

Ȟ∗
0 · (∇ × Ě0

) = − jω̌B̌0 · Ȟ∗
0,

Ě0 · (∇ × Ȟ∗
0

) = − jω̌Ď∗
0 · Ě0.

Subtraction yields

Ȟ∗
0 · (∇ × Ě0

) − Ě0 · (∇ × Ȟ∗
0

) = − jω̌B̌0 · Ȟ∗
0 + jω̌Ď∗

0 · Ě0

which, by (B.44), can be written as

∇ · (
Ě0 × Ȟ∗

0

) = jω̌
[
Ě0 · Ď∗

0 − B̌0 · Ȟ∗
0

]
.

Adding this expression to its complex conjugate, integrating over V , and using the di-
vergence theorem, we obtain

Re
∮

S

[
Ě0 × Ȟ∗

0

] · dS = − j
ω̌

2

∫
V

[(
Ě∗

0 · Ď0 − Ě0 · Ď∗
0

) + (
Ȟ∗

0 · B̌0 − Ȟ0 · B̌∗
0

)]
dV .

Breaking S into two arbitrary portions and using (??), we obtain

Re
∮

S1

Ȟ∗
0 · (n̂ × Ě0) d S − Re

∮
S2

Ě0 · (n̂ × Ȟ∗
0) d S =

− j
ω̌

2

∫
V

[(
Ě∗

0 · Ď0 − Ě0 · Ď∗
0

) + (
Ȟ∗

0 · B̌0 − Ȟ0 · B̌∗
0

)]
dV . (4.165)

Now if n̂ × E0 = 0 or n̂ × H0 = 0 over all of S, or some combination of these conditions
holds over all of S, then∫

V

[(
Ě∗

0 · Ď0 − Ě0 · Ď∗
0

) + (
Ȟ∗

0 · B̌0 − Ȟ0 · B̌∗
0

)]
dV = 0. (4.166)



This implies a relationship between Ě0, Ď0, B̌0, and Ȟ0. Since V is arbitrary we see that
one possible relationship is simply to have one of each pair (Ě0, Ď0) and (Ȟ0, B̌0) equal to
zero. Then, by (4.163) and (4.164), Ě0 = 0 implies B̌0 = 0, and Ď0 = 0 implies Ȟ0 = 0.
Thus Ě1 = Ě2, etc., and the solution is unique throughout V . However, we cannot in
general rule out more complicated relationships. The number of possibilities depends on
the additional constraints on the relationship between Ě0, Ď0, B̌0, and Ȟ0 that we must
supply to describe the material supporting the field — i.e., the constitutive relationships.
For a simple medium described by µ̃(ω) and ε̃c(ω), equation (4.166) becomes

∫
V

(|Ě0|2[ε̃c(ω̌) − ε̃c∗(ω̌)] + |Ȟ0|2[µ̃(ω̌) − µ̃∗(ω̌)]
)

dV = 0

or ∫
V

[|Ě0|2ε̃c′′(ω̌) + |Ȟ0|2µ̃′′(ω̌)
]

dV = 0.

For a lossy medium, ε̃c′′ < 0 and µ̃′′ < 0 as shown in § 4.5.1. So both terms in the
integral must be negative. For the integral to be zero each term must vanish, requiring
Ě0 = Ȟ0 = 0, and uniqueness is guaranteed.

When establishing more complicated constitutive relations we must be careful to ensure
that they lead to a unique solution, and that the condition for uniqueness is understood.
In the case above, the assumption n̂× Ě0

∣∣
S = 0 implies that the tangential components of

Ě1 and Ě2 are identical over S — that is, we must give specific values of these quantities
on S to ensure uniqueness. A similar statement holds for the condition n̂ × Ȟ0

∣∣
S = 0.

In summary, the conditions for the fields within a region V containing lossy isotropic
materials to be unique are as follows:

1. the sources within V must be specified;
2. the tangential component of the electric field must be specified over all or part of

the bounding surface S;
3. the tangential component of the magnetic field must be specified over the remainder

of S.

We may question the requirement of a lossy medium to demonstrate uniqueness of the
phasor fields. Does this mean that within a vacuum the specification of tangential fields
is insufficient? Experience shows that the fields in such a region are indeed properly
described by the surface fields, and it is just a case of the mathematical model being
slightly out of sync with the physics. As long as we recognize that the sinusoidal steady
state requires an initial transient period, we know that specification of the tangential
fields is sufficient. We must be careful, however, to understand the restrictions of the
mathematical model. Any attempt to describe the fields within a lossless cavity, for
instance, is fraught with difficulty if true time-harmonic fields are used to model the
actual physical fields. A helpful mathematical strategy is to think of free space as the
limit of a lossy medium as the loss recedes to zero. Of course this does not represent
the physical state of “empty” space. Although even interstellar space may have a few
particles for every cubic meter to interact with the electromagnetic field, the density of
these particles invalidates our initial macroscopic assumptions.

Another important concern is whether we can extend the uniqueness argument to all
of space. If we let S recede to infinity, must we continue to specify the fields over S, or
is it sufficient to merely specify the sources within S? Since the boundary fields provide
information to the internal region about sources that exist outside S, it is sensible to



assume that as S → ∞ there are no sources external to S and thus no need for the
boundary fields. This is indeed the case. If all sources are localized, the fields they
produce behave in just the right manner for the surface integral in (4.165) to vanish, and
thus uniqueness is again guaranteed. Later we will find that the electric and magnetic
fields produced by a localized source at great distance have the form of a spherical wave:

Ě ∼ Ȟ ∼ e− jkr

r
.

If space is taken to be slightly lossy, then k is complex with negative imaginary part, and
thus the fields decrease exponentially with distance from the source. As we argued above,
it may not be physically meaningful to assume that space is lossy. Sommerfeld postulated
that even for lossless space the surface integral in (4.165) vanishes as S → ∞. This has
been verified experimentally, and provides the following restrictions on the free-space
fields known as the Sommerfeld radiation condition:

lim
r→∞ r

[
η0r̂ × Ȟ(r) + Ě(r)

] = 0, (4.167)

lim
r→∞ r

[
r̂ × Ě(r) − η0Ȟ(r)

] = 0, (4.168)

where η0 = (µ0/ε0)
1/2. Later we shall see how these expressions arise from the integral

solutions to Maxwell’s equations.

4.10.2 Reciprocity revisited

In § 2.9.3 we discussed the basic concept of reciprocity, but were unable to examine
its real potential since we had not yet developed the theory of time-harmonic fields. In
this section we shall apply the reciprocity concept to time-harmonic sources and fields,
and investigate the properties a material must display to be reciprocal.

The general form of the reciprocity theorem. As in § 2.9.3, we consider a closed
surface S enclosing a volume V . Sources of an electromagnetic field are located either
inside or outside S. Material media may lie within S, and their properties are described
in terms of the constitutive relations. To obtain the time-harmonic (phasor) form of the
reciprocity theorem we proceed as in § 2.9.3 but begin with the phasor forms of Maxwell’s
equations. We find

∇ · (Ěa × Ȟb − Ěb × Ȟa) = jω̌[Ȟa · B̌b − Ȟb · B̌a] − jω̌[Ěa · Ďb − Ěb · Ďa] +
+ [Ěb · J̌a − Ěa · J̌b − Ȟb · J̌ma + Ȟa · J̌mb], (4.169)

where (Ěa, Ďa, B̌a, Ȟa) are the fields produced by the phasor sources (J̌a, J̌ma) and (Ěb, Ďb, B̌b, Ȟb)

are the fields produced by an independent set of sources (J̌b, J̌mb).
As in § 2.9.3, we are interested in the case in which the first two terms on the right-

hand side of (4.169) are zero. To see the conditions under which this might occur, we
substitute the constitutive equations for a bianisotropic medium

Ď = ˜̄ξ · Ȟ + ˜̄ε · Ě,

B̌ = ˜̄µ · Ȟ + ˜̄ζ · Ě,

into (4.169), where each of the constitutive parameters is evaluated at ω̌. Setting the
two terms to zero gives

jω̌
[
Ȟa ·

(
˜̄µ · Ȟb + ˜̄ζ · Ěb

)
− Ȟb ·

(
˜̄µ · Ȟa + ˜̄ζ · Ěa

)]
−



− jω̌
[
Ěa ·

(
ˇ̄ξ · Ȟb + ˜̄ε · Ěb

)
− Ěb ·

(
˜̄ξ · Ȟa + ˜̄ε · Ěa

)]
= 0,

which holds if

Ȟa · ˜̄µ · Ȟb − Ȟb · ˜̄µ · Ȟa = 0,

Ȟa · ˜̄ζ · Ěb + Ěb · ˜̄ξ · Ȟa = 0,

Ěa · ˜̄ξ · Ȟb + Ȟb · ˜̄ζ · Ěa = 0,

Ěa · ˜̄ε · Ěb − Ěb · ˜̄ε · Ěa = 0.

These in turn hold if

˜̄ε = ˜̄εT
, ˜̄µ = ˜̄µT

, ˜̄ξ = − ˜̄ζ
T
, ˜̄ζ = − ˜̄ξ

T
. (4.170)

These are the conditions for a reciprocal medium. For example, an anisotropic dielectric
is a reciprocal medium if its permittivity dyadic is symmetric. An isotropic medium
described by scalar quantities µ and ε is certainly reciprocal. In contrast, lossless Gy-
rotropic media are nonreciprocal since the constitutive parameters obey ˜̄ε = ˜̄ε† or ˜̄µ = ˜̄µ†

rather than ˜̄ε = ˜̄εT or ˜̄µ = ˜̄µT .
For a reciprocal medium (4.169) reduces to

∇ · (Ěa × Ȟb − Ěb × Ȟa) = [
Ěb · J̌a − Ěa · J̌b − Ȟb · J̌ma + Ȟa · J̌mb

]
. (4.171)

At points where the sources are zero, or are conduction currents described entirely by
Ohm’s law J̌ = σ Ě, we have

∇ · (Ěa × Ȟb − Ěb × Ȟa) = 0, (4.172)

known as Lorentz’s lemma. If we integrate (4.171) over V and use the divergence theorem
we obtain∮

S

[
Ěa × Ȟb − Ěb × Ȟa

] · dS =
∫

V

[
Ěb · J̌a − Ěa · J̌b − Ȟb · J̌ma + Ȟa · J̌mb

]
dV .

(4.173)

This is the general form of the Lorentz reciprocity theorem, and is valid when V contains
reciprocal media as defined in (4.170).

Note that by an identical set of steps we find that the frequency-domain fields obey
an identical Lorentz lemma and reciprocity theorem.

The condition for reciprocal systems. The quantity

〈f̌a, ǧb〉 =
∫

V

[
Ěa · J̌b − Ȟa · J̌mb

]
dV

is called the reaction between the source fields ǧ of set b and the mediating fields f̌ of an
independent set a. Note that Ěa · J̌b is not quite a power density, since the current lacks
a complex conjugate. Using this reaction concept, first introduced by Rumsey [161], we
can write (4.173) as

〈f̌b, ǧa〉 − 〈f̌a, ǧb〉 =
∮

S

[
Ěa × Ȟb − Ěb × Ȟa

] · dS. (4.174)



We see that if there are no sources within S then∮
S

[
Ěa × Ȟb − Ěb × Ȟa

] · dS = 0. (4.175)

Whenever (4.175) holds we say that the “system” within S is reciprocal. Thus, for
instance, a region of empty space is a reciprocal system.

A system need not be source-free in order for (4.175) to hold. Suppose the relationship
between Ě and Ȟ on S is given by the impedance boundary condition

Ět = −Z(n̂ × Ȟ), (4.176)

where Ět is the component of Ě tangential to S so that n̂ × E = n̂ × Et , and the complex
wall impedance Z may depend on position. By (4.176) we can write

(Ěa × Ȟb − Ěb × Ȟa) · n̂ = Ȟb · (n̂ × Ěa) − Ȟa · (n̂ × Ěb)

= −ZȞb · [n̂ × (n̂ × Ȟa)] + ZȞa · [n̂ × (n̂ × Ȟb)].

Since n̂ × (n̂ × Ȟ) = n̂(n̂ · Ȟ) − Ȟ, the right-hand side vanishes. Hence (4.175) still holds
even though there are sources within S.

The reaction theorem. When sources lie within the surface S, and the fields on S
obey (4.176), we obtain an important corollary of the Lorentz reciprocity theorem. We
have from (4.174) the additional result

〈f̌a, ǧb〉 − 〈f̌b, ǧa〉 = 0.

Hence a reciprocal system has

〈f̌a, ǧb〉 = 〈f̌b, ǧa〉 (4.177)

(which holds even if there are no sources within S, since then the reactions would be
identically zero). This condition for reciprocity is sometimes called the reaction theorem
and has an important physical meaning which we shall explore below in the form of
the Rayleigh–Carson reciprocity theorem. Note that in obtaining this relation we must
assume that the medium is reciprocal in order to eliminate the terms in (4.169). Thus,
in order for a system to be reciprocal, it must involve both a reciprocal medium and a
boundary over which (4.176) holds.

It is important to note that the impedance boundary condition (4.176) is widely appli-
cable. If Z → 0, then the boundary condition is that for a PEC: n̂× Ě = 0. If Z → ∞, a
PMC is described: n̂× Ȟ = 0. Suppose S represents a sphere of infinite radius. We know
from (4.168) that if the sources and material media within S are spatially finite, the fields
far removed from these sources are described by the Sommerfeld radiation condition

r̂ × Ě = η0Ȟ

where r̂ is the radial unit vector of spherical coordinates. This condition is of the type
(4.176) since r̂ = n̂ on S, hence the unbounded region that results from S receding to
infinity is also reciprocal.

Summary of reciprocity for reciprocal systems. We can summarize reciprocity
as follows. Unbounded space containing sources and materials of finite size is a reciprocal
system if the media are reciprocal; a bounded region of space is a reciprocal system only



if the materials within are reciprocal and the boundary fields obey (4.176), or if the
region is source-free. In each of these cases∮

S

[
Ěa × Ȟb − Ěb × Ȟa

] · dS = 0 (4.178)

and

〈f̌a, ǧb〉 − 〈f̌b, ǧa〉 = 0. (4.179)

Rayleigh–Carson reciprocity theorem. The physical meaning behind reciprocity
can be made clear with a simple example. Consider two electric Hertzian dipoles, each
oscillating with frequency ω̌ and located within an empty box consisting of PEC walls.
These dipoles can be described in terms of volume current density as

J̌a(r) = Ǐaδ(r − r′
a),

J̌b(r) = Ǐbδ(r − r′
b).

Since the fields on the surface obey (4.176) (specifically, n̂×Ě = 0), and since the medium
within the box is empty space (a reciprocal medium), the fields produced by the sources
must obey (4.179). We have

∫
V

Ěb(r) · [
Ǐaδ(r − r′

a)
]

dV =
∫

V
Ěa(r) · [

Ǐbδ(r − r′
b)

]
dV,

hence

Ǐa · Ěb(r′
a) = Ǐb · Ěa(r′

b). (4.180)

This is the Rayleigh–Carson reciprocity theorem. It also holds for two Hertzian dipoles
located in unbounded free space, because in that case the Sommerfeld radiation condition
satisfies (4.176).

As an important application of this principle, consider a closed PEC body located in
free space. Reciprocity holds in the region external to the body since we have n̂ × Ě = 0
at the boundary of the perfect conductor and the Sommerfeld radiation condition on the
boundary at infinity. Now let us place dipole a somewhere external to the body, and
dipole b adjacent and tangential to the perfectly conducting body. We regard dipole a
as the source of an electromagnetic field and dipole b as “sampling” that field. Since the
tangential electric field is zero at the surface of the conductor, the reaction between the
two dipoles is zero. Now let us switch the roles of the dipoles so that b is regarded as
the source and a is regarded as the sampler. By reciprocity the reaction is again zero
and thus there is no field produced by b at the position of a. Now the position and
orientation of a are arbitrary, so we conclude that an impressed electric source current
placed tangentially to a perfectly conducting body produces no field external to the body.
This result is used in Chapter 6 to develop a field equivalence principle useful in the study
of antennas and scattering.

4.10.3 Duality

A duality principle analogous to that found for time-domain fields in § 2.9.2 may be
established for frequency-domain and time-harmonic fields. Consider a closed surface S
enclosing a region of space that includes a frequency-domain electric source current J̃



and a frequency-domain magnetic source current J̃m . The fields (Ẽ1,D̃1,B̃1,H̃1) within
the region (which may also contain arbitrary media) are described by

∇ × Ẽ1 = −J̃m − jωB̃1, (4.181)
∇ × H̃1 = J̃ + jωD̃1, (4.182)
∇ · D̃1 = ρ̃, (4.183)
∇ · B̃1 = ρ̃m . (4.184)

Suppose we have been given a mathematical description of the sources (J̃, J̃m) and have
solved for the field vectors (Ẽ1, D̃1, B̃1, H̃1). Of course, we must also have been supplied
with a set of boundary values and constitutive relations in order to make the solution
unique. We note that if we replace the formula for J̃ with the formula for J̃m in (4.182)
(and ρ̃ with ρ̃m in (4.183)) and also replace J̃m with −J̃ in (4.181) (and ρ̃m with −ρ̃ in
(4.184)) we get a new problem. However, the symmetry of the equations allows us to
specify the solution immediately. The new set of curl equations requires

∇ × Ẽ2 = J̃ − jωB̃2, (4.185)
∇ × H̃2 = J̃m + jωD̃2. (4.186)

If we can resolve the question of how the constitutive parameters must be altered to
reflect these replacements, then we can conclude by comparing (4.185) with (4.182) and
(4.186) with (4.181) that

Ẽ2 = H̃1, B̃2 = −D̃1, D̃2 = B̃1, H̃2 = −Ẽ1.

The discussion regarding units in § 2.9.2 carries over to the present case. Multiplying
Ampere’s law by η0 = (µ0/ε0)

1/2, we have

∇ × Ẽ = −J̃m − jωB̃, ∇ × (η0H̃) = (η0J̃) + jω(η0D̃).

Thus if the original problem has solution (Ẽ1, η0D̃1, B̃1, η0H̃1), then the dual problem
with J̃ replaced by J̃m/η0 and J̃m replaced by −η0J̃ has solution

Ẽ2 = η0H̃1, (4.187)
B̃2 = −η0D̃1, (4.188)

η0D̃2 = B̃1, (4.189)
η0H̃2 = −Ẽ1. (4.190)

As with duality in the time domain, the constitutive parameters for the dual problem
must be altered from those of the original problem. For linear anisotropic media we have
from (4.13) and (4.14) the constitutive relationships

D̃1 = ˜̄ε1 · Ẽ1, (4.191)
B̃1 = ˜̄µ1 · H̃1, (4.192)

for the original problem, and

D̃2 = ˜̄ε2 · Ẽ2, (4.193)
B̃2 = ˜̄µ2 · H̃2, (4.194)



for the dual problem. Substitution of (4.187)–(4.190) into (4.191) and (4.192) gives

D̃2 =
(

˜̄µ1

η2
0

)
· Ẽ2, (4.195)

B̃2 = (
η2

0
˜̄ε1

) · H̃2. (4.196)

Comparing (4.195) with (4.193) and (4.196) with (4.194), we conclude that

˜̄µ2 = η2
0
˜̄ε1, ˜̄ε2 = ˜̄µ1/η

2
0. (4.197)

For a linear, isotropic medium specified by ε̃ and µ̃, the dual problem is obtained by
replacing ε̃r with µ̃r and µ̃r with ε̃r . The solution to the dual problem is then

Ẽ2 = η0H̃1, η0H̃2 = −Ẽ1,

as before. The medium in the dual problem must have electric properties numerically
equal to the magnetic properties of the medium in the original problem, and magnetic
properties numerically equal to the electric properties of the medium in the original
problem. Alternatively we may divide Ampere’s law by η = (µ̃/ε̃)1/2 instead of η0. Then
the dual problem has J̃ replaced by J̃m/η, and J̃m replaced by −ηJ̃, and the solution is

Ẽ2 = ηH̃1, ηH̃2 = −Ẽ1. (4.198)

There is no need to swap ε̃r and µ̃r since information about these parameters is incor-
porated into the replacement sources.

We may also apply duality to a problem where we have separated the impressed and
secondary sources. In a homogeneous, isotropic, conducting medium we may let J̃ =
J̃i + σ̃ Ẽ. With this the curl equations become

∇ × ηH̃ = ηJ̃i + jωηε̃cẼ,

∇ × Ẽ = −J̃m − jωµ̃H̃.

The solution to the dual problem is again given by (4.198), except that now η = (µ̃/ε̃c)1/2.
As we did near the end of § 2.9.2, we can consider duality in a source-free region. We

let S enclose a source-free region of space and, for simplicity, assume that the medium
within S is linear, isotropic, and homogeneous. The fields within S are described by

∇ × Ẽ1 = − jωµ̃H̃1,

∇ × ηH̃1 = jωε̃ηẼ1,

∇ · ε̃Ẽ1 = 0,

∇ · µ̃H̃1 = 0.

The symmetry of the equations is such that the mathematical form of the solution for Ẽ
is the same as that for ηH̃. Since the fields

Ẽ2 = ηH̃1, H̃2 = −Ẽ1/η,

also satisfy Maxwell’s equations, the dual problem merely involves replacing Ẽ by ηH̃
and H̃ by −Ẽ/η.



4.11 The wave nature of the time-harmonic EM field

Time-harmonic electromagnetic waves have been studied in great detail. Narrowband
waves are widely used for signal transmission, heating, power transfer, and radar. They
share many of the properties of more general transient waves, and the discussions of
§ 2.10.1 are applicable. Here we shall investigate some of the unique properties of time-
harmonic waves and introduce such fundamental quantities as wavelength, phase and
group velocity, and polarization.

4.11.1 The frequency-domain wave equation

We begin by deriving the frequency-domain wave equation for dispersive bianisotropic
materials. A solution to this equation may be viewed as the transform of a general
time-dependent field. If one specific frequency is considered the time-harmonic solution
is produced.

In § 2.10.2 we derived the time-domain wave equation for bianisotropic materials.
There it was necessary to consider only time-independent constitutive parameters. We
can overcome this requirement, and thus deal with dispersive materials, by using a Fourier
transform approach. We solve a frequency-domain wave equation that includes the fre-
quency dependence of the constitutive parameters, and then use an inverse transform to
return to the time domain.

The derivation of the equation parallels that of § 2.10.2. We substitute the frequency-
domain constitutive relationships

D̃ = ˜̄ε · Ẽ + ˜̄ξ · H̃,

B̃ = ˜̄ζ · Ẽ + ˜̄µ · H̃,

into Maxwell’s curl equations (4.7) and (4.8) to get the coupled differential equations

∇ × Ẽ = − jω[ ˜̄ζ · Ẽ + ˜̄µ · H̃] − J̃m,

∇ × H̃ = jω[ ˜̄ε · Ẽ + ˜̄ξ · H̃] + J̃,

for Ẽ and H̃. Here we have included magnetic sources J̃m in Faraday’s law. Using the
dyadic operator ∇̄ defined in (2.308) we can write these equations as(

∇̄ + jω ˜̄ζ
)

· Ẽ = − jω ˜̄µ · H̃ − J̃m, (4.199)(
∇̄ − jω ˜̄ξ

)
· H̃ = jω ˜̄ε · Ẽ + J̃. (4.200)

We can obtain separate equations for Ẽ and H̃ by defining the inverse dyadics

˜̄ε · ˜̄ε−1 = Ī, ˜̄µ · ˜̄µ−1 = Ī.

Using ˜̄µ−1 we can write (4.199) as

− jωH̃ = ˜̄µ−1 ·
(
∇̄ + jω ˜̄ζ

)
· Ẽ + ˜̄µ−1 · J̃m .

Substituting this into (4.200) we get[(
∇̄ − jω ˜̄ξ

)
· ˜̄µ−1 ·

(
∇̄ + jω ˜̄ζ

)
− ω2 ˜̄ε

]
· Ẽ = −

(
∇̄ − jω ˜̄ξ

)
· ˜̄µ−1 · J̃m − jωJ̃. (4.201)



This is the general frequency-domain wave equation for Ẽ. Using ˜̄ε−1 we can write (4.200)
as

jωẼ = ˜̄ε−1 ·
(
∇̄ − jω ˜̄ξ

)
· H̃ − ˜̄ε−1 · J̃.

Substituting this into (4.199) we get[(
∇̄ + jω ˜̄ζ

)
· ˜̄ε−1 ·

(
∇̄ − jω ˜̄ξ

)
− ω2 ˜̄µ

]
· H̃ =

(
∇̄ + jω ˜̄ζ

)
· ˜̄ε−1 · J̃ − jωJ̃m . (4.202)

This is the general frequency-domain wave equation for H̃.

Wave equation for a homogeneous, lossy, isotropic medium. We may specialize
(4.201) and (4.202) to the case of a homogeneous, lossy, isotropic medium by setting
˜̄ζ = ˜̄ξ = 0, ˜̄µ = µ̃Ī, ˜̄ε = ε̃Ī, and J̃ = J̃i + J̃c:

∇ × (∇ × Ẽ) − ω2µ̃ε̃Ẽ = −∇ × J̃m − jωµ̃(J̃i + J̃c), (4.203)
∇ × (∇ × H̃) − ω2µ̃ε̃H̃ = ∇ × (J̃i + J̃c) − jωε̃J̃m . (4.204)

Using (B.47) and using Ohm’s law J̃c = σ̃ Ẽ to describe the secondary current, we get
from (4.203)

∇(∇ · Ẽ) − ∇2Ẽ − ω2µ̃ε̃Ẽ = −∇ × J̃m − jωµ̃J̃i − jωµ̃σ̃ Ẽ

which, using ∇ · Ẽ = ρ̃/ε̃, can be simplified to

(∇2 + k2)Ẽ = ∇ × J̃m + jωµ̃J̃i + 1

ε̃
∇ρ̃. (4.205)

This is the vector Helmholtz equation for Ẽ. Here k is the complex wavenumber defined
through

k2 = ω2µ̃ε̃ − jωµ̃σ̃ = ω2µ̃

[
ε̃ + σ̃

jω

]
= ω2µ̃ε̃c (4.206)

where ε̃c is the complex permittivity (4.26).
By (4.204) we have

∇(∇ · H̃) − ∇2H̃ − ω2µ̃ε̃H̃ = ∇ × J̃i + ∇ × J̃c − jωε̃J̃m .

Using

∇ × J̃c = ∇ × (σ̃ Ẽ) = σ̃∇ × Ẽ = σ̃ (− jωB̃ − J̃m)

and ∇ · H̃ = ρ̃m/µ̃ we then get

(∇2 + k2)H̃ = −∇ × J̃i + jωε̃cJ̃m + 1

µ̃
∇ρ̃m, (4.207)

which is the vector Helmholtz equation for H̃.

4.11.2 Field relationships and the wave equation for two-dimensional
fields

Many important canonical problems are two-dimensional in nature, with the sources
and fields invariant along one direction. Two-dimensional fields have a simple structure



compared to three-dimensional fields, and this structure often allows a decomposition
into even simpler field structures.

Consider a homogeneous region of space characterized by the permittivity ε̃, perme-
ability µ̃, and conductivity σ̃ . We assume that all sources and fields are z-invariant, and
wish to find the relationship between the various components of the frequency-domain
fields in a source-free region. It is useful to define the transverse vector component of an
arbitrary vector A as the component of A perpendicular to the axis of invariance:

At = A − ẑ(ẑ · A).

For the position vector r, this component is the transverse position vector rt = ρ. For
instance we have

ρ = x̂x + ŷy, ρ = ρ̂ρ,

in the rectangular and cylindrical coordinate systems, respectively.
Because the region is source-free, the fields Ẽ and H̃ obey the homogeneous Helmholtz

equations

(∇2 + k2)

{
Ẽ
H̃

}
= 0.

Writing the fields in terms of rectangular components, we find that each component
must obey a homogeneous scalar Helmholtz equation. In particular, we have for the
axial components Ẽz and H̃z ,

(∇2 + k2)

{
Ẽz

H̃z

}
= 0.

But since the fields are independent of z we may also write

(∇2
t + k2)

{
Ẽz

H̃z

}
= 0 (4.208)

where ∇2
t is the transverse Laplacian operator

∇2
t = ∇2 − ẑ

∂2

∂z2
. (4.209)

In rectangular coordinates we have

∇2
t = ∂2

∂x2
+ ∂2

∂y2
,

while in circular cylindrical coordinates

∇2
t = ∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂φ2
. (4.210)

With our condition on z-independence we can relate the transverse fields Ẽt and H̃t to
Ẽz and H̃z . By Faraday’s law we have

∇ × Ẽ(ρ, ω) = − jωµ̃H̃(ρ, ω)

and thus

H̃t = − 1

jωµ̃

[∇ × Ẽ
]

t .



The transverse portion of the curl is merely

[∇ × Ẽ
]

t
= x̂

[
∂ Ẽz

∂y
− ∂ Ẽy

∂z

]
+ ŷ

[
∂ Ẽx

∂z
− ∂ Ẽz

∂x

]
= −ẑ ×

[
x̂
∂ Ẽz

∂x
+ ŷ

∂ Ẽz

∂y

]

since the derivatives with respect to z vanish. The term in brackets is the transverse
gradient of Ẽz , where the transverse gradient operator is

∇t = ∇ − ẑ
∂

∂z
.

In circular cylindrical coordinates this operator becomes

∇t = ρ̂
∂

∂ρ
+ φ̂

1

ρ

∂

∂φ
. (4.211)

Thus we have

H̃t (ρ, ω) = 1

jωµ̃
ẑ × ∇t Ẽz(ρ, ω).

Similarly, the source-free Ampere’s law yields

Ẽt (ρ, ω) = − 1

jωε̃c
ẑ × ∇t H̃z(ρ, ω).

These results suggest that we can solve a two-dimensional problem by superposition.
We first consider the case where Ẽz �= 0 and H̃z = 0, called electric polarization. This
case is also called TM or transverse magnetic polarization because the magnetic field is
transverse to the z-direction (T Mz). We have

(∇2
t + k2)Ẽz = 0, H̃t (ρ, ω) = 1

jωµ̃
ẑ × ∇t Ẽz(ρ, ω). (4.212)

Once we have solved the Helmholtz equation for Ẽz , the remaining field components
follow by simple differentiation. We next consider the case where H̃z �= 0 and Ẽz = 0.
This is the case of magnetic polarization, also called TE or transverse electric polarization
(T Ez). In this case

(∇2
t + k2)H̃z = 0, Ẽt (ρ, ω) = − 1

jωε̃c
ẑ × ∇t H̃z(ρ, ω). (4.213)

A problem involving both Ẽz and H̃z is solved by adding the results for the individual
TEz and TMz cases.

Note that we can obtain the expression for the TE fields from the expression for the
TM fields, and vice versa, using duality. For instance, knowing that the TM fields obey
(4.212) we may replace H̃t with Ẽt/η and Ẽz with −ηH̃z to obtain

Ẽt (ρ, ω)

η
= 1

jωµ̃
ẑ × ∇t [−ηH̃z(ρ, ω)],

which reproduces (4.213).



4.11.3 Plane waves in a homogeneous, isotropic, lossy material

The plane-wave field. In later sections we will solve the frequency-domain wave
equation with an arbitrary source distribution. At this point we are more interested in
the general behavior of EM waves in the frequency domain, so we seek simple solutions
to the homogeneous equation

(∇2 + k2)Ẽ(r, ω) = 0 (4.214)

that governs the fields in source-free regions of space. Here

[k(ω)]2 = ω2µ̃(ω)ε̃c(ω).

Many properties of plane waves are best understood by considering the behavior of a
monochromatic field oscillating at a single frequency ω̌. In these cases we merely make
the replacements

ω → ω̌, Ẽ(r, ω) → Ě(r),

and apply the rules developed in § 4.7 for the manipulation of phasor fields.
For our first solutions we choose those that demonstrate rectangular symmetry. Plane

waves have planar spatial phase loci. That is, the spatial surfaces over which the phase
of the complex frequency-domain field is constant are planes. Solutions of this type may
be obtained using separation of variables in rectangular coordinates. Writing

Ẽ(r, ω) = x̂Ẽx (r, ω) + ŷẼy(r, ω) + ẑẼz(r, ω)

we find that (4.214) reduces to three scalar equations of the form

(∇2 + k2)ψ̃(r, ω) = 0

where ψ̃ is representative of Ẽx , Ẽy , and Ẽz . This is called the homogeneous scalar
Helmholtz equation. Product solutions to this equation are considered in § A.4. In
rectangular coordinates

ψ̃(r, ω) = X (x, ω)Y (y, ω)Z(z, ω)

where X , Y , and Z are chosen from the list (A.102). Since the exponentials describe
propagating wave functions, we choose

ψ̃(r, ω) = A(ω)e± jkx (ω)x e± jky(ω)ye± jkz(ω)z

where A is the amplitude spectrum of the plane wave and k2
x + k2

y + k2
z = k2. Using this

solution to represent each component of Ẽ, we have a propagating-wave solution to the
homogeneous vector Helmholtz equation:

Ẽ(r, ω) = Ẽ0(ω)e± jkx (ω)x e± jky(ω)ye± jkz(ω)z, (4.215)

where E0(ω) is the vector amplitude spectrum. If we define the wave vector

k(ω) = x̂kx (ω) + ŷky(ω) + ẑkz(ω),

then we can write (4.215) as

Ẽ(r, ω) = Ẽ0(ω)e− jk(ω)·r. (4.216)



Note that we choose the negative sign in the exponential function and allow the vector
components of k to be either positive or negative as required by the physical nature of
a specific problem. Also note that the magnitude of the wave vector is the wavenumber:
|k| = k.

We may always write the wave vector as a sum of real and imaginary vector components

k = k′ + jk′′ (4.217)

which must obey

k · k = k2 = k ′2 − k ′′2 + 2 jk′ · k′′. (4.218)

When the real and imaginary components are collinear, (4.216) describes a uniform plane
wave with

k = k̂(k ′ + jk ′′).

When k′ and k′′ have different directions, (4.216) describes a nonuniform plane wave.
We shall find in § 4 . 1 3 t h a t any frequency-domain electromagnetic field in free space
may be represented as a continuous superposition of elemental plane-wave components of
the type (4.216), but that both uniform and nonuniform terms are required.

The TEM nature of a uniform plane wave. Given the plane-wave solution to
the wave equation for the electric field, it is straightforward to find the magnetic field.
Substitution of (4.216) into Faraday’s law gives

∇ × [
Ẽ0(ω)e− jk(ω)·r] = − jωB̃(r, ω).

Computation of the curl is straightforward and easily done in rectangular coordinates.
This and similar derivatives often appear when manipulating plane-wave solutions; see
the tabulation in Appendix B, By (B.78) we have

H̃ = k × Ẽ
ωµ̃

. (4.219)

Taking the cross product of this expression with k, we also have

k × H̃ = k × (k × Ẽ)

ωµ̃
= k(k · Ẽ) − Ẽ(k · k)

ωµ̃
. (4.220)

We can show that k · Ẽ = 0 by examining Gauss’ law and employing (B.77):

∇ · Ẽ = − jk · Ẽe− jk·r = ρ̃

ε̃
= 0. (4.221)

Using this and k · k = k2 = ω2µ̃ε̃c, we obtain from (4.220)

Ẽ = −k × H̃
ωε̃c

. (4.222)

Now for a uniform plane wave k = k̂k, so we can also write (4.219) as

H̃ = k̂ × Ẽ
η

= k̂ × Ẽ0

η
e− jk·r (4.223)



and (4.222) as

Ẽ = −ηk̂ × H̃.

Here

η = ωµ̃

k
=

√
µ̃

ε̃c

is the complex intrinsic impedance of the medium.
Equations (4.223) and (4.221) show that the electric and magnetic fields and the wave

vector are mutually orthogonal. The wave is said to be transverse electromagnetic or
TEM to the direction of propagation.

The phase and attenuation constants of a uniform plane wave. For a uniform
plane wave we may write

k = k ′k̂ + jk ′′k̂ = kk̂ = (β − jα)k̂

where k ′ = β and k ′′ = −α. Here α is called the attenuation constant and β is the phase
constant . Since k is defined through (4.206), we have

k2 = (β − jα)2 = β2 − 2 jαβ − α2 = ω2µ̃ε̃c = ω2(µ̃′ + jµ̃′′)(ε̃c′ + j ε̃c′′).

Equating real and imaginary parts we have

β2 − α2 = ω2[µ̃′ε̃c′ − µ̃′′ε̃c′′], −2αβ = ω2[µ̃′′ε̃c′ + µ̃′ε̃c′′].

We assume the material is passive so that µ̃′′ ≤ 0, ε̃c′′ ≤ 0. Letting

β2 − α2 = ω2[µ̃′ε̃c′ − µ̃′′ε̃c′′] = A, 2αβ = ω2[|µ̃′′|ε̃c′ + µ̃′|ε̃c′′|] = B,

we may solve simultaneously to find that

β2 = 1

2

[
A +

√
A2 + B2

]
, α2 = 1

2

[
−A +

√
A2 + B2

]
.

Since A2 + B2 = ω4(ε̃c′2 + ε̃c′′2)(µ̃′2 + µ̃′′2), we have

β = ω
√

µ̃′ε̃c′

√√√√1

2

[√(
1 + ε̃c′′2

ε̃c′2

) (
1 + µ̃′′2

µ̃′2

)
+

(
1 − µ̃′′

µ̃′
ε̃c′′

ε̃c′

)]
, (4.224)

α = ω
√

µ̃′ε̃c′

√√√√1

2

[√(
1 + ε̃c′′2

ε̃c′2

) (
1 + µ̃′′2

µ̃′2

)
−

(
1 − µ̃′′

µ̃′
ε̃c′′

ε̃c′

)]
, (4.225)

where ε̃c and µ̃ are functions of ω. If ε̃(ω) = ε, µ̃(ω) = µ, and σ̃ (ω) = σ are real and
frequency independent, then

α = ω
√

µε

√√√√1

2

[√
1 +

( σ

ωε

)2
− 1

]
, (4.226)

β = ω
√

µε

√√√√1

2

[√
1 +

( σ

ωε

)2
+ 1

]
. (4.227)



These values of α and β are valid for ω > 0. For negative frequencies we must be more
careful in evaluating the square root in k = ω(µ̃ε̃c)1/2. Writing

µ̃(ω) = µ̃′(ω) + jµ̃′′(ω) = |µ̃(ω)|e jξµ(ω),

ε̃c(ω) = ε̃c′(ω) + j ε̃c′′(ω) = |ε̃c(ω)|e jξε(ω),

we have

k(ω) = β(ω) − jα(ω) = ω
√

µ̃(ω)ε̃c(ω) = ω
√

|µ̃(ω)||ε̃c(ω)|e j 1
2 [ξµ(ω)+ξε(ω)].

Now for passive materials we must have, by (4.48), µ̃′′ < 0 and ε̃c′′ < 0 for ω > 0.
Since we also have µ̃′ > 0 and ε̃c′ > 0 for ω > 0, we find that −π/2 < ξµ < 0 and
−π/2 < ξε < 0, and thus −π/2 < (ξµ + ξ ε)/2 < 0. Thus we must have β > 0 and α > 0
for ω > 0. For ω < 0 we have by (4.44) and (4.45) that µ̃′′ > 0, ε̃c′′ > 0, µ̃′ > 0, and
ε̃c′ > 0. Thus π/2 > (ξµ + ξ ε)/2 > 0, and so β < 0 and α > 0 for ω < 0. In summary,
α(ω) is an even function of frequency and β(ω) is an odd function of frequency:

β(ω) = −β(−ω), α(ω) = α(−ω), (4.228)

where β(ω) > 0, α(ω) > 0 when ω > 0. From this we find a condition on Ẽ0 in (4.216).
Since by (4.47) we must have Ẽ(ω) = Ẽ∗(−ω), we see that the uniform plane-wave field
obeys

Ẽ0(ω)e[− jβ(ω)−α(ω)]k̂·r = Ẽ∗
0(−ω)e[+ jβ(−ω)−α(−ω)]k̂·r

or

Ẽ0(ω) = Ẽ∗
0(−ω),

since β(−ω) = −β(ω) and α(−ω) = α(ω).

Propagation of a uniform plane wave: the group and phase velocities. We
have derived the plane-wave solution to the wave equation in the frequency domain, but
can discover the wave nature of the solution only by examining its behavior in the time
domain. Unfortunately, the explicit form of the time-domain field is highly dependent on
the frequency behavior of the constitutive parameters. Even the simplest case in which
ε, µ, and σ are frequency independent is quite complicated, as we discovered in § 2.10.6.
To overcome this difficulty, it is helpful to examine the behavior of a narrowband (but
non-monochromatic) signal in a lossy medium with arbitrary constitutive parameters.
We will find that the time-domain wave field propagates as a disturbance through the
surrounding medium with a velocity determined by the constitutive parameters of the
medium. The temporal wave shape does not change as the wave propagates, but the
amplitude of the wave attenuates at a rate dependent on the constitutive parameters.

For clarity of presentation we shall assume a linearly polarized plane wave (§ ??) with

Ẽ(r, ω) = êẼ0(ω)e− jk(ω)·r. (4.229)

Here Ẽ0(ω) is the spectrum of the temporal dependence of the wave. For the temporal
dependence we choose the narrowband signal

E0(t) = E0 f (t) cos(ω0t)

where f (t) has a narrowband spectrum centered about ω = 0 (and is therefore called a
baseband signal). An appropriate choice for f (t) is the Gaussian function used in (4.52):

f (t) = e−a2t2 ↔ F̃(ω) =
√

π

a2
e− ω2

4a2 ,



producing

E0(t) = E0e−a2t2
cos(ω0t). (4.230)

We think of f (t) as modulating the single-frequency cosine carrier wave, thus providing
the envelope. By using a large value of a we obtain a narrowband signal whose spectrum
is centered about ±ω0. Later we shall let a → 0, thereby driving the width of f (t) to
infinity and producing a monochromatic waveform.

By (1) we have

Ẽ0(ω) = E0
1

2

[
F̃(ω − ω0) + F̃(ω + ω0)

]

where f (t) ↔ F̃(ω). A plot of this spectrum is shown in Figure 4.2. We see that
the narrowband signal is centered at ω = ±ω0. Substituting into (4.229) and using
k = (β − jα)k̂ for a uniform plane wave, we have the frequency-domain field

Ẽ(r, ω) = êE0
1

2

[
F̃(ω − ω0)e

− j[β(ω)− jα(ω)]k̂·r + F̃(ω + ω0)e
− j[β(ω)− jα(ω)]k̂·r

]
. (4.231)

The field at any time t and position r can now be found by inversion:

êE(r, t) = 1

2π

∫ ∞

−∞
êE0

1

2

[
F̃(ω − ω0)e

− j[β(ω)− jα(ω)]k̂·r+

+ F̃(ω + ω0)e
− j[β(ω)− jα(ω)]k̂·r

]
e jωt dω. (4.232)

We assume that β(ω) and α(ω) vary slowly within the band occupied by Ẽ0(ω). With
this assumption we can expand β and α near ω = ω0 as

β(ω) = β(ω0) + β ′(ω0)(ω − ω0) + 1

2
β ′′(ω0)(ω − ω0)

2 + · · · ,

α(ω) = α(ω0) + α′(ω0)(ω − ω0) + 1

2
α′′(ω0)(ω − ω0)

2 + · · · ,

where β ′(ω) = dβ(ω)/dω, β ′′(ω) = d2β(ω)/dω2, and so on. In a similar manner we can
expand β and α near ω = −ω0:

β(ω) = β(−ω0) + β ′(−ω0)(ω + ω0) + 1

2
β ′′(−ω0)(ω + ω0)

2 + · · · ,

α(ω) = α(−ω0) + α′(−ω0)(ω + ω0) + 1

2
α′′(−ω0)(ω + ω0)

2 + · · · .
Since we are most interested in the propagation velocity, we need not approximate α

with great accuracy, and thus use α(ω) ≈ α(±ω0) within the narrow band. We must
consider β to greater accuracy to uncover the propagating nature of the wave, and thus
use

β(ω) ≈ β(ω0) + β ′(ω0)(ω − ω0) (4.233)

near ω = ω0 and

β(ω) ≈ β(−ω0) + β ′(−ω0)(ω + ω0) (4.234)

near ω = −ω0. Substituting these approximations into (4.232) we find

êE(r, t) = 1

2π

∫ ∞

−∞
êE0

1

2

[
F̃(ω − ω0)e

− j[β(ω0)+β ′(ω0)(ω−ω0)]k̂·re−[α(ω0)]k̂·r+

+ F̃(ω + ω0)e
− j[β(−ω0)+β ′(−ω0)(ω+ω0)]k̂·re−[α(−ω0)]k̂·r

]
e jωt dω. (4.235)



By (4.228) we know that α is even in ω and β is odd in ω. Since the derivative of an
odd function is an even function, we also know that β ′ is even in ω. We can therefore
write (4.235) as

êE(r, t) = êE0e−α(ω0)k̂·r 1

2π

∫ ∞

−∞

1

2

[
F̃(ω − ω0)e

− jβ(ω0)k̂·re− jβ ′(ω0)(ω−ω0)k̂·r+

+ F̃(ω + ω0)e
jβ(ω0)k̂·re− jβ ′(ω0)(ω+ω0)k̂·r

]
e jωt dω.

Multiplying and dividing by e jω0t and rearranging, we have

êE(r, t) = êE0e−α(ω0)k̂·r 1

2π

∫ ∞

−∞

1

2

[
F̃(ω − ω0)e

jφe j (ω−ω0)[t−τ ]+
+ F̃(ω + ω0)e

− jφe j (ω+ω0)[t−τ ]
]

dω

where

φ = ω0t − β(ω0)k̂ · r, τ = β ′(ω0)k̂ · r.

Setting u = ω − ω0 in the first term and u = ω + ω0 in the second term we have

êE(r, t) = êE0e−α(ω0)k̂·r cos φ
1

2π

∫ ∞

−∞
F̃(u)e ju(t−τ) du.

Finally, the time-shifting theorem (A.3) gives us the time-domain wave field

êE(r, t) = êE0e−α(ω0)k̂·r cos
(
ω0

[
t − k̂ · r/vp(ω0)

])
f
(
t − k̂ · r/vg(ω0)

)
(4.236)

where

vg(ω) = dω/dβ = [dβ/dω]−1 (4.237)

is called the group velocity and

vp(ω) = ω/β

is called the phase velocity.
To interpret (4.236), we note that at any given time t the field is constant over the

surface described by

k̂ · r = C (4.238)

where C is some constant. This surface is a plane, as shown in Figure 4.10, with its
normal along k̂. It is easy to verify that any point r on this plane satisfies (4.238). Let
r0 = r0k̂ describe the point on the plane with position vector in the direction of k̂, and
let d be a displacement vector from this point to any other point on the plane. Then

k̂ · r = k̂ · (r0 + d) = r0(k̂ · k̂) + k̂ · d.

But k̂ · d = 0, so

k̂ · r = r0, (4.239)

which is a fixed distance, so (238) holds.
Let us identify the plane over which the envelope f takes on a certain value, and follow

its motion as time progresses. The value of r0 associated with this plane must increase
with increasing time in such a way that the argument of f remains constant:

t − r0/vg(ω0) = C.



Figure 4.10: Surface of constant k̂ · r.

Differentiation gives

dr0

dt
= vg = dω

dβ
. (4.240)

So the envelope propagates along k̂ at a rate given by the group velocity vg. Associated
with this propagation is an attenuation described by the factor e−α(ω0)k̂·r. This accounts
for energy transfer into the lossy medium through Joule heating.

Similarly, we can identify a plane over which the phase of the carrier is constant; this
will be parallel to the plane of constant envelope described above. We now set

ω0
[
t − k̂ · r/vp(ω0)

] = C

and differentiate to get

dr0

dt
= vp = ω

β
. (4.241)

This shows that surfaces of constant carrier phase propagate along k̂ with velocity vp.
Caution must be exercised in interpreting the two velocities vg and vp; in particular, we

must be careful not to associate the propagation velocities of energy or information with
vp. Since envelope propagation represents the actual progression of the disturbance, vg

has the recognizable physical meaning of energy velocity. Kraus and Fleisch [105] suggest
that we think of a strolling caterpillar: the speed (vp) of the undulations along the
caterpillar’s back (representing the carrier wave) may be much faster than the speed (vg)
of the caterpillar’s body (representing the envelope of the disturbance).

In fact, vg is the velocity of energy propagation even for a monochromatic wave (§ ??).
However, for purely monochromatic waves vg cannot be identified from the time-domain
field, whereas vp can. This leads to some unfortunate misconceptions, especially when
vp exceeds the speed of light. Since vp is not the velocity of propagation of a physical
quantity, but is rather the rate of change of a phase reference point, Einstein’s postulate
of c as the limiting velocity is not violated.

We can obtain interesting relationships between vp and vg by manipulating (4.237)
and (4.241). For instance, if we compute

dvp

dω
= d

dω

(
ω

β

)
= β − ω

dβ

dω

β2



Figure 4.11: An ω–β diagram for a fictitious material.

we find that

vp

vg
= 1 − β

dvp

dω
. (4.242)

Hence in frequency ranges where vp decreases with increasing frequency, we have vg < vp.
These are known as regions of normal dispersion. In frequency ranges where vp increases
with increasing frequency, we have vg > vp. These are known as regions of anomalous
dispersion. As mentioned in § 4.6.3, the word “anomalous” does not imply that this type
of dispersion is unusual.

The propagation of a uniform plane wave through a lossless medium provides a par-
ticularly simple example. In a lossless medium we have

β(ω) = ω
√

µε, α(ω) = 0.

In this case (4.233) becomes

β(ω) = ω0
√

µε + √
µε(ω − ω0) = ω

√
µε

and (4.236) becomes

êE(r, t) = êE0 cos
(
ω0

[
t − k̂ · r/vp(ω0)

])
f
(
t − k̂ · r/vg(ω0)

)
.

Since the linear approximation to the phase constant β is in this case exact, the wave
packet truly propagates without distortion, with a group velocity identical to the phase
velocity:

vg =
[

d

dω
ω

√
µε

]−1

= 1√
µε

= ω

β
= vp.

Examples of wave propagation in various media; the ω–β diagram. A plot
of ω versus β(ω) can be useful for displaying the dispersive properties of a material.
Figure 4.11 shows such an ω–β plot, or dispersion diagram, for a fictitious material. The
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Figure 4.12: Dispersion plot for water computed using the Debye relaxation formula.

slope of the line from the origin to a point (β, ω) is the phase velocity, while the slope
of the line tangent to the curve at that point is the group velocity. This plot shows
many of the different characteristics of electromagnetic waves (although not necessarily
of plane waves). For instance, there may be a minimum frequency ωc called the cutoff
frequency at which β = 0 and below which the wave cannot propagate. This behavior is
characteristic of a plane wave propagating in a plasma (as shown below) or of a wave in
a hollow pipe waveguide (§ 5.4.3). Over most values of β we have vg < vp so the material
demonstrates normal dispersion. However, over a small region we do have anomalous
dispersion. In another range the slope of the curve is actually negative and thus vg < 0;
here the directions of energy and phase front propagation are opposite. Such backward
waves are encountered in certain guided-wave structures used in microwave oscillators.
The ω–β plot also includes the light line as a reference curve. For all points on this line
vg = vp; it is generally used to represent propagation within the material under special
circumstances, such as when the loss is zero or the material occupies unbounded space.
It may also be used to represent propagation within a vacuum.

As an example for which the constitutive parameters depend on frequency, let us
consider the relaxation effects of water. By the Debye formula (4.106) we have

ε̃(ω) = ε∞ + εs − ε∞
1 + jωτ

.

Assuming ε∞ = 5ε0, εs = 78.3ε0, and τ = 9.6 × 10−12 s [49], we obtain the relaxation
spectrum shown in Figure 4.5. If we also assume that µ = µ0, we may compute β as a
function of ω and construct the ω–β plot. This is shown in Figure 4.12. Since ε′ varies
with frequency, we show both the light line for zero frequency found using εs = 78.3ε0,
and the light line for infinite frequency found using εi = 5ε0. We see that at low values
of frequency the dispersion curve follows the low-frequency light line very closely, and
thus vp ≈ vg ≈ c/

√
78.3. As the frequency increases, the dispersion curve rises up and
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eventually becomes asymptotic with the high-frequency light line. Plots of vp and vg

shown in Figure 4.13 verify that the velocities start out at c/
√

78.3 for low frequencies,
and approach c/

√
5 for high frequencies. Because vg > vp at all frequencies, this model

of water demonstrates anomalous dispersion.
Another interesting example is that of a non-magnetized plasma. For a collisionless

plasma we may set ν = 0 in (4.76) to find

k =



ω
c

√
1 − ω2

p

ω2 , ω > ωp,

− j ω
c

√
ω2

p

ω2 − 1, ω < ωp.

Thus, when ω > ωp we have

Ẽ(r, ω) = Ẽ0(ω)e− jβ(ω)k̂·r

and so

β = ω

c

√
1 − ω2

p

ω2
, α = 0.

In this case a plane wave propagates through the plasma without attenuation. However,
when ω < ωp we have

Ẽ(r, ω) = Ẽ0(ω)e−α(ω)k̂·r

with

α = ω

c

√
ω2

p

ω2
− 1, β = 0,

and a plane wave does not propagate, but only attenuates. Such a wave is called an
evanescent wave. We say that for frequencies below ωp the wave is cut off, and call ωp

the cutoff frequency.
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Consider, for instance, a plane wave propagating in the earth’s ionosphere. Both
the electron density and the collision frequency are highly dependent on such factors
as altitude, time of day, and latitude. However, except at the very lowest altitudes,
the collision frequency is low enough that the ionosphere may be considered lossless.
For instance, at a height of 200 km (the F1 layer of the ionosphere), as measured for a
mid-latitude region, we find that during the day the electron density is approximately
Ne = 2×1011m−3, while the collision frequency is only ν = 100s−1 [16]. The attenuation is
so small in this case that the ionosphere may be considered essentially lossless above the
cutoff frequency (we will develop an approximate formula for the attenuation constant
below). Figure 4.14 shows the ω–β diagram for the ionosphere assuming ν = 0, along
with the light line vp = c. We see that above the cutoff frequency of f p = ωp/2π = 4.0
MHz the wave propagates and that vg < c while vp > c. Below the cutoff frequency the
wave does not propagate and the field decays very rapidly because α is large.

A formula for the phase velocity of a plane wave in a lossless plasma is easily derived:

vp = ω

β
= c√

1 − ω2
p

ω2

> c.

Thus, our observation from the ω–β plot that vp > c is verified. Similarly, we find that

vg =
(

dβ

dω

)−1

=

1

c

√
1 − ω2

p

ω2
+ 1

c

ω2
p/ω

2√
1 − ω2

p

ω2




−1

= c

√
1 − ω2

p

ω2
< c

and our observation that vg < c is also verified. Interestingly, we find that in this case
of an unmagnetized collisionless plasma

vpvg = c2.



Since vp > vg, this model of a plasma demonstrates normal dispersion at all frequencies
above cutoff.

For the case of a plasma with collisions we retain ν in (4.76) and find that

k = ω

c

√[
1 − ω2

p

ω2 + ν2

]
− jν

ω2
p

ω(ω2 + ν2)
.

When ν �= 0 a true cutoff effect is not present and the wave may propagate at all
frequencies. However, when ν � ωp the attenuation for propagating waves of frequency
ω < ωp is quite severe, and for all practical purposes the wave is cut off. For waves of
frequency ω > ωp there is attenuation. Assuming that ν � ωp and that ν � ω, we may
approximate the square root with the first two terms of a binomial expansion, and find
that to first order

β = ω

c

√
1 − ω2

p

ω2
, α = 1

2

ν

c

ω2
p/ω

2√
1 − ω2

p

ω2

.

Hence the phase and group velocities above cutoff are essentially those of a lossless
plasma, while the attenuation constant is directly proportional to ν.

4.11.4 Monochromatic plane waves in a lossy medium

Many properties of monochromatic plane waves are particularly simple. In fact, cer-
tain properties, such as wavelength, only have meaning for monochromatic fields. And
since monochromatic or nearly monochromatic waves are employed extensively in radar,
communications, and energy transport, it is useful to simplify the results of the preceding
section for the special case in which the spectrum of the plane-wave signal consists of a
single frequency component. In addition, plane waves of more general time dependence
can be viewed as superpositions of individual single-frequency components (through the
inverse Fourier transform), and thus we may regard monochromatic waves as building
blocks for more complicated plane waves.

We can view the monochromatic field as a specialization of (4.230) for a → 0. This
results in F̃(ω) → δ(ω), so the linearly-polarized plane wave expression (4.232) reduces
to

êE(r, t) = êE0e−α(ω0)[k̂·r] cos(ω0t − jβ(ω0)[k̂ · r]). (4.243)

It is convenient to represent monochromatic fields with frequency ω = ω̌ in phasor form.
The phasor form of (4.243) is

Ě(r) = êE0e− jβ(k̂·r)e−α(k̂·r) (4.244)

where β = β(ω̌) and α = α(ω̌). We can identify a surface of constant phase as a locus of
points obeying

ω̌t − β(k̂ · r) = CP (4.245)

for some constant CP . This surface is a plane, as shown in Figure 4.10, with its normal
in the direction of k̂. It is easy to verify that any point r on this plane satisfies (4.245).
Let r0 = r0k̂ describe the point on the plane with position vector in the k̂ direction, and
let d be a displacement vector from this point to any other point on the plane. Then

k̂ · r = k̂ · (r0 + d) = r0(k̂ · k̂) + k̂ · d.



But k̂ · d = 0, so

k̂ · r = r0, (4.246)

which is a spatial constant, hence (4.245) holds for any t . The planar surfaces described
by (4.245) are wavefronts.

Note that surfaces of constant amplitude are determined by

α(k̂ · r) = CA

where CA is some constant. As with the phase term, this requires that k̂ · r = constant,
and thus surfaces of constant phase and surfaces of constant amplitude are coplanar.
This is a property of uniform plane waves. We shall see later that nonuniform plane
waves have planar surfaces that are not parallel.

The cosine term in (4.243) represents a traveling wave. As t increases, the argument of
the cosine function remains unchanged as long as k̂·r increases correspondingly. Thus the
planar wavefronts propagate along k̂. As the wavefront progresses, the wave is attenuated
because of the factor e−α(k̂·r). This accounts for energy transferred from the propagating
wave to the surrounding medium via Joule heating.

Phase velocity of a uniform plane wave. The propagation velocity of the progress-
ing wavefront is found by differentiating (4.245) to get

ω̌ − βk̂ · dr
dt

= 0.

By (4.246) we have

vp = dr0

dt
= ω̌

β
, (4.247)

where the phase velocity vp represents the propagation speed of the constant-phase sur-
faces. For the case of a lossy medium with frequency-independent constitutive parame-
ters, (4.227) shows that

vp ≤ 1√
µε

,

hence the phase velocity in a conducting medium cannot exceed that in a lossless medium
with the same parameters µ and ε. We cannot draw this conclusion for a medium with
frequency-dependent µ̃ and ε̃c, since by (4.224) the value of ω̌/β might be greater or less
than 1/

√
µ̃′ε̃c′, depending on the ratios µ̃′′/µ̃′ and ε̃c′′/ε̃c′.

Wavelength of a uniform plane wave. Another important property of a uniform
plane wave is the distance between adjacent wavefronts that produce the same value of
the cosine function in (4.243). Note that the field amplitude may not be the same on
these two surfaces because of possible attenuation of the wave. Let r1 and r2 be points
on adjacent wavefronts. We require

β(k̂ · r1) = β(k̂ · r2) − 2π

or

λ = k̂ · (r2 − r1) = r02 − r01 = 2π/β.

We call λ the wavelength.



Polarization of a uniform plane wave. Plane-wave polarization describes the tem-
poral evolution of the vector direction of the electric field, which depends on the manner
in which the wave is generated. Completely polarized waves are produced by antennas or
other equipment; these have a deterministic polarization state which may be described
completely by three parameters as discussed below. Randomly polarized waves are emit-
ted by some natural sources. Partially polarized waves, such as those produced by cosmic
radio sources, contain both completely polarized and randomly polarized components.
We shall concentrate on the description of completely polarized waves.

The polarization state of a completely polarized monochromatic plane wave propa-
gating in a homogeneous, isotropic region may be described by superposing two simpler
plane waves that propagate along the same direction but with different phases and spa-
tially orthogonal electric fields. Without loss of generality we may study propagation
along the z-axis and choose the orthogonal field directions to be along x̂ and ŷ. So we
are interested in the behavior of a wave with electric field

Ě(r) = x̂Ex0e jφx e− jkz + ŷEy0e jφy e− jkz . (4.248)

The time evolution of the direction of E must be examined in the time domain where we
have

E(r, t) = Re
{
Ěe jωt

} = x̂Ex0 cos(ωt − kz + φx ) + ŷEy0 cos(ωt − kz + φy)

and thus, by the identity cos(x + y) ≡ cos x cos y − sin x sin y,

Ex = Ex0 [cos(ωt − kz) cos(φx ) − sin(ωt − kz) sin(φx )] ,

Ey = Ey0
[
cos(ωt − kz) cos(φy) − sin(ωt − kz) sin(φy)

]
.

The tip of the vector E moves cyclically in the xy-plane with temporal period T = ω/2π .
Its locus may be found by eliminating the parameter t to obtain a relationship between
Ex0 and Ey0. Letting δ = φy − φx we note that

Ex

Ex0
sin φy − Ey

Ey0
sin φx = cos(ωt − kz) sin δ,

Ex

Ex0
cos φy − Ey

Ey0
cos φx = sin(ωt − kz) sin δ;

squaring these terms we find that(
Ex

Ex0

)2

+
(

Ey

Ey0

)2

− 2
Ex

Ex0

Ey

Ey0
cos δ = sin2 δ,

which is the equation for the ellipse shown in Figure 4.15. By (4.223) the magnetic field
of the plane wave is

Ȟ = ẑ × Ě
η

,

hence its tip also traces an ellipse in the xy-plane.
The tip of the electric field vector cycles around the polarization ellipse in the xy-

plane once every T seconds. The sense of rotation is determined by the sign of δ, and
is described by the terms clockwise/counterclockwise or right-hand/left-hand. There is
some disagreement about how to do this. We shall adopt the IEEE definitions (IEEE
Standard 145-1983 [189]) and associate with δ < 0 rotation in the right-hand sense: if



Figure 4.15: Polarization ellipse for a monochromatic plane wave.

the right thumb points in the direction of wave propagation then the fingers curl in the
direction of field rotation for increasing time. This is right-hand polarization (RHP). We
associate δ > 0 with left-hand polarization (LHP).

The polarization ellipse is contained within a rectangle of sides 2Ex0 and 2Ey0, and
has its major axis rotated from the x-axis by the tilt angle ψ , 0 ≤ ψ ≤ π . The ratio of
Ey0 to Ex0 determines an angle α, 0 ≤ α ≤ π/2:

Ey0/Ex0 = tan α.

The shape of the ellipse is determined by the three parameters Ex0, Ey0, and δ, while
the sense of polarization is described by the sign of δ. These may not, however, be
the most convenient parameters for describing the polarization of a wave. We can also
inscribe the ellipse within a box measuring 2a by 2b, where a and b are the lengths of
the semimajor and semiminor axes. Then b/a determines an angle χ , −π/4 ≤ χ ≤ π/4,
that is analogous to α:

±b/a = tan χ.

Here the algebraic sign of χ is used to indicate the sense of polarization: χ > 0 for LHP,
χ < 0 for RHP.

The quantities a, b, ψ can also be used to describe the polarization ellipse. When we
use the procedure outlined in Born and Wolf [19] to relate the quantities (a, b, ψ) to
(Ex0, Ey0, δ), we find that

a2 + b2 = E2
x0 + E2

y0,

tan 2ψ = (tan 2α) cos δ = 2Ex0 Ey0

E2
x0 − E2

y0

cos δ,

sin 2χ = (sin 2α) sin δ = 2Ex0 Ey0

E2
x0 + E2

y0

sin δ.

Alternatively, we can describe the polarization ellipse by the angles ψ and χ and one of
the amplitudes Ex0 or Ey0.



Figure 4.16: Polarization states as a function of tilt angle ψ and ellipse aspect ratio angle
χ . Left-hand polarization for χ > 0, right-hand for χ < 0.

Each of these parameter sets is somewhat inconvenient since in each case the units
differ among the parameters. In 1852 G. Stokes introduced a system of three independent
quantities with identical dimension that can be used to describe plane-wave polarization.
Various normalizations of these Stokes parameters are employed; when the parameters
are chosen to have the dimension of power density we may write them as

s0 = 1

2η

[
E2

x0 + E2
y0

]
, (4.249)

s1 = 1

2η

[
E2

x0 − E2
y0

] = s0 cos(2χ) cos(2ψ), (4.250)

s2 = 1

η
Ex0 Ey0 cos δ = s0 cos(2χ) sin(2ψ), (4.251)

s3 = 1

η
Ex0 Ey0 sin δ = s0 sin(2χ). (4.252)

Only three of these four parameters are independent since s2
0 = s2

1 + s2
2 + s2

3 . Often the
Stokes parameters are designated (I, Q, U, V ) rather than (s0, s1, s2, s3).

Figure 4.16 summarizes various polarization states as a function of the angles ψ and
χ . Two interesting special cases occur when χ = 0 and χ = ±π/4. The case χ = 0
corresponds to b = 0 and thus δ = 0. In this case the electric vector traces out a straight
line and we call the polarization linear. Here

E = (
x̂Ex0 + ŷEy0

)
cos(ωt − kz + φx ).

When ψ = 0 we have Ey0 = 0 and refer to this as horizontal linear polarization (HLP);
when ψ = π/2 we have Ex0 = 0 and vertical linear polarization (VLP).

The case χ = ±π/4 corresponds to b = a and δ = ±π/2. Thus Ex0 = Ey0, and E
traces out a circle regardless of the value of ψ . If χ = −π/4 we have right-hand rotation
of E and thus refer to this case as right-hand circular polarization (RHCP). If χ = π/4
we have left-hand circular polarization (LHCP). For these cases

E = Ex0 [x̂ cos(ωt − kz) ∓ ŷ sin(ωt − kz)] ,



Figure 4.17: Graphical representation of the polarization of a monochromatic plane wave
using the Poincaré sphere.

where the upper and lower signs correspond to LHCP and RHCP, respectively. All other
values of χ result in the general cases of left-hand or right-hand elliptical polarization.

The French mathematician H. Poincaré realized that the Stokes parameters (s1, s2, s3)

describe a point on a sphere of radius s0, and that this Poincaré sphere is useful for
visualizing the various polarization states. Each state corresponds uniquely to one point
on the sphere, and by (4.250)–(4.252) the angles 2χ and 2ψ are the spherical angular
coordinates of the point as shown in Figure 4.17. We may therefore map the polarization
states shown in Figure 4.16 directly onto the sphere: left- and right-hand polarizations
appear in the upper and lower hemispheres, respectively; circular polarization appears at
the poles (2χ = ±π/2); linear polarization appears on the equator (2χ = 0), with HLP
at 2ψ = 0 and VLP at 2ψ = π . The angles α and δ also have geometrical interpretations
on the Poincaré sphere. The spherical angle of the great-circle route between the point
of HLP and a point on the sphere is 2α, while the angle between the great-circle path
and the equator is δ.

Uniform plane waves in a good dielectric. We may base some useful plane-wave
approximations on whether the real or imaginary part of ε̃c dominates at the frequency
of operation. We assume that µ̃(ω) = µ is independent of frequency and use the notation
εc = ε̃c(ω̌), σ = σ̃ (ω̌), etc. Remember that

εc = (
ε′ + jε′′) + σ

jω̌
= ε′ + j

(
ε′′ − σ

ω̌

)
= εc′ + jεc′′.

By definition, a “good dielectric” obeys

tan δc = −εc′′

εc′ = σ

ω̌ε′ − ε′′

ε′ � 1. (4.253)



Here tan δc is the loss tangent of the material, as first described in (4.107) for a material
without conductivity. For a good dielectric we have

k = β − jα = ω̌
√

µεc = ω̌
√

µ [ε′ + jεc′′] = ω̌
√

µε′√1 − j tan δc,

hence

k ≈ ω̌
√

µε′
[

1 − j
1

2
tan δc

]
(4.254)

by the binomial approximation for the square root. Therefore

β ≈ ω̌
√

µε′ (4.255)

and

α ≈ β

2
tan δc = σ

2

√
µ

ε′

[
1 − ω̌ε′′

σ

]
. (4.256)

We conclude that α � β. Using this and the binomial approximation we establish

η = ω̌µ

k
= ω̌µ

β

1

1 − jα/β
≈ ω̌µ

β

(
1 + j

α

β

)
.

Finally,

vp = ω̌

β
≈ 1√

µε′

and

vg =
[

dβ

dω

]−1

≈ 1√
µε′ .

To first order, the phase constant, phase velocity, and group velocity are the same as
those of a lossless medium.

Uniform plane waves in a good conductor. We classify a material as a “good
conductor” if

tan δc ≈ σ

ω̌ε
� 1.

In a good conductor the conduction current σ Ě is much greater than the displacement
current jω̌ε′Ě, and ε′′ is usually ignored. Now we may approximate

k = β − jα = ω̌
√

µε′√1 − j tan δc ≈ ω̌
√

µε′√− j tan δc.

Since
√− j = (1 − j)/

√
2 we find that

β = α ≈
√

π f µσ. (4.257)

Hence

vp = ω̌

β
≈

√
2ω̌

µσ
= 1√

µε′

√
2

tan δc
.

To find vg we must replace ω̌ by ω and differentiate, obtaining

vg =
[

dβ

dω

]−1 ∣∣∣∣
ω=ω̌

≈
[

1

2

√
µσ

2ω̌

]−1

= 2

√
2ω̌

µσ
= 2vp.



In a good conductor the group velocity is approximately twice the phase velocity. We
could have found this relation from the phase velocity using (4.242). Indeed, noting that

dvp

dω
= d

dω

√
2ω

µσ
= 1

2

√
2

ωµσ

and

β
dvp

dω
=

√
ωµσ

2

1

2

√
2

ωµσ
= 1

2
,

we see that
vp

vg
= 1 − 1

2
= 1

2
.

Note that the phase and group velocities may be only small fractions of the free-space
light velocity. For example, in copper (σ = 5.8 × 107 S/m, µ = µ0, ε = ε0) at 1 MHz,
we have vp = 415 m/s.

A factor often used to judge the quality of a conductor is the distance required for a
propagating uniform plane wave to decrease in amplitude by the factor 1/e. By (4.244)
this distance is given by

δ = 1

α
= 1√

π f µσ
. (4.258)

We call δ the skin depth. A good conductor is characterized by a small skin depth. For
example, copper at 1 MHz has δ = 0.066 mm.

Power carried by a uniform plane wave. Since a plane wavefront is infinite in
extent, we usually speak of the power density carried by the wave. This is identical to
the time-average Poynting flux. Substitution from (4.223) and (4.244) gives

Sav = 1

2
Re{Ě × Ȟ∗} = 1

2
Re

{
Ě ×

(
k̂ × Ě

η

)∗}
. (4.259)

Expanding the cross products and remembering that k · Ě = 0, we get

Sav = 1

2
k̂ Re

{
|Ě|2
η∗

}
= k̂ Re

{
E2

0

2η∗

}
e−2αk̂·r.

Hence a uniform plane wave propagating in an isotropic medium carries power in the
direction of wavefront propagation.

Velocity of energy transport. The group velocity (4.237) has an additional interpre-
tation as the velocity of energy transport. If the time-average volume density of energy
is given by

〈wem〉 = 〈we〉 + 〈wm〉
and the time-average volume density of energy flow is given by the Poynting flux density

Sav = 1

2
Re

{
Ě(r) × Ȟ∗(r)

} = 1

4

[
Ě(r) × Ȟ∗(r) + Ě∗(r) × Ȟ(r)

]
, (4.260)

then the velocity of energy flow, ve, is defined by

Sav = 〈wem〉ve. (4.261)



Let us calculate ve for a plane wave propagating in a lossless, source-free medium where
k = k̂ω

√
µε. By (4.216) and (4.223) we have

Ẽ(r, ω) = Ẽ0(ω)e− jβk̂·r, (4.262)

H̃(r, ω) =
(

k̂ × Ẽ0(ω)

η

)
e− jβk̂·r = H̃0(ω)e− jβk̂·r. (4.263)

We can compute the time-average stored energy density using the energy theorem (4.68).
In point form we have

− ∇ ·
(

Ẽ∗ × ∂H̃
∂ω

+ ∂Ẽ
∂ω

× H̃∗
) ∣∣∣∣

ω=ω̌

= 4 j〈wem〉. (4.264)

Upon substitution of (4.262) and (4.263) we find that we need to compute the frequency
derivatives of Ẽ and H̃. Using

∂

∂ω
e− jβk̂·r =

(
∂

∂β
e− jβk̂·r

)
dβ

dω
= − j k̂ · r

dβ

dω
e− jβk̂·r

and remembering that k = k̂β, we have

∂Ẽ(r, ω)

∂ω
= dẼ0(ω)

dω
e− jk·r + Ẽ0(ω)

(
− jr · dk

dω

)
e− jk·r,

∂H̃(r, ω)

∂ω
= dH̃0(ω)

dω
e− jk·r + H̃0(ω)

(
− jr · dk

dω

)
e− jk·r.

Equation (4.264) becomes

−∇ ·
{

Ẽ∗
0(ω) × dH̃0(ω)

dω
+ dẼ0(ω)

dω
× H̃∗

0(ω)−

− jr · dk
dω

[
Ẽ∗

0(ω) × H̃0(ω) + Ẽ0(ω) × H̃∗
0(ω)

]} ∣∣∣∣
ω=ω̌

= 4 j〈wem〉.

The first two terms on the left-hand side have zero divergence, since these terms do not
depend on r. By the product rule (B.42) we have

[
Ẽ∗

0(ω̌) × H̃0(ω̌) + Ẽ0(ω̌) × H̃∗
0(ω̌)

] · ∇
(

r · dk
dω

) ∣∣∣∣
ω=ω̌

= 4〈wem〉.

The gradient term is merely

∇
(

r · dk
dω

) ∣∣∣∣
ω=ω̌

= ∇
(

x
dkx

dω
+ y

dky

dω
+ z

dkz

dω

) ∣∣∣∣
ω=ω̌

= dk
dω

∣∣∣∣
ω=ω̌

,

hence

[
Ẽ∗

0(ω̌) × H̃0(ω̌) + Ẽ0(ω̌) × H̃∗
0(ω̌)

] · dk
dω

∣∣∣∣
ω=ω̌

= 4〈wem〉. (4.265)

Finally, the left-hand side of this expression can be written in terms of the time-average
Poynting vector. By (4.260) we have

Sav = 1

2
Re

{
Ě × Ȟ∗} = 1

4

[
Ẽ0(ω̌) × H̃∗

0(ω̌) + Ẽ∗
0(ω̌) × H̃0(ω̌)

]



and thus we can write (4.265) as

Sav · dk
dω

∣∣∣∣
ω=ω̌

= 〈wem〉.

Since for a uniform plane wave in an isotropic medium k and Sav are in the same direction,
we have

Sav = k̂
dω

dβ

∣∣∣∣
ω=ω̌

〈wem〉

and the velocity of energy transport for a plane wave of frequency ω̌ is then

ve = k̂
dω

dβ

∣∣∣∣
ω=ω̌

.

Thus, for a uniform plane wave in a lossless medium the velocity of energy transport is
identical to the group velocity.

Nonuniform plane waves. A nonuniform plane wave has the same form (4.216) as a
uniform plane wave, but the vectors k′ and k′′ described in (4.217) are not aligned. Thus

Ě(r) = E0e− jk′ ·rek′′ ·r.

In the time domain this becomes

Ě(r) = E0ek′′ ·r cos[ω̌t − k ′(k̂′ · r)]

where k′ = k̂′k ′. The surfaces of constant phase are planes perpendicular to k′ and
propagating in the direction of k̂′. The phase velocity is now

vp = ω̌/k ′

and the wavelength is

λ = 2π/k ′.

In contrast, surfaces of constant amplitude must obey

k′′ · r = C

and thus are planes perpendicular to k′′.
In a nonuniform plane wave the TEM nature of the fields is lost. This is easily seen

by calculating Ȟ from (4.219):

Ȟ(r) = k × Ě(r)
ω̌µ

= k′ × Ě(r)
ω̌µ

+ j
k′′ × Ě(r)

ω̌µ
.

Thus, Ȟ is no longer perpendicular to the direction of propagation of the phase front. The
power carried by the wave also differs from that of the uniform case. The time-average
Poynting vector

Sav = 1

2
Re

{
Ě ×

(
k × Ě
ω̌µ

)∗}

can be expanded using the identity (B.7):

Sav = 1

2
Re

{
1

ω̌µ∗
[
k∗ × (Ě × Ě∗) + Ě∗ × (k∗ × Ě)

]}
. (4.266)



Since we still have k · E = 0, we may use the rest of (B.7) to write

Ě∗ × (k∗ × Ě) = k∗(Ě · Ě∗) + Ě(k · Ě)∗ = k∗(Ě · Ě∗).

Substituting this into (4.266), and noting that Ě × Ě∗ is purely imaginary, we find

Sav = 1

2
Re

{
1

ω̌µ∗
[

jk∗ × Im
{
Ě × Ě∗} + k∗|Ě|2]

}
. (4.267)

Thus the vector direction of Sav is not generally in the direction of propagation of the
plane wavefronts.

Let us examine the special case of nonuniform plane waves propagating in a lossless
material. It is intriguing that k may be complex when k is real, and the implication is
important for the plane-wave expansion of complicated fields in free space. By (4.218),
real k requires that if k ′′ �= 0 then

k′ · k′′ = 0.

Thus, for a nonuniform plane wave in a lossless material the surfaces of constant phase
and the surfaces of constant amplitude are orthogonal. To specialize the time-average
power to the lossless case we note that µ is purely real and that

E × E∗ = (E0 × E∗
0)e

2k′′ ·r.

Then (4.267) becomes

Sav = 1

2ω̌µ
e2k′′ ·r Re

{
j (k′ − jk′′) × Im

{
E0 × E∗

0

} + (k′ − jk′′)|Ě|2}

or

Sav = 1

2ω̌µ
e2k′′ ·r [

k′′ × Im
{
E0 × E∗

0

} + k′Ě|2] .

We see that in a lossless medium the direction of energy propagation is perpendicular
to the surfaces of constant amplitude (since k′′ · Sav = 0), but the direction of energy
propagation is not generally in the direction of propagation of the phase planes.

We shall encounter nonuniform plane waves when we study the reflection and refrac-
tion of a plane wave from a planar interface in the next section. We shall also find in
§ 4.13 that nonuniform plane waves are a necessary constituent of the angular spectrum
representation of an arbitrary wave field.

4.11.5 Plane waves in layered media

A useful canonical problem in wave propagation involves the reflection of plane waves
by planar interfaces between differing material regions. This has many direct applica-
tions, from the design of optical coatings and microwave absorbers to the probing of
underground oil-bearing rock layers. We shall begin by studying the reflection of a plane
wave at a single interface and then extend the results to any number of material layers.

Reflection of a uniform plane wave at a planar material interface. Consider
two lossy media separated by the z = 0 plane as shown in Figure 4.18. The media are as-
sumed to be isotropic and homogeneous with permeability µ̃(ω) and complex permittivity
ε̃c(ω). Both µ̃ and ε̃c may be complex numbers describing magnetic and dielectric loss,



respectively. We assume that a linearly-polarized plane-wave field of the form (4.216) is
created within region 1 by a process that we shall not study here. We take this field to
be the known “incident wave” produced by an impressed source, and wish to compute
the total field in regions 1 and 2. Here we shall assume that the incident field is that of a
uniform plane wave, and shall extend the analysis to certain types of nonuniform plane
waves subsequently.

Since the incident field is uniform, we may write the wave vector associated with this
field as

ki = k̂i ki = k̂i (ki ′ + jki ′′)

where

[ki (ω)]2 = ω2µ̃1(ω)ε̃c
1(ω).

We can assume without loss of generality that k̂i lies in the xz-plane and makes an angle
θi with the interface normal as shown in Figure 4.18. We refer to θi as the incidence angle
of the incident field, and note that it is the angle between the direction of propagation
of the planar phase fronts and the normal to the interface. With this we have

ki = x̂k1 sin θi + ẑk1 cos θi = x̂ki
x + ẑki

z .

Using k1 = β1 − jα1 we also have

ki
x = (β1 − jα1) sin θi .

The term ki
z is written in a somewhat different form in order to make the result easily

applicable to reflections from multiple interfaces. We write

ki
z = (β1 − jα1) cos θi = τ i e− jγ i = τ i cos γ i − jτ i sin γ i .

Thus,

τ i =
√

β2
1 + α2

1 cos θi , γ i = tan−1(α1/β1).

We solve for the fields in each region of space directly in the frequency domain. The
incident electric field has the form of (4.216),

Ẽi (r, ω) = Ẽi
0(ω)e− jki (ω)·r, (4.268)

while the magnetic field is found from (4.219) to be

H̃i = ki × Ẽi

ωµ̃1
. (4.269)

The incident field may be decomposed into two orthogonal components, one parallel
to the plane of incidence (the plane containing k̂ and the interface normal ẑ) and one
perpendicular to this plane. We seek unique solutions for the fields in both regions, first
for the case in which the incident electric field has only a parallel component, and then
for the case in which it has only a perpendicular component. The total field is then
determined by superposition of the individual solutions. For perpendicular polarization
we have from (4.268) and (4.269)

Ẽi
⊥ = ŷẼ i

⊥e− j (ki
x x+ki

z z), (4.270)

H̃i
⊥ = −x̂ki

z + ẑki
x

k1

Ẽ i
⊥

η1
e− j (ki

x x+ki
z z), (4.271)



Figure 4.18: Uniform plane wave incident on planar interface between two lossy regions
of space. (a) TM polarization, (b) TE polarization.

as shown graphically in Figure 4.18. Here η1 = (µ̃1/ε̃
c
1)

1/2 is the intrinsic impedance of
medium 1. For parallel polarization, the direction of Ẽ is found by remembering that the
wave must be TEM. Thus Ẽ‖ is perpendicular to ki . Since Ẽ‖ must also be perpendicular
to Ẽ⊥, we have two possible directions for Ẽ‖. By convention we choose the one for which
H̃ lies in the same direction as did Ẽ for perpendicular polarization. Thus we have for
parallel polarization

H̃i
‖ = ŷ

Ẽ i
‖

η1
e− j (ki

x x+ki
z z), (4.272)

Ẽi
‖ = x̂ki

z − ẑki
x

k1
Ẽ i

‖e− j (ki
x x+ki

z z), (4.273)

as shown in Figure 4.18. Because Ẽ lies transverse (normal) to the plane of incidence
under perpendicular polarization, the field set is often described as transverse electric or
TE. Because H̃ lies transverse to the plane of incidence under parallel polarization, the
fields in that case are transverse magnetic or TM.

Uniqueness requires that the total field obey the boundary conditions at the planar
interface. We hypothesize that the total field within region 1 consists of the incident
field superposed with a “reflected” plane-wave field having wave vector kr , while the
field in region 2 consists of a single “transmitted” plane-wave field having wave vector
kt . We cannot at the outset make any assumption regarding whether either of these
fields are uniform plane waves. However, we do note that the reflected and transmitted
fields cannot have vector components not present in the incident field; extra components
would preclude satisfaction of the boundary conditions. Letting Ẽr be the amplitude of
the reflected plane-wave field we may write

Ẽr
⊥ = ŷẼr

⊥e− j (kr
x x+kr

z z), H̃r
⊥ = −x̂kr

z + ẑkr
x

k1

Ẽr
⊥

η1
e− j (kr

x x+kr
z z),



H̃r
‖ = ŷ

Ẽr
‖

η1
e− j (kr

x x+kr
z z), Ẽr

‖ = x̂kr
z − ẑkr

x

k1
Ẽr

‖e− j (kr
x x+kr

z z),

where (kr
x )

2 + (kr
z )

2 = k2
1 . Similarly, letting Ẽ t be the amplitude of the transmitted field

we have

Ẽt
⊥ = ŷẼ t

⊥e− j (kt
x x+kt

z z), H̃t
⊥ = −x̂kt

z + ẑkt
x

k2

Ẽ t
⊥

η2
e− j (kt

x x+kt
z z),

H̃t
‖ = ŷ

Ẽ t
‖

η2
e− j (kt

x x+kt
z z), Ẽt

‖ = x̂kt
z − ẑkt

x

k2
Ẽ t

‖e− j (kt
x x+kt

z z),

where (kt
x )

2 + (kt
z)

2 = k2
2 .

The relationships between the field amplitudes Ẽ i , Ẽr , Ẽ t , and between the components
of the reflected and transmitted wave vectors kr and kt , can be found by applying the
boundary conditions. The tangential electric and magnetic fields are continuous across
the interface at z = 0:

ẑ × (Ẽi + Ẽr )|z=0 = ẑ × Ẽt |z=0,

ẑ × (H̃i + H̃r )|z=0 = ẑ × H̃t |z=0.

Substituting the field expressions, we find that for perpendicular polarization the two
boundary conditions require

Ẽ i
⊥e− jki

x x + Ẽr
⊥e− jkr

x x = Ẽ t
⊥e− jkt

x x , (4.274)
ki

z

k1

Ẽ i
⊥

η1
e− jki

x x + kr
z

k1

Ẽr
⊥

η1
e− jkr

x x = kt
z

k2

Ẽ t
⊥

η2
e− jkt

x x , (4.275)

while for parallel polarization they require

ki
z

k1
Ẽ i

‖e− jki
x x + kr

z

k1
Ẽr

‖e− jkr
x x = kt

z

k2
Ẽ t

‖e− jkt
x x , (4.276)

Ẽ i
‖

η1
e− jki

x x + Ẽr
‖

η1
e− jkr

x x = Ẽ t
‖

η2
e− jkt

x x . (4.277)

For the above to hold for all x we must have the exponential terms equal. This requires

ki
x = kr

x = kt
x , (4.278)

and also establishes a relation between ki
z , kr

z , and kt
z . Since (ki

x )
2 + (ki

z)
2 = (kr

x )
2 + (kr

z )
2 =

k2
1 , we must have kr

z = ±ki
z . In order to make the reflected wavefronts propagate away

from the interface we select kr
z = −ki

z . Letting ki
x = kr

x = kt
x = k1x and ki

z = −kr
z = k1z ,

we may write the wave vectors in region 1 as

ki = x̂k1x + ẑk1z, kr = x̂k1x − ẑk1z .

Since (kt
x )

2 + (kt
z)

2 = k2
2 , letting k2 = β2 − jα2 we have

kt
z =

√
k2

2 − k2
1x =

√
(β2 − jα2)2 − (β1 − jα1)2 sin2 θi = τ t e− jγ t

.

Squaring out the above relation, we have

A − j B = (τ t )2 cos 2γ t − j (τ t )2 sin 2γ t



where

A = β2
2 − α2

2 − (β2
1 − α2

1) sin2 θi , B = 2(β2α2 − β1α1 sin2 θi ). (4.279)

Thus

τ t = (
A2 + B2

)1/4
, γ t = 1

2
tan−1 B

A
. (4.280)

Renaming kt
z as k2z , we may write the transmitted wave vector as

kt = x̂k1x + ẑk2z = k′
2 + jk′′

2

where

k′
2 = x̂β1 sin θi + ẑτ t cos γ t , k′′

2 = −x̂α1 sin θi − ẑτ t sin γ t .

Since the direction of propagation of the transmitted field phase fronts is perpendicular
to k′

2, a unit vector in the direction of propagation is

k̂′
2 = x̂β1 sin θi + ẑτ t cos γ t√

β2
1 sin2 θi + (τ t )2 cos2 θi

. (4.281)

Similarly, a unit vector perpendicular to planar surfaces of constant amplitude is given
by

k̂′′
2 = x̂α1 sin θi + ẑτ t sin γ t√

α2
1 sin2 θi + (τ t )2 sin2 γ t

. (4.282)

In general k̂′ is not aligned with k̂′′ and thus the transmitted field is a nonuniform plane
wave.

With these definitions of k1x , k1z, k2z , equations (4.274) and (4.275) can be solved si-
multaneously and we have

Ẽr
⊥ = �̃⊥ Ẽ i

⊥, Ẽ t
⊥ = T̃⊥ Ẽ i

⊥,

where

�̃⊥ = Z2⊥ − Z1⊥
Z2⊥ + Z1⊥

, T̃⊥ = 1 + �̃⊥ = 2Z2⊥
Z2⊥ + Z1⊥

, (4.283)

with

Z1⊥ = k1η1

k1z
, Z2⊥ = k2η2

k2z
.

Here �̃ is a frequency-dependent reflection coefficient that relates the tangential compo-
nents of the incident and reflected electric fields, and T̃ is a frequency-dependent trans-
mission coefficient that relates the tangential components of the incident and transmitted
electric fields. These coefficients are also called the Fresnel coefficients.

For the case of parallel polarization we solve (4.276) and (4.277) to find

Ẽr
‖,x

Ẽ i
‖,x

= kr
x

ki
x

Ẽr
‖

Ẽ i
‖

= − Ẽr
‖

Ẽ i
‖

= �̃‖,
Ẽ t

‖,x
Ẽ i

‖,x
= (kt

z/k2)Ẽ t
‖

(ki
z/k1)Ẽ i

‖
= T̃‖.

Here

�̃‖ = Z2‖ − Z1‖
Z2‖ + Z1‖

, T̃‖ = 1 + �̃‖ = 2Z2‖
Z2‖ + Z1‖

, (4.284)



with

Z1‖ = k1zη1

k1
, Z2‖ = k2zη2

k2
.

Note that we may also write

Ẽr
‖ = −�̃‖ Ẽ i

‖, Ẽ t
‖ = T̃‖ Ẽ i

‖

(
ki

z

k1

k2

kt
z

)
.

Let us summarize the fields in each region. For perpendicular polarization we have

Ẽi
⊥ = ŷẼ i

⊥e− jki ·r,
Ẽr

⊥ = ŷ�̃⊥ Ẽ i
⊥e− jkr ·r, (4.285)

Ẽt
⊥ = ŷT̃⊥ Ẽ i

⊥e− jkt ·r,

and

H̃i
⊥ = ki × Ẽi

⊥
k1η1

, H̃r
⊥ = kr × Ẽr

⊥
k1η1

, H̃t
⊥ = kt × Ẽt

⊥
k2η2

. (4.286)

For parallel polarization we have

Ẽi
‖ = −η1

ki × H̃i
‖

k1
e− jki ·r,

Ẽr
‖ = −η1

kr × H̃r
‖

k1
e− jkr ·r,

Ẽt
‖ = −η2

kt × H̃t
‖

k2
e− jkt ·r, (4.287)

and

H̃i
‖ = ŷ

Ẽ i
‖

η1
e− jki ·r,

H̃r
‖ = −ŷ

�̃‖ Ẽ i
‖

η1
e− jkr ·r,

H̃t
‖ = ŷ

T̃‖ Ẽ i
‖

η2

(
ki

z

k1

k2

kt
z

)
e− jkt ·r. (4.288)

The wave vectors are given by

ki = (x̂β1 sin θi + ẑτ i cos γ i ) − j (x̂α1 sin θi + ẑτ i sin γ i ), (4.289)
kr = (x̂β1 sin θi − ẑτ i cos γ i ) − j (x̂α1 sin θi − ẑτ i sin γ i ), (4.290)
kt = (x̂β1 sin θi + ẑτ t cos γ t ) − j (x̂α1 sin θi + ẑτ t sin γ t ). (4.291)

We see that the reflected wave must, like the incident wave, be a uniform plane wave.
We define the unsigned reflection angle θr as the angle between the surface normal and
the direction of propagation of the reflected wavefronts (Figure 4.18). Since

ki · ẑ = k1 cos θi = −kr · ẑ = k1 cos θr

and

ki · x̂ = k1 sin θi = kr · x̂ = k1 sin θr



we must have

θi = θr .

This is known as Snell’s law of reflection. We can similarly define the transmission angle
to be the angle between the direction of propagation of the transmitted wavefronts and
the interface normal. Noting that k̂′

2 · ẑ = cos θt and k̂′
2 · x̂ = sin θt , we have from (4.281)

and (4.282)

cos θt = τ t cos γ t√
β2

1 sin2 θi + (τ t )2 cos2 γ t
, (4.292)

sin θt = β1 sin θi√
β2

1 sin2 θi + (τ t )2 cos2 γ t
, (4.293)

and thus

θt = tan−1

(
β1

τ t

sin θi

cos γ t

)
. (4.294)

Depending on the properties of the media, at a certain incidence angle θc, called the
critical angle, the angle of transmission becomes π/2. Under this condition k̂′

2 has only
an x-component. Thus, surfaces of constant phase propagate parallel to the interface.
Later we shall see that for low-loss (or lossless) media, this implies that no time-average
power is carried by a monochromatic transmitted wave into the second medium.

We also see that although the transmitted field may be a nonuniform plane wave, its
mathematical form is that of the incident plane wave. This allows us to easily generalize
the single-interface reflection problem to one involving many layers.

Uniform plane-wave reflection for lossless media. We can specialize the preceding
results to the case for which both regions are lossless with µ̃ = µ and ε̃c = ε real and
frequency-independent. By (4.224) we have

β = ω
√

µε,

while (4.225) gives

α = 0.

We can easily show that the transmitted wave must be uniform unless the incidence angle
exceeds the critical angle. By (4.279) we have

A = β2
2 − β2

1 sin2 θi , B = 0, (4.295)

while (4.280) gives

τ = [
A2

]1/4 =
√

|β2
2 − β2

1 sin2 θi |
and

γ t = 1

2
tan−1(0).

We have several possible choices for γ t . To choose properly we note that γ t represents
the negative of the phase of the quantity kt

z = √
A. If A > 0 the phase of the square root

is 0. If A < 0 the phase of the square root is −π/2 and thus γ t = +π/2. Here we choose
the plus sign on γ t to ensure that the transmitted field decays as z increases. We note



that if A = 0 then τ t = 0 and from (4.293) we have θt = π/2. This defines the critical
angle, which from (4.295) is

θc = sin−1

(
β2

2

β2
1

)
= sin−1

(
µ2ε2

µ1ε1

)
.

Therefore

γ t =
{

0, θi < θc,

π/2, θi > θc.

Using these we can write down the transmitted wave vector from (4.291):

kt = kt ′ + jkt ′′ =
{

x̂β1 sin θi + ẑ
√|A|, θi < θc,

x̂β1 sin θi − j ẑ
√|A|, θi > θc.

(4.296)

By (4.293) we have

sin θt = β1 sin θi√
β2

1 sin2 θi + β2
2 − β2

1 sin2 θi

= β1 sin θi

β2

or

β2 sin θt = β1 sin θi . (4.297)

This is known as Snell’s law of refraction. With this we can write for θi < θc

A = β2
2 − β2

1 sin2 θi = β2
2 cos2 θt .

Using this and substituting β2 sin θt for β1 sin θi , we may rewrite (4.296) for θi < θc as

kt = kt ′ + jkt ′′ = x̂β2 sin θt + ẑβ2 cos θt . (4.298)

Hence the transmitted plane wave is uniform with kt ′′ = 0. When θi > θc we have from
(4.296)

kt ′ = x̂β1 sin θi , kt ′′ = −ẑ
√

β2
1 sin2 θi − β2

2 .

Since kt ′ and kt ′′ are not collinear, the plane wave is nonuniform. Let us examine the
cases θi < θc and θi > θc in greater detail.

Case 1: θi < θc. By (4.289)–(4.290) and (4.298) the wave vectors are

ki = x̂β1 sin θi + ẑβ1 cos θi ,

kr = x̂β1 sin θi − ẑβ1 cos θi ,

kt = x̂β2 sin θt + ẑβ2 cos θt ,

and the wave impedances are

Z1⊥ = η1

cos θi
, Z2⊥ = η2

cos θt
,

Z1‖ = η1 cos θi , Z2‖ = η2 cos θt .

The reflection coefficients are

�̃⊥ = η2 cos θi − η1 cos θt

η2 cos θi + η1 cos θt
, �̃‖ = η2 cos θt − η1 cos θi

η2 cos θt + η1 cos θi
. (4.299)



So the reflection coefficients are purely real, with signs dependent on the constitutive
parameters of the media. We can write

�̃⊥ = ρ⊥e jφ⊥ , �̃‖ = ρ‖e jφ‖ ,

where ρ and φ are real, and where φ = 0 or π .
Under certain conditions the reflection coefficients vanish. For a given set of constitu-

tive parameters we may achieve �̃ = 0 at an incidence angle θB , known as the Brewster
or polarizing angle. A wave with an arbitrary combination of perpendicular and paral-
lel polarized components incident at this angle produces a reflected field with a single
component. A wave incident with only the appropriate single component produces no
reflected field, regardless of its amplitude.

For perpendicular polarization we set �̃⊥ = 0, requiring

η2 cos θi − η1 cos θt = 0

or equivalently

µ2

ε2
(1 − sin2 θi ) = µ1

ε1
(1 − sin2 θt ).

By (4.297) we may put

sin2 θt = µ1ε1

µ2ε2
sin2 θi ,

resulting in

sin2 θi = µ2

ε1

ε2µ1 − ε1µ2

µ2
1 − µ2

2

.

The value of θi that satisfies this equation must be the Brewster angle, and thus

θB⊥ = sin−1

√
µ2

ε1

ε2µ1 − ε1µ2

µ2
1 − µ2

2

.

When µ1 = µ2 there is no solution to this equation, hence the reflection coefficient cannot
vanish. When ε1 = ε2 we have

θB⊥ = sin−1
√

µ2

µ1 + µ2
= tan−1

√
µ2

µ1
.

For parallel polarization we set �̃‖ = 0 and have

η2 cos θt = η1 cos θi .

Proceeding as above we find that

θB‖ = sin−1

√
ε2

µ1

ε1µ2 − ε2µ1

ε2
1 − ε2

2

.

This expression has no solution when ε1 = ε2, and thus the reflection coefficient cannot
vanish under this condition. When µ1 = µ2 we have

θB‖ = sin−1

√
ε2

ε1 + ε2
= tan−1

√
ε2

ε1
.



We find that when θi < θc the total field in region 1 behaves as a traveling wave
along x , but has characteristics of both a standing wave and a traveling wave along z
(Problem �4.7). The traveling-wave component is associated with a Poynting power flux,
while the standing-wave component is not. This flux is carried across the boundary
into region 2 where the transmitted field consists only of a traveling wave. By (4.161)
the normal component of time-average Poynting flux is continuous across the boundary,
demonstrating that the time-average power carried by the wave into the interface from
region 1 passes out through the interface into region 2 (Problem �4.8).

Case 2: θi < θc. The wave vectors are, from (4.289)–(4.290) and (4.296),

ki = x̂β1 sin θi + ẑβ1 cos θi ,

kr = x̂β1 sin θi − ẑβ1 cos θi ,

kt = x̂β1 sin θi − j ẑαc,

where

αc =
√

β2
1 sin2 θi − β2

2

is the critical angle attenuation constant. The wave impedances are

Z1⊥ = η1

cos θi
, Z2⊥ = j

β2η2

αc
,

Z1‖ = η1 cos θi , Z2‖ = − j
αcη2

β2
.

Substituting these into (4.283) and (4.284), we find that the reflection coefficients are
the complex quantities

�̃⊥ = β2η2 cos θi + jη1αc

β2η2 cos θi − jη1αc
= e jφ⊥ ,

�̃‖ = −β2η1 cos θi + jη2αc

β2η1 cos θi − jη2αc
= e jφ‖ ,

where

φ⊥ = 2 tan−1

(
η1αc

β2η2 cos θi

)
, φ‖ = π + 2 tan−1

(
η2αc

β2η1 cos θi

)
.

We note with interest that ρ⊥ = ρ‖ = 1. So the amplitudes of the reflected waves
are identical to those of the incident waves, and we call this the case of total internal
reflection. The phase of the reflected wave at the interface is changed from that of the
incident wave by an amount φ⊥ or φ‖. The phase shift incurred by the reflected wave
upon total internal reflection is called the Goos–Hänchen shift.

In the case of total internal reflection the field in region 1 is a pure standing wave while
the field in region 2 decays exponentially in the z-direction and is evanescent (Problem
�4.9). Since a standing wave transports no power, there is no Poynting flux into region 2.
We find that the evanescent wave also carries no power and thus the boundary condition
on power flux at the interface is satisfied (Problem 4.10�). We note that for any incident
angle except θi = 0 (normal incidence) the wave in region 1 does transport power in the
x-direction.



Reflection of time-domain uniform plane waves. Solution for the fields reflected
and transmitted at an interface shows us the properties of the fields for a certain single
excitation frequency and allows us to obtain time-domain fields by Fourier inversion.
Under certain conditions it is possible to do the inversion analytically, providing physical
insight into the temporal behavior of the fields.

As a simple example, consider a perpendicularly-polarized, uniform plane wave incident
from free space at an angle θi on the planar surface of a conducting material (Figure 4.18).
The material is assumed to have frequency-independent constitutive parameters µ̃ = µ0,
ε̃ = ε, and σ̃ = σ . By (4.285) we have the reflected field

Ẽr
⊥(r, ω) = ŷ�̃⊥(ω)Ẽ i

⊥(ω)e− jkr (ω)·r = ŷẼr (ω)e− jω k̂r ·r
c (4.300)

where Ẽr = �̃⊥ Ẽ i
⊥. We can use the time-shifting theorem (A.3)to invert the transform

and obtain

Er
⊥(r, t) = F−1

{
Ẽr

⊥(r, ω)
} = ŷEr

(
t − k̂r · r

c

)
(4.301)

where we have by the convolution theorem (12)

Er (t) = F−1
{

Ẽr (ω)
} = �⊥(t) ∗ E⊥(t).

Here

E⊥(t) = F−1
{

Ẽ i
⊥(ω)

}
is the time waveform of the incident plane wave, while

�⊥(t) = F−1
{
�̃⊥(ω)

}
is the time-domain reflection coefficient.

By (4.301) the reflected time-domain field propagates along the direction k̂r at the
speed of light. The time waveform of the field is the convolution of the waveform of
the incident field with the time-domain reflection coefficient �⊥(t). In the lossless case
(σ = 0), �⊥(t) is a δ-function and thus the waveforms of the reflected and incident fields
are identical. With the introduction of loss �⊥(t) broadens and thus the reflected field
waveform becomes a convolution-broadened version of the incident field waveform. To
understand the waveform of the reflected field we must compute �⊥(t). Note that by
choosing the permittivity of region 2 to exceed that of region 1 we preclude total internal
reflection.

We can specialize the frequency-domain reflection coefficient (4.283) for our problem
by noting that

k1z = β1 cos θi , k2z =
√

k2
2 − k2

1x = ω
√

µ0

√
ε + σ

jω
− ε0 sin2 θi ,

and thus

Z1⊥ = η0

cos θi
, Z2⊥ = η0√

εr + σ
jωε0

− sin2 θi

,

where εr = ε/ε0 and η0 = √
µ0/ε0. We thus obtain

�̃⊥ =
√

s − √
Ds + B√

s + √
Ds + B

(4.302)



where s = jω and

D = εr − sin2 θi

cos2 θi
, B = σ

ε0 cos2 θi
.

We can put (4.302) into a better form for inversion. We begin by subtracting �⊥∞, the
high-frequency limit of �̃⊥. Noting that

lim
ω→∞ �̃⊥(ω) = �⊥∞ = 1 − √

D

1 + √
D

,

we can form

�̃0
⊥(ω) = �̃⊥(ω) − �⊥∞ =

√
s − √

Ds + B√
s + √

Ds + B
− 1 − √

D

1 + √
D

= 2

√
D

1 + √
D

[ √
s − √

s + B/D√
s + √

D
√

s + D/B

]
.

With a bit of algebra this becomes

�̃0
⊥(ω) = − 2

√
D

D − 1

(
s

s + B
D−1

) 
1 −

√
s + B

D

s


 − 2B(

1 + √
D

)
(D − 1)

(
1

s + B
D−1

)
.

Now we can apply (C.12), (C.18), and (C.19) to obtain

�0
⊥(t) = F−1

{
�̃0

⊥(ω)
} = f1(t) + f2(t) + f3(t) (4.303)

where

f1(t) = − 2B

(1 + √
D)(D − 1)

e− Bt
D−1 U (t),

f2(t) = − B2

√
D(D − 1)2

U (t)
∫ t

0
e− B(t−x)

D−1 I

(
Bx

2D

)
dx,

f3(t) = B√
D(D − 1)

I

(
Bt

2D

)
U (t).

Here

I (x) = e−x [I0(x) + I1(x)]

where I0(x) and I1(x) are modified Bessel functions of the first kind. Setting u = Bx/2D
we can also write

f2(t) = − 2B
√

D

(D − 1)2
U (t)

∫ Bt
2D

0
e− Bt−2Du

D−1 I (u) du.

Polynomial approximations for I (x) may be found in Abramowitz and Stegun [?], making
the computation of �0

⊥(t) straightforward.
The complete time-domain reflection coefficient is

�⊥(t) = 1 − √
D

1 + √
D

δ(t) + �0
⊥(t).
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Figure 4.19: Time-domain reflection coefficients.

If σ = 0 then �0
⊥(t) = 0 and the reflection coefficient reduces to a single δ-function. Since

convolution with this term does not alter wave shape, the reflected field has the same
waveform as the incident field.

A plot of �0
⊥(t) for normal incidence (θi = 00) is shown in Figure 4.19. Here two

material cases are displayed: εr = 3, σ = 0.01 S/m, which is representative of dry water
ice, and εr = 80, σ = 4 S/m, which is representative of sea water. We see that a pulse
waveform experiences more temporal spreading upon reflection from ice than from sea
water, but that the amplitude of the dispersive component is less than that for sea water.

Reflection of a nonuniform plane wave from a planar interface. Describing the
interaction of a general nonuniform plane wave with a planar interface is problematic
because of the non-TEM behavior of the incident wave. We cannot decompose the fields
into two mutually orthogonal cases as we did with uniform waves, and thus the analysis
is more difficult. However, we found in the last section that when a uniform wave is
incident on a planar interface, the transmitted wave, even if nonuniform in nature, takes
on the same mathematical form and may be decomposed in the same manner as the
incident wave. Thus, we may study the case in which this refracted wave is incident on
a successive interface using exactly the same analysis as with a uniform incident wave.
This is helpful in the case of multi-layered media, which we shall examine next.

Interaction of a plane wave with multi-layered, planar materials. Consider
N + 1 regions of space separated by N planar interfaces as shown in Figure 4.20, and
assume that a uniform plane wave is incident on the first interface at angle θi . Each region
is assumed isotropic and homogeneous with a frequency-dependent complex permittivity
and permeability. We can easily generalize the previous analysis regarding reflection
from a single interface by realizing that in order to satisfy the boundary conditions each



Figure 4.20: Interaction of a uniform plane wave with a multi-layered material.

region, except region N , contains an incident-type wave of the form

Ẽi (r, ω) = Ẽi
0e− jki ·r

and a reflected-type wave of the form

Ẽr (r, ω) = Ẽr
0e− jkr ·r.

In region n we may write the wave vectors describing these waves as

ki
n = x̂kx,n + ẑkz,n, kr

n = x̂kx,n − ẑkz,n,

where

k2
x,n + k2

z,n = k2
n, k2

n = ω2µ̃n ε̃
c
n = (βn − jαn)

2.

We note at the outset that, as with the single interface case, the boundary conditions
are only satisfied when Snell’s law of reflection holds, and thus

kx,n = kx,0 = k0 sin θi (4.304)

where k0 = ω(µ̃0ε̃
c
0)

1/2 is the wavenumber of the 0th region (not necessarily free space).
From this condition we have

kz,n =
√

k2
n − k2

x,0 = τne− jγn

where

τn = (A2
n + B2

n )1/4, γn = 1

2
tan−1

(
Bn

An

)
,

and

An = β2
n − α2

n − (β2
0 − α2

0) sin2 θi , Bn = 2(βnαn − β0α0 sin2 θi ).

Provided that the incident wave is uniform, we can decompose the fields in every region
into cases of perpendicular and parallel polarization. This is true even when the waves



in certain layers are nonuniform. For the case of perpendicular polarization we can write
the electric field in region n, 0 ≤ n ≤ N − 1, as Ẽ⊥n = Ẽi

⊥n + Ẽr
⊥n where

Ẽi
⊥n = ŷan+1e− jkx,n x e− jkz,n(z−zn+1),

Ẽr
⊥n = ŷbn+1e− jkx,n x e+ jkz,n(z−zn+1),

and the magnetic field as H̃⊥n = H̃i
⊥n + Hr

⊥n where

H̃i
⊥n = −x̂kz,n + ẑkx,n

knηn
an+1e− jkx,n x e− jkz,n(z−zn+1),

H̃r
⊥n = +x̂kz,n + ẑkx,n

knηn
bn+1e− jkx,n x e+ jkz,n(z−zn+1).

When n = N there is no reflected wave; in this region we write

Ẽ⊥N = ŷaN+1e− jkx,N x e− jkz,N (z−zN ),

H̃⊥N = −x̂kz,N + ẑkx,N

kN ηN
aN+1e− jkx,N x e− jkz,N (z−zN ).

Since a1 is the known amplitude of the incident wave, there are 2N unknown wave am-
plitudes. We obtain the necessary 2N simultaneous equations by applying the boundary
conditions at each of the interfaces. At interface n located at z = zn, 1 ≤ n ≤ N − 1, we
have from the continuity of tangential electric field

an + bn = an+1e− jkz,n(zn−zn+1) + bn+1e+ jkz,n(zn−zn+1)

while from the continuity of magnetic field

−an
kz,n−1

kn−1ηn−1
+ bn

kz,n−1

kn−1ηn−1
= −an+1

kz,n

knηn
e− jkz,n(zn−zn+1) + bn+1

kz,n

knηn
e+ jkz,n(zn−zn+1).

Noting that the wave impedance of region n is

Z⊥n = knηn

kz,n

and defining the region n propagation factor as

P̃n = e− jkz,n�n

where �n = zn+1 − zn, we can write

an P̃n + bn P̃n = an+1 + bn+1 P̃2
n , (4.305)

−an P̃n + bn P̃n = −an+1
Z⊥n−1

Z⊥n
+ bn+1

Z⊥n−1

Z⊥n
P̃2

n . (4.306)

We must still apply the boundary conditions at z = zN . Proceeding as above, we find
that (4.305) and (4.306) hold for n = N if we set bN+1 = 0 and P̃N = 1.

The 2N simultaneous equations (4.305)–(4.306) may be solved using standard matrix
methods. However, through a little manipulation we can put the equations into a form
easily solved by recursion, providing a very nice physical picture of the multiple reflections
that occur within the layered medium. We begin by eliminating bn by subtracting (4.306)
from (4.305):

2an P̃n = an+1

[
1 + Z⊥n−1

Z⊥n

]
+ bn+1 P̃2

n

[
1 − Z⊥n−1

Z⊥n

]
. (4.307)



Figure 4.21: Wave flow diagram showing interaction of incident and reflected waves for
region n.

Defining

�̃n = Z⊥n − Z⊥n−1

Z⊥n + Z⊥n−1
(4.308)

as the interfacial reflection coefficient for interface n (i.e., the reflection coefficient as-
suming a single interface as in (4.283)), and

T̃n = 2Z⊥n

Z⊥n + Z⊥n−1
= 1 + �̃n

as the interfacial transmission coefficient for interface n, we can write (4.307) as

an+1 = anT̃n P̃n + bn+1 P̃n(−�̃n)P̃n.

Finally, if we define the global reflection coefficient Rn for region n as the ratio of the
amplitudes of the reflected and incident waves,

R̃n = bn/an,

we can write

an+1 = anT̃n P̃n + an+1 R̃n+1 P̃n(−�̃n)P̃n. (4.309)

For n = N we merely set RN+1 = 0 to find

aN+1 = aN T̃N P̃N . (4.310)

If we choose to eliminate an+1 from (4.305) and (4.306) we find that

bn = an�̃n + R̃n+1 P̃n(1 − �̃n)an+1. (4.311)

For n = N this reduces to

bN = aN �̃N . (4.312)

Equations (4.309) and (4.311) have nice physical interpretations. Consider Figure 4.21,
which shows the wave amplitudes for region n. We may think of the wave incident on



interface n + 1 with amplitude an+1 as consisting of two terms. The first term is the
wave transmitted through interface n (at z = zn). This wave must propagate through a
distance �n to reach interface n + 1 and thus has an amplitude anT̃n P̃n. The second term
is the reflection at interface n of the wave traveling in the −z direction within region n.
The amplitude of the wave before reflection is merely bn+1 P̃n, where the term P̃n results
from the propagation of the negatively-traveling wave from interface n + 1 to interface
n. Now, since the interfacial reflection coefficient at interface n for a wave incident from
region n is the negative of that for a wave incident from region n − 1 (since the wave
is traveling in the reverse direction), and since the reflected wave must travel through a
distance �n from interface n back to interface n + 1, the amplitude of the second term is
bn+1 P̃n(−�n)P̃n. Finally, remembering that bn+1 = R̃n+1an+1, we can write

an+1 = anT̃n P̃n + an+1 R̃n+1 P̃n(−�̃n)P̃n.

This equation is exactly the same as (4.309) which was found using the boundary con-
ditions. By similar reasoning, we may say that the wave traveling in the −z direction
in region n − 1 consists of a term reflected from the interface and a term transmitted
through the interface. The amplitude of the reflected term is merely an�̃n. The amplitude
of the transmitted term is found by considering bn+1 = R̃n+1an+1 propagated through a
distance �n and then transmitted backwards through interface n. Since the transmission
coefficient for a wave going from region n to region n − 1 is 1 + (−�̃n), the amplitude of
the transmitted term is R̃n+1 P̃n(1 − �̃n)an+1. Thus we have

bn = �̃nan + R̃n+1 P̃n(1 − �̃n)an+1,

which is identical to (4.311).
We are still left with the task of solving for the various field amplitudes. This can be

done using a simple recursive technique. Using T̃n = 1 + �̃n we find from (4.309) that

an+1 = (1 + �̃n)P̃n

1 + �̃n R̃n+1 P̃2
n

an. (4.313)

Substituting this into (4.311) we find

bn = �̃n + R̃n+1 P̃2
n

1 + �̃n R̃n+1 P̃2
n

an. (4.314)

Using this expression we find a recursive relationship for the global reflection coefficient:

R̃n = bn

an
= �̃n + R̃n+1 P̃2

n

1 + �̃n R̃n+1 P̃2
n

. (4.315)

The procedure is now as follows. The global reflection coefficient for interface N is, from
(4.312),

R̃N = bN /aN = �̃N . (4.316)

This is also obtained from (4.315) with R̃N+1 = 0. We next use (4.315) to find R̃N−1:

R̃N−1 = �̃N−1 + R̃N P̃2
N−1

1 + �̃N−1 R̃N P̃2
N−1

.



This process is repeated until reaching R̃1, whereupon all of the global reflection coeffi-
cients are known. We then find the amplitudes beginning with a1, which is the known
incident field amplitude. From (4.315) we find b1 = a1 R̃1, and from (4.313) we find

a2 = (1 + �̃1)P̃1

1 + �̃1 R̃2 P̃2
1

a1.

This process is repeated until all field amplitudes are known.
We note that the process outlined above holds equally well for parallel polarization as

long as we use the parallel wave impedances

Z‖n = kz,nηn

kn

when computing the interfacial reflection coefficients. See Problem ??.
As a simple example, consider a slab of material of thickness � sandwiched between

two lossless dielectrics. A time-harmonic uniform plane wave of frequency ω = ω̌ is
normally incident onto interface 1, and we wish to compute the amplitude of the wave
reflected by interface 1 and determine the conditions under which the reflected wave
vanishes. In this case we have N = 2, with two interfaces and three regions. By (4.316)
we have R2 = �2, where R2 = R̃2(ω̌), �2 = �̃2(ω̌), etc. Then by (4.315) we find

R1 = �1 + R2 P2
1

1 + �1 R2 P2
1

= �1 + �2 P2
1

1 + �1�2 P2
1

.

Hence the reflected wave vanishes when

�1 + �2 P2
1 = 0.

Since the field in region 0 is normally incident we have

kz,n = kn = βn = ω̌
√

µnεn.

If we choose P2
1 = −1, then �1 = �2 results in no reflected wave. This requires

Z1 − Z0

Z1 + Z0
= Z2 − Z1

Z2 + Z1
.

Clearing the denominator we find that 2Z2
1 = 2Z0 Z2 or

Z1 =
√

Z0 Z2.

This condition makes the reflected field vanish if we can ensure that P2
1 = −1. To do

this we need

e− jβ12� = −1.

The minimum thickness that satisfies this condition is β12� = π . Since β = 2π/λ, this
is equivalent to

� = λ/4.

A layer of this type is called a quarter-wave transformer. Since no wave is reflected from
the initial interface, and since all the regions are assumed lossless, all of the power carried
by the incident wave in the first region is transferred into the third region. Thus, two
regions of differing materials may be “matched” by inserting an appropriate slab between



Figure 4.22: Interaction of a uniform plane wave with a conductor-backed dielectric slab.

them. This technique finds use in optical coatings for lenses and for reducing the radar
reflectivity of objects.

As a second example, consider a lossless dielectric slab with ε̃ = ε1 = ε1rε0, and µ̃ = µ0,
backed by a perfect conductor and immersed in free space as shown in Figure 4.22. A
perpendicularly polarized uniform plane wave is incident on the slab from free space
and we wish to find the temporal response of the reflected wave by first calculating the
frequency-domain reflected field. Since ε0 < ε1, total internal reflection cannot occur.
Thus the wave vectors in region 1 have real components and can be written as

ki
1 = kx,1x̂ + kz,1ẑ, kr

1 = kx,1x̂ − kz,1ẑ.

From Snell’s law of refraction we know that

kx,1 = k0 sin θi = k1 sin θt

and so

kz,1 =
√

k2
1 − k2

x,1 = ω

c

√
ε1r − sin2 θi = k1 cos θt

where θt is the transmission angle in region 1. Since region 2 is a perfect conductor we
have R̃2 = −1. By (4.315) we have

R̃1(ω) = �1 − P̃2
1 (ω)

1 − �1 P̃2
1 (ω)

, (4.317)

where from (4.308)

�1 = Z1 − Z0

Z1 + Z0

is not a function of frequency. By the approach we used to obtain (4.300) we write

Ẽr
⊥(r, ω) = ŷR̃1(ω)Ẽ i

⊥(ω)e− jkr
1(ω)·r.

So

Er
⊥(r, t) = ŷEr

(
t − k̂r

1 · r
c

)



where by the convolution theorem

Er (t) = R1(t) ∗ Ei
⊥(t). (4.318)

Here

Ei
⊥(t) = F−1

{
Ẽ i

⊥(ω)
}

is the time waveform of the incident plane wave, while

R1(t) = F−1
{

R̃1(ω)
}

is the global time-domain reflection coefficient.
To invert R̃1(ω), we use the binomial expansion (1 − x)−1 = 1 + x + x2 + x3 + · · · on

the denominator of (4.317), giving

R̃1(ω) = [�1 − P̃2
1 (ω)]

{
1 + [�1 P̃2

1 (ω)] + [�1 P̃2
1 (ω)]2 + [�1 P̃2

1 (ω)]3 + . . .
}

= �1 − [1 − �2
1]P̃2

1 (ω) − [1 − �2
1]�1 P̃4

1 (ω) − [1 − �2
1]�2

1 P̃6
1 (ω) − · · · . (4.319)

Thus we need the inverse transform of

P̃2n
1 (ω) = e− j2nkz,1�1 = e− j2nk1�1 cos θt .

Writing k1 = ω/v1, where v1 = 1/(µ0ε1)
1/2 is the phase velocity of the wave in region 1,

and using 1 ↔ δ(t) along with the time-shifting theorem (A.3) we have

P̃2n
1 (ω) = e− jω2nτ ↔ δ(t − 2nτ)

where τ = �1 cos θt/v1. With this the inverse transform of R̃1 in (4.319) is

R1(t) = �1δ(t) − (1 + �1)(1 − �1)δ(t − 2τ) − (1 + �1)(1 − �1)�1δ(t − 4τ) − · · ·

and thus from (4.318)

Er (t) = �1 Ei
⊥(t) − (1 + �1)(1 − �1)Ei

⊥(t − 2τ) − (1 + �1)(1 − �1)�1 Ei
⊥(t − 4τ) − · · · .

The reflected field consists of time-shifted and amplitude-scaled versions of the incident
field waveform. These terms can be interpreted as multiple reflections of the incident
wave. Consider Figure 4.23. The first term is the direct reflection from interface 1 and
thus has its amplitude multiplied by �1. The next term represents a wave that pene-
trates the interface (and thus has its amplitude multiplied by the transmission coefficient
1 + �1), propagates to and reflects from the conductor (and thus has its amplitude mul-
tiplied by −1), and then propagates back to the interface and passes through in the
opposite direction (and thus has its amplitude multiplied by the transmission coefficient
for passage from region 1 to region 0, 1 − �1). The time delay between this wave and
the initially-reflected wave is given by 2τ , as discussed in detail below. The third term
represents a wave that penetrates the interface, reflects from the conductor, returns to
and reflects from the interface a second time, again reflects from the conductor, and
then passes through the interface in the opposite direction. Its amplitude has an ad-
ditional multiplicative factor of −�1 to account for reflection from the interface and an
additional factor of −1 to account for the second reflection from the conductor, and is
time-delayed by an additional 2τ . Subsequent terms account for additional reflections;



Figure 4.23: Timing diagram for multiple reflections from a conductor-backed dielectric
slab.

the nth reflected wave amplitude is multiplied by an additional (−1)n and (−�1)
n and is

time-delayed by an additional 2nτ .
It is important to understand that the time delay 2τ is not just the propagation time

for the wave to travel through the slab. To properly describe the timing between the
initially-reflected wave and the waves that reflect from the conductor we must consider
the field over identical observation planes as shown in Figure 4.23. For example, consider
the observation plane designated P-P intersecting the first “exit point” on interface 1.
To arrive at this plane the initially-reflected wave takes the path labeled B, arriving at
a time

D sin θi

v0

after the time of initial reflection, where v0 = c is the velocity in region 0. To arrive at
this same plane the wave that penetrates the surface takes the path labeled A, arriving
at a time

2�1

v1 cos θt

where v1 is the wave velocity in region 1 and θt is the transmission angle. Noting that
D = 2�1 tan θt , the time delay between the arrival of the two waves at the plane P-P is

T = 2�1

v1 cos θt
− D sin θi

v0
= 2�1

v1 cos θt

[
1 − sin θt sin θi

v0/v1

]
.

By Snell’s law of refraction (4.297) we can write

v0

v1
= sin θi

sin θt
,

which, upon substitution, gives

T = 2
�1 cos θt

v1
.

This is exactly the time delay 2τ .



4.11.6 Plane-wave propagation in an anisotropic ferrite medium

Several interesting properties of plane waves, such as Faraday rotation and the exis-
tence of stopbands, appear only when the waves propagate through anisotropic media.
We shall study the behavior of waves propagating in a magnetized ferrite medium, and
note that this behavior is shared by waves propagating in a magnetized plasma, because
of the similarity in the dyadic constitutive parameters of the two media.

Consider a uniform ferrite material having scalar permittivity ε̃ = ε and dyadic per-
meability ˜̄µ. We assume that the ferrite is lossless and magnetized along the z-direction.
By (4.115)– (4.117) the permeability of the medium is

[ ˜̄µ(ω)] =

 µ1 jµ2 0

− jµ2 µ1 0
0 0 µ0




where

µ1 = µ0

[
1 + ωMω0

ω2
0 − ω2

]
, µ2 = µ0

ωωM

ω2
0 − ω2

.

The source-free frequency-domain wave equation can be found using (4.201) with ˜̄ζ =
˜̄ξ = 0 and ˜̄ε = εĪ: [

∇̄ ·
(

Ī
1

ε

)
· ∇̄ − ω2 ˜̄µ

]
· H̃ = 0

or, since ∇̄ · A = ∇ × A,

1

ε
∇ × (∇ × H̃

) − ω2 ˜̄µ · H̃ = 0. (4.320)

The simplest solutions to the wave equation for this anisotropic medium are TEM
plane waves that propagate along the applied dc magnetic field. We thus seek solutions
of the form

H̃(r, ω) = H̃0(ω)e− jk·r (4.321)

where k = ẑβ and ẑ · H̃0 = 0. We can find β by enforcing (4.320). From (B.7) we find
that

∇ × H̃ = − jβ ẑ × H̃0e− jβz .

By Ampere’s law we have

Ẽ = ∇ × H̃
jωε

= −ZT E M ẑ × H̃, (4.322)

where

ZT E M = β/ωε

is the wave impedance. Note that the wave is indeed TEM. The second curl is found to
be

∇ × (∇ × H̃
) = − jβ∇ × [

ẑ × H̃0e− jβz
]
.

After an application of (B.43) this becomes

∇ × (∇ × H̃
) = − jβ

[
e− jβz∇ × (ẑ × H̃0) − (ẑ × H̃0) × ∇e− jβz

]
.



The first term on the right-hand side is zero, and thus using (B.76) we have

∇ × (∇ × H̃
) = [− jβe− jβz ẑ × (ẑ × H̃0)

]
(− jβ)

or, using (B.7),

∇ × (∇ × H̃
) = β2e− jβzH̃0

since ẑ · H̃0 = 0. With this (4.320) becomes

β2H̃0 = ω2ε ˜̄µ · H̃0. (4.323)

We can solve (4.323) for β by writing the vector equation in component form:

β2 H0x = ω2ε
[
µ1 H0x + jµ2 H0y

]
,

β2 H0y = ω2ε
[− jµ2 H0x + µ1 H0y

]
.

In matrix form these are[
β2 − ω2εµ1 − jω2εµ2

jω2εµ2 β2 − ω2εµ1

] [
H0x

H0y

]
=

[
0
0

]
, (4.324)

and nontrivial solutions occur only if
∣∣∣∣β

2 − ω2εµ1 − jω2εµ2

jω2εµ2 β2 − ω2εµ1

∣∣∣∣ = 0.

Expansion yields the two solutions

β± = ω
√

εµ± (4.325)

where

µ± = µ1 ± µ2 = µ0

[
1 + ωM

ω0 ∓ ω

]
. (4.326)

So the propagation properties of the plane wave are the same as those in a medium with
an equivalent scalar permeability given by µ±.

Associated with each of these solutions is a relationship between H0x and H0y that can
be found from (4.324). Substituting β+ into the first equation we have

ω2εµ2 H0x − jω2εµ2 H0y = 0

or H0x = j H0y . Similarly, substitution of β− produces H0x = − j H0y . Thus, by (4.321)
the magnetic field may be expressed as

H̃(r, ω) = H0y[± j x̂ + ŷ]e− jβ±z .

By (4.322) we also have the electric field

Ẽ(r, ω) = ZT E M H0y[x̂ + e∓ j π
2 ŷ]e− jβ±z .

This field has the form of (4.248). For β+ we have φy − φx = −π/2 and thus the wave
exhibits RHCP. For β− we have φy − φx = π/2 and the wave exhibits LHCP.
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Figure 4.24: Dispersion plot for unmagnetized ferrite with ωM = 2ω0. Light line shows
ω/β = vc = 1/(µ0ε)

1/2.

The dispersion diagram for each polarization case is shown in Figure 4.24, where we
have arbitrarily chosen ωM = 2ω0. Here we have combined (4.325) and (4.326) to produce
the normalized expression

β±
ω0/vc

= ω

ω0

√
1 + ωM/ω0

1 ∓ ω/ω0

where vc = 1/(µ0ε)
1/2. Except at low frequencies, an LHCP plane wave passes through

the ferrite as if the permeability is close to that of free space. Over all frequencies we
have vp < vc and vg < vc. In contrast, an RHCP wave excites the electrons in the ferrite
and a resonance occurs at ω = ω0. For all frequencies below ω0 we have vp < vc and
vg < vc and both vp and vg reduce to zero as ω → ω0. Because the ferrite is lossless,
frequencies between ω = ω0 and ω = ω0 + ωM result in β being purely imaginary and
thus the wave being evanescent. We thus call the frequency range ω0 < ω < ω0 + ωM

a stopband ; within this band the plane wave cannot transport energy. For frequencies
above ω0 + ωM the RHCP wave propagates as if it is in a medium with permeability less
than that of free space. Here we have vp > vc and vg < vc, with vp → vc and vg → vc as
ω → ∞.

Faraday rotation. The solutions to the wave equation found above do not allow the
existence of linearly polarized plane waves. However, by superposing LHCP and RHCP
waves we can obtain a wave with the appearance of linear polarization. That is, over
any z-plane the electric field vector may be written as Ẽ = K (Ex0x̂ + Ey0ŷ) where Ex0

and Ey0 are real (although K may be complex). To see this let us examine

Ẽ = Ẽ+ + Ẽ− = E0

2
[x̂ − j ŷ]e− jβ+z + E0

2
[x̂ + j ŷ]e− jβ−z



= E0

2

[
x̂

(
e− jβ+z + e− jβ−z

) + j ŷ
(−e− jβ+z + e− jβ−z

)]

= E0e− j 1
2 (β++β−)z

[
x̂ cos

1

2
(β+ − β−)z + ŷ sin

1

2
(β+ − β−)z

]

or

Ẽ = E0e− j 1
2 (β++β−)z [x̂ cos θ(z) + ŷ sin θ(z)]

where θ(z) = (β+ − β−)z/2. Because β+ �= β−, the velocities of the two circularly
polarized waves differ and the waves superpose to form a linearly polarized wave with a
polarization that depends on the observation plane z-value. We may think of the wave
as undergoing a phase shift of (β+ + β−)z/2 radians as it propagates, while the direction
of Ẽ rotates to an angle θ(z) = (β+ − β−)z/2 as the wave propagates. Faraday rotation
can only occur at frequencies where both the LHCP and RHCP waves propagate, and
therefore not within the stopband ω0 < ω < ω0 + ωM .

Faraday rotation is non-reciprocal. That is, if a wave that has undergone a rotation of
θ0 radians by propagating through a distance z0 is made to propagate an equal distance
back in the direction from whence it came, the polarization does not return to its initial
state but rather incurs an additional rotation of θ0. Thus, the polarization angle of the
wave when it returns to the starting point is not zero, but 2θ0. This effect is employed
in a number of microwave devices including gyrators, isolators, and circulators. The
interested reader should see Collin [40], Elliott [67], or Liao [111] for details. We note
that for ω � ωM we can approximate the rotation angle as

θ(z) = (β+ − β−)z/2 = 1

2
ωz

√
εµ0

[√
1 + ωM

ω0 − ω
−

√
1 + ωM

ω0 + ω

]
≈ −1

2
zωM

√
εµ0,

which is independent of frequency. So it is possible to construct Faraday rotation-based
ferrite devices that maintain their properties over wide bandwidths.

It is straightforward to extend the above analysis to the case of a lossy ferrite. We
find that for typical ferrites the attenuation constant associated with µ− is small for all
frequencies, but the attenuation constant associated with µ+ is large near the resonant
frequency (ω ≈ ω0) [40]. See Problem �4.16.

4.11.7 Propagation of cylindrical waves

By studying plane waves we have gained insight into the basic behavior of frequency-
domain and time-harmonic waves. However, these solutions do not display the funda-
mental property that waves in space must diverge from their sources. To understand this
behavior we shall treat waves having cylindrical and spherical symmetries.

Uniform cylindrical waves. In § 2.10.7 we studied the temporal behavior of cylin-
drical waves in a homogeneous, lossless medium and found that they diverge from a line
source located along the z-axis. Here we shall extend the analysis to lossy media and
investigate the behavior of the waves in the frequency domain.

Consider a homogeneous region of space described by the permittivity ε̃(ω), permeabil-
ity µ̃(ω), and conductivity σ̃ (ω). We seek solutions that are invariant over a cylindrical
surface: Ẽ(r, ω) = Ẽ(ρ, ω), H̃(r, ω) = H̃(ρ, ω). Such waves are called uniform cylindrical
waves. Since the fields are z-independent we may decompose them into TE and TM sets
as described in § 4.11.2. For TM polarization we may insert (4.211) into (4.212) to find

H̃φ(ρ, ω) = 1

jωµ̃(ω)

∂ Ẽz(ρ, ω)

∂ρ
. (4.327)



For TE polarization we have from (4.213)

Ẽφ(ρ, ω) = − 1

jωε̃c(ω)

∂ H̃z(ρ, ω)

∂ρ
(4.328)

where ε̃c = ε̃ + σ̃ /jω is the complex permittivity introduced in § 4.4.1. Since Ẽ =
φ̂Ẽφ + ẑẼz and H̃ = φ̂H̃φ + ẑH̃z , we can always decompose a cylindrical electromagnetic
wave into cases of electric and magnetic polarization. In each case the resulting field is
TEMρ since Ẽ, H̃, and ρ̂ are mutually orthogonal.

Wave equations for Ẽz in the electric polarization case and for H̃z in the magnetic
polarization case can be derived by substituting (4.210) into (4.208):(

∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ k2

) {
Ẽz

H̃z

}
= 0.

Thus the electric field must obey the ordinary differential equation

d2 Ẽz

dρ2
+ 1

ρ

d Ẽz

dρ
+ k2 Ẽ z = 0. (4.329)

This is merely Bessel’s equation (A.124). It is a second-order equation with two inde-
pendent solutions chosen from the list

J0(kρ), Y0(kρ), H (1)
0 (kρ), H (2)

0 (kρ).

We find that J0(kρ) and Y0(kρ) are useful for describing standing waves between bound-
aries, while H (1)

0 (kρ) and H (2)
0 (kρ) are useful for describing waves propagating in the

ρ-direction. Of these, H (1)
0 (kρ) represents waves traveling inward while H (2)

0 (kρ) repre-
sents waves traveling outward. At this point we are interested in studying the behavior
of outward propagating waves and so we choose

Ẽz(ρ, ω) = − j

4
Ẽz0(ω)H (2)

0 (kρ). (4.330)

As explained in § 2.10.7, Ẽz0(ω) is the amplitude spectrum of the wave, while the term
− j/4 is included to make the conversion to the time domain more convenient. By (4.327)
we have

H̃φ = 1

jωµ̃

∂ Ẽz

∂ρ
= 1

jωµ̃

∂

∂ρ

[
− j

4
Ẽz0 H (2)

0 (kρ)

]
. (4.331)

Using d H (2)
0 (x)/dx = −H (2)

1 (x) we find that

H̃φ = 1

ZT M

Ẽz0

4
H (2)

1 (kρ) (4.332)

where

ZT M = ωµ̃

k

is called the TM wave impedance.
For the case of magnetic polarization, the field H̃z must satisfy Bessel’s equation

(4.329). Thus we choose

H̃z(ρ, ω) = − j

4
H̃z0(ω)H (2)

0 (kρ). (4.333)



From (4.328) we find the electric field associated with the wave:

Ẽφ = −ZT E
H̃z0

4
H (2)

1 (kρ), (4.334)

where

ZT E = k

ωε̃c

is the TE wave impedance.
It is not readily apparent that the terms H (2)

0 (kρ) or H (2)
1 (kρ) describe outward prop-

agating waves. We shall see later that the cylindrical wave may be written as a su-
perposition of plane waves, both uniform and evanescent, propagating in all possible
directions. Each of these components does have the expected wave behavior, but it is
still not obvious that the sum of such waves is outward propagating.

We saw in § 2.10.7 that when examined in the time domain, a cylindrical wave of the
form H (2)

0 (kρ) does indeed propagate outward, and that for lossless media the velocity of
propagation of its wavefronts is v = 1/(µε)1/2. For time-harmonic fields, the cylindrical
wave takes on a familiar behavior when the observation point is sufficiently removed from
the source. We may specialize (4.330) to the time-harmonic case by setting ω = ω̌ and
using phasors, giving

Ěz(ρ) = − j

4
Ěz0 H (2)

0 (kρ).

If |kρ| � 1 we can use the asymptotic representation (E.62) for the Hankel function

H (2)
ν (z) ∼

√
2

π z
e− j (z−π/4−νπ/2), |z| � 1, −2π < arg(z) < π,

to obtain

Ěz(ρ) ∼ Ěz0
e− jkρ

√
8 jπkρ

(4.335)

and

Ȟφ(ρ) ∼ −Ěz0
1

ZT M

e− jkρ

√
8 jπkρ

(4.336)

for |kρ| � 1. Except for the
√

ρ term in the denominator, the wave has very much the
same form as the plane waves encountered earlier. For the case of magnetic polarization,
we can approximate (4.333) and (4.334) to obtain

Ȟz(ρ) ∼ Ȟz0
e− jkρ

√
8 jπkρ

(4.337)

and

Ěφ(ρ) ∼ ZT E Ȟz0
e− jkρ

√
8 jπkρ

(4.338)

for |kρ| � 1.
To interpret the wave nature of the field (4.335) let us substitute k = β − jα into

the exponential function, where β is the phase constant (4.224) and α is the attenuation
constant (4.225). Then

Ěz(ρ) ∼ Ěz0
1√

8 jπkρ
e−αρe− jβρ.



Assuming Ěz0 = |Ez0|e jξ E
, the time-domain representation is found from (4.126):

Ez(ρ, t) = |Ez0|√
8πkρ

e−αρ cos[ω̌t − βρ − π/4 + ξ E ]. (4.339)

We can identify a surface of constant phase as a locus of points obeying

ω̌t − βρ − π/4 + ξ E = CP (4.340)

where CP is some constant. These surfaces are cylinders coaxial with the z-axis, and are
called cylindrical wavefronts. Note that surfaces of constant amplitude, as determined
by

e−αρ

√
ρ

= CA

where CA is some constant, are also cylinders.
The cosine term in (4.339) represents a traveling wave. As t is increased the argument

of the cosine function remains fixed as long as ρ is increased correspondingly. Hence the
cylindrical wavefronts propagate outward as time progresses. As the wavefront travels
outward, the field is attenuated because of the factor e−αρ . The velocity of propagation
of the phase fronts may be computed by a now familiar technique. Differentiating (4.340)
with respect to t we find that

ω̌ − β
dρ

dt
= 0,

and thus have the phase velocity vp of the outward expanding phase fronts:

vp = dρ

dt
= ω̌

β
.

Calculation of wavelength also proceeds as before. Examining the two adjacent wave-
fronts that produce the same value of the cosine function in (4.339), we find βρ1 =
βρ2 − 2π or

λ = ρ2 − ρ1 = 2π/β.

Computation of the power carried by a cylindrical wave is straightforward. Since a
cylindrical wavefront is infinite in extent, we usually speak of the power per unit length
carried by the wave. This is found by integrating the time-average Poynting flux given
in (4.157). For electric polarization we find the time-average power flux density using
(4.330) and (4.331):

Sav = 1

2
Re{Ěz ẑ × Ȟ∗

φ φ̂} = 1

2
Re

{
ρ̂

j

16Z∗
T M

|Ěz0|2 H (2)
0 (kρ)H (2)∗

1 (kρ)

}
. (4.341)

For magnetic polarization we use (4.333) and (4.334):

Sav = 1

2
Re{Ěφφ̂ × Ȟ∗

z ẑ} = 1

2
Re

{
−ρ̂

j ZT E

16
|Ȟz0|2 H (2)∗

0 (kρ)H (2)
1 (kρ)

}
.

For a lossless medium these expressions can be greatly simplified. By (E.5) we can write

j H (2)
0 (kρ)H (2)∗

1 (kρ) = j[J0(kρ) − j N0(kρ)][J1(kρ) + j N1(kρ)],

hence

j H (2)
0 (kρ)H (2)∗

1 (kρ) = [N0(kρ)J1(kρ) − J0(kρ)N1(kρ)] + j[J0(kρ)J1(kρ) + N0(kρ)N1(kρ)].



Substituting this into (4.341) and remembering that ZT M = η = (µ/ε)1/2 is real for
lossless media, we have

Sav = ρ̂
1

32η
|Ěz0|2[N0(kρ)J1(kρ) − J0(kρ)N1(kρ)].

By the Wronskian relation (E.88) we have

Sav = ρ̂
|Ěz0|2

16πkρη
.

The power density is inversely proportional to ρ. When we compute the total time-
average power per unit length passing through a cylinder of radius ρ, this factor cancels
with the ρ-dependence of the surface area to give a result independent of radius:

Pav/ l =
∫ 2π

0
Sav · ρ̂ρ dφ = |Ěz0|2

8kη
. (4.342)

For a lossless medium there is no mechanism to dissipate the power and so the wave prop-
agates unabated. A similar calculation for the case of magnetic polarization (Problem
??) gives

Sav = ρ̂
η|Ȟz0|2
16πkρ

and

Pav/ l = η|Ȟz0|2
8k

.

For a lossy medium the expressions are more difficult to evaluate. In this case we expect
the total power passing through a cylinder to depend on the radius of the cylinder, since
the fields decay exponentially with distance and thus give up power as they propagate.
If we assume that the observation point is far from the z-axis with |kρ| � 1, then we can
use (4.335) and (4.336) for the electric polarization case to obtain

Sav = 1

2
Re{Ěz ẑ × Ȟ∗

φ φ̂} = 1

2
Re

{
ρ̂

e−2αρ

8πρ|k|Z∗
T M

|Ěz0|2
}

.

Therefore

Pav/ l =
∫ 2π

0
Sav · ρ̂ρ dφ = Re

{
1

Z∗
T M

}
|Ěz0|2 e−2αρ

8|k| .

We note that for a lossless material ZT M = η and α = 0, and the expression reduces to
(4.342) as expected. Thus for lossy materials the power depends on the radius of the
cylinder. In the case of magnetic polarization we use (4.337) and (4.338) to get

Sav = 1

2
Re{Ěφφ̂ × Ȟ∗

z ẑ} = 1

2
Re

{
ρ̂Z∗

T E

e−2αρ

8πρ|k| |Ȟz0|2
}

and

Pav/ l = Re
{

Z∗
T E

} |Ȟz0|2 e−2αρ

8|k| .



Example of uniform cylindrical waves: fields of a line source. The simplest
example of a uniform cylindrical wave is that produced by an electric or magnetic line
source. Consider first an infinite electric line current of amplitude Ĩ (ω) on the z-axis,
immersed within a medium of permittivity ε̃(ω), permeability µ̃(ω), and conductivity
σ̃ (ω). We assume that the current does not vary in the z-direction, and thus the problem
is two-dimensional. We can decompose the field produced by the line source into TE and
TM cases according to § 4.11.2. It turns out that an electric line source only excites TM
fields, as we shall show in § 5.4, and thus we need only Ẽz to completely describe the
fields.

By symmetry the fields are φ-independent and thus the wave produced by the line
source is a uniform cylindrical wave. Since the wave propagates outward from the line
source we have the electric field from (4.330),

Ẽz(ρ, ω) = − j

4
Ẽz0(ω)H (2)

0 (kρ), (4.343)

and the magnetic field from (4.332),

H̃φ(ρ, ω) = k

ωµ̃

Ẽz0(ω)

4
H (2)

1 (kρ).

We can find Ẽz0 by using Ampere’s law:∮
�

H̃ · dl =
∫

S
J̃ · dS + jω

∫
S

D̃ · dS.

Since J̃ is the sum of the impressed current Ĩ and the secondary conduction current σ̃ Ẽ,
we can also write∮

�

H̃ · dl = Ĩ +
∫

S
(σ̃ + jωε̃)Ẽ · dS = Ĩ + jωε̃c

∫
S

Ẽ · dS.

Choosing our path of integration as a circle of radius a in the z = 0 plane and substituting
for Ẽz and H̃φ , we find that

k

ωµ̃

Ẽz0

4
H (2)

1 (ka)2πa = Ĩ + jωε̃c2π
− j Ẽz0

4
lim
δ→0

∫ a

δ

H (2)
0 (kρ)ρ dρ. (4.344)

The limit operation is required because H (2)
0 (kρ) diverges as ρ → 0. By (E.104) the

integral is

lim
δ→0

∫ a

δ

H (2)
0 (kρ)ρ dρ = a

k
H (2)

1 (ka) − 1

k
lim
δ→0

δH (2)
1 (kδ).

The limit may be found by using H (2)
1 (x) = J1(x) − j N1(x) and the small argument

approximations (E.50) and (E.53):

lim
δ→0

δH (2)
1 (δ) = lim

δ→0
δ

[
kδ

2
− j

(
− 1

π

2

kδ

)]
= j

2

πk
.

Substituting these expressions into (4.344) we obtain

k

ωµ̃

Ẽz0

4
H (2)

1 (ka)2πa = Ĩ + jωε̃c2π
− j Ẽz0

4

[
a

k
H (2)

1 (ka) − j
2

πk2

]
.



Using k2 = ω2µ̃ε̃c we find that the two Hankel function terms cancel. Solving for Ẽz0 we
have

Ẽz0 = − jωµ̃ Ĩ

and therefore

Ẽz(ρ, ω) = −ωµ̃

4
Ĩ (ω)H (2)

0 (kρ) = − jωµ̃ Ĩ (ω)G̃(x, y|0, 0; ω). (4.345)

Here G̃ is called the two-dimensional Green’s function and is given by

G̃(x, y|x ′, y′; ω) = 1

4 j
H (2)

0

(
k
√

(x − x ′)2 + (y − y′)2
)

. (4.346)

Green’s functions are examined in greater detail in Chapter 5
It is also possible to determine the field amplitude by evaluating

lim
a→0

∮
C

H̃ · dl.

This produces an identical result and is a bit simpler since it can be argued that the
surface integral of Ẽz vanishes as a → 0 without having to perform the calculation
directly [83, 8].

For a magnetic line source Ĩm(ω) aligned along the z-axis we proceed as above, but
note that the source only produces TE fields. By (4.333) and (4.334) we have

H̃z(ρ, ω) = − j

4
H̃z0(ω)H (2)

0 (kρ), Ẽφ = − k

ωε̃c

H̃0z

4
H (2)

1 (kρ).

We can find H̃z0 by applying Faraday’s law∮
C

Ẽ · dl = −
∫

S
J̃m · dS − jω

∫
S

B̃ · dS

about a circle of radius a in the z = 0 plane. We have

− k

ωε̃c

H̃z0

4
H (2)

1 (ka)2πa = − Ĩm − jωµ̃

[
− j

4

]
H̃z02π lim

δ→0

∫ a

δ

H (2)
0 (kρ)ρ dρ.

Proceeding as above we find that

H̃z0 = jωε̃c Ĩm

hence

H̃z(ρ, ω) = −ωε̃c

4
Ĩm(ω)H (2)

0 (kρ) = − jωε̃c Ĩm(ω)G̃(x, y|0, 0; ω). (4.347)

Note that we could have solved for the magnetic field of a magnetic line current by
using the field of an electric line current and the principle of duality. Letting the magnetic
current be equal to −η times the electric current and using (4.198), we find that

H̃z0 =
(

−1

η

Ĩm(ω)

Ĩ (ω)

) (
−1

η

[
−ωµ̃

4
Ĩ (ω)H (2)

0 (kρ)

])
= − Ĩm(ω)

ωε̃c

4
H (2)

0 (kρ) (4.348)

as in (4.347).



Nonuniform cylindrical waves. When we solve two-dimensional boundary value
problems we encounter cylindrical waves that are z-independent but φ-dependent. Al-
though such waves propagate outward, they have a more complicated structure than
those considered above.

For the case of TM polarization we have, by (4.212),

H̃ρ = j

ZT M k

1

ρ

∂ Ẽz

∂φ
, (4.349)

H̃φ = − j

ZT M k

∂ Ẽz

∂ρ
, (4.350)

where ZT M = ωµ̃/k. For the TE case we have, by (4.213),

Ẽρ = − j ZT E

k

1

ρ

∂ H̃z

∂φ
, (4.351)

Ẽφ = j ZT E

k

∂ H̃z

∂ρ
, (4.352)

where ZT E = k/ωε̃c. By (4.208) the wave equations are
(

∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂φ2
+ k2

) {
Ẽz

H̃z

}
= 0.

Because this has the form of A.177 with ∂/∂z → 0, we have{
Ẽz(ρ, φ, ω)

H̃z(ρ, φ, ω)

}
= P(ρ, ω)!(φ, ω) (4.353)

where

!(φ, ω) = Aφ(ω) sin kφφ + Bφ(ω) cos kφφ, (4.354)

P(ρ) = Aρ(ω)B(1)
kφ

(kρ) + Bρ(ω)B(2)
kφ

(kρ), (4.355)

and where B(1)
ν (z) and B(2)

ν (z) are any two independent Bessel functions chosen from the
set

Jν(z), Nν(z), H (1)
ν (z), H (2)

ν (z).

In bounded regions we generally use the oscillatory functions Jν(z) and Nν(z) to represent
standing waves. In unbounded regions we generally use H (2)

ν (z) and H (1)
ν (z) to represent

outward and inward propagating waves, respectively.

Boundary value problems in cylindrical coordinates: scattering by a material
cylinder. A variety of problems can be solved using nonuniform cylindrical waves.
We shall examine two interesting cases in which an external field is impressed on a
two-dimensional object. The impressed field creates secondary sources within or on the
object, and these in turn create a secondary field. Our goal is to determine the secondary
field by applying appropriate boundary conditions.

As a first example, consider a material cylinder of radius a, complex permittivity ε̃c,
and permeability µ̃, aligned along the z-axis in free space (Figure 4.25). An incident
plane wave propagating in the x-direction is impressed on the cylinder, inducing sec-
ondary polarization and conduction currents within the cylinder. These in turn produce



Figure 4.25: TM plane-wave field incident on a material cylinder.

secondary or scattered fields, which are standing waves within the cylinder and outward
traveling waves external to the cylinder. Although we have not yet learned how to write
the secondary fields in terms of the impressed sources, we can solve for the fields as a
boundary value problem. The total field must obey the boundary conditions on tangen-
tial components at the interface between the cylinder and surrounding free space. We
need not worry about the effect of the secondary sources on the source of the primary
field, since by definition impressed sources cannot be influenced by secondary fields.

The scattered field can be found using superposition. When excited by a TM impressed
field, the secondary field is also TM. The situation for TE excitation is similar. By
decomposing the impressed field into TE and TM components, we may solve for the
scattered field in each case and then superpose the results to determine the complete
solution.

We first consider the TM case. The impressed electric field may be written as

Ẽi (r, ω) = ẑẼ0(ω)e− jk0x = ẑẼ0(ω)e− jk0ρ cos φ (4.356)

while the magnetic field is, by (4.223),

H̃i (r, ω) = −ŷ
Ẽ0(ω)

η0
e− jk0x = −(ρ̂ sin φ + φ̂ cos φ)

Ẽ0(ω)

η0
e− jk0ρ cos φ.

Here k0 = ω(µ0ε0)
1/2 and η0 = (µ0/ε0)

1/2. The scattered electric field takes the form
of a nonuniform cylindrical wave (4.353). Periodicity in φ implies that kφ is an integer,
say kφ = n. Within the cylinder we cannot use any of the functions Nn(kρ), H (2)

n (kρ),
or H (1)

n (kρ) to represent the radial dependence of the field, since each is singular at the
origin. So we choose B(1)

n (kρ) = Jn(kρ) and Bρ(ω) = 0 in (4.355). Physically, Jn(kρ) rep-
resents the standing wave created by the interaction of outward and inward propagating
waves. External to the cylinder we use H (2)

n (kρ) to represent the radial dependence of the
secondary field components: we avoid Nn(kρ) and Jn(kρ) since these represent standing
waves, and avoid H (1)

n (kρ) since there are no external secondary sources to create an
inward traveling wave.



Any attempt to satisfy the boundary conditions by using a single nonuniform wave
fails. This is because the sinusoidal dependence on φ of each individual nonuniform wave
cannot match the more complicated dependence of the impressed field (4.356). Since the
sinusoids are complete, an infinite series of the functions (4.353) can be used to represent
the scattered field. So we have internal to the cylinder

Ẽ s
z (r, ω) =

∞∑
n=0

[An(ω) sin nφ + Bn(ω) cos nφ] Jn(kρ)

where k = ω(µ̃ε̃c)1/2. External to the cylinder we have free space and thus

Ẽ s
z (r, ω) =

∞∑
n=0

[Cn(ω) sin nφ + Dn(ω) cos nφ] H (2)
n (k0ρ).

Equations (4.349) and (4.350) yield the magnetic field internal to the cylinder:

H̃ s
ρ =

∞∑
n=0

jn

ZT M k

1

ρ
[An(ω) cos nφ − Bn(ω) sin nφ] Jn(kρ),

H̃ s
φ = −

∞∑
n=0

j

ZT M
[An(ω) sin nφ + Bn(ω) cos nφ] J ′

n(kρ),

where ZT M = ωµ̃/k. Outside the cylinder

H̃ s
ρ =

∞∑
n=0

jn

η0k0

1

ρ
[Cn(ω) cos nφ − Dn(ω) sin nφ] H (2)

n (k0ρ),

H̃ s
φ = −

∞∑
n=0

j

η0
[Cn(ω) sin nφ + Dn(ω) cos nφ] H (2)′

n (k0ρ),

where J ′
n(z) = d Jn(z)/dz and H (2)′

n (z) = d H (2)
n (z)/dz.

We have two sets of unknown spectral amplitudes (An, Bn) and (Cn, Dn). These can
be determined by applying the boundary conditions at the interface. Since the total field
outside the cylinder is the sum of the impressed and scattered terms, an application of
continuity of the tangential electric field at ρ = a gives us

∞∑
n=0

[An sin nφ + Bn cos nφ] Jn(ka) =
∞∑

n=0

[Cn sin nφ + Dn cos nφ] H (2)
n (k0a) + Ẽ0e− jk0a cos φ,

which must hold for all −π ≤ φ ≤ π . To remove the coefficients from the sum we apply
orthogonality. Multiplying both sides by sin mφ, integrating over [−π, π ], and using the
orthogonality conditions (A.129)–(A.131) we obtain

π Am Jm(ka) − πCm H (2)
m (k0a) = Ẽ0

∫ π

−π

sin mφe− jk0a cos φ dφ = 0. (4.357)

Multiplying by cos mφ and integrating, we find that

2π Bm Jm(ka) − 2π Dm H (2)
m (k0a) = Ẽ0εm

∫ π

−π

cos mφe− jk0a cos φ dφ

= 2π Ẽ0εm j−m Jm(k0a) (4.358)



where εn is Neumann’s number (A.132) and where we have used (E.83) and (E.39) to
evaluate the integral.

We must also have continuity of the tangential magnetic field H̃φ at ρ = a. Thus

−
∞∑

n=0

j

ZT M
[An sin nφ + Bn cos nφ] J ′

n(ka) =

−
∞∑

n=0

j

η0
[Cn sin nφ + Dn cos nφ] H (2)′

n (k0a) − cos φ
Ẽ0

η0
e− jk0a cos φ

must hold for all −π ≤ φ ≤ π . By orthogonality

π
j

ZT M
Am J ′

m(ka) − π
j

η0
Cm H (2)′

m (k0a) = Ẽ0

η0

∫ π

−π

sin mφ cos φe− jk0a cos φ dφ = 0 (4.359)

and

2π
j

ZT M
Bm J ′

m(ka) − 2π
j

η0
Dm H (2)′

m (k0a) = εm
Ẽ0

η0

∫ π

−π

cos mφ cos φe− jk0a cos φ dφ.

The integral may be computed as∫ π

−π

cos mφ cos φe− jk0a cos φ dφ = j
d

d(k0a)

∫ π

−π

cos mφe− jk0a cos φ dφ = j2π j−m J ′
m(k0a)

and thus

1

ZT M
Bm J ′

m(ka) − 1

η0
Dm H (2)′

m (k0a) = Ẽ0

η0
εm j−m J ′

m(k0a). (4.360)

We now have four equations for the coefficients An, Bn, Cn, Dn. We may write (4.357)
and (4.359) as

[
Jm(ka) −H (2)

m (k0a)
η0

ZT M
J ′

m(ka) −H (2)′
m (k0a)

] [
Am

Cm

]
= 0, (4.361)

and (4.358) and (4.360) as
[

Jm(ka) −H (2)
m (k0a)

η0

ZT M
J ′

m(ka) −H (2)′
m (k0a)

] [
Bm

Dm

]
=

[
Ẽ0εm j−m Jm(k0a)

Ẽ0εm j−m J ′
m(k0a)

]
. (4.362)

Matrix equations (4.361) and (4.362) cannot hold simultaneously unless Am = Cm = 0.
Then the solution to (4.362) is

Bm = Ẽ0εm j−m

[
H (2)

m (k0a)J ′
m(k0a) − Jm(k0a)H (2)′

m (k0a)

η0

ZT M
J ′

m(ka)H (2)
m (k0a) − H (2)′

m (k0a)Jm(ka)

]
, (4.363)

Dm = −Ẽ0εm j−m

[
η0

ZT M
J ′

m(ka)Jm(k0a) − J ′
m(k0a)Jm(ka)

η0

ZT M
J ′

m(ka)H (2)
m (k0a) − H (2)′

m (k0a)Jm(ka)

]
. (4.364)

With these coefficients we can calculate the field inside the cylinder (ρ ≤ a) from

Ẽz(r, ω) =
∞∑

n=0

Bn(ω)Jn(kρ) cos nφ,



H̃ρ(r, ω) = −
∞∑

n=0

jn

ZT M k

1

ρ
Bn(ω)Jn(kρ) sin nφ,

H̃φ(r, ω) = −
∞∑

n=0

j

ZT M
Bn(ω)J ′

n(kρ) cos nφ,

and the field outside the cylinder (ρ > a) from

Ẽz(r, ω) = Ẽ0(ω)e− jk0ρ cos φ +
∞∑

n=0

Dn(ω)H (2)
n (k0ρ) cos nφ,

H̃ρ(r, ω) = − sin φ
Ẽ0(ω)

η0
e− jk0ρ cos φ −

∞∑
n=0

jn

η0k0

1

ρ
Dn(ω)H (2)

n (k0ρ) sin nφ,

H̃φ(r, ω) = − cos φ
Ẽ0(ω)

η0
e− jk0ρ cos φ −

∞∑
n=0

j

η0
Dn(ω)H (2)′

n (k0ρ) cos nφ.

We can easily specialize these results to the case of a perfectly conducting cylinder by
allowing σ̃ → ∞. Then

η0

ZT M
=

√
µ0ε̃c

µ̃ε0
→ ∞

and

Bn → 0, Dn → −Ẽ0εm j−m Jm(k0a)

H (2)
m (k0a)

.

In this case it is convenient to combine the formulas for the impressed and scattered fields
when forming the total fields. Since the impressed field is z-independent and obeys the
homogeneous Helmholtz equation, we may represent it in terms of nonuniform cylindrical
waves:

Ẽ i
z = Ẽ0e− jk0ρ cos φ =

∞∑
n=0

[En sin nφ + Fn cos nφ] Jn(k0ρ),

where we have chosen the Bessel function Jn(k0ρ) since the field is finite at the origin
and periodic in φ. Applying orthogonality we see immediately that En = 0 and that

2π

εm
Fm Jm(k0ρ) = Ẽ0

∫ π

−π

cos mφe− jk0ρ cos φ dφ = Ẽ02π j−m Jm(k0ρ).

Thus, Fn = Ẽ0εn j−n and

Ẽ i
z =

∞∑
n=0

Ẽ0εn j−n Jn(k0ρ) cos nφ.

Adding this impressed field to the scattered field we have the total field outside the
cylinder,

Ẽz = Ẽ0

∞∑
n=0

εn j−n

H (2)
n (k0a)

[
Jn(k0ρ)H (2)

n (k0a) − Jn(k0a)H (2)
n (k0ρ)

]
cos nφ,

while the field within the cylinder vanishes. Then, by (4.350),

H̃φ = − j

η0
Ẽ0

∞∑
n=0

εn j−n

H (2)
n (k0a)

[
J ′

n(k0ρ)H (2)
n (k0a) − Jn(k0a)H (2)′

n (k0ρ)
]

cos nφ.



Figure 4.26: Geometry of a perfectly conducting wedge illuminated by a line source.

This in turn gives us the surface current induced on the cylinder. From the boundary
condition J̃s = n̂ × H̃|ρ=a = ρ̂ × [ρ̂H̃ρ + φ̂H̃φ]|ρ=a = ẑH̃φ|ρ=a we have

Js(φ, ω) = − j

η0
ẑẼ0

∞∑
n=0

εn j−n

H (2)
n (k0a)

[
J ′

n(k0a)H (2)
n (k0a) − Jn(k0a)H (2)′

n (k0a)
]

cos nφ,

and an application of (E.93) gives us

Js(φ, ω) = ẑ
2Ẽ0

η0k0πa

∞∑
n=0

εn j−n

H (2)
n (k0a)

cos nφ. (4.365)

Computation of the scattered field for a magnetically-polarized impressed field pro-
ceeds in the same manner. The impressed electric and magnetic fields are assumed to be

Ẽi (r, ω) = ŷẼ0(ω)e− jk0x = (ρ̂ sin φ + φ̂ cos φ)Ẽ0(ω)e− jk0ρ cos φ,

H̃i (r, ω) = ẑ
Ẽ0(ω)

η0
e− jk0x = ẑ

Ẽ0(ω)

η0
e− jk0ρ cos φ.

For a perfectly conducting cylinder, the total magnetic field is

H̃z = Ẽ0

η0

∞∑
n=0

εn j−n

H (2)′
n (k0a)

[
Jn(k0ρ)H (2)′

n (k0a) − J ′
n(k0a)H (2)

n (k0ρ)
]

cos nφ. (4.366)

The details are left as an exercise.

Boundary value problems in cylindrical coordinates: scattering by a perfectly
conducting wedge. As a second example, consider a perfectly conducting wedge im-
mersed in free space and illuminated by a line source (Figure 4.26) carrying current
Ĩ (ω) and located at (ρ0, φ0). The current, which is assumed to be z-invariant, induces
a secondary current on the surface of the wedge which in turn produces a secondary



(scattered) field. This scattered field, also z-invariant, can be found by solving a bound-
ary value problem. We do this by separating space into the two regions ρ < ρ0 and
ρ > ρ0, 0 < φ < ψ . Each of these is source-free, so we can represent the total field using
nonuniform cylindrical waves of the type (4.353). The line source is brought into the
problem by applying the boundary condition on the tangential magnetic field across the
cylindrical surface ρ = ρ0.

Since the impressed electric field has only a z-component, so do the scattered and total
electric fields. We wish to represent the total field Ẽz in terms of nonuniform cylindrical
waves of the type (4.353). Since the field is not periodic in φ, the separation constant
kφ need not be an integer; instead, its value is determined by the positions of the wedge
boundaries. For the region ρ < ρ0 we represent the radial dependence of the field using
the functions Jν since the field must be finite at the origin. For ρ > ρ0 we use the
outward-propagating wave functions H (2)

δ . Thus

Ẽz(ρ, φ, ω) =
{∑

ν [Aν sin νφ + Bν cos νφ] Jν(k0ρ), ρ < ρ0,∑
δ [Cδ sin δφ + Dδ cos δφ] H (2)

δ (k0ρ), ρ > ρ0.
(4.367)

The coefficients Aν, Bν, Cδ, Dδ and separation constants ν, δ may be found by applying
the boundary conditions on the fields at the surface of the wedge and across the surface
ρ = ρ0. On the wedge face at φ = 0 we must have Ẽz = 0, hence Bν = Dδ = 0. On
the wedge face at φ = ψ we must also have Ẽz = 0, requiring sin νψ = sin δψ = 0 and
therefore

ν = δ = νn = nπ/ψ, n = 1, 2, . . . .

So

Ẽz =
{∑∞

n=0 An sin νnφ Jνn (k0ρ), ρ < ρ0,∑∞
n=0 Cn sin νnφH (2)

νn
(k0ρ), ρ > ρ0.

(4.368)

The magnetic field can be found from (4.349)–(4.350):

H̃ρ =
{∑∞

n=0 An
j

η0k0

νn
ρ

cos νnφ Jνn (k0ρ), ρ < ρ0,∑∞
n=0 Cn

j
η0k0

νn
ρ

cos νnφH (2)
νn

(k0ρ), ρ > ρ0,
(4.369)

H̃φ =
{

− ∑∞
n=0 An

j
η0

sin νnφ J ′
νn

(k0ρ), ρ < ρ0,

− ∑∞
n=0 Cn

j
η0

sin νnφH (2)′
νn

(k0ρ), ρ > ρ0.
(4.370)

The coefficients An and Cn are found by applying the boundary conditions at ρ = ρ0.
By continuity of the tangential electric field

∞∑
n=0

An sin νnφ Jνn (k0ρ0) =
∞∑

n=0

Cn sin νnφH (2)
νn

(k0ρ0).

We now apply orthogonality over the interval [0, ψ]. Multiplying by sin νmφ and inte-
grating we have

∞∑
n=0

An Jνn (k0ρ0)

∫ ψ

0
sin νnφ sin νmφ dφ =

∞∑
n=0

Cn H (2)
νn

(k0ρ0)

∫ ψ

0
sin νnφ sin νmφ dφ.

Setting u = φπ/ψ we have∫ ψ

0
sin νnφ sin νmφ dφ = ψ

π

∫ π

0
sin nu sin mu du = ψ

2
δmn,



thus

Am Jνm (k0ρ0) = Cm H (2)
νm

(k0ρ0). (4.371)

The boundary condition n̂12 × (H̃1 − H̃2) = J̃s requires the surface current at ρ = ρ0. We
can write the line current in terms of a surface current density using the δ-function:

J̃s = ẑ Ĩ
δ(φ − φ0)

ρ0
.

This is easily verified as the correct expression since the integral of this density along
the circular arc at ρ = ρ0 returns the correct value Ĩ for the total current. Thus the
boundary condition requires

H̃φ(ρ+
0 , φ, ω) − H̃φ(ρ−

0 , φ, ω) = Ĩ
δ(φ − φ0)

ρ0
.

By (4.370) we have

−
∞∑

n=0

Cn
j

η0
sin νnφH (2)′

νn
(k0ρ0) +

∞∑
n=0

An
j

η0
sin νnφ J ′

νn
(k0ρ0) = Ĩ

δ(φ − φ0)

ρ0

and orthogonality yields

− Cm
ψ

2

j

η0
H (2)′

νm
(k0ρ0) + Am

ψ

2

j

η0
J ′
νm

(k0ρ0) = Ĩ
sin νmφ0

ρ0
. (4.372)

The coefficients Am and Cm thus obey the matrix equation
[

Jνm (k0ρ0) −H (2)
νm

(k0ρ0)

J ′
νm

(k0ρ0) −H (2)′
νm

(k0ρ0)

] [
Am

Cm

]
=

[
0

− j2 Ĩ η0

ψ

sin νmφ0

ρ0

]

and are

Am =
j2 Ĩ η0

ψ

sin νmφ0

ρ0
H (2)

νm
(k0ρ0)

H (2)′
νm (k0ρ0)Jνm (k0ρ0) − J ′

νm
(k0ρ0)H (2)

νm (k0ρ0)
,

Cm =
j2 Ĩ η0

ψ

sin νmφ0

ρ0
Jνm (k0ρ0)

H (2)′
νm (k0ρ0)Jνm (k0ρ0) − J ′

νm
(k0ρ0)H (2)

νm (k0ρ0)
.

Using the Wronskian relation (E.93), we replace the denominators in these expressions
by 2/( jπk0ρ0):

Am = − Ĩ
η0

ψ
πk0 sin νmφ0 H (2)

νm
(k0ρ0),

Cm = − Ĩ
η0

ψ
πk0 sin νmφ0 Jνm (k0ρ0).

Hence (4.368) gives

Ẽz(ρ, φ, ω) =
{

− ∑∞
n=0 Ĩ η0

2ψ
πk0εn Jνn (k0ρ)H (2)

νn
(k0ρ0) sin νnφ sin νnφ0, ρ < ρ0,

− ∑∞
n=0 Ĩ η0

2ψ
πk0εn H (2)

νn
(k0ρ)Jνn (k0ρ0) sin νnφ sin νnφ0, ρ > ρ0,

(4.373)



where εn is Neumann’s number (A.132). The magnetic fields can also be found by
substituting the coefficients into (4.369) and (4.370).

The fields produced by an impressed plane wave may now be obtained by letting the
line source recede to infinity. For large ρ0 we use the asymptotic form (E.62) and find
that

Ẽz(ρ, φ, ω) = −
∞∑

n=0

Ĩ
η0

2ψ
πk0εn Jνn (k0ρ)

[√
2 j

πk0ρ0
jνn e− jk0ρ0

]
sin νnφ sin νnφ0, ρ < ρ0.

(4.374)
Since the field of a line source falls off as ρ

−1/2
0 , the amplitude of the impressed field

approaches zero as ρ0 → ∞. We must compensate for the reduction in the impressed
field by scaling the amplitude of the current source. To obtain the proper scale factor,
we note that the electric field produced at a point ρ by a line source located at ρ0 may
be found from (4.345):

Ẽz = − Ĩ
k0η0

4
H (2)

0 (k0|ρ − ρ0|) ≈ − Ĩ
k0η0

4

√
2 j

πk0ρ0
e− jk0ρ0 e jkρ cos(φ−φ0), k0ρ0 � 1.

But if we write this as

Ẽz ≈ Ẽ0e jk·ρ

then the field looks exactly like that produced by a plane wave with amplitude Ẽ0 trav-
eling along the wave vector k = −k0x̂ cos φ0 − k0ŷ sin φ0. Solving for Ĩ in terms of Ẽ0 and
substituting it back into (4.374), we get the total electric field scattered from a wedge
with an impressed TM plane-wave field:

Ẽz(ρ, φ, ω) = 2π

ψ
Ẽ0

∞∑
n=0

εn jνn Jνn (k0ρ) sin νnφ sin νnφ0.

Here we interpret the angle φ0 as the incidence angle of the plane wave.
To determine the field produced by an impressed TE plane-wave field, we use a mag-

netic line source Ĩm located at ρ0, φ0 and proceed as above. By analogy with (4.367) we
write

H̃z(ρ, φ, ω) =
{∑

ν [Aν sin νφ + Bν cos νφ] Jν(k0ρ), ρ < ρ0,∑
δ [Cδ sin δφ + Dδ cos δφ] H (2)

δ (k0ρ), ρ > ρ0.

By (4.351) the tangential electric field is

Ẽρ(ρ, φ, ω) =
{

− ∑
ν [Aν cos νφ − Bν sin νφ] j ZT E

k
1
ρ
ν Jν(k0ρ), ρ < ρ0,

− ∑
δ [Cδ cos δφ − Dδ sin δφ] j ZT E

k
1
ρ
δH (2)

δ (k0ρ), ρ > ρ0.

Application of the boundary conditions on the tangential electric field at φ = 0, ψ results
in Aν = Cδ = 0 and ν = δ = νn = nπ/ψ , and thus H̃z becomes

H̃z(ρ, φ, ω) =
{∑∞

n=0 Bn cos νnφ Jνn (k0ρ), ρ < ρ0,∑∞
n=0 Dn cos νnφH (2)

νn
(k0ρ), ρ > ρ0.

(4.375)

Application of the boundary conditions on tangential electric and magnetic fields across
the magnetic line source then leads directly to

H̃z(ρ, φ, ω) =
{

− ∑∞
n=0 Ĩm

η0

2ψ
πk0εn Jνn (k0ρ)H (2)

νn
(k0ρ0) cos νnφ cos νnφ0, ρ < ρ0

− ∑∞
n=0 Ĩm

η0

2ψ
πk0εn H (2)

νn
(k0ρ)Jνn (k0ρ0) cos νnφ cos νnφ0, ρ > ρ0.

(4.376)



For a plane-wave impressed field this reduces to

H̃z(ρ, φ, ω) = 2π

ψ

Ẽ0

η0

∞∑
n=0

εn jνn Jνn (k0ρ) cos νnφ cos νnφ0.

Behavior of current near a sharp edge. In § 3.2.9 we studied the behavior of static
charge near a sharp conducting edge by modeling the edge as a wedge. We can follow
the same procedure for frequency-domain fields. Assume that the perfectly conducting
wedge shown in Figure 4.26 is immersed in a finite, z-independent impressed field of a
sort that will not concern us. A current is induced on the surface of the wedge and we
wish to study its behavior as we approach the edge.

Because the field is z-independent, we may consider the superposition of TM and TE
fields as was done above to solve for the field scattered by a wedge. For TM polarization,
if the source is not located near the edge we may write the total field (impressed plus
scattered) in terms of nonuniform cylindrical waves. The form of the field that obeys the
boundary conditions at φ = 0 and φ = ψ is given by (4.368):

Ẽz =
∞∑

n=0

An sin νnφ Jνn (k0ρ),

where νn = nπ/ψ . Although the An depend on the impressed source, the general behavior
of the current near the edge is determined by the properties of the Bessel functions. The
current on the wedge face at φ = 0 is given by

J̃s(ρ, ω) = φ̂ × [φ̂H̃φ + ρ̂H̃ρ]|φ=0 = −ẑH̃ρ(ρ, 0, ω).

By (4.349) we have the surface current

J̃s(ρ, ω) = −ẑ
1

ZT M k0

∞∑
n=0

An
νn

ρ
Jνn (k0ρ).

For ρ → 0 the small-argument approximation (E.51) yields

J̃s(ρ, ω) ≈ −ẑ
1

ZT M k0

∞∑
n=0

Anνn
1

�(νn + 1)

(
k0

2

)νn

ρνn−1.

The sum is dominated by the smallest power of ρ. Since the n = 0 term vanishes we
have

J̃s(ρ, ω) ∼ ρ
π
ψ

−1
, ρ → 0.

For ψ < π the current density, which runs parallel to the edge, is unbounded as ρ → 0.
A right-angle wedge (ψ = 3π/2) carries

J̃s(ρ, ω) ∼ ρ−1/3.

Another important case is that of a half-plane (ψ = 2π) where

J̃s(ρ, ω) ∼ 1√
ρ

. (4.377)

This square-root edge singularity dominates the behavior of the current flowing parallel
to any flat edge, either straight or with curvature large compared to a wavelength, and
is useful for modeling currents on complicated structures.



In the case of TE polarization the magnetic field near the edge is, by (4.375),

H̃z(ρ, φ, ω) =
∞∑

n=0

Bn cos νnφ Jνn (k0ρ), ρ < ρ0.

The current at φ = 0 is

J̃s(ρ, ω) = φ̂ × ẑH̃z|φ=0 = ρ̂H̃z(ρ, 0, ω)

or

J̃s(ρ, ω) = ρ̂
∞∑

n=0

Bn Jνn (k0ρ).

For ρ → 0 we use (E.51) to write

J̃s(ρ, ω) = ρ̂
∞∑

n=0

Bn
1

�(νn + 1)

(
k0

2

)νn

ρνn .

The n = 0 term gives a constant contribution, so we keep the first two terms to see how
the current behaves near ρ = 0:

J̃s ∼ b0 + b1ρ
π
ψ .

Here b0 and b1 depend on the form of the impressed field. For a thin plate where ψ = 2π

this becomes

J̃s ∼ b0 + b1
√

ρ.

This is the companion square-root behavior to (4.377). When perpendicular to a sharp
edge, the current grows away from the edge as ρ1/2. In most cases b0 = 0 since there is
no mechanism to store charge along a sharp edge.

4.11.8 Propagation of spherical waves in a conducting medium

We cannot obtain uniform spherical wave solutions to Maxwell’s equations. Any field
dependent only on r produces the null field external to the source region, as shown in
§ 4.11.9. Nonuniform spherical waves are in general complicated and most easily handled
using potentials. We consider here only the simple problem of fields dependent on r and
θ . These waves display the fundamental properties of all spherical waves: they diverge
from a localized source and expand with finite velocity.

Consider a homogeneous, source-free region characterized by ε̃(ω), µ̃(ω), and σ̃ (ω).
We seek wave solutions that are TEMr in spherical coordinates (H̃r = Ẽr = 0) and
φ-independent. Thus we write

Ẽ(r, ω) = θ̂ Ẽθ (r, θ, ω) + φ̂Ẽφ(r, θ, ω),

H̃(r, ω) = θ̂H̃θ (r, θ, ω) + φ̂H̃φ(r, θ, ω).

To determine the behavior of these fields we first examine Faraday’s law

∇ × Ẽ(r, θ, ω) = r̂
1

r sin θ

∂

∂θ
[sin θ Ẽφ(r, θ, ω)] − θ̂

1

r

∂

∂r
[r Ẽφ(r, θ, ω)] + φ̂

1

r

∂

∂r
[r Ẽθ (r, θ, ω)]

= − jωµ̃H̃(r, θ, ω). (4.378)



Since we require H̃r = 0 we must have

∂

∂θ
[sin θ Ẽφ(r, θ, ω)] = 0.

This implies that either Ẽφ ∼ 1/ sin θ or Ẽφ = 0. We choose Ẽφ = 0 and investigate
whether the resulting fields satisfy the remaining Maxwell equations.

In a source-free, homogeneous region of space we have ∇ ·D̃ = 0 and thus also ∇ ·Ẽ = 0.
Since we have only a θ -component of the electric field, this requires

1

r

∂

∂θ
Ẽθ (r, θ, ω) + cot θ

r
Ẽθ (r, θ, ω) = 0.

From this we see that when Ẽφ = 0, the field Ẽθ must obey

Ẽθ (r, θ, ω) = f̃ E (r, ω)

sin θ
.

By (4.378) there is only a φ-component of magnetic field which obeys

H̃φ(r, θ, ω) = f̃H (r, ω)

sin θ

where

− jωµ̃ f̃H (r, ω) = 1

r

∂

∂r
[r f̃E (r, ω)]. (4.379)

So the spherical wave is TEM to the r -direction.
We can obtain a wave equation for f̃ E by taking the curl of (4.378) and substituting

from Ampere’s law:

∇ × (∇ × Ẽ) = −θ̂
1

r

∂2

∂r2
(r Ẽθ ) = ∇ × (− jωµ̃H̃

) = − jωµ̃
(
σ̃ Ẽ + jωε̃Ẽ

)
,

hence

d2

dr2
[r f̃E (r, ω)] + k2[r f̃E (r, ω)] = 0. (4.380)

Here k = ω(µ̃ε̃c)1/2 is the complex wavenumber and ε̃c = ε̃ + σ̃ /jω is the complex
permittivity. The equation for f̃H is identical.

The wave equation (4.380) is merely the second-order harmonic differential equation,
with two independent solutions chosen from the list

sin kr, cos kr, e− jkr , e jkr .

We find sin kr and cos kr useful for describing standing waves between boundaries, and
e jkr and e− jkr useful for describing waves propagating in the r -direction. Of these, e jkr

represents waves traveling inward while e− jkr represents waves traveling outward. At this
point we choose r f̃E = e− jkr and thus

Ẽ(r, θ, ω) = θ̂ Ẽ0(ω)
e− jkr

r sin θ
. (4.381)

By (4.379) we have

H̃(r, θ, ω) = φ̂
Ẽ0(ω)

ZT E M

e− jkr

r sin θ
(4.382)



where ZT E M = (µ̃/εc)1/2 is the complex wave impedance. Since we can also write

H̃(r, θ, ω) = r̂ × Ẽ(r, θ, ω)

ZT E M
,

the field is TEM to the r -direction, which is the direction of wave propagation as shown
below.

The wave nature of the field is easily identified by considering the fields in the phasor
domain. Letting ω → ω̌ and setting k = β − jα in the exponential function we find that

Ě(r, θ) = θ̂ Ě0e−αr e− jβr

r sin θ

where Ě0 = E0e jξ E
. The time-domain representation may be found using (4.126):

E(r, θ, t) = θ̂E0
e−αr

r sin θ
cos(ω̌t − βr + ξ E ). (4.383)

We can identify a surface of constant phase as a locus of points obeying

ω̌t − βr + ξ E = CP (4.384)

where CP is some constant. These surfaces, which are spheres centered on the origin, are
called spherical wavefronts. Note that surfaces of constant amplitude as determined by

e−αr

r
= CA,

where CA is some constant, are also spheres.
The cosine term in (4.383) represents a traveling wave with spherical wavefronts that

propagate outward as time progresses. Attenuation is caused by the factor e−αr . By
differentiation we find that the phase velocity is

vp = ω̌/β.

The wavelength is given by λ = 2π/β.
Our solution is not appropriate for unbounded space since the fields have a singularity

at θ = 0. To exclude the z-axis we add conducting cones as mentioned on page 105. This
results in a biconical structure that can be used as a transmission line or antenna.

To compute the power carried by a spherical wave, we use (4.381) and (4.382) to obtain
the time-average Poynting flux

Sav = 1

2
Re{Ěθ θ̂ × Ȟ∗

φ φ̂} = 1

2
r̂ Re

{
1

Z∗
T E M

}
E2

0

r2 sin2 θ
e−2αr .

The power flux is radial and has density inversely proportional to r2. The time-average
power carried by the wave through a spherical surface at r sandwiched between the cones
at θ1 and θ2 is

Pav(r) = 1

2
Re

{
1

Z∗
T E M

}
E2

0e−2αr
∫ 2π

0
dφ

∫ θ2

θ1

dθ

sin θ
= π F Re

{
1

Z∗
T E M

}
E2

0e−2αr

where

F = ln

[
tan(θ2/2)

tan(θ1/2)

]
. (4.385)



This is independent of r when α = 0. For lossy media the power decays exponentially
because of Joule heating.

We can write the phasor electric field in terms of the transverse gradient of a scalar
potential function !̌:

Ě(r, θ) = θ̂ Ě0
e− jkr

r sin θ
= −∇t!̌(θ)

where

!̌(θ) = −Ě0e− jkr ln

(
tan

θ

2

)
.

By ∇t we mean the gradient with the r -component excluded. It is easily verified that

Ě(r, θ) = −∇t!̌(θ) = −θ̂ Ě0
1

r

∂!̌(θ)

∂θ
= θ̂ Ě0

e− jkr

r sin θ
.

Because Ě and !̌ are related by the gradient, we can define a unique potential difference
between the two cones at any radial position r :

V̌ (r) = −
∫ θ2

θ1

Ě · dl = !̌(θ2) − !̌(θ1) = Ě0 Fe− jkr ,

where F is given in (4.385). The existence of a unique voltage difference is a property of
all transmission line structures operated in the TEM mode. We can similarly compute
the current flowing outward on the cone surfaces. The surface current on the cone at
θ = θ1 is J̌s = n̂ × Ȟ = θ̂ × φ̂Ȟφ = r̂Ȟφ , hence

Ǐ (r) =
∫ 2π

0
J̌s · r̂r sin θdφ = 2π

Ě0

ZT E M
e− jkr .

The ratio of voltage to current at any radius r is the characteristic impedance of the bi-
conical transmission line (or, equivalently, the input impedance of the biconical antenna):

Z = V̌ (r)

Ǐ (r)
= ZT E M

2π
F.

If the material between the cones is lossless (and thus µ̃ = µ and ε̃c = ε are real), this
becomes

Z = η

2π
F

where η = (µ/ε)1/2. The frequency independence of this quantity makes biconical anten-
nas (or their approximate representations) useful for broadband applications.

Finally, the time-average power carried by the wave may be found from

Pav(r) = 1

2
Re

{
V̌ (r) Ǐ ∗(r)

} = π F Re

{
1

Z∗
T E M

}
E2

0e−2αr .

The complex power relationship P = V I ∗ is also a property of TEM guided-wave struc-
tures.



4.11.9 Nonradiating sources

We showed in § 2.10.9 that not all time-varying sources produce electromagnetic waves.
In fact, a subset of localized sources known as nonradiating sources produce no field
external to the source region. Devaney and Wolf [54] have shown that all nonradiating
time-harmonic sources in an unbounded homogeneous medium can be represented in the
form

J̌nr (r) = −∇ × [∇ × f̌(r)
] + k2 f̌(r) (4.386)

where f̌ is any vector field that is continuous, has partial derivatives up to third order,
and vanishes outside some localized region Vs . In fact, Ě(r) = jω̌µf̌(r) is precisely the
phasor electric field produced by J̌nr (r). The reasoning is straightforward. Consider the
Helmholtz equation (4.203):

∇ × (∇ × Ě) − k2Ě = − jω̌µJ̌.

By (4.386) we have
(∇ × ∇ × −k2

) [
Ě − jω̌µf̌

] = 0.

Since f̌ is zero outside the source region it must vanish at infinity. Ě also vanishes at
infinity by the radiation condition, and thus the quantity Ě − jω̌µf̌ obeys the radiation
condition and is a unique solution to the Helmholtz equation throughout all space. Since
the Helmholtz equation is homogeneous we have

Ě − jω̌µf̌ = 0

everywhere; since f̌ is zero outside the source region, so is Ě (and so is Ȟ).
An interesting special case of nonradiating sources is

f̌ = ∇!̌

k2

so that

J̌nr = − (∇ × ∇ × −k2
) ∇!̌

k2
= ∇!̌.

Using !̌(r) = !̌(r), we see that this source describes the current produced by an oscillat-
ing spherical balloon of charge (cf., § 2.10.9). Radially-directed, spherically-symmetric
sources cannot produce uniform spherical waves, since these sources are of the nonradi-
ating type.

4.12 Interpretation of the spatial transform

Now that we understand the meaning of a Fourier transform on the time variable, let
us consider a single transform involving one of the spatial variables. For a transform over
z we shall use the notation

ψ z(x, y, kz, t) ↔ ψ(x, y, z, t).



Here the spatial frequency transform variable kz has units of m−1. The forward and
inverse transform expressions are

ψ z(x, y, kz, t) =
∫ ∞

−∞
ψ(x, y, z, t)e− jkz z dz, (4.387)

ψ(x, y, z, t) = 1

2π

∫ ∞

−∞
ψ z(x, y, kz, t)e jkz z dkz, (4.388)

by (A.1) and (A.2).
We interpret (4.388) much as we interpreted the temporal inverse transform (4.2).

Any vector component of the electromagnetic field can be decomposed into a continuous
superposition of elemental spatial terms e jkz z with weighting factors ψ z(x, y, kz, t). In
this case ψ z is the spatial frequency spectrum of ψ . The elemental terms are spatial
sinusoids along z with rapidity of variation described by kz .

As with the temporal transform, ψ z cannot be arbitrary since ψ must obey a scalar
wave equation such as (2.327). For instance, for a source-free region of free space we
must have (

∇2 − 1

c2

∂

∂t2

)
1

2π

∫ ∞

−∞
ψ z(x, y, kz, t)e jkz z dkz = 0.

Decomposing the Laplacian operator as ∇2 = ∇2
t +∂2/∂z2 and taking the derivatives into

the integrand, we have

1

2π

∫ ∞

−∞

[(
∇2

t − k2
z − 1

c2

∂2

∂t2

)
ψ z(x, y, kz, t)

]
e jkz z dkz = 0.

Hence (
∇2

t − k2
z − 1

c2

∂2

∂t2

)
ψ z(x, y, kz, t) = 0 (4.389)

by the Fourier integral theorem.
The elemental component e jkz z is spatially sinusoidal and occupies all of space. Because

such an element could only be created by a source that spans all of space, it is nonphysical
when taken by itself. Nonetheless it is often used to represent more complicated fields.
If the elemental spatial term is to be used alone, it is best interpreted physically when
combined with a temporal decomposition. That is, we consider a two-dimensional trans-
form, with transforms over both time and space. Then the time-domain representation
of the elemental component is

φ(z, t) = 1

2π

∫ ∞

−∞
e jkz ze jωt dω. (4.390)

Before attempting to compute this transform, we should note that if the elemental term
is to describe an EM field ψ in a source-free region, it must obey the homogeneous scalar
wave equation. Substituting (4.390) into the homogeneous wave equation we have

(
∇2 − 1

c2

∂2

∂t2

)
1

2π

∫ ∞

−∞
e jkz ze jωt dω = 0.

Differentiation under the integral sign gives

1

2π

∫ ∞

−∞

[(
−k2

z + ω2

c2

)
e jkz z

]
e jωt dω = 0



and thus

k2
z = ω2

c2
= k2.

Substitution of kz = k into (4.390) gives the time-domain representation of the elemental
component

φ(z, t) = 1

2π

∫ ∞

−∞
e jω(t+z/c) dω.

Finally, using the shifting theorem (A.3) along with (A.4), we have

φ(z, t) = δ
(

t + z

c

)
, (4.391)

which we recognize as a uniform plane wave propagating in the −z-direction with velocity
c. There is no variation in the directions transverse to the direction of propagation and
the surface describing a constant argument of the δ-function at any time t is a plane
perpendicular to the direction of propagation.

We can also consider the elemental spatial component in tandem with a single sinu-
soidal steady-state elemental component. The phasor representation of the elemental
spatial component is

φ̌(z) = e jkz z = e jkz .

This elemental term is a time-harmonic plane wave propagating in the −z-direction.
Indeed, multiplying by e jω̌t and taking the real part we get

φ(z, t) = cos(ω̌t + kz),

which is the sinusoidal steady-state analogue of (4.391).
Many authors choose to define the temporal and spatial transforms using differing

sign conventions. The temporal transform is defined as in (4.1) and (4.2), but the spatial
transform is defined through

ψ z(x, y, kz, t) =
∫ ∞

−∞
ψ(x, y, z, t)e jkz z dz, (4.392)

ψ(x, y, z, t) = 1

2π

∫ ∞

−∞
ψ z(x, y, kz, t)e− jkz z dkz . (4.393)

This employs a wave traveling in the positive z-direction as the elemental spatial com-
ponent, which is quite useful for physical interpretation. We shall adopt this notation in
§ 4.13. The drawback is that we must alter the formulas from standard Fourier transform
tables (replacing k by −k) to reflect this difference.

In the following sections we shall show how a spatial Fourier decomposition can be
used to solve for the electromagnetic fields in a source-free region of space. By employing
the spatial transform we may eliminate one or more spatial variables from Maxwell’s
equations, making the wave equation easier to solve. In the end we must perform an
inversion to return to the space domain. This may be difficult or impossible to do
analytically, requiring a numerical Fourier inversion.

4.13 Spatial Fourier decomposition of two-dimensional fields

Consider a homogeneous, source-free region characterized by ε̃(ω), µ̃(ω), and σ̃ (ω).
We seek z-independent solutions to the frequency-domain Maxwell’s equations, using



the Fourier transform to represent the spatial dependence. By § 4.11.2 a general two-
dimensional field may be decomposed into fields TE and TM to the z-direction. In the
TM case H̃z = 0, and Ẽz obeys the homogeneous scalar Helmholtz equation (4.208).
In the TE case Ẽz = 0, and H̃z obeys the homogeneous scalar Helmholtz equation.
Since each field component obeys the same equation, we let ψ̃(x, y, ω) represent either
Ẽz(x, y, ω) or H̃z(x, y, ω). Then ψ̃ obeys

(∇2
t + k2)ψ̃(x, y, ω) = 0 (4.394)

where ∇2
t is the transverse Laplacian (4.209) and k = ω(µ̃ε̃c)1/2 with ε̃c the complex

permittivity.
We may choose to represent ψ̃(x, y, ω) using Fourier transforms over one or both

spatial variables. For application to problems in which boundary values or boundary
conditions are specified at a constant value of a single variable (e.g., over a plane), one
transform suffices. For instance, we may know the values of the field in the y = 0 plane
(as we will, for example, when we solve the boundary value problems of § ??). Then
we may transform over x and leave the y variable intact so that we may substitute the
boundary values.

We adopt (4.392) since the result is more readily interpreted in terms of propagating
plane waves. Choosing to transform over x we have

ψ̃ x (kx , y, ω) =
∫ ∞

−∞
ψ̃(x, y, ω)e jkx x dx, (4.395)

ψ̃(x, y, ω) = 1

2π

∫ ∞

−∞
ψ x (kx , y, ω)e− jkx x dkx . (4.396)

For convenience in computation or interpretation of the inverse transform, we often
regard kx as a complex variable and perturb the inversion contour into the complex kx =
kxr + jkxi plane. The integral is not altered if the contour is not moved past singularities
such as poles or branch points. If the function being transformed has exponential (wave)
behavior, then a pole exists in the complex plane; if we move the inversion contour across
this pole, the inverse transform does not return the original function. We generally
indicate the desire to interpret kx as complex by indicating that the inversion contour is
parallel to the real axis but located in the complex plane at kxi = �:

ψ̃(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

ψ̃ x (kx , y, ω)e− jkx x dkx . (4.397)

Additional perturbations of the contour are allowed provided that the contour is not
moved through singularities.

As an example, consider the function

u(x) =
{

0, x < 0,

e− jkx , x > 0,
(4.398)

where k = kr + jki represents a wavenumber. This function has the form of a plane
wave propagating in the x-direction and is thus relevant to our studies. If the material
through which the wave is propagating is lossy, then ki < 0. The Fourier transform of
the function is

ux (kx ) =
∫ ∞

0
e− jkx e jkx x dx = 1

j (kx − k)

[
e j (kxr −kr )x e−(kxi −ki )x

] ∣∣∣∣
∞

0

.



Figure 4.27: Inversion contour for evaluating the spectral integral for a plane wave.

The integral converges if kxi > ki , and the transform is

ux (kx ) = − 1

j (kx − k)
.

Since u(x) is an exponential function, ux (kx ) has a pole at kx = k as anticipated.
To compute the inverse transform we use (4.397):

u(x) = 1

2π

∞+ j�∫
−∞+ j�

[
− 1

j (kx − k)

]
e− jkx x dkx . (4.399)

We must be careful to choose � in such a way that all values of kx along the inversion
contour lead to a convergent forward Fourier transform. Since we must have kxi > ki ,
choosing � > ki ensures proper convergence. This gives the inversion contour shown in
Figure 4.27, a special case of which is the real axis. We compute the inversion integral
using contour integration as in § A.1. We close the contour in the complex plane and use
Cauchy’s residue theorem (A.14) For x > 0 we take 0 > � > ki and close the contour
in the lower half-plane using a semicircular contour CR of radius R. Then the closed
contour integral is equal to −2π j times the residue at the pole kx = k. As R → ∞ we
find that kxi → −∞ at all points on the contour CR . Thus the integrand, which varies as
ekxi x , vanishes on CR and there is no contribution to the integral. The inversion integral
(4.399) is found from the residue at the pole:

u(x) = (−2π j)
1

2π
Reskx =k

[
− 1

j (kx − k)
e− jkx x

]
.

Since the residue is merely je− jkx we have u(x) = e− jkx . When x < 0 we choose � > 0
and close the contour along a semicircle CR of radius R in the upper half-plane. Again
we find that on CR the integrand vanishes as R → ∞, and thus the inversion integral
(4.399) is given by 2π j times the residues of the integrand at any poles within the closed
contour. This time, however, there are no poles enclosed and thus u(x) = 0. We have
recovered the original function (4.398) for both x > 0 and x < 0. Note that if we had



erroneously chosen � < ki we would not have properly enclosed the pole and would have
obtained an incorrect inverse transform.

Now that we know how to represent the Fourier transform pair, let us apply the
transform to solve (4.394). Our hope is that by representing ψ̃ in terms of a spatial
Fourier integral we will make the equation easier to solve. We have

(∇2
t + k2)

1

2π

∞+ j�∫
−∞+ j�

ψ̃ x (kx , y, ω)e− jkx x dkx = 0.

Differentiation under the integral sign with subsequent application of the Fourier integral
theorem implies that ψ̃ must obey the second-order harmonic differential equation

[
d2

dy2
+ k2

y

]
ψ̃ x (kx , y, ω) = 0

where we have defined the dependent parameter ky = kyr + jkyi through k2
x + k2

y = k2.
Two independent solutions to the differential equation are e∓ jky y and thus

ψ̃(kx , y, ω) = A(kx , ω)e∓ jky y .

Substituting this into the inversion integral, we have the solution to the Helmholtz equa-
tion:

ψ̃(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A(kx , ω)e− jkx x e∓ jky y dkx . (4.400)

If we define the wave vector k = x̂kx ± ŷky , we can also write the solution in the form

ψ̃(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A(kx , ω)e− jk·ρ dkx (4.401)

where ρ = x̂x + ŷy is the two-dimensional position vector.
The solution (4.401) has an important physical interpretation. The exponential term

looks exactly like a plane wave with its wave vector lying in the xy-plane. For lossy media
the plane wave is nonuniform, and the surfaces of constant phase may not be aligned
with the surfaces of constant amplitude (see § 4.11.4). For the special case of a lossless
medium we have ki → 0 and can let � → 0 as long as � > ki . As we perform the inverse
transform integral over kx from −∞ to ∞ we will encounter both the condition k2

x > k2

and k2
x ≤ k2. For k2

x ≤ k2 we have

e− jkx x e∓ jky y = e− jkx x e∓ j
√

k2−k2
x y

where we choose the upper sign for y > 0 and the lower sign for y < 0 to ensure that the
waves propagate in the ±y-direction, respectively. Thus, in this regime the exponential
represents a propagating wave that travels into the half-plane y > 0 along a direction
which depends on kx , making an angle ξ with the x-axis as shown in Figure 4.28. For kx in
[−k, k], every possible wave direction is covered, and thus we may think of the inversion
integral as constructing the solution to the two-dimensional Helmholtz equation from a
continuous superposition of plane waves. The amplitude of each plane wave component
is given by A(kx , ω), which is often called the angular spectrum of the plane waves and



Figure 4.28: Propagation behavior of the angular spectrum for (a) k2
x ≤ k2, (b) k2

x > k2.

is determined by the values of the field over the boundaries of the solution region. But
this is not the whole picture. The inverse transform integral also requires values of kx in
the intervals [−∞, k] and [k, ∞]. Here we have k2

x > k2 and thus

e− jkx x e− jky y = e− jkx x e∓
√

k2
x −k2 y,

where we choose the upper sign for y > 0 and the lower sign for y < 0 to ensure
that the field decays along the y-direction. In these regimes we have an evanescent wave,
propagating along x but decaying along y, with surfaces of constant phase and amplitude
mutually perpendicular (Figure 4.28). As kx ranges out to ∞, evanescent waves of all
possible decay constants also contribute to the plane-wave superposition.

We may summarize the plane-wave contributions by letting k = x̂kx + ŷky = kr + jki

where

kr =
{

x̂kx ± ŷ
√

k2 − k2
x , k2

x < k2,

x̂kx , k2
x > k2,

ki =
{

0, k2
x < k2,

∓ŷ
√

k2
x − k2, k2

x > k2,

where the upper sign is used for y > 0 and the lower sign for y < 0.
In many applications, including the half-plane example considered later, it is useful to

write the inversion integral in polar coordinates. Letting

kx = k cos ξ, ky = ±k sin ξ,

where ξ = ξr + jξi is a new complex variable, we have k · ρ = kx cos ξ ± ky sin ξ and
dkx = −k sin ξ dξ . With this change of variables (4.401) becomes

ψ̃(x, y, ω) = k

2π

∫
C

A(k cos ξ, ω)e− jkx cos ξ e± jky sin ξ sin ξ dξ. (4.402)

Since A(kx , ω) is a function to be determined, we may introduce a new function

f (ξ, ω) = k

2π
A(kx , ω) sin ξ



Figure 4.29: Inversion contour for the polar coordinate representation of the inverse
Fourier transform.

so that (4.402) becomes

ψ̃(x, y, ω) =
∫

C
f (ξ, ω)e− jkρ cos(φ±ξ) dξ (4.403)

where x = ρ cos φ, y = ρ sin φ, and where the upper sign corresponds to 0 < φ < π

(y > 0) while the lower sign corresponds to π < φ < 2π (y < 0). In these expressions
C is a contour in the complex ξ -plane to be determined. Values along this contour must
produce identical values of the integrand as did the values of kx over [−∞, ∞] in the
original inversion integral. By the identities

cos z = cos(u + jv) = cos u cosh v − j sin u sinh v,

sin z = sin(u + jv) = sin u cosh v + j cos u sinh v,

we find that the contour shown in Figure 4.29 provides identical values of the integrand
(Problem 4.24). The portions of the contour [0 + j∞,0] and [−π, −π − j∞] together
correspond to the regime of evanescent waves (k < kx < ∞ and −∞ < kx < k), while
the segment [0, −π ] along the real axis corresponds to −k < kx < k and thus describes
contributions from propagating plane waves. In this case ξ represents the propagation
angle of the waves.

4.13.1 Boundary value problems using the spatial Fourier represen-
tation

The field of a line source. As a first example we calculate the Fourier representation
of the field of an electric line source. Assume a uniform line current Ĩ (ω) is aligned along
the z-axis in a medium characterized by complex permittivity ε̃c(ω) and permeability
µ̃(ω). We separate space into two source-free portions, y > 0 and y < 0, and write the
field in each region in terms of an inverse spatial Fourier transform. Then, by applying
the boundary conditions in the y = 0 plane, we solve for the angular spectrum of the
line source.



Since this is a two-dimensional problem we may decompose the fields into TE and TM
sets. For an electric line source we need only the TM set, and write Ez as a superposition
of plane waves using (4.400). For y≷0 we represent the field in terms of plane waves
traveling in the ±y-direction. Thus

Ẽz(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A+(kx , ω)e− jkx x e− jky y dkx , y > 0,

Ẽz(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A−(kx , ω)e− jkx x e+ jky y dkx , y < 0.

The transverse magnetic field may be found from the axial electric field using (4.212).
We find

H̃x = − 1

jωµ̃

∂ Ẽz

∂y
(4.404)

and thus

H̃x (x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A+(kx , ω)

[
ky

ωµ̃

]
e− jkx x e− jky y dkx , y > 0,

H̃x (x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A−(kx , ω)

[
− ky

ωµ̃

]
e− jkx x e+ jky y dkx , y < 0.

To find the spectra A±(kx , ω) we apply the boundary conditions at y = 0. Since tangential
Ẽ is continuous we have, after combining the integrals,

1

2π

∞+ j�∫
−∞+ j�

[
A+(kx , ω) − A−(kx , ω)

]
e− jkx x dkx = 0,

and hence by the Fourier integral theorem

A+(kx , ω) − A−(kx , ω) = 0. (4.405)

We must also apply n̂12 × (H̃1 − H̃2) = J̃s . The line current may be written as a surface
current density using the δ-function, giving

− [
H̃x (x, 0+, ω) − H̃x (x, 0−, ω)

] = Ĩ (ω)δ(x).

By (A.4)

δ(x) = 1

2π

∫ ∞

−∞
e− jkx x dkx .

Then, substituting for the fields and combining the integrands, we have

1

2π

∞+ j�∫
−∞+ j�

[
A+(kx , ω) + A−(kx , ω) + ωµ̃

ky
Ĩ (ω)

]
e− jkx x = 0,



hence

A+(kx , ω) + A−(kx , ω) = −ωµ̃

ky
Ĩ (ω). (4.406)

Solution of (4.405) and (4.406) gives the angular spectra

A+(kx , ω) = A−(kx , ω) = −ωµ̃

2ky
Ĩ (ω).

Substituting this into the field expressions and combining the cases for y > 0 and y < 0,
we find

Ẽz(x, y, ω) = −ωµ̃ Ĩ (ω)

2π

∞+ j�∫
−∞+ j�

e− jky |y|

2ky
e− jkx x dkx = − jωµ̃ Ĩ (ω)G̃(x, y|0, 0; ω). (4.407)

Here G̃ is the spectral representation of the two-dimensional Green’s function first found
in § 4.11.7, and is given by

G̃(x, y|x ′, y′; ω) = 1

2π j

∞+ j�∫
−∞+ j�

e− jky |y−y′|

2ky
e− jkx (x−x ′) dkx . (4.408)

By duality we have

H̃z(x, y, ω) = −ωε̃c Ĩm(ω)

2π

∞+ j�∫
−∞+ j�

e− jky |y|

2ky
e− jkx x dkx = − jωε̃c Ĩm(ω)G(x, y|0, 0; ω) (4.409)

for a magnetic line current Ĩm(ω) on the z-axis.
Note that since the earlier expression (4.346) should be equivalent to (4.408), we have

the well known identity [33]

1

π

∞+ j�∫
−∞+ j�

e− jky |y|

ky
e− jkx x dkx = H (2)

0 (kρ).

We have not yet specified the contour appropriate for calculating the inverse transform
(4.407). We must be careful because the denominator of (4.407) has branch points at
ky = √

k2 − k2
x = 0, or equivalently, kx = ±k = ±(kr + jki ). For lossy materials we have

ki < 0 and kr > 0, so the branch points appear as in Figure 4.30. We may take the branch
cuts outward from these points, and thus choose the inversion contour to lie between the
branch points so that the branch cuts are not traversed. This requires ki < � < −ki . It
is natural to choose � = 0 and use the real axis as the inversion contour. We must be
careful, though, when extending these arguments to the lossless case. If we consider the
lossless case to be the limit of the lossy case as ki → 0, we find that the branch points
migrate to the real axis and thus lie on the inversion contour. We can eliminate this
problem by realizing that the inversion contour may be perturbed without affecting the
value of the integral, as long as it is not made to pass through the branch cuts. If we
perturb the inversion contour as shown in Figure 4.30, then as ki → 0 the branch points
do not fall on the contour.



Figure 4.30: Inversion contour in complex kx -plane for a line source. Dotted arrow shows
migration of branch points to real axis as loss goes to zero.

There are many interesting techniques that may be used to compute the inversion
integral appearing in (4.407) and in the other expressions we shall obtain in this section.
These include direct real-axis integration and closed contour methods that use Cauchy’s
residue theorem to capture poles of the integrand (which often describe the properties
of waves guided by surfaces). Often it is necessary to integrate around the branch cuts
in order to meet the conditions for applying the residue theorem. When the observation
point is far from the source we may use the method of steepest descents to obtain
asymptotic forms for the fields. The interested reader should consult Chew [33], Kong
[101], or Sommerfeld [184].

Field of a line source above an interface. Consider a z-directed electric line current
located at y = h within a medium having parameters µ̃1 (ω) and ε̃c

1 (ω). The y = 0 plane
separates this region from a region having parameters µ̃2 (ω) and ε̃c

2 (ω). See Figure 4.31.
The impressed line current source creates an electromagnetic field that induces secondary
polarization and conduction currents in both regions. This current in turn produces a
secondary field that adds to the primary field of the line source to satisfy the boundary
conditions at the interface. We would like to solve for the secondary field and give its
sources an image interpretation.

Since the fields are z-independent we may decompose the fields into sets TE and TM
to z. For a z-directed impressed source there is a z-component of Ẽ, but no z-component
of H̃; hence the fields are entirely specified by the TM set. The impressed source is
unaffected by the secondary field, and we may represent the impressed electric field
using (4.407):

Ẽ i
z(x, y, ω) = −ωµ̃1 Ĩ (ω)

2π

∞+ j�∫
−∞+ j�

e− jky1|y−h|

2ky1
e− jkx x dkx , y ≥ 0 (4.410)



Figure 4.31: Geometry of a z-directed line source above an interface between two material
regions.

where ky1 =
√

k2
1 − k2

x and k1 = ω(µ̃1ε̃
c
1)

1/2. From (4.404) we find that

H̃ i
x = − 1

jωµ̃1

∂ Ẽ i
z

∂y
= Ĩ (ω)

2π

∞+ j�∫
−∞+ j�

e jky1(y−h)

2
e− jkx x dkx , 0 ≤ y < h.

The scattered field obeys the homogeneous Helmholtz equation for all y > 0, and thus
may be written using (4.400) as a superposition of upward-traveling waves:

Ẽ s
z1(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A1(kx , ω)e− jky1 ye− jkx x dkx ,

H̃ s
x1(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

ky1

ωµ̃1
A1(kx , ω)e− jky1 ye− jkx x dkx .

Similarly, in region 2 the scattered field may be written as a superposition of downward-
traveling waves:

Ẽ s
z2(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A2(kx , ω)e jky2 ye− jkx x dkx ,

H̃ s
x2(x, y, ω) = − 1

2π

∞+ j�∫
−∞+ j�

ky2

ωµ̃2
A2(kx , ω)e jky2 ye− jkx x dkx ,

where ky2 =
√

k2
2 − k2

x and k2 = ω(µ̃2ε̃
c
2)

1/2.
We can solve for the angular spectra A1 and A2 by applying the boundary conditions

at the interface between the two media. From the continuity of total tangential electric
field we find that

1

2π

∞+ j�∫
−∞+ j�

[
−ωµ̃1 Ĩ (ω)

2ky1
e− jky1h + A1(kx , ω) − A2(kx , ω)

]
e− jkx x dkx = 0,



hence by the Fourier integral theorem

A1(kx , ω) − A2(kx , ω) = ωµ̃1 Ĩ (ω)

2ky1
e− jky1h .

The boundary condition on the continuity of H̃x yields similarly

− Ĩ (ω)

2
e− jky1h = ky1

ωµ̃1
A1(kx , ω) + ky2

ωµ̃2
A2(kx , ω).

We obtain

A1(kx , ω) = ωµ̃1 Ĩ (ω)

2ky1
RT M(kx , ω)e− jky1h,

A2(kx , ω) = −ωµ̃2 Ĩ (ω)

2ky2
TT M(kx , ω)e− jky1h .

Here RT M and TT M = 1 + RT M are reflection and transmission coefficients given by

RT M(kx , ω) = µ̃1ky2 − µ̃2ky1

µ̃1ky2 + µ̃2ky1
,

TT M(kx , ω) = 2µ̃1ky2

µ̃1ky2 + µ̃2ky1
.

These describe the reflection and transmission of each component of the plane-wave
spectrum of the impressed field, and thus depend on the parameter kx . The scattered
fields are

Ẽ s
z1(x, y, ω) = ωµ̃1 Ĩ (ω)

2π

∞+ j�∫
−∞+ j�

e− jky1(y+h)

2ky1
RT M(kx , ω)e− jkx x dkx , (4.411)

Ẽ s
z2(x, y, ω) = −ωµ̃2 Ĩ (ω)

2π

∞+ j�∫
−∞+ j�

e jky2(y−hky1/ky2)

2ky2
TT M(kx , ω)e− jkx x dkx . (4.412)

We may now obtain the field produced by an electric line source above a perfect
conductor. Letting σ̃2 → ∞ we have ky2 =

√
k2

2 − k2
x → ∞ and

RT M → 1, TT M → 2.

With these, the scattered fields (4.411) and (4.412) become

Ẽ s
z1(x, y, ω) = ωµ̃1 Ĩ (ω)

2π

∞+ j�∫
−∞+ j�

e− jky1(y+h)

2ky1
e− jkx x dkx , (4.413)

Ẽ s
z2(x, y, ω) = 0. (4.414)

Comparing (4.413) to (4.410) we see that the scattered field is exactly the same as that
produced by a line source of amplitude − Ĩ (ω) located at y = −h. We call this line source
the image of the impressed source, and say that the problem of two line sources located



Figure 4.32: Geometry for scattering of a TM plane wave by a conducting half-plane.

symmetrically on the y-axis is equivalent for y > 0 to the problem of the line source
above a ground plane. The total field is the sum of the impressed and scattered fields:

Ẽz(x, y, ω) = −ωµ̃1 Ĩ (ω)

2π

∞+ j�∫
−∞+ j�

e− jky1|y−h| − e− jky1(y+h)

2ky1
e− jkx x dkx , y ≥ 0.

We can write this in another form using the Hankel-function representation of the line
source (4.345):

Ẽz(x, y, ω) = −ωµ̃

4
Ĩ (ω)H (2)

0 (k|ρ − ŷh|) + ωµ̃

4
Ĩ (ω)H (2)

0 (k|ρ + ŷh|)

where |ρ ± ŷh| = |ρρ̂ ± ŷh| =
√

x2 + (y ± h)2.
Interpreting the general case in terms of images is more difficult. Comparing (4.411)

and (4.412) with (4.410), we see that each spectral component of the field in region 1 has
the form of an image line source located at y = −h in region 2, but that the amplitude
of the line source, RT M Ĩ , depends on kx . Similarly, the field in region 2 is composed of
spectral components that seem to originate from line sources with amplitudes −TT M Ĩ
located at y = hky1/ky2 in region 1. In this case the amplitude and position of the image
line source producing a spectral component are both dependent on kx .

The field scattered by a half-plane. Consider a thin planar conductor that occupies
the half-plane y = 0, x > 0. We assume the half-plane lies within a slightly lossy medium
having parameters µ̃(ω) and ε̃c(ω), and may consider the case of free space as a lossless
limit. The half-plane is illuminated by an impressed uniform plane wave with a z-
directed electric field (Figure 4.32). The primary field induces a secondary current on
the conductor and this in turn produces a secondary field. The total field must obey the
boundary conditions at y = 0.

Because the z-directed incident field induces a z-directed secondary current, the fields
may be described entirely in terms of a TM set. The impressed plane wave may be
written as

Ẽi (r, ω) = ẑẼ0(ω)e jk(x cos φ0+y sin φ0)



where φ0 is the angle between the incident wave vector and the x-axis. By (4.223) we
also have

H̃i (r, ω) = Ẽ0(ω)

η
(ŷ cos φ0 − x̂ sin φ0)e

jk(x cos φ0+y sin φ0).

The scattered fields may be written in terms of the Fourier transform solution to the
Helmholtz equation. It is convenient to use the polar coordinate representation (4.403)
to develop the necessary equations. Thus, for the scattered electric field we can write

Ẽ s
z (x, y, ω) =

∫
C

f (ξ, ω)e− jkρ cos(φ±ξ) dξ. (4.415)

By (4.404) the x-component of the magnetic field is

H̃ s
x (x, y, ω) = − 1

jωµ̃

∂ Ẽ s
z

∂y
= − 1

jωµ̃

∫
C

f (ξ, ω)
∂

∂y

(
e− jkx cos ξ e± jky sin ξ

)

= − 1

jωµ̃
(± jk)

∫
C

f (ξ, ω) sin ξe− jkρ cos(φ±ξ) dξ.

To find the angular spectrum f (ξ, ω) and ensure uniqueness of solution, we must apply
the boundary conditions over the entire y = 0 plane. For x > 0 where the conductor
resides, the total tangential electric field must vanish. Setting the sum of the incident
and scattered fields to zero at φ = 0 we have∫

C
f (ξ, ω)e− jkx cos ξ dξ = −Ẽ0e jkx cos φ0 , x > 0. (4.416)

To find the boundary condition for x < 0 we note that by symmetry Ẽ s
z is even about

y = 0 while H̃ s
x , as the y-derivative of Ẽ s

z , is odd. Since no current can be induced in the
y = 0 plane for x < 0, the x-directed scattered magnetic field must be continuous and
thus equal to zero there. Hence our second condition is∫

C
f (ξ, ω) sin ξe− jkx cos ξ dξ = 0, x < 0. (4.417)

Now that we have developed the two equations that describe f (ξ, ω), it is convenient
to return to a rectangular-coordinate-based spectral integral to analyze them. Writing
ξ = cos−1(kx/k) we have

d

dξ
(k cos ξ) = −k sin ξ = dkx

dξ

and

dξ = − dkx

k sin ξ
= − dkx

k
√

1 − cos2 ξ
= − dkx√

k2 − k2
x

.

Upon substitution of these relations, the inversion contour returns to the real kx axis
(which may then be perturbed by j�). Thus, (4.416) and (4.417) may be written as

∞+ j�∫
−∞+ j�

f
(
cos−1 kx

k

)
√

k2 − k2
x

e− jkx x dkx = −Ẽ0e jkx0x , x > 0, (4.418)

∞+ j�∫
−∞+ j�

f

(
cos−1 kx

k

)
e− jkx x dkx = 0, x < 0, (4.419)



Figure 4.33: Integration contour used to evaluate the function F(x).

where kx0 = k cos φ0. Equations (4.418) and (4.419) comprise dual integral equations for
f . We may solve these using an approach called the Wiener–Hopf technique.

We begin by considering (4.419). If we close the integration contour in the upper
half-plane using a semicircle CR of radius R where R → ∞, we find that the contribution
from the semicircle is

lim
R→∞

∫
CR

f

(
cos−1 kx

k

)
e−|x |kxi e j |x |kxr dkx = 0

since x < 0. This assumes that f does not grow exponentially with R. Thus
∮

C
f

(
cos−1 kx

k

)
e− jkx x dkx = 0

where C now encloses the portion of the upper half-plane kxi > �. By Morera’s theorem
[110],%citeLePage, the above relation holds if f is regular (contains no singularities
or branch points) in this portion of the upper half-plane. We shall assume this and
investigate the other properties of f that follow from (4.418).

In (4.418) we have an integral equated to an exponential function. To understand the
implications of the equality it is helpful to write the exponential function as an integral
as well. Consider the integral

F(x) = 1

2 jπ

∞+ j�∫
−∞+ j�

h(kx )

h(−kx0)

1

kx + kx0
e− jkx x dkx .

Here h(kx ) is some function regular in the region kxi < �, with h(kx ) → 0 as kx → ∞.
If we choose � so that −kxi > � > −kxi cos θ0 and close the contour with a semicircle in
the lower half-plane (Figure 4.33), then the contribution from the semicircle vanishes for
large radius and thus, by Cauchy’s residue theorem, F(x) = −e jkx0x . Using this (4.418)
can be written as

∞+ j�∫
−∞+ j�

[
f
(
cos−1 kx

k

)
√

k2 − k2
x

− Ẽ0

2 jπ

h(kx )

h(−kx0)

1

kx + kx0

]
e− jkx x dkx = 0.



Setting the integrand to zero and using
√

k2 − k2
x = √

k − kx
√

k + kx , we have

f
(
cos−1 kx

k

)
√

k − kx
(kx + kx0) = Ẽ0

2 jπ

√
k + kx

h(kx )

h(−kx0)
. (4.420)

The left member has a branch point at kx = k while the right member has a branch point
at kx = −k. If we choose the branch cuts as in Figure 4.30 then since f is regular in
the region kxi > � the left side of (4.420) is regular there. Also, since h(kx ) is regular in
the region kxi < �, the right side is regular there. We assert that since the two sides are
equal, both sides must be regular in the entire complex plane. By Liouville’s theorem
[35] if a function is entire (regular in the entire plane) and bounded, then it must be
constant. So

f
(
cos−1 kx

k

)
√

k − kx
(kx + kx0) = Ẽ0

2 jπ

√
k + kx

h(kx )

h(−kx0)
= constant.

We may evaluate the constant by inserting any value of kx . Using kx = −kx0 on the right
we find that

f
(
cos−1 kx

k

)
√

k − kx
(kx + kx0) = Ẽ0

2 jπ

√
k − kx0.

Substituting kx = k cos ξ and kx0 = k cos φ0 we have

f (ξ) = Ẽ0

2 jπ

√
1 − cos φ0

√
1 − cos ξ

cos ξ + cos φ0
.

Since sin(x/2) = √
(1 − cos x)/2, we may also write

f (ξ) = Ẽ0

jπ

sin φ0

2 sin ξ

2

cos ξ + cos φ0
.

Finally, substituting this into (4.415) we have the spectral representation for the field
scattered by a half-plane:

Ẽ s
z (ρ, φ, ω) = Ẽ0(ω)

jπ

∫
C

sin φ0

2 sin ξ

2

cos ξ + cos φ0
e− jkρ cos(φ±ξ) dξ. (4.421)

The scattered field inversion integral in (4.421) may be rewritten in such a way as to
separate geometrical optics (plane-wave) terms from diffraction terms. The diffraction
terms may be written using standard functions (modified Fresnel integrals) and for large
values of ρ appear as cylindrical waves emanating from a line source at the edge of the
half-plane. Interested readers should see James [92] for details.

4.14 Periodic fields and Floquet’s theorem

In several practical situations EM waves interact with, or are radiated by, structures
spatially periodic along one or more directions. Periodic symmetry simplifies field com-
putation, since boundary conditions need only be applied within one period, or cell, of
the structure. Examples of situations that lead to periodic fields include the guiding of
waves in slow-wave structures such as helices and meander lines, the scattering of plane
waves from gratings, and the radiation of waves by antenna arrays. In this section we
will study the representation of fields with infinite periodicity as spatial Fourier series.



4.14.1 Floquet’s theorem

Consider an environment having spatial periodicity along the z-direction. In this envi-
ronment the frequency-domain field may be represented in terms of a periodic function
ψ̃p that obeys

ψ̃p(x, y, z ± mL , ω) = ψ̃p(x, y, z, ω)

where m is an integer and L is the spatial period. According to Floquet’s theorem, if ψ̃

represents some vector component of the field, then the field obeys

ψ̃(x, y, z, ω) = e− jκzψ̃p(x, y, z, ω). (4.422)

Here κ = β − jα is a complex wavenumber describing the phase shift and attenuation of
the field between the various cells of the environment. The phase shift and attenuation
may arise from a wave propagating through a lossy periodic medium (see example below)
or may be impressed by a plane wave as it scatters from a periodic surface, or may be
produced by the excitation of an antenna array by a distributed terminal voltage. It is
also possible to have κ = 0 as when, for example, a periodic antenna array is driven with
all elements in phase.

Because ψ̃p is periodic we may expand it in a Fourier series

ψ̃p(x, y, z, ω) =
∞∑

n=−∞
ψ̃n(x, y, ω)e− j2πnz/L

where the ψ̃n are found by orthogonality:

ψ̃n(x, y, ω) = 1

L

∫ L/2

−L/2
ψ̃p(x, y, z, ω)e j2πnz/L dz.

Substituting this into (4.422), we have a representation for the field as a Fourier series:

ψ̃(x, y, z, ω) =
∞∑

n=−∞
ψ̃n(x, y, ω)e− jκn z

where

κn = β + 2πn/L + jα = βn − jα.

We see that within each cell the field consists of a number of constituents called space
harmonics or Hartree harmonics, each with the property of a propagating or evanescent
wave. Each has phase velocity

vpn = ω

βn
= ω

β + 2πn/L
.

A number of the space harmonics have phase velocities in the +z-direction while the re-
mainder have phase velocities in the −z-direction, depending on the value of β. However,
all of the space harmonics have the same group velocity

vgn = dω

dβ
=

(
dβn

dω

)−1

=
(

dβ

dω

)−1

= vg.

Those space harmonics for which the group and phase velocities are in opposite directions
are referred to as backward waves, and form the basis of operation of microwave tubes
known as “backward wave oscillators.”



Figure 4.34: Geometry of a periodic stratified medium with each cell consisting of two
material layers.

4.14.2 Examples of periodic systems

Plane-wave propagation within a periodically stratified medium. As an exam-
ple of wave propagation in a periodic structure, let us consider a plane wave propagating
within a layered medium consisting of two material layers repeated periodically as shown
in Figure 4.34. Each section of two layers is a cell within the periodic medium, and we
seek an expression for the propagation constant within the cells, κ.

We developed the necessary tools for studying plane waves within an arbitrary layered
medium in § 4.11.5, and can apply them to the case of a periodic medium. In equations
(4.305) and (4.306) we have expressions for the wave amplitudes in any region in terms
of the amplitudes in the region immediately preceding it. We may write these in matrix
form by eliminating one of the variables an or bn from each equation:

[
T (n)

11 T (n)
12

T (n)
21 T (n)

22

] [
an+1

bn+1

]
=

[
an

bn

]
(4.423)

where

T (n)
11 = 1

2

Zn + Zn−1

Zn
P̃−1

n ,

T (n)
12 = 1

2

Zn − Zn−1

Zn
P̃n,

T (n)
21 = 1

2

Zn − Zn−1

Zn
P̃−1

n ,

T (n)
22 = 1

2

Zn + Zn−1

Zn
P̃n.

Here Zn represents Zn⊥ for perpendicular polarization and Zn‖ for parallel polariza-
tion. The matrix entries are often called transmission parameters, and are similar to
the parameters used to describe microwave networks, except that in network theory the
wave amplitudes are often normalized using the wave impedances.We may use these



parameters to describe the cascaded system of two layers:[
T (n)

11 T (n)
12

T (n)
21 T (n)

22

] [
T (n+1)

11 T (n+1)
12

T (n+1)
21 T (n+1)

22

] [
an+2

bn+2

]
=

[
an

bn

]
.

Since for a periodic layered medium the wave amplitudes should obey (4.422), we have[
T11 T12

T21 T22

] [
an+2

bn+2

]
=

[
an

bn

]
= e jκL

[
an+2

bn+2

]
(4.424)

where L = �n + �n+1 is the period of the structure and
[

T11 T12

T21 T22

]
=

[
T (n)

11 T (n)
12

T (n)
21 T (n)

22

] [
T (n+1)

11 T (n+1)
12

T (n+1)
21 T (n+1)

22

]
.

Equation (4.424) is an eigenvalue equation for κ and can be rewritten as[
T11 − e jκL T12

T21 T22 − e jκL

] [
an+2

bn+2

]
=

[
0
0

]
.

This equation only has solutions when the determinant of the matrix vanishes. Expansion
of the determinant gives

T11T22 − T12T21 − e jκL(T11 + T22) + e j2κL = 0. (4.425)

The first two terms are merely

T11T22 − T12T21 =
∣∣∣∣ T11 T12

T21 T22

∣∣∣∣ =
∣∣∣∣ T (n)

11 T (n)
12

T (n)
21 T (n)

22

∣∣∣∣
∣∣∣∣ T (n+1)

11 T (n+1)
12

T (n+1)
21 T (n+1)

22

∣∣∣∣ .
Since we can show that ∣∣∣∣ T (n)

11 T (n)
12

T (n)
21 T (n)

22

∣∣∣∣ = Zn−1

Zn
,

we have

T11T22 − T12T21 = Zn−1

Zn

Zn

Zn+1
= 1

where we have used Zn−1 = Zn+1 because of the periodicity of the medium. With this,
(4.425) becomes

cos κL = T11 + T22

2
.

Finally, computing the matrix product and simplifying to find T11 + T22, we have

cos κL = cos(kz,n�n) cos(kk,n−1�n−1) −
− 1

2

(
Zn−1

Zn
+ Zn

Zn−1

)
sin(kz,n�n) sin(kz,n−1�n−1) (4.426)

or equivalently

cos κL = 1

4

(Zn−1 + Zn)
2

Zn Zn−1
cos(kz,n�n + kz,n−1�n−1) −

− 1

4

(Zn−1 − Zn)
2

Zn Zn−1
cos(kz,n�n − kz,n−1�n−1). (4.427)



Note that both ±κ satisfy this equation, allowing waves with phase front propagation in
both the ±z-directions.

We see in (4.426) that even for lossless materials certain values of ω result in cos κL > 1,
causing κL to be imaginary and producing evanescent waves. We refer to the frequency
ranges over which cos κL > 1 as stopbands, and those over which cos κL < 1 as passbands.
This terminology is used in filter analysis and, indeed, waves propagating in periodic
media experience effects similar to those experienced by signals passing through filters.

Field produced by an infinite array of line sources. As a second example, consider
an infinite number of z-directed line sources within a homogeneous medium of complex
permittivity ε̃c(ω) and permeability µ̃(ω), aligned along the x-axis with separation L
such that

J̃(r, ω) =
∞∑

n=−∞
ẑ Ĩnδ(y)δ(x − nL).

The current on each element is allowed to show a progressive phase shift and attenua-
tion. (Such progression may result from a particular method of driving primary currents
on successive elements, or, if the currents are secondary, from their excitation by an
impressed field such as a plane wave.) Thus we write

Ĩn = Ĩ0e− jκnL (4.428)

where κ is a complex constant.
We may represent the field produced by the source array as a superposition of the fields

of individual line sources found earlier. In particular we may use the Hankel function
representation (4.345) or the Fourier transform representation (4.407). Using the latter
we have

Ẽz(x, y, ω) =
∞∑

n=−∞
e− jκnL


−ωµ̃ Ĩ0(ω)

2π

∞+ j�∫
−∞+ j�

e− jky |y|

2ky
e− jkx (x−nL) dkx


 .

Interchanging the order of summation and integration we have

Ẽz(x, y, ω) = −ωµ̃ Ĩ0(ω)

2π

∞+ j�∫
−∞+ j�

e− jky |y|

2ky

[ ∞∑
n=−∞

e jn(kx −κ)L

]
e− jkx x dkx . (4.429)

We can rewrite the sum in this expression using Poisson’s sum formula [142].
∞∑

n=−∞
f (x − nD) = 1

D

∞∑
n=−∞

F(nk0)e
jnk0x ,

where k0 = 2π/D. Letting f (x) = δ(x − x0) in that expression we have
∞∑

n=−∞
δ

(
x − x0 − n

2π

L

)
= L

2π

∞∑
n=−∞

e jnL(x−x0).

Substituting this into (4.429) we have

Ẽz(x, y, ω) = −ωµ̃ Ĩ0(ω)

2π

∞+ j�∫
−∞+ j�

e− jky |y|

2ky

[ ∞∑
n=−∞

2π

L
δ

(
kx − κ − n

2π

L

)]
e− jkx x dkx .



Carrying out the integral we replace kx with κn = κ + 2nπ/L, giving

Ẽz(x, y, ω) = −ωµ̃ Ĩ0(ω)

∞∑
n=−∞

e− jky,n |y|e− jκn x

2Lky,n

= − jωµ̃ Ĩ0(ω)G̃∞(x, y|0, 0, ω) (4.430)

where ky,n = √
k2 − κ2

n , and where

G̃∞(x, y|x ′, y′, ω) =
∞∑

n=−∞

e− jky,n |y−y′|e− jκn(x−x ′)

2 j Lky,n
(4.431)

is called the periodic Green’s function.
We may also find the field produced by an infinite array of line sources in terms of

the Hankel function representation of a single line source (4.345). Using the current
representation (4.428) and summing over the sources, we obtain

Ẽz(ρ, ω) = −ωµ̃

4

∞∑
n=−∞

Ĩ0(ω)e− jκnL H (2)
0 (k|ρ − ρn|) = − jωµ̃ Ĩ0(ω)G̃∞(x, y|0, 0, ω)

where

|ρ − ρn| = |ŷy + x̂(x − nL)| =
√

y2 + (x − nL)2

and where G̃∞ is an alternative form of the periodic Green’s function

G̃∞(x, y|x ′, y′, ω) = 1

4 j

∞∑
n=−∞

e− jκnL H (2)
0

(
k
√

(y − y′)2 + (x − nL − x ′)2
)

. (4.432)

The periodic Green’s functions (4.431) and (4.432) produce identical results, but are
each appropriate for certain applications. For example, (4.431) is useful for situations
in which boundary conditions at constant values of y are to be applied. Both forms are
difficult to compute under certain circumstances, and variants of these forms have been
introduced in the literature [203].

4.15 Problems

4.1 Beginning with the Kronig–Kramers formulas (4.35)–(4.36), use the even–odd be-
havior of the real and imaginary parts of ε̃c to derive the alternative relations (4.37)–
(4.38).

4.2 Consider the complex permittivity dyadic of a magnetized plasma given by (4.88)–
(4.91). Show that we may decompose [ ˜̄εc] as the sum of two matrices

[ ˜̄εc] = [ ˜̄ε] + [ ˜̄σ]

jω

where [ ˜̄ε] and [ ˜̄σ] are hermitian.



4.3 Show that the Debye permittivity formulas

ε̃′(ω) − ε∞ = εs − ε∞
1 + ω2τ 2

, ε̃′′(ω) = −ωτ(εs − ε∞)

1 + ω2τ 2
,

obey the Kronig–Kramers relations.

4.4 The frequency-domain duality transformations for the constitutive parameters of
an anisotropic medium are given in (4.197). Determine the analogous transformations
for the constitutive parameters of a bianisotropic medium.

4.5 Establish the plane-wave identities (B.76)–(B.79) by direct differentiation in rect-
angular coordinates.

4.6 Assume that sea water has the parameters ε = 80ε0, µ = µ0, σ = 4 S/m, and that
these parameters are frequency-independent. Plot the ω–β diagram for a plane wave
propagating in this medium and compare to Figure 4.12. Describe the dispersion: is it
normal or anomalous? Also plot the phase and group velocities and compare to Figure
4.13. How does the relaxation phenomenon affect the velocity of a wave in this medium?

4.7 Consider a uniform plane wave incident at angle θi onto an interface separating
two lossless media (Figure 4.18). Assuming perpendicular polarization, write the explicit
forms of the total fields in each region under the condition θi < θc, where θc is the critical
angle. Show that the total field in region 1 can be decomposed into a portion that is
a pure standing wave in the z-direction and a portion that is a pure traveling wave in
the z-direction. Also show that the field in region 2 is a pure traveling wave. Repeat for
parallel polarization.

4.8 Consider a uniform plane wave incident at angle θi onto an interface separating
two lossless media (Figure 4.18). Assuming perpendicular polarization, use the total
fields from Problem 4.7 to show that under the condition θi < θc the normal component
of the time-average Poynting vector is continuous across the interface. Here θc is the
critical angle. Repeat for parallel polarization.

4.9 Consider a uniform plane wave incident at angle θi onto an interface separating
two lossless media (Figure 4.18). Assuming perpendicular polarization, write the explicit
forms of the total fields in each region under the condition θi > θc, where θc is the critical
angle. Show that the field in region 1 is a pure standing wave in the z-direction and that
the field in region 2 is an evanescent wave. Repeat for parallel polarization.

4.10 Consider a uniform plane wave incident at angle θi onto an interface separating
two lossless media (Figure 4.18). Assuming perpendicular polarization, use the fields
from Problem 4.9 to show that under the condition θi > θc the field in region 1 carries no
time-average power in the z-direction, while the field in region 2 carries no time-average
power. Here θc is the critical angle. Repeat for parallel polarization.

4.11 Consider a uniform plane wave incident at angle θi from a lossless material onto
a good conductor (Figure 4.18). The conductor has permittivity ε0, permeability µ0,
and conductivity σ . Show that the transmission angle is θt ≈ 0 and thus the wave in
the conductor propagates normal to the interface. Also show that for perpendicular
polarization the current per unit width induced by the wave in region 2 is

K̃(ω) = ŷσ T̃⊥(ω)Ẽ⊥(ω)
1 − j

2β2



and that this is identical to the tangential magnetic field at the surface:

K̃(ω) = −ẑ × H̃t |z=0.

If we define the surface impedance Zs(ω) of the conductor as the ratio of tangential
electric and magnetic fields at the interface, show that

Zs(ω) = 1 + j

σδ
= Rs(ω) + j Xs(ω).

Then show that the time-average power flux entering region 2 for a monochromatic wave
of frequency ω̌ is simply

Sav,2 = ẑ
1

2
(Ǩ · Ǩ∗)Rs .

Note that the since the surface impedance is also the ratio of tangential electric field to
induced current per unit width in region 2, it is also called the internal impedance.

4.12 Consider a parallel-polarized plane wave obliquely incident from a lossless medium
onto a multi-layered material as shown in Figure 4.20. Writing the fields in each region
n, 0 ≤ n ≤ N − 1, as H̃‖n = H̃i

‖n + H̃r
‖n where

H̃i
‖n = ŷan+1e− jkx,n x e− jkz,n(z−zn+1),

H̃r
‖n = −ŷbn+1e− jkx,n x e+ jkz,n(z−zn+1),

and the field in region N as

H̃‖N = ŷaN+1e− jkx,N x e− jkz,N (z−zN ),

apply the boundary conditions to solve for the wave amplitudes an+1 and bn in terms of
a global reflection coefficient R̃n, an interfacial reflection coefficient �n‖, and the wave
amplitude an. Compare your results to those found for perpendicular polarization (4.313)
and (4.314).

4.13 Consider a slab of lossless material with permittivity ε = εrε0 and permeability
µ = µrµ0 located in free space between the planes z = z1 and z = z2. A right-hand
circularly-polarized plane wave is incident on the slab at angle θi as shown in Figure
4.22. Determine the conditions (if any) under which the reflected wave is: (a) linearly
polarized; (b) right-hand or left-hand circularly polarized; (c) right-hand or left-hand
elliptically polarized. Repeat for the transmitted wave.

4.14 Consider a slab of lossless material with permittivity ε = εrε0 and permeability µ0

located in free space between the planes z = z1 and z = z2. A transient, perpendicularly-
polarized plane wave is obliquely incident on the slab as shown in Figure 4.22. If the
temporal waveform of the incident wave is Ei

⊥(t), find the transient reflected field in region
0 and the transient transmitted field in region 2 in terms of an infinite superposition of
amplitude-scaled, time-shifted versions of the incident wave. Interpret each of the first
four terms in the reflected and transmitted fields in terms of multiple reflection within
the slab.

4.15 Consider a free-space gap embedded between the planes z = z1 and z = z2

in an infinite, lossless dielectric medium of permittivity εrε0 and permeability µ0. A
perpendicularly-polarized plane wave is incident on the gap at angle θi > θc as shown



in Figure 4.22. Here θc is the critical angle for a plane wave incident on the single
interface between a lossless dielectric of permittivity εrε0 and free space. Apply the
boundary conditions and find the fields in each of the three regions. Find the time-
average Poynting vector in region 0 at z = z1, in region 1 at z = z2, and in region 2 at
z = z2. Is conservation of energy obeyed?

4.16 A uniform ferrite material has scalar permittivity ε̃ = ε and dyadic permeability
˜̄µ. Assume the ferrite is magnetized along the z-direction and has losses so that its
permeability dyadic is given by (4.118). Show that the wave equation for a TEM plane
wave of the form

H̃(r, ω) = H̃0(ω)e− jkz z

is

k2
z H̃0 = ω2ε ˜̄µ · H̃0

where kz = β − jα. Find explicit formulas for the two solutions kz± = β± − jα±. Show
that when the damping parameter α � 1, near resonance α+ � α−.

4.17 A time-harmonic, TE-polarized, uniform cylindrical wave propagates in a lossy
medium. Assuming |kρ| � 1, show that the power per unit length passing through a
cylinder of radius ρ is given by

Pav/ l = Re
{

Z∗
T E

} |Ȟz0|2 e−2αρ

8|k| .

If the material is lossless, show that the power per unit length passing through a cylinder
is independent of the radius and is given by

Pav/ l = η|Ȟz0|2
8k

.

4.18 A TM-polarized plane wave is incident on a cylinder made from a perfect electric
conductor such that the current induced on the cylinder is given by (4.365). When the
cylinder radius is large compared to the wavelength of the incident wave, we may ap-
proximate the current using the principle of physical optics. This states that the induced
current is zero in the “shadow region” where the cylinder is not directly illuminated by
the incident wave. Elsewhere, in the “illuminated region,” the induced current is given
by

J̃s = 2n̂ × H̃i .

Plot the current from (4.365) for various values of k0a and compare to the current com-
puted from physical optics. How large must k0a be for the shadowing effect to be signif-
icant?

4.19 The radar cross section of a two-dimensional object illuminated by a TM-polarized
plane wave is defined by

σ2−D(ω, φ) = lim
ρ→∞ 2πρ

|Ẽ s
z |2

|Ẽ i
z|2

.

This quantity has units of meters and is sometimes called the “scattering width” of the
object. Using the asymptotic form of the Hankel function, determine the formula for
the radar cross section of a TM-illuminated cylinder made of perfect electric conductor.



Show that when the cylinder radius is small compared to a wavelength the radar cross
section may be approximated as

σ2−D(ω, φ) = a
π2

k0a

1

ln2(0.89k0a)

and is thus independent of the observation angle φ.

4.20 A TE-polarized plane wave is incident on a material cylinder with complex per-
mittivity ε̃c(ω) and permeability µ̃(ω), aligned along the z-axis in free space. Apply the
boundary conditions on the surface of the cylinder and determine the total field both
internal and external to the cylinder. Show that as σ̃ → ∞ the magnetic field external
to the cylinder reduces to (4.366).

4.21 A TM-polarized plane wave is incident on a PEC cylinder of radius a aligned
along the z-axis in free space. The cylinder is coated with a material layer of radius b
with complex permittivity ε̃c(ω) and permeability µ̃(ω). Apply the boundary conditions
on the surface of the cylinder and across the interface between the material and free
space and determine the total field both internal and external to the material layer.

4.22 A PEC cylinder of radius a, aligned along the z-axis in free space, is illuminated
by a z-directed electric line source Ĩ (ω) located at (ρ0, φ0). Expand the fields in the
regions a < ρ < ρ0 and ρ > ρ0 in terms of nonuniform cylindrical waves, and apply the
boundary conditions at ρ = a and ρ = ρ0 to determine the fields everywhere.

4.23 Repeat Problem 4.22 for the case of a cylinder illuminated by a magnetic line
source.

4.24 Assuming

f (ξ, ω) = k

2π
A(kx , ω) sin ξ,

use the relations

cos z = cos(u + jv) = cos u cosh v − j sin u sinh v,

sin z = sin(u + jv) = sin u cosh v + j cos u sinh v,

to show that the contour in Figure 4.29 provides identical values of the integrand in

ψ̃(x, y, ω) =
∫

C
f (ξ, ω)e− jkρ cos(φ±ξ) dξ

as does the contour [−∞ + j�, ∞ + j�] in

ψ̃(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

A(kx , ω)e− jkx x e∓ jky y dkx . (4.433)

4.25 Verify (4.409) by writing the TE fields in terms of Fourier transforms and apply-
ing boundary conditions.



4.26 Consider a z-directed electric line source Ĩ (ω) located on the y-axis at y = h.
The region y < 0 contains a perfect electric conductor. Write the fields in the regions
0 < y < h and y > h in terms of the Fourier transform solution to the homogeneous
Helmholtz equation. Note that in the region 0 < y < h terms representing waves traveling
in both the ±y-directions are needed, while in the region y > h only terms traveling in
the y-direction are needed. Apply the boundary conditions at y = 0, h to determine the
spectral amplitudes. Show that the total field may be decomposed into an impressed
term identical to (4.410) and a scattered term identical to (4.413).

4.27 Consider a z-directed magnetic line source Ĩm(ω) located on the y-axis at y = h.
The region y > 0 contains a material with parameters ε̃c

1(ω) and µ̃1(ω), while the region
y < 0 contains a material with parameters ε̃c

2(ω) and µ̃2(ω). Using the Fourier transform
solution to the Helmholtz equation, write the total field for y > 0 as the sum of an
impressed field of the magnetic line source and a scattered field, and write the field for
y < 0 as a scattered field. Apply the boundary conditions at y = 0 to determine the
spectral amplitudes. Can you interpret the scattered fields in terms of images of the line
source?

4.28 Consider a TE-polarized plane wave incident on a PEC half-plane located at
y = 0, x > 0. If the incident magnetic field is given by

H̃i (r, ω) = ẑH̃0(ω)e jk(x cos φ0+y sin φ0),

determine the appropriate boundary conditions on the fields at y = 0. Solve for the
scattered magnetic field using the Fourier transform approach.

4.29 Consider the layered medium of Figure 4.34 with alternating layers of free space
and perfect dielectric. The dielectric layer has permittivity 4ε0 and thickness � while
the free space layer has thickness 2�. Assuming a normally-incident plane wave, solve
for k0� in terms of κ�, and plot k0 versus κ, identifying the stop and pass bands. This
type of ω–β plot for a periodic medium is named a Brillouin diagram, after L. Brillouin
who investigated energy bands in periodic crystal lattices [23].

4.30 Consider a periodic layered medium as in Figure 4.34, but with each cell con-
sisting of three different layers. Derive an eigenvalue equation similar to (4.427) for the
propagation constant.



Chapter 5

Field decompositions and the EM
potentials

5.1 Spatial symmetry decompositions

Spatial symmetry can often be exploited to solve electromagnetics problems. For
analytic solutions, symmetry can be used to reduce the number of boundary conditions
that must be applied. For computer solutions the storage requirements can be reduced.
Typical symmetries include rotation about a point or axis, and reflection through a
plane, along an axis, or through a point. We shall consider the common case of reflection
through a plane. Reflections through the origin and through an axis will be treated in
the exercises.

Note that spatial symmetry decompositions may be applied even if the sources and
fields possess no spatial symmetry. As long as the boundaries and material media are
symmetric, the sources and fields may be decomposed into constituents that individually
mimic the symmetry of the environment.

5.1.1 Planar field symmetry

Consider a region of space consisting of linear, isotropic, time-invariant media having
material parameters ε(r), µ(r), and σ(r). The electromagnetic fields (E, H) within this
region are related to their impressed sources (Ji , Ji

m) and their secondary sources Js = σE
through Maxwell’s curl equations:

∂ Ez

∂y
− ∂ Ey

∂z
= −µ

∂ Hx

∂t
− J i

mx , (5.1)

∂ Ex

∂z
− ∂ Ez

∂x
= −µ

∂ Hy

∂t
− J i

my, (5.2)

∂ Ey

∂x
− ∂ Ex

∂y
= −µ

∂ Hz

∂t
− J i

mz, (5.3)

∂ Hz

∂y
− ∂ Hy

∂z
= ε

∂ Ex

∂t
+ σ Ex + J i

x , (5.4)

∂ Hx

∂z
− ∂ Hz

∂x
= ε

∂ Ey

∂t
+ σ Ey + J i

y, (5.5)

∂ Hy

∂x
− ∂ Hx

∂y
= ε

∂ Ez

∂t
+ σ Ez + J i

z . (5.6)



We assume the material constants are symmetric about some plane, say z = 0. Then

ε(x, y, −z) = ε(x, y, z),

µ(x, y, −z) = µ(x, y, z),

σ (x, y, −z) = σ(x, y, z).

That is, with respect to z the material constants are even functions. We further assume
that the boundaries and boundary conditions, which guarantee uniqueness of solution, are
also symmetric about the z = 0 plane. Then we define two cases of reflection symmetry.

Conditions for even symmetry. We claim that if the sources obey

J i
x (x, y, z) = J i

x (x, y, −z), J i
mx (x, y, z) = −J i

mx (x, y, −z),

J i
y(x, y, z) = J i

y(x, y, −z), J i
my(x, y, z) = −J i

my(x, y, −z),

J i
z (x, y, z) = −J i

z (x, y, −z), J i
mz(x, y, z) = J i

mz(x, y, −z),

then the fields obey

Ex (x, y, z) = Ex (x, y, −z), Hx (x, y, z) = −Hx (x, y, −z),

Ey(x, y, z) = Ey(x, y, −z), Hy(x, y, z) = −Hy(x, y, −z),

Ez(x, y, z) = −Ez(x, y, −z), Hz(x, y, z) = Hz(x, y, −z).

The electric field shares the symmetry of the electric source: components parallel to the
z = 0 plane are even in z, and the component perpendicular is odd. The magnetic field
shares the symmetry of the magnetic source: components parallel to the z = 0 plane are
odd in z, and the component perpendicular is even.

We can verify our claim by showing that the symmetric fields and sources obey
Maxwell’s equations. At an arbitrary point z = a > 0 equation (5.1) requires

∂ Ez

∂y

∣∣∣∣
z=a

− ∂ Ey

∂z

∣∣∣∣
z=a

= −µ|z=a
∂ Hx

∂t

∣∣∣∣
z=a

− J i
mx |z=a .

By the assumed symmetry condition on source and material constant we get
∂ Ez

∂y

∣∣∣∣
z=a

− ∂ Ey

∂z

∣∣∣∣
z=a

= −µ|z=−a
∂ Hx

∂t

∣∣∣∣
z=a

+ J i
mx |z=−a .

If our claim holds regarding the field behavior, then
∂ Ez

∂y

∣∣∣∣
z=−a

= −∂ Ez

∂y

∣∣∣∣
z=a

,

∂ Ey

∂z

∣∣∣∣
z=−a

= −∂ Ey

∂z

∣∣∣∣
z=a

,

∂ Hx

∂t

∣∣∣∣
z=−a

= −∂ Hx

∂t

∣∣∣∣
z=a

,

and we have

−∂ Ez

∂y

∣∣∣∣
z=−a

+ ∂ Ey

∂z

∣∣∣∣
z=−a

= µ|z=−a
∂ Hx

∂t

∣∣∣∣
z=−a

+ J i
mx |z=−a .

So this component of Faraday’s law is satisfied. With similar reasoning we can show that
the symmetric sources and fields satisfy (5.2)–(5.6) as well.



Conditions for odd symmetry. We can also show that if the sources obey

J i
x (x, y, z) = −J i

x (x, y, −z), J i
mx (x, y, z) = J i

mx (x, y, −z),

J i
y(x, y, z) = −J i

y(x, y, −z), J i
my(x, y, z) = J i

my(x, y, −z),

J i
z (x, y, z) = J i

z (x, y, −z), J i
mz(x, y, z) = −J i

mz(x, y, −z),

then the fields obey

Ex (x, y, z) = −Ei
x (x, y, −z), Hx (x, y, z) = Hx (x, y, −z),

Ey(x, y, z) = −Ey(x, y, −z), Hy(x, y, z) = Hy(x, y, −z),

Ez(x, y, z) = Ez(x, y, −z), Hz(x, y, z) = −Hz(x, y, −z).

Again the electric field has the same symmetry as the electric source. However, in this
case components parallel to the z = 0 plane are odd in z and the component perpendicular
is even. Similarly, the magnetic field has the same symmetry as the magnetic source. Here
components parallel to the z = 0 plane are even in z and the component perpendicular
is odd.

Field symmetries and the concept of source images. In the case of odd symmetry
the electric field parallel to the z = 0 plane is an odd function of z. If we assume that
the field is also continuous across this plane, then the electric field tangential to z = 0
must vanish: the condition required at the surface of a perfect electric conductor (PEC).
We may regard the problem of sources above a perfect conductor in the z = 0 plane as
equivalent to the problem of sources odd about this plane, as long as the sources in both
cases are identical for z > 0. We refer to the source in the region z < 0 as the image of
the source in the region z > 0. Thus the image source (JI , JI

m) obeys

J I
x (x, y, −z) = −J i

x (x, y, z), J I
mx (x, y, −z) = J i

mx (x, y, z),

J I
y (x, y, −z) = −J i

y(x, y, z), J I
my(x, y, −z) = J i

my(x, y, z),

J I
z (x, y, −z) = J i

z (x, y, z), J I
mz(x, y, −z) = −J i

mz(x, y, z).

That is, parallel components of electric current image in the opposite direction, and
the perpendicular component images in the same direction; parallel components of the
magnetic current image in the same direction, while the perpendicular component images
in the opposite direction.

In the case of even symmetry, the magnetic field parallel to the z = 0 plane is odd,
and thus the magnetic field tangential to the z = 0 plane must be zero. We therefore
have an equivalence between the problem of a source above a plane of perfect magnetic
conductor (PMC) and the problem of sources even about that plane. In this case we
identify image sources that obey

J I
x (x, y, −z) = J i

x (x, y, z), J I
mx (x, y, −z) = −J i

mx (x, y, z),

J I
y (x, y, −z) = J i

y(x, y, z), J I
my(x, y, −z) = −J i

my(x, y, z),

J I
z (x, y, −z) = −J i

z (x, y, z), J I
mz(x, y, −z) = J i

mz(x, y, z).

Parallel components of electric current image in the same direction, and the perpendicular
component images in the opposite direction; parallel components of magnetic current
image in the opposite direction, and the perpendicular component images in the same
direction.

In the case of odd symmetry, we sometimes say that an “electric wall” exists at z = 0.
The term “magnetic wall” can be used in the case of even symmetry. These terms are
particularly common in the description of waveguide fields.



Symmetric field decomposition. Field symmetries may be applied to arbitrary
source distributions through a symmetry decomposition of the sources and fields. Con-
sider the general impressed source distributions (Ji , Ji

m). The source set

J ie
x (x, y, z) = 1

2

[
J i

x (x, y, z) + J i
x (x, y, −z)

]
,

J ie
y (x, y, z) = 1

2

[
J i

y(x, y, z) + J i
y(x, y, −z)

]
,

J ie
z (x, y, z) = 1

2

[
J i

z (x, y, z) − J i
z (x, y, −z)

]
,

J ie
mx (x, y, z) = 1

2

[
J i

mx (x, y, z) − J i
mx (x, y, −z)

]
,

J ie
my(x, y, z) = 1

2

[
J i

my(x, y, z) − J i
my(x, y, −z)

]
,

J ie
mz(x, y, z) = 1

2

[
J i

mz(x, y, z) + J i
mz(x, y, −z)

]
,

is clearly of even symmetric type while the source set

J io
x (x, y, z) = 1

2

[
J i

x (x, y, z) − J i
x (x, y, −z)

]
,

J io
y (x, y, z) = 1

2

[
J i

y(x, y, z) − J i
y(x, y, −z)

]
,

J io
z (x, y, z) = 1

2

[
J i

z (x, y, z) + J i
z (x, y, −z)

]
,

J io
mx (x, y, z) = 1

2

[
J i

mx (x, y, z) + J i
mx (x, y, −z)

]
,

J io
my(x, y, z) = 1

2

[
J i

my(x, y, z) + J i
my(x, y, −z)

]
,

J io
mz(x, y, z) = 1

2

[
J i

mz(x, y, z) − J i
mz(x, y, −z)

]
,

is of the odd symmetric type. Since Ji = Jie + Jio and Ji
m = Jie

m + Jio
m , we can decompose

any source into constituents having, respectively, even and odd symmetry with respect
to a plane. The source with even symmetry produces an even field set, while the source
with odd symmetry produces an odd field set. The total field is the sum of the fields
from each field set.

Planar symmetry for frequency-domain fields. The symmetry conditions intro-
duced above for the time-domain fields also hold for the frequency-domain fields. Because
both the conductivity and permittivity must be even functions, we combine their effects
and require the complex permittivity to be even. Otherwise the field symmetries and
source decompositions are identical.

Example of symmetry decomposition: line source between conducting planes.
Consider a z-directed electric line source Ĩ0 located at y = h, x = 0 between conducting
planes at y = ±d, d > h. The material between the plates has permeability µ̃(ω) and
complex permittivity ε̃c(ω). We decompose the source into one of even symmetric type
with line sources Ĩ0/2 located at y = ±h, and one of odd symmetric type with a line



source Ĩ0/2 located at y = h and a line source − Ĩ0/2 located at y = −h. We solve each
of these problems by exploiting the appropriate symmetry, and superpose the results to
find the solution to the original problem.

For the even-symmetric case, we begin by using (4.407) to represent the impressed
field:

Ẽ i
z(x, y, ω) = −ωµ̃ Ĩ0(ω)

2

2π

∞+ j�∫
−∞+ j�

e− jky |y−h| + e− jky |y+h|

2ky
e− jkx x dkx .

For y > h this becomes

Ẽ i
z(x, y, ω) = −ωµ̃ Ĩ0(ω)

2

2π

∞+ j�∫
−∞+ j�

2 cos kyh

2ky
e− jky ye− jkx x dkx .

The secondary (scattered) field consists of waves propagating in both the ±y-directions:

Ẽ s
z (x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

[
A+(kx , ω)e− jky y + A−(kx , ω)e jky y

]
e− jkx x dkx . (5.7)

The impressed field is even about y = 0. Since the total field Ez = Ei
z + Es

z must be
even in y (Ez is parallel to the plane y = 0), the scattered field must also be even. Thus,
A+ = A− and the total field is for y > h

Ẽz(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

[
2A+(kx , ω) cos ky y − ωµ̃

Ĩ0(ω)

2

2 cos kyh

2ky
e− jky y

]
e− jkx x dkx .

Now the electric field must obey the boundary condition Ẽz = 0 at y = ±d. However,
since Ẽz is even the satisfaction of this condition at y = d automatically implies its
satisfaction at y = −d. So we set

1

2π

∞+ j�∫
−∞+ j�

[
2A+(kx , ω) cos kyd − ωµ̃

Ĩ0(ω)

2

2 cos kyh

2ky
e− jky d

]
e− jkx x dkx = 0

and invoke the Fourier integral theorem to get

A+(kx , ω) = ωµ̃
Ĩ0(ω)

2

cos kyh

2ky

e− jky d

cos kyd
.

The total field for this case is

Ẽz(x, y, ω) = −ωµ̃ Ĩ0(ω)

2

2π

∞+ j�∫
−∞+ j�

[
e− jky |y−h| + e− jky |y+h|

2ky
−

− 2 cos kyh

2ky

e− jky d

cos kyd
cos ky y

]
e− jkx x dkx .

For the odd-symmetric case the impressed field is

Ẽ i
z(x, y, ω) = −ωµ̃ Ĩ0(ω)

2

2π

∞+ j�∫
−∞+ j�

e− jky |y−h| − e− jky |y+h|

2ky
e− jkx x dkx ,



which for y > h is

Ẽ i
z(x, y, ω) = −ωµ̃ Ĩ0(ω)

2

2π

∞+ j�∫
−∞+ j�

2 j sin kyh

2ky
e− jky ye− jkx x dkx .

The scattered field has the form of (5.7) but must be odd. Thus A+ = −A− and the
total field for y > h is

Ẽz(x, y, ω) = 1

2π

∞+ j�∫
−∞+ j�

[
2 j A+(kx , ω) sin ky y − ωµ̃

Ĩ0(ω)

2

2 j sin kyh

2ky
e− jky y

]
e− jkx x dkx .

Setting Ẽz = 0 at z = d and solving for A+ we find that the total field for this case is

Ẽz(x, y, ω) = −ωµ̃ Ĩ0(ω)

2

2π

∞+ j�∫
−∞+ j�

[
e− jky |y−h| − e− jky |y+h|

2ky
−

− 2 j sin kyh

2ky

e− jky d

sin kyd
sin ky y

]
e− jkx x dkx .

Adding the fields for the two cases we find that

Ẽz(x, y, ω) = −ωµ̃ Ĩ0(ω)

2π

∞+ j�∫
−∞+ j�

e− jky |y−h|

2ky
e− jkx x dkx +

+ωµ̃ Ĩ0(ω)

2π

∞+ j�∫
−∞+ j�

[
cos kyh cos ky y

cos kyd
+ j

sin kyh sin ky y

sin kyd

]
e− jky d

2ky
e− jkx x dkx ,

(5.8)

which is a superposition of impressed and scattered fields.

5.2 Solenoidal–lamellar decomposition

We now discuss the decomposition of a general vector field into a lamellar component
having zero curl and a solenoidal component having zero divergence. This is known as a
Helmholtz decomposition. If V is any vector field then we wish to write

V = Vs + Vl , (5.9)

where Vs and Vl are the solenoidal and lamellar components of V. Formulas expressing
these components in terms of V are obtained as follows. We first write Vs in terms of a
“vector potential” A as

Vs = ∇ × A. (5.10)

This is possible by virtue of (B.49). Similarly, we write Vl in terms of a “scalar potential”
φ as

Vl = ∇φ. (5.11)



To obtain a formula for Vl we take the divergence of (5.9) and use (5.11) to get

∇ · V = ∇ · Vl = ∇ · ∇φ = ∇2φ.

The result,

∇2φ = ∇ · V,

may be regarded as Poisson’s equation for the unknown φ. This equation is solved in
Chapter 3. By (3.61) we have

φ(r) = −
∫

V

∇′ · V(r′)
4π R

dV ′,

where R = |r − r′|, and we have

Vl(r) = −∇
∫

V

∇′ · V(r′)
4π R

dV ′. (5.12)

Similarly, a formula for Vs can be obtained by taking the curl of (5.9) to get

∇ × V = ∇ × Vs .

Substituting (5.10) we have

∇ × V = ∇ × (∇ × A) = ∇(∇ · A) − ∇2A.

We may choose any value we wish for ∇ · A, since this does not alter Vs = ∇ × A.
(We discuss such “gauge transformations” in greater detail later in this chapter.) With
∇ · A = 0 we obtain

−∇ × V = ∇2A.

This is Poisson’s equation for each rectangular component of A; therefore

A(r) =
∫

V

∇′ × V(r′)
4π R

dV ′,

and we have

Vs(r) = ∇ ×
∫

V

∇′ × V(r′)
4π R

dV ′.

Summing the results we obtain the Helmholtz decomposition

V = Vl + Vs = −∇
∫

V

∇′ · V(r′)
4π R

dV ′ + ∇ ×
∫

V

∇′ × V(r′)
4π R

dV ′. (5.13)

Identification of the electromagnetic potentials. Let us write the electromagnetic
fields as a general superposition of solenoidal and lamellar components:

E = ∇ × AE + ∇φE , (5.14)
B = ∇ × AB + ∇φB . (5.15)

One possible form of the potentials AE , AB , φE , and φB appears in (5.13). However,
because E and B are related by Maxwell’s equations, the potentials should be related to
the sources. We can determine the explicit relationship by substituting (5.14) and (5.15)



into Ampere’s and Faraday’s laws. It is most convenient to analyze the relationships
using superposition of the cases for which Jm = 0 and J = 0.

With Jm = 0 Faraday’s law is

∇ × E = −∂B
∂t

. (5.16)

Since ∇ × E is solenoidal, B must be solenoidal and thus ∇φB = 0. This implies
that φB = 0, which is equivalent to the auxiliary Maxwell equation ∇ · B = 0. Now,
substitution of (5.14) and (5.15) into (5.16) gives

∇ × [∇ × AE + ∇φE ] = − ∂

∂t
[∇ × AB] .

Using ∇ × (∇φE ) = 0 and combining the terms we get

∇ ×
[
∇ × AE + ∂AB

∂t

]
= 0,

hence

∇ × AE = −∂AB

∂t
+ ∇ξ.

Substitution into (5.14) gives

E = −∂AB

∂t
+ [∇φE + ∇ξ ] .

Combining the two gradient functions together, we see that we can write both E and B
in terms of two potentials:

E = −∂Ae

∂t
− ∇φe, (5.17)

B = ∇ × Ae, (5.18)

where the negative sign on the gradient term is introduced by convention.

Gauge transformations and the Coulomb gauge. We pay a price for the simplicity
of using only two potentials to represent E and B. While ∇ × Ae is definitely solenoidal,
Ae itself may not be: because of this (5.17) may not be a decomposition into solenoidal
and lamellar components. However, a corollary of the Helmholtz theorem states that a
vector field is uniquely specified only when both its curl and divergence are specified. Here
there is an ambiguity in the representation of E and B; we may remove this ambiguity
and define Ae uniquely by requiring that

∇ · Ae = 0. (5.19)

Then Ae is solenoidal and the decomposition (5.17) is solenoidal–lamellar. This require-
ment on Ae is called the Coulomb gauge.

The ambiguity implied by the non-uniqueness of ∇ · Ae can also be expressed by the
observation that a transformation of the type

Ae → Ae + ∇�, (5.20)

φe → φe − ∂�

∂t
, (5.21)



leaves the expressions (5.17) and (5.18) unchanged. This is called a gauge transformation,
and the choice of a certain � alters the specification of ∇ · Ae. Thus we may begin with
the Coulomb gauge as our baseline, and allow any alteration of Ae according to (5.20)
as long as we augment ∇ · Ae by ∇ · ∇� = ∇2�.

Once ∇ · Ae is specified, the relationship between the potentials and the current J
can be found by substitution of (5.17) and (5.18) into Ampere’s law. At this point
we assume media that are linear, homogeneous, isotropic, and described by the time-
invariant parameters µ, ε, and σ . Writing J = Ji + σE we have

1

µ
∇ × (∇ × Ae) = Ji − σ

∂Ae

∂t
− σ∇φe − ε

∂2Ae

∂t2
− ε

∂

∂t
∇φe. (5.22)

Taking the divergence of both sides of (5.22) we get

0 = ∇ · Ji − σ
∂

∂t
∇ · A − σ∇ · ∇φe − ε

∂2

∂t2
∇ · Ae − ε

∂

∂t
∇ · ∇φe. (5.23)

Then, by substitution from the continuity equation and use of (5.19) along with ∇·∇φe =
∇2φe we obtain

∂

∂t

(
ρi + ε∇2φe

) = −σ∇2φe.

For a lossless medium this reduces to

∇2φe = −ρi/ε (5.24)

and we have

φe(r, t) =
∫

V

ρi (r′, t)

4πεR
dV ′. (5.25)

We can obtain an equation for Ae by expanding the left-hand side of (5.22) to get

∇ (∇ · Ae) − ∇2Ae = µJi − σµ
∂Ae

∂t
− σµ∇φe − µε

∂2Ae

∂t2
− µε

∂

∂t
∇φe, (5.26)

hence

∇2Ae − µε
∂2Ae

∂t2
= −µJi + σµ

∂Ae

∂t
+ σµ∇φe + µε

∂

∂t
∇φe

under the Coulomb gauge. For lossless media this becomes

∇2Ae − µε
∂2Ae

∂t2
= −µJi + µε

∂

∂t
∇φe. (5.27)

Observe that the left-hand side of (5.27) is solenoidal (since the Laplacian term came
from the curl-curl, and ∇ · Ae = 0), while the right-hand side contains a general vector
field Ji and a lamellar term. We might expect the ∇φe term to cancel the lamellar
portion of Ji , and this does happen [91]. By (5.12) and the continuity equation we can
write the lamellar component of the current as

Ji
l (r, t) = −∇

∫
V

∇′ · Ji (r′, t)

4π R
dV ′ = ∂

∂t
∇

∫
V

ρi (r′, t)

4π R
dV ′ = ε

∂

∂t
∇φe.

Thus (5.27) becomes

∇2Ae − µε
∂2Ae

∂t2
= −µJi

s . (5.28)



Therefore the vector potential Ae, which describes the solenoidal portion of both E and
B, is found from just the solenoidal portion of the current. On the other hand, the scalar
potential, which describes the lamellar portion of E, is found from ρi which arises from
∇ · Ji , the lamellar portion of the current.

From the perspective of field computation, we see that the introduction of potential
functions has reoriented the solution process from dealing with two coupled first-order
partial differential equations (Maxwell’s equations), to two uncoupled second-order equa-
tions (the potential equations (5.24) and (5.28)). The decoupling of the equations is often
worth the added complexity of dealing with potentials, and, in fact, is the solution tech-
nique of choice in such areas as radiation and guided waves. It is worth pausing for
a moment to examine the form of these equations. We see that the scalar potential
obeys Poisson’s equation with the solution (5.25), while the vector potential obeys the
wave equation. As a wave, the vector potential must propagate away from the source
with finite velocity. However, the solution for the scalar potential (5.25) shows no such
behavior. In fact, any change to the charge distribution instantaneously permeates all
of space. This apparent violation of Einstein’s postulate shows that we must be careful
when interpreting the physical meaning of the potentials. Once the computations (5.17)
and (5.18) are undertaken, we find that both E and B behave as waves, and thus propa-
gate at finite velocity. Mathematically, the conundrum can be resolved by realizing that
individually the solenoidal and lamellar components of current must occupy all of space,
even if their sum, the actual current Ji , is localized [91].

The Lorentz gauge. A different choice of gauge condition can allow both the vector
and scalar potentials to act as waves. In this case E may be written as a sum of two
terms: one purely solenoidal, and the other a superposition of lamellar and solenoidal
parts.

Let us examine the effect of choosing the Lorentz gauge

∇ · Ae = −µε
∂φe

∂t
− µσφe. (5.29)

Substituting this expression into (5.26) we find that the gradient terms cancel, giving

∇2Ae − µσ
∂Ae

∂t
− µε

∂2Ae

∂t2
= −µJi . (5.30)

For lossless media

∇2Ae − µε
∂2Ae

∂t2
= −µJi , (5.31)

and (5.23) becomes

∇2φe − µε
∂2φe

∂t2
= −ρi

ε
. (5.32)

For lossy media we have obtained a second-order differential equation for Ae, but φe

must be found through the somewhat cumbersome relation (5.29). For lossless media
the coupled Maxwell equations have been decoupled into two second-order equations, one
involving Ae and one involving φe. Both (5.31) and (5.32) are wave equations, with Ji

as the source for Ae and ρi as the source for φe. Thus the expected finite-velocity wave
nature of the electromagnetic fields is also manifested in each of the potential functions.
The drawback is that, even though we can still use (5.17) and (5.18), the expression for E
is no longer a decomposition into solenoidal and lamellar components. Nevertheless, the
choice of the Lorentz gauge is very popular in the study of radiated and guided waves.



The Hertzian potentials. With a little manipulation and the introduction of a new
notation, we can maintain the wave nature of the potential functions and still provide a
decomposition into purely lamellar and solenoidal components. In this analysis we shall
assume lossless media only.

When we chose the Lorentz gauge to remove the arbitrariness of the divergence of the
vector potential, we established a relationship between Ae and φe. Thus we should be
able to write both the electric and magnetic fields in terms of a single potential function.
From the Lorentz gauge we can write φe as

φe(r, t) = − 1

µε

∫ t

−∞
∇ · Ae(r, t) dt.

By (5.17) and (5.18) we can thus write the EM fields as

E = 1

µε
∇

∫ t

−∞
∇ · Aedt − ∂Ae

∂t
, (5.33)

B = ∇ × Ae. (5.34)

The integro-differential representation of E in (5.33) is somewhat clumsy in appear-
ance. We can make it easier to manipulate by defining the Hertzian potential

Πe = 1

µε

∫ t

−∞
Ae dt.

In differential form

Ae = µε
∂Πe

dt
. (5.35)

With this, (5.33) and (5.34) become

E = ∇(∇ · Πe) − µε
∂2

∂t2
Πe, (5.36)

B = µε∇ × ∂Πe

∂t
. (5.37)

An equation for Πe in terms of the source current can be found by substituting (5.35)
into (5.31):

µε
∂

∂t

(
∇2Πe − µε

∂2

∂t2
Πe

)
= −µJi .

Let us define

Ji = ∂Pi

∂t
. (5.38)

For general impressed current sources (5.38) is just a convenient notation. However, we
can conceive of an impressed polarization current that is independent of E and defined
through the relation D = ε0E + P + Pi . Then (5.38) has a physical interpretation as
described in (2.119). We now have

∇2Πe − µε
∂2

∂t2
Πe = −1

ε
Pi , (5.39)

which is a wave equation for Πe. Thus the Hertzian potential has the same wave behavior
as the vector potential under the Lorentz gauge.



We can use (5.39) to perform one final simplification of the EM field representation.
By the vector identity ∇(∇ · Π) = ∇ × (∇ × Π) + ∇2Π we get

∇ (∇ · Πe) = ∇ × (∇ × Πe) − 1

ε
Pi + µε

∂2

∂t2
Πe.

Substituting this into (5.36) we obtain

E = ∇ × (∇ × Πe) − Pi

ε
, (5.40)

B = µε∇ × ∂Πe

∂t
. (5.41)

Let us examine these closely. We know that B is solenoidal since it is written as the curl
of another vector (this is also clear from the auxiliary Maxwell equation ∇ · B = 0). The
first term in the expression for E is also solenoidal. So the lamellar part of E must be
contained within the source term Pi . If we write Pi in terms of its lamellar and solenoidal
components by using

Ji
s = ∂Pi

s

∂t
, Ji

l = ∂Pi
l

∂t
,

then (5.40) becomes

E =
[
∇ × (∇ × Πe) − Pi

s

ε

]
− Pi

l

ε
. (5.42)

So we have again succeeded in dividing E into lamellar and solenoidal components.

Potential functions for magnetic current. We can proceed as above to derive the
field–potential relationships when Ji = 0 but Ji

m 
= 0. We assume a homogeneous, loss-
less, isotropic medium with permeability µ and permittivity ε, and begin with Faraday’s
and Ampere’s laws

∇ × E = −Ji
m − ∂B

∂t
, (5.43)

∇ × H = ∂D
∂t

. (5.44)

We write H and D in terms of two potential functions Ah and φh as

H = −∂Ah

∂t
− ∇φh,

D = −∇ × Ah,

and the differential equation for the potentials is found by substitution into (5.43):

∇ × (∇ × Ah) = εJi
m − µε

∂2Ah

∂t2
− µε

∂

∂t
∇φh . (5.45)

Taking the divergence of this equation and substituting from the magnetic continuity
equation we obtain

µε
∂2

∂t2
∇ · Ah + µε

∂

∂t
∇2φh = −ε

∂ρi
m

∂t
.



Under the Lorentz gauge condition

∇ · Ah = −µε
∂φh

∂t

this reduces to

∇2φh − µε
∂2φh

∂t2
= −ρi

m

µ
.

Expanding the curl-curl operation in (5.45) we have

∇(∇ · Ah) − ∇2Ah = εJi
m − µε

∂2Ah

∂t2
− µε

∂

∂t
∇φh,

which, upon substitution of the Lorentz gauge condition gives

∇2Ah − µε
∂2Ah

∂t2
= −εJi

m . (5.46)

We can also derive a Hertzian potential for the case of magnetic current. Letting

Ah = µε
∂Πh

∂t
(5.47)

and employing the Lorentz condition we have

D = −µε∇ × ∂Πh

∂t
,

H = ∇(∇ · Πh) − µε
∂2Πh

∂t2
.

The wave equation for Πh is found by substituting (5.47) into (5.46) to give

∂

∂t

[
∇2Πh − µε

∂2Πh

∂t2

]
= − 1

µ
Ji

m . (5.48)

Defining Mi through

Ji
m = µ

∂Mi

∂t
,

we write the wave equation as

∇2Πh − µε
∂2Πh

∂t2
= −Mi .

We can think of Mi as a convenient way of representing Ji
m , or we can conceive of an

impressed magnetization current that is independent of H and defined through B =
µ0(H + M + Mi ). With the help of (5.48) we can also write the fields as

H = ∇ × (∇ × Πh) − Mi ,

D = −µε∇ × ∂Πh

∂t
.



Summary of potential relations for lossless media. When both electric and mag-
netic sources are present, we may superpose the potential representations derived above.
We assume a homogeneous, lossless medium with time-invariant parameters µ and ε. For
the scalar/vector potential representation we have

E = −∂Ae

∂t
− ∇φe − 1

ε
∇ × Ah, (5.49)

H = 1

µ
∇ × Ae − ∂Ah

∂t
− ∇φh . (5.50)

Here the potentials satisfy the wave equations
(

∇2 − µε
∂2

∂t2

) {
Ae

φe

}
=

{−µJi

− ρi

ε

}
, (5.51)

(
∇2 − µε

∂2

∂t2

) {
Ah

φh

}
=

{
−εJi

m

− ρi
m
µ

}
,

and are linked by the Lorentz conditions

∇ · Ae = −µε
∂φe

∂t
,

∇ · Ah = −µε
∂φh

∂t
.

We also have the Hertz potential representation

E = ∇(∇ · Πe) − µε
∂2Πe

∂t2
− µ∇ × ∂Πh

∂t

= ∇ × (∇ × Πe) − Pi

ε
− µ∇ × ∂Πh

∂t
, (5.52)

H = ε∇ × ∂Πe

∂t
+ ∇(∇ · Πh) − µε

∂2Πh

∂t2

= ε∇ × ∂Πe

∂t
+ ∇ × (∇ × Πh) − Mi . (5.53)

The Hertz potentials satisfy the wave equations
(

∇2 − µε
∂2

∂t2

) {
Πe

Πh

}
=

{− 1
ε
Pi

−Mi

}
.

Potential functions for the frequency-domain fields. In the frequency domain it
is much easier to handle lossy media. Consider a lossy, isotropic, homogeneous medium
described by the frequency-dependent parameters µ̃, ε̃, and σ̃ . Maxwell’s curl equations
are

∇ × Ẽ = −J̃i
m − jωµ̃H̃, (5.54)

∇ × H̃ = J̃i + jωε̃cẼ. (5.55)

Here we have separated the primary and secondary currents through J̃ = J̃i + σ̃ Ẽ, and
used the complex permittivity ε̃c = ε̃ + σ̃ /jω. As with the time-domain equations we



introduce the potential functions using superposition. If J̃i
m = 0 and J̃i 
= 0 then we

may introduce the electric potentials through the relationships

Ẽ = −∇φ̃e − jωÃe, (5.56)

H̃ = 1

µ̃
∇ × Ãe. (5.57)

Assuming the Lorentz condition

∇ · Ãe = − jωµ̃ε̃cφ̃e,

we find that upon substitution of (5.56)–(5.57) into (5.54)–(5.55) the potentials must
obey the Helmholtz equation

(∇2 + k2
) {

φ̃e

Ãe

}
=

{−ρ̃i/ε̃c

−µ̃J̃i

}
.

If J̃i
m 
= 0 and J̃i = 0 then we may introduce the magnetic potentials through

Ẽ = − 1

ε̃c
∇ × Ãh, (5.58)

H̃ = −∇φ̃h − jωÃh . (5.59)

Assuming

∇ · Ãh = − jωµ̃ε̃cφ̃h,

we find that upon substitution of (5.58)–(5.59) into (5.54)–(5.55) the potentials must
obey

(∇2 + k2
) {

φ̃h

Ãh

}
=

{−ρ̃i
m/µ̃

−ε̃cJ̃i
m

}
.

When both electric and magnetic sources are present, we use superposition:

Ẽ = −∇φ̃e − jωÃe − 1

ε̃c
∇ × Ãh,

H̃ = 1

µ̃
∇ × Ãe − ∇φ̃h − jωÃh .

Using the Lorentz conditions we can also write the fields in terms of the vector potentials
alone:

Ẽ = − jω

k2
∇(∇ · Ãe) − jωÃe − 1

ε̃c
∇ × Ãh, (5.60)

H̃ = 1

µ̃
∇ × Ãe − jω

k2
∇(∇ · Ãh) − jωÃh . (5.61)

We can also define Hertzian potentials for the frequency-domain fields. When J̃i
m = 0

and J̃i 
= 0 we let

Ãe = jωµ̃ε̃cΠ̃e

and find

Ẽ = ∇(∇ · Π̃e) + k2Π̃e = ∇ × (∇ × Π̃e) − J̃i

jωε̃c
(5.62)



and

H̃ = jωε̃c∇ × Π̃e. (5.63)

Here J̃i can represent either an impressed electric current source or an impressed polar-
ization current source J̃i = jωP̃i . The electric Hertzian potential obeys

(∇2 + k2)Π̃e = − J̃i

jωε̃c
. (5.64)

When J̃i
m 
= 0 and J̃i = 0 we let

Ãh = jωµ̃ε̃cΠ̃h

and find

Ẽ = − jωµ̃∇ × Π̃h (5.65)

and

H̃ = ∇(∇ · Π̃h) + k2Π̃h = ∇ × (∇ × Π̃h) − J̃i
m

jωµ̃
. (5.66)

Here J̃i
m can represent either an impressed magnetic current source or an impressed

magnetization current source J̃i
m = jωµ̃M̃i . The magnetic Hertzian potential obeys

(∇2 + k2)Π̃h = − J̃i
m

jωµ̃
. (5.67)

When both electric and magnetic sources are present we have by superposition

Ẽ = ∇(∇ · Π̃e) + k2Π̃e − jωµ̃∇ × Π̃h

= ∇ × (∇ × Π̃e) − J̃i

jωε̃c
− jωµ̃∇ × Π̃h

and

H̃ = jωε̃c∇ × Π̃e + ∇(∇ · Π̃h) + k2Π̃h

= jωε̃c∇ × Π̃e + ∇ × (∇ × Π̃h) − J̃i
m

jωµ̃
.

5.2.1 Solution for potentials in an unbounded medium: the retarded
potentials

Under the Lorentz condition each of the potential functions obeys the wave equation.
This equation can be solved using the method of Green’s functions to determine the
potentials, and the electromagnetic fields can therefore be determined. We now examine
the solution for an unbounded medium. Solutions for bounded regions are considered in
§ 5.2.2.

Consider a linear operator L that operates on a function of r and t . If we wish to solve
the equation

L{ψ(r, t)} = S(r, t), (5.68)

we first solve

L{G(r, t |r′, t ′)} = δ(r − r′)δ(t − t ′)



and determine the Green’s function G for the operator L. Provided that S resides within
V we have

L
{∫

V

∫ ∞

−∞
S(r′, t ′)G(r, t |r′, t ′) dt ′ dV ′

}
=

∫
V

∫ ∞

−∞
S(r′, t ′)L{G(r, t |r′, t ′)} dt ′ dV ′

=
∫

V

∫ ∞

−∞
S(r′, t ′)δ(r − r′)δ(t − t ′) dt ′ dV ′

= S(r, t),

hence

ψ(r, t) =
∫

V

∫ ∞

−∞
S(r′, t ′)G(r, t |r′, t ′) dt ′ dV ′ (5.69)

by comparison with (5.68).
We can also apply this idea in the frequency domain. The solution to

L{ψ̃(r, ω)} = S̃(r, ω) (5.70)

is

ψ̃(r, ω) =
∫

V
S̃(r′, ω)G(r|r′; ω) dV ′

where the Green’s function G satisfies

L{G(r|r′; ω)} = δ(r − r′).

Equation (5.69) is the basic superposition integral that allows us to find the potentials
in an infinite, unbounded medium. We note that if the medium is bounded then we must
use Green’s theorem to include the effects of sources that reside external to the bound-
aries. These are manifested in terms of the values of the potentials on the boundaries
in the same manner as with the static potentials in Chapter 3. In order to determine
whether (5.69) is the unique solution to the wave equation, we must also examine the
behavior of the fields on the boundary as the boundary recedes to infinity. In the fre-
quency domain we find that an additional “radiation condition” is required to ensure
uniqueness.

The retarded potentials in the time domain. Consider an unbounded, homoge-
neous, lossy, isotropic medium described by parameters µ, ε, σ . In the time domain the
vector potential Ae satisfies (5.30). The scalar components of Ae must obey

∇2 Ae,n(r, t) − µσ
∂ Ae,n(r, t)

∂t
− µε

∂2 Ae,n(r, t)

∂t2
= −µJ i

n(r, t), n = x, y, z.

We may write this in the form
(

∇2 − 2�

v2

∂

∂t
− 1

v2

∂2

∂t2

)
ψ(r, t) = −S(r, t) (5.71)

where ψ = Ae,n, v2 = 1/µε, � = σ/2ε, and S = µJ i
n . The solution is

ψ(r, t) =
∫

V

∫ ∞

−∞
S(r′, t ′)G(r, t |r′, t ′) dt ′ dV ′ (5.72)



where G satisfies
(

∇2 − 2�

v2

∂

∂t
− 1

v2

∂2

∂t2

)
G(r, t |r′, t ′) = −δ(r − r′)δ(t − t ′). (5.73)

In § A.1 we find that

G(r, t |r′, t ′) = e−�(t−t ′) δ(t − t ′ − R/v)

4π R
+

+ �2

4πv
e−�(t−t ′)

I1

(
�

√
(t − t ′)2 − (R/v)2

)

�
√

(t − t ′)2 − (R/v)2
, t − t ′ >

R

v
,

where R = |r − r′|. For lossless media where σ = 0 this becomes

G(r, t |r′, t ′) = δ(t − t ′ − R/v)

4π R

and thus

ψ(r, t) =
∫

V

∫ ∞

−∞
S(r′, t ′)

δ(t − t ′ − R/v)

4π R
dt ′ dV ′

=
∫

V

S(r′, t − R/v)

4π R
dV ′. (5.74)

For lossless media, the scalar potentials and all rectangular components of the vector
potentials obey the same wave equation. Thus we have, for instance, the solutions to
(5.51):

Ae(r, t) = µ

4π

∫
V

Ji (r′, t − R/v)

R
dV ′,

φe(r, t) = 1

4πε

∫
V

ρi (r′, t − R/v)

R
dV ′.

These are called the retarded potentials since their values at time t are determined by the
values of the sources at an earlier (or retardation) time t − R/v. The retardation time is
determined by the propagation velocity v of the potential waves.

The fields are determined by the potentials:

E(r, t) = −∇ 1

4πε

∫
V

ρi (r′, t − R/v)

R
dV ′ − ∂

∂t

µ

4π

∫
V

Ji (r′, t − R/v)

R
dV ′,

H(r, t) = ∇ × 1

4π

∫
V

Ji (r′, t − R/v)

R
dV ′.

The derivatives may be brought inside the integrals, but some care must be taken when
the observation point r lies within the source region. In this case the integrals must be
performed in a principal value sense by excluding a small volume around the observation
point. We discuss this in more detail below for the frequency-domain fields. For details
regarding this procedure in the time domain the reader may see Hansen [81].



The retarded potentials in the frequency domain. Consider an unbounded, ho-
mogeneous, isotropic medium described by µ̃(ω) and ε̃c(ω). If ψ̃(r, ω) represents a scalar
potential or any rectangular component of a vector or Hertzian potential then it must
satisfy

(∇2 + k2)ψ̃(r, ω) = −S̃(r, ω) (5.75)

where k = ω(µ̃ε̃c)1/2. This Helmholtz equation has the form of (5.70) and thus

ψ̃(r, ω) =
∫

V
S̃(r′, ω)G(r|r′; ω) dV ′

where

(∇2 + k2)G(r|r′; ω) = −δ(r − r′). (5.76)

This is equation (A.46) and its solution, as given by (A.49), is

G(r|r′; ω) = e− jk R

4π R
. (5.77)

Here we use v2 = 1/µ̃ε̃ and � = σ̃ /2ε in (A.47):

k = 1

v

√
ω2 − j2ω� = ω

√
µ̃

(
ε̃ − j

σ̃

ω

)
= ω

√
µ̃ε̃c.

The solution to (5.75) is therefore

ψ̃(r, ω) =
∫

V
S̃(r′, ω)

e− jk R

4π R
dV ′. (5.78)

When the medium is lossless, the potential must also satisfy the radiation condition

lim
r→∞ r

(
∂

∂r
+ jk

)
ψ̃(r) = 0 (5.79)

to guarantee uniqueness of solution. In § 5.2.2 we shall show how this requirement arises
from the solution within a bounded region. For a uniqueness proof for the Helmholtz
equation, the reader may consult Chew [33].

We may use (5.78) to find that

Ãe(r, ω) = µ̃

4π

∫
V

J̃i (r′, ω)
e− jk R

R
dV ′. (5.80)

Comparison with (5.74) shows that in the frequency domain, time retardation takes the
form of a phase shift. Similarly,

φ̃(r, ω) = 1

4πε̃c

∫
V

ρ̃i (r′, ω)
e− jk R

R
dV ′. (5.81)

The electric and magnetic dyadic Green’s functions. The frequency-domain elec-
tromagnetic fields may be found for electric sources from the electric vector potential
using (5.60) and (5.61):

Ẽ(r, ω) = − jωµ̃(ω)

∫
V

J̃i (r′, ω)G(r|r′; ω) dV ′ − jωµ̃(ω)

k2
∇∇ ·

∫
V

J̃i (r′, ω)G(r|r′; ω) dV ′,

H̃ = ∇ ×
∫

V
J̃i (r′, ω)G(r|r′; ω) dV ′. (5.82)



As long as the observation point r does not lie within the source region we may take the
derivatives inside the integrals. Using

∇ · [
J̃i (r′, ω)G(r|r′; ω)

] = J̃i (r′, ω) · ∇G(r|r′; ω) + G(r|r′; ω)∇ · J̃(r′, ω)

= ∇G(r|r′; ω) · J̃i (r′, ω)

we have

Ẽ(r, ω) = − jωµ̃(ω)

∫
V

{
J̃i (r′, ω)G(r|r′; ω) + 1

k2
∇ [∇G(r|r′; ω) · Ji (r′, ω)

]}
dV ′.

This can be written more compactly as

Ẽ(r, ω) = − jωµ̃(ω)

∫
V

Ḡe(r|r′; ω) · J̃i (r′, ω) dV ′

where

Ḡe(r|r′; ω) =
[

Ī + ∇∇
k2

]
G(r|r′; ω) (5.83)

is called the electric dyadic Green’s function. Using

∇ × [J̃i G] = ∇G × J̃i + G∇ × J̃i = ∇G × J̃i

we have for the magnetic field

H̃(r, ω) =
∫

V
∇G(r|r′; ω) × J̃i (r′, ω) dV ′.

Now, using the dyadic identity (B.15) we may show that

J̃i × ∇G = (J̃i × ∇G) · Ī = (∇G × Ī) · Ji .

So

H̃(r, ω) = −
∫

V
Ḡm(r|r′; ω) · J̃i (r′, ω) dV ′

where

Ḡm(r|r′; ω) = ∇G(r|r′; ω) × Ī (5.84)

is called the magnetic dyadic Green’s function.
Proceeding similarly for magnetic sources (or using duality) we have

H̃(r) = − jωε̃c
∫

V
Ḡe(r|r′; ω) · J̃i

m(r′, ω) dV ′,

Ẽ(r) =
∫

V
Ḡm(r|r′; ω) · J̃i

m(r′, ω) dV ′.

When both electric and magnetic sources are present we simply use superposition and
add the fields.

When the observation point lies within the source region, we must be much more
careful about how we formulate the dyadic Green’s functions. In (5.82) we encounter the
integral ∫

V
J̃i (r′, ω)G(r|r′; ω) dV ′.



Figure 5.1: Geometry of excluded region used to compute the electric field within a source
region.

If r lies within the source region then G is singular since R → 0 when r → r′. However,
the integral converges and the potentials exist within the source region. While we run
into trouble when we pass both derivatives in the operator ∇∇· through the integral
and allow them to operate on G, since differentiation of G increases the order of the
singularity, we may safely take one derivative of G.

Even when we allow one derivative on G we must be careful in how we compute the
integral. We exclude the point r by surrounding it with a small volume element Vδ as
shown in Figure 5.1 and write

∇∇ ·
∫

V
J̃i (r′, ω)G(r|r′; ω) dV ′ =

lim
Vδ→0

∫
V −Vδ

∇ [∇G(r|r′; ω) · J̃i (r′, ω)
]

dV ′ + lim
Vδ→0

∇
∫

Vδ

∇G(r|r′; ω) · J̃i (r′, ω) dV ′.

The first integral on the right-hand side is called the principal value integral and is usually
abbreviated

P.V.

∫
V

∇ [∇G(r|r′; ω) · J̃i (r′, ω)
]

dV ′.

It converges to a value dependent on the shape of the excluded region Vδ, as does the
second integral. However, the sum of these two integrals produces a unique result. Using
∇G = −∇′G, the identity ∇′ · (J̃G) = J̃ · ∇′G + G∇′ · J̃, and the divergence theorem,
we can write

−
∫

Vδ

∇′G(r|r′; ω) · J̃i (r′, ω) dV ′ =

−
∮

Sδ

G(r|r′; ω)J̃i (r′, ω) · n̂′ d S′ +
∫

Vδ

G(r|r′; ω)∇′ · J̃i (r′, ω) dV ′

where Sδ is the surface surrounding Vδ. By the continuity equation the second integral
on the right-hand side is proportional to the scalar potential produced by the charge
within Vδ, and thus vanishes as Vδ → 0. The first term is proportional to the field at r
produced by surface charge on Sδ, which results in a value proportional to Ji . Thus

lim
Vδ→0

∇
∫

Vδ

∇G(r|r′; ω) · J̃i (r′, ω) dV ′ = − lim
Vδ→0

∇
∮

Sδ

G(r|r′; ω)J̃i (r′, ω) · n̂′ d S′

= −L̄ · J̃i (r, ω), (5.85)



so

∇∇ ·
∫

V
J̃i (r′, ω)G(r|r′; ω) dV ′ = P.V .

∫
V

∇ [∇G(r|r′; ω) · J̃i (r′, ω)
]

dV ′ − L̄ · J̃i (r, ω).

Here L̄ is usually called the depolarizing dyadic [113]. Its value depends on the shape of
Vδ, as considered below.

We may now write

Ẽ(r, ω) = − jωµ̃(ω) P.V.

∫
V

Ḡe(r|r′; ω) · J̃(r′, ω) dV ′ − 1

jωε̃c(ω)
L̄ · J̃i (r, ω). (5.86)

We may also incorporate both terms into a single dyadic Green’s function using the
notation

Ḡ(r|r′; ω) = P.V. Ḡe(r|r′; ω) − 1

k2
L̄δ(r − r′).

Hence when we compute

Ẽ(r, ω) = − jωµ̃(ω)

∫
V

Ḡ(r|r′; ω) · J̃i (r′, ω) dV ′

= − jωµ̃(ω)

∫
V

[
P.V. Ḡe(r|r′; ω) − 1

k2
L̄δ(r − r′)

]
· J̃i (r′, ω) dV ′

we reproduce (5.86). That is, the symbol P.V. on Ge indicates that a principal value
integral must be performed.

Our final task is to compute L̄ from (5.85). When we remove the excluded region
from the principal value computation we leave behind a hole in the source region. The
contribution to the field at r by the sources in the excluded region is found from the
scalar potential produced by the surface distribution n̂ · Ji . The value of this correction
term depends on the shape of the excluding volume. However, the correction term always
adds to the principal value integral to give the true field at r, regardless of the shape of
the volume. So we must always match the shape of the excluded region used to compute
the principal value integral with that used to compute the correction term so that the
true field is obtained. Note that as Vδ → 0 the phase factor in the Green’s function
becomes insignificant, and the values of the current on the surface approach the value at
r (assuming Ji is continuous at r). Thus we may write

lim
Vδ→0

∇
∮

Sδ

J̃i (r, ω) · n̂′

4π |r − r′| d S′ = L̄ · J̃i (r, ω).

This has the form of a static field integral. For a spherical excluded region we may com-
pute the above quantity quite simply by assuming the current to be uniform throughout
Vδ and by aligning the current with the z-axis and placing the center of the sphere at the
origin. We then compute the integral at a point r within the sphere, take the gradient,
and allow r → 0. We thus have for a sphere

lim
Vδ→0

∇
∮

S

J̃ i cos θ ′

4π |r − r′| d S′ = L̄ · [ẑ J̃ i (r, ω)].

This integral has been computed in § 3.2.7 with the result given by (3.103). Using this
we find

lim
Vδ→0

[
∇

(
1

3
J̃ i z

)] ∣∣∣∣
r=0

= ẑ
J̃ i

3
= L̄ · [ẑ J̃ i (r, ω)]



Figure 5.2: Geometry of an electric Hertzian dipole.

and thus

L̄ = 1

3
Ī.

We leave it as an exercise to show that for a cubical excluding volume the depolarizing
dyadic is also L̄ = Ī/3. Values for other shapes may be found in Yaghjian [215].

The theory of dyadic Green’s functions is well developed and there exist techniques
for their construction under a variety of conditions. For an excellent overview the reader
may see Tai [192].

Example of field calculation using potentials: the Hertzian dipole. Consider
a short line current of length l � λ at position rp, oriented along a direction p̂ in a
medium with constitutive parameters µ̃(ω), ε̃c (ω), as shown in Figure 5.2. We assume
that the frequency-domain current Ĩ (ω) is independent of position, and therefore this
Hertzian dipole must be terminated by point charges

Q̃(ω) = ± Ĩ (ω)

jω

as required by the continuity equation. The electric vector potential produced by this
short current element is

Ãe = µ̃

4π

∫
�

Ĩ p̂
e− jk R

R
dl ′.

At observation points far from the dipole (compared to its length) such that |r − rp| � l
we may approximate

e− jk R

R
≈ e− jk|r−rp |

|r − rp| .

Then

Ãe = p̂µ̃ Ĩ G(r|rp; ω)

∫
�

dl ′ = p̂µ̃ Ĩ lG(r|rp; ω). (5.87)

Note that we obtain the same answer if we let the current density of the dipole be

J̃ = jωp̃δ(r − rp)



where p̃ is the dipole moment defined by

p̃ = Q̃lp̂ = Ĩ l

jω
p̂.

That is, we consider a Hertzian dipole to be a “point source” of electromagnetic radiation.
With this notation we have

Ãe = µ̃

∫
V

[
jωp̃δ(r′ − rp)

]
G(r|r′; ω) dV ′ = jωµ̃p̃G(r|rp; ω),

which is identical to (5.87). The electromagnetic fields are then

H̃(r, ω) = jω∇ × [p̃G(r|rp; ω)], (5.88)

Ẽ(r, ω) = 1

ε̃c
∇ × ∇ × [p̃G(r|rp; ω)]. (5.89)

Here we have obtained Ẽ from H̃ outside the source region by applying Ampere’s law.
By duality we may obtain the fields produced by a magnetic Hertzian dipole of moment

p̃m = Ĩml

jω
p̂

located at r = rp as

Ẽ(r, ω) = − jω∇ × [p̃m G(r|rp; ω)],

H̃(r, ω) = 1

µ̃
∇ × ∇ × [p̃m G(r|rp; ω)].

We can learn much about the fields produced by localized sources by considering the
simple case of a Hertzian dipole aligned along the z-axis and centered at the origin. Using
p̂ = ẑ and rp = 0 in (5.88) we find that

H̃(r, ω) = jω∇ ×
[

ẑ
Ĩ

jω
l
e− jkr

4πr

]
= φ̂

1

4π
Ĩ l

[
1

r2
+ j

k

r

]
sin θe− jkr . (5.90)

By Ampere’s law

Ẽ(r, ω) = 1

jωε̃c
∇ × H̃(r, ω)

= r̂
η

4π
Ĩ l

[
2

r2
− j

2

kr3

]
cos θe− jkr + θ̂

η

4π
Ĩ l

[
j
k

r
+ 1

r2
− j

1

kr3

]
sin θe− jkr .

(5.91)

The fields involve various inverse powers of r , with the 1/r and 1/r3 terms 90◦ out-of-
phase from the 1/r2 term. Some terms dominate the field close to the source, while others
dominate far away. The terms that dominate near the source1 are called the near-zone
or induction-zone fields:

H̃N Z (r, ω) = φ̂
Ĩ l

4π

e− jkr

r2
sin θ,

ẼN Z (r, ω) = − jη
Ĩ l

4π

e− jkr

kr3

[
2r̂ cos θ + θ̂ sin θ

]
.

1Note that we still require r � l.



We note that H̃N Z and ẼN Z are 90◦ out-of-phase. Also, the electric field has the same
spatial dependence as the field of a static electric dipole. The terms that dominate far
from the source are called the far-zone or radiation fields:

H̃F Z (r, ω) = φ̂
jk Ĩ l

4π

e− jkr

r
sin θ, (5.92)

ẼF Z (r, ω) = θ̂η
jk Ĩ l

4π

e− jkr

r
sin θ. (5.93)

The far-zone fields are in-phase and in fact form a TEM spherical wave with

H̃F Z = r̂ × ẼF Z

η
. (5.94)

We speak of the time-average power radiated by a time-harmonic source as the integral
of the time-average power density over a very large sphere. Thus radiated power is the
power delivered by the sources to infinity. If the dipole is situated within a lossy medium,
all of the time-average power delivered by the sources is dissipated by the medium. If
the medium is lossless then all the time-average power is delivered to infinity. Let us
compute the power radiated by a time-harmonic Hertzian dipole immersed in a lossless
medium. Writing (5.90) and (5.91) in terms of phasors we have the complex Poynting
vector

Sc(r) = Ě(r) × Ȟ∗(r)

= θ̂η

(
| Ǐ |l
4π

)2

j
2

kr5

[
k2r2 + 1

]
cos θ sin θ + r̂η

(
| Ǐ |l
4π

)2
k2

r2

[
1 − j

1

k3r5

]
sin2 θ.

We notice that the θ -component of Sc is purely imaginary and gives rise to no time-
average power flux. This component falls off as 1/r3 for large r and produces no net
flux through a sphere with radius r → ∞. Additionally, the angular variation sin θ cos θ

integrates to zero over a sphere. In contrast, the r -component has a real part that varies
as 1/r2 and as sin2 θ . Hence we find that the total time-average power passing through
a sphere expanding to infinity is nonzero:

Pav = lim
r→∞

∫ 2π

0

∫ π

0

1

2
Re


r̂η

(
| Ǐ |l
4π

)2
k2

r2
sin2 θ


 · r̂r2 sin θ dθ dφ

= η
π

3
| Ǐ |2

(
l

λ

)2

(5.95)

where λ = 2π/k is the wavelength in the lossless medium. This is the power radiated by
the Hertzian dipole. The power is proportional to | Ǐ |2 as it is in a circuit, and thus we
may define a radiation resistance

Rr = 2Pav

| Ǐ |2 = η
2π

3

(
l

λ

)2

that represents the resistance of a lumped element that would absorb the same power as
radiated by the Hertzian dipole when presented with the same current. We also note that
the power radiated by a Hertzian dipole (and, in fact, by any source of finite extent) may



Figure 5.3: Geometry for solution to the frequency-domain Helmholtz equation.

be calculated directly from its far-zone fields. In fact, from (5.94) we have the simple
formula for the time-average power density in lossless media

Sav = 1

2
Re

{
ĚF Z × ȞF Z∗} = r̂

1

2

|ĚF Z |2
η

.

The dipole field is the first term in a general expansion of the electromagnetic fields in
terms of the multipole moments of the sources. Either a Taylor expansion or a spherical-
harmonic expansion may be used. The reader may see Papas [141] for details.

5.2.2 Solution for potential functions in a bounded medium

In the previous section we solved for the frequency-domain potential functions in an
unbounded region of space. Here we shall extend the solution to a bounded region and
identify the physical meaning of the radiation condition (5.79).

Consider a bounded region of space V containing a linear, homogeneous, isotropic
medium characterized by µ̃(ω) and ε̃c (ω). As shown in Figure 5.3 we decompose the
multiply-connected boundary into a closed “excluding surface” S0 and a closed “encom-
passing surface” S∞ that we shall allow to expand outward to infinity. S0 may consist
of more than one closed surface and is often used to exclude unknown sources from V .
We wish to solve the Helmholtz equation (5.75) for ψ̃ within V in terms of the sources
within V and the values of ψ̃ on S0. The actual sources of ψ̃ lie entirely with S∞ but
may lie partly, or entirely, within S0.

We solve the Helmholtz equation in much the same way that we solved Poisson’s
equation in § 3.2.4. We begin with Green’s second identity, written in terms of the
source point (primed) variables and applied to the region V :

∫
V

[ψ(r′, ω)∇′2G(r|r′; ω) − G(r|r′; ω)∇′2ψ(r′, ω)] dV ′ =



∮
S0+S∞

[
ψ(r′, ω)

∂G(r|r′; ω)

∂n′ − G(r|r′; ω)
∂ψ(r′, ω)

∂n′

]
d S′.

We note that n̂ points outward from V , and G is the Green’s function (5.77). By
inspection, this Green’s function obeys the reciprocity condition

G(r|r′; ω) = G(r′|r; ω)

and satisfies

∇2G(r|r′; ω) = ∇′2G(r|r′; ω).

Substituting ∇′2ψ̃ = −k2ψ̃ − S̃ from (5.75) and ∇′2G = −k2G − δ(r − r′) from (5.76)
we get

ψ̃(r, ω) =
∫

V
S̃(r′, ω)G(r|r′; ω) dV ′ −

−
∮

S0+S∞

[
ψ̃(r′, ω)

∂G(r|r′; ω)

∂n′ − G(r|r′; ω)
∂ψ̃(r′, ω)

∂n′

]
d S′.

Hence ψ̃ within V may be written in terms of the sources within V and the values of ψ̃

and its normal derivative over S0 + S∞. The surface contributions account for sources
excluded by S0.

Let us examine the integral over S∞ more closely. If we let S∞ recede to infinity, we
expect no contribution to the potential at r from the fields on S∞. Choosing a sphere
centered at the origin, we note that n̂′ = r̂′ and that as r ′ → ∞

G(r|r′; ω) = e− jk|r−r′|

4π |r − r′| ≈ e− jkr ′

4πr ′ ,

∂G(r|r′; ω)

∂n′ = n̂′ · ∇′G(r|r′; ω) ≈ ∂

∂r ′
e− jkr ′

4πr ′ = −(1 + jkr ′)
e− jkr ′

4πr ′ .

Substituting these, we find that as r ′ → ∞
∮

S∞

[
ψ̃

∂G

∂n′ − G
∂ψ̃

∂n′

]
d S′ ≈

∫ 2π

0

∫ π

0

[
−1 + jkr ′

r ′2 ψ̃ − 1

r ′
∂ψ̃

∂r ′

]
e− jkr ′

4π
r ′2 sin θ ′ dθ ′ dφ′

≈ −
∫ 2π

0

∫ π

0

[
ψ̃ + r ′

(
jkψ̃ + ∂ψ̃

∂r ′

)]
e− jkr

4π
sin θ ′ dθ ′ dφ′.

Since this gives the contribution to the field in V from the fields on the surface receding
to infinity, we expect that this term should be zero. If the medium has loss, then the
exponential term decays and drives the contribution to zero. For a lossless medium the
contribution is zero if

lim
r→∞ ψ̃(r, ω) = 0, (5.96)

lim
r→∞ r

[
jkψ̃(r, ω) + ∂ψ̃(r, ω)

∂r

]
= 0. (5.97)

This is called the radiation condition for the Helmholtz equation. It is also called the
Sommerfeld radiation condition after the German physicist A. Sommerfeld. Note that



we have not derived this condition: we have merely postulated it. As with all postulates
it is subject to experimental verification.

The radiation condition implies that for points far from the source the potentials
behave as spherical waves:

ψ̃(r, ω) ∼ e− jkr

r
, r → ∞.

Substituting this into (5.96) and (5.97) we find that the radiation condition is satisfied.
With S∞ → ∞ we have

ψ̃(r, ω) =
∫

V
S̃(r′, ω)G(r|r′; ω) dV ′ −

−
∮

S0

[
ψ̃(r′, ω)

∂G(r|r′; ω)

∂n′ − G(r|r′; ω)
∂ψ̃(r′, ω)

∂n′

]
d S′,

which is the expression for the potential within an infinite medium having source-
excluding regions. As S0 → 0 we obtain the expression for the potential in an unbounded
medium:

ψ̃(r, ω) =
∫

V
S̃(r′, ω)G(r|r′; ω) dV ′,

as expected.
The time-domain equation (5.71) may also be solved (at least for the lossless case) in

a bounded region of space. The interested reader should see Pauli [143] for details.

5.3 Transverse–longitudinal decomposition

We have seen that when only electric sources are present, the electromagnetic fields
in a homogeneous, isotropic region can be represented by a single vector potential Πe.
Similarly, when only magnetic sources are present, the fields can be represented by a
single vector potential Πh . Hence two vector potentials may be used to represent the
field if both electric and magnetic sources are present.

We may also represent the electromagnetic field in a homogeneous, isotropic region us-
ing two scalar functions and the sources. This follows naturally from another important
field decomposition: a splitting of each field vector into (1) a component along a certain
pre-chosen constant direction, and (2) a component transverse to this direction. Depend-
ing on the geometry of the sources, it is possible that only one of these components will
be present. A special case of this decomposition, the TE–TM field decomposition, holds
for a source-free region and will be discussed in the next section.

5.3.1 Transverse–longitudinal decomposition in terms of fields

Consider a direction defined by a constant unit vector û. We define the longitudinal
component of A as ûAu where

Au = û · A,

and the transverse component of A as

At = A − ûAu .



We may thus decompose any vector into a sum of longitudinal and transverse parts. An
important consequence of Maxwell’s equations is that the transverse fields may be written
entirely in terms of the longitudinal fields and the sources. This holds in both the time
and frequency domains; we derive the decomposition in the frequency domain and leave
the derivation of the time-domain expressions as exercises. We begin by decomposing
the operators in Maxwell’s equations into longitudinal and transverse components. We
note that

∂

∂u
≡ û · ∇

and define a transverse del operator as

∇t ≡ ∇ − û
∂

∂u
.

Using these basic definitions, the identities listed in Appendix B may be derived. We
shall find it helpful to express the vector curl and Laplacian operations in terms of
their longitudinal and transverse components. Using (B.93) and (B.96) we find that the
transverse component of the curl is given by

(∇ × A)t = −û × û × (∇ × A)

= −û × û × (∇t × At ) − û × û ×
(

û ×
[
∂At

∂u
− ∇t Au

])
. (5.98)

The first term in the right member is zero by property (B.91). Using (B.7) we can replace
the second term by

−û
{

û ·
(

û ×
[
∂At

∂u
− ∇t Au

])}
+ (û · û)

(
û ×

[
∂At

∂u
− ∇t Au

])
.

The first of these terms is zero since

û ·
(

û ×
[
∂At

∂u
− ∇t Au

])
=

[
∂At

∂u
− ∇t Au

]
· (û × û) = 0,

hence

(∇ × A)t = û ×
[
∂At

∂u
− ∇t Au

]
. (5.99)

The longitudinal part is then, by property (B.80), merely the difference between the curl
and its transverse part, or

û (û · ∇ × A) = ∇t × At . (5.100)

A similar set of steps gives the transverse component of the Laplacian as

(∇2A)t =
[
∇t (∇t · At ) + ∂2At

∂u2
− ∇t × ∇t × At

]
, (5.101)

and the longitudinal part as

û
(
û · ∇2A

) = û∇2 Au . (5.102)

Verification is left as an exercise.



Now we are ready to give a longitudinal–transverse decomposition of the fields in a
lossy, homogeneous, isotropic region in terms of the direction û. We write Maxwell’s
equations as

∇ × Ẽ = − jωµ̃H̃t − jωµ̃ûH̃u − J̃i
mt − û J̃ i

mu, (5.103)
∇ × H̃ = jωε̃cẼt + jωε̃cûẼu + J̃i

t + û J̃ i
u, (5.104)

where we have split the right-hand sides into longitudinal and transverse parts. Then,
using (5.99) and (5.100), we can equate the transverse and longitudinal parts of each
equation to obtain

∇t × Ẽt = − jωµ̃ûH̃u − û J̃ i
mu, (5.105)

− û × ∇t Ẽu + û × ∂Ẽt

∂u
= − jωµ̃H̃t − J̃i

mt , (5.106)

∇t × H̃t = jωε̃cûẼu + û J̃ i
u, (5.107)

− û × ∇t H̃u + û × ∂H̃t

∂u
= jωε̃cẼt + J̃i

t . (5.108)

We shall isolate the transverse fields in terms of the longitudinal fields. Forming the
cross product of û and the partial derivative of (5.108) with respect to u, we have

−û × û × ∇t
∂ H̃u

∂u
+ û × û × ∂2H̃t

∂u2
= jωε̃cû × ∂Ẽt

∂u
+ û × ∂ J̃i

t

∂u
.

Using (B.7) and (B.80) we find that

∇t
∂ H̃u

∂u
− ∂2H̃t

∂u2
= jωε̃cû × ∂Et

∂u
+ û × ∂ J̃i

t

∂u
. (5.109)

Multiplying (5.106) by jωε̃c we have

− jωε̃cû × ∇t Ẽu + jωε̃cû × ∂Ẽt

∂u
= ω2µ̃ε̃cH̃t − jωε̃cJ̃i

mt . (5.110)

We now add (5.109) to (5.110) and eliminate Ẽt to get
(

∂2

∂u2
+ k2

)
H̃t = ∇t

∂ H̃u

∂u
− jωε̃cû × ∇t Ẽu + jωε̃cJ̃i

mt − û × ∂ J̃i
t

∂u
. (5.111)

This one-dimensional Helmholtz equation can be solved to find the transverse magnetic
field from the longitudinal components of Ẽ and H̃. Similar steps lead to a formula for
the transverse component of Ẽ:

(
∂2

∂u2
+ k2

)
Ẽt = ∇t

∂ Ẽu

∂u
+ jωµ̃û × ∇t H̃u + û × ∂ J̃i

mt

∂u
+ jωµ̃J̃i

t . (5.112)

We find the longitudinal components from the wave equation for Ẽ and H̃. Recall that
the fields satisfy

(∇2 + k2)Ẽ = 1

ε̃c
∇ρ̃i + jωµ̃J̃i + ∇ × J̃i

m,

(∇2 + k2)H̃ = 1

µ̃
∇ρ̃i

m + jωε̃cJ̃i
m − ∇ × J̃i .



Splitting the vectors into longitudinal and transverse parts, and using (5.100) and (5.102),
we equate the longitudinal components of the wave equations to obtain

(∇2 + k2
)

Ẽu = 1

ε̃c

∂ρ̃i

∂u
+ jωµ̃ J̃ i

u + ∇t × J̃i
mt , (5.113)

(∇2 + k2
)

H̃u = 1

µ̃

∂ρ̃i
m

∂u
+ jωε̃c J̃ i

mu − ∇t × J̃i
t . (5.114)

We note that if J̃i
m = J̃i

t = 0, then H̃u = 0 and the fields are TM to the u-direction; these
fields may be determined completely from Ẽu . Similarly, if J̃i = J̃i

mt = 0, then Ẽu = 0
and the fields are TE to the u-direction; these fields may be determined completely from
H̃u . These properties are used in § 4.11.7, where the fields of electric and magnetic line
sources aligned along the z-direction are assumed to be purely TMz or TEz , respectively.

5.4 TE–TM decomposition

5.4.1 TE–TM decomposition in terms of fields

A particularly useful field decomposition results if we specialize to a source-free region.
With J̃i = J̃i

m = 0 in (5.111)–(5.112) we obtain
(

∂2

∂u2
+ k2

)
H̃t = ∇t

∂ H̃u

∂u
− jωε̃cû × ∇t Ẽu, (5.115)

(
∂2

∂u2
+ k2

)
Ẽt = ∇t

∂ Ẽu

∂u
+ jωµ̃û × ∇t H̃u . (5.116)

Setting the sources to zero in (5.113) and (5.114) we get
(∇2 + k2

)
Ẽu = 0,(∇2 + k2

)
H̃u = 0.

Hence the longitudinal field components are solutions to the homogeneous Helmholtz
equation, and the transverse components are specified solely in terms of the longitudinal
components. The electromagnetic field is completely specified by the two scalar fields Ẽu

and H̃u (and, of course, appropriate boundary values).
We can use superposition to simplify the task of solving (5.115)–(5.116). Since each

equation has two forcing terms on the right-hand side, we can solve the equations using
one forcing term at a time, and add the results. That is, let Ẽ1 and H̃1 be the solutions to
(5.115)–(5.116) with Ẽu = 0, and Ẽ2 and H̃2 be the solutions with H̃u = 0. This results
in a decomposition

Ẽ = Ẽ1 + Ẽ2, (5.117)
H̃ = H̃1 + H̃2, (5.118)

with

Ẽ1 = Ẽ1t , H̃1 = H̃1t + H̃1u û,

H̃2 = H̃2t , Ẽ2 = Ẽ2t + Ẽ2u û.



Because Ẽ1 has no u-component, Ẽ1 and H̃1 are termed transverse electric (or TE ) to
the u-direction; H̃2 has no u-component, and Ẽ2 and H̃2 are termed transverse magnetic
(or TM ) to the u-direction.2 We see that in a source-free region any electromagnetic
field can be decomposed into a set of two fields that are TE and TM, respectively, to
some fixed u-direction. This is useful when solving boundary value (e.g., waveguide
and scattering) problems where information about external sources is easily specified
using the values of the fields on the boundary of the source-free region. In that case
Ẽu and H̃u are determined by solving the homogeneous wave equation in an appropriate
coordinate system, and the other field components are found from (5.115)–(5.116). Often
the boundary conditions can be satisfied by the TM fields or the TE fields alone. This
simplifies the analysis of many types of EM systems.

5.4.2 TE–TM decomposition in terms of Hertzian potentials

We are free to represent Ẽ and H̃ in terms of scalar fields other than Ẽu and H̃u . In
doing so, it is helpful to retain the wave nature of the solution so that a meaningful
physical interpretation is still possible; we thus use Hertzian potentials since they obey
the wave equation.

For the TM case let Π̃h = 0 and Π̃e = û�̃e. Setting J̃i = 0 in (5.64) we have

(∇2 + k2)Π̃e = 0.

Since Π̃e is purely longitudinal, we can use (B.99) to obtain the scalar Helmholtz equation
for �̃e:

(∇2 + k2)�̃e = 0. (5.119)

Once �̃e has been found by solving this wave equation, the fields can be found by using
(5.62)–(5.63) with J̃i = 0:

Ẽ = ∇ × (∇ × Π̃e), (5.120)
H̃ = jωε̃c∇ × Π̃e. (5.121)

We can evaluate Ẽ by noting that Π̃e is purely longitudinal. Use of property (B.98) gives

∇ × ∇ × Π̃e = ∇t
∂�̃e

∂u
− û∇2

t �̃e.

Then, by property (B.97),

∇ × ∇ × Π̃e = ∇t
∂�̃e

∂u
− û

[
∇2�̃e − ∂2�̃e

∂u2

]
.

By (5.119) then,

Ẽ = ∇t
∂�̃e

∂u
+ û

(
∂2

∂u2
+ k2

)
�̃e. (5.122)

The field H̃ can be found by noting that Π̃e is purely longitudinal. Use of property
(B.96) in (5.121) gives

H̃ = − jωε̃cû × ∇t�̃e. (5.123)

2Some authors prefer to use the terminology E mode in place of TM, and H mode in place of TE,
indicating the presence of a u-directed electric or magnetic field component.



Similar steps can be used to find the TE representation. Substitution of Π̃e = 0 and
Π̃h = û�̃h into (5.65)–(5.66) gives the fields

Ẽ = jωµ̃û × ∇t�̃h, (5.124)

H̃ = ∇t
∂�̃h

∂u
+ û

(
∂2

∂u2
+ k2

)
�̃h, (5.125)

while �̃h must satisfy

(∇2 + k2)�̃h = 0. (5.126)

Hertzian potential representation of TEM fields. An interesting situation occurs
when a field is both TE and TM to a particular direction. Such a field is said to be
transverse electromagnetic (or TEM ) to that direction. Unfortunately, with Ẽu = H̃u =
0 we cannot use (5.115) or (5.116) to find the transverse field components. It turns out
that a single scalar potential function is sufficient to represent the field, and we may use
either �̃e or �̃h .

For the TM case, equations (5.122) and (5.123) show that we can represent the electro-
magnetic fields completely with �̃e. Unfortunately (5.122) has a longitudinal component,
and thus cannot describe a TEM field. But if we require that �̃e obey the additional
equation (

∂2

∂u2
+ k2

)
�̃e = 0, (5.127)

then both E and H are transverse to u and thus describe a TEM field. Since �̃e must
also obey (∇2 + k2

)
�̃e = 0,

using (B.7) we can write (5.127) as

∇2
t �̃e = 0.

Similarly, for the TE case we found that the EM fields were completely described in
(5.124) and (5.125) by �̃h . In this case H̃ has a longitudinal component. Thus, if we
require (

∂2

∂u2
+ k2

)
�̃h = 0, (5.128)

then both Ẽ and H̃ are purely transverse to u and again describe a TEM field. Equation
(5.128) is equivalent to

∇2
t �̃h = 0.

We can therefore describe a TEM field using either �̃e or �̃h , since a TEM field is
both TE and TM to the longitudinal direction. If we choose �̃e we can use (5.122) and
(5.123) to obtain the expressions

Ẽ = ∇t
∂�̃e

∂u
, (5.129)

H̃ = − jωε̃cû × ∇t�̃e, (5.130)

where �̃e must obey

∇2
t �̃e = 0,

(
∂2

∂u2
+ k2

)
�̃e = 0. (5.131)



If we choose �̃h we can use (5.124) and (5.125) to obtain

Ẽ = jωµ̃û × ∇t�̃h, (5.132)

H̃ = ∇t
∂�̃h

∂u
, (5.133)

where �̃h must obey

∇2
t �̃h = 0,

(
∂2

∂u2
+ k2

)
�̃h = 0. (5.134)

5.4.3 Application: hollow-pipe waveguides

A classic application of the TE–TM decomposition is to the calculation of waveguide
fields. Consider a hollow pipe with PEC walls, aligned along the z-axis. The inside is filled
with a homogeneous, isotropic material of permeability µ̃(ω) and complex permittivity
ε̃c(ω), and the guide cross-sectional shape is assumed to be independent of z. We assume
that a current source exists somewhere within the waveguide, creating waves that either
propagate or evanesce away from the source. If the source is confined to the region
−d < z < d then each of the regions z > d and z < −d is source-free and we may
decompose the fields there into TE and TM sets. Such a waveguide is a good candidate
for TE–TM analysis because the TE and TM fields independently satisfy the boundary
conditions at the waveguide walls. This is not generally the case for certain other guided-
wave structures such as fiber optic cables and microstrip lines.

We may represent the fields either in terms of the longitudinal fields Ẽz and H̃z , or
in terms of the Hertzian potentials. We choose the Hertzian potentials. For TM fields
we choose Π̃e = ẑ�̃e, Π̃h = 0; for TE fields we choose Π̃h = ẑ�̃h , Π̃e = 0. Both of the
potentials must obey the same Helmholtz equation:(∇2 + k2

)
�̃z = 0, (5.135)

where �̃z represents either �̃e or �̃h . We seek a solution to this equation using the
separation of variables technique, and assume the product solution

�̃z(r, ω) = Z̃(z, ω)ψ̃(ρ, ω),

where ρ is the transverse position vector (r = ẑz + ρ). Substituting the trial solution
into (5.135) and writing

∇2 = ∇2
t + ∂2

∂z2

we find that

1

ψ̃(ρ, ω)
∇2

t ψ̃(ρ, ω) + k2 = − 1

Z(z, ω)

∂2

∂z2
Z(z, ω).

Because the left-hand side of this expression has positional dependence only on ρ while
the right-hand side has dependence only on z, we must have both sides equal to a constant,
say k2

z . Then

∂2 Z

∂z2
+ k2

z Z = 0,

which is an ordinary differential equation with the solutions

Z = e∓ jkz z .



We also have

∇2
t ψ̃(ρ, ω) + k2

c ψ̃(ρ, ω) = 0, (5.136)

where kc = k2 −k2
z is called the cutoff wavenumber. The solution to this equation depends

on the geometry of the waveguide cross-section and whether the field is TE or TM.
The fields may be computed from the Hertzian potentials using u = z in (5.122)–

(5.123) and (5.124)–(5.125). Because the fields all contain the common term e∓ jkz z , we
define the field quantities ẽ and h̃ through

Ẽ(r, ω) = ẽ(ρ, ω)e∓ jkz z, H̃(r, ω) = h̃(ρ, ω)e∓ jkz z .

Then, substituting �̃e = ψ̃ee∓ jkz z , we have for TM fields

ẽ = ∓ jkz∇t ψ̃e + ẑk2
c ψ̃e,

h̃ = − jωε̃cẑ × ∇t ψ̃e.

Because we have a simple relationship between the transverse parts of Ẽ and H̃, we may
also write the fields as

ẽz = k2
c ψ̃e, (5.137)

ẽt = ∓ jkz∇t ψ̃e, (5.138)
h̃t = ±Ye(ẑ × ẽt ). (5.139)

Here

Ye = ωε̃c

kz

is the complex TM wave admittance. For TE fields we have with �̃h = ψ̃he∓ jkz z

ẽ = jωµ̃ẑ × ∇t ψ̃h,

h̃ = ∓ jkz∇t ψ̃h + ẑk2
c ψ̃h,

or

h̃z = k2
c ψ̃h, (5.140)

h̃t = ∓ jkz∇t ψ̃h, (5.141)
ẽt = ∓Zh(ẑ × h̃t ). (5.142)

Here

Zh = ωµ̃

kz

is the TM wave impedance.

Modal solutions for the transverse field dependence. Equation (5.136) describes
the transverse behavior of the waveguide fields. When coupled with an appropriate
boundary condition, this homogeneous equation has an infinite spectrum of discrete so-
lutions called eigenmodes or simply modes. Each mode has associated with it a real
eigenvalue kc that is dependent on the cross-sectional shape of the waveguide, but inde-
pendent of frequency and homogeneous material parameters. We number the modes so
that kc = kcn for the nth mode. The amplitude of each modal solution depends on the
excitation source within the waveguide.



The appropriate boundary conditions can be found by employing the condition that
for both TM and TE fields the tangential component of Ẽ must be zero on the waveguide
walls: n̂ × Ẽ = 0, where n̂ is the unit inward normal to the waveguide wall. For TM
fields we have Ẽz = 0 and thus

ψ̃e(ρ, ω) = 0, ρ ∈ �, (5.143)

where � is the contour describing the waveguide boundary. For TE fields we have n̂×Ẽt =
0, or

n̂ × (ẑ × ∇t ψ̃h) = 0.

Using

n̂ × (ẑ × ∇t ψ̃h) = ẑ(n̂ · ∇t ψ̃h) − (n̂ · ẑ)∇t ψ̃h

and noting that n̂ · ẑ = 0, we have the boundary condition

n̂ · ∇t ψ̃h(ρ, ω) = ∂ψ̃h(ρ, ω)

∂n
= 0, ρ ∈ �. (5.144)

The wave nature of the waveguide fields. We have seen that all waveguide field
components, for both TE and TM modes, vary as e∓ jkzn z . Here k2

zn = k2 − k2
cn is the

propagation constant of the nth mode. Letting

kz = β − jα

we thus have

Ẽ, H̃ ∼ e∓ jβze∓αz .

For z > d we choose the minus sign so that we have a wave propagating away from the
source; for z < −d we choose the plus sign.

When the guide is filled with a good dielectric we may assume µ̃ = µ is real and
independent of frequency and use (4.254) to show that

kz = β − jα =
√[

ω2µε′ − k2
c

] − jω2µε′ tan δc

=
√

µε′
√

ω2 − ω2
c

√
1 − j

tan δc

1 − (ωc/ω)2

where δc is the loss tangent (4.253) and where

ωc = kc√
µε′

is called the cutoff frequency. Under the condition

tan δc

1 − (ωc/ω)2 � 1 (5.145)

we may approximate the square root using the first two terms of the binomial series to
show that

β − jα ≈
√

µε′
√

ω2 − ω2
c

[
1 − j

1

2

tan δc

1 − (ωc/ω)2

]
. (5.146)
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Figure 5.4: Dispersion plot for a hollow-pipe waveguide. Light line computed using
v = 1/

√
µε.

Condition (5.145) requires that ω be sufficiently removed from ωc, either by having
ω > ωc or ω < ωc. When ω > ωc we say that the frequency is above cutoff and find from
(5.146) that

β ≈ ω
√

µε′
√

1 − ω2
c/ω

2, α ≈ ω2µε′

2β
tan δc.

Here α � β and the wave propagates down the waveguide with relatively little loss.
When ω < ωc we say that the waveguide is cut off or that the frequency is below cutoff
and find that

α ≈ ω
√

µε′
√

ω2
c/ω

2 − 1, β ≈ ω2µε′

2α
tan δc.

In this case the wave has a very small phase constant and a very large rate of attenuation.
For frequencies near ωc there is an abrupt but continuous transition between these two
types of wave behavior.

When the waveguide is filled with a lossless material having permittivity ε and per-
meability µ, the transition across the cutoff frequency is discontinuous. For ω > ωc we
have

β = ω
√

µε

√
1 − ω2

c/ω
2, α = 0,

and the wave propagates without loss. For ω < ωc we have

α = ω
√

µε

√
ω2

c/ω
2 − 1, β = 0,

and the wave is evanescent. The dispersion diagram shown in Figure 5.4 clearly shows
the abrupt cutoff phenomenon. We can compute the phase and group velocities of the
wave above cutoff just as we did for plane waves:

vp = ω

β
= v√

1 − ω2
c/ω

2
,
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Figure 5.5: Phase and group velocity for a hollow-pipe waveguide.

vg = dω

dβ
= v

√
1 − ω2

c/ω
2, (5.147)

where v = 1/
√

µε. Note that vgvp = v2. We show later that vg is the velocity of energy
transport within a lossless guide. We also see that as ω → ∞ we have vp → v and
vg → v. More interestingly, as ω → ωc we find that vp → ∞ and vg → 0. This is shown
graphically in Figure 5.5.

We may also speak of the guided wavelength of a monochromatic wave propagating
with frequency ω̌ in a waveguide. We define this wavelength as

λg = 2π

β
= λ√

1 − ω2
c/ω̌

2
= λ√

1 − λ2/λ2
c

.

Here

λ = 2π

ω̌
√

µε
, λc = 2π

kc
.

Orthogonality of waveguide modes. The modal fields in a closed-pipe waveguide
obey several orthogonality relations. Let (Ěn, Ȟn) be the time-harmonic electric and
magnetic fields of one particular waveguide mode (TE or TM), and let (Ěm, Ȟm) be
the fields of a different mode (TE or TM). One very useful relation states that for a
waveguide containing lossless materials∫

C S
ẑ · (

ěn × ȟ∗
m

)
d S = 0, m 
= n, (5.148)

where C S is the guide cross-section. This is used to establish that the total power carried
by a wave is the sum of the powers carried by individual modes (see below).



Other important relationships include the orthogonality of the longitudinal fields,∫
C S

Ězm Ězn d S = 0, m 
= n, (5.149)
∫

C S
Ȟzm Ȟzn d S = 0, m 
= n, (5.150)

and the orthogonality of transverse fields,∫
C S

Ětm · Ětn d S = 0, m 
= n,

∫
C S

Ȟtm · Ȟtn d S = 0, m 
= n.

These may also be combined to give an orthogonality relation for the complete fields:∫
C S

Ěm · Ěn d S = 0, m 
= n, (5.151)
∫

C S
Ȟm · Ȟn d S = 0, m 
= n. (5.152)

For proofs of these relations the reader should see Collin [39].

Power carried by time-harmonic waves in lossless waveguides. The power car-
ried by a time-harmonic wave propagating down a waveguide is defined as the time-
average Poynting flux passing through the guide cross-section. Thus we may write

Pav = 1

2

∫
C S

Re
{
Ě × Ȟ∗} · ẑ d S.

The field within the guide is assumed to be a superposition of all possible waveguide
modes. For waves traveling in the +z-direction this implies

Ě =
∑

m

(ětm + ẑězm) e− jkzm z, Ȟ =
∑

n

(
ȟtn + ẑȟzn

)
e− jkzn z .

Substituting we have

Pav = 1

2
Re

{∫
C S

[∑
m

(ětm + ẑězm) e− jkzm z ×
∑

n

(
ȟ∗

tn + ẑȟ∗
zn

)
e jk∗

zn z

]
· ẑ d S

}

= 1

2
Re

{∑
m

∑
n

e− j (kzm−k∗
zn)z

∫
C S

ẑ · (
ětm × ȟ∗

tn

)
d S

}
.

By (5.148) we have

Pav = 1

2
Re

{∑
n

e− j (kzn−k∗
zn)z

∫
C S

ẑ · (
ětn × ȟ∗

tn

)
d S

}
.

For modes propagating in a lossless guide kzn = βzn. For modes that are cut off kzn =
− jαzn. However, we find below that terms in this series representing modes that are cut
off are zero. Thus

Pav =
∑

n

1

2
Re

{∫
C S

ẑ · (
ětn × ȟ∗

tn

)
d S

}
=

∑
n

Pn,av.



Hence for waveguides filled with lossless media the total time-average power flow is given
by the superposition of the individual modal powers.

Simple formulas for the individual modal powers in a lossless guide may be obtained
by substituting the expressions for the fields. For TM modes we use (5.138) and (5.139)
to get

Pav = 1

2
Re

{
|kz|2Y ∗

e e− j (kz−k∗
z )

∫
C S

ẑ · (∇t ψ̌e × [ẑ × ∇t ψ̌
∗
e ]

)
d S

}

= 1

2
|kz|2 Re

{
Y ∗

e

}
e− j (kz−k∗

z )

∫
C S

∇t ψ̌e · ∇t ψ̌
∗
e d S.

Here we have used (B.7) and ẑ · ∇t ψ̌e = 0. This expression can be simplified by using the
two-dimensional version of Green’s first identity (B.29):

∫
S
(∇t a · ∇t b + a∇2

t b) d S =
∮

�

a
∂b

∂n
dl.

Using a = ψ̌e and b = ψ̌∗
e and integrating over the waveguide cross-section we have

∫
C S

(∇t ψ̌e · ∇t ψ̌
∗
e + ψ̌e∇2ψ̌∗

e ) d S =
∮

�

ψ̌e
∂ψ̌∗

e

∂n
dl.

Substituting ∇2
t ψ̌∗

e = −k2
c ψ̌

∗
e and remembering that ψ̌e = 0 on � we reduce this to

∫
C S

∇t ψ̌e · ∇t ψ̌
∗
e d S = k2

c

∫
C S

ψ̌eψ̌
∗
e d S. (5.153)

Thus the power is

Pav = 1

2
Re

{
Y ∗

e

} |kz|2k2
c e− j (kz−k∗

z )z
∫

C S
ψ̌eψ̌

∗
e d S.

For modes above cutoff we have kz = β and Ye = ωε/kz = ωε/β. The power carried by
these modes is thus

Pav = 1

2
ωεβk2

c

∫
C S

ψ̌eψ̌
∗
e d S. (5.154)

For modes below cutoff we have kz = − jα and Ye = jωε/α. Thus Re{Y ∗
e } = 0 and

Pav = 0. For frequencies below cutoff the fields are evanescent and do not carry power
in the manner of propagating waves.

For TE modes we may proceed similarly and show that

Pav = 1

2
ωµβk2

c

∫
C S

ψ̌hψ̌
∗
h d S. (5.155)

The details are left as an exercise.

Stored energy in a waveguide and the velocity of energy transport. Consider
a source-free section of lossless waveguide bounded on its two ends by the cross-sectional
surfaces C S1 and C S2. Setting J̌i = J̌c = 0 in (4.156) we have

1

2

∮
S
(Ě × Ȟ∗) · dS = 2 jω

∫
V

[〈we〉 − 〈wm〉] dV,



where V is the region of the guide between C S1 and C S2. The right-hand side represents
the difference between the total time-average stored electric and magnetic energies. Thus

2 jω [〈We〉 − 〈Wm〉] =
1

2

∫
C S1

−ẑ · (Ě × Ȟ∗) d S + 1

2

∫
C S2

ẑ · (Ě × Ȟ∗) d S − 1

2

∫
Scond

(Ě × Ȟ∗) · dS,

where Scond indicates the conducting walls of the guide and n̂ points into the guide. For
a propagating mode the first two terms on the right-hand side cancel since with no loss
Ě×Ȟ∗ is the same on C S1 and C S2. The third term is zero since (Ě×Ȟ∗)·n̂ = (n̂×Ě)·Ȟ∗,
and n̂ × Ě = 0 on the waveguide walls. Thus we have

〈We〉 = 〈Wm〉
for any section of a lossless waveguide.

We may compute the time-average stored magnetic energy in a section of lossless
waveguide of length l as

〈Wm〉 = µ

4

∫ l

0

∫
C S

Ȟ · Ȟ∗ d S dz.

For propagating TM modes we can substitute (5.139) to find

〈Wm〉/ l = µ

4
(βYe)

2
∫

C S
(ẑ × ∇t ψ̌e) · (ẑ × ∇t ψ̌

∗
e ) d S.

Using

(ẑ × ∇t ψ̌e) · (ẑ × ∇t ψ̌
∗
e ) = ẑ · [∇t ψ̌

∗
e × (ẑ × ∇t ψ̌e)

] = ∇t ψ̌e · ∇t ψ̌
∗
e

we have

〈Wm〉/ l = µ

4
(βYe)

2
∫

C S
∇t ψ̌e · ∇t ψ̌

∗
e d S.

Finally, using (5.153) we have the stored energy per unit length for a propagating TM
mode:

〈Wm〉/ l = 〈We〉/ l = µ

4
(ωε)2k2

c

∫
C S

ψ̌eψ̌
∗
e d S.

Similarly we may show that for a TE mode

〈We〉/ l = 〈Wm〉/ l = ε

4
(ωµ)2k2

c

∫
C S

ψ̌hψ̌
∗
h d S.

The details are left as an exercise.
As with plane waves in (4.261) we may describe the velocity of energy transport as the

ratio of the Poynting flux density to the total stored energy density:

Sav = 〈wT 〉ve.

For TM modes this energy velocity is

ve =
1
2ωεβk2

c ψ̌eψ̌
∗
e

2µ

4 (ωε)2k2
c ψ̌eψ̌∗

e

= β

ωµε
= v

√
1 − ω2

c/ω
2,

which is identical to the group velocity (5.147). This is also the case for TE modes, for
which

ve =
1
2ωµβk2

c ψ̌hψ̌
∗
h

2 ε
4 (ωµ)2k2

c ψ̌hψ̌
∗
h

= β

ωµε
= v

√
1 − ω2

c/ω
2.



Example: fields of a rectangular waveguide. Consider a rectangular waveguide
with a cross-section occupying 0 ≤ x ≤ a and 0 ≤ y ≤ b. The material within the guide
is assumed to be a lossless dielectric of permittivity ε and permeability µ. We seek the
modal fields within the guide.

Both TE and TM fields exist within the guide. In each case we must solve the differ-
ential equation

∇2
t ψ̃ + k2

c ψ̃ = 0.

A product solution in rectangular coordinates may be sought using the separation of
variables technique (§ A.4). We find that

ψ̃(x, y, ω) = [Ax sin kx x + Bx cos kx x]
[
Ay sin ky y + By cos ky y

]
where k2

x + k2
y = k2

c . This solution is easily verified by substitution.
For TM modes the solution is subject to the boundary condition (5.143):

ψ̃e(ρ, ω) = 0, ρ ∈ �.

Applying this at x = 0 and y = 0 we find Bx = By = 0. Applying the boundary condition
at x = a we then find sin kx a = 0 and thus

kx = nπ

a
, n = 1, 2, . . . .

Note that n = 0 corresponds to the trivial solution ψ̃e = 0. Similarly, from the condition
at y = b we find that

ky = mπ

b
, m = 1, 2, . . . .

Thus

ψ̃e(x, y, ω) = Anm sin
(nπx

a

)
sin

(mπy

b

)
.

From (5.137)–(5.139) we find that the fields are

Ẽz = k2
cnm

Anm

[
sin

nπx

a
sin

mπy

b

]
e∓ jkz z,

Ẽt = ∓ jkz Anm

[
x̂

nπ

a
cos

nπx

a
sin

mπy

b
+ ŷ

mπ

b
sin

nπx

a
cos

mπy

b

]
e∓ jkz z,

H̃t = jkzYe Anm

[
x̂

mπ

b
sin

nπx

a
cos

mπy

b
− ŷ

nπ

a
cos

nπx

a
sin

mπy

b

]
e∓ jkz z .

Here

Ye = 1

η
√

1 − ω2
cnm

/ω2

with η = (µε)1/2.
Each combination of m, n describes a different field pattern and thus a different mode,

designated TMnm . The cutoff wavenumber of the TMnm mode is

kcnm =
√(nπ

a

)2
+

(mπ

b

)2
, m, n = 1, 2, 3, . . .

and the cutoff frequency is

ωcnm = v

√(nπ

a

)2
+

(mπ

b

)2
, m, n = 1, 2, 3, . . .



where v = 1/(µε)1/2. Thus the TM11 mode has the lowest cutoff frequency of any TM
mode. There is a range of frequencies for which this is the only propagating TM mode.

For TE modes the solution is subject to

n̂ · ∇t ψ̃h(ρ, ω) = ∂ψ̃h(ρ, ω)

∂n
= 0, ρ ∈ �.

At x = 0 we have

∂ψ̃h

∂x
= 0

leading to Ax = 0. At y = 0 we have

∂ψ̃h

∂y
= 0

leading to Ay = 0. At x = a we require sin kx a = 0 and thus

kx = nπ

a
, n = 0, 1, 2, . . . .

Similarly, from the condition at y = b we find

ky = mπ

b
, m = 0, 1, 2, . . . .

The case n = m = 0 is not allowed since it produces the trivial solution. Thus

ψ̃h(x, y, ω) = Bnm cos
(nπx

a

)
cos

(mπy

b

)
, m, n = 0, 1, 2, . . . , m + n > 0.

From (5.140)–(5.142) we find that the fields are

H̃z = k2
cnm

Bnm

[
cos

nπx

a
cos

mπy

b

]
e∓ jkz z,

H̃t = ± jkz Bnm

[
x̂

nπ

a
sin

nπx

a
cos

mπy

b
+ ŷ

mπ

b
cos

nπx

a
sin

mπy

b

]
e∓ jkz z,

Ẽt = jkz Zh Bnm

[
x̂

mπ

b
cos

nπx

a
sin

mπy

b
− ŷ

nπ

a
sin

nπx

a
cos

mπy

b

]
e∓ jkz z .

Here

Zh = η√
1 − ω2

cnm
/ω2

.

In this case the modes are designated TEnm . The cutoff wavenumber of the TEnm mode
is

kcnm =
√(nπ

a

)2
+

(mπ

b

)2
, m, n = 0, 1, 2, . . . , m + n > 0

and the cutoff frequency is

ωcnm = v

√(nπ

a

)2
+

(mπ

b

)2
, m, n = 0, 1, 2, . . . , m + n > 0

where v = 1/(µε)1/2. Modes having the same cutoff frequency are said to be degenerate.
This is the case with the TE and TM modes. However, the field distributions differ and
thus the modes are distinct. Note that we may also have degeneracy among the TE



or TM modes. For instance, if a = b then the cutoff frequency of the TEnm mode is
identical to that of the TEmn mode. If a ≥ b then the TE10 mode has the lowest cutoff
frequency and is termed the dominant mode in a rectangular guide. There is a finite
band of frequencies in which this is the only mode propagating (although the bandwidth
is small if a ≈ b.)

Calculation of the time-average power carried by propagating TE and TM modes is
left as an exercise.

5.4.4 TE–TM decomposition in spherical coordinates

It is not necessary for the longitudinal direction to be constant to achieve a TE–TM
decomposition. It is possible, for instance, to represent the electromagnetic field in terms
of components either TE or TM to the radial direction of spherical coordinates. This may
be shown using a procedure identical to that used for the longitudinal–transverse decom-
position in rectangular coordinates. We carry out the decomposition in the frequency
domain and leave the time-domain decomposition as an exercise.

TE–TM decomposition in terms of the radial fields. Consider a source-free re-
gion of space filled with a homogeneous, isotropic material described by parameters µ̃(ω)

and ε̃c(ω). We substitute the spherical coordinate representation of the curl into Fara-
day’s and Ampere’s laws with source terms J̃ and J̃m set equal to zero. Equating vector
components we have, in particular,

1

r

[
1

sin θ

∂ Ẽr

∂φ
− ∂

∂r
(r Ẽφ)

]
= − jωµ̃H̃θ (5.156)

and

1

r

[
∂

∂r
(r H̃θ ) − ∂ H̃r

∂θ

]
= jωε̃c Ẽφ. (5.157)

We seek to isolate the transverse components of the fields in terms of the radial compo-
nents. Multiplying (5.156) by jωε̃cr we get

jωε̃c 1

sin θ

∂ Ẽr

∂φ
− jωε̃c ∂(r Ẽφ)

∂r
= k2r H̃θ ;

next, multiplying (5.157) by r and then differentiating with respect to r we get

∂2

∂r2
(r H̃θ ) − ∂2 H̃r

∂θ∂r
= jωε̃c ∂(r Ẽφ)

∂r
.

Subtracting these two equations and rearranging, we obtain
(

∂2

∂r2
+ k2

)
(r H̃θ ) = jωε̃c 1

sin θ

∂ Ẽr

∂φ
+ ∂2 H̃r

∂r∂θ
.

This is a one-dimensional wave equation for the product of r with the transverse field
component H̃θ . Similarly

(
∂2

∂r2
+ k2

)
(r H̃φ) = − jωε̃c ∂ Ẽr

∂θ
+ 1

sin θ

∂2 H̃r

∂r∂φ
,



and (
∂2

∂r2
+ k2

)
(r Ẽφ) = 1

sin θ

∂2 Ẽr

∂φ∂r
+ jωµ̃

∂ H̃r

∂θ
, (5.158)

(
∂2

∂r2
+ k2

)
(r Ẽθ ) = ∂2 Ẽr

∂θ∂r
+ jωµ̃

1

sin θ

∂ H̃r

∂φ
. (5.159)

Hence we can represent the electromagnetic field in a source-free region in terms of
the two scalar quantities Ẽr and H̃r . Superposition allows us to solve the TE case with
Ẽr = 0 and the TM case with H̃r = 0, and combine the results for the general expansion
of the field.

TE–TM decomposition in terms of potential functions. If we allow the vector
potential (or Hertzian potential) to have only an r -component, then the resulting fields
are TE or TM to the r -direction. Unfortunately, this scalar component does not satisfy
the Helmholtz equation. If we wish to use a potential component that satisfies the
Helmholtz equation then we must discard the Lorentz condition and choose a different
relationship between the vector and scalar potentials.

1. TM fields. To generate fields TM to r we recall that the electromagnetic fields
may be written in terms of electric vector and scalar potentials as

Ẽ = − jωÃe − ∇φe, (5.160)
B̃ = ∇ × Ãe. (5.161)

In a source-free region we have by Ampere’s law

Ẽ = 1

jωµ̃ε̃c
∇ × B̃ = 1

jωµ̃ε̃c
∇ × (∇ × Ãe).

Here φ̃e and Ãe must satisfy a differential equation that may be derived by examining

∇ × (∇ × Ẽ) = − jω∇ × B̃ = − jω( jωµ̃ε̃cẼ) = k2Ẽ,

where k2 = ω2µ̃ε̃c. Substitution from (5.160) gives

∇ × (∇ × [− jωÃe − ∇φ̃e]
) = k2[− jωÃe − ∇φ̃e]

or

∇ × (∇ × Ãe) − k2Ãe = k2

jω
∇φ̃e. (5.162)

We are still free to specify ∇ · Ãe.
At this point let us examine the effect of choosing a vector potential with only an

r -component: Ãe = r̂ Ãe. Since

∇ × (r̂ Ãe) = θ̂

r sin θ

∂ Ãe

∂φ
− φ̂

r

∂ Ãe

∂θ
(5.163)

we see that B = ∇ × Ãe has no r -component. Since

∇ × (∇ × Ãe) = − r̂
r sin θ

[
1

r

∂

∂θ

(
sin θ

∂ Ãe

∂θ

)
+ 1

r sin θ

∂2 Ãe

∂φ2

]
+ θ̂

r

∂2 Ãe

∂r∂θ
+ φ̂

r sin θ

∂2 Ãe

∂r∂φ



we see that Ẽ ∼ ∇ × (∇ × Ãe) has all three components. This choice of Ãe produces a
field TM to the r -direction. We need only choose ∇ · Ãe so that the resulting differential
equation is convenient to solve. Substituting the above expressions into (5.162) we find
that

− r̂
r sin θ

[
1

r

∂

∂θ

(
sin θ

∂ Ãe

∂θ

)
+ 1

r sin θ

∂2 Ãe

∂φ2

]
+ θ̂

r

∂2 Ãe

∂r∂θ
+ φ̂

r sin θ

∂2 Ãe

∂r∂φ
− r̂k2 Ãe =

r̂
k2

jω

∂φ̃e

∂r
+ θ̂

r

k2

jω

∂φ̃e

∂θ
+ φ̂

r sin θ

k2

jω

∂φ̃e

∂φ
. (5.164)

Since ∇ · Ãe only involves the derivatives of Ãe with respect to r , we may specify ∇ · Ãe

indirectly through

φ̃e = jω

k2

∂ Ãe

∂r
.

With this (5.164) becomes

1

r sin θ

[
1

r

∂

∂θ

(
sin θ

∂ Ãe

∂θ

)
+ 1

r sin θ

∂2 Ãe

∂φ2

]
+ k2 Ãe + ∂2 Ãe

∂r2
= 0.

Using

1

r

∂

∂r

[
r2 ∂

∂r

(
Ãe

r

)]
= ∂2 Ãe

∂r2

we can write the differential equation as

1

r2

∂

∂r

[
r2 ∂( Ãe/r)

∂r

]
+ 1

r2 sin θ

∂

∂θ

[
sin θ

∂( Ãe/r)

∂θ

]
+ 1

r2 sin2 θ

∂2( Ãe/r)

∂φ2
+ k2 Ãe

r
= 0.

The first three terms of this expression are precisely the Laplacian of Ãe/r . Thus we
have

(∇2 + k2)

(
Ãe

r

)
= 0 (5.165)

and the quantity Ãe/r satisfies the homogeneous Helmholtz equation.
The TM fields generated by the vector potential Ãe = r̂ Ãe may be found by using

(5.160) and (5.161). From (5.160) we have the electric field

Ẽ = − jωÃe − ∇φ̃e = − jωr̂ Ãe − ∇
(

jω

k2

∂ Ãe

∂r

)
.

Expanding the gradient we have the field components

Ẽr = 1

jωµ̃ε̃c

(
∂2

∂r2
+ k2

)
Ãe, (5.166)

Ẽθ = 1

jωµ̃ε̃c

1

r

∂2 Ãe

∂r∂θ
, (5.167)

Ẽφ = 1

jωµ̃ε̃c

1

r sin θ

∂2 Ãe

∂r∂φ
. (5.168)



The magnetic field components are found using (5.161) and (5.163):

H̃θ = 1

µ̃

1

r sin θ

∂ Ãe

∂φ
, (5.169)

H̃φ = − 1

µ̃

1

r

∂ Ãe

∂θ
. (5.170)

2. TE fields. To generate fields TE to r we recall that the electromagnetic fields in
a source-free region may be written in terms of magnetic vector and scalar potentials as

H̃ = − jωÃh − ∇φh, (5.171)
D̃ = −∇ × Ãh . (5.172)

In a source-free region we have from Faraday’s law

H̃ = 1

− jωµ̃ε̃c
∇ × D̃ = 1

jωµ̃ε̃c
∇ × (∇ × Ãh).

Here φ̃h and Ãh must satisfy a differential equation that may be derived by examining

∇ × (∇ × H̃) = jω∇ × D̃ = jωε̃c(− jωµ̃H̃) = k2H̃,

where k2 = ω2µ̃ε̃c. Substitution from (5.171) gives

∇ × (∇ × [− jωÃh − ∇φ̃h]
) = k2[− jωÃh − ∇φ̃h]

or

∇ × (∇ × Ãh) − k2Ãh = k2

jω
∇φ̃h . (5.173)

Choosing Ãh = r̂ Ãh and

φ̃h = jω

k2

∂ Ãh

∂r

we find, as with the TM fields,

(∇2 + k2)

(
Ãh

r

)
= 0. (5.174)

Thus the quantity Ãh/r obeys the Helmholtz equation.
We can find the TE fields using (5.171) and (5.172). Substituting we find that

H̃r = 1

jωµ̃ε̃c

(
∂2

∂r2
+ k2

)
Ãh, (5.175)

H̃θ = 1

jωµ̃ε̃c

1

r

∂2 Ãh

∂r∂θ
, (5.176)

H̃φ = 1

jωµ̃ε̃c

1

r sin θ

∂2 Ãh

∂r∂φ
, (5.177)

Ẽθ = − 1

ε̃c

1

r sin θ

∂ Ãh

∂φ
, (5.178)

Ẽφ = 1

ε̃c

1

r

∂ Ãh

∂θ
. (5.179)



Example of spherical TE–TM decomposition: a plane wave. Consider a uni-
form plane wave propagating in the z-direction in a lossless, homogeneous material of
permittivity ε and permeability µ, such that its electromagnetic field is

Ẽ(r, ω) = x̂Ẽ0(ω)e− jkz = x̂Ẽ0(ω)e− jkr cos θ ,

H̃(r, ω) = ŷ
Ẽ0(ω)

η
e− jkz = x̂

Ẽ0(ω)

η
e− jkr cos θ .

We wish to represent this field in terms of the superposition of a field TE to r and a field
TM to r . We first find the potential functions Ãe = r̂ Ãe and Ãh = r̂ Ãh that represent
the field. Then we may use (5.166)–(5.170) and (5.175)–(5.179) to find the TE and TM
representations.

From (5.166) we see that Ãe is related to Ẽr , where Ẽr is given by

Ẽr = Ẽ0 sin θ cos φe− jkr cos θ = Ẽ0 cos φ

jkr

∂

∂θ

[
e− jkr cos θ

]
.

We can separate the r and θ dependences of the exponential function by using the identity
(E.101). Since jn(−z) = (−1)n jn(z) = j−2n jn(z) we have

e− jkr cos θ =
∞∑

n=0

j−n(2n + 1) jn(kr)Pn(cos θ).

Using

∂ Pn(cos θ)

∂θ
= ∂ P0

n (cos θ)

∂θ
= P1

n (cos θ)

we thus have

Ẽr = − j Ẽ0 cos φ

kr

∞∑
n=1

j−n(2n + 1) jn(kr)P1
n (cos θ).

Here we start the sum at n = 1 since P1
0 (x) = 0. We can now identify the vector potential

as
Ãe

r
= Ẽ0k

ω
cos φ

∞∑
n=1

j−n(2n + 1)

n(n + 1)
jn(kr)P1

n (cos θ) (5.180)

since by direct differentiation we have

Ẽr = 1

jωµ̃ε̃c

(
∂2

∂r2
+ k2

)
Ãe

= Ẽ0k

jω2µ̃ε̃c
cos φ

∞∑
n=1

j−n(2n + 1)

n(n + 1)
P1

n (cos θ)

(
∂2

∂r2
+ k2

)
[r jn(kr)]

= − j Ẽ0 cos φ

kr

∞∑
n=1

j−n(2n + 1) jn(kr)P1
n (cos θ),

which satisfies (5.166). Here we have used the defining equation of the spherical Bessel
functions (E.15) to show that(

∂2

∂r2
+ k2

)
[r jn(kr)] = r

∂2

∂r2
jn(kr) + 2

∂

∂r
jn(kr) + k2r jn(kr)

= k2r

[
∂2

∂(kr)2
+ 2

kr

∂

∂(kr)

]
jn(kr) + k2r jn(kr)

= −k2r

[
1 − n(n + 1)

(kr)2

]
jn(kr) + k2r jn(kr) = n(n + 1)

r
jn(kr).



We note immediately that Ãe/r satisfies the Helmholtz equation (5.165) since it has the
form of the separation of variables solution (D.113).

We may find the vector potential Ãh = r̂ Ãh in the same manner. Noting that

H̃r = Ẽ0

η
sin θ sin φe− jkr cos θ = Ẽ0 sin φ

η jkr

∂

∂θ

[
e− jkr cos θ

]

= 1

jωµ̃ε̃c

(
∂2

∂r2
+ k2

)
Ãh,

we have the potential

Ãh

r
= Ẽ0k

ηω
sin φ

∞∑
n=1

j−n(2n + 1)

n(n + 1)
jn(kr)P1

n (cos θ). (5.181)

We may now compute the transverse components of the TM field using (5.167)–(5.170).
For convenience, let us define a new function Ĵn by

Ĵn(x) = x jn(x).

Then we may write

Ẽr = − j Ẽ0 cos φ

(kr)2

∞∑
n=1

j−n(2n + 1) Ĵn(kr)P1
n (cos θ), (5.182)

Ẽθ = j Ẽ0

kr
sin θ cos φ

∞∑
n=1

an Ĵ ′
n(kr)P1

n
′
(cos θ), (5.183)

Ẽφ = j Ẽ0

kr sin θ
sin φ

∞∑
n=1

an Ĵ ′
n(kr)P1

n (cos θ), (5.184)

H̃θ = − Ẽ0

krη sin θ
sin φ

∞∑
n=1

an Ĵn(kr)P1
n (cos θ), (5.185)

H̃φ = Ẽ0

krη
sin θ cos φ

∞∑
n=1

an Ĵn(kr)P1
n

′
(cos θ). (5.186)

Here

Ĵ ′
n(x) = d

dx
Ĵn(x) = d

dx
[x jn(x)] = x j ′

n(x) + jn(x)

and

an = j−n(2n + 1)

n(n + 1)
. (5.187)

Similarly, we have the TE fields from (5.176)–(5.179):

H̃r = − j Ẽ0 sin φ

η(kr)2

∞∑
n=1

j−n(2n + 1) Ĵn(kr)P1
n (cos θ), (5.188)

H̃θ = j
Ẽ0

ηkr
sin θ sin φ

∞∑
n=1

an Ĵ ′
n(kr)P1

n
′
(cos θ), (5.189)

H̃φ = − j
Ẽ0

ηkr sin θ
cos φ

∞∑
n=1

an Ĵ ′
n(kr)P1

n (cos θ), (5.190)



Ẽθ = − Ẽ0

kr sin θ
cos φ

∞∑
n=1

an Ĵn(kr)P1
n (cos θ), (5.191)

Ẽφ = − Ẽ0

kr
sin θ sin φ

∞∑
n=1

an Ĵn(kr)P1
n

′
(cos θ). (5.192)

The total field is then the sum of the TE and TM components.

Example of spherical TE–TM decomposition: scattering by a conducting
sphere. Consider a PEC sphere of radius a centered at the origin and imbedded in a
homogeneous, isotropic material having parameters µ̃ and ε̃c. The sphere is illuminated
by a plane wave incident along the z-axis with the fields

Ẽ(r, ω) = x̂Ẽ0(ω)e− jkz = x̂Ẽ0(ω)e− jkr cos θ ,

H̃(r, ω) = ŷ
Ẽ0(ω)

η
e− jkz = x̂

Ẽ0(ω)

η
e− jkr cos θ .

We wish to find the field scattered by the sphere.
The boundary condition that determines the scattered field is that the total (incident

plus scattered) electric field tangential to the sphere must be zero. We saw in the previous
example that the incident electric field may be written as the sum of a field TE to the
r -direction and a field TM to the r -direction. Since the region external to the sphere
is source-free, we may also represent the scattered field as a sum of TE and TM fields.
These may be found from the functions Ãs

e and Ãs
h , which obey the Helmholtz equations

(5.165) and (5.174). The general solution to the Helmholtz equation may be found using
the separation of variables technique in spherical coordinates, as shown in § A.4, and is
given by

{
Ãs

e/r
Ãs

h/r

}
=

∞∑
n=0

n∑
m=−n

CnmYnm(θ, φ)h(2)
n (kr).

Here Ynm is the spherical harmonic and we have chosen the spherical Hankel function h(2)
n

as the radial dependence since it represents the expected outward-going wave behavior
of the scattered field. Since the incident field generated by the potentials (5.180) and
(5.181) exactly cancels the field generated by Ãs

e and Ãs
h on the surface of the sphere, by

orthogonality the scattered potential must have φ and θ dependencies that match those
of the incident field. Thus

Ãs
e

r
= Ẽ0k

ω
cos φ

∞∑
n=1

bnh(2)
n (kr)P1

n (cos θ),

Ãs
h

r
= Ẽ0k

ηω
sin φ

∞∑
n=1

cnh(2)
n (kr)P1

n (cos θ),

where bn and cn are constants to be determined by the boundary conditions. By super-
position the total field may be computed from the total potentials, which are the sum of
the incident and scattered potentials. These are given by

Ãt
e

r
= Ẽ0k

ω
cos φ

∞∑
n=1

[
an jn(kr) + bnh(2)

n (kr)
]

P1
n (cos θ),

Ãt
h

r
= Ẽ0k

ηω
sin φ

∞∑
n=1

[
an jn(kr) + cnh(2)

n (kr)
]

P1
n (cos θ),



where an is given by (5.187).
The total transverse electric field is found by superposing the TE and TM transverse

fields found from the total potentials. We have already computed the transverse incident
fields and may easily generalize these results to the total potentials. By (5.183) and
(5.191) we have

Ẽ t
θ (a) = j Ẽ0

ka
sin θ cos φ

∞∑
n=1

[
an Ĵ ′

n(ka) + bn Ĥ (2)′
n (ka)

]
P1

n
′
(cos θ) −

− Ẽ0

ka sin θ
cos φ

∞∑
n=1

[
an Ĵn(ka) + cn Ĥ (2)

n (ka)
]

P1
n (cos θ) = 0,

where

Ĥ (2)
n (x) = xh(2)

n (x).

By (5.184) and (5.192) we have

Ẽ t
φ(a) = j Ẽ0

ka sin θ
sin φ

∞∑
n=1

[
an Ĵ ′

n(ka) + bn Ĥ (2)′
n (ka)

]
P1

n (cos θ) −

− Ẽ0

ka
sin θ sin φ

∞∑
n=1

[
an Ĵn(ka) + cn Ĥ (2)

n (ka)
]

P1
n

′
(cos θ) = 0.

These two sets of equations are satisfied by the conditions

bn = − Ĵ ′
n(ka)

Ĥ (2)′
n (ka)

an, cn = − Ĵn(ka)

Ĥ (2)
n (ka)

an.

We can now write the scattered electric fields as

Ẽs
r = − j Ẽ0 cos φ

∞∑
n=1

bn
[
Ĥ (2)′′

n (kr) + Ĥ (2)
n (kr)

]
P1

n (cos θ),

Ẽs
θ = Ẽ0

kr
cos φ

∞∑
n=1

[
jbn sin θ Ĥ (2)′

n (kr)P1
n

′
(cos θ) − cn

1

sin θ
Ĥ (2)

n (kr)P1
n (cos θ)

]
,

Ẽs
φ = Ẽ0

kr
sin φ

∞∑
n=1

[
jbn

1

sin θ
Ĥ (2)′

n (kr)P1
n (cos θ) − cn sin θ Ĥ (2)

n (kr)P1
n

′
(cos θ)

]
.

Let us approximate the scattered field for observation points far from the sphere. We
may approximate the spherical Hankel functions using (E.68) as

Ĥ (2)
n (z) = zh(2)

n (z) ≈ j n+1e− j z, Ĥ (2)′
n (z) ≈ j ne− j z, Ĥ (2)′′

n (z) ≈ − j n+1e− j z .

Substituting these we find that Ẽr → 0 as expected for the far-zone field, while

Ẽ s
θ ≈ Ẽ0

e− jkr

kr
cos φ

∞∑
n=1

j n+1

[
bn sin θ P1

n
′
(cos θ) − cn

1

sin θ
P1

n (cos θ)

]
,

Ẽ s
φ ≈ Ẽ0

e− jkr

kr
sin φ

∞∑
n=1

j n+1

[
bn

1

sin θ
P1

n (cos θ) − cn sin θ P1
n

′
(cos θ)

]
.
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Figure 5.6: Monostatic radar cross-section of a conducting sphere.

From the far-zone fields we can compute the radar cross-section (RCS) or echo area
of the sphere, which is defined by

σ = lim
r→∞

(
4πr2 |Ẽs |2

|Ẽi |2
)

. (5.193)

Carrying units of m2, this quantity describes the relative energy density of the scattered
field normalized by the distance from the scattering object. Figure 5.6 shows the RCS of
a conducting sphere in free space for the monostatic case: when the observation direction
is aligned with the direction of the incident wave (i.e., θ = π), also called the backscatter
direction. At low frequencies the RCS is proportional to λ−4; this is the range of Rayleigh
scattering , showing that higher-frequency light scatters more strongly from microscopic
particles in the atmosphere (explaining why the sky is blue) [19]. At high frequencies the
result approaches that of geometrical optics, and the RCS becomes the interception area
of the sphere, πa2. This is the region of optical scattering. Between these two regions
lies the resonance region, or the region of Mie scattering, named for G. Mie who in 1908
published the first rigorous solution for scattering by a sphere (followed soon after by
Debye in 1909).

Several interesting phenomena of sphere scattering are best examined in the time do-
main. We may compute the temporal scattered field by taking the inverse transform
of the frequency-domain field. Figure 5.7 shows Eθ (t) computed in the backscatter
direction (θ = π) when the incident field waveform E0(t) is a gaussian pulse and the
sphere is in free space. Two distinct features are seen in the scattered field waveform.
The first is a sharp pulse almost duplicating the incident field waveform, but of opposite
polarity. This is the specular reflection produced when the incident field first contacts
the sphere and begins to induce a current on the sphere surface. The second feature,
called the creeping wave, occurs at a time approximately (2 + π)a/c seconds after the
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Figure 5.7: Time-domain field back-scattered by a conducting sphere.

specular reflection. This represents the field radiated back along the incident direction
by a wave of current excited by the incident field at the tangent point, which travels
around the sphere at approximately the speed of light in free space. Although this wave
continues to traverse the sphere, its amplitude is reduced so significantly by radiation
damping that only a single feature is seen.

5.5 Problems

5.1 Verify that the fields and sources obeying even planar reflection symmetry obey the
component Maxwell’s equations (5.1)–(5.6). Repeat for fields and sources obeying odd
planar reflection symmetry.

5.2 We wish to investigate reflection symmetry through the origin in a homogeneous
medium. Under what conditions on magnetic field, magnetic current density, and electric
current density are we guaranteed that

Ex (x, y, z) = Ex (−x, −y, −z),

Ey(x, y, z) = Ey(−x, −y, −z),

Ez(x, y, z) = Ez(−x, −y, −z)?

5.3 We wish to investigate reflection symmetry through an axis in a homogeneous
medium. Under what conditions on magnetic field, magnetic current density, and electric
current density are we guaranteed that

Ex (x, y, z) = −Ex (−x, −y, z),



Ey(x, y, z) = −Ey(−x, −y, z),

Ez(x, y, z) = Ez(−x, −y, z)?

5.4 Consider an electric Hertzian dipole located on the z-axis at z = h. Show that
if the dipole is parallel to the plane z = 0, then adding an oppositely-directed dipole of
the same strength at z = −h produces zero electric field tangential to the plane. Also
show that if the dipole is z-directed, then adding another z-directed dipole at z = −h
produces zero electric field tangential to the z = 0 plane. Since the field for z > 0 is
unaltered in each case if we place a PEC in the z = 0 plane, we establish that tangential
components of electric current image in the opposite direction while vertical components
image in the same direction.

5.5 Consider a z-directed electric line source Ĩ0 located at y = h, x = 0 between con-
ducting planes at y = ±d, d > h. The material between the plates has permeability
µ̃(ω) and complex permittivity ε̃c(ω). Write the impressed and scattered fields in terms
of Fourier transforms and apply the boundary conditions at z = ±d to determine the
electric field between the plates. Show that the result is identical to the expression (5.8)
obtained using symmetry decomposition, which required the boundary condition to be
applied only on the top plate.

5.6 Consider a z-directed electric line source Ĩ0 located at y = h, x = 0 in free space
above a dielectric slab occupying −d < y < d, d < h. The slab has permeability µ0 and
permittivity ε. Decompose the source into even and odd constituents and solve for the
electric field everywhere using the Fourier transform approach. Describe how you would
use the even and odd solutions to solve the problem of a dielectric slab located on top of
a PEC ground plane.

5.7 Consider an unbounded, homogeneous, isotropic medium described by permeabil-
ity µ̃(ω) and complex permittivity ε̃c(ω). Assuming there are magnetic sources present,
but no electric sources, show that the fields may be written as

H̃(r) = − jωε̃c
∫

V
Ḡe(r|r′; ω) · J̃i

m(r′, ω) dV ′,

Ẽ(r) =
∫

V
Ḡm(r|r′; ω) · J̃i

m(r′, ω) dV ′,

where Ḡe is given by (5.83) and Ḡm is given by (5.84).

5.8 Show that for a cubical excluding volume the depolarizing dyadic is L̄ = Ī/3.

5.9 Compute the depolarizing dyadic for a cylindrical excluding volume with height
and diameter both 2a, and with the limit taken as a → 0. Show that L̄ = 0.293Ī.

5.10 Show that the spherical wave function

ψ̃(r, ω) = e− jkr

4πr

obeys the radiation conditions (5.96) and (5.97).

5.11 Verify that the transverse component of the Laplacian of A is

(∇2A)t =
[
∇t (∇t · At ) + ∂2At

∂u2
− ∇t × ∇t × At

]
.



Verify that the longitudinal component of the Laplacian of A is

û
(
û · ∇2A

) = û∇2 Au .

5.12 Verify the identities (B.82)–(B.93).

5.13 Verify the identities (B.94)–(B.98).

5.14 Derive the formula (5.112) for the transverse component of the electric field.

5.15 The longitudinal/transverse decomposition can be performed beginning with the
time-domain Maxwell’s equations. Show that for a homogeneous, lossless, isotropic region
described by permittivity ε and permeability µ the longitudinal fields obey the wave
equations

(
∂2

∂u2
− 1

v2

∂2

∂t2

)
Ht = ∇t

∂ Hu

∂u
− εû × ∇t

∂ Eu

∂t
+ ε

∂Jmt

∂t
− û × ∂Jt

∂u
,

(
∂2

∂u2
− 1

v2

∂2

∂t2

)
Et = ∇t

∂ Eu

∂u
+ µû × ∇t

∂ Hu

∂t
+ û × ∂Jmt

∂u
+ µ

∂Jt

∂t
.

Also show that the transverse fields may be found from the longitudinal fields by solving
(

∇2 − 1

v2

∂

∂t2

)
Eu = 1

ε

∂ρ

∂u
+ µ

∂ Ju

∂t
+ ∇t × Jmt ,(

∇2 − 1

v2

∂

∂t2

)
Hu = 1

µ

∂ρm

∂u
+ ε

∂ Jmu

∂t
− ∇t × Jt .

Here v = 1/
√

µε.

5.16 Consider a homogeneous, lossless, isotropic region of space described by permittiv-
ity ε and permeability µ. Beginning with the source-free time-domain Maxwell equa-
tions in rectangular coordinates, choose z as the longitudinal direction and show that the
TE–TM decomposition is given by

(
∂2

∂z2
− 1

v2

∂2

∂t2

)
Ey = ∂2 Ez

∂z∂y
+ µ

∂2 Hz

∂x∂t
, (5.194)

(
∂2

∂z2
− 1

v2

∂2

∂t2

)
Ex = ∂2 Ez

∂x∂z
− µ

∂2 Hz

∂y∂t
, (5.195)

(
∂2

∂z2
− 1

v2

∂2

∂t2

)
Hy = −ε

∂2 Ez

∂x∂t
+ ∂2 Hz

∂y∂z
, (5.196)

(
∂2

∂z2
− 1

v2

∂2

∂t2

)
Hx = ε

∂2 Ez

∂y∂t
+ ∂2 Hz

∂x∂z
, (5.197)

with (
∇2 − 1

v2

∂2

∂t2

)
Ez = 0, (5.198)

(
∇2 − 1

v2

∂2

∂t2

)
Hz = 0. (5.199)

Here v = 1/
√

µε.



5.17 Consider the case of TM fields in the time domain. Show that for a homogeneous,
isotropic, lossless medium with permittivity ε and permeability µ the fields may be
derived from a single Hertzian potential Πe(r, t) = û�̃e(r, t) that satisfies the wave
equation (

∇2 − 1

v2

∂2

∂t2

)
�e = 0

and that the fields are

E = ∇t
∂�e

∂u
+ û

(
∂2

∂u2
− 1

v2

∂2

∂t2

)
�e, H = −εû × ∇t

∂�e

∂t
.

5.18 Consider the case of TE fields in the time domain. Show that for a homogeneous,
isotropic, lossless medium with permittivity ε and permeability µ the fields may be
derived from a single Hertzian potential Πh(r, t) = û�̃h(r, t) that satisfies the wave
equation (

∇2 − 1

v2

∂2

∂t2

)
�h = 0

and that the fields are

E = µû × ∇t
∂�h

∂t
, H = ∇t

∂�h

∂u
+ û

(
∂2

∂u2
− 1

v2

∂2

∂t2

)
�h .

5.19 Show that in the time domain TEM fields may be written for a homogeneous,
isotropic, lossless medium with permittivity ε and permeability µ in terms of a Hertzian
potential Πe = û�e that satisfies

∇2
t �e = 0

and that the fields are

E = ∇t
∂�e

∂u
, H = −εû × ∇t

∂�e

∂t
.

5.20 Show that in the time domain TEM fields may be written for a homogeneous,
isotropic, lossless medium with permittivity ε and permeability µ in terms of a Hertzian
potential Πh = û�h that satisfies

∇2
t �h = 0

and that the fields are

E = µû × ∇t
∂�h

∂t
, H = ∇t

∂�h

∂u
.

5.21 Consider a TEM plane-wave field of the form

Ẽ = x̂Ẽ0e− jkz, H̃ = ŷ
Ẽ0

η
e− jkz,

where k = ω
√

µε and η = √
µ/ε. Show that:

(a) Ẽ may be obtained from H̃ using the equations for a field that is TEy ;
(b) H̃ may be obtained from Ẽ using the equations for a field that is TMx ;
(c) Ẽ and H̃ may be obtained from the potential Π̃h = ŷ(Ẽ0/k2η)e− jkz ;



(d) Ẽ and H̃ may be obtained from the potential Π̃e = x̂(Ẽ0/k2)e− jkz ;
(e) Ẽ and H̃ may be obtained from the potential Π̃e = ẑ( j Ẽ0x/k)e− jkz ;
(f) Ẽ and H̃ may be obtained from the potential Π̃h = ẑ( j Ẽ0 y/kη)e− jkz .

5.22 Prove the orthogonality relationships (5.149) and (5.150) for the longitudinal
fields in a lossless waveguide. Hint : Substitute a = ψ̌e and b = ψ̌h into Green’s second
identity (B.30) and apply the boundary conditions for TE and TM modes.

5.23 Verify the waveguide orthogonality conditions (5.151)-(5.152) by substituting the
field expressions for a rectangular waveguide.

5.24 Show that the time-average power carried by a propagating TE mode in a lossless
waveguide is given by

Pav = 1

2
ωµβk2

c

∫
C S

ψ̌hψ̌
∗
h d S.

5.25 Show that the time-average stored energy per unit length for a propagating TE
mode in a lossless waveguide is

〈We〉/ l = 〈Wm〉/ l = ε

4
(ωµ)2k2

c

∫
C S

ψ̌hψ̌
∗
h d S.

5.26 Consider a waveguide of circular cross-section aligned on the z-axis and filled with
a lossless material having permittivity ε and permeability µ. Solve for both the TE and
TM fields within the guide. List the first ten modes in order by cutoff frequency.

5.27 Consider a propagating TM mode in a lossless rectangular waveguide. Show that
the time-average power carried by the propagating wave is

Pavnm = 1

2
ωεβnmk2

cnm
|Anm |2 ab

4
.

5.28 Consider a propagating TE mode in a lossless rectangular waveguide. Show that
the time-average power carried by the propagating wave is

Pavnm = 1

2
ωµβnmk2

cnm
|Bnm |2 ab

4
.

5.29 Consider a homogeneous, lossless region of space characterized by permeability µ

and permittivity ε. Beginning with the time-domain Maxwell equations, show that the
θ and φ components of the electromagnetic fields can be written in terms of the radial
components. From this give the TEr–TMr field decomposition.

5.30 Consider the formula for the radar cross-section of a PEC sphere (5.193). Show
that for the monostatic case the RCS becomes

σ = λ2

4π

∣∣∣∣∣
∞∑

n=1

(−1)n(2n + 1)

Ĥ (2)′
n (ka)Ĥ (2)

n (ka)

∣∣∣∣∣
2

.

5.31 Beginning with the monostatic formula for the RCS of a conducting sphere given
in Problem 5.30, use the small-argument approximation to the spherical Hankel functions
to show that the RCS is proportional to λ−4 when ka � 1.



5.32 Beginning with the monostatic formula for the RCS of a conducting sphere given
in Problem 5.30, use the large-argument approximation to the spherical Hankel functions
to show that the RCS approaches the interception area of the sphere, πa2, as ka → ∞.

5.33 A material sphere of radius a has permittivity ε and permeability µ. The sphere
is centered at the origin and illuminated by a plane wave traveling in the z-direction with
the fields

Ẽ(r, ω) = x̂Ẽ0(ω)e− jkz, H̃(r, ω) = ŷ
Ẽ0(ω)

η
e− jkz .

Find the fields internal and external to the sphere.



Chapter 6

Integral solutions of Maxwell’s equations

6.1 Vector Kirchoff solution: method of Stratton and Chu

One of the most powerful tools for the analysis of electromagnetics problems is the
integral solution to Maxwell’s equations formulated by Stratton and Chu [187, 188].
These authors used the vector Green’s theorem to solve for Ẽ and H̃ in much the same
way as is done in static fields with the scalar Green’s theorem. An alternative approach is
to use the Lorentz reciprocity theorem of § 4.10.2, as done by Fradin [74]. The reciprocity
approach allows the identification of terms arising from surface discontinuities, which
must be added to the result obtained from the other approach [187].

6.1.1 The Stratton–Chu formula

Consider an isotropic, homogeneous medium occupying a bounded region V in space.
The medium is described by permeability µ̃(ω), permittivity ε̃(ω), and conductivity σ̃ (ω).
The region V is bounded by a surface S, which can be multiply-connected so that S is
the union of several surfaces S1 , . . . , SN as shown in Figure 6.1; these are used to exclude
unknown sources and to formulate the vector Huygens principle. Impressed electric and
magnetic sources may thus reside both inside and outside V .

We wish to solve for the electric and magnetic fields at a point r within V . To do this we
employ the Lorentz reciprocity theorem (4.173), written here using the frequency-domain
fields as an integral over primed coordinates:

−
∮

S

[
Ẽa(r′, ω) × H̃b(r′, ω) − Ẽb(r′, ω) × H̃a(r′, ω)

] · n̂′d S′ =
∫

V

[
Ẽb(r′, ω) · J̃a(r′, ω) − Ẽa(r′, ω) · J̃b(r′, ω)− (6.1)

H̃b(r′, ω) · J̃ma(r′, ω) + H̃a(r′, ω) · J̃mb(r′, ω)
]

dV ′. (6.2)

Note that the negative sign on the left arises from the definition of n̂ as the inward normal
to V as shown in Figure 6.1. We place an electric Hertzian dipole at the point r = rp

where we wish to compute the field, and set Ẽb = Ẽp and H̃b = H̃p in the reciprocity
theorem, where Ẽp and H̃p are the fields produced by the dipole (5.88)–(5.89):

H̃p(r, ω) = jω∇ × [p̃G(r|rp; ω)], (6.3)

Ẽp(r, ω) = 1

ε̃c
∇ × (∇ × [p̃G(r|rp; ω)]

)
. (6.4)



Figure 6.1: Geometry used to derive the Stratton–Chu formula.

We also let Ẽa = Ẽ and H̃a = H̃, where Ẽ and H̃ are the fields produced by the impressed
sources J̃a = J̃i and J̃ma = J̃i

m within V that we wish to find at r = rp. Since the dipole
fields are singular at r = rp, we must exclude the point rp with a small spherical surface
Sδ surrounding the volume Vδ as shown in Figure 6.1. Substituting these fields into (6.2)
we obtain

−
∮

S+Sδ

[
Ẽ × H̃p − Ẽp × H̃

] · n̂′ d S′ =
∫

V −Vδ

[
Ẽp · J̃i − H̃p · J̃i

m

]
dV ′. (6.5)

A useful identity involves the spatially-constant vector p̃ and the Green’s function
G(r′|rp):

∇′ × [∇′ × (Gp̃)
] = ∇′[∇′ · (Gp̃)] − ∇′2(Gp̃)

= ∇′[∇′ · (Gp̃)] − p̃∇′2G

= ∇′(p̃ · ∇′G) + p̃k2G, (6.6)

where we have used ∇′2G = −k2G for r′ �= rp.
We begin by computing the terms on the left side of (6.5). We suppress the r′ de-

pendence of the fields and also the dependencies of G(r′|rp). Substituting from (6.3) we
have

∮
S+Sδ

[Ẽ × H̃p] · n̂′ d S′ = jω
∮

S+Sδ

[
Ẽ × ∇′ × (Gp̃)

] · n̂′ d S′.

Using n̂′ · [Ẽ × ∇′ × (Gp̃)] = n̂′ · [Ẽ × (∇′G × p̃)] = (n̂′ × Ẽ) · (∇′G × p̃) we can write
∮

S+Sδ

[Ẽ × H̃p] · n̂′ d S′ = jωp̃ ·
∮

S+Sδ

[n̂′ × Ẽ] × ∇′G d S′.



Figure 6.2: Decomposition of surface Sn to isolate surface field discontinuity.

Next we examine∮
S+Sδ

[Ẽp × H̃] · n̂′ d S′ = − 1

ε̃c

∮
S+Sδ

[
H̃ × ∇′ × ∇′ × (Gp̃)

] · n̂′ d S′.

Use of (6.6) along with the identity (B.43) gives
∮

S+Sδ

[Ẽp × H̃] · n̂′ d S′ = − 1

ε̃c

∮
S+Sδ

{
(H̃ × p̃)k2G −

− ∇′ × [
(p̃ · ∇′G)H̃

] + (p̃ · ∇′G)(∇′ × H̃)
} · n̂′ d S′.

We would like to use Stokes’s theorem on the second term of the right-hand side. Since
the theorem is not valid for surfaces on which H̃ has discontinuities, we break the closed
surfaces in Figure 6.1 into open surfaces whose boundary contours isolate the disconti-
nuities as shown in Figure 6.2. Then we may write

∮
Sn=Sna+Snb

n̂′ · ∇′ × [
(p̃ · ∇′G)H̃

]
d S′ =

∮
�na+�nb

dl′ · H̃(p̃ · ∇′G).

For surfaces not containing discontinuities of H̃ the two contour integrals provide equal
and opposite contributions and this term vanishes. Thus the left-hand side of (6.5) is

−
∮

S+Sδ

[
Ẽ × H̃p − Ẽp × H̃

] · n̂′ d S′ =

− 1

ε̃c
p̃ ·

{∮
S+Sδ

[
jωε̃c(n̂′ × Ẽ) × ∇′G + k2(n̂′ × H̃)G + n̂′ · (J̃i + jωε̃cẼ)∇′G

]
d S′

where we have substituted J̃i + jωε̃cẼ for ∇′ × H̃ and used (H̃ × p̃) · n̂′ = p̃ · (n̂′ × H̃).
Now consider the right-hand side of (6.5). Substituting from (6.4) we have

∫
V −Vδ

Ẽp · J̃i dV ′ = 1

ε̃c

∫
V −Vδ

J̃i · [∇′ × ∇′ × (p̃G)
]

dV ′.

Using (6.6) and (B.42), we have
∫

V −Vδ

Ẽp · J̃i dV ′ = 1

ε̃c

∫
V −Vδ

{
k2(p̃ · J̃i )G + ∇′ · [J̃i (p̃ · ∇′G)] − (p̃ · ∇′G)∇′ · J̃i

}
dV ′.



Figure 6.3: Geometry of surface integral used to extract E at rp.

Replacing ∇′ · J̃i with − jωρ̃i from the continuity equation and using the divergence
theorem on the second term on the right-hand side, we then have∫

V −Vδ

Ẽp · J̃i dV ′ = 1

ε̃c
p̃ ·

[∫
V −Vδ

(k2J̃i G + jωρ̃i∇′G) dV ′ −
∮

S+Sδ

(n̂′ · J̃i )∇′G d S′
]

.

Lastly we examine ∫
V −Vδ

H̃p · J̃i
m dV ′ = jω

∫
V −Vδ

J̃i
m · ∇′ × (Gp̃) dV ′.

Use of J̃i
m · ∇′ × (Gp̃) = J̃i

m · (∇′G × p̃) = p̃ · (J̃i
m × ∇′G) gives∫

V −Vδ

H̃p · J̃i
m dV ′ = jωp̃ ·

∫
V −Vδ

J̃i
m × ∇′G dV ′.

We now substitute all terms into (6.5) and note that each term involves a dot product
with p̃. Since p̃ is arbitrary we have

−
∮

S+Sδ

[
(n̂′ × Ẽ) × ∇′G + (n̂′ · Ẽ)∇′G − jωµ̃(n̂′ × H̃)G

]
d S′ +

+ 1

jωε̃c

∮
�a+�b

(dl′ · H̃)∇′G =
∫

V −Vδ

[
−J̃i

m × ∇′G + ρ̃i

ε̃c
∇′G − jωµ̃J̃i G

]
dV ′.

The electric field may be extracted from the above expression by letting the radius of
the excluding volume Vδ recede to zero. We first consider the surface integral over Sδ.
Examining Figure 6.3 we see that R = |rp − r′| = δ, n̂′ = −R̂, and

∇′G(r′|rp) = d

d R

(
e− jk R

4π R

)
∇′ R = R̂

(
1 + jkδ

4πδ2

)
e− jkδ ≈ R̂

δ2
as δ → 0.

Assuming Ẽ is continuous at r′ = rp we can write

− lim
δ→0

∮
Sδ

[
(n̂′ × Ẽ) × ∇′G + (n̂′ · Ẽ)∇′G − jωµ̃(n̂′ × H̃)G

]
d S′ =

lim
δ→0

∫
�

1

4π

[
(R̂ × Ẽ) × R̂

δ2
+ (R̂ · Ẽ)

R̂
δ2

− jωµ̃(R̂ × H̃)
1

δ

]
δ2 d� =

lim
δ→0

∫
�

1

4π

[−(R̂ · Ẽ)R̂ + (R̂ · R̂)Ẽ + (R̂ · Ẽ)R̂
]

d� = Ẽ(rp).



Here we have used
∫
�

d� = 4π for the total solid angle subtending the sphere Sδ. Finally,
assuming that the volume sources are continuous, the volume integral over Vδ vanishes
and we have

Ẽ(r, ω) =
∫

V

(
−J̃i

m × ∇′G + ρ̃i

ε̃c
∇′G − jωµ̃J̃i G

)
dV ′ +

+
N∑

n=1

∫
Sn

[
(n̂′ × Ẽ) × ∇′G + (n̂′ · Ẽ)∇′G − jωµ̃(n̂′ × H̃)G

]
d S′ −

−
N∑

n=1

1

jωε̃c

∮
�na+�nb

(dl′ · H̃)∇′G. (6.7)

A similar formula for H̃ can be derived by placing a magnetic dipole of moment p̃m at
r = rp and proceeding as above. This leads to

H̃(r, ω) =
∫

V

(
J̃i × ∇′G + ρ̃i

m

µ̃
∇′G − jωε̃cJ̃i

m G

)
dV ′ +

+
N∑

n=1

∫
Sn

[
(n̂′ × H̃) × ∇′G + (n̂′ · H̃)∇′G + jωε̃c(n̂′ × Ẽ)G

]
d S′ +

+
N∑

n=1

1

jωµ̃

∮
�na+�nb

(dl′ · Ẽ)∇′G. (6.8)

We can also obtain this expression by substituting (6.7) into Faraday’s law.

6.1.2 The Sommerfeld radiation condition

In § 5.2.2 we found that if the potentials are not to be influenced by effects that are
infinitely removed, then they must obey a radiation condition. We can make the same
argument about the fields from (6.7) and (6.8). Let us allow one of the excluding surfaces,
say SN , to recede to infinity (enclosing all of the sources as it expands). As SN → ∞ any
contributions from the fields on this surface to the fields at r should vanish.

Letting SN be a sphere centered at the origin, we note that n̂′ = −r̂′ and that as
r ′ → ∞

G(r|r′; ω) = e− jk|r−r′|

4π |r − r′| ≈ e− jkr ′

4πr ′ ,

∇′G(r|r′; ω) = R̂
(

1 + jk R

4π R2

)
e− jk R ≈ −r̂′

(
1 + jkr ′

r ′

)
e− jkr ′

4πr ′ .

Substituting these expressions into (6.7) we find that

lim
SN →S∞

∮
SN

[
(n̂′ × Ẽ) × ∇′G + (n̂′ · Ẽ)∇′G − jωµ̃(n̂′ × H̃)G

]
d S′

≈ lim
r ′→∞

∫ 2π

0

∫ π

0

{[
(r̂′ × Ẽ) × r̂′ + (r̂′ · Ẽ)r̂′] (

1 + jkr ′

r ′

)

+ jωµ̃(r̂′ × H̃)
} e− jkr ′

4πr ′ r ′2 sin θ ′ dθ ′ dφ′

≈ lim
r ′→∞

∫ 2π

0

∫ π

0

{
r ′ [ jkẼ + jωµ̃(r̂′ × H̃)

] + Ẽ
} e− jkr ′

4π
sin θ ′ dθ ′ dφ′.



Since this gives the contribution to the field in V from the fields on the surface receding
to infinity, we expect that this term should be zero. If the medium has loss, then the
exponential term decays and drives the contribution to zero. For a lossless medium the
contributions are zero if

lim
r→∞ r Ẽ(r, ω) < ∞, (6.9)

lim
r→∞ r

[
ηr̂ × H̃(r, ω) + Ẽ(r, ω)

] = 0. (6.10)

To accompany (6.8) we also have

lim
r→∞ rH̃(r, ω) < ∞, (6.11)

lim
r→∞ r

[
ηH̃(r, ω) − r̂ × Ẽ(r, ω)

] = 0. (6.12)

We refer to (6.9) and (6.11) as the finiteness conditions, and to (6.10) and (6.12) as the
Sommerfeld radiation condition, for the electromagnetic field. They show that far from
the sources the fields must behave as a wave TEM to the r -direction. We shall see in
§ 6.2 that the waves are in fact spherical TEM waves.

6.1.3 Fields in the excluded region: the extinction theorem

The Stratton–Chu formula provides a solution for the field within the region V , external
to the excluded regions. An interesting consequence of this formula, and one that helps
us identify the equivalence principle, is that it gives the null result H̃ = Ẽ = 0 when
evaluated at points within the excluded regions.

We can show this by considering two cases. In the first case we do not exclude the
particular region Vm , but do exclude the remaining regions Vn, n �= m. Then the electric
field everywhere outside the remaining excluded regions (including at points within Vm)
is, by (6.7),

Ẽ(r, ω) =
∫

V +Vm

(
−J̃i

m × ∇′G + ρ̃i

ε̃c
∇′G − jωµ̃J̃i G

)
dV ′ +

+
∑
n �=m

∫
Sn

[
(n̂′ × Ẽ) × ∇′G + (n̂′ · Ẽ)∇′G − jωµ̃(n̂′ × H̃)G

]
d S′ −

−
∑
n �=m

1

jωε̃c

∮
�na+�nb

(dl′ · H̃)∇′G, r ∈ V + Vm .

In the second case we apply the Stratton–Chu formula only to Vm , and exclude all other
regions. We incur a sign change on the surface and line integrals compared to the first
case because the normal is now directed oppositely. By (6.7) we have

Ẽ(r, ω) =
∫

Vm

(
−J̃i

m × ∇′G + ρ̃i

ε̃c
∇′G − jωµ̃J̃i G

)
dV ′ −

−
∫

Sm

[
(n̂′ × Ẽ) × ∇′G + (n̂′ · Ẽ)∇′G − jωµ̃(n̂′ × H̃)G

]
d S′ +

+ 1

jωε̃c

∮
�na+�nb

(dl′ · H̃)∇′G, r ∈ Vm .



Each of the expressions for Ẽ is equally valid for points within Vm . Upon subtraction we
get

0 =
∫

V

(
−J̃i

m × ∇′G + ρ̃i

ε̃c
∇′G − jωµ̃J̃i G

)
dV ′ +

+
N∑

n=1

∫
Sn

[
(n̂′ × Ẽ) × ∇′G + (n̂′ · Ẽ)∇′G − jωµ̃(n̂′ × H̃)G

]
d S′ −

−
N∑

n=1

1

jωε̃c

∮
�na+�nb

(dl′ · H̃)∇′G, r ∈ Vm .

This expression is exactly the Stratton–Chu formula (6.7) evaluated at points within the
excluded region Vm . The treatment of H̃ is analogous and is left as an exercise. Since we
may repeat this for any excluded region, we find that the Stratton–Chu formula returns
the null field when evaluated at points outside V . This is sometimes referred to as the
vector Ewald–Oseen extinction theorem [90]. We must emphasize that the fields within
the excluded regions are not generally equal to zero; the Stratton–Chu formula merely
returns this result when evaluated there.

6.2 Fields in an unbounded medium

Two special cases of the Stratton–Chu formula are important because of their applica-
tion to antenna theory. The first is that of sources radiating into an unbounded region.
The second involves a bounded region with all sources excluded. We shall consider the
former here and the latter in § 6.3.

Assuming that there are no bounding surfaces in (6.7) and (6.8), except for one surface
that has been allowed to recede to infinity and therefore provides no surface contribution,
we find that the electromagnetic fields in unbounded space are given by

Ẽ =
∫

V

(
−J̃i

m × ∇′G + ρ̃i

ε̃c
∇′G − jωµ̃J̃i G

)
dV ′,

H̃ =
∫

V

(
J̃i × ∇′G + ρ̃i

m

µ̃
∇′G − jωε̃cJ̃i

m G

)
dV ′.

We can view the right-hand sides as superpositions of the fields present in the cases
where (1) electric sources are present exclusively, and (2) magnetic sources are present
exclusively. With ρ̃i

m = 0 and J̃i
m = 0 we find that

Ẽ =
∫

V

(
ρ̃i

ε̃c
∇′G − jωµ̃J̃i G

)
dV ′, (6.13)

H̃ =
∫

V
J̃i × ∇′G dV ′. (6.14)

Using ∇′G = −∇G we can write

Ẽ(r, ω) = −∇
∫

V

ρ̃i (r′, ω)

ε̃c(ω)
G(r|r′; ω) dV ′ − jω

∫
V

µ̃(ω)J̃i (r′, ω)G(r|r′; ω) dV ′

= −∇φ̃e(r, ω) − jωÃe(r, ω),



where

φ̃e(r, ω) =
∫

V

ρ̃i (r′, ω)

ε̃c(ω)
G(r|r′; ω) dV ′,

Ãe(r, ω) =
∫

V
µ̃(ω)J̃i (r′, ω)G(r|r′; ω) dV ′, (6.15)

are the electric scalar and vector potential functions introduced in § 5.2. Using J̃i ×∇′G =
−J̃i × ∇G = ∇ × (J̃i G) we have

H̃(r, ω) = 1

µ̃(ω)
∇ ×

∫
V

µ̃(ω)J̃i (r′, ω)G(r|r′; ω) dV ′

= 1

µ̃(ω)
∇ × Ãe(r, ω). (6.16)

These expressions for the fields are identical to those of (5.56) and (5.57), and thus the
integral formula for the electromagnetic fields produces a result identical to that obtained
using potential relations. Similarly, with ρ̃i = 0, J̃i = 0 we have

Ẽ = −
∫

V
J̃i

m × ∇′G dV ′,

H̃ =
∫

V

(
ρ̃i

m

µ̃
∇′G − jωε̃cJ̃i

m G

)
dV ′,

or

Ẽ(r, ω) = − 1

ε̃c(ω)
∇ × Ãh(r, ω),

H̃(r, ω) = −∇φ̃h(r, ω) − jωÃh(r, ω),

where

φ̃h(r, ω) =
∫

V

ρ̃i
m(r′, ω)

µ̃(ω)
G(r|r′; ω) dV ′,

Ãh(r, ω) =
∫

V
ε̃c(ω)J̃i

m(r′, ω)G(r|r′; ω) dV ′,

are the magnetic scalar and vector potentials introduced in § 5.2.

6.2.1 The far-zone fields produced by sources in unbounded space

Many antennas may be analyzed in terms of electric currents and charges radiating in
unbounded space. Since antennas are used to transmit information over great distances,
the fields far from the sources are often of most interest. Assume that the sources are
contained within a sphere of radius rs centered at the origin. We define the far zone of
the sources to consist of all observation points satisfying both r � rs (and thus r � r ′)
and kr � 1. For points in the far zone we may approximate the unit vector R̂ directed
from the sources to the observation point by the unit vector r̂ directed from the origin
to the observation point. We may also approximate

∇′G = d

d R

(
e− jk R

4π R

)
∇′ R = R̂

(
1 + jk R

R

)
e− jk R

4π R
≈ r̂ jk

e− jk R

4π R
= r̂ jkG. (6.17)



Using this we can obtain expressions for Ẽ and H̃ in the far zone of the sources. The
approximation (6.17) leads directly to

ρ̃i∇′G ≈
[

j
∇′ · J̃i

ω

]
(r̂ jkG) = − k

ω
r̂
[∇′ · (GJ̃i ) − J̃i · ∇′G

]
.

Substituting this into (6.13), again using (6.17) and also using the divergence theorem,
we have

Ẽ(r, ω) ≈ −
∫

V
jωµ̃

[
J̃i − r̂(r̂ · J̃i )

]
G dV ′ + r̂

k

ωε̃c

∮
S
(n̂′ · J̃i )G d S′,

where the surface S surrounds the volume V that contains the impressed sources. If
we let this volume slightly exceed that needed to contain the sources, then we do not
change the value of the volume integral above; however, the surface integral vanishes
since n̂′ · J̃i = 0 everywhere on the surface. Using r̂ × (r̂ × J̃i ) = r̂(r̂ · J̃i ) − J̃i we then
obtain the far-zone expression

Ẽ(r, ω) ≈ jωr̂ ×
[

r̂ ×
∫

V
µ̃(ω)J̃i (r′, ω)G(r|r′; ω) dV ′

]

= jωr̂ × [
r̂ × Ãe(r, ω)

]
,

where Ãe is the electric vector potential. The far-zone electric field has no r -component,
and it is often convenient to write

Ẽ(r, ω) ≈ − jωÃeT (r, ω) (6.18)

where ÃeT is the vector component of Ãe transverse to the r -direction:

ÃeT = −r̂ × [
r̂ × Ãe

] = Ãe − r̂(r̂ · Ãe) = θ̂ Ãeθ + φ̂ Ãeφ.

We can approximate the magnetic field in a similar fashion. Noting that J̃i × ∇′G =
J̃i × ( jkr̂G) we have

H̃(r, ω) ≈ − j
k

µ̃(ω)
r̂ ×

∫
V

µ̃(ω)J̃i (r′, ω)G(r|r′, ω) dV ′

≈ −1

η
jωr̂ × Ãe(r, ω).

With this we have

Ẽ(r, ω) = −ηr̂ × H̃(r, ω), H̃(r, ω) = r̂ × Ẽ(r, ω)

η
,

in the far zone.
To simplify the computations involved, we often choose to approximate the vector

potential in the far zone. Noting that

R =
√

(r − r′) · (r − r′) =
√

r2 + r ′2 − 2(r · r′)



and remembering that r � r ′ for r in the far zone, we can use the leading terms of a
binomial expansion of the square root to get

R = r

√
1 − 2(r̂ · r′)

r
+

(
r ′

r

)2

≈ r

√
1 − 2(r̂ · r′)

r
≈ r

[
1 − r̂ · r′

r

]

≈ r − r̂ · r′. (6.19)

Thus the Green’s function may be approximated as

G(r|r′; ω) ≈ e− jkr

4πr
e jkr̂·r′

. (6.20)

Here we have kept the approximation (6.19) intact in the phase of G but have used
1/R ≈ 1/r in the amplitude of G. We must keep a more accurate approximation for
the phase since k(r̂ · r′) may be an appreciable fraction of a radian. We thus have the
far-zone approximation for the vector potential

Ãe(r, ω) ≈ µ̃(ω)
e− jkr

4πr

∫
V

J̃i (r′, ω)e jkr̂·r′
dV ′,

which we may use in computing (6.18).
Let us summarize the expressions for computing the far-zone fields:

Ẽ(r, ω) = − jω
[
θ̂ Ãeθ (r, ω) + φ̂ Ãeφ(r, ω)

]
, (6.21)

H̃(r, ω) = r̂ × Ẽ(r, ω)

η
, (6.22)

Ãe(r, ω) = e− jkr

4πr
µ̃(ω)ãe(θ, φ, ω), (6.23)

ãe(θ, φ, ω) =
∫

V
J̃i (r′, ω)e jkr̂·r′

dV ′. (6.24)

Here ãe is called the directional weighting function. This function is independent of r
and describes the angular variation, or pattern, of the fields.

In the far zone Ẽ, H̃, r̂ are mutually orthogonal. Because of this, and because the fields
vary as e− jkr/r , the electromagnetic field in the far zone takes the form of a spherical
TEM wave, which is consistent with the Sommerfeld radiation condition.

Power radiated by time-harmonic sources in unbounded space. In § 5.2.1 we
defined the power radiated by a time-harmonic source in unbounded space as the total
time-average power passing through a sphere of very large radius. We found that for a
Hertzian dipole the radiated power could be computed from the far-zone fields through

Pav = lim
r→∞

∫ 2π

0

∫ π

0
Sav · r̂r2 sin θ dθ dφ

where

Sav = 1

2
Re

{
Ě × Ȟ∗}

is the time-average Poynting vector. By superposition this holds for any localized source.
Assuming a lossless medium and using phasor notation to describe the time-harmonic



Figure 6.4: Dipole antenna in a lossless unbounded medium.

fields we have, by (6.22),

Sav = 1

2
Re

{
Ě × (r̂ × Ě∗)

η

}
= r̂

Ě · Ě∗

2η
.

Substituting from (6.21), we can also write Sav in terms of the directional weighting
function as

Sav = r̂
ω̌2

2η

(
Ǎeθ Ǎ∗

eθ + Ǎeφ Ǎ∗
eφ

) = r̂
k2η

(4πr)2

(
1

2
ǎeθ ǎ∗

eθ + 1

2
ǎeφ ǎ∗

eφ

)
. (6.25)

We note that Sav describes the variation of the power density with θ, φ, and is thus
sometimes used as a descriptor of the power pattern of the sources.

Example of a current source radiating into an unbounded medium: the dipole
antenna. A common type of antenna consists of a thin wire of length 2l and radius a,
fed at the center by a voltage generator as shown in Figure 6.4. The generator induces
an impressed current on the surface of the wire which in turn radiates an electromagnetic
wave. For very thin wires (a � λ, a � l) embedded in a lossless medium, the current
may be accurately approximated using a standing-wave distribution:

J̃i (r, ω) = ẑ Ĩ (ω) sin [k(l − |z|)] δ(x)δ(y). (6.26)

We may compute the field produced by the dipole antenna by first finding the vector
potential from (6.15) and then calculating the magnetic field from (6.16). The electric
field may then be found by the use of Ampere’s law.



We assume a lossless medium with parameters µ, ε. Substituting the current expression
into (6.15) and integrating over x and y we find that

Ãe(r, ω) = ẑ
µ Ĩ

4π

∫ l

−l
sin k(l − |z′|)e− jk R

R
dz′ (6.27)

where R =
√

(z − z′)2 + ρ2 and ρ2 = x2 + y2. Using (6.16) we have

H̃ = ∇ × 1

µ
Ãe = −φ̂

1

µ

∂ Ãez

∂ρ
.

Writing the sine function in (6.27) in terms of exponentials, we then have

H̃φ = j
Ĩ

8π

[
e jkl

∫ 0

−l

∂

∂ρ

e− jk(R−z′)

R
dz′ − e− jkl

∫ 0

−l

∂

∂ρ

e− jk(R+z′)

R
dz′+

+ e jkl
∫ l

0

∂

∂ρ

e− jk(R+z′)

R
dz′ − e− jkl

∫ l

0

∂

∂ρ

e− jk(R−z′)

R
dz′

]
.

Noting that

∂

∂ρ

e− jk(R±z′)

R
= ±ρ

∂

∂z′
e− jk(R±z′)

R [R ∓ (z − z′)]
= −ρ

1 + jk R

R3
e− jk(R±z′)

we can write

H̃φ = j
Ĩρ

8π

[
−e jkl e− jk(R−z′)

R [R + (z − z′)]

∣∣∣∣
0

−l

− e− jkl e− jk(R+z′)

R [R − (z − z′)]

∣∣∣∣
0

−l

+

+ e jkl e− jk(R+z′)

R [R − (z − z′)]

∣∣∣∣
l

0

+ e− jkl e− jk(R−z′)

R [R + (z − z′)]

∣∣∣∣
l

0

]
.

Collecting terms and simplifying we get

H̃φ(r, ω) = j
Ĩ (ω)

4πρ

[
e− jk R1 + e− jk R2 − (2 cos kl)e− jkr

]
(6.28)

where R1 =
√

ρ2 + (z − l)2 and R2 =
√

ρ2 + (z + l)2. For points external to the dipole
the source current is zero and thus

Ẽ(r, ω) = 1

jωε
∇ × H̃(r, ω) = 1

jωε

{
−ρ̂

∂

∂z
H̃φ(r, ω) + ẑ

1

ρ

∂

∂ρ
[ρ H̃φ(r, ω)]

}
.

Performing the derivatives we have

Ẽρ(r, ω) = j
η Ĩ (ω)

4π

[
z − l

ρ

e− jk R1

R1
+ z + l

ρ

e− jk R2

R2
− z

ρ
(2 cos kl)

e− jkr

r

]
, (6.29)

Ẽz(r, ω) = − j
η Ĩ (ω)

4π

[
e− jk R1

R1
+ e− jk R2

R2
− (2 cos kl)

e− jkr

r

]
. (6.30)

The work of specializing these expressions for points in the far zone is left as an exercise.
Instead, we shall use the general far-zone expressions (6.21)–(6.24). Substituting (6.26)



into (6.24) and carrying out the x and y integrals we have the directional weighting
function

ãe(θ, φ, ω) =
∫ l

−l
ẑ Ĩ (ω) sin k(l − |z′|)e jkz′ cos θ dz′.

Writing the sine functions in terms of exponentials we have

ãe(θ, φ, ω) = ẑ Ĩ (ω)

2 j

[
e jkl

∫ l

0
e jkz′(cos θ−1) dz′ − e− jkl

∫ l

0
e jkz′(cos θ+1) dz′+

+ e jkl
∫ 0

−l
e jkz′(cos θ+1) − e− jkl

∫ 0

−l
e jkz′(cos θ−1)

]
.

Carrying out the integrals and simplifying, we obtain

ãe(θ, φ, ω) = ẑ
2 Ĩ (ω)

k

F(θ, kl)

sin θ

where

F(θ, kl) = cos(kl cos θ) − cos kl

sin θ

is called the radiation function. Using ẑ = r̂ cos θ − θ̂ sin θ we find that

ãeθ (θ, φ, ω) = −2 Ĩ (ω)

k
F(θ, kl), ãeφ(θ, φ, ω) = 0.

Thus we have from (6.23) and (6.21) the electric field

Ẽ(r, ω) = θ̂
jη Ĩ (ω)

2π

e− jkr

r
F(θ, kl) (6.31)

and from (6.22) the magnetic field

H̃(r, ω) = φ̂
j Ĩ (ω)

2π

e− jkr

r
F(θ, kl). (6.32)

We see that the radiation function contains all of the angular dependence of the field
and thus describes the pattern of the dipole. When the dipole is short compared to a
wavelength we may approximate the radiation function as

F(θ, kl � 1) ≈ 1 − 1
2 (kl cos θ)2 − 1 + 1

2 (kl)2

sin θ
= 1

2
(kl)2 sin θ. (6.33)

So a short dipole antenna has the same pattern as a Hertzian dipole, whose far-zone
electric field is (5.93).

We may also calculate the radiated power for time-harmonic fields. The time-average
Poynting vector for the far-zone fields is, from (6.25),

Sav = r̂η
| Ǐ |2

8π2r2
F2(θ, kl),

and thus the radiated power is

Pav = η
| Ǐ |2
4π

∫ π

0
F2(θ, kl) sin θ dθ.



This expression cannot be computed in closed form. For a short dipole we may use (6.33)
to approximate the power, but the result is somewhat misleading since the current on a
short dipole is much smaller than Ĩ . A better measure of the strength of the current is
its value at the center, or feedpoint, of the dipole. This input current is by (6.26) merely
Ĩ0(ω) = Ĩ (ω) sin(kl). Using this we find

Pav ≈ η
| Ǐ0|2
4π

1

4
(kl)2

∫ π

0
sin3 θ dθ = η

π

3
| Ǐ0|2

(
l

λ

)2

.

This is exactly 1/4 of the power radiated by a Hertzian dipole of the same length and
current amplitude (5.95). The factor of 1/4 comes from the difference between the current
of the dipole antenna, which is zero at each end, and the current on the Hertzian dipole,
which is constant across the length of the antenna. It is more common to use a dipole
antenna that is a half wavelength long (2l = λ/2), since it is then nearly resonant. With
this we have through numerical integration the free-space radiated power

Pav = η0
| Ǐ0|2
4π

∫ π

0

cos2
(

π
2 cos θ

)
sin θ

dθ = 36.6| Ǐ0|2

and the radiation resistance

Rr = 2Pav

| Ǐ (z = 0)|2 = 2Pav

| Ǐ0|2
= 73.2 �.

6.3 Fields in a bounded, source-free region

In § 6.2 we considered the first important special case of the Stratton–Chu formula:
sources in an unbounded medium. We now consider the second important special case
of a bounded, source-free region. This case has important applications to the study of
microwave antennas and, in its scalar form, to the study of the diffraction of light.

6.3.1 The vector Huygens principle

We may derive the formula for a bounded, source-free region of space by specializing
the general Stratton–Chu formulas. We assume that all sources of the fields are within
the excluded regions and thus set the sources to zero within V . From (6.7)–(6.8) we have

Ẽ(r, ω) =
N∑

n=1

∫
Sn

[
(n̂′ × Ẽ) × ∇′G + (n̂′ · Ẽ)∇′G − jωµ̃(n̂′ × H̃)G

]
d S′ −

−
N∑

n=1

1

jωε̃c

∮
�na+�nb

(dl′ · H̃)∇′G, (6.34)

and

H̃(r, ω) =
N∑

n=1

∫
Sn

[
(n̂′ × H̃) × ∇′G + (n̂′ · H̃)∇′G + jωε̃c(n̂′ × Ẽ)G

]
d S′ +



+
N∑

n=1

1

jωµ̃

∮
�na+�nb

(dl′ · Ẽ)∇′G. (6.35)

This is known as the vector Huygens principle after the Dutch physicist C. Huygens, who
formulated his “secondary source concept” to explain the propagation of light. According
to his idea, published in Traité de la lumière in 1690, points on a propagating wavefront
are secondary sources of spherical waves that add together in just the right way to produce
the field on any successive wavefront. We can interpret (6.34) and (6.35) in much the
same way. The field at each point within V , where there are no sources, can be imagined
to arise from spherical waves emanated from every point on the surface bounding V . The
amplitudes of these waves are determined by the values of the fields on the boundaries.
Thus, we may consider the boundary fields to be equivalent to secondary sources of the
fields within V . We will expand on this concept below by introducing the concept of
equivalence and identifying the specific form of the secondary sources.

6.3.2 The Franz formula

The vector Huygens principle as derived above requires secondary sources for the fields
within V that involve both the tangential and normal components of the fields on the
bounding surface. Since only tangential components are required to guarantee uniqueness
within V , we seek an expression involving only n̂ × H̃ and n̂ × Ẽ. Physically, the normal
component of the field is equivalent to a secondary charge source on the surface while
the tangential component is equivalent to a secondary current source. Since charge and
current are related by the continuity equation, specification of the normal component is
superfluous.

To derive a version of the vector Huygens principle that omits the normal fields we
take the curl of (6.35) to get

∇ × H̃(r, ω) =
N∑

n=1

∇ ×
∮

Sn

(n̂′ × H̃) × ∇′G d S′ +
N∑

n=1

∮
Sn

∇ × [
(n̂′ · H̃)∇′G

]
d S′ +

+
N∑

n=1

∇ ×
∮

Sn

jωε̃c(n̂′ × Ẽ)G d S′ +
N∑

n=1

1

jωµ̃

∮
�na+�nb

∇ × [
(dl′ · Ẽ)∇′G

]
d S′. (6.36)

Now, using ∇′G = −∇G and employing the vector identity (B.43) we can show that

∇ × [
f (r′)∇′G(r|r′)

] = − f (r′)
{∇ × [∇G(r|r′)

]} + [∇G(r|r′)
] × ∇ f (r′) = 0,

since ∇ × ∇G = 0 and ∇ f (r′) = 0. This implies that the second and fourth terms of
(6.36) are zero. The first term can be modified using

∇ × {[
n̂′ × H̃(r′)

]
G(r|r′)

} = G(r|r′)∇ × [
n̂′ × H̃(r′)

] − [
n̂′ × H̃(r′)

] × ∇G(r|r′)
= [

n̂′ × H̃(r′)
] × ∇′G(r|r′),

giving

∇ × H̃(r, ω) =
N∑

n=1

∇ ×
∮

Sn

∇ × [
(n̂′ × H̃)G

]
d S′ +

N∑
n=1

∇ ×
∮

Sn

jωε̃c(n̂′ × Ẽ)G d S′.



Finally, using Ampere’s law ∇ × H̃ = jωε̃cẼ in the source free region V , and taking the
curl in the first term outside the integral, we have

Ẽ(r, ω) =
N∑

n=1

∇ × ∇ ×
∮

Sn

1

jωε̃c
(n̂′ × H̃)G d S′ +

N∑
n=1

∇ ×
∮

Sn

(n̂′ × Ẽ)G d S′. (6.37)

Similarly

H̃(r, ω) = −
N∑

n=1

∇ × ∇ ×
∮

Sn

1

jωµ̃
(n̂′ × Ẽ)G d S′ +

N∑
n=1

∇ ×
∮

Sn

(n̂′ × H̃)G d S′. (6.38)

These expressions together constitute the Franz formula for the vector Huygens principle
[192].

6.3.3 Love’s equivalence principle

Love’s equivalence principle allows us to identify the equivalent Huygens sources for the
fields within a bounded, source-free region V . It then allows us to replace a problem in
the bounded region with an “equivalent” problem in unbounded space where the source-
excluding surfaces are replaced by equivalent sources. The field produced by both the
real and the equivalent sources gives a field in V identical to that of the original problem.
This is particularly useful since we know how to compute the fields within an unbounded
region by employing potential functions.

We identify the equivalent sources by considering the electric and magnetic Hertzian
potentials produced by electric and magnetic current sources. Consider an impressed
electric surface current J̃eq

s and a magnetic surface current J̃eq
ms flowing on the closed

surface S in a homogeneous, isotropic medium with permeability µ̃(ω) and complex
permittivity ε̃c(ω). These sources produce

Π̃e(r, ω) =
∮

S

J̃eq
s (r′, ω)

jωε̃c(ω)
G(r|r′; ω) d S′, (6.39)

Π̃h(r, ω) =
∮

S

J̃eq
ms(r′, ω)

jωµ̃(ω)
G(r|r′; ω) d S′, (6.40)

which in turn can be used to find

Ẽ = ∇ × (∇ × Π̃e) − jωµ̃∇ × Π̃h,

H̃ = jωε̃c∇ × Π̃e + ∇ × (∇ × Π̃h).

Upon substitution we find that

Ẽ(r, ω) = ∇ × ∇ ×
∮

S

1

jωε̃c

[
J̃eq

s G
]

d S′ + ∇ ×
∮

S
[−J̃eq

ms]G d S′,

H̃(r, ω) = −∇ × ∇ ×
∮

S

1

jωµ̃

[−J̃eq
ms G

]
d S′ + ∇ ×

∮
S

J̃eq
s G d S′.

These are identical to the Franz equations (6.37) and (6.38) if we identify

J̃eq
s = n̂ × H̃, J̃eq

ms = −n̂ × Ẽ. (6.41)

These are the equivalent source densities for the Huygens principle.



We now state Love’s equivalence principle [39]. Consider the fields within a homoge-
neous, source-free region V with parameters (ε̃c, µ̃) bounded by a surface S. We know
how to compute the fields using the Franz formula and the surface fields. Now consider
a second problem in which the same surface S exists in an unbounded medium with
identical parameters. If the surface carries the equivalent sources (6.41) then the electro-
magnetic fields within V calculated using the Hertzian potentials (6.39) and (6.40) are
identical to those of the first problem, while the fields calculated outside V are zero. We
see that this must be true since the Franz formulas and the field/potential formulas are
identical, and the Franz formula (since it was derived from the Stratton–Chu formula)
gives the null field outside V . The two problems are equivalent in the sense that they
produce identical fields within V .

The fields produced by the equivalent sources obey the appropriate boundary condi-
tions across S. From (2.194) and (2.195) we have the boundary conditions

n̂ × (H̃1 − H̃2) = J̃s,

n̂ × (Ẽ1 − Ẽ2) = −J̃ms .

Here n̂ points inward to V , (Ẽ1, H̃1) are the fields within V , and (Ẽ2, H̃2) are the fields
within the excluded region. If the fields produced by the equivalent sources within the
excluded region are zero, then the fields must obey

n̂ × H̃1 = J̃eq
s ,

n̂ × Ẽ1 = −J̃eq
ms,

which is true by the definition of (J̃eq
s , J̃eq

sm).
Note that we can extend the equivalence principle to the case where the media are

different internal to V than external to V . See Chen [29].
With the equivalent sources identified we may compute the electromagnetic field in

V using standard techniques. Specifically, we may use the Hertzian potentials as shown
above or, since the Hertzian potentials are a simple remapping of the vector potentials,
we may use (5.60) and (5.61) to write

Ẽ = − j
ω

k2

[∇(∇ · Ãe) + k2Ãe
] − 1

ε̃c
∇ × Ãh,

H̃ = − j
ω

k2

[∇(∇ · Ãh) + k2Ãh
] + 1

µ̃
∇ × Ãe,

where

Ãe(r, ω) =
∮

S
µ̃(ω)J̃eq

s (r′, ω)G(r|r′; ω) d S′ (6.42)

=
∮

S
µ̃(ω)[n̂′ × H̃(r′, ω)]G(r|r′; ω) d S′, (6.43)

Ãh(r, ω) =
∮

S
ε̃c(ω)J̃eq

ms(r
′, ω)G(r|r′; ω) d S′ (6.44)

=
∮

S
ε̃c(ω)[−n̂′ × Ẽ(r′, ω)]G(r|r′; ω) d S′. (6.45)

At points where the source is zero we can write the fields in the alternative form

Ẽ = − j
ω

k2
∇ × ∇ × Ãe − 1

ε̃c
∇ × Ãh, (6.46)

H̃ = − j
ω

k2
∇ × ∇ × Ãh + 1

µ̃
∇ × Ã. (6.47)



Figure 6.5: Geometry for problem of an aperture in a perfectly conducting ground screen
illuminated by an impressed source.

By superposition, if there are volume sources within V we merely add the fields due
to these sources as computed from the potential functions.

6.3.4 The Schelkunoff equivalence principle

With Love’s equivalence principle we create an equivalent problem by replacing an
excluded region by equivalent electric and magnetic sources. These require knowledge of
both the tangential electric and magnetic fields over the bounding surface. However, the
uniqueness theorem says that only one of either the tangential electric or the tangential
magnetic fields need be specified to make the fields within V unique. Thus we may wonder
whether it is possible to formulate an equivalent problem that involves only tangential
Ẽ or tangential H̃. It is indeed possible, as shown by Schelkunoff [39, 169].

When we use the equivalent sources to form the equivalent problem, we know that they
produce a null field within the excluded region. Thus we may form a different equivalent
problem by filling the excluded region with a perfect conductor, and keeping the same
equivalent sources. The boundary conditions across S are not changed, and thus by the
uniqueness theorem the fields within V are not altered. However, the manner in which
we must compute the fields within V is changed. We can no longer use formulas for
the fields produced by sources in free space, but must use formulas for fields produced
by sources in the vicinity of a conducting body. In general this can be difficult since it
requires the formation of a new Green’s function that satisfies the boundary condition
over the conducting body (which could possess a peculiar shape). Fortunately, we showed
in § 4.10.2 that an electric source adjacent and tangential to a perfect electric conductor
produces no field, hence we need not consider the equivalent electric sources (n̂ × H̃)
when computing the fields in V . Thus, in our new equivalent problem we need the single
tangential field −n̂ × Ẽ. This is the Schelkunoff equivalence principle.



There is one situation in which it is relatively easy to use the Schelkunoff equivalence.
Consider a perfectly conducting ground screen with an aperture in it, as shown in Figure
6.5. We assume that the aperture has been illuminated in some way by an electromagnetic
wave produced by sources in region 1 so that there are both fields within the aperture
and electric current flowing on the region-2 side of the screen due to diffraction from
the edges of the aperture. We wish to compute the fields in region 2. We can create an
equivalent problem by placing a planar surface S0 adjacent to the screen, but slightly
offset into region 2, and then closing the surface at infinity so that all of the screen plus
region 1 is excluded. Then we replace region 1 with homogeneous space and place on S0

the equivalent currents J̃eq
s = n̂ × H̃, J̃eq

ms = −n̂ × Ẽ, where H̃ and Ẽ are the fields on S0 in
the original problem. We note that over the portion of S0 adjacent to the screen J̃eq

ms = 0
since n̂ × Ẽ = 0, but that J̃eq

s �= 0. From the equivalent currents we can compute the
fields in region 2 using the potential functions. However, it is often difficult to determine
J̃eq

s over the conducting surface. If we apply Schelkunoff’s equivalence, we can formulate
a second equivalent problem in which we place into region 1 a perfect conductor. Then
we have the equivalent source currents J̃eq

s and J̃eq
ms adjacent and tangential to a perfect

conductor. By the image theorem of § 5.1.1 we can replace this problem by yet another
equivalent problem in which the conductor is replaced by the images of J̃eq

s and J̃eq
ms in

homogeneous space. Since the image of the tangential electric current J̃eq
s is oppositely

directed, the fields of the electric current and its image cancel. Since the image of the
magnetic current is in the same direction as J̃eq

ms , the fields produced by the magnetic
current and its image add. We also note that J̃eq

ms is nonzero only over the aperture
(since n̂ × Ẽ = 0 on the screen), and thus the field in region 1 can be found from

Ẽ(r, ω) = − 1

ε̃c(ω)
∇ × Ãh(r, ω),

where

Ãh(r, ω) =
∫

S0

ε̃c(ω)[−2n̂′ × Ẽap(r′, ω)]G(r|r′; ω) d S′

and Ẽap is the electric field in the aperture in the original problem. We shall present an
example in the next section.

6.3.5 Far-zone fields produced by equivalent sources

The equivalence principle is useful for analyzing antennas with complicated source
distributions. The sources may be excluded using a surface S, and then a knowledge
of the fields over S (found, for example, by estimation or measurement) can be used to
compute the fields external to the antenna. Here we describe how to compute these fields
in the far zone.

Given that J̃eq
s = n̂ × H̃ and J̃eq

ms = −n̂ × Ẽ are the equivalent sources on S, we may
compute the fields using the potentials (6.43) and (6.45). Using (6.20) these can be
approximated in the far zone (r � r ′, kr � 1) as

Ãe(r, ω) = µ̃(ω)
e− jkr

4πr
ãe(θ, φ, ω),

Ãh(r, ω) = ε̃c(ω)
e− jkr

4πr
ãh(θ, φ, ω), (6.48)

where

ãe(θ, φ, ω) =
∮

S
J̃eq

s (r′, ω)e jkr̂·r′
d S′,



ãh(θ, φ, ω) =
∮

S
J̃eq

sm(r′, ω)e jkr̂·r′
d S′, (6.49)

are the directional weighting functions.
To compute the fields from the potentials we must apply the curl operator. So we

must evaluate

∇ ×
[

e− jkr

r
V(θ, φ)

]
= e− jkr

r
∇ × V(θ, φ) + ∇

(
e− jkr

r

)
× V(θ, φ).

The curl of V is proportional to 1/r in spherical coordinates, hence the first term on the
right is proportional to 1/r2. Since we are interested in the far-zone fields, this term can
be discarded in favor of 1/r -type terms. Using

∇
(

e− jkr

r

)
= −r̂

(
1 + jkr

r

)
e− jkr

r
≈ −r̂ jk

e− jkr

r
, kr � 1,

we have

∇ ×
[

e− jkr

r
V(θ, φ)

]
≈ − jkr̂ ×

[
e− jkr

r
V(θ, φ)

]
.

Using this approximation we also establish

∇ × ∇ ×
[

e− jkr

r
V(θ, φ)

]
≈ −k2r̂ × r̂ ×

[
e− jkr

r
V(θ, φ)

]
= k2 e− jkr

r
VT (θ, φ)

where VT = V − r̂(r̂ · V) is the vector component of V transverse to the r -direction.
With these formulas we can approximate (6.46) and (6.47) as

Ẽ(r, ω) = − jωÃeT (r, ω) + jk

ε̃c(ω)
r̂ × Ãh(r, ω), (6.50)

H̃(r, ω) = − jωÃhT (r, ω) − jk

µ̃(ω)
r̂ × Ãe(r, ω).

Note that

r̂ × Ẽ = − jωr̂ × ÃeT + jk

ε̃c
r̂ × r̂ × Ãh .

Since r̂ × ÃeT = r̂ × Ãe and r̂ × r̂ × Ãh = −ÃhT , we have

r̂ × Ẽ = η

[
− jωÃhT − jk

µ̃
r̂ × Ãe

]
= ηH̃.

Thus

H̃ = r̂ × Ẽ
η

and the electromagnetic field in the far zone is a TEM spherical wave, as expected.

Example of fields produced by equivalent sources: an aperture antenna. As
an example of calculating the fields in a bounded region from equivalent sources, let
us find the far-zone field in free space produced by a rectangular waveguide opening
into a perfectly-conducting ground screen of infinite extent as shown in Figure 6.6. For
simplicity assume the waveguide propagates a pure T E10 mode, and that all higher-order



Figure 6.6: Aperture antenna consisting of a rectangular waveguide opening into a con-
ducting ground screen of infinite extent.

modes excited when the guided wave is reflected at the aperture may be ignored. Thus
the electric field in the aperture S0 is

Ẽa(x, y) = ŷE0 cos
(π

a
x
)

.

We may compute the far-zone field using the Schelkunoff equivalence principle of § 6.3.4.
We exclude the region z < 0+ using a planar surface S which we close at infinity. We
then fill the region z < 0 with a perfect conductor. By the image theory the equivalent
electric sources on S cancel while the equivalent magnetic sources double. Since the
only nonzero magnetic sources are on S0 (since n̂ × Ẽ = 0 on the screen), we have the
equivalent problem of the source

J̃eq
ms = −2n̂ × Ẽa = 2x̂E0 cos

(π

a
x
)

on S0 in free space, where the equivalence holds for z > 0.
We may find the far-zone field created by this equivalent current by first computing

the directional weighting function (6.49). Since

r̂ · r′ = r̂ · (x ′x̂ + y′ŷ) = x ′ sin θ cos φ + y′ sin θ sin φ,

we find that

ãh(θ, φ, ω) =
∫ b/2

−b/2

∫ a/2

−a/2
x̂2E0 cos

(π

a
x ′

)
e jkx ′ sin θ cos φe jky′ sin θ sin φ dx ′ dy′

= x̂4π E0ab
cos π X

π2 − 4(π X)2

sin πY

πY

where

X = a

λ
sin θ cos φ, Y = b

λ
sin θ sin φ.

Here λ is the free-space wavelength. By (6.50) the electric field is

Ẽ = jk0

ε0
r̂ × Ãh



where Ãh is given in (6.48). Using

r̂ × x̂ = φ̂ cos θ cos φ + θ̂ sin φ

we find that

Ẽ = jk0abE0
e− jkr

r

(
θ̂ sin φ + φ̂ cos θ cos φ

) cos(π X)

π2 − 4(π X)2

sin(πY )

πY
.

The magnetic field is merely H̃ = (r̂ × Ẽ)/η.

6.4 Problems

6.1 Beginning with the Lorentz reciprocity theorem, derive (6.8).

6.2 Obtain (6.8) by substitution of (6.7) into Faraday’s law.

6.3 Show that (6.8) returns the null result when evaluated within the excluded regions.

6.4 Show that under the condition kr � 1 the formula for the magnetic field of a
dipole antenna (6.28) reduces to (6.32), while the formulas for the electric fields (6.29)
and (6.30) reduce to (6.31).

6.5 Consider the dipole antenna shown in Figure 6.4. Instead of a standing-wave
current distribution, assume the antenna carries a traveling-wave current distribution

J̃i (r, ω) = ẑ Ĩ (ω)e− jk|z|δ(x)δ(y), −l ≤ z ≤ l.

Find the electric and magnetic fields at all points away from the current distribution.
Specialize the result for kr � 1.

6.6 A circular loop of thin wire has radius a and lies in the z = 0 plane in free space.
A current is induced on the wire with the density

J̃(r, ω) = φ̂ Ĩ (ω) cos [k0a(π − |φ|)] δ(r − a)
δ(θ − π/2)

r
, |φ| ≤ π.

Compute the far-zone fields produced by this loop antenna. Specialize your results for
the electrically-small case of k0a � 1. Compute the time-average power radiated by, and
the radiation resistance of, the electrically-small loop.

6.7 Consider a plane wave with the fields

Ẽ = Ẽ0x̂e− jkz, H̃ = Ẽ0

η
ŷe− jkz,

normally incident from z < 0 on a square aperture of side a in a PEC ground screen
at z = 0. Assume that the field in the aperture is identical to the field of the plane
wave with the screen absent (this is called the Kirchhoff approximation). Compute the
far-zone electromagnetic fields for z > 0.

6.8 Consider a coaxial cable of inner radius a and outer radius b, opening into a PEC
ground plane at z = 0. Assume that only the TEM wave exists in the line and that no
higher-order modes are created when the wave reflects from the aperture. Compute the
far-zone electric and magnetic fields of this aperture antenna.



Appendix A

Mathematical appendix

A.1 The Fourier transform

The Fourier transform permits us to decompose a complicated field structure into
elemental components. This can simplify the computation of fields and provide physical
insight into their spatiotemporal behavior. In this section we review the properties of
the transform and demonstrate its usefulness in solving field equations.

One-dimensional case

Let f be a function of a single variable x . The Fourier transform of f (x) is the function
F(k) defined by the integral

F{ f (x)} = F(k) =
∫ ∞

−∞
f (x)e− jkx dx . (A.1)

Note that x and the corresponding transform variable k must have reciprocal units: if x
is time in seconds, then k is a temporal frequency in radians per second; if x is a length
in meters, then k is a spatial frequency in radians per meter. We sometimes refer to F(k)

as the frequency spectrum of f (x).
Not every function has a Fourier transform. The existence of (A.1) can be guaranteed

by a set of sufficient conditions such as the following:

1. f is absolutely integrable:
∫ ∞
−∞ | f (x)| dx < ∞;

2. f has no infinite discontinuities;
3. f has at most finitely many discontinuities and finitely many extrema in any finite

interval (a, b).

While such rigor is certainly of mathematical value, it may be of less ultimate use to
the engineer than the following heuristic observation offered by Bracewell [22]: a good
mathematical model of a physical process should be Fourier transformable. That is, if the
Fourier transform of a mathematical model does not exist, the model cannot precisely
describe a physical process.

The usefulness of the transform hinges on our ability to recover f through the inverse
transform:

F−1{F(k)} = f (x) = 1

2π

∫ ∞

−∞
F(k) e jkx dk. (A.2)



When this is possible we write

f (x) ↔ F(k)

and say that f (x) and F(k) form a Fourier transform pair. The Fourier integral theorem
states that

F F−1{ f (x)} = F−1 F{ f (x)} = f (x),

except at points of discontinuity of f . At a jump discontinuity the inversion formula
returns the average value of the one-sided limits f (x+) and f (x−) of f (x). At points of
continuity the forward and inverse transforms are unique.

Transform theorems and properties. We now review some basic facts pertaining
to the Fourier transform. Let f (x) ↔ F(k) = R(k) + j X (k), and g(x) ↔ G(k).

1. Linearity. α f (x) + βg(x) ↔ αF(k) + βG(k) if α and β are arbitrary constants.
This follows directly from the linearity of the transform integral, and makes the
transform useful for solving linear differential equations (e.g., Maxwell’s equations).

2. Symmetry. The property F(x) ↔ 2π f (−k) is helpful when interpreting transform
tables in which transforms are listed only in the forward direction.

3. Conjugate function. We have f ∗(x) ↔ F∗(−k).

4. Real function. If f is real, then F(−k) = F∗(k). Also,

R(k) =
∫ ∞

−∞
f (x) cos kx dx, X (k) = −

∫ ∞

−∞
f (x) sin kx dx,

and

f (x) = 1

π
Re

∫ ∞

0
F(k)e jkx dk.

A real function is completely determined by its positive frequency spectrum. It is
obviously advantageous to know this when planning to collect spectral data.

5. Real function with reflection symmetry. If f is real and even, then X (k) ≡ 0 and

R(k) = 2
∫ ∞

0
f (x) cos kx dx, f (x) = 1

π

∫ ∞

0
R(k) cos kx dk.

If f is real and odd, then R(k) ≡ 0 and

X (k) = −2
∫ ∞

0
f (x) sin kx dx, f (x) = − 1

π

∫ ∞

0
X (k) sin kx dk.

(Recall that f is even if f (−x) = f (x) for all x . Similarly f is odd if f (−x) = − f (x)

for all x .)
6. Causal function. Recall that f is causal if f (x) = 0 for x < 0.

(a) If f is real and causal, then

X (k) = − 2

π

∫ ∞

0

∫ ∞

0
R(k ′) cos k ′x sin kx dk ′ dx,

R(k) = − 2

π

∫ ∞

0

∫ ∞

0
X (k ′) sin k ′x cos kx dk ′ dx .



(b) If f is real and causal, and f (0) is finite, then R(k) and X (k) are related by
the Hilbert transforms

X (k) = − 1

π
P.V.

∫ ∞

−∞

R(k)

k − k ′ dk ′, R(k) = 1

π
P.V.

∫ ∞

−∞

X (k)

k − k ′ dk ′.

(c) If f is causal and has finite energy, it is not possible to have F(k) = 0 for
k1 < k < k2. That is, the transform of a causal function cannot vanish over
an interval.

A causal function is completely determined by the real or imaginary part of its
spectrum. As with item 4, this is helpful when performing calculations or mea-
surements in the frequency domain. If the function is not band-limited however,
truncation of integrals will give erroneous results.

7. Time-limited vs. band-limited functions. Assume t2 > t1. If f (t) = 0 for both t < t1
and t > t2, then it is not possible to have F(k) = 0 for both k < k1 and k > k2

where k2 > k1. That is, a time-limited signal cannot be band-limited. Similarly, a
band-limited signal cannot be time-limited.

8. Null function. If the forward or inverse transform of a function is identically zero,
then the function is identically zero. This important consequence of the Fourier
integral theorem is useful when solving homogeneous partial differential equations
in the frequency domain.

9. Space or time shift. For any fixed x0,

f (x − x0) ↔ F(k)e− jkx0 . (A.3)

A temporal or spatial shift affects only the phase of the transform, not the magni-
tude.

10. Frequency shift. For any fixed k0,

f (x)e jk0x ↔ F(k − k0).

Note that if f ↔ F where f is real, then frequency-shifting F causes f to be-
come complex — again, this is important if F has been obtained experimentally or
through computation in the frequency domain.

11. Similarity. We have

f (αx) ↔ 1

|α| F

(
k

α

)
,

where α is any real constant. “Reciprocal spreading” is exhibited by the Fourier
transform pair; dilation in space or time results in compression in frequency, and
vice versa.

12. Convolution. We have
∫ ∞

−∞
f1(x ′) f2(x − x ′) dx ′ ↔ F1(k)F2(k)

and

f1(x) f2(x) ↔ 1

2π

∫ ∞

−∞
F1(k

′)F2(k − k ′) dk ′.



The first of these is particularly useful when a problem has been solved in the
frequency domain and the solution is found to be a product of two or more functions
of k.

13. Parseval’s identity. We have
∫ ∞

−∞
| f (x)|2 dx = 1

2π

∫ ∞

−∞
|F(k)|2 dk.

Computations of energy in the time and frequency domains always give the same
result.

14. Differentiation. We have

dn f (x)

dxn
↔ ( jk)n F(k) and (− j x)n f (x) ↔ dn F(k)

dkn
.

The Fourier transform can convert a differential equation in the x domain into an
algebraic equation in the k domain, and vice versa.

15. Integration. We have
∫ x

−∞
f (u) du ↔ π F(k)δ(k) + F(k)

jk

where δ(k) is the Dirac delta or unit impulse.

Generalized Fourier transforms and distributions. It is worth noting that many
useful functions are not Fourier transformable in the sense given above. An example is
the signum function

sgn(x) =
{

−1, x < 0,

1, x > 0.

Although this function lacks a Fourier transform in the usual sense, for practical purposes
it may still be safely associated with what is known as a generalized Fourier transform. A
treatment of this notion would be out of place here; however, the reader should certainly
be prepared to encounter an entry such as

sgn(x) ↔ 2/jk

in a standard Fourier transform table. Other functions can be regarded as possessing
transforms when generalized functions are permitted into the discussion. An important
example of a generalized function is the Dirac delta δ(x), which has enormous value
in describing distributions that are very thin, such as the charge layers often found
on conductor surfaces. We shall not delve into the intricacies of distribution theory.
However, we can hardly avoid dealing with generalized functions; to see this we need
look no further than the simple function cos k0x with its transform pair

cos k0x ↔ π [δ(k + k0) + δ(k − k0)].

The reader of this book must therefore know the standard facts about δ(x): that it
acquires meaning only as part of an integrand, and that it satisfies the sifting property

∫ ∞

−∞
δ(x − x0) f (x) dx = f (x0)



for any continuous function f . With f (x) = 1 we obtain the familiar relation∫ ∞

−∞
δ(x) dx = 1.

With f (x) = e− jkx we obtain ∫ ∞

−∞
δ(x)e− jkx dx = 1,

thus

δ(x) ↔ 1.

It follows that
1

2π

∫ ∞

−∞
e jkx dk = δ(x). (A.4)

Useful transform pairs. Some of the more common Fourier transforms that arise in
the study of electromagnetics are given in Appendix C. These often involve the simple
functions defined here:

1. Unit step function

U (x) =
{

1, x < 0,

0, x > 0.
(A.5)

2. Signum function

sgn(x) =
{

−1, x < 0,

1, x > 0.
(A.6)

3. Rectangular pulse function

rect(x) =
{

1, |x | < 1,

0, |x | > 1.
(A.7)

4. Triangular pulse function


(x) =
{

1 − |x |, |x | < 1,

0, |x | > 1.
(A.8)

5. Sinc function

sinc(x) = sin x

x
. (A.9)

Transforms of multi-variable functions

Fourier transformations can be performed over multiple variables by successive appli-
cations of (A.1). For example, the two-dimensional Fourier transform over x1 and x2 of
the function f (x1, x2, x3, . . . , xN ) is the quantity F(kx1 , kx2 , x3, . . . , xN ) given by∫ ∞

−∞

[∫ ∞

−∞
f (x1, x2, x3, . . . , xN ) e− jkx1 x1 dx1

]
e− jkx2 x2 dx2



=
∫ ∞

−∞

∫ ∞

−∞
f (x1, x2, x3, . . . , xN ) e− jkx1 x1 e− jkx2 x2 dx1 dx2.

The two-dimensional inverse transform is computed by multiple application of (A.2),
recovering f (x1, x2, x3, . . . , xN ) through the operation

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
F(kx1 , kx2 , x3, . . . , xN ) e jkx1 x1 e jkx2 x2 dkx1 dkx2 .

Higher-dimensional transforms and inversions are done analogously.

Transforms of separable functions. If we are able to write

f (x1, x2, x3, . . . , xN ) = f1(x1, x3, . . . , xN ) f2(x2, x3, . . . , xN ),

then successive transforms on the variables x1 and x2 result in

f (x1, x2, x3, . . . , xN ) ↔ F1(kx1 , x3, . . . , xN )F2(kx2 , x3, . . . , xN ).

In this case a multi-variable transform can be obtained with the help of a table of one-
dimensional transforms. If, for instance,

f (x, y, z) = δ(x − x ′)δ(y − y′)δ(z − z′),

then we obtain

F(kx , ky, kz) = e− jkx x ′
e− jky y′

e− jkz z′

by three applications of (A.1).
A more compact notation for multi-dimensional functions and transforms makes use

of the vector notation k = x̂kx + ŷky + ẑkz and r = x̂x + ŷy + ẑz where r is the position
vector. In the example above, for instance, we could have written

δ(x − x ′)δ(y − y′)δ(z − z′) = δ(r − r′),

and

F(k) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(r − r′)e− jk·r dx dy dz = e− jk·r′

.

Fourier–Bessel transform. If x1 and x2 have the same dimensions, it may be con-
venient to recast the two-dimensional Fourier transform in polar coordinates. Let x1 =
ρ cos φ, kx1 = p cos θ , x2 = ρ sin φ, and kx2 = p sin θ, where p and ρ are defined on (0, ∞)

and φ and θ are defined on (−π, π). Then

F(p, θ, x3, . . . , xN ) =
∫ π

−π

∫ ∞

0
f (ρ, φ, x3, . . . , xN ) e− j pρ cos(φ−θ)ρ dρ dφ. (A.10)

If f is independent of φ (due to rotational symmetry about an axis transverse to x1 and
x2), then the φ integral can be computed using the identity

J0(x) = 1

2π

∫ π

−π

e− j x cos(φ−θ) dφ.

Thus (A.10) becomes

F(p, x3, . . . , xN ) = 2π

∫ ∞

0
f (ρ, x3, . . . , xN )J0(ρp) ρ dρ, (A.11)



showing that F is independent of the angular variable θ . Expression (A.11) is termed
the Fourier–Bessel transform of f . The reader can easily verify that f can be recovered
from F through

f (ρ, x3, . . . , xN ) =
∫ ∞

0
F(p, x3, . . . , xN )J0(ρp) p dp,

the inverse Fourier–Bessel transform.

A review of complex contour integration

Some powerful techniques for the evaluation of integrals rest on complex variable the-
ory. In particular, the computation of the Fourier inversion integral is often aided by
these techniques. We therefore provide a brief review of this material. For a fuller
discussion the reader may refer to one of many widely available textbooks on complex
analysis.

We shall denote by f (z) a complex valued function of a complex variable z. That is,

f (z) = u(x, y) + jv(x, y),

where the real and imaginary parts u(x, y) and v(x, y) of f are each functions of the real
and imaginary parts x and y of z:

z = x + j y = Re(z) + j Im(z).

Here j = √−1, as is mostly standard in the electrical engineering literature.

Limits, differentiation, and analyticity. Let w = f (z), and let z0 = x0 + j y0 and
w0 = u0 + jv0 be points in the complex z and w planes, respectively. We say that w0 is
the limit of f (z) as z approaches z0, and write

lim
z→z0

f (z) = w0,

if and only if both u(x, y) → u0 and v(x, y) → v0 as x → x0 and y → y0 independently.
The derivative of f (z) at a point z = z0 is defined by the limit

f ′(z0) = lim
z→z0

f (z) − f (z0)

z − z0
,

if it exists. Existence requires that the derivative be independent of direction of approach;
that is, f ′(z0) cannot depend on the manner in which z → z0 in the complex plane. (This
turns out to be a much stronger condition than simply requiring that the functions u and
v be differentiable with respect to the variables x and y.) We say that f (z) is analytic
at z0 if it is differentiable at z0 and at all points in some neighborhood of z0.

If f (z) is not analytic at z0 but every neighborhood of z0 contains a point at which
f (z) is analytic, then z0 is called a singular point of f (z).

Laurent expansions and residues. Although Taylor series can be used to expand
complex functions around points of analyticity, we must often expand functions around
points z0 at or near which the functions fail to be analytic. For this we use the Laurent



expansion, a generalization of the Taylor expansion involving both positive and negative
powers of z − z0:

f (z) =
∞∑

n=−∞
an(z − z0)

n =
∞∑

n=1

a−n

(z − z0)n
+

∞∑
n=0

an(z − z0)
n.

The numbers an are the coefficients of the Laurent expansion of f (z) at point z = z0.
The first series on the right is the principal part of the Laurent expansion, and the second
series is the regular part. The regular part is an ordinary power series, hence it converges
in some disk |z−z0| < R where R ≥ 0. Putting ζ = 1/(z−z0), the principal part becomes∑∞

n=1 a−nζ
n; this power series converges for |ζ | < ρ where ρ ≥ 0, hence the principal part

converges for |z − z0| > 1/ρ�r . When r < R, the Laurent expansion converges in the
annulus r < |z − z0| < R; when r > R, it diverges everywhere in the complex plane.

The function f (z) has an isolated singularity at point z0 if f (z) is not analytic at z0

but is analytic in the “punctured disk” 0 < |z − z0| < R for some R > 0. Isolated
singularities are classified by reference to the Laurent expansion. Three types can arise:

1. Removable singularity. The point z0 is a removable singularity of f (z) if the principal
part of the Laurent expansion of f (z) about z0 is identically zero (i.e., if an = 0
for n = −1, −2, −3, . . .).

2. Pole of order k. The point z0 is a pole of order k if the principal part of the Laurent
expansion about z0 contains only finitely many terms that form a polynomial of
degree k in (z − z0)

−1. A pole of order 1 is called a simple pole.
3. Essential singularity. The point z0 is an essential singularity of f (z) if the principal

part of the Laurent expansion of f (z) about z0 contains infinitely many terms (i.e.,
if a−n �= 0 for infinitely many n).

The coefficient a−1 in the Laurent expansion of f (z) about an isolated singular point z0

is the residue of f (z) at z0. It can be shown that

a−1 = 1

2π j

∮
�

f (z) dz (A.12)

where � is any simple closed curve oriented counterclockwise and containing in its interior
z0 and no other singularity of f (z). Particularly useful to us is the formula for evaluation
of residues at pole singularities. If f (z) has a pole of order k at z = z0, then the residue
of f (z) at z0 is given by

a−1 = 1

(k − 1)!
lim
z→z0

dk−1

dzk−1
[(z − z0)

k f (z)]. (A.13)

Cauchy–Goursat and residue theorems. It can be shown that if f (z) is analytic
at all points on and within a simple closed contour C , then

∮
C

f (z) dz = 0.

This central result is known as the Cauchy–Goursat theorem. We shall not offer a proof,
but shall proceed instead to derive a useful consequence known as the residue theorem.



Figure A.1: Derivation of the residue theorem.

Figure A.1 depicts a simple closed curve C enclosing n isolated singularities of a function
f (z). We assume that f (z) is analytic on and elsewhere within C . Around each singular
point zk we have drawn a circle Ck so small that it encloses no singular point other than
zk ; taken together, the Ck (k = 1, . . . , n) and C form the boundary of a region in which
f (z) is everywhere analytic. By the Cauchy–Goursat theorem

∫
C

f (z) dz +
n∑

k=1

∫
Ck

f (z) dz = 0.

Hence

1

2π j

∫
C

f (z) dz =
n∑

k=1

1

2π j

∫
Ck

f (z) dz,

where now the integrations are all performed in a counterclockwise sense. By (A.12)
∫

C
f (z) dz = 2π j

n∑
k=1

rk (A.14)

where r1, . . . , rn are the residues of f (z) at the singularities within C .

Contour deformation. Suppose f is analytic in a region D and � is a simple closed
curve in D. If � can be continuously deformed to another simple closed curve �′ without
passing out of D, then ∫

�′
f (z) dz =

∫
�

f (z) dz. (A.15)

To see this, consider Figure A.2 where we have introduced another set of curves ±γ ;
these new curves are assumed parallel and infinitesimally close to each other. Let C be
the composite curve consisting of �, +γ , −�′, and −γ , in that order. Since f is analytic
on and within C , we have∫

C
f (z) dz =

∫
�

f (z) dz +
∫

+γ

f (z) dz +
∫

−�′
f (z) dz +

∫
−γ

f (z) dz = 0.

But
∫
−�′ f (z) dz = − ∫

�′ f (z) dz and
∫
−γ

f (z) dz = − ∫
+γ

f (z) dz, hence (A.15) follows.
The contour deformation principle often permits us to replace an integration contour by
one that is more convenient.



Figure A.2: Derivation of the contour deformation principle.

Principal value integrals. We must occasionally carry out integrations of the form

I =
∫ ∞

−∞
f (x) dx

where f (x) has a finite number of singularities xk (k = 1, . . . , n) along the real axis. Such
singularities in the integrand force us to interpret I as an improper integral. With just
one singularity present at point x1, for instance, we define

∫ ∞

−∞
f (x) dx = lim

ε→0

∫ x1−ε

−∞
f (x) dx + lim

η→0

∫ ∞

x1+η

f (x) dx

provided that both limits exist. When both limits do not exist, we may still be able to
obtain a well-defined result by computing

lim
ε→0

(∫ x1−ε

−∞
f (x) dx +

∫ ∞

x1+ε

f (x) dx

)

(i.e., by taking η = ε so that the limits are “symmetric”). This quantity is called the
Cauchy principal value of I and is denoted

P.V.

∫ ∞

−∞
f (x) dx .

More generally, we have

P.V.

∫ ∞

−∞
f (x) dx = lim

ε→0

(∫ x1−ε

−∞
f (x) dx +

∫ x2−ε

x1+ε

f (x) dx +

+ · · · +
∫ xn−ε

xn−1+ε

f (x) dx +
∫ ∞

xn+ε

f (x) dx

)

for n singularities x1 < · · · < xn.

In a large class of problems f (z) (i.e., f (x) with x replaced by the complex variable
z) is analytic everywhere except for the presence of finitely many simple poles. Some
of these may lie on the real axis (at points x1 < · · · < xn, say), and some may not.
Consider now the integration contour C shown in Figure A.3. We choose R so large and
ε so small that C encloses all the poles of f that lie in the upper half of the complex



Figure A.3: Complex plane technique for evaluating a principal value integral.

plane. In many problems of interest the integral of f around the large semicircle tends
to zero as R → ∞ and the integrals around the small semicircles are well-behaved as
ε → 0. It may then be shown that

P.V.

∫ ∞

−∞
f (x) dx = π j

n∑
k=1

rk + 2π j
∑

UHP
rk

where rk is the residue at the kth simple pole. The first sum on the right accounts for
the contributions of those poles that lie on the real axis; note that it is associated with
a factor π j instead of 2π j , since these terms arose from integrals over semicircles rather
than over full circles. The second sum, of course, is extended only over those poles that
reside in the upper half-plane.

Fourier transform solution of the 1-D wave equation

Successive applications of the Fourier transform can reduce a partial differential equa-
tion to an ordinary differential equation, and finally to an algebraic equation. After
the algebraic equation is solved by standard techniques, Fourier inversion can yield a
solution to the original partial differential equation. We illustrate this by solving the
one-dimensional inhomogeneous wave equation(

∂2

∂z2
− 1

c2

∂2

∂t2

)
ψ(x, y, z, t) = S(x, y, z, t), (A.16)

where the field ψ is the desired unknown and S is the known source term. For uniqueness
of solution we must specify ψ and ∂ψ/∂z over some z = constant plane. Assume that

ψ(x, y, z, t)
∣∣∣
z=0

= f (x, y, t), (A.17)

∂

∂z
ψ(x, y, z, t)

∣∣∣
z=0

= g(x, y, t). (A.18)

We begin by positing inverse temporal Fourier transform relationships for ψ and S:

ψ(x, y, z, t) = 1

2π

∫ ∞

−∞
ψ̃(x, y, z, ω)e jωt dω,



S(x, y, z, t) = 1

2π

∫ ∞

−∞
S̃(x, y, z, ω)e jωt dω.

Substituting into (A.16), passing the derivatives through the integral, calculating the
derivatives, and combining the inverse transforms, we obtain

1

2π

∫ ∞

−∞

[(
∂2

∂z2
+ k2

)
ψ̃(x, y, z, ω) − S̃(x, y, z, ω)

]
e jωt dω = 0

where k = ω/c. By the Fourier integral theorem
(

∂2

∂z2
+ k2

)
ψ̃(x, y, z, ω) − S̃(x, y, z, ω) = 0. (A.19)

We have thus converted a partial differential equation into an ordinary differential equa-
tion. A spatial transform on z will now convert the ordinary differential equation into
an algebraic equation. We write

ψ̃(x, y, z, ω) = 1

2π

∫ ∞

−∞
ψ̃ z(x, y, kz, ω)e jkz z dkz,

S̃(x, y, z, ω) = 1

2π

∫ ∞

−∞
S̃z(x, y, kz, ω)e jkz z dkz,

in (A.19), pass the derivatives through the integral sign, compute the derivatives, and
set the integrand to zero to get

(k2 − k2
z )ψ̃

z(x, y, kz, ω) − S̃z(x, y, kz, ω) = 0;

hence

ψ̃ z(x, y, kz, ω) = − S̃z(x, y, kz, ω)

(kz − k)(kz + k)
. (A.20)

The price we pay for such an easy solution is that we must now perform a two-
dimensional Fourier inversion to obtain ψ(x, y, z, t) from ψ̃ z(x, y, kz, ω). It turns out to
be easiest to perform the spatial inverse transform first, so let us examine

ψ̃(x, y, z, ω) = 1

2π

∫ ∞

−∞
ψ̃ z(x, y, kz, ω)e jkz z dkz .

By (A.20) we have

ψ̃(x, y, z, ω) = 1

2π

∫ ∞

−∞
[S̃z(x, y, kz, ω)]

[ −1

(kz − k)(kz + k)

]
e jkz z dkz,

where the integrand involves a product of two functions. With

g̃z(kz, ω) = −1

(kz − k)(kz + k)
,

the convolution theorem gives

ψ̃(x, y, z, ω) =
∫ ∞

−∞
S̃(x, y, ζ, ω)g̃(z − ζ, ω) dζ (A.21)



Figure A.4: Contour used to compute inverse transform in solution of the 1-D wave
equation.

where

g̃(z, ω) = 1

2π

∫ ∞

−∞
g̃z(kz, ω)e jkz z dkz = 1

2π

∫ ∞

−∞

−1

(kz − k)(kz + k)
e jkz z dkz .

To compute this integral we use complex plane techniques. The domain of integration
extends along the real kz-axis in the complex kz-plane; because of the poles at kz = ±k,
we must treat the integral as a principal value integral. Denoting

I (kz) = −e jkz z

2π(kz − k)(kz + k)
,

we have∫ ∞

−∞
I (kz) dkz = lim

∫
�r

I (kz) dkz

= lim
∫ −k−δ

−�

I (kz) dkz + lim
∫ k−δ

−k+δ

I (kz) dkz + lim
∫ �

k+δ

I (kz) dkz

where the limits take δ → 0 and � → ∞. Our kz-plane contour takes detours around the
poles using semicircles of radius δ, and is closed using a semicircle of radius � (Figure
A.4). Note that if z > 0, we must close the contour in the upper half-plane.

By Cauchy’s integral theorem∫
�r

I (kz) dkz +
∫

�1

I (kz) dkz +
∫

�2

I (kz) dkz +
∫

��

I (kz) dkz = 0.

Thus ∫ ∞

−∞
I (kz) dkz = − lim

δ→0

∫
�1

I (kz) dkz − lim
δ→0

∫
�2

I (kz) dkz − lim
�→∞

∫
��

I (kz) dkz .

The contribution from the semicircle of radius � can be computed by writing kz in polar
coordinates as kz = �e jθ :

lim
�→∞

∫
��

I (kz) dkz = 1

2π
lim

�→∞

∫ π

0

−e jz�e jθ

(�e jθ − k)(�e jθ + k)
j�e jθ dθ.



Using Euler’s identity we can write

lim
�→∞

∫
��

I (kz) dkz = 1

2π
lim

�→∞

∫ π

0

−e−�z sin θe j�z cos θ

�2e2 jθ
j�e jθ dθ.

Thus, as long as z > 0 the integrand will decay exponentially as � → ∞, and

lim
�→∞

∫
��

I (kz) dkz → 0.

Similarly,
∫
��

I (kz) dkz → 0 when z < 0 if we close the semicircle in the lower half-plane.
Thus,

∫ ∞

−∞
I (kz) dkz = − lim

δ→0

∫
�1

I (kz) dkz − lim
δ→0

∫
�2

I (kz) dkz . (A.22)

The integrals around the poles can also be computed by writing kz in polar coordinates.
Writing kz = −k + δe jθ we find

lim
δ→0

∫
�1

I (kz) dkz = 1

2π
lim
δ→0

∫ 0

π

−e jz(−k+δe jθ
) jδe jθ

(−k + δe jθ − k)(−k + δe jθ + k)
dθ

= 1

2π

∫ π

0

e− jkz

−2k
j dθ = − j

4k
e− jkz .

Similarly, using kz = k + δe jθ , we obtain

lim
δ→0

∫
�2

I (kz) dkz = j

4k
e jkz .

Substituting these into (A.22) we have

g̃(z, ω) = j

4k
e− jkz − j

4k
e jkz = 1

2k
sin kz, (A.23)

valid for z > 0. For z < 0, we close in the lower half-plane instead and get

g̃(z, ω) = − 1

2k
sin kz. (A.24)

Substituting (A.23) and (A.24) into (A.21) we obtain

ψ̃(x, y, z, ω) =
∫ z

−∞
S̃(x, y, ζ, ω)

sin k(z − ζ )

2k
dζ − 1

2k

∫ ∞

z
S̃(x, y, ζ, ω)

sin k(z − ζ )

2k
dζ

where we have been careful to separate the two cases considered above. To make things
a bit easier when we apply the boundary conditions, let us rewrite the above expression.
Splitting the domain of integration we write

ψ̃(x, y, z, ω) =
∫ 0

−∞
S̃(x, y, ζ, ω)

sin k(z − ζ )

2k
dζ +

∫ z

0
S̃(x, y, ζ, ω)

sin k(z − ζ )

k
dζ −

−
∫ ∞

0
S̃(x, y, ζ, ω)

sin k(z − ζ )

2k
dζ.



Expansion of the trigonometric functions then gives

ψ̃(x, y, z, ω) =
∫ z

0
S̃(x, y, ζ, ω)

sin k(z − ζ )

k
dζ +

+ sin kz

2k

∫ 0

−∞
S̃(x, y, ζ, ω) cos kζ dζ − cos kz

2k

∫ 0

−∞
S̃(x, y, ζ, ω) sin kζ dζ −

− sin kz

2k

∫ ∞

0
S̃(x, y, ζ, ω) cos kζ dζ + cos kz

2k

∫ ∞

0
S̃(x, y, ζ, ω) sin kζ dζ.

The last four integrals are independent of z, so we can represent them with functions
constant in z. Finally, rewriting the trigonometric functions as exponentials we have

ψ̃(x, y, z, ω) =
∫ z

0
S̃(x, y, ζ, ω)

sin k(z − ζ )

k
dζ + Ã(x, y, ω)e− jkz + B̃(x, y, ω)e jkz .

(A.25)

This formula for ψ̃ was found as a solution to the inhomogeneous ordinary differential
equation (A.19). Hence, to obtain the complete solution we should add any possible
solutions of the homogeneous differential equation. Since these are exponentials, (A.25)
in fact represents the complete solution, where Ã and B̃ are considered unknown and
can be found using the boundary conditions.

If we are interested in the frequency-domain solution to the wave equation, then we
are done. However, since our boundary conditions (A.17) and (A.18) pertain to the time
domain, we must temporally inverse transform before we can apply them. Writing the
sine function in (A.25) in terms of exponentials, we can express the time-domain solution
as

ψ̃(x, y, z, t) =
∫ z

0
F−1

{
c

2

S̃(x, y, ζ, ω)

jω
e j ω

c (z−ζ ) − c

2

S̃(x, y, ζ, ω)

jω
e− j ω

c (z−ζ )

}
dζ +

+ F−1
{

Ã(x, y, ω)e− j ω
c z

} + F−1
{

B̃(x, y, ω)e j ω
c z

}
. (A.26)

A combination of the Fourier integration and time-shifting theorems gives the general
identity

F−1

{
S̃(x, y, ζ, ω)

jω
e− jωt0

}
=

∫ t−t0

−∞
S(x, y, ζ, τ ) dτ, (A.27)

where we have assumed that S̃(x, y, ζ, 0) = 0. Using this in (A.26) along with the time-
shifting theorem we obtain

ψ(x, y, z, t) = c

2

∫ z

0

{∫ t− ζ−z
c

−∞
S(x, y, ζ, τ ) dτ −

∫ t− z−ζ

c

−∞
S(x, y, ζ, τ ) dτ

}
dζ +

+ a
(

x, y, t − z

c

)
+ b

(
x, y, t + z

c

)
,

or

ψ(x, y, z, t) = c

2

∫ z

0

∫ t+ z−ζ

c

t− z−ζ

c

S(x, y, ζ, τ ) dτ dζ + a
(

x, y, t − z

c

)
+ b

(
x, y, t + z

c

)
(A.28)

where

a(x, y, t) = F−1[ Ã(x, y, ω)], b(x, y, t) = F−1[B̃(x, y, ω)].



To calculate a(x, y, t) and b(x, y, t), we must use the boundary conditions (A.17) and
(A.18). To apply (A.17), we put z = 0 into (A.28) to give

a(x, y, t) + b(x, y, t) = f (x, y, t). (A.29)

Using (A.18) is a bit more complicated since we must compute ∂ψ/∂z, and z is a pa-
rameter in the limits of the integral describing ψ . To compute the derivative we apply
Leibnitz’ rule for differentiation:

d

dα

∫ θ(α)

φ(α)

f (x, α) dx =
(

dθ

dα

)
f (θ(α), α) −

(
dφ

dα

)
f (φ(α), α) +

∫ θ(α)

φ(α)

∂ f

∂α
dx . (A.30)

Using this on the integral term in (A.28) we have

∂

∂z

[
c

2

∫ z

0

(∫ t+ z−ζ

c

t− z−ζ

c

S(x, y, ζ, τ ) dτ

)
dζ

]
= c

2

∫ z

0

∂

∂z

(∫ t+ z−ζ

c

t− z−ζ

c

S(x, y, ζ, τ ) dτ

)
dζ,

which is zero at z = 0. Thus
∂ψ

∂z

∣∣∣
z=0

= g(x, y, t) = −1

c
a′(x, y, t) + 1

c
b′(x, y, t)

where a′ = ∂a/∂t and b′ = ∂b/∂t . Integration gives

− a(x, y, t) + b(x, y, t) = c
∫ t

−∞
g(x, y, τ ) dτ. (A.31)

Equations (A.29) and (A.31) represent two algebraic equations in the two unknown
functions a and b. The solutions are

2a(x, y, t) = f (x, y, t) − c
∫ t

−∞
g(x, y, τ ) dτ,

2b(x, y, t) = f (x, y, t) + c
∫ t

−∞
g(x, y, τ ) dτ.

Finally, substitution of these into (A.28) gives us the solution to the inhomogeneous wave
equation

ψ(x, y, z, t) = c

2

∫ z

0

∫ t+ z−ζ

c

t− z−ζ

c

S(x, y, ζ, τ ) dτ dζ + 1

2

[
f
(

x, y, t − z

c

)
+ f

(
x, y, t + z

c

)]
+

+ c

2

∫ t+ z
c

t− z
c

g(x, y, τ ) dτ. (A.32)

This is known as the D’Alembert solution. The terms f (x, y, t ∓ z/c) contribute to ψ

as waves propagating away from the plane z = 0 in the ±z-directions, respectively. The
integral over the forcing term S is seen to accumulate values of S over a time interval
determined by z − ζ .

The boundary conditions could have been applied while still in the temporal frequency
domain (but not the spatial frequency domain, since the spatial position z is lost). But to
do this, we would need the boundary conditions to be in the temporal frequency domain.
This is easily accomplished by transforming them to give

ψ̃(x, y, z, ω)

∣∣∣
z=0

= f̃ (x, y, ω),

∂

∂z
ψ̃(x, y, z, ω)

∣∣∣
z=0

= g̃(x, y, ω).



Applying these to (A.25) (and again using Leibnitz’ rule) we have

Ã(x, y, ω) + B̃(x, y, ω) = f̃ (x, y, ω),

− jk Ã(x, y, ω) + jk B̃(x, y, ω) = g̃(x, y, ω),

hence

2 Ã(x, y, ω) = f̃ (x, y, ω) − c
g̃(x, y, ω)

jω
,

2B̃(x, y, ω) = f̃ (x, y, ω) + c
g̃(x, y, ω)

jω
.

Finally, substituting these back into (A.25) and expanding the sine function we obtain
the frequency-domain solution that obeys the given boundary conditions:

ψ̃(x, y, z, ω) = c

2

∫ z

0

[
S̃(x, y, ζ, ω)e j ω

c (z−ζ )

jω
− S̃(x, y, ζ, ω)e− j ω

c (z−ζ )

jω

]
dζ +

+ 1

2

[
f̃ (x, y, ω)e j ω

c z + f̃ (x, y, ω)e− j ω
c z

] +

+ c

2

[
g̃(x, y, ω)e j ω

c z

jω
− g̃(x, y, ω)e− j ω

c z

jω

]
.

This is easily inverted using (A.27) to give (A.32).

Fourier transform solution of the 1-D homogeneous wave equation for
dissipative media

Wave propagation in dissipative media can be studied using the one-dimensional wave
equation

(
∂2

∂z2
− 2�

v2

∂

∂t
− 1

v2

∂2

∂t2

)
ψ(x, y, z, t) = S(x, y, z, t). (A.33)

This equation is nearly identical to the wave equation for lossless media studied in the
previous section, except for the addition of the ∂ψ/∂t term. This extra term will lead to
important physical consequences regarding the behavior of the wave solutions.

We shall solve (A.33) using the Fourier transform approach of the previous section,
but to keep the solution simple we shall only consider the homogeneous problem. We
begin by writing ψ in terms of its inverse temporal Fourier transform:

ψ(x, y, z, t) = 1

2π

∫ ∞

−∞
ψ̃(x, y, z, ω)e jωt dω.

Substituting this into the homogeneous version of (A.33) and taking the time derivatives,
we obtain

1

2π

∫ ∞

−∞

[
( jω)2 + 2�( jω) − v2 ∂2

∂z2

]
ψ̃(x, y, z, ω)e jωt dω = 0.

The Fourier integral theorem leads to

∂2ψ̃(x, y, z, ω)

∂z2
− κ2ψ̃(x, y, z, ω) = 0 (A.34)



where

κ = 1

v

√
p2 + 2�p

with p = jω.
We can solve the homogeneous ordinary differential equation (A.34) by inspection:

ψ̃(x, y, z, ω) = Ã(x, y, ω)e−κz + B̃(x, y, ω)eκz . (A.35)

Here Ã and B̃ are frequency-domain coefficients to be determined. We can either specify
these coefficients directly, or solve for them by applying specific boundary conditions.
We examine each possibility below.

Solution to wave equation by direct application of boundary conditions. The
solution to the wave equation (A.33) will be unique if we specify functions f (x, y, t) and
g(x, y, t) such that

ψ(x, y, z, t)
∣∣∣
z=0

= f (x, y, t),

∂

∂z
ψ(x, y, z, t)

∣∣∣
z=0

= g(x, y, t). (A.36)

Assuming the Fourier transform pairs f (x, y, t) ↔ f̃ (x, y, ω) and g(x, y, t) ↔ g̃(x, y, ω),
we can apply the boundary conditions (A.36) in the frequency domain:

ψ̃(x, y, z, ω)

∣∣∣
z=0

= f̃ (x, y, ω),

∂

∂z
ψ̃(x, y, z, ω)

∣∣∣
z=0

= g̃(x, y, ω).

From these we find

Ã + B̃ = f̃ , −κ Ã + κ B̃ = g̃, v

or

Ã = 1

2

[
f̃ − g̃

κ

]
, B̃ = 1

2

[
f̃ + g̃

κ

]
.

Substitution into (A.35) gives

ψ̃(x, y, z, ω) = f̃ (x, y, ω) cosh κz + g̃(x, y, ω)
sinh κz

κ

= f̃ (x, y, ω)
∂

∂z
Q̃(x, y, z, ω) + g̃(x, y, ω)Q̃(x, y, z, ω)

= ψ̃1(x, y, z, ω) + ψ̃2(x, y, z, ω)

where Q̃ = sinh κz/κ. Assuming that Q(x, y, z, t) ↔ Q̃(x, y, z, ω), we can employ the
convolution theorem to immediately write down ψ(x, y, z, t):

ψ(x, y, z, t) = f (x, y, t) ∗ ∂

∂z
Q(x, y, z, t) + g(x, y, z, t) ∗ Q(x, y, z, t)

= ψ1(x, y, z, t) + ψ2(x, y, z, t). (A.37)

To find ψ we must first compute the inverse transform of Q̃. Here we resort to a
tabulated result [26]:

sinh
[
a
√

p + λ
√

p + µ
]

√
p + λ

√
p + µ

↔ 1

2
e− 1

2 (µ+λ)t J0

(
1

2
(λ − µ)

√
a2 − t2

)
, −a < t < a.



Here a is a positive, finite real quantity, and λ and µ are finite complex quantities.
Outside the range |t | < a the time-domain function is zero.

Letting a = z/v, µ = 0, and λ = 2� in the above expression, we find

Q(x, y, z, t) = v

2
e−�t J0

(
�

v

√
z2 − v2t2

)
[U (t + z/v) − U (t − z/v)] (A.38)

where U (x) is the unit step function (A.5). From (A.37) we see that

ψ2(x, y, z, t) =
∫ ∞

−∞
g(x, y, t − τ)Q(x, y, z, τ ) dτ =

∫ z/v

−z/v
g(x, y, t − τ)Q(x, y, z, τ ) dτ.

Using the change of variables u = t − τ and substituting (A.38), we then have

ψ2(x, y, z, t) = v

2
e−�t

∫ t+ z
v

t− z
v

g(x, y, u)e�u J0

(
�

v

√
z2 − (t − u)2v2

)
du. (A.39)

To find ψ1 we must compute ∂ Q/∂z. Using the product rule we have

∂ Q(x, y, z, t)

∂z
= v

2
e−�t J0

(
�

v

√
z2 − v2t2

)
∂

∂z
[U (t + z/v) − U (t − z/v)] +

+ v

2
e−�t [U (t + z/v) − U (t − z/v)]

∂

∂z
J0

(
�

v

√
z2 − v2t2

)
.

Next, using dU (x)/dx = δ(x) and remembering that J ′
0(x) = −J1(x) and J0(0) = 1, we

can write
∂ Q(x, y, z, t)

∂z
= 1

2
e−�t [δ(t + z/v) + δ(t − z/v)] −

− z�2

2v
e−�t

J1

(
�
v

√
z2 − v2t2

)
�
v

√
z2 − v2t2

[U (t + z/v) − U (t − z/v)].

Convolving this expression with f (x, y, t) we obtain

ψ1(x, y, z, t) = 1

2
e− �

v
z f

(
x, y, t − z

v

)
+ 1

2
e

�
v

z f
(

x, y, t + z

v

)
−

− z�2

2v
e−�t

∫ t+ z
v

t− z
v

f (x, y, u)e�u
J1

(
�
v

√
z2 − (t − u)2v2

)
�
v

√
z2 − (t − u)2v2

du. (A.40)

Finally, adding (A.40) and (A.39), we obtain

ψ(x, y, z, t) = 1

2
e− �

v
z f

(
x, y, t − z

v

)
+ 1

2
e

�
v

z f
(

x, y, t + z

v

)
−

− z�2

2v
e−�t

∫ t+ z
v

t− z
v

f (x, y, u)e�u
J1

(
�
v

√
z2 − (t − u)2v2

)
�
v

√
z2 − (t − u)2v2

du +

+ v

2
e−�t

∫ t+ z
v

t− z
v

g(x, y, u)e�u J0

(
�

v

√
z2 − (t − u)2v2

)
du. (A.41)

Note that when � = 0 this reduces to

ψ(x, y, z, t) = 1

2
f
(

x, y, t − z

v

)
+ 1

2
f
(

x, y, t + z

v

)
+ v

2

∫ t+ z
v

t− z
v

g(x, y, u) du,

which matches (A.32) for the homogeneous case where S = 0.



Solution to wave equation by specification of wave amplitudes. An alternative
to direct specification of boundary conditions is specification of the amplitude functions
Ã(x, y, ω) and B̃(x, y, ω) or their inverse transforms A(x, y, t) and B(x, y, t). If we specify
the time-domain functions we can write ψ(x, y, z, t) as the inverse transform of (A.35).
For example, a wave traveling in the +z-direction behaves as

ψ(x, y, z, t) = A(x, y, t) ∗ F+(x, y, z, t) (A.42)

where

F+(x, y, z, t) ↔ e−κz = e− z
v

√
p2+2�p.

We can find F+ using the following Fourier transform pair [26]):

e− x
v

√
(p+ρ)2−σ 2 ↔ e− ρ

v
xδ(t − x/v) + σ x

v
e−ρt

I1

(
σ
√

t2 − (x/v)2
)

√
t2 − (x/v)2

,
x

v
< t. (A.43)

Here x is real and positive and I1(x) is the modified Bessel function of the first kind and
order 1. Outside the range x/v < t the time-domain function is zero. Letting ρ = � and
σ = � we find

F+(x, y, z, t) = �2z

v
e−�t I1(�

√
t2 − (z/v)2)

�
√

t2 − (z/v)2
U (t − z/v) + e− �

v
zδ(t − z/v). (A.44)

Note that F+ is a real functions of time, as expected.
Substituting (A.44) into (A.42) and writing the convolution in integral form we have

ψ(x, y, z, t) =
∫ ∞

z/v
A(x, y, t − τ)

[
�2z

v
e−�τ I1(�

√
τ 2 − (z/v)2)

�
√

τ 2 − (z/v)2

]
dτ +

+ e− �
v

z A
(

x, y, t − z

v

)
, z > 0. (A.45)

The 3-D Green’s function for waves in dissipative media

To understand the fields produced by bounded sources within a dissipative medium we
may wish to investigate solutions to the wave equation in three dimensions. The Green’s
function approach requires the solution to(

∇2 − 2�

v2

∂

∂t
− 1

v2

∂2

∂t2

)
G(r|r′; t) = −δ(t)δ(r − r′)

= −δ(t)δ(x − x ′)δ(y − y′)δ(z − z′).

That is, we are interested in the impulse response of a point source located at r = r′.
We begin by substituting the inverse temporal Fourier transform relations

G(r|r′; t) = 1

2π

∫ ∞

−∞
G̃(r|r′; ω)e jωt dω,

δ(t) = 1

2π

∫ ∞

−∞
e jωt dω,

obtaining

1

2π

∫ ∞

−∞

[(
∇2 − jω

2�

v2
− 1

v2
( jω)2

)
G̃(r|r′; ω) + δ(r − r′)

]
e jωt dω = 0.



By the Fourier integral theorem we have

(∇2 + k2)G̃(r|r′; ω) = −δ(r − r′). (A.46)

This is known as the Helmholtz equation. Here

k = 1

v

√
ω2 − j2ω� (A.47)

is called the wavenumber.
To solve the Helmholtz equation we write G̃ in terms of a 3-dimensional inverse Fourier

transform. Substitution of

G̃(r|r′; ω) = 1

(2π)3

∫ ∞

−∞
G̃r (k|r′; ω)e jk·r d3k,

δ(r − r′) = 1

(2π)3

∫ ∞

−∞
e jk·(r−r′) d3k,

into (A.46) gives

1

(2π)3

∫ ∞

−∞

[
∇2

(
G̃r (k|r′; ω)e jk·r) + k2G̃r (k|r′; ω)e jk·r + e jk·(r−r′)

]
d3k = 0.

Here

k = x̂kx + ŷky + ẑkz

with |k|2 = k2
x + k2

y + k2
z = K 2. Carrying out the derivatives and invoking the Fourier

integral theorem we have

(K 2 − k2)G̃r (k|r′; ω) = e− jk·r′
.

Solving for G̃ and substituting it into the inverse transform relation we have

G̃(r|r′; ω) = 1

(2π)3

∫ ∞

−∞

e jk·(r−r′)

(K − k)(K + k)
d3k. (A.48)

To compute the inverse transform integral in (A.48) we write the 3-D transform variable
in spherical coordinates:

k · (r − r′) = K R cos θ, d3k = K 2 sin θ d K dθ dφ,

where R = |r − r′| and θ is the angle between k and r − r′. Hence (A.48) becomes

G̃(r|r′; ω) = 1

(2π)3

∫ ∞

0

K 2 d K

(K − k)(K + k)

∫ 2π

0
dφ

∫ π

0
e j K R cos θ sin θ dθ

= 2

(2π)2 R

∫ ∞

0

K sin(K R)

(K − k)(K + k)
d K ,

or, equivalently,

G̃(r|r′; ω) = 1

2 j R(2π)2

∫ ∞

−∞

e j K R

(K − k)(K + k)
K d K −

− 1

2 j R(2π)2

∫ ∞

−∞

e− jk R

(K − k)(K + k)
K d K .



We can compute the integrals over K using the complex plane technique. We consider K
to be a complex variable, and note that for dissipative media we have k = kr + jki , where
kr > 0 and ki < 0. Thus the integrand has poles at K = ±k. For the integral involving
e+ j K R we close the contour in the upper half-plane using a semicircle of radius � and
use Cauchy’s residue theorem. Then at all points on the semicircle the integrand decays
exponentially as � → ∞, and there is no contribution to the integral from this part of
the contour. The real-line integral is thus equal to 2π j times the residue at K = −k:

∫ ∞

−∞

e j K R

(K − k)(K + k)
K d K = 2π j

e− jk R

−2k
(−k).

For the term involving e− j K R we close in the lower half-plane and again the contribution
from the infinite semicircle vanishes. In this case our contour is clockwise and so the real
line integral is −2π j times the residue at K = k:

∫ ∞

−∞

e− j K R

(K − k)(K + k)
K d K = −2π j

e− jk R

2k
k.

Thus

G̃(r|r′; ω) = e− jk R

4π R
. (A.49)

Note that if � = 0 then this reduces to

G̃(r|r′; ω) = e− jωR/v

4π R
. (A.50)

Our last step is to find the temporal Green’s function. Let p = jω. Then we can write

G̃(r|r′; ω) = eκ R

4π R

where

κ = − jk = 1

v

√
p2 + 2�p.

We may find the inverse transform using (A.43). Letting x = R, ρ = �, and σ = � we
find

G(r|r′; t) = e− �
v

R δ(t − R/v)

4π R
+ �2

4πv
e−�t

I1

(
�

√
t2 − (R/v)2

)

�
√

t2 − (R/v)2
U

(
t − R

v

)
.

We note that in the case of no dissipation where � = 0 this reduces to

G(r|r′; t) = δ(t − R/v)

4π R

which is the inverse transform of (A.50).

Fourier transform representation of the static Green’s function

In the study of static fields, we shall be interested in the solution to the partial differ-
ential equation

∇2G(r|r′) = −δ(r − r′) = −δ(x − x ′)δ(y − y′)δ(z − z′). (A.51)



Here G(r|r′), called the “static Green’s function,” represents the potential at point r
produced by a unit point source at point r′.

In Chapter 3 we find that G(r|r′) = 1/4π |r − r′|. In a variety of problems it is also
useful to have G written in terms of an inverse Fourier transform over the variables x
and y. Letting Gr form a three-dimensional Fourier transform pair with G, we can write

G(r|r′) = 1

(2π)3

∫ ∞

−∞
Gr (kx , ky, kz|r′)e jkx x e jky ye jkz z dkx dky dkz .

Substitution into (A.51) along with the inverse transformation representation for the
delta function (A.4) gives

1

(2π)3
∇2

∫ ∞

−∞
Gr (kx , ky, kz|r′)e jkx x e jky ye jkz z dkx dky dkz

= − 1

(2π)3

∫ ∞

−∞
e jkx (x−x ′)e jky(y−y′)e jkz(z−z′) dkx dky dkz .

We then combine the integrands and move the Laplacian operator through the integral
to obtain

1

(2π)3

∫ ∞

−∞

[
∇2

(
Gr (k|r′)e jk·r) + e jk·(r−r′)

]
d3k = 0,

where k = x̂kx + ŷky + ẑkz . Carrying out the derivatives,

1

(2π)3

∫ ∞

−∞

[(−k2
x − k2

y − k2
z

)
Gr (k|r′) + e− jk·r′]

e jk·r d3k = 0.

Letting k2
x + k2

y = k2
ρ and invoking the Fourier integral theorem we get the algebraic

equation (−k2
ρ − k2

z

)
Gr (k|r′) + e− jk·r′ = 0,

which we can easily solve for Gr :

Gr (k|r′) = e− jk·r′

k2
ρ + k2

z

. (A.52)

Equation (A.52) gives us a 3-D transform representation for the Green’s function.
Since we desire the 2-D representation, we shall have to perform the inverse transform
over kz . Writing

Gxy(kx , ky, z|r′) = 1

2π

∫ ∞

−∞
Gr (kx , ky, kz|r′)e jkz z dkz

we have

Gxy(kx , ky, z|r′) = 1

2π

∫ ∞

−∞

e− jkx x ′
e− jky y′

e jkz(z−z′)

k2
ρ + k2

z

dkz . (A.53)

To compute this integral, we let kz be a complex variable and consider a closed contour in
the complex plane, consisting of a semicircle and the real axis. As previously discussed,
we compute the principal value integral as the semicircle radius � → ∞, and find that
the contribution along the semicircle reduces to zero. Hence we can use Cauchy’s residue
theorem (A.14) to obtain the real-line integral:

Gxy(kx , ky, z|r′) = 2π j res

{
1

2π

e− jkx x ′
e− jky y′

e jkz(z−z′)

k2
ρ + k2

z

}
.



Here res{ f (kz)} denotes the residues of the function f (kz). The integrand in (A.53) has
poles of order 1 at kz = ± jkρ , kρ ≥ 0. If z − z′ > 0 we close in the upper half-plane and
enclose only the pole at kz = jkρ . Computing the residue using (A.13), we obtain

Gxy(kx , ky, z|r′) = j
e− jkx x ′

e− jky y′
e−kρ(z−z′)

2 jkρ

, z > z′.

Since z > z′ this function decays for increasing z, as expected physically. For z−z′ < 0 we
close in the lower half-plane, enclosing the pole at kz = − jkρ and incurring an additional
negative sign since our contour is now clockwise. Evaluating the residue we have

Gxy(kx , ky, z|r′) = − j
e− jkx x ′

e− jky y′
ekρ(z−z′)

−2 jkρ

, z < z′.

We can combine both cases z > z′ and z < z′ by using the absolute value function:

Gxy(kx , ky, z|r′) = e− jkx x ′
e− jky y′

e−kρ |z−z′|

2kρ

. (A.54)

Finally, we substitute (A.54) into the inverse transform formula. This gives the Green’s
function representation

G(r|r′) = 1

4π |r − r′| = 1

(2π)2

∫ ∞

−∞

e−kρ |z−z′|

2kρ

e jkρ ·(r−r′) d2kρ, (A.55)

where kρ = x̂kx + ŷky , kρ = |kρ |, and d2kρ = dkx dky .

On occasion we may wish to represent the solution of the homogeneous (Laplace)
equation

∇2ψ(r) = 0

in terms of a 2-D Fourier transform. In this case we represent ψ as a 2-D inverse transform
and substitute to obtain

1

(2π)2

∫ ∞

−∞
∇2

(
ψ xy(kx , ky, z)e jkx x e jky y

)
dkx dky = 0.

Carrying out the derivatives and invoking the Fourier integral theorem we find that

(
∂2

∂z2
− k2

ρ

)
ψ xy(kx , ky, z) = 0.

Hence

ψ xy(kx , ky, z) = Aekρ z + Be−kρ z

where A and B are constants with respect to z. Inverse transformation gives

ψ(r) = 1

(2π)2

∫ ∞

−∞

[
A(kρ)e

kρ z + B(kρ)e
−kρ z

]
e jkρ ·r d2kρ. (A.56)



A.2 Vector transport theorems

We are often interested in the time rate of change of some field integrated over a
moving volume or surface. Such a derivative may be used to describe the transport of a
physical quantity (e.g., charge, momentum, energy) through space. Many of the relevant
theorems are derived in this section. The results find application in the development of
the large-scale forms of Maxwell equations, the continuity equation, and the Poynting
theorem.

Partial, total, and material derivatives

The key to understanding transport theorems lies in the difference between the various
means of time-differentiating a field. Consider a scalar field T (r, t) (which could represent
one component of a vector or dyadic field). If we fix our position within the field and
examine how the field varies with time, we describe the partial derivative of T . However,
this may not be the most useful means of measuring the time rate of change of a field.
For instance, in mechanics we might be interested in the rate at which water cools as
it sinks to the bottom of a container. In this case, T could represent temperature. We
could create a “depth profile” at any given time (i.e., measure T (r, t0) for some fixed t0)
by taking simultaneous data from a series of temperature probes at varying depths. We
could also create a temporal profile at any given depth (i.e., measure T (r0, t) for some
fixed r0) by taking continuous data from a probe fixed at that depth. But neither of
these would describe how an individual sinking water particle “experiences” a change in
temperature over time.

Instead, we could use a probe that descends along with a particular water packet (i.e.,
volume element), measuring the time rate of temperature change of that element. This
rate of change is called the convective or material derivative, since it corresponds to a
situation in which a physical material quantity is followed as the derivative is calculated.
We anticipate that this quantity will depend on (1) the time rate of change of T at each
fixed point that the particle passes, and (2) the spatial rate of change of T as well as
the rapidity with which the packet of interest is swept through that space gradient. The
faster the packet descends, or the faster the temperature cools with depth, the larger the
material derivative should be.

To compute the material derivative we describe the position of a water packet by the
vector

r(t) = x̂x(t) + ŷy(t) + ẑz(t).

Because no two packets can occupy the same place at the same time, the specification of
r(0) = r0 uniquely describes (or “tags”) a particular packet. The time rate of change of r
with r0 held constant (the material derivative of the position vector) is thus the velocity
field u(r, t) of the fluid: (

dr
dt

)
r0

= Dr
Dt

= u. (A.57)

Here we use the “big D” notation to denote the material derivative, thereby avoiding
confusion with the partial and total derivatives described below.

To describe the time rate of change of the temperature of a particular water packet, we
only need to hold r0 constant while we examine the change. If we write the temperature



as

T (r, t) = T (r(r0, t), t) = T [x(r0, t), y(r0, t), z(r0, t), t],

then we can use the chain rule to find the time rate of change of T with r0 held constant:

DT

Dt
=

(
dT

dt

)
r0

=
(

∂T

∂x

) (
dx

dt

)
r0

+
(

∂T

∂y

) (
dy

dt

)
r0

+
(

∂T

∂z

) (
dz

dt

)
r0

+ ∂T

∂t
.

We recognize the partial derivatives of the coordinates as the components of the material
velocity (A.57), and thus can write

DT

Dt
= ∂T

∂t
+ ux

∂T

∂x
+ uy

∂T

∂y
+ uz

∂T

∂z
= ∂T

∂t
+ u · ∇T .

As expected, the material derivative depends on both the local time rate of change and
the spatial rate of change of temperature.

Suppose next that our probe is motorized and can travel about in the sinking water.
If the probe sinks faster than the surrounding water, the time rate of change (measured
by the probe) should exceed the material derivative. Let the probe position and velocity
be

r(t) = x̂x(t) + ŷy(t) + ẑz(t), v(r, t) = x̂
dx(t)

dt
+ ŷ

dy(t)

dt
+ ẑ

dz(t)

dt
.

We can use the chain rule to determine the time rate of change of the temperature
observed by the probe, but in this case we do not constrain the velocity components to
represent the moving fluid. Thus, we merely obtain

dT

dt
= ∂T

∂x

dx

dt
+ ∂T

∂y

dy

dt
+ ∂T

∂z

dz

dt
+ ∂T

∂t

= ∂T

∂t
+ v · ∇T .

This is called the total derivative of the temperature field.
In summary, the time rate of change of a scalar field T seen by an observer moving

with arbitrary velocity v is given by the total derivative

dT

dt
= ∂T

∂t
+ v · ∇T . (A.58)

If the velocity of the observer happens to match the velocity u of a moving substance,
the time rate of change is the material derivative

DT

Dt
= ∂T

∂t
+ u · ∇T . (A.59)

We can obtain the material derivative of a vector field F by component-wise application
of (A.59):

DF
Dt

= D

Dt

[
x̂Fx + ŷFy + ẑFz

]

= x̂
∂ Fx

∂t
+ ŷ

∂ Fy

∂t
+ ẑ

∂ Fz

∂t
+ x̂ [u · (∇Fx )] + ŷ

[
u · (∇Fy)

] + ẑ [u · (∇Fz)] .



Figure A.5: Derivation of the Helmholtz transport theorem.

Using the notation

u · ∇ = ux
∂

∂x
+ uy

∂

∂y
+ uz

∂

∂z

we can write

DF
Dt

= ∂F
∂t

+ (u · ∇)F. (A.60)

This is the material derivative of a vector field F when u describes the motion of a
physical material. Similarly, the total derivative of a vector field is

dF
dt

= ∂F
∂t

+ (v · ∇)F

where v is arbitrary.

The Helmholtz and Reynolds transport theorems

We choose the intuitive approach taken by Tai [190] and Whitaker [214]. Consider
an open surface S(t) moving through space and possibly deforming as it moves. The
velocity of the points comprising the surface is given by the vector field v(r, t). We are
interested in computing the time derivative of the flux of a vector field F(r, t) through
S(t):

ψ(t) = d

dt

∫
S(t)

F(r, t) · dS

= lim
�t→0

∫
S(t+�t) F(r, t + �t) · dS − ∫

S(t) F(r, t) · dS

�t
. (A.61)

Here S(t +�t) = S2 is found by extending each point on S(t) = S1 through a displacement
v�t , as shown in Figure A.5. Substituting the Taylor expansion

F(r, t + �t) = F(r, t) + ∂F(r, t)

∂t
�t + · · ·



into (A.61), we find that only the first two terms give non-zero contributions to the
integral and

ψ(t) =
∫

S(t)

∂F(r, t)

∂t
· dS + lim

�t→0

∫
S2

F(r, t) · dS − ∫
S1

F(r, t) · dS

�t
. (A.62)

The second term on the right can be evaluated with the help of Figure A.5. As the surface
moves through a displacement v�t it sweeps out a volume region �V that is bounded
on the back by S1, on the front by S2, and on the side by a surface S3 = �S. We can
thus compute the two surface integrals in (A.62) as the difference between contributions
from the surface enclosing �V and the side surface �S (remembering that the normal
to S1 in (A.62) points into �V ). Thus

ψ(t) =
∫

S(t)

∂F(r, t)

∂t
· dS + lim

�t→0

∮
S1+S2+�S F(r, t) · dS − ∫

�S F(r, t) · dS3

�t

=
∫

S(t)

∂F(r, t)

∂t
· dS + lim

�t→0

∫
�V ∇ · F(r, t) dV3 − ∫

�S F(r, t) · dS3

�t

by the divergence theorem. To compute the integrals over �S and �V we note from
Figure A.5 that the incremental surface and volume elements are just

dS3 = dl × (v�t), dV3 = (v�t) · dS.

Then, since F · [dl × (v�t)] = �t (v × F) · dl, we have

ψ(t) =
∫

S(t)

∂F(r, t)

∂t
· dS + lim

�t→0

�t
∫

S(t) [v∇ · F(r, t)] · dS

�t
− lim

�t→0

�t
∮
�

[v × F(r, t)] · dl

�t
.

Taking the limit and using Stokes’s theorem on the last integral we have finally

d

dt

∫
S(t)

F · dS =
∫

S(t)

[
∂F
∂t

+ v∇ · F − ∇ × (v × F)

]
· dS, (A.63)

which is the Helmholtz transport theorem [190, 43].
In case the surface corresponds to a moving physical material, we may wish to write

the Helmholtz transport theorem in terms of the material derivative. We can set v = u
and use

∇ × (u × F) = u(∇ · F) − F(∇ · u) + (F · ∇)u − (u · ∇)F

and (A.60) to obtain

d

dt

∫
S(t)

F · dS =
∫

S(t)

[
DF
Dt

+ F(∇ · u) − (F · ∇)u
]

· dS.

If S(t) in (A.63) is closed, enclosing a volume region V (t), then∮
S(t)

[∇ × (v × F)] · dS =
∫

V (t)
∇ · [∇ × (v × F)] dV = 0

by the divergence theorem and (B.49). In this case the Helmholtz transport theorem
becomes

d

dt

∮
S(t)

F · dS =
∮

S(t)

[
∂F
∂t

+ v∇ · F
]

· dS. (A.64)



We now come to an essential tool that we employ throughout the book. Using the
divergence theorem we can rewrite (A.64) as

d

dt

∫
V (t)

∇ · F dV =
∫

V (t)
∇ · ∂F

∂t
dV +

∮
S(t)

(∇ · F)v · dS.

Replacing ∇ · F by the scalar field ρ we have

d

dt

∫
V (t)

ρ dV =
∫

V (t)

∂ρ

∂t
dV +

∮
S(t)

ρv · dS. (A.65)

In this general form of the transport theorem v is an arbitrary velocity. In most appli-
cations v = u describes the motion of a material substance; then

D

Dt

∫
V (t)

ρ dV =
∫

V (t)

∂ρ

∂t
dV +

∮
S(t)

ρu · dS, (A.66)

which is the Reynolds transport theorem [214]. The D/Dt notation implies that V (t)
retains exactly the same material elements as it moves and deforms to follow the material
substance.

We may rewrite the Reynolds transport theorem in various forms. By the divergence
theorem we have

d

dt

∫
V (t)

ρ dV =
∫

V (t)

[
∂ρ

∂t
+ ∇ · (ρv)

]
dV .

Setting v = u, using (B.42), and using (A.59) for the material derivative of ρ, we obtain

D

Dt

∫
V (t)

ρ dV =
∫

V (t)

[
Dρ

Dt
+ ρ∇ · u

]
dV . (A.67)

We may also generate a vector form of the general transport theorem by taking ρ in
(A.65) to be a component of a vector. Assembling all of the components we have

d

dt

∫
V (t)

A dV =
∫

V (t)

∂A
∂t

dV +
∮

S(t)
A(v · n̂) d S. (A.68)

A.3 Dyadic analysis

Dyadic analysis was introduced in the late nineteenth century by Gibbs to generalize
vector analysis to problems in which the components of vectors are related in a linear
manner. It has now been widely supplanted by tensor theory, but maintains a foothold in
engineering where the transformation properties of tensors are not paramount (except,
of course, in considerations such as those involving special relativity). Terms such as
“tensor permittivity” and “dyadic permittivity” are often used interchangeably.

Component form representation. We wish to write one vector field A(r, t) as a
linear function of another vector field B(r, t):

A = f (B).



By this we mean that each component of A is a linear combination of the components of
B:

A1(r, t) = a11′ B1′(r, t) + a12′ B2′(r, t) + a13′ B3′(r, t),

A2(r, t) = a21′ B1′(r, t) + a22′ B2′(r, t) + a23′ B3′(r, t),

A3(r, t) = a31′ B1′(r, t) + a32′ B2′(r, t) + a33′ B3′(r, t).

Here the ai j ′ may depend on space and time (or frequency). The prime on the second
index indicates that A and B may be expressed in distinct coordinate frames (î1, î2, î3)
and (î1′ , î2′ , î3′), respectively. We have

A1 = (
a11′ î1′ + a12′ î2′ + a13′ î3′

) · (
î1′ B1′ + î2′ B2′ + î3′ B3′

)
,

A2 = (
a21′ î1′ + a22′ î2′ + a23′ î3′

) · (
î1′ B1′ + î2′ B2′ + î3′ B3′

)
,

A3 = (
a31′ î1′ + a32′ î2′ + a33′ î3′

) · (
î1′ B1′ + î2′ B2′ + î3′ B3′

)
,

and since B = î1′ B1′ + î2′ B2′ + î3′ B3′ we can write

A = î1(a′
1 · B) + î2(a′

2 · B) + î3(a′
3 · B)

where

a′
1 = a11′ î1′ + a12′ î2′ + a13′ î3′ ,

a′
2 = a21′ î1′ + a22′ î2′ + a23′ î3′ ,

a′
3 = a31′ î1′ + a32′ î2′ + a33′ î3′ .

In shorthand notation

A = ā · B (A.69)

where

ā = î1a′
1 + î2a′

2 + î3a′
3. (A.70)

Written out, the quantity ā looks like

ā = a11′(î1 î1′) + a12′(î1 î2′) + a13′(î1 î3′) +
+ a21′(î2 î1′) + a22′(î2 î2′) + a23′(î2 î3′) +
+ a31′(î3 î1′) + a32′(î3 î2′) + a33′(î3 î3′).

Terms such as î1 î1′ are called dyads, while sums of dyads such as ā are called dyadics.
The components ai j ′ of ā may be conveniently placed into an array:

[ā] =

 a11′ a12′ a13′

a21′ a22′ a23′

a31′ a32′ a33′


 .

Writing

[A] =

 A1

A2

A3


 , [B] =


 B1′

B2′

B3′


 ,



we see that A = ā · B can be written as

[A] = [ā] [B] =

 a11′ a12′ a13′

a21′ a22′ a23′

a31′ a32′ a33′





 B1′

B2′

B3′


 .

Note carefully that in (A.69) ā operates on B from the left. A reorganization of the
components of ā allows us to write

ā = a1 î1′ + a2 î2′ + a3 î3′ (A.71)

where

a1 = a11′ î1 + a21′ î2 + a31′ î3,

a2 = a12′ î1 + a22′ î2 + a32′ î3,

a3 = a13′ î1 + a23′ î2 + a33′ î3.

We may now consider using ā to operate on a vector C = î1C1 + î2C2 + î3C3 from the
right:

C · ā = (C · a1)î1′ + (C · a2)î2′ + (C · a3)î3′ .

In matrix form C · ā is

[ā]T [C] =

 a11′ a21′ a31′

a12′ a22′ a32′

a13′ a23′ a33′





 C1

C2

C3




where the superscript “T ” denotes the matrix transpose operation. That is,

C · ā = āT · C

where āT is the transpose of ā.
If the primed and unprimed frames coincide, then

ā = a11(î1 î1) + a12(î1 î2) + a13(î1 î3) +
+ a21(î2 î1) + a22(î2 î2) + a23(î2 î3) +
+ a31(î3 î1) + a32(î3 î2) + a33(î3 î3).

In this case we may compare the results of ā · B and B · ā for a given vector B =
î1 B1 + î2 B2 + î3 B3. We leave it to the reader to verify that in general

B · ā �= ā · B.

Vector form representation. We can express dyadics in coordinate-free fashion if we
expand the concept of a dyad to permit entities such as AB. Here A and B are called
the antecedent and consequent, respectively. The operation rules

(AB) · C = A(B · C), C · (AB) = (C · A)B,

define the anterior and posterior products of AB with a vector C, and give results
consistent with our prior component notation. Sums of dyads such as AB + CD are
called dyadic polynomials, or dyadics. The simple dyadic

AB = (A1 î1 + A2 î2 + A3 î3)(B1′ î1′ + B2′ î2′ + B3′ î3′)



can be represented in component form using

AB = î1a′
1 + î2a′

2 + î3a′
3

where

a′
1 = A1 B1′ î1′ + A1 B2′ î2′ + A1 B3′ î3′ ,

a′
2 = A2 B1′ î1′ + A2 B2′ î2′ + A2 B3′ î3′ ,

a′
3 = A3 B1′ î1′ + A3 B2′ î2′ + A3 B3′ î3′ ,

or using

AB = a1 î1′ + a2 î2′ + a3 î3′

where

a1 = î1 A1 B1′ + î2 A2 B1′ + î3 A3 B1′ ,

a2 = î1 A1 B2′ + î2 A2 B2′ + î3 A3 B2′ ,

a3 = î1 A1 B3′ + î2 A2 B3′ + î3 A3 B3′ .

Note that if we write ā = AB then ai j = Ai B j ′ .
A simple dyad AB by itself cannot represent a general dyadic ā; only six independent

quantities are available in AB (the three components of A and the three components
of B), while an arbitrary dyadic has nine independent components. However, it can be
shown that any dyadic can be written as a sum of three dyads:

ā = AB + CD + EF.

This is called a vector representation of ā. If V is a vector, the distributive laws

ā · V = (AB + CD + EF) · V = A(B · V) + C(D · V) + E(F · V),

V · ā = V · (AB + CD + EF) = (V · A)B + (V · C)D + (V · E)F,

apply.

Dyadic algebra and calculus. The cross product of a vector with a dyadic produces
another dyadic. If ā = AB + CD + EF then by definition

ā × V = A(B × V) + C(D × V) + E(F × V),

V × ā = (V × A)B + (V × C)D + (V × E)F.

The corresponding component forms are

ā × V = î1(a′
1 × V) + î2(a′

2 × V) + î3(a′
3 × V),

V × ā = (V × a1)î1′ + (V × a2)î2′ + (V × a3)î3′ ,

where we have used (A.70) and (A.71), respectively. Interactions between dyads or
dyadics may also be defined. The dot product of two dyads AB and CD is a dyad given
by

(AB) · (CD) = A(B · C)D = (B · C)(AD).

The dot product of two dyadics can be found by applying the distributive property.



If α is a scalar, then the product αā is a dyadic with components equal to α times
the components of ā. Dyadic addition may be accomplished by adding individual dyadic
components as long as the dyadics are expressed in the same coordinate system. Sub-
traction is accomplished by adding the negative of a dyadic, which is defined through
scalar multiplication by −1.

Some useful dyadic identities appear in Appendix B. Many more can be found in Van
Bladel [202].

The various vector derivatives may also be extended to dyadics. Computations are
easiest in rectangular coordinates, since î1 = x̂, î2 = ŷ, and î3 = ẑ are constant with
position. The dyadic

ā = ax x̂ + ay ŷ + az ẑ

has divergence

∇ · ā = (∇ · ax )x̂ + (∇ · ay)ŷ + (∇ · az)ẑ,

and curl

∇ × ā = (∇ × ax )x̂ + (∇ × ay)ŷ + (∇ × az)ẑ.

Note that the divergence of a dyadic is a vector while the curl of a dyadic is a dyadic.
The gradient of a vector a = ax x̂ + ay ŷ + az ẑ is

∇a = (∇ax )x̂ + (∇ay)ŷ + (∇az)ẑ,

a dyadic quantity.
The dyadic derivatives may be expressed in coordinate-free notation by using the vector

representation. The dyadic AB has divergence

∇ · (AB) = (∇ · A)B + A · (∇B)

and curl

∇ × (AB) = (∇ × A)B − A × (∇B).

The Laplacian of a dyadic is a dyadic given by

∇2ā = ∇(∇ · ā) − ∇ × (∇ × ā).

The divergence theorem for dyadics is∫
V

∇ · ā dV =
∮

S
n̂ · ā d S.

Some of the other common differential and integral identities for dyadics can be found
in Van Bladel [202] and Tai [192].

Special dyadics. We say that ā is symmetric if

B · ā = ā · B

for any vector B. This requires āT = ā, i.e., ai j ′ = a ji ′ . We say that ā is antisymmetric
if

B · ā = −ā · B

for any B. In this case āT = −ā. That is, ai j ′ = −a ji ′ and aii ′ = 0. A symmetric dyadic
has only six independent components while an antisymmetric dyadic has only three. The



reader can verify that any dyadic can be decomposed into symmetric and antisymmetric
parts as

ā = 1

2

(
ā + āT

) + 1

2

(
ā − āT

)
.

A simple example of a symmetric dyadic is the unit dyadic Ī defined by

Ī = î1 î1 + î2 î2 + î3 î3.

This quantity often arises in the manipulation of dyadic equations, and satisfies

A · Ī = Ī · A = A

for any vector A. In matrix form Ī is the identity matrix:

[Ī] =

 1 0 0

0 1 0
0 0 1


 .

The components of a dyadic may be complex. We say that ā is hermitian if

B · ā = ā∗ · B (A.72)

holds for any B. This requires that ā∗ = āT . Taking the transpose we can write

ā = (ā∗)T = ā†

where “†” stands for the conjugate-transpose operation. We say that ā is anti-hermitian
if

B · ā = −ā∗ · B (A.73)

for arbitrary B. In this case ā∗ = −āT . Any complex dyadic can be decomposed into
hermitian and anti-hermitian parts:

ā = 1

2

(
āH + āA

)
(A.74)

where

āH = ā + ā†, āA = ā − ā†. (A.75)

A dyadic identity important in the study of material parameters is

B · ā∗ · B∗ = B∗ · ā† · B. (A.76)

We show this by decomposing ā according to (A.74), giving

B · ā∗ · B∗ = 1

2

([
B∗ · āH

]∗ + [
B∗ · āA

]∗) · B∗

where we have used (B · ā)∗ = (B∗ · ā∗). Applying (A.72) and (A.73) we obtain

B · ā∗ · B∗ = 1

2

([
āH∗ · B∗]∗ − [

āA∗ · B∗]∗) · B∗

= B∗ · 1

2

([
āH · B

] − [
āA · B

])

= B∗ ·
(

1

2

[
āH − āA

] · B
)

.

Since the term in brackets is āH − āA = 2ā† by (A.75), the identity is proved.



A.4 Boundary value problems

Many physical phenomena may be described mathematically as the solutions to bound-
ary value problems. The desired physical quantity (usually called a “field”) in a certain
region of space is found by solving one or more partial differential equations subject to
certain conditions over the boundary surface. The boundary conditions may specify the
values of the field, some manipulated version of the field (such as the normal derivative),
or a relationship between fields in adjoining regions. If the field varies with time as well
as space, initial or final values of the field must also be specified. Particularly important
is whether a boundary value problem is well-posed and therefore has a unique solution
which depends continuously on the data supplied. This depends on the forms of the dif-
ferential equation and boundary conditions. The well-posedness of Maxwell’s equations
is discussed in § 2.2.

The importance of boundary value problems has led to an array of techniques, both
analytical and numerical, for solving them. Many problems (such as boundary value
problems involving Laplace’s equation) may be solved in several different ways. Unique-
ness permits an engineer to focus attention on which technique will yield the most efficient
solution. In this section we concentrate on the separation of variables technique, which is
widely applied in the solution of Maxwell’s equations. We first discuss eigenvalue prob-
lems and then give an overview of separation of variables. Finally we consider a number
of example problems in each of the three common coordinate systems.

Sturm–Liouville problems and eigenvalues

The partial differential equations of electromagnetics can often be reduced to ordinary
differential equations. In some cases symmetry permits us to reduce the number of
dimensions by inspection; in other cases, we may employ an integral transform (e.g.,
the Fourier transform) or separation of variables. The resulting ordinary differential
equations may be viewed as particular cases of the Sturm–Liouville differential equation

d

dx

[
p(x)

dψ(x)

dx

]
+ q(x)ψ(x) + λσ(x)ψ(x) = 0, x ∈ [a, b]. (A.77)

In linear operator notation

L [ψ(x)] = −λσ(x)ψ(x), (A.78)

where L is the linear Sturm–Liouville operator

L =
(

d

dx

[
p(x)

d

dx

]
+ q(x)

)
.

Obviously ψ(x) = 0 satisfies (A.78). However, for certain values of λ dependent on p,
q, σ , and the boundary conditions we impose, (A.78) has non-trivial solutions. Each λ

that satisfies (A.78) is an eigenvalue of L, and any non-trivial solution associated with
that eigenvalue is an eigenfunction. Taken together, the eigenvalues of an operator form
its eigenvalue spectrum.

We shall restrict ourselves to the case in which L is self-adjoint. Assume p, q, and σ

are real and continuous on [a, b]. It is straightforward to show that for any two functions
u(x) and v(x) Lagrange’s identity

u L[v] − vL[u] = d

dx

[
p

(
u

dv

dx
− v

du

dx

)]
(A.79)



holds. Integration gives Green’s formula
∫ b

a
(u L[v] − vL[u]) dx = p

(
u

dv

dx
− v

du

dx

) ∣∣∣b

a
.

The operator L is self-adjoint if its associated boundary conditions are such that

p

(
u

dv

dx
− v

du

dx

) ∣∣∣b

a
= 0. (A.80)

Possible sets of conditions include the homogeneous boundary conditions

α1ψ(a) + β1ψ
′(a) = 0, α2ψ(b) + β2ψ

′(b) = 0, (A.81)

and the periodic boundary conditions

ψ(a) = ψ(b), p(a)ψ ′(a) = p(b)ψ ′(b). (A.82)

By imposing one of these sets on (A.78) we obtain a Sturm–Liouville problem.
The self-adjoint Sturm–Liouville operator has some nice properties. Each eigenvalue is

real, and the eigenvalues form a denumerable set with no cluster point. Moreover, eigen-
functions corresponding to distinct eigenvalues are orthogonal, and the eigenfunctions
form a complete set. Hence we can expand any sufficiently smooth function in terms of
the eigenfunctions of a problem. We discuss this further below.

A regular Sturm–Liouville problem involves a self-adjoint operator L with p(x) > 0
and σ(x) > 0 everywhere, and the homogeneous boundary conditions (A.81). If p or σ

vanishes at an endpoint of [a, b], or an endpoint is at infinity, the problem is singular.
The harmonic differential equation can form the basis of regular problems, while prob-
lems involving Bessel’s and Legendre’s equations are singular. Regular Sturm–Liouville
problems have additional properties. There are infinitely many eigenvalues. There is
a smallest eigenvalue but no largest eigenvalue, and the eigenvalues can be ordered as
λ0 < λ1 < · · · < λn · · ·. Associated with each λn is a unique (to an arbitrary multiplicative
constant) eigenfunction ψn that has exactly n zeros in (a, b).

If a problem is singular because p = 0 at an endpoint, we can also satisfy (A.80) by
demanding that ψ be bounded at that endpoint (a singularity condition) and that any
regular Sturm–Liouville boundary condition hold at the other endpoint. This is the case
for Bessel’s and Legendre’s equations discussed below.

Orthogonality of the eigenfunctions. Let L be self-adjoint, and let ψm and ψn be
eigenfunctions associated with λm and λn, respectively. Then by (A.80) we have

∫ b

a
(ψm(x)L[ψn(x)] − ψn(x)L[ψm(x)]) dx = 0.

But L[ψn(x)] = −λnσ(x)ψn(x) and L[ψm(x)] = −λmσ(x)ψm(x). Hence

(λm − λn)

∫ b

a
ψm(x)ψn(x)σ (x) dx = 0,

and λm �= λn implies that
∫ b

a
ψm(x)ψn(x)σ (x) dx = 0. (A.83)

We say that ψm and ψn are orthogonal with respect to the weight function σ(x).



Eigenfunction expansion of an arbitrary function. If L is self-adjoint, then its
eigenfunctions form a complete set. This means that any piecewise smooth function may
be represented as a weighted series of eigenfunctions. Specifically, if f and f ′ are piece-
wise continuous on [a, b], then f may be represented as the generalized Fourier series

f (x) =
∞∑

n=0

cnψn(x). (A.84)

Convergence of the series is uniform and gives, at any point of (a, b), the average value
[ f (x+)+ f (x−)]/2 of the one-sided limits f (x+) and f (x−) of f (x). The cn can be found
using orthogonality condition (A.83): multiply (A.84) by ψmσ and integrate to obtain

∫ b

a
f (x)ψm(x)σ (x) dx =

∞∑
n=0

cn

∫ b

a
ψn(x)ψm(x)σ (x) dx,

hence

cn =
∫ b

a f (x)ψn(x)σ (x) dx∫ b
a ψ2

n (x)σ (x) dx
. (A.85)

These coefficients ensure that the series converges in mean to f ; i.e., the mean-square
error

∫ b

a

∣∣∣∣∣ f (x) −
∞∑

n=0

cnψn(x)

∣∣∣∣∣
2

σ(x) dx

is minimized. Truncation to finitely-many terms generally results in oscillations (Gibb’s
phenomena) near points of discontinuity of f . The cn are easier to compute if the ψn

are orthonormal with ∫ b

a
ψ2

n (x)σ (x) dx = 1

for each n.

Uniqueness of the eigenfunctions. If both ψ1 and ψ2 are associated with the same
eigenvalue λ, then

L[ψ1(x)] + λσ(x)ψ1(x) = 0, L[ψ2(x)] + λσ(x)ψ2(x) = 0,

hence

ψ1(x)L[ψ2(x)] − ψ2(x)L[ψ1(x)] = 0.

By (A.79) we have

d

dx

[
p(x)

(
ψ1(x)

dψ2(x)

dx
− ψ2(x)

dψ1(x)

dx

)]
= 0

or

p(x)

(
ψ1(x)

dψ2(x)

dx
− ψ2(x)

dψ1(x)

dx

)
= C

where C is constant. Either of (A.81) implies C = 0, hence

d

dx

(
ψ2(x)

ψ1(x)

)
= 0



so that ψ1(x) = Kψ2(x) for some constant K . So under homogeneous boundary condi-
tions, every eigenvalue is associated with a unique eigenfunction.

This is false for the periodic boundary conditions (A.82). Eigenfunction expansion then
becomes difficult, as we can no longer assume eigenfunction orthogonality. However, the
Gram–Schmidt algorithm may be used to construct orthogonal eigenfunctions. We refer
the interested reader to Haberman [79].

The harmonic differential equation. The ordinary differential equation

d2ψ(x)

dx2
= −k2ψ(x) (A.86)

is Sturm–Liouville with p ≡ 1, q ≡ 0, σ ≡ 1, and λ = k2. Suppose we take [a, b] = [0, L]
and adopt the homogeneous boundary conditions

ψ(0) = 0 and ψ(L) = 0. (A.87)

Since p(x) > 0 and σ(x) > 0 on [0, L], equations (A.86) and (A.87) form a regular Sturm–
Liouville problem. Thus we should have an infinite number of discrete eigenvalues. A
power series technique yields the two independent solutions

ψa(x) = Aa sin kx, ψb(x) = Ab cos kx,

to (A.86); hence by linearity the most general solution is

ψ(x) = Aa sin kx + Ab cos kx . (A.88)

The condition at x = 0 gives Aa sin 0 + Ab cos 0 = 0, hence Ab = 0. The other condition
then requires

Aa sin kL = 0. (A.89)

Since Aa = 0 would give ψ ≡ 0, we satisfy (A.89) by choosing k = kn = nπ/L for
n = 1, 2, . . . . Because λ = k2, the eigenvalues are

λn = (nπ/L)2

with corresponding eigenfunctions

ψn(x) = sin kn x .

Note that λ = 0 is not an eigenvalue; eigenfunctions are nontrivial by definition, and
sin(0πx/L) ≡ 0. Likewise, the differential equation associated with λ = 0 can be solved
easily, but only its trivial solution can fit homogeneous boundary conditions: with k = 0,
(A.86) becomes d2ψ(x)/dx2 = 0, giving ψ(x) = ax + b; this can satisfy (A.87) only with
a = b = 0.

These “eigensolutions” obey the properties outlined earlier. In particular the ψn are
orthogonal, ∫ L

0
sin

(nπx

L

)
sin

(mπx

L

)
dx = L

2
δmn,

and the eigenfunction expansion of a piecewise continuous function f is given by

f (x) =
∞∑

n=1

cn sin
(nπx

L

)



where, with σ(x) = 1 in (A.85), we have

cn =
∫ L

0 f (x) sin
(

nπx
L

)
dx∫ L

0 sin2
(

nπx
L

)
dx

= 2

L

∫ L

0
f (x) sin

(nπx

L

)
dx .

Hence we recover the standard Fourier sine series for f (x).
With little extra effort we can examine the eigenfunctions resulting from enforcement

of the periodic boundary conditions

ψ(0) = ψ(L) and ψ ′(0) = ψ ′(L).

The general solution (A.88) still holds, so we have the choices ψ(x) = sin kx and ψ(x) =
cos kx . Evidently both

ψ(x) = sin

(
2nπx

L

)
and ψ(x) = cos

(
2nπx

L

)

satisfy the boundary conditions for n = 1, 2, . . .. Thus each eigenvalue (2nπ/L)2 is
associated with two eigenfunctions.

Bessel’s differential equation. Bessel’s equation

d

dx

(
x

dψ(x)

dx

)
+

(
k2x − ν2

x

)
ψ(x) = 0 (A.90)

occurs when problems are solved in circular-cylindrical coordinates. Comparison with
(A.77) shows that λ = k2, p(x) = x , q(x) = −ν2/x , and σ(x) = x . We take [a, b] = [0, L]
along with the boundary conditions

ψ(L) = 0 and |ψ(0)| < ∞. (A.91)

Although the resulting Sturm–Liouville problem is singular, the specified conditions
(A.91) maintain satisfaction of (A.80). The eigenfunctions are orthogonal because (A.80)
is satisfied by having ψ(L) = 0 and p(x) dψ(x)/dx → 0 as x → 0.

As a second-order ordinary differential equation, (A.90) has two solutions denoted by

Jν(kx) and Nν(kx),

and termed Bessel functions. Their properties are summarized in Appendix E.1. The
function Jν(x), the Bessel function of the first kind and order ν, is well-behaved in [0, L].
The function Nν(x), the Bessel function of the second kind and order ν, is unbounded
at x = 0; hence it is excluded as an eigenfunction of the Sturm–Liouville problem.

The condition at x = L shows that the eigenvalues are defined by

Jν(kL) = 0.

We denote the mth root of Jν(x) = 0 by pνm . Then

kνm =
√

λνm = pνm/L .

The infinitely many eigenvalues are ordered as λν1 < λν2 < . . .. Associated with eigen-
value λνm is a single eigenfunction Jν(

√
λνm x). The orthogonality relation is

∫ L

0
Jν

( pνm

L
x
)

Jν

( pνn

L
x
)

x dx = 0, m �= n.



Since the eigenfunctions are also complete, we can expand any piecewise continuous
function f in a Fourier–Bessel series

f (x) =
∞∑

m=1

cm Jν

(
pνm

x

L

)
, 0 ≤ x ≤ L , ν > −1.

By (A.85) and (E.22) we have

cm = 2

L2 J 2
ν+1(pνm)

∫ L

0
f (x)Jν

(
pνm

x

L

)
x dx .

The associated Legendre equation. Legendre’s equation occurs when problems are
solved in spherical coordinates. It is often written in one of two forms. Letting θ be the
polar angle of spherical coordinates (0 ≤ θ ≤ π), the equation is

d

dθ

(
sin θ

dψ(θ)

dθ

)
+

(
λ sin θ − m2

sin θ

)
ψ(θ) = 0.

This is Sturm–Liouville with p(θ) = sin θ , σ(θ) = sin θ , and q(θ) = −m2/ sin θ . The
boundary conditions

|ψ(0)| < ∞ and |ψ(π)| < ∞
define a singular problem: the conditions are not homogeneous, p(θ) = 0 at both end-
points, and q(θ) < 0. Despite this, the Legendre problem does share properties of a
regular Sturm–Liouville problem — including eigenfunction orthogonality and complete-
ness.

Using x = cos θ , we can put Legendre’s equation into its other common form

d

dx

(
[1 − x2]

dψ(x)

dx

)
+

(
λ − m2

1 − x2

)
ψ(x) = 0, (A.92)

where −1 ≤ x ≤ 1. It is found that ψ is bounded at x = ±1 only if

λ = n(n + 1)

where n ≥ m is an integer. These λ are the eigenvalues of the Sturm–Liouville problem,
and the corresponding ψn(x) are the eigenfunctions.

As a second-order partial differential equation, (A.92) has two solutions known as
associated Legendre functions. The solution bounded at both x = ±1 is the associated
Legendre function of the first kind, denoted Pm

n (x). The second solution, unbounded at
x = ±1, is the associated Legendre function of the second kind Qm

n (x). Appendix E.2
tabulates some properties of these functions.

For fixed m, each λmn is associated with a single eigenfunction Pm
n (x). Since Pm

n (x) is
bounded at x = ±1, and since p(±1) = 0, the eigenfunctions obey Lagrange’s identity
(A.79), hence are orthogonal on [−1, 1] with respect to the weight function σ(x) = 1.
Evaluation of the orthogonality integral leads to∫ 1

−1
Pm

l (x)Pm
n (x) dx = δln

2

2n + 1

(n + m)!

(n − m)!
(A.93)

or equivalently ∫ π

0
Pm

l (cos θ)Pm
n (cos θ) sin θ dθ = δln

2

2n + 1

(n + m)!

(n − m)!
.



For m = 0, Pm
n (x) is a polynomial of degree n. Each such Legendre polynomial, denoted

Pn(x), is given by

Pn(x) = 1

2nn!

dn(x2 − 1)n

dxn
.

It turns out that

Pm
n (x) = (−1)m(1 − x2)m/2 dm Pn(x)

dxm
,

giving Pm
n (x) = 0 for m > n.

Because the Legendre polynomials form a complete set in the interval [−1, 1], we may
expand any sufficiently smooth function in a Fourier–Legendre series

f (x) =
∞∑

n=0

cn Pn(x).

Convergence in mean is guaranteed if

cn = 2n + 1

2

∫ 1

−1
f (x)Pn(x) dx,

found using (A.85) along with (A.93).
In practice, the associated Legendre functions appear along with exponential functions

in the solutions to spherical boundary value problems. The combined functions are known
as spherical harmonics, and form solutions to two-dimensional Sturm–Liouville problems.
We consider these next.

Higher-dimensional SL problems: Helmholtz’s equation. Replacing d/dx by ∇,
we generalize the Sturm–Liouville equation to higher dimensions:

∇ · [p(r)∇ψ(r)] + q(r)ψ(r) + λσ(r)ψ(r) = 0,

where q, p, σ , ψ are real functions. Of particular interest is the case q(r) = 0, p(r) =
σ(r) = 1, giving the Helmholtz equation

∇2ψ(r) + λψ(r) = 0. (A.94)

In most boundary value problems, ψ or its normal derivative is specified on the surface
of a bounded region. We obtain a three-dimensional analogue to the regular Sturm–
Liouville problem by assuming the homogeneous boundary conditions

αψ(r) + βn̂ · ∇ψ(r) = 0 (A.95)

on the closed surface, where n̂ is the outward unit normal.
The problem consisting of (A.94) and (A.95) has properties analogous to those of the

regular one-dimensional Sturm–Liouville problem. All eigenvalues are real. There are
infinitely many eigenvalues. There is a smallest eigenvalue but no largest eigenvalue.
However, associated with an eigenvalue there may be many eigenfunctions ψλ(r). The
eigenfunctions are orthogonal with∫

V
ψλ1(r)ψλ2(r) dV = 0, λ1 �= λ2.



They are also complete and can be used to represent any piecewise smooth function f (r)
according to

f (r) =
∑

λ

aλψλ(r),

which converges in mean when

aλm =
∫

V f (r)ψλm (r) dV∫
V ψ2

λm
(r) dV

.

These properties are shared by the two-dimensional eigenvalue problem involving an open
surface S with boundary contour �.

Spherical harmonics. We now inspect solutions to the two-dimensional eigenvalue
problem

∇2Y (θ, φ) + λ

a2
Y (θ, φ) = 0

over the surface of a sphere of radius a. Since the sphere has no boundary contour, we
demand that Y (θ, φ) be bounded in θ and periodic in φ. In the next section we shall
apply separation of variables and show that

Ynm(θ, φ) =
√

2n + 1

4π

(n − m)!

(n + m)!
Pm

n (cos θ)e jmφ

where λ = n(n +1). Note that Qm
n does not appear as it is not bounded at θ = 0, π . The

functions Ynm are called spherical harmonics (sometimes zonal or tesseral harmonics,
depending on the values of n and m). As expressed above they are in orthonormal
form, because the orthogonality relationships for the exponential and associated Legendre
functions yield ∫ π

−π

∫ π

0
Y ∗

n′m ′(θ, φ)Ynm(θ, φ) sin θ dθ dφ = δn′nδm ′m . (A.96)

As solutions to the Sturm–Liouville problem, these functions form a complete set on the
surface of a sphere. Hence they can be used to represent any piecewise smooth function
f (θ, φ) as

f (θ, φ) =
∞∑

n=0

n∑
m=−n

anmYnm(θ, φ),

where

anm =
∫ π

−π

∫ π

0
f (θ, φ)Y ∗

nm(θ, φ) sin θ dθ dφ

by (A.96). The summation index m ranges from −n to n because Pm
n = 0 for m > n. For

negative index we can use

Yn,−m(θ, φ) = (−1)mY ∗
nm(θ, φ).

Some properties of the spherical harmonics are tabulated in Appendix E.3.



Separation of variables

We now consider a technique that finds widespread application in solving boundary
value problems, applying as it does to many important partial differential equations such
as Laplace’s equation, the diffusion equation, and the scalar and vector wave equations.
These equations are related to the scalar Helmholtz equation

∇2ψ(r) + k2ψ(r) = 0 (A.97)

where k is a complex constant. If k is real and we supply the appropriate boundary
conditions, we have the higher-dimensional Sturm–Liouville problem with λ = k2. We
shall not pursue the extension of Sturm–Liouville theory to complex values of k.

Laplace’s equation is Helmholtz’s equation with k = 0. With λ = k2 = 0 it might
appear that Laplace’s equation does not involve eigenvalues; however, separation of vari-
ables does lead us to lower-dimensional eigenvalue problems to which our previous meth-
ods apply. Solutions to the scalar or vector wave equations usually begin with Fourier
transformation on the time variable, or with an initial separation of the time variable to
reach a Helmholtz form.

The separation of variables idea is simple. We seek a solution to (A.97) in the form
of a product of functions each of a single variable. If ψ depends on all three spatial
dimensions, then we seek a solution of the type

ψ(u, v, w) = U (u)V (v)W (w),

where u, v, and w are the coordinate variables used to describe the problem. If ψ

depends on only two coordinates, we may seek a product solution involving two functions
each dependent on a single coordinate; alternatively, may use the three-variable solution
and choose constants so that the result shows no variation with one coordinate. The
Helmholtz equation is considered separable if it can be reduced to a set of independent
ordinary differential equations, each involving a single coordinate variable. The ordinary
differential equations, generally of second order, can be solved by conventional techniques
resulting in solutions of the form

U (u) = AuUA(u, ku, kv, kw) + BuUB(u, ku, kv, kw),

V (v) = AvVA(v, ku, kv, kw) + BvVB(v, ku, kv, kw),

W (w) = AwWA(w, ku, kv, kw) + BwWB(w, ku, kv, kw).

The constants ku, kv, kw are called separation constants and are found, along with the am-
plitude constants A, B, by applying boundary conditions appropriate for a given problem.
At least one separation constant depends on (or equals) k, so only two are independent.
In many cases ku , kv, and kw become the discrete eigenvalues of the respective differ-
ential equations, and correspond to eigenfunctions U (u, ku, kv, kw), V (v, ku, kv, kw), and
W (w, ku, kv, kw). In other cases the separation constants form a continuous spectrum of
values, often when a Fourier transform solution is employed.

The Helmholtz equation can be separated in eleven different orthogonal coordinate
systems [134]. Undoubtedly the most important of these are the rectangular, circular-
cylindrical, and spherical systems, and we shall consider each in detail. We do note,
however, that separability in a certain coordinate system does not imply that all prob-
lems expressed in that coordinate system can be easily handled using the resulting solu-
tions. Only when the geometry and boundary conditions are simple do the solutions lend
themselves to easy application; often other solution techniques are more appropriate.

Although rigorous conditions can be set forth to guarantee solvability by separation of
variables [119], we prefer the following, more heuristic list:



1. Use a coordinate system that allows the given partial differential equation to sep-
arate into ordinary differential equations.

2. The problem’s boundaries must be such that those boundaries not at infinity co-
incide with a single level surface of the coordinate system.

3. Use superposition to reduce the problem to one involving a single nonhomogeneous
boundary condition. Then:
(a) Solve the resulting Sturm–Liouville problem in one or two dimensions, with

homogeneous boundary conditions on all boundaries. Then use a discrete
eigenvalue expansion (Fourier series) and eigenfunction orthogonality to sat-
isfy the remaining nonhomogeneous condition.

(b) If a Sturm–Liouville problem cannot be formulated with the homogeneous
boundary conditions (because, for instance, one boundary is at infinity), use
a Fourier integral (continuous expansion) to satisfy the remaining nonhomo-
geneous condition.

If a Sturm–Liouville problem cannot be formulated, discovering the form of the integral
transform to use can be difficult. In these cases other approaches, such as conformal
mapping, may prove easier.

Solutions in rectangular coordinates. In rectangular coordinates the Helmholtz
equation is

∂2ψ(x, y, z)

∂x2
+ ∂2ψ(x, y, z)

∂y2
+ ∂2ψ(x, y, z)

∂z2
+ k2ψ(x, y, z) = 0. (A.98)

We seek a solution of the form ψ(x, y, z) = X (x)Y (y)Z(z); substitution into (A.98)
followed by division through by X (x)Y (y)Z(z) gives

1

X (x)

d2 X (x)

dx2
+ 1

Y (y)

d2Y (y)

dy2
+ 1

Z(z)

d2 Z(z)

dz2
= −k2. (A.99)

At this point we require the separation argument. The left-hand side of (A.99) is a sum
of three functions, each involving a single independent variable, whereas the right-hand
side is constant. But the only functions of independent variables that always sum to
a constant are themselves constants. Thus we may equate each term on the left to a
different constant:

1

X (x)

d2 X (x)

dx2
= −k2

x ,

1

Y (y)

d2Y (y)

dy2
= −k2

y, (A.100)

1

Z(z)

d2 Z(z)

dz2
= −k2

z ,

provided that

k2
x + k2

y + k2
z = k2.

The negative signs in (A.100) have been introduced for convenience.



Let us discuss the general solutions of equations (A.100). If kx = 0, the two indepen-
dent solutions for X (x) are

X (x) = ax x and X (x) = bx

where ax and bx are constants. If kx �= 0, solutions may be chosen from the list of
functions

e− jkx x , e jkx x , sin kx x, cos kx x,

any two of which are independent. Because

sin x = (e jx − e− j x )/2 j and cos x = (e jx + e− j x )/2, (A.101)

the six possible solutions for kx �= 0 are

X (x) =




Ax e jkx x + Bx e− jkx x ,

Ax sin kx x + Bx cos kx x,

Ax sin kx x + Bx e− jkx x ,

Ax e jkx x + Bx sin kx x,

Ax e jkx x + Bx cos kx x,

Ax e− jkx x + Bx cos kx x .

(A.102)

We may base our choice on convenience (e.g., the boundary conditions may be amenable
to one particular form) or on the desired behavior of the solution (e.g., standing waves
vs. traveling waves). If k is complex, then so may be kx , ky , or kz ; observe that with
imaginary arguments the complex exponentials are actually real exponentials, and the
trigonometric functions are actually hyperbolic functions.

The solutions for Y (y) and Z(z) are identical to those for X (x). We can write, for
instance,

X (x) =
{

Ax e jkx x + Bx e− jkx x , kx �= 0,

ax x + bx , kx = 0,
(A.103)

Y (y) =
{

Aye jky y + Bye− jky y, ky �= 0,

ay y + by, ky = 0,
(A.104)

Z(z) =
{

Aze jkz z + Bze− jkz z, kz �= 0,

azz + bz, kz = 0.
(A.105)

Examples. Let us begin by solving the simple equation

∇2V (x) = 0.

Since V depends only on x we can use (A.103)–(A.105) with ky = kz = 0 and ay = az = 0.
Moreover kx = 0 because k2

x +k2
y+k2

z = k2 = 0 for Laplace’s equation. The general solution
is therefore

V (x) = ax x + bx .

Boundary conditions must be specified to determine ax and bx ; for instance, the condi-
tions V (0) = 0 and V (L) = V0 yield V (x) = V0x/L.

Next let us solve

∇2ψ(x, y) = 0.



We produce a lack of z-dependence in ψ by letting kz = 0 and choosing az = 0. Moreover,
k2

x = −k2
y since Laplace’s equation requires k = 0. This leads to three possibilities. If

kx = ky = 0, we have the product solution

ψ(x, y) = (ax x + bx )(ay y + by). (A.106)

If ky is real and nonzero, then

ψ(x, y) = (Ax e−ky x + Bx eky x )(Aye jky y + Bye− jky y). (A.107)

Using the relations

sinh u = (eu − e−u)/2 and cosh u = (eu + e−u)/2 (A.108)

along with (A.101), we can rewrite (A.107) as

ψ(x, y) = (Ax sinh ky x + Bx cosh ky x)(Ay sin ky y + By cos ky y). (A.109)

(We can reuse the constant names Ax , Bx , Ay, By , since the constants are unknown at
this point.) If kx is real and nonzero we have

ψ(x, y) = (Ax sin kx x + Bx cos kx x)(Ay sinh kx y + By cosh kx y). (A.110)

Consider the problem consisting of Laplace’s equation

∇2V (x, y) = 0 (A.111)

holding in the region 0 < x < L1, 0 < y < L2, −∞ < z < ∞, together with the boundary
conditions

V (0, y) = V1, V (L1, y) = V2, V (x, 0) = V3, V (x, L2) = V4.

The solution V (x, y) represents the potential within a conducting tube with each wall
held at a different potential. Superposition applies: since Laplace’s equation is linear
we can write the solution as the sum of solutions to four different sub-problems. Each
sub-problem has homogeneous boundary conditions on one independent variable and
inhomogeneous conditions on the other, giving a Sturm–Liouville problem in one of the
variables. For instance, let us examine the solutions found above in relation to the sub-
problem consisting of Laplace’s equation (A.111) in the region 0 < x < L1, 0 < y < L2,
−∞ < z < ∞, subject to the conditions

V (0, y) = V (L1, y) = V (x, 0) = 0, V (x, L2) = V4 �= 0.

First we try (A.106). The boundary condition at x = 0 gives

V (0, y) = (ax (0) + bx )(ay y + by) = 0,

which holds for all y ∈ (0, L2) only if bx = 0. The condition at x = L1,

V (L1, y) = ax L1(ay y + by) = 0,

then requires ax = 0. But ax = bx = 0 gives V (x, y) = 0, and the condition at y = L2

cannot be satisfied; clearly (A.106) was inappropriate. Next we examine (A.109). The
condition at x = 0 gives

V (0, y) = (Ax sinh 0 + Bx cosh 0)(Ay sin ky y + By cos ky y) = 0,



hence Bx = 0. The condition at x = L1 implies

V (L1, y) = [Ax sinh(ky L1)](Ay sin ky y + By cos ky y) = 0.

This can hold if either Ax = 0 or ky = 0, but the case ky = 0 (= kx ) was already
considered. Thus Ax = 0 and the trivial solution reappears. Our last candidate is
(A.110). The condition at x = 0 requires

V (0, y) = (Ax sin 0 + Bx cos 0)(Ay sinh kx y + By cosh kx y) = 0,

which implies Bx = 0. Next we have

V (L1, y) = [Ax sin(kx L1)](Ay sinh ky y + By cosh ky y) = 0.

We avoid Ax = 0 by setting sin(kx L1) = 0 so that kxn = nπ/L1 for n = 1, 2, . . . . (Here
n = 0 is omitted because it would produce a trivial solution.) These are eigenvalues
corresponding to the eigenfunctions Xn(x) = sin(kxn x), and were found in § A.4 for the
harmonic equation. At this point we have a family of solutions

Vn(x, y) = sin(kxn x)[Ayn sinh(kxn y) + Byn cosh(kxn y)], n = 1, 2, . . . .

The subscript n on the left identifies Vn as the eigensolution associated with eigenvalue
kxn . It remains to satisfy boundary conditions at y = 0, L2. At y = 0 we have

Vn(x, 0) = sin(kxn x)[Ayn sinh 0 + Byn cosh 0] = 0,

hence Byn = 0 and

Vn(x, y) = Ayn sin(kxn x) sinh(kxn y), n = 1, 2, . . . . (A.112)

It is clear that no single eigensolution (A.112) can satisfy the one remaining boundary
condition. However, we are guaranteed that a series of solutions can represent the con-
stant potential on y = L2; recall that as a solution to a regular Sturm–Liouville problem,
the trigonometric functions are complete (hence they could represent any well-behaved
function on the interval 0 ≤ x ≤ L1). In fact, the resulting series is a Fourier sine series
for the constant potential at y = L2. So let

V (x, y) =
∞∑

n=1

Vn(x, y) =
∞∑

n=1

Ayn sin(kxn x) sinh(kxn y).

The remaining boundary condition requires

V (x, L2) =
∞∑

n=1

Ayn sin(kxn x) sinh(kxn L2) = V4.

The constants Ayn can be found using orthogonality; multiplying through by sin(kxm x)

and integrating, we have
∞∑

n=1

Ayn sinh(kxn L2)

∫ L1

0
sin

(
mπx

L1

)
sin

(
nπx

L1

)
dx = V4

∫ L1

0
sin

(
mπx

L1

)
dx .

The integral on the left equals δmn L1/2 where δmn is the Kronecker delta given by

δmn =
{

1, m = n,

0, n �= m.



After evaluating the integral on the right we obtain
∞∑

n=1

Ayn δmn sinh(kxn L2) = 2V4(1 − cos mπ)

mπ
,

hence

Aym = 2V4(1 − cos mπ)

mπ sinh(kxm L2)
.

The final solution for this sub-problem is therefore

V (x, y) =
∞∑

n=1

2V4(1 − cos nπ)

nπ sinh
(

nπ L2
L1

) sin

(
nπx

L1

)
sinh

(
nπy

L1

)
.

The remaining three sub-problems are left for the reader.
Let us again consider (A.111), this time for

0 ≤ x ≤ L1, 0 ≤ y < ∞, −∞ < z < ∞,

and subject to

V (0, y) = V (L1, y) = 0, V (x, 0) = V0.

Let us try the solution form that worked in the previous example:

V (x, y) = [Ax sin(kx x) + Bx cos(kx x)][Ay sinh(kx y) + By cosh(kx y)].

The boundary conditions at x = 0, L1 are the same as before so we have

Vn(x, y) = sin(kxn x)[Ayn sinh(kxn y) + Byn cosh(kxn y)], n = 1, 2, . . . .

To find Ayn and Byn we note that V cannot grow without bound as y → ∞. Individually
the hyperbolic functions grow exponentially. However, using (A.108) we see that Byn =
−Ayn gives

Vn(x, y) = Ayn sin(kxn x)e−kxn y

where Ayn is a new unknown constant. (Of course, we could have chosen this exponential
dependence at the beginning.) Lastly, we can impose the boundary condition at y = 0
on the infinite series of eigenfunctions

V (x, y) =
∞∑

n=1

Ayn sin(kxn x)e−kxn y

to find Ayn . The result is

V (x, y) =
∞∑

n=1

2V0

πn
(1 − cos nπ) sin(kxn x)e−kxn y .

As in the previous example, the solution is a discrete superposition of eigenfunctions.
The problem consisting of (A.111) holding for

0 ≤ x ≤ L1, 0 ≤ y < ∞, −∞ < z < ∞,

along with

V (0, y) = 0, V (L1, y) = V0e−ay, V (x, 0) = 0,



requires a continuous superposition of eigenfunctions to satisfy the boundary conditions.
Let us try

V (x, y) = [Ax sinh ky x + Bx cosh ky x][Ay sin ky y + By cos ky y].

The conditions at x = 0 and y = 0 require that Bx = By = 0. Thus

Vky (x, y) = A sinh ky x sin ky y.

A single function of this form cannot satisfy the remaining condition at x = L1. So we
form a continuous superposition

V (x, y) =
∫ ∞

0
A(ky) sinh ky x sin ky y dky . (A.113)

By the condition at x = L1∫ ∞

0
A(ky) sinh(ky L1) sin ky y dky = V0e−ay . (A.114)

We can find the amplitude function A(ky) by using the orthogonality property

δ(y − y′) = 2

π

∫ ∞

0
sin xy sin xy′ dx . (A.115)

Multiplying both sides of (A.114) by sin k ′
y y and integrating, we have

∫ ∞

0
A(ky) sinh(ky L1)

[∫ ∞

0
sin ky y sin k ′

y y dy

]
dky =

∫ ∞

0
V0e−ay sin k ′

y y dy.

We can evaluate the term in brackets using (A.115) to obtain
∫ ∞

0
A(ky) sinh(ky L1)

π

2
δ(ky − k ′

y) dky =
∫ ∞

0
V0e−ay sin k ′

y y dy,

hence

π

2
A(k ′

y) sinh(k ′
y L1) = V0

∫ ∞

0
e−ay sin k ′

y y dy.

We then evaluate the integral on the right, solve for A(ky), and substitute into (A.113)
to obtain

V (x, y) = 2V0

π

∫ ∞

0

ky

a2 + k2
y

sinh(ky x)

sinh(ky L1)
sin ky y dky .

Note that our application of the orthogonality property is merely a calculation of the
inverse Fourier sine transform. Thus we could have found the amplitude coefficient by
reference to a table of transforms.

We can use the Fourier transform solution even when the domain is infinite in more
than one dimension. Suppose we solve (A.111) in the region

0 ≤ x < ∞, 0 ≤ y < ∞, −∞ < z < ∞,

subject to

V (0, y) = V0e−ay, V (x, 0) = 0.



Because of the condition at y = 0 let us use

V (x, y) = (Ax e−ky x + Bx eky x )(Ay sin ky y + By cos ky y).

The solution form

Vky (x, y) = B(ky)e
−ky x sin ky y

satisfies the finiteness condition and the homogeneous condition at y = 0. The remaining
condition can be satisfied by a continuous superposition of solutions:

V (x, y) =
∫ ∞

0
B(ky)e

−ky x sin ky y dky .

We must have

V0e−ay =
∫ ∞

0
B(ky) sin ky y dky .

Use of the orthogonality relationship (A.115) yields the amplitude spectrum B(ky), and
we find that

V (x, y) = 2

π

∫ ∞

0
e−ky x ky

a2 + k2
y

sin ky y dky . (A.116)

As a final example in rectangular coordinates let us consider a problem in which ψ

depends on all three variables:

∇2ψ(x, y, z) + k2ψ(x, y, z) = 0

for

0 ≤ x ≤ L1, 0 ≤ y ≤ L2, 0 ≤ z ≤ L3,

subject to

ψ(0, y, z) = ψ(L1, y, z) = 0,

ψ(x, 0, z) = ψ(x, L2, z) = 0,

ψ(x, y, 0) = ψ(x, y, L3) = 0.

Here k �= 0 is a constant. This is a three-dimensional eigenvalue problem as described
in § A.4, where λ = k2 are the eigenvalues and the closed surface is a rectangular
box. Physically, the wave function ψ represents the so-called eigenvalue or normal mode
solutions for the “TM modes” of a rectangular cavity. Since k2

x + k2
y + k2

z = k2, we
might have one or two separation constants equal to zero, but not all three. We find,
however, that the only solution with a zero separation constant that can fit the boundary
conditions is the trivial solution. In light of the boundary conditions and because we
expect standing waves in the box, we take

ψ(x, y, z) = [Ax sin(kx x) + Bx cos(kx x)] ·
· [Ay sin(ky y) + By cos(ky y)] ·
· [Az sin(kzz) + Bz cos(kzz)].

The conditions ψ(0, y, z) = ψ(x, 0, z) = ψ(x, y, 0) = 0 give Bx = By = Bz = 0. The
conditions at x = L1, y = L2, and z = L3 require the separation constants to assume
the discrete values kx = kxm = mπ/L1, ky = kyn = nπ/L2, and kz = kz p = pπ/L3,
where k2

xm
+ k2

yn
+ k2

z p
= k2

mnp and m, n, p = 1, 2, . . .. Associated with each of these



eigenvalues is an eigenfunction of a one-dimensional Sturm–Liouville problem. For the
three-dimensional problem, an eigenfunction

ψmnp(x, y, z) = Amnp sin(kxm x) sin(kyn y) sin(kz p z)

is associated with each three-dimensional eigenvalue kmnp. Each choice of m, n, p pro-
duces a discrete cavity resonance frequency at which the boundary conditions can be
satisfied. Depending on the values of L1,2,3, we may have more than one eigenfunction
associated with an eigenvalue. For example, if L1 = L2 = L3 = L then k121 = k211 =
k112 = √

6π/L. However, the eigenfunctions associated with this single eigenvalue are all
different:

ψ121 = sin(kx1 x) sin(ky2 y) sin(kz1 z),

ψ211 = sin(kx2 x) sin(ky1 y) sin(kz1 z),

ψ112 = sin(kx1 x) sin(ky1 y) sin(kz2 z).

When more than one cavity mode corresponds to a given resonant frequency, we call the
modes degenerate. By completeness, we can represent any well-behaved function as

f (x, y, z) =
∑

m,n,p

Amnp sin(kxm x) sin(kyn y) sin(kz p z).

The Amnp are found using orthogonality. When such expansions are used to solve prob-
lems involving objects (such as excitation probes) inside the cavity, they are termed
normal mode expansions of the cavity field.

Solutions in cylindrical coordinates. In cylindrical coordinates the Helmholtz equa-
tion is

1

ρ

∂

∂ρ

(
ρ

∂ψ(ρ, φ, z)

∂ρ

)
+ 1

ρ2

∂2ψ(ρ, φ, z)

∂φ2
+ ∂2ψ(ρ, φ, z)

∂z2
+ k2ψ(ρ, φ, z) = 0. (A.117)

With ψ(ρ, φ, z) = P(ρ)#(φ)Z(z) we obtain

1

ρ

∂

∂ρ

(
ρ

∂(P#Z)

∂ρ

)
+ 1

ρ2

∂2(P#Z)

∂φ2
+ ∂2(P#Z)

∂z2
+ k2(P#Z) = 0;

carrying out the ρ derivatives and dividing through by P#Z we have

− 1

Z

d2 Z

dz2
= k2 + 1

ρ2#

d2#

dφ2
+ 1

ρ P

d P

dρ
+ 1

P

d2 P

dρ2
.

The left side depends on z while the right side depends on ρ and φ, hence both must
equal the same constant k2

z :

− 1

Z

d2 Z

dz2
= k2

z , (A.118)

k2 + 1

ρ2#

d2#

dφ2
+ 1

ρ P

d P

dρ
+ 1

P

d2 P

dρ2
= k2

z . (A.119)

We have separated the z-dependence from the dependence on the other variables. For
the harmonic equation (A.118),

Z(z) =
{

Az sin kzz + Bz cos kzz, kz �= 0,

azz + bz, kz = 0.
(A.120)



Of course we could use exponentials or a combination of exponentials and trigonometric
functions instead. Rearranging (A.119) and multiplying through by ρ2, we obtain

− 1

#

d2#

dφ2
= (

k2 − k2
z

)
ρ2 + ρ

P

d P

dρ
+ ρ2

P

d2 P

dρ2
.

The left and right sides depend only on φ and ρ, respectively; both must equal some
constant k2

φ :

− 1

#

d2#

dφ2
= k2

φ, (A.121)

(
k2 − k2

z

)
ρ2 + ρ

P

d P

dρ
+ ρ2

P

d2 P

dρ2
= k2

φ. (A.122)

The variables ρ and φ are thus separated, and harmonic equation (A.121) has solutions

#(φ) =
{

Aφ sin kφφ + Bφ cos kφφ, kφ �= 0,

aφφ + bφ, kφ = 0.
(A.123)

Equation (A.122) is a bit more involved. In rearranged form it is

d2 P

dρ2
+ 1

ρ

d P

dρ
+

(
k2

c − k2
φ

ρ2

)
P = 0 (A.124)

where

k2
c = k2 − k2

z .

The solution depends on whether any of kz , kφ , or kc are zero. If kc = kφ = 0, then

d2 P

dρ2
+ 1

ρ

d P

dρ
= 0

so that

P(ρ) = aρ ln ρ + bρ.

If kc = 0 but kφ �= 0, we have

d2 P

dρ2
+ 1

ρ

d P

dρ
− k2

φ

ρ2
P = 0

so that

P(ρ) = aρρ
−kφ + bρρ

kφ . (A.125)

This includes the case k = kz = 0 (Laplace’s equation). If kc �= 0 then (A.124) is Bessel’s
differential equation. For noninteger kφ the two independent solutions are denoted Jkφ

(z)
and J−kφ

(z), where Jν(z) is the ordinary Bessel function of the first kind of order ν. For
kφ an integer n, Jn(z) and J−n(z) are not independent and a second independent solution
denoted Nn(z) must be introduced. This is the ordinary Bessel function of the second
kind, order n. As it is also independent when the order is noninteger, Jν(z) and Nν(z)
are often chosen as solutions whether ν is integer or not. Linear combinations of these
independent solutions may be used to produce new independent solutions. The functions



H (1)
ν (z) and H (2)

ν (z) are the Hankel functions of the first and second kind of order ν, and
are related to the Bessel functions by

H (1)
ν (z) = Jν(z) + j Nν(z),

H (2)
ν (z) = Jν(z) − j Nν(z).

The argument z can be complex (as can ν, but this shall not concern us). When z is
imaginary we introduce two new functions Iν(z) and Kν(z), defined for integer order by

In(z) = j−n Jn( j z),

Kn(z) = π

2
j n+1 H (1)

n ( j z).

Expressions for noninteger order are given in Appendix E.1.
Bessel functions cannot be expressed in terms of simple, standard functions. However,

a series solution to (A.124) produces many useful relationships between Bessel functions
of differing order and argument. The recursion relations for Bessel functions serve to
connect functions of various orders and their derivatives. See Appendix E.1.

Of the six possible solutions to (A.124),

R(ρ) =




Aρ Jν(kcρ) + Bρ Nν(kcρ),

Aρ Jν(kcρ) + Bρ H (1)
ν (kcρ),

Aρ Jν(kcρ) + Bρ H (2)
ν (kcρ),

Aρ Nν(kcρ) + Bρ H (1)
ν (kcρ),

Aρ Nν(kcρ) + Bρ H (2)
ν (kcρ),

Aρ H (1)
ν (kcρ) + Bρ H (2)

ν (kcρ),

which do we choose? Again, we are motivated by convenience and the physical nature
of the problem. If the argument is real or imaginary, we often consider large or small
argument behavior. For x real and large,

Jν(x) →
√

2

πx
cos

(
x − π

4
− ν

π

2

)
,

Nν(x) →
√

2

πx
sin

(
x − π

4
− ν

π

2

)
,

H (1)
ν (x) →

√
2

πx
e j(x− π

4 −ν π
2 ),

H (2)
ν (x) →

√
2

πx
e− j(x− π

4 −ν π
2 ),

Iν(x) →
√

1

2πx
ex ,

Kν(x) →
√

π

2x
e−x ,

while for x real and small,

J0(x) → 1,

N0(x) → 2

π
(ln x + 0.5772157 − ln 2) ,



Jν(x) → 1

ν!

( x

2

)ν

,

Nν(x) → − (ν − 1)!

π

(
2

x

)ν

.

Because Jν(x) and Nν(x) oscillate for large argument, they can represent standing waves
along the radial direction. However, Nν(x) is unbounded for small x and is inappropriate
for regions containing the origin. The Hankel functions become complex exponentials for
large argument, hence represent traveling waves. Finally, Kν(x) is unbounded for small x
and cannot be used for regions containing the origin, while Iν(x) increases exponentially
for large x and cannot be used for unbounded regions.

Examples. Consider the boundary value problem for Laplace’s equation

∇2V (ρ, φ) = 0 (A.126)

in the region

0 ≤ ρ ≤ ∞, 0 ≤ φ ≤ φ0, −∞ < z < ∞,

where the boundary conditions are

V (ρ, 0) = 0, V (ρ, φ0) = V0.

Since there is no z-dependence we let kz = 0 in (A.120) and choose az = 0. Then
k2

c = k2 − k2
z = 0 since k = 0. There are two possible solutions, depending on whether

kφ is zero. First let us try kφ �= 0. Using (A.123) and (A.125) we have

V (ρ, φ) = [Aφ sin(kφφ) + Bφ cos(kφφ)][aρρ
−kφ + bρρ

kφ ]. (A.127)

Assuming kφ > 0 we must have bρ = 0 to keep the solution finite. The condition
V (ρ, 0) = 0 requires Bφ = 0. Thus

V (ρ, φ) = Aφ sin(kφφ)ρ−kφ .

Our final boundary condition requires

V (ρ, φ0) = V0 = Aφ sin(kφφ0)ρ
−kφ .

Because this cannot hold for all ρ, we must resort to kφ = 0 and

V (ρ, φ) = (aφφ + bφ)(aρ ln ρ + bρ). (A.128)

Proper behavior as ρ → ∞ dictates that aρ = 0. V (ρ, 0) = 0 requires bφ = 0. Thus
V (ρ, φ) = V (φ) = bφφ. The constant bφ is found from the remaining boundary condition:
V (φ0) = V0 = bφφ0 so that bφ = V0/φ0. The final solution is

V (φ) = V0φ/φ0.

It is worthwhile to specialize this to φ0 = π/2 and compare with the solution to the same
problem found earlier using rectangular coordinates. With a = 0 in (A.116) we have

V (x, y) = 2

π

∫ ∞

0
e−ky x sin ky y

ky
dky .



Despite its much more complicated form, this must be the same solution by uniqueness.
Next let us solve (A.126) subject to the “split cylinder” conditions

V (a, φ) =
{

V0, 0 < φ < π,

0, −π < φ < 0.

Because there is no z-dependence we choose kz = az = 0 and have k2
c = k2 −k2

z = 0. Since
kφ = 0 would violate the boundary conditions at ρ = a, we use

V (ρ, φ) = (aρρ
−kφ + bρρ

kφ )(Aφ sin kφφ + Bφ cos kφφ).

The potential must be single-valued in φ: V (ρ, φ +2nπ) = V (ρ, φ). This is only possible
if kφ is an integer, say kφ = m. Then

Vm(ρ, φ) =
{

(Am sin mφ + Bm cos mφ)ρm, ρ < a,

(Cm sin mφ + Dm cos mφ)ρ−m, ρ > a.

On physical grounds we have discarded ρ−m for ρ < a and ρm for ρ > a. To satisfy
the boundary conditions at ρ = a we must use an infinite series of the complete set of
eigensolutions. For ρ < a the boundary condition requires

B0 +
∞∑

m=1

(Am sin mφ + Bm cos mφ)am =
{

V0, 0 < φ < π,

0, −π < φ < 0.

Application of the orthogonality relations∫ π

−π

cos mφ cos nφ dφ = 2π

εn
δmn, m, n = 0, 1, 2, . . . , (A.129)

∫ π

−π

sin mφ sin nφ dφ = πδmn, m, n = 1, 2, . . . , (A.130)
∫ π

−π

cos mφ sin nφ dφ = 0, m, n = 0, 1, 2, . . . , (A.131)

where

εn =
{

1, n = 0,

2, n > 0,
(A.132)

is Neumann’s number, produces appropriate values for the constants Am and Bm . The
full solution is

V (ρ, φ) =




V0

2
+ V0

π

∞∑
n=1

[1 − (−1)n]

n

(ρ

a

)n
sin nφ, ρ < a,

V0

2
+ V0

π

∞∑
n=1

[1 − (−1)n]

n

(
a

ρ

)n

sin nφ, ρ > a.

The boundary value problem

∇2V (ρ, φ, z) = 0, 0 ≤ ρ ≤ a, −π ≤ φ ≤ π, 0 ≤ z ≤ h,

V (ρ, φ, 0) = 0, 0 ≤ ρ ≤ a, −π ≤ φ ≤ π,

V (a, φ, z) = 0, −π ≤ φ ≤ π, 0 ≤ z ≤ h,

V (ρ, φ, h) = V0, 0 ≤ ρ ≤ a, −π ≤ φ ≤ π,



describes the potential within a grounded “canister” with top at potential V0. Symmetry
precludes φ-dependence, hence kφ = aφ = 0. Since k = 0 (Laplace’s equation) we also
have k2

c = k2 − k2
z = −k2

z . Thus we have either kz real and kc = jkz , or kc real and
kz = jkc. With kz real we have

V (ρ, z) = [Az sin kzz + Bz cos kzz][Aρ K0(kzρ) + Bρ I0(kzρ)]; (A.133)

with kc real we have

V (ρ, z) = [Az sinh kcz + Bz cosh kcz][Aρ J0(kcρ) + Bρ N0(kcρ)]. (A.134)

The functions K0 and I0 are inappropriate for use in this problem, and we proceed to
(A.134). Since N0 is unbounded for small argument, we need Bρ = 0. The condition
V (ρ, 0) = 0 gives Bz = 0, thus

V (ρ, z) = Az sinh(kcz)J0(kcρ).

The oscillatory nature of J0 means that we can satisfy the condition at ρ = a:

V (a, z) = Az sinh(kcz)J0(kca) = 0 for 0 ≤ z < h

if J0(kca) = 0. Letting p0m denote the mth root of J0(x) = 0 for m = 1, 2, . . ., we have
kcm = p0m/a. Because we cannot satisfy the boundary condition at z = h with a single
eigensolution, we use the superposition

V (ρ, z) =
∞∑

m=1

Am sinh
( p0m z

a

)
J0

( p0mρ

a

)
.

We require

V (ρ, h) =
∞∑

m=1

Am sinh

(
p0mh

a

)
J0

( p0mρ

a

)
= V0, (A.135)

where the Am can be evaluated by orthogonality of the functions J0(p0mρ/a). If pνm is
the mth root of Jν(x) = 0, then∫ a

0
Jν

( pνmρ

a

)
Jν

( pνnρ

a

)
ρ dρ = δmn

a2

2
J ′2
ν (pνn) = δmn

a2

2
J 2
ν+1(pνn) (A.136)

where J ′
ν(x) = d Jν(x)/dx . Multiplying (A.135) by ρ J0(p0nρ/a) and integrating, we have

An sinh

(
p0nh

a

)
a2

2
J ′2

0 (p0na) =
∫ a

0
V0 J0

( p0nρ

a

)
ρ dρ.

Use of (E.105), ∫
xn+1 Jn(x) dx = xn+1 Jn+1(x) + C,

allows us to evaluate ∫ a

0
J0

( p0nρ

a

)
ρ dρ = a2

p0n
J1(p0n).

With this we finish calculating Am and have

V (ρ, z) = 2V0

∞∑
m=1

sinh(
p0m

a z)J0(
p0m

a ρ)

p0m sinh(
p0m

a h)J1(p0m)



as the desired solution.
Finally, let us assume that k > 0 and solve

∇2ψ(ρ, φ, z) + k2ψ(ρ, φ, z) = 0

where 0 ≤ ρ ≤ a, −π ≤ φ ≤ π , and −∞ < z < ∞, subject to the condition

n̂ · ∇ψ(ρ, φ, z)
∣∣∣
ρ=a

= ∂ψ(ρ, φ, z)

∂ρ

∣∣∣
ρ=a

= 0

for −π ≤ φ ≤ π and −∞ < z < ∞. The solution to this problem leads to the transverse-
electric (TEz) fields in a lossless circular waveguide, where ψ represents the z-component
of the magnetic field. Although there is symmetry with respect to φ, we seek φ-dependent
solutions; the resulting complete eigenmode solution will permit us to expand any well-
behaved function within the waveguide in terms of a normal mode (eigenfunction) series.
In this problem none of the constants k, kz , or kφ equal zero, except as a special case.
However, the field must be single-valued in φ and thus kφ must be an integer m. We
consider our possible choices for P(ρ), Z(z), and #(φ). Since k2

c = k2 − k2
z and k2 > 0 is

arbitrary, we must consider various possibilities for the signs of k2
c and k2

z . We can rule
out k2

c < 0 based on consideration of the behavior of the functions Im and Km . We also
need not consider kc < 0, since this gives the same solution as kc > 0. We are then left
with two possible cases. Writing k2

z = k2 − k2
c , we see that either k > kc and k2

z > 0, or
k < kc and k2

z < 0. For k2
z > 0 we write

ψ(ρ, φ, z) = [Aze
− jkz z + Bze

jkz z][Aφ sin mφ + Bφ cos mφ]Jm(kcρ).

Here the terms involving e∓ jkz z represent waves propagating in the ±z directions. The
boundary condition at ρ = a requires

J ′
m(kca) = 0

where J ′
m(x) = d Jm(x)/dx . Denoting the nth zero of J ′

m(x) by p′
mn we have kc = kcm =

p′
mn/a. This gives the eigensolutions

ψm = [Azme− jkz z + Bzme jkz z][Aφm sin mφ + Bφm cos mφ]kc Jm

(
p′

mnρ

a

)
.

The undetermined constants Azm, Bzm, Aρm, Bρm could be evaluated when the individual
eigensolutions are used to represent a function in terms of a modal expansion. For
the case k2

z < 0 we again choose complex exponentials in z; however, kz = − jα gives
e∓ jkz z = e∓αz and attenuation along z. The reader can verify that the eigensolutions
are

ψm = [Azme−αz + Bzmeαz][Aφm sin mφ + Bφm cos mφ]kc Jm

(
p′

mnρ

a

)

where now k2
c = k2 + α2.

We have used Bessel function completeness in the examples above. This property is a
consequence of the Sturm–Liouville problem first studied in § A.4. We often use Fourier–
Bessel series to express functions over finite intervals. Over infinite intervals we use the
Fourier–Bessel transform.

The Fourier–Bessel series can be generalized to Bessel functions of noninteger order,
and to the derivatives of Bessel functions. Let f (ρ) be well-behaved over the interval
[0, a]. Then the series

f (ρ) =
∞∑

m=1

Cm Jν

(
pνm

ρ

a

)
, 0 ≤ ρ ≤ a, ν > −1



converges, and the constants are

Cm = 2

a2 J 2
ν+1(pνm)

∫ a

0
f (ρ)Jν

(
pνm

ρ

a

)
ρ dρ

by (A.136). Here pνm is the mth root of Jν(x). An alternative form of the series uses
p′

νm , the roots of J ′
ν(x), and is given by

f (ρ) =
∞∑

m=1

Dm Jν

(
p′

νm

ρ

a

)
, 0 ≤ ρ ≤ a, ν > −1.

In this case the expansion coefficients are found using the orthogonality relationship∫ a

0
Jν

(
p′

νm

a
ρ

)
Jν

(
p′

νn

a
ρ

)
ρ dρ = δmn

a2

2

(
1 − ν2

p′2
νm

)
J 2
ν (p′

νm),

and are

Dm = 2

a2
(

1 − ν2

p′2
νm

J 2
ν (p′

νm)
)

∫ a

0
f (ρ)Jν

(
p′

νm

a
ρ

)
ρ dρ.

Solutions in spherical coordinates. If into Helmholtz’s equation

1

r2

∂

∂r

(
r2 ∂ψ(r, θ, φ)

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ(r, θ, φ)

∂θ

)
+

+ 1

r2 sin2 θ

∂2ψ(r, θ, φ)

∂φ2
+ k2ψ(r, θ, φ) = 0

we put ψ(r, θ, φ) = R(r)%(θ)#(φ) and multiply through by r2 sin2 θ/ψ(r, θ, φ), we obtain

sin2 θ

R(r)

d

dr

(
r2 d R(r)

dr

)
+ sin θ

%(θ)

d

dθ

(
sin θ

d%(θ)

dθ

)
+ k2r2 sin2 θ = − 1

#(φ)

d2#(φ)

dφ2
.

Since the right side depends only on φ while the left side depends only on r and θ , both
sides must equal some constant µ2:

sin2 θ

R(r)

d

dr

(
r2 d R(r)

dr

)
+ sin θ

%(θ)

d

dθ

(
sin θ

d%(θ)

dθ

)
+ k2r2 sin2 θ = µ2, (A.137)

d2#(φ)

dφ2
+ µ2#(φ) = 0. (A.138)

We have thus separated off the φ-dependence. Harmonic ordinary differential equation
(A.138) has solutions

#(φ) =
{

Aφ sin µφ + Bφ cos µφ, µ �= 0,

aφφ + bφ, µ = 0.

(We could have used complex exponentials to describe #(φ), or some combination of
exponentials and trigonometric functions, but it is conventional to use only trigonometric
functions.) Rearranging (A.137) and dividing through by sin2 θ we have

1

R(r)

d

dr

(
r2 d R(r)

dr

)
+ k2r2 = − 1

sin θ%(θ)

d

dθ

(
sin θ

d%(θ)

dθ

)
+ µ2

sin2 θ
.



We introduce a new constant k2
θ to separate r from θ :

1

R(r)

d

dr

(
r2 d R(r)

dr

)
+ k2r2 = k2

θ , (A.139)

− 1

sin θ%(θ)

d

dθ

(
sin θ

d%(θ)

dθ

)
+ µ2

sin2 θ
= k2

θ . (A.140)

Equation (A.140),

1

sin θ

d

dθ

(
sin θ

d%(θ)

dθ

)
+

(
k2
θ − µ2

sin2 θ

)
%(θ) = 0,

can be put into a standard form by letting

η = cos θ (A.141)

and k2
θ = ν(ν + 1) where ν is a parameter:

(1 − η2)
d2%(η)

dη2
− 2η

d%(η)

dη
+

[
ν(ν + 1) − µ2

1 − η2

]
%(η) = 0, −1 ≤ η ≤ 1.

This is the associated Legendre equation. It has two independent solutions called as-
sociated Legendre functions of the first and second kinds, denoted Pµ

ν (η) and Qµ
ν (η),

respectively. In these functions, all three quantities µ, ν, η may be arbitrary complex
constants as long as ν + µ �= −1, −2, . . .. But (A.141) shows that η is real in our discus-
sion; µ will generally be real also, and will be an integer whenever #(φ) is single-valued.
The choice of ν is somewhat more complicated. The function Pµ

ν (η) diverges at η = ±1
unless ν is an integer, while Qµ

ν (η) diverges at η = ±1 regardless of whether ν is an inte-
ger. In § A.4 we required that Pµ

ν (η) be bounded on [−1, 1] to have a Sturm–Liouville
problem with suitable orthogonality properties. By (A.141) we must exclude Qµ

ν (η) for
problems containing the z-axis, and restrict ν to be an integer n in Pµ

ν (η) for such prob-
lems. In case the z-axis is excluded, we choose ν = n whenever possible, because the finite
sums Pm

n (η) and Qm
n (η) are much easier to manipulate than Pµ

ν (η) and Qµ
ν (η). In many

problems we must count on completeness of the Legendre polynomials Pn(η) = P0
n (η) or

spherical harmonics Ymn(θ, φ) in order to satisfy the boundary conditions. In this book
we shall consider only those boundary value problems that can be solved using integer
values of ν and µ, hence choose

%(θ) = Aθ Pm
n (cos θ) + Bθ Qm

n (cos θ). (A.142)

Single-valuedness in #(φ) is a consequence of having µ = m, and φ = constant boundary
surfaces are thereby disallowed.

The associated Legendre functions have many important properties. For instance,

Pm
n (η) =




0, m > n,

(−1)m (1 − η2)m/2

2nn!
dn+m(η2 − 1)n

dηn+m , m ≤ n.
(A.143)

The case m = 0 receives particular attention because it corresponds to azimuthal invari-
ance (φ-independence). We define P0

n (η) = Pn(η) where Pn(η) is the Legendre polynomial



of order n. From (A.143), we see that4

Pn(η) = 1

2nn!

dn(η2 − 1)n

dηn

is a polynomial of degree n, and that

Pm
n (η) = (−1)m(1 − η2)m/2 dm

dηm
Pn(η).

Both the associated Legendre functions and the Legendre polynomials obey orthogonality
relations and many recursion formulas.

In problems where the z-axis is included, the product %(θ)#(φ) is sometimes defined
as the spherical harmonic

Ynm(θ, φ) =
√

2n + 1

4π

(n − m)!

(n + m)!
Pm

n (cos θ)e jmθ .

These functions, which are complete over the surface of a sphere, were treated earlier in
this section.

Remembering that k2
r = ν(ν + 1), the r -dependent equation (A.139) becomes

1

r2

d

dr

(
r2 d R(r)

dr

)
+

(
k2 + n(n + 1)

r2

)
R(r) = 0. (A.144)

When k = 0 we have
d2 R(r)

dr2
+ 2

r

d R(r)

dr
− n(n + 1)

r2
R(r) = 0

so that

R(r) = Arrn + Brr−(n+1).

When k �= 0, the substitution R̄(r) = √
kr R(r) puts (A.144) into the form

r2 d2 R̄(r)

dr2
+ r

d R̄(r)

dr
+

[
k2r2 −

(
n + 1

2

)2
]

R̄(r) = 0,

which we recognize as Bessel’s equation of half-integer order. Thus

R(r) = R̄(r)√
kr

=
Zn+ 1

2
(kr)

√
kr

.

For convenience we define the spherical Bessel functions

jn(z) =
√

π

2z
Jn+ 1

2
(z),

nn(z) =
√

π

2z
Nn+ 1

2
(z) = (−1)n+1

√
π

2z
J−(n+ 1

2 )(z),

h(1)
n (z) =

√
π

2z
H (1)

n+ 1
2
(z) = jn(z) + jnn(z),

h(2)
n (z) =

√
π

2z
H (2)

n+ 1
2
(z) = jn(z) − jnn(z).

4Care must be taken when consulting tables of Legendre functions and their properties. In particular,
one must be on the lookout for possible disparities regarding the factor (−1)m (cf., [76, 1, 109, 8] vs.
[5, 187]). Similar care is needed with Qm

n (x).



These can be written as finite sums involving trigonometric functions and inverse powers
of z. We have, for instance,

j0(z) = sin z

z
,

n0(z) = −cos z

z
,

j1(z) = sin z

z2
− cos z

z
,

n1(z) = −cos z

z2
− sin z

z
.

We can now write R(r) as a linear combination of any two of the spherical Bessel
functions jn, nn, h(1)

n , h(2)
n :

R(r) =




Ar jn(kr) + Br nn(kr),

Ar jn(kr) + Br h(1)
n (kr),

Ar jn(kr) + Br h(2)
n (kr),

Ar nn(kr) + Br h(1)
n (kr),

Ar nn(kr) + Br h(2)
n (kr),

Ar h(1)
n (kr) + Br h(2)

n (kr).

(A.145)

Imaginary arguments produce modified spherical Bessel functions; the interested reader
is referred to Gradsteyn [76] or Abramowitz [1].

Examples. The problem

∇2V (r, θ, φ) = 0, θ0 ≤ θ ≤ π/2, 0 ≤ r < ∞, −π ≤ φ ≤ π,

V (r, θ0, φ) = V0, −π ≤ φ ≤ π, 0 ≤ r < ∞,

V (r, π/2, φ) = 0, −π ≤ φ ≤ π, 0 ≤ r < ∞,

gives the potential field between a cone and the z = 0 plane. Azimuthal symmetry
prompts us to choose µ = aφ = 0. Since k = 0 we have

R(r) = Arrn + Brr−(n+1). (A.146)

Noting that positive and negative powers of r are unbounded for large and small r ,
respectively, we take n = Br = 0. Hence the solution depends only on θ :

V (r, θ, φ) = V (θ) = Aθ P0
0 (cos θ) + Bθ Q0

0(cos θ).

We must retain Q0
0 since the solution region does not contain the z-axis. Using

P0
0 (cos θ) = 1 and Q0

0(cos θ) = ln cot(θ/2)

(cf., Appendix E.2), we have

V (θ) = Aθ + Bθ ln cot(θ/2).

A straightforward application of the boundary conditions gives Aθ = 0 and Bθ =
V0/ ln cot(θ0/2), hence

V (θ) = V0
ln cot(θ/2)

ln cot(θ0/2)
.



Next we solve the boundary value problem

∇2V (r, θ, φ) = 0,

V (a, θ, φ) = −V0, π/2 ≤ θ < π, −π ≤ φ ≤ π,

V (a, θ, φ) = +V0, 0 < θ ≤ π/2, −π ≤ φ ≤ π,

for both r > a and r < a. This yields the potential field of a conducting sphere split
into top and bottom hemispheres and held at a potential difference of 2V0. Azimuthal
symmetry gives µ = 0. The two possible solutions for %(θ) are

%(θ) =
{

Aθ + Bθ ln cot(θ/2), n = 0,

Aθ Pn(cos θ), n �= 0,

where we have discarded Q0
0(cos θ) because the region of interest contains the z-axis. The

n = 0 solution cannot match the boundary conditions; neither can a single term of the
type Aθ Pn(cos θ), but a series of these latter terms can. We use

V (r, θ) =
∞∑

n=0

Vn(r, θ) =
∞∑

n=0

[Arrn + Brr−(n+1)]Pn(cos θ). (A.147)

The terms r−(n+1) and rn are not allowed, respectively, for r < a and r > a. For r < a
then,

V (r, θ) =
∞∑

n=0

Anrn Pn(cos θ).

Letting V0(θ) be the potential on the surface of the split sphere, we impose the boundary
condition:

V (a, θ) = V0(θ) =
∞∑

n=0

Anan Pn(cos θ), 0 ≤ θ ≤ π.

This is a Fourier–Legendre expansion of V0(θ). The An are evaluated by orthogonality.
Multiplying by Pm(cos θ) sin θ and integrating from θ = 0 to π , we obtain

∞∑
n=0

Anan
∫ π

0
Pn(cos θ)Pm(cos θ) sin θ dθ =

∫ π

0
V0(θ)Pm(cos θ) sin θ dθ.

Using orthogonality relationship (A.93) and the given V0(θ) we have

Amam 2

2m + 1
= V0

∫ π/2

0
Pm(cos θ) sin θ dθ − V0

∫ π

π/2
Pm(cos θ) sin θ dθ.

The substitution η = cos θ gives

Amam 2

2m + 1
= V0

∫ 1

0
Pm(η) dη − V0

∫ 0

−1
Pm(η) dη

= V0

∫ 1

0
Pm(η) dη − V0

∫ 1

0
Pm(−η) dη;

then Pm(−η) = (−1)m Pm(η) gives

Am = a−m 2m + 1

2
V0[1 − (−1)m]

∫ 1

0
Pm(η) dη.



Because Am = 0 for m even, we can put m = 2n + 1 (n = 0, 1, 2, . . .) and have

A2n+1 = (4n + 3)V0

a2n+1

∫ 1

0
P2n+1(η) dη = V0(−1)n

a2n+1

4n + 3

2n + 2

(2n!)

(2nn!)2

by (E.176). Hence

V (r, θ) =
∞∑

n=0

V0(−1)n 4n + 3

2n + 2

(2n!)

(2nn!)2

( r

a

)2n+1
P2n+1(cos θ)

for r < a. The case r > a is left to the reader.
Finally, consider

∇2ψ(x, y, z) + k2ψ(x, y, z) = 0, 0 ≤ r ≤ a, 0 ≤ θ ≤ π, −π ≤ φ ≤ π,

ψ(a, θ, φ) = 0, 0 ≤ θ ≤ π, −π ≤ φ ≤ π,

where k �= 0 is constant. This is a three-dimensional eigenvalue problem. Wave function
ψ represents the solutions for the electromagnetic field within a spherical cavity for modes
TE to r . Despite the prevailing symmetry, we choose solutions that vary with both θ

and φ. We are motivated by a desire to solve problems involving cavity excitation, and
eigenmode completeness will enable us to represent any piecewise continuous function
within the cavity. We employ spherical harmonics because the boundary surface is a
sphere. These exclude Qn

m(cos θ), which is appropriate since our problem contains the
z-axis. Since k �= 0 we must choose a radial dependence from (A.145). Small-argument
behavior rules out nn, h(1)

n , and h(2)
n , leaving us with

ψ(r, θ, φ) = Amn jn(kr)Ynm(θ, φ)

or, equivalently,

ψ(r, θ, φ) = Amn jn(kr)Pm
n (cos θ)e jmφ.

The eigenvalues λ = k2 are found by applying the condition at r = a:

ψ(a, θ, φ) = Amn jn(ka)Ynm(θ, φ) = 0,

requiring jn(ka) = 0. Denoting the qth root of jn(x) = 0 by αnq , we have knq = αnq/a
and corresponding eigenfunctions

ψmnq(r, θ, φ) = Amnq jn(knqr)Ynm(θ, φ).

The eigenvalues are proportional to the resonant frequencies of the cavity and the eigen-
functions can be used to find the modal field distributions. Since the eigenvalues are
independent of m, we may have several eigenfunctions ψmnq associated with each kmnq .
The only limitation is that we must keep m ≤ n to have Pn

m(cos θ) nonzero. This is
another instance of mode degeneracy. There are 2n degenerate modes associated with
each resonant frequency (one for each of e± jnφ). By completeness we can expand any
piecewise continuous function within or on the sphere as a series

f (r, θ, φ) =
∑

m,n,q

Amnq jn(knqr)Ynm(θ, φ).



Appendix B

Useful identities

Algebraic identities for vectors and dyadics

A + B = B + A (B.1)
A · B = B · A (B.2)
A × B = −B × A (B.3)
A · (B + C) = A · B + A · C (B.4)
A × (B + C) = A × B + A × C (B.5)
A · (B × C) = B · (C × A) = C · (A × B) (B.6)
A × (B × C) = B(A · C) − C(A · B) = B × (A × C) + C × (B × A) (B.7)
(A × B) · (C × D) = A · [B × (C × D)] = (B · D)(A · C) − (B · C)(A · D) (B.8)
(A × B) × (C × D) = C[A · (B × D)] − D[A · (B × C)] (B.9)
A × [B × (C × D)] = (B · D)(A × C) − (B · C)(A × D) (B.10)
A · (c̄ · B) = (A · c̄) · B (B.11)
A × (c̄ × B) = (A × c̄) × B (B.12)
C · (ā · b̄) = (C · ā) · b̄ (B.13)
(ā · b̄) · C = ā · (b̄ · C) (B.14)
A · (B × c̄) = −B · (A × c̄) = (A × B) · c̄ (B.15)
A × (B × c̄) = B · (A × c̄) − c̄(A · B) (B.16)
A · Ī = Ī · A = A (B.17)

Integral theorems

Note: S bounds V , � bounds S, n̂ is normal to S at r, l̂ and m̂ are tangential to S at
r, l̂ is tangential to the contour �, m̂ × l̂ = n̂, dl = l̂ dl, and dS = n̂ d S.

Divergence theorem ∫
V

∇ · A dV =
∮

S
A · dS (B.18)



∫
V

∇ · ā dV =
∮

S
n̂ · ā d S (B.19)

∫
S
∇s · A d S =

∮
�

m̂ · A dl (B.20)

Gradient theorem ∫
V

∇a dV =
∮

S
adS (B.21)

∫
V

∇A dV =
∮

S
n̂A d S (B.22)

∫
V

∇sa d S =
∮

�

m̂a dl (B.23)

Curl theorem ∫
V
(∇ × A) dV = −

∮
S

A × dS (B.24)

∫
V
(∇ × ā) dV =

∮
S

n̂ × ā d S (B.25)

∫
S
∇s × A d S =

∮
�

m̂ × A dl (B.26)

Stokes’s theorem ∫
S
(∇ × A) · dS =

∮
�

A · dl (B.27)

∫
S

n̂ · (∇ × ā) d S =
∮

�

dl · ā (B.28)

Green’s first identity for scalar fields∫
V
(∇a · ∇b + a∇2b) dV =

∮
S

a
∂b

∂n
d S (B.29)

Green’s second identity for scalar fields (Green’s theorem)∫
V
(a∇2b − b∇2a) dV =

∮
S

(
a

∂b

∂n
− b

∂a

∂n

)
d S (B.30)

Green’s first identity for vector fields∫
V
{(∇ × A) · (∇ × B) − A · [∇ × (∇ × B)]} dV =∫

V
∇ · [A × (∇ × B)] dV =

∮
S
[A × (∇ × B)] · dS (B.31)

Green’s second identity for vector fields∫
V
{B · [∇ × (∇ × A)] − A · [∇ × (∇ × B)]} dV =∮

S
[A × (∇ × B) − B × (∇ × A)] · dS (B.32)



Helmholtz theorem

A(r) = −∇
[∫

V

∇′ · A(r′)
4π |r − r′| dV ′ −

∮
S

A(r′) · n̂′

4π |r − r′| d S′
]

+

+ ∇ ×
[∫

V

∇′ × A(r′)
4π |r − r′| dV ′ +

∮
S

A(r′) × n̂′

4π |r − r′| d S′
]

(B.33)

Miscellaneous identities ∮
S

dS = 0 (B.34)

∫
S

n̂ × (∇a) d S =
∮

�

adl (B.35)

∫
S
(∇a × ∇b) · dS =

∫
�

a∇b · dl = −
∫

�

b∇a · dl (B.36)

∮
dl A =

∫
S

n̂ × (∇A) d S (B.37)

Derivative identities

∇ (a + b) = ∇a + ∇b (B.38)
∇ · (A + B) = ∇ · A + ∇ · B (B.39)
∇ × (A + B) = ∇ × A + ∇ × B (B.40)
∇(ab) = a∇b + b∇a (B.41)
∇ · (aB) = a∇ · B + B · ∇a (B.42)
∇ × (aB) = a∇ × B − B × ∇a (B.43)
∇ · (A × B) = B · ∇ × A − A · ∇ × B (B.44)
∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B (B.45)
∇(A · B) = A × (∇ × B) + B × (∇ × A) + (A · ∇)B + (B · ∇)A (B.46)
∇ × (∇ × A) = ∇(∇ · A) − ∇2A (B.47)
∇ · (∇a) = ∇2a (B.48)
∇ · (∇ × A) = 0 (B.49)
∇ × (∇a) = 0 (B.50)
∇ × (a∇b) = ∇a × ∇b (B.51)
∇2(ab) = a∇2b + 2(∇a) · (∇b) + b∇2a (B.52)
∇2(aB) = a∇2B + B∇2a + 2(∇a · ∇)B (B.53)
∇2ā = ∇(∇ · ā) − ∇ × (∇ × ā) (B.54)
∇ · (AB) = (∇ · A)B + A · (∇B) = (∇ · A)B + (A · ∇)B (B.55)
∇ × (AB) = (∇ × A)B − A × (∇B) (B.56)
∇ · (∇ × ā) = 0 (B.57)



∇ × (∇A) = 0 (B.58)

∇(A × B) = (∇A) × B − (∇B) × A (B.59)

∇(aB) = (∇a)B + a(∇B) (B.60)

∇ · (ab̄) = (∇a) · b̄ + a(∇ · b̄) (B.61)

∇ × (ab̄) = (∇a) × b̄ + a(∇ × b̄) (B.62)

∇ · (aĪ) = ∇a (B.63)

∇ × (aĪ) = ∇a × Ī (B.64)

Identities involving the displacement vector

Note: R = r − r′, R = |R|, R̂ = R/R, f ′(x) = d f (x)/dx .

∇ f (R) = −∇′ f (R) = R̂ f ′(R) (B.65)

∇ R = R̂ (B.66)

∇
(

1

R

)
= − R̂

R2
(B.67)

∇
(

e− jk R

R

)
= −R̂

(
1

R
+ jk

)
e− jk R

R
(B.68)

∇ · [
f (R)R̂

] = −∇′ · [
f (R)R̂

] = 2
f (R)

R
+ f ′(R) (B.69)

∇ · R = 3 (B.70)

∇ · R̂ = 2

R
(B.71)

∇ ·
(

R̂
e− jk R

R

)
=

(
1

R
− jk

)
e− jk R

R
(B.72)

∇ × [
f (R)R̂

] = 0 (B.73)

∇2

(
1

R

)
= −4πδ(R) (B.74)

(∇2 + k2)
e− jk R

R
= −4πδ(R) (B.75)

Identities involving the plane-wave function

Note: E is a constant vector, k = |k|.

∇ (
e− jk·r) = − jke− jk·r (B.76)

∇ · (
Ee− jk·r) = − jk · Ee− jk·r (B.77)



∇ × (
Ee− jk·r) = − jk × Ee− jk·r (B.78)

∇2
(
Ee− jk·r) = −k2Ee− jk·r (B.79)

Identities involving the transverse/longitudinal decomposition

Note: û is a constant unit vector, Au ≡ û · A, ∂/∂u ≡ û · ∇, At ≡ A − ûAu , ∇t ≡
∇ − û∂/∂u.

A = At + ûAu (B.80)

∇ = ∇t + û
∂

∂u
(B.81)

û · At = 0 (B.82)

(û · ∇t ) φ = 0 (B.83)

∇tφ = ∇φ − û
∂φ

∂u
(B.84)

û · (∇φ) = (û · ∇)φ = ∂φ

∂u
(B.85)

û · (∇tφ) = 0 (B.86)

∇t · (ûφ) = 0 (B.87)

∇t × (ûφ) = −û × ∇tφ (B.88)

∇t × (û × A) = û∇t · At (B.89)

û × (∇t × A) = ∇t Au (B.90)

û × (∇t × At ) = 0 (B.91)

û · (û × A) = 0 (B.92)

û × (û × A) = −At (B.93)

∇φ = ∇tφ + û
∂φ

∂u
(B.94)

∇ · A = ∇t · At + ∂ Au

∂u
(B.95)

∇ × A = ∇t × At + û ×
[
∂At

∂u
− ∇t Au

]
(B.96)

∇2φ = ∇2
t φ + ∂2φ

∂u2
(B.97)

∇ × ∇ × A =
[
∇t × ∇t × At − ∂2At

∂u2
+ ∇t

∂ Au

∂u

]
+ û

[
∂

∂u
(∇t · At ) − ∇2

t Au

]
(B.98)

∇2A =
[
∇t (∇t · At ) + ∂2At

∂u2
− ∇t × ∇t × At

]
+ û∇2 Au (B.99)



Appendix C

Some Fourier transform pairs

Note:

G(k) =
∫ ∞

−∞
g(x)e− jkx dx, g(x) = 1

2π

∫ ∞

−∞
G(k)e jkx dk, g(x) ↔ G(k).

rect(x) ↔ 2 sinc k (C.1)

�(x) ↔ sinc2 k

2
(C.2)

sgn(x) ↔ 2

jk
(C.3)

e jk0x ↔ 2πδ(k − k0) (C.4)

δ(x) ↔ 1 (C.5)

1 ↔ 2πδ(k) (C.6)

dnδ(x)

dxn
↔ ( jk)n (C.7)

xn ↔ 2π j n dnδ(k)

dkn
(C.8)

U (x) ↔ πδ(k) + 1

jk
(C.9)

∞∑
n=−∞

δ

(
t − n

2π

k0

)
↔ k0

∞∑
n=−∞

δ(k − nk0) (C.10)

e−ax2 ↔
√

π

a
e− k2

4a (C.11)

e−axU (x) ↔ 1

a + jk
(C.12)



e−a|x | ↔ 2a

a2 + k2
(C.13)

e−ax cos bx U (x) ↔ a + jk

(a + jk)2 + b2
(C.14)

e−ax sin bx U (x) ↔ b

(a + jk)2 + b2
(C.15)

cos k0x ↔ π [δ(k + k0) + δ(k − k0)] (C.16)

sin k0x ↔ jπ [δ(k + k0) − δ(k − k0)] (C.17)

1

2
be− 1

2 bx

[
I0

(
1

2
bx

)
+ I1

(
1

2
bx

)]
U (x) ↔

√
jk + b

jk
− 1 (C.18)

g(x) − ae−ax
∫ x

−∞
eau g(u) du ↔ jk

jk + a
G(k) (C.19)



Appendix D

Coordinate systems

Rectangular coordinate system

Coordinate variables

u = x, −∞ < x < ∞ (D.1)
v = y, −∞ < y < ∞ (D.2)
w = z, −∞ < z < ∞ (D.3)

Vector algebra

A = x̂Ax + ŷAy + ẑAz (D.4)

A · B = Ax Bx + Ay By + Az Bz (D.5)

A × B =
∣∣∣∣∣∣

x̂ ŷ ẑ
Ax Ay Az

Bx By Bz

∣∣∣∣∣∣ (D.6)

Dyadic representation

ā = x̂axx x̂ + x̂axy ŷ + x̂axz ẑ +
+ ŷayx x̂ + ŷayy ŷ + ŷayz ẑ +
+ ẑazx x̂ + ẑazy ŷ + ẑazz ẑ (D.7)

ā = x̂a′
x + ŷa′

y + ẑa′
z = ax x̂ + ay ŷ + az ẑ (D.8)

a′
x = axx x̂ + axy ŷ + axz ẑ (D.9)

a′
y = ayx x̂ + ayy ŷ + ayz ẑ (D.10)

a′
z = azx x̂ + azy ŷ + azz ẑ (D.11)

ax = axx x̂ + ayx ŷ + azx ẑ (D.12)
ay = axy x̂ + ayy ŷ + azy ẑ (D.13)
az = axz x̂ + ayz ŷ + azz ẑ (D.14)



Differential operations

dl = x̂ dx + ŷ dy + ẑ dz (D.15)

dV = dx dy dz (D.16)

d Sx = dy dz (D.17)
d Sy = dx dz (D.18)
d Sz = dx dy (D.19)

∇ f = x̂
∂ f

∂x
+ ŷ

∂ f

∂y
+ ẑ

∂ f

∂z
(D.20)

∇ · F = ∂ Fx

∂x
+ ∂ Fy

∂y
+ ∂ Fz

∂z
(D.21)

∇ × F =
∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣ (D.22)

∇2 f = ∂2 f

∂x2
+ ∂2 f

∂y2
+ ∂2 f

∂z2
(D.23)

∇2F = x̂∇2 Fx + ŷ∇2 Fy + ẑ∇2 Fz (D.24)

Separation of the Helmholtz equation

∂2ψ(x, y, z)

∂x2
+ ∂2ψ(x, y, z)

∂y2
+ ∂2ψ(x, y, z)

∂z2
+ k2ψ(x, y, z) = 0 (D.25)

ψ(x, y, z) = X (x)Y (y)Z(z) (D.26)

k2
x + k2

y + k2
z = k2 (D.27)

d2 X (x)

dx2
+ k2

x X (x) = 0 (D.28)

d2Y (y)

dy2
+ k2

yY (y) = 0 (D.29)

d2 Z(z)

dz2
+ k2

z Z(z) = 0 (D.30)

X (x) =
{

Ax F1(kx x) + Bx F2(kx x), kx 
= 0,

ax x + bx , kx = 0.
(D.31)

Y (y) =
{

Ay F1(ky y) + By F2(ky y), ky 
= 0,

ay y + by, ky = 0.
(D.32)



Z(z) =
{

Az F1(kzz) + Bz F2(kzz), kz 
= 0,

azz + bz, kz = 0.
(D.33)

F1(ξ), F2(ξ) =




e jξ

e− jξ

sin(ξ)

cos(ξ)

(D.34)

Cylindrical coordinate system

Coordinate variables

u = ρ, 0 ≤ ρ < ∞ (D.35)
v = φ, −π ≤ φ ≤ π (D.36)
w = z, −∞ < z < ∞ (D.37)

x = ρ cos φ (D.38)
y = ρ sin φ (D.39)
z = z (D.40)

ρ =
√

x2 + y2 (D.41)

φ = tan−1 y

x
(D.42)

z = z (D.43)

Vector algebra

ρ̂ = x̂ cos φ + ŷ sin φ (D.44)
φ̂ = −x̂ sin φ + ŷ cos φ (D.45)
ẑ = ẑ (D.46)

A = ρ̂Aρ + φ̂Aφ + ẑAz (D.47)

A · B = Aρ Bρ + Aφ Bφ + Az Bz (D.48)

A × B =
∣∣∣∣∣∣
ρ̂ φ̂ ẑ
Aρ Aφ Az

Bρ Bφ Bz

∣∣∣∣∣∣ (D.49)



Dyadic representation

ā = ρ̂aρρ ρ̂ + ρ̂aρφφ̂ + ρ̂aρz ẑ +
+ φ̂aφρ ρ̂ + φ̂aφφφ̂ + φ̂aφz ẑ +
+ ẑazρ ρ̂ + ẑazφφ̂ + ẑazz ẑ (D.50)

ā = ρ̂a′
ρ + φ̂a′

φ + ẑa′
z = aρ ρ̂ + aφφ̂ + az ẑ (D.51)

a′
ρ = aρρ ρ̂ + aρφφ̂ + aρz ẑ (D.52)

a′
φ = aφρ ρ̂ + aφφφ̂ + aφz ẑ (D.53)

a′
z = azρ ρ̂ + azφφ̂ + azz ẑ (D.54)

aρ = aρρ ρ̂ + aφρφ̂ + azρ ẑ (D.55)
aφ = aρφρ̂ + aφφφ̂ + azφ ẑ (D.56)
az = aρzρ̂ + aφzφ̂ + azz ẑ (D.57)

Differential operations

dl = ρ̂ dρ + φ̂ρ dφ + ẑ dz (D.58)

dV = ρ dρ dφ dz (D.59)

d Sρ = ρ dφ dz, (D.60)
d Sφ = dρ dz, (D.61)
d Sz = ρ dρ dφ (D.62)

∇ f = ρ̂
∂ f

∂ρ
+ φ̂

1

ρ

∂ f

∂φ
+ ẑ

∂ f

∂z
(D.63)

∇ · F = 1

ρ

∂

∂ρ

(
ρFρ

) + 1

ρ

∂ Fφ

∂φ
+ ∂ Fz

∂z
(D.64)

∇ × F = 1

ρ

∣∣∣∣∣∣
ρ̂ ρφ̂ ẑ
∂
∂ρ

∂
∂φ

∂
∂z

Fρ ρFφ Fz

∣∣∣∣∣∣ (D.65)

∇2 f = 1

ρ

∂

∂ρ

(
ρ

∂ f

∂ρ

)
+ 1

ρ2

∂2 f

∂φ2
+ ∂2 f

∂z2
(D.66)

∇2F = ρ̂

(
∇2 Fρ − 2

ρ2

∂ Fφ

∂φ
− Fρ

ρ2

)
+ φ̂

(
∇2 Fφ + 2

ρ2

∂ Fρ

∂φ
− Fφ

ρ2

)
+ ẑ∇2 Fz (D.67)



Separation of the Helmholtz equation

1

ρ

∂

∂ρ

(
ρ

∂ψ(ρ, φ, z)

∂ρ

)
+ 1

ρ2

∂2ψ(ρ, φ, z)

∂φ2
+ ∂2ψ(ρ, φ, z)

∂z2
+ k2ψ(ρ, φ, z) = 0 (D.68)

ψ(ρ, φ, z) = P(ρ)�(φ)Z(z) (D.69)

k2
c = k2 − k2

z (D.70)

d2 P(ρ)

dρ2
+ 1

ρ

d P(ρ)

dρ
+

(
k2

c − k2
φ

ρ2

)
P(ρ) = 0 (D.71)

∂2�(φ)

∂φ2
+ k2

φ�(φ) = 0 (D.72)

d2 Z(z)

dz2
+ k2

z Z(z) = 0 (D.73)

Z(z) =
{

Az F1(kzz) + Bz F2(kzz), kz 
= 0,

azz + bz, kz = 0.
(D.74)

�(φ) =
{

Aφ F1(kφφ) + Bφ F2(kφφ), kφ 
= 0,

aφφ + bφ, kφ = 0.
(D.75)

P(ρ) =




aρ ln ρ + bρ, kc = kφ = 0,

aρρ
−kφ + bρρ

kφ , kc = 0 and kφ 
= 0,

AρG1(kcρ) + BρG2(kcρ), otherwise.
(D.76)

F1(ξ), F2(ξ) =




e jξ

e− jξ

sin(ξ)

cos(ξ)

(D.77)

G1(ξ), G2(ξ) =




Jkφ
(ξ)

Nkφ
(ξ)

H (1)
kφ

(ξ)

H (2)
kφ

(ξ)

(D.78)

Spherical coordinate system

Coordinate variables

u = r, 0 ≤ r < ∞ (D.79)
v = θ, 0 ≤ θ ≤ π (D.80)
w = φ, −π ≤ φ ≤ π (D.81)



x = r sin θ cos φ (D.82)
y = r sin θ sin φ (D.83)
z = r cos θ (D.84)

r =
√

x2 + y2 + z2 (D.85)

θ = tan−1

√
x2 + y2

z
(D.86)

φ = tan−1 y

x
(D.87)

Vector algebra

r̂ = x̂ sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ (D.88)
θ̂ = x̂ cos θ cos φ + ŷ cos θ sin φ − ẑ sin θ (D.89)
φ̂ = −x̂ sin φ + ŷ cos φ (D.90)

A = r̂Ar + θ̂Aθ + φ̂Aφ (D.91)

A · B = Ar Br + Aθ Bθ + Aφ Bφ (D.92)

A × B =
∣∣∣∣∣∣

r̂ θ̂ φ̂
Ar Aθ Aφ

Br Bθ Bφ

∣∣∣∣∣∣ (D.93)

Dyadic representation

ā = r̂arr r̂ + r̂arθ θ̂ + r̂arφφ̂ +
+ θ̂aθr r̂ + θ̂aθθ θ̂ + θ̂aθφφ̂ +
+ φ̂aφr r̂ + φ̂aφθ θ̂ + φ̂aφφφ̂ (D.94)

ā = r̂a′
r + θ̂a′

θ + φ̂a′
φ = ar r̂ + aθ θ̂ + aφφ̂ (D.95)

a′
r = arr r̂ + arθ θ̂ + arφφ̂ (D.96)

a′
θ = aθr r̂ + aθθ θ̂ + aθφφ̂ (D.97)

a′
φ = aφr r̂ + aφθ θ̂ + aφφφ̂ (D.98)

ar = arr r̂ + aθr θ̂ + aφr φ̂ (D.99)
aθ = arθ r̂ + aθθ θ̂ + aφθ φ̂ (D.100)
aφ = arφ r̂ + aθφ θ̂ + aφφφ̂ (D.101)



Differential operations

dl = r̂ dr + θ̂r dθ + φ̂r sin θ dφ (D.102)

dV = r2 sin θ dr dθ dφ (D.103)

d Sr = r2 sin θ dθ dφ (D.104)
d Sθ = r sin θ dr dφ (D.105)
d Sφ = r dr dθ (D.106)

∇ f = r̂
∂ f

∂r
+ θ̂

1

r

∂ f

∂θ
+ φ̂

1

r sin θ

∂ f

∂φ
(D.107)

∇ · F = 1

r2

∂

∂r

(
r2 Fr

) + 1

r sin θ

∂

∂θ
(sin θ Fθ ) + 1

r sin θ

∂ Fφ

∂φ
(D.108)

∇ × F = 1

r2 sin θ

∣∣∣∣∣∣
r̂ r θ̂ r sin θφ̂
∂
∂r

∂
∂θ

∂
∂φ

Fr r Fθ r sin θ Fφ

∣∣∣∣∣∣ (D.109)

∇2 f = 1

r2

∂

∂r

(
r2 ∂ f

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ f

∂θ

)
+ 1

r2 sin2 θ

∂2 f

∂φ2
(D.110)

∇2F = r̂
[
∇2 Fr − 2

r2

(
Fr + cos θ

sin θ
Fθ + 1

sin θ

∂ Fφ

∂φ
+ ∂ Fθ

∂θ

)]
+

+ θ̂

[
∇2 Fθ − 1

r2

(
1

sin2 θ
Fθ − 2

∂ Fr

∂θ
+ 2

cos θ

sin2 θ

∂ Fφ

∂φ

)]
+

+ φ̂

[
∇2 Fφ − 1

r2

(
1

sin2 θ
Fφ − 2

1

sin θ

∂ Fr

∂φ
− 2

cos θ

sin2 θ

∂ Fθ

∂φ

)]
(D.111)

Separation of the Helmholtz equation

1

r2

∂

∂r

(
r2 ∂ψ(r, θ, φ)

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ(r, θ, φ)

∂θ

)
+

+ 1

r2 sin2 θ

∂2ψ(r, θ, φ)

∂φ2
+ k2ψ(r, θ, φ) = 0 (D.112)

ψ(r, θ, φ) = R(r)�(θ)�(φ) (D.113)

η = cos θ (D.114)

1

R(r)

d

dr

(
r2 d R(r)

dr

)
+ k2r2 = n(n + 1) (D.115)

(1 − η2)
d2�(η)

dη2
− 2η

d�(η)

dη
+

[
n(n + 1) − µ2

1 − η2

]
�(η) = 0, −1 ≤ η ≤ 1 (D.116)



d2�(φ)

dφ2
+ µ2�(φ) = 0 (D.117)

�(φ) =
{

Aφ sin(µφ) + Bφ cos(µφ), µ 
= 0,

aφφ + bφ, µ = 0.
(D.118)

�(θ) = Aθ Pµ
n (cos θ) + Bθ Qµ

n (cos θ) (D.119)

R(r) =
{

R(r) = Arrn + Brr−(n+1), k = 0,

Ar F1(kr) + Br F2(kr), otherwise.
(D.120)

F1(ξ), F2(ξ) =




jn(ξ)

nn(ξ)

h(1)
n (ξ)

h(2)
n (ξ)

(D.121)



Appendix E

Properties of special functions

E.1 Bessel functions

Notation

z = complex number; ν, x = real numbers; n = integer
Jν(z) = ordinary Bessel function of the first kind
Nν(z) = ordinary Bessel function of the second kind
Iν(z) = modified Bessel function of the first kind
Kν(z) = modified Bessel function of the second kind
H (1)

ν = Hankel function of the first kind
H (2)

ν = Hankel function of the second kind
jn(z) = ordinary spherical Bessel function of the first kind
nn(z) = ordinary spherical Bessel function of the second kind
h(1)

n (z) = spherical Hankel function of the first kind
h(2)

n (z) = spherical Hankel function of the second kind
f ′(z) = d f (z)/dz = derivative with respect to argument

Differential equations

d2 Zν(z)

dz2
+ 1

z

d Zν(z)

dz
+

(
1 − ν2

z2

)
Zν(z) = 0 (E.1)

Zν(z) =




Jν(z)
Nν(z)
H (1)

ν (z)
H (2)

ν (z)

(E.2)

Nν(z) = cos(νπ)Jν(z) − J−ν(z)

sin(νπ)
, ν �= n, | arg(z)| < π (E.3)

H (1)
ν (z) = Jν(z) + j Nν(z) (E.4)

H (2)
ν (z) = Jν(z) − j Nν(z) (E.5)



d2 Z̄ν(x)

dz2
+ 1

z

d Z̄ν(z)

dz
−

(
1 + ν2

z2

)
Z̄ν = 0 (E.6)

Z̄ν(z) =
{

Iν(z)
Kν(z)

(E.7)

L(z) =
{

Iν(z)
e jνπ Kν(z)

(E.8)

Iν(z) = e− jνπ/2 Jν(ze jπ/2), −π < arg(z) ≤ π

2
(E.9)

Iν(z) = e j3νπ/2 Jν(ze− j3π/2),
π

2
< arg(z) ≤ π (E.10)

Kν(z) = jπ

2
e jνπ/2 H (1)

ν (ze jπ/2), −π < arg(z) ≤ π

2
(E.11)

Kν(z) = − jπ

2
e− jνπ/2 H (2)

ν (ze− jπ/2), −π

2
< arg(z) ≤ π (E.12)

In(x) = j−n Jn( j x) (E.13)

Kn(x) = π

2
j n+1 H (1)

n ( j x) (E.14)

d2zn(z)

dz2
+ 2

z

dzn(z)

dz
+

[
1 − n(n + 1)

z2

]
zn(z) = 0, n = 0, ±1, ±2, . . . (E.15)

zn(z) =




jn(z)
nn(z)
h(1)

n (z)
h(2)

n (z)

(E.16)

jn(z) =
√

π

2z
Jn+ 1

2
(z) (E.17)

nn(z) =
√

π

2z
Nn+ 1

2
(z) (E.18)

h(1)
n (z) =

√
π

2z
H (1)

n+ 1
2
(z) = jn(z) + jnn(z) (E.19)

h(2)
n (z) =

√
π

2z
H (2)

n+ 1
2
(z) = jn(z) − jnn(z) (E.20)

nn(z) = (−1)n+1 j−(n+1)(z) (E.21)

Orthogonality relationships
∫ a

0
Jν

( pνm

a
ρ
)

Jν

( pνn

a
ρ
)

ρ dρ = δmn
a2

2
J 2
ν+1(pνn) = δmn

a2

2

[
J ′
ν(pνn)

]2
, ν > −1

(E.22)



∫ a

0
Jν

(
p′

νm

a
ρ

)
Jν

(
p′

νn

a
ρ

)
ρ dρ = δmn

a2

2

(
1 − ν2

p′2
νm

)
J 2
ν (p′

νm), ν > −1 (E.23)

∫ ∞

0
Jν(αx)Jν(βx)x dx = 1

α
δ(α − β) (E.24)

∫ a

0
jl

(αlm

a
r
)

jl
(αln

a
r
)

r2 dr = δmn
a3

2
j2
n+1(αlna) (E.25)

∫ ∞

−∞
jm(x) jn(x) dx = δmn

π

2n + 1
, m, n ≥ 0 (E.26)

Jm(pmn) = 0 (E.27)
J ′

m(p′
mn) = 0 (E.28)

jm(αmn) = 0 (E.29)
j ′
m(α′

mn) = 0 (E.30)

Specific examples

j0(z) = sin z

z
(E.31)

n0(z) = −cos z

z
(E.32)

h(1)
0 (z) = − j

z
e jz (E.33)

h(2)
0 (z) = j

z
e− j z (E.34)

j1(z) = sin z

z2
− cos z

z
(E.35)

n1(z) = −cos z

z2
− sin z

z
(E.36)

j2(z) =
(

3

z3
− 1

z

)
sin z − 3

z2
cos z (E.37)

n2(z) =
(

− 3

z3
+ 1

z

)
cos z − 3

z2
sin z (E.38)

Functional relationships

Jn(−z) = (−1)n Jn(z) (E.39)
In(−z) = (−1)n In(z) (E.40)
jn(−z) = (−1)n jn(z) (E.41)

nn(−z) = (−1)n+1nn(z) (E.42)

J−n(z) = (−1)n Jn(z) (E.43)



N−n(z) = (−1)n Nn(z) (E.44)
I−n(z) = In(z) (E.45)

K−n(z) = Kn(z) (E.46)
j−n(z) = (−1)nnn−1(z), n > 0 (E.47)

Power series

Jn(z) =
∞∑

k=0

(−1)k (z/2)n+2k

k!(n + k)!
(E.48)

In(z) =
∞∑

k=0

(z/2)n+2k

k!(n + k)!
(E.49)

Small argument approximations |z| � 1.

Jn(z) ≈ 1

n!

( z

2

)n
(E.50)

Jν(z) ≈ 1

�(ν + 1)

( z

2

)ν

(E.51)

N0(z) ≈ 2

π
(ln z + 0.5772157 − ln 2) (E.52)

Nn(z) ≈ − (n − 1)!

π

(
2

z

)n

, n > 0 (E.53)

Nν(z) ≈ −�(ν)

π

(
2

z

)ν

, ν > 0 (E.54)

In(z) ≈ 1

n!

( z

2

)n
(E.55)

Iν(z) ≈ 1

�(ν + 1)

( z

2

)ν

(E.56)

jn(z) ≈ 2nn!

(2n + 1)!
zn (E.57)

nn(z) ≈ − (2n)!

2nn!
z−(n+1) (E.58)

Large argument approximations |z| � 1.

Jν(z) ≈
√

2

π z
cos

(
z − π

4
− νπ

2

)
, | arg(z)| < π (E.59)

Nν(z) ≈
√

2

π z
sin

(
z − π

4
− νπ

2

)
, | arg(z)| < π (E.60)

H (1)
ν (z) ≈

√
2

π z
e j(z− π

4 − νπ
2 ), −π < arg(z) < 2π (E.61)

H (2)
ν (z) ≈

√
2

π z
e− j(z− π

4 − νπ
2 ), −2π < arg(z) < π (E.62)

Iν(z) ≈
√

1

2π z
ez, | arg(z)| <

π

2
(E.63)



Kν(z) ≈
√

π

2z
e−z, | arg(z)| <

3π

2
(E.64)

jn(z) ≈ 1

z
sin

(
z − nπ

2

)
, | arg(z)| < π (E.65)

nn(z) ≈ −1

z
cos

(
z − nπ

2

)
, | arg(z)| < π (E.66)

h(1)
n (z) ≈ (− j)n+1 e jz

z
, −π < arg(z) < 2π (E.67)

h(2)
n (z) ≈ j n+1 e− j z

z
, −2π < arg(z) < π (E.68)

Recursion relationships

zZν−1(z) + zZν+1(z) = 2νZν(z) (E.69)
Zν−1(z) − Zν+1(z) = 2Z ′

ν(z) (E.70)
zZ ′

ν(z) + νZν(z) = zZν−1(z) (E.71)
zZ ′

ν(z) − νZν(z) = −zZν+1(z) (E.72)

zLν−1(z) − zLν+1(z) = 2νLν(z) (E.73)
Lν−1(z) + Lν+1(z) = 2L ′

ν(z) (E.74)
zL ′

ν(z) + νLν(z) = zLν−1(z) (E.75)
zL ′

ν(z) − νLν(z) = zLν+1(z) (E.76)

zzn−1(z) + zzn+1(z) = (2n + 1)zn(z) (E.77)
nzn−1(z) − (n + 1)zn+1(z) = (2n + 1)z′

n(z) (E.78)
zz′

n(z) + (n + 1)zn(z) = zzn−1(z) (E.79)
−zz′

n(z) + nzn(z) = zzn+1(z) (E.80)

Integral representations

Jn(z) = 1

2π

∫ π

−π

e− jnθ+ j z sin θ dθ (E.81)

Jn(z) = 1

π

∫ π

0
cos(nθ − z sin θ) dθ (E.82)

Jn(z) = 1

2π
j−n

∫ π

−π

e jz cos θ cos(nθ) dθ (E.83)

In(z) = 1

π

∫ π

0
ez cos θ cos(nθ) dθ (E.84)

Kn(z) =
∫ ∞

0
e−z cosh(t) cosh(nt) dt, | arg(z)| <

π

2
(E.85)

jn(z) = zn

2n+1n!

∫ π

0
cos(z cos θ) sin2n+1 θ dθ (E.86)

jn(z) = (− j)n

2

∫ π

0
e jz cos θ Pn(cos θ) sin θ dθ (E.87)



Wronskians and cross products

Jν(z)Nν+1(z) − Jν+1(z)Nν(z) = − 2

π z
(E.88)

H (2)
ν (z)H (1)

ν+1(z) − H (1)
ν (z)H (2)

ν+1(z) = 4

jπ z
(E.89)

Iν(z)Kν+1(z) + Iν+1(z)Kν(z) = 1

z
(E.90)

Iν(z)K ′
ν(z) − I ′

ν(z)Kν(z) = −1

z
(E.91)

Jν(z)H (1)
ν

′
(z) − J ′

ν(z)H (1)
ν (z) = 2 j

π z
(E.92)

Jν(z)H (2)
ν

′
(z) − J ′

ν(z)H (2)
ν (z) = − 2 j

π z
(E.93)

H (1)
ν (z)H (2)

ν

′
(z) − H (1)

ν

′
(z)H (2)

ν (z) = − 4 j

π z
(E.94)

jn(z)nn−1(z) − jn−1(z)nn(z) = 1

z2
(E.95)

jn+1(z)nn−1(z) − jn−1(z)nn+1(z) = 2n + 1

z3
(E.96)

jn(z)n
′
n(z) − j ′

n(z)nn(z) = 1

z2
(E.97)

h(1)
n (z)h(2)

n
′
(z) − h(1)

n
′
(z)h(2)

n (z) = −2 j

z2
(E.98)

Summation formulas ✁
✁
✁
✁

✦✦✦✦✦✦✦✦✦✦

φ

ψr
R

ρ

R, r, ρ, φ, ψ as shown.

R =
√

r2 + ρ2 − 2rρ cos φ.

e jνψ Zν(z R) =
∞∑

k=−∞
Jk(zρ)Zν+k(zr)e jkφ, ρ < r, 0 < ψ <

π

2
(E.99)

e jnψ Jn(z R) =
∞∑

k=−∞
Jk(zρ)Jn+k(zr)e jkφ (E.100)

e jzρ cos φ =
∞∑

k=0

j k(2k + 1) jk(zρ)Pk(cos φ) (E.101)

For ρ < r and 0 < ψ < π/2,

e jz R

R
= jπ

2
√

rρ

∞∑
k=0

(2k + 1)Jk+ 1
2
(zρ)H (1)

k+ 1
2
(zr)Pk(cos φ) (E.102)

e− j z R

R
= − jπ

2
√

rρ

∞∑
k=0

(2k + 1)Jk+ 1
2
(zρ)H (2)

k+ 1
2
(zr)Pk(cos φ) (E.103)



Integrals
∫

xν+1 Jν(x) dx = xν+1 Jν+1(x) + C (E.104)

∫
Zν(ax)Zν(bx)x dx = x

[bZν(ax)Zν−1(bx) − aZν−1(ax)Zν(bx)]

a2 − b2
+ C, a �= b (E.105)

∫
x Z2

ν (ax) dx = x2

2

[
Z2

ν (ax) − Zν−1(ax)Zν+1(ax)
] + C (E.106)

∫ ∞

0
Jν(ax) dx = 1

a
, ν > −1, a > 0 (E.107)

Fourier–Bessel expansion of a function

f (ρ) =
∞∑

m=1

am Jν

(
pνm

ρ

a

)
, 0 ≤ ρ ≤ a, ν > −1 (E.108)

am = 2

a2 J 2
ν+1(pνm)

∫ a

0
f (ρ)Jν

(
pνm

ρ

a

)
ρ dρ (E.109)

f (ρ) =
∞∑

m=1

bm Jν

(
p′

νm

ρ

a

)
, 0 ≤ ρ ≤ a, ν > −1 (E.110)

bm = 2

a2
(

1 − ν2

p′2
νm

J 2
ν (p′

νm)
)

∫ a

0
f (ρ)Jν

(
p′

νm

a
ρ

)
ρ dρ (E.111)

Series of Bessel functions

e jz cos φ =
∞∑

k=−∞
j k Jk(z)e

jkφ (E.112)

e jz cos φ = J0(z) + 2
∞∑

k=1

j k Jk(z) cos φ (E.113)

sin z = 2
∞∑

k=0

(−1)k J2k+1(z) (E.114)

cos z = J0(z) + 2
∞∑

k=1

(−1)k J2k(z) (E.115)

E.2 Legendre functions

Notation

x, y, θ = real numbers; l, m, n = integers;
Pm

n (cos θ) = associated Legendre function of the first kind



Qm
n (cos θ) = associated Legendre function of the second kind

Pn(cos θ) = P0
n (cos θ) = Legendre polynomial

Qn(cos θ) = Q0
n(cos θ) = Legendre function of the second kind

Differential equation x = cos θ .

(1 − x2)
d2 Rm

n (x)

dx2
− 2x

d Rm
n (x)

dx
+

[
n(n + 1) − m2

1 − x2

]
Rm

n (x) = 0, −1 ≤ x ≤ 1 (E.116)

Rm
n (x) =

{
Pm

n (x)

Qm
n (x)

(E.117)

Orthogonality relationships

∫ 1

−1
Pm

l (x)Pm
n (x) dx = δln

2

2n + 1

(n + m)!

(n − m)!
(E.118)

∫ π

0
Pm

l (cos θ)Pm
n (cos θ) sin θ dθ = δln

2

2n + 1

(n + m)!

(n − m)!
(E.119)

∫ 1

−1

Pm
n (x)Pk

n (x)

1 − x2
dx = δmk

1

m

(n + m)!

(n − m)!
(E.120)

∫ π

0

Pm
n (cos θ)Pk

n (cos θ)

sin θ
dθ = δmk

1

m

(n + m)!

(n − m)!
(E.121)

∫ 1

−1
Pl(x)Pn(x) dx = δln

2

2n + 1
(E.122)

∫ π

0
Pl(cos θ)Pn(cos θ) sin θ dθ = δln

2

2n + 1
(E.123)

Specific examples

P0(x) = 1 (E.124)
P1(x) = x = cos(θ) (E.125)

P2(x) = 1

2
(3x2 − 1) = 1

4
(3 cos 2θ + 1) (E.126)

P3(x) = 1

2
(5x3 − 3x) = 1

8
(5 cos 3θ + 3 cos θ) (E.127)

P4(x) = 1

8
(35x4 − 30x2 + 3) = 1

64
(35 cos 4θ + 20 cos 2θ + 9) (E.128)

P5(x) = 1

8
(63x5 − 70x3 + 15x) = 1

128
(63 cos 5θ + 35 cos 3θ + 30 cos θ) (E.129)

Q0(x) = 1

2
ln

(
1 + x

1 − x

)
= ln

(
cot

θ

2

)
(E.130)

Q1(x) = x

2
ln

(
1 + x

1 − x

)
− 1 = cos θ ln

(
cot

θ

2

)
− 1 (E.131)



Q2(x) = 1

4
(3x2 − 1) ln

(
1 + x

1 − x

)
− 3

2
x (E.132)

Q3(x) = 1

4
(5x3 − 3x) ln

(
1 + x

1 − x

)
− 5

2
x2 + 2

3
(E.133)

Q4(x) = 1

16
(35x4 − 30x2 + 3) ln

(
1 + x

1 − x

)
− 35

8
x3 + 55

24
x (E.134)

P1
1 (x) = −(1 − x2)1/2 = − sin θ (E.135)

P1
2 (x) = −3x(1 − x2)1/2 = −3 cos θ sin θ (E.136)

P2
2 (x) = 3(1 − x2) = 3 sin2 θ (E.137)

P1
3 (x) = −3

2
(5x2 − 1)(1 − x2)1/2 = −3

2
(5 cos2 θ − 1) sin θ (E.138)

P2
3 (x) = 15x(1 − x2) = 15 cos θ sin2 θ (E.139)

P3
3 (x) = −15(1 − x2)3/2 = −15 sin3 θ (E.140)

P1
4 (x) = −5

2
(7x3 − 3x)(1 − x2)1/2 = −5

2
(7 cos3 θ − 3 cos θ) sin θ (E.141)

P2
4 (x) = 15

2
(7x2 − 1)(1 − x2) = 15

2
(7 cos2 θ − 1) sin2 θ (E.142)

P3
4 (x) = −105x(1 − x2)3/2 = −105 cos θ sin3 θ (E.143)

P4
4 (x) = 105(1 − x2)2 = 105 sin4 θ (E.144)

Functional relationships

Pm
n (x) =

{
0, m > n,

(−1)m (1−x2)m/2

2nn!
dn+m (x2−1)n

dxn+m , m ≤ n.
(E.145)

Pn(x) = 1

2nn!

dn(x2 − 1)n

dxn
(E.146)

Rm
n (x) = (−1)m(1 − x2)m/2 dm Rn(x)

dxm
(E.147)

P−m
n (x) = (−1)m (n − m)!

(n + m)!
Pm

n (x) (E.148)

Pn(−x) = (−1)n Pn(x) (E.149)
Qn(−x) = (−1)n+1 Qn(x) (E.150)
Pm

n (−x) = (−1)n+m Pm
n (x) (E.151)

Qm
n (−x) = (−1)n+m+1 Qm

n (x) (E.152)

Pm
n (1) =

{
1, m = 0,

0, m > 0.
(E.153)

|Pn(x)| ≤ Pn(1) = 1 (E.154)



Pn(0) = �
(

n
2 + 1

2

)
√

π �
(

n
2 + 1

) cos
nπ

2
(E.155)

P−m
n (x) = (−1)m (n − m)!

(n + m)!
Pm

n (x) (E.156)

Power series

Pn(x) =
n∑

k=0

(−1)k(n + k)!

(n − k)!(k!)22k+1

[
(1 − x)k + (−1)n(1 + x)k

]
(E.157)

Recursion relationships

(n + 1 − m)Rm
n+1(x) + (n + m)Rm

n−1(x) = (2n + 1)x Rm
n (x) (E.158)

(1 − x2)Rm
n

′
(x) = (n + 1)x Rm

n (x) − (n − m + 1)Rm
n+1(x) (E.159)

(2n + 1)x Rn(x) = (n + 1)Rn+1(x) + n Rn−1(x) (E.160)
(x2 − 1)R′

n(x) = (n + 1)[Rn+1(x) − x Rn(x)] (E.161)
R′

n+1(x) − R′
n−1(x) = (2n + 1)Rn(x) (E.162)

Integral representations

Pn(cos θ) =
√

2

π

∫ π

0

sin
(
n + 1

2

)
u√

cos θ − cos u
du (E.163)

Pn(x) = 1

π

∫ π

0

[
x + (x2 − 1)1/2 cos θ

]n
dθ (E.164)

Addition formula

Pn(cos γ ) = Pn(cos θ)Pn(cos θ ′) +
+ 2

n∑
m=1

(n − m)!

(n + m)!
Pm

n (cos θ)Pm
n (cos θ ′) cos m(φ − φ′), (E.165)

cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′) (E.166)

Summations

1

|r − r′| = 1√
r2 + r ′2 − 2rr ′ cos γ

=
∞∑

n=0

rn
<

rn+1
>

Pn(cos γ ) (E.167)

cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′) (E.168)

r< = min
{|r|, |r′|} , r> = max

{|r|, |r′|} (E.169)



Integrals ∫
Pn(x) dx = Pn+1(x) − Pn−1(x)

2n + 1
+ C (E.170)

∫ 1

−1
xm Pn(x) dx = 0, m < n (E.171)

∫ 1

−1
xn Pn(x) dx = 2n+1(n!)2

(2n + 1)!
(E.172)

∫ 1

−1
x2k P2n(x) dx = 22n+1(2k)!(k + n)!

(2k + 2n + 1)!(k − n)!
(E.173)

∫ 1

−1

Pn(x)√
1 − x

dx = 2
√

2

2n + 1
(E.174)

∫ 1

−1

P2n(x)√
1 − x2

dx =
[

�
(
n + 1

2

)
n!

]2

(E.175)

∫ 1

0
P2n+1(x) dx = (−1)n (2n)!

2n + 2

1

(2nn!)2
(E.176)

Fourier–Legendre series expansion of a function

f (x) =
∞∑

n=0

an Pn(x), −1 ≤ x ≤ 1 (E.177)

an = 2n + 1

2

∫ 1

−1
f (x)Pn(x) dx (E.178)

E.3 Spherical harmonics

Notation

θ, φ = real numbers; m, n = integers
Ynm(θ, φ) = spherical harmonic function

Differential equation

1

sin θ

∂

∂θ

(
sin θ

∂Y (θ, φ)

∂θ

)
+ 1

sin2 θ

∂2Y (θ, φ)

∂φ2
+ 1

a2
λY (θ, φ) = 0 (E.179)

λ = a2n(n + 1) (E.180)

Ynm(θ, φ) =
√

2n + 1

4π

(n − m)!

(n + m)!
Pm

n (cos θ)e jmθ (E.181)



Orthogonality relationships∫ π

−π

∫ π

0
Y ∗

n′m ′(θ, φ)Ynm(θ, φ) sin θ dθ dφ = δn′nδm ′m (E.182)

∞∑
n=0

n∑
m=−n

Y ∗
nm(θ ′, φ′)Ynm(θ, φ) = δ(φ − φ′)δ(cos θ − cos θ ′) (E.183)

Specific examples

Y00(θ, φ) =
√

1

4π
(E.184)

Y10(θ, φ) =
√

3

4π
cos θ (E.185)

Y11(θ, φ) = −
√

3

8π
sin θe jφ (E.186)

Y20(θ, φ) =
√

5

4π

(
3

2
cos2 θ − 1

2

)
(E.187)

Y21(θ, φ) = −
√

15

8π
sin θ cos θe jφ (E.188)

Y22(θ, φ) =
√

15

32π
sin2 θe2 jφ (E.189)

Y30(θ, φ) =
√

7

4π

(
5

2
cos3 θ − 3

2
cos θ

)
(E.190)

Y31(θ, φ) = −
√

21

64π
sin θ

(
5 cos2 θ − 1

)
e jφ (E.191)

Y32(θ, φ) =
√

105

32π
sin2 θ cos θe2 jφ (E.192)

Y33(θ, φ) = −
√

35

64π
sin3 θe3 jφ (E.193)

Functional relationships

Yn0(θ, φ) =
√

2n + 1

4π
Pn(cos θ) (E.194)

Yn,−m(θ, φ) = (−1)mY ∗
nm(θ, φ) (E.195)

Addition formulas

Pn(cos γ ) = 4π

2n + 1

n∑
m=−n

Ynm(θ, φ)Y ∗
nm(θ ′, φ′) (E.196)

Pn(cos γ ) = Pn(cos θ)Pn(cos θ ′) +
+

n∑
m=−n

(n − m)!

(n + m)!
Pm

n (cos θ)Pm
n (cos θ ′) cos

[
m(φ − φ′)

]
(E.197)



cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′) (E.198)

Series

n∑
m=−n

|Ynm(θ, φ)|2 = 2n + 1

4π
(E.199)

1

|r − r′| = 1√
r2 + r ′2 − 2rr ′ cos γ

= 4π

∞∑
n=0

n∑
m=−n

1

2n + 1

rn
<

rn+1
>

Y ∗
nm(θ ′, φ′)Ynm(θ, φ), (E.200)

r< = min
{|r|, |r′|} , r> = max

{|r|, |r′|} (E.201)

Series expansion of a function

f (θ, φ) =
∞∑

n=0

n∑
m=−n

anmYnm(θ, φ) (E.202)

anm =
∫ π

−π

∫ π

0
f (θ, φ)Y ∗

nm(θ, φ) sin θ dθ dφ (E.203)
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