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Chapter 1

Atoms and Molecules

1.1 Interactions in Isolated Atoms

In order to understand the properties of solids one has to be able to de-
scribe their constituents and how they interact with each other. Solids
are made out of arrays of atoms that are composed of electrons, protons
and neutrons. Elementary quantum mechanics describes very well the
behavior of isolated atoms such as Hydrogen. Most of the propertics of
solids depend on the behavior of electrons and protons. These are enti-
ties that have opposite charge, a large mass difference (the mass of the
proton, m,, is approximately 1000 times the electron mass, m,). and
different spatial position in the atom. The nucleus occupies the center
of the atom and its much smaller than the surrounding electronic cloud
which is extended over large distances (107®m = 14) if compared with
the nucleus size (107%m = 1fm). Since the characteristic distances in
solids are of order of a few A it is the electron who plays a major role
on the properties of solids.

The basic physics of atoms can be understood starting from the
Hydrogen atom. The Hamiltonian that describes the Hydrogen atom
is given by

2

2 2
gF=2r P (1.1)
2m, 2m., |rp—r.|

where pp (pe) is the momentum, rp (r.) the position of the proton
(electron) and e is the electric charge. Remember that in quantum
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mechanics these quantities are operators that act on a Hilbert space of
functions. Moreover, momentum and position are conjugated so that
they obey commutation rules, namely,

[.’L‘,',pj] = ’Lhé,ﬂ (12)

where we have introduced the components of the vector as r = (xy, z2, x3)
and p = (p1,p2, p3) (6;; = 1if i = j and 0 otherwise is called the Kro-
necker delta). Moreover, the operators for the electron and proton
commute among themselves since they are distinct from each other.
The state of the system can be represented in terms of the positions of
clectron and proton by a bra |rp, re, 0e, 0p) Where o is the spin degree
of freedom of cach one of the particles. From basic quantum mechan-
ics onc knows that protons and clectrons have spin 1/2 and therefore
are called fermions. In this case o can only have two possible pro-
jections on a fixed axis, that is, up (1) or down (). Observe that
although |rp, 1., 0,,0p) is a legitimate state of the problem and span
the whole Hilbert space of solutions it does not represent an eigenstate
of the Hamiltonian. The reason for that is that the momentum op-
erator which appears in the kinetic term of (1.1) does not commute
with the position operator and therefore it induces transitions between
states with different positions (that is, the electron and proton move
around!).

As usual in any problem in quantum mechanics one has to find the
basis that properly describe the system of interest. The obvious thing
to do, as in classical mechanics, it is to transform the Hamiltonian (1.1)
to the center of mass and relative coordinate. In order to do it we define

1
R = 5 (I'P + I'e)
r = Irp—T,, (1.3)

which are the center of mass and relative coordinate of the system. In
terms of these new coordinates the Hamiltonian becomes,
P2 2 62
L (1.4)
2M - 2u  r
where M = m, + m, is the total mass and p = 1/m, + 1/m, is the
reduced mass of the system. Observe that since m, ~ 1000m, we can
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rewrite M ~ m, and pu = m, with good accuracy. Hamiltonian (1.4)
already represents a major simplification in regards to (1.1). First of all
we realize that the center of mass motion decouples from the relative
motion since R does not appear in (1.4) (observe that almost all kinetic
energy of the center of mass is carried by the proton which is much
heavier). It implies that we can diagonalize the problem in the basis of
total momentum operator P:

PK) = HK[K) (1.5)

which is just to say that the electron-proton system moves freely in
space. The non-trivial part of the problem is the solution of the relative
motion. Because the potential is central the problem has a symmetry
of rotation in spacec.

Rotations in space are generated by the angular momentum oper-
ator L = r X p which can be rewritten in a very convenient form:
L; = 3,k €i,5x7;Pr Where €; 5 is the Levi-Civita tensor which is com-
pletely anti-symmetric (that is, €;;, = 0if i = jori =k or j =k
and the other components are defined such that €103 = +1 as well
as all other cyclic permutations, €231 = €312 = +1 and all the non-
cyclic permutations are —1: €; 30 = —1). This definition of the angular
momentum is good only in classical mechanics where z and p are not
operators. In the case of operators we define the symmetrized form

1

3
L, = 5 Z €5k (acjpk +pkacj) (16)
Jrk=1

which obeys the so-called Lie algebra
[Li, Lj] = ihei i Ly (1.7)

which you can easily show from (1.6) and (1.2). The fact that the an-
gular momentum operators do not commute among themselves implies
that one cannot classify the states in terms of these operators inde-
pendently. Instead we use one of them, say, Ly (L,) and its module
L2 = ¥, L2. Tt is indeed trivial to show that the Hamiltonian (1.4)
commutes with these operators, [H,L?| = [H, L3] = 0 and therefore
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the states of the system can be classified according to the eigenvalues
of these operators, namely,

L3, m) = RAI+ 1), m)

Ls|ll,m) = hm|l,m) (1.8)
where m = —I[,...,{ in unit steps. The Schrodinger equation for the
problem determines the principal quantum number n. Thus, we can
define an eigenstate of the Hamiltonian has the form |K, I, m,n, 0., op)
so that,

K> 13.6(eV)
2M n2

H|K,n,l,m,0.,0p) = < ) K, n,l,m,o.,0p) (1.9)
is the full solution of the problem. Observe that the solution of this
problem does not involve [ = 0,1,2...,n — 1 (these are usually called
s,p,d, f,... states) , m = —[, ...,+l or the spin degrees of freedom.
Thus the states of the system are degenerate in this quantum numbers
(there is more than one state of the system with the same energy).
Moreover, it is obvious that the ground state corresponds to put the
electron in n = 1 and set K = 0 corresponding to a static Hydrogen
atom. The eigenstates of the problem can be represented in real space
by projecting |Kn,l,m, 0., op), that is,

¢K,n,l,m(R7 T, 07 d)) = <R7 T, 07 ¢|K7 la m, TL>
X eiK.RYi,m (97 (b)Rn,l(r) (110)

where Y ,,(6,¢) is a spherical harmonic and R, ;(r) is the so-called
radial wavefunction that extends over a distance of order of the Bohr
radius, ap = h*/(ue?). The shape of some of these functions is shown
in Fig.1.1.

Things arc relatively simple in the H atom because the proton only
acts as an external potential. In atoms with more than one electrons the
situation is not so simple because electrons interact among themselves
via the Coulomb repulsion. Consider, for instance, the case of the He
atom that has 2 electrons and 2 protons. The nucleus of the atom has
mass 2m, and the full Hamiltonian of the problem reads

Pr . P! | P 2¢? 2¢? ¢’

H= + + - — +
4m, 2m, 2m, |rp—r1| |rp—rTs| |r; —1o

(1.11)
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Figure 1.1: Radial and angular dependence of some of the wavefunctions
of the H atom.
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where 115 is the position of the two electrons. This is a quite compli-
cated problem. The wavefunction of the system is a function of the
coordinates, ¥(rp, ri,12). What we need, however, is not the complete
solution of the problem but an approximate solution that provides qual-
itative understanding. Since the mass of the proton is so much larger
than the mass of the electron one expects the kinetic energy of the pro-
tons to be small compared to the other terms, that is, we expect the
light electron to move distances much larger than the protons in the
same time interval. During this time interval the protons “look” static
for the fast electron. If the protons are static then we are back to our
one-body quantum mechanics problem where the electron moves under
a potential field created by the two protons. This potential is parame-
terized by the distance between the protons (it implies that we can solve
the Schrédinger equation for cach configuration of the protons). If this
is the case the wavefuntion of the electrons can be written as ¥, (r1,12),
and depends on the proton coordinates as a parameter. Therefore, it is
intuitive to look for a variational solution of the quantum mechanical
problem with the form:

U(rp,ry,1T0) = Pr, (r1,19)0(rp) (1.12)

where ¢(rp) is the nucleus wavefunction. Eq.(1.12) is known as the

Born-Oppenheimer approximation. In order for this wavefunction to

make any sense one imposes that ¢, (r1,r2) is an eigenstate of
p? p2 2¢2 2¢2 e?

H = — _
s(re) 2m, + 2m, |rp—ri| |rp—r| + |ty — 1y

(1.13)

with cnergy E,(rp) where « labels the possible quantum numbers of

(1.13). Once the cigenenergies of (1.13) arc known the nucleus wave-
function ¢(r,) is an cigenstate of
Py

Hy=—-—"+FE,(rp). 1.14

Ly a(rp) (1.14)

This separation of energy scales between nucleus and electrons is very

natural and it will de discussed in more detail later.
The quantum mechanical problem of three bodies described above
is impossible to solve analytically (contrary to its classical counterpart).
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We can understand the physics of these many electron atoms qualita-
tively based on what we know about the H atom and Pauli’s exclusion
principle which states that there are no two electrons with the same
quantum numbers. As you probably know this is a consequence of the
Fermi-Dirac statistics obeyed by electrons. Let us go back to He atom
in the Born-Oppenheimer approximation (1.13) and set rp = 0 for
simplicity, that is,

2 2 22 22 2
P P2 _i_i_{_ei (1.15)

Hs 2me  2me  |ry|  |ro| |y — |’
which describes two electrons moving in the Coulomb potential of a
charge +2e and interacting with each other. Observe that because
the electrons are practically in the same volume, the direct interaction
between the electrons and the nucleus is approximately 2 times larger
than the electron-electron interaction and has to be considered first.
At short distances the electron sees the full potential of the nucleus
with charge +2e while at larger distances it will see a smaller effective
charge because of the other electron, that is, it sees a Coulomb potential
with charge 2e—e = +e. This effect only happens because the electrons
are free to move and adapt to the changes in the Coulomb potential. In
a static system (that is, a problem where m, — 00) this is not so and the
electron actually “feels” the full charge of the nucleus. This process in
which the kinetic energy of the electrons leads to a smaller “effective”
charge of the nucleus is called screening. What we are proposing is
that beyond the Hamiltonian (1.11) there is a simpler Hamiltonian,
or effective theory, that describes the problem. For the moment this
effective theory is hidden due to our current ignorance and lack of
sophistication. But the main thing is that because of the symmetry
of the problem the form of the potential will not change substantially
with distance since the charge distribution is spherically symmetric.
Therefore the wavefunction of the problem looks like a H-like state
with a slightly different energy than the H atom. Thus, the He atom is
obtained by filling up the 1s state (n = 1 and [ = 0) of the H atom with
electrons of opposite spin (Pauli’s principle). Observe, moreover, that
because the first shell is filled, the He atom will not be very reactive
since, as seen from far away, it will look like a neutral object to a foreign
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electron. Indeed, the ionization energy of the He atom is 24.6eV instead
of the 13.6eV of the H atom.

Consider now a somewhat more complicated situation: the Li atom
which has charge +3e in the nucleus. Again using our effective theory
we conclude that the wavefunctions are H-like and that in the ground
state we can occupy the first allowed 1s state with two electrons with
opposite spins. That is, we form first a He™ atom. Where does the
second electron go? Naturally it should go to a n = 2 state which
can be s or p (I = 0 or I = 1, respectively). In the H atom these
two states are degenerate but is this true for the Li atom? The reason
for the non-degeneracy of the Li atom is related with the charge of
the nucleus and the shape of the wavefunctions in the s and p states.
In Fig.1.2 we show the result of the combination of the radial and
angular part of the wavefunction as shown in Fig.1.1. Observe that in
the s state the electron is closer to the nucleus that has charge +3e,
while in the p orbital the electronic charge is distant from nucleus.
Thus, the s state has lower electron-proton Coulomb energy than the
p state and will be occupied first. Again, it is the preponderance of
the Coulomb attraction (which in the case of Li is 3 times larger than
the electron-electron interaction) which determines the ground state
properties. Observe that since the first 1s shell if filled this state is
very H-like and the ionization energy for this electron is 5.4eV showing
that Li is chemically very reactive. Most of the atoms in the periodic
table can be understood by simple arguments like these ones. The
understanding of the atoms and how onc describes the their ground
state is fundamental for the understanding of solids. The formation
of a solid depends very much on how the protons interact with the
electrons and how the electrons interact among themselves.

1.2 Atomic Magnetism

While the order and classification of energy levels in atoms is deter-
mined by the gross value of the Coulomb interaction between the elec-
trons and the nucleus (which is order of 1 eV & 10, 000K) the magnetic
behavior of isolated atoms depends on a delicate balance of energy
scales. When we talk about magnetism what we really mean is the
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s P d

Figure 1.2: The shaded areas are proportional to the probability of find-
ing the electron in each orbital.
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magnetic response of the atoms to an applied magnetic field. In the
presence of a magnetic field the Hamiltonian of the problem reads

H = Hy+H;

3 (pz + A(I‘Z)>2 -+ ,UBgoﬁB . S,/ﬁ (116)

1
H():Z

2m

where r; and p; arc the coordinate and momentum of the #** clectron
in the atom, A(r) is the vector potential (B = V x A) the last term
is the Zeeman energy of the electron spin in a field B (S; is the spin of
the i** electron, (up = efi/(2mc) is the Bohr magneton and gy ~ 2 is
the g-factor) and

N .2 N 2
Ze e
H; = — E E (1.17)
o Iml Sy I — 1

describes the Coulomb energies for the interaction between the electron
and the nucleus (7 is the nuclear charge) and between the electron
themselves. We assume that the magnetic field is applied in the z
direction and choose an electromagnetic gauge such that

A= g (xy — yx) (1.18)

which is called the symmetric gauge (notice that B = Bz). Substituting
(1.18) into (1.16) we get

2
HO:ZQI)—T:,L+MBBZ Z+905zz /h+ 22(1‘ +y7) 119)

We will show that for practical purposes the magnetic field terms are
very small compared to the field independent terms and can be treated
in perturbation theory. Thus, assuming the magnetic field to be small
we find that, up to second order in perturbation theory, the ground
state energy is given by:
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(L.;+ gOSz,i)/h|0)|2
Ey,—F,,

s (uppy 3
m#Q

5012 +1D)I0). (1.20)

+ 8mc?

We can immediately estimate the size of these terms. The first order
correction is ppB{n|>>;(L,; + 90S.:)/k|n) = ppB ~ hw, where

eB

— (1.21)

We =

is the cyclotron frequency. This term is of order of 107 eV (~ 1 K) for
a field of 1 Tesla. For the third term we have e2B?/(8mc?){(n| ¥; r?|n) ~
(e2B%a?)(8mc?) =~ (hw,)?/(€?/ag) which is of order of 107 eV (a~ 107°
K!) for a field of 1 Tesla. Indeed these terms are very small when
compared to the characteristic atomic energies that are of order of
electron Volts.

In order to calculate the perturbative shift in energy given in (1.20)
one needs to know the nature of the ground state of the atom in the
absence of the field. In the absence of interactions among the electrons
this is given by the energy levels of the H atom. The system is degener-
ate because the problem has rotational symmetry and for each state [
there are 2/ 4+ 1 degenerate states corresponding to the possible projec-
tions of /, that is, to the quantum numbers m = —{,...;l. In a system
with N electrons we can distribute the electrons along these 2(21 + 1)
states (the factor of 2 comes from the two possible spin orientations)
without changing the energy of the state. The total number of possible
combinations of quantum numbers is [2(2{ + 1)]!/(N![2(2] + 1) — N]).

Let us consider the problem of an atom with filled shell, that is,
with NV = 2/ 4 1. This is the case of noble gases such as He, Ar, etc.
It is clear that in the ground state we have L*|0) = S*|0) = 0 and the
only term that matters is the last one in (1.20). Using that fact that
(x2) = (y?y = (22) = (r?)/3 for the case of a spherically symmetric
potential we have

_ Ne’B?

0= ——ua
12mc?

(1.22)
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where
1
o’ = v ;(ﬁ). (1.23)

The magncetization per unit of volume in the system for N, atoms is
given by

N,O0F Neée?a?D

M= a0z NeaDp (1.24)

V 0B 6mc?
which has a necgative sign which implics that the response is diamag-
netic, that is, in responding to an applied field the atoms want to reduce
its value (p = N,/V is the atomic density). The magnetic susceptibility
susceptibility is given by

_OM _ Neé*a?p
X=9B = 6me -

(1.25)

Of course the situation described above is very simple because we
are dealing with a system with a closed shell. Most atoms have only
partially filled shells. In this case the matrix elements in (1.20) do not
vanish. The interaction among the electrons becomes important and
the degeneracy of the orbitals is lifted by the Coulomb interaction. We
observe that because the Coulomb interaction is spherically symmetric
the total angular momentum, L, and the total spin, S, are constants of
motion and the states can still be classified in terms of the eigenstates of
these two operators, that is, all states can be written as: |L, S, L,,S,).
Moreover, the system is degenerate since for a fixed value of L and
S we can have (2L + 1)(25 + 1) states for different values of L, and
S, corresponding to different projections of L and S. This is called a
multiplet. Consider, for instance, an atom with a configuration like 4 f2.
The f orbital can comport 14 electrons. Since there are two electron
they can be put into the orbitals in 14!/(2!12!) = 91 different ways! In
this case we have S = 0,1 and L = 0,1,2,3,4,5 and for each value of
S and L there are (25 + 1)(2L + 1) degenerate states.

The relevant question is: which state, |S, L) has the lowest energy?
Of course to answer this question one needs a quantitative calculation
which involves the coupling of all the electrons via the Coulomb term.
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Observe however that exclusion principle does not allow two electrons
with the same spin to be in the same place in space. Thus, electrons
with the same spin effectively repel each other. Naturally this effect
lowers the Coulomb energy. Thus, electrons in an atom tend to have
all their spins aligned. This is called Hund’s firsl rule: in an atom
the electrons want to maximize the total spin S. This rule solves the
problem of the spin but not of the orbital angular momentum. Again
the name of the game here is: minimize the Coulomb energy between
electrons! On the one hand, in states with small L (like an s-state) the
electrons spend much of their time close to the nucleus and therefore
pay an energetic price of the repulsion among themselves. On the other
hand, in states with large L the electrons are apart from the nucleus
and feel a weaker Coulomb repulsion. This gives rise to the Hund’s
second rule: For a maximum valuc of S the cnergy is minimized by the
largest value of L. The first and second Hund’s rules specify the values
of L and S for which the energy is minimum but still for fixed L and S
we have (2L + 1)(25 + 1) degenerate states. Is this degeneracy real in
an atom? The answer is: no! The reason being that the orbital motion
is coupled to the spin of the electron by the so-called spin-orbit effect.
Consider one electron moving with velocity v around a nucleus.
From the point of view of the electron (that is, looking at the problem at
the frame co-moving with the electron) the nucleus moves around with
velocity —v. Since the nucleus is charged we can imagine the nucleus
motion as a little current of charge circulating around the clectron. This
current generates a magnetic field at the position of the electron which
is proportional to r X v o< L. Thus, the Zeeman energy created by this
field is also proportional to L - S which is the spin-orbit coupling. One
usually writes the Hamiltonian associated with this coupling as

Hgo = \L-S (1.26)

where X\ depends on details of the atomic problem and can be obtained
from the atomic spectra. Indeed, if onc adds (1.26) to our original
Hamiltonian (1.16) we sce that L and S do not indeed commute with
the Hamiltonian scparately. However, the total angular momentum

J=L+S (1.27)
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commutes with the Hamiltonian. It means that we can still classify
the eigenstates of the problem in terms of J, that is, the states can be
labeled as: |J, J,, L, S). This implies that the degeneracy of the (2L +
1)(2S + 1) states is lifted and the states split into (2J + 1) degenerate
states corresponding to different values of J,. Indeed we can rewrite
(1.26) in terms of this operator as

A
2
since the Hamiltonian commutes with J, L? and S? . Observe that
due to (1.27) the allowed values of J go from |L — S| to L + S in unit
steps and the allowed valued of J, go from —J to J (which gives the

degeneracy of 2J + 1). The energy associated with each one of these
states is

Hgo =5 (3?-17 - §?) (1.28)

B(J.J.,8,L) = g T +1) = LL+1) = SS+1)].  (1.20)

It is observed experimentally that A > 0 for shells that are less than
half filled (n < 21 + 1) and A < 0 for shells that are more than half
filled (n > 21+ 1). If A > 0 it is clear from (1.29) that the energy will
be minimized for a given S and L for a configuration with smallest .J,
that is, J = |L — S|. Otherwise, if A < 0, the energy is minimized for
the largest value of J, that is, J = L + S. This is the so-called Hund’s
therd rule.

Hund’s rules can guide us to understand the response of an atom
to a magnetic field. Consider a system in which J = 0. In this case we
can use the Wigner-Eckart theorem and show that the first term in the
energy in (1.20) actually vanishes. We are left with the two other terms.
The third term is just the diamagnelic response we studied for the case
of atoms with filled shell. The second term is negative (remember
that second order perturbation theory always lowers the energy of the
ground state) and therefore it will give rise to a susceptibility with
positive sign. This is the so-called Van Vieck paramagnetic response.

If J # 0 then the first term in (1.20) does not vanish and it is the
largest contribution for the energy shift. We can rewrite this term in a
more appropriate form

Hz = ppB - (L + 90S) = ppB - (I + (90 — 1)S) (1.30)
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J

Figure 1.3: Angular momentum geometry.

which allows us to interpret J + (go — 1)S as the effective magnetic
moment of the atom,

M = —pgp(J + (90— 1)S) (1.31)

which is not a constant of motion since S is not conserved. It turns out,
however, that J is a constant of motion and we can think of J as being
fixed and that L and S rotate around J as in Fig.1.3. Thus the magnetic
moment is given by the component of L + ¢oS parallel to J. This is
the only component of the magnetic moment that contributes in first
order perturbation theory since the components of S in the direction
transverse to J will introduce transition between different values of J,
and give zero average when we calculate with an unperturbed state
|J, J,, L,S). The parallel component of S can be calculated from the
angle between J and S,

(J-S)

S; = 5 J
_ (J2 _ L2 + SQ)
= WE J (1.32)

which, in a state |J, J,, S, L) has a value

[J(J+1)—L(L+1)+S(S+1)]

(87) = 2J(J + 1)

J (1.33)

and therefore the effective magnetic moment in the direction of J is
given in (1.31)

M = —gugpJ (1.34)
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where
(o+1)  (9o—1) S(S+1)—L(L+1)
L = 1.
is the Landé g-factor. The energy associated with (1.30) is
SE(J, J,,S,L) = gJ.usB (1.36)

where J, = —J, ..., J. This final expression gives the splitting between
the energy levels of a multi-clectron atom.

Thermal effects

One interesting application of (1.36) is the calculation of the mag-
netic response of a set of isolated identical atoms in a magnetic field.
Observe that the partition function for the problem defined in (1.36) is

given by (8 = 1/(kgT))

7 - i o BE(Je,S,L) _ i ¢—BIIL,S) Teun B
Jo=—J Jy=—J
sinh [BgupB(J +1/2)]
sinh [BgppB /2]

where in the last line we used the sum of a geometric series. The
magnetization is obtained like in (1.24) and it is given by

M(B) = pgupJ B1(89J5B) (1.38)

(1.37)

where

2J 2J 2J

is the so-called Brillouin function. Notice that for SgugB >> 1 (that
is, low temperatures) the magnetization saturates at M — pgupJ as
expected since all the moments are aligned. At high temperatures, that
is, BgupB << 1 we find

B;(z) = Mcoth <M> — icoth (£> (1.39)

J(J + 1) (gu5)*B

M =~ 1.40
p ST (1.40)
and gives a magnetic susceptibility
J(J +1)(gpn)’
T) = 1.41
(1) == (1.41)

which is known as the Curie susceptibility.
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1.3 Molecules

1.3.1 The HJ molecule

We have seen that the physics of many-electron atoms can be quite
complicated if one is interested in the detailed behavior of the electrons.
Things become even more complicated if we now allow the atoms to
interact among themselves. Let us consider here the problem of the
formation a molecule (which is the first step toward a solid). To get
a qualitative understanding of the problem let us consider first the
problem of two protons and onc clectron, that is, the Hy molccule.
The Hamiltonian of this problem can be written as

2 2 2
P pT + P3 2 1 1 1
H=_—°4 +—e ( + - 1.42

2m, 2m,, lre —R;| |re—Rs| |R;—Ry| )

where r is the position of the electron and R; and R, are the positions
of the two protons. The first three terms are the kinetic energies of
each one of these particles and the last three their interaction energy.
This is a quite complicated problem. The wavefunction of the system
is a function of all the coordinates, ¥(r., R;,Rs). We make use of
the Born-Oppenheimer approximation and assume that the protons
are static during the time of motion of the electron.

Suppose that initially the protons are infinitely apart. For simplicity
assume R; = 0 and Ry = R.. In this case the problem has two solutions
which are degenerate with each other, that is, the electron is bound to
proton 1 with energy Ej and the proton 2 is empty or vice-versa. The
wavefunction of the electron, v, is well localized in each proton (it is
a H-like wavefunction). Let us consider a simplification of the problem
which forgets about all the other states of the problem except for the
states in which the electron is localized in one of the protons as in
Fig.1.4. Let (1| ({2|) be the state of the electron bound to proton 1(2).
If R — oo one has

Holl) = Ey|1)
Hy2) = Ey|2) (1.43)

where (1|2) = 0 and (1]1) = (2]2) = 1.
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J;. | 1>

e D 12>

Figure 1.4: Two states retained in the two-level system approximation
of Hy .
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Equation (1.43) can be rewritten as
Ho = By (1] + 2)2)) (1.44)

As the protons get closer to each other there is a finite probability
that the electron can jump from proton 1 to proton 2 and vice-versa.
This is the so-called quantum tunneling and is depicted on Fig.1.5. The
tunneling depends on the amount of overlap between the wavefunction
of the electron in the two different protons. There is an energy scale
associated with the tunneling which we are going to call ¢. ¢ is a function
of R and vanishes when R — oo and becomes large when R — 0. Thus,
in order to incorporate tunneling into the problem one has to add a
perturbation that mixes the two states. This perturbation we call Hr
and it has to be such that

Hripy o< 1o (1.45)

and of course H2 o< I since if we hop the clectron twice it has to return
to the same atom. It is obvious that the tunncling Hamiltonian must
have the form:

Hy = —t([1){2] + [2)(1]) - (1.46)

Any eigenstate of H = Hy+ Hr has to be a linear combination of states
(1] and (2|. This problem can be studied by rewriting the Hamiltonian
in matrix form. The matrix elements are:

(H[1) = @2[H2) = Ey

(1|1H|2) = {(2|H|1) = —t (1.47)
which can be rewritten in matrix form:
| Ep —t
[H] = l 4 B, ] } (1.48)

Observe that in terms of the matrix formulation the states are repre-
sented by vectors

(w,] = (é) (1.49)
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[, = (2) (1.50)

Of course our goal is to solve the Schrodinger equation

H[p) = Ely). (1.51)
From basic quantum mechanics the most general solution of this prob-
lem has to be a linear combination of base states, that is, |¢) =

a|l) + b|2). Normalization of the wavefunction (or probability) insures
that (¢|¢)) = 1 = |a]? + |b|*. In the language of (1.48) we have

(7] = ( Z ) (1.52)

and the Schrodinger equation becomes a simple eingenvalue problem

Y] = B[]
(H) - EI[®] = 0 (153)

where
1] = l (1) ; ] (1.54)

is the identity matrix. It is a simple exercise to show that eigenstates
of the problem are:

H|A) = (Eo +t)|4)
H|B) = (B, - t)|B). (1.55)

where

) = == ()

V2 V2
1 1 1
B = Js+m=5(1)- (1.56)
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These states are called anti-bonding and bonding, respectively. Observe
that the bonding state is the ground state of the problem. In the
representation of position these two states can be easily written as

(R,1|B) = 9pr(r)=1o(r) +vo(r —R)
R,r[A) = Yar(r) =1o(r) —tho(r —R) (1.57)

where 1)y is the ground state wavefunction of the H atom (¢n—0 1=0,m=0(7")).
Observe that the anti-bonding state has a node in the middle position
between the protons (¥4 r(r = R/2) = 0) while the bonding state
is always finite. Thus in the bonding state the amount of “charge”
between the protons is larger (the probability of finding the electron)
than in the bonding state. That is the reason its energy is lower and it
keeps the two protons together. In the anti-bonding case the electronic
charge is mostly around the two protons which are therefore ”shielded”
from each other. Thus, the anti-bonding state is unstable. A plot of
square of the wavefunction for each one of these states is shown on Fig.
1.6.

Another way to understand the problem is to realize that at finite
R we can expand the potential term in (1.42) in powers of /R and
it is clear that the first term is of order r/R2. Since this term is very
small we can do perturbation theory. The first order term cancels
due to symmetry {(tg|r|thy) = 0. The second order term has the form
6F =X, 0 {|V [Yn)[?/(Eo — E,). This term is always negative if E,
is the ground state. From the previous argument it is clear that |¢| =
—)F > 0. Thus, in this way, we relate our original problem with the
two-level system calculation. On the one hand, the energy of the ground
state (in this case a bonding state) has to decrease as we decrease the
distance between atoms. On the other hand the first excited state
(the anti-bonding state) increases in energy as we decrease the distance
between the protons (since ¢ — 0 as R — oo). When the distance
between atoms goes to zero the energy has to go to infinity since the
Coulomb energy term 1/R diverges. Thus we conclude that there must
be a minimum of the ground state energy at some distance Ry (see
Fig.1.7). In first approximation the energy close to the minimum is
parabolic and therefore the energy is quantized in units of hwy &~ Ej.
Moreover, since this corresponds to the potential where the electron is
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AV(r)

¥ -

Figure 1.5: Potential energy for Hy molecule showing the overlap of the
electron wavefunction in the two different protons.
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trapped we can write

km E}
2h2

where £ is a constant of order unit. Thus, by dircct substitution in
(1.14) we sce that the protons undergo harmonic motion around the
equilibrium position with a frequency = y/m./m,Ey/h.

Let us check now the validity of our approximation. By direct sub-
stitution of (1.42) and (1.14) into the Schrédinger cquation we find
that the have neglected terms of the form —h%Vi4p - Vié/ my. Since
variations in R; will produce variations in r we can write this term as
approximately |p.||pp|/(m,). Thus in order for our approximation to
be valid we have to require p2/m, >> |pe|[py|/myp or |Pp| >> |pel-
The momentum of the electron in a bound state of the H-atom is ap-
proximately p, ~ \/m¢FEy while for the protons undergoing harmonic

motion we have p, ~ \/ mypy/Me/mpEy. Thus the Born-Oppenheimer

E,(R)~ E° + (R — Ry)? (1.58)
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Anti-bonding state

gl

Bonding state

Figure 1.7: Energy of the Hj system as a function of the distance
between the protons R.

approximation works when
my/* << my/* (1.59)

which is a good approximation in most cases ((m./m,)'/* ~ 0.16).
Thus we have shown that within these approximations the protons un-
dergo harmonic motion and within a period of oscillation of the protons
the electron can be found in a bonding state. This is an example of a
covalent bond where the electron is shared by the protons.

1.3.2 The H> molecule

The argument given above does not apply to neutral atoms since we
have to introduce the Coulomb repulsion between the electrons in dif-
ferent atoms. Consider the H, molecule. The two electrons are tightly
bound to each proton. We can still do perturbation theory by assum-
ing that the atoms are very far apart from each other and start from
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the atomic limit. In this case, since the atoms are neutral, the electric
monopole terms of H, vanish and one has to consider the next term
in the multipole expansion of the Coulomb potential. The next con-
tribution comes from a dipole term that behaves like 1/R3. Thus, if
we do perturbation theory again on this term the first order is null (as
before) and the second order perturbation theory for the ground state
is negative. Thus the second order perturbation theory produces an
effective interaction that behaves like

05187

Hyay = 22 (1.60)

where « 5 are the polarizability of the atoms. This is a very short range
interaction compared with the bare Coulomb interaction and moreover
it is attractive. This is known as the Van der Walls interaction.

Our reasoning here is very similar to the one in the problem of the
H; system. Within the Born-Oppenheimer approximation consider
the wavefunction of the problem with two electrons and two protons
separated by a fixed distance R. We have various possibilities among
the various arrangements of the electrons around the protons. We can
have one electron around each proton or we can have the two electrons
around one proton. It turns out, however, that in this last situation
the Coulomb repulsion between the electrons is large and therefore
the ground state has to have one electron per proton. This is the
so-called Heiller-London approach. Thus we have two states which
are degenerated when the protons are infinitely apart, that is, with
the electrons in their original position or with the electrons exchanged
between the protons. These two states are depicted on Fig.1.8.

The situation here is completely equivalent to the Hj system and as
the protons approach each other they can exchange their electrons. Let
rio be the position of each electron. The most general wavefunction
for this problem has the form

W(ry,r9) = anhi(r1)ha(r2) + Bebi(ra)eha(r1) (1.61)

where o, 3 are coeflicients and /;(r;) means the state of electron j on
atom 4. If the distance between the atoms is infinity, any linear com-
bination of the type (1.61) is a solution. As we approach the H atoms
the electrons from each atom can tunnel from one proton to another
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Figure 1.8: Two states retained in the two-level system approrimation
Of HQ.
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(but always there is one electron per proton!). Using the two-level sys-
tem approach we find that the states that matter are the bonding and
anti-bonding states which can be written as,

\I’A(I'brz) = NA(¢1(T1)1/J2(T2)—?/J1(1'2)?/J2(1'1))
Up(ri, o) = Np(¢1(ri)ihe(re) + ¥1(r2)ibe(r:)) (1.62)

where N4 p are normalization constants. There is a possible problem
here, however. The Pauli principle requires that when we exchange the
electrons, the wavefunction has to change sign (indeed, one must have,
U(ry,r9) = —¥(ry, 1) and therefore, ¥(ry,ri) = 0). Thus, state Up
(which we concluded to be the ground state) cannot exist! What is
wrong with this picturc? What is wrong is that we forgot the clectron
spin. We can still have a wavefunction that is symmetric with respect
to the coordinates if we have a spin part which is anti-symmetric and
vice-versa. Thus, from the four states available for the two electron
problem the only spin states that matter are:

Xs(51,82) = [s1 =182 =]) — |s1 =L, 80 =1)
xi(s1,82) = |s1=T,52 =)+ [s1 =, 50 =1) (1.63)

which are singlet and triplet combinations of the spins, respectively.
Thus, accordingly to the Pauli principle the states allowed are

\IJs(rla S1;T2, 52) = \I’B(I'l, I'2)Xs(51, 52)
Uy(ry, 81379, 82) = Wu(ry,ro)xe(s1,52). (1.64)

The Pauli principle has strong consequences here. The tunneling of
electrons between atoms favors the bonding state but if the electrons
have the same spin projection this is not possible. Thus atoms with the
same spin projection repel each other. In some way, as we bring two
H atoms together we are trying to form a He atom. If the spins were
the same the electronic configuration should be 1s'2s! by the Pauli
principle. If we had the atoms with electrons with opposite spin then
we would get 1s? which is lower in energy. For the anti-bonding state
we can have the electrons with the same spin but in this case the atom
will not be stable (as shown in Fig.1.7). Thus, the ground state of
the Hy atom has to be a singlet state. This discussion implies that



28 CHAPTER 1. ATOMS AND MOLECULES

the Pauli principle acts as a force between the electrons, that is, there
is a quantum mechanical repulsion between the atoms with the same
spin. There is no classical analogue to this effect. Moreover, at shorter
distances the Coulomb repulsion between the electronic clouds becomes
large and this effect also increases the repulsion. In principle it is very
hard to calculate the combined effect of all interactions and one usually
uses the a phenomenological approach and introduce a repulsive term
of the form 1/R'? which is very short ranged and is called Lennard-
Jones potential so that the atom has a minimum at some R, as before.
Thus the energy of the molecule again looks very much like in Fig.1.7.

1.3.3 Ionic interactions

Another important interaction between atoms is the so-called ionic
bond. This interaction happens when the atoms have strong tendency
to form a filled electronic shell (that is, it gains more energy by bind-
ing strongly one electron to the nucleus instead of sharing it with the
other atom). Standard examples are the combinations of the elements
of the column 1A and 7A of the periodic table such as, NaCl. In or-
der to understand that observe that the charge distribution of Na is
1522522p%3s! while Cl is 1522522p83523p°. Thus if Na donates one elec-
tron entirely to Cl it has the electronic configuration of Ne while CI has
the configuration of Ar which are noble gases. Thus, in the most stable
configuration the molecule of NaCl has ions Na™CIl™. In this case there
is almost no screening of the electronic clouds and the atoms actually
feel the bare Coulomb interaction between them. At short distances, as
we saw before, there is a strong repulsion between the atoms which can
be accounted by the Lennard-Jones potential. Thus, for a molecule of
NaCl the energy of the system will look again like in Fig.1.7 with some
minimum at Ry. If we bring another molecule of NaCl close to the first
one Coulomb attraction (repulsion) between the atoms will bind the
molecules together.

1.4 Problems

1. Verify the following identities related with the Levi-Civita tensor:
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(1) €,5,k€Lmmn = 5i,l5j,m5k,n + 5i,m5j,n5k,l + 5i,n5j,l5k,m - 5i,n5j,m5k,l -
5i,m5j,l5k,n - 5i,l5j,n5k,m;

(2) 2k € gkerim = 06105m — im0 i;

Use (1.6) and (1.2) and the properties of the Levi-Civita tensor
to prove (1.7).

. The ionization energy of the oxygen is 13.6 eV and it is lower than

the energy of its neighbors on the periodic table (the ionization
energy of N is 14.5 eV and of F is 17.4 eV). Explain qualitatively
why this is so in terms of the interaction between the electrons.
(Hint: start the problem by thinking what is going on with B and
go up n the atomic number.

. Argon (A) is a noble gas and has filled shell with a configuration

3 p®. The next atom in the periodic table is potassium (K) which
has the configuration of lowest energy with 4 s instead of 3 d!!
Provide an argument that cxplains this obscrvation.

. Show that equation (1.19) is correct.

. Show that the total angular momentum defined in (1.27) com-

mutes with the Hamiltonian in the presence of spin-orbit cou-
pling.

. Use Hund’s rules to find the configuration of lowest cnergy for

an atom in which the last incomplete shell has a configuration:
1) d®; 2) f°. What is the value of the total magnetic moment in
each one of these configurations.

. What is the condition for which J = 0 in terms of n and ?

. Use the Wigner-Eckert theorem to show that for J = 0 the first

term in (1.20) vanishes.

. Use the algebra of angular momentum (Clebsh-Gordon coeffi-

cients) and prove (1.34) and (1.35).

Prove equation (1.36).
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Prove equation (1.37).
Prove equation (1.38).

Two localized spins 1/2 interact via an ezchange mechanism which
is described by a Hamiltonian

i) What are all the possible configurations of the two spins in the
basis of Sl, SlZ, SQ, ng?

it) What are the energies and their respective eigenstates of the
system when J > 07

i11) What are the energies and their respective eigenstates of the
system when J < 07

iv) Suppose a magnetic field, B, is applied to the system so that
we have to add the Zeeman energy to the Hamiltonian in (1.65):

HB = —ILLBB (SlZ + SQZ) (166)

where pg > 0 is the cffective Bohr magneton. Make a plot of the
cnergy of the states you found on item 2) as a function of magnetic
field. What is the state with lowest energy when B — 00?7 What
is its physical meaning?

Consider the Schrédinger equation (1.51). Assume that |¥) =
a|l) 4 b|2) and calculate a and b by direct substitution.

Solve the cigenvalue problem of equation (1.53) in matrix form
and show that the solution can be written in terms of (1.55) and
(1.56).

Consider a one dimensional molecule described by the Hamilto-
nian
i 2 82 77,2 82 mw? 2
H="————-— 4+ — - — 1.67
2M OR?  2m Or? + 2 <|T| 2> ( )
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where R > 0 is the relative coordinate of the nuclei with mass M,
m is the mass of the electron and r is the coordinate of the elec-
tron relative to the center of mass. Using the Born-Oppenheimer
approximation, that is, assuming

U(r, R) = ¥r(r)o(R) (1.68)

find, by direct substitution of (1.68) into (1.67) which terms are
neglected. Assuming that the energy has a minimum close to Ry
show that the nuclei oscillate with a frequency wy/m/M. From
this result show that we can use the Born-Oppenheimer approxi-
mation when (m/M)'/* << 1.

17. Show that the dominant interaction between two H atoms has a

dipole form at large values of the separation between them (call
it R).

18. Now consider a molecule made out of three atoms as shown of
Fig.1.9.

In this case the states of the electrons localized in each one of the
atoms can be written as:

1
P o= 0
0
0
Py = 1
0
0
3 = 0
1

() If tunneling between the atoms is allowed show that the Hamil-
tonian is written as
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Figure 1.9: Three atom molecule as a triangle of side R and hopping
enerqgy t.
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(i) Diagonalize the Hamiltonian and show that the eigenvalue
problem gives the following energies —2¢ and ¢ with eigenvectors,

1
vo =
v =
mz%

(1.69)

respectively. Observe that ¥g; and g, are not orthogonal to cach
other and onc has to orthogonalize them. Use the Gram-Schmidt
method and find an orthogonal basis.

Note: Observe that the degeneracy of the problem was lifted by the
tunneling. However, two of the states are still degenerate. This
is because the problem has an extra symmetry which is due to
rotation of w/3. A similar thing happens in the benzene molecule

which has 6 C atoms.
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Chapter 2

Crystals

2.1 Introduction

We have seen that by sharing or exchanging electrons stable molecules
of atoms can be formed. Depending on external conditions such as
temperature or pressure as atoms or molecules get closer to each other
a solid can be formed. Solids are highly symmetric structures that can
be formed in very different shapes. The shapes depend very on the type
of orbitals that participate in the binding between different atoms.

As an illustration let us consider the famous high temperature su-
perconductors (HTC) which are formed by planes of CuQO, atoms.
The atoms in these planes are arranged in squares as in Fig.2.1. An
isolated O atom has an electronic structure 1522s22p* while Cu has
1522522p%3523p53d'%4s'. Thus by getting two electrons the O atom can
close its p-shell and acquire the same configuration of Ne. We say that
O has valence —2. Thus, in the CuO, planes we have Cu*? and O~2.
The O atom has a close p shell and the Cu is in a 3d° configuration.
It means that there is a place for a single electron in the d shell of
Cu (there is one unpaired electron). Therefore, it is very reasonable to
imagine that the bond between O and Cu is done by a hybridizalion
(or mixing) of the p orbital of the O with the d orbital of Cu. Since
these orbitals have an anisotropic structure and are oriented 90 degrees
in respect to each other we expect a square lattice such the one in
Fig.2.1(a). The orbitals overlap like in Fig.2.1(b). It is interesting to

35
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note that this simple orbital structure is probably responsible for the
remarkable properties of these materials. We can predict a lot about
the structure of a solid by looking at the periodic table but, of course.
A remarkable property of crystalline solid is its symmetry. Imagine
yourself walking over a lattice of atoms which show a periodic structure
such as the one in Fig.2.1(a). You immediately note that as you move
from atom to atom you see exactly the same structure. Moreover, as
you look at the system from some specific angles it looks the same.
Thus, one expects based on this observation that in perfect crystals
the physical properties are the same at each point of the lattice, that
is, the physical properties of the system are invariant under symmetry
opcrations. These symmetry operations can be mathematically defined
and help us to predict many different propertics of crystals. In terms
of quantum mechanics this can be expressed by the fact that there are
quantum mechanical operators O that generate these symmetries. For
instance, the operator that generate translations by an amount R is

Or = F R/ (2.1)

where P is the momentum operator. It is very simple to show that this
is true. Suppose we apply this operator to a wavefunction ¥(r) and
suppose the R = dr is an infinitesimal quantity. Then,

Or¥(r) = U(r) + or - VU(r) ~ ¥(r + or) (2.2)

where we have expanded the exponential and used that P = —iAV. For
systems described by a Hamiltonian H which is translational invariant
the operator Or must be a constant, that is, it must commute with the
Hamiltonian, [H, Or] = 0. In this way, we know from the fundamentals
of quantum mechanics that the wavefunctions of the Hamiltonian can
be classified accordingly to the eigenstates of the operator Or. This
operator can be diagonalized straightforwardly since its eigenstates are
the momentum eigenstates,

Orlk) = e/ [k) (2.3)

Thus, even when we do not know how to calculate exactly the eigen-
states of the Hamiltonian (and we don’t in most cases) we know that
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Figure 2.1: (a) Spatial structure of a CuO, plane; (b) Atomic orbitals
involved in the binding.

the momentum is a good quantum number and therefore the wavefunc-
tions can be labeled by the momentum. This is a major advantage
since we can make predictions based on simple calculations as we are
going to see. Translation is a simple example of a symmetry. There are
many other symmetries that can be expressed in terms of operators as
well.

2.2 Discrete Symmetries

The two most important symmetry operations are:
1) Translations by one lattice spacing;
2) Point operations: rotations and reflections.

In order to define a translation we have to define first two mathe-
matical concepts: lattice and basis. Lattice is a periodic array of points
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which can be described by a translation vector
T = niai <+ nNods 4+ N3as (24)

where a; 93 are three independent vectors and n, o3 three arbitrary
integers (in two dimensions we have, of course, only two of them). A
periodic array of points is called a lattice if given R on the array then
R’ = R + T is also on the array. Thus by choosing different sets of
integers we can generate the whole lattice. For each lattice point we
can assign different atoms. In this case we have a basis. Let R, be
the coordinate of these atoms with respect to a lattice point. Here,
a=1,2,..., Ny, where N, is the number of atoms in a basis. A crystal
structure is combination of a lattice plus a basis, that is, any distance
between two atoms on a lattice can be written as T + R,,.

Observe that there is no unique way to define a lattice but it is
common to define the primitive quantities as the most economic way
to describe the crystal. We call the primitive translation vectors as the
smallest a; o5 that still allow the definition of a lattice. An example of
a two-dimensional lattice is shown on Fig.2.2.

We also define what is called as the unit cell as a certain volume
that fill out the space when translated by all possible T. It is clear that
this definition is not unique. We can define a primitive unit cell which
is the one with the smallest volume or the Wigner-Seitz unit cell which
is obtained by linking the nearest neighboring atoms together and then
cutting these lines in the middle by planes (see Fig.2.3). Observe that
if a; are the primitive vectors then the volume of the primitive unit cell
is simply

Vo =la; - (ag X a3)]. (2.5)

Together with the translation symmetry the point symmetries define
what is known as the Bravais lattices. To each symmetry we have an
operator which changes the coordinates of the system around a point
on the lattice with an axis through it. The principal axis is the axis
with the highest symmetry (that is, the one with the largest number
of symmetry operations). The symmetry operations are: (i) Identity
(R — R); (#) Inversion (R — —R); (44) Rotations, C,,, by an angle
of 27 /n where n is an integer; (iv) Reflection by a plane; (v) Improper
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Figure 2.2: Erample of a two-dimensional lattice with a basis.

Figure 2.3: (a) Conventional unit cell; (b) Wigner-Seitz cell.
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Figure 2.4: Possible Bravais lattices in two-dimensions.

rotations which are combinations of a rotation and a reflection through
a plane perpendicular to a principal axis. These operations can be
easily identified by inspection.

In two dimensions there are only five types of Bravais lattices that
can be obtained from the opcrations above. They are shown in Fig.2.4.
It is casy to show that in two dimensions it is not possible to have a
Bravais lattice with 5 fold symmetry (that is, it is not possible to fill
out the plane with pentagons) and there are not Bravais lattice with
rotations higher than six-fold symmetry. Thus we are only left with
the Bravais lattices of Fig.2.4: (1) Oblique (which is symmetric only
under Cy); (2) Rectangular (which is symmetric under Cs and has two
reflection planes); (3) Rectangular face centered; (4) Square (which is
symmetric under C; and three reflection planes); (5) Hexagonal (which
is symmetric under Cg, Cs5, and six reflection planes).

Observe that the hexagonal lattice is the most symmetric of all
Bravais lattice in two dimensions (that is, is invariant under the largest
number of symmetry operations). Moreover, the hexagonal lattice is
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Figure 2.5: Close packing structure for the hexagonal lattice.

special because it is close packed, that is, it is a lattice that has the
densest packing of hard spheres. Indeed, in the hexagonal lattice we
can densely fill the lattice by placing spheres of radius a/2 (where a is
the lattice spacing) in the center of a triangular lattice as in Fig.2.5.

In three dimensions there are fourteen Bravais lattices in seven dif-
ferent types of structures. One of the most important is the cubic
structure that has three Bravais lattices: Simple Cubic (SC); Body
Centered Cubic (BCC); Face Centered Cubic (FCC). These Bravais
lattices can be again classified by the symmetry operations described
before and are shown in Fig.2.6.

2.2.1 The reciprocal lattice

As we said before the symmetries are very useful in helping to describe
the various physical properties of materials. Tn a perfect crystal the
properties of the system should not vary as me move through a lattice.
One of the most important properties is the density, n(r). Given a set
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of N atoms at positions R; with 1 = 1, ..., N the density is simply

= Zl 5(r—R;) (2.6)

(observe that if we integrate the above expression in all space we obtain
N which is the total number of particles). Observe that from our
previous discussion we can rewrite for a crystal

R,=T+R,. (2.7)
Therefore, for a crystal, one can rewrite the density as

=Y S 6(r—T-Ry). (2.8)

Observe therefore that if we have N, unit cells with /N, atoms in a basis
we must have N = N, Nj.
The translation symmetry of the crystal requires that

n(t) = n(r + T) (2.9)
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for all T. This can automatically concluded if we use (2.8) and notice
that the sum of two lattice vectors is another lattice vector. Observe
that this property has strong consequences if we write the Fourier series
of the density:

n(r) => n(q)e” (2.10)

then from (2.9) we must have q = G where
G-T=2mn (2.11)

where n is an integer. It is clear from the definition of T in (2.4) that
we can always define G by

G = m1b1 -+ mgbg + m3b3 (2.12)

where my 23 arc three arbitrary integer and by o3 three independent
vectors such that

bi ca; = 277'5@' (213)

0; = 1 and 6;; = 0 if 7 # j is a Kronecker delta. It is simple to show
that

as X as

b =2r—F——
ai - (a2 X a3)

(2.14)

and the other vectors are just cyclic permutations of the above equation.
By the same token one has

b2 X b3
=2T . 2.1
aq 7Tb1 - (b2 » b3) ( 5)

Observe that these new vectors span a new lattice. This lattice is
called reciprocal lattice. Everything we said before in regards to Bravais
lattices is also valid for reciprocal lattices. In particular, the Wigner-
Seitz cell of the reciprocal lattice is called Brillouin zone. Moreover,
observe that (2.11) defines planes in the real space such that each plane



44 CHAPTER 2. CRYSTALS

is perpendicular to G (see Fig.2.7). In order to see that this is true
remember that the density is now written as

n(r) =3 nge®T (2.16)
G

thus, for each G the density is given by a plane wave of the form
cos(G-r) in the direction of G. Each maximum of the wave corresponds
to a plane of atoms (since the density is maximum at these planes)
where the empty space between the planes corresponds to a minimum
in the wave. Since the wavelength of this wave is 27 /|G| and the
distance between planes perpendicular to G is d we must have

2m
d reih (2.17)
Another way to sce this relation if through (2.11). Consider two points
in ncighboring plancs, say R,, and R,, {, such that R, —R,, | =d is
the distance between planes. Then from (2.11) one has

2
G| = 7 (2.18)

Thus G labels an infinite number of parallel planes in real space.
The classification of these planes in particularly useful in crystallogra-
phy. Since we saw that G = hb; + kbs + (b3 we can label planes by
the set of number [hkl] which are called Miller indices. For instance,
for a set of planes in the x direction we have (100) and for a set of
planes in the x + y direction we would have (110), etc. Observe that
the planes (200) and (—100) = (100), for instance, are parallel to the
planes (100). In this way it is very simple to think at the planes in real
space as labeled by reciprocal lattice vectors.

We have seen that the density can be written in terms of a Fourier
series of reciprocal lattice vectors G, as in (2.16), which guarantees the
periodic properties required by symmetry. The Fourier components ng
can be calculated by the inverse transform. This is done by multiplying
(2.16) by e 7T where K is a reciprocal lattice vector and integrating
in the volume of the unit cell, V5. Observe therefore that we are left
with the integral

; dlre G 8T = Vi5e k. (2.19)
7 Vo
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Figure 2.7: Series of planes and its associated reciprocal lattice vector.

In order to prove that this is indeed true we first remember that the
sum of two reciprocal lattice vectors is another reciprocal lattice vector
which can be written in the form (2.12). The result is trivial if G = K.
Moreover, observe that the integrand has the periodicity of the lattice
and its integral over a unit cell cannot depend on the choice of cell. In
particular, it cannot change if we translate the unit cell by an arbitrary
vector R. Therefore, from this result we have

1

= — | d¥%e7CTn(r) . (2.20)
Vo /v

ng

2.2.2 One dimensional chain

Consider a circular chain of NV atoms as depicted on Fig.2.8. The atomic
density along the chain (which we parameterize by z) is simply

N

n(z) =Y 6(z — ja) (2.21)

=0
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where @ is the lattice spacing. (2.21) has a simple Fourier series
n(z) =Y e*ny, (2.22)
k

and because the system has discrete translational symmetry by a, that
is, n{x + a) = n(z) (in (2.21) the shift by a is just equivalent to a
renumbering of the lattice sites!), we must have

eika = 1
-
ky = % (2.23)

Thus, the values allowed by symmetry form a lattice with lattice spacing
27 /a which is the reciprocal lattice. The reciprocal lattice vectors are
simply G = 2. Also it is very simple to show that (2.19) and (2.20)

a

are correct. Let us rewrite (2.22) in terms of the allowed values of k
n(z) =3 e¥an, (2.24)
J

where the sum runs over all integers (positive and negative). Multiply
both sides of the above equation by e~2"™% and integrate from 0 to a

/‘dace_z’”:m%n(m) => nj/‘dacez“’:(j_m)%. (2.25)
0 : 0
J

Now observe that for j  m one has

a . " 2mi(j—m) __ 1
/ doe? ii-mz — oS~ = _ (2.26)
0 21i(j — m)

because e>™/~™) = 1. If j = m the integral obviously gives a. Thus,
we conclude that,

/ dre®™ ™% = a6y, ; (2.27)
0

which is the one dimensional version of (2.19). Going back to (2.25)
one finds

1 s o
n; = 6/0 dre T an(x) (2.28)

which is the one-dimensional version of (2.20).
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Figure 2.8: Model for a one-dimensional crystal.

2.3 Elastic scattering

In order to illustrate the importance of the reciprocal lattice let us
consider the problem of scattering of the crystal lattice by light with
wavelength A. Imagine we send light into a crystal from very far away
with a wave-vector k such that £ = 27 /A. The atoms in the crystal
absorb the light and re-emit it in spherical waves as in Fig.2.9. These
waves interfere with each other and an observer located at R observes
a scattered wave with wave-vector k’. Here we consider only the elastic
scattering by the crystal so that no energy is lost in the collision of light
with the crystal, that is,

K=k =2r/\. (2.29)

Consider an atom located at a position r in the crystal. The amplitude
of the electric field of incident light at that position is

E(r) = Ege™*" (2.30)
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where Ej is a constant vector. The atom at r re-emits the light so that
the contribution of this atom to the observed light at R is

E(R) x E(r)e® ™ (2.31)
where r' = R — r (see Fig.2.9). Thus,
E(R) o Egem k) R (2.32)

The contribution from the whole crystal is obtained by integrating
(2.32) over the entire crystal

E(R) x Ege¥ ® / dVn(r) ek (2.33)
crystal

where 0k = k — k' and n(r) is the density of atoms. Observe that
the first factor in (2.33) is just a phase factor which is not important
since it does not include the superposition of all the fields created by
all atoms. Now the fact that the crystal has a periodic structure enters
into place. Since the crystal is composed by /N unit cells we do not have
to integrate over all crystal, we just have to integrate over one cell and
sum over all the other cells. This means that we can rewrite r = T + 1/
where r’ describes the position of each atom in the unit cell. Thus, we
can rewrite (whole) as

ER) x Eo), - dV'n(T + r')ei(T+r')'5k
T [

o Eo Y efToe dV'n(x")e™ % (2.34)
T Cell

where we have used the translational symmetry of the problem, that
is, n(T + ') = n(r').

Let us now focus on the first term of (2.34). For an arbitrary dk
the sums of the exponential is only different from zero if

T -k = 27n (2.35)

where n is an integer. This condition means that in order to have a
constructive interference we have to require that

k=G (2.36)
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Figure 2.9: Geometry for scattering of light by a crystal.

is a reciprocal lattice vector. Thus, (2.36) tells us is that there is only
scattering if k' = k — G, that this, the incoming and the out-going
plane waves can only differ by a reciprocal lattice vector. This has pro-
found consequences. In the elastic scattering the energy of the incident
and scattered beam is the same and therefore |k'| = |k|. Thus, as a
consequence we have,

)2 = k?*+(G)?-2-G
2kk|cosd = |G| (2.37)

where ¢ is the angle between k and G. But we know from (2.18)
that associated with each vector G we have a set of planes such that
|G| = 27 /d and given a plane wave we also have |k| = 27 /X where X is
the wavelength of the beam. If instead of ¢ we use the angle between
the incident beam and the plane (see Fig.2.10) the above equation can
be written as

2d sinf = A (2.38)
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which is the famous Bragg law for elastic scattering.

We use basic quantum mechanics to calculate the differential cross-
section for scattering of a plane wave with wave-vector k into another
wave-vector k’. This is given in the Born approzimation by

d’c  2n

— ~ —[(K|VIK)? 2.39

2~ V) (2:39)
where V is the scattering potential. In a condensed systems (gas, liquid
or solid) this potential is the atomic potential of each atom. Thus we
can write

V() = 3 Ve - R) (2.40)

where R; is the position of each atom. Using the fact that this potential
is periodic we can write

Vi)=Y Vge®” (2.41)
G

where the Fourier components can be obtained as in (2.20). Thus the
matrix element can be written as

1 ~ 1 .
<k|V|k'> = V/ddre—zq.rv(r) — V;VG/ddre—z(q_G).r

_ (2‘7;)d S Vodla—€) (2.42)

where q = k — k/. What this last equation tells us is that there is only
scattering if k' = k — @G, that this, the incoming and the out-going
plane waves can only differ by a reciprocal lattice vector in complete
agreement with our previous discussion.
We can now rewrite the differential cross-section as
d’c 1

- k kl 2=
o VIO = L

> Vel*bqc (2.43)
G

where we used the results of Appendix (2.5.1) for the substitution of
the Dirac delta function for the Kronecker delta. This equation is
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Figure 2.10: Bragg reflection through a set of planes.

quite interesting because it tells us that the intensity of the reflection
at q = G is proportional to [Vg|>. Thus, the Bragg condition is not
sufficient in order to see elastic scattering at some vector G but also
it is required that the potential has a finite Fourier component at this
wavevector.

We can get even more insight into (2.43) if we rewrite the Fourier
componcents of the potential in terms of the potential created by isolated
atoms. In this casc, within the unit cell, we write

V(r) =) Usd(r — Ry) (2.44)

where U, is the strength of the potential for a particular atom «. Using
(2.20) we find

1 .
VG = — Z Uae_lG.Ro‘ (245)
Vo g

which depends only on the atoms on a unit cell. In this case (2.43)
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becomes
o 1 o
- I * iG-(Ra—Ry)
70 x %2 %;UQUW
1
= = Y UU,FR, - R,) (2.46)
Vo o
where
1 .
FR,) = w S e iGRa (2.47)

This result implies that the scattering depends strongly on the local
structure of the atoms on the unit cell.

These equations simply considerably if we assume that the atoms
are the same. In this case one can write

V(r)=Up > 6(r— Ry) (2.48)
and thercfore
VG = Uopg (249)
where
1 s
pe = 3 e iGRa (2.50)
0 o

is the Fourier transform of the density. It is straightforward to conclude
from the above cquations that

d*o 9
a0 Uol"S(a) (2.51)

where
S(a) = (2m)*> Ipcl*dq.c (2.52)
G

is called the static structure factor. Observe that a scattering at some
vector q = G is only possible if pg # 0. This factor is the same
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that appears in equation (2.34). Thus, even if the scattering is allowed
the positions of the atoms on the unit cell determines if there is any
intensity for that particular scattering.

The scattering in a disordered system such as a glass (or liquid very
viscous fluid) can also be immediately obtained from these equations.
Since the system is disordered the unit cell is the volume of the system
itself. Moreover, the sum in (2.50) is a sum of random phases that leads
to destructive interference if the phases vary wildly. Thus, from (2.50),

1 .
PG =, Yo e e = nbgy (2.53)

[e%

where 7 = N/V is the average density of the system. By direct substi-
tution of this expression in (2.52) we find

S(q) = (2m)%n6q0 (2.54)

shows that in this case the system only has forward scattering.

2.3.1 Experimental constraints

So far we have discussed scattering but we did not specify what type
of scattering we are talking about, that is, what kind of probes we are
looking for. Observe that the only condition for scattering is given by
the Bragg law, (2.38), that requires that the wavelength of the probe
must be such that, A < 2d. Since d is of order of 1.4 we need probes
with very short wavelengths. The first probe that comes to mind is
lzght. Light interact with the charged particles in the system via what
is called minimal coupling, that is, we replace the momentum p of the
charged particle by p — eA/c where A is the vector potential. The
energy of light can be written as

h
E = hw = helk| = XC . (2.55)

For A ~ 1A one needs E ~ 10* eV which is the X-ray part of the
spectrum. Another possibility is scattering by electron waves. In this



54 CHAPTER 2. CRYSTALS

case the scattering process is due to the electron-electron interaction in
the system. The energy of an electron is given by

G S G

) = .
2m,  2mgA\?

(2.56)

For A ~ 1A one needs E ~ 100 eV. Another possibility is neutron
scattering. Neutron has no electric charge and therefore is insensitive
to charge degrees of freedom in the solid. It interacts with the magnetic
moments in the solid (nuclear and/or clectronic). The encrgy has the
same form as above for the electron but since its mass is a thousand
times larger the relevant energies are a thousand times smaller, that
is, £ ~ 0.1 eV. Although we have different probes it is easy to see
that each one of them measures the system at different scales of energy.
Thus, the choice of probe depends strongly on what kind of energy
scale one wants to probe. In condensed matter physics one is usually
interested in energies of the order of a few meV which is the energy
scale of the neutrons. Neutron scattering is also particularly important
because it probes directly the magnetic excitations. Electron scattering
is a complicated probe because the scattered electron tends to interact
strongly with the other electrons in the system (this is called multiple
scattering) and our simple Born approximation formula is not valid any
longer. We really need a probe that interacts weakly with the system
of interest. X-rays have an energy that is usually orders of magnitude
larger than the energy scales of interest and it is very hard to get good
accuracy with X-ray measurements. It turns out, however, that they
are excellent in order to measure static properties such as, S(q), via
elastic scattering.

2.4 Defects in solids

So far we have discussed only perfect crystalline structures where the
atoms occupy sites of a periodic lattice. It turns out, however, that
real crystals are not perfect and contain a series of different defects.
The most common types of defects are vacancies and interstitials that
are called point defects since they involve the subtraction of isolated
atoms. There are also line defects which involve the entire displacement
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Figure 2.11: Vacancy in a crystal.

of planes or lines of atoms and for this reason are called dislocations.
These defects are common in most materials and are responsible for
many effects observed in crystals.

At finite temperatures all crystals contain a certain number of va-
cancics or interstitials. This is duc to purely cntropic cffects. The
simplest type of defect is depicted on Fig.2.11 and it is called a Schot-
tky defect. In this kind of defect is essentially due to an atom which is
missing from its original position. The missing atom in this case creates
a ”hole” in the crystal and therefore a local defect.

In order to understand the entropic nature of such a defect consider
a perfect lattice made out of N atoms and M vacancies which are
randomly organized (we are considering that there is no clustering of
these vacancies and that the energy of the vacancies do not depend if
there are other vacancies in its immediate neighborhood). In this case
it is clear that the system has many equivalent configurations. The
number of these configurations is simply (N + M)!/(N!M!). Thus, the
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total entropy at zero temperature is:

(N+M)!>

N1 (2.57)

S:kBln(

Here we are going to consider the case where Ny M >>> 1 but M/N
is finite. Thus we can use the Stirling approximation

In(N!) ~ NIn(N) — N . (2.58)
Now consider the free energy of the system which is given by
FM)=U(M)—-TS(M) (2.59)

where U is the internal energy of the system with M vacancies. In the
case under consideration the energy of create M vacancies is just M
times the energy to create a single vacancy since we are disregarding
vacancy-vacancy interactions. In this case we have

U(M) = eeM (2.60)

where ¢ is the energy required to create a single vacancy. For a fixed
value of N the equilibrium is attained when the free energy is a mini-
mum with respect to variations of M. Thus, we have to minimize

(N+M)N+M1

SN (2.61)

F(M) = 60M— kBTln [

with respect to M keeping N 4+ M = N, the number of sites constant.
We write

F(M) ~ eM — kgTIn l(Ns—]\/A]f\;sz\f’ssMMMl (2.62)
and the derivative becomes
g—]\i — o — kpTln (Ns — M) (2.63)
and thus
€ ~ kgTIn (NSA_/[M> (2.64)
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Figure 2.12: Interstitials in a crystal.

or
N

M(T) = —<—
e*sT +1

(2.65)

which shows that there is always a finite number of vacancies in the
crystal. Observe that when kT >> ¢y we have M(T) ~ N,/2. How-
ever, in normal materials ¢ is of order of 1 eV (10, 000K) and therefore
one usually has the opposite limit, that is, kg7 << €y, where

M(T)/N, ~ ¢ FsT (2.66)

that is, there is an exponentially small number of vacancies in a crystal.

Another type of defect is the interstitial which is similar to a va-
cancy but the atom, instead of leaving the bulk of the crystal, moves
to an intermediary position between other atoms. This is shown on
Fig.2.12 and it is called a Frenkel defect. This type of defects are more
common in ionic crystal where a positively charged ion can move in
between negatively charged ions in a crystalline matrix. In this case
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charge neutrality requires that an equal number of negative and positive

defects are generated.
It is also possible to replace a negative ion by an electron local-

ized at the defect. In this case the electron is localized in a quantum
well. Naturally the absorption of light in the crystal changes since the
electrons in a quantum well absorbs light at different frequencies than
in a perfect crystal. It implies that the crystal changes its color. For
this reason this kind of defects are called color centers. An example is

depicted on Fig.2.13.
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2.5 Problems

1.

Prove that for n = 5 it is not possible to define a smallest vector
a; that generates the lattice. The proof of the non-existence of
Bravais lattices for n > 7 is analogous.

Prove that the Wigner-Seitz unit cell of a planar hexagonal lat-
tice of lattice spacing 2R has an area of 2v/3R2. Show that the
fractional area occupied by the spheres relative to this unit cell
area is 0.907.

Prove that the vectors b, can be written as in (2.14).
Prove that (2.15) is indeed correct.

Prove that the volume of the Brillouin zone, Vg = (27)%/V; where
Vi 1s the unit cell volume.

Show that by translating the unit cell to another cell Vj in (2.19)
the integral is zero if G # K.

We have seen that a reciprocal lattice vector labels a series of
planes (hkl). Show that a equivalent way to label the planes
in real space consists of two steps: 1) find the intercept of the
plane with the axes in terms of the vectors a;, ay, a3; 2)take the
reciprocal of these numbers and then reduce to three integers
having the same ratio, usually the smallest three integers. The
result, that is, (hkl) is the index of the plane.

. The primitive vectors for a bee lattice are

a
a; = 5(—x+y+z)
a, = g(x—y—i—z)
a3 = g(x+y—z) . (2.67)

Find the reciprocal lattice vectors. What lattice does it form?
Make a drawing of the two lattices.
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The primitive vectors for a fcc lattice are

a
a; = §(Y+Z)
a, = g(x+z)
a; = g(x+y). (2.68)

Find the reciprocal lattice vectors. What lattice does it form?
Make a drawing of the two lattices.

In this problem we are going to study the effect of the second
factor in (2.34), the static form factor. We write it as:

Se = dVn(r)e™C (2.69)
Cell

since 0k = G is the Bragg condition. When there are N, atoms
in the unit cell we can write

Ny
n(r) =Y ni(r —r;) (2.70)
7j=1
where n; now depends on the particular atom. Show that
Ny .
Sg =Y fie™i¢ (2.71)
j=1
where
fi= - dVn,(r)e™ @ (2.72)

is called atomic form factor which depends only on the kind of
atom is participating on the lattice formation. Consider now that
r; can be written in terms of the primitive vectors as

r; = r;a; + yj;az + z;as (2.73)

where 4, y;, 2; arc any rcal number. Using that G = 2 mb;
show that
Ny
SG — Z fjeQWi(m1$j+mzyj+M3Zj) . (274)

=1
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11.

12.

13.

Calculate Sg in previous problem for a fcc lattice with one atom
per unit cell assuming that the fcc lattice can be thought of a
simple cubic lattice with a basis given by the vectors (0,0, 0),
(0,1/2,1/2), (1/2,0,1/2), (1/2,1/2,0). (i) Assume that f; = f
and show that if mq, mo, ms are all even or all odd we have Sg =
4f. (ii1) Show that if one of the m; is even and the other two
are odd then Sg = 0. (iv) Show that if one of the m; is odd and
the other two are even then Sg = 0. (v) Compare the scattered
reflections that you would get from a fcc lattice without a basis
and the ones you got from assuming that the fcc lattice can be
seen as a simple cubic lattice with a basis. Do you get identical
results?

Consider a two dimensional crystal in a square lattice with two
different types of atoms with different cross-sections (a two di-
mensional version of NaCl). What would be a result of a neutron
scattering experiment in such a system? What are the allowed
values of momentum for scattering?

Consider an ionic crystal with positive and negative charges. As-
suming that the energy required to create an interstitial with
positive (negative) charge requires an energy €, (€,) and that the
system has charge neutrality show that the number of positive
and negative interstitials is

epten

Np = Ny = NpNne_B 2

where N,(N,) is the number os sites with positive (negative)
charge.

2.5.1 Appendix: Dirac and Kronecker delta func-

tions

There is a little caveat about equation (2.42). Observe that q is defined
in the continuum (that is, it can vary continuously from 0 to oco) while
the reciprocal lattice vector G is defined over a discrete set. Thus,
in order for the summation in (2.42) to make sense we should have a
Kronecker delta instead of a Dirac delta function. The solution for this
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little problem is given by the quantization of the scattering states in a
box. If we require the plane waves outside the material to have periodic
boundary conditions in a box of size L, then we must have

. 2 mn;

k== (2.75)

where ¢ = x, y, 2. Thus a Dirac delta can be written as

d(k) = 0(ky)o(ky)o(k,) =(2mn,/L)é(27n,/L)6(27n,/L)
V
= — 2.76
(27r)ddk’0 (2.76)
where dx o is a Kronecker delta and V = L? is the volume of the quan-
tization box. In this way one can replace sums by integrals,

2 (QZ)d Jda. (2.77)

Another way to rewrite this expression is due to the result of Problem
5: if N is the number of primitive cells and Vg is their volume we have
immediately,

S o % /ddq . (2.78)



Chapter 3

Elasticity Theory

3.1 Introduction

Point like defects are not the only type of defects that occur in crys-
tals. There are extended defects that are responsible for very important
mechanical properties of crystalline systems. Line or plane defects in
crystals are possible under application of pressure or stress. When de-
formations due to stress are reversible we call them elastic deformations,
otherwise, when they are not reversible, we call them plastic deforma-
tions. In order to understand the difference between plastic and elastic
deformations consider the simple toy model proposed by Frenkel for a
shear strength of a perfect crystal as shown in Fig.3.1. Suppose a stress,
o, is applied to a plane of atoms which is displaced by another plane
of atoms by an amount x. Under Hook’s law the stress, o, is linearly
related to the displacement by the shear modulus G

olx) =~ G (3.1)

x
d
where d is the distance between planes. Of course this equation is valid
for small displacements. Suppose we apply a strong shear stress so that
all the atoms move one lattice spacing a. In this case we are back to

the original situation with the atoms in their equilibrium position in
zero stress. This implies that the stress must be a periodic function of

63
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Figure 3.1: Simple model for shear stress in a perfect crystal.

the lattice spacing. For simplicity let us consider a harmonic function

2rx

a
0’(.’1)) = G% Sin (7) (32)
which becomes (3.1) in the limit of z << a/(27). Observe that (3.2)
has a maximum for z = a/4 for which

a

. = 4) = .
o = o(a/4) G27rd

(3.3)
If the stress applied is larger than o, the upper plane in Fig.3.1 has
to move freely and never return to the original unstressed situation.
This would imply plastic flow of the crystal. Since a ~ d ~ 14 the
critical stress is approximately G /6. It turns out that this prediction
is completely at odds with the experiments. For instance for a single
crystal of Al we find that experimentally o, &~ G/60,000! Thus, the
conclusion is that plastic deformations occur at a much smaller stress
than the theory predict and they must be generated not by elastic
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Figure 3.2: (a) Edge dislocation; (b) Screw dislocation.

deformations of the crystal but by defects. These defects are called
dislocations.

Plastic deformations in crystals occur when planes of atoms slide
over each other due the presence of dislocations. The simplest types
of dislocations are edge dislocations and screw dislocations. In a edge
dislocation there is a mismatch of planes as if an extra planes of atoms
have been inserted in the crystal while in a screw dislocation there is a
mismatch between planes of atoms as shown in Fig.3.2.

3.2 Elastic properties of crystals

As we have discussed in the last section the position of the i-th atom
in a crystals is given by R; = T + R, where T is a vector in the direct
lattice and R, is a vector in the unit cell. Moreover, in Chapter 1 we
have seen that the equilibrium position of atoms is given by the various
electronic interactions. Usually one finds that the competition between
a long range attractive force and a short range repulsive force lead to
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a mean distance between atoms that we call lattice spacing. In this
section we are going to consider the elastic energy required to deform
the atoms from their original equilibrium positions. Since the perfect
crystal is the lowest energy state for the system, local deformations will
cost energy. This energy is called elastic energy. Let us assume that
some part of the crystal is displaced by a quantity u(r) which means a
displacement of |u| in the direction of u at position r. Obviously the
free energy of the system due to this displacement is a function of u(r).
Here we would like to know the functional form of the free energy which
can be obtained from symmetry considerations.

The first obvious symmetry is the translations of all atoms of the
crystal by a fix value u(r) = ug. It is clear that the free energy of
the system cannot depend on the value of ug and thercfore it can only
depend on derivatives of u(r) which we denote by

8,~u7- = an

=5 (3.4)

where 4,7 = 1,2,3,...,d corresponding to x,y, 2.... Obscrve that d;u;
can be scen as a matrix, or more formally, a tensor with d x d compo-
nents. From this argument we conclude that the free energy has to be
written as F' = F[0;u;]. Another symmetry of the problem is inversion
symmetry, that is the free energy has to be invariant under u — —u. It
implies that linear terms are not allowed and therefore F' = F[(d;u;)?].
Now let us consider another important symmetry which is the symme-
try of rigid rotation of the lattice by an angle 0. Consider, for instance,
a plane of atoms labeled by a reciprocal lattice vector G which is ro-
tated by this angle. Along this plane all the atoms are displaced by
u(r) = |r|66 as shown in Fig.3.3. Another way to write this displace-
ment is to consider the vector 66 oriented anti-clockwise in the rotation
direction. It is clear that

u(r) =60 x r. (3.5)

This relation can be easily inverted with the help of differential calculus
to

L1
80 = ZV x u(r) (3.6)
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Figure 3.3: Rigid rotation of an atomic plane

which expresses the angle of rotation in terms of the displacement.
Since the whole crystal is rigidly rotated the free energy cannot depend
of 55, that is, the system is invariant under rigid rotations. Observe
that in (3.6) the displacements appear in combinations of the form
O;u; — Oju; which is the anti-symmetric part of the tensor d;u;. Thus,
duc to the rotation symmetry the free energy can only depend on the
symmectric part of the tensor Qju;, that is,

1
uij = 5 (Osu; + Ojui) (3.7)

which is called the strain tensor. In summary, due to rigid translations,
inversions and rotations the free energy due to elastic deformations of
a crystal can only be a function of wu;;u.

It is very simple to understand the physical meaning of each com-
ponent of the strain tensor. Consider for instance a compression or
dilation of the system along the direction x. If I, is the size of the
crystal in this direction then

5y = (3.8)

gives the relative compression in that direction (obviously for compres-
sion ¢, < 0 and for dilation d, > 0). In this case the volume of the
whole crystal is changed by 6V. By the same token the volume of the
unit cell, Vo = |a; - (ap X az)| is changed by 6V, because a; changes
under compression. It turns out, however, that since V = NV, where
N is the total number of atoms we must have

BV _ 8%

= T (3.9)
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Figure 3.4: Compression of a series of planes.

This relation is valid because we are considering the crystal in the
absence of vacancies and interstitials. In the presence of defects (3.9)
has to be modified. Moreover, since the reciprocal lattice vectors are
tied to the direct lattice vectors by a; - b; = 27d;; it is clear that a
compression in real space will lead to a dilation in reciprocal space and
vice-versa. Consider the set of N planes separated by a distance d
in the x direction before the application of pressure. In this case we
have L, = Nd. After pressure is applied the distance between planes
becomes d' so that L = Nd'. Therefore

LL—L, d—d
L,  d

=6y (3.10)

We will label the displacement of the nth plane of the crystal by w,.
Let us assume that the first plane is fixed before and after pressure is
applied so that uy = 0. It is simple to in Fig. 3.4 that second plane
is displaced by u; = d’ — d = §,d, the second plane is displaced by
us = 2d' — 2d = 26,d and so on. In general

Up, = N0gd . (3.11)

If we label the position of each plane by x = nd we see that this last
expression can be rewritten as

u(xr) = bgr

Opu(x) = 0y. (3.12)

In a more general way we can consider a set of planes labeled by the
reciprocal lattice vector G. We know that |G| = 27 /d where d is the



3.2. ELASTIC PROPERTIES OF CRYSTALS 69

distance between planes. After compression or dilation we must have
d' = (1+6;)d and therefore the reciprocal lattice vector changes for an
infinitesimal value of 6, by

G = (1-4,)G
G -G = —6,G. (3.13)

Moreover, in this case, the displacement of the atoms due to the com-
pression or dilation can be written as

G-ur) = (G-G)-r

.G -x (3.14)

and therefore
u = §,x (3.15)

and therefore
Upy = Og (3.16)

and all other derivatives vanish. Thus, it is clear that u;; measures the
lattice compression or dilation in the direction of the vector x;. The
total volume of the system is V = L,L, L, and therefore we must have
0V =6LyL,L,+ Ly0L,L,+ LyL,0L,. Thus, it is simple to show that

%:;% (3.17)

that is, the relative change in the volume of the solid is given by the
trace of the strain tensor. Equation (3.17) has to be interpreted with
a little care, however. Obscrve that wu;(r) is a local function of the
position and of course 6V is a global change in the system. Thus (3.17)
is really only valid in a perfect crystal without defects like vacancies
where changes in volume can be non-uniform. In general the diagonal
elements of the strain tensor are related to the local changes in the unit
cell volume such that,

Vo) _ 5~y
) = 2 o) (3.18)
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which is a local relation. Of course, for ordered systems equation (3.9)
is valid and (3.17) is identical to (3.18).

We can always decompose the distortion of a solid in terms of volume
changes and shear (which never changes the volume). We have seen
that volume changes have to do with the diagonal elements of the strain
tensor. The other off-diagonal components of the strain tensor represent
the shear distortion of the system as you can easily show. Since shear
does not change the volume of the crystal it is represented by a traceless
tensor

2ok Ukk
7

Notice that indeed ¥, s;; = 0 since >, §;; = d.
From now on we are going to consider only small distortions of the

crystal and from the symmetry arguments the free energy has to be
written as

(3.19)

Sij = Uij — 0

1
F = 5/611‘ Z Cijkluijukl (320)

oy

where Cjj are the so-called elastic constants of the crystal which in
principle can have d* components. Now observe that u;; = uj; and
therefore we must have the following symmetries:

Cijkl = Cjikl = Cijlk = Cjilk = Cklij . (3'21)

In addition the free energy has extra symmetries which depend on the
point symmetries of the crystal itself. Highly symmetric crystal will
have less independent elastic constants than less symmetric crystals.
For instance, a three dimensional cubic crystal has 3 independent elastic
constants while a triclinic crystal has 21 independent elastic constants.
Moreover, it is very simple to estimate the order of magnitude of the
elastic constants if we remember that u,; is a dimensionless quantity
and therefore Cjj,; has dimensions of energy divided by length?, that
is, energy density. The energy here is just the biding energy per atom
of the solid which is of order of a few electron volts while the length is
of order of the lattice spacing, that is, a few angstroms.

Things simplify considerably in isotropic solids where compression
and shear stress are independent of the direction they are applied. It
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must be clear that in this case there are only two elastic constants: one
associated with compressions and dilations (the so-called bulk modulus,
B) and another associated with shear distortions (the so-called shear
modulus, G). Since we have seen that compressions have to do with wu;
and shear are related to s;; the free energy has to be written as

F:%/dr

In order to see that this expression has indeed the form of (3.20) we
use (3.19) and rewrite (3.22) as

1
F=§/dr

which has the form of (3.20) with

2G
_> 0ij0nt + G (0udjk + Oirdjr) (3.24)

B (Z u> 2 + 2G Z s‘fj] : (3.22)

(B — %) (Z u) 2 +2G ZJ ufj] (3.23)

Cijii = (B T

which has the symmetry properties as required.

Of course the expression for the free energy as given by (3.20) is
uscful if we can rclate the internal distortions (the strain) with the
external agents such as pressure or strain. In order to do that onc has to
calculate the work done on the system by an external force. Consider an
external force F applied to an element of volume §V. If the interaction
between the atoms is short range this force will be transmitted by the
neighboring volumes through the surface 65 that surrounds the volume
0V. The total force in the volume in the ith direction is

F, = /5 def, (3.25)

where f is the force per unit of volume of the undistorted solid. Since
the force applied is a local function of the position it can be expressed
as a gradient with respect to the undistorted crystal and we write

fi =050y (3.26)
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where o;; is the stress tensor. Substitution of (3.26) into (3.25) leads
to

where we used Gauss theorem. Observe that the stress tensor o;; gives
the force per unit of area in the direction i exerted by the surrounding
medium on a volume element across its surface oriented on the direction
j. Consider a solid surrounded by an isotropic fluid at pressure P. This
solid will experience an stress given by the hydrostatic pressure which
is —P. In this case the stress tensor is simply

Oi5 = —Péij . (328)

Suppose uniaxial pressure 7 is applied along the x axis of a crystal. In
this case it is obvious that

Opz =T (3.29)

and all other components are zero. In the more generic case consider
the work done by a force density f which displaces the volume elements
of a crystal by u(r). This work is simply

SW = —PV = / drf - u(r)
= /drzajaijui(r)
4,J
= —/dI‘ZO’,'j’U,ij (330)
Y]

where we have integrated by parts and neglected the surface terms.
The change in the free energy duce to the changes in the strain ficld is
the negative of the work done by the internal forces, thus,

OF = —6W = /dI‘ZO’,'j’U,ij (331)
4]

Observe that this leads to the important relation:

_OF
N 8u,~j

(3.32)

Uij
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which relates the strain tensor with the stress tensor.
For the case of the isotropic crystal, accordingly to (3.22), we have:
Oy = B Z 'U'lléij -+ 2Géw (333)
1
which we can invert to write the strain in terms of the stress. Firstly
we observe that for ¢ # j we have

Oi5 = QGSij = QG’UWJ (334)

where we have used (3.19). Secondly, for i = j we have
2
o = 2Gu;; + (B - ;) > uy (3.35)
1

and therefore >, 0;; = dB Y, uy;. Thus, we conclude that

”Zlo-ll i(a.._(g..Zlall>
Y@2B 2 \Y Y d '

This last cquation is very uscful. Consider a solid subject to a
hydrostatic pressure P. Then, from (3.36) onc has

(3.36)

U'ij =

1 p
From (3.17) one finds immediately
ov._ P
V.~ B
1 16V
5= VP (3.38)

which is the usual thermodynamic definition of the bulk modulus as
expected. Suppose that uniaxial stress 7T is applied in the z direction.

Again we have
_ (1 N d—1
Y2 = g \dB " 2G

T/1 1
o= =t (= ). 3.39
b Y = 7Y <2G dB> (3.39)
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Observe that the change in the size of the system along z always follows
the applied force while in the transverse directions it will depend on
the ration dB/(2G). The Young’s modulus, Y, of the system is defined

as

y = L
U’ZZ
2d*GB
Y = A4
2G+d(d—-1)B (340)

and the Poisson’s ration v is defined as

Ugy
Uz

dB — 2G
~ dld—-1)B+2G" (3.41)

v o= —
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3.3 Problems

1. Write down the elastic free energy for a three dimensional crystal
with cubic symmetry. Show that the elastic tensor Cj;;; has only
3 independent components, namely, 01111, 01122 and 01212 (1, 2, 3
refers to x, y, z, respectively). Calculate: 1)the bulk modulus;

2)the Poisson ratio for stresses along one of the symmetry axes
in terms of the elastic constants.
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Chapter 4

Atoms in motion

4.1 Introduction

In the previous section we studied the problem of static deformation of
a crystal. As we have seen previously a crystalline structure each time
we take an atom from its position we have to pay an energetic price
which for clastic deformations. For small deformations the cnergy is a
simple quadratic function of the displacement. It is known from basic
quantum mcchanics that cven at zero temperature motion does not to
cease to exist entirely due to quantum fluctuations. The basic example
of this effect is the harmonic oscillator problem which is described by
a potential V(x) = mw?2?/2 where m is the oscillator mass and w its
oscillation frequency. In quantum mechanics the ground state of this
problem has finite energy fw/2 and therefore even in the ground state
the oscillator is not static but fluctuates with amplitude A ~ %/ (mw)
(since V(A) ~ hw/2). In classical mechanics the lowest energy state
have zero energy and therefore A = 0 (indeed, when % — 0 we recover
the classical case). Therefore, in order to understand the behavior of
solids at very low temperatures one has to take into consideration the
kinetic energy of the oscillations in the solid.

4.1.1 Motionind=1

As an example let us consider the simplest case of atoms with mass M
attached to each other by springs with strength x as shown in Fig.4.1.

77
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Classically the lowest state of the problem has all atoms at rest at some
characteristic distance a between them. This characteristic distance can
be traced back to the equilibrium position of atoms in a molecule as we
discussed in Chapter 1. Let us now displace the n** atom by a small
value u,. Because the atoms are tied to each other by electrostatic
forces the displacement of one of them will cause the displacement of
the others. This energy, as discussed in the last chapter, can be written
as

U= Z Un+1 2 (41)

since we are assuming that only the nearest neighbor atoms are coupled.
If U was everything we would have it is clear that the configuration of
lowest energy has u,, = 0 for all n. But in quantum mechanics we have
to include the kinetic energy of the atoms which is given by

(4.2)

where p, is the momentum of the n'* atom. The quantization condi-
tion for this problem is that the displacement and the momentum are
canonically conjugated and therefore have well defined commutation
relations:

As we all know from basic quantum mechanics the fact that two op-
erators do not commute imply the Heisenberg uncertainty principle,
that is, ép,du, > h, which implies that even we are certain that the
oscillator is at certain position w,, from cquilibrium we lose completely
the information about its momentum. This is exactly what causes the
harmonic oscillator to have a ground state with finite amplitude.

There are many ways to study the Hamiltonian H = K 4 U. Here
we are going to study the problem via the equations of motion by using
the Heisenberg representation for the problem. In this representation
the operators evolve in time accordingly to:

8un

3t

Opn
TLE = [pn, H] (4.4)

= [up, H]
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which can be easily calculated by using (4.3) and the Hamiltonian’:

Oun Dn

o M

P

% = —K(Upi1 — 2Up + Up—1) (4.5)

which can be rewritten by substituting the first equation into the second
one:
u,, K

52 = (Unt1 — 2Up + Up—1) (4.6)

which is the equation for the time evolution of the operator u,. This
equation is simply a simple second order linear differential equation and
can be solved by assuming wu,(¢) has a simple harmonic form, that is,
Un(t) = uye™* which leads to

(wW? +26/M) up — /M (Upp1 + Uy 1) =0. (4.7)

Notice that the above equation relates the displacement at n'* atom
with the displacement at n + 1 and n — 1 atoms. The solution to this
problem is given again by a simple harmonic solution:

U, = uerne (4.8)

where u is a constant. Direct substitution of (4.8) into (4.7) requires
that

w(k) = 2\/% sin(ka/2)] (4.9)

Which shows that there is a one to one correspondence between the
frequency of oscillation and & the wave-number of the oscillation. Ob-
serve that the periodicity of the chain requires that uy,; = u; which,
by (4.8) requires that

k(m) = 2;;” (4.10)
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where m is an integer. Observe, therefore that the wave-numbers are
quantized in units of 27/(Na) and these give the allowed quantum
states of the problem. Observe, however, that the total number of
states in the problem has to be conserved. In the absence of inter-
actions between the atoms there are N allowed states in the problem
corresponding to the rotation of the chain by N x27/N. We have to end
up with the same number of states in momentum space, as well. If N
is even the allowed values of m are m = 0,+1,+2, ..., +£(N/2 — 1), N/2
and for N odd, m = 0,+1,+2,...,+(N — 1)/2. . Thus, we see that
k defined above varies between —(7/(2¢)(1 — 1/N) < k < w/(2a). In
the limit of a macroscopic number of atoms, N — oo, the distance
between the allowed states shrinks to zero and the wave-numbers form
a continuum in the interval —7/(2a) < k < 7/(2a). Obscrve that this
is exactly the Brillouin zone for a one dimensional system, as expected
from the periodicity of the problem.

Finally, we should point out that in the limit of very long wave-
lengths, that is, when £ << 1/a we can expand (4.9) as

w(k) ~ a\/%|k| (4.11)

and we see that the frequency of oscillation is linear with the wavenum-
ber. This relationship is identical to the dispersion of photons: w(k) =
c|k| where c¢ is the light velocity. Like photons the oscillations we are
discussing propagate through the solid which a characteristic velocity
Cs = a\/% which is called the sound velocity. Indeed, from basic quan-

tum mechanics we know that the group velocity of a wave v(k) is given
by hv(k) = dEy/dk. Remember that in quantum mechanics there is
no distinction between waves (or oscillations) and particles. Indeed
we could say that we have discovered a new particle which has been
named acoustic phonon which propagates with the sound velocity. At
longer wave-lengths k& =~ m/(2a) the phonon does not propagate since
w(k) ~ 2\/% does not depend on k and therefore its group velocity
vanishes. Observe that phonons are an effect of the interaction be-
tween atoms (when x — 0 we find w(k) = 0) and they do not exist
outside of the many-body system. This is the major difference between
condensed matter physics and high energy physics where particles exist
in the vacuum.
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Figure 4.1: One-dimensional lattice: (a) one atom per basis; (b) two
atoms per basis.
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4.2 Phonons in higher dimensions

We can now generalize the discussion of the one dimensional problem to
higher dimensions quite easily. We label each atom in a Bravais lattice
by a vector R + R,. If we allow the atoms to move by an amount
u,(R) then the instantaneous position of the atom is

ro(R) =R +R, +u,(R). (4.12)

Since the atoms undergo harmonic oscillation the potential energy as-
sociated with the displacement has the generic form

U=3 ¥ XY tanRKLGR - R, (R)  (413)

R,RI a,,B 1214

where K3 with p, v = z,y, 2 and o, § = 1, ..., N, is a matrix dN, x dN,
which tells us how the energy of the system change when displace an
atom « in some unit cell at position R in the direction u, relative
to another atom S in the unit cell located at R’ in the direction v.
Observe that this matrix can only depend on the relative position of
the atoms. This is an important property as we are going to see. In the
one dimensional problem discussed previously where we have just one
atom in the unit cell and just one direction to move them this matrix
has a very simple form which you can directly check, namely,

IC(TL - m) == K,(Qén,m,o — 5nfm,1 — 5nfm,71 . (414)
The kinetic energy of the atoms is simply
P.(R)
K= s 4.1
% A (4.15)

where M, is the mass of each atom in the basis and P, the momentum
of each atom. Observe that the momentum and the displacement are
canonically conjugated, that is,

[uh(R), PY(R)] = i716,,,000,50m 1" - (4.16)

The commutation relation leads to a quantum problem we want to
solve.
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Notice that the Hamiltonian of the system H = K + U is rather
complex and will change depending on the type of lattice we are work-
ing on. In order to simplify the problem one has to look for generic
properties which are common to all Bravais lattices. There are two
of these properties: (1) the harmonic interaction between atoms only
depends on the relative distance between the atoms; (2) all Bravais
lattices have inversion symmetry.

Because K only depends on the relative distance between the atoms
it is convenient to Fourier transform the displacement operators:

u,(R By (4.17)

- wEe
where k is the wave-vector of the problem. If, like in the one dimen-
sional case we studied previously, we impose periodic boundary condi-
tions in all directions, that is uy(x + Nyay, v, 2) = us(x, y + Nyay, 2) =
u,(z,y, 2 + Nya,) = uu(z,y, 2), where N, is the number of atoms in
each direction (observe that the total number of atoms is N = N, N, N,)
and a, is the lattice spacing in cach direction, we will have quantized
values for the components of k:

2mn
k, = . 4.18
H Nua/u ( )
where —N,/2 < n, < N,/2 when N, — oo.

In this case the potential term in (4.13) becomes

Z > ub(k k)uj(—k) (4.19)

555”5” k

where

KChA( Z KES(R)e ™! (4.20)
The kinetic term transforms accordingly

K = Z Pa(
k,a

k) : Pa(_k)

[e%

(4.21)
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Notice that (4.19) is diagonal in momentum space. Thus part of our
problem is solved and we just have to diagonalize the problem in the
discrete indices y = z,y, z and o = 1, ..., Np. In order to do that observe
that we would like to find a transformation of coordinates such that
(4.19) is diagonal. Therefore there must be a unilary transformation U
(U™ =UT) between u* and a new set of coordinates ¢~, that is,

Z Uss a5k (4.22)

such that

Z [u_l]u,u ICO/ /BIM,BI g Mawi,uéa,ﬂéu,u . (423)

!

O,

Y AP -1} )
Wl B

Observe that this problem involves dN, x dN, matrices and therefore
we will find dN, values of w,,. Instead of working with two indices,
o and p it is common to use a short notation and introduce a single
index s = 1, ..., dN, for the eigenvalues w,. To each eigenvalue one has
a corresponding eigenvector.Each eigenmode is related to a different
polarization vector es(k). From (4.22) we see that each polarization
vector corresponds to a row (or column) of the matrix &. Thus (4.22)
can be rewritten as

k) = Z es,a(k)QS(k) (424)

where the polarization vectors are orthogonal. The orthogonality con-
dition is simply given by the condition that YT = I, which can be
written as

dN,

Y- e k)€l 5(—k) = Gapdyy (4.25)
s=1

or conversely,

Ny
Z eS,a(k) : es’,a(_k) = 55,5’ . (426)
a=1
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It is clear that after the diagonalization that the Hamiltonian of the
system is written

H-Y Y (7% s %wa(kms(kms(—m) (4.27)

where p, is the momentum canonically conjugated to ¢;. Thus we have
reduced the problem to decoupled harmonic oscillators as one would
expect from the beginning since we used the fact that the forces among
the atoms are harmonic. Therefore, the excitation spectrum of the
system is given by

B,(1) = huoy (1) (my 19 + %) (4.29)
to each mode of this spectrum we associate a elementary excitation
that we call phonon. In condensed matter physics we are interested
in obtaining these elementary excitations. The problem of vibrating
atoms is particularly simple since it involves only harmonic forces.

Let us now go back to the problem of obtaining the frequencies
through eq. (4.23). Multiplying this equation by the left by U one
obtains

K = Mw?T|U =0 (4.29)
which only has a non-trivial solution (U # 0) if
det [K(k) — Mw?(k)I] =0 (4.30)

which is the equation that defines the eigenmodes. Observe that it
involves the diagonalization of a dN, X dN, matrix and therefore, for
each value of s, the eigenvectors have dimension dNV,. Each one of these
eigenvectors represent the polarization of the phonon waves in the solid.
In order to proceed we need more information about K(k). Since we
are not dealing with a specific lattice we have to use the most general
properties of these systems, that is, we have to use their symmetries.

The first important symmetry which is true for any crystal is the
inversion symmetry, that is,

K(R) = K(-R). (4.31)
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This property implies, from definition (4.20), that
ZIC Yeos (k- R) (4.32)

which is an even function of the momentum, that is, K(k) = K£(—k).
Another important property of the system is that if we translate all the
atoms by the same fixed but arbitrary amount, say u,(R) = Ry, then
the energy of the system has to be the same. This is called Galilean
invariance. Thus, from (4.13), one finds

> Ry-Kus(R-R)-Ro=0 (4.33)
R,R’, 0,83

which, for arbitrary Rq implies

> Kaps(R)=0 (4.34)

which in terms of the Fourier transform (4.20) implies

> Kapsk=0)=0. (4.35)

This condition imposes even stronger constraints on the form of K.

Let us consider, as an illustration, the casc of a basis with just onc
type of atom (N, = 1). It implies that we will have d modes in the
system only. In this case (4.35) becomes K(k = 0) = 0. Thus, using
(4.32) one can write

Kk) = ZIC )[cos (k- R) — 1]

= —QZIC )sin® (k- R/2) . (4.36)
Observe therefore that for [k| << 1/d we can rewrite
k? 2
k)~ —5 3 (n R)’K(R) (4.37)
R

where ny is the unit vector on the direction of k. The matrix

1

T3 (nx - R)*K(R) (4.38)

C(ny) = —
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has no information on the amplitude of k but only its direction. Then,
by direct substitution in (4.30), we obtain

ws(k) = cs(ny)k (4.39)
where
det [C(m) — c2(me)I] =0 (4.40)

determine the phonon velocity ¢;(ny) in the direction of k. Phonons
which have a linear dispersion with momentum, such the ones described
by (4.39) are called acoustical phonons. Observe that our approxima-
tion in (4.37) requires that the sum in (4.38) to converge. We can
estimate this sum by replacing it by an integral over R and we see that
C «x [dRR¥'R?K(R) only converges if K behaves at least like 1/R4+2
at large distances which is usually the case in solids.

For atoms with more than one atom in the basis the matrix I does
not necessarily vanish at £ = 0 although the sum of the components of
the matrix must vanish as explicit in (4.35). However, the form (4.32)
is still valid. Tt implies that when &£ = 0 we are going to have solutions
such that the frequency ws(k = 0) # 0. These modes can be obtained
directly from (4.30) by setting & = 0,

det [K(k = 0) — Mwd ,T| =0. (4.41)

These modes which are dispersionless at very small & are called optical
phonons. Observe that we have concluded that in a lattice with a basis
we must have d branches of acoustical phonons and d(N, — 1) branches
of optical phonons. The typical dispersion for the phonon modes is
shown on Fig.4.2. Observe that we have to plot the dispersion only
in the unit cell of the reciprocal lattice, that is, on the Brillouin zone,
because of the periodicity of the system. Moreover, from the fact that
the crystal has inversion symmetry (4.32) we know that (k) = IC(—k)
and therefore we only need to know half of the Brillouin zone.

We have shown that for atoms interacting through harmonic forces
the problem reduces to a set of decoupled harmonic operators as given
in the Hamiltonian (4.27). We can therefore use all the technology we
have for decoupled harmonic oscillators for this problem. In particular
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Figure 4.2: Typical dispersions for a three-dimensional with two atoms
in the basis.
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we are interested in the operators that create or destroy phonons in the
system. The annihilation and creation operators for harmonic modes
are defined as,

au(k) = M‘;;_L(k) <qs(k)+ Mwi(k)ps(—k)>

a9 = e (- ten)  ae

respectively. Notice that the displacements can now be written with
help of (4.17), (4.24) and (4.42) as

u,(R)=>" ; e, (k)e* R ﬁws(k) (as (k) + a‘;(—k)) . (4.43)

Notice that e} ,(—k) = e, (k).
In terms of these operators the Hamiltonian (4.27) can be rewritten

= 3 (k) (a‘;(k)as(k) + %) . (4.44)
where
[as(k), al,(k')] = 55,51 5k,k’ . (445)

Thus the states of the system can be labeled by the occupation in each
phonon state, |ns(k)) and the energy is given by (4.28). The creation
and annihilation operators act in these states according to

as(k)[ny(k)) = /ns(k)[n.(k) —1)
al(k)[ns(k)) = /ns(k) + 1 ny(k) +1). (4.46)

The ground state of the system is therefore the empty state, |0) which
is defined by

a,(k)[0) = 0 (4.47)

since there are no phonons to be destroyed. The excitations of the
problem are therefore obtained by applying creation operators a! to

0).
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4.3 Phonons at finite temperature

We have discussed only the properties of crystals at zero temperatures.
At finite temperatures we have to consider the excitation of the phonons
out of the ground state. In order to do that we study the partition
function of the problem which is defined as

Z(B) = tr [e?] = Y (nle M |n) =3 AP (4.48)

where t¢r is the trace of the operator and the sum is extended over
all cigenstates B, and 8 = 1/(kgT). The free cnergy, F, of a given
statistical mechanical problem is related to the partition function via
= e_fB F

1
F= = —Eln(Z). (4.49)

Observe that the mean energy density of the problem is giving by

1tr [H e Al ]
V tr[e 8]
1Y, E,ebn 1 07

When a given system is made out of independent parts the free energy
is an additive quantity, that is, F = Y, F}, and thus from (4.49) the
partition function is a product of the partition function of the parts,

From the phonon problem we have shown that the system decouples
into a set of harmonic oscillators which are labeled by s and k. Thus,
the partition function reads,

Z=T] 3 e Prestmo+1/2) (451)

5.k 1 (kK)=0

where we have to sum over all possible occupations. The sum over the
occupations is just a gcometric scrics and onc gets

(4.52)

7 e/)’hws(k)/Z 1
B g efhuws(k) — 1 S,Hk 2 sinh(Bhw,(k)/2)

8§
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and, from (4.50), one finds

B=3 ho,(®) (n (k) + %) (4.53)

where

1

nis (k) = oPhuws(k) _ |

(4.54)
is the mean number of phonons on a given eigenstate at some tempera-
ture T. This is called the Bose-FEinstein distribution function. Observe
that the term Fy = >\ hw,(k)/2 is the ground state of the problem
(take the limit of 7 — 0 in (4.53). This energy is not a observable
quantity. We can however observe how a system exchange energy with
a hcat bath at some temperature 7. The quantity that characterizes
this exchange of cnergy is the specific heat at constant volume, Cy .
The specific heat measures how the energy changes as we vary the tem-
perature of the system. Since temperature is related to the number of
excited states, the specific heat is essentially a counting of the number
of available states in the system. This quantity is given by

_10F _ LS S 1LY
VT VOT 0TV & efhuslc) _1°

s,k

(4.55)

In order to calculate the thermodynamic quantitics we define the
concept of density of states. The density of states is the number of
states with a given energy F. Mathematically it is given by,

1
N(E) = v Y 8(E—-E,). (4.56)
For phonons the density of states is just

N(E) = % 5 0(8 1, (19). (4.57)

In terms of this quantity the specific heat can be written

9 o N(B)E
Cy =37 /0 I (4.58)
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which can be proved by direct substitution. Thus, all the thermody-
namic function can be obtained directly from the knowledge of the
density of states.

In general, the density of states is a very complicated function of the
energy due to the shape of the phonon dispersion relation. We have
seen, however, that we have d acoustic modes and d(N, — 1) optical
modes. Moreover, these modes are characterized by the fact that the
acoustical modes have a dispersion proportional to k£ while the optical
modes are dispersionless at small k. What is the effect of temperature
on the phonons? At low temperatures only acoustical modes are excited
since to excite an optical mode one has to pay an energy hwy. There-
fore for kT << hwy we do not expect to excite any optical mode. The
acoustical modes, however, can always be excited at low temperatures
since the dispersion vanishes with &, that is, it is always possible to
find a mode & such that kg7 ~ hck. Indeed, these two types of exci-
tations are the most basic ones in condensed matter physics: gapless
and gapful. Most of physical properties of solids can be understood on
the basis of this classification. Without doing any calculation we can
predict the behavior of the thermodynamic functions quite well.

For an acoustical mode at some given temperature 7' the number
of modes available is given by the spherical volume in k-space of ra-
dius k at energy kpT (see Fig.4.3)(a)). In d dimensions this volume
is proportional to T¢. Naturally the number of states available at this
temperature is proportional to T%. Thus the specific heat has to behave
like 7. The energy of the states is of order kgT. Therefore the thermal
energy of the system, AE, (AE = E — Ej) has to be proportional to
T (in accordance with (4.55) the specific heat is proportional to 7¢).
This argument is valid as far as the Bose-Einstein occupation number
does not give an important contribution. This requires low tempera-
tures (see Fig.4.3(b)). At high temperatures the occupation number
gives a contribution of order kgT/E and therefore the mean energy
in (4.58) is just £ ~ kpT [dEN(E) which is linear in the tempera-
ture. The specific heat, by its turn, has to be temperature independent.
This is known as the Dulong-Petit law. But observe that the integral
JdeN(FE) is essentially the total number of states per unit of volume
in the system which is dN/V o 1/a® where a is the lattice spacing.
Observe that besides the thermal energy kg7 the only other quantities
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(a)

n (E) A

(b)

e
0 E/ (k JT)

Figure 4.3: (a) Phase space for phonons in two dimensions; (b) Shape
of the Bose-Finstein distribution.
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which can appear in the expression of the energy is the phonon velocity
¢, the Planck constant A and the lattice spacing a. The only quantity
with dimensions of energy that we can construct from these constants
is he/a. Since we know that the mean thermal energy is proportional to
(kpT)®*! the only form allowed for the mean energy per unit of volume

(kgT)4Tt he/a
AR =S (kBT> (4.59)

where ®4(x) is a dimensionless universal function such that for x >> 1
it is constant and when x << 1 it behaves like 247! accordingly to
the Dulong-Petit law. Eq.(4.59) is called a scaling form form of the
mcan cnergy because it was only based on dimensional analysis and the
study of trivial limits of the problem. This scaling form of the energy
is possible because acoustic modes are critical, that is, the frequency
and momentum scale in a well defined way. In this case we can defined
what is called a dynamical exponent, z. This can be understood in the
following way: suppose the lattice constant of the problem is changed
by a constant b, that is, @ — ba. Since the momentum is proportional
to 1/a then it has to change as k — k/b. But the frequency is also
proportional to the momentum and therefore w — w/b. Thus the ratio
k/w is unchanged by any change in the scale of the problem. In this case
we say that z = 1. In a system where the frequency does not depend
linearly with momentum a change in the lattice spacing can lead to a
change in the frequency such that w — w/b* and thus the invariant
ratio is not k/w but k* /w which defines a generic dynamical exponent.
The physical reason for this is due to the relativistic invariance of the
acoustic problem, that is, the system of acoustic phonons is invariant
under a Lorentz transformation.

Now that we know the result of the calculation let us consider how a
serious calculation would lead to the form (4.59). We approximate the
actual frequency by the acoustic relation (4.39). We have to remember,
however, that the dispersion is a periodic function of momentum and
by replacing the exact dispersion by a linear one we have disregarded
wavevectors close to the zone boundary (k &~ G/2). We have therefore
to cut-off the integrals at some maximum vector, kp. In order to es-
timate this wavevector we replace the original unit cell by a spherical
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Figure 4.4: Geomelry of the Debye approrimation in two dimensions:
the square Brillouin zone is replaced by a circle of radius kp.



96 CHAPTER 4. ATOMS IN MOTION

one with radius kp (see Fig.4.4). The number of states in the original
cell is N, the number of atoms in the crystal. Moreover, the volume in
k-space per wave vector is (27)%/V and therefore the number of states
is (2m)¢N/V = (27)%. In order to preserve the number of states for
the spherical problem we require that

(@2n)in = / dk Ok — k)

o = (" won

where S; = [d2 is the total solid angle in d dimensions (S; = 2,
Sy = 27 and S3 = 4n) and 6(z) = 1 if x > 0 and vanishes otherwise
is a step function. This is called the Debye model. Observe that kp
is proportional to 1/a and therefore acts as a high energy cut-off for
the model. For this model the density of states for acoustical modes is
written as

Np(E) = Z/
=Y / (;?)d /0 dkk® 16 (F — hey(n)k) . (4.61)

ddk

§ (E — heg(ng)k)

We now change the variables as z = fic,(ng )k and write

Np(E) = (ds . (Eﬁp) 0 (ksOp — E) (4.62)

where kp©p = hwp = hckp o he/a is the Debye energy and is the
scale of energy that should appear in (4.59). Moreover,

Z / S Cd ) (4.63)

gives an estimate of the average phonon velocity. Observe that the
density of states is finite only for energies smaller than the Debye energy.
By substitution of (4.62) into (4.58) one finds (4.59) with

By(z) = 22 /Owdzezz . (4.64)



4.4. INELASTIC SCATTERING 97

Observe that the characteristic energy scale in solids is defined by the
Debye temperature. The sound velocity is of order of 10* m/s in most
solids and since the lattice spacing is of order of A the typical Debye
temperatures are of order of hundreds of Kelvin.

The optical modes can be treated in a much simpler way since they
are dispersionless and have a gap for excitation of energy hwgy. It is
clear from (4.58) that in this case the physical properties are going to
be completely determined by the Bose-Einstein factor which is expo-
nentially small at low temperatures. Thus one expect all the thermal
properties of optical modes to decay exponentially with temperature,
that is, e~™0/(8T)  Since we have Ny(d — 1) optical branches in the
spectrum we can write that the density of states is simply

_ Ny(d—1)N,
B 4

where the prefactor is chosen in such way that the total number of
states is correct. Thus, using (4.58), onc finds

Np(E) S(E — Tuw) (4.65)

(d — ].)ﬁhu)()

AB =

(4.66)
where we have used that N = N,N,. At low temperatures, as expected,
the mean energy vanishes exponentially and at high temperatures one
recovers the Dulong-Petit result. This simple model for optical phonons
is called Einstein model.

4.4 Inelastic scattering

Consider the problem of the scattering of a solid taking into account
lattice oscillations, that is, phonons. We assume that the interaction
between the probe and the solid is weak and since this is a time de-
pendent problem (the atoms undergo harmonic motion) we are going
to use time dependent perturbation theory. The probe (which can be
light, neutrons or whatever) is assumed to be initially at some distant
time ¢, — —oo in a plane wave state (¢?*/y/V) with wave-vector p
and the solid in a eigenstate of the Hamiltonian Hy given by |I) with
energy Er. The probe interact with the solid via a potential V' and is
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scattered into a new plane wave state with wave-vector p’ (see Fig.4.5)
and the solid is left in another eigenstate |F') with energy EF at some
distant time ¢ — co. Observe that the energy must be conserved in the
scattering and therefore

where F is the change in energy of the probe during scattering. Observe
that the scattering is inelastic because the probe does not conserve its
energy during scattering. The rate of transition is simply given by
Fermi’s golden rule

2m
T(q,E) = - > 6(E—Er+Ep)|(p/,F|VIp, I)|?
F
— 2" §(E - Ey +Ep) x
h F
< 1% [ e m @) (4.68)
%

where q = p’ — p is the momentum transfer during scattering.
We will assume as before that the interaction of the probe and the
solid is short ranged and can be written as

Vir) = W ; 6(r—r(R))
Vie) = W ; §(r— R —u(R)) (4.69)

where we have used (4.12) and for simplicity of notation we assume one
atom per unit cell. Substitution in (4.68) leads to

o2rV2
T(q,E) = —

ot S8 (B— B+ Ep) | X e ™EFI ™D (4.70)
F R

The cross-section of the crystal is proportional to the transition rate
and this allows us to define the so called dynamical form factor, S(q,w),
which is given by

S(a0) = 3 S0+ (Br = F)/1) | T e (Pl D). (47)
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Figure 4.5: Scattering process.

which can be Fourier transformed in the frequency domain,

dt
S(a,w) = [ 3¢S, (4.72)
27
where
]_ . . ’ . ’ :
Slq,t) = NZ U Br—FEn)t/h Z ezq~(R—R)< [|ezq~u(R)| F){ F|e—zq-u(R)| I)
F R,R’/
= P DT || ) (|t e
N F RR/
= LY R e ®) | ) i)
N % R,R’
1 . ) . N g
= % > et (RR) (]| giau(R) p—iaru(Rit) | 1) (4.73)

Where we have used that: (1) |I) and |F) are eigenstates of Hy;
(2) the operator identity UetU ! = eVAU . (3) changed from the
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Schrodinger representation to the Heisenberg representation, that is,
etHot/h pe=iHot/h — A(t); and (4) that the final states form a complete
set >op |[F)(F| = 1. We will assume further that initially the solid is
an equilibrium situation at temperature T so that (I|...|I) becomes a
thermal average. Observe that the dynamical form factor only depends
on the properties of the crystal since the probe is already out of the
problem. Notice that we can write (4.73) in a simpler form if we use
(2.50)

S(a,t) = N{I|p(—q,0)p(q, t)|I) (4.74)

is the so-called densily-densily correlalion funclion. Observe that this
is a natural result since the probe is coupled to the ion density in
(4.69) and therefore the response of the solid occurs by creating density
fluctuations.

In order to calculate the thermal average in (4.73) we are going to
use a result from the appendix which says that if the ground state of
the problem is the one for harmonic oscillators and the operators A and
B are linear combination of destruction and creation operators we have

<6A€B> — 3({A>+2AB+B?) (4.75)
where in our case A =iq-u(R’) and B = —iq - u(R,t). Thus we have
<eiq~U(R’)e—iq~U(R,t)> —  esau®)quRf—(quR))’~(qu(R,1)’)

= e% > 144 Cup (R—R/ 1) (4.76)
where
CM;”(R - Rla t) = <(U’#(R7 t) - U’#(Rla O)) (U’U(Ra t) - U’U(Rla O))>(477)

is the phonon-phonon correlation function which depends only on the
relative position of the ions. Thus, the dynamic form factor reads

Sla,t) =" iR 2y 040" e (R1). (4.78)
R

Most of the phenomena in physics can be expressed in terms of cor-
relation function such as (4.77). This is one important example since
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most of the excitations in solids (even electronic ones) have bosonic
character.

The calculation of the correlation function (4.77) is very simple
because the u operators are just linear combinations of creation and
annihilation operators. We can easily show using (4.43) and the com-
mutation relations between the creation and annihilation operators that

CoulBot) = 3 [ 5aeb 0K g

(14 na(k)) (e R0 1) 4 gy, (k) (R0 — 1)] . (4.79)

Notice that the complete evaluation of S(q,w) is very complicated.
One can however look at some simple limits. Let us study the limit of
elastic scattering, that is, when the energy is conserved in the scatter-
ing. In this case we have to take the limit of w — 0 in (4.72). This
is the so-called static limit. Observe that this is equivalent of taking
the limit of long times ¢ — oo in (4.72) since the exponential term
oscillates strongly in this limit and the integral is dominated by small
values of the frequency. In this limit the exponential terms in (4.79)
also oscillate strongly and give vanishing contribution. The only term
left is

M 1 1 4
lzmt_,oo§ Zq‘q C.. (R, t) =—=2W(T)
1,

= —Z/%n es(k)F% (14 2n,(k)) (4.80)

which is the so-called Debye-Waller factor. The physical meaning of
this factor is clear if we calculate the dynamical form factor from (4.78)
and (4.72):

SO (q,w) = e M§(w)Négc (4.81)

which is the result of elastic scattering obtained before except by the
Debye-Waller factor which tells us that virtual transitions induced by
the collision of the probe with the crystal at finite temperatures de-
creases the intensity of the scattering. We have been able, therefore, to
reproduce the results of elastic scattering.
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The next correction to elastic scattering is obtained by retaining the
time dependence on correlation function (4.77). In order to do that we
replace the exponent in (4.78) by

. 1
S(q,t) = > e exp {5 > gt [limis o Crp(R, 1) + AC, L (R, t)]}
R v

: © 1 "
= Z ezq-Ref2W(T) Z l§ Z qquACu,u(Ra t)] (482)
R n=0 IT87%
where
AC, (R, 1) = Cyuy (R, 1) — limysocCoun (R, £). (4.83)

It is possible to show that each power in n in (4.82) is due to the
scattering of the probe to n phonons. The first order correction to the
static term produces a correction in the dynamic form factor which is
given by

SO(@w) = e ™Y a-e.a)f g [0+ ma(@) 5+ en(a)

+ ns(q)d (w —ws(a))] (4.84)

observe that the first term increases the number of phonons by one and
therefore is related with the emission of one phonon by the probe. The
second process is associated with the absorption of one phonon by the
probe. The ¢ functions guarantee the conservation of energy for each
onc of these process. Other corrections can be calculated immediately
from (4.82). An important property of (4.84) is that the scattering
happens when w = E/h = w,(q). Thus, by varying the energy of the
probe one can map the dispersion relation of the phonons.
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4.5 Problems

1.

Calculate the commutation relations between u,(k) and P, (k)
starting from (4.16).

. The group velocity of an excitation is defined as the velocity at

which a wave-packet made out of a superposition of plane waves
propagate and is given by
dw(k)

dk

Vg =

What is the group velocity of an acoustical wave when £ — 07
What is the group velocity of an optical wave when & — 07

Calculate the phonon dispersion and polarizations for an one-
dimensional lattice with two atoms with masses M and M, as in
Fig.4.1(b).

. What is the sound velocity for the problem in which the chain

has two different masses?

. Assume that a chain is made out of 3 different atoms with different

masses. What can you say about the spectrum of the system?
Where arc gaps located? Hint: no calculations needed.

Using the commutation relations between g;(k) and ps(k) show
that the creation and annihilation operators obey the commuta-
tion relations (4.45).

Here we are going to consider the long wavelength theory of acous-
tic phonons. Define two new fields,

M,(r) = %; pa(k)e
]‘ 1k-r
¢s(r) = W;‘k(k)e (485)

which obey canonical commutation relations [¢,(r), Iy (r")] =
ihd(r—1')d, ¢ . By linearizing the phonon dispersion, w,(k) = ¢k
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10.

11.

12.

13.
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show that Hamiltonian density associated with the acoustic case
can be written in terms of these fields as

2

2
H= 3 | B () (4.86)
where p = M/a is the lattice mass density and « is the lattice
spacing. FEq.(4.86) is the Hamiltonian density of a field theory
for particles moving with ”light” velocity c¢,. Observe that in
this ficld theory all the knowledge of the lattice is lost since we
assumed that & << 1/a or cquivalently that we arc looking at
wavelengths such that A >> a. Show that classical equation of

motion for (4.86) is the well-known wave equation:

Lo, .
F = Civz(f)s . (487)

Prove that the equation (4.64) is correct and obey the scaling
properties. Evaluate the low temperature specific heat for the
Debye model in d = 1, 2, 3.

Calculate the specific heat for the Einstein model for phonons
with frequency wy.

Show that the field theory associated with the Einstein model is
given by the following Hamiltonian density:

i
H=> 5

(r) N aMw?

p 5 ®(r)| . (4.88)

Prove eq.(4.79).

Calculate the Debye-Waller factor in 1, 2 and 3 dimensions at zero
temperature for acoustic phonons. What is the physical meaning
of your results? This result is related to the famous Mermim-
Wagner theorem.

Prove that eq.(4.84) is correct.
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4.5.1 Appendix: Thermal averages for bosons

Observe that in (4.73) we are interested in calculating an average of ex-
ponential of operators. But from (4.43) these operators are linear com-

binations of harmonic creation and annihilation operators, Y, (anan + %a};),

where each mode is independent from each other, that is, [a,, al ] = d,.m
(for the phonon case n = (s,k)). Since these modes are independent
we can look at each mode individually. Let

A = aga+yaal
B = apa+ ygal (4.89)

we want to evaluate an average of the form {e”?e®). First we use an

operator identity which is valid when the commutator [4, B] is a c-
number:

etef = AT Bl AP (4.90)

Observe that A + B can now be written as

A+ B = aa+va (4.91)
where
o = o4+ op
Y = Ya+7B. (4.92)

Thus we are interested in calculating

<eaa+'y(ﬂ> — e—a'y/Q <eaae'y(ﬂ>

112 (10 o) (4.93)

where we have used (4.90). Now we define the function

< 20 ewa’f >

= (e | (4.94)

fla)
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Now we use the cyclic property of the trace in order to write
<67ajfeaa> — [e—/J’Hewfr eaa] /Z
= tr [ea“e*BH emf] /Z
= tr [e_’BHefBHea“e_BHewf] /Z

= (ePTee PHen'y (4.95)

The Hamiltonian for the problem is simply H = fhiw(a'a + 1/2) and if

we use the operator identity UeAU ! = ¢4V~ and
CL'G,TG, —CEG,TG, X
™ %qe =e"a (4.96)
we obtain from (4.95):
<emﬂ eaa) _ <eae—ﬁ“’3aeqa’f>
foe™™P) (4.97)

where we have used the definition of f. Now, from (4.94) we find
fla) = &7 flae™™?) (4.98)
which can be solved by iteration, that is,
Fla) = eya(we*ﬁwﬁ)f(ae—zhwﬂ) _ eya(]+e*ﬁw3+e*2ﬁw3)f(ae—3hw5) (4.99)
and so on. If we do this process an infinite number of times we find
fla) = /== (0) (4.100)

where we have used the result of a geometric series >5° 2" = 1/(1 —x).
Observe however that

F0) = (") =S e Fnin|e |ny = 1 (4.101)

and therefore

Fla) = /(=) (4.102)
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We now observe that the Bose-Einstein factor is

3 1
n=GeF 1 (4.103)
and therefore
fla) = 20+ (4.104)

With this result at hand we can rewrite
<eaa+fy(ﬂ> — e%fya(l—}—Qﬁ) (4105)
and finally
1
(4e") = exp {5 [ours = va0m + (v + 504 + a5)(1+ 20)]
1, . .
— axp {§<A2 +24B + BZ>} (4.106)

which can be obtained directly from the definition of A and B, the
commutation relation [a,a!] = 1, the definition n = (a'a) and that

(@) = (o)) =0.
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Chapter 5

Electrons in Solids

5.1 Introduction

We have seen that the difference in the mass of the electrons and ions
allow us to separate their time (or energy) scales. This introduces a
major simplification since we can treat electrons and ions separately.
We have investigated the problem of the coupling between ions and
showed that the ion problem has elementary excitations which are called
phonons. The short range character of the interaction between ions and
the fact that they form a lattice makes their theoretical treatment quite
simple. The same thing does not happen with electrons. This can be
seen clearly from the experimental fact that electronic properties of
solids can vary wildly, that is, we can have metals, insulators, magnetic
systems, superconductors, etc, with properties which depend only on
the way the electrons interact among themselves.

In this chapter we are going to study the interaction between the
electrons and the atoms in a crystal. We are going to explore the fact
that in a crystal the potential felt by the electrons has to be peri-
odic due to the periodic arrangement of the atoms. We are going to
consider first the case of a linear chain of atoms since the mathemat-
ical treatment is quite simple and it is relevant for the experimental
case of one-dimensional systems such as organic conductors, polymers
and other low dimensional systems. The treatment of the higher di-
mensional problem is completely analogous and we will generalize the

109
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one-dimensional results to higher dimensions.

5.2 The linear chain

Let us consider now a problem where a symmetry helps us to solve
the problem entirely. Consider a ring of N identical atoms which are
separated from each other by an angle 27/N as shown on Fig.natom.
We label the states of the electron localized in each one of these atoms
by v, with n = 1,..., N. Observe that this problem has rotational
invariance, that is, if we rotate the system by 27 /N we should not
notice any difference. In the limit where R — oo and N — oo but N/R
is a constant (which is just the linear density of the chain) the problem
goes into a linear chain of atoms with periodic boundary conditions, that
is, the atom N + 1 is simply atom 1. If we had no atoms on the ring
and we allow an electron to move along the ring then the system has
translational invariance, that is, we could rotate the ring by any angle
and the problem should look like the same. The operator that produces
translations (or in this case, rotations) is the translation operator

R(l) = ?V/h (5.1)

where p is the momentum operator. In order to understand why this
operator generates translations consider the transformation

R(DzR~ () = P/ge PP = 4 | (5.2)

as you can easily shown by using the commutation relations [z, p] = ih.
In the absence of the atoms the Hamiltonian of the problem has to
commute with R(!) for any value of [ by translation (rotation) invari-
ance.

In the presence of the atoms this is not true because the electron
feels the potential of each atom. The potential V' (z) felt by the electron
has to be periodic, that is, if x is the coordinate along the ring one
must have V(z + a) = V(z) where ¢ = 2rR/N is the lattice spacing.
Thus, although the Hamiltonian of the problem does not commute with
R(l) for any value of [ it has to commute for [ = a. Thus, the problem
does not have a continuous symmetry but a discrete one. Since the
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Figure 5.1: A ring of atoms with radius R and hopping energy t.

Hamiltonian has to commute with R(a) onc knows that H and R(a)
share the same eigenvectors. Thus, if we find the eigenvectors of R(a)
we will also find the eigenvectors of H. Moreover, because R(a) is
written like (5.1) its eigenvalues are related to the eigenvalues of the
momentum operator, that is,

plk) = hkl|k) . (5.3)
In this case the eigenvalue problem for R(a) reads

R(a)|k) = ™ |k). (5.4)

We would like, however, to rewrite the states |k) in terms of the
states |n) of the electron localize on atom n. As we used previously
this state is essentially a vector with N entries where only the ny,



112 CHAPTER 5. ELECTRONS IN SOLIDS

entry is 1 and all the others are zero:

0
We know from basic quantum mechanics that if we have a complete set
of orthogonal states any state in the Hilbert space has to be written as

a linear combination of these states, in other words, the states |n) span
the Hilbert space (3°, [n){n| =1)

k) = " In)nlk) =

(5.6)

where ¢y , are unknown coefficients. We further know that R(a) has to
move the electron one unit in the lattice and therefore

R(a)|ln) = [n+1)
R Ya)ln)y = |n—1). (5.7)

Applying R(a) to (k) in (5.6) and using the above relation we find

a)lk) = Z cenR(a)|n) = => Copotln). (5.8)

Using (5.4) together with (5.6) and the fact that the states |n) are
orthogonal to each other ({n|m) =4, ,) we see that

Cen = Ck,n—le_ika (59)

which gives a recursion relation for each ¢, starting from the previous
one. Suppose we start from ¢ ;. In this case it is very simple to see
that

Chn = Cp 1€ F™ (5.10)



5.2. THE LINEAR CHAIN 113

and thus the expansion (5.6) becomes
k) = cri > e " |n) (5.11)

and from the fact that |k) has to be normalized ({k|k) = 1) we find

1
T (5.12)

We have therefore solved the eigenvalue problem in (5.4).

Because the system has the periodicity generated by R(a) it means
that the energy of the system does not change when we translate the
system by a, that is, the Hamiltonian commutes with R(a): [H, R(a)] =
0. From basic quantum mechanics we know that it implies that the
eigenstates of R(a) are also eigenstates of H. This result, however,
does not tell us what is the energy of these states. In order to know
that we have to use the Hamiltonian itself. Now, let us go back to our
original problem of the tunneling of electrons between different atoms.
The Hamiltonian can be constructed in exactly the same way as for the
case of the other molecules the only difference is that we have a N x N
matrix:

|Ck,1

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
H=-t\, 0 1 0 .. 0 (5.13)
o .. 0 1 o0 1
10 0 1 0

Observe that if we apply H to a vector like (5.5) we immediately obtain
Hin)y=—-t(ln+1)+|n—-1)). (5.14)

The meaning is rather obvious: the Hamiltonian has only a kinetic term
which moves the electron between nearest neighbor sites on the chain.

Since we know that |k) is an eigenstate of the system let us calculate
its energy. In order to do that we just have to apply the Hamiltonian
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the state:
H|k) = R (In 4+ 1) + [n— 1))

Z
Z( —ska(n—1) + —zka(n+1)) |TL>

am\

= —t

N

eke 4 e=ha) |1 (5.15)
which can be written as
H\|k) = Ex|k) (5.16)
where
Ey = —2tcos(ka) (5.17)

which gives the spectrum of the problem and is shown as a function of
k in Fig.5.2. Observe that the state of lowest energy has k¥ = 0 with
energy —2t. From (5.11) this state is simply given by

1
1
1

, -
k=0)= =S = 1 (5.18)

1
which shows that the probability of finding the electron in any atoms
is the same and given by 1/N, that is, the electron is spread uniformly
over the entire chain! That is the way the kinetic energy is maximized.

Observe that we started with /V states and therefore we have to end
with N states. It means that there are only N allowed values of k! To

find out what are these values we have to remember that the ring is
periodic and therefore |n + N) = |n). Thus, from (5.10) we must have

eV — 1 (5.19)
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Figure 5.2: Spectrum for an electron moving on a one-dimensional
chain as a function of k.
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which implies that the values of k£ are quantized and given by

2tm

kpy = Na (5.20)
where m = 0, £1, ..., £(N—-1)/2, N/2 for N even and m = 0, £1, ..., =(N—
1)/2 for N odd produces the required N states. Observe that the avail-
able states go from k¥ = —xn/a(1 — 1/N) to k = w/a. In the limit of
N — oo the "distance” between two states which is just 27 /(Na) goes
to zero and we have —7m/a < k < w/a which is called the Brillouin
zone. Notice that the tunneling between atoms has broken the degen-
eracy of the original N states into /N non-degenerate states for each
value of k. Thus if the distance between the atoms is large enough so
that £ — 0 no tunncling takes place and the clectron is stuck in onc of
the atoms. No motion can occur and the system is an insulator that
is highly degenerate. As ¢ increases when we approach the atoms the
tunneling grows and the degeneracy is broken as shown in Fig.5.3. The
argument here is not only valid for the ground state but for any state
of the atom. For instance, we could have electrons coming from other
orbitals and going from atom to atom. Thus, each orbital gives rise
to what is called a band of states which essentially have a dispersion
given by (5.17). We also say that each band has a finite bandwidth, W,
which is the energy difference between the highest and lowest energy
state which for (5.17) is just W = 4¢.

Because the electron is spread over the entire lattice it is very easy
to move it around. This is true if the band is not full. This is simple
to understand: from the Pauli principle we can only have one electron
for each value of k. Suppose we put 1 electron on a lattice of N atoms.
The state of lowest energy has k¥ = 0 (compare this state with the
states we found for the Hy and the molecule with 3 atoms!). Once
this state is occupied we can put another electron on this state but
with opposite spin. The next state to be occupied is the closest to
k = 0 since, according to (5.17) (see Fig.5.2) the energy grows with
k. Thus, if we put N, electrons in the system they have to occupy
symmetrically the states around & = 0. Obviously the band will be full
when N, = 2N. In this case there are no more states available! The
next state in the system corresponds to an atomic state with larger
energy, that is, there is a gap, A, between bands which in the atomic
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\ 4

1/a

Figure 5.3: Energy of the system as a function of the distance between
atoms.
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Figure 5.4: Motion of electron in a periodic array of atoms: (a) band
less than filled; (b) filled band.

picture is just the energy between the discrete states. Thus, in order to
make an excitation in the system we have to excite the electron over the
gap and this costs energy. Thus, at low temperatures no conduction
can happen and the system is a band insulator. In real space this
is also simple to understand: when N, = 2N the electrons cannot hop
anymore to the same orbital since it is fully occupied (Pauli principle)
and therefore it has to hop to another orbital at higher energy, as shown
in Fig.5.4.

The scenario that we have been describing here is known as tight
binding approximation because we assume that the wavefunction on
each atom is very close to an atomic wavefunction. This is only true is
the tunneling ¢ is small. From Fig. 5.3 one sees that when R decreases
the bands can start to overlap and the gap between bands disappear.
This implies that the electrons just feel a very weak potential created
by the lattice. In this case one can just treat the periodic potential
created by the lattice as a perturbation. Let us consider this case in
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more detail.

In the absence of a periodic potential the electron undergoes free
motion in a circle of length L. The Schrodinger equation for this case
is simply

B d?
———=(x) = Ey(x) (5.21)

2m dx?

which can solved immediately in terms of plane waves:

1 .
Yi(z) = ﬁem
B2k
E) = S (5.22)

Observe that the energy is a continuous function of £ in complete con-
trast with the tight binding picture and it is shown on Fig.5.5(a). The
question that remains to be answered is what happens when we intro-
duce the periodic potential of the lattice. Observe that because the
potential is periodic we have V(z) = V(2 + ) and if one expands V (x)
in Fourier series

Viz)=> Vie ™ (5.23)
k
the condition of periodicity implies that
2mn
k=— 5.24
: (524

where n is an integer. Thus, even without computing the effects of
the potential we already know that the momentum is only defined in
the Brillouin zone, that is, —7/a < k < w/a. Thus, one has to shift
the portions of the energy E} inside of the Brillouin zone as shown in
Fig.5.5(b). This is the effect of the pure periodicity of the problem even
if V(z) — 0!

When V(z) is finite but small we have to take into account the effect
of the potential in the Schrodinger equation

(=g s + V() (o) = Bun(a). (5.25)
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\E,
(a)
R
E,
(b)
o k

-n/a n/a

Figure 5.5: FElectron dispersion: (a) in the absence of a periodic poten-
tial; (b) in the presence of a periodic potential.
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Let us treat the problem in perturbation theory. Since we know that
the problem when V(x) = 0 is solved in terms of plane waves we look
for a problem of (5.25) which is a linear combination of plane waves

1 ikx
Vp(z) = N7 ; Ch i€ (5.26)

where we would like to know the values of ¢ . Because of the periodic
boundary conditions, that is, ¥g(z + L) = ¥r(z) one has
2mn
k=— 5.27
. (5:27)
where n = 0,+1, ..., N/2. We have now to normalize the wavefunction
over all space

/ " 2 dzp(z)]? = 1 (5.28)

which can be written as

L/

1
£
=3 Ginton [
k,p B

2 .
dre*P% =1 (5.29)
L/2

In order to perform the integral one has to remember that k£ and p are
given by (5.27) which implies that the above integral has the form:

/L/2 Jreio—Re _ 2sin(p —k)L/2 _ Lsin(n —m)rm . (5.30)
—L/2 (p—x) T n—m

Observe that the above integral is zero unless n = m (that is, p = k)
in which case we write

Lz
/ dre!PhT = 15, (5.31)

—L/2

where 6 is the so-called Kronecker delta which has the properties that
dp =1if p=Fk and dp, k = 0 if p # k. Thus we conclude that

Z |Ck,E

k

2=1 (5.32)
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gives the normalization of the wavefunction.
If we substitute (5.26) into (5.25) one finds

Z o ck,Eeikw -+ Z Ve ey, e Z Ecy, et (5.33)

in order to solve this equation we multiply the equation above by e~%#®

and integrate over x. We are going to use the following useful integral
(5.31) to obtain

(E — E e,z E Vo—p Cpr (5.34)
where
H/2 i(k—p)
Vi / dxV (x)e"" P }
bp = 7 L x (5.35)

Observe that (5.34) is a matrix equation where V, are the matrix
elements of the potential and the collection of ¢ 5 for fixed E form
a vector. In order to see that let us remember that because of the
boundary conditions k, = 27n/L with n = 0,+1, ..., N/2 there are N
allowed values of k. Thus, let us number k,, with m = 1,.... N. We
will use m to number the eigenstate (which is equivalent to use k in the
Brillouin zone). That is, we can rewrite (5.34) as

E— FEy, 0 0

Ckl,E
0 E— Ekz 0 Cks  E
0 FE— EkN—l 0 Ckn_1,E
0 0 FE— EkN Ckn E
V1,1 V1,2 V1,N Ck1,E
Vz,1 Vz,z Vz,N Cks,E
= . . (5.36)
VN—1,1 VN—1,N—1 VN—1,N Ckn_1,E
VN,1 VN,N—1 VN,N Cin ,E

which is a N x N diagonalization problem exactly like in the tight
binding problem we solved earlier.
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We do not wish at this point to solve (5.34) in its full form but
for small values of V, that is, we would like to solve the problem as a
power series expansion of the potential. Observe that for V' = 0 the
solution is straightforward, namely, for a given i** eigenvalue we have:
it E = By, then ¢, g = 1; if E # E, we have ¢;, g = 0. Another way
to rewrite this result is to define a wave number & such that:

R2E?
E= 5 (5.37)
and rewrite (5.34) as
h?
%(k' — p Cp, Z V 'Cp’ ke (538)

and therefore the solution for V = 0 is: if p = k we have ¢, = 1 and
if p# k ¢, = 0. The result can be summarized as

ok = Opi - (5.39)

The next order correction is obtained if we assume F = E} + E,gl)

and cpp = oy + ¢ ( ) with E,(c]) and c glven in first order in V' and
substitute on (5. 38)

o,
<%(1§2—p2)+E§1)> (5 +C(1)) = ZV /(5 /k‘JFC())
), I

B2
— (K =p)h = Vo (5.40)

ED6, . + o

where we have kept only terms to first order in V. The solution of this
equation is straightforward again: if £ = p we find

EY =, (5.41)

and if k£ # p we find

(5.42)
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which is the first order correction. Notice that P,(cl,)c = 0! Observe that

/2 _
Vi ko = / dzV(z) =V (5.43)
L LJ2
is just the mean value of the potential in the system. Thus, we conclude
that first correction to the energy is a simple shift in the overall energy
of the system. We observe that the wavefunction of the problem at this
order in perturbation theory can be written as

1 ikx Vk,P ip:c
Yi(z) ~ NG ( + Z BB ) : (5.44)

p;ék
The normalization condition (5.32) is obeyed to order in V2.

The second order correction proceeds in the same way, that is, we
write E = E + E\" + E\” and ¢, = hpT G » +c( ) and substitute on
(5.38). The ﬁrst order terms cancel because of (5. 40) and the second
order cquation becomes

}—LQ
EP8,, + BV + 5 (K — ) _Zv_p o)) (5.45)

which has the solution: if £ = p we find

Viy_i|?
E = ZVk—p D D e T
VrT S 2 ()2)

where we used (5.42) and the fact that V, = V* . If k # p then, from
(5.45) we have

(5.46)

2 Voo Vir— VoVo—i
= i (5.47)
7 am (K2 — (1)) o (kK —p?)
which proportional to V2. In order to calculate the change in the energy
we have to calculate the matrix element Vj ,. From (5.35) and (5.23)
one has

Vip = ZV / drpetk—p)z gi2mnz/a

/2

= > Vabiprom/a (5.48)
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Thus,
. Vo2
E® = [V (5.49)
k n%) El(c) - El(c)—Qﬂ'n/a

Observe that if ¥ = +7n/a the denominator in the above equation
vanishes and perturbation theory fails! Thus, for this particular points
something else has to happen and one cannot use non-degenerate per-
turbation theory. For the other values of £ the result (5.49) is fine since
no divergences occur.

Thus, let us go back to the original equation (5.34) and try to
understand what is going on. For simplicity we are going to assume
that V(z) = Vpcos(2rz/a). This implies that we have V5 = 0 and
Vi = V_1 = Up/2. Substituting (5.48) into (5.34) one finds

(E]g — E)Ck,E -+ Z Van,Qﬂ-n/a,E =0. (550)

But because of our choice of V(x) this equation simplifics to

hk? U
<% — E) Cr,E + 70 <Ck+27r/a,E + Ck727r/a,E) =0 (5.51)

which again is an infinite matrix problem. The first three terms read

<h(k +97/a)?

2m

Yo

5 <0k+47r/a,E + Ck,E) =0

- E) Crktor/a,E +

hk? U
(W—_W

2

U
o — E) Ck—2nja,E T = (Ck—47r/a,F) + Ck,FJ) =0 (5.52)

What do we do now? Well our perturbation theory failed for £ =
7/(2a). Thus we will retain in this matrix problem only the values of
k and k — 27 /a and forget about all the other Fourier components. In
this case the problem reduces to

nk?

) 2

[Qm b ]( o >=0- (5.53)
U0/2 om — Ek Ck—27/a,F
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i i\ /i "’ <

—n/a n/a

Figure 5.6: Effect of a periodic potential on a free electron system.

which can be solved at once

1) Bk —2n/a)? B2 ak—2r/a)?  BR2\?
Bz = 2 {( 2m + 2m = 2m - 2m +Ug (5-54)

Observe that exactly at & = 7/a we have

Eﬂ'/a,:i: = :t|U0|/2 (555)
that is, there is a gap in the spectrum with magnitude
A7r/a, = Lrja,+ — Eﬂ/a,— = |UO| (5'56)

which implies that the two branches in Fig.5.5(b) are now split and
there is a gap between them as shown in Fig.5.6.

Moreover, by direct substitution of (5.55) into the matrix equation
(5.53) we find

Co+ = Crnxja+
Ck,— = —Ck—nja,— (557)
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Figure 5.7: Wavefunctions for an electron in a periodic potential of the
ions: (a) ground state; (b) first excited state.

which implies from (5.26) that

1/J+,k($)
Y k()

which have a very simple meaning if we consider a plot of the potential
felt by the atoms and the shape of these function as in Fig.5.7. The
ground state wavefunction ¢ = t_ has its maximum at the position
of the ions while the next excited state ¥g = ¢ has its maximum in
between the ions. Since the charge of the electron is opposite to the
ions the energy is minimized when the electrons have most of the charge
on the top of the positive ions as in Fig.5.7(a).

Thus, the appearance of gaps in the spectrum of a free electron
system are related to the breaking of the translational symmetry of
the system (which now has only discrete translational symmetry). Tt
does not matter from what limit we start, that is, electrons localized
on atoms or free electrons. When the hybridization between atoms

cos(mz/a)

o sin(mx/a) (5.58)
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Figure 5.8: Solution of the problem close to k = G/2 and comparison
with the free electron result (dashed line).

is small the system behaves more like isolated atoms and the bands
reflect the quantum nature of the atomic states. As the hybridization
grows the system behaves more like a free electron gas. Observe that
the electron plays a dual role in this dance: it binds atoms together
and also gives rise to charge conduction. Depending on the type of
system and on the type of orbital that participates on the formation of
a solid the properties of the solid can change dramatically as one sees
from the simples arguments we have given. In Fig.5.8 we show how the
free electron solution compares with the solution close to the Brillouin
zone boundary k = G/2 = w/a. We see that the free electron solution
works very well close to the bottom of the band but fails to describe
the system at the Brillouin zone boundary.
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53 D>1

In higher dimensions the situation is very similar to the one dimensional
case and we still have to solve the Schrodinger equation

(<377 4 V) 0lr) = P (5-59)

where due to the symmetry we have V(r) = V(r + T) where T =
2?21 n;a; is a lattice vector. Because of this symmetry we can write

Vi)=Y Vge®” (5.60)

where G is a reciprocal lattice vector (notice that T - G = 2xn which
is the Bragg law). The general solution of (5.59) can be written as

Yp(t) = thpe™” (5.61)
”

where the Fourier components obey the equation (by direct substitution
of (5.60) and (5.61) into (5.59))

2

<Zi — E) ¢k,E -+ Z Vcﬂﬁk,G,E = O (562)
m G

which is the higher dimensional analogue of (5.34).

Let us consider now the general properties of (5.62). (5.62) can be
thought (as in the case of (5.36)) as a matrix equation for the coefficients
Yx_q,p- For a given eigenvalue E the coeflicients ¢« r have to be linear
combinations of other coefficients at wavevectors shifted by G. Thus,
if we define again E = A?k?/(2m) then we must have accordingly to
(5.61):

Yie(r) =3 the e DT, (5.63)
G

We can rewrite this wavefunction in a more interesting way,

¢k(r) = eik'ruk(r) (564)
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where

u(r) = 3t qe©T. (5.65)
G

Observe that ux(r) = ux(r + T) is a periodic function. Thus, we have
shown that in a periodic lattice the wavefunction can be written in
a very special form which is ertended over the whole lattice. This is
called Bloch’s theorem. The result of this demonstration is that the
wavefunction can be defined in the Brillouin zone of the material since
we can reach any k outside of the zone by translating by a reciprocal
lattice vector, that is, ¥y . q(r) = ¥i(r). Moreover, the energy is also a
periodic function of the reciprocal lattice since we can always shift the
momentum in (5.62) by a reciprocal lattice vector, Ex = Fx.g. This
result is completely general and does not depend on the particular form
of the potential!

In the limit where the potential is weak, as we have seen previously,
we can try perturbation theory. As before we will find that the pertur-
bation theory fails at k¥ = +G/2 which is the border of the Brillouin
zone. This failure is again related with the opening of a gap in the
spectrum due to the Bragg scattering, that is, the energy of the system
is only slightly modified in for most wave-vector except when €2 = €) &
where perturbation theory gives a divergent contribution. The origin
of this divergence can be understood immediately since the condition
for the divergence is equivalent to

k| = [k — G (5.66)

which is the Bragg law (see (2.38)). This result makes a lot of sense
since electrons are as good waves as any other microscopic particles.
Thus when the electron wave-vector is such that the Bragg law (5.66) is
obeyed the electron undergoes coherent Bragg diffraction. Observe that
this condition is equivalent to say that k has to lie on the zone boundary
in order to undergo Bragg diffraction and this is the point where per-
turbation theory fails and one has to use the matrix approach described
earlier. In this case we obtain the formation of a gap at these points,
that is, the gap is a straight consequence of Bragg diffraction. Consider
for instance the one dimensional case studied before. Condition (5.66)



53. D>1 131

2n/a I

’ I |U Tt/al
N\ 7,

S Z

[

-3n/a 2n/a -n/a o9 =w/a 2T/a 3Tt/ak'

Figure 5.9: Modification of the free electron dispersion (dashed line)
due to the Bragq reflection of the electrons.

implies that perturbation theory fails for £ = £G/2 = +nr/a and
one has a sudden jump in the energy at this point. A graphical way
to depict this situation is shown in Fig.5.9 where we see that the only
substantial difference between the free electron case and the actual case
occurs whenever a gap opens at the Bragg points. In order to obtain
the bands discussed in previous approach one has just to fold back the
points back to the Brillouin zone as in Fig.5.8.

This construction can be carried out to higher dimensions where the
points where gaps open are still given by the Bragg condition (5.66).
Consider for instance the problem of a two dimensional square lattice
such as in Fig.5.10. As the momentum varies as shown in Fig.5.10(a)
the gaps open as in Fig.5.10(b).

At this point one natural question comes out: how are these results
related with the tight binding calculation we have done previously?
The answer to that is very straightforward. In the tight binding limit
the electrons are tightly bounded to the atoms and therefore the po-
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Figure 5.10: (a) Brillouin zone in k-space (shaded area) and neighboring
zones; (b) Electron dispersion along the direction of k.
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tential is strong. However, accordingly to Bloch’s theorem, (5.64), we
should be able to solve the problem in terms of periodic functions. The
wavefunction of the problem has to obey Block’s theorem which is a
statement of the periodicity of the system, nothing more. Observe that
from (5.64) and (5.65) the wavefunction of the problem must obey

(r + T) = e Tafy (1) . (5.67)

We would like to construct the wavefunction from localized orbitals
instead of the plane waves which are so natural for the weak poten-
tial problem. These localized orbitals are the solution of the atomic
Schrodinger equation:

(_ i vAm) $a(r) = Eatpa(r) (5.68)

where V4(r) is the atomic potential and E4 the binding energy of the
electron. Let us consider the problem where the atoms are far apart
so the tunneling is small. We would like to construct the wavefunction
from localized orbitals like the ones given in (5.68) which has this prop-
erty. Remember that in the case of molecules this can be done by taking
linear combinations of localized orbitals (which we called bonding and
anti-bonding). A similar idea here is to choose the linear combination

1 ik-T
e(r) = TN ; e ha(r —T). (5.69)

Observe that this wavefunction obeys (5.67) Moreover, in this approx-
imation each band carries the atomic numbers, that is, for each atomic
level we have a band with its quantum numbers.

Observe that (5.69) is a solution of the atomic equation (5.68) but
instead we would like to solve the actual Schrédinger equation (5.59). Tt
is clear that this is not the actual ground state of the problem. However,
in the limit of infinite separation between the atoms it is an eigenstate.
Moreover, the spectrum of the problem can be written from (5.59) by
using the orthogonality of the wavefunctions as

VL

B = / dr 2 (r) [— — +V(r)] () (5.70)
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which, as we said before, is periodic on the reciprocal lattice, that is,
Ey. ¢ = Ex. Since the energy is periodic on the reciprocal lattice it
can be always expand as a Fourier series of the direct lattice (remember
that the direct lattice is the reciprocal of the reciprocal lattice!) that
is,

B =Y tre™T. (5.71)
T

In order to calculate the coeflicients {3 we are going to use (5.70). If
we substitute (5.69) into (5.70) we find

ik-(T—T") 272
E. = T,ZT’ GT /ddr i (r —T') [_ZZ + V(?“)] Pa(r —T)
ik-(T—T") h2v2
= T,ZT/ A ~ /ddr it +T—T) [— v, + V(r)] Ya(r)

i . szVQ
= ;ekT/ddr i(r+T) l— 5

+ V(r)] P a(r) (5.72)
where we have used the periodicity of the potential U(r + T) = U(r).
Thus we have shown that (5.71) is correct and that

2v72

2m

tr = / dr % (r + T) [— + V(r)] ba(r) (5.73)

where the integral runs through the unit cell. We now rewrite V(r) =
Va(r) + 6V (r) where 6V (r) = V(r) — Va(r). In the limit where the
distance of the atoms is very large we expect 6U — 0 and therefore can
be treated as a perturbation. In this case, using (5.68) one gets

tr = Ea / dlr i (r + T)a(r) + / % o (v + T)SV (r)iba(r) (5.74)

Observe now that the atomic wavefunction decays exponentially with
distance (14(r) o< e™™/% where qq is the Bohr radius) and therefore
the overlap integrals above will be very small for T # 0. In this case
it is a good approximation to use the on-site (T = 0) and nearest
neighbor contributions since the integrals will decay exponentially with
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distance. This is known as the tight binding approrimation. In this
approximation we write

tT = EA5T,0 — tA Z 5T,5‘ (575)
5

where § represent the nearest neighbors sites and ¢4 is the overlap given
in (5.74) for nearest neighbors. Substitution of the above expression
into (5.71) leads to

Fem Ey—ty 3 ™0 (5.76)
5

Observe that corrections to the tight binding approximation can be
computed directly from (5.73).

As an example consider the one-dimensional case. In this case we
have just two nearest neighbors which correspond to § = +a where a
is the lattice spacing. In this case the energy becomes,

Ey = E4 — 2t4cos(ka) (5.77)

and has the shape shown in Fig.5.2. For a cubic system in d dimensions
the tight binding model predicts a dispersion

d
Ex=Es—2ts > cos(k;a) (5.78)

i=1
which has its minimum value at F4 — 2dt4 and its maximum at E4 +
2dt 4. Thus, we say that the system has a bandwidth W = 4dt4. In the
atomic limit ¢4 — 0 and the bandwidth vanishes while as the tunneling
between atoms increases the bandwidth increases proportionally to the
hopping £4 as in Fig.5.3. Observe that gaps that we have computed in
the free electron gas just represent the difference in energy between the
atomic levels that decreases as the tunneling between atoms increases.
When the energy levels start to overlap we are back to the nearly free

electron gas.

Notice that at long wavelengths ka << 1 we can approximate the
problem by expanding the exponential in (5.76) to second order in ka,

t .
Bu~Es— Zts + EA 3 (k- 5)? (5.79)
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where Z is the number of nearest neighbor sites (Z = 2d for a cubic
system) and we have used that "3k 4 = 0 by inversion symmetry. We
can now use that

d
6=> an; (5.80)

i=1

where @ is the lattice spacing and n; is the unit vector along the main
crystal axis. In this case we rewrite (5.79) as

d 3272
hok;
Fym Eq— Zty+ Y i (5.81)
= 2mj
which has the form of a free electron dispersion where
h2
= —— 5.82

is the so-called effective mass of the electrons. Observe that this mass
can be very different from the free electron mass since its physical mean-
ing is completely different of that one. The effective mass measures the
static dragging of the lattice by the electron motion since the electron
interacts with the atomic cores. This can be easily understood if we take
a semi-classical approach. As we have seen the electrons are described
by a dispersion €. From this dispersion we can define the velocity by

1
Vk:£

which can be checked to be correct for the free electron case where
ex = h’k?/(2m) and vi. = hk/m. Suppose an electrical field E is
applied to the system. This electric field will cause the electrons to
accelerate. It turns out that the electrons deep inside the Fermi sea
cannot accelerate since they would have to make transitions to already
occupied states. This is forbidden by Pauli’s principle. The electrons
at the Fermi surface, however, can be accelerated freely. If we imagine
this electrons to behave like wavepackets (that is, like classical particles)
then the acceleration is given by

Ver (5.83)

de .

1d Lo
& T hdi ok

6kn~
ok;
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_li e dk;
= h 2= Ok0k; dt

(5.84)

which is valid for k &~ kr and where we used the chain rule and n; is
the unit vector in the i-direction. Observe that the momentum of the
electron is simply hk and therefore by Newton’s equation of motion in
an external field we have

dk
h— =¢€E 5.85

which substituted in (5.84) leads to

d 8261{

n? Z  Bkyok, (5.86)

Observe that (5.84) is very similar to the classical equation

dv eE

= (5.87)

This similarity allows us to define the effective mass tensor

YT 2 Ok0k;

(5.88)

Observe that for a cubic system with dispersion given by (5.78) in the
limit where kra << 1 we obtain (5.82) as expected.

In this picture the difference between metals and band insulators
is very simple to understand. At band fillings smaller than one there
is in average less than two electron per site as in Fig.5.4(a). Thus the
clectrons can move freely since clectrons with opposite spin can hop
from site to sitc. When the band becomes full (that is we have two
electrons per site) the Pauli principle does not allow motion as shown
in Fig.5.4(b). In order to move an electron one has to excite the electron
to an unfilled atomic state and therefore one has to pay an energy price
which is the gap energy.
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5.4 Problems

1.
2.

Prove eq.(5.62).
Show that (5.69) obeys (5.67).

Show that a band insulator always has an even number of elec-
trons per atom. Also argue that the opposite is not true, that is,
solids with an even number of clectrons per atom can be metallic.

. In the free electron gas the mass of the electron is just m. In the

tight binding case the mass of the electron is defined as
1 1 d?E,

m*  h® dk?
(1) What is the mass of the electron as a function of the momen-
tum? Why is this mass different from m? (2) What is the mass
of the electron when the band is empty? What happens to this
mass when the tunneling between atoms goes to zero? Give a
physical interpretation for your result.

. In these notes we have used the so-called reduced zone scheme in

which the momentum is plotted only in the first Brillouin zone
—m/a < k < 7/a. Another possible scheme is to plot the energy-
momentum relation over all momentum space in which case we
do not fold the energy in the Brillouin zone. Starting from the
free electron problem (parabolic band) make a qualitative plot
of the energy of a particle in a periodic potential as a function
of k from —4x/a to 4w/a. What are the positions of the gaps
in momentum space? What are the values of the gaps in terms
of the Fourier components of the periodic potential? Hint: no
calculations needed.

Solve exactly the matrix problem in (1.52) for the case where
Cr+4pi/a,g = 0. Make a plot of the energy bands you get from the
solution. What is the value of the gaps in the spectrum?

Show that for a cubic system we have:

_, _ cos(k;a)
e

m* 1,J



Chapter 6

The Free Electron Gas

6.1 Introduction

In the last chapter we have seen that the main difference between metals
and band insulators is that in insulators the bands are full and therefore
the electron has to pay an energy equal to the gap in order to be excited
from one band to another. Thus in a metal an electric field can excite
clectrons from one momentum state to another with almost no energy
cost while in an insulator this is not possible because of the gap. In
this chapter we are going to discuss the physics of metals based on the
picture of the last section, that is, the picture that the electrons do not
interact among each other but only fill energy states accordingly to the
Pauli principle. This is called the electron gas approximation.

The Pauli principle asserts that the ground state of the problem is
obtained filling up all the states with lowest energy. We observe that
the properties of the system depend strongly on the way we fill up the
bands, that is, the so called filling factor. Suppose we assume periodic
boundary conditions. The allowed vectors k& are

27y
N Nia

k; (6.1)
where i = x,y, 2 where we have written the size I; = N;a. Observe
that maximum allowed value of n; is N;/2 since at this point we reach
the boundary of the Brillouin zone, G;/2 = w/a. Thus, the number
of states available is N = N,N,N, which is the number of primitive

139
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Figure 6.1: (a) Ground state of a free Fermi gas as a function of energy;
(b) Ground state in momentum space showing the lines of equal energy
(circles).

cells. If we take into account the spin we have 2N independent orbitals
in each energy band. If the atom contributes with just one electron
(we say that the atom has valence one) the band can be half filled with
electrons. If each atom contributes with two electrons (valence two) the
band will be completely filled. The state of lowest energy is obtained
by filling up the spectrum starting with the £ = 0 as in Fig.6.1(a). For
each k we can have two electrons with opposite spins. In momentum
space this is equivalent of filling up all the states symmetrically up to

the largest value which depend on the total number of electrons as in
Fig.6.1(b).

We are interested in the so-called thermodynamic limit, that is, the
limit that N — oo and L — oo but # = N/ L% is finite. In this limit the
distance between the states goes to zero and therefore we fill densely
the momentum space. It is clear that the number of electrons in the
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system can be written as

N =2 0(kr — k) (6.2)

where kp is the largest possible momentum and the factor 2 comes from
the two spin projections. In the thermodynamic limit we use our old
trick

PP (;)d/d% (6.3)

k
and find
N dk 25, [kF
5 — —=2/—9k—k= / dkké
T T emit =k =G50,
2.5k
= den) (6.4)

which defines the so-called Fermi momentum,

= () 6

which depends only on the clectron density and the dimensionality of
the system. Associated with this Fermi momentum there is the so-
called Fermi energy which is the energy of the highest energy state,

Kh2k2
EF = F

_E (6.6)

Thus, in this case, the finite size spectrum of Fig.6.1 becomes the one
in Fig.6.2. The points in momentum space, kr, such that

€, = Ep (6.7)

defines the Fermi surface. Observe, also, that this system is highly
degenerated since we have a large number of states for a given energy.
The magnitude of this degeneracy is again defined in terms of a density
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Figure 6.2: (a) Ground state of the free Fermi gas; (b) Ground state in
momentum space.

of states which is defined exactly like in the phonon problem, that is,
Eq.(4.56). For the free electron problem one has

N(E) = é;é(E—ek)=2/%5(E—€k)

- 272 a2
- 2SC‘/ dikt=s (2= 1) = S (2—77;) E%
(2m)? Jo 2m (2m)¢ \ h

din 7 E\T
= E(E_p> (6.8)

where we have used (6.5) and (6.6).

The concept of a Fermi surface is one of the most important concepts
in the physics of electrons in solids and this is easy to understand why
when we look at the characteristic energies involved here. In a solid of
density 7 the volume occupied by one electron is, in average, S;r¢/d
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and therefore the mean distance between electrons is of order of

SERS 69

Since we are talking about atomic scales it is convenient to use the
Bohr radius, ag = h*/(me?), as a distance scale. Thus, the number,
To

(6.10)

Ty =
Qo
gives us an idea of the density of the solid relative to the atomic volume
of the atom. In this unit the Fermi energy (6.6) can be rewritten using
(6.5) as

22m)*\ 7 met 1
Er = 5. 11
r ( 253 2h? r2 (6.1

Observe that apart from the geometric factors the Fermi energy is
proportional to the ionization energy of the Hydrogen atom F; =
me*/(2h*) ~ 13.6 eV. In most metals (3 dimensions) r, is of order
of one (the distance between electrons is of the order of the distance
between atoms). In this case it is easy to see that the Fermi energy is
of order of ¢V, that is, of order of 10,000 K! The ground state cnergy
can now be casily calculated:

Kh2k2?
E, = —
) ; o O(kr — k)
E, d
~ = d+2EF. (6.12)

6.2 Elementary excitations

Consider now the elementary excitation of a Fermi gas. The lowest
energy excitation corresponds to take an electron with momentum & <
kr and transfer it to a state with momentum &' > kr. In this case a
hole is left behind (see Fig.6.3).

The momentum of this particle-hole excitation is

qgq=k'-k (6.13)
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E,

Figure 6.3: (a) Particle-hole excitation across the Fermi surface; (b)
Particle-hole excitation in momentum space.
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and has a characteristic energy

Pk—-q)? R’k R .
hw(g, k) = (2m S _ 5 = 5 (2a-k—d’). (6.14)

At some temperature T all particle-hole pairs such that fw(q, k) <
kgT can be excited. At low temperatures only a region of energy kg7’
can be excited around the Fermi surface. This is clear contrast with
the phonon problem where any phonon state can be excited with any
number of phonons. The fact that the phase space for excitations in the
electronic system is much smaller than in the phonon problem is a pure
consequence of Pauli’s principle since we cannot occupy states which
are already occupied. Obviously the excitation with lowest energy has
|k| = kr and ¢ — 0. In this limit the excitation energy reduces to

w(q)) = vry (6.15)

where g)| is the component of q in the direction of kr and

vp = — (6.16)

is the Fermi velocity. The striking discovery here is that the dispersion
relation for particle-hole excitations is very similar to the one of acoustic
phonons (see 4.39)). Observe that what we actually have done is the
linearization of the dispersion of the electrons close to kr as shown
in Fig.6.4.The fact that at low energies look like acoustic phonons is
not a mere coincidence. It turns out that the elementary excitations
of Fermi systems have bosonic character. Particle-hole excitations are
the main gapless excitations of Fermi systems. We will come back to
this interesting issue later but now we are going to consider another
important excitation of Fermi systems.

Let us go back to our original problem of electrons on a box of
size L in (hree dimensions. Suppose we displace the whole electron gas
through a distance x with respect to background of charge produced by
the ions. In this case we will have an excess of positive charge on one
side of the box and an excess of negative charge on the opposite side
of the box (see Fig.6.5). This effect will create an electric field across
the box. By Gauss law the electric field is simply F = 47 where o
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—kg kg

Figure 6.4: Linearization of the electron dispersion close to the Fermi
surface.
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is the charge density on the wall of the box. This density is simply
o = enx. Of course this field will act on the electrons in such a way to
move the displaced charge density back to its original place so charge
neutrality is obtained again. Mathematically this come from the fact
that the force applied on the charge on the opposite side of the box is
F = —NeE = —Nedno = —4rne?Nz. Thus the equation of motion
for the displaced density is

2
(Nm)% = —4rne’Nx(t)
dx
where
4 = .2
w2 = Wmne (6.18)

is the so-called plasma frequency of the electron system. Observe that
(6.17) predicts that the displaced charge undergoes harmonic motion
with the plasma frequency. Since the plasma frequency is associated
with the displacement of the whole electron system it has a charac-
teristic wave-vector ¢ = 0. Thus this simple argument shows that the
electron gas, besides the particle-hole excitations described by (6.15),
also has a colleclive mode called the plasmon which has dispersion

w(q) = wp (6.19)

at small wavelengths. Again, we have a similarity between the optical
phonon problem and the electron gas. These similarities do not stop
here. Observe that the plasmon is a high energy excitation since we
need temperatures of the order of hw, in order to excite this mode. The
plasmon is a massive or gapful excitation. Using the equations given
before we can show that

hep, & 41.7r, 32 (6.20)

in eV. Thus, for metallic densities the plasma frequency is of order of
the order of 40 eV or 40, 000 K. Thus, in order to excite a plasmon in a



148 ELECTRON GAS

(a)

(b)

E = 4o

Figure 6.5: Formation of a plasmon in a non-interacting electron gas:
(a) uniform positive background plus electron gas; (b) displaced electron
gas relative to background.

metal one has to use high energy probes such as X-rays or high energy
electrons. Like in the phonon problem where acoustic phonons describe
the the low temperature properties of ion vibration the particle-hole
excitations dominate the behavior of Fermi liquids at low temperatures.
Observe that all the elementary excitations we are discussing here have
a counterpart in the physics of elementary physics. In order to create a
particle from the vacuum one has to pay an energy price which is twice
the rest energy of the particle. Thus optical phonons and plasmons
behave like actual particles although they are colleclive modes which
are born out of the interaction between ions and electrons. The result
for the plasmon frequency is only valid for three dimensional solids. In
lower dimensions the situation is more complicated because the electric
field is not the one created by a capacitor plate but by a line of charge!
In this case we can show that the plasmon dispersion and the plasmon
mode becomes gapless.
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6.3 Free electron gas in a magnetic field

A simple way to probe the properties of an electron gas is to subject it
to external fields and look at its behavior. One way is to attach it to a
battery and look at the current produced by the application of difference
of potential. For a free electron gas the field will accelerate the electron
freely producing an infinite current. This, of course, never happens
since the electrons collide with impurities and among themselves so that
the current is always finite. We will discuss these issues in detail later.
Another important properties of an electron gas can be measured by
applying a magnetic field. Since the electron has a spin and a charge
the magnetic field will couple to the electron in two different ways.
The first and most simple coupling is to the electronic spin since the
magnetic field will tend to align the spin. This is the Zeeman effect
that you probably have seen in the study of the Hydrogen atom. The
second effect is due to the Lorentz force that the electron feels when
it is in motion. These arc relativistic cffects but they have different
origins. While the Lorentz force can be applied to classical particles
the Zeeman cffect is a pure quantum mechanical cffect. We are going
to study each effect separately.

6.3.1 Zeeman effect and Pauli susceptibility

Consider a magnetic field B applied to a free electron gas. The Zeeman
shift in energy due to the magnetic field is just

H;=-m, B (6.21)

where m,, is the electron magnetic moment. For the electron spin S the
magnetic moment is written as

S
e = llo— 6.22
M = fle> (6.22)
where
Le = gopip ~ 1.16 x 1078 (6.23)

in units of eV/Gauss. Here g, ~ 2 is the g-factor and pp = eh/(2mc)
is the Bohr magneton. In order to study the Zeeman effect we have to
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add the new term (6.21) to the free electron Hamiltonian. Without any
loss of generality we choose the magnetic field to be along the 2z axis.
Thus, it is clear the problem can be completely diagonalized in the
basis |k, o) where o =%, | where 1 means that the spin is parallel to the
field and | that the spin is anti-parallel to the field (S,| 1) = (/2)] 1)
and S,| {) = —(h/2)| l)). The eigenenergies of the problem can now
be written as

h2K?
E,: = — upB
k.t 2m 1B
K2 k2
FE = B. 6.24
ol o, T HB (6.24)

Thus, the dispersion of each mode is shifted relative to each other by a
quantity 2upB. The ground state of the system is obtained by filling up
the states starting from the lowest energy state up to the Fermi energy,
Er, as shown in Fig.6.6. Since the up and down spins are in equilibrium
with cach other it mecans that the chemical potential is the same, that
is, the field does not change the Fermi energy of the system but only
the number of species of electron as depicted in Fig.6.6. Thus, in the
presence of a magnetic field the number of 1 spins, n4, is different from
the number of | spins, . This implies the system has been magnetized
with a magnetization

M = ,UB(nT - TL\L) . (625)

Observe that the change in the number of the two species of elec-
trons is equivalent to a change in the Fermi momentum of them. Thus
we can define two new Fermi momenta, kr and kry which are related
to the number of fermions as in (6.4):

Sa 4

Ng = W F,a,. (626)

Since the total number of electrons is conserved in the presence of the
magnetic field we have a constraint that

m+n, = n
d(27)%n
ks + ks, = ( Sd) : (6.27)
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Figure 6.6: Magnetization in a free Fermi gas.

The other constraint that we discussed before is that the chemical po-
tential is the same which implies

hkz i
Er = 2’—MBB= >~ + upDB
m
dmupB
B — kb, = P (6.28)

Equations (6.27) and (6.28) have to be solved at the same time. It is
useful to parameterize the unknowns as

kp+ = kocoshd
kF,¢ = k‘() sinh @ (629)

so that (6.28) is solved at once:

AmppB
ko = 1/ mr’jf (6.30)
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since cosh? § — sinh?# = 1. Substituting (6.29) on (6.27) one gets

d(2m)n

cosh®@ + sinh® 6 = kS,

(6.31)

which is a very complicated equation for #. The quantity we are after
is the magnetization of the system which is given in (6.25) which can
be written as

. Sd,uBkg

d nd
M= d(2m) (cosh ¢ — sinh 9) . (6.32)

Instead of the general solution of this problem we are going to look
at the limit of very weak magnetic field. In this limit (B — 0) we see
that from (6.30) that kg — 0 and therefore the right hand side of (6.31)
diverges. It implies that #§ — oo. In this case we can approximate
cosh § =~ sinh @ ~ €% /2 and we find

24-1d(2r)dm\ '/ 1
9
=|—)— — 6.33
o= (P : (633
In this approximation we can write (6.32) as
v~ pp2" *Sakg (a2
(2m)
~ uAN(Er)B (6.34)

where N(EF) is the density of states at the Fermi energy which is given
in (6.8). Notice that the magnetization is directly proportional to the
density of states at the Fermi surface. The magnetic susceptibility of
the system is given by

. OM 9
xp(T) = llglg%) 9B peN(Er) (6.35)
is called the Pauli susceptibility and it is an exact result since only the
linear term in the magnetic field contributes. Thus, the measurement of
the magnetic susceptibility of a free electron gas is a direct measurement
of its density of states at the Fermi energy.
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Let us consider now a simple case of the general problem discussed
here. Let us consider d = 2. In this case one can calculate the magne-
tization exactly from (6.32) and (6.30),

mu% B

hir

M= (6.36)
which is strictly linear with the magnetic field. In this case (6.34) is
not approximate but exact.

Finally we observe that by increasing the field one can fully polarize
the electron gas (that is, n+ = n). As we can see from Fig.6.6 this
happens at a critical field, B,, given by

E
B, =~ (6.37)
2/,63
For a metallic system this will happen at fields of the order of 108 G or
10* Tesla (1 Tesla= 10* Gauss). These are incredibly large fields.

6.3.2 Landau levels and de Hass-van Alphen effect

After discussing the spin part of the magnetic field problem we will
consider the orbital part, that is, the effect of the Lorentz force on the
electron which is given by ev x B/c. Classically it is easy to show that
in the plane perpendicular to the field the electrons undergo circular
motion. This motion is a result of the centripetal force mv?/R where
R is the classical radius of the orbit. It is clear that the velocity of the
clectron on its orbit is v = 20 R/T = w.R where T is the period of the
orbital motion and w, = 27/T is the cyclotron frequency. The cyclotron
frequency can be obtained immediately from the classical equation of
motion

evB/c = mv*/R
eB
We = —. (6.38)
mc
Classically the radius of the orbit depends on the velocity of the elec-
tron. This is not entirely correct in quantum mechanics. In quantum
mechanics the angular momentum is always quantized in units of h.
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For the circular motion the angular momentum is just pR. Thus, from
the quantization of the angular momentum we find

pR = nh

ch
=/ = 4
o eB (6.40)

is the so-called cyclotron radius which gives an idea of the size of the
electron wavefunction in the presence of an external magnetic field.
Observe that apart from the magnetic field the cyclotron radius only
depends on universal quantities. If we choose the magnetic field to be
in Tesla the cyclotron radius can be written as

where

250 .

We see, therefore, that the cyclotron radius will be usually much larger
than the typical separation between atoms in a solid. In order for [y to
be of order of 14 one needs fields of the order of 6 x 10% T. These are
incredibly large fields. As we saw previously at these fields the electron
gas is completely spin polarized.

As you already know the Hamiltonian for a charged particle in a
magnetic field is

1 e \?

H= ( CA) (6.42)
where A(r) is the vector potential which is related to the magnetic field
via B = V x A. Assume for simplicity that the field points in the z
direction, that is B = Bz. As you know the problem of a particle in
an electromagnetic field has what is called gauge invariance, that is,
we can replace the vector potential by A — A + V¢ (where ¢(r) is an
arbitrary function) without changing the value of the actual magnetic
field since Vx V¢ = 0 is a mathematical identity. This gauge invariance
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allows us to choose any form of A(r) such that B = Bz holds. Here we
will choose the so-called Landau gauge in which

A = —Byx. (6.43)
Substitution of (6.43) directly into (6.42) leads to

2
LA

om  2m

1 B \?
=g o )+

5 (6.44)

Observe that the Hamiltonian does not depend explicitly on x and z.
Therefore, in the z and z direction one has free motion. In this case
the wavefunction of the problem can be written as

where 1 (y) is unknown. In this case the Hamiltonian of the problem
reduces to

1 B \* p2  hk?
H:—(hszre—y) By (6.46)
m c 2m 2m
A simple redefinition of variables helps a lot
oy = y+yo
hk,
Yo = (6.47)
mw,
and the Hamiltonian of the problem becomes
2 2 2
D mw hk
H=_ Y4 —¢(6y)’+ 2= 4
v S C1) M v (6.48)

which is the Hamiltonian for a harmonic oscillator plus a free particle
part. We have therefore solved the problem entirely. The wavefunction
is given by (6.45) with ¢(y) o< H,(y — yo) is a Hermite polynomial of
order n.

Since we have mapped the problem into the harmonic oscillator the
spectrum is giving by

1 h2k2
Enkz:hc< —) : 6.49
(k) = e (n+ 5 ) + 5~ (6.49)
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Figure 6.7: Landau levels of a free Fermi gas: in (b) the field is larger
than in (a).

and is shown in Fig.6.7. The physics here is straightforward: the elec-
tron undergoes circular motion in the plane perpendicular to the field
(due to the Lorentz force) and free motion along the direction of the
field (since the Lorentz force vanishes). Circular motion is essentially
harmonic motion in the x and y coordinates. Furthermore, we are go-
ing to be interested in the physical quantitics such as the magncetization
of the system. Notice that when we change the magnetic ficld by an
infinitesimal amount §B the internal energy of the system changes by
oU = —M6B. Thus, the magnetization is simply

ou
OB~
Observe, however, that the energy does not depend on k, and there-
fore the problem is highly degenerate. The reason for this degeneracy
can be understood by looking into (6.47). Observe that the wavefunc-
tion of the electron is centered at 1y, which is called the center of orbit.
The energy of the problem is invariant if we shift the center of the orbit

M(B) = (6.50)
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in the plane perpendicular to the field because the field is homogeneous
in the perpendicular plane. Physically one has to impose the condition
that 0 < yo < L,. It implies from (6.47) that the momentum in the z
direction is bounded by

0 <k, <mw.Ly,/h. (6.51)

But from the periodic boundary conditions we require that k, = 27n, /L,
and thercfore the number of states in & space for fixed £, is simply

. mweLyL, . 0]
N 27h N ¢0

where ® = BL,L, is the total magnetic flux through the plane perpen-
dicular to B and

N, (6.52)

do = %{7’ ~4x 1077 (6.53)
in Gauss-cm? is the so-called fluz quanta.

As we have seen so far the interesting part of the electron motion
happens at the plane perpendicular to the field. It is possible to build
artificial semiconducting structures such that the electrons are confined
to a very thin layer of thickness L,. In this case k, = 2wn,/L, is
quantized. From now on we will focus on the two-dimensional electron
gas and forget about the motion in the third direction. It is easy to
generalize our discussion here to the three dimensional situation in
ordinary solids. From now on we just forget the %k, dependence in
(6.49) (as you can easily convince yourself all we are going to do here
is equivalent to work with fixed k,). The energy levels are shown in
Fig.6.8. Each level can comport N, electrons (we will forget spin for the
moment being). If there are a total of N, electrons in the system the
ground state is obtained by filling up the lowest cnergy states. Observe
that the number of states per clectron is simply
1 Ny DB

s =N, " oo (6.54)

where

(6.55)
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Figure 6.8: Landau levels of a two dimensional free Fermsi gas.

is the planar density of electrons.

Consider initially the case where Ny > N, that is, only the first
Landau levels has electrons (0 < v < 1). Clearly it implies very strong
magnctic ficlds or small clectronic densitics since we must have from
(6.54) that B > o¢y. In semiconductors we have ordinarily o &~ 10
cm™? which implics B > 4 x 10* G (or B > 4 Tesla). In this case the
total energy of the system is simply

E, = thc
2
EO heB
N T ome (6.56)
From (6.50) we find
M(B) ke
N T T Tome (6:57)

is the electronic magnetic moment (notice that 2u.B = Fhw,). Observe
that this magnetization is constant as far as Ny > N or v < 1. Suppose
we decrease the magnetic field in the system with fixed number of
electrons. Then the fractional occupation v increases and the distance
between Landau levels decreases. When v = 1 the first Landau level is
fully occupied if we reduce the magnetic field even further Ny < N, <
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2N, (or 1 < v < 2) and some of the electrons, say, N = N, — N have
to occupy the second Landau level. In this situation the energy of the
system is

fuw, 3hw,
E, = N, N
1 4 +9 9
E, 3 1
o hw (2= .
N v (2 1/> (6.58)
and the magnetization is
M, 4
W = Ue (—3 + ;) . (659)

Observe that something drastic happened because at v = 1 there is
a jump in the magnetization from —p, to +p.. This jump occurred
because the electrons in the lowest levels move to higher Landau levels
as the field decreases. Observe that this effect will occur every time v is
an integer number, that is, each time a Landau level is fully occupied.
The generalization of the above argument is simple. Assume that the
last fully occupied Landau level is n—1 so that n is occupied by N —nNy
electrons (see Fig.6.8). In this case n < v < n+1 and the total energy
of the system is

= 1 1
E, = Ny Z hiw, (m + 5) + (N — nNy)hw, (n + 5)
m=0
E, 1 nn+1)
= B n4 - - — 1 )
N w (n + 5 o ) (6.60)
and the magnctization
M, n(n+ 1) 1
=2, | ————~ —n—= .61
N " < v " 2) (6.61)

which is shown in Fig.6.9 as a function of v. Notice that the magne-
tization of the system is a periodic function of v for v > 1. Thus the
magnetization of the electron gas is a periodic function of 1/B as we see
from (6.54). This effect is observed experimentally in the magnetization
of solids and it is known as the de Haas-van Alphen effect.
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Figure 6.9: Magnetization of a Fermi gas as a function of v.
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6.3.3 Flux quantization

In our discussion of the Landau levels we defined a quantity called the
flux quanta ¢y = he/e but we gave no interpretation for it or even
why it is called a quanta. In order to understand why the magnetic
flux is quantized we have to study the effect of the magnetic field in
the electron wave function. Consider the problem of a two dimensional
electron gas in a plane where an infinite solenoid is put perpendicular
to it. The solenoid has arca S and an internal magnetic field B. The
magnctic ficld outside the solenoid is zero. The magnetic ficld is given
by the usual relation B = V x A. Although the magnetic field is
zero outside of the solenoid the vector potential is still finite. As a
consequence we must have

A(r) = VQ(r) (6.62)
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outside of the solenoid since V x A = V x VQ2 = 0. Moreover, the
magnetic flux through the plane is given by

@:/B-dS:/A-dI:/VQ-dI:AQ (6.63)
JA JC JC

where A is the area of the solenoid, C' is a closed curve outside of the
solenoid and 1is a vector that parameterizes this curve. Observe that
the flux through the plane depends only on the change of the function
2 around a closed curve.

The Schrodinger equation for this problem is

o (inY — Cam) v(r) = Bute)

"’ (v+ 5 A(r)>2 (r) = E(r) (6.64)
2m ch B ' '
For the region outside the solenoid we can use (6.62) and rewrite the
above equation as

h2

—5 (v + %VQ(I‘)) P(r) = By(r) (6.65)

and a simple inspection of this equation leads to the conclusion that
the wavefunction has the form

P(r) = e F N g(x) (6.66)
where
R,
5V ¢(r) = E¢(r) (6.67)

obeys the free particle problem. As expected by gauge invariance the
spectrum of the problem does not depend on the magnetic field (since
there is none) but the wavefunction now has a new phase factor which
depends on the magnetic field. This result has amazing consequences
and one of them is the so-called Bohm-Aharonov effect. Since there is
no field outside the solenoid we must require that the wavefunction is
invariant under closed curves that circulate the solenoid. Suppose the
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Figure 6.10: Geometry of the Bohm-Aharonov effect.

electron starts at a point R with a wavefunction ¥gz(R) and returns to
the same point after going around the solenoid as in Fig.6.10

From (6.66) the wavefunction of the electron after the closed curve
is

U4(R) = e~ 220 5(R) (6.68)
but since ¥ 4(R) = ¥5(R) we must require

%AQ =21 (6.69)

where n is an integer. Using (6.63) we obtain that
& = ney (6.70)

where ¢y = hec/e is the flux quantum. Our argument shows therefore
that for a free electron moving in a closed orbit around the solenoid the
magnetic flux through the orbit must be quantized. The relevance of
this result for the Landau level problem comes from the fact that the
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Figure 6.11: Quantization of the magnetic flux in the Landau gauge.

degencracy of cach Landau level is the total magnetic flux measured in
units of the flux quantum, (6.52). Physically, this can be understood
if we recall that in the Landau gauge the clectron motion in the x
direction is free while in the y direction we have harmonic motion as
shown in Fig.6.11. Observe that the wavefunction in the y direction is
peaked around gy, and because k, = 27n, /L, is quantized the values of
yo from (6.47) are also quantized as yo(n,) = (¢po/BLy)n,. Thus, the
magnetic flux through a strip of size dyq is simply, BéyoL, = ¢o. Thus,
exactly one flux quantum goes through the strip.

6.4 Free electrons at finite temperature

We have talked only about what happens to the electron gas at zero
temperature. As we said before if we increase the temperature we can
excite electrons to states out of the Fermi surface producing particle-
hole excitations. In order to talk about finite temperature effect one has
to discuss first the concept of chemical potential. The chemical potential
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is the energy required in order to change the number of particles in the
system by 1, that is, if E(N) is the free energy of the system with N
electrons than the chemical potential, y, is defined as

p = E(N+1)—E(N)
Y (6.71)
ON

where the last line is valid if N >> 1 which is the case under consid-
eration here. At zero temperature, in the free Fermi gas, the energy
required to put on electron more in the system is essentially the Fermi
energy, Er since as we put one extra electron it has to go to an unoc-
cupied state at the Fermi surface. In the phonon problem the chemical
potential is zero since phonons can be produced with infinitesimally
small energies. We observe that in the Fermi gas the excitations occur
close to the Fermi surface, or chemical potential, thus it is convenient
to measure all the energies relative to it since it is the natural energy
scale. Observe that one usually calculates the total energy of the system
assuming a fixed number of particles. It turns out, however, that for
most calculations at finite temperature it is more convenient to work
with fixed chemical potential. Moreover, one actually have the sys-
tems of interest in contact with reservoir of particles (such as batteries,
for instance) which keep the chemical potential constant and allow the
number of particles fluctuate. In the thermodynamic limil, N — oo,
these fluctuations are of order v/N and therefore irrelevant compared
to N itself. Thus we define the free energy, F', of the system as

F=E—uN, (6.72)

which is known as the Legendre transformation of the thermodynamic
potential. Thus, using (6.71), we find dF = dE — udN — Ndu = —Ndp,
that is

=2 (6.73)

which gives the average number of particles as a function of the chemical
potential.

Let us consider here the simple problem of the N non-interacting
electrons described by a Hamiltonian H with single energies €,. By the
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Pauli principle we know that the occupation n, of each state can be
only 0 or 1. A state ¥, of the system is described by the occupation
of each single particle state, that is, each state is represented by a set
of numbers ¥,, = (ny, na, N3, ....). The total number of electrons in the
system is

N=> na, (6.74)

while the total energy of a particular state ¥, is

En=Y Nata- (6.75)

The partition function of the problem is defined as

7 = e—BF:Z<n|e—B(H—uN)|n>
n

— i 6_’6 Za No(€a—H)

Ne=0
— H i e Blea—p)na
& na=0
= JI(14ePCm) (6.76)
and the free energy is
F= —% ; In (14 ¢ Pleamm) (6.77)

Therefore, using (6.73), one finds

1
N = ; O (6.78)

which by comparison with (6.74) allows us to define the mean occupa-
tion per state o as
1

ﬁa = m (679)
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which is the so-called Fermi-Dirac occupation number. Naturally the
average energy density of the system in simply

_ 1
E= v > €ana (6.80)

and other physical quantities can be calculated as well. As in the
phonon case we define the density of states

N(E) = % S (E - e) (6.81)

and transform all the sums into integrals, in particular, the mean energy
density is

E= / dE N(E) E(E) . (6.82)

Observe that the Fermi-Dirac distribution has the properties one
expects for electrons. For instance, consider the zero temperature limit,
that is, 8 — oo. If E > p the exponent in the exponential in (6.79)
is positive and therefore when 5 — oo the Fermi-Dirac occupation
vanishes. If E < p the exponent is negative and at zero temperature it
vanishes leading to n = 1. The conclusion is that at 77 = 0 we have a
step function

A(E) = 0(ju — E) (6.83)

as in Fig.6.12(a) and no state are occupied below the chemical potential,
as expected. At low temperatures kg7 << p only states in a region of
width kpT with energy close to u is affected as shown in Fig.6.12(b).

These properties of the Fermi-Dirac distribution are very useful if
we use the fact that the derivative of a theta function is a Dirac delta
function, that is,

S—Z = —§(u—E). (6.84)

At finite temperatures the delta function is broadened by kpT as ex-
pected. In order to explore the usefulness of the properties of the
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Figure 6.12: Fermi-Dirac distribution: (a) zero temperature; (b) finite
temperalure.
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Fermi-Dirac distribution consider a typical integral of the distribution
with an arbitrary function f(FE)

1wT) = [ aBfEmE)

+oo  dF
- j oy
/_oo B 5UE)
+o0 on
- _ dEF(E)22 .
| dBRE) (6.85)
where we have defined as
E
F(E) = / dE'f(E') . (6.86)

Obscrve that the last linc was obtained by integration by parts which
is correct if F(E) diverges slower than an exponential. Morcover, we
assume that in doing the integral by parts the integrand vanishes in
the ' — —oo limit. This is going to be true in general because the
integrand in the thermodynamic quantities involves the density of states
which always vanishes in this limit. Now we observe that the derivative
of the Fermi-Dirac distribution at low temperatures is highly peaked
around F = p and assuming that F'(F) is a smooth function close to
this point we make a series expansion

o ()
F(B) = P+ > Oy (6.87)

where F(™ (1) is the n** derivative of the function at £ = p. We further

observe that
+o0 on
/_ B <_8—E> - (6.88)

and that the Fermi-Dirac function is an even function of £ — y. By
direct substitution of (6.87) into (6.85) we obtain

7 oo £(2n—1) +00 7,
I(p,T) = /oo f(E)dE + Zl an)'(“) /_oo dE(E — )™ (—S—E(>§.89)
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which can be further simplified if we change variables z = S(E — ) in
order to obtain

16T) = [* JBME+ 3 fulu) (T (6.90)
where
(2n—1)
fo = an)f“) (222077 ¢(2n) (6.91)

where ((n) is a Riemann zeta function. Equation (6.90) gives the finite
temperature correction to the zero temperature result in powers of 7.
This is called the Sommerfeld expansion. Moreover, we observe that
the corrections to the zero temperature results are even powers of the
temperature. In particular, at low temperatures the first correction will
always be of order T2, thus, the first term in (6.90) can be replaced by

[ #EE = /Epf(E)dEJr " HE)E

—o0 —0o0 Er

%

[ HB)AE + (- B f(Br). (692

-0

6.4.1 Specific heat

Let us apply this result for the case of the free electron gas. From (6.80)
we have f(F) = EN(FE) and
_ Ep
EF =~ EN(E)dE
0
2

+ Br(pu— Er)N(Er) + = (BeN'(Er) + N(Br)) (ksT)$.93)

and the mean density is

n A~ /0 " N(E)E + (4 — Er)N(Ep) + %2N'(E) (kzT)%.  (6.94)

Notice that number of particles is the same as at zero temperature and
therefore from (6.94) we get
72 N'(EF)

M%EF——

6 N (Er) (kpT)? (6.95)
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which when substituted in (6.93) gives
E~— + FN(EF)(kBT)Q (6.96)

Finally, from (6.96), we obtain the electronic contribution for the spe-
cific heat
CV . 8E . e 2
Vv oT 3
independent of the dimensionality of the problem which only appears
through the density of states which for the case of free electrons is given
in (6.8).

This last result could have been obtained without all this mathemat-
ical workout if we have used the physical meaning of the specific heat
which is the number of excitations in the system. Obviously in the case
of a system with a Fermi surface the number of excitations available is
proportional to the kgT times the number of states per unit of energy
which is simply N(EFr) which gives the correct order of magnitude of
the specific heat. Since the average energy of the particle-holes is kgT
the excitation energy will be N(Ez)(kgT)? which misses the correct
value by a factor 72/6. Another way to calculate the specific heat is to
use the analogy we made before between the particle-hole excitations
and acoustic phonons. As we showed in (6.15) the particle-hole exci-
tations have a dispersion relation of one-dimensional acoustic phonons
since it depends only on the component of the momentum perpendicu-
lar to the Fermi surface. The specific heat of one dimensional phonons,
according to (4.59), indeed behave like T. In order to show that this
is more than a coincidence let us calculate the specific heat of these
particle-hole excitations. First we observe that the density of states at
the Fermi surface of a Fermi gas can be written as in (6.8)

N(Ep)k3T (6.97)

N(Erp) =2 / %5(&7 —e). (6.98)

Observe that only states at the Fermi surface, that is, with & such
Er = ¢, contribute to the integral. Thus we make a simple change of
variables

k=kp+q (6.99)
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and therefore

€ = EF +q- VGkF
= FEr+qur (6.100)
where we have used (6.16). As expected only the component of g

normal to the Fermi surface appears in the energy in agreement with
(6.15). Therefore it is natural to rewrite

kr
= a7t (6.101)

where g is langenl to the Fermi surface. Observe that the density of
states at the Fermi energy can be written as

d dd 1
N(EF) — 2/ 4| QJ— q||)

= 9 / d(Q;;“ ! (6.102)

involves only the component of q perpendicular to the Fermi surface.
Now assume for the moment being that the particle-hole excitations
have bosonic character. Then the partition function for these bosons is
the same one as the acoustic phonons case, (4.52)

Z=e"T=T] [sinh(ﬁquH/Q)]il . (6.103)
q
The specific heat is simply
CV _ oF _ ﬁ2 qudd 1 (qu||)2
Vv T~ 4 (2m)d s1nh2(5qu||/2)
N(Ep)vrf? /°° dg (vrq))?
4 ||sinh2(/3vFQ||/2)
2

- Q%N(EF)T (6.104)

where we have used (6.102). Observe that this is twice than the ex-
pected result (6.97). This happened because we have double counted
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the number of particle-hole excitations. The mapping of the particle-
hole problem into bosons has an extra requirement that ¢ > 0, that is,
we count only the excitations outside the Fermi surface. If we take this
into account we get the correct result. The connection between the
particle-hole excitations of an electron system goes beyond what has
been discussed here. We can show that in dense Fermi systems there
is an operator identity between fermions and bosons. This identity is
called bosonization for obvious reasons.

6.4.2 Correction to the Pauli susceptibility

Another interesting application of this effect is the temperature cor-
rection to the Pauli susceptibility discussed in the last scction. In the
presence of a magnetic field the Zeeman energy will shift the energy
of the up spins by —ugB while the down spins are shifted by +ugB.
Therefore the density of states of each species can be directly obtained
by the density of states of the unpolarized case, N(E). Indeed, by
definition,

(E — e, + pupB)

(E — e — upB) (6.105)

U

£
5
[

%N(E + ppB)
N(B) = %N(E — upB). (6.106)
The magnetization is given by
M=t /_ o; dEn(E) (N(E + usB) — N(E — usB))  (6.107)

and the magnetic susceptibility is simply

. oM L wAdN
x(T) = lsz_,oa—B = ,u%/dEn(E)E. (6.108)
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Using the Sommerfeld expansion one finds
7T2
x(T) = y3N(Er) (1 + g[ln(N(EF))]@)(kBT)?) (6.109)

which gives the correction to the Pauli susceptibility.

6.4.3 Landau diamagnetism

Finally let us consider the problem of a two dimensional electron gas
in a magnetic field. Since the levels are quantized the density of states
is not a smooth function of the energy but has delta functions at the
energy of each Landau level

N(E) = 2N, 3" 6 (E — huul(n + 1/2)) (6.110)

n=0

where Ny gives the degencracy of cach level and the factor of 2 account
for the two spin orientations.. Thus there is no advantage of substitut-
ing the summations by integrals. In particular the free cnergy of the
system is given in (6.77)

2N, &
F= _7¢’ > In (1 4 Pluhantr1/2) (6.111)
n=0

It is very hard to perform this sum. Since we will be interested on
the susceptibility of the electron gas we just have to evaluate the free
energy at very small fields, that is, kgT >> hw,.. In this case we rewrite
the sum as

2 2B &

— = Y In (1 4 fletwe/Deen 6.112
5= e ) (6.112)
where S = L, L, is the total area and
n (Bhwe)n (6.113)
Ty = —r— = (Bhw)n. .
kgT/(hw,)

Thus, when kgT >> hw.(fhw. << 1) the separation between the
allowed values of x,, is very small and we can replace the sum by an
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integral. However, we are not interested in strictly zero magnetic field
and we have to keep the first correction. This is done with the help of
the so-called Fuler-MacLaurin formula,

> fle) = [ def@)+ 5 (o) + £()
o0 B2nh’2n71
2 o

n=1

(f(anl)(‘,L-r) _ f(2nfl)(‘,L-0)) (6114)

where x,, = o + nh and B, is a Bernoulli number. Application to this
formula to (6.112) leads to

I e?B?
— = dxln (1 Bheez 6.115
S /3(/;0/ wln (1+2e” )+247rm022+1 (6.115)

where
2= (6.116)

is called the fugacity of the metal. Observe that all the dependence
of the free energy on the chemical potential can be obtained from the
fugacity. Thus any derivative in respect to the chemical potential can
be replaced by a derivative with respect to the fugacity, in particular,
from (6.73) onc has

N = ~on = — Bz . (6.117)

A simple change of variables y = —ze™#™%? in (6.115) leads to

L P s (6.118)
S wB2h? AT orme 2+ 1 ’
where
1 _ 00 N
Lis(z / a2 =) -y (6.119)
n=1 n

is a polylogarithmic function of second degree.
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The total number of electrons is obtained from (6.73)

N

_m B3z
S wBR?

24rme? (z + 1)?

n(l+z) +

(6.120)

which is a transcendental equation which gives z as a function of o.
Let us first consider the B = 0 case, then

1+ 2z = €2Fr (6.121)

where we have used (6.4). Since we are interested in the low density
limit it is clear that corrections to zy are going to be very small. We
therefore write z & 2o >> 1. Substituting this result in (6.118) we find

€2B2

— E -
ot 24mmc?

(6.122)
where Fj is the ground state energy of the system in the absence of an
external field. Finally the magnetization density is given by (6.50),

M ¢’B N(Er)u%B
— = _ 6.123
127rme? 3 ( )

S
where N(Er) = m/(nh?) is the density of states of a two dimensional
electron gas (see (6.8) with d = 2) and pgp = he/(2me). Therefore, the
susceptibility is

2
o = - Y Eris __xe (6.124)
3 3

where we have used the result (6.35). Observe that the sign is neg-
ative implying that the magnetization is contrary to the direction of
the field in accord with Lenz’s law. This susceptibility was originally
derived by Landau and carries his name. Observe therefore that the

total susceptibility of an electron gas is

2
XT =XpP+ XL = 3XP - (6.125)
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6.5 Problems

1.

10.

11.

Prove eq.(6.11) and calculate for Al (r, ~ 2) and Cs (r; =~ 5.5)
their respective Fermi energies. Show that in 3 dimensions we
have:

1
Ep = 30

2
Ts

where the energy is measured in eV.

Prove (6.12).

. Calculate the Fermi velocity in d dimensions and show that in 3

dimensions we can write:

4.2 x 10°
Vp = ————
Ts

where the velocity is measured in m/s. What is the value of the
Fermi velocity for Al and Cs?

Prove (6.20).
Prove eq.(6.34).

Calculate the exact expression for the magnetization of a electron
gas ford =1 and d = 2.

What happens with the magnetization of a free electron gas for
B>DB.7

Prove (6.39).

. Show that the mean square deviation ((dy)2) is proportional to

the cyclotron length squared, that is, /3.

Solve the problem of an electron in a magnetic field in the sym-
metric gauge: A = B(—yx + zy)/2.

Prove eq. (6.60).
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12. Calculate the jump in the magnetization v and v + 1 for a two
dimensional electron gas.

13. Prove (6.109).
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Chapter 7

Introduction to disordered
systems

Up to this point we have only discussed the physics of perfectly ordered
systems, that is, crystals. We have seen that in a periodic potential the
momentum k is still a good quantum number and that the wavefunc-
tion of the electrons looks very much like plane waves, that is, it is
delocalized over the entire crystal. As a consequence a crystal can con-
duct current without any loss since the electrons, accordingly to (5.86)
can be accelerated indefinitely. Real life is not that easy. Real materi-
als always contains imperfections like impurities, dislocations, etc. We
have seen, for instance, that even for entropic reasons there are always
vacancies in real crystals. Thus, in the presence of an electrical field
the electrons will be scattered. As electrons move through the system
they will exchange momentum with the lattice and undergo Brownian
motion as shown in Fig.7.1.

When the number of imperfections is small the electrons will move
ballistic between impurities. This is called the weakly disordered limit.
If however the number of impurities is large then new effects can arise
since there is going to be a destructive interference of the electron wave-
function due to disorder. We are going to briefly discuss these two
extreme limits.

179
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Figure 7.1: Motion of an electron in the presence of scattering centers.

7.1 Weak scattering

Let us consider the influence of an electrical field E in the motion of
electrons in a solid when the electrons collide with impurities. We are
going to assume the simple model of elastic scattering (no phonons
are created for the moment being). In this case the electrons when
they collide with the impurities they transfer momentum. After many
collisions the velocity of the electrons decreases as a consequence of the
collisions. A simple model for this process is to assume that there is a
mean-time 7 between collisions so that in between collisions the motion
is purely ballistic. The ordered case is obtained when 7 — oo, that is,
it takes a large amount of time between collisions. Let us rewrite the
semiclassical cquation of motion (5.86) for a cubic symmetry as
v E 1

% - fn— - v (7.1)
which is known as the Langevin equation which describes the motion of
a particle in a viscous environment. Observe that in principle 7 depends
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on the momentum k but as explained before we are going to calculate
T always at the Fermi surface. Observe that this equation leads to an
exponential decay of the velocity with time in a time scale given by 7.
If we wait long enough we obtain the steady state condition, that is,
the electron reach a final velocity

(vic) = ;—TE (7.2)

which allows us to define the electron mobility, u, as

(Vi) = pE (7.3)
where
er
= . 4
" m* (74

Notice that (vi) has nothing to do with the actual velocity (that is,
the Fermi velocity) of the electron. This velocity is the net effect of
the collisions. In between impurities indeed the electron move with the
Fermi velocity but because the direction of motion of the electron is
changing all the time its velocity along the electric field is smaller than
its velocity in between collisions.

The steady state current in the system is just

J= €ﬁ<Vk> (7'5)

where 7 is the average electronic density. Using (7.2) and (7.5) we can
write

J=0E (7.6)
where
e’nr
= 7.7
.o (1)

is the electric conductivity of the system. The resistivity is defined as
its inverse, namely,

1 )
p = ; = . (7.8)
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Since we are talking about electrons at the Fermi surface with a Fermi
velocity it is clear that in a time period 7 the electrons will move a
distance ¢ such that

{=vpT (7.9)

which is called the mean free path of the electrons. Equation (7.7) is
known as the relaxation time approximation.

At this point the main element of the theory, namely, the relaxation
time 7 is a phenomenological parameter. We can calculate however its
value from microscopics if we assume that the number of impurities is
very small so that single impurity scattering dominates the relaxation
mechanism. Consider the scattering of an electron from a state |k) to
a state |k') in the presence of an impurity potential V. In this case we
just use Fermi Golden’s rule tells us that the scattering rate is giving
by

27TNZ'
h

where N; is the number of impurities. The total scattering rate is
obtained by integrating (7.10) over all final states [k’). We have to re-
member, however, that not all the states contribute. In Fig.7.2 we show
the actual situation in which the electric field is applies in some arbi-
trary direction. Observe that only the component of the momentum
in the direction out of the field contributes to the relaxation. Forward
scattering cvents in the direction of the ficld cannot contribute since
the clectron retains its momentum in this direction. Thus, the impor-
tant fact is not that the clectron is scattered but the amount that the
component of its momentum along the electric field is changed in the
process. If we take this effect into account we can write the expression
for the relaxation time as

Wi = ——6(ex — e0)| (k|V [K')[? (7.10)

1
; = Z Wk,k’ [1 — COS (Qk,k/)] (711)
kl

where Oy s is the angle between the two states.
Equation (7.10) is valid only in the Born approximation. A better
approximation can be obtained if we observe that in the Born approx-
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imation the scattering amplitude fi(fx ) is given by

m*V
O ) ~ — k|VI|K'). 7.12
FilOhge) =5 (V) (712
But in general the differential cross-section is given by
a(0) = £ (0)] (7.13)
which allows us to rewrite (7.10) in a more general way, that is,
(27Tﬁ)3NZ
Wk,k/ = W(S(ek - ek/)d(ek,k/) . (714)
It is a simple calculation to show that the (7.11) reduces to
1 T
- = 27rcvp/ dfsin (1 — cos ) (6) (7.15)
T 0

where ¢ = N;/V is the impurity concentration. From the knowledge
of the differential cross section of the impurity we can calculate the
relaxation time from (7.15).

We can get further insight into (7.15) if use the partial wave ex-
pansion of the wavefunction in the presence of the impurity. As we
know from elementary quantum mechanics the asymptotic value of the
wavefunction of the electron due a central potential at the origin can
be written as

Gl 0) ~ (21 + 1)t ST = “];{ 240D b (cos(8)) (7.16)

where 6;(k) is the phase shift of the electron wavefunction in the pres-
ence of the potential (obviously, §;(k) = 0 if V = 0). From (7.16) one
can obtain the scattering amplitude in terms of the phase shifts,

o0

=, (21 + 1)e®® sin(6;(k)) Py(cos §) (7.17)

fi(0)
and the differential cross-section is given in (7.13). By direct substitu-
tion of (7.17) into (7.15) one finds

o0

Z l Sin2(5l_1(k'p) - 5l(kF)) (718)

=2
T k% -1

1 . Adrcvr
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E

Figure 7.2: Scattering of an electron wave by an impurity in the pres-
ence of the field.
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It is now interesting to investigate the effect of the impurity on the
spectrum of the system. Assume that the impurity is at the center of
radius R which is of the order of the size of the system. We impose
the condition that the wavefunction vanishes at the surface, that is,
(R, €) = 0. Then, from (7.16), we find

&;(k) l
m{n—=—=+3
Feny = ( = ) (7.19)

where n is an integer. In the absence of the impurity (6;(k) = 0)
we easily see that k,; = 7(n +1/2)/R and therefore, for fixed I, the
distance between two allowed values of k is 7/R. In the presence of
the impurity this energy levels are shifted by ¢;/R. Consider first the
case without impurities. Suppose we fill up all the states up to the
Fermi momentum kp = 7(Npez + 1/2)/R where Ny, is the label of
the last occupied state. In the presence of the impurity we will have
kr = (N} .. — 0(kr)/m +1/2)/R. Since the density of the system
is kept constant the Fermi momentum cannot change. Thus we must
require that N}, .. = Npaz + 0 (kr)/7 which implies that the number of
available states has changed. Taking into account that the degencracy
of cach state is 2(2041) (the factor of 2 comes from the spin component)
the total number of new electrons required to fill up the levels to the

same wave-vector kr is

0i1(kr)

Z =
l

S~ 2(21 4+ 1) (7.20)

Observe that in the presence of the impurity we have an extra amount
of charge Z in the system. So, in order for the system to be neutral
we have to require that Z equals the amount of electrons given by
the impurity to the system, that is, the valence difference between the
impurity and the host metal. Of course an impurity with Z = 0 cannot
be distinguished from the metal itself. This is the so-called Friedel
sum rule and behind it hides the idea of charge neutrality: the electric
charge of the impurity must be neutralized by an excess of electrons
in its vicinity. Of course, far away from the impurity the the system
relaxes to the case without impurities where kr is given by the value
of the density.
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Observe that this sum rule is very useful since it relates the phase
shift to the valence of the impurity. Suppose for simplicity that only
s-wave scattering is important ({ = 0) and Z =1 (notice that if Z > 1
then s-wave scattering alone cannot account for the phase shift). Then
from (7.20) one has

which is the value of the phase shift at a resonance. That is, the
impurity is resonant with the Fermi system. From (7.18) we have

1 Awcup
T k2

(7.22)

Thus under these conditions the resistivity is given by

dre

p = €2ﬁkp

= 4 (5>1/3 . (7.23)

3 en

where in the last line we used the free electron result (6.5). For typical
electronic densities one has p/c & 4u) cm.

7.2 Strong scattering

You now should be wondering in what conditions our result (7.18) is
valid. The condition, of course, is that the electron moves freely be-
tween collisions. If the mean free time between collisions becomes too
short we cannot describe the electron system as free. In order to esti-
mate the validity of the theory we have to remember that 7 gives an
estimate of the mean free time that the electron stays in a state with
well defined momentum k and energy approximately given by Er. That
is, 7 is the lifetime of the state. Thus, from the uncertainty principle
point of view, the description we gave will only be valid if

h
— 24
T > Tr (7 )
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which, by using Ep = h*k%/(2m*) and 7 = £/vp implies that
kpl > 2 (7.25)

which implies that the wavelength of the electron A\r = 27/kr has to
be larger than the mean free path. This is nothing but the condition of
ballistic motion. Condition (7.25) can also be written in a different form
if we realize that the Fermi wave-vector, given in (6.5) is approximately
given by m/a where a is the lattice spacing. Therefore, we have the
condition that ¢ > a which implies that the mean distance between
impurities has to be much larger than the lattice spacing.
The question that comes to mind is: what happens when krf ~ 1 or
~ a? Tt is clear that in this case we have in average one impurity per
unit cell, that is, ¢ & 1/a3. Let us assume that the impurity potential
is short range and can be described by

e—r/a

r/a

V(r)=1V, (7.26)

Using the simplest Born approximation (7.10) we find that the differ-

ential cross section can be written as

4(m*)2a6%2
h4

in the limit where ¢ — 0 (that is ka << 1). Substituting (7.27) into

(7.18) and using (5.82), (7.9) and ¢ = 1/a> one finds

o(f) ~ (7.27)

1 167ma®VE(m*)?  4m (Vo2
e e

and observe that the condition of ¢ < a implies Vy ~ ¢, that is, the
strength of the disordered potential is of order of the kinetic energy. It
is clear that in this limit it is wrong to do perturbation theory around
the plane wave state!

So, if the plane wave state is incorrect what is the nature of the
ground state? In order to solve the problem let us consider the one-
dimensional potential of Fig.7.3(a). As we have seen the solution for
this problem is a Bloch wavefunction which in the atomic limit can be
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Figure 7.3: (a) Ordered potential; (b) Module square of the Bloch wave-
function.

well described by (5.69) and is depicted on Fig.7.3(b). Suppose we now
have a potential like the in Fig.7.4(a) where the heights of the potential
wells fluctuate around some mean value V and with variance V;. What
we are going to argue is that the wavefunction looks like Fig.7.4(b),
that is, the wavefunction is localized around some site in the lattice.
That is, the wavefunction instead of (5.69) will look like

€

—r/¢
V¥ %

P(r) = Ta(r—T). (7.29)

where £ is the so-called localization length and gives the envelope of the
function in Fig.7.4(b).

In order to understand how localization arises in this problem con-
sider our familiar problem of the molecule with two atoms. We now
have only two sites 1 and 2 and the state of the electron localized on
site 1 (2) is |1) (|2)). We now generalize the Hamiltonian (1.44) in order
to allow the two states to have different energies and the tunneling is
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Figure 7.4: (a) Disordered potential; (b) Module square of the wave

function.
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still described by (1.46), that is, the complete Hamiltonian reads
H =V + (V + V) |2)2] + £ (|1)¢2[ + [2){1]) - (7.30)

which is our toy model for the disordered problem. Since V is just a
shift in the energy of the problem we just set it to zero. This problem
can be solved exactly as before by writing linear combinations of the
states |1) and |2)

|B) = 1) + 5|2)
[4) = af2) = BI1) (7.31)

which are the analogue of the bonding and anti-bonding states. In this
new basis the Hamiltonian is diagonalized and it looks like

H = E4|AY(A| + E5|B)(B|. (7.32)

The coefficients «, 8, E4 and Ep depend on the parameters ¢t and V}
and are left for you to calculate.

Let us consider the extreme cases where our physical intuition can
work for us. The perfect lattice happens when the two potential wells
are the same, that is, V5 = 0. If V; << ¢t we have a =  ~ 1/\/§ and
FEp — E4 = 2t which is the case we discussed previously. In this case
the two wave-functions for the bonding and anti-bonding states have
equal weight in the two wells. This is the case equivalent to the Bloch
state where the electron, by tunneling between atoms, is extended over
the crystal. Consider however the opposite case in which V4 > ¢. In
this case you can show that

a W

T >1 (7.33)
which means that the probability of finding the particle in the site 1 is
much larger than the probability of finding the particle in site 2, that is,
the particle is trapped inside of the well. If we now turn to the infinite
crystal this argument suggests that there should be not only fluctua-
tions in the phase of the wavefunction as we go from site to site but
also fluctuations in the amplitude! These fluctuations become larger as
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the ration V;/t increases. If V,/t is very large we expect that the wave-
function of the electron on that particular site is very little affected by
the presence of the other sites in its neighborhood and therefore should
decay exponentially away from the site as the wavefunction (7.29) im-
plies. Thus, our expectation is that for a given electron energy there
must be a minimum value of V; /¢ for which the electron becomes local-
ized. This is the so-called Anderson localization transition. The critical
value of V;/t is a non-universal number which depends on the type of
lattice, dimensionality and type of disorder in the material. In partic-
ular, it has been shown that in one dimension all the electronic states
are localized. The fact that the localization depends on the energy of
the electron is clear from Fig.7.4 since electrons with large energies do
not care for the disordered potential but clectrons with low encrgics
will feel the bottom of the wells. Thus, for a given value of V4 /¢ above
the critical value where localization happens, there is also a minimal
energy FE¢, below which all the states are localized and above which
the states are extended. This is the so-called mobility edge. If we make
a plot of the density of states of a such material it will look like the one
on Fig.7.5. Below the mobility edge the states are localized and above
it they are extended.
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Figure 7.5: Density of states for a disordered system.

7.3 Problems

1. Using (7.11) and (7.14) and assuming ¢, = h’k?/(2m*) prove
(7.15).

2. Prove that in the Born approximation the scattering amplitude
for the potential (7.26) is given by:

2om*Vya® /B2
(ka)?sin®(0/2) +1°

fk(e) = —4

Calculate the differential scattering cross-section and compare
with (7.27).

3. Diagonalize the Hamiltonian (7.30) exactly and calculate «, S,
) A and F B-



Chapter 8

Semiconductor Physics

8.1 Introduction

As we have seen in the previous chapters we can classify non-interacting
electron systems as metals or insulators depending if they have a non-
filled or filled band, respectively. Metals do not have a gap in the
charge spectrum and can conduct clectricity very well, insulators, how-
cver, cannot conduct charge if the temperature is much smaller than the
gap E,. When KgT at room temperature is of order of E, then we can
promote electrons from the lower band to the upper band and conduc-
tion is possible. In this case these systems are called semiconductors.
It is quite amazing that the electronic revolution of the 20" century
was not driven by the development of metals but by the progress in
the understanding of semiconductors. These are the basic elements for
the production of transistors and other electronic elements in modern
computers. It is therefore of interest to understand the physics of these
systems.

The lower band in a semiconductor is called the valence band while
the upper band is called the conduction band. Here we arc going only
to consider the case where the conduction band and the valence band
can be described by:

Kh2k2?
2me
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K2k2
E¢ = E,— 8.1
)’ S (8.1)

where m,. and m,, represent the different curvatures of the conduction
and valence band, respectively (notice that in terms of our definition
of the effective mass the valence band has negalive mass while the
conduction band has positive mass. The bands described in (8.1) are
not generic because many times the top of the valence band is not at
the same point as the bottom of the conduction band. Many times
they will be shifted by a finite momentum Q. However, there are some
systems where the two edges are at the same point in momentum space
which facilitates their description. It is in fact very simple to generalize
what we are going to describe here if this is not the case. Another
simplification in (8.1) is that we arc using infinite parabolic bands. As
we know this approximation is only good if we arc considering states at
closc to the edge of the bands. If the temperature becomes too large one
starts to excite particles at higher energy states and the deviation from
parabolicity becomes a serious factor. Here, however, we are going
always to consider cases where kgT < E, = E, — E, in which case
we constrain ourselves to states close to the edges of the bands. For
simplicity, from now on we are going to set E, = 0 so that F, = E..

It is a very simple exercise to calculate the density of states of a
semiconductor as a function of energy. Using the results of the previous
sections we find that for £ > E:

1 /2m.\%?
NAB)= 55 (7)) VE-E, (8.2)

is the density of states for the conduction band and for £ < 0 we have

1 /2m,\%?
NoB) = 55 (') V- (8.3)
is the density of states for the valence band. Observe that the density
of states is zero everywhere in the gap, 0 < I < I,.

When an electron with momentum k, is excited from the valence
band to the conduction band it lives a hole behind in the valence band.
Since the number of electrons do not change ewe can either describe
the problem in terms of electrons or holes. The total momentum of the
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system before and after the transition is the same which implies that
the momentum of the hole, kj, has to be —k,. Moreover, in describing
the system in terms of holes the energy of the holes is obtained by
inverting the valence band so that Ej (k) = —E(k.) which implies that
the mass of the hole is given by m;, = m,. Because the properties of
semiconductors depend strongly on the number of electrons and holes
we will be always talking about the number of such carriers in the
system.

Let us calculate the number of electrons in the conduction band,
n., and holes in the valence band, p,, at a fixed temperature 7. It is
clear that

ne = :o dEN,(E)f(E) (8.4)
and
0
p.= [ _dEN,(B)f(E) (8.5)
where
1
f(E)= A1 (8.6)

is the Fermi-Dirac distribution function (5 = 1/(kgT)). In what follows
we are going to assume that the temperature is such that

Eg — M > k’BT
so that the Fermi-Dirac distribution function (8.6) can be replaced by
f(E) ~ e AE=H) (8.8)

Because the chemical potential iz depends on the amount of charge in
the system these conditions can only be checked a posteriori. We are
going to sce that this is indeed the case of interest.

Using (8.8) we can write (8.4) as

1 /2me\%? poo
o e ()

= N,(T)e Fa=m (8.9)
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where

N(T)

1 [(2mkpT\*?
(m 5 ) (8.10)

o2\ B2

that should not be confused with the density of states (8.2). By the
same token we can show that

Py = P,(T)e P~ (8.11)
where
1 (2m kpT\>?

Equations (8.9) and (8.11) give the density of electrons at the conduc-
tion band and holes in the valence band. Observe, however, that these
expressions still depend on the chemical potential 4 which is undefined.
However, if we multiply (8.9) and (8.11) we find that

Nepy = NP, PP (8.13)
which is independent on the chemical potential. This expression is very

important in the theory of semiconductors.

8.1.1 Intrinsic Semiconductors

In intrinsic semiconductors the number of impurities is minimum. This
implies that all the holes in the valence band are due to the excitation
of electrons from the valence band to the conduction band. In this case
it is obvious that:

Ne = Py =N (8.14)

where n; is the intrinsic density of a semiconductor and can be obtained
directly from (8.13):

n; = \/ N.P,e PEo/% (8.15)
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This result implies that at finite temperatures the number of electrons
in the conduction band or holes in the valence band is exponentially
small with temperature.

Using (8.14) and (8.15) in (8.9) we can immediately obtain the value
of the chemical potential;

me

p=to g (8.16)

E, 3kgT (mv )
In
2 4

which shows that at low temperatures the chemical potential is essen-
tially at the center of the gap. Observe that in this case the conditions
(8.7) are obeyed as long as

kT < E,/2 (8.17)

which is obeyed in most semiconductors where the energy gap is of
order of a few electron volts.

8.2 Extrinsic Semiconductors

In the presence of external atoms the physics of a semiconductor can
change profoundly. Imagine that we dope a semiconductor with another
atom that has a valence +1 larger than the host atom (it gives up one
electron more to the conduction band). In this case we can think of
the external atom as simply the host atom with one electron and on
proton more. This kind of atoms are called donors. At first sight this is
equivalent to add a Hydrogen atom to the host material. If this was the
case the extra electron would be strongly bound to the impurity atom
with an energy of the order of Ey = —me*/h* ~ —13.6 eV. One has to
remember, however, that a Hydrogen atom on a host material is not
the same as a Hydrogen atom in vacuum. The properties of the motion
of the electron are changed by the presence of other atoms and other
electrons. A first consequence of the fact that there are other atoms in
the system implies that the electron is moving in the external periodic
potential of the lattice. Thus, the mass of the electron is not its bare
mass but its effective mass, m., which can be much smaller than the
bare mass (usually, m. = 0.1m). This implies that the binding energy
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is decreased already by one order of magnitude. However, the biggest
effect is not due to electron-ion interactions but due to the electron-
electron interactions.

In a metal (a system with no gap) charges can move freely and
therefore an external charge can be easily shielded (or screened) by a
local change in the electron density. Thus, in a metal the potential
seen by the extra electron would be essentially zero far away from the
impurity and the electron would be free to go to the conduction band.
In an perfect insulator at zero temperature charges cannot move freely
because there is a gap in the charge spectrum and it requires a large
amount of energy to move electrons around. This implies that in an
insulator the potential seen by the electron is essentially the bare po-
tential (Hydrogen atom) and it would be strongly bounded as discussed
previously. However, in a semiconductor the situation is middle way
between a metal and an insulator: there is charge motion because there
are n; electrons in the conduction band (see (8.15)) that can screen par-
tially the potential generated by the external impurity. So the binding
energy is neither as small as in a metal or large as in a insulator.

A way to quantify the amount of screening in a semiconductor is
via the dielectric constant € of the system. The effective potential seen
by an electron due to an external charge +e is given by

Vi) = -1 (8.18)

€T
In semiconductors we can find € ~ 20 — 100. The consequence of (8.18)
is that we can replace e? by e€?/e. Putting together the effects of the
clectron-ion interaction and the clectron-clectron interactions we sce
that the binding cnergy of an clectron by an impurity is of order:

me 1 me*

m e R’
which can be 10~* times smaller than the biding energy of an electron
in the Hydrogen atom! In fact for a host of Ga atoms (valence +4)
with As impurities (valence +5) it is found that the binding energy
is of order of 0.013 eV. For this reason, the radius of motion of the
electrons is also increase from a few Bohr radius, ag, to

n €y - (820)

E, = (8.19)

To =

*
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Thus, the conclusion is that in a semiconductor the impurity levels are
weakly bound to the impurities and can be easily ionized. In other
words, at T = 0 the impurity level is occupied by a single electron
which can be promoted to the conduction band at finite temperatures.
Because these are bound states of electrons they are localized just below
the bottom of the conduction band by an amount given by E,. We call
Eqy = E, + Ej, the donor energy in a semiconductor and to a donor
doped semiconductor we call it as n-type.

As we can dope electrons in a semiconductor we can also dope holes.
We just have to choose an impurity atom that has a valence —1 relative
to the host. In this case we are taking one proton and one electron from
the host. The situation here is one of a localized negative charge with
a holec bounded to it. For the same rcasons described above this will
lead to a bound state of holes above the top of the valence band. These
are called acceptor states and the semiconductor is said to be p-type.
Observe that the ionization of a acceptor state is equivalent to a hole
going to the valence band or an electron moving from the valence band
to the impurity level. At T = 0 the acceptor state has one hole but at
finite temperatures such that kT = E, = —E}, (where m, is replaced
by m, in (8.19)) an electron can be promoted to the acceptor state
while a hole goes to the valence band.

Because the donor and acceptor states are such that E;, F, < E,
one can easily dope the conduction or the valence bands with external
charges. In this case the n, and p, as defined previously will change by
an amount én, that, is:

In = ne — py (8.21)

which is equivalent to a change in the chemical potential of the system.
Independent of this change the condition (8.13) is still valid. Using the
definition of n; given in (8.15) we can rewrite (8.13) as

Nepy = 1o - (8.22)
Solving (8.21) and (8.22) for n. and p, we find

on\” n?a on
Ne = - ni -
2 2
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2
o= (3) -5 (823

which gives the number of electrons and holes as functions of the intrin-
sic density and the extrinsic density of impurities. When én > 0 there
are more donors than acceptors and the system is n-type. If én < 0 we
have the opposite situation and the system is p-type.

In order to calculate the value of én we need to know how many
electrons (holes) are ionized and go to the conduction (valence) band
and how many remain bounded to the impurity atoms. Let us call the
density of donors N, the density of acceptors N,, density of electrons
bounded in the donor states ny and the density of holes bounded in
acceptor states p,. From the fact that the total number of electrons
and holes has to be conserved it is easy to see that:

n=mn.—py,=Nyg— Ny — (ng—p,) - (8.24)

Since N, and N, are fixed for a given semiconductor we are left with
the calculation of ng and n,.

Let us consider the problem of the donor levels first. The occupation
N; of the donor level can be Ny = 0 (no electrons), Ny = 1 (spin
up or down) or N = 2 (one electron with spin up and another with
spin down). The doubly occupied state requires the donor state to be
charged relative to the host and therefore is energetically not stable.
We therefore disregard double occupancy. The donor state with zero
electrons makes no contribution to the energy and therefore Ey, = 0.
The donor state with one electron costs energy E; = E4. Thus, in
thermal equilibrium the average number of electrons in donor sites will
be

) Nje—B(Ej —)
¢ sum e PEi—h)
1 1 9e B(Ea—n)
N,
_ N (8.25)

e~ B(Eg—1)

2 +1
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Observe that because E; ~ E,; we expect that for kgT > E; — E4 we
must have ngy < Ny, that is, almost all the donor levels are ionized the
electrons are in the conduction band.

In the case of acceptors the situation changes. The occupation /V;
can be 0 holes (or two electrons N; = 2), 1 hole (or one electron with
either spin up or down, N; = 1), or 2 holes (that is, zero electrons
N; = 0). The state with two holes is again stable because it is positively
charged relative to the host. The energy of the state with one hole has
energy zero, F; = 0, while the state with no holes costs energy F, (this
is the energy cost to take one electron from the valence band and put in
the acceptor level, in this case, the hole that was bound in the acceptor
level goes into the valence band). In this case, the number of electrons
in the acceptor level can be calculated as before:
e P(Ba—n) | 9oBu
e B(Ba—n) 4 Qefu
65(#*Ea) +1

—Eq .
eB(‘2 ) + 1
Since the maximum occupation of the acceptor level is 2, the average
number of holes in an acceptor level is:

<n> =

(8.26)

Nq

= .
eB(uQ ) + 1
Since we expect E, < kT < E, we expect the acceptor levels to be
fully ionized at room temperature. In this case the holes will be all
essentially in the valence band.

The conclusion of these calculations is that we can approximate

(8.24) by

Po=N,(2—<n>)= (8.27)

on =~ Nd — Na (828)

at room temperature. Substitution of (8.28) in (8.23) allows us to give a
better definition to intrinsic and extrinsic semiconductor. The intrinsic
semiconductor is the one in which n; > |Ny — N,| and therefore
N, d— N a
2
N, d — N, a
-

ne ~ n;+

Dy RNy (8.29)
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and the number of electrons in the conduction band and holes in the va-
lence band only change by a small amount. An extrinsic semiconductor
is one such that n; < |Ny — N,| so that

n. ~ Ng— N,
2

n:
y N o 8.30
P NN, (8.30)
for Ny > N, and
Dy = Na - Nd
2
n:
c N O—— 8.31
n NN, (8.31)

for Ny < N,. Thus, in an extrinsic semiconductor there is large differ-
ence between the number of charge carriers. It is exactly the flexibility
in controlling the number of charge carriers that makes semiconductors
so attractive for making devices.

8.3 The p-n junction

Let us consider the problem of a junction between two identical semi-
conductors with energy gap E, so that one of them has N, acceptors
and the other has N; donors. While the p-type semiconductor has free
holes, the n-type has free electrons. Thus, when these two semicon-
ductors are put in contact through an interface (or junction) we expect
electrons and holes to flow between them and establish chemical equi-
librium across the junction, that is, the chemical potential becomes the
same in both sides of the junction. In order words, when these two
different systems are put in contact a potential ¢(x) appears in the sys-
tem so the system remains in equilibrium. Here we are going to assume
that the junction is an infinite plane and that the potential only varies
in the z direction.

The first assumption of our description of the junction is that the
potential varies smoothly across the junction and is such that very far
away from the junction it vanishes. Consider, for instance, the p-type
semiconductor to be at x < 0 and the n-type to be at x > 0. For
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x = —oo the p-type semiconductor can be described as in the previous
sections and there are N, acceptors which neutralize the extra holes
in the system. At x = +oc, deep inside of the n-type semiconductor,
there are Ny donors that neutralize the extra electrons in the system.
Consider the potential ¢(z) built up by the junction in the system. The
energy of electrons (holes) can be rewritten as

Eyz) = Eq—eg(x)
E.(x) = E,—e¢(x) (8.32)

by the same token the edges of the conduction band, E., and the valence
band, E,, also change with ¢(x) so that the chemical potential y is the
same in both sides of the junction:

Ee(z) = Ey—ed(z)
E,(z) = —ed(x). (8.33)

Because of this change in the energies of electrons and holes, their
densities will also change. In fact, we can write:

ne(z) = Ny APaed@n)
po(x) = Py Putedl®) (8.34)

Thus, far away from the junction we can write:

ne(z — +00) = Ny = N PPaed(+o0)—p)
po(r = —00) = N, = P, Pluted(—00) (8.35)

and if we multiply the two cquations we get:

NNy = NCPUe*fB(Eg*eM’)
0¢ = ¢(+00) - d(-00) (8.36)

which can also be written as:

(8.37)

¢86 = E, + ksTln (NdN“)

NP,

which gives the total drop of the potential across the junction. Observe
that because usually E, > kgT the drop is essentially given by the gap
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in the semiconductor. Observe that the actual values of ¢(+oc) do not
have especial physical significance because we can fix one of them to
be zero. Only the difference of potential has physical meaning. Using
(8.35) we can rewrite (8.34) as

nc(’L‘) = Ndeiﬂe(¢(+oo)f¢($))
po(z) = N, e Pele@)—d(=00)) (8.38)

The last equation gives the total drop in the potential across the
junction but does not tell us how does the potential changes as a func-
tion of . In order to know that we have to remember that the potential
obeys the Poisson equation:

. d*¢  Arm
¢=——7 =) (8.39)
where € is the dielectric constant of the semiconductor and p(x) is the
local charge density in the system that can be written as p = edn where
dn is given in (8.24):

p(z) = e(Ny(z) — No(z) — ne(x) + po()) (8.40)

where Ny(z) = NgO(z) and N,(x) = N,©O(—2x) with ©(z) =1 (-1) if
x>0 (x <0). If we use (8.40) and (8.38) into (8.39) it is clear that we
will find a highly non-linear problem to solve. Instead we are going to
simplify the problem and assume the that ¢(x) varics only considerably
in a region of size —d, < x < d,, across the junction (d, and d,, have to
be calculated), that is, for x < —d, we have

¢(z) = ¢(—00), (8.41)

and for x > d,, we have

¢(z) = ¢(+00). (8.42)

In this case, using (8.38) it is clear that for x > d,, we have n.(x) = Ny
and for x < —d, we have p,(z) = N,. In this case we can break the
(8.39) into different parts: for x > d,, or < —d, we have

2o
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while for —d, < x < 0 we have

d*¢  4me
TN, 8.44
dx? € ( )
and for 0 < x < d,, we have
d’¢ 4re
—C =_""N,. 8.45
dx? e 4 ( )

We have to solve these equations using the boundary conditions (8.41)
and (8.42) and impose that the potential and its derivative are contin-

uous across the interfaces at * = —d,, x = 0 and z = d,. A simple
calculation shows that for —d, < x < 0 we have
2mweN,
B(2) = 9(—00) + Ttz + dy ) (5.40)
and for 0 < x < d,, we have
2meN,
B(z) = B(+00) - T — dy )P (547
where
d = ./ No/Na_€d¢
" VN, + Ny 27e
Nd/Na 65¢
d —_ 8.48
P N, + N, 27e ( )

These equations provide the full profile of the potential generated by
the junction between two semiconductors.

Suppose that an external potential V' is applied to the junction. It
is clear that this case the difference of potential can be either increased
or decreased and that in general we must have

5 =Sy — V (8.49)

where d¢g is the potential difference in the absence of the applied po-
tential and is given in (8.37). Because of this new potential we see that
the regions of variation of potential given by d, and d,, change to:

Gp(V) = dup0)1/1 % (8.50)
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where 0, , is given in (8.48). Thus, by applying an external potential
one can change the region where the electronic density varies because of
the junction. This effect can be used to make a device called a rectifier.
In the absence of an external voltage V' the number of electrons (or
holes) crossing the junction in one direction is the same as the number
of electrons crossing the junction in the opposite directions since the
system is in equilibrium. Thus, if a hole current flowing from the p-
type to the n-type is called I, o, there is an equal but opposite current
from the n-type to the p-type. The same is true for the equilibrium
electron current I, . When a voltage V is applied to the junction we
see that the total potential across the junction is modified according
to (8.49). Since edgy is the barrier height between the two sides of the
junction when V' = 0, it becomes clear that when a potential —V < 0
is applied to the n-type side of the barrier, the barrier height for holes
is decreased relative to the other side. In this case, holes coming from
p-type side of the junction see a smaller potential barrier while the
holes on n-type side of the junction see essentially the same potential
as before. In a tunneling junction the current increases exponentially
with the barrier height since it depends on the tail of the wave-function
below the barrier. Thus, while the current for holes going from the
n-type to the p-type is Iy, the current for holes going from p-type to
n-type is Ipe®®V and thus, the net hole current in the system is:

It = Io(e?V —1). (8.51)

This is called the forward current. For electrons the situation is the
same. When a potential V' > 0 is applied to the n-type side of the
junction the situation is reversed: holes moving from the p-type to
the n-type side of the junction see a larger potential and its current is
decrease do I, 0e ¢ while holes moving from the n-type toward the
p-type side of the junction have essentially the same current I, o. In
this case the net current is simply

I, = I o(1 — e PY). (8.52)

This is called the reverse current. Thus, at zero temperature (8 — 00)
one sees Iy — oo while I, = I o. This implies, that for positive voltages
the current through the junction is very high while for negative voltages
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the current is essentially the equilibrium current. Because of this highly
non-linear behavior of the current in regards to the sign of the voltage
this device is called a rectifier.
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8.4 Problems
1. Calculate N .(T') in (8.9) explicitly.
2. Show (8.29), (8.30) and (8.31).

3. Solve (8.39) explicitly and show that (8.46), (8.47) and (8.48) are
indeed correct.

4. Consider a potential barrier between two metals 1 and 2. The
potential profile of the barrier can be written as

V() = 0@)0(a—a) |Vi + (Vo= Vi) (8.53)

where ¢ is the thickness of the barrier and V; > V5. In the absence
of any applied external potential the electric current flowing from
left to right, I,_,, = Iy, is cqual but oppositc to the current
flowing from right to left (I,,; = —Ij) because the two sides of
the junction arc in cquilibrium, that is, 1o + Io_,; = 0.

() Make a plot of the potential as a function of z.

(#9) If a potential V > 0 is applied to the left side of the junction,
what is the net current flowing in the system, that is, what is the
value of [ = I_,9 + 15417

(#i2) If a negative potential —V < 0 is applied to the left side of
the junction what is the net current in the system?

(iv) Make a schematic plot of the current versus the voltage V at
a finite temperature 7. Can you use this device as a rectifier?



Chapter 9

Electron-phonon interactions

So far we have studied the problem of non-interacting systems such as
free phonons and free electrons. In this chapter we are going to start
the study of interacting systems and its relevance for condensed matter.
It is very useful, however, to introduce a new language for the problem
which will allow us to explore the physics of these systems. This new
language is usually called ”second quantization” and allows us to work
directly with operators that act on states with well defined occupation
number for one-particle states. In the next two sections we are going
to discuss this new representation in detail for bosons and fermions,
respectively. We are going to see that this new representation makes
our life much easier when one needs to calculate physical quantities of
experimental relevance.

9.1 Boson operators

As you know from the harmonic oscillator and the phonon problem dis-
cussed previously, it is possible to define creation, bI, and annihilation,
b;, operators which create and destroy bosons in a quantum state |i)
with occupation n; = 0,1,2,...,00. These operators commute among
themselves

b, 0]] = 6
[bi,b;] = 0 (9.1)

209
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and when applied to a state with a well defined occupation |n;) give

biln;) = +/niln; — 1)
bilngy = i+ 1ln;+1) (9.2)

which implies
bibsn) = nilng) (9.3)

and for obvious reasons the N; = b}L b; is called the number operator. A
many-body state of bosons can be described in terms of the occupation
of each state |i) with i =0,...,00 as
\no (pt\n1 (ptyn2
ing, 1, 1o, .y = L0 (O™ ()™ (9.4)

where |0) is the vacuum state with no bosons. The Hilbert space of all
states which can be represented in this way is called Fock space.

A simple example is a problem of free bosons inside of a box of
volume L% (you can convince yourself that this is actually the case of
phonons). In this case the eigenstates of the problem are plane waves

bo(r) = 7™ (95)

where, due to periodic boundary conditions we have,

27N,
Pa = I

(9.6)

with o = z,y, 2. Thus the many-body state can be constructed from
operators b, in the way described before by giving an occupation np
to each state. We can invert this picture to real space by defining the
operator

1 .
Uir) = a2 e TThy (9-7)

which annihilates bosons in a superposition of momentum states with
amplitude e~7T/+/L% which is just the amplitude of having a parti-
cle annihilated at position r. Since a superposition of plane waves is
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an envelope function in real space 1 (r) actually destroys a particle at
position r. Similarly we can define the creation operator of a particle
at position r as 1f(r). Another way to understand the physical mean-
ing of 1f(r) comes from usual space representation of a state in Dirac
notation, namely, |r). In this representation we define the operation

[r) = ¢1(r)[0) (9-8)

that is, the operator v'(r) creates the state |r). This allows us to
change representations using closure relations. By definition the state
|i) is created by acting with b on the vacuum

i) = bl]0) (9.9)
where |i) forms a complete set, that is,
Z |iY(i| = 1. (9.10)
Using the closure relation above, (9.8) and (9.9) we find
Py = > li)ilr)
— YGiilo) (9.11)
and since the vacuum is unique we have

Wi(r) = 3(in)e]. (9.12)

Obscrve now that (ir) is nothing but the complex conjugate of the
projection of the state |i) into the space representation, that is, the
single-particle wavefunction ¢;(r). Thus,

OEDIAQLE (9.13)

This result is the generalization of (9.7) to any quantum state |7). Thus,
we can always expand an operator in a complete basis of single-particle
states. Observe that the wavefunction is a coefficient of the expansion.
For this reason this process is called second quantization.
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The commutation rules of these new operators defined in real space
can be obtained immediately from (9.1),

[¢(0), v'(")] = % S e e bt = 6 — )

(i), ¢i@)] = o (9.14)

Thus we can represent the many-body state of N bosons in real
space as

1
v, 19, ...y TN) = mwT(rN)...wT(rz)wT(rl)|O) . (9.15)

Observe that because of the commutation rule (9.14) we have the fol-
lowing identity

|I'1,I'2,...,I'N> = |I'2,I'1,...,I'N> (916)

which implies that if we exchange two bosons the wavefunction does
not change sign. Furthermore,

¢T(r)|r17 Iy, ..., I'N> =V N + ].|I'1, Iy, ....,Tn, I'> (917)

so that adding a particle produces the state with the correct symmetry.
We further notice that for a single particle one can recover the usual
one-particle picture quite easily. Since f(r) creates a particle at po-
sition r the wavefunction of the particle can be obtained by (look at

(9.8))

@lI(x)0) = ¢"(r)
Ofg(r)g) = ¢(r) (9.18)

where ¢(r) is the usual wavefunction of the particle.

9.2 Fermion operators

Let us now go back to the problem of isolated atoms and ask if we
can define creation and annihilation operators for fermions and what



9.2. FERMION OPERATORS 213

properties these operators should have. For the moment being we are
going to consider the problem without spin. Consider a single state of
an atom which by the Pauli principle can only be unoccupied |0) or
occupied by a single electron |1) (which is the case we studied for the
formation of the Hy molecule). We define the creation and annihilation
operators for fermions in the most intuitive way,

clo) = 0
cft) = 10)
oy = 1)
) = 0. (9.19)

The condition cf|1) = 0 is the Pauli principle, that is, we cannot put
two electrons in the same quantum state. Moreover, from (9.19) we can
prove that

(cct +cle)j0) = |0)

(cct +cle))1) = 1)
Al =cl0) = 0
D20y = ¢f[1) = 0. (9.20)

Since the states |0) and |1) generate the whole Hilbert space of the
problem we can immediately write

ccl +cle={c, ) =
{e,c} ={cl,cf} = 0 (9.21)

which are valid for all states of the problem. Observe that instead of
commuting with each other we say that the electrons anli-commule.
As for the case of the bosons we can define a number operator

N =cle (9.22)
which has the required properties

N|0) = cfe|oy=0
N1y = clef1)y = oy =[1). (9.23)
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Thus we can define the state by its occupation, |N), as in the case of
bosons.

Let us now consider the situation where we have two states with
occupation Ny and /N7 and the states can be labeled by their occupation,
that is, | Ng, N1). In this case we have four different states in the Hilbert
space, namely, |0,0), |1,0), |0,1) and |1,1). We now define the creation
and annihilation operators exactly as before, say ¢; and ¢;. We define
in analogy with the single level case,

¢|0,0) = 0

¢|1,0) = 0,0)

chl0,0) = [1,0)

ch|1,00 = o

0,00 = 0

¢10,1) = |0,0)

0,0y = 10,1)

clo,1) = o. (9.24)

Observe that we have not defined how the operators behave when we
apply them to a state which is already occupied, say, ¢o|l,1). The
reason is that we need to build into the operator language the correct
symmetry of the problem, that is, the Pauli principle: the wavefunction
has to be anti-symmetric when we exchange two electrons. Suppose we
want to exchange two particles in the state |1,1). We have to perform
the following operations: (i) we destroy, say, the particle in the state 1,

ci|1,1)y = |1,0) (9.25)
which defines the way ¢; acts on this state; (44) we destroy a particle in
the state 0 following (9.24): ¢o|1,0) = |0,0); (44) we create a particle
in state 1 again using (9.24): ¢!]0,0) = [0,1); (@) and finally put a
particle on state 0, that is, c$|0, 1). This series of operations can be
written as

cheleoer|1,1) = ¢f]0,1) (9.26)
which by Pauli’s principle must have the opposite sign of the state |1, 1).

Observe that this is possible if we impose the condition

cleo = —eoel (9.27)
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and use the number operators Ny = cgco and N; = c]{cl as

NoN¢|1,1) = |1,1). (9.28)
Thus we have,

chlo,1) = —1,1). (9.29)

By the same token we can show that

(%|17 1> = CO|07 ]-> =0

clL0) = [1,1)
C1ll|171> = Cl|170>:O

The last equation requires that
C1Cy = —CpCq - (931)

From these considerations we see that the correct way to express the
Pauli principle with creation and annihilation operators for different
states is by imposing anti-commutation relations

{encl} = &y
{eie;} = {cl,cf}=0. (9.32)
It is clear from the argument given above that the procedure can
be extended to as many states as we wish. In this case the many-body
state represented by electron occupation ng, ny, ng, ... with n; = 0,1 can
be written as

Ing, ni, na, ...y = (ch)™ ()™ (). |0) (9.33)

with the anti-commutation rules given in (9.32). Observe that the total
number of particles in this state is well defined and it is an eigenstate
of the operator

N=Yde. (9.34)
=0
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9.2.1 Free electrons in a box

Consider now, as in the case of bosons, the problem of free clectrons
in a box of volume L¢. Again the one-body eigenstates are plane waves
and the momentum p and the spin ¢ =1,] which are the quantum
numbers of the problem. The operator that annihilates an electron in
real space at position r and spin ¢ are written as

1 —ip-r
Uolt) = T 2 e e (9.35)
14

Using (9.32) it is simple to show that

{¢(0), L)} = 8(r —1))050
{¢(r)7 ¢a’ (rl)} =0 (936)
and the many-body state of N electrons is written as

101312, 025 Ea ) = st o)l (1), (1)10) (937

in complete analogy with the boson many-body state. Moreover, from
the anti-commutation rules we obtain immediately

|v1,00;T0, 003 ..; TN, ON) = —|To, 09} 11,01, ..., TN, ON) (9.38)

in accordance with Pauli’s principle.

We can represent any operator in terms of creation and annihilation
operators. Consider, for instance, number operator given in (9.34).
Using (9.35) we can write

1 ip-T
o = Tar / dre™ i), (r) (9.39)
and from (9.34) one gets,

N = Z CL,O'Cpia'
p,o

= ¥ [dirul ), (9.40)
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which allows us to define the density operator

N

p(r) = Z 5(r —r;) Z I (), (r (9.41)

since N = [ d%p(r). The kinetic energy, K, of the electrons can also be
obtained in the new operator language if we recall for each momentum
p the kinetic energy is simply h*p?/(2m) and therefore one just has to
count how many electrons with momentum p there are, that is,

h*p
K=Y - el e - (9.42)
Using the identity (9.39) one can rewrite the kinetic energy as

= ;/ d'ryl(r) ( ﬁQV?) Yo(r) (9.43)

Other operators like the current operator,

h
3(1) = =5 (V3 O)Vebs ) = (VL) (1) (9.44)
and the spin operator at position r

I') = Z] ¢l (r)sa,a’¢a’ (I‘) (9.45)

where S, = ho,/2 with a = 2, y, z are written in terms of Pauli matri-
ces 0,, can be easily written in this new language.

9.2.2 Free electrons in a lattice

So far we have discussed the problem of free electrons in a box. We
could, however, use any other basis of functions which is useful. For
instance, in systems where the electrons are confined to be very close
to the atoms (such as in the tight-binding approximation) we could use
the atomic orbitals instead of the plane waves since the atomic quantum
numbers describe better the physical situation. For simplicity let us go
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back to the Hy molecule problem discussed in Chapter 1. In the second
quantized language we have the states |1) and |2) which correspond to
a state of the electron localized on atom 1 or atom 2, respectively. In
terms of our new language the state of the whole system is given by
|n1, no) where n; with i = 1, 2 gives the occupation of each atom. Acting
on these states we have creation, c} , and annihilation, ¢;, operators that
obey the anti-commutation rules (9.32). The Hamiltonian of the system
is given by (1.44) and (1.46). Observe that the states of the electron
can be described in terms of the creation and annihilation operators as
in (9.24). Thus, in our new language, the Hamiltonian is easily seen to

be
H = E, (c]{cl + 0502) —t (c]{cQ + cgcl) . (9.46)

Observe that the tunneling term makes the Hamiltonian non-diagonal.
In order to diagonalize this Hamiltonian we define, in analogy with
(1.56), the anti-bonding and bonding operators,

1
ca = ﬁ(cl—@)

1
cg = —la+c 9.47
B \/5( 1 2) ( )
which obey the anti-commutation rules. In terms of this new operators
the Hamiltonian (9.46) becomes

H = (Ey +t)cliea + (Ey — t)chep (9.48)

as cxpected. Observe that the state of the system is now given by
|n4,np) and the ground state is simply [0, 1) in this new basis.

The molecule problem just described can be casily generalized to
the case of the solid. Here we assume that the electrons to be in the
tight binding approximation and only one atomic orbital A is involved.
In complete analogy to the physics discussed at the end of Chapter 5
we only allow the electrons to hop between its nearest neighbor atoms.
Let R; be the atom site in a static lattice and ¢; , the electron operator
that destroys an electron in a certain orbital at site ¢ with spin ¢. The
Hamiltonian of the system as

H=E,) c}:aci,a =7 (c}:acj,a + c;-,aci,a) (9.49)

4,0 <4,j>,0
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where < 4,7 > means that sites 7 and j must be nearest neighbor
sites. The problem imposed by (9.49) can be easily solved by Fourier
transforming the electron operator
1 ipR;
Coo = ——= > €P e, 9.50
P \/N ; 7 ( )
observe that by the translation symmetry the momentum p is defined
only in the first Brillouin zone. For simplicity we will assume a cubic
lattice. You can easily show that in this case the Hamiltonian (9.49)
can be written in terms of the operators in (9.50) as

=Y B o, (9.51)

o1

with E) given in (5.76).

9.3 Electron-phonon interaction

After all this math let us go back to the physical problem on how to
treat the problem of lattice vibrations coupled to the electrons. Again
we arc using the Born-Oppenheimer approximation. The basic Hamil-
tonian can be split into, H = H, + H, + H,_, where H, involves clec-
trons only; H, is given by (4.44) and H,_, is the Coulomb interaction
between electrons and the ions

He—p = Z ‘/e—i(re,n - ri,m) (952)

where r., is the position of the nt" electrons and r;m the position of
the m'* ion. As previously we are going to assume that the departures
of the ions from their equilibrium positions are very small so, as in
Chapter 4, we write r; ,, = R,,, +u,,, and expand the interaction (9.52)
to leading order in the deviations u. Observe that to zeroth order in u
we have only 3=, ,, Ve_i(re — Ri;n) which is the potential of the static
periodic lattice which can be readily incorporated into the electron part
H, which in this case is given by (9.51). The fluctuation part of interest
is,

5Hefp ~ — Z u,, - VVe,i(re,n — Rz,m) . (953)

n,m
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If we Fourier transform the potential V,_; to momentum space

Vorle) = 3 SV () (9:54)
cquation (9.53) becomes
SH, , =~ Z e PTenePRuy, (p)p-u,. (9.55)
N wmp
Observe, however, that,
; e~ = p(p) (9.56)

where

/ddr Z 5(r — Ten)e = /ddrp (9.57)

is the Fourier transform of the clectronic density operator. Morcover,
from (4.43), one has

. . h
; PR u, = ; ex ; e—Z(k—p).Rm m (ak -+ CLT_k)

Nh
.l.
= e —(a +a' . (9.58

Using (9.56) and shifting the sum over the momentum we rewrite the
electron-phonon interaction as

0Hep Ld/z > V(p+G)op+G) (ap+aly) (9.59)
p,G
where
V(p)=i "y, (P)p - (9.60)
2psw(p) © " P '

and p, = NM/L? is the mass density of the lattice. Now you could be
asking why we have to go through all this math in order to get (9.59).
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The answer is very simple if we go one step further and consider to
rewrite the density operator in momentum eigenstates: using (9.41)
and (9.35) we have

o) = Sl () = - e e,

p.k

1 iq-r
- E Z e)q Z CL‘HLUCP,U (96]‘)
qa 1Y

where in the last line we have change variables to q = k—p. Comparing
(9.61) with (9.57) one has

pla) = ZCTp—&-q,UCP,U : (9.62)
p,o

Thus the Hamiltonian, written in terms of creation and annihilation
operators for electrons and phonons, becomes

1 .
6H, , =~ Tai o Vip+ G)Clt+p+c;,ack,a (ap + atp) . (9.63)
p,G,k,(f

Let us consider first the case when V,_; = 0 which is well-known to
us: the ground state of the problem has the electrons form a Fermi sea
with ground state energy, Ey and Fermi momentum kpr which depends
on the density as discussed in Chapter 5 and there are no phonons
(since we are talking about zero temperature). Let us label this state by
|F'S). Observe that the perturbation has actually two different types of

operators (consider only the case where G = 0), namely, ¢l +p ok, Op

i t ~ ~
and ¢, ko0 p. In the first case a phonon with momentum p is

destroyed, an electron state with momentum k is destroyed and an
electron state with momentum k + p is created. There is a simple way
to represent this process graphically as in Fig.9.1 (a). Let us represent
the momentum of the electron by a continuous line and the momentum
of the phonon by a dashed line. Physically the process is one in which
an electron absorbs a phonon and it is scattered to a new momentum
state. In the second process an electron of momentum k emits a phonon
of momentum —p and is scattered to a new momentum state k + p
as shown in Fig.9.1 (b). The diagrams which are shown in Fig.9.1 are
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Figure 9.1: Scattering process: (a) phonon absorption; (b) phonon cre-
ation.

known as Feynman diagrams and they are very useful since they allow a
clear representation of the physical process of scattering. Furthermore,
they allow us to rewrite perturbation theory in very simple terms.

9.3.1 The optical case

An important type of coupling is the one between optical phonons with
clectrons. In the casc of ionic crystals or polar semi-conductors the
optical phonons produce a dipolar ficld when it oscillates. This dipolar
ficld polarizes the clectrons and leads to the coupling discussed here. To
be more specific consider the displacement vector, D, which is written
in terms of the electric field, E, and polarization vector, P, as

D=E+47P. (9.64)
In the absence of free charges Maxwell’s equations tell us that

V-D=0 (9.65)
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which, when Fourier transformed together with (9.64), leads to

> p- (Ep+47P,) = 0. (9.66)

At long wavelengths (G = 0) and for longitudinal phonons both the
electric field and the polarization field are parallel to p and we must
have from (9.66) that

E, = —47P,. (9.67)

Observe now that the electric field will create a potential due to the
electric dipole term which is simply given by

E(r)=-V¢(r) = =i pe® . (9.68)

¢(r) is the potential felt by the clectrons duce to the phonons. Compar-
ing (9.67) with (9.68) we obtain

ipop = 4TP, (9.69)

which allows us to compute the potential once the polarization is known.
Since the displacement of the ions create a dipole field one must
also have

P, = keu, = keeyqp - (9.70)

where & is a real constant and ¢, is the phonon displacement given in
(4.24). Using e, = ip/|p| (since e}, = e ), together with (9.69) and
(9.70) we find

Amek

d’p = W‘]p (9.71)

or, in terms of the boson creation and annihilation operators, we find

drek . h
_ E : ipr t
o = > [Pl < V 2 Léwy <ap " a,p) ' (6-72)
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Thus, the energy associated with this term is simply

H., = > ed(rep) :/ddrp(r)edJ(r)

= % > ﬁp(p) (ap + aT—p) (9.73)

h
a = 4dne’ky o (9.74)

is the electron-phonon coupling constant. Observe that this result could
be obtained from (9.60) with V. ,(p) oc 1/p® which is the case of the
Coulomb potential in three dimensions. Substituting (9.62) into (9.73)
and rewriting the whole Hamiltonian of the electron phonon problem
we have

where

= Y Bk o0+ Z hwoal ap
k,o

+ Ld/Q Z ck+p »C o (ap + aT_p) (9.75)
p.k,o
which has the form described in (9.63).

Let us consider the effect of the phonons on the electron ground
state in perturbation theory, that is, we write H = H, + H,_, where
H is the free electron-phonon problem and treat H, , as a pertur-
bation. The ground state of Hy, as we said before, is a filled Fermi
sea and no phonons are present. In first order we have (F'S|H,_,|FS)
which vanishes since the perturbation does not conserve the number of
phonons and therefore cannot have a finite expectation value. We have
to rely on second order perturbation theory. For each value of k the
shift in the energy is given by

2
o5 - - L0 016
n#0 E

where Hy|n) = E2|n). Since H._, has one creation and one annihilation
operator the excited states that participate in the sum (9.76) must
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have at least one excited phonon. Moreover, since a,|0) = 0 because
the ground state has no phonons we are left with af,|0) = | — p).
Moreover, by applying the operator CL +poCk,o 1O the ground state of
the electron system we create a particle-hole pair exactly as in Fig.6.3.
Thus we have to ensure that k| < kr and |p + k| > kr in order to
get a finite result. Observe that the cnergy of such excited state is
E, = E} — Ex + Ex.p + hwo. Thus, for each value of k one can write,

1 ©(kr — k|)O(p + k| — krF)
Ek+p—Ek+hCUO

SEy = —2— Z (9.77)

and the total energy is, of course, given by 0E, = > d Ey (the factor
of 2 comes from the two spin projections).

9.3.2 The polaron problem

Instead of evaluating the change in the cnergy for any valuc of kp we
are going to look at the case where there is just only one electron in the
system. This is the so-called polaron problem. Of course this is only
possible is the electron density is very low and kr — 0. In this case one
does not have to worry about the step functions in (9.77). The ground
state, of course, has one electron at the bottom of the band with energy
E, = h®k?/(2m). We will consider the three dimensional case (d = 3).
Transforming the sums into integrals we have

dmae? ¢ dPp 1 1
$B = ——% / il ~
h @2r)3p?(p+k)?2—k%2+ F;
Ama’ 1
— d'sin 6 / d
(27r 252 / sin pp + 2pk cos 6 + P¢

. dmao? / /+00 1
B 27r 2h p + 2pku + P¢

4m +o0 1
= —————— [ d / d 9.78
(27r)2h2P0 /—1 " Jo Y1y 2(k/Py)xu (978)
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where Py = y/2mwy/h. Since at low energies the momentum of the
electron is small we perform an expansion in terms of k/P,. We rewrite

2

dma? oo 1 1 8 5 o T
6B, =~ —7/0 dm[l du( + g(k/Po) u 7>

(27)2h Py 22 +1 (1+22)3
_ _7(;7;22130 (7r+ %(k/P0)2> . (9.79)

Observe, therefore, that the total electron energy to second order in
perturbation theory can be written as

h2k2
E. ~ —F, 9.80
k o+ 2 ( )
where
2
mo
By = 5y
21h PO
* 2mE0

So we sce that up to sccond order in perturbation theory the clectron-
phonon interaction only changes the mass of the clectron and replaces
it by an effective mass m*. This is a result of the dragging of the lattice
due to the electron motion.

9.3.3 The acoustic case

In many cases of interest we neglect all the reciprocal lattice vectors in
(9.59) except G = 0. This is the long wavelength limit of the theory
since the G # 0 represent short wavelengths. For acoustic phonons
the polarization vector at long wavelengths is in the direction of the
propagation of the wave, that is, e, = ip/|p|. Morcover, in most solids
the interactions between the ions and the electrons is very short ranged
(since the electrons essentially feel only the atomic interaction). In this
case we can replace V,_;(p) = D by a constant. The electron-acoustic
phonon interaction reduces to

h

p~=D —
5He D ; 2psdep

plo(p) (a(p) +al(-p)) . (9.82)
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Another elegant way to re-express this part of the Hamiltonian is to
use (9.41), (4.85) and (4.43) and write

0H, , =~

D d d, ! ' ’
Vs ;/d T/d r'K(r — o)yl (x)y,(r)p(x’)  (9.83)

where 7, = N/V is the lattice density. From now on we fix i, = 1 for
simplicity of notation. The kernel is given by

v 1 ip-r
K@) = 1 ¥ ple” (9.89)
P

The form of the kernel depends strongly on the dimensionality.

9.3.4 Solitons in one dimension

Consider the one-dimensional system, for instance. In this case the
polarization vector is just 1 and from (9.60) we have

K@) = if s =go | Sre
dd(x)

- (9.85)

Substituting the kernel into (9.83) and doing integration by parts one
finds

SH,_, ~ \/I:TS > [ dwit @y (@) ag;x) . (9.86)

Observe that in this new formulation the electron-phonon problem
is described by the Hamiltonian
B2 & 2 p, (06\°
# o= 5 it (-2 s | oy (00
; dxypl (x) ( 5 (%2) Vo(x)+ [ dx o + 5 (836
9¢(x)

+ DY / Aol (b ()5 2 (9.87)
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Let us study the equations of motion for this Hamiltonian in the Heisen-
berg representation. You can easily show that the equations of motion
are

S Oo(t) | 1® Py (a1 06()
o am o W"(m)—r
o 2
Tl 00— 25D (sho o)) 059

Now observe that although we are dealing with equations of motion
for operators we can project these equations into single particle states
(since we are dealing with the problem of a single electron) as in (9.18).
In this case instead of the adjoint of operators we are going to have
the complex conjugate of the functions. Observe that the equation of
motion for the phonon field has the form of a relativistic wave equation
with a light velocity c¢;. As we know from classical mechanics this
equation has a traveling wave solution, that is, can be written as

(f)(.’II, t) = d’(T + Cst) . (989)

In order to explore this type of solution we change variables to x =
x — ¢,t. Moreover, we are interested in the stationary states of the
electron and therefore we look for a solution of the type

Y(x,1) = ol — cgt)er 0o Fod) (9.90)

where 1y is assumed to be real and v and Ej are the velocity and energy
of the electron. In terms of the new variables (9.88) becomes

2 12
g T D800 = (B - T2 ) vt

__ D
iy = @ =y o) (9.91)

where we have integrated the second equation in (9.88) once. Observe
that the first of these equations is very similar to the Schrodinger equa-
tion for a particle moving under the influence of a potential given by

dg

p%®
V=D

(9.92)
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but the second equation allows to rewrite this potential as

V= D* P2 (9.93)
ps(c2 —v2) 77 '

which shows that the potential itself depends on the wave-function. We
say that the potential is determined in a self-consistent way. Observe
that this potential is attractive if v < ¢, and repulsive if v > ¢;. A very
unusual situation since in non-interacting systems a situation like this
one never occurs. Substituting the second equation of (9.91) into the
first one finds

K2 d2q D?
2m dx?*  ps(c2 —v?)

W) = (Eo - @> wolx)  (9.94)

which is the so-called non-linear Schrodinger equalion which appears
in many different fields of physics. You can show that the solution for
this equation reads

ol(x) = gsech (%) (9.95)
where
m D\’
0= it (o) 40
and

mv?  Rlg?
Ey=—— .
2 8m
Observe that this solution cxists only for v < ¢, and is unstable other-

wise. In this case the potential felt by the electron is given by (9.93)
and (9.95) as

(9.97)

2

Rg” o (9X
V= —msech (7> . (9.98)
Physically what is happening is that the electron is deforming the lattice
around it creating a phonon cloud. This phonon cloud responds to
the electron by creating a trapping potential which is given by (9.98).
In this way, electron and phonon-distortion move together as a single
object called a soliton. This situation is depicted on Fig.9.2.
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-10 -5
-0l2
0.

Figure 9.2: Polaron formation: electron is trapped in the self-consistent

potential created by the phonons.
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9.3.5 Retarded Interactions

We have scen that in the limit of empty band the main cffect of the
phonons on the electrons is a change in the electron mass. In a sys-
tem with finite density this is no longer true. The reason being that
phonons, like photons (which produce the Coulomb interaction), can
induce interactions among the electrons. Phonons, however, are scalar
fields while photons are vector fields. But besides this difference, from
the point of view of the electrons, they have very similar effect. Here
we are going to consider the dynamical problem of electrons interact-
ing with phonons. So let us go back to the original electron-phonon
Hamiltonian (9.63) in the long wavelength limit (G = 0) together with
the free theory,

H = > EkCLng,a +>° ﬁwpaLap
k,o P

T SV (p) (2 + ol) (o) (9.99)

In the Heisenberg representation the equation of motion for the phonon
operators can be easily obtained
L da
d—tp = [apa H ]
1 - *
fiwpap + Wv (P)'(p) (9.100)
where we have used that V(—p) = V*(p) and

p(—p) = d o= chewsp = p'(p) (9.101)
k,o k,o

a similar equation can be obtained for aL Equation (9.100) has the
form of the equation for a forced harmonic oscillator and the solution
is trivial
; t
_ —iwp(t—to) _ Y« 't N —iwp (t—t")

ap(1) = ap (t0)e™ > 7 — V() [ ol (p, ) Y0.102)
where t; is some arbitrary time. We are going to assume that the in-
teraction between the electrons and phonons is switched on very slowly
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(that is, adiabaticly) so that in the infinitely distant past the interac-
tion is off and one has the non-interaction problem. In this case one
can pick to = —oo. Observe that in this case the first term in left hand
side of (9.102) is strongly oscillating and can be neglected. The second
term, however, has the electronic density on it and can produce some
new effect.

If we substitute (9.102) into (9.99) we see that the Hamiltonian of
the problem gets an extra piece which reads

Hepa =377 SV [t o, p(m, 1) sin (e — ))(9.103

Observe that this extra term only carries electronic degrees of freedom
and moreover, it is retarded. The physical meaning should be clear
by now: the phonons generate a retarded density-density interaction
between the electrons. This is exactly what photons do indeed. The
only difference is that for photons we can choose the Coulomb gauge
where the interaction is instantaneous. But if instead one decides to use
the Lorentz gauge one would generate an interaction which very much
looks like (9.103). Moreover, the Hamiltonian is a conserved quantity
and therefore can be defined at any time ¢ from now on we pick ¢t = 0.
It is convenient to rewrite the problem in terms of Fourier components,
that is, we define

oot = [ () (9.104)
and usc the identity
/ gt = (9.105)
—o0 Q) — e

where € — 0. In this case (9.103) can be written as

Ao [’ ~ V(D) Pp/(BLY) 4
_ 3 1
Hemtra, / or | or S (w, _ i6)2 _ w}g} p (pa W )p(pa w) (9 06)

The problem is not solved yet because we do not know what the elec-
trons are doing. It could be very well that in (9.103) averages to zero.
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In order to understand what is going on one needs to look at the elec-
tronic problem as well. In order to do that we are going to assume that
the Fermi energy Er of the electrons is much larger than any phonon
energy (like the Debye energy, for instance) in this case the electron
operator obeys the equation

de,a
dt

ih = [Ck,g, H] = Ekck,a' (9107)

since the corrections to this equation are of order V/Ep. Thus we write

o () & O o (0)e™ it (9.108)
and therefore
p(p.t) = Y iy (0)ci,q (0)e Prrp =Pt (9.109)
k,o

Thus we get from (9.104),

pp,w) =~ Y cLLp,a(O)ck,a(O) 270 (Exip — BEx — w) (9.110)
k,o

and finally in (9.106)

IV (p)Pwp/(BLY) .
(Bx+p — Ek)2 — 2 Jeo Ot pio el ot O 0!
P

H extra —

p.k X 0,0’

(9.111)

which is the final result. Observe that the interaction appears in terms
of four fermion operators. The reason for that is simple to understand in
terms of the Feynman diagrams we used before. The process described
in (9.111) is one in which two electrons, one with momentum k' and
another with momentum k + p, are destroyed and two other electrons
with momentum Kk’ + p and k are created. This is a scattering process
where a momentum p is transferred between electrons. It is depicted
on Fig.9.3.

The important point about the process described by Hamiltonian
(9.111) is the fact that if |Fy , — Fx| < wp it has a negative sign which
implies attraction. Consider the case of optical phonons, for instance,
where wp = wp. In this case electrons states sufficiently close to the
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Figure 9.3: Scattering process mediated by phonons.

Fermi surface can feel an attraction between them. The constraint
is that Ep — hwy < Eyxip, Fx < Ep + hwy which implies that there
is a region of thickness of size 2hwy around the Fermi surface where
the electrons attract each other due to the interaction with phonons
(see Fig.9.4). For acoustic phonons we just replace wy by the Debye
frequency wp but the result is essentially the same.

The physical reason for which the attraction appear can be traced
back to the basic physics of the problem: as the electron moves it
attracts the ions in the lattice. The lattice is an elastic medium which
can propagate this information and therefore other electrons, which will
also attracted by the lattice, will feel this information as if the electrons
were attracting each other as depicted on Fig.9.5. The net effect is the
attraction between electrons.
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Figure 9.4: Region of attraction around the Fermi surface due to the
electron-phonon coupling.
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Figure 9.5: Physical coupling between phonons due to the lattice.

9.3.6 Cooper pairs

Although phonons can indeed induce attractive interactions among the
electrons one has to remember that the electrons interact directly via
the Coulomb repulsion. Thus the total interaction can be either at-
tractive or repulsive, depending on the net interaction between the
electrons. The possibility of having electrons attracting each other is
quite “attractive” and we are going to explore this situation here. Sup-
pose we have two electrons close enough to the Fermi surface such as
they attract each other (as in Fig.9.4). The only role played by the
other electrons in the system will be via the exclusion principle. In this
case we are back to the problem of two particles with central attractive
forces (exactly like in a H atom). We can therefore just do the simplest
calculation which is to solve the problem in the center of mass of the
system which we suppose to be at rest (so that the two electrons have
opposite momentum). In this frame the problem reduces to the solution
of the Schrodinger equation for the wavefunction of the pair, which we,
call ¢(r) where r is the relative coordinate between the electrons. The
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Hamiltonian of the problem is simply

p2

_Pi+p p’
m

2m

H

+V(r)==—+V(r) (9.112)

where p is the relative momentum of the pair and V(r) is the attrac-
tive interaction given in (9.111). In momentum space the Schrédinger
equation becomes

(5B )vo+ LEVE-1s0) =0 @3)

We will assume that the interaction is attractive and cxists only when
the clectron is inside of the shell in Fig.9.4. Since k and k’ arc very close
to krp we will assume that the matrix clement is cssentially constant
close to the Fermi surface, that is,

Vik—K) = —VpO(wo — |Ep]) - (9.114)

In this case the solution of (9.113) reads

P(k) = 5 7 (9.115)
where
Vi
K= L—‘; g O(wo — |Ew )0 (K') . (9.116)

Substituting (9.115) into (9.115) we find

. % @(LL)() — |Ek’|)

which is the equation for Fy. Using the density of states p(e) = > 6(e—
k%/m)/L% the (9.117) becomes

2(Fp+hwo)
1= Vo/ ) e PLE) (9.118)
2Ep e— Iy
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We will also assume that the density of states is constant over the
interval of integration we have

Q(EF -+ th) — EO
1= Er)l A1
Vip(r) n (25 L (0.119)
which can be easily solved
2h
Ey = 2Ep + o (9.120)

1 — er@EMWo

and this is the binding energy of the two electrons. Observe that when
the attraction is turned off V[ — 0 one obtains the expected result, that
is 2Er, which is energy of two electrons at the Fermi surface. Observe
however that when V; # 0 we have Fy < E, that is, the energy of
the system is lowered by the formation of a bound state. What this
implics is that the Fermi surface is unstable with attractive interactions
since the clectrons will lower the energy of the system by forming pairs.
The binding energy of these pairs is simply

o
A=92Fp—Ey=— 0 (9.121)

erEr)Vo — 1

which is a non-analytic expression in terms of the interaction and there-
fore cannot be obtained in perturbation theory (which always gives a
power scrics cxpansion). These pairs are called Cooper pairs. Cooper
pairs are the heart of a phenomena called superconductivity where pairs
condense to form a macroscopic quantum state in clear violation of
Pauli’s principle. The reason for that is that Cooper pairs, being formed
of two fermions, behave very much like free bosons and therefore can
Bose-Einstein condense. This is a completely new state of matter.
Observe, moreover, that the formation of Cooper pairs only requires
an net attractive interaction between electrons and therefore does not
care very much about the mechanism for the attraction. The electron-
phonon interaction is only one of many mechanisms that can make the
electron-electron interaction attractive. More on this in the future...
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9.4 Problems

1.

Using the orthogonality and closure of the states |i) and the cre-
ation operator in real space defined in (9.12) show that the oper-
ators ¥(r) and ¥Uf(r) obey bosonic commutation relations.

. Show that for fermion operators we have

Cslno, My, Mo,y ) = (=1)%/nglng, i, g — 1,0

(_1)53 Vv nS + 1|n07 n17 ---ns "‘JF 1, ...>

c‘; |10, 71, N,y -
where

Sszn1+n2+...+n3_1.

Show that for fermion operators

h
S:r) = 5 (i) — D[R ))
h
Sor) = 5 (¥l@)gu(r) + 9l(r)e(r)
and using the anti-commutation rules between electrons show that

[Sz(r), S, (x))] = ihd(r — 1')S.(r). (9.122)

Show that (9.47) obeys the anti-commutation relations and prove
that (9.48) is indeed correct. Write down all the states of the
system from the new basis in terms of the old basis.

Using (9.50) prove that (9.51) is indeed correct.

. Prove (9.79).

Expand (9.78) to all orders in &/ Py and calculate the exactly value
of the integral. What happens when k£ becomes large? What is
the physical meaning of your result?

Prove (9.88).
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10.

11.

12.

13.

14.
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Show that (9.95) is a solution of (9.94) by direct substitution.

(7) Find the displacement field profile, ¢(x), for the static polaron
(v = 0) by solving (9.91). What do you conclude about the lattice
distortion around the electron?

(#4) Show that due to translational invariance of the problem the
polaron mass is given by

B +o0 O 2
My = ps/ dx (%> (9.123)

—oo
and calculate the ratio between the bare electron mass m and M,.

(i) In the polaron problem the potential felt by the electron is
given in eq. (9.98). Consider the case where the polaron is at
rest (v = 0) and solve the Schrodinger equation in this case (9.91).
Show that one of the eigenstates is given by (9.95) with eigenen-
ergy given in (9.97). (Hint: The solution can be found in the
book by P. M. Morse and H. Feshbach, Methods of Theorelical
Physics (McGraw-Hill, New York, 1953)).

(#7) Find all the other eigenstates of the problem and their respec-
tive cigencenergics. Show that these states arc scattering states
with finite phasc shift §(k). Give an expression for §(%).

Obtain the time evolution of an for the electron-phonon problem
described by Hamiltonian (9.99).

Prove equation (9.102).

Prove that the Heavyside Theta function can be written as

400 twt
o= [

—co 2TWLW — 1€

and from this result prove (9.105).



Chapter 10

Magnetism

One of the most important problems in condensed matter physics is
the problem of magnetism. Magnetism is a pure quantum mechani-
cal phenomenon since it has its origins on the spin of the electron, its
orbital motion and the Coulomb interaction. Naturally magnetism is
associated with the response of the electrons to a magnetic field. We
have seen a free electron gas we have two main types of response, para-
magnetic when the effect of the magnetic field is only the magnetic
polarization of the medium and diamagnetic when the response of the
medium is against the magnetic field. In isolated atoms in molecules
a similar type of response appears, as we have seen in Chapter 1. It
is however the interaction between different atoms in a solid that leads
to the phenomenon of magnetic ordering that is observed in natural
magnets like iron.

As we have seen in Chapter 1 the magnetic response of isolated
atoms can be summarized in the three Hund’s rules which are phe-
nomenological rules which are based on energetic arguments. In short,
the Hund’s rules make statements about the magnetic ground state of
many electron atoms when the Coulomb energy is minimized. In a
solid, however, the atoms are localized in well defined positions which
are given by the symmetry of the lattice. Because of that the atoms
are subject to electromagnetic fields of other atoms. These are called
crystal fields. We are going to discuss the effect of crystal fields and
the Coulomb interaction among electrons in different atoms lead to the
phenomena of magnetism in solids.

241
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10.0.1 Crystal fields

As we have seen in Chapter 1 the degeneracy of a magnetic atom is lifted
by the internal electron-electron interaction in an isolated atom. More-
over, spin-orbit effects lift the degeneracy even closer. The third Hund’s
rule state that the final degeneracy of an isolated atom with total an-
gular momentum J = L + S is 2J + 1 due to the different projections
of the J, component of .J. The spin-orbit interaction is very important
in 4f-electron systems where the partially filled 4f shells lie deep in-
side of the ion and therefore are screened from the outside charges. In
other systems with 3d- or p-shells the effect of the interaction between
the electrons and other nuclei is very important because these orbitals
arc cxposed to the clectrostatic potential of other atoms in the lattice.
Thus, in the casc of transition metals with d shells the lattice poten-
tials are more important than the than the spin-orbit effects and should
be studied first (that is, Hund’s third rule is not applicable). In this
case the degeneracy of the 2] + 1 states can be lifted by the Coulomb
interaction as we show in Fig.10.1. In some systems the crystal field
interaction is more important than the third Hund’s rule and one has
to take the effect into account first. Observe that in this case the two
first Hund’s rules still apply and therefore we will have a degeneracy
of (25 4+ 1)(2L + 1). Since the electrostatic field of the lattice couples
only to the charge degrees of freedom only the angular momentum de-
grees of freedom will change. If the crystal field is very asymmetric
then the degeneracy of the angular momentum is lifted and as a result
the expectation value of the angular momentum has to vanish, that is,
(L) = 0, even though we still have (L?) = L(L + 1). Consider, for
instance the case of p-orbitals in a free atom. These orbitals can be
written as zf(r), yf(r) and zf(r) where x, y, z refers to the first Legen-
dre polynomial (I = 1) and f(r) is the solution of the radial equation.
In a free atom these orbitals are degenerate. It is easy to show that
these orbitals do not carry well defined angular momentum projection
which are obtained as linear combinations of them: (z + iy)f(r) with
m, = +1, z2f(r) with m, = 0 and (x —iy) f(r) with m, = —1. But since
the orbitals are degenerate it really does not matter how we represent
them. In the presence of an external electric field the energy of the
orbitals is split as in Fig. 10.1. If the electric field is very asymmetric
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one can split the energy of all the states. Consider the case where the
orbital y f(r) has the lower energy. In this case the angular momentum
of this state can be computer immediately

]

1 0 0
(L7) = /dryf(r)—. <aca—y - 1/%> yf(r) (10.1)
but obscrve that

() = ~I?)
() = ~17)
(L*) = —(L*) (10.2)

and therefore (L*) = 0. Where in the first line above we have integrated
by parts and in the second line we used the fact that L? is a hermitian.
From the classical point of view this can be understood as the precession
of the angular momentum in the crystal field such that its magnitude
is fixed but it has zero average. In this case we have (J) = (S) which is
known as quenching of the orbital angular momentum and is observed
in transition metals.

Thus, in 3d electron systems the spin orbit interaction is a pertur-
bation on the crystal field effects. Let us consider this problem more
closely. The spin orbit effect is described by a Hamiltonian (1.26). Let
us consider the case in which an external magnetic field is applied where
we add (1.19) and get

Hp=AL-S+ ugB - (L +2S) (10.3)

which we will consider as a perturbation of the problem in the presence
of a crystal field.Moreover, we are only interested in the spin degrees of
freedom since (J) = (S). Therefore we will do perturbation theory on
the orbital degrees of freedom alone. Let |0) be the ground state of the
problem in a crystal field. Observe that first order perturbation theory
gives

due to the quenching of the orbital angular momentum. Let us consider
now the second order perturbation theory in the absence of the field.
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Figure 10.1: Crystal field effects for a p-orbital.

If |n) is an orbital eigenstate of the system in the presence of crystal
field effects then second order perturbation theory leads to a change in
energy given by

. 2 La|0)?
o, = ey [oIZeSLi0)

n#£0
L4 |0){n| Ly |0)
— )\2 <n| SaS
%Z,, Ey - E, ’
= - Z I‘a,bSaSb (105)
a,b

where

L4|0){n|Ly|0)
E,—E,

Fa,b — )\2 Z <n|

n#0

(10.6)

Observe that in this case the spin-orbit effect induces an interaction
between different components of the spin. This is called single ion
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anisotropy. If you take the principal axis of the crystal as x, y and z
and express the components of I'y 5 as I';, I'y and I, you can show that
(10.5) can be written as

N _S(S3+ D, o)+ (r$+r; ) g
(F _Fw)
+ yf(sﬁ—sj). (10.7)

The first term in (10.7) is just an overall shift of the energy of the
problem. The second term, because it appears as a sum of two I' is
usually more important than the last term which appears with the dif-
ference. For integer S the term with S? splits the energy levels into
doubly degencrate levels with S, = £5,£(S — 1),...,£1 and a non-
degencrate level with S, = 0. For half-odd integer S we will still have
doubly degenerate levels with S, = £S5, £(S — 1), ..., £1/2. The term
proportional to S7 — S o S + 52 induces transitions between states
that have §S, = £2. Thus, for integer S this term will lift the degener-
acy of the degenerate states which can be linked by +2. For instance,
for S = 1 the S, = 0 state is non-degenerate but the S, = +1 will
have its degeneracy lifted by the spin-orbit. For a half-odd integer S
the degeneracy persists because 4.5, is always an odd integer, thus, the
degenerate ground state has always 05, = +1 and therefore are not
linked by the perturbation. Thus the degeneracy persists even with
spin-orbit coupling. The case with integer S corresponds to an even
number of electrons in the atom while a half-odd integer S corresponds
to an odd number of electrons. So for atoms with an odd number of
electrons even in the presence of crystal fields and spin-orbit interac-
tions the ground state is a doublet. This degeneracy has its origin on
the time reversal symmetry.

Observe that although spin-orbit and crystal fields reduce consider-
ably the symmetry of the atom there is one symmetry that persists in
the absence of external magnetic fields: lime reversal symmelry. Time
reversal symmetry changes ¢ — —t and therefore changes p — —p but
keeps the position invariant, that is, r — r. It implies that by inver-
sion of the time direction the angular momentum is reversed, that is,
L — —L. Classically it just means that we reverse the direction of ro-
tation. Time reversal also inverts the spin, S — —S, because spin and
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angular momentum are indistinguishable in quantum mechanics. In
the absence of magnetic fields the Hamiltonian is invariant under time
reversal. Indeed, consider the general problem of an electron moving
under the influence of an external potential and the spin-orbit effect,
ﬁ?
H=—-——V*+V()+ XS L (10.8)
2m
and it is clear that under time reversal the Hamiltonian is invariant.
Observe that the addition of a magnetic field leads to a new term of
the form B - (L + 2S) which is not invariant under time reversal since
this term changes sign. We can obviously define a quantum mechanical
operator K such that

Klr) = |r)
Klp) = [-p)
K|S) = |-9S) (10.9)
and it is clear that
[H,K]=0 (10.10)

which means that if 1) is an eigenstate of the Hamiltonian with energy
E (H[|y) = E|¢)) then K|¢)) is also an eigenstate of the system with
the same energy. This simple exercise in group theory proves that even
if all the symmetries in a quantum mechanical systems are broken and
no magnetic fields are present the ground state of the system has to be
doubly degenerate, that is, it must be a doublet. This is called Kramers
theorem.

In the presence of an external magnetic ficld the energy shift of the
ground state is given by

2
SE = 6E,+ Y [uBga,bBasb - (“—f) Bara,bBb] (10.11)
a,b

where

1
9a,b = 90 <5a,b - XR,b) (10.12)
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is the so-called g-tensor. Observe that (10.11) has a deep physical
meaning: when a magnetic field is applied to an atom the spin does
not necessarily responds in the direction of the field because of the
spin-orbit coupling. The magnetization of the atom is

O
9B,

- ; <,uBga,b<Sb> —9 (“TB)Q Pa,bBb> (10.13)

M, =

and it depends on the matrix I'y 3. Moreover, the susceptibility is now
a tensor and it is defined as

aMa UB 2
= =2(Z=) T 10.14
Xa,b 8Bb ( 2\ ) a,b ( 0 )

is the induced orbital momentum which arises from the spin-orbit cou-
pling. Observe that in this case an applied field in one direction can
have a response in another different directions. This is a direct con-
sequence of the crystal fields. Observe that in this case the magnetic
moment of the atom can be written as

Ma = 15 Y, 9ap{Ss) (10.15)
b

as a consequence of spatial anisotropy. Thus, in this case the application
of the magnetic field in one direction can lead to a magnetization in
another direction.

10.1 The molecule problem

The next step after the isolated atom problem is to study the case of
a few atoms, that is, the molecule. This kind of study will help us to
understand more complicated cases of the crystal later on.

10.1.1 Heitler-London theory

We have seen in Chapter 1 that in a H, atom the electrons that form
the bonding orbital need to have their spin anti-parallel to each other
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due to the Pauli principle. Therefore the system does not have any net
magnetic moment. As we have seen in Chapter 7 this can be described
by the Hamiltonian (9.46)

Hy=—t) (cLJCQ,U + 05,001,0) ) (10.16)
o="T,

where ¢; , (c}:a) destroys (creates) an electron in a localized state at
atom ¢ (¢ = 1,2) with spin ¢ (o =1,]). As before we can diagonalize

the problem by a simple linear combination of electron operators

- )
CAo = —F/—=\C,eo—Cf
A, \/§ 1, 2,
1
CBo = ﬁ(cl,a +Cop) (10.17)
In terms of this new operators the Hamiltonian (10.16) becomes
H=tY [c ca0—ch,cno] (10.18)
o="l

Observe that in this case the ground state of the problem depends on
the sign of the tunneling energy ¢. If the tunneling decreases the energy
of the system, that is, ¢ > 0, the state of lower energy is indeed the
bonding state. The ground state for the case where two electrons are
present is

Up) = CTB,¢CTB,¢|O>

1
= 3 (clael, +elaed, + el +cbich ) 10)

1
=3 (clocl ) +elsch, =l ey +chach ) 10) (10.19)

where |0) is the empty state. Notice that in the last line of (10.19)
we used the anti-commutation rules between the electrons. Observe
that the state represented in (10.19) is anti-symmetric as required by
the Pauli principle. Another way to represent this state is to use the
occupation of each atom (say |ni4,n2,)) where

(1310) + 11,40 = 111 +10,18) - (10.20)

1
Up) = 5



10.1. THE MOLECULE PROBLEM 249

In this new notation one has to be very careful about the order of the
spins because of Fermi statistics.

Observe, however, that the Hamiltonian (10.16) cannot be a good
approximation for the real problem of the molecule since it completely
neglects the Coulomb repulsion between the electrons. In particular it
neglects the large Coulomb repulsion for electrons in the same atom.
If this Coulomb energy is very large then the double occupancy of the
atom (that is, putting two electrons at the same time in the atom) costs
a lot of energy. But we see from (10.19) that for the non-interacting
problem this states are present. In the Heitler-London theory it is
assumed that the Coulomb energy is very large and that double occu-
pancy is avoided. In this case we see that a good approximation for the
wave-function for the problem can be obtained from (10.19) by sup-
pressing the operators that create two electrons in the same atom. In
this case we see that the approximate ground state can be written as

1
T,) = 7 (cldh, —cl d.) o) (10.21)

which in the other notation is simply

1
V2

which is the so-called singlet state we discussed before. Thus the singlet
state has the best of two worlds: it minimizes the Coulomb repulsion
and maximizes the kinetic energy and therefore is a good starting point
for the calculation of the true ground state of the problem.

Vo) =—7(1H—14LM) (10.22)

10.1.2 The Coulomb interaction

Let us be more quantitative and study the Coulomb repulsion of two
electrons in the Hy molecule in more detail. The Coulomb energy of
interaction between electrons is simply

He = 6—22 / d’r / gty PP (10.23)

v — |
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where p(r) is the electronic density. If we now use the density in terms
of the electron operators as in Chapter 7, (9.41), we have

2

Hp = / d'r / 'S ﬁqf};(r)@a(r)@jﬂ(r')\IJU;(r'). (10.24)

Since the electron operators create or destroy electrons at the position
of the atoms we can rewrite them as

2
T,(r) =) ¢i(r)ciy (10.25)
i=1

where ¢;(r) is the wavefunction of the electron localized at the atom i.
We will consider the case where the number of electrons on each
atom is constant. If the number of electrons do not change it means
that true motion of the electrons is completely disregarded. This ap-
proximation is only possible when we are dealing with a very large
Coulomb repulsion in the atom. Actually this Coulomb repulsion has
to be much larger than the kinetic energy gain for an electron to jump
from onc atom to another so that in first approximation onc can neglect
the kinctic energy. This is the case of insulating systems and therefore
can only describe what is called localized magnetism which should be
contrasted with the case of itinerant magnetism as we will see later. For
the Hy molecule the condition of single occupancy implies n; +4n; | = 1.
Direct substitution of (10.25) directly into (10.24) lead to 16 different
terms. We will consider only the ones which do not lead to hopping
of the electron from one atom to another. There are, therefore three

different types of terms that interest us. The first one is

U 2
Hy = 9 Z Z Ny’

o0’ i=1
2 U 2
= U Z UZRR 2N -+ 5 Z Z Ny (10.26)
i=1 g =1

where in the last line we used that n, = n,, for a fermion and

0= [ [ o BOPBE (1027

v — |
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represents the Coulomb interaction in the same atom and it is the type
of interaction we talked about when discussing the Hund’s rules. Ob-
serve that the last term in the right hand side of (10.26) only shifts the
local energy of the electrons and can be included in the non-interacting
part of the Hamiltonian and does not concern us. The second type of
term is the one that involves interaction between electrons in different
atoms. Although this term is not important if we constraint the atoms
to single occupation we will see later that this term is very important
for virtual processes. This term is written as

Hy =V nionoy (10.28)
where
2 NE
V — e?/ddr/ddrl|¢1(r)| |¢2(r)| . (10.29)
v — 1|
And finally the third term is called the erchange term and is given by
Hy=—Je Y cl seipch yco, (10.30)
where
* ! * !
Jo=e[dr [ ddr'¢1(r)¢1|(: )d)ﬁ,ﬂr )Palr) (10.31)

The exchange term can be written in a more illuminating way if we use
the representation of the spin operators in terms of electron operators
(9.45) that we define S; = his;/2 where

st=> c}:aagﬁcm (10.32)
ayy
where 0% is a Pauli matrix (¢ = z,y, 2). We need to calculate

S1:S2 =), D> 044055 c]{,acl,gcgﬁcm (10.33)
a a,B,’y,(S

and for that we can show that

Z 03,503,5 = 2504,55,3,7 — 5a,/35 P (1034)
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Using the above relation we find

Sy -8y = Z (201,0401,/30;/302,04 — c]{,acl,aczﬁcz,/j) (10.35)
B

And therefore we have from (10.30) we have

Jo
HJ = —76 N1,6MN2,0t — 2Jcsl © 89 (1036)

o0!
where the first term can be absorbed into (10.28). We are more inter-
ested in the last term which represents a spin-spin interaction between
spins at the two atoms. Moreover, since Jz > 0 the energy will min-
imized if the spin is such that they are aligned pointing in the same
direction. This is called a ferromagnetic coupling.

It is very tempting now to conclude that if the electrons are localized
in the atoms, that is, the tunneling is very small then the electrons
should be with their spins aligned in a ¢riplet configuration. This of
course contradicts our previous conclusion that in a bonding states the
electrons should have their spins pointing in the opposite direction in
a singlet state. What is wrong here?

What is wrong is that even if the electrons cannot actually hope
from one atom to another they can still virtually hop! This is a pure
quantum mechanical effect since second order perturbation allows a
quantum systems to undergo transitions over excited states. Indeed let
us consider the case where only interaction in the same ion are taking
into account. In the limit where the ions are far apart these are the
terms that dominate the physics and they are giving by (10.26)and for-
get about (10.28). Let us treat now the tunneling Hamiltonian (10.16)
as a perturbation. The ground state of (10.26) is of course one elec-
tron in each atom since the Coulomb repulsion is minimized, that is,
in the ground state one has n;+ + n; | = 1. The energy of this state is
zero. First order perturbation theory in the hopping gives a null result
because the occupation of the atoms changes. In second order per-
turbation theory one electron can hop from one atom and come back.
When it does that it goes through an excited state with double occu-
pancy and energy U. By the Pauli principle this can only occur if the
spins in different atoms are pointing in opposite direction. Indeed, in
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second order perturbation theory this process can be written as

t2
Hp = 7 Z c]{,acz,ac;a,cl,a/ (10.37)

o0’
and using again (10.35) we can rewrite the above interaction as

2t?
HA = ——81 89 (1038)

U
which has the same form of (10.36) but with the opposite sign implying
that the spins will tend to become aligned in opposite directions. This is
called an antiferromagnetic interaction and is called a kinetic exchange

coupling.

If we now put put together (10.36) and (10.38) together we get the
total exchange interaction between the electrons in the atoms is given

by
HE = J51 - So (1039)

where

J=——-2J 10.40

i c (10.40)
which can be ferromagnetic or antiferromagnetic depending on the rel-
ative values of */U and J¢. For the Hy molecule it turns out that the
antiferromagnetic coupling is larger and therefore the ground state is a
singlet.

10.1.3 Magnetic anisotropy

Observe that the Hamiltonian in (10.39) is symmetric under rotations of
the spins since is the direct product of two vectors. It turns out however
that in real systems we have magnetic anisotropies which appear due
to spin-orbit and crystal fields as we discussed in the previous section.
These anisotropies also affect the interaction between spins in a solid.
Consider, for instance, the classical dipolar interaction between two
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magnetic moments m; and m, separated by a distance R. The dipolar
interaction can be written as

m;-mp; 3(m1 -R)(m; - R)
R R[

(10.41)

Hyp =

Consider now the case of a 3d electron atom which has a quenched
orbital momentum. The magnetic moment of the atom is only given by
the spin degrees of freedom and the magnetic moment, due to crystal
field effects, is given in (10.15). Direct substitution of (10.15) into
(10.41) leads to

Hyip =Y S1,aCap(R)S2p (10.42)
a,b

where

(10.43)

Z Ge,abeh ch.QC ad bRcRd
o R — 2 C 3 0 5 3 ) .
CunlR) = i (Bl sty

Thus the total interaction between two atoms can be written as the
sum of (10.39) and (10.42)

H=> S14Jup(R)S2p (10.44)

a,b

where
Jap = Jéa,b + Ca,b . (10.45)

We can diagonalize J,; and find the principal magnetic axis of the
system. Since Jg 5 is a 3 X 3 matrix we can have 3 different eigenvalues.
It the problem has symmetry around an axis then two of this eigenvalues
must be degenerate and so on. These kinds of anisotropies will lead to
a Hamiltonian which is more general than (10.39) and it reads

H=J,5 .5, + J,5 45,y + Je51,:05 2 (10.46)

where J,, J, and J, can be different from each other.
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10.2 Localized Magnetism

All the discussion here can be generalized for a crystal. If the system is
insulating and the interaction only affects nearest neighbor atoms the
generalization of the Hamiltonian (10.46) is simply

H =Y (1,55 + JySiySjy + JoSi25;) - (10.47)
(i)

The extreme limits of this Hamiltonian can be obtained by varying the
parameters in (10.47). For instance, when J, >> J,, J, we have

Hr =7, 5.5 (10.48)
)

which is the so-called Ising model. When J, = J, = Jy, >> J, we have

Hwy = Jwy Z (Si,ij,y -+ S,',;ES]'@) (1049)
(1,5)

is the so-called XY model. And finally when J, = J, = J, = J we are
back to (10.39)

Hyp=J>_S;-S; (10.50)
(i.3)

is the Heisenberg model. Each one of these models have different sym-
metries. While the Heisenberg model has full rotation symmetry in
spin space, the XY model only has rotation on a plane (we say that it
has an easy plane) and finally the Ising model is the one with lowest
symmetry since the spins are constrained to be on a fixed axis (we say
that the system has an easy axis). The interesting thing about these
systems is that because they have different symmetries whey will order
magnetically in a different way leading to what is called universalily
classes. But actually in nature it is very hard to find a magnetic sys-
tem that can be classified as a pure Ising, XY or Heisenberg. Most of
the systems will be in a mixture of all of them.
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10.3 Problems

1.

2.

Prove (10.7).

Prove (10.11).

. Consider the H? molecule and obtain the expression for the anti-

bonding state in terms of the localized states of the electrons.

Using the representation of (10.20) show that

Hol1,0) = —t(thH-1[L1)
Hol 1,4) = —t(0,11) + 10, 14))
Hol L 1) = +£(14,0)+ 10, 11))
Holo, 1)) = —t(I 1,0 —141)
Hylo,0) = 0. (10.51)

Use (10.25) and write down all the 16 terms that appear in
(10.24).

Using the Fourier transform of the Coulomb potential show that
Jo > 0.

Prove (10.34).

. Prove (10.38).

Prove (10.42).
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10.4 Magnetic interactions in metallic al-
loys

In the last section we considered the problem of magnetic interactions
in insulators, that is, systems where due to the strong Coulomb inter-
actions the electrons are localized in the atoms. This is not always the
case. There are a large number of atoms that show metallic behavior,
that is, they can be well described by band theory discussed in Chapter
4. Metals are usually paramagnetic (a counter example of this assertion
is Fe which can be metallic and ferromagnetic) and show no particular
magnetism. In many compounds atoms with magnetic moments can
be introduced into a metallic host. This is the case for instance of al-
loys with f- or d- clectron atoms. Magnetic atoms can interact with
the conduction electrons that can propagate the magnetic interaction
between the magnetic moments. This effect happens because the spin
of the magnetic moment can interact with the spin of the conduction
electron via a dipolar interaction.

Consider an atom with magnetic moment mg interacting with an
electron with magnetic moment m, via (10.41). Eq. (10.41) is valid
whenever R # 0 otherwise it becomes singular. Let us consider what
happens when R = 0. The magnetic moment of the atom, mg, creates
a magnetic field, Bg, that couples with the electron via the Zeeman
term, Bg - s, where s is the spin of the electron. The magnetic field can
be calculated from electrodynamics starting from the vector potential
A as:

Bs=V xA (10.52)

where A is the vector potential for a magnetic dipole which we know
is given by

1

1
A=——
RP?

S — ). 10.
mg x R m5><V<|R|> (10.53)

Direct substitution of (10.53) into (10.52) leads to

mg
Bs = — | . 10.54
s V><V><<|R|> (10.54)
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Using the identities V x Vx = V(V:) — V2 and V%(1/r) = —4md(r)
we find

Bs = V[V-(ﬂﬂwwmsa(m

IR
V2 my 81
= —— | —=— + —mpyé(R). 10.
lvv 3]|R|+3mN() (10.55)

It is easy to show the first term in (10.55) is (10.41) and the second
term is a contact interaction at the atom. Thus, the Zeeman energy
for the electron interacting with the magnetic moment of the atom is

Hy = —%Tme -mgdé(R) (10.56)

which is known as the Fermi contact interaction.
In a lattice with N magnetic atoms we can generalize (10.56) to

Hy= Y Juslt; = Ru)sa(r;)Sh(Re) (10.57)

janaa‘ab

where R,, is the position of the n'" atom, r; the position of the j*

electron, and mg = ugS where g is the atom magnetic moment. From
(10.15) we have,

8
Jap(t;j —Ry) = ?MBMSQa,bé(rj - R,) (10.58)

is the exchange between the spin of the electron and the magnetic
moment of the nucleus in the presence of crystal fields and spin-orbit
effect.

For simplicity we will assume that the metal that surrounds the
magnetic nucleus is described by plane waves (although the same can
be done with Bloch states) which have a Hamiltonian

H. =Y Ey o0 (10.59)

k,o

where E}, = h?k?/(2m). We want to represent the new term in (10.57)
in terms of plane waves as well. For that we need the representation of
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the electron spin in terms of field operators as in (9.45). It is easy to
show that the Hamiltonian can be written as

HJ = Z ei(k_kl)'Rn {JzSz (Rn) IiClT{I,TCkaT - CIT{',\LCkhL]
Ik 0
J
+ [ (Ra)el s + Se (R ] } (10.60)

where we have used S+ = 5, +15,. Observe that the effect of the inter-
action between the conduction electrons and the nucleus is a scattering
process where a plane wave with wavevector k scatters to k’. In this
process the electron can flip its spin.

In order to simplify our problem let us consider first the highly
anisotropic limit of (10.60) in which J, = 0. Moreover, we are going to
assume that there is just one impurity at the origin (R,, = 0). In this
case (10.57) is rewritten as

H; = Z Jz(s(rj)sz(rj)sz

J
= 2 J0(r;)S:(ns(r;) — my(x;)) (10.61)

J
In this limits it is easier to write the Hamiltonian of the problem in real

space in terms of the field operators defined in (9.45):

272
H= /ddrz U, (r) [—h%vn o0t +V(r)0% 1| Uor(r)  (10.62)

where
V(r) = J,5,6(r) (10.63)

and o7 is a Pauli matrix and S, is the eigenstate of the operator S’z
(that is, S,|S,) = S,|S,) where S, = =S, .., S).

Observe that we can diagonalize the problem entirely if we expand
the electron field operator as

U,(r) = ¢po(r)ap, (10.64)
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where ag, is a fermion operator ({a};,a, ap o} = 0p,0s.) and

h2V2
o 9Bo(t) + oV (1)ép(r) = Edp,(r) (10.65)
is a S(:hrédmger equation for the magnetic scattering of a particle by
an impurity since it depends on the electron spin (here we have used

that 07 , = 00,,/). In this case the Hamiltonian of the problem in the
new basis reads

H=Y Eul a5, (10.66)
where E,, arc the solutions of (10.65).

Let us consider, for simplicity, the case where the clectrons interact
only weakly with the magnetic impurity and we can use perturbation
theory. In (10.65) define E = h*k?/(2m) and U = 2mV/h* and rewrite
(10.65) as

V2610 (x) + [k = oU(r)] re,o(r) =0 (10.67)

and transform it to Fourier space

Preo( AT e o ( (10.68)

- m s
in order to get

(¥ — ¢*)oxo(a ZaU P — Q)0 (P) (10.69)

where U(p) is the Fourier transform of U(r). In order to solve (10.69)
we have to impose the condition that when U = 0 the solution of the
problem is a planc wave, that is, ¢ -(q) = dqk- Thus, the solution of
(10.69) is

)

Pro(q) = dqx + 0 Z —2 2 Po(P) (10.70)

which is an integral equation for ¢y ,(q). We first observe that because
of (10.63) we have U(p) = U = 2m.J,S,/h* is independent of momen-
tum. Moreover, in first order the solution of the problem is given by
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the substitution of the delta function in the first term on the lLh.s. of
(10.70) into the second term on the Lh.s. which gives,

U
Pro () & % <5q,k + am> (10.71)

which when substituted into (10.68) leads to

Pro(r) & % (ei‘” +oU Y k,f%) (10.72)

a7k ¢*

which is correct to first order in U and it is known as Born approrima-
tion.

In order to evaluate (10.72) we have to avoid the point where p = k
where the sum blows up. Moreover, we are in the thermodynamic limit
and we would like to replace the sum by an integral over q. Now,
we have the problem of avoiding the points where the integral diverge.
The best way to do it is to add an infinitesimal imaginary part to the
integral and write

eiq'r ddq eiq-r
S 10.
Zkz_qz %[/(QW)QW—QQ—@'J (10.73)

a7k

where € — 0 at the end of the calculation. In math this is called the
principal value of an integral. So let us evaluate this integral

ddq efar 1 w o0 elar cos 0
= — [T dhsine / dgP—
/ (2m)2 k2 — ¢? — ie (27)? /o I ST g% — i€

1 +1 o0 elaru
- d / doP—
(2m)? /_1 Yl MR q? — i€
_ 1 /+00 p gsin(qr)
 2m)?r ) Tz — g% — e

(10.74)

where in the last line we used that the integrand is even in q. The
integrals can now be performed by contour integration. For instance,

+o00 qeiqr ) efikr ik
dg————— =2 = T 10.75
/ qq2 k2 de < 2 e ( )

-0
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since we have to close the contour in the upper half-plane in order for
the integral to converge. The final result is

T k
5 O ppcosthn) (10.76)
e K —a r

and from (10.72) we have

cos(kr) .

bro(r) ~ T + 276U "

(10.77)

Observe that we can now calculate various properties using (10.64)
and (10.77). In the approximation used the electrons are only scattered
by the magnetic impurity but their energy remains the same. Thus the
ground state is obtained by filling up the momentum states as usual.
Observe, however, that the presence of the impurity modified the charge
density for different spins. Indeed,

(na(r)) = (TH(r)T(r))
= Y Sho (D)o (1)l ar o)

k,k’

- Z|¢ka|2 (kr — k) (10.78)

where kr is the Fermi momentum which is related to the electron den-
sity by kr = (372n)'/3. Using (10.77) to leading order in U we find

(no(r)) = = + 4r? U/ dgk <OS(HT). ok - 1)O g — )

2
n :
=5 + —/ dkksm(?kr)
8kim.J,
_ g 4o G B(2kpr) (10.79)
where
Flz) = Sinz —rcosx (10.80)

xt

Observe that the electron density far away from the impurity reaches
is bulk value n/2 but close to the impurity it oscillates strongly. These
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are called Friedel oscillations. Moreover, the oscillations depend on the
spin of the electron. This happens because the interaction between the
electron and the impurity atom is magnetic.

Consider now the problem of two magnetic impurities at positions
R, and R,,. The spin S,, at position R,, will polarize the electron gas
in its vicinity in the way given by (10.79). Another spin S,;, at R,, will
feel this polarization that allows the two moments to interact. In order
to get the interaction Hamiltonian between these magnetic moments
we use (10.61) and (10.79) to find

Hpgxy = — Z J.S:(Ry) (ny(Rp) — 1y (Rpm))

S —;—3 > F(2kr[Ry — R)S:(R,,)S:(Ry) (10.81)

F nm

where Er is the Fermi energy. This interaction between magnetic mo-
ments is called RKKY interaction due to Ruderman, Kittel, Kasuya
and Yosida. Observe that the interaction is oscillatory and decays like
1/r3 and it is shown in Fig.10.2.

Notice that at short distances (r < 1/(2kr)) the interaction is ferro-
magnetic but at large distances it changes sign and can be antiferromag-
netic. Thus, depending on the position of the spins in the lattice this
interaction can be effectively ferromagnetic or antiferromagnetic. In
the case of disordered alloys both ferromagnetic and antiferromagnetic
couplings are possible. At zero temperature this lead to a frustrated
magnetic state called spin glass.

In the generic case where J, is not null the generic form of the
RKKY is

Hrgry = — Z Fa,bF(QkF|Rn - Rm|)Sa(Rﬂ)Sb(Rm) (1082)

7,M,0,b

where I', ;, depends on the spin-orbit and crystal field effects.

10.4.1 The Double Exchange problem

There are some magnetic systems like Mn that when forming a solid
donate one electron for the conduction band but the remaining core
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Figure 10.2: Plot of F(x)

electrons do not form a closed shell. In this case the atom in the lattice
has a spin S that can interact with the electrons of the conduction
band via an exchange interaction of the type given in (10.60). This
interaction is usually ferromagnetic because of Hund’s rules coupling,
that is, the system wants to have locally the largest value of the spin.
In this case the Hamiltonian of the problem can be written as:

H=—t Y (d,cjo+he)=TY si-S; (10.83)

<i,j>,0

where h.c. means hermitian conjugate and J > 0 is the Hund’s coupling
between localized and itinerant electrons. This is a problem of great
complexity since, as we have seen before, the electrons mediate the
interaction between spins via the RKKY interaction.

Let us consider the case where we have a large localized spin S
(S > 1/2). In this case the spin can be considered as a classical variable
that can be parameterized by angles €; and ¢; relative to some fixed axis
(for instance, S* = Scos(f), S* = sin(f) cos(¢), S¥ = Ssin(f) sin(¢)).
Note that the Hund’s coupling forces the spin of the electron to orient
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Figure 10.3: (a) Hopping in a ferromagnetic situation; (b) Hopping in
a anti-ferromagnetic situation.

along the direction of S. If the local spins arc all aligned with cach other
(ferromagnetic situation) then the second in (10.83) gives a negative
energy contribution, reducing the energy of the system. If the spins
are oriented 7 degrees from each other (anti-ferromagnetic situation)
the electrons cannot hop from site to site because the hopping term
in (10.83) does not flip the spin and therefore it costs an energy J to
frustrate the Hund’s coupling. Consider the situation on Fig.10.3(a):
the electron spin (empty circle) is oriented with all the localized spins
(filled circles) and can move freely over the lattice. In Fig.10.3(b) the
antiferromagnetic orientation of the spins makes the hopping from one
atom to the other difficult since it costs an energy J for the electron
with spin up to move to an atom with spin down. When J > ¢ the
hopping is completely suppressed.

This argument shows that in order to gain the electron kinetic en-
ergy the spins will tend to form a ferromagnetic state where all the
spins are aligned to allow for the electron motion. Notice that because
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of the symmetry of the interaction in (10.83) the change in energy can
only depend on the relative angle, 6; ;, between the localized neighbor-
ing spins. When 6, ; = 7 the effective hopping between spins, %, ;, is
zero, when 6; ; = 0 the effective hopping is simply #; ; = .

In order to show this formally Let us consider the case of two mag-
netic atoms with spins S; and S,. The Hamiltonian of the problem (in
accord with (10.83) is:

H=—tY(cl co5 +hc)—J(S1 -8 +Ss-82) (10.84)

In the reference frame of the local spins the energies of the states are
+JS or —JS depending if the electron spin is anti-parallel or parallel
to the local spin, respectively. Let us call these states |i, —) and |i, +),
respectively (i = 1,2). Thus, the whole problem reduces to four states,
namely, |1,+), |1,—), |2,+), and |2, —). The spins S; and S, form
an angle @ between them, that is, S; - So = S?cos(#). If we choose a
quantization axis along S; (we write S; = Sz), for instance, we have
to rotate to project the states of Sy into this axis. This can be done
by rotating the states of in atom 2 via a spin rotation operator around
the Y axis:

U = - 9Su/h — g=it0,/2
= cos(6/2) —io, sin(6/2) (10.85)

where o, is the Y-Pauli matrix. The states of atom 2 in the quantization
axis of atom 1 can be written as:

|2=a>:: 2: Ubﬁ

y==%1

) (10.86)

where |2, o) refer to the states in the rotated frame. The rotation can
be written more explicitly as:

12,+) = cos(0/2)|2,+) + sin(0/2)|2/, —)

12,—) = —sin(6/2)2",+) + cos(6/2)]2, —) . (10.87)
Moreover, from (10.84) and (10.87) we see that:
(talHli,y) = —aJSoa,

(LalH|2,7) = —tU,,. (10.88)
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Thus, the Hamiltonian can be written as:

—JS 0 —tcos(0/2) —tsin(0/2)

71— 0 JS tsin(8/2)  —tcos(0/2)
HI =1 _cos(8/2)  tsin(0/2) _JS 0
tsin(8/2)  —tcos(0/2) 0 JS

which can be diagonalized in the usual way. The eigenenergies are:

J
E=7= VIS)? + 2 £ 2] St cos(6/2) . (10.89)
For J >> t the lowest energy eigenvalue is:
Ey~ —JS —tcos(6/2) (10.90)

where the first term corresponds to the Zeeman energy of the electron
in the ficld of the localized moment and the second term corresponds to
the effective hopping encergy for the spins between the different atoms.
Notice that for = 0 it gives —t and for § = 7 it gives zero, in agreement
with the previous discussion. Notice further that while in the RKKY
mechanism the first contribution to the energy is of order J2/Ep (see
(10.81)) the current mechanism produces an effect of order J and there-
fore should be dominant at small J. The above argument shows that,
when generalized to a lattice, the effective Hamiltonian of the problem
can be written, in the limit of J > ¢, as:

Hepp=—t Y cos(0:;/2) (c] 0 + hoc.) (10.91)

(iaja>a‘7

where 0, ; is the angle between neighboring spins. For a given lattice
onc has to find out the spin configuration that minimizes the energy in
(10.91). The model described here was originally proposed by Zener in
order to describe the physics of certain oxides with Mn and the term
double exchange comes from the fact that the exchange between Mn
atoms occurs via the filled p-orbitals of the O atoms.
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10.5 Problems

1. Show that in two dimensions the RKKY interaction decays like
1/r% at long distances.

2. Consider the problem of an electron jumping between two atoms
with large spins in the limit of J < ¢. (i) What is the ground
state energy in this case? () What is the physical interpretation
of the solution in this limit? (47) Will the electron travel over the
system for any spin configuration?

3. Consider the problem of electrons moving in a d-dimensional
hyper-cubic lattice with a density n of electrons in the limit of
J > t. Assume that the angle between adjacent spins is always
the same, that is, 6; ; = 6 independent of 4, j. (¢) What is the spin
configuration in this case? (i#) What is the ground state energy
as a function of angle? (%) Assume that the angle between adja-
cent spins is very small and that the distance between atoms is a.
Define k£ = #/a and show that the energy of the system behaves
like k2. How does the electron spin behave in this case ?
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Figure 10.4: Impurity immersed in a Fermi gas.

10.5.1 The Anderson Hamiltonian

In the last sections we discussed Fermi contact interaction between
conduction electrons and localized magnetic moments. The contact
interaction is important for s-wave states where the clectron has large
probability of being at the atomic site. For p- or d-like orbitals which
vanish at the origin the contact interaction also vanishes. In this case
the interaction between a conduction electron and a localized moment
has a different origin which is related with the hybridization between
conduction electrons and localized electrons. Consider the problem of
a localized impurity at a position r = 0 in a Fermi gas as shown in
Fig.10.4.

A conduction electron can hop back and forth from the electron gas
into the impurity site. This hopping can be seen as a tunneling term
like in (10.16). However, in order to do so, the electron has to pay an
energy U if the impurity site is doubly occupied (which was studied in
(10.26)). The simplest Hamiltonian that describes this situation is the
Anderson Hamiltonian

Hy = ) EkCLng,a +ES i +VY (c];(r =0)f, + fles(r = 0))
k,o o o
+ Unmnm (10.92)

which in momentum space can also be written as:

vV
Hy = S B eio+ B S fifo+—=3(d fr+ flews
A kza kCi,oCk f; \/Nkza<k k)

+ Ungang, (10.93)
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where ¢y, and f,, are electron operators for electrons on the conduction
band and the localized impurity state, respectively (/N is the number
of sites). Ey is the atomic energy at the impurity, V' is the tunneling
energy between the conduction band and the impurity and U is the
Coulomb energy to put two electrons on the impurity (ns, = fIf,).

It turns out that there is no exact solution for (10.93). That Hamil-
tonian describes a true many-body problem. In trying to understand
the physics of this Hamiltonian we have to make approximations. Let
us consider first the problem where U = 0, that is, the Coulomb inter-
action is absent. One expects from the beginning that no magnetism
can be described in this case since a magnetic moment can only exist in
a isolated energy level if double occupancy of the level is not allowed.
We will sce later how the Coulomb cnergy can be introduced into the
problem. When U = 0 the problem is quadratic in the operators and
therefore can be diagonalized by an unitary transformation:

fO' = a?a + Z ﬁkék,a
k

o = Mefo T D tiCic,s (10.94)
k

where f, and ¢, are the new electron operators which diagonalize
the problem, that is, after the unitary transformation the Hamiltonian
(10.93) with U = 0 can be written as

H= Z E.fTI’T(f + Z EkELo-Ek,a (1095)
a k

with E; and E;, the new eigenvalues (still to be calculated). Notice
that the coeflicients o, Ok, v and ¢ depend on the parameters in
the Hamiltonian.

One of the ways to solve this problem is to look at the equations
of motion for the operators. Using the anti-commutation relations be-
tween the fermion operators it is easy to show that

V
[faaH] = Effa + ﬁ;Ck,a

[Ck,0'7 H] = Ekck,a + %fa . (1096)
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On the other hand, using (10.94) and (10.95) one has
[fos H] = aEff, + g [ o
lekos H = nErf, + g et Brut o (10.97)
and by direct substitution of (10.94) into (10.96) we find
[fo, H = (aEf+ —= Z% ;(Efﬁk + % ; Lk k) Cic
lex,o, H] = \/— > B+ Z B 1) Co + (Eene + %@7@098)

Direct comparison of (10.97) and (10.98) leads to

V
Ef = Ej+—=3 %
! TN 4

- V
In solving the above equations we have to exercise some care. We
are interested in the case where E; is within the electron band which
implies that the second equation in (10.99) has a singularity at E; =
E),. This singularity can be extracted, however, if we interpret the
second equation as the real part of

1 V
v N Ff — Ek — 1€
Moreover, we are interested in the case of a single impurity in 1023
electrons. Thus, in this case E} ~ Ej plus corrections of order 1072,

Substitution of (10.100) into the first equation of (10.99) leads to the
desired final result

V2
Bi=Et+-RIy = 10.101
f f+N {ZEf—Ek—ie} (10.101)

Yie = (10.100)

which is an equation for E¢. Equation (10.101) shows that the energy
of the f-state is shifted by an amount proportional to V2. One has
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to remember, however, that the original f-state is not an eigenstate of
the Hamiltonian since it is actually coupled to the conduction band.
Thus, when an f-electron is put into the many-body system it has to
decay into f and @ states which are the true eigenstates of the problem.
Therefore, the f-electron has a finite lifetime. In order to estimate the
life-time we go back to (10.101) and interpret the imaginary part of the
f-electron energy as its decay rate (this, step can be formally proved
with the use of Green’s function method). Thus, we have:

o1 V2 V2 —
h_1 _ - 5(E;—Ey) (10102
7 N\S{gEf—Ek—ie} N LB =B (10102)

where we have used that:

limite_ [ ! - ] =P (1> + mid(x) (10.103)
x — i€ x

where P means the principal value of the function. Notice that (10.102)
makes a lot of sense. When V' — 0 the f-state is decoupled from the
conduction band and therefore has infinite lifetime. But as the coupling
to the conduction band increases the lifetime of the f-state becomes
shorter.

It is interesting to compare the behavior of the density of states in
both cases. When V' = 0 the density of states of the problem reduces
to the density of states of the f-state and the conduction band

€

1 1
= — = — = _
NA(E) = oF - E) 7 (E—Ef)? +¢ \S{E—Ef—ie}

NJ(E) = % S - Fi). (10.104)

In the presence of the coupling V' we replace E in the first equation in
(10.104) by E; — ih/74 in order to get

Ny(B) = %{ E—Efl—’m/Tf}

1 ﬁ/Tf
= = 10.105
W(E—Ef)2+712/Tf2 ( )
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Figure 10.5: Density of states for the U = 0 Anderson model: (a)
V=0, (b)V#0.

which is not a Dirac delta function any longer but a Lorentzian with
width 1/7; with is given by

h _
—= 7V2N(E/) (10.106)
f

as we can readily see from (10.102) and (10.104). Thus, as a result
the f-level is not sharp any longer. This reflects the fact that when an
f-level hybridizes with a conduction band it is not an exact eigenstate
of the system (indeed, one sees from (10.94) that the eigenstate is a
linear combination of f and conduction band states). This situation is
depicted in Fig.10.5.

In order to understand what happens in the presence of U one has to
treat the interaction term in (10.93). It is obvious that this term cannot
be treated in the same way we treated the V' term because it contain
four fermion operators. The problem is highly non-linear. Instead of
trying to solve the problem exactly we will search for an approximate
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solution. The approximation is called mean field or Hartree-Fock ap-
proximation. In this approximation we replace

Ungsng, — Ulngyng, +Unga(ng,) (10.107)

which corresponds to replace the aclual value of the occupation at the
f-level state by its average. If one make the substitution (10.107) into
(10.93) one sees that the only modification is in the energy of the f-level
state, that is,

Hy=3 Emys, = Hynr =3 Epongo (10.108)

where
Ef,(, = Ef -+ U<nf,_(,> (10.109)

that is, the energy of the f-level with spin, say, 1 is increased by U
times the average occupation of the state with spin | and vice-versa.
After this approximation is done we can proceed as earlier (in the case
of U = 0) but taking into account that the local energy of the f-level
depends also on the spin projection. In particular the density of states
for each spin projection is given by:

1 h/TfU
N (F)=— — ’ 10.110
so(B) T (E — E,)? +h?/73, ( )
where

_ 1 VZ
E:, = E:+Un; )+ —=R = -
1 _
— = 7V2N.(E;,). (10.111)
Tt

For simplicity we will assume that the electron density of states is
essentially constant and therefore E;, = E;+ U{ns_,) and 74, = 7¢.
In this case, the average occupation of the f-level with spin o is given
by the usual expression

(1) = [ AENgo(E)
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- [T ks
) (E—Ff—U<nf,,a))2+h2/T'f2
Ef -+ U<nf,_g> — FEr
/s

which is a transcendental equation for the occupations! Thus we have
traded a non-lincar problem in terms of operators for a non-lincar prob-
lem in terms of ordinary cquations. It is common to rewrite the equa-
tion above in terms of new variables defined as:

1 <
= —arccot
T

(10.112)

y = 7U/h
E;—Er
= — 10.113
v = U (10.113)
so that
cot(m{nsqe)) = y({ng—) — ). (10.114)

Let us consider two simple limits of these equations. When U = 0 it is
obvious that

1

(o) = (ns—0) = 3 (10.115)

since (ny,) + (ns—,) = 1. This corresponds to the non-magnetic so-
lution of the problem. Thus, as one could have guessed the Coulomb
interaction is fundamental for the appearance of magnetic moments. In
the limit of U — oo the arccot(x) can give 7 or 0 depending on the sign
of the argument. It is obvious that the solution close to 7 corresponds
to the full occupation of the level and the one close to 0 corresponds to
an empty level. Thus, let us assume that (ns+) ~ 1 and {(ny, ) ~ 0 and
calculate

o r
my(z — (ng1))

1
(ng)) ~ —0— (10.116)

ry((na) — 2

which implics that the local magnetization in the magnetic impurity is

(ngp) ~ 1

my = (nga) —{nyg)
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T my(l—a)
2
~ 1 %(0) (10.117)

where we have used (10.106) and (10.113). Notice that the above ap-
proximation is valid for V <« Er,U. That is, in the limit in which the
impurity is weakly coupled to the electron gas and the Coulomb energy
is large. In this case the charge fluctuations in the impurity site will
be very small and only the spin of the impurity has dynamics. This
dynamics will be discussed in the next section.

Therefore, the conclusion of this calculation is that for the existence
of local moments the Coulomb energy is fundamental. The physics of
this problem is relatively simple: in the absence of the Coulomb inter-
action, U = 0, the singly occupied states are degenerate with energy
E; and the doubly occupied state has energy 2E¢. In the presence of
U the energy of doubly occupied state is U + E¢ > Ep and therefore
out of the Fermi surface. Thus, this state is always empty. It is exactly
because the doubly occupied state is higher in energy that moment
formation is stabilized.

10.6 The Kondo problem

Although (10.93) has very interesting physics it describes a large num-
ber of effects that are not necessarily related with magnetic scattering.
In this section we will be interested in processes in which the num-
ber of electrons in the impurity is constant, that is, >>,ns, = 1, so
that the impurity has a magnetic moment. This is only possible if
V < FE¢,U, Er and Ey < Ep so that the electron on the impurity does
not disappear on the conduction band and U + Ef > Er so that the
impurity is never doubly occupied. Instead, we are only interested in
the wirlual process in which an electron can hop from the conduction
band into the impurity and back. When an electron does that it goes
through and excited state of energy FE¢ + U if the impurity is singly
occupied. In perturbation theory this leads to a term which is pro-
portional V?/(E, — U — E;). On the other hand an electron localized
at the impurity can jump from the impurity into the conduction band
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and back where the intermediate state now has energy Ej. Again in
perturbation theory this leads to a term of order V2/(E; — Ej). Ob-
serve that in both cases we have F;, =~ Er. These process are not
different from the ones discussed previously for the Hy molecule. Thus,
second order perturbation theory will generate an interaction between
the conduction band and the electron impurity of the form

Heper| = Js(r=10) - S (10.118)
where
TNV (- +i (10.119)
U+E; E; '

which is always positive (we have fixed the energy so that Er = 0). The
Hamiltonian (10.118) is called the Kondo Hamiltonian and has cxactly
the same form as the Fermi contact interaction (10.57). Thus all our
results about the RKKY interaction are valid for this model as well if
we take the impurity spin to be 1/2. However, there is new physics on
this model that we have not discussed yet.

As before we will consider the anisotropic Kondo problem where
the exchanges in the Z and X — Y directions are different from each
other (something that can happen in the presence of crystal fields and
spin-orbit effects). The complete Hamiltonian reads:

— T % T
H = Z €kCi o Ckyo + J2S Z OC 5Okl o
k,o k.k',o

+ JL(STs (r=0)+5"(r=0)5") (10.120)

where J, is the longitudinal or Ising coupling and J, is the transverse
of XY coupling. Notice that because J,,J;, > 0 there is an effective
attraction between the impurity and the electrons when they have op-
posite spins. Attraction between particles implies the possibility of
forming bound states. In fact, for J, = 0 we can use the results of the
previous section, in particular, we write (10.69) as:
Rq?
(- 25 )on(a) = —71. 3 65(p) (10121)
P
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where we reestablished the usual units. This equation can be solved as

C(E)
or(q) = Fore (10.122)
where
C(B) =~J, > ¢r(p). (10.123)
p
Substitution of (10.122) into (10.123) leads to
1
1=-J, 3 10.124
> e

which gives the cquation for E. If we now usc the definition of the
density of states

ﬁ2p2
E) = 0| E— — 10.125
o) = 3o (2= (10125
we can rewrite (10.124) as
_ , P(E)
1= Jz/dE 2, (10.126)

that has to be solved for E(J,), the bound state energy. Observe that
(10.126) does not have any information about the occupation of the
states in the system, that is, it does not carry a Fermi occupation
number. However, it predicts the possibility of forming bound states
that can be written as: | f,]) or | {,1), where {}, | represent the
impurity spin and 1, | represent the electron spin. In the above problem
the two states are degenerate in energy. In this localized picture we
immediately see that the coupling J, in (10.120) lifts the degeneracy
between these two states so that the final states of the problem are:

1
B = (G4 ) (10.127)

2

S
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which are the singlet and triplet states. Notice that due to the trans-
verse term in the Hamiltonian the single state is lower in energy by J,
relative to the triplet state.

For the reasons given below the approach given above has a big flaw
associated with the fact that we are treating the J, and J, in a very
non-perturbative way and we will show that this is incorrect physically.
However, we will borrow the ideas of the naive calculation above in
order to simplify the problem to a treatable form. Let us first define
new states by:

I+ = It
= = [N, (10.128)

These states are not “pure” spin states since they involve the impurity
spin and the localized electron spin. However, we see that the operator
associated with J, has a very simple result when acting on those states,
namely:

<S+3_(

J+sTr=0S7) |+ = |-)
<S+3_( -

r=20 T
r=0)+s"(r=087)-) = [+)  (10.129)
that is, the J, operator acts as a Pauli matrix ¢% on these states. By
the same token, the operator S* has a very simple action on those

states:

Sl = 1)
S7=) = —|-) (10.130)

and therefore S% acts on these states as the Pauli matrix o*. Thus, by
changing the basis we can rewrite the Kondo Hamiltonian as:

H = Z echkﬁck,(, + J,o° Z achﬁck:,(, +J o". (10.131)
kaa' k,k’,a

This problem still have too many degrees of freedom. As we know
from our study of metals in Chapter 6 perturbations in metals can only
affect states close to the Fermi energy and unfortunately (10.131) still
contains states with high energy close to the bottom of the Fermi sea.
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If we consider the momenta k and k' in (10.131) close to the Fermi
surface we see the effect of the impurity is to scatter and electron with
momentum k from an occupied state inside of the Fermi sea (leaving
a hole behind) and putting this electron outside the Fermi sea in a
unoccupied state with momentum k’. That is, it creates particle-hole
pairs. Thus, it is more convenient to work in the language of particle-
hole pairs instead of the language of the original fermions.

As we showed in Chapter 6 (see Eq.(6.104)) the low energy excita-
tions of the Fermi gas, the particle-hole pairs, have bosonic character
and at low temperatures provide a natural description of the specific
heat, for instance. The energy of a particle-hole pair close to the Fermi
surface is

Wq = VFq (10.132)

where vg is the Fermi velocity and ¢ > 0 is the module of the momen-
tum transfer for the production of the particle-hole pair (k' = k + q).
Thus, particle-hole pairs behave like harmonic oscillators in momentum
space (like acoustic phonons). Thus, at low energies we can replace the
free electron Hamiltonian by:

p2 2
Ho=Y"(er — )k ytio = Hpp =Y l—q + MwS&] (10.133)
k,O’ , q>0 2M 2

where 4 is the chemical potential. Notice that the mass of the oscil-
lators M is undefined. The reason is given below. Furthermore, in
the scattering process the electron transfer momentum to the impurity
(momentum is not conserved in the scattering problem) and this leads
to the creation of particle-hole pairs with finite momentum ¢. Since the
momentum operator associated with the pair is P, we see that the J,
operator in (10.131) can be replaced by:

J.o? > UCTk,ng',a — J,0* ) _ P,. (10.134)

kK o >0

Defining now creation and annihilation operators for the harmonic os-
cillators in the usual way:

_ |
O o v
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Muw, {
= (\l— | Q¢+ —=P, 10.135
q 2 ( q \/m q ( )

we find that the Hamiltonian in terms of bosons can be written as:

H =Y wala, +o* Y Vgia, — al) + Jo". (10.136)

g>0 q>0

S
2,
|

We will rewrite the Hamiltonian by redefining the creation and annihi-
lation operators by a phase factor:

b, = ia, = %a, (10.137)
so that:
H =Y weblby+ Ao” > \/q(bg + b}) + JL 07, (10.138)
>0 q>0
where
A= g Mor (10.139)

2

The Hamiltonian in (10.138) is called the dissipative two-level sys-
tem model since it describes a problem of a two-state system (the eigen-
states of 0%) coupled to a heat bath of harmonic oscillators. Notice that
the parameter M remains undefined. The reason for that is that the
oscillators are produced by the coupling of the impurity to the particle-
hole excitations and therefore their mass is also determined by this
coupling. The procedure presented here cannot tell how M behaves as
a function of J, and thus we can think of M (or A) as parameters of the
problem that have to be obtained by different means. What is guaran-
teed from our construction is that the number of degrees of freedom in
the problem is correct and that the low energy physics of Hamiltonian
(10.138) is the same as the original fermionic problem (10.120). One
way to obtain A is to solve the problem via Bethe ansatz or numerical
methods and obtain A as a function of J,. From now on we will think
of \ as a parameter of the problem in its own right.

The Hamiltonian in (10.138) has another free parameter that is not
explicit in the Hamiltonian. Notice that the bosons are a result of the
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linearization of the electronic dispersion close to the Fermi surface (see
Fig.6.4) and therefore our procedure is only valid if the momentum
of the particle-hole pair is smaller than a cut-off, A. The size of this
cut-off can be estimated to be of the order of the Fermi momentum,
kr, which, in most metals, is proportional to the inverse of the lattice
spacing, a. That is, our approximation assumes that:
g< A kp~ % (10.140)

which implies that our theory only describes wavelengths much larger
than a. Moreover, the sums in (10.138) are bounded from above by A.

Now, we have in our hands the tools to discuss the reason why
perturbation theory fails for this problem. Notice that the operator J,
flips the pseudo-spin |+) to |—) and vice-versa. In this case the sign of
the interaction in the .J, term changes from + to —, that is, there is a
sudden switch on of the interaction! As long as the system is in one of
the eigenstates of o not much happens (there is a simple shift of the
boson momentum) but once the pseudo-spin flips a potential is switched
on and the ground state changes! When we study time dependent
perturbation thcory we learn that the perturbation potential has to
be switched on very slowly so that states of the system do not change
drastically. This is not the case here and this is why perturbation
theory fails.

In what follows I will describe a way to treat this problem with
a renormalization group (RG) method that gives results beyond per-
turbation theory. The main idea is to use the fact that the harmonic
oscillators with energy close to vpA = W s Ef are very fast compared
with the impurity spin. In fact, the flipping time of the spin can be
estimated by the uncertainty principle to be:

h h
trup & 7 > W (10.141)

since we will assume that J, < W =~ Ep. In this case, the fast (high
energy) harmonic modes always “see” the impurity spin as static (in the
same sense that in the Born-Oppenheimer approximation the electrons
“see” a static lattice of ions). Thus, the fast oscillator oscillate many
periods before the spin flips and their only effect is to “dress” the spin
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W-dW

0 A—SA A q

Figure 10.6: Dispersion of the particle-hole excitations and the RG
procedure of reducing the cut-off A.

(in the same way that electrons “glue” the ions). In order to understand
how these high energy degrees of freedom “dress”, or more elegantly,
renormalize the spin flips let us consider the effect of changing the cut-
off A to A—dA (see Fig.10.6). Observe that this is equivalent to change
the energy scale from W to W — dW (W = vpA).

The state of the pseudo-spin can be now calculated in first order
perturbation theory in A as:

|+,0) = |+)r = %{H—,O)-{—)\Jz ﬁ gbgw,o)}
1 A A1
- {0 7 )
= 0) = |—)r = %{|—,0>—\/%_Fq:AﬁdA%hq)}m.MQ)

where |+, 0) is the state without bosons and |+, ¢) is the state with one
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boson with momentum ¢ such that A — dA < ¢ < A. The subscript R
indicates that this is the renormalized state and N is the normalization
factor that can be easily calculated from the condition that (+|+)g = 1,
that is,

A\ &1
N=a1+ (—) do-. (10.143)
UF/) g=r—dan 4

In order to calculate the renormalized value of the coupling con-
stants, that is, the value of the coupling constant when we reduce the
cut-off we realize that, the bare value of the coupling is given by:

J. = {+,0/H|0,+) (10.144)
as you can easily prove from (10.138). The renormalized value of the
coupling, J® is then given by:

1
JE = —(+|H
o= S(HH
2
1= (5) Toaang
3
L+ (55) Tomaang
A& 1
1-2 (—) o= (10.145)
VF) g=r_an 4

where in the last line we have used the fact that we arc doing pertur-
bation thecory. The sum over ¢ can be casily performed:

Q

A )NdA

v 1o ( (10.146)
el "A—arn) T A '

Furthermore, the value of the renormalized cut-off is (see Fig.10.6):
WER=W —dW = W(1 - dA/A) and therefore we can write

S L1-of
- dA
WE W 1-4

JE L (1 . a)%> (10.147)
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where we have defined the constant o given by:
2
=2 <i> (10.148)
UFr

which, like M and A can be viewed as a undetermined function of .J,.
Notice that (10.147) tells us how the dimensionless coupling constant

_ L

91 =75 (10.149)

changes as we change the scale of the problem, that is, g, = g, (A).
Eq.(10.147) can be rewritten in the form:

gL(A—dA) = g (A)(1—(1—a)dn(1/A))

W 1 a)g (o (10.150)
das

where we have defined
£ =1In(Ag/A) = In(Wy/W) (10.151)

where Ay is the bare valuce of the cut-off. Eq.(10.150) is the RG equation
for the coupling J, . This equation can be solved as:

gL(6) = gL (0)el " (10.152)

where g, (0) = J, /W is the coupling constant of the problem at the
original scale A while g, (¢) is the coupling at an arbitrary scale. From
this result we immediately can conclude the following: if o > 1 we
have g, (¢ — oo) — 0 indicating that at longer and longer length scales
(smaller A) the coupling vanishes and this term is irrelevant for the
long wavelength physics; if o < 1 we have g(¢ — oc) — oo and the
coupling constant becomes arbitrarily large as we reduce the cut-off
indicating that the coupling is relevant and dominates the physics in
the long wavelength limit. The case of o = 1 is called marginal and the
RG equations will only have a contribution to order g?.

Thus, the conclusion of this RG calculation is that perturbation the-
ory is only reliable in the case of a > 1 since the perturbation becomes



286 CHAPTER 10. MAGNETISM

weaker and weaker at low energies. In this case we can effectively make
J, = 0in the Hamiltonian and we see that the problem simply reduces
to the problem discussed previously of the formation of the bound state
(or scattering) out of a impurity. The state of the impurity is an eigen-
state of the 0% operator.

For o < 1 the coupling becomes arbitrarily large and perturbation
theory fails miserably and in this case we have to find a better way
to solve the problem (which usually means that we have to solve the
problem exactly!). We can make an educated guess of what happens
in this case. Observe that the fact that J, becomes relevant in this
limit indicates that this is the dominant term in the Hamiltonian. This
implies that the state of the impurity is an eigenstate of the o® operator.
Thus, we expect the ground state of the problem to be:

1
|s) = 7 (+)r—|-)r) (10.153)

which is the singlet state. This is the so-called Kondo singlet. Notice
that our perturbation theory is only well defined for J, < W, that is,
g < 1. For a < 1 the coupling g, grows under the RG until it reaches
g.(¢*) = 1 where, from (10.152):

1

—

YA~

In(1/¢.(0)) (10.154)

Using (10.151) we see that this scale is associated with an energy scale
kpTk such that:

1

ln(Wo/k‘BTK) = 1—a ln(Wo/JL)
1/(1—o)
ksTx = Wo (ﬂ) . (10.155)
W

For energies or temperatures above Tk the coupling is small and the
problem can be treated perturbatively but for temperatures smaller
than Tk the system flows to strong coupling and the Kondo singlet is
formed. This temperature scale is called the Kondo temperature of the
problem. Observe that for J, = 0 we have Tx = 0 and therefore no
Kondo effect.
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Thus we have found that the behavior of the problem changes dra-
matically when we go from o > 1 to o < 1. We have argued that o has
to be a function of J, and therefore there must be a critical value of J,
for which the physics of the problem changes completely. The question
is: can we stare at our original Hamiltonian (10.120) and understand
how J, changes the physics of the Kondo problem? The answer is quite
simple, in fact. Notice that the formation of a singlet state requires
J, > 0, that is, an antiferromagnetic coupling between the impurity
and the electron gas. If J, < 0, that is, if we had ferromagnetic cou-
pling the state of the system would be a triplet, that is, | 1, 1) or | {,{)
(degenerate). In this case notice that the J, term does not connect
these two terms and therefore is not able to lift this degeneracy in first
order perturbation theory. Thus, J, is irrclevant in this case. Thus, we
can casily assign the casc of o > 1 with the casc of J, < 0 while o < 1
for J, > 0. Thus, the quantity 1 — « is an odd function of J,, that is,
1 — a(J,) can be written as a power series expansion in J, with odd
powers only. For J, < W, we expect, based on this argument that:

J.
(J)~1—-C 2 10.156
oL % 1= O (10.156)
where C' is a constant independent of J,. Thus, in this limit the Kondo
temperature can be written, from (10.155) as:

In(Wyo/J1)

JJ_ Wo/(CJ.)
) CJZ/WO

k‘BTK ~ W() (—

We = Wy exp {—

} (10.157)
Notice that for J, = 0 we have o = 1 and therefore from (10.155)
we have Tx = 0 indicating that there is no Kondo effect in this case.
These results show that in the Kondo effect both the Ising, .J,, as well
as the transverse, J,, couplings are fundamental for the occurrence of
the Kondo effect.

In the case of the isotropic Kondo effect (J, = J, = J) the RG flow
can be calculated by different techniques and one can show that:

dg_ 2

=9 (10.158)

where ¢ = J/W. In this case the Kondo coupling is marginal (very
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similar to the previous case with o = 1). We can solve this RG flow as:

9(0)
0) = 10.159
9(t) 1+ g(0)¢ ( )
which shows that when £ = —1/¢(0) the coupling constant diverges

under the RG, indicating, as previously the failure of perturbation the-
ory. From this result we obtain the Kondo temperature of the problem
as:

kgTx = We /90 o We W/ (10.160)

and therefore the Kondo temperature is exponentially small with the
Kondo coupling J.

The experimental consequences of the formation of the bound states
are immediate: the magnetic susceptibility of the impurity, instead of
following the Curie law, x o< 1/T has to saturate at T = Tk so that

Ximp(T') o Ti; (10.161)

K
the entropy of the system, instead of being S = kpN In(2) as it would be
for a spin 1/2 atom has to go to zero below Tk because of the formation
of the bound state, this implies that the specific heat, Cy = TdS/dT,
has to behave like

Cvimp X L (10.162)
Tk
for T < Txk. All these effects are observed at low temperatures (Tx =
1 —5 K) in magnetic alloys.

Moreover, the Kondo effect leads to the so-called Kondo minimum
in the electric resistance of these systems. On the one hand, formation
of the virtual bound states or scattering resonances implies strong scat-
tering (with the phase shifts close to 7/2 also known as the unitarity
limit). The scattering increases below Tk and therefore one expects
the resistivity to increase with decreasing temperatures. On the other
hand, phonon scattering decreases with decreasing temperature because
as the system gets cooler there are less phonons in the system. The final
result is therefore a minimum in the resistivity.



10.6. THE KONDO PROBLEM 289

Another interesting property of the Kondo effect is its non-locality.
Since Fr > kgTxk for Ty ~ T < Er/kgp the only energy scale in the
problem is the Kondo temperature Tx. The only information of the
electron gas that is important for this problem is the Fermi velocity,
vr, since the states at the bottom of the Fermi sea are irrelevant for
the physics discussed here. Using the Fermi velocity and the Kondo
temperature we can construct a quantity with dimensions of length,
lx, that is called the Kondo screening length:

. ﬁ’UF
 keTx

5% (10.163)
The physical meaning of this quantity can be understood if we calculate
the average value of the correlation function between the local spin S
and the electron spin s(r), namely,

(S -s(r)) ~ e/t (10.164)

which decays exponentially with distance from the impurity. Although
this result has not been demonstrated here it seems almost obvious
when we realize that the only length scale in this problem is given
by (10.163). This result shows that for distances larger than g the
electrons and the impurity are uncorrelated. Only electrons in a region
of size 3, around the impurity site participate in the Kondo screening
process. We can estimate the number of electrons, Nk, as:

Er )3 (10.165)

where we used that the electronic density n is essentially proportional
to k3 and used (10.163) with Er ~ hvpkp. Since Ep ~ 1 eV and
ksTx ~ 107 eV we see that Nx ~ 10'2 electrons. That is, a huge
number of electrons participate in the screening process.
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10.7 Problems

1. Consider the Hamiltonian for the Kondo problem (10.118) in its
isotropic form (J, = J,) and assume that J < Er and that the
electrons have a spherical Fermi surface.

(i) Using the first Born approximation, calculate the scattering
amplitude t&) (k, ') for the scattering of an electron from an state
|k, T to a state |k/, 1 as a function of J and S*.

(#4) Show that in the second Born approximation the scattering
amplitude, t® is given by:

1

k) = Y [0 — )k, 1t |Hg K", o) (K", 0| Hx|K', 1)
K’ Ek - Ek’
+ m(k" o|Hg|K, 1 (k, 1 |Hg|K", o). (10.166)

Here ny is the Fermi-Dirac occupation number. Notice that the
order of the matrix elements matters! Explain why.

(#43) Show that the above expression can be approximately written
as:

k)~ 2(J)2 57—

. 10.167
> B — B ( )

Assuming a constant density of states N(0) for the electrons cal-
culate the sum above and show that it can be approximately
written as:

t@ (k) ~ 2(J)* S*N(0) In(W/|Er — E|) (10.168)

where W is the bandwidth. Notice that t® (kp) is divergent!

(iv) The total scattering by the impurity, (t®) can be obtained
by integrating (10.168) around the Fermi surface in a region of
energy of size kgT. Show that in this case (t®) is logarithmically
divergent with the temperature.

(v) The total resistance generated by the presence of the impurity
is written as: p(T) = po(1 — (t®)) where pp is the temperature
independent part of the resistance (see Chapter 7). If the phonon
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contribution to the resistance is given by pp(T) = AT® show that
this gives rise to a resistance minimum in the behavior of the total
resistivity of the material.

10.8 Itinerant Magnetism

So far we have discussed the problem of magnetism arising from impu-
rities on a metallic host. In this type of systems there are two types of
electrons: localized electrons coming from f or d shells and conduction
band clectrons from s or p shells. In many systems such as Fe mag-
nctism appears duc to clectrons in a single atomic shell. In this casc one
cannot differentiate between the clectron that produces the magnetism
and the electron that participates in the conduction. Systems like this
are called itinerant. Our starting point is going to be the Hubbard
model which was discussed in the beginning of this chapter

H=> (& — ,u)cLack,a +U D nin, . (10.169)
k,o %

Here we have introduced the chemical potential p and will work in the
canonical ensemble keeping p fixed and allowing the number of electrons
to fluctuate. The complete solution of (10.169) was only obtained in one
dimension via the so-called Bethe ansatz. In higher dimensions one has
to use approximate solutions. In this section we are going to treat the
problem in the Hartree-Fock approximation. This is an uncontrolled
approximation. Although with own limitations, this kind of approach
can provide a lot of insight about the physics of the problem.

The complexity of (10.169) is associated with the treatment the in-
teraction term. Because it involves four electron operators it is a highly
non-linear problem. In mean field theory we replace the interaction
term by

Mg, — (Ma )Ty + 10 (N ) — (i) (s L) (10.170)

where the averages are evaluated in the ground state. Notice that
the factorization is done so that (n;+n; ) = (ni+){n;), that is, the
fluctuations in the up and down spin channels are independent.
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It is convenient to rewrite the problem in terms of the total number
of electrons per site and the magnetization as

Ni = {nip) +(niy)

Mi = <TL,',T> — (nm) (10171)
or equivalently,
N; + M;
) = Nt
N; — M
(i) = (10.172)

in which case the mean-field Hamiltonian is given by

U
Hyr = ) (&~ :u)clt,ackﬂ t3 > [Ni(nigy + niy) — Mi(nis — niy)]
k,o %

—%ZW—W) (10.173)

In what follows we are going to assume that state is always homoge-
neous and therefore
N,
Ni=n==2 10.174
n=— ( )
where N, is the total number of electrons and N the total number of
sites. In this case we can rewrite (10.173) as

UNn? Un
Hyr = ), ekclt,o'ckﬂ + 1 + b3 > (i +may)
k,o %
U U
+ XM =5 ) Mi(nig —niy) (10.175)

where the second term in the first line on the r.h.s. of (10.175) is a
total energy shift, the third term is just a shift of the electron energy,
the first term on the second line on the r.h.s. is the energy required to
magnetize the system and the last term is the interaction between the
magnetization and the electron themselves. This term has the form of
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Figure 10.7: Two-dimensional Néel state.

a local applied magnetic ficld. Observe that in this problem M; is an
unknown and has to be calculated sclf-consistently. As usual in mcan
ficld approaches onc has to guess the nature of the ground state, that
is, the form of the magnetization. In a ferromagnetic system all spins
point in the same direction and therefore M; = M, for all sites. In
an antiferromagnetic system the situation is more complicated because
one can have different sub-lattices in which all the spins are up or all
the spins are down. For instance, for a square lattice the magnetization
can be given by

M;; = My(—1)" (10.176)

where each site is located at (ai, aj) where « is the lattice spacing. This
classical state of the electron system is called the Néel state and it is
shown on Fig. 10.7. Observe that although the magnetization changes
from point to point in space the Fourier transform of (10.176) is quite
simple

M(q) x d(a—Q) (10.177)

where Q = (7/a,w/a) is the so-called ordering vector. For a ferromag-
net we have Q = 0.

Here we are going to consider only the case of the ferromagnet
and leave the antiferromagnet as a problem for the reader. In the
ferromagnetic case we can rewrite (10.175) as

2
HMF = Z €xNk, o -+ N[]4M0 + UZQWO Z(nm — TL,',\L)
k,o

i

NUM? UM, UM
- Ty 0+Z[(ek_“_ 20>”“’T+(E“_“+7€1>ﬂ‘2§})
k
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where we have used }>; n; , = >y k.. Observe that (10.178) is already
in diagonal form since it only depends on the occupation in momentum
space. The total energy now only depends on the occupation of each
spin state, that is, in the ground state

<nk,a) = G(EF,O' — 6k) (10179)

where Er, is the Fermi energy of each spin state and at this point it
is an unknown. Moreover, M, in (10.178) and it is also unknown. In
order to calculate this parameters one has to minimize the total energy
of the system as a function of them. The energy of the system is written
as:

NUM? UM,
E = 4 0 +Z[(6k— 0>®(EF,T—,M—61<)
k
UM,
+ (€k — U+ 0) G(EF,,L — 6k)] (10180)

As usual in this kind of problems it is useful to introduce the electronic
density of states

N(e) = % SUCEEN (10.181)

in which case the energy density £ = E/V becomes

M? Ep, M,
E = psU4 0+/ Tde(e—,u—UQ())N(e)

EF,
+ / " de (6 —p+ UJQVIO> N(e) (10.182)

where p; = N/V is the solid density. In order to calculate the unknown
parameters in the energy density we have to minimize it so that

9 _

ou P

OE
OFEr, 0

% _ (10.183)

oM,
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where p = N,/V is the electron density. Furthermore, in order to make
sure that the solution is really a minimum and not a maximum one
has calculate the second derivatives of the energy with respect to the
variational parameters. The reader can do it as an exercise. From
(10.183) one finds

Ep 4 Er,
/ deN (e) +/ deN(e) = p
UM,

(EF,(, P u) N(Er,) = 0

Ert Er
psMo-i—/ deN () —/ deN(e) = 0. (10.184)

—0o0
We can first solve for ;4 and M, using the two equations for the spins:

Ery + Ery
2

Ep+—E
My, = % (10.185)

which can be now substituted into the other two equations:

EF,T EF,l
/ deN () +/ deN(e) = p

—0o0

B, Eps—E
/ TdeN(e) = p,ZBL T e (10.186)
Epq U

which is the set of equation with define Ery and Er . After these are
calculated one can obtain the chemical potential and magnetization
from (10.185). Using (10.185) we can rewrite (10.186) as

EF, Ep+—FE
p = 2/_ FTdeN(e) +ps%
Er.—F Ep,
pe / FldeN(e). (10.187)
U Ert

Observe that the last equation in (10.187) can be rewritten as

Epy — Ep,

EF,T_EF,l
= | /0 deN (e + Ep)) (10.188)
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which for fixed Er is a single equation for Er+ — Ep . Since the
density of states has a finite bandwidth the integral in (10.188) is a
monotonic function of x = Er+ — Er | and saturates at large values
x as shown in Fig. 10.8. The solution of (10.188) is the intercept of
a straight line of slope p,/U and the r.h.s. of (10.188). Observe that
there is a critical value of U, say, Ug, above which one finds a solution
with x = 2* # 0 and therefore from (10.185) corresponds to a system
with finite magnetization, that is, a ferromagnetic state. For U smaller
than Ug the only solution is x = 0 which is the paramagnetic state. In
order to calculate U one has to linearize the r.h.s. of (10.188) in order
to get

Ps
Up = —=—— 10.189
= N(Ery) (10.189)

where Er+ is determined by the first equation in (10.187):
Er 4
p= 2/ deN (e) (10.190)

which completes the solution of the problem at U = Us. The condition
for the existence of a ferromagnetic state for U larger than U as given
in (10.189) is called Stoncr criterion. This criterion, which is based on a
mcan ficld approach, is only a estimate of how large U has to be (or how
large the density of states has to be) in order for the system to have a
spontaneous ferromagnetic magnetization. As we are going to see in the
next chapter the mean field solution is an extreme approximation that
has its limitations. It provides us, however, with the information that
the Coulomb interaction is fundamental for the creation of an ordered
magnetic state.
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Figure 10.8: Diagrammatic solution of (10.188): solid line is the r.h.s.
of (10.188).
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10.9 Problems

1. Consider the problem of itinerant magnetism in an antiferromag-
net in a square lattice in two dimensions in which the magnetiza-
tion is given in (10.176). This can be rewritten as

M(r) = My cos(Q - r)
where Q = (w/a,7/a).

(i) Show that for a square lattice the electron dispersion relation
in the tight binding approximation is given by

ex = —2t (cos(kya) + cos(kya)) .

And therefore show that e, = —ex_q.

(#) Make a plot of the Fermi surface in momentum space, that
is, (ks,k,) at half filling (. = 0). Show that the opposite sides
of the Fermi surface can be linked by the vector Q. Observe that
this means that the symmetry of the problem has been broken
and now states which differ by a vector Q are actually the same
state. Explain what symmetry has been broken and show that
the magnetic Brillouin zone of the problem is the Fermi surface
you just plotted.

(#43) Write down the mean field Hamiltonian for the problem and
show that it depends on ck, and cxi+q,. Define the following
spinor:

.01 = ()

Ck+Q,0

and show that the Hamiltonian of the problem can be written as

UM?
H="74 3 [WM)] [How] [Tor (k)
k,o,0’
where
UM,
€k — Ty
Hao" = 2
Mool =| oik, 2,
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where M, is the staggered magnetization and 7, is a Pauli matrix.

(7v) Diagonalize the above Hamiltonian and find the new elec-
tronic spectrum. Show that a gap opens in the spectrum at the
Fermi surface. Interpret your result in terms of the symmetry of
the problem.

(v) Calculate the total energy of the problem by filling up all the
energy states below the gap (since the system is at half filling)
and by minimizing it find the equation that determines M,.

(vi) In this item we are going to use the Debye theory for phonons
in the context of the antiferromagnet. Expand the spectrum
around the (7/a,7/a) point to second order in the momentum
and perform the integral of item

(v). Note that you have to introduce a cut-off in the upper limit of
the integral so it converges. This cut-off, say A, can be calculated
by using Debye’s theory for phonons. What is the functional form
of M, as a function of U and ¢.
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Chapter 11

Magnetic phase transitions

In the last chapter we discussed the origins of magnetic interactions
in solids and how they lead to magnetic order. At high temperatures
magnetic atoms behave independently from each other leading to the
paramagnetic behavior. At low temperatures the atoms can take ad-
vantage of magnetic exchange interactions and lower their energy by
ordering in a some specific form that depends on the particular charac-
ter of the interactions. The two main types of ordering are ferromag-
netic and antiferromagnetic, depending if the system orders with its
magnetic moments parallel or anti-parallel to each other.

In this chapter we focus on the problem of magnetic ordering and
its consequences to the magnetic behavior of solids. When the system
orders magnetically we say that long range order has been established.
When a system attains long range order the internal symmetry of the
system is lowered. Thus, with the decreasing of the temperature there is
a spontaneous lowering of the symmetry and thus a phase transition: a
transition between a highly symmetric phase at high temperatures and
a low symmetry phase at low temperatures. The study of the phase
transition has reached a great deal of development with the introduction
of the concept of renormalization group and universality. These are one
of the most important concepts in modern condensed matter physics.

301
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11.1 Spontaneous symmetry breaking

In order to understand how a phase transition occurs in a magnetic
system we consider for instance the ferromagnetic Ising model,

1 N
H=-% > JiSiS; (11.1)

1,j=1

where J;; > 0. Observe that the Hamiltonian (11.1) has a symmetry
for the reversal of the spins, that is, we can reverse all the spins and
the Hamiltonian remains the same. Mathematically the Hamiltonian
is invariant under S7 — —S7. The question here is: is the ground state
of the (11.1) invariant under this symmetry? Firstly let us assume
that the ground state is invariant under the overturn of spins. We can
specify any state of the system in the terms of the eigenstates of S?,
that is,

0) = |7, 55, ..., SR - (11.2)
If this states is invariant under the overturn of spins we certainly have

| — 87, =53, ...,—S%) =|5%,55,...,58%) . (11.3)
It follows immediately that

(S, ..., S5|S21S7, ., S3) = (—SF,... 85|87 — 8%, ..., —S%)

from which we have to conclude
<O|S]z-|0) =0. (11.5)

Thus, if the ground state has the symmetry of the Hamiltonian then
the average magnetic moment is zero. It is possible, however, that the
ground state does not have the symmetry of the Hamiltonian, that is,
it is not invariant under S — —S7. In this case we cannot conclude
(11.5) and we can have that (0|S?|0) # 0. If this happens the symmetry
of the Hamiltonian is broken and the system acquires finite magnetic
moment. In a system without disorder, that is, a system with the
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translation symmetry of the lattice, all the spins are equivalent and
therefore it does not make sense to speak of a particular spin. In this
case we define an average quantity over all spins

1 X
M= N;(owj |0) (11.6)

where M # 0 in the phase with broken symmetry. M is the magne-
tizatzon of the system and it can be finite because the spins interact
ferromagnetically so they can align on some given direction. If the
ground state of the system is such that (11.6) is true than we can that
the symmetry is spontaneously broken since the ground state does not
have the symmetry of the Hamiltonian. Observe, however, that we
have two possibilities: either all the spins point in the up direction or
they point in the down direction. For these two states the symmetry is
broken and they are degenerate since they have the same energy. This
degeneracy can be lifted by applying a magnetic field to the system. In
the presence of an infinitesimal field the degeneracy of these two states
is lifted and the system picks the state with lowest energy. We say that
the external magnetic field is the symmelry breaking field.

At high temperatures we expect the magnetic moments to act inde-
pendently, that is, paramagnetically. At these temperatures we would
have M = 0 since the spins point randomly. If the the system, at zero
temperature, has M # 0 then there is a critical temperature T, such that
above T, the system is disordered, that, is M(T > T.) = 0, and above
which the system is ordered, that is, M(T < T,) # 0. At T =T, we
have a phase transition. Since the magnetization changes from zero to
a finite value at the transition we say that M (T) is the order parameter
of the magnetic problem. Moreover we have two possibilities at T = T:
i) the magnetization can jump discontinuously from M (T =T, +¢€) =0
to M(T =T.—¢€) #0at T =T, (¢ — 0) in which case we say that the
transition is of first order as shown in Fig.11.1(a); i) the magnetization
can go continuously from M(T =T.+¢) =0to M(T =T, —¢€) #0
at T = T, in which case we say that the transition is of second order
as shown Fig.11.1(b). Observe that the fact that the magnetization
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Figure 11.1: Magnetization of a system during a phase transition: a)
First order; b) Second order.



11.1. SPONTANEOUS SYMMETRY BREAKING 305
V'
T<T

c

v

T<T

C

Figure 11.2: Magnetization as a function of external field at fixed tem-
perature.

changes at T = T, implies that the magnetic susceptibility, that is,

= (%) y (11.7

diverges at T = T,. In order to understand why this is so consider the
plot of the magnetization as a function of the magnetic field at fixed
temperature as shown in Fig.11.2. At T > T, the magnetization is just
paramagnetic and is zero at B = 0. If T < T, one has M(T) # 0
for B = 0. Thus, at T = T,, the magnetization has infinite curvature
implying a divergent susceptibility.

Although we have talked about ferromagnets the concept of broken
symmetry, order parameter and symmetry breaking field can be gener-
alized to any system with long range order. As an example consider the
case of an antiferromagnet such as the one shown on Fig. 10.7. Observe
that in this case the system indeed has (S}) # 0 at each site but the
total magnetization as defined in (11.6) vanishes even in the ordered
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phase. This is because the homogeneous magnetization is not the order
parameter of the antiferromagnet. Let us look at the magnetization of
an antiferromagnet as the one in Fig. 10.7. It is easy to see that the
local magnetization at position r = (n,m)a is

M(r) = M,(~1)"™ (11.8)

where M is a constant. Observe that the magnetization oscillates from
site to site and therefore vanishes if we sum over all sites. However, it
is clear from the equation above that M, has to be finite in the ordered
phase. We can obtain M, from (11.8) if we multiply both sides by
(—=1)"™™ and sum over all sites:

= %;(_ D™ M (r %Z (S5 (11.9)

which is called the staggered magnetization of the system. Further-
more, observe that the ferromagnetic state retains the symmetry of the
lattice while in the antiferromagnetic case the unit cell doubles (one
needs at least one spin up and one spin down in the same unit cell) and
then the translational invariance of the lattice is also broken (you ex-
plored this effect in the last problem on Chapter 8). A clear way to see
that, is to Fourier transform the local magnetization in each case. For
the ferromagnet the local magnetization is uniform, M (r) = M,, and
therefore its Fourier transform has Dirac delta peaks at k = 0 and all
other reciprocal lattice vectors G. Thus the ferromagnet has the sym-
metry of the lattice. In the antiferromagnetic case as given in (11.8) the
Fourier transform has Dirac delta peak at Q = (7/a,7/a) as you can
easily show. Finally, the symmetry breaking field in this case is not an
homogeneous magnetic field since it cannot differentiate between the
two degenerate states of the antiferromagnet (which are obtained by
flipping all the spins in the system). In the antiferromagnetic case a
staggered field is the symmetry breaking field!

11.1.1 Critical exponents

In the case of second order phase transitions the order parameter goes
smoothly to zero at the critical temperature which implies that the
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magnetization has to behave like
M(T) x (T, —T)? (11.10)

for T very close (and smaller) than T,. £ is known as a critical exponent.
The magnetic susceptibility is given by

X(T) < (T -Te)™ (11.11)
for T > T, and
X(T) o< (T. = T)™ (11.12)

for T < T, since the susceptibility has to diverge on both sides of tran-
sition but not nccessarily with the same exponents. Another exponents
arc defined for other physical quantitics. For instance, the specific heat
at fixed field also diverges at T = T, and one has

Cy(T) o< (T —T,)™ (11.13)
for T > T, and
Cn(T) < (T, —T)™* (11.14)

for T < T.. Another interesting property is that the magnetization
does not have to be linear with the magnetic field at T = T, and we
define another exponent é by

M o |B|°sgn(B). (11.15)

Besides the critical exponents that define the thermodynamic func-
tions there are exponents that define dynamical correlations. Corre-
lation functions are important for experiments that measure spatial
and temporal correlations among spins. In the phonon problem we
showed that the dynamical form factor S(k,w) is given in terms of a
density-density correlation function. Remember that the neutrons in-
teract with the system of interest via the spin-spin interaction. Thus,
neutron scattering is very sensitive to magnetic order. Like in the case
of scattering of neutrons by phonons we would have Bragg scattering of
the neutrons below 7, when the system has long range order. Observe
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that as in the case of atoms in a solid the Bragg peaks are directly
related with the magnetic ordering in the system. In the case of the
ferromagnet the magnetic ordering does not break the symmetry of the
lattice and in the case where the ordering is commensurate with the
lattice the Bragg peaks are at the reciprocal lattice vectors G. Thus,
in a ferromagnet magnetic peaks superimpose to lattice peaks. This
is not the case of an antiferromagnet where a Bragg peak appears at
Q which is not a reciprocal lattice vector. As in the case of phonons,
perfect order implies the presence of infinitely sharp Bragg peaks. In
the magnetically disordered phase we do not expect these peaks to dis-
appear immediately but to become broader due to lack of long range
order. In momentum space this broadening is given by 1/£ where &
is called the magnctic corrclation length. In order to understand the
mecaning of the corrclation length let us assume for simplicity that the
shape of the peak (or intensity) in the magnetically disordered phase
is given by a Lorentzian shape

Io/§
(k—Q)*+1/¢

where Q is the ordering vector (Q = 0 for the ferromagnet and Q #
0 for the antiferromagnet) and I is a constant. Observe that when
& — oo the Lorentzian in (11.16) goes to a Dirac delta function at
k = Q as expected in the case of complete order. Thus £ is a function
of temperature and diverges at T = T,.. Moreover, it is easy to show
that the intensity is proportional to the spin-spin correlation function
for spins at different sites, (S7S?). In order to see how the correlation
function behaves one has to Fourier transform (11.16) to real space. It
is a simple exercise to show that

I(k) = (11.16)

v — 1y
I(r; — ;) o< (S;S?% ocexp{—ij : 11.17
(ri = 1) ox (S:57) ) (11.17)
Now the meaning of the term correlation length is clear: it tells what
is the characteristic distance above which the spins are uncorrelated.
At T = T, one expects the spins to be strongly correlated and &(T)
diverges. One then defines the critical exponents for £(T) as

{T) < (T-To)™ (11.18)
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when T > T, and B =0 and
ET) x (T,—T)" (11.19)

when T < T, and B = 0. In some cases the correlation function decays
algebraically with the distance (in which case the neutron scattering
intensity is not a Lorentzian)

1

_ 11.20
vy — 1[4 (11-20)

(S5S7)
with a new cxponent 7 for a system in d dimensions.

It turns out that these critical exponents are not independent of
each other because of the thermodynamic relations between the var-
ious quantities. This is related with the so-called scaling hypothests.
Consider the free energy F(T, B) which we parameterize in terms of
the reduced temperature

(11.21)

The scaling hypothesis asserts that, close to the phase transition, it is
always possible to find two parameters ¢; and ap such that

FO\%t, \*2 B) = \F(t, B) (11.22)

for any value of the real number .
In order to understand how the exponents are relate let us differen-
tiate (11.22) with respect to B in order to get the magnetization:

)\aBaF()\“ft,)\“BB) B AaF(t,B)
O(\er B) B OB
AR MM, A" B) = AM(t,B). (11.23)

Consider the case where B = 0 and ¢ — 0. From (11.23) we have:
M(t,0) = X271 M (X%t 0) (11.24)

that is valid for any A. In particular for

1 1/as
A= (—?) (11.25)
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we find
l1-a
M(t,0) = (—=t) = M(=1,0). (11.26)
But from (11.10) we have in the limit of t — 0~

=170 (11.27)

Gy

Let us now take ¢ = 0 and let B — 0 in (11.23)
M(0,B) = X*®~' M (0, \*® B) (11.28)

and choosc A = B~/%5 in order to get

1—a

M(0,B) = B5 M(0,1) (11.29)
which by direct comparison with (11.15) leads to

§=_25_
]_—(J,B

(11.30)

Similarly we can derive twice with respect to B in order to obtain
ABBy (XU NEB) = Ax(t, B). (11.31)

Taking the limit of B = 0 first and choosing A = (—t) /% we can prove

,:2aB—1

Y (11.32)

Gy
and using again (11.31) with A\ = ¢~'/% one finds
vy =r (11.33)

implying that the susceptibility diverges with the same exponents on
both sides of the transition. Moreover, combining (11.32) with (11.27),
(11.30) and (11.33) one finds

v =B(6—1) (11.34)

which relates three different exponents.
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Using exactly the same arguments for derivatives with respect to
the temperature we can show that

o +B([0+1)=2 (11.35)
and
a=a (11.36)
and combining (11.35) with (11.34) one finds
a+28+y=2. (11.37)

Many other relations between the exponents can be obtained in this
way. Although the scaling hypothesis is an assumption and cannot
be proved, it makes many predictions for critical exponents that can
be checked experimentally or analytically for specific models. This hy-
pothesis has been very successful in explain critical behavior in systems
with second order phase transitions.

11.2 Mean field approach

In order to calculate the exponents that define the critical behavior
of a magnctic systems we have scveral options. One of them is to
solve the problem cxactly. This is a major task since the problems at
hand are very complicated. The other approach is to use mean field
theories. In mean field theories we look at a particular spin and try to
replace all the other spins in the problem by a the average field of the
other spins. We have discussed this procedure in the case of itinerant
magnetic systems at the end of Chapter 8. Here we are going to discuss
it in the context of localized magnetism. Let us go back to the problem
of the ferromagnetic Ising problem in a magnetic field. We will assume
that the interaction occurs only among next nearest neighbors. The
Hamiltonian given by

J 2 Q2 2
1, ?
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In the mean field approach we replace the interaction by
S7S; — (SP)S; +(S5)St . (11.39)

Moreover, we assume that the magnetization is uniform so that (S?) =
M in which case Hamiltonian (11.38) is replaced by

HMF = _g,UBZBefszz (1140)

where
B,y =D+ AM(T, B) (11.41)

is the effective magnetic field, Z is the number of nearest neighbors and
M (T, B) is the magnetization given in (11.6) and
2ZJ
A= — (11.42)
(91B)
is the so-called molecular field. Obscrve that (11.40) is the Hamiltonian
of a sct of independent spins S in a magnetic ficld. This problem was
studied for paramagncets in Chapter 8. In particular the magnetization
of this problem is given in (1.38),

M(T,B) = MyBs|B9SupBeys]
= MyBs|BgSus (B + AM(T, B))] (11.43)

where My = gupS. Notice that (11.43) has to be solved self-consistently
to give the magnetization. For B = 0 this equation reduces to

which is shown graphically on Fig.11.3. Observe that this equation has
the trivial solution M = 0 for all 7. This equation has also a non-trivial
solution M # 0 if the slope of the straight line is larger than the slope
of Brillouin function. Thus let us consider the Brillouin function close
to M = 0. The expansion of Bg(z) for small z is

N S+1$_ (S+1)(1+2S+252)$3

B
s(r)~ =35 9053

(11.45)
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Figure 11.3: Graphical solution of eq. (11.44)

and therefore there is a non-trivial solution for temperatures 7' < T,.
In order to calculate T, we use (11.44) to find where the slopes in both
sides of (11.44) equal each other. That is,

S +1gupSAi
| = 11.4
T (11.46)
and therefore (11.42) we have
1
T.=XC = 2Z2J5(5+1) (11.47)
3kp
where
2
¢ = lonp) S5+ (11.48)
3kp

is the Curie constant.
For simplicity let us consider the case of a S = 1/2 spin in which the
Brillouin function reduces to By »(z) = tanh(z/2) and (11.43) reduces
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to
M = My tanh (Bgup(B + AM)/2) . (11.49)

In order to simplify our calculations we define

M

mo= g

T
= — 11.50
r= 7 (11.50

and (11.49) becomes
B
m = tanh (g“’; ﬁ+ﬁ> (11.51)
T

which can be rewritten with the help of trigonometric identities as

_ m — tanh(m/7)

= 11.52
1 — mtanh(m/7) ( )
where
B
b = tanh (9“32 ﬁ) . (11.53)
Let us consider the case that T ~ T, where m ~ 0 and expand (11.52)
as
1 1 1 1
b~ (1——) 3[— —(1——)]. 11.54
" T o 373 * T T ( )

In zcro ficld, b = 0, (11.54) gives

. , (1
m? ~ 37° (— — 1) x (T.—1T) (11.55)
T

which can be immediately compared with (11.10) to give

Bur = % (11.56)
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At the critical temperature, that is, 7 = 1, and small fields one finds

gupB _m?
~— 11.57
2kgT, 3 ( )
which, by comparison with (11.15), gives
Sarr = 3. (11.58)
In order to calculate the susceptibility we observe that
OM  OM Om 0Ob
T = _—
XT) = 35 = om b 0B
C om
= ——. 11.59
T 9b ( )
If we differentiate (11.54) with respect b we get
om 1 m2]
ob l( 7'> * 731 ( )
and from (11.59) one finds
C 1 m2]
T~ —=|{1—-— — . 11.61
X(T) T ( 7'> + 73 ] ( )
In the disordered phase (T > T.) we have m = 0 and therefore
(T) ~ ¢ (11.62)
MU ET T, '
which from (11.11) gives
while in the ordered phase (T < T,) we use (11.55) and find
c 1
T)~ — 11.64

which from (11.12) we find

Yup =1. (11.65)

Observe that the scaling hypothesis predicts from (11.35) and (11.36)
that ayr = ajp = 0 which implies that the specific heat does not
diverge at the transition.
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11.3 Mean field and beyond

Observe that the mean field theory has no small parameter and cannot
be explained in terms of a perturbative expansion. In order to under-
stand better the nature of the mean field let us consider the problem in
the basis of S? (S7|o;) = 0i|0;) where o; = £1). In this case the energy
of the problem depends on the configuration {o;} and from (11.38) we
have

E({O’i}, B) = — Z Ji,jO'iO'j — Z O'iB . (1166)
%, i

where we assume that J; ; only depends on the relative distance |r; —r,|
between the two spins. The partition function of the problem is given
by
Z|B) = Y e #EUeibB) (11.67)
{oi}
where the sum is over all the spin configurations. Observe that (11.67)
is quite uscful since the magnetization at zcro ficld of the system is

E{U'} Zj Oje_BE({m'},B:o)

_ ! <3Z[B]> - (11.68)

M =

BZB=0]\ 0B
We will rewrite (11.67) in a different way using a well known identity
+oo 2 2 2,2
/ dre® /)t — \forq ¥ (11.69)

Using (11.66) in zero field (B = 0) and the above identity we can write

7 = 3 eEukuno
{o:}

N
o0 —
x Y / 11 dd’je_i 2 0Ty 412, dio

{oi} 7 j=1

o0 N —
x / 11 d(f)je*% 2y 079 > e #ici (11.70)
=t {oi}
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where K; ; = 5J; ;. We now observe that

> e2i 93 = JI2cosh(e;) = D2 eosh(91) (11.71)
{oi} i
Moreover, we define,
Lo
Ui =2 575 (11.72)
J

and the partition function becomes

oo N - 1 .3 Wq ny{ cos . i Wi
Zoc/ I deje S Kt i (cooh(z T, K”%)). (11.73)
=1

Observe that what we have done was to trade a sum over discrete
variables for an integral over a continuous variable. But in doing so we
have generated a non-linear term in the partition function.

11.3.1 Interactions with infinite range

Let us now consider the “artificial” case of interactions with infinite
range. In this case we have

2J
Jij = 5
K 2J8
Ky = 5=~ (11.74)

Observe that in this case the partition function in (11.73) simplifies
considerably since we can change variables to a “center of mass” vari-
able

1
Y= 2t (11.75)
i
in which case the partition function can be written as

7 /+00 Ch/) e_N{K¢2_1n(cosh(2K¢))} (11-76)
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which is a simple integral but with a very complicated integrand. Notice
that the exponent in (11.76) scales with N the number of spins in the
system. But we are interested in the limit of N — oo in which case the
integral is dominated by the saddle point value of the integral that is,
the minimum of the function

S(1)) = Kvp* — In (cosh(2K1))) (11.77)

which is plotted of Fig.11.4. The minimum of this function is given by

s
o
Y = tanh(2Kv) (11.78)

= 0

which gives the value of 1. Observe that (11.78) is identical to (11.49)
with ¢) ¢ M. In particular, if K < 1/2 (T > T, = 2J/kg) the only
solution is ¢ = 0 and for K > 1/2 (T < T, = 2J/kp) a solution with
1 # 0 exists. This simple calculation shows that mean field theory is
equivalent to solve the problem with interactions with infinite range!
Thus, we should suspect that in the real case with short range interac-
tions fluctuations around the mean field solution are going to be very
important.

In order to understand the how the phase transition occurs let us
consider the free energy for the order parameler as given by (11.77).
Let us expand S(¢)) to fourth order in ¢ (Incoshz =~ 2?/2 — 2*/12):

4K*
Tw. (11.79)

S(p) ~ K(1 — 2K)y? +
Observe that the quadratic term changes from negative to positive when
K > 1/2 to K < 1/2. Therefore the curvature of the free energy at
¥ = 0 changes at K = 1/2. In this case the ground state of the
system for K < 1/2 which is given by ¢ = 0 becomes metastable at
K =1/2. For K > 1/2 the state with ¢y = 0 becomes unstable and
the ground state is given by the two solutions of (11.78) which are
degenerate reflecting the symmetry of the problem. Tt is clear that the
full form of (11.77) is not needed. The physics of the problem is already
present in (11.79). The term proportional to #* is only need to keep
the free energy bounded from below in the ordered phase. Without this
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Figure 11.4: Plot of eq. (11.77). Dashed line: K < 1/2; Continuous
line: K > 1/2.

term the system would be thermodynamic unstable since the ground
state would be given by ¢ — 400 with infinitc negative energy when
K > 1/2 which is clearly unphysical. In the disordered phase K < 1/2
the free energy is naturally bounded and the term in 9* is irrelevant
for the physics.

11.3.2 Local interactions

Naturally the interactions between spins are short-ranged. In this case
the previous approach is not appropriate. Indeed Kj 5 is really localized
closc to r; = r; instcad. The best way to realize this is to look at the
Fourier transform of K ;,

K(r) = % S K9, (11.80)

On the one hand, if K(r) has infinite range then K (k) is a Dirac delta
function at k = 0. On the other hand, if K(r) is localized then K (k)
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is a smooth function of k. Therefore, if we work in momentum space
we can always work with functions that can be expand in power series.
So let us introduce the Fourier transform of ;,

1 ik-r;
P(r;) = i ge (k). (11.81)

Moreover, because K(r) and (r;) are real functions we must have
K(-k) = K*(k) and 9(-k) = 9" (k).

As we explained in the case of the interactions with infinite range
interactions we do not need to work with the full free energy (11.73).
Instead we are going to use a truncated form of the free energy

2 4
4

irj B
For the moment being we arc going to focus on the quadratic terms.

It is very casy to show with the usc of these Fourier transforms the
following relations

DYl = 3 K(Ky(k)y(-k)

(3

> (Z K@j%) = Y K®KE(-Kypkp(-k). (11.83)
Thus the quadratic part of (11.82) can be written as
Ry = 3 (109 209 F) [40 (1184

Observe that if the interaction was a Dirac delta function in real space
(local interaction) then Kk) should be a constant. Let us assume that
K (k) is a real function of its argument. Then (11.84) as

Fo =3 K(k)(1-2K(k)) [¢(K). (11.85)

This equation is very important because it tells us that if there is a
wave-vector Q for which

K(Q) > (11.86)
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then the system is unstable at that particular wave-vector. Observe
that this condition implies that the phase transition happens to the
component (Q). Since 1) is essentially the magnetization of the system
is implies that the order parameter of the system is given by

M(r) = Mo (97) . (11.87)

This is in complete agreement with our previous discussion.

Let us now go back to the ferromagnetic problem and study what
happens at the unstable wave-vector, that is, k = 0. Close to k = 0 we
can expand K (k) as

K (k) ~ Ko (1 = (¢h)? + O(k*)) (11.88)

where £ is a constant with dimensions of length. From now on we are
going to disregard all the terms of order £* and higher. Observe that
K, is the Fourier component of K (k) with zero momentum, that is,

Ko=) K(r)=2ZpBJ (11.89)

where we have assumed that the interaction only couples the Z nearest
neighbor atoms. Direct substitution of (11.88) into (11.84) one gets

Fy =" Ko [(1 - 2Ko) + (4Ko — 1)(¢k)?] [ (k). (11.90)

Observe that, exactly like in the case of the mean field theory when
k = 0 this part of the free cnergy becomes negative when Ky > 1/2
which defines the critical temperature

2ZJ
T, = ——. (11.91)
kg
At this level of approximation we are recovering the mean field approx-
imation.
If we are interested only in temperatures close to T, then we can
write
1
5 +0O(T-T.)

T-T,
1-2K, =~ 7 S+ O(T-T.)?

c

4Ky—1 ~ 140(T-T,) (11.92)

K,

Q
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and the free energy (11.90) as

1 T-T,
Faiy ( + (Ek)2> (k)2 (11.93)
24\ T,
It is usual to rewrite (11.93) in a slightly different way by defining
ok) = Lyk)
T-T,
2 c
e (11.94)
in which casc (11.93) becomes
ot 2 4 k2) |6 (k) 2 11.95
by 3 3 (124 ) [0 (1195
k

If one Fourier transform (11.95) back to real space we find

Fo= [ ar {(Vo) + 12 (6()?) (11.96)

which actually has a very interesting form. Let us calculate, for in-
stance, the correlation function for for the fields ¢ when they are sep-
arated by a distance r,

_ [ 11 do(r)g(r)$(0)e "
O = T dgte)e

Notice however that the integration can be done easier if we Fourier
transform since

(11.97)

(6(r)o(0)) = > e ((k)p(K')) (11.98)
and
_ Ne~3 >, (12 +a%) (@)l

S T d(p)d(—p)e 2 Zalt?~a o

and therefore, after a simple gaussian integral,

()60 = 15 (11.100)
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and therefore from (11.98) we have
(6)6(0) = 3
o(r)p(0)) =Y ——.
= k2 + 2
Observe that the integral above has poles at £ = +iu which indicates

that the correlation function will decay exponentially at large distances,
that is,

(11.101)

(d(r)$(0)) oc e /¢ (11.102)
where using (11.94)

£ x ! x ! (11.103)
H \% T — Tc .
is the magnctic corrclation length. Observe that the magnetic corre-
lation length diverges at the critical temperature when we lower the
temperature from the disordered phase. Comparing with (11.18) we
find a new exponent vy p = 1/2.

Up to this point we have not talked about the non-linear term in
(11.82). Observe that close to the phase transition the value of the
magnetization, or 1, is very small and therefore we can keep only the
k = 0 part of K (k). In this case the whole free energy simplifies to a
very simple form which is

G A

P[]y (o) + 5 007+ 6m) ) a1

where A\/4! = K /¢* is a positive constant. (11.104) is known as the
Ginzburg-Landau free energy which was proposed by Ginzburg and Lan-
dau only based on the symmetry and the existence of a second order
phase transition. This kind of free energy is the heart of many discus-
sions of the problem of phase transitions in magnetic and non-magnetic
systems.

11.4 Continuous symmetries and the GGold-
stone theorem

In the previous sections we have considered only the Ising problem
which has a discrete symmetry of spin inversion. As we have seen this
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discrete symmetry is reflected in the free energy of the system as the
existence of two minima which are separated by an energy barrier as
shown in Fig. 11.4. In higher symmetric systems, like the Heisenberg
model, the Hamiltonian has the symmetry of rotation in the spin space
since the interaction energy, S; - S;, only depends on the relative ori-
entation of the spins but not on their absolute orientation like in the
Ising model. The symmetry of rotation in spin space is a continuous
symmetry and therefore we expect that the physics to be very different
from the discrete case. However, the phenomenon of a phase transition
is again the same thing: in the ordered phase the symmetry is broken.
The question then is: what happens when a continuous symmetry is
broken? Do we get the same type of physics as in the discrete case?

The simplest way to understand the consequences of a broken con-
tinuous symmetry is to consider the Ginzburg-Landau free energy for
the so called O(N) model. In this model the order parameter has N
components. The Ising case is the particular case where N = 1! Thus
we define a N component vector ¢ = (1, ¢o, ..., x) which is governed
by a free energy which is the analogue of (11.104)

F:/dr{%(v¢3’(r))2+%2(*(r))2 43(*( )) —B-J)’(r)(}1.105)

where B is the symmetry breaking field. Observe that by construction
the free energy (11.105) is invariant under rotations of the order pa-
rameter ¢. This is the so-called O(N) symmetry. The XY model which
involves only the X and Y components of the spin is a particular case
of N = 2 while the Heisenberg model has N = 3 since it involves all
the components, namely, XY and Z.

The main difference between (11.105) and (11.104) for N > 1 is the
fact that one can rotate continuously the vector in the N dimensional
space. Let us consider first the case where N = 2 and the components
of the vector d_; are constant in space (in which case we disregard the
derivatives in the action). The homogeneous part of the Ginzburg-
Landau free energy is simply

U ? A
U0 _ (5t 1 62+ A6+ 3 (11.106)
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Figure 11.5: Energy potential for a O(2) model.

where V' is the volume of the system. The invariance of the system
under rotations becomes obvious if we plot this free energy in the space
of (¢1,¢o). If u? > 0, that is, in the disordered phase, the minimum of
the energy is at ¢; = ¢ = 0 but if u2 < 0 the potential energy looks
as in Fig. 11.5. In this case the ground state is infinitely degenerate,
that is, we can rotate continuously the vector around the origin without
changing the energy of the system.

The heart of Goldstone theorem is to state that it requires no en-
ergy to move the order parameter continuously along the minima of
the potential. Thus, if an infinitesimal field is applied in this partic-
ular direction we can rotate the order parameter by a finite amount.
The susceptibility of the system in this particular direction is therefore
infinity! That is, we get a finite response with an infinitesimal cost.
It implies that there must be excitations of the system which cost no
energy in the direction transverse to the ordering direction. This is
Goldstone theorem: if a system has a spontaneously broken continuous
symmetry there is always an excitation of the system in the ordered
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phase that costs no energy to excite.

We have seen already a good example of an application of this the-
orem: when a set of atoms forms a crystal the translational invariance
(which is a continuous symmetry) is lost. This has to be contrasted
with the liquid or gas phase where the translational symmetry persists!
In the case of the crystal we know very well what is the order param-
eter: it is the Fourier transform of the density, (p(q)) which now have
Dirac delta peaks at the reciprocal lattice vectors G. The peaks only
exist if the system is crystalline and they disappear in the gas phase.
Thus, Goldstone’s theorem predicts the existence of modes with zero
energy in this phase. But what are these modes? If you go back a few
chapters you will find that there are indeed modes which are gapless
in this phase: acoustic phonons! Because acoustic phonons have zero
cnergy at zero wavevector an infinitesimal energy is required to excite
them! There are many other examples of Goldstone modes which we
will discuss in the next chapter and these are very important to un-
derstand the behavior of systems in ordered phases with spontaneously
broken continuous symmetries.
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11.5 Problems

1.

NS o e

Show that the Fourier transform of the local magnetization of a
two dimensional antiferromagnet has Dirac delta peaks at Q =
(r/a,7/a) and Q + G where G is a reciprocal lattice vector.

Consider the case of an one dimensional magnet with a Lorentzian
neutron scattering line shape and show that the spin-spin corre-
lation function decays exponentially with the correlation function

£.

What is the neutron line shape corresponding to the correlation
function given in (11.20).

Prove (11.31), (11.32), (11.33) and (11.34).
Prove (11.35), (11.36) and (11.37).
Prove (11.52) and (11.54).

Prove that or = o = 0 by calculating the specific heat of a
ferromagnet in the mean field approximation.

Consider the O(N) model where the magnetization in the o di-
rection is:

My = {$a) = Mn,

where M is the magnitude of the magnetization vector M and n
is an unit vector. Define susceptibility tensor

ag = 02U
T OB,OBs’
where «, 5 =1, ..., N are the components of the order parameter

and B, are components of magnetic field in the N directions.
Using the chain rule

U _ 8B AU
B,  0B,0B
B, U

B 9B
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where B = />N | B2, prove that

Xap = NaTgX||(B) + (6ap — nang) xL(B)

where
o*U
x|(B) = ~aB2
10U M
B = —_——— = —
x(B) BOoB B

Observe that x| |(B) gives the susceptibility of the system in the
direction of the order parameter M while x| (B) gives the suscep-
tibility in the direction transverse to M. While x (B) is finite in
the ordered phase x| (B) diverges since M # 0 even when B = 0.
This is again a result of continuous symmetry and therefore re-
lated to Goldstone theorem.



Chapter 12

Magnetic excitations

In the last chapter we have seen that systems with continuous bro-
ken symmetries exhibit gapless modes in the excitation spectrum. The
clearest example of a Goldstone mode is the acoustic phonon that exist
in crystals due to the breaking of the translation symmetry. However,
crystals also support optical modes which have a gap. Optical modes
are related to the breaking of a different symmetry that is discrete: the
doubling of unit cell. Therefore, when the system of interest has a par-
ticular symmetry that is broken a new mode appears in the system. If
the symmetry is continuous the mode is gapless and when the symme-
try is discrete the mode has a gap. Since experimentally speaking we
are always probing excited states of a given system it is important to
understand the nature of these excitations. As we have seen the nature
of the ground state, and the symmetries characterize it, determine the
nature of the excitation spectrum.

In this chapter we are going to study the excitation spectrum of
magnetic systems and distinguish between the various universality classes:
the Ising model that has a discrete symmetry of spin inversion, the
Heisenberg model that has the full symmetry of rotation in spin space
and the XY model that has the symmetry of rotation in a plane.

329
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12.1 The 1D Ising model

Let us consider what is perhaps the simplest magnetic system: the one-
dimensional Ising model. Consider a chain with NV atoms that interact
via a Hamiltonian given by:

N
H=-Y (Jojof., +ho?) (12.1)
i=1
where J > 0 is the magnetic exchange and h = puggB is the magnetic
field energy. Since (12.1) is completely described in terms of the o
operator we can use the eigenstates of this operator (namely, o7|o;) =
oi|os)) to write the energy of the system as:

El{c}] == (Jooi11 + hoy) (12.2)

=1

which is a functional of the configuration {01, 0y, ...,0n} (we will as-
sume periodic boundary conditions so that onx.; = o1). Observe that
this problem is classical in the sense that the states of the system
are generated by classical configurations of the spins. There are no
quantum mechanical effects such as spin flips (that is, a tunneling
of the spins between different configurations). The ground state of
the system is obviously ferromagnetic and described by the configu-
ration {+1,+1,...,+1} if A > 0. Although the ground state configu-
ration is straightforward the excited states are not so obvious. Con-
sider, for instance a spin flip in the system given by the configuration
{+1,4+1,—1,4+1...,4+1}. This spin flip costs 2J in energy (h = 0).
Actually this state is highly degenerated because one can flip a spin
anywhere along the chain. Now consider a two spin flip which is given
by {+1,+1,—1,+1...,+1, —1,+1} which costs 4J in energy and com-
pare with another two spin flip where the flipped spins are neighbors
{+1,+1,—-1,—1,...,+1}. This last state costs only 2.J of energy. Ac-
tually the state where the flipped spins are all together only cost 2J of
energy, no matter how long the flipped sequence is. Thus, there is an
enormous amount of degenerate states in the problem. The question
that comes out here is: at what temperatures does the system order
magnetically?
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In order to answer this question one has to calculate the partition
function for the problem,

Z = tr(e M)
ST e PRl (12.3)

O1yeyoy==1

The whole problem in calculating this partition function is related with
the problem of calculating the contribution of the interaction term. In
order to evaluate this contribution we are going to use a trick which is
valid for spin 1/2 particles. Consider the following matrix element:

(o]e?"|0')y = ({o|(cosh(f) + o sinh(#))|o")
= cosh(6)d,, + sinh(8)d,, . (12.4)

where we used that (6%)? = 1 and that o%|o) = | — o). The above
identity can be written in a more interesting way as:

(o]e?" 0"y = \]sinh(e) cosh(6) (ZTEEEZ;)

M e "'T"'I In(coth(6))

5 (12.5)

as you can casily show. Thus, in (12.3) the interaction term in (12.1)
can be written as

inh(20)\ /2 .
ePIoivitt — <w> <0i|€60 |0iy1) (12.6)

if we identify 28J = In(coth(f)) or equivalently

6 = %ln(coth(ﬁJ)) . (12.7)

Observe that in this case the partition function can be written as:

N /sin iz 2 gae
zZ= 3 H( h(29)> (03]€P17" 27" |0y 1) . (12.8)

O14.50N =1 2
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Now using the fact that the states are complete, that is, 3°,. ., |0:){0;| =
1 we can rewrite the partition function as:

7 = (D) i (e o

2 a

_ <sinh2(29)>—m o ()] (129

Let us consider the case without the magnetic field (A = 0). In this
case (12.9) is straightforward to calculate:

sin N/ «
Z = (%) tr [eN0] (12.10)

which is the partition function of a completely different problem from
the initial one, namely, one which is described by the “Hamiltonian”:

H=-To" (12.11)
where
N6 N
r = 5 = %ln(coth(ﬁJ)). (12.12)

Observe that we have mapped our original problem (12.1) of a chain
of Ising spins (a classical one-dimensional problem) into a problem of a
single spinin a transverse field of strength I' ( this is a zero dimensional
problem). How this is possible?

What we have shown here is an essential feature of relationship
between quantum statistical mechanics in d dimensions and the classical
statistical mechanics in d 4+ 1 dimensions. The eigenstates of problem
(12.11) are symmetric (|s) = (| + 1) + | — 1))/v/2) and antisymmetric
(lay = (| +1)—|—1))/+v/2) combinations of eigenstates of 0% with energy
—I" and 4T, respectively. Thus, if we prepare the state of the system
at time ¢t = 0, say, with spin up (that is, | + 1)) quantum mechanics
tells us that for £ > 0 the state of the system will be:

() = % (mT/h|s) + €™M a)) = cos (Tt/R) | + 1)

— sin(Tt/h)| = 1) (12.13)
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that is, the spin will oscillate from up to down with time. Thus, if we
imagine the time evolution as a line with N steps we see that along
the line the spins are never ordered, except when I’ = 0 in which case
lvo(t)) = |+ 1) for all time #. In this case the chain is ferromagnetically
ordered! Thus, with this argument one finds that the system is only
ordered when I" = 0. Going back to (12.12) we see that this is possible
in the limit of N — oo when 8 = oo, that is T = 0. For any finite
B, no matter how small, £ — co as N — oo and the system has to be
disordered.

Furthermore, from (12.10) we can immediately compute the parti-
tion function and free energy of problem since we have a problem of a
single 1/2 spin. We can diagonalize the operator that appears in the
exponent of (12.10) which has the cigenvalues:

E. = i% In(coth(8J)). (12.14)

Thus, we get immediately:

) —N/2
e Pl =7=2 <%> cosh (% ln(coth(ﬁJ))) (12.15)
and in the limit of N — oo we find
F 1
— = ——1n(2 h 12.1
=~ n2cosh(87) (12.16)

which is the ezact free energy of the 1D Ising model at any temperature.
Observe that the free energy is a smooth function of the temperature:
for kgT < J we have F &~ —JN which is the cnergy of the fully aligned
ferromagnetic state and for kg7 > J we find F = ln(ﬂ)kBT.

In order to calculate the magnetization as a function of tempera-
ture we need to re-examine (12.9) again. Observe that because we are
dealing with Pauli matrices we can write:

ot 00 _ [ cosh(9)eh sinh(f)efh ]

sinh(f)e=#"  cosh(f)e P* (12.17)

and it is easy to show that the partition function in (12.9) becomes:

B(h+T) ph—1) 1V
Z _ t?“ eiﬂ(h’_'—‘]) efﬂ(hf‘]) . (12.18)
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Since the trace of a matrix is invariant to an unitary transformation
(since tr(A4) = tr(U 'UA) = tr(UAU ')) we rewrite (12.18) as

Z = tr(4AV)=tr ((UAU_I)N>
= tr(AM) =AY + Y (12.19)

where A is a diagonal matrix (UAU ! = A) and A. its eigenvalues.
Thus, in order to solve the problems we just have to diagonalize the
matrix that appears in (12.18). It is a simple matter to show that the
eigenvalues are:

A+ = cosh(Bh)e?” £ \/sinh?(Bh)e2BT + e—287 (12.20)

which ends with the solution of the problem. Observe that A. > A_
and since we are interested in the limit of N — oo we can rewrite
(12.19) as:

_BF N
Z = e * = A

% = —% In (cosh(ﬁh)eﬂ‘] + \/sinhz(ﬁh)em’ + e_QfBJ) (12.21)

which is the exact expression for the free energy of the problem and
reduces to (12.16) when A — 0. Observe that the magnetization per
spin in the problem is given by:

OF /N
~ b0H
sinh(Bh)

\/sinhQ(ﬁh) + e8I

M(h) =

(12.22)

Notice that (12.22) is a quite interesting function. If we take the limit
of h — 0 with g finite we find M(h — 0) = 0 that is, there is no
magnetization in the system at any finite temperature. If however we
take the limit of 5 — oo before we take the limit of & — 0 we find
M(h — 0) = 1! That is, the system is magnetized at zero temperature
as we have argued before. Therefore, the magnetization is a singular
function of the temperature since there is a discontinuous jump in the
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0.1 0.2 0.3 0.4 0.5

Figure 12.1: Magnetization of the one dimensional Ising model as a
function of external field for different temperatures (temperatures in-
creases from top to bottom).
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magnetization at 7 = 0. A most amazing effect! The approach to zero
temperature is shown on Fig.12.1.

The problem of phase transitions in one-dimensional systems can be
understood very well by an argument due to Landau-Lifshitz. Consider
a state with a finite magnetization M and free energy F'. In the ordered
state the free energy would be given by:

F=E-TS (12.23)

where F is the energy of the ordered state and S its entropy. Consider
the configurations discussed at the beginning of this section in which
all the spins to the right of a point n arc reversed creating a domain
wall like (+1,4+1,+1,...,4+1,—1,—1,—1). The internal cncrgy of the
system will be increased by an amount 6E ~ 2M?J (M =1 at T = 0).
But we can choose the point n at any point of the lattice of N sites
and therefore there is an entropy of the order 6.5 ~ kg In(V) associated
with the creation of the domain wall. Thus, the net change in free
energy due to the creation of domain wall is

§F =~ 2M?J — kgTIn(N). (12.24)

Observe, therefore, that if we make N sufficiently large, that is,

2M2J

N> N*=¢tot (12.25)

the free energy of the problem becomes negative and the system be-
comes unstable. Thus, we have to conclude that M = 0 for any finite
temperature. Observe that at T = 0 order is possible because N* — oo.

12.2 The Heisenberg-Ising Hamiltonian
Let us consider a system described by the Hamiltonian

H=-Y [1.S:S:+ . (SpSg+ S¥SY)| — gusHY 7 (12.26)
(i,3) i

which describes an anisotropic magnet in a external magnetic field H.
We first point out that the total spin of the system, S = (3;S:)*
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and the z component of the total spin, S% = >, S?, commute with the
Hamiltonian. Thus, we can classify all the states with respect to their
eigenstates, namely, St(Sr+1) and S%. Observe that Sp = SN, S(N —
1),...,0 while S% = —St, ..., St has 257 + 1 possible values. We will
consider two important case of this Hamiltonian: the ferromagnetic
case with J, > 0 and the antiferromagnetic case with J, < 0. As we
are going to see these two cases have completely different excitation
spectrum and physical properties.

12.2.1 The ferromagnetic case

In the classically ordered state of a ferromagnetic system all the spins
are polarized in one direction and therefore we have Sp = S% = NS
where N is the total number of atoms in the system. This corresponds
to the mean value of the operator to be fully polarized that is (S?) = S.
Obscrve that the ground state would be described in this way if J, =0
but because of the presence of J, this is not completely correct. Let
us rewrite:

S =S¥ +iSY (12.27)

which the raising and lowering operators for spins. In this case Hamil-
tonian (12.26) is rewritten as
H= 17,5557 + I= (575~ 4§78 HY S8 (12.28
—_<Z> z94 j+7<i ;T j) —gUB Zz( 28)
2,7 7
which clearly shows that J, flips the spins. Classically this term is
equivalent to the precession of the magnetic moment around the z axis.
Suppose the magnetic system is in the ordered phase. One expects
the total magnetization of the system to be very close to NS. As in
the case of phonons one expects that the fluctuations can be described
by some kind of bosonic excitation with operators b; and b}L which obey
canonical commutation relations:
[b:,b}] = i (12.29)

J

The problem is to find out the relationship between these bosonic op-
erators and the original spin operators. This was done by Holstein and
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Primakoff. They propose to write the spin operators as:

S? = S —blb,

bio\
+ = /25 (1 2 .
S; 25(1 23> b;

B . b:bz 1/2
S = Vasf(1-32 (12.30)

which are known as the Holstein-Primakoff transformations. These
transformations have nice properties: 1) using (12.29) it can be shown
that the operators defined in (12.30) obey the spin algebra; 2) it is easy
to show that S? = S(S + 1) as it should be.

Observe that at zero temperature, because the excitations are bosons,
we expect (bib;) = 0. Thus it is reasonable to assume that (blb;)/S <<
1 and we can expand the transformation in (12.30) as

S? = S —blb
o~ V258 (12.31)

A
2

which, of course, is not a true operator relationship but can be shown
to be a good approximation a posteriori. Moreover, the operator S7 is
unchanged. The physical meaning of this transformation becomes clear
now. S? in (12.30) measures the number of overturned spins. This
flipping of spins is generated by Si. If we imagine that the number of
spins equals the number of bosons in the system then S;° behave like
creation and annihilation operators for bosons.

If we substitute (12.31) into (12.28) and keep only the leading order
in the operators we obtain:

H=-J,NZS* —~J NZS — gugHNS +H (12.32)
where

H = (2J.Z + gupH) Y blb; — JLSS (blbi+blb;) . (12:33)
i &)
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Observe that H has exactly the same form of the tight binding Hamil-
tonian for electrons moving on a lattice with the difference is that now
we have bosons. Thus, like electrons, the ground state is made out of
Bloch waves. For the problem where there is just one atom per unit
cell solve this problem exactly in the same way as before, that is, by
Fourier transform:

1 .
e = —= 3 e* T
S
1 .
b = ﬁZe_’k'rjbk (12.34)
J

and since the system is periodic the wavevector is defined only in the
first Brillouin zone (also called magnetic Brillouin zone). The Fourier
transform changes (12.33) into

H =3 Exblh (12.35)
k
where
and
1 ik-6
M= doe (12.37)

where § is the vector that links two nearest neighbor atoms. The
excitations described in Hamiltonian (12.35) are called ferromagnetic
magnons. Observe that if J, = 0 the magnon spectrum is dispersion-
less and therefore there is no propagation! This is the case of the Ising
modcl. If there is a finite J, (or finite XY component) the magnons
can propagate since there is a finite group velocity ¢, = VFy. Let us
consider now the case of long wavelength magnons, that is, in the limit
where |k - §| << 1. In this case we can write . ~ 1 — (ka)?/2 where a
is the lattice spacing in a cubic system. Therefore from 12.36) we have

Ey,~2(J,— J)Z + gupgH + J.S(ka)? (12.38)
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which can be rewritten as

k‘2
E, =~ A 12.
& -+ oy ( 39)
where
1
= . 12.40
mn 4JJ_SG/2 ( )

Observe that (12.39) has the form of the dispersion of a free particle
with mass m*. This particle is the magnon. Observe that in the limit
of J, — 0 the mass of the magnon diverges indicating that it local-
izes in the system. One could ask how these magnons are related to
Goldstone’s theorem. Goldstone’s theorem requires the system to have
a continuous symmetry which in the case of this Hamiltonian is ob-
tained in the Heisenberg limit (J. = J,) and in the absence of fields
(H = 0) which leads to A = 0, that is, there is no gap in the system at
k = 0 implying that the gapless ferromagnetic magnon is the Goldstone
mode.

From (12.31) we can calculate the magnetization per atom of the
system immediately

1
M=S- ¥ ;mk) (12.41)

where n, = kabk is the occupation number operator for magnons. This
number is given by the Bose-Einstein occupation as for the case of
phonons. We have

1 1
M=5— ;/ddkm (12.42)

where p = N/V is the density. Observe that at low temperatures
(8 — o0) the integral is dominated by the long wavelength behavior
and we can usc (12.39) with d = 3:

M =S ! dk K
- 27r2p/0 efrefk?/(2m*) 1
ys [ LU/2
= S— kT [Cde . (1243
7r2/0( m*k5T) o ePher _1 ( )
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In the absence of external field and in the fully isotropic system, J, =
J,, we have A = 0 and the last integral is a constant and therefore the
magnetization decreases with a power T%/2 of the temperature showing
that indeed the magnons tend to disorder the classically ordered state.
If A # 0 the magnetization decreases exponentially with temperature.

The energy per atom of the system is of course obtained directly
from (12.35). Again, at low temperatures, we use (12.31):

1
FEF = N ; Ek<nk)

00 k-4
= At A2 pm* /0 dkeBAeﬂkz/(Qm*) -1

3/2
= A+

(2m*k5T)2 / P (12.44)
0

472 pm* Cefher — 17

which shows that in the absence of magnetic field and anisotropy the
energy of the system goes like 7°/2 and because of that the specific heat
behaves like Cy ox T3/2.

12.2.2 Antiferromagnetic Case

Let us now consider the case when J, < 0 in (12.26). In this case the
spins orient anti-parallel to each other in a structure similar to the one
shown in Fig.10.7 which is called the Néel state. We are going to assume
a similar structure where only two sublattices, A and B, are present
each one with N/2 sites (that is, two different ferromagnetic lattices
which are immersed into each other). This is due to the fact that
an antiferromagnet breaks the translational symmetry of the original
lattice and doubles the unit cell. This, of course, does not happen in a
ferromagnetic system. In sublattice 4 the magnetization is essentially
(S7) = +S while in sublattice B we have (S?) = —S. Thus, in defining
the spin operators in terms of bosons one has to be careful about each
sublattice. The easiest way to proceed is to follow the recipe of the
ferromagnetic problem and define:

Sh; = S—ala

S, = —S+blb;



342 CHAPTER 12. MAGNETIC EXCITATIONS

1 1/2
+ 251~ a;a; .
SA,'L S < 95 ) a;

bio\
n. = V25 ([1-22 ;
55, = vis(1- )"

1 1/2
S/_‘,L = QSCLI <]_ — alia/i)

’ 25
ala; 2
Sz; = V2Sd (1—§> : (12.45)

Notice that the role played by the lowering and raising spin operators
are exchanged between the two sublattices because they have different
orientation of the spins. Using the same approximations as in the ferro-
magnetic case and Fourier transforming the bosonic operators you can
easily show that the Hamiltonian (12.28) with J replaced by —J and in
the presence of a staggered magnetic field gupH, 3°;(—1)’S} becomes:

H=-NZJ,S* - NugH,S +H (12.46)
where
H = ZSZ {JL/Yk (altblt + akbk) + Jz (CLLCLk + bltbk)}
k

+ ppH, Y (afox + blby) (12.47)
k

which has a structure which is very different from the ferromagnetic
case since the operators from different sublattices mix with each other.

The mixing of these operators becomes more obvious if one rewrites
(12.47) as:

H=—N(J,ZS + ugH) + 3 UL [H(K)] ¥, (12.48)

where

Uy = ( ZE ) (12.49)
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and

J,ZS + ugH, J 1 Z S

[H (k)] = J | Z5% J,.ZS + ugH, |

(12.50)
In order to diagonalize the Hamiltonian we look for a transformation
U such that

U = Uk)Dy
UNK[HKIUK) = el (12.51)

where € is a diagonal matrix and

By = ( gli ) (12.52)

with oy and Sy are bosonic operators. The simplest transformation has
the form

Uk) = l Zl‘: Zt ] (12.53)

where uy, and v, arc rcal. Morcover, because the operators arc bosons
we must impose that u2 — v = 1. Thus,we can write

ux = cosh(6)

v = sinh(6y). (12.54)
This implies that the inverse of U is
-1 _ Uk —Uk
U (k) = l o e ] (12.55)

and therefore U is not unitary (U~ # UT). Actually it is easy to
see that Ut = U and therefore the equation for the energy in (12.51) is
UHU = € or HU = eU~! which is not our usual eigenfunction problem.
Observe moreover that these matrix can be written in terms of Pauli
matrices,

(k) = E()] -+ El(k)O'w
(k) = ’U,kI -+ ’dew
(k) = wl —no” (12.56)
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where Ey = J,Z5 + upHs; and E; = J, ZS~v%. Thus, the equation
HU = eU ! leads to the following set of equations:

(e — Eg)up — Eyv, = 0
El’U,k -+ (6 -+ E())’Uk = 0 (1257)

which for a non-trivial solution requires (e — Ep)(e+ Ep) + E? = 0, that
is,

a = E;— E?k)
= (.28 + upH.)? = (JLZ5)*R (12.58)

and moreover we find

Eqy
h(26,) = — : 12.
tanh(26;) AT (12.59)
Thus, the Hamiltonian becomes
H=-NE+ a (oo + LA +1) (12.60)
k

which has the appropriate diagonal form.
Let us now look for the Goldstone mode. In the absence of a stag-
gered field and in the isotropic limit (J, = J) the dispersion (12.58)

becomes
e =2JZS\1 -~ (12.61)

and in the long wavelength limit we find
e(k) =~ c;k (12.62)

where ¢, = 4v/3.JSa is the spin wave velocity in three dimensions. Ob-
serve that as indicated by Goldstone theorem the antiferromagnetic
magnon is gapless with linear dispersion relation. This has to be con-
trasted with the ferromagnetic case where the dispersion goes like k2.
Like the case of acoustic phonons the antiferromagnetic magnons have
a characteristic velocity. Ferromagnetic magnons, on the other hand,



12.2. THE HEISENBERG-ISING HAMILTONIAN 345

have Galilean invariance which is characterized by an effective mass
which determines the curvature of the dispersion.
Let us now consider the sublattice magnetization given by

My = > (Si)=NS-— Za,lta,k
i k

= NS-> (uia};ak + vﬁﬁkﬁi) (12.63)
K

which at 7' = 0 becomes
My = NS—Y up=NS—3 sinh’(6;)
k k
1 _
= NS-3% (=) —1]. (12.64)

k

Thus, the magnetization per unit of volume can be written as

My 1 d% 1
_ 9_ 2 / v 2 12.65
nS+n/ 2] @ry T ( )
which for a cubic lattice in three dimensions is given by
M
7A = n(S — 0.078). (12.66)

This is the result of a numeric integration of the equation above. Ob-
serve that due to quantum fluctuations (zero point motion of the spins)
the staggered magnetization is reduced relative to its classical value.
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12.3 Problems

1. Using the formalism of subsection (1.1) and the operator identity
M
limar—oo (e%e%) = ¢AB

show that the one-dimensional Ising model in a transverse field
which is described by

H,=>" <—J'UZUZ+1 — Fa;f)

where T is the strength of the magnetic field has the same parti-
tion function as the classical Ising model in a square lattice (with
N2 sites) which is given by

H.o=-J> (0;,mafl+1,m + az,maz,qu) : (12.67)
n,m

Find the relationship between J' and I to J, 8 and M.
2. Prove equation (12.18).
3. Calculate (12.20) explicitly and show (12.22) to be correct.

4. Consider the one-dimensional Ising model with an interaction
which has finite range, that is,

H=-3 Joi0
i

where
_J
g
where n characterizes the power of decay of the interaction. Us-
ing the Landau-Lifshitz argument show that it is possible to have
long range order at finite temperatures if n < 2. Show that for
the system to have a well defined thermodynamic limit one has
to require n > 1. Show that for n = 2 the same argument re-
quires that the magnetization M cannot vanish continuously, in
order words, either there is zero magnetization at all tempera-
tures or the magnetization is non zero with a discontinuity at the
transition.
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Prove (12.28).

Using (12.29) show that [S¥, SY] = 2i6; ;57 and prove that S =
S(S+1).

Prove equations (12.36).

Calculate the spin wave velocity for an isotropic spin 1/2 Heisen-
berg model in d space dimensions for a hypercubic lattice.

. In the Debye model for the antiferromagnet one assumes the dis-

persion of the spin waves to be e(k) = ¢,k but cuts-off the disper-
sion at large wavelengths, say, at A. (i) Calculate A by assuming
that the number of states in the spherical zone is the same as in
the cubic Brillouin zone. () Calculate the sublattice magnetiza-
tion for the Debye model as a function of temperature. (éiz) Find
the critical temperature T above which the sublattice magneti-
zation vanishes.

Consider the problem of antiferromagnetic magnons in a uniform
magnetic field H for the Heisenberg-Ising Hamiltonian. Using
the non-unitary transformation find the magnon spectrum in this
case. Show that the oy and § modes are separated in energy.
Calculate the uniform magnetization of the system at finite tem-
perature assuming a Debye model for the magnons.

Using (12.42) and (12.65) find the lower value of the dimensional-
ity d. above which long range order is possible (at finite and zero
temperature) for a ferromagnet and antiferromagnet, respectively.
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Chapter 13

The Interacting Electron (as

In studying the electron gas in previous chapters we have assumed that
the clectrons do not interact with cach other. This assumption is not
intuitive because we know that clectrons in free space interact with cach
other via a long range Coulomb potential that behaves like 1/r where r
is the distance between the two electrons. From the experimental point
of view we know that electrons in simple metals behave very much like
non-interacting particles. In this chapter we are going to discuss the
basic properties of the interacting electron problem.

Since in a electron system the electrons effectively do not interact
via a long range force (as is experimentally observed) there is something
else in the system that intervenes to modify or weaken the interaction
among electrons. From the microscopic point of view the only way
an interaction between two particles can be different from its value in
vacuum is if there is a medium. This medium propagates the interaction
and therefore can effectively change the way the particles interact.

The simplest way to understand how this occurs at the microscopic
level is to study by the equations of electromagnetism. When an electric
field is applied to a dielectric, the observed field is different from the
applied field because it polarizes the dielectric. When the system is
polarizable we can describe the polarization P as the electric dipole
moment per unit of volume. In this case the electric field E in the
system is not simply the applied field but E = D — 47P where D is
the displacement field which depends only on the external distribution

349
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of charges and obeys the Maxwell equation
V- -D =4repey (13.1)

where e is the electric charge, pe;; is the external (applied) electron
density. In many simple systems the polarization P is linearly related to
the electric field through P = x.E where ¥, is the electric susceptibility
of the medium. Thus we immediately obtain that

D =¢E (13.2)

where € = 1+ 4ny, is the dielectric function of the medium. In systems
like crystals the dielectric function is not a simple constant but a tensor
that depends on the direction the field is applied. Here we are going to
consider the simple case of the isotropic electron gas where the dielectric
constant is just a scalar.

As an example consider a simple charge () at the origin in the pres-
ence of the electron gas (in this case pey(r) = Qd(r)). If this charge is
positive it will attract electrons close to it, if it is negative it will repel.
In principle one would think that this charge could attract an infinity
number of electrons. This is not true not only because the electrons
repel each other and therefore it would lead to an enormous increase
of the electrostatic energy of the system but also because electrons are
fermions and therefore cannot occupy the same position is space. Thus,
intuition tells us that the positive charge will attract enough electrons
so that, as seen from far away, it will look like a neutral charge. This is
called screening. The same argument works for the case of a negative
charge. Thus, in the presence of an external charge the electron gas
can not be uniform! This non-uniformity can be described by dp(r)
that describes the local changes in the density of the electron gas. Ob-
serve that in the jellium model of the electron gas there is always a
background of positive ions which neutralize the average density pg
otherwise the whole system would be unstable. The main idea behind
screening is that the electric filed in the system is created by the total
density peg: + dp in such a way that

V - E = 47e (pegt + 6p) - (13.3)
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In the general case the external charge can also change in time so that
we can Fourier decompose it as

pewt(rat) = /dk/dwei(Wtir‘k)pewt(qa w) . (134)

One can now Fourier transform (13.1) and (13.3) and use (13.2) to find

(aw) = q-D(q,w) _ Pext(Q, W)
qd-E(qw)  pest(q,w) + 0p(q,w)
1
= 1 dp(q,w) (13'5)
+pemt(qaw)

which gives the dielectric function once the displaced charged can be
measured (or calculated!). Another way to obtain the dielectric func-
tion is to observe that in (13.5) only the longitudinal part of the dis-
placement and electric field vector enter in the definition of the dielec-
tric function. This is because we assume the system to be isotropic.
Associated with the longitudinal component of the field there we can
always define a potential such that E = —V¢ and D = —V¢,,; which
accordingly to (13.1) and (13.3) obey the equations

v2¢e$t(ra t) = _47T€pe:ct (ra t)
V2o(r,t) = —4me(peg(r,t) +p(r, 1)) . (13.6)
The potential energies associated with the potentials given above is

simple V = —e¢ and V., = —€deyy. From (13.6) and (13.5) we imme-
diately conclude that

‘/e:ct(qa w)
V(g,w)
which gives the diclectric function in terms of the external potential

and the total potential generated by the external fields. Thus, in order
to describe screening one has to calculate the potential function.

e(q,w) = (13.7)

13.1 The Thomas-Fermi approach

When one applies an electric field to an electron gas the electrons move
from the point of higher potential to the point with lower potential. In
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the Thomas-Fermi approach one assumes that as the electrons move
they are always in thermodynamic equilibrium with its surroundings.
In a three dimensional electron gas the number of electrons per unit of
volume in the absence of the field can be obtained from (6.4) and is
given by:

N (2mEpy)3?

po:—:

13.8
1% 32 (13.8)

where Ero = h’k%/(2m) is the Fermi energy of the system. Because of
the electric field the charge density is not homogeneous and we have a
displaced density dp(r) which is given by

op(r) = pr) — po - (13.9)

Associated with this charge density there is a local shift in the Fermi
energy of the system which is given by

where V (r) is the total potential felt by the electrons. In the Thomas-
Fermi approach we assume that (13.8) gives the change in the charge
density due to the shift in the local chemical potential as given by
(13.10), that is,

(2mER(r))%/?
3R> 72
(QmEF,O — ‘/(I'))%/2
332

= (1 - %)3/2 (13.11)

3

p(r) =

which gives the relationship between the potential energy and the dis-
placed charge. From (13.6) we see that the potential energy obeys the
Poisson equation

VAV (r) = 47€(penr(r) + 0p(r))
r 3/2
= 47T€2 [pewt(r) + po — pPo <1 - V( )> ] (1312)

Erp
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where we have used (13.9) and (13.11). Notice that (13.12) is a non-
linear equation for V(r). It turns out, however, that for practical pur-
poses V < Erg and therefore we can linearize (13.12) to give

<V2 + Q%F) V(I‘) = 477—62pe:ct(r) (13.13)
where
2 6me? pg _ Ame?ky
4k
= T (13.14)
Tayo

where ag = h°/(me?) the Bohr radius. ¢rp is the so-called Thomas-
Fermi screening length. To understand the physical meaning of this
length scale let us solve (13.13) by Fourier transform

. 47T€2pe:ct(k)
k2 + gF
‘/e:ct(k)

Irp
1+ 5

V(k)

(13.15)

where

 dre (k)

‘/e:ct (k) = 12

(13.16)

is the external potential created by the charge distribution pe;;. Com-
paring (13.15) with (13.7) one immediately concludes that

2
q
erp(k) =1+ % (13.17)
which is the dielectric constant in the Thomas-Fermi approximation.
Consider now the case of a single impurity of charge @) at the origin. In
this case pez(q) = @ and therefore from (13.15) we find that the total
potential is given by

Bk —dreQ
VO = oy
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2eQ oo ksin(kr)

wr Jo k? + ¢
> 400 k /ik’r
- = 5
mr -0 k* 4+ ggp
_ _Qarrr (13.18)
r

where the last integral is done by choosing the contour in the upper
half complex plane. Observe that in the Thomas-Fermi approach the
effective potential produced by the charge Q at the origin is not the
bare potential vez(r) = —e@/r but has a Yukawa form and decays
exponentially with a characteristic length

1 Qo
Arp = — = 1/—. 13.19
TF qrF 4kp ( )

In this case we say that the electrons screen the bare potential to a
distance of order Arr. The Thomas-Fermi approximation gives a sim-
ple but powerful picture of the electrostatic behavior of metals. The
screening effect comes from the fact that the system has a Fermi surface
and therefore it has mobile electrons that can move around in order to
screen the external charge. Thus, electrons far away from the impurity
indeed cannot feel the potential created by the impurity and moves
freely in the system.

13.2 The Random Phase Approximation
- RPA

Let us now consider a more involved picture of the screening process
which is called Random Phase Approximation or simply RPA. In this
approach one considers the problem of the response of the electron gas
to the total potential V(r,t). The assumption, as before, is that the
electrons do not couple only to the external applied potential but to
the total potential produced by all charges in the system. The energy
associated with this coupling is simply

Hy = / eV (r, ) (p(r, 1) — po) (13.20)
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where p(r,t) = 3, Ul(r,t)U,(r,t) is the particle density. Observe
that we have subtracted from the energy the energy of the positive
background of charge that neutralizes the electron gas. If one Fourier
transforms the above equation we get

Hy = 3 Va(t)pa(t) (13.21)
q#0
where
Pa= D Chogolhy - (13.22)
k,o

Notice that the term with ¢ = 0 is excluded from the integral in (13.21)
since p,—o = pp is the average particle density. The physical meaning
of (13.21) is quite straightforward: the potential created by the charges
in the system induces charge fluctuations which are particle-hole pairs
described by (13.22) around the Fermi surface.

The total Hamiltonian of the system can be written as H = Hy+ Hy,
where

Hy=Y ec] 0,0 (13.23)

k,o

is the free electron Hamiltonian. In order to calculate the dielectric
function one has to calculate the displaced charge. In order to do it we
are going to look for the equation of motion for the density operator in
the Heisenberg representation, that is,

zh% [c};q,ack,a] = [H, ch+q,ack,a] (13.24)
It is a very simple exercise to show that
[Ho, ch+q,ack,a] = (€xrq — €x) C.l]-(+q,o-ck,0
[HV, ch+q,gck,g] = > Vy (ch+q+q,,ack,g — clt+q,gck_q/,g) (13.25)
p

Observe that because of the second term in (13.25) the equation for the
density fluctuation cannot be solved in full form. Thus one has to use
some approximation.
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Consider now the first quantized version of the density operator pq
which is given by

1 or
pa =77 2™ (13.26)

where r,, is the position of the n'® electron (you can easily show that
(13.26) is correct by the direct Fourier transform of p(r) = 3, 6(r —
r,))). Therefore, in the r.h.s. of the second equation in (13.25) we see
that pq+y appears, which is first quantized form is again

]_ 'L ’ .r
Para = 37 3 ellard) T (13.27)

Observe that if the electrons are (statistically) randomly distributed in
the system the above sum only gives a finite result if q = —¢' because
the sum involves random phases which add destructively. In RPA we
approximate (13.25) by taking only the ¢’ = —q:

[HV7 Clt—kq,ackﬁ] ~ V—q (Clt,ackaff - Clt+q,ack+QaU) (1328)

which now lead to a simple solution for the equation of motion in (13.24)
by Fourier transform in time:

t o ﬁk,a - ﬁk—}—q,a
ChsqoCko = V q(W) R —— (13.29)

where 7ii is the Fermi-Dirac occupation number. From (13.22), we get:

ﬁk,a - ﬁk—}—q,a
o = V_ . 13.
(o)) = Vgl e Tcne. (13.30)

Eq. (13.30) can be rewritten in a slightly different way in terms of the
charge density distribution

5pa(t) = V_q(w)TI(q,w) (13.31)
where
T_Lk,a - ﬁk—}—q,a
IM{q,w) = — - 13.32
(a) gﬁw—ek+q+ek+m ( )
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is the so-called polarization function and depends on the electronic
system alone. It is important to notice that the positive background
of charge (associated with n,—g) is subtracted to (13.21) and therefore
the sum in (13.32) has to be understood as the principal value. This
can be accomplished by introducing a small imaginary part 7 — 0 in
the denominator. Thus, the polarization function has actually a real
and a imaginary part. Indeed from (13.32) we can write

%{H(q, w)} — _,P Z nk,O’ - nk+q,0’
k,o

) hw — €xiq + e
1 1
= —P Nk, -
g T AW — €krg ek hw — € + €kiq

S{M(g,w)} = 7Y (ke — ikceqo) § (hw — €iceq + €x)
k,o

= TY i |0 (hw — €ciq + &) — 6 (hw — ex + ed3,83)
k

where where P means the principal value of the integral and in the last
line we have changed k — —k — q and used the fact that n_x_q, =
Nk+q,e aNd €_x_q = €xiq-

We can now substitute the result (13.31) into the Poisson equation
(13.12)

Volw) = —47;—52 (Peat(a, ) + dp(q,w))

_ —47;— (Pear(@, ) + €V q(@) () (1334)

assuming Vg (w) = V_q(w) we find

_ ‘/e:ct(qaw)
Vigw) =17 521T(q, ) (13.35)

which by comparison with (13.7) leads to

dre
erpa(q,w) =1+ 711(% w) (13.36)



358 CHAPTER 13. THE INTERACTING ELECTRON GAS

which is the RPA expression for the dielectric function. Observe that
RPA gives a frequency dependence to the polarization function which
is not present in the simple Thomas-Fermi result (13.17). This happens
because the Thomas-Fermi result is purely static, that is, it is valid at
w = 0.

In order to check if RPA can reproduce the Thomas-Fermi result let
us investigate the static limit of (13.36). From the definition (13.32) at
T = 0 and assuming a spherical Fermi surface one has

Bk O(kp — k) — O(kr — |k + q|
R0} = =27 [ o e o 139

This integral can be simplified if we take the limit of ¢ — 0 in which
case we can write |k + q| &~ k + g cos(6) where 6 is the angle between k
and g and therefore ©(kr — |k + qal) = O(kr — k) — gcos(0)d(kr — k)
(since 6(k) = dO(k)/dk). Thus, to leading order in ¢ we have

&k qcos(0)5(kr — k)
R{Il(q,0)} =~ 4m 7D/ )3 2gkcos(6)
mk
. mhr (13.38)

which when substituted in (13.36) leads to

Ame’kp
T2

lim eRpA(q,w = O) =1+ (1339)
g—0

which is identical to the Thomas-Fermi result (13.17). Thus, the Thomas-
Fermi approach is a special limit of the RPA result when w = 0 and
g — 0. This implies that the RPA result has more information about
the screening process in a electron gas than the simple Thomas-Fermi
approach.

It should be clear now that the real part of the dielectric function
(which is simply related to the real part of the polarization function
in the RPA approach) is related to the screening processes that go
on in the electron gas. The screening process is a coherent process
that involves the displacement of electrons in the system. By now
you should be curious about the meaning of the imaginary part of the
dielectric function and to what physical process it describes. In order
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to understand its meaning it is instructive to look at the frequency-
dependent electrical conductivity of the electron gas, o(k,w). As we
have seen in Chapter 6 in a disordered environment the electron gas
will have a finite conductivity or resistivity due to the elastic scattering
with static impurities. But this is not the only source of scattering since
the electrons interact with each other. By definition the conductivity
of the system is defined by the equation (7.6), J = oE, where J is the
electric current density. This current is related to the particle current
density j by J = —ej and thus

ik, w) = —éa(k, DEK, ). (13.40)

On the other hand the number of electrons in the system has to be
conserved in the scattering and therefore the current and the density
are related by current conservation equation

an(r, H+V-j(r,t)=0. (13.41)
We are only interested in the fluctuations of the system around the
equilibrium particle density po, that is, we write n(r,t) = py + dp(r, t)
and thus

wop(w) =k - jk,w). (13.42)

Using that E(r,t) = —V¢(r,t) = VV(r,t)/e, (13.40) and (13.42) we
find that
. K2V (k, w)
dpk,w) =iolk,w)————=. (13.43)
ew
Using Vo (k,w) = —4m€? perr(k, w) /K2, (13.5) and (13.7) it is easy to
show that

4rio(k, w)

kw)=1
low) =1+

(13.44)
which gives the relationship between the dielectric function and the
conductivity. Direct comparison between (13.44) and (13.36) shows
that in RPA we have

w

51k w). (13.45)

URPA(k, w) = —1€e
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Observe therefore that the real part of the conductivity which is related
to the dissipative process in the system is related to the imaginary
part of the polarization function. Or more generally, from (13.44) the
dissipative processes are related to the imaginary part of the dielectric
function. Indeed, from (13.44) one can write

| Ar3{o(k,w)}

S{e(k,w)} = w (13.46)

Rie(k,w)} =

which relates these two functions. Observe that in experiments we al-
ways measure the real part of these functions and through the relations
above one can get the imaginary parts as well. Thus the physical mean-
ing of the real and imaginary part are clear now. Moreover, the static
conductivity (the one which is measured when a static field is applied
to the system) can be obtained from the equations above by taking the
limit of w — 0. However, a word of caution is in place at this point. In
calculating that static conductivity one has to take the limit of ¢ — 0
before we take the limit of w — 0. The opposite limit, that is ,w — 0
first with ¢ finite describes a static electric field which is periodic in
space with characteristic wavelength 1/g. In this case the charge dis-
tribution will not be uniform since it will try to follow the periodicity
in the field. Thus, in calculating the static conductivity one has always
to set ¢ — O first.

13.2.1 Response of a one-dimensional electron gas

Let us apply the technology developed in the last section to study
the one-dimensional clectron gas. In this casc the integrals for the
polarization function arc casicr to cvaluate. Indeed, using (13.33) we
have

1 rkr 1 1
%{H(Q,W)} = ;/_kpdk(hw—m—ﬁ_hw-{—m‘{“hzqz)

m 2m 2m

mo |G+ g) - ()

In

(o9~ ()

(13.47)
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RC@PD

Figure 13.1: Real part of the polarization function for the one dimen-
stonal electron gas as a function of q for w = 0.

R{I1(q,w)} is depicted in Fig.13.1 for w = 0. Obscrve that R{I1(q,w)}
diverges when ¢ = 2kp for w = 0. This divergence comes from what is
called the nesting of the Fermi surface.

Nesting it is related with the fact that in some systems it is pos-
sible to find a vector k such that eq.x = ex for a fixed q. In this
case, from (13.32), there is a point in the sum which is divergent. If
this is an isolated point then it is not important for the behavior of
the polarization function. In one-dimension, however, the Fermi sur-
face is made out of two points, +kr and —kr and therefore the vector
q = +2kp connects all the points in the Fermi surface and leads to the
divergence in (13.47). In higher dimensions we need a finite density
of points at the Fermi surface which are nested, otherwise their con-
tribution to (13.32) is a set of measure zero. One of the classic cases
where a nesting condition happens is the half-filled tight binding model
in two space dimensions where the Fermi surface has the shape shown
in Fig.13.2 and can be connected by a wave-vector (7/a,n/a). Because
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Figure 13.2: Nesting of the half filled tight binding model in two dimen-
Stons.

response functions, like the polarization function, have denominators
which involve eq ik — €, nesting leads to instabilities in the electron
gas.

Also from (13.33) we have

kp 2k K202 B2k B252
m hikrq  h¢ hkrq hg?
R?|q| [ ( W m 2m W m +2m
hk hq? hk B
— 0w+ M e (w4 ZH 20N (13.48)
m 2m m 2m

Observe that ${Il(q,w)} has a simple dependence with ¢ (that is, it
behaves like 1/¢) but it is not finite in the whole (w, ¢) space. Actually
it is easy to see that this function is only finite in the shaded area
of Fig.13.3. This region is called the particle-hole continuum and it is
source of dissipation in the system. Notice that the S{I1(q, w)} vanishes
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Figure 13.3: Region of the (w, q) space where S{I1(q,w)} is finite.

at w = 0 for all 0 < ¢ < 2kr. We can show that this behavior is
very particular of one-dimensional systems and in higher dimensions
3{TI(q,w)} is actually finite in this domain.

13.3 The Kohn anomaly and the Peierls
distortion

We have so far discussed the behavior of an electron gas to an exter-
nal source. The terminology ”external source” is rather loose since the
electrons interact with a variety of environmental excitations such as
phonons and magnons and also among themselves. Moreover, the elec-
trons interact electrostatically with the ions in the crystal which, from
a broad point of view, are an external source. Indeed, let us consider
again the electron-phonon problem under this new light. In Chapter 7
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it was shown that the electron-phonon Hamiltonian can be written as

H =Y e cox+ 3 hwgaliag + Y Ugng (aq + atq) (13.49)
k,o qa q

where the electron-phonon coupling is the same as in (9.59). Observe
the close resemblance of (13.49) and (13.21) if we define

Va=Uq (aq + aT_q) . (13.50)

This is not just a coincidence since, as we said, the electrons are elec-
trostatically coupled to the lattice. Thus, at least from a perturbative
point of view we could see that the electrons respond to the phonons in
the system and one would suspect that the response should be some-
what related to the polarization function of the electron gas. Using
the polarization function (13.32) we add and subtract 7k ,fik+q,e in the
numerator, regroup the terms together, and change k - —k — q in
order to get:

1 1
M{q,w) ==Y fxe (1l —n — — 3.51
(9,«) g ko (1= Mt ao) [ﬁw—6k+q+€k+ln ﬁw—ek+ek+q+z”nJ3 )

which has the same structure as (9.77). Indeed, let us assume that the
coupling between clectrons and phonons is weak and use result (13.30)
and substitute ng by (nq) in (13.49) using (13.50) in order to find:

H=>" ﬁwqa,ga,q — 3 |U* TT(a, wq) (a,_q + (JL) (a,q + aiq) (13.52)
q q

is a purely bosonic Hamiltonian. The electrons have been traced out
of the problem and their effect only appears through the polarization
function. Notice that in the phonon Hamiltonian we now have operators
of the form aa and aa' which do not conserve the number of bosons.
This is happening because the electrons are now “hidden” and from the
point of view of the bosons every time an electron emits a boson it is
as if bosons were being produced from vacuum. The full solution of the
problem involves the diagonalization of the Hamiltonian (13.52) which
is possible because the problem is quadratic but since we are assuming
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weak coupling we will neglect the terms which do not conserve the
number of bosons and, apart from a constant factor, rewrite (13.52) as

H =Y nQqalaq (13.53)
q

where
Qg & wq — 2 [Uqg|* TI(q, we) (13.54)

where we have used that w g = wq because of the reflection sym-
metry of the lattice and that in (13.32) II(—q,w) = II(q,w). Eq.
(13.54) shows that the electrons actually modify the bare frequency
of the phonons! This should be expected since what is measured ex-
perimentally is not the frequency of the phonons isolated from their
environment but the effective frequency which takes into account the
interaction of the phonons with their surroundings. We observe two ef-
fects: the real part of IT1(q, w) renormalizes the phonon frequency while
the imaginary part of IT(q,w) produces damping or dissipation of the
phonon modes, that is, when the bare phonon frequency enters a re-
gion where ${II(q,w)} is finite the phonon mode becomes unstable and
decay into the particle-hole continuum.

Let us consider the application of (13.54) to the one dimensional
case. Let us consider the renormalization of the phonon frequency
using (13.47) for the case of the acoustic mode with w, = vs;q where v,
is the sound velocity. In this case we find

Comfu (ke +8) ()
SR (CE CO)

2

Q_

g =

(13.55)

which is plotted in Fig.13.4. Observe that (13.55) has a singularity
at ¢ = 2kp(l + vs/vp) ~ 2kp where vp = hkp/m is the Fermi ve-
locity (notice that v, < vp). Because of the logarithmic singularity
in (13.55) the phonon frequency vanishes close to 2kp in one dimen-
sion. In higher dimensions (13.54) predicts a finite frequency at 2kp
with a divergent group velocity (d2/dk — oo) which leads to the so-
called Kohn anomaly in metals. In one dimension the Kohn anomaly
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Figure 13.4: Dashed line: bare phonon dispersion; Continuous line:
result from (13.55).
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is more severe and leads to the vanishing of the phonon frequency and
has strong consequences.
Observe that in first quantized language we can rewrite (13.53) as

M8, ) (13.56)

PP
o= 1 _—d AX X
> (T

and therefore the vanishing of (2, for some wave-vector q = Q leads
to a Hamiltonian of a free particle for that particular mode. A free
particle has an unbounded motion. This leads to the conclusion that
the vanishing of the phonon frequency is associated to an instability of
the lattice. What this result shows is that the lattice becomes “soft”
for this particular mode and that there is a gain in cnergy to pro-
duce a distortion with characteristic wavevector Q, that is, the lattice
will distort with a modulation given by cos(Q - r). In the case of the
one dimensional system where () = 2kr this distortion is only possible
is the electronic density is commensurate with the lattice. To under-
stand commensuration recall that @ = 2N« /a where N is any integer
is a reciprocal lattice vector. Thus, the condition ) = 2k implies
that kr = 7/(Na). In one dimension one has that kr = nn/a where
n = N/N, is the number of electrons per lattice site. Thus, for the
distortion to occur one needs n = 1 which is the condition for com-
mensuration, that is, the number of lattice sites is a multiple of the
number of electrons. The simplest case is 7 = 1 that is, the half-filled
band. In this case @ = 7w/a and therefore the distortion will be of
the form cos(mz/a). In this case the unit cell doubles size as shown in
Fig.13.5(a,b). Observe that in this case the unit cell doubles its size
going from « to 2a. This is called the Peierls distortion and we say that
the system is dimerized, that is, transformed to dimers of atoms. This
implies that the Brillouin zone has to shrink from +7n/a to +7/(2a)
and a gap has to open at the zone boundary (exactly like in the case of
phonons) as shown in Fig.13.5(¢c,d). It turns out however that the zone
boundary is at the Fermi energy and therefore a gap A has to open
at the Fermi surface and the system should be insulating. The size of
the distortion and the magnitude of the gap cannot be discussed in our
simple picture because these are non-perturbative effects. This effect,
however, is seen in one dimensional systems such as polymers which by
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Figure 13.5: (a) Original Lattice; (b) Peierls distortion; (c¢) Original
electron band; (d) Electron band after Peierls distortion.

band structure arguments should be conductors but by the effect of the
Peierls mechanism are actually insulators.

13.4 Electron-electron interactions

So far we have discussed the problem of an electron gas interacting with
external charges or the ion lattice but one important question which is
left out is: does our arguments of screening apply to the electron gas
itself? Do electrons screen their own Coulomb interaction? On the one
hand screening requires the electrons to be indistinguishable from each
other and obey the Fermi-Dirac statistics. On the other hand one has
to be able to isolate a particular electron in order to apply our argu-
ment, that is, we have to be able to distinguish one electron from the
others! The problem here is similar to a very familiar puzzle: who was
created first, the chicken or the egg? The problem of screening requires
one to separate two aspects of the interacting electron gas system: the
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collective electron motion and the single electron physics. This is a
very delicate and complex problem and to my knowledge there is no
final answer to it. One usually have to use uncontrolled approxima-
tions. Here we will be happy to use a simple mean-field, Hartree-Fock,
approach to the electron-electron interaction in three dimensions:

1
H; = G ; Uyngn—q (13.57)

where U, = 4me?/q* (where the factor of 2 is to avoid double count-
ing). In the mean-field approximation one does the usual substitution:
NgN—q = (Nq)N—q + Nq{n_q) which changes (13.57) to

1
q

where
Vo =Uy(ng) - (13.59)

Observe that (13.58) has exactly the form of (13.21) for an external
potential. In this picture each electron responds to the average charge
density. Applying the arguments of the previous sections one would
argue that the effective interaction felt by the electrons due to the
other electrons would be given (in the static limit) by

U, 4re?
€(q,0) P +dip

Ut = (13.60)

which is the screened Coulomb interaction. Thus, from this point of
view the electrons indeed interact via an screened (weaker) interaction
than the original long range Coulomb interaction.

13.5 Landau’s Theory - An Introduction

In the last sections we have seen that in an electron gas, even if we start
with strong long range Coulomb interactions, screening plays a major
role and one ends up with only a mild local interaction among the
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electrons. Since the interactions turned out to be weak, the interacting
electron fluid resembles a non-interacting electrons gas. The main prob-
lem here is how to incorporate the electron-electron interactions within
the properties of the electron gas. Let us imagine that and electron
with energy Er is introduced into the electron fluid as in Fig.13.6(a).
As the electron enters the electron gas the other electrons have to move
around to screen its charge. In this case a “correlation hole” with posi-
tive charge is formed around the electron in such way that, as seen from
far away, the electron behaves like a neutral object as in Fig.13.6(b).
One imagines that the same picture applies to all the electrons in the
system (as we did in the mean field theory described previously). In
this case the electrons are dressed by the interactions with all other elec-
trons in the system. Because of this dressing the clementary excitations
in the system arc not bare clectrons but dressed clectrons that we call
quasiparticles (as shown in Fig.13.6(c)). Although this picture is quite
appealing we would like to have a more quantitative description. For
instance, one would like to know how interactions affect experimental
quantities such as specific heat, magnetic susceptibility and so on.

A major breakthrough in this field was made by Landau in the 40’s.
Landau’s theory of the Fermi liquid is based on two main “intuitive”
assumptions:

(1) There is one-to-one correspondence between the quantum num-
bers of the non-interacting electron gas and the interacting electron gas.
Thus, the quasiparticles carry one unit of electric charge, they are spin
1/2 excitations and they also carry the momentum quantum number
k. Thus, in Landau’s theory the Hilbert space for electrons and quasi-
particles is the same and the only possible change in the problem is
not dynamic but kinematic. This principle is also called the adiabatic
principle because it assumes that the interactions can be turned on
slowly so that nothing tragic happens in the system (in particular, no
phase transition occurs!). This principle tells us how the quasiparticles
couple to external fields such as the electric and magnetic fields. Since
the electric charge is the same as the electrons the electromagnetic field
should couple via “minimal coupling” p—eA /¢ plus the Zeeman energy
S-H.

(2)1t is possible to write down an energy functional of the devia-
tions of the quasiparticle occupation relative to the ground state. As we
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Figure 13.6: (a) Electron entering the electron gas; (b) Electron plus

its correlation hole; (¢) Quasiparticle gas.
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have seen before we can create excitations in the electron gas by creat-
ing particle-hole excitations around the Fermi surface. Accordingly to
Landau the ground state of an interacting Fermi gas is also a Fermi sea
of quasiparticles as defined by assumption (1). That is, we can define
an occupation number ny , such that

1

= BB 1 (13.61)

Nk,

where Ey , is the quasiparticle energy and p is the chemical potential
of the system. In increasing the temperature or applying a field to a
system what one does is to modify the occupation by an amount ny ,.
In Landau’s theory the total energy of the system can be written as an
cxpansion in terms of these deviations:

1

oV Z fk,o’,k’,o" 577:1{,0-577;1(/,(713.62)

1
E[(Snk,a] = Eo + — Z Eﬁ,aénk,a -+
4 k,o.k’ o’

k,o

plus higher orders in dny ,. Ej is just the ground state cnergy, Eﬁ,a is
the bare dispersion of the quasiparticles and fx o1/ o is so-called Landau
paramcter which describes the weak interaction between quasiparticles.
Observe that the actual dispersion of the quasiparticles depend on their
interaction. Since we can rewrite (13.62) as

1
E = Ey+ V Z Ek,(rdnk,(f

k,o

1
Ek,o‘ = Eﬁ,a -+ v Z fk,a,k/,axénk/,a/ (1363)
k,o

where Ey , is the actual quasiparticle dispersion.

In order to understand the physical meaning and consequences of
(13.62) let us consider the problem of the specific heat of the electron
gas in Landau’s theory. The quasiparticle entropy is given by the usual
Boltzmann cxpression

S = —kVB > e In(ney) + (1 — i) In(1 — e p)} . (13.64)
k,o
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A variation dny, in the distribution function leads to a variation 65 in
the entropy which is given by

k‘B Nk,

_ _Lks ] ’

_ kS~ (p ) om, (13.65)
4 k,o

where we used (13.61). What we are interested in is the specific heat
which is the variation of the entropy with temperature, that is, 6S/67T.
Thus, one needs to calculate how the occupation nk, changes with
temperature. This can be easily obtained from (13.61) as

5nk,a Ek,a — K ank,a
= ) (13.66)
Thus, substituting (13.66) into (13.65) we find
55 1 Oy \ (B — 1\°
L ( k, “) . (13.67)
0T ~ V& \ b, T

In order to evaluate the sum in (13.67) we transform it into an integral
by using the usual definition of the quasiparticle density of states:

N(E) = % S 6(E - Bi.,) (13.68)

k,o

and rewrite (13.67) as

48 +oo E—u\*{ on(E)
— = dEN(E (7> - 13.69

oT —o0 (E) T < oF ( )
but observe that the derivative in the expression above is highly peaked
around F = p (Fermi statistics!) while the rest of the argument is a
smooth function around this point. Therefore, with great accuracy we
can approximate the above integral as

)
oT

+o0 et

2

= %k%N(u) (13.70)
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where we changed variables: x = S(F — p). The specific heat of the
electron gas can be immediately obtained from (13.70) since

) w2 .

Cy = T% gkéN(u)T (13.71)
which looks identical to the free electron gas result (6.97). The temper-
ature dependence of the specific heat is of course the same as in the free
electron gas but the similarity is only apparent because in our defini-
tion of the density of states for the quasiparticles (13.68) we have used
the actual quasiparticle dispersion Ey , which accordingly to (13.63)
also depends on the Landau parameters fx i ! Thus, in order to
be complete one has to compute N(u) as a function of the interaction
parameters. First we notice that due to Landau’s first assumption the
number of electrons and the number of quasiparticles have to be the
same. This implies that the Fermi momentum of the quasiparticles is
the same as the Fermi momentum of the particles, kr = (37n)3/2, since
it depends on the density alone. Let us first go back to the definition
of the density of states (13.68) and rewrite it as an integral

NG = ¥ bl Be)

_ Z/ d3k ivk kr) (13.72)

since by definition Fy, , = p. Since we are expanding the total energy
to second order in dnk, we just keep the quasiparticle energy to first
order (take a look at (13.63)). In this case we can replace By, by EJ ,
in (13.72) which depends on the group velocity of the quasiparticles:

Vpo = VpEg . (13.73)
In a non-interacting Fermi gas the group velocity is simply pr/m where

pr is the Fermi momentum. By analogy we define the effective mass,
m*, of the quasiparticles as

Voo = (13.74)
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when substituted in (13.72) leads to

m*
N(u) = nz—fyf (13.75)
which is the quasiparticle density of states that depends only on the
cffective mass of the quasiparticles. Thus, what we have done is trans-
ferring the problem of calculating the density of states to the problem
of calculating the effective mass. But life is simpler because the mass is
a kinematical quantity which reflects the inertia of the system. In the
case of the interacting electron gas the effective mass depends on the
interaction between the electrons since as one electron moves it has to
push the other electrons around, that is, the inertia of the quasiparticle
depends on its interaction with the environment.

The simplest way to compute m* is use an argument due to Landau
which assumes Galilean invariance of the system. Consider observing
a Fermi gas from a moving frame with velocity V. If the interactions
do not depend on the velocity of the particle (as in the case of the
Coulomb interactions) then the only change in the Hamiltonian of the
system is in kinetic energy which changes from

N
- D;
A_;%n

to
N( 2 N p2
22’ -V Z +—V2 (13.76)
m

=1 =1

since the velocities have to change from v; to v; — V due to Galilean
invariance. Thus, the total energy and momentum of the system in the
moving frame will be

E,, = E-P. V+N—mv2

Py = P—NmV (13.77)

where P = Zi]\il p; is the total momentum in the rest frame of the
electron gas. Consider now adding a quasiparticle with momentum p
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in the rest frame. This will lead to an increase in the total mass of the
system by m and the total momentum of the system by p. Thus, from
(13.77) we see that momentum of the quasiparticle, as seen from the
moving frame is, p — mV while its energy will be

2

Emov,p—mV,a' = Ep,a- —PpP- V + m7
V2

Enovpo = Epimve =PV —m—. (13.78)

Now assume that V is very small and expand (13.78) to first order in
V:

Erimps  Bog + V- (mV By — ) (13.79)

which depends on the quasiparticle energy E,,. Using (13.73) and
(13.74) in (13.79) leads to

ES

T V. (13.80)

*

4

Emovp,o = Eps +

On the other hand, from the moving frame the distribution function of
the quasiparticles has to change as

NMmov,p,e = MptmV,e X Npo+mV - Vyng ,
Onp o

= npo+ mﬁv plieo (13.81)

From the change of the occupation we can calculate the energy of the
quasiparticle in the moving frame from (13.63)

' 8np/ 0

13.82
OFy » ( )

1 m
Emovpo = Epo + % Z fp,a,p’,a’wv ‘P

!
P,

which has to be compared with (13.80). At this point the comparison is
not straightforward because we have to evaluate the integral in (13.82).
In dealing with an isotropic system and therefore a spherical Fermi sur-
face we have an extra symmetry which is the rotations in momentum
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space. This implies that in the scattering between two quasiparticles
with momentum p and p’ the interaction parameter fy, ;. only de-
pends on the angle #(p,p’) between p and p’. In this case we can
expand fppr in Legendre polynomials, P;(cos(f)) as

fp,a,p’,a’ = Z fl,a,a’f)l(cos(e(pa pl))) (1383)
=0

which can be inverted due to the orthogonality between the Legendre
polynomials as

—2l t1 7 N o3 ! !
frow = = /0 d6(p, p') sin(8(p, p')) Pcos(0(p, D)) foropr.or
204+ 1 1
= 2 /_1 du(p7 pl)Pl(u(pa pl))fp,o-,pl,a./ (1384)

where u = cos(f). Direct substitution of (13.83) into (13.82) leads to

m d3pl anp,a I
m* Z fro0 / (27h)3 <_ aEp,a> Picos(0))V - p

ol

Emm;,p,(r = Ep,(r_

= Epo— Z;N(O)Z,%V'p
- B, - mﬁ% . (13.85)
where we have defined
FF = N(0) Ji00 +2fl,a,—a
Fe o= N(o) oo =T —2f hoo (13.86)

the symmetric and anti-symmetric Landau parameters. Direct compar-
ison of (13.85) with (13.80) we find

m* FS

— =14+t 13.87

- 3 (13.87)
which gives the renormalization of the mass in terms of the interactions.
The density of states can now be easily obtained from (13.75).
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It is clear that many properties of the interacting electron gas can be
directly calculated from Landau’s assumptions. In this case the Lan-
dau parameters enter into the theory as phenomenological functions
which describe the physics of the interacting Fermi gas. It is possible,
therefore, to make many predictions about the physical quantities of
interest and check experimentally. The simplicity and power of Lan-
dau’s approach should be clear and its success in explaining the physical
properties of many systems such as He® and simple metals made it the
standard approach to study interacting electron systems.
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13.6 Problems

1. Consider a system of electrons moving on a plane. Use a system
of coordinates where the three dimensional vectors can be writ-
ten as R = (r, z) where r is the vector in the plane. (3) Using
the Thomas-Fermi approximation show that the Thomas-Fermi
screening length is the Bohr radius ¢y and does not depend on
the density. (i7) Calculate the effective potential for a charge @
sitting at the origin of the plane (pe.(r) = QJ(2)d(r)) and show
that at long distances (r > qy) the effective potential behaves
like

4m2a2e
V(r) ~ _77“; < :

In this case the potential does not decay exponentially contrary

to the problem in three dimensions.

2. Use (13.51) to calculate the polarization function for a three di-
mensional electron gas with a spherical Fermi surface. Hint: you
can find the full solution in Fetter and Walecka, “Quantum The-
ory of Many-Particle systems” (McGraw-Hill, New York, 1971),
pg.158.

3. Calculate the polarization function of a two dimensional clectron
gas in the RPA approximation. (z) Plot R{II(¢, w = 0) and show
that it docs not diverge at ¢ = 2kp. (42) In what region of the
(w, q) space S{II(q,w)} is finite. (47) How does the dielectric
function compares with the result of question (2)?

4. Consider the Hamiltonian (13.52). (%) Calculate the commutator

of aq with the Hamiltonian and show that the operators aq mixes

.l.

with the operator a',. (4) Consider the unitary transformation

— 1
bq = Uqlq + Vqa g

what is the condition on uq and vq in order to have canonical
commutation relations? (#iz) Show that the Hamiltonian can be
completely diagonalized by the transformation above. What are
the new phonon frequencies in this case?
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5. Consider a one-dimensional electron gas at half filling with hop-

ping matrix element #y;. Consider the case where the system un-
dergoes a Peierls distortion of size u (that is, the size of the dis-
tortion in Fig.13.5). (i) Assume that wavefunction of the electron
in each atom has an exponential form, ¥(x) ~ e~1#1/% where aq
is the lattice spacing. Show that there is a change in hopping
matrix element in the system from ¢, to ¢y + 2au depending on
the site (« is a constant).

(#4) From your result above show that in the tight binding approx-
imation the Hamiltonian for the electrons of the problem can be
written as

H,==3"(to+ 20u(-1)") (chens1 + chiyen) . (13.88)

n

(#i4) Show based on general arguments that the elastic energy due
to the Peierls distortion can be written as

H; =2NKu? (13.89)

where N is the number of atoms and K is the spring constant.

(#v) Fourier transform (13.88) and show that it can be written as

H, = Z [ek (bzbk — azak) + 2aw sin(kay) (bzak -+ azbk)](13.90)
k

where ¢, = —2tycos(kag), a = ¢ and by = —icxeg (with @ =
7/a) and the sum over k goes from —Q/2 to /2 (that is, the
new Brillouin zone).

(v) Observe that (13.90) is quadratic and can be diagonalized.
Define the following unitary transformation

o = UpQp + ’Ukbk

ﬁk = ’U,kbk — VrpQp (1391)
where uy, and vy, are constants. Show that u2 +vZ = 1. Use (13.91)

to diagonalize (13.90) and show that the new Hamiltonian can be
written as

H.=Y E, <[3,1/3k — a};ak) (13.92)
k
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where E, = /€2 + AZ and

Ay, = dausin(ka) . (13.93)

Make a plot of +FEj and show that a gap opens at k = 7/(2a).
Give a physical meaning to the operators 5 and o.

(vi) Show that
1
W=y (1+ —'Z)
v = % (1 - 6—k>sgn(/f)

where sgn(k) = +1(—1) if £ > 0(k < 0).

(v) Assume that the electron system is half filled and show that
the total energy of the system (electron-+distortion) is given by

E(u) 4t (2@u>2 9
=——E|l—{— 2K 13.94
N - l s +2Ku (13.94)

where E[z] = 5 2 dt\/1 — zsin’ (t) is an Elliptic integral.

(vi) Show that for u < #;/a the energy of the system can be

written as
E(’U,) 4t0 40!2 80!2 Qto 2
—t o~ —— 2K 4+ — — —1 (—) - 13.95
N T + [ + wty  odg . o " ( )

What happens when v — o0? From these two results prove that
no matter how small o there is always a value of u = uy # 0 for
which the energy is minimum. Thus, you just proved that, no
matter how small the coupling constant «, the one dimensional
system is always dimerized (Peierls theorem).

(vi) Using (13.95) show that

2t mho K
~ S0

UON
(87

for u < ty/a.. Observe that ug is not an analytic function of !
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6. In this exercise we are going to consider the compressibility of

the electron gas in the presence of interactions. The physical
quantity of interest is the compressibility, £ (or bulk modulus).
The compressibility is defined as

19V 1 on

" VOP  n?dmu
where V' is the volume, P is pressure, n = N/V is the parti-
cle density and p is the chemical potential. Thus, in order to
calculate x one has to consider the change in the quasiparticle
occupation, dnk , in respect to the chemical potential.

(%) Using (13.61) show that

3nk,a

ko = (0Ex, — O11) B, (13.96)
(#4) Show that
0By, = %kza Sieo ) 01O o7 (13.97)
and from that prove that
Fs
0By, = N((;l) on

where 6n = & Y, , 6, is the total variation in the number of
quasiparticles.

(#é2) Using the results of item (7) and (#7) show that

_ 1 N
n2l+ Fg'

What is the physical meaning of this result?

In the exercise you will calculate the magnetic susceptibility of the
interacting electron gas in the Landau approach. Let us consider
only the Zeeman cnergy which is given by

N
Hz=—gMBZSi'H

=1
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where S is the spin of the quasiparticles which, according to Lan-
dauw’s assumption, is +%/2.

(i) What is the change in the quasiparticle energy in the presence
of the field? What is the difference from (13.97)7

(#4) The change in the occupation is still given by (13.96). Notice
however that the change in the chemical potential cannot depend
on the direction of the field H and therefore can only be of order
H?. Thus, neglecting the change in the chemical potential due to
the field and using the result of item (7) show that

P N(u)gus o,
2(1 + F)

where 6n, = % >k 0Nk, and H, is the z-component of the mag-
ncetic ficld. From the above result calculate the total magnetiza-
tion of the clectron gas and show that the magnetic susceptibility
is given by

N()(gpn)*

XTI Ry

What is the physical meaning of this result if Fj§ < 0?7
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Chapter 14

Superconductivity

We have shown in Chapter 7 that phonons can induce an attractive
interaction among the electrons. This retarded interaction can lead to
the phenomenon of Cooper pairing where electrons with opposite mo-
menta close to the Fermi surface can form a bound state. This bound
state was called Cooper pair. Because of that the electron gas is unsta-
ble and cannot be the ground state of the system at low temperatures.
On the other hand the long range Coulomb interaction can prevent the
clectrons from forming these pairs since it is a repulsive interaction. In
the previous chapter we have argued that the Coulomb interaction is
actually screened by the other clectrons in the system and can be cf-
fectively weak within the many-body system. Thus, if the attraction is
strong enough so that it overcomes the screened repulsive Coulomb in-
teraction the electron gas is indeed unstable to the formation of Cooper
pairs with a binding energy

A = 2hwpe” ¥6T (14.1)

where wp is the Debye frequency of the phonons, N(u) the density
of state of the electron gas and U the effective attractive potential
(including the Coulomb interaction) between the electrons.

It is clear that the free electron gas being unstable it cannot describe
the nature of these new state with Cooper pairs. The Cooper argument
tells us that the system is unstable but it does not tell us what is the
nature of the actual ground state. However it gives us important clues
such as it is made of pairs with total zero momentum. In what follows

385
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we are going to consider also the case where the pairs have zero spin
projection as well since it is simpler (states with finite spin projection
are actually possible). Consider making a state with a pair of electrons
with zero momentum in the vacuum:

W) = ol |0) (14.2)

one would suspect that the actual ground state of the system to be made
of superposition of states of the form (14.2). One has to remember,
however, that pairing only occur for electron states with momentum
close to the Fermi surface. Electron states deep inside of the Fermi sea
will not be affected by the attraction because retardation effects are
quite weak for such electrons and the Pauli principle “protect” them
from the interactions which result in pairing. Thus, the pairs must be
formed only close to the Fermi surface and not all the electrons will
pair up.

14.1 BCS theory

In what follows we are going to discuss the Bardeen-Cooper-Schrieffer
(BCS) theory of superconductivity in its simplest form. We have seen
that the generic Hamiltonian for clectron-clectron interaction can be
written in the form

Hr= / dr / dr' > Usor(r = )t (0)eo (0) gl (2 (x') . (14.3)

Since we will be discussing the pairing mechanism it is convenient to re-
duce (14.3) to simpler Hamiltonian which contains the essential physics
of the problem. Assuming that there is an attractive interaction for
electrons with opposite momenta (close to the Fermi surface) and as-
suming the spins to be opposite we choose
UE

Upor(r —1') = —%5(1' — 1), ot (14.4)
where U(F) is the interaction energy which is only finite for energies
close to the Fermi surface (|E — | < hwp). In this case (14.3) simplifies
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to
Hr = =5 [ dr St oo ()0, 0) (145)

where we rearranged the operators in a slightly different form. Notice
that to (14.5) one has to add the kinetic energy of the electrons as well
which turns the whole problem into a very complicated one. Instead,
we are going to follow the tips given to us by the Cooper argument and
consider the problem in a mean field picture. Since pairs of electrons
have a wavefunction of the form (14.2) we factorize the interaction term
as

P, ()Y (D) (t) = PLE)E!, () (W () (1))
+ @)Y, () Yo ()1, (1)

where the average now is supposed to be taken in the actual ground
state. Observe that it implies from this decoupling that the function

A(r) = U{gn(r)y,(r)) = —U(y(r)yr(r)) (14.6)

has to be different of zero in the ground state. Observe that in the free
electron gas the function A is zero because the total number of parti-
cles is fixed in the non-interacting ground state. Thus, A is the order
parameter of the superconducting state. You must find this strange
because at this point we have talked only about states which conserve
the number of particles and therefore one would naively expect that
A = 0 for any state with fixed number of particles. The difficult here
lies in the fact that the paired state is actually very different from the
unpaired state which is still present in the system (all those electrons
deep inside the Fermi sea). The situation here is very similar to the
problem of two fluids in thermodynamic equilibrium. In this case the
number of particles between the two fluids is fluctuating all the time
but their chemical potential is the same. Thus, in order to discuss this
situation it is better to consider the problem in the grand-canonical
ensemble where the number of particles is not fixed. Notice, however,
that even in the grand-canonical ensemble A = 0 for the electron gas.
Thus, A is indeed the order parameter of the problem.
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The full Hamiltonian of the problem can be written as

H= | dr{Zw;(er(—mw — () + A () (r)
£ A ) (14.7)

where F(—ihV) is Ey with k replaced by —iaV. (14.7) is the effective
Hamiltonian which describes the physics of pairing. Observe that, as
any mean field Hamiltonian, it is quadratic in the electron operators
and therefore can be diagonalized by a transformation. It is instructive
to define the spinor

) — Pr(r)
¥(r) = ( $1(r) ) (14.8)
and the Hamiltonian matrix
E(—ihV) — A(r)

[H(r)] = l A*(r) - _E(=ihV) + ] (14.9)
in which case the Hamiltonian becomes
H o= [ dr {gl)(B(-ihV) — wn(e) + @) (B(-iRV) — uusy (r)

+ A@PIE)Yl() + A @)y, ()p(r)

()}
Ey+ [ dr {plx) (B(-ihV) — i (x) — 1 (x) (B(~ih¥) — )] (x)
A)l)el(r) + A%(x)d, (x)d(r) }

By + [ drw! ()M () o) (14.10)

+

where Ej is a constant. Observe that the definition (14.8) and the
Hamiltonian (14.10) has the same form as the Hamiltonian we used
to study antiferromagnetic spin waves (12.49) and (12.48) with the
difference that we are dealing with fermion operators instcad of bosons.
As before we look for a transformation U such that

U(r) = U (r)®, (14.11)
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where

o, = ( Tnt ) (14.12)

Tn,d

where 7, , are fermion operators ( {%,mﬁn,a'} = Opmdse). On the
other hand one must have

®, = / dr U7 ()T (r) (14.13)
which implies the orthogonality relations
S U )U(Y) = S —1)],
/dr U (OUn(t) = Opml (14.14)

where I is the identity matrix. Moreover, due to the anti-commutation
relations between the operators it is easy to show that

v (1) u; (r)

Moreover, due to (14.14) we can easily show that

/dr (Jun (@) + Jon(x)?) = 1 (14.16)

which is the normalization condition on the coefficients of the matrix
U. Furthermore, observe that I is unitary (U~ = UT).

The objective of the unitary transformation is to diagonalize the
Hamiltonian in (14.10) and reduce it to the form

H = Z en/Y’jll,O'/Y'nao'

N0

()] = [ un(r) - —vi(r) ] | (14.15)

= EO + Z [/Y;:,T/Ynﬁ - /Yn,JY:L,,L]
n

= E+ )Y 90,2, (14.17)

where €, are the eigenvalues of the problem, o, is the Pauli matrix and
FEy is a constant. Notice that the o, matrix appears because of the
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unusual form of the vector operator (spinor). Substituting (14.11) into
(14.10) we find
H= / a3 @Tu () [H () Uy (1) By - (14.18)

Comparing the above equatlon with (14.17) we see that in order to
diagonalize the problem we have to require

/ AU () [H () U (r) = €ndnmos (14.19)
or with the help of the orthogonality relations (14.14)
[H(r)|Uy,(r) = eno.Uy(r). (14.20)

Using (14.15) we find

(E(—ihV) — p) up(r) + A(r)v,(r) = eun(r)
—(E(—ihV) — p) vp(r) + A" (r)u,(r) = eyvp(r) (14.21)

which determines u,, v, and €,. Observe that we have mapped the
pairing problem into a problem of free fermions or “quasiparticles”
given by Hamiltonian (14.17). From these results we immediately know
how the ground state looks like since we just have to fill up all the
fermion states up to the chemical potential. Naturally the occupation
number of the problem is given by

1
Observe that averages of the type (yu,,V¥m,) vanish in the new repre-
sentation.

Any operator in the electronic language can now be rewritten in
the quasiparticle language. For instance, the number of electrons in
the system can be written as

N = / dr 3" (), (r) = N, + / dr it (r)o, U (r)

= Not [ dr S0 B (U (1)l (1) B ()

fn = </Y;:,0/Yn,a> = (14.22)

1

~ N+ [dr {(|un(r)|2 — o)) 3 (e = 3)

2 () () T — 205 ) (14.23)
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and therefore, in average,
1
W) = N+ 2% [dr (jua@) P = [oa@) ) (£~ 5)

- s [(-3) -2 e (- )

= Q;fn + 2;/dr|vn(r)|2tanh (ﬁ;’) (14.24)

where Nj is the number of sites in the system and we have used (14.16).

The problem has not been fully solved yet since the order param-
eter has not been determined. Notice that the order parameter of the
problem has to be obtained self-consistently from its definition (14.6).
Substituting the transformation (14.11) into (14.6) and using the re-
sults above we find

Afr) = U@ (r)o~ (r)>
= UZUn () (1 —2f,)

= UZun r) tanh (i ) : (14.25)

Observe that the full solution of the problem depends on the solution
of the coupled equations (14.21) in the presence of the self-consistent
condition (14.25). It should be obvious that in most cases this is highly
non-linear problem.

14.1.1 The nature of the ground state

At this point one should worry if the mean field theory we are using
indced describes a ground state made out of Cooper pairs as in (14.2).
In order to answer this question let us consider what happens at T = 0.
According to (14.22) the number of “quasiparticles” vanishes at T = 0,
in order words, the ground state |G) is defined as the state without
quasiparticles, that is,

YnolG) = 0. (14.26)
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Let us consider for simplicity the case with ¢ =1. From the transfor-
mation (14.13) we find

= [ dr (u (x)n(x) + v ()] ) - (14.27)
It is convenient to Fourier transform (14.27) to
e = 2 () + 03 (K)al, ) (14.28)
where
bo(k) = 1 ST gy,

3

Vx
% / dre "y, (1) (14.29)

and similarly to v, (k). Observe that the condition (14.26) implies that

up(k) =

(up (W) anes + v (K)al ) 1G) = 0 (14.30)

which is the equation that determines the ground state. We want to
construct the ground state starting from the vacuum |0). For that we
have to recall that

ak,a|0> = O,
af ,af ,0) = 0,
axeal ,[0) = [0). (14.31)

Observe that the filled Fermi sea which is described by

k<kp
IFS) o< [] af,l0) (14.32)

k,o

is not the the ground state because the condition (14.30) is not fulfilled.
As a next tentative let us use (14.2) which we write in a more general
form

|CP> = H alt’,na};lﬁatk/,im) (1433)

k’',n
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where oy ,, are complex numbers. First observe that

axp|CP) = I1 alt’,naTk’,TaT—k’,¢ alt,nak,Talt,faT—k,JO)
| K/ 2k,n ]

— 11 af;,,naTk,,TaT_k,, L] e (1 — aLTak,T)aT_k, 110)
| k' #£k,n

= | ]I af;,,naL,TaT_k,,J 041*;,,LCLT_1<,¢ |0) (14.34)
k2K

where we have used (14.31). Moreover,

”’T—k,¢|CP ) = [ 11 a;,,na,lt,,Ta,*_k,,J “i,n”'T—k,¢”'L¢”'T—k,¢|O>
k' Z£k,n

K'#k,n
— 0 (14.35)

_ . oottt
= —[ I1 O‘k',n“Tk'm“Tk',J Ve Uit @1, 0k, |0)

where we have used (14.31). The conclusion is that (14.33) is also not
the ground state! What have we done wrong? The problem here is
that atk, | annihilates |C'P) while it does not annihilate |0) while ay+
annihilates |0) but does not annihilate |[C'P). Thus, we try to generalize
(14.33) to a more generic form which includes |0)

IBCS) =] <5§,,n + o aL,TaT_k,,i) |0} (14.36)

k’',n

which is known as the BCS wave-function. It is very simple to show
using (14.34) and (14.35) that

(us(Qars +vskal, ) BCS) = | TI (B + 0l mal o))
k! Z£k,m#n

x (un(k)og, — vi(k)Br, ) aly (04.37)

which, in order to obey (14.30), requires that u;,(k)oy; , = vy (k)Bg ,, or
oxn = Cvy(k) and By, = Cup(k) where C is a constant. Thus, we can
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rewrite (14.36) as

IBCS) = CH (tn () + va(K)af ,al ) 10) (14.38)

which is the ground state of the problem. The reader can easily show
that the normalization condition (BC'S|BC'S) =1 leads to |C| = 1.

Observe that (14.38) gives a well defined physical meaning to the
coefficients u and v, that is, |v,(k)|? is nothing but the probability of
a state with a pair of electrons with opposite momenta and spin in a
state n to be occupied while |u,(k)|? gives the probability of this pair
to be unoccupied. Since the number of pairs in the system is half of
the number of electrons N we must have

(N) =23 |ua(k)|? (14.39)

which is identical to (14.24) at T = 0. Since we are working with a fixed
chemical potential but not a fixed number of particles we can calculate
the deviations from the mean value. The reader can show (after some
algebra) that at 7 = 0 we must have

(6NN = (N <N>)2> (N?) = (V)
= 4Zu v2 (k) (14.40)

which is zero if the occupancy of the pair states is discontinuous. How-
ever, we will see that this is not the case and that 6NV is finite but
§(N)/{N) actually vanishes when (N) — oo in most cases. If this is
true we can actually forget about fluctuations in the number of particles
in the system.

Therefore one would suspect that the ground state |[BC'S) is not
an eigenstate of the number operator. Formally speaking the BCS
wavefunction does not have a well-defined number of particles. Another
way to see how this is so is to reconsider (14.38) by taking the product
seriously, that is, it is obvious that (14.38) can be written as

IBCS) =Y > Clki,ke,....kn)af aly, .af e’y |@14.41)

M ki,...kys
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where

C(k1, ks, - kyr) = [[ (%) T va(X) (14.42)

k/,n

are constants where k runs over the unoccupied states and k' over the
occupied states. In this expression M is the number of states available
for k (if this is coming from a simple band the number of states is just
the number of atoms in the system which is usually larger than the
number of electrons). Thus, we have N/2 states occupied by pairs and
M — N/2 states which are unoccupied. If all u, (k) and v, (k) are finite
there is a finite probability of any NV going from 0 to 2M, that is, the
state |[BC'S) is not an eigenstate of the number operator. This is in
complete accordance of our discussion of the result (14.40). Observe
therefore that we can rewrite (14.41) in the form

|IBC'S) =) Cn|N) (14.43)

where |N) are states with well defined even number N of particles and
N/2 pairs. Thus, |Cy|? is the probability of having such a state (and
thus, Y5 |Cn|? = 1). Observe that |Cy|?* will be largest for N a2 (N)
which is the average number of electrons in the system but it will have a
spread (or variance) of size (V') which can be large or small depending
on the properties of the superconducting state.

We know from quantum mechanics that when an operator has a
large variance then there is always another operator which is conjugated
to the first which has a small variance, that is, Heisenberg’s uncertainty
principle. It is not clear from our discussion what operator it should
be. In order to address this problem it is worth take another look at
the order parameter A(r) which is defined in (14.6). First of all A(r)
is complex which implies that it can always be written as

Ar) = |A@r)]e® (14.44)

where ¢(r) is the phase of the order parameter and |A(r)| its amplitude.
We can physical interpret the phasc of the order parameter as the phase
of the Cooper pairs in which case we rewrite (14.38) as

¢} =TT (ltn(®)] + v () e*af 1al . ) [0) (14.45)

k,n
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which is a state with well defined phase. Observe that if we try to write
(14.45) in the same form of (14.41) one would obtain constants of the
form

C(ky, ks, ..., kas) kH un (k)| T] € vn(K)|

k/,n

= 5T |un(@)| I lon(&)|  (14.46)

k/,n

which is equivalent to write (14.43) as
[0) = 2 €5 ICN| V) (14.47)
N

which gives the state with a well defined phase as a linear combination of
states with well defined number. The above expression can be inverted
since

T dp
- 5.¢ " 70le) = 2w |CNIIN) (14.48)
4 N
that is,
1 4 dgp N
IN) = O] Jon 27 ¢ 2%p)
I mdy v, o bt
= _r ) " k n k 29 T 49
Cnl J-r 21° an<|u ()] + fn () |e*al sl (0349

The physical interpretation of this expression is very simple, by inte-
grating over ¢ we make its value completely uncertain and because
of that the number of particles becomes fixed. Thus, the Heisenberg
uncertainty relation is

SNop > 1. (14.50)

What this relation implies is that we can see the superconducting phase
as an operator which is canonically conjugated with the number oper-
ator, that is,

[N, ¢g] =1 (14.51)

from which we can easily derive (14.50). Observe that the BCS state
has well defined phase and ill defined number of particles. This charac-
teristic of the BCS state is very important and will discuss it further.
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14.2 The translational invariant problem

Let us first consider the problem of a translational invariant system in
which case A(r) = A, is independent of the position. The quantum
numbers in this case are just the momentum, that is, n = k and the
Hamiltonian (14.17) is simply

H =Y et Moo (14.52)
k,o

where the spectrum can be obtained by (14.21) by observing that the
solution can be written in terms of a Fourier transform, that is,

1 i
u(r) = Wuke
1 .
n(r) = ﬁvke’k'r (14.53)

where the coefficients u, and vy are determined by the equations

k-r

(Ek — U= ek)uk -+ Ao’Uk =0
Ajug+ (—Ex +pp—ea)ve = 0 (14.54)

which a simple matrix equation of the form

Ex — p— e Ay Uk
=0. 14.55
A —FBx 4+ 1 — ex Vi ( )

Thus, in order to avoid the trivial solution (ux = v, = 0) we must
impose

& = teac = £/ (B — 1)? + | A2, (14.56)

which gives the dispersion of the excitations in the problem. When
Ay = 0 (normal state) we have ¢ = +|FEy — p| which are shown as the
dashed lines in Fig.14.1. Observe that the overturn of the dispersion
from the normal Fj — p is due to the ordering of the operators in the
spinor (14.8) as can be explicit seen on (14.17) (this overturn is related
with the appearance of the matrix 0,). When Ay # 0 we observe that
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Figure 14.1: Quasiparticle dispersion in BCS theory: Dashed line -
normal state; Continuous line: superconducting state.

a gap of size |Ag| opens exactly at the Fermi surface of the system
as shown in Fig.14.1. Moreover, from (14.54) and the normalization
condition |ux|? + |vk|*> = 1 one finds

E. —
ug = cos@f{t:\/2 (1i k )
€k

1/ Fe—
W = sin@ff:\/— (11F k “). (14.57)

2 €k

The superconducting gap is given by (14.25):

A, = Z Atanh(ﬁF“)
€x

i tanh( <Ek5>2+|Ao|2>

LT /(QW)dU \/(Ek—u)2+|Ao|2
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400 tanh (—B (E_L;)zﬂAo'z)
1 = /_0o dEU(E)N(E) N

which is the equation that determines |Ao(T)| (N(FE) is the density of
states of electron gas). Since U(F) is finite only in the shell |E — u| <
hwp, and in this shell the density of states is constant and equals to
N(u) we rewrite (14.58) (change variables to e = F — 1) as

iy (AT
€

€+ [Ag(T)?

(14.58)

1 = UN() /Othd (14.59)

Consider first the case of zero temperature where the equation becomes

de
[A0(0)[

th
1= UN@) [
0 €2 +

th th

1 = UN(u)ln(AO(O)-i—\](AO(O)) +1) (14.60)

which for |Ay(0)| << hwp reduces to

120(0)| & 2hiwpe” 77 (14.61)

which is identical to the Cooper solution (14.1). It is also clear from
(14.59) that there is a temperature T = T, above which |Ay(T)| van-
ishes. This is the critical temperature of the problem. This temperature
can be obtained from (14.59) as (using that |Ag(T.+7)| = 0 forn — 07)

hwp  tanh (2
1 = UN(,u)/ de#
Jo
Bcth/2 h
1 = UN(p) / dp 20T
0 x
1 = UN(w ltanh (&712601)) In (ﬁJ;wn>

Behwp /2 9
— / dx sech’zInz (14.62)
0
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where the last integral cannot be obtained analytically. Let us assume
that fiwp >> kT, in which case we find

1 = UN(p) []n (ﬁchw[)> — /Oo dx sech2$1n$]
2 0

1 = UN(p) [ln (ﬁ J;“”’) +1In (@ﬂ (14.63)

™

where v & 0.5772 is the Euler’s constant. From the equation above we
immediately derive

e TN (14.64)

Observe that kT, and |Ay(0)| are not the same. Indeed,

[20(0)]
kgT.

=me "~ 1.76 (14.65)

which is a universal number independent of the material properties.
The whole function |Ay(T")| can be obtained from (14.59) and one can
easily show that for T << T, we have

IA(T)| = |Ao(0)| — /27| Ag(0) | kg T e P40 (14.66)

and for T —T,| << T,

8 T\'?
20(T)| » kT oras (1 _ ?> (14.67)

which shows that as in any good phase transition the order parameter
vanishes at T = T, with an exponent of 1/2.

In face of the discussions in the last subscction of this chapter it is
interesting to consider the problem of the number of electrons in the
system. From (14.24) and (14.53) we have (at T = 0)

(N) = é; o (14.68)
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Before going into the calculation of this quantity we observe that it
has a deep meaning. The average number of particles in the electron
representation can be written as

(N) = % > (ol pax,0) - (14.69)

k,o

Since, in average, the number of electrons in the superconducting state
is the same as in the normal state we must have

1 By —p
(af paro) = [e* = 5 (1 - ) (14.70)
2 V(B — )2 + [A 2

which can actually be obtained directly from the unitary transformation
(14.11). In order to check that this is indeed the distribution function
for the electrons in the normal state let us take Ay — 0 in (14.70) and
find

(ohoie) = 3 (1= sgn(Fi— ) = O(u—B)  (1471)

which has a discontinuity at the Fermi surface (Fy, = p and it is
the Fermi-Dirac distribution at 7" = 0. Observe, however, that for
any finite A the distribution function is continuous across the Fermi
surface, indeed, at the Fermi surface

1

(aky ticr.0) = 5 (14.72)

This shows that because of the opening of the superconducting gap
there is a redistribution of the electrons in momentum space. The width
of this redistribution can be obtained dircctly from (14.70). Assumc
that Ej, = h*k%/(2m) obscrve that the spread of the distribution is of
order Ej, — p = Ay, that is k2 — k% = (k — kp)(k + kr) = (2mAy) /R
since we have k ~ kr we find

T)’LAO . AO

Sh=Fk—Fkpn 220 _ 20
P ke hop

(14.73)

where vp = hkp/m is the Fermi velocity. Associated with ¢k we have
a characteristic length scale through the uncertainty relation ékdx =~ 1.
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Thus, the superconducting problem has a characteristic length scale
which is

& x TLALOF (14.74)
which is called the superconducting correlation length. Observe that
& ~ Ap(Fr/Ay) where Ap is the Fermi wavelength. Thus, & > Ap
since Er > Ag. At this point there is no direct physical interpretation
for &. In order to understand its physical meaning consider a Cooper
pair of electrons which are situated at positions r and r’. These pair of
electrons is described by the order parameter (14.6). Instead of (14.6)
consider the more genceral correlator

(@r()yy () = ;uk(r)vk(r')

AO eik~(r—r’)

= 7; \/ . (14.75)

(Ex — 1) + Ad

where we have used (14.53). Transforming the sum into an integral it
is easy to show that

, dk dw ek (r-r’)
e = 2o [ o5 [ A

VAV 00 ksin(kR)
= =3 / dw/ 5
Th°R J—oo 0 (k2 — k%)2 + (2_m) (W? + A%)

n?

h2

mAg d +oo 00 cos(kR)
= ——— | ——— d
2m3h2R ( 3R> ./—oo w./—oo (k2 — 12 2)2 4 (2_m)2 (w2 + Ag)

m +OO ’LkFRCE
- 2k37r352 ( 8R>/ / 1) 4 @220
F

where R = |r —1'|. Observe that the integral in x has poles at 2 = 2z

and z = £2§ where 2z = \/1 +iy/w? + A3/Fp. Since Er is a large

on +oo sz
— 27T3h2R< 3R>/ / (k2 — k2)? <2_72r1) (w? + A2)
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energy scale and the behavior of the integral is dominated by the small
w part we can rewrite

2

. AO W
Z0N1+Z<2EF+4EFAO> (14.77)

in which case the integral simplifies tremendously and it is easy to show
that for R >> &,

3/2
) ~ a0 () e (1478)
which shows that the pair wavefunction extends over a region of size
&. Since the Fermi wavelength is small compared to the correlation
length there are many electrons in which a Cooper exists. The number
of electrons in this region is simply N o (&/Ar)? ~ 10(Er/Ag)3. Since
in ordinary superconductors the gap energy is order of 1 — 5K and the
Fermi energies are of order of 10*K we see that there are in average
10*? electrons in the region of a Cooper pair! This is related to the fact
that the BCS theory the pairing occurs in momentum space and it is
rather delocalized.
Let us now proceed with the actual calculation of the average num-
ber of electrons in the system. We first use the definition of the density
of states N(FE) and write

(N) _ [ 1 E—nr
=] dBN(E); (1 BN |A0|2) . (1479)

For simplicity we are going to use a flat density of states

N,V
W
where N, is the number of unit cells in the system and 2W is the elec-
tron bandwidth (observe that the density of states is normalized so
that [7°dEN(E) = 2N,/V is the total number of states). Substitut-
ing (14.80) into (14.79) we find

_ N _ E—p
(N) = 2W/_WdE (1 \/(E—u)2+|Ao|2)

N(E) (W — |E|) (14.80)
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- s( QW/W —n €2+|A0|z)
_ [1_ (\/(W—M) + [B0f2 = /(W + pr)? +|AO|QH81)

2w

which is shown in Fig.14.2. Observe that in the normal state (Ay = 0)

we find
V) = N, ll B (|W—M|2%/|W+M|>]

= N, (1 + %) (14.82)

for 4 < W. Observe that this is indeed the expect result since at
@ = —W the band is empty ({(N) = 0) and at 4 = W the band is
completely full ((N) = 2N,). In the superconducting state (since it
does not conserve the number of particles) there is occupation even
when |p| > W.

Let us now consider the problem of the fluctuation in the number
of particles in the superconducting state. From (14.40) we have

2 _ (Bx — p)?
o0 = (1 g5 5 )

k
+00 |A0|2
- V/ dEN(E
o0 ( )(E — 1)+ [Aof
N9|A0|2 /W_“ de
= 67
2W —-W—u €2 -+ |A0|2

N, A| l (W—u> <W+u>(}
= arctan + arctan 4.83
oW & B0 M8

which is shown on Fig.14.3. Observe that for Ay = 0 we obtain 6{N) =
0 showing that there are no fluctuations in the number of particles in the
normal state. In the superconducting state, however, the fluctuations
are centered around p = 0 (half-filled band) where the variance in the
number of particles is maximum. Indeed, at p© = 0 we find,

(6(N))? = Ns{lﬁd arctan <%> (14.84)
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Figure 14.2: Average number of electrons: Dashed line is the normal
state (Ag = 0) the continuous line is the superconducting state.
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Figure 14.3: Variance of the number of particles in the superconducting
state.

while, from (14.81), we have (N) = N, and therefore

3(N) Ao w
o) = \] NI arctan <m> (14.85)

which is shown on Fig.14.4. Observe that the variance scales like 1/1/Nj
and therefore vanishes in the thermodynamic limit.

14.2.1 Thermodynamics

We would like to discuss other properties of the superconducting tran-
sition such as the specific heat. For that we need the Free energy of
the system. Instead of using the usual route let us first prove a theo-
rem due to Feynman and Hellman. Consider a system described by a
Hamiltonian

H(\) = Ho+ \H, (14.86)
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D W

Figure 14.4: Relative variance in the number of particles in the super-
conducting state at p = 0.
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where A is a parameter we put by hand. The problem we want to
solve has actually A = 1. The partition function of the problem can be
written as

Z(\) = e PO = (e’BH()‘))

_ f? oy

n.

tr (Ho + AH,)™ . (14.87)

Observe the interesting property of this expression as we take its deriva-
tive

ag—f\)‘) = 2 (_Ti)n ntr [(Ho + \H,)"™" Hj)
= -8 i (_Tf)ntr [(Ho + \H,)™ H,]
.
— _MT(A)(AHQ : (14.88)

On the other hand, from (14.86), we have

OF(\) 1 90Z(X)
= — . 14.
) BZ(\) oA (14.89)
From (14.88) and (14.89) we find
OF(\) 1
2 = XO\Hl) (14.90)
which can be integrated
L1
F=F+ / dA~(\H,) (14.91)
0o A

where F' = F(A = 1) is the total free energy, Fy = F(A = 0) is the
free energy associated with the Hamiltonian Hy. Thus (14.91) allows
to write the change in the free energy of the system due to a new term
in the Hamiltonian.
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Let us apply (14.91) to the superconducting problem where H; is
given by (14.5) with A = U. Thus, from (14.91), we would have

Fo= R [0 2 [art Sl @)oo e)
- FO—/OUi—Z/dﬂA(r,u)F (14.92)

where Fj is the electron gas free energy and we have used the mean field
decoupling. Observe that the dependence of the gap on the coupling
constant u is given by the equation (14.25).

In what follows we will consider the homogeneous problem. In this
case the dependence of the gap on the coupling constant u is given in
(14.59). Notice however that we can look at (14.59) as an equation for
A(r,u) as a function of 1/u. Thus it is convenient to change variables
in the above equation as §(u) = |A(T,u)| in order to get

F—F [Ao(TU)] du~!
ds6?
V /0 do
tanh (BV €2+|IA0(T5U)|2>

[Ao(T, 1) fuwp
= N [ dss? L | de ’
0 dé |Jo \/62 + | Ao(T, U) 2

Evaluating the integral by parts we find

F-F hen 1AG(T, U) 2 ByJe + | 20(T, U) P2
% = N(M)/O de \/62 ML) tanh ( 5
~ /nwn /|Ao<TU>| o (ﬁmﬂ .

Ve + 42 2

Observe that the first integral is nothing but the one that appears in
the gap equation (14.59) and that the second integral can be easily
evaluated with a change of variables z = V€% + §%

cosh (/3\/ €2+|2A0(T)|2 )
cosh (%)

F—F |AT)] 4N(u) frn
- _ del
% U 3 /0 e
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This equation can also be written as

— 2 hw
F — Fy _ |A0(T)| + 4N(,LL) / p deln <1 + 6—,36)
0

v U B
o 2 2 __
AN /h de I (1 +e—,3\/62+|A0(T)|2> +ﬁ (Ve + 120(T)] 6)(]]4.93)
8 o 2

Let us now consider the limit of T << T, << hwp/kp. In this case,
each integral in (14.93) approximate with great accuracy. Indeed the
first integral is simply

2

/OMD deln (1 +€7’B€) o~ /Ooodeln (1 +€7’B€) = 17;—ﬁ

Moreover,
th \l < th )2 11
[Ao(T) N\ |A0(T)]

th 2
/ derJe2 + [Ao(T)2 = |A0(2T)|
0

th th z
v (Aom i \] (i) 1)

o (o) AP AT ( 2hwn )
2 4 2 [ A0(T)]
_ (hwp)? + | Ao(T)? |A0(T)|
2 4 2N(,u
+ |A°(2 i ('A{)AO |)| (14.94)

where we used (14.1). Furthermore,

/th deln (1 n 6—5\/62+IA0(T)|2> ~ /oo deln (1 + 6—5\/62+|A0(T:0)|2>
0

/ dee—BV/ @+

~ €—5|A0|/ dee” 2|A0|
0

7T|A0 | e~ Bl
V 28

Q
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Putting all the results together we find

T o N - Nl o)+ 2o

27 |A
N /%emm(on (14.95)

which is the change in the free cnergy. Observe that for the clectron
gas in the normal state is simply

Fxn(T) 72

o~ Bo - 3—[32N(u) (14.96)

where Fj is the ground state energy. Thus, the free energy of the
superconducting state is

FS(T) ~ ]_ 2 27T|A0| _/8|A0|
T~ By — SNl Aol —aN ([T Foe 1l (14.07)

Observe that there is a major change in the free energy of the system
as it goes from the normal state to the superconducting state. This is
can be readily seen if we calculate the specific heat. In the normal state
we have the well-known result

CVN 27’(’2 2

= = —_N(p)kiT 14.98
Y SNk (14.98)

while the superconducting specific heat is

Oy,

27| Ao (0)]3
s aN () Dol T g1

(EnT)? (14.99)

which vanishes exponentially at 7" — 0.

14.2.2 Electromagnetic response

Let us consider the electromagnetic response of a superconductor at
zero temperature. The starting point, as always, is the Hamiltonian
of the problem which in absence of the electromagnetic field is given
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by Hpcs in (14.7). In the presence of an electromagnetic field the
momentum of the electrons is shifted by p — p — eA/c where A(r) is
the vector potential. Thus, in the first quantized language the kinetic
energy is modified as

2 2 e 2

A?, 14.100
2m 2m  2mec ( )

2mc?

At this point it is interesting to consider the problem of gauge invariance
in a superconductor. As you know well the vector potential is defined
up to a gradient, that is, we can replace A by A + Vx where x is an
arbitrary function, without changing the electromagnetic fields. Since
the momentum operator has the same structure of the gradient operator
we know that this change in the vector potential can be completely
absorbed into the definition of the electron operator

Yo (1) — 1 (1) e X (14.101)

Indeed, this transformation does not affect the anti-commutation rules,
the form of the kinetic energy or the electron-electron interactions de-
scribed by (14.3). Thus, as expect in general ground the original Hamil-
tonian is #nvariant under the gauge transformation. Observe, however,
that our mean field Hamiltonian (14.7) is not gauge invariant, indeed
the order parameter defined in (14.6) transforms according to

A(r) = Ut (n)ih,(r)) — Ar)eex® (14.102)

and therefore is not gauge invariant! Furthermore, in the equations
(14.21) we see that the gauge transformation lead to

Up(r) — un(r)e%"(r)

Up(t) — vy (r)ereX(®) (14.103)
while the energies ¢, are still gauge invariant. Actually, if we use the

representation (14.44) we observe that under the gauge transformation
we have

Alr) — |A(r)|ele®+7ex®) (14.104)
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Observe that under the gauge transformation the phase of the super-
conducting order parameter changes like

2e
o(r) = p(r) + %x(r) (14.105)
and therefore we can define a gauge invariant vector
2
g(r) = Vo(r) — h—iA(r) . (14.106)

Notice that because of gauge invariance we are free to choose any gauge
we wish. For instance we could impose that

x(r) = —Z—zgp(r) (14.107)

which actually is a way to fix the gauge. This is not a unique choice, as
usual. The particular choice given above is the so-called London gauge.
The bottom line here is that in a superconductor the gauge symmetry
is broken. As we are going to see this leads to amazing consequences
to the electromagnetic properties of superconductors.

14.2.3 Linear response

In what follows we are going to consider the linear response of the
system, that is, we are going to think the electromagnetic field as a
weak perturbation and consider the changes in the system to first order
in A. In second quantized language the Hamiltonian will have the form

H = H505+HF
Hp = @/drzwl(r) (A(r) -V + V- A(r)) ¢, (r(14.108)

2me
We arc not recally interested in solving the full problem (14.108) but
we would like to know the solution of th problem to first order in A.
To zeroth order the problem is given by the equations (14.21). To first
order one expects that

un(r) & u)(r) +ud(r)
va(r) ~ v (r) +o0(x)

Alr) ~ AO(@)+ AO(r) (14.109)
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where the upper script (0) refers to the unperturbed state and (1) to
the leading order correction. In particular we can write

AD(r / d'G(r, ') - A(r') (14.110)

where G(r,r') is the kernel which depends only on the properties of
the unperturbed system. In an isotropic, homogeneous system, this
kernel depends only on the relative distance R = r — r’. Our first
reaction would be to simply substitute the above equations in (14.21)
and calculate. We can be smarter, however, and use the fact that we
have not fixed the gauge yet. Indeed, from (14.102) we have to first
order in Y,

2ie

he

on the other hand A (r) is determined in the absence of fields. In this
case A(r) = Vx(r) is the so-called pure gauge. Thus, from the above
equations we find

2ie

/err—r) Vx(r') = -

which can be understood as the equation that fixes the gauge. Integrat-
ing the above equation by parts assuming that x(r) vanishes at large
distances we find

AW (r) = A0 (r)x(r) (14.111)

—AO(r)x(r) (14.112)

?A@( Jx(r) = = [ d'x(x)V - Glr — v) (14.113)
which requires that
21
V.G(r-r)= —hﬁA@ (£)d(r — 1) (14.114)

From now on we are going to assume a translationally invariant solution
for the unperturbed system A©@(r) = A© in which case the above
cquation can be solved at once
2ie 1
Gir—-r) = —AOVY
(r—1) he v — /|
_2ie g (r—T)

= -~ 14.11
e Bt v — '3 ( 2
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since V2(1/|r — r'|) = §(r — 1) in three dimensions. Going back to
(14.110) we have

AO®E) = ?A@ / dr'V( ! )-A(r’)
C

v — |

2 1
= —22A0 l/ dr'——V - A(r)

r— 1|
. / ds'%] (14.116)

where S’ is the arca of the sample and n(r) the unit vector normal to
it. In the Coulomb gauge and assuming A parallel to the surface, that
is,
V-A(r) = 0
A(r)-n(r) = 0 (14.117)

we find that A®(r) = 0. Thus, this choice of gauge simplifies the
calculations a lot since we do not have to calculate the change in the
order parameter due to the electromagnetic field.

Substituting (14.109) and (14.108) into (14.21) we find that up to
first order we must have

(6 = B(V) = i uP(1) — 2p(x) = TR Ar) - VuO(r)
(en + E(V) + ) v (x) — AgulP(x) = %ZA(I‘) - Vo (£)4.118)

where u{?(r) and v (r) are given in (14.53). In this case (14.118)
becomes

(e — B(V) = m)u) (1) — Agu(x) = —;—iAm kg™
(ex + BE(V) + ) vl (@) — Aqul(x) = —;—hCA(r) ke’ 119)

This set of equations is linear and can be solved if we expand ug) (r)
and vl({l) (r) in a Fourier series

u]({l) (I-) — Z a’k,k/ eik’.l‘
k/
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7)1(3) ) = > b ee™ ™ (14.120)
k/
so that (14.119) becomes
eh
(€k - fk') Ok k! — Aobk,k' = ———Ap_y-kug
me
eh
(ex + &) bw — Dotk = —%Ak/_k -k (14.121)

where Ay is the Fourier transform of the vector potential and we have
defined

€ = Ex — . (14.122)
The equations above can be easily solve to find
eh [(ex + &) uie + Aguy]
r = —Ap_ -k
Bl = e T

eh [(erc — &) v + Ao ]
e = —Ap -k : 14.123
k,k me k/—k 61% _ 5]2{/ ( )

When an electromagnetic field is applied to the system it will induce
a current. The current density operator is given by

I0) = — S [0 @)V () — (V61@),) (1)

2mi
2
— CSyte),A 14.124
. T, A R ) (14.124)
where the last term is obtained by the substitution of —iZV by —ihV —

eA/c in the usual way. The electron operators can be replaced by the
quasiparticle as in (14.11)

err) = Y (e — (00,
e = ¥
vl = %

5

Pn(r) = (14.125)
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Although the substitution of the above transformation into the expres-
sion for the current density leads to many terms we are going to simplify
the calculation by taking the zero temperature limit. In this limit all
the average values of quadratic forms of the v operators vanish except
(71{,071];,,0,) = 00,0 Ok k- It is convenient to separate the current into two
components a diamagnetic and a paramagnetic part. The diamagnetic
part is given by

(Tnr) = —e—zzw*(r)aA(r)%(r»

2
= V Z |'Uk|2

= - ;g/ >A(r) (14.126)

we have used (14.39). The paramagnetic current is slightly more com-
plicated and it is defined as

Jp(r)) = Z<[wT )e Vi (r) — (Vi (2),) ¢(x)])

sz

= ——Z () Vg (r) — v (r) Vo (r)) . (14.127)

In accord to (14.109) we have

%

Z (v )Vl (x) + o) (1) Vol ()

vff)* (r)wfﬁ (r) — vS)* () Vo (r)) (14.128)

(Jp(r))

which is correct to first order in the vector potential A (notice that the
zeroth order term vanishes since there is no net current in the absence
of an electromagnetic field). Using (14.53), (14.120) and (14.123) we
find

Jp(r)) ~ — Z Uk <bk w— by k,) (k + k') e76K)T - (14.129)

kk’
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From (14.123) we easily find 6", _,, = —bw and using (14.53) we get

(Tp(r)) ~ <ﬁ> ™ (e 1) k- Ay (8 =80 = 8 £ A6) oy 59

c\M/) €k (§k §k')

Observe that the Fourier transform of the paramagnetic current

Jp(q)) ~ —= <Pﬁ> Z (2k+q) k- Aq[(ek — &irq) (6 — &k) +(%4)]131

ANV a (8 — &)

where we have used the Coulomb gauge q- A4 = 0. Changing the sum
over k in (14.131) to k — q/2 we get

(Ip(q)) ~ —= (eh> S k(k- Ag) [(ecarz — o) (2 — i) +(A1§1].132)

cAm €k—a/2 (fﬁ_q/g - 512<+q/2)

while changing the sum in (14.131) to —k — q/2 we find

€k+q/2 — Sk—q/2) €k+q/2 — Sk+q/2 AQ
Tn(a)) ~ ()ZkkA[( /2 = Ek—as2)(€icta/2 = Siray2) +

{J.‘—.l:-].33)

where we have used that ¢, = €  and & = £ . Adding (14.132) and
(14.133) and using that & » — &8 (0 = G iq/o — €h_qo We finally get

In(a) ~ ! <eh> Tk(k- A )< 0 T Ekra/28k—a/2 — €ktq/2€K— ?2)134)

m €k+q/2€k—q/2 <6k+q/2 + €kq/2

which is the final expression for the paramagnetic current. Putting
together (14.126) and (14.134) we find

)~ > Suu(a)dg (14.135)

where y, v = x,y, 2 and

1 (e’ A} + Extrq/2bk—a/2 — €krq/26k—q/2
S#,V(Q) - <_> Z kukv< )

€k+q/26k—q/2 <€k+q/2 + 6k—q/2)
(N )
ch

(14.136)
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Observe that in real space (14.135) becomes
<Liﬂ>ka/dﬂ§:5LU@——ﬂL&“: (14.137)

which represents the response of the system, that is, the production
of a current, in the presence of an external electromagnetic field. In
particular, for a homogeneous magnetic field we take the limit of ¢ — 0
in (14.136) in which case

e*(N)

o O (14.138)
since the contribution from the paramagnetic current vanishes in this
limit. This result shows that in a superconductor the response of the
system is purely diamagnetic. This is to be contrasted with the normal
metal which has both paramagnetic and diamagnetic response. In this
limit we can rewrite (14.137) as

Sup(a—0) =

(J(r)) = “p A(r) (14.139)
T me )
which is the so-called London equation (p = (N)/V). In the BCS the-
ory at T" = 0 the electron density is just the density of superconducting
electrons p; while the current is the super-current, J, so that (14.139)
can be rewritten

(Js(r)) = 62”SA(T) (14.140)
i - me ) )
The above expression was calculated in the in the Coulomb gauge V -
A=0.
In order to understand the implications of equation (14.139) con-
sider the static Maxwell equations for the magnetic field

VxH = 4—7TJ
¢
V-H = 0 (14.141)
where H =V x A. Using (14.139) we find
2
VxH = TPy

mc?
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Ae? p,
VxVxH = ———Pqy
mc
H
V’H = 32 (14.142)
where we have used the second equation in (14.141) and defined
me?
A= 14.143
4me? ps ( )

which is called the penetration length of the superconductor. To un-
derstand the physical meaning of this length consider a semi-infinite
superconductor located at = > 0 in a applied ficld Hy in the y dircc-
tion. Outside the superconductor (that is, at z < 0) the field is simply
H, but for x > 0 we have to solve (14.142). Because the symmetry of
the problem we have

d2H H
drz A2

which has a solution H(z) = Ae™®/* + Be®*. The solution with
a increasing exponential is unphysical can should be discarded and
therefore with the boundary condition H(xz = 0) = H, we see that
H(zx) = Hype ®/*. Thus, the magnetic field only penetrates the super-
conductor a distance A and this is the rcason it is called the penctration
length. In a metal the magnetic ficld penctrates completely the system
but a superconductor is a perfect diamagnet. This amazing effect is
called the Meissner effect.

Consider now another simple problem of a superconductor slab of
width d subject to a magnetic field. Again we have to use (14.144)
with the boundary conditions H(x = +d/2) = Hy. The solution of this
problem is simply

(14.144)

cosh (X)
H(z)=Hy—%. (14.145)
cosh (%)
Notice that the induction ficld in the superconductor is

U2 d . 2) d
/ yp g (@)= Ho tanh (2 A) (14.146)



14.2. THE TRANSLATIONAL INVARIANT PROBLEM 421

while the magnetization M of the system is defined in electromagnetism
as

B=Hy+4rM . (14.147)
Therefore, for d > A,
B ~ 0 .
M = —4—7‘; (14.148)

which is perfect diamagnetism. In the opposite limit, that is d < A,

we have
d2
~ 1——
B Ho ( 12A2>

d? H,
1202 47~

(14.149)
When a magnetic field is applied to a superconductor its energy is

raised by

SE(H)
Vv

S /0 " ar M) (14.150)

If this energy is larger than the gain in energy 6 F for the system become
a superconductor then the superconductor has to have a transition to
the normal state. The magnetic field at which this happens is called
the critical field H,. In the bulk superconductor (d > \) the change in
energy is given by (14.148) and (14.150)

SE(H,) _ H:

vV 8

This change in energy can now be compared with the change in the free
energy at low temperatures given in (14.95)

(14.151)

_oF _ OE
vV vV
N(wA}  mN(O)(ksT)? _ H?

= £ 14.152
2 3 8 ( )
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which leads to

H,(T) = H,(0) l1 - % (%ﬂ (14.153)

where H.(0) = /47N(p)A3 and we have used (14.65). Equation
(14.153) shows that the critical field decreases with increasing temper-
ature. The reason for that is that the superconducting gap decreases
with increasing temperature and therefore the magnetic energy required
to suppress the superconducting state becomes smaller. As the tem-
perature increases we must have H.(7,) = 0, naturally.

Another interesting consequence of the existence of a critical mag-
netic field in a superconductor is that there is also a critical current
I. above which superconductivity vanishes. Consider, for instance, a
cylindrical superconductor of radius R carrying a current I. The cur-
rent produces a magnetic field which is given by

21
H="
cR

and therefore when H > H_ superconductivity disappears. The critical
current can be obtained from (14.153

(14.154)

_Rc

Ic(T) - 7

H.(T) (14.155)

and therefore a critical current density

I c H
= LA 14.1
Je 2eRA 4w A ( 56)

14.2.4 Flux quantization

The electromagnetic properties of superconductors lead to the most
amazing effects. Consider for instance a superconducting ring which
is much thicker than the penetration depth A. Suppose a magnetic
field is applied to the center of the ring (using a solenoid, for instance).
Accordingly to our results the magnetic field only penetrates the ring
in a region of size A. Inside the superconducting ring the magnetic
field vanishes and therefore V x A = 0 in this region. This implies
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that A o« Vx(r) in that region where x is an arbitrary function. This
arbitrariness is lost by gauge fixing. Let us consider the London gauge
discussed in the context of equation (14.107). As we showed before
we can write down a gauge invariant vector g(r) which is defined in
(14.106). Inside the ring we have g(r) = 0 everywhere since A(r) ~
Vo(r) where ¢ is the phase of the superconducting order parameter,
that is, A(r) = |A(r)|e¥®. Consider now the line integral of this
quantity around a loop inside of the superconductor

[a (w(r) - %A@)) ~0 (14.157)

which is an identity. On the one hand, we observe that by Stokes
theorem

/Cdl-A(r) - /dS-VxA
- /dS-H:d) (14.158)

is the total magnetic flux through the ring. On the other hand,

/C dl- V() = 8¢ (14.159)

is the total change of the superconducting phase around the ring. Since
the superconducting order parameter is a physical quantity and there-
fore single valued we must have d¢ = 2mn where n is an integer. Sub-
stituting these two conditions on (14.157) we find

¢ = ndg
b, = % (14.160)
0 7 9 '

that is, the magnetic flux through a superconducting ring has to be
quantized in units of ¢y which is called the flux quantum. Observe that
this flux quantum is different from the flux quantum we obtained in
Chapter 4 in studying the Bohm-Aharonov effect where we showed that,
due to gauge invariance, for a close electronic orbit orbit the amount of
flux enclosed by the orbit is 2®,! The reason for this difference is that
the Cooper pairs have charge 2e instead of e.
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14.3 Ginzburg-Landau approach

Consider a homogeneous superconductor where the superconducting
order parameter is the same everywhere, that is, A(r) = A. Using
the methods given in this chapter we can determine u, and v, and
without enforcing self-consistency like in (14.30) we could calculate the
free energy as a function of A as in subsection (1.2.1). Assuming that
T is close to T, that is, that A is small we can write the free energy as
a power series expansion in A:

o _ 4

% (T)|A]? + BIT) |A[* + h.o.t. (14.161)

2

where A(T) are coefficients which depend only on the temperature.
Obscrve that the Free cnergy as a function of temperature looks like
the free energy for the Ising magnet we studied in Chapter 9 (take a
look on Fig.11.4). In particular, when T > T, we have A > 0 and for
T < T, we have A < 0. Moreover, because the free energy is bounded
when |A| — oo we must have B > 0 for all T. Observe that A must be
an odd function of T — T, and for T — T, << T, we can make a series
expansion

(14.162)

where a > 0 is a constant. Moreover, we assume B to be temperature
independent. In order to obtain the lowest energy state one has to
minimize (14.161) with respect to A and we find that either |[A| = 0
(which describes the normal state or

A aT.-T

A = -5 =
B DB T,

(14.163)

which predicts that the order parameter vanishes with exponent 1/2 at
T =T, as in the BCS theory (see (14.67). Observe that in the case of
(14.163) we find

Vv ~ 9B 2B

oF A? a_2 (T—Tc>2

= 14.164
- (14.164)
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Since (14.164) is the required energy for a magnetic field to make su-
perconductivity disappear at T < T, that is, F/V = —HZ2/(87) we
immediately get

T,—T
H,(T) = Qa\/g - (14.165)

which predicts that the critical magnetic field vanishes linearly with
temperature at 7' = T,.

Let us now consider the case where we allow the order parameter
to vary in space. Assuming that this variation is very slow we can
make a gradient expansion of the free energy. Because the problem has
symmetry of inversion the free energy cannot contain terms which are
first derivatives of the order parameter. The fist allowed term has the
form |VA|?. Thus, the free energy has the form

7 = Janmysr G (5252 25
= ADIAEGP + D AE) +C VAR (14.166)

where C' > 0is a constant. Moreover, gauge invariance requires that the
free energy is invariant under A — A 4 V. Since the order parameter
changes from A(r) to A(r)e?*X/() we find that in the presence of an
electromagnetic field we must have

2

5F = [drA(T)|A@PE + §|A(r)|4 e ‘ (—N _ e*‘;:‘c(r)> A(r)

H?(r)
8w

(14.167)

where H(r) = V x A(r) is the magnetic ficld and the last term rep-
resents the clectromagnetic cnergy in the system and e* = 2e is the
charge of the Cooper pairs. The traditional way to represent (14.167)
is to define

2m*C

V) = Al
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K2 A(T
o) = 2m* (C)
2

3 = (;Z) % (14.168)

in which case (14.167) becomes

oF = [dra(D)e@)P + §|\If(r)|4 + % ‘(—mv - e*A(r)> ¥ (r)

H*(r)
8w

(14.169)

where m is arbitrary. The free energy (14.169) was proposed by Landau
and Ginzburg well before the BCS theory. In their approach they define
the effective charge e* which we now know to be equal to 2e (at that
point in time the idea of Cooper pairs had not been formulated) and
m* = 2m the mass of the pairs. When this free energy was proposed the
value of ¢* and m* where now known and this were consider microscopic
parameters of the model which should be fit by experimental data. It
turns out that (14.169) is an extremely useful functional which allows
us to predict many different properties of superconductors.

The equilibrium the state of the system is obtained by minimizing
the free energy with respect to U* and A. It is easy to show that

8\1?51') = 2(T)U(x) + 26 T()PU() + (—mv - e*‘i(r)> T(r) = 0
8j§r) _ % (V x V x Ar)), — 2;:*0@*@) (-mv _ e*i(r)> (r)
- %\P(r) <+mv - ip) T (r) =0 (14.170)

which leads to

a(T)T(r) + AT () 2T(r) + % (—mv - e*A(r)> U(r) = 0
ie*h (e*)?

2 (T @)V (r) — U(r)VI*(r)) + ~— |T(r) A (r)(14170)

iv x H(r) +

2m mc
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where we used that H = V x A. Observe that the current in the system
is

Ir) = %v < H(r) = _;fnﬁ (T*(0) VT (r) — T(r)VT*(r))
%|w(r)|2A(r) (14.172)

where the first term is the paramagnetic current and the second term
is the diamagnetic current.

In order to understand the meaning of the free energy let us study
the simplest casce first, that is, no external ficlds and a homogencous W.
In this casc the free energy is minimized by ¥ = 0 or

Uy = — (14.173)

as we directly obtain from (14.171). The case of ¥ = 0 is the non-
superconducting state and it is of no interest. Observe that for the
solution (14.173) to be a solution we must require that o < 0, which
according to (14.162) requires that T < T, as expected. This solution
is completely equivalent to (14.163). Thus, like in (14.165) we find

o]
H, =2/mr—~. (14.174)
‘ VB
Notice that for this solution the current in the system driven by an
external vector potential A is given in (14.172) by

*\2
g &) T2A (14.175)

m*c
which is identical to the London equation (14.139) which leads to the
Meissner effect. From this relationship we can directly relate ¥y with
ps the superfluid density in the system. If we use e* = 2e and m* = 2m

we see that
Ps

Uo=p} =7 (14.176)
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which shows that W is the density of Cooper pairs (each Cooper pair
has 2 electrons). Moreover, we immediate conclude that the penetration
depth in this case is

m*e?

A==
Ar(e*)?p;

(14.177)

in complete analogy with (14.143). Using (14.173) we can also write:
m*CQﬁl/Q

A= —————. 14.178
Ar(e*)2/—a ( )
Notice that (14.174) and (14.178) predict that
H(T) « T,—T
1
AT e 14.179
1) (14.179)

since a(T) x T —T,. Observe that A diverges in the normal phase since
the magnetic field can penetrate completely in the sample. Moreover,
(14.174) and (14.178) allows us to rewrite the phenomenological con-
stants « and S in terms of the experimentally observable quantities H,
and \. Indeed, by inverting these two relations we find

*\2
o = O gy
m*c
47 (e*)?
B = (m£)2)04H02)\4' (14.180)

Let us now consider another simple case, also in the absence of fields,
of a superconductor in contact with vacuum at the surface x = 0. In
the vacuum we must have ¥ = 0 while for x > 0 we must have ¥ given
by the equations (14.171). In this case (14.171) reduces to

K2 20

5 g T al + BT =0 (14.181)

which is very similar to the non-linear Schodinger equation we discussed
in Chapter 7. There are two trivial solutions of this equation ¥ = 0
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and ¥ = ¥y = /—a/ which were discussed previously. None of these
solutions satisfy the boundary conditions at x = 0. Notice that far
away from the surface we expect ¥(z — +o00) = ¥, which is given in
(14.173). It is convenient to reparameterize (14.181) as

U(z) = Tof(x) (14.182)

where f(x — 4o00) = 1 and f(x = 0) = 0. Substituting the above
relation in (14.181) we find
> f
g2l 3-0 14.183
&= f+f ( )
where
R 1

x .

2m*(—a) VT, —T

Observe that & has dimensions of length and its meaning becomes clear
if we realize that the solution of the above equation with the boundary
conditions given above is

x
f(z) = tanh (\/%) . (14.185)
This solution shows that ¥(x) changes from 0 at the interface to ¥,
inside the superconductor in a length scale given by £. This is nothing
but the superconducting coherence length which measures the way the
condensate varies as the order parameter goes to zero. Observe that
this length scale has nothing in common with the penetration depth
A which measures the scale in which the order parameter varies in a
magnetic field. Moreover, observe that from (14.184) diverges at T,
since the order parameter has to vanish in the interior of the sample.

Therefore the superconductor has two characteristic lengths xi and
X and the types of superconductivity can be classified according to their
ratio

€= (14.184)

Yy

&(T)

_ mec [ he |B
= Sen\or ~ a0e\ 2n (14.186)
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which is called Landau-Ginzburg parameter. In order to understand the
physical meaning of this parameter consider the problem of an infinite
superconductor in a homogeneous magnetic field. We will assume that
the we are very close to the transition and the field is large enough so
that we can disregard the non-linear term in (14.171). In this case the
equation is simplified to:

QLm* (—z’hV _ e*i(r)> U(r) = —a(T)U(r) (14.187)

which is called the linearized Ginzburg-Landau equation. Observe that
this equation has the same form as the Schrodinger equation for a
particle in a magnetic field where the energy is replaced by —a. In the
presence of the field this equation can be solved exactly like the usual
Schrédinger equation. Thus, the cyclotron frequency in this case is
Q=% (14.188)

m*c

notice that because e* = 2e and m* = 2m the cyclotron frequency of
Cooper pairs is the same as ordinary electrons. The eigenenergies of
the problem are given by (here we will use the Landau gauge as in the
case of the free electron gas):

1\  RhE?
En(k) = hQ ( —) 14.189
() = h (n5) + 75 (14.150)
where k is the momentum in the direction of the field. Observe that in
the ground state (n = k = 0) the energy is simply 5£2./2 which should
be equated to —«. This implies that there is a special value of the field,
H, such that

amc b
HC = — =
2 eh  2w&(T)
a®o(T, —T)
_— 14.1
2 CT, ( %0)

where we used (14.160) and (14.184). Notice that for larger energy
states with different n and k& we are going to find lower values of H.
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The physical meaning of this field becomes clear when we consider the
eigenstates of (14.187) that is,

"  (@—ag)?
Up(r) ox e = 22 (14.191)
where
k®,
= 14.192
Lk 2rH ( )

is the center of the cyclotron orbit and k& is the momentum along the
y direction. Observe that the order parameter vanishes away from &
from the center of the orbit. Thus, H. is the largest value of the
magnetic field at which superconductivity can nucleate on a distance &
inside the superconductor. For fields with value larger than that H.,
superconductivity is not possible. Using (14.165) and (14.186) we can
rewrite

H, =2kH, (14.193)

which shows that He > H.if k > 1/v/2 and Hp < H.if k < 1/y/2. In
the first case, that is, for £ > 1/4/2 a large magnetic field will start to
nucleate superconducting regions before the system reaches a complete
Meissner effect at fields H < H.. In the second case when xk < 1/ V2
as we start with very large magnetic fields we have a direct transition
to a fully Meissner phase and H,, is irrelevant. Systems such that
k< 1/ V2 are called type I superconductors and the ones for which
k > 1/4/2 are called type II superconductors. Consider the difference
between type I and type II superconductors starting from high magnetic
fields. In a type I superconductor the magnetization is zero (normal
state) until one reaches a critical field H, where the field is completely
expelled from the sample. At this point the magnetization jumps to a
value M = —H_/(4r) and increases linearly with the decreasing field
in accord with (14.148). In a type II superconductor as one decreases
the field starting from high fields one first reaches a field equal to H.,
where superconducting regions start to nucleate.

The main problem of our solution is that it disregards completely the
non-linear term S¥* in the Ginzburg-Landau free energy and therefore
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it allows for overlapping of the various centers of the superconducting
regions to overlap. Since this term grows with the amplitude of the
order parameter it is obvious that this term will frustrate large local
amplitude of the order parameter in real space. In fact this term breaks
the degeneracy of the problem with respect of the position of the center
of the orbit making energetically more favorable for the superconduct-
ing regions of size £ to form a periodic structure which clearly has to
be the solution of the problem when the system is isotropic and homo-
geneous. This periodic array of superconducting regions is called the
Abrikosov lattice.

In order to understand how the lattice is formed consider along the
y direction. In this case the periodic conditions imply that & in (14.191)
has to be quantized as

kp = nK (14.194)

where n is an integer and K is the wave-vector which determines the
periodicity of the lattice which is given by

27
oy =—. 14.195
V=7 ( )
The determination of the particular wave-vector depends directly on the
type of lattice and the Ginzburg-Landau parameters. Notice, however,
that because of (14.194) the position of the center of the superconduct-
ing regions given by (14.192) is also quantized by

nK®,
= , 14.196
v 2rH ( )
Combining (14.195) and (14.196) we see that
oo
oyor = dy(Tpst — xn) = 7 (14.197)

which implies that Hoxdy = &y implying that in this periodic array of
superconducting islands the magnetic flux per plaquette is one quan-
tum of flux. Although this argument shows that flux quantization and
periodicity are related it does not provide any information about the
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geometry of the lattice. Consider, the generic solution of the linear
Ginzburg-Landau equation (14.187) which is given by

P(r) = 3 O Ky @mmn)/(267) (14.198)

which is not a solution of the general Ginzburg-Landau equation (14.171).
This however can be a periodic solution of the linear Ginzburg-Landau
equation if we enforce a particular periodic condition. For instance, for
the square lattice we would write:

Wz +0x,y) = Y(x,y+ dy) = ¥(x,y) . (14.199)

Application of this condition to (14.198) requires that C,,.; = C,,, that
is, all the constants are equal: C, = Cj for all n. Knowing this con-
dition we could substitute (14.198) into the general Ginzburg-Landau
frec energy (14.169) and find the value of C which minimizes the en-
ergy. On the other hand, a different lattice with a different symmetry
will require different relations between the different coefficients C,, in
(14.198).

In order to understand the minimization procedure consider the
simple case of the square lattice discussed above in which the wave-
function can be written as ¢(r) = Cox(r) where x(r) is given. Let us
assume that the order parameter varies very smoothly over the sample
and forget about gradient terms in the (14.169). In this case the free
energy becomes

O acz () + S0 (o) (14.200)
where

() = o [

() = % / dry(r) (14.201)

are averages of the moments of the given function over the sample. We
can now minimize the free energy (14.200) with respect to Cj in order
to find

_—ax®
Co = R (14.202)
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which when substituted back into (14.200) gives

SF o? 1
V=285, (14.203)
where
gy = X (14.204)

()
is called the Abrikosov parameter. Its physical meaning is simple: if
x(r) is constant over the volume then 4 = 1 and the problem reduces
to the one studied in the beginning of this section. If however x(r)
changes then 54 > 1 when the function x becomes more localized. Ob-
serve that the result (14.203) penalizes functions which have large 84
because the free energy becomes larger (less negative). Thus, the dis-
cussion of the problem of minimizing the free energy is directly related
with the minimization of S4 for a given Abrikosov lattice. Although
the argument given here is correct in its original paper Abrikosov pre-
dicted that the lattice with lowest energy would be a square one. In
fact, later numerical calculations have shown that the triangular lattice
is the one with lowest energy since it has a close-packed structure.

Finally, as one decreases the field more and more superconducting
regions are formed but there is no complete Meissner effect because the
sample still has normal regions. As one lowers the field further there
is a critical field H.; at which the superconducting regions percolate
and take over the whole sample. Below this field the Meissner effect
is complete. Observe that H. is not guaranteed to be H.. How one
would calculate H,17 It is clear from our discussion that H,; is the
field at which the magnetic field start to enter into the sample. As
we showed previously the magnetic flux through a superconductor is
quantized in units of ®y. Thus, H,; is the field such that one quantum
of magnetic flux crosses the sample. Let us consider the case of a
extreme type II superconductor where A >> £. In this case the region
where superconductivity is destroyed by the magnetic field (that is, &)
is insignificant compared with the region for which the field penetrates.
Thus, from the point of view of the magnetic properties we can assume
that the magnetic flux is infinitesimally sharp and along the z axis.
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Thus, the magnetic field caused by this magnetic flux is simply Hy =
®y0(2)0(y) (observe that if we integrate in a surface transverse to the
flux we have, [ dSHy = ®, as expected). In this case the magnetic field
profile is given by (14.142) with a point source

H - \*V*H = ®6(2)d(y)z (14.205)

and because of the symmetry of the problem we have H = H(r)z where
r is the distance in the plane perpendicular to the field. Therefore, the
above equation becomes

2 d dH Dy 0(r)
H(ry— -2 [y = 222V 14.2
(r) r dr (T dr) 2T r ( 06)
Let us write the solution as
(I)O T
H(r)=55f (X> (14.207)
where
1d ( dH §(z)

Onc of the boundary conditions is that f(x — oo) = 0. First obscrve
that for z # 0 the solution is a Bessel function of imaginary argument

f(z) = Ko(z) (14.209)
where for x >> 1
T
Ky(x) ~ geﬂ” (14.210)

while for x << 1 we have
Ko(z) ~ In(x) (14.211)

which is singular at = 0. Actually it is easy to show that (14.209) is
actually the full solution of (14.208) for all z, that is,

H(r) = %Ko (g) (14.212)
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is the solution of (14.206). We can now calculate the current associated
with this field configuration which is given by (14.141) and it is easy to
see to rotate in the plane perpendicular to the flux and which has an
amplitude

1 dy 1
J=— H|~ - 14.213
47r|V < H| 8m2N2 r ( )
for r << A. This configuration is called a vortex.
The energy required to create the vortex is simply
_ 1 2 2 2
E = /dr8—7r<H +N(V x H)?)
)\2
- 8—/dS H % (V x H) (14.214)
7l

where the integral is taken to be over the surface of the core which has
radius £. Thus, the energy per unit of length along the vortex filament
is

dE A2
P ZSH(§)|VXH(§)|

_ (%)2111 @) . (14.215)

We can now evaluate H,; since the energy given in (14.215) has to
equal the magnetic energy for the creation of the vortex which is given
by BH/(4r). But observe that B = ®;/S where S is the area of the
vortex core. Thus, the amount of energy per unit of volume required
to create a vortex is (1/S5)dE/dz and thus we have

A dE
H, = ———
! (I)O dz
®, A
= In{ - 14.21
AT\ n(g) (14.216)
Notice that
Hcl s 6 )\
= ——>In{- 14.217
H ~ Rar (5) ( )

and thercfore H.; << H, for strong type II supcrconductors.
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14.4 Problems

1. Generalize the Bogoliubov-De Gennes equation (1.21) for the case
where the electrons in a superconductor are subject to an external
potential V(r) which couples to the electron density. Show that
in this case the problem is equivalent to replace p by g — V(r) in
those equations.

2. Consider the interface between a semi-infinite superconductor
with gap A located at x > 0 and a normal metal located at
x < 0. Consider the solution of the Bogoliubov-De Gennes equa-
tion (1.21) for this situation and show that the coefficients u(r)
and v(r) can be written as

u(r) = u(x)e™Ir

v(r) = v(z)e™IT

where k|| is the momentum of the particle parallel to the interface
(that is k| = (ky, k;)). The problem of reflections of particles at
the interface of a superconductor and a normal metal is called
Andreev reflection.

(%) Find the solution for ux(x) and vy (z) in the normal region,
that is, for x < 0. Show that the solution is a combination of
planc waves with momentum in the direction x given by

ks = [k} — k} +2m|E|/R°

and that uy(x) depends only of k.. and vy(z) only on k_. Show
that there are 4 unknown parameters which depend on the bound-
ary conditions.

(i9) Repeat the calculation of item () for the superconducting
side and show that the solution is given is given in terms of

k= = \Jk} — K} = 2me /1
where

e=+vVE? - A2,
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Show that there are 4 unknown parameters as well.
(#5)What are the boundary conditions at the interface?

(7v) Consider a particle with energy £ > A wave-vector k. in-
cident on the superconductor from the right. Show that in this
case one of the unknown coefficients of item (%) vanish in the nor-
mal side of the interface. Assume that there are only outgoing
waves in the superconductor side and calculate the calculate the
transmission coefficient of the problem.

3. Using the BCS wavefunction (1.38) and the anti-commutation re-
lations between the electron operators calculate (BC'S |aLTak: +|BCS).

4. Consider the case of two superconductors S; and S, which are
physically separated in space. Suppose we allow electrons to tun-
nel from one superconductor to another by adding to the Hamil-
tonian a term like

_ t t
Hr =1 Z (a1,k,aa2,k’,a + a2,k',aa1,k,a)
k,k!,o

where a; and a5 are the destruction operators for electrons in the
superconductor 1 and 2 respectively and ¢ is the hopping energy
between the superconductors.

(7) Show that the wavefunction of the problem in the absence
of Hr for a system with fixed number of electrons 2/N can be
written as |[M) = |1,2(N — M)) ® |2,2M) where |M) describes
2M electrons coupled in pairs in Sy and 2(N — M) electrons cou-
pled in pairs in S;. Moreover, in this case the problem can be
diagonalized as

Ho| M) = Eyr|M) (14.218)

where Hj is the Hamiltonian in the absence of tunneling.

(#3)Show that if M increases by 1 we must have

where p1(9) is the chemical potential of Si).
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(#3) Assume that if y; = po and the system is degenerate, that is,
E is independent of M, then show that Hr removes this degen-
eracy. Show that in perturbation theory the first order correction
to the energy has the form

T=¢Y ¥

k,k’,0 p,p’

where | M') is a state with 20 +1 electrons in S and 2(N —-M)—1
electrons in Ss.

<M +1 |a1,k,aa2,k',0 MI><MI |a1,p,aa’2,plﬁ'
E— FEp

M)

(#4¢) Show using the results of the previous problem that in the
BCS state we have

Uk VUK V!
T=—-4ry === %

(7v) The above results show that to second order in ¢ we can write
the Schrodinger equation as

H|M)=E|MY+T(M+1)+|M—1)).

Show that the solution of this problem can be solved by Fourier
transform

|6 =D eV |M)
M
and that the eigenvalues are given by

E(¢) = E 42T cos(¢) .

(v)Observe that the solution of two coupled superconductors can
be thought of a wave-packet of states with different number of
particles. Show that this wave-packet has group velocity

v = —2T sin(9)
and therefore there is a current flowing from one superconductor
to another which is given by
4eT

I= — sin(¢) .
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Assume that a potential U(¢) is applied between the supercon-

ductors. Show that in this case
do 2e
— = —=U(?). 14.220
—=2u (14.220)

(vi) Show that if a constant voltage U is applied to the system
the current in the circuit oscillates with frequency % This is
the so-called Josephson effect.

Calculate the density of states for a superconductor with gap
A by assuming that in the normal state the density of states is
NOOW — |E)).

Consider the Ginzburg-Landau approach for a very thin super-
conducting film of thickness @ carrying a current J along the z
axis (notice the J is given!). Assume that £, A >> a and show
that in this case |¥| and J can be considered as constants inde-
pendent of position.

(i) Assume that ¥(r) = |¥|e*®) and show that the free energy

of the problem can be written as
J = 2T
B, M H?
§F = a|UP+ |9 4+ ——— + —
¥+ SO+ == —+

where

(#) Minimize the free energy and show that
| = Tog
—2«
J = 2ey?[——g*/1— ¢
ey m 9 9
where ¥y = —a /8.

(#4)Show that for g < g. = 2/3 there is no solution for the equa-
tions above and that g. determines a critical current J.. Calculate
Je-
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7. Show that (14.185) is indeed a solution of (14.183).
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Chapter 15

Phase fluctuations

In the last chapter we have studied the problem of superconductivity
and its relationship to the spontancous breaking of the gauge symme-
try. We have scen that the order parameter in a superconductor is not
a gauge invariant quantity because it has an amplitude and a phase (it
is a complex number) and the phase is directly related to an applied
electromagnetic gauge potential. We have shown, however, that in the
BCS theory the wavefunction has a well-defined phase and an ill-defined
number of particles. This uncertainty in the relationship of the phase
to the number of Cooper pairs is related with phase fluctuations in the
system. We can say that in a BCS superconductor phase fluctuations
are suppressed. But this is not generically true. In this chapter we are
going to study problems which are directly related to the fluctuations
of the phase and we will find that a new physics emerges from effects
related to phase fluctuations. We are going to see that phase fluctua-
tions are particularly important in lower dimensions where long range
order is completely suppressed by fluctuations, in contrast with mean
field theories such as the Ginzburg-Landau where long range order is
independent of the dimensionality of the system.

15.1 Josephson Effect

The most famous example of the importance of phase fluctuations is
given by the Josephson effect depicted in Fig.15.1. Consider two su-

443
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# >

0 L X

Figure 15.1: .Josephson Junction

perconductors Sy and S, which are separated by a distance L as shown
in Fig.15.1. If the superconductors are very far apart we can consider
them as isolated from each other having a superconducting order pa-
rameter A; and A, given by BCS theory. If these superconductors
are identical and are held at the same temperature we expect that
|A;| = |Az|. Observe that this relationship does not imply that their
phases, say, ¢1 and o are related with each other. In fact if the super-
conductors are infinitely apart we expect no relationship whatsoever
between their phases. But consider approaching the two superconduc-
tors to such a small distance that Cooper pairs from S7 can tunnel to
S, and vice-versa. The situation here is very similar to the problem
of the H, atom discussed in the first Chapter. In this case we expect
that although the amplitude of the order parameter does not change,
that is, |A;| = |Az|, some kind of relationship should occur among
their phases because when . = 0 they become a single superconductor
and therefore their phase difference, ¢ = ¢1 — @9 vanishes. Thus it is
natural to expect that ¢ depends strongly on L.
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In order to make the discussion of the problem simple we will ap-
ply the Ginzburg-Landau approach to the problem and work with the
order parameter ¥(z). It is clear that for |U;(0)| = |¥o(L)| = Uy are
the order parameters in the bulk. The question is what happens in
between. Here we use (14.183) which gives the variation of the of the
order parameter in between the superconductors:

2d2 3
_gw_f+f =0 (15.1)

with boundary conditions |f| =1 for x < 0 and x > L. Thus, without
lack of gencrality we impose the boundary conditions: f(0) = 1 and
f(L) = €*. Moreover, we will assume that the distance between su-
perconductors is much smaller than the correlation length, L < £. In
this case we would have 52% ~ (£/L)*f > f and the above equation
simplifies to:

d*f
50 (15.2)

with trivial solution (using the boundary conditions given above)

ﬂ@=1—%+%&t (15.3)

This solution now allows us to calculate the current of Cooper pairs
between the two superconductors which is given in (14.172):

Js — _ie*h|\l}0|2 <f*ﬁ _f@)

m* dr dr
2615 | Tp |2
l%%ﬁﬂm@ (15.4)

and therefore the total super-current between S} and S is:
Is = I.sin(p) (15.5)

where

. 2€*ﬁ|\110|2é

I,
m* L

(15.6)
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where A is the area of the junction. The free energy in (14.169) can be
easily calculated

OF = %Ic(l — cos(y)) - (15.7)
Naturally the free energy is minimized for ¢ = 0 which is the situation
in which the two superconductors reach equilibrium and no current
flows between then, that is, g = 0.
Suppose a constant electric field is applied in the x direction E =
Eyx. From electromagnetic relations the vector potential is given by

A = —cEjtx (15.8)
since
10A
E=—-——-"—"—. 15.9
c Ot ( )

The next step would be to couple the electromagnetic field to the order
parameter through the Ginzburg-Landau approach. Instead we are
going to find a more straightforward way and use the gauge invariance
of the problem as discussed in the previous chapter. We have seen from
(14.106) that the gauge invariant vector is
e*

8(r) = Vo(r) - - A(r) (15.10)
and therefore to study the effect of an external electric field one just
have to make the substitution

e*
—Z fa-A
p = hc/ (r)
e*L
A

- o+ Eyt (15.11)
where the line integral was taken in between the two superconductors.
Therefore from (15.5) we see that in the presence of an electric field the
super-current between S7 and S is

Is(V,t) = I.sin (gp + thL> (15.12)
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where
V = LE, (15.13)

is the drop of potential energy across the junction. Observe that a
static (d.c.) electric field has produced an alternating (a.c.) current!
The period of this current is h/(e*V) and depends only on e* since h
and V' are known. Thus, it is possible to measure the effective charge
of the Cooper pairs via the effect described above. This is called the
Josephson effect. Notice that Is < I. and therefore I, is the maximum
current supported by the junction for a given V. It is called the critical
current. Also observe that the superconducting phase in between the
two supcrconductors varics in time as

d_gp_e*V
dt — h

(15.14)

which is known as the Josephson relation. It is clear that the Joseph-
son effect is an effect purely based on the phase difference between
superconductors and only happens because the order parameter in a
superconductor has two components (complex variable) and therefore
can be described as an amplitude and a phase. There are, however, a
whole class of systems which are described by similar order parameters
as we are going to see soon.

15.2 Homogeneous superconductors

Let us consider now the problem of phase fluctuations in the bulk of a
homogeneous superconductor with an order parameter given by

T(r) = Tpe® (15.15)

where U2 = —a/f3 as in (14.173) but the phase is now allowed to vary
in space. Substituting (15.15) into the Ginzburg-Landau free cnergy
(14.169) lcads to

VO[Q Ps e 2
po_Y% P _ YA 15.1
5 2ﬁ+2/dr(Vgp y (r)) (15.16)
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where

_ 2%
m*

05 (15.17)
is called the phase rigidity or stiffness. The first term in (15.16) gives
the bulk free energy and the last term gives the increase of the free en-
ergy due to the variations in the phase: in the absence of external fields
the system prefers to have an uniform phase ¢ = constant. Notice that
what appears in the free energy for the phase is the gauge invariant
vector (15.10) as expected, since the energy of the system cannot de-
pend on the choice of gauge. The super-current in the system is given
in (14.172) and can be written as

*\112 *2([12
CHITO o (1Tl

Js = " .
m m*e
= e*[U|*vg (15.18)
where
h ®
Ve = —Vp— ——A (15.19)
m m*e

is the superfluid velocity (notice that vg = hg(r)/m*).
Thus, phase fluctuations in a superconductor in the absence of ex-
ternal fields are determined by a free energy

Flo] = %5 / dr (V)® (15.20)

notice from the definition of pg in (15.17) that ps(T) o< T.—T according
to (14.162) and (14.173) (which is the mean field solution). This implies
that pg is finite in the superconducting phase (7' < T,) and vanishes in
the disordered phase.

Long range order requires the order parameter to be finite, that is,

(U) = To(e) #0 (15.21)

so besides the amplitude to be finite (which is true for T < T.) we
must also require that (¢®) # 0. In order to calculate the average
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in the equation above we have to know the partition function of the
problem. Like the Ising model studied in (10.96) it is given by

7= / I] deo(x)e?71¥] (15.22)

where the free energy is given in (15.20). It is convenient to rewrite the
partition function in terms of the Fourier transform of :

o) = [ e (k) (15.23)

where ¢*(k) = p(—k). In this case the partition function is simply

Z= /l;ldgp(k) exp{—%/ (;;dk2|gp(k)|2} . (15.24)

Moreover,

dk _ik-r

(™) = <€"f omd® ¢(k)>
= %/l;ld@(k) exp{—/ (;:)d lﬁp;k2|go(k)|2 _ieik.rgp(k)]}

~ 1 [ dk 1

N eXp{_ﬁ—ps/ (w@}

_ o Sa d

- exp{ T / dkk 3} (15.25)

where Sy is the area of the hyper-sphere in d dimensions ( S} = 2,
Ss = 27 and S3 = 47). Observe that we have not introduced the lim-
its of integration in the integral above. On the one hand we have to
remember that the Ginzburg-Landau theory was obtained in the con-
tinuum. Therefore when the correlation length becomes of the order
of the lattice spacing it breaks down. Thus, there is a natural upper
limit for the integral say, A, which is of order of 1/a. This is the so-
called ultraviolet cut-off. On the other hand we are working on the
thermodynamic limit so that the size of the system, L, is divergent.
As we have seen many times when we work with a finite system the
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momenta become quantized in units of 1/L which is the smallest mo-
mentum possible. Thus, 1/L acts a lower bound in the integral above
and it is called a infrared cut-off. If we use these two cut-offs in the
expression above we find

i S 1 L, 1
(Gas )—exp{ (27r)d/3p5d—2(A“ Ld—2> . (15.26)

The above correlations become finite in the thermodynamic limit (L —
oo) only for d > 2 implying that there is long range order in the system.
Notice, however, that the above expression vanishes in the thermody-
namic limit when d < 2. Indeed, for d = 1 we would find

() = ¢ TS 5 0 (15.27)

while for d = 2 we expand A? 2 ~ 1+ (d — 2)In(A) and find

_In(AL)

<eigo(r)> ~ e 27Brs — () (1528)

as L — oo. The vanishing of these correlations imply from (15.21) that
(U(r))=0 (15.29)

for d < 2 even when the amplitude of the order parameter is different
from zero. Therefore, phase fluctuations destroy long range order for
d < 2. This is also known as the Mermim-Wagner theorem which you
have worked on in Chapter 4, namely, when a system has a continu-
ous symmetry breaking (of translational invariance as in the case of
phonons, or symmetry of rotation in the spin space as in the case of
magnons, or gauge symmetry as in the case of superconductivity) there
is a lower critical dimension, d., below which order is not possible. In
the case of superconductor this dimension is d, = 2.

This fluctuations of the phase not only affect the order parameter
but also the way correlations decay with distance. Consider the order
parameter correlation function

(THr)(0)) = |Wof* (e7(em—2OD)
= |Wo|?exp {—Gq(r)} (15.30)
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where

Gd(r)

1 k 1 e
d c (15.31)
(

- 5p§ 27T)d k2

can be calculated in a way completely analogous to the one leading to
(15.25). As in the previous case the integral in (15.31) depends on the
dimensionality of the system but contrary to the integral in (15.25) it is
convergent, because of the extra power of £ brought by the exponential
term. Let us calculate this function for the three different cases.

In d = 3 we can write

1 A + tkru
Gg (7") = m /0 dk /_1 dU(]. — € )
1 A sin(kr)
= dk |1+ ——=
47r35p5/o < * kr >
A
N —— 15.32
43 Bpg (15.52)

which in the last line we have taken the limit of » > A™! ~ a and
disregarded the second term in the second line. Notice that Gs(r) is
independent of . Thus, we conclude that in d = 3 the correlations are
such that

(W) T(0) ~ [To2e s (15.33)

which is finite in the limit of » — oc. This result implies that the order
parameter in all parts of the sample are correlated. This means that
the system shows long range order. The exponential factor is essentially
a thermal correction to the order parameter. This is the analogue of
the Debye-Waller factor for phonons discussed in Chapter 4.

For d = 2 we have

— 1 Adk o ikr cos(9)
Golr) = frag: /0 - /0 do(1 — e )
1 A dk
— 27T/3p5/0 (1= Jo(kr)
1 Ar dx
= —(1 — 15.34
sripe fy o (1 @) (15.34)
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where Jy(z) is a Bessel function. The integral above cannot be done
exactly and we have to approximate. Since we are mainly interested
in the limit of Ar > 1 we can extract the dominating behavior of the
integral. First one has to recall that Jo(z) ~ 1 — 2?/4 when z < 1 and

Jo(x) ~ /2/(7x) cos(m/4 — ) for z > 1. We can therefore separate
the integral as

/()Ar@(l—JO(-'L')) _ /01%(1_J0($))+/1M%—/1Mdmw

x x
~ C+In(Ar) (15.35)

where C' = fj (1 — Jo(z)) — [ dm@ where we have replaced the
upper limit in the last integral above by oo since the integral is conver-
gent in this limit. Thus, substituting this solution into (15.30) we find
that in d = 2:

__Cc
e 27Brg

(Ar)

(T (r)T(0)) = |To|? (15.36)
where the exponential factor is the analogue of the Debye-Waller factor
found in the 3D case and

_ 1
2rBps

is the exponent which determines the decay of the correlation func-
tions. Notice that when Ar — oo the correlation function goes to zero
showing that long range order is not possible in d = 2. It turns out,
however, that it goes to zero algebraically and not exponentially lead-
ing to a very slow decay of the correlations. Thus, even at reasonable
distances some correlation is possible. This situation is called quasi-
long range order. The importance of this result is quite clear: at large
temperatures the correlations decay exponentially because the system
is disordered. Thus there must be a temperature Tkt above which the
correlations change from exponential to algebraic. This transition is
the so-called Kosterlitz-Thouless transition. Observe that in d = 2 we
must have 0 < T < Txr < T, where T, is the temperature at which
ps vanishes. This transition is very specific to the 2D case and will be
discussed in detail below.

n (15.37)
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In the d = 1 case we have:
I
G = / de———
() 2rBps J-A k2
| /+A|w| dzl — cos(2)
mBps Jo 2
||

28ps

where in the last line we have taken A|x| — oo and used that f;™ dz(1—
cos(z))z~% = w/2. Notice, therefore, that

Q

(15.38)

(U (2)T(0)) & |T|2eI=l/Brs) (15.39)

which shows that the correlations decay exponentially at any finite
temperature and therefore (¥f(2)¥(0)) — 0 when |z| — oo indicat-
ing complete absence of long range order at any finite temperature in
d = 1. This conclusion agrees perfectly well with the discussion of the
magnitude of the order paramecter.

15.3 Connection to Magnetism

The model described by the free energy (15.20) is called the XY model
as we have discussed in magnetism. It is worth understanding the
connection with magnetism since it gives a way to visualize the physics
of the phase of a superconductor. Consider a classical magnetic XY
model which is described by a Hamiltonian

H=-JY (Srs7+5¢sY) (15.40)
<1,J>

where J is the magnetic exchange and S¥ (SY) is the X (Y) component,
of the spin on a given lattice. Here the spins are treated as functions
and not operators. These are classical variables in a plane. Moreover,
observe that (S%)% + (S¥)? = S? and therefore we can parameterize

S = Scos(b;)
SY = Ssin(6;) (15.41)
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in which case the energy of the system behaves as

E = —JS* Y (cos(;) cos(0;) + sin(6;) sin(6;))
<iyj>
= —JS* > cos(6; — 0;) (15.42)
<iyg>

and therefore the energy of system depends on the relative angle be-
tween the spins. For a ferromagnetic coupling J > 0 we would ex-
pect that the ground state has all the spins pointing in the same di-
rection, that is, 6; = 6 for all sites. In this case the total energy is
Er = —JS5?ZN where Z is the number of nearest neighbor sites. Ob-
serve, that the energy does not depend on # which reflects the symmetry
of the model with respect to rotations along the Z axis. A similar sit-
uation happens for antiferromagnetic interactions J < 0 in which case
the system breaks into two sublattices where in one sublattice we have
f; = 6 and in the other sublattice #; = 7+ 6 so that the classical cnergy
is the same as in the ferromagnetic case. Observe that at the classical
level there is no difference between ferromagnetic and antiferromagnetic
lattices. This is very different from what we have seen in Chapter 11
where the quantum version of these tow models are very different from
each other.

Let us study now the fluctuations around the ordered state by as-
suming small fluctuations around the ordering position say with 8 = 0.
in this case §; < 1 and we can expand the cosine term in (15.42) as

2

E~ —JS?’ZN + % > (6 -6, (15.43)
<i,j>

where the first term is the energy of the classical vacuum and the second

represent the fluctuations around it. Moreover, we will be interested in

length scales much larger than the lattice spacing ¢ in which case the

variables 6; can be scen as smooth functions of the position. Morcover,

since ¢ and j arc ncarcst ncighbors we can write

O(r + an) — O(r) ~ an - VO(r) (15.44)

where n is the unit vector between nearest neighbor sites. This ex-
pansion is called a gradient expansion and it allows us to look at the
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continuum limit of the theory. Now we replace the sum over sites by a
integral such that

> dr (15.45)

d
j 4

and the sum over nearest neighbors is replaced by Za?/(2d). In this
case the total energy becomes

E~ —JS?ZN + %M / dr(V0)? (15.46)
where
JS*Z

is the so-called the magnetic or spin stiffness of the model. Comparison
of (15.20) and (15.46) shows the superconducting model and the mag-
netic model are in the same universality class since they have the same
free energy. The main difference here rests on the form of the rigid-
ity which is different in the two models. Indeed, we can immediately
predict that the magnetic XY model cannot have long range order in
d < 2 at any finite temperature.

Furthermore, the valuce for the rigidity found in (15.47) is only recally
valid at zcro temperature. Like in the case of the superconductor we
expect the spin stiffness to be temperature dependent and vanish at
T. (for d > 2) since in the disordered case the magnetic system cannot
sustain long range fluctuations. To see that this is the case dimensional
analysis shows immediately that p;; has dimensions of energy /length?—2
as one can see directly from (15.47). Since close to the phase transition
all length scales are set by &s, the magnetic correlation length, we
expect that py o< T.£2,%. Remember, however, that at the phase
transition we must have a divergent correlation length and therefore

1
Em(T) o (T.—Ty

where v is the correlation length exponent (v = 1/2 in the case of a
BCS superconductor - see (14.184)). Therefore, we conclude that close
to the transition we must have

& (T) o (T — T)"*2. (15.49)

(15.48)
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Observe that for the BCS (or Ginzburg-Landau) which are mean-field
theories this would lead for d = 3 to a correlation length vanishing
like (T, — T)'/? in disagreement with the result in the previous section,
eq. (15.17), where the rigidity vanishes linearly with temperature. In
fact the two results would only agree in d = 4! What is the reason for
the disagreement? The reason is the failure of the mean field theory
in describing the phase transition close to 7, where one has strong
fluctuations of the order parameter.

Let us minimize the free energy (15.46) with respect to 6. It is very
simple to see that it leads to

V(r) =0 (15.50)

which is the Laplace equation. Naturally, this cquation has a trivial
solution @(r) = 0 which is the homogeneous state. But let us assume
that the system has a boundary condition such that é(r) is zero along
the plane x = 0 and O(r) = « at x = L. Then the solution of the
Laplace equation is
x
O(z,y,2) = ar (15.51)
that is, the angle made by the spins changes continuously along the X
axis until it reaches the angle « as shown in Fig.15.2.
The free energy in this case is simply

pogfa\2  pLi2a?
Fla,L)=-L({=) =—— 15.52
(@, L) =3 (L> 2 (15.52)
which can be interpreted as a definition of p, namely,
F(a,L)— F(0, L
p= Limy_2pi2t 1) = F(O.1) (15.53)

o2

that is, the rigidity is the amount of energy required to produce a twist
in the order parameter. Notice that in d = 2 the free energy does not
depend on the length and the rigidity has dimensions of energy. As
we have seen, d = 2 is quite special because it is the upper critical
dimension and one has the Kosterlitz-Thouless transition.
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Figure 15.2: . Twist of a spin texture along X axis by o = .

15.4 Topological Defects

In the previous section we have seen that the homogeneous phase is a
solution of the Laplace equation. There are, however, an infinite num-
ber of solutions of the Laplace equations depending on the boundary
conditions. There are also singular solutions of the Laplace equation
such as in the case of a fluxoid in a superconductor as discussed in the
previous chapter. We are however interested in solutions in the absence
of a magnetic field. These solutions are called vortices. From now on
we consider only the d = 2 case.

Due to the cylindrical symmetry of the problem we rewrite the
Laplace equation in polar coordinates:

2

1o (r%> -+ 199 =0 (15.54)
ror \ or r2 9¢?
where r is the radial coordinate and ¢ the polar angle. Because 8 in
the spin problem is the angle the spin makes with a given axis the
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homogeneity of the problem implies that # cannot depend on 7. In this
case the solution of the problem reduces to

0%0
_— = ]- .
95? 0 (15.55)
which has a trivial solution
O(r) =0y + no (15.56)

where 0, and n are, for the moment being, arbitrary constants. In
Figs.15.3 and 15.4 we display the distribution of the spins for such
configurations. The interesting aspect of such solutions is that they
are singular at the origin. Indeed, consider the gradient of the solution
given above

V() = Ty (15.57)
where uy is the unit vector along the angle. Therefore, the gradient
of 6 diverges at r = 0. This implies that this particular solution costs
energy. The singularity at the origin of the vortex has an striking
property. Consider a closed line integral along a path C' around the
singularity

/C dl-V(r) = n / d-uy _ / dé = 27 (15.58)

but observe that the quantity in the left hand side is just the total
change in # along the loop and therefore it has to be a multiple of 27
since the order parameter is periodic. This proves that n has to be
an integer (positive or negative). This integer is called the winding
number of the vortex. The energy required to create such defects can
be obtained immediately from the substitution of (15.57) into (15.46):
27rp5n /L dr
‘

5E:p/d -

= mn®psIn(L/¢) (15.59)

2

where /¢ is the size of the vortex core and L is the linear dimension
of the system. We had to cut-off at very short distances because our
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theory was written in the continuum and therefore it is blind to length
scales of the order of the lattice spacing. Quite generally we expect
that there will be an extra amount of energy required in order to create
the core. This energy is equivalent to the amount of energy required
to suppress the order parameter in that particular region in space. In
the case of the superconductor we have seen that deformations of the
order parameter happen in a length scale determined by the correlation
length £ and thus we should suspect that indeed £ ~ £. Let us estimate
the size of the core using the previous results for the Ginzburg-Landau
theory. From (15.16) we see that the amount of energy per unit of area
(since we are in 2D) required to destroy the order parameter is given

by

SF o it
df=——F~ = —F—5= 15.60
T=7V %25~ samye 1560
where we used (14.184) (namely, —a = h?/(2m*€?)). Thus, the total
amount of energy required to destroy the order parameter in a circular
region of size £ is
Th* 2
SE(0) o — "~ 15.61
% oy 1501
and the total energy required to create a vortex is given by the sum of
the bulk energy (15.59) and the core energy (15.61)

hirn? A
= apmepe "0 gineae (15.62)

where we used (15.17) and (14.173), that is,

SE(0)

h4

P5 = SEemTE (15.63)

In order to calculate £ we minimize the total energy to create a vortex
in respect to £. We find

hirn? Thte

T2B(m el T A(mr)26ER

=0 (15.64)
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and therefore
0~ \/2n€ (15.65)

and we confirm what our intuition had told us before. Observe, how-
ever, that this result also shows that the core increases with the winding
number. If we replace this on (15.61) we see that

SE, = %’Osn? (15.66)
implying that the core energy of a vortex increases quadratically with
the winding number. Therefore, vortices with large winding number
will energetically unfavorable.

In any event we see that to create a vortex in the system requires
an infinite amount of energy since, according to (15.59), this energy
scales like In(L), that is, with the size of the system. This is in fact very
unlikely and therefore single, isolated, vortices are impossible to observe
(unless you apply a magnetic field as we have seen in the previous
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Chapter). Consider, however, the problem of creation of two vortices,
say, #; and 0,, separated by a distance R. Your intuition would say that
you need twice the energy, right? This is a situation where intuition fails
miserably because the solution of the problem is a linear combination
0 = 6, + 0, and therefore the vortices have to interact. Suppose one of
the vortices has winding number n; and the other has winding number
no and both of them are solution of the Laplace equation given in
(15.56). The energy required to create a pair of vortices is therefore:

SE = /%S/dr (V (8, (r) + 65(r))*

= 0B, + 0B, + ps / drve, (r) - Vos(r)
= 5E1 -+ 5E2 -+ 27rp5n1n2 ln(L/R) (1567)

where JE; -, are the energy required to create the isolated vortices.
Substituting (15.59) into (15.67) we easily find

SE(ni,no) = w(ny + no)’psIn(L/f) — 2npgnine In(R/f)  (15.68)
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and therefore the dependence of the energy vanishes if ny = —no, that
is, if the vortices have opposite winding numbers! This is a purely
topological effect and it means that if you have a vortex and antivortex
pair and evaluate the line integral (15.58) around the pair you will get
zero. This statement can be generalized for any number of vortices in
the system: if N = 3", n; vanishes then the total energy is independent
of the size of the system. We see, however, that we still have to pay an
energy

0 Epuir = 2mpsIn(R/¥) (15.69)

in order to create a vortex-antivortex pair. But now this energy only
depends on the relative distance between the pair (notice that our ex-
pression only makes sense when R > /).

A simple argument can now be used to argue that a new phase
transition is possible in the presence of vortices. Consider the total free
energy for the creation of a single vortex: F' = FE — TS where S is
the entropy of the system. Here F is given in (15.59). Notice that the
vortex can be anywhere in the plane and since the minimum distance to
create a vortex is £ then the number of possible positions for the vortex
is of order (L/¢)?. Thus, S is given by S = In[(L/¢)?] = 2In(L/¥).
Therefore the free energy is given by

F = (7ps — 2T) In(L/F). (15.70)

Now we notice that the energy of the system is minimized by the cre-
ation of vortices when L — oo if
Tps

which determines the Kosterlitz-Thouless temperature for a transition
between a phase which is disordered to a phase with algebraic order.

15.5 The KT transition

In this section we are going to discuss the Kosterlitz-Thouless transition
in more detail. Using (15.16) and (15.19) we can write

H= %5 /dr v2(r) (15.72)
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and therefore depends on the velocity. In the presence of vortices vg
has an analytic part and a non-analytic part coming from vortices.
The analytic part contributes only to the longitudinal component of
the velocity while the vortex contribution is transverse. We write

vs(r) = vg)(r) + ver(r) +v (15.73)

where v is a uniform velocity induced by external sources. Observe
that by definition:

V- Vgl = 0
V x Vg = 0. (15.74)
Let us now define a vector m such that

m(r) = V xvg(r)
= Vx VSJ_(I') (1575)

where we used the second equation in (15.74). Observe that V-m =0
by construction. The physical meaning of m becomes obvious when
we consider a system with Ny, vortices at positions r, with winding
numbers n, with o = 1, ..., Ny, and take the integral of vg along the
contour C' which wraps all the vortices:

/vs-dl = QWZna
c a
_ /dS-vaSz/dS-m (15.76)

where S is the vector oriented along the z direction and the first line
comes from the the quantization condition (15.58) and in the second
line we used Stokes theorem. Observe therefore that we must have

m(r) = > 2Tn.d(r —ra)z
= 2mny(r)z (15.77)
where

ny(r) =Y n.d(r —1,) (15.78)
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is the vortex density in the system.
We can also invert the relationship between m and vg if we consider
that

Vxm = Vx(Vxvg])
= V(V . VSJ_) — VQVSJ_ = —VQVSJ_ (1579)

since the first equation of (15.74) should be valid. The general solution
of this equation is

Vgl =V % /dr'G(r —r')m(r') (15.80)
where
VG(r —1') = —6(r —1') (15.81)
which can be solved directly by Fourier transform:

d2 q eiq~r

G(r) = % ;e’?q'fa(q) = — / o (15.82)

The main issue is how the energy of the system is affected by the
presence of a finite number of vortices. Again, by definition:

F(v) = —% In (Tre=PH0) (15.83)

where, from (15.72) and (15.73), we see that

Hv) = pSL2 z +p2—5/dr (Vsn(r) +VSL(T))2

+ ps / drv - (v (r) + vs_(r)) (15.84)

and therefore it allows us to write the free energy in powers of v:

2,2
F(v) = 10512/ v %ln (TreBH (v=0)—Bps [ dr"'("sn(rHVSL(r)))

pSLQ,UQ
2

%

4 F(0) — % / dr / ' 3 (vsi(r)v; (r) ks 85)
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where we have disregarded terms of order v*. Observe that the average
value of the velocity that appears in the above expression is calculated
in the absence of external fields. In this case the longitudinal component
of the velocity averages to zero and does not contribute. Thus, we just
need to compute the average over the transverse component. Moreover,
since the system is homogeneous the integrand above only depends on
the relative distance r — r’ and therefore,

F(v) - F(0)

TZ/Q = ps — ﬁpé/dr(vsj_(r)vﬁ_(()» (1586)
which is exactly the definition of the stiffness given in (15.53). We call
this the renormalized stiffness which can be written as

ps = ps—Bp5limgso(vsi(a)  vsi(—a))
o
= ps— ﬁpél%mqeoﬁm(‘ﬂ +m(-a))

— ps = (0Bl (v (@mv(—a))  (15587)

where we used (15.80) and (15.82). Observe that in order to calculate
the renormalized stiffness we need to know the correlation function
for the vortex density which depends directly on the way the vortices
interact. The renormalization of the stiffness is due to the presence of
vortices in the system. Indeed, consider the situation of a vortex anti-
vortex pair as in Fig.15.5. Because the vortices twist the background
the energy required to twist each spin individually has to depend on
the spatial scale of the twist, for instance, spins which are one lattice
spacing apart will essentially require the same energy for the twist as in
the case without vortices. Thercfore, necarest neighbor spins will have
a rigidity pZ(¢) = ps. Howcver, spins which are far apart, say 10¢,
from each other will be less correlated and therefore the rigidity has
to decrease with distance, that is, pg(10f) < pg. This is the physical
meaning of (15.87).

In order to calculate the change in the system due to the presence of
the vortices we have to calculate their statistical properties. As we have
seen in the last section (see equation (15.68) and (15.66)) the energy
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for the interaction of the vortices can be written as

Eln, =E.> n2 —mps > nangln(|Ry — Rs|/f) (15.88)
o a,f3

where the first term is just the core energy and the second term is the
interaction between vortices. Moreover, we always have the constraint
that

> na=0 (15.89)

which is the condition of having the same number of vortices and anti-
vortices in the system. If one uses the definition of vortex density in
(15.78) this expression can be written as

Elny] = E. S n% — 7ps / dr / dr'ny () () In(|r — t'|/£) (15.90)

where one must always remember that the energy given above is valid
for [r —r'|/¢ > 1. Equation (15.90) has the form of the energy for a
gas of charges n, interacting with a logarithmic potential and overall
neutral due to condition (15.89). This is the so-called Coulomb gas in
two dimensions. Another way to rewrite the above energy is to assume
that the vortices occupy sites on a lattice with lattice parameter £ and
rewrite the energy as

Ey =E,)) ngy —7ps Y nrnr In(|R—R'|/¢) (15.91)
R R,R/

where R is the lattice vector. The whole problem now is to evaluate
how the stiffness of the system renormalizes in the presence of vortices.
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The problem can be simplified greatly by realizing that we are only
interested in the limit of ¢ — 0 in (15.87). In fact we can write

(ol@nv(-a) = 55 [ dr [ e gy )

Q

~ kg

where the first term in (15.92) vanishes because of the charge neutrality,
(15.89):

/dr ny(c) = ng =0 (15.93)
and the second term vanishes by symmetry. Here we have defined

Kk = —é/dr/dr'(r — ') {ny(r)ny- (1))

1
= —73 > R-R)(nann). (15.94)
RR/

Substituting (15.92) into (15.87) we find
p§ = ps — (2m)*Bpsk (15.95)

which reduces the problem to the calculation of £ in (15.94). Using
(15.91) we see that the relevant function is

Z [anR’ ¢ PE Do Wt TBOS D g gy T ln(IT*T'W)]
{nT}

Z [anR’yZT ng eﬂ'K ET,T/ NNy 1n(|T—T'|/£)] (1596)
{nT}

Nl = N[+~

(nRNR/)

where Z = 3", 3 e BEvIrT] and we have defined

y — efﬂEc

K = Bps. (15.97)

Q—Z/dr/dr' [1 +iq-(r—1")—(q-(r — r'))z] {ny(r)ny(r"))

(15.92)
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Notice that at low temperatures the fugacity, y, is very small and there-
fore it can be used as an expansion parameter. Moreover, in using the
expression above one has to remember that the correlation function has
to be calculated with the constraint (15.89) of charge neutrality. The
first trivial term is np = 0 for all T which is equivalent to the total
absence of vortices. Then p& = pg, as expected. The first non-trivial
term happens with a single vortex anti-vortex pair in the system, that
is, np = +1 and nyp = F1. In this case Y n% = 2 and we find
<anR’> ~ 2y2 —2r K In(|R—R'|/£)
~ 2R - R'|/6)~*F (15.98)

implying that the correlations between vortex anti-vortex pairs decays
algebraically. Inserting this expression into the definition of k we find

K =~ Z IR —R/|/¢)* 2K
QLQRR,

2
Y dr Con
5 | T

oo dr
2 ar 3-onK
Ty /g (/0 (15.99)

%

where we have introduced the lattice cut-off £. Replacing the above
expression into (15.95) using the definition (15.97) we find

Kp~ K — 48K / O (r 032K (15.100)

but remembering that we are at low temperatures so that K > 1 and
using the fact that y < 1 it is convenient to rewrite the above equation
as

K7 m K™+ 4%y / 9 j0)3-27K (15.101)

which gives the renormalization of the rigidity in terms of the fugacity
y and the minimum distance between vortices £. Observe that if 3 —
2nK < —1, that is, K > 2/7 the above integral converges in the upper
limit and one finds the correction to the rigidity in the presence of
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vortices. However, if K < 2/7 then the integral is divergent showing
that our fugacity expansion was actually wrong. We observe that the
critical value of K = 2/7 is equivalent to have kT = mpg/2 that is,
T = Tkt as we can readily see from (15.71). Thus, the divergence is
signaling the instability of the system to quasi-long range order. In
the ordered phase we expect the vortices to disappear completely at
zero temperature because vortices and anti-vortices attract each other
through the logarithmic potential and eventually annihilate. In the
disordered phase, however, the vortices are free to move and behave
like independent particles. It is clear that the problem at hand has two
different distance scales associated with the long range interaction and
the short range core size.

Let us separate the short from the long distance part by breaking
the integral in (15.101) as

ey

where b > 1 is an arbitrary number. In this case we can rewrite (15.101)
as

Kt (b) = (K') (b + dn®y? / /027K (15.103)
where
(K')~L(b) = K~' + 473y / (r/0)>27K | (15.104)

We now interpret (15.103) as the change in the stiffness when the lattice
spacing changes from ¢ to ¢b. If we change » — r/b in (15.103) we
immediately find

K (0) = (K (0) + 4x/ )7 [ (/0P (15,109

where

y'(b) = by (15.106)
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which is interpreted as the change in the fugacity of the system due to
rescale of the lattice spacing. In other words, we have defined a new
length scale, ¢, such that,

0= b= lef (15.107)

which now becomes our new unit of length. Naturally, this change can
madc arbitrarily small, that is, we can write b = €% ~ 1 + de in which
case we can rewrite (15.104) and (15.106) as

K (14 de) =~ K71(1) + 47%y*(1)de
y(1+de) = y(1) + (2 — 7K)y(1)de (15.108)

where we have re-interpreted K = K(1 + de). These cquations can
now be written in differential form

dK™!
de Ay
dy

which tell us how the rigidity of the system and its fugacity change or
renormalize as we change the scale of distance in the system. Since €
can be changed arbitrarily these equations describe a continuous flow
of the K~! and y parametrically in y. This is called a renormalization
group flow.

To understand the meaning of these equations consider the station-
ary points of the flow, that is, points which not change under /. It is
clear that all points on the line ¥y = 0 are invariant under the flow.
Moreover, there is a special point at y = 0 and K = 2/7 which sepa-
rates regions where the fugacity decreases under the flow (dy/de < 0)
for K~ < m/2 and therefore perturbation theory is valid, and regions
where the fugacity grows (dy/de > 0) for K~ > 7/2 and perturbation
theory breaks down indicating that the system becomes unstable. The
flow of the parameters is shown on Fig.15.6.

Notice that there is a separatrix in the RG flow at ¥ = 0 and
K = 2/r. For points on the left hand side of the separatrix we see that
y — 0 while Kz' — K that is, the system flows for the case without
vortices. For points on the right hand side of the separatrix we see that
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0 /2 g1

Figure 15.6: Renormalization Group Flow

y — oo and Kz' — oo indicating that the rigidity goes to zero implying
a disordered phase. Exactly at the separatrix we have y — 0 and
K§1 — /2. Since K is inversely proportional to the temperature the
interpretation is obvious in terms of the phase transition: at T' — Ty
we have an universal value Kr — 2/7 that is,

R
Ps 2
= — 15.11
kBTKT o ( 5 O)

is independent of the details which determine pZ and Txr. Looking
back at equation (15.36) we see that the order parameter correlations
decay like

(T T(0)) & — (15.111)

rn

where, accordingly to (15.37) and (15.97) we have

== 15.112
=7 (15.112)
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at the transition. This gives the universal value of the correlations at
the transition.

In order to gather more information from the RG equations given
above we are going to study the RG flow close to the critical point
y =0 and K = 2/7 in more detail. Let us first rewrite

2
K=2(1-2) (15.113)
T
where r < 1 so that K~' & (7/2)(1+x). In this case the RG equations
(15.109) are given by

dx
- = 8 2 2
de Y
dy
= = 2 15.114
5 Ty ( )
which can also be rewritten in a different form
d 2
d—i = 167%xy?
dy 2
A 15.115
5 Ty ( )

and dividing the first by the second equation we get

dx? 5
which can be solved at once
1
20 N 2
y(e) = 4—7T2('r (€) +6) (15.117)

where ¢ is a constant independent of e. Notice that (15.117) is a para-
metric equation of y as a function of x which describes a set of hyperbola
as shown in Fig.15.7. If 6 > 0 the hyperbola do not touch the hori-
zontal axis but when § < 0 they touch the axis at x* = i\/m . Notice
that § = 0 is the separatrix between the two different behaviors and all
systems which have their parameters on the separatrix flow to the fixed
point at the origin. Thus, § measures the deviation from criticality.
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Figure 15.7: Plot of solution (15.117).
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Close to criticality we can always expand ¢ is powers of the deviation

from the temperature and keep the leading term:

§(T) = b*(T — Txr) -

(15.118)

Having (15.117) at hand we can replace it back into (15.114) in

order to find

dx
2 = 92
= (x* +9)

which can be integrated immediately

xz(e) €
/ M / de
zo X240 0

u(e) d
[0t
uo w2+ sgn(d)

where in the second line we changed variables:

(15.119)

(15.120)

(15.121)
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and sgn(z) = +1 if x > 0 and —1 otherwise is the sign function.
Let us consider first the behavior of the above integral in the ordered
phase (T < Tkr), that is, § < 0, and the integral is:

e d 1 /1—ul
'/ 4 =-—hl( 4 *‘“O) (15.122)
w uZ—1 2 14+u1l—ug

which gives

1-— C’e"l\/mE

ule) = ———m———— (15.123)
© 1+ Ce4V/1ole
where
1 -+ Ug
C = . 15.124
T ( )

Therefore we have from (15.121):

1— Ce Ve

rie) = — 5—
O ey

(15.125)

This result has a direct physical implication. Since e measures the
length scales in the system it is clear that at the macroscopic level we
have € — oo in which case

2(00) = —/|9] (15.126)

which substituted in (15.113) gives the macroscopic value of the stiff-

(-47)
(1 + b/ Toer — T) (15.127)

which shows that the stiffness is only weakly renormalized by the vor-
tices in the ordered phase and that at T = Txr it reduces to the
universal value given in (15.110).

KR(OO) =

&

SRR RN
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In the disordered phase (T > Tkr), that is, § > 0 the integral in
(15.120) gives:

u(e)
/uo " i 1= arctan(u) — arctan(ug) (15.128)

which leads to
z(€) = Vétan [arctan(mo/\/g) + 26\/3] : (15.129)

Therefore, unlike the solution in the ordered phase we see that z(e)
becomes divergent at

. T arctan(zo/\/6)
€ = —

45 2v/8
at this scale z(e) becomes so large that our approximation of small

breaks down. First notice that for T' &~ Txr we have from (15.118) that
0 — 0. Assuming that xy < 0 we see that the above scale becomes

(15.130)

*

€ (15.131)

T
N
Looking back into the definition of x on (15.113) that when z & 1 the
stiffness should vanish. Since the stiffness measures the energy required
to twist infinitesimally the order parameter it means, from (15.107),
that there is a length scale above which the stiffness vanishes, that is,
the spins in a XY model are not coupled anymore. But this is exactly
the definition of the correlation length of the model. Thus, we see from
(15.107) we have

§KT(T) = é@e* = Ee;ﬁ
b/
= flevVT kT (15.132)
where Vb = 7/2 gives the way the correlation length of the system
diverges at the transition. Observe that g7 also sets the scale for the
density of unbound vortices, ng, in the disordered phase:
1
m _—
&r(T)
showing that the vortices disappear completely in the ordered phase,
as cxpected.

e (15.133)
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15.6 Problems

1. Using solution (15.3) show that the super-current density is given
by expression (15.4) and that the variation of the free energy is
given by (15.7).

2. Demonstrate that (15.31) is correct.

3. Calculate explicitly the correlation function (15.36) for the order
parameter in d = 2.

4. In this exercise we are going to consider the validity of the mean
field theory for the Ginzburg-Landau approach. Let §¥(r) =
U(r) — ¥, be the fluctuation of the order parameter around its
average value ¥,. In a volume of size V = &% the order parameter
deviates from its mean value by

1
0¥ = V/Vdré\ll(r)

and therefore fluctuations around the average value will be small

if the variance of the order parameter /{|0¥|?) is much smaller
than the average value, that is,

(60 < [T
i ! t / 2
= /Vdr/dvdr U R)6T(r)) < [Tl

(i) Using the fact that the system is homogeneous and isotropic
show that the condition above can be written as

% [ dr 6w wse(0) < TP (15.134)

(#) Assuming that the Fourier transform of (§¥T(r)6¥(0)) is a
Lorentzian with width of the correlation length, &, show that

(ST E)OV(0)) = —5(r/€) (15.135)
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where a is a constant and f(x) is some function of its argument.
From this result derive that
C

> | dr(ut(r)ow(0)) = = (15.136)

where C is a constant.

(#i4) From the Ginzburg-Landau approach show that

}—LQ
R
Qm*§2
and from that show that the condition (15.134) can be written as
2m*C
gt ”;2 (15.137)
)

which is the condition for the fluctuations of the order parameter
to be small and its average value.

(#v) Suppose T — T, and d > 4. What can you conclude from
(15.137)?

(#v) Suppose T — T, and d < 4. What can you conclude from
(15.137)?

It is obvious that d = 4 is special dimension in this problem. It
is called the upper critical dimension.

5. Show that (15.66) is correct.

6. Consider a system with Ny vortices with winding numbers n,
with a = 1, ..., Ny which satisfy the Laplace equation (15.55).
(4) Show that 8(r) = 2V, 6,,(r) is also a solution of that equation.
(#4) Show that

0,(r) = nqarctan (y — ya)
T — Ty
where (z4,¥,) is the position of the core. Hint: use complex
coordinates, z = x + 1y.

(#4) Calculate the energy required to produce such vortices and
show that it does not depend on the size of the system when
condition (15.89) is obeyed.



478 CHAPTER 15. PHASE FLUCTUATIONS

7. Prove (15.101).

8. Starting from (15.120) show that (15.123) and (15.129) are solu-
tions in the ordered and disordered phase, respectively.



